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Spin Hurwitz numbers and topological quantum field theory

SAM GUNNINGHAM

Spin Hurwitz numbers count ramified covers of a spin surface, weighted by the
size of their automorphism group (like ordinary Hurwitz numbers), but signed ˙1

according to the parity of the covering surface. These numbers were first defined by
Eskin, Okounkov and Pandharipande in order to study the moduli of holomorphic
differentials on a Riemann surface. They have also been related to Gromov–Witten
invariants of complex 2–folds by work of Lee and Parker and work of Maulik and
Pandharipande. In this paper, we construct a (spin) TQFT which computes these
numbers, and deduce a formula for any genus in terms of the combinatorics of the
Sergeev algebra, generalizing the formula of Eskin, Okounkov and Pandharipande.
During the construction, we describe a procedure for averaging any TQFT over
finite covering spaces based on the finite path integrals of Freed, Hopkins, Lurie and
Teleman.
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Hurwitz numbers count ramified covers of surfaces weighted by the size of the automor-
phism group of the cover. Combinatorial formulas in terms of the representation theory
of the symmetric group go back to Hurwitz [17], Frobenius [14] and Burnside [5].

Suppose † is a closed surface equipped with a spin structure. Associated to † is an
element p.†/ 2Z=2Z known as the parity or Atiyah invariant. In this paper, we study
a variant of Hurwitz numbers called spin Hurwitz numbers, where ramified covers
of † are counted with a sign according to the parity of the total space of the cover
(equipped with the pullback spin structure). One of the main results is the following
formula for spin Hurwitz numbers as a sum over the set SP.n/ of strict partitions of n

(ie partitions into distinct parts).

Theorem 0.1 The degree n unramified1 spin Hurwitz numbers of a closed spin sur-
face † are given by

2�n�.†/=2
X

�2SP.n/

.�1/p.†/`.�/
�

d.�/

n!

��.†/
;

1See Theorem 1.10 for a more general version involving ramified covers.
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where
d.�/D 2n�`.�/=2 n!

�1! � � � �`!

Y
p<q

�q � �p

�pC �q
;

and `.�/ denotes the length of the partition � .

Remark 0.2 The numbers d.�/ have a representation theoretic interpretation: namely
they are the dimensions of the simple supermodules of the Sergeev algebra, up to a
factor of

p
2 if `.�/ is odd (see Proposition 1.17).

Spin Hurwitz numbers were first introduced by Eskin, Okounkov and Pandharipande
[9], who were interested in the volume of strata in the moduli space of differentials
on a Riemann surface with prescribed singularities. Kontsevich and Zorich [22] and
Eskin and Masur [7] independently explained how these volumes are related to the
asymptotics of the enumeration of connected branched coverings of a torus, where the
ramification data of the covering matches the singularities of the differential. Eskin
and Okounkov [8] were able to use this idea to compute the volumes in the case
when the ramification data contained only partitions into even parts; the case when the
ramification data consisted of partitions into odd parts required the introduction of spin
Hurwitz numbers and was solved by Eskin, Okounkov and Pandharipande [9]. One
of the main results of their paper was a group theoretic computation of the parity of a
ramified covering of a spin surface. This result was applied in the case of a torus with
odd spin structure to give a formula for the spin Hurwitz numbers in that case. In this
paper, we will generalize the formula of [9] to any genus (Theorem 1.10).

Spin Hurwitz numbers have also appeared in the work of Lee and Parker [25] and
Maulik and Pandharipande [28] in Gromov–Witten theory. Suppose X is a complex
Kähler 2–fold with a smooth canonical divisor † � X . The normal bundle of †
in X defines a spin structure on †. It was shown in [25] that certain Gromov–Witten
invariants of X can be expressed in terms of spin Hurwitz numbers of †. More recently,
Lee and Parker have proved a recursion formula that allows one to compute higher
genus spin Hurwitz numbers in terms of the lower genus numbers using techniques
from analysis and PDE (see Lee and Parker [26] and Lee [24]). The recursion formulas
of [26] also follow from the techniques of this paper (see Section 4C).

Remark 0.3 There does not appear to be an obvious connection between the appear-
ance of spin Hurwitz numbers in the Gromov–Witten theory of 2–folds, and in the
volume of the moduli spaces of differentials on a Riemann surface.

The main tool of this paper is topological quantum field theory (TQFT). In the 1990s,
Dijkgraaf and Witten [6] and Freed and Quinn [13] explained how to construct a
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topological quantum field theory from a finite gauge group. Hurwitz numbers are
controlled by a 2–dimensional version of Dijkgraaf–Witten theory, with gauge group Sn .
The formulas of Hurwitz, Frobenius and Burnside can be recovered by analyzing the
structure of this TQFT. To prove Theorem 0.1 we will construct a (spin) TQFT taking
values in the category of superalgebras:

Theorem 0.4 For each positive integer n, there is a fully extended 2d spin TQFT Zn

which assigns invariants as follows:

� To a point, Zn assigns the Sergeev superalgebra, Yn WD C`n Ì Sn , where C`n

denotes the nth complex Clifford algebra.

� To the antiperiodic spin circle, Zn assigns the even super vector space generated
by odd partitions of n (ie partitions into odd parts).

� To the periodic spin circle, Zn assigns the super vector space of strict partitions
(ie partitions into distinct parts) where the degree of a partition � is the partition’s
length mod 2.

� To a closed spin surface †, Zn assigns the spin Hurwitz numbers of †.

The spin TQFT Zn is a convenient way to encode all the information about spin
Hurwitz numbers Hn.†/ for a spin surface †. The locality properties of TQFT mean
that Zn is determined by the superalgebra Zn.pt/D Yn , together with a linear map
Z.Yn/! C . In fact, we can recover Zn from the following data: the set of simple
supermodules S D fV � j � 2 SP.n/g of Yn , the decomposition S D S0 t S1 into
type M and type Q supermodules (see Section 1D), and a complex number t.�/ for
each � 2 SP.n/.

Statements about spin Hurwitz numbers often reduce to formal properties of TQFT. For
example, the spin Hurwitz formulas in Theorem 0.1 are a special case of a more general
formula for spin TQFT (Proposition 2.13). Recursion formulas, such as those of Lee
and Parker [26], follow directly from the existence of the TQFT Zn (see Section 4C).

Outline of the paper

In Section 1, we introduce some of the necessary preliminaries, and state the main
results in full generality (Theorems 1.10 and 1.23).

In Section 2, we give a general description of spin TQFTs and explain how to compute
the invariants assigned to a closed surface by such a TQFT. The fundamental example
of a spin TQFT is the parity theory which assigns ˙1 to a closed spin surface according
to its parity. The construction of the parity theory is left to Section 5. In Section 3, we
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1862 Sam Gunningham

explain how to construct new TQFTs from old ones by averaging over n–fold covering
spaces. The spin Hurwitz theory of Theorem 1.23 is then constructed in Section 4 by
averaging the parity theory over n–fold covers. Theorem 1.10 is proved by applying
the computation from Section 2 to the spin Hurwitz TQFT.
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1 Preliminaries and main results

1A Ordinary Hurwitz numbers

It will be helpful to recall how ordinary Hurwitz numbers are defined and computed
using TQFT. The results in Sections 1A and 1B are reasonably well known, but we
present them here in order make analogies with our own results.

Let P.n/ denote the set of partitions of n, ie the set of

�D .�1 � � � � � �`/; where �1C � � �C�` D n:

We write `.�/ D ` for the length of �. Note that isomorphism classes of n–fold
covering spaces of a circle are in bijection with P.n/; we call the partition corresponding
to such a cover, the ramification datum of the cover.

Fix a closed, oriented surface † with marked points p1; : : : ;pk .

Definition 1.1 An n–fold ramified cover of †, with ramification data �1; : : : ;�k

at p1; : : : ;pk is a surface z† with a finite, continuous map z†!† which is an n–fold
covering space over †�fp1; : : : ;pkg, and such that the restriction to a small circle
around pi has ramification datum �i 2 P.n/. Define the Hurwitz numbers by

yHn.†I�
1; : : : ;�k/D

X 1

# Aut.z†=†/
;
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where the sum is taken over isomorphism classes of ramified covers z†!† with the
specified ramification data. We will write yHn.†; k/ for the associated linear functional
on CŒP.n/�˝k .

Recall that the set P.n/ naturally parametrizes both conjugacy classes and irreducible
representations of Sn .

Definition 1.2 Let yV � denote the irreducible representation of Sn corresponding
to � 2 P.n/. The central character yf �

� of Sn is defined to be the constant multiple of
the identity by which the conjugacy class � acts on the representation yV � .

The following formulas go back to Hurwitz, Frobenius and Burnside (in various forms).

Theorem 1.3 [17; 14; 5] The numbers yHn.†I�
1; : : : ;�k/ are given by the follow-

ing expression: X
�2P.n/

� kY
iD1

yf �
�i

��
dim yV �

n!

��.†/
:

Moreover, we have the following expressions for the dimensions and central characters
of the symmetric group (see eg Fulton [15]):

dim yV �
D

n!

L1! � � �L`!

Y
i<j

.Li �Lj /;

where Li D �i C `� i , and the yf �
� satisfy

S�.X /D
X

�2P.n/

dim yV �

n!
yf �
� p�.X /

where S�.X / are the Schur functions, pm.X /D
P

j�1 xm
j is a power sum function,

and p�.X /D p�1
.X / � � �p�`.X /.

1B Topological quantum field theory

Let † denote a closed, oriented surface and suppose that † can be decomposed
as †1 [N †2 where the †i are surfaces glued along a common boundary N . The
key observation required to prove Theorem 1.3 is that the Hurwitz numbers of † can
be computed in terms of the Hurwitz numbers of the †i (with extra marked points
corresponding to the boundary components N ). One convenient way to organize this
relationship is via a topological quantum field theory (TQFT).

Geometry & Topology, Volume 20 (2016)



1864 Sam Gunningham

Let Cobor denote the category whose objects are closed, oriented 1–manifolds, and a
morphism N1!N2 is an oriented surface † with an identification @†�N1 tN2

(up to diffeomorphism). This has a symmetric monoidal structure given by disjoint
union of manifolds. Let Vect denote the category of complex vector spaces with its
symmetric monoidal structure given by tensor product.

Definition 1.4 A TQFT is a symmetric monoidal functor ZW Cobor
! Vect.

Given any TQFT Z , the vector space V D Z.S1/ naturally has the structure of a
commutative algebra, where the multiplication is given by applying the functor Z to the
cobordism S1tS1! S1 given by a pair of pants (a sphere with three discs removed).
Moreover, there is a map t W V !C given by applying Z to the disc, considered as a
cobordism S1!∅1 . The map t makes V into a commutative Frobenius algebra, ie
the composite V ˝V mult

���!V t
�!C is a nondegenerate inner product on V .

If this algebra is semisimple, by Wedderburn’s theorem V has a basis fes j s 2 Sg of
orthogonal idempotents.

Proposition 1.5 Let Z be a TQFT with the algebra V DZ.S1/ semisimple, and let
fes j s 2 Sg be the basis of orthogonal idempotents of V . Then for any closed, oriented
surface †, we have

Z.†/D
X
s2S

t.es/
�.†/=2:

Proposition 1.5 is proved by decomposing † into discs and pairs of pants (see
Proposition 2.13 for more details). The following theorem gives a precise description
of how Hurwitz numbers behave under such decompositions of †.

Theorem 1.6 For each positive integer n, there is a TQFT yZn so that:
� To a circle, yZn assigns the vector space CŒP.n/�.
� To a surface † with k marked points, considered as a cobordism .S1/tk!∅1 ,
yZn assigns yHn.†; k/W CŒP.n/�˝k !C .

Moreover, the commutative Frobenius algebra structure on CŒP.n/� is given by iden-
tifying it with the algebra of class functions CŒSn�

Sn such that a partition � maps
to the conjugacy class of Sn with cycle type �. The map t takes a class function f
to .1=n!/f .1/.

