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Asymptotic formulae for curve operators in TQFT

RENAUD DETCHERRY

The Reshetikhin–Turaev topological quantum field theories with gauge group SU2

associate to any oriented surface † a sequence of vector spaces Vr .†/ and to
any simple closed curve 
 in † a sequence of Hermitian operators T



r on the

spaces Vr .†/ . These operators are called curve operators and play a very important
role in TQFT.

We show that the matrix elements of the operators T


r have an asymptotic expansion

in orders of 1=r , and give a formula to compute the first two terms from trace
functions, generalizing results of Marché and Paul for the punctured torus and the
4–holed sphere to general surfaces.

57R56

1 Introduction

Witten [28] proposed in 1989, by a method using Feynman path integrals, a family
of new invariants of 3–manifolds derived from the Jones polynomial, together with
the structure of a full topological quantum field theory. Reshetikhin and Turaev [24]
formalized the ideas of Witten to construct a family .Z2r .M //r2N� of 3–manifolds in-
variants. Also they defined a TQFT-structure for these invariants in [24] and Turaev [27].
An alternative method to define these 3–manifold invariants and TQFTs using skein
theory of 3–manifolds was later developed by Blanchet, Habegger, Masbaum and
Vogel [11].

Let † be a closed oriented surface maybe with marked points pi colored by elements
yci of Cr Df1; : : : ; r�1g. Neglecting the so-called framing anomaly, the construction of
[11] associates a vector space Vr .†; yc/ to .†; yc/ and, for any cobordism .M; †0; †1/

containing a link L, there is a morphism

Vr .M;L/W Vr .†0/! Vr .†1/

such that for every closed orientable 3–manifold M we have Vr .M /DZ2r .M /.

Let us recall that a multicurve on † is a disjoint union of simple closed curves on †.
In particular, the construction associates to any multicurve 
 on † a curve operator

T 

r D Vr

�
†� Œ0; 1�; 
 �

˚
1
2

	�
2 End.Vr .†; yc//:
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3058 Renaud Detcherry

Curve operators often play a central role in TQFT; they were used to derive the
asymptotic faithfulness of quantum representations, or to relate the combinatorial
and the geometric framework of TQFT; see Andersen [1; 2] or Andersen and Ueno
[7; 8; 9; 10].

From the construction of [11] it follows also that each vector space Vr .†; yc/ comes
with a natural Hermitian form.

Recall that a pants decomposition of a surface † with marked points is a finite family
of simple closed curves on † which cut † into either pair of pants containing no
marked point or disks containing exactly one marked point.

We will say that a trivalent banded graph � inside † is compatible with a pair of pants
decomposition C D .Ce/e2E if the following conditions are satisfied:

� � has a trivalent vertex vP lying in each pair of pants P of the decomposition,
and these are the only trivalent vertices of � .

� For every e 2E , � has exactly one edge (labeled also by e ) that intersects the
curve Ce . This edge is disjoint from the other curves Cf for f 2E n feg, and
intersects Ce exactly once.

� The graph � has n univalent vertices labeled by p1; : : : ;pn corresponding to
the marked points of †. These are the only univalent vertices of � .

See Figure 1 for an example of such a graph.

The construction of [11] provides the space Vr .†; yc/ with a Hermitian basis .'c/c2Ur

for any choice of a pair of pants decomposition C of † and trivalent graph � compatible
with C . The index set Ur of this basis is the set of r –admissible colorings of the edges
of � , defined as follows:

Let Cr D f1; : : : ; r � 1g be the set of colors.

An r –admissible coloring of � is a map cW E! Cr such that the following conditions
are met:

(1) For any i 2 f1; : : : ; ng, the edge adjacent to pi is colored by ci D yci .

(2) Let S be the set of all triples .e; f;g/ such that the curves Ce , Cf and Cg

bound a pair of pants (possibly two of these curves are the same). Then for any
.e; f;g/ 2 S we have
(i) ceC cf C cg < 2r and ceC cf C cg � 1 .mod 2/;

(ii) ce < cf C cg .

If we have a sequence of coloring of the marked points yci D r ti with t 2 Qn , then
for cr 2 Ur the E–tuple cr=r is in the set U �RE defined by x 2 U if and only if
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(1) xi D ti if i is the edge adjacent to the marked point pi ; and

(2) for any .e; f;g/ 2 S , we have
(i) xeCxf Cxg < 2,

(ii) xe < xf Cxg .

Let 
i be small simple closed curves encircling the marked points pi . We introduce
the SU2 –moduli space of † with marked points .pi ; ti/, ti 2 Œ0; 1�,

M.†; t1; : : : ; tn/D
˚
�W �1.†/! SU2 j Tr.�.
i//D 2 cos.� ti/

	
=SU2:

The quotient here corresponds to the conjugation of representations by an element
of SU2 .

We recall that the subset of irreducible representations in M.†/ has a natural Atiyah–
Bott–Goldman–Seshadri symplectic form, which we call ! .

Any curve 
 on † induces a natural trace function f
 on M.†/ by the formula

f
 W �!�Tr.�.
 //:

Moreover for any pants decomposition C of †, Jeffrey and Weitsman [20] introduced
a momentum map hC on M.†/ whose image is the closure of the set U introduced
above. This momentum mapping is given by the formula

hC W �! .hCe
.�//e2E D

�
1

�
Acos

�Tr.�.Ce//

2

��
e2E

:

Here U is exactly the set of regular values of the momentum map hC . Jeffrey and
Weitsman showed that the hCe

are independent Poisson-commuting functions, and
that these Hamiltonians induce an action of a torus T on each level set. Thus the
momentum map induces action-angle coordinates on the subset h�1

C .U / of M.†/:
there is a map

RW U �T ! h�1
C .U /; .�; �/ 7!R.�e; �e/:

The map R satisfies that hC.R.�; �// D � and R�.!/ D
P

e2E d�e ^ d�e . These
action-angle coordinates are unique up to a shift in angle coordinates.

Marché and Paul [21] proved from skein calculus that in the case of the once-punctured
torus and the case of the four-punctured sphere, the matrix coefficients of curve operators
hT



r 'c ; 'cCki converge to the k th Fourier coefficient of the trace functions

� 7! f


�
R
�

c

r
; �
��
; � 2 T:

They also gave an expression for the O.1=r/ term in the expansion of hT 

r 'c ; 'cCki.
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Figure 1: A banded graph compatible with a pants decomposition of † by
curves fCeg and the associated cell decomposition of a pants into hexagons

Our paper aims to give a generalization of the asymptotic expansion in [21] for any
marked surface †. We observed a new phenomenon when studying general surfaces:
the asymptotic coefficients are again related to Fourier coefficients of trace functions,
but they are twisted by rapidly oscillating signs.

To give an expression for these signs, we introduce some cocycles on †.

Equip † with a pants decomposition C and a compatible graph � . As we can see in
the example in Figure 1, † n� is a trivalent banded graph diffeomorphic to � , so we
get a continuous folding map pW †! � that pastes the two copies of � .

For any r –admissible color c we can define a multicurve Lc inside � : take ce � 1

parallel strands at any edge e and connect at vertices in the unique way avoiding
crossings.

We define a cocycle xc in H 1.†;Z=2/ by the formula

xc.
 /DLc \p.
 /:

Here \ is the \–product map H1.�;Z=2/�H1.�; @�;Z=2/! Z=2, and we view
p.
 / as an element of H1.�; @�;Z=2/.
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Theorem 1.1 Let 
 be a multicurve in † n fp1; : : : ;png.

For e 2E we write I


e for the geometric intersection number of 
 with Ce .

We introduce an open set V
 � U � Œ0; 1� by the formula

V
 D
˚
.�; „/ j .�eC "e„I



e /e2E 2 U for all " 2 f˙1gE

	
:

Then

(1) Whenever ke > I


e or ke ¤ I



e .mod 2/, the matrix coefficient hT 


r 'c ; 'cCki

vanishes.

(2) If ke � I


e and ke D I



e .mod 2/, there exists a smooth function .F


k
/kWE!Z

defined on V
 such that, for any c 2 Ur , the matrix coefficient hT 

r 'c ; 'cCki is

xc.
 /F



k
.c=r; 1=r/.

If we set Fk D 0 for any other kW E! Z, we can write

T 

r 'c D xc.
 /

X
kWE!Z

F



k

�
c

r
;

1

r

�
'cCk :

As xc is an element of H 1.†;Z=2/, xc.
 / is just a sign. This sign factor, which did
not appear in [21], will be shown to be trivial when the banded trivalent graph � is
planar (which was the case for the punctured torus and the four-holed sphere).

The coefficients F



k
can be computed by hand for any multicurve 
 on †, but to give

an explicit formula for a general 
 is out of reach. However, we will provide a formula
for the first two terms of the Taylor expansion of F




k
in the second variable.

In [21], to make sense of the coefficients of T


r Marché and Paul introduce a complex-

valued function �
 , which they called the  –symbol of T


r . We follow their approach,

but the signs in our formulae lead us to define the  –symbol as a function with values
in some algebra A� , which we call the intersection algebra. We define A� as follows:

Let � be the map H 1.�;Z=2/!H 1.�; @�;Z=2/ and B be its image. The folding
map p and the map � induce a map p�W H

1.†;Z=2/!H 1.�; @�;Z=2/. We define

A� D
M
Œ
 �2B

CŒ
 �

with the product Œ
 �Œı�D .�1/
\
zı Œ
 C ı�, where �.zı/D Œı� and \ is the intersection

form H 1.�; @�;Z=2/�H 1.�;Z=2/! Z=2.
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Definition 1.2 Let 
 be a multicurve on †. We define the  –symbol of T


r as the

map
�
 W V
 � .R=2�Z/!A�

such that
�
 .�; „; �/D

X
kWE!Z

Fk.�; „/e
ik�� Œp�.
 /�:

If �W A�!C is a morphism of algebras, we also introduce �
� .�; �/D�.�
 /.�; 0; �/.

