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Everything is illuminated

SAMUEL LELIÈVRE
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We study geometrical properties of translation surfaces: the finite blocking property,
bounded blocking property, and illumination properties. These are elementary proper-
ties which can be fruitfully studied using the dynamical behavior of the SL.2;R/–
action on the moduli space of translation surfaces. We characterize surfaces with
the finite blocking property and bounded blocking property, completing work of
the second-named author. Concerning the illumination problem, we also extend
results of Hubert, Schmoll and Troubetzkoy, removing the hypothesis that the surface
in question is a lattice surface, thus settling a conjecture of theirs. Our results
crucially rely on the recent breakthrough results of Eskin and Mirzakhani and of
Eskin, Mirzakhani and Mohammadi, and on related results of Wright.

37E35; 53A99

1 Introduction

A translation surface M is a finite union of polygons, glued along parallel edges by
translations, up to a cut-and-paste equivalence. These structures arise in the study
of billiards, interval exchange transformations, and various problems in group theory
and geometry. See Masur and Tabachnikov [5], Zorich [18] and Yoccoz [17] for
comprehensive introductions and detailed definitions. The purpose of this paper is to
apply recent breakthrough results of Eskin and Mirzakhani [1] and Eskin, Mirzakhani
and Mohammadi [2], on the dynamics of a group action on the moduli space of
translation surfaces, to some elementary geometrical questions concerning translation
surfaces. We begin with some definitions.

A pair of points .x; y/ 2M �M is finitely blocked if there exists a finite set B �M
which does not contain x or y and intersects every straight-line trajectory connecting
x and y . A set B with this property is called a blocking set for .x; y/, and the
minimal cardinality of a blocking set is called the blocking cardinality of .x; y/ and is
denoted by bc.x; y/. A translation surface M has the finite blocking property if any
pair .x; y/ 2M �M is finitely blocked, and the bounded blocking property if there
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is a number n such that any pair .x; y/ 2M �M is finitely blocked with blocking
cardinality at most n. If x and y are finitely blocked with blocking cardinality zero,
that is, if there is no straight-line path on M from x to y , then we say that x and y
do not illuminate each other. A translation surface M is a torus cover if there is a
surjective translation map from M to a torus (the singularities of M may project to
one or several points on the torus). Equivalently (see eg Monteil [6]), the subgroup
of R2 generated by holonomies of absolute periods on M is discrete.

Our first result settles a question of the second-named author; see [6; 7].

Theorem 1 For a translation surface M , the following are equivalent:

(1) M is a torus cover.

(2) M has the finite blocking property.

(3) There is an open set U �M �M such that any pair of points in U is finitely
blocked.

(4) M has the bounded blocking property.

Hubert, Schmoll and Troubetzkoy [3] have constructed an example of a translation
surface M which is not a torus cover, and in which there are infinitely many pairs of
points which do not illuminate each other. In fact, there is an involution � W M !M

such that for any x 2M , there is no straight line between x and �.x/. See Section 6.1
for similar examples. This shows that in (3) it is not enough to suppose that U is infinite.

Our second result concerns questions of illumination. The classical illumination
problem was first posed in the 1950s, when it was asked whether there exists a
polygonal room with a pair of points which do not illuminate each other. First examples
were found by Tokarsky [11] and Boshernitzan (unpublished), and this raised the
question of classification and possible cardinality of pairs of points which do not
illuminate one another on translation surfaces. We refer to [3] or the Wikipedia
page http://en.wikipedia.org/wiki/Illumination_problem for a brief his-
tory. We show:

Theorem 2 For any translation surface M , and any point x 2M , the set of points y
which are not illuminated by x is finite.

Moreover, the set

f.x; y/ W x and y do not illuminate each otherg

is the union of a finite set with finitely many translation surfaces S embedded in
M �M , such that the projections pi jS W S !M are both finite-degree covers of the
complement of a finite set in M .
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Here pi W M �M !M , i D 1; 2, are the natural projections onto the first and second
factors, respectively.

Theorem 2 strengthens results of [3], which deal with surfaces which have a large
group of translation automorphisms. Namely, Theorem 2 was proved in [3] under the
additional hypothesis that M is a lattice surface, and when M is a prelattice surface, the
first assertion of the theorem was shown, with “countable” in place of “finite” (for the
definitions see Section 2.3). The first assertion of Theorem 2 settles [3, Conjecture 1].
In Section 5 we deduce Theorem 2 from the more general Theorem 10. In Section 6
we give examples which elaborate on related examples given in [3].

A standard “unfolding” technique (see Masur and Tabachnikov [5] and Zorich [18])
leads to the following result, which justifies the title of this paper. It settles a special
case of [8, Conjecture 1].

Corollary 3 Let P be a rational polygon. Then for any x 2 P there are at most
finitely many points y for which there is no geodesic trajectory between x and y .

There is a moduli space H parametrizing all translation surfaces sharing some topo-
logical data, and this space is equipped with an action of the group G WD SL.2;R/.
The breakthrough work of Eskin and Mirzakhani [1] and of Eskin, Mirzakhani and
Mohammadi [2] has made it possible to analyze the dynamics of this action in great
detail. Our analysis depends crucially on this work, as well as on additional work of
Wright [16].

We note that the crucial feature which makes our analysis possible is that the geometric
properties we consider give rise to subsets of H which are closed and G–invariant. It
has long been known that a detailed understanding of the G–action would shed light on
the illumination problem, as well as on many similar “elementary” problems. For more
papers applying the dynamics of the G–action to the analysis of closed and G–invariant
geometrical properties of translation surfaces, see Veech [13], Vorobets [14], Monteil
[6; 7], Hubert, Schmoll and Troubetzkoy [3], Smillie and Weiss [10; 9] and Lelièvre
and Weiss [4].
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2 Preliminaries

We begin by briefly recalling the definitions of translation surfaces and strata, and refer
to [5; 18; 17] for more details. Fix a topological orientable surface S of genus g ,
a finite subset † D fx1; : : : ; xkg of S , and nonnegative integers ˛1; : : : ; ˛k so thatP
i ˛i D 2g�2. We allow some of the ˛i to be zero and require k ¤ 0. A translation

surface M of type Ę D .˛1; : : : ; ˛k/ is a surface M homeomorphic to S , with k
labeled singular points f�1; : : : ; �kg, equipped with an equivalence class of atlases of
planar charts, ie maps from open subsets forming a cover of M X f�1; : : : ; �kg to C ,
such that:

� Transition maps for the charts are translations.

� At each �i the charts give rise to a cone-type singularity of angle 2�.˛i C 1/.

