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Gromov–Witten theory of Fano orbifold curves,
Gamma integral structures and ADE-Toda hierarchies

TODOR MILANOV

YEFENG SHEN

HSIAN-HUA TSENG

We construct an integrable hierarchy in the form of Hirota quadratic equations (HQEs)
that governs the Gromov–Witten invariants of the Fano orbifold projective curve
P 1

a1;a2;a3
. The vertex operators in our construction are given in terms of the K–

theory of P 1
a1;a2;a3

via Iritani’s � –class modification of the Chern character map.
We also identify our HQEs with an appropriate Kac–Wakimoto hierarchy of ADE
type. In particular, we obtain a generalization of the famous Toda conjecture about
the GW invariants of P 1 to all Fano orbifold curves.

14N35, 17B69

1 Introduction

Witten’s conjecture [51], proved by Kontsevich [38], states that certain intersection
numbers on the Deligne–Mumford moduli spaces Mg;n of Riemann surfaces are
governed by the KdV hierarchy. By definition, the intersection numbers on Mg;n are
the Gromov–Witten (GW) invariants of X D pt. It is natural to ask for a generalization
of Witten’s conjecture by allowing a more general target manifold X . On the other
hand, the examples of integrable hierarchies known at the time of Witten’s conjecture
were quite isolated, with each example being a separate study, while the possible targets
are quite diverse in nature. Nevertheless, Dubrovin and Zhang [16] managed to develop
a general theory of integrable systems, based on the notion of a Frobenius manifold
and bi-Hamiltonian geometry. Their theory, modulo a certain technical issue which
was overcome by Buryak, Posthuma and Shadrin [6; 7], proves the existence of an
integrable hierarchy that governs the GW invariants of any manifold with a semisimple
quantum cohomology.

There is another approach to integrable systems discovered by M Sato [45] and devel-
oped further by Date, Jimbo, Kashiwara and Miwa [14] and by Kac and Wakimoto [36].
The remarkable feature of this approach is that it gives an elegant and very explicit
system of differential equations that depends on the root system of an appropriate
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simple Lie algebra. Since the equations are quadratic in the partial derivatives, they are
usually called Hirota bilinear equations (HBEs) and sometimes also Hirota quadratic
equations (HQEs).

The big motivation for our project is to find out whether the integrable hierarchies in
GW theory admit a description in terms of HQEs. There is a natural candidate for root
systems, namely the set of exceptional objects in the derived category of X or, assuming
Kontsevich’s homological mirror symmetry, the set of vanishing cycles of an appropriate
Landau–Ginzburg model of X . Constructing HQEs in terms of exceptional objects
or vanishing cycles is a very difficult problem, because our knowledge about them is
very limited. If dimC.X / > 1, then only for X D P2 it is known that the exceptional
objects are classified by the solutions of the Markov equations (see Rudakov [42]) and
even in this case the structure underlying the exceptional objects seems to be quite
sophisticated and mysterious.

Although the vanishing cycles for 1–dimensional orbifolds are well understood, the
problem of finding HQEs is still open. The goal of this paper is the case of the 1–
dimensional Fano orbifolds. We prove that the corresponding GW theory is governed
by certain Kac–Wakimoto integrable hierarchies, which we call ADE-Toda hierarchies.
Our result yields the first examples of Kac–Wakimoto hierarchies with applications
to GW theory that are neither homogeneous nor principal, as well as the first cases
where the constructed HQEs govern the GW theory of a nontoric target. While the
set of vanishing cycles in the Fano case is an affine root system of type ADE, in the
non-Fano cases (of 1–dimensional orbifolds with semisimple quantum cohomology)
the set of vanishing cycles corresponds to the real roots of a nonaffine Kac–Moody Lie
algebra. The generalization of Kac–Wakimoto hierarchies for nonaffine Kac–Moody
Lie algebras is a very challenging problem.

1.0.1 Fano orbifold curves By definition a Fano orbifold is a compact complex
orbifold with a positive anticanonical bundle. In complex dimension 1, all Fano orbifolds
are classified by triplets of positive integers aD fa1; a2; a3g where a1 � a2 � a3 and

� WD
1

a1
C

1

a2
C

1

a3
� 1> 0:

For each such a the corresponding Fano orbifold P1
a is topologically P1 and it has

three orbifold points pk (k D 1; 2; 3) with local isotropy groups Zak
.1 The case

a1D a2D a3D 1 is the smooth curve P1 . It is easy to see that � is the orbifold Euler
characteristic of P1

a .

1Using the root construction (see Abramovich, Graber and Vistoli [1] and Cadman [8]) we can construct
P1

a from P1 by adding Za1
–, Za2

– and Za3
–orbifold points

Geometry & Topology, Volume 20 (2016)



GW for Fano orbifold curves, Gamma integral structures and ADE-Toda hierarchies 2137

To each Fano orbifold curve, we can uniquely associate a Dynkin diagram with a
Weyl group element �b . The triplets aD fa1; a2; a3g with � > 0 are classified by the
Dynkin diagrams of types ADE together with a choice of a branching node. In the
D and E cases there is a unique choice of a branching node, while in the A case any
node can be chosen. By removing the branching node we obtain three diagrams of type
Aak�1 , k D 1; 2; 3. If ak D 1 then the corresponding diagram is empty.
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�
�

p p p
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Figure 1: The branching node

We label the pth simple root on the k th branch of the Dynkin diagram by 
 .0/
k;p

. The
unique element �b in the Weyl group that is assigned to the triplet a is defined by

(1) �b D

3Y
kD1

.s.0/
k;ak�1

� � � s.0/
k;2

s.0/
k;1
/:

Here h.0/ is the Cartan subalgebra of the corresponding simple Lie algebra g.0/ and
s.0/
k;p
W h.0/ ! h.0/ is the reflection through the hyperplanes orthogonal to 
 .0/

k;p
. The

automorphism �b can be extended to a Lie algebra automorphism of g.0/ . We denote
by � the order of �b as an automorphism of g.0/ .

1.0.2 Gromov–Witten theory The main objects in the orbifold GW theory of P1
a

are the moduli spaces Mg;n.P1
a ; d/ of orbifold stable maps f from a domain orbifold

genus-g curve † with n marked points, to the target orbifold P1
a , such that the

homology class of the image of f is d times the fundamental class of the underlying
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curve of P1
a . The descendant GW invariants (see (8)) are intersection numbers on the

moduli space of stable maps, denoted by

h�1 
k1

1
; : : : ; �n 

kn
n ig;n;d ;

where  j is the j th  –class on the moduli space of stable maps and �j 2 H WD

HCR.P1
a ;C/, the Chen–Ruan orbifold cohomology ring of P1

a with a unit 1 2H . As
a vector space, H is just the cohomology of the inertia orbifold IP1

a of P1
a . Our

main interest is a potential Da.„I q/ in a certain Fock space (see (121)), defined by the
following generating series of GW invariants:

(2) Da.„I q/D exp
� X

g;n;d

„
g�1 Qd

n!
hq. 1/; : : : ; q. n/ig;n;d

�
;

where Q 2C� is the Novikov variable, „ is a formal variable,

q.z/ WD q0C q1zC q2z2
C � � � 2H ŒŒz��;

and Da.„I q/ is obtained from the total descendant potential Da.„I t/ by a dilaton shift

qm D tm� ım;11:

1.0.3 Mirror symmetry and �–conjecture for the Milnor lattice The construction
of HQEs for the total descendant potential Da.„I t/ is performed by applying the
methods developed by Givental [23; 24] to the Landau–Ginzburg (LG) mirror model
(see Ishibashi, Shiraishi and Takahashi [32] and Rossi [41]) of P1

a . In order to identify
the resulting hierarchy with a Kac–Wakimoto hierarchy we follow the same strategy
as in Frenkel, Givental and Milanov [17], ie we verify that the vertex operators in our
construction provide a realization of the basic representation of an appropriate affine
Kac–Moody Lie algebra. For more details we refer to Section 3.

While in [17; 23; 24] the vertex operators are constructed in terms of period integrals,
in this paper we make use of Iritani’s integral structure [30] (see also Katzarkov,
Kontsevich and Pantev [37]), which allows us to express the vertex operators in our
construction in terms of K–theory. This observation seems to be quite general, so we
formulate a conjecture for the general case (see Conjecture 8), which we refer to as
the �–conjecture for the Milnor lattice. One of the key results in this paper is that the
�–conjecture for the Milnor lattice holds for the Fano orbifolds P1

a (see Section 2.4).
This allows us to obtain an identification of the Milnor lattice and the K–ring of P1

a ,
which leads to very elegant explicit formulas for both the set of vanishing cycles and
the corresponding vertex operators.
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1.0.4 The �b–twisted Kac–Wakimoto hierarchy The HQE of the �b–twisted Kac–
Wakimoto hierarchy are given by the following bilinear equation for � D .�n.y//n2Z :

(3) Res�D0

d�

�

� X
˛2�.0/

a˛.�/E˛.�/˝E�˛.�/

�
� ˝ �

D

�
1

12

3X
kD1

a2
k
� 1

ak

C
�

2
.@! ˝ 1� 1˝ @!/

2

C

X
.i;l/2IC

�
mi

�
C `

�
.yi;`˝ 1� 1˝yi;`/.@yi;`

˝ 1� 1˝ @yi;`
/

�
� ˝ �:

Here �n.y/ belongs to a certain Fock space CŒy�, and:

� CŒy� is the algebra of polynomials on yD .yi;`/, .i; l/2 IC WDInf.00/g�Z�0 ,
where

ID f.k;p/ 2 Z2
j 1� k � 3; 1� p � ak � 1g[ f.k;p/D .00/; .01/g:

� The vector space CŒy�Z is a direct product of copies of CŒy� indexed by n 2Z.
It is equipped with the structure of a module over the algebra of differential
operators in e! by setting

.e! � �/n D �n�1; .@! � �/n D n�n; � D .�n/n2Z 2CŒy�Z:

� �.0/ is the root lattice of g.0/ . For every root ˛ 2�.0/ , the operator E˛.�/D

E.0/
˛ .�/E�˛.�/ is defined by vertex operators E.0/

˛ .�/ and E�˛.�/.

� Let a0D 1 and mi WD .1�p=ak/� for iD .k;p/2I. Let .k;p/�D .k; ak�p/.
We fix a basis fHigi2I of h.0/ (see Section 3.2) that H00DH01 and �b.Hi/D

e2�
p
�1mi Hi , and define

E�˛.�/ WD exp
� X
.i;`/2IC

.˛jHi/yi;`�
miC`�

�
exp

� X
.i;`/2IC

.˛jHi�/
@

@yi;`

��mi�`�

�mi � `�

�
:

� !b and !k;p are the fundamental weights corresponding to 
 .0/
b

and 
 .0/
k;p

, and

E0
˛.�/D exp..!bj˛/!/ exp

��
.!bj˛/ � log �� �

3X
kD1

ak�1X
pD1

2�
p
�1

ak

.!k;pj˛/

�
@!

�
:

� a˛.�/ is a certain coefficient which will be defined in Section 3.3 by (77).

We call the hierarchy in (3) the ADE-Toda hierarchy corresponding to the triplet a .
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1.0.5 The main theorem We fix a basis f�igi2I of H as in Section 2 and let q` DP
i qi
`
�i . Notice that �00 D 1 is the unit. Then we define a sequence of formal power

series

(4) �n.„I q/D .�
�Q/

1
2

n2

Da.„I qC n
p
„1/; n 2 Z:

Using the change of variables

yi;` D
1
p
„

�di

p
�Ci

qi
`

mi.mi C �/ � � � .mi C `�/
; Ci D

�
�; i D .01/;

ak ; i D .k;p/¤ .01/;

we identify the sequence of descendant variables qi
`

with the dynamical variables yi;`

of the ADE-Toda hierarchy. Our main result can be stated as follows.

Theorem 1 For any Fano orbifold curve P1
a , the sequence .�n.„I q//n2Z in (4) is a

solution to the corresponding ADE-Toda hierarchy, ie the �b–twisted Kac–Wakimoto
HQE (3).

The proof of Theorem 1 follows the idea of the argument of Givental and Milanov [24].
However, one of the greatest achievements of this paper is that we managed to improve
the argument in such a way that it will also apply in general for all other orbifolds.
Namely, first we used K–theory to obtain explicit formulas for the leading terms
of the period mapping. In particular, this simplifies the analysis of the monodromy
representation. Second, a certain analyticity property (see Section 4.4) of the so-called
phase factors, which was previously proved via the theory of finite reflection groups
and their relation to Artin groups, is now proved by arguments applicable in much
more general settings, as they rely only on the fact that the Gauss–Manin connection
has regular singularities and that the vertex operators are local to each other (in the
sense of the theory of vertex operator algebras).

1.0.6 Further questions The variables q00
1
; q00

2
; : : : appear as parameters in the

differential equations (3) for � . It is natural to expect that the �b–twisted Kac–Wakimoto
HQE can be extended to include differential equations in q00

1
; q00

2
; : : : as well. For

example, for Dynkin diagrams of type A, our hierarchy should agree with a certain
reduction of the 2D Toda hierarchy and the required extension was constructed by
G Carlet [9] based on the ideas of Carlet, Dubrovin and Zhang [10]. For the type D
and E cases, the extension can be constructed using the same idea as in Milanov [39]
with a slight necessary modification.

We will see in Section 5 that in the case aD f2; 2; 2g the genus-0 potential is uniquely
determined by the integrable hierarchy and the string equation. It is tempting to
conjecture that the sequence (4) is the unique solution to the ADE-Toda hierarchy
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satisfying the string equation. Moreover, we expect that (4) can be identified with an
appropriate matrix integral.

Finally, it is very interesting to investigate the relation between the integrable hierar-
chies obtained by applying Dubrovin and Zhang’s construction [16] to the quantum
cohomology of P1

a and the integrable hierarchies in Theorem 1. It is natural to expect
that the two approaches yield the same integrable hierarchy. We hope to return to this
problem in the near future.

Organization of the paper The rest of this paper is organized as follows.

In Section 2, we recall the orbifold GW theory for Fano projective curves P1
a and the

corresponding LG mirror model. Then we prove that Iritani’s integral structure [30]
for P1

a corresponds to the Milnor lattice under mirror symmetry. We also use the period
mapping to identify the root system arising from the set of vanishing cycles with an
affine root system in the quantum cohomology of P1

a .

In Section 3, we give a Fock-space realization of the basic representations of the affine
Lie algebras of ADE type. Then we recall the Kac–Wakimoto hierarchies, construct
integrable hierarchies for affine cusp polynomials and show that these hierarchies are
related by a Laplace transform (Theorem 28).

In Section 4 we construct another hierarchy (99) and describe its relation with the
hierarchies from previous sections; see Proposition 31. Then we show that the ancestor
potential of P1

a satisfies the integrable hierarchy (99). This proves Theorem 1. In
Section 5 we consider the example aD f2; 2; 2g.
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2 Orbifold GW theory of Fano orbifold curves P 1
a and its �–

integral lattice

The goal in this section is to introduce some of the background on orbifold GW theory,
recall the appropriate LG mirror model, and finally prove the �–conjecture for the
Milnor lattice.

2.1 Orbifold GW theory of P 1
a and its mirror symmetry

Recall the index set

(5) I WD Itw[f.00/; .01/g

WD
˚
.k;p/ j 1� k � 3; 1� p � ak � 1

	
[f.k;p/D .00/; .01/g:

We fix a basis of the Chen–Ruan orbifold cohomology H WDHCR.P1
a IC/ as follows:

�00 D 1; �01 D P

are the unit and the hyperplane class of the underlying P1 , respectively, and

�i D �k;p; i WD .k;p/ 2 Itw

are the units of the corresponding twisted sectors of P1
a . The cohomology degrees of

the classes are

degCR �i D
p

ak

; i D .k;p/ 2 I; a0 WD 1;

where slightly violating the standard conventions we work with complex degree, ie
half of the usual real degrees. There is a natural involution � on I induced by orbifold
Poincaré duality

(6) .k;p/� D .k; ak �p/:

The orbifold Poincaré pairing .�;�/ on H is nonzero only for the following cases:

.�i ; �j /D
1

ai
ıi;j� ; where ai WD ak for all i D .k;p/ 2 I:

GW theory studies integrals over moduli spaces of stable maps. In this paper, we will
use both the descendant invariants and the ancestor invariants. Let us introduce their
definitions for Fano orbifold curves P1

a . For more details on orbifold GW theory we
refer to [11] for the analytic approach and to [1] for the algebraic geometry approach. Let
d 2 Eff.P1

a /�H2.P
1
a IZ/ŠZ be an effective curve class. By choosing the homology

class ŒP1
a � as a Z–basis of H2.P

1
a IZ/ we may identify d with a nonnegative integer.
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Let Mg;n.P1
a ; d/ be the moduli space of stable orbifold maps f from a genus-g

nodal orbifold Riemann surface † to P1
a , such that f�Œ†� D d . In addition, † is

equipped with n marked points z1; : : : ; zn that are pairwise distinct and not nodal
and the orbifold structure of † is nontrivial only at the marked points and the nodes.
The moduli space Mg;n.P1

a ; d/ has a virtual fundamental cycle ŒMg;n.P1
a ; d/�

virt . Its
homology degree is

(7) 2
�
.3� dim P1

a /.g� 1/C� � d C n
�
:

The moduli space is naturally equipped with line bundles Lj formed by the cotangent
lines2 T �

xzj
x†=Aut.x†;xz1; : : : ;xznIf / and with evaluation map

evWMg;n.P
1
a ; d/! IP1

a � � � � � IP1
a„ ƒ‚ …

n

;

obtained by evaluating f at the (orbifold) marked points z1; : : : ; zn and landing at the
connected component of the inertia orbifold IP1

a corresponding to the generator of the
automorphism group of the orbifold point zj (see [11]).

The descendant orbifold GW invariants of P1
a are intersection numbers

(8) h�1  
k1

1
; : : : ; �n 

kn
n ig;n;d WD

Z
ŒMg;n.P1

a ;d/�
virt

ev�.�1˝ � � �˝�n/  
k1

1
� � � kn

n ;

where �j 2H WDHCR.P1
a IC/,  j D c1.Lj /. The total descendant potential is

Da.„I t/D exp
� X

g;n;d

„
g�1 Qd

n!
ht. 1/; : : : ; t. n/ig;n;d

�
;

where Q 2C� is called the Novikov variable, „, t0; t1; : : : 2H are formal variables
and t.z/ WD t0C t1zC t2z2C � � � .

Let � WMg;n.P1
a ; d/!Mg;n be the forgetful morphism and

ƒg;n;d .�1; : : : ; �n/ WD ��
�
ŒMg;n.P

1
a ; d/�

virt
\ ev�.�1˝ � � �˝�n/

�
:

The ancestor orbifold GW invariants of P1
a are intersections numbers over the moduli

space of stable curves Mg;n (2g� 2C n> 0):

(9) h�1
x 

k1

1
; : : : ; �n

x kn
n ig;n;d WD

Z
Mg;n

ƒg;n;d .�1; : : : ; �n/ x 
k1

1
� � � x kn

n ;

2Here x† is the nodal Riemann surface underlying † and xzj 2
x† is the i th marked point on x† .
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where x j is the j th  –class over Mg;n . We define the total ancestor potential of P1
a

as follows:

(10) Aa.„I t/ WD exp
� X

g;n;d

„
g�1 Qd

n!
ht. x 1/; : : : ; t. x n/ig;n;d

�
:

For each element t 2H , it is useful to introduce the double bracket notation:

(11) hh�1
x 

k1

1
; : : : ; �n

x kn
n iig;n.t/ WD

X
k;d

Qd

k!
h�1
x 

k1

1
; : : : ; �n

x kn
n ; t; : : : ; tig;nCk;d

We define a total ancestor potential that depends on the choice of t :

(12) At .„I t/D exp
�X

g;n

„
g�1 1

n!
hht. x 1/; : : : ; t. x n/iig;n.t/

�
:

According to [21] the total ancestor potential At .„I t/ and the total descendant potential
Da.„I t/ are related by the quantized action of a certain symplectic transformation St .z/

(see Section 2.2.2). We will explain the details of the quantization in the Appendix.

The quantum cup product is a family of associative commutative multiplications � t

(or just � if the reference point t is mentioned) in H defined for each t 2H via the
correlators

.�i � t �j ; �k/D hh�i ; �j ; �kii0;3.t/:

The degree-0 part of � t at t D 0 is called the Chen–Ruan cup product. We denote it by

[CR D � tD0jQD0

Let ti , i 2 I be the corresponding coordinates of �i . The quantum cup product
induces on H a Frobenius structure of conformal dimension 1 with respect to the Euler
vector field

E D
X
i2I

di ti
@

@ti
C�

@

@t01

;

where
di D 1� degCR.�i/ WD 1�

p

ak

; i D .k;p/ 2 I:

2.1.1 Mirror symmetry The Frobenius structure on H arising from quantum coho-
mology can be identified with the Frobenius structure on a certain deformation space
of the affine cusp polynomial

(13) fa.x/D x
a1

1
Cx

a2

2
Cx

a3

3
�

1

Q
x1x2x3; x D .x1;x2;x3/:
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where Q 2 C� is the Novikov variable. The isomorphism in the case a1 D 1 was
established in [40] and the general case can be found in [41]. According to Ishibashi,
Shiraishi and Takahashi (see [32]), the Frobenius structure can be described also in the
general framework of K Saito’s theory of primitive forms. This is precisely the point
of view suitable for our purposes.

