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The Picard group of topological modular forms
via descent theory

AKHIL MATHEW

VESNA STOJANOSKA

This paper starts with an exposition of descent-theoretic techniques in the study of
Picard groups of E1–ring spectra, which naturally lead to the study of Picard spectra.
We then develop tools for the efficient and explicit determination of differentials in the
associated descent spectral sequences for the Picard spectra thus obtained. As a major
application, we calculate the Picard groups of the periodic spectrum of topological
modular forms TMF and the nonperiodic and nonconnective Tmf. We find that
Pic.TMF/ is cyclic of order 576 , generated by the suspension †TMF (a result
originally due to Hopkins), while Pic.Tmf/DZ˚Z=24 . In particular, we show that
there exists an invertible Tmf–module which is not equivalent to a suspension of
Tmf.

14C22, 55N34, 55P43, 55S35, 55T99; 55P47

1 Introduction

Elliptic curves and modular forms occupy a central role in modern stable homotopy
theory in the guise of the variants of topological modular forms: the connective tmf, the
periodic TMF, and Tmf, which interpolates between them. These are structured ring
spectra which have demonstrated surprising connections between the arithmetic of ellip-
tic curves and v2–periodicity in stable homotopy. For example, tmf detects a number
of 2–torsion and 3–torsion classes in the stable homotopy groups of spheres through
the Hurewicz image. Even more interestingly, the more geometric-natured TMF can
be used to detect and describe, using congruences between modular forms, the 2–line
of the Adams–Novikov spectral sequence at primes p � 5, according to Behrens [7].

From a different perspective, the structure of topological modular forms as E1–ring
spectra leads to symmetric monoidal 1–categories of modules which give rise to well-
behaved invariants of algebraic or algebrogeometric type. For instance, Meier [48] has
studied TMF–modules which become free when certain level structures are introduced;
these can be thought of as locally free sheaves with respect to a predetermined cover.
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Our goal in this paper is to understand another such invariant, the Picard group. Any
symmetric monoidal category has an associated group of isomorphism classes of
objects invertible under the tensor product, which is called the Picard group. The
classical examples are the Picard group Pic.R/ of a ring R , ie of the category Mod.R/
of R–modules, or the Picard group of a scheme X , ie of the category Mod.OX / of
quasicoherent modules over its structure sheaf. In homotopy theory, the interest in
Picard groups arose when Mike Hopkins made the observation that the homotopy cate-
gories of En–local and K.n/–local spectra have interesting Picard groups, particularly
when the prime at hand is small in comparison with n. Here, En is the Lubin–Tate
spectrum and K.n/ is the Morava K–theory spectrum at height n. In the few existing
computations of such groups, notably those in Hopkins, Mahowald and Sadofsky [26],
Hovey and Sadofsky [27], Kamiya and Shimomura [29], Goerss, Henn, Mahowald
and Rezk [17] and Heard [21], one often uses that an invertible En–module must be a
suspension of En itself.

The K.2/–localization of any of the three versions of topological modular forms gives
a spectrum closely related to the Lubin–Tate spectrum E2 ; namely, this localization is
a finite product of homotopy fixed point spectra of finite group actions on E2 (or slight
variants of E2 with larger residue fields). More generally, each En is an E1–ring
spectrum with an action, through E1–ring maps, by a profinite group Gn called the
Morava stabilizer group (see Rezk [57] for the E1–ring case). The K.n/–local sphere
is obtained then as the Devinatz–Hopkins homotopy fixed points. However, Gn also has
interesting finite subgroups when the prime is relatively small with respect to n. If G
is such a subgroup, the homotopy fixed points EhGn are an E1–ring spectrum, which
is in theory easier to study than the K.n/–local sphere, but hopefully contains a lot of
information about the K.n/–local sphere. For instance, Hopkins has observed that in
all known examples, the Picard group of EhGn (unlike that of the K.n/–local category)
is very simple as it only contains suspensions of EhGn , and raised the following natural
question.

Question (Hopkins) Let G be a finite subgroup of the Morava stabilizer group Gn

at height n. Is it true that any invertible K.n/–local module over EhGn is a suspension
of EhGn ?

The periodic TMF is closer to its K.2/–localization than Tmf, and this is demonstrated
by the following result, originally due to Hopkins but unpublished.

Theorem A (Hopkins) The Picard group of TMF is isomorphic to Z=576, generated
by the suspension †TMF.
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In the paper at hand, we prove Theorem A using a descent-theoretic approach. In
particular, our method is different from Hopkins’s. The descent-theoretic approach
also enables us to prove that, nonetheless, the nonconnective, nonperiodic flavor of
topological modular forms Tmf behaves differently and has a more interesting Picard
group.

Theorem B The Picard group of Tmf is isomorphic to Z˚Z=24, generated by the
suspension †Tmf and a certain 24–torsion invertible object.

In addition, we explicitly construct the 24–torsion module in Construction 8.4.2. We
note that, after the initial submission of this paper, the preprint of Hill and Meier [23]
appeared, in which the authors use techniques from C2–equivariant stable homotopy
to construct exotic torsion elements in the Picard group of Tmf1.3/. In contrast, our
construction is given by an unusual gluing of locally trivial modules.

We hope that our method of proof of Theorems A and B, which is very general, will
also be of interest to those not directly concerned with TMF. Our method is inspired by
and analogous to the forthcoming work of Gepner and Lawson [15] on Galois descent
of Brauer as well as Picard groups, though the key ideas are classical.

Take, for example, the periodic variant TMF. Its essential property is that it arises as
the global sections of the structure sheaf Otop of a regular “derived stack” .Mell;Otop/

refining the moduli stack of elliptic curves Mell . Thus

TMFD �.Mell;Otop/D lim
 ��

SpecR!Mell

�.SpecR;Otop/;

where the maps SpecR!Mell range over all étale morphisms from affine schemes
to Mell . Moreover, the E1–ring spectra �.SpecR;Otop/ are weakly even periodic;
thus we have TMF as the homotopy limit of a diagram of weakly even periodic
E1–rings. It follows by the main result in Mathew and Meier [42] that the module
category of TMF can also be represented as the inverse limit of the module categories
Mod.Otop.SpecR//, that is, as quasicoherent sheaves on the derived stack. In any
analogous situation, our descent techniques for calculating Picard groups apply.

Over an affine chart SpecR!Mell , the Picard group of �.SpecR;Otop/ (ie that of an
elliptic spectrum) is purely algebraic, by a classical argument in Hopkins, Mahowald
and Sadofsky [26] and Baker and Richter [4] with “residue fields”. This results from the
fact that the ring ���.SpecR;Otop/ is homologically simple: in particular, it has finite
global dimension, which makes the study of �.SpecR;Otop/–modules much easier.
One attempts to use this together with descent theory to compute the Picard group
of TMF itself; however, doing so necessitates the consideration of higher homotopy
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coherences. For this, it is important to work with Picard spectra rather than Picard
groups, as they have a better formal theory of descent.

The Picard spectrum pic.A/ of an E1–ring A is an important spectrum associated
to A that deloops the space of units GL1.A/ of May [46]:1 it is connective, its �0 is
the Picard group of A, and its 1–connective cover ��1 pic.A/ is equivalent to † gl1.A/

for gl1.A/ the spectrum of units of [46]. We find that the Picard spectrum of TMF
is the connective cover of the homotopy limit of pic.Otop.SpecR//, taken over étale
maps SpecR!Mell . This statement is a homotopy-theoretic expression of the descent
theory that we need. Thus, we get a descent spectral sequence for the homotopy groups
of pic.TMF/, which is a computational tool for understanding the aforementioned
homotopy coherences concretely. We use this technique to compute �0.pic.TMF//,
the group we are after.

The descent spectral sequence has many consequences in cases where it degenerates
simply for dimensional reasons, or in cases where the information sought is coarse. For
instance, in a specific example (Proposition 2.4.9), we show that the Picard group of
the E1–ring C �.S1IQŒ��=�2/ is given by Z�Q, which yields a counterexample to a
general conjecture of Balmer [5, Conjecture 74] on the Picard groups of certain tensor-
triangulated categories. We also prove the following general results in Sections 4 and 5.

Theorem C Let A be a weakly even periodic Landweber exact E1–ring with �0A
regular noetherian. Let n� 1 be an integer, and let Ln denote localization with respect
to the Lubin–Tate spectrum En . The Picard group of LnA is

Pic.LnA/D Pic.��A/���1.LnA/;

where Pic.��A/ refers to the (algebraic) Picard group of the graded commutative
ring ��A.

Note that Pic.��A/ sits in an extension

0! Pic.�0A/! Pic.��A/! Z=2! 0;

which is split if A is strongly even periodic.

Theorem D Let A be an E1–ring such that �0A is a field of characteristic zero and
such that �iAD 0 for i > 0. Then Pic.A/ is infinite cyclic, generated by †A.

Theorem E Let G be a finite group, and let A!B be a faithful G–Galois extension
of E1–rings in the sense of Rognes [59]. Then the relative Picard group of B=A, ie
the kernel of Pic.A/! Pic.B/, is jGj–power torsion of finite exponent.

1See Ando, Blumberg, Gepner, Hopkins and Rezk [2] for a very important application.
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For TMF, the descent spectral sequence does not degenerate so nicely, and we need to
work further to obtain our main results. The homotopy groups of the Picard spectrum
of an E1–ring A, starting with �2 , are simply those of A: in fact, we have a natural
equivalence of spaces

�1C2 pic.A/'�1C1A:

This determines the E2–page and many of the differentials in the descent spectral
sequence for Pic.TMF/, but not all the ones that affect �0 . A key step in our argument
is the identification of the differentials of the descent spectral sequence for the Picard
spectra, in a certain range of dimensions, with that of the (known) descent spectral
sequence for ��.TMF/. We prove this in a general setting in Section 5.

At the prime 2, this technique is not sufficient to determine all the differentials in the
descent spectral sequence, and we need to determine in addition the first “unstable”
differential in the Picard spectral sequence (in comparison to the usual descent spectral
sequence). We give a “universal” formula for this first differential in Theorem 6.1.1,
which we hope will have further applications.

Conventions Throughout, we will write S for the 1–category of spaces, S� for
the 1–category of pointed spaces, and Sp for the 1–category of spectra. We
will frequently identify abelian groups A with their associated Eilenberg–Mac Lane
spectra HA. Finally, all spectral sequences are displayed with the Adams indexing
convention, ie the vertical axis represents the cohomological degree, and the horizontal
axis represents the total topological degree.
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are grateful to Justin Noel for catching an error in some of the computations and to
Paul Goerss for pointing us to the work of Priddy [54]. We would also like to thank
the referee for numerous helpful comments. We created the spectral sequence figures
using Tilman Bauer’s sseq LATEX package. Mathew is partially supported by the NSF
Graduate Research Fellowship under grant DGE-110640, and Stojanoska is partially
supported by NSF grant DMS-1307390.

