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Surgery obstructions and Heegaard Floer homology
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ÇAĞRI KARAKURT

TYE LIDMAN

Using Taubes’ periodic ends theorem, Auckly gave examples of toroidal and hyper-
bolic irreducible integer homology spheres which are not surgery on a knot in the
three-sphere. We use Heegaard Floer homology to give an obstruction to a homology
sphere being surgery on a knot, and then use this obstruction to construct infinitely
many small Seifert fibered examples.

57M27, 57R58, 57R65

1 Introduction

Background

A classical theorem due to Lickorish [12] and Wallace [26] states that every closed
oriented three-manifold can be expressed as surgery on a link in the three-sphere.
Therefore, a natural question is which three-manifolds have the simplest surgery pre-
sentations. More specifically, we ask which three-manifolds can be represented by
Dehn surgery on a knot.

There are a number of obstructions that we can apply (with a range of effectiveness) to
attempt to answer this question. Since H1.S3p=q.K/IZ/Š Z=p , we find immediate
homological obstructions to a manifold being obtained by surgery on a knot (eg T3

and RP 3 # RP 3 are not surgery on a knot). A more delicate obstruction is the weight
of the fundamental group; a three-manifold obtained by surgery on a knot in S3 has
weight-one fundamental group (it is normally generated by a single element). Observe
that weight-one groups necessarily have cyclic abelianization. Hence, this obstruction
extends the aforementioned homological obstruction.

A more topological obstruction can be found in the prime decomposition of the three-
manifold. A theorem of Gordon and Luecke [7] shows that if surgery on a nontrivial
knot in S3 yields a reducible manifold, one of the summands is necessarily a nontrivial
lens space. In particular, a reducible integer homology sphere can never be surgery on
a knot.
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Boyer and Lines [2] give an infinite family of prime Seifert fibered manifolds with
weight-one fundamental group which are not surgery on a knot. Their proof requires
two obstructions: the first comes from an extension of the Casson invariant to homology
lens spaces and the second comes from the linking form. In particular, having nontrivial
first homology is necessary in their proof.

Using the periodic ends theorem of Taubes [25], Auckly constructs examples of irre-
ducible integer homology spheres which are not surgery on a knot in S3 , answering
Problem 3.6(C) in Kirby [11]. The first example is toroidal and homology cobordant
to †.2; 3; 5/#�†.2; 3; 5/ (or, equivalently, S3 ). In [1], Auckly extends this construc-
tion to give a hyperbolic example. However, as far as the authors know, it is unknown
whether Auckly’s examples have weight-one fundamental group. A negative answer
would provide a counterexample to the question of Wiegold (see, for instance, Mazurov
and Khukhro [14, Problem 5.52]): does every finitely presented perfect group have
weight one?

In [23], Saveliev asks if there are Seifert fibered homology spheres which are not surgery
on a knot. Note that every Seifert homology sphere is irreducible, so none of these are
ruled out by the Gordon–Luecke criterion. We answer this question affirmatively.

Main results

Theorem 1.1 For p an even integer at least 8, let Yp denote the Seifert fibered integer
homology sphere †.p; 2p� 1; 2pC 1/. The manifolds fYpg satisfy:

(i) Yp is not surgery on a knot in S3 .

(ii) Yp is surgery on a two-component link in S3 .

(iii) �1.Yp/ is a weight-one group.

(iv) Yp is not smoothly rationally homology cobordant to any of Auckly’s examples
nor to any other Yp (regardless of orientation).

Theorem 1.1 is proved in two steps. The first step consists of finding an obstruction
from Heegaard Floer homology to a homology sphere being surgery on a knot. The
second step consists of an analysis (but not complete computation) of the Heegaard
Floer homology of the manifolds fYpg.

Before stating these results, we recall from Ozsváth and Szabó [20; 18] that HFC.Y /,
the Heegaard Floer homology of a homology sphere Y , is a Z–graded F ŒU �–module,
where F DZ=2Z and U lowers degree by 2. Further, HFC.Y / admits a noncanonical
decomposition

HFC.Y /D T C
d.Y /
˚HFred.Y /;
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in which T Cd.Y / is the module F ŒU; U�1�=U �F ŒU �, graded such that deg.1/D d.Y /
and HFred.Y / is a finite sum of cyclic modules. The (even) integer d.Y /, called
the d –invariant or correction term, is in fact an invariant of smooth rational homology
cobordism. The following theorem presents our obstruction for a homology sphere
being surgery on a knot.

Theorem 1.2 Let Y be an oriented integer homology sphere such that Y D S3
1=n
.K/,

for some integer n and some knot K � S3 . If d.Y /� �8, then U �HFred
0 .Y /¤ 0.

Many others have previously used correction terms to obstruct manifolds from being
surgery on a knot (see, for instance, Doig [4, Corollary 5], Hoffman and Walsh [8,
Theorem 4.4], Ozsváth and Szabó [18, Corollary 9.13, Section 10.2]).

It is known that d.S3/D 0. Since Auckly’s surgery obstruction requires the manifold
to be homology cobordant to S3 , any manifold one could obstruct from being surgery
by Theorem 1.2 could not be obstructed by Auckly’s argument, and vice versa.

It is straightforward to generalize Theorem 1.2 to obtain further restrictions of this
form on the Heegaard Floer homology of manifolds with highly negative correction
terms obtained by surgery on a knot in S3 . Using such a variant, we can also show
that the toroidal Seifert fibered homology sphere †.2; 5; 19; 21/ is not obtained by
surgery on a knot.

In light of Theorem 1.2, we are interested in analyzing both the d –invariants of Yp
and the U –action on HFred.Yp/.

Theorem 1.3 For p a positive, even integer, let Yp denote the Seifert fibered homology
sphere †.p; 2p� 1; 2pC 1/, oriented as the boundary of a positive-definite plumbing.
Then

(i) d.Yp/D�p ,

(ii) U �HFred
0 .Yp/D 0.

With this result, we may prove Theorem 1.1.

Proof of Theorem 1.1 (i) Notice that the property of a manifold being surgery on a
knot in S3 is independent of orientation. Therefore, we work with Yp oriented as in
Theorem 1.3. It is clear that for p � 8, Theorems 1.2 and 1.3 now show that Yp is not
surgery on a knot in S3 .

(ii) Every Seifert fibered space over S2 with 3 singular fibers can be constructed by
surgery on a link with two components. This follows from Eisenbud and Neumann
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[5, Proposition 7.3] together with the fact that any Seifert fibered space over S2

with 2 singular fibers is a lens space. Alternatively, one can directly verify that Yp is in
fact obtained by surgery on the .2; 2p/ torus link with surgery coefficients �.pC 1/
and �.p� 1/ (see Figure 1).

(iii) This part of the proof was shown to us by Cameron Gordon. We will show more
generally that the Brieskorn sphere †.p; q; r/ has weight-one fundamental group. Sup-
pose that Z D†.p; q; r/ has normalized Seifert invariants .e0I .p; p0/; .q; q0/; .r; r 0//
(see, for instance, Saveliev [23, Section 1.1.4] or Seifert and Threlfall [24, Theorem 5]).
Then we have

�1.Z/D hx; y; z; h j h is central; xp D h�p
0

; yq D h�q
0

; zr D h�r
0

; xyzhe0 D 1i:

We claim that �1.Z/ is normally generated by he0xy . Let hhhe0xyii denote the normal
subgroup of �1.Z/ generated by he0xy . We will show �1.Z/=hhh

e0xyii is trivial. In
this quotient, z D 1, so we have

�1.Z/=hhh
e0xyiiŠhx; y; h jh is central; xpDh�p

0

; yqDh�q
0

; h�r
0

D1; he0xyD1i:

Therefore, we can rewrite this as

�1.Z/=hhh
e0xyii Š hx; h j h is central; xp D h�p

0

; .x�1h�e0/q D h�q
0

; h�r
0

D 1i:

In particular, �1.Z/=hhhe0xyii is abelian. However, since †.p; q; r/ is an integer
homology sphere, �1.Z/ is a perfect group, and thus so is �1.Z/=hhhe0xyii. Therefore,
�1.Z/=hhh

e0xyii is a perfect abelian group, and thus trivial. This completes the proof.

(iv) The result will follow quickly from the following two facts about the rational
homology cobordism invariant d :

d.�Y /D�d.Y / and d.S3/D 0:

First, recall that Auckly’s examples are homology cobordant to †.2; 3; 5/#�†.2; 3; 5/
and thus to S3 . Now, apply Theorem 1.3(i).