Denote the Milnor number of fa (ie the number of critical points of a Morsification
of fa ) by

N C 1D a1C a2C a3� 1:

Denote the space of a miniversal deformation of the polynomial fa by

M DCNC1:

Note that the cardinality of the set I is N C 1, so we can enumerate the coordinates
on M via s D .si/i2I . Recall Itw D I n f.00/; .01/g. Given s 2M , we put

F.x; s/D x
a1

1
Cx

a2

2
Cx

a3

3
�

1

Qes01
x1x2x3C s00C

X
iD.k;p/2Itw

si x
p

k
:

Let C �M �C3 be the analytic subvariety with structure sheaf

OC DOM�C3=.@x1
F; @x2

F; @x3
F /I

then the Kodaira–Spencer map

(14) TM ! p�OC ;
@

@si
7!
@F

@si
mod .@x1

F; @x2
F; @x3

F /;

where pW M �C3!M is the projection onto the first factor, is an isomorphism which
allows us to define an associative, commutative multiplication � on TM . The main
result in [32] is that

! D

p
�1

Qes01
dx1 ^ dx2 ^ dx3

is a primitive form in the sense of K Saito (see [43]), which allows us to construct a
Frobenius structure on M (see [44]). More precisely, the form ! gives rise to a residue
pairing on OC

.�1; �2/D�
1

Q2e2 s01
ResM�C3=M

�1�2 dx1 ^ dx2 ^ dx3

@x1
F @x2

F @x3
F

;
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which via the Kodaira–Spencer isomorphism (14) induces a nondegenerate bilinear
form on TM . Let us form the following family of connections on TM

r D r
LC
�

1

z

X
i2I

.@si
�/ dsi ;

where rLC is the Levi-Cevita connection associated with the residue pairing and @si
�

is the operator of multiplication by the vector field @=@si . Let us also introduce the
oscillatory integrals

JA.s; z/D .�2�z/�3=2 zdM

Z
As;z

eF.x;s/=z! 2 T �s M;

where dM is the de Rham differential on M , and A is a flat section of the bundle
on M �C� , whose fiber over a point .s; z/ is given by the space of semi-infinite
homology cycles

H3

�
C3; fx j Re.F.x; s/=z/� 0gIC

�
ŠCNC1:

The fact that ! is primitive means that the connection r is flat for all z ¤ 0 and
that after identifying TM Š T �

M
via the residue pairing, the oscillatory integrals JA

give rise to flat sections of r . Moreover, since the oscillatory integrals are weighted-
homogeneous functions if one assigns weights di (i 2 I), 1=ak (1� k � 3), and � to
si , xk and Q respectively, they satisfy an additional differential equation with respect
to z . Let E 2 TM be the Euler vector field

E D
X
i2I

disi
@

@si
C�

@

@s01

:

Note that under the Kodaira–Spencer isomorphism E corresponds to the equivalence
class of F in p�OC . The oscillatory integrals satisfy the following differential equation:

(15) .z@zCE/JA.t; z/D �JA.t; z/;

where � W TM ! TM is the Hodge grading operator defined via

(16) �.X /DrLC
X .E/� 1

2
X

where the constant 1
2

is chosen in such a way that � is antisymmetric with respect to
the residue pairing: .�.X /;Y /D�.X; �.Y //.

The quantum cohomology computed at t D 0 is isomorphic as a Frobenius algebra
with T0M (see [32; 41]). The identification has the form

�i D x
p

k
C � � � ; �00 D 1; �01 D

1

Q
x1x2x3C � � � :
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where i D .k;p/ is the index of a twisted class and the dots stand for some polynomials
that involve higher-order powers of Q. More precisely, using the Kodaira–Spencer
isomorphism we have

�i D @si
C � � � ; �00 D @s00

; �01 D @s01
C � � � ;

where the dots stand for some vector fields depending holomorphically on Q near
Q D 0 and vanishing at Q D 0. These additional terms are uniquely fixed by the
requirement that the vector fields �i .i 2 I/ are flat, ie the residue pairing is constant
independent of Q. On the other hand the flatness of r implies that the residue pairing is
flat, therefore we can extend uniquely the isomorphism H Š T0M to an isomorphism

TH Š TM

such that the residue pairing coincides with the Poincaré pairing. In other words, the
linear coordinates ti , i 2 I on H are functions on M such that ti.0/D 0, the vector
field @=@ti is flat with respect to the Levi-Civita connection, and at s D 0 it coincides
with �i . The mirror symmetry for quantum cohomology can be stated as follows.

Theorem 2 [32, Theorem 4.1] The isomorphism M ŠH; s 7! t.s/ is an isomor-
phism of Frobenius manifolds, ie TsM Š Tt.s/H as Frobenius algebras.

Remark 3 Theorem 2 can be proved also by using the extended J–function of P1
a

(see Section 2.4.3). Namely, it is not hard to derive an identification between the
quantum cohomology D–module of P1

a and the D–module defined by fa.x/.

From now on we will make use of the residue pairing to identify T �M Š TM . Also
the flat Levi-Civita connection rLC allows us to construct a trivialization TM ŠM �

T0M , and finally, the Kodaira–Spencer map (14) together with the mirror symmetry
isomorphism gives T0M ŠH . In other words, we have natural trivializations

(17) T �M Š TM ŠM �H:

2.2 The period integrals, the calibration operator, and higher genus

Givental noticed that certain period integrals (see formula (18) below) in singularity
theory play a crucial role in the theory of integrable systems. In this section, we recall
Givental’s construction as well as some of its basic properties. See [23] for more
details.

Put X DM �C3 and let

'W X !M �C; .s;x/ 7! .s;F.x; s//:
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The set of all .s; �/ 2M �C such that the fibers of ' ,

Xs;� WD '
�1.s; �/

is singular is an analytic hypersurface, called discriminant. Its complement in M �C
will be denoted by .M �C/0 . The homology and cohomology groups H2.Xs;�IC/
and H 2.Xs;�IC/, .s; �/ 2 .M �C/0 form vector bundles over the base .M �C/0 .
Moreover, the integral structure in the fibers allows us to define a flat connection known
as the Gauss–Manin connection.

Let us fix the point .0; 1/ 2 .M �C/0 (for Q� 1) to be our reference point. The
vector space

hDH2.X0;1IC/

has a very rich structure, which we would like to recall. Let

�� h

be the set of vanishing cycles, and . � j � / be the negative of the intersection pairing.
The negative sign is chosen so that .˛j˛/ D 2 for all ˛ 2 �. The parallel transport
with respect to the Gauss–Manin connection induces a monodromy representation

�1..M �C/0/! GL.h/:

The image
W � GL.h/

of the fundamental group under this representation is a subgroup of the group of linear
transformations of h that preserve the intersection form. The Picard–Lefschetz theory
can be applied in our setting as well and W is in fact a reflection group generated by
the reflections

s˛.x/D x� .˛jx/˛; ˛ 2�:

The reflection s˛ is the monodromy transformation along a simple loop that goes
around a generic point on the discriminant over which the cycle ˛ vanishes. Finally,
recall that the classical monodromy � 2W is the monodromy transformation along
a big loop around the discriminant. For more details on vanishing homology and
cohomology and the Picard–Lefschetz theory we refer to the book [4]. We will see in
Proposition 13 below that � is an affine root system.

The main objects in our construction are the multivalued analytic functions

(18) I .n/˛ .t; �/D�
1

2�
@nC1
�

dM

Z
˛t;�

d�1!;
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where the value of the RHS depends on the choice of a path avoiding the discriminant,
connecting the reference point with .t; �/. The cycle ˛t;� is obtained from ˛ 2 h via a
parallel transport (along the chosen path), d�1! is any holomorphic 2–form � on C3

such that !D d�, and dM is the de Rham differential on M . The RHS in (18) defines
naturally a cotangent vector in T �t M , which via the trivialization (17) is identified
with a vector in H .

The period vectors (18) are uniquely defined for all n� �1. For n� �2 there is an
ambiguity in choosing integration constants, which can be removed using the following
differential equations:

@ti
I .n/˛ .t; �/D��i � I .nC1/

˛ .t; �/; i 2 I;(19)

@� I .n/˛ .t; �/D I .nC1/
˛ .t; �/;(20)

.��E�/@�I .n/˛ .t; �/D
�
� � n� 1

2

�
I .n/˛ .t; �/:(21)

Finally, note that the unit vector 1 2 H Š M has coordinates t00 D 1, ti D 0 for
i ¤ .00/ and that the period vectors have the following translation symmetry:

I .n/˛ .t; �/D I .n/˛ .t ��1; 0/ for all n 2 Z; ˛ 2 h:

The oscillatory integrals are related to the period integrals via a Laplace transform
along an appropriately chosen path:

(22) JA.t; z/D .�2�z/�1=2

Z 1
uj

e�=zI .0/˛ .t; �/ d�;

where uj .t/ is such that .t;uj .t// is a point on the discriminant over which the cycle ˛
vanishes. The differential equations (19) are the Laplace transform of rJA D 0, while
the equation (21) is the Laplace transform of the differential equation (15). Using
equations (20)–(21) we can express I .n/ in terms of I .nC1/ as long as the operator
� � n� 1

2
is invertible. This is the case for n � �2, which allows us to extend the

definition of I .n/ to all n 2 Z.

2.2.1 Stationary phase asymptotic Let uj .t/, 1� j �N C1 be the critical values
of F.x; t/. The set

Mss �M

of all points t 2M such that the critical values uj .t/ form locally near t a coordinate
system is open and dense. Let us fix some t0 2Mss ; then in a neighborhood of t0 the
critical values give rise to a coordinate system in which the pairing and the product �
are diagonal, ie

@=@uj � @=@uj 0 D ıj ;j 0@=@uj ; .@=@uj ; @=@uj 0/D ıj ;j 0=�j ;
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where �j are some multivalued analytic functions on Mss . Following Dubrovin’s
terminology (see [15]), we refer to uj as canonical coordinates.

Remark 4 It is easy to see that the critical variety C of the function F is nonsingular,
ie it is a manifold. It can be proved that the projection map pW C �M �C3!M

is a finite branched covering of degree N C 1. The branching points are precisely
M nMss .

Using the canonical coordinates we can construct a trivialization of the tangent bundle

‰W M0 �CNC1
Š TM0; .t; ej / 7!

�
t;
p
�j

@

@uj

�
:

Here M0 �Mss is an open contractible neighborhood of t0 and fej g is the standard
basis of CNC1 , where the j th component of ej is 1, while the remaining ones
are 0. According to Givental (see [22]), there exists a unique formal asymptotic
series ‰tRt .z/e

Ut=z that satisfies the same differential equations as the oscillatory
integrals JA , where

(23) Rt .z/D 1C

1X
`D1

R`.t/z
`; R`.t/ 2 End.CNC1/:

We will make use of the formal series

(24) f˛.t; �I z/D
X
n2Z

I .n/˛ .t; �/ .�z/n; ˛ 2 h:

Example 5 Note that for the A1–singularity F.t;x/ D x2=2 C t we have u WD

u1.t/ D t . Up to a sign there is a unique vanishing cycle. The series (24) will be
denoted simply by fA1

.t; �I z/. The corresponding period vectors can be computed
explicitly:

I .n/A1
.u; �/D .�1/n

.2n� 1/!!

2n�1=2
.��u/�n�1=2; n� 0

I .�n�1/
A1

.u; �/D 2
2nC1=2

.2nC 1/!!
.��u/nC1=2; n� 0:

The key lemma (see [23]) is the following.

Lemma 6 Let t 2Mss and ˇ be a vanishing cycle vanishing over the point .t;uj .t//.
Then for all � near uj WD uj .t/, we have

fˇ.t; �I z/D‰tRt .z/ ej fA1
.uj ; �I z/ :
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An important corollary of Lemma 6 is this remarkable formula due to K Saito [43]:

(25) .˛jˇ/D .I .0/˛ .t; �/; .��E �/I .0/
ˇ
.t; �//:

To prove this formula, first note that the differential equations (19)–(21) imply that the
RHS is independent of t and �. In order to compute the RHS, let us fix t 2Mss and
let � approach one of the critical values uj .t/ in such a way that the cycle ˇ vanishes
over .t;uj .t//. According to Lemma 6 we have

I .0/
ˇ
.t; �/D 2.2.��uj //

�1=2ej CO..��uj /
1=2/:

Similarly, decomposing ˛ D ˛0C .˛jˇ/ˇ=2, where ˛0 is invariant with respect to the
local monodromy, we get

I .0/˛ .t; �/D .˛jˇ/ .2.��uj //
�1=2ej CO..��uj /

1=2/:

It is well known (see [15]) that in canonical coordinates the Euler vector field has the
form ED

P
uj@uj . Now it is easy to see that the RHS of (25), up to higher-order terms

in .��uj /, is .˛jˇ/, and since the latter must be independent of � the higher-order
terms must vanish.

2.2.2 The calibration operator The calibration of the Frobenius structure on H is
by definition a gauge transformation S of the form

(26) St .z/D 1C

1X
`D1

S`.t/z
�`; S`.t/ 2 End.H /;

such that r D SdS�1 . In GW theory there is a canonical choice of calibration given
by genus-0 descendant invariants as follows (see [21]):

(27) .St .z/�i ; �j /D .�i ; �j /C

1X
`D0

hh�i 
`; �j ii0;2.t/z

�`�1:

Here

hh�i 
`; �j ii0;2.t/D

X
m�0

X
d�0

Qd

m!
h�i 

`; �j ; t; : : : ; ti0;2Cm;d

is defined in (11). It is a general fact in GW theory (see [21]) that

(28) St .z/
�1.@z � z�1� C z�2E �/St .z/D @z � z�1� C z�2�;

where �D �P[CR . By definition the operator � acts on H as follows:

(29) �.�00/D ��01; �.�i/D 0 for i 2 Inf.00/g:
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We define a new series

(30) zf˛.�I z/ WD St .z/
�1 f˛.t; �I z/:

Note that the RHS is independent of t . Put

(31) zf˛.�I z/D
X
n2Z

zI .n/˛ .�/ .�z/n:

We will refer to zI .n/˛ .�/ as the calibrated limit of the period vector I .n/˛ .t; �/.

In our general set up the Novikov variable Q is a fixed nonzero constant. However,
it will be useful also to allow Q to vary in a small contractible neighborhood and to
study the dependence of the periods and their calibrated limits on Q. By definition
I .n/˛ .t; �/ depend on Qet01 , so we simply have

Q@Q I .n/˛ .t; �/D @t01
I .n/˛ .t; �/:

Using the divisor equation in GW theory, it is easy to prove (see [21]) that the gauge
transformation St .z/ satisfies the following differential equation:

zQ@Q St .z/D z@t01
St .z/�St .z/ .P [CR /:

Finally, the gauge identity r D S dS�1 and the differential equations (19)–(21) imply
that the calibrated limit of the period vectors satisfy the following system of differential
equations:

Q@Q
zI .n/˛ .�/D�P [CR zI

.nC1/
˛ .�/(32)

@� zI
.n/
˛ .�/D zI .nC1/

˛ .�/;(33)

.�� �/@� zI
.n/
˛ .�/D

�
� � n� 1

2

�
zI .n/˛ .�/:(34)

Lemma 7 (a) Let fBigi2I be a basis of h_ WDH 2.X0;1IC/. Then the following
formula holds:

zI .�1/
˛ .�/D hB00; ˛i

�
�1C .� log�� log Q/P

�
ChB01; ˛iP C

X
i2Itw

hBi ; ˛i�
di �i :

(b) The analytic continuation of zI .n/˛ .�/ along a closed loop around 0 is zI .n/
�.˛/

.�/,
where � is the classical monodromy.

Proof (a) Recall � acts on H by (29), while the operator � defined in (16) has the
form (via (17))

�.�i/D
�
di �

1
2

�
�i ; i 2 I:
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Note that the H–valued functions that follow the pairings hBi ; ˛i are solutions to the
system (32)–(34) with n D �1. These solutions are linearly independent, therefore
they must give a basis in the space of all solutions.

(b) Now the statement follows, because it is true for I .n/˛ .t; �/, for j�j � 1, where

I .n/˛ .t; �/D zI .n/˛ .�/C

1X
`D1

.�1/`S`.t/zI
.nC`/
˛ .�/:

2.2.3 Mirror symmetry in higher genus A Frobenius manifold is called semisim-
ple if the multiplication has a semisimple basis. The Frobenius manifold

.H; . � ; � /; � t ; �00;E/

is isomorphic to the Frobenius manifold constructed from the mirror model of P1
a [40;

41; 32]; see Theorem 2. Using the mirror model, it is easy to see that � t is semisimple
for generic t .

For any semisimple Frobenius manifold, Givental introduced a higher genus reconstruc-
tion formula [22] using the symplectic loop space formalism [21]. Furthermore, he
conjectured that the higher genus GW ancestor invariants are uniquely determined from
its semisimple quantum cohomology. Teleman [49] has proved this conjecture. In the
case of the orbifold P1

a , the Frobenius manifold is semisimple at a generic point t 2H .
Teleman’s higher genus reconstruction theorem [49] implies that the total ancestor
potential defined in (12) can be identified with Givental’s higher genus reconstruction
formula [21] (using the quantization operator y�)

(35) At .„I q.z//Dc‰t
cRt

b‰�1
t

NC1Y
jD1

Dpt.„�j I
jq.z/

p
�j /

2C„;QŒŒq0; q1C 1; q2; : : :��

and the total descendant potentials defined in (2) can be identified with

(36) Da.„I q.z//D eF .1/.t/ yS�1
t At .„I q.z// ;

where jq.z/ WD
P1
`D0

jq`z
` and the coefficients jq` are defined by

NC1X
jD1

jq`‰.ej /D
X
i2I

qi
`�i :
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Recall that Dpt is the total descendant potential of a point and the genus-1 primary
potential

F .1/.t/D

1X
d;nD0

Qd

n!
ht; : : : ; ti1;n;d :

For the reader’s convenience, we explain the quantization formulas (35) and (36) in the
Appendix.

2.3 Iritani’s integral structure and mirror symmetry

If X is a compact complex orbifold, then using the K–ring K.X / of orbifold vector
bundles on X and a certain �–modification of the Chern character map, Iritani has in-
troduced an integral lattice in the Chen–Ruan cohomology group HCR.X IC/ (see [30]
and also [37]). If X has semisimple quantum cohomology, then it is expected that X

has a LG mirror model and it is natural to conjecture that Iritani’s embedding of the
K–theoretic lattice coincide with the image of the Milnor lattice via an appropriate
period map. In our case, when X D P1

a , we prove the above conjecture by using the
same argument as in [30], where the toric case was proved. Moreover, we obtain an
explicit identification of the set of vanishing cycles with a certain K–theoretic affine
root system.

Let us recall Iritani’s construction in the most general case when X is a compact
complex orbifold. Let IX be the inertia orbifold of X , ie as a groupoid the points
of IX are

.IX /0 D f.x;g/ j x 2X0; g 2 Aut.x/g

while the arrows from .x0;g0/ to .x00;g00/ consists of all arrows g 2 X1 from x0

to x00 such that g00 ı g D g ı g0 . It is known that IX is an orbifold consisting of
several connected components Xv , v 2 T WD �0.jIX j/. Following Iritani, we define a
linear map

‰W K.X /!H�.IX IC/D
M
v2T

H�.XvIC/

via

(37) ‰.V /D .2�/� dimC X=2 y�.X /[ .2�
p
�1/deg inv� ech.V /:

Here [ is the usual cup product in H�.IX IC/. Let us recall the notation. The linear
operator

degW H�.IX IC/!H�.IX IC/
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is defined by deg.�/D r� if � 2H 2r .IX IC/. The involution invW IX ! IX inverts
all arrows while on the points it acts as .x;g/ 7! .x;g�1/. If V is an orbifold vector
bundle, then we have an eigenbasis decomposition

pr�.V /D
M
v2T

Vv D
M
v2T

M
0�f <1

Vv;f ;

where prW IX ! X is the forgetful map .x;g/ 7! x and Vv;f is the subbundle of
Vv WD pr�.V /jXv whose fiber over a point .x;g/ 2 .IX /0 is the eigenspace of g

corresponding to the eigenvalue e2�
p
�1f . For j D 1; : : : ; lv;f WD rk.Vv;f /, we

denote by ıv;f;j the Chern roots of Vv;f . Then the Chern character and the �–class
of V are defined by

ech.V /D
X
v2T

X
0�f <1

e2�
p
�1f ch.Vv;f /; y�.V /D

X
v2T

Y
0�f <1

lv;fY
jD1

�.1�f Cıv;f;j /;

where the value of the �–function �.1� f C y/ at y D ıv;f;j is obtained by first
expanding in Taylor’s series at y D 0 and then formally substituting y D ıv;f;j . By
definition y�.X / WD y�.TX /.

