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Gromov—Witten theory of Fano orbifold curves,
Gamma integral structures and ADE-Toda hierarchies

TODOR MILANOV
YEFENG SHEN
HSIAN-HUA TSENG

We construct an integrable hierarchy in the form of Hirota quadratic equations (HQEs)
that governs the Gromov—Witten invariants of the Fano orbifold projective curve
]P’all’a ,.a3 - The vertex operators in our construction are given in terms of the K-
theory of ]P’al1 Jaz.a; VialIritani’s I'—class modification of the Chern character map.
We also identify our HQEs with an appropriate Kac—Wakimoto hierarchy of ADE
type. In particular, we obtain a generalization of the famous Toda conjecture about

the GW invariants of P! to all Fano orbifold curves.

14N35, 17B69

1 Introduction

Witten’s conjecture [51], proved by Kontsevich [38], states that certain intersection
numbers on the Deligne-Mumford moduli spaces M g,n Of Riemann surfaces are
governed by the KdV hierarchy. By definition, the intersection numbers on Mg, are
the Gromov—Witten (GW) invariants of X = pt. It is natural to ask for a generalization
of Witten’s conjecture by allowing a more general target manifold X . On the other
hand, the examples of integrable hierarchies known at the time of Witten’s conjecture
were quite isolated, with each example being a separate study, while the possible targets
are quite diverse in nature. Nevertheless, Dubrovin and Zhang [16] managed to develop
a general theory of integrable systems, based on the notion of a Frobenius manifold
and bi-Hamiltonian geometry. Their theory, modulo a certain technical issue which
was overcome by Buryak, Posthuma and Shadrin [6; 7], proves the existence of an
integrable hierarchy that governs the GW invariants of any manifold with a semisimple
quantum cohomology.

There is another approach to integrable systems discovered by M Sato [45] and devel-
oped further by Date, Jimbo, Kashiwara and Miwa [14] and by Kac and Wakimoto [36].
The remarkable feature of this approach is that it gives an elegant and very explicit
system of differential equations that depends on the root system of an appropriate
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simple Lie algebra. Since the equations are quadratic in the partial derivatives, they are
usually called Hirota bilinear equations (HBEs) and sometimes also Hirota quadratic
equations (HQEs).

The big motivation for our project is to find out whether the integrable hierarchies in
GW theory admit a description in terms of HQEs. There is a natural candidate for root
systems, namely the set of exceptional objects in the derived category of X or, assuming
Kontsevich’s homological mirror symmetry, the set of vanishing cycles of an appropriate
Landau—Ginzburg model of X . Constructing HQESs in terms of exceptional objects
or vanishing cycles is a very difficult problem, because our knowledge about them is
very limited. If dimc (X) > 1, then only for X = P2 it is known that the exceptional
objects are classified by the solutions of the Markov equations (see Rudakov [42]) and
even in this case the structure underlying the exceptional objects seems to be quite
sophisticated and mysterious.

Although the vanishing cycles for 1-dimensional orbifolds are well understood, the
problem of finding HQE:s is still open. The goal of this paper is the case of the 1-
dimensional Fano orbifolds. We prove that the corresponding GW theory is governed
by certain Kac—Wakimoto integrable hierarchies, which we call ADE-Toda hierarchies.
Our result yields the first examples of Kac—Wakimoto hierarchies with applications
to GW theory that are neither homogeneous nor principal, as well as the first cases
where the constructed HQEs govern the GW theory of a nontoric target. While the
set of vanishing cycles in the Fano case is an affine root system of type ADE, in the
non-Fano cases (of 1-dimensional orbifolds with semisimple quantum cohomology)
the set of vanishing cycles corresponds to the real roots of a nonaffine Kac—Moody Lie
algebra. The generalization of Kac—Wakimoto hierarchies for nonaffine Kac—Moody
Lie algebras is a very challenging problem.

1.0.1 Fano orbifold curves By definition a Fano orbifold is a compact complex
orbifold with a positive anticanonical bundle. In complex dimension 1, all Fano orbifolds
are classified by triplets of positive integers @ = {a,a», a3} where a; <a, < as and

X:=L+L+L—l>0.
aq aj as
For each such a the corresponding Fano orbifold IP’al is topologically P! and it has
three orbifold points pg (k = 1,2,3) with local isotropy groups Zg, .! The case
ay =ay =asz =1 is the smooth curve P! It is easy to see that yx is the orbifold Euler

characteristic of P/}

1Using the root construction (see Abramovich, Graber and Vistoli [1] and Cadman [8]) we can construct
Pal from P! by adding Zq,—, La,— and Zg44—orbifold points
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To each Fano orbifold curve, we can uniquely associate a Dynkin diagram with a
Weyl group element op,. The triplets @ = {a,a;, a3} with x > 0 are classified by the
Dynkin diagrams of types ADE together with a choice of a branching node. In the
D and E cases there is a unique choice of a branching node, while in the A case any
node can be chosen. By removing the branching node we obtain three diagrams of type
Ag—1,k=1,2,3.1f ap =1 then the corresponding diagram is empty.

)
Y,a,—1

) ) )
Y20,-1 Y22 V21
.7 Y

N
7/3((,);3—1

Figure 1: The branching node

We label the p simple root on the k" branch of the Dynkin diagram by Vli();;' The

unique element o in the Weyl group that is assigned to the triplet a is defined by
3
— ) 0 (0)
o)) Ob = l_[ kar—1""" k251
k=1

Here h'© is the Cartan subalgebra of the corresponding simple Lie algebra g'© and
s](c(?)P: h® — h©@ is the reflection through the hyperplanes orthogonal to y,i?;. The

automorphism o}, can be extended to a Lie algebra automorphism of g‘®. We denote
by « the order of o} as an automorphism of g©.

1.0.2 Gromov-Witten theory The main objects in the orbifold GW theory of P}
are the moduli spaces Mg » (IP’a1 ,d) of orbifold stable maps f from a domain orbifold
genus-g curve X with n» marked points, to the target orbifold IP’al, such that the
homology class of the image of f is d times the fundamental class of the underlying
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curve of IP’al . The descendant GW invariants (see (8)) are intersection numbers on the
moduli space of stable maps, denoted by

vk ) g

where V/; is the jM —class on the moduli space of stable maps and ¢;j € H .=
Hcr (P}, C), the Chen—Ruan orbifold cohomology ring of P! with a unit 1 € H. As
a vector space, H is just the cohomology of the inertia orbifold IIP’a1 of IP’al. Our
main interest is a potential D, (%; ¢) in a certain Fock space (see (121)), defined by the
following generating series of GW invariants:

hE! 0°

n!

2) Da(h:q) = exp( >

g.n,d

@), ... ,qwn))g,n,d),

where Q € C* is the Novikov variable, # is a formal variable,
q(z) :=qo+q1z +q2z* +--- € H[Z],
and D, (#; q) is obtained from the total descendant potential Dy (h; t) by a dilaton shift

dm = Im _8m,11-

1.0.3 Mirror symmetry and I'—conjecture for the Milnor lattice The construction
of HQE:s for the total descendant potential D, (h;¢) is performed by applying the
methods developed by Givental [23; 24] to the Landau—Ginzburg (LG) mirror model
(see Ishibashi, Shiraishi and Takahashi [32] and Rossi [41]) of ]P’; . In order to identify
the resulting hierarchy with a Kac—Wakimoto hierarchy we follow the same strategy
as in Frenkel, Givental and Milanov [17], ie we verify that the vertex operators in our
construction provide a realization of the basic representation of an appropriate affine
Kac—Moody Lie algebra. For more details we refer to Section 3.

While in [17; 23; 24] the vertex operators are constructed in terms of period integrals,
in this paper we make use of Iritani’s integral structure [30] (see also Katzarkov,
Kontsevich and Pantev [37]), which allows us to express the vertex operators in our
construction in terms of K-theory. This observation seems to be quite general, so we
formulate a conjecture for the general case (see Conjecture 8), which we refer to as
the I"—conjecture for the Milnor lattice. One of the key results in this paper is that the
I'—conjecture for the Milnor lattice holds for the Fano orbifolds ]P’al (see Section 2.4).
This allows us to obtain an identification of the Milnor lattice and the K-ring of IP’al ,
which leads to very elegant explicit formulas for both the set of vanishing cycles and
the corresponding vertex operators.
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1.0.4 The op-twisted Kac—Wakimoto hierarchy The HQE of the op—twisted Kac—
Wakimoto hierarchy are given by the following bilinear equation for t = (t,())nez:

(3) Res;:oﬁ( Z aa@)Ea(C)@E—a(;))T@T

¢ acA©®

32
a; —1
=(1Z b 2 (008 1-180,)"

12
k=1 Gk

" ;1 (% 4£) (1@ 1 1® i) Oy, ® 1~ 1 ® am))f .
Ll)el4

Here t,(y) belongs to a certain Fock space C[y], and:

e CJy] is the algebra of polynomials on y = (y; ¢), (i,/) € I+ :=T\{(00)} X Z>y,
where

J={(k,p)€Z*|1 <k <3,1 < p=<a—1}U{(k, p) = (00), (01)}.

e The vector space C[y]Z is a direct product of copies of C[y] indexed by n € Z.
It is equipped with the structure of a module over the algebra of differential
operators in e¢® by setting

€ Dn=tn—1, Ow -T)n=nt, 7= (Tn)nez € C[J’]Z-

o AQ s the root lattice of g'®. For every root o € A?, the operator E4({) =
EQ Q) EX(¢) is defined by vertex operators E(¢) and EX(¢).

e Letag=1and m;:=(—p/ay)k fori =(k, p)€J. Let (k, p)* = (k,a,—p).
We fix a basis { H;}icy of h'® (see Section 3.2) that Hyg = Hy; and op(H;) =
2/ =1m H;, and define

P —m;—{Lk
EX(0) ::exp( ) (a|H,~)y,~,ec’"f+‘“)exp( S (alH) Z—)

G0l G0l 0yi,e —mi — Ltk

e wp and w are the fundamental weights corresponding to ¥'® and »® , and
b k,p g P gtoy, Yi,p

3 arp—1 —
E3(0) = expl(@p o) eXP(((wbloc)X ogt* — 3" ¥ 2”ﬂ(wk,p|a>)aw).

a
k=1 p=1 k

* ay(¢) is a certain coefficient which will be defined in Section 3.3 by (77).

