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Automatic continuity for homeomorphism groups
and applications

KATHRYN MANN

APPENDIX BY FRÉDÉRIC LE ROUX AND KATHRYN MANN

Let M be a compact manifold, possibly with boundary. We show that the group of
homeomorphisms of M has the automatic continuity property: any homomorphism
from Homeo.M/ to any separable group is necessarily continuous. This answers a
question of C Rosendal. If N �M is a submanifold, the group of homeomorphisms
of M that preserve N also has this property.

Various applications of automatic continuity are discussed, including applications to
the topology and structure of groups of germs of homeomorphisms. In an appendix
with Frédéric Le Roux we also show, using related techniques, that the group of
germs at a point of homeomorphisms of Rn is strongly uniformly simple.

54H15, 57S05; 03E15

1 Introduction

Definition 1.1 A topological group G has the automatic continuity property if every
homomorphism from G to any separable group H is necessarily continuous.

One should think of automatic continuity as a very strong form of rigidity. Many
familiar topological groups fail to have the property, for example:

� Automorphisms of R as a vector space over Q (other than homotheties) are
discontinuous homomorphisms R!R.

� Applying a wild automorphism of C to all matrix entries gives a discontinuous
homomorphism GL.n;C/! GL.n;C/.

� More generally, for any field F of cardinality at most continuum, Kallman [10]
gives injective homomorphisms from GL.n; F / to S1 , the group of permuta-
tions of an infinite countable set. As S1 admits a separable, totally disconnected
topology, GL.n; F / fails to have automatic continuity as soon as F is not totally
disconnected.
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Remarkably, several “big” groups do have the automatic continuity property; a current
research program in descriptive set theory aims to show that automorphism groups of
certain structures have automatic continuity. Examples of such groups known to have
automatic continuity include the infinite-dimensional unitary group (Tsankov) [20],
the full groups of some ergodic equivalence relations (Kittrell and Tsankov) [13], the
isometries of the Urysohn space (Sabok) [19], the order-preserving automorphisms
of Q and homeomorphisms of 2N and of R (Rosendal and Solecki) [18], and the
homeomorphism groups of compact 2–dimensional manifolds (Rosendal) [17]. The
primary goal of this paper is to prove the following:

Theorem 1.2 Let M be a compact manifold, possibly with boundary. Denote by
Homeo0.M/ the identity component of the group of homeomorphisms of M (with the
standard C 0 topology). Then Homeo0.M/ has automatic continuity.

Of course, this immediately implies that Homeo.M/ has automatic continuity as well.
We also prove automatic continuity for the subgroup of homeomorphisms of M that
preserve a submanifold, and a form of automatic continuity for homeomorphism groups
of noncompact manifolds.

Main applications

The proof of Theorem 1.2 indicates that there is a deep relationship between the
topology of a manifold and the topology and algebraic structure of its homeomorphism
group. In Section 5 we describe the following three applications:

I Uniqueness results A first consequence of automatic continuity is a new proof of
the following theorem of Kallman:

Theorem 1.3 [9] Let M be a compact manifold. The group Homeo0.M/ has a
unique complete, separable topology.

II Extension problems Epstein and Markovic [6] asked whether every extension
homomorphism Homeo0.S1/! Homeo0.D2/ is continuous. Automatic continuity
immediately gives a positive answer, as well as for the more general question of
extensions replacing the pair .D2; S1/ with .M;N /, where N is either a submanifold
or boundary component of M . A more subtle variant of this question was asked by
Navas:

Question 1.4 Let GC.Rn; 0/ denote the group of germs at 0 of orientation preserving
homeomorphisms of Rn fixing 0. Does there exist an extension homomorphism
GC.Rn; 0/! Homeo.Rn; 0/?
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We use automatic continuity to prove a much stronger result, which also implies that
the group of germs does not admit a separable topology.

Theorem 1.5 Let H be a separable group. Then any homomorphism GC.Rn; 0/!H

is trivial.

The proof uses the algebraic simplicity of GC.Rn; 0/, a strong form of which is proved
in the Appendix.

We also discuss related problems on homomorphisms between groups of germs, and
progress on problems involving homomorphisms between groups of homeomorphisms,
a topic that has recently attracted significant attention.

III Nonsmoothing A third application is a global “algebraic nonsmoothing” theorem.
Recall that an action of a group G on a manifold M is C r –smoothable if it is
topologically conjugate to an action by C r diffeomorphisms. Although this is a
dynamical constraint on the action, it is also interesting to ask whether the algebraic
structure of G is an obstruction to actions of higher regularity.

Motivated by this, define the regularity of an abstract group G to be the largest r
such that there exists a manifold M and a nontrivial homomorphism G! Diff r.M/.
When G � Homeo0.M/, we call a faithful action of G on a manifold N by C r

diffeomorphisms an algebraic C r –smoothing of G . We show the following:

Theorem 1.6 Let M be a compact manifold. Then Homeo0.M/ has regularity 0. In
particular, Homeo0.M/ is not algebraically C 1–smoothable.

Acknowledgements The author thanks Ian Agol, Charles Pugh, and Franco Vargas
Pallete for their interest in this project, Benson Farb and Bena Tshishiku for their
comments on early versions of this manuscript, and Christian Rosendal for his ongoing
interest and support. This work was partially completed while the author was in
residence at MSRI, supported by NSF grant 0932078.

2 The structure of Homeo.M/

We introduce some standard algebraic and topological properties of homeomorphism
groups that will be used throughout the paper. We assume all topological manifolds to
be metric, but otherwise arbitrary. Much of the material in this section is standard.
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Definition 2.1 Let M be a compact manifold. The C 0 topology on Homeo.M/ is
induced by the metric

d.f; g/ WD max
x2M

dM .f .x/; g.x//;

where dM is any compatible metric on M .

This topology is separable, and independent of the choice of metric on M provided
that dM is compatible, ie it generates the topology of M . Although the metric d
above is not complete, Homeo.M/ does admit a complete metric. In fact the metric
D.f; g/ WD d.f; g/C d.f �1; g�1/ is such an example (cf Corollary 1.2.2 in [2]).

If N �M is a closed d –dimensional submanifold — meaning that the pair .M;N /
has local charts to .Rn;Rd / — define the relative homeomorphism group

Homeo.M relN/ WD ff 2 Homeo.M/ W f .N /DN g:

This is a C 0–closed subgroup and hence also completely metrizable. Its identity
component is denoted by Homeo0.M relN/.

Support and fragmentation The support of a homeomorphism f , denoted supp.f /,
is the closure of the set fx 2M W f .x/¤ xg. In our proof of automatic continuity, we
will make frequent use of the fact that homeomorphisms with small support are close to
the identity — this is the most basic relationship between the topology of Homeo0.M/

and M .

Although homeomorphisms close to the identity need not have small support, the
fragmentation property states that a homeomorphism sufficiently close to the identity
can be expressed as the product of a bounded number of homeomorphisms with small
support.