2.3.1 The �–conjecture for the Milnor lattice We denote by HCR.X IC/ the vec-
tor space H�.IX IC/ equipped with the Chen–Ruan cup product [CR . We define a
shift function �W T !Q by

�.v/D
X

0�f <1

f dimC.TX /v;f :

The Chen–Ruan product is graded homogeneous with respect to the grading

degCR.�/D .r C �.v//�; � 2H 2r .XvIC/:

The vector space H�.IX IC/ is equipped with a Poincaré pairing, ie

.�1; �2/D

Z
IX

�1[ inv�.�2/:

This pairing turns both algebras H�.IX IC/ and HCR.X IC/ into Frobenius algebras.
Let us point out also that by using the Kawasaki Riemann–Roch formula we can also
prove that the map ‰ is compatible (up to a sign) with the natural pairing on K.X /

and the Poincaré pairing

(38) �.V1˝V _2 /D
�
e�
p
�1�X e�

p
�1�X‰.V1/; ‰.V2/

�
;

where �X D c1.TX /[CR and �X is the Hodge grading operator of X ,

�X D
1
2

dimC X � degCR :
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On the other hand, if X has a LG-mirror model, then we can define the calibrated
periods zI .�`/˛ .�/ in the same way as in formulas (18) and (30). The main motivation
for the above construction is the following conjecture, which is motivated by Iritani’s
mirror symmetry theorem in [30]. To simplify the formulation we set all Novikov
variables to be 1. Using the divisor equation one can recover easily the Novikov
variables.

Conjecture 8 (�–conjecture for the Milnor lattice) Given an integral cycle ˛ , there
exists a class V˛ 2K.X / in the K–theory of vector bundles such that, for all `� 0,

1
p

2�

Z 1
0

e��s zI .�`/˛ .�/ d�D s��X�`�1=2s��X‰.V˛/:

The conjecture can be refined even further, by saying that if ˛ is a vanishing cycle
then V˛ can be represented by an exceptional object in the derived category Db.X / and
that the monodromy transformations of ˛ correspond to certain mutation operations in
Db.X /. See [19] for more discussions.

Next we describe Conjecture 8 in the case of P1
a .

2.3.2 The K–ring of P1
a Let a D .a1; a2; a3/ be a triple of nonnegative integers

and put X D P1
a . The orbifold P1

a can be constructed as follows. Put

G D ft D .t1; t2; t3/ 2 .C
�/3 j t

a1

1
D t

a2

2
D t

a3

3
g:

We have

P1
a D ŒYa=G�; Ya D

˚
y D .y1;y2;y3/ 2C3

n f0g j y
a1

1
Cy

a2

2
Cy

a3

3
D 0

	
;

where the quotient is taken in the category of orbifolds, ie it should be viewed as an
orbifold groupoid. The K–ring of orbifold vector bundles on P1

a can be presented as a
quotient of the polynomial ring CŒL1;L2;L3� by the relations

LDL
a1

1
DL

a2

2
DL

a3

3
; .1�Lk/.1�Lk0/D 0 for 1� k < k 0 � 3:

Here L is the pullback of OP1.1/ under the natural map P1
a ! P1 , and the product is

given by tensor product of vector bundles. The orbifold vector bundle Lk is the trivial
line bundle Ya �C equipped with the following G–action

G �Lk !Lk ; .t;y; v/ 7! .ty; tkv/:

It is easy to see that the K–ring is generated by L1;L2;L3;L. The first set of relations
follows from the definition of G . To see the remaining ones, note that the coordinate
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function yk on Ya gives rise to a section of Lk . The Koszul complex associated with
the sections .yk ;yk0/ is G–equivariant and it gives rise to the exact sequence

0!L_k ˝L_k0 !L_k ˚L_k0 !OP1
a
! 0:

This proves that .1�Lk/.1�Lk0/D 0.

2.3.3 The image of K.P1
a / The connected components of IP1

a are indexed by
f.0; 0/g[Itw . Let us denote by P D c1.L/. Then c1.Lk/DP=ak . By the adjunction
formula TX DL1L2L3L�1 , we get

c1.TX /D �P; �D
1

a1
C

1

a2
C

1

a3
� 1:

Furthermore, note that

.Lk/k0;p;f D

8<:
0 if k ¤ k 0 and f ¤ 0;

0 if k D k 0 and f ¤ p=ak0 ;

C otherwise:

From here we get that the eigenspace decomposition of TX is

.TX /k;p;f D

8<:
TX if k D 0 and f D 0;

C if k ¤ 0 and f D p=ak ;

0 otherwise:

Recall that for i D .k;p/ 2 Itw , di D dk;p D 1�p=ak , we get the formulas

y�.X /D �.1C�P /C
X
i2Itw

�.di/�i ;

ech.Lm
k /D 1C m

ak
P C

X
.j ;p/2Itw

�
mpık;j

j �j ;p; �j WD e2�
p
�1=aj :

Let us point out that in the above formulas 1;P 2H�.X0;0/, while �k;p 2H 0.Xk;p/

is the standard generator for the twisted sector. Note that the unit of the algebra
(H�.IX IC/;[) is ech.O/D 1C

X
i2Itw

�i :

Finally, since

.2�
p
�1/deginv�ech.Lm

k /D 1C
2�
p
�1m

ak

P C
X

.j ;p/2Itw

�
�mpık;j

j �j ;p;
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we get the formula

(39) .2�/1=2‰.Lm
k /D 1C

�
�
�C

2�
p
�1m

ak

�
P C

X
.j ;p/2Itw

�.dj ;p/

�
mpık;j

j

�j ;p:

2.4 �–conjecture for Fano orbifold curves

Now we give a proof3 of the �–conjecture for the Milnor lattice for P1
a . The proof is

obtained by applying Iritani’s argument from the proof of [31, Theorem 4.11] and [31,
Theorem 5.7] and relies on the �–conjecture for the Milnor lattice for the Fano toric
orbifold (proven in [30])

Y WD P2
a D Œ.C

3
n f0g/=G�

and the explicit formulas for the J–functions of X WD P1
a and Y . Note that X is a

suborbifold of Y .

Remark 9 There is a natural map pW P2
a ! P2 . The above description of X D P1

a

realizes X as the zero locus of a section of the line bundle p�OP2.1/ on P2
a . Applying

the recipe of constructing mirrors of complete intersections in [20], we obtain fa as
the mirror of X .

Notice that the line bundles Lk are restrictions of line bundles on Y and the K–ring
of Y is the quotient of the polynomial ring CŒL1;L2;L3� by the relations

LDL
a1

1
DL

a2

2
DL

a3

3
; .1�L1/.1�L2/.1�L3/D 0:

Put LD p�OP2.1/ and P D c1.L/. We have isomorphisms

QŠH2.X IQ/ŠH2.Y IQ/; d 7! d ŒP1
a �

and
H 2.Y IQ/ŠH 2.X IQ/ŠQ; ˛ 7! h˛; ŒP1

a �i:

The J–function of an orbifold X used by Iritani is

JX .�; z/DL.�; z/�11;
where � 2HCR.X /,

L.�; z/ WD S� .�z/e�P log Q=z

and S is the calibration operator (27). Note that this definition differs from Givental’s
one by a sign and by the exponential factor.

3Note that P1
a is not covered by results in [30; 31].
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2.4.1 Combinatorics of the inertia orbifolds The orbifold Y is toric. We describe
its stacky fan as follows. Put b1 D .a1; 0/; b2 D .0; a2/; b3 D .�a3;�a3/ 2 Z2 . The
fan of Y is

†Š f∅; fkg; fk; k 0g j 1� k; k 0 � 3g;

where each set I on the RHS determines a cone in R2 spanned by bk , k 2 I . Note
that † is the fan for P2 . The fan map for Y sends the standard basis fe1; e2; e3g

of Z3 to Z2 by
Z3
! Z2; ek 7! bk :

The connected components of IY are parametrized by

�.†/D
n
.c1; c2; c3/ j 0� ck < 1;

X
k

ckbk 2 Z2
\ � for some cones � 2†

o
;

where c 2�.†/ determines the twisted sector

Yc D
�
fy 2C3

j yk D 0 if ck ¤ 0g=G
�
;

which has a generic stabilizer given by the cyclic subgroup of G generated by

.e2�
p
�1c1 ; e2�

p
�1c2 ; e2�

p
�1c3/ 2G:

The inertia orbifold IX is a suborbifold of IY and the twisted sectors of IX are
parametrized by those c 2�.†/ for which dim.Yc/ > 0, ie at most one component
of c is nonzero.

2.4.2 The J –function of Y Let 1c 2H 0.Yc/ be the dual of the fundamental class
for c 2�.†/ and

� D �11.1=a1;0;0/C �21.0;1=a2;0/C �31.0;0;1=a3/:

According to the mirror theorem of [13], the J–function JY .�; z/ depending on � is
equal to the S–extended I–function [13, Definition 28] with

S D f.1; 0/; .0; 1/; .�1;�1/g:

This gives

JY .�; z/D eP log Q=z

� 1X
dD0

1X
n1;n2;n3D0

Qd

zdegY .Q
d /

tn

n!zdegY .t
n/

J Y
d;n.�; z/

�
;

where we introduced homogeneous parameters t D .t1; t2; t3/, whose dependence on �
and Q can be determined from the expansion JY D 1C �=zC � � � , the degrees of Q
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and t are

degY .Q
d / WD

Z
d

c1.T Y /Dd
�

1

a1
C

1

a2
C

1

a3

�
; degY .tk/ WD degY .�k/D 1�1=ak :

Finally, we denoted nD .n1; n2; n3/ and we used the standard multi-index notations

tn
D t

n1

1
t
n2

2
t
n3

3
; n!D n1!n2!n3! :

In order to define the component J Y
d;n

let us define mk 2 Z and ck 2Q by

nk � d

ak

D�mk C ck ; 0� ck < 1:

Then we have

J Y
d;n.�; z/D

1c

zdegY .1c/

3Y
kD1

�.1� ck C .P=ak/z
�1/

�.1� ck Cmk C .P=ak/z
�1/

;

where if c 62�.†/ then we set 1c D 0. In other words we sum over all .d; n/ such
that at least one of the numbers ck is 0.

2.4.3 The J –function of X Since p�OP2.1/ is a convex line bundle in the sense
of [12, Example B], the J–function of P1

a can be computed from that of P2
a using the

quantum Lefschetz theorem of [50] and [12].

Using the embedding j W IX ! IY we restrict � and 1c to H�.IX /. Slightly abusing
the notation, we use the same notation for the restrictions. Note that now 1c D 0 if c

has more than one nonzero component. The formula for JX has the same form

JX .�; z/D eP log Q=z

� 1X
dD0

1X
n1;n2;n3D0

Qd

zdegX .Q
d /

tn

n!zdegX .t
n/

J X
d;n.�; z/

�
;

where

J X
d;n.�; z/D

1c

zdegX .1c/

�.1C d CPz�1/

�.1CPz�1/

3Y
kD1

�.1� ck C .P=ak/z
�1/

�.1� ck Cmk C .P=ak/z
�1/

Note that the grading takes the form

degX .Q
d / WD

Z
d

c1.TX /D d
�

1

a1
C

1

a2
C

1

a3
� 1

�
while the degrees of t and 1c do not change, because the restriction map preserves the
grading.
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2.4.4 The Galois action The Picard group Pic.X / of isomorphism classes of (topo-
logical) orbifold line bundles on X can be presented as a quotient

Z3
! Pic.X /; .r1; r2; r3/ 7!L

r1

1
L

r2

2
L

r3

3

with kernel given by the relations

a1e1 D a2e2 D a3e3;

where fe1; e2; e3g is the standard basis of Z3 . The group Pic.X / acts naturally on the
Milnor fibration via

� � .x; t/D .� �x; � � t/; � D .r1; r2; r3/ 2 Pic.X /;

where
.� �x/k D e2�

p
�1rk=ak xk ;

and the action on the remaining components is defined in such a way that

F.� �x; � � t/D F.x; t/;

that is,

.� � t/k;p D e�2�
p
�1rkp=ak tk;p; 1� k � 3; 1� p � ak � 1;

.� � t/01 D t01C 2�
p
�1

3X
kD1

rk

ak

;

.� � t/00 D t00:

Let us fix some .t; �/ 2 M � C with � sufficiently large. Then for every � D

.r1; r2; r3/ we can construct a path from .t; �/ to .� � t; �/ as follows. Using the above
formulas we let c 2R3 act on M . As c varies along the straight segment from 0 to
.r1; r2; r3/2Z3�R3 we get a path in M connecting t and � � t . The parallel transport
along this path with respect to the Gauss–Manin connection gives an identification
H2.X��t;�IZ/ Š H2.Xt;�IZ/. Combined with the Pic.X /–action on C3 we get an
action

Pic.X /�H2.Xt;�IZ/!H2.Xt;�IZ/; .�; ˛/ 7! �.˛/:

Following Iritani, we refer to this as the Galois action of Pic.X / on the Milnor lattice.

Lemma 10 If the �–conjecture for the Milnor lattice is true for some cycle ˛ and
V˛ 2K.X / is the corresponding K–theoretic vector bundle, then the conjecture is true
for all �.˛/, �D .r1; r2; r3/2Pic.X /. Moreover, V�.˛/DV˛˝L� , L�DL

r1

1
L

r2

2
L

r3

3
.
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Proof Using the vector space decomposition

HCR.X /DH�.X /˚

� M
.k;p/2Itw

H
p=ak

CR .X /

�
;

we define a linear operator

�� W HCR.X /!HCR.X /; �� D

3X
kD1

ak�1X
pD1

rkp

ak

prk;p;

where prk;p is the projection onto the subspace H
p=ak

CR .X /. By changing the variables
y D � �x in the period integrals we get

I .`/
�.˛/

.t; �/D e�2�
p
�1��I .`/˛ .��1

� t; �/ for all ` 2 Z:

On the other hand the calibration operator satisfies

S��1.t/.z/D e2�
p
�1��St .z/e

�2�
p
�1��e�2�

p
�1c1.L�/=z;

which can be seen easily by using that if the correlator h˛1 
k1

1
; : : : ; ˛n 

kn
n i0;n;d is

nonzero then, since we have at least one stable map f W C !X , we have

�.f �L�/D

Z
d

c1.L�/�

nX
jD1

��. j̨ / 2 Z:

Since by definition
I .`/˛ .t; �/D St .�@

�1
� /zI`˛.�/;

the above formulas imply that

zI .`/
�.˛/

.�/D e�2�
p
�1��e2�

p
�1c1.L�/@� zI`˛.�/:

In particular, after taking a Laplace transform, we get

1
p

2�

Z 1
0

e��s zI .�`/
�.˛/

.�/D e�2�
p
�1��e2�

p
�1c1.L�/s

1
p

2�

Z 1
0

e��s zI .�`/˛ .�/:

On the other hand, using the definition of ‰ we get

‰.V ˝L�/D e�2�
p
�1��e2�

p
�1c1.L�/‰.V /:

It remains only to notice that s��P D .Ps/s�� and that �� commutes with both �
and the Chen–Ruan product multiplication operators.
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The Milnor lattice is known to be unimodular with respect to the K–theoretic bilinear
form

. � ; � /W K.X /˝Z K.X /! Z; .L1;L2/D �.L1˝L_2 /

(see [31, Section 2]). The above lemma implies that it is enough to prove that the
�–conjecture holds for the structure sheaf. Indeed, if this is true, then since K.X /

is generated by Pic.X /, the � conjecture correspondence will embed K.X / into a
sublattice of the Milnor lattice. Since both lattices are unimodular, they must coincide.

2.4.5 The central charge Iritani’s �–conjecture for the Milnor lattice looks different
since he works with Lefschetz thimbles. Nevertheless, our formulation is completely
equivalent. Here is the reason. Take a Lefschetz thimble A corresponding to a vanishing
cycle ˛ , ie for fixed .t; z/ 2M �C� we fix a path C in C from uj to 1 such that
Re.�=z/ > 0 for all � 2 C and the cycle ˛t;� vanishes when � approaches uj . In this
way we can identify the Milnor lattice with a lattice of Lefschetz thimbles.

We claim that

L.t; z/�1

Z 1
uj

e��=zI .�`/˛ .t; �/ d�D ez�1P log Q

Z 1
0

e��=z zI .�`/˛ .�/ d�;

where L.t; z/D St .�z/e�z�1P log Q . Indeed, one can check easily using the quantum
differential equations that the LHS is independent of t and Q. On the other hand
we have

L.t; z/D 1�z�1P log QC� � � ; uj D 0C� � � and I .�`/˛ .t; �/D zI .�`/˛ .�/C� � � ;

where the dots stand for terms that vanish at t DQD 0. So modulo terms that vanish
at t DQD 0 the LHS coincides with the RHS. Our claim follows.

We define the central charge of V˛ 2K.X / by

Z.0/
X .V˛/.t; z/ WD

�
L.t; z/z�z�‰.V˛/; 1

�
:

Since we will use the result of Iritani, let us clarify the relation between our notations.
In Iritani’s notation, the central charge is defined to be

Z.n/
X .V /.t; z/ WD .2�z/n=2.2�

p
�1/�n

�
L.t; z/z�z�‰.V˛/; 1

�
; nD dimC.X /:

For the LG models studied in [30] the �–conjecture for the central charge is stated as

.2�
p
�1/�n

Z
A

e�F.x;t/=z! DZ.n/
X .V˛/.t; z/:
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As we see from the LG model that we use, in general one should choose n to be the
number of variables in the LG potentials. For the LG models in [30] the number of
variables coincides with the dimension of the orbifold, so this difference does not matter.

The identity in the �–conjecture for the Milnor lattice is equivalent to

(40)
1
p

2�

Z 1
uj

e��=zI .�`/˛ .t; �/ d�DL.t; z/z�C`C1=2z�‰.V˛/:

The number ` must be chosen sufficiently large. We will see that in our case `D 1

works. In general ` can be chosen such that the number of variables in the LG potential
is 2`C 1. Recalling the definition of the period integrals, we transform the LHS into

.�zdM /.2�/�3=2

Z
A

e�F.x;t/=z!;

where dM is the de Rham differential on M . In particular, since the Poincaré pairing
of the RHS with 1 corresponds to contracting the LHS with @00 we get

(41) .2�z/�3=2

Z
A

e�F.x;t/=z! DZ.0/
X .V˛/.t; z/:

In order to prove the �–conjecture for the Milnor lattice it is enough to prove that if
V DOX , then we can find an integral cycle A such that the identity (41) holds for all
parameters t of the form

t D t1;111;1C t2;112;1C t3;113;1:

One can check that the partial derivatives of the LHS and the RHS of (41) with respect
to any other parameter tk;p can be expressed in terms the same differential operator
involving only tk;1 , 1 � k � 3. Therefore if (41) holds for all t of the above form,
then (40) holds also for all such t . As explained above, if the identity (40) holds for
a single point t D t0 then it holds for all t and it is equivalent to the identity in our
�–conjecture, ie the �–conjecture holds for the structure sheaf. Recalling Lemma 10
we get that the �–conjecture holds for the entire Milnor lattice.

2.4.6 The central charge as an oscillatory integral It remains only to prove (41).
Following Iritani, it is convenient to rewrite the RHS of (41) in terms of the so-called
H–function

H .0/
X .t; z/D ech.H .0/

K .t; z//;

where the K.X /–valued function

H .0/
K W M �C�!K.X /

Geometry & Topology, Volume 20 (2016)



GW for Fano orbifold curves, Gamma integral structures and ADE-Toda hierarchies 2165

is defined by the equation

1DL.t; z/z�z�‰.H .0/
K .t; z//:

For the central charge Z.0/
X
.V / we have�

L.t; z/z�z�‰.V /;L.t;�z/.�z/� .�z/�‰.H .0/
K .t;�z//

�
D
�
‰.V /; e�

p
�1�e�

p
�1�‰.H .0/

K /
�
;

where we define .�1/R WD .e�
p
�1R/ for all linear operators R. Recalling (38) and

the Kawasaki Riemann–Roch formula we get

Z.0/
X .V /D �.H .0/

K ˝V _/D

Z
IX

H .0/
X .t;�z/[ ech.V _/[fTd.TX /;

where in the notation of Section 2.3 the Todd class of an orbifold vector bundle is a
multiplicative characteristic class defined by

fTd.V /D
X
v2T

lv;0Y
jD1

ıv;0;j

1� e�ıv;0;j

Y
0<f<1

lv;fY
jD1

1

1� e�2�
p
�1f e�ıv;f;j

:

The proof of formula (41) requires a simple lemma. The main ingredient is a slight
modification of the usual Laplace transform defined as follows. Let f .t;QI z/ be any
function. Then we define

L.f /.t;QI z/D

Z 1
0

e��f .t;��zQI z/ d�:

The integral is convergent if for example f depends polynomially on Q and log Q,
which is the case that we have. Note that this Laplace transform does not commute
with the involution z 7! �z .

Lemma 11 Let j W IX ! IY be the natural embedding. Then

j�H
.0/

X .t;QI �z/D .�z=2�/1=2 ze.L/[L.H .0/
Y /.t;QI �z/;

where ze.L/D
P
v2T e.Lv/ is the orbifold Euler class of L.

Proof Since j�.j
�˛/D ze.L/[˛ for every ˛ 2H�.IY /, it is enough to prove that

(42) L.j �H .0/
Y /.t;QI �z/D .�z=2�/�1=2 H .0/

X .t;QI �z/:
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We have

.2�/�1=2y�.X /[ .2�
p
�1/deg inv�H .0/

X .t;Q; z/D z��X z��X JX .t;QI z/;

.2�/�1y�.Y /[ .2�
p
�1/deg inv�H .0/

Y .t;Q; z/D z��Y z��Y JY .t;QI z/:

On the other hand, using the explicit formulas for the J–functions it is easy to check
that

L.j �JY /.t;QI �z/D .�z/�P=z�.1�P=z/[JX .t;QI �z/:

In order to prove formula (42), it is enough only to recall the identities

j �.�z/��Y .�z/��Y D .�z/�P�1=2.�z/��X .�z/��Xj �;

.�z/��X .�z/��X .�z/�P=z�.1�P=z/D .�z/P�.1CP /.�z/��X .�z/��X

and j �y�.Y /D y�.L/y�.X /.