Let us add a few remarks on this definition:

(1) k � � stands for
P

e2E ke�e .

(2) The sum over kW E ! Z is actually a finite sum, as only a finite number of
coefficients F




k
does not vanish.

(3) We will often omit the p� and just write Œ
 � for the element Œp�.
 /�, when 

is a multicurve.

(4) We will often refer to the zeroth order in „ of the  –symbol, that is, �
 .�; 0; �/,
as the principal symbol of T



r .

We use this definition to state our main result:

Theorem 1.3 Let 
 be a multicurve on †. The  –symbol �
 .�; „; �/ of the curve
operator T



r has the following asymptotic expansion:

�
 .�; „; �/D �
 .�; 0; �/C
„

2i

X
e2E

@2

@�e @�e
�
 .�; 0; �/C o.„/

and, for �W A� ! C a morphism of algebras, we have �
� .�; �/ D f
 .R�.�; �// D

�Tr.R�.�; �/.
 //, where the R� are action-angle parametrizations on

M.†/D Hom
�
�1.† n fp1; : : : ;png/;SU2

�
=SU2

defined up to a choice of origin of the angles.

The above theorem is quite similar to results obtained by Andersen and Gammelgaard
[6] in the geometric framework of the Witten–Reshetikhin–Turaev TQFT.

Recall that, for any complex structure � on † representing a point in the Teichmüller
space T of †, the smooth part of the moduli space of † has the structure of a Kähler
manifold M� . It is then possible to identify the TQFT vector spaces Vr .†/ with the
space of holomorphic sections H 0.M� ;L

r /, where L is the Chern–Simons vector
bundle; see Andersen and Ueno [7; 8; 9; 10].
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Theorem 7 of [6] shows that curve operators T


r are approximated at order 1 by

Toeplitz operators of principal symbol f
 and subprincipal symbols

1
4
��f
 C irX 00

F
f
 ;

where X 00
F

is the .0; 1/–part of the Hamiltonian vector field for the Ricci potential.

An alternative proof of Theorem 1.3 could be to combine the results of [6] with results
explaining how these Laplace operators degenerate when the complex structure on †
converges to the pair of pants decomposition. See Andersen [5] for an outline of such
techniques.

The methods in [6] rely on the geometric framework of TQFT or the Hitchin connec-
tion so they are quite different from ours, which is based on skein theory and is the
continuation of the work of Marché and Paul [21].

The proof of [21] in the case where † is the punctured torus and the four-holed
sphere relied on explicit computations for some simple set of curves that generates the
Kauffman algebra of †, then extending the result to general curves. This approach
failed in higher genus as no simple set of generators is known. Instead, we developed
a more conceptual and systematic method, which relies on the study of algebraic
properties of the  –symbol and the Kauffman algebra of †.

Marché and Paul [21] used the asymptotic estimation to construct a framework for
curve operators on the punctured torus and the four-holed sphere as Toeplitz operators
on the sphere. This allowed the application of the WKB-approximation for eigenvectors.
From this they deduced asymptotic expansions of quantum invariants (such as a new
proof of the asymptotic expansion of 6j –symbols, and an expression for the punctured
S –matrix). Therefore, we hope to use our asymptotic expansions for general marked
surface to make a connection to the framework of curve operators as Toeplitz operators
on toric varieties, or at least apply the tools of microlocal analysis. Such a Toeplitz
framework for curve operators may be a useful tool to study combinatorial TQFT. Indeed,
in a different approach, Andersen [1] introduced some geometrical curve operators that
are Toeplitz operators to prove the asymptotic fidelity of the quantum representations
of the mapping class group. We think that the idea, initiated by Andersen, of viewing
the standard curve operators as Toeplitz operators is a powerful idea, as has been
demonstrated in various work of his [2; 3; 4]. We believe that our result and methods,
based on the BHMV approach to TQFT, could provide interesting applications in other
directions.

Acknowledgements I am very thankful to my advisor Julien Marché for his guidance
and advice. I also would like to thank Gregor Masbaum for pointing out an error about
intersection forms.
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2 A quick overview of TQFT and curve operators

In this section we will outline the BHMV approach to TQFT. Their construction relies
on the notion of Kauffman bracket skein modules of 3–manifolds and Kauffman
algebras of marked surfaces.

For M a compact oriented 3–manifold (which can have a boundary), we define
K.M;A/ as the quotient of the free CŒA˙1�–module generated by links modulo
isotopy and the Kauffman relations (see Figure 2).

For t 2 C� , we can define a Kauffman module evaluated at t : we write K.M; t/D

K.M;A/˝ADt C .

Now, if † is a surface with marked points p1; : : : ;pn , we denote by K.†;A/ the
Kauffman module K

�
.† n fp1; : : : ;png/� Œ0; 1�;A

�
.

We call a disjoint union of simple curves on † which is disjoint from the marked points
of † a multicurve on †. It is easy to see that K.†;A/ is spanned by multicurves
on †, and actually multicurves give a basis of this vector space, as shown in [14].

The module K.†;A/ has an algebra structure: the product 
 � ı of two elements of
K.†;A/ is obtained by isotoping 
 and ı so they are included in † �

�
1
2
I 1
�

and
†�

�
0I 1

2

�
, respectively, then gluing the two parts into †� Œ0; 1�.

For t 2C� , we define K.†; t/DK.†;A/˝ADt C , which is also an algebra, and admits
the set of multicurves as a basis. Using this basis, we get a linear isomorphism between
K.†; t/ and K.†;�1/ and we embed K.†;�ei�„=2/DK.†;A/˝AD�ei�„=2 CŒŒ„��
into K.†;�1/ŒŒ„��.

The vector spaces Vr .†; yc/ are quotients of Kauffman modules at roots of unity, as
explained below:

Definition [11] Let H be a handlebody with @H D†, where † is a surface with
marked points p1; : : : ;pn .

Given a coloration yc of the marked points, we choose ci � 1 points in a small neigh-
borhood of pi for each i , and write P for the set of all resulting points for i from 1

to n.

DA CA�1

Figure 2: The first Kauffman relation. The other relation states that any trivial
component is identified with �A2�A�2 .
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We define the relative Kauffman module K.H; yc; �r / as the CŒA˙1�–module generated
by banded tangles in H whose intersection with † is the set P .

For r a positive integer, we write �r D�ei�=.2r/ . For any embedding j of H in S 3 ,
we define the following submodule of K.H; yc; �r /:

N j
r D

�
x 2K.H; yc; �r /

ˇ̌̌ �
x

ˇ̌̌̌ rO
iD1

fci�1

ˇ̌̌̌
y

�
D 0 for all y 2K.S 3

n Im.j /; yc; �r /
�
;

where we write fk for the k th Jones–Wenzl idempotent, and
˝
xj
Nr

iD1 fci�1jy
˛

stands
for the element of K.S 3; �r / obtained from x and y by pasting H with S 3 n Im.j /,
inserting the Jones–Wenzl idempotent at each marked point.

Theorem 2.1 [11] N
j
r is in fact independent of j and of finite codimension, and we

may define
Vr .†; yc/DK.H; yc; �r /=N

j
r :

With this setting, there is a simple description of the curve operator T


r associated to a

multicurve 
 on † disjoint from the marked points p1; : : : ;pn , or more generally to
an element of K.†; �r /.

Indeed, we can take an element z of K.H; yc; �r / and stack a multicurve 
 over it to
obtain another element 
 �z of K.H; yc; �r /. The induced map factors through N

j
r , since

for any n2N
j
r and any z 2K.S 3nIm.j /; yc; �r /, we have that

˝

 �nj

Nr
iD1 fci�1jz

˛
D˝

nj
Nr

iD1 fci�1j
 � z
˛
. Thus we have defined an endomorphism T



r of Vr .†; yc/

associated to 
 2K.†; �r /.

Furthermore, the map

T �r W K.†; �r /! End.Vr .†; yc//; 
 7! T 

r ;

is a morphism of algebras.

In [11] it is shown that the bracket h � ; � i that we introduced above induces a Hermitian
structure on Vr .†; yc/.

The construction of [11] provides for each admissible coloring c a vector 'c 2Vr .†; yc/.
This vector is obtained by cabling the graph � by a specific combination of multicurves
(we will detail this construction in Section 4). Moreover, the family .'c/ when c runs
over all admissible colorings is a Hermitian basis of Vr .†; yc/.

For a multicurve 
 , the operators T


r are Hermitian operators for the Hermitian

structure on Vr .†; yc/ given by [11]. The spectrum and the eigenvectors of T


r are

known:

Geometry & Topology, Volume 20 (2016)
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First, as all components of 
 are disjoint, there exists a pants decomposition of † by a
family of curves C D fCege2E such that 
 can be isotoped to the union of ne parallel
copies of Ce , for some integers ne 2N . Then the Hermitian basis .'c/ coming from
the pants decomposition C is an eigenbasis of T



r , and we have

T 

r 'c D

� Y
e2E

�
�2 cos

�ce

r

�ne
�
'c :

We should take note that the spectral radius kT 

r k is thus always less than 2n.
 / , where

we write n.
 / for the number of components of the multicurve 
 .

Let
M0.†/D Hom.�1.†/;SL2.C//==SL2.C/

be the space of characters of the fundamental group of † n fp1; : : : ;png in SL2.C/.
This space is actually an affine algebraic variety.

Also let Reg.M0.†// be the algebra of regular functions from M0.†/ to C .