Definition 2.2 (local fragmentation) A group G � Homeo.M/ has the local frag-
mentation property if the following holds. Given any finite open cover fE1; : : : ; Emg
of M , there exists a neighborhood U of the identity in G such that each g 2 U can
be factored as a composition g D g1g2 � � �gm , where supp.gi /�Ei .

Proposition 2.3 (Edwards and Kirby [5]) Let M be a compact manifold, possibly
with boundary. Then Homeo0.M/ has the local fragmentation property. If N �M is
an embedded submanifold, then Homeo0.M relN/ also has the local fragmentation
property.
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Proof The proof for Homeo0.M/ is given in the proof of Corollary 1.3 of Edwards
and Kirby [5]. It relies on the topological torus trick. Note that, although the statement
of Corollary 1.3 in [5] is not equivalent to the local fragmentation property as we
have stated it, our statement is precisely the first step in their proof. The case of
Homeo0.M relN/ also follows from Edwards and Kirby’s work by using the relative
version of their deformation theorem, this is explained in [5, Remark 7.2].

Perfectness Recall that a group G is perfect if any element can be written as a product
of commutators. We will use the following uniform version for homeomorphisms
supported on embedded balls:

Proposition 2.4 (uniform perfectness) Let B � M be an embedded open ball.
Then any f 2 Homeo0.M/ with supp.f / � B can be written as f D Œa; b� where
supp.a/� B and supp.b/� B .

Proof This result is folklore; the earliest proof known to the author is the following
argument of Anderson [1]: Suppose that supp.f / � B . Since supp.f / is compact
and B is open, there exists b 2 Homeo0.M/ with supp.b/ � B with the property
that bn.supp.f //\ bm.supp.f //D∅ for all m¤ n. Define a by

a.x/D

�
bnf b�n.x/ if x 2 bn.supp.f //; for some n� 0;
x otherwise:

Then supp.a/� B and Œa; b�D f .

Anderson’s argument can easily be modified to give a relative version for balls in-
tersecting @M or intersecting an embedded submanifold N . To state this precisely,
define a half ball in M n to be a proper embedding of f.x1; : : : ; xn/ 2 Bn W xn � 0g, ie
with the image of Bn\fxn D 0g in @M ; and similarly if N d �M n is an embedded
d –dimensional submanifold, define a relative ball to be an embedding  W Bn!M

such that  .Bn\Rd /DN d \ .Bn/.

Proposition 2.5 (uniform perfectness, relative case)

(i) Let M be a manifold of dimension at least 2, and B an open half-ball intersecting
@M . Then any f 2Homeo0.M/ with supp.f /�B can be written as f D Œa; b�
where a and b are both supported in B .

(ii) Let N �M be an embedded submanifold of dimension at least 1, and let B
be a relative ball in M . Then any f 2 Homeo0.M relN/ with supp.f / � B
can be written as f D Œa; b� where a; b 2Homeo0.M relN/ are both supported
in B .
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The proof is exactly the same — it requires no changes if supp.f / is disjoint from @M

or N , and if supp.f /\ @M ¤∅ or supp.f /\N ¤∅ one simply takes the iterates
of b to translate supp.f / to a collection of disjoint relative or half-balls in B .

Remark 2.6 (perfectness of homeomorphism groups) The reader will note that
Proposition 2.4 together with fragmentation implies that the groups Homeo0.M/ and
Homeo0.M relN/ are perfect, though not necessarily uniformly perfect — a much
more subtle question. See Burago, Ivanov and Polterovich [3], Tsuboi [21], and
references therein for discussions of uniform perfectness.

3 Proof of Theorem 1.2

For the rest of this section, we fix a separable topological group H , and assume
that �W Homeo0.M/!H is a homomorphism. For simplicity, we first treat only the
case where M is closed. Modifications for the case where @M ¤∅ and the relative
case of Homeo0.M relN/ are discussed at the beginning of Section 4, along with a
comment for noncompact M .

The proof is somewhat involved, so we have divided it into three major steps. The first
is general setup; the second a “localized” version of continuity (for homeomorphisms
with support in a small ball), and the third step improves this local result to a global
version by careful use of the fragmentation property. There is a delicate balancing act
between Steps 2 and 3; in particular, it will be necessary to construct a particular kind
of efficient cover of the manifold M to use in the fragmentation argument.

Step 1 Setup for the proof

Since � is a group homomorphism, it suffices to show continuity at the identity. In
other words, we need to prove the following:

Condition 3.1 For any neighborhood V of the identity in H , there exists a neighbor-
hood U of the identity in Homeo0.M/ such that U � ��1.V /.

We first use the Baire category theorem to extract an “approximate” version of this
condition.

Lemma 3.2 Let V be a neighborhood of the identity in H . There exists a neigh-
borhood U of the identity in Homeo0.M/ such that U is contained in the closure
of ��1.V /.
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Remark 3.3 The proof given below works generally for homomorphisms from any
Polish group to a separable group; see Epstein and Markovic [6] for one instance of
this (where it is called “Baire category continuity”) and Rosendal and Solecki [18] for
another in the context of groups with the “Steinhaus property”.

Proof of Lemma 3.2 Take a smaller neighborhood of the identity V0�V such that V0
is symmetric (ie v 2V0() v�1 2V0 ), and such that V 40 �V . Let fhig be a countable
dense subset of H , so that

H D
[
i

hiV0:

Let W D ��1.V 20 /. For each translate hiV0 that intersects the image of Homeo0.M/,
choose an element �.gi / 2 hiV0 . Then �.gi /D hivi for some vi 2 V , and so

hiV0 D �.gi /v
�1
i V0 � �.gi /V

2
0 :

Thus
�.Homeo0.M//�

[
i

�.gi /V
2
0 ;

and, taking pre-images, we have

Homeo0.M/D
[
i

giW:

Since Homeo0.M/ is a Baire space, it cannot be covered by countably many nowhere
dense sets. Thus, W is dense in the neighborhood of some g 2 Homeo0.M/, so

WW �1 D ��1.V 40 /� �
�1.V /

is dense in some neighborhood of the identity in Homeo0.M/, proving the lemma.

Of course, improving “dense in a neighborhood of the identity” to “contains a neigh-
borhood of the identity” is a nontrivial matter and the main goal of this work!

Step 2 A localized version (after Rosendal)

As in Step 1, assume that we have fixed a homomorphism �W Homeo0.M/ ! H ,
and a neighborhood V of the identity in H , with the aim of showing that � satisfies
Condition 3.1.

The “localized version” of Condition 3.1 that we aim to prove here states, loosely
speaking, that a homeomorphism f 2 Homeo0.M/ with sufficiently small support
lies in ��1.V /. The precise statement that we will use in the next step is given in
Lemma 3.8 below. Our strategy is to build up to this statement gradually, using a series
of lemmas guide by Rosendal’s work in [17].
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Notation 3.4 As in Lemma 3.2, we start by fixing a smaller, symmetric neighborhood
of the identity V0 � V such that V 80 � V . Let W D ��1.V0/.