We call the hierarchy in (3) the ADE-Toda hierarchy corresponding to the triplet a.
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1.0.5 The main theorem We fix a basis {¢;};cy of H asin Section 2 and let gy =
D qéqﬁi. Notice that ¢g9 = 1 is the unit. Then we define a sequence of formal power
series

@) ta(hiq) = (KX Q) 2" Dy(hiq +nvl), nel.
Using the change of variables
R B 9 ,_{x, i = (D),
TV kG mimi 40 - (mi ) ag, i =(k p)# D),

we identify the sequence of descendant variables qé with the dynamical variables y; ¢
of the ADE-Toda hierarchy. Our main result can be stated as follows.

Theorem 1 For any Fano orbifold curve IP’al , the sequence (t,,(%;q))nez in(4) is a
solution to the corresponding ADE-Toda hierarchy, ie the op—twisted Kac—Wakimoto
HQE (3).

The proof of Theorem 1 follows the idea of the argument of Givental and Milanov [24].
However, one of the greatest achievements of this paper is that we managed to improve
the argument in such a way that it will also apply in general for all other orbifolds.
Namely, first we used K-theory to obtain explicit formulas for the leading terms
of the period mapping. In particular, this simplifies the analysis of the monodromy
representation. Second, a certain analyticity property (see Section 4.4) of the so-called
phase factors, which was previously proved via the theory of finite reflection groups
and their relation to Artin groups, is now proved by arguments applicable in much
more general settings, as they rely only on the fact that the Gauss—Manin connection
has regular singularities and that the vertex operators are local to each other (in the
sense of the theory of vertex operator algebras).

1.0.6 Further questions The variables q?o, qgo, ... appear as parameters in the

differential equations (3) for . It is natural to expect that the op—twisted Kac—Wakimoto
HQE can be extended to include differential equations in q?o, qgo, ... as well. For
example, for Dynkin diagrams of type A, our hierarchy should agree with a certain
reduction of the 2D Toda hierarchy and the required extension was constructed by
G Carlet [9] based on the ideas of Carlet, Dubrovin and Zhang [10]. For the type D
and E cases, the extension can be constructed using the same idea as in Milanov [39]
with a slight necessary modification.

We will see in Section 5 that in the case @ = {2, 2, 2} the genus-0 potential is uniquely
determined by the integrable hierarchy and the string equation. It is tempting to
conjecture that the sequence (4) is the unique solution to the ADE-Toda hierarchy
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satisfying the string equation. Moreover, we expect that (4) can be identified with an
appropriate matrix integral.

Finally, it is very interesting to investigate the relation between the integrable hierar-
chies obtained by applying Dubrovin and Zhang’s construction [16] to the quantum
cohomology of P! and the integrable hierarchies in Theorem 1. It is natural to expect
that the two approaches yield the same integrable hierarchy. We hope to return to this
problem in the near future.

Organization of the paper The rest of this paper is organized as follows.

In Section 2, we recall the orbifold GW theory for Fano projective curves IP’al and the
corresponding LG mirror model. Then we prove that Iritani’s integral structure [30]
for IP’al corresponds to the Milnor lattice under mirror symmetry. We also use the period
mapping to identify the root system arising from the set of vanishing cycles with an
affine root system in the quantum cohomology of P!.

In Section 3, we give a Fock-space realization of the basic representations of the affine
Lie algebras of ADE type. Then we recall the Kac—Wakimoto hierarchies, construct
integrable hierarchies for affine cusp polynomials and show that these hierarchies are
related by a Laplace transform (Theorem 28).

In Section 4 we construct another hierarchy (99) and describe its relation with the
hierarchies from previous sections; see Proposition 31. Then we show that the ancestor
potential of IP’al satisfies the integrable hierarchy (99). This proves Theorem 1. In
Section 5 we consider the example a = {2, 2, 2}.
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2 Orbifold GW theory of Fano orbifold curves P! and its I'—
integral lattice

The goal in this section is to introduce some of the background on orbifold GW theory,
recall the appropriate LG mirror model, and finally prove the I'—conjecture for the
Milnor lattice.

2.1 Orbifold GW theory of IP’al and its mirror symmetry

Recall the index set
) J:=TJw U {(00), (01)}
= {(k.p) |1 <k <3,1=p<a—1}U{(k, p) = (00), (O1)}.
We fix a basis of the Chen—Ruan orbifold cohomology H := Hcr(P,; C) as follows:
o0 =1, ¢o1 =P
are the unit and the hyperplane class of the underlying P!, respectively, and
bi = Pk,p, 1:=(k,p) €T

are the units of the corresponding twisted sectors of IP’al . The cohomology degrees of
the classes are

degendi =1 i=(k.ped =1

where slightly violating the standard conventions we work with complex degree, ie
half of the usual real degrees. There is a natural involution * on J induced by orbifold
Poincaré duality

(6) (k?p)* :(k?ak_p)

The orbifold Poincaré pairing (—, —) on H is nonzero only for the following cases:
(i 9j) = %8,-,]*, where a; ;= ay, for alli = (k, p) € 7.
l

GW theory studies integrals over moduli spaces of stable maps. In this paper, we will
use both the descendant invariants and the ancestor invariants. Let us introduce their
definitions for Fano orbifold curves ]P’al . For more details on orbifold GW theory we
refer to [11] for the analytic approach and to [1] for the algebraic geometry approach. Let
d € Eff(P}) C Hy(P};Z) = Z be an effective curve class. By choosing the homology
class [P}] as a Z-basis of H,(P};Z) we may identify d with a nonnegative integer.
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Let Mg (P}, d) be the moduli space of stable orbifold maps f from a genus-g
nodal orbifold Riemann surface ¥ to P}, such that fi[X] = d. In addition, ¥ is
equipped with n marked points z, ..., z, that are pairwise distinct and not nodal
and the orbifold structure of ¥ is nontrivial only at the marked points and the nodes.
The moduli space Mg (P}, d) has a virtual fundamental cycle [Mg , (P, d)]¥™. Its
homology degree is

(7 2(3—dimP,)(g— 1)+ x-d +n).

The moduli space is naturally equipped with line bundles £; formed by the cotangent
lines? T 7%/ Aut(3,Z1.....Zy: f) and with evaluation map

ev: Mg u(Pl,d) — IP) x---x IP},
~—_————
n

obtained by evaluating f at the (orbifold) marked points zy, ..., z; and landing at the
connected component of the inertia orbifold /P! corresponding to the generator of the
automorphism group of the orbifold point z; (see [11]).

The descendant orbifold GW invariants of IP’al are intersection numbers

) SV V) gna :=/ V(b1 ® - © ) Y1y,

[Mg.n(Pd,d)]nt
where ¢; € H := Hcr(P); C), ¥; = ¢1(L;j). The total descendant potential is
;07
Da(h: 1) =exp( e 7@(1//1),...,twn))g,n,d),
g,n,d )

where Q € C* is called the Novikov variable, h, to,t1,... € H are formal variables
and t(z) ==ty + 112+ 1p2% +---.

Let w0 Mg p (Pld)y - M g,n be the forgetful morphism and
Agnd@1.....¢n) 1= T (Mg n(Pg. )" Nev* ($1 ® - @ fn))-

The ancestor orbifold GW invariants of P} are intersections numbers over the moduli
space of stable curves /Wg,n 2g—24+n>0):

© (B YV g = / Agnd@1,. o ) Y- glon,

Meg.n

2Here ¥ is the nodal Riemann surface underlying ¥ and zj € 3 is the i marked point on .
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where % is the j" v—class over M g.n- We define the total ancestor potential of IP’al
as follows:

d f— —
o) Ao XA Z0 0.t )

g.n.d

For each element ¢t € H, it is useful to introduce the double bracket notation:
-k
aD (¢ ‘/fllw- ¢n‘/’n )g.n(?) _Z ¢1¢ - ¢nl/frlz€nvt L gn+k,d

We define a total ancestor potential that depends on the choice of #:

(12) Avthi ) =exp( AT e T

g,n

According to [21] the total ancestor potential .4, (#; ¢) and the total descendant potential
Dq(h; t) are related by the quantized action of a certain symplectic transformation S;(2)
(see Section 2.2.2). We will explain the details of the quantization in the Appendix.

