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Topology and �–regularity theorems on collapsed manifolds
with Ricci curvature bounds

AARON NABER

RUOBING ZHANG

In this paper we discuss and prove �–regularity theorems for Einstein manifolds
.M n;g/ , and more generally manifolds with just bounded Ricci curvature, in the
collapsed setting.

A key tool in the regularity theory of noncollapsed Einstein manifolds is the following.
If x 2M n is such that Vol.B1.x// > v > 0 and that B2.x/ is sufficiently Gromov–
Hausdorff close to a cone space B2.0

n�`;y�/�Rn�` �C.Y `�1/ for `� 3 , then in
fact jRmj � 1 on B1.x/ . No such results are known in the collapsed setting, and in
fact it is easy to see that without further assumptions such results are false. It turns
out that the failure of such an estimate is related to topology. Our main theorem is
that for the above setting in the collapsed context, either the curvature is bounded, or
there are topological constraints on B1.x/ .

More precisely, using established techniques one can see there exists �.n/ such that
if .M n;g/ is an Einstein manifold and B2.x/ is �–Gromov–Hausdorff close to
ball in B2.0

k�`; z�/ � Rk�` �Z` , then the fibered fundamental group ��.x/ �
ImageŒ�1.B�.x//! �1.B2.x//� is almost nilpotent with rank.��.x//� n�k . The
main result of the this paper states that if rank.��.x// D n� k is maximal, then
jRmj � C on B1.x/ . In the case when the ball is close to Euclidean, this is both a
necessary and sufficient condition. There are generalizations of this result to bounded
Ricci curvature and even just lower Ricci curvature.

53C21, 53C25, 53B21

1 Introduction

A classical theme in Einstein manifolds, and indeed for any nonlinear equation, is that
of an �–regularity theorem. The spirit of any such theorem is that one assumes some
weak control on the solution, and then proves from this strong control on the solution.
The original example of such a theorem in the case of an Einstein manifold .M n;g/

is to assume on some ball B2.x/ that

(1-1) �

Z
B2.x/

jRmjn=2 < �:
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In this case it was then proven that jRmj � 1 on B1.x/; see Anderson [3]. This proved
to be especially powerful in the four-dimensional case. In fact, in the four-dimensional
case (1-1) can be relaxed to

R
B2.p/

jRmj2<� , which gives the �–regularity for collapsed
Einstein 4–manifolds under an assumed L2 curvature bound; see Cheeger and Tian [9].
Unfortunately, in higher dimensions, even in the noncollapsed setting, there is no
natural context in which one can apply the above �–regularity without simply assuming
a bound on

R
M jRmjn=2 . To fix this one has to look for a more powerful �–regularity

theorem. Namely, it is the combined work of Anderson [1] and Cheeger and Colding [5]
that if one assumes jRicj � � and

(1-2) dGH.B2.x/;B2.0
n// < �;

where dGH is the Gromov–Hausdorff distance and B2.0
n/�Rn , then it still holds that

jRmj � 1 on B1.x/. More generally, by the work of Cheeger and Naber [8] one need
only assume that B2.x/ is Gromov–Hausdorff close to Rn�` �C.Y `�1/ for a metric
space Y `�1 with dim C.Y `�1/D `� 3, see Theorem 2.7 for a slight refinement.

These turn out to give a much more powerful �–regularity theorem, the reason being
that the condition dGH.B2r .x/;B2r .y

�// < �r , with y� 2 Rn�` �C.Y `�1/ a cone
point, is one that can be shown to hold at most points and most scales r < 1 under only
a noncollapsing assumption; see Cheeger and Colding [5] and Cheeger and Naber [7]
for the classical and quantitative stratification results. In fact, using this as a starting
point, a whole regularity theory, including a priori Lp estimates for the curvature, can
be proven for general noncollapsed Einstein manifolds; see Cheeger and Naber [7; 8].
One would like a similar structure theory for the collapsed setting.

The above �–regularity theorems, and their induced regularity theories, depend heavily
on the assumption of noncollapsing. To be more precise, given a pointed Riemannian
manifold .M n;g;p/ with Ric � �.n� 1/, we say that M is noncollapsed, or v–
noncollapsed, if Vol.B1.p//� v > 0. One can see that ln Vol.B1.p// plays the role
of a weak energy, and so a lower bound on the volume acts as an upper bound on the
energy; see [7] for more on this.

The goal of this paper is to extend the �–regularity theorems of (1-2) and [8] to the
collapsed setting. That is, we wish to replace the assumption dGH.B2.x/;B2.0

n// < �

with

(1-3) dGH.B2.x/;B2.0
k// < �;

where k < n and 0k 2Rk . In fact, we will wish to deal with more general situations
where 0k 2 Rk�` �Z` , where Z` is a length space of dimension ` � 3. However,
we will begin our discussion on the case 0k 2Rk . The motivation is that even in the
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collapsed setting it is still the case that the assumption

(1-4) dGH.B2r .x/;B2r .0
k// < �r

is sufficiently weak that it may be controlled at most points and scales; see Cheeger
and Colding [5] and Colding and Naber [11].

Unfortunately, condition (1-3) by itself is simply not enough when k < n. We will
discuss these examples in more detail in Section 3, but let us briefly describe an
important example of Gross and Wilson in [16]. In this case by studying a holomorphic
fibration map f W K3! S2 they build a sequence of Ricci-flat spaces .K3;gj / which
collapse to the topological 2–sphere X � S2 . Now X is smooth away from a
finite number of points fp˛g, however the tangent cone is R2 at every point of X .
In particular, for r small and j large every ball Br .x/ � .K3;gj / is close to the
corresponding ball Br .0

2/�R2 in the sense of Gromov–Hausdorff topology. However,
the curvature blows up near p˛ , and hence no �–regularity can possibly hold.

To see how to fix this, and to motivate our theorems, let us expand a little on the
behavior of the above example. If we begin again with a ball Br .x/� .K3;gj /, then
we have two cases to analyze. Namely, either the ball Br .x/ is near a singular point
or not. On the one hand, if the ball is not near any singular point then we have the
desired curvature bound jRmj � r�2 . A closer look shows us that in this case the
topology of f �1.Br .x//� Br .0

2/�T 2 , where T 2 is the two-dimensional torus. In
particular, we would like to emphasize that the fundamental group of f �1.Br .x//

is a free abelian group of rank 2, which is of maximal rank. On the other hand, let
us assume for simplicity that x D p˛ is one of the singular points. In this case, as
we discussed, we have no such a priori curvature bounds on Br .p˛/, and a closer
look also tells us the topology of f �1.Br .p˛// is also more ill-behaved. In particular,
f �1.p˛/ is topologically of Kodaira type I1 , which is a two-dimensional torus with
one circle fiber identified to a point. In particular, we would like to emphasize that
the fundamental group of f �1.Br .p˛// is of rank one, which is not maximal. See
Section 3 for more on this. See also Gross, Tosatti and Zhang [15] for more examples.

The main results of this paper are to see that the above example is typical in its behavior.

1.1 �–regularity and the fundamental group

In this subsection we will state the main theorems of this paper. Throughout, we are
always assuming .M n;g;p/ is a Riemannian manifold such that B2.p/ has compact
closure in B4.p/. This acts as a form of local completeness. Similar to the standard
�–regularity theorem for noncollapsed spaces, we will be interested in the case when
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B2.p/ has bounded Ricci curvature jRicj � n�1 and is Gromov–Hausdorff close to a
singular space of the form Rk�` �Z` ,

(1-5) dGH.B2.p/;B2.0
k�`; z`// < ı; .0k�`; z`/ 2Rk�`

�Z`;

where dim.Rk�` �Z`/ D .k � `/C ` � k . Note by [11] that if Rk�` �Z` is the
Gromov–Hausdorff limit of a sequence of manifolds with a lower Ricci bound then
the length space Z` does in fact have a well-defined dimension. (See Theorem 2.12
for the more precise description.) We call such a Z` a Ricci limit space. Inspired
by Fukaya and Yamaguchi [13], our �–regularity theorems come from studying the
“fibered” fundamental group

(1-6) �ı.p/� ImageŒ�1.Bı.p//! �1.B2.p//�:

Note that if M were an honest fiber bundle over Rk�`�Z` , then �ı.p/ would be the
fundamental group of the fiber. Following the techniques of Fukaya and Yamaguchi [13]
and Kapovitch and Wilking [18] it can be checked for ı � ı0.n;B1.z

`// that under
the assumption of (1-5), �ı.p/ contains a nilpotent subgroup of index � w0 and
rank � n� k ; see Section 2.4.2 and Appendix A for more on this. Note that given any
finitely generated almost nilpotent subgroup � , the nilpotency rank of � is well-defined.
In the above context, it thus holds that rank.�ı.p//� n� k . Our main theorem states
that an �–regularity result holds if rank.�ı.p// is maximal. More precisely:

Theorem 1.1 Let .M n;g;p/ satisfy the Ricci bound jRicj � n� 1. Then for each
Ricci limit space .Z`; z`/ with dim Z`D `� 3 in the sense of [11], there exist positive
constants ı D ı.n;B1.z

`// > 0, w0 D w0.n;B1.z
`// and c0 D c0.n;B1.z

`// such
that if

(1-7) dGH
�
B2.p/;B2.0

k�`; z`/
�
< ı; .0k�`; z`/ 2Rk�`

�Z`;

then the group �ı.p/ � ImageŒ�1.Bı.p//! �1.B2.p//� is .w0; n � k/–nilpotent,
with rank.�ı.p//� n� k , and if equality holds then for each q 2 B1.p/ we have the
conjugate radius bound

(1-8) ConjRad.q/� c0.n;B1.z
`// > 0:

In particular, if M n is Einstein, then we have that

(1-9) sup
B1.p/

jRmj � C.n;B1.z
`//:

Finally, we have the following converse. Assume jRicj�n�1 and ConjRad.q/� c0>0

holds for each q 2 B3.p/. Then if

(1-10) dGH.B3.p/;B3.0
k// < ı.n; c0/; 0k

2Rk ;

Geometry & Topology, Volume 20 (2016)



Topology and �–regularity on collapsed manifolds with Ricci curvature bounds 2579

then �ı.p/� ImageŒ�1.Bı.p//!�1.B2.p//� is almost nilpotent with rank.�ı.p//D
n� k .

Remark 1.1 To obtain the uniform curvature bound, instead of Einstein we may
simply assume a bound on jr Ricj.

Remark 1.2 We will in fact prove a lower bound on the weak harmonic radius, not
just the conjugate radius. However, under bounded Ricci curvature these two are known
to be equivalent.

Remark 1.3 The dimension assumption dim Z`D`�3 in Theorem 1.1 is sharp. That
is, if dim Z` D 4, one cannot expect the �–regularity in this context. See Section 3.3
on the Eguchi–Hanson metric for more details.

Remark 1.4 In the converse direction of Theorem 1.1, we have assumed

(1-11) dGH.B3.p/;B3.0
k// < ı;

where B3.0
k/�Rk . Notice that this assumption B3.0

k/�Rk is necessary. If this
condition is removed, there are counterexamples in which the curvature is uniformly
bounded while the rank is not maximal. See Example 6.1.

Let us note that unlike the �–regularity in the noncollapsed case (see Theorem 2.7),
the positive constants ı.n;B1.z

`//, c0.n;B1.z
`//, C.n;B1.z

`// have a dependence
on Z` in the collapsed context. In fact, this dependence can be made quite explicit.
Indeed, by [11], Z` has a unique dimension in that for a.e. z` 2Z` the tangent cone is
unique and isometric to R` (see Theorem 2.12 for the more precise statement). Thus,
given the base point z` 2Z` let us consider the noncollapsing radius defined by

(1-12) rc.z
`/� supf0< r � 1 j 9 z 2 B1.z

`/; dGH.Br .z/;Br .0
`// < 10�6rg;

where 0` 2R` . Then, in Theorem 1.1 we have that ıD ı.n; rc.z
`//, c0D c0.n; rc.z

`//

and C D C.n; rc.z
`//. Thus, a lower bound on the noncollapsing radius is a natural

replacement for the lower volume bound assumption needed in the noncollapsing case.

1.2 Outline of the proof

The proof of the main result requires several basic steps. Let us give the outline for
Einstein manifolds; the general bounded Ricci case is verbatim, replacing curvature
bounds by lower bounds on the harmonic or conjugate radius. To describe the proof
let us even begin by discussing the noncollapsed setting. In [8] it was proved that if
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.M n;g;p/ satisfies Vol.B1.p// > v > 0, then there exists an �.n; v/ > 0 such that if
jRicj � � and

(1-13) dGH.B2.p/;B2.0;y
�// < �;

where .0;y�/ 2Rn�` �C.Y `�1/ and `� 3, then

(1-14) sup
B1.p/

jRmj � 1 :

The first observation is that the assumption of a cone structure on the three-dimensional
factor, while natural in the noncollapsed setting, is very unnatural in the collapsed
setting. As a first step it is therefore helpful then to see that even in the noncollapsed
setting it is unnecessary. Indeed, combining the �–regularity results of [8] with the
quantitative differentiation of [7], we see in Theorem 2.7 that the following may be
proved. If .M n;g;p/ satisfies Vol.B1.p// > v > 0, then there exists �.n; v/ > 0 such
that if jRicj � � and

(1-15) dGH.B2.p/;B2.0; z
�// < �;

where .0; z�/ 2Rn�` �Z` and `� 3, then

(1-16) sup
B1.p/

jRmj � C.n; v/:

Notice that in exchange for losing the cone structure we have only changed the curvature
bound from 1 to some uniform constant C.n; v/.

Now our primary goal in proving Theorem 1.1 is to reduce the statement to the one
of Theorem 2.7. To accomplish this we need to show two points. First, if .M n;g;p/

satisfies jRicj � � with

(1-17) dGH.B2.p/;B2.0; z
�// < �; rank.�ı.p//D n� k;

where .0; z�/ 2Rk�` �Z` , then we need to show that

(1-18) Vol.B1. zp// > v > 0

has some uniform lower bound, where zp is a lift of p to the universal cover of B2.p/.
Additionally, we then need to show that

Br . zp/� Br .0; z
�/�Rn�`

� zZ` ;(1-19)

where zZ is potentially a different length space and r > 0 is of some uniform size.

Let us begin by mentioning that the proof of (1-18) and (1-19) is easier if `D 0 and
thus Z`�fptg is a point and Br . zp/�Rn is a ball in Rn . Indeed, in this case one can
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use the rank condition along with the ideas of [13] and the algebraic constructions of
Section 4 to build .n� k/–independent lines on the universal cover of B2.p/, which
in turn force the new R factors on the cover by using the splitting theorem. The moral
of this argument is similar to the abelian rank arguments presented in [6]. The precise
statement is in Proposition 5.4.

In the general case of (1-18) and (1-19) when `¤ 0, one cannot directly use the rank
condition to construct the new lines on the cover. The reason for this is the potential
lack of compactness of the factor Z` . See Section 2.1 to see why the compactness
plays a role, and see Section 3.5 to see that the line splitting argument legitimately fails
when Z` is not compact. That is, in Section 3.5, Z` is smooth and noncompact with
positive Ricci curvature, and �ı.p/ has maximal nilpotency rank, but the noncollapsed
covering space does not admit any lines.

Indeed, we must argue in an entirely different manner, and instead rely on the cone
splitting ideas of [7] to build our new R–factors on the cover. However, in the context
of lower bounds on Ricci curvature, the construction of cone points fundamentally
requires noncollapsing. Thus, we will in fact need to prove (1-18) first, and then once
this is in hand we will prove (1-19) through a cone splitting argument. This is all
contained in Theorem 5.1, which is the main technical challenge of the paper.

In more detail, to prove (1-18) in the general case we begin by proving a refined version
of the `D 0 case. Indeed, in Section 5.2 we show that if the assumptions (1-17) hold
with `D 0, then for any normal covering of B2.p/ whose deck transformation group
satisfies the appropriate rank condition, the conclusion that Br . yp/�Rn holds, where
yp is a lift of p to the given normal cover. The proof of this is similar in spirit to that
of the `D 0 case on the universal cover, that is we want to use the rank assumption to
build lines on the cover. Similar but weaker statements were proved in [13] and [18] in
the context of lower sectional and Ricci curvature respectively; in our case the algebraic
requirements are much more involved, see Remark 5.3 for more detailed explanation
on this. In the construction of the new lines by exploiting the rank condition, a key step
of this argument is to build geometrically well behaved collection of generators for
the deck transformation group. More precisely, in Section 4 we show how to build a
geometrically compatible polycyclic extension of the lower central series for a general
deck transformation group in this context. With this in hand we can argue as in [13] to
build independent lines on the normal cover, and thus force new splittings.

We use this result to prove the noncollapsing (1-18) in the following manner. Returning
to the general factor space Z` , we use [11] to see that there exists a ball B2r .z/�Z`

with B2r .z/� R` . In particular, there exists a ball B2r .q/ � B2.p/ in the original
ball such that B2r .q/�Rk . If we lift B2r .q/ to the universal cover of B2.p/, then
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we can view the connected component of this lifting as a normal covering of B2r .q/

itself. We prove in Lemma 5.3 a nonlocalness property for the fibered fundamental
group. Roughly, it shows that if rank�ı.p/D n� k , then

rank.ImageŒ�1.Bı0r .q//! �1.B2.p//�/D n� k;

where ı� ı0r . This is sufficient to apply the results of Section 5.2 discussed in the last
paragraph, and in particular to see that there is some definite sized ball Br 0.q

0/�B2. zp/

which is close to a ball in Rn . By volume convergence one can immediately conclude
the noncollapsing (1-18) for B2. zp/ itself.

Once (1-18) has been proved, then we can proceed to prove (1-19) through a cone
splitting argument. More precisely, using the quantitative differentiation of [7] — see
Lemma 2.9 for a precise statement — we see that after dropping to some definite radius
that Br . zp/ � Rk�` � C.Y / is very close to being a cone space with zp the cone
point. On the other hand, with the algebraic results of Section 4, we can use the rank
condition on the fibered fundamental group to construct n � k independent points
p1; : : : ;pn�k 2 C.Y / inside the cone factor, which are themselves also tips of cone
points. The cone splitting of [7] (see Lemma 2.11) tells us that if we have n � k

independent points for which a metric space is a cone space with respect to all of these
points, then our metric space must split an Rn�k –factor. That is, we can conclude
that C.Y /�Rn�` � zZ` , which in particular proves (1-19). When `� 3, by applying
Theorem 2.7 we can thus prove Theorem 1.1.

1.3 Organization of the paper

This paper is organized as follows.

In Section 2 we will introduce some preliminary notions and results from the literature.
At several points we will give slight extensions of those results from the literature, but
these extensions are minor and mostly well understood by experts.

Section 3 is dedicated to presenting some motivating examples which intuitively show
the pictures of the �–regularity in the collapsed setting. Additionally, we will give
examples in order to show that each assumption in Theorem 1.1 is sharp.

In Section 4 we focus primarily on studying some algebraic properties of almost
nilpotent groups. Our main result of this section will be to produce a polycyclic
extension of the lower central series of a nilpotent group which will behave well from
a geometric point of view. This will be important in the proof the quantitative splitting
results of Section 5.
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In Section 5, we will develop our central technical tools for the �–regularity in the
collapsed setting. Our main result of this section, and indeed the main technical point of
the paper, will be Theorem 5.1, whose content was the focus of the previous subsection.

In Section 6 we combine the results of all the previous sections in order to prove the
main theorem of the paper. Indeed, we will also prove a version of the main theorem in
the context of only a lower Ricci bound, though the result is obviously much stronger
under a two sided Ricci curvature bound.

In Appendix A we prove a generalization of the main result of [18]. In fact, the proof
is primarily just a combination of the results of [18] with some technical constructions
from Sections 4 and 5. However, since this refinement is important for applications we
include it.

In Appendix B we give a proof of a fiber bundle structure in the context of bounded
Ricci curvature and a lower conjugate radius bound. This structure has been stated
without proof in the literature, and in any case is well known to experts, but we include
a proof for completeness since we require this result for the converse direction of
Theorem 1.1.

2 Preliminaries

In this section, we will review some preliminary results needed for the paper. At times
we will give mild generalizations of known results in the literature. The organization
of this section is as follows. In Section 2.1 we begin by recalling the notion of
Gromov–Hausdorff convergence, as well as some basic results on isometries and lines
in homogeneous spaces. In Section 2.2 we recall the noncollapsed �–regularity results
of [8]. In Section 2.3 we discuss some basic properties of Ricci limit spaces. In
particular, we recall from [11] that there is a well-defined dimension, and what this
means, as we will be using this point. Finally in Section 2.4 we recall the basics of
nilpotent groups and their relation to the fundamental group of spaces with lower Ricci
bounds. We recall the results of [18], and give a mild extension of their results which
will be useful in our context. This extension is proved in Appendix A.

2.1 Gromov–Hausdorff convergence and group actions

2.1.1 Basic concepts in Gromov–Hausdorff convergence theory To begin with,
we list basic definitions in Gromov–Hausdorff theory.

Definition 2.1 (pointed �–GHA) Let .X;p/ and .Y; q/ be pointed metric spaces.
A pointed map f W B��1.p/ ! .Y; q/ with f .p/ D q is called a pointed �–GHA
(Gromov–Hausdorff approximation) if it satisfies the following:
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(i) (�–onto) B��1.q/� B�.f .B��1.p///.

(ii) (�–isometric) For any x1;x2 2 B��1.p/, we have that

(2-1) jdX .x1;x2/� dY .f .x1/; f .x2//j< �:

By the pointed �–GHA, we can define the pointed GH-distance between two metric
spaces.

Definition 2.2 (pointed GH-distance) Let .X;p/ and .Y; q/ be pointed metric spaces.
Then pointed GH-distance is defined as follows:

(2-2) d
p
GH..X;p/; .Y; q//� inff� > 0 j there exist �–GHAs

f W .X;p/! .Y; q/;gW .Y; q/! .X;p/g:

Remark 2.1 (1) Let Metp � fall of the isometric classes of proper and complete
pointed metric spacesg. Then this collection endowed with the pointed GH-
distance .Metp; dp

GH/ is a complete metric space.

(2) For a convergent sequence of pointed complete metric spaces f.Xi ;pi/g, assume
that they are proper and diam.Xi/�D . Then the convergence is independent
of the choice of reference points.

2.1.2 Homogeneity and the existence of lines In this subsection, we introduce a
general lemma by which we can construct a line on a noncompact length space.

Definition 2.3 Let .X; d/ be a metric space. We call the isometric embedding
 W .�1;C1/!X a line, and the isometric embedding  W Œ0;C1/!X a ray.

A standard result (see for instance [24]) is that, for any noncompact complete proper
length space X , if it is homogeneous, then it admits a line. The following is a slight
generalization of this fact, and is fairly standard. We give a proof for the convenience
of the reader.

Lemma 2.4 Let .X; d/ be a noncompact complete locally compact length space. If X

is C –homogeneous for some C <1, that is, for every x;y 2X , there is an isometry
f 2 Isom.X / with dX .y; f .x//� C , then X admits a line.

Remark 2.2 If the constant C in the above lemma is 0, the space X is homogeneous
and thus the above lemma is the standard one.
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Proof First, we show that for any p 2 X there is a ray at p . Take a sequence of
points fqig �X such that d.p; qi/!1. Since X is a locally compact and complete
length space, for each qi , there is a minimal geodesic joining qi and p , denoted by i .
Let B1.p/ be a closed metric ball of radius 1 in X , so it is compact in our context.
Then, by the Arzelà–Ascoli theorem, there exists a subsequence fi1

g which converges
to a minimal geodesic 1W Œ0; 1�!X . Similarly, in B2.p/, there exists a subsequence
of fi1

g, denoted by fi2
g, which converges to a minimal geodesic 2W Œ0; 2�! X .

Note that 2 coincides with 1 in B1.p/. Continuing, we can construct 3 , 4 and
so forth. Then the ray is defined by  D

S1
iD1 i W Œ0;1/!X .

The next is to construct a line from  . For each m2N , let gm2 Isom.X / be an isometry
satisfying dX .gm � .m/;p/�C . We denote by mDgmı W Œ0;C1/!X the image
of  under the isometry gm 2 Isom.X /, then m is a ray. Let �mW Œ�m;C1/!X

be a ray defined by �.t/ WD m.tCm/. Since dX .�m.0/;p/D dX .gm � .m/;p/�C ,
after passing to a subsequence the rays �mW Œ�m;1/!X converge to a line.

2.2 Ricci curvature and noncollapsed �–regularity theorems

The following is a standard useful manner of measuring regularity on a manifold.

Definition 2.5 (C 1 –harmonic coordinates) Let uD .u1; : : : ;un/W Br .p/!Rn with
u.p/D0 and u a diffeomorphism onto its image. We call u a C 1 –harmonic coordinate
system with kukr � 1 if the following properties hold:

(1) For each 1� k � n, uk is harmonic.

(2) If gij D g.rui ;ruj / is the metric in coordinates, then

jgij � ıij jC 0.Br .p//
C r jgij � ıij jC 1.Br .p//

< 10�6;

where the scale-invariant norms are taken in euclidean coordinates.

Using the above we immediately have the notion of the harmonic radius of M .

Definition 2.6 For x 2M we define the harmonic radius rh.x/ by

(2-3) rh.x/� supfr > 0 j 9 harmonic coordinates uW Br .x/!Rn with kukr � 1g:

Remark 2.3 Note that the harmonic radius is scale-invariant. That is, if rh.x/� r ,
and we rescale the metric of M so that Br .x/! B1.x/, then rh.x/� 1 in the new
space.

Remark 2.4 Notice the Lipschitz bound jrrhj � 1.
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It was discussed in the introduction that a key �–regularity theorem tells us that for
spaces with bounded Ricci curvature jRicj � �.n/, if dGH.B2.p/;B2.z

�// < �.n/,
where z� 2Rn�3 �C.Y /, then rh.p/� 1. We will want to study in this section what
happens when the cone assumption is dropped. In this case we have the following,
which is a slight extension of the �–regularity theorem [8, Theorem 6.1].