Part I Generalities

2 Picard groups

We begin by giving an introduction to Picard groups in stable homotopy theory. General
references here include [26; 47].
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2.1 Generalities

Let .C;˝; 1/ be a symmetric monoidal category.

Definition 2.1.1 The Picard group of C is the group of isomorphism classes of
objects x 2 C which are invertible, ie such that there exists an object y 2 C such
that x˝y ' 1. We will denote this group by Pic.C/.

Remark 2.1.2 If C is a large category, then it is not necessarily clear that the Picard
group is a set. However, in all cases of interest, C will be presentable so that this will
be automatic (see Remark 2.1.4).

When C is the category of quasicoherent sheaves on a scheme (or stack) X , then this
recovers the usual Picard group of X : line bundles are precisely the invertible objects.
The principal goal of this paper is to compute a Picard group in a homotopy-theoretic
setting.

We will repeatedly use the following simple principle, which follows from the observa-
tion that tensoring with an invertible object induces an autoequivalence of categories.

Proposition 2.1.3 Let C0 � C be a full subcategory that is preserved under any
autoequivalence of C . Suppose the unit object 12C belongs to C0 . Then any x 2Pic.C/
belongs to C0 as well.

For example, if 1 is a compact object (that is, if HomC.1; � / commutes with filtered
colimits), then so is x .

Suppose now that, more generally, C is a symmetric monoidal 1–category in the
sense of [39], which is the setting that we will be most interested in. Then we can
still define the Picard group Pic.C/ of C , which is the same as Pic.Ho.C//. Moreover,
Proposition 2.1.3 is valid, but where one is allowed to (and often should) use 1–
categorical properties.

Remark 2.1.4 The theory of presentable 1–categories [34, Section 5.5] enables
one to address set-theoretic concerns. If C is a presentable symmetric monoidal 1–
category, then the unit of C is �–compact for some regular cardinal � . Therefore, by
Proposition 2.1.3 (strictly speaking, its 1–categorical analog), every invertible object
of C is �–compact, and the collection of �–compact objects of C is essentially small.
In particular, the collection of isomorphism classes forms a set and the Picard group is
well defined.

Geometry & Topology, Volume 20 (2016)



The Picard group of topological modular forms via descent theory 3139

Example 2.1.5 Suppose that C is a symmetric monoidal stable 1–category such that
the tensor product commutes with finite colimits in each variable. Then one has a
natural homomorphism

Z! Pic.C/;
sending n 7!†n1.

Example 2.1.6 Let Sp be the 1–category of spectra with the smash product. Then it
is a classical result [26, page 90] that Pic.C/'Z, generated by the sphere S1. A quick
proof based on the above principle (which simplifies the argument in [26] slightly)
is as follows. If T 2 Sp is invertible, so that there exists a spectrum T 0 such that
T ^T 0 ' S0, then we need to show that T is a suspension of S0.

Since the unit object S0 2 Sp is compact, it follows that T is compact: that is, it is a
finite spectrum. By suspending or desuspending, we may assume that T is connective,2

and that �0T ¤ 0. By the Künneth formula, it follows easily that H�.T IF / is
concentrated in one dimension for each field F . Since H�.T IZ/ is finitely generated,
an argument with the universal coefficient theorem implies that H�.T IZ/ is torsion-
free of rank one and is concentrated in dimension zero: ie H0.T IZ/ ' Z. By the
Hurewicz theorem, T ' S0.

Example 2.1.7 Other variants of the stable homotopy category can have more compli-
cated Picard groups. For instance, if E 2 Sp, one can consider the 1–category LESp
of E–local spectra, with the symmetric monoidal structure given by the E–localized
smash product .X; Y / 7! LE .X ^Y /. The Picard group of LESp is generally much
more complicated than Z. When E is given by the Morava E–theories En or the
Morava K–theories K.n/, the resulting Picard groups have been studied in [26; 27],
among other references.

Another important example of this construction arises for R an E1–ring, when we
can consider the symmetric monoidal 1–category Mod.R/ of R–modules.

Definition 2.1.8 Given an E1–ring R , we write Pic.R/ to denote the Picard group
Pic.Mod.R//.

Using the same argument as in Example 2.1.6, it follows that any invertible R–module
is necessarily compact (ie perfect): in particular, the invertible modules actually form
a set rather than a proper class. Note that if R is simply an E2–ring spectrum, then
Mod.R/ is a monoidal 1–category, so one can still define a Picard group. This raises
the following natural question.

2We always use “connective” to mean “.�1/–connected”.
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Question 2.1.9 Is there an example of an E2–ring whose Picard group is nonabelian?

We will only work with E1–rings in the future, as it is for these highly commutative
multiplications that we will be able to obtain good (from the point of view of descent
theory) infinite loop spaces that realize Pic.R/ on �0 .

2.2 Picard 1–groupoids

If .C;˝; 1/ is a symmetric monoidal 1–category, we reviewed in the previous section
the Picard group of C . There is, however, a more fundamental invariant of C , where
we remember all isomorphisms (and higher isomorphisms), and which behaves better
with respect to descent processes.

Definition 2.2.1 Let Pic.C/ denote the 1–groupoid (ie space) of invertible objects
in C and equivalences between them. We will refer to this as the Picard 1–groupoid
of C ; it is a group-like E1–space, and thus [45; 60] the delooping of a connective
Picard spectrum pic.C/.

We have in particular
�0 Pic.C/' Pic.C/:

However, we can also describe the higher homotopy groups of Pic.C/. Recall that since
C is symmetric monoidal, End.1/ is canonically an E1–space and Aut.1/ consists of
the grouplike components. Since

�Pic.C/' Aut.1/;
we get the relations

�1 Pic.C/D .�0 End.1//� and �i Pic.C/D �i�1 End.1/ for i � 2:

Example 2.2.2 Let R be an E1–ring. We will write

Pic.R/ def
D Pic.Mod.R// and pic.R/

def
D pic.Mod.R//:

Then Pic.R/ is a delooping of the space of units GL1.R/ studied in [46] and more
recently using 1–categorical techniques in [2]. In particular, the homotopy groups
of Pic.R/ look very much like those of R (with a shift), starting at �2 . In fact, if
we take the connected components at the basepoint, we have a natural equivalence of
spaces

��1.GL1R/' ��1.�Pic.R//' ��1.�1R/;

given by subtracting 1 with respect to the group structure on the infinite loop space �1R.
Nonetheless, the spectra pic.R/ and R are generally very different: that is, the infinite
loop structure on Pic.R/ behaves very differently from that of �1R .
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Unlike the group-valued functor Pic, both Pic and pic have the fundamental property,
upon which the calculations in this paper are based, that they commute with homotopy
limits.

Proposition 2.2.3 The functor

picW Cat˝! Sp�0;

from the 1–category Cat˝ of symmetric monoidal 1–categories to the 1–category
Sp�0 of connective spectra, commutes with limits and filtered colimits, and the functor
PicD�1 ı picW Cat˝! S� does as well.

Proof We will treat the case of limits; the case of filtered colimits is similar and easier.
It suffices to show that Pic commutes with homotopy limits, since �1W Sp�0! S�
creates limits. Let CAlg.S/ be the 1–category of E1–spaces. Now, Pic is the
composite inv ı �̄ where:

(1) �̄W Cat˝!CAlg.S/ sends a symmetric monoidal 1–category to the symmetric
monoidal 1–groupoid (ie E1–space) obtained by excluding all noninvertible
morphisms.

(2) invW CAlg.S/!S� sends an E1–space X to the union of those connected com-
ponents which are invertible in the commutative monoid �0X , with basepoint
given by the identity.

It thus suffices to show that �̄ and inv both commute with limits.

(1) The functor �W Cat! S that sends an 1–category C to its core �C commutes
with limits: in fact, it is right adjoint to the inclusion S! Cat that regards a space as
an 1–groupoid. See for instance [58, Section 17.2]. Now, to see that �̄ commutes
with limits, we observe that limits either in Cat˝ or in CAlg.S/ are calculated at the
level of the underlying spaces (resp. 1–categories), so the fact that � commutes with
limits implies that �̄ does too.

(2) It is easy to see that inv commutes with arbitrary products. Therefore, we need to
show that inv turns pullbacks in CAlg.S/ into pullbacks in S� . We recall that if A, B
are complete 1–categories, then a functor F W C!D preserves limits if and only if it
preserves pullbacks and products [34, Proposition 4.4.2.7]. Suppose given a homotopy
pullback

(2-1)

A

��

// B

��

C // D
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in CAlg.S/; we need to show that

inv.A/

��

// inv.B/

��

inv.C / // inv.D/

is one too, in S� . Given the construction of inv as a union of connected components,
it suffices to show that if x 2 �0A has the property that x maps to invertible elements
in the monoids �0B , �0C , then x itself is invertible.

To see this, consider the homotopy pullback square (2-1). Addition of x induces an
endomorphism of the square. Since it acts via homotopy equivalences on B , C , D , it
follows formally that it must act invertibly on A, ie that x 2 �0A has an inverse.

2.3 Descent

Let R!R0 be a morphism of E1–rings. Recall the cobar construction, a cosimplicial
E1–R–algebra

R0 �!�! R0˝R R
0 �!
�!
�! � � � ;

important in descent procedures, which receives an augmentation from R . The cobar
construction is the Čech nerve (see [34, Section 6.1.2]) of R! R0, in the opposite
1–category.

Definition 2.3.1 [37, Definition 5.2] We say that R ! R0 is faithfully flat if the
map �0R! �0R

0 is faithfully flat and the natural map ��R˝�0R �0R
0! ��R

0 is
an isomorphism.

In this case, the theory of faithfully flat descent goes into effect. We have:

Theorem 2.3.2 [37, Theorem 6.1] Suppose R! R0 is a faithfully flat morphism
of E1–rings. Then the symmetric monoidal 1–category Mod.R/ can be recovered
as the limit of the cosimplicial diagram of symmetric monoidal 1–categories

Mod.R0/ �!�! Mod.R0˝R R0/ �!�!�! � � � :

As a result, by Proposition 2.2.3, Pic.R/ can be recovered as a totalization of spaces,

(2-2) Pic.R/' Tot.Pic.R0˝.�C1///:

Equivalently, one has an equivalence of connective spectra

(2-3) pic.R/' ��0 Tot.pic.R0˝.�C1///:
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In this paper, we will apply a version of this, except that we will work with morphisms
of ring spectra that are not faithfully flat on the level of homotopy groups. As we will
see, the descent spectral sequences given by (2-2) and (2-3) are not very useful in the
faithfully flat case for our purposes.