The following theorem, which describes the Kauffman algebra K.†;�1/, will have a
central role in the proof of Theorem 1.3:

Theorem 2.2 The map

� W K.†;�1/! Reg.M0.†//; 
 7! f
 such that f
 .�/D�Tr.�.
 //;

is an isomorphism of algebras.

This theorem follows from the work of various authors. Bullock [13] and Brumfiel
and Hilden [12] first independently proved that the map from K.†;�1/ to M0.†/
is surjective and has the nilradical of K.†;�1/ as kernel. It was proved later by
Przytycki and Sikora [23] and independently by Charles and Marché [14] that the
algebras K.†;�1/ are indeed reduced, which concluded the proof of Theorem 2.2.

Finally, we end this preliminary section with a formula for products of elements
of the Kauffman algebra at �ei�„=2 to first order in „. We recall that M0.†/ is
a Poisson manifold for the Poisson structure given in [16]. This Poisson structure
depends on a choice of normalization of the symplectic structure on M.†/. We
normalize the symplectic form ! as the symplectic reduction of the form !.˛; ˇ/D

.1=2�/
R
† Tr.˛ ^ ˇ/ for ˛ , ˇ 2 �1.†; su2/. Since, by the previous theorem, it is

possible to link the product of elements of K.†;�1/ with products of trace functions
on M0.†/, the work of Goldman [18] and Turaev [26] gives a way to think of the first
order in „ of a product of elements in K.†;�ei�„=2/ as a Poisson bracket of trace
functions.
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Notice that from the fact that Kauffman algebras have the set of multicurves as a basis,
as linear spaces K.†;�ei�„=2/ is isomorphic to K.†;�1/ŒŒ„��. This last space is
isomorphic to a subspace of Reg.M0.†//ŒŒ„�� via the map � of Theorem 2.2.

Theorem 2.3 [26] Let 
 and ı be multicurves, viewed as elements of K.†;�ei�„=2/.
We have that


 � ı D f
fıC
„

i
ff
 ; fıgC o.„/:

This result is due to the work of Goldman and Turaev. First Goldman [18] was able
to compute the Poisson bracket of the trace functions of two simple closed curves as
the sum of other trace functions. Then Turaev [26] was able to identify the terms in
Goldman formula for the Poisson bracket with the order 1 terms of the product in the
Kauffman algebra.

3 Algebraic properties of  –symbols

3.1 Some remarks on the intersection algebra

In this section, we fix a surface † with marked points p1; : : : ;pn , with a pants
decomposition C D fCege2E of † and a compatible trivalent banded graph � drawn
on †.

We see from Figure 1 that C and � give us a cell decomposition of † into a bunch
of hexagons, their sides being the boundary components of � and segments of the
curves Ce . For each e 2 E , we name by C 0e (resp. C 00e ) the segment � \Ce (resp.
Ce n Int.Ce \�/); see Figure 1.

We remark that the cocycle xc of H 1.†;Z=2/ can then be computed as

xc.
 /D
Y
e2E

.�1/.ce�1/.C 0�e .
 /CC 00�e .
 //:

In this formula, C 0�e (resp. C 00�e ) is the cellular cochain dual to Ce
0 (resp. Ce

00 ). We
can directly check from the formula that xc is a cocycle, as its value on the boundary
of each hexagon is of the form .�1/ceCcfCcg�1 for e , f and g three adjacent edges,
which equals 1 as c is an admissible color. Also it is easy to see that the formula gives
exactly the intersection number Lc \p�.
 /.

Now, for ˛ and ˇ in B , the image of � W H1.�;Z=2/!H1.�; @�;Z=2/, we write
h˛; ˇi D z̨ \ˇ , where �.z̨/D ˛ . Recall that we defined the intersection algebra A�
as

A� D
M
˛2B

C � Œ˛�;

Geometry & Topology, Volume 20 (2016)
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with the product structure given by Œ
 � � Œı�D .�1/h
;ıiŒ
 C ı�. It is not clear at this
point that A� is an algebra, and not even that it is well defined. This comes from the
following lemma:

Lemma 3.1 The form
h ; iW B �B! Z=2

given by h˛; ˇi D z̨ \ ˇ does not depend on the choice of a lift �.z̨/ D ˛ and is
symmetric and bilinear.

Proof Indeed, two lifts of ˛ differ by an element of H1.@�;Z=2/. Furthermore, any
element 
 of H1.�; @�;Z=2/ can be seen as a linear combination of closed curves
and curves with extremities in @� , and 
 2 B if and only if its number of extremities
in each component of @� is even. Thus the intersection of an element of H1.@�;Z=2/
with any element of B vanishes, and the form h ; i is independent of the choice of lift.

Actually, this shows that we can think of B as the quotient of H1.�;Z=2/ by the
kernel of the intersection form on H1.�;Z=2/ and h ; i as the corresponding quotient
form.

The bilinearity of the form h ; i is then evident.

Finally we show that the form is symmetric. Given lifts z̨ and ž to H1.�;Z=2/ of
two elements ˛ and ˇ in B , h˛; ˇi D z̨ \ˇ is also the intersection number mod 2 of
z̨ and ž, so it is symmetric.

From the lemma we get that the product on A� is well-defined, associative and
commutative, so A� is a commutative C–algebra of dimension 2d , where d is the
dimension of B . This dimension can be computed using the exact sequence

H1.�;Z=2/!H1.�; @�Z=2/ ı!H0.@�;Z=2/!H0.�;Z=2/! 0:

We have B D Ker ı and dim.Ker ı/C rk.ı/ D g , where g is the genus of � , and
rk.ı/Db�1, where b is the number of boundary components of � . Thus the dimension
of B is g� bC 1.

Note that when � can be embedded in the plane this dimension is 0 and A� DC .

As a finite-dimensional commutative C–algebra, A� is isomorphic to the algebra Cl ,
where l D dim.A�/D Card. yA�/ and we recall that yA� is the (finite) set of algebra
morphisms from A� to C . The isomorphism is given by

˛ 7! .�.˛//
�2 yA�

for ˛ 2A� :
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An element � of yA
 must send each Œ˛� with ˛ 2 B to some .�1/q.˛/ , with the
conditions that q.˛C ˇ/� q.˛/� q.ˇ/ D h˛; ˇi .mod 2/. Thus yA� is in bijective
correspondence with the set of “relative spin-structures” on .�; @�/.

We end this section with the following lemma, providing a computation of products in
A� based on the cellular decomposition on † into hexagons:

Lemma 3.2 Let 
 and ı be two simple closed curves on †, and set

i.
; ı/D
Y
e2E

.�1/I
ı
e .C
0�
e .
 /CC 00�e .
 //:

Then i.
; ı/D hp�.
 /;p�.ı/i.

Proof Let 
 and ı be two curves on †. After an isotopy of p.
 / and p.ı/ in � we
can arrange that p.ı/ lies in the interior of � , and p.
 / follows the edges of the cell
decomposition of � . Then the intersection points lie only in the curves p.Ce/DLe .
The number of intersection points of p.
 / and p.ı/ in Le is congruent modulo 2 to
].p.ı/\Le/L

�
e .p�.
 //, where L�e is the dual to the cell Le .

But L�e .p�.
 //DC 0�e .
 /CC 00�e .
 / and ].p.ı/\Le/D ].ı\Ce/ .mod 2/, hence the
formula for i.z
 ; zı/ computes the number of intersection points of 
 and ı modulo 2,
that is, hp�.
 /;p�.ı/i.

3.2 The multiplicativity property

In this section, we will temporarily assume that Theorem 1.1 holds. We can then
define  –symbols, and we will show here that these  –symbol have a property of
compatibility with the product in Kauffman modules. From this algebraic property
alone and the theorem of Bullock, the  –symbols are almost constrained to have the
form predicted by Theorem 1.3. Theorem 1.1 will be proved in Section 4.1 without
using any of the results in this section.

For a fixed .�; „; �/, the definition of the  –symbol only introduces 
 7! �
 .�; „; �/

as a map from multicurves to A� . We extend it by multilinearity to obtain a map

�.�; „; �/W K.†;�ei�„=2/!A� ŒŒ„��;

as K.†;�ei�„=2/ is spanned by multicurves.

The proof of Theorem 1.3, giving an asymptotic formula for the  –symbol, will be
the goal of Sections 5 and 6. It will rely heavily on the following property of the
 –symbol, which explains its compatibility with the product in K.†;�ei�„=2/:
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Proposition 3.3 Let 
 and ı be two multicurves on †. Then we have the asymptotic
expression

�
 �ı.�; „; �/D

�
�
 .�; „; �/�ı.�; „; �/C

„

i

X
e

@�e
�
 .�; „�/ @�e

�ı.�; „; �/

�
C o.„/:

This expression is similar to the composition of symbols of Toeplitz operators. This is
not a surprise, as curve operators can be approximated at order 1 by Toeplitz operators,
by [6]. Theorem 8 of [6] gives the order 1 of the symbols of the composition of two
such operators. It could again be possible to derive this result by degenerating the
complex structure to a pair of pants decomposition.

A version of this proposition appeared already in [21] for the four-holed sphere and the
pointed torus, but they worked with another definition of the  –symbol, which took
values in C , whereas in our definition, the  –symbol takes values in A� .

We can however extract C–valued functions from the  –symbol. As A� is isomorphic
to Cl , we denote the components of the principal symbol �
 .�; 0; �/ by �
� .�; �/D
�.�
 .�; 0; �// for every � 2 yA� .

