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The strong Kervaire invariant problem in dimension 62

ZHOULI XU

Using a Toda bracket computation h�4; 2; �
2i due to Daniel C Isaksen, we investigate

the 45–stem more thoroughly. We prove that �2
4
D 0 using a 4–fold Toda bracket. By

work of Barratt, Jones and Mahowald, this implies that �5 exists and there exists a �5

such that 2�5 D 0 . Based on �2
4 D 0 , we simplify significantly their 9–cell complex

construction to a 4–cell complex, which leads to another proof that �5 exists.

55Q45

1 Introduction and main results

The Kervaire invariant problem is one of the most interesting problems that relates
geometric topology and stable homotopy theory. One way of formulating it, due to
Browder [5], is in terms of the classical Adams spectral sequence (ASS) at the prime 2:

For each n, the element h2
n 2 Ext2;2

nC1�2 survives in the ASS.

If h2
n survives, we denote the corresponding detecting elements in homotopy by �n 2

�2nC1�2S0 and we say that �n exists. The strong Kervaire invariant problem for n is
the following:

�n exists, and there exists a �n such that 2�n D 0:

It is well-known that the first three Kervaire invariant elements �1; �2 and �3 can be
chosen to be �2; �2 and �2 . They all have order 2. Mahowald and Tangora [13]
showed that �4 exists and 2�4 D 0 by an ASS computation. In [2], Barratt, Jones
and Mahowald showed that �5 exists by constructing a 9–cell complex and using
the Peterson–Stein formula. Recently, using equivariant homotopy technology, Hill,
Hopkins and Ravenel [7] in their marvelous paper showed that �n does not exist for all
n� 7, which left the existence of �6 as the only open case.

In [1], Barratt, Jones and Mahowald gave the following inductive approach to the strong
Kervaire invariant problem.
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Theorem 1.1 Suppose that there exists an element �n such that 2�n D 0 and �2
n D 0.

Then there exists an element �nC1 with 2�nC1 D 0.

In this paper, we prove the following.

Theorem 1.2 �2
4
D 0.

Since �4 is unique and 2�4 D 0, we have the following corollary.

Corollary 1.3 �5 exists and there exists a �5 such that 2�5 D 0.

Remark 1.4 In [14], R J Milgram claims to show that under the same conditions as in
Theorem 1.1, one has that �nC2 exists. If this were true, then we would have that �6

exists. However, Milgram’s argument fails because of a computational mistake (private
communication with Robert Bruner in 2014).

Remark 1.5 Note that if one can further prove that the same �5 has the property
�2

5
D 0, then Theorem 1.1 will imply the open case, that �6 exists and that there exists

a �6 such that 2�6 D 0.

For the case �5 , Lin [12] shows that there exists a �5 such that 2�5 D 0, based on a
computation of the Toda bracket h�4; 2; �

2i. Based on the same Toda bracket but a
different computational result, Kochman [10] also shows that �2

4
D 0 and hence that

there exists a �5 such that 2�5 D 0. Recently, Isaksen [8] computed this Toda bracket
using more straightforward arguments. His result contradicts the results of both Lin
and Kochman. For more details about where the arguments of Lin and Kochman fail,
see Remark 3.4. Our proof uses Isaksen’s computation. Since Isaksen’s computation
of h�4; 2; �

2i gives a more complicated answer than the earlier claims, we must study
several other Toda brackets to prove �2

4
D 0.

Knowing �2
4
D 0, we give a second proof of the existence of �5 . In [2], Barratt,

Jones and Mahowald constructed a 9–cell complex X 0 , and maps f 0W S62 ! X 0 ,
g0W X 0! S0 , such that the composite g0 ıf 0W S62! S0 realizes a �5 . We simplify
this 9–cell complex X 0 into a 4–cell complex X , and construct maps f W S62!X ,
gW X ! S0 as indicated in the following cell diagram. We follow the notation of cell
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diagrams used by Barratt, Jones and Mahowald.