The quantum cup product is a family of associative commutative multiplications e;
(or just e if the reference point 7 is mentioned) in H defined for each ¢ € H via the
correlators

(Pi 1 &j. P1) = ((Di. D). PiNo,3(0).
The degree-0 part of e, at t = 0 is called the Chen—Ruan cup product. We denote it by

Ucr = *s=0lg=0

Let ¢, i € J be the corresponding coordinates of ¢;. The quantum cup product
induces on H a Frobenius structure of conformal dimension 1 with respect to the Euler

vector field
0

E = Zd,t, Xg—
01

i€J

where

di = 1 —degcg(¢) := 1—% i=(k,p)eld

2.1.1 Mirror symmetry The Frobenius structure on H arising from quantum coho-
mology can be identified with the Frobenius structure on a certain deformation space
of the affine cusp polynomial

1
(13) fa(x) = xl1 —|—x2 —|—x3 — —Xx1X2X3, X =(x1,X2,Xx3).

o
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where Q € C* is the Novikov variable. The isomorphism in the case a; = 1 was
established in [40] and the general case can be found in [41]. According to Ishibashi,
Shiraishi and Takahashi (see [32]), the Frobenius structure can be described also in the
general framework of K Saito’s theory of primitive forms. This is precisely the point
of view suitable for our purposes.

Denote the Milnor number of f, (ie the number of critical points of a Morsification
of fq) by
N+1l=a,+a,+az—1.

Denote the space of a miniversal deformation of the polynomial f, by
M = CN +1 )

Note that the cardinality of the set J is N 4+ 1, so we can enumerate the coordinates
on M via s = (s7)ie3. Recall Ty = T\ {(00), (01)}. Given s € M, we put

a a a
F(x,s) = x{" + x5 +x3° — ——x1X3x3 + 500 + Z s,xk.

i= (k p)ejlw

Q so1
Let C C M x C3 be the analytic subvariety with structure sheaf
OC = OMXCS/(axl F, 8X2F, 8X3 F);

then the Kodaira—Spencer map

d oF
(14) Tar — p«Oc, = — mod (0x, F, 0x, F,0x; F),
85, 0s; :
where p: M xC3 — M is the projection onto the first factor, is an isomorphism which
allows us to define an associative, commutative multiplication ¢ on 737. The main
result in [32] is that

w =

Q o501 dx1 /\dXz A dX3

is a primitive form in the sense of K Saito (see [43]), which allows us to construct a
Frobenius structure on M (see [44]). More precisely, the form w gives rise to a residue
pairing on O¢

1 Res , ¢)1¢2dx1 AN dXZ /\dX3
Q2e2s01 — MXCHUM Ty ph FF

(1, 92) = —
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which via the Kodaira—Spencer isomorphism (14) induces a nondegenerate bilinear
form on Tps. Let us form the following family of connections on Ty

_ylc_1 .
V=VE- =) (@) dsi.
i€j
where V€ is the Levi-Cevita connection associated with the residue pairing and Os;

is the operator of multiplication by the vector field d/ds;. Let us also introduce the
oscillatory integrals

Ja(s,2) = (=272) 732 zdyy eF9)/z ) ¢ M,
As.z

where djs is the de Rham differential on M, and A is a flat section of the bundle
on M x C*, whose fiber over a point (s, z) is given by the space of semi-infinite
homology cycles

H3(C? {x | Re(F(x,5)/z) € 0};C) = CN*1,

The fact that w is primitive means that the connection V is flat for all z # 0 and
that after identifying Tps = T, via the residue pairing, the oscillatory integrals J4
give rise to flat sections of V. Moreover, since the oscillatory integrals are weighted-
homogeneous functions if one assigns weights d; (i € J), 1/a; (1 <k <3),and x to
si, X and Q respectively, they satisfy an additional differential equation with respect
to z. Let E € Tys be the Euler vector ﬁeld

0

E = st, 3501

i€d

Note that under the Kodaira—Spencer isomorphism E corresponds to the equivalence
class of F in p«Oc . The oscillatory integrals satisfy the following differential equation:

(15) (20 + E)Ja(t,2) = 0J4(t, 2),
where 0: Tpr — Tar is the Hodge grading operator defined via
(16) 0(X)=Vy(E)-ix

where the constant % is chosen in such a way that 6 is antisymmetric with respect to
the residue pairing: (8(X),Y) =—(X,60(Y)).

The quantum cohomology computed at # = 0 is isomorphic as a Frobenius algebra
with ToM (see [32; 41]). The identification has the form

1
pi=x{+. doo=1 oo :§x1x2x3+~-
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where i = (k, p) is the index of a twisted class and the dots stand for some polynomials
that involve higher-order powers of . More precisely, using the Kodaira—Spencer
isomorphism we have

¢i:asi+.'.’ ¢00:8SOO’ ¢01:as()1+"'7

where the dots stand for some vector fields depending holomorphically on Q near
Q = 0 and vanishing at Q = 0. These additional terms are uniquely fixed by the
requirement that the vector fields ¢; (i € J) are flat, ie the residue pairing is constant
independent of Q. On the other hand the flatness of V implies that the residue pairing is
flat, therefore we can extend uniquely the isomorphism H = Ty M to an isomorphism

TH=TM

such that the residue pairing coincides with the Poincaré pairing. In other words, the
linear coordinates #;, i € J on H are functions on M such that #;(0) = 0, the vector
field d/9¢; is flat with respect to the Levi-Civita connection, and at s = 0 it coincides
with ¢;. The mirror symmetry for quantum cohomology can be stated as follows.

Theorem 2 [32, Theorem 4.1] The isomorphism M =~ H, s+ t(s) is an isomor-
phism of Frobenius manifolds, ie Ts M = T, H as Frobenius algebras.

Remark 3 Theorem 2 can be proved also by using the extended J—function of P}
(see Section 2.4.3). Namely, it is not hard to derive an identification between the
quantum cohomology D-module of ]P’al and the D-module defined by f,(x).

From now on we will make use of the residue pairing to identify 7*M =~ TM . Also
the flat Levi-Civita connection V€ allows us to construct a trivialization TM = M x
ToM , and finally, the Kodaira—Spencer map (14) together with the mirror symmetry
isomorphism gives ToM = H . In other words, we have natural trivializations

a7 T*M ~TM =~ M x H.

2.2 The period integrals, the calibration operator, and higher genus

Givental noticed that certain period integrals (see formula (18) below) in singularity
theory play a crucial role in the theory of integrable systems. In this section, we recall
Givental’s construction as well as some of its basic properties. See [23] for more
details.

Put X = M x C? and let
0: X > MxC, (s,x) (s, F(x,s)).
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The set of all (s,A) € M x C such that the fibers of ¢,
Xsp =97 (s,1)

is singular is an analytic hypersurface, called discriminant. Its complement in M x C
will be denoted by (M x C)’. The homology and cohomology groups H,(Xj 3;C)
and H%(X;;C), (s,A) € (M x C)’ form vector bundles over the base (M x C)’.
Moreover, the integral structure in the fibers allows us to define a flat connection known
as the Gauss—Manin connection.

Let us fix the point (0,1) € (M x C)’ (for Q <« 1) to be our reference point. The
vector space

b= H>(Xo,1;C)
has a very rich structure, which we would like to recall. Let
ACH

be the set of vanishing cycles, and (-|-) be the negative of the intersection pairing.
The negative sign is chosen so that («|w) = 2 for all « € A. The parallel transport
with respect to the Gauss—Manin connection induces a monodromy representation

m1((M x C)") — GL(b).
The image
W C GL(b)

of the fundamental group under this representation is a subgroup of the group of linear
transformations of h that preserve the intersection form. The Picard—Lefschetz theory
can be applied in our setting as well and W is in fact a reflection group generated by
the reflections

Se(x) =x—(x|x), a€A.

The reflection s, is the monodromy transformation along a simple loop that goes
around a generic point on the discriminant over which the cycle « vanishes. Finally,
recall that the classical monodromy o € W is the monodromy transformation along
a big loop around the discriminant. For more details on vanishing homology and
cohomology and the Picard—Lefschetz theory we refer to the book [4]. We will see in
Proposition 13 below that A is an affine root system.

The main objects in our construction are the multivalued analytic functions
1

18 10t 3) = —
(18) o (LA)=—"

aﬁ*%wf d” o,
Qr
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where the value of the RHS depends on the choice of a path avoiding the discriminant,
connecting the reference point with (¢, A). The cycle a; 3 is obtained from o € b via a
parallel transport (along the chosen path), d ~'w is any holomorphic 2—form 1 on C3
such that w = dn, and dps is the de Rham differential on M . The RHS in (18) defines
naturally a cotangent vector in 7,* M , which via the trivialization (17) is identified
with a vector in H.

The period vectors (18) are uniquely defined for all n > —1. For n < —2 there is an
ambiguity in choosing integration constants, which can be removed using the following
differential equations:

(19) Oy, I (t, 1) = =i o ItV (1, 1), i€7,
(20) O 1"t ) = 10, h),
(21) (A= E®) I, 1) =(0—n—3)IJ" (. 1).

Finally, note that the unit vector 1 € H = M has coordinates zgo0 = 1, #; = 0 for
i # (00) and that the period vectors have the following translation symmetry:

It A)=1"(—11,0) forall neZ, ach.

The oscillatory integrals are related to the period integrals via a Laplace transform
along an appropriately chosen path:

oo
(22) Ja(t,z) = (=27z)" /2 f IO (1,0 di,
uj

where u (¢) is such that (¢, u; (7)) is a point on the discriminant over which the cycle o
vanishes. The differential equations (19) are the Laplace transform of VJ 4 = 0, while
the equation (21) is the Laplace transform of the differential equation (15). Using
equations (20)—(21) we can express 1" in terms of /™1 as long as the operator
0 —n— % is invertible. This is the case for n < —2, which allows us to extend the
definition of 1™ to all n € Z.