Proof of Proposition 3.3 We fix r > 0 and we take two multicurves 
 and ı on †.
The two functions appearing in the equality are smooth functions on a neighborhood
of U � f0g in U � Œ0; 1�. We remark that any point of U can be approximated by
a sequence cr=r with cr 2 Ur . Hence it suffice to show that they have the same
asymptotic expansion at order 1 on sequences .cr=r; �; 1=r/ where cr=r ! x 2 U .
According to Theorem 1.1, writing � D cr=r and „ D 1=r , the matrix coefficients of
the operator T



r can be written as

T 

r 'c D xc.
 /

X
kWE!Z

F



k
.�; „/'cCk ;

with the F



k
being smooth functions on V
 such that F




k
D 0 as soon as there is some

e 2E such that jkej> I


e or ke 6� I



e .mod 2/.

As 
 2K.†;�ei�=.2r//! T


r 2 End.Vr .†// is an morphism of algebras, we have

T 
 �ı
r 'c D T 


r .T
ı
r 'c/

and, from the above expression of the matrix coefficients, we get

T 
 �ı
r 'c D

X
mWE!Z

� X
kClDm

F



l
.� C k„; „/F ık.�; „/xc.ı/cCk.
 /

�
'cCm

D xc.
 /xc.ı/i.
; ı/
X

mWE!Z

� X
kClDm

F



l
.� C k„; „/F ık.�; „/

�
'cCm:
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To obtain the second equality, note that cCk.
 /D xc.
 /xk.
 / and observe that if there
exists e such that ke ¤ I ıe .mod 2/ then, by Theorem 1.1, F ı

k
is 0.

However, if keDI ıe .mod 2/ for all e2E then xk.
 /D
Q

e2E.�1/I
ı
e .C
0�
e .
 /CC 00�e .
 //D

i.
; ı/ is independent of k . Hence we can factor xk.
 / out of the sum.

Now, as K.†;�ei�„=2/ is generated by multicurves, we can write 
 �ıD
P
� f�.„/�,

and, in this sum, f� ¤ 0 only when Œ��D Œ
 �C Œı� 2 H1.†;Z=2/, according to the
Kauffman relations. Thus we have xc.�/D xc.
 /xc.ı/. We can write another formula for
the curve operator of the product:

T 
 �ı
r 'c D

X
m

�X
�

xc.�/f�.„/F
�
m.�; „/

�
'cCm:

So, identifying coefficients in the two formulae, we getX
�

f�.„/F
�
m.�; „/D

� X
kClDm

F



l
.� C k„; „/F ık.�; „/

�
i.
; ı/:

Now, recall that we defined the  –symbol of an arbitrary element of K.†;�ei�„=2/

by extending linearly the formula for multicurves. Thus, we have

�
 �ı.�; „; �/D
X
m

X
�

f�.„/F
�
m.�; „/e

im� Œ��;

recalling that Œ��D Œ
 �C Œı� and using the previous identity of coefficients

�
 �ı.�; „; �/D i.
; ı/
X
m

� X
kClDm

F



l
.� C k„; „/F ık.�; „/

�
eim� Œ
 C ı�:

Now the Taylor expansion at order 1 in „ of F



l
near .�; „/ in the first variable gives

F



l
.� C k„; „/D F




l
.�; „/C„

X
e2E

ke
@

@�e
F



l
.�; „/C o.„/

D F



l
.�; „/C„

X
e2E

ke
@

@�e
F



l
.�; 0/C o.„/:

Substituting into the previous equation gives us that

�
 �ı.�; „; �/D i.
; ı/
X
m

� X
kClDm

�
F



l
.�; „/C„

X
e2E

ke
@

@�e
F



l
.�; „/

�

� eil�F ık.�; „/e
ik�

�
Œ
Cı�C o.„/
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D i.
; ı/hp�.
 /;p�.ı/i

�
�
 .�; „; �/�ı.�; „; �/

C
„

i

X
e2E

@�e
�
 .�; „; �/ @�e

�ı.�; „; �/

�
Co.„/:

To obtain the second equality recall that Œ
 �Œı�D hp�.
 /;p�.ı/iŒ
 C ı� in A� . From
Lemma 3.2 we have that i.
; ı/D hp�.
 /;p�.ı/i, which completes the proof.

According to this proposition, the principal symbol � �.�; 0; �/W K.†;�1/! A� is
a morphism of algebras. Furthermore, the components ��.�; �/ D �.�.�; 0; �/ are
algebra morphisms from K.†;�1/ to C .

Using the theorem of Bullock, we will show in Section 5.1 that these morphisms
have the form f 7! f .R�/, f 2 Reg.M0.†//, for some representations R� of
�1.† n fp1; : : : ;png/.

Identifying precisely the representations R� will come from checking the special
values of the  –symbol on the curves Ce .

As for the computation of the first-order term, we will proceed in Section 6 in a similar
fashion: first we will show, using only Proposition 3.3, that this term is related to
derivations of algebras K.†;�1/!A, then, by studying the values of the  –symbol
on the curves Ce and on another family of curves De , we will show the first-order
term is indeed given by the formula in Theorem 1.3.

4 Computations of curve operators using fusion rules

This section is devoted to the skein theory computations that will be needed in order
to prove Theorem 1.1. We describe the general form of the matrix coefficients of the
curve operators, and give examples of explicit computations of the coefficients F




k
and

the  –symbol �
 for some curves 
 .

4.1 Fusion rules in a pants decomposition

In this subsection, we will work with a fixed closed oriented surface †, along with
a pants decomposition by a family of curves C D fCege2E . We can consider ne � 1

parallel copies .C k
e /1�k�ne

of the curves Ce such that the curves C k
e cut the surface

† into a collection of pants fPsgs2S and annuli fAk
e j e 2E; 1� k � ne � 1g.

We recall that to this pants decomposition is associated a Hermitian basis 'c of Vr .†/,
of which we will recall the construction:
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Let � be a banded trivalent graph compatible with the pants decomposition C of † as
in Section 2. We recall that � is viewed as drawn on †. Given an admissible coloring
cW E! Cr , we define  c 2K.†I ycI �r / as follows:

� Replace each edge e of � by ce � 1 parallel copies of e lying on †.

� Insert in the middle of each edge the idempotent fce�1 , where we recall that fk

is the k th Jones–Wenzl idempotent.

� In the neighborhood of each trivalent vertex, join the three sets of lines in † in
the unique possible way avoiding crossings.

This family of vectors is actually an orthogonal basis of Vr .†; c/ for a natural Hermitian
structure defined in [11], which we do not recall here. We refer to [11, Theorem 4.11]
for the proof and the formula

(1) k ck
2
D

�
2

r

��.�/=2Q
P hc

1
P
; c2

P
; c3

P
iQ

ehcei
:

Here the first product is over all vertices P corresponding to pants of the pants decom-
position, the second over the edges e of the graph � . We write hni for sin.�n=r/;
hni! for

Qn
iD1hii; c1

P
, c2

P
, and c3

P
for the colors of the 3 edges adjacent to P ; and

we also set

ha; b; ci D

˝
aCbCc�1

2

˛
!
˝
aCb�c�1

2

˛
!
˝
a�bCc�1

2

˛
!
˝
bCc�a�1

2

˛
!

ha� 1i!hb� 1i!hc � 1i!
:

As we will work with TQFT vectors locally, inside a pants of the pants decomposition
for example, we will need to give a local version of this norm. Notice that if we forget
the global factor .2=r/�.�/=2 in the norm, we will not change the matrix coefficients
of the curve operators T



r .

Also, after applying fusion rules, we may get trivalent graphs with vertices other than
those in the graph associated to the decomposition. We say then that a vertex is internal
if it is trivalent or univalent and associated to a marked point, and that it is external
otherwise. Then, we will define the square of the norm of a trivalent graph asQ

P hc
1
P
; c2

P
; c3

P
iQ

e2E2
hcei

Q
e2E1
hcei

1=2
;

where the products in the denominator are over E2 , the set of edges adjacent to 2

internal vertices, and E1 the set of edges adjacent to 1 internal vertex and 1 external
vertex. The other edges bear no contribution to the norm. With this definition, if we
paste pieces of colored graph to get the graph � , we obtain the previous norm as the
product of the norm of the pieces.
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�

�
hn� 1i

hni

�1
2n nC 1 n� 1

a

bC 1 cC 1

c
b

a

cC 1bC 1

c

c˙ 1

c˙ 1
D˙

�
hci

hc˙ 1i

�1
2

a

c � 1b� 1

a

c � 1bC 1

a

bC 1 c � 1

c
b

a

b� 1 c � 1

c
b

nC 1

n
D �n�1

r

n

nC 1 n� 1

n
D��

�.nC1/
r

n

n� 1

D

�
h

aCbCcC1
2

ih
bCc�aC1

2
i

hbC 1ihcC 1i

�1
2

D

�
h

a�bCc�1
2
ih

aCb�cC1
2
i

hbC 1ihc � 1i

�1
2

D�

�
h

aCbCc�1
2
ih

bCc�a�1
2
i

hb� 1ihc � 1i

�1
2

D

�
hnC 1i

hni

�1
2

Figure 3: Fusion rules. These “normalized” fusion rules allow us to simplify
the union of a colored banded graph and a curve colored by 2 . The dotted
edges are colored by 2 . The first rule allows to merge an edge colored by 2

with another one. The second line consists of the “half-twist formulae” of [22].
When all curves have been merged with the graph, the 3rd , 4th and 5th lines
can be used to remove trigons, and the last rule to remove bigons.
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Figure 4: Dehn presentation of multicurves

With this setting, we give a normalized version of the fusion rules in TQFT. The fusion
rules derived in [22], give a way to compute the image of the vector 'c under the curves
operators. We list the fusion rules that we will need in Figure 3; our version differs
from the rules in [22], as we express them with the normalized vectors 'c instead of
the vectors  c from [22].

