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Unified quantum invariants for integral homology spheres
associated with simple Lie algebras

KAZUO HABIRO

THANG T Q LÊ

For each finite-dimensional, simple, complex Lie algebra g and each root of unity �
(with some mild restriction on the order) one can define the Witten–Reshetikhin–Turaev
(WRT) quantum invariant �g

M
.�/ 2C of oriented 3–manifolds M . We construct an

invariant JM of integral homology spheres M , with values in bZŒq� , the cyclotomic
completion of the polynomial ring ZŒq� , such that the evaluation of JM at each root
of unity gives the WRT quantum invariant of M at that root of unity. This result
generalizes the case g D sl2 proved by Habiro. It follows that JM unifies all the
quantum invariants of M associated with g and represents the quantum invariants as a
kind of “analytic function” defined on the set of roots of unity. For example, �M .�/ for
all roots of unity are determined by a “Taylor expansion” at any root of unity, and also
by the values at infinitely many roots of unity of prime power orders. It follows that
WRT quantum invariants �M .�/ for all roots of unity are determined by the Ohtsuki
series, which can be regarded as the Taylor expansion at q D 1 , and hence by the Lê–
Murakami–Ohtsuki invariant. Another consequence is that the WRT quantum invariants
�
g
M
.�/ are algebraic integers. The construction of the invariant JM is done on the level

of quantum group, and does not involve any finite-dimensional representation, unlike
the definition of the WRT quantum invariant. Thus, our construction gives a unified,
“representation-free” definition of the quantum invariants of integral homology spheres.

57M27; 17B37

1 Introduction

The main goal of the paper is to construct an invariant J
g
M

of integral homology spheres
M associated to each finite-dimensional simple Lie algebra g, which unifies the Witten–
Reshetikhin–Turaev (WRT) quantum invariants at various roots of unity. The invariant
J
g
M

takes values in the completion bZŒq� D lim
 ��n

ZŒq�=..1� q/.1� q2/ � � � .1� qn// of
the polynomial ring ZŒq�, which may be regarded as a ring of analytic functions on
roots of unity. This invariant unifies the quantum invariants at various roots of unity
in the sense that, for each root of unity � , the evaluation ev�.J

g
M
/ at q D � of J

g
M

is
equal to the WRT quantum invariant �g

M
.�/ of M at � whenever �g

M
.�/ is defined.

This invariant is a generalization of the sl2 case constructed by Habiro [26].
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1A The WRT invariant

Witten [84], using not mathematically rigorous path integrals in quantum field theory,
gave a physics interpretation of the Jones polynomial [31] and predicted the existence of
3–manifold invariants associated to every simple Lie algebra and certain integers called
levels. Using the quantum group Uq.sl2/ at roots of unity, Reshetikhin and Turaev [73]
gave a rigorous construction of 3–manifold invariants, which are believed to coincide
with the Witten invariants. These invariants are called the Witten–Reshetikhin–Turaev
(WRT) quantum invariants. Later the machinery of quantum groups helped to generalize
the WRT invariant �g

M
.�/ to the case when g is an arbitrary simple Lie algebra and �

is a root of unity.

In this paper we will focus on the quantum invariants of an integral homology 3–sphere,
ie a closed oriented 3–manifold M such that H�.M;Z/DH�.S

3;Z/.

Let Z �C denote the set of all roots of unity. For each simple Lie algebra g, there is
a subset Zg � Z and the g–WRT invariant of an integral homology sphere M gives a
function

(1) �
g
M
W Zg!C:

(We recall the definition of �g
M
.�/ in Section 8. The definition of �g

M
.�/ for closed

3–manifolds involves the choice of a certain root of � , but it turns out that for integral
homology spheres this choice is irrelevant.)

We are interested in the behavior of the WRT function (1) associated to each Lie
algebra g. It is natural to raise the following questions:

� Is it possible to extend the domain of the map �g
M

to Z in a natural way?

� How strongly are the values at different roots of unity � , � 0 2 Zg related?

� Is there some restriction on the range of the function? In particular, is �g
M
.�/ an

algebraic integer for all g and � ?

� How are the quantum invariants related to finite-type invariants of 3–manifolds
(see Ohtsuki [66], Habiro [20] and Goussarov [19])? In particular, is there
any relation between the quantum invariants and the Lê–Murakami–Ohtsuki
invariant [51]?

1B The ring 1ZŒq� of analytic functions on roots of unity

Define a completion bZŒq� of the polynomial ring ZŒq� by

bZŒq� D lim
 ��

n

ZŒq�=..qI q/n/;
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where, as usual,

.xI q/n WD

nY
jD1

.1�xqj�1/:

The ring bZŒq� may be regarded as the ring of “analytic functions defined on the set
Z of roots of unity”; see Habiro [22; 26]. This statement is justified by the following
facts. For more details, see [26, Section 1.2].

For a root of unity � 2 Z of order r , we have .�I �/n D 0 for n � r . Hence the
evaluation map

ev� W ZŒq�! ZŒ��; f .q/ 7! f .�/;

induces a ring homomorphism

ev� W bZŒq�! ZŒ��:

We write f .�/D ev�.f .q//.

Each element f .q/ 2 bZŒq� defines a function from Z to C . Thus we have a ring
homomorphism

(2) evW bZŒq�!CZ

defined by ev.f .q//.�/D ev�.f .q//. This homomorphism is injective [22], ie f .q/
is determined by the values f .�/ for � 2 Z . Therefore, we may regard f .q/ as a
function on the set Z .

In fact, a function f .q/ 2 bZŒq� can be determined by values on a subset Z 0 of Z if Z 0

has a limit point �0 2Z with respect to a certain topology of Z ; see [22, Theorem 6.3].
In this topology, an element � 2 Z is a limit point of a subset Z 0 � Z if and only if
there are infinitely many � 0 2 Z 0 such that the orders (as roots of unity) of � 0��1 are
prime powers. For example, each f .q/ 2 bZŒq� is determined by the values at infinitely
many roots of unity of prime orders.

For � 2 Z , there is a ring homomorphism

T� W bZŒq�! ZŒ��ŒŒq� ���

induced by the inclusion ZŒq�� ZŒ��Œq�, since, for n� 0, the element .qI q/n ord.�/ is
divisible by .q��/n in ZŒ��Œq�. The image T�.f .q// of f .q/2 bZŒq� may be regarded
as the “Taylor expansion” of f .q/ at � . The homomorphism T� is injective [22,
Theorem 5.2]. Hence, a function f .q/ 2 bZŒq� is determined by its Taylor expansion at
a point � 2 Z . Injectivity of T� implies that bZŒq� is an integral domain.
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The above-explained properties of bZŒq� depend on the ground ring Z of integers in an
essential way. In fact, the similar completion bQŒq� D lim

 ��n
QŒq�=..qI q/n/ is radically

different. For example, bQŒq� is not an integral domain and the Taylor expansion map
T� W bQŒq�!QŒ��ŒŒq� ��� is surjective but not injective; see [22, Section 7.5].

Recently, Manin [59] and Marcolli [60] have promoted the ring bZŒq� as a candidate
for the ring of analytic functions on the nonexistent “field of one element”.

1C Main result and consequences

The following is the main result of the present paper:

Theorem 1.1 For each simple Lie algebra g, there is a unique invariant JM D J
g
M

in
bZŒq� of an integral homology sphere M such that for all � 2 Zg we have

ev�.JM /D �
g
M
.�/:

Theorem 1.1 is proved in Section 8T. It follows from Theorems 2.25, 4.9, 7.3, and 8.1.

The case gD sl2 of Theorem 1.1 was announced in Habiro [21] and proved in [26].
For gD sl2 , the invariant JM has been generalized to invariants of rational homology
spheres with values in modifications of bZŒq� in Beliakova, Blanchet and Lê [5], Lê [50],
Beliakova and Lê [8] and Beliakova, Bühler and Lê [6].

Theorem 1.1 implies that for integral homology 3–spheres, �g
M
.�/ does not depend on

the choice of a root of � that is used in the definition of �g
M
.�/.

We list here a few consequences of Theorem 1.1. For the results stated without proof and
with the sl2 case proved in [26], the proof is the same as the proof of the corresponding
result in [26].

1C1 Analytic continuation of �g
M

to all roots of unity Even if a root of unity
� 2 Z is not contained in Zg , the domain of definition of the WRT function �g

M
, we

have a well-defined value ev�.JM / 2 ZŒ��. By the uniqueness of JM , it would be
natural to define the g–WRT invariant �g

M
.�/ at � 2 Z n Zg as ev�.JM /. We may

regard it as an analytic continuation of �g
M
W Zg!C .

The specializations ev�.JM / are compatible also with the projective version of the g–
WRT invariant

(3) �
Pg
M
W ZPg!C;

where ZPg is another subset of Z . See Section 8.

Geometry & Topology, Volume 20 (2016)



Unified quantum invariants for integral homology spheres 2691

Proposition 1.2 For an integral homology sphere M and for � 2 ZPg , we have

ev�.JM /D �
Pg
M
.�/:

As a consequence, for � 2 Zg\ZPg we have

(4) �
g
M
.�/D �

Pg
M
.�/:

Remark 1.3 For a closed 3–manifold M which is not necessarily an integral homol-
ogy sphere, we do not have (4), but for some values of � we have identities of the
form

�
g
M
.�/D �

Pg
M
.�/z�

g
M
.�/;

where z�g
M
.�/ is an invariant of M satisfying z�g

M
.�/D 1 for M an integral homology

sphere. For details, see eg Blanchet [9], Kirby and Melvin [40], Kohno and Takata [42]
and Lê [49].

1C2 Integrality of quantum invariants An immediate consequence of Theorem 1.1
is the following integrality result:

Corollary 1.4 For any integral homology sphere M and �2Zg , we have �g
M
.�/2ZŒ��.

In particular, �g
M
.�/ is an algebraic integer.

Here we list related integrality results for quantum invariants for closed 3–manifolds,
which are not necessarily integral homology spheres.

H Murakami [63] (see also Masbaum and Roberts [61]) proved that the Psl2 –WRT
invariant — also known as the quantum SO.3/ invariant (see Kirby and Melvin [40]) —
of a closed 3–manifold at � 2 Z of prime order is contained in ZŒ��. This result, for
roots of unity of prime orders, has been generalized to sln by Masbaum and Wenzl [62]
and independently by Takata and Yokota [80], and to all simple Lie algebras by Lê [49].

The case of roots of nonprime orders, conjectured by R Lawrence [45] in the sl2 case,
was developed later. The case gD sl2 of Corollary 1.4 was obtained by Habiro [26].
Beliakova, Chen and Lê [7] proved that � sl2

M
.�/ (which depends on a fourth root of � )

is an algebraic integer for any root of unity � . For general Lie algebras, however, the
proof in [7] does not work. Corollary 1.4 is the first integrality result for general Lie
algebras in the case of nonprime orders.
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1C3 Relationships between quantum invariants at different roots of unity One
can obtain from Theorem 1.1 results about the values of the WRT invariants more
refined than integrality.

Let Qab � C denote the maximal abelian extension of Q, which is the smallest
extension of Q containing Z . The image of the WRT function �g

M
is contained in the

integer ring O.Qab/ of Qab , which is the subring of Qab generated by Z . Note that
an automorphism ˛ 2 Gal.Qab=Q/ maps each root of unity � to a root of unity ˛.�/
of the same order as � . There is a canonical isomorphism

Gal.Qab=Q/Š AutGrp.Z/;

which maps ˛ 2 Gal.Qab=Q/ to its restriction to Z . Here AutGrp.Z/ is the group of
automorphisms of Z , considered as a subgroup of the multiplicative group C n f0g.

Proposition 1.5 For every integral homology sphere M , the g–WRT function

�
g
M
W Z!Qab

is Galois-equivariant, in the sense that, for each automorphism ˛ 2 Gal.Qab=Q/,

�
g
M
.˛.�//D ˛.�

g
M
.�//:

The sl2 case of Proposition 1.5 is mentioned in Habiro [26].

Proposition 1.6 (see [26] for g D sl2 ) We have ev1.JM / D 1 for every integral
homology sphere M .

Proposition 1.6 is proved in Section 8U.

Proposition 1.7 (see [26] for gD sl2 ) For � , � 0 2Z with ord.� 0��1/ a prime power,
we have

�
g
M
.�/� �

g
M
.� 0/ .mod � 0� �/

in ZŒ�; � 0�.

Proposition 1.7 holds also when ord.� 0��1/ is not a prime power, but in this case the
statement is trivial, since � 0� � is a unit in ZŒ�; � 0�.

Corollary 1.8 For every integral homology sphere M and every root of unity � 2 Z
of prime power order, we have

�
g
M
.�/� 1 2 .1� �/ZŒ��:

Consequently, we have �g
M
.�/¤ 0.

For gD sl2 , a refined version of Corollary 1.8 is given in [26, Corollary 12.10].
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1C4 Integrality of the Ohtsuki series When M is a rational homology sphere,
Ohtsuki [67] extracted a power series invariant, � sl2

1 .M / 2QŒŒq� 1��, from the values
of �Psl2

M
.�/ at roots of unity of prime orders. The Ohtsuki series is characterized by

certain congruence relations modulo odd primes. The existence of the Ohtsuki series
invariant for other Lie algebras was proved in Lê [48; 49]; see also Rozansky [75].

The Ohtsuki series �g1.M / 2QŒŒq� 1�� and the unified WRT invariant JM are related
as follows:

Proposition 1.9 (see [26] for gD sl2 ) For every integral homology sphere M , we
have

�
g
1.M /D T1.JM / 2 ZŒŒq� 1��:

In other words, the Ohtsuki series is equal to the Taylor expansion of the unified WRT
invariant at q D 1. Moreover, all the coefficients in the Ohtsuki series are integers.

The fact �g1.M / 2 ZŒŒq� 1�� for gD sl2 was conjectured by Lawrence [45] and first
proved by Rozansky [76]. Here we have general results for all simple Lie algebras.

1C5 Relation to the Lê–Murakami–Ohtsuki invariant The LMO invariant [51]
is a counterpart of the Kontsevich integral for homology 3–spheres; it is a universal
invariant for finite-type invariants of integral homology 3–spheres; see Lê [46]. The
LMO invariant �LMO.M / of a closed 3–manifold takes values in an algebra A.∅/ of
the so-called Jacobi diagrams, which are certain types of trivalent graphs. For each
simple Lie algebra g, there is a ring homomorphism (the weight map)

WgW A.∅/!QŒŒh��:

It was proved in Kuriya, Lê and Ohtsuki [43] that

Wg.�
LMO.M //D �

g
1.M /jqDeh :

Hence, we have the following:

Corollary 1.10 (see [26] for gD sl2 ) For an integral homology 3–sphere M , the
LMO invariant totally determines the WRT invariant �g

M
.�/ for every simple Lie

algebra and every root of unity � 2 Zg .

It is still an open question whether the LMO invariant determines the WRT invariant
for rational homology 3–spheres.
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1C6 Determination of the quantum invariants

Corollary 1.11 (see [26] for g D sl2 ) For an integral homology 3–sphere, JM is
determined by the WRT function �g

M
. (Thus JM and �g

M
have the same strength in

distinguishing two integral homology 3–spheres.) Moreover, both JM and �g
M

are
determined by the values of �g

M
.�/ for � 2 Z 0 , where Z 0 � Z is any infinite subset

with at least one limit point in Z (in the sense explained in Section 1B).

For example, the value of �g
M
.�/ at any root of unity � is determined by the values

�
g
M
.�k/ at �k D exp.2� i=2k/ for infinitely many integers k � 0.

1D Formal construction of the unified invariant

Here we outline the proof of Theorem 1.1. Since we are not able to directly generalize
the proof of the case gD sl2 in [26], we use another approach, which involves deep
results in quantized enveloping algebras (quantum groups). The conceptual definition
of the unified invariant presented here is also different.

1D1 First step: construction of JM The first step is to construct an invariant
JM 2

bZŒq� using the quantum group Uh.g/ of g. Here we use neither the definition of
�
g
M
.�/ nor the quantum link invariants associated to finite-dimensional representations

of Uh.g/. Instead, we use the universal quantum invariant of bottom tangles and the
full twist forms, which are partially defined functionals T˙ on the quantum group
Uh.g/ and play the role of ˙1–framed surgery on link components.

Every integral homology 3–sphere M can be obtained as the result S3
L

of surgery on
S3 along an algebraically split link L with framing ˙1 on each component. Here
a link is said to be algebraically split if the linking number between any two distinct
components is 0. Surgery on two algebraically split, ˙1 framing links L and L0 gives
the orientation-preserving homeomorphic integral homology 3–spheres if and only if
L and L0 are related by a sequence of Hoste moves (see Figure 7); see Habiro [24].
Hence, in order to construct an invariant of integral homology 3–spheres, it suffices to
construct an invariant of algebraically split, ˙1 framing links which is invariant under
the Hoste moves.

To construct such a link invariant, we use the universal quantum invariant of bottom
tangles associated to the quantum group Uh.g/. Here a bottom tangle is a tangle in
a cube consisting of arc components whose endpoints are on the bottom square in
such a way that the two endpoints of each component are placed side by side (see
Section 2F). For an n–component bottom tangle T , the universal g quantum invariant
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JT D J
g
T

of T is defined by using the universal R–matrix and the ribbon element for
the ribbon Hopf algebra structure of Uh.g/, and takes values in the n–fold completed
tensor power Uh.g/

y̋n .

The invariant JM 2
bZŒq� is defined as follows. As above, let L be an n–component

algebraically split framed link with framings "1; : : : ; "n 2 f˙1g, and assume that
S3

L
ŠM . Let T be an n–component bottom tangle whose closure is isotopic to L,

where the framings of T are switched to 0. Define

(5) JM WD .T"1
˝ � � �˝ T"n

/.JT /:

Here T˙W Uh.g/ÜCŒŒh�� are partial maps (ie maps defined on a submodule of Uh )
defined formally by

T˙.x/D hx; r˙1
i;

where r 2Uh.g/ is the ribbon element, and

h � ; � iW Uh.g/ y̋ Uh.g/ÜCŒŒh��

is the quantum Killing form, which is a partial map. The tensor product T"1
˝� � �˝T"n

is not well defined on the whole Uh.g/
y̋n , but is well defined on a bZŒq�–submodule

zKn �Uh.g/
y̋n and we have a bZŒq�–module homomorphism

T"1
˝ � � �˝ T"n

W zKn!
bZŒq�:

Here we regard bZŒq� as a subring of CŒŒh�� by setting q D exp h. The module zKn

contains JT for all n–component, algebraically split 0–framed links T . We will prove
that JM as defined in (5) does not depend on the choice of T and is invariant under
the Hoste moves. Hence JM 2

bZŒq� is an invariant of an integral homology sphere.

One step in the construction of JM is to construct a certain integral form of the
quantum group Uh.g/ which is sandwiched between the Lusztig integral form and the
De Concini–Procesi integral form.

1D2 Second step: specialization to the WRT invariant at roots of unity The next
step is to prove the specialization property ev�.JM /D �

g
M
.�/ for each � 2 Zg . Once

we have proved this identity, uniqueness of JM follows, since every element of bZŒq� is
determined by the values at infinitely many � 2Z of prime power order; see Section 1B.

Organization of the paper In Section 2 we give a general construction of an invariant
of integral homology 3–spheres from what we call a core subalgebra of a ribbon
Hopf algebra. Section 3 introduces the quantized enveloping algebra Uh.g/ and its
subalgebras. In Section 4 we construct a core subalgebra of the ribbon Hopf algebra
Up

h
, which is Uh with a slightly bigger ground ring. From the core subalgebra we get
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the invariant JM of integral homology 3–spheres. In Section 5 we construct an integral
version of the core algebra. Section 6 a (generically noncommutative) grading of the
quantum group is introduced. In Section 7 we prove that JM 2

bZŒq� . In Section 8 we
show that the WRT invariant can be recovered from JM , proving the main results. In
appendices we give an independent proof of a duality result of Drinfel’d and Gavarini
and provide proofs of a couple of technical results used in the main body of the paper.
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2 Invariants of integral homology 3–spheres derived from
ribbon Hopf algebras

In this section, we give the part of the proofs of our main results that can be stated without
giving the details of the structure of the quantized enveloping algebra Uh D Uh.g/.
We introduce the notion of a core subalgebra of a ribbon Hopf algebra and show that
every core subalgebra gives rise to an invariant of integral homology 3–spheres.

2A Modules over CŒŒh��

Let CŒŒh�� be the ring of formal power C–series in the variable h.

Note that CŒŒh�� is a local ring, with maximal ideal .h/ D hCŒŒh��. An element x DP
xkhk 2CŒŒh�� is invertible if and only if the constant term x0 is nonzero.

2A1 h–adic topology, separation and completeness Let V be a CŒŒh��–module.
Then V is equipped with the h–adic topology given by the filtration hkV , k � 0. Any
CŒŒh��–module homomorphism f W V !W is automatically continuous. In general,
the h–adic topology of a CŒŒh��–submodule W of a CŒŒh��–module V is different from
the topology of W induced by the h–adic topology of V .

Suppose I is an index set. Let V I be the set of all collections .xi/i2I , xi 2 V . We
say a collection .xi/i2I 2 V I is 0–convergent in V if, for every positive integer k ,
xi 2 hkV except for a finite number of i 2 I . In this case, the sum

P
i2I xi is
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convergent in the h–adic topology of V . If I is finite, then any collection .xi/i2I is
0–convergent.

The h–adic completion yV of V is defined by

yV D lim
 ��

k

V =hkV:

A CŒŒh��–module V is separated if the natural map V ! yV is injective, which is
equivalent to

T
k hkV D f0g. If V is separated, we identify V with the image of the

embedding V ,! yV .

A CŒŒh��–module V is complete if the natural map V ! yV is surjective.

For a CŒŒh��–submodule W of a completed CŒŒh��–module V , the topological comple-
tion of W in V is the image of �W under the natural map �W ! yV D V . One should
not confuse the topological completion of W and the topological closure of W , the
latter being the smallest closed (in the h–adic topology) subset containing W . See
Example 2.2.

2A2 Topologically free modules For a vector space A over C , let AŒŒh�� denote the
CŒŒh��–module of formal power series

P
n�0 anhn , an 2 A. Then AŒŒh�� is naturally

isomorphic to the h–adic completion of A˝C CŒŒh��.

A CŒŒh��–module V is said to be topologically free if V is isomorphic to AŒŒh�� for some
vector space A. A topological basis of V is the image by an isomorphism AŒŒh��Š V

of a basis of A � AŒŒh��. The cardinality of a topological basis of V is called the
topological rank of V .

It is known that a CŒŒh��–module is topologically free if and only if it is separated,
complete, and torsion-free; see eg [35, Proposition XVI.2.4].

Let I be a set. Let CŒŒh��I D
Q

i2I CŒŒh�� be the set of all collections .xi/i2I , xi 2CŒŒh��.
Let .CŒŒh��I /0�CŒŒh��I be the CŒŒh��–submodule consisting of the 0–convergent collec-
tions. Then .CŒŒh��I /0 Š .CI/ŒŒh�� is topologically free, where CI is the vector space
generated by I .

Note that CŒŒh��I is also topologically free. In fact, we have a CŒŒh��–module iso-
morphism CŒŒh��I Š CI ŒŒh��. If I is infinite, then the topological rank of CŒŒh��I is
uncountable.

For j 2 I , define a collection ıj D ..ıj /i/i2I 2 .CŒŒh��
I /0 by

(6) .ıj /i D ıj ;i D

�
1 if i D j ;

0 if i ¤ j:
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Suppose V is a topologically free CŒŒh��–module with isomorphism f W .CŒŒh��I /0!V .
Let e.i/ D f .ıi/ 2 V . For x 2 V , the collection .xi/i2I D f

�1.x/ is called the
coordinates of x in the topological basis fe.i/g. We then have

(7) x D
X
i2I

xie.i/;

where the sum on the right-hand side converges to x in the h–adic topology of V .

2A3 Formal series modules A CŒŒh��–module V is a formal series CŒŒh��–module
if there is a CŒŒh��–module isomorphism f W CŒŒh��I ! V for a countable set I .

Remark 2.1 Besides the h–adic topology, another natural topology on CŒŒh��I DQ
i2I CŒŒh�� is the product topology. (Recall that the product topology of

Q
i2I CŒŒh��

is the coarsest topology with all the projections pi W
Q

i2I CŒŒh��!CŒŒh�� being contin-
uous.)

Suppose V is a formal series module, with an isomorphism f W CŒŒh��I ! V . Let
e.i/D f .ıi/, where ıi is defined as in (6). The set fe.i/ j i 2 Ig is called a formal
basis of V .

For x 2 V the collection f �1.x/ 2 CŒŒh��I is called the coordinates of x in the
formal basis fe.i/ j i 2 Ig. Unlike the case of topological bases, in general the sumP

i2I xie.i/ does not converge in the h–adic topology of V (but does converge to x

in the product topology). However, it is often the case that V is a CŒŒh��–submodule
of a bigger CŒŒh��–module V 0 in which fe.i/ j i 2 Ig is 0–convergent. Then the sumP

i2I xie.i/, though not convergent in the h–adic topology of V , does converge (to x )
in the h–adic topology of V 0 .

The following example is important for us:

Example 2.2 Suppose V is a topologically free CŒŒh��–module with a countable
topological basis fe.i/ j i 2 Ig. Assume that aW I ! CŒŒh�� is a function such that
a.i/¤ 0 for every i 2 I and .a.i//i2I is 0–convergent. Let V .a/ be the topological
completion in V of the CŒŒh��–span of fa.i/e.i/ j i 2 Ig. Then V .a/ is topologically
free with fa.i/e.i/ j i 2 Ig as a topological basis.

The submodule V .a/ is not closed in the h–adic topology of V . The closure V .a/ of
V .a/ in the h–adic topology is a formal series CŒŒh��–module, with an isomorphism

f W CŒŒh��I ! V; ıi 7! a.i/e.i/:

The topology of V .a/ induced by the h–adic topology of V is the product topology.
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If x 2 V .a/, then we have a unique presentation

(8) x D
X
i2I

xi.a.i/e.i//

with .xi/i2I 2 .CŒŒh��
I /0 .

If x 2 V .a/, then x also has a unique presentation (8), with .xi/i2I 2CŒŒh��I .

2A4 Completed tensor products For two complete CŒŒh��–modules V and V 0 , the
completed tensor product V y̋ V 0 of V and V 0 is the h–adic completion of V ˝V 0 , ie

V y̋ V 0 D lim
 ��

n

.V ˝V 0/=hn.V ˝V 0/:

Suppose both V and V 0 are topologically free with topological bases fb.i/ j i 2 Ig

and fb0.j / j j 2 J g, respectively. Then V y̋ V 0 is topologically free with a topological
basis naturally identified with fb.i/˝ b0.j / j i 2 I; j 2 J g.

Proposition 2.3 Suppose W1 , V1 , W2 and V2 are topologically free CŒŒh��–modules,
where Wj is a submodule of Vj for j D 1; 2.

Then the natural maps W1˝W2! V1˝V2 and W1 y̋ W2! V1 y̋ V2 are injective.

Proof The map W1˝W2! V1˝V2 is the composition of two maps W1˝W2!

W1˝V2 and W1˝V2! V1˝V2 . This reduces the proposition to the case W2D V2 ,
which we will assume.

Let � WW1 ,!V1 be the inclusion map. We need to show that �˝id WW1˝V2!V1˝V2

and � y̋ idW W1 y̋ V2! V1 y̋ V2 are injective.

Since W1˝V2 is separated, we can consider W1˝V2 as a submodule of W1 y̋ V2 .
Then �˝ id is the restriction of � y̋ id. Thus, it is enough to show that � y̋ id is injective.

Suppose x 2W1 y̋ V2 with .� y̋ id/.x/D 0. We have to show that x D 0.

Let fb.i/ j i 2 Ig be a topological basis of V2 . Using a topological basis of W1 one
sees that x has a unique presentation

(9) x D
X
i2I

xi ˝ b.i/

with xi 2W1 , and the collection .xi/i2I is 0–convergent in V1 . Then we have

0D .� y̋ id/.x/D
X
i2I

�.xi/˝ b.i/ 2 V1 y̋ V2:

The uniqueness of the presentation of the form (9) for elements in V1 y̋ V2 implies that
�.xi/D 0 for every i 2 I . Because � is injective, we have xi D 0 for every i . This
means x D 0, and hence � y̋ id is injective.
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2B Topological ribbon Hopf algebra

In this paper, by a topological Hopf algebra H D .H ;�;�; �; �;S/ we mean a
topologically free CŒŒh��–module H of countable topological rank, together with
CŒŒh��–module homomorphisms

�W H y̋ H !H ; �W CŒŒh��!H ; �W H !H y̋ H ;

�W H !CŒŒh��; S W H !H ;

which are the multiplication, unit, comultiplication, counit and antipode of H , re-
spectively, satisfying the usual axioms of a Hopf algebra. For simplicity, we include
invertibility of the antipode in the axioms of Hopf algebra. We denote �.1/ by 1 2H .

Note that H is a CŒŒh��–algebra in the usual (noncomplete) sense, although H is not
a CŒŒh��–coalgebra in general. A (left) H–module V (in the usual sense) is said to
be topologically free if V is topologically free as a CŒŒh��–module. In that case, by
continuity the left action H ˝V ! V induces a CŒŒh��–module homomorphism

H y̋ V ! V:

For details on topological Hopf algebras and topologically free modules, see eg [35,
Section XVI.4].

Let �Œn�W H y̋n!H and �Œn�W H !H
y̋n be respectively the multiproduct and the

multicoproduct defined by

�Œn� D �.id y̋ �/ � � � .id y̋ .n�3/ y̋ �/.id y̋ .n�2/ y̋ �/;

�Œn� D .id y̋ .n�2/ y̋ �/.id y̋ .n�3/ y̋ �/ � � � .id y̋ �/�;

with the convention that �Œ1� D �Œ1� D id, �Œ0� D � , and �Œ0� D �.

A universal R–matrix [17] for H is an invertible element RD
P
˛˝ˇ 2H y̋ H

satisfying
R�.x/R�1

D

X
x.2/˝x.1/ for x 2H ;

.�˝ id/.R/DR13R23; .id˝�/.R/DR13R12;

where �.x/ D
P

x.1/ ˝ x.2/ (Sweedler’s notation), R12 D
P
˛ ˝ ˇ ˝ 1, R13 DP

˛˝ 1˝ˇ , and R23 D
P

1˝˛˝ˇ . A Hopf algebra with a universal R–matrix is
called a quasitriangular Hopf algebra. The universal R–matrix satisfies

R�1
D .S ˝ id/.R/D .id˝S�1/.R/; .�˝ id/.R/D .id˝ �/.R/D 1;

.S ˝S/.R/DR:(10)
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A quasitriangular Hopf algebra .H ;R/ is called a ribbon Hopf algebra [72] if it is
equipped with a ribbon element, which is defined to be an invertible, central element
r 2H satisfying

r2
D uS.u/; S.r/D r; �.r/D 1; �.r/D .r˝ r/.R21R/�1;

where uD
P

S.ˇ/˛ 2H and R21 D
P
ˇ˝˛ 2H

y̋2 .

The element g WD ur�1 2H , called the balanced element, satisfies

�.g/D g˝g; S.g/D g�1; gxg�1
D S2.x/ for x 2H :

See [35; 68; 82] for more details on quasitriangular and ribbon Hopf algebras.

2C Topologically free H–modules

The ground ring CŒŒh�� is considered as a topologically free H–module, called the
trivial module, by the action of the counit:

a �x D �.a/x:

Suppose V and W are topologically free H–modules. Then V y̋ W has the structure
of an H y̋H–module, given by

.a˝ b/ � .x˝y/D .a �x/˝ .b �y/:

Using the comultiplication, V y̋ W has an H–module structure given by

a � .x˝y/ WD�.a/ � .x˝y/D
X

a.1/x˝ a.2/y:

An element x 2 V is called invariant (or H–invariant) if, for every a 2H ,

a �x D �.a/x:

The set of invariant elements of V is denoted by V inv . The following is standard and
well-known:

Proposition 2.4 Suppose that V and W are topologically free H–modules and
f W V y̋ W !CŒŒh�� is a CŒŒh��–module homomorphism.

(a) An element x 2 V y̋ W is invariant if and only if, for every a 2H ,

(11) .S.a/˝ 1/ �x D .1˝ a/ �x:

(b) Dually, f is an H–module homomorphism if and only if, for every a 2H and
x 2 V y̋ W ,

f Œ.a˝ 1/ � .x/�D f Œ.1˝S.a// � .x/�:
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(c) Suppose f is an H–module homomorphism and x 2 V is invariant. Then the
CŒŒh��–module homomorphism

fx W W !CŒŒh��; y 7! f .x˝y/;

is an H–module homomorphism.

(d) Suppose gW V !CŒŒh�� is an H–module homomorphism. Then, for every i with
1� i � n,

.id y̋ .i�1/ y̋ g y̋ id y̋ .n�i//..V
y̋n/inv/� .V

y̋ .n�1//inv:

Proof (a) Suppose one has (11). Let a 2H with �.a/D
P

a.1/˝ a.2/ . Assume
x D

P
x0˝x00 . By definition,

a �x D
X

.a.1/˝ a.2// � .x
0
˝x00/D

X
.a.1/˝ 1/.1˝ a.2// � .x

0
˝x00/

D

X
.a.1/˝ 1/ � .x0˝ a.2/ �x

00/

D

X
.a.1/˝ 1/.S.a.2// �x

0
˝x00/

D

X
.a.1/S.a.2//˝ 1/ � .x0˝x00/D �.a/x;

which shows that x is invariant.

Conversely, suppose x is invariant. From the axioms of a Hopf algebra,

1˝ aD
X

.S.a.1//˝ 1/�.a.2//:

Applying both sides to x , we have

.1˝ a/ �x D
X

.S.a.1//˝ 1/ � .a.2/ �x/

D

X
.S.a.1//˝ 1/ � .�.a.2//x/ by invariance

D .S.a/˝ 1/ �x;

which proves (11).

(b) The proof of (b) is similar and is left for the reader. Statement (b) is mentioned in
the textbooks [30, Section 6.20] and [41, Section 6.3.2].

(c) Let a 2H and y 2W . One has

fx.a �y/D f .x˝ .a �y//

D f .S�1.a/ �x˝y/ by part (b)

D �.S�1.a//f .x˝y/ by invariance of x

D �.a/fx.y/ since �.S�1.a//D �.a/:
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This proves fx is an H–module homomorphism.

(d) The map zg WD id y̋ .i�1/ y̋ g y̋ id y̋ .n�i/ is also an H–module homomorphism.
Hence, for every a 2H and x 2 .V

y̋n/inv ,

a � zg.x/D zg.a �x/D zg.".a/x/D ".a/zg.x/:

This shows zg.x/ is invariant.

2D Left image of an element

Let V and W be topologically free CŒŒh��–modules.

Suppose x 2 V y̋ W . Choose a topological basis fe.i/ j i 2 Ig of W . Then x can be
uniquely presented as an h–adically convergent sum

(12) x D
X
i2I

xi ˝ e.i/;

where fxi 2 V j i 2 Ig is 0–convergent. The left image Vx of x 2 V y̋ W is the
topological closure (in the h–adic topology of V ) of the CŒŒh��–span of fxi j i 2 Ig.
It is easy to show that Vx does not depend on the choice of the topological basis
fe.i/ j i 2 Ig of W .

Proposition 2.5 Suppose V;W are topologically free H–modules. Let x 2 V y̋ W

and let Vx � V be the left image of x .

(a) If x is H–invariant, then Vx is H–stable, ie H �Vx � Vx .

(b) If .f y̋ g/.x/ D x , where f W V ! V and gW W ! W are CŒŒh��–module
isomorphisms, then f .Vx/D Vx .

Proof Let fe.i/ j i 2 Ig be a topological basis of W and let xi be as in (12).

(a) By Proposition 2.4(a), the H–invariance of x implies that, for every a 2H ,

(13)
X
i2I

a �xi ˝ e.i/D
X
j2I

xj ˝S�1.a/ � e.j /:

Using the topological basis fe.i/g, we have the structure constants

S�1.a/ � e.j /D
X
i2I

ai
j e.i/;

where ai
j 2CŒŒh��. Using this expression in (13),X

i2I

a �xi ˝ e.i/D
X
i2I

X
j2I

ai
j xj ˝ e.i/:
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The uniqueness of expression of the form (12) shows that

a �xi D

X
j2I

ai
j xj 2 Vx :

Since the CŒŒh��–span of xi is dense in Vx and the action of a is continuous in the
h–adic topology of V , we have a �Vx � Vx .

(b) Using x D .f y̋ g/.x/, we have

x D
X

i

f .xi/˝g.ei/:

Since g is a CŒŒh��–module isomorphism, fg.ei/g is a topological basis of W . It
follows that Vx is the closure of the CŒŒh��–span of ff .xi/ j i 2 Ig. At the same time,
Vx is the closure of the CŒŒh��–span of fxi j i 2 Ig. Hence, we have f .Vx/D Vx .

2E Adjoint action and ad-invariance

Suppose H is a topological ribbon Hopf algebra. The (left) adjoint action

adW H y̋ H !H

of H on itself is defined by

ad.x˝y/D
X

x.1/yS.x.2//:

It is convenient to use an infix notation for ad:

x Fy D ad.x˝y/:

We regard H as a (topologically free) H –module via the adjoint action, unless
otherwise stated. Then H

y̋n becomes a topologically free H–module, for every n� 0.
The action of x 2H on y 2H

y̋n is denoted by x Fn y .

To emphasize the adjoint action, we say that a CŒŒh��–submodule V �H
y̋n is ad-stable

if V is an H–submodule of H
y̋n . An element x 2H

y̋n is ad-invariant if it is an
invariant element of H

y̋n under the adjoint action. For example, an element of H is
ad-invariant if and only if it is central.

For ad-stable submodules V �H
y̋n and W �H

y̋m , a CŒŒh��–module homomorphism
f W V !W is ad-invariant if f is an H–module homomorphism.

In particular, a linear functional f W V ! CŒŒh��, where V �H
y̋n , is ad-invariant if

V is ad-stable and, for x 2H and y 2 V ,

f .x Fn y/D �.x/f .y/:

Geometry & Topology, Volume 20 (2016)



Unified quantum invariants for integral homology spheres 2705

T1 T2 T3
L1 L2 L3

Figure 1: A 3–component bottom tangle T D T1 [ T2 [ T3 (left) and its
closure cl.T /DL1[L2[L3 (right)

The main source of ad-invariant linear functionals comes from quantum traces. Here
the quantum trace trV

q W H ! CŒŒh�� for a finite-dimensional representation V (ie a
topologically free H –module of finite topological rank) is defined by

trV
q .x/D trV .gx/ for x 2H ;

where trV denotes the trace in V . It is known that trV
q W H !CŒŒh�� is ad-invariant.