As usual, two atlases are considered equivalent if their union is also an atlas of the same
type, and two translation surfaces are considered equivalent if there is a homeomorphism
from one to the other which is a translation in charts and maps the distinguished finite
set f�ig of one translation surface bijectively to the other in a way which respects the
numbering. Note that an atlas of planar charts on M X† naturally induces a translation
structure on .M X†/ � .M X†/, with charts taking values in C2 , and for which
transition maps are translations. We will call this the Cartesian product translation
structure on M 2 .

The points �i are called singularities. Note that we have allowed singularities with
cone angle 2� (as happens when ˛i D 0). Such singularities are sometimes referred
to as marked points. Note also that in contrast to the convention used by some authors,
our convention is that singularities are labeled.

A homeomorphism S!M which maps each xi to �i is called a marking. We can use
a marking and the planar charts of M to evaluate the integrals of directed paths on S
beginning and ending in †. Such an integral is a complex number whose real and
imaginary components measure, respectively, the total horizontal and vertical distance
traveled when moving in M along the image of the path. Denote by H. Ę/ the set of
translation surfaces of type Ę . It is called a stratum and is equipped with a natural
topology defined as follows. The discussion above shows that the marking gives rise to
a map

H. Ę/!H 1.S;†IC/:

It is known that the maps above constitute an atlas of charts which endow H. Ę/ with
the structure of a linear orbifold. We will call these coordinates period coordinates.
With respect to period coordinates, the change of a marking constitutes a change of
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coordinates via a unimodular integral matrix, so H. Ę/ is naturally endowed with a
Lebesgue measure and a Q–structure. It is known that each stratum has finitely many
connected components. Our convention mentioned above, that singular points on a
translation surface are labeled, implies that a stratum, with our conventions, is a finite
cover of the strata considered by other authors. We will pass to a further finite cover in
Section 2.1 below.

The group G acts on each stratum component H by postcomposition of planar charts.
That is, identifying the field of complex numbers with the plane R2 in the usual way,
each g2G is a linear map of R2 and we use it to replace each chart M �U

'
!CŠR2

with the chart g ı 'W U ! R2 . For each stratum component H , the subset H.1/

consisting of area-1 surfaces is a suborbifold which in period coordinates is cut out
by a quadratic condition. It is preserved by the G–action, and G acts ergodically,
preserving a natural smooth finite measure obtained from the Lebesgue measure by a
cone construction. Given a translation surface M and a positive real number t , we
denote by tM the translation surface obtained by multiplying all planar charts of M
by the scalar t .

2.1 Adding marked points

We will need some notation for the operation of covering a stratum by a corresponding
stratum with one or two additional marked points.

Given a stratum component H , we denote by H0 the corresponding stratum component
of surfaces with one additional marked point, and by H00 the corresponding stratum
component of surfaces with two additional marked points. More formally, this is
defined as follows. Suppose H is a component of H. Ę/, where Ę WD .˛1; : : : ; ˛k/ and
† WD fx1; : : : ; xkg is a finite subset of cardinality k in the topological surface S . Let
xkC1; xkC2 denote two distinct points on S X†, set ˛kC1 D ˛kC2 D 0, and set

†0 WD†[fxkC1g; Ę
0
WD .˛1; : : : ; ˛kC1/;

†00 WD†0[fxkC2g; Ę
00
WD .˛1; : : : ; ˛kC2/:

For any translation surface M 0 2 H0 , a simply connected neighborhood U of �kC1 ,
punctured at �kC1 , can be covered by charts from the atlas, and since ˛kC1 D 0, one
can add an additional chart to the atlas covering all of U . The resulting translation
surface M belongs to the stratum H . If M 0 is marked by the pair .S;†0/ then M is
naturally marked by the pair .S;†/. Thus we get a natural map '0W H. Ę0/!H. Ę/,
called the forgetful map since it corresponds to forgetting the location of the marked
point �kC1 . Similarly, we have forgetful maps

'00W H. Ę00/!H. Ę0/ and ' WD '0 ı'00W H00!H;
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which correspond respectively to forgetting the location of �kC2 and �kC1; �kC2 . The
three maps '0 , '00 , ' are bundle maps for the bundles H. Ę0/, H. Ę00/, H. Ę00/ with
bases H. Ę/, H. Ę0/, H. Ę/ and fibers S X†, S X†0 , .S X†/2 X�, respectively
(� is the diagonal). Finally, we let H0;H00 be the connected components of H. Ę0/ and
H. Ę00/ covering the component H .

We will sometimes start with surfaces M 2H and form surfaces in H0 by choosing
a nonsingular point x 2M and specifying it as the marked point, thus obtaining a
surface in H0 , which we will denote by .M; x/. Similarly, starting with M 2H and
a pair x; y of distinct nonsingular points on M , we will form .M; x; y/ as a point
in H00 . We caution that this may not be a well-defined operation in case M has a
nontrivial translation automorphism. To explain the difficulty, suppose hW M !M is
a nontrivial homeomorphism which is a translation in charts and h fixes points of †.
By definition, the two translation surfaces given by the initial structure on M and the
one obtained by precomposing all charts with h are considered equivalent, and thus,
having chosen M 2 H and x 2M , the point h.x/ is indistinguishable from x as a
point of M and we cannot unambiguously write .M; x/. To resolve this ambiguity
we always pass to a finite cover of H in which surfaces have no nontrivial translation
homeomorphisms. Such a cover is sometimes called a stratum with a level-n structure,
and can also be obtained by quotienting the space of marked translation surfaces by a
finite-index torsion-free subgroup of the mapping class group. When discussing strata
we will have in mind a finite cover as above. See [18; 17] for details.

One easily checks from the definitions that the maps ' , '0 , '00 are G–equivariant,
and that the fibers are linear manifolds in period coordinates. Moreover, note that the
linear structure on a fiber '0�1.M/Š S X† coincides with the translation structure
afforded by the translation charts on M , and similarly the linear structure on a fiber
'�1.M/Š .S X†/2 X� coincides with the Cartesian product translation structure
on M 2 . In the sequel we will refer to xkC1 and xkC2 as the first and second marked
points for the covers H00 ! H0 ! H . Note that we allow H to contain additional
marked points.

2.2 Recent dynamical breakthroughs

We now state the results of [1; 2; 16] mentioned in the introduction. This requires
some terminology. We say that a subset L0 �H is a complex linear properly immersed
manifold defined over R if there is a manifold N and a proper immersion f W N !H
such that L0 D f .N /, each x 2 N has a neighborhood U such that the image of
f .U / under any of the charts H!H 1.S;†IC/ŠCN is an affine subspace whose
linear part is a C–linear vector space defined over R, and the set of y 2 L0 for which
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jf �1.y/j � 2 has zero measure with respect to the Lebesgue measure class on these
affine subspaces. Note that the real dimension of a complex linear manifold is even.
Given L�H.1/ , we denote

R�CL WD ftM
0
W t > 0;M 0 2 Lg:

If � is a measure on H then �.A/D �.ftx Wx 2A; t 2 .0; 1�g/ is a measure on H.1/ and
we say that � is obtained by coning off � . We say that L�H.1/ is an affine invariant
manifold if it is G–invariant, is the support of an ergodic G–invariant measure �,
R�
C
L is a complex linear properly immersed submanifold defined over R, and � is

obtained by coning off Lebesgue measure on R�
C
L.