The algebra CŒSn�
Sn is semisimple; the change of basis matrix between the conjugacy

classes � and the orthogonal idempotents e� is given by the central character yf �
� , and

t.e�/D .dim yV �=n!/2 . Combining Theorem 1.6 with Proposition 1.5, we deduce the
formula for Hurwitz numbers in Theorem 1.3.
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Remark 1.7 There is a natural analogue of this story, where n–fold covers are replaced
by G –bundles for any finite group G ; see Freed, Hopkins, Lurie and Teleman [12].

1C Spin Hurwitz numbers

Now suppose † is a closed surface equipped with a spin structure. Such a structure is
equivalent to choosing either of the following pieces of data:
� a quadratic form on H 1.†;Z=2Z/ which refines the intersection pairing,
� a square root, K1=2 , of the canonical bundle (for any complex structure on †).

Definition 1.8 In terms of the descriptions above, the parity of † (with its spin
structure) is defined to be
� the Arf invariant of the corresponding quadratic form on H 1.†;Z=2Z/,
� the dimension mod 2 of H 0

hol.†;K
1=2/.

(See Johnson [18], Atiyah [2] and Mumford [31]).

Recall that there are two spin structures on the circle S1 : the antiperiodic (or Neveu–
Schwarz) circle S1

ap which bounds a spin disc, and the periodic (or Ramond) circle
S1

per which does not [23].

Two subsets of the set P.n/ of partitions of n play an important role in this paper:
� the set of odd partitions, OP.n/D f� 2 P.n/ W �i are all oddg,
� the set of strict partitions, SP.n/D f� 2 P.n/ W �i are all distinctg.

We will see that these are analogues of the dual roles played by P.n/ for ordinary
Hurwitz numbers: indexing conjugacy classes and representations of the symmetric
group.2

Suppose we have a cover z†!† ramified at p1; : : : ;pk . We can canonically lift the
spin structure on † to z† precisely when the ramification data are all odd partitions
(in that case, every component of the covering space over each boundary circle is
antiperiodic, thus the spin structure extends over the disc it bounds).

Definition 1.9 The spin Hurwitz numbers are defined by

Hn.†I�
1; : : : ;�k/D

X .�1/p.
z†/

# Aut .z†=†/
;

where the sum is taken over isomorphism classes of branched covers z† of † with
ramification data �1; : : : ;�k 2 OP.n/ at p1; : : :pk . We will write Hn.†; k/ for the
associated functional on the vector space CŒOP.n/�˝k .

2It was shown by Euler that the cardinalities of SP.n/ and OP.n/ are equal.
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One of the main results of this paper is a combinatorial expression for the spin Hurwitz
numbers. The unramified case was Theorem 0.1; this involved the numbers d.�/,
for � 2 SP.n/. To state the general case we introduce the matrix f �

� , for � 2 OP.n/
and � 2 SP.n/. This matrix has a combinatorial definition in terms of the Schur
Q–functions, a certain family of symmetric polynomials Q�.X /DQ�.x1;x2; : : :/

which were introduced by Schur [33] in his study of the spin representations of the
symmetric group (the representation theoretic meaning of f �

� will be explained in
Section 1F).

The Q–functions were defined by Schur as follows (see also Józefiak [20]). First
consider

Q.t/D
X
n�0

Qn.X /t
n
WD

Y
j�0

1Cxj t

1�xj t
:

Now we define Qpq.X / by

Q.r; s/D
X

p;q�0

Qpq.X /r
psq
WD .Q.r/Q.s/� 1/

r � s

r C s
:

Finally, for � 2 SP.n/, we set Q�.X /D Pf.Q�i�j .X // (if `.�/ is odd, we set �`.�/C1

equal to 0 so that .Q�i�j .X //ij is an even order antisymmetric matrix and its Pfaffian
is well defined).

Theorem 1.10 (spin Hurwitz formulas) The spin Hurwitz numbers

Hn.†I�
1; : : : ;�k/

are given by

2.
P

i .`.�
i /�n/�n�.†//=2

X
�2SP.n/

.�1/p.†/`.�/
�Y

i

f �
�i

��
d.�/

n!

��.†/
;

where

d.�/D 2n�`.�/=2 n!

�1! � � � �`!

Y
p<q

�q � �p

�pC �q
;

and the numbers f �
� satisfy

Q�.X /D 2`.�/=2
X

�2OP.n/

d.�/

n!
f �

� p�.X /

(pm.X /D
P

j�1 xm
j is a power sum function, and p�.X /D p�1

.X / � � �p�`.X /).
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1D Semisimple superalgebras

In this section we will recall the basic theory of semisimple superalgebras, after
Józefiak [19].

We will use the term super vector space to denote a Z=2Z graded complex vector
space. Let SVect denote the category of super vector spaces and (degree preserving)
linear maps. This has a natural symmetric monoidal structure, where the symmetric
structure incorporates the sign rule: the isomorphism V ˝W !W ˝V is given by
v˝w 7! .�1/jvjjwjw˝ v where v and w are homogeneous elements of degree jvj
and jwj.

A superalgebra is an algebra object in SVect. The notions of supercommutative,
opposite superalgebra Aop , supercentre Z.A/ and superabelianization Ab.A/ of a
superalgebra A in this paper are all defined following the sign rule. A supermodule for
a superalgebra is just a module with a compatible Z=2Z–grading. Two superalgebras
A and B are Morita equivalent if there are superbimodules M

A B
and N

B A
such that

M ˝B N 'A and N ˝A M 'B . Given a superalgebra A, and two supermodules M

and N , we denote by HomA.M;N / the space of degree preserving A–linear maps,
and by HOMA.M;N / the space of all A–linear maps with its natural Z=2Z–grading.

A superalgebra is called semisimple if every supermodule is a direct sum of simple
supermodules. Wedderburn theory for semisimple superalgebras states that every simple
superalgebra is isomorphic to one of the following:

� M.r; s/D End.Cr ˚Cs Œ1�/, the superalgebra of (non-degree-preserving) endo-
morphisms,

� Q.d/, the subalgebra of M.d; d/, consisting of matrices of block form
�

C
D

D
C

�
.

Every semisimple superalgebra is isomorphic to a product of such simple superalgebras,
with one simple factor for each simple module.

The superalgebras M.r; s/ are all Morita equivalent to the trivial algebra CDM.1; 0/,
and the superalgebras Q.d/ are Morita equivalent to Q.1/DCŒ�� where � has degree 1
and �2 D 1. Simple supermodules for a semisimple algebra will be referred to as
type M or type Q depending on which factor they correspond to.

Remark 1.11 The supercentre Z.A/ of every semisimple superalgebra A is in purely
even degree, and this has a basis of orthogonal idempotents corresponding to simple
supermodules. The superabelianization Ab.A/ (the quotient of A by the subspace of
all supercommutators) is a vector space of the same dimension. However, the summands
corresponding to supermodules of type M are in even degree and those corresponding
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to supermodules of type Q are in odd degree (to verify this claim, it is enough to check
for the superalgebras C and Q.1/).

The nth Clifford algebra C`n is defined as the tensor product Q.1/˝n . Explicitly, C`n is
generated by odd elements �1; : : : ; �n where �2

i D1 and �i�j D��j�i whenever i¤j .
The Clifford algebra C`n is a simple superalgebra. When n is even, C`n is Morita
equivalent to C . When n is odd, C`n is Morita equivalent to C`1 .

Definition 1.12 The symmetric group Sn acts on C`n by permuting the generators �i .
The Sergeev superalgebra Yn is defined to be the semidirect product C`n Ì Sn .

1E Spin representations and twisted group superalgebras

Suppose G is a finite group, together with a central extension

h"i ,! zG �
�!G

where "2 D 1. A spin representation of G is defined to be a representation of zG in
which " acts by �1. Spin representations of G are the same thing as modules for the
twisted group algebra

T .G/DCŒ zG� =."C 1/

(we suppress the data of the central extension from the notation).

Suppose in addition that G is equipped with a Z=2Z–grading determined by an index 2
subgroup G0 of G . Then zG acquires a grading via zG0 , the preimage of G0 , and
the twisted group algebra is endowed with the structure of a superalgebra. For each
supermodule V of T .G/, let jV j denote the spin representation of G obtained by
forgetting the grading.

Proposition 1.13 [19] The superalgebra T .G/ is a semisimple superalgebra. For
each simple supermodule V of T .G/,

� if V is of type M , jV j is also simple, and

� if V is of type Q, jV j splits as a direct sum of two nonisomorphic simple
modules jV jC and jV j� .

Every simple spin representation of G arises as jV j, jV jC or jV j� for a unique simple
supermodule V .

Thus the representation theory of the superalgebra T .G/ encodes the spin representa-
tions of G . Here are the main examples that we will consider in this paper:
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(1) Let Rn denote the group .Z=2Z/n , and label the generators �1; : : : ; �n . This
group has a grading in which each �i has degree 1, and a central extension zRn

where the central element " satisfies �i�j D "�j�i when i ¤ j . The twisted
group superalgebra T .Rn/ is isomorphic to C`n .

(2) Let Bn denote the hyperoctahedral group Rn Ì Sn with a grading induced
from the grading on Rn . The group zBn D

zRn Ì Sn defines a central extension
of Bn called the Sergeev group. The twisted group algebra T .Bn/ is canonically
identified with the Sergeev algebra Yn D C`n Ì Sn .

(3) The symmetric group Sn also has a central extension zSn . To define zSn ,
let t1; : : : ; tn�1 denote the standard Coxeter generators of Sn . Then zSn is
generated by the ti together with the central involution ", subject to the usual
relations t2

i D 1 and ti tiC1ti D tiC1ti tiC1 , but now we have that ti tj D "tj ti
when ji � j j> 1. The symmetric group has a grading given by the parity.

1F Central characters of spin representations

Recall that for a finite group H , each conjugacy class C determines a central element
in the group algebra. This acts on a simple representation M by a scalar multiple fM

C

of the identity (equivalently, fM
C

is the change of basis matrix between the basis of
conjugacy classes and the basis of orthogonal idempotents in the centre of the group
algebra of H ). For a given simple representation M , the number fM

C
is called the

central character of M ; it is related to the character (trace) �M by the equation

�M .C /D
dim.M /

#C
fM

C :

Now let us define the central characters of spin representations of a group G (with a
grading and central extension as in Section 1E). Let C be a conjugacy class in G , and
consider the preimage ��1.C / of C in zG . There are two possibilities: either ��1.C /

is a conjugacy class in zG , or ��1.C / splits as a disjoint union of two conjugacy
classes. We will say that the class C splits in zG if the second case occurs.

If C splits in zG , choose a conjugacy class D in zG such that ��1.C /DDt"D . Then
the image of D in T .G/ is in the supercentre of T .G/, and the collection of such
elements (as C varies over the conjugacy classes in G of the second type) forms a basis
for Z.T .G//. If C does not split in zG , then the image of ��1.C / in T .G/ is zero,
as "��1.C / D ��1.C /. Such conjugacy classes do not contribute to the character,
and we will disregard them.

Remark 1.14 This basis is canonical only up to sign as we could have chosen the
image of the class "D instead of D . However, in the cases of interest, there will always
be a preferred choice of lift D .
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Definition 1.15 Given a simple supermodule V of T .G/ its central character f V
C

is
the scalar multiple of the identity on which the image of the (chosen) lift D of C acts
on V .

Proposition 1.16 [34; 20] There is a bijection between the set of strict partitions
� 2 SP.n/ and supermodules V � of Yn such that V � is of type M if `.�/ is odd, and
of type Q is `.�/ is even.

Recall that Yn is canonically identified with the twisted group algebra T .Bn/ of the
hyperoctahedral group. Conjugacy classes C� in the hyperoctahedral group which split
in the Sergeev group zBn are indexed by odd partitions � 2 OP.n/. They are precisely
the conjugacy classes generated by a permutation of cycle type � under the embedding
Sn ,! Bn . We also have an embedding Sn ,! zBn and the conjugacy class D� of a
permutation of cycle type � in zBn defines a lift of C� .