Lemma 11 yields the following relation between the central charges of sheaves on X

and Y . Let V 2K.Y /. Then

Z.0/
X .j �V /D .�z=2�/1=2L

�
Z.0/

Y .V �V ˝L/
�
:

In particular,

(43) Z.0/
X .1/D .�z=2�/1=2L

�
Z.0/

Y .1�L/
�
:

Theorem 12 For a Fano orbifold curve X D P1
a , given a class Lm

k
2 K.X / in the

K–theory of vector bundles, there exists an integral cycle ˛k;m 2 h such that, for all
`� 0,

1
p

2�

Z 1
0

e��s zI .�`/˛k;m
.�/ d�D s��X�`�1=2s��X‰.Lm

k /:

Proof It is enough to prove (41). Let us look at the corresponding oscillatory integrals.
Recall that the LG model of Y is given by the restriction of

FP2.x; t/D

3X
kD1

.x
ak

k
C tk;1xk/

to the complex torus x1x2x3 DQ, while the corresponding primitive form is

!P2 D
dx1 dx2 dx3

d.x1x2x3/
:
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Let us assume now that z and Q are real numbers such that z > 0 and Q < 0. Let
C �C3 be the chain

C D fx 2R3
j xk � 0; k D 1; 2; 3g:

The oscillatory integral

.2�z/�3=2

Z
C

e�F.x;t/=z!

is given by

.2�z/�3=2.�1/1=2
Z 1

0

e��
Z
��zQ�

e�FP2 .x;t/=z
dx1 dx2 dx3

d.x1x2x3/
.�z/ d�;

where we presented the chain C as a family of cycles

��z�Q D fx 2 C j x1x2x3 D�z�Qg:

and used the Fubini theorem. The �–conjecture for Y was proved by Iritani [30].
Moreover, the real cycle ��z�Q corresponds to the structure sheaf OY , so the above
integral coincides with

.�1/3=2z.2�z/�3=2

Z 1
0

e��.2�z/Z.0/
Y .1/.t;�z�QI z/ d�

D .�1/3=2.z=2�/1=2L.Z.0/
Y .1//:

Recalling the argument in Lemma 10 it is easy to see that the analytic continuation
around QD 0 in the clockwise direction of L.Z.0/

Y
.1// is L.Z.0/

Y
.L//, therefore the

cycle that we are looking for is zC � C , where zC is the chain obtained from C via the
monodromy transformation around QD 0 in the clockwise direction. More precisely, zC
is the family of cycles z��z�Q obtained from ��z�Q by the monodromy transformation
around QD 0. It remains only to notice that the boundaries of zC and C are the same.
Together with (43), this proves (41).

2.5 Affine root systems and vanishing cycles

According to Theorem 12 (recall that we have to put Q D 1) and formula (39), we
haveZ 1

0

e��s zI .�`/˛k;m
.�/ d�

D
1

s`C1
C

�
2�
p
�1m

ak

� 
��� log s

�
P

s`
C

X
.j ;p/2Itw

�.dj /

e2�
p
�1mpık;j =aj

�j ;p

s`Cdj ;p
;
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where dj ;p D 1�p=aj and 
 is Euler’s gamma constant, defined by


 D lim
m!1

Hm� ln m; Hm WD 1C
1

2
C � � �C

1

m
:

If `� 1, then we can recall the inverse Laplace transform and also the divisor equation
(32) to get

(44) zI .�`/˛k;m
.�/D

�`

`!
1C

�`�1

.`� 1/!

�
2�
p
�1m

ak

C�.log��C`�1/

�
P

C

X
.j ;p/2Itw

�dj ;pC`�1e2�
p
�1mık;jdj ;p

.dj ;pC `� 1/ � � � .dj ;p/
�j ;p;

where if `D 1 we set C0 WD .1=�/ log Q and if ` > 1 then C` D C`�1C 1=`.

Proposition 13 (1) The set of vanishing cycles �� hDH2.X0;1IC/ is an affine
root system of type X.1/

N
, where N D a1C a2C a3� 2 and

XD

8<:
A if a1 D 1;

D if a1 D a2 D 2;

E otherwise:

(2) There exists a basis of simple roots such that the classical monodromy � is an
affine Coxeter transformation.

Part (1) of Proposition 13 is due to A Takahashi (see [48]), whose proof is based on a
standard method developed by Guseı̆n-Zade [27; 28] and A’Campo [2; 3]. We give a
proof of Proposition 13 based on Iritani’s integral structure.

We will be interested in the two maps from the sequence

(45) zI .n/.1/W h!H; ˛ 7! zI .n/˛ .1/

corresponding to nD�1 and nD 0. According to Lemma 7 we have

zI .�1/.1/D B00 .1� .log Q/P /CB01 P C
X
i2Itw

Bi �i ;

which proves that the map for nD�1 is an isomorphism. Using zI .�1/.1/ we equip H

with an intersection pairing . � j � /, ie

.�0j�00/ WD .˛0j˛00/ for �0 D zI .�1/
˛0 .1/; �00 D zI .�1/

˛00 .1/:

The period map (45) with nD 0 has a 1–dimensional kernel because (using (34))

zI .0/.1/D .1� �/�1
�
� C 1

2

�
zI .�1/.1/D .1C �/.1� degCR/

zI .�1/.1/;
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so the kernel is CP . We denote the image of zI .0/.1/ by H .0/ . Let us denote by
r W H !H .0/ the map defined by zI .0/.1/D r ı zI .�1/.1/, ie

r.b/D .1C �/.1� degCR/.b/:

According to Saito’s formula (25) the intersection pairing on H takes the form

(46) .�0j�00/D .r.�0/; .1� �/r.�00//; �0; �00 2H:

It follows that we can push forward the intersection form to a nondegenerate bilinear
pairing on H .0/ , which we denote again by . � j � /. More precisely, we define

.�0j�00/D .�0; .1� �/�00/; �0; �00 2H .0/:

We denote by �.�1/�H and �.0/�H .0/ the images of the set of vanishing cycles, ie

�.�1/
D fzI .�1/

˛ .1/ j ˛ 2�g; �.0/ D fzI .0/˛ .1/ j ˛ 2�g:

A straightforward computation with formula (46) implies:

Lemma 14 Consider ˛k;m as in (44). Then the cycles ˛k;m (1 � k � 3, m 2 Z)
satisfy

.˛k;mj˛k;n/D

�
2 if mD n .mod ak/;

1 if m¤ n .mod ak/;

and, for k ¤ k 0 ,

.˛k;m˛k0;n/D

8<:
2 if mD 0 .mod ak/ and nD 0 .mod ak0/;

0 if m¤ 0 .mod ak/ and n¤ 0 .mod ak0/;

1 otherwise:

2.5.1 The toroidal cycle Let �" �C3 be the torus

�� WD fjx1j D jx2j D 1; jx3j D "g:

For sufficiently large ", �" does not intersect the Milnor fiber X0;1 . Hence we have a
well-defined cycle

Œ�"� 2H3.C
3
nX0;1IZ/ŠH2.X0;1IZ/;

where the isomorphism is given by the so called tube mapping (see [25; 26] for more
details). Let us denote by ' the image of Œ�"� under the above isomorphism.

Proposition 15 We have I .�1/
' .t; �/D 2�

p
�1P .

Geometry & Topology, Volume 20 (2016)



2170 Todor Milanov, Yefeng Shen and Hsian-Hua Tseng

Proof Increasing " does not change the homology class Œ�"�, therefore by choosing
"� 0 we may arrange that �" does not intersect the Milnor fiber Xt;� for all .t; �/
sufficiently close to .0; 1/. In particular, the cycle 't;� obtained from ' via a parallel
transport with respect to the Gauss–Manin connection coincides with the image of Œ�"�
via the tube mapping. We have (see [25; 26])

(47) I.t; �;Q/ WD

Z
Œ�"�

!

F.t;x/��
D 2�

p
�1

Z
't;�

!

dF
D 2�

p
�1 @�

Z
d�1!:

Comparing with the definition (18) we get

I.t; �;Q/D�.2�/2
p
�1 .I .�1/

' .t; �/; 1/:

Using the differential equation (21), we get

(48) .�@�CE/I.t; �;Q/D 0:

The integral I.t; �;Q/ is analytic at .t; �;Q/D .0; 0; 0/ because it has the form

p
�1

Z
Œ�"�

dx1 dx2 dx3

Qet01 .G.t;x/��/�x1x2x3

;

where G.t;x/ is a holomorphic function in t and x . However, Equation (48) means
that I.t; �;Q/ is homogeneous of degree 0 and since the weights of all variables are
positive, the integral must be a constant. In particular, we may set t DQ D � D 0,
which gives

I.t; �;Q/D�
p
�1

Z
Œ�"�

dx1 dx2 dx3

x1x2x3

D .2�/3:

Note that (47) implies that I .0/' .t; �/ D 0. Recalling again the differential equation
(21), we get

I .�1/
' .t; �/D .I .�1/

' .t; �/; 1/P D .2�/�2
p
�1I.t; �;Q/P D 2�

p
�1P:

Corollary 16 The cycle ' corresponds to the skyscraper sheaf Opt WDL�O , ie

ı WD zI .�1/
˛k;ak

.1/� zI .�1/
˛k;0

.1/D 2�
p
�1P:

Proof of Proposition 13(1) The image of the Milnor lattice in H has a Z–basis
given by

ı; 
 .�1/
b

; 
 .�1/
i .i 2 Itw/;
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where for nD 0 or �1, and i D .k;p/, we get


 .n/
b
WD zI .n/˛k;0

.1/ .corresponds to O/;


 .n/
k;p
WD zI .n/˛k;�p

.1/� zI .n/˛k;�pC1
.1/:

It is easy to check that the intersection diagram of the set of cycles 
 .�1/
b

, 
 .�1/
i , i 2Itw

is given by the Dynkin diagram on Figure 1. As usual, each node has self-intersection 2,
each edge means that the intersection of the cycles corresponding to the nodes of the
edge is �1, and no edge means that the intersection is 0. It follows that the intersection
form of the Milnor lattice is semipositive definite with 1–dimensional kernel. This is
possible only if �.�1/ is an affine root system.

In particular we get also that ı is a Z–basis for the imaginary roots and that �.0/ D
r.�.�1// is a finite root system.

2.5.2 Splitting of the affine root system It is convenient to enumerate the roots

 .n/

b
, 
 .n/i , i 2 Itw also by 
 .n/j .1� j �N /. The Dynkin diagram on Figure 1 is of

type XN , where XD A, D or E. Let us denote by 
 .�1/
0

the affine vertex, ie the extra
node that we have to attach to XN in order to obtain the corresponding affine Dynkin
diagram X.1/

N
.

Vectors 
 .0/j , 1 � j � N , form a basis of simple roots of �.0/ . Let W .0/ be the
reflection group generated by 
 .0/j . It is well known that there exists a group embedding
W .0/!W which is induced by the map

s.0/j WD s


.0/

j

7! s.�1/
j WD s



.�1/

j

; 1� j �N:

Given ˛ 2�.0/ , let us define a lift z̨ 2�.�1/ as follows:

˛ D

NX
jD1

bj

.0/

j 7! z̨ WD

NX
jD1

bj

.�1/

j :

Then the root system �.�1/ coincides with the set

fz̨ C nı j ˛ 2�.0/; n 2 Zg ;

where ı D 
 .�1/
0
C � .�1/ and � 2 �.0/ is the highest root with respect to the basis

f
 .0/j g
N
jD1

(see [33]). Following Kac, we will refer to nı (n 2 Z) as imaginary roots.
Finally, let us denote by

ƒ.�1/
WDH2.X0;1IZ/
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the root lattice of �.�1/ . Given ˛ 2ƒ.�1/ such that j˛j2 WD .˛j˛/¤ 0, recall that the
reflection with respect to ˛ is defined by

s˛.x/D x� 2
.˛jx/

.˛j˛/
˛:

We also define the following translation:

T˛.x/ WD s˛Cıs˛.x/D xC 2
.˛jx/

.˛j˛/
ı:

This definition induces a group embedding T W ƒ.0/!W . Recall that w s˛ w
�1 D

sw.˛/ for all w 2W and ˛ 2ƒ.�1/ such that j˛j2 ¤ 0. Therefore, ƒ.0/ is a normal
subgroup of W and we have an isomorphism

W Šƒ.0/ ÌW .0/:

Let us emphasize that this isomorphism is not canonical — it depends on the choice of
a basis of simple roots of �.�1/ .

2.5.3 The Coxeter transformation Put �b WD �
.0/
b

, where

(49) � .`/
b
D

3Y
kD1

.s.`/
k;ak�1

� � � s.`/
k;2

s.`/
k;1
/ 2 Aut.�.`//; `D�1; 0:

Note that while the order of the reflections that enter each factor of the above product
is important, the order in which the three factors are arranged is irrelevant since they
pairwise commute.

Proposition 17 The automorphism of �.0/ induced by the action of the classical
monodromy � coincides with �b .

Proof The analytic continuation in � around �D 0 of the period zI .�1/
˛k;m

.�/ is equiv-
alent to tensoring the line bundle Lm

k
by TX D L1L2L3L�1 and then taking the

corresponding periods. Using

.Lk � 1/Lk0 DLk � 1 for k ¤ k 0

it is easy to check that

.L�m
k �L�mC1

k
/TX DL�mC1

k
�L�mC2

k
for all m 2 Z;

TX�1
D 1CL�1

1 � 1CL�1
2 � 1CL�1

3 � 1CL� 1;

.L�1
k � 1/TX D 1�L

�.ak�1/

k
C 1�L:
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According to the above remark, the classical monodromy acts as follows:

�.
k;p/D 
k;p�1; .k;p/ 2 Itw;

��1.
b/D 
bC 
1;1C 
2;1C 
3;1C ı;

�.
k;1/D�
1;1� � � � � 
k;ak�1� ı:

It remains only to check that the action of � .�1/
b

is given by the same formulas modulo
the imaginary root ı .

It is known that up to a translation the affine Coxeter transformation coincides with �b

(see [47; 46]), so part (2) of Proposition 13 follows from Proposition 17.

2.5.4 Calibrated periods in terms of the finite root system For 0 � j � N , let
!.�1/

j 2H_ be the fundamental weights of �.�1/ , ie

h!.�1/
j ; 
 .�1/

m i D ıj ;m:

Using the intersection form we identify H .0/ and its dual. For 1 � j � N , let
!.0/j 2H .0/ be the fundamental weights of �.0/ , ie

.!.0/j j

.0/
m /D ıj ;m; 1� j ;m�N:

We have the relation

h!.�1/
j ; z̨i D .!.0/j jr.z̨//� kj h!

.�1/
0 ; z̨i; z̨ 2�;

where kj .1� j �N / are the Kac labels defined by

ı D 
 .�1/
0 C

NX
jD1

kj

.�1/

j :

In terms of the fundamental weights, the splitting of the affine root system from the
previous section can be stated also as the following isomorphism:

�.�1/
Š�.0/ �Z; z̨ 7! .˛; n/; ˛ D r.z̨/; nD h!.�1/

0 ; z̨i:

Lemma 18 The following identity holds:

!.0/
b
C

ak�1X
mD1

.�
mp

k
� �

.m�1/p

k
/!
.0/

k;m
D ak�k;p� ; 1� k � 3:
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Proof We have explicit formulas for the simple roots


 .0/
b
D 1C�P C

3X
kD1

ak�1X
pD1

�k;p; 
 .0/
k;m
D

ak�1X
pD1

.�
mp

k
� �

.m�1/p

k
/�k;p:

It remains only to check that the LHS and the RHS have the same intersection pairing
with the above set of simple roots of �.0/ .

Let � be a positive constant whose value will be specified later on. Put

(50) H0 WDH00 WDH01 WD .��/
1=2!.0/

b
; Hi WD .�ai/

1=2�i ; i 2 Itw:

Note that according to Lemma 7 fHigi2I is a �b–eigenbasis of H .0/ with �b.Hi/D

e�2�
p
�1di Hi in which the intersection form takes the form

(51) .Hi jHj /D �ıi;j� ; i; j 2 I;

where for i D j D 00 2 I we used that !.0/
b
D ��11CP . Finally, put

�b D�

X
.k;p/2Itw

1

ak
!.0/

k;p
:

Proposition 19 Let z̨ D .˛; n/ 2 �.0/ � Z Š � be a vanishing cycle. Then the
corresponding calibrated periods are given by the following formulas:

zI .`/
z̨
.�/D .�1/``!.˛j!.0/

b
/���`�1P

C

X
i2Itw

.˛jHi�/.di � 1/ � � � .di � `/�
di�`�1

p
ai=��i ;

zI .0/
z̨
.�/D .˛j!.0/

b
/1C .˛j!.0/

b
/���1P C

X
i2Itw

.˛jHi�/�
di�1

p
ai=��i ;

zI .�1�`/
z̨

.�/D .˛j!.0/
b
/
�`C1

.̀ C1/!
1C

�`

`!

�
.˛j!.0/

b
/�.log��C`/C 2�

p
�1.nC.�bj˛//

�
P

C

X
i2Itw

.˛jHi�/
p

ai=�
�diC`

di.di C 1/ � � � .di C `/
�i ;

where `� 1 and C` .`� 1/ are constants defined recursively by

C` D C`�1C
1

`
; C0 D

1

�
log Q:

Proof It is enough to check the statement for the following basis of the Milnor lattice:


 .�1/
b

; ı; 
 .�1/
i .i D .k;p/ 2 Itw/:
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Let us check the last identity for z̨ D 
 .�1/
k;p

, ie n D 0 and ˛ D 
 .0/
k;p

. Recalling the
explicit formulas for zI .�1�`/

˛k;p
.�/ and 
k;p D ˛k;�p � ˛k;�pC1 , we get (recall that

dk;m D 1�m=ak )

zI .�1�`/

k;p

.�/D�
2�
p
�1

ak

�`

`!
P C

ak�1X
mD1

�
mp

k
� �

m.p�1/
i

.`C dk;m/ � � � .1C dk;m/
�`Cdk;m�k;m:

On the other hand, by definition Hi�

p
ai=� D ai�i� , so the identity follows from

Lemma 18. The remaining two cases are proved in the same way.

3 ADE-Toda hierarchies

3.1 Twisted realization of the affine Lie algebra

Let g.0/ be a simple Lie algebra of type ADE with an invariant bilinear form . � j � /,
normalized in such a way that all roots have length

p
2. By definition, the affine

Kac–Moody algebra corresponding to g is the vector space

g WD g.0/Œt; t�1�˚CK˚Cd

equipped with a Lie bracket defined by the following relations: for X;Y 2 g.0/ ,

ŒXtn;Y tm� WD ŒX;Y � tnCm
C nın;�m.X jY /K;

Œd;Xtn� WD n.Xtn/; ŒK; g.0/� WD 0:

We fix a Cartan subalgebra h.0/ � g.0/ and a basis 
b; 
i .i 2 I/ of simple roots such
that the corresponding Dynkin diagram has the standard shape with 
b corresponding
to the branching node. If the root system is of type A, then we choose any of the nodes
to be a branching node and we have (at most) two instead of three branches. Let us
define �b WD �

.0/
b

by formula (49).