Theorem 4 (Eskin, Mirzakhani and Mohammadi) For each stratum component H
and each M 2H.1/ , the orbit closure L WD GM is an affine invariant manifold. The
collection of affine invariant manifolds of H obtained as orbit-closures for the G–
action is countable. If Ln , n� 1, is a sequence of distinct affine invariant manifolds
of some dimension k contained in H , then, after passing to a subsequence, the set of
accumulation points

fM 2H W there exists Mn 2 Ln such that Mn!M g

is an affine invariant manifold L1 with dimL1 > k and fMng � L1 .

Note that the results of [2] work for strata with marked points, ie they allow ˛i D 0 for
some i .

Suppose that the number of singularities k is at least two. Let H1.S/ and H1.S;†/
denote, respectively, the absolute and relative homology groups. Then we have H1.S/�
H1.S;†/ and we can restrict each 1–cocycle in H 1.S;†IC/ to the subspace H1.S/;
that is, we get a natural restriction map H 1.S;†IC/ ! H 1.S IC/. The kernel
REL of this map is a subspace of H 1.S;†IC/ of real dimension 2.k � 1/, and
we have a foliation of H 1.S;†IC/ by cosets of REL. Since the restriction map
H 1.S;†IC/!H 1.S IC/ is topological, the space REL is independent of a marking,
that is, can be used to unequivocally define a linear foliation of H. Ę/ using period
coordinates. This foliation of H. Ę/ is called the REL foliation. The G–action respects
the REL foliation and hence we have a linear foliation of H by leaves tangent to
g˚REL, where we use g to denote the tangent to the foliation by G–orbits. We denote
this foliation by G˚REL. Following [16], if a closed G–invariant and G–ergodic
linear manifold L is contained in a single leaf of the foliation G˚REL, we say that
it is of cylinder rank one. A translation surface M is completely periodic if in any
cylinder direction on M there is a complete cylinder decomposition.
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Theorem 5 (Wright [16, Theorems 1.5 and 1.6]) A linear manifold L as above is of
cylinder rank one if and only if any surface in L is completely periodic.

We will need the following lemma. Note that its assertion would be trivial if the fiber
of ' were compact.

Lemma 6 Let M 2 H and M 00 2 '�1.M/ � H00 . Let L WD GM and L00 WD GM 00 .
Then 'jL00 is an open mapping and hence dim'.L00/D dimL.

Proof According to [2], there are Borel probability measures � and �00 on H and H00 ,
respectively, such that LD supp� and L00D supp�00 . We first claim that �D'��00 . To
this end, note that [2, Theorems 2.6 and 2.10] provide an averaging method converging
to � and �00 ; that is, in both of these theorems, one finds probability measures �T
on G such that for any continuous compactly supported functions f and f 00 on H
and H00 , respectively, we haveZ

G

f .gM/ d�T .g/!

Z
H
f d� as T !1;Z

G

f 00.gM 00/ d�T .g/!

Z
H00

f 00 d�00 as T !1:

By a standard argument, we may assume that this is also true if f 00 is continuous and
has a finite limit at infinity; in particular, for f 2 Cc.H/ we may take f 00 D f ı ' .
Thus by equivariance we haveZ

H
f d� 

Z
G

f .gM/ d�T .g/D

Z
G

f 00.gM 00/ d�T .g/!

Z
H00

f ı' d�00;

and this implies that �D '��00 .

When expressed in period coordinates, the restriction to charts of the map 'jL00 W L00!L
is an affine map of affine manifolds. In order to show that it is open it suffices to
show that its derivative is surjective at every point x 2 L00 . If not, then there is a
neighborhood U of x in L00 such that '.U/ is contained in a proper affine submanifold
of L. Such a proper affine submanifold must have zero measure for the flat measure
class on L, ie �.'.U// D 0. By the preceding paragraph this implies �00.U/ D 0,
which is impossible.

2.3 The Veech group, lattice surfaces, and periodic points

An affine automorphism of a translation surface M is a homeomorphism 'W M !M

which is affine in charts. In this case, by connectedness, its derivative D' is a constant
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2� 2 matrix of determinant ˙1. We denote by AffC.M/ the group of orientation-
preserving affine automorphisms, ie those for which D' 2 G . We say that ' is a
parabolic automorphism if D' is a parabolic matrix, ie is not the identity but is
conjugate to an upper triangular matrix with 1 on the diagonal. The Veech group of M
is the image under the homomorphism DW AffC.M/!G of the group of orientation-
preserving affine automorphisms. We say that M is a lattice surface if its Veech group
is a lattice in G . Equivalently, by a theorem of Smillie (see [13; 9]), the orbit GM is
closed. Following [3] we say that M is a prelattice surface if AffC.M/ contains two
noncommuting parabolic automorphisms. Veech [12] showed that a lattice surface is a
prelattice surface, justifying the terminology. A point x 2M is called periodic if its
orbit under AffC.M/ is finite.

Example In Lemma 6 we showed that '00jL00 W L00! L is an open map. Given that L
is connected, this leads to the question of whether 'jL00 is surjective. The following
example of Alex Wright shows that an open affine map of orbit-closures need not
be surjective. Let M 2 H be a lattice surface which admits an involution � (eg
M could be a surface of genus 2 and � could be the hyperelliptic involution). Let
LDGM be the orbit of M (which in this case coincides with the orbit closure), let
x 2M be a nonperiodic point, and let M 0 WD .M; x/ be the surface in H0 obtained by
marking the point x . It was proved in [3], and follows easily from Theorem 4, that
L0 WDGM 0 coincides with '0�1.GM/ (ie all surfaces in GM marked at all nonsingular
points). Now let y WD �.x/¤ x , let M 00 WDM.x; y/ be the surface in H00 obtained
by marking M at the two points x; y , let L00 WDGM 00 , and let '00W H00!H0 be the
affine map which forgets the second marked point. We have

L00 � f.M0; x0; y0/ 2H00 WM0 2 L; �.x0/D y0 ¤ x0g;

since the set on the right-hand side is closed and G–invariant. This implies that
'00.L00/�f.M0; x0/ WM0 2GM; �.x0/¤ x0g, and in particular '00jL00 is not surjective.
However, the proof of Lemma 6 shows that '00jL00 is open.

Using one additional marked point one can find similar examples that show that, in
Lemma 6, one need not have '.L00/D L in general.

