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Higher laminations and affine buildings

IAN LE

We give a Thurston-like definition for laminations on higher Teichmiiller spaces
associated to a surface S’ and a semi-simple group G for G = SL,, or PGL,,. The
case G = SL, or PGL; corresponds to the classical theory of laminations on a
hyperbolic surface. Our construction involves positive configurations of points in the
affine building. We show that these laminations are parametrized by the tropical points
of the spaces X s and Ag,s of Fock and Goncharov. Finally, we explain how the
space of projective laminations gives a compactification of higher Teichmiiller space.

22E40

1 Introduction

Higher Teichmiiller theory studies the space of representations of 1 (S), the funda-
mental group of a surface S, into a split-real group G(RR). This space is qualitatively
quite different from the space of representations of 7 (.S) into a complex group or a
compact group. For example, the space of representations into a split-real group has
many components.

Hitchin [16] showed that one of these components is contractible, and behaves much
like classical Teichmiiller space. Classical Teichmiiller space is obtained when one
considers this component in the special case where G = SL, . Hitchin’s approach was
analytic, and involved the study of Higgs bundles on Riemann surfaces.

More recently, Fock and Goncharov discovered a completely different approach to
higher Teichmiiller theory [7], which is more algebraic, combinatorial and explicit. For
a surface S with boundary and possibly marked points on the boundary, they look at
G (R)-local systems on the surface with the extra data of a framing of the local system
at the boundary of S'. (With some modification the theory extends to the case of local
systems on closed surfaces.) Fock and Goncharov define a pair of auxiliary moduli
spaces X s and Ag,s which are related to the space Lg,s of local systems. The two
spaces differ in the type of framing of the local system at the boundary.

An unusual feature of the spaces X s and Ag, s (and the reason for their importance)
is that each has an atlas of coordinate charts such that all transition functions involve
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only addition, multiplication and division. In other words, these spaces have a positive
atlas and may be called positive varieties. The main ingredient in the construction of
this positive atlas of coordinate charts is Lusztig’s theory of total positivity. In fact,
when G = SL,, or PGL,,, they show more: these spaces have cluster-like structures
on their rings of functions, and thus can be viewed as cluster varieties.

Because X s and Ag, s are positive varieties, it makes sense to take the positive
R~ points of these moduli spaces. With some work, Fock and Goncharov show that
taking the positive points gives an algebro-geometric description of the component
of representations studied by Hitchin. The theory gives an explicit parametrization of
positive representations, and it becomes manifest that the space of representations is
contractible. Their theory has many interesting features: there is a close connection to
cluster algebras; their moduli spaces can be quantized; the moduli spaces come in dual
pairs which are a manifestation of Langlands duality.

The theory has geometric consequences as well. For example, Fock and Goncharov
show that the corresponding representations are discrete and faithful (this was also
shown by Labourie and Guichard for G = SL,, using different methods). Another
surprising consequence of their approach is that they can completely recover Thurston’s
theory of measured laminations.

In the seventies and eighties, Thurston invented the theory of laminations in a completely
different context; the geometry and topology of two- and three-dimensional manifolds.
Laminations arose from both the study of geodesics on hyperbolic surfaces and the
study of Riemann surfaces via quadratic differentials. They gave a tool to analyze
how hyperbolic/Riemann surfaces could degenerate, and gave a mapping class group-
equivariant compactification of Teichmiiller space.

Fock and Goncharov show that Thurston’s space of measured laminations arises in a
completely different way: by taking the tropical points of the PGL,— and SL,—moduli
spaces Xpgr,,,s and Agy, s. This is surprising, as it gives an algebraic description of
an object of geometric origin.

Moreover, by analogy, they define higher laminations as the tropical points of higher
Teichmiiller space. However, for groups of higher rank, a more concrete definition in
the spirit of Thurston has remained elusive. Such a definition would confirm that the
definition of Fock and Goncharov is the correct one, and clarify the bridge between
ideas from geometric topology and the study of G—local systems on surfaces.

In this paper, we give a completely explicit definition of higher laminations for the
space of framed G(R)-local systems on a surface S and show that it coincides with
the tropical points of higher Teichmiiller space. We expect that one can extend much of
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what was done in [8] by Fock and Goncharov for SL, laminations — the construction
of functions corresponding to laminations, duality pairings, and analogues of length
functions — to the case of general G .

Another reason our definition is the right one is that it involves affine buildings, and is
in agreement with work of Morgan and Shalen [25], Alessandrini [1] and Parreau [26].
Morgan and Shalen gave general procedures for compactifying SL,(R) and SL,(C)
character varieties of two- and three-manifolds using spaces of R—trees. They show
that this theory is equivalent to the theory of laminations (laminations and R-trees are,
in the appropriate sense, dual to each other).

Parreau used different techniques (ultra-filters and Gromov—Hausdorff convergence) to
prove a much more general result: that spaces of representations of a finitely generated
group into a semi-simple Lie group have a compactification consisting of actions on
buildings. Though very general, Parreau’s results have some drawbacks: (1) they are
not very explicit, (2) the topology of these compactifications is difficult to understand,
and (3) it is difficult to control the types of actions on buildings that arise. Alessandrini
has also shown that there exist compactifications of character varieties by actions on
buildings using techniques of tropical geometry (as in [25]) to get a handle on these
compactifications. Our approach fits in this line of work and gives a topologically
simple and explicit tropical compactification of higher Teichmiiller space.

Our main results are as follows:

Theorem 1.1 Let S be a (hyperbolic) surface with marked points, and let C be its
cyclic set at 0o. Associated to any tropical point of Ag s (Z") there is an A-lamination:
a 1 (S)—equivariant virtual positive configuration of points in the affine building of G
parametrized by C . This virtual positive configuration is unique up to equivalence.

Analogously, associated to any tropical point of Xg s(Z") there is an X—lamination: a
positive configurations of cones in the affine building where the cones are parametrized
by the finite subsets of the set C, compatible under restriction from one finite set to
another, and equipped with an action of 71 (S) on these configurations of cones. This
positive configuration of cones is unique up to equivalence.

The space of projectivized laminations provides a spherical boundary for the corre-
sponding higher Teichmiiller spaces Ag,s(R¢) and Xg s(R>¢).

Higher laminations can be thought of as an analogue of R-trees that relates the
combinatorics of affine buildings and representation theory on the one hand (objects
like hives, honeycombs and Satake fibers), and degenerations of bundles and geometric
structures on the other.
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Our result can be viewed in the context of the duality between the X— and .A—spaces
for Langlands dual groups. It gives strong evidence for some of the duality conjectures
of Fock and Goncharov [9].

We expect our theory of laminations on higher Teichmiiller spaces to have lots of
applications, and we list a few here.

(1) The general philosophy of cluster algebras and the duality conjectures of Fock
and Goncharov lead us to expect that the cluster complex associated to Ag, s embeds
inside the space of laminations for the space Xgv s, where GV is the Langlands dual
of G. This gives a parametrization of all cluster variables and all clusters. This is of
interest because higher Teichmiiller spaces give many examples of cluster algebras of
rather general (and sometimes mysterious) type and also include many well-studied
cases (for example, most finite mutation type cluster algebras as well as the elliptic E5
and Eg algebras).

(2) In fact, one expects more: laminations should parametrize atomic/canonical bases
for the cluster algebras. These are of interest in physics, where they correspond to
line operators; see Gaiotto, Moore and Neitzke [12]. Higher laminations are also
related to the spectral networks: in [12], the authors conjecture that there are spectral
networks associated to each cluster in the cluster algebra and that passage through
“saddle connections” corresponds to mutation in cluster algebras. This would mean that
the space of higher laminations, whose piecewise-linear structure encodes the cluster
complex, should be in bijection with spectral networks. There is strong evidence of this
in the case G = SL, from the Hubbard—Mazur theorem. A more precise relationship
is conjectured by Katzarkov, Noll, Pandit and Simpson [19]: they say that spectral
networks arise from my—equivariant harmonic maps to buildings. We believe that the
correct buildings to map to come from our construction of higher laminations.

Recent work on canonical bases in cluster algebras includes that of Gross, Hacking,
Keel and Kontsevich [14]. Another interesting application of spectral networks and
cluster algebras in mirror symmetry has been the work of Bridgeland and Smith [5],
which relates spaces of quadratic differentials and spaces of stability conditions.

(3) A better understanding of the structure of the cluster algebra on the space Ag s
should in particular lead to a better understanding of its symmetries. These symmetries
are expected to be a higher analogue of the mapping class group. One of our motivations
for a geometric definition of laminations was to obtain some understanding of the higher
mapping class group. It is possible that higher laminations can be used as a tool to
study the higher mapping class group and its dynamics in the way that laminations are
used to study the mapping class group.
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(4) One hopes to construct length functions associated to laminations on higher Teich-
miiller space. One approach might be to identify them with asymptotics of canonical
functions on higher Teichmiiller space. This could lead to a better understanding of the
geometric structure that higher Teichmiiller space parametrizes.

(5) The study of positive configurations of points inside the affine building for G is
related to counting tensor product multiplicities for representations of GV . Positive
configurations of points inside the affine building are in bijection with components
of Satake fibers (this follows from work of Goncharov and Shen, [13] building on
work of Kamnitzer [18], though their perspective is slightly different; we explain the
relationship in Section 5.7).

(6) Positive configurations of points in the affine building are new objects in the
geometry of the affine building. They are fairly rigid, they can be parametrized, and
they are of a tropical nature, unlike general configurations of points in the affine building.
There should be a duality pairing between positive configurations for Langlands dual
groups which encapsulates rich geometric structure.

Let us summarize the contents of this paper. In Section 2, we begin by reviewing the
constructions of higher Teichmiiller spaces in Fock and Goncharov [7]. We will adapt
some of the exposition from their introduction. We will give the correct definition
of the space Ag, g, correcting a minor error in [7]. In Section 3 we discuss some
generalities on tropical points of positive varieties, spelling out some ideas that are
implicit in [7], and related to more standard ideas in tropical geometry; see Maclagan
and Sturmfels [24] and Speyer and Williams [28]. In Section 4 we review the definition
and basic properties of the affine Grassmannian and affine buildings. In Section 5.1 we
give a conceptual outline of the definition/construction of virtual positive configurations
of points in the affine building, the central object by which we define higher laminations.
This summarizes Sections 5.4-5.6, which form the heart of the paper. Section 5.2
lays the groundwork for the complete definition of virtual positive configurations
in Section 5.3. In Sections 5.4-5.6, we then explain the construction of positive
configurations. The use of cluster coordinates turns out to be important here. This leads
up to Theorem 5.19, the central result of this paper, describing .A-laminations on the
disc. From here we deduce how to define .A-laminations on any surface. In Section 5.7
we discuss the relationship of our work with [13], and derive the hive inequalities
from our approach. In Section 6, we give the analogous result for X—laminations,
and give a proposal for an extension of the definition to closed surfaces. Finally, in
Section 7, we describe an application of the theory: a spherical compactification of
higher Teichmiiller space as a closed ball such that the action of the (higher) mapping
class group extends to the boundary.

Geometry & Topology, Volume 20 (2016)



1678 Ian Le

Acknowledgements I would like to thank Vladimir Fock for his generosity in clarify-
ing the ideas of [7] and [9], and also pointing out that the study of higher laminations
was an interesting problem. I thank Francois Labourie for helpful conversations and
encouragement. My ideas are very indebted to Joel Kamnitzer’s work, and he helped
me understand the relationship of his work to my own. My thinking about cluster
algebras was very influenced by Lauren Williams, Greg Musiker and David Speyer.
Finally, my advisor David Nadler has continually been a valuable sounding board for
my ideas, and I am grateful for his support and encouragement.

2 Background

2.1 Setup

Let S be a compact oriented surface, with or without boundary, and possibly with
a finite number of marked points on each boundary component. We will denote this
whole set of data— the surface and the marked points on the boundary —by S'. We
will always take S to be hyperbolic, meaning it either has negative Euler characteristic,
or contains enough marked points on the boundary (in other words, we can give it the
structure of a hyperbolic surface such that the boundary components that do not contain
marked points are cusps, and all the marked points are also cusps).

Let G be a semi-simple algebraic group. When G is adjoint, ie has trivial center (for
example, when G = PGL;,), we can define a higher Teichmiiller space Xz 5. On the
other hand, for G simply connected (for example, when G = SL,;,), we can define the
higher Teichmiiller space Ag,s. They will be the space of local systems of S with
structure group G with some extra structure of a framing of the local system at the
boundary components of S'. Alternatively, these spaces describe homomorphisms of
m1(S) into G modulo conjugation plus some extra data.

When S does have at least one hole, the spaces X, s and Ag, s have a distinguished
collection of coordinate systems, equivariant under the action of the mapping class
group of S. Using an elaboration of Lusztig’s work on total positivity, one can show
that all the transition functions between these coordinate systems are subtraction-free,
and give a positive atlas on the corresponding moduli space. This positive atlas gives
the spaces X s and Ag g the structure of a positive variety.

If X is a positive variety (for example, X = Ag s or A s), we can take points
of X with values in any semifield, ie in any set equipped with operations of addition,
multiplication and division, such that these operations satisfy their usual properties (the
most important and non-trivial being distributivity). For us, the important examples
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of semifields will be the positive real numbers R~ q; any tropical semifield; and
the semifield which interpolates between these two: the field of formal Laurent series
over R with positive leading coefficient, which we denote K~ (. The tropical semifields
7', Q, R’ are obtained from Z, Q, R by replacing the operations of multiplication,
division and addition by the operations of addition, subtraction and taking the maximum,
respectively.

Taking R ¢—points of the spaces X s and Ag s allows us to recover higher Teich-
miiller spaces. The proof of this takes up the bulk of [7]. This space consists of the
real points of X s and Ag s whose coordinates in one, and hence in any, of the
constructed coordinate charts are positive.

The existence of these extraordinary positive coordinate charts depends on G Lusztig’s
theory of positivity in semi-simple Lie groups [23; 22], and is a reflection of the cluster
algebra structure of the ring of functions on these spaces.

2.2 Definition of the spaces X, s and Ag s

The data of a framing of a local system involves the geometry of the flag variety
associated to a group. Let B be a Borel subgroup, a maximal solvable subgroup of G .
Then B = G/ B is the flag variety. Let U :=[B, B] be a maximal unipotent subgroup
in G.

Let £ be a G-local system on 5. For any space X equipped with a G—action, we can
form the associated bundle Ly . For X = G/B we get the associated flag bundle Lz,
and for X = G/ U, we get the associated principal flag bundle £ 4.

Definition 2.1 A framed G-local system on S is a pair (£, §), where £ is a G-local
system on S and f a flat section of the restriction of £z to the punctured boundary
of S.

The space A s is the moduli space of framed G-local systems on S'.
The definition of the space Ag, g is slightly more complicated. It involves twisted local
systems. We shall define this notion.

Let G be simply connected. The maximal-length element wq of the Weyl group of G
has a natural lift to G, denoted wy. Let sg := ﬁg. It turns out that sg is in the center
of G and that sé = e. Depending on G, sg will have order one or order two. For
example, sg has order two for G = SL,j, while sg has order one for G = SLyj 41 -
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The fundamental group 771 (S) has a natural central extension by Z/27.. We see this as
follows. For a surface S, let 7’S be the tangent bundle with the zero section removed.
The group 71 (7T’S) is a central extension of 7 (S) by Z:

Z — mi(T'S) — m1(S).

The quotient of 71 (.S) by the central subgroup 2Z C Z gives 71 (S), which is a central
extension of 7 (S) by Z /27

7]27 — 7 (S) = m1(S).
Let o5 € m1(S) denote the non-trivial element of the center.

A twisted G—local system is a representation 71(S) in G such that og maps to sg.
Such a representation gives a local system on 7’S'.

Now we must describe the framing data for a twisted local system. Let £ be a twisted
G-local system on S. Such a twisted local system gives an associated principal
affine bundle £ 4 on the punctured tangent bundle 7S . For any boundary component
of §', we will construct sections of the punctured tangent bundle above these boundary
components. Given any boundary component, consider the outward-pointing unit
tangent vectors along this component — this gives a section of the punctured tangent
bundle above each boundary component of S. We get a bunch of loops and arcs in
T’S lying over the boundary of S. Call this the lifted boundary.