Example 2.3.3 A more classical example of this technique (eg [20, Exercise 6.9])
is as follows. Let X be a nodal cubic curve over the complex numbers C . Then X
can be obtained from its normalization P1 by gluing together 0 and 1. There is a
pushout diagram of schemes:

f0;1g

��

// �

��

P1 // X

Therefore, one would like to say that the category QCoh.X/ of quasicoherent sheaves
on X fits into a homotopy pullback square

(2-4)

QCoh.X/

��

// QCoh.�/

��

QCoh.P1/ // QCoh.�t�/

and that therefore the Picard groupoid of X fits into the homotopy cartesian square:

(2-5)

Pic.X/

��

// Pic.�/

��

Pic.P1/ // Pic.�/�Pic.�/

Unfortunately, (2-4) is not a pullback square of categories, because restricting to a
closed subscheme is not an exact functor. It is possible to remedy this (up to connectivity
issues) by working with derived 1–categories [36, Theorem 7.1], or by noting that
we are working with locally free sheaves and applying a version of [49, Theorems
2.1–2.3]. In any event, one can argue that (2-5) is homotopy cartesian.

Alternatively, we obtain a homotopy pullback diagram of connective spectra. Using
the long exact sequence on �� , it follows that we have a short exact sequence

0!C�! Pic.X/! Pic.P1/' Z! 0:

The approach of this paper is essentially an elaboration of this example.
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2.4 Picard groups of E1–rings

We now specialize to the case of interest to us in this paper. Let R be an E1–ring, and
consider the Picard group Pic.R/, and better yet, the Picard 1–groupoid Pic.R/ and
the Picard spectrum pic.R/. The first of these has been studied by Baker and Richter
in the paper [4], and we start by recalling some of their results.

We start with the following useful property.

Proposition 2.4.1 The functor R 7! Pic.R/ commutes with filtered colimits in R .

Proof This is a consequence of a form of “noetherian descent” [19, Section 8]. Given
an E1–ring T , let Mod!.T / denote the 1–category of perfect T –modules. If I is
a filtered 1–category and fRigi2I is a filtered system of E1–rings indexed by I ,
then the functor of symmetric monoidal 1–categories

(2-6) lim
��!
i2I

Mod!.Ri /!Mod!.lim
��!
I

Ri /

is an equivalence. We outline the proof of this below.

Assume without loss of generality that I is a filtered partially ordered set and write
R D lim

��!I
Ri . To see that (2-6) is an equivalence, observe that the 1–category

lim
��!i2I

Mod!.Ri / has objects given by pairs .M; i/ where i 2 I and M 2Mod!.Ri /.
The space of maps between .M; i/ and .N; j / is given by

lim
��!
k�i;j

HomMod.Rk/.Rk˝Ri
M;Rk˝Rj

N/:

For instance, this implies that if i 0 � i , the pair .M; i/ is (canonically) equivalent to
the pair .Ri 0 ˝Ri

M; i 0/. Thus, the assertion that (2-6) is fully faithful is equivalent to
the assertion that if M; N 2Mod!.Ri / for some i , then the natural map

(2-7) lim
��!
j�i

HomMod!.Rj /.Rj ˝Ri
M;Rj ˝Ri

N/!HomMod!.R/.R˝Ri
M;R˝Ri

N/

is an equivalence. But (2-7) is clearly an equivalence if M D Ri for any N . The
collection of M 2Mod!.Ri / such that (2-7) is an equivalence is closed under finite
colimits, desuspensions, and retracts, and therefore it is all of Mod!.Ri /. It therefore
follows that (2-6) is fully faithful.

Moreover, the image of (2-6) contains R2Mod!.R/ and is closed under desuspensions
and cofibers (thus finite colimits). Let C �Mod!.R/ be the subcategory generated
by R under finite colimits and desuspensions. We have shown the image of the
fully faithful functor (2-6) contains C . Any object M 2Mod!.R/ is a retract of an
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object X 2 C , associated to an idempotent map eW X ! X . We can “descend” X
to some Xi 2Mod!.Ri / and the map e to a self-map ei W Xi ! Xi such that e2i is
homotopic to ei . As is classical, we use the idempotent ei to split Xi ; see [52,
Proposition 1.6.8] or the older [12] and [13, Theorem 5.3]. Explicitly, form the filtered
colimit Yi of Xi

ei
�!Xi

ei
�!� � � , which splits off Xi . The tensor product R˝Ri

Yi is
the direct summand of X given by the idempotent e and is therefore equivalent to M .

The association C 7! Pic.C/ commutes with filtered colimits of symmetric monoidal
1–categories by Proposition 2.2.3. Taking Picard groups in the equivalence (2-6), the
proposition follows.

Purely algebraic information can be used to begin approaching Pic.R/. Let Pic.R�/
be the Picard group of the symmetric monoidal category of graded R�–modules. The
starting point of [4] is the following.

Construction 2.4.2 There is a monomorphism

ˆW Pic.R�/! Pic.R/;

constructed as follows. If M� is an invertible R�–module, it has to be finitely gen-
erated and projective of rank one. Consequently, there is a finitely generated free
R�–module F� of which M� is a direct summand, ie there is a projection p� with a
section s� :

F� p�
// M�

s�
tt

Clearly, F� can be realized as an R–module F which is a finite wedge sum of copies
of R or its suspensions. Let e� be the idempotent given by composition s� ıp� . Since
F is free over R , e� can be realized as an R–module map eW F ! F which must
be idempotent. Define M to be the colimit of the sequence F e

�!F e
�!� � � ; ie the

image of the idempotent e . Observe that the homotopy groups of M are given by M� ,
as desired. If M 0� is the inverse to M� in the category of graded R�–modules, we can
construct an analogous R–module M 0, and clearly M˝RM 0'R by the degeneration
of the Künneth spectral sequence. Thus, M 2 Pic.R/. The association M� 7! M

defines ˆ.

Note that any two R–modules that realize M� on homotopy groups are equivalent
by the degeneration of the Ext spectral sequence, and that ˆ is a homomorphism by
the degeneration of the Künneth spectral sequence. Observe also that ˆ is clearly a
monomorphism as equivalences of R–modules are detected on homotopy groups.

Definition 2.4.3 When ˆ is an isomorphism, we say that Pic.R/ is algebraic.
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Baker and Richter [4] determine certain conditions which imply algebraicity. There
are, in particular, two fundamental examples. The first one generalizes Example 2.1.6.

Theorem 2.4.4 [4] Suppose R is a connective E1–ring. Then the Picard group
of R is algebraic.

Proof Since the formulation in [4, Theorem 21] assumed a coherence hypothesis
on ��R , we explain briefly how this (slightly stronger) version can be deduced from
the theory of flatness of [39, Section 8.2.2]. Recall that an R–module M is flat if
�0M is a flat �0R–module and the natural map

��R˝�0R �0M ! ��M

is an isomorphism.

Since the Picard group commutes with filtered colimits in R , we may assume that
R is finitely presented in the 1–category of connective E1–rings: in particular, by
[39, Proposition 8.2.5.31], �0R is a finitely generated Z–algebra and in particular
noetherian; moreover, each �jR is a finitely generated �0R–module. These are the
properties that will be critical for us.

Let M be an invertible R–module. We will show that ��M is a flat module over ��R ,
which immediately implies the claim of the theorem. Localizing at a prime ideal
of �0R , we may assume that �0R is a noetherian local ring; in this case we will show
the Picard group is Z generated by the suspension of the unit. We saw that M is
perfect, so we can assume by shifting that M is connective and that �0M ¤ 0. Now
for every map3 R! k , for k a field, ��.M ˝R k/ is necessarily concentrated in a
single degree: in fact, M ˝R k is an invertible object in Mod.k/ and one can apply
the Künneth formula to see that Pic.Mod.k//' Z generated by †k . By Nakayama’s
lemma, since �0M ¤ 0, the homotopy groups of M ˝R k must be concentrated in
degree zero. Thus, M ˝R k ' k itself. Using Lemma 2.4.5, it follows that M is
equivalent to R as an R–module, so we are done.

Lemma 2.4.5 Let R be a connective E1–ring with �0R noetherian local with residue
field k . Suppose moreover each �iR is a finitely generated �0R–module. Suppose M
is a connective (ie .�1/–connected) perfect R–module. Then, for n� 0, the following
are equivalent:

(1) M 'Rn.

(2) M ˝R k ' k
n.

3Recall that we are using the same symbol to denote an abelian group and its Eilenberg–Mac Lane
spectrum.
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Proof Suppose M ˝R k is isomorphic to kn and concentrated in degree zero. Note
that �0.M ˝R k/' �0M ˝�0R k . Choose a basis x1; : : : ; xn of this k–vector space
and lift these elements to x1; : : : ; xn 2 �0M . These define a map Rn!M which
induces an equivalence after tensoring with k , since M ˝R k ' kn.

Now consider the cofiber C of Rn ! M . It follows that C ˝R k is contractible.
Suppose C itself is not contractible. The hypotheses on ��R imply that C is connective
and each �jC is a finitely generated module over the noetherian local ring �0R . If j is
chosen minimal such that �jC ¤ 0, then

0D �j .C ˝R k/' �jC ˝�0R k;

and Nakayama’s lemma implies that �jC D 0, a contradiction.

Some of our analyses in the computational sections will rest upon the next result about
the Picard groups of periodic ring spectra.

Theorem 2.4.6 (Baker and Richter [4, Theorem 37]) Suppose R is a weakly even
periodic E1–ring with �0R regular noetherian. Then the Picard group of R is
algebraic.

The result in [4, Theorem 37] actually assumes that �0R is a complete regular local
ring. However, one can remove the hypotheses by replacing R with the localization Rp

for any p 2 Spec�0R and then forming the completion at the maximal ideal.

We will need a slight strengthening of Theorem 2.4.6, though.

Corollary 2.4.7 Suppose R is an E1–ring satisfying the following assumptions:

(1) �0R is regular noetherian.

(2) The �0R–module �2kR is invertible for some k > 0.

(3) �iRD 0 if i 6� 0 mod 2k .

Then the Picard group of R is algebraic.

Proof Using the obstruction theory of [3] (as well as localization), we can construct
“residue fields” in R as E1–algebras in Mod.R/ (which will be 2k–periodic rather
than 2–periodic). After this, the same argument as in Theorem 2.4.6 goes through.
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Remark 2.4.8 If R is a ring spectrum satisfying the conditions of Corollary 2.4.7,
then Pic.R/Š Pic.��R/ sits in a short exact sequence

0! Pic.�0R/! Pic.��R/! Z=.2k/! 0:

The extension is such that the .2k/th power of a set-theoretic lift of a generator
of Z=.2k/ to Pic.��R/ is identified with the invertible �0R–module �2kR .

An example of a nonalgebraic Picard group, based on [41, Example 7.1], is as follows.

Proposition 2.4.9 The Picard group of the rational E1–ring R D QŒ�0; ��1�=�20
(free on two generators �0 , of degree 0, and ��1 , of degree �1, and with the relation
�20 D 0) is given by Z�Q.