Let �.0/ � h.0/ be the root system of g.0/ , ie

g.0/ D
M
˛2�.0/

g.0/˛ :

The Lie algebra g.0/ can be constructed in terms of the root system via the so-called
Frenkel–Kac construction [18]. Let ƒ.0/ � h.0/ be the root lattice. There exists a
bimultiplicative function

�W ƒ.0/ �ƒ.0/! f˙1g

satisfying
�.˛; ˇ/�.ˇ; ˛/D .�1/.˛jˇ/; �.˛; ˛/D .�1/j˛j

2=2;
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where j˛j2 WD .˛j˛/. The map .˛; ˇ/ 7! ".�b.˛/; �b.ˇ// is another bimultiplicative
function satisfying the above properties. It is known that all bimultiplicative functions
of the above form are equivalent (see [34, Corollary 5.5]). Hence there exists a function
�W ƒ.0/! f˙1g such that

(52) �.˛/�.ˇ/".˛; ˇ/D �.˛Cˇ/".�b.˛/; �b.ˇ//:

There exists a set of root vectors

(53) A˛ 2 g
.0/
˛

such that

ŒA˛;A�˛ �D �.˛;�˛/˛;

ŒA˛;Aˇ �D �.˛; ˇ/A˛Cˇ if .˛jˇ/D�1;

ŒA˛;Aˇ �D 0 if .˛jˇ/� 0:

We can extend �b to a Lie algebra automorphism of g.0/ via

�b.A˛/D �.˛/
�1A�b.˛/; ˛ 2�.0/:

Let us denote by � the order of the extended automorphism �bW g
.0/! g.0/ . Clearly

we have � D j�bj or 2j�bj. Since . � j � / is both g.0/–invariant (with respect to the
adjoint representation) and W .0/–invariant, we have

.A˛jA�˛/ WD �.˛;�˛/; .A˛jAˇ/ WD .A˛jH /D 0 for all ˇ ¤�˛; H 2 h.0/:

Put �D e2�
p
�1=� . We extend the action of �b to the affine Lie algebra g by

�b � .X ˝ tn/D �b.X /˝ .�
�1t/n; �b �K DK; �b � d D d:

Let
g�b � g

be the Lie subalgebra of �b–fixed points. According to Kac (see [33, Theorem 8.6]),
g�b Š g. Let us recall the isomorphism. The fixed points subspace .g.0//�b contains a
Cartan subalgebra zh.0/ . We have a corresponding decomposition into root subspaces

g.0/ D zh.0/˚

� M
z̨2 z�.0/

g.0/
z̨

�
;

where z�.0/ � zh.0/ are the corresponding roots. Note that since the root subspaces are
1–dimensional, they must be eigen-subspaces of �b . Therefore, by choosing a set of
simple roots z̨j , j D 1; 2; : : : ;N in z�.0/ we can uniquely define an integral vector
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sD .s1; : : : ; sN /, 0� sj < � such that the eigenvalue of the eigensubspace g.0/
z̨j

is �sj .
Put

�sW
zh.0/!zh.0/; �s D

NX
jD1

sj z!j ;

where z!j 2
zh.0/ .1� j �N / are the fundamental weights corresponding to the simple

roots z̨j .1� j �N /, ie .z!j jz̨j 0/D ıj ;j 0 . The isomorphism

ˆW g! g�b

is defined as follows:

ˆ.Xtn/D tn�Cad�s X C ın;0; .�sjX /K;(54)

ˆ.K/D �K;

ˆ.d/D ��1
�
d � �s �

1
2
.�sj�s/K

�
;(55)

where

t ad�s X D exp.log t ad�s
/X:

Note that the RHS is single-valued in t and �b–invariant in X , because

exp.2�
p
�1ad�s=�/D �b:

Finally, we make a remark on � . There is no a canonical way to extend �b to a Lie
algebra automorphism of g.0/ . Therefore, the value of � depends on our choice of
the cocycle �.˛; ˇ/ and the corresponding sign-function �.˛/. We will see however
that replacing � by m� , where m is a positive integer, does not change the HQEs,
so we may assume that � is a sufficiently large integer such that ��

b
D 1. For the

sake of completeness, let us fix an extension that seems natural for our purposes. Put
!k;0 D !b and !k;ak

D 0 and define

(56) SF.˛; ˇ/D
3X

kD1

ak�1X
pD0

.!k;pj˛/.!k;p �!k;pC1jˇ/:

Since SF.˛; ˇ/CSF.ˇ; ˛/D .˛jˇ/, the bimultiplicative function �. � ; � /D .�1/SF. � ;� /

is an acceptable choice for the Frenkel–Kac construction. Note that

(57) �.˛/D .�1/
P3

kD1.!b j˛/.!k;1j˛/
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satisfies formula (52), so we get an explicit formula for an extension of �b to a Lie
algebra automorphism of g.0/ . Moreover, since

j�b jY
mD1

�.�m
b .˛//D .�1/�j�b j;

we get that � D j�bj if �j�bj is even and � D 2j�bj if �j�bj is odd. Notice that
j�bj D lcm.a1; a2; a3/, the least common multiple of a1; a2; a3 .

Remark 20 The notation SF is motivated from the notion of a Seifert form in singu-
larity theory (see [4; 5]). We do not claim that (56) is a Seifert form, although it would
be interesting to investigate whether definition (56) can be interpreted as a linking
number between ˛ and ˇ .

3.2 The Kac–Peterson construction

Following [35], we would like to recall the realization of the basic level 1 representation
of the affine Lie algebra g corresponding to the automorphism �b . The idea is to
construct a representation of the Lie algebra g�b on a Fock space, which induces via
the isomorphism ˆ the basic level-1 representation.

Fix a �b–eigenbasis fHigi2f0gtItw of h.0/ . It is convenient to define H00 WDH01 WDH0

and to assume that the basis is normalized so that .Hi jHj�/D�ıi;j (compare with (51)).
Put

m00 WD 0; m01 WD �; mi WD di�� .i 2 Itw/;

so that e�2�
p
�1 di D �mi is the eigenvalue corresponding to the eigen vector Hi . The

elements
Hi;` WDHi t

miC`� .i 2 I; ` 2 Z/

generate a Heisenberg Lie subalgebra s� g�b , ie the following commutation relations
hold:

ŒHi;`;Hj ;m�D .mi C `�/ıi;j� ı`Cm;�1�K:

Let us also fix a C–linear basis of s

(58) H0 WDH00; Hi;`; Hi�;�`�1; K ..i; `/ 2 IC/;

where the index set is defined by

(59) IC D f.i; `/ j i 2 I n f.00/g; ` 2 Z�0g:
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Let S be the subgroup of the affine Kac–Moody Lie group generated by the lifts of
the loops

(60) h˛;ˇ D exp.˛ log t� C 2�
p
�1 ˇ/;

where ˛; ˇ 2 h.0/ are such that

�b.˛/D ˛; �b.ˇ/�ˇC˛ 2ƒ
.0/:

Let us point out that under the analytical continuation around t D 0, the loop h˛;ˇ
gains the factor e2�

p
�1�˛ . The latter must be 1 because

�˛D .˛C�b.ˇ/�ˇ/C�b.˛C .�b.ˇ/�ˇ//C� � �C�
��1
b .˛C .�b.ˇ/�ˇ// 2ƒ

.0/:

It follows that h˛;ˇ is single-valued and �b–invariant, ie it defines an element of the
affine Kac–Moody loop group acting on g�b by conjugation. The main result of Kac
and Peterson [35] is the following: the basic representation of g�b remains irreducible
when restricted to the pair .s;S/.

Let us recall the construction of the representation. Let us denote by

�0W h
.0/
! h.0/0 and ��W h

.0/
! .h.0/0 /?

the orthogonal projections of h.0/ onto h.0/
0
WDC H0 and .h.0/

0
/? respectively. Given

x 2 h.0/ , let
x0 WD �0.x/; x� WD ��.x/:

Let s� � s be the Lie subalgebra of s spanned by the vectors Hi�;�`�1; .i; `/ 2 IC .
The basic representation can be realized on the following vector space:

(61) Vx D S�.s�/˝CŒe! �ex! ;

where x is a complex number and ! WD �0.
b/. The first factor of the tensor product
in (61) is the symmetric algebra on s� , and the second one is isomorphic to the group
algebra of the lattice �0.ƒ

.0// D Z�0.
b/. We will refer to j0i WD 1˝ ex! as the
vacuum vector. Slightly abusing the notation, we define the operator

@! WD
@

@!
�x;

acting on Vx , so that @! j0i D 0.

Put

X˛.�/D
X
n2Z

A˛;n�
�n
D

1

�

�X
mD1

X
n2Z

��nm.�m
b .A˛/t

n/��n; ˛ 2�.0/;

Geometry & Topology, Volume 20 (2016)



2180 Todor Milanov, Yefeng Shen and Hsian-Hua Tseng

where A˛ appears in (53). Let E�˛.�/ be the vertex operator

(62) E�˛.�/D exp
� X
.i;`/2IC

.˛jHi/Hi�;�`�1

�miC`�

mi C `�

�
� exp

� X
.i;`/2IC

.˛jHi�/Hi;`

��mi�`�

�mi � `�

�
:

Lemma 21 There are operators C˛ , ˛ 2�.0/ , independent of � , that commute with
all basis vectors (58) of s different from H0 , such that

X˛.�/DX 0
˛ .�/E

�
˛.�/;

where

(63) X 0
˛ .�/D �

�j˛0j
2=2C˛�

� ˛0 ; ˛0 WD �0.˛/:

Proof After a direct computation we get

ŒHi;`;X˛.�/�D .˛jHi/�
miC`�X˛.�/:

It follows that X˛.�/D X 0
˛ .�/E

�
˛.�/, where X 0

˛ .�/ is an operator commuting with
all Hi;` ¤H0 .

After a direct computation we get the following commutation relations:

h˛;ˇ.�d/h�1
˛;ˇ D�d C �˛C 1

2
j˛j2�2K;

h˛;ˇA
;nh�1
˛;ˇ D e2�

p
�1.ˇj
/A
;nC�.˛j
/C ın;0.˛jA
 /�K;

and the h˛;ˇ commute with the Heisenberg algebra s apart from the relation

h˛;ˇH0h�1
˛;ˇ DH0C .˛jH0/�K:

Here h˛;ˇ are given in (60). In order to determine the dependence on � of X 0
˛ .�/ we

first have to notice that

(64) �d D 1
2
j�sj

2KC 1
2
H 2

0 C

X
.i;`/2IC

Hi�;�l�1Hi;`;

where H0 D H00 D H01 . Indeed, if we decompose the basic representation into a
direct sum of weight subspaces of s, then using the above commutation relations, we
get that the LHS of (64) is an operator that preserves these weight subspaces while the
difference of the LHS and the RHS commutes with s and S. The formula follows up
to the constant term 1

2
j�sj

2K , which is fixed by examining the action of the operator
d 2 g on the vacuum vector. Using formula (54) for Xtn D �s we get that �s (viewed
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as an element of g�b ) acts on the vacuum by the scalar �j�sj
2=� ; then since the RHS

of formula (55) acts by 0 on the vacuum, we get that d 2 g�b acts by the scalar

�j�sj
2=�C 1

2
j�sj

2=� D�1
2
j�sj

2=�:

Since we have

Œd;X˛.�/�D��@�X˛.�/; Œd;E�˛.�/�D��@�E
�
˛.z/;

we easily get ��@�X 0
˛ D Œd;X

0
˛ �. On the other hand, X 0

˛ .�/ commutes with Hi;` for
all i; `, except

(65) ŒH0;X
0
˛ .�/�D .˛jH0/X

0
˛ :

It follows that

�@�X
0
˛ D �

�
X 0
˛˛0C

1
2
j˛0j

2X 0
˛

�
:

Solving the above equation we get formula (63).

Lemma 22 The operators C˛ in (63) satisfy the commutation relation

(66) C˛Cˇ D �.˛; ˇ/B
�1
˛;ˇC˛Cˇ;

where

B˛;ˇ D �
�.˛jˇ/

��1Y
mD1

.1� �m/.�
m
b
.˛/jˇ/:

Proof Let us assume first that ˛ ¤�ˇ are two roots. After a direct computation we
get that the commutator ŒX˛.�/;Xˇ.w/� is given by the following formula:

1

�

�X
mD1

�m�1Y
jD1

��1.�
j

b
.ˇ//

�
�.˛; �m

b .ˇ//ı.�
�m�; w/wX˛C�m

b
.ˇ/.�/;

where ı.x;y/ WD
P

n2Z xny�n�1 is the formal delta function. On the other hand,

E�˛.�/E
�
ˇ.w/D

�Y
mD1

�
1� �m w

�

�.�m
b
.˛/jˇ/

WE�˛.�/E
�
ˇ.w/ W ;

where W W is the standard normal ordering in the Heisenberg group — all annihilation
operators Hi;` must be moved to the right. Substituting in the above commutator
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X
 .�/DX 0

 .�/E

�

 .�/ we get that the following two expressions are equal:

(67)
�Y

mD1

�
1� �m w

�

�.�m
b
.˛/jˇ/

X 0
˛ .�/X

0
ˇ .w/

�

�Y
mD1

�
1� �m �

w

�.�m
b
.ˇ/j˛/

X 0
ˇ .w/X

0
˛ .�/

and

(68) 1

�

�X
mD1

�m�1Y
jD1

��1.�
j

b
.ˇ//

�
�.˛; �m

b .ˇ//ı.�
�m�; w/wX 0

˛C�m
b
.ˇ/.�/:

Both formulas have the form i�;wP1.�; w/� i�;wP2.�; w/, where P1 and P2 are some
rational functions and i�;w (resp. iw;� ) means the Laurent series expansion in the region
j�j> jwj (resp. jwj< j�j). Since P1 D P2 for the second expression, the same must
be true for the first one, ie

�Y
mD1

�
1� �m w

�

�.�m
b
.˛/jˇ/

X 0
˛ .�/X

0
ˇ .w/D

�Y
mD1

�
1� �m �

w

�.�m
b
.ˇ/j˛/

X 0
ˇ .w/X

0
˛ .�/:

Recalling formula (63) and (65), the above equality implies

(69) C˛Cˇ D

�Y
mD1

.��m/.˛j�
m
b
.ˇ//CˇC˛:

Using (69) we can easily write (67) as a sum of formal delta functions. Comparing
with (68) we get (66).

Lemma 23 Let !b , !i , i D .k;p/ 2 Itw , be the fundamental weights corresponding
to the basis of simple roots 
b , 
i , i 2 Itw . Then

.!i j�!b/D di ; �0.
b/D �!b; ��.
b/D�
X
i2Itw

di 
i :

Proof Let f"k;pg
ak

pD1
be the standard basis of Cak for any fixed k D 1; 2; 3. The

root system of type Aak�1 is given by f"k;p � "k;qg and the standard choice of simple
roots is 
k;p D "k;p � "k;pC1 , 1 � p � ak � 1. Note that the fundamental weights
corresponding to the basis of simple roots are

z!k;p D

�
1�

p

ak

�
."k;1C � � �C "k;p/�

p

ak

."k;pC1C � � �C "k;ak
/:

It follows that the pairing between the fundamental weights is

.z!k;pjz!k;q/Dmin.p; q/�pq=ak :
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In particular, we have

(70) z!k;p D

�
1�

p

ak

�

1C .terms involving only 
2; : : : ; 
ak�1/:

In our settings, the roots f
k;pg
ak�1
pD1

give rise to a subroot system of type Aak�1 . Let
us denote by z!k;p the corresponding fundamental weights. Note that

!k;p D z!k;p � .z!k;pj
b/ !b;

so the first formula of the lemma follows from (70) and

.
bj
k;p/D�ıp;1; .z!k;pj!b/D 0:

The other two identities follow easily from the first one.

Using formula (66) we define C˛ for all ˛ in the root lattice ƒ.0/ ; then formula (69)
still holds. Finally, a similar argument gives us that

(71) C˛C�˛ D �.˛;�˛/B�1
˛;�˛; ie C0 D 1:

Lemma 24 Let c˛ (˛ 2ƒ.0/ ) be operators defined by

(72) C˛ D c˛ exp..!bj˛/!/ exp.2�
p
�1.�bj˛/@!/:

Then Œc˛; cˇ �D 0.

Proof Note that by definition, the commutator C˛CˇC�1
˛ C�1

ˇ
is given by the follow-

ing formula:
�Y

mD1

.��m/.˛j�
m
b
.ˇ//
D e�

p
�1.˛0jˇ/e2�

p
�1..1��b/

�1˛�jˇ/:

On the other hand, using (72), the commutator becomes

(73) c˛cˇc�1
˛ c�1

ˇ exp 2�
p
�1

�
.�bj˛/.!bjˇ/� .�bjˇ/.!bj˛/

�
:

Recall that �b is a composition of 3 matrices � .0/
k
; k D 1; 2; 3 whose action on the

subspace with basis f
k;1; : : : ; 
k;ak�1g is represented by the matrix

� .0/
k
D

26666664
�1 1 � � � 0 0

�1 0
: : : 0 0

:::
:::
: : :

: : :
:::

�1 0 � � � 0 1

�1 0 � � � 0 0

37777775:
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It is easy to check that the .p; q/th entry is given by

(74)
�
.1� � .0/

k
/�1

�
pq
D

p

ak

� "pq; "pq D

�
0 if p � q;

1 if p > q:

A straightforward computation using formula (74) and Lemma 23 yields

..1� � .0/
k
/�1
k;pj
b/D�

1

ak
;

..1� � .0/
k
/�1
k;pj
k;q/D ıp;q � ıpC1;q;

..1� �b/
�1.
b/�j
k;q/D

1

ak
.mod Z/;

..1� �b/
�1.
b/�j
b/D 1� 1

2
�:

Using the above formulas we get

..1� �b/
�1��.˛/jˇ/D .�bj˛/ .!bjˇ/� .�bjˇ/ .!bj˛/�

1
2
.˛0jˇ0/ .mod Z/:

For the commutator we get

C˛CˇC�1
˛ C�1

ˇ D exp
�
2�
p
�1
�
.�bj˛/.!bjˇ/� .�bjˇ/.!bj˛/

��
:

Comparing with (73) we get c˛cˇc�1
˛ c�1

ˇ
D 1.

Lemma 24 implies that the operators c˛ can be represented by scalars, ie we can find
complex numbers c˛ , ˛ 2ƒ.0/ such that

(75) c˛cˇ D �.˛; ˇ/B
�1
˛;ˇe�2�

p
�1.�b jˇ/.!b j˛/c˛Cˇ:

For example, we can choose c˛i
arbitrarily for the simple roots ˛i and then use formula

(75) to define the remaining constants.

The level-1 basic representation can be realized on Vx as follows. Let us represent
the Heisenberg algebra s on CŒe! �ex! by letting all generators act trivially, except for
H0 7! .H0j
b/ @! . The latter is forced by the commutation relation

ŒH0;C˛ �D .˛jH0/C˛ D .!bj˛/.H0j
b/C˛:

In this way Vx naturally becomes an s–module. Furthermore, put

(76) E0
˛.�/D exp..!bj˛/!/ exp

��
.!bj˛/� log �� C 2�

p
�1.�bj˛/

�
@!
�

and E˛.�/DE0
˛.�/E

�
˛.�/, where E�˛.�/ is defined by formula (62). Thus the repre-

sentation of the Heisenberg algebra s on Vx can be lifted to a representation of the
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affine Lie algebra g�b as follows:

X˛.�/ 7! c˛�
� j˛0j

2=2E˛.�/; ˛ 2�.0/;

K 7! 1=�;

d 7! �1
2
j�sj

2=� � 1
2
H 2

0 �

X
.i;`/2IC

Hi�;�`�1Hi;`:

3.3 The Kac–Wakimoto hierarchy

Following Kac and Wakimoto (see [36]), we can define an integrable hierarchy in the
Hirota form whose solutions are parametrized by the orbit of the vacuum vector j0i
of the affine Kac–Moody group. A vector � 2 Vx belongs to the orbit if and only if
�x .� ˝ �/D 0, where �x is the operator representing the bilinear Casimir operatorX
˛2�.0/

X
n

A˛;n˝A�˛;�n

.A˛jA�˛/
CK˝ d C d ˝KC

H0˝H0

�

C

X
.i;`/2IC

�
Hi;`˝Hi�;�`�1CHi�;�`�1˝Hi;`

�

�
:

On the other hand, we haveX
n

A˛;n˝A�˛;�n

.A˛jA�˛/
D Res�D0

d�

�
a˛.�/E˛.�/˝E�˛.�/;

where the coefficients a˛ can be computed explicitly thanks to formula (75), ie

(77) a˛.�/D B˛;˛ �
� j˛0j

2

e2�
p
�1.�b j˛/.!b j˛/:

We identify the symmetric algebra S�.s�/ with the Fock space CŒy�, where yD .yi;`/

is a sequence of formal variables indexed by .i; `/2IC as defined in (59), by identifying
Hi�;�`�1 D .mi C `�/yi;` . Then (note that .H0j
b/D .��/

1=2 ) we have

Hi;` D
@

@yi;`
; H0 D .��/

1=2 @! ; K D 1=�;

d D�
j�sj

2

2�
�
��

2
@2
! �

X
.i;`/2IC

.mi C `�/yi;`@yi;`
:

The elements in Vx can also be thought of as sequences of polynomials as follows:

Vx ŠCŒy�Z;
X
n2Z

�n.y/e
.nCx/!

7! � WD .�n.y//n2Z:
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The above isomorphism turns CŒy�Z into a module over the algebra of differential
operators in e! :

.e! � �/n D �n�1; .@! � �/n D n�n:

The HQEs of the �b–twisted Kac–Wakimoto hierarchy will assume the form (3) stated
in Section 1.0.4 provided we prove the following identity:

Lemma 25 We have the identities

j�sj
2=�2

D
1

12

3X
kD1

a2
k
� 1

ak

D
1
2

tr
�

1
4
C ��T�;

where � is the Hodge grading operator (16).

Proof Since � D j0i is a solution to the hierarchy, we must have

j�sj
2=�2

D

X
˛W.!b j˛/D0

a˛.�/:

Let ˛ 2�.0/ be such that .!bj˛/D 0. Then formula (77) reduces simply to

a˛.�/D B˛;˛ D �
�2

��1Y
mD1

.1� �m/.�
m
b
.˛/j˛/:

Recall the notation in the proof of Lemma 23. We claim that ˛ must belong to one
of the root subsystems �.0/

k
of type Aak�1 corresponding to the legs of the Dynkin

diagram for some k . Indeed, let us write ˛ as a linear combination
P

k;p ck;p
k;p for
some integers ck;p . If this linear combination involves a simple root 
k;p for some k ,
then using reflections sk;p with p > 1 we can transform ˛ to a cycle ˛0 such that the
decomposition of ˛0 as a sum of simple roots will involve 
k;1 . Moreover, we still
have .!bj˛

0/D 0. In other words, we may assume that ck;1 ¤ 0 as long as ck;p ¤ 0

for some p . However, since .˛j
b/D�
P

k ck;1 and the coefficients ck;p have the
same sign (depending on whether ˛ is a positive or a negative root) we get that there
is precisely one k for which ck;1 ¤ 0.