Definition 2.2 A decorated G-local system on S consists of (£, «), where L is a
twisted local system on S and « is a flat section of £ 4 restricted to the lifted boundary.
The space Ag,s is the moduli space of decorated G-local systems on S'.

In the case where sg = e, a decorated local system is just a local system on S along

with a flat section of £ 4 restricted to the boundary. One can generally pretend that
this is the case without much danger.

2.3 Relation to configurations of flags

The positive coordinate systems on Xg s and Ag, s arise by rationally identifying
them with spaces of configurations of flags. We will only outline this part of the story.

Let S be a hyperbolic surface. Give it some hyperbolic structure such that the boundary
components that do not contain marked points are cusps, and all the marked points are
also cusps. The particular choice of hyperbolic structure will turn out not to matter.
Then the universal cover of S will be a subset of the hyperbolic plane, and all these
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cusps will lie at the boundary at infinity of the hyperbolic plane. These cusps form
a set C that has a cyclic ordering. C also carries a natural action of 7;(S). The
action of 1 (S) preserves the cyclic ordering on C. The set C with its cyclic order is
independent of our choice of hyperbolic structure on C.

A 11 (S)—equivariant configuration of flags or of principal affine flags parametrized
by C is amap B: C — B or B: C — A, respectively, such that there is a map
p: 11(S) — G such that for y € 71(S),

Bly-c)=p(y)-c
for all points ¢ € C.

Starting with any point of Xz s or of Ag s, we may look at the universal cover of §.
On the universal cover, the local system becomes trivial, and the framing of the local
system then gives a flag or a principal affine flag, respectively, at each point of the cyclic
set C. Thus any point in Xg s or Ag,s gives a 7 (S)—equivariant configuration of
flags or of principal affine flags, respectively, parametrized by C.

Theorem 2.3 [7, Theorems 6.1 and 8.1] The space X, s has a positive atlas that
comes from identifying a framed local system with a m1(S)—equivariant positive
configuration of flags parametrized by C .

The space Ag,s has a positive atlas that comes from identifying a decorated local
system with a w1 (S)—equivariant twisted positive cyclic configuration of principal
affine flags parametrized by C .

Note 2.4 There are two things to be careful about in the above theorem. The first is
that the atlas is actually on the space of positive configurations of flags parametrized
by C that are equivariant for some map p: 71(S) — G. It is possible, though quite
unusual, that the same configuration of flags could be equivariant for more than one
representation p: 71(S) — G. This is the reason that the identification of Xg g
(respectively Ag,s) with positive configurations of flags (respectively principal affine
flags) parametrized by C is only birational. The second, less serious, caution, is that it
is unclear whether the atlases cover the whole space. However, we do not require this
to be the case.

We shall see that once we have taken the R ¢—points of these spaces, both these
problems magically disappear — the positive points are sufficiently generic that each
point of X s (respectively Ag, g ) corresponds to a unique configuration of flags, and
each coordinate chart completely covers the positive part of the space (though these
facts require some work to prove).
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In particular, when S is a disk with marked points on the boundary we simply get
moduli spaces of configurations of points in the flag variety 5 := G/ B and twisted
configurations of points of the principal affine variety A := G/ U . For more details,
see [7, Sections 5-8].

3 The tropical points of higher Teichmiiller space

In the previous section, we explained the construction of higher Teichmiiller space. We
will now give one construction of its tropical points. The main task of this paper will
be to use this construction to give a concrete description of higher laminations.

We give a simple way to construct tropical points of any positive variety. Let X be
the field R((¢)) of formal Laurent series over R. This ring has a natural valuation
val: K — Z. The goal will be to understand tropical Z’—points of a variety via
valuations of its K—points.

Let us consider the positive semifield K~ o which consists of those Laurent series with
positive leading coefficient. Let X be any positive variety, in other words a variety
with an atlas of charts such that all transition functions involve only multiplication,
division and addition (for example X s or Ag,s). We may then consider the K5
points of these varieties.

Let x € X(Kx¢). Then there is a corresponding tropical point x’ of the space X (Z').
This point x? is characterized by the property that if f* is one of the positive coordinates
of a positive chart (or more generally any positive function), then

J(x") = —val f(x).

In other words, we specify the tropical coordinates of x’ in each chart as being the
negatives of the valuations of the coordinates of x. To see that x’ is well-defined, we
only need to check that under a change of coordinate charts, the functions — val f(x)
transform tropically. However, this is clear, because all transition functions between
coordinate charts involve only multiplication, division and addition, and we have

—val(f(x)g(x)) = —val(f(x)) —val(g(x)),
—val(f(x)/g(x)) = —val(f(x)) + val(g(x)).
—val(f(x) + g(x)) = max{—val(f(x)). - val(g(x))}

whenever f and g are functions coming from the coordinate charts. The last equality
holds because both f(x) and g(x) have positive leading coefficient.
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In other words, the negative valuations of IC~ g—points of a positive variety automatically
satisfy the tropical relations. Thus we get a map — val: X(Ksq) — X(Z"). The map
is surjective: in any coordinate chart, we may specify the valuations of coordinates
of a point of X (K~¢) as we wish. Because all transition functions between charts
are invertible, specifying the coordinates in one chart is the same as specifying the
coordinates in every chart.

Thus, in order to understand tropical points of X g or Ag s, we must analyze the
fibers of this map and see what the points in one fiber have in common. In other words,
we would like to isolate what invariant information is contained in the tropical functions.
Our goal will be to show that the piecewise linear combinatorics of the affine building
is exactly what is captured by the tropical coordinates.

Our goal will be achieved in the case where G = SL,,. Many of the steps will have clear
generalizations to general groups (for example, the definition of laminations in terms of
affine buildings); we will note those steps which do not extend as straightforwardly. We
hope to treat in a future paper the case of a general semi-simple Lie group, for which
we believe the best approach would be to explicitly construct cluster coordinates on
Teichmiiller spaces associated to these groups. These coordinates would be analogous
to the “canonical coordinates” of Fock and Goncharov on Teichmiiller spaces for SL,,.
Henceforth we will be concerned primarily with the case G = SL;;, or G = PGL,,.

If instead of considering K, we consider the ring of Laurent series over t*, where A is
allowed to vary in Z, Q or R, we obtain different types of laminations with coefficients
in Z', Q! or RZ.

3.1 Limit sets and compactifications

Here is one useful way to think about tropical points. Spec K can be thought of as
the punctured formal neighborhood of the origin in the real line. (One says something
similar about F((¢)) for any field IF.) Then Spec K. is the positive part of the
punctured formal neighborhood of the origin. This punctured formal neighborhood
looks like an infinitesimal path. We may then interpret X (KC-o) as the space of
infinitesimal paths in the positive part X (R~ ) of X . The path goes towards infinity in
X(R+) exactly when the point x € X (K~ () corresponding to this path has non-zero
valuation; when x has valuation 0, we have that x actually comes from a point in
X (R[¢]) and the path has an endpoint in X (R ). Paths which have the same valuation
are asymptotic to each other. Paths that have proportional valuations go towards the
same point at infinity, but at different rates. Thus we see why projectivized tropical
points should give a boundary to the positive space X (R~g).
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More precisely, paths which have proportional valuations approach the same point at
infinity of the logarithmic limit set, first defined by Bergman [3]. Projectivized tropical
points form the boundary of the logarithmic limit set. The logarithmic limit set gives
us a tropical compactification of X. We explain this further in Section 7.

One may replace the ring Spec K¢ by some variants, such as convergent power series,
germs of convergent power series, Puiseux series, etc, in which case the infinitesimal
paths in the above discussion will be replaced by actual paths in X (R~ (). Again, these
paths will approach some boundary point in the tropical compactification. This point
of view is explained thoroughly in [2].

3.2 Other approaches to tropicalization

We should say a word about why we use the semi-field X~ in the above discussion, as
opposed to a field like R((¢)) or C((¢)). The reason is that we seek a tropicalization and
compactification of the space X (R~q). Taking valuations of R((z))— or C((¢))—points
of X gives tropical points of X(R) or X(C). If we were looking to tropicalize or
compactify the moduli space of representations of 71 (.S) into G(R) and not just the
positive component, we would consider valuations of R((¢))—points. Similarly, if we
were looking to tropicalize or compactify the moduli space of representations of 1 (S)
into G(C), we would consider valuations of C ((¢))—points.

Let us elaborate on this. Our approach of taking valuations of X o—points is different
from the usual definition of tropicalization. Tropical geometry began with the work of
Bergman [3], and later the work of Bieri and Groves [4]. There are several ways to
define the tropicalization of a variety X', and a comparison of various definitions can
be found in the book of Sturmfels and Maclagan [24].

Here is one definition of the tropicalization of a variety X . The tropicalization of X
consists of the closure of the points obtained by taking valuations of the C((¢!/"))-
points of X over all n € N. Equivalently, it is the closure of the points obtained
by taking valuations of complex Puiseux-series-valued points of X. The integral
points of the tropicalization come from taking valuations of C((¢))—points of X . The
projectivization of the tropicalization of X forms the boundary of the logarithmic limit
set of X(C). A proof of this is outlined in [24], with one important step of the proof
found in [27]. Another good survey which explains this is [15].

In contrast, our set X (Z") consists of valuations of K q—points of X, while what
we call the tropicalization, X (R?), is the closure of X (Q?), the set of valuations of
points taken in the field of Puiseux series with real coefficients and positive leading
coefficient. The projectivized tropicalization gives the boundary of the logarithmic
limit set of X(R~¢). The proof of this fact was given by Alessandrini [2].
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Thus, our approach to tropicalization, following the definitions of Fock and Goncharov,
where one takes values of a variety in a tropical semi-field, or equivalently takes
valuations of R. ¢—points, might be more properly called the positive part of the
tropicalization. However, because our primary object of study is X (R~¢), when we
talk of tropical points, we will always mean this positive part of the tropicalization.
In the context of higher Teichmiiller theory, this seems to be the more fundamental
object; it is the object that “knows” about the cluster complex, and it conjecturally
parametrizes canonical bases of functions and spectral networks.

For a comparison of tropical varieties and their positive parts, see work of Speyer and
Williams on the tropical Grassmannian [28]. Our work is a kind of generalization of
theirs, but treating only the positive parts of tropical varieties. From that paper, one
sees that a tropical variety is in general much more complicated, both topologically
and combinatorially, than its positive part.

4 Background on affine buildings

In this section we define the affine Grassmannian and affine buildings. We will follow
some of the treatment of [11], which in many ways was inspiration for our work.
We will first define the real affine Grassmannian. (The affine Grassmannian is an
ind-scheme, or an inductive limit of schemes, and it can be defined over any ring, but
we will make use only of its real points.) Let G be a simple, simply connected complex
algebraic group and let GV be its Langlands dual group. Let O = R[¢] be the ring of
formal power series over R and let K = R((¢)) be its fraction field. Then

Gr = Gr(G) = G(K)/G(0)

is the real affine Grassmannian for G . It can be viewed as a direct limit of real varieties
of increasing dimension.

For G = SL;,, a point in the affine Grassmannian corresponds to a finitely gener-
ated rank-m O-submodule of K such that, if vq,..., v, are generators for this
submodule, then

VIA-AUp=¢€| A A€m,

where ey, ..., ey, is the standard basis of K™ . Such full-rank O—submodules are often
called lattices. G(K) acts on the space of lattices with the stabilizer of each lattice
being isomorphic to G(O), which acts by changing the basis of the submodule while
leaving the submodule itself fixed. We will later make use of this interpretation.

The affine Grassmannian Gr also has a metric valued in dominant coweights: the
set of ordered pairs of elements of Gr up to the action of G(K) is exactly the set of
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double cosets
G(O\G(K)/G(O).

These double cosets, in turn, are in bijection with the cone A of dominant coweights
of G. Recall that the coweight lattice A is defined as Hom(G,, T'). The coweight
lattice contains dominant coweights, those coweights lying in the dominant cone. For
example, for G = GL,,, the set of dominant coweights is exactly the set of m—tuples
w=(l1,..., tm), Where (t1 > o =-+-> uy and u; € Z. For G = PGL,,, it is this
same set modulo the one-dimensional space spanned by the vector (1,1,...,1).

Let us explain why the set of double cosets is in bijection with the set of dominant
coweights. Given any dominant coweight y of G, there is an associated point r#
in the (real) affine Grassmannian: to a coweight ¢ = (w1, ..., ;) we associate the
element of G(K) with diagonal entries ¢, and then project to the affine Grassmannian
Gr by the quotient map. Any two points p and ¢ of the affine Grassmannian can be
translated by an element of G(K) to t° and ##, respectively, for some unique dominant
coweight w. This gives the identification of the double coset space with A ;.

Under this circumstance, we will write

d(p.q)=n

and say that the distance from p to ¢ is p. Let us collect some facts about this distance
function d . Note that this distance function is not symmetric; one can easily check that

d(p.q) =—wod(q. p).

where wy is the longest element of the Weyl group of G (recall that the Weyl group
acts on both the weight space A* and its dual, the coweight space A). However, there
is a partial order on A defined by A > u if A — p is positive (ie in the positive span
of the positive coroots). Under this partial ordering, the distance function satisfies a
version of the triangle inequality. By construction, the action of G(K) on the affine
Grassmannian preserves this distance function.

We are interested in the affine Grassmannian, but not in its finer structure as a variety.
In fact, we will only consider properties of the affine Grassmannian that depend on
positivity and the above distance function. For this reason, we will introduce affine
buildings, a combinatorial skeleton of the affine Grassmannian. Once we impose
positivity conditions, all our constructions will only involve subsets of the affine
building and the induced metric on them.

For any group G, the points of the associated affine Grassmannian Gr are a subset
of the vertices of a simplicial complex called the affine building A = A(G), which
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is associated with the extended Dynkin diagram of G. The simplices of this affine
building correspond to parahoric subgroups of the affine Kac—-Moody group G .

For this paper, we will be concerned with the affine building when G = SL,, or PGL;,.
Let us discuss these examples in more detail. The affine Grassmannian for G = PGL,,
consists of lattices (finitely generated rank-m O-submodules of K ) up to scale: two
lattices L and L’ are equivalent if L = ¢ L’ for some ¢ € R((¢)). The set of vertices of
the affine building for PGL,, is precisely given by the points of the affine Grassmannian
Gr(PGL,).

For any lattices Lo, L1, ..., L, there is a k—simplex with vertices at Lo, L1,..., Lt
if and only if (replacing each lattice by an equivalent one if necessary)

L()CL()C"'CLkCZ_lL().

This gives the affine building the structure of a simplicial complex. The affine building
for G = SL,, is the same simplicial complex, but where we restrict our attention to
those vertices that come from the affine Grassmannian for G = SL,, .

The non-symmetric, coweight-valued metric we defined above descends from the affine
Grassmannian to the affine building. The notion of a geodesic with respect to this
metric is sometimes useful. For our purposes, a geodesic in the building is a path
that travels along edges in the building from vertex to vertex, such that the sum of the
distances from vertex to vertex is minimal (with respect to the partial order defined
above). It is a property of affine buildings that geodesics exist. Note that in general
there will be many geodesics between any two points.

The building is a non-disjoint union of apartments. One apartment is given by projecting
the points of T(K) C G(K) to Gr. All other apartments are translates of this one.
Each apartment, as a simplicial complex, is isomorphic to the Weyl alcove simplicial
complex of G.

It is a fact that any two simplices of A of any dimension are both contained in at least
one apartment. In particular, any two points in the building are contained in some
apartment. Moreover, every geodesic between two points is contained inside every
apartment containing those two points. Thus the set of geodesics between two points is
completely determined by the distance between them.

5 Laminations for the .A-space

5.1 Outline of the definition and construction of .A-laminations

We will first consider the space of integral laminations Ag, s(Z"), where S is a disk
with marked points on the boundary. For the purpose of orientation for the next few
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sections, in which we give the construction of positive virtual configurations of points
in the building, we first give a conceptual outline. Nothing in this section is strictly
necessary; the reader may choose to skip to Section 5.2.

All the constructions here can be extended without difficulty to rational or real lamination
spaces (Ag,s(Q") or Ag,s(R")). In the following, we will assume that G = SL,,.

We will begin by describing laminations on a disc with 7 marked points. The arguments
in [7] show that understanding laminations on a surface reduces — via cutting, gluing
and mj—equivariance — to the case of laminations on a disc with 2, 3 or 4 marked
points. We will build up to the following definition:

Definition 5.1 A G-lamination on a disc with » marked points is a virtual positive
configuration of n points in the affine building for G up to equivalence.