�.pC 1/ �.p� 1/

p

Figure 1: The manifold Yp presented as surgery on a two-component torus
link. The box indicates p positive full twists.
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In Theorem 1.4 below, we are able to say something for arbitrary homology spheres.
Recall that any reducible homology sphere is not surgery on a knot in S3 . The argument
of Gordon and Luecke which is used to prove this result uses that the ambient manifold
is S3 . For any homology sphere Y , we are able to construct infinitely many reducible
manifolds which cannot be surgery on a knot in Y .

Theorem 1.4 Let Y be an integer homology sphere and let #k†.2; 3; 5/ denote the
connected sum of k Poincaré homology spheres with the same orientation. For k� 0,
the manifold #k†.2; 3; 5/ is not surgery on a knot in Y , regardless of the orientation
on Y .

Remark 1.5 The reducibility of #k†.2; 3; 5/ is not important for Theorem 1.4. What
is necessary is a family of integer homology spheres with unbounded d –invariants
which are L-spaces (ie HFred

D 0). The only known irreducible homology sphere
L-spaces are S3 and the Poincaré homology sphere.

Organization Theorem 1.2 is proved in Section 2 by using the mapping cone for-
mula for rational surgeries given in Ozsváth and Szabó [21]. In Section 3, we study
the plumbing diagrams of the manifolds fYpg and prove Theorem 1.3(i) using the
algorithm of Ozsváth and Szabó [19]. In Section 4, we review the algorithm given in
Eisenbud and Neumann [15] and Can and Karakurt [3] to compute the Heegaard Floer
homology of Seifert homology spheres. In Section 5, we analyze HFC.Yp/ and prove
Theorem 1.3(ii). Finally, in Section 6, we prove Theorem 1.4.

Acknowledgements We would like to thank Matt Hedden for pointing out that a
surgery obstruction could come from comparing the reduced Floer homology with
the correction terms. We would also like to thank Cameron Gordon for supplying
the proof of Theorem 1.1(iii). The first author was partially supported by NSF grant
DMS-1307879 and a Sloan Research Fellowship. The second author was partially
supported by TUBITAK grant BIDEB-2232. The third author was partially supported
by NSF grant DMS-1148490.

2 Mapping cones

The goal of this section is to prove Theorem 1.2. Let Y be an integer homology
sphere with d.Y /� �8. Recall that we would like to see that if Y D S3

1=n
.K/, then

U �HFred
0 .Y /¤ 0. We first restrict the possible values of n.

Lemma 2.1 Let Y be an integer homology sphere with Y D S3
1=n
.K/. If d.Y / < 0,

then n > 0.
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Proof Suppose that Y D S3
1=n
.K/, where n < 0. Then it follows from [1, Figure 8]

that Y is the boundary of a negative-definite four-manifold. Since Y is a homology
sphere, [18, Corollary 9.8] implies d.Y /� 0.

For the rest of this section, we only consider the case of 1=n–surgery on a knot K
for n > 0.

The main tool is the rational surgery formula of Ozsváth and Szabó [21]. We refer the
reader to [17] for a concise summary. We very briefly recall the main ingredients for
notation without much explanation.

As usual, let T C denote F ŒU; U�1�=U � F ŒU �. For each s 2 Z, Ozsváth and Szabó
associate to K a relatively graded F ŒU �–module As , which is isomorphic to the
Heegaard Floer homology of a large positive surgery on K in a certain Spinc structure.
Further, associated to each s , there are two graded, module maps vs; hsW As ! T C

which represent maps coming from certain Spinc cobordisms. Each As admits a
splitting As Š T C ˚Ared

s where T C is the image of UN for N � 0 and Ared
s is

isomorphic to
Lm
iD1 F ŒU �=U ki . When it will not cause confusion, for n� 0, we may

write U�n to mean the corresponding element of T C � As . Although As is not a
module over F ŒU; U�1�, we will further abuse notation and for an element a2T C�As
write U�ka to mean the unique element in T C � As such that U k �U�kaD a .

For each s , we have
vsjT C.x/D U

Vsx

for some nonnegative integer Vs . Similarly,

hsjT C.x/D U
Hsx

for some nonnegative integer Hs . Note that each of these maps is surjective. We
will need the following important properties of these integers (see [22, Section 7], [9,
Lemma 2.5] and [17, Proposition 1.6]):

Hs D V�s;(2-1)

Vs � 1� VsC1 � Vs;(2-2)

Hs D VsC s;(2-3)

d.S31=n.K//D�2V0 D�2H0:(2-4)

From this information, we can compute the Heegaard Floer homology of S3p=q.K/
for any p=q 2 Q. We will restrict our attention to the case of S3

1=n
.K/, for n > 0.

For each s , consider n copies of As , denoted As;1; : : : ; As;n . Further, for each s 2 Z
and 1� i � n, define Bs;i D T C . For an element x in As;i or Bs;i , we may write this
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element as .x; s; i/ to keep better track of the indexing. We will also write i .mod n/
to refer to the specific representative i between 1 and n. Define the F ŒU �–module
map

ˆ1=nW
M

s2Z;1�i�n

As;i !
M

s2Z;1�i�n

Bs;i

by
ˆ1=n.x; s; i/D .vs.x/; s; i/C .hs.x/; sCbi=nc; i C 1 .mod n//:

We define an absolute grading on the mapping cone of ˆ1=n (where the As;i and Bs;i
are given trivial differential) by requiring that the element 12B0;1 has grading �1 and
that ˆ1=n lowers grading by 1. We remark that the indexing we are using is expressed
differently than in [21].

Theorem 2.2 (Ozsváth and Szabó, [21, Theorem 1 and Section 7.2]) The homology
of the mapping cone of ˆ1=n is isomorphic to HFC.S3

1=n
.K//. This isomorphism

respects the absolute gradings and the F ŒU �–module structure.

Note that Theorem 2.2 is not quite stated as in [21]. Ozsváth and Szabó’s theorem
instead establishes an isomorphism between Heegaard Floer homology and the cone of a
chain map whose induced map on homology is ˆ1=n . In general, for a nullhomologous
knot in an arbitrary three-manifold, one cannot compute Heegaard Floer homology of
surgeries by looking at the cone of the induced map on homology. However, for knots
in S3 (or any L-space), one may compute the homology of the cone of ˆ1=n to obtain
the desired result (see [6, Section 2]).

Proposition 2.3 Let K � S3 and let Y D S3
1=n
.K/ for some positive integer n.

If d.Y /� �8, then there exist cycles x and y in the cone of ˆ1=n such that

(i) x and y are nonzero in homology,

(ii) y D Ux ,

(iii) gr.x/D 0,

(iv) for N � 0, the element y is not homologous to UNw for any cycle w .

Proof For notation, we let X denote the mapping cone of ˆ1=n and denote by B the
submodule

L
s;1�i�nBs;i . Also, let d D d.Y /. Thus V0 D H0 D �d=2 by (2-4).

Since d � �8, it follows that V0 � 4. By (2-2), we have V1 � 3 and V2 � 2.

We first consider the case when n D 1. In this case, we remove the index i used
in the As;i and Bs;i . The relevant portion of the mapping cone is shown in the top
of Figure 2. Let x D U 1�V2 in A2 and let y D Ux . Note that x and y are both
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nonzero in A2 since V2 � 2. We have v2.x/D 0, since v2 restricted to T C � A2 is
multiplication by U V2 . We also have h2.x/D 0, since h2 restricted to T C � A2 is
multiplication by UH2 and H2 D V2C 2 by (2-3). Hence, x is a cycle in X . Since
ˆ1=n is an F ŒU �–module map, y D Ux must be a cycle in X as well.

A0 A1 A2

B0 B1 B2 B3

: : : : : :
v0 h0 v1 h1 v2 h2

U�V0�1z0 U�V1�1z1 U�V2z2

U�1 1

U V0 U V1 U V1C1 U V2

Figure 2: The relevant portion of the mapping cone when nD 1 (top), and
the images of certain elements in the mapping cone for the case of n D 1 ,
from which we can deduce that gr.z2/D 2� 2V2 (bottom).

We now show that x and y satisfy the conditions of the proposition.

(i) Since the image of the differential on X is contained in B and x is a nontrivial
element in A2 , the cycle x is nonzero in the homology of X . Similarly, y is nonzero
in the homology of X .

(ii) By the definition of y , we have y D Ux .

(iii) Let zs denote the lowest grading nonzero element of T C � As . Note that
vs.U

�Vszs/ D hs�1.U
�Hs�1zs�1/ and this image is the lowest grading nonzero

element in Bs . We claim that gr.z0/D�2V0 D d . This follows since v0.U�V0z0/ is
the lowest grading nonzero element in B0 , the map v0 lowers grading by one, and the
grading of the lowest grading nonzero element in B0 is �1.