3 Bounded blocking defines closed sets

Let M be a translation surface with singularity set †, and letcM2 D f.x; y/ 2 .M X†/2 W x ¤ yg:

If Z is a topological space and A�B are subsets of Z , when we say that A is closed
as a subset of B , we mean that A is closed in the relative topology, ie AD B \ xA.
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Lemma 7 For any fixed integer n� 0, the following hold:

(I) For a fixed translation surface M , the set

Fn.M/ WD f.x; y/ 2 cM2 W bc.x; y/� ng

is closed as a subset of cM2:

(II) For a fixed translation surface M , and a fixed nonsingular x 2M , the set

Fn.M; x/ WD fy 2M X .†[fxg/ W bc.x; y/� ng

is closed as a subset of M X .†[fxg/.

(III) The set Fn �H00 consisting of all surfaces on which the first and second marked
points are finitely blocked of blocking cardinality at most n is closed in H00 .

(IV) For a fixed stratum H , the set of M0 2 H for which any pair .x; y/ 2 bM 2
0

satisfies bc.x; y/� n is closed in H .

(V) For any stratum H , the subset BBn of surfaces which have the bounded blocking
property, with blocking cardinality at most n, is closed in H .

(VI) There is `, depending only on n and the stratum containing M , such that if
the set

(1) En WD f.x; y/ 2M
2
W bc.x; y/� ng

is dense in M 2 , then M has the bounded blocking property with blocking
cardinality at most `.

Proof We will denote a surface in H00 by .M; x; y/, where x and y are respectively
the first and second marked points on M . The topology on H00 is such that, when
.Mk; xk; yk/! .M; x; y/, for any parametrized line segment f�.t/ W t 2 Œ0; 1�g on M
between x and y , for any large enough k there are parametrized line segments
f�k.t/ W t 2 Œ0; 1�g such that �k.t/! �.t/ for all t (and uniformly) — see [5; 18; 17]
for details. Here a parametrized line segment is a constant-speed straight line in each
chart and does not contain singular points in its interior. We refer to this property of the
topology on H00 as the basic fact about line segments (for .Mk; xk; yk/! .M; x; y/).

We begin with the proof of (III). Let .Mk; xk; yk/ be a sequence that converges to
.M; x; y/ in H00 , where .xk; yk/ belongs to Fn.Mk/ for all k . Let fb.1/

k
; : : : ; b.n/

k
g �

Mk be a blocking set for .xk; yk/. Passing to a subsequence, we may assume that b.i/
k

converges to a point b.i/ 2M for each i . By the above description of the topology
of H00 , if fb.1/; : : : ; b.n/g does not contain x or y then it is a blocking set for .x; y/
in M and we are done.
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�
xk
�

b.i/
k

�

B.i/
k

r

�
yk

this trajectory will
still be blocked

this trajectory can converge only to a path containing a loop
from x to x

Figure 1: Proof of Lemma 7: prelimit surface .Mk ; xk ; yk/ .

We now discuss the case that some of the b.i/ are equal to x or y . We modify the set
fb.1/; : : : ; b.n/g as follows. For any i for which b.i/ is different from both x and y ,
we set B .i/ D b.i/ . Suppose i is such that b.i/ D x . Let r > 0 be smaller than half the
length of the shortest saddle connection on M . Since x and y are marked points, this
implies that r is smaller than half the distance between x and y , and that there is no
singularity in the ball B.x; r/ with center x and radius r .

For k large enough, B.xk; r/ is an embedded flat disk in Mk that contains b.i/
k

, and
there is a unique trajectory ı.i/

k
from xk to b.i/

k
that stays within this disk. Let B .i/

k
be

the point on ı.i/
k

at distance r from xk . Passing again to a subsequence, we assume
that B .i/

k
converges to a point B .i/ in M . Note that this point is distinct from x and y

for each such i . We repeat this procedure for each i for which b.i/ is equal to either x
or y , passing at each stage to a further subsequence. See Figure 1.

Let us prove that fB .1/; : : : ; B .n/g is a blocking set for .x; y/ in M . Let � be a
trajectory from x to y . We can assume without loss of generality that � is simple, ie
does not intersect itself. Let �k be the segment between xk and yk that converges
pointwise to � . If �k meets one of the B .i/

k
for infinitely many k , B .i/ belongs to �

and we are done.
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Assume by contradiction that there is an index i such that, for infinitely many k ,
�k meets b.i/

k
but not any B .j /

k
. In particular, b.i/

k
converges to either x or y . Sup-

pose for concreteness that it converges to x . Since B .i/
k

does not belong to �k , the
subsegment � 0k of �k between xk and b.i/

k
is not equal to the segment ı.i/

k
defined

above. In particular, the length of this subsegment is bounded below and it converges
to a nontrivial subsegment � 0 of � , which is a (possibly multiple) loop from x to x .
This contradicts the simplicity of � , completing the proof of (III).

Clearly (III) D) (I) D) (II) and (III) D) (IV). It remains to prove (V) and (VI). For
both of these assertions, we will need to modify the argument for case (III) given
above in various ways. We let x; y be points in M . We will consider separately the
following cases:

Case 0 The points x; y are distinct and nonsingular.

Case 1 The points x; y are distinct and exactly one of them is a singularity.

Case 2 The points x; y are distinct singularities.

Case 3 x D y is a nonsingular point.

Case 4 x D y is singular.

We begin with assertion (V). We take a sequence Mk 2BBn�H converging to M 2H ,
take x; y 2M and need to show that bc.x; y/� n. In each of the five cases above, we
can take xk; yk 2Mk satisfying the same case distinction as that satisfied by M;x; y ,
and such that .Mk; xk; yk/ converges to .M; x; y/ in a suitable space. For example,
in Case 0, when x; y are nonsingular and distinct on M we take xk; yk nonsingular
and distinct on Mk such that, as elements of H00 , the sequence M 00

k
D .Mk; xk; yk/

converges to M 00 D .M; x; y/. This case was treated in the proof of assertion (III). In
Case 1, suppose x is singular and y is nonsingular. We take xk; yk to be points on Mk

such that xk is singular, the label of the singularity xk is the same as the label of the
singularity x , yk is nonsingular, and M 0

k
D .Mk; yk/ converges to M 0 D .M; y/ in

the space H0 .

The arguments given above dealt precisely with Case 0 but can be modified in a
straightforward manner to deal with the other cases. That is, if fb.i/

k
W i D 1; : : : ; ng is a

blocking set for xk; yk on M , we will form a modified set fB .i/
k
W iD1; : : : ; ng as before

and pass to subsequences to get convergence B .i/
k
! B .i/ as k !1. We need to

explain the definition of the modified sets and show that the set fB .i/ W i D 1; : : : ; ng

will be a blocking set for x; y on M .