A configuration of n points in the building is a set of n labeled vertices of the affine
building for G. We will study configurations up to equivalence.

5.1.1 Equivalence Equivalence will be the smallest equivalence relation generated
by isometry and cutting and gluing. Thus we may define equivalence inductively. Let
Pi.--.,pnand pi, ..., p, betwo configurations of points of the affine building. If they
are to be equivalent, we first require that the pairwise distances between corresponding
points are equal:

d(pi, pj) = d(p;, p}).
Define a perimeter of a configuration pi,..., p, to be a union of some choice of

geodesics between each p; and p;y;, where indices are taken cyclically. Then,
because

d(pi. pi+1) = d(p;. Pii 1),

we may choose a corresponding perimeter for p1,..., p,. Now let @ and b be two
points in the perimeter of the first configuration. Suppose that a is on the geodesic
between p; and p;4; and b on the geodesic between p; and pj; ;. We may choose
some geodesic between a and b. Take the corresponding points ¢’ and b’ on the
perimeter of p’l, ..., py,- Then we make a “cut” to form the configurations

a,piti,.-..pj.b and b, pjrq,...,pi,a

and the corresponding configurations

/ / / / / / / /
a,pi+1,...,pj,b and b,pj+1,...,pl-,a.
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Then the configurations

/

Pis--.pn and pl.....py,

are equivalent if and only if

/ / / /
a, pi+i,...,pj,b and a,pi_H,...,pj,b

are equivalent and

/ / / /
b,pj+1....,pi,a and b,pj_H,...,pi,a

are equivalent. Using cuts, we can reduce to the case of triangles with minuscule side
lengths. Finally, we say that two such triangles are equivalent if their side lengths
coincide. We will show that our definition of equivalence, when restricted to positive
configurations, does not depend on the sequence of cuts in Proposition 5.18. (This
is no longer true if we remove the positivity assumption.) From now on, when we
discuss configurations in the affine building, we will be tacitly considering them up
to equivalence.

Remark 5.2 Itis likely that positivity allows us to strengthen our notion of equivalence.
For example, we believe that the equivalence of two positive configurations x1, ..., Xy
and x’l, . ,x,’, implies that their convex hulls are isometric, where the convex hull of
X1, ..., Xy 18 the smallest geodesically closed subset containing x4, ..., X,. It is even
possible that there is an isometry of the entire affine building which carries x1, ..., X,
to X7,...,X,. It may be useful in applications to have a somewhat stronger notion of
equivalence, though for this paper, the one given above is sufficient.

5.1.2 Positivity In this section we will try to give the idea behind the adjective
“positive”. We will later describe how a configuration of 7 points in G/U((¢)) along
with a set of n “large enough” coweights gives rise to a configuration of points in the
affine Grassmannian. Actually, a configuration of n points in G/U((¢)) along with
a set of n “large enough” coweights actually gives rise to a configuration of points
in the affine flag variety (which we will denote Fl), which is a bundle over the affine
Grassmannian where the fibers of the bundle are flag varieties. We do not define the
affine flag variety here, because it turns out not to be relevant for our purposes. However,
we mention it because we believe that the affine flag variety will be useful for analyzing
higher laminations for groups other than SL,, and PGL,,, and even in the cases we
consider, it may help some readers to keep it in mind.

We have the following maps:

Conf, G/U((t)) x A" --> Conf, F1 — Conf, Gr — Conf, A(G).

Geometry & Topology, Volume 20 (2016)



1690 Ian Le

Here the first map is only defined for a set of n large enough elements of A" (this is
the reason we use the dashed arrow notation). It turns out that for any configuration
in Conf, G/ U((t)), there exist coweights [t1, (U2, - .., [ty such that whenever we have
coweights Ay, A5, ..., Ay, with A; —u; dominant, then A1, A5, ..., A, are large enough.
Thus, large enough coweights form a cone within the space of coweights.

The next step will be to describe positive configurations in G/ U((¢)). Positivity will
subtly depend on the cyclic order of the n points. The notion of positivity carries over
to a notion of positive configurations in the affine flag variety, the affine Grassmannian
and the affine building, so we get the following maps:

() Cont;f G/U(1)) x A" ——> Conf;r Fl — Conf,:r Gr — Conf;,L A(G).

Positivity will allow us to deduce certain properties of these configurations of points in
the affine building, for example the fact that tropical coordinates completely determine
the configuration up to equivalence. The idea is that positivity ensures certain genericity
properties of our configuration. More degenerate configurations of points in the affine
building can be quite complicated, and classifying them seems to be a rather unwieldy
problem [6]. On the other hand, positive configurations of points can be completely
and explicitly understood. It will not do any harm to assume that all configurations of
points henceforth are also positive.

Note 5.3 Fock and Goncharov give a definition of positive configurations of points in
the flag variety. Their definition should extend to a definition of positive configurations
of points in the affine flag variety. (Which in turn should be related to positivity in loop
groups [20].) It would be interesting to compare our notion of positive configurations
with these other notions of positivity.

5.1.3 Virtual Our first steps towards understanding laminations involve understand-
ing the space Ag, s(K~o) for S a disk with n marked points. This space is exactly
Conf:lr G/U((t)). Therefore we need to analyze how the above maps depend on the set
of n coweights in A”. The subset of A” for which the maps () are defined is a product
of cones inside each copy of A. Suppose that we have a configuration Fi, F>,..., Fy
of n points in G/U((¢)) and a set of large enough coweights A;,A,,...,A,. Let
this be mapped to the configuration of points X, X», ..., X, in the affine flag variety,
the configuration of points X1, X3, ..., X, in the affine Grassmannian, and then the
configuration of points pq, ps, ..., py inside the affine building.

As A; varies within a cone of large enough values for which the map is defined,
X; (respectively x; or p;) varies as well. Thus each copy of A moves around the
corresponding point in the configuration of points in the affine flag variety (respectively
the affine Grassmannian or the affine building) independently.
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An alternative way to view this is that any configuration of points in G/ U((¢)) gives
rise to a configuration of n cones of points inside Fl, Gr or A(G), where the points in
these cones are parametrized by large enough coweights A;.

In order to motivate the definition of virtual, let us pause for a moment to explain the
roles of the intermediate spaces Conf, Fl and Conf; Gr.

It turns out that knowing the positive configurations of cones of points in Fl or Gr
parametrized by large A; is almost exactly the same information as a positive con-
figuration of n points in G/ U((¢)) (ie a point of Conf;l|r G/U((¢))). This is, in turn,
exactly the same information as a point in Ag_g(K~o). However, this contains too
much information, as we are ultimately interested in the tropical points Ag, s(Z’).
Therefore, we would like to consider points of Ag, g(KCs¢) with the same valuation to
be equivalent. The information contained in these valuations is exactly that which is
captured by the geometry of the affine building (a precise statement can be found in
Corollary 5.23).

For that reason, we would like to examine how a given positive configuration of
flags Fy, F>,..., Fy, (in other words, a point of Conf,}L G/U((t))) along with a set of
coweights Ay, As,..., A, gives a configuration of points pq, pa, ..., py in the affine
building A(G), and how the points p; move around as the A; vary.

For any dominant coweights w1, iz, ..., in, let the positive configuration of flags
Fy, F,, ..., F, and the set of coweights Ay + tt1,Ay + 2, ..., Ay + 4n be mapped to
the configuration of points g1, ¢s,...,q, in A(G). We then would like to understand
the relationship of q1,¢>,...,qn to p1, pa...., pn. It turns out that up to the notion
of equivalence defined above in Section 5.1.1, ¢1,¢>, ..., g, is completely determined

by p1,p2,.... pnand [y, o, ..., fy.

Thus we may view the different configurations ¢, ¢», ..., g, that appear as the u;
vary as being obtained by an action of the monoid A" on configurations of points
in A(G). In other words, positive configurations in the affine building come equipped
automatically with an action of A’ . (We will later see that there is an action of A
for every marked point and every hole on the surface .S'. Furthermore, this will extend
to an action of the entire coweight lattice A on the space of virtual configurations.
Moreover, on a surface with holes, this extends to an action of an affine Weyl group at
each puncture on the space of laminations, as we will show in future work [21].) In
order to define virtual configurations, we must understand this action.

Let us try to describe the action of A" intuitively. There is one factor A acting on
each of the n points in the configuration. Let pq, p,,..., pn be a configuration of n
points. A dominant coweight A € A4 acts on the point p; by moving p; to another
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point p/ of the building which is distance A away, ie such that

d(p1. py) = A.

There are of course many choices for p/ ; however, for the most generic choices we are
moving p; a distance A away from all the other points in the configuration. It turns
out all these choices are equivalent in the sense that the configurations p}, pa,.... pn
will be equivalent for all such choices of p.

A virtual positive configuration of points in the affine building is a set of n pairs (p;, A;),
i=1,2,...,n, where A; are all coweights and the p; form a positive configuration.
Let (pi, A;) and (g;, u;) be two virtual configurations.

Suppose that all the A; and p; are dominant coweights. Then we may allow (Aq,...,Ay)
to acton (py,..., pn) and (iy,..., Uy) to acton (¢q,...,qs). Suppose the result-
ing configurations are (p{...., py) and (¢}.....q,). We will say that (p}..... p,)
realizes the virtual configuration (p;, A;).

Then we will say that (p;, A;) and (g;, ;) are equivalent virtual positive configura-
tions if and only if (p], p5..... py) and (¢].95.....q,) are equivalent as configura-
tions. More generally, two configurations (p;, A;) and (g;, u;) (where A; and u; are
coweights, but not necessarily dominant) are equivalent if and only if there exists v;
such that (p;, A; + v;) and (¢;, n; + v;i) are equivalent. For large enough v;, the sets
of coweights A; + v; and u; 4+ v; will be both dominant and large enough, so we can
always verify whether two virtual positive configurations are equivalent.

Note that if the points p; form a positive configuration of points, there is the cor-
responding virtual positive configuration (p;,0). We will call such configurations
“actual” configurations. To show that our notion of virtual configuration of points is
well-defined, we need the following lemma, which we shall prove after we have given
a proper definition of virtual positive configurations:

Lemma 5.4 For any dominant coweights A;, the positive configurations (p;,0) and
(¢i,0) are equivalent if and only if (p;, A;) and (q;, A;) are equivalent.

Corollary 5.5 Two configurations (p;, A;) and (q;, jt;) (Where A;, ju; are coweights,
but not necessarily dominant) are equivalent if and only if for all sets of coweights v;,
(pi, Ai +v;) and (qi, i + v;) are equivalent.

We may finally refine our previous constructions. Before, we had a map

Conf” G/U((t)) x A" ——> Conf,” A(G)
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defined for large enough coweights. Suppose that under this map we send

(Fl,Fz,...,Fn)X()\l,)xz,...,)\,n) to (pl,pz,...,pn).

If it were possible, we would define a map from configurations of flags to configurations
in the affine building,

Conf;" G/U((t)) --> Conf;" A(G),

that sends (£, F3, ..., Fy) to the configuration in A(G) that comes from choosing
the coweights (0,0, ...,0). However, this is not always possible, as (0,0, ...,0) may
not be large enough. However, we may define a map from configurations of flags to
virtual configurations of points in A(G),

Conf,” G/ U((t)) — Conf,"' A(G),
by mapping
(FI’F27-~~7Fn) to ((plv_)\'l)’(va_)\’Z)7"'7(pn7_)\'n))'

Finally, let us note that » marked points on a disc come with the natural cyclic ordering.
The properties of positive configurations in G/ U((t)), Fl, Gr and A(G) depend subtly
upon this cyclic ordering of the #» marked points. Virtual positive configurations will
attach a virtual point of the affine building to each of these » marked points. These
virtual positive configurations of points are precisely our notion of a higher lamination
on S, where S is a disc with marked points. Our notion of higher lamination only
depends on the surface S and the group G . Rotations of a disc with marked points that
permute the marked points on the boundary cyclically are a topological automorphism.
Thus we expect that virtual positive configurations will have a natural cyclicity property:
(p1,21), ..., (pn, Ay) is a positive virtual configuration if and only if every cyclic shift
is a positive virtual configuration. We will see this to be the case.

This concludes the outline of the definition/construction of virtual positive configura-
tions. We now make these definitions more precise.

5.2 Canonical coordinates on configurations in the flag variety and affine
Grassmannian

Our goal in this section is to define some important functions on higher Teichmiiller
space and their proposed tropicalizations. These functions will be essential to all
our later constructions. In all that follows, fix G = SL,,,. We begin by recalling the
canonical coordinates on a triple of principal flags for the group SL,,. A principal
flag for SL,, consists of a point in G/ U, where U is the subgroup of lower-triangular
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unipotent matrices; in concrete terms, we can write this as a set of m vectors vy, ..., Uy
where we only care about the forms

Vg AN AVg
for k=1,2,...,m—1. We will require that
ViAo AUn

is the standard volume form. We are interested in the space of triples of generic flags
up to the left translation action of G. Suppose we have three generic flags Fi, F>, F3
which are represented by w1, ..., um, V1,..., Uy and wy, ..., Wy, respectively. There
is an invariant f;;; of this triple of flags for every triple of integers i, j, k such that
i+ j+k=mandeach of i, j, k is an integer strictly less than m. It is defined by

ﬁjk(F],Fz,Fy,) =det(ul,uz,...,u,-,vl,vz,...,vj,wl,wz,...,wk),

and it is G—invariant by definition. Note that when one of 7, j, k is 0, these functions
only depend on two of the flags. We can call such functions edge functions, and the
remaining functions face functions.

Given a cyclic configuration of n flags, imagine the flags sitting at the vertices of an
n—gon, and triangulate the n—gon. Then, taking the edge and face functions on the
edges and faces of this triangulation, we get a set of functions on a cyclic configuration
of flags.

Theorem 5.6 [7, Section 7] For any triangulation, the edge and face functions form
a coordinate chart. Different triangulations yield different functions that are related to
the original functions by a positive rational transformation (a transformation involving
only addition, multiplication and division).

We will now analogously define the triple distance functions fl.’. x on configuration of
three points in the affine Grassmannian for SL;,. The functions fl.’. « are the same as
the functions H;jj , which were defined in a slightly different way in [18]. Recall that
the affine Grassmannian is given by G(K)/G(0O). For G = SL,,, a point in the affine
Grassmannian can be thought of as a finitely generated rank-m O-submodule of K™
such that if vy, ..., v, are generators for this submodule, then

VIAAUp =€l A Aep,

where eq, ..., ey is the standard basis of ™. Let x1, x5, x3 be three points in the
affine Grassmannian, thought of as O—submodules of K. We will consider the quantity

(k%) —val(det(uy,...,u;,v1,..., 0, Wi, ..., Wk))
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as uy,...,u; range over elements of the O—submodule x;, vy,...,v; range over
elements of the O—submodule x,, and wq,...,w; range over elements of the O—
submodule x3. Define fl’j (X1, x2,x3) as the maximum value of () as the vec-
tors uq,...,uj,vy,...,Vj,Wq,..., W, range over the elements of the respective O—
submodules x1, X3, X3.

There is a more invariant way to define fz; k- Lift x1, x,, x3 to elements g1, g5, g3 of
G(K), then project to three flags Fi, F», F3 € G/U(K). In some sense, we are
lifting from G(K)/G(O) to G/U(K). Then define fli ¢ to be the maximum of
—val( f;jx (F1, F2, F3)) over the different possible lifts from G(K)/G(O) to G/U(K).

Note 5.7 It is not hard to check that the edge functions recover the distance between
two points in the affine Grassmannian (and hence also the affine building). More
precisely, f;.z.o(xl,xz,m) is given by wj - d(x1,x2) = w; - d(x2,Xx1).

5.3 Main definitions

We can now give a definition of positive configurations in the affine Grassmannian.

Definition 5.8 Let x{,x,,...,Xx, be n points of the affine Grassmannian. Then
X1, X3, ...,X, will be called a positive configuration of points in the affine Grassman-
nian if and only if there exist ordered bases for x;,

vilvviZw--»Uim,

such that for each 1 < p < ¢ <r <n and each triple of non-negative integers 7, j, k
such that i + j + k = m, we have

t _

. fijk(xp,xq,x,) = —val(det(vp1, ..., Vpis Vgts-- -, Vgjs Vrls- .., Urk)), and

o the leading coefficient of det(vy1,...,Vpi Vg1, ..., Vgj, Vr1,. .., VUpk) 1S POSi-
tive.