62
2 //

�
''

62

�461

�4
31

2

30
�4 // 0

Here each circle represents a cell. The number in each circle represents the dimension
of that cell. The middle 4 cells represent the cell structure of X , where the three lines
without arrow heads represent attaching maps of X . The map g is an extension of �4 ,
and the map f is a co-extension of �_ 2. In other words, if we restrict the map g

on the bottom cell of X , so gjS30 W S30 ! S0 , we have �4 . If we pinch down the
31–skeleton of X , so pW X!S61_S62 , then the composite pıf W S62!S61_S62

is �_ 2. For more details about cell diagrams, see [2].

Theorem 1.6 The composite of maps g ıf W S62! S0 realizes a �5 .

Proof We first show that we can form this cell diagram. For primary obstructions,
we have 2�4 D 0 and �2

4
D 0. For secondary obstructions, we have ��4 2 h2; �4; 2i

and 0 2 h�4; 2; �4i. The latter is shown in [2]. It is straightforward to check that the
following two facts are true: for i � 4 the functional cohomology operations

Sq2i

g W H
0S0
�!H 2i�1X

are all zero, while Sq32
g W H

0S0 ! H 31X is nonzero; the functional cohomology
operation Sq32

f
is nonzero on Sq32

g H 0S0 D H 31X . Note that all cohomology is
understood to have mod 2 coefficients. As used in [2], it follows from the Peterson–Stein
formula [15; 17] that the composite g ıf is detected by the secondary cohomology
operation �5;5 . Therefore g ıf realizes a �5 .

We present the proof of Theorem 1.2 in Section 2. The proof uses several theorems and
lemmas whose proofs we postpone. We include Isaksen’s computation of h�4; 2; �

2i

in Section 3 for completeness. In Section 4, we discuss two more Toda brackets in
the 45–stem, namely h�4; 2; �i and h�4; 2; �

2C �i. The proof of the main theorem
depends on the computation of the latter bracket. We give a modified 4–fold Toda
bracket for �4 in Section 5. We complete our proof of the main theorem by proving
several lemmas in Section 6.
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2 The proof of the main theorem

We will use the following Toda brackets to prove Theorem 1.2.

Theorem 2.1 h�4; 2; �
2C �i contains 0 with indeterminacy f0; �15�4g.

Theorem 2.2 �4 D h2; �
2C �; 2�; �i with zero indeterminacy.

Lemma 2.3 ��53 D 0.

Lemma 2.4 h�15�4; 2�; �i D 0 with zero indeterminacy.

We postpone the proof of Theorem 2.1 to Section 4, the proof of Theorem 2.2 to
Section 5 and the proofs of Lemmas 2.3 and 2.4 to Section 6.

Proof of Theorem 1.2 Following Theorems 2.1 and 2.2, we have

�2
4 D �4h2; �

2
C �; 2�; �i � hh�4; 2; �

2
C �i; 2�; �i

D the union of h0; 2�; �i and h�15�4; 2�; �i:

By Lemmas 2.3 and 2.4 above, both brackets contain a single element zero. Therefore,
we have that �2

4
D 0.

If a is a surviving cycle in ASS, we use fag to denote the set of elements in the
homotopy group that are detected by a. For elements in the E1–page of the ASS, we
include part of Isaksen’s chart [8] in Figure 1.

We do not include elements in filtration higher than 14. Those elements are detected by
the K.1/–local sphere, and are not relevant to our proof. Here we use colored lines to
denote nontrivial extensions. For example, the line between Pu and e0r indicates that
2fe0rg is nontrivial and is detected by Pu. The 2, � and �–extensions are completely
known in this range with a few exceptions that are indicated by dashed lines.1 But
these extensions are irrelevant to our purpose.

1Added in proof: It is now known that all of these nontrivial extensions do in fact exist.

Geometry & Topology, Volume 20 (2016)



The strong Kervaire invariant problem in dimension 62 1615

22 23 24 25 26 27

0

1

2

3

4

5

6

7

44 46 48 50 52 54

0

2

4

6

8

10

12

14

g2

h2
3h5

h5d0

w

B1

N

d0l

Ph5c0

e0r

Pu

B2

d0e2
0

h5c1

C

h3g2

gn

d1g

e0m

x0

d0u

h0h5i

e2
0g

Figure 1

3 A Toda bracket h�4; 2 ; �
2i

The following theorem is due to Isaksen [9]. For completeness, we include the proof.