2F Bottom tangles

Here we recall the definition of bottom tangles from [23, Section 7.3].

An n–component bottom tangle T DT1[� � �[Tn is a framed tangle in a cube consisting
of n arc components T1; : : : ;Tn such that all the endpoints of the Ti are in a bottom
line and that, for each i , the component Ti runs from the 2i th endpoint to the .2i�1/st

endpoint, where the endpoints are counted from the left. See Figure 1 (left) for an
example. In figures, framings are specified by the blackboard framing convention.

The closure cl.T / of T is the n–component, oriented, ordered framed link in S3 ,
obtained from T by pasting a “[–shaped tangle” to each component of L, as depicted
in Figure 1 (right). For any oriented, ordered framed link L, there is a bottom tangle
whose closure is isotopic to L.

The linking matrix of a bottom tangle T D T1 [ � � � [ Tn is defined as that of the
closure T . Thus the linking number of Ti and Tj , i ¤ j , is defined as the linking
number of the corresponding components in cl.T /, and the framing of Ti is defined
as the framing of the closure of Ti .

A link or a bottom tangle is called algebraically split if the linking matrix is diagonal.

2G Universal invariant and quantum link invariants

Reshetikhin and Turaev [72] constructed quantum invariants of framed links col-
ored by finite-dimensional representations of a ribbon Hopf algebra, eg the quantum
group Uh.g/. Lawrence [44], Reshetikhin [70], Ohtsuki [64] and Kauffman [36]
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Figure 2: Fundamental tangles: vertical line, positive and negative crossings,
local minimum and local maximum. Here the orientations are arbitrary.

constructed “universal quantum invariants” of links and tangles with values in (quotients
of) tensor powers of the ribbon Hopf algebra, where the links and tangles are not colored
by representations. We recall here construction of link invariants via the universal
invariant of bottom tangles. We refer the readers to [23] for details.

Fix a ribbon Hopf algebra H . Let T be a bottom tangle with n components. We
choose a diagram for T , which is obtained from copies of fundamental tangles — see
Figure 2 — by pasting horizontally and vertically. For each copy of fundamental tangle
in the diagram of T , we put elements of H with the rule described in Figure 3.

We set

JT WD

X
x1˝ � � �˝xn 2H

y̋n;

where each xi is the product of the elements put on the i th component Ti , with
product taken in the order reversing the order of the orientation. The (generally infinite)
sum comes from the decompositions of R˙1 as (infinite) sums of tensor products. It
is known that JT gives an isotopy invariant of bottom tangles, called the universal
invariant of T . Moreover, JT is ad-invariant [38]; see also [23].

Let �1; : : : ; �nW H !CŒŒh�� be ad-invariant. In other words, �1; : : : ; �n are H–module
homomorphisms. As explained in [23], the quantity

.�1 y̋ � � � y̋ �n/.JT / 2CŒŒh��

is a link invariant of the closure link cl.T / of T .

1 S 0.˛/ S 0.ˇ/

S 0. Ň/
1

1g g�1

S 0.x̨/

Figure 3: How to put elements of H on the strings. Here RD
P
˛˝ˇ and

R�1 D
P
x̨ ˝ Ň . For each string in the positive and the negative crossings,

“S 0” should be replaced by id if the string is oriented downward and by S

otherwise.
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In particular, if �1; : : : ; �n are the quantum traces trV1
q ; : : : ; tr

Vn
q in finite-dimensional

representations V1; : : : ;Vn , respectively, then

.trV1
q
y̋ � � � y̋ trVn

q /.JT / 2CŒŒh��

is the quantum link invariant for cl.T / colored by the representations V1; : : : ;Vn .

2H Mirror image of bottom tangles

Definition 2.6 A mirror homomorphism of a topological ribbon Hopf algebra H is
an h–adically continuous C–algebra homomorphism 'W H !H satisfying

.' y̋ '/RDR�1
21 ;(14)

'.g/D g:(15)

In general, such a ' is not a CŒŒh��–algebra homomorphism. In fact, what we will have
in the future is '.h/D�h.

For a bottom tangle T with diagram D let the mirror image of T be the bottom
tangle whose diagram is obtained from D by switching over/under crossing at every
crossing.

Proposition 2.7 Suppose ' is a mirror homomorphism of a ribbon Hopf algebra H .
If T 0 is the mirror image of an n–component bottom tangle T , then

JT 0 D '
y̋n.JT /:

Proof Let D be a diagram of T . By rotations at crossings if necessary, we can
assume that the two strands at each crossing of D are oriented downwards. Then at
each crossing we assign ˛ and ˇ to the strands if the crossing is positive, and we
assign Ň and x̨ to the strands if it is negative, at the same spots where we would
assign ˛ and ˇ if the crossing were positive; see Figure 4. Here RD

P
˛˝ˇ and

R�1 D
P
x̨ ˝ Ň . Condition (14) implies thatX
Ň ˝ x̨ D

X
'.˛/˝'.ˇ/;

X
˛˝ˇ D

X
'. Ň/˝'.x̨/:

Together with (15) this shows that the assignments to strands of diagram D0 of T 0 can
be obtained by applying ' to the corresponding assignments to strands of D . Since '
is a C–algebra homomorphism, we get JT 0 D '

y̋n.JT /.
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˛ ˇ Ň x̨

Figure 4: Assignments on positive and negative crossings

2I Braiding and transmutation

Let RD
P
˛˝ˇ be the R–matrix. The braiding for H and its inverse

 ˙1
W H y̋ H !H y̋ H

are given by

(16)  .x˝y/D
X

.ˇ Fy/˝ .˛ Fx/;  �1.x˝y/D
X

.S.˛/Fy/˝ .ˇ Fx/:

The maps �, � and � are H –module homomorphisms. In particular, we have

(17) x Fyz D
X

.x.1/ Fy/.x.2/ F z/ for x;y; z 2H :

In general, � and S are not H–module homomorphisms, but the twisted versions of
� and S , introduced by Majid (see [57; 58]),

�W H !H y̋ H ; S W H !H ;

defined by

�.x/D
X

x.1/S.ˇ/˝ .˛ Fx.2//D
X

.ˇ Fx.2//˝˛x.1/;(18)

S.x/D
X

ˇS.˛ Fx/D
X

S�1.ˇ Fx/S.˛/;(19)

for x 2H , are H –module homomorphisms. Geometric interpretations of � and S

are given in [23].

Remark 2.8 H WD .H ;�;�; �; �;S/ forms a braided Hopf algebra in the braided
category of topologically free H–modules, called the transmutation of H [57; 58].

2J Clasp bottom tangle

Let CC be the clasp tangle depicted in Figure 5. We call c D JCC 2H
y̋2 the clasp

element for H . With RD
P
˛˝ˇ D

P
˛0˝ˇ0 , we have

(20) c D .S y̋ id/.R21R/D
X

S.˛/S.ˇ0/˝˛0ˇ:

Let C� be the mirror image of CC — see Figure 6 — and c� D JC� 2H
y̋2 .
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Figure 5: The clasp tangle CC

Let .CC/0 be the tangle obtained by reversing the orientation of the second component
of CC , and .CC/00 be the result of putting .CC/0 on top of the tangle

(see Figure 6). By the geometric interpretation of S — see [23, Formula (8-10)] — we
have

J.CC/00 D .id y̋ S/JCC :

Since .CC/00 is isotopic to C� , we have

(21) c� D .id y̋ S/.c/:

2K Hoste moves

It is known that every integral homology 3–sphere can be obtained by surgery on S3

along an algebraically split link with ˙1 framings.

The following refinement of the Kirby–Fenn–Rourke theorem on framed links was first
essentially conjectured by Hoste [28]. (Hoste stated it in a more general form related
to Rolfsen’s calculus for rationally framed links.)

Theorem 2.9 [24] Let L and L0 be two nonoriented, unordered, algebraically split
˙1–framed links in S3 . Then L and L0 give orientation-preserving homeomorphic
results of surgery if and only if L and L0 are related by a sequence of ambient isotopy
and Hoste moves. (Here a Hoste move is a Fenn–Rourke (FR) move between two
algebraically split, ˙1–framed links; see Figure 7.)

Figure 6: The negative clasp C� (left) and .CC/00 are isotopic.
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...

...

...

...

...

˙1

K

surgery
along K

inverse
operation

�1 full twists

Figure 7: A Hoste move (including the case when there are no vertical
strands). Here both these two framed links are algebraically split and ˙1–
framed.

Theorem 2.9 implies that, to construct an invariant of integral homology spheres, it
suffices to construct an invariant of algebraically split, ˙1–framed links which is
invariant under the Hoste moves.

Lemma 2.10 Suppose f is an invariant of oriented, unordered, algebraically split
˙1–framed links which is invariant under Hoste moves. Then f .L/ does not depend
on the orientation of the link L. Consequently, f descends to an invariant of inte-
gral homology 3–spheres, ie if the results of surgery along two oriented, unordered,
algebraically split ˙1–framed links L and L0 are homeomorphic integral homology
3–spheres, then f .L/D f .L0/.

Proof Suppose K is a component of L so that LDL1[K . We will show that f
does not depend on the orientation of K by induction on the unknotting number of K .

First assume that K is an unknot. We first apply the Hoste move to K , then apply the
Hoste move in the reverse way, obtaining L1[ .�K/, where �K is the orientation-
reversal of K . This shows f .L1[K/D f .L1[ .�K//.

Suppose K is an arbitrary knot with positive unknotting number. We can use a Hoste
move to realize a self-crossing change of K , reducing the unknotting number. Induction
on the unknotting number shows that f does not depend on the orientation of K .

2L Definition of the invariant JM for the case when the ground ring is a
field

In this subsection, we explain a construction of an invariant of integral homology
spheres associated to a ribbon Hopf algebra over a field k, equipped with “full twist
forms”. In this subsection, and only here, we will assume that H is a ribbon Hopf
algebra over a field k. This assumption simplifies the definition of the invariant.
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Figure 8: The trivial bottom tangle

2L1 Full twist forms Recall that c D JCC 2H ˝H is the universal invariant of
the clasp bottom tangle and r is the ribbon element.

A pair of ad-invariant linear functionals TC , T�W H ! k are called full twist forms
for H if

(22) .T˙˝ id/.c/D r˙1:

The following lemma essentially shows how the universal link invariant behaves under
the Hoste move if there are full twist forms:

Lemma 2.11 Suppose that a ribbon Hopf algebra H admits full twist forms .TC; T�/.
Let T D T1 [ � � � [Tn be an n–component bottom tangle .n � 1/ such that the first
component T1 of T is a 1–component trivial bottom tangle (see Figure 8). Let
T 0 D T 0

2
[ � � � [T 0n be the .n�1/–component bottom tangle obtained from T nT1 D

T2[� � �[Tn by surgery along the closure of T1 with framing ˙1 (see Figure 9). Then
we have

(23) JT 0 D .T˙˝ id˝.n�1//.JT /:

Proof In this proof we use the universal invariant for tangles that are not bottom
tangles. For details, see [23, Section 7.3].

If Tp;q is a .pCqC1/–component tangle as depicted in Figure 10, left, with p , q � 0,
then we have

JTp;q
D .id˝ id˝p

˝S˝q/.id˝�ŒpCq�/.c/:

. . .

tangle t

...
...

...

T2 TnT1

. . .

tangle t

...
...

T 0
2

T 0n

�1

Figure 9: The tangles T (left) and T 0 (right)

Geometry & Topology, Volume 20 (2016)
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... ...

......

... ...

......

T1
p q p q

�1

Figure 10: The tangles Tp;q (left) and T 0p;qI˙1 (right)

The tangle T 0
p;qI˙1

obtained from Tp;q nT1 by surgery along the closure of the first
component T1 of Tp;q with framing ˙1 (see Figure 10, right) has the universal
invariant

JT 0
p;qI˙1

D .id˝p
˝S˝q/�ŒpCq�.r˙1/:

Since T˙ is a full twist form, it follows that

.T˙˝ id˝.pCq//.JTp;q
/D JT 0p;q

:

The general case follows from the above case and functoriality of the universal invariant,
since T can be obtained from some Tp;q by tensoring and composing appropriate
tangles.

2L2 Invariant of integral homology 3–spheres We will show here that a ribbon
Hopf algebra H with full twist forms T˙ gives rise to an invariant of integral homology
spheres.

Suppose that T is an n–component bottom tangle with zero linking matrix and
"1; : : : ; "n 2 f1;�1g. Let M DM.T I "1; : : : ; "n/ be the oriented 3–manifold obtained
by surgery on S3 along the framed link LDL.T I "1; : : : ; "n/, which is the closure link
of T with the framing on the i th component switched to "i . Since L is an algebraically
split link with ˙1 framing on each component, M is an integral homology 3–sphere.
Every integral homology 3–sphere can be obtained in this way.

Proposition 2.12 Suppose H is a ribbon Hopf algebra with full twist forms T˙ and
M DM.T I "1; : : : ; "n/ is an integral homology 3–sphere. Then

JM WD .T"1
˝ : : :˝ T"n

/.JT / 2 k

is an invariant of M . In other words, if M.T I "1; : : : ; "n/ŠM.T 0I "0
1
; : : : ; "0n0/, then

.T"1
˝ : : :˝ T"n

/.JT /D .T"0
1
˝ : : :˝ T"0

n0
/.JT 0/:
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T T

Figure 11: Modification of a bottom tangle with a braid of bands

Proof Since T˙ are ad-invariant, .T"1
˝ : : :˝ T"n

/.JT / depends only on "1; : : : ; "n

and the oriented, ordered framed link cl.T /, but not on the choice of T ; see eg [23,
Section 11.1]. This shows .T"1

˝ : : :˝ T"n
/.JT / is an invariant of the framed link

L.T I "1; : : : ; "n/.

We now show that .T"1
˝: : :˝T"n

/.JT / does not depend on the order of the components
of L. Suppose LD L.T I "1; : : : ; "n/ and L0 is the same L, with the orders of the
.iC1/st and .iC2/nd components switched. Then L0 D L.T 0I "0

1
; : : : ; "0n/, where

T 0 is T on top of a simple braid of bands which switches the .iC1/st and .iC2/nd

components; see Figure 11. Also, "0j D "j for j ¤ i C 1, i C 2, and "0
iC1
D "iC2 and

"0
iC2
D "iC1 .

According to the geometric interpretation of the braiding [23, Proposition 8.1],

JT 0 D .id˝i
˝ ˝ id˝n�i�2/.JT /:

By (16),

 .x˝y/D
X

.ˇ Fy/˝ .˛ Fx/; where RD
X

˛˝ˇ:

Since .�˝ �/.R/D 1 and T˙ are ad-invariant,

.T"1
˝ : : :˝ T"n

/.JT /D .T"0
1
˝ : : :˝ T"0n/.JT 0/:

Thus, .T"1
˝ : : :˝ T"n

/.JT / is an invariant of oriented, unordered framed links.

By Lemma 2.11, .T"1
˝� � �˝T"n

/.JT / is invariant under the Hoste moves. Lemma 2.10
implies that .T"1

˝ � � �˝ T"n
/.JT / descends to an invariant of integral homology 3–

spheres.

2L3 Examples of full twist forms: factorizable case A finite-dimensional, quasi-
triangular Hopf algebra over a field k is said to be factorizable if the clasp element
c 2H ˝k H is nondegenerate in the sense that there exist bases fc0.i/ j i 2 Ig and
fc00.i/ j i 2 Ig of H such that

c D
X
i2I

c0.i/˝ c00.i/:
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This definition of factorizability is equivalent to the original definition by Reshetikhin
and Semenov-Tian-Shansky [71].

Suppose H is a factorizable ribbon Hopf algebra. The nondegeneracy condition shows
that there is a unique bilinear form, called the clasp form,

L W H ˝H ! k;

such that, for every x 2H ,

(24) .L ˝ id/.x˝ c/D x; .id˝L /.c˝x/D x:

Using the ad-invariance of c , one can show that L W H ˝H ! k is ad-invariant.
Since r˙1 are ad-invariant, the form T˙W H ! k defined by

(25) T˙.x/ WDL .r˙1
˝x/

is ad-invariant and satisfies (22), due to (24). Hence, TC and T� are full twist
forms for H , and defines an invariant of integral homology 3–sphere according
to Proposition 2.12.

Remark 2.13 Given a finite-dimensional, factorizable, ribbon Hopf algebra H , one
can construct the Hennings invariant for closed 3–manifolds [27; 37; 65; 38; 55; 77;
83; 23]. The invariant given in Proposition 2.12 constructed from the full twist forms
in (25) is equal to the Hennings invariant.

2M Partially defined twist forms and invariant JM

Let us return to the case when H is a ribbon Hopf algebra over CŒŒh��. Recall that
H is a topologically free H–module with the adjoint action. In general H does not
admit full twist forms.

In the construction of the invariant of integral homology 3–spheres in Proposition 2.12,
one first constructs the universal invariant of algebraically split tangles JT , then feeds
the result to the functionals T"1

˝� � �˝T"n
, which come from the twist forms T˙ . We

will show that the conclusion of Proposition 2.12 holds true if the twist forms T˙ are
defined on a submodule large enough so that the domain of T"1

˝ � � �˝ T"n
contains

all the values of JT , with T algebraically split bottom tangles.

2M1 Partially defined twist forms Suppose X �H is a topologically free CŒŒh��–
submodule. By Proposition 2.3 all the natural maps X ˝n ! X

y̋n ! H
y̋n and

X y̋ H
y̋ .n�1/ ! H

y̋n are injective. Hence we will consider X ˝n , X
y̋n , and

X y̋ H
y̋ .n�1/ as submodules of H

y̋n . This will explain the meaning of statements
like “c 2X y̋ H ”.
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Definition 2.14 A twist system T D .T˙;X / of a topological ribbon Hopf algebra H

consists of a topologically free CŒŒh��–submodule X �H and a pair of CŒŒh��–linear
functionals T˙W X !CŒŒh�� satisfying the following conditions:

(i) X is ad-stable (ie X is stable under the adjoint action of H ) and T˙ are
ad-invariant.

(ii) c 2X y̋ H .

(iii) One has
.T˙ y̋ id/.c/D r˙1:

Recall that, for an n–component bottom tangle T with zero linking matrix and
"1; : : : ; "n 2 f1;�1g, M.T I "1; : : : ; "n/ is the integral homology sphere obtained by
surgery on S3 along the framed link L.T I "1; : : : ; "n/, which is the closure link of T

with the framing on the i th component switched to "i .

Proposition 2.15 Suppose T D .T˙;X / is a twist system of a topological ribbon Hopf
algebra H such that JT 2X

y̋n for any n–component algebraically split 0–framed
bottom tangle T . Let M DM.T I "1; : : : ; "n/ be an integral homology 3–sphere. Then

JM WD .T"1
y̋ � � � y̋ T"n

/.JT / 2CŒŒh��

is an invariant of M . In other words, if M.T I "1; : : : ; "n/DM.T 0I "0
1
; : : : ; "0n0/, then

.T"1
y̋ � � � y̋ T"n

/.JT /D .T"0
1
y̋ � � � y̋ T"0

n0
/.JT 0/:

Proof First we show the following claim, which is a refinement of Lemma 2.11:

Claim Let T and T 0 be tangles as in Lemma 2.11. Then JT 2X y̋ H
y̋ .n�1/ and

(26) JT 0 D .T˙ y̋ id y̋ .n�1//.JT / 2H
y̋ .n�1/:

Proof of claim If Tp;q is a .pCqC1/–component tangle as depicted in Figure 10
(left) with p , q � 0, then we have

JTp;q
D .id y̋ id y̋p y̋ S

y̋ q/.id y̋ �ŒpCq�/.c/:

Since c 2X y̋ H , we have

JTp;q
2X y̋ H

y̋pCq:

Since T is obtained from Tp;q by tensoring and composing appropriate tangles which
do not involve the first component, we also have

JT 2X y̋ H
y̋n:
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Figure 12: The Borromean tangle

The remaining part of the proof follows exactly the proof of Lemma 2.11. One first
verifies the case of Tp;q using conditions (ii) and (iii) in the definition of twist system,
from which the general case follows. This proves the claim.

Using the ad-invariance of T˙ and (26), one can repeat the proof of Proposition 2.12
verbatim, replacing ˝ by y̋ everywhere, to get Proposition 2.15.

2M2 Values of the universal invariant of algebraically split tangles In Proposition
2.15, we need JT 2 X

y̋n for an n–component bottom tangle T with zero linking
matrix. To help prove a statement like that, we use the following result.

Let Kn � H
y̋n, n � 0, be a family of subsets. A CŒŒh��–module homomorphism

f W U
y̋a

h
!U

y̋ b
h

, a; b � 0, is said to be .Kn/–admissible if we have

(27) f.i;j/.KiCjCa/� KiCjCb

for all i; j � 0. Here f.i;j/ WD id y̋ i y̋ f y̋ id y̋ j .

Proposition 2.16 (see [23, Corollary 9.15]) Let Kn �H
y̋n, n� 0, be a family of

subsets such that

(i) 1CŒŒh�� 2 K0 , 1H 2 K1 , b 2 K3 ,

(ii) for x 2 Kn and y 2 Km one has x˝y 2 KnCm , and

(iii) each of �,  ˙1 , � and S is .Kn/–admissible.

Then we have JT 2 Kn for any n–component algebraically split, 0–framed bottom
tangle T .

Here b 2U
y̋3

h
is the universal invariant of the Borromean bottom tangle depicted in

Figure 12.
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2N Core subalgebra

We define here a core subalgebra of a topological ribbon Hopf algebra, and show that
every core subalgebra gives rise to an invariant of integral homology 3–spheres.

In the following we use overline to denote the closure in the h–adic topology of H
y̋n .

A topological Hopf subalgebra of a topological Hopf algebra H is a CŒŒh��–subalgebra
H 0 �H such that H 0 is topologically free as a CŒŒh��–module and

�.H 0/�H 0 y̋ H 0; S˙1.H 0/�H 0:

In general, H 0 is not closed in H .

Definition 2.17 A topological Hopf subalgebra X �H of a topological ribbon Hopf
algebra H is called a core subalgebra of H if:

(i) X is H–ad-stable, ie it is an H–submodule of H .

(ii) R 2X ˝X and g 2X .

(iii) The clasp element c , which is contained in X ˝X by (ii) (see below), has a
presentation

(28) c D
X
i2I

c0.i/˝ c00.i/;

where each of the two sets fc0.i/ j i 2 Ig and fc00.i/ j i 2 Ig is
� 0–convergent in H , and
� a topological basis of X .

Some clarifications are in order. As a topological Hopf subalgebra, X is topologically
free as a CŒŒh��–module. By Proposition 2.3, all the natural maps X ˝n!X

y̋n!

H
y̋n are injective. We will consider X ˝n as a CŒŒh��–submodule of H

y̋n in (ii)
above when we take its closure in the h–adic topology of H

y̋n . Furthermore, since
R�1 D .S y̋ id/.R/ and g�1 D S.g/, condition (ii) implies that R˙1 2X ˝X and
g˙1 2 X . Since JT , the universal invariant of an n–component bottom tangle T ,
is built from R˙1 and g˙1, condition (ii) implies that JT 2 X ˝n . In particular,
c 2X ˝X .

Remark 2.18 A core subalgebra has properties similar to, but still different from,
those of both a minimal Hopf algebra [69] and a factorizable Hopf algebra [71]. Note
that the notions of a minimal algebra and a factorizable algebra were introduced only
for the case when the ground ring is a field. Over CŒŒh�� the picture is much more
complicated. For example, in [69] it was shown that a minimal algebra over a field is
always finite-dimensional. Here our core algebras are of infinite rank over CŒŒh��.
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From now on we fix a core subalgebra X of a topological ribbon Hopf algebra H .

Lemma 2.19 Suppose f W H ! H is a CŒŒh��–module homomorphism such that
f .X /�X . Then f .X /�X . In particular, X is ad-stable.

Proof Since f is continuous in the topology of H , we have f .X /�X .

2N1 Clasp form associated to a core subalgebra Suppose X � H is a core
subalgebra with the presentation (28) for c . Since fc0.i/g is a topological basis of X ,
every y 2X has its coordinates y0i 2CŒŒh�� such that,

y D
X
i2I

y0ic
0.i/;

where .y0i/i2I is 0–convergent, ie .y0i/i2I 2 .CŒŒh��
I /0 . The map y 7! .y0i/ is a

CŒŒh��–module isomorphism from X to .CŒŒh��I /0 .

The set fc00.i/g is a formal basis of X , which is a formal series CŒŒh��–module. Every
x 2X has its coordinates x00i 2CŒŒh�� such that, in the h–adic topology of H ,

(29) x D
X
i2I

x00i c00.i/;

where .x00i /i2I 2CŒŒh��I . The map x 7! .x00i / is an CŒŒh��–module isomorphism from
X to CŒŒh��I .

Define a bilinear form L D h � ; � iW X ˝X !CŒŒh��, called the clasp form, by

hx;yi WD
X
i2I

x00i y0i :

The sum on the right-hand side is convergent since .y0i/i2I is 0–convergent. The
bilinear form is defined so that fc00.i/g and fc0.i/g are dual to each other:

(30) hc00.i/; c0.j /i D ıij :

By continuity (in the h–adic topology), L extends to a CŒŒh��–module map, also
denoted by L ,

L W X y̋ X !CŒŒh��:

The following lemma says that the above bilinear form is dual to c :

Lemma 2.20 (a) One has c 2 .X y̋ H /\ .H y̋ X /.
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(b) For every x 2X and y 2X one has

.L y̋ id/.x˝ c/D x;(31)

.id y̋ L /.c˝y/D y:(32)

Remark 2.21 By part (a), c 2X y̋ H , hence x˝ c 2X y̋ X y̋ H . This is the
reason why the left-hand side of (31) is well-defined as an element of H . Similarly,
the left-hand side of (32) is well-defined. With this well-definedness, all the proofs will
be the same as in the case of finite-dimensional vector spaces over a field.

Proof (a) Since fc00.i/g is 0–convergent in H , c D
P

i c0.i/˝ c00.i/ 2X y̋ H .
Similarly, c 2H y̋ X .

(b) Suppose x has the presentation (29). By (30), we have

(33) hx; c0.i/i D x00.i/:

Thus, we have

(34) x D
X

i

hx; c0.i/ic00.i/;

which is (31). The identity (32) is proved similarly.

Because r˙1 2X , one can define the CŒŒh��–module homomorphisms

(35) T˙W X !CŒŒh��; T˙.y/D hr˙1;yi:

Since c is ad-invariant, one can expect the following:

Lemma 2.22 (a) The clasp form L W X y̋ X ! CŒŒh�� is ad-invariant, ie it is an
H–module homomorphism.

(b) The maps T˙W X !CŒŒh�� are ad-invariant.

Proof (a) By Proposition 2.4(b), L is ad-invariant if and only if, for every a 2H ,
x 2X , and y 2X ,

(36) haFx;yi D hx;S.a/Fyi;

which we will prove now.

Since c D
P

i c0.i/˝ c00.i/ is ad-invariant, by Proposition 2.4(a) we haveX
i

S.a/F c0.i/˝ c00.i/D
X

i

c0.i/˝ aF c00.i/:
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Tensoring with x on the left, and applying L ˝ id,X
i

hx;S.a/F c0.i/ic00.i/D
X

i

hx; c0.i/iaF c00.i/

D

X
i

x00.i/aF c00.i/

D aF

�X
i

x00.i/c00.i/

�
D aFx:

Tensoring on the right with c0.j / then applying L , one has

hx;S.a/F c0.j /i D haFx; c0.j /i;

which is (36) with y D c0.j /. Since fc0.j /g is a topological basis of X , (36) holds
for any y 2X .

(b) This follows from Proposition 2.4(c).

Proposition 2.23 Suppose f W H !H and gW H !H are CŒŒh��–module isomor-
phisms such that f .X /DX , g.X /DX , and .f y̋ g/.c/D c . Then g.X /DX

and, for every x 2X and y 2X , one has

(37) hg.x/; f .y/i D hx;yi:

Proof By Lemma 2.19, g˙1.X /�X . It follows that g.X /DX . One has

c D
X

i

c0.i/˝ c00.i/D
X

i

f .c0.i//˝g.c00.i//:

Since g.x/ 2X , one can replace x by g.x/ in (31),

g.x/D .L y̋ id/.g.x/˝ c/D
X

i

.L y̋ id/
�
g.x/˝f .c0.i//˝g.c00.i//

�
D

X
i

hg.x/; f .c0.i//ig.c00.i//

D g

�X
i

hg.x/; f .c0.i//ic00.i/

�
:

Injectivity of g implies

x D
X

i

hg.x/; f .c0.i//ic00.i/:

Comparing with (34) we have, for every i 2 I ,

hg.x/; f .c0.i//i D hx; c0.i/i;
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which shows that (37) holds for y D c0.i/, i 2 I . Hence, (37) holds for every y 2X ,
since fc0.i/g is a topological basis of X .

2N2 Twist system from core subalgebra

Proposition 2.24 The collection T D .T˙;X / is a twist system for H .

Proof By definition, X is ad-stable. By Lemma 2.22, T˙ are ad-invariant. By
Lemma 2.20(a), c 2X y̋ H . Finally, (31) with x D r˙1 gives

.T˙ y̋ id/c D r˙1:

This shows T D .T˙;X / is a twist system.

2O From core subalgebra to invariant of integral homology 3–spheres

Theorem 2.25 Let X be a core subalgebra of a topological ribbon Hopf algebra H ,
with its associated H–module homomorphisms T˙ W X ! CŒŒh��. Assume T is
an n–component bottom tangle with 0 linking matrix, "i 2 f˙1g for i D 1; : : : ; n,
and M DM.T I "1; : : : ; "n/ is the integral homology 3–sphere obtained from S3 by
surgery along cl.T /, with framing of the i th component changed to "i .

Then JT 2X
y̋n , and

JM WD .T"1
y̋ � � � y̋ T"n

/.JT / 2CŒŒh��

defines an invariant of integral homology 3–spheres.

By Propositions 2.15 and 2.24, to prove Theorem 2.25, it is sufficient to show the
following:

Proposition 2.26 Suppose X is a core subalgebra of a topological ribbon Hopf
algebra H and T is an n–component bottom tangle with 0 linking matrix. Then
JT 2X

y̋n .

The rest of this section is devoted to a proof of this proposition based on Proposition 2.16.
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2O1 .X y̋n/–admissibility The following lemma follows easily from the definition.

Lemma 2.27 Suppose f W H y̋a!H
y̋ b is a CŒŒh��–module homomorphism having

a presentation as an h–adically convergent sum f D
P

p2P fp such that, for each p ,
fp.X

y̋a/ �X
y̋ b , where P is a countable set. (Here, the sum f being h–adically

convergent means that, for each j � 0, we have fp.H
y̋a/ � hjH

y̋ b for all but
finitely many p 2 P .) Then f is .X y̋n/–admissible.

Proposition 2.28 Each of �,  ˙1 , � and S is .X y̋n/–admissible.

Proof (a) Because �.X y̋ X /�X , by Lemma 2.27 � is .X y̋n/–admissible.

(b) Because R 2X ˝X , R has a presentation

RD
X
p2P

R1.p/˝R2.p/; R1.p/;R2.p/ 2X ;

where the sum is convergent in the h–adic topology of H y̋ H . Using the definitions
(16)–(19), we have the following presentations as h–adically convergent sums:

 D
X
p2P

 Cp ; where  Cp .x˝y/DR2.p/Fy˝R1.p/Fx;

 �1
D

X
p2P

 �p ; where  �p .x˝y/D S.R1.p//Fy˝R2.p/Fx;

�D
X
p2P

�p; where �p.x/D
X

R2.p/Fx.2/˝R1x.1/;

S D
X
p2P

Sp; where Sp.x/DR2.p/S.R1 Fx/:

Since R1.p/, R2.p/2X , which is a topological Hopf algebra,  ˙p .X y̋X /�X y̋X ,
�p.X / � X y̋ X and Sp.X / � X . By Lemma 2.27, all of  ˙1 , � and S are
.X
y̋n/–admissible.

2O2 Braided commutator and Borromean tangle We recall from [20; 23] the
definitions and properties of the braided commutator for a braided Hopf algebra and a
formula for universal invariant of the Borromean tangle.

Define the braided commutator ‡ W H y̋ H !H (for the braided Hopf algebra H )
by

‡ D �Œ4�.id y̋  y̋ id/.id y̋ S y̋ S y̋ id/.� y̋ �/:
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As noted in [23, Section 9.5], with c D
P

i c0.i/˝ c00.i/, we have

(38) bD
X

i;j2I

.id y̋2 y̋ ‡/
�
c0.i/˝ c0.j /˝ c00.j /˝ c00.i/

�
D

X
i;j2I

c0.i/˝ c0.j /˝‡.c00.j /˝ c00.i//:

Let bi;j be the .i; j /–summand of the right-hand side, so that b D
P

i;j bi;j with
bi;j 2 X

y̋3 and the sum converging in the h–adic topology of H
y̋3. We want to

show that the sum
P

i;j bi;j is convergent in the h–adic topology of X
y̋3 .

2O3 Two definitions of the braided commutator From [23, Section 9.3], we have

‡ D �.ad y̋ id/.id y̋ .S y̋ id/�/(39)

D �.id y̋ adr/..id y̋ S/� y̋ id/;(40)

where adr is the right-adjoint action (of the braided Hopf algebra H ) defined by

adr
WD �Œ3�.S y̋ id y̋ id/. y̋ id/.id y̋ �/:

Lemma 2.29 For x;y 2H , we have

(41) adr.x˝y/D S�1.y/Fx:

Proof In what follows we use R D
P

R1˝R2 D
P

R0
1
˝R0

2
D
P

R00
1
˝R00

2
DP

R000
1
˝R000

2
. One can easily verify

(42)  .x˝y/ WD
X

.R2R02 Fy/˝R1xS.R01/:

We have

adr.x˝y/D �Œ3�.S y̋ id y̋ id/. y̋ id/.x˝�.y//

D

X
�Œ3�.S y̋ id y̋ id/. y̋ id/.x˝y.1/˝y.2//

D

X
�Œ3�.S y̋ id y̋ id/. .x˝y.1//˝y.2//

D

X
�Œ3�.S y̋ id y̋ id/.R2R02 Fy.1/˝R1xS.R01/˝y.2// by (42)

D

X
�Œ3�.S.R2R02 Fy.1//˝R1xS.R01/˝y.2//

D

X
S.R2R02 Fy.1//R1xS.R01/y.2/;

where �.y/D
P

y.1/˝y.2/ . UsingX
y.1/˝y.2/ D

X
.R002 Fy.2//˝R001y.1/; S.w/D

X
S�1.R0002 Fw/S.R

000
1 /;
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we obtain

adr.x˝y/D
X

S.R2R02 Fy.1//R1xS.R01/y.2/

D

X
S�1.R0002 F .R2R02 F .R

00
2 Fy.2////S.R0001 /R1xS.R01/R

00
1y.1/

D

X
S�1.R0002 R2R02R

00
2 Fy.2//S.R0001 /R1xS.R01/R

00
1y.1/:

Since
P

R000
2
R2˝S.R000

1
/R1D

P
R0

2
R00

2
˝S.R0

1
/R00

1
DR�1

21
R21D 1˝1, we obtain

adr.x˝y/D
X

S�1.y.2//xy.1/ D S�1.y/Fx:

This completes the proof of the lemma.

By Lemma 2.29 and ad.H y̋ X /�X we easily obtain

(43) adr.X y̋ H /�X :

Lemma 2.30 We have

‡.H y̋ X /�X ;(44)

‡.X y̋ H /�X :(45)

Proof Using (39) and ad.H y̋ X /�X , we have

‡.H y̋ X /D �.ad y̋ id/.id y̋ S y̋ id/.id y̋ �/.H y̋ X /

� �.ad y̋ id/.id y̋ S y̋ id/.H y̋ X y̋ X /

� �.ad y̋ id/.H y̋ X y̋ X /

� �.X y̋ X /

�X :

Using (40) and (43), we can similarly check that ‡.X y̋ H /�X .

2O4 Borromean tangle

Lemma 2.31 One has b 2X
y̋3 .

Proof Since fc00.i/ j i 2 Ig is 0–convergent in H , we have c00.i/D hki zc00.i/, where
zc00.i/ 2H and for any N � 0 we have ki �N for all but finitely many i .

Recall that, by (38), we have

(46) bD
X

i;j2I

bi;j ; where bi;j D c0.i/˝ c0.j /˝‡.c00.j /˝ c00.i//:
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By (44) and (45), we have

‡.c00.j /˝ c00.i//D hkj‡.zc00.j /˝ c00.i// 2 hkjX ;

‡.c00.j /˝ c00.i//D hki‡.c00.j /˝ zc00.i// 2 hki X ;

respectively. Hence,

(47) ‡.c00.j /˝ c00.i// 2 hmax.ki ;kj /X :

Since c0.i/, c0.j / 2X , the sum (46) defines an element of X
y̋3 .

2O5 Proof of Proposition 2.26 It is clear that 1 2 X
y̋0 D CŒŒh��, 1 2 X and

X
y̋n˝X

y̋m�X
y̋nCm . By Proposition 2.28, each of �,  ˙1, � and S is .X y̋n/–

admissible. By Lemma 2.31, b 2X
y̋3 . Hence, by Proposition 2.16, JT 2X

y̋n .

This completes the proof of Proposition 2.26 and also the proof of Theorem 2.25.

2P Integrality of JM

Theorem 2.32 Suppose X is a core subalgebra of a topological ribbon Hopf algebra
H with the associated twist system T˙ WX !CŒŒh��. Assume that there is a family of
subsets zKn �X

y̋n, n� 0, such that:
(AL1) 1CŒŒh�� 2 zK0 , 1H 2 zK1 , b2 zK3 , each of  ˙1 , �, � and S is .zKn/–admissible,

and x˝y 2 zKnCm for any x 2 zKn and y 2 zKm .

(AL2) For any "1; : : : ; "n 2 f˙g,

.T"1
y̋ � � � y̋ T"n

/.zKn/� zK0:

Then the invariant JM of integral homology 3–spheres has values in zK0 .

Proof Suppose T is an n–component bottom tangle T with zero linking matrix. By
Proposition 2.16, condition (AL1) implies that JT 2 zKn . Condition (AL2) implies that

JM D .T"1
y̋ � � � y̋ T"n

/.JT / 2 zK0;

where M DM.T I "1; : : : ; "n/.