Thus we can define the central character f V �

C�
of the Sergeev algebra Yn . Recall that

we defined numbers f �
� in Section 1C in terms of the Schur Q–function.

Proposition 1.17 [34; 20] We have f V �

C�
D f �

� . Moreover, the numbers d.�/ are
equal to dim V � if `.�/ is even and equal to .1=

p
2/ dim V � if `.�/ is odd.

Let �� denote the image of the conjugacy class D� in Z.Yn/, where � 2 OP.n/. It
will be useful to have an explicit description of the elements �� . Given an m–cycle
� D .a1 : : : am/ in Sn where m is odd, define the element �� 2 Yn byX

.�c1
a1
: : : �cm

am
/˝ �;

where the sum is over m–tuples .c1; : : : ; cm/ 2 .Z=2Z/m such that

c1C � � �C cm D 0 2Z=2Z:

Now, given any element � 2 Sn whose cycle type is an odd partition of n, define ��
by ��1

� � ���` where �1 � � � �` is a factorization of � into disjoint cycles.

Proposition 1.18 The element �� 2Z.Yn/ is given by
P
�� , where the sum is over

� 2 Sn with cycle type �.

For example �.3/ 2 Z.Y3/ is given by

1˝ .123/C �1�2˝ .123/C �2�3˝ .123/C �3�1˝ .123/

C 1˝ .132/C �1�3˝ .132/C �3�2˝ .132/C �2�1˝ .132/:
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Remark 1.19 Proposition 1.17 above gives a combinatorial description of the spin
characters of the hyperoctahedral group in terms of Schur Q–functions. However,
Schur’s original use of the Q–functions was to describe the spin characters of the
symmetric group. The relationship between the spin characters of Sn and Bn is charac-
terized by an isomorphism of superalgebras (see Yameguchi [36], or Kleshchev [21]):

Yn WD C`n Ì Sn Š C`n˝ T .Sn/:

1G Extended TQFT and 2–categories

The definition of TFQT given in Section 1B assigns a vector space to a closed
1–manifold and a linear map to a 2–dimensional cobordism. A closed 2–manifold is
thus assigned a number, thought of as a linear map C! C . There is a natural way
to extend this definition which assigns an algebra (or alternatively, a linear category)
to a 0–manifold, and a bimodule to a 1–dimensional cobordism. The vector space
assigned to a closed 1–manifold in this setting can be thought of as a C–C–bimodule.
To properly formulate the definition of extended TQFT, we will need to work with
2–categories.

Throughout this paper, the term 2–category will mean a weak 2–category (or bicate-
gory). We refer the reader to Bénabou [4] or Schommer-Pries [32] for a more detailed
discussion of 2–categories, but briefly a 2–category C consists of the following data:

� a set, C0 , of objects;

� a 1–category HomC.x;y/ of 1–morphisms for each x;y 2 C0 (the morphisms
in these 1–categories are called 2–morphisms and composition is referred to as
vertical composition);

� a functor ıW HomC.x;y/�HomC.y; z/!HomC.x; z/ called horizontal compo-
sition;

� an identity 1–morphism 1x 2 Hom.x;x/ for each object x ;

� natural isomorphisms called left and right unitors for each pair of objects, es-
tablishing the expected properties of the identity 1–morphism, and a natural
transformation called an associator, establishing the associativity property of
horizontal composition, all of which satisfy some natural coherence axioms.

A symmetric monoidal structure on a 2–category C is a functor ˝W C � C! C with
fixed isomorphisms x˝y Š y˝x , together with a unit object 1C , and various other
natural transformations relating these objects (see [32, Section 2.2]). There is a notion
of a symmetric monoidal functor between two symmetric monoidal 2–categories.
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Our primary examples of symmetric monoidal 2–categories are 2–categories of cobor-
disms. For example, the 2–category Bordor of oriented cobordisms can be described
as follows (see [32] for a more careful definition):

� Objects of Bordor are oriented 0–manifolds, ie disjoint unions of points equipped
with an orientation.

� A 1–morphism between objects N0 and N1 is a cobordism between N0 and N1 ,
ie an oriented 1–manifold with boundary, M , together with an oriented dif-
feomorphism @M Š N0 tN1 , where N denotes the opposite orientation on
N .

� If M0 and M1 are both 1–cobordisms between N0 and N1 , then a 2–morphism
between M0 and M1 is a cobordism † between M0 and M1 which is trivial
on the boundary; more precisely, † is an oriented 2–manifold with corners
together with an isomorphism

@†'M0 tN0tN1
..N0 tN1/� Œ0; 1�/tN0tN1

M1:

� The horizontal and vertical compositions are both described by gluing cobordisms
along the relevant parts of the boundary (this requires some care to make precise).

� The symmetric monoidal structure is given by disjoint union of manifolds.

Note that the 1–category HomBordor.∅0;∅0/ is equivalent to Cobor . We would like
to extend the notion of TQFT from Section 1B to a symmetric monoidal functor
from Bordor

2 to a suitable target symmetric monoidal 2–category C , with the property
that HomC.1C; 1C/ is equivalent to Vect. A common choice for C is the 2–category Alg,
which can be described as follows:

� Objects of Alg are C–algebras.
� A 1–morphism between objects A and B is an A–B –bimodule, M .
� If M and M 0 are A–B –bimodules, then a 2–morphism between M and M 0

is a homomorphism of bimodules.
� Horizontal composition is given by relative tensor product, and vertical compo-

sition is given by composition of homomorphisms.
� The symmetric monoidal structure is given by tensor product of algebras.

Definition 1.20 A fully extended, oriented, 2d TQFT is a symmetric monoidal functor
Bordor

! Alg.

Example 1.21 The Hurwitz TQFT from Theorem 1.6 extends to a fully extended
TQFT which assigns the group algebra CŒSn� to a point.
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1H Spin TQFT

Just as ordinary Hurwitz numbers are controlled by a TQFT, spin Hurwitz numbers are
controlled by a spin TQFT. The 2–category Bordspin is defined similarly to Bordor ,
but all manifolds are now endowed with a spin structure (see [32, Section 3.4] for
more details). To allow for interesting spin TQFTs, we will also change the target
2–category from Alg to SAlg, in which the algebras and bimodules are equipped with
a compatible Z=2Z–grading, and the bimodule homomorphisms are compatible with
the grading.

Definition 1.22 A 2d spin topological quantum field theory (TQFT) is a symmetric
monoidal functor Bordspin

! SAlg.

The following theorem is analogous to Theorem 1.6 for ordinary Hurwitz numbers.

Theorem 1.23 (The spin Hurwitz theory) For each positive integer n, there is a fully
extended 2d spin TQFT Zn which assigns invariants as follows:

� To a point, Zn assigns the Sergeev algebra, Yn .
� To the antiperiodic spin circle, Zn assigns the even super vector space CŒOP.n/�.

This can be identified with the supercentre Z.Yn/.
� To the periodic spin circle, Zn assigns the super vector space CŒSP.n/� where

the degree of � 2 SP.n/ is `.�/ mod 2. This can be identified with the super-
abelianization Ab.Yn/.

� To a closed spin surface † with k punctures, considered as a cobordism
.S1

ap/
tk !∅1 , Zn assigns Hn.†; k/W CŒOP.n/�˝k !C .

Remark 1.24 Our construction gives a canonical basis for Zn.S
1
ap/ indexed by OP.n/,

which is necessary to identify the value of Zn on a punctured surface with spin Hurwitz
numbers. Strictly speaking, this basis is not an invariant of the functor Zn (it is not
a Morita invariant of Yn ), rather it is a feature of our construction of it. It is also
important to note that the basis of Zn.S

1
per/ given above is actually only well defined

up to sign.

2 2d spin TQFTs

2A Dualizable and fully dualizable objects

Here we recall the notions of dualizability and full dualizability (see Lurie [27] and
Ben-Zvi and Nadler [3, Section 2] for more details).
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Definition 2.1 Let .C;˝/ be a symmetric monoidal 2–category. An object x in C
is dualizable if there is another object x_ and morphisms evW x ˝ x_ ! 1C and
coevW 1C! x_˝x such that

x
1x˝coev
�����!x˝x_˝x

ev˝1x
����!x

is isomorphic to 1x , and

x_
coev˝1x_������!x_˝x˝x_

1x_˝ev
�����!x_

is isomorphic to 1x_ .

Example 2.2 � An object V in Vect (considered as a 2–category with only
identity 2–morphisms) is dualizable if and only if it is finite-dimensional.

� Every object A in Alg is dualizable. The dual is given by the opposite algebra
Aop . The 1–morphisms evW C!A˝Aop and coevW Aop˝A!C in Alg are
both given by the bimodule A.

Definition 2.3 An object x of C is fully dualizable if it is dualizable, and the morphism
ev admits a left and a right adjoint (ie we have morphisms evL; evRW 1C! x˝x_ ,
satisfying the usual adjunction properties).

Definition 2.4 Given a fully dualizable object x in C , there are canonical maps

S W x! x and T W x! x

such that

evR
' .S ˝ idx_/ ı coev and evL

' .T ˝ idx_/ ı coev:

(Here, and for the remainder of the paper, we freely use the symmetric structure to
identify x˝x_ with x_˝x .) The map S is called the Serre automorphism, and T

is inverse to S .

Example 2.5 [12, Example 2.8; 32, A.3] Suppose A is an object of Alg; we denote
by Ae the algebra A˝Aop (which can be canonically identified with Aop˝A using
the symmetric monoidal structure). We will denote by A� the linear dual HomC.A;C/
and by A! the bimodule dual HomAe .A;Ae/. Both are A–A–bimodules. An object A

of Alg is fully dualizable if and only if it is finite-dimensional and semisimple. If
this is the case, then evL is given by A! and evR is given by A� (both considered
as C–Ae –bimodules). The analogous statement also holds for SAlg. Alternatively,
one can view A� and A! as morphisms A! A; as such A� is identified with the
Serre automorphism S and A! is identified with the inverse Serre automorphism T

(see Definition 2.4). An analogous statement holds for superalgebras, where we write
A� WD HOMC.A;C/, and A! WD HOMAe .A;Ae/.
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2B Oriented TQFTs and Frobenius algebras

The following result indicates a fundamental relationship between TQFT and full
dualizability.

Proposition 2.6 The object ptC represented by a single point in the oriented bordism
category Bordor is fully dualizable with dual pt� .

Proof (sketch) The evaluation map evW pt� t ptC ! ∅0 and coevaluation map
coevW ∅0 ! ptC t pt� are both represented by the line interval Œ0; 1�. The proof
of the duality statement is sometimes referred to as Zorro’s Lemma; see Figure 1.

evW pt�tptC!∅0

�

C

coevW ∅0! ptCtpt�
C

�

idptC W ptC! ptC
C C

idpt� W pt�! pt�
� �

ptC
coevtidptC
������! ptCtpt�tptC

idptCtev
����! ptC

C

�

C C

C C

�

C

'

idptC W ptC! ptC

C C

pt�
idptCtcoev
�����! pt�tptCtpt�

evtidpt�
����! pt�

�

C

� �

� �

C

�

'

idpt� W pt�! pt�

� �

Figure 1: Duality data for ptC in Bordor

The morphism coev can be identified with the left and right adjoint to ev in Bordor .
The 2–dimensional disc, when considered as a cobordism CapW ev ı coev! ∅1 , is
the counit and, when considered as a cobordism SaddleW ptCtpt�! coevı ev, is the
unit in the adjunction realizing coev as right adjoint to ev (reading these cobordisms
the other way gives the unit and counit of the other adjunction); see Figure 2.
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ev ı coevD S1

Cap

∅1

�

C
idptC t idpt�

Saddle

coev ı ev

�

C

�

C

�

C

�

C

ev ı .idptCtpt�/

idev ıSaddle

ev ı coev ı ev

Cap ı idev

id∅0 ı ev

�

C

�

C

�

C

�

C

�

C

�

C

'

ev

idev

ev

C

�

C

�

Figure 2: Full dualizability data for ptC in Bordor

It follows from Proposition 2.6 that if ZW Bordor
! Alg is an oriented TQFT, then

the object ADZ.ptC/ 2 Alg is fully dualizable, and thus is finite-dimensional and
semisimple. The vector space Z.S1/ can be identified with the abelianization

Ab.A/DA˝A˝Aop ADA=ŒA;A�:

Moreover, as coev is both left and right adjoint to ev in Bordor , there is an isomorphism
of bimodules A� ' A; this isomorphism can be encoded by a nondegenerate inner
product on A, which factors as

A˝A!A!A=ŒA;A� t
�!C;

where t is the linear map given by applying Z to the disc cobordism S1!∅1 . Thus
A has the structure of a Frobenius algebra, and we have isomorphisms

Z.S1/'Ab.A/' Z.A/

giving Z.S1/ the structure of a commutative Frobenius algebra. In fact, more is true:
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Theorem 2.7 (The cobordism hypothesis [32; 27]) Given a finite-dimensional,
semisimple Frobenius algebra A, there is a unique oriented TQFT

ZAW Bordor
! Alg

with Z.ptC/DA, and trace map Z.Cap/W Ab.A/!C .