Proof The key observation is that R is equivalent, as an E1–ring, to cochains
over S1 on the (discrete) E1–ring QŒ�0�=�20 , because C �.S1IQ/ is equivalent
to QŒ��1�. By [40, Remark 7.9], we have a fully faithful, symmetric monoidal embed-
ding Mod.R/� LocS1.Mod.QŒ�0�=�20// into the 1–category of local systems (see
Definition 4.2.1 below) of QŒ�0�=�20 –modules over the circle, whose image consists of
those local systems of QŒ�0�=�20 –modules such that the monodromy action of �1.S1/
is ind-unipotent.

In particular, to give an object in Pic.R/ is equivalent to giving an element in the
Picard group Pic.QŒ�0�=�20/ (of which there are only the suspensions of the unit, by
Theorem 2.4.4) and an ind-unipotent (monodromy) automorphism, which is necessarily
given by multiplication by 1C q�0 for q 2 Q. We observe that this gives the right
group structure to the Picard group because .1C q�0/.1C q0�0/D 1C .qC q0/�0 .

Proposition 2.4.9 provides a counterexample to [5, Conjecture 74], which states that in
a tensor triangulated category generated by the unit with a local spectrum (eg with no
nontrivial thick subcategories), any element L in the Picard group has the property that
L˝n is a suspension of the unit for suitable n> 0. In fact, one can take the (homotopy)
category of perfect R–modules for R as in Proposition 2.4.9, which has no nontrivial
thick subcategories by [41, Theorem 1.3].

Remark 2.4.10 Other Picard groups of interest come from the theory of stable module
1–categories of a p–group G over a field k of characteristic p , which from a
homotopy-theoretic perspective can be expressed as the module 1–categories of the
Tate construction ktG. The Picard groups of stable module 1–categories have been
studied in the modular representation theory literature (under the name endotrivial
modules) starting with [10], where it is proved that the Picard group is algebraic (and
cyclic) in the case where G is elementary abelian. The classification for a general
p–group appears in [8].
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3 The descent spectral sequence

In this section, we describe a descent spectral sequence for calculating Picard groups.
The spectral sequence (studied originally by Gepner and Lawson [15] in a closely
related setting) is based on the observation (Proposition 2.2.3) that the association
C 7! Pic.C/, from symmetric monoidal 1–categories to E1–spaces, commutes with
homotopy limits. We will describe several examples and applications of this in the
present section. Explicit computations will be considered in later parts of this paper.

For example, let fCU g be a sheaf of symmetric monoidal 1–categories on a site, and
let �.C/ denote the global sections (ie the homotopy limit) 1–category. Then we
have an equivalence of connective spectra

pic.�.C//' ��0�.pic.CU //;

and one can thus use the descent spectral sequence for a sheaf of spectra to approach
the computation of pic.�.C//. We will use this approach, together with a bit of descent
theory, to calculate Pic.TMF/. The key idea is that while TMF itself has sufficiently
complicated homotopy groups that results such as Theorem 2.4.6 cannot apply, the
1–category of TMF–modules is built up as an inverse limit of module categories over
E1–rings with better behaved homotopy groups.

3.1 Refinements

Let X be a Deligne–Mumford stack equipped with a flat map X!MFG to the moduli
stack of formal groups. We will use the terminology of [42].

Definition 3.1.1 An even periodic refinement of X is a sheaf Otop of E1–rings on
the affine, étale site of X , such that for any étale map

SpecR!X;

the multiplicative homology theory associated to the E1–ring Otop.SpecR/ is func-
torially identified with the (weakly) even-periodic Landweber-exact theory4 associated
to the formal group classified by SpecR!X !MFG . We will denote the refinement
of the ordinary stack X by X.

A very useful construction from the refinement X is the E1–ring of “global sections”
�.X;Otop/, which is the homotopy limit of the Otop.SpecR/ as SpecR!X ranges
over the affine étale site of X .

4See [35, Lecture 18] for an exposition of the theory of weakly even-periodic theories.
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Example 3.1.2 When X is the moduli stack Mell of elliptic curves, with the natural
map Mell ! MFG that assigns to an elliptic curve its formal group, fundamental
work of Goerss, Hopkins, and Miller, and (later) Lurie constructs an even periodic
refinement Mell . The global sections of Mell are defined to be the E1–ring TMF of
topological modular forms; for a survey, see [16]. There is a similar picture for the
compactified moduli stack Mell , whose global sections are denoted Tmf.

Definition 3.1.3 Given the refinement X, one has a natural symmetric monoidal stable
1–category QCoh.X/ of quasicoherent sheaves on X, given as a homotopy limit of
the (stable symmetric monoidal)1–categories Mod.Otop.SpecR// for each étale map
SpecR!X .

There is an adjunction

(3-1) Mod.�.X;Otop//� QCoh.X/;

where the left adjoint “tensors up” and the right adjoint takes global sections.5

Our main goal in this paper is to investigate the left hand side; however, the right hand
side is sometimes easier to work with, since even periodic, Landweber-exact spectra
have convenient properties. Therefore, the following result will be helpful.

Theorem 3.1.4 [42, Theorem 4.1] Suppose X is noetherian and separated, and
X !MFG is quasiaffine. Then the adjunction (3-1) is an equivalence of symmetric
monoidal 1–categories.

For example, since the map Mell ! MFG is affine, it follows that Mod.TMF/ is
equivalent to QCoh.Mell/. This was originally proved by Meier, away from the prime 2,
in [48]. Theorem 3.1.4 implies the analog for Tmf and the derived compactified moduli
stack, as well [42, Theorem 7.2].

Suppose X ! MFG is quasiaffine. In particular, it follows that there is a sheaf of
symmetric monoidal 1–categories on the affine, étale site of X , given by

.SpecR!X/!Mod.Otop.SpecR//;

whose global sections are given by Mod.�.X;Otop//. This diagram of 1–categories
is a sheaf in view of the descent theory of [37, Theorem 6.1], but [42, Theorem 4.1]

5One way to extract this from [39] is to consider the thick subcategory C of QCoh.X;Otop/ generated
by the unit. Then, one obtains by the universal property of Ind an adjunction Ind.C/� QCoh.X;Otop/ .
However, the symmetric monoidal 1–category Ind.C/ is generated under colimits by the unit, so it is by
Lurie’s symmetric monoidal version [39, Proposition 8.1.2.7] of Schwede–Shipley theory equivalent to
modules over �.X;Otop/ , which is the ring of endomorphisms of the unit.
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gives the global sections. We are now in the situation of the introduction to this section.
In particular, we obtain a descent spectral sequence for pic.�.X;Otop//, and we turn
to studying it in detail.

3.2 The Gepner–Lawson spectral sequence

Keep the notation of the previous subsection: X is a Deligne–Mumford stack equipped
with a quasiaffine flat map X !MFG , and .X;Otop/ is an even periodic refinement.

Our goal in this subsection is to prove:

Theorem 3.2.1 Suppose that X is a regular Deligne–Mumford stack with a quasiaffine
flat map X !MFG , and suppose X is an even periodic refinement of X . There is a
spectral sequence with

(3-2) E
s;t
2 D

8̂̂̂̂
<̂
ˆ̂̂:
H s.X;Z=2/ if t D 0;

H s.X;O�X / if t D 1;

H s.X; !.t�1/=2/ if t � 3 is odd;

0 otherwise,

whose abutment is �t�s�.X; pic.Otop//. The differentials run dr W E
s;t
r !EsCr;tCr�1.

The analogous spectral sequence for a faithful Galois extension has been studied in
work of Gepner and Lawson [15], and our approach is closely based on theirs.

Proof In this situation, as we saw in the previous subsection, we get an equivalence
of symmetric monoidal 1–groupoids,

Pic.�.X;Otop//' holimSpecR!X Pic.Otop.SpecR//;

where SpecR ! X ranges over the affine étale maps. Equivalently, we have an
equivalence of connective spectra

pic.�.X;Otop//' ��0
�
holimSpecR!X pic.Otop.SpecR//

�
:

Let us study the descent spectral sequence associated to this. We need to understand
the homotopy group sheaves of the sheaf of connective spectra

.SpecR!X/ 7! pic.Otop.SpecR//;

ie the sheafification of the homotopy group presheaves

.SpecR!X/ 7! �i pic.Otop.SpecR//:
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First, we know that
�1 pic.Otop.SpecR//'R�;

and, for i � 2, we have

�i .pic.Otop.SpecR//' �i�1Otop.SpecR/D
�
!.i�1/=2 for i odd,
0 for i even.

It remains to determine the homotopy group sheaf �0 . If X is a regular Deligne–
Mumford stack, so that each ring R that enters is regular, then we can do this using
Theorem 2.4.6. In fact, it follows that if R is a local ring, then �0 pic.Otop.SpecR//
is isomorphic to Z=2. Thus, up to suitably suspending once, invertible sheaves are
locally trivial. Using the descent spectral sequence for a sheaf of spectra, we get that
the above descent spectral sequence for �.X; pic.Otop// is almost entirely the same as
the descent spectral sequence for �.X;Otop/ in the sense that the cohomology groups
that appear for t � 3, ie H s.X; !.t�1/=2/, are the same as those that appear in the
descent spectral sequence for �.X;Otop/. However, the terms for t D 1 are the étale
cohomology of Gm on X . In particular, we obtain the term

H 1.X;O�X /' Pic.X/;

which is the Picard group of the underlying ordinary stack.

Remark 3.2.2 One may think of the spectral sequence as arising from a totalization,
or rather as a filtered colimit of totalizations. Choose an étale hypercover A given
by U�! X by affine schemes fUng. For any E1–ring A, denote by PicZ.A/ the
symmetric monoidal subcategory of Pic.A/ spanned by those A–modules such that,
after restricting to each connected component of Spec�0A, become equivalent to a
suspension of A. Denote by picZ.A/ the associated connective spectrum. Then we
form the totalization

Tot
�
picZ.Otop.U�//

�
;

whose associated infinite loop space �1 Tot
�
picZ.Otop.U�//

�
is, by descent theory, the

symmetric monoidal 1–subgroupoid of Pic.�.X;Otop// spanned by those invertible
modules which become (up to a suspension) trivial after pullback along U0!X . In
particular, the filtered colimit of these totalizations is the spectrum we are after. The
descent spectral sequence of Theorem 3.2.1 is the filtered colimit of these Tot spectral
sequences.

3.3 Galois descent

We next describe the setting of the spectral sequence that was originally considered
in [15]. Let A! B be a faithful G–Galois extension of E1–ring spectra in the
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sense of [59]. In particular, G acts on B in the 1–category of E1–A–algebras and
A! BhG is an equivalence. Then A! B is an analog of a G–Galois étale cover
in the sense of ordinary commutative algebra or algebraic geometry. As in ordinary
algebraic geometry, there is a good theory of Galois descent along A!B , as has been
observed by several authors, for instance in [15; 48].

Theorem 3.3.1 (Galois descent) Let A! B be a faithful G–Galois extension of
E1–rings. Then there is a natural equivalence of symmetric monoidal 1–categories
Mod.A/'Mod.B/hG.