2.2.1 Stationary phase asymptotic Let u;(¢), 1 < j < N 41 be the critical values
of F(x,t). The set
Mg C M

of all points ¢ € M such that the critical values u;(¢) form locally near ¢ a coordinate
system is open and dense. Let us fix some 7y € M; then in a neighborhood of #y the
critical values give rise to a coordinate system in which the pairing and the product e
are diagonal, ie

a/auj b B/Buj/ 25]',]'/3/811]', (8/auj,8/3uj/) = (Sj,j//Aj,
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where A; are some multivalued analytic functions on M. Following Dubrovin’s
terminology (see [15]), we refer to u; as canonical coordinates.

Remark 4 It is easy to see that the critical variety C of the function F' is nonsingular,
ie it is a manifold. It can be proved that the projection map p: C C M xC3 — M
is a finite branched covering of degree N + 1. The branching points are precisely
M\ M.

Using the canonical coordinates we can construct a trivialization of the tangent bundle

W Mox CNTL =~ TMy, (t,ej) (t, VA]%).
J

Here My C M, is an open contractible neighborhood of 7y and {e;} is the standard
basis of CV*!, where the j™ component of ej is 1, while the remaining ones
are 0. According to Givental (see [22]), there exists a unique formal asymptotic

series W, R;(z)eU/7 that satisfies the same differential equations as the oscillatory
integrals J 4, where

(23) Ri(z) =1+ Ry(n)z*. Ry(t) € End(CNT).
=1

We will make use of the formal series

(24) fathiz) =) "I 1) (-2)", ach.

nez

Example 5 Note that for the A;—singularity F(¢,x) = x2/2 + ¢ we have u :=
u1(t) =t. Up to a sign there is a unique vanishing cycle. The series (24) will be
denoted simply by f4, (¢, A;z). The corresponding period vectors can be computed
explicitly:

n—1)! e
10w =S G =0
( D i/ +1/2
—n— _ n
IA1 (u,k)—2m(k—u) s nEO

The key lemma (see [23]) is the following.

Lemma 6 Let t € My and B be a vanishing cycle vanishing over the point (¢, u;(t)).
Then for all A near uj :=u;(t), we have

St h;z) =W Re(2) ej fu,(uj,;z).
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An important corollary of Lemma 6 is this remarkable formula due to K Saito [43]:
(25) @IB) = (17 (0. 1), o = E) IV (1, 1)),

To prove this formula, first note that the differential equations (19)—(21) imply that the
RHS is independent of ¢ and A. In order to compute the RHS, let us fix € M and
let A approach one of the critical values u; () in such a way that the cycle B vanishes
over (t,u;(t)). According to Lemma 6 we have

122 =220 —up)) " ?ej + O —u))'/?).

Similarly, decomposing o« = o’ + («|B)B/2, where &' is invariant with respect to the
local monodromy, we get

106, 0) = (@|B) QA —uj) " 2ej + O((h —uj)'/?).

It is well known (see [15]) that in canonical coordinates the Euler vector field has the
form E =) u;d,, . Now itis easy to see that the RHS of (25), up to higher-order terms
in (A —uj), is («¢|B), and since the latter must be independent of A the higher-order
terms must vanish.

2.2.2 The calibration operator The calibration of the Frobenius structure on H is
by definition a gauge transformation S of the form

(26) Si(z) =1+ Set)z™". Sy(t) € End(H),
=1

such that V = SdS~!. In GW theory there is a canonical choice of calibration given
by genus-0 descendant invariants as follows (see [21]):

27) (St(2)¢i. 0j) = Bi- b)) + Y _{(piv" dj o)z~

£=0

Here

d
(vt oo = Y 2 Loyt 1.0, 02 1ma

m=>0d=>0

is defined in (11). It is a general fact in GW theory (see [21]) that
(28) Si(2) 0, =z 0+ z2E)S;(2) =0, —z 10 + 272,
where p = x PUcr. By definition the operator p acts on H as follows:

(29) p(Poo) = xpo1,  p(@i) =0 for i € T\{(00)}.
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We define a new series

(30) Ja(iz)i=S()7 falthi2).

Note that the RHS is independent of 7. Put

31) faiz) =) IO (=)™
nez

We will refer to T (1) as the calibrated limit of the period vector 1% (z, 1).

In our general set up the Novikov variable Q is a fixed nonzero constant. However,
it will be useful also to allow Q to vary in a small contractible neighborhood and to
study the dependence of the periods and their calibrated limits on Q. By definition
I8 (¢, 1) depend on Qe™!, so we simply have

Qdg I (t, 1) = B, 13V (2,1).

Using the divisor equation in GW theory, it is easy to prove (see [21]) that the gauge
transformation S;(z) satisfies the following differential equation:

2000 S1(2) = 281, S1(2) — S¢(2) (P Ucr ).

Finally, the gauge identity V = SdS~! and the differential equations (19)—(21) imply
that the calibrated limit of the period vectors satisfy the following system of differential
equations:

(32) 03I () = —P Ucg IV ()
(33) 9 I (A) = TP (),
(34) (A= p)H I () = (0 —n— 1T ().

Lemma7 (a) Let {B;}iey be abasis of h¥ := H*(Xy,1; C). Then the following
formula holds:

ISV (h) = (Boo.@) (M + (xlog A —log Q) P) + (Bor.@) P+ Y (Bi.a) A% ;.
1€0w

(b) The analytic continuation of 7&”’ (1) along a closed loop around 0 is 7{;’8}{) ),
where o is the classical monodromy.

Proof (a) Recall p acts on H by (29), while the operator 6 defined in (16) has the
form (via (17))
0(pi) = (di —3) pi. i€
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Note that the H-valued functions that follow the pairings (B;, ) are solutions to the
system (32)—(34) with n = —1. These solutions are linearly independent, therefore
they must give a basis in the space of all solutions.

(b) Now the statement follows, because it is true for 7" (z, 1), for |A| > 1, where

I ) =10 + Y (=DESe IO ). O
(=1

2.2.3 Mirror symmetry in higher genus A Frobenius manifold is called semisim-
ple if the multiplication has a semisimple basis. The Frobenius manifold

(H,(-,%),*. 900, E)

is isomorphic to the Frobenius manifold constructed from the mirror model of P} [40;
41; 32]; see Theorem 2. Using the mirror model, it is easy to see that ¢, is semisimple
for generic ¢.

For any semisimple Frobenius manifold, Givental introduced a higher genus reconstruc-
tion formula [22] using the symplectic loop space formalism [21]. Furthermore, he
conjectured that the higher genus GW ancestor invariants are uniquely determined from
its semisimple quantum cohomology. Teleman [49] has proved this conjecture. In the
case of the orbifold P!, the Frobenius manifold is semisimple at a generic point ¢ € H .
Teleman’s higher genus reconstruction theorem [49] implies that the total ancestor
potential defined in (12) can be identified with Givental’s higher genus reconstruction
formula [21] (using the quantization operator ~)

____ N+1 .
(35) Ahiq(2) = U, R [ Dulhdji/g(z)v/A))
j=1

€ (Ch,QllqO’ q1 + 1’ q2, .. ]]
and the total descendant potentials defined in (2) can be identified with
Wy A
(36) Da(ti;q(2) =" D87 A (hiq(2))
where ¢ (z) := Yo Jgez* and the coefficients /g, are defined by

N+1

D Iqe¥ie) =) qidi.
j=1

i€d
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Recall that Dy is the total descendant potential of a point and the genus-1 primary
potential

oo
F(l) _ Qd
()= E T (t,....01,n,d-

d,n=0

For the reader’s convenience, we explain the quantization formulas (35) and (36) in the
Appendix.

2.3 Iritani’s integral structure and mirror symmetry

If X is a compact complex orbifold, then using the K-ring K(X') of orbifold vector
bundles on X and a certain I'-modification of the Chern character map, Iritani has in-
troduced an integral lattice in the Chen—Ruan cohomology group Hcr(X; C) (see [30]
and also [37]). If X has semisimple quantum cohomology, then it is expected that X
has a LG mirror model and it is natural to conjecture that Iritani’s embedding of the
K—theoretic lattice coincide with the image of the Milnor lattice via an appropriate
period map. In our case, when X = IP’; , we prove the above conjecture by using the
same argument as in [30], where the toric case was proved. Moreover, we obtain an
explicit identification of the set of vanishing cycles with a certain K—theoretic affine
root system.

Let us recall Iritani’s construction in the most general case when X is a compact
complex orbifold. Let IX be the inertia orbifold of X, ie as a groupoid the points
of IX are

(IX)o = {(x.2) [ x € Xo. g € Aut(x)}

while the arrows from (x’,g’) to (x”, g”) consists of all arrows g € X from x’
to x” such that g’ o g = g o g’. It is known that IX is an orbifold consisting of
several connected components Xy, v € T := mo(|IX|). Following Iritani, we define a
linear map
W: K(X) - H*(IX:C) = (P H*(X,:C)
veT
via

(37) W(V) = (2r)”dime X/2 T x) U Qrv/—=1)% inv* ch(V).