The first lemma is a very rough version of our end goal. It states that in any neighborhood
of any point of M , we can find an open ball so that all diffeomorphisms supported on
that ball are restrictions of elements in ��1.V 20 /� �

�1.V /.

Lemma 3.5 Let B �M be an embedded ball. There exists a ball B 0 � B such that
for every f 2 Homeo0.M/ with supp.f / � B 0 , there is an element wf 2 W 2 with
supp.w/� B and such that the restriction of wf to B 0 agrees with f .

Proof Let B �M be an embedded ball. The argument from the proof of Lemma 3.2
implies that there exists a countable set fgig � Homeo0.M/ such that

Homeo0.M/D
[
i

giW:

We first prove a related claim for these translates of W .

Claim 3.6 There exists a ball B 0 � B and a left translate giW such that if f
has supp.f /� B 0 , then there exists wf 2 giW such that

(i) supp.wf /� B , and

(ii) the restriction of wf to B 0 agrees with f .

Proof of Claim 3.6 Let Bi , for i D 1; 2; : : : , be a sequence of disjoint balls with
disjoint closures, with diameter tending to 0, and with the closure of

S1
iD1Bi contained

in B .

We will show that for some i , every f 2Homeo0.M/ with supp.f /�Bi agrees with
the restriction of an element of giW supported on B .

Suppose for contradiction that this is not the case. Then there exists a sequence
fi 2 Homeo0.M/ with supp.fi / � Bi and such that fi does not agree with the
restriction to Bi of any element of giW supported on B . Using this sequence of
counterexamples, define a homeomorphism F.x/ by

F.x/D

�
fi .x/ if x 2 Bi for some i;
x otherwise:

Since the translates of W cover Homeo0.M/, there is some gi such that F 2 giW .
But by construction F restricts to fi on Bi — this gives a contradiction and proves
the claim.
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To finish the proof of Lemma 3.5, let B 0 � B be the ball given by Claim 3.6, and
let f 2 Homeo0.M/ satisfy supp.f /� B 0 . Then f is the restriction to W of some
w1 2 giW . Since id 2 Homeo0.M/ has trivial support, Claim 3.6 implies that there
exists some w2 2 giW restricting to the identity on B 0 , so define

wf WD w
�1
2 w1 2Wg

�1
i giW DW

2:

Then supp.wf /� B and wf restricted to B 0 agrees with f .

Lemma 3.5 states that certain homeomorphisms with small support are restrictions
of elements of W 2 � ��1.V /; recall that our goal is to show that homeomorphisms
with small support are elements of ��1.V /. We remove the “restriction” condition
now, at the cost of enlarging W 2 to W 8 , by using a trick with commutators. Since
W 8 � ��1.V /, this will achieve our goal.

Lemma 3.7 Let B �M be an embedded ball. There exists a ball B 00 � B such that,
if f 2G has supp.f /� B 00 , then f 2W 8 .

Proof of Lemma 3.7 Let B �M be an embedded ball. Apply Lemma 3.5 to find a
ball B 0 � B such that if supp.f /� B 0 , then f agrees on B 0 with the restriction of
an element wf 2W 2 with supp.wf /� B .

Now apply Lemma 3.5 to B 0 to find a smaller ball B 00 � B 0 � B such that if
f 2 Homeo0.M/ has supp.f / � B 00 , then f agrees on B 00 with the restriction
of an element wf 2W 2 with supp.wf /� B 0 .

Let f have support in B 00 . Then, using Proposition 2.4, write f D Œa; b�, where
supp.a/ � B 00 and supp.b/ � B 00 . By Lemma 3.5, there exists wa 2 W 2 with
supp.wa/� B 0 and such that the restriction of wa to B 00 agrees with a . There also
exist wb 2W 2 with supp.wb/� B and such that the restriction of wb to B 0 agrees
with b . Since supp.wa/\ supp.wb/� B 00 , we have Œa; b�D Œwa; wb� and hence

f D Œa; b�D Œwa; wb� 2W
8:

Summarizing our work so far, we have shown the following:

For any embedded ball B �M , there exists a ball B 0 � B such that, if
supp.f /� B 0 , then f 2 ��1.V /.

In other words, homeomorphisms that are supported in B 0 have image close to the
identity under � . At this point, the natural (naive) strategy to finish the proof would
be to try and use fragmentation to write any homeomorphism close to the identity as
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a bounded product of homeomorphisms supported on balls like B 0 . Unfortunately,
Lemma 3.7 gives us no control on the size of B 0 , so we do not yet have any means to
reasonably cover M with a bounded number of balls that have this property.

To remedy this, we first strengthen Lemma 3.7 to a similar statement for disjoint unions
of balls, getting us closer to a genuine cover of M .

Lemma 3.8 Let fB˛g be a finite collection of disjoint open balls in M . Then
there exist open balls B 00˛ � B˛ such that, if f 2 Homeo0.M/ has supp.f / � B 00˛ ,
then f 2 ��1.V /.

The proof consists in running the arguments from Lemmas 3.5 to 3.7 on all the balls B˛
simultaneously. We state below the necessary modifications to do this.

Proof Let W be as in Notation 3.4 above. First, we modify Claim 3.6 as follows:

Claim 3.9 There exist disjoint balls B 0˛ � B˛ , and a left translate giW such that, if
supp.f / �

F
˛ B
0
˛ , then there exists wf 2 giW with supp.wf / �

F
˛ B˛ and such

that the restriction of wf to
F
˛ B
0
˛ agrees with f .

To prove this claim, imitate the proof of Claim 3.6 by taking a sequence of disjoint
balls B˛;i � B˛ for each ˛ , and supposing for contradiction that there existed fi
supported on

F
˛ B˛;i but not in giW . Taking the “infinite composition” F of the fi

as before gives the desired contradiction. Composing with the identity as in Lemma 3.5
now shows that any f 2 Homeo0.M/ with support in

F
˛ B
0
˛ actually lies in W 2 .

Finally, as in the original proof of Lemma 3.7, we can apply this construction twice
to find balls B 00˛ � B

0
˛ � B˛ such that if supp.a/ �

F
˛ B
00
˛ , then f agrees with

the restriction of an element of W 2 supported on
F
˛ B
0
˛ , and if supp.b/�

F
˛ B
0
˛ ,

then b agrees with an element of W 2 supported on
F
˛ B˛ . The same commutator

trick using Proposition 2.4 now applies to show that any element f 2 Homeo0.M/

with supp.f /�
F
˛ B
00
˛ lies in W 8 .

Step 3 Local to global

To finish the proof, we will improve the local result of Lemma 3.8 to a global result
by using fragmentation with respect to an efficient cover, in the sense described below.
We assume that M has been given a metric dM .