This also gives us the corresponding notion of a positive configuration of points in the
affine building.

Definition 5.9 Let pq, p2,..., pn be n points of the affine building. These points
will be called a positive configuration of points in the affine building if and only if they
are the image in the building of a positive configuration of points xy, X5, ..., X, in the

affine Grassmannian.

We can also define virtual configurations of points in the affine Grassmannian.
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Definition 5.10 A virtual positive configuration of z points in the affine Grassman-
nian is a set of n ordered pairs (xi,A1), ..., (Xn, An), Where xq,..., X, is a positive
configuration of points in the affine Grassmannian and the A; are coweights.

There is also a corresponding notion of a virtual positive configuration of points in the
affine building.

Definition 5.11 A virtual positive configuration of n points in the affine building
is a set of n ordered pairs (p1,A1),...,(pn.An), where pq,..., py is a positive
configuration of points in the affine building and the A; are coweights.

Equivalence between positive configurations of 7 points in the affine building is the
smallest equivalence relation generated by isometry and cutting and gluing. Equivalence
between virtual positive configurations is slightly more complicated.

If (p1,A1),...,(pn,An) is a virtual positive configuration of points in the affine build-
ing, and the coweights A; are dominant, then we can associate to the virtual positive
configuration (py,A1)....,(pn.Ax) a positive configuration of points p,..., p; as
follows: Let xq, ..., x, be the positive configuration of points in the affine Grassman-
nian giving rise to pp,..., pn, and let

Uilsvi2"'~’vim

be a basis for x; as in the definition above, and let x/ be the lattice spanned by
t_)\il Vi1, t_)\"zviz, Ceey l_)"'mvim.

Then pj. ..., py is defined to be the image of x|, ..., x, in the affine building. We
will see that p,..., p, is again a positive configuration of points in the affine building.
The definition of p’l, ..., p,, seems to depend on the choice of the ordered bases of
the x;, but we will see that different choices give equivalent configurations.

Now let A; and u; be two sets of dominant coweights. Let two virtual positive
configurations (p;, A;) and (g;, j1;) correspond to the positive configurations p; and g; .
Then we will say that (p;, A;) and (¢;, it;) are equivalent if and only if p; and ¢ are
equivalent.

Finally, for A; and u; any coweights, we will say that (p;,A;) and (g;, ;) are
equivalent if and only if for some large dominant coweights v;, (p;,A; + v;) and
(gi. ui + v;) are equivalent.

Definition 5.12 An .A-lamination on a disc with #» marked points is a virtual positive
configuration of n points in the affine building up to equivalence.
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5.4 Positive configurations

We now move on to our central construction of positive configurations of n points
in the affine Grassmannian, and thus positive configurations of n points in the affine
building. The main task involves giving a map

Conf,” G/U((t)) x A" --> Conf," Gr

which is defined for a set of large enough coweights in A”. Our task will be to give a
criterion for “large enough”, and to show that, when this criterion is satisfied, our map
is well-defined.

For this section, let S be the disc with » marked points on the boundary. The associated
higher Teichmiiller space Ag s consists of configurations of n principal flags. Recall
that K¢ is the ring of positive Laurent series, or Laurent series with positive leading
term. We will consider the set Ag,s(Kxo). This set consists of configurations of n
principal flags Fi, F,,..., F, in K™. For each flag F;, choose a lift to G(K) =
SL;, (K). Call this lift g;. The columns of g; will be v;1, ..., Vim, Where vii A---Avjg
for k =1,2,...,m—1 will be the successive subspaces (with volume form) in the flag.

One naive guess would be to associate to the flag F; the O—submodule of K™ spanned
by vi1,..., Vim, which would then give us an element of Gr(G). This of course is not
well-defined, as it would depend on our choice of lift g;. However, there is a way to
fix this by choosing a set of large enough coweights.

Let A be any coweight. For SL,,, a coweight is an ordered set of m integers that
sum to 0. Let A = (A1, A2,...,A,). For our purposes, A will be large exactly when
Ai —Ajyq islarge fori =1,2,...,m—1. In other words, A is large when the pairing
of A with each of the positive roots of G is large.

For each flag F; choose alift v;1,. .., v;s. Suppose we have some other lift vl’.1 e v;m.
Lemma 5.13 For some large enough coweights A; = (Aj1,...,Ain), the vectors
T e SN A

generate the same O—module as

—A A

t "Zvlfz,...,t_)"'mvf

il -
Uil’t im*

(Recall that a coweight for SLy, consists of an m—tuple of integers that sum to 0. A
“large” coweight is one where this m—tuple is decreasing, and the gaps between the
integers are large.)
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Proof This is fairly straightforward. We show this statement separately for each
flag. Different lifts from G/ U™ (K) to G(K) differ by some element in U ™. In other

words, Vi1,..., Vi, and v/ v, are related by some lower triangular matrix u

i1 im
with entries in . If the entries of  and u~! have entries such that all their valuations
are greater than —C (where C > 0), then if we choose A; large enough that its gaps

Aij —Ajj41 are all greater than C, then the vectors
T e SN AT

and the vectors
—Ait,  =hiz,/ —Aim 4/
ARV S LT

generate the same O—-module.

In more invariant terms, for such a A;, conjugating u by i will give us an element
of G(©). This more invariant argument works for groups other than SL,,. a

The motivation for this construction can be explained as follows. A configuration
of n principal flags is a configuration of n points of G/U™ up to a diagonal action
of G. Here, by convention, U™ is the group of unipotent lower triangular matrices.
But on this space there is a right action by 7" on each principal flag, as 7" is in the
normalizer of U™ . On the space of positive configurations Ag s(R~¢), there is an
action of 7'(R~¢)". This action can be thought of as changing the horocycle (for SL;,
this is exactly changing the horocycle at a cusp of a hyperbolic Riemann surface).
Analogously, on Ag s(K~o) there is an action of 7'(K~¢)", with one copy of T'(K~¢)
acting at each point. Inside 7/(K=o) we have the elements t* for A € A, the coweight
lattice. We will take the convention that the action of A; will be by multiplication by
1~woi) on the right, which takes the flag F; given by the vectors

vllvvvlm
to the flag

—A

LR VPR TR SR Ve

Denote the resulting flag by F;-A;. We will see that this action is the action of A” on
the space of positive configurations of # points in the building.

Thus although there is no sensible map from configurations in G/ U(K) to configura-
tions in G(K)/G(0O), we can define a map up to some choice of lifts v;q, ..., vip and
some choice of “large enough” coweights A;. Our strategy will then be to assign to F;
the O—submodule of K spanned by

—A

M Y TR,
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Our task then becomes defining a notion of “large enough”. The whole construction
of using a large enough coweight to associate to a point of the principal flag variety
G/U(K) a point of the affine Grassmannian G(K)/G(O) can be thought of as a
reverse procedure to the lifting from G(K)/G(O) to G/U(K) that we used to define
the functions 1.5. -

Now given the configurations of »n principal flags Fy,..., F, in K™, choose a lift

Vi1,...,Vim of each Fj;, and choose a triangulation of the n—gon. We will say that the

lifts v;1,...,vim are good if for any triangle of flags Fj,, Fy, F, we have
fl.;.k(xp,xq,x,) = —val(det(Vp1, ..., Vpi, Ugis---sVqgjsVrls- s Upk))s

where x, is the O—-module spanned by vy, Ups, ..., Vpm and similarly for x4 and x, .

In other words, the lifts v;q, ..., v, are good if

or if they realize the maximum of minus the valuation of all the f;;x simultaneously.
Notice that the definition of good lifts is dependent on the family of functions f;; .
That we use these particular functions (which come from cluster algebras) will later
become important, as they have certain crucial positivity properties under multiplication
and addition.

Of course, it is quite unlikely to have good lifts in general. But just as before, we are
saved by the action of A:

Lemma 5.14 We can choose A; large enough such that for each triangle of flags
Fp, Fy, F, in our triangulation of the n—gon and every i, j, k withi + j +k =m
we have

S Gepaxgxy)

= —Val(df:t(t_}‘”1 Upls--- ,t_)“f”' vp,-,t_)“” vql,...,t_)‘qf vqj,t_)‘”vrl e ,t_)‘

")),
where now x, is the O—module spanned by

o

—A
vpl,...,t pn1vpm,
and similarly for x4 and x, . In other words, we act upon the flags F; so that the vectors
Ry Ty,

are a good lift of F;-\; and span the O—module x;. Then we will have

—val(fijk(Fp-Ap, Fg-Aq, Fr-Ar)) = f;’s’k(xpa Xg, Xr).
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Proof The different spans x,, x4, x, vary as we change the ;. Consider all the
different possible values for minus the valuation of the determinant of some subset of
i vectors among

-\ —A
t plvpl,...,t p’nvpm,

some subset of j vectors among

—A

—A
t ‘Ill)ql,...,l qqum,

and some subset of k vectors among
—A —A
t rlvrl,...,[ r’nvrm.

Observe that for any choice of A;, fl’j «(Xps Xq, Xr) is the maximum of all these values,
as the determinant of any i vectors in X, j vectors in x4, and k vectors in x, is a
linear combination of the determinants considered above.

However, as the A; get large, A;; —A; 4+ all get large simultaneously, so that the
valuation of

—A

det(t_}‘”lvpl,...,t_}‘l”'vp,-,t_}“”vql,...,t_kqquj,t_)“”v,l,...,t " Uk)

gets negative the fastest among determinants of sets of 7, j and k vectors from x,, x4
and x,, respectively. Thus, for large enough A;,

— Val(det(l_)‘”1 Upls-os thni Vpi s t~ran Vgis--» thai Vgj» thr Vrls-nns thrk Vi)

will be the largest value among the different negative valuations of the determinants.
Thus this value will indeed be fli « (Xps Xq,xr), and we have our claim. a

We observe here that if F; is a positive configuration of flags in G/U((¢)), then
F; - A; will also be a positive configuration of flags for any choice of A;. Now
we can define positive configurations in the affine Grassmannian. Given a positive
configuration of flags Fy, F, ..., F, coming from a point in Ag s(K~0), we choose
some lifts v;q,..., vy, of the F; and choose a triangulation of the n—gon. Then,
taking A; large enough to give us good lifts as in Lemma 5.14, we can obtain the points
X1,X2,...,Xp € G(K)/G(O) also as above. We will call configurations of points in
the affine Grassmannian that arise in this way positive configurations of points.

5.4.1 Dependence on choices We now must analyze how this construction depends
on various choices, for example, the choice of lifts, the choice of triangulations or the
choice of A;. We will consider these each in turn.
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It turns out that the choice of lifts v;q, ..., viy only affects the choice of A;. This will
be our next lemma. First, note that if ¢ i1 Vits-r ., ~him Vim 1s a good lift of Fj-A;,
then replacing the A; with any set of larger coweights will still give us a good lift.

/

Lemma 5.15 If we have two different sets of lifts v;q, ..., Vi, and vlfl, .o, U, and

some A; such that t *ilv;q, ...t imy;, and t~*i1 Vi t~him v, are both good
lifts of Fj - A;, then in fact both sets of vectors span the same O—modules.
Proof The two sets of vectors

ity Mmy,,  and t_}‘“vl{l, ... ,t_}""”vlfm

differ by lower triangular matrices U; which take the former to the latter. The entries of
these matrices must be in O, otherwise the sets of vectors could not both be good lifts.

For example, suppose j < k and Z_)‘lkv/lk = t_)‘“‘vlk +a- 17 vyj, where a
has negative valuation. Then if ity T hmy, s a good lift, replacing any
occurrence of ¢~ v] j by Tl v’1 x In some determinant expression will result in a
smaller valuation, so that 71 Vi ~Him v, won’t be a good lift. m

We now analyze the dependence on the triangulation. We have the following:

Lemma 5.16 If F;-A; comes from a positive configuration and has good lifts
i Uiy ey MM i

for some triangulation of the n—gon, this lift remains good for any other triangulation.
In other words, if we change the triangulation of the n—gon, we do not need to change
the A;.

Proof The general case is equivalent to the case where A; = 0, so we assume this
for simplicity. Every change of triangulation comes from a sequence of flips; thus is
suffices to consider the case where we have just four flags F;, i =1,2,3,4. We will
consider this simpler case.

Assume that v;,..., v, are a good lift of F; in the triangulation with triangles
123,134. We want to show that they remain good lifts for the triangles 124,234. Let
the span of v;q,...,vim be x;.

We already know that

fi;k(xp,xq,x,) = —val(det(vp1, ..., Vpi, Vgls---sVgjsVrts--sUpk))
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for (p,q,r)=(1,2,3) and (1, 3,4), and want to conclude this for (p,q,r) =(1,2,4)
and (2, 3,4). Recall that flz « (Xp» Xq, x;) is defined by taking the maximum of minus
the valuation of the determinant of some subset of i vectors in x,, some subset of
J vectors in x4, and some subset of k vectors in x,. Equivalently, it comes from
taking the maximum of minus the valuation of the determinant of some i—dimensional
subspace of the R—span of v, ..., Vpm, some j—dimensional subspace of the R—span
of vg1,...,Vgm, and some k—dimensional subspace of the R—span of v,, ..., Vpm.
Among all the possible choices for these subspaces (the space of choices is parametrized
by a product of Grassmannians), the set of them that achieve the maximum of minus
the valuation of the determinant is an open set.

Now consider the space of flags in the R—span of v;q, ..., vi;,. Let y; fori =1,2,3,4
be any flags in the span of vj1, ..., Vim, and let them be represented by wj1,..., Wim,
where the r—dimensional subspace in y; is the span of w;{, w;3, ..., w;r. Then there

is an open subset of choices for the y; such that

fl.;.k(xp,xq,x,) = —val(det(wp1, ..., Wpi, Wg1, ..., Wgj  Wris..., Wrk))
for all triples (p,q,r) = (1,2,3),(1,3,4),(1,2,4) and (2, 3,4) simultaneously.

Thus there is some choice of y; such that the above equality holds for all i, j, k as
well as for all triples (p, g, r). Now let

fi/jk([),q,r) = det(wpl, ey Wiy, Wyts oo s Wej, Wety .. .,wrk).
Then we have
f;’;‘k(xp"XQ’x") = —Val(flljk(pv qu))‘
We know that
—val(fijk (Fp, Fq, Fr)) = =val(f};(p,4.1)) = [ (5p. xq. Xr)

for (p,q,r)=(1,2,3) and (1, 3,4). We would like to conclude this also for (p,q,r) =
(1,2,4) and (2,3,4).

By [7, Lemma 10.3], we know that all the functions

*/

fljk(1’2’4)’ >flljk(2’3’4)

can be expressed in terms of the functions

Sie(L2.3)0 f(1.3.4)

using only addition, multiplication and division. This gives us that

—Val(fl./jk(l, 2,4)), —Val(fl.'jk(2, 3,4))
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are less than or equal to some tropical expression in

—val(f;(1.2.3)), —val(f};(1.3.4).

However, by positivity, we know that

—val(fijk (F1, Fa, Fy)), —val(fijx(F2, F3, Fy))

are equal to (and are not just less than or equal to) the same tropical expressions in

—val(fijx (F1, F2, F3)),  —val(fiji(F1, F3, Fy)).
Therefore we have that
—val(f;5(1,2,4)) = =val(fijk (F1, F2, Fy))

and
—Val(fi/jk(Z, 3, 4)) < —Val(ﬁjk(Fz, F3, F4))
Thus, by the maximality of
_Val(f;/]k(lszv‘l'))’ _Val(jflljk(zasa‘l'))a

we must have
—Val(fl-/jk(l, 2, 4)) = —Val(fijk(Fl y F2, F4))

and
—val(f};(2,3,4)) = —val(fijk (F2, F3, Fy)).
Therefore
FCepxquxr) = —val(f (p.q.1)) = —val( fyji (Fp. Fy. Fy))
= —val(det(Vp1, ..., Vpi, Ugls-- - Vgjs Vpts-n-s Upk))
for (p,q,r)=(1,2,4) and (2, 3,4). a

Thus the map from configurations in G/ U(K) to configurations in G(K)/G(O) does
not depend on the choice of triangulation. Of course, the map does depend on choosing
the A;: we get a different map for each choice of A;, or a map

Ag.s(Kso) x A" = Conff G/U((t)) x A" ~-> Conf;| Gr.