Here U is the usual cup product in H*(/X; C). Let us recall the notation. The linear
operator

deg: H*(IX;C) —» H*(IX;C)
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is defined by deg(¢) = r¢ if ¢ € H*>"(I1X;C). The involution inv: IX — IX inverts
all arrows while on the points it acts as (x, g) — (x,g~!). If V is an orbifold vector
bundle, then we have an eigenbasis decomposition

V=P =P P V.,
veT veT 0< f<1
where pr: IX — X is the forgetful map (x, g) — x and V, r is the subbundle of
Vy := pr*(V)l|x, whose fiber over a point (x, g) € (IX)o is the eigenspace of g
corresponding to the eigenvalue e2™V=1f  For J=1....L r:=1k(V, r), we
denote by &, 7 ; the Chern roots of V; r. Then the Chern character and the I'—class
of V are defined by

L.y
h=>" Y Ve, ). T=Y" T[] TITA—f+5 1))
veT 0= f<1 veT 0= f<1 j=1

where the value of the I'—function I'(1 — /" + y) at y = §, r,; is obtained by first
expanding in Taylor’s series at y = 0 and then formally substituting y =§,, ,;. By
definition I'(X) :=T'(TX).

2.3.1 The I'-conjecture for the Milnor lattice We denote by Hcr(X; C) the vec-
tor space H*(IX; C) equipped with the Chen—Ruan cup product Ucr. We define a
shift function ¢: 7" — Q by

()= Y [dimc(TX)y,s.

0=<f<1

The Chen—Ruan product is graded homogeneous with respect to the grading

deger(@) = (r +1(v))p, ¢ € H* (X,;C).

The vector space H*(IX;C) is equipped with a Poincaré pairing, ie

($1.¢2) = /I Uiy (ga)

This pairing turns both algebras H*(IX; C) and Hcgr(X; C) into Frobenius algebras.
Let us point out also that by using the Kawasaki Riemann—Roch formula we can also
prove that the map W is compatible (up to a sign) with the natural pairing on K(X)
and the Poincaré pairing

(38) (V1 ® Vzv) _ (e”*/ije"“/jle‘I’(Vl), ‘Ij(Vz)),
where py = ¢1(TX)Ucr and Oy is the Hodge grading operator of X,

Ox = 3 dimc X —degcg -
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On the other hand, if X has a LG-mirror model, then we can define the calibrated
periods 7&_5)()») in the same way as in formulas (18) and (30). The main motivation
for the above construction is the following conjecture, which is motivated by Iritani’s
mirror symmetry theorem in [30]. To simplify the formulation we set all Novikov
variables to be 1. Using the divisor equation one can recover easily the Novikov
variables.

Conjecture 8 (I'—conjecture for the Milnor lattice) Given an integral cycle o, there
exists a class Vy, € K(X) in the K—theory of vector bundles such that, for all £ > 0,

1 /oo —As F—0) —Ox—t—1/2 —
—— | eI dr = s 25mPx (1),
V2m Jo * ¢
The conjecture can be refined even further, by saying that if « is a vanishing cycle
then V; can be represented by an exceptional object in the derived category Db(X) and

that the monodromy transformations of o correspond to certain mutation operations in
Db (X). See [19] for more discussions.

Next we describe Conjecture 8 in the case of P, .

2.3.2 The K-ring of IF’al Let @ = (ay,a,,az) be a triple of nonnegative integers
and put X = IP’al . The orbifold IF’; can be constructed as follows. Put

G={t=(,0.1) €(C) | 1! =152 =1},
We have

Py =[Ya/Gl, Ya=1{y=1.2.33) € CO\{0O} | y{' + 352 + »5* =0},

where the quotient is taken in the category of orbifolds, ie it should be viewed as an
orbifold groupoid. The K-ring of orbifold vector bundles on P} can be presented as a
quotient of the polynomial ring C[L, L,, L3] by the relations

L=LY"=L=1L%  (1-Lp)(—Lp)=0 for 1<k <k'<3.

Here L is the pullback of Op1(1) under the natural map ]P’a1 — P!, and the product is

given by tensor product of vector bundles. The orbifold vector bundle Ly is the trivial
line bundle Y, x C equipped with the following G—action

GxLy— Ly, (t,y,v)— (ty, t;v).

It is easy to see that the K-ring is generated by Ly, L,, L3, L. The first set of relations
follows from the definition of G'. To see the remaining ones, note that the coordinate
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function yz on Y, gives rise to a section of L. The Koszul complex associated with
the sections (g, yx’) is G—equivariant and it gives rise to the exact sequence

0— LY ®LY, — L{ &L}, - Op1 — 0.

This proves that (1 — Lz)(1 — Lg) =0.

2.3.3 The image of K (IPal) The connected components of IIP’a1 are indexed by
{(0,0)} UTJyy. Let us denote by P =c¢1(L). Then ¢;(Lg) = P/ay . By the adjunction
formula TX = L{L,L3L™", we get

c1(TX) = xP, X:Z+—+——1.

Furthermore, note that

0 ifk#k"and f #0,
(L, p,r =10 ifk= k" and f # p/ay:,
C otherwise.

From here we get that the eigenspace decomposition of TX is

TX ifk=0and f =0,
(TX)k,p,r =1C ifk#0and f = p/ay,
0 otherwise.

Recall that for i = (k, p) € Jw, di = di,, =1 — p/ay, we get the formulas

L(X)=T(+xP)+ Y T(d)¢i,
i€Tw
- . -
TP =152 T P im T
k
(jap)ejtw

Let us point out that in the above formulas 1, P € H*(Xo ), while ¢ , € H O(X, k,p)
is the standard generator for the twisted sector. Note that the unit of the algebra
(H*(IX;C),U) is
ch(O)=1+ ) ¢
€0

Finally, since

n«/_m

@rv=D¥Envieh (L) =1+ T p e Y g

(J,P)€ETw
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we get the formula

(39) (2n)1/2\p(L$)=1+(—yx+@)P+ > F(dj”’)qu,p-
ag

. é.mPSk,j
(] aP)Ejtw j

2.4 T —conjecture for Fano orbifold curves

Now we give a proof> of the I'—conjecture for the Milnor lattice for P1. The proof is
obtained by applying Iritani’s argument from the proof of [31, Theorem 4.11] and [31,
Theorem 5.7] and relies on the I"'—conjecture for the Milnor lattice for the Fano toric
orbifold (proven in [30])

Y :=P2 =[(C*\{0})/G]

and the explicit formulas for the J—functions of X := P} and Y. Note that X is a
suborbifold of Y.

Remark 9 There is a natural map p: P2 — P2. The above description of X = PP}
realizes X as the zero locus of a section of the line bundle p*Op2(1) on P2. Applying
the recipe of constructing mirrors of complete intersections in [20], we obtain f, as
the mirror of X'.

Notice that the line bundles Ly are restrictions of line bundles on Y and the K-ring
of Y is the quotient of the polynomial ring C[L, L,, L3] by the relations

L=L{"=L}?= L?, (1—Ly)(1—Ly)(1—L3)=0.
Put L = p*Op2(1) and P = ¢;(L). We have isomorphisms
Q=H(X:Q) = Hy(Y:Q). d+>d[P,]
and
HYY:Q) = HA(X:Q) = Q. ar (.[F,]).
The J—function of an orbifold X used by Iritani is
Jx(t,z) = L(r,2)" 1,
where T € Her(X),
L(t,2) 1= Se(—z)e Floe /=

and S is the calibration operator (27). Note that this definition differs from Givental’s
one by a sign and by the exponential factor.

3Note that ]P"} is not covered by results in [30; 31].
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2.4.1 Combinatorics of the inertia orbifolds The orbifold Y is toric. We describe
its stacky fan as follows. Put by = (a;,0), bs = (0,a,), b3 = (—a3, —a3) € Z*. The
fan of Y is

S {a kY kKDY |1 <k, k' <3},

where each set I on the RHS determines a cone in R? spanned by by, k € I. Note
that ¥ is the fan for P2. The fan map for Y sends the standard basis {e;, e, e3}
of Z3 to Z? by

Z3 — Zz, e = bk.

The connected components of /Y are parametrized by
) = {(61,62,63) |0 <c¢p <1, Zk cxbyr € 7% No for some cones ¢ € E},
where ¢ € O(X) determines the twisted sector
Ye=[{y €C’| yy = 0if c #0}/G],
which has a generic stabilizer given by the cyclic subgroup of G generated by

(eva—lcl’eZn\/—lcz’eZn\/—IQ) eG.

The inertia orbifold IX is a suborbifold of /Y and the twisted sectors of IX are
parametrized by those ¢ € O(X) for which dim(Y,) > 0, ie at most one component
of ¢ is nonzero.

2.4.2 The J—function of Y Let 1. € H°(Y,) be the dual of the fundamental class
for c e O(X) and

T = 111(1/4,,0,0) T 721(0,1/a5,0) + 731(0,0,1/a3)-

According to the mirror theorem of [13], the J—function Jy (7, z) depending on t is
equal to the S—extended /—function [13, Definition 28] with

S ={(1,0),(0,1), (—1,-1)}.
This gives

Plog Q/ ZOO ZOO 0 1" Y
_ ogQ/z
JY(T’ Z) =¢ ( Zdegy(Qd) n!Zdng(f”) Jd,n (T’ Z))’

d=0 njy,nz,n3=0

where we introduced homogeneous parameters ¢ = (#1, #2, f3) , whose dependence on ©
and Q can be determined from the expansion Jy = 1+ t/z +---, the degrees of Q
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and ¢ are

1 1 1
degy (@)= [ V) =a(-+ v b). dewy () i=degy () = 1= 1 /e,

Finally, we denoted n = (n1, n,,n3) and we used the standard multi-index notations
" =1"13713%,  n'=nylnylns!.
In order to define the component J;n let us define my;, € Z and ¢ € Q by

ng—d

=-—my+ci, 0=<c<l.
23

Then we have

1. li[ T(1—c + (P/ag)z"")

JY T,2) = ,
d,n( z) Zdng(lc)k T'(1—cx +my + (Plag)z=1)

1

where if ¢ ¢ J(X) then we set 1. = 0. In other words we sum over all (d,n) such
that at least one of the numbers ¢y is 0.