We will construct a core subalgebra X and a sequence of bZŒq�–submodules zKn�X
y̋n

satisfying the assumptions (AL1) and (AL2) of Theorem 2.32 for the quantized universal
enveloping algebra (of a simple Lie algebra) with zK0 D

bZŒq� . By Theorem 2.32, the
corresponding invariant of integral homology 3–spheres takes values in bZŒq� . We then
show that this invariant specializes to the Witten–Reshetikhin–Turaev invariant at roots
of unity. In a sense, the .zKn/ form an integral version of the .X y̋n/. The construction
of the integral objects zKn is much more complicated than that of X .
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Al Bl Cl Dl E6 E7 E8 F4 G2

d 1 2 2 1 1 1 1 2 3
D l C 1 2 2 4 3 2 1 1 1
h_ l C 1 2l � 1 l C 1 2l � 2 12 18 30 9 4

Table 1: Constants d , D and h_ of simple Lie algebras

3 Quantized enveloping algebras

In this section we present basic facts about the quantized enveloping algebras asso-
ciated to a simple Lie algebra g: the h–adic version Uh.g/, the q–version Uq.g/

and its simply connected version MUq.g/. We discuss the well-known braid group
actions, various automorphisms of Uq , the universal R–matrix and ribbon structure,
and Poincaré–Birkhoff–Witt bases. New materials include gradings on the quantized
enveloping algebras in Section 3C2, the mirror automorphism ' , and a calculation of
the clasp element.

3A Quantized enveloping algebras Uh , Uq , and MUq

3A1 Simple Lie algebra Suppose g is a finite-dimensional, simple Lie algebra over
C of rank l . Fix a Cartan subalgebra h of g and a basis …D f˛1; : : : ; ˛lg of simple
roots in the dual space h� . Set h�R DR…� h� . Let Y D Z…� h�R denote the root
lattice, ˆ�Y the set of all roots, and ˆC�ˆ the set of all positive roots. Denote by t

the number of positive roots, t D jˆCj. Let . � ; � / denote the invariant inner product on
h�R such that .˛; ˛/D 2 for every short root ˛ . For ˛ 2ˆ, set d˛D

1
2
.˛; ˛/2 f1; 2; 3g.

Let X be the weight lattice, ie X � h�R is the Z–span of the fundamental weights
M̨1; : : : ; M̨ l 2 h

�
R , which are defined by . M̨ i ; j̨ /D ıij d˛i

.

For 
 D
Pl

iD1 ki˛i 2 Y , let ht.
 /D
P

i ki . Let � be the half-sum of positive roots,
�D 1

2

P
˛2ˆC

˛ . It is known that �D
Pl

iD1 M̨ i .

We list all simple Lie algebras and their constants in Table 1.

3A2 Base rings Let v be an indeterminate and set A WDZŒv˙1��C.v/. We regard
A also as a subring of CŒŒh��, with v D exp

�
1
2
h
�
. Set q D v2 .

Remark 3.1 We will follow mostly Jantzen’s book [30]. However, our v , q and h

are equal to “q”, “q2 ” and “�h”, respectively, of [30]. Since q D v2 , one could avoid
using either q or v . We will use both q and v because, on the one hand, the use of
half-integer powers of q would be cumbersome and, on the other hand, we would
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like to stress that many constructions in quantized enveloping algebras can be done
over ZŒq˙1�.

For ˛ 2ˆ and integers n, k � 0, set

v˛ WD v
d˛ ; q˛ WD qd˛ D v2

˛;

Œn�˛ WD
vn
˛ � v

�n
˛

v˛ � v�1
˛

; Œn�˛! WD

nY
iD1

Œi �˛;
hn

k

i
˛
WD

kY
iD1

Œn� i C 1�˛

Œi �˛
;

fng˛ WD v
n
˛ � v

�n
˛ ; fng˛! WD

nY
iD1

fig˛:

When ˛ is a short root, we sometimes suppress the subscript ˛ in these expressions.

Recall that, for n� 0 and any element x in a ZŒq�–algebra,

.xI q/n WD

n�1Y
jD0

.1�xqj /:

3A3 The algebra Uh The quantized enveloping algebra Uh DUh.g/ is defined as
the h–adically complete CŒŒh��–algebra, topologically generated by E˛ , F˛ and H˛

for ˛ 2…, subject to the relations

H˛Hˇ DHˇH˛;(48)

H˛Eˇ �EˇH˛ D .˛; ˇ/Eˇ; H˛Fˇ �FˇH˛ D�.˛; ˇ/Fˇ;(49)

E˛Fˇ �FˇE˛ D ı˛ˇ
K˛ �K�1

˛

v˛ � v�1
˛

; where K˛ D exp
�

1
2
hH˛

�
;(50)

rX
sD0

.�1/s
hr

s

i
˛
Er�s
˛ EˇEs

˛ D 0; where r D 1� .ˇ; ˛/=d˛;(51)

rX
sD0

.�1/s
hr

s

i
˛
F r�s
˛ FˇF s

˛ D 0; where r D 1� .ˇ; ˛/=d˛:(52)

We also write Ei , Fi and Ki , respectively, for E˛i
, F˛i

and K˛i
for i D 1; : : : ; l .

For every �D
P
˛2… k˛˛ 2 h

�
R , define H� D

P
˛ k˛H˛ and K� D exp

�
1
2
hH�

�
. In

particular, one can define MK˛ WDK M̨ for ˛ 2….
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3A4 Hopf algebra structure The algebra Uh has the structure of a complete Hopf
algebra over CŒŒh��, where the comultiplication, counit and antipode are given by

�.E˛/DE˛˝ 1CK˛˝E˛; �.E˛/D 0; S.E˛/D�K�1
˛ E˛;

�.F˛/D F˛˝K�1
˛ C 1˝F˛; �.F˛/D 0; S.F˛/D�F˛K˛;

�.H˛/DH˛˝ 1C 1˝H˛; �.H˛/D 0; S.H˛/D�H˛:

3A5 The algebra Uq and its simply connected version MUq Let Uq denote the
C.v/–subalgebra of UhŒh

�1�DUh˝CŒh�CŒh; h
�1� generated by E˛ , F˛ and K˙1

˛

for all ˛ 2…. Alternatively, Uq is defined to be the C.v/–subalgebra generated by
the elements K˛ , K�1

˛ , E˛ , F˛ (˛ 2…), with relations (50)–(52) and

K˛K�1
˛ DK�1

˛ K˛ D 1;(53)

KˇE˛ D v
.ˇ;˛/E˛Kˇ; KˇF˛ D v

�.ˇ;˛/E˛Kˇ;(54)

for ˛ , ˇ 2….

The algebra Uq inherits a Hopf algebra structure from UhŒh
�1�, where

�.K˛/DK˛˝K˛; �.K˛/D 1; S.K˛/DK�1
˛ :

Similarly, the simply connected version MUq is the C.v/–subalgebra of UhŒh
�1� gener-

ated by E˛ , F˛ and MK˙1
˛ for all ˛ 2…. Again MUq is a C.v/–Hopf algebra, which

contains Uq as a Hopf subalgebra. Let MU 0
q be the C.v/–algebra generated by MK˙1

˛

for ˛ 2…. Then

(55) MUq D
MU 0

q Uq:

The simply connected version MUq has been studied in [14; 18; 11] in connection with
quantum adjoint action and various duality results. We need the simply connected
version MUq.g/ for a duality result, and also for the description of the R–matrix.

3B Automorphisms

There are unique h–adically continuous C–algebra automorphisms �bar , ' , ! of Uh

defined by

�bar.h/D�h; �bar.H˛/DH˛; �bar.E˛/DE˛; �bar.F˛/D F˛;

!.h/D h; !.H˛/D�H˛; !.E˛/D F˛; !.F˛/DE˛;

'.h/D�h; '.H˛/D�H˛; '.E˛/D�F˛K˛; '.F˛/D�K�1
˛ E˛;
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and a unique h–adically continuous C–algebra antiautomorphism � defined by

�.h/D h; �.H˛/D�H˛; �.E˛/DE˛; �.F˛/D F˛:

The map �bar is the bar operator of [54], and � and ! are the same � and ! in [30].
All three are involutive, ie �2 D �2bar D !

2 D id. The restrictions of �bar , ' , � and !
to Uh\Uq naturally extend to maps from Uq to Uq , and we have

�.v/D !.v/D v; �.K˛/D !.K˛/DK�1
˛ ;

�bar.v/D v
�1; �bar.K˛/DK�1

˛ ;

'.v/D v�1; '.K˛/DK˛:

Unlike �bar , � and ! , the map ' is a C–Hopf algebra homomorphism:

Proposition 3.2 The C–algebra automorphism ' commutes with S and �, ie

'S D S'; .' y̋ '/�D�':

Furthermore, ' D �bar�!S D �bar!�S D S �bar�! and

(56) '2.x/D S2.x/DK�2�xK2�:

Proof All the statements can easily be checked to hold on the generators h, H˛ , E˛
and F˛ .

3C Gradings by root lattice

3C1 Y–grading There are Y–gradings on Uh and Uq defined by

jE˛j D ˛; jF˛j D �˛; jH˛j D jK˛j D 0:

For a subset A�Uh , denote by A� , � 2 Y , the set of all elements of Y–grading �
in A.

We frequently use the following simple fact: if x is Y–homogeneous and ˇ 2 Y , then

(57) Kˇx D v.ˇ;jxj/xKˇ:

In the language of representation theory, x 2Uh has Y–grading ˇ 2 Y if and only if it
is an element of weight ˇ in the adjoint representation of Uh .
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3C2 .Y=2Y /–grading and the even part of Uq

Proposition 3.3 There is a unique .Y=2Y /–grading on the C.v/–algebra Uq satisfy-
ing

deg.K˛/� ˛; deg.E˛/� 0; deg.F˛/� ˛ .mod 2Y /

for ˛ 2….

Proof Using the defining relations (50)–(54) for Uq , one checks that the .Y=2Y /–
grading is well defined.

The degree-0 part of Uq in the .Y=2Y /–grading, which is generated by K˙2
˛ , E˛

and F˛K˛ for ˛ 2…, is called the even part of Uq and denoted by U ev
q . Elements of

U ev
q are said to be even.

For each ˛ 2 Y , the degree .˛ mod 2Y / part of Uq is K˛U ev
q .

Lemma 3.4 (a) Suppose � 2 Y . Let .U ev
q /� be the grading � part of U ev

q . Then

S..U ev
q /�/�K�U ev

q ; �..U ev
q /�/�

M
�2Y

K�.U
ev
q /���˝ .U

ev
q /�:

In particular, �.U ev
q /�Uq˝U ev

q .

(b) The adjoint action preserves the even part, ie Uq FU ev
q �U ev

q .

(c) Each of �bar , � and ' leaves U ev
q stable, ie f .U ev

q /�U ev
q for f D �bar , � , ' .

Proof (a) Suppose x 2 .U ev
q /� . We have to show that

S.x/ 2K�U ev
q and �.x/ 2

M
�2Y

K�.U
ev
q /���˝ .U

ev
q /�:

If the statements hold for x D x1 2 .U
ev
q /�1

and x D x2 2 .U
ev
q /�2

, then they hold
for xD x1x2 2 .U

ev
q /�1C�2

. Since U ev
q is generated as an algebra by K˙2

˛ 2 .U
ev
q /0 ,

E˛ 2 .U
ev
q /˛ and F˛K˛ 2 .U

ev
q /�˛ , it is enough to prove the statements when x is one

of K˙2
˛ , E˛ or F˛K˛ . For these special values of x , the explicit formulas of S.x/

and �.x/ are given in Section 3A4, from which the statements follow immediately.

(b) For x 2Uq , we have the following explicit formulas for the adjoint actions:

(58)

K˛ Fx DK˛xK�1
˛ ;

E˛ Fx DE˛x�K˛xK�1
˛ E˛;

F˛ Fx D .F˛x�xF˛/K˛:
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If x is even, then all the right-hand sides of the above are even. Since Uq is generated
by K˛ , E˛ and F˛ , we have Uq FU ev

q �U ev
q .

(c) One can check directly that each of �bar , � and ' maps any of the generators K˙2
˛ ,

E˛ and F˛K˛ of U ev
q to an element of U ev

q .

Remark 3.5 In Section 6, we refine the Y=2Y –grading of the C.v/–algebra Uq to a
grading of the C.v/–algebra Uq by a noncommutative Z=2Z–extension of Y=2Y .

By (55), MUq D
MU 0

q Uq , where MU 0
q D C.v/Œ MK˙1

1
; : : : ; MK˙1

l
�. Here we set MKi D

MK˛i

for i D 1; : : : ; l . Let MU ev;0
q DC.v/Œ MK˙2

1
; : : : ; MK˙2

l
� and

MU ev
q WD

MU ev;0
q U ev

q :

Lemma 3.6 One has MUq F
MU ev

q �
MU ev

q and MUq FU ev
q �U ev

q .

Proof The proof is similar to that of Lemma 3.4(b).

3D Triangular decompositions and their even versions

Let UC
h

(resp. U�
h

, U 0
h

) be the h–adically closed CŒŒh��–subalgebra of Uh topologi-
cally generated by E˛ (resp. F˛ , H˛ ) for ˛ 2….

Let UCq (resp. U�q , U 0
q ) denote the C.v/–subalgebra of Uq generated by E˛ (resp.

F˛ , K˙1
˛ ) for ˛ 2….

It is known that the multiplication map

U�q ˝U 0
q ˝UCq !Uq; x˝x0˝x00 7! xx0x00;

is an isomorphism of C.v/–vector spaces. This fact is called the triangular decomposi-
tion of Uq . Similarly,

U�h
y̋ U 0

h
y̋ UC

h
!Uh; x˝x0˝x00 7! xx0x00;

is an isomorphism of CŒŒh��–modules. These triangular decompositions descend to
various subalgebras of Uq and Uh , which we will introduce later.

We need also an even version of triangular decomposition for U ev
q . Although UCq �U ev

q ,
the negative part U�q is not even.

Let U
ev;�
q WD '.UCq /, which is the C.v/–subalgebra of U ev

q generated by F˛K˛ D

�'.E˛/, ˛ 2…. Then U
ev;�
q �U ev

q . Let U
ev;0
q be the even part of U 0

q , ie

U ev;0
q WDU ev

q \U 0
q DC.v/ŒK˙2

1 ; : : : ;K˙2
l �:
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Using (57), we obtain the isomorphisms of C.v/–vector spaces and CŒŒh��–modules

U ev;�
q ˝U 0

q ˝UCq
Š
�!Uq; x˝y˝ z 7! xyz;(59)

U ev;�
q ˝U ev;0

q ˝UCq
Š
�!U ev

q ; x˝y˝ z 7! xyz;(60)

U
ev;�
h
y̋ U 0

h
y̋ UC

h
Š
�!Uh; x˝y˝ z 7! xyz;(61)

where we set U
ev;�
h
D '.UC

h
/, which is the h–adically closed CŒŒh��–subalgebra of

Uh topologically generated by F˛K˛ , ˛ 2…. We call (59), (60), and (61) the even
triangular decomposition of Uq , U ev

q and Uh , respectively.

3E Braid group action

3E1 Braid group and Weyl group The braid group for the root system ˆ has the
presentation with generators T˛ for ˛ 2… and with relations

T˛Tˇ D TˇT˛ for ˛; ˇ 2… with .˛; ˇ/D 0;

T˛TˇT˛ D TˇT˛Tˇ for ˛; ˇ 2… with .˛; ˇ/D�1;

T˛TˇT˛Tˇ D TˇT˛TˇT˛ for ˛; ˇ 2… with .˛; ˇ/D�2;

T˛TˇT˛TˇT˛Tˇ D TˇT˛TˇT˛TˇT˛ for ˛; ˇ 2… with .˛; ˇ/D�3:

The Weyl group W of ˆ is the quotient of braid group by the relations T 2
˛ D 1 for

˛ 2…. We denote the generator in W corresponding to T˛ by s˛ . We set Ti D T˛i

and si D s˛i
for i D 1; : : : ; l .

Suppose i D .i1; : : : ; ik/ with ij 2 f1; 2; : : : ; lg. Let w.i / D si1
si2
� � � sik

2W. If
there is no shorter sequence j such that w.i /Dw.j /, then we say that the sequence i

is reduced, and w.i / has length k . It is known that the length of any reduced sequence
is less than or equal to t WD jˆCj, the number of positive roots of g. A sequence i

is called longest reduced if i is reduced and has length t . There is a unique element
w0 2W such that for any longest reduced sequence i one has w.i /D w0 .

3E2 Braid group action As described in [30, Chapter 8], there is an action of the
braid group on the C.v/–algebra Uq . For ˛ 2…, T˛W Uq!Uq is the C.v/–algebra
automorphism defined by

T˛.K
 /DKs˛.
 /; T˛.E˛/D�F˛K˛; T˛.F˛/D�K�1
˛ E˛;

T˛.Eˇ/D

rX
iD0

.�1/iv�i
˛ E.r�i/

˛ EˇE.i/
˛ ; with r D�.ˇ; ˛/=d˛;

T˛.Fˇ/D

rX
iD0

.�1/ivi
˛F .i/˛ FˇF .r�i/

˛ ; with r D�.ˇ; ˛/=d˛;
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where 
 2Y and ˇ2…nf˛g. The restriction of T˛ to Uq\Uh extends to a continuous
CŒŒh��–algebra automorphism T˛ of Uh by setting

T˛.H
 /DHs˛.
 / for 
 2 Y:

Remark 3.7 Our T˛ is the same as T˛ in [30]. Our Ti D T˛i
is T 00

i;1
in [54], or zT �1

i

in [52].

One can easily check that

(62) T˙1
˛ .KˇU ev

q /�Ks˛.ˇ/U
ev
q :

for ˛ 2… and ˇ 2 Y . In particular, the even part U ev
q is stable under T˙1

˛ . Thus, we
have:

Proposition 3.8 The even part U ev
q is stable under the action of the braid group.

3F PBW-type bases

3F1 Root vectors Suppose i D .i1; : : : ; it / is a longest reduced sequence. For
j 2 f1; : : : ; tg, set


j D 
j .i / WD si1
si2
� � � sij�1

.˛ij /:

It is known that 
1; : : : ; 
t are distinct positive roots and f
1; : : : ; 
tg D ˆC . The
elements

E
j .i / WD T˛i1
T˛i2
� � �T˛ij�1

.E˛ij
/ and F
j .i / WD T˛i1

T˛i2
� � �T˛ij�1

.F˛ij
/

are called root vectors corresponding to i . The Y–grading of the root vectors are
jE
j .i /j D 
j D�jF
j .i /j. It is known that E
j .i / 2UCq and F
j .i / 2U�q .

In general, E
j .i / and F
j .i / depend on i , but if 
j is a simple root, ie 
j D ˛ 2…,
then we have E
j .i /DE˛ and F
j .i /D F˛ .

3F2 PBW-type bases Fix a longest reduced sequence i . In what follows, we often
suppress i and write E
 DE
 .i / and F
 D F
 .i / for all 
 2ˆC .

The divided powers E
.n/

 and F

.n/

 for 
 2ˆC and n� 0 are defined by

E.n/

 WDEn


=Œn�
 ! and F .n/
 D Fn

 =Œn�
 ! :

Following Bourbaki, we denote by N the set of nonnegative integers. For n 2 Nt ,
define

F .n/ D
 �Y


j2ˆC

F
.nj /

j ; E.n/

D

 �Y

j2ˆC

E
.nj /

j :
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Here
 �Q

j2ˆC

means to take the product in the reverse order of .
1; 
2; : : : ; 
t /. For
example,

F .n/ D
 �Y


j2ˆC

F
.nj /

j D F .nt /


t
F .nt�1/

t�1

� � �F .n1/

1

:

The set fE.n/ j n 2 Ntg is a basis of the C.v/–vector space UCq and a topological
basis of Uh .

Similarly, the set fF .n/ j n 2Ntg is a basis of U�q and a topological basis of U�
h

.

On the other hand, fK
 j 
 2 Y g is a C.v/–basis of U 0
q and fH k j k 2Nlg, where

H k D
Ql

jD1 H
kj

j for kD .k1; : : : ; kl/, is a topological basis of U 0
h

.

Combining these bases and using the even triangular decompositions (59)–(61), we get
the following proposition, which describes the Poincaré–Birkhoff–Witt (PBW) bases
of Uq , U ev

q and Uh :

Proposition 3.9 For any longest reduced sequence i ,

fF .m/KmK
E.n/
jm;n 2Nt ; 
 2 Y g is a C.v/–basis for Uq;

fF .m/KmK2

E.n/

jm;n 2Nt ; 
 2 Y g is a C.v/–basis for U ev
q ;

fF .m/KmH kE.n/
jm;n 2Nt ;k 2Nl

g is a topological basis for Uh;

where

(63) Kn WD

tY
jD1

K
nj

j DK�jF .n/j for nD .n1; : : : ; nt / 2Nt :

3G R–matrix

3G1 Quasi-R–matrix Fix a longest reduced sequence i . Recall that fkg˛Dvk
˛�v

�k
˛ .

The quasi-R–matrix ‚ 2U
y̋2

h
is (see [30; 54]) defined by

(64) ‚D
X

n2Nt

Fn˝En;

where, for nD .n1; : : : ; nt / 2Nt ,

En WDE.n/
tY

jD1

fnj g
j !D
 �Y


j2ˆC

..v
j � v
�1

j
/E
j /

nj ;(65)

Fn WD F .n/
tY

jD1

.�1/nj v
�nj .nj�1/=2

j D

 �Y

j2ˆC

.�1/nj v
�nj .nj�1/=2

j F

.nj /

j :(66)
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It is known that ‚ does not depend on i and

(67) ‚�1
D .�bar˝ �bar/.‚/D

X
n2Nt

F 0n˝E0n;

where
F 0n D �bar.Fn/ and E0n D �bar.En/:

3G2 Universal R–matrix and ribbon element Define an inner product on hR D

SpanRfH˛ j ˛ 2 …g by .H˛;Hˇ/ D .˛; ˇ/. Recall that the M̨ are the fundamental
weights. Let MH˛ D H M̨ . Then the set f MH˛=d˛ j ˛ 2 …g is dual to fH˛ j ˛ 2 …g

with respect to the inner product, ie .H˛; MHˇ=dˇ/D ı˛;ˇ for ˛ , ˇ 2…. Define the
diagonal part, or the Cartan part, of the R–matrix by

DD exp
�

h

2

X
˛2…

.H˛˝
MH˛=d˛/

�
2 .U 0

h /
y̋2:(68)

We have D D D21 , where D21 2 .U
0
h
/
y̋2 is obtained from D by permuting the first

and the second tensorands.

A simple calculation shows that, for Y–homogeneous x;y 2Uh , we have

D.x˝y/D�1
D xKjyj˝Kjxjy:(69)

The universal R–matrix and its inverse are given by

(70) RD D‚�1 and R�1
D‚D�1:

Note that our R–matrix is the inverse of the R–matrix in [30].

The quasitriangular Hopf algebra .Uh;R/ has a ribbon element r whose corresponding
balanced element (see Section 2B) is given by gDK�2� . For Y–homogeneous x 2Uh

we have

(71) S2.x/DK�2�xK2� D q�.�;jxj/x:

With RD
P

R1˝R2 , the ribbon element and its inverse are given by

r D
X

S.R1/K�2�R2 and r�1
D

X
R1K2�R2 D

X
R2K�2�R1:

One has r D JT and r�1D JT 0 , where T and T 0 are the bottom tangles in Figure 13.

Using (64) and (70), we obtain

(72) r D
X

n2Nt

FnKnr0En; r�1
D

X
n2Nt

F 0nK�1
n r�1

0 E0n;
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Figure 13: Tangles T (left) and T 0 (right) determining the ribbon element r

and its inverse

where Kn is given by (63) and

r0 WDK�2��.D�1/DK�2� exp
�
�

h

2

X
˛2…

H˛
MH˛=d˛

�
:

We also have

(73) S.r/D S.r/D r:

3H Mirror homomorphism '

We defined the C–algebra homomorphism ' in Section 3B.

Proposition 3.10 The C–automorphism ' is a mirror homomorphism for Uh , ie

'.K2�/DK2�;(74)

.' y̋ '/.R/D .R�1/21:(75)

Consequently, if T 0 is the mirror image of an n–component bottom tangle T , then
JT 0 D '

y̋n.JT /.

Proof Identity (74) is part of the definition of ' . One could prove (75) by direct
calculations. Here is an alternative proof using known identities:

By Proposition 3.2, ' D �bar!�S . Hence, (75) follows from the following four known
identities:

.S y̋ S/.R/DR by (10);

.� y̋ �/.R/D .� y̋ �/.D‚�1/D‚�1D by [30, 7.1(2)];

.! y̋ !/.‚�1D/D‚�1
21 D by [30, 7.1(3)];

.�bar y̋ �bar/.‚
�1
21 D/D‚21D�1

DR�1
21 by (67):

This shows ' is a mirror homomorphism. By Proposition 2.7, JT 0 D '
y̋n.JT /.

Because the negative twist is the mirror image of the positive one, we have the following:

Corollary 3.11 One has '.r/D r�1 .
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3I Clasp element and quasiclasp element

Here we calculate explicitly the value of the clasp element cD JCC 2Uh y̋ Uh , which
is the universal invariant of the clasp tangle CC of Figure 5. Recall that we have
defined En , Fn and D in Section 3G. We call

(76) � WD cD2

the quasiclasp element. Like the quasi-R–matrix, the quasiclasp element enjoys better
integrality than the clasp element itself.

Lemma 3.12 Fix a longest reduced sequence i . We have

c D
X

m;n2Nt

q�.�;jEnj/.FmKm˝FnKn/.D�2/.En˝Em/;(77)

� D
X

m;n2Nt

q�.�;jEnj/C.jEmj;jEnj/.FmK�1
m En˝FnK�1

n Em/;(78)

c D .'˝S�1'/.c/:(79)

Proof Let D�2 D
P
.D�2/1 ˝ .D�2/2 and R�1 D

P
xR1 ˝ xR2 D

P
xR0

1
˝ xR0

2
.

By (20), we obtain

c D
X

S.R1/S.R02/˝R01R2 D

X
xR1S2.xR02/˝ xR

0
1
xR2:

We have

R�1
D‚D�1

D

X
m2Nt

Fm.D�1/1˝Em.D�1/2D
X

m2Nt

FmKm.D�1/1˝.D�1/2Em:

Substituting this into the formula for c , we obtain

c D
X

m;n2Nt

FmKm.D�2/1S2.En/˝FnKn.D�2/2Em;

which, using (71), is (77). Identity (78) follows from (77), via (69).

Since C� is the mirror image of CC , by Proposition 3.10 c� D .'˝'/.c/; which,
together with (21), gives (79).

From [58, Proposition 2.1.14], one has

(80) .id˝S2/.c/D c21:
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4 Core subalgebra of Uph and quantum Killing form

In this section we construct a core subalgebra Xh of the ribbon Hopf algebra

Up
h
WDUh y̋CŒŒh��CŒŒ

p
h ��;

which is the extension of Uh when the ground ring is CŒŒ
p

h ��. We will use the Drinfel’d
dual Vh of Uh to construct Xh . To show that Xh is a Hopf algebra we use a stability
principle established in Section 4C, which also finds applications later. We then discuss
the clasp form of Xh which turns out to coincide with the well-known quantum Killing
form (or Rosso form) when restricted to Uq . Thus, we get a geometric interpretation
of the quantum Killing form.

4A A dual of Uh

Fix a longest reduced sequence i . For nD .n1; : : : ; nk/ 2Nk let

knk D

kX
jD1

nj :

Let us recall the topological basis of Uh described in Proposition 3.9. For n D

.n1;n2;n3/ 2Nt �Nl �Nt , let

eh.n/D F .n1/Kn1
H n2E.n3/;

where F .n1/ , Kn1
, H n2 and E.n3/ are as defined in Section 3F2. By Proposition 3.9,

feh.n/ j n 2NtClCt
g

is a topological basis of Uh .

Let Vh be the closure (in the h–adic topology of Uh ) of the CŒŒh��–span of the set

(81) fhknkeh.n/ j n 2NtClCt
g:

Then Vh is a formal series CŒŒh��–module, having the above set (81) as a formal basis.
(See Example 2.2 of Section 2A.) Every x 2 Vh has a unique presentation of the form

x D
X

n2NtClCt

xn.h
knkeh.n//;

where xn 2CŒŒh��. The map x 7! .xn/n2I is a CŒŒh��–module isomorphism between
Vh and CŒŒh��I , with I DNtClCt .

In the terminology of Drinfel’d [17], Vh is a “quantized formal series Hopf algebra”
(QFSH algebra); see also [12]. As part of his duality principle, Drinfel’d associates
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a QFSH algebra to every so-called “quantum universal enveloping algebra” (QUE
algebra). Gavarini [18] gave a detailed treatment of this duality and showed that the
above-defined Vh is the QFSH algebra associated to Uh , which is a QUE algebra.

For n� 0 let V
x̋n

h
be the topological closure of V ˝n

h
in U

y̋n
h

. Then V
x̋n

h
is the nth

tensor power of Vh in the category of QFSH algebras; see [18, Section 3.5]. The result
of Drinfel’d, proved in detail by Gavarini [18], says that Vh is a Hopf algebra in the
category of QFSH algebras, where the Hopf algebra structure of Vh is the restriction
of the Hopf algebra structure of Uh . Thus, we have the following:

Proposition 4.1 One has

�.V
x̋2

h
/� Vh; �.Vh/� V

x̋2
h
; S.Vh/� Vh:

For completeness, we give an independent proof of Proposition 4.1 in Appendix A. Yet
another proof can be obtained from Proposition 5.10.

Proposition 4.2 Fix a longest reduced sequence i . Then Vh is the topological closure
(in the h–adic topology of Uh ) of the CŒŒh��–algebra generated by hH˛ , hF
 .i / and
hE
 .i / with ˛ 2… and 
 2ˆC .

Proof Let V 0
h

be the topological closure (in the h–adic topology of Uh ) of the CŒŒh��–
algebra generated by hH˛ , hF
 and hE
 with ˛ 2… and 
 2ˆC . One can easily
check K
 2 V 0

h
for 
 2 Y . The set fhknkeh.n/ j n 2NtClCtg is a formal basis of Vh .

When n D .n1; : : : ; ntClCt / 2 NtClCt is such that all nj D 0 except for one that
is equal to 1, then the basis element hknkeh.n/ is one of hH˛ , hF
K
 or hE
 . It
follows that hH˛ , hF
 , hE
 2 Vh , and hence V 0

h
� Vh .

From the definition of eh.n/, for any nD .m;k;u/ 2Nt �Nl �Nt ,

(82) hknkeh.n/D a
 �Y


j2ˆC

.hF
j /
mj

Y

j2ˆC

K
mj

j

lY
jD1

.hHj /
kj
 �Y


j2ˆC

.hE
j /
uj ;

where mD .m1; : : : ;mt /, kD .k1; : : : ; kl/, uD .u1; : : : ;ut /, and

aD
1Qt

jD1Œmj �
j ! Œuj �
j !

is a unit in CŒŒh��. Since the right-hand side of (82) is in V 0
h

, we have Vh � V 0
h

. Thus,
Vh D V 0

h
.
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4B Ad-stability and '–stability of Vh

Recall that we defined the left image of an element x 2Uh y̋ Uh in Section 2D.

Proposition 4.3 The module Vh is the left image of the clasp element c in Uh y̋ Uh .
Moreover, Vh is ad-stable, ie Uh FVh � Vh .

Proof For nD .n1;n2;n3/ 2NtClCt let

e00h.n/D F .n3/Kn3
MH n2E.n1/;

where MH k D
Ql

jD1
MH

kj
j̨

for kD .k1; : : : ; kl/ 2Nl .

Then fe00
h
.n/ j n 2NtClCtg is a topological basis of Uh . From (77),

(83) c D
X

n2NtClCt

uh.n/h
knkeh.n/˝ e00h.n/;

where uh.n/ is a unit in CŒŒh�� for each n 2NtClCt . The exact value of uh.n/ is as
follows: for nD .n1;n2;n3/ 2NtClCt ,

(84) uh.n1;n2;n3/D q�.�;jEn3
j/u00h.n1/u

0
h.n2/u

00
h.n3/;

where, for kD .k1; : : : ; kl/ 2Nl and mD .m1; : : : ;mt / 2Nt ,

u0h.k/D

lY
jD1

.�1/kj

kj ! d
kj
j̨

; u00h.m/D

tY
jD1

v�m2
j


j
.q
j I q
j /mj

hmj
:

By definition, the left image of c is the topological closure of the CŒŒh��–span of
fuh.n/h

knkeh.n/g, which is the same as Vh , since the uh.n/ are units in CŒŒh��.

Since c is ad-invariant, by Proposition 2.5 we have Uh FVh � Vh .

Remark 4.4 Proposition 4.3 shows that Vh does not depend on the choice of the
longest reduced sequence i .

Proposition 4.5 One has '.Vh/� Vh , ie Vh is '–stable.

Proof By Lemma 3.12, c D .' ˝ S�1'/.c/. Note that S�1' is a CŒŒh��–linear
automorphism of Uh . By Proposition 2.5(b), ' leaves stable the left image of c , ie
'.Vh/D Vh .
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4C Extension of ground ring and stability principle

Let
p

h be an indeterminate such that h D .
p

h/2 . Then CŒŒh�� � CŒŒ
p

h ��. For a
CŒŒh��–module homomorphism f W V !V 0 , we often use the same symbol f to denote
f y̋ id W V y̋CŒŒh��CŒŒ

p
h ��! V 0 y̋CŒŒh��CŒŒ

p
h ��.

Suppose the following data are given:

(i) a topologically free CŒŒh��–module V with a topological basis fe.i/ j i 2 Ig, and

(ii) a function aW I !CŒŒh�� such that a.i/¤ 0 and fa.i/ j i 2 Ig is 0–convergent.

Let V .
p

a/ be the topologically free CŒŒ
p

h ��–module with the topological basis
f
p

a.i/e.i/ j i 2 Ig and let V .a/� V be the closure (in the h–adic topology of V )
of the CŒŒh��–span of fa.i/e.i/ j i 2 Ig. We call .V;V .

p
a/;V .a// a topological

dilatation triple defined by the data given in (i) and (ii).

Proposition 4.6 (stability principle) Suppose

.V;V .
p

a/;V .a// and .V 0;V 0.
p

a0 /;V 0.a0//

are two topological dilatation triples and f W V !V 0 is a CŒŒh��–module homomorphism
such that f .V .a//� V 0.a0/. Then f .V .

p
a//� V 0.

p
a0 /.

Proof We first prove:

Claim If x1 , x2 , x3 2CŒŒh�� with x3 ¤ 0 and x1x2=x3 2CŒŒh��, then

x1

p
x2=x3 2CŒŒ

p
h ��:

Proof of claim Let xi D hki yi , where yi is invertible in CŒŒh��. The assumption
x1x2=x3 2CŒŒh�� means k1C k2 � k3 . Then k1C

1
2
k2 �

1
2
.k1C k2/ �

1
2
k3 , which

implies the claim.

Let us now prove the proposition. The CŒŒh��–module V .a/ is a formal series CŒŒh��–
module with formal basis fa.i/e.i/ j i 2 Ig; see Example 2.2. Every x 2 V .a/ has a
unique presentation as an h–adically convergent sum

x D
X
i2I

xi.a.i/e.i//; where .xi/i2I 2CŒŒh��I :

Using the topological bases fe.i/ j i 2 Ig of V and fe0.i 0/ j i 0 2 I 0g of V 0 , we have

f .e.i//D
X
j2I 0

f
j

i e0.j /;
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where f j
i 2CŒŒh�� and, for a fixed i , ff j

i j j 2 I 0g is 0–convergent. Multiplying by
appropriate powers of

p
a.i/, we get

f .a.i/e.i//D
X
j2I 0

zf
j

i .a
0.j /e0.j //; where zf j

i D
a.i/

a0.j /
f

j
i ;

f .
p

a.i/e.i//D
X
j2I 0

zzfi
j .
p

a0.j /e0.j //; where zzfi
j
D

p
a.i/

p
a0.j /

f
j

i :(85)

The assumption f .V .a// � V 0.a0/ implies that zf j
i 2 CŒŒh��, which, together with

f
j

i 2 CŒŒh�� and the claim, shows that zzfi
j
2 CŒŒ

p
h ��. Equation (85) shows that

f .V .
p

a//� V 0.
p

a0 /. This proves the proposition.

4D Definition of Xh

Fix a longest reduced sequence i . Recall that feh.n/ jn2NtClCtg is a topological basis
of Uh ; see Section 4A. Let aW NtClCt!CŒŒh�� be the function defined by a.n/D hknk

and consider the topological dilatation triple .Uh;Uh.
p

a/;Uh.a//. Denote the middle
one by Xh , ie Uh.

p
a/DXh . Later we show that Xh does not depend on i .

By definition, Uh.a/ is the closure (in the h–adic topology of Uh ) of the CŒŒh��–span
of fhknkeh.n/ j n 2NtClCtg. Thus, Uh.a/D Vh .

Also by definition, Xh is the topologically free CŒŒ
p

h ��–module with the topological
basis

(86) fhknk=2eh.n/ j n 2NtClCt
g:

Note that Xh is a submodule of Up
h
DUh y̋CŒŒh��CŒŒ

p
h��.

The topological closure Xh of Xh in Up
h

is a formal series CŒŒ
p

h ��–module with
(86) as a formal basis.

Theorem 4.7 The CŒŒ
p

h ��–module Xh is a topological Hopf subalgebra of Up
h

.
Moreover Up

h
FXh �Xh , ie Xh is ad-stable, and '.Xh/�Xh .

Proof We will show that Xh is closed under all the Hopf algebra operations of Up
h

.

Let us first show that Xh is closed under the coproduct. Both .Uh;Xh;Vh/ and
.U
y̋2

h
;X
y̋2

h
;V ˝2

h
/ are topological dilatation triples, and

�.Uh/�U
y̋2

h
and �.Vh/� V ˝2

h

(see Proposition 4.1). Hence, by the stability principle (Proposition 4.6), �.Xh/�X
y̋2

h
.
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Similarly, applying stability principle to all the operations of a Hopf algebra, namely
�, �, �, � and S (using Proposition 4.1), as well as the adjoint actions (using
Proposition 4.3) and the map ' (using Proposition 4.5) we get the results.

Corollary 4.8 Fix a longest reduced sequence i . The CŒŒ
p

h ��–algebra Xh is the topo-
logically complete subalgebra of Up

h
generated by

p
hH˛ ,

p
hE
 .i / and

p
hF
 .i /

with ˛ 2… and 
 2ˆC .

Proof Since Xh is an algebra, the proof is the same as that of Proposition 4.2.

4E Xh is a core subalgebra of Up
h

Recall that core subalgebras were introduced in Section 2N.

Theorem 4.9 The subalgebra Xh is a core subalgebra of the topological ribbon Hopf
algebra Up

h
.

Proof For the convenience of the reader, we recall the definition of a core subalgebra:
Xh is a core subalgebra of Up

h
if Xh is a topological Hopf subalgebra of Up

h
and

the following holds:

(i) Xh is Up
h

–stable.

(ii) R 2Xh˝Xh and K2� 2Xh .

(iii) The clasp element c has a presentation

c D
X
i2I

c0.i/˝ c00.i/;

where each of fc0.i/g and fc00.i/g is 0–convergent in Up
h

and is a topological
basis of Xh .