In Case 1, we define r and the points B .i/
k

as before. We are working with xk and x
singular with the same label, and .Mk; yk/! .M; y/ as elements of H0 . With these
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definitions, the basic fact about line segments is still valid (note that it would no longer
be valid if we were to take xk nonsingular). The set B DB.xk; r/ is not an embedded
flat disk because xk is a singular point, but rather it is a topological disk which is
metrically a finite cover of a flat disk, branched over its center point xk . Then B is
star-shaped with respect to its center point xk and it is still the case that there is a
unique straight segment from xk to any point in B which is contained in B . We can
thus define the segment ı.i/

k
as in the proof of (III), and the same argument applies.

Case 2 is almost identical.

In Case 3, we have xk D yk and x D y , and these are nonsingular points. We have
.Mk; xk/! .M; x/ as points of H0 , and with this topology the basic fact about line
segments still holds. We define r and define the modified points B .i/

k
; B .i/ as before.

Note that since we have taken xk D yk , the segment ı.i/
k

is unambiguously defined.
The argument given before goes through. Case 4 is similar.

To prove assertion (VI) we let En be as in (1) and let x; y 2M . We will show that
bc.x; y/� `, where ` depends only on n and the stratum containing M ; the definition
of ` and the proof that bc.x; y/� ` will be done separately for each of the cases 0–4
above.

Case 0 follows from the arguments above used for proving statement (III) with `D n.
In Case 1, suppose the point x is a singularity of cone angle �� for some positive
integer � . Let r be as before and let U1; : : : ;U�C1 be open half-disks centered at x
such that

S
Us D B.x; r/X fxg. In particular, the sets Us are open convex subsets

of M whose closure contain x .

We now choose sequences x.s/

k
such that x.s/

k
2 Us\En and x.s/

k
! x as k!1, and

a sequence yk! y such that bc.x.s/

k
; yk/� n for each s and k . Such sequences exist

because En is dense. For each choice of s 2 f1; : : : ; � C 1g we perform the procedure
explained in the proof of (III). Namely, we take blocking sets fb.i;s/

k
W i D 1; : : : ; ng

which block all segments between x.s/

k
and yk , pass to subsequences to assume that

limk b
.i;s/

k
exists for each i; s , and define B .i;s/ to be this limit if it is distinct from

x and y . If the limit is x we modify b.i;s/

k
by letting B .i;s/

k
be the unique point of

distance r from x along the continuation of the unique segment ı.i;s/

k
which connects x

and b.i;s/

k
and which passes through Us . Then we take B .i;s/ to be the limit limk B

.i;s/

k

(passing to subsequences if necessary). This procedure gives us a set˚
B .i;s/

W i 2 f1; : : : ; ng; s 2 f1; : : : ; � C 1g
	
;

which we claim is a blocking set for x; y .

Indeed, for each segment � from x to y , there is some s such that �.t/ belongs to Us
for all t > 0 small enough. Then for large enough k there are segments �k from x.s/

k
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to yk which approach � pointwise. Working with these segments as in the proof of
(III), we see that � is blocked by B .i;s/ for some i . This argument shows that if we
take ` to be n.�.H/C 1/, where ��.H/ is the greatest cone angle for surfaces in H ,
then bc.x; y/� `. This concludes the proof in Case 1.

In Case 2 we give a similar argument where we take a union of finitely many open half-
disks covering neighborhoods of both x and y , and construct sequences x.s/

k
; y.t/
k
2En ,

where s; t 2 f1; : : : ; �.H/C1g, x.s/

k
! x and y.t/

k
! y as k!1 , and such that x.s/

k

(respectively, y.t/
k

) belongs to the sth half-disk near x (respectively, the t th half disk
near y ). Repeating the argument of Case 1, we find that bc.x; y/ � `, where ` D
n.�.H/C 1/2 .

In Case 3 we have xk ! x , yk ! x and bc.xk; yk/ � n. We will take `D 2n and
show that bc.x; x/ � `. We construct the blocking points B .i/ as follows. Passing
to subsequences, we assume the existence of each of the limits bi D limk!1 b

.i/
k

,
and when bi ¤ x we set B .i/ D bi as before. When bi D x , in place of the short
segments ı.i/

k
appearing in the proof of assertion (III), we consider two segments —

one from xk to b.i/
k

and one from yk to b.i/
k

. We denote these by ı.i/
k;1

and ı.i/
k;2

,
and construct points B .i/

k;1
and B .i/

k;2
by “sliding” b.i/

k
along these segments as in the

preceding argument. Taking limits, in each case in which bi D x we get two limit
points, so the number of points B .i/ is at most `, and it remains to show that the set
fB .i/g is a blocking set.

Let � be a segment from x to x which does not contain any of the B .i/ , and let r > 0
be as before. The segment � is not contained in the ball B D B.x; r/. Let �k be
a sequence of parametrized line segments from xk to yk converging to � . We can
assume that none of these segments contains any of the B .i/

k;j
, i D 1; : : : ; n, j D 1; 2.

The only place in the proof of (III) in which we used that x ¤ y is where we needed
to know that the subsegment � 0 of � constructed in the proof is a proper subsegment
of � . In the case x D y there are two subsegments � 0

k
(respectively � 00

k
) between

xk and b.i/
k

(respectively, between b.i/
k

and yk ), neither of which is equal to ı.i/
k

,
since �k does not contain any of the B .i/

k;j
. In particular, each of them leaves the

disk B.xk; r/ and hence has length at least r . So in the limit they both converge to
nontrivial (possibly multiple) loops � 0; � 00 from x to itself, whose concatenation is � .
This gives the desired contradiction to the simplicity of � .

Case 4 is proved combining the arguments used in Cases 1 and 3, resulting in a bound
`D 2n.�.H/C 1/2 . We leave the details to the reader.

A similar argument also shows:
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Proposition 8 Let M be a translation surface, � a singular point on M and n� 0 an
integer. Recalling our convention that singularities on translation surfaces are labeled,
we can use the notation � for a singular point of any other surface in H . Let F 0n �H0

denote the set of surfaces on which the marked point y satisfies bc.�; y/� n. Then F 0n
is closed in H0 . In particular, fy 2M X† W bc.�; y/�ng is closed as a subset of M X†.

Proof We repeat the proof of Lemma 7(III), replacing everywhere x with � and also
xk with � .

In this case the set B D B.�; r/ is a topological disk which is metrically a finite cover
of a flat disk, branched over its center point � . Then B is star-shaped with respect to
its center point � and it is still the case that there is a unique straight segment from �

to any point in B which is contained in B . We can thus define the segment ı.i/
k

as in
the proof of (III), and the same argument applies.

4 Characterization of the finite blocking property

In this section we will prove Theorem 1. A translation surface is purely periodic if it is
completely periodic and all cylinders in such a decomposition have commensurable
circumferences. The following was proved in [7]:

Proposition 9 (Monteil) If M has the finite blocking property then M is purely
periodic.