Theorem 3.1 h�4; 2; �
2i contains an element of order 2 that can be detected by h0h3

4
.

Remark 3.2 Before presenting the proof, we mention that the indeterminacy of
this Toda bracket is well-known. Namely, it is the set f0; �15�4g, where �15 is the
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generator of Im J in �15 , and is detected by h3
0
h4 . Furthermore, �15�4¤ 0 is detected

by h2
0
h5d0 . This was shown by Tangora in [18].

Proof In the Adams E3 –page, we have hh2
4
; h0; h

2
3
iDh2

4
h4Ch5h2

3
D 0 in the Adams

filtration 3. Therefore, by the Moss Theorem [16], there is an element in h�4; 2; �
2i

that is detected by some element of filtration at least 4. Since the nontrivial element in
the indeterminacy has filtration 7, any element in h�4; 2; �

2i has filtration at least 4.
We have

2h�4; 2; �
2
i D h2; �4; 2i�

2
D ��4�

2
D 0:

Note that the indeterminacy of h2; �4; 2i�
2 is 2�2�31 D 0. Therefore, any element in

h�4; 2; �
2i has order 2.

Now consider the product �4�4 ,

�4�4 D h�; �; �i�4 � h�; �; ��4i � h�; �; fxgi:

Here, since 2�4 D 0, we can ignore the difference between �4 , which is by definition
h�; �; 2�i, and h�; �; �iD 7�4 . In the Adams E2 –page, we have h2h5d0Dhh3; h2;xi

with zero indeterminacy. In fact, this follows from

h2hh3; h2;xi D hh2; h3; h2ix D h2
3x D h2

2h5d0:

Therefore, �4�4 is contained in h�; �; fxgi � fh2h5d0g.

On the other side, �4�4 is contained in �4h2; �
2; �i D h�4; 2; �

2i� . For the indetermi-
nacy, note that �15�4� D 0. Therefore, we actually have

�4�4 D h�4; 2; �
2
i�:

Combining this with the fact that �4�4 is also contained in fh2h5d0g, we deduce that
there exists an element in h�4; 2; �

2i such that � times it is detected by h2h5d0 , which
has filtration 6. Therefore, h�4; 2; �

2i contains an element with filtration at most 5.
Furthermore, it cannot be detected by h1g2 , which has filtration 5, since otherwise the
� multiple wouldn’t be detected by h2h5d0 . Therefore, the statement of the theorem
is the only possibility left.

Remark 3.3 Another way to describe the statement of this theorem is the following:

h�4; 2; �
2
i contains an order 2 element of the form 2˛Cˇ ,

where ˛ is detected by h2
3
h5 and ˇ is detected by h5d0 . Note that the nontrivial 2–

extension in the 45–stem means that there exist elements ˛ and  , which are detected
by h2

3
h5 and h5d0 respectively, such that 4˛ D 2 . Since  has order 8, one can

choose ˇ to be � D 7 , so that 2˛Cˇ has order 2.
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Remark 3.4 In [12], Lin showed that this bracket contains 0. The step that rules out
the element which Isaksen got is invalid. In [10], Kochman showed that this bracket
contains �fg2g or 0. His argument failed essentially because of the inconsistency of
the �–extension on fh2h5d0g and the � –extension on fh2

0
g2g, which allowed him to

eliminate the right element. The inconsistency is discussed in [9].

4 More about the 45–stem

We first consider the Toda bracket h�4; 2; �i in �45 .

Lemma 4.1 h�4; 2; �i contains an element of order 2 that can be detected by h0h3
4

.

Proof The Adams differential d3.h0h4/ D h0d0 implies that in the Adams E4 –
page, hh2

4
; h0; d0i D h0h3

4
in the Adams filtration 4. Then by the Moss convergence

theorem [16], there is an element in h�4; 2; �i that is detected by h0h3
4

. From

2h�4; 2; �i D h2; �4; 2i� D ��4� D 0;

we know that any element in h�4; 2; �i has order 2. The indeterminacy of h2; �4; 2i�

is 2��31 D 0. Here we also used the fact that ��4 D 0, which is known for filtration
reasons. In fact, since d0h2

4
D 0 in Ext6 , ��4 must be detected by an element of

filtration at least 7. However, in the 44–stem of the E1–page, there are no elements
of filtration 7 or higher. Therefore h�4; 2; �i contains an element of order 2 that can
be detected by h0h3

4
.