We will perform the computations by using the fusion rules only locally, that is only
inside of a pair of pants of the pants decomposition, or inside an annulus in the
neighborhood of one of the curves Ce .

Indeed, for 
 a multicurve, by a classification provided by Dehn, we can isotope 
 so
that the intersection of 
 with each pants Ps of the decomposition looks like the 4th

picture of Figure 4, and the intersection with each of the annuli Ak
e looks like one of

the first three pictures of Figure 4.

Furthermore, in this isotopy class, the intersection of 
 with each Ce is the smallest in
the isotopy class of 
 . We refer to [15, Section 4.3] for this classification.

Now, we do the computations in two steps:

First, we use fusion rules to reduce each type of piece to elements corresponding to the
intersection of the graph � in a pants or annulus with a certain coloring, glued with
“candlesticks”.

A candlestick is an element of the TQFT vector space of an annulus that is the normalized
vector associated to a banded trivalent graph in an annulus, consisting of a central edge
joining the boundary components (with no twist), colored by n 2 Cr on the bottom
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n

nC ı1

nC ı2

nC ı3

nC ı4

Figure 5: A candlestick C.n; "; �/ with 4 legs. We denote by ıi D
Pi

jD1 "j
the partial sums of the color shifts "j . Notice that the legs can go alternatively
to the left or to the right of the central edge.

component, a collection of legs colored by 2, joining the central edge and the bottom
component, as in Figure 5.

The data that defines a candlestick with k legs C.n; ";‚/ is the color n 2 Cr of
the central edge at the bottom, the order ‚ in which the legs join the central edge,
and the shifts of the color of the central edge ."i/iD1:::k when we pass each vertex
corresponding to a leg.

Reduction of the different pieces Simple computations using fusion rules give us
the following formulae when the pants or the annuli contain only one curve:

b

c a

b

c a

bC "

cC�

D

X
";�

F";�.a; b; c; r/

where we set

FC;C.a; b; c; r/D

�˝aCbCcC1
2

˛˝
bCc�aC1

2

˛
hbihci

�1
2

;

FC;�.a; b; c; r/D F�;C.a; c; b; r/D�

�˝a�bCc�1
2

˛˝
aCb�c�1

2

˛
hbihci

�1
2

;
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F�;�.a; b; c; r/D�

�˝aCbCc�1
2

˛˝
bCc�a�1

2

˛
hbihci

�1
2

I

next,

D

X
"

G".n; r/
n

n

n

nC "

where

GC.n; r/D .�1/nC1e�i�.n�1/=.2r/

�
hnC 1i

hni

�1
2

;

G�.n; r/D .�1/nC1ei�.nC1/=.2r/

�
hn� 1i

hni

�1
2

I

third,

n

n

n

nC "
D

X
"

H".n; r/

where

HC.n; r/D .�1/nC1ei�.n�1/=.2r/

�
hnC 1i

hni

�1
2

;

H�.n; r/D .�1/nC1e�i�.nC1/=.2r/

�
hn� 1i

hni

�1
2

I

and lastly

n

n

nC "

n

D

X
"

L".n; r/
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where

LC.n; r/D .�1/nC1ei�.nC2/=.2r/

�
hnC 1i

hni

�1
2

;

L�.n; r/D .�1/nC1e�i�.n�2/=.2r/

�
hn� 1i

hni

�1
2

:

All these coefficients are of the required form xc.
 /F.c=r; 1=r/ for some smooth
function F defined on V
 .

.�1/ceC1

.�1/ceC1

.�1/cfC1

.�1/cfC1

.�1/cgC1

.�1/cgC1

1 1

1

Figure 6: The cocycle xc on the pants bounded by the curves Ce , Cf and Cg

If we have many curves in a pants or annulus, we only need to choose an order to make
the fusions, and apply the latter formulae. For example, in the case of the pants, we
obtain:

b

ac

b

ac

: : :
˛ curves 
 curves

ˇ curves

bCB

aCA

cCC

D

X
";�;�

P";�;�.a; b; c; r/

where we use the notation AD
PˇC


iD1
"i , B D

P˛C

jD1

�j and C D
P˛Cˇ

kD1
�k .

Here we have first used fusion on the ˛ curves that go from Cb to Cc , then the ˇ
curves that run from Ca to Cc , and finally the 
 curves from Ca to Cc . With this
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order for the fusions, the coefficients P";�;�.a; b; c; r/ are products of three factors
corresponding to each series of fusions:

F�1;�1
.a; b; c; r/F�2;�2

.a; bC�1; cC�1; r/ � � �F�˛;�˛

�
a; bC

˛�1X
iD1

�i ; cC

˛�1X
iD1

�i ; r

�
;

F�˛C1;"1

�
bC

X̨
iD1

�i ; a; cC
X̨
iD1

�i ; r

�
� � �F�˛Cˇ;"ˇ

�
bC

X̨
iD1

�i ; aC

ˇ�1X
iD1

"i ; cC

˛Cˇ�1X
iD1

�i ; r

�
;

F�˛C1;"ˇC1

�
cC

X
�; bC

X̨
iD1

�i ; aC

ˇX
iD1

"i ; r

�

� � �F�˛C
 ;"ˇC


�
cC

X
�; bC

˛C
�1X
iD1

�i ; aC

ˇC
�1X
iD1

"i ; r

�
:

Notice that, at every step of the fusion, the shifts in the color ce are sums of ˙1 terms,
one term for each arc intersecting Ce that has been merged with � . Thus the coefficients
P";�;� are defined and smooth on the required domain V
 D f.�; „/ j �e˙ I



e „ 2 U g.

Furthermore, in the end the shift of ce is no greater than the number of curves that
intersect Ce and of the same parity as this number.

We now only need to explain what happens when we glue together two candlesticks.

First, note that we can only paste candlesticks with the same number of legs, and
the same bottom color n. Moreover, if we paste two candlesticks C.n; ";‚/ and
C.n; �;‚0/ with

P
j �j ¤

P
i "i , then we always obtain 0 (as the vector space Vr .†/

of a sphere † with two points marked by different colors is 0).

Proposition 4.1 The gluing of candlesticks C.n; ";‚/ and C.n; �;‚0/ with k legs
with

Pk
iD1 "i D

Pk
jD1 �j is proportional to a band colored by nC

P
"i joining the

two boundary components of the annulus with no twist, the proportionality constant
being G.n=r; 1=r/, where G is a smooth function on f.�; „/ j � ˙ k„ 2 .0; 1/g.

We should point out that, in this proposition, the function G depends on ‚, ‚0 , "
and �.

Proof We prove this proposition by induction on the number of legs of the candlestick.
If we paste two candlesticks with only one leg, this is direct from the fusion rule
eliminating bigons (see Figure 3), as it only produces a factor .hc˙ 1i=hci/1=2 . Now,
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(a) (b) (c)

Figure 7

if nD 2, the only delicate case is when the legs of the two parts are positioned as in
Figure 7(c).

Indeed, in cases (a) and (b), we can simply eliminate two bigons. For (c), we use the
following switching legs formulae:

�
h1i

hci
D C

.hcC 1ihc � 1i/1=2

hci

c˙ 2

c

c˙ 1
D

c˙ 2

c

c˙ 1

c

c

c˙ 1

c

c

c˙ 1

c

c

c� 1

To get such formulae, we have to verify that gluing the left-hand side or the right-
hand side with a two-legs candlestick on the bottom, with any color shifts, we get the
same result after using the fusion rules for bigons and triangles elimination. This is a
straightforward computation, so we will omit it here.

This shows Proposition 4.1 for k � 2.

Now, suppose we glue two candlesticks with kC 1 legs. We have two cases:

In Figure 8 (left), the upper leg of the upper candlestick and the bottom leg of the
bottom candlestick both go to the right (or both to the left); the gluing is obtained by
gluing two candlesticks with k legs, then suppressing a bigon. The factor we get is of
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C.n; �;‚/

D.n; �;‚0/

C.n; �;‚/

D.n; �;‚0/

Figure 8: The two cases of pasting candlesticks with k legs

the form

G
�

n

r
;

1

r

��˝nCPkC1
iD1 "i

˛˝
nC

Pk
iD1 "i

˛ �1
2

;

the factor G.n=r; 1=r/ coming from k –leg candlestick elimination, and the other factor
from the bigon elimination rule. It is indeed a function of .n=r; 1=r/ that is smooth on
the domain we claimed.

In Figure 8 (right), the upper leg of the upper part and the bottom leg of the bottom
part go to different sides. We apply a sequence of switching legs formulae until the leg
connected to the upper leg of the candlestick is the bottom leg of the bottom candlestick.
Each of these operations yields a smooth function on V
 as a factor; this comes from
the switching legs formulae and the fact that all intermediate colors on the central edge
are of the form nC

Pj
iD1

"i , with j � I


e . Then we are back to the former case.

4.2 Examples of the  –symbol

We derive expressions of the  –symbol for two families of curves on †: the first
family consists of the curves Ce of the pants decomposition itself, and the other of
curves De , e 2E , that are in some sense dual to the curves Ce . The De are defined
this way: if e is an internal edge that joins a vertex to itself, then De is a loop parallel
to e . If e joins two different vertices, then De consists of two arcs parallel to e that
we close into a loop as in Figure 9.

Note that Ce and Df intersect each other if and only if e D f , and in this case
they intersect once or twice. Finally, the classes in H1.�; @�;Z=2/ represented by
p�.Ce/ and by p�.De/ are all zero. Note that in the case where De and Ce have one
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ca

cd

ce

cb

ccDe

Figure 9: The curve De when e joins two distinct trivalent vertices of �

point of intersection, p�.De/ is not zero as a class in H1.�;Z=2/, however it is in
H1.�; @�;Z=2/ as p.De/ is homotopic to a boundary curve in the surface � .