Let us look at all three statements.

(i) By Theorem 4.7, Xh is a topological Hopf subalgebra of Up
h

and (i) holds.

(ii) Since
p

hH˛ 2Xh (see Corollary 4.8), K˙2�Dexp
�
˙
P
˛2ˆC

hH˛

�
2Xh�Xh .

By (70), R�1 D‚D�1 , where

‚D
X

n2Nt

Fn˝En and D�1
D exp

�
�

h

2

X
˛2…

H˛˝
MH˛=d˛

�
:

As
p

hH˛;
p

h MH˛ 2Xh , one has D�1 2Xh˝Xh .
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Using the definition (65)–(66) of En and Fn , and Corollary 4.8, we have

Fn˝En �

 �Y

j2ˆC

.hF
j ˝E
j /
nj 2Xh˝Xh;

where a�b means aDub for some unit u in CŒŒh��. Hence, ‚D
P

Fn˝En2Xh˝Xh.
It follows that R�1 D ‚D�1 2Xh˝Xh . Since RD .id y̋ S/.R�1/, we also have
R 2Xh˝Xh . Thus (ii) holds.

(iii) Let I DNtClCt and, for n 2 I ,

(87) c0.n/D hknk=2eh.n/; c00.n/D uh.n/h
knk=2e00h.n/;

where uh.n/ is the unit of CŒŒh�� in (84). By (83),

c D
X

n

c0.n/˝ c00.n/:

By definition, fc0.n/g is a topological basis of Xh . Since f MH˛ j ˛ 2 …g is a basis
of h�R , fc00.n/g is also a topological basis of Xh . The factors hknk=2 in (87) show that
each set fc0.n/g and fc00.n/g is 0–convergent. Hence (iii) holds. This completes the
proof of the theorem.

By Theorem 2.25, the core subalgebra Xh gives rise to an invariant JM 2CŒŒ
p

h �� of
integral homology 3–spheres M , via the twists T˙ , which we will study in the next
subsections.

4F Quantum Killing form

Since Xh is a core subalgebra of Up
h

, according to Section 2N one has a clasp form,
which is a Up

h
–module homomorphism

(88) L W Xh y̋ Xh!CŒŒ
p

h ��;

defined by

(89) L .c00.n/˝ c0.m//D ın;m for n;m 2NtClCt ;

where c00.n/ and c0.m/ are given by (87). We also denote L .x˝y/ by hx;yi.

Let us calculate explicitly the form L . Recall that Fn;En 2Uq were defined by (65)
and (66), which depend on a longest reduced sequence.
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Proposition 4.10 Fix a longest reduced sequence i . For m, n, n0 , m02Nt, k, k02Nl,
˛ , ˇ 2 Y and k , l 2N , one has

hFmKmh
k
2H k

˛En;Fn0Kn0h
l
2H l

ˇ
Em0i D ık;lım;m0ın;n0q

.�;jEnj/.�1/kk!.˛; ˇ/k;(90)

hFmKmK�En;Fn0Kn0K�0Em0i D ım;m0ın;n0q
.�;jEnj/v�.�;�

0/=2:(91)

Proof Formula (90) is obtained from (89) by a simple calculation, using the definition
(87) of c0.n/ and c00.n/. Formula (91) is obtained from (90) using the expansion
K� D exp

�
1
2
hH�

�
D
P

k hkH k
�=.2

kk!/.

Suppose x;y 2Uq . There are nonzero a, b 2CŒv˙1� such that ax , by 2Xh . By (91),
hax; byi 2CŒv˙1=2�. Hence we can define hx;yi D hax; byi=.ab/ 2C.v1=2/. Thus,
we have a C.v/–bilinear form

(92) h � ; � iW Uq˝Uq!C.v1=2/:

Remark 4.11 The form we construct is not new. On Uq the form L is exactly the
quantum Killing form (or the Rosso form) [74; 81] (see [30]), which was constructed
via an elaborate process. For example, if one defines the quantum Killing form by (91),
then it not easy to check the ad-invariance of the quantum Killing form. Essentially
here we give a geometric characterization of the quantum Killing form: it is the dual
of the clasp element c . The ad-invariance of the quantum Killing form then follows
right away from the ad-invariance of c . We also determine the space Xh , which in a
sense is the biggest space for which the quantum Killing form can be defined (with
values in CŒŒh��).

4G Properties of quantum Killing form

We again emphasize that the form L is ad-invariant, ie the map L in (88) is a
Up

h
–module homomorphism; see Lemma 2.22. It follows that the form (92) is Uq –

ad-invariant.

Since each of fc0.n/g and fc00.n/g is a topological basis of Xh and they are dual to
each other, the bilinear form h � ; � i is nondegenerate.

From (90), we see that the quantum Killing form is triangular in the following sense.
Let x;x0 2Xh\U

ev;�
h

, y;y0 2Xh\U 0
h

, and z; z0 2Xh\UC
h

; then

hxyz;x0y0z0i D hx; z0ihy;y0ihz;x0i:(93)

The quantum Killing form is uniquely determined up to a scalar by the ad-invariant,
nondegenerate, and triangular properties; see [33, Theorem 4.8].

Geometry & Topology, Volume 20 (2016)



2746 Kazuo Habiro and Thang T Q Lê

The quantum Killing form is not symmetric. In fact, for x;y 2Xh , we have

hy;xi D hx;S2.y/i D hS�2.x/;yi;

which follows from the identity .id˝ S2/.c/ D c21 . If y is central, then S2.y/ D

K�2�yK2� D y . Hence,

(94) hx;yi D hy;xi if y is central:

The quantum Killing form extends to a multilinear form

h � ; � iW X˝n
h
y̋ X

y̋n
h
!CŒŒ

p
h ��;

where X˝n
h

is the topological closure of X˝n
h

, given by

hx1˝ : : :˝xn;y1˝ : : :˝yni D

nY
jD1

hxj ;yj i:

Lemma 4.12 Suppose x , y and z are elements of X0
h
DXh\U 0p

h
. Then

(95) hxy; zi D hx˝y; �.z/i:

Proof This follows from (90), with nDmD 0.

Note that (95) does not hold for general x;y; z 2Xh .

4H Twist system associated to Xh and an invariant of integral homology
3–spheres

According to the result of Section 2M, the core subalgebra Xh gives rise to a twist
system T˙W Xh!CŒŒ

p
h ��, defined by

T˙.x/D hr˙1;xi

and an invariant JM 2CŒŒ
p

h �� of integral homology 3–spheres M . Recall that JM

is defined as follows. Suppose T is an n–component bottom tangle with 0 linking
matrix and "i 2 f�1; 1g, and M is obtained from S3 by surgery along the closure link
cl.T / with the framing of the i th component switched to "i . Then

JM D .T"1
y̋ � � � y̋ T"n

/.JT /:

In the next few sections we will show that JM 2
bZŒq� .
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Let us calculate the values of T˙ on basis elements. Recall that

r0 DK�2� exp
�
�

1

2

X
˛2…

H˛
MH˛=d˛

�
:

Proposition 4.13 (a) Fix a longest reduced sequence i . For m, n 2 Nt, 
 2 Y

and x 2X0
h

, one has

TC.FmKmxEn/D ım;nq.�;jEnj/hr0;xi;(96)

hr0;K
 i D v
.
;�/� 1

4
.
;
 /
2 ZŒv˙1=2�:(97)

(b) For every x 2Xh , one has

(98) T�.x/D TC.'.x//:

Proof (a) By (72),
r D

X
n2Nt

FnKnr0En:

Identity (96) follows from the triangular property of the quantum Killing form. The
identities in (97) follow from a calculation using (90) and the explicit expression of r0 .

(b) By (79), c D .' y̋ S�1'/.c/. By Proposition 2.23, for y 2Xh and x 2Xh one
has

(99) hy;xi D hS�1'.y/; '.x/i:

By Corollary 3.11 and (73), S�1'.r�1/D r . Using (99) with yD r�1 , we get (98).

4I Twist forms on Uq

By construction we have twist forms T˙W Xh ! CŒŒ
p

h ��, with domain Xh and
codomain CŒŒ

p
h ��. We can change the domain to get a better image space.

By Proposition 4.13, for m, n 2Nt and 
 2 Y ,

(100) TC.FmKmK2
En/D ım;nq.�;jEnj/v2.
;�/�.
;
 /
2 ZŒq˙1�� ZŒv˙1�:

Because fFmKmK2
En jm;n 2Nt; 
 2 Y g is a C.v/–basis of U ev
q , we have

TC.U ev
q \Xh/�C.v/\CŒŒ

p
h ��:

Using T�.x/D TC.'.x// (see Proposition 4.13) and the fact that both U ev
q and Xh

are '–stable, we also have

T�.U ev
q \Xh/�C.v/\CŒŒ

p
h ��:
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Because U ev
q \Xh spans U ev

q over C.v/, we can extend the restriction of T˙ on
U ev

q \Xh to C.v/–linear maps, also denoted by T˙ :

T˙W U ev
q !C.v/:

The values of TC on the basis elements are given by (100). It is clear that

(101) T˙.U ev
Z /�Q.v/:

5 Integral core subalgebra

In Section 4 we constructed a core subalgebra Xh of Uph that gives rise to an invariant
JM of integral homology 3–spheres with values in CŒŒ

p
h ��. In order to show that JM

takes values in bZŒq� we need an integral version of the core algebra. This section is
devoted to an integral form XZ of the core algebra Xh .

In order to construct XZ we first introduce Lusztig’s integral form UZ and De Concini
and Procesi’s integral form VZ . Then we construct XZ so that .UZ;XZ;VZ/ forms an
integral dilatation triple corresponding to the topological dilatation triple .Uh;Xh;Vh/.

Lusztig introduced UZ in connection with his discovery (independently with Kashiwara)
of canonical bases. De Concini and Procesi introduced VZ in connection with their
study of geometric aspects of quantized enveloping algebras. For the study of the
integrality of quantum invariants, Lusztig’s integral form UZ is too big: it does not
have necessary integrality properties. For example, the quantum Killing form hx;yi
with x;y 2 UZ belongs to Q.v1=2/ but not to ZŒv˙1=2� in general. On the other
hand, De Concini and Procesi’s form VZ is too small, in the sense that completed
tensor powers of VZ do not contain the universal invariant of general bottom tangles.
(Recently, however, Suzuki [78; 79] proved that, for gD sl2 , the universal invariant of
ribbon and boundary bottom tangles is contained in completed tensor powers of VZ .)
Our integral form XZ is the perfect middle ground, since it is big enough to contain
quantum link invariants and small enough to have the necessary integrality. We believe
that XZ is the right integral form for the study of quantum invariants of links and
3–manifolds.

We will show that De Concini and Procesi’s VZ is “almost” dual to Lusztig’s UZ under
the quantum Killing form; see the precise statement in Proposition 5.15. This fact can
be interpreted as an integral version of the duality of Drinfel’d [17] and Gavarini [18].
Using the duality we then show that the even part of VZ is invariant under the adjoint
action of UZ , an important result which will be used frequently later. We then show
that the twist forms have nice integrality on XZ .
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5A Dilatation of based free modules

Let zA be the extension ring of A D ZŒv˙1� obtained by adjoining all
p
�n.q/,

nD 1; 2; : : : , to A. Here �n.q/ is the nth cyclotomic polynomial and q D v2 . One
reason why working over zA is not too much a sacrifice is the following:

Lemma 5.1 One has zA\Q.q/D ZŒq˙1�.

Proof Since
p
�k.q/ is integral over ZŒq˙1�, zA is integral over ZŒq˙1�. Hence

zA\Q.q/D ZŒq˙1�.

Suppose V is a based free A–module, ie a free A–module equipped with a preferred
basis fe.i/ j i 2 Ig. Assume aW I ! A is a function such that a.i/ is a product of
cyclotomic polynomials in q for every i 2 I . In particular, a.i/¤ 0 and

p
a.i/ 2 zA.

The based free A–module V .a/�V , with preferred basis fa.i/e.i/ j i 2 Ig, is called a
dilatation of V , with dilatation factors a.i/. Let V .

p
a/ be the based free zA–module

with preferred basis f
p

a.i/e.i/ j i 2 Ig. We call .V;V .
p

a/;V .a// a dilatation triple
determined by the based free A–module V and the function a.

We will introduce the Lusztig integral form UZ , the integral core algebra XZ and the
De Concini–Procesi integral form VZ so that .UZ;XZ;VZ/ is a dilatation triple.

5B Lusztig’s integral form UZ

Let UZ be the A–subalgebra of Uq generated by all E
.n/
˛ , F

.n/
˛ and K˙1

˛ with ˛ 2…
and n 2N . Set U �Z DUZ\U �q for � D �, 0, C.

Let us collect some well-known facts about UZ . Recall that E.n/ and F .n/ , defined
for n 2Nt in Section 3F2, depend on the choice of a longest reduced sequence.

Proposition 5.2 Fix a longest reduced sequence i .

(a) The A–algebra UZ is a Hopf subalgebra of Uq and satisfies the triangular
decomposition

U�Z ˝U 0
Z˝UCZ

Š
�!UZ; x˝y˝ z 7! xyz:

Moreover, UZ is stable under the action of T˙1
˛ , ˛ 2….

(b) The set fF .n/ j n 2 Ntg is a free A–basis of the A–module U�Z . Similarly,
fE.n/ j n 2Ntg is a free A–basis of UCZ .
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(c) The Cartan part U 0
Z is the A–subalgebra of U 0

q generated by

K˙1
˛ and

.K2
˛I q˛/n

.q˛I q˛/n
for ˛ 2… and n 2N .

(d) The algebra UZ is stable under �bar , � and ' . Moreover U�Z is stable under �bar

and � .

Proof Parts (a)–(c) are proved in [53; 54, Proposition 41.1.3]. Part (d) can be proved by
noticing that each of �bar , � and ' maps each of the generators E

.n/
˛ , F

.n/
˛ and K˙1

˛

of UZ into UZ , and each of �bar and � maps each of the generators F
.n/
˛ of U�Z

into U�Z .

We will consider U�Z and UCZ as based free A–modules with preferred bases described
in Proposition 5.2(b). Later we will find a preferred basis for the Cartan part U 0

Z .

Let U ev
Z DUZ\U ev

q be the even part of UZ . From the triangulation of UZ we have
the following even triangulation of UZ and U ev

Z :

U
ev;�
Z ˝U 0

Z˝UCZ
Š
�!UZ; x˝y˝ z 7! xyz;(102)

U
ev;�
Z ˝U

ev;0
Z ˝UCZ

Š
�!U ev

Z ; x˝y˝ z 7! xyz:(103)

Here, U
ev;0
Z D U ev

Z \ U
ev;0
q , with U 0

q D C.v/ŒK˙2
˛ ; ˛ 2 …�, and U

ev;�
Z D U ev

Z \

U
ev;�
q D '.UCZ /.

From Proposition 5.2(b) and U
ev;�
Z D '.UCZ /, we have the following:

Proposition 5.3 The set fF .n/Kn j n2Ntg is a free A–basis of the A–module U
ev;�
Z .

We will consider U
ev;�
Z as a based free A–module with the above preferred basis.

5C De Concini–Procesi integral form VZ

Let VZ be the smallest A–subalgebra of UZ which is invariant under the action of
the braid group and contains .1 � q˛/E˛ , .1 � q˛/F˛ and K˙1

˛ for ˛ 2 …. For
� D 0, C, �, set V �Z D VZ\U �q .

Remark 5.4 In the original definition, De Concini and Procesi [15, Section 12] used
the ground ring QŒv˙1� instead of AD ZŒv˙1�. Our VZ is denoted by A in [15].
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Fix a longest reduced sequence i . For nD .n1; : : : ; nt / 2Nt , let

(104) .qI q/n D

tY
jD1

.q
j I q
j /nj :

Note that .qI q/n depends on i , since 
j D 
j .i / depends on i .

Proposition 5.5 Fix a longest reduced sequence i .

(a) The A–algebra VZ is a Hopf subalgebra of UZ .

(b) We have V 0
Z DAŒK˙1

1
; : : : ;K˙1

l
� and the triangular decomposition

V �Z ˝V 0
Z ˝V CZ

Š
�!VZ; x˝y˝ z 7! xyz:

(c) The set f.qI q/nF .n/ jn2Ntg is a free A–basis of the A–module V �Z . Similarly,
f.qI q/nE.n/ j n 2Ntg is a free A–basis of V CZ .

Proof The proofs for the case when AD ZŒv˙1� is replaced by QŒv˙1� were given
in [15, Section 12]. The proofs there remain valid for A. Note that in [15] our VZ is
denoted by A.

The even part V ev
Z WD VZ \ U ev

q is an A–subalgebra of VZ . From the triangular
decomposition of VZ , we have the even triangular decompositions

V
ev;�

Z ˝V
ev;0

Z ˝V CZ
Š
�!V ev

Z ; x˝y˝ z 7! xyz;(105)

V
ev;�

Z ˝V 0
Z ˝V CZ

Š
�!VZ; x˝y˝ z 7! xyz;(106)

where V
ev;0

Z WD VZ\U
ev;0
q DAŒK˙2

1
; : : : ;K˙2

l
� and V

ev;�
Z WD VZ\U

ev;�
q D '.V CZ /.

From Proposition 5.2(b) and U
ev;�
q D '.UCq /, we have the following:

Proposition 5.6 The set f.qI q/nF .n/Kn j n 2 Ntg is a free A–basis of the A–
module V

ev;�
Z .

We will consider V
ev;�

Z as a based free A–module with the above preferred basis. Then
V

ev;�
Z is a dilatation of U

ev;�
Z . Similarly, we consider V CZ as a based free A–module

with preferred basis given in Proposition 5.5. Then V CZ is a dilatation of UCZ .
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5D Preferred bases for U 0
Z

and V 0
Z

We will equip U 0
Z and V 0

Z with preferred A–bases such that V 0
Z is a dilatation of U 0

Z .
Recall that Kj DK

j̨
and qj D q

j̨
.

For nD .n1; : : : ; nl/ 2Nl and ı D .ı1; : : : ; ıl/ 2 f0; 1gl let

Qev.n/ WD

lY
jD1

K
�2bnj =2c

j .q
�b.nj�1/=2c

j K2
j I qj /nj

.qj I qj /nj
;(107)

Q.n; ı/ WDQev.n/

lY
jD1

K
ıj
j ;(108)

.qI q/n WD

lY
jD1

.qj I qj /nj :(109)

Proposition 5.7 (a) The sets fQev.n/ j n 2Nlg and f.qI q/nQev.n/ j n 2Nlg are
A–bases of U

ev;0
Z and V

ev;0
Z , respectively.

(b) The sets fQ.n; ı/ jn2Nl; ı 2f0; 1glg and f.qI q/nQ.n; ı/ jn2Nl; ı 2f0; 1glg

are A–bases of U ev
Z and V ev

Z , respectively.

The proof is not difficult, since U 0
Z and V 0

Z are A–subalgebras of the commutative
algebra Q.v/ŒK˙1

1
; : : : ;K˙1

l
�, though it involves some calculation. We give a proof

of Proposition 5.7 in Appendix B.

Remark 5.8 In [52], Lusztig gave a similar, but different, basis of U 0
Z . Our basis can

be obtained from Lusztig’s by an upper triangular matrix, and hence a proof of the
proposition can be obtained this way. We chose the basis in Proposition 5.7 instead of
Lusztig’s one for orthogonality reasons.

5E Preferred bases of UZ and VZ

Recall that we have defined .qI q/n in two cases depending on the length of n — see
(104) and (109) — either nD .n1; : : : ; nt / 2Nt , in which case

.qI q/n D

tY
jD1

.q
j I q
j /nj ;

or nD .n1; : : : ; nl/ 2Nl , then

.qI q/n D

lY
jD1

.q
j̨
I q

j̨
/nj :
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The first one depends on a longest reduced sequence since 
j does, while the second
one does not.

Introduce another .qI q/n , with length n D 2t C l . For n D .n1;n2;n3/ 2 NtClCt ,
where n1 , n3 2Nt and n2 2Nl , define

(110) .qI q/n WD .qI q/n1
.qI q/n2

.qI q/n3
:

Further, if ı 2 f0; 1gl , let

(111) eev.n/ WD F .n1/Kn1
Qev.n2/E

.n3/; e.n; ı/ WD F .n1/Kn1
Q.n2; ı/E

.n3/:

Proposition 5.9 (a) The set

fe.n; ı/ j n 2NtClCt; ı 2 f0; 1glg

and its dilated set

f.qI q/ne.n; ı/ j n 2NtClCt; ı 2 f0; 1glg

are A–bases of UZ and VZ , respectively.

(b) The set
feev.n/ j n 2NtClCt

g

and its dilated set

f.qI q/neev.n/ j n 2NtClCt
g

are A–bases of U ev
Z and V ev

Z , respectively.

Proof The proposition follows from the even triangular decompositions of UZ and VZ ,
together with the bases of U

ev;�
Z , U 0

Z and UCZ , and V
ev;�

Z , V 0
Z and V CZ in Propositions

5.2, 5.5 and 5.7.

We will consider UZ , U ev
Z , VZ and V ev

Z as based free A–modules with the preferred
bases described in the above proposition. Then VZ is a dilatation of UZ and V ev

Z is a
dilatation of U ev

Z .

5F Relation between VZ and Vh

Proposition 5.10 (a) One has V ev
Z � VZ � Vh .

(b) Moreover, Vh is the topological closure (in the h–adic topology of Uh ) of the
CŒŒh��–span of V ev

Z . Consequently, Vh is also the topological closure (in the
h–adic topology of Uh ) of VZ .
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Proof (a) It is clear that V ev
Z � VZ . Let us prove VZ � Vh .

Fix a longest reduced sequence i . By Proposition 4.2, Vh is the topological closure of
the CŒŒh��–subalgebra generated by hH˛ , hF
 and hE
 , with ˛ 2… and 
 2ˆC .

For every 
 2ˆC , there is a unit u in CŒŒh�� such that 1� q
 D hu and

(112) .1� q
 /F
 D u.hF
 / 2 Vh:

Similarly, .1�q
 /E
 2Vh . We already have K˙1
˛ 2Vh . Since .1�q
 /F
 , .1�q
 /E


and K˙1
˛ generate VZ as an A–algebra and Vh is an A–algebra, we have VZ � Vh .

(b) Let V 0
h

be the topological closure of the CŒŒh��–span of V ev
Z . We have to show that

V 0
h
D Vh . From part (a) we now have that V 0

h
� Vh . It remains to show Vh � V 0

h
. It is

easy to see that V 0
h

is a CŒŒh��–algebra.

Since K2
˛ 2 V ev

Z and

hH˛ D log.K2
˛/D�

1X
nD1

.1�K2
˛/

n

n
;

we have hH˛ 2 V 0
h

for any ˛ 2…. It follows that K˙1
˛ D exp.˙hH˛=2/ 2 V 0

h
.

From (112),

hF
 D u�1.1� q
 /.F
K
 /K
�1

 2 V 0h; hE
 D u�1.1� q
 /E
 2 V 0h:

Thus, hH˛ , hF
 and hE
 are in V 0
h

for any ˛ 2… and 
 2 ˆC . Since Vh is the
topological closure of the CŒŒh��–algebra generated by hH˛ , hF
 and hE
 , we have
Vh � V 0

h
. This completes the proof of the proposition.

Corollary 5.11 The algebra Vh is stable under the braid group action, ie T˙1
˛ .Vh/�Vh

for any ˛ 2….

Proof Since VZ is invariant under the braid group action and Vh is the topological
closure of the CŒŒh��–span of VZ , the algebra Vh is also invariant under the braid group
action.

Remark 5.12 Using Corollary 5.11 one can easily prove that Vh is the smallest
CŒŒh��–subalgebra of Uh which

(i) contains hE˛ , hF˛ and hH˛ for ˛ 2…,

(ii) is stable under the action of the braid group,

(iii) is closed in the h–adic topology of Uh .
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5G Stability of VZ under �bar , � and '

By Proposition 5.2, UZ is stable under �bar , � and ' .

Proposition 5.13 The algebra VZ is stable under each of � , ' and �bar .

Proof Recall that VZ is the smallest A–subalgebra of UZ containing .1� q˛/E˛ ,
.1� q˛/F˛ and K˛ for ˛ 2… and is stable under the action of the braid group. Let
f be one of � , ' or �bar .

Claim 1 f .VZ/ is stable under the braid group action.

Proof of Claim 1 (i) f D � By [30, Formula 8.14.10], �T˛ D T �1
˛ � for every

˛ 2…. Since the T˛ generate the braid group, we conclude that, like VZ , �.VZ/ is
also stable under the braid group.

(ii) f D ' Recall that S is the antipode. By Proposition 3.2, ' D S� D �S , where
� D �bar�! is a C–antiautomorphism of Uh . Our � is the same � in [15], where it was
observed that � commutes with the action of the braid group, ie �T˛ D T˛� for ˛ 2….
It follows that �.VZ/ is stable under the braid group. Since '.VZ/D �S.VZ/D �.VZ/,
'.VZ/ is stable under the braid group.

(iii) f D �bar Checking on the generators, one has �bar D ��! .

By [30, Formula 8.14.9], if x 2 Uq is Y–homogeneous, then T˛.!.x// � !T˛.x/,
where x � y means x D uy for some unit u 2A. As VZ has an A–basis consisting
of Y–homogeneous elements (see Proposition 5.9), we conclude that !.VZ/ is stable
under the braid group. The results of (i) and (ii) show that �bar.VZ/ D ��!.VZ/ is
stable under the braid group.

This completes the proof of Claim 1.

Claim 2 One has VZ � f .VZ/.

Proof of Claim 2 Using the explicit formulas of f �1 in Section 3B, one sees that each
of f �1..1� q˛/E˛/, f �1..1� q˛/F˛/ and f �1.K˛/ is in VZ . It follows that each
of .1� q˛/E˛ , .1� q˛/F˛ and K˛ is in f .VZ/. Together with Claim 1, this implies
f .VZ/ is an algebra stable under the braid group and contains f �1..1 � q˛/E˛/,
f �1..1� q˛/F˛/ and f �1.K˛/. Hence f .VZ/ � VZ . This completes the proof of
Claim 2.

Since � and �bar are involutions and '2.x/ D K�2�xK2� (by Proposition 3.2), we
have f 2.VZ/ D VZ . Applying f to VZ � f .VZ/, we get f .VZ/ � f

2.VZ/ D VZ .
Hence, VZ D f .VZ/.

Geometry & Topology, Volume 20 (2016)



2756 Kazuo Habiro and Thang T Q Lê

5H Simply connected version of UZ

Recall that the simply connected version MUq is obtained from Uq by replacing the
Cartan part U 0

q DC.v/ŒK˙1
1
; : : : ;K˙1

l
� with the bigger MU 0

q DC.v/Œ MK˙1
1
; : : : ; MK˙1

l
�.

We introduce an analog of Lusztig’s integral form for MUq here.

The C.v/–algebra homomorphism M�W U 0
q !

MU 0
q , defined by M�.K˛/D MK˛ , ˛ 2…, is

a Hopf algebra homomorphism. Let

MU 0
Z WD M�.U

0
Z/;

MU
ev;0
Z WD M�.U

ev;0
Z /:

Then MU 0
Z and MU ev;0

Z are A–Hopf subalgebra of MU ev;0
q . Define

MUZ WD
MU 0

ZUZ; MU ev
Z WD

MU
ev;0
Z U ev

Z :

For m 2Nl and ı D .ı1; : : : ; ıl/ 2 f0; 1gl , define

MQev.m/ WD M�.Qev.m//; MQ.m; ı/ WD M�.Q.m; ı//;

and, furthermore, for nD .n1;n2;n3/ 2NtClCt define

(113) Meev.n/ WD F .n3/Kn3
MQev.n2/E

.n1/; Me.n; ı/ WD Meev.n/

lY
jD1

MK
ıj
j̨
:

Proposition 5.14 (a) MUZ is an A–Hopf subalgebra of MUq and MU ev
Z is an A–

subalgebra of MUZ . We also have the even triangular decompositions

U
ev;�
Z ˝ MU

ev;0
Z ˝UCZ

Š
�! MU ev

Z ; x˝y˝ z 7! xyz;(114)

U
ev;�
Z ˝ MU 0

Z˝UCZ
Š
�! MUZ; x˝y˝ z 7! xyz:(115)

(b) The sets f Me.n; ı/ j n 2 NtClCt; ı 2 f0; 1glg and f Meev.n/ j n 2 NtClCtg are
A–bases of MUZ and MU ev

Z , respectively.

(c) One has MUZ F
MU ev

Z �
MU ev

Z . Consequently, UZ F
MU ev

Z �
MU ev

Z .

Proof (a) As an A–module, U 0
Z is spanned by

f˛;m;n;k WD
Km
˛ .q

n
˛K2

˛I q˛/k

.q˛I q˛/k
;

with ˛ 2…, m, n 2Z and k 2N . Hence, MU 0
ZD M�.U

0
Z/ is A–spanned by Mf˛;m;n;k WD

M�.f˛;m;n;k/. If x 2 UZ is Y–homogeneous then, using (57), which describes the
commutation between MK˛ and x ,

(116) Mf˛;m;n;kx D vm.jxj; M̨ /x Mf˛;m;n0;k ;
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where n0 D nC .jxj; ˛/=d˛ 2 Z. Hence, UZ commutes with MU 0
Z in the sense that

UZ
MU 0

Z D
MU 0

ZUZ . Since both UZ and MU 0
Z are A–Hopf subalgebras of Uh and they

commute in the above sense, MUZ D
MU 0

ZUZ is an A–Hopf subalgebra of MUq .

Identity (116) also shows that each of MU ev;0
Z and MU 0

Z commutes with each of U�Z ,
UCZ and U 0

Z . Hence, MU ev
Z D

MU
ev;0
Z U ev

Z is an A–subalgebra of MUZ . The triangular
decompositions for MU ev

Z and MUZ follows from those of U ev
Z and UZ .

(b) Combining the bases fF .n3/Kn3
g of U

ev;�
Z (see Proposition 5.3), f MQev.n2/g

of MU ev;0
Z (by Proposition 5.7 and isomorphism M�), fE.n1/g of UCZ (see Proposition 5.2),

and the even triangular decompositions of MUZ and MU ev
Z , we get the bases of MUZ and

MU ev
Z as described.

(c) Since MUZ contains E
.n/
˛ , F

.n/
˛ and K˙1

˛ , which generate UZ , we have UZ�
MUZ .

Let us prove
MUZ F

MU ev
Z �

MU ev
Z :

From the triangular decompositions of MUZ , MU ev
Z and MUq , we see that MU ev

Z D
MUZ\

MU ev
q .

Since MUZ is a Hopf algebra, we have MUZ F
MU ev

Z �
MUZ . By Lemma 3.6,

MUZ F
MU ev

Z �
MUq F

MU ev
q �

MU ev
q :

Hence, MUZ F
MU ev

Z �
MUZ\

MU ev
q D

MU ev
Z . This finishes the proof of the proposition.

5I Integral duality with respect to quantum Killing form

Recall that feev.n/ j n 2 NtClCtg is an A–basis of U ev
Z (see Proposition 5.9) and

f Meev.n/ j n 2NtClCtg is an A–basis of MU ev
Z (see Proposition 5.14). We will show that

these two bases are orthogonal to each other with respect to the quantum Killing form.

Recall that we defined .qI q/n D .qI q/n1
.qI q/n2

.qI q/n3
; see Section 5E.

Proposition 5.15 (a) For n, m 2NtClCt , there exists a unit u.n/ 2A such that

heev.n/; Meev.m/i D ın;m
u.n/

.qI q/n
:

(b) The A–module V ev
Z is the A–dual of MU ev

Z in U ev
q with respect to the quantum

Killing form, ie

V ev
Z D fx 2U ev

q j hx;yi 2A for all y 2 MU ev
Z g:
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Proof Define the following units in A. For m D .m1; : : : ;mt / 2 Nt and k D

.k1; : : : ; kl/ 2Nl let

u1.m/D

tY
jD1

v
m2
j


j ; u2.k/D

lY
jD1

q
�b.kjC1/=2c2

j̨
:

For nD .n1;n2;n3/ 2NtClCt , let

u.n/D q.�;jEn3
j/u1.n1/u2.n2/u1.n3/:

(a) We will use the following lemma, whose proof will be given in Appendix B:

Lemma 5.16 For k, k0 2Nl , one has

(117) hQev.k/; MQev.k0/i D ık;k0u2.k/=.qI q/k:

For p 2Nt , using the definition of Ep and Fp in Section 3G1, we have

F .p/˝E.p/
D

u1.p/

.qI q/p
.Fp˝Ep/:

Suppose nD .n1;n2;n3/ and mD .m1;m2;m3/ are in NtClCt . Using the definition
of eev.n/ and Meev.n/ from (111) and (113), the triangular property of the quantum
Killing form, and formulas (91) and (117),

heev.n/; Meev.m/i D hF .n1/Kn1
;E.m1/ihQev.n2/; MQ

ev.m2/ihE
.n3/;F .m3/Km3

i

D
ın1;m1

u1.n1/

.qI q/n1

ın2;m2
u2.n2/

.qI q/n2

ın3;m3
q.�;jEn3

j/u1.n3/

.qI q/n3

D
ın;mu.n/

.qI q/n
:

(b) By Proposition 5.9, f.qI q/neev.n/ j n 2 NtClCtg is an A–basis of V ev
Z and a

C.v/–basis of U ev
q and, by Proposition 5.14, f Meev.n/ j n 2 NtClCtg is an A–basis

of MU ev
Z . Part (b) follows from the orthogonality of part (a).

Remark 5.17 From the orthogonality of Proposition 5.15, we can show that

(118) c D
X

n2NtClCt

.qI q/n

u.n/
Meev.n/˝ eev.n/:
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5J Invariance of V ev
Z

under adjoint action of UZ

The adjoint action makes UZ a UZ –module. The following result, showing that V ev
Z

is a UZ –submodule of UZ , is important for us and will be used frequently.

Theorem 5.18 We have MUZ F V ev
Z � V ev

Z . In particular, UZ F V ev
Z � V ev

Z , ie V ev
Z is

UZ –ad-stable.

Proof By Proposition 5.14, MUZ F
MU ev

Z �
MU ev

Z and, by Proposition 5.15, V ev
Z is the

A–dual of MU ev
Z with respect to the quantum Killing form. Further, the quantum Killing

form is ad-invariant. Hence, one also has MUZ FV ev
Z � V ev

Z , as the following argument
shows: Recall that we already have MUZ F U ev

q � U ev
q (see Lemma 3.6). Suppose

a 2 MUZ and x 2 V ev
Z . We will show aFx 2 V ev

Z . We have

aFx 2 V ev
Z () haFx;yi 2A for all y 2 MU ev

Z

() hx;S.a/Fyi 2A for all y 2 MU ev
Z ;

where the first equivalence is by duality (Proposition 5.15) and the second is by ad-
invariance (Proposition 2.4(b)).

Since S.a/Fy 2 MU ev
Z , the last statement hx;S.a/Fyi 2A holds by Proposition 5.15.

Thus we have proved that UZ FV ev
Z � V ev

Z .

Remark 5.19 We do not have UZ FVZ � VZ in general. For example, when gDA2

and ˛ ¤ ˇ 2…,
E˛ FKˇ D .v� 1/KˇE˛ 62 VZ:

However, when g D A1 , we do have UZ F VZ � VZ , as easily follows from [78,
Proposition 3.2], where a more refined statement is given.

5K Extension from A to zA: stability principle

Recall that zA is obtained from A by adjoining all square roots
p
�k.q/, k D 1; 2; : : : ,

of cyclotomic polynomials �k.q/.

Suppose V is a based free A–module with preferred basis fe.i/ j i 2 Ig and aW I!A
is a function such that, for every i 2 I , a.i/ is a product of cyclotomic polynomials
in q . We already defined the dilatation triple .V;V .

p
a/;V .a// in Section 5A. Recall

that V .a/ is the free A–module with basis fa.i/e.i/ j i 2 Ig and V .
p

a/ is the free
zA–module with basis f

p
a.i/e.i/ j i 2 Ig.

For any A–module homomorphism f W V1! V2 we also use the same notation f to
denote the linear extension f ˝ idW V1 ˝A zA! V2 ˝A zA, which is an zA–module
homomorphism.
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Proposition 5.20 (stability principle) Let

.V1;V1.
p

a1 /;V1.a1// and .V2;V2.
p

a2 /;V2.a2//

be two dilatation triples and let f W V1 ! V2 be an A–module homomorphism. If
f .V1.a1//� V2.a2/, then f .V1.

p
a1 //� V2.

p
a2 /.

Proof First we prove the following:

Claim Suppose a, b , c 2A with b and c products of cyclotomic polynomials �k.q/.
If ab=c 2A then a

p
b=c 2 zA.

Proof of claim Since A is a unique factorization domain, one can assume that b

and c are coprime. Then a must be divisible by c , say aD a0c with a0 2 A. Then
a
p

b=c D a0
p

bc0 2 zA, which proves the claim.

The proof of the proposition is now parallel to that in the topological case (Proposition
4.6). Using the bases fe1.i/ j i 2 I1g and fe2.i/ j i 2 I2g of V1 and V2 , we can write

f .e1.i//D
X
k2I2

f k
i e2.k/;

where f k
i D 0 except for a finite number of k (when i is fixed) and f k

i 2A.

Multiplying by a1.i/ and
p

a1.i/, we get

f .a1.i/e1.i//D
X
k2I2

f k
i

a1.i/

a2.k/
.a2.k/e2.k//;(119)

f .
p

a1.i/e1.i//D
X
k2I2

f k
i

r
a1.i/

a2.k/
.
p

a2.k/e2.k//:(120)

Since f .V1.a1//� V2.a2/, (119) implies that f k
i a1.i/=a2.k/ 2A, which, together

with f k
i 2A and the claim, implies that

f k
i

r
a1.i/

a2.k/
2 zA:

Now (120) shows that f .V1.
p

a1 //� V2.
p

a2 /.
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5L The integral core subalgebra XZ

By Proposition 5.9, we can consider UZ as a based free A–module with the preferred
basis fe.n; ı/ j n 2NtClCt; ı 2 f0; 1glg.

Let aW NtClCt � f0; 1gl ! A be the function defined by a.n; ı/ D .qI q/n , where
.qI q/n is defined by (110). We consider the dilatation triple .UZ;UZ.

p
a/;UZ.a//.

By Proposition 5.9, UZ.a/ is VZ .

Let XZ be UZ.
p

a/, which by definition is the free zA–module with basis

(121) f
p
.qI q/n e.n; ı/ j n 2NtClCt; ı 2 f0; 1glg:

The even part X ev
Z of XZ is defined to be the zA–submodule spanned by

(122) f
p
.qI q/n eev.n/ j n 2NtClCt

g:

Then X ev
Z DXZ\ .U

ev
Z ˝A zA/, and .U ev

Z ;X
ev
Z ;V

ev
Z / is a dilatation triple.