Proof of Theorem 1 The implication (1) D) (2) is proved in [6], and it is immediate
that (2) D) (3). We first show (4) D) (1); that is, we assume that M has the bounded
blocking property and we show that it is a torus cover.

Let L WDGM . By assumption, there is n such that M 2BBn . Clearly GM �BBn , and
by Lemma 7(V) this means L is contained in BBn . By Proposition 9 this means that
every surface in L is completely periodic, and, by Theorem 5, L is of cylinder rank one.

Recall that the field of definition of L is the smallest field such that, in any coordinate
chart U on H given by period coordinates, the connected components of U \L are
cut out by linear equations with coefficients in k (see [15]). By [16, Theorem 1.9], for
any completely periodic surface M 0 2 L and any cylinder decomposition on M 0 with
circumferences c1; : : : ; cr , the field of definition k of L satisfies

k �Q
�
fci=cj W i; j D 1; : : : ; rg

�
:
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By Proposition 9, any surface in L is purely periodic, so kDQ. Therefore L contains
a surface with rational holonomies, ie a square-tiled surface M 0 . Since M 0 is square-
tiled, the holonomy of absolute periods on M 0 is a discrete subset of C . Motion in
the G˚REL leaf only changes the holonomy of absolute periods by a linear map, and
therefore for any M in L, the holonomy of absolute periods is discrete, ie any M 2 L
is a torus cover. This proves (4) D) (1).

Now we prove (3) D) (4). We have an open set U1 in M �M consisting of pairs of
points on M blocked from each other by finitely many points, that is,

U1\
cM2 �

[
n
Fn.M/:

Each Fn.M/ is closed as a subset of cM2 by Lemma 7(I), so, by Baire category, there
is n such that Fn.M/ contains an open set U2 . Each pair of points .x; y/ in U2 defines
a surface in H00 , namely M 00D .M; x; y/. Let L.M 00/ WDGM 00�H00 . By Theorem 4,
R�
C
L.M 00/ is a linear manifold of even dimension contained in Fn and the collection

of such linear submanifolds is countable. By Lemma 7(III), R�
C
L.M 00/� Fn .

The fiber '�1.M/ is a linear submanifold of H00 identified with cM2 . Therefore,
�.M 00/ WD '�1.M/\R�

C
L.M 00/ is also a linear submanifold for any M 00 , and its

dimension is 0; 2 or 4. We have covered U2 , an open subset of a four-dimensional
manifold, by countably many linear manifolds of dimensions at most four. By Baire
category, there is M 00 for which �.M 00/ is a linear manifold of dimension four. In
particular �.M 00/ is open in '�1.M/, and by Lemma 7(I), it is also closed. Since
'�1.M/ is connected, it coincides with �.M 00/.

We have proved that

'�1.M/D�.M 00/�R�CL.M
00/� FnI

that is, any two distinct nonsingular points in M are of blocking cardinality at most n.
Applying Lemma 7(VI), we see that M has the bounded blocking property.

5 Illumination

In this section we will study some illumination problems. Recall that two points x; y
on a translation surface M do not illuminate each other if and only if they are finitely
blocked with blocking cardinality zero. Also recall that p1; p2 denote the projections
onto the first and second factors of M �M . The following result is the main result of
this section:
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Theorem 10 Let M be a translation surface and let n be a nonnegative integer. Then:

(i) For any x 2 M , the set fy 2 M W bc.x; y/ � ng is either finite or contains
M X .†[fxg/.

(ii) The set f.x; y/ 2 M 2 W bc.x; y/ � ng either contains cM2 or is contained in
a union of finitely many points and finitely many 2–dimensional translation
surfaces embedded affinely in M 2 . The translation surfaces in M 2 are either of
the form fxg�M or M �fyg, where x; y 2M , or are the diagonal embedding
� D f.x; x/ W x 2M X†g, or they are closures of a surface S in cM2 . In the
latter case, for i D 1; 2, the image of �i D pi jS W S !M is the complement
of finitely many points in M , �i is a finite-degree covering map of its image,
and there is a scalar � with �2 2Q, such that for every x 2 �1.S/, and every
y 2 ��11 .x/, the derivative map .dy�2/ı .dx��11 / is equal to multiplication by �.

Theorem 10 implies Theorem 2 We apply Theorem 10 with nD 0. It is clear that
the second alternative in (i) cannot hold, since for any x all nearby points illuminate x .
Also, in (ii), the cases F �M and M �F do not arise, since any point illuminates
some other point.

Proof of Theorem 10 Keep the notation of Section 2.1 and Lemma 7. We will first
prove (i) in case x is a regular point of M . Let M 0 2'0�1.M/�H0 denote the surface
with first marked point at x . We need to show that

A WD fy 2M X .†[fxg/ W bc.x; y/� ng;

which we may identify with Fn\'00�1.M 0/, is either finite or coincides with '00�1.M 0/.
Let us assume A  '00�1.M 0/. Since Fn is closed and G–invariant, A is a union of
at most countably many linear manifolds, which are of the form L.M 000 / WDGM

00
0 for

M 000 2 A. For each M 000 , the intersection L.M 000 /\'
00�1.M 0/ is a linear manifold of

dimension 0 or 2 by Theorem 4. If the dimension were 2, A would coincide with the
fiber '00�1.M/ by connectedness. Therefore A is countable, and we need to show that
A is finite.

To this end we first show that the intersection of A with each individual orbit-closure
L.M 000 / is finite. Let L0 WDGM 0 �H0 and let pW L.M 000 /! L0 denote the restriction
of '00 to L.M 000 /. Since p is an affine map, the dimension of L.M 000 / is the sum of
the dimensions of the image of p and the fiber of p , and hence, using Lemma 6, the
dimension of each L.M 000 / is the same as the dimension of L0 . The projection p is
a covering map, ie there is a connected neighborhood V of M 0 in L0 such that the
connected components of p�1.V/ each map homeomorphically and affinely under p
to V . Since L.M 000 / is the support of the measure induced by coning off the Lebesgue
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measure on R�
C
L, each component of p�1.V/ must have the same measure, and since

this measure is finite there can only be finitely many preimages of V . In particular,
L.M 000 /\A is finite.

Now suppose if possible that A contains points from infinitely many distinct orbit-
closures L.M 000 /, all of the same dimension. By Theorem 4, A must contain accu-
mulation points belonging to an affine invariant manifold L1 of bigger dimension,
contradicting the fact that each affine invariant manifold L.M 000 / has the same dimension.
This proves the finiteness of A.

In case x D � is a singularity we repeat the argument, using Proposition 8 instead of
Lemma 7, F 0n instead of Fn , '0 instead of '00 and H0 instead of H00 . We leave the
details to the reader.

