Volume 20, issue 3 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20
Issue 4, 1807–2438
Issue 3, 1257–1806
Issue 2, 629–1255
Issue 1, 1–627

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Subscriptions
Author Index
To Appear
Contacts
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
The Farrell–Jones conjecture for arbitrary lattices in virtually connected Lie groups

Holger Kammeyer, Wolfgang Lück and Henrik Rüping

Geometry & Topology 20 (2016) 1275–1287
Abstract

We prove the K– and the L–theoretic Farrell–Jones conjectures with coefficients in additive categories and with finite wreath products for arbitrary lattices in virtually connected Lie groups.

Keywords
Farrell-Jones Conjecture, lattices in virtually connected Lie groups
Mathematical Subject Classification 2010
Primary: 18F25
References
Publication
Received: 6 January 2014
Accepted: 2 July 2015
Published: 4 July 2016
Proposed: Martin Robert Bridson
Seconded: Jesper Grodal, Benson Farb
Authors
Holger Kammeyer
Mathematisches Institut
Universität Bonn
Endenicher Allee 60
D-53115 Bonn
Germany
http://www.math.uni-bonn.de/people/kammeyer/
Wolfgang Lück
Mathematisches Institut
Universität Bonn
Endenicher Allee 60
D-53123 Bonn
Germany
http://www.him.uni-bonn.de/lueck/
Henrik Rüping
Mathematisches Institut
Universität Bonn
Endenicher Allee 60
D-53115 Bonn
Germany
http://www.math.uni-bonn.de/people/rueping/