Theorem 5.21 (a) The zA–module XZ is an zA–Hopf subalgebra of UZ˝A zA.

(b) The zA–module X ev
Z is an zA–subalgebra of U ev

Z ˝A zA. Further, X ev
Z is

(i) UZ –ad-stable,
(ii) stable under the action of the braid group, and

(iii) stable under �bar and ' .

(c) The core algebra Xh is the
p

h–adic completion of the CŒŒ
p

h ��–span of X ev
Z

(or XZ ) in Up
h

.

Proof (a) Let us show that �.XZ/ � XZ ˝ XZ . Since .UZ;XZ;VZ/ is a di-
latation triple, .UZ˝UZ;XZ˝XZ;VZ˝ VZ/ is also a dilatation triple. We have
�.UZ/�UZ˝UZ and �.VZ/�VZ˝VZ . By the stability principle (Proposition 5.20),
we have �.XZ/�XZ˝XZ , ie XZ is an zA–coalgebra.

Similarly, applying the stability principle to all the operations of a Hopf algebra, we
conclude that XZ is an zA–Hopf subalgebra of UZ˝A zA.

(b) Because V ev
Z is an A–subalgebra of U ev

Z , the stability principle for the dilatation
triple .U ev

Z ;X
ev
Z ;V

ev
Z / shows that X ev

Z is an zA–algebra.

By Theorem 5.18, V ev
Z is UZ –ad-stable; and, by Proposition 5.13, V ev

Z is stable under
�bar and ' . Since U ev

Z is UZ –ad-stable is stable under �bar and ' (by Proposition 5.2),
the stability principle proves that X ev

Z is (i) UZ –ad-stable, (ii) stable under the action
of the braid groups, and (iii) stable under �bar and ' .

(c) Each element of the basis (121) of XZ is in Xh . Hence, XZ �Xh . On the other
hand, the zA–basis (122) of X ev

Z is also a topological basis of Xh . Hence, Xh is the
p

h–adic completion of the CŒŒ
p

h ��–span of X ev
Z in Up

h
.
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Corollary 5.22 (a) The core algebra Xh is stable under the action of the braid
group.

(b) The core algebra Xh is the smallest
p

h–adically completed topological CŒŒ
p

h ��–
subalgebra of Up

h
which (i) is closed in the

p
h–adic topology, (ii) contains

p
hE˛ ,

p
hF˛ and

p
hH˛ for each ˛ 2…, and (iii) is invariant under the action

of the braid group.

Proof (a) Since Xh is the
p

h–adic completion of the CŒŒ
p

h ��–span of X ev
Z , which

is stable under the action of the braid group, Xh is also stable under the action of the
braid group.

(b) Let X 0
h

be the smallest completed subalgebra of Up
h

satisfying (i), (ii), and (iii).
Since Xh satisfies (i), (ii), and (iii), we have X 0

h
�Xh .

For each 
 2ˆC , E
 and F
 are obtained from E˛ and F˛ for ˛ 2… by actions
of the braid group. Thus X 0

h
contains all

p
hE
 and

p
hF
 for 
 2ˆC and

p
hH˛

for ˛ 2…, which generate Xh as an algebra (after h–adic completion). It follows that
Xh �X 0

h
. Hence, Xh DX 0

h
.

Remark 5.23 The disadvantage of XZ is its ground ring is zA, not A. Let us define

XA DXZ\UZ:

Then XA is an A–algebra. However, XA is not an A–Hopf algebra in the usual sense,
since

�.XA/ 6�XA˝A XA:

Let us define a new tensor product

(123) .XA/
�n
WDX˝n

Z \U˝n
Z ; .X ev

A /
�n
WD .X ev

Z /
˝n
\ .U ev

Z /
˝n:

Then we have

�.XA/D�.XZ\UZ/� .XZ˝XZ/\ .UZ˝UZ/DXA�XA:

Hence, XA , with this new tensor power, is a Hopf algebra, which is a Hopf subalgebra
of both XZ and UZ .

What we will prove later implies that if T is an n–component bottom tangle with 0

linking matrix then
JT 2 lim

 ��
k

.X ev
A /
�n=..qI q/k/:

However, we will not use XA in this paper.

Geometry & Topology, Volume 20 (2016)



Unified quantum invariants for integral homology spheres 2763

5M Integrality of twist forms T˙ on X ev
Z

Recall that we have twist forms T˙W Xh!CŒŒ
p

h ��. By Theorem 5.21, XZ �Xh .

The embedding A ,!CŒŒh�� by v D exp
�

1
2
h
�

extends to an embedding zA!CŒŒ
p

h ��.
Although there are many extensions, it is easy to see that the image of the extended
embedding does not depend on the extension, because the two roots of �k.q/ are
inverse (with respect to addition) to each other.

Proposition 5.24 One has T˙.X ev
Z /�

zA.

The proof of this proposition will occupy the rest of this section (Sections 5M1–5M4.)

5M1 Integrality on the Cartan part

Lemma 5.25 (a) The Cartan part X
ev;0
Z of X ev

Z is an zA–Hopf subalgebra of XZ .

(b) Suppose x;y 2X
ev;0
Z and � 2X . Then hx;yi 2 zA and hx;K2�i 2

zA.

Proof (a) Since X
ev;0
Z is an zA–subalgebra of the commutative cocommutative Hopf

algebra X0
Z , we need to check that �.X ev;0

Z /�X
ev;0
Z ˝X

ev;0
Z : This follows from the

fact that X0
Z is an A–Hopf algebra, and �.K2

˛/DK2
˛˝K2

˛ .

(b) Recall that M�W U 0
q !

MU 0
q is the algebra homomorphism defined by M�.K˛/D MK˛ .

Recall that .U ev;0
Z ;X

ev;0
Z ;V

ev;0
Z / is a dilatation triple. We have MU ev;0

Z D M�.U
ev;0
Z /.

Define
MX

ev;0
Z D M�.X

ev;0
Z / and MV

ev;0
Z D M�.V

ev;0
Z /:

Then . MU ev;0
Z ; MX

ev;0
Z ; MV

ev;0
Z / is also a dilatation triple, and X

ev;0
Z and MX ev;0

Z are free
zA–modules with respective bases

(124) f
p
.qI q/n Q.n/ j n 2Nl

g and f
p
.qI q/n MQ.n/ j n 2Nl

g:

Since the inclusion U
ev;0
Z ,! MU

ev;0
Z maps V

ev;0
Z into MV ev;0

Z , Proposition 5.20 shows
that X

ev;0
Z � MX

ev;0
Z . In particular, y 2 MX

ev;0
Z .

The orthogonality (117) and bases (124) show that if x 2X
ev;0
Z and y 2 MX

ev;0
Z then

hx;yi 2 zA. Since K2� 2
MX

ev;0
Z , we also have hx;K2�i 2

zA.
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5M2 Diagonal part of the ribbon element The diagonal part r0 of the ribbon
element (see Section 3G) is given by

r0 DK�2� exp
�
�h

X
˛2…

H˛
MH˛=d˛

�
:

For ˛ 2… let the ˛–part of X
ev;0
Z be X

ev;0;˛
Z WDX

ev;0
Z \ zAŒK˙2

˛ �.

Lemma 5.26 (a) Each X
ev;0;˛
Z is an zA–Hopf subalgebra of X

ev;0
Z and X

ev;0
Z DN

˛2…X
ev;0;˛
Z .

(b) hr0;X
ev;0;˛
Z i 2 zA for any ˛ 2….

Proof (a) By definition, X
ev;0
Z has zA–basis f

p
.qI q/n Qev.n/ j n 2 Nlg, where

Qev.n/D
Ql

jD1 Q. j̨ I nj /, with

Q.˛I n/DK�2bn=2c
˛

.q
�b.n�1/=2c
˛ K2

˛I q˛/n

.q˛I q˛/n
:

It follows that X
ev;0;˛
Z is the zA–module spanned by

p
.q˛I q˛/nQ.˛I n/ and X

ev;0
Z DN

˛2…X
ev;0;˛
Z . Because X

ev;0
Z is an zA–Hopf algebra (Lemma 5.25), X ev;0;˛

Z is an
zA–Hopf subalgebra of X

ev;0
Z .

(b) We need to show that hr0;
p
.q˛I q˛/n Q.˛I n/i 2 zA for every n 2 N . Fix such

an n.

Let I be the ideal of ZŒq˙1
˛ ;K˙2

˛ � generated by elements of the form .qm
˛ K2

˛I q˛/n ,
m 2N . Then .q˛I q˛/nQ.˛I n/ 2 I . By (96),

hr0;K
k
2˛i D q�k2Ck

˛ :

With z D K2˛ , the ZŒq˙1
˛ �–linear map L�W ZŒq˙1

˛ ;K˙2
˛ � ! ZŒq˙1

˛ � defined by
L�.Kk

2˛
/D hr0;K

k
2˛
i equals the map L�x2Cx W ZŒq

˙1
˛ ; z˙1�!ZŒq˙1

˛ � of [7]. By [7,
Theorem 3.2], for any f 2 I ,

L�.f / 2
.q˛I q˛/n

.q˛I q˛/bn=2c
ZŒq˙1

˛ �:

As .q˛I q˛/nQ.˛I n/ 2 I , one has

(125) hr0; .q˛I q˛/nQ.˛I n/i D L�..q˛I q˛/nQ.˛I n// 2
.q˛I q˛/n

.q˛I q˛/bn=2c
ZŒq˙1

˛ �:

We have � p
.q˛I q˛/n

.q˛I q˛/bn=2c

�2

D

�
.q˛I q˛/n

.q˛I q˛/bn=2c.q˛I q˛/bn=2c

�
2 ZŒq˙1

˛ �;
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where the last inclusion follows from the integrality of the quantum binomial coefficients.
Hence, from (125),

hr˛0 ;
p
.q˛I q˛/n Q.˛I n/i 2

p
.q˛I q˛/n

.q˛I q˛/bn=2c
ZŒq˙1

˛ � 2 zA:

This completes the proof of the lemma.

Remark 5.27 Theorem 3.2 of [7], used in the proof of the above lemma, is one of
the main technical results of [7] and is difficult to prove. Its proof uses Andrews’
generalization of the Rogers–Ramanujan identity. Actually, only a special case of [7,
Theorem 3.2] is used here. This special case can be proved using other methods.

5M3 Integrality of r0

Lemma 5.28 Suppose x 2X
ev;0
Z ; then hr0;xi 2 zA.

Proof We first prove the following claim:

Claim If hr0;xi 2 zA for all x 2H1 and all x 2H2 , where H1 and H2 are zA–Hopf
subalgebras of X

ev;0
Z , then hr0;xi 2 zA for all x 2H1H2 .

Proof of claim Suppose x 2H1 and y 2H2 . Using the Hopf dual property of the
quantum Killing form on the Cartan part (95), we have

hr0;xyi D h�.r0/;x˝yi:

A simple calculation shows that �.r0/D .r0˝ r0/D�2 , where D is the diagonal part
of the R–matrix; see (68). We have

D�2
D exp

�
�h
X
˛

H˛˝
MH˛=d˛

�
:

Writing D�2 D
P
ı1˝ ı2 , we have

(126) hr0;xyi D
X
hr0ı1;xihr0ı2;yi

D

X
hr0;x.1/ihı1;x.2/ihr0;y.1/ihı2;y.2/i

D

X
hr0;x.1/ihr0;y.1/ihx.2/;y.2/i;

where in the last identity we use the fact that
P
hı1;xihı2;yi D hx;yi, which is easy

to prove. (Note that, on the Cartan part X0
h

, the quantum Killing form is the dual
of D�2 , which is the Cartan part of the clasp element c .)

Since x.1/ 2H1 and y.1/ 2H2 , we have hr0;x.1/ihr0;y.1/i 2 zA. By Lemma 5.25(b),
hx.2/;y.2/i 2 zA. Hence, (126) shows that hr0;xyi 2 zA. This proves the claim.
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By Lemma 5.26, X
ev;0
Z D

N
˛2…X

ev;0;˛
Z , each X

ev;0;˛
Z is a Hopf subalgebra of X

ev;0
Z ,

and hr0;X
ev;0;˛
Z i � zA. Hence, from the claim we have hr0;X

ev;0
Z i � zA.

5M4 Proof of Proposition 5.24

Proof We have to show that T˙.x/ 2 zA for every x 2 X ev
Z . First we will show

TC.x/ 2 zA.

It is enough to consider the case x D
p
.qI q/n eev.n/ with nD .n1;k;n3/ 2NtClCt,

since X ev
Z is zA–spanned by elements of this form. By the triangular property (93) of

the quantum Killing form and (96),

TC.x/D ın1;n3
q.�;jEn1

j/
hr0;

p
.qI q/k Q.k/i 2 zA:

Here the last inclusion follows from Lemma 5.28. This proves the statement for TC .

By Theorem 5.21, X ev
Z is '–stable. By (98), we have T�.x/D TC.'.x// 2 zA.

5N More on integrality of r0

Lemma 5.29 Suppose y 2X
ev;0
Z . Then hr˙1

0
;K2�yi 2 v

.�;�/ zA.

Proof Since X
ev;0
Z is a Hopf algebra (Lemma 5.25), we have �.y/D

P
y.1/˝y.2/

with y.1/ , y.2/ 2X
ev;0
Z . Using (126), then (97), we have

hr0;K2�yi D
X
hr0;K2�ihr0;y.1/ihK2�;y.2/i D v

.�;�/
X
hr0;y.1/ihK2�;y.2/i;

where we use hr0;K2�i D v
.�;�/ , which follows from an easy calculation. The second

factor hr0;y.1/i is in zA by Lemma 5.28. The last factor hK2�;y.2/i is in zA. Thus,
we have hr0;K2�yi 2 v

.�;�/ zA.

Using (98), the fact that X
ev;0
Z is '–stable and the above case for r0 , we have

hr�1
0 ;K2�yi D hr0; '.K2�y/i D hr0;K2�'.y/i 2 v

.�;�/ zA:

This completes the proof of the lemma.

6 Gradings

In Section 3C, we defined the Y–grading and the Y=2Y –grading on Uq . In this section
we define a grading of Uq by a group G , which is a (possibly noncommutative) central
Z=2Z–extension of Y � .Y=2Y /, thus refining both the gradings by Y and Y=2Y .
This grading is extended to the tensor powers of Uq .
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The reason for the introduction of the G–grading is the following: The integral core
subalgebra XZ will be enough for us to show that the invariant JM of integral homology
3–spheres, a priori belonging to CŒŒ

p
h ��, is in

lim
 ��

k

ZŒv˙1�=..qI q/k/:

But we want to show that JM belongs to a smaller ring, bZŒq�D lim
 ��k

ZŒq˙1�=..qI q/k/,
and the G–grading will be helpful in the proof. In Section 7 we will show that quantum
link invariants of algebraically split bottom tangles belong to a certain homogeneous
part of this G–grading.

6A The groups G and G ev

Let G denote the group generated by the elements Pv , PK˛ and Pe˛ (˛ 2…) with the
relations

Pv central; Pv2
D PK2

˛ D 1; PK˛
PKˇ D

PKˇ
PK˛;

PK˛ Peˇ D Pv
.˛;ˇ/
Peˇ PK˛; Pe˛ Peˇ D Pv

.˛;ˇ/
Peˇ Pe˛:

Let Gev be the subgroup of G generated by Pv and Pe˛ (˛ 2…).

Remark 6.1 The groups G and Gev are abelian if and only if g is of type A1 or Bn

(n� 2).

Define a homomorphism G! Y , g 7! jgj, by

j Pvj D j PK˛j D 0; j Pe˛j D ˛ .˛ 2…/:

For 
 D
P

i mi˛i 2 Y , set

PK
 D

Y
i

PKmi
˛i
; Pe
 D

Y
i

Pemi
˛i
D Pem1

˛1
� � � Peml

˛l
:

Note that Pe
 depends on the order of the simple roots ˛1; : : : ; ˛l 2….

One can easily verify the following commutation rules:

g PK� D Pv
.jgj;�/ PK�g for g 2G; � 2 Y;(127)

gg0 D Pv.jgj;jg
0j/g0g for g;g0 2Gev:(128)

Let N be the subgroup of G generated by Pv . Then N has order 2 and is a subgroup
of the center of G . Note that G=N Š Y � .Y=2Y / and Gev=N Š Y .
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6A1 Tensor products of G and G ev By G˝G DG˝N G , we mean the “tensor
product over N ” of two copies of G , ie

G˝G WD .G �G/=.. Pvx;y/� .x; Pvy//:

Similarly, we can define G˝Gev , Gev˝Gev , etc, which are subgroups of G˝G .
Denote by x˝y the element in G˝G represented by .x;y/. Thus we have Pvx˝yD

x˝ Pvy .

Similarly, we can also define the tensor powers G˝n DG˝ � � �˝G and .Gev/˝n D

Gev˝� � �˝Gev�G˝n (each with n tensorands). Define a homomorphism �nWN!G˝n

by

�n. Pv
k/D Pvk

˝ 1˝.n�1/; k D 0; 1:

We have

G˝n=�n.N /Š Y n
� .Y=2Y /n; .Gev/˝n=�n.N /Š Y n:

For nD 0, we set

G˝0
D .Gev/˝0

DN:

6B G–grading of Uq

By a G–grading of Uq we mean a direct sum decomposition of C.q/–vector spaces

Uq D

M
g2G

ŒUq �g

such that 1 2 ŒUq �1 and ŒUq �gŒUq �g0 � ŒUq �gg0 for g , g0 2G . If x 2 ŒUq �g , we write
degG.x/D g .

Proposition 6.2 There is a unique G–grading on Uq such that

degG.v/D Pv; degG.K˙˛/D
PK˛; degG.E˛/D Pv

d˛ Pe˛; degG.F˛/D Pe
�1
˛
PK˛:

Proof Since v˙1 , K˙˛ , E˛ and F˛ generate the C.q/–algebra Uq , the uniqueness
is clear. Let us prove the existence of the G–grading.

Let zUq denote the free C.q/–algebra generated by the elements zv , zv�1 , zK˛ , zK�1
˛ ,

zE˛ and zF˛ . We can define a G–grading of zUq by

degG.zv
˙1/D Pv; degG.

zK˙1
˛ /D PK˛; degG.

zE˛/D Pv
d˛ Pe˛; degG.

zF˛/D Pe
�1
˛
PK˛:
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The kernel of the obvious homomorphism zUq ! Uq is the two-sided ideal in zUq

generated by the defining relations of the C.q/–algebra Uq :

zvzv�1
D zv�1

zv D 1; zv2
D q; zv central;

zK˛
zK�1
˛ D

zK�1
˛
zK˛ D 1; zK˛

zKˇ D
zKˇ
zK˛;

zK˛
zEˇ zK

�1
˛ D zv

.˛;ˇ/ zEˇ; zK˛
zFˇ zK

�1
˛ D zv

�.˛;ˇ/ zFˇ;

zE˛ zFˇ � zFˇ zE˛ D ı˛;ˇ.q
d˛ � 1/�1

zvd˛ . zK˛ �
zK�1
˛ /;

1�a˛ˇX
sD0

.�1/s
�
1� a˛ˇ

s

�z
˛

zE
1�a˛ˇ�s
˛

zEˇ zE
s
˛ D 0 .˛ ¤ ˇ/;

1�a˛ˇX
sD0

.�1/s
�
1� a˛ˇ

s

�z
˛

zF
1�a˛ˇ�s
˛

zFˇ zF
s
˛ D 0 .˛ ¤ ˇ/:

Here, for n, s � 0,
�

n
s

�z
˛

is obtained from
�

n
s

�
˛
2 ZŒv˛; v�1

˛ � by replacing v˙1
˛ by

zv˙d˛ . Since the above relations are homogeneous in the G–grading of zUq , the assertion
holds.

From the definition, we have

U ev
q D

M
g2Gev

ŒUq �g:

We say that x 2Uq is G–homogeneous, and write PxD g , if x 2 ŒUq �g for some g 2G .
Similarly, we say x 2Uq is Gev –homogeneous if x 2 ŒUq �g for some g 2Gev .

6B1 The G˝m –grading of U˝m
q For m� 1, U˝m

q is G˝m –graded:

U˝m
q D

M
g2G˝m

ŒU˝m
q �g;

where, for g D g1˝ � � �˝gm 2G˝m (gi 2G ), we set

ŒU˝m
q �g D j .ŒUq �g1

˝C.q/ � � � ˝C.q/ ŒUq �gm
/�U˝m

q ;

where
j W Uq˝C.q/ � � � ˝C.q/Uq!Uq˝C.v/ � � � ˝C.v/Uq DU˝m

q

is the natural map.

Note that C.v/DU˝0
q is N–graded (where N DG˝0 ): ŒC.v/� Pvk DvkC.q/, kD0; 1.
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6B2 Total G–grading of U˝m
q and G–grading-preserving map For g 2 G and

m� 0 set
ŒU˝m

q �g WD
X

g1;:::;gm2GI g1���gmDg

ŒU˝m
q �g1˝���˝gm

:

This gives a G–grading of the C.q/–module U˝m
q for each m � 0. (If mD 0, we

have ŒU˝0
q � Pvk D ŒC.v/� Pvk D vkC.q/ for k D 0; 1 and ŒU˝0

q �g D 0 for g 2G nf1; Pvg.)

A CŒŒh��–module map f W U
y̋n

h
! U

y̋m
h

is said to preserve the G–grading if, for
every g 2G , f .ŒU˝n

Z �g/� ŒU
˝m
Z �g . Here

ŒU˝n
Z �g D ŒU

˝n
q �g \U˝n

Z :

6C Multiplication, unit and counit

From the definition of the G–grading, we have the following:

Proposition 6.3 Each of �, � and � preserves the G–grading, ie

�.ŒU˝2
q �g/� ŒUq �g; �.ŒC.v/�g/� ŒUq �g; �.ŒUq �g/� ŒC.v/�g:

6D Bar involution �bar and mirror automorphism '

From the definition one immediately has the following:

Lemma 6.4 The bar involution �barW Uh!Uh preserves the G–grading.

Let P'W G ! G be the automorphism defined by P'. Pv/ D Pv , P'. PK˛/ D PK˛ and
P'. Pe˛/D v

d˛ Pe�1
˛ . From the definition of P' one has the following:

Lemma 6.5 For g 2G , we have '.ŒUq �g/� ŒUq � P'.g/ .

6E Antipode

Define a function PS W G!G by

PS.g PK
 /D PK
Cjgjg D Pv
.jgj;
 /g PK
Cjgj

for g 2Gev and 
 2Y . One can easily verify that PS is an involutive antiautomorphism.

Lemma 6.6 For g 2 G , we have S.ŒUq �g/ � ŒUq � PS.g/ . In particular, if y D S.x/

with x Gev –homogeneous, then

(129) Py D Px PKjxj D PKjxj Px:

Here Py D degG.y/ and Px D degG.x/.
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Proof It is easy to check that if x D v , K˛ , E˛ , F˛ , then S.x/ is homogeneous
of degree PS.g/. If x;y 2 Uq are homogeneous of degrees Px; Py 2 G , respectively,
then S.xy/D S.y/S.x/ is homogeneous of degree PS. Py/ PS. Px/D PS. Px Py/. Hence, by
induction, we deduce that, for each monomial x in the generators, S.x/ is homogeneous
of degree PS. Px/. This completes the proof.

6F Braid group action

Let ˛ 2…. Define a function PT˛W G!G by

PT˛.g PK
 /D Pv
r.rC1/=2
˛ Per

˛g PKs˛.
 /; where r D�.jgj; ˛/=d˛;

for g 2Gev and 
 2 Y . Note that PT˛ is an involutive automorphism of G , satisfying
PT˛.G

ev/�Gev .

Lemma 6.7 If g 2G , then we have

T˛.ŒUq �g/� ŒUq � PT˛.g/
:

Proof It suffices to check that T˛.x/ 2 ŒUq � PT˛.degG.x//
for each generator x of Uq ,

which follows from the definitions.

6G Quasi-R–matrix

For � 2 Y , set
P�� D Pe

�1
�
PK�˝ Pe� 2G˝2:

We have P�0 D 1˝ 1. Note that P�� does not depend on the order of the simple roots
˛1; : : : ; ˛l .

Lemma 6.8 For �, � 2 Y , we have

P�� P�� D P��C�:

Proof We have
P�� P�� D . Pe

�1
�
PK�˝ Pe�/. Pe

�1
�
PK�˝ Pe�/

D Pe�1
�
PK� Pe
�1
�
PK�˝ Pe� Pe�

D Pe�1
� Pe
�1
�
PK�
PK�˝ Pe� Pe�

D . Pe� Pe�/
�1 PK�C�˝ Pe� Pe�

D Pe�1
�C�

PK�C�˝ Pe�C�

D P��C�:
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The automorphism PT˛W G!G induces an automorphism

PT˝2
˛ W G

˝2
!G˝2; g1˝g2 7!

PT˛.g1/˝ PT˛.g2/:

Lemma 6.9 If ˛ 2… and � 2 Y , then we have

PT˝2
˛ . P��/D P�s˛.�/:

Proof We have
PT˝2
˛ . P��/D PT

˝2
˛ . Pe�1

�
PK�˝ Pe�/

D PT˛. Pe
�1
� / PT˛. PK�/˝ PT˛. Pe�/

D PT˛. Pe�/
�1 PKs˛.�/˝

PT˛. Pe�/:

Hence it suffices to show that

(130) PT˛. Pe�/
�1
˝ PT˛. Pe�/D Pe

�1
s˛.�/

˝ Pes˛.�/;

which can be verified using the fact that there is k 2f0; 1g such that PT˛. Pe�/D Pvk Pes˛.�/ .

Recall that ‚ is the quasi-R–matrix and its definition is given in Section 3G1. For

 2 YC , let ‚
 2 U˝2

q denote the weight-.�
; 
 / part of ‚, so that we have
‚D

P

2YC

‚
 . Similarly, let x‚
 denote the weight-.�
; 
 / part of x‚D‚�1 .

Lemma 6.10 For 
 2 YC , we have ‚
 , x‚
 2 ŒU˝2
q � P�


.

Proof Suppose i D .i1; : : : ; it / is a longest reduced sequence. Note that

‚
 D
X

mD.m1;:::;mt /2Zt ; jEm.i /jD


‚Œt �mt
� � �‚Œ1�m1

;

where we set

‚Œi�n WD .T j̨1
� � �T

j̨i�1
/˝2..�1/nv�n.n�1/=2

j̨i
F .n/

j̨i
˝En

j̨i
/:

For each ˛ 2…, we have

.�1/nv�n.n�1/=2
˛ F .n/˛ ˝En

˛ 2 ŒU
˝2
q � P�n˛

:

By Lemma 6.9, we deduce that ‚Œi�n 2U˝2
q is homogeneous of degree

. PT
j̨1
� � � PT

j̨i�1
/˝2. P�n j̨i

/D P�ns
j̨1
���s

j̨i�1
. j̨i /

:

Hence, it follows that ‚
 is homogeneous of degree P�
 . The case of x‚
 follows from
‚�1 D .�bar˝ �bar/.‚/ and Lemma 6.4, which says �bar preserves the G–grading.
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Corollary 6.11 Fix a longest reduced sequence i . For m 2Nt and 
 2 Y ,

Em˝KmFm; E0m˝KmF 0m 2 ŒU
ev
Z ˝U ev

Z � Pe�m˝Pe
�1
�m

� ŒU ev
Z ˝U ev

Z �1;(131)

FmKmK2
Em 2 ŒUZ�1:(132)

(Here �m D jEmj D jE
0
mj.)

Proof We have ‚D
P

m Fm˝Em and ‚�1D
P

m F 0m˝E0m . Hence, (131) follows
from Lemma 6.10. In turn, (132) follows from (131), because PK2
 D 1.

6H Twist forms

Recall that we have defined T˙W U ev
Z !Q.v/; see Section 4I.

Proposition 6.12 Both maps T˙W U ev
Z !Q.v/ preserve the G–grading, ie

T˙.ŒU ev
Z �g/� ŒQ.v/�g:

Proof (a) First we consider the case of TC . The set

fFmKmK2
En j n;m 2Nt; 
 2 Y g

is a Q.v/–basis of U ev
Z ˝A Q.v/. Hence,

fvıFmKmK2
En j n;m 2Nt; 
 2 Y; ı 2 f0; 1gg

is a Q.q/–basis of U ev
Z ˝A Q.v/. Each element of this basis is G–homogeneous.

By (101),

TC.vıFmKmK2
En/D ın;mv
ıq.
;�/�.
;
 /=2 2 vıZŒq˙1�D ŒA� Pvı :

By Corollary 6.11, the G–grading of vıFmKmK2
Em is Pvı. Hence, we have

(133) TC.ŒU ev
Z ˝A Q.v/�g/� ŒQ.v/�g:

(b) Now consider T� . Using (98), Lemma 6.5 and (133), we have

T�.ŒU ev
Z ˝A Q.v/�g/D TC

�
'.ŒU ev

Z ˝A Q.v/�g/
�

� TC
�
ŒU ev

Z ˝A Q.v/� P'.g/
�
� ŒQ.v/� P'.g/ D ŒQ.v/�g;

where the last identity follows from the fact that, for the involution P' , we have P'.1/D 1

and P'.v/D v , and, for any g 62 f1; vg, we have ŒQ.v/�g D 0.
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6I Coproduct

Lemma 6.13 Suppose x 2Uq is Gev –homogeneous. There exists a presentation

�.x/D
X

x.1/˝x.2/

such that, for each x.1/˝x.2/ ,

(i) x.1/ is G–homogeneous,

(ii) x.2/ and x.1/Kjx.2/j are Gev –homogeneous, and

(134) Px.1/ PKjx.2/j Px.2/ D Px D Px.2/
PKjx.2/j Px.1/:

Remark 6.14 A presentation of �.x/ as in Lemma 6.13 is called a G–good presenta-
tion. When x is Gev –homogeneous, we always use a G–good presentation for �.x/.

Proof Suppose x;y are Gev –homogeneous. If �.x/ D
P

i x0i ˝ x00i and �.y/ DP
j y0j˝y00j are G–good presentations of x and y , respectively, then it is easy to check

that
P

i;j x0iy
0
j ˝x00i y00j is a G–good presentation of �.xy/. Hence, one needs only to

check the statement for x equal to the generators K2˛ , E˛ and F˛K˛ of U ev
q . For

each of these generators, the defining formulas of � show that the statement holds.

6J Adjoint action

Define a map
PadW G˝Gev

!Gev

by
Pad.g PK�˝g0/D Pv.�;jg

0j/gg0

for � 2 Y and g , g0 2Gev . Note that for g , g0 2Gev we have Pad.g˝g0/D gg0 .

Lemma 6.15 For g , g0 2Gev and 
 2 Y , we have

ad.ŒUq˝U ev
q �g PK
˝g0

/� ŒU ev
q � Pad.g PK
˝g0/

:

In particular, if z D x F y and both x and y are Gev –homogeneous, then z is Gev –
homogeneous with

Pz D Px Py:
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Proof Suppose x and y are Gev –homogeneous and 
 2 Y . Choose a G–good
presentation �.x/D

P
x.1/˝x.2/ (see Section 6I). By definition,

.xK
 /Fy D
X

x.1/K
yS.x.2/K
 /

D

X
x.1/K
yK�1


 S.x.2//D
X

v.
;jyj/x.1/yS.x.2//:

The term of the last sum is in ŒUq �u , where

uD Pv.
;jyj/ Px.1/ Py PS. Px.2//

D Pv.
;jyj/ Px.1/ Py PKjx.2/j Px.2/ by Lemma 6.6

D Pv.
;jyj/ Px.1/ PKjx.2/j Px.2/ Py

D Pv.
;jyj/ Px Py by (134):

Hence we have the assertion.

7 Integral values of JM

By Theorem 2.25, the core subalgebra Xh , constructed in Section 4, gives rise to
an invariant JM of integral homology 3–spheres. A priori, JM 2 CŒŒ

p
h ��. The

main purpose of this section is to show that JM 2
bZŒq� for any integral homology 3–

sphere M . To prove this fact we will construct a family of A–submodules zKn �X
y̋n

h

satisfying conditions (AL1) and (AL2) of Theorem 2.32, with zK0 D
bZŒq� . Then, by

Theorem 2.32, JM 2 zK0 D
bZŒq� .

7A Module zKn

For n� 0, let Œ.U ev
Z /
˝n�1 denote the G–grading-1 part of .U ev

Z /
˝n . Define

Kn WD .X
ev
Z /
˝n
\ Œ.U ev

Z /
˝n�1 � .X

y̋n
h
\U

y̋n
h
/:(135)

In the notation of (123), Kn D ŒX
�n
A �1 . For example, K0 D ZŒq˙1�. Define filtrations

on Kn by

Fk.Kn/ WD .qI q/kKn � .h
kX
y̋n

h
\ hkU

y̋n
h
/:

Let zKn be the completion of Kn by the filtrations Fk.Kn/ in U
y̋n

h
, ie

zKn WD

�
x D

1X
kD0

xk

ˇ̌̌
xk 2 Fk.Kn/

�
� .X

y̋n
h
\U

y̋n
h
/:
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Since K0 D ZŒq˙1�, we have zK0 D
bZŒq� . Each zKn has the structure of a complete

bZŒq�–module.

Proposition 7.1 The family .zKn/ satisfies condition (AL2) of Theorem 2.32. Namely,
if "1; : : : ; "n 2 f˙1g and x 2 zKn then

.T"1
y̋ � � � y̋ T"n

/.x/ 2 zK0 D
bZŒq�:

Proof By definition, x has a presentation

x D

1X
kD0

.qI q/kxk

with xk 2 Kn �Xh . Since T˙ are continuous on the h–adic topology of X
y̋n

h
, we

have

(136) .T"1
y̋ � � � y̋ T"n

/.x/D

1X
kD0

.qI q/k.T"1
y̋ � � � y̋ T"n

/.xk/ 2CŒŒ
p

h ��:

Since xk 2 Kn � .X
ev
Z /
˝n , by Proposition 5.24 .T"1

y̋ � � � y̋ T"n
/.xk/� zA.

Since xk 2 Œ.U
ev
Z /
˝n�1 , by Proposition 6.12 .T"1

y̋ � � � y̋ T"n
/.xk/� ŒQ.v/�1 DQ.q/.

Hence,
.T"1
y̋ � � � y̋ T"n

/.xk/ 2 zA\Q.q/D ZŒq˙1�;

where the last identity is Lemma 5.1. From (136), .T"1
y̋ � � � y̋ T"n

/.x/ 2 bZŒq� .

7B Finer version of zKn

We will show that, for an n–component bottom tangle T with 0 linking matrix, JT 2 zKn .
Then Proposition 7.1 will show that JM 2

bZŒq� for any integral homology 3–spheres.

For the purpose of proving that JM recovers the Witten–Reshetikhin–Turaev invariant,
we want JT to belong to smaller subsets of zKn , which we will describe here.

Suppose U is an A–Hopf subalgebra of UZ . Define (with the convention U˝0 DA)

Kn.U/ WD Kn\U˝n; Fk.Kn.U// WD Fk.Kn/\U˝n:

Let zKn.U/ be the completion of Kn.U/ with respect to the filtration .Fk.Kn// in Uh ,
ie

zKn.U/ WD
�

x D

1X
kD0

xk

ˇ̌̌
xk 2 Fk.Kn.U//

�
:

Since Fk.Kn.U//�Fk.Kn/ we have zKn.U/� zKn�X
y̋n

h
. We always have zK0.U/D

zK0 D
bZŒq� .
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7C Values of universal invariant of algebraically split bottom tangle

Throughout we fix a longest reduced sequence i .

Recall that � D cD2 is the quasiclasp element; see Section 3I. By Lemma 3.12,

� D
X

n2N2t

�1.n/˝�2.n/;

where, for nD .n1;n2/ 2Nt �Nt ,

(137) �1.n/D q�.��jEn1
j;jEn2

j/Fn1
K�1

n1
En2

; �2.n/D Fn2
K�1

n2
En1

:

Proposition 7.2 Suppose U is an A–Hopf subalgebra of UZ such that K˛ 2 U for all
˛ 2…, and Fm˝Em , F 0m˝E0m 2 U ˝U for all m 2Nt .

Then the family .zKn.U// satisfies condition (AL1) of Theorem 2.32. Namely, the
following statements hold:

(i) 1CŒŒh�� 2 zK0.U/, 1Uh
2 zK1.U/, and x ˝ y 2 zKnCm.U/ whenever x 2 zKn.U/

and y 2 zKm.U/.
(ii) Each of �,  ˙1 , � and S is .zKn.U//–admissible.

(iii) The Borromean element b belongs to zK3.U/.

Note that, under the assumption of Proposition 7.2, we have �1.n/˝�2.n/ 2 U ˝U
for all n 2N2t .

Before embarking on the proof of the proposition, let us record some consequences.

Theorem 7.3 Suppose U is an A–Hopf subalgebra of UZ satisfying the assumption
of Proposition 7.2. Then:

(a) For any n–component bottom tangle T with 0 linking matrix, JT 2 zKn.U/. In
particular, JT 2 zKn .

(b) JM 2
bZŒq� for any integral homology 3–sphere M .

Proof (a) By Proposition 2.16, Proposition 7.2(i)–(iii) imply that JT 2 zKn.U/� zKn .

(b) By Propositions 7.2 and 7.1, .zKn.U// satisfies both conditions (AL1) and (AL2)
of Theorem 2.32. By Theorem 2.32, JM 2 zK0.U/D bZŒq� .

The remaining part of the section is devoted to the proof of Proposition 7.2. Statement
(i) of Proposition 7.2 follows trivially from the definitions. We will prove (ii) and (iii)
in this section. We fix U satisfying the assumptions of Proposition 7.2.
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Remarks 7.4 (a) One can relax the assumption of Proposition 7.2, requiring only
that K˛ 2 U for all ˛ 2 … and that both ‚ and ‚�1 are in the topological
closure of U ˝U (in the h–adic topology of Uh y̋ Uh ).

(b) Almost identical proof shows that Theorem 7.3 holds true if U is an zA–Hopf
subalgebra of XZ instead of U �UZ .