We have

gr.zs/D gr.zs�1/C 2.Hs�1�Vs/;

since vs.U�Vszs/D hs�1.U
�Hs�1zs�1/, and since vs and hs�1 both lower grading

by one.
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Then
gr.z2/D gr.z1/C 2.H1�V2/

D gr.z0/C 2.H0�V1/C 2.H1�V2/

D gr.z0/C 2H0C 2.H1�V1/� 2V2

D d � d C 2� 2V2

D 2� 2V2;

where the penultimate equality follows from (2-3) and (2-4). See the bottom of Figure 2.
Since z2DU V2�1x and U lowers grading by two, it follows that gr.x/D 0, as desired.

We would like to show that for large N , the cycle y is not homologous to UNw for
any cycle w in X . Choose N at least

minfn j U n �Ared
1 D U

n
�Ared
2 D 0g:

Observe that such an N exists since Ared
s is finite-dimensional as an F –vector space.

Consider U�Ny D U 2�V2�N z2 2 T C � A2 . If N � 2, then U�Ny is not in the
kernel of the differential on X , since v2.U�Ny/DU 2�N 2B2Š T C . We claim that
if a cycle contains U�Ny , then its projection onto A1 must be U 2�H1�N z1 . Recall
that h1.U 2�H1�N z1/ D U

2�N 2 B2 . By our choice of N , the only other element
in A1 or A2 with the same grading as U�Ny is U 2�H1�N z1 2A1 . Furthermore, for
an element not contained in A1 or A2 , its boundary cannot be contained in B2 . The
claim follows.

Now, suppose that w is a cycle in X such that UNw is homologous to y . Then w
has projection onto A2 given by U�Ny . Thus the projection of w onto A1 must
be U 2�H1�N z1 . Observe that 2�H1 < 0, since H1 D V1C 1 and V1 � 3 by (2-2),
(2-3) and (2-4). Thus we have UN �U 2�H1�N z1 ¤ 0. This implies that UNw has
nontrivial projection to A1 . Since the image of the differential on X is contained
in B and y 2 A2 , the cycle y cannot be homologous to an element with nontrivial
projection to A1 . Hence, y is not homologous to UNw . This completes the proof of
the proposition when nD 1.

The proof when n > 1 is similar. The relevant portion of the mapping cone is shown
in Figure 3. Let x D U 1�V1 2 T C � A1;2 and let y D Ux 2 A1;2 . As above, it is
straightforward to show that x and y are both nonzero in the homology of X . Thus
(i) and (ii) hold. We proceed to show that x and y satisfy (iii) and (iv); the arguments
are similar to the nD 1 case above.
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A0;n A1;1 A1;2

B0;n B1;1 B1;2 B1;3

: : : : : :
v0 h0 v1 h1 v1 h1

U�V0�1z0;n U�V1�1z1;1 U�V1z1;2

U�1 1

U V0 U V1 U V1C1 U V1

Figure 3: The relevant portion of the mapping cone when n > 1 (top), and
the images of certain elements in the mapping cone for the case of n > 1 ,
from which we can deduce that gr.z1;2/D�2V1C 2 (bottom).

(iii) Let zs;i denote the lowest grading element of T C�As;i . Note that gr.z0;1/Dd .
For 1� i � n,

(2-5) gr.zs;i /D gr.zs;1/C 2s.i � 1/;

since

� hs.U
�Hszs;i /D vs.U

�Vszs;iC1/ for 1� i � n� 1,

� vs and hs both lower grading by one,

� Hs �Vs D s .

We also observe

(2-6) gr.zs;1/D gr.zs�1;n/C 2.Hs�1�Vs/;

since vs.U�Vszs;1/D hs�1.U
�Hs�1zs�1;n/. Then, by (2-5) and (2-6),

gr.z1;2/D gr.z1;1/C 2

D gr.z0;n/C 2.H0�V1/C 2

D gr.z0;1/C 2.H0�V1/C 2

D d � d � 2V1C 2

D�2V1C 2:

Since z1;2 D U V1�1x , it follows that gr.x/D 0, as desired.
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(iv) The proof is the same as the proof for nD 1, replacing A2 with A1;2 and then
showing that if y is homologous to UNw , then w must have nontrivial projection
to A1;1 .

This completes the proof of the proposition.

With this, we are ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2 First, we make an observation about HFred . Recall that
HFred.Y / is defined to be HFC.Y /= Im.UN / for N � 0. Note that if a 2HFC

k�2
.Y /

is of the form Ub for some b 2 HFC
k
.Y / and a is not in Im.UN / for N � 0,

then U � HFred
k
.Y / ¤ 0. Theorem 1.2 now follows by combining this observation

with Theorem 2.2 and Proposition 2.3.

3 Plumbings

Recall that YpD†.p; 2p�1; 2pC1/, where we have oriented Yp such that it bounds a
positive-definite plumbing. In this section we determine explicitly the negative-definite
plumbing whose boundary is �Yp . We will use this plumbing to compute the correction
term of Yp and hence prove Theorem 1.3(ii).

Proposition 3.1 For every p � 2, the manifold �Yp bounds the four-manifold Xp
which is the plumbing of disk bundles over spheres intersecting according to the graph
in Figure 4.

2p� 2 vertices 2p vertices

�2 �2 �2 �2 �2 �2 �2

�p

Figure 4: The plumbing graph for �Yp

Proof We follow the recipe given in [16, Sections 4 and 5]. We consider the negative-
definite plumbing bounded by �Yp . Since Yp has three singular fibers, this plumbing
graph will have three arms. If a Seifert fibered space with base orbifold S2 bounding a
negative-definite plumbing has normalized Seifert invariants .e0I .r1; r 01/; : : : ; .rk; r

0
k
//,

the order of H1 is given by �r1 � � � rk.e0C
P
.r 0i=ri //. The number e0 is the weight of

the central vertex in the plumbing. For �YpDM.e0I .p; p0/; .2p�1; q0/; .2pC1; r 0//,
the unique solution satisfying 0 < p0 < p , 0 < q0 < 2p� 1, and 0 < r 0 < 2pC 1 is
e0 D�2, p0 D 1, q0 D 2p� 2 and r 0 D 2p .
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Given integers m> n > 1, m=n has a unique continued fraction expansion

m

n
D a1�

1

a2�
1

� � ��
1

ak

with ai > 1 for all i D 1; : : : ; k , denoted Œa1 W a2 W � � � W ak�. We now look at the
continued fraction expansions of p=1, .2p� 1/=.2p� 2/ and .2pC 1/=.2p/, which
determine the negative weights of the vertices on each branch. We have

p

1
D Œp�;

2p� 1

2p� 2
D Œ2 W 2 W � � � W 2„ ƒ‚ …

2p�2

�;
2pC 1

2p
D Œ2 W 2 W � � � W 2„ ƒ‚ …

2p

�:

With this, we are ready to compute the correction term of Yp .

Theorem 1.3(i) For p even, we have d.Yp/D�p .

Proof Let Xp denote the four-manifold given in Figure 4. By Proposition 3.1 we
know @Xp D �Yp . A result of Ozsváth and Szabó [19, Corollary 1.5] says that the
correction term of �Yp can be computed using the intersection form on H 2.Xp;Z/ as
follows. Let Char.Xp/ denote the set of all characteristic cohomology classes. Recall
that K 2H 2.Xp;Z/ is characteristic if K � Œv�C Œv�2 � 0 .mod 2/ for every vertex v
of the plumbing graph. Next, we note that the number of vertices in the plumbing
graph is 4p . The correction term of �Yp at its unique Spinc structure is given by

(3-1) d.�Yp/D max
K2Char.Xp/

1
4
.K2C 4p/:

When p is even, Xp has even intersection form and thus KD 0 is a characteristic coho-
mology class. Note that K D 0 maximizes the above expression since the intersection
form is negative-definite. Hence, d.�Yp/D p in this case. Since d.�Yp/D�d.Yp/
by [18, Proposition 4.2], we have obtained the desired result.

Remark 3.2 Though we do not need this for our main argument, we would like to
point out that d.Yp/D�pC 1 for odd p .

4 Graded roots

The purpose of the present section and the next one is to prove the following result,
which finishes the proof of Theorem 1.3.

Theorem 1.3(ii) For every even integer p , we have U �HFred
0 .Yp/D 0.
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The proof uses the techniques of graded roots which were introduced by Némethi [15]
and extensively studied in [3; 10]. In this section we motivate and explain our strategy
to prove Theorem 1.3(ii) and give the necessary background. The proof will be given
in the next section.

Background

Definition 4.1 (Némethi [15, Section 3.2]) A graded root is a pair .�; �/, where �
is an infinite tree, and � is an integer-valued function defined on the vertex set of �
satisfying the following properties:

(i) �.u/��.v/D˙1 if there is an edge connecting u and v .

(ii) �.u/ >minf�.v/; �.w/g if there are edges connecting u to v and u to w .