Proposition 4.2 We have, for any e 2E and c 2 Ur :

(1) T
Ce
r 'c D�2 cos.�ce=r/'c and �Ce .�; „; �/D�2 cos.��e/Œ0�.

(2) In the case where e is an edge joining a trivalent vertex to itself as in Figure 10 we
have

�De .�; „; �/D
�
W .��e; ��f ; „/e

i�e CW .��e; ��f ;�„/e
�i�e

�
Œ0�;

where

W .�; ˛; „/D

�
sin.� C˛=2C„=2/ sin.� �˛=2C„=2/

sin � sin.� C„/

�1
2

:

ce

cf

Figure 10: The curve De when e joins a trivalent vertex of � to itself
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(3) In the case where e is an edge between two distinct trivalent vertices as in Figure 9
we have

�De .�; „; �/D�
�
I.��; �„/CJ.��; �„/e2i�e CJ.�.� � 2„ıe/; �„/e

�2i�e
�
Œ0�:

Here, we have set ıe for the element in RE such that ıe;f D 1 if and only if e D f ,

I.�; „/D 2 cos.�c C �d �„/

C 4
sin �aC�d��e�„

2
sin �a��dC�eC„

2
sin �bC�c��e�„

2
sin �b��cC�eC„

2

sin �e sin.�eC„/

C 4
sin �aC�dC�e�„

2
sin ��aC�dC�e�„

2
sin �bC�cC�e�„

2
sin ��bC�cC�e�„

2

sin �e sin.�e �„/

and

J.�; „/D 4

�
sin �aC�d��e�„

2
sin �a��dC�eC„

2
sin �bC�c��e�„

2
sin �b��cC�eC„

2

sin �e sin.�eC„/

�
sin �aC�dC�eC„

2
sin ��aC�dC�eC„

2
sin �bC�cC�eC„

2
sin ��bC�cC�eC„

2

sin.�eC„/ sin.�eC 2„/

�1
2

:

The expressions of T
Ce
r and T

De
r can be derived by using the fusion rules. The

computations are rather long in the last case, but straightforward.

These expressions, as well as the expressions of the  –symbol of the curves Ce and De

were already given in [21]. They also checked by hand that the formulae of Theorem 1.3
were satisfied by these curves. We will only derive from the formulae that the zeroth-
and first-order term for these curves are related as in Theorem 1.3, a fact that we will
use later:

Proposition 4.3 Let 
 be any of the curves Ce or De . Then

�
 .�; „; �/D �
 .�; 0; �/C
„

2i

X
e2E

@2

@�e @�e
�
 .�; 0; �/C o.„/:

Proof For Ce , there is not much to prove: as �Ce does not depend on „, the first-order
term vanishes, and @2�
 .�; 0; �/=@�e @�e also vanishes as �Ce does not depend on �e .

For the curves De , we need to separate the case where e joins a vertex to itself, and
the case where it joins two distinct vertices.

In the first case, depicted by Figure 10, we have

�De .�; „; �/D .W .��e; ��f ; �„/e
i�e CW .��e; ��f ;��„/e

�i�e /Œ0�:
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Notice that we get W .��e; ��f ; �„/ D W
�
�
�
�e C

1
2
„
�
; ��f ; 0

�
C o.„/ from the

formula for W given above. Thus

�De .�; „; �/

D �De .�; 0; �/C
„

2

�
@

@�e
ŒW .��e; ��f ; 0/e

i�e ��
@

@�e
ŒW .��e; ��f ; 0/e

�i�e �
�
Œ0�Co.„/

D �De .�; 0; �/C
„

2i

X
e2E

@2

@�e @�e
�De .�; 0; �/Co.„/;

as expected.

Finally, in the second case above, we have

�De .�; „; �/D�
�
I.��; �„/CJ.��; �„/e2i�e CJ.�.� � 2„ıe/; �„/e

�2i�e
�
Œ0�:

It is easily seen that J.�; „/ D J.� C „ıe; 0/. Thus we only need to prove that
I.�; „/D I.�; 0/C o.„/. This is a bit more tricky:

First, notice that we can write

I.�; „/D 2 cos.�c C �d �„/C
1

sin �e
.F.�eC„/�F.��eC„//C o.„/;

where

F.�e/D 4
sin �aC�d��e

2
sin �a��dC�e

2
sin �bC�c��e

2
sin �b��cC�e

2

sin �e

D
.cos.�d � �e/� cos �a/.cos.�c � �e/� cos �b/

sin �e
:

Therefore, the first-order term for I.�; „/ is

„

�
2 sin.�c C �d /C

2

sin �e

d

d�e
P.F /.�e/

�
;

where P.F / is the even part of the function F . From the formula above, we have

P.F /.�e/D sin.�c C �d / cos �e � cos �a sin �c � cos �b sin �d ;

so that .1= sin �e/ dP.F /.�e/=d�e D � sin.�c C �d /, and the first order of I.�; „/

vanishes.

The computations of �Ce and �De were previously used in [21] to prove a version of
Theorem 1.3 for the punctured torus and the 4–holed sphere. Their approach was to
derive from the above formulae that the asymptotic estimate of Theorem 1.3 is valid for
the curves Ce , De and �Ce

.De/, where �Ce
denotes the Dehn twist along Ce . Then

they used the compatibility of the  –symbol with the product in K.†;�ei�„=2/ to

Geometry & Topology, Volume 20 (2016)



Asymptotic formulae for curve operators in TQFT 3085

prove that if Theorem 1.3 is verified for 
 and ı two multicurves, then it is also true
for their product 
 � ı . This yielded Theorem 1.3 for all multicurves in the punctured
torus and the 4–holed sphere, as the curves Ce , De and �Ce

.De/ were sufficient to
generate the Kauffman algebra.

However, this approach fails in higher genus, as this set of curves no longer generate
the Kauffman algebra. Therefore, we developed another approach to tackle the higher-
genus cases, which was also more conceptual and required less computations. Our
fundamental idea is to use the multiplicativity of the  –symbol together with the
theorem of Bullock (recalled in Section 2) to view the zeroth- and first-order term of the
 –symbol in terms of algebra morphism and derivation of algebras on Reg.M0.†//.
We then only need to compare this general shape with the values of the  –symbol on
a few curves to get the formula of Theorem 1.3. (In fact, for the zeroth-order term we
will only need the values on the Ce , while the first-order term also requires the values
on the De ).

5 Principal symbol and representation spaces

This section will be centered on the study of the principal symbol �
 .�; 0; �/, that
is the zeroth order of the  –symbol �
 .�; „; �/. The goal of the first subsection
is to establish the formula for the principal symbol, which is stated in our main
theorem: �
� .�; 0; �/D f
 .R�.�; �//, where f
 is the function on M.†/ such that
f
 .�/D�Tr.�.
 // and R� are action-angles parametrization on M.†/.

5.1 Principal symbol and the SL2–character variety

This section aims to establish a link between the components of the principal symbol
�� and functions on the space of representations �1.†/! SL2.C/.

We will start our study of the principal symbol by the following proposition, which
describes which values �
� .�; �/ can take:

Proposition 5.1 For any multicurve 
 and � 2 yA� , we have:

(1) �


� .�; �/ 2R.

(2) j�
� .�; �/j � 2n.
 / , where n.
 / is the number of components of 
 .

Proof (1) We recall that the components of the  –symbol �
� are complex-valued.
The stated property comes from the fact that curve operators are Hermitian: for any
multicurve 
 , and every r , the operator T



r is a Hermitian endomorphism of Vr .†/.
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By definition, we have T


r 'c D

P
k F




k
.c=r; 1=r/'cCk . As the basis .'c/c2Ur

is a
Hermitian basis, we get

F



�k

�
cCk

r
;

1

r

�
D F




k

�
c

r
;

1

r

�
for all c 2 Ur . Then for r !C1 we have F




�k
.�; 0/D F




k
.�; 0/.

Hence �
� .�; �/D �.
 /
P

k F



k
.�; 0/eik�� 2R for all .�; �/ 2 U � .R=2�Z/E .

(2) We want to find a bound for j�
� .�; �/j, where 
 is a multicurve. By definition,
we have �
� .�; �/ D �.
 /

P
k F




k
.�; 0/eik�� . On the one hand, we know that the

coefficients F



k
are zero as soon as there is an e such that jkej > I



e D ].
 \Ce/.

The number of nonzero coefficients is then lower than M
 D
Q

e2E.2I


e C1/. On the

other hand, for any r � 2 and c 2 Ur ,

F



k

�
c

r
;

1

r

�
D hT 


r 'c ; 'cCki � kT


r k:

We recalled in Section 2 that the spectral radius of T


r is always � 2n.
 / . Thus we

have jF

k
.c=r; 1=r/j � 2n.
 / for every r > 0 and every c 2 Ur . Taking the limit, we

get jF

k
.�; 0/j � 2n.
 / .

These two estimations only allow us to write j�
� .�; �/j �M
2n.
 / . To obtain the
promised inequality, we use the multiplicativity of � ��.�; �/:

We have j�

p

� .�; �/j D j�


� .�; �/j

p for any integer p . But 
p is also a multicurve,
obtained by taking p parallel copies of each component of 
 .

So we have that j�

p

� .�; �/j �M
p 2n.
p/ .

But the number of components n.
p/ is just pn.
 /, and the geometric intersection
numbers

I
e D ].
 \Ce/

verify I

p

e � pI


e .

From the product formula defining M
 , we get that M
p � pjEjM
 .

We conclude that j�

p

� .�; �/j � pjEjM
2pn.
 / .

Then, taking the limit p ! C1, we get that j�
� .�; �/j � 2n.
 / for all .�; �/ in
U � .R=2�Z/E .