Assume that ˛ 2 �.0/
k

. Then since �b is a product of the Coxeter transformations
�k0 D � � � sk0;2sk0;1 , in the above formula for a˛ only �k contributes and since the
order of �k is ak , after a short computation we get

a˛.�/D a�2
k

ak�1Y
mD1

.1� �m
k /
.�m

k
.˛/j˛/; �k D e2�

p
�1=ak :
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These are precisely the coefficients of the principal Kac–Wakimoto hierarchy of type
Aak�1 . Let �k be the sum of the fundamental weights of �.0/

k
. It is well known that

j�k j
2 D .ak � 1/ak.ak C 1/=12. According to [17] we have

j�sj
2=�2

D

X
˛2�

.0/

k

a˛.�/D j�k j
2=a2

k D
1

12

3X
kD1

�
ak �

1

ak

�
:

It remains only to notice (using �T D�� ) that

1
2

tr
�

1
4
C � �T�

D
1
2

tr
�

1
2
C �

��
1
2
� �

�
D

1

2

X
i2Itw

di.1� di/D
1

12

3X
kD1

�
ak �

1

ak

�
:

3.4 Formal discrete Laplace transform

Let ˛ 2�.0/ and z̨ 2� be as in Section 2.5.4. We would like to compare the vertex
operators E˛.�/ and

z� z̨.�/ WD e.
zfz̨.�Iz//

^

;

where .�/^ is the quantization operation defined in Section 5 and

zfz̨.�I z/D
X
n2Z

zI .n/
z̨
.�/.�z/nI

see (31). Using the formulas for the calibrated periods from Section 2.5.4 we get

z� z̨.�/D Uz̨.�/z�
z̨
0 .�/
z� z̨� .�/;

where (we dropped the superscript and set !b WD !
.0/
b

)

Uz̨.�/D exp
� 1X
`D1

�
.!bj˛/�.log��C`/C 2�

p
�1.nC .�bj˛//

��`
`!

q00
` =
p
„

�
;

z� z̨0 .�/D exp
��
.!bj˛/�.log��C0/C 2�

p
�1.nC .�bj˛//

�
q00

0 =
p
„
�

� exp
�
�.!bj˛/

p
„
@

@q00
0

�
;

z� z̨� .�/D exp
� X
.i;`/2IC

.˛jHi/�
miC`� yi;`

�
exp

� X
.i;`/2IC

.˛jHi�/
��mi�`�

�mi � `�

@

@yi;`

�
;
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where �D ��=� , and we use the change of variables

y01;` D
1
p
„

�d01

p
��

q01
`

m01.m01C �/ � � � .m01C `�/
;(78)

yi;` D
1
p
„

�di

p
�ai

qi
`

mi.mi C �/ � � � .mi C `�/
; .i; `/ 2 Itw �Z�0:(79)

Comparing with (62) and (76) we get that z� z̨� .�/DE�˛.�/ and that z� z̨
0
.�/ is a Laplace

transform of E0
˛.�/. We make the last statement precise as follows. Put

yV WDC„ŒŒy;x; q
00
1 C 1; q00

2 ; : : :��Z:

The space yV contains a completion of the basic representation Vx . It has also some
additional variables q00

`
, `� 1 which will be treated as parameters. Just like before,

we identify the elements of yV with formal Fourier series

f D .fn/n2Z 7!
X
n2Z

fn e.nCx/! :

Given f .„I q/ 2C„ŒŒq�� satisfying the condition

(80) f .„I q/j
q00

0
Dx
p
„
2C„ŒŒq�� for all x 2C;

define the formal Laplace transform of f depending on a parameter C .C ¤ 0/

FC .f .q
00
0 ; : : : // WD

X
n2Z

f ..xC n/
p
„; : : : /e.nCx/!C

1
2

n2

2 yV ;

where the dots stand for the remaining q–variables on which f depends. It is easy to
check that

(81) FC ı q00
0 =
p
„D

@

@!
ıFC

and

(82) FC ı e�m
p
„@=@q00

0 D em!C
1
2

m2Cm@! ıFC ;

where we recall that @! D
@

@!
�x .

Lemma 26 Let C D �� e�C0 . Then

E0
˛.�/FC D FC e�AB� 1

2
B2 log C eAx z� z̨0 ;

where

AD .!bj˛/ � .log ��C0/C 2�
p
�1.nC .�bj˛//; B D .!bj˛/:
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Proof Using (81) and (82) we get that the vertex operators in q00
0

transform as follows:

FC eAq00
0
=
p
„e�B

p
„@=@q00

0 D eABC 1
2

B2 log C eAxeB!e.ACB log C /@!FC :

On the other hand, after a straightforward computation, we get

eABC 1
2

B2 log C
D ��j˛0j

2

e�
j˛0j

2

2�
.2�.C0Clog �/�log C /e2�

p
�1.!b j˛/.�b j˛/

and

(83) ACB log C D .!bj˛/
�
� log ��Clog C��.C0Clog �/

�
C2�
p
�1.nC.�bj˛//:

Furthermore, note that since the operator e2�
p
�1@! acts as the identity on yV , the

integer n in (83) may be set to 0. Finally, it remains only to compare with (76) and to
recall our assumption

(84) log C D �.C0C log �/:

3.5 Integrable hierarchies for the affine cusp polynomials

For every root ˛ 2�.0/ �H .0/ we fix an arbitrary lift z̨ 2�� h (see Section 2.5.4).
The subset of affine roots obtained in this way will be denoted by �0 . Following the
construction of Givental and Milanov in [24] we introduce the Casimir-like operator

z��0.�/D�
1
2
�2

� NX
mD1

W
�
z�m.�/˝a 1� 1˝a

z�j .�/
��
z�m.�/˝a 1� 1˝a

z�m.�/
�
W

�
C

X
z̨2�0

zbz̨.�/z�
z̨.�/˝a

z��z̨.�/� 1
2

tr
�

1
4
C ��T�;

where the notation is as follows. Let fz̨mgNmD1
and fz̨mgN

mD1
be two sets of vectors

in h such that under the projection zI .0/.1/W h!H .0/ they project to bases dual with
respect to the intersection form . � j � /, ie .z̨j jz̨m/D ıj ;m . Then

z�m.�/D .@� zfz̨m
.�I z//^ ; z�m.�/D .@� zfz̨m.�I z//^ ; 1�m�N:

The tensor product is over the polynomial algebra a WD C„Œq
00
1
; q00

2
; : : : �, which in

particular means that almost all terms that involve log� cancel.

The first sum in the definition of z��0 is monodromy invariant around �D1 and hence
it expands in only integral powers of �. In fact one can check that the corresponding
coefficients give rise to a representation of the Virasoro algebra, which can be identified
with an instance of the so-called coset Virasoro construction.4 After a straightforward

4We are thankful to B Bakalov for this remark.
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computation using the formulas for the periods from Section 2.5.4, we get the following
formula for the coefficient in front of ��2 (ie the L0–Virasoro operator):

�

2„
.q00

0 ˝a 1�1˝a q00
0 /2C

X
.i;`/2IC

�
mi

�
C`

�
.qi
`˝a 1�1˝a qi

`/.@qi
`
˝a 1�1˝a @qi

`
/:

The coefficients zbz̨ are defined in terms of the vertex operators z� z̨.�/ as follows:

(85) zb�1
z̨
.�/D lim

�!�

�
1�

�

�

�2
zBz̨;�z̨.�; �/; z̨; ž 2�;

where zB
z̨; ž
.�; �/ is the phase factor from the composition of the following two vertex

operators:
z� z̨.�/z�

ž
.�/D zB

z̨; ž
.�; �/ W z� z̨.�/z�

ž
.�/ W :

After a straightforward computation as in Section 3.2, we get

(86) zB
z̨; ž
.�; �/D ��.˛0jˇ0/eC0.˛0jˇ0/�2�

p
�1.!b j˛/ .�b jˇ/

�

�Y
mD1

�
1� �m.�=�/1=�

�.�m
b
.˛/jˇ/

:

We are interested in the following system of Hirota quadratic equations: for every
integer n 2 Z,

(87) Res�D1
d�

�

�
z��0.�/ .� ˝a �/

�ˇ̌
q00

0
˝1�1˝q00

0
Dn
p
„
D 0

where � 2C„ŒŒq0; q1C 1; q2; : : :��. The operator z��0.�/ is multivalued near �D1:
the analytic continuation around �D1 corresponds to a monodromy transformation of
each cycles z̨ 2�0 of the type z̨ 7! �b.z̨/Cnz̨' , where nz̨ 2Z. Using Proposition 15
we get that the analytic continuation transforms z��0.�/ by permuting the cycles z̨
and multiplying each vertex operator term by

e2�
p
�1nz̨.q

00
0
˝1�1˝q00

0
/:

Therefore the 1–form in (87) is invariant with respect to the analytic continuation near
�D1. Moreover, for the same reason the equations (87) are independent of the choice
of a lift �0 of �.0/ .

Remark 27 The Hirota quadratic equations (87) are a straightforward generalization of
the construction of Givental and Milanov [24] (see also [17], where the coefficients zbz̨
were interpreted in terms of the vertex operators) of integrable hierarchies for simple
singularities.
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The following is the main result of this section.

Theorem 28 If � is a solution to the Hirota quadratic equations (87), then FC .�/ with
C D ��Q is a tau-function of the �b–twisted Kac–Wakimoto hierarchy.

Proof We just have to find the Laplace transform of the Hirota quadratic equations
(3) of the Kac–Wakimoto hierarchy. Let ˛ 2�.0/ and z̨ 2� be as in Section 2.5.4.
Using Lemma 26 we get�

a˛.�/E˛.�/˝E�˛.�/
�
.FC ˝FC /D .FC ˝FC /

�
bz̨.�/ z�

z̨.�/˝a
z��z̨.�/

�
;

where the coefficient bz̨ is given by

a˛.�/ �
�2�j˛0j

2

e
j˛0j

2

�
log C e�4�

p
�1.!b j˛/.�b j˛/:

Recalling formula (77) and �D ��=� we get

(88) bz̨.�/D B˛;˛�
�j˛0j

2

ej˛0j
2 C0 e�2�

p
�1.!b j˛/.�b j˛/:

Using (85) and (86), it is not hard to verify that bz̨.�/D zbz̨.�/.

In other words, FC .�/ is a solution to the Kac–Wakimoto hierarchy if � satisfies the
following equations:

Res�D1
d�

�

�
.FC ˝FC / z��0.�/.� ˝a �/

�
D 0:

Comparing the coefficients in front of e.n
0Cx/!˝e.n

00Cx/! we get (87) with nDn0�n00 .

4 The main theorem

4.1 Vertex operators

The symplectic loop space formalism in GW theory was introduced by Givental [21].
We apply this natural framework to describe and investigate further the Hirota quadratic
equations (87). In this section, we again adopt the notation that ˛; ˇ are in the affine
root system �.

Recall the series (24). We are interested in the vertex operators

(89) �˛.t; �/D W e
yf ˛.t;�/

W; ˛ 2�;
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and their phase factors B˛;ˇ.t; �; �/ defined by

�˛.t; �/�ˇ.t; �/D B˛;ˇ.t; �; �/ W �
˛.t; �/�ˇ.t; �/ W ˛; ˇ 2�;

where W � W is the usual normal ordering — move all differentiation operators to the right
of the multiplication operators. Note that

(90) B˛;ˇ.t; �; �/ WD e�.f˛.t;�Iz/C;fˇ.t;�Iz/�/:

The action of the vertex operators on the Fock space is not well defined in general. We
would like to recall the conjugation laws from [23] and to make sense of the vertex
operator action on the Fock space.

4.1.1 Vertex operators at infinity Let us fix t 2M and expand the vertex operators
�˛.t; �/ in a neighborhood of �D1. By definition (see (30)) we have f˛.t; �I z/D
St
zf˛.�I z/. Using formula (124), it is easy to prove that

(91) z�˛.�/ yS�1
t D e

1
2

W . zf˛.�/C; zf˛.�/C/ yS�1
t �˛.t; �/:

In particular, using the formal ��1–adic topology we get that the vertex operator
�˛.t; �/ defines a linear map C„ŒŒq�� ! K„ŒŒq��, where K is an appropriate field
extension of the field C..��1//.

Let us explain the relation between the phase factors. Recall formula (86), the RHS
is interpreted as an element in C..��1=�//..��1=�// by taking the Laurent series
expansion in � at �D1.

Proposition 29 The following formula holds:

B˛;ˇ.t; �; �/D zB˛;ˇ.�; �/e
Wt . zf˛.�/C; zfˇ.�/C/:

Proof Conjugating the identity z�˛.�/z�ˇ.�/ D zB˛;ˇ.�; �/ W z�˛.�/z�ˇ.�/ W by ySt

and using formula (91) we get that

e
1
2

�
Wt . zf˛.�/C; zf˛.�/C/CWt . zfˇ.�/C; zfˇ.�/C/

�
B˛;ˇ.t; �; �/

D e
1
2

Wt

�
zf˛.�/CC zfˇ.�/C; zf˛.�/CC zfˇ.�/C

�
zB˛;ˇ.�; �/:

The quadratic form W is symmetric, so comparing these identities yields the desired
formula.
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4.1.2 Vertex operators at a critical value Assume now that � is near one of the
critical values uj .t/ and that ˇ is a cycle vanishing over �D uj .t/; 1� j �N C 1.
According to Lemma 6 we have fˇ.t; �I z/D‰tRt .z/fA1

.uj ; �I z/. Using formula
(123) it is easy to prove (see [23, Section 7]) that

(92) �ˇ.t; �/ y‰t
yRt D e

1
2

Vt .fˇ.t;�/�;fˇ.t;�/�/ y‰t
yRt �

˙
A1
.uj ; �/;

where �˙
A1
.uj ; �/DW e

˙ yfA1
.uj ;�/ W is the vertex operator of the A1–singularity, Vt is

the second order differential operator defined in formula (123), and

Vt .fˇ.t; �/�;fˇ.t; �/�/D

1X
`;mD0

�
I .�`/
ˇ

.t; �/;V`mI .�m/
ˇ

.t; �/
�
:

In this case, the action of the vertex operators is well-defined on the subspace spanned
by the tame asymptotical functions and it yields a linear map

�ˇ.t; �/W C„ŒŒq��tame!K„ŒŒq��;

where K D C...� � uj /
1=2//. Furthermore, the phase factor B˛;ˇ.t; �; �/ is well

defined if ˇ is a vanishing cycle, since it can be interpreted as an element in

C...��uj /
1=2//...��uj /

1=2//:

Finally, similarly to Proposition 29, we have

(93) Bˇ;ˇ.t; �; �/D BA1
.uj ; �; �/e

�Vt .fˇ.t;�/�;fˇ.t;�/�/;

where BA1
.uj ; �; �/ is the phase factor of the product �˙

A1
.uj ; �/�

˙
A1
.uj ; �/. A

straightforward computation gives

(94) BA1
.uj ; �; �/D

�p
��uj �

p
��ujp

��uj C
p
��uj

�2

;

where the RHS should be expanded into a Laurent series with respect to � at �D uj .

4.2 From descendants to ancestors

Following our construction of the HQEs from Section 3.5 we would like to introduce
an integrable hierarchy for the ancestor potential At . Let us introduce the Heisenberg
fields

�ˇ.t; �/D @� yf
ˇ.t; �/; ˇ 2�0;
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and the corresponding Casimir operator

��0.t; �/D

�
1
2
�2

� NX
mD1

W
�
�ˇm

.t; �/˝a 1� 1˝a �ˇm
.t; �/

��
�ˇm.t; �/˝a 1� 1˝a �

ˇm.t; �/
�
W

�
C

X
ˇ2�0

bˇ.t; �/�
ˇ.t; �/˝a �

�ˇ.t; �/� 1
2

tr
�

1
4
C ��T�;

where fˇmg and fˇmg are chosen as fz̨mg and fz̨mg as in Section 3.5, and the
coefficients bˇ.t; �/ are defined by

(95) bˇ.t; �/
�1
D lim
�!�

�
1�

�

�

�2
Bˇ;�ˇ.t; �; �/:

Finally, we need also to discretize the HQEs corresponding to the above Casimir
operator to offset the problem of multivaluedness. Note that, for the toroidal cycle '
in Section 2.5.1, according to Proposition 15 the vector f '.t; �I z/ has only negative
powers of z , so the quantization yf '.t; �/ is a linear function in q .

Lemma 30 Let ' be the toroidal cycle. Then the equation

(96) yf '.t; �/˝ 1� 1˝ yf '.t; �/D 2�
p
�1n

is equivalent to the system of equations

ŒS�1
t q.z/�0;00˝ 1� 1˝ ŒS�1

t q.z/�0;00 D n
p
„;(97)

ŒS�1
t q.z/�`;00˝ 1� 1˝ ŒS�1

t q.z/�`;00 D 0 for all `� 1;(98)

where ŒS�1
t q.z/�`;i denotes the coefficient of S�1

t q.z/ in front of �iz
` .

Proof Note that

zf '.�I z/D 2�
p
�1

1X
`D0

�`

`!
�01 .�z/�`�1:

The equations (97)–(98) can be written equivalently as

�. zf '.�I z/;S�1
t q.z//D 2�

p
�1 n
p
„:

It remains only to recall that St is a symplectic transformation and that f '.t; �I z/D
St
zf '.�I z/.
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We will be interested in the following HQEs: for every integer n 2 Z,

(99) Res�D1
d�

�

�
��0.t; �/.� ˝ �/

�ˇ̌
yf '.t;�/˝1�1˝ yf '.t;�/D2�

p
�1n
D 0;

where � belongs to an appropriate Fock space and we have to require also that the
discretization is well defined. For our purposes the HQEs (99) will be on the Fock
space C„ŒŒq0C t; q1C 1; q2; : : :��. On the other hand the operator yS�1

t gives rise to an
isomorphism

yS�1
t W C„ŒŒq0C t; q1C 1; q2; : : :��!C„ŒŒq0; q1C 1; q2; : : :��;

which allows us to identify the HQEs (87) and (99).

Proposition 31 A function � is a solution to the HQEs (99) if and only if yS�1
t � is a

solution to the HQEs (87).

Proof Using Proposition 29 we get that

z��0.�/ . yS
�1
t ˝

yS�1
t /D . yS�1

t ˝
yS�1

t /��0.t; �/:

It remains only to notice that the discretization in both HQEs are compatible with the
action of ySt , which follows easily from formula (124) and Lemma 30.

4.3 The integrable hierarchy for A1–singularity

It was conjectured by Witten [51] and first proved by Kontsevich [38] that the total
descendant potential of a point is a tau-function of the KdV hierarchy. The latter can be
written in two different ways: via the Kac–Wakimoto construction and as a reduction
of the KP hierarchy. We will need both realizations, so let us recall them.

4.3.1 The Kac–Wakimoto construction of KdV The Casimir operator for the A1–
singularity f .x/D x2=2Cu (see Section 4.2) takes the form

�A1
.u; �/D�1

4
�2
W �V˝V
ˇ

.u; �/�V˝V
ˇ

.u; �/ W

C bˇ.u; �/
�
�
ˇ
A1
.u; �/˝�

�ˇ
A1
.u; �/C�

�ˇ
A1
.u; �/˝�

ˇ
A1
.u; �/

�
�

1
8
;

where the coefficient bˇ.u; �/ is given by

bˇ.u; �/D lim
�!�

�
1�

�

�

��2
Bˇ;ˇ.u; �; �/D

�2

16.��u/2
:

We denoted by V the Fock space C„ŒŒq��, and

�V˝V
ˇ

.u; �/ WD �ˇ.u; �/˝ 1� 1˝�ˇ.u; �/:
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Witten’s conjecture (Kontsevich’s theorem) can be stated as follows:

(100) Res�D1�A1
.0; �/ .Dpt˝Dpt/D 0:

To compare the above equation with the principal Kac–Wakimoto hierarchy of type A1 ,
note that

�
ˇ
A1
.u; �/D exp

�
2

1X
nD0

.2.��u//nC1=2

.2nC 1/!!

qn
p
„

�
exp

�
�2

1X
nD0

.2n� 1/!!

.2.��u//nC1=2

p
„@n

�
;

and that the coefficient in front of ��2 in 1
4
W �V˝V
ˇ

.0; �/�V˝V
ˇ

.0; �/ W is precisely

1X
nD0

�
nC 1

2

�
.qn˝ 1� 1˝ qn/.@n˝ 1� 1˝ @n/;

where @n WD@=@qn . It follows that the above equations coincide with the Kac–Wakimoto
form of the KdV hierarchy up to the rescaling qn D t2nC1.2nC 1/!!.