Theorem 2.7 Given n; v > 0, there are positive constants � D �.n; v/ > 0 and r0 D

r0.n; v/ > 0 such that if .M n;g;p/ satisfies jRicj � n� 1, Vol.B1.p// > v > 0 and

(2-4) dGH.B2.p/;B2.0
n�3;y// < �; .0n�3;y/ 2Rn�3

�Y;

for some metric space .Y;y/, then for each q 2 B1.p/, we have that

(2-5) rh.q/� r0 > 0:

Remark 2.5 We can also write the above result in a scale-invariant version. That is,
if jRicj � n� 1, Vol.Br .p// > v � r

n and

(2-6) dGH.B2r .p/;B2r .0
n�3;y// < �r; .0n�3;y/ 2Rn�3

�Y;

then correspondingly we have the harmonic radius bound rh.p/� r � r0 .

Before the proof, we need to clarify some notions.

Definition 2.8 Let .X; d/ be a length space. Then we define the following:

(i) We say X is k –symmetric at x if there is some compact metric space Y such
that X is isometric to C.Y /�Rk , where C.Y / is a cone space over Y and x

is the cone tip under this isometry.

(ii) Given x 2 X , 0 < r � 1 and � > 0, we say X is .k; �; r/–symmetric at x if
there is some compact metric space Z which is k –symmetric at z 2 Z such
that

(2-7) dGH.Br .x/;Br .z// < r�:

(iii) Let r˛D2�˛ . Given x2X , we call r˛ a good scale if X is .0; �; r˛/–symmetric
at x , and a bad scale otherwise.

The following lemmas allow us to reduce the result of Theorem 2.7 to [8, Theorem 6.1].

Lemma 2.9 [7] Let .M n;g;p/ be a Riemannian manifold with Ric��.n�1/ and
Vol.B1.p// > v > 0. Then for each � > 0, there exists an N.n; �; v/ > 0 such that for
every q 2 B1.p/, we have that there are at most N bad scales at q .
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We also the need the following quantitative cone splitting lemma which simply follows
from standard contradiction arguments.

Lemma 2.10 Let .M n;g;p/ be a Riemannian manifold with Ric � �.n� 1/. For
each � > 0, there exists a ı0.n; �/ > 0 such that if for some metric space .Y;y/,

(2-8) dGH.B2.p/;B2.0
k ;y// < ı0; .0k ;y/ 2Rk

�Y;

and

(2-9) dGH.B2.p/;B2.y1// < ı0; y1 2 C.Y1/;

for some cone space C.Y1/ over some compact metric space Y1 with the cone tip y1 ,
then we have that

(2-10) dGH.B2.p/;B2.0
k ;y0// < �; .0k ;y0/ 2Rk

�C.Y0/;

where C.Y0/ is some cone space over a compact metric space Y0 with the cone tip y0 .

Applying the above lemmas, we proceed to prove Theorem 2.7.

Proof of Theorem 2.7 Fixing n, v , we will explicitly determine

(2-11) �.n; v/ > 0; r0 D r0.n; v/ > 0;

such that for some metric space Y , if (2-4) holds for � > 0, then

(2-12) rh.p/� r0 > 0:

Let �0 D �0.n; v/ > 0 be the positive constant in the noncollapsed �–regularity of [8,
Theorem 6.1] and denote by ı0 D ı0.�0; n/ > 0 the constant in Lemma 2.10. Taking
any q 2 B1.p/, Lemma 2.9 implies that, with respect to the constant ı0 > 0 defined
above, we can drop a definite number of factors

(2-13) N DN.n; ı0.�
0; n/; v/ > 0

such that there exists some r > 0 with

(2-14) 2�2N.n;�0;v/ < r < 2�N.n;�0;v/
� �0:

Then for some cone space C.Y �/, it holds that

(2-15) dGH.B2r .q/;B2r .y
�// < rı0; q 2 B1.p/;

where y� 2 C.Y �/ is the cone tip. Let (2-4) hold for

(2-16) 0< � � r � ı0.n; �
0/ :
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Then if we restrict to B2r .q/� B2.p/, it holds that

(2-17) dGH.B2r .q/;B2r .0
n�3;y// < � D r � ı0:

Combining with (2-15), by Lemma 2.10 there exists a cone space Rn�3 �C.Y0/ over
some compact metric space Y0 with the cone tip .0n�3;y0/ such that

(2-18) dGH.B2r .q/;B2r .0
n�3;y0// < r�0:

Applying [8, Theorem 6.1], we obtain the harmonic radius bound for each q 2B1.p/,

(2-19) rh.q/� r > 0:

Since the constants r > 0, � > 0 are determined by (2-14) and (2-16), which depend
only on n and v , we have finished the proof.

We end this subsection by introducing the following cone-splitting principle (see [7]
for more details), which is a powerful tool to study the �–regularity especially in the
noncollapsed context (see Section 5.2). The following lemma will be heavily used in
the proof of the quantitative splitting result.

Lemma 2.11 (cone-splitting principle) Let .C.Y /;y�/ be a metric cone with ver-
tex y� over some compact metric space Y . Assume that there exists a metric
cone .C. xY /; xy�/ and that there is an isometry F W Rs � C. xY / ! C.Y / such that
y� 62 F.Rs � fxy�g/. Then for some compact metric space W , C.Y / is isometric to
RsC1 �C.W /.

2.3 Geometry of Ricci limit spaces

In this subsection, we briefly discuss the geometric properties of a Ricci limit space
which will be used in the proof of our �–regularity theorems. Specifically, we
call a metric-measure space .X; dX ; �X ;x/ a Ricci limit space if there exists a se-
quence .M n

i ;gi ; �i ;pi/ of Riemannian manifolds with Ricgi
� �.n� 1/� and �i D

Vol.B1.pi//
�1dvgi

such that

(2-20) .M n
i ;gi ; �i ;pi/

GH
��! .Rk

�X; dRk�X ; �Rk � �X ;x/:

Note that this differs a little from other papers in the literature, which might call a
Ricci limit space a metric-measure space which arises as a direct limit of Riemannian
manifolds. It takes very little work to see that all the results that hold for these spaces
also hold for Ricci limit spaces in our sense. In this subsection, we focus on the concept
of the dimension of a Ricci limit space and its isometry group.
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2.3.1 The dimension of a Ricci limit space There is a natural definition of the
dimension of a Ricci limit space. This definition is given by the following theorem,
which follows from [11] directly.

Theorem 2.12 [11] Let .X; d; �;x/ be a Ricci limit space. Then there is a unique
integer k � 0 such that �.X nRk/D 0, where

(2-21) Rk.X /� fy 2X j each tangent cone at y is isometric to Rk
g:

The above unique integer k is called the dimension of X, and the points in Rk.X / are
called k –regular points.

2.3.2 The isometry group of a Ricci limit space To study the isometry group of a
Ricci limit space, we recall some basic notions in compact-open topology. Given a
metric space Y , it is standard to define the topology of Isom.Y / which is called the
compact-open topology. Denote

(2-22) V.K;U /� fg 2 Isom.Y / j g.K/� U g;

where K � Y is compact and U � Y is open, and let

(2-23) K.Y /� fV.K;U / jK is compact; U is openg:

Definition 2.13 The compact-open topology of Isom.Y / is the topology which is
generated by K.Y / such that K.Y / is the subbase.

Let us briefly review some basic facts of the compact open topology of Isom.Y /. In
fact, the compact open topology of Isom.Y / is equal to the compact-convergence
topology. Moreover, Isom.Y / and Y share the same separation properties with respect
to the compact-open topology. There is another standard fact that if Y is a proper metric
space, then Isom.Y / is locally compact with respect to the compact-open topology.

Let G� Isom.Y / be the isometry group of Y endowed with the compact-open topology.
Hence, G is locally compact. The Gleason–Yamabe theorem gives a criterion for a
locally compact topological group to be a Lie group. Roughly speaking, a locally
compact topological group G is a Lie group if G has no small subgroup. The above
idea is applied to study the isometry group of a Ricci limit space. Applying the Hölder
continuity result of tangent cones developed in [11], the following was proved:

Theorem 2.14 [11] Let .Y; d; �;y/ be a Ricci limit space. Then Isom.Y / is a Lie
group.
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Let G be as above. Now we give a metric characterization of the identity component
of G . Denote by G0 the identity component of the Lie group G D Isom.Y /. We will
prove the following lemmas.

Lemma 2.15 With the above notation, let Be � Isom.Y / be any open set containing
the identity element e 2 Isom.Y /. Then there exists an �0.Y;Be/ > 0 such that

(2-24) I.�0/� fg 2 Isom.Y / j d.g � z; z/ < �0; 8 z 2 B��1
0
.y/g;

is an open set containing the identity, and

(2-25) I.�0/� Be:

Proof First, by definition, for each fixed � > 0, it is obvious that

(2-26) I.�/D V.B��1.y/;T�.B��1.y///;

where T�.B��1.y/// is the �–neighborhood of the compact set B��1.y/. Hence, I.�/

is a subbase element and thus I.�/ is open.

Since Be is open, by the definition of compact-open topology, there exist an open set
e � B0e � Be and finitely many V.Kj ;Uj / for 1� j �N , such that

(2-27) e 2 B0e D
N\

jD1

V.Kj ;Uj /:

We will prove that I.�0/� B0e for some sufficiently small �0.Y;Be/ > 0. It suffices to
show that for all 1� j �N and for every g 2 I.�0/, it holds that

(2-28) g.Kj /� Uj :

Since
SN

jD1 Kj is compact, there exists an R0 > 0 such that

(2-29)
N[

jD1

Kj � BR0
.y/:

Notice that e.Kj /DKj for every 1 � j � N , which implies that Kj � Uj . Since
Kj is compact, there exists a finite open cover of Kj such that

(2-30) Kj �

mj[
�D1

O� � Uj :
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Let ıj > 0 be the Lebesgue number of this open cover. Then for each qj 2Kj it holds
that for some 1� �j �mj ,

(2-31) Bıj =3.qj /�O�j � Uj :

Let

(2-32) �0 �
1
3

minfı1; : : : ; ıN ; .10 �R0/
�1
g:

Then for each zj 2Kj � BR0
.y/� B��1

0
.y/ and for each g 2 I.�0/,

(2-33) g � zj 2 B�0
.zj /� Bıj =3.zj /� Uj :

Therefore, g 2 V.Kj ;Uj /. So we have finished the proof.

Lemma 2.16 Let .Y; d; �;y/ be a Ricci limit space and let G � Isom.Y /. Denote by
G0 the identity component of the Lie group G . Then there exists an �0.Y / > 0 such
that

(2-34) G0 D hI.�0/i:

Proof Since .Y;y/ is a Ricci limit space, by Theorem 2.14, G D Isom.Y / is a
Lie group and hence the identity component G0 is a normal subgroup of G . By
Lemma 2.15, given the identity component G0 , there exists an �0.Y / > 0 such that

(2-35) I.�0/�G0:

Suppose I.�0/D e . Notice that G0 is Hausdorff and thus I.�0/ is closed. Since I.�0/

is open and G0 is connected,

(2-36) G0 D feg D I�0
;

and we are done. Now we focus on the case I.�0/¤ feg, that is, I.�0/ is a nontrivial
neighborhood containing e . Since G0 is a connected Lie group, G0 can be generated
by any arbitrary nontrivial neighborhood. Therefore,

(2-37) G0 D hI.�0/i:

2.4 Ricci curvature and fundamental group

This section is to show the connections between curvature and fundamental group.
Specifically, we will discuss some generalized Margulis lemmas in the context of
sectional and in general Ricci curvature bounded from below. Roughly speaking, the
moral of a general Margulis lemma is that if curvature (sectional or Ricci) is bounded
from below, the subgroup of �1.B2.p// generated by short loops is well-controlled,
ie an almost nilpotent group.
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2.4.1 Nilpotent groups and polycyclic groups In this subsection, we recall some
basic notions related to nilpotent groups and polycyclic groups. First, we give the
definitions of a nilpotent group and a polycyclic group.

Definition 2.17 A group � is called nilpotent if the lower central series of � is of
finite length, that is, there exists a finite descending normal series

(2-38) � � �0 B �1 B � � �B �k D feg;

where �j � Œ�; �j�1� for all 1� j � k . The length of the lower central series is called
the nilpotency step or class of � , namely, Step.�/D k .

Definition 2.18 A group � is called polycyclic if there is a finite subnormal series

(2-39) � � �m B �m�1 B � � �B �1 B �0 D feg

such that �j�1 is normal in �j and �j=�j�1 is cyclic for each 1 � j �m. Such a
subnormal series is called a polycyclic series.

Remark 2.6 It is known that all finitely generated nilpotent groups are polycyclic
(see [19]).

For a polycyclic group, we introduce the following invariants which will be used to
define the rank of a finitely generated nilpotent group.

Lemma 2.19 Let � be a polycyclic group with a subnormal series

(2-40) � � �m B �m�1 B � � �B �1 B �0 D feg;

such that �j�1 is normal in �j and �j=�j�1 is nontrivial and cyclic for each 1�j �m.
Define the integer

(2-41) NZ.�/� #f1� j �m j �j=�j�1 Š Zg:

Then NZ.�/ is independent of the choice of the polycyclic series, and is called the
polycyclic rank of � . In particular, if � is torsion-free, then the above normal series
can be chosen such that �j=�j�1 Š Z for each 0� j �m� 1.

Definition 2.20 Let � be a finitely generated nilpotent group, then the nilpotency
rank is defined by

(2-42) rank.�/� NZ.�/:

Let us define the nilpotency length of a finitely generated nilpotent group.
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Definition 2.21 Let � be a finitely generated nilpotent group. Then its nilpotency
length, denoted by length.�/, is defined by the length of the shortest polycyclic series

(2-43) feg DA0 C A1 C A2 C � � �C Ak DN

which satisfies for all 1� i , j � k ,

(2-44) ŒAi ;Aj ��Aminfi;jg�1:

The following lemma for a finitely generated nilpotent group will be applied in our
later theorems. The proof of the lemma is quite standard; for instance, see [19].

Lemma 2.22 Let � be a finitely generated nilpotent group. Then the following hold:

(i) � contains a torsion-free nilpotent subgroup of finite index.

(ii) Given a nilpotent subgroup � 0 � � , then Œ� W � 0� <1 if and only if rank.�/D
rank.� 0/.

(iii) rank.�/� length.�/, Step.�/� length.�/.

In fact, the above definition of nilpotency rank can be extended to a finitely generated
almost nilpotent group.

Definition 2.23 A group � is called almost nilpotent if there exists a nilpotent sub-
group N with Œ� WN � <1, and it is called .C;m/–nilpotent if there exists a nilpotent
subgroup N with Œ� WN �� C and length.N /�m.

The following lemma gives the definition of the rank of a finitely generated almost
nilpotent group.

Lemma 2.24 Let � be a finitely generated almost nilpotent group. Then:

(1) Each nilpotent subgroup N with Œ� W N � <1 has the same nilpotency rank.
The common rank is called the nilpotency rank of � , denoted by rank.�/.

(2) If there exists an N � � such that rank.N /Dm, then rank.�/�m.
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2.4.2 Almost nilpotency theorems Let us now recall the connection between Ricci
curvature and nilpotency of the fundamental group which is called the generalized
Margulis lemma. The first such results go back to K Fukaya and T Yamaguchi (see
[13] and [25]), where under the assumption of a lower sectional curvature bound (or
generally in the context of Alexandrov space) they proved the following.

Theorem 2.25 [13; 25] There exists some positive constant �.n/ > 0 such that the
following holds. If .X n;p/ is an n–dimensional Alexandrov space with curvature
� �1, then for any p 2X we have that

(2-45) ��.p/� ImageŒ�1.B�.p//! �1.B1.p//�

is almost nilpotent.

The primary drawback of the above result is that the index of the nilpotent group was
not a priori bounded. This was improved more recently in [17] to deal with this, where
it was shown that the index is indeed uniformly bounded. Recently, using similar
techniques, though technically much more demanding, these results have been extended
in [18] to the Ricci curvature context.

Theorem 2.26 [18] There are positive constants �1.n/ > 0 and w.n/ <1 such that
the following holds. If .M n;g;p/ is a complete n–dimensional Riemannian manifold
with Ric� �.n� 1/, then for any p 2M n we have that

(2-46) ��1
.p/� ImageŒ�1.B�1

.p//! �1.B1.p//�

is .w.n/; n/–nilpotent.

Though not explicitly stated, in fact their techniques lead to some refinements, which
will be important in this work. In particular, with the help of the algebraic structure of
Section 4, the nonlocalness lemma of Section 5, the dimensional result of Theorem 2.12,
and the induction lemma of [18] we prove the following in Appendix A.

Theorem 2.27 Let .Zk ; zk/ be a pointed Ricci limit metric space with dim Zk D k

in the sense of Theorem 2.12. Then there exist an �0 D �0.n;B1.z
k// > 0 and

a w0 D w0.n;B1.z
k// < 1 such that if a Riemannian manifold .M n;g;p/ with

Ric��.n�1/ satisfies the condition that B2.p/ has a compact closure in B4.p/ and

(2-47) dGH.B2.p/;B2.z
k// < �0;

then the group

(2-48) ��0
.p/� ImageŒ�1.B�0

.p//! �1.B2.p//�

is .w0; n� k/–nilpotent. In particular, rank.��0
.p//� n� k .
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Remark 2.7 The constants �0 , w0 depend only on the noncollapsing radius rc.z
k/,

see (1-12).

3 Motivating examples

The eventual goal of this paper is to prove �–regularity theorems for collapsed manifolds
with Ricci curvature bounds. The straightforward generalization of the noncollapsed
�–regularity of Theorem 2.7 fails, and in this section we study the important examples
which tell us why, and help motivate the main theorems of the paper. We will also
present some examples which show that the assumptions in our �–regularity theorems
are optimal.

3.1 Anderson’s example of codimension 1 collapse

In [2], via a surgery construction of the Riemannian Schwarzschild metric, M Anderson
built a complete simply connected Ricci-flat manifold .M n;g/ which is asymptotically
Rn�1 �S1 outside of a disk. In particular we have that the asymptotic cone of M n is
isometric to Rn�1 , which is to say for x 2M n fixed that as r !1 we have

(3-1) .M n; r�2g;x/
GH
��! .Rn�1; 0n�1/:

In particular, for any � > 0 and all r sufficiently large we have that

(3-2) dGH.B2.xr /;B2.0
n�1// < �;

where xr 2M n denotes the point x in the space .M n; r�2g/. On the other hand, it is
easy to check in the example that rh.xr /� r�1! 0 as r !1, and hence the direct
version of Theorem 2.7 cannot hold in the collapsed setting. On the other hand, as is
stated in Theorem 1.1 we should expect the fibered fundamental group �ı.x/ to be
almost nilpotent of rank at most 1. Using the fact that M is simply connected and
the behavior of its asymptotics, it is not hard to see that in this example we have that
rank.�ı.xr // D 0 for all ı > 0 and r sufficiently large. Hence, though it does not
satisfy the �–regularity theorem, we do have the expected drop in the fundamental
group.

3.2 Singular fibration of K3 surface

In [16] the authors constructed a family of Ricci-flat Kähler metrics .K3;gj / on a K3
surface with elliptic fibrations over CP1 Š S2 ,

(3-3) f W K3! S2:
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Away from 24 singular points, the fibers of f are tori, even almost isometrically with
respect to the geometries on .K3;gj /. Each of the 24 singular fibers is of Kodaira
type I1 which is the pinched torus, that is, there is a finite subset fq1; : : : q24g � S2

such that

(3-4) f �1.q`/D I1; `D 1; : : : ; 24:

Geometrically, the sequence of collapsing K3 geometries converges,

(3-5) .K3;gj /
GH
��! .S2; d1/;

where the metric d1 is a smooth metric on the topological two-sphere S2 away from
the 24 singular points. It may be checked, using the explicit coordinate expression for
the metric d1 , that at every point of .S2; d1/ the tangent cone is R2 . Hence, for
every � > 0 we have for all r > 0 sufficiently small and any x 2 S2 that

dGH.Br .x/;Br .0
2// < �r :(3-6)

In particular, we are again in a position to test the hypothesis of the noncollapsing
�–regularity Theorem 2.7. Again, we immediately see that if x is one of the 24 singular
points, then the curvature of .K3;gj / blows up along f �1.x/. However, note that
since f �1.x/ � I1 is a torus with a pinched neck, we have that �1.f

�1.x// Š Z.
With a little work it can be then seen that one should expect the same of the fibered
fundamental group �ı.xj /. More precisely, for xj 2 .K3;gj /! x and all ı > 0, we
see that for large enough j that �ı.xj /ŠZ. Since we have collapsed two dimensions
here, this is a drop from the maximal possible fundamental group, and again confirms
the picture of Theorem 1.1.

3.3 The Eguchi–Hanson metric

We will give a sequence of collapsing Ricci-flat Kähler manifolds. In this example, the
fibered fundamental group attains the maximal rank, however the �–regularity fails
due to a lack of Gromov–Hausdorff control.

Consider first a sequence of tori with flat metrics which collapse to a point,

(3-7) .T n�4;gi/
GH
��! pt;

where n � 4. On the other hand let .M 4; hi/ D .M 4; i�2gEH/ be a sequence of
rescaled Eguchi–Hanson spaces with Richi

� 0. Then it is a standard fact that

(3-8) .M 4; hi/
GH
��! .R4=Z2; d0/;
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by letting i !1. Topologically we have that M 4 is the cotangent bundle over S2 ,
and in particular simply connected.

Now let us consider the Ricci-flat spaces .M n
i ; !i/� .T

k �M 4;gi ˚ hi/. Then we
have that

(3-9) .M n
i ; !i ;pi/

GH
��! .R4=Z2; d0; 0

�/:

In this sequence it is not hard to check that rank.�ı0
.pi// D n� 4, which is maxi-

mal. However, the curvature blows up near to the vertex. This example shows both
the necessity of Gromov–Hasudorff control and that the dimensional assumption in
Theorem 1.1 is sharp.

3.4 Noncollapse and conjugate radius

We construct a family of noncollapsed metrics .M 2;gı;pı/ with nonnegative Gauss-
ian curvature such that when ı ! 0 the pointed Gromov–Hausdorff limit space is
.R2;gR2 ; 02/. However, there exists qı 2 B1.pı/ such that ConjRadgı

.qı/! 0 and
in particular, InjRadgı

.qı/ ! 0. This example shows what we can expect for the
�–regularity in the context of sectional curvature or Ricci curvature only bounded from
below. Even in the noncollapsed setting with smooth limit space, the conjugate radius
and hence injectivity radius may go to zero at some point. Hence, in this paper, in the
context of lower Ricci curvature we go for a uniform control on the weak conjugate
radius (see Equation (6-11) for the precise definition). In Section 6.1, we will prove
the �–regularity in the context of Ricci curvature bounded from below.

Now we give the concrete construction of metric. Consider the following C 1;1 –warped
product metrics on .R2; 02/. Fix some 0< ı < 10�2 , and for each � > 0, let

(3-10) gı;� D dr2
Cf 2

� .r/d�
2

with

fı;�.r/D

�
� sin.r=�/ 0� r � ı � �;

r cos ıC �.sin ı� ı cos ı/ r > ı � �:

Observe that fı;�.r/ is a concave C 1;1 –function with Lip.f 0
ı;�
.r// � 1=� for 0 �

r < 1, and thus gı;� is a C 1;1 –Riemannian metric. Also it holds that for fixed
0< ı < 10�2 ,

(3-11) .R2;gı;�; 0
2/

pGH
���! .C.S1/;gı;0; 0

2/;

where gı;0 D dr2C r2 � cos2 ı � d�2 is a cone metric.
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Now we prove that the conjugate radius tends to zero. To this end, we focus on the
behavior of the Jacobi field with respect to the C 1;1 –Riemannian metric gı;� . Fix
ı � � < t0 < 1 which will be determined later in the proof, and let  W .�1;1/!R2

be a unit speed geodesic through 02 with

(3-12) d. .0/; 02/D t0:

Let e1.t/? 
0.t/ be a parallel vector field along the geodesic  . We will calculate the

Jacobi field J.t/D F.t/e1.t/ with J.0/D 0, J 0.0/D e1. .0//. Let

t1 �minft > 0 j  .t/\Bı��.0
2/g D t0� ı � �;(3-13)

t2 �maxft > 0 j  .t/\Bı��.0
2/g D t0C ı � �:(3-14)

Then the Jacobi field J.t/ has the following expression:

(3-15) F.t/D

8̂̂<̂
:̂

t 0< t � t1;

C1� sin t�t1
�
CC2 cos t�t1

�
t1 � t � t2;

F 0.t2/.t � t2/CF.t2/ t2 � t <1:

Consider the geodesic segment 
ˇ̌
t1�t�t2

� Bı�.0
2/. By the initial data

(3-16) F.t1/D t1; F 0.t1/D 1;

it holds that

(3-17) C1 D 1; C2 D t1:

That is, for t1 � t � t2 ,

(3-18) F.t/D � sin t�t1
�
C t1 cos t�t1

�
> 0:

In particular,

(3-19) F.t2/D � sin 2ıC t1 cos 2ı > 0; F 0.t2/D cos 2ı�
t1
�

sin 2ı:

Now we are in a position to estimate the conjugate radius for g� . Let

(3-20) t1 �
p
�:

Then t2 D 2ı � �C
p
� and for sufficiently small � > 0, we have F 0.t2/ < 0. Recall

that K. .t//D 0 for t � t2 , so it holds that

(3-21) F.t/D F 0.t2/.t � t2/CF.t2/:
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Let tconj > t2 be such that

(3-22) F.tconj/D 0;

and hence

(3-23) tconj D t2C
F.t2/

�F 0.t2/

D t2C
� sin 2ıC

p
� cos 2ı

� cos 2ıC 1p
�

sin 2ı

< 2
p
�:

The last inequality holds for sufficiently small � > 0. Therefore,  .tconj/ is a conjugate
point of  .0/ and thus

(3-24) ConjRadgı;�
. .0// < 2

p
�;

with d. .0/; 02/D t0 D ı�C
p
� .