Remark 4.2 The indeterminacy of this bracket is the same as that of h�4; 2; �
2i,

ie f0; �15�4g. In fact, �31 is generated by ��4; fng and �31 , where �31 is the generator
of Im J in �31 , and is detected by h10

0
h5 . Since ��4D 0, it follows ���4D 0. Again

for filtration reasons, �fng D 0 and ��31 D 0. Therefore ��31 D 0. This shows that
the indeterminacy of h�4; 2; �i is f0; �15�4g.

Although both h�4; 2; �i and h�4; 2; �
2i contain an element of order 2 that can be

detected by h0h3
4

, we do not necessarily know if they have an element in common.
The following theorem confirms that they do.

Now we restate Theorem 2.1.

Theorem 4.3 h�4; 2; �
2C �i contains 0 with indeterminacy f0; �15�4g.

We need the following lemma to prove the theorem.
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Lemma 4.4 �2�33 D 0.

Proof We know that �33 is generated by ��5 , ��4 , �fqg, �2�31 and fP4h1g. Since
��2 D 0 and ��2 D 0, we only need to show that fP4h1g�

2 =0. In fact, we have

fP4h1g�
2
D ��39� D 0

for filtration reasons. Here �39 is the generator of Im J in �39 , and is detected by
P2h2

0
i . Therefore, �2�33 D 0.

Proof of Theorem 4.3 The indeterminacy is straightforward, as in Remark 4.2.

Since all elements in h�4; 2; �i and h�4; 2; �
2i have order 2 and can be detected by

h0h3
4

in the Adams filtration 4, elements in h�4; 2; �
2C�i must be detected by elements

of filtration at least 5 and have order 2. To prove the theorem, we need to rule out both
fwg and �fg2g.

For fwg, by Lemma 4.4, we have that

�2
h�4; 2; �

2
i D h�2; �4; 2i�

2
2 �33�

2
D 0:

Next we have that
�2
h�4; 2; �i D �4h2; �; �

2
i:

In the Adams E4 –page, we have that hh0; d0; h
2
1
i D h0h4h2

1
D 0 in the Adams

filtration 4. Then the Moss Theorem tells us that h2; �; �2i might contain a nontrivial
element of higher filtration, namely a combination of ��; �2�15 and fP2h1g. Note
that we have that ���4 D 0 and by Lemma 6.1 we have that �2�15�4 D 0. To show
that fP2h1g�4 D 0, we first show that fPh1g�4 D 0.

In fact, fPh1g�4 2 h�; 8�; 2i�4 D �h8�; 2; �4i, which contains 0. This holds since
�h8�; 2; �4i intersects �fh3

0
h3h5g, which contains a single element zero. The indeter-

minacy is ��8�4 D 0. This gives that fPh1g�4 D 0. Then we have

fP2h1g�4 2 �4hfPh1g; 2; 8�i D h�4; fPh1g; 2i8� � �408� D 0:

Therefore, no matter what h2; �; �2i equals, we always have that

�2
h�4; 2; �i D h2; �; �

2
i�4 contains 0:

The indeterminacy of �2h�4; 2; �i is zero since �2�4 D 0 and �2� D 0. Then

�2
h�4; 2; �i D 0:

Therefore,
�2
h�4; 2; �

2
C �i D 0:
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Then the fact that �2fwg ¤ 0 rules out fwg, since otherwise we would have that
�2h�4; 2; �

2C �i D �2fwg ¤ 0:

For �fg2g, first note that ��fg2g ¤ 0 is detected by h1h3g2 . We have that

h�4; 2; �i� D �4h2; �; �i � �4�22 D 0:

In fact, �22 is generated by �x� and �2x� . We have that �2x��4 D 0 and �x��4 D 0

for filtration reasons. We remark that we can actually prove that h2; �; �i D �x� by
studying the cofiber of 2, but we don’t need this fact here.