On the other hand, the total descendant potential Dpt satisfies the string equation, which
can be stated as follows (see [21]): e.u=z/

^Dpt D Dpt . Using that

�A1
.0; �/

�
e.u=z/

^

˝ e.u=z/
^�
D
�
e.u=z/

^

˝ e.u=z/
^�
�A1

.u; �/

we get that Dpt satisfies also the HQEs

(101) Res�D1�A1
.u; �/ .Dpt˝Dpt/D 0:

4.3.2 The KdV hierarchy as a reduction of KP According to Givental [23] the
KdV hierarchy (100) can be written also as

Res�D0

�X
˙

d�

˙
p
�
�
˙ˇ=2
A1

.0; �/˝�
�ˇ=2
A1

.0; �/

�
.Dpt˝Dpt/D 0:

Using again the string equation and Proposition 29 we get that Dpt satisfies also
the HQEs

(102) Res�Du

�X
˙

d�

˙
p
��u

�
˙ˇ=2
A1

.u; �/˝�
�ˇ=2
A1

.u; �/

�
.Dpt˝Dpt/D 0:

4.4 The phase factors

In this section we will prove Proposition 38, that the phase factors B˛;ˇ.t; �; �/ (see
(90)) are multivalued analytic function and that the analytic continuation is compatible
with the monodromy action on the cycles ˛ and ˇ . To begin with, put

B1˛;ˇ.t; �; �/D exp�1˛;ˇ.t; �; �/;
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where

(103) �1˛;ˇ.t; �; �/ WD ���1 ���1

1X
nD0

.�1/nC1.I .n/˛ .t; �/; I .�n�1/
ˇ

.t; �//;

where ���1 (resp. ���1 ) is the Laurent series expansion at �D1 (resp. �D1). The
differential of (103) with respect to t is

eW ˛;ˇ.�; �/ WD I .0/˛ .t; �/ � I .0/
ˇ
.t; �/D

X
i2I

.I .0/˛ .t; �/; @i � I .0/
ˇ
.t; �// dti ;

which will be interpreted as a 1–form on M depending on the parameters � and �.
Furthermore, for each t 2M , put r.t/Dmaxj juj .t/j, where fuj .t/g

NC1
jD1

is the set
of all critical values of F.x; t/. In other words, r.t/ is the radius of the smallest disk
(with center at 0) that contains all critical values of F.x; t/. Let

DC1 D
˚
.t; �; �/ 2M �C2

W j���j< j�j � r.t/ < j�j � r.t/
	
:

Note that since j� � �j � 0 we have j�j > r.t/ and j�j > r.t/ for all .t; �; �/ 2
DC1 , which implies that the Laurent series expansions of I .0/˛ .t; �/ and I .0/

ˇ
.t; �/ at

respectively �D1 and �D1 are convergent. The first inequality in the definition
of DC1 guarantees that the line segment Œ�; �� is outside the disk jxj � r.t/. In
particular, in order to specify a branch of W˛;ˇ.�; �/ it is enough to specify the
branches of the period vectors only at the point .t; �/, the branch of the periods at
.t; �/ is determined via the line segment Œ�; ��.

Proposition 32 The series (103) is convergent for all .t; �; �/ 2DC1 .

Proof Using Proposition 29 we can write (103) as a sum of two formal series

(104) �1˛;ˇ.t; �; �/D
z�1˛;ˇ.�; �/CWt . zf˛.�/C; zfˇ.�/C/;

where z�1
˛;ˇ

is the Laurent series expansion of log zB˛;ˇ in the domain j�j> j�j.

Since the series z�1
˛;ˇ

is convergent for j�j> j�j> j���j, it is enough to prove the
proposition for the second series on the RHS of (104). Recalling the definition of Wt

and using the fact that modulo Q the series St .z/D e.1=z/t [ , where t [ means the
classical orbifold cup product multiplication by t , we get that

lim
Re.t01/!�1

lim
t!.0;:::;0;t01/

.Wt � t01P /D 0;

On the other hand, since

dWt . zf˛.�/C; zfˇ.�/C/D d�˛;ˇ.t; �; �/D I .0/˛ .t; �/ � I .0/
ˇ
.t; �/;
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the series

(105) Wt . zf˛.�/C; zfˇ.�/C/� t01.˛0jˇ0/=�;

viewed as a formal Laurent series in ��1 and ��1 can be identified with the improper
integral

(106) lim
"!1

Z t

"

�
I .0/˛ .t 0; �/ � I .0/

ˇ
.t 0; �/� dt 001.˛0jˇ0/=�

�
;

where " 2M and the limit is taken along a straight segment such that "i ! 0 for
i ¤ 01 and Re."01/!�1. More precisely, if we take the Laurent series expansion
of the integrand at � D 1 and � D 1 and integrate termwise, we get (105). It
remains only to notice that the integrand extends holomorphically at the limiting point
"D1 (because we removed the singularity), so the termwise integration preserves
the convergence.

The proof of Proposition 32 yields slightly more. Namely, we proved that the second
summand on the RHS of (104) is a convergent Laurent series in ��1 and ��1 and that
the corresponding limit is a multivalued analytic function on

D1 WD
˚
.t; �; �/ 2M �C2

W j���j<min.j�j � r.t/; j�j � r.t//
	
:

On the other hand, the phase factor zB˛;ˇ.�; �/ is also a multivalued analytic function
on D1 except for a possible pole along �D�. Hence we have the following corollary
(of the proof).

Corollary 33 The series B1
˛;ˇ
.t; �; �/ extends analytically to a multivalued analytic

function on D1 except for a possible pole along the diagonal �D �.

Using the analytic extension of B1
˛;ˇ
.t; �; �/ we define a multivalued function with

values in the space Cff�gg of convergent Laurent series at � D 0 in the following way:

B˛;ˇW .M �C/1!Cff�gg; .t; �/ 7! ����B1˛;ˇ.t; �; �/;

where � D ���, ���� is the Laurent series expansion at �D �, and

.M �C/1 WD f.t; �/ 2M �C W j�j> r.t/g:

It is convenient to introduce the 1–form W˛;ˇ.�/ WD eW ˛;ˇ.0; �/. Following [23] we
call W˛;ˇ.�/ the phase form. Note that if C � .M �C/1 is a path from .t; �/ to
.t 0; �0/, then

(107) B˛;ˇ.t
0; �0/D B˛;ˇ.t; �/ e

R
C W˛;ˇ.�/:

Geometry & Topology, Volume 20 (2016)



GW for Fano orbifold curves, Gamma integral structures and ADE-Toda hierarchies 2199

Therefore we can uniquely extend the function B˛;ˇ to a function on .M �C/0 , so that
formula (107) holds for all paths C � .M �C/0 . Finally, for every .t; �/ 2 .M �C/0

and � sufficiently close to � we define

B˛;ˇ.t; �; �/D B˛;ˇ.t; �/j�D���; �˛;ˇ.t; �; �/ WD log B˛;ˇ.t; �; �/:

Note that B˛;ˇ.t; �; �/D B1
˛;ˇ
.t; �; �/ if .t; �; �/ 2DC1 .

Let t0 2M be a generic point, so that all critical points of F.x; t0/ are of type A1 and
the absolute values of the corresponding critical values are pairwise distinct. Let uj .t0/

be a critical value of F.x; t0/ with a maximal absolute value, ie juj .t0/jD r.t0/. There
exists a real number �0> 0 such that if jxj<�0 , then r.t0Cx1/Djuj .t0/Cxj. We fix
t D t0Cx01, �, and � such that the line segment Œ��uj .t0/;x0� is contained inside
the disk fjxj < �0g � C and the line segment Œt0; t �� f.�; �/g �DC1 . For example,
fix � such that j�j> uj .t0/ and j��uj .t0/j< "0 and put x0 D

1
2
.��uj .t0//. Then

we can find � such that all requirements are fulfilled.

Lemma 34 If ˇ 2H2.Xt;�IZ/ is a cycle vanishing over t D t0C .��uj .t0//1, then

(108) �˛;ˇ.t; �; �/D lim
"!0

Z t

t0C."C��uj .t0//1
eW ˛;ˇ.�; �/;

where the integration is along a straight segment.

Proof By definition �˛;ˇ.t; �; �/ is the Laurent series expansion near �D1 of the
series

(109)
1X

nD0

.�1/nC1
�
I .n/˛ .t; �/; I .�n�1/

ˇ
.t; �/

�
;

while the RHS of (108) is

(110) lim
"!0

Z x0

"C��uj

�
I .0/˛ .t0; ��x/; I .0/

ˇ
.t0; ��x/

�
dx:

Using integration by parts .nC1/ times and the fact that the periods I
.�p�1/

ˇ
.t0; ��x/

vanish at x D ��uj , we get that the integral (110) coincides with

(111)
nX

pD0

.�1/pC1
�
I .p/˛ .t 00; �/; I

.�p�1/

ˇ
.t 00; �/

�
C lim
"!0

.�1/nC1

Z x0

"C��uj

�
I .nC1/
˛ .t0; ��x/; I .�n�1/

ˇ
.t0; ��x/

�
dx:
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The Laurent series expansion of I .nC1/
˛ .t0; �� x/ D I .nC1/

˛ .t0C x1; �/ in ��1 has
radius of convergence r.t0Cx1/. Hence, it is uniformly convergent for all x that vary
along a compact subset of the open subset in C defined by the inequality

fx 2C W j�j> r.t0Cx1/g:

On the other hand, according to our choice of x0; � and �, the point .t0Cx1; �; �/
lies in DC1 for all x on the integration path. In particular, j�j > j�j > r.t0C x1/,
which means that the integration path is entirely contained in the above open subset.
Hence the integral in (111) has a convergent Laurent series in ��1 . Moreover, the
leading order term of the expansion is ��e for some rational number e > n. This
proves that the Laurent series expansions (in ��1 ) of the integral (110) and of the
series (109) coincide.

Our next goal is to prove that the analytic continuation of the phase factor B˛;ˇ.t; �; �/

is compatible with the monodromy representation in the following sense. Recall the
monodromy representation (see Section 2.2)

�W �1..M �C/0/! GL.h/:

Let U � .M �C/0 be an open subdomain and f˛;ˇ.t; �/ be a (vector-valued) function
depending bilinearly on .˛; ˇ/ 2 h� h and analytic in a neighborhood of some point
.t0; �0/ 2 U . We say that f˛;ˇ is multivalued analytic on U if it can be extended
analytically along any path in U . Furthermore, we say that f˛;ˇ is compatible with
the monodromy representation � , if for every closed loop C in U , the analytic
continuation of f˛;ˇ.t; �/ along C coincides with fw.˛/;w.ˇ/.t; �/, where w D �.C /
is the corresponding monodromy transformation.

Recall that (see Corollary 33) the Laurent series �1
ˇ;˛
.t; �; �/ extends analytically to

a multivalued analytic function �ˇ;˛.t; �; �/ defined for all .t; �; �/ 2D1 such that
�¤ �.

Lemma 35 Let ˛ and ˇ be cycles in the vanishing cohomology such that .˛jˇ/D 0.
Then

�˛;ˇ.t; �; �/��ˇ;˛.t; �; �/D 2�
p
�1 SF.˛; ˇ/ for all .t; �; �/ 2DC1;

where SF is the bilinear form (56).

Proof Since the difference

�ˇ;˛.t; �; �/� z�ˇ;˛.�; �/; where z�ˇ;˛.�; �/ WD log zBˇ;˛.�; �/;
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has a convergent Laurent series expansion in D1 and it is invariant under switching
.ˇ; �/$ .˛; �/, it is enough to prove the statement for z�˛;ˇ.�; �/ where .�; �/ is a
point in the open subset

fj���j<min.j�j; j�j/g �C2:

Recalling formula (86), the rest of the proof is a straightforward computation (see also
the proof of Lemma 24, where some of the computations were already done).

Remark 36 If we omit the condition .˛jˇ/ D 0 in Lemma 35, then the identity is
true only up to an integer multiple of 2�

p
�1.˛jˇ/. The ambiguity comes from the

fact that the phase factor z�˛;ˇ.�; �/ has a logarithmic singularity along �D � of the
type .˛jˇ/ log.���/.

Proposition 37 The phase factor B˛;ˇ.t; �/ is compatible with the monodromy repre-
sentation in the domain .M �C/0 .

Proof By definition we have to prove that if C 0� .M �C/0 is an arbitrary loop based
at .t; �/ and � is sufficiently close to �, then

Bw.˛/;w.ˇ/.t; �; �/D B˛;ˇ.t; �; �/ e
R

C
eW ˛;ˇ.�;�/;

where w D �.C 0/ and C �M is the path parametrized by

t 0C .���0/1; .t 0; �0/ 2 C 0:

We may assume that .t; �; �/ 2DC1 , because by definition the value of B˛;ˇ at any
other point differs by an integral along the path of the phase form eW ˛;ˇ.�; �/. Under
this assumption the above equality is equivalent to

(112) �1w.˛/;w.ˇ/.t; �; �/D�
1
˛;ˇ.t; �; �/C

Z
C

eW ˛;ˇ.�; �/ .mod 2�
p
�1Z/:

We first prove a special case of the above formula. Namely, let us choose a generic point
t0 2M such that the absolute values of the critical values of F.x; t0/ are pairwise
distinct and let uj .t0/ be the critical value with maximal absolute value (here the
notation is the same as in Lemma 34). We will assume that t D t0Cx01 is sufficiently
close to t0C .�� uj .t0//1 and that C is a closed loop of the type t0C x1, where
the parameter x varies along a small closed loop based at x0 2 C going around
�� uj .t0/, so that the line segment Œ�� x; �� x� moves around uj . Let us denote
by 
 2H2.Xt;�IZ/ the vanishing cycle vanishing over .t0;uj .t0//. Then we have the
following decompositions:

˛ D ˛0C 1
2
.˛j
 /
; ˇ D ˇ0C 1

2
.ˇj
 /
;
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where ˛0 and ˇ0 are cycles invariant with respect to the local monodromy around the
point .t0;uj .t0//. After a straightforward computation we get

�w.˛/;w.ˇ/.t; �; �/��˛;ˇ.t; �; �/D�.˛j
 /�
;ˇ0.t; �; �/� .ˇj
 /�˛0;
 .t; �; �/;

while
R

C
eW ˛;ˇ.�; �/ is

(113) 1
2
.ˇj
 /

Z
C

eW ˛0;
 .�; �/C
1
2
.˛j
 /

Z
C

eW 
;ˇ0.�; �/

C
1
4
.˛j
 /.ˇj
 /

Z
C

eW 
;
 .�; �/;

where we used that
R

C
eW ˛0;ˇ0.�; �/ D 0, because the periods I .0/˛0 .t0; � � x/ and

I .0/
ˇ0
.t0; �� x/ are holomorphic respectively at x D �� uj and x D �� uj , which

means that the phase form is holomorphic inside the loop C . The last integral in the
above formula is easy to compute because only the singular terms of I .0/
 .t0; �� x/

and I .0/
 .t0; ��x/ contribute, ieZ
C

eW 
;
 .�; �/D 2

I
dxp

.��uj .t0/�x/.��uj .t0/�x/
D 4�

p
�1:

According to Lemma 34,

�˛0;
 .t; �; �/D

Z t

t0C.��uj .t0//1
eW ˛0;
 .�; �/;

and the integral on the RHS has a convergent Laurent series expansion in �� uj .t/

and .��uj .t//
1=2 , which allows us to evaluate the integralZ

C

eW˛0;
 .�; �/D�2

Z t

t0C.��uj .t0//1
eW˛0;
 .�; �/

D�2�1˛0;
 .t; �; �/D�2�˛0;
 .t; �; �/:

It remains only to evaluate the second integral in (113). We haveZ
C

eW 
;ˇ0.�; �/D

Z
C

eW ˇ0;
 .�; �/D�2�ˇ0;
 .t; �; �/;

where the second identity is derived just like above when j�j> j�j, and then we use
analytic continuation to extend the formula for j�j< j�j as well. Recalling Lemma 35,
we get

�ˇ0;
 .t; �; �/D�
;ˇ0.t; �; �/C 2�
p
�1 SF.ˇ0; 
 /:

Using that ˇ0 D ˇ� 1
2
.ˇj
 /
 and that SF.
; 
 /D 1, we finally getZ

C

eW 
;ˇ0.�; �/D�2�
;ˇ0.t; �; �/� 4�
p
�1 SF.ˇ; 
 /C 2�

p
�1.ˇj
 /:
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Since SF.ˇ; 
 / 2 Z, the proof of formula (112) in the special case is complete.

The general case follows easily, because the fundamental group �1..M � C/0/ is
generated by loops like the above one. Indeed, we already know that the affine cusp
polynomial f .x/ has a real Morsification F.x; t 0

0
/, ie all critical points of F.x; t 0

0
/

are real and the corresponding critical values are real as well. In particular, we can find
a small deformation F.x; t0/ of the real Morsification such that the critical values uj

are vertices of a convex polygon. The fundamental group �1..M �C/0/ is generated
by simple loops in ft0g�C that go around the vertices of the polygon. Let us pick one
of these loops and let .t0;uj .t0// be the corresponding vertex of the polygon. Since the
translations of the type t0 7! t0C c1, c 2C , do not change the homotopy class of the
loop, we can find a representative (namely, pick c such that the juj .t0/Ccj> juj .t0/Ccj

for all other vertices .t0;uj .t0//) of the homotopy class, which has the special form
from above.

Proposition 38 There exists a generic point t0 2M (ie F.x; t0/ is a Morse function)
and a critical value uj .t0/ such that

(114) B˛;ˇ.t; �; �/D lim
"!0

exp
�
�

Z t0C."C��uj .t0//1

t

eW ˛;ˇ.�; �/

�
;

where the integration is along any path avoiding the poles of the 1–form eW ˛;ˇ.�; �/

such that the cycle ˇ 2H2.Xt;�;Z/ vanishes along it.

Proof Let us assume that t0 is a generic point and that uj .t0/ is the critical value
with maximal absolute value. It is enough to prove the statement for an arbitrary point
.t; �; �/ 2 DC1 , because by definition the value of B˛;ˇ.t

0; �; �/ at any other point
.t 0; �; �/ differs by an integral of eW ˛;ˇ.�; �/ along a path connecting t and t 0 , while
the RHS of (114) clearly has the same property. Let .t; �; �/ 2DC1 be a point such
that Lemma 34 holds and let C 00" be the straight segment Œt; t0C ."C�� uj .t0//1�.
Put C 0 D .C 00" /

�1 ı C" and w D �.C 0/, where C" is the integration path (from t

to t0C ."C�� uj .t0//1). Then by definition the cycle w.ˇ/ 2H2.Xt;�IZ/ is the
vanishing cycle along the line segment Œt; t0C .��uj .t0//1�. According to Lemma 34,
formula (114) holds for C 00 and Bw.˛/;w.ˇ/ . Therefore, we need to prove that

(115) �
Z

C 0

eW ˛;ˇ.�; �/D�˛;ˇ.t; �; �/��w.˛/;w.ˇ/.t; �; �/ .mod 2�
p
�1Z/;

which follows from Proposition 37.

4.5 The ancestor solution

Theorem 39 The total ancestor potential At .„I q/ is a solution to the HQEs (99).
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We do some preparatory work in Sections 4.5.1–4.5.3 and prove Theorem 39 in
Section 4.5.4.

To begin with, put q0 D q˝ 1, q00 D 1˝ q , and let us assume that the discretization
condition (96) is satisfied for some integer n. The tameness of A.„I q/ implies that
the LHS of (99) (for � D A.„I q/) is a formal series in q0 and q00 with coefficients
formal Laurent series in

p
„, whose coefficients are polynomial expressions of the

period vectors I .n/˛ .t; �/. In particular, the residue in (99) can be computed via the
residue theorem, ie we have to compute the residues at all critical points and at �D 0

and prove that their sum is 0.

Let uj .t/ be one of the critical points of F , where t 2M is a generic point such that
all critical values are pairwise different. Furthermore, we assume that � is near uj .t/

and that a path in .M �C/0 from the reference point .0; 1/ to .t; �/ is fixed in such a
way that the vanishing cycle ˇ , vanishing over �D uj .t/, belongs to the subset �0 of
affine roots defined in Section 3.5.