For fixed ı > 0, � > 0, by standard smoothing calculations, for any i > 0 there is a
smooth Riemannian metric g

.i/

ı;�
D dr2C .f

.i/

ı;�
.r//2d�2 such that the following holds:

(i) f
.i/

ı;�
! fı;� and thus g

.i/

ı;�
! gı;� pointwise and the radial geodesic keeps the

same in the sequence,

(ii) .f
.i/

ı;�
/00 � 0 and thus K

g
.i/

ı;�

D�
.f
.i/

ı;�
/00

.f
.i/

ı;�
/
2 Œ0; ��2CO.1= i/�,

(iii) for almost every x 2 .R2; 02/, lim
i!1

K
g
.i/

ı;�

.x/DKgı;� .x/.

Consider the Jacobi equations with respect to the metrics xgı;�;i ,

(3-25) F 00i D�KiFi :

A classical result shows that

(3-26) kFi �F0kC 0 ! 0;

and noticing that kFikC 1;1 � C.ı; �/ it is easy to conclude that

(3-27) kFi �F0kC 1 ! 0:

Letting qı;� � ı;�.0/ in the above construction,

(3-28) ConjRad
g
.i/

ı;�

.qı;�/ < 4
p
�:
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Choosing � D ı2 and when ı! 0, it holds that

(3-29) .R2;gı � gı;ı2 ; 02/
pGH
���! .R2;gR2 ; 02/;

and for qı � qı;ı2 ,

(3-30) ConjRadgı
.qı;ı2/ < 4ı! 0:

3.5 Isometric nilpotent group action without lines

Here we present an example based on the calculations in [23]. This example is used to
show the necessity of the cone splitting ideas in the proof of our �–regularity theorem,
which is a new manner to prove the splitting given appropriate symmetry compared to
the classical line splitting arguments.

More specifically, in [23] a complete noncompact space .M n;g/ was built with the
following properties:

(1) Ricg > 0.

(2) There exists a free isometric action on M n by a simply connected nilpotent Lie
group N n�k .

(3) M does not contain any lines. Equivalently, due to .1/, M n does not split any
R factors.

(4) M n=N n�k is diffeomorphic, but not isometric, to Rk .

Let us analyze these properties in the context of this paper. Recall from the discussion
of Section 1.2 that our basic strategy in the proof of the �–regularity theorem is to
construct new R–factors on the limit space of normal covers. For convenience, let
us briefly recall the context by presenting the following toy model. Let .M n

i ;gi ;pi/

satisfy Ricgi
� �i�2 and the diagram

(3-31)

. zM n
i ; �i ; zpi/

�i

��

eqGH // . zY ; �1; zy/

�1

��
.M n

i ;pi/
pGH // .Y;y/

where zM n
i is the universal cover of M n

i , and assume �i��1.M
n
i / and rank.�i/Dm.

If Y is compact, then by the techniques of [13], zY has m–independent lines and thus
zY ŠRm0 � zZ with m0 �m and zZ compact, see Lemma 2.4. If Y is noncompact, the
above line splitting fails, even in the context of nonnegative Ricci curvature. In fact, let
us now use the example of [23] presented above to produce a counterexample.
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Indeed, let �i �N n�k be a sequence of increasingly dense co-compact lattices, and let
M n

i �M n=�i , where M n is the example presented at the beginning of this subsection.
For this example, we then have that

(3-32)

zM n
i DM n GH

��! zY �M n;

�i! �1 �N n�k ; rank.�i/D n� k;

M n
i

GH
��! Y;

where Y is diffeomorphic to Rk and thus noncompact. But now of course zY DM n

does not contain any lines, and so does not split any R–factors. In particular, this shows
that in the general case, when Y is noncompact one requires new arguments to produce
lines, which is why we use a cone splitting argument for the proof of Theorem 1.1.

Let us end this section by giving a brief remark on the relationship between this example
and Theorem 5.1, which is the main theorem in Section 5. First, if a sequence with
maximal rank collapses to a noncompact metric space, then as in Section 3.5, the limit
of the noncollapsed universal covers may not split off any extra euclidean factor. On
the other hand, Theorem 5.1 gives a way to see extra splittings upstairs, but only on a
smaller but definite size scale.

4 The structure of almost nilpotent groups

The proof of Theorem 1.1 will require not only the fundamental group control of [18],
but various refinements which require the ability to pick geometrically compatible
bases along with studying not only the fibered fundamental group but the structure of
the deck transformations of other normal covers. This section is devoted to developing
all the algebraic tools which will be necessary for these studies. The main theorem in
this section is Theorem 4.25. Roughly speaking, this theorem is to build polycyclic
extensions of the lower central series of nilpotent subgroups of �ı.p/ which are
compatible with the geometry. Such extensions will play an important role in inductive
arguments throughout the paper. In Section 4.1 and Section 4.2, we set up some
necessary preliminaries to prove the main theorem in this section.

4.1 Effective generating set of a finite-index subgroup

In this subsection, we focus on Schreier’s lemma [22, Lemma 4.2.1] and its applications.
Schreier’s lemma explicitly gives a generating set of a subgroup, called Schreier’s
generating set. We will prove some effective estimates on the above generating set.
That is, if a subgroup H � G has a priori controlled index C <1 in G , then each
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generator in Schreier’s generating set has controlled length in terms of the generators
of G .

Although Schreier’s lemma works for any group and its subgroup, every group in this
subsection is assumed to be finitely generated, which is enough for our geometric
applications.

4.1.1 Alphabetical ordering in a finitely generated group In this paragraph, we
define the alphabetical ordering which is a total ordering of a finitely generated group.
This ordering is the foundation for building the effective generating set of a subgroup
of controlled index. We start with some basic notions.

Definition 4.1 Let � be a finitely generated group with an ordered symmetric gener-
ating set S D .s1; : : : ; sd / with S�1 D S . We define the following notions:

(i) Let g2� . If gD si1
�si2
� � � sim

with sij 2S for 1�j �m, then si1
�si2
� � � sim

is
called a presentation of g in terms of the elements in S . A specific presentation
is denoted by the corresponding bold letter,

(4-1) g D si1
� si2
� � � sim

:

(ii) Given a group element g 2 � , a presentation g D si1
� si2
� � � sim

is called a
reduced presentation of length m if sij � sijC1

¤ e for all 1 � j �m� 1, and
we denote `S .g/Dm. The set of all reduced presentations of g 2 � is denoted
by Pg , while the set of all reduced presentations in � is denoted by P.�/. Thus
`S is a function from P.�/ to N .

Remark 4.1 By definition, it happens that two different presentations g1 and g2

correspond to the same group element in � .

We will give a total ordering among all reduced presentations of a group.

Definition 4.2 Let � be a finitely generated group with an ordered symmetric gen-
erating set S D .s1; : : : ; sd / with S�1 D S . We define an ordering �p for any two
different reduced presentations in P.�/:

(i) If g 2 P.�/ and g ¤ e , then e �p g .

(ii) s1 �p s2 �p � � � �p sd .

(iii) Let g1 D
Qm
�D1 si� and g2 D

Qn
�D1 sj� be two reduced presentations. We say

g1 �p g2 if either

(a) `S .g1/ < `S .g2/, ie m< n, or
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(b) `S .g1/ D `S .g2/ D m, and there exists 1 � �0 � m such that i�0
< j�0

and i� � j� for all 1� � � �0 .

Remark 4.2 The above ordering �p in the set of all reduced words is equivalent to
the ordering in the set of all presentations.

Lemma 4.3 The following properties hold:

(i) With � and S as above, for any two reduced presentations g1;g2 2 P.�/, then
exactly one of g1 D g2 , g1 �p g2 and g2 �p g1 is true.

(ii) If g1 �p g2 , g2 �p g3 , then g1 �p g3 .

(iii) If g1�p g2 and there is no cancellation between g3 and g2 , then g3�g1�p g3�g2

and g1 �g3 �p g2 �g3 .

Proof The proof immediately follows from the definition, so we omit it.

With the above ordering, we can define the canonical presentation of a group element,
and then we are able to provide a total ordering among the group elements.

Definition 4.4 Let � be a finitely generated group with an ordered symmetric gener-
ating set (not containing the identity)

(4-2) S�1
D S D .s1; s2; : : : ; sd /:

We call a presentation g D si1
� si2
� � � sim

2 Pg a canonical presentation of g if this
presentation satisfies the following:

(i) For any presentation g D sj1
� sj2
� � � sjm0

2 Pg with sj� 2 S , we have m�m0 .

(ii) Denote by Mg � Pg the set of all reduced presentations of g such that the
length of each presentation in Mg is equal to m. Then the presentation g D

si1
� si2
� � � sim

is the first member in Mg with respect to the ordering �p .

Remark 4.3 The above canonical presentation is well-defined. In fact, for the above
fixed m, #.Mg/� dm and thus we can pick up the first element in Mg with respect
to the ordering �p .

Definition 4.5 Let g2� . Then lengthS .g/ is the defined by the length of its canonical
presentation.

Example 4.1 Suppose we have 4 different presentations of g : s3
1
s2
4
s1
2

, s2s1s4s3 ,
s2s1s3s5 , s2

2
s4s6 . Then by definition, g D s2s1s3s5 is the canonical presentation,

lengthS .g/D 4, and s2s1s3s5 �p s2s1s4s3 �p s2
2
s4s6 �p s3

1
s2
4
s1
2

.
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Lemma 4.6 Let � be as above. Then each group element g2� has a unique canonical
presentation.

Proof Given g 2 � , let `sW P.�/! N be the function which maps each reduced
presentation to its length. First, the image set `S .Pg/ is a subset of N , and thus the
set `S .Pg/ has a finite minimum in N . Therefore, g has a presentation satisfying (i).

Let m � lengthS .g/, then #.Mg/ � dm . It immediately follows that there exists a
unique member in Mg which satisfies (ii).

Lemma 4.7 Let si1
� si2
� � � sim

be the canonical presentation of some element g 2 � .
Then for each 1� k �m� 1, both

Qk
�D1 si� and

Qm
�DkC1 si� are canonical presenta-

tions of the corresponding group elements.

Proof First we prove by contradiction that gkD
Qk
�D1 si� is the canonical presentation

of gk for each 1 � k � m. Suppose that there is some 1 � k0 � m� 1 such that
gk0
�
Qk0

�D1
si� is not a canonical presentation of the element gk0

. Let gk0
D
Qk1

�D1
sj�

be the canonical presentation of gk0
such that

k1Y
�D1

sj� �p

k0Y
�D1

si�

with k1 � k0 . Since there is no cancellation between the two presentations
Qk0

�D1
si�

and
Qm
�Dk0C1 si� , Lemma 4.3(iii) implies the inequality

(4-3)
k1Y
�D1

sj� �

mY
�Dk0C1

si� �p

k0Y
�D1

si� �

mY
�Dk0C1

si� D

mY
�D1

si� :

Consequently,
Qm
�D1 si� is not the canonical presentation of g , which gives the con-

tradiction.

We have proved that
Qk
�D1 si� is the canonical presentation of gk for each 1�k�m. It

follows immediately that
Qm
�DkC1 si� is the canonical presentation of hk . Otherwise,

by the same arguments, the canonical presentation of g would be strictly beforeQm
�D1 si� , which is impossible.

Now we define a total ordering in a finitely generated group.

Definition 4.8 With � and S as above, there is an ordering relation � called the
alphabetical ordering such that for every two different elements, the following hold:
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(i) e � g for any g ¤ e .

(ii) s1 � s2 � � � � � sd .

(iii) Let g D si1
� si2
� � � sim

and hD sj1
� sj2
� � � sjn

be the unique canonical presenta-
tions of g; h 2 � . Then g � h if and only if si1

� si2
� � � sim

�p sj1
� sj2
� � � sjn

.

4.1.2 The canonical transversal of a subgroup In this subsection, we introduce the
most important technical tool in this section. The canonical transversal gives a unique
“minimal” representative of each coset, which plays a crucial role in controlling the
behavior of a subgroup. We begin with the following basic definitions and conventions.

Definition 4.9 Let � be a group and let N � � . Given g 2 � ,

(4-4) g �N � fg � h j h 2N g; N �g � fh �g j h 2N g;

are called a left coset and a right coset respectively. The number of left cosets, which
is equal to the number of right cosets, is called the index of N in � , and denoted by
Œ� WN �.

Remark 4.4 If N C � , then both of

�=N � fg �N j g 2 �g;(4-5)

N n� � fN �g j g 2 �g;(4-6)

have a group structure and they are isomorphic. Moreover, for all g 2 � , we have that
g �N DN �g .

Definition 4.10 Let � be a finitely generated group and N be a subgroup of � with
Œ� WN �D C <1. Let fgj �N g

C
jD1

be the left cosets such that
SC

jD1 gj �N D � and
.gi �N /\ .gj �N /D∅ for i ¤ j . A transversal or section of N in � is a selection
of representatives, ie it is a surjective map

(4-7) F W �! fg1; : : : ;gC g

such that g 2 gj �N if and only if F.g/� gj .

With the definition of the transversal of a subgroup, we will explain Schreier’s explicit
construction of a generating set of a subgroup. Roughly speaking, each transversal of a
subgroup gives an algorithm which finds a generating set of the subgroup.
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Lemma 4.11 (O Schreier) Let S � hs1; : : : ; sd i be a generating set of the finitely
generated group � . Assume that N �� with Œ� WN �DC <1. Let F be a transversal
of N in � with Image.F /D fg1; : : : ;gC g. Then

(4-8) xS � f.F.gj � si//
�1
� si �gj j gj 2 Image.F /; si 2 Sg

is a generating set of N .

Remark 4.5 In the above notation, obviously,

(4-9) #. xS/� C 2
� d:

Now we give the existence and uniqueness of the canonical transversal with some
effective control.

Lemma 4.12 (canonical transversal) Let � , S and N be as above. Let fNj g
C
jD1

be the left cosets of N in � . Then there is a unique transversal (called the canonical
transversal)

(4-10) Fc W �! Image.F /D fg1; : : : ;gC g

such that

(i) gj is the first element in Nj with respect to the alphabetical ordering �,

(ii) lengthS .gj /� C for each 1� j � C .

Proof First, take the first element in Nj for each 1 � j � C . This choice has
uniquely determined the transversal Fc . Now it suffices to check property (ii) for the
transversal Fc . Argue by contradiction and suppose (ii) fails. That is, there exists
gj0
2 Image.Fc/ with the canonical presentation in terms of the elements in S ,

(4-11) gj0
D sl1

� sl2
� � � slCCm

; m� 1:

For each 1� k � C Cm, denote

wk �

CCmY
�DCCm�kC1

sl� ;(4-12)

hk �

CCm�kY
�D1

sl� :(4-13)

Clearly, gj0
D hk �wk . By Lemma 4.7, for each 1 � k � C Cm, Equations (4-12)

and (4-13) give the canonical presentation of wk and hk respectively. In particular,
lengthS .wk/D k and lengthS .hk/D C Cm� k . We will prove the following claim:

Geometry & Topology, Volume 20 (2016)



Topology and �–regularity on collapsed manifolds with Ricci curvature bounds 2607

Claim We have wk 2 Image.Fc/ for each 1� k � C Cm.

We argue by contradiction. Suppose wk0
62 Image.Fc/ for some 1 � k0 � C Cm.

Then Fc.wk0
/� wk0

. The contradiction would arise if we proved that

(4-14) hk0
�Fc.wk0

/� gj0
:

In fact, notice that Fc.wk0
/ �N D wk0

�N , which leads to

(4-15) hk0
�Fc.wk0

/ �N D hk0
�wk0

�N D gj0
�N:

Consequently, gj0
is not the first element in the left coset gj0

�N , a contradiction.

Now we are in a position to prove inequality (4-14). Let

(4-16) hk0
D

CCm�k0Y
�D1

sl� ; wk0
�

CCmY
�DCCm�k0C1

sl� ; Fc.wk0
/D

k0Y
�D1

sj� ;

be the canonical presentations. By assumption, k 0 � k0 . Lemma 4.3(iii) shows that

(4-17) hk0
�Fc.wk0

/D

� CCm�k0Y
�D1

sl�

�
�

� k0Y
�D1

sj�

�

�p

� CCm�k0Y
�D1

sl�

�
�

� CCmY
�DCCm�k0C1

sl�

�
D gj0

:

Since the canonical presentation hk0
�Fc.wk0

/ is before or equal to the presentation� CCm�k0Y
�D1

sl�

�
�

� k0Y
�D1

sj�

�
;

the canonical presentation of hk0
�Fc.wk0

/ is therefore before
QCCm
�D1 sl� . By assump-

tion,
QCCm
�D1 sl� is the canonical presentation of hk0

�wk0
, so it holds that

(4-18) hk0
�Fc.wk0

/� hk0
�wk0

D gj0
:

We have proved the claim.

With the claim, we obtain a sequence of different elements fw1; : : : ; wCCmg �

Image.Fc/. However, # Image.Fc/ D C < C Cm. This contradiction shows that
property (ii) has to be true.

Our main result of this section is the following proposition, which gives an effective
estimate for the Schreier generating set of a subgroup with a priori controlled index.
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Proposition 4.13 Let � be a finitely generated group with a generating set S D

fs1; s2; : : : ; sdg. Let N � � with Œ� WN �D C <1. Then N has a generating set xS
such that:

(1) #. xS/� C 2 � d ,

(2) lengthS .s/� 2C C 1 for each s 2 xS .

Proof The proof is the combination of Lemma 4.11 and Lemma 4.12. In fact, letting
xS be the generating set from Lemma 4.11 with respect to the canonical transversal Fc

of N , then the remark after that lemma shows that

(4-19) #. xS/� C 2
� d:

Let s 2 xS . Then there exists gj0
2 Image.Fc/ and si 2 S such that

(4-20) s D .Fc.si �gj0
//�1
� si �gj0

:

Lemma 4.12 gives that

(4-21) lengthS .Fc.si �gj0
//� C; lengthS .gj0

/� C;

which implies that

(4-22) lengthS .s/� C C 1CC D 2C C 1:

The proof is complete.

In the above context, if N is a normal subgroup, then we can obtain some better
properties on the canonical transversal.

Lemma 4.14 Let � and S be as above. Assume that N C � and let Fc be the
canonical transversal with respect to the quotient group �=N (group of left cosets).
Let w 2 � , with the canonical presentation in terms of the elements in S ,

(4-23) wD sl1
� � � slk

:

For any 1 � j � k , let u � sl1
� � � slj and v � sljC1

� � � slk
. Then w 2 Image.Fc/

implies that u 2 Image.Fc/ and v 2 Image.Fc/.

Proof Lemma 4.12 shows that v 2 Image.Fc/. So it suffices to show u 2 Image.Fc/.
Suppose that u 62 Image.Fc/, so Fc.u/� u. Then by the same arguments of the proof
of the claim in Lemma 4.12,

(4-24) Fc.u/ � v � u � v:
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The definition of Fc gives that Fc.u/ � N D u � N . Since N C � , it holds that
v �N DN � v and then

(4-25) Fc.u/ � v �N D Fc.u/ �N � v D u �N � v D u � v �N:

The above equation shows that Fc.u/ �v �N and u �v �N belong to the same left coset,
and thus inequality (4-24) contradicts the assumption that u � v is the first element in
u � v �N . Therefore, v 2 Image.Fc/.

Corollary 4.15 Let � , S and N be as in Lemma 4.14. Let Fc be the minimal
transversal with respect to the quotient �=N . Let w 2 � , with the canonical presenta-
tion in terms of the elements in S , wD sl1

� � � slk
. Assume that w 2 Image.Fc/. Then

for every i � j ,

(4-26) sli
� sliC1

� � � slj 2 Image.Fc/:

In particular, sli
2 Image.Fc/ for all 1� i � k .

Proof Lemma 4.14 shows that xu � sl1
� sliC1

� � � slj 2 Image.Fc/. By applying
Lemma 4.14 to xu, we have that u� sli

� sliC1
� � � slj 2 Image.Fc/.

4.2 Basics in commutators calculus

This subsection is to introduce some useful facts in the computations of commutators.

Definition 4.16 Let G be any arbitrary group with a generating set B . The sets of
weighted basic commutators are inductively defined as follows:

(1) C0.B/� B

(2) Ck.B/� fŒgk ; si � j gk 2 Ck�1.B/; si 2 Bg

The following lemma is standard in commutator calculus which inductively computes
the lower commutators subgroup from higher commutators subgroup.

Lemma 4.17 [19] Let G be any arbitrary group with a generating set B , and let
G0 � G . Then for each s 2 NC , Gs � ŒGs�1;G� can be generated by Cs.B/ and
GsC1 .

Corollary 4.18 Let N be a nilpotent group with a generating set B and Step.N /D c0 .
Then Ns � ŒNs�1;N � has a generating set

Sc0

kDs
Ck.B/.
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Proof Since N is nilpotent with Step.N /D c0 , it holds that

(4-27) Nc0
D feg; Cc0

.B/D feg:

By Lemma 4.17, Nc0�1 is generated by Cc0�1.B/. Repeating Lemma 4.17, we obtain
that for each 1� s � c0 , Ns is generated by

Sc0

kDs
Ck.B/.

We finish this subsection by constructing a subgroup of controlled index in a finitely
generated nilpotent group. This construction will be used in the proof of Theorem 2.27.

Lemma 4.19 Let N be a finitely generated nilpotent group with a generating set
B0 D f�0;1; : : : ; �0;d0

g and Step.N / D c . For each 1 � k � c � 1, let Ck.B/ D

f�k;1; : : : ; �k;dk
g be the set of basic commutators of weight k . For each 0� k � c�1,

let

(4-28) ak D .ak;1; : : : ; ak;dk
/

be a dk –tuple in Ndk

C and let

(4-29) Nak
�
˝
�

ak;1

k;1
; : : : ; �

ak;dk

k;dk

˛
:

Then each g 2N can be written in the standard form

(4-30) g D

� c�1Y
kD0

dkY
jD1

�
bk;j

k;j

�
�ga; ga 2Na �

c�1Y
kD0

Nak
;

where 0� bk;j < ak;j for all 0� k � c � 1 and 1� j � dk . In particular,

(4-31) ŒN WNa��

c�1Y
kD0

dkY
jD1

ak;j :

Proof We can argue by induction on the step of N . Consider N B N1 . Obviously,
the statement of the proposition holds for Step.N /D 1, namely, N a finitely generated
abelian group. Assume that the statement is true for all finitely generated nilpotent
groups of step � c � 1. Now we prove it for a finitely generated nilpotent group N

with Step.N /D c .

The notation is the same as that in the statement of the proposition. First, we claim
that each element g 2N can be presented as

(4-32) g D �
r0;1

0;1
� � � �

r0;d0

0;d0
�g1; g1 2N1;
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for some .r0;1; : : : ; r0;d / 2 Z . In fact, for any i < j and xg 2N , it holds that

(4-33) �0;j � xg � �0;i D �0;i � �0;j � xg � xg1;

where g1 � Œ.�0;j � xg/
�1; ��1

0;i
� 2 N1 . Hence, for any g D �0;l1

� �0;l2
� � � �0;lm

2 N ,
we can rearrange the generators such that Equation (4-32) holds. We have proved the
claim. Furthermore, for each 1 � j � d0 , there exists a unique 0 � b0;j < a0;j and
m0;j 2 Z such that

(4-34) r0;j Dm0;j � a0;j C b0;j :

Simple inductive arguments show that

(4-35) g D �
b0;1

0;1
� � � �

b0;d0

0;d0
�g01 �g

0
a;

where g0
1
2N1; g0a 2Na .

Now we proceed to prove that g 2N has the standard form in Equation (4-30). We
present g in terms of the ordered generators as in Equation (4-35). Since N1D ŒN;N �

satisfies Step.N1/D c � 1, by the induction hypothesis

(4-36) g01 D

� c�1Y
kD1

dkY
jD1

�
bk;j

k;j

�
�g00a; g00a 2

c�1Y
kD1

Nak
:

Then Equation (4-30) follows.

4.3 Refinement of the lower central series of a nilpotent group

We prove in this subsection the main technical result in Section 4. For a finitely generated
nilpotent group N with a generating set S , we will give an effective and geometrically
compatible refinement of the lower central series. This effective refinement guarantees
that the generator of each Z–factor group has controlled length with respect to S ,
which plays a fundamental role in the inductive arguments throughout the paper. First,
recall the following standard isomorphism lemma in group theory.

Lemma 4.20 Let A and B be two groups. If f W A! B is a surjective homomor-
phism, then the following holds:

(i) For each B1 � B , the pre-image f �1.B1/ is a group.

(ii) If B1 C B2 , then f �1.B1/ C f �1.B2/. Moreover, f �1.B2/=f
�1.B1/ Š

B2=B1 .

(iii) Let A1 �A2 �A. Then

(4-37) Œf .A2/ W f .A1/�� ŒA2 WA1�:
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With the algebraic preparations in the above sections, we are ready to show the main
result of this section. Throughout this subsection, we will assume that N is a finitely
generated nilpotent group with rank.N /Dm and Step.N /D c0 . Let N � hBi with
B � fg1;g2; : : : ;gxdg and B�1 D B . Let

(4-38) N �N0 B N1 B � � �B Nc0�1 B Nc0
D feg

be the lower central series with Ns � ŒNs�1;N � for every 1� s � c0 . It is standard
that for each 1 � s � c0 , Ns is normal in N and Ns�1=Ns is a finitely generated
abelian group. Denote ns � rank.Ns�1=Ns/. Obviously,

Pc0

sD1
ns Dm.