On the other side, as explained in Remark 3.3, h�4; 2; �
2i contains 2˛Cˇ . Therefore,

h�4; 2; �
2
i� contains 2˛� Cˇ�:

We have that 2˛� 2 2�52 D 0. In the Adams E3 –page, we compute directly that
hh0; h

2
4
; d0i D h5d0 . Then Moss’s Theorem shows that h2; �4; �i contains an element

that equals ˇ plus possibly higher filtration terms. Note that �fwg D 0 by using
tmf . In fact, if �fwg ¤ 0, the only possibility is that �fwg is detected by fe0mg.
This implies that ��fwg D �fug because of the two nontrivial �–extensions. Since
both �fwg and �fug are detected by tmf and � D 0 in �� tmf , mapping this relation
into tmf gives a contradiction. Besides, from tmf , we know that fd0lg detects �fqg,
then the contradiction also follows from �� D 0. See [4; 6] for example.

Then we have that

ˇ� 2 h2; �4; �i� D 2h�4; �; �i � 2�52 D 0:

Therefore, h�4; 2; �
2i� contains 2˛� Cˇ� D 0. Note that �15�4� 2 �4�22 D 0, the

indeterminacy is hence zero. Then we have that

h�4; 2; �
2
i� D 0:

Therefore,

h�4; 2; �
2
C �i� D 0:

Combined with the fact that �fg2g� ¤ 0, this rules out �fg2g.

Remark 4.5 �2C � is another element in �14 that deserves to be called �3 .

Remark 4.6 We can actually show that the bracket h2; �4; �
2i contains ��5C ��4

with indeterminacy f0; �2�31g.
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5 A modified 4–fold Toda bracket for �4

We have the following well-known 4–fold Toda brackets for �4 , see [3; 10; 11] for
example:

�4 D h2; �
2; 2; �2

i D h2; �2; �2; 2i D h2�; �; 2�; �i D h2; �2; 2�; �i:

All of them have zero indeterminacy. This is partially discussed in [3; 10; 11]. For
completeness, we include a proof here.

Lemma 5.1 All four Toda brackets above have zero indeterminacy.

Proof In general, suppose a 4–fold Toda bracket h˛1; ˛2; ˛3; ˛4i is defined, where
˛i 2 �ni

. Then its indeterminacy is contained in the union of three types of 3–fold
Toda brackets:

h˛1; ˛2; �n3Cn4C1i; h˛1; �n2Cn3C1; ˛4i and h�n1Cn2C1; ˛3; ˛4i:

In our case, the indeterminacy for all of them is contained in the union of the following
eight brackets:

h�15; 2; �
2
i; h2; �15; �

2
i; h2; �2; �15i; h2; �29; 2i;

h�15; 2�; �i; h2�; �15; �i; h2�; �; �15i; h2; �22; �i:

We will show that they are all zero. Note that �30 Š Z=2 and is generated by �4 ,
which is indecomposable. So for each of them, we only need to show that it does not
contain �4 . They all follow for filtration reasons.

For h�15; 2; �
2i, h2; �2; �15i, h�15; 2�; �i and h2�; �; �15i the corresponding Massey

products are all well-defined on the Adams E3 –page. Since �15 is generated by
elements of filtration at least 4, the Massey products all take values in filtration at
least 5. Therefore, by the Moss Theorem, all of them are all zero.

For h2; �15; �
2i and h2�; �15; �i, the corresponding Massey products are all well-

defined on the Adams E2 –page. Since �15 is generated by elements of filtration at
least 4, the Massey products all take values in filtration at least 6. Therefore, by the
Moss Theorem, all of them are all zero.

For h2; �22; �i, there are essentially two Toda brackets to check: h2; �x�; �i and
h2; �2x�; �i, where �x� is detected by h2c1 . Both brackets have zero indeterminacy.
We have that

h2; �x�; �i D h2; x�; ��i D h2; x�; 0i D 0;

and that
h2; �2

x�; �i D h2; �2; x��i D h2; �2; 0i D 0:
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Here we used the fact that 2x� D 0 and x�� D 0.

At last, h2; �29; 2i D 0, since �29 D 0. This completes the proof.

Now we prove a modified 4–fold Toda bracket based on the last one. Again, note that
�30 Š Z=2 and is generated by �4 .

Theorem 5.2 �4 D h2; �
2C �; 2�; �i with zero indeterminacy.