The “strength” of the descent is in fact very good. As shown in [40, Theorem 3.36],
any faithful Galois extension A! B satisfies a form of descent up to nilpotence: the
thick tensor-ideal that B generates in Mod.A/ is equal to all of Mod.A/. This imposes
strong restrictions on the descent spectral sequences that can arise.

Applying the Picard functor, we get an equivalence of spaces

(3-3) Pic.A/' Pic.B/hG ;

or an equivalence of connective spectra

(3-4) pic.A/' ��0 pic.B/
hG :

Remark 3.3.2 The spectrum † gl1B is equivalent to ��1 pic.B/; consider the in-
duced map of G–homotopy fixed point spectral sequences. All the differentials
involving the t � s D 0 line will be the same for picB and † gl1B . Hence, we
obtain a short exact sequence

0! �0.† gl1B/
hG
! �0.pic.B//

hG
!E0;01 ! 0;

where E0;01 is the kernel of all the differentials supported on H 0.G; �0 picB/. This
short exact sequence exhibits �0.† gl1B/

hG as the relative Picard group of A! B ,
which consists of invertible A–modules which after smashing with B become isomor-
phic to B itself.

Our main interest in Galois theory, for the purpose of this paper, comes from the
observation, due to Rognes, that there are numerous examples of G–Galois extensions
of E1–rings A! B where the homotopy groups of B are significantly simpler than
that of A. In particular, one hopes to understand the homotopy groups of pic.B/,
and then use (3-3) and (3-4) together with an analysis of the associated homotopy
fixed-point spectral sequence

(3-5) H s.G; �t pic.B//) �t�s.pic.B//
hG ;
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whose abutment for t D s is the Picard group Pic.A/.

Example 3.3.3 [59, Proposition 5.3.1] The map KO!KU and the C2–action on KU
arising from complex conjugation exhibit KU as a C2–Galois extension of KO.

Example 3.3.3 is fundamental and motivational to us: the study of KO–modules, which
is a priori difficult because of the complicated structure of the ring ��KO, can be
approached via Galois descent together with the (much easier) study of KU–modules.
In particular, we obtain

pic.KO/' ��0 pic.KU/hC2 ;

and one can hope to use the homotopy fixed-point spectral sequence (HFPSS) to
calculate pic.KO/. This approach is due to Gepner and Lawson [15],6 and we shall
give a version of it below in Section 7.1 (albeit using a different method of deducing
differentials).

Other examples of Galois extensions come from the theory of topological modular
forms with level structure.

Example 3.3.4 Let n2N . Let TMF.n/ denote the periodic version of TMF for ellip-
tic curves over Z

�
1
n

�
–algebras with a full level n structure. Then, by [42, Theorem 7.6],

TMF
�
1
n

�
! TMF.n/ is a faithful GL2.Z=n/–Galois extension. The advantage is that,

if n� 3, the moduli stack of elliptic curves with level n structure is actually a regular
affine scheme (by [30, Corollary 2.7.2], elliptic curves with full level n� 3 structure
have no nontrivial automorphisms). In particular, TMF.n/ is even periodic with
regular �0 , and one can compute its Picard group purely algebraically by Theorem 2.4.6.
One can then hope to use GL2.Z=n/–descent to get at the Picard group of TMF

�
1
n

�
.

We will take this approach below.

3.4 The En–local sphere

In addition, descent theory can be used to give a spectral sequence for pic.LnS
0/.

This is related to work of Kamiya and Shimomura [29] and the upper bounds that they
obtain on Pic.LnS0/.

Consider the cobar construction on LnS0!En , ie the cosimplicial E1–ring

En �!�! En ^En
�!
�!
�! � � � ;

whose homotopy limit is LnS0. It is a consequence of the Hopkins–Ravenel smash
product theorem [56, Chapter 8] that this cosimplicial diagram has “effective descent”.

6The original calculation of the Picard group of KO, by related techniques, is unpublished work of
Mike Hopkins.
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Proposition 3.4.1 The natural functor

Mod.LnS0/! Tot.Mod.E^.�C1/n //;

is an equivalence of symmetric monoidal 1–categories.

Proof According to the Hopkins–Ravenel smash product theorem, the map of E1–
rings LnS0 ! En has the property that the thick tensor-ideal that En generates
in Mod.LnS0/ is all of Mod.LnS0/.7

According to [40, Proposition 3.21], this implies the desired descent statement (the
condition is there called “admitting descent”). The argument is a straightforward
application of the Barr–Beck–Lurie monadicity theorem [39, Section 6.2].

In particular, we find that

pic.LnS
0/' ��0 Tot pic.E^.�C1/n /:

Let us try to understand the associated spectral sequence.

The higher homotopy groups, �i for i � 2, of pic.E^.�C1/n / are determined in terms
of those of E^.�C1/n . Once again, it remains to determine �0 . Now En is an even
periodic E1–ring whose �0 is regular local, so Pic.En/ ' �0 pic.En/ ' Z=2 by
Theorem 2.4.6. The iterated smash products E^mn are also even periodic, so their
Picard group contains at least a Z=2. We do not need to know their exact Picard groups,
however, to run the spectral sequence, as only the Z=2 component is relevant for the
spectral sequence (as it is all that comes from �0 pic.En/).

Next, we need to determine the algebraic Picard group. After taking �0 , the simplicial
scheme

� � �
�!
�!
�! Spec�0.En ^En/ �!�! Spec�0En

is a presentation of the moduli stack M�nFG of formal groups (over Z.p/–algebras) of
height at most n.

Proposition 3.4.2 Pic.M�nFG /' Z, generated by ! .

Proof We use the presentation of MFG (localized at p ) via the simplicial stack

(3-6) � � �
�!
�!
�! .Spec.MU ^MU/�/=Gm

�!
�! .SpecMU�/=Gm:

7The argument in [56, Chapter 8] is stated for the uncompleted Johnson–Wilson theories, but also can
be carried out for the completed ones. We refer in particular to the lecture notes of Lurie [35]; Lecture 30
contains the necessary criterion for constancy of the Tot–tower.
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Since the Picard group of a polynomial ring over Z.p/ is trivial,8 and each smash
power of MU has a polynomial ring for �� , the Picard group of each of the terms
in the simplicial stack without the Gm–quotient is trivial, and the group of units
is Z�.p/ , constant across the simplicial object. In other words, the Picard groupoid of
each Spec.MU^.sC1//� is BZ�.p/ . When we add the Gm–quotient, we get Z�BZ�.p/
for the Picard groupoid of each term in the simplicial stack because of the possibility of
twisting by a character of Gm : this twisting corresponds to the powers of ! . By descent
theory, this shows that Pic.MFG/ ' Z, generated by ! . More precisely, the Picard
groupoid of MFG is the totalization of the Picard groupoids of Spec.MU^.sC1//�=Gm ,
and each of these is Z�BZ�.p/ : that is, the cosimplicial diagram of Picard groupoids
is constant and the totalization is Z�BZ�.p/ again.

When we replace MFG by M�nFG , we can replace the above presentation by excising
from each term the closed substack cut out by .p; v1; : : : ; vn/. This does not affect
the Picard groupoid since the codimension of the substack removed is at least 2 (ie
neither the Picard group nor the group of units is affected).9 That is, when we modify
each term in (3-6) to form the associated presentation of M�nFG , the Picard groupoid
is unchanged. It follows by faithfully flat descent that the inclusion M�nFG ! MFG

induces an isomorphism on Picard groups (or groupoids) and that the Picard group is
generated by ! .

We obtain the following result.

Theorem 3.4.3 There is a spectral sequence

E
s;t
2 D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z=2 if t D 0;

H s.M
�n
FG ;O

�
MFG

/ if t D 1;

H s.M
�n
FG ; !

.t�1/=2/ if t � 3 is odd;

0 otherwise,

which converges for t � s � 0 to �t�s pic.LnS0/. The relevant occurrences of the
second case are H 0.M

�n
FG ;O

�
MFG

/' Z�.p/ and H 1.M
�n
FG ;O

�
MFG

/' Z.

Note in particular that the E2–term is determined entirely in terms of the Adams–
Novikov spectral sequence for the En–local sphere. As we will see in Section 5, many
of the differentials are also determined by the ANSS.

8Since the Picard group commutes with filtered colimits, one reduces to the case of a polynomial ring
on a finite number of variables, and here it follows from unique factorization.

9Once again, this is a familiar result for regular rings, and here one must pass to filtered colimits since
one is working with polynomial rings on infinitely many variables.
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4 First examples

In this section, we will give several examples where descent theory gives a quick
calculation of the Picard group. In these examples, we will not need to analyze
differentials in the descent spectral sequence (3-5). The main examples of interest,
where there will be a number of differentials to determine, will be treated in the last
part of this paper.

4.1 The faithfully flat case

We begin with the simplest case. Suppose R!R0 is a morphism of E1–rings which
is faithfully flat. In this case, we know from [37, Theorem 6.1] that the tensor-forgetful
adjunction Mod.R/�Mod.R0/ is comonadic and we get a descent spectral sequence
for the Picard group of R , as

pic.R/' ��0 Tot pic.R0˝.�C1//:

This spectral sequence, however, gives essentially no new information that is not
algebraic in nature. That is, the entire E2–term E

s;t
2 for t > 1 vanishes, as it can be

identified with the E2–term for the cobar resolution R0˝.�C1/ of R , and this cobar
resolution has a degenerate spectral sequence with nonzero terms only for sD 0 at E2 .
For example, an element in Pic.R/ is algebraic if and only if its image in Pic.R0/ is
algebraic, by faithful flatness.

Thus, faithfully flat descent will be mostly irrelevant to us as a tool of computing the
nonalgebraic parts of Picard groups. In the examples of interest, we want ��R0 to be
significantly simpler homologically than ��R , so that we will be able to conclude (using
results such as Theorem 2.4.6) that the Picard group of R0 is entirely algebraic. But if
��R

0 is faithfully flat over ��R , it cannot be much simpler homologically. (Recall for
example that regularity descends under faithfully flat extensions of noetherian rings.)

4.2 Cochain E1–rings and local systems

In this subsection, we give another example of a family of E1–ring spectra whose
Picard groups can be determined, or at least bounded.

Let X be a space and R an E1–ring. Let RX D C �.X IR/ be the E1–ring of
R–valued cochains on X .

Definition 4.2.1 Let LocX .Mod.R//D Fun.X;Mod.R// denote the 1–category of
local systems of R–module spectra on X .
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Then we have a fully faithful embedding of symmetric monoidal 1–categories

Mod!.RX /� LocX .Mod.R//;

which sends RX to the constant local system at R and is determined by that. As
discussed in [40, Section 7], this embedding is often useful for relating invariants
of RX to those of R . In particular, since any invertible RX –module is perfect, we
have a fully faithful functor of 1–groupoids

Pic.RX /! Pic
�
LocX .Mod.R//

�
DMap

�
X;Pic.Mod.R//

�
;

where the last identification follows because Pic commutes with homotopy limits
(Proposition 2.2.3). Thus, we get the following useful upper bound for the Picard group
of RX.