Theorem 4.21 In the above notation, there exists a refinement of the lower central
series (4-38) such that for each 1� s � c0 the following properties hold:

(i) There is a normal series

(4-39) Ns�1 B Ns;ns
B Ns;ns�1 B Ns;ns�2 B � � �B Ns;1 B Ns;0 B Ns

such that Ns;k=Ns;k�1 Š Z for 1 � k � ns , while Ns�1=Ns;ns
and Ns;0=Ns

are finite abelian groups.

(ii) There exists a subset

(4-40) f�s;1; �s;2; : : : ; �s;ns
g �Ns�1

such that for each 1� k � ns ,

(4-41) lengthB.�s;k/� 3 � 2c0 � 2:

Moreover, the quotient group Ns;k=Ns;k�1 is generated by �s;k �Ns;k�1 . In
particular, h�s;k �Ns;k�1i Š Z.

Proof At the beginning of the proof, we clarify the notation which will be used
in the proof. We have assumed that the finitely generated nilpotent group N has a
symmetric generating set B , so Corollary 4.18 shows that Ns�1 has a generating set
Bs�1 �

Sc0

kDs�1
Ck.B/. By straightforward calculations, for each bs�1 2 Bs�1 ,

(4-42) lengthB.bs�1/� 3 � 2c0 � 2:

Let

(4-43) prsW Ns�1!Ns�1=Ns

be the natural quotient homomorphism and denote As � Ns�1=Ns . Since As is
a finitely generated abelian group with rank.As/ D ns , it follows As B Tor.As/
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with As=Tor.As/ Š Zns , where Tor.As/ is the torsion subgroup of As . Denoting
Gs;0 � pr�1

s .Tor.As//, by Lemma 4.20 Gs;0 C Ns�1 and

(4-44) Ns�1=Gs;0 D pr�1
s .As/= pr�1

s .Tor.As//ŠAs=Tor.As/Š Zns :

Let fxv1; : : : ; xvns
g be a sequence of elements in Ns�1=Gs;0 such that

(4-45) hxv1; : : : ; xvki Š Zk ; 8 1� k � ns:

Let

(4-46) �sW Ns�1!Ns�1=Gs;0

be the natural quotient homomorphism. In the proof of this theorem, for convenience,
given any g 2Ns�1 , the image �s.g/ is denoted by xg . The theorem will be proved
through the following claims.

Claim 1 There exists a sequence of elements f�s;1; �s;2; : : : ; �s;ns
g � Bs�1 �Ns�1

such that for each 1� k � ns ,

(4-47) lengthB.�s;k/� 3 � 2c0 � 2;

and

(4-48) A0s;k � hx�s;1; : : : ; x�s;ki

is a free abelian subgroup in Ns�1=Gs;0 with rank.A0
s;k
/D k , where x�s;k � �s.�s;k/.

Let Fs be the canonical transversal with respect to the quotient Ns�1=Gs;0 with
Fs.e/ D e . With respect to the canonical transversal Fs , there is a sequence of
elements fv`g

ns

`D1
� Image.Fs/�N such that for each 1� `� ns we have v` 2 xv` ,

where xv` are torsion-free generators as in (4-45). For each 1� `� ns , let

(4-49) v` D b`;1 � b`;2 � � � b`;d`

be the canonical presentation of v` such that b`;j 2 Bs�1 with 1 � j � d` . By
Corollary 4.15, b`;j 2 Image.Fs/, and hence xb`;j is of infinite order in Ns�1=Gs;0

for all 1� j � d` . That is,

(4-50) hxb`;j i Š Z; 8 1� j � d`; 1� `� ns:

Claim 1 follows from the following inductive statement:

(�) For each 1� `� ns , there exists some b`;�` 2 Bs�1 with 1� �` � d` in the
canonical presentations of fv1; : : : ; vns

g such that �s;` can be chosen as b`;�` .
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Let `D 1 and choose

(4-51) �s;1 � b1;1:

Equation (4-50) shows that hx�s;1i D h
xb1;1i Š Z.

We just set ns > 1. Otherwise, it is done. Assume that the statement .�/ holds for
1 � ` � k � 1. We will search for some bk;�k

in the canonical presentations of
fv1; : : : ; vkg such that �s;k can be chosen as bk;�k

. Observe that there exists some
bk;�k

2Bs�1 with 1� �k � dk such that xbk;�k
62 hx�s;1; : : : ; x�s;k�1i. If not, then for

all 1� `� k and 1� j � d` it holds that

(4-52) xb`;j 2 hx�s;1; : : : ; x�s;k�1i;

which implies that

(4-53) xv` 2 hx�s;1; : : : ; x�s;k�1i; 8 1� `� k:

That is, rankhxv1; : : : ; xvki D k � 1 which contradicts Equation (4-45). Therefore, if we
choose �s;k D bk;�k

, then by (4-50),

hx�s;ki D h
xbk;�k

i Š Z;(4-54)

hx�s;1; : : : ; x�s;k�1; x�s;ki Š Zk :(4-55)

Now the induction is complete.

Finally, for each 1 � k � ns , lengthB.�s;k/ � 3 � 2c0 � 2 follows from �s;k 2 Bs�1

and Equation (4-42). We have finished the proof of Claim 1.

We have constructed the subset (4-40). So now we are in a position to give the desired
normal series.

Claim 2 There exists a normal series

(4-56) Ns�1 B Ns;ns
B Ns;ns�1 B � � �B Ns;1 B Ns;0 B Ns D ŒNs�1;N �

such that for each 1� k � ns , the following holds:

(i) Ns;k=Ns;k�1 Š Z. Moreover, Ns�1=Ns;ns
and Ns;0=Ns are finite abelian

groups.

(ii) The quotient factor Ns;k=Ns;k�1 is generated by �s;k �Ns;k�1 , and hence h�s;k �

Ns;k�1i Š Z.

For each 1 � k � ns , let A0
s;k

be the free abelian group defined by Equation (4-48)
such that

(4-57) A0s;k=A
0
s;k�1 Š Z:
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Recall that �s is the natural quotient homomorphism

(4-58) �sW Ns�1!Ns�1=Gs;0;

then define

(4-59) Ns;k � �
�1
1 .A0s;k/

for each 1� k � ns . Lemma 4.20 implies that Ns;k�1 C Ns;k and Ns;k=Ns;k�1 ŠZ
for each 1� k � ns . Moreover, Ns;ns

C Ns�1 , Ns C Ns;0 and

(4-60) Ns�1=Ns;ns
ŠAs=A

0
s;ns

; Ns;0=Ns Š Tor.As/:

Hence both of the above two quotient groups are finite abelian. We have obtained
normal series (4-56) and proved property (i).

Now we show that Ns;kDh�s;k ;Ns;k�1i for each 1�k�ns . By definition, x�ks 2A0
s;k

,
and thus �k;s 2 �

�1
s .A0

s;k
/DNs;k . So it suffices to show that

(4-61) Ns;k � h�s;k ;Ns;k�1i:

In fact, taking any g 2Ns;k , there are a1; : : : ; ak 2 Z such that

(4-62) xg D x�
a1

s;1
� x�

a2

s;2
� � � x�

ak

s;k
2A0s;k :

Since the quotient �s is a homomorphism,

(4-63) g � �
�ak

s;k
D x�

a1

s;1
� � � x�

ak�1

s;k�1
2A0s;k�1:

By definition, g � �
�ak

s;k
2Ns;k�1 and thus

(4-64) g 2 h�s;k ;Ns;k�1i:

Lastly we show that the quotient group Ns;k=Ns;k�1 is generated by �s;k �Ns;k�1 .
The relation Ns;k�1 C Ns;k implies that for any d1 2 Z and h 2Ns;k�1 , there exists
an h0 2 Ns;k�1 such that ��d1

k;s
� h � �

d1

k;s
D h0; ie h � �

d1

k;s
D �

d1

k;s
� h0 . Consequently,

any g 2 Ns;k can be presented in terms of �d
s;k
� g0 for some d 2 Z and for some

g0 2Ns;k�1 . Therefore,

(4-65) g �Ns;k�1 D .�k;s �Ns;k�1/
d :

Property (ii) has been proved. Now the proof of Claim 2 is complete.

The theorem immediately follows from Claim 1 and Claim 2.

The following corollary will be applied in the proof of some lemmas in Section 5.1.
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Corollary 4.22 In the notation of Theorem 4.21, the following properties hold:

(i) The group

(4-66) N 0 � h�1;n1
; �1;n1�1; : : : ; �1;1; �2;n2

; �2;n2�1; : : : ; �2;1;

: : : ; �c0;nc0
; �c0;nc0

�1; : : : ; �c0;1i

is a nilpotent subgroup in N with rank.N 0/Dm.

(ii) For any ai;j 2 Z with 1� i � c0 and 1� j � ni ,

(4-67) N 00 �
˝
�

a1;n1

1;n1
; �

a1;n1�1

1;n1�1
; : : : ; �

a1;1

1;1
; �

a2;n2

2;n2
; �

a2;n2�1

2;n2�1
; : : : ; �

a2;1

2;1
;

: : : ; �
ac0;nc0
c0;nc0

; �
ac0;nc0

�1

c0;nc0
�1
; : : : ; �

ac0;1

c0;1

˛
is a nilpotent subgroup of N 0 with rank.N 00/Dm.

Proof (i) We prove it by induction on the step of the nilpotent group N . It is clear
that the statement is true if Step.N /D 1. In this case, N 0 is a finite-index free abelian
subgroup in N such that rank.N 0/D rank.N /. Assume that the statement is true for
any finitely generated nilpotent group of step � c�1. We will prove that the statement
also holds for N with Step.N /D c � 2.

Let us denote

(4-68) N 01 � h�2;n2
; �2;n2�1; : : : ; �2;1; : : : ; �c0;nc0

; �c0;nc0
�1; : : : ; �c0;1i �N1

D ŒN;N �:

Notice that Step.N1/D c � 1 and so

(4-69) rank.N 01/D rank.N1/Dm� n1;

where n1 D rank.N=N1/. For 1� j � n1 let us denote

(4-70) N 01;j � h�1;j ; : : : ; �1;1; �2;n2
; �2;n2�1; : : : ; �2;1;

: : : ; �c0;nc0
; �c0;nc0

�1; : : : ; �c0;1i:

It suffices to show that for every 1� j � n1� 1,

ŒN 01;jC1 WN
0
1;j �D1;(4-71)

ŒN 01;1 WN
0
1�D1:(4-72)

In fact, by Lemma 2.22, the above two equations imply that

rank.N 01;jC1/� rank.N 01;j /C 1; 1� j � n1� 1;(4-73)

rank.N 01;1/� rank.N 01/C 1:(4-74)
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Therefore, by inequality (4-69),

(4-75) m� rank.N 0/D rank.N 01;n1
/� rank.N 01/C n1 D .m� n1/C n1;

and thus rank.N 0/Dm. Now we prove Equation (4-71) and Equation (4-72). In fact,
by Theorem 4.21, N1;jC1=N1;j D h�jC1 �N1;j i ŠZ. Notice that N 0

1;j
�N1;j and so

�
d1;jC1

1;jC1
62N 01;j

for any d1;jC1 2 Z. We have proved (4-71). Similarly, (4-72) also holds. The proof is
complete.

(ii) The argument is the same as that of (i), so we just omit the proof.

4.4 Geometric properties of almost nilpotent groups

Those algebraic tools developed in the above subsections will now be presented and
used in a more geometric fashion. The basic setting is that on a Riemannian manifold
.M n;g;p/, assume that �ı.p/� ImageŒ�1.Bı.p//!�1.B2.p//� is .w; `/–nilpotent
for some a priori constants w > 0, ` > 0. Note that in the context of Ricg ��.n� 1/,
Theorem 2.26 shows that the above statement is always true for sufficiently small ı.n/.

We will focus on more delicate geometric properties of .w; `/–nilpotency. Specifically,
the nilpotent subgroup N of controlled index w in �ı.p/ can be generated by the
short loops of scale roughly ı . Moreover, the lower central series of N has a nice
refinement such that each infinite cyclic factor is generated by short loops of scale
roughly ı . This refinement of the normal series plays an important role in the proof of
our �–regularity theorems. First, we give a precise description of the above picture.

Definition 4.23 (.m; �/–displacement property) Given a metric space .X; d;p/, a
nilpotent group N with rank.N /Dm, assume that N � Isom.X /. We say N satisfies
the .m; �/–displacement property at p if there exists a c–tuple .n1; n2; : : : ; nc/ 2 Zc

with c D Step.N / and m D
Pc

sD1 ns such that for each 1 � s � c , the following
properties hold:

(i) The lower central series has the refinement

(4-76) Ns�1 B Ns;ns
B Ns;ns�1 B Ns;ns�2 B � � �B Ns;1 B Ns;0 B Ns

such that Ns;k=Ns;k�1 Š Z with 1 � k � ns , where Ns � ŒNs�1;N � and
N0 �N . Moreover, Ns�1=Ns;ns

and Ns;0=Ns are finite groups.
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(ii) There exists a subset

(4-77) f�s;1; �s;2; : : : ; �s;ns
g �Ns�1

such that for each 1� k � ns ,

(4-78) d.�s;k �p;p/ < �;

and Ns;k=Ns;k�1Dh�s;k �Ns;k�1i. Each �s;k is called an �–graded generator.

Remark 4.6 In applications, we will focus on a normal cover with the isometric action
of the deck transformation group.

By Definition 4.23, Theorem 4.21 can be written in a geometric fashion. That is:

Lemma 4.24 Given ı > 0 and `; w <1, the constant K D 10 �w � 2` <1 satisfies
the following property. Let .X; d;p/ be a metric space and � � Isom.X / be finitely
generated such that

(i) � is .w; `/–nilpotent,

(ii) � has a finite generating set

(4-79) Sı.p/� f1; : : : ; d1
j d.j �p;p/ < ı; j 2 Isom.X /; 1� j � d1 <1g:

Then � has a nilpotent subgroup N with Œ� WN ��w , length.N /� ` and N satisfies
the .m;K � ı/–displacement property at p for some m� `.

Proof By (i), there exists an N � � such that Œ� W N � � w , rank.N / D m and
Step.N /D c0 � length.N / � `. Proposition 4.13 states that N has a generating set
B with #.B/� w2 � d1 such that for each b 2 B ,

(4-80) lengthSı.p/
.b/� 2wC 1;

which implies that

(4-81) d.b �p;p/� .2wC 1/ � ı:

The .m;K � ı/–displacement property of N immediately follows from Theorem 4.21.
That is, by Theorem 4.21, we can refine the lower central series of N such that (4-76)
holds. Moreover, there exists a subset

(4-82) f�s;1; : : : ; �s;ns
g �Ns�1
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such that

Ns;k=Ns;k�1 D h�s;k �Ns;k�1i;(4-83)

lengthB.�s;k/� 3 � 2c0 � 2:(4-84)

Therefore, d.�s;k �p;p/� .2wC 1/ � .3 � 2s � 2/ � ı <K � ı .

In the context of lower Ricci curvature, we consider a normal covering space yM with
the deck transformation group G . The theorem below shows the structure of yG�.p/
which is generated by short elements in G . The proof is a combination of Theorem 2.27
and Lemma 4.24.

Theorem 4.25 Let .Zk ; zk/ be a pointed Ricci limit metric space with dim Zk D k

in the sense of Theorem 2.12. Then there exist �0 D �0.n;B1.z
k// > 0, w0 D

w0.n;B1.z
k// <1, K0 D K0.n;B1.z

k// <1 such that the following holds. For
every 0< ı � �0 , if .M n;g;p/ is a Riemannian manifold with Ric� �.n� 1/ such
that B2.p/ has a compact closure in B4.p/ and

(4-85) dGH.B2.p/;B2.z
k// < ı;

and if � W . 1B2.p/; yp;G/! B2.p/ is a normal covering with �. yp/D p and the deck
transformation group G , then the group

(4-86) yGı.p/� hg 2Gjd.g � yp; yp/ < 2ıi

contains a nilpotent subgroup N such that

(i) Œ yGı.p/ WN �� w0 with length.N /� n� k ,

(ii) N has the .m0;K0 � ı/–displacement property at zp , where m0 � rank.N / �
n� k .

Proof First, we construct a nilpotent subgroup N � yGı.p/ such that (i) holds. To
this end, let

(4-87) Sı.p;G/� f 2G j d. � yp; yp/ < 2ıg;

so by definition Sı.p;G/ is a generating set of yGı.p/. Let zp be a lift of yp on the
universal cover and then let us denote by z 2 �1.B2.p// the unique lifting such that

(4-88) d.z � zp; zp/ < 2ı; pr.z /D ;

where prW �1. zM
n; zp/! . yM n; yp/ is the natural quotient homomorphism. By the above

unique lifting, we define the group

(4-89) zGı.p/� hz 2 �1.B2.p// j  2 Sı.p;G/i:
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It immediately follows that zGı.p/ � �ı.p/ � ImageŒ�1.Bı.p// ! �1.B2.p//�.
Theorem 2.27 shows that there exists a nilpotent subgroup N0 � �ı.p/ such that

(4-90) Œ�ı.p/ WN0�� w0.n;B1.z
k//; length.N0/� n� k:

For N1 �N0\
zGı.p/�N0 , it holds that

Œ zGı.p/ WN1�D Œ zGı.p/ WN0\
zGı.p/�� Œ�ı.p/ WN0�� w0.n;B1.z

k//;(4-91)

length.N1/� length.N0/� n� k:(4-92)

Let N � pr.N1/ be the homomorphism image so immediately we have

(4-93) N � yGı.p/; length.N /� length.N1/� n� k:

Note that yGı.p/D pr. zGı.p//; and then by Lemma 4.20,

(4-94) Œ yGı.p/ WN �D Œpr. zGı.p// W pr.N1/�� Œ zGı.p// WN1�� w0.n;B1.z
k//:

We have verified (i).

By Lemma 2.22(iii), Step.N / � length.N / � n� k and then property (ii) directly
follows from Theorem 4.21.

5 Quantitative splitting and noncollapse on covering spaces

In this section we discuss the technical heart of this paper. The following theorem is
the most crucial technical ingredient in the proof of �–regularity for both lower Ricci
curvature bound and bounded Ricci curvature. Its proof is also the main goal of this
section.

Theorem 5.1 Let .M n;g;p/ be a Riemannian manifold with Ric��.n�1/ such that
B2.p/ has a compact closure in B4.p/. Given a pointed Ricci limit space .Z`; z`/

with dim Z` D ` there exists v0.n;B1.z
`// > 0, and for every � > 0 there exists

ı0.�; n;B1.z
`// > 0 such that if

(i) dGH.B2.p/;B2.0
k�`; z`// < ı0 for .0k�`; z`/ 2Rk�` �Z` ,

(ii) �ı0
.p/� ImageŒ�1.Bı0

.p//! �1.B2.p//� satisfies rank.�ı0
.p//D n� k ,

then for each q 2 B1.p/,

(1) Vol.B1=2.zq//� v0.n;B1.z
`// > 0,

(2) for some ı0 < r < 1,

(5-1) dGH.Br .zq/;Br .0
n�`; yz// < r�; .0n�`; yz/ 2Rn�`

�C. yZ/;
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where zq is a lift of q on the universal cover of B1.q/ and .C. yZ/; yz/ is a metric cone
over some compact metric space yZ with the cone tip yz .

The key aspect of the above result, as opposed to similar results in the literature and in
this subsection, is that the space Z is an arbitrary complete space. To accomplish this
we will need to use the cone splitting principle, as opposed to the line splitting (see
Lemma 5.5) which is more commonly used. The cone splitting principle in the context
of lower Ricci curvature requires noncollapsing, thus we will need to first prove .1/
before we can prove .2/.

The outline of this section is as follows. In Section 5.1 we prove a result which in
effect tells us that the rank of the fibered fundamental group is nonlocal in nature.
Specifically, it will allow us to control the fibered fundamental group of a point based
on the fibered fundamental group of nearby points. In Section 5.2 we will prove a
version of Theorem 5.1 when Z is assumed to be a point. This version will not require
maximality of the rank and will hold for general covering spaces. We will use this
in Section 5.3, in combination with the nonlocal results of Section 5.1, in order to
prove (1), the noncollapsing of the covering space. Finally, in Section 5.4 we will
combine this with the cone splitting principle in order to finish the proof of Theorem 5.1.

5.1 Nonlocalness properties of fibered fundamental groups

Here we prove that if the fibered fundamental group

�ı.p/� ImageŒ�1.Bı.p//! �1.B2.p//�

has large nilpotency rank at some point p , then the nilpotency rank of the fibered
nilpotent group centered at any other nearby point is also large. This nonlocalness
property will be used in the proof of the quantitative splitting result on a normal cover.
This is also important in order to extend the region of control of our �–regularity
theorem. We begin with the following lemma.

Lemma 5.2 Given n� 2, 0< � < 1
10

, R� 1, there exist ‰1 D‰1.�;R; n/ > 0 and
N1 DN1.�;R; n/ <1 such that the following properties hold. Let .M n;g;p/ be a
Riemannian manifold with Ric��.n� 1/ such that B2R.p/ has a compact closure in
B4R.p/. If  2 Isom.M n/ satisfies

(5-2) d. �p;p/ < ‰1.�;R; n/;

then there is some positive integer 1� d �N1 such that for all x 2 BR. yp/

(5-3) d. d
�x;x/ < �:
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Remark 5.1 From the proof of this lemma, it holds that for fixed R� 1,

lim
�!0

‰1.�;R; n/D 0 and lim
�!0

N1.�;R; n/D1:

Moreover, when �! 0 and R!1 simultaneously, ‰1! 0 and N1!1.

Proof As the first step, we show that for each 0 < � < 1
10

and R � 1, there exist
‰1 D‰1.�;R; n/ and M0 DM0.�

�1;R; n/ such that for fixed q 2BR.p/, if  2G

satisfies

(5-4) d. �p;p/ < ‰1.�; n;R/;

then for some positive integer 1� d.q/�M0 ,

(5-5) d. d.q/
� q; q/ < �:

To this end, let N be a positive integer such that

(5-6) B�=2.
˛
� q/� B2R.p/ for all 1� ˛ �N:

We claim that there exist ‰1 D ‰1.�;R; n/ and N0 D N0.�
�1;R; n/ such that if

inequality (5-4) holds for ‰1 , then for all N >N0 there are 1� ˛0 < ˇ0 �N with

(5-7) B�=2.
˛0 � q/\B�=2.

ˇ0 � q/¤∅:

Let us consider a slightly more general case than the claim. We will prove that there
exists an N0.�

�1;R; n/ <1 such that if fx˛gN
0

˛D1
is a finite subset in BR.p/ with

B�=2.x˛/� B2R.p/ and

(5-8) B�=2.x˛/\B�=2.xˇ/D∅ for all 1� ˛ < ˇ �N 0;

then

(5-9) N 0 �N0:

We choose x0 2 fx˛g
N 0

˛D1
such that

(5-10) Vol.B�=2.x0//D min
1�˛�N 0

fVol.B�=2.x˛//g:

Since B�=2.x0/�B2R.p/�B10R.x0/ and the balls in fB�=2.xa/g are disjoint, then

(5-11) N 0 �
Vol.B2R.p//

Vol.B�=2.x0//
�

Vol.B10R.x0//

Vol.B�=2.x0//
�

V n
�1
.10R/

V n
�1
.�=2/

�N0.�
�1;R; n/:

The last inequality is by the Bishop–Gromov volume comparison theorem, where
V n
�1
.r/ is the volume of the ball Br .0

n/ in the space form of curvature �1 and
dimension n.
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If we take x˛ � 
˛ � q , then the claim follows. In fact, let ‰1 � �=.2M0.�

�1;R; n//,
where M0 � 2N0.�

�1;R; n/ and N0 is the constant in (5-11). Clearly, by (5-11), for
fixed R� 1,

(5-12) lim
�!0

M0.�
�1;R; n/D1; lim

�!0
‰1.�

�1;R; n/D 0:

By the triangle inequality, for each 1� ˛ �M0 ,

(5-13) d. ˛ � q;p/� d. ˛ � q;  ˛ �p/C d. ˛ �p;p/ <RCM0 �‰1 < 2R;

which implies that for each 1 � ˛ �M0 , we have B�=2.
˛ � q/ � B2R.p/. Since

M0 � 2N0 >N0 , there exist 1� ˛0 < ˇ0 �M0 such that

(5-14) B�=2.
ˇ0 � q/\B�=2.

˛0 � q/¤∅:

That is,

(5-15) B�=2.
ˇ0�˛0 � q/\B�=2.q/¤∅; 1� ˇ0�˛0 �M0:

We have finished the proof of the claim. Letting d.q/� ˇ0�˛0 , we immediately have
d. d.q/ � q; q/ < � . The proof of the first step is complete.

The next stage is to finish the proof of the statement. Fix a positive constant � > 0.
Let fy˛gk˛D0

be an .�=10/–dense subset of BR.p/ with y0 � p such that BR.p/�Sk
˛D0B�=10.y˛/ and

(5-16) d.y˛;yˇ/�
�

20
; 8 ˛ ¤ ˇ:

The relative volume comparison theorem implies that there exists some large integer
k0 D k0.�

�1;R; n/ > 0 such that

(5-17) k � k0.�
�1;R; n/:

Let ‰1 be the function in the first step and define

(5-18) ‰2.�jn/�
�

2M
k0

0

; ‰.�jn/�
‰1.‰2;R; n/

M
k0

0

�‰2:

Let

(5-19) d.p;  �p/ < ‰:

By the arguments in the first step, inequality (5-19) implies that for each 0� ˛ � k ,
there exists some integer 1� d˛ �M0.�

�1;R; n/ with d0 � 1 and

(5-20) d. d˛ �y˛;y˛/ < ‰2:
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Define d �
Qk
˛D1 d˛ , then immediately d �M k

0
�M

k0

0
, and let

(5-21) N1.�
�1;R; n/�M0.�

�1;R; n/k0.�
�1;R;n/:

The triangle inequality implies that for each 0� ˛ � k and for each q˛ 2B�=10.y˛/,

(5-22) d. d
� q˛; q˛/� d. d

� q˛; 
d
�y˛/C d. d

�y˛;y˛/C d.y˛; q˛/

�
�

5
CM

k0

0
� d. d˛ �y˛;y˛/

<
�

5
CM

k0

0
�‰2

< �:

Notice that BR.p/�
Sk
˛D0 B�=10.y˛/, so for each x 2 BR.p/, the above inequality

gives that

(5-23) d. d
�x;x/ < �

with 1� d �N1.�
�1jn/.