Proof We have h�2C �; 2�; �i � �29 D 0. And

h2; �2
C �; 2�i � h2; �2

C �; 2i� 3 �.�2
C �/� D 0:

The indeterminacy of the bracket h2; �2C �; 2�i is 2�22C 2��15 D 0, and we have
h2; �2C �; 2�i D 0. Therefore, this 4–fold Toda bracket is strictly defined, and the
indeterminacy is

h2; �2
C �; �15iC h2; �22; �iC h�15; 2�; �i:

Note that h2; �2C�; �15i D 0 for filtration reasons as in the proof of Lemma 5.1. The
other two parts of the indeterminacy follow from the indeterminacy of h2; �2; 2�; �i,
which we know is zero. Then the theorem follows from the next lemma and the fact
that �4 D h2; �

2; 2�; �i.

Lemma 5.3 h2; �; 2�; �i D 0 with zero indeterminacy.

Proof Again, h�; 2�; �i � �29 D 0, and

h2; �; 2�i � h2; �; 2i� 3 ��� D 0:

The indeterminacy of h2; �; 2�i is zero. Therefore, this 4–fold Toda bracket is strictly
defined. Again, h2; �; �15i D 0 for filtration reasons, and the other two parts of the
indeterminacy are zero, which follows from the indeterminacy of h2; �2; 2�; �i.

To see this bracket contains zero, we multiply by � ,

h2; �; 2�; �i� � h2; �; h2�; �; �ii D h2; �; �4i:

Since in the Adams E4 –page hh0; d0; h2h4i D 0 in the Adams filtration 4, there is an
element in h2; �; �4i that is detected by an element in filtration strictly higher than 4.
The indeterminacy of this bracket is 2�33 C �4�15 D �4�15 , which also contains
elements in filtration strictly higher than 4. On the other side, ��4 is detected by p

in Ext4 . Therefore h2; �; �4i does not contain ��4 . Then the lemma follows from the
fact that �30 Š Z=2 and is generated by �4 .

Remark 5.4 We can show directly that h2; �; �4i D 0 with zero indeterminacy.
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6 A few proofs

We first prove Lemma 2.3 which states that ��53 D 0.

Proof As shown in [9], �53 Š Z=2˚Z=2˚Z=2˚Z=2. One set of generators can
be chosen to be elements in �fh5c1g, �fC g, �fh2

3
h5g and �fug respectively. Note that

x0 detects �fh2
3
h5g. Then the lemma follows from �� D 0, �� D 0 and �� D 0.

The following lemma is shown by Tangora in [18]. We first sketch his proof, then give
a more direct proof.

Lemma 6.1 �15�4 D 2�fh2
0
h3h5g.

Proof Tangora first showed that �15�4 ¤ 0 and is detected by h2
0
h5d0 . We have

�15�4 D �15h�; 2�; �; 2�i D h�15; �; 2�; �i2�:

Then the only possibility is that h�15; �; 2�; �i is detected by h2
0
h3h5 .

We present another proof. In the Adams E3 –page, we have hh3; h0h3; h
3
0
i D h3

0
h4 .

Therefore, �15 is contained in h�; 2�; 8i. Then we have

�15�4 D h�; 2�; 8i�4 D �h2�; 8; �4i D �h8�; 2; �4i D �fh
3
0h3h5g D 2�fh2

0h3h5g:

For the first equation, h�; 2�; 8i�4 has no indeterminacy, hence the equality. For the
last equation, the difference between fh3

0
h3h5g and 2fh2

0
h3h5g contains elements of

higher filtration, namely ���4 in this case. The equality holds since ��2�4 D 0.

Proof of Lemma 2.4 The indeterminacy is �15�4�15C��53D �15�4�15 . We know
that �15 is generated by �� and �15 . We have �2

15
D 0 and ��4D 0 both for filtration

reasons. Therefore the indeterminacy is equal to �15�4�15 D 0.

By Lemma 6.1, h�15�4; 2�; �i D h2�fh
2
0
h3h5g; 2�; �i contains �h2fh2

0
h3h5g; 2�; �i.

Note that h2fh2
0
h3h5g; 2�; �i � �53 and ��53 D 0. This completes the proof.
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