4.5.1 The Virasoro term Let us compute

(116) �Res�Duj .t/
1
2
� d�

NX
mD1

W �V˝V
ˇm

.t; �/�V˝V
ˇm .t; �/ WA˝2

t ;

where �V˝V
˛ WD �˛˝ 1� 1˝�˛ . Put

ˇm D ˛mC
1
2
.ˇmjˇ/ˇ and ˇm

D ˛m
C

1
2
.ˇm
jˇ/ˇ;

where .˛mjˇ/D .˛
mjˇ/D 0. The above operator can be written as the sum of

NX
mD1

W �V˝V
˛m

.t; �/�V˝V
˛m .t; �/ W C

1

4

� NX
mD1

.ˇmjˇ/.ˇ
m
jˇ/

�
W �V˝V
ˇ

.t; �/�V˝V
ˇ

.t; �/ W

and

(117) 1

2

NX
mD1

�
.ˇmjˇ/ W �

V˝V
ˇ

.t; �/�V˝V
˛m .t; �/ W

C .ˇm
jˇ/ W �V˝V

ˇ
.t; �/�V˝V

˛m
.t; �/ W

�
The Picard–Lefschetz formula implies that the periods I .n/˛m

.t; �/ and I .n/˛m.t; �/ are
invariant with respect to the local monodromy around � D uj .t/, so they must be
holomorphic in a neighborhood of �D uj .t/. The operator �V˝V

' .t; �/, where ' is
the toroidal cycle, vanishes after we impose the discretization condition (96). On the

Geometry & Topology, Volume 20 (2016)



GW for Fano orbifold curves, Gamma integral structures and ADE-Toda hierarchies 2205

other hand, since
P

m.ˇmjˇ/.ˇ
mj˛/D .ˇj˛/, the cycles

�ˇC

NX
mD1

.ˇmjˇ/ˇ
m and �ˇC

NX
mD1

.ˇm
jˇ/ˇm

are in the kernel of the intersection form, so they must be proportional to ' . Hence the
operator (117) vanishes after the discretization condition (96) is imposed. The residue
(116) turns into

�Res�Duj .t/
1
4
� d� W �V˝V

ˇ
.t; �/�V˝V

ˇ
.t; �/ W At .„I q

0/At .„I q
00/:

To compute the above residue, note that the expression

W �V˝V
ˇ

.t; �/�V˝V
ˇ

.t; �/ W .y‰t
yRt /
˝2

can be written as

.y‰t
yRt /
˝2
W �V˝V

A1
.uj ; �/�

V˝V
A1

.uj ; �/ W C2Vt .�ˇ.t; �/�; �ˇ.t; �/�/:

Let us compute

�Res�Duj .t/
1
4
� d�2Vt .�ˇ.t; �/�; �ˇ.t; �/�/

D�Res�Duj .t/
1
2
� d�.V00.t/I

.0/
ˇ
.t; �/; I .0/

ˇ
.t; �//;

where we used the fact that only the leading term (with respect to z ) of

�ˇ.t; �I z/� D�I .0/
ˇ
.t; �/z�1

C � � �

will contribute because the remaining ones have a zero at �D uj .t/ of order at least 1
2

.
Furthermore, the Laurent series expansion of I .0/

ˇ
at �D uj .t/ has the form

I .0/
ˇ
.t; �/D 2.2.��uj //

�1=2ej C � � � ; ej D duj=
p
�j ;

where the dots stand for terms that have at �D uj a zero of order at least 1
2

. These
terms do not contribute to the residue, so we get

�Res�Duj .t/
1
2
� d�.V00.t/ej ; ej /

2

��uj .t/
D uj .t/ .R1.t/ej ; ej /:

We get the following formula for the residue (116):

.y‰t
yRt /
˝2
�
uj R

jj
1
�Res�Duj

1
4
� d� W �V˝V

A1
.uj ; �/�

V˝V
A1

.uj ; �/ W
�

NC1Y
mD1

Dpt.„�mI
mq/˝2;

where R
jj
1
D .R1ej ; ej / is the j th diagonal entry of R1 .
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4.5.2 The A1–subroot system The vanishing cycles f�ˇ; ˇg form a subroot system
of type A1 . Let us compute the residue of the corresponding vertex operator terms, ie

(118) Res�Duj .t/

d�

�

�X
˙

b˙ˇ.t; �/�
˙ˇ.t; �/˝��ˇ.t; �/

�
A˝2

t :

We have bˇ.t; �/D b�ˇ.t; �/ and

bˇ.t; �/�
˙ˇ.t; �/˝��ˇ.t; �/.y‰t

yRt /
˝2

D .y‰t
yRt /
˝2bA1

.uj ; �/�
˙ˇ
A1
.uj ; �/˝�

�ˇ
A1
.uj ; �/;

where we used formula (92) together with the identity

bˇ.t; �/e
Vt .fˇ.t;�/�;fˇ.t;�/�/ D bA1

.uj ; �/;

which follows immediately from (93). Using that At D
y‰t
yRt

Q
j D.j /

pt , where the
factors D.j /

pt D Dpt.„�j I
jq/ are solutions to KdV, we can compute the residue (118)

via the Kac–Wakimoto form of the KdV hierarchy (101). After a short computation we
get that the residue (118) is

.y‰t
yRt /
˝2
�

1
8
CRes�Duj

1
4
� d� W �V˝V

A1
.uj ; �/�

V˝V
A1

.uj ; �/ W
�NC1Y

mD1

Dpt.„�mI
mq/˝2:

4.5.3 The A2–subroot subsystem Let ˛ 2�0 be a cycle such that .˛jˇ/D 1. We
claim that the expression

(119)
�
b˛.t; �/�

˛.t; �/˝��˛.t; �/C b˛�ˇ.t; �/�
˛�ˇ.t; �/˝��˛Cˇ.t; �/

�
A˝2

t

is analytic near �D uj . Using the decompositions

˛ D ˛0C 1
2
ˇ; ˛�ˇ D ˛0� 1

2
ˇ;

where .˛0jˇ/D 0, the above expression can be written as

�˛
0

˝��˛
0�

a0�ˇ=2˝��ˇ=2C a00��ˇ=2˝�ˇ=2
�
A˝2

t ;

where the coefficients a0 and a00 are given by

a0.t; �/D lim
�!�

�
1�

�

�

��2
B˛;˛.t; �; �/B

uj
˛0;�ˇ

.t; �; �/;

a00.t; �/D lim
�!�

�
1�

�

�

��2
B˛�ˇ;˛�ˇ.t; �; �/B

uj
˛0;ˇ

.t; �; �/;
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where the phase factor is given by

B
uj
˛0;ˇ
D exp�uj

˛0;ˇ

with

�
uj
˛0;ˇ

.t; �; �/D ���uj ���uj

1X
nD0

.�1/nC1.I .n/˛0 .t; �/; I
.�n�1/
ˇ

.t; �//;

where ���uj (resp. ���uj ) is the Laurent series expansion at �D uj (resp. �D uj ).
Since the Laurent series expansions converge for � and � sufficiently close to uj ,
integration by parts yields

�
uj
˛0;ˇ

.t; �; �/D lim
"!0

Z
L"

W˛0;ˇ.���/;

where L" is the straight segment Œt C ."C�� �� uj /1; t � �1�. On the other hand
we have

�˙ˇ=2˝��ˇ=2.y‰t
yRt /
˝2
D .y‰t

yRt /
˝2 eVt .fˇ=2.t;�/�;fˇ=2.t;�/�/�

˙ˇ=2
A1

˝�
�ˇ=2
A1

:

The exponential factor can be expressed in terms of the phase factors as follows (see
Section 4.1.2):

eVt .fˇ=2.t;�/�;fˇ=2.t;�/�/ D
1

2
p
��uj

lim
�!�

.���/1=2B
uj
ˇ=2;�ˇ=2

.t; �; �/;

where the limit is taken in the region j�j> j�j. Recalling the KP-reduction HQEs of
KdV (102) we get that if the coefficients

c0.t; �/D �2 lim
�!�

.���/�3=2B˛;˛.t; �; �/B
uj
˛0;�ˇ

.t; �; �/B
uj
ˇ=2;�ˇ=2

.t; �; �/;

c00.t; �/D �2 lim
�!�

.���/�3=2B˛�ˇ;˛�ˇ.t; �; �/B
uj
˛0;ˇ

.t; �; �/B
uj
ˇ=2;�ˇ=2

.t; �; �/

are analytic near �D uj , and c0=c00 D�1, then the expression (119) is analytic near
�D uj .

Let us prove the analyticity of c0 . The argument for c00 is similar. Let us choose a small
" 2 C and a generic point t0 2M on the discriminant, so that Proposition 38 holds.
Furthermore, we fix two paths C 0" , and C 00" in M 0DM nfdiscrg from t0C.���C"/1
to t � �1 such that the parallel transport transforms the cycle ' vanishing over t0
respectively into ˛ , and ˛�ˇ . The phase factors in the definition of c0 can be written
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in terms of integrals along the path as follows:

B˛;˛.t; �; �/D lim
"!0

exp
�Z

C 0"

W˛;˛.���/

�
;

B˛0;�ˇ.t; �; �/D lim
"!0

exp
�Z

L"

W˛0;�ˇ.���/

�
;

Bˇ=2;�ˇ=2.t; �; �/D lim
"!0

exp
�Z

L"

Wˇ=2;�ˇ=2.���/

�
:

Using these formulas, we can express the coefficient c0.t; �/ as the limit "! 0 of the
following expression:

�2 lim
�!�

.���/�3=2 exp
�Z

C 0"

W˛;˛.���/�

Z
L"

W˛;˛.���/C

Z
L"

W˛0;˛0.���/

�
:

Let us examine the dependence on the parameters t; �, and � WD ���. The difference
of the first two integrals in the above formula does not depend on �, because the paths
C 0" and L" have the same ending point, while the starting points are independent of �.
After passing to the limit the difference contributes a constant independent of �, and �.
The last integral is analytic near �D uj , because the cycle ˛0 is invariant with respect
to the local monodromy, which means that the period vector I .0/˛0 .t

0; �/ and respectively
the phase form W˛0;˛0.�/ are analytic for t 0 sufficiently close to t �uj 1 and j�j � 1.
This proves the analyticity of c0 .

It remains only to prove that c0=c00 D�1. Using the above path integrals, we can write
log.c0=c00/ asZ

C 0"

W˛;˛ �

Z
L"

W˛;˛ �

Z
C 00"

W˛�ˇ;˛�ˇC

Z
L"

W˛�ˇ;˛�ˇC

Z

"

W˛;˛ �

Z

"

W˛;˛;

where 
" is a small loop in M 0 based at the starting point of L" (ie tC."C����uj /1)
that goes counterclockwise around the discriminant and the branch of the phase form
is determined by its value at the point t ��1 (which belongs to the integration paths of
the first four integrals and it is connected via the line segment L" to the contour of the
last two ones). The above expression coincides withI

.C 00" /�1ıL"ı
"ıL
�1
" ıC

0
"

W˛;˛ �

I

"

W˛;˛:

By definition the cycle ˛ is invariant along the integration contour of the first integral,
so the first integral is an integer multiple of 2�

p
�1. We get

c0=c00 D lim
�!0

lim
"!0

exp
�
�

I

"

W˛;˛.�/

�
:
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The limit here is easy to compute because the integral involves only local information.
Using again the decomposition ˛ D ˛0C 1

2
ˇ and Lemma 6 we get

I .0/
ˇ
.t 0; �/D 2.2.� �u//�1=2 du

p
�
C .higher order terms/:

On the other hand, the period vector I .0/˛0 .t
0; �/ is analytic for .t 0; �/ sufficiently close

to .t;uj /. Expanding the phase form into a Laurent series about � D u we get

lim
"!0

I

"

W˛;˛.�/D
1

4

I

"

Wˇ;ˇ.�/D
1

4

I
2dup

.�u/.� �u/
D �
p
�1;

ie c0=c00 D�1.

4.5.4 Proof of Theorem 39 The 1–form

d�

�
��0.t; �/At .„I q

0/At .„I q
00/

has poles only at � D 0;1, and the critical values uj , 1 � j � N C 1. Let uj

be one of the critical values and ˇ be the cycle vanishing over � D uj . Note that
nontrivial contributions to the residue at �D uj come only from vertex operator terms
corresponding to vanishing cycles that have nonzero intersection with ˇ . Recalling
our computations in Sections 4.5.1, 4.5.2 and 4.5.3, we get that the residue at �D uj

is
�

1
8
Cuj R

jj
1

�
A˝2

t , while the residue at �D 0 is �1
2

tr
�

1
4
C ��T

�
A˝2

t . In order to
prove that the residue at �D1 is 0, we just need to check that

NC1X
jD1

uj R
jj
1
D

1
2

tr.��T /:

The above identity is well-known from the theory of Frobenius manifolds (see [24; 29]).
Hence the ancestor potential At .„I q/ is a solution to the HQEs (99). Theorem 39 is
thus proved.

Proof of Theorem 1 Given Theorem 39, Proposition 31 implies that the total descen-
dant potential Da.„I q/ is a solution to the HQEs (87). Theorem 1 then follows from
Theorem 28.

5 An example: P 1
2 ;2 ;2

In this section we consider the example a D f2; 2; 2g, namely P1
a D P1

2;2;2
. In this

case �.0/ is the root system of type D4 . It is convenient to denote the indices in the
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index set Itw D f.1; 1/; .2; 1/; .3; 1/g simply by 1; 2; 3. There are 12 positive roots


i .1� i � 3/; 
b; 
bC 
i .1� i � 3/; 
bC 
i C 
j .1� i < j � 3/;


bC 
1C 
2C 
3; 2
bC 
1C 
2C 
3;

where 
b is the simple root corresponding to the branching node of the Dynkin
diagram and 
i .1� i � 3/ are the remaining simple roots. The fundamental weight is
!b D 2
bC 
1C 
2C 
3 . The eigenbasis for �b used in our construction is

Hi WD �.�=2/
1=2
i .1� i � 3/; H0 WD .�=2/

1=2!b;

and we have mi D
1
2
� , di D

1
2

, 1� i � 3, where � D 4.

Let us write the HQEs for � D .�n.y//n2Z . We have

a˛.�/D
1
4
2.�b.˛/j˛/��j˛0j

2

e2�
p
�1.�b j˛/.!b j˛/;

.E˛.�/�/0 D �
��j˛0j

2

e�2�
p
�1.�b j˛/.!b j˛/E�˛.�/��.!b j˛/;

where the subscript 0 on the LHS means the 0th component of the corresponding vector
in our Fock space. The HQEs give rise to a system of PDEs as follows. First we make
a substitution

y 0 WD y ˝ 1D xC t; y 00 WD 1˝y D x� t;

which implies that

y 0�y 00 D 2t;
@

@y 0
�

@

@y 00
D

@

@t
;

and that
Res�D0

�
a˛.�/E˛.�/� ˝E�˛.�/�

�
0;0

is the coefficient in front of �0 in the expression

2.�b.˛/j˛/�2e�2�
p
�1.�b j˛/.!b j˛/

�
�
���j˛0j

2

e
P

i;` 2.˛jHi /�
miC`� ti;`

��
e
�
P

i;`.˛jHi� /
�
�mi�`�

miC`�
@xi;` ��.!b j˛/.xC t/

�
�
�
e
P

i;`.˛jHi� /
�
�mi�`�

miC`�
@xi;` �.!b j˛/.x� t/

�
:

By definition the HQEs are

Res�D0

X
˛2�.0/

�
a˛.�/E˛.�/� ˝E�˛.�/�

�
m;n

D

�
3
8
C

1
4
.m� n/2C 2

X
i;`

.di� C `/ti;`@ti;`

�
�m.xC t/�n.x� t/:
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Comparing the coefficients in front of the various monomials in t we obtain a system
of PDEs whose equations are some quadratic polynomials in the partial derivatives
of � . Let us specialize to the case m D n D 0. In order to get nontrivial equations
we have to compare coefficients in front of monomials that are invariant under the
involution t 7! �t . The simplest case is t0 , which corresponds to the identityX

˛2�.0/

.!b j˛/D0

2.�b.˛/j˛/�2
D

3
8
:

Comparing the coefficients in front of the monomial t2
01;0

, we get

4
@2

@x2
01;0

log �.x/

D 8�
��2.x/�2.x/

�2.x/
� 4.2=�/1=2

@3

@t1;0@t2;0@t3;0

�
��1.xC t/�1.x� t/

�2.x/

�ˇ̌̌̌
tD0

:

Recalling the substitution (78)–(79), which in this case is

y01;0 D
1
p
„

p
2

�
p
�

q01
0 ; yi;0 D

1
p
„

p
2

�
qi

0; 1� i � 3;

we get

„
@2

@.q01
0
/2

log �.q/D
4

�2

��2.q/�2.q/

�2.q/
�
„3=2

�1=2
@1@2@3

�
��1.qC t/�1.q � t/

�2.q/

�ˇ̌̌̌
tD0

;

where for brevity we put @i WD @=@t i
0

. To get a differential equation for the total
descendant potential we just have to substitute

�˙2.q/D C 2D.„I q˙ 2
p
„/; �˙1.q/D C 1=2D.„I q˙

p
„/; C D �1=2Q:

Let us use the above equation to compute the genus-0 primary potential F . Put qi
k
D 0

for all k > 0, and compare the leading terms of the genus expansion. We get the
following PDE for F :

F01;01 D 4Q4e4F00;00

CQeF00;00
�
8F00;1F00;2F00;3C 4.F00;1F2;3CF00;2F1;3CF00;3F1;2/

�
;

where Fi;j WD @2F=@qi
0
@q

j
0

. To simplify the notation, let us put ti WD qi
0

. String
equation gives

F00;00 D t01; F00;i D
1
2
ti ;
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so from the above equation we get the relation

(120) F01;01 D 4Q4e4t01 CQet01
�
t1t2t3C 2.t1F2;3C t2F1;3C t3F1;2/

�
:

Equation (120) allows us to compute the potential F recursively, by the degree of the
Novikov variable Q. Indeed, it is easy to see that up to degree-1 terms, F is given by

1
2
t2
00t01C

1
4
t00.t

2
1 C t2

2 C t2
3 /C

1
96
.t4

1 C t4
2 C t4

3 /CQet01 t1t2t3:

Comparing the degree-2 terms in (120) we get that the degree-2 term of F must be
1
2
.t2

1
Ct2

2
Ct2

3
/Q2e2t01 . Arguing in the same way we get that F does not have degree-3

terms, while the degree-4 term must be 1
4
Q4e4t01 . The potential F takes the form

F.t/D 1
2
t2
00t01C

1
4
t00.t

2
1 C t2

2 C t2
3 /C

1
96
.t4

1 C t4
2 C t4

3 /

CQet01 t1t2t3C
1
2
Q2e2t01.t2

1 C t2
2 C t2

3 /C
1
4
Q4e4t01 :

The above formula agrees with the computation of P Rossi [41, Example 3.2] based on
symplectic field theory.

Appendix: Givental’s formalism

Canonical quantization Equip the space

H WDH..z�1//

of formal Laurent series in z�1 with coefficients in H with the following symplectic
form:

�.�1.z/; �2.z// WD Resz.�1.�z/; �2.z//; �1.z/; �2.z/ 2H;

where, as before, . � ; � / denotes the residue pairing on H and the formal residue Resz

gives the coefficient in front of z�1 .

Let f�igi2I and f�igi2I be dual bases of H with respect to the residue pairing. Then

�.�i.�z/�`�1; �j zm/D ıijı`m:

Hence, a Darboux coordinate system is provided by the linear functions qi
`

, p`;i on H
given by:

qi
` D�.�

i.�z/�`�1; � /; p`;i D�. � ; �iz
`/:

In other words,

�.z/D

1X
`D0

X
i2I

qi
`.�.z//�iz

`
C

1X
`D0

X
i2I

p`;i.�.z//�
i.�z/�`�1; �.z/ 2H:
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The quantization of linear functions on H is given by the rules

yq i
` D „

�1=2qi
`; yp`;i D „

1=2 @

@qi
`

;

where the RHSs of the above definitions are operators acting on the Fock space

(121) C„ŒŒq�� WDC„ŒŒq0; q1C 1; q2; : : :��; where C„ WDC..„//; q` WD .q
i
`/i2I:

For any �.z/ 2 H , the function �.�.z/; �/ on H is linear, so we can define the
quantization b�.z/ by

(122) .�iz
`/^ D�„1=2 @

@qi
`

; .�i.�z/�`�1/^ D „�1=2 qi
`:

The quantization also makes sense for �.z/ 2 H ŒŒz; z�1�� if we interpret b�.z/ as
a formal differential operator in the variables qi

`
with coefficients in C„ . For all

�1.z/; �2.z/ 2H ,

Œ1�1.z/; 1�2.z/�D�.�1.z/; �2.z//:

Quantization of symplectic transformations It is known that both series St .z/ and
Rt .z/ described in Sections 2.2.1 and 2.2.2 are symplectic transformations on .H; �/.
Moreover, they both have the form eA.z/ , where A.z/ is an infinitesimal symplectic
transformation.

A linear operator A.z/ on H WDH..z�1// is infinitesimal symplectic if and only if the
map �.z/ 7!A.�.z// is a Hamiltonian vector field with a Hamiltonian given by the
quadratic function

hA.�.z//D
1
2
�.A.�.z//; �.z//:

By definition, the quantization of eA.z/ is given by the differential operator e
yhA , where

the quadratic Hamiltonians are quantized according to the following rules:

.p`;ipm;j /
^
D„

@2

@qi
`
@q

j
m

; .p`;iq
j
m/
^
D .qj

mp`;i/
^
D qj

m

@

@qi
`

; .qi
`q

j
m/
^
D

1

„
qi
`q

j
m:

The action of the asymptotical operator The operator 1Ut=z is known to annihi-
late Dpt . Therefore, its exponential is redundant and it can be dropped from the
formula. The action of the operator yRt on formal functions, whenever it makes sense,
is given by (see [22])

(123) yR�1
t F.q/D

�
e

1
2
„Vt .@;@/F.q/

�ˇ̌
q 7!Rt q

;
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where Vt .@; @/ is the quadratic differential operator

Vt .@; @/D

1X
`;mD0

X
i;j2I

.�i ;V`m.t/�
j /

@2

@qi
`
@q

j
m

whose coefficients V`m.t/ are given by
1X

`;mD0

V`m.t/z
`wm

D
1�Rt .z/.

TRt .w//

zCw

and TRt .w/ denotes the transpose of Rt .w/ with respect to the Poincaré pairing. The
substitution q 7!Rtq can be written more explicitly as follows:

q0 7! q0; q1 7!R1.t/q0C q1; q2 7!R2.t/q0CR1.t/q1C q2; : : : :

The above substitution is well-defined for tame formal functions, including At (see [21]).

The action of the calibration The quantized symplectic transformation yS�1
t acts by

(see [22])

(124) yS�1
t F.q/D e

1
2„

Wt .q;q/F..Stq/C/;

where the subscript C in (124) means truncation of all negative powers of z , and
Wt .q; q/ is the quadratic form

Wt .q; q/D

1X
`;mD0

.W`m.t/qm; q`/

whose coefficients are defined by
1X

`;mD0

W`m.t/z
�`w�m

D

TSt .z/St .w/� 1

z�1Cw�1
:
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