Thus it is better to think that for every point in Ag s(Kso), we have a cone of
positive configurations in G(K)/G(0O), parametrized by all choices of A; that are
“large enough” for some lifts of the flags. These families of positive configurations in
Gr give a configuration of cones inside Gr.

It turns out that there exist lifts g; of F; such that we may choose the A; minimally.
In other words, coweights A; are large enough for some choice of lifts only if they
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are large enough for the particular lifts g;. A statement equivalent to this, though in
somewhat different language, appears in [13]. This is discussed further in Section 5.7.

5.5 Virtual positive configurations

To give a better framework for thinking about these cones of configurations of points,
we will define virtual positive configurations. A virtual positive configuration of n
points in the affine Grassmannian consists of n pairs (x1,A1),..., (xXn, Asn), Where
X1,...,Xp is a positive configuration of points in the affine Grassmannian and the A;
are coweights.

Starting with a positive configuration of n flags Fi,..., Fy, let v;1,..., Vi, be some
lifts of these flags. Then suppose that for a choice of A;, (hit Vit .-, ~him Vim 18
a good lift of F;-A;. Let x; be the O—module spanned by A Vil .-, ~Him Vim -
Then we can associate to F7y,..., F, the virtual positive configuration

(x1,=A1), ..oy (X, —Ap).
Observe that by Lemma 5.15 the x; only depend on the A; and not the lifts v;q, ..., Vip.

If instead we had chosen a different set of coweights A} instead of A; (for example,
it is clear that we could have taken any set of A such that each was larger than
the corresponding A;), we would have ended up with a different virtual positive
configuration (x},—A}),...,(x;,—A;). Thus we get many different virtual positive
configurations (x{, —A1), ..., (xn, —An) as the set of A; varies over some subset of A”.
All we know about this subset is that it is closed under addition by any element of the
monoid A’_’l_. (It is shown in [13] that there is a smallest possible value for the A; such
that all other values can be obtained by adding some element of the monoid A”_; see
the last paragraph of the previous section.)

We would like to consider different virtual configurations that arise for different choices
of A; to be equivalent.

Definition 5.17 A family of virtual positive configurations of points in Gr(G) is a set
of virtual positive configurations (xi, —A1), ..., (X5, —Ay) (the x; vary with choices
of A;), which comes from a single positive configuration of flags F; in G/U ™ (K).

Thus we have a well-defined map from a positive configuration in G/ U(K) to a family
of virtual configurations in G(K)/G(O). One can check as an exercise (and though
we do not logically need this it is useful psychologically) that, knowing only such a
family of virtual configurations in G(K)/G(QO), we can reconstruct the original positive
configuration in G/U(K) up to the action of T(R) on each flag. This is in contrast
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with the fact that any particular virtual configuration can come from many different
positive configurations in G/ U(K).

We can now define an action of A” on virtual positive configurations of points in Gr(G).
(This is different than how A" parametrizes different virtual positive configurations in
a family of virtual positive configurations.)

Note that if (x;,—A1),...,(xy,—Ay) is a virtual positive configuration, then so
is (x1,—A1 4+ 1), ..., (Xn,—An + py) for any coweights wq,..., un. Whereas
(x1,=A1), ..., (xn,—Apn) came from a family of virtual positive configurations as-
sociated to Fy,..., Fy, the new configuration comes from a family of virtual positive
configurations of flags Fy-p1,..., Fn-n:

Fl,...,Fn—>(x1,—k1),...,(xn,—kn),
Fl'Mla---aFn'Mné(xl’_)\l+M1),---,(xn,_)\n+ﬂn)-

We define the action of A" on virtual positive configurations in this way: it takes
the virtual configuration of points (x1,—A1),...,(Xs, —Ay) in Gr(G) to the virtual
configuration (x{,—A1 4+ (1), ..., (xXn, —An + n). Note that this action takes virtual
configurations in one family to virtual configurations in another; in other words, it
respects families of virtual configurations of points.

We will say that a virtual positive configuration (x1, —A1), ..., (xXn, —Ay) is realized by
an actual configuration x7, ..., x, if (x1, —A1)..... (xp, —An) and (x7,0),....(x,.0)
lie in some family of virtual positive configurations. Similarly, we make the analogous
definition for virtual positive configurations on points in the affine building: a virtual
positive configuration (p1,—A1),...,(pn, —Ap) is realized by an actual configuration
Py Py if (p1.—=A1). ... (Pn.—An) and (p7,0), ..., (py.0) lie in some family of
virtual positive configurations

Let us now make some observations. Suppose we have a positive configuration of n
flags Fy,..., Fy, and let (x{,—A1),..., (xy, —A,) be any of the associated virtual
configurations. By definition, the positive configuration x1, ..., X, is defined by good
lifts, so we know that

forall 1 < p,q,r <mnand 0 <i,j,k <m—1 withi+ j+k =m. Ttis also clear
from direct calculation that

ﬁjk(FP ')"p’ Fq ')\q’ F, )\’r) — ﬁjk(va Fq’ Fr) . l—)»p-wi—)uq-a)j—)»r-a)k’
where w;, w;, wi are fundamental weights, so we can conclude that

fl.z.k(xp,xq,xr) = —val(fijx (Fp, Fq. Fy)) + Ap-0; + Ag-©j + A - 0.
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We extend the definition of jls x to virtual positive configurations of points in the affine
Grassmannian as follows. We define

f,';'k((xp»)\p)» (xg:Aq), (xr, Ar)) = f;;k(xp’xqvxr) +Ap-wi+hg-wj + Ay - 0.

Then if the positive configuration of flags F; is associated with the virtual positive
configuration (x;, A;), we have

f,'tjk((xp» Ap). (Xg. Ag), (Xp, Ar)) = — Val(fijk(Fp, Fy, Fy)),

and this is true for any virtual positive configuration (x;, A;) in the family of virtual
positive configurations associated to the positive configuration of flags F;.

5.6 Definition of laminations for the .A-space of a disc with marked points

We are now very close to getting a complete definition of higher laminations. We
have defined the functions flz . on virtual positive configurations in the affine Grass-
mannian. Moreover, because these virtual positive configurations come from positive
configurations of flags, we have the following:

Proposition 5.18 Suppose we have a virtual positive configuration of points in the
affine Grassmannian (x;, A;). Then all the functions fl.;.k((xp, Ap), (xg.Ag), (Xr, Ar))
for different i, j,k, p,q,r satisfy the tropical relations satisfied by tropical points
of Ag,s.

Proof The functions f;;x(Fp, Fy, Fy) satisfy some relations defining Ag s . These
relations involve only addition, multiplication and division. Moreover, because we
have a positive configuration,

fijk(Fpa Fq7 F.)eK-p.
Therefore the negative valuations of these functions
—val( fijx (Fp, Fq, Fy))

must satisfy the tropicalizations of the corresponding relations. Because

fi;‘k((xl” Ap)s (Xghg), (XrAr)) = _Val(fijk(Fp’ Fy. Fr)),

the functions fls & ((Xp, Ap), (xq,Aq), (xr,Ar)) satisfy the tropical relations defining
Ag.s(Z") as well. |
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We can thus associate to any tropical point of A s some virtual positive configuration
of points in the affine Grassmannian. The problem is that there are many associated
virtual positive configurations: not only do they come in families, but there are many
points in Ag s (K) which have identical valuations.

This is where it becomes useful to look at virtual positive configurations of points in the
affine building. Let (x;,—A1),..., (xn, —Ay) be a virtual positive configurations in
the affine Grassmannian, and suppose the points xy, ..., X, map to points pq,..., Pn
in the affine building. In this situation, we will say that

(pli_)"l)7 R (pn’_)\n)

is the corresponding virtual positive configuration of points in the affine building. We
can similarly define families of virtual positive configurations of points in A(G) coming
from a positive configuration of flags F; € G/ U((¢)). We extend the tropical functions
to the virtual positive configurations of points in the affine building as follows:

f;';k((va Ap), (Pg> hg)s (Pr,Ar)) = i?'k((xpv Ap): (Xq, Ag), (Xr, Ar)).

The reason we want to view these configurations inside the affine building rather than
the affine Grassmannian is that the affine building is where it is most natural to define
equivalence between configurations of points. The finer algebro-geometric properties
of the affine Grassmannian are not reflected in the tropical functions; it is precisely the
metric structure of the building which is captured in the tropical functions.

Our goal will be to show that tropical points Ag_ s (Z") correspond precisely to virtual
positive configurations of points in the affine building up to equivalence. Thus we seek
some notion of equivalence such that all virtual positive configurations of points in a
given family will be equivalent. We now give such a definition.

Recall from Section 5.1 the definition of virtual positive configurations of points in the
affine building. Equivalence of positive configurations of points in the affine building
is the minimal equivalence relation generated by isometry and cutting and gluing.
Lemma 5.20 below shows that configurations resulting from cutting are still positive
configurations of points in the affine building. Our main theorem below, Theorem 5.19,
shows that our definition of equivalence does not depend on the sequence of cuts.

Let us now extend this equivalence relation to virtual positive configurations of points
in the affine building.

Let (p;, Ai) and (g;, ;) be two virtual configurations. Suppose that all the A; and pu;
are positive coweights. Then both (p;, A;) and (g;, ;) come in a family containing
the actual configurations (p},0) and (g;,0). We will say that the positive configu-
ration pl,..., p, realizes the virtual configuration (p;,A;). Then we will say that
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(pi.Ai) and (gi, p;) are equivalent virtual configurations if and only if pi...., p,

and ¢/, ..., q, are equivalent as configurations.

More generally, two configurations (p;, A;) and (g;, ;) are equivalent if there exists v;
such that (p;, A; +v;) and (¢;, n; + v;i) are equivalent. For large enough v;, A; + v;
and p; + v; will be dominant, so that (p;, A; + v;) and (g;, i; + v;) can be realized
by some configurations p|..... p, and ¢}.....q,. In other words, if (p;,A;) and
(¢i. i) are equivalent, they are in the same families as (p}, —v;) and (g, —v;) for
some v;, respectively, and where p1...., p, and ¢].....q, are equivalent positive
configurations.

From this definition it is clear that virtual positive configurations coming from the same
family are equivalent. Thus, every point in

Conf,',"’Vir Gr

(ie every family of virtual positive configurations of points in the affine Grassmannian)
gives, up to equivalence, a single virtual configuration of points in the affine building.
We will denote the set of virtual configurations of points in the affine building by

Conf, "' A(G).

Given a virtual positive configuration (p;, A;) of points in the affine building and a
triangulation of the n—gon, we associate to each triangle (pg, Aa), (Pp,Ap), (PesAc)
the tropical functions

S5k (pasha)s (Pohb), (pehe))

= i;'k((xa» Aa)s (xpAp), (Xche)) = Val(fijk(Fm Fy, F¢)).
Here is the main theorem of this paper:
Theorem 5.19 There is a bijection between tropical points of Ag, s(Z") and virtual
positive configurations of points in the affine building up to equivalence. Given a virtual
positive configuration (p;, A;) of points in the affine building, it comes from a virtual
positive configuration of points (x;,A;) in the affine Grassmannian, which in turn

comes from a positive configuration of flags F; € G/U~(K). Given a triangulation of
the n—gon, we associate to each triangle (pg, Aq), (PpAp), (PcAc) the functions

fitjk((Pa’ Aa)s (Pbrp), (Pehe))
1= i (Xas ha)s (xphp), (Xche)) = —val(fijk (Fa, Fp, Fe)).

These functions satisty the tropical relations, and therefore give a well-defined point
of Ag,s(Z"). The values of these functions completely determine the virtual positive
configurations of points in the affine building up to equivalence, and vice versa.
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Proof Most of this theorem was already proved in Proposition 5.18. We need only to
show that two virtual positive configurations of points in the affine building have the
same tropical coordinates fz; « if and only if they are equivalent.

Recall that any two virtual positive configurations that lie in the same family have the
same tropical coordinates fl; i - Moreover, it is clear from the definitions that virtual
positive configurations in the same family are equivalent. Also note that the properties
of equivalence and having the same coordinates are stable under the action of A: two
virtual positive configurations of points in the affine building (p;, A;) and (g;, (i)
have the same coordinates if and only if (p;, A; +v;) and (g;, ;i + v;) have the same
coordinates for any choice of coweights A;. Thus it suffices to work with positive
configurations p; and ¢; and show that they are equivalent if and only if they have the
same (tropical) coordinates.

Let p; and ¢g; be two positive configurations of points in the affine building. Let them
come from positive configurations x; and x; in the affine Grassmannian, which in
turn come from positive configurations F;, F; of flags in G/ U~ (K). The following
technical lemma will be the crux of our proof, and we will make repeated use of it:

Lemma 5.20 Given any positive configuration py, ..., p, in the affine building, let y
be a point on some geodesic between p, and psy1. Then py, ..., Pas Vs Pa+1s---» Pn
is a positive configuration of n + 1 points in the affine building.

Proof We can actually do this on the level of flags. The idea is to construct a flag F
such that Fy,..., F,4, F, Fa4q, ..., Fy is a positive configuration of flags that maps
downto pi,..., Pa,V, Pa+1s-- -, Pn in the affine building.

Let us denote by
fi,m—i(Fa, Fa+1)

the edge function corresponding to

det(vy,...,vi, Wi, ..., Wy—i),
where the sequence of vectors vy, ..., v, gives the flag F,; and the sequence of vectors
wi, ..., Wy gives the flag F,4 1. Let fi’m_i be the corresponding tropical function

given by the negative valuation of f; ,—;. Recall that
Zm—i(Pav Pa+1) =d(Pa. Pa+1) - Om—i-

Now we want to construct a flag F that will map down to the point y in the affine
building. Note that

d(pa,y) +d(y, pat+1) = d(pa. pa+1)-
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Let
di =d(pa,y)  Om—i.

We will construct F by stipulating that

fijo(Fa, F, Faq1) = 1%,
Jojk(Fa. F, Fay1) = fj x(Fa, Far)t™ %,
fijk(Fa. F. Fay1) = figj g (Far Fap)t™ 4+,
One sees that, by construction, Fy, F, F,41 is a positive configuration in G/ U™ (K).

Moreover, it maps to an actual configuration of points in the affine Grassmannian, not
merely a virtual one. Consider the triple of flags

(T) Fa'—d(J/vPa), F, Fa—i—l'—d(y’l?a—kl)-

If we show that this gives an actual configuration in the building, then pg,, v, pa+1
will also be an actual configuration because d(y, p,) and d(y, pg+1) are positive
coweights.

But one can calculate that the functions

fijk(Fa'_d(yvpa): F, Fa+1 '_d(y»pa-f-l))

all have valuation 0; F was essentially constructed so that this would be the case. This
means that we may choose the flags (7) to be generated by vectors of valuation 0:
an explicit formula is given in [7, Section 9] for the sets of vectors generating three
flags in terms of the functions f;jx. These three sets of vectors will span the standard
O-module consisting of all vectors with valuation greater than or equal to 0. Thus,
the flags (1) are associated to points X,, X, X441 in the affine Grassmannian which all
coincide.

Then f;

l§k(xa,x,xa+1) is exactly 0, so

—val(fijk(Fa ~=d(y, pa), F, Fat1-—d (Y, pa+1))) = fl.';k(iaax,;ca-i—l),

and therefore the vectors that generated X,, x, X,41 gave a good lift of (f). Thus
Xa, X, Xg41 18 a positive configuration of points in the affine Grassmannian. Therefore,
because d(y, pg) and d(y, pa+1) are positive coweights,

FaaF»Fa-l-l

will give a positive configuration of points x,, X, X,41 in the affine Grassmannian,
which maps down to a positive configuration of points pg,, ¥, pa+1 in the affine building.
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By Lemma 5.16 we may glue to see that

pl,---,pa»y,pa-i—la---apn

is a positive configuration of points in the building. |

We now return to the proof of the theorem. Suppose we have two positive configu-
rations of points pq, ps,..., pp and ¢1,¢q2,...,q, that under some (and hence any)
triangulation of an n—gon have the same coordinates. We wish to show that they are
equivalent.