(iii) � is bounded below.

(iv) ��1.k/ is a finite set for every k .

(v) #��1.k/D 1 for k large enough.

See Figure 5 for an example of a graded root. Up to an overall degree shift, every
graded root can be described by a finite sequence as follows. Let �W f0; : : : ; N g ! Z
be a given finite sequence of integers. Let ��W f0; : : : ; N C 1g ! Z be the unique
solution of

��.nC 1/� ��.n/D�.n/ with ��.0/D 0:

For each n2f0; : : : ; NC1g, let Rn be the infinite graph with vertex set Z\ Œ��.n/;1/
and edge set fŒk; kC1� jk 2Z\Œ��.n/;1/g. We identify, for each n2f0; : : : ; NC1g,
all common vertices and edges in Rn and RnC1 to get an infinite tree �� . To each
vertex v of �� , we can assign a grading ��.v/ which is the unique integer corre-
sponding to v in any Rn to which v belongs. Note that many different sequences can
give the same graded root. For example, the elements n 2 f0; : : : ; N g where �.n/D 0
do not affect the resulting graded root.

Associated to a graded root .�; �/ is its homology, which is a graded F ŒU �–module
denoted by H.�/; we omit the grading function from the notation. As an F –vector
space, H.�/ is generated by the vertices of � . Further, the grading of a vertex v
is given by 2�.v/. Finally, U � v is defined to be the sum of vertices w which are
connected to v by an edge and satisfy �.w/D �.v/� 1.
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A motivating example

To a large family of plumbed manifolds, Némethi associates a graded root whose
corresponding module is isomorphic to Heegaard Floer homology up to a grading shift
[15]. In [3], Némethi’s method is simplified for Seifert homology spheres. Before
describing this method in Section 4, we begin with an example to illustrate the process.
This will also enable us to explain the strategy for the proof of Theorem 1.3(ii).

3; .6/

2; .4/

1; .2/

0; .0/

�1; .�2/

Figure 5: The graded root associated to Y3 D †.3; 5; 7/ . The grading of
each vertex v is written in the form �.v/; .absolute grading/ .

For simplicity, we will construct the graded root for Y3 D†.3; 5; 7/ and subsequently
compute its Heegaard Floer homology. While Y3 does not have p even, this compu-
tation will still lend insight into the family of computations we are interested in. We
consider the number NY3

D .3� 5� 7/� .3� 5/� .3� 7/� .5� 7/D 34. We look
at the elements of the semigroup generated by .3� 5/, .3� 7/ and .5� 7/ that lie
in the interval Œ0; NY3

�. The relevant semigroup elements are SY3
D f0; 15; 21; 30g.

Let QY3
D fNY3

� x j x 2 SY3
g D f4; 13; 19; 34g and XY3

D SY3
[QY3

. We rewrite
the ordered set XY3

, indicating the elements of SY3
in boldface:

f0; 4; 13; 15; 19; 21; 30; 34g:

Define the function �Y3
W XY3

! f�1; 1g to have value C1 on SY3
and �1 on QY3

.
We write �Y3

as an ordered set:

�Y3
D hC1;�1;�1;C1;�1;C1;C1;�1i:

This sequence produces a graded root. To simplify it, we then combine the consecutive
positive values and the consecutive negative values to write a new sequence which
produces the same graded root:

z�Y3
D hC1;�2;C1;�1;C2;�1i:
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.42/

.40/

.22/

.20/

.18/

.16/

.14/

.12/

.10/

.8/

.6/

.4/

.2/

.0/

.�2/

.�4/

Figure 6: Graded roots associated to Y4 and Y5 . Gradings shown correspond
to the absolute grading on Heegaard Floer homology.

We indicate the graded root �Y3
in Figure 5. We can read off the Heegaard Floer

homology of Y3 up to a degree shift from its graded root. As relatively graded modules,
we have HFC.Y3/ is isomorphic to

H.�Y3
/D T C

.�2/
˚F.�2/˚F.0/˚F.0/:

Since d.Y3/D�2, we do not shift degrees. Hence, we have

HFC.Y3/D T C
.�2/
˚F.�2/˚F.0/˚F.0/:

We repeat the same process for p D 4 and p D 5. The resulting delta sequences are

z�Y4
D h1;�6; 1;�2; 1;�2; 1;�2; 2;�1; 2;�1; 2;�1; 6;�1i;

z�Y5
D h1;�12; 1;�3; 1;�6; 1;�3; 2;�2; 1;�2; 1;�2; 2;

�2; 2;�1; 2;�1; 2;�2; 3;�1; 6;�1; 3;�1; 12;�1i:

See Figure 6 for the corresponding graded roots. Since d.Y4/D�4 and d.Y5/D�4,
we shift degrees to convert H.�Yp

/ to HFC.Yp/.
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Let us observe why U � HFred
0 .Yp/ D 0 when p D 3; 4; 5 using these graded roots.

From the description of the U –action on the homology of a graded root � , we see
that the dimension of ker.U /n is the number of branches ending at degree n, whereas
dim Hn.�/ is the number of vertices in degree n. From the pictures of the graded roots
of �Yp

we see that the degree 0 piece of the image of UN for N� 0 is 1–dimensional.
This is given by the sum of the vertices in degree 0. Each degree 0 vertex other than
the central vertex, v , is at the end of a branch, so it must be in the kernel of U . Since
HFred.Yp/ is the cokernel of UN for N � 0, we see that the set of vertices other
than v descend to a basis in the quotient HFred

0 .Yp/. Thus we have U �HFred
0 .Yp/D 0

for p D 3; 4; 5.

In order to prove Theorem 1.3(ii) in general, we need to see a pattern in the graded
roots of Yp . Repeating the graded root computation for a few more values reveals that
the bottom of the graded root of Yp shows one of the patterns indicated in Figure 7,
depending on the parity of p . We call these “graded subroots” creatures and denote
them by �Cp

. Theorem 1.3(ii) reduces to showing that the bottom of each graded root
is the creature �Cp

. In order to formalize and prove this pattern, we are going to need
the abstract delta sequences which were introduced in [10].

�

� � 1

1

0

�1

��C 1

��

�� � 1

C2�C1 C2�C2

Figure 7: Creatures �Cp as graded subroots of the graded roots associated
to Yp . Gradings are � values. See Definition 5.1.

Abstract delta sequences

We recall the definition of an abstract delta sequence from [10], which codifies graded
roots via the method described in Section 4.

Definition 4.2 An abstract delta sequence is a pair .X;�/, where X is a well-ordered
finite set, and �W X ! Z�f0g is positive at the minimal element of X .
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We review the description of the abstract delta sequence .XY ; �Y / which is associated
to an arbitrary Brieskorn sphere Y D†.p; q; r/. Let NY D pqr �pq�pr � qr , and
let SY denote the intersection of the interval Œ0; NY � with the semigroup generated
by pq , pr and qr . Define the set QY WD fNY � s j s 2 SY g, and let XY D SY [QY .
It turns out that SY and QY are disjoint. Define �Y W XY ! f�1; 1g which takes the
value C1 on SY , and �1 on QY . Thus we have x 2 SY if and only if NY �x 2QY
and �Y .x/ D ��Y .NY � x/ for x 2 XY . The significance of this abstract delta
sequence is the following, which follows from [3, Theorem 1.3].

Theorem 4.3 Let Y D †.p; q; r/, oriented as the boundary of a positive-definite
plumbing. Let �Y be the graded root associated to the abstract delta sequence .XY ; �Y /
defined above. Then, as relatively graded F ŒU �–modules, H.�Y /Š HFC.Y /.

The rest of the current section is devoted to studying abstract delta sequences in
preparation for the proof of Theorem 1.3(ii) in Section 5.

We see an obvious symmetry in Figures 5 and 6. In fact, this symmetry more gen-
erally holds for the graded roots of Seifert homology spheres. The purpose of the
next definition is to characterize those delta sequences whose graded roots show
this symmetry. Write X D fx1; : : : ; xng, where x1 < � � � < xn . We shall use the
notation f Dhk1; k2; : : : ; kni to denote the function f W X!Z satisfying f .xi /D ki
for each i .

Definition 4.4 Given abstract delta sequences �Dhk1; : : : ;kni and �0Dh`1; : : : ;`mi,
we define

(i) the negation by ��D h�k1; : : : ;�kni,

(ii) the reverse by x�D hkn; : : : ; k1i,

(iii) the join by ���0 D hk1; : : : ; kn; `1; : : : ; `mi,

(iv) the symmetrization by �Sym D���x�D hk1; : : : ; kn;�kn; : : : ;�k1i.

Note that neither the negation nor the reverse of an abstract delta sequence need be an
abstract delta sequence.