7D Quasi-R–matrix

Recall that ‚D
P

n2Nt Fn˝En ; see Section 3G. For a multiindex nD .n1; : : : ; nk/

in Nk let max.n/Dmaxj .nj / and

(138) o.n/ WD .qI q/bmax.n/=2c 2 ZŒq˙1�:

Lemma 7.5 For each n 2Nt , we have

En; E0n 2 o.n/U ev
Z ;(139)

KnFn˝En; KnF 0n˝E0n 2 o.n/.X ev
Z ˝U ev

Z /:(140)

Proof We write x � y if x D uy with u a unit in A. From the definition of En (see
Section 3G),

En � .qI q/nE.n/
2 .qI q/nU ev

Z � o.n/U ev
Z :

Recall that E0n D �bar.En/ and F 0n D �bar.Fn/. Since �bar preserves the even part
(Lemma 3.4) and �bar leaves both UZ and XZ stable (Proposition 5.2 and Theorem 5.21),
�bar leaves both U ev

Z and X ev
Z stable. Hence, we have

E0n D �bar.En/� o.n/�bar.U
ev
Z /D o.n/U ev

Z ;

which proves (139). Let us now prove (140). We have

KnFn˝En � .qI q/nF .n/Kn˝E.n/

�
p
.qI q/n

�p
.qI q/n F .n/Kn

�
˝E.n/

2
p
.qI q/n X ev

Z ˝U ev
Z � o.n/X ev

Z ˝U ev
Z :

Applying �bar , we get

K�1
n F 0n˝E0n 2 o.n/.X ev

Z ˝U ev
Z /:

Since K2
n 2X ev

Z , we also have KnF 0n˝E0n 2 o.n/.X ev
Z ˝U ev

Z /.
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7E On Fk.Kn/

Lemma 7.6 For any k , n 2N , one has

Fk.Kn/D .qI q/k.X
ev
Z /
˝n
\ Œ.U ev

Z /
˝n�1 D .qI q/k.X

ev
Z /
˝n
\ Œ.UZ/

˝n�1;(141)

.qI q/k.XZ/
˝n
\ ..U ev

Z /
˝n
˝A zA/D .qI q/k.X ev

Z /
˝n:(142)

Proof The preferred basis (121) of XZ is a dilatation of the preferred basis of UZ

(described in Proposition 5.9). The basis of UZ gives rise to an A–basis fe.i/ j i 2 Ig

of U˝n
Z in a natural way. By construction, there is a function aW I ! zA such that

fa.i/e.i/ j i 2 Ig is an zA–basis of X˝n
Z . Further, there is a subset I ev � I such

that fe.i/ j i 2 I evg is an A–basis of .U ev
Z /
˝n and fa.i/e.i/ j i 2 Ig is an zA–basis

of .X ev
Z /
˝n .

Using the zA–basis fe.i/ j i 2 Ig, every x 2 .U˝n
Z ˝A zA/ has unique presentation

x D
X
I2I

xie.i/; xi 2 zA:

Then

(a) x 2U˝n
Z if and only if xi 2A for all i 2 I .

(b) x 2 .U ev
Z /
˝n if and only if xi 2A for all i 2 I and xi D 0 for i 62 I ev .

(c) x 2 ..U ev
Z /
˝n˝A zA/ if and only if xi D 0 for i 62 I ev .

(d) x 2 .qI q/k.XZ/
˝n if and only if xi 2 .qI q/ka.i/ zA for all i 2 I .

(e) x 2 .qI q/k.X
ev
Z /
˝n if and only if xi 2 .qI q/ka.i/ zA for all i 2 I and xi D 0

for i 62 I ev .

Proof of (142) By (c) and (d), x 2 .qI q/k.XZ/
˝n\ ..U ev

Z /
˝n˝A zA/ if and only if

xi 2 .qI q/ka.i/ zA for all i 2 I and xi D 0 for i 62 I ev , which, by (e), is equivalent to
x 2 .qI q/k.X

ev
Z /
˝n . Hence we have (142).

Proof of (141) Since Fk.Kn/D .qI q/k
�
.X ev

Z /
˝n\ Œ.U ev

Z /
˝n�1

�
, we have

Fk.Kn/� .qI q/k.X
ev
Z /
˝n
\ Œ.U ev

Z /
˝n�1 � .qI q/k.X

ev
Z /
˝n
\ Œ.UZ/

˝n�1:

It remains to prove the converse inclusion, ie if y 2 .qI q/k.X
ev
Z /
˝n\ Œ.UZ/

˝n�1 then
x WD y=.qI q/k belongs to .X ev

Z /
˝n\ Œ.U ev

Z /
˝n�1 . By definition,

x 2 .X ev
Z /
˝n
\

1

.qI q/k
Œ.UZ/

˝n�1;

Geometry & Topology, Volume 20 (2016)



2780 Kazuo Habiro and Thang T Q Lê

and we need to show x 2 Œ.U ev
Z /
˝n�1 . Since both y and .qI q/k have G–grading 1,

x D y=.qI q/k is an element of .Uq/
˝n of G–grading 1. It remains to show that

x 2 .U ev
Z /
˝n .

Because x 2 .X ev
Z /
˝n , (e) implies that xi 2 zA and xi D 0 if i 62 I ev . Because

x 2 .1=.qI q/k/.UZ/
˝n , (a) implies xi 2 Q.v/. It follows that xi 2 zA\Q.v/ D A

and xi D 0 if i 62 I ev . By (b), x 2 .U ev
Z /
˝n .

7F Admissibility decomposition

Suppose f W .Uh/
y̋a! .Uh/

y̋ b is a CŒŒh��–module homomorphism. We also use f to
denote its natural extension f W .Up

h
/
y̋a! .Up

h
/
y̋ b , where Up

h
DUh y̋CŒŒh��CŒŒ

p
h ��.

Recall that f preserves the Gev –grading if, for every g 2Gev ,

f
�
Œ.U ev

Z /
˝a�g

�
� Œ.U ev

Z /
˝b �g;

and f is .zKn.U//–admissible if for every i; j 2N ,

f.i;j/.zKiCaCj .U//� zKiCbCj .U/;

where f.i;j/ D id y̋ i y̋ f y̋ id y̋ j .

The following definition is useful in showing a map is .zKn.U//–admissible.

Definition 7.7 Suppose f W .Uh/
y̋a! .Uh/

y̋ b is a CŒŒh��–module homomorphism.
An admissibility decomposition for f is a decomposition f D

P
p2Pf

fp as an h–
adically converging sum of CŒŒh��–module homomorphisms

fpW .Uh/
y̋a
! .Uh/

y̋ b

over a set Pf , satisfying the following conditions:

(A) fp preserves the Gev –gradings for p 2 Pf .

(B) fp.U˝a/� U˝b for p 2 Pf .

(C) There are mp 2N for p 2Pf such that limp2Pf mp D1 and for each p 2Pf
we have

fp..X
ev
Z /
˝a/� .qI q/mp

.X ev
Z /
˝b:

Here, limp2Pf mp D1 means that if n� 0 then mp � n for all but a finite number
of p 2 Pf . By definition, if Pf is finite then we always have limp2Pf kp D1.

Lemma 7.8 If f W .Uh/
y̋a! .Uh/

y̋ b has an admissibility decomposition then f is
.zKn.U//–admissible.
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Proof Recall that Fk.Kn.U//D Fk.Kn/\U˝n . From (141),

(143) Fk.Kn.U//D .qI q/k.X ev
Z /
˝n
\ Œ.U ev

Z /
˝n�1\U˝n:

Let f D
P

p2P fp be an admissibility decomposition of f . Suppose x 2 zKiCaCj .U/
with presentation

x D
X

xk ; xk 2 Fk.KiCaCj .U//:

Then, with the h–adic topology, we have

f.i;j/.x/D
X
k;p

.fp/.i;j/.xk/:

We look at each term of the right-hand side. Since xk 2 Œ.U
ev
Z /
˝iCaCj �1 , (A) implies

that

(144) .fp/.i;j/.xk/ 2 Œ.U
ev
Z /
˝iCbCj �1:

Since xk 2 U˝iCaCj , condition (B) implies that

(145) .fp/.i;j/.xk/ 2 U˝iCaCj :

We have xk D .qI q/kyk with yk 2 .X
ev
Z /
˝iCaCj . By condition (C),

.fp/.i;j/.xk/D .qI q/k.fp/.i;j/.yk/ 2 .qI q/k.qI q/mp
.X ev

Z /
˝iCbCj

� .qI q/m.k;p/.X
ev
Z /
˝iCbCj ;

where m.k;p/Dmax.k;mp/. Together with (144), (145) and (143), this implies

.fp/.i;j/.xk/ 2 Fm.k;p/.KiCbCj /:

Condition (C) implies that

lim
.k;p/2N�Pf

m.k;p/D1:

Hence, f.i;j/.x/D
P

k;p.fp/.i;j/.xk/ belongs to zKiCbCj .

Remark 7.9 It is not difficult to show that the set of .zKn/–admissible maps are closed
under composition and tensor product. Thus there is a monoidal category whose objects
are nonnegative integers and whose morphisms from m to n are .zKn/–admissible
CŒŒh��–module homomorphisms from U

y̋m
h

to U
y̋n

h
. According to Lemma 7.11, this

category is braided with  1;1 D , and contains a braided Hopf algebra structure.
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7G Admissibility of �

Lemma 7.10 The multiplication � WUh y̋ Uh!Uh is .zKn/–admissible.

Proof We show that the trivial decomposition, P� D f0g and �0 D �, is an admissi-
bility decomposition for �:

(A) The fact that � preserves the Gev –grading is part of Proposition 6.3.

(B) Since U is a subalgebra of UZ , we have �.U ˝U/� U .

(C) Since X ev
Z is an zA–algebra, we have �.X ev

Z ˝X ev
Z /�X ev

Z , which proves (C).

By Lemma 7.8, � is .zKn/–admissible.

7H Admissibility of  

Lemma 7.11 Each of  ˙1 is .zKn/–admissible.

Proof First consider  . Using (70) and (67), we obtain  D
P

m2P 
 m , where

P DNt and

 m.x˝y/D v.jyjC�m;jxj��m/.E0m Fy/˝ .F 0m Fx/;(146)

with �m D jE
0
mj. We will show this is an admissibility decomposition of  .

(A) Suppose x;y 2U ev
Z are Gev –homogeneous. By Lemma 6.10,

E0m˝F 0m 2 ŒUZ˝UZ� Pe�m˝Pe
�1
�m
PKm
:

From (146) and Lemma 6.15, we have  m.x˝y/ 2 Œ.U ev
Z /
˝2�u , where

uD Pv.jyjC�m;jxj��m/ Pad. Pe�m ˝ Py/ Pad. Pe�1
�m
PK�m ˝ Px/

D Pv.jyjC�m;jxj��m/C.�m;jxj/ Pe�m Py Pe
�1
�m
Px

D Pv.jyjC�m;jxj��m/C.�m;jxj/C.�m;jyj/C.jxj;jyj/ Px Py

D Px Py:

This shows that  m preserves the Gev –grading.

(B) By the assumptions on U , E0m˝F 0m 2 U ˝ U and U is a Hopf algebra. Now
(146) shows that  m.U ˝U/� U ˝U . This proves (B).

(C) By (139), E0m˝F 0m 2 o.m/UZ˝UZ . Hence, from (146),

 m.X
ev
Z ˝X ev

Z /� o.m/.UZ FX ev
Z /˝ .UZ FX ev

Z /� o.m/X ev
Z ˝X ev

Z ;

Geometry & Topology, Volume 20 (2016)



Unified quantum invariants for integral homology spheres 2783

where for the last inclusion we use Theorem 5.21(a), which in particular says X ev
Z is

UZ –stable. This establishes (C) of Definition 7.7.

By Lemma 7.8,  is .zKn.U//–admissible.

Now consider the case  �1 . By computation, we obtain  �1 D
P

m2Nt . �1/m ,
where

. �1/m.x˝y/D v�.jxj;jyj/.Fm Fy/˝ .Em Fx/

for homogeneous x;y 2Uh . The proof is similar to the case of  .

Remark 7.12 One can check that  �1 D .' y̋ '/ .'�1 y̋ '�1/. Hence, the admis-
sibility of  �1 can also be derived from that of  .

7I Admissibility of �

Lemma 7.13 The braided coproduct � is .zKn.U//–admissible.

Proof Suppose x 2U ev
Z is Gev –homogeneous. By a simple calculation, we have

(147) �D
X

m2Nt

�m;

where, with �m WD jE
0
mj,

�m.x/D
X

v�.jx.2/j;�m/.E0m Fx.2//˝ .KmF 0m/.Kjx.2/jx.1//:(148)

(A) By Corollary 6.11, E0m˝KmF 0m 2 ŒU
ev
Z ˝U ev

Z � Pem˝Pe�1
m

. We will use a G–good
presentation �.x/D

P
x.1/˝x.2/ (see Section 6I). From Lemma 6.15, each summand

of the right-hand side of (148) is in Œ.U ev
Z /
˝2�u , where

uD Pv�.jx.2/j;�m/ Pe�m Px.2/ Pe
�1
�m
PKjx.2/j Px.1/ D Px.2/

PKjx.2/j Px.1/ D Px:

Here the last identity is (134). Thus, �m preserves the Gev –grading.

(B) Since K˛ 2 U and E0m˝KmF 0m 2 U ˝U , (148) shows that �m.U/� U ˝U .

(C) Let x 2X ev
Z . By an argument similar to the proof of Lemma 6.13, we see that

x.2/˝Kjx.2/jx.1/ 2X ev
Z ˝X ev

Z :

By (140),
E0m˝KmF 0m 2 o.m/U ev

Z ˝X ev
Z :

Hence, from (148),

�m.x/ 2 o.m/.U ev
Z FX ev

Z /X
ev
Z � o.m/X ev

Z ;

where for the last inclusion we again use the fact that X ev
Z is UZ –stable (Theorem 5.21).

This shows (C) of Definition 7.7 holds. By Lemma 7.8, � is .zKn.U//–admissible.
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7J Admissibility of S

Lemma 7.14 The braided antipode S is .zKn.U//–admissible.

Proof By computation, we obtain S D
P

m2Nt Sm , where

(149) Sm.x/D S�1.Em Fx/FmK�jxj

for Y–homogeneous x 2Uh . We will assume x is Gev –homogeneous.

(A) By Lemma 6.6, we have Sm.x/ 2 ŒUZ�g , where

g D PS�1. Pad. Pe�m ˝ Px// Pe
�1
�m
PK�m
PK�j Pxj D PS

�1. Pe�m Px/ Pe
�1
�m
PK�m
PK�j Pxj

D PKj Pxj Px PK�m Pe�m Pe
�1
�m
PK�m
PK�j Pxj D Px:

(B) Since K˛ 2 U and Em˝Fm 2 U ˝U , (149) shows that Sm.U/� U .

(C) We rewrite (149) as

(150) Sm.x/D v
�.jxj;jEmj/S�1.Em Fx/K�jEmj�jxjKmFm:

By (140), Em˝KmFm 2 o.m/.UZ˝X ev
Z /. Since X ev

Z is UZ –stable,

Em Fx˝KmFm 2 o.m/.UZ FX ev
Z ˝X ev

Z /� o.m/.X ev
Z ˝X ev

Z /:

Hence, from (150) we have
Sm.x/ 2 o.m/X ev

Z ;

which proves property (C).

By Lemma 7.8, S is .zKn.U//–admissible.

Thus, Proposition 7.2(ii) holds.

7K Borromean tangle

The goal now is to establish Proposition 7.2(iii). Namely, we will show that b 2 zK3 ,
where b is the universal invariant of the Borromean bottom tangle.

First we recall (38), which describes b through the clasp element c using the braided
commutator. With c D

P
n2N2t Œ�1.n/˝�2.n/�D�2 , (38) says

bD
X

n;m2N2t

bn;m;

where, for n, m 2N2t ,

(151) bn;m WD .id
y̋2 y̋ ‡/

�
Œ�1.n/˝�1.m/˝�2.m/˝�2.n/�D�2

14 D�2
23

�
:

Here, if xD
P

x0˝x00 then x14D
P

x0˝1˝1˝x00 and x23D
P

1˝x0˝x00˝1.
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Lemma 7.15 For n, m 2 N2t one has bn;m 2 o.n;m/zK3.U/. Thus, b 2 zK3.U/.
(Recall that o.n;m/D .qI q/bmax.n;m/=2c .)

The remaining part of this section is devoted to the proof of Lemma 7.15.

7K1 Quasiclasp element Recall that �1.n/ and �2.n/ are given by (137) for
n 2N2t.

Lemma 7.16 Suppose nD .n1;n2/ 2Nt �Nt . Then

�1.n/˝�2.n/ 2 K2 D .X
ev
Z /
˝2
\ Œ.U ev

Z /
˝2�1;(152)

�1.n/˝�2.n/ 2 o.n/X ev
Z ˝U ev

Z :(153)

Proof We write x � y if x D uy with u a unit in A. Note that
p
.qI q/n1

F .n1/ andp
.qI q/n2

E.n2/ are in X ev
Z , as they are among the preferred basis elements. Using

the definition (137) of �1.n/ and �2.n/, we have

(154) �1.n/˝�2.n/�.qI q/n1
.qI q/n2

F .n1/K�1
n1

E.n2/˝F .n2/K�1
n2

E.n1/2.X ev
Z /
˝2:

From Corollary 6.11, �1.n/˝�2.n/, which is in .U ev
Z /
˝2 , has G–grading equal to

. Pe�1
n1
Pen2
/. Pe�1

n2
Pen1
/D 1:

This shows �1.n/˝�2.n/ 2 .X
ev
Z /
˝2\ Œ.U ev

Z /
˝2�1 D K2 . This proves (152).

Because
p
.qI q/n1

.qI q/n2
F .n1/K�1

n1
E.n2/ 2X ev

Z and F .n2/K�1
n2

E.n1/ 2U ev
Z , from

(154) we have

�1.n/˝�2.n/ 2
p
.qI q/n1

.qI q/n2
.X ev

Z /˝U ev
Z � o.n/.X ev

Z /˝U ev
Z :

This proves (153).

7K2 Decomposition of bn;m Recall that DD exp
�

1
2
h
P
˛2…H˛˝

MH˛=d˛
�

is the
diagonal part of the R–matrix. We will freely use the following well-known properties
of D :

.�˝ 1/.D/D D13D23; .�˝ 1/.D/D 1; .S ˝ 1/.D/D D�1;

where D13 D
P

D1˝ 1˝D2 and D23 D 1˝D are in U
y̋3

h
. In the sequel we set

D�2
D

X
ı1˝ ı2 D

X
ı01˝ ı

0
2:

Recall (151):

bn;m D .id˝2
˝‡/

�
Œ�1.n/˝�1.m/˝�2.m/˝�2.n/�D�2

14 D�2
23

�
:
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By (39), ‡ is the composition of four maps:

‡ D � ı .ad y̋ id/ ı .id y̋ S y̋ id/ ı .id y̋ �/:

Using the above decomposition, one gets

(155) bn;m D f
�
ıf ad

m ıf
S
ıf �.�1.n/˝�2.n//;

where

f �W U
y̋2

h
!U

y̋3
h
; f �.x/D Œ.id y̋ �/.xD�2/�D2

12D
2
13;(156)

f S
W U
y̋3

h
!U

y̋3
h
; f S .x/D Œ.id y̋ S y̋ id/.xD�2

12 /�D
�2
12 ;(157)

f ad
m W U

y̋3
h
!U

y̋4
h
;

f ad
m .x/D .id y̋2 y̋ ad y̋ id/

�
Œx1˝�1.m/˝�2.m/˝x2˝x3�D�2

23 D2
14

�
D�2

13 ;

(158)

f �W U
y̋4

h
!U

y̋3
h
; f �.x/D .id y̋2 y̋ �/.xD2

13D
�2
14 /:(159)

Similarly, using (40) instead of (39), we have

(160) bn;m D
zf � ı zf ad

n ıf
S
ıf �.�1.m/˝�2.m//;

where f � and f S are as above, and

zf ad
n W U

y̋3
h
!U

y̋4
h
;

zf ad
n .x/D

�
.id y̋3 y̋ adr /

�
Œ�1.n/˝x1˝x2˝x3˝�2.n/�D�2

24 D�2
15

��
D2

24;

(161)

zf �W U
y̋4

h
!U

y̋3
h
; f �.x/D .id y̋2 y̋ �/.xD2

23D
�2
24 /:(162)

We will prove that each of f � , f S and f � is .zKn/–admissible, while each of f ad
n

and zf ad
n maps zK3 to o.n/zK4 . From here, Lemma 7.15 will follow easily.

7K3 Extended adjoint action To study the maps f � , f S , f ad
m and zf ad

n , we need
the following extended adjoint action: For a 2 Up

h
D Uh y̋CŒŒh�� CŒŒ

p
h �� and Y–

homogeneous x;y 2Up
h

, define

(163) a I .y˝x/ WD
�
.id˝ ada/..y˝x/D2/

�
D�2
D

X
yK2ja.2/j˝a.1/xS.a.2//:

It is easy to check that .a˝x˝y/ 7! a I .x˝y/ gives rise to an action of Up
h

on
Up

h
y̋ Up

h
.

Lemma 7.17 (a) If a;x;y 2U ev
Z are Gev –homogeneous, then

(164) a I .y˝x/ 2 ŒU ev
Z ˝U ev

Z � Py˝Pa Px :

(b) One has U I .U ˝U/� U ˝U .
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(c) One has
UZ I .X

ev
Z ˝X ev

Z /�X ev
Z ˝X ev

Z :

Proof (a) The right-hand side of (163) shows that a I .y˝ x/ has G˝2 –grading
equal to

Py˝ Pa.1/ Px PS. Pa.2//D Py˝ Pa.1/ Px Pa.2/ PKja.2/j D Py˝ Pa.1/ Pa.2/
PKja.2/j Px D Py˝ Pa Px;

where we use Pa.1/ Pa.2/ PKja.2/j D Pa from (134). This shows (164).

(b) By the assumptions on U , K˙1
˛ 2 U and U is a Hopf algebra. Hence, (b) follows

from (163).

(c) Suppose a 2UZ and x;y 2X ev
Z ; we need to show that aI .y˝x/ 2X ev

Z ˝X ev
Z .

Because .ab/I .y˝x/D aI .b I .y˝x//, it is sufficient to consider the case when
a is one of the generators E

.n/
˛ , F

.n/
˛ or K˙1

˛ of UZ , where ˛ 2… and n 2N . The
cases aDK˙1

˛ are trivial.

For aDE
.n/
˛ , a calculation by induction on n shows that

E.n/
˛
I .y˝x/D

nX
jD0

.�1/nv
2jnC.nC1

2 /
˛ y.K2

˛I q˛/n�j ˝E.n�j/
˛ .E.j/

˛ Fx/

D

nX
jD0

.�1/nv
2jnC.nC1

2 /
˛

�
y
.K2

˛I q˛/n�jp
.q˛I q˛/n�j

�
˝
�p
.q˛I q˛/n�j E.n�j/

˛

�
ŒE.j/
˛ Fx�:

The right-hand side belongs to X ev
Z ˝X ev

Z , since each factor in square brackets is
in X ev

Z .

The case aD F
.n/
˛ can be handled by a similar calculation, or can be derived from the

already-proved case aD '.F˛/DK�1
˛ E˛ , using

.'˝'/.a I .y˝x//D '.a/ I .'.y/˝'.x//;

which follows from the fact that ' commutes with S , � and '.K˛/DK˛ .

7K4 The map f �

Lemma 7.18 The map f �W U y̋2
h
!U

y̋3
h

is .zKn.U//–admissible.
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Proof Using the definition (156) and the decomposition (147) of � we have f � DP
u2Nt f

�
u , where

f
�

u .y˝x/D
hX

yı1˝�u.xı2/
i
D2

12D
2
13:

We will show that f � D
P

u2Nt f
�

u is an admissible decomposition. Using the
definitions, we haveX

yı1˝�u.xı2/

D

X
yı1˝E0u F .x.2/.ı2/.2//˝K�uCjx.2/jF

0
ux.1/.ı2/.1/

D

X
yı1ı

0
1˝E0u F .x.2/ı2/˝K�uCjx.2/jF

0
ux.1/ı

0
2

D

X
yı1ı

0
1˝ .E

0
u/.1/x.2/ı2S..E0u/.2//˝K�uCjx.2/jF

0
ux.1/ı

0
2

D

X
yK2j.E0u/.2/j

ı1ı
0
1˝ .E

0
u/.1/x.2/S..E

0
u/.2//ı2˝K�uCjx.2/jF

0
ux.1/ı

0
2

D

�X
yK2j.E0u/.2/j

˝ .E0u/.1/x.2/S..E
0
u/.2//˝K�uCjx.2/jF

0
ux.1/

�
D�2

12 D�2
13

D

X�
v.jx.2/j;�u/E0u I .y˝x.2//˝ .KuF 0u/Kjx.2/jx.1/

�
D�2

12 D�2
13 :

This shows that

(165) f
�

u .y˝x/D
X

v.jx.2/j;�u/.E0u I .y˝x.2///˝ .KuF 0u/.Kjx.2/jx.1//:

(A) Suppose x;y 2 U ev
Z are Gev –homogeneous. By G–good presentation (see

Section 6I) and Lemma 7.17, all the factors in parentheses on the right-hand side
of (165) are in U ev

Z .

From (165) and Lemma 7.17, f �u .y˝x/ 2 Œ.U ev
Z /
˝3�g , where

g D Pv.jx.2/j;�u/ Py Pe�u Px.2/ Pe
�1
�u
PKjx.2/j Px.1/ D Py Px.2/

PKjx.2/j Px.1/ D Py Px;

with the last equality obtained from (134). This shows f �u preserves the Gev –grading.

(B) Suppose x;y 2 U . By the assumptions on U , we have that K˛ 2 U and
E0u ˝KuF 0u 2 U ˝ U . Now Lemma 7.17 shows that the right-hand side of (165)
is in U˝3. Thus, f �u .U˝2/� U˝3.

(C) By (140), E0u˝KuF 0u 2 o.u/.U ev
Z ˝X ev

Z /. Lemma 7.17 and (165) show that

f
�

u ..X
ev
Z /
˝2/ 2 o.u/.X ev

Z /
˝3:

By Lemma 7.8, f � is .zKn/–admissible.
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7K5 The map f S

Lemma 7.19 The map f S W U
y̋3

h
!U

y̋3
h

is .zKn.U//–admissible.

Proof Using the definition (157) and the decomposition (149) of S , we have f S DP
u2Nt f

S
u , where

f
S

u .y˝x˝ z/D
�X

yı1˝Su.xı2/˝ z
�
D�2

12

D .y˝ 1˝ z/
�X

ı1˝Su.xı2/˝ 1
�
D�2

12 :

Using the definitions, we haveX
ı1˝Su.xı2/

D

X
ı1˝S�1.Eu F .xı2//FuK�jxj

D

X
ı1˝S�1..Eu/.1/.xı2/S..Eu/.2///FuK�jxj

D

X
ı1˝ .Eu/.2/S

�1.ı2/S
�1.x/S�1..Eu/.1//FuK�jxj

D

X
K2.jxjCj.Eu/.1/jCjFu j/ı1˝ .Eu/.2/S

�1.x/S�1..Eu/.1//FuK�jxjS
�1.ı2/

D

�X
K2.jxjCj.Eu/.1/jCjFu j/˝ .Eu/.2/S

�1.x/S�1..Eu/.1//FuK�jxj

�
D2

D

X�
.1˝K�jxjFu/.S

�1
˝S�1/.Eu I .K�2jxj˝x//

�
D2:

It follows that

(166) f
S

u .y˝x˝ z/

D

X
.y˝1˝1/

��
.1˝K�jxjFu/.S

�1
˝S�1/.EuI.K�2jxj˝x//

�
˝z
�
:

Assume that x;y; z 2U ev
Z are Gev –homogeneous. By Lemma 6.10,

Fu˝Eu 2 ŒU
ev
Z ˝U ev

Z � Pe�1
�u
PK�u˝Pe�u

:

Hence, from Lemma 7.17(a), f S
u .y˝x˝ z/ 2 Œ.U ev

Z /
˝3�g , where

g D Py˝ PKjxj Pe
�1
�u
PK�u
PS�1. Pe�u Px/˝ Pz D Py˝ Px˝ Pz;

where the last equality follows from a simple calculation. Thus,

(167) f
S

u .y˝x˝ z/ 2 Œ.U ev
Z /
˝3� Py˝ Px˝Pz

(A) From (167), f S
u preserves the Gev –grading.
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(B) Assume that x;y; z 2 U . Since K˛ 2 U and Fu˝Eu 2 U ˝U , Lemma 7.17(b)
shows that the right-hand side of (166) is in U˝3.

(C) By (140), Fu˝Eu 2 o.u/XZ˝UZ . Lemma 7.17 and (166) show that

f
S

u ..X
ev
Z /
˝3/� o.u/.XZ/

˝3:

On the other hand, (167) shows that

f
S

u ..X
ev
Z /
˝3/� ..U ev

Z /
˝3
˝A zA/:

Because
o.u/.XZ/

˝3
\ ..U ev

Z /
˝3
˝A zA/D o.u/.X ev

Z /
˝3

by (142), we have f S
u ..X

ev
Z /
˝3/� o.u/.X ev

Z /
˝3 .

7K6 The maps f ad and zf ad

Lemma 7.20 For f D f ad
m or f D zf ad

m , one has f .K3.U//� Fbmax m=2c.K4.U//.

Proof Assume x ˝ y ˝ z 2 K3.U/ D .X ev
Z /
˝3 \ Œ.U ev

Z /
˝3�1 \ U˝3 . First assume

f D f ad
m . Recall that

f ad
m .x1˝x2˝x3/

D

hX
.id˝2

˝ad˝id/.x1S.ı1/˝�1.m/ı
0
1˝�2.m/ı

0
2˝x2ı2˝x3/

i
D�2

13

D .x1˝�1.m/˝1˝x3/
hX

.id˝2
˝ad/.S.ı1/˝ı01˝�2.m/ı

0
2˝x2ı2/˝1

i
D�2

13 :

We have

.id˝ id˝ ad/
�X

S.ı1/˝ ı
0
1˝xı02˝yı2

�
D

X
S.ı1/˝ ı

0
1˝ .xı

0
2/F .yı2/

D

X
S.ı1/˝ ı

0
1˝x.1/.ı

0
2/.1/yı2S..ı02/.2//S.x.2//

D

X
S.ı1/˝K�2jyj˝x.1/yı2S.x.2//

D

X
K2jx.2/jS.ı1/˝K�2jyj˝x.1/yS.x.2//ı2

D

hX
K2jx.2/j˝K�2jyj˝x.1/yS.x.2//

i
D2

13

D
�
.x I .1˝y//13.1˝K�2jyj˝ 1/

�
D2

13:

It follows that

(168) f ad
m .x1˝x2˝x3/

D
�
.x1˝�1.m/˝ 1/.�2.m/ I .1˝x2//13.1˝K�2jx2j

˝ 1/
�
˝x3:
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Since �1.m/˝�2.m/ 2 Œ.U
ev
Z /
˝2�1 , Lemma 7.17(a) shows that

f ad
m .x1˝x2˝x3/ 2 Œ.U

ev
Z /
˝4�g;

where g D Px1
P�1.m/ P�2.m/ Px2 Px3 D Px1 Px2 Px3 D 1. Thus, the right-hand side of (168) is

in Œ.U ev
Z /
˝4�1 .

Since x˝ y ˝ z 2 U˝3 , Lemma 7.17(b) shows that the right-hand side of (168) is
in U˝4 .

Since �1.m/˝�2.m/ 2 o.m/X ev
Z ˝U ev

Z by (153), Lemma 7.17(c) shows that

f ad
m .x1˝x2˝x3/ 2 o.m/.X ev

Z /
˝4:

Hence,

f ad
m .x1˝x2˝x3/ 2 o.m/.X ev

Z /
˝4
\ Œ.U ev

Z /
˝4�1\U˝4

D Fbmax m=2c.K4.U//;

which proves the statement for f D f ad
m .

The proof for f D zf ad
m is similar: Using the definition and formula (41) for adr , one

gets

(169) zf ad
m .x1˝x2˝x3/

D .�1.m/K2jx3jC2�m ˝x1˝x2˝ 1/
�
S�1.�2.m// I .1˝x3/

�
24
:

By Lemma 7.17(a), the right-hand side of (169) is in .U ev
Z /
˝4 , with G–grading equal

to
P�1.m/ Px1 Px2 Px3

P�2.m/D P�1.m/ P�2.m/D 1:

Again, Lemma 7.17(b) shows that the right-hand side of (169) is in U˝4 and Lemma
7.17(c) shows that it is in o.m/.X ev

Z /
˝4 . Hence, zf ad

m .x1˝x2˝x3/2Fbmax m=2cK4.U/.

7K7 The maps f � and zf �

Lemma 7.21 Both f � and zf � are .zKn.U//–admissible.

Proof By definition,

f �.x1˝x2˝x3˝x4/D .id˝2
˝�/

�X
x1ı1S.ı01/˝x2˝x3ı

0
2˝x4ı2

�
D .x1˝x2˝1/

h
.id˝2

˝�/
�X

ı1S.ı01/˝1˝x3ı
0
2˝x4ı2

�i
:
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We have

.id˝�/
�X

ı1S.ı01/˝xı02˝yı2

�
D

X
ı1S.ı01/˝xı02yı2

D

X
ı1S.ı01/K2jyj˝xyı02ı2

DK2jyj˝xy:

It follows that f � has the very simple expression

f �.x1˝x2˝x3˝x4/D .x1˝x2˝1/.K2jx4j
˝1˝x3x4/D x1K2jx4j

˝x2˝x3x4:

The trivial decomposition for f � is admissible. Hence, f � is .zKn.U//–admissible.

Similarly, a simple computation shows that

zf �.x1˝x2˝x3˝x4/D x1˝x2K2jx4j
˝x3x4:

The trivial decomposition for zf � is admissible. Hence, zf � is .zKn.U//–admissible.

7K8 Proof of Lemma 7.15

Proof First suppose max.m/�max.n/. By (155)

bn;m D f
�
ıf ad

m ıf
S
ıf �.�1.n/˝�2.n//;

By (152), �1.n/˝�2.n/2K2 . Lemmas 7.18, 7.19, 7.20 and 7.21 show bn;m2o.m/zK3 .

Suppose max.n/ >max.m/. Using (160) instead of (155), we have bn;m 2 o.n/zK3 .

Hence bn;m 2 o.n;m/zK3 . As a consequence, bD
P

bn;m 2 zK3 .

7L Proof of Proposition 7.2

Proof As noted, statement (i) follows trivially from the definition of zK.U/. State-
ment (ii) follows from Lemmas 7.10, 7.11, 7.13 and 7.14. Finally, statement (iii) is
Lemma 7.15.

7M Integrality of the quantum link invariant

Lê [47] proved that, for a framed link L D L1 [ � � � [ Ln in S3 , the quantum g

link invariant JL.V�1
; : : : ;V�n

/, up to multiplication by a fractional power of q , is
contained in ZŒq; q�1�. Here we sketch an alternative proof, using Theorem 7.3 of the
following special case for algebraically split framed links.
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Theorem 7.22 [47] Let LDL1[ � � � [Ln be an algebraically split 0–framed link
in S3 . Let �1; : : : ; �n 2XC be dominant integral weights. Then we have

JL.V�1
; : : : ;V�n

/ 2 qpZŒq; q�1�;

where p D .2�; �1C � � �C�n/.

It is much easier to prove

JL.V�1
; : : : ;V�n

/ 2 qpZŒv; v�1�;(170)

and the difficult part of the proof is to show that the normalized invariant

q�pJL.V�1
; : : : ;V�n

/ 2 ZŒv; v�1�

is contained in ZŒq; q�1�. In [47], a result of Andersen [1] on quantum groups at roots
of unity is involved in the proof. The main idea of the proof below is, implicitly, the use
of the G–grading of the quantum group Uq as C.q/–module described in Section 6.

Sketch proof of Theorem 7.22 Let T be an algebraically split 0–framed bottom
tangle such that the closure link of T is L. Recall that the quantum invariant
JL.V�1

; : : : ;V�n
/ can be defined by using quantum traces:

JL.V�1
; : : : ;V�n

/D .tr
V�1
q ˝ : : :˝ trV�n

q /.JT /:(171)

It is not difficult to prove that, for 1� i � n, � 2XC , we have

.id˝i�1
˝ trV�

q ˝id˝n�i/.zKn/� q.2�;�/ zKn�1:(172)

Using (172), one can prove that

.tr
V�1
q ˝ : : :˝ trV�n

q /.zKn/� qp zK0 D qp bZŒq�:(173)

Hence, using (171), (173) and Theorem 7.3(a), we have

JL.V�1
; : : : ;V�n

/ 2 .tr
V�1
q ˝ : : :˝ trV�n

q /.zKn/� qp bZŒq�;

which, combined with (170), yields JL.V�1
; : : : ;V�n

/ 2 qpZŒq; q�1�, since we have
ZŒv; v�1�\ bZŒq� D ZŒq; q�1�.
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8 Recovering the Witten–Reshetikhin–Turaev invariant

In Section 7 we showed that JM 2
bZŒq� , where JM is the invariant (associated to a

simple Lie algebra g) of an integral homology 3–sphere M . Hence we can evaluate
JM at any root of unity. Here we show that by evaluating JM at a root of unity we
recover the Witten–Reshetikhin–Turaev invariant. We also prove Theorem 1.1 and
Proposition 1.6 of the introduction.

8A Introduction

Recall that g is a simple Lie algebra and Z is the set of all roots of unity. Suppose � 2Z
and M is closed oriented 3–manifold. Traditionally the Witten–Reshetikhin–Turaev
(WRT) invariant (see [73; 3]) �g

M
.�I �/2C is defined when � is a root of unity of order

2Ddk with k > h_, where h_ is the dual Coxeter number, d 2 f1; 2; 3g is defined
as in Section 3A, and D D jX=Y j. Here � D �2D. In this case, k � h_ is called the
level of the theory. The definition of �g

M
.�I �/ can be extended to a bigger set Z 0g that

contains all roots of unity of order divisible by 2dD ; see Section 8D. For values of d ,
D and h_ of simple Lie algebras, see Table 1 in Section 3A.

This section is devoted to the proofs of the following theorem and its generalizations:

Theorem 8.1 Suppose M is an integral homology 3–sphere and � 2 Z 0g . Then

�
g
M
.�I �/D JM

ˇ̌
qD�

:

Remarks 8.2 (a) Although � is determined by � , we use the notation �M .�I �/

since, in many cases, �g
M
.�I �/ depends only on � , but not a 2Dth root � of � . In

that case, we write �M .�/ instead of �M .�I �/. The set Zg in Section 1 is defined by
Zg D f�

2D j � 2 Z 0gg.

(b) The theorem implies that for an integral homology 3–sphere, �g
M
.�I �/ depends

only on � , but not a 2Dth root � of � . This does not hold true for general 3–manifolds.