First observe that the distance between any two points p; and p; is the same as the
distance between the corresponding points ¢; and ¢; by virtue of the coordinates of
the configurations being the same — recall that the edge functions give the distances
between points in a configuration. In particular, the distance between p; and p;4q is
the same as the distance between ¢; and ¢;+1. Then choosing any geodesic between
pi and p;4 1, we can choose the corresponding geodesic between ¢; and ¢; 1, and if
we like, we may extend the positive configurations pi, ps,..., pp and ¢1,42,...,qn
by adding points along the geodesics to form a perimeter. Assume we had done this
to begin with, and that the result was that we had two configurations of points in the
affine building p1, pa,..., pn and g1, 4>, ..., q, that were both perimeters.

Now take any two points p; and p;. Then take any geodesic between them, and
take the corresponding geodesic between ¢; and ¢;. Then p;, pj11,..., pj and
PjPj+1.--., pi are both positive configurations of points. Moreover, their coordi-
nates are completely determined by the configuration pq, pa, ..., p,. Therefore, the
corresponding configurations ¢;,g;+1,...,¢; and ¢gj,qj+1,...,q; are both positive
and have the same respective coordinates as the configurations p;, pj4+1,..., p; and

PjsPj+15---, Di-

Thus the property of having the same coordinates is stable under the operation of cutting.
Continuing this process, we may repeatedly cut the configurations p1, ps,..., pn and
q1.92, - - -, qn until we get minuscule triangles which are determined up to isometry
by their side lengths, and therefore by the functions l.;. P

Now let us show the inverse statement. Suppose that py, p2,..., pr and 1,92, ....qn
don’t have the same coordinates. If the pairwise distances between each p; and p;
and the corresponding ¢; and ¢; aren’t the same, then clearly they can’t be equiva-
lent. If they are the same, then let us make some “cut” of the configuration, choos-

ing any p; and p; and cutting to create two configurations p;, pj4+1,..., p; and
Djs»Pj+1----,pi. Then either p;, pjy1...., p; and gi,qi11,...,q; have different
coordinates or pj, pj+1,..., pi and ¢j,qj+1....,q; have different coordinates. This
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is because if both pairs had the same coordinates, then gluing together would give that the
larger configurations had the same coordinates. Then with the smaller configurations, we
may again add in points on the perimeter if necessary and make more cuts. Eventually,
we will be left with non-equivalent minuscule triangles, so we would find that the
configurations were not equivalent. a

Finally, the following lemma shows that in our definition of equivalence of virtual
configurations —two virtual configurations (p;, A;) and (g;, u;) are equivalent if
there exists v; such that the actual positive configurations realizing (p;, A; + v;) and
(gi, ;i + v;) are equivalent— any choice of v; such that A; +v; >0 and p; +v; >0
will suffice. Thus we have the alternative definition:

Definition 5.21 Two virtual configurations (p;, A;) and (g;, ;) are equivalent if and
only if for all v; such that A; +v; >0 and w; 4+v; > 0, the actual positive configurations
realizing (p;, A; + vi) and (¢;, ;i + v;) are equivalent.

The lemma is now quite simple:

Lemma 5.22 If p; and q; are equivalent positive configurations of n points in the
affine building, then for any n dominant coweights Ay, Ay, ..., Ay, if we allow the A;
to act on p; and q;, the resulting positive configurations will still be equivalent.

Proof The action of the A; on the configurations p; and ¢; changes the coordinates
in an explicit way (see the end of Section 5.4). We have just shown that configurations
are equivalent if and only if they have the same coordinates. The configurations p;
and ¢; have the same coordinates, so acting on them by the coweights A; will give us
configurations that still have the same coordinates. The resulting positive configurations
will then be equivalent. a

Let us point out an interesting byproduct of Theorem 5.19. Note that the notion of
equivalence between configurations of points in the affine building is weaker than
(though possibly equivalent to) the notion of isometry. Thus different laminations can
be distinguished using purely metric properties. Thus:

Corollary 5.23 For a positive configuration of points p1, ..., py in the affine building,
the tropical functions fls «(Pa, Pb> Pc) depend only on the metric properties of the
affine building.

We will investigate in a future paper how to construct the functions fl’] «(Pa> Pb> Pe)
explicitly in terms of the geometry of the affine building. This is the beginning of the
study of intersection pairings between laminations. One can further conjecture:
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Conjecture 5.24 For any configuration of points py, ..., p, in the affine building,
the tropical functions flz «(Pa, Db, pc) depend only on the metric properties of the
configuration in the affine building.

5.7 Relationship with the work of Goncharov and Shen

After writing this paper, we learned of the very interesting and beautiful related work
of Goncharov and Shen [13]. In this section, we would like to explain the relationship
between our work and theirs.

In [13], the authors define a distinguished cone of tropical points AJGF’ s (Z") C Ag,s(Z")
inside the set of all tropical points. This cone is cut out by a potential VV on the space
Ag.s(Z"). They give a bijection between the points in the cone and components of
an object that they call the surface affine Grassmannian. In particular, in the case
where §' is a disc with marked points, they associate to tropical points of A*G', S(Z’ )
top components of fibers of the convolution morphism, an object that arises naturally
from geometric Satake.

One of the motivations for our work was to attach an object to all tropical points in
Ag.s(Z"). This was our reason for introducing the notion of “virtual” configurations.
Another reason to work with “virtual” configurations is that it allows us to also tropical-
ize the space X s. To clarify the situation, we will show below that while Ag, s (Z")
parametrizes virtual positive configurations of points in the affine building, AJGr’ S(Z’ )
parametrizes positive configurations of points in the affine building. Thus the cone
defined in [13] picks out the virtual configurations that are actual configurations. The
duality conjectures of Fock and Goncharov imply that actual configurations on a disc
with n points parametrize invariants of n—fold tensor products of representations of G.
This result follows from [13] (building on the work of Kamnitzer [18]). We will give
an alternative proof of the theorem below.

On the one hand, [13] relates tropical points to the geometry of the affine Grassmannian.
Their approach has the advantage that it works for all semi-simple groups G . Their
constructions are elegant, and their method is robust enough to cover many variations on
the theme. Their work is powerful, but it depends crucially on the work of Kamnitzer.

On the other hand, our work focuses on the affine building rather than the affine
Grassmannian. This has the advantage of clarifying the source of the piecewise-linear
nature of the tropical functions: this tropical geometry comes from the geometry of
the affine building (compare with Joswig, Sturmfels and Yu [17]). Our definitions are
somewhat less abstract, while also having the flavor of geometric topology, and are
more closely related to the classical theory of laminations. They also are related to
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spectral networks [19]. Finally, our notion of laminations is also concrete and simple:
see the definitions in Section 5.3. Our proofs, though the arguments are complicated in
places, are in the end elementary, hands-on and self-contained.

Positive configurations of points in the affine building up to equivalence come from
positive configurations in the affine Grassmannian. These positive configurations in the
affine Grassmannian lie inside the top components of the convolution variety considered
in [13]. One can think of our work as giving a positive structure on these convolution
varieties (Note 5.3). In [13], instead of using positive points, they use transcendental
points, which have many formal similarities. One reason using positive points is useful
is that we can then view laminations as coming from formal paths in the original
space that limit to the tropical boundary. A more important reason is that the positive
structure reflects some kind of planar structure on higher laminations, for example see
Lemma 5.20. In particular, for G = SL;, we see that positivity is reflected in the fact
that the trees we obtain are planar trees.

Let us now relate the two approaches. In the course of the proof, we will give an alterna-
tive derivation of the hive inequalities independent of the approaches in [18] and [13].

Theorem 5.25 Let G = SL,,. Then the points of A’GL S(Z’ ) correspond to positive
configurations of points in the affine building.

For G = SL,,, the points of Ag S(ZI ) are precisely those [13, Section 3.1] such that
on each triangle we have that

t t
i1,k T imjrrke1 = S T Ji ks
and also the similar inequalities obtained by permutation of indices:
t t g
Jijora t Jij—1k = Jiva jx T Jijde+1s
t t
Jijowr T Jijk=1 = Jijorp T Jivrjke
These are the famous hive or rhombus inequalities. Here we use the convention that
t ot _ gt _
m0o = Jomo = Soom = 0.
We will treat the case of a triangle. Because of Lemma 5.16, we see that if on each
triangle we have an actual positive configuration of points in the affine building, then the

entire configuration is an actual positive configuration of points in the affine building.
Thus the case of the triangle implies the general case.

Suppose we have some virtual configuration (x, A1), (x2,A2), (x3,A3) with coordi-
nates fls - We would like to see under what circumstances (x1,41), (x2,42), (x3,43)
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is equivalent to an actual configuration x7, x5, xg. We can in fact analyze each of
(x1,A1), (x2,A2), (x3,A3) individually to see whether each is a virtual point or an
actual point. In other words, we can say something more refined:

Proposition 5.26 The virtual positive configuration (x1,Xy), (x2,A2), (x3,A3) of
points in the affine building is equivalent to the configuration (x1, 1), (X2, A2), (x5, 0)
if and only if

D) S e (e, 1), (32, 22), (3, 43)) + fij k-1 ((x1, A1), (X2, A2), (33, 13))
< A (A, (32, 42), (33, 43)) + fign,j ke (1, A1), (X2, 42), (X3, 43)).

In other words, we may take x3 to be an actual point if and only if the above inequalities
hold. Similar statements hold for (x1,A1), (x2,A,) and the other sets of inequalities.

Proof It is easy to see that replacing (xi,A;), (x2,A,) with x1, x, does not affect
the inequalities in the proposition (in fact, it changes both sides of each inequality by
the same amount, as can be seen by direct calculation). Thus it is sufficient to prove
this in the case that we have a virtual configuration x1, x5, (x3,A3).

Suppose that
fi;k(xl ,X2,(X3,A3)) = ajjk.

Now let A be any dominant coweight, and let
by =wji-A.
Let us construct an auxiliary point x4 in the building with the property that
Sk (31, (X3, A3), X4) = ai,0,m—i + b

We choose x4 so that x1, x», (x3,A3), X4 is a virtual positive configuration of points
in the affine building. We can see that x4 is an actual point in the building by us-
ing the fact that A is dominant and Lemma 5.16. The values of the coordinates
fl.;k(xl, (x3,A3),x4) are chosen so that when (x3,A3) can be represented by an
actual point x7, we have that xy, x; and x4 lie on a geodesic.

The proof then comes down to two lemmas:

Lemma 5.27 The virtual configuration x1, X, (X3, A3), X4 is equivalent to the actual
configuration X1, Xy, xg , X4 if and only if

t
f;’jk(xl’Xva4) = al]k +bk’

f;-;-k(x27 (x?n )\'3)5 X4) = aO,i,m—i + bk
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Lemma 5.28 Given that

S, X2, (X3, A3)) = @ik and [ (X1, (X3, 43), Xa) = dim—i,0 + i,

we have that

S (1, X2, x0) = ajjk + b and [ (x2, (X3, A3), X4) = doim—i + bk

if and only if
Q) S g1 (1, x2(x3,83)) + fij k1 (1, x2(x3, 43))

= ifj+1’k(xl’x2(x3’)\'3)) + ﬁ+1:j:k(xl’x2(x3’ )\'3))

The second lemma is a straightforward computation using the tropicalized mutation
relations, which relate the coordinates in one triangulation to the coordinates in another.

Let us prove the first lemma. First suppose that (x3, A3) is represented by the actual
point x}. Then by the construction of x4, we have that xy, x}, x4 lie on a geo-
desic in that order, with d(x4,x}) = A. Then it is clear that fls (X1, x2,x4) and
fl’j «(x2, (x3,43), x4) have coordinates as above.

On the other hand, if fl; (X1, X2, x4) and flz & (X2, (X3,43), X4) have coordinates as
above, then if we let xg be the point along the geodesic between x; and x4 such that

d(x4,x3) = A, then

S (X2, X5, X4) = doim—i + bk = f,-;-k(xb (x3,A3), X4).

Gluing to the triangle formed by x1, X3, x4, we find that the virtual configuration
X1, X2, (X3,A3), x4 is equivalent to the actual configuration xy, x5, X3, X4. a

5.8 Laminations for the .A-space of a general surface

Our goal now is to define laminations on a general surface S, possibly with marked
points. The basic idea is that any surface can be glued together from triangles. Once we
know laminations on a triangle and how to glue together laminations along an edge, we
know how to construct laminations on a general surface. There is one subtlety, which
we will discuss below.

We have defined laminations on § when §' is a disc with marked points. We will
sometimes refer to such an S as a “polygon”. Proposition 5.18 shows that coordinates
on laminations on a polygon satisfy the tropical relations, while Theorem 5.19 shows
that these coordinates determine the lamination completely. Thus, for S a disc with
marked points, we have an identification between tropical points of Ag s and G-
laminations on S
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It is clear that our construction is compatible with cutting and gluing of polygons;
laminations are completely determined by their coordinates, and the coordinates are
constructed locally with respect to a triangulation, with coordinates associated to the
edges and triangles of a triangulation. We now wish to extend this to surfaces. We will
first analyze the case of polygons more closely.

Suppose we have two laminations

(pls}\‘l)7 (pzs}“Z)’ O] (pn,)\n)
and

(g1, 1), (g2, 2)s - (qr. 1)

on an n—gon and an /-gon. We may glue laminations on these polygons (in a unique

way) by gluing the edge (p1, A1), (p2,A2) to the edge (g2, i42), (91, p1) if and only if
the two virtual configurations of two points (py, A1), (p2,A2) and (q2, 42), (g1, i41)

are equivalent. If they are, by choosing A/ to be a coweight larger than A; and 11, and
by choosing A, to be a coweight larger than A, and 11, we get a virtual configuration
of two points (p7, 1), (p5. ) such that

(p/l’)"ll)’ (p/Z’)"lz)v (p3’)"3)7 MR (pm)\n)

is equivalent to
(plv )\'1)7 (va )\'2)7 ) (pl% )‘n)

Similarly, we have that

(QI»MI)’(QZ’ /'LZ)’ cee (QI»MI)

is equivalent to
(ql’ )\,2)3 (qZ’ )‘,1)’ s (ql? I’Ll)

Additionally, we may translate this configuration so that (g1, 15), (g2.1}) and (p}. 1)),
(p5. A5) coincide by moving g;, i > 2 to obtain a virtual configuration

(Plzvklz)’ (pll’)‘ll)’ (QS,M:%)» LR (4;, ,bL[)

which is equivalent to
(CII ’ /’Ll)v (QZ9 I’LZ)’ ) (CII’ /’Ll)

Then the we can glue to get a lamination

(plz’)‘,z)v (p3’)‘3)v FR) (pn’)\n), (pll?)“/l)’ (q;vﬂfi)? cees (q;’ /’Ll)

on an n + / —2-gon.
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The result of this discussion is that if we are gluing polygons, we may have to replace
one of the virtual points of our configuration, (p, A), with another virtual point, (p’, /),
that gives an equivalent configuration. The reason is that if a vertex belongs to several
different triangles, the value of A at this vertex may be different in each triangle,
and we have to choose a A large enough for all the triangles containing this vertex
simultaneously.

Lemma 5.16 gave us a way to explicitly find such a A: Start with a configuration of n
flags in G(K)/U(K), and choose some triangulation of the n—gon. Then if a vertex
belongs to r triangles, the virtual point at the vertex in each of these triangles might
be (p,A;), i =1,2,...,r. By choosing A larger than all the A;, we may replace all
these (p, A;) by a single virtual point (p, A).

By Lemma 5.16, this choice of A then works to give us a virtual configuration of n
points regardless of the triangulation. Thus we know that we just have to choose A
larger than the value which is necessary for each of the triangles to which a vertex
belongs. It turns out that in a general surface the same holds, though this is not obvious
a priori, as we will be defining laminations on a surface via infinite virtual positive
configurations of points in the affine building, and therefore each vertex belongs to
infinitely many triangles. We discuss this below.

For a general surface S with marked points, we consider the cyclic set at oo formed
by all the lifts of these marked points to the universal cover of .S'. This set C is infinite,
and comes with a free action of 71 (). Then we may make the following definition:

Definition 5.29 A G-lamination on a surface S with marked points is a virtual
positive cyclic configuration of points in the affine building parametrized by the set C,
equipped with an equivariant action of 7 (.S).

For more on the definition of this cyclic set, see Section 2 of this paper or the introduction
of [7]. An equivariant action of w1 (S) means that, for any y € 71(S), pulling back
the configuration by the map y gives an equivalent configuration.