The constants N1 D N1.�
�1;R; n/ and ‰ D ‰.�;R; n/ were defined in (5-18) and

(5-21), so the proof of the lemma is complete.

By applying the above lemma, we obtain the following nonlocalness of the nilpotency
rank of the fibered fundamental group.

Lemma 5.3 Let .M n;g;p/ be a Riemannian manifold with Ric��.n�1/ and such
that B2.p/ has a compact closure in B4.p/. There exist �1.n/ > 0, w.n/ <1 such
that for each � � �1.n/ there exists a ‰0 D‰0.�jn/� � such that the following hold:

(i) �‰0
.p/� ImageŒ�1.B‰0

.p//! �1.B2.p//� is .w; n/–nilpotent.

(ii) For each x 2 B1.p/, the group � 0�.x/ � ImageŒ�1.B�.x//! �1.B2.p//� is
.w; n/–nilpotent with rank.� 0�.x//� rank.�‰0

.p//. Moreover,

��.x/� ImageŒ�1.B�.x//! �1.B1.x//�

is .w; n/–nilpotent with rank.��.x//� rank.�‰0
.p//.

(iii) The group ��.B1. zp//� hf 2 �1.B2.p// j d. � zx; zx/ < 2�; 8 zx 2B1. zp/gi is
.w; n/–nilpotent with rank.�ı.B1. zp///� rank.�‰0

.p//, where zp is a lift of p

on the universal cover of B2.p/.

Remark 5.2 Property (i) is a rewording of Theorem 2.26 due to Kapovitch and
Wilking. We restate it here just for the convenience of our arguments.
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Proof Let K� 10 �w �2n be the corresponding constant in Lemma 4.24, and for each
� > 0 define

(5-24) ‰0.�jn/�
‰.�jn/

2K.n/
� �;

where ‰ is the function in Lemma 5.2. Let N1 � N1.�
�1jn/ be the corresponding

constant in Lemma 5.2. We will prove that the above constants satisfy properties (i),
(ii) and (iii).

(i) Take �1.n/, w.n/ to be the corresponding constants as in Theorem 2.26, then
��1

.p/ contains a nilpotent group N such that

(5-25) Œ��1
.p/ WN �� w.n/; Step.N /� length.N /� n:

By definition, for each � � �1.n/,

(5-26) ��.p/� ��1
.p/:

Denote yN � ��.p/\N , and then

(5-27) Œ��.p/ W yN �� Œ��1
.p/ WN �� w; Step. yN /� Step.N /� n:

Therefore, property (i) is proved.

(ii) First we construct a nilpotent subgroup of � 0�.p/ with rank equal to rank.�‰0
.p//.

Notice that (i) gives that �‰0
.p/ is .w; n/–nilpotent. Now applying Lemma 4.24

implies that �‰0
.p/ contains a nilpotent subgroup N such that

(5-28) Œ�‰0
.p/ WN �� w; Step.N /D c0 � length.N /� n;

and N satisfies the .m0;K �‰0/–displacement property with

m0 � rank.N /D rank.�‰0
.p//:

Recalling Definition 4.23, we collect all those .m0;K �‰0/–graded generators

(5-29) S D f�1;1; : : : ; �1;n1
; : : : ; �c0;1; : : : ; �c0;nc0

g:

Note that for each 1� i � c0 , 1� j � ni ,

(5-30) d.�i;j � zp; zp/ <K �‰0 <‰.�jn/;

so by Lemma 5.2, there exists

(5-31) 1� ai;j �N1.�
�1
jn/
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such that

(5-32) d.�
ai;j

i;j � zx; �i;j / < � for all zx 2 B1. zp/;

where zp is a lift of p on the universal cover of B2.p/. Denoting

(5-33) Sa �
˚
�

a1;1

1;1
; : : : ; �

a1;n1

1;n1
; : : : ; �

ac0;1

c0;1
; : : : ; �

ac0;nc0
c0;nc0

	
; Na � hSai;

then by definition Na � ��.B1. zp//. In particular, Na � �
0
�.x/ for every x 2 B1.p/.

Corollary 4.22 shows that

(5-34) rank.Na/D rank.hSi/D rank.N /D rank.�‰0
.p//:

Since � 0�.x/ is .w; n/–nilpotent, Lemma 2.22 implies that

(5-35) rank.� 0�.x//� rank.Na/D rank.�‰0
.p//:

Note that, from the construction, it is clear that

Na � ��.x/� ImageŒ�1.B�.x//! �1.B1.x//�:

Therefore, rank.��.x// � rank.Na/D rank.�‰0
.p//. We have finished the proof of

property (ii).

(iii) From the claim in the proof of Theorem 2.27, the group ��.B1. zp// is .w; n/–
nilpotent. Therefore, by (ii),

(5-36) rank.��.B1. zp///� rank.Na/D rank.�‰0
.p//:

5.2 Symmetry and quantitative splitting of normal covering spaces

In this subsection we prove quantitative splittings on normal covering spaces in two dif-
ferent contexts, which depend on the compactness of limit space of the base manifolds.

We start with a quantitative splitting by assuming the limit space of the base manifolds
is Euclidean, which is the foundation of the noncollapse arguments on the universal
cover in Theorem 5.1 (see more details in Proposition 5.9).

Proposition 5.4 Let .M n;g;p/ be a Riemannian manifold with Ric� �.n� 1/ and
assume that B2.p/ has a compact closure in B4.p/. Let � W . 1B2.p/; yp/! .B2.p/;p/

be a normal cover with �. yp/D p and the deck transformation group G . Given � > 0,
there exists ı.�; n/ > 0 such that if

(i) dGH.B2.p/;B2.0
k// < ı for 0k 2Rk ,

(ii) yGı.p/� h 2Gjd. � yp; yp/ < 2ıi satisfies rank. yGı.p//�m,
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then for some ı < r < 1 and some integer d.p/�m, it holds that

(5-37) dGH.Br . yp/;Br .0
kCd.p/// < �r; 0kCd.p/

2RkCd.p/:

Remark 5.3 Similar, though less general, statements are proved in [13; 18]. Besides
the greater generality of the above statement, there is also a technical challenge which
is new in the above statement which does not appear previously. Namely, in [18]
an additional assumption is made, which is that �1.B2.p// is generated by loops of
length � ı . This allows them to handle the compact case. To avoid this assumption
we use the algebraic structure of Theorems 4.21 and 4.25 to build a geometrically
compatible extension of the lower central series of the nilpotent subgroup in yGı.p/.

Remark 5.4 Theorem 4.25 implies that for sufficiently small ı > 0, yGı.p/ is
.w0.n/; n � k/–nilpotent. In particular, rank. yGı.p// is well-defined. Assumption
(ii) is just to emphasize the relation between the nilpotency rank. yGı.p// and the
number of the Euclidean factors on the normal cover.

Remark 5.5 If the normal cover is chosen as the universal cover of B2.p/, then the
corresponding deck transformation group is exactly the fundamental group of B2.p/,
ie G D �1.B2.p// and yGı.p/D ImageŒ�1.Bı.p//! �1.B2.p//�. In this case, we
immediately obtain the quantitative splitting on the universal cover (see Proposition 5.8).

Remark 5.6 Note that we are not giving explicitly the r > 0 for which the result
holds, only that it holds for some r of a definite size.

Before proving the proposition, we need the following lemmas.

Lemma 5.5 Let .M n
i ;gi ;pi/ be a sequence of complete Riemannian manifolds with

Ricgi
� �.n� 1/�2

i . Assume that

(5-38) .M n
i ;gi ;pi/

GH
��! .X; d;p/

for some complete noncompact length space .X; d;p/. If X is C –homogeneous
for some C < 1, ie for every x;y 2 X , there is an isometry f 2 Isom.X / with
dX .y; f .x//� C , then X is isometric to Rk �X 0 , where k � 1 and X 0 is compact.
In particular, any ray  �X can be extended to a line which is tangential to Rk .

Proof Lemma 2.4 implies that if X is noncompact, then X admits a line. Due to the
Cheeger–Colding splitting theorem, X is isometric to R�X1 for some complete length
space X1 . Since X is C –homogeneous, we must have that X1 is C –homogeneous. If
X1 is compact then we are done, otherwise we may again find a line in X1 . Therefore,
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by the Cheeger–Colding splitting theorem again, X Š R2 �X2 . The above process
stops after a finite number of steps such that X ŠRk �X 0 for some compact length
space X 0 . In this case we have that any ray  in X is tangential to Rk and thus can
be extended to a line.

Lemma 5.6 For each �>0, n�2, there exists a ıDı.�; n/>0 such that the following
property holds. Let .M n;g;p/ be a Riemannian manifold with Ricg � �.n� 1/ı2

such that Bı�1.p/ has a compact closure in B2ı�1.p/ and for some complete length
space .Z; z/,

(5-39) dGH.Bı�1.p/;Bı�1.0k ; z// < ı; .0k ; z/ 2Rk
�Z:

Then on any covering space � W .3Bı�1.p/; yp/! Bı�1.p/ with �. yp/D p ,

(5-40) dGH.B��1. yp/;B��1.0k ; z0// < �; .0k ; z0/ 2Rk
�Z0;

where B��1. yp/ is a ball on the covering space and .Z0; z0/ is complete length space.

Proof We argue by contradiction. Suppose for some �0>0 there is no such ı>0. That
is, we have a sequence of ıi ! 0, a sequence of Riemannian manifolds .M n

i ;gi ;pi/

with Ric � �.n� 1/ı2
i and a sequence of complete length spaces .Zi ; zi/ such that

Bı�1
i
.pi/ has a compact closure in B2ı�1

i
.pi/ and

(5-41) dGH.Bı�1
i
.pi/;Bı�1

i
.0k ; zi// < ıi ; .0k ; zi/ 2Rk

�Zi ;

but there is some covering space �i W .3Bı�1
i
.pi/; ypi/! Bı�1

i
.pi/ such that for any

complete length space .Z0; z0/,

(5-42) dGH.B��1
0
. ypi/;B��1

0
.0k ; z0//� �0; .0k ; z0/ 2Rk

�Z0:

By Gromov’s pre-compactness theorem, there is some complete length space .Z0; z0/

such that for sufficiently large i ,

(5-43) dGH.Bı�1
i
.pi/;Bı�1

i
.0k ; z0// < 2ıi ; .0k ; zi/ 2Rk

�Z0:

Let F. ypi/ be the fundamental domain of .3Bı�1
i
.pi/; ypi/ which contains ypi , and then

denote by U2R. ypi/ the subset of the covering space .3Bı�1
i
.pi/; ypi/ which satisfies

(5-44) U2R. ypi/� �
�1
i .B2R.pi//\F. ypi/:

Fix 0<R� ��1
i . Then as in [4] we have the harmonic maps

(5-45) ˆi � .h
.1/
i ; : : : ; h

.k/
i /W B2R.pi/ �! B2R.0

k/;
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where h
.1/
i ; : : : ; h

.k/
i are harmonic functions and satisfy the estimate

(5-46) �

Z
B2R.pi /

X
1�˛�ˇ�k

jhrh
.˛/
i ;rh

.ˇ/
i i � ı˛ˇjC �

Z
B2R.pi /

kX
˛D1

jr
2h
.˛/
i j

2

�‰.ıi jn;R/:

Observe that the inequality (5-46) is identical to the one on U2R. ypi/, that is,

(5-47) �

Z
U2R. ypi /

X
1�˛�ˇ�k

jhr yh
.˛/
i ;ryh

.ˇ/
i i � ı˛ˇjC �

Z
U2R. ypi /

kX
˛D1

jr
2yh
.˛/
i j

2

�‰.ıi jn;R/;

where yh.˛/i is the lifting of h
.˛/
i on the covering space 4B2ı�1

i
.pi/ .

Denote

(5-48) fi �

X
1�˛�ˇ�k

jhr yh
.˛/
i ;ryh

.ˇ/
i i � ı˛ˇjC

kX
˛D1

jr
2yh
.˛/
i j

2;

and let fU`gN`D1
be a finite collection of copies of U2R. ypi/ which covers BR. ypi/ and

satisfies U` \BR. ypi/¤∅ for each 1� `�N . Then clearly

(5-49)
N[
`D1

U` � B10R. ypi/

and inequality (5-47) holds on each U` , which implies

(5-50) �

Z
BR. ypi /

fi D
1

Vol.BR. ypi//

Z
BR. ypi /

fi

�
C.n;R/

Vol.B10R. ypi//

Z
BR. ypi /

fi

�
C.n;R/PN
`D1 Vol.U`/

Z
BR. ypi /

fi

�
C.n;R/PN
`D1 Vol.U`/

NX
`D1

Z
U`

fi

� C.n;R/
‰.�i jn;R/

PN
`D1 Vol.U`/PN

`D1 Vol.U`/

D‰.ıi jn;R/:
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The last inequality follows from (5-47). Using the quantitative splitting theorem of [4]
the above estimates imply that there exists some complete length space .Z0; z0/ such
that

(5-51) dGH.BR. ypi/;BR.0
k ; z0// < ‰.ıi jn;R/; .0k ; z0/ 2Rk

�Z0:

Therefore, taking RD ��1
0

and sufficiently large i such that ‰.ıi jn;R/ < �0=2, we
obtain the contradiction.

With the above lemmas, we proceed to prove Proposition 5.4.

Proof of Proposition 5.4 We argue by contradiction. Suppose for some �0 > 0, no
such ı > 0 exists. That is, we have a sequence .M n

i ;gi ;pi/ with Ricgi
��.n�1/ and

B2.pi/ has a compact closure in B4.pi/. Let �i W .2B2.pi/; ypi ;Gi/! .B2.pi/;pi/

be a sequence of normal covers with the deck transformation groups Gi , such that for
ıi ! 0 and for any arbitrary sequence fsig with 1 > si > ıi , we have the following
properties:

(i) dGH.B2.pi/;B2.0
k// < ıi! 0; 0k 2Rk .

(ii) For sufficiently large i (depending only on n), rank. yGıi
.pi//Dm0�m (passing

to a subsequence if necessary), notice that by Theorem 4.25 for sufficiently
large i , yGıi

.pi/ is always .w.n/; n� k/–nilpotent.

(iii) But for any integer d �m, it holds that for each i ,

(5-52) dGH.Bsi
. ypi/;Bsi

.0kCd //� si�0; 0kCd
2RkCd ;

where ypi is a lift of pi on the normal cover.

Let �i � ı
1=2
i and rescale the metric hi � ��2

i gi . Then we have the following
properties. The contradicting sequence .M n

i ; hi ;pi/ satisfies Richi
� �.n� 1/�2

i and
B2��1

i
.pi ; hi/ has a compact closure in B4��1

i
.pi ; hi/ such that for sufficiently large i ,

(i) 0 dGH.B2��1
i
.pi ; hi/;B2��1

i
.0k// < �i! 0 for 0k 2Rk ,

(ii) 0 yG�i
.pi ; hi/ is .w.n/; n�k/–nilpotent with rank. yG�i

.pi ; hi//Dm0�m, where

(5-53) yG�i
.pi ; hi/� hfi 2Gi jdhi

.i � ypi ; ypi/ < 2�igi:

In the following proof, we will obtain a contradiction to (iii) by applying (i) 0 and (ii) 0 .
We start with the first claim.
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Claim 1 Passing to a subsequence, we have the commutative diagram

(5-54)

.4B2��1
i
.pi/;Gi ; ypi/

eqGH //

�i

��

.Rk �Rd �Y0;G1; .0
kCd ;y0//

�1

��

.B2��1
i
.pi/D4B2��1

i
.pi/=Gi ;pi/

pGH // .Rk ; 0k/

where d � 0, .Y0;y0/ is a compact length space and the normal covering maps �i

converge to a submetry �1 . Moreover, G1 acts trivially on Rk and thus G1 acts
transitively on Rd �Y0 .

Lemma 5.6 implies that passing to a subsequence, it holds that

(5-55) .4B2��1
i
.pi/; ypi/

pGH
���! .Rk

�Y; .0k ;y//; .0k ;y/ 2Rk
�Y;

where .Y;y/ is a complete length space. If Y is compact, it is done. If Y is noncompact,
we will prove that Y is isometric to Rd �Y0 with d � 1 and Y0 compact.

As in the proof of Lemma 5.6, fix 0<R� 2��1
i and let

(5-56) ˆi;R � .ˆ
.1/
i;R
; : : : ; ˆ

.k/
i;R
/W BR.pi/! BR.0

k/

be the Rk –splitting map such that 4ˆ.˛/
i;R
D 0 for each 1 � ˛ � k . Let ŷ i;R be

the lifted map of ˆi;R , ie ŷ i;R �ˆi;R ı�i . Lemma 5.6 shows that ŷ i;R is also an
Rk –splitting map. Therefore, .Y;y/ is the Gromov–Hausdorff limit of the lifted level
sets ŷ�1

i;R
. ŷ i;R. ypi//. Moreover, by definition, the level sets ŷ�1

i;R
. ŷ i;R. ypi// remain

invariant under the deck transformation group Gi . Then the isometry group G1 can
be viewed as an action on .Y;y/, ie G1 � Isom.Y /, and thus G1 acts transitively
on Y and it acts trivially on Rk. Since .Y;y/ is assumed noncompact, Lemma 5.5
implies that the complete noncompact length space Y is isometric to Rd �Y0 with Y0

compact for some d � 1. We have proved Claim 1.

The main ingredient is to prove the following: the assumption

(5-57) rank. yG�i
.pi ; hi//Dm0 �m

gives the inequality

(5-58) d �m0 �m

in diagram (5-54). Inequality (5-58) will be proved through the following arguments.

To simplify the arguments, we will blow down the limit space Y0 in diagram (5-54).
That is, there exists a slowly converging sequence �i!0 and �i>�

1=2
i such that under
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the rescaled metrics hi � �
2
i hi with Bi � �iB2��1

i
.pi ; hi/ we have the commutative

diagram

(5-59)

.bB i ;Gi ; ypi/
eqGH //

�i

��

.Rk �Rd ;G1; 0
kCd /

�1
��

.Bi ;pi/
pGH // .Rk ; 0k/

where G1 acts transitively on Rd and trivially on Rk. In the following arguments,
the inequality d �m will be proved by the dimension estimate of the limiting orbit.
To this end, we will analyze the behavior of the nilpotent subgroup of Gi and its limit
in G1 .

In this paragraph, we sum up the properties of the nilpotent subgroup of Gi which will
be applied in the proof of inequality (5-58). Let �i � �i�i ! 0. By the contradicting
assumption (ii) 0 , under the rescaled metric hi , it holds that the group

(5-60) yG�i
.pi ; hi/� hfgi 2Gi j dhi

.gi � ypi ; ypi/ < �igi

is .w.n/; n/–nilpotent. Hence, yG�i
.pi ; hi/ contains a nilpotent subgroup Ni such that

(passing to a subsequence if necessary),

(5-61) Œ yG�i
.pi ; hi/ WNi �� w.n/; c0 � Step.Ni/� length.Ni/� n:

Lemma 4.24 implies that there exists

(5-62) K D 10n
�w.n/ <1;

such that Ni has the .m0;K ��i/–displacement property at ypi 2 . yBi ; ypi/. That is, for
each 1� s � c0 , let N .i/

s � ŒN .i/
s�1

;Ni �, with N .i/
0
�Ni , and denote

(5-63) ns � rank.N .i/
s =N .i/

s�1
/;

so the .m0;K � �i/–displacement property of Ni implies that for each 1 � s � c0 ,
there is a normal series

(5-64) N .i/
s�1

B N .i/
s;ns

B � � �B N .i/
s;1

B N .i/
s;0

B N .i/
s

such that for every 1� ˛ � ns the following holds:

(a) N .i/
s;˛=N

.i/
s;˛�1

Š Z, and N .i/
s�1

=N .i/
s;ns

and N .i/
s;0
=N .i/

s are finite groups.

(b) There are f� .i/
s;1
; : : : ; �

.i/
s;ns
g �N .i/

s such that

(5-65) d.�i;s˛ � ypi ; ypi/ <K ��i

and N .i/
s;˛=N

.i/
s;˛�1

D h�
.i/
s;˛ �N

.i/
s;˛�1

i Š Z.
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The above normal series actually gives a sequence of normal Z–covers. Denote by

(5-66) �.i/s;˛W .
yBi=Ni;s.˛�1/;pi;s.˛�1//! . yBi=Ni;s˛;pi;s˛/

the normal cover induced by the transformation group ƒi;s˛ � Ni;s˛=Ni;s.˛�1/ D

h�i;s˛ �Ni;s.˛�1/i. Actually, the cyclic normal covers imply the following diagram of
equivariant convergence:

(5-67)

. yBi=N
.i/
s ;p

.i/
s /

pGH //

��

.Rk �Zs; .0
k ; zs//

��

. yBi=N
.i/
s;˛�1

; ƒ
.i/
s;˛;p

.i/
s;˛�1

/
eqGH //

�
.i/
s;˛
��

.Rk �Zs;˛�1; ƒ
.1/
s;˛ ; .0

k ; zs;˛�1//

�
.1/
s;˛

��

. yBi=N
.i/
s;˛;p

.i/
s;˛/

��

pGH // .Rk �Zs;˛; .0
k ; zs;˛//

��

. yBi=N
.i/
s�1

;p
.i/
s�1

/
pGH // .Rk �Zs�1; .0

k ; zs�1//

where Zs;˛ DZs;˛�1=ƒ
.1/
s;˛ .

Claim 2 In diagram (5-67), given 1� ˛ � ns , dimH.ƒ
.1/
s;˛ � zs;˛�1/� 1.

By Theorem 2.14, Isom.Rk�Zs;˛�1/ is a Lie group. Since ƒ.1/s;˛ is a closed subgroup
of Isom.Rk �Zs;˛�1/, which is actually acting trivially on Rk , ƒ.1/s;˛ is also a Lie
group. Denote by ƒ0

s;˛ the identity component of ƒ.1/s;˛ . We will show that

(5-68) dimH.ƒ
0
s;˛ � zs.˛�1//� 1:

By definition, ƒ0
s;˛ is connected, so is the orbit ƒ0

s;˛ � zs;˛�1 . It suffices to show that
the orbit ƒ0

s;˛ � zs;˛�1 contains at least two points.

First, we give a geometric description of the identity component ƒ0
s;˛ . For each � > 0,

define

(5-69) Is;˛.�/� fg 2ƒ
0
s;˛ j d.g �ys;˛�1;ys;˛�1/ < �; 8ys;˛�1 2 B��1.zs;˛�1/g:

Then applying Lemma 2.16, there exists x�.Zs;˛�1/ > 0 such that hIs;˛.x�/i D ƒ
0
s;˛ .

Inequality (5-65) implies that if i is sufficiently large (depending only on n and x� ), it
holds that (where we have identified � .i/s;˛ with its natural projection on N .i/

s;˛=N
.i/
s;˛�1

)

(5-70) d.� .i/s;˛ �p
.i/
s;˛�1

;p
.i/
s;˛�1

/ <K ��i < �.x�; n/;
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with �.x�; n/� 1
10
‰
�

1
2
x� jn

�
, where ‰ is the function in Lemma 5.2. Define

(5-71) Li.�=2/� supf` 2NC j d..�
.i/
s;˛/

`
�p
.i/
s;˛�1

;p
.i/
s;˛�1

/� �=2g;

and notice that h� .i/s;˛i Š Z acts isometrically and properly on yBi=N
.i/
s;˛�1

, so

(5-72) Li.�=2/ <1:

Consequently, for each `�Li C 1,

(5-73) d..� .i/s;˛/
`
�p
.i/
s;˛�1

;p
.i/
s;˛�1

/ > �=2:

Since the generator � .i/s;˛ satisfies d.�
.i/
s;˛ �p

.i/
s;˛�1

;p
.i/
s;˛�1

/<� , by the triangle inequality,

(5-74)
�

2
< d..� .i/s;˛/

LiC1
�p
.i/
s;˛�1

;p
.i/
s;˛�1

/

� d..� .i/s;˛/
LiC1

�p
.i/
s;˛�1

; .� .i/s;˛/
Li �p

.i/
s;˛�1

/

C d..� .i/s;˛/
Li �p

.i/
s;˛�1

;p
.i/
s;˛�1

/

D d.� .i/s;˛ �pi;s.˛�1/;pi;s.˛�1//C d..� .i/s;˛/
Li �pi;s.˛�1/;pi;s˛�1/

< �C
�

2

<‰.x� jn/:

On the other hand, Lemma 5.2 implies that there exists 1� ai �N1.x�; n/ such that

(5-75) d..� .i/s;˛/
ai �.LiC1/

�y
.i/
s;˛�1

;y
.i/
s;˛�1

/ <
x�

2
for all y

.i/
s;˛�1

2 Bx��1.pi;s.˛�1//:

Moreover, due to ai � .Li C 1/ >Li ,

(5-76) d..� .i/s;˛/
ai �.LiC1/

�p
.i/
s;˛�1

;p
.i/
s;˛�1

/ >
�

2
:

Denote g
.i/
s;˛ � .�

.i/
s;˛/

ai �.LiC1/ . Then the equivariant convergence

(5-77) . yBi=N
.i/
s;˛�1

; ƒ.i/s;˛;p
.i/
s;˛�1

/
eqGH
���! .Rk

�Zs;˛�1; ƒ
.1/
s;˛ ; .0

k ; zs;˛�1//

gives that there exists a gs;˛ 2ƒ
.1/
s;˛ such that

d.gs;˛ �ys;˛�1;ys;˛�1/ < x� for all ys;˛�1 2 B1.zs;˛�1/;(5-78)

d.gs;˛ � zs;˛�1; zs;˛�1/ >
�.x�; n/

4
:(5-79)

The above two inequalities imply that gs;˛ is a nontrivial element in hIs;˛.x�/i Dƒ
0
s;˛

and inequality (5-79) shows that the orbit ƒ0
s;˛ � zz;˛�1 contains at least two points. By
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definition, the identity component ƒ0
s;˛ is connected, so the connected orbit ƒ0

s;˛ �zs;˛�1

contains a nontrivial continuous path connecting zs;˛�1 and gs;˛ � zs;˛�1 . Therefore,
for each 1� ˛ � ns ,

(5-80) dimH.ƒ
.1/
s;˛ � zs;˛�1/� dimH.ƒ

0
s;˛ � zs;˛�1/� 1:

So we have proved Claim 2.