Lemma 3.10 (existence of an efficient cover) Let M be a compact manifold. There
exists m 2N (depending only on M ) such that, for all � sufficiently small, there is a
cover fE1; E2; : : : ; Emg of M where each set Ei consists of a finite union of disjoint
balls of diameter at most � .
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In this statement, “ball” means a homeomorphic image of a ball, rather than a metric
ball. The key point is that the constant m does not depend on � . We defer the proof of
this lemma to the end of this section, showing first how to use the efficient cover to
finish the proof of the main theorem.

Proof of Theorem 1.2 given Lemma 3.10 As before, let �W Homeo0.M/!H be
a homomorphism, let V � H be a neighborhood of the identity, and let m be the
constant given by Lemma 3.10. Using our usual trick, we take a smaller symmetric
neighborhood of the identity V0 such that V 12m0 � V .

Let W D ��1.V0/. In order to show that � satisfies Condition 3.1, it suffices to find a
neighborhood U of the identity in Homeo0.M/ such that

U �W 12m
� ��1.V /:

By Lemma 3.2, there exists a neighborhood of the identity in Homeo0.M/ contained
in the closure of W 2 . Let � be small enough so that this neighborhood contains the set

ff 2 Homeo0.M/ W dM .f .x/; x/ < � for all x 2M g:

In particular, any homeomorphism supported on a ball of radius � in M is contained
in this neighborhood, hence in the closure of W 2 . Now using this � , build an efficient
cover fE1; E2; : : : ; Emg as in Lemma 3.10, and let fB i˛g denote the set of disjoint
homeomorphic images of balls of diameter at most � comprising Ei .

By Lemma 3.8, there exist balls .B i˛/
00�B i˛ such that any f with supp.f /�

F
˛.B

i
˛/
00

satisfies f 2 W 8 . Let hi 2 Homeo0.M/ be supported on a small neighborhood
of
F
˛ B

i
˛ , and such that the closure of hi .B i˛/ is contained in .B i˛/

00 . Since the
balls B i˛ have diameter at most � , we may find such a homeomorphism hi with
supx2M dM .hi .x/; x/ < � . Thus, hi can be approximated by some element wi 2W 2 .
In particular this implies that there exists wi 2W 2 such that wi

�F
˛ B

i
˛

�
�
�F

˛ B
i
˛

�
00 .

We can now finally show that there is a neighborhood of the identity in Homeo0.M/

contained in W 12m . Since Homeo0.M/ has the local fragmentation property (see
Proposition 2.3), there is a neighborhood U of the identity in Homeo0.M/ such that
for all f 2 U , we can write

f D f1f2 � � � fm

with supp.fi / � Ei . Then supp.w�1i fiwi / �
F
˛.B

i
˛/
00 , so w�1i fiwi 2 W

8 which
implies that fi 2 W 12 . It follows that f 2 W 12m , as desired. This completes the
proof of the theorem.
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It remains only to prove Lemma 3.10. Our construction uses �–nets, so we begin by
recalling the definition of an �–net. Here, and in the proof of the lemma, we use the
notation B.r; x/ for the metric ball of radius r about a point x .

Definition 3.11 Let M be a metric manifold. An �–net is a finite set of points
fx1; : : : ; xkg in M satisfying

(i)
Sn
iD1 D B.�; xi /DM , and

(ii) B.�=2; xi /\B.�=2; xj /D∅ for i ¤ j .

Similarly, we define an �–net cover of M to be a set of balls fB.�; xi /g such that the
union of the centers fxig forms an �–net.

We will now show that, for Riemannian manifolds, an �–net cover fulfills the require-
ments of Lemma 3.10. The general (non-Riemannian) case will be a small modification.

Proof of Lemma 3.10 Let M be a compact manifold. Assume first that M is
equipped with a Riemannian metric.

Recall that, for any cover fAig, the dual graph of the cover is the graph with vertex
set fAig and an edge between Ai and Aj whenever Ai \Aj ¤∅. We first prove a
regularity result on the dual graphs of �–net covers.

Claim 3.12 There exists � > 0 and mDm.M/ 2N such that, for every � < �, the
dual graph of any �–net cover of M has degree less than m.

Proof Take � > 0, and let fB.�; xi /g be an �–net cover. If there is an edge be-
tween fB.�; xi /g and fB.�; xj /g in the dual graph, then xj 2 B.2�; xi /. Since
B.�=2; xi /\B.�=2; xj /D∅, the degree of the vertex fB.�; xi /g is bounded above by

inf
�

vol.B.2�; xi //
vol.B.�=2; x//

W x 2 B.2�; xi /

�
:

Since M is compact, the limit of this ratio as �! 0 is bounded, and can be taken
independent of the point xi . Let m be any integer so that m� 1 is strictly larger than
this bound. It follows that, if � > 0 is sufficiently small, then for any � < �, the degree
of a vertex in the dual graph to any �–net cover will be bounded by m� 1.

To finish the proof of Lemma 3.10 in the Riemannian case, note that any graph of
degree less than m admits a proper coloring with m colors. (In fact, this bound is
given by the greedy coloring.) As a consequence, if m and � are the constants from
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the claim, then for all � < �, any �–net cover of M can be partitioned into m subsets
E1; E2; : : : ; Em , each consisting of a disjoint union of metric balls of radius � .

For the general case, we cover M by finitely many charts  i W Di!M where each Di
is a copy of the standard unit ball in Rn . For concreteness, say the number of charts is k .
Also, we can assume without loss of generality that each  i is uniformly continuous.
The argument above shows that there exists m0 such that, for any ı > 0 each Di can
be covered by m0 sets Ei;1; Ei;2; : : : consisting of disjoint metric balls of diameter ı .
Given � > 0, we may use uniform continuity of  i to choose ı small enough so that
each �.Ei;j / consists of a union of homeomorphic images of balls of diameter at
most � . This gives the desired covering of M by m WDm0k sets.

Remark 3.13 With a little more work (eg by covering first a neighborhood of the
1–skeleton of a triangulation, then 2–cells, etc) it should be possible to produce a
constant m that depends only on the dimension of M , at least in the case where M
has a CW structure. But we do not need this stronger fact.

4 A broader picture

Automatic continuity in the relative and boundary case

To prove automatic continuity for Homeo0.M relN/ when N is an embedded subman-
ifold of dimension at least 1, or for Homeo0.M/ when @M ¤∅, one needs essentially
no new ingredients besides the relative versions of perfectness and fragmentation stated
in Section 2. Step 1 of the proof carries through verbatim, and we list here the necessary
modifications in Steps 2 and 3.

Step 2 (local version for half- or relative-balls) Recall that a half ball in M is a
proper embedding of f.x1; : : : ; xn/ 2 Bn W xn � 0g. Lemma 3.7 has a straightforward
reformulation for half-balls.

Lemma 4.1 Let B � M be an embedded half-ball. Then there exists a half-ball
B 00 � B such that, if f 2G has supp.f /� B 00 , then f 2W 8 .