We now prove (ii). Suppose thatcM2 6� A WD f.x; y/ 2M 2
W bc.x; y/� ng:

Applying Theorem 4 as in the proof of assertion (i), we see that AX� is the union of
countably many 0–dimensional and countably many 2–dimensional linear manifolds.
To show that these countable collections are in fact finite, we repeat the argument given
above, using the map ' instead of the map '00 . It remains to show that all of the
2–dimensional manifolds have the stated form.

Let S � cM2 be a 2–dimensional linear manifold in A. By Theorem 4, S is C–linear,
ie for any w D .w1; w2/ 2 S there is a neighborhood U of w in M 2 such that, in the
translation charts, U \S is the set of solutions of an equation of the form

(2) az1C bz2 D 0

(up to a translation). Moreover, S is defined over R, so we can take a; b 2 R. If
aD 0 then any connected component of S is of the form M � fyg for some y 2M .
Similarly, if b D 0 then S has the form fxg �M . Now we consider the case when
a; b are both nonzero.

Since the transition maps for the translation atlas are translations, a and b can actually
be taken to be independent of the neighborhood, and the Cartesian product translation
structure on M 2 , restricted to S , endows S with a natural structure of a translation
surface (see [3, Section 3] for more details), where S is locally modeled on the plane (2).
Since a and b are both nonzero, each of the projections �i D pi jS has a nonsingular
derivative, so is an open map. For each x in the image of �i , the fiber ��1i .x/ is finite
by (i). Therefore each point in the image of �i is evenly covered, ie �i is a covering
map of its image.
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We now show that the complement of the image of each �i is finite. For concreteness
we set i D 1, the proof for i D 2 being identical. For each � 2†, the set xS\p�12 .�/ is
finite by Proposition 8 and part (i). Therefore F D xS \p�12 .†/ and p1.F / are finite.
We will show that �1.S/Xp1.F / is open and closed relative to M X .†[p1.F //,
and this will show, by connectedness of M X .†[p1.F //, that the complement of the
image of �1 is contained in †[p1.F /. Since �1 is an open map we only have to show
that �1.S/Xp1.F / is closed relative to M X .†[p1.F //. Let xk 2 �1.S/Xp1.F /
with xk ! x and assume that x … p1.F /[†. Let yk 2M such that .xk; yk/ 2 S .
By passing to a subsequence we can assume that yk! y 2M . If y 2† then we have
x 2 p1.F /, contrary to the assumption. Since S is relatively closed in cM2 and x …†,
we have .x; y/ 2 S , so x 2 �1.S/, as required.

Finally, we prove the last assertion in the description of S . Since each �i has constant
derivative, it is a closed map as well, and by connectedness, the image of �i is M X†.
The plane (2) can be identified with C in many ways and thus the translation surface
structure on S is only naturally defined up to a scalar multiple. However, for any fixed
choice of translation structure on S , each of the maps �i is the composition of a dilation
and a translation covering. Let ki be the degree of the covering map �i , and let �i be
the associated dilation. The choice of the �i depends on a choice of the translation
structure on S , but since the derivative of �2 ı ��11 is the map z1 7! �.a=b/z1 , we
have � WD �2=�1 D�a=b . We can compute the area of S using each of the maps �i ,
to obtain

area.S/D
ki

�2i
area.M/:

Comparing these formulae for i D 1; 2, we see that �2 D .a=b/2 D k2=k1 2Q.

6 Examples and questions

Let T be the standard torus, obtained from the unit square Œ0; 1�2 by gluing opposite
sides to each other by translations. It has been known for a long time (see [6] and the
references therein) that T has the finite blocking property. We describe explicitly what
is known for this example, ie we describe blocking cardinalities of pairs of points in T
and blocking sets realizing them.

Denote by � the projection from R2 to T . For any nonzero integer n, notice that
the map R2! R2 , x 7! nx descends to a map mnW T ! T which multiplies both
components by n in R=Z, and is therefore n2 -to-1.
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Lemma 11 (a) If x and y are distinct points on T , their blocking cardinality is
bc.x; y/D 4.

(b) It is realized by the blocking set B.x; y/ D m�12 .x C y/, which contains the
midpoint of any geodesic from x to y .

(c) This is the unique blocking set of size 4.

Proof Let zx , zy denote points in R2 which project to x , y on T . Let u D .1; 0/,
v D .0; 1/, w D .1; 1/. The four segments from zy to the four points

zx; zxCu; zxC v; zxCw

(four corners of a unit square) project to segments with disjoint interiors on T , so at
least 4 points are required to block the pair .x; y/. On the other hand, any line segment
in T from x to y is the projection of a line segment in R2 from zx to zyC auC bv ,
with a and b in Z. Such a segment has midpoint 1

2
.zxC zyCauCbv/. This midpoint

in R2 projects to one of the points

1
2
.xCy/; 1

2
.xCyCu/; 1

2
.xCyC v/; 1

2
.xCyCw/;

which are the four points in T comprising m�12 .x C y/. This proves that the set
B.x; y/ is a blocking set and that bc.x; y/� 4. So (a) and (b) are proved.

We now prove (c). We saw that the four segments from zy to zx , zxCu, zxC v , zxCw
project to segments on T with disjoint interiors, so a blocking set for .x; y/ must
contain at least a point in each of them. Consider the segment from zyC v to zxCu.
The only intersection of its projection to T with the interiors of our four segments
is its midpoint m, which is also the midpoint of the segment from y to yCw . So
a blocking set not containing m would need to contain at least five points. Similar
reasoning proves the other three points in the proposed set B.x; y/ have to be in a
blocking set of cardinality four.

The following two lemmas extend this description to configurations blocking a point
from itself, and describe larger blocking sets on T . They are proved by similar
arguments and we leave the details to the reader.

Lemma 12 (a) If x D y , then the blocking cardinality is bc.x; x/D 3.

(b) It is realized by the blocking set B.x; x/Dm�12 .2x/X fxg, which is the set of
midpoints of all primitive geodesics from x to x . This blocking set can also be
described as B.x; x/D xCB0 , where B0 D B.0; 0/Dm�12 .0/X f0g.

(c) This is the unique blocking set of size 3.
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Lemma 13 (a) Let n and a be relatively prime integers with 1� a < n. For any
pair of points .x; y/ with x¤ y , the set B Dm�1n .axC .n�a/y/ is a blocking
set of cardinality n2 for the pair .x; y/. It contains the point located a=n of the
way along each line segment from x to y on T .

(b) Let n� 2 be an integer. For the pair of points .x; x/ with x D 0, the set

B0 Dm
�1
n .0/X f0g D

˚
.a=n; b=n/ W 0� a < n; 0� b < n; .a; b/¤ .0; 0/

	
is a blocking set of cardinality n2� 1.
For the pair of points .x; x/ with x ¤ 0, the set B D xCB0 is a blocking set of
cardinality n2� 1, also equal to m�1n .nx/.