In Sections 8C and 8D we recall the definition of the WRT invariant and define the
set Z 0g . Section 8F contains the proof of a stronger version of Theorem 8.1, based on
results proved in later subsections. To prove the main results we introduce an integral
form U of Uq which is sandwiched between Lusztig’s integral form UZ and De
Concini and Procesi’s integral form VZ . For gD sl2 , the algebra U was considered by
Habiro [25; 26]. A large part of the proof is devoted to the determination of the center
of a certain completion of U . For this part we use, among other things, integral bases
of UZ –modules, the quantum Harish-Chandra isomorphism, and Chevalley’s theorem
in invariant theory. In Section 8M, we give a geometric interpretation of Drinfel’d’s
construction of central elements.
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8B Finite-rank Uh–modules

Suppose V is a topologically free Uh –module. For � 2X the weight-� subspace of
V is defined by

VŒ�� D fe 2 V jH˛.e/D .˛; �/e for all ˛ 2…g;

and � 2X is called a weight of V if VŒ�� ¤ 0. We call V a highest weight module if
V is generated by a nonzero element 1� 2 VŒ�� for some � 2X such that E˛1� D 0

for ˛ 2…. Then 1� is called a highest weight vector of V , and � the highest weight.

By a finite-rank Uh –module, we mean a Uh –module which is (topologically) free of
finite rank as a CŒŒh��–module. The theory of finite-rank Uh –modules is well known
and is parallel to that of finite-dimensional g–modules; see eg [12; 30; 54]: every
finite-rank Uh –module is the direct sum of irreducible finite-rank Uh –modules. For
every dominant integral weight � 2 XC WD

˚P
˛2… k˛ M̨ j k˛ 2 N

	
, there exists a

unique finite-rank irreducible Uh –module with highest weight �, and every finite-rank
irreducible Uh –module is one of V� . The Grothendieck ring of finite-rank Uh –modules
is naturally isomorphic to that of finite-dimensional g–modules.

8C Link invariants and symmetries at roots of unity

8C1 Invariants of colored links Suppose L is the closure link of a framed bottom
tangle T , with m components. Let V1; : : : ;Vm be finite-rank Uh –modules. Recall
that the quantum link invariant [72] can be defined by

JL.V1; : : : ;Vm/D .trV1
q ˝ � � �˝ trVm

q /.JT / 2CŒŒh��:

Actually, JL.V1; : : : ;Vm/ belongs to a subring ZŒv˙1=D � of CŒŒh��, where DDjX=Y j;
see [47]. (D is also equal to the determinant of the Cartan matrix.) We say that Vj

is the color of the j th component, and consider JL.V1; : : : ;Vm/ as an invariant of
colored links, which is a generalization of the famous Jones polynomial [31].

Let U be the trivial knot with 0 framing. For a finite-rank Uh –modules V , dimq.V / WD

JU .V / is called as the quantum dimension of V . It is known that, for � 2XC ,

(174) dimq.V�/D

P
w2W sgn.w/v�.2.�C�/;w.�//P
w2W sgn.w/v�.2.�/;w.�//

D q�.�;�/
Y
˛2ˆC

q.�C�;˛/� 1

q.�;˛/� 1
:

Here W is the Weyl group and sgn.w/ is the sign of w as a linear transformation.

One has max˛2ˆC.�; ˛/ D d.h_ � 1/, where h_ is the dual Coxeter number of g.
Hence, if � is a root of unity with

(175) ord.�/ > d.h_� 1/;
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then the denominator of the right-hand side of (174) is not 0 under the evaluation qD � .
For this reason we often make the assumption (175).

8C2 Evaluation at a root of unity Throughout we fix a root of unity � 2 C . Let
� D �2D and r D ord.�2D/.

For f 2 CŒv˙1=D � let evv1=DD�.f / be the value of f at v1=D D � . Note that if
v1=2D D � then q D � . If f 2CŒq˙1� then evv1=DD�.f / is the value of f at q D � .

Suppose f , g 2CŒv˙1=D �. If evv1=DD�.f /D evv1=DD�.g/, then we say f D g at �
and write

f D.�/ g:

We say that � 2X is a �–period if for every link L, evv1=DD�.JL/ does not change
when the color of a component changes from V� to V�C� for arbitrary � 2XC such
that �C� 2XC (the colors of other components remain unchanged).

The set of all �–periods is a subgroup of X . It turns out that if ord.�/ > d.h_� 1/,
then the group of �–periods has finite index in X ; in [47] it was proved that the group
of �–periods contains 2rY , which, in turn, contains .2rD/X (because DX � Y ).

When ord.�/ � d.h_ � 1/, the behavior of evv1=DD�.JL/ is quite different. For
example, when � D 1, from (174) and the Weyl dimension formula, one can see that
dimq.V�/ is the dimension of the classical g–module of highest weight �. When
� D 1, the action of the ribbon element on any V� is the identity, and the braiding
action  is trivial on any pair of Uq –modules. Hence, we have the following:

Proposition 8.3 For any framed oriented link L with m ordered components and
�1; : : : ; �m 2XC ,

evv1=DD1.JL.V�1
; : : : ;V�m

//D

mY
jD1

dim.V�j /:

(Here dim.V�j / is the dimension of the irreducible g–module with highest weight �j .)

8D The WRT invariant of 3–manifolds

Here we recall the definition of the WRT invariant.
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8D1 3–manifolds and Kirby moves Suppose L is a framed link in the standard
3–sphere S3 . Surgery along L yields an oriented 3–manifold M DM.L/. Surgeries
along two framed links L and L0 give the same 3–manifold if and only L and L0 are
related by a finite sequence of Kirby moves, ie handle slide moves and stabilization
moves; see eg [39; 40]. If one can find an invariant of unoriented framed links which
is invariant under the two Kirby moves, then the link invariant descends to an invariant
of 3–manifolds.

8D2 Kirby color Let B WDA˝Z C DCŒv˙1�. We call any B–linear combination
of V� , �2XC , a color. By linear extension we can define JL.V1; : : : ;Vm/2CŒv˙1=D �

when each Vj is a color.

A color � is called a handle-slide color at level v1=D D � if

(i) evv1=DD�.JL.�; : : : ; �// is an invariant of nonoriented links, and

(ii) evv1=DD�.JL.�; : : : ; �// is invariant under the handle slide move.

Let U˙ be the unknot with framing ˙1. A handle-slide color is called a Kirby color
(at level v1=D D � ) if it satisfies the nondegeneracy condition

(176) JU˙
.�/¤.�/ 0:

Suppose � is a Kirby color at level v1=D D � , and M DM.L/ is the 3–manifold
obtained by surgery on S3 along a framed link L. Then

(177) �M .�/ WD ev�

�
JL.�; : : : ; �/

.JU˙
.�//�C.JU˙

.�//��

�
is invariant under both Kirby moves, and hence defines an invariant of M . Here �C
(resp. �� ) is the number of positive (resp. negative) eigenvalues of the linking matrix
of L.

8D3 Strong Kirby color All the known Kirby colors satisfy a stronger condition on
the invariance under the handle slide move, as described below.

A root color is any B–linear combinations of V� with � 2 Y \XC . A handle-slide
color � at level v1=D D � is a strong handle-slide color if it satisfies the following:
Suppose the first component of L1 is colored by � and other components are colored
by arbitrary root colors V1; : : : ;Vm . Then a handle slide of any other component over
the first component does not change the value of the quantum link invariant, evaluated
at v1=D D � , ie if L2 is the resulting link after the handle slide then

(178) JL1
.�;V1; : : : ;Vm/D.�/ JL2

.�;V1; : : : ;Vm/:

A nondegenerate strong handle-slide color is called a strong Kirby color.
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8D4 Strong Kirby color exists Let P� be the following half-open parallelepiped,
which is a domain of translations of X by elements of the lattice .2rD/X ,

P� WD

�
�D

lX
iD1

ki M̨ i 2XC

ˇ̌̌
0� ki < 2rD

�
:

Let
�g.�/ WD

X
�2P�

dimq.V�/V�; �Pg.�/D
X

�2P�\Y

dimq.V�/V�:

In [49], it was proved that both �g.�/ and �Pg.�/ are handle-slide colors at level
v1=D D � if ord.�2D/ > d.h_ � 1/. Actually, the proof there shows that �g.�/

and �Pg.�/ are strong handle-slide colors at level v1=D D � . Hence, assuming
ord.�2D/ > d.h_� 1/, �g.�/ (resp. �Pg.�/) is a strong Kirby color at v1=D D � if
and only �g.�/ (resp. �Pg.�/) is nondegenerate at v1=D D � . There are many cases
of v1=D D � when both ord.�2D/ and �g.�/ are strong Kirby colors, and there are
many cases when one of them is not. Let Z 0g (resp. Z 0

Pg ) be the set of all roots of unity
� such that �g.�/ (resp. �Pg.�/) is a strong Kirby color.

For � 2 Z 0g the g WRT invariant of an oriented closed 3–manifold M is defined by

�
g
M
.�I �/D �M .�g.�//:

Similarly, for � 2 Z 0
Pg the Pg WRT invariant of an oriented closed 3–manifold M is

defined by
�

Pg
M
.�I �/D �M .�Pg.�//:

Proposition 8.4 Suppose � is a root of unity with ord.�2D/ > d.h_ � 1/. Then
� 2 Z 0g[Z 0

Pg . More specifically, if ord.�2D/ is odd then � 2 Z 0
Pg and if ord.�2D/ is

even then � 2 Z 0g .

We will give a proof of the proposition in Appendix C.3. Actually, in the appendix we
will describe precisely the sets Z 0g and Z 0

Pg (for ord.�2D/ > d.h_� 1/).

The proposition shows that Z 0g[Z 0
Pg is all Z except for a finite number of elements.

This means that �g
M
.�I �/ or �Pg

M
.�I �/ can always be defined at all but a finite number

of � .

Remarks 8.5 (1) If ord.�/ is divisible by 2dD , the proposition had been well known,
since in this case a modular category, and hence a topological quantum field theory
(TQFT), can be constructed; see eg [3]. The rigorous construction of the WRT invariant
and the corresponding TQFT was first given by Reshetikhin and Turaev [73] for gD sl2 .
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The construction of TQFT for higher rank Lie algebras (see eg [3; 82]) uses Andersen’s
theory of tilting modules [2]. In [49], the WRT invariant was constructed without
TQFT (and no tilting modules theory). Here we are interested only in the invariants
of 3–manifolds, but not the stronger structure TQFT. We don’t know if a modular
category — the basis ground of a TQFT — can be constructed for every root � of unity
with ord.�2D/ > d.h_ � 1/. At least for g D sln , if the order of � is 2 .mod 4/

and n is even, then according to [10], the corresponding premodular category is not
modularizable.

(2) In general, different strong Kirby colors give different 3–manifold invariants. The
invariant corresponding to �Pg , called the projective version of the WRT invariant,
was first defined in [40] for gD sl2 , then in [42] for sln , and then in [49] for general
Lie algebras. When both �g.�/ and �Pg.�/ are nondegenerate, the relation between
the two invariants �M .�g/ and �M .�Pg/ is simple if ord.�2D/ is coprime with dD ,
but in general the relation is more complicated; see [49].

(3) It is clear that in the definition of �g.�/ and �Pg.�/, instead of P� one can take
any fundamental domain of any group of �–periods which has finite index in Y .

8D5 Dependence on � D �2D When components of a framed link L are colored
by �Pg.�/, JL takes values in CŒq˙1��CŒq˙1=2D �; see [49]. Hence, the Pg–WRT
invariants �Pg

M
.�I �/, if defined, depend only on � D �2D , but not on any choice of a

2Dth root � of � .

The g–WRT invariant �g
M
.�I �/ does depend on a choice of a 2Dth root � of � , even

in the case gD sl2 . We will see that when M is an integral homology 3–sphere, the g–
WRT invariant of M depends only on � D �2D , but not on any choice of a 2Dth root
� of � . However, there are cases when �2D D � D .�0/2D , but � 2 Z 0g and �0 62 Z 0g .
For example, suppose gD sl2 and � D exp.2�=.2kC1//, a root of unity of odd order.
Then � D exp.2�=.8kC4// and �0D i� are both 4th roots of � (in this case 2DD 4).
But � 2 Z 0g and �0 62 Z 0g .

8D6 Trivial color at � D 1 and the case when ord.�/� d.h_� 1/

Proposition 8.6 Let �DCŒŒh�� be the trivial Uh –module. Then � is a strong Kirby
color at level � D 1 and �M .�/D 1.

This follows immediately from Proposition 8.3 and the defining formula (177) of �M .�/.

It is not true that the trivial color is a strong Kirby color for all � with ord.�2D/ �

d.h_ � 1/. For example, if gD sl6 and ord.�2D/D 4, then the trivial color is not a
strong Kirby color. One can prove that if n� 0;˙1 .mod r/, then the trivial color is a
strong Kirby color for sln at level � with r D ord.�2D/.
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Remark 8.7 If ord.�/D 2dDk , then the level of the corresponding TQFT is k�h_ .
Hence, if the level is nonnegative, as assumed by physics, we automatically have
ord.�2D/ > d.h_� 1/.

8E Stronger version of Theorem 8.1

Proposition 8.4 shows that strong Kirby colors exist at every level � if the order of
� is big enough. Although different Kirby colors at level � might define different
3–manifold invariants, we have the following result for integral homology 3–spheres,
which is more general than Theorem 8.1.

Theorem 8.8 Suppose � is a strong Kirby color at level v1=D D � and M is an
integral homology 3–sphere. Then

�M .�/D evv1=DD�.JM /D evqD�.JM /:

Remark 8.9 There is no restriction on the order of � in the right-hand side of this
equation. We do not know how to directly define the WRT invariant with ord.�2D/�

d.h_� 1/.

The remaining part of this section is devoted to a proof of this theorem. Throughout
we fix a root of unity � and a strong Kirby color � at level � . Let � D �2D and
r D ord.�/.

8F Reduction of Theorem 8.8 to Proposition 8.10

Here we reduce Theorem 8.8 to Proposition 8.10, which will be proved later.

8F1 Twisted colors �˙ Suppose the j th component of a link L is colored by
V D V� , and L0 is obtained from L by increasing the framing of the j th component
by 1; then it is known that

(179) JL0. : : : ;V; : : : /D f�JL. : : : ;V; : : : /; where f�D q.�;�C2�/=2
D

trV
q .r
�1/

dimq V
:

For example, if U˙ is the unknot with framing ˙1, then

JU˙
.V�/D f˙1

� dimq.V�/D JU .f
˙1
� V�/:

By definition � is a finite sum �D
P

c�V� , where c� 2 BDCŒv˙1�. Define the pair
�˙ of C–linear combinations of finite-rank irreducible Uh –modules by

�˙ D
X evv1=DD�.c�f

˙1
�
/

evv1=DD�.JU˙
.�//

V�:
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Suppose a distinguished component of L has framing "D˙1 and color �, and L0 is
the same link with the distinguished component having framing 0 and color �" . Then
from (179) and the definition of �" one has

(180) JL. : : : ; �; : : : /D.�/ JU".�/JL0. : : : ; �"; : : : /:

8F2 Reduction of Theorem 8.8 Here we reduce Theorem 8.8 to the following:

Proposition 8.10 Let � be a strong Kirby color. Suppose T is an algebraically split
0–framed bottom tangle T with m ordered components and ."1; : : : ; "m/ 2 f˙1gm .
Then

.tr
�"1
q ˝ � � �˝ tr�"m

q /.JT /D.�/ .T"1
˝ � � �˝ T"m

/.JT /:

Proof of Theorem 8.8 assuming Proposition 8.10 Suppose T is an m–component
bottom tangle, "1; : : : ; "m 2 f˙1g and M DM.T; "1; : : : ; "m/. This means that, if
L is the closure link of T and L0 is the same L with framing of the i th component
switched to "i , then M is obtained from S3 by surgery along L0 . Every integral
homology 3–sphere can be obtained in this way. By construction,

JM D .T"1
˝ � � �˝ T"m

/.JT /:

From (180) and the definition (177) of �M .�/, we have

�M .�/D ev�..tr
�"1
q ˝ � � �˝ tr�"m

q /.JT //:

By Proposition 8.10, we have �M .�/D evv1=DD�.JM /. This proves Theorem 8.8.

The rest of this section is devoted to the proof of Proposition 8.10.

8G Integral form U of Uq

Besides the integral form UZ (of Lusztig) and VZ (of De Concini and Procesi), we
need another integral form U of Uq , with VZ � U �UZ . Let

U WDU�Z VZ DU�Z V 0
ZV CZ DU

ev;�
Z V 0

ZV CZ

and
Uev
WD U \Uev

Z DU
ev;�
Z V

ev;0
Z V CZ :

Theorem 8.11 (a) The A–module U is an A–Hopf subalgebra of UZ .

(b) Each of U and Uev is stable under �bar and � .
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(c) There are even triangular decompositions

U
ev;�
Z ˝V 0

Z ˝V CZ
Š
�!U ; x˝y˝ z 7! xyz

U
ev;�
Z ˝V

ev;0
Z ˝V CZ

Š
�!Uev; x˝y˝ z 7! xyz:

(d) For any longest reduced sequence, the sets

fFmKmK
En j n;m 2Nt ; 
 2 Y g; fFmKmK2
En j n;m 2Nt ; 
 2 Y g

are A–bases of U and Uev, respectively.

(e) The Hopf algebra U satisfies the assumptions of Theorem 7.3, ie K˙1
˛ 2 U for

˛ 2… and Fn˝En , F 0n˝E0n 2 U ˝U for n 2Nt .

(f) One has T˙.Uev/�AD ZŒv; v�1�.

(g) For any n� 0, one has .U ev
Z /
˝n\U˝n D .Uev/˝n .

Proof (a) We have the following statement, whose easy proof is dropped:

Claim If H1 and H2 are A–Hopf subalgebras of a Hopf algebra H such that
H2H1 �H1H2 , then H1H2 is an A–Hopf subalgebra of H .

We will apply the claim to H1 D U�Z V 0
Z and H2 D VZ . By checking the explicit

formulas of the coproducts and the antipodes of F
.n/
˛ and K˛ for ˛ 2…, n2N , which

generate the A–algebra H1DU�Z V 0
Z , we see that H1 is an A–Hopf subalgebra of UZ .

Since H2 is also an A–Hopf subalgebra of UZ , it remains to show H2H1 �H1H2 .

Given x and y in any Hopf algebra, we have xy D
P

y.2/.S
�1.y.1// F x/: Hence,

since H1 is a Hopf algebra, and H1 FV ev
Z � V ev

Z (Theorem 5.18),

(181) V ev
Z H1 �H1.H1 FV ev

Z /�H1V ev
Z :

Because VZ D V ev
Z V 0

Z and V 0
ZH1 D V 0

ZU�Z V 0
Z DU�Z V 0

Z DH1 , we have

H2H1 D VZH1 D V ev
Z V 0

ZH1 D V ev
Z H1 �H1V ev

Z �H1H2;

where we used (181). By the above claim, H1H2 is an A–Hopf subalgebra of UZ .

(b) Let f D �bar or f D � . By Propositions 5.2 and 5.13, f .U�Z /DU�Z �U�Z VZDU
and f .VZ/D VZ �U�Z VZ D U . Hence f .U/D f .U�Z VZ/� U .

By Lemma 3.4, f .U ev
q /�U ev

q . Hence

f .Uev/D f .U \U ev
q /� f .U/\f .U

ev
q /� U \U ev

q D Uev:

(c) The even triangular decompositions of UZ (see Section 5B) imply the even
triangular decompositions of U .
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(d) Since Fm � F .m/ and En � .qI q/nE.n/ , where a � b means a D ub with
u a unit in A, Propositions 5.3 and 5.5 show that fFmKmg and fEng are A–bases
of U

ev;�
Z and V CZ , respectively. It is clear that fK
 j 
 2 Y g and fK2
 j 
 2 Y g

are A–bases of V 0
Z and V

ev;0
Z , respectively. Combining these bases using the even

triangular decompositions, we get the desired bases of U and Uev .

(e) Since K˙1
˛ , Fn and Em are among the basis elements described in (d), we have

K˙1
˛ 2 U and Fn˝En 2 U˝U . Since U is stable under �bar , and F 0n D �bar.Fn/ and

E0m D �bar.Em/, we also have F 0n˝E0n 2 U ˝U .

(f) Applying TC to a basis element of Uev in (d), using (96) and (97),

(182) TC.FmKmK2
En/D ın;mq.�;jEnj/q.
;�/�.
;
 /=2 2 ZŒq˙1��A:

It follows that TC.Uev/�A.

Let us now show T�.Uev/�A. By [30, Section 6.20], for any x;y 2Uq , one has

h!S.x/; !S.y/i D hy;xi:

Because !S.r�1/D r�1 , and hx; r�1i D hr�1;xi D T�.x/ by (94), we have

T�.x/D T�.!S.x//;

which is the same as T�.x/D T�..!S/�1.x//: Hence,

T�.Uev/D T�..!S/�1.Uev//

D TC.' ı .!S/�1.Uev// by (98)

D TC.�bar�.Uev// because ' D �bar�!S by Proposition 3.2

� TC.Uev/�A;

where we have used part (b), which says �bar�.Uev/� Uev .

(g) It is clear that .Uev/˝n � .U ev
Z /
˝n\U˝n . Let us prove the converse inclusion.

The A–basis of U described in (d) is also a C.v/–basis of Uq . This basis generates in
a natural way an A–basis fe.i/ j i 2 Ig of U˝n , which is also a C.v/–basis of U˝n

q .
There is a subset I ev � I such that fe.i/ j i 2 I evg is an A–basis of .Uev/˝n and at
the same time a C.v/–basis of .U ev

q /
˝n . Using these bases, one can easily show that

.Uev/˝n D .U ev
q /
˝n\U˝n . Hence,

.U ev
Z /
˝n
\U˝n

� .U ev
q /
˝n
\U˝n

D .Uev/˝n;

which is the converse inclusion. The proof is complete.

Theorems 8.11(d) and 7.3 give the following:
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Corollary 8.12 If T is an n–component bottom tangle with 0 linking matrix, then
JT 2 zKn.U/.

Remarks 8.13 (a) In the case gD sl2 the algebra U was studied by Habiro [25; 26].

(b) The algebra U is not balanced between E˛ and F˛ , and '.U/¤ U .

8H Complexification of zKm.U/

To accommodate the complex coefficients appearing in the definition of �˙ , we often
extend the ground ring from AD ZŒv˙1� to B DCŒv˙1�. Let

bCŒv� WD lim
 ��

k

CŒv˙1�=.qI q/k D lim
 ��

k

CŒv�=.qI q/k :

By (143),

Fk.Km.U//D .qI q/k.X ev
Z /
˝m
\ ŒU˝m

Z �1\U˝m

� .qI q/k.X
ev
Z /
˝m
\ .Uev/˝m by Theorem 8.11(g):

Let

Fk.K0m/ WD ..qI q/k.X
ev
Z /
˝m
\ .Uev/˝m/˝A B � hk.Xh/

y̋m
\ hkU

y̋m
h

:

Define the completion

(183) zK0m D
�

x D

1X
kD0

xk

ˇ̌̌
xk 2 Fk.K0m/

�
� .Xh/

y̋m
\ .Uh/

y̋m:

Then zKm.U/� zK
0

m , and zK00 D bCŒv� . We will work with zK0n instead of zKn.U/.

8I Integral basis of V�

For � 2 XC recall that V� is the finite-rank Uh –module of highest weight �. Let
1� 2 V� be a highest-weight element. It is known that the UZ –module UZ � 1� is a
free A–module of rank equal to the rank of V� over CŒŒh��. Further, there is an A–basis
of UZ � 1� consisting of weight elements; see eg [12]. We call such a basis an integral
basis of V� . For example, the canonical basis of Kashiwara [34] and Lusztig [54] is
such an integral basis. An integral basis of V� is also a topological basis of V� .

Recall that MUZ D
MU 0

ZUZ and MUq D
MU 0

q Uq are the simply connected versions of UZ

and Uq , respectively; see Section 5H. For � 2 XC we have the quantum trace map
trV�

q W Uh!CŒŒh��. This maps extends to trV�
q W UhŒh

�1�!CŒŒh��Œh�1�. In particular, if
x 2 MUq then one can define trV�

q .x/ 2CŒŒh��Œh�1�.

Lemma 8.14 Suppose � is a dominant weight, � 2XC .
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(a) If x 2UZ then trV�
q .x/ 2A.

(b) If x 2 MUq then trV�
q .x/ 2Q.v˙1=D/.

(c) If x 2 MUZ and � 2 Y then trV�
q .x/ 2A.

(d) If x 2XZ then trV�
q .x/ 2 zA.

Proof Fix an integral basis of V� . Using the basis, each x 2 Uh acts on V� by a
matrix with entries in CŒŒh��, called the matrix of x .

(a) If x 2UZ then its matrix has entries in A. Thus, trV�
q .x/D trV�.xK�2�/ 2A.

(b) As a Q.v/–algebra, MUq is generated by Uq and MK˛ , ˛ 2 …. Since Uq D

UZ˝AC.v/, the matrix of x 2Uq has entries in C.v/. For an element e of weight �,
we have MK˛.e/D v

. M̨ ;�/e . Note that . M̨ ; �/ 2 .1=D/Z. It follows that the matrix of
MK˛.e/ has entries in Q.v˙1=D/. Hence the matrix of every x 2 MUq has entries in

C.v˙1=D/, and trV�
q .x/ 2C.v˙1=D/.

(c) As an A–algebra, MUZ is generated by UZ and

f . MK˛I n; k/ WD MK
n
˛

. MK2
˛I q˛/k

.q˛I q˛/k
; n 2 Z; k 2N; ˛ 2…:

When � 2 Y , all the weights of V� are in Y . From the orthogonality between simple
roots and fundamental weights we have . M̨ ; �/ 2 d˛Z for every ˛ 2… and y 2 Y .
Hence,

f .v. M̨ ;�/I n; k/D vn. M̨ ;�/ .q
. M̨ ;�/=d˛
˛ I q˛/k

.q˛I q˛/k
2A:

Suppose e 2 V� has weight � 2 Y . Then

f . MK˛I n; k/.e/D f .v
. M̨ ;�/
I n; k/e 2Ae:

Thus, the matrix of f . MK˛I n; k/ on V� has entries in A. We conclude that the matrix
of every x 2 MUZ has entries in A, and trV�

q .x/ 2A.

(d) Because XZ �UZ˝A zA, by part (a) we have trV�
q .x/ 2 zA.

8J Quantum traces associated to �˙

Define
zT˙W Uh!CŒŒh��; zT˙.x/D tr�˙q .x/:
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Note that zT˙ , being quantum traces, are ad-invariant. Since �˙ are C–linear combi-
nations of V� , Lemma 8.14 shows that zT˙ restricts to a B–linear map from UZ˝A B
to B DCŒv˙1�.

Recall that .zK0n/inv denotes the set of elements in zK0n which are UZ –ad-invariants.

Proposition 8.15 Suppose f is one of T˙ or zT˙ . Then f is .K0m/inv –admissible in
the sense that, for m� j � 1,

.id˝j�1
˝f ˝ id˝m�j /..zK0m/

inv/� .zK0m�1/
inv:

Proof Recall that T˙ and zT˙ are ad-invariant. By Proposition 2.4(d) it is enough to
prove

.id˝j�1
˝f ˝ id˝m�j /.zK0m/� zK

0

m�1;

which, in turn, will follow from

.id˝j�1
˝f ˝ id˝m�j /.Fk.K0m//� Fk.K0m�1/:(184)

Let us prove (184) for f D T˙ . By Proposition 5.24,

.id˝j�1
˝ T˙˝ id˝m�j /..qI q/k.X

ev
Z /
˝m/� .qI q/k.X

ev
Z /
˝m�1:

By Theorem 8.11(f),

.id˝j�1
˝ T˙˝ id˝m�j /..Uev/˝m/� .Uev/˝m�1:

Because Fk.K0m/D ..qI q/k.X ev
Z /
˝m\ .Uev/˝m/˝A B , we have

.id˝j�1
˝ T˙˝ id˝m�j /Fk.K0m/� Fk.K0m�1/:

Let us now prove (184) for f D zT˙ . Because �˙ is a C–linear combination of V� ,
by Lemma 8.14(d), zT˙.X ev

Z /�
zA˝A B . Hence,

(185) .id˝j�1
˝ zT˙˝ id˝m�j /..qI q/k.X

ev
Z /
˝m/� .qI q/k..X

ev
Z /
˝m�1

˝A B/:

From Lemma 8.14(a), zT˙.U/� B , and hence

.id˝j�1
˝ zT˙˝ id˝m�j /..Uev/˝m/� .Uev/˝m�1

˝A B;

which, together with (185), proves (184).
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8K Actions of Weyl group on U 0
h

and Chevalley’s theorem

The Weyl group acts on the Cartan part U 0
h

by algebra automorphisms given by
w.H�/DHw.�/ . Then w.K˛/DKw.˛/ , and W restricts and extends to actions on
the Cartan parts U 0

Z , V 0
Z , and X0

h
.

We say an element x 2U 0
h

is W–invariant if w.x/D x for every w 2W, and x is
W–skew-invariant if w.x/D sgn.w/x for every w 2W. As usual, if W acts on V

we denote by V W the subset of W–invariant elements.

By Chevalley’s theorem [13], there are l homogeneous polynomials e1; : : : ; el in
ZŒH1; : : : ;Hl � such that .CŒH1; : : : ;Hl �/

WDCŒe1; : : : ; el �, the polynomial ring freely
generated by l elements e1; : : : ; el .

Suppose the degree of ei is ki . Since exp.hH˛/DK2
˛ , we have

(186) zei WD exp.hki ei/ 2 ZŒK˙2
1 ; : : : ;K˙2

l �W � .V
ev;0

Z /W:

Proposition 8.16 One has

.U 0
h /

W
DCŒe1; : : : ; el �ŒŒh��;(187)

.X0
h /

W
DCŒhk1=2e1; : : : ; h

kl =2el �ŒŒ
p

h��;(188)

.V 0
h /

W
DCŒhk1e1; : : : ; hkl el �ŒŒh��(189)

DCŒze1; : : : ; zel �ŒŒh��:(190)

(Here the overline in (189) and (190) denotes the topological closure in the h–adic
topology of Uh .)

Proof We have

.U 0
h /

W
D .CŒH1; : : : ;Hl �ŒŒh��/

W
D .CŒH1; : : : ;Hl �/

WŒŒh��DCŒe1; : : : ; el �ŒŒh��;

which proves (187). Similarly, using

.X0
h /

W
D .CŒh1=2H1; : : : ; h

1=2Hl �ŒŒh��/
W;

.V 0
h /

W
D .CŒhH1; : : : ; hHl �ŒŒh��/

W;

we get (188) and (189). We have

zei � 1D hki ei C h.V 0
h /

W:

It follows that
CŒze1; : : : ; zel �ŒŒh��DCŒhk1e1; : : : ; h

kl el �ŒŒh��;

from which one has (190).
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8L The Harish-Chandra isomorphism, center of Uh

Let Z.Uh/ be the center of Uh , which is known to be U inv
h

, the ad-invariant subset
of Uh . For any subset V �Uh write Z.V /D V \Z.Uh/, the set of central elements
in V .

Let p0W Uh! U 0
h

be the projection corresponding to the triangular decomposition.
This means, if xD x�x0xC , where x� 2U�

h
;xC 2UC

h
and x0 2U 0

h
, then p0.x/D

�.x�/�.xC/x0 . Here � is the counit.

For � 2 X , define the algebra homomorphism sh�W U 0
h
! U 0

h
by sh�.H˛/ D

H˛C .˛; �/. Then sh�.K˛/D v
.�;˛/K˛ . Since v.�;˛/ D hK�2�;K˛i, we have

(191) sh�.K˛/D hK�2�;K˛iK˛:

The Harish-Chandra map is the CŒŒh��–module homomorphism

�D sh�� ıp0W Uh!U 0
h DCŒH1; : : : ;Hl �ŒŒh��:

The restriction of � to the Y–degree 0 part of Uh , denoted � by abuse of notation, is
a CŒŒh��–algebra homomorphism, called the Harish-Chandra homomorphism.

One has the following description of the center (see eg [12; 74]):

Proposition 8.17 The restriction of � on the center Z.Uh/ is an algebra isomorphism
from Z.Uh/ to .U 0

h
/W DCŒH1; : : : ;Hl �

WŒŒh��.

Remark 8.18 Suppose H �Uh is any subring satisfying the triangular decomposition
(like UZ or Vh ). By definition,

(192) �.Z.H //� .H 0/W:

For H D Uh , we have equality in (192) by Proposition 8.17. But in general, the
left-hand side is strictly smaller than the right-hand side. For example, one can show
that

�.Z.UZ//¤ .U
0
Z/

W:

Over the ground ring A, the determination of the image of the Harish-Chandra map is
difficult. Later we will determine �.Z.H // for two cases, H D V ev

Z , which is defined
over A, and H DXh , which is defined over CŒŒ

p
h ��. In both cases, the duality with

respect to the quantum Killing form will play an important role.
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Figure 14: The open Hopf link (left) and the Hopf link

8M From Uh–modules to central elements

In the classical case, the center of the enveloping algebra of g is isomorphic to the ring
of g–modules via the character map. We will recall (and modify) here the corresponding
fact in the quantized case.

For a dominant weight � 2XC , recall that V� is the irreducible Uh –module of highest
weight �. Since the map trV�

q W Uh!CŒŒh�� is ad-invariant and the clasp element c is
ad-invariant, by Proposition 2.4(d) the element

z� WD .tr
V�
q
y̋ id/.c/

is in .Uh/
inv D Z.Uh/. This construction of central elements was sketched in [17], and

studied in detail in [33; 4]. Our approach gives a geometric meaning of z� as it shows
that z�D JT , where T is the open Hopf link bottom tangle depicted in Figure 14, with
the closed component colored by V� . Let us summarize some more or less well-known
properties of z� ; see [4; 11; 33].

Proposition 8.19 Suppose �, �0 2XC .

(a) For every x 2 MUq ,

(193) trV�
q .x/D hz�;xi:

(b) One has

(194) �.z�/D
X
�2X

dim.V�/Œ��K�2� D

P
w2W sgn.w/K�2w.�C�/P
w2W sgn.w/K�2w.�/

:

(c) If L is the Hopf link (see Figure 14) then

(195) JL.V�;V�0/D hz�; z�0i D trV�
q .z�0/;

(d) One has z� 2 MU
ev
q , and if � 2 Y then z� 2U ev

q .
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Proof (a) Recall that the quantum Killing form is the dual to c D
P

c1˝ c2 , and
x D

P
hc2;xic1 . We have

hz�;xi D
DX

trV�
q .c1/c2;x

E
D

X
trV�

q .c1/hc2;xi D
X

trV�
q .hc2;xic1/D trV�

q .x/:

(b) In [30, Chapter 6], it is proved that if � 2XC\
1
2
Y , then

(196) �.z�/D
X
�2X

dim..V�/Œ��/K�2�;

where dim..V�/Œ��/ is the rank of the weight-� submodule. Actually, the simple proof
in [30, Chapter 6] works for all � 2XC . The second equality of (194) is the famous
Weyl character formula; see eg [29].

(c) Let T be the open Hopf link bottom tangle depicted in Figure 14, with the closed
component colored by V� . Then JT D z� . We have

JL.V�;V�0/D trV�0
q .JT /D hz�0 ;JT i D hz�0 ; z�i D hz�; z�0i:

(d) Joseph and Letzter [32, Section 6.10] (see [4, Proposition 5] for another proof)
showed that z� 2 MUq FK�2� . Since K�2� 2

MU ev
q , we have z� 2 MUq F

MU ev
q �

MU ev
q , by

Lemma 3.6. If � 2 Y , then K�2� 2U ev
q , hence z� 2U ev

q again by Lemma 3.6.

Note that the right-hand side of (194) makes sense, and is in .U 0
q /

W , for any � 2X

not necessarily in XC\
1
2
Y . For any � 2X , define z� 2 Z. MUq/ by

z� D �
�1

� X
�2X

dim.V�/Œ��K�2�

�
:

If �C � and �0C � are in the same W–orbit then, by (194), z� D z�0 . On the other
hand, if �C � is fixed by a nontrivial element of the Weyl group, then z� D 0.

When � is in the root lattice Y , the right-hand side of (194) is in AŒK˙2
˛1
; : : : ;K˙2

˛l
�W .

Actually, the theory of invariant polynomials says that the right-hand side of (194),
with � 2 Y , gives all AŒK˙2

˛1
; : : : ;K˙2

˛l
�W ; see eg [56, Section 2.3]. Hence, we have

the following statement:

Proposition 8.20 The Harish-Chandra homomorphism is an isomorphism of the
A–span of fz˛ j ˛ 2 Y g onto AŒK˙2

˛1
; : : : ;K˙2

˛l
�W .
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8N Center of V ev
Z

Lemma 8.21 Suppose ˇ 2 Y . Then zˇ 2 V ev
Z .

Proof By Proposition 5.15, V ev
Z is the A–dual of MU ev

Z with respect to the quantum
Killing form, ie

V ev
Z D fx 2U ev

q j hx;yi 2A for all y 2 MU ev
Z g:

Since zˇ 2 U ev
q by Proposition 8.19, it is sufficient to show that hzˇ;yi 2 A for

any y 2 MU ev
Z .

We can assume that ˇ is a dominant weight, ˇ 2XC\Y . By Proposition 8.19,

hzˇ;yi D trVˇ
q .y/ 2A;

where the inclusion follows from Lemma 8.14. This shows zˇ 2 V ev
Z .

Proposition 8.22 (a) One has Z.V ev
Z /D Z.Uev/DA-span.fz˛ j ˛ 2 Y g/.

(b) The Harish-Chandra homomorphism maps Z.V ev
Z / isomorphically onto .V ev;0

Z /W,
ie

(197) �.Z.V ev
Z //D .V

ev;0
Z /W DAŒK˙2

˛1
; : : : ;K˙2

˛l
�W:

Proof (a) Let us prove the inclusions

(198) Z.V ev
Z /� Z.Uev/�A-span.fz˛ j ˛ 2 Y g/� Z.V ev

Z /;

which imply that all the terms are the same and prove part (a).

The first inclusion is obvious, since V ev
Z � Uev , while the third is Lemma 8.21.

Because Uev;0DAŒK˙2
˛1
; : : : ;K˙2

˛l
�, one has �.Z.Uev//�AŒK˙2

˛1
; : : : ;K˙2

˛l
�W. Hence,

by Proposition 8.20 we have Z.Uev/ � A-span.fz˛ j ˛ 2 Y g/, which is the second
inclusion in (198). This proves (a).

(b) This follows from (a) and Proposition 8.20.

Proposition 8.23 The Harish-Chandra map � is an isomorphism between Z.Vh/

and .V 0
h
/W .

Proof Since �.Z.Vh//� .V
0

h
/W , it remains to show .V 0

h
/W � �.Z.Vh//. By (189),

.V 0
h /

W
DCŒze1; : : : ; zel �ŒŒh��:

By (186) and (197),

zei 2 .V
ev;0

Z /W D �.Z.V ev
Z //� �.Z.Vh//:

Hence, .V 0
h
/W � �.Z.Vh//. This completes the proof of the proposition.
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8O Center of Xh

Proposition 8.24 The Harish-Chandra map � is an isomorphism between Z.Xh/

and .X0
h
/W .

Proof By definition, �.Z.Xh//� .X
0
h
/W. We need to show ��1..X0

h
/W/� Z.Xh/.