The proof is identical to the proof for balls in the interior of M , one simply replaces
“ball” with “half-ball” everywhere, starting in Lemma 3.5, and uses the version of
Proposition 2.4 for half-balls. This gives a version of Lemma 3.8 for manifolds with
boundary.

Lemma 4.2 Let fB˛g be a finite collection of disjoint open balls or half-balls in M .
Then there exist open balls or half-balls B 00˛ � B˛ such that if f 2 Homeo0.M/ has
supp.f /� B 00˛ , then f 2W 8 .
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Similarly, for the relative case we have:

Lemma 4.3 Let M �N be an embedded submanifold, and fB˛g a finite collection
of disjoint open balls or relative-balls in M . Then there exist open balls or relative-balls
B 00˛ � B˛ such that if f 2 Homeo0.M/ has supp.f /� B 00˛ , then f 2W 8 .

Step 3 (efficient covers) Given Lemma 4.3, the only missing ingredient to run the
argument of Step 3 for manifolds with boundary or relative homeomorphism groups is
Lemma 3.10 on efficient covers. In fact, the same proof works for this case: if N �M
is an embedded submanifold, then, provided � is chosen sufficiently small, in the
Riemannian case each ball in an �–net cover that intersects N will actually be an
embedded relative ball, so the argument on existence of efficient covers runs verbatim,
just replacing “ball” by “ball or relative ball”. The general case follows by picking
appropriate charts for the pair N;M . The same modification also works in the case
where @M ¤∅.

Noncompact manifolds

In [8], Hurtado defines a notion of weak continuity for homomorphisms — a homomor-
phism � from Homeo0.M/ to another group is weakly continuous if, for every compact
set K �M , the restriction of � to the subgroup of homeomorphisms with support
contained in K is continuous. Our proof of Theorem 4.7 also shows the following:

Corollary 4.4 Let M be any manifold, and �W Homeo0.M/!H a homomorphism
to a separable topological group. Then � is weakly continuous.

For general noncompact M , the compact-open topology on Homeo0.M/ is separable
and completely metrizable. Thus, it is reasonable to ask whether automatic continuity
holds for such groups.

Question 4.5 Does Homeo0.M/, with the C 0 compact-open topology, have auto-
matic continuity when M is noncompact?

The Steinhaus condition for Polish groups

In [18], Rosendal and Solecki give a condition on a topological group that implies that
the group has automatic continuity. This condition is called Steinhaus.

Definition 4.6 A topological group G is Steinhaus if there is some n 2N such that,
whenever W � G is a symmetric set such that countably many left-translates of W
cover G , there exists a neighborhood of the identity of G contained in W n .
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Note that in the definition of Steinhaus the exponent n depends only on the group G ,
but the neighborhood of the identity in G is allowed to depend on W . The proof that
Steinhaus implies automatic continuity is a Baire category theorem argument as in
Lemma 3.2 above.

Our proof of automatic continuity for homeomorphism groups actually shows that
Homeo0.M/ and Homeo0.M relN/ are Steinhaus — the reader may check that, in
each step where we referenced the set W D ��1.V0/, the only property we ever used
of W was that Homeo0.M/ was the union of countably many left-translates giW .
Our choice to retain the reference to ��1.V0/ was primarily for the purpose of making
the proof more transparent. In effect, what we actually proved was the following:

Theorem 4.7 Let M be a compact manifold, possibly with boundary. Homeo0.M/

is then Steinhaus. If N � M is an embedded closed submanifold of dimension at
least 1, then Homeo0.M relN/ is also Steinhaus.

5 Applications

A uniqueness result

As a first application, we give a new short proof of Kallman’s theorem from [10]
(Theorem 1.3 in the introduction), that Homeo0.M/ has a unique complete, separable
topology.

Proof of Theorem 1.3 Put any complete, separable topology on Homeo0.M/, and
let H denote the resulting topological group. By Theorem 1.2, the identity map
Homeo0.M/! H is a continuous isomorphism of Polish groups. Pettis’ theorem
(see Theorem 9.10 in [11]) which, in the form that we need it, is essentially a Baire
category theorem argument, now implies that this map is actually open, and hence a
homeomorphism.

Extension problems

In [6], Epstein and Markovic show that there is no extension from the group of quasi-
symmetric homeomorphisms of the circle to the group of quasi-conformal homeomor-
phisms of the disc. That is, there is no homomorphism �W QS.S1/! QC.D2/ such
that the restriction of �.g/ to the boundary of D2 agrees with g , for each g 2QS.S1/.
A major step in their proof is to show that any such map would have to be continuous.
Motivated by this, they ask whether any extension of Homeo0.S1/ to Homeo0.D2/ is
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necessarily continuous. Theorem 1.2 immediately gives a positive answer, as well as a
positive answer to the more general problem of extensions Homeo.@M/!Homeo.M/.

A less trivial application of automatic continuity is to the problem of extending germs
of homeomorphisms. Let G be the group of orientation-preserving homeomorphisms
of Rn that fix the origin, and GC.Rn; 0/ the group of germs of elements of G at 0.
There is a natural (quotient) map G! GC.Rn; 0/. Navas has asked whether this map
has a group-theoretic section, in the following sense:

Question 5.1 (Navas, see also Remark 1.1.3 in [4]) Does there exist a homomorphism
�W GC.Rn; 0/! G such that the composition GC.Rn; 0/! G

�
�! GC.Rn; 0/ is the

identity?

Automatic continuity implies a stronger result.

Proposition 5.2 There is no faithful homomorphism GC.Rn; 0/! Homeo0.Rn/. In
fact, there is no nontrivial homomorphism from GC.Rn; 0/ to any separable group.

The proof only uses Rosendal and Solecki’s theorem on automatic continuity of
Homeo0.I /, where I is a compact interval [18], and the fact that GC.Rn; 0/ is simple,
which is proved in the Appendix with Frédéric Le Roux. The idea for this use of
automatic continuity of Homeo0.I / was communicated to us by C Rosendal.

Proof As above, let G be the group of orientation-preserving homeomorphisms of Rn

that fix the origin, and I the interval Œ0; 1�. There is an embedding i W Homeo0.I /!G

given by a “radial action on the unit ball”. Precisely, put radial coordinates on the unit
ball Bn �Rn as fr Ev W r 2 Œ0; 1�; Ev 2 Sn�1g and define

i.f /.x/D

�
f .r/Ev if x D r Ev 2 Bn;

x otherwise:

The image of i.Homeo0.I // under the quotient map to GC.Rn; 0/ is abstractly isomor-
phic to the group of germs at 0 of orientation-preserving homeomorphisms of Œ0; 1�.