2C 1–dimensional spin cobordisms

Just as in the oriented case, the 0–manifold given by a single point has two nonequivalent
spin structures. We shall denote these two objects of Bordspin by ptC and pt� as
before.

Note that there is a canonical involution ˛M of every spin manifold M , which fixes
each point of M but switches the sheets of the spin structure. We can consider this
as a spin cobordism with total space M � Œ0; 1�, by using idM to identify f0g �M

with M , but ˛M to identify f1g �M with M .

Thus we have 1–dimensional cobordisms

idpt˙ W pt˙! pt˙ and ˛pt˙ W pt˙! pt˙:

Unlike in the oriented case, there is no canonical spin cobordism pt� t ptC ! ∅0

which is the evaluation morphism for a duality; rather, there are two choices which can
be interchanged by precomposing with ˛pt� t idptC . However, we will arbitrarily pick
one such cobordism:

evW pt� t ptC!∅0:

Then the cobordism
coevW ∅0

! ptC t pt�;

is defined so that .ev; coev/ identify pt� as dual to ptC in Bordspin . We will denote

ev WD ev ı .idpt� t˛ptC/' ev ı .˛pt� t idptC/:

and
coev WD .idptC t˛pt�/ ı coev' .˛ptC t idpt�/ ı coev:

We have identifications of closed 1–manifolds:

ev ı coev' ev ı coev' S1
per

and
ev ı coev' ev ı coev' S1

ap:

Figure 3 illustrates the various spin cobordisms and their interactions.
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idpt˙
˙ ˙

˛pt˙
˙ ˙

ev
�

C

coev
C

�

�
C �

� C

˛pt˙
˙ ˙

˛pt˙
˙ ˙

'

idpt˙
˙ ˙

ev

C

�
coev
C

�

ev ı coev
C

�

C �

� C

�

C

'

ev ı coev
C

�

C �

� CC

�

'

S1
per

ev ı coev
C

�

C �

� CC

�

'

ev ı coev
C

�

C �

� C

�

C

'

S1
ap

Figure 3: 1–dimensional spin cobordisms. The spin structures are inherited
from the immersion in the plane as illustrated.

The following result can be seen in the same way as Proposition 2.6, noting that
ev ı coevD S1

ap is the boundary of a spin disc.

Proposition 2.8 The object ptC is fully dualizable in Bordspin . The morphism coev
is both left and right adjoint to ev.
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Proposition 2.9 Let ZW Bordspin
!SAlg be a spin TQFT, and let ADZ.ptC/. Then

� Z.S1
per/DAb.A/,

� Z.S1
ap/D Z.A/.

Proof Note that the Serre automorphism ˛ptC in Bordspin is equivalent to its in-
verse. This defines an isomorphism of bimodules Z.˛ptC/'A! 'A� in SAlg (see
Example 2.5). We have

Z.S1
per/DZ.ev ı coev/DA˝Ae ADAb.A/;

Z.S1
ap/DZ.ev ı coev/DA!

˝Ae AD Z.A/;

as required.

2D 2–dimensional spin cobordisms

The 2–disc carries a unique spin structure with gives rise to cobordisms

CapW S1
ap!∅1 and CupW ∅1

! S1
ap:

Recall that the surface S2 carries a unique (even) spin structure. Removing 3 discs
from S2 , we obtain spin cobordisms

ap;apPantsapW S
1
ap tS1

ap! S1
ap and apPantsap;apW S

1
ap tS1

ap! S1
ap:

We can now build higher genus cobordisms by gluing copies of the cobordisms
ap;apPantsap , apPantsap;ap , Cup and Cap. The punctured spin surfaces obtained in
this way will always have even parity.

There are two nonisomorphic spin cobordisms:

idS1
per
; ˛S1

per
W S1

per! S1
per;

(note that the involution ˛S1
ap

is isotopic to the identity). Now let us remove a disc
from the cylinder idS1

per
. If we consider the resulting boundary circle as incoming, we

obtain a cobordism:
per;apPantsperW S

1
per tS1

ap! S1
per:

If we consider the resulting boundary circle as outgoing, we obtain a cobordism:

perPantsap;perW S
1
per! S1

ap tS1
per:

In a similar manner, we can remove a disc from the cylinder ˛S1
per

to obtain cobordisms

per;apPantsper and perPantsper;ap .
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The two cylinders idS1
per

and ˛S1
per

can also be considered as cobordisms

evS1
per
; evS1

per
W S1

per tS1
per!∅1

and
coevS1

per
; coevS1

per
W ∅1
! S1

per tS1
per:

As in Section 2C, neither one of evS1
per

or evS1
per

is distinguished—they are exchanged
by precomposing with ˛S1

per
t idS1

per
. An analogous statement holds for coevS1

per
. By

removing a disc from evS1
per

we obtain a cobordism

per;perPantsapW S
1
per tS1

per! S1
ap:

Similarly we define cobordisms

per;perPantsap and apPantsper;per and apPantsper;per:

The notation is chosen such that the pairs

.evS1
per
; coevS1

per
/ and .evS1

per
; coevS1

per
/

both define evaluation and coevalution maps which exhibit S1
per as its own dual.

Let EevenW S
1
ap! S1

ap denote the cobordism obtained by removing two discs from a
surface of genus 1 with an even spin structure. Similarly, let Eodd denote the analogous
cobordism where the genus 1 surface has an odd spin structure. The following lemmas
may easily be checked using (for example) Johnson’s computation of the parity [18].

Lemma 2.10 We have

per;perPantsap ı apPantsper;per ' per;perPantsap ı apPantsper;per 'Eeven;

per;perPantsap ı apPantsper;per ' per;perPantsap ı apPantsper;per 'Eodd:

Lemma 2.11 The composite

Cap ıEıgeven ıCup

is an even spin surface of genus g . The composite

Cap ıEodd ıEı.g�1/
even ıCup

is an odd spin surface of genus g .

2E Computing invariants of spin TQFT

Let ZW Bordspin
! SAlg be a spin TQFT and denote the superalgebra Z.ptC/ by A.
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By Wedderburn theory (see Section 1D), we may assume that A takes the form

AD
Y
S0

C �
Y
S1

C`1;

where S D S0 tS1 is the set of simple supermodules of A decomposed into type M

and type Q parts. Write deg.s/D i whenever s 2 Si . Combining Proposition 2.9 with
the results of Section 1D, we obtain:

Proposition 2.12 A spin TQFT Z as above assigns the following invariants to a spin
circle:

� Z.S1
ap/D Z.A/ŠCjS j , which has a basis of orthogonal idempotents es (all in

degree 0),

� Z.S1
per/DAb.A/ŠCjS0j˚CjS1jŒ1�.

Consider the linear map

t WDZ.Cap/W Z.S1
ap/!C;

and write t.s/ D t.es/ 2 C for each s 2 S . The goal of this section is to derive a
formula for the value of Z on surfaces in terms of the data of S D S0 tS1 and the
numbers t.s/.

Proposition 2.13 Let † be a closed spin surface with k marked points considered as
a cobordism .S1

ap/
tk !∅1 . Then we have

Z.†/W es1
˝ � � �˝ esk

7!

�
.�1/deg.s1/p.†/t.s1/

�.†/=2 if s1 D � � � D sk ;

0 otherwise.

In particular, Z assigns
P

s2S .�1/deg.s/p.†/t.s/�.†/=2 to a closed spin surface.

Proof The result for even surfaces follows from the usual techniques of oriented
2d TQFT. Explicitly, the map Z.ap;apPantsap/ recovers the multiplication map on
Z.S1

ap/D Z.A/. The cobordism Cap defines a nondegenerate trace, giving Z.A/ the
structure of a commutative Frobenius algebra (in degree 0). It is an easy exercise in the
theory of semisimple Frobenius algebras that the comultiplication map Z.apPantsap;ap/

is given by es 7! t.s/�1es˝ es . It follows that

Z.Eeven/DZ.ap;apPantsap/ ı apPantsap;apW es 7! t.s/�1es:

The even spin surface of genus g with k punctures can be factorized as

Cap ıEg
even ı apkPantsap;
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where apkPantsap is the pair of pants with k incoming boundary circles. This gives
the result in the even case.

In order to complete the computation for odd surfaces, it remains to compute Z.Eodd/.
First we observe the following:

Lemma 2.14 The linear map Z.˛S1
per
/W Ab.A/ ! Ab.A/ is given by the grading

involution.

Proof It is sufficient to prove the lemma in the cases ADC and AD C`1 . Note that
the cylinder ˛S1

per
can be thought of as a product S1

per �˛ptC . Thus the map Z.˛S1
per
/

is given by the automorphism of Ab.A/ induced from the A–A–bimodule Z.˛ptC/

(in general, any Morita equivalence of algebras induces a trace map on abelianizations).
This bimodule is necessarily the Serre automorphism of A. In the case AD C , the
Serre automorphism and grading involution are trivial. In the case AD C`1 , the Serre
automorphism is the shift bimodule AŒ1�; the trace of the shift bimodule is precisely
the grading automorphism, as required.

Remark 2.15 Often it is included in the axioms of spin TQFT that the canonical
spin automorphism of a 1–manifold gives rise to the grading automorphism on the
corresponding super vector space. For us this follows from the fact that the spin
automorphism of a point is also the Serre automorphism in Bordspin as shown in
Lemma 2.14.

The map
Z.per;apPantsper/W Z.S

1
ap/˝Z.S1

per/!Z.S1
per/

recovers the canonical action of Z.A/ on Ab.A/. The elements es 2 Z.A/ give
a family of orthogonal idempotent operators on Ab.A/. The eigenspaces Is of the
operators es are 1–dimensional and generate Ab.A/.

The super vector space Ab.A/ can be equipped with the inner product given by
Z.evS1

per
/. The eigenspaces Is are mutually orthogonal with respect to this inner

product, and we can choose a basis ffs j s 2 Sg of Ab.A/ which is orthonormal with
respect to the inner product (since we could have picked the inner product given by
Z.evS1

per
/, such a basis is only canonical up to sign). Note that deg.fs/D deg.s/.

Now, by construction,

Z.per;perPantsap/W fs1
˝fs2

7!

�
es if s1 D s2 D s;

0 if s1 ¤ s2:
and

Z.apPantsper;per/W es 7! fs˝fs:
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As per;perPantsap is given by the composition per;perPantsap ı .idS1
per
t ˛S1

per
/, we also

have
per;perPantsapW fs˝fs 7! .�1/deg.s/es:

Finally, Eodd is given by the composition

Z.per;perPantsap/ ıZ.apPantsper;per/;

so Z.Eodd/ maps es to .�1/deg.s/es . This completes the proof of Proposition 2.13.