By Claim 2, take s D c0 in diagram (5-67), then Zc0
DRd . We proceed to prove the

dimension estimate

(5-81) dimH.Zc0
/�m:

In fact, in the context of quotients of Euclidean space, it is standard that in the diagram
of (5-67),

(5-82) dimH.Zs;˛�1/� dimH.ƒ
.1/
s;˛ � zs;˛�1/C dimH.Zs;˛/;

which implies that

(5-83) dimH.Zs/� dimH.Zs;0/�

nsX
˛D1

dimH.ƒ
.1/
s;˛ � zs;˛�1/C dimH.Zs;ns

/

� nsC dimH.Zs;0/

� nsC dimH.Zs/:

Therefore,

(5-84) dimH.Zc0
/�

c0X
sD1

nsC dimH.Z0/Dm0C dimH.Z0/�m;

where Z0 �Rd=N1 and by assumption m0 �m.

Combining Claim 1 and Claim 2, we have obtained that

(5-85) .4B2��1
i
.pi/;Gi ; ypi/

eqGH
���! .Rk

�Rd
�Y0;G1; .0

k ;y0//; d �m;

where .Y0;y0/ is a compact length space. It gives that for each 10<R� 2��1
i and

for some compact length space Y0 ,

(5-86) dGH.BR. ypi/;BR.0
kCd ;y0// < ‰.�i jn;R/! 0; d �m:

We have proved inequality (5-58).
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We now finish the proof of the proposition. Rescaling to the original metrics gi , it
holds that

(5-87) dGH.BR�i
. ypi/;BR�i

.0kCd ;yi//<�i �‰.�i jn;R/; .0kCd ;yi/2RkCd
�Yi ;

where .Yi ;yi/� .�iY0;y0/. Therefore,

(5-88) dGH.BR�i
. ypi/;BR�i

.0kCd //� dGH.BR�i
. ypi/;BR�i

.0kCd ;yi//

C dGH.BR�i
.0kCd ;yi/;BR�i

.0kCd //

<R�i

�
‰.�i jn;R/C

diam.Y0/

R

�
:

Take some large R> 103 such that diam.Y0/=R< �0=4. By definition �i � ı
1=2
i > ıi ,

so for sufficiently large i such that ‰.�i jn;R/ < �0=4,

(5-89) dGH.BRı
1=2

i

. ypi/;BRı
1=2

i

.0kCd // < .Rı
1=2
i / �

�0

2
; 0kCd

2RkCd ; d �m;

which gives a contradiction to (5-52).

Now we extend the above splitting to a more general context. That is, the limit space of
the base manifolds is assumed to be of the form Rk�Z , where Z is any arbitrary metric
space. In particular, the metric space Z is not necessarily compact. In this general case,
a Fukaya–Yamaguchi type line splitting strategy fails because their method essentially
depends on the compactness of Z (see Lemma 2.4 for the reason). In exchange, we
assume that the normal cover . 1B2.p/; yp/ is noncollapsed. The noncollapsing condition
enables us to argue in a different manner. That is, we will apply the cone splitting
principle to produce R–factors on the normal covers. Precisely, we have the following:

Proposition 5.7 Given � > 0, n� 2, v > 0, there exists ı0.�; n; v/ > 0 such that the
following holds. If .M n;g;p/ is a Riemannian manifold which satisfies Ric��.n�1/

and B2.p/ has a compact closure in B4.p/, and if

(i) dGH.B2.p/;B2.0
k ; z// < ı0 for .0k ; z/ 2Rk �Z , where .Z; z/ is a complete

length space,

(ii) � W . 1B2.p/; yp;G/! .B2.p/;p/ is the normal cover of B2.p/ with �. yp/D p

and with the deck transformation group G such that the group

yGı0
.p/� hfg 2G j d.g � yp; yp/ < 2ıgi

satisfies rank. yGı0
.p//�m,

(iii) Vol.B1. yp//� v > 0,
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then for some ı0 < r < 1 and d.p/�m,

(5-90) dGH.Br . yp/;Br .0
kCd.p/; yz// < r�; .0kCd.p/; yz/ 2RkCd.p/

�C. yZ/;

where .C. yZ/; yz/ is a metric cone over some compact metric space yZ with cone tip yz .

Proof We will prove this proposition by contradiction. Suppose the statement fails.
That is, for some �0 > 0, v0 > 0, there is a sequence of Riemannian manifolds
.M n

i ;gi ;pi/ with Ricgi
� �.n � 1/, such that B2.pi/ has a compact closure in

B4.pi/, and there is a sequence of complete length spaces .Zi ; zi/, and for any
sequence si > ıi the following properties hold (passing to a subsequence if necessary):

(i) dGH.B2.pi/;B2.0
k ; zi// < ıi for .0k ; zi/ 2Rk �Zi , for some complete length

space .Zi ; zi/,

(ii) �i W .2B2.pi/; ypi ;Gi/! .B2.pi/;pi/ is the normal cover of B2.pi/ such that
�i. ypi/ D pi and with the deck transformation group G such that the group
yGıi
.pi/� hfgi 2Gi jd.gi � ypi ; ypi/ < 2ıigi satisfies rank. yGıi

.pi//Dm0 �m,

(iii) Vol.B1. ypi//� v0 > 0,

but

(iv) for any m0 �m and for any metric cone .C. yZ/; yz/,

(5-91) dGH.Bsi
. ypi/;Bsi

.0kCm0 ; yz// > si � �0; .0
kCm0 ; yz/ 2RkCm0

�C. yZ/:

Let �i � ı
1=2
i and rescale the metric hi � ��2

i gi . Then we have the following
properties. The contradicting sequence .M n

i ; hi ;pi/ satisfies Richi
� �.n� 1/�2

i and
B2��1

i
.pi ; hi/ has a compact closure in B4��1

i
.pi ; hi/ such that the following hold:

(i) 0 By Gromov’s precompactness theorem, there is some complete length space
.Z0

0
; z0

0
/ such that

(5-92) dGH.B2��1
i
.pi ; hi/;B2��1

i
.0k ; z00// < �i! 0; .0k ; z00/ 2Rk

�Z00:

(ii) 0 yG�i
.pi ; hi/� hfgi 2Gi jdhi

.gi � ypi ; ypi/ < 2�igi has rank m0 �m.

(iii) 0 Volhi
.B1.pi ; hi//� C.n/ � v0 > 0.

(iv) 0 For any m0 �m, any sequence si > ıi and for any metric cone .C. yZ/; yz/,

(5-93) dGH.Bsi ��
�1
i
. ypi ; hi/;Bsi ��

�1
i
.0kCm0 ; yz// > si � �

�1
i � �0;

for .0kCm0 ; yz/ 2RkCm0 �C. yZ/.
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In the following proof, we will obtain a contradiction to (iv) 0 by applying (i) 0 , (ii) 0 ,
(iii) 0 . By (iii) 0 , 4B2��1

i
.pi/ is noncollapsed and thus every tangent cone on the limit

space is a metric cone. So we can choose a slowly converging sequence �i! 0 with
�i > �

1=2
i such that under the rescaled metrics hi � �

�2
i hi , the following diagram

holds:

(5-94)

.bB i ;Gi ; ypi/
eqGH //

�i

��

.Rk �C.Y /;G1; .0
k ;y�//

�1
��

.Bi ;pi/
pGH // .Rk �Z00

0
; .0k ; z00

0
//

where Bi � �
�1
i B2��1

i
.pi/, .C.Y /;y�/ is a metric cone over some compact length

space Y with the cone vertex y� , and G1 2 Isom.C.Y // is a Lie group. By (ii) 0 ,

(5-95) yG�i
. ypi ; hi/� hfgi 2Gi j dhi

.gi � ypi ; ypi/ < 2�igi

then satisfies rank. yG�i
.pi ; hi//Dm0 �m with �i � �

�1
i � �i < �

1=2
i ! 0.

Since the Lie group G1 isometrically acts on C.Y /, each point y 2G1 �y
� is a cone

tip. If the orbit G1 �y
� is not a point, Lemma 2.11 implies that for some s � 1,

(5-96) C.Y /ŠRd
�C. yZ/; �1 �y

�
�Rd ;

where the metric cone C. yZ/ does not admit any line. In fact, we will prove that

(5-97) d �m;

by applying the assumption rank. yG�i
.pi ; hi// D m0 � m. The proof of inequality

(5-97) is similar to the proof of inequality (5-58) in Proposition 5.4. Inequality (5-97)
easily follows from the following claim.

Claim Suppose that rank.G�i
.pi ; hi//Dm. Then in diagram (5-94), the inequality

dimH.G1 �y
�/�m holds on the limit cone .C.Y /;y�/.

The proof of this claim is very similar to Claim 2 in the proof of Proposition 5.4.
We have proved in Theorem 4.25 that for sufficiently large i , yG�i

.pi ; hi/ contains a
nilpotent subgroup Ni such that, passing to a subsequence if necessary,

(5-98) rank.Ni/Dm0 � n; c0 � Step.Ni/� length.Ni/� n;

Œ yG�i
.pi ; hi/ WNi �� w.n/;

and Ni satisfies the .m0;K.n/ � �i/–displacement property for some constant K D

K.n/ > 0. Let N1 be the equivariant limit of Ni . Now it suffices to prove that

(5-99) dimH.N1 �y�/�m:
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To this end, consider the diagrams

(5-100)

. yBi ;Gi ; zpi/
eqGH //

pr.i/s;˛
��

.Rk �Rd �C. yZ/;G1; .0
k ; 0d ; yz//

pr.1/s;˛
��

. yBi=N
.i/
s;˛; ƒ

.i/
s;˛C1

;p
.i/
s;˛/

eqGH //

'
.i/

s;˛C1
��

.Rk �Zs;˛; ƒ
.1/
s;˛C1

; .0k ; zs;˛//

'
.1/

s;˛C1

��

. yBi=N
.i/
s;˛C1

;p
.i/
s;˛C1

/
pGH // .Rk �Zs;˛C1; .0

k ; zs;˛C1//

where
Zs;˛ � C.Y /=N .1/

s;˛ ; N .1/
s;˛ D lim

i!
N .i/

s;˛;

ƒ.i/s;˛ �N .1/
s;˛C1

=N .1/
s;˛ ; ƒ.1/s;˛ � lim

i!1
ƒ.i/s;˛:

Note that the above diagram is commutative. In particular,

(5-101) pr.i/
s;˛C1

D '
.i/
s;˛C1

ı pr.i/s;˛; pr.1/
s;˛C1

D '
.1/
s;˛C1

ı pr.1/s;˛ :

In the following arguments, we concentrate on the slice Rd � fyzg. First, we show that
the limit Lie group G1 preserves the slice Rd � fyzg in diagram (5-100), where yz is
the cone vertex of C. yZ/. That is, G1 � Isom.Rd �C. yZ// induces an isometric Lie
group action on Rd � fyzg. In fact, if not, suppose there existed .v0; yz/ 2 Rd � fyzg,
g1 2 G1 such that g1..v0; yz// 62 Rd � fyzg. Recall that the metric cone C. yZ/ is
chosen such that it does not contain any line. Moreover, g1.Rd �C. yZ// is a metric
cone with the cone tip g1..v0; yz// because g1 2G1 is an isometry and Rd �C. yZ/

is a metric cone with vertex .v0; yz/. By Lemma 2.11, there exists d 0 � 1 and a metric
cone C.W / such that C. yZ/ is isometric to Rd 0 �C.W /. This contradicts the choice
of the integer d and C. yZ/.

We denote Us;˛� pr.1/s;˛ .R
d�fyzg/: The proof of the dimension estimate (5-99) follows

from the following inequality, for each 1� s � c0 and 0� ˛ � ns � 1:

(5-102) dimH.Us;˛/� dimH.Us;˛C1/C 1:

If (5-102) holds, then it is straightforward that

(5-103) dimH.Us;0/� dimH.Us;ns
/C ns:

Moreover, the normal series gives that

(5-104) dimH.Us;ns
/� dimH.Us�1;0/:
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Therefore,

(5-105) dimH.R
d /� dimH.Uc0;0/� .dimH.Uc0;0/� dimH.U1;n1

//

D

nc0X
sD1

�
.dimH.Us;0/� dimH.Us;ns

//

C .dimH.Us;ns
/� dimH.Us�1;0//

�
�

nc0X
sD1

.dimH.Us;0/� dimH.Us;ns
//

�

c0X
sD1

ns Dm0 �m:

Then we are done. Now we focus on the proof of inequality (5-102). Notice that
Equation (5-101) gives

(5-106) Us;˛C1 D pr.1/
s;˛C1

.Rd
� fzg/D '

.1/
s;˛C1

ı pr.1/s;˛ .R
d
� fzg/

D '
.1/
s;˛C1

.Us;˛/:

Notice that ƒ.1/s;˛ gives an isometry Lie group action on Us;˛ . Then it is standard that

(5-107) dimH.Us;˛/� dimH.Us;˛C1/C dimH
�
ƒ
.1/
s;˛C1

� zs;˛

�
:

By the same arguments of Claim 2 in the proof of Proposition 5.4, it holds that

(5-108) dimH
�
ƒ
.1/
s;˛C1

� zs;˛

�
� 1:

Specifically, inequality (5-108) follows from the facts that the identity component of
ƒ
.1/
s;˛C1

is nontrivial and the corresponding orbit contains at least two points. Therefore,
we have proved inequality (5-102), and the proof of the claim is complete.

The proof of this proposition is almost finished. In fact, for sufficiently large i ,

(5-109) dGH.B1. ypi ; hi/;B1.0
kCs; yz// < �0; yz 2 .C. yZ/; yz/;

and by rescaling back to the metrics hi D �
2
i hi ,

(5-110) dGH.B�i
. ypi/;B�i

.0kCs; yz// < �0 ��i ; yz 2 .C. yZ/; yz/;

where .C. yZ/; yz/ is a metric cone over some compact metric space yZ with cone tip yz .
But the above inequality contradicts (iv) 0 because �i > �

1=2
i .
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5.3 Quantitative splitting and noncollapse of universal covers

In this subsection, we prove the noncollapsing of the universal cover in Theorem 5.1
by using the technical tools developed in the above subsections.

First, we prove the nonlocalness of the quantitative splitting on the universal cover.
That is, if the quantitative splitting in Proposition 5.4 holds at one point, the splitting in
fact holds at all nearby points. The nonlocalness of the quantitative splitting property
follows from the nonlocalness of the nilpotency rank of the fibered fundamental group
(see Lemma 5.3). This nonlocal quantitative splitting result will be applied in the proof
of the noncollapse of the universal cover.

Proposition 5.8 Let .M n;g;p/ be a Riemannian manifold with Ric � �.n � 1/

and such that B2.p/ has a compact closure in B4.p/. For each � > 0, there exists
ı0 D ı0.n; �/ > 0, such that if

(i) dGH.B2.p/;B2.0
k// < ı0 for 0k 2Rk ,

(ii) �ı0
.p/� ImageŒ�1.Bı0

.p//! �1.B2.p//� satisfies rank.�ı0
.p//�m,

then there is some ı0 < r < 1 such that for each x 2 B1.p/ and for some integer
(depending on x ) d.x/�m, it holds that

(5-111) dGH.Br .zx/;Br .0
kCd.x/// < r�; 0kCd.x/

2RkCd.x/;

where zx is a lift of x on the universal cover of B1.x/.

Proof Fix 0 < ı < �1.n/ which is to be determined later, where �1.n/ is the same
constant as in Lemma 5.3. Then we define the positive constant 0< ı0� 1 by letting

(5-112) ı0 �‰0.ıjn/� ı < �1.n/;

where ‰0 is the function in Lemma 5.3. Property (ii) of Lemma 5.3 shows that for
every x 2 B1.p/, �ı.x/ is .w.n/; n/–nilpotent with rank.�ı.x//�m. Moreover, if
the Gromov–Hausdorff control (i) holds for ı0 > 0, then for every x 2 B1.p/,

(5-113) dGH.B1.x/;B1.0
k// < ı0� ı; 0k

2Rk :

Therefore, B1.x/ satisfies the assumptions on the Gromov–Hausdorff control and the
nilpotency rank in Proposition 5.4. Hence by choosing the above ı D ı.�; n/ > 0 as
the corresponding constant in Proposition 5.4, and letting assumptions (i) and (ii) hold
for ı0 �‰0.ıjn/ > 0, then for some 1> r � ı.n; �/ > ı0.n; �/ > 0,

(5-114) dGH.Br .zx/;Br .0
kCd.x/// < r�; 0kCd.x/

2RkCd.x/; d.x/�m;

where zx is a lift of x on the universal cover of B1.x/.
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Recall that Theorem 2.27 states that the nilpotency rank of the fibered fundamental
group is bounded by the collapsed dimension. We will prove that if the nilpotency rank
attains the maximum, ie is equal to the collapsed dimension, then the universal cover is
noncollapsed. Precisely, we have the following:

Proposition 5.9 Let .M n;g;p/ be a Riemannian manifold with Ric� �.n� 1/ and
such that B2.p/ has a compact closure in B4.p/. Given a Ricci limit space .Zk ; zk/

with dim Zk D k in the sense of Theorem 2.12, there exists ı0 D ı0.n;B1.z
k// > 0,

v0 D v0.n;B1.z
k// > 0 such that if

(i) dGH.B2.p/;B2.z
k// < ı0 for zk 2Zk ,

(ii) �ı0
.p/� ImageŒ�1.Bı0

.p//! �1.B2.p//� satisfies rank.�ı0
.p//D n� k ,

then for any x 2 B1.p/,

(5-115) Vol.B1=2.zx//� v0.n;B1.z
k// > 0;

where zx is a lift of x on the universal cover of B1.x/.

Remark 5.7 This noncollapse result works in a very general setting; that is, we
only assume uniform lower Ricci curvature bound and maximal nilpotency rank. In
particular, the limit space in assumption (i) is for any k –dimensional Ricci limit space
in the sense of Theorem 2.12.

Proof It suffices to prove the statement at p . The general case follows from the
nonlocalness of the nilpotency rank of the fibered fundamental group. Let assumptions
(i) and (ii) hold for some ı0 > 0 which will be determined later. Due to Theorem 2.12,
the regular set Rk.Z

k/ is of full measure (the limiting renormalized measure). Given
any ı > 0, we can define the positive constant

(5-116) s D s.ı;B1.z
k//

� sup
˚
r > 0 j 9 y 2 B1=10.z

k/ such that dGH.Br .y/;Br .0
k// < 1

2
rı
	
;

then s.ı;B1.z
k// > 0. Consequently, there exists some z0 2 B1=5.z

k/ such that

(5-117) dGH.Bs.z0/;Bs.0
k//� 1

2
sı:

Since dGH.B2.p/;B2.z
k// < ı0� 1, we can pick some q 2 B1=4.p/ such that

(5-118) dGH.Bs.q/;Bs.z0// < 2ı0:

Let ı0 > 0 satisfy

(5-119) ı0 <
1

10
‰0.sıjn/� sı < s�1;

Geometry & Topology, Volume 20 (2016)



Topology and �–regularity on collapsed manifolds with Ricci curvature bounds 2643

where �0 , ‰0 are as in Lemma 5.3. It follows that

(5-120) dGH.Bs.q/;Bs.0
k// < 2ı0C

1
2
sı < sı:

Let � W . AB2.p/; zp/! B2.p/ be the universal cover. The pre-image .��1.Bs.q//; zq/

on AB2.p/ is then a normal cover of Bs.q/. Note that the deck transformation group
of this normal cover is G � �1.B2.p//. Let

(5-121) yGsı.q/� hf 2G j d. � zq; zq/ < sıgi;

and then

(5-122) yGsı.q/� ImageŒ�1.Bsı.q//! �1.B2.p//�:

Theorem 2.26 shows that if ı is sufficiently small, yGsı.q/ is .w.n/; n/–nilpotent.
Moreover, rank.�ı0

.p// D n� k and ı0 < ‰0.sıjn/, then Lemma 5.3 implies that
rank. yGsı.q//� n� k , and thus rank. yGsı.q//D n� k . Now fix � > 0 and combined
with (5-120), if the above ı > 0 is chosen as the one in Proposition 5.4, then for some
ı.n; �/ < r < 1 we have that

(5-123) dGH.Bsr .zq/;Bsr .0
kCd.q/// < sr�; 0kCd.q/

2RkCd.q/; d.q/� n� k:

Immediately, the inequality kC d.q/� kC .n� k/D n and the curvature condition
Ric� �.n� 1/ imply that kC d.q/D n, and thus

(5-124) dGH.Bsr .zq/;Bsr .0
n// < sr�; 0n

2Rn:

Applying the volume convergence theorem, we have that, if (5-123) holds for sufficiently
small �2.n/ > 0,

(5-125) Vol.Bsr .zq//�
1
2

Vol.Bsr .0
n//:

Therefore,

(5-126) Vol.B1=2. zp//�Vol.Bsr .zq//�
1
2

Vol.Bsr .0
n//�v0.n;B1.z

k//>0:

5.4 Proof of Theorem 5.1

Proposition 5.9 of the last subsection gives the noncollapse of universal covers by
assuming the maximality of the nilpotency rank of �ı.p/. Hence this noncollapse
result enables us to apply Proposition 5.7 to obtain a strong quantitative splitting result
in which the limiting base space is arbitrary (compared with Proposition 5.4). That is,
we can now prove Theorem 5.1.
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Proof of Theorem 5.1 First, by Proposition 5.9, there exist v0.n;B1.z
`// > 0 and

ı.n;B1.z
`// > 0 such that for any q 2B1.p/, if (i), (ii) hold for the above ı > 0, then

(5-127) Vol.B1=2.zq//� v0.n;B1.z
`// > 0;

where zq is a lift of q on the universal cover of B1.q/. Therefore, by Proposition 5.7,
for every � > 0, there exists a ı0.�; n;B1.z

`// > 0 such that if (i), (ii) hold for
ı0 �minfı; ı0g, then for some ı0 < r < 1,

(5-128) dGH.Br .zq/;Br .0
n�`; yz// < r � �; .0n�`; yz/ 2Rn�`

�C. yZ/;

where C. yZ/ is a metric cone over some compact space yZ with cone tip yz .

6 The �–regularity theorems for lower and bounded Ricci
curvature

In this section we prove the �–regularity theorems for collapsed manifolds in the context
of Ricci curvature bounded from below and bounded Ricci curvature respectively. In
essence, we will see that under the conditions of Theorem 1.1 with only a lower Ricci
curvature bound, then the weak conjugate radius will be bounded uniformly from
below. From Section 6.2 to Section 6.4, we will improve upon these results in the
context of bounded Ricci curvature in order to prove the main theorem in this paper.

The �–regularity in the context of lower Ricci curvature will hold when our ball is
close to Euclidean space or a half-space. On the other hand, by using Theorem 2.7,
we will see that the �–regularity in the bounded Ricci context only requires that M n

is close to a space of the form Rk�` �Z` with dim.Z`/ D ` � 3. This is a sharp
assumption (see Section 3.3). Let us point out here that we do not assume that Z` is a
cone space here, since this is an unnatural assumption in the collapsed context. See the
comments after Theorem 1.1.

6.1 The statement and the proof of the �–regularity for lower Ricci cur-
vature

In this subsection we will give a precise statement of the �–regularity theorem for
collapsed manifolds with lower Ricci curvature bound. Let us begin with a useful
notion of regularity.

Definition 6.1 Given a Riemannian manifold .M n;g/ and � > 0 we define for
each x 2M n the weak conjugate radius (or �–conjugate radius), ConjRad�.x/, to
be the supremum of r > 0 such that for each 0 < s � r there exists a mapping
�sW Bs.0

n/! Bs.zx/ such that:
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(1) Bs.0
n/�Rn and zx 2 BB2r .x/ is a lift of x to the universal cover of B2r .x/,

(2) �s.0
n/D x ,

(3) �s is a homeomorphism onto its image,

(4) �s is an �s–Gromov–Hausdorff map, ie dGH.Bs.zx/;Bs.0
n// < s� .

Remark 6.1 If we assume Ric� �.n� 1/, then (3) automatically follows from (4)
due to the uniform Reifenberg property (see [5]). In fact, �s is a C ˛ –homeomorphism.

Notice that the size of the weak conjugate radius contains both geometric and topological
consequences. We prove the following useful lemma on the estimate on the weak
conjugate radius, which will be used in the proof of the �–regularity theorem for lower
Ricci curvature bound.