Now suppose that �W GC.Rn; 0/!H is a homomorphism to a separable topological
group. Consider the induced homomorphism

ˆW Homeo0.I /
i
�!G! GC.Rn; 0/

�
�!H:

By automatic continuity for Homeo0.I /, ˆ is continuous. However, the kernel of ˆ
contains the subgroup of homeomorphisms that restrict to the identity in a neighborhood
of 0 2 I , and this is a dense subgroup. It follows that ˆ is trivial, and hence � is not
injective. Since Theorem A.1 states that GC.Rn; 0/ is simple, � must be trivial.
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As an immediate consequence, we have the following:

Corollary 5.3 GC.Rn; 0/ does not admit a separable group topology.

Navas has also asked the following:

Question 5.4 Suppose that there is an isomorphism GC.Rn; 0/! GC.Rm; 0/. Is it
necessarily the case that mD n?

This question was intended to mirror the theorem of Whittaker [22], which states
that if M and N are compact manifolds, and �W Homeo0.M/! Homeo0.N / is an
isomorphism, then M D N . Whittaker’s result is essentially topological (in fact,
even without Whittaker, our Theorem 1.2 implies that � must be a homeomorphism!).
Corollary 5.3 implies that the corresponding question for germs of homeomorphisms
is fundamentally an algebraic question, and so likely requires completely different
techniques. As pointed out by the referee, a good strategy might be to look at finite
subgroups of GC.Rn; 0/. This certainly provides a positive answer to the question in
very low dimensions.

We conclude with a related open question that has recently attracted attention.

Question 5.5 Suppose that �W Homeo0.M/! Homeo0.N / is a nontrivial (hence
injective) homomorphism. Is it necessarily true that dim.M/� dim.N /? In the case
where dim.M/D dim.N /, must � come from an embedding or a covering map?

An analogous result for groups of smooth diffeomorphisms of manifolds was proved
by Hurtado in [8]. The first step in the proof is to show that such a homomorphism is
necessarily continuous. Our Theorem 1.2 gives this in the case of Homeo0.M/; this
should represent significant progress towards the solution of Question 5.5.

Algebraic nonsmoothing

In the introduction we defined the regularity of an abstract group G to be the largest r
such that there exists a manifold M and a nontrivial homomorphism G! Diff r.M/.
The following question appears to be wide open:

Question 5.6 Give examples of groups of regularity r , for any given r . Are there
examples which are finitely or compactly generated groups?
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In [15], Navas examines the related question of finitely generated subgroups of
Homeo0.S1/ that do not act by C 1 diffeomorphisms on S1 . However, his work relies
heavily on the 1–dimensional setting, and it is conceivable that his examples could act
by diffeomorphisms on a manifold of higher dimension, hence still be algebraically
C 1–smoothable, in the sense defined in the introduction.

We give the first partial answer to Question 5.6 now, showing that Homeo0.M/ has
regularity 0.

Proof Suppose for contradiction that �W Homeo0.M/! Diff1.N / were such a ho-
momorphism. The topology on Diff1.N / is separable; a neighborhood basis of the
identity can be specified by first covering N by finitely many charts so the �0–ball
about any point is contained in some element of the cover, and then taking open sets

Un WD
˚
f 2 Diff1.N / W d.f .x/; x/ < 1=n and kDf.x/k< 1=n for all x 2N

	
with 1=n < �0 . Here the “norm” kDf.x/k is the minimum of the operator norms
of D Nf .x/� I , where Nf is any coordinate representation of f with respect to a chart
containing both x and f .x/. (See, for example, [7, Chapter 2] for more details.) This
topology is also completely metrizable, one can even take the sets Un to be the metric
balls of radius 1=n about the identity. We let d1 denote such a metric.

Fix � < �0 . Since � is continuous by Theorem 1.2, there exists a neighborhood U of
the identity in Homeo0.M/ such that d1.�.f /; id/ � � for all f 2 U . In particular,
if B �M is an embedded ball of sufficiently small diameter, and GB the group of
homeomorphisms of M supported on B , then �.GB/ � U . Let B be such a ball,
and B 0 � B a smaller ball with closure contained in B .

Let g 2 Homeo0.M/ be a contraction of B 0 supported on B . By this, we mean that

(i) g.B 0/� B 0 ,

(ii)
T1
nD1g

n.B 0/D fpg for some point p 2 B 0 ,

(iii) supp.g/� B .

Note also that supp.gn/� B , so gn 2 U , and hence d1.gn; id/� � , for all n 2 Z.

Let h be supported in GB 0 . Since Homeo0.M/ is simple, �.h/ is nontrivial, so
there exists x0 2N with d.�.h/.x0/; x0/D ı > 0. Since g contracts B 0 , as n!1,
gnhg�n! id in Homeo0.M/. By continuity, �.gn/�.h/�.g�n/! id in Homeo.N /.
In particular, if n is large enough, then

sup
y2N

dN
�
�.gnhg�n/.y/; y

�
<
ı

�
:
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Taking y D �.gn/.x0/, this means that dN
�
�.gnh/.x0/; �.g

n/.x0/
�
< ı=� . Consider

a geodesic segment  on N from �.gnh/.x0/ to �.gn/.x0/. Then �.g�n/./ is a C 1

path from �.h/.x0/ to x0 , so has length greater than ı . It follows that �.g�n/ expands
the length of a differentiable path by a factor of more than � . But this contradicts the
fact that �.g�n/ 2 U , so supx2M kDg

n.x/k< � .

We conjecture that an analogous result holds for diffeomorphism groups.

Conjecture 5.7 The group Diff r.M/ has regularity r .

A good first step would be to prove automatic continuity for such groups.

Question 5.8 Does Diff r0 .M/ have the automatic continuity property? If so, is
Diff r0 .M/ Steinhaus?

Appendix: Structure of groups of germs

Theorem A.1 GC.Rn; 0/ is uniformly simple in the following strong sense: given any
nontrivial g 2 GC.Rn; 0/, every element g0 2 GC.Rn; 0/ can be written as a product
of eight conjugates of g .

The argument that we give here applies to the case n � 2. A short argument for
simplicity of GC.R; 0/ can be found in Proposition 4 of [14] (using a very similar
strategy of proof to the one here).

Notation and conventions A.2 Let G denote the group of orientation-preserving
homeomorphisms of Rn fixing 0. Recall that GC.Rn; 0/ is the quotient of G by the
subgroup of homeomorphisms that restrict to the identity in a neighborhood of 0. By
convention, a ball containing 0 is an image B of the standard closed unit ball under a
global homeomorphism of Rn , with 0 in the interior of B . We use the symbol VA to
denote the interior of a set A.

Definition A.3 An element g 2 G is a local contraction if there exists a ball B
containing 0 such that g.B/� VB and such that

T
n g

n.B/D f0g.

Lemma A.4 The germs of any two local contractions are conjugate.