2F Classification of 2d spin TQFTs

Proposition 2.13 computes the invariants of a TQFT Z such that Z.pt/ is a finite-
dimensional semisimple algebra A, starting from the linear map t W Z.A/!C given
by applying Z to a spin disc. In fact, the cobordism hypothesis [27] implies that any
TQFT is completely determined by such data, and that, given the data of a semisimple
algebra A and a map t satisfying certain conditions, there is a TQFT which assigns
those data to a point and a disc.3

Proposition 2.16 A 2d spin TQFT is given by a semisimple superalgebra A, together
with a linear map t W Z.A/!C such that the composite

A!
˝A!A!

˝Ae AD Z.A/ t
�!C

identifies A! with the linear dual of A. This is equivalent to the following data: a
finite set S D S0 t S1 (the spectrum of Z.A/ decomposed into types M and Q),
together with a function t W S D S0 tS1!C� (the trace map on Z.A/ restricted to
the orthogonal idempotents).

Proof (sketch) According to the cobordism hypothesis, a spin TQFT should be given
by a fully dualizable object of SAlg, equipped with the structure of a Spin.2/ homotopy
fixed point. The fully dualizable object determines a framed theory, and the fixed point
data allows an extension to spin manifolds.

An algebra A is fully dualizable if and only if it is finite-dimensional and semisimple
(see Example 2.5), so by Wedderburn theory A is Morita equivalent to a productQ

S0
C �

Q
S1

C`1 .

The action of SO.2/ on the space of fully dualizable objects gives an automorphism of
each object (the Serre automorphism), which in the case of algebras is the bimodule
dual A! of A (or its inverse A� ). Similarly, the action of Spin.2/ on this space gives
the bimodule A!˝A A! .

3A classification of Spin.2; 1/ TQFTs (ie nonextended TQFTs) was described in [1].

Geometry & Topology, Volume 20 (2016)



1884 Sam Gunningham

Let us first identify the space of SO.2/ fixed points (corresponding to oriented TQFTs).
Giving the structure of a homotopy fixed point for SO.2/ is to give an isomorphism of
bimodules AŠA! . Unwinding the definition of dual bimodule gives that this is the
same as a linear map Ab.A/DA˝A˝Aop A!C such that the composite

A˝A m
�!A˝Ae A tr

�!C

identifies A with its linear dual A� . This is the structure of a symmetric Frobenius
algebra on A [27; 32]. The centre and abelianization of A are both identified with the
vector space with basis fes j s 2 Sg. A map tr as above is exactly given by a function
t W S !C� .

Now, to give a Spin.2/ fixed point is to give a bimodule isomorphism A!ŠA� . Again,
unwinding the dualities gives us a map Z.A/DA!˝Ae A!C , such that the composite
A!˝A!A!˝Ae A!C identifies A! with the linear dual of A. This is equivalent
to a function S !C� as required.

Remark 2.17 If the 2–category SAlg was replaced by an .1; 2/–category with
nontrivial higher morphisms (for example, the category of differential graded algebras,
bimodules, maps of bimodules, homotopies between maps, etc), there would be higher
coherence data to consider. In particular, specifying a SO.2/ or Spin.2/ (homotopy)
fixed point would involve more data.

Remark 2.18 If A contains only factors of type M (ie S1D∅), then the correspond-
ing TQFT cannot distinguish spin structures. It follows that a spin TQFT valued in
ordinary (ungraded) algebras necessarily comes from an oriented theory.

Example 2.19 (parity TQFT) Consider the spin TQFT Z1 for which S0 D∅ and
S1 D f�g and t.�/D 1. This assigns C`1 to a point, the vector space C to S1

per , CŒ1�
to S1

per , and the number .�1/p.†/ to every spin surface †. A direct construction of
Z1 is given in Section 5.

3 Averaging TQFTs over finite covers

The aim of this section is to give a procedure for taking a TQFT Z1 and producing
a new TQFT Zn for each positive integer n which averages Z1 over n–fold covers.
This procedure is based on the machinery of finite path integrals as defined in Freed,
Hopkins, Lurie and Teleman [12] (based on ideas from Freed [10]). See also the recent
paper of Morton [30].
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For example, applying this procedure to the trivial TQFT recovers the theory which
assigns the ordinary Hurwitz numbers to a closed 2–manifold. Applying this to the
parity theory (see Example 2.19) will produce the spin Hurwitz theory of Theorem 1.23.

Notation 3.1 In this section, we will write Bord instead of Bordspin , Alg instead
of SAlg and Vect instead of SVect. The results of this section apply much more
generally. For example Bord could be the oriented or framed bordism category (or
.1; 2/–category), and Alg could be the Morita category of ordinary algebras, or the
.1; 2/–category of differential graded algebras.

If C is a symmetric monoidal 2–category, write �C for the symmetric monoidal
1–category of endomorphisms of the identity object 1C . Similarly, write �2C for the
monoid of endomorphisms of 1�C . Objects of C we call 0–objects, objects of �C we
call 1–objects, and elements of �2C we call 2–objects. For example, if C D Bord
then n–objects are closed n–manifolds.

3A The averaging theory Zn

Let Z1W Bord! Alg be a TQFT. The goal of this section is to prove the following:

Proposition 3.2 Given Z1 as above, there is a family of TQFTs ZnW Bord! Alg
for nD 2; 3; : : :, such that:

� Zn.pt/DZ1.pt/˝n Ì Sn .

� If N is a closed 1–manifold, Zn.N /D
L

Z1. zN /Aut. zN =N / , where the sum is
over isomorphism classes of n–fold covers zN of N .

� If † is a cobordism between closed 1–manifolds N0 and N1 , Zn.†/ is given
by the following linear map:M

Z1. zN0/
Aut. zN0=N0/!

M
Z1. zN1/

Aut. zN1=N1/;

uD .u zN0
/ 7! v D .v zN1

/;

where

v zN1
D

X Z1.z†/.u/

# Aut.z†=†/

and the sum is over isomorphism classes of covers z†=†.

The field theory Zn will be defined as a composite

Bord Covn
���!Fam2.Bord/ Fam2.Z/

�����!Fam2.Alg/ Sum2
���!Alg:
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Very loosely, the map Covn takes a manifold to its groupoid of n–fold covers (whilst
remembering the spin structure on the total space of each cover), the functor Fam2.Z/

applies the TQFT Z1 to the total space of the cover, and then Sum2 takes the average.
Most of the categories and functors appearing above are defined in [12, Section 3] (see
also [27]). Here, we will briefly review the definitions (note that we only need the case
of 2–categories, rather than the general m–categories discussed in [12]).

3B Toy example: 1d TQFTs

Before we delve into the details of the construction, let us examine what it gives us in
the case of a 1d TQFT. Recall that a 1d (say, oriented) TFT Z valued in vector spaces
is determined by a finite-dimensional vector space V which is the value at a (positively
oriented) point. The linear maps C! V ˝V � and V �˝V !C which Z assigns
to semicircles are necessarily the unit and trace maps which identify V � as the dual
of V . Hence the value of Z on a circle is given by the integer d WD dim V D tr.1V /.

The analogue of Proposition 3.2 says that we can define a new TFT Zn whose value at
a point is .V ˝n/Sn and whose value on a circle is

P
�.d

`.�/=jC.�/j/. Here, the sum
is taken over partitions � which index �0.Cov.S1//, and C.�/ is the centralizer of
the corresponding conjugacy class in Sn .

By comparing the results from Proposition 3.2 with what we know by duality, we
recover the formula

dim.V ˝n/Sn D

X
�

d`.�/

#C.�/
:

The formulas in Theorem 1.10 will be proved using a very similar idea.

3C The category Fam2.C/

Suppose C is a symmetric monoidal 2–category. The symmetric monoidal 2–category
Fam2.C/ has objects essentially finite groupoids X (ie �0.X / and �1.X / are finite)
with a functor f W X ! C . The 1–morphisms are spans of groupoids over C , ie each
is a groupoid W , with maps p1 to X and p2 to Y and a natural transformation
˛W f1 ıp1) f2 ıp2 :

(1)

W
p1

~~

p2

  

X

f1   

˛ +3 Y

f2~~

C
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Composition of morphisms is given by the homotopy fibre product of groupoids.
Similarly, the 2–morphisms are given by spans of such diagrams (up to equivalence),
and the symmetric monoidal structure is given by products of groupoids. The details
of how 2–morphisms compose etc quickly become quite complicated and we will not
attempt to flesh them out here.We refer the reader to [30] for more details.

Remark 3.3 Note that the 2–category of 2–vector spaces defined in [30] is equivalent
to the full subcategory of Alg given by finite-dimensional semisimple algebras: to
such an algebra A, one assigns its category of finite-dimensional modules, which is a
2–vector space.

However, the category �Fam2.C/D Fam1.�C/ is easier to describe: its objects are
essentially finite groupoids X with a map f W X ! �C , and morphisms are spans
of groupoids as in the diagram (1), except that C is replaced by �C . Similarly,
�2Fam2.C/D Fam0.�

2C/ is the monoid of equivalence classes of groupoids X with
a map �0.X /!�2C .

Note that if we have a symmetric monoidal functor of 2–categories F W C! D , then
we get a symmetric monoidal functor Fam2.F /W Fam2.C/! Fam2.D/ by composing
all the maps with F .

3D The functor Covn

If M is a topological space, let Covn.M / denote the groupoid whose objects are
n–fold covers of M and whose morphisms are deck transformations. The functor
CovnW Bord! Fam2.Bord/ takes a closed manifold M to Covn.M / equipped with
the map Covn.M /! Bord which takes a covering space to the its total space thought
of as an object of Bord. To a cobordism M0

N
�!M1 between closed manifolds, we

associate the span

Covn.M0/ � Covn.N / �! Covn.M1/

equipped with the maps Covn.Mi/! Bord.

3E The functor Sum2

Let us first describe what Sum2W Fam2.Alg/! Alg does on i –objects, i D 0; 1; 2:

� To a 2–object .X; f W �0.X /!C/ of Fam2.Alg/, Sum2 assigns the numberX
x2�0.X /

f .x/

# Aut.x/
:
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� To a 1–object .X; f W X !Vect/ of Fam2.Alg/, Sum2 assigns the limit of the
diagram f , which can be identified withM

x2�0.X /

f .x/Aut.x/:

� To a 0–object .X; f W X ! Alg/, Sum2 assigns the (homotopy) limit of the
diagram f , which can be identified with4M

x2�0.X /

f .x/Ì Aut.x/:

We would like to describe how Sum2 acts on more general morphisms in Fam2.Alg/.
This will be given by an integral transform formula as follows, which we will describe
in the case of a morphism in �Fam2.Alg/D Fam1.Vect/.

First let us note that if .X; f W X ! Vect/ is a 1–object, then the natural map

limf D
M

x2�0.X /

f .x/Aut.x/
�!

M
x2�0.X /

f .x/Aut.x/ D colimf

is an isomorphism (where the subscripts denote coinvariants). The inverse is given by
lifting v 2 f .x/Aut.x/ to zv 2 f .x/ and then mapping toX

g2Aut.x/

g:zv 2 f .x/Aut.x/:

Now, given a sequence W
p
�! X

f
�! Vect, as well as the natural pullback map

f �W lim.f /! lim.fp/, we have the pushforward f�W lim.fp/! lim.f /, defined
by first identifying limits with colimits, then using the natural pushforward map for
colimits.

Recall that a morphism of 1–objects is given by a span of groupoids as in diagram (1)
(where C D Vect). In particular, for each w in �0.W /, we have a linear map
˛.w/W f1.p1.w// ! f2.p2.w// which is Aut.w/ equivariant. Then we have that
Sum2.W;p1;p2; ˛/ is given by the integral transform formula:

lim p1
p�

1
���! limf1p1

˛
�! limf2p2

p1�
���! lim p2:

Explicitly, this is given by the linear mapM
x2�0.X /

f1.x/
Aut.x/

!