Proposition 4.2.2 If R is an E1–ring and X is any space, then Pic.RX / is a sub-
group of �0.pic.R/X /.

Without loss of generality, we will assume that X is connected. Note that we have a
cofiber sequence

† gl1.R/! pic.R/!H.Pic.R//;

where H.Pic.R// is the Eilenberg–Mac Lane spectrum associated to the group Pic.R/.
If we take the long exact sequence after taking maps from X , we get an exact sequence

(4-1) 0! ��1.gl1.R/
X /! �0.pic.R/

X /! Pic.R/:

Our object of interest, Pic.RX /, is a subobject of the middle term, by the above
proposition.

Let us unwind the exact sequence further. First, observe that the composite map
Pic.RX / ! �0.pic.R/

X / ! Pic.R/ comes from the map of E1–rings RX ! R

given by choosing a basepoint of X . In particular, it is split surjective as it has a section
given by R!RX (so (4-1) is a split exact sequence). Next, using the truncation map
gl1.R/!HR

�
0 , we have a map ��1.gl1.R/X /!��1..HR�0 /

X /DHom.�1.X/;R�0 /.
We can understand this map in terms of Pic.RX /. Very explicitly, suppose given an
invertible RX –module M with associated local system L 2 LocX .Mod.R//. Then if
the image of M in Pic.R/ is trivial, we conclude that Lx'R for any basepoint x 2X .
An element in �1.X; x/ induces a monodromy automorphism of Lx and thus defines
an element of R�0 . This defines a map in Hom.�1.X; x/; R�0 /. Let Pic0.RX / denote
the kernel of Pic.RX /! Pic.R/. Then we have just described the map

(4-2) Pic0.RX / �!Hom.�1.X; x/; R�0 /;
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that comes from the exact sequence (4-1).

The monodromy action cannot be arbitrary, since this local system is not arbitrary: it is
in the image of Mod!.RX / and therefore belongs to the thick subcategory generated
by the unit. As in [40, Section 8], it follows that the monodromy action of any element
of the fundamental group must be ind-unipotent. In particular, fix an element M
of Pic0.RX /. Given any loop  2 �1.X; x/, the associated element uD u;M 2R�0
under the homomorphism �.M/W Pic0.RX / ! Hom.�1.X; x/; R�0 / of (4-2) must
have the property that u� 1 is nilpotent.

Hence if R0 is a reduced ring, we deduce from (4-1) the following conclusion.

Corollary 4.2.3 If R is an E1–ring with �0R reduced, and X is any connected
space, then we have a split short exact sequence

0! A! Pic.RX /! Pic.R/! 0;

where A���1.gl1.R/X / is contained in ��1..��1 gl1.R//X /���1..gl1.R//X /. In
particular, if ��1..��1 gl1.R//X /D 0, then Pic.R/! Pic.RX / is an isomorphism.

Again, we note that the map ��1..��1 gl1.R//X /! ��1.gl1.R/
X / is injective, by

the long exact sequence and the fact that �0.gl1.R/X / ! �0..HR
�
0 /
X / ' R�0 is

surjective.

As an application, we obtain a calculation of the Picard group of a nonconnective
E1–ring in a setting far from regularity.

Theorem 4.2.4 Let A be any finite abelian group and let En be Morava E–theory.
Then the Picard group of EBAn is Z=2, generated by the suspension †EBAn . The same
conclusion holds for any finite group G whose p–Sylow subgroup is abelian, where p
is the prime of definition for En .

Proof We induct on the p–rank of A. When A has no p–torsion, then EBAn 'En
and Theorem 2.4.6 implies that the Picard group is Z=2.

If the p–rank of A is positive, write A ' Z=pm �A0 where the p–rank of A0 has
smaller cardinality than that of A. The inductive hypothesis gives us that the Picard
group of EBA

0

n is Z=2. Now EBAn ' .EBA
0

n /BZ=pm

. Moreover, EBA
0

n is well known
to be even periodic (though its �0 is not regular).10

10We refer to [25, Section 7] for a general analysis of the question of when EBGn is even-periodic for
G a finite group.
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We claim now that ��1..��1 gl1.EBAn //BZ=pm

/ D 0. To see this, we note that the
homotopy groups of ��1 gl1.EBA

0

n / are concentrated in even degrees and are all
given by torsion-free p–complete abelian groups. Therefore, the cohomology groups
H i .Z=pm; �j ��1 gl1.E

BA
n // vanish if i is odd, since the Z=pm–action on them is

trivial. In the homotopy fixed point spectral sequence for .��1 gl1.EBAn //BZ=pm

(ie the
Atiyah–Hirzebruch spectral sequence), there is no room for contributions to ��1 . In
fact, there is no room for differentials at all, which indicates that any lim1 terms cannot
occur either. Now Corollary 4.2.3 shows that the map EBA

0

n ! EBAn induces an
equivalence on Picard groups, which completes the inductive step.

For the last claim, fix any finite group G with an abelian p–Sylow subgroup A�G . For
any connected space X , denote as before Pic0.RX / the kernel of Pic.RX /! Pic.R/.
We have a commutative square:

Pic0.EBGn / //

� _

��

Pic0.EBAn /
� _

��

��1.��1 gl1.En/
BG/ // ��1.��1 gl1.En/

BA/

The bottom horizontal map is injective since ��1 gl1.En/ is p–local and BG is p–
locally a wedge summand of BA in view of the transfer †1

C
BG!†1

C
BA, which has

the property that the composite †1
C
BG!†1

C
BA!†1

C
BG is a p–local equivalence

by inspection of p–local homology. It follows that Pic0.EBGn / ! Pic0.EBAn / is
injective, and since the latter is zero, the former must be as well.

Recall that the spectrum E1 is p–complete complex K–theory.

Proposition 4.2.5 Let G be any finite group. Then the Picard group of EBG1 is finite.

Proof In fact, ��1.��1 gl1.E1/BG/ is finite. We know that ��3 gl1.E1/' †4kuyp
by a theorem of Adams and Priddy [1]. Moreover, .kuyp/�.BG/ is finite in each odd
dimension, by comparing with E�1 .BG/ which vanishes in odd dimensions. It follows
now from Corollary 4.2.3 that the desired Picard group has to be finite.

Question 4.2.6 Let G be any finite group. Can the Picard group of EBG1 be any
larger than Z=2? What about the higher Morava E–theories?

4.3 Coconnective rational E1–rings

We can also determine the Picard groups of coconnective rational E1–ring spectra. A
rational E1–ring R is said to be coconnective if:
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(1) �0R is a field (of characteristic zero).

(2) �iRD 0 for i > 0.

Theorem D If R is a coconnective rational E1–ring, then the Picard group Pic.R/
is infinite cyclic, generated by †R .

Proof Let k D �0R . We use [38, Proposition 4.3.3] to conclude that R' Tot.A�/,
where A� is a cosimplicial E1–k–algebra with each Ai of the form k ˚ V Œ�1�,
where V is a discrete k–vector space; the E1–structure given is the “square-zero”
one.

We thus begin with the case of R D k˚ V Œ�1�: we will show that Pic.R/ ' Z in
this case. Since Pic commutes with filtered colimits, we may assume that V is a
finite-dimensional vector space. In this case,

R' kS
1_���_S1

;

where the number of copies of S1 in the wedge summand is equal to the dimension
nD dimk V ; by [38, Proposition 4.3.1], any rational E1–ring with these homotopy
groups is equivalent to k˚V Œ�1�. But we can now use Corollary 4.2.3 to see that the
Picard group of kS

1_���_S1

is Z, generated by the suspension, because ��1 gl1.k/D 0.

Now suppose that R is arbitrary. As above, we have an equivalence R ' Tot.A�/
where each Ai is a coconnective E1–ring of the form k˚V Œ�1� for V a discrete
k–vector space. We have seen above that Pic.Ai /' Z. We know, moreover, that we
have a fully faithful embedding of symmetric monoidal 1–categories

Mod!.R/� Tot.Mod.A�//;

which implies that we have a fully faithful functor of 1–groupoids

Pic.R/! Tot.Pic.A�//:

But each Pic.Ai /, as an 1–groupoid, has homotopy groups given by

�j Pic.Ai /'
�

Z if j D 0;
k� if j D 1;

and in particular, in the cosimplicial diagram Pic.A�/, all the maps are equiva-
lences. This is a helpful consequence of coconnectivity. Therefore we find that
Tot.Pic.A�// maps by equivalences to each Pic.Ai /, and we get an upper bound
of Z for Pic.R/. This upper bound is realized by the suspension †R (which hits the
generator of Z' �0 Tot.Pic.A�//).
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Remark 4.3.1 If k DQ, then a large class of coconnective E1–rings with �0 'Q
(eg those with reasonable finiteness hypotheses and vanishing ��1 ) arise as cochains
on a simply connected space, by Quillen and Sullivan’s rational homotopy theory. The
comparison with local systems can be carried out directly here to prove Theorem D for
these E1–rings.

4.4 Quasiaffine cases

We now consider a case where the descent spectral sequence enables us to produce
nontrivial elements in the Picard group. Let A be a weakly even-periodic E1–ring
with �0A regular noetherian, and write !D�2A. Then A leads to a sheaf of E1–rings
on the affine étale site of Spec�0A. That is, for every étale �0A–algebra A00 , there is
(functorially) associated [39, Section 8.5] an E1–ring A0 under A with �0A0 ' A00
and A0 flat over A. We will denote this sheaf by Otop .

Let a1; : : : ; an 2�0A be a regular sequence, for n�2. We consider the complement U
in Spec�0A of the closed subscheme V.a1; : : : ; an/ and the sections AD �.U;Otop/.
A is an E1–A–algebra and is a type of localization of A, albeit not (directly) an
arithmetic one.11 Note that Pic.A/ is algebraic by Theorem 2.4.6, but the situation
for A is more complicated.

The homotopy groups ��.A/ are given by the abutment of a descent spectral sequence

H s.U; !˝t /) �2t�s.A/:(4-3)

We can first determine the zero-line. We have

H 0.U; !˝t /DH 0.Spec�0A;!˝t /;

because Spec�0A is regular and U � Spec�0A is obtained by removing a subscheme
of codimension at least two.

Proposition 4.4.1 The only other nonzero term in the descent spectral sequence (4-3)
occurs for s D n� 1. The descent spectral sequence degenerates.