Proof We show that any local contraction has germ conjugate to that of x 7! 1
2
x . The

proof uses the annulus theorem [12; 16].
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Let g be a local contraction. After conjugacy, we may assume that the ball B contracted
by g is the standard unit ball. By the annulus theorem, there exists a homeomorphism

h1W B ng. VB/! B n 1
2
VB

that is the identity on @B , and inductively

hnW
�
gn�1.B/ ngn. VB/

�
!
�
2�nC1B n 2�n VB

�
agreeing with hn�1 on @.gn�1.B//. Define a homeomorphism

h.x/D

�
hn.x/ if x 2 gn�1.B/ ngn. VB/;
x otherwise:

Then hgh�1.2�nC1B/D 2�nB . Let Og D hgh�1 . Now we build another conjugacy
to “straighten” Og to the standard contraction x 7! 1

2
x .

The restriction of Og to @B , considered as a homeomorphism

@B D Sn�1! @
�
1
2
.B/

�
D Sn�1;

is isotopic to the identity (this is a consequence of Kirby’s stable homeomorphism
theorem); let gt , t 2

�
1
2
; 1
�

be such an isotopy with g1D Og and g1=2D id. Identify B
with frs W r 2 Œ0; 1�; s 2 Sn�1g, and define a foliation of B n 1

2
B , transverse to the

boundary, with 1–dimensional leaves of the form

Ls WD
˚
rgr.s/ W r 2

�
1
2
; 1
�	
:

This extends naturally to a leafwise Og–invariant foliation on B n 0 with leaves equal
to
S
n�0 Og

n.Ls/; we will produce a conjugacy that straightens these to radii of B .
Note that each x 2 B n f0g can be written uniquely as Ogn.rgr.s// for some n 2 N ,
r 2

�
1
2
; 1
�
, and s 2 Sn�1 . Define Oh by

Oh.x/D

�
2�nrs if x D Ogn.rgr.s//;
x otherwise:

Then Oh Og Oh�1 preserves each radius of B , and is conjugate to x 7! 1
2
x on each radius. A

continuous choice of conjugacies on radii gives a conjugacy of Og with a homeomorphism
agreeing with x 7! 1

2
x on B .

Definition A.5 An element g 2G contracts a basis of balls if there exist nested balls
B1 � B2 � � � � containing 0 with

T
nBn D f0g, and such that g.Bn/� VBn for all n.

Lemma A.6 Let g 2 G have nontrivial germ at 0. Then there exists a 2 G such
that aga�1g contracts a basis of balls.
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Proof In this proof, we let B.r; x/ denote the ball of radius r about x .

Let g have nontrivial germ at 0. Then in any neighborhood U1 of 0, there exists x such
that g.x/¤x . This means we can take a ball B containing 0 and x , but not g�1.x/, in
particular x … gB . Then we can find a ball B 0 with g.B/� VB 0 such that the pair B;B 0

is homeomorphic to the pair B.2;�z/; B.2; z/, where z D .1; 0; 0; : : :/ 2 Rn (see
Figure 1). We may also take B 0 and B to be contained in U1 .

x

g.x/

B

g.B/

B 0
a1

U2

g

Figure 1: The balls B , g.B/ , and B 0

Let hW Rn!Rn be a homeomorphism with h.B/D B.2;�z/ and h.B 0/D B.2; z/.
There is a homeomorphism r , supported on a small neighborhood of B.2;�z/[B.2; z/,
with r.B.2; z//DB.2;�z/ and r.B.2;�z//DB.2; z/, and such that r fixes pointwise
a small ball around 0. So hrh�1 exchanges B and B 0 , and hrh�1 is the identity on a
ball U2 containing 0. We may also take hrh�1 to be supported on U1 . Let a1Dhrh�1 .
Note that since gB � VB 0 and a1 exchanges B and B 0 we get a1ga�11 B 0 � VB .
Then a1ga�11 g.B/� a1ga

�1
1
VB 0 � VB .

Repeating the construction above, using U2 in place of U1 , we can find h2 supported
on U2 , fixing a smaller neighborhood U3 of 0, and so that h2gh�12 g.B2/ � VB2 for
some B2�U2 . In the same manner, inductively define an , with supp.an/�UnnUn�1 ,
and such that anga�1n g.Bn/� VBn for some ball Bn � Un containing 0. We may also
choose Bn so that

T
Bn D f0g (eg at each stage, ensure that Bn is contained in a ball

of radius 2�n ).
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Define a homeomorphism

a.x/D

�
an.x/ if x 2 Un nUn�1;
x otherwise:

Then hgh�1.Bn/� VBn for all n.

Lemma A.7 Let f 2 G . If f contracts a basis of balls, then there exists b such
that bf b�1f is a local contraction.

Proof We return to the notation of Lemma A.4, where rB denotes the ball of ra-
dius r centered at 0. Using the annulus theorem as in the first part of the proof of
Lemma A.4, we may conjugate f to a homeomorphism that contracts the nested
balls B � 1

2
B � 1

4
B � � � � . Abusing notation, let f denote this new map. Choose

rn 2 .2
�n�1; 2�n/ so that f .2�nB/� rnB . Let �W Œ0;1/! Œ0;1/ be a homeomor-

phism such that �.2�n/D rn , and �.rn/D 2�n�1 . Let bW Rn!Rn be defined by

b.x/D �.kxk/
x

kxk
:

Then
bf b�1f .2�nB/� bf b�1rnB D bf 2

�nB � brnB D 2
�n�1B;

so bf b�1f is a local contraction.

Combining Lemmas A.4, A.6 and A.7 immediately gives the following:

Corollary A.8 Let g 2 G have nontrivial germ. Then any local contraction can be
written as the product of four conjugates of g .

We can now easily finish the proof of Theorem A.1.

Proof of Theorem A.1 Let g and g0 be elements of G , and assume g has nontrivial
germ. We first construct a local contraction c such that cg0 is also a local contraction.
Let rn D maxfkxk W x 2 g0.2�nB/g, and let c be a local contraction mapping rnB
to tnB where tn <minfrn; 2�n�1g— it is easy to construct such a map that preserves
each ray through 0. Then cg0.2�nB/� 2�n�1.B/, so cg0 is a local contraction.

By Corollary A.8, cg0 can be written as a product of four conjugates of g . Since g�1

also has nontrivial germ, Corollary A.8 implies that c can be written as a product
of four conjugates of g�1 . Thus, g0 D c�1cg0 can be written as a product of eight
conjugates of g .

Geometry & Topology, Volume 20 (2016)



Automatic continuity for homeomorphism groups and applications 3055

References
[1] R D Anderson, The algebraic simplicity of certain groups of homeomorphisms, Amer.