Almost everything that holds for a finite virtual positive configuration carries over to the
infinite case. We shall say that, for an infinite set of points, two positive configurations
parametrized by this cyclic infinite set are equivalent if for every finite subset the
configurations are equivalent.

One might worry that because we have an infinite number of points, there is not a
suitable choice of a large enough A at a given vertex. But if we start with a triangulation
of a surface and lift this to the universal cover, although there is an infinite number of
triangles at each vertex, there is only a finite number of triangles up to the action of the
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stabilizer of this vertex inside 7 (S). Thus, there is only a finite number of values A;
that constrict our choice of A at this vertex. Thus we have:

Theorem 5.30 Let S be a (hyperbolic) surface with marked points and C be its cyclic
set at 0o. Associated to any tropical point of Ag s(Z") there is a 71(S)—equivariant
virtual positive configuration of points in the affine building of G parametrized by C .
This configuration is unique up to equivalence.

The tropical coordinates on this lamination come from a triangulation of the surface S.
We lift this triangulation to a triangulation of the disc with the cyclic set C at the
boundary. On each triangle, we have a virtual positive configuration (p;, A;) of points
in the affine building, which comes from a virtual positive configuration of points
(xi,A;) in the affine Grassmannian, which in turn comes from a positive configuration
of flags F; € G/U™(K). The tropical functions are

fi;k((pa, ra)s (Porp), (Pehe))
= iz'k((xa’ Aa), (XpAp), (XcAe)) = Val(fijk(Fa, Fyp, Fe)).

These functions satisfy the tropical relations, and therefore completely determine the
lamination.

6 Laminations for the X'—space

6.1 Laminations for the X—space of a disc

6.1.1 Configurations of cones We will now treat the dual case of laminations for
the X'—space, for which we now work with the group G = PGL,,. Let S be a polygon.
Recall that any positive configuration pq, ps, ..., pn of points in the affine building
comes in a family of equivalent virtual configurations (¢, A1), (¢2,A2), ..., (gn,An),
where the ¢; vary with the A;, and (p1,0), (p2,0),..., (pn,0) is among these equiva-
lent virtual configurations. We will now define a related concept which has a slightly
different flavor.

Start with a positive configuration of » (principal) flags Fy,..., Fy,, F; € GL, /U(K).
Note that here we no longer require that the flags have determinant 1. As before, we
can choose v;1,...,Vim, | <i <n, to be some lifts of these flags to GL,(K), then
choose A; such that

—A

T YL T,

is a good lift of Fj-A;. Here the A; are coweights for GL;,.
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Let x; be the O—module spanned by At Vil .-, thim Vim. We view x; inside the
affine Grassmannian for PGL,, by considering this O-module up to scaling by any
element of . We will only care about the A; up to their image in the coweight lattice
for PGL,, (as opposed to the coweight lattice for GL,,) and we retain the notation A;
for the image in the coweight lattice of PGL,,. Then we can associate to F7y, ..., F, the
virtual positive configuration (x;,—AX1), ..., (xXn, —Ay), where the x; form a positive
configuration inside the affine Grassmannian for PGL,,. We can then map to the affine
building to get a virtual positive configuration

(QI, _)\'l)a (‘]2, _)"2)’ e (Qn’ _)"I’l)

Different choices of A; give different configurations ¢; which trace out a cone in the
affine building. We would like to forget the data of parametrization by A; and just
think about the asymptotics of these cones. In other words, we are most interested in
the positive configurations ¢, . .., g, that arise as the A; get large. This motivates the
following definition.

Let us choose a base virtual configuration

coming from Fy,..., Fy. Then as the A; varies over the range A; > k?, qi varies over
a subset Q; of the building which we call a cone. We will say that these cones are
based at qlp .

Definition 6.1 A positive configuration of cones in the affine building consists of n
cones of points Q1, Q»,..., O, where each Q; is based at qlp. If we have a set
of representative elements ¢; € Q;, we will say that the positive configuration of
points ¢y, ..., g, is contained in the positive configuration of cones Q1,..., Qy, or
that ¢1, ..., q, is a representative positive configuration of points inside the positive
configuration of cones Q1,..., Q.

Remark 6.2 Q; is exactly the set of points that comes from the action of the monoid
A4 on qlp.

Whereas before we were interested in virtual positive configurations, we now are
interested in these positive configurations of cones.

We will consider these positive configurations of cones up to equivalence. We define two
configurations of cones P; and Q; to be equivalent if they contain some representative
configurations pq, pa,..., pn and ¢1,q>,...,qn Which are equivalent in the previous
sense (Which we defined when discussing laminations for the .A—space). Let us elaborate
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on this. Consider the configurations of sub-cones of the configurations of cones P;
and Q; based at p; and ¢;, respectively. Then the corresponding representative
configurations of points within these sub-cones are all equivalent, by our previous
analysis of actions of AT on positive configurations of points in the affine building.
Thus we are really studying the asymptotics of these cones.

Note that we lose some degrees of freedom in passing from virtual configurations
to configurations of cones because we forget the data of the A;. It is as if we were
considering equivalence classes of virtual positive configurations of n points modulo
the action of A”.

6.1.2 Functions on X g We now recall the functions on the space X s for S a
disc with marked points, and also describe their tropicalization. X s is the space of
configurations of points in G/B. The functions on X s come from a triangulation,
and there are functions attached to each face and each interior (non-boundary) edge
of the triangulation. For each face of a triangulation of the n—gon, we have a set of
functions g;;x, where i + j +k =m and i, j,k > 0. Suppose that some triangle has
flags By, B,, B3 at its vertices, where B; € G/B. Then

gijk(B1, B2, B3)
_ Ji—j+1k(Fr Fa, F3) - fij—1 k+1(F1, Fa, F3) - fig,j k—1(F1, Fa, F3)
St -1k (F1, Fa, F3) - fi jv1k—1(F1. Fa, F3) - fiot j k41 (F1, Fa, F3)’
where Fy, F,, F3 are any lifts of By, B,, B3 from G/B to GL, /U™.

Moreover, for any edge of the triangulation, we can look at the two triangles it belongs
to, and construct a set of functions g;j, for i + j =m and i, j > 0. If the four flags
By, B>, B3, B4 form two triangles By, B, B3 and B3, B4, B which share the edge
B;, Bz, we have the functions

Ji—1,1,j(F1, Fa, F3) - fi—1,1,i(F3, Fy, F1)
fit,j—1(Fy, Fa, F3)- fj1,i—1(F3, F4, Fy)’
where Fy, F,, F3, F4 are any lifts of By, B,, B3, B4 from G/B to GL, /U™

gij(B1. By, B3, By) =

It is shown in [7, Section 8.3] that these functions are independent of the choice of
these lifts to GL,, /U~ for both the face and edge functions. In particular, replacing
F; with F;-A; does not change the value of these functions.

We will now define the tropicalization of these functions. For a positive configuration of
cones Py, P,,..., Py, in the affine building, choose some representative configuration
P1, P2, - .. Pn. Suppose that this came from taking a positive configuration of flags Fj,
choosing large enough A;, forming the corresponding virtual configuration (x;, A;) of
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points in the affine Grassmannian, and then taking the corresponding virtual positive
configuration (p;, A;) of points in the affine building. Then if a triangle has pg, pp, pc
at its vertices, where the p; are points of the building, then we define

t e (1 t t
&ijkPa- Pbs pe) =iy jo1 6T Jijmih+1 T Jit1,j k=1
t t t
- fi+1,j—1,k - fi,j+1,k—1 - fi—l,j,k+1)(pa’ Db Pe)
fori+j+k=mandi, j, k>0. One can make a similar definition for gl?jk(xa, Xp, Xe).
Let us try to analyze the lifting involved in defining this function. Recall that
fék((pa’ )"d)v (va )‘b)v (pCv )"C)) = _Val(jl]k(de Fb’ FC))v

so that
S5k (Pas Pb pe) = —val(fijix(Fa - —Aa, Fp-—h Fe-—Ac)).

Then we have by an easy calculation that
gl{jk([)av Pb» Pe) = —Vval(gijk (Fa-—Aa, Fp-—A Fe-—Ac)) = —val(g;jix (Fa, Fp, F¢)),

so it is clear that gl?j « does not depend on the choice of representative of the configura-
tion of cones.

Similarly, for a positive configuration of four points in the building pg, ps, pe, Pa
we define

gij(Pa: Pb. Pe. Pa) = fi—1,1,;(Pa. Pb. P) + fi—11,i(Pe. Pd. Pa)
— S j—1(Pas Pos p) = 111 im1(Pes Pa» Pa)
for i + j =m and i, j > 0. One can similarly define gfj(xa,xb,xc,xd).
One again shows that
21 (Pa> Pb» Pes pa) = —Vval(gij (Fa, Fp, Fe, Fq))

and that therefore the choice of configuration p; within the configuration of cones does
not affect the values of these functions.

The following theorem is similar to the A case:
Theorem 6.3 Let S be a disk with n marked points. There is a bijection between

tropical points of Xg_s(Z") and positive configurations of cones in the affine building
up to equivalence.

Given a positive configuration of cones, take one representative configuration of points
P1, P2, - - -, Pn in the affine building. It comes from a positive configuration of points x;
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in the affine Grassmannian, which in turn comes from a positive configuration of flags
F; eGL,, /U™ (K) and a choice of large enough coweights A; . Given a triangulation of
the n—gon, we associate to each triangle p,, pp, pc the functions gl?j % (Pa> Pbs Pc), and
to each edge pg, pc bordering two triangles pg,, pp, pc and pp, pc, P4, We associate

the functions gfj (Pas Pb> Pes Pd) -

These functions satisty the tropical relations, and therefore give a well-defined point of
Xg.s(Z"). The values of these functions completely determine the family of positive
configurations of points in the affine building up to equivalence, and vice versa.

Proof Starting with a point of Xg_s(Z") we will construct a positive configuration
of n cones in the affine building for G. Consider the space Xg s(K~o). We can
choose some triangulation, and then choose as we like the values of g;;x and g;;
for each triangle and edge. In particular, we choose the values of these functions to
lie in K- ¢, such that they have prescribed valuations corresponding to our point of
Xg.s(Z"). This is always possible, and gives us a point of Xg_s(Ko). This gives a
positive configuration of points By, ..., By in G/B(K). The results of [7] show that
one can lift this to a positive (twisted) configuration of points in G/ U ~(K) (this is not
explicitly stated, but comes from examining [7, Equation 5.2 on page 73, Theorem 7.3
on page 96, and Equation 8.9 on page 119]). On this configuration of flags Fy, ..., Fy,
the functions f;;x are defined, and they are related to the functions g;;x and g;; by
the relations above.

The configuration of flags gives rise to a configuration of cones in the affine building
out of which we can choose one representative configuration pq, ..., p,. The values of
gz{jk and gl?j on pi,..., pp will be the negatives of the valuations of the values of g;;x
and g;; on Fy,..., Fy, by construction. Moreover, these values will be independent
of our choice of representatives of these cones, because we showed that the values of
gl{j . and g! ; were independent of A;.

Thus glfj r and gf ; really are functions of the positive configuration of cones P;
containing pq,..., Pn, and not just of the configuration itself.

Thus starting from any point of X s(K>0) we obtain a positive configuration of cones
in the affine building. The functions gl{j x and gl? ; on these positive configurations of
cones give a positive configuration of cones corresponding to each tropical point of
Xg.s(Z"). As explained in Section 2, the coordinate transformations under changes of
triangulation behave tropically, and we get a well-defined point of Xg s(Z").

It is clear that any two positive configurations of cones which are equivalent have the
same values for the functions glf ik and gf L because the cones contain some equivalent
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configurations on which the functions fi’. « take identical values, and the functions

gl’.j . and g! ; are determined by the functions flz -

Finally, we need to show that different points of X s(K~o) which have the same
valuations give equivalent configurations of cones. Suppose we have two positive
configurations of cones on which the functions glf ik and gfj are identical. Then
let py,..., pn and qy,...,q, be representatives of these cones. Then although the
functions fl.’. x are not determined by glfj r and glf L they are determined up to the
action of A”. Therefore there are two other configurations p/,..., p, and ¢/,....q,
that come from applying the action of A" on py,..., py and qy,...,qn, respectively,
such that the functions fl’] « have identical values on the configurations DPiseeos Py
and q/l, ..., qy,. Because positive configurations are determined by the functions fl’] P
Py.--.. Py and qi.....q, are equivalent as positive configurations of points in the
affine building, and therefore our original configurations of cones in the affine building
are equivalent. a

We now discuss and attempt to clarify the idea behind X'—laminations. In our presenta-
tion, the definition of the functions g;;x and g;j, tropical or not, depended on some
choice: on higher Teichmiiller space, the functions depended on the choice of a principal
flag (an element of G/U ) dominating a regular flag (an element of G/ B), while on
its tropicalization, the functions depend on a configuration of points representing a
configuration of cones. The choice of a dominating principal flag or a point within a
cone is analogous to the choice of a horocycle at a cusp in classical Teichmiiller theory.
The functions are defined using principal flags or a configuration of points, but they
ultimately only depend on the flags and configuration of cones.

This means that we lose some degrees of freedom in going from Ag s to X 5. For
example, on a triangle, the space X s doesn’t have coordinates corresponding to the
boundary edges. On the other hand, the gluings between triangles are more interesting:
for the space Ag,s we can only glue two triangles if they have the same edge functions,
whereas for the space X ¢ any two triangles have an interesting space of gluings
based on the coordinates assigned to the edges. The different possible gluings are
related to each other by shearing. This is one important feature that distinguishes the
spaces Ag,s and X s. This will become even more important in the next section.

6.2 Laminations for the X—space of a general surface

We now define X'—laminations on a general open surface .S, possibly with marked
points. Again, because any open surface can be glued together from triangles, knowing
laminations on a triangle and how they can glue together to get laminations on a
quadrilateral will allow us to construct laminations on a general surface.

Geometry & Topology, Volume 20 (2016)



Higher laminations and affine buildings 1725

We have defined laminations on .S, where S is a “polygon”. The previous section gave
an identification between tropical points of X ¢ and G-laminations on S'.

It is clear that our construction is compatible with cutting and gluing of polygons. In the
A case, we took some care to show that in gluing, we didn’t have to increase the values
of A; indefinitely. However, because here we are interested in positive configurations
of cones, we do not have this concern.

For a general surface S with marked points, recall the cyclic set at oo formed by all
the lifts of these marked points to the universal cover of S'. This set C is infinite, and
comes with a free action of 71 (S). Then we may make the following definition:

Definition 6.4 A G-lamination for the X'—space of a surface S with marked points is
the data of a positive cyclic configuration of cones in the affine building parametrized
by the finite subsets of the set C, compatible under restriction from one finite set to
another, and equipped with an action of 1 (S) on these configurations of cones.

We should understand the action of 7{(S) as follows. If some element y of the
fundamental group moves the finite subset S C C to the finite subset S’ C C, then
the configuration of cones on S is equivalent to the configuration of cones on S’.

Almost everything that holds for finite positive configurations of cones carries over to
the infinite case. We shall say that two G—laminations for the X'—space are equivalent
if for any finite subset of C the two positive configurations of cones parametrized by
this finite set are equivalent.

Theorem 6.5 Let S be a (hyperbolic) surface with marked points, and let C be its
cyclic set at co. Associated to any tropical point of X s(Z") there is a G-lamination
as defined above. This G—lamination is unique up to equivalence.

The tropical coordinates on this lamination come from a triangulation of the surface S .
We lift this triangulation to a triangulation of the disc with the cyclic set C at the
boundary. On each triangle or quadrilateral, we have a positive configuration of
cones within which we can take a representative positive configuration p; of points
in the affine building, which comes from a positive configuration of points x; in
the affine Grassmannian, which in turn comes from a positive configuration of flags
F; € GL,, /U (K). The tropical functions are

8iik(Pa> Pbs Pe) = 85 (Xas Xp, Xc) = —val(giji (Fa, Fp, Fe))
and

gltj(ptl? pb’ Pc, pd) = ggj(xtl’xbixC’xd) = _Val(gl'j(Fa’ Fb’ FC? Fd))

These functions satisty the tropical relations, and therefore completely determine
the lamination.
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We give a word of caution. We cannot talk about the family of positive configurations
of points parametrized by the entire set C. This is because of the way gluing works.
Suppose we had a positive configuration of four cones. Let pi, p2, p3, psa be arep-
resentative configuration. Then it restricts on the triangle 123 to the configuration
P1, P2, p3. However, not every configuration of cones containing pp, p2, p3 comes
from a configuration of cones containing pq, pa, p3, p4. Thus, in gluing together
configurations of cones, we may need to replace a cone that has its origin at a point p;
by one that has its origin at another point inside the original cone. In terms of gluing
representative configurations of points, we may have to replace one configuration by a
larger configuration representing the same cone (one obtained by acting on the original
configuration of points by an element of A’ ) in order to glue.