Because ��1..X0
h
/W/ consists of central elements, one needs only to show that

��1..X0
h
/W/�Xh . We will use the stability principle of dilatation triples.

From (187), (188), and (189), the triple .U 0
h
/W , .X0

h
/W , .V 0

h
/W forms a topological

dilatation triple (see Section 4C).

The triple Uh;Xh;Vh also forms a topological dilatation triple (see Section 4D).
Since ��1..U 0

h
/W/ � Uh and ��1..V 0

h
/W/ � Vh by Proposition 8.23, one also has

��1..X0
h
/W/�Xh , by the stability principle (Proposition 4.6).

8P Quantum Killing form and Harish-Chandra homomorphism

Since �.x/ and �.y/ determine x and y for central x;y 2UZ , one should be able to
calculate hx;yi in terms of �.x/ and �.y/.

Let D be the denominator of the right-hand side of (194), ie

D WD
X
w2W

sgn.w/K�w.2�/:

By the Weyl denominator formula,

(199) D D
Y
˛2ˆC

.K�1
˛ �K˛/DK2�

Y
˛2ˆC

.K�2
˛ � 1/ 2K2�V

ev
Z :

Let us define
d WD hK�2�;Di D

Y
˛2ˆC

.v�1
˛ � v˛/:

From the formula for the quantum dimension (174), we have

(200) d dimq.V�/D hK�2��2�;Di:

Here is a formula expressing hx;yi in terms of �.x/; �.y/:

Proposition 8.25 Suppose x 2 Z.Xh/, and y D z� , � 2 Y . Then

(201) jWjdhx;yi D hD�.x/;D�.y/i
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Proof As x is central, it acts on V� by c.�;x/ id, where c.�;x/ 2CŒŒh��. Recall that
1� is the highest-weight vector of V� . We have K˛ � 1� D v

.˛;�/1� D hK˛;K�2�i1� .
Hence, for every z 2U 0

h
,

(202) z � 1� D hx;K�2�i1�:

Since the highest-weight vector 1� is killed by all E˛ , ˛ 2…, we have

x � 1� D p0.x/ � 1� D sh� �.x/ � 1� D hsh� �.x/;K�2�i1� by (202).

Thus, c.�;x/D hsh� �.x/;K�2�i. Further, by (191),

c.�;x/D hsh� �.x/;K�2�i D
˝
hK�2�; �.x/i�.x/;K�2�

˛
D hK�2�; �.x/ih�.x/;K�2�i

D hK�2�; �.x/ihK�2�; �.x/i D hK�2��2�; �.x/i

D

�
K�2��2�;

D�.x/

D

�
D
hK�2��2�;D�.x/i

hK�2��2�;Di
D
hK�2��2�;D�.x/i

d dimq.V�/

D
1

d dimq.V�/

�
1

jWj

X
w2W

sgn.w/K�2w.�C�/;D�.x/

�
D

1

jWjd dimq.V�/
hD�.z�/;D�.x/i:

Here the last equality on line four follows from (200) and the equality on the line five
follows from the fact that D�.x/ is W–skew-invariant and the quantum Killing form
is W–invariant on X0

h
.

Using (193) and the fact that x D c.�;x/ id on V� ,

hx; z�i D trV�
q .x/D c.�;x/ dimq.V�/D

1

jWjd
hD�.z�/;D�.x/i;

where for the last equality we used the value of c.�;x/ calculated above.

Remark 8.26 It is not difficult to show that Proposition 8.25 holds for every y2Z.Xh/.

8Q Center of zK
0

1

Recall that zK01 is the set of all elements of the form

x D
X

xk ; xk 2 Fk.K01/:

One might expect that every central element of zK01 has the same form with xk central.
We don’t know if this is true. We have here a weaker statement, which is enough for

Geometry & Topology, Volume 20 (2016)



2814 Kazuo Habiro and Thang T Q Lê

our purpose. In our presentation, xk is central, but might not be in Fk.K01/. However,
xk still has enough integrality.

Lemma 8.27 Suppose x 2 Z.zK01/. There are central elements xk 2 Z.Xh/ such that

(a) jWjx D
P1

kD0.qI q/kxk ,

(b) .qI q/kxk 2 Z.V
ev

Z ˝A B/ for every k � 0,

(c) T˙.xk/ 2 .1=d/CŒv
˙1� for every k � 0, and

(d) zT˙.xk/ 2 .1=d/CŒv
˙1� for every k � 0.

Proof (a) Recall that Fk.K01/ D ..qI q/k.X
ev
Z / \ .U

ev//˝A B . Hence, x has a
presentation

(203) x D

1X
kD0

.qI q/kx0k ;

where x0
k
2X ev

Z ˝A B and .qI q/kx0
k
2 Uev˝A B .

Let yk D
P
w2Ww.�.x0

k
//, which is W–invariant. Then yk 2 .X

0
h
/W. By Proposition

8.24, xk WD �
�1.yk/ is central and belongs to Z.Xh/.

Using the W–invariance of �.x/ and (203), and the W–invariance of �.x/,

jWj�.x/D
X
w2W

w.�.x//D

1X
kD0

.qI q/k
X
w2W

w.�.x0k//D

1X
kD0

.qI q/kyk :

Applying ��1 to the above, we get the form required in (a), jWjx D
P1

kD0.qI q/kxk .

(b) Since .qI q/kx0
k
2 Uev˝A B and Uev;0 D V

ev;0
Z , one has

.qI q/kyk D .qI q/k
X
w2W

w.�.x0k// 2 V
ev;0

Z ˝A B:

(c) Because V ev
Z � Uev , we have T˙.V ev

Z /� A, by Theorem 8.11(f). From (b), we
have

.qI q/kT˙.xk/ 2A˝A B D B;
or

(204) T˙.xk/ 2
1

.qI q/k
B:

A simple calculation shows that �.r/ D v.�;�/K2�r0 . Since X
ev;0
Z is an zA–Hopf

algebra (Lemma 5.25), we have

�.K2�X
ev;0
Z /�K2�X

ev;0
Z ˝K2�X

ev;0
Z :
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Unified quantum invariants for integral homology spheres 2815

Since D2K2�V
ev;0

Z , we have Dyk 2K2�X
ev;0
Z . Hence, �.Dyk/D

P
K2�y

0
k
˝K2�y

00
k

,
where y0

k
, y00

k
2X

ev;0
Z ˝AB . Since DK˙2� 2X

ev;0
Z , we have �.DK˙2�/D

P
a1˝a2

with a1 , a2 2X ev;0
Z . Using (201), we have

dT˙.xk/D dhr˙1;xki D hD�.r
˙1/;D�.xk/i

D v.�;�/hDK˙2�r
˙1
0 ;Dyki

D v.�;�/
X
hDK˙2�;K2�y

0
kihr

˙1
0 ;K2�y

00
ki by (95)

D v.�;�/
X
ha1;K˙2�iha2;y

0
kihr

˙1
0 ;K2�y

00
ki again by (95):

The first two factors ha1;K˙2�i and ha2;y
0
k
i are in zB by Lemma 5.25, where

zB D zA˝A B . The third factor hr˙1
0
;K2�y

00
k
i is in v.�;�/ zB by Lemma 5.29. Hence

dT˙.xk/ 2 v
2.�;�/ zB D zB . Together with (204),

d T˙.xk/ 2C.v/\ zB D B:

(d) By definition, �˙ D
P

c˙
�

V� , where the sum is finite and c˙
�
2C . We have

d zT˙.xk/D
X

c˙� d trV�
q .xk/:

Hence, to show that dzT˙.xk/ 2 B , it is enough to show that d trV�.xk/ 2 B for any
� 2XC . Using (193) and (201), we have

jWjd trV�
q .xk/D jWjdhz�;xki D hD�.z�/;D�.xk/i

D

� X
w2W

sgn.w/K�2w.�C�/;Dyk

�
by (194)

D

X
w2W

sgn.w/hK�2w.�C�/;Dyki

D

X
w2W

sgn.w/hK�2w.�C�/;DihK�2w.�C�/;yki:

The second factor hK�2w.�C�/;yki is in zB by Lemma 5.25. As for the first factor, for
any � 2X ,

hK2�;Di D

�
K2�;

Y
˛2ˆC

.K˛ �K�1
˛ /

�
D

Y
˛2ˆC

.hK2�;K˛i � hK2�;K�˛i/D
Y
˛2ˆC

.v�.�;˛/� v.�;˛// 2CŒv˙1�:

Hence, d trV�
q .xk/ 2 zB .
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sliding

Figure 15: Links L1 (left) and L2 , which is obtained from L1 by sliding.
Here "D�1

On the other hand, since .qI q/xk 2 V ev
Z ˝A B , we have hz�; .qI q/xki 2 B . Hence,

d trV�
q .xk/ 2 zB\C.v/DCŒv˙1�:

This completes the proof of the lemma.

8R Comparing T and zT

Proposition 8.28 Suppose � is a strong Kirby color at level � , x 2 .zK0m/inv , and
"j D˙1 for j D 1; : : : ;m. Then� mO

jD1

zT"j

�
.x/D.�/

� mO
jD1

T"j

�
.x/:

Proof We proceed in three steps:

Step 1 (mD 1 and x 2 .V ev
Z
˝AB/invDZ.V ev

Z
˝AB/) By Proposition 8.22, x is a

B–linear combination of z� , �2 Y . We can assume that xD z� for some �2XC\Y .

Let L1 be the disjoint union of U�" and U" , where the first is colored by V� and the
second by �. Sliding the first component over the second, from L1 we get a link L2 ,
which is the Hopf link where the first component has framing 0 and the second has
framing "; see Figure 15. From the strong handle slide invariance (178) we get

(205) JL1
.V�; �/D.�/ JL2

.V�; �/:

Let us rewrite the left-hand side of (205):

JL1
.V�;�/DJU�".V�/JU".�/D trV�

q .r"/JU".�/Dhz�; r
"
iJU".�/DT".z�/JU".�/:

Geometry & Topology, Volume 20 (2016)



Unified quantum invariants for integral homology spheres 2817

Let L0 be the Hopf link with 0 framing on both components. Then the right-hand side
of (205) is

JL2
.V�; �/D JU".�/JL0

.V�; �"/ by (180)

D.�/ JU".�/ tr�"q .z�/ by (195)

D JU".�/
zT".z�/:

Comparing the left-hand side and the right-hand side of (205) we get T".z�/D.�/ zT".z�/.

Step 2 (m D 1 and x is an arbitrary element of . zK
0

1/
inv D Z. zK

0

1/) Let x DP1
kD0.qI q/kxk be the presentation of x described in Lemma 8.27. Since xk 2Z.Xh/

and all T˙ and zT˙ are continuous in the h–adic topology of Xh ,

T˙.x/D
1X

kD0

.qI q/kT˙.xk/; zT˙.x/D
1X

kD0

.qI q/k zT˙.xk/:

Both right-hand sides are in .1=d/bCŒv� because T˙.xk/, zT˙.xk/ 2 .1=d/CŒv
˙1� by

Lemma 8.27. Since .qI q/k D.�/ 0 if k � r and d 6D.�/ 0, we have

T˙.x/D.�/
r�1X
kD0

.qI q/kT˙.xk/D.�/ T˙
� r�1X

kD0

.qI q/kxk

�
;

zT˙.x/D.�/
r�1X
kD0

.qI q/k zT˙.xk/D.�/ zT˙
� r�1X

kD0

.qI q/kxk

�
:

By Lemma 8.27(b), the elements in the big parentheses are in Z.V ev
Z ˝A B/. Hence,

by the result of Step 1, we have T˙.x/D.�/ zT˙.x/.

Step 3 (general case) Define ak (for k D 0; 1; : : : ;m) and bk (for k D 1; : : : ;m)
as follows:

ak D

� kO
jD1

zT"j ˝
mO

jDkC1

T"j

�
.x/; bk D

� k�1O
jD1

zT"j˝ id˝
mO

jDkC1

T"j

�
.x/:

Then

(206) ak�1 D T"k
.bk/ and ak D

zT"k
.bk/:

By Proposition 8.15, bk 2 .zK
0

1/
inv . By Step 2,

zT"k
.bk/D.�/ T"k

.bk/:

Using (206), the above identity becomes ak�1 D.�/ ak : Since this holds true for
k D 1; 2; : : : ;m, we have a0 D.�/ am , which is the statement of the proposition.
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8S Proof of Proposition 8.10

By Theorem 7.3, if T is an algebraically split m–component bottom tangle, then
JT 2 zKm.U/� zK

0

m . Hence Proposition 8.10 follows from Proposition 8.28. This also
completes the proof of Theorems 8.8 and 8.1.

8T Proof of Theorem 1.1

The existence of the invariant JM D J
g
M
2 bZŒq� is established by Theorem 7.3.

Theorem 8.8 shows that ev�.J
g
M
/ D �

g
M
.�/. The uniqueness of JM follows from

noting

(i) every element of bZŒq� is determined by its values at infinitely many roots of 1
of prime power orders (see Section 1B), and

(ii) Z 0
Pg contains infinitely many such roots of unity (by Proposition 8.4).

This completes the proof of Theorem 1.1.

8U The case � D 1, proof of Proposition 1.6

Let � be the trivial Uh –module CŒŒh��. By Proposition 8.6, � is a strong Kirby color,
and �M .�/D 1. By Theorem 8.8, we have ev1.JM /D 1. This completes the proof
of Proposition 1.6.

Proposition 1.6 can also be proved using the theory of finite-type invariants of integral
homology 3–spheres as follows. Note that ev1.JM / is the constant coefficient of the
Taylor expansion of JM at q D 1, which is a finite-type invariant of order 0 (see [43],
for example). Hence, ev1.JM / is constant on the set of integral homology 3–spheres.
For M D S3, we have ev1.JM /D 1. Hence, ev1.JM /D 1 for any integral homology
3–sphere M .

Appendix A: Another proof of Proposition 4.1

In the main text we take Proposition 4.1 from work of Drinfel’d [17] and Gavarini [18].
Here we give an independent proof.

Each of U�0
h
WD .U 0

h
U�

h
/^ and U�0

h
WD .U 0

h
UC

h
/^ , where . � /^ denotes the h–adic

completion, is a Hopf subalgebra of Uh , and R 2U�0
h
y̋ U�0

h
. Let AL �U�0

h
and

AR � U�0
h

be the left image (see Section 2D) and right image of R 2 U�0
h
y̋ U�0

h
,

Geometry & Topology, Volume 20 (2016)



Unified quantum invariants for integral homology spheres 2819

respectively. Here the right image is the obvious counterpart of the left image and can
be formally defined so that AR is the left image of �21.R/, where

�21W U
�0
h
y̋ U�0

h
!U�0

h
y̋ U�0

h

is the isomorphism given by �21.x˝y/D y˝x .

Explicitly, AL and AR are defined as follows: For nD .n1;n2/ 2Nt �Nl let

R0.n/D F .n1/H n2 ; R00.n/DE.n1/ MH n2 :

Then fR0.n/ j n 2NtClg is a topological basis of U�0
h

and fR00.n/ j n 2NtClg is a
topological basis of U�0

h
. From (70), there are units f .n/ in CŒŒh�� such that

RD
X

n2NtCl

f .n/hknkR0.n/˝R00.n/:

Then AL and AR are the topological closures (in Uh ) of the CŒŒh��–span of

(207) fhknkR0.n/ j n 2NtCl
g and fhknkR00.n/ j n 2NtCl

g;

respectively.

For CŒŒh��–submodules H1 , H2 �Uh , let H1˝H2 , called the closed tensor product,
be the topological closure of H1˝H2 in the h–adic topology of Uh y̋ Uh .

Proposition A.1 For each of ADAL , AR , one has

�.A˝A/�A; �.A/�A˝A; S.A/�A:

This means, each of AL and AR is a Hopf algebra in the category where the completed
tensor product is replaced by the closed tensor product.

Remark A.2 When the ground ring is a field, the fact that both AL and AR are Hopf
subalgebras is proved in [69]. Here we modify the proof in [69] for the case when the
ground ring is CŒŒh��.

Proof We prove the proposition for ADAL since the case ADAR is quite analogous.

Let zR0.n/ D f .n/hknkR0.n/. Then R D
P

n
zR0.n/˝R00.n/. Using the defining

relation .�˝ id/.R/DR13R23 , we have

(208)
X

n

�.zR0.n//˝R00.n/D
X
k;m

zR0.m/˝ zR0.k/˝R00.m/R00.k/:
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Since fR00.n/g is a topological basis of U�0
h

, there are structure constants f n
m;k
2CŒŒh��

such that
R00.m/R00.k/D

X
n

f n
m;kR

00.n/;

and the right-hand side converges. Using the above in (208), we have

�.zR0.n//D
X
m;k

f n
m;k
zR0.m/˝ zR0.k/;

with the right-hand side convergent in the h–adic topology of Uh y̋ Uh . This proves
�.AL/�AL˝AL . Actually, we just proved that the coproduct in AL is dual to the
product in U�0

h
.

Similarly, using .id˝�/.R/DR13R12 , one can easily prove that the product in AL

is dual to the coproduct in U�0
h

, ie

zR0.m/zR0.k/D
X

n

f m;k
n
zR0.n/; where �.R00.n//D

X
m;k

f m;k
n R00.m/˝R00.k/:

This proves that �.AL˝AL/�AL .

Next we consider the antipode. We have .S y̋ id/.R/D .id y̋ S�1/.R/DR�1 . Let
A0

L
be the left image of R�1 .

Since S�1 is a CŒŒh��–module automorphism of U�0
h

, the identity .id y̋S�1/.R/DR�1

shows that A0
L
DAL .

Identity .S y̋ id/.R/DR�1 shows that A0
L
D S.AL/. Thus, we have AL D S.AL/.

Proposition 4.1 follows immediately from:

Proposition A.3 (a) One has ARAL D ALAR . It follows that ALAR is a Hopf
algebra with closed tensor products.

(b) One has ARAL D Vh .

Proof (a) We use the following identities in a ribbon Hopf algebra: for every y 2Uh

one has

R.y˝ 1/D
X
.y/

.y.2/˝y.1//R.1˝S.y.3///;(209)

.y˝ 1/RD
X
.y/

.1˝S.y.1///R.y.2/˝y.3//;(210)
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R.1˝y/D
X
.y/

.y.3/˝y.2//R.S�1.y.1/˝ 1//;(211)

.1˝y/RD
X
.y/

.S�1.y.1/˝ 1//R.y.1/˝y.2//;(212)

which are [69, (6)–(9)]. Suppose x 2AL and y 2AR . We will show that xy 2ARAL .
This will imply that ALAR �ARAL . We only need the fact that AR is a coalgebra
in the closed category: �.AR/�AR˝AR �U�0

h
y̋ U�0

h
.

Since x 2AL , we have a presentation

x D
X

n2NtCl

xn zR0.n/; xn 2CŒŒh�� for all n 2NtCl :

Let pW U�0
h
!CŒŒh�� be the unique CŒŒh��–module homomorphism with p.R00.n//Dxn .

Then x D
P

n
zR0.n/p.R00.n//. Hence,

xy D
X

n

zR0.n/yp.R00.n//D
X

n

y.2/ zR0.n/p.y.1/R00.n/S.y.3/// 2ARAL:

Similarly, one can prove ARAL �ALAR , and conclude that ALAR DARAL .

(b) The two sets fhknkH n j n 2Nlg and fhknk MH n j n 2Nlg span the same CŒŒh��–
subspace of U 0

h
. Using spanning sets (207), we see that ALAR is the topological

closure of the CŒŒh��–span of

fhkn1kCkn2kCkn3kF .n1/H n2E.n3/ j n1;n3 2Nt; n2 2Nl
g:

Comparing this set with the formal basis (81) of Vh , one can easily show that Vh D

ALAR .

Appendix B: Integral duality

B.1 Decomposition of U
ev;0
Z

Recall that

U ev;0
q DC.v/ŒK˙2

˛ ; ˛ 2…�; V
ev;0

Z DAŒK˙2
˛ ; ˛ 2…�:

For a simple root ˛2…, the even ˛–part of U 0
Z is defined to be I˛ WDC.v/ŒK˙2

˛ �\U 0
Z .

Note that I˛ is an A–Hopf subalgebra of Q.v/ŒK˙2
˛ �. From Proposition 5.2, I˛ is

A–spanned by

(213)
�

K2m
˛ .qn

˛K2
˛I q˛/k

.q˛I q˛/k

ˇ̌̌
m; n 2 Z; k 2N

�
;
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and there is an isomorphism

(214)
O
˛2…

I˛ Š�!U
ev;0
Z ;

O
˛2…

a˛ 7!
Y
˛

a˛:

Hence, if one can find A–bases for I˛ , then one can combine them using (214) to get
an A–basis for U

ev;0
Z .

Similarly, let V
ev;0

Z \C.v/ŒK˙2
˛ �DAŒK˙2

˛ � be the even ˛–part of

V
ev;0

Z DAŒK˙2
˛ ; ˛ 2…�:

The analog of (214) is much easier for V
ev;0

Z , since in this case it is

(215)
O
˛2…

AŒK˙2
˛ � Š�!V

ev;0
Z DAŒK˙2

˛ ; ˛ 2…�;
O
˛2…

a˛ 7!
Y
˛

a˛:

B.2 Bases for I˛ and AŒx˙1�

Fix ˛ 2…, and let xDK2
˛ and yD MK2

˛ . The even ˛–part of V
ev;0

Z is AŒx˙1�, and I˛ ,
the even ˛–part of U

ev;0
Z , is now an A–submodule of Q.v/Œx˙1�. The quantum Killing

form restricts to the Q.v/–bilinear form

(216) h � ; � iW Q.v/Œx˙1�˝Q.v/Œy˙1�!Q.v/; hxm;yn
i D q�mn

˛ :

Let M�W Q.v/Œx˙1� ! Q.v/Œy˙1� be the Q.v/–algebra map defined by M�.x/ D y .
For n 2N , let

(217)
Q0.˛I n/ WD x�bn=2c.q�b.n�1/=2c

˛ xI q˛/n; MQ0.˛; n/ WD M�.Q0.˛I n//;

Q.˛I n/ WD
Q0.˛I n/

.q˛I q˛/n
; MQ.˛; n/ WD M�.Q.˛I n//:

We will consider AŒx˙1��CŒH˛ �ŒŒh�� by setting x D exp.hH˛/.

Proposition B.1 (a) The A–module I˛ is the A–dual of AŒy˙1� with respect to
the form (216) in the sense that

I˛ D
˚
f .x/ 2Q.v/Œx˙1� j hf .x/;g.y/i 2A for all g.y/ 2Q.v/Œy˙1�

	
:

(b) The set fQ0.˛I n/ j n 2Ng is an A–basis of AŒx˙1�.

(c) One has the orthogonality

(218) hQ.˛I n/;Q0.˛Im/i D ım;nq�b.nC1/=2c2

˛ :

(d) The set fQ.˛I n/ j n 2Ng is an A–basis of I˛ .
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Proof (a) In Section B.1, I˛ is the A–submodule of Q.v/Œx˙1� spanned by the
set (213) with K2

˛ replaced by x . This set spans the module of polynomial with q–
integral values: By [7, Proposition 2.6], I˛ is exactly the set of all Laurent polynomials
f .x/ 2Q.v/Œx˙1� such that f .qk

˛ / 2AD ZŒv˙1� for every k 2 Z.

For f .x/ 2Q.v/Œx˙1�, g.y/ 2Q.v/Œy˙1� and k 2 Z, from (216),

(219) hf .x/;yk
i D f .q�k

˛ /; hxk ;g.y/i D g.q�k
˛ /:

Suppose now f .x/ 2Q.v/Œx˙1�. Since fyk j k 2 Zg is an A–basis of AŒy˙1�,

f .x/ is in the A–dual of AŒy˙1� ” hf .x/;yk
i 2A for all k 2 Z

” f .q�k
˛ / 2A for all k 2 Z

” f .x/ 2 I˛:
This proves part (a).

(b) The bijective map j W N ! Z given by j .n/ D .�1/nC1
�

1
2
.nC 1/

˘
defines an

order on Z, by j .0/� j .1/� j .2/� � � � . This order looks as follows:

0� 1� �1� 2� �2� 3� �3� � � �

We define an order on the set of monomials fxn j n 2 Zg by xn � xm if n � m.
Using this order, one can define the leading term of a nonzero Laurent polynomial
f .x/ 2Q.v/Œx˙1�. One can easily calculate the leading term of Q0.˛I n/,

(220) Q0.˛I n/D .�1/nxj.n/
C lower order terms:

It follows that fQ0.˛I n/ j n 2Ng is an A–basis of AŒx˙1�.

(c) Suppose m< n. By (219),

hQ0.˛I n/;yj.m/
i DQ0.˛I n/

ˇ̌
xDq

�j.m/
˛

D 0;

since xDq
�j.m/
˛ annihilates one of the factors of Q0.˛I n/ when m<n. By expanding

MQ0.˛Im/ using (220), we have

hQ0.˛I n/; MQ0.˛Im/i D 0 if m< n:

Similarly, one also has hQ0.˛I n/; MQ0.˛Im/i D 0 if m> n. It remains to consider the
case mD n. Using (220), we have

hQ0.˛I n/; MQ0.˛I n/i D hQ0.˛I n/; .�1/nyj.n/
i

D .�1/nQ0.˛I n/
ˇ̌
xDq

�j.n/
˛

D q�b.nC1/=2c2

˛ .q˛I q˛/n;

where the last identity follows from an easy calculation. This proves part (c).
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(d) By part (b), f MQ0.˛I n/ j n 2 Ng is an A–basis of AŒy˙1�. Because I˛ is the
A–dual of AŒy˙1� with respect to the form (216), the orthogonality (218) shows that
fQ.˛I n/ j n 2Ng is an A–basis of I˛ . This proves part (d).

B.3 Proof of Proposition 5.7

Proof (a) The definition (107) means that, for nD .n1; : : : ; nl/ 2Nt ,

(221) Qev.n/ WD

lY
jD1

Q. j̨ I nj /jxDK 2
j
; .qI q/nQev.n/D

lY
jD1

Q0. j̨ I nj /jxDK 2
j
:

By Proposition B.1(d),
fQ. j̨ I n/jxDK 2

j
j n 2Ng

is an A–basis of I
j̨

. Hence the isomorphism (214) shows that fQev.n/ j n 2Nlg is
an A–basis of U ev;0

Z .

Similarly, Proposition B.1(b) and (215) show that f.qI q/nQev.n/ j n 2 Nlg is an
A–basis of V

ev;0
Z .

(b) Let Kı D
Q

j K
ıj
j̨

for ı D .ı1; : : : ; ıl/. We have

V 0
Z D

M
ı2f0;1gl

KıV
ev;0

Z ; U 0
Z D

M
ı2f0;1gl

KıU
ev;0
Z ;

where the first identity is obvious and the second follows from Proposition 5.2. Hence,
(b) follows from (a). This completes the proof of Proposition 5.7.

B.4 Proof of Lemma 5.16

Proof For ˛ , ˇ 2…, we have hK2
˛;
MK2
ˇ
i D ı˛;ˇq˛ . Hence, with Qev.n/; MQev.m/ as

in (221),

hQev.n/; MQev.m/i D

lY
jD1

hQ. j̨ I nj /; MQ. j̨ Imj /i D ın;m

lY
jD1

q
�b.njC1/=2c2

j ;

where the last identity follows from Proposition B.1(c). This proves Lemma 5.16.

Appendix C: On the existence of the WRT invariant

Here we prove Proposition 8.4 on the existence of strong Kirby colors at every level �
such that ord.�2D/ > d.h_� 1/. We also determine when � 2 Z 0g and when � 2 Z 0

Pg ,
if ord.�2D/ > d.h_� 1/.
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C.1 Criterion for nonvanishing of Gauss sums

Suppose A is a free abelian group of rank l and �W A�A!Z is a symmetric Z–bilinear
form. Assume further � is even, in the sense that �.x;x/ 2 2Z for every x 2 A.

The quadratic Gauss sum associated to � at level m 2N is defined by

G�.m/ WD
X

x2A=mA

exp
�
� i
�.x;x/

m

�
:

Let A�
�

be the Z–dual of A with respect to � and

ker�.m/ WD fx 2 A j �.x;y/ 2mZ for all y 2 Ag DmA�� \A:

We have the following well-known criterion for the vanishing of G�.m/; see [16,
Lemma 1].

Lemma C.1 (a) If m is odd, then G�.m/¤ 0.

(b) G�.m/¤ 0 if and only if, for every x 2 ker�.m/, one has 1
2m
�.x;x/ 2 Z.

Lemma C.2 For every x 2 ker�.m/, we have 1
2m
�.x;x/ 2 1

2
Z.

Proof Because x 2mA�
�

, one has �.x;x/ 2mZ. Hence, 1
2m
�.x;x/ 2 1

2
Z.

C.2 Gauss sums on weight lattice

Recall that X and Y are the weight lattice and the root lattice, respectively, in h�R ,
which is equipped with the invariant inner product. The Z–dual X � of X is Z–spanned
by ˛=d˛ , ˛ 2….

Lemma C.3 For y 2X � , we have .y;y/ 2 Z.2/ WD fa=b j a; b 2 Z; b oddg.

Proof Suppose y D
P

ki˛i=di . Then

.y;y/D
X

i

k2
i

.˛i ; ˛i/

d2
i

C 2
X
i<j

.˛i ; j̨ /

didj
D

X
i

k2
i

2

di
C

X
i<j

2.˛i ; j̨ /=dj

di
2

2

d
Z:

Since d is one of 1, 2 or 3, we see that .y;y/ 2 Z.2/ .

Lemma C.4 Suppose � is a root of 1 of order s . Let r D s=gcd.s; 2D/ be the order
of � D �2D.

Geometry & Topology, Volume 20 (2016)



2826 Kazuo Habiro and Thang T Q Lê

(a) Suppose r is odd. Then GPg.�/¤ 0, where

GPg.�/ WD
X

�2P�\Y

�D.�;�C2�/
D

X
�2P�\Y

�.�;�C2�/=2:

(b) Suppose r is even. Then Gg.�/¤ 0, where

Gg.�/ WD
X
�2P�

�D.�;�C2�/:

Proof After a Galois transformation of the form �! �k with gcd.k; s/D 1 we can
assume that � D exp.2� i=s/.

(a) The following is the well-known completing the square trick:

GPg.�/D
X

�2P�\Y

�.�;�C2�.rC1//=2 since ord.�/D r

D ��.rC1/2.�;�/=2
X

�2P�\Y

�.�C.rC1/�;�C.rC1/�/=2

D ��.rC1/2.�;�/=2
X

�2P�\Y

�.�;�/=2:

Here the last identity follows because 2� 2 Y and hence .r C 1/� 2 Y , since r C 1 is
even and because the shift �! �Cˇ does not change the Gauss sum for any ˇ 2 Y .

The expression �.�;�/=2 , � 2 Y , is invariant under the translations by vectors in both
rY and 2rX . Hence,

GPg.�/D��.rC1/2.�;�/=2
X

�2P�\Y

�.�;�/=2D��.rC1/2.�;�/=2 vol.2rX /

vol.rY /

X
�2Y=rY

�.�;�/=2:

By Lemma C.1(a) with AD Y , �.x;y/D .x;y/ and mD r , the right-hand side is
nonzero.

(b) Again using the completing the square trick, we get

(222) Gg.�/D ��D.�;�/
X
�2P�

�D.�;�/

D ��D.�;�/
X

�2X=2rDX

exp
�
� i

s
2D.�; �/

�
D ��D.�;�/

�
2Dr

s

�l X
�2X=sX

exp
�
� i

s
2D.�; �/

�
:
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Note that s=gcd.s; 2D/ is even if and only if

(223) s

4D
2 Z.2/:

Apply Lemma C.1(b) with A D X , �.x;y/ D 2D.x;y/ and m D s . Then sA�
�
D

.s=2D/X �. Suppose x 2 ker�.s/D sA�
b
\A� sA�

b
. Then xD .s=2D/y with y 2X �.

We have
1

2s
�.x;x/D

s

4D
.y;y/ 2 Z.2/;

where the last inclusion follows from (223) and Lemma C.3. From Lemma C.2 we
have

1

2s
�.x;x/ 2

1

2
Z\Z.2/ D Z:

By Lemma C.1(b), the right-hand side of (222) is nonzero.

C.3 Proof of Proposition 8.4

Proof of Proposition 8.4 By [49, Proposition 2.3 and Theorem 3.3], �g.�/ and
�Pg.�/ are strong handle-slide colors. Although the formulation in [49] only says that
�g.�/ and �Pg.�/ are handle-slide colors, the proofs there actually show that �g.�/

and �Pg.�/ are strong handle-slide colors.

It remains to show that JU˙
.�g.�//¤ 0 if r is even, and JU˙

.�Pg.�//¤ 0 if r is
odd.

From [49, Section 2.3], with the assumption ord.�2D/ > d.h_� 1/, we have

(224)

JUC.�
g.�//D.�/

Gg.�/Q
˛2ˆC

.1� �.˛;�//
;

JUC.�
Pg.�//D.�/

GPg.�/Q
˛2ˆC

.1� �.˛;�//
:

Further, JU�.�
g.�// and JU�.�

Pg.�// are the complex conjugates of JUC.�
g.�//

and JUC.�
Pg.�//, respectively.

By Lemma C.4, if ord.�2D/ is even then JUC.�
g.�// ¤ 0, and if ord.�2D/ is odd

then JUC.�
Pg.�//¤ 0. This completes the proof of Proposition 8.4.

C.4 The sets Z 0g and Z 0
Pg

for each simple Lie algebra
Proposition C.5 (a) One has Gg.�/D 0 in and only in the following cases:

� gDAl with l odd and ord.�/� 2 .mod 4/.
� gD Bl with l odd and ord.�/� 2 .mod 4/.
� gD Bl with l � 2 .mod 4/ and ord.�/� 4 .mod 8/.
� gD Cl and ord.�/� 4 .mod 8/.
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� gDDl with l odd and ord.�/� 2 .mod 4/.
� gDDl with l � 2 .mod 4/ and ord.�/� 4 .mod 8/.
� gDE7 and ord.�/� 2 .mod 4/.

(b) In particular, if ord.�/ is odd or ord.�/ is divisible by 2dD , then Gg.�/¤ 0.

The proof is a careful, tedious, but not difficult check of the vanishing of the Gaussian
sum using Lemma C.1 and the explicit description of the weight lattice for each simple
Lie algebra, and we drop the details.

Corollary C.6 Suppose � 2 Z with ord.�2D/ > d.h_� 1/. Then � 2 Z 0g if and only
if � satisfies the condition of Proposition C.5(a).

Similarly, using Lemma C.1, one can prove the following:

Proposition C.7 Let r D ord.�/D ord.�2D/.

(a) One has GPg.�/D 0 in and only in the following cases:
� gDAl and ord2.r/D ord2.l C 1/� 1.
� gD Bl and r � 2 .mod 4/.
� gD Cl , r even and r l � 4 .mod 8/.
� gDDl , r even and r l � 4 .mod 8/.
� gDE7 and r � 2 .mod 4/.

Here, ord2.n/ is the order of 2 in the prime decomposition of the integer n.

(b) In particular, if r is coprime with 2ord2.D/, then GPg.�/¤ 0.

Corollary C.8 Suppose ord.�2D/>d.h_�1/. Then � 2Z 0
Pg if and only if � satisfies

the condition of Proposition C.7(a).

List of symbols

Notation Defined in Remarks

bZŒq� , .xI q/n 1B
.CŒŒh��I /0 2A2
H ;�;�; �; �;S 2B Hopf algebra
R 2B, 3G2 R–matrix
r 2B, 3G2 ribbon element
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g 2B balanced element
ad.x˝y/;x Fy 2E adjoint action
trV

q 2E quantum trace
JT 2G universal invariant of bottom tangle
 , �;S 2I braiding, transmutation
c; c�;CC;C� 2J clasp, c D JCC

T˙ 2L, 4H full twist forms
JM 2M, 2O invariant of 3–manifold
‡ 2O2 braided commutator
b 2M universal invariant of Borromean tangle
L .x˝y/ , hx;yi 2N, 4F clasp form
g; l; h 3A1 Lie algebra, its rank, Cartan subalgebra
d; d˛; t; ht.
 / 3A1
X;Y 3A1 weight lattice, root lattice
…;ˆ;ˆC 3A1 simple roots, all roots, positive roots
�; ˛i ; M̨ i 3A1
h; v; q; v˛; q˛;A 3A2 q D v2 D exp.h/ , AD ZŒv˙1�

Œn�˛; fng˛; Œn�˛!; fng˛!;
h n

k

i
˛

3A2

Uh;F˛;E˛;H�;Fi ;Ei 3A3
K�; MK˛;Ki 3A3
Uq; MUq; MU

0
q 3A5

�bar; '; !; � 3B (anti) automorphisms of Uh

jxj 3C1 Y–grading
U ev

q , MU ev
q 3C2 even grading

U˙
h
;U 0

h
;U˙q ;U

0
q , U

ev;�
q ;U

ev;0
q 3D

W; s˛; si 3E Weyl group, reflection
T˛ 3E braid group action
E
 ;F
 ;E

.n/;F .n/;Kn 3F
‚;En;Fn;E

0
n;F

0
n 3G1

D; MH˛; r0 3G2
� 3I quasiclasp element
Up

h
4 Up

h
WDUh y̋CŒŒh�� CŒŒ

p
h ��

knk; eh.n/;Vh;V
x̋n

h
4A

Xh 4D core subalgebra of Up
h

zA 5A
UZ;U

˙
Z ;U

0
Z;U

ev
Z ;U

ev;�
Z ;U

ev;0
Z 5B

VZ;V
˙

Z ;V
0

Z ;V
ev

Z ;V
ev;�

Z ;V
ev;0

Z 5C
.qI q/n 5C, 5D, 5E
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Qev.n/;Q.n; ı/ 5D
eev.n/; e.n; ı/ 5E
MUZ; MU

0
Z;
MU ev

Z ;
MU

ev;0
Z 5H

Meev.n/; Me.n; ı/ 5H
XZ;X

ev
Z 5L integral core subalgebra

G;Gev; Pv; PK˛; Pe˛; Px; ŒUq �g 6A
ŒU˝n

q �g 6B2 G–gradings
Kn; zKn;Fk.Kn/ 7A
Kn.U/; zKn.U/;Fk.Kn.U// 7B
max.n/; o.n/ 7D
Z;Zg; h

_;D 8A
dimq.V /;U 8C
evv1=DD�.f /; f D.�/ g 8C
B;U˙; �M .�/ 8D2 B DCŒv˙1�

�g; �Pg;Z 0g;Z 0Pg 8D4
�˙ 8F twisted colors
U ;U ev 8G

K0m;Fk.K0m/; zK
0

m 8H
zT˙ 8J
Z.Uh/;Z.V /; �; sh� 8L
z� 8M
D;d 8P
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