J. Math. 80 (1958) 955–963 MR0098145

[2] H Becker, A S Kechris, The descriptive set theory of Polish group actions, London
Math. Soc. Lect. Note Ser. 232, Cambridge Univ. Press (1996) MR1425877

[3] D Burago, S Ivanov, L Polterovich, Conjugation-invariant norms on groups of geo-
metric origin, from: “Groups of diffeomorphisms”, (R Penner, D Kotschick, T Tsuboi,
N Kawazumi, T Kitano, Y Mitsumatsu, editors), Adv. Stud. Pure Math. 52, Math. Soc.
Japan, Tokyo (2008) 221–250 MR2509711 arXiv:0710.1412

[4] B Deroin, A Navas, A Rivas, Groups, orders, and dynamics, preprint (2014) arXiv:
1408.5805

[5] R D Edwards, R C Kirby, Deformations of spaces of imbeddings, Ann. Math. 93
(1971) 63–88 MR0283802

[6] D Epstein, V Markovic, Extending homeomorphisms of the circle to quasiconformal
homeomorphisms of the disk, Geom. Topol. 11 (2007) 517–595 MR2302497

[7] M W Hirsch, Differential topology, Graduate Texts in Mathematics 33, Springer, New
York (1994) MR1336822

[8] S Hurtado, Continuity of discrete homomorphisms of diffeomorphism groups, Geom.
Topol. 19 (2015) 2117–2154 MR3375524

[9] R R Kallman, Uniqueness results for homeomorphism groups, Trans. Amer. Math. Soc.
295 (1986) 389–396 MR831205

[10] R R Kallman, Every reasonably sized matrix group is a subgroup of S1 , Fund. Math.
164 (2000) 35–40 MR1784652

[11] A S Kechris, Classical descriptive set theory, Graduate Texts in Mathematics 156,
Springer, New York (1995) MR1321597

[12] R C Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. 89
(1969) 575–582 MR0242165

[13] J Kittrell, T Tsankov, Topological properties of full groups, Ergodic Theory Dynam.
Systems 30 (2010) 525–545 MR2599891

[14] K Mann, Left-orderable groups that don’t act on the line, Math. Z. 280 (2015) 905–918
MR3369358

[15] A Navas, A finitely generated, locally indicable group with no faithful action by C 1

diffeomorphisms of the interval, Geom. Topol. 14 (2010) 573–584 MR2602845

[16] F Quinn, Ends of maps, III: Dimensions 4 and 5 , J. Differential Geom. 17 (1982)
503–521 MR679069

[17] C Rosendal, Automatic continuity in homeomorphism groups of compact 2–manifolds,
Israel J. Math. 166 (2008) 349–367 MR2430439

Geometry & Topology, Volume 20 (2016)

http://dx.doi.org/10.2307/2372842
http://www.ams.org/mathscinet-getitem?mr=0098145
http://dx.doi.org/10.1017/CBO9780511735264
http://www.ams.org/mathscinet-getitem?mr=1425877
http://www.ams.org/mathscinet-getitem?mr=2509711
http://arxiv.org/abs/0710.1412
http://arxiv.org/abs/1408.5805
http://arxiv.org/abs/1408.5805
http://dx.doi.org/10.2307/1970753
http://www.ams.org/mathscinet-getitem?mr=0283802
http://dx.doi.org/10.2140/gt.2007.11.517
http://dx.doi.org/10.2140/gt.2007.11.517
http://www.ams.org/mathscinet-getitem?mr=2302497
http://www.ams.org/mathscinet-getitem?mr=1336822
http://dx.doi.org/10.2140/gt.2015.19.2117
http://www.ams.org/mathscinet-getitem?mr=3375524
http://dx.doi.org/10.2307/2000162
http://www.ams.org/mathscinet-getitem?mr=831205
https://eudml.org/doc/212446
http://www.ams.org/mathscinet-getitem?mr=1784652
http://dx.doi.org/10.1007/978-1-4612-4190-4
http://www.ams.org/mathscinet-getitem?mr=1321597
http://dx.doi.org/10.2307/1970652
http://www.ams.org/mathscinet-getitem?mr=0242165
http://dx.doi.org/10.1017/S0143385709000078
http://www.ams.org/mathscinet-getitem?mr=2599891
http://dx.doi.org/10.1007/s00209-015-1455-2
http://www.ams.org/mathscinet-getitem?mr=3369358
http://dx.doi.org/10.2140/gt.2010.14.573
http://dx.doi.org/10.2140/gt.2010.14.573
http://www.ams.org/mathscinet-getitem?mr=2602845
http://projecteuclid.org/euclid.jdg/1214437139
http://www.ams.org/mathscinet-getitem?mr=679069
http://dx.doi.org/10.1007/s11856-008-1034-x
http://www.ams.org/mathscinet-getitem?mr=2430439


3056 Kathryn Mann

[18] C Rosendal, S Solecki, Automatic continuity of homomorphisms and fixed points on
metric compacta, Israel J. Math. 162 (2007) 349–371 MR2365867

[19] M Sabok, Automatic continuity for isometry groups, preprint (2013) arXiv:
1312.5141v1

[20] T Tsankov, Automatic continuity for the unitary group, Proc. Amer. Math. Soc. 141
(2013) 3673–3680 MR3080189

[21] T Tsuboi, Homeomorphism groups of commutator width one, Proc. Amer. Math. Soc.
141 (2013) 1839–1847 MR3020870

[22] J V Whittaker, On isomorphic groups and homeomorphic spaces, Ann. of Math. 78
(1963) 74–91 MR0150750

Department of Mathematics, University of California, Berkeley
970 Evans Hall #3840, Berkeley, CA 94720-3840, United States

Institut de Mathématiques de Jussieu
4 place Jussieu, Case 247, 75252 Paris Cédex 5

kpmann@math.berkeley.edu, frederic.le-roux@imj-prg.fr

Proposed: Leonid Polterovich Received: 18 August 2015
Seconded: Danny Calegari, Bruce Kleiner Revised: 3 February 2016

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1007/s11856-007-0102-y
http://dx.doi.org/10.1007/s11856-007-0102-y
http://www.ams.org/mathscinet-getitem?mr=2365867
http://arxiv.org/abs/1312.5141v1
http://arxiv.org/abs/1312.5141v1
http://dx.doi.org/10.1090/S0002-9939-2013-11666-7
http://www.ams.org/mathscinet-getitem?mr=3080189
http://dx.doi.org/10.1090/S0002-9939-2012-11595-3
http://www.ams.org/mathscinet-getitem?mr=3020870
http://dx.doi.org/10.2307/1970503
http://www.ams.org/mathscinet-getitem?mr=0150750
mailto:kpmann@math.berkeley.edu
mailto:frederic.le-roux@imj-prg.fr
http://msp.org
http://msp.org

	1. Introduction
	Main applications

	2. The structure of Homeo(M)
	3. Proof of Theorem 1.2
	Step 1 Setup for the proof
	Step 2 A localized version (after Rosendal)
	Step 3 Local to global

	4. A broader picture
	Automatic continuity in the relative and boundary case
	Noncompact manifolds
	The Steinhaus condition for Polish groups

	5. Applications
	A uniqueness result
	Extension problems
	Algebraic nonsmoothing

	Appendix: Structure of groups of germs
	References