2.4.3 The J-function of X Since p*Op2(1) is a convex line bundle in the sense
of [12, Example B], the J—function of P! can be computed from that of P2 using the
quantum Lefschetz theorem of [50] and [12].

Using the embedding j: IX — IY we restrict T and 1. to H*(1X). Slightly abusing
the notation, we use the same notation for the restrictions. Note that now 1, =0 if ¢
has more than one nonzero component. The formula for Jy has the same form

Plog Q/ - - 0 " X
_ ogQ/z
Trlnz)=e (Z Z zdegx (Q9) p) zdegx (¢7) Tan @ Z))’

d=0 ny,ny,n3=0

where

1, r(1+d+1>z—1)li[ (1 —cx + (P/ag)z"")

zdegx () (14 Pz—1) C(l—cx +my + (Plag)z"1)

X
JE(1.2) =
k=1

Note that the grading takes the form
dy . 1 1 1
degX(Q)-: C1(TX):d(a—+_+__1)
d 1

while the degrees of ¢ and 1. do not change, because the restriction map preserves the
grading.

Geometry & Topology, Volume 20 (2016)



GW for Fano orbifold curves, Gamma integral structures and ADE-Toda hierarchies 2161

2.4.4 The Galois action The Picard group Pic(X) of isomorphism classes of (topo-
logical) orbifold line bundles on X can be presented as a quotient

3 . r r r
7° — Pic(X), (ri.ra,r3) = L{'LY LY
with kernel given by the relations
aijey =dzex =daszes,

where {e;,e,,e3} is the standard basis of Z3. The group Pic(X) acts naturally on the
Milnor fibration via
ve(x,0)=(-x,v-1), v=(r,r,r3) €Pic(X),
where
(\) 'X)k — eZn«/jlrk/akxk,

and the action on the remaining components is defined in such a way that

Fv-x,v-t) = F(x,t),
that is,

D), =e 2V Ip/ay | <k<3 1<p<ap-—1,
3
r
(v-1)o1 =to1 + 27V ~—1 Z way
k=1 %

(v-1)oo = loo-

Let us fix some (¢£,A) € M x C with A sufficiently large. Then for every v =
(r1, 2, r3) we can construct a path from (z,A) to (v-¢, ) as follows. Using the above
formulas we let ¢ € R3 acton M . As ¢ varies along the straight segment from 0 to
(r1,72,r3) € Z3 CR3 we get apath in M connecting ¢ and v-¢. The parallel transport
along this path with respect to the Gauss—Manin connection gives an identification
Hy(Xy.1 0 Z) = Hy(X; ;7). Combined with the Pic(X')-action on C? we get an
action
Pic(X) x Hy(X13:7) — Hy(X,3: 7). (v.@) > v(@).

Following Iritani, we refer to this as the Galois action of Pic(X') on the Milnor lattice.

Lemma 10 If the I'—conjecture for the Milnor lattice is true for some cycle o and
Vo € K(X) is the corresponding K—theoretic vector bundle, then the conjecture is true
forall v(a), v =(ry, 1z, r3) €Pic(X). Moreover, Vi) = Vo ® Ly, Ly = LTL;ZL?.
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Proof Using the vector space decomposition

Her(X) = H*(X)ea( P HEH™ (X)),

(k. p)ETw
we define a linear operator
S nep
6v: Her(X) — Her(X). 6, = kZ;‘l ; u P

where pry , is the projection onto the subspace Hé’R/ak (X). By changing the variables
y = v-Xx in the period integrals we get

IL%;)(L A) = em2mV =16y 1&6)(1)_1 -t,\) forall £eZ.
On the other hand the calibration operator satisfies

Sv—l(t)(z) = ean/jleu St(Z)e—zn\/jlepe_zﬂ«/jlcl(LU)/Z’

which can be seen easily by using that if the correlator (o Wf‘ e, Op wr]f")o,n,d is
nonzero then, since we have at least one stable map f: C — X, we have

*Ly) = v) — 0, (o Z.
X(f*Ly) /dcl(m ; @) €

Since by definition
1,7 (t.2) = Si(=9; N I (),
the above formulas imply that

T7W
Iv (@)

In particular, after taking a Laplace transform, we get

()\') — e—2ﬂﬁ9U62ﬂﬁC1 (L))o, 75()\)

1 o0
e e
N2 /0 V(@) 27

On the other hand, using the definition of ¥ we get

_)\s’i(—b()\) — e—ZﬂJj@l,eZanlcl(Ll,)s 1 /*00 e_ks’l";—E)()\‘)‘
0

WV ®Ly) = e 2V =10 2nV=la @y (y),

It remains only to notice that s7OP = (Ps)s_e and that 6, commutes with both 6
and the Chen—Ruan product multiplication operators. |
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The Milnor lattice is known to be unimodular with respect to the K—theoretic bilinear
form

(.): K(X)®z K(X) > Z, (Li,Ly)=x(Li®L})

(see [31, Section 2]). The above lemma implies that it is enough to prove that the
I"'—conjecture holds for the structure sheaf. Indeed, if this is true, then since K(X)
is generated by Pic(X), the I conjecture correspondence will embed K(X) into a
sublattice of the Milnor lattice. Since both lattices are unimodular, they must coincide.

2.4.5 The central charge Iritani’s I'—conjecture for the Milnor lattice looks different
since he works with Lefschetz thimbles. Nevertheless, our formulation is completely
equivalent. Here is the reason. Take a Lefschetz thimble A corresponding to a vanishing
cycle «a, ie for fixed (¢,z) € M x C* we fix a path C in C from u; to oo such that
Re(A/z) > 0 for all A € C and the cycle «; ; vanishes when A approaches u; . In this
way we can identify the Milnor lattice with a lattice of Lefschetz thimbles.

We claim that

o0 o0
L(t,z)"! / eMEICO @ 0y dh = o7 PlogQ /0 e MITO 0 da,
u

Jj

where L(t,z) = S; (—z)e_z_1 PlogQ ndeed, one can check easily using the quantum
differential equations that the LHS is independent of t and Q. On the other hand
we have

L(t.z)=1—z"'PlogQ+---, uj=0+--- and IS0 N)=I "N +---,

where the dots stand for terms that vanish at t = Q = 0. So modulo terms that vanish
at t = Q = 0 the LHS coincides with the RHS. Our claim follows.

We define the central charge of Vy € K(X) by
ZQVa)(t,2) := (L(t,2)2% 2P0 (V). 1).

Since we will use the result of Iritani, let us clarify the relation between our notations.
In Iritani’s notation, the central charge is defined to be

ZWW)(t,2) = Qrz)"2Qav=1)""(L(1,2)202°W(Vy), 1),  n = dimc (X).

For the LG models studied in [30] the I'—conjecture for the central charge is stated as

Qrv/=1)7" /Ae—F(x’”/zw = ZP (Va)(t. 2).
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As we see from the LG model that we use, in general one should choose n to be the
number of variables in the LG potentials. For the LG models in [30] the number of
variables coincides with the dimension of the orbifold, so this difference does not matter.

The identity in the I'—conjecture for the Milnor lattice is equivalent to

(40) MO W) dh = L(t, )20 22001,

1 o0
— e
v 2 /u,'
The number £ must be chosen sufficiently large. We will see that in our case £ = 1
works. In general £ can be chosen such that the number of variables in the LG potential
is 2 + 1. Recalling the definition of the period integrals, we transform the LHS into

(-2 @m) 2 [ FO0lzG,
A

where djs is the de Rham differential on M . In particular, since the Poincaré pairing
of the RHS with 1 corresponds to contracting the LHS with doo we get

(41) Qrz)~3? /A e FxD/24 = 7O W) (1, 2).

In order to prove the I'—conjecture for the Milnor lattice it is enough to prove that if
V = Oy, then we can find an integral cycle A such that the identity (41) holds for all
parameters ¢ of the form

t=ti1ly1+01121 +13,1131.

One can check that the partial derivatives of the LHS and the RHS of (41) with respect
to any other parameter ;. , can be expressed in terms the same differential operator
involving only f ;, 1 <k < 3. Therefore if (41) holds for all ¢ of the above form,
then (40) holds also for all such 7. As explained above, if the identity (40) holds for
a single point ¢ = #¢ then it holds for all 7 and it is equivalent to the identity in our
I'—conjecture, ie the I"'—conjecture holds for the structure sheaf. Recalling Lemma 10
we get that the I'—conjecture holds for the entire Milnor lattice.