Lemma 6.2 Assume Ric��.n�1/. Then for each � >0, there exist r0D r0.�; n/>0

and ı D ı.�; n/ > 0 such that if

(6-1) dGH.Br0
.zx/;Br0

.0n// < r0ı;

then it holds that

(6-2) ConjRad�.x/�
r0

2
> 0:

Proof It suffices to show that given � > 0 there exist ı.n; �/ > 0 and r0.n; �/ > 0

such that (6-1) implies that for all 0< r � r0 ,

(6-3) dGH.Br .zx/;Br .0
n// < r�:

In fact, if (6-3) holds, by the uniform Reifenberg property, it holds that Br0=2.0
n/ is

C ˛–homeomorphic to its image in Br0=2.zx/. Therefore, ConjRad�.x/� r0=2.

We proceed to show the inequality (6-3). Given � > 0 assume that (6-1) holds for some
constants ı > 0, r0 > 0, which depend only on n, � , and will be determined later. By
rescaling,

(6-4) dGH.B1.zx; r
�2
0 g/;B1.0

n// < ı:

By the volume convergence theorem and relative volume comparison, for all 0< s � 1,

(6-5)
Vol.Bs.zx; r

�2
0

g//

Vol.Bs.0n//
�

Vol.B1.zx; r
�2
0

g//

Vol.B1.0n//
� 1�‰1.ıjn/! 1:

With respect to the rescaled metric Rics�2r�2
0

g � �.n� 1/s2r2
0

, the almost maximal
volume property (6-5) then implies the following almost rigidity due to [4]:

(6-6) dGH.Bsr0
.zx0/;Bsr0

.0n// < sr0‰2.ı; r0jn/:
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For the fixed � > 0, we choose sufficiently small ı > 0 and r0 > 0 such that
‰2.ı; r0jn/ < � and the inequality (6-3) follows. Then we finish the proof.

Now let us state the main theorem of this subsection, which gives the �–regularity
result in the context of uniform lower Ricci curvature.

Theorem 6.3 Let .M n;g/ be a Riemannian manifold with Ric��.n� 1/ and such
that B2.p/ has a compact closure in B4.p/. There exists w0.n/ <1, and for each
� > 0 there exist ı D ı.n; �/ > 0 and c0 D c0.n; �/ > 0 such that if

(6-7) dGH.B2.p/;B2.0
k// < ı;

where B2.0
k/�Rk or Rk

C �Rk�1 �R1
C , then the group

�ı.p/� ImageŒ�1.Bı.p//! �1.B2.p//�

is .w0; n�k/–nilpotent. In particular, rank.�ı.p//� n�k , and if equality holds, then
for every q 2 B1.p/ we have that

(6-8) ConjRad�.q/� c0.n; �/ > 0:

Remark 6.2 We see from Theorem 2.27 that the fibered fundamental group �ı.p/ in
fact has nilpotency length bounded by n� k with uniformly bounded index. Our main
interest then is to study the case of maximal rank.

Remark 6.3 In this �–regularity theorem, we assume that the limit space splits off at
least Rk�1 . This GH-control on the limit space is sharp because we can take a convex
surface (K � 0) converging to a flat cone.

Remark 6.4 The conclusion of this �–regularity gives uniform control of the weak
conjugate radius and this is optimal in the context of lower Ricci. In fact, Section 3.4
shows that in general it is impossible to expect any control on the conjugate radius
even in the noncollapsed setting with smooth limit space.

The proof of Theorem 6.3 quickly follows from Theorem 5.1.

Proof of Theorem 6.3 First, Theorem 2.27 gives the rank bound and the index bound
w0.n/. So it remains to prove the weak conjugate radius estimate. Observe that it
suffices to show that for each � > 0, there exist ı0.�; n/ > 0, c0.�; n/ > 0 such that if

(6-9) dGH.B2.p/;B2.0
k// < ı0;
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where B2.0
k/�Rk or Rk

C , and if

(6-10) rank.�ı0
.p//D n� k;

then for each q 2 B1.p/,

(6-11) dGH.Bc0
.zq/;Bc0

.0n// < c0�; 0n
2Rn;

where zq is the lifting of q on the universal cover of B1.q/. In fact, by Lemma 6.2 and
inequality (6-11) we would then have that

(6-12) ConjRad�.q/� c0=2:

Now let us prove inequality (6-11). Applying Theorem 5.1, there exists v0.n/ > 0, and
for each x� > 0 there exists ı0.n; x�/ > 0 such that if (6-9) and (6-10) hold for ı0 > 0,
then Vol.B1=2.zq// > v0 > 0 and for some 0< ı0 < r < 1,

(6-13) dGH.Br .zq/;Br .0
n�1; 0�// < rx�;

where 0� 2R1 or 0� is the cone tip of R1
C . By the stratification result on the singular

set of [5], we have that for every � > 0, there exists x�.n; v0/ > 0 such that if inequality
(6-13) holds for x� > 0, then

(6-14) dGH.Br .zq/;Br .0
n// < r�; 0n

2Rn;

and thus the proof is complete.

6.2 Harmonic radius and curvature estimates

In this subsection, we discuss the main part of Theorem 1.1. The essential conclusion in
the �–regularity result for bounded Ricci curvature is that conjugate radius is uniformly
controlled from below if the assumptions of Theorem 1.1 hold. More directly we will
show that the C 1 –harmonic radius is uniformly bounded from below on the universal
cover. Furthermore, if the manifold is Einstein or just has uniform bound on jr Ricj,
the standard elliptic regularity theory and the harmonic radius estimate in fact gives
the uniform curvature estimates.

Proposition 6.4 Let .M n;g;p/ be a Riemannian manifold with bounded Ricci cur-
vature jRicj � n� 1 and such that B2.p/ has a compact closure in B4.p/. For each
Ricci limit space .Z`; z`/ with dim Z` D ` � 3, there exist ı0 D ı0.n;B1.z

`// > 0

and h0 D h0.n;B1.z
`// > 0 such that if

(i) dGH.B2.p/;B2.0
k�`; z`// < ı0 for .0k�`; z`/ 2Rk�` �Z` ,

(ii) �ı0
.p/� ImageŒ�1.Bı0

.p//! �1.B2.p//� satisfies rank.�ı0
.p//D n� k ,
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then for each q 2 B1.p/,

(6-15) rh.zq/� h0 > 0;

where zq is a lift of q on the universal cover of B1.q/.

Proof We assume that conditions (i) and (ii) hold for ı0.n;B1.z
`// > 0, which will

be determined momentarily. By Theorem 5.1, there is some v0.n;B1.z
`// > 0 and for

each � > 0, there exists some positive constant ı.�; n;B1.z
`// > 0 such that if (i), (ii)

hold for ı > 0, then

(6-16) Vol.B1=2.zq//� v0 > 0;

and for some ı < r < 1,

(6-17) dGH.Br .zq/;Br .0
n�`; yz// < r�; .0n�`; yz/ 2Rn�`

� yZ; `� 3;

where C. yZ/ is a metric cone over some compact metric space yZ with cone tip yz .
Therefore, by Theorem 2.7, there exist �0.n; v0/ > 0, rh.n; v0/ > 0 such that if (6-16)
holds for v0.n;B1.z

`// > 0 and Equation (6-17) holds for �0.n; v0/ > 0, then

(6-18) rh.zq/� r � rh.n; v0/ > ı � rh.n; v0/:

Therefore, for the above �0.n; v0/ > 0, we correspondingly choose

(6-19) ı0 D ı.�0; n;B1.z
`// > 0; h0 D ı0 � rh.n; v0/ > 0;

which depend only on n and the geometry of B1.z
`/. The proof is complete.

Now we prove the curvature bound in Theorem 1.1. Actually, we can prove it in a
slightly more general setting, that is, we will replace the Einstein condition with the
uniform bound on the covariant derivative of Ricci tensor. The arguments are rather
classical once we have the harmonic radius bound in Proposition 6.4.

Proposition 6.5 Let n� 2, ƒ<1 and a Ricci limit space .Z`; z`/ with dim.Z`/D

` � 3 be given. There are positive constants ı0 D ı0.n;B1.z
`// > 0 and C D

C.n; ƒ;B1.z
`// <1 such that, if the constant ı0 > 0 satisfies assumptions (i), (ii) in

Proposition 6.4 and in addition we assume supB2.p/
jr Ricj �ƒ, then

(6-20) sup
B1.p/

jRmj � C.n; ƒ;B1.z
`//:

Additionally, if .M n;g;p/ is Einstein with Ric� �g for j�j � n� 1, then for each
j 2N , there exists 0< Cj .n;B1.z

`// <1 such that

(6-21) sup
B1.p/

jr
j Rm j � Cj .n;B1.z

`//:
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Proof The proof is the standard Schauder estimate and we only prove (6-21). It suffices
to show that for each q 2B1.p/ we have jRmj.zq/�C.n; ƒ;B1.z

`//, where zq is a lift
of q on the universal cover of B1.q/. By Proposition 6.4, rh.zq/�h0.n;Z

`/>0: Hence,
in Bh0=2.zq/, we can express the Ricci tensor in terms of the harmonic coordinates
fx1; : : : ;xng,

(6-22) Rij D gkl @
2gij

@xk@xl
CQ

�@grs

@xm

�
;

where Rij are components of the Ricci tensor and Q is a quadratic form in terms of
the first derivative of gij . Note that gij has uniform C 1;˛–norm in Bh0=2.zq/. Since
jr Ric j �ƒ, by the classical Schauder estimate it follows that

(6-23) h2
0jr

2gij jC 0.Bh0=4.zq//
C h2C˛

0
jr

2gij jC˛.Bh0=4.zq// � C.n; ƒ/:

The above estimate actually gives the curvature bound,

(6-24) sup
Bh0=4.zq/

jRmj � C.n; ƒ/h�2
0 :

Descending to the base space, we obtain the desired curvature bound.

6.3 Conjugate radius bound implies maximal nilpotency rank

The converse direction of Theorem 1.1 is an immediate consequence of the following
fibration construction that we will discuss. A similar nonlocal version of Proposition 6.6
was given in [12], however since their methods are nonlocal in nature, eg a smoothing
process by the Ricci flow, we give a different proof in Appendix B. Our proof of
this fiber bundle result essentially relies on the pointwise C 1 and C 2 estimates of
harmonic functions under a lower conjugate radius bound, which gives an explicit and
intrinsic construction of the fiber bundle map (compared with Fukaya and Yamaguchi’s
embedding method via distance function, for instance see [24]). In fact, this analytical
method can be applied in a broad setting. Finally, we will apply the smoothing
techniques in [12] to topologically identify the fiber.

Proposition 6.6 Let .M n;g;p/ be a Riemannian manifold with jRicj�n�1 and such
that B3.p/ has a compact closure in B6.p/. Given c0> 0, there exists ıD ı.n; c0/> 0

such that if

(i) dGH.B3.p/;B3.0
k// < ı for 0k 2Rk and k � n,

(ii) for each q 2 B3.p/, we have the conjugate radius lower bound ConjRad.q/�
c0 > 0,
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then there is a smooth map ˆW B5=2.p/ ! B5=2.0
k/ such that ˆ�1.B9=4.0

k// is
diffeomorphic to B9=4.0

k/�N n�k , where N n�k is an infra-nilmanifold of dimension
n� k .

Remark 6.5 In fact, one can drop the upper Ricci bound in the above result. To do
this one must show that at each point q 2 B5=2.p/ there is a covering of an r0.n; c0/–
neighborhood of q with uniform lower injectivity radius bounds. This is true, but since
the proof is a bit involved and takes us away from the purpose of this paper we will not
worry about it.

We will prove the above in Appendix B. The converse direction of Theorem 1.1 now
follows from the proposition below.

Proposition 6.7 Let .M n;g;p/ be a Riemannian manifold with jRicj � n� 1 such
that B3.p/ has a compact closure in B6.p/. There exists w.n/ > 0, and given c0 > 0

there exists ı.n; c0/ > 0, such that if

(i) dGH.B3.p/;B3.0
k// < ı for 0k 2Rk and k � n,

(ii) for each q 2 B3.p/ we have the conjugate radius lower bound ConjRad.q/ �
c0 > 0,

then

(6-25) �ı.p/� ImageŒ�1.Bı.p//! �1.B2.p//�

contains a nilpotent subgroup of rank n� k of index at most w.n/ <1.

Proof If all of the assumptions hold, by Proposition 6.6 there exists a smooth map

(6-26) ˆW B5=2.p/! B5=2.0
k/; 0k

�Rk ;

such that the pre-image ˆ�1.B9=4.0
k// is homeomorphic to the trivial bundle

B9=4.0
k/�Fn�k ;

where Fn�k is an infra-nilmanifold of dimension n� k . Hence there exists some
w.n/<1 and a w.n/–finite normal cover of Fn�k , denoted by yFn�k , such that yFn�k

is a compact nilmanifold. Then yFn�k is diffeomorphic to N n�k=N for some simply
connected nilpotent Lie group N n�k (and thus diffeomorphic to Rn�k ) and for some
co-compact lattice N <N n�k . It is a standard fact that rank.N /Ddim.N n�k/Dn�k

(see [20] for instance). Since yFn�k is a bounded normal cover of Fn�k by w.n/, it
follows that Œ�1.F

n�k/ WN ��w.n/<1 and thus rank.�1.F
n�k//D rank.N /Dn�k .
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Now we claim that the group

(6-27) �ı.p/� ImageŒ�1.Bı.p//! �1.B2.p//�

is isomorphic to �1.F
n�k/. Take a fiber Fn�k � Bı.p/ at p . Notice that each

element in �1.F
n�k/ and �ı.p/ can be generated by a closed geodesic of length at

most 2ı . In the following arguments, we give the injective homomorphisms

(6-28) 'W �1.F
n�k/! �ı.p/;  W �ı.p/! �1.F

n�k/;

such that

(6-29)  ı' D Id�1.F n�k/; ' ı D Id�ı.p/;

which in particular implies that �1.F1/Š �ı.p/.

Observe that, by Proposition 6.6, there exists an open set such that B2.p/ � U and
U is diffeomorphic to Dk � Fn�k . Denote by ' the homomorphism induced by
Fn�k ,!U , and then U ŠDk �Fn�k implies �1.F

n�k/Š '.�1.F
n�k//Š �1.U /.

Since every generator  2 �1.F
n�k/ is chosen such that `. / < 2ı , we get that

'. / canonically determines an element in �ı.p/. That is, ' gives a homomorphism
�1.F

n�k/! �ı.p/. The next step is to check the injectivity of ' . In fact, for a trivial
loop  2 �ı.p/,  is trivial in �1.U /, and thus  is trivial in �1.F

n�k/. Hence ' is
an injective homomorphism from �1.F / to �ı.p/.

On the other hand, let  be the natural composed homomorphism

�ı.p/! �1.U /
Š
�! �1.F

k/:

For any trivial loop  2�1.F
n�k/, then  is trivial in �1.U / and thus trivial in �ı.p/.

Therefore,  is injective. Moreover, it is straightforward to prove Equation (6-29). We
have proved the claim.

Therefore, �ı.p/ contains a nilpotent subgroup N of rank n�k and of index at most
w.n/ <1.

6.4 The proof of the main �–regularity theorem

We complete this section by proving Theorem 1.1 and also giving an example to show
the optimality of the converse direction in Theorem 1.1.

Proof of Theorem 1.1 The proof of the main theorem is now just a combination of
Theorem 2.27, Proposition 6.4 and Proposition 6.7. Indeed, let us assume that for some
ı > 0 to be determined momentarily, we have

(6-30) dGH.B2.p/;B2..0
k�`; z`/// < ı;
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where .0k�`; z`/2Rk�`�Z` with dim.Z`/D `� 3. First, by Theorem 2.27, it holds
that rank.�ı.p//� n� k for sufficiently small 0< ı � ı0.n;B1.z

`//. Furthermore,
the assumption rank.�ı.p//D n�k and the Gromov–Hausdorff control (6-30) enable
us to apply Proposition 6.4. That is, we may choose ı.n;B1.z

`//) such that if the
above assumptions hold, then we have on the universal cover the following estimate
for every zq 2 B1. zp/,

rh.zq/� h0.n;B1.z
`//:(6-31)

It is a standard point — indeed just work in coordinates — to check that this implies
the desired conjugate radius lower bound. Additionally, if the manifold is assumed
to be Einstein, then the curvature bound follows from Proposition 6.5. The converse
conclusion is contained in Proposition 6.7. Thus we have finished the proof.

In the rest of this subsection, we give a simple counterexample to show that the
assumption in the converse direction of Theorem 1.1 is sharp. More precisely, the
converse direction of Theorem 1.1 is not true in general if the limit space is not
euclidean or not a smooth manifold. That is, without the Gromov–Hausdorff control
(1-10), bounded curvature does not imply that the nilpotency rank of

�ı.p/� ImageŒ�1.Bı.p//! �1.B2.p//�

attains the maximum.

Example 6.1 Let M 3 DR2 �S1 . We now define an isometric action of

Zk D
˚
e
p
�1.2j�=k/

j 0� j � k � 1
	
:

For any .re
p
�1� ; e

p
�1'/ 2M 3 , the rotation j D e

p
�1.2j�=k/ is given by

(6-32) ` � .re
p
�1� ; e

p
�1'/� .re

p
�1.�C2j�=k/; e

p
�1.'C2j�=k//:

Under the above assumption, Zk properly discontinuously and freely acts on M 3 , so
the quotient space N 3

k
�M 3=Zk is a flat manifold with the quotient metric. Letting

k!1, then the limit space is a half line, ie

(6-33) .N 3
k ;gk ;pk/

GH
��! .R1

C;g0; 0/;

and the convergence keeps sectional curvature bounded. Notice that M 3 is a normal
Zk –cover of N 3

k
, ie �1.N

3
k
/=�1.M

3/Š Zk and �1.M
3/Š Z. On the other hand,

the inclusion homomorphism i�W �1.B1.pk//! �1.N
3
k
/ is surjective. Therefore,

(6-34) rank.ImageŒ�1.B1.pk//! �1.N
3
k /�/D rank.�1.N

3
k //D 1:
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Appendix A The generalized Margulis lemma for collapsed
manifolds

In this section, we give a proof of Theorem 2.27, which extends Theorem 2.26 in
Kapovitch and Wilking’s joint paper [18]. Although they did not explicitly state it in
this way, in fact their essential techniques lead to the refinement stated in Theorem 2.27.
Here we will show that the nilpotency length of the fibered fundamental group is
controlled from above by the collapsed dimension. The point here is that although in
general the limit space is singular, we have the concept of limiting dimension in the
sense of Theorem 2.12. We recall the statement of Theorem 2.27.

Theorem 2.27 Let .Zk ; zk/ be a pointed Ricci limit metric space with dim Zk D k

in the sense of Theorem 2.12. Then there exist an �0 D �0.n;B1.z
k// > 0 and

a w0 D w0.n;B1.z
k// < 1 such that if a Riemannian manifold .M n;g;p/ with

Ric� �.n� 1/ is such that B2.p/ has a compact closure in B4.p/ and

(A-1) dGH.B2.p/;B2.z
k// < �0;

then the fibered fundamental group ��0
.p/ � ImageŒ�1.B�0

.p//! �1.B2.p//� is
.w0; n� k/–nilpotent.

Proof of Theorem 2.27 Let us first outline the proof. The first step is to construct a
nilpotent subgroup in ��.p/\�ı.B1. zp// for some positive constants � > 0, ı > 0 of
definite amount, where

(A-2) �ı.B1. zp//� hf 2 �1.B2.p// j d. � zq; zq/ < ı; 8 zq 2 B1. zp/gi;

and zp is a lift of p on the universal cover of B2.p/. In the second step, we will prove
a claim which shows that �ı.B1. zp// has a nilpotent subgroup of length � n� k and
of controlled index. Finally, we will see that ��.p/\�ı.B1. zp// has controlled index
in ��.p/, from which we will have finished the proof.

As the first stage, we construct a nilpotent subgroup Na � ��.p/\�ı.B1. zp// such
that Œ��.p/ WNa� < C.n/. By [18, Theorem 2.5], there exists a D1.n/ <1 such that
for any given � > 0, there is some d1 �D1.n/ such that

��.p/� ImageŒ�1.B�.p//! �1.B2.p//�

has a generating set f1; : : : ; d1
g with d.j � zp; zp/ < 2� for every 1 � j � d1 .

The positive constant � > 0 will be determined momentarily. On other hand, by
Theorem 2.26, there exists �1.n/ > 0 such that for every 0 < � � �1.n/ there is a
nilpotent subgroup N in ��.p/ such that

(A-3) Œ��.p/ WN �� C1.n/; Step.N /D c � length.N /� n:
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Proposition 4.13 implies that N has a generating set

(A-4) B D hg
.0/
1
; : : : ;g

.0/

d2
i; d2 � C 2

1 .n/ �D1.n/;

and d.g
.0/
j � zp; zp/ < 2.2C1C 1/ � � . Now we are in a position to explicitly write the

nilpotent subgroup Na �N . To this end, denote

(A-5) xB �

c[
kD1

Ck.B/;

then straightforward calculations show that

(A-6) #. xB/� 10 � .d2/
c
� 10 � .C 2

1 .n/ �D1.n//
n
� C3.n/:

Let

(A-7) xB � f�1; : : : ; �d3
g; d3 � C3.n/;

and

(A-8) d.�j � zp; zp/� C4.n/ � �;

where C4 � 2 � .2C1C 1/ � .3 � 2n� 2/. We choose

(A-9) � <
‰0.2ıjn/

4C4

for some ı.n;B1.z
k// > 0 determined later, where ‰0 is the function in Lemma 5.2.

By Lemma 5.2, there exists a sequence of integers 1 � aj � N1.n/ such that if we
choose

(A-10) Na � h�
a1

1
; : : : ; �

ad3

d3
i;

then for each 1� j � d3 and for all zx 2 B1. zp/,

(A-11) d.�
aj
j � zx; zx/ < 2ı;

where zp is a lift of p on the universal cover of B2.p/. In particular, inequality (A-11)
gives that

(A-12) Na � �ı.B1. zp//:

By the construction (A-10) and Lemma 4.19,

(A-13) ŒN WNa��N1.n/
C3.n/ � C5.n/; Œ��.p/ WNa�� C1.n/ �C5.n/:

The next step is to prove the following claim.
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Claim There exist a ı D ı.n;B1.z
k// > 0 and a C0 D C0.n;B1.z

k// <1 such that
if

(A-14) dGH.B2.p/;B2.z
k// < ı; zk

2Zk ;

then

(A-15) �ı.B1. zp//� hf 2 �1.B2.p// j d. � zq; zq/ < ı; 8 zq 2 B1. zp/gi

contains a nilpotent subgroup yN of length � n� k and of index � C0.n;B1.z
k//. In

particular, we have the nilpotency rank bound rank.�ı.B1. zp///� n� k .

The proof is an application of the induction theorem of [18]; we will include the details
for completeness’ sake. We argue by contradiction and suppose there is a pointed
Ricci limit space .Zk ; zk/ with dim Zk D k such that no such ı.n;B1.z

k// > 0 and
C0.n;B1.z

k// < 1 exist. That is, there is a sequence ıi ! 0 and a sequence of
Riemannian manifolds .M n

i ;gi ;pi/ with Ricgi
� �.n� 1/ such that B2.pi/ has a

compact closure in B4.pi/ and

(A-16) dGH.B2.pi/;B2.z
k// < ıi :

But each nilpotent subgroup in �ıi
.B1. zpi// of length � n� k has index � 2i , where

zpi is a lift on the universal cover of B2.pi/. We will produce a contradiction by
considering the intermediate covering space of B2.pi/,

(A-17) �i W .Ni ; ypi/� .BB2.pi/=�ıi
.B1. zpi//; ypi/! .B2.pi/;pi/:

Notice that �1.Ni ; ypi/ D �ıi
.B1. zpi//. Passing to a subsequence, it holds that for

some complete length space . yZ; yz/,

(A-18) dGH
�
B��1

i
. ypi/;B��1

i
.yz/
�
< �i! 0; yz1 2 bZ ;

where limıi!0 �i D 0. Moreover, the covering maps �i W .Ni ; ypi/ ! .B2.pi/;pi/

converge to a submetry �1W . yZ; yz/ ! .Zk ; zk/. Take a sequence yxi 2 B1=4. ypi/

with yxi ! yx1 such that yx1 2 B1=4.yz/ is a regular point in bZ in the sense of
Theorem 2.12. Rescale the metrics at yxi by letting hi D �2

i gi with �i !1 and
�i �minf��1=2

i ; ı
�1=2
i g. Then

(A-19) .�iNi ; yxi/
pGH
���!.Rk1 ; yx1/; k1 � dim bZ ;

and �1.�iNi ; yxi/Š �ı.B1. zpi// is generated by loops of length � ı1=2
i < 1. Note that

(A-20) k1 � dim bZ � dim Zk
D k:
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In fact, take any regular point z1 2B1.z
k/�Zk with zi 2B1.pi/ converging to z1 .

By definition, the tangent cone at z1 is Rk provided dim Z D k . For any fixed x� > 0,
there exists r D r.x�;B1.z

k// > 0 such that for sufficiently large i , we have an Rk –
splitting harmonic map ˆi W Br .zi/!Br .0

k/ which is also an rx�–GH approximation
between Br .pi/ and Br .0

k/. The standard rescaling arguments combined with the
average estimate in Lemma 5.6 show that the lifted harmonic map b̂ i with b̂ i�ˆiı�i

is also an Rk –splitting map. Therefore, we can pass the quantitative Rk –splitting
property to the limit space .bZ ; yz/, which gives dim bZ � k .

Therefore, by the induction theorem [18, Theorem 6.1], there is a positive constant
C0.n/ <1 such that for sufficiently large i , depending on the dimension n and the
geometry of B1.z

k/�Zk , the group �ıi
.B1. zpi// has a nilpotent subgroup of length

� n� k and of controlled index (independent of i ). This is a contradiction, and we
have proved the claim.