Proof Cover the scheme U by the n open affine subsets Ui D Spec�0.A/ nV.ai /,
for 1 � i � n. Given any quasicoherent sheaf F on U , it follows that the coherent
cohomology H�.U;F/ is that of the Čech complex (which starts in degree zero)

nM
iD1

F.Ui /!
M
i<j

F.Ui \Uj /! � � � ! F.U1\ � � � \Un/:

11Forthcoming work of Bhatt and Halpern-Leistner identifies the universal property of A .
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Let RD �0A, and suppose F is the restriction to U � SpecR of the quasicoherent
sheaf zM on SpecR for an R–module M . Then the final term is the cokernel of the
map

nM
iD1

MŒ.a1 � � � bai � � � an/�1�!MŒ.a1 � � � an/
�1�;

where the hat denotes omission. If M is flat, the complex is exact away from degrees 0
and n� 1 as the sequence a1; : : : ; an is regular, using a Koszul complex argument
(see [28] for a detailed treatment or [18] for a short exposition with a view towards
topological applications), and the zeroth cohomology is given by M itself.

Now, in view of the map A! A, clearly everything in the zero-line of the E2–page
of the spectral sequence survives, so the spectral sequence must degenerate.

We now study the Picard group of A: as above, ��A is not regular but instead has a
great deal of square-zero material. Let UD .U;Otop jU / denote the derived scheme
consisting of the topological space U � Spec�0A, but equipped with the sheaf Otop of
E1–rings restricted to U. A arises as the global sections of the structure sheaf Otop

over the derived scheme U.

Since U is quasiaffine as an (ordinary!) scheme, it follows by [42, Corollary 3.24] that
the global sections functor is the right adjoint of an inverse equivalence

Mod.A/� QCoh.U/;

of symmetric monoidal 1–categories. In particular, the Picard group Pic.A/ can be
computed as Pic.QCoh.U//.

As before, we have a descent spectral sequence (3-2) converging to �t�s pic.A/. But
from (3-2), we know that almost all of the terms at E2 are identified with the descent
spectral sequence for ��A. In addition, we know that H 1.U;O�U / ' Pic.�0A/,
as �0A is regular and the complement of U has codimension � 2. These classes
must be permanent cycles as they are realized in Pic.A/: in fact, they are realized
in Pic.A/ itself. Thus, the descent spectral sequence for pic degenerates as well.
We get three contributions to the Picard group: Z=2 and Pic.�0A/, which together
build Pic.��A/ (compare Remark 2.4.8), and a group that is identified with ��1A. The
relevant extension problem is solved because of the map Pic.��A/Š Pic.A/! Pic.A/
realizing the algebraic part of the Picard group. We get:

Theorem 4.4.2 Let AD �.U;Otop/ as above. Then we have a natural isomorphism

Pic.A/' Pic.��A/���1.A/:
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Moreover, observe that

(4-4) ��1.A/D

8<:
coker

�Ln
iD1!

n=2�1Œ.a1 � � � bai � � � an/�1�
! !n=2�1Œ.a1 � � � an/

�1�
�

for n� 4 even,
0 for n odd:

Example 4.4.3 Let A be a Landweber-exact weakly even periodic E1–ring with �0A
regular noetherian; for instance, A could be Morava E–theory En . In this case, we
take a1; : : : ; ak D p; v1; : : : ; vk�1 , so that A ' LkA. This gives Theorem C as a
special case of Theorem 4.4.2.

Part II Computational tools

5 The comparison tool in the stable range

This is a technical section in which we develop a tool that will enable us to compare
many of the differentials in a Picard spectral sequence for Galois or étale descent
with the analogous differentials in the corresponding descent spectral sequence before
taking the Picard functor (ie for the E1–rings themselves). For example, in the Galois
descent setting, we are given a G–Galois extension A! B , and we know the descent,
ie homotopy fixed point, spectral sequence for A' BhG. The tool we develop in this
section will allow us to deduce many differentials in the homotopy fixed point spectral
sequence for .pic.B//hG.

For a spectrum or a pointed space X , and integers a , b , we denote by ��aX , ��bX
and �Œa;b�X the truncations of X with homotopy groups in the designated range. Our
main observation is that if R is any E1–ring, then for any n� 2, there is a natural
equivalence of spectra

�Œn;2n�1�R' �Œn;2n�1� gl1.R/:

This equivalence is natural at the level of 1–categories, and enables us to identify
a large number of differentials in descent spectral sequences for gl1 and therefore
also for pic. This observation, however, fails if we increase the range by 1, and an
identification of the relevant discrepancy (as observed in such spectral sequences) will
be the subject of the following section and the formula (6-1).

The main result of Section 5.1 is essentially a formulation of the classical concept of
the “stable range” in 1–categorical terms, as can be seen from the fact that the major
ingredients of the proof are Freudenthal’s suspension theorem as well as the existence
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of Whitehead products in the unstable setting. Nonetheless, our formulation will be
extremely useful in the sequel.

5.1 Truncated spaces and spectra

Throughout, n� 2.

Definition 5.1.1 Let SpŒn;2n�1� � Sp denote the 1–category of spectra with homo-
topy groups concentrated in degrees Œn; 2n� 1�. Let S� denote the 1–category of
pointed spaces, and let S�;Œa;b� � S� denote the subcategory spanned by those pointed
spaces whose homotopy groups are concentrated in the interval Œa; b�.

The main goal of this subsection is to prove the following result identifying spaces and
spectra whose homotopy groups are concentrated in a range of dimensions.

Theorem 5.1.2 The functor �1W SpŒn;2n�1� ! S� is fully faithful. The functor
�1W SpŒn;2n�2�! S�;Œn;2n�2� is an equivalence of 1–categories.

Proof Let X , Y 2 SpŒn;2n�1� . We want to show that the natural map

(5-1) HomSp.X; Y /! HomS�.�
1X;�1Y /

is a homotopy equivalence. By adjointness, we can identify this with the map

HomSp.X; Y /! HomSp.†
1�1X; Y /

that arises from the counit map †1�1X ! X . Observe that we have a natu-
ral equivalence HomSp.†

1�1X; Y /' HomSp.��2n�1†
1�1X; Y / because Y is

.2n�1/–truncated. In particular, to prove Theorem 5.1.2, it will suffice to show that
the natural map of spectra

��2n�1†
1�1X !X ' ��2n�1X;

is an equivalence, for any X 2 SpŒn;2n�1� . Equivalently, we need to show that for any
such spectrum X , the map

(5-2) �k.†
1�1X/! �k.X/

is an isomorphism for k � 2n� 1. But we have maps of spaces

�1X !�1†1�1X !�1X;

where the composite is the identity. The first map is the unit Y !�1†1Y applicable
for any Y 2 S� , and the second map is �1 applied to the counit. By the Freudenthal
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suspension theorem, the first map induces an isomorphism on homotopy groups �k
for k � 2n� 1, and therefore the second map does as well. This proves the claim that
(5-2) is an equivalence and the first part of the theorem.

The functor �1W SpŒn;2n�1�!S�;Œn;2n�1� is not essentially surjective, because spaces
with homotopy groups concentrated in degrees Œn; 2n� 1� can still have Whitehead
products, and spaces with nontrivial Whitehead products can never be in the im-
age of �1 . However, we claimed in the statement of the theorem that the functor
�1W SpŒn;2n�2�! S�;Œn;2n�2� is an equivalence of 1–categories. To show this, it
suffices to show that the functor is essentially surjective.

Given a pointed space X with homotopy groups in the desired range, we suppose
inductively (on k ) that ��kX is in the image of �1 . If k � 2n�2, then we are done.
Otherwise, we have a pullback square:

��kC1X

��

// �

��

��kX // K.�kC1X; kC2/

Observe that the pointed spaces ��kX , K.�kC1X; kC2/ and � are all in the image
of �1 (the first by the inductive hypothesis), and K.�kC1X; kC2/ 2 S�;Œn;2n�1� .
Moreover, the maps in the diagram are in the image of �1 by the previous part of
the result. Therefore, the object ��kC1X is in the image of �1 , as �1 preserves
homotopy fiber squares.

Given an integer k , we could precompose the functor of Theorem 5.1.2 with the
equivalence �k W SpŒnCk;2nCk�1�! SpŒn;2n�1� , and obtain the following:

Corollary 5.1.3 For any integer k , the functor �1Ck W SpŒnCk;2nCk�1�!S� is fully
faithful.

5.2 Comparisons for E1–rings

Our basic example for all this comes from the spectrum gl1.R/ associated to an E1–
ring R , and the comparison between the two. This comparison is the main obstacle in
understanding the descent spectral sequence for the Picard group: it is generally easier
to understand descent spectral sequences for the E1–rings themselves (eg for TMF).

We emphasize again that given an E1–ring R , the spectra R and gl1.R/ are generally
very different, and for an illustration we provide the following example.
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Example 5.2.1 (Lawson [33]) Consider the commutative differential graded algebra
F2Œx�=x3 where jxj D 1 and dx D 0 (so d � 0). Let R be the associated E1–ring
under F2 . Then gl1.R/ has homotopy groups in dimensions 1, 2 given by F2 ; however,
they are connected by multiplication by �. In particular, gl1.R/ is not an F2–module
spectrum.

More generally, let R be the E1–ring associated to the commutative differential
graded algebra F2Œx�=x3 where jxj D n and dx D 0. R can also be constructed by
applying the Postnikov section ��2n to the free E1–F2–algebra on a class in degree n.
Then �n.gl1.R//' �2n.gl1.R//' F2 and all the other homotopy groups of gl1.R/
vanish. Therefore, gl1.R/ is the fiber of a k–invariant map HF2Œn�!HF2Œ2nC 1�.
In this case, we can identify the k–invariant and thus identify gl1.R/.

Proposition 5.2.2 Given R as above, the k–invariant of gl1.R/ is given by the map

SqnC1W HF2Œn�!HF2Œ2nC 1�:

Proof We begin by arguing, following Lawson, that gl1.R/ cannot be the spectrum
HF2Œn�_HF2Œ2n�. In fact, in this case, the map of spectra HF2Œn�! gl1.R/ would
by adjointness [2] lead to a map of E1–rings

†1CK.F2; n/!R;

carrying the class in �nK.F2; n/ to the nonzero class in �nR . Smashing with HF2 ,
we would get a map of E1–HF2–algebras

HF2 ^†
1
CK.F2; n/!R

with the same property. Now �n.HF2^†1CK.F2; n//' F2 , with the nontrivial class
coming from �n.K.F2; n//. However, this class squares to zero by [9, Lemma 6.1,
Chapter 1] while the nonzero class in �nR does not square to zero. This is a contra-
diction and proves that such a map cannot exist. Consequently, the k–invariant map
for gl1.R/ must be nontrivial.

On the other hand, �1 gl1.R/'K.F2; n/�K.F2; 2n/ because �1 gl1.R/ is the con-
nected component at 1 of �1R . In particular, the k–invariant HF2Œn�!HF2Œ2nC1�
defines, upon applying �1 , the trivial cohomology class in H 2nC1.K.F2; n/IF2/.