One can define operations on abstract delta sequences which do not change the cor-
responding graded root. Two such operations, refinement and merging, formalize the
transition from �Y3

to z�Y3
given in Section 4. Let .X;�/ be a given abstract delta

sequence. Suppose there exists a positive integer t � 2 and an element z of X such
that j�.z/j � t . Pick integers n1; : : : ; nt , all of which have the same sign as �.z/, and
satisfy n1C� � �Cnt D�.z/. From this we construct a new delta sequence .X 0; �0/ by
replacing z 2X by consecutive elements z1; : : : ; zt 2X 0 and setting �0.x/D�.x/
for all x 2X n fzg and �0.zi /D ni for all i D 1; : : : ; t .
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Definition 4.5 We say that the delta sequence .X 0; �0/ constructed above is a refine-
ment of .X;�/ at z , and conversely .X;�/ is the merge of .X 0; �0/ at z1; : : : ; zt .

Definition 4.6 An abstract delta sequence is said to be reduced if it does not admit
any merging (hence there are no consecutive positive or negative values of �). An
abstract delta sequence is called expanded if it does not admit any refinement (hence
every value of � is ˙1).

Every delta sequence admits unique reduced and expanded forms. Note that the abstract
delta sequences of Brieskorn spheres are in expanded form.

Given an element of X , it will be important for us to be able to refer to certain nearby
elements in an effective manner. We introduce the following notation.

Definition 4.7 Let .X;�/ be an abstract delta sequence. Denote the set of all el-
ements in X where � is positive (respectively, negative) by S (respectively, Q).
For x 2 S , consider the maximal sequence of adjacent elements in X containing x
which sits in S . The biggest (respectively, smallest) element of this sequence will be
denoted �C.x/ (respectively, ��.x/). Similarly, for y 2Q , we have the analogous
elements �˙.y/. For any element z 2X , the positive successor sucC.z/ (respectively,
negative successor suc�.z/) is the first element from S (respectively, Q) which comes
after z . Should suc˙.z/ not exist, we treat it as an auxiliary element which is larger
than any element in X . We also have the analogous notions, pre˙.z/, which are the
predecessors.

We may also write �˙.x/ in terms of successors and predecessors by

�C.x/Dmaxfz 2 S j z < suc�.x/g and ��.x/Dminfz 2 S j z > pre�.x/g:

Similarly, for y 2Q ,

�C.y/Dmaxfz 2Q j z < sucC.y/g and ��.y/Dminfz 2Q j z > preC.y/g:

Note .X;�/ is in reduced form if and only if x < suc�.x/ � sucC.x/ for all x 2 S
and x < sucC.x/� suc�.x/ for all x 2Q .

We describe an explicit model for the reduced form of .X;�/, denoted . zX; z�/, such
that zX � X . This is done as follows. Define zS D f�C.x/ j x 2 Sg (ie the largest
endpoints of each maximal interval of elements with positive values) and define
zQ D f��.y/ j y 2 Sg. We then merge each x 2 Œ��.x/; �C.x/� with �C.x/ and

each y 2 Œ��.y/; �C.y/� with ��.y/. Consequently, if � is expanded, we then have
z�.�C.x//D #Œ��.x/; �C.x/� and z�.��.y//D�#Œ��.y/; �C.y/�.
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When discussing the reduced form of .X;�/, we will always assume we are working
with this explicit model. We will sometimes not distinguish elements of X from their
image in zX under the map x 7! �C.x/ for x 2 S and y 7! ��.y/ for y 2Q . The
reason for this is that if x < y or y < x in X , for x 2 S and y 2Q , then the same
inequality holds for their images in zX .

For a Brieskorn sphere Y , we would like to study the reduced form . zXY ; z�Y / of the
delta sequence .XY ; �Y /. We have the following:

Proposition 4.8 Let Y D†.p; q; r/ be a Brieskorn sphere. Then

(i) x 2 zXY if and only if NY � x 2 zXY ,

(ii) z�Y .NY � x/D�z�Y .x/ for x 2 zXY ,

(iii) 0 and NY are contained in zXY �XY , but NY =2 …XY ,

(iv) z�Y D .z�Y jŒ0;NY =2�/
Sym .

Proof Item (i) follows from the definition of zXY . Since �Y .Ny � x/ D ��Y .x/
for x2XY , item (ii) holds as well. For (iii), let x0 denote the minimum of fpq; pr; qrg.
Note that sucC.0/ D x0 . Let y denote the maximal element of S.pq; pr; qr/ less
than NY . Then suc�.0/DNY �y . Since NY 62 S.pq; pr; qr/, we have NY �y < x0
by definition of y . Hence, we have 0 < suc�.0/ < sucC.0/ which implies �C.0/D 0.
Therefore, 0 2 zXY . Consequently, NY � 0DNY 2 zXY . Since no element of XY can
be in both SY and QY , we see NY =2 … XY . Using Definition 4.4, we deduce (iv)
directly from the first three items.

Definition 4.9 Given an abstract delta sequence .X;�/, define the well-ordered set
XC WD X [ fzCg where zC > z for all z 2 X , and a function ��W XC ! Z, as
in Section 4, with the following formula:

��.z/D
X
w2X
w<z

�.w/ for all z 2XC:

We call �� the tau function of the delta sequence .X;�/.

An important part of the study of abstract delta sequences is to detect where their tau
functions attain their absolute minimum. Below we define a class of delta sequences
whose tau functions have easily detectable minima.

Definition 4.10 Let .X;�/ be an abstract delta sequence and let . zX; z�/ be its reduced
form. We say that .X;�/ is sinking if
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(i) the maximal element zmax of zX belongs to zQ ,

(ii) for every element x 2 zS , we have z�.x/� jz�.suc�.x//j,

(iii) if suc�.x/D zmax , then the inequality in (ii) is strict.

It follows from the definition that the tau function of a sinking delta sequence attains
its absolute minimum at the last element and nowhere else.

We will also need certain dimensional formulas for H.��/, which are independent
of whether .X;�/ is sinking. We find it convenient to work in the reduced form.
Let .X;�/ be a given abstract delta sequence and let . zX; z�/ be its reduced form.
Let z� W zXC! Z be the tau function of the reduced sequence. For any z 2 zXC other
than the minimal element, let pre.z/ denote the immediate predecessor of z in zXC

(ie pre�.z/ if z2 zS and preC.z/ if z2 zQ). Denote by zmin the minimal element of zXC .

5 Semigroups and creatures

Having given the necessary background, we are now ready to prove Theorem 1.3(ii).
First, we will formally define the creatures given in Figure 7 by their delta sequences.
Then we will observe that Theorem 1.3(ii) holds for the creature graded roots, which
will be denoted �Cp

; that is, we will show U �Hred
0 .�Cp

/ D 0. Finally, we shall
prove a technical decomposition lemma which will reduce the proof of Theorem 1.3(ii)
for Yp to checking that it holds for the creatures. It is well known that HFred.Y2/D 0;
further, in Section 4 we established Theorem 1.3(ii) for the case of p D 4. Therefore,
throughout this section, we will restrict to the case that p is an even integer with p � 6.
We will often write p D 2�C 2.

Definition 5.1 For every p D 2�C 2 with � � 2, the creature �Cp
is the graded root

defined by the symmetrization of the abstract delta sequence

�Cp
D
˝
�;��; .� � 1/;�.� � 1/; : : : ; 2;�2;

1;�2; 1;�2; 2; : : : ;�.� � 1/; .� � 1/;��; �;�.�C 1/
˛
:

Let p be given, and consider the creature graded root �Cp
and its homology H.�Cp

/,
which is an F ŒU �–module supported in even degrees.

Proposition 5.2 For p D 2�C 2 with � � 2, we have

dim.kerU/0C 1D dim H0.�Cp
/:

Proof The result follows directly from Figure 7.
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Let Yp D †.p; 2p � 1; 2p C 1/. Let �Yp
denote the corresponding abstract delta

sequence as described in Section 4, and let z�Yp
denote its reduced form. The proof of

Theorem 1.3(ii) will be a consequence of Proposition 5.2 and the following technical
statement about z�Yp

.

Lemma 5.3 For every even integer p � 6, we have the following decomposition

z�Yp
D .�Zp

��Cp
/Sym;

where �Cp
is the creature sequence given in Definition 5.1, and where �Zp

is a
sinking delta sequence.

Let us first see why the above lemma implies the remaining half of Theorem 1.3.