Now, recall that the components of the  –symbol

��.�; �/W K.†;�1/!C
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are morphisms of algebras. There is a simple description of all such morphism of
algebras: indeed, by Theorem 2.2, we have an isomorphism

K.†;�1/' Reg.M0.†//;

where M0.†/ stands for Hom.�1†;SL2.C//==SL2.C/, the space of characters of
the fundamental group of † in SL2.C/. This space is an affine algebraic variety, and
we are writing Reg.M0.†// for the set of regular functions from M0.†/ to C/. A
morphism of algebras � from Reg.M0.†// to C is always of the form

�W f 7! f .�/

for some � 2M0.†/. We deduce the existence of maps

R�W U � .R=2�Z/E!M0.†/

such that �
� .�; �/D f
 .R�.�; �//.

5.2 A system of action-angle coordinates on the SU2–character variety

This subsection will be devoted to the study of the maps R� more closely, the aim
being to prove that it actually gives action-angle coordinates on the character variety
Hom.�1.†/;SU2/=SU2 , which we will denote by M.†/.

In M.†/ there is an open dense subset Mirr.†/ consisting of all conjugacy of irre-
ducible representations. It is a well-known fact that Mirr.†/ consists only of smooth
points of M.†/ and it has a symplectic structure.

The maps R� have at first sight their image in M0.†/. Again, we have a subset
M0irr.†/ � M0.†/ consisting of conjugacy classes of irreducible representations,
and there is a structure of complex symplectic variety on this subspace. Moreover,
Mirr.†/�M0irr.†/.

We have two remarks:

First, we point out that R�.�; �/ is always a noncommutative representation. Indeed,
for a commutative representation, we would have, for three adjacent edges e , f and g ,

hCe
.�/C hCf .�/D hCg

.�/

for one of the three orderings of e , f and g , or have hCe
.�/ChCf .�/ChCg

.�/D 2.
This can not happen for R�.�; �/ as .hCe

/e2E maps it to � 2 U , and we have strict
inequalities �g < �eC �f and �eC �f C �g < 2.

Our second point is that the map R� is smooth. By our first remark its image is
indeed in the smooth part of M0.†/. Note that for any 
 2 K.†;�1/ the map
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.�; �/! �
 .�; 0; �/ is smooth on U � .R=2�Z/E , so .�; �/! Tr.R�.�; �/.
 // is
smooth for every 
 2 �1.†/. As the space M0.†/ can be parametrized by a finite
collection of coordinates �! Tr.�.
j //, where 
j 2 �1.†/, the map

R�W U � .R=2�Z/E!M0.†/
is smooth.

Proposition 5.2 The maps R� take values in Mirr.†/D Hom.�1†;SU2/=SU2 .

Proof Indeed, we have seen with Proposition 5.1 that �
� .�; �/ is real-valued. We can
use a well-known lemma:

Lemma Any irreducible subgroup G � SL2.C/ such that the trace of all elements of
G are real is conjugated to either a subgroup of SL2.R/ or a subgroup of SU2 .

The proof of this lemma is based only on elementary algebra, manipulating trace of
products of elements of G . A detailed proof can be found for example in [19, pages
3040–3041].

As we have �
 .�; 0; �/D�Tr.R.�; �/.
 // 2R, we get that R.�; �/ is conjugated to
either a representation in SL2.R/ or a representation in SU2 .

To prove Proposition 5.2, we still need to dismiss the case where the image of R�.�; �/

would be conjugated to a subgroup of SL2.R/. To this end, we use Proposition 5.1(2),
which states that jTr.R�.�; �/
 /j � 2 for every 
 2 �1.†/ representing a simple
closed curve on †. We use the following lemma, proved in [17, Lemma 3.1.1]:

Lemma Let �W �1.†/!PSL2.C/ be a nonelementary representation, then there exist
two simple loops a and b intersecting once such that �.a/ and �.b/ are loxodromic
(meaning jTr.�.a//j> 2 and jTr.�.b//j> 2) and noncommuting.

This lemma follows from elementary considerations in hyperbolic geometry. From the
lemma, we get that, since R.�; �/.a/ is never loxodromic, it must be an elementary
representation into PSL2.C/. But if R.�; �/ was conjugated to a representation in
SL2.R/, it would be a commutative representation, and we saw that R.�; �/ is not.

Proposition 5.3 For any � 2 yA� , the map

R�W U � .R=2�Z/E!M.†/; .�; �/ 7!R�.�; �/;

gives action-angle coordinates on the symplectic variety Mirr.†/.
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Proposition 5.2 of [20] shows that when a pants decomposition C D fCege2E of † is
given, the family of functions hCe

D
1
�

Acos
�
�

1
2
fCe

�
constitutes a moment mapping

hW h�1.U /!U and h�1.U / is an open dense subset of M.†/. The variables �e are
the action coordinates associated to this moment mapping:

hCe
.R�.�; �//D

1

�
Acos

�
�

1
2
fCe

.R�.�; �//
�
D

1

�
Acos

�
�

1
2
�Ce
� .�; �/

�
D �e;

where the third equality comes from the computation of the operator T
Ce
r given in

Section 4: for any coloration c of E , we have T
Ce
r 'c D �2 cos.�c=r/'c , so that

�
Ce
� .�; �; „/D FCe

0
.�; „/�.Œ0�/D�2 cos.��e/.

The only missing condition for .�; �/ to be a system of action-angle coordinates on
M.†/ is that

R��.!/D
X
e2E

d�e ^ d�e;

where ! refers to the symplectic form on the variety M.†/.

It also amounts to the fact that the vector fields @�e
and XhCe

(the symplectic gradient
associated to the function hCe

) on M.†/ are equal. This equality of vector fields can
be rewritten in terms of Poisson brackets:

fhCe
; f g D

@

@�e
f .R�.�; �// for all f 2 C1.M.†/;C/ and all �; �:

As the map f ! fhCe
; f g is a first-order differential operator, and any function f

on M.†/ can be approximated at order 1 near any point � 2M.†/ by a linear
combination of trace functions f
 associated to multicurves, we only need to verify
the equality when f D f
 , the trace function of a multicurve 
 .

To compute such Poisson brackets, we can apply Theorem 2.3:

We denote by " the linear map

"W K.†;�ei�„=2/!K.†;�1/' Reg.M0.†//;X

 multicurve

c
 .„/
 7!
X


 multicurve

c
 .0/
:

For 
 and ı 2K.†;�ei�„=2/ we have

ff".
 /; f".ı/g D f"..i=„/Œ
;ı�/

with Œ
; ı�D 
 � ı� ı � 
 2K.†;�ei�„=2/.

We apply the above formula to compute fhCe
; f
 g for any 
 2K.†;�ei�„=2/: We

recall that hCe
D

1
�

Acos
�
�

1
2
fCe

�
. Our strategy to compute the Poisson bracket is to

approximate hCe
with polynomials in fCe

.
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Since � 2U we have �2 cos.��e/ 2 .�2; 2/ and we can choose a polynomial P such
that P

�
�2 cos.�.�eCx//

�
D xC o.x2/.

Now, the maps

f � ; f
 gW C
1.M.†//! C1.M.†// and .i=„/Œ � ; 
 �W K.†;�1/!K.†;�1/

being derivations of algebras, we have, by Goldman’s formula,

fP .fCe
/; f
 g.R�.�; �//D f"..i=„/ŒP.Ce/;
 �/.R�.�; �//D �

"..i=„/ŒP.Ce/;
 �/
� .�; �; 0/:

We compute this last quantity: we recall that we wrote T


r 'c D

P
k F




k
.�; „/'cCk and

we gave in Section 4.2 the expression T
Ce
r 'c D�2 cos.��e/'c . Hence T

P.Ce/
r 'c D

P .�2 cos.��e//'c . We deduce that, for c 2 Ur ,

T ŒP.Ce/;
 �
r 'c D

X
k

P
�
�2 cos.�.�eC ke„//

�
F



k
.�; „/'cCk

�

X
k

P .�2 cos.��e//F



k
.�; „/'cCk :

But, since ŒC k
e �D Œ0� in A� ,

�"..i=„/ŒP.Ce/;
 �/
� .�; �; 0/

D i
X

k

P
�
�2 cos.�.�eC ke„//

�
�P .�2 cos.��e//

„

ˇ̌̌̌
„D0

F



k
.�; 0/eik���.
 /:

By our choice of P this reduces toX
k

ikeF



k
.�; „/eik���.
 /D

@

@�e

�
� .�; 0; �/D
@

@�e

f
 .R�.�; �//:

The last equality ends the proof: we have fhCe
; f
 g.R�.�; �//D @f
 .R�.�; �//=@�e

for every multicurve 
 , and R� gives an action-angle parametrization of Mirr.†/. �

5.3 Origin of angle coordinates

We want to investigate how exactly R� varies with � 2 yA� . We recall that according
to Section 3.2, the values of two different morphisms � and �0 on Œ
 � differ by a
representation �W H1.�; @�;Z=2/! f˙1g.

Let us also get more precise information about angle coordinates. We recall that we
have a hamiltonian hWMirr.†/! U , given by .h.�//e D 1

�
Acos

�
1
2

Tr.�.Ce//
�
. The

hamiltonian flow gives an action of RE on Mirr.†/. This action has a kernel

ƒD VectZf.2�ue/e2E ; �.ueCuf Cug/.e;f;g/2Sg;
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where .ue/e2E is the canonical basis of RE , E is the set of edges of � and S

is the set of triples of edges adjacent to the same vertex in � . We also define
ƒ0 D VectZ.�ue/ � ƒ. The quotient ƒ0=ƒ then acts on Mirr.†/ by �ue � �.
 / D

.�1/.Ce;
 /�.
 /, where . � ; � / is the intersection form in †.