Thus the problem that we avoided for the .A-space turns out to be important here: as
we take larger and larger subsets of C, the actual configurations that are representative
of our positive configurations of cones may get larger and larger, so that in the limiting
case we don’t actually have a configuration of points. Thus we can only choose
representative configurations for configurations of cones parametrized by any finite
subset of C.

Moreover, the more robust gluing allowed in the case of laminations on the X—space
allows us to have interesting monodromy around a hole in our surface, unlike the
situation in the case of the .A-space. This is a reflection of the fact that edge coordinates
allow for a kind of “shearing”. Let x be a point of C, the boundary at infinity. Then
if y € m1(S) preserves x, it may not preserve the points of the affine building in the
cone attached to the point x; it may move py to another point p’., where py and p’
are related by the action of A at the point x (so that the cones based at py and p’
overlap and are asymptotic).

6.3 Laminations on a closed surface

In this section, we give a proposed definition for laminations on a closed surface.
However, the definition is not as easy to work with as in the case of surfaces with
boundary. We will try to make the difficulties clear below.

The general approach for the definition of laminations on a closed surface is similar to
the definition for surfaces with boundary: we consider the space X, s(ICs¢) of positive
G (K)-bundles, and then take valuations to obtain the tropical points X s (Z"), which
parametrize higher laminations. Our first task will be defining the set Xg s(Ks¢) of
positive G(K)-bundles in the case where the surface S is closed.

Recall that X s (K~ ¢) was defined for a surface with boundary by forming the cyclic
set Foo consisting of lifts of all cusps and marked points to the universal cover of S'.
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This is a set with a cyclic order sitting at the boundary of the universal cover of .S'. Points
of Xg,s5(K~o) were then identified with positive configurations of flags parametrized
by Foo along with an equivariant action of 71 (S).

For a closed surface S, the set Foo is empty. Instead of using the cyclic set Foo, We
could have instead used the larger cyclic set Goo = Foo U G, Where G consists of
preimages on the boundary at infinity of all endpoints of non-boundary geodesics on S.
The set Goo carries a natural action of 71 (S).

We can then define the space Xg, s(Kso).

Definition 6.6 X s(IC-) is the space of 7 (S)—equivariant positive configurations
of points in G/B(K) parametrized by G .

It would be natural to try to define laminations for a closed surface S as follows: A G-
lamination for a closed surface S is the data of a positive cyclic configuration of cones
in the affine building parametrized by the finite subsets of the set G, compatible under
restriction from one finite set to another, and equipped with an action of 71 (S) on these
configurations of cones, up to equivalence. These positive cyclic configurations of cones
are considered up to equivalence. However, this definition does not reduce to our previ-
ous definition in the case where S has boundary, and for G = SL,, it does not recover
Thurston’s measured laminations. The problem is that the definition is too refined —
there are laminations that should be equivalent under our definition, but are not.

Thus we will have to make some more considerations before proceeding. To understand
better the case of closed surfaces, we use the cutting and gluing properties of higher
Teichmiiller spaces. We follow here the treatment given in [7, Sections 6.9 and 7.6-7.9]
and give tropical analogues of those arguments.

Let S be a surface with or without boundary, and suppose we have a point x of
XG,s(Ks0). Then along any closed (oriented) curve y on S we may calculate the
monodromy p(y) of the local system around that closed curve.

By the results of [7], we know that p(y) will lie in G(K~g). A result of Lusztig [22,
Theorem 5.6] gives us:

Theorem 6.7 Let g € G(K~¢). Then there exists a unique split maximal torus of G
containing g . In particular, g is regular and semi-simple.

Remark 6.8 Lusztig’s theorem was originally stated over the real numbers R. How-
ever, using that the field of Puiseux series over R is a real closed field, we can invoke
the Artin—Schreier theorem to conclude that the eigenvalues of g € G(K~ ) are Puiseux
series with positive leading coefficient. Analyzing the characteristic polynomial of g
allows us to conclude that these eigenvalues are in fact power series.
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So by the above, we can conjugate p(y) to H(K~q), and then take valuations to get
an element of the coweight lattice A. However, the conjugation of p(y) into H(K~g)
is only well-defined up to the action of the Weyl group S,. Thus we actually get
a well-defined element of the dominant coweights AT, which we will denote d(y).
Let / be the lamination corresponding to x. Then d(y) should be viewed as the
“length” of the lamination along the loop y . This analogy will be explored further in
the next section.

We can state a version of [7, Theorem 7.6] for the semi-field K. Let S be a surface,
with or without boundary, with x(S) < 0. Let y be a non-trivial loop on S, not
homotopic to a boundary component of S.

Denote by S’ the surface obtained by cutting S along y. We assume that S’ is
connected. It has two boundary components, y4+ and y_, whose orientations are
induced by the one of S’. The surface S’ has one or two components, each of them of
negative Euler characteristic. Denote by

XG,s'(V+,v-)(Kso)

the subspace of X s/(K~o) given by the following condition: the monodromies along
¥+ and y_ are inverse, and the framing at the boundary is given by the unique attracting
flags for y4 and y_.

Theorem 6.9 Let S be a surface with x(S) < 0, and suppose that S’ is obtained
by cutting along a loop y , as above. Then the restriction from S to S’ provides us a
principal H(K~)-bundle

XG,s (K>o) — Xg,s7(V+. V-)(K>o).

Thus we have:

(1) We may restrict G(K=g)-bundles on S to obtain G(K~g)-bundles on S’.

(2) The image of the restriction map consists of G(K~o)-bundles on S’ satisfying
the constraint that the monodromies around the oriented loops y4+ and y—
are opposite, and that the flags attached to these boundaries are the unique
attracting flags.

(3) Given a G(K~¢)-bundle on S’ satisfying this monodromy constraint on the
boundaries, one can glue it to a G(Kxq)-bundle on S’, and the group H(K~g)
acts simply transitively on the set of the gluings.

The proof of Theorem 6.9 relies on an analysis of configurations of flags parametrized
by the cyclic set at infinity. In particular, it relies on analysis of the relationship
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between the cyclic sets at infinity of S and S’. The proof is no different in the R~ q
and K- cases.

For S a surface with boundary, the tropical points of Xg s(Z") arise as equivalence
classes of points of Xg s(Ks0). Our notion of equivalence was based on taking
valuations of a preferred set of functions on X s(K>¢), namely the various cluster
coordinate charts. For closed surfaces, there is no clear choice of a set of functions.
But we have the following conjecture, which we strongly believe to be true:

Conjecture 6.10 Let S be a surface with boundary such that x(S) < 0. Suppose
cutting along a loop y gives us the surface S’. Then the map

XG,s (Kso) — Xg,s7(K>o0)

respects valuations. In other words, if we take our preferred coordinate charts on
XG.s(Ksp), if two points in Xg s(Ks¢) have coordinates with the same valuation
(recall that having coordinates with the same valuation in one chart is the same as having
coordinates of the same valuation in every chart), then their images in Xg s/ (K50)
will have coordinates with the same valuation.

Then it makes sense to define higher laminations on a closed surface as follows:

Definition 6.11 A higher lamination on any surface S is given by equivalence classes
of points in Xg s(K5¢). Two points are equivalent if they give equivalent laminations
on any surface S’ with boundary obtained by cutting S'.

Note that this coincides with the definition for surfaces with boundary, assuming the
above conjecture. In fact, it is probably the case that to test for equivalence between
two points of Xg s(KCs) it is enough to look at the induced laminations on a finite
number of surfaces S’ obtained by cutting and not all the possible surfaces obtained
by cutting.

We can now state a conjectured tropical version of [7, Theorem 7.6]. Let S be a
surface, with or without boundary, with x(S) < 0. Let y be a non-trivial loop on §,
not homotopic to a boundary component of S. Denote by S’ the surface obtained by
cutting S along y. We assume that S’ is connected. It has two boundary components,
y+ and y—, whose orientations are induced by the one of S’. A lamination on S
induces a lamination on S’. The surface S’ has one or two components, each of them
of negative Euler characteristic. Denote by

X 6 (i y-)(Z1)
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the subspace of Xg S,(Z’ ) given by the following condition: the lengths of the lamina-
tion along y4+ and y_ are inverse, ie

d(y+) = —wod(y-).

Because the (semi-simple part of the) monodromy around a boundary component is
given by a monomial map, this subspace of laminations will be a linear subspace of
the space of laminations A’g S,(Z’ ) of codimension dim H .

Conjecture 6.12 Let S be a surface with x(S) < 0, and suppose that S’ is obtained
by cutting along a loop y, as above. Then the restriction from S to S’ gives a map

XG,s(Z") — XG5/ (v+, y-)Z").

The fibers of this map are H(Z')/ W(y+). Here W(y+) is the subgroup of the Weyl
group that fixes d(y+) (or equivalently d(y-)).

Thus we have:

(1) We may restrict laminations on S to obtain laminations on S’.

(2) The image of the restriction map consists of laminations S’ satisfying the
constraint that the lengths of the laminations around the oriented loops y
and y_ are opposite.

(3) Given a lamination on S’ satisfying this length constraint on the boundaries,
one can glue it to a lamination on S’, and the group H(Z'") acts transitively on
the set of the gluings, with gluings that differ by an element of W(y4) giving
the same gluing.

7 Comparison with other works

One application of our definition of laminations is that projectivized G—laminations give
a spherical compactification of higher Teichmiiller space. This will give a Thurston-type
compactification of higher Teichmiiller space. We will explain this below, and compare
this compactification with those found in the works of Alessandrini, Parreau, and, in the
case of G = SL,, the work of Morgan and Shalen. We will need to understand length
functions on higher Teichmiiller spaces, and study their degenerations to the boundary.

We first review how to construct this compactification. Much of this was explained in
[10]. For any positive space X’ (throughout this section, X" will be either Ag s or Xg s
we will assume that S is a surface with boundary), we may form its tropicalization by
taking the points of X with values in the semifields A’, for A =7, Q or R. In the latter
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two cases, we have an action of AZ ; (the multiplicative group of positive elements) on
the tropical points X'(A’). One can define this in each chart of the positive atlas and
show that the action is compatible with changes of coordinate chart. Then we have:

Definition 7.1 Let X be a positive space. Let A be either Q or R. The projectivization
PX (A7) of the tropical A—points of X is

PX(A") 1= (X(A") —{0})/AZ,.

Observe that PX (R?) is a sphere, and the transition maps between coordinate charts
on this sphere are tropical maps, and hence piecewise-linear maps. The set PX(Q?) is
an everywhere dense subset of PX (R?).

This sphere lives at the boundary of higher Teichmiiller space X' (R~ (), and gives us a
logarithmic compactification as in [1; 26; 25]. Let the dimension of X’ be d. Then in
any coordinate chart Hy, taking logarithms of the coordinates gives an identification of
X(Rsg) with R Then the compactification we seek is simply the radial compactifi-
cation of R¥. Any point in the spherical boundary of R4 corresponds to some relative
growth rates of the coordinates in the chart H, .

One of the main theorems of [7], Theorem 6.1, tells us that transition functions be-
tween coordinate charts are given by positive rational functions (in fact, they are
expected to be positive Laurent polynomials). Because of this, the growth rates in
any chart H, completely determine the growth rates in any other chart Hg. A point

(X1.X2,...,xg4) € Hy(R?) of the boundary corresponds to the limit of the points
(e5X1, e5%2, .. %)

as s — 00. Suppose we have another coordinate chart Hg with ¢og: Hy — Hpg the
transition map between coordinate charts. Let

(V1720 Ya) = Blg(xi. X2 xq)
be the tropicalization of ¢4 applied to (x1,X2,...,xg). Then
¢aﬂ(esxl , esxz’ e esxd)

is asymptotic to
(e, e92, . &)

as § — Q.

Thus the radial logarithmic compactifications in different coordinate charts transform
tropically, and this compactification is naturally identified with PX' (R?).
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Now recall that we had a map from X' (Kx¢) to the space of laminations X' (Z"). Now let
X = (xlsxz""’xd)

be a point of X'(K~¢). Suppose that the x; are in fact convergent power series in
K~o = R((¢))>0. Then for small enough ¢, the x; are positive when evaluated at ¢,
and we may view x as a path in X'(R~¢). The growth rate of x; as ¢ goes to 0 is
val(x;). Thus, given any lamination / € X'(R’) which is non-zero, we can construct a
path in higher Teichmiiller space that approaches the projectivization of this lamination
in the boundary. Laminations which are related by the action of A* approach the same
point on the boundary at different speeds. Laminations measure growth rates of a path
in X(R~¢), while projectivized laminations measure the relative growth rates of the
coordinates. In summary, we have mapped out the relationship between valuations,
growth rates and tropical points.

To summarize: projectivized G—-laminations give a spherical boundary for higher Teich-
miiller space. Points in the boundary parametrize relative growth rates of paths in higher
Teichmiiller space that go to infinity. We note that, like Thurston’s compactification of
Teichmiiller space, our compactification has a natural action of the (higher) mapping
class group (the higher mapping class group is defined as the symmetries of the cluster
algebra underlying the higher Teichmiiller space). This turns out to be tautological
from the definition of the higher mapping class group.

We now compare this compactification with the ones given by [1] and [26]. The
construction outlined above, due mostly to Fock and Goncharov, works in the context
of positive spaces. On the other hand, the constructions of Alessandrini and Parreau
work in greater generality (for example, Parreau works in the context of representation
varieties of finitely generated groups, while Alessandrini works in the context of
compactifications of general algebraic varieties). On the one hand, their approaches
have some advantages: in addition to being quite general, Parreau’s work highlights
the metric convergence of symmetric spaces to buildings, while Alessandrini relates
precisely the relationship between spaces of valuations and logarithmic limit sets.

On the other hand, we are able to avoid some technical arguments that they use.
Moreover, to a boundary point in their compactification, they associate some 71 action
on an affine building; however, the association is fairly non-constructive, it is one-to-
many (each point in the boundary may be associated to many s actions on different
affine buildings), and it is difficult to pin down the invariant properties of the different
possible answers.

Our contribution is to identify in geometric terms what kinds of configurations in the
affine building can occur and define an equivalence relation (again, in geometric terms)
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on configurations coming from the same boundary point. Moreover, affine buildings are
large and infinite objects; we are able to give finite invariant subsets of the building that
completely capture the lamination. For example, for any triangulation of the surface,
we can lift the triangulation to the universal cover. Attached to each triangle is a
configuration of points in the affine building. Take the convex hull of these points. The
union of these convex hulls over all the triangles in our triangulation gives a subset
of the affine building which (in the case of .A-laminations) is finite up to the action
of m1. (One can do something similar in the case of A'—laminations.)

Finally, we will show that our Thurston-type compactification surjects onto the com-
pactification in [26], although we conjecture that the compactifications are in fact the
same. The compactification found in [1] and [26] is very similar to ours, except that
instead of radially compactifying for the cluster coordinate systems, a different set of
functions is used. For each path ¢ on S, they consider the different coefficients of the
characteristic polynomial of the monodromy around y . Let f be any such function.

Recall that for a point in higher Teichmiiller space, the monodromy of y lies in
G(R-(). One can easily check that the coefficients of the characteristic polynomial of
a matrix g € G(R~() are given in terms of a positive expression in the generalized
minors of this matrix. Hence, the function f is given by positive rational functions
of the cluster coordinates. Because the function f is positive, it can be tropicalized
to give the function f7?. This gives the c-length functions of [26]. Moreover, the
expression of f as a positive Laurent polynomial means that the growth rates of cluster
coordinates in any chart completely determine the growth rates of f. From this, we
get first that compactifying by growth rates of cluster coordinates is at least as refined
as compactifying by coefficients of the characteristic polynomial around all loops in §'.
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