Proof of Theorem 1.3(ii) Consider the graded root �Yp
whose grading is shifted

so that it agrees with the absolute grading of HFC.Yp/ (see Theorem 4.3). The
decomposition in Lemma 5.3 implies that the creature graded root �Cp

embeds
into �Yp

as a subgraph. Moreover, Theorem 1.3(i) implies that this embedding is
in fact degree preserving. Since �Zp

is sinking, the minimum value of ��Zp
is

uniquely attained at the maximal element of �Zp
. As the initial value of ��Cp

is 0,
we conclude H�0.�Yp

/DH�0.�Cp
/ as graded F ŒU �–modules. By Theorem 4.3 and

Proposition 5.2, we see that dim HFC0 .Yp/ is equal to dim.kerU/0C 1. This implies
the desired result.

The proof of Lemma 5.3

As shown above, Theorem 1.3(ii) will follow from Lemma 5.3. Assuming a few
technical results whose details we currently postpone, we provide a proof of this key
lemma. For notation, let r˙ D p.2p˙ 1/ and w D .2p� 1/.2pC 1/.

We point out two inequalities which will be used throughout:

.p� 1/r�C .p� 3/rC <NYp
;(5-1)

.p� 2/r�C .p� 2/rC >NYp
:(5-2)

The validity of these two inequalities can be checked directly from the definitions
r˙ D p.2p˙ 1/ and NYp

D 4p3� 8p2�pC 1.

Proof of Lemma 5.3 Recall we want to find a decomposition z�Yp
D .�Zp

��Cp
/Sym ,

such that �Zp
is sinking and �Cp

is the creature sequence from Definition 5.1. Define

(5-3) K D .� � 1/r�C �rC:
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Then

(5-4) K < .p� 3/rC <NYp
=2;

where the first inequality follows from (5-2) and the second from (5-1).

We define

�Zp
D z�Yp

j zXYp\Œ0;K/
;(5-5)

�Wp
D z�Yp

j zXYp\ŒK;NYp =2�
:(5-6)

By Proposition 4.8, we have

(5-7) z�Yp
D .�Zp

��Wp
/Sym:

Notice that K is an element of the semigroup S.r�; rC/ generated by r� and rC .
Since K < .p� 3/rC , we conclude K 2 zSYp

by Proposition 5.7. Therefore, �Wp
is

an abstract delta sequence. It is clear �Zp
is an abstract delta sequence, since z�Yp

is.

The result now follows from (5-7) and Lemma 5.8 (that �Zp
is sinking) and Lemma 5.9

(that �Wp
agrees with �Cp

) below.

For the rest of this section we will complete the details of the ingredients used in the
proof of Lemma 5.3 above: Lemmas 5.8 and 5.9. In order to study the abstract delta
sequence for †.p; 2p� 1; 2pC 1/, we must work with the semigroup S.r�; rC; w/
generated by r� , rC and w . Ideally we would like to describe explicitly the elements of
S.r�; rC; w/\Œ0; NYp

�. This set seems to be too complicated at the moment, but we will
only need an explicit description of S.r�; rC; w/\Œ0; .p�1/rC�; note.p�1/rC<NYp

.
We begin with an important subset of S.r�; rC; w/\ Œ0; .p� 1/rC�.

Lemma 5.4 The intersection S.r�; rC/\ Œ0; .p� 1/rC� is given by the ordered set

f0;

r�; rC;

2r�; r�C rC; 2rC;

3r�; 2r�C rC; r�C 2rC; 3rC;

: : :

.p� 1/r�; .p� 2/r�C rC; : : : ; .p� 1/rCg:

Here we deliberately break the lines so the pattern of the elements is visible.
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Proof First, it is clear that .p�1/rC2S.r�; rC/, and therefore is the maximal element.
Next, note that if aC b D k and 1� a � k and 1� b � k , then since r� < rC ,

ar�C .b� 1/rC < .a� 1/r�C brC:

Therefore, to establish the order as given in the statement of the lemma, we just need
to show that as long as k � .p�1/, we have krC < .kC1/r� . This inequality can be
checked using the definition r˙ D p.2p˙ 1/.

Fact 5.5 Let a and b be positive integers. Observe that since w D r�C rC� 1, the
sequence of elements of S.r�; rC; w/

.a�minfa; bg/r�C .b�minfa; bg/rCCminfa; bgw;

.a�minfa; bgC 1/r�C .b�minfa; bgC 1/rCC .minfa; bg� 1/w;
:::

.a� 1/r�C .b� 1/rCCw;

ar�C brC

is consecutive in N . This will be used frequently throughout the proof.

Before proceeding, we point out that if x 2SYp
can be written as xD ar�CbrCCcw

for some nonnegative integers a , b and c , then this decomposition is unique by the
Chinese remainder theorem. Suppose now that a is a nonnegative integer and b is a
positive integer such that aC b � p � 1. Fact 5.5, combined with this observation
about the unique representability of elements in SYp

, implies

(5-8) .aC1/r�C.b�1/rC < .a�minfa; bg/r�C.b�minfa; bg/rCCminfa; bgw
:::

< .a�1/r�C.b�1/rCCw

< ar�CbrC:

Note the top right-hand term of (5-8) is equal to ar�C brC�minfa; bg. Combining
Lemma 5.4 with (5-8) gives a complete description of S.r�; rC; w/\ Œ0; .p� 1/rC�.
That is, for each element x D ar� C brC of the pyramid given in Lemma 5.4, we
have minfa; bg more consecutive elements preceding x . In particular, there are no
elements of S.r�; rC; w/ between .k� 1/rC and kr� for k � p� 1.

In order to study �Yp
, we will find it more convenient to work with the reduced form

given in Section 4. Recall that, in order to determine the reduced form, we must
compute �˙.x/ for x 2 SYp

. Further, since �Yp
is expanded, to compute the values

of z�Yp
it suffices to count the number of elements in SYp

\ Œ��.x/; �C.x/�. The
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following lemma therefore allows us to compute a large portion of the reduced form
of �Yp

.

Lemma 5.6 Suppose that x 2 SYp
satisfies x D ar� C brC , where a; b � 0, and

that x � 2r�C .p� 3/rC . Then

(i) x < NYp
� .p� a� 1/r�� .p� b� 3/rC < sucC.x/,

(ii) SYp
\Œ��.x/; �C.x/�D

�
fx�minfa; bg; : : : ; xg if x ¤ .p�2/rC; .p�1/r�;
f.p�2/rC; .p�1/r�g otherwise:

The first part of the above lemma implies that under certain conditions, if xDar�CbrC ,
then �C.x/D x . Thus, when working with the reduced form, we will be able to restrict
attention to elements in S.r�; rC/ instead of S.r�; rC; w/. The second part of the
lemma determines the explicit values of z�Yp

. These statements will be made more
precise in Proposition 5.7 below.

Proof (i) First, let

x0 D

�
.a� 1/r�C .bC 1/rC if a � 1;

.bC 1/r� if aD 0:

One can check that x0 � .p � 1/rC . Hence, we have by Lemma 5.4 and Fact 5.5
that x<x0 and that the elements of SYp

strictly between x and x0 are of the form x0�i ,
for 1� i �minfa� 1; bC 1g, and they are consecutive in XYp

. Thus

sucC.x/D
�
x0�minfa� 1; bC 1g if a � 1;

x0 if aD 0:

Since the elements between sucC.x/ and x0 are consecutive in XYp
(and in SYp

),
if y 2QYp

satisfies y <x0 , it must satisfy y < sucC.x/. However, it is straightforward
to verify that (5-1) and (5-2) imply

(5-9) x < NYp
� .p� a� 1/r�� .p� b� 3/rC < x

0;

where for the second inequality, we also use the observation

�r�C .bC 1/rC < �r�C .bC 2/r� D .bC 1/r�:

(ii) In fact, when b < .p�2/, then p�a�1� 0 and p�b�3� 0, so we have found
an element of QYp

between x and sucC.x/, and thus �C.x/D x . When b � .p�2/,
since x � 2r�C .p � 3/rC , we have x D .p � 2/rC by Lemma 5.4. By (5-9), we
do see .p � 2/rC < NYp

� .p � 1/r� C rC < x
0 D .p � 1/r� , but it turns out that

NYp
� .p�1/r�C rC is not of the form NYp

� z , for any z 2 SYp
. We will deal with

this exceptional case shortly.
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First, we would like to determine the value of ��.x/ in the generic case. By Fact 5.5,
fx�minfa; bg; : : : ; xg is a consecutive subset of XYp

which is contained in SYp
. Let

x00 D

�
.aC 1/r�C .b� 1/rC if b � 1;
.a� 1/rC if b D 0:

By (5-8) and Lemma 5.4, we have preC.x �minfa; bg/ D x00 . Again, Lemma 5.4,
(5-1) and (5-2) imply

x00 <NYp
� .p� a� 2/r�� .p� b� 2/rC < x:

Similar to above, when a<p�1, we have NYp
�.p�a�2/r��.p�b�2/rC 2QYp

,
since p � a� 2 � 0 and p � b � 2 � 0. In this case, ��.x/D x �minfa; bg. Thus,
if x is neither .p� 2/rC nor .p� 1/r� , the second claim follows, since �C.x/D x .