M
y2�0.Y /

f2.y/
Aut.y/

4The computation of this limit is given by Morton [30] in the context of 2–vector spaces (see
Remark 3.3).
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where uD .ux/ gets mapped to v D .vy/ and

vy D

X
w2�0.Wy/

˛.w/.u/

jAut.w/j
:

The fact that this construction is functorial follows from a base change formula for
the pullback and pushforward: p�

2
p1� Š zp1� zp

�
2

whenever p1 , p2 , zp1 , zp2 form a
cartesian square.

The same integral transform idea allows us to define Sum2 on 1–morphisms; the
description for general 2–morphisms is somewhat more complicated (again, see [30]
for a careful construction of the functor Sum2 ).

Proposition 3.2 now follows from the description of the functor Sum2 in Section 3E.

4 Spin Hurwitz Numbers

In this section we will combine the results from Sections 2 and 3 to construct the spin
Hurwitz theory of Theorem 1.23 and prove the spin Hurwitz formula of Theorem 1.10.

4A The spin Hurwitz theory

The TQFT Zn is obtained by applying Proposition 3.2 in the case when Z1 is the
parity theory (see Example 2.19). It is clear from the proposition that the value of Zn

on a closed spin surface † is the spin Hurwitz number Hn.†/.

To complete the proof of Theorem 1.23 we should also identify Zn.S
1
ap/ with CŒOP.n/�.

Here we want more than just an identification as abstract vector spaces, rather, we want
to identify a particular basis fı� j � 2 OP.n/g such that

(2) Hn.†I�
1; : : : ;�k/DZn.†

�/.ı�1 ˝ � � �˝ ı�k /;

where †� is the cobordism from .S1
ap/
tk to ∅1 obtained by puncturing † at k points.

Let � 2 P.n/ be a partition corresponding to a covering
F

i S�i
! S1

ap (so that
each S�i

! S1 is a connected cover of degree �i ); the automorphism group of this
covering is the centralizer C.�/ in Sn .

If one of the �i is even, then the corresponding component of the cover will be periodic.
There is a unique nontrivial order 2 automorphism of the cover fixing all the components
except S�i

, on which it acts by switching the sheets of the spin structure. Thus it
acts by �1 on the odd vector space Z1.S�i

/, so that the invariants of the action of
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C.�/ on Z1.S�/ vanish. On the other hand, if � is an odd partition, then the action
on Z1.S�/ is trivial. Thus

(3) Zn.S1
ap/D

M
�2OP.n/

Z1.S�1
/˝ � � �˝Z1.S�`.�//:

As S�i
'S1

ap , there is a spin disc bounding S�i
, and thus Z1.S�i

/ contains a canonical
element, 1�i

. The element ı� is defined to be

1�1
˝ � � �˝ 1�`.�/ 2Z1.S�1

/˝ � � �˝Z1.S�`.�//DZ1.S�/�Zn.S
1
ap/:

The property in (2) follows from Proposition 3.2.

Remark 4.1 The statement that only odd partitions appear as boundary conditions
in our TQFT can be thought of more concretely. Suppose you have a decomposition
of a spin surface † into two halves along a boundary circle. We wish to construct
covers of the surface by gluing together covers along the two halves. If we have a cover
on one of the halves with ramification datum that is not odd at the boundary, one of
the components of the boundary of the cover will be periodic. There are always two
ways to glue this circle to a corresponding one over the other half, which lead to spin
surfaces covering our original surface which have opposite parity. Thus, when we sum
over all covers, these will cancel and will not contribute to the sum.

Now let us investigate Zn.S
1
per/ (this will not be necessary for the spin Hurwitz

formulas). In this case, all components of the covering S� are periodic. Given a
partition � for which �i D �j , we have an automorphism which switches the two
components. As in the antiperiodic case, this acts by �1 on Z1.S�/ so is killed in the
space of invariants. On the other hand if � is a strict partition, then Z1.S�/ is given
by

Z1.S�1
/˝ � � �˝Z1.S�`.�//

which is a super vector space of degree `.�/ mod 2. This completes the proof of
Theorem 1.23.

Remark 4.2 The TQFT point of view allows us to generalize the notion of spin
Hurwitz number to allow periodic boundary components. One has to be careful though,
as the odd line L D Z1.S

1
per/ is not trivialized; rather, it has a canonical element

defined up to sign. This means that we should interpret such invariants as linear maps
between linear combinations of copies of L rather than numbers.
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4B The spin Hurwitz formulas

Theorem 1.23 states that the spin Hurwitz numbers Hn.†I�
1; : : : ;�k/ are given by

evaluating Zn.†
�/ on the element ı�1 ˝ � � � ˝ ı�k 2 Z.Yn/. On the other hand,

Proposition 2.13 computes the invariant obtained by evaluating Z.†�/ on the elements
of the form e�1 ˝ � � �˝ e�k in terms of the numbers t� DZn.Cap/.e�/. Note that

(4) Zn.Cap/.ı�/D
�

1=n! if �D 1n;

0 otherwise.

Thus, to prove Theorem 1.10 (the spin Hurwitz formulas), it remains to identify the
change of basis matrix between the bases fı� j � 2 OP.n/g and fe� j � 2 SP.n/g.

Recall that Yn is canonically identified with the twisted group algebra of the hype-
roctahedral group Bn . Thus there is another basis f�� j � 2 OP.n/g given by the
conjugacy classes in Bn (see Section 1F). The following lemma is the final technical
step needed to prove Theorems 0.1 and 1.10. Its proof will be left to Section 4F.

Lemma 4.3 ı� D 2.`.��n//=2��:

Assuming Lemma 4.3, let us complete the proof of Theorem 1.10 (and thus also
Theorem 0.1 which is a special case). According to Proposition 1.17, the change of
basis matrix between f�� j � 2 OP.n/g and fe� j � 2 SP.n/g is f �

� (indeed, the
central character of a group may be defined as the change of basis matrix between the
orthogonal idempotents and the conjugacy classes).

Lemma 4.4 t.�/D .d.�/=n!/2:

Proof The linear map t W Z.Yn/! C takes the value 1=n! on ı1n D�1n and zero
on all other �� . Thus to prove the lemma we should express the idempotents e� in
terms of the basis of conjugacy classes f��g. This is a straightforward exercise in the
representation theory of finite groups, complicated only slightly by the fact that we
are dealing with spin representations rather than linear representations (see Section 1F
for details). The result follows by noting the interpretation of d.�/ in terms of the
dimension of the module V � in Proposition 1.17.

The spin Hurwitz formulas of Theorem 1.10 now follow from Proposition 2.13.
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4C Recursion formulas of Lee and Parker

Let †p
g denote a closed spin surface of genus g and parity p 2 Z=2Z. The following

theorem was proved by Lee and Parker in [26]. Let C.�/ denote the centralizer of the
conjugacy class � in Sn . Note that #C.�/D

Q
i �i.�i !/.

Theorem 4.5 Let �1; : : : ;�k 2 OP.n/.

(1) If g D g1Cg2 , and p D p1Cp2 , then for 0� k0 � k ,

Hn.†gI�
1; : : : ;�k/D

X
�2OP.n/

#C.�/Hn.†g1
I�1;�k0;�/Hn.†g2

I�;�k0C1; : : : ;�k/:

(2) If g � 2, or if .g;p/D .1; 0/, then

Hn.†
p
g I�

1; : : : ;�k/D
X

�2OP.n/

#C.�/Hn.†
p
g�1
I�;�;�1; : : : ;�k/:

Proof Considered as a linear map C!C , the number Zn.†
p
g / factors as

C
Zn.†

�p1
g1

/
������!Zn.S

1
ap/

Zn.
�†

p2
g2
/

������!C;

where †�p1
g1

means †p1
g1

punctured at one point, considered as a cobordism ∅1!S1
ap ,

and �†p2
g2

means †p2
g2

punctured at one point, considered as a cobordism S1
ap!∅1 .

Let us expand the element

Zn.†
�p1
g1

/.1/ 2Zn.S
1
ap/

in the ı� basis. As hZn.†
�p1
g1

/.1/; ı�i D Hn.†
p1
g1
I�/, the coefficient of ı� in this

expansion is
Hn.†

p1
g1
I�/hı�; ı�i

�1:

The number hı�; ı�i is a genus zero spin Hurwitz number with two ramification points;
it is easy to compute that this is equal to #C.�/�1 . Thus

Hn.†/DZn.†
�p2
g2

/

� X
�2OP.n/

Hn.†
p1
g1
I�/#C.�/ı�

�
D

X
�2OP.n/

#C.�/Hn.†
p1
g1
I�/Hn.†

p2
g2
I�/:

This proves part (1) in the case k D 0. The ramified case is proved similarly. To prove
part (2), note that we can factor Zn.†

p
g / as

C
Zn.†

��p

g�1
/

������!Zn.S
1
ap/˝Zn.S

1
ap/
h�;�i
���!C;
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where †��p
g�1

is †p
g�1

with two punctures, considered as a cobordism ∅1! S1
aptS1

ap .
Note that the inner product h�;�i is the value of Zn on a 2–sphere with two punctures,
considered as a cobordism S1

ap tS1
ap!∅1 . The proof now proceeds in the same way

as part (1).

4D Boundary conditions for extended TQFT

To prove Lemma 4.3, we need to compare the element ı� 2Zn.S
1
ap/ with �� 2Z.Yn/.

To describe the embedding Zn.S
1
ap/ ,! Yn explicitly, it is necessary to make use of

a cobordism which does not appear naturally in the category Bordspin , namely, the
whistle or closed-to-open string transition. We will briefly explain what this means
below.

Let us first describe the category Bordor;oc of oriented cobordisms with boundary
condition (the theory of cobordism categories with boundary conditions is described
in Lurie [27, Section 4.3.22]; we will need only a small part of the theory). In
general, the 2–category Bordor;oc is defined in the same way as Bordor , except that the
word “manifold” is replaced by “manifold with (marked) boundary”. Thus, 0–objects
of Bordor;oc are the same as in Bordor , but there is an additional 1–object, given by
the line interval I D Œ0; 1�, where the boundary f0; 1g is considered “marked” (thus
I is a morphism ∅0!∅0 rather than ptC! ptC , say). If M0 and M1 are both 1–
objects in Bordor;oc (thus, a disjoint union of copies of S1 and I ), then a 2–morphism
between M0 and M1 is a 2–manifold with corners †, where @† is equipped with a
isomorphism

@†'M0 t@markedM0
t@markedM1

M1:

Remark 4.6 The 1–category �Bordor;oc
DHomBordor;oc.∅0;∅0/ is equivalent to the

category of open-closed cobordisms as described eg in Moore and Segal [29].

Given an oriented 2d TQFT ZW Bordor
! Alg with Z.ptC/DA, an extension of Z

to a symmetric monoidal functor zZW Bordor;oc
! Alg is called a boundary condition

for Z . Boundary conditions for Z are in one-to-one correspondence with A–modules;
given an A–module M , there is an extension zZM with zZM .I/D End.M /. (More
generally, we could consider categories of cobordisms where we allow marked boundary
of various colours. An extension of Z to such a category corresponds to a choice
of A–module Mi for each colour i . Such an extension assigns the vector space
HomA.Mi ;Mj / to the line interval in which one endpoint has colour i and the other
has colour j .)

Thus, any oriented TQFT Z as above, has a canonical boundary condition zZ given
by the A–module A itself. Thus zZ.I/DA. There are various 2–morphisms given
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by marking intervals along the boundary of a disc. For example, marking 3 intervals
along the boundary of a disc defines the pair of chaps cobordism

ChapsW I t I ! I:

Applying zZ to Chaps recovers the multiplication map for the algebra A (respectively,
comultiplication if read in the other direction). Similarly, marking one interval on the
boundary of the disc gives the trace map defining the Frobenius algebra structure on A

(or the unit map, if read in the other direction).

The main example that we will need is the whistle cobordism (also known as the
closed-to-open string transition),

WhistleW S1
! I:

The whistle has a cylinder S1 � Œ0; 1� as its underlying manifold, where the marked
portion of the boundary is a line segment embedded in S1 � f1g. Applying zZ to the
whistle cobordism recovers the inclusion of the centre Z.A/ ,!A (or the projection
A!Ab.A/ if read in the other direction).