We will use these computations to compute blocking configurations on branched covers
of T . Recall that if M ! T is a branched translation cover, a singularity of M
corresponds to a ramification point of the cover, and if the angle at a singularity x is
2�k then k is called the ramification index of x .

Lemma 14 Suppose M is a torus cover of degree d , with arbitrary branch locus and
ramification type, and let pW M ! T denote the covering map.

(a) For a pair .x; y/ of points of M such that p.x/ ¤ p.y/, if B 0 is a blocking
set for .p.x/; p.y// on T , then B D p�1.B 0/ is a blocking set for .x; y/, of
cardinality at most d times that of B 0 , with equality when B contains no zero
of M , ie no ramification point of p .

(b) In particular:
� For almost every pair .x; y/ of points of M , bc.x; y/� 4d .
� For pairs .x; y/ of points of M such that the set B.p.x/; p.y// contains

branch points of p , the bound above is decreased by the sum of the ramifica-
tion indices of the ramification points above these branch points.

(c) For a pair of points .x; y/ on M such that p.x/D p.y/ (whether xD y or not),
p�1.B.p.x/; p.x/// is a blocking set, so that bc.x; y/� 3d . As above, when
B.p.x/; p.y// contains branch points of p , the bound is decreased by the sum
of the ramification indices of the ramification points above these branch points.

Proof Both (a) and (b) are easy, and (c) follows from the following observation. When
p.x/D p.y/, any geodesic path  from x to y projects to a geodesic  0 from p.x/

to itself, possibly nonprimitive. Considering the restriction of the geodesic  , if  0 is
not primitive, to its initial part until it first reaches a point projecting to p.x/, we see
that (c) holds.

Geometry & Topology, Volume 20 (2016)
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6.1 Examples

Example 1 The following example shows that quite general maps �1; �2 may arise in
Theorem 10.

Proposition 15 Let a , b be positive integers with gcd.a; b/D 1, let nDaCb , and let

X D f.�ax; bx/ W x 2 T g � T �T:

Also let pW M ! T be a translation cover with branching locus m�1n .0/, and nontrivial
ramification at each preimage of each branch point, and let

Y D .p�p/�1.X/�M �M:

Then no two points in Y illuminate each other.

Proof For x 2 R2 , the point 0 is a=n along the geodesic in R2 from �ax to bx .
Thus, by Lemma 13, the set B Dm�1n .0/ is a common blocking set, of cardinality n2 ,
for all pairs of points in X . Thus the statement follows from Lemma 14.

Example 2 The following examples show that the map �2ı��11 could be a translation.
Let M D T be the torus, and consider

N D f.x; y/ 2M 2
W bc.x; y/� 3g:

Then according to Lemma 12, N contains the diagonal f.x; x/ Wx 2M g, but, according
to Lemma 11, N ¤M 2 . Therefore the diagonal is one of the linear submanifolds
appearing in Theorem 10, and we can have �2 ı ��11 D Id.

Similar examples in which �2 ı ��11 is a nontrivial translation can be obtained by
taking M to be a cyclic cover of T , for example the Escher staircase (see Figure 2).
This surface admits a degree-3 cover pW M ! T and it has a nontrivial translation
automorphism DW M ! M moving one step up the ladder. Let x and y be any
two points such that D.x/D y . Then p.x/D p.y/, and, according to Lemma 14(c),
bc.x; y/� 9. It is not hard to find an explicit pair of points x; y for which bc.x; y/>9.
This shows that if we take this surface M and nD 9, then we can have a subsurface N
for which D D �2 ı ��11 is a translation automorphism.

Example 3 Using the torus and Lemmas 11 and 12 we easily find sequences xk! x ,
yk ! y for which bc.x; y/ < limk bc.xk; yk/, ie the blocking cardinality is not
continuous. The following example shows that it is not even lower semicontinuous, ie
it may increase when taking limits. It also shows that in Lemma 7(I) we cannot replacecM2 with M 2 , and moreover that in Theorem 10(ii) the extension of the maps �i to the
closure of S need not be surjective.
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Figure 2: The Escher double staircase. Sides marked with identical stair-
climbers are identified; unmarked sides are identified with the corresponding
opposite sides.

Let M be a surface in H.2/. Then M admits a hyperelliptic involution h, whose set
of fixed points consists of the unique singularity � and five nonsingular Weierstrass
points. We claim that whenever h.x/D y , x ¤ y , we have bc.x; y/� 5. Indeed, in
this case, the action of h swaps x and h.x/, and acts by rotation by � . So h maps any
segment � between x and y to another segment from x to y , of the same length and
in the same direction. Since x and y are distinct regular points there is only one such
segment, ie h maps � to itself, reversing the orientation on it. So its midpoint must be
fixed by h, that is, the Weierstrass points form a blocking set for the pair .x; y/.

On the other hand, by constructing explicit disjoint segments it is not hard to show
that bc.�; �/� 9. For example, we can present M as the union of six triangles (as part
of an L–shaped presentation made of three parallelograms), and the edges of these
triangles consist of nine disjoint segments from � to � (see Figure 3). Now, taking
xk! � , we have yk D h.xk/! � , and

5� lim
k

bc.xk; yk/; bc.lim
k
xk; lim

k
yk/D bc.�; �/� 9:

6.2 Questions

Question 1 As in Theorem 10(ii), let S �M �M be a 2–dimensional linear sub-
manifold, and let �1; �2 be the derivatives of the translation maps �1; �2 . The quotient
�D �1=�2 is called the slope of N . In Example 2 the slope is 1, and in Example 1
the slope can be an arbitrary negative rational number. It would be interesting to know
whether other slopes are possible. In particular, do the cases �D 0; �D1 actually
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Figure 3: A surface in H.2/ and nine disjoint saddle connections on it.

arise in connection with blocking configurations? Do positive rational slopes arise,
except for �D 1?

Question 2 As we saw in Example 1, infinitely many pairs of points on a translation
surface may not illuminate each other; that is, the case of a 2–dimensional surface as
in the second assertion of Theorem 2 may arise. Earlier examples of this phenomenon
were obtained in [3]. However, these examples do not arise from rational billiards. So it
is natural to ask whether, in connection with Corollary 3, there is a rational polygon P
and infinitely many pairs of points .x; y/2P 2 such that there is no geodesic trajectory
between x and y .

Question 3 More generally, suppose S �M �M is an embedded translation surface
for which the maps �i W S!M are the composition of a dilation and a translation, and
let � be the derivative of the composition �2 ı ��11 . In the proof of Theorem 10 we
showed that �2 2Q. Is it possible that � is irrational?

Question 4 In connection with Example 3, does there exist a similar example in which
the point � is nonsingular? That is, an example of a surface M with a regular point �
and two sequences xk; yk converging to � , such that bc.�; �/ > limk bc.xk; yk/?
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