2.4.6 The central charge as an oscillatory integral It remains only to prove (41).
Following Iritani, it is convenient to rewrite the RHS of (41) in terms of the so-called
H—function

HY (t,2) = ch(HL(t.2)),
where the K(X)-valued function

HY: M xC* - K(X)
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is defined by the equation

1= L(t,2)z 2P W(HL (1, 2)).
For the central charge Z )((0) (V') we have
(L(t,2)2°229(V), L(t, —2)(=2)° (=2)P @(HY (1, —2)))

— (\IJ(V), eﬂﬁeeﬂx/jlplp(H;(())))’

where we define (—1)R := (e”ﬁR) for all linear operators R. Recalling (38) and
the Kawasaki Riemann—Roch formula we get

ZOW)=x(HY @VV) = / HY(t,—z) U ch(VY) U Td(TX),
IX

where in the notation of Section 2.3 the Todd class of an orbifold vector bundle is a
multiplicative characteristic class defined by

lyo lvf
=3 [T 111 =
_5U — e
veT j—l oI o<f<1j=1 1—em27 fe Su.ri

The proof of formula (41) requires a simple lemma. The main ingredient is a slight
modification of the usual Laplace transform defined as follows. Let f (¢, Q; z) be any
function. Then we define

()t 0:2) = /0 ¢ f(t,—120: 2) dn.

The integral is convergent if for example f depends polynomially on Q and log Q,
which is the case that we have. Note that this Laplace transform does not commute
with the involution z > —z.

Lemma 11 Let j: IX — IY be the natural embedding. Then
JeHO (1, 03 —2) = (—z/2m)V2E(L) U L(HY)(t, Q5 —2),

where €(L) =), e(Ly) is the orbifold Euler class of L.

Proof Since j«(j*a) =€(L)Ua for every o € H*(IY), it is enough to prove that

42) LGFHDO), Q5 —2) = (—z/27) V2 HL (1, 05 —2).
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We have
Qo) V2T(X) U eV =D * v  HY (t, 0, 2) = 2 PX 7% Jx (1, 0; 2),
(2n)_1f‘(Y) UQr/—1)de inV*HI(,O)(l, 0,z)= 7Py ;=0 Jy(t, Q;z).

On the other hand, using the explicit formulas for the J—functions it is easy to check
that

LIV Qi=2) = (=) PFr(1= P/2) UJx (1. Qi —2).
In order to prove formula (42), it is enough only to recall the identities
JHE TP = ()T R ()T () T

(—2)PX (—2) % (—2)"PIPT (1 = P/2) = (=) PT (1 + P)(—2)PX (—2) %

and j*T'(Y) = T(L)T(X). O

Lemma 11 yields the following relation between the central charges of sheaves on X
and Y. Let V € K(Y). Then

ZQG*V) = (—z/2m) 2e(Z2P(V -V ® L)).
In particular,

(43) ZQ1) = (—z/20)128(2(1 - L)).

Theorem 12 For a Fano orbifold curve X = P}, given a class LY € K(X) in the
K —theory of vector bundles, there exists an integral cycle ay ,, € b such that, for all
>0,

1 ®  AsT—t —Ox—t—1/2 —
— e MTED () dh = s 12 g=Px gLy,
Szl LW )
Proof It is enough to prove (41). Let us look at the corresponding oscillatory integrals.

Recall that the LG model of Y is given by the restriction of

3

Fp2(x,t) = Z(xzk + 1 Xk )
k=1

to the complex torus x{x,x3 = @, while the corresponding primitive form is

dx1 dX2 dX3
Wp2 = ————.
F d(x1x2x3)
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Let us assume now that z and Q are real numbers such that z > 0 and Q < 0. Let
C C C3 be the chain

={xeR®|x>0,k=1,2,3}.

The oscillatory integral
(2M)—3/2/ o—Fx0)/z,)
c

is given by

o dxidx,d
Cra P [T [ et G R
0 T_-on d(x1x2x3)

where we presented the chain C as a family of cycles

I_zpg ={x €C|x1x2x3 = —zn0}.

and used the Fubini theorem. The I'—conjecture for Y was proved by Iritani [30].
Moreover, the real cycle I'_,, o corresponds to the structure sheaf Oy, so the above
integral coincides with

o0
(—1)3/2z2mz)73/2 / e 1Q2r2)ZY ()(t, —znQ; z) dn
0

= (=D)Y2(z/2m)! 2 (2P (1)).
Recalling the argument in Lemma 10 it is easy to see that the analytic continuation
around Q = 0 in the clockwise direction of 2(2 (0)(1)) is £(Z “”(L)) therefore the
cycle that we are looking for is C —C, where C is the chain obtained from C via the
monodromy transformation around Q = 0 in the clockwise direction. More precisely, C
is the family of cycles I'_;, o obtained from I"_,; o by the monodromy transformation

around Q = 0. It remains only to notice that the boundaries of C and C are the same.
Together with (43), this proves (41). O

2.5 Affine root systems and vanishing cycles

According to Theorem 12 (recall that we have to put Q = 1) and formula (39), we
have

o0

/ eI () dh

0

1 2 ~/—1m P I'(dj) @;,
+( —yx—xlogs)s—z+ E ! Ll

Ky a . 2n—1mpéy j/aj s j.p
k ()% € ]]
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where dj , =1— p/a; and y is Euler’s gamma constant, defined by

y = lim H, —Inm, Hm;:1+l+...+L'
m—00 2 m
If £ > 1, then we can recall the inverse Laplace transform and also the divisor equation

(32) to get

~ A R & VA
@ IOy ="1+ (” ~

7 Y +X(logk—Cg_1))P

)\dj,p+£—162n«/j1m5k,jdj,p¢
- o
G5t ipt=1)(djp)

where if £ =1 we set Cy:=(1/x)log Q andif £ > 1 then Cy = Cy_1 +1/£.

Proposition 13 (1) The set of vanishing cycles A C h = H(Xy,1; C) is an affine
root system of type X\, where N = ay + a> + a3 —2 and

A ifal =1,
X=49D ifa; =a; =2,
E otherwise.

(2) There exists a basis of simple roots such that the classical monodromy ¢ is an
affine Coxeter transformation.

Part (1) of Proposition 13 is due to A Takahashi (see [48]), whose proof is based on a
standard method developed by Gusein-Zade [27; 28] and A’Campo [2; 3]. We give a
proof of Proposition 13 based on Iritani’s integral structure.

We will be interested in the two maps from the sequence
(45) T™(1): h—H, arI™(1)
corresponding to n = —1 and n = 0. According to Lemma 7 we have

I'"V(1) = Boo (1—(log Q) P) + Bo1 P+ Y _ Bi ¢

€0

which proves that the map for » = —1 is an isomorphism. Using T “D(1) we equip H
with an intersection pairing (- |-), ie

(¢'19") = (@l for ¢ = 1,7V (1). ¢" =I.," (D).
The period map (45) with n = 0 has a 1-dimensional kernel because (using (34))
M) =0-p) (043 T"1) = (14 p)(1 — deger) I V(1),
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so the kernel is CP. We denote the image of 1@ (1) by H®. Let us denote by
r: H— H'? the map defined by 7@ (1) =r o I7V(1), ie

r(b) = (14 p)(1 —degcr) (H).
According to Saito’s formula (25) the intersection pairing on H takes the form
(46) @'19") = (r(¢). (1 —p)r(¢"), ¢'.¢" € H.

It follows that we can push forward the intersection form to a nondegenerate bilinear
pairing on H'®, which we denote again by (- |-). More precisely, we define

(¢l =(¢".(1-p)p"). ¢'.¢"€H®.
We denote by ATP ¢ H and A® ¢ H® the images of the set of vanishing cycles, ie
AT =TT Jae Al A ={TP(1) |ae A
A straightforward computation with formula (46) implies:
Lemma 14 Consider oy ,, as in (44). Then the cycles ay,, (1 <k <3, m € Z)
satisfy

2 ifm=n (moday),

(Otk,m|06k,n) = {1 ifm # n (mod ay),
and, for k #k’,

2 ifm=0 (moday) andn =0 (mod ay),
(e, mOkrn) =10 ifm#0 (moday)andn #0 (moday),
1 otherwise.
2.5.1 The toroidal cycle Let I'y C C3 be the torus
e :={|x1] = |x2] = 1. [x3] = ¢}.

For sufficiently large €, I's does not intersect the Milnor fiber X, ;. Hence we have a
well-defined cycle

[Te] € H3(C3\ Xo.1:Z) = H(Xo,1: Z),

where the isomorphism is given by the so called tube mapping (see [25; 26] for more
details). Let us denote by ¢ the image of [I";] under the above isomorphism.

Proposition 15 We have Ié,_l)(l, A) =2m+/—1P.
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Proof Increasing ¢ does not change the homology class [I'¢], therefore by choosing
e > 0 we may arrange that I'; does not intersect the Milnor fiber X; ; for all (¢, 1)
sufficiently close to (0, 1). In particular, the cycle ¢; ) obtained from ¢ via a parallel
transport with respect to the Gauss—Manin connection coincides with the image of [[¢]
via the tube mapping. We have (see [25; 26])

47 I(t,k,Q):=/ m 271\/_/%&%—271\/_8;&/61’ .

Comparing with the definition (18) we get
I(t, 1, Q) = —Qm)* V=15V (. 1).1).
Using the differential equation (21), we get
(48) Aoy + E)I(t,A,Q)=0.
The integral 1(z, A, Q) is analytic at (¢, A, Q) = (0, 0, 0) because it has the form

/ dxy dx, dx;
] Qe1 (G(t,x) =) —x1X2X3°

where G(¢, x) is a holomorphic function in ¢ and x. However, Equation (48) means
that 1(¢, A, Q) is homogeneous of degree 0 and since the weights of all variables are
positive, the integral must be a constant. In particular, we may set 1 = Q = A =0,
which gives

[, Q)= —v=T [ Erddys oo

[[]  X1X2X3

Note that (47) implies that I,”(z, 1) = 0. Recalling again the differential equation
(21), we get

ISV =S DP = Q) V=111, Q) P=2xV=1P. O

Corollary 16 The cycle ¢ corresponds to the skyscraper sheaf Oy := L — O, ie

§:=1IC0 (1)—ICV (1) =22v/—1P.