I t I

I

Chaps

S1

I

Whistle

Figure 4: The chaps and whistle cobordisms. The marked portion of the
boundary is shown in bold.

The theory of boundary conditions for TQFTs carries over to the spin setting: there
is a 2–category Bordspin;oc , having the property that an extension zZ of a TQFT
ZW Bordspin

! SAlg corresponds to a supermodule for the superalgebra ADZ.ptC/.
Naturally, there are some new features in the spin case: There are now two 1–objects
I and I whose underlying manifold is the interval Œ0; 1�. The canonical boundary
condition zZ for Z assigns zZ.I/DA and zZ.I/DA! , and the various spin structures
on the pair of chaps cobordisms recover the multiplication on A, the A–module
structure on A! , and the map A!˝A!!A expressing the triviality of the square of the
Serre automorphism. We will only require the use of a single cobordism in Bordspin;oc ,
namely the whistle cobordism S1

ap! I .
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4E The map zZn.Whistle/

Consider the parity theory Z1 with its canonical boundary condition zZ1 and let A

denote C`1DZ1.ptC/. The construction of the covering theories Zn as in Section 3 can
be extended to cobordisms with boundary conditions. For example, to compute zZn.I/,
we look at the groupoid Covn.I/. Note that the boundary of I is marked, and thus we
should consider n–fold covers of I equipped with trivializations at @I D f0; 1g. Thus
Covn.I/ is isomorphic to the discrete groupoid Sn , and zZn.I/D

L
Sn

A˝n . Applying
zZn to the pair of chaps cobordism identifies the algebra structure on

L
Sn

A˝n as the
semidirect product A˝n Ì Sn .

Now let us apply the covering theory construction of Section 3 to the whistle cobordism.
Consider the following correspondence of groupoids:

(5) Covn.S
1
ap/ � Covn.Whistle/! Covn.I/:

Objects of the groupoid Covn.S
1
ap/ are given by covers of the circle S1

ap . Equivalence
classes of such covers are indexed by P.n/. For each � 2 P.n/, we have a cover S�

which is a disjoint union of circles S�i
each of which are connected covers of S1

ap of
degree �i .

Objects of Covn.Whistle/ are given by covers of .S1
ap;p/ where p is a choice of

basepoint on S1
ap , together with a framing of the cover at p (ie an identification

between the fibre over p and the set f1; : : : ; ng). Such covers are indexed by Sn . For
each � 2 Sn , we have such a cover S� which is a disjoint union of circles S�i

where
� D �1 � � � �` is a disjoint cycle decomposition.

Finally, objects of Covn.I/ are covers of .I D Œ0; 1�; f0; 1g/ with framings at f0; 1g.
Such covers are indexed by Sn . For each � 2Sn , we have I� which is a disjoint union
of n line intervals.

Following the construction of Section 3, zZn assigns to the whistle cobordism a linear
map, obtained by averaging the theory Z1 over the correspondence of groupoids (5):

(6) zZn.S
1
ap/D

M
�2P.n/

Z1.S�/
C.�/ zZn.Whistle/
�������!

M
�2Sn

Z1.I� /DZn.S
1
ap/:

4F Proof of Lemma 4.3

Let us describe zZn.Whistle/ more explicitly. To begin with we have the natural
inclusion M

�2P.n/

Z1.S�/
C.�/
'

�M
�2Sn

Z1.S� /
�Sn

,!
M
�2Sn

Z1.S� /:
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As explained in Section 4A, the action of C.�/ on the 1–dimensional super vector
space Z1.S�/ is trivial if � 2 OP.n/ and nontrivial otherwise. Thus we need only
consider � 2 OP.n/.

Fix an element � 2 Sn of cycle type � 2 OP.n/, with a corresponding disjoint cycle
decomposition � D �1 � � � �` . We have Z1.S� / D Z1.S�1

/˝ � � � ˝Z1.S�`/. Each
S�i

is a �i –fold cover of the base S1
ap , thus we compute Z1.S�i

/ as a tensor product
�i copies of A! over A, arranged in a circle (see Figure 5). We can write this circular
tensor product linearly as

(7) Z1.S�i
/D .A!

˝A � � � ˝A A!/„ ƒ‚ …
�i

˝Ae A:

To describe the map Z1.S�i
/!Z1.I�i

/, note that each factor A! canonically embeds
in Ae . Replacing each instance of A! by Ae in the tensor product (7), we arrive
at A˝�i which is precisely Z1.I�i

/.

˝A

˝A

˝A

˝A

˝A ˝A

� � �

A!

A!

A!

A!A!

˝A

˝A

˝A

˝A

˝A ˝A

� � �

Ae

Ae

Ae

AeAe

A˝ � � �˝A,! '

: : :

S�i

#

: : :

I�i

#

: : :
 '

Figure 5: Computing zZn.Whistle/
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On the other hand, S�i
is isomorphic to S1

ap , and thus Z1.S�/'C . To go between the
two descriptions of Z1.S�i

/, we can use the trivialization of the Serre automorphism
A!˝A A! ' A to contract pairs of A! ’s in the tensor product, eventually arriving at
A!˝Ae A'C .

Lemma 4.7 Under the map C 'Z1.S�i
/!Z1.I�i

/'A˝�i , the element 1 maps
to X

2�.�i�1/=2�c1 ˝ � � �˝ �c�i

where the sum is over .c1; : : : ; c�i
/ 2 .Z=2Z/�i such that

P
j cj D 0 2 Z=2Z.

Proof Note that A! can be identified with the sub-bimodule of Ae generated by the
element "D 1˝1C�˝�. Unwinding the duality data for A! , we obtain that under the
trivialization of the square of the Serre automorphism, the element 1 2A corresponds
to the tensor 1

2
"˝ " in A!˝A A! . Also, the element 1 2 C corresponds to 1

2
"˝ 1

in A!˝Ae A.

It follows that the element 1 2 C maps to 2�.�iC1/=2"˝ � � � ˝ "˝ 1 in the tensor
product (7). Lemma 4.7 follows by taking canonical embedding A! ,!Ae for each A!

in the tensor product, and simplifying to A˝�i .

To complete the proof of Lemma 4.3, consider the tensor product over i D 1; : : : ; ` of
the maps Z1.S�i

/!Z1.I�i
/. By Lemma 4.7, the element ı� 2Z1.S� / maps to

Ò
iD1

�X
2�.�i�1/=2�c1 ˝ � � �˝ �c�i

�
D 2.`�n/=2�� 2A˝n;

where the sum is over .c1; : : : ; c�i
/ 2 .Z=2Z/�i such that

P
j cj D 0 2 Z=2Z. HereN`

iD1 A�i DA˝n is identified with the subspace A˝n˝� of Yn , and �� is defined
as in Proposition 1.18. Thus zZn.Whistle/ maps ı� to 2.`�n/=2�� as required.

5 The parity TQFT

In this section, we explain how the parity of a closed spin surface † can be upgraded
to a TQFT

ZpW Bordspin
! SAlg;

such that Zp.†/D .�1/p.†/ . We will give a direct but somewhat ad hoc construction,
then in Section 5C we explain how this theory can be constructed via homotopical
methods using the spin orientation of KO.
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Remark 5.1 The TQFT Zp is invertible in the sense that for each object N , the
object Zp.N / is (weakly) invertible for the monoidal structure, and for each 1– or
2–morphism M , Zp.M / is a (weakly) invertible 1– or 2–morphism. The parity
TQFT and more general invertible TQFTs are discussed in Freed [11].

5A An aside on conformal spin structures and metrics

For the construction of the TQFT, it will be helpful to make use of metrics on the
various vector bundles associated to the spin structure. Rather than making choices
and then proving the invariance of those choices it will be more convenient to work
with a particular model of the spin bordism category for which canonical metrics are
built in. The definitions and conventions in this subsection are drawn from Stolz and
Teichner [35].

Let V be a finite-dimensional (real or complex) vector space with a quadratic form q .
The Clifford algebra C`.V / is the quotient of the tensor algebra on V by the relation
v2 D �q.v/:1. We write C`d .R/ for the Clifford algebra of Rd with its canonical
positive definite quadratic form and C`�d .R/ for the Clifford algebra of Rd with
its negative definite form. We can extend the involution v 7! �v on V uniquely to
an algebra involution ˛ on C`.V /. This gives it the structure of a superalgebra (ie
a Z=2Z–graded algebra), and we can speak of supermodules, etc. Note that the Clifford
algebra C`.V / inherits an inner product from that on V .

A spin structure on V is a choice of an irreducible C`.V /–C`d .R/–superbimodule SV

with a compatible inner product (ie multiplication by elements of unit length in V

and Rn are isometries). Given two spin vector spaces V and W , the space Spin.V;W /

of spin isometries consists of an isometry f W V !W , together with a homomorphism
of bimodules �W f �SW !SV which is additionally an isometry. The map .f; �/ 7!f

exhibits Spin.V;W / as a double cover of SO.V;W / (the connected component of
O.V;W / for which there exists such a � ).

If E!X is a real vector bundle with a positive definite metric, let C`.E/!X denote
the bundle of algebras whose fibre over x 2X is the Clifford algebra C`.Ex/. A spin
structure on E is a bundle SE of irreducible C`.E/–C`d .R/–superbimodules (ie a
compatible family of spin structures on the quadratic vector spaces Ex ).

Given a smooth manifold M of dimension d , we write Lk for the (trivializable)
line bundle of k –densities on M (in our convention a d –density can be integrated
over M to get a real number). The weightless cotangent bundle T �

0
M is defined to be

L�1˝T �M . A conformal spin structure on a conformal manifold M is defined to
be a spin structure on T �

0
M .
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Note that a choice of conformal structure equips the weightless cotangent bundle
with a canonical metric, and thus the Clifford bundles, spinor bundles, etc all come
equipped with canonical metrics. Moreover, if M has boundary @M , then T �

0
M j@M is

canonically equivalent to T �
0
@M˚R, thus a conformal spin structure on M canonically

defines a conformal spin structure on the boundary.

We can define a 2–category of (topological) conformal spin cobordisms cBordspin in a
similar way to Section 1G. Note that 0– and 1–dimensional manifolds carry a unique
conformal structure. Moreover, we will consider two conformal spin 2–cobordisms
to give rise to the same 2–morphism if there is a spin diffeomorphism between them,
fixing the given isomorphisms on the boundary (such a diffeomorphism is not required
to preserve the conformal structure).

One can check that the symmetric monoidal 2–category cBordspin is equivalent
to Bordspin as defined, for example in Schommer-Pries [32]. We will not attempt
to give a rigorous proof of this statement,5 but intuitively this should be clear: a choice
of Riemannian metric on a conformal spin manifold trivializes the density bundle and
defines a spin structure in the usual sense. Moreover, the space of such Riemannian
metrics is contractible.

5B The direct construction

The construction of the 0; 1–dimensional part of the theory is taken from [35, Sec-
tion 2.3]. Given a (conformal) spin 0–manifold N , S.N / is a finite-dimensional super
vector space equipped with an inner product. We define a symmetric bilinear form bN

by bN .v; w/ D hv; i.w/i, where i is the grading involution and h�;�i is the inner
product. We set

Zp.N /D C`.S.N /; bN /:

Given a spin 1–cobordism M with @N DN0tN1 , the even spinor bundle SM on M

is a metric line bundle and thus is equipped with a canonical flat connection. The space
of flat sections Sh.M / of SM over M is called the space of harmonic spinors. The
space Sh

0
.M / of even harmonic spinors is finite-dimensional, and comes equipped

with a map
LW Sh

0 .M /! S.@N /;

given by restriction to the boundary. The morphism L is a generalized Lagrangian
in the sense of [35, Definition 2.2.9]. As explained in [35, Definition 2.2.4], the Fock

5Indeed to give such a rigorous proof, we would first need to give a more rigorous definition of the
bordism bicategory, taking care of gluing using collars eg as in [32].
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module of L is defined to be

F.L/ WD ker.L/�˝ƒ�.Im.L//:

The Fock module F.L/ carries a canonical action of C`.S.@N // or, equivalently, is a
C`.S.N0//–C`.S.N1//–bimodule. We set Zp.M /D F.L/. Note that if M is closed,
then F.L/D

Vtop
.Sh.M // is the Pfaffian line of the Dirac operator on T �

0
M . For

example, if M ' S1
ap , there are no harmonic spinors and thus Zp.S

1
ap/ is canonically

isometric to R. On the other hand, if M ' S1
per , the space of harmonic spinors is

1–dimensional and thus Zp.M / is a 1–dimensional odd metric line.