In order to deal with the exceptional cases, we will prove that there is no element
of QYp

between .p � 2/rC and .p � 1/r� . Since the above arguments show that
there exists an element of QYp

between preC..p � 2/rC/ and .p � 2/rC , and an
element of QYp

between .p � 1/r� and sucC..p � 1/r�/, this will establish that
SYp
\ Œ��.x/; �C.x/� D f.p � 2/rC; .p � 1/r�g for x D .p � 2/rC or .p � 1/r� .

Here, we are using our description of SYp
to deduce that there are no elements of SYp

between .p� 2/rC and .p� 1/r� .

Suppose y 2 QYp
satisfies .p � 2/rC < y < .p � 1/r� . Then write y D NYp

� z ,
where z 2 SYp

. We therefore have .p� 2/rCC z < NYp
< .p� 1/r�C z . By (5-1)

and (5-2), we have .p� 3/rC < z < .p� 2/r� . However, there is no element of SYp

between .p�3/rC and .p�2/r� . This is a contradiction. Thus there are no elements
in QYp

between .p� 2/rC and .p� 1/r� , which is what we needed to show.

We remark that, more generally, if xDar�CbrC and x� .p�1/rC , we are still able to
deduce fx�minfa; bg; : : : ; xg�SYp

\Œ��.x/; �C.x/�. Finally, recall that, for x2XYp
,

we may also write x for the induced element in zXYp
. As promised above, we now use

Lemma 5.6 to explicitly compute a great deal of the reduced form z�Yp
of �Yp

.

Proposition 5.7 The reduced form z�Yp
of �Yp

has the following properties:

(i) As ordered subsets of N ,

zSYp
\ Œ0; 2r�C .p� 3/rC�D S.r�; rC/\ Œ0; 2r�C .p� 3/rC� n f.p� 2/rCg:

(ii) Let x 2 S.r�; rC/\ Œ0; 2r�C .p�3/rC�nf.p�2/rC; .p�1/r�g be expressed
as x D ar�C brC . Then z�Yp

.x/Dminfa; bgC 1 and z�Yp
..p� 1/r�/D 2.

(iii) Let x 2 zSYp
and suppose that x <NYp

�cr��drC < sucC.x/, where c; d � 0.
Then z�Yp

.suc�.x//� �minfc; dg� 1.

Geometry & Topology, Volume 20 (2016)
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Proof Recall from the construction of zXYp
given in Section 4 that zSYp

consists
of the elements of the form �C.x/ for x 2 SYp

. For this proof, all predecessors
and successors will be taken with respect to XYp

and never zXYp
. Pick an element

x 2 SYp
\ Œ0; 2r� C .p � 3/rC� n f.p � 2/rC; .p � 1/r�g and suppose that x is of

the form x D ar� C brC . Lemma 5.6(ii) gives that if x ¤ .p � 2/rC; .p � 1/r� ,
then SYp

\ Œ��.x/; �C.x/�D fx�minfa; bg; : : : ; xg and thus �C.x/D x . It is also
shown in Lemma 5.6(ii) that �C..p�2/rC/D�C..p�1/r�/D .p�1/r� , so .p�2/rC
must be excluded from zSYp

. This finishes the proof of the first claim.

Since �Yp
is expanded,

z�Yp
.x/D jfx�minfa; bg; : : : ; xgj Dminfa; bgC 1;

for every x 2 zSYp
\ Œ0; r� C .p � 2/rC� n f.p � 1/r�g. In the exceptional case

where x D .p � 1/r� , we have ��.x/D .p � 2/rC and �C.x/D .p � 1/r� , hence
z�Yp

.x/D jf.p� 2/rC; .p� 1/r�gj D 2. This proves the second claim.

It remains to establish the final claim in the proposition. Let yDNYp
�cr��drC and

suppose that x < y < sucC.x/. Then we must have suc�.x/D ��.y/. Since �Yp
is

expanded, we have z�Yp
.suc�.x//D�#XYp

\Œ��.y/; �C.y/�. As discussed above, for
any zD sr�Ct rC 2SYp

, we have fz�minfs; tg; : : : ; zg� Œ��.z/; �C.z/�, regardless
of whether sC t � p� 1. From this, we can deduce that

fNYp
� cr�� drC; : : : ; NYp

� cr�� drCCminfc; dgg � Œ��.y/; �C.y/�:

Therefore, we must have z�Yp
.suc�.x//� �minfc; dg� 1.

Lemma 5.8 The abstract delta sequence �Zp
is sinking.

Proof We must verify all three properties in Definition 4.10 for �Zp
. Recall that z�Yp

is in reduced form, and consequently so is the restriction �Zp
. Therefore, by the defi-

nition of �Zp
, the last element of the delta sequence �Zp

must have a negative value
or else z�Yp

would contain two positive values in a row (the last element of zXp\ Œ0;K/
and K ), contradicting z�Yp

being in reduced form. This establishes Definition 4.10(i),
for �Zp

.

Before proceeding further, we set up notation. Throughout this proof, we will denote
predecessors and successors taken with respect to zXYp

by a tilde decoration, and
those taken with respect to XYp

will not receive a tilde decoration. Note that, by the
discussion in Section 4, we have

(5-10) sucC.x/� fsucC.x/ for every x 2 zXYp
:
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Next, we show

(5-11) z�Yp
.x/� �z�Yp

.fsuc�.x// for all x 2 zSYp
\ Œ0;K/;

which will prove that the monotonicity condition in Definition 4.10(ii) holds for �Zp
.

Let x2 zSYp
\Œ0;K/. Then x2S.r�; rC/\Œ0; .p�3/rC� by (5-4) and Proposition 5.7(i).

Writing x D ar�C brC , we see that z�Yp
.x/Dminfa; bgC 1 by Proposition 5.7(ii).

Let y D .p� a� 1/r�C .p� b� 3/rC . By Lemma 5.6(i) and (5-10), we have

x < NYp
�y < sucC.x/� fsucC.x/:

Note that, since x 2 S.r�; rC/\ Œ0; .p � 3/rC�, we have aC b � p � 3. Therefore,
.p�a�1/� 0 and .p�b�3/� 0, and thus NYp

�y 2QYp
. By Proposition 5.7(iii),

z�Yp
.fsuc�.x//� �minfp� a� 1; p� b� 3g� 1:

Therefore, to prove (5-11), it suffices to show that

(5-12) minfa; bg �minfp� a� 1; p� b� 3g:

However, we have seen that aC b � p� 3. Hence, a � p� b� 3 and b � p� a� 3,
proving (5-12).

It remains to show that �Zp
satisfies Definition 4.10(iii). That is, we will establish

a strict inequality in (5-11). We observe that the last positive value of �Zp
occurs

at fpreC.K/ D �r� C .� � 1/rC by Lemma 5.4 and Proposition 5.7(i). Therefore,fsuc�.�r�C .� � 1/rC/ is the maximal element of Zp . Thus we must prove

(5-13) z�Yp
.�r�C .� � 1/rC/ < �z�Yp

.fsuc�.�r�C .� � 1/rC//:

We have aD � and b D � � 1, so (5-12) is a strict inequality since p D 2�C 2. This
implies (5-13).

Lemma 5.9 As abstract delta sequences, �Wp
Š �Cp

, where �Cp
is the abstract

delta sequence from Definition 5.1.

Proof We would like to see that �Wp
agrees with �Cp

as abstract delta sequences.
To do this, we explicitly compute �Wp

.

We first list all the elements of zSYp
\ ŒK;NYp

=2�. By (5-4) and (5-2), it follows that

K <NYp
=2 < .p� 2/rC:
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Now, by Proposition 5.7(i) we have zSYp
\ ŒK;NYp

=2� D S.r�; rC/ \ ŒK;NYp
=2�.

Then, using Lemma 5.4, we see that

(5-14) zSYp
\ŒK;NYp

=2�D f.��1/r�C�rC; .��2/r�C.�C1/rC; : : : ;

r�C.2��2/rC; .2��1/rC; 2�r�; .2��1/r�CrC; : : : ;

.�C2/r�C.��2/rC; .�C1/r�C.��1/rCg:

In order to verify that the last element in the above sequence is as indicated, we must
show

(5-15) .�C 1/r�C .� � 1/rC <NYp
=2 < �r�C �rC:

These two inequalities follow from (5-1) and (5-2) respectively, since 2�C 2D p . For
the first inequality, we use that pr�C .p � 4/rC < .p � 1/r�C .p � 3/rC . Hence,
(5-14) holds.