Now if we choose ı.n;B1.z
k// > 0 as in the above claim, and �0 > 0 to be a constant

satisfying (A-9), and take N0 �Na\ yN , then length.N0/� length. bN /� n� k and

(A-21) ŒNa WN0�D ŒNa WNa\ yN �� Œ�ı.B1. zp// W bN �� C0.n;B1.z
k//:

Therefore, by inequality (A-13),

(A-22) Œ��.p/ WN0�� Œ��.p/ WNa� � ŒNa WN0�

� C1.n/ �C5.n/ �C0.n;B1.z
k//� w0.n;B1.z

k//:

The proof of the theorem is complete.

Appendix B Harmonic fiber bundle map for bounded Ricci
curvature

This section is devoted to giving the proof of Proposition 6.6. For convenience, let us
restate the proposition here.

Proposition 6.6 Let .M n;g;p/ be a Riemannian manifold with jRicj � n� 1 and
such that B3.p/ has a compact closure in B6.p/. Given c0 > 0, there exists a
ı D ı.n; c0/ > 0 such that if

(i) dGH.B3.p/;B3.0
k// < ı for 0k 2Rk , k � n,

(ii) for each q 2 B3.p/, we have the conjugate radius lower bound

ConjRad.q/� c0 > 0;
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then there is a smooth map ˆW B5=2.p/ ! B5=2.0
k/ such that ˆ�1.B9=4.0

k// is
diffeomorphic to B9=4.0

k/�N n�k , where N n�k is an infra-nilmanifold of dimension
n� k .

Proof of Proposition 6.6 The proof consists of the following steps.

Step 1 There exists 0<ı1.n; c0/ < 1 such that if (i) holds for 0<ı� ı1< 1, then for
each q 2 B5=2.p/ there is a local fiber bundle which is a ‰.ıjn/–Gromov–Hausdorff
map.

Assume that

(B-1) dGH.B3.p/;B3.0
k// < ı; 0k

2Rk ; k � n;

for some ı > 0 which will be determined later, and let

(B-2) f W B3.p/! B3.0
k/; f .p/D 0k

2Rk

be a .ı=3/–GH approximation. It follows immediately, for each q 2 B5=2.p/, that

(B-3) dGH.B1=6.q/;B1=6.f .q/// < ı:

Let h� ı�1g . Then for the rescaled metric, it holds that Ric� �.n� 1/ı and

(B-4) dGH.B.1=6/�ı�1=2.q; h/;B.1=6/�ı�1=2.f .q/// < ı1=2:

The above inequalities imply that there exists a smooth map

(B-5) ˆq;h D .ˆ
.1/

q;h
; : : : ; ˆ

.k/

q;h
/W B1.q; h/! B1.f .q//;

where for each 1��� k we have 4ˆ.�/
q;h
D 0, and they satisfy the following estimate

(under the rescaled metric):

(B-6) �

Z
B1.q;h/

kX
�;�D1

jhrˆ
.�/

q;h
;rˆ

.�/

q;h
ih� ı�� j dVolh

C �

Z
B1.q;h/

kX
�D1

ˇ̌
r

2ˆ
.�/

q;h

ˇ̌2
h

dVolh <‰.ıjn/:

Moreover, ˆq;h is a ‰.ıjn/–Gromov–Hausdorff map. Note that for each q , the
conjugate radius is uniformly bounded from below, that is,

(B-7) ConjRadh.q/� c0 � ı
�1 > 103;

where we just choose

(B-8) ı <
c0

103
:
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Therefore, the exponential map expqW .B1.0
n/; yh/! .B1.q/; h/ is nondegenerate with

yh� exp�q.h/, and thus we have the injectivity radius estimate at 0n 2 B1.0
n/, ie

(B-9) InjRadh.0
n/� 1> 0:

Then the C 1 –harmonic radius bound at 0n has definite lower bound, provided jRicyh j�
.n� 1/ı , given by

(B-10) rh.0
n/� s0.n/ > 0;

and by the Schauder estimate the C 1;˛ –norm of the rescaled metric yh is controlled by

(B-11) jr.yhij � ıij /jC 0.B2s0=3.0n//C Œr.
yhij � ıij /�C˛.B2s0=3.0n// < C.n/:

By our construction, the pull-back function b̂.�/q;h �ˆıexpq is also harmonic for each
1� �� k , that is,

(B-12) 4yh
b̂.�/

q;h.yx/� 0; 8 yx 2 B2s0=3.0
n; yh/; 8 �D 1; : : : ; k:

Since the coefficients of the above equation have uniform C ˛–norm, the Schauder
interior estimate gives the C 2;˛–bound

(B-13)
ˇ̌
r

2 b̂.�/
q;h

ˇ̌
C 0.Bs0=2.0n//

C
�
r

2 b̂.�/
q;h

�
C�.Bs0=2.0n//

< C.n/; �D 1; : : : ; k:

Descending to the base space, it holds that

(B-14)
ˇ̌
r

2ˆ
.�/

q;h

ˇ̌
C 0.Bs0=2.q//

C
�
r

2ˆ
.�/

q;h

�
C˛.Bs0=2.q//

< C.n/; �D 1; : : : ; k:

On the other hand, the relative volume comparison theorem and the average estimate
(B-6) implies the following estimate on Bs0=2.q/:

(B-15) �

Z
Bs0=2.q/

kX
�;�D1

jhrˆ
.�/

q;h
;rˆ

.�/

q;h
i � ı�� j dVolh <‰.ıjn/:

Observe that, given any x� > 0, there exists a

(B-16) ı D ı.x�; n/ > 0

such that if the integral C 1 –estimate (B-15) holds for the above ı > 0, then by the
uniform C 2;˛–estimate (B-14) and simple compactness arguments, the following
pointwise C 1 –estimate holds:

(B-17)
kX

�;�D1

jhrˆ
.�/

q;h
;rˆ

.�/

q;h
i � ı�� j.x/ < x�; x 2 Bs0=2.q/:
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So we can choose x� D x�.n/ > 0 such that the harmonic map ˆq;h is nondegenerate.
Therefore, if (i) holds for the constant ı1 D ı1.n; c0; x�.n// > 0 which is determined by
inequalities (B-8) and (B-16), the harmonic map ˆq;h is nondegenerate and it gives a
fiber bundle with fiber of dimension .n� k/.

Step 2 For the original Riemannian metric g , there exists 0 < ı2.n; c0/ < 1 such
that if (i) and (ii) hold for 0 < ı � ı2 < 1, then there exists a smooth fiber bundle
map ˆW B5=2.p/! B5=2.f .p//�Rk such that ˆ�1.B9=4.0

k// is diffeomorphic to
N n�k �B9=4.0

k/ and ˆ is a ‰.ıjn/–Gromov–Hausdorff map.

Let

(B-18) dGH.B3.p/;B3.0
k// < ı; 0k

2Rk ;

where ı > 0 is to be determined later. Define

(B-19) r.n; ı/�
s0.n/ı

1=2

10
� 1;

where s0.n/ is the constant in inequality (B-10). Then for each q 2 B5=2.p/, we have
a local fiber bundle ˆqW Br .q/! Br .f .q//.

Choose a finite .r=2/–dense subset fq`gN`D1
� B1.p/ such that

(B-20) d.q˛; qˇ/ > r=4 for all ˛ ¤ ˇ:

By relative volume comparison, N � N0.ı
�1jn/ and the number of the overlaps of

the cover fBr .q`/g
N
`D1

is uniformly bounded by some constant Q0.n/.

Since we always assume Ricg � �.n � 1/, there is a good cut-off function due to
Cheeger and Colding. We briefly recall the construction here. For each q` , 1� `�N ,
first we define the function f` such that

(B-21)

(
4f`.x/D 1; x 2 Br .q`/ nBr=2.q`/;

f` is constant on the boundary and bounded by C.r; n/:

The details of the above construction can be found in [4]. Take ‰W R1! Œ0; 1� as a
smooth cut-off function such that the composed function '` �‰.f`/ can be extended
to a global smooth function on M n with

(B-22) '` D

�
1 x 2 Br=2.q`/;

0 x 2M n nBr .q`/:
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It is standard to construct the partition of unity subordinate to the cover fBr .q`/g
N
`D1

:

(B-23) 1�

NX
`D1

‰`.x/; x 2 B1.p/; Br=2.q`/� Supp.‰`/� Br .q`/;

where

(B-24) ‰` �
'`PN
`D1 '`

:

Now we define

ˆD .ˆ.1/; : : : ; ˆ.k//;(B-25)

ˆ.�/ �

NX
`D1

‰` �ˆ
.�/

`
; 1� �� k;(B-26)

where ˆ.�/
`

is the coordinate function of the local fiber bundle map in terms of the
original metric g . It remains to prove that ˆ is nondegenerate for each q 2 B5=2.p/,
and thus ˆ is a fiber bundle map. Moreover, we will show that the level set is an
infra-nilmanifold of dimension n� k .

For any q 2 B5=2.p/, there are N 0 � Q0.n/ balls in fBr .q`/g
N
`D1

which intersect
with Br=3.q/. In fact,

(B-27) ˆ.�/.x/D

`N 0X
˛D`1

‰˛.x/ �ˆ
.�/
˛ .x/; 1� �� k; 8 x 2 Br=3.q/:

It suffices to argue in terms of the rescaled metric h� ı�1g . Denote r0.n/� s0.n/=10.
Notice that, by the same argument as in Step 1, the pointwise C 2;˛–estimate in terms
of the rescaled metric h holds for the cut-off function '` ,

(B-28) j'`jC 2;˛.Br0
.q`;h//

� C1.n/:

Since the number of overlaps is bounded by Q0.n/,

(B-29) j‰`;hjC 2;˛.Br0
.q`;h//

� C2.Q0.n/; n/:

A quick computation shows that

(B-30) jr
2ˆ

.�/

h
jC 0.Br0=3.q;h//

�

`N 0X
˛D`1

jr
2.‰˛;h �ˆ

.�/

˛;h
/jC 0.Br0

.q˛;h//
� C.n/:

Geometry & Topology, Volume 20 (2016)



Topology and �–regularity on collapsed manifolds with Ricci curvature bounds 2661

Next we will prove that

(B-31) jhrˆ
.�/

h
;rˆ

.�/

h
i � ı�� jC 0.Br0=6.q;h//

<‰.ıjn/; 1� �; � � k;

which implies that ˆh is nondegenerate for sufficiently small ı . Since ˆ`;h.q`/ gives
a ‰.ıjn/–Gromov–Hausdorff map for 1 � ` � N , then for any x 2 Br0=3.q/ �

Br0
.q˛/\Br0

.qˇ/,

(B-32) jˆ
.�/

˛;h
.x/�ˆ

.�/

ˇ;h
.x/j<‰.ıjn/; 1� �� k; `1 � ˛; ˇ � `N 0 :

It is clear that

(B-33) 4h.ˆ
.�/

˛;h
�ˆ

.�/

ˇ;h
/.x/D 0; x 2 Br0=3.q/:

By the gradient estimate of Cheng and Yau for harmonic functions in the context of
uniform lower Ricci curvature [10], it holds that

(B-34) jrˆ
.�/

˛;h
�rˆ

.�/

ˇ;h
j.x/� C.n/jˆ

.�/

˛;h
�ˆ

.�/

ˇ;h
j.x/ for all x 2 Br0=6.q/:

The pointwise C 1 –estimate (B-31) immediately follows. In fact, fix any `1� ˛0� `N 0

and x 2 Br0=6.q/. Then it holds that

(B-35) jhrˆ
..�//

h
;rˆ

.�/

h
i � hrˆ

.�/

˛0;h
;rˆ

.�/

˛0;h
ij.x/

D

ˇ̌̌ `N 0X
˛;ˇD`1

hr.‰˛;h � .ˆ
.�/

˛;h
�ˆ

.�/

˛0;h
//;r.‰ˇ;h � .ˆ

.�/

ˇ;h
�ˆ

.�/

˛0;h
//i
ˇ̌̌
.x/

�

`N 0X
˛;ˇD`1

.jr‰˛;hj � jˆ
.�/

˛;h
�ˆ

.�/

˛0;h
jC j‰˛;hj � jr.ˆ

.�/

˛;h
�ˆ

.�/

˛0;h
/j/.x/�

� .jr‰ˇ;hj � jˆ
.�/

ˇ;h
�ˆ

.�/

˛0;h
jC j‰

.�/

ˇ;h
j � jr.ˆ

.�/

ˇ;h
�ˆ

.�/

˛0;h
/j/.x/

�‰.ıjn/:

By the triangle inequality, for every x 2 Br0=6.q/,

(B-36) jhrˆ
.�/

h
;rˆ

.�/

h
i � ıij j � jhrˆ

.�/

h
;rˆ

.�/

h
i � hrˆ

.�/

˛0;h
;rˆ

.�/

˛0;h
ij

C jhrˆ
.�/

˛0;h
;rˆ

.�/

˛0;h
i � ıij j

�‰.ıjn/:

Finally, notice that B3.0
k/ is contractible and thus the bundle map ˆ is in fact trivial.
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Step 3 There exists a 0 < ı3.n; c0/ < 1 such that if assumptions (i), (ii) hold for
0 < ı � ı3 < 1, then the fiber N n�k Š ˆ�1.0k/ in Step 2 is diffeomorphic to an
infra-nilmanifold of dimension n� k .

It suffices to argue under the rescaled metric, that is, fix some 0< ı � ı2 < 1 and let
h� ı�1g . Recall that under the rescaled metric, the arguments in Step 2 show that the
harmonic fiber bundle map ˆh satisfies the pointwise estimates (B-30), (B-31). Since
jRichj � .n� 1/ı and ConjRadh.q/ � c0 � ı

�1 > 2 � 103 in our context, then by the
smoothing theorem due to Dai, Wei and Ye [12], for each fixed small 0 < � < 10�2

there exists some metric with bounded curvature which satisfies

(B-37) e��h� h� � e�h; jrkhij jB1.q;h�/ < Ck.�; n/ for all k 2NC;

and ConjRadh�
.q/�103 . So applying the same scheme as in Step 2 (by the exponential

map), there exists s0.n/=2< s1.n; �/� s0.n/ such that under the smoothing metric h� ,
it holds that

jr
2ˆ

.�/

h
jC 0.Bs1

.q;h�/
C Œr2ˆ

.�/

h
�C˛.Bs1

.q;h�// < C.n; �/;(B-38)

jhrˆ
.�/

h
;rˆ

.�/

h
ig� � ıabj<‰.ıjn; �/� 1 for all x 2 Bs1

.q; h�/:(B-39)

Then ˆh is nondegenerate with respect to the smoothing metric h� . Moreover, we
have the uniform bound on the second fundamental form of the fiber at q ,

(B-40) j IIh� j � C.n/
jr2ˆ

.�/

h
jh�

jrˆ
.�/

h
jh�

� C.�; n/:

Therefore, by the Gauss–Codazzi equation, the sectional curvatures of the fibers are uni-
formly bounded by some constant C.�; n/. Since ˆh is a ‰.ıjn/–Gromov–Hausdorff
map with respect to the metric h, the diameter (under h� ) of the fiber Eq�ˆ

�1
h
.ˆh.q//

satisfies

(B-41) diamh� .Eq/� e� �‰.ıjn/:

From now on, fix �D1=106 . Gromov’s theorem on the almost flat manifolds (combined
with a refinement by Ruh; see [14; 21]) implies there exists an �Gr.n/ > 0 such that if

(B-42) diam2
h�
.Eq/� �Gr.n/;

then the fiber Eq is diffeomorphic to an infra-nilmanifold of dimension n�k . In fact,

(B-43) diam2
h�
.Eq/ � j sech� .Eq/j � e2�

�‰2.ıjn/ �C.n; �/;

so inequality (B-42) immediately holds if we choose ı >0 sufficiently small (depending
on n and c0 ). The proof is complete.

Geometry & Topology, Volume 20 (2016)



Topology and �–regularity on collapsed manifolds with Ricci curvature bounds 2663

References
[1] M T Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds,

Invent. Math. 102 (1990) 429–445 MR1074481

[2] M T Anderson, Hausdorff perturbations of Ricci-flat manifolds and the splitting theo-
rem, Duke Math. J. 68 (1992) 67–82 MR1185818

[3] M T Anderson, The L2 structure of moduli spaces of Einstein metrics on 4–manifolds,
Geom. Funct. Anal. 2 (1992) 29–89 MR1143663

[4] J Cheeger, T H Colding, Lower bounds on Ricci curvature and the almost rigidity of
warped products, Ann. of Math. 144 (1996) 189–237 MR1405949

[5] J Cheeger, T H Colding, On the structure of spaces with Ricci curvature bounded
below, I, J. Differential Geom. 46 (1997) 406–480 MR1484888

[6] J Cheeger, D Gromoll, The splitting theorem for manifolds of nonnegative Ricci
curvature, J. Differential Geometry 6 (1971/72) 119–128 MR0303460

[7] J Cheeger, A Naber, Lower bounds on Ricci curvature and quantitative behavior of
singular sets, Invent. Math. 191 (2013) 321–339 MR3010378

[8] J Cheeger, A Naber, Regularity of Einstein manifolds and the codimension 4 conjec-
ture, Ann. of Math. 182 (2015) 1093–1165 MR3418535

[9] J Cheeger, G Tian, Curvature and injectivity radius estimates for Einstein 4–manifolds,
J. Amer. Math. Soc. 19 (2006) 487–525 MR2188134

[10] S Y Cheng, S T Yau, Differential equations on Riemannian manifolds and their geo-
metric applications, Comm. Pure Appl. Math. 28 (1975) 333–354 MR0385749

[11] T H Colding, A Naber, Sharp Hölder continuity of tangent cones for spaces with a
lower Ricci curvature bound and applications, Ann. of Math. 176 (2012) 1173–1229
MR2950772

[12] X Dai, G Wei, R Ye, Smoothing Riemannian metrics with Ricci curvature bounds,
Manuscripta Math. 90 (1996) 49–61 MR1387754

[13] K Fukaya, T Yamaguchi, The fundamental groups of almost nonnegatively curved
manifolds, Ann. of Math. 136 (1992) 253–333 MR1185120

[14] M Gromov, Almost flat manifolds, J. Differential Geom. 13 (1978) 231–241
MR540942

[15] M Gross, V Tosatti, Y Zhang, Gromov–Hausdorff collapsing of Calabi–Yau manifolds
arXiv:1304.1820

[16] M Gross, P M H Wilson, Large complex structure limits of K3 surfaces, J. Differential
Geom. 55 (2000) 475–546 MR1863732

[17] V Kapovitch, A Petrunin, W Tuschmann, Nilpotency, almost nonnegative curvature,
and the gradient flow on Alexandrov spaces, Ann. of Math. 171 (2010) 343–373
MR2630041

Geometry & Topology, Volume 20 (2016)

http://dx.doi.org/10.1007/BF01233434
http://www.ams.org/mathscinet-getitem?mr=1074481
http://dx.doi.org/10.1215/S0012-7094-92-06803-7
http://dx.doi.org/10.1215/S0012-7094-92-06803-7
http://www.ams.org/mathscinet-getitem?mr=1185818
http://dx.doi.org/10.1007/BF01895705
http://www.ams.org/mathscinet-getitem?mr=1143663
http://dx.doi.org/10.2307/2118589
http://dx.doi.org/10.2307/2118589
http://www.ams.org/mathscinet-getitem?mr=1405949
http://projecteuclid.org/euclid.jdg/1214459974
http://projecteuclid.org/euclid.jdg/1214459974
http://www.ams.org/mathscinet-getitem?mr=1484888
https://projecteuclid.org/euclid.jdg/1214430220
https://projecteuclid.org/euclid.jdg/1214430220
http://www.ams.org/mathscinet-getitem?mr=0303460
http://dx.doi.org/10.1007/s00222-012-0394-3
http://dx.doi.org/10.1007/s00222-012-0394-3
http://www.ams.org/mathscinet-getitem?mr=3010378
http://dx.doi.org/10.4007/annals.2015.182.3.5
http://dx.doi.org/10.4007/annals.2015.182.3.5
http://www.ams.org/mathscinet-getitem?mr=3418535
http://dx.doi.org/10.1090/S0894-0347-05-00511-4
http://www.ams.org/mathscinet-getitem?mr=2188134
http://dx.doi.org/10.1002/cpa.3160280303
http://dx.doi.org/10.1002/cpa.3160280303
http://www.ams.org/mathscinet-getitem?mr=0385749
http://dx.doi.org/10.4007/annals.2012.176.2.10
http://dx.doi.org/10.4007/annals.2012.176.2.10
http://www.ams.org/mathscinet-getitem?mr=2950772
http://dx.doi.org/10.1007/BF02568293
http://www.ams.org/mathscinet-getitem?mr=1387754
http://dx.doi.org/10.2307/2946606
http://dx.doi.org/10.2307/2946606
http://www.ams.org/mathscinet-getitem?mr=1185120
http://projecteuclid.org/euclid.jdg/1214434488
http://www.ams.org/mathscinet-getitem?mr=540942
http://arxiv.org/abs/1304.1820
http://projecteuclid.org/euclid.jdg/1090341262
http://www.ams.org/mathscinet-getitem?mr=1863732
http://dx.doi.org/10.4007/annals.2010.171.343
http://dx.doi.org/10.4007/annals.2010.171.343
http://www.ams.org/mathscinet-getitem?mr=2630041


2664 Aaron Naber and Ruobing Zhang

[18] V Kapovitch, B Wilking, Structure of fundamental groups of manifolds with Ricci
curvature bounded below arXiv:1105.5955

[19] M I Kargapolov, J I Merzljakov, Fundamentals of the theory of groups, Graduate
Texts in Mathematics 62, Springer, New York (1979) MR551207

[20] M S Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik 68,
Springer, New York (1972) MR0507234

[21] E A Ruh, Almost flat manifolds, J. Differential Geom. 17 (1982) 1–14 MR658470

[22] Á Seress, Permutation group algorithms, Cambridge Tracts in Mathematics 152, Cam-
bridge Univ. Press (2003) MR1970241

[23] G Wei, Examples of complete manifolds of positive Ricci curvature with nilpotent
isometry groups, Bull. Amer. Math. Soc. 19 (1988) 311–313 MR940494

[24] T Yamaguchi, Collapsing and pinching under a lower curvature bound, Ann. of Math.
133 (1991) 317–357 MR1097241

[25] T Yamaguchi, A convergence theorem in the geometry of Alexandrov spaces, from:
“Actes de la Table Ronde de Géométrie Différentielle”, (A L Besse, editor), Sémin.
Congr. 1, Soc. Math. France, Paris (1996) 601–642 MR1427772

Department of Mathematics, Northwestern University
Evanston, IL 60208, United States

Department of Mathematics, Princeton University
Fine Hall, Washington Road, Princeton, NJ 08544-1000, United States

anaber@math.northwestern.edu, ruobingz@math.princeton.edu

Proposed: John Lott Received: 5 January 2015
Seconded: Bruce Kleiner, Gang Tian Revised: 4 October 2015

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://arxiv.org/abs/1105.5955
http://www.ams.org/mathscinet-getitem?mr=551207
http://www.ams.org/mathscinet-getitem?mr=0507234
http://projecteuclid.org/euclid.jdg/1214436698
http://www.ams.org/mathscinet-getitem?mr=658470
http://dx.doi.org/10.1017/CBO9780511546549
http://www.ams.org/mathscinet-getitem?mr=1970241
http://dx.doi.org/10.1090/S0273-0979-1988-15653-4
http://dx.doi.org/10.1090/S0273-0979-1988-15653-4
http://www.ams.org/mathscinet-getitem?mr=940494
http://dx.doi.org/10.2307/2944340
http://www.ams.org/mathscinet-getitem?mr=1097241
http://www.ams.org/mathscinet-getitem?mr=1427772
mailto:anaber@math.northwestern.edu
mailto:ruobingz@math.princeton.edu
http://msp.org
http://msp.org

	1. Introduction
	1.1. Epsilon-regularity and the fundamental group
	1.2. Outline of the proof
	1.3. Organization of the paper

	2. Preliminaries
	2.1. Gromov–Hausdorff convergence and group actions
	2.1.1. Basic concepts in Gromov–Hausdorff convergence theory
	2.1.2. Homogeneity and the existence of lines

	2.2. Ricci curvature and noncollapsed epsilon-regularity
	2.3. Geometry of Ricci limit spaces
	2.3.1. The dimension of a Ricci limit space
	2.3.2. The isometry group of a Ricci limit space

	2.4. Ricci curvature and fundamental group
	2.4.1. Nilpotent groups and polycyclic groups
	2.4.2. Almost nilpotency theorems


	3. Motivating examples
	3.1. Anderson's example of codimension 1 collapse
	3.2. Singular fibration of K3 surface
	3.3. The Eguchi–Hanson metric
	3.4. Noncollapse and conjugate radius
	3.5. Isometric nilpotent group action without lines

	4. The structure of almost nilpotent groups
	4.1. Effective generating set of a finite-index subgroup
	4.1.1. Alphabetical ordering in a finitely generated group
	4.1.2. The canonical transversal of a subgroup

	4.2. Basics in commutators calculus
	4.3. Refinement of the lower central series of a nilpotent group
	4.4. Geometric properties of almost nilpotent groups

	5. Quantitative splitting and noncollapse on covering spaces
	5.1. Nonlocalness properties of fibered fundamental groups
	5.2. Symmetry and quantitative splitting of normal covering spaces
	5.3. Quantitative splitting and noncollapse of universal covers
	5.4. Proof of Theorem 5.1

	6. Epsilon-regularity for lower and bounded Ricci curvature
	6.1. Statement and the proof of epsilon-regularity for lower Ricci curvature
	6.2. Harmonic radius and curvature estimates
	6.3. Conjugate radius bound implies maximal nilpotency rank
	6.4. Proof of the main epsilon-regularity theorem

	Appendix A. The generalized Margulis lemma for collapsed manifolds
	Appendix B. Harmonic fiber bundle map for bounded Ricci curvature
	References