Oleay, of.0
Proof of Proposition 13(1) The image of the Milnor lattice in H has a Z-basis

given by
8, Vb( 1)’ )/i(_l) (l Ejtw),
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where for n =0 or —1, and i = (k, p), we get

ylgn) — 7&7()0(1) (corresponds to ),

mn . T T
v = 1oy (D=1 (D).

(=D 1

It is easy to check that the intersection diagram of the set of cycles y, ", ¥/ ™", i € Ty
is given by the Dynkin diagram on Figure 1. As usual, each node has self-intersection 2,
each edge means that the intersection of the cycles corresponding to the nodes of the
edge is —1, and no edge means that the intersection is 0. It follows that the intersection
form of the Milnor lattice is semipositive definite with 1-dimensional kernel. This is

possible only if AT is an affine root system. m]

In particular we get also that § is a Z—basis for the imaginary roots and that A® =
r(AD) is a finite root system.

2.5.2 Splitting of the affine root system It is convenient to enumerate the roots

v'. v™ . i € Ty also by )/;") (I £ j < N). The Dynkin diagram on Figure 1 is of

type X, where X = A, D or E. Let us denote by )/(;_1) the affine vertex, ie the extra

node that we have to attach to X in order to obtain the corresponding affine Dynkin
: 0

diagram X,

Vectors )/J.(O) , 1 < j < N, form a basis of simple roots of A®. Let W© be the

reflection group generated by yj(O) . It is well known that there exists a group embedding

W@ _ W which is induced by the map

§ =8 > 8 =g , 1 < < N.
j - yj(O) j - yj(_l) =] =

Given o € A? | let us define a lift @ € AT as follows:

N N
— O =D
o= E biy;" o= E bjy;~".
j=1 j=1

Then the root system A‘~! coincides with the set

{@+ns|laecA® nez,

where § =y

s+ 6 and 6 € A9 is the highest root with respect to the basis
{V;O)}]N:l (see [33]). Following Kac, we will refer to né (n € Z) as imaginary roots.
Finally, let us denote by

ATV = Hy(Xo1;Z)
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the root lattice of AP . Given & € AT such that |«|? := («|a) # 0, recall that the
reflection with respect to « is defined by

Se(x) =x _2(a|x) o
(afer)
We also define the following translation:
o (a|x)
To(x) = Sq465(X) = x + 2m

This definition induces a group embedding 7: A‘® — W . Recall that w s w™! =

Sw(e) forall w € W and @ € A" such that ||? # 0. Therefore, A‘” is a normal
subgroup of W and we have an isomorphism

W= AP xw®.

Let us emphasize that this isomorphism is not canonical — it depends on the choice of
a basis of simple roots of AL,

2.5.3 The Coxeter transformation Put o := ol()O), where

(49) ot = ]_[( Shon 1 SiaSio) € Aut(AY), £ =—1,0.

Note that while the order of the reflections that enter each factor of the above product
is important, the order in which the three factors are arranged is irrelevant since they
pairwise commute.

Proposition 17 The automorphism of A© induced by the action of the classical
monodromy o coincides with oy, .

Proof The analytic continuation in A around A = 0 of the period T &;1”)’ (1) is equiv-
alent to tensoring the line bundle L}' by TX = L{L,L;L~" and then taking the
corresponding periods. Using

(Lk - I)Lk/ = Lk —1 for k 75 k'
it is easy to check that
(L™= L;"HTX = L™ — L2 forall me Z,
TX ' =1+L7'—1+L -1+ L7 -1+ L1,
(L)'= )TX =1-L;@ D 1.
k k
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According to the above remark, the classical monodromy acts as follows:

O'(Vk,p) = VYk,p—1> (k, p) € Jiw,
o () = Vb + v +va1 +yaa +6,
U(Vk,l) =—Y1,1 — "~ Yk,ar—1 — 4.

It remains only to check that the action of Ul(;_l) is given by the same formulas modulo
the imaginary root §. m|

It is known that up to a translation the affine Coxeter transformation coincides with oy
(see [47; 46]), so part (2) of Proposition 13 follows from Proposition 17.

2.5.4 Calibrated periods in terms of the finite root system For 0 < j < N, let

a)](-_l) € HV be the fundamental weights of AL | ie

(@ v V) = 8jm-

Using the intersection form we identify H® and its dual. For 1 < j < N, let
a)j(.O) € H'9 be the fundamental weights of A® | ie

(w(°)| Oy = ;e 1< j.m<N.
We have the relation
(0 70.&) = (07 |r@) —kj(wg ", @), FeA,
where k; (1 < j < N) are the Kac labels defined by

( 1)+Zk] (= 1).

In terms of the fundamental weights, the splitting of the affine root system from the
previous section can be stated also as the following isomorphism:

AP > A %7, G (a,n), a=r@, n= (a)(() D &).
Lemma 18 The following identity holds:

ap—1

(0) + Z (§ (m—l)p)w(o) = apdp e 1< k<3,
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Proof We have explicit formulas for the simple roots

3 ap—1 ai—1
—1
O =1+xP+ Y > i v = D @7 =" " p
k=1 p=1 =1

It remains only to check that the LHS and the RHS have the same intersection pairing
with the above set of simple roots of A, O
Let x be a positive constant whose value will be specified later on. Put

(50)  Ho:= Hoo = Ho1 := (k) *0¥, Hi:=(ka)'*¢i, i €T

Note that according to Lemma 7 {H;};c5 is a op—eigenbasis of H® with o (H;) =

e~27¥=1di [ in which the intersection form takes the form

(5D (Hi|Hj) = «6ij=. 1,j€T
where for i = j = 00 € J we used that a)(O) = x~'14 P. Finally, put

| RO
= —o .
Pb > az k.p
(kap)ejtw

Proposition 19 Let @ = (a,n) € A'© x Z =~ A be a vanishing cycle. Then the
corresponding calibrated periods are given by the following formulas:
Ty — ¢ 0y, 3 —€—1
I77(A) = (=D)"(a|wy )2~ P
+ 37 @ Hp) (di = 1) -+ (di = R4 Jag e,

€0
00 = @)1+ @0 A" P+ Y (@ Hi)d =" Vai fx g,
1€Tw
_ ‘ A1 4
Iy '~ ’(k)=(a|w(°))(£+1)v + 77 (@) x(log A=Cp) + 2 V=1 (n-+(pp ) P
)\'dj-i-ﬁ
H: )~ a;
+i§(a| i*) al/Kdi(di+l)'~'(di+€)¢l

where £ > 1 and C; (£ > 1) are constants defined recursively by

1

1
CE—C€—1+E’ C()—;log Q

Proof It is enough to check the statement for the following basis of the Milnor lattice:

vy V8 vV (= (k. p) € Tw).
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Let us check the last identity for & = y,i_pl), ien=0and a = y,io;. Recalling the

explicit formulas for f&;lp_b()\) and yg p, = 0 _p — Ak, _py1, We get (recall that
dim = 1—m/ay)

4 m—1 (K'i'dk,m)"'(1 +dk,m)

7(—1—@)()\) - _

t+dy
Yk.p k'mﬁbk,m-

On the other hand, by definition H;x+/a;i/k = a;jPi«, so the identity follows from
Lemma 18. The remaining two cases are proved in the same way. a

3 ADE-Toda hierarchies

3.1 Twisted realization of the affine Lie algebra

Let g'© be a simple Lie algebra of type ADE with an invariant bilinear form (- |-),
normalized in such a way that all roots have length /2. By definition, the affine
Kac—Moody algebra corresponding to g is the vector space

g:=g%I e CKaCd
equipped with a Lie bracket defined by the following relations: for X,Y € g,
(X", Y™ = [X, Y]t" ™ + nép—m(X|Y)K,
[d, Xt"]:=n(X1"), [K.g®]:=0.
We fix a Cartan subalgebra h® C g‘® and a basis yp, y; (i €J) of simple roots such
that the corresponding Dynkin diagram has the standard shape with y; corresponding
to the branching node. If the root system is of type A, then we choose any of the nodes

to be a branching node and we have (at most) two instead of three branches. Let us
define o3 := 01(70) by formula (49).

Let AQ C h@ be the root system of g'@, ie
© ©
=D o
acA©®

The Lie algebra g‘® can be constructed in terms of the root system via the so-called
Frenkel-Kac construction [18]. Let A© f)(O) be the root lattice. There exists a
bimultiplicative function
e AVxAQ 5 (41}
satisfying
c@ Ble(B.0) = ()P, c(@.a) = (~D/2,
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where |a|? := (a|a). The map (a, B) — &(0p (), 0p(B)) is another bimultiplicative
function satisfying the above properties. It is known that all bimultiplicative functions
of the above form are equivalent (see [34, Corollary 5.5]). Hence there exists a function
v: A® — {£1} such that

(52) v(@)v(B)e(a, p) = v(a + p)e(op(a). op(B)).
There exists a set of root vectors
(53) Ao € 05
such that
[Ag, A—q] = €(a, —a)ax,

(. Ag] =