Similarly, we determine the elements of zSYp
\ ŒNYp

=2;NYp
�K� so we may determine

the elements of zQYp
\ ŒK;NYp

=2�. Note that by Lemma 5.4 and (5-2), we have
NYp

=2 < NYp
�K < 2r� C .p � 3/rC for p � 4. By Proposition 5.7(i), we have

zSYp
\ŒNYp

=2;NYp
�K�DS.r�; rC/\ŒNYp

=2;NYp
�K�nf2�rCg. Using Lemma 5.4

and (5-15), we see that

(5-16) zSYp
\ŒNYp

=2;NYp
�K�D f�r�C�rC; .��1/r�C.�C1/rC; : : : ;

r�C.2��1/rC; .2�C1/r�; 2�r�CrC; : : : ;

.�C3/r�C.��2/rC; .�C2/r�C.��1/rCg:

Observe that we have purposely omitted 2�rC . To see that the last element in the
above sequence is as written, we must show

(5-17) .�C 2/r�C .� � 1/rC <NYp
�K < .�C 1/r�C �rC:

Again these inequalities follow from (5-1) and (5-2). Hence, (5-16) holds.

By the model for the reduced form of delta sequences described in Section 4, the
definition of �Yp

, and Proposition 5.7, we have

(5-18) zQYp
\ ŒK;NYp

=2�

D fNYp
� x j x 2 zSYp

\ ŒNYp
=2;NYp

�K�g

D fNYp
� x j x 2 S.r�; rC/\ ŒNYp

=2;NYp
�K�; x ¤ 2�rCg:

In order to determine the sequence zXYp
\ ŒK;NYp

=2�, we need to detect the positions
of the elements of zQYp

\ ŒK;NYp
=2� relative to the elements of zSYp

\ ŒK;NYp
=2�.

Since zXYp
\ ŒK;NYp

=2� is in reduced form, the elements of zQYp
and zSYp

alternate.
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Therefore, for an element of zQYp
, we would like to determine which elements of zSYp

it is adjacent to and vice versa. We shall employ the following inequalities:

(5-19) .� � 1� j /r�C .�C j /rC

<NYp
� .�C 2C j /r�� .� � 1� j /rC for j D 0; : : : ; � � 1,

(5-20) NYp
� .�C 2C j /r�� .� � 1� j /rC

< .� � 2� j /r�C .�C 1C j /rC for j D 0; : : : ; � � 2,

(5-21) NYp
� jr�� .2� � j /rC < .2� � j /r�C jrC for j D 0; : : : ; � � 1,

(5-22) .2��j /r�CjrC<NYp
�.jC1/r��.2��j�1/rC for j D 0; : : : ; � � 1.

These inequalities again follow from (5-1) and (5-2). Finally, by Lemma 5.4, (5-1)
and (5-2), we point out that

(5-23) .2� � 1/rC <NYp
� .2�C 1/r� <NYp

� 2�rC < 2�r�:

It now follows from (5-14), (5-16), (5-18), (5-19), (5-20), (5-21), (5-22) and (5-23)
that the sequence zXYp

\ ŒK;NYp
=2� is given by

(5-24) zXYp
\ŒK;NYp

=2�

D
˚
.��1/r�C�rC; NYp

�.�C2/r��.��1/rC;

.��2/r�C.�C1/rC; NYp
�.�C3/r��.��2/rC; : : : ;

r�C.2��2/rC; NYp
�2�r��rC; .2��1/rC;

NYp
�.2�C1/r�; 2�r�; NYp

�r��.2��1/rC; .2��1/r�CrC; : : : ;

NYp
�.��1/r��.�C1/rC; .�C1/r�C.��1/rC; NYp

��r���rC
	
:

Again, note that NYp
� 2�rC is deliberately excluded from the above list, as it is not

an element of zXYp
.

It remains to see that the values of z�Yp
on the above sequence are the same as the

values of �Cp
. By Proposition 5.7(ii), since NYp

=2 < .p� 2/rC , we have

(5-25) z�Yp
.cr�C drC/Dminfc; dgC 1 for cr�C drC 2 zSYp

\ ŒK;NYp
=2�:

Moreover for every NYp
� cr� � drC 2 zQYp

\ ŒK;NYp
=2� such that cr�C drC is

not equal to .2�C 1/r� , we have

(5-26) z�Yp
.NYp

� cr�� drC/D�z�Yp
.cr�C drC/D�minfc; dg� 1;

by Proposition 5.7, since as observed earlier, cr�CdrC<NYp
�K<2r�C.p�3/rC .
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Also, by Proposition 5.7, we have NYp
� .2�C 1/r� 2 zQYp

, and further,

(5-27) z�Yp
.NYp

� .2�C 1/r�/D�z�Yp
..2�C 1/r�/D�2:

Computing the value of z�Yp
at each element of the sequence (5-24) using (5-25),

(5-26) and (5-27), and comparing the result with Definition 5.1, we see that �Wp

agrees with �Cp
. This is what we wanted to show.

Remark 5.10 Experimental evidence also suggests that for odd p , the structure
of HFC seems similar to the case of p even (see Figure 7 for the expected form). We
expect similar arguments to apply to show that U �HFred

0 .Yp/D 0. Due to Remark 3.2,
such manifolds would also not be surgery on a knot in S3 for p � 9.

More generally, it is natural to ask if the obstruction in Theorem 1.2 can be used to
construct hyperbolic (or other interesting irreducible) homology spheres that are not
surgery on a knot, as Auckly did. Most techniques for computing HFC (as opposed
to bHF ) apply only to plumbed manifolds and surgeries on knots in S3 , making this
problem difficult. It would be interesting to obtain such examples by applying the
mapping cone formula to surgeries on knots in other three-manifolds or by presenting
the homology sphere by surgery on a link and applying the link surgery formula of
Manolescu and Ozsváth [13].

Finally, we ask if it is possible to refine Theorem 1.2 to obstruct homology spheres
from being homology cobordant to surgery on a knot.

6 Knot surgeries in other manifolds

In the proof of Theorem 1.2, the only thing special about S3 is that it is an integer
homology sphere L-space (ie HFred

D 0) and that d.S3/D 0. The following theorem
is a slight generalization.

Theorem 6.1 Let Y and Y 0 be oriented integer homology spheres. Suppose that
HFred.Y / D 0 and d.Y 0/ � d.Y /� 8. Then if Y 0 is obtained by surgery on a knot
in Y , then there is a nontrivial element of HFred.Y 0/ in degree d.Y / which is not in
the kernel of U .

Proof The proof is the same as Theorem 1.2, where the only difference is that we have
to incorporate the d –invariant of Y into some of the statements. The main observation
is that for n > 0, we have the more general formula d.Y1=n.K// D d.Y / � 2V0 ,
where V0 is defined analogously for Y and K as for a knot in S3 . This follows by
repeating the arguments in [17, Proposition 1.6] for a knot in an integer homology
sphere L-space.
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Proof of Theorem 1.4 Orient †.2; 3; 5/ such that it is the boundary of a negative-
definite plumbing. In this case, d.†.2; 3; 5// D 2. Let Y be an integer homology
sphere. We will show that for k� 0, the manifold #k†.2; 3; 5/ is not surgery on a
knot in Y , regardless of orientation of Y .

Fix an orientation on Y . Recall that HFred.Y / is finite-dimensional over F . Therefore,
we may define an integer nY by

nY D jmaxfs j HFred
s .Y /¤ 0gj:

Choose k > 0 such that

2k �maxfd.CY /; d.�Y /gCmaxfnCY ; n�Y gC 8:

Due to the additivity of d under connected-sums [18, Theorem 4.3], we have

d.#k†.2; 3; 5//D 2k � d.˙Y /Cn˙Y C 8:
Therefore, d.˙Y / � d.#k†.2; 3; 5// � 8. Furthermore, by construction there is
no element of HFred.˙Y / in degree d.#k†.2; 3; 5//. Therefore, by Theorem 6.1,
neither Y nor �Y can be expressed as surgery on a knot in #k†.2; 3; 5/. Consequently,
#k†.2; 3; 5/ cannot be surgery on a knot in Y , regardless of orientation.

We conclude by pointing out that Theorem 6.1 can also be extended to statements
about p=q–surgery where jpj � 2. (The key observation is that in an integer homol-
ogy sphere L-space, we can control the integers Vi and Hi from the d –invariants
of p=q–surgeries for any p=q > 0 by [17, Proposition 1.6].) We can then apply
the same arguments as in Theorems 1.2 and 1.4 to show that if Y has cyclic first
homology, #k†.2; 3; 5/ is not surgery on a knot in Y for k large. Finally, the
analogous statement when Y has noncyclic homology is trivial. Thus, in conclusion,
for any three-manifold Y , there exist infinitely many integer homology spheres which
are not surgery on a knot in Y .
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