Lemma 5.2 [35, Gluing Lemma 2.2.8]6 Given conformal spin 1–cobordisms

N0
M
�!N1 and N1

M 0
�!N2

there is a canonical isomorphism

Zp.M tN1
M 0/'Zp.M /˝Zp.N1/Zp.M

0/:

It remains to explain what Zp assigns to a 2–morphism in Bordspin . Let us first
consider the case of a spin surface † with boundary M WD @†. We would like to
define an element Zp.†/ 2Zp.M /. There are various approaches to this; for example
one could use a refinement of the mod 2 index of the Dirac operator to a spin conformal
2–manifold with boundary which takes values in the Pfaffian line of the boundary.
However, we will just pursue a more down-to-earth method in terms of the parity of
closed spin manifolds obtained by gluing in discs and cylinders to †.

Let D be the unit disc in R2 equipped with its canonical conformal spin structure, and
C D S1

per � Œ0; 1� similarly equipped.

Definition 5.3 Suppose M is a closed conformal spin 1–manifold with nD periodic
components and 2nC antiperiodic components (where nD ; nC 2 Z�0 ). A capping
of M is defined to be a spin isomorphism

cW M ' @

� nDG
nD1

D t

nCG
nD1

C

�
:

The set of cappings of M is denoted Cappings.M /.

Note that a capping of M only exists if M has an even number of periodic components.
This condition is satisfied if M is the boundary of a spin surface.

6Note that in this case, all Hilbert spaces and Clifford algebras are finite-dimensional.
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Lemma 5.4 Each capping of M canonically determines an element of Zp.M / of
unit length.

Proof First consider the case where M has only antiperiodic components; the space
of harmonic spinors is 0, and thus its determinant line Zp.M / is canonically trivial.
In particular Zp.M / carries the canonical element 1. Now let us consider the case
when M has precisely two periodic components M0 and M1 . A choice of capping
allows us to define a parallel transport isometry �W Sh.M0/' Sh.M1/ which in turn
defines an element det.�/ 2Zp.M /. The general case follows.

Given a spin surface † with boundary @† D M , a capping c of M canonically
determines a closed spin surface †c by gluing along the map c .

Lemma 5.5 The assignment

Cappings.M /! f˙1g �R;

c 7! .�1/p.†c/;

factors through the map Cappings.M /!Zp.M / given by Lemma 5.4, defining an
isometry of graded metric lines

Zp.†/W Zp.M /!R:

Proof We prove this using the definition of parity via the Arf invariant of the quadratic
form 'W H1.†c IF2/!F2 associated to the spin structure. Recall that if M is a closed
loop in †, then '.ŒM �/D 0 (respectively, 1) if M has an antiperiodic (respectively,
periodic) spin structure.

Changing the choice of capping on antiperiodic components does not affect the corre-
sponding quadratic form, as one can choose representatives of cycles in H1.†c IF2/

which do not intersect the antiperiodic components. Thus we may assume M has only
periodic components. Consider a particular component M0 of M ; recall that there are
two choices of spin isomorphism S1

per 'M0 (up to spin isotopy). Given a capping c ,
we can modify c by changing the choice of S1

per 'M0 to obtain a new capping c0 .
The effect of changing c to c0 has precisely the effect of changing the value of the
quadratic form on the Poincaré dual cycle to M0 , which in turn changes the value of
the Arf invariant; simultaneously, the corresponding value of Zp.M / gets multiplied
by �1. The result follows readily from this observation.

Finally, given an arbitrary 2–morphism †W M0!M1 , where M0; M1W N0!N1 are
1–cobordisms, we can now define a map,

Zp.†/W Zp.M0/!Zp.M1/;
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of Zp.N0/–Zp.N1/–bimodules as follows. Note that, topologically, the manifold
with corners underlying † may be thought of as a spin manifold †0 with closed
boundary M 0 (ie we can smooth the corners of †). To identify the spin structure
on the boundary M 0 , let us consider the underlying spin 1–manifold with boundary
of M0 , as a cobordism

M 0
0W N0 tN1!∅0:

Taking the opposite spin structure, we have

M 0
0W N0 tN1!∅0:

Similarly, we can consider
M 0

1W ∅
0
!N0 tN1:

Thus, we can compose M 0
0

and M 0
1

in the bordism category to obtain the closed spin
1–manifold M 0 . The general principles of preservations of duality under symmetric
monoidal functors tell us that

Zp.M
0/' HomZp.N0/op˝Zp.N1/.Zp.M

0
0/;Zp.M

0
1//:

We now define Zp.†/ 2 HomZp.N0/op˝Zp.N1/.Zp.M0/;Zp.M1// to correspond to
Zp.†

0/ 2Zp.M
0/ under the above isomorphism.

It remains to check that Zp , as defined above, defines a TQFT, ie a symmetric monoidal
functor

ZpW Bordspin
! SAlg�R;m;

where SAlg�R;m is the 2–category whose objects are Clifford algebras of quadratic
vector spaces, morphisms are Fock modules associated to Lagrangian subspaces, and
2–morphisms are isomorphisms of bimodules which are also isometries for the given
inner products (see [35, Definition 2.2.4]). (We obtain a TQFT with target SAlg by
just applying ˝RC and forgetting the inner products.) This amounts to checking the
compatibility of the above definition under various kinds of gluing. We will not spell
out all the necessary compatibilities here; rather, we will prove the following gluing
law from which all necessary compatibilities may be deduced.

Proposition 5.6 Let † be a closed spin surface, and M an embedded disjoint union
of circles in † with an even number of periodic components. Define †cut;M by cutting
along M to obtain a surface with boundary M tM . Choose a capping c of M , and
let Nc denote the corresponding capping of M . We define the closed surface †ctNc;M

by capping the boundary of †cut;M according to c t Nc . Then,

p.†/D p.†ctNc;M /:
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Proof We use the definition of parity via the Arf invariant of the quadratic form on H1 .
The proof is an elementary check based on the properties of embedded spin circles
under cutting and gluing. We will give the argument in the case where M has two
periodic components (the case when M has a single antiperiodic component is proved
similarly, and all other cases can be proved by induction from these). For simplicity,
we assume further that † is connected.

Note that the genus of †ctNc;M is always one greater than the genus of †. One
can choose a symplectic basis for H1.†IF2/ which contains the class � of either
component of M (the two components necessarily define the same class in H1.†IF2/)
and its Poincaré dual �_ . The F2 –vector space H1.†ctNc IF2/ has a similar basis but
with two copies of � , �1 and �2 and their respective Poincaré duals. Here, there are
two possible cases: either �_ is periodic or antiperiodic. In the first case, precisely one
of �_

1
or �_

2
will be periodic (which one depends on the choice of c ). In the second

case, either both �_
1

and �_
2

will be periodic, or both antiperiodic. Thus in all cases,
the Arf invariant is unchanged as required.

Remark 5.7 One could also prove Proposition 5.6 by noting that the surfaces †
and †ctNc;M are spin cobordant, and the parity is a spin cobordism invariant (see
Atiyah [2]).

5C Homotopical construction

One way of thinking of the parity of a closed spin surface is in terms of the Gysin map
in KO–theory afforded by the spin structure. Namely, we have a mapZ

†

W KO.†/! KO�2.pt/' Z=2Z;

and
R
† 1D p.†/.

Similarly, one has invariants
R

M 12KO�1.pt/'Z=2Z, and
R

N 12KO.pt/DZ given
a spin 1–manifold M and a spin 0–manifold. There is a very general procedure by
which one can upgrade the assignment † 7!

R
† 1 to a TQFT.

First note that the spin orientation of KO may be thought of as a map of E1–ring
spectra

ABSW MSpin! ko :

Here, MSpin is the spectrum representing spin cobordism, and ko represents connective
KO. Thus a closed spin d –manifold M represents a class ŒM � 2�

Spin
d
D �d .MSpin/

and the element
R

M 1 is equal to the image of ŒM � in �d .KO/DKO�d .pt/ under the
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map ABS. Given a connective spectrum E (or equivalently an infinite loop space),
its fundamental 2–groupoid ��2.E/ is naturally symmetric monoidal. The morphism
ABS induces a functor of symmetric monoidal 2–groupoids on the level of fundamental
2–groupoids:

��2.MSpin/! ��2.ko/:

It remains to describe the 2–groupoids ��2.MSpin/ and ��2.ko/ in terms of bordism
categories and superalgebras respectively.

Define a 2–category Bordspin
1 as follows: the objects and morphisms of Bordspin

1 are
the same as those of Bordspin , but the 2–morphisms are given by 2–cobordisms up to
cobordism (recall that in the 2–category Bordspin , the 2–morphisms are 2–cobordisms
up to diffeomorphism). Note there is a canonical quotient functor Bordspin

!Bordspin
1 .

The following proposition is surely known, but I have been unable to track down a
precise reference; it should follow from an appropriate version of the results of Galatius,
Madsen, Tillmann and Weiss [16].

Proposition 5.8 The fundamental 2–groupoid of MSpin is equivalent as symmetric
monoidal 2–categories to Bordspin

1 .

On the other hand, we have the groupoid SAlg�R;m of invertible real metric superalge-
bras, invertible metric superbimodules, and invertible isometries of bimodules. Again,
the following result is surely known; we give a proof below.

Lemma 5.9 There is a canonical symmetric monoidal functor

CliffW ��2.ko/! SAlg�R;m:

Remark 5.10 The functor Cliff is not quite an equivalence: it induces an isomorphism
on �1 and �2 , but on �0 it induces the quotient map Z! Z=8Z.

Finally, the TQFT Zp is given by the composite:

Bordspin
! Bordspin

1 ' ��2.MSpin/ ��2.ABS/
������!��2.ko/ Cliff

���!SAlgR;m:

Proof of Lemma 5.9 Let VectR;m be the topological category of real vector spaces
equipped with an inner product, with isometries as morphisms. Recall that the space ko
is obtained by taking the group completion of this category. We will define a sym-
metric monoidal functor from VectR;m (with symmetric monoidal structure given by
orthogonal direct sum) to the 2–category SAlgR;m , which by the universal property
of group completion must factor through ko. To define such a functor, we must
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assign a superalgebra to each quadratic vector space V , a bimodule to each isometry
f W V !W , and a map of bimodules to each homotopy class of paths of isometries
ft W V !W .

The map Cliff is defined by taking a vector space V as described above to its
Clifford algebra C`.V /. An isometry f W V ! W naturally defines an invertible
C`.V /–C`.W /–bimodule Mf . Recall that a spin structure on W means a choice of an
irreducible C`.W /–C`d .R/–bimodule. Note that for any choice of spin structure SW

on W , the C`.V /–C`.W /–bimodule Mf can be identified with f �SW ˝C`d .R/ S�
W

,
where S�

W
DHomR.SW ;R/ is the C`d .R/–C`.W /–bimodule dual to SW . Moreover,

picking a compatible spin structure SV on V and a lift of f to a spin isometry .f; �/
induces an isomorphism of bimodules y�W Mf ! SV ˝C`d .R/ SW .

A path in O.V;W / is given by a family ft of isometries where t 2 Œ0; 1�. As the map
Spin.V;W /! SO.V;W / is a covering map, if we pick a lift �0 of f0 as above, then
we obtain a lift �t of ft (depending only on the homotopy class of the path). This
gives the required isomorphism of bimodules

y��1
1 ı
y�0W Mf0

!Mf1

which doesn’t depend on the choices of lift above.
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