Now that we know that the maps R� give action-angle coordinates on Mirr.†/, the
only ambiguity is the choice of the origin of the angle part. That is, we must have, for
any �, �0 2 yA� , that R�0.�; �/D R�.�; � C v�;�0.�//, where v�;�0 is a continuous
function from U to R=ƒ.

We use the values of R� on the curves De to get the origin of the angle coordinates. We
have Tr.R�.�; �/.De//D ��

De
� .�; 0; �/D �2W .��; 0/ cos �e if e joins a vertex to

itself, and Tr.R�.�; �/.De//D I.��; 0/C2J.��; 0/ cos.2�e/ otherwise. We see that,
in the first case, �e D 0 is the unique minimum of Tr.R�.�; �/.De//, so that the origin
of this coordinate is the same for all �2 yA� . In the second case, �e 7!Tr.R�.�; �/.De//

has exactly two maxima, one for �eD 0 and one for �eD� . So � is fixed modulo �ue .
Thus, for �, �0 2 yA� , we have v�;�0.�/ 2 ƒ0=ƒ. Furthermore, v�;�0 is continuous,
hence it has to be constant.

Taking two elements � and �0 in yA� , we know that they differ by a morphism

�W H1.�; @�;Z=2/! f˙1g:

It is possible to recover the vector v�;�0 2ƒ0=ƒ from the representation � : by Poincaré
duality, one can write �.p�.
 // D .�1/hC;
 i , where C 2 H1.†;Z=2/, p� is the
projection H1.†;Z=2/ ! H1.�; @�;Z=2/ and h � ; � i is the intersection form in
H1.†;Z=2/. Remember that p� maps each Ce to zero, so that the intersection
of C with each Ce must vanish. As the Ce generate a Lagrangian of H1.†;Z=2/,
C is a linear combination of the Ce and this yields a vector v� 2 ƒ0=ƒ such that
R��.�; �/DR�.�; � C v�/.

We need to note that when � is a planar graph we can drop this complicated consid-
eration of angle origins and we could have taken the  –symbol to be just C–valued.
Indeed, in this case the intersection form in H1.�; @�;Z=2/ is trivial, and the image
of H1.†;Z=2/!H1.�; @�;Z=2/ is f0g, so the  –symbol is C–valued.

6 First order of the  –symbol

In this section, we investigate the first-order term in „ of the asymptotic expansion of
the  –symbol. We identify this term by linking it with the principal symbol, for which
we already know a formula.
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We recall that for 
 a multicurve, the map .�; „; �/ 7! �
 .�; „; �/ is defined as a finite
sum of smooth functions on V
 , and V
 is a neighborhood of U � f0g in U � Œ0; 1�.
We may write, for any multicurve 
 ,

�
 .�; „; �/D �
 .�; 0; �/C„.�
 .�; �/CD
 .�; �//C o.„/:

Here, �
 .�; �/ refers to the expected first order as in Theorem 1.3:

�
 .�; �/D
1

2i

X
e

@2

@�e @�e
�
 .�; 0; �/:

Hence, what we want to prove in this section is that the remainder D
 .�; �/ is zero for
all 
 and .�; �/ 2 U � .R=2�Z/E .

We remark that the previous expressions define �.�; �/ and D.�; �/ as maps from
the set of multicurves to A� , which we can extend by linearity to linear maps
K.†;�ei�„=2/!A� ŒŒ„��.

Furthermore, �
 and D
 are some linear combinations of partial derivatives of the
smooth functions Fk on V
 , so they are both smooth on U � .Z=2�Z/E .

Proposition 6.1 For any multicurve 
 and for all .�; �/, the remainder term D
 .�; �/

vanishes, so that the first-order term of �
 .�; „; �/ is

�
 .�; �/D
1

2i

X
e

@2

@�e @�e
�
 .�; 0; �/:

The proof relies on the following two lemmas:

Lemma 6.2 Let .�; �/ be in U � .R=2�Z/E . We will provide C with the structure
of a K.†;�1/–module (or equivalently of Reg.M0.†//–module): for x 2 C and
f 2Reg.M0.†//, we define f �xDf .R�.�; �//x . Then the corresponding component
of the remainder term 
 7! �.D
 .�; �// is a derivation of K.†;�1/–modules from
K.†;�1/ to C .

Lemma 6.3 With respect to the above-discussed Reg.M0.†//–module structure on
C as above, we have an isomorphism Der.Reg.M0.†//;C/'TR�.�;�/M.†/ sending
a vector X 2 TR�.�;�/M.†/ to the derivation f ! LX f .R�.�; �//, and the vector
fields .R�� @=@�e;R

�
� @=@�e/ give a basis of the tangent spaces TR�.�;�/M.†/.

Proof of Lemma 6.2 We use Proposition 3.3 to determine how the remainder term
D.�; �/ behaves with the product of elements in K.†;�ei�„=2/. We work with one
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component �� of the  –symbol at a time. For 
 2K.†;�1/, we will use the notation
E
 D�.�
CD
 /, so that we can write �
� .�; „; �/D �



� .�; 0; �/C„E
 .�; �/Co.„/.

Then, applying � 2 yA� to Proposition 3.3 we have

�
 �ı� .�; „; �/D �
� .�; „; �/�
ı
�.�; „; �/C

„

i

X
e

@�e
�
� .�; „; �/ @�e

�ı�.�; „; �/C o.„/:

We have �
� .�; 0; �/D f
 .R�.�; �//. Recall that, by Theorem 2.3,

f
 �ı D f
fıC„
�

i
ff
 ; fıgC o.„/:

So, isolating terms of order 1 in „, we get
�

i
ff
 ; fıg.R�.�; �//CE
 �ı.�; �/

DE
 .�; �/fı.R�.�; �//CEı.�; �/f
 .R�.�; �//

C
1

i

X
e

@�e
f
 .R�.�; �// @�e

fı.R�.�; �//;

but ff
 ; fıg D .1=2�/
P

e @�e
f
 @�e

fı � @�e
fı @�e

f
 . We deduce that

E
 �ı DE
�
ı
�CEı�



� C

1

2i

X
e

@�e
�
� @�e

�ı�C @�e
�
� @�e

�ı�:

However, as for 
 , ı 2K.†;�1/ we have, by Theorem 2.2, that f
 �ı D f
fı , and

�.�
 /D
1

2i

X
e

@2f


@�e @�e
ıR�;

the Leibniz rule implies that �.�
 / satisfies the same law of composition:

�.�
 �ı/D �.�
 /fıC�.�ı/f
 C
1

2i

X
e

@�e
f
 @�e

fıC @�e
f
 @�e

fı:

This concludes the proof of Lemma 6.2: � ıD is a derivation.

Proof of Lemma 6.3 It is well known that M0.†/ is an affine algebraic variety whose
smooth points is the open dense subset M0irr.†/ (see [25], for example). The point
R�.�; �/ is thus a smooth point of M0.†/ for any .�; �/ 2 U �R=2�Z.

Then the proof comes from elementary considerations of algebraic geometry: when V

is an affine algebraic variety and x a point of V , we put a structure of Reg.V /–module
on C by defining f ��Df .x/�. Then Derx.V;C/ identifies with TxV Dmx=.mx/

2 ,
the algebraic tangent space to V at x (where mx D ff j f .x/D 0g), and the algebraic
tangent space at a smooth point is the same as the tangent space of V at x in the
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sense of differential manifolds. As the affine variety M0.†/ is smooth on the image
of R� , by this general property, derivations of Reg.M.†// can be viewed as vectors
of the tangent space. As .�; �/ 7!R�.�; �/ is a parametrization of M.†/, the vector
fields ..R�/� @=@�e; .R�/� @=@�e/ give a basis of the tangent space TR�.�;�/M.†/

for each .�; �/.

Proof of Proposition 6.1 Combining Lemmas 6.2 and 6.3 allows us to assert that
�.D.�; �//, viewed as a map Reg.M0.†//!C , is of the form f 7! LX f .R�.�; �//

for some X 2 TR�.�;�/M
0.†/ and we may write X D

P
e ae @=@�e

C be @=@�e
for

some coefficients ae , beWM.†/! C . As D
 is smooth, so are the coefficients ae

and be .

We want to prove that these coefficients all vanish. To this end, we recall that we proved
in Section 4.2 that the remainder term vanishes for the curves Ce and De . Furthermore,
we have the formula of Section 4:

We have �Ce .�; „; �/D�2 cos��e Œ0�, so that �.DCe
/.�; �/D 2ae� sin.��e/. Since

the remainder term vanishes on Ce , we must have ae D 0.

To show the vanishing of the be , we use the formulae for De :

For the first kind of curve De , described in Section 4.2, we have fDe
.R�.�; �// D

�
De
� .�; 0; �/D 2W .��; 0/ cos �e , where W does not vanish for � 2 U .

We know that the remainder term DDe
vanishes, so we have

�.DDe
.�; �//D be

@

@�e
fDe

.R�.�; �//D�2be� sin.�e/W .��; 0/D 0:

This yields be D 0.

In the second case, fDe
.R�.�; �// D �

De
� .�; 0; �/ D �2J.��; 0/ cos 2�e � I.��; 0/

for the functions I and J defined in Section 4.2, which are nonvanishing for � 2 U .

Again since �.DDe
.�; �// D be @fDe

.R�.�; �//=@�e D 4�be sin.2�e/J.��; 0/ van-
ishes, we must have be D 0. It follows that the remainder term 
 7!D
 is the zero
derivation on K.†;�1/ 7! A� , which is the last ingredient we needed to complete
the proof of Proposition 6.1.
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