So, for the k–invariant of gl1.R/, we need a nonzero element � of degree nC 1 in
the (mod 2) Steenrod algebra such that, if �n 2 Hn.K.F2; n/In/ is the tautological
class, then ��n D 0. By the calculation of the cohomology of Eilenberg–Mac Lane
spaces [61] (see also [50, Chapter 9] for a textbook reference), the only possibility
is SqnC1.

Geometry & Topology, Volume 20 (2016)



3168 Akhil Mathew and Vesna Stojanoska

Nonetheless, we will show that right below the range of the previous example, the
spectra gl1.R/ and R can be identified.

Corollary 5.2.3 Let n� 2 and let R be any E1–ring. Then there is an equivalence
of spectra, functorial in R ,

�Œn;2n�1� gl1.R/' �Œn;2n�1�R:

Similarly, there is an equivalence of spectra, functorial in R ,

�ŒnC1;2n� pic.R/'†�Œn;2n�1�R:

Proof For any E1–ring R , the space �1 gl1.R/ D GL1.R/ is a union of those
components of �1R that correspond to units in �0R . In particular, �1��1 gl1.R/
is canonically identified with �1��1R in S� . Applying Theorem 5.1.2, we now get a
canonical identification as desired in the corollary. The second half of Corollary 5.2.3
follows from the first, as ��0� pic.R/' gl1.R/ as spectra.

Take now a faithful G–Galois extension A ! B of E1–rings, and consider the
HFPSS (3-5) for the G–action on pic.B/. We want to understand �0.pic.B/hG/, or
equivalently ��1.� pic.B/hG/, and we can do this by understanding the HFPSS for
the G–action on � pic.B/. Observe first that �t� pic.B/'�tB functorially for t �1:
in fact, �1.� pic.B//' GL1.B/. In other words, the spectrum � pic.B/ equipped
with the G–action has the property that, after applying �1 , it is identified with a
union of connected components of �1B (with the G–action on B ).

As a result, we have a map of spaces with G–action

�1.� pic.B//!�1B;

which identifies the former with a union of connected components of the latter. As
a result, we can identify the respective HFPSS for the spaces �1.� pic.B//, �1B
for t >0, both at E2 and differentials (including the “fringed” ones). This identification
comes from the map ��1 GL1.B/!�1B given by subtracting one.

In particular, shifting by one again, most of the differentials in the HFPSS for pic.B/
are determined by the HFPSS for B . More precisely, any differential out of Es;tr
for t � s > 0, s > 0, depends only on the G–space �Pic.B/, so the equivalence
of �Pic.B/ with a union of connected components of �1B implies that the differ-
ential can be identified with the analogous differential in the HFPSS for B .

However, to understand �0.pic.B/hG/' �0.Pic.B/hG/' Pic.A/, we need to deter-
mine differentials out of Es;tr with t D s . These differentials cannot be determined
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by �Pic.B/, as a space with a G–action. Our strategy to determine these differentials
is to use the equivalence of spectra with G–action

�ŒnC1;2n� pic.B/'†�Œn;2n�1�B;

which is a special case of Corollary 5.2.3.

Assume that r � t � 1. In this case, any differential dr W E
s;t
� ! E

sCr;tCr�1
� in the

HFPSS for pic.B/ is determined by the G–action on �Œt;tCr�1� pic.B/. Since we have
an equivalence �Œt;tCr�1� pic.B/'†�Œt�1;tCr�2�B , compatible with the G–actions,
we can identify the differentials.

Denote the differentials in the homotopy fixed point spectral sequence

H s.G; �t picB/) �t�s.picB/
hG

by d s;tr .picB/, and similarly d s;tr .B/ for those in the HFPSS for B . The upshot of
this discussion is the following.

Comparison Tool 5.2.4 Let A! B be a G–Galois extension of E1–rings. When-
ever 2� r � t � 1, we have an equality of differentials d s;tr .picB/D d s;t�1r .B/.

Of course, we also have an identification of differentials out of .s; t/ if t�s > 0, s > 0.

Remark 5.2.5 Our original approach to the Comparison Tool 5.2.4 was somewhat
more complicated than the above and has been described in [44]. Namely, our strategy
was to identify the HFPSS with a Bousfield–Kan spectral sequence for a certain
cosimplicial space X� built from Pic.B/ with its G–action, and argue that these
differentials only depended on the fiber of TottCr.X�/! Tott�1.X�/ (as well as the
other fibers in between). In the appropriate range, these fibers depend only on �X�

as a cosimplicial space. However, �X� can be (almost) identified with the analogous
cosimplicial space for the G–action on �1�1.��0B/ because �Pic.B/ is a union
of components of �1B . This forces the differentials to correspond to one another.

For the same reasons, we have analogous comparison results for the spectral se-
quence as Theorem 3.2.1. Again, any differential in the descent spectral sequence
for pic.�.X;Otop// that only depends on the diagram �ŒnC1;2n� pic.Otop/ can be identi-
fied with the corresponding differential in the descent spectral sequence for �.X;Otop/,
thanks to the equivalence of diagrams of spectra �ŒnC1;2n� pic.Otop/'†�Œn;2n�1�Otop .

Remark 5.2.6 The equivalence �Œn;2n�1�R' �Œn;2n�1� gl1.R/ resembles the follow-
ing observation in commutative algebra. Let A be an ordinary commutative ring and
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let I � A be a square-zero ideal. Then 1C I � A� and there is an isomorphism of
groups

I ' 1C I � A� with x 7! 1C x:

This correspondence is a very degenerate version of the exponential and logarithm.

Suppose p is a prime number and .p � 1/Š is invertible in A. Then if J � A is an
ideal with J p D 0, we have 1CJ � A� and a natural isomorphism of groups

J ' 1CJ with x 7! 1C xC
x2

2
C � � �C

xp�1

.p� 1/Š
;

given by a p–truncated exponential.

Similarly, let R be an E1–ring with .p� 1/Š invertible. Motivated by the above, for
any n� 1, one could surmise a functorial equivalence of spectra

�Œn;pn�1�R' �Œn;pn�1� gl1.R/:

We expect to construct such an equivalence in ongoing joint work with Clausen
and Heuts.

5.3 A general result on Galois descent

As a quick application of the preceding ideas, we can prove a general result about
Galois descent for Picard groups.

Theorem E Let A! B be a faithful G–Galois extension of E1–rings. Then the
relative Picard group of B=A is jGj–power torsion of finite exponent.

Proof We know that the relative Picard group of A! B is given by ��1.gl1.B/hG/
(compare Remark 3.3.2). There is a HFPSS that converges to the homotopy groups,
which begins with the group cohomology of G with coefficients in ��.gl1.B//. Every
contributing term is jGj–power torsion: in fact, every term is a H i .G; � / for i >0 and is
thus killed by jGj. However, in view of the potential infiniteness of the filtration, as well
as the possibilities of nontrivial extensions, this alone does not force ��1.gl1.B/hG/
to be jGj–power torsion.

Our strategy is to compare the HFPSS for ��1.gl1.B/hG/ with that of ��1.BhG/.
The map A! B admits descent in the sense of [40, Definition 3.17]. In particular, by
[40, Corollary 4.4], the descent spectral sequence for A!B (equivalently, the HFPSS)
has a horizontal vanishing line at a finite stage. It follows that, above a certain filtration,
everything in the HFPSS for ��.A/' ��.BhG/ is killed by a dk for k bounded.
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In view of our Comparison Tool 5.2.4, it follows that any class in the relative Picard
group has bounded filtration (though possibly the bound is weaker than the analog
in ��1.B/). Since every contributing term in the spectral sequence is killed by jGj,
the theorem follows.

6 The first unstable differential

6.1 Context

Let R� be a cosimplicial E1–ring, and consider the Bousfield–Kan spectral sequences
(BKSS) fEs;tr g and fEs;tr g for the two cosimplicial objects R� and gl1.R

�/, converging
to �t�s of the respective totalizations in Sp.

For t � s � 0, the spectral sequences and the differentials are mostly identified with
one another, as the space �1 gl1.R/ is a union of connected components of �1R .
But for t � s D�1, we get differentials

dr W E
tC1;t
r !EtCrC1;tCr�1r and d r W E

tC1;t
r !EtCrC1;tCr�1r :

These depend on more than the spaces �1R� , �1 gl1.R
�/: they require the one-fold

deloopings. As we saw in Corollary 5.2.3, for any n � 2, in the range Œn; 2n� 1�,
the cosimplicial spectra �Œn;2n�1�R� and �Œn;2n�1� gl1.R�/ are identified. As a result,
for r � t , the groups in question are (canonically) identified and dr D d r .

But in general, dtC1 ¤ d tC1 . Since all the previous differentials entering or leaving
this spot between the two spectral sequences were identified, the groups in question
are identified. We let the correspondence EtC1;ttC1 'E

tC1;t
tC1 be given as

x 7! x:

Similarly, we have a correspondence E2tC2;2ttC1 'E
2tC2;2t
tC1 .

In this subsection, we will give a universal formula for the first differential out of the
stable range. We will need this in Section 8.2 to obtain the 2–primary Picard group
of TMF.

Theorem 6.1.1 We have the formula

(6-1) d tC1.x/D dtC1.x/C x2 for x 2EtC1;ttC1 :

Remark 6.1.2 The above formula actually makes d tC1 into a linear operator. This
follows from the graded-commutativity of the BKSS for R� . Note in particular that
the difference between d tC1 and dtC1 is annihilated by 2.
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6.2 The universal example

The proof of (6-1) follows a standard technique in algebraic topology: we reduce to
a “universal” case and show that (6-1) is essentially the only possibility. We want
to consider the universal case of a cosimplicial E1–ring R� with a class in EtC1;ttC1 .
This class represents an element in ��1 Tot2tC1.R�/ trivialized in Tott .R�/; the
differential dtC1 represents the obstruction to lifting to Tot2tC2 . So, we need to make
the analysis of differentials in the cosimplicial E1–ring which corepresents the functor
R� 7! A.R�/D�1

�
†�1fib.Tot2tC1.R�/! Tott .R�//

�
.

The relevant cosimplicial E1–ring X� can be constructed as follows.

Definition 6.2.1 Let Lan denote the operation of left Kan extension; let Lan��t!�.�/

denote the left Kan extension of the constant functor ��t!S at a point to �. Similarly,
define Lan��2tC1!�.�/. Consider the homotopy pushout

(6-2)

Lan��t!�.�/C

��

// �

��

Lan��2tC1!�.�/C
// F�

where F�W �! S� is a functor to the 1–category S� of pointed spaces.

Consider

G�
def
D †1�1F�W �! Sp

and the functor

X� D FreeCAlg.G
�/W �! CAlg

into the1–category CAlg of E1–rings, obtained by applying the free algebra functor
everywhere to G. By construction, X� corepresents the functor AW Fun.�;CAlg/! S
in which we are interested. In particular, it suffices to prove (6-1) for this particular
functor. As we will see in the next paragraph, G� takes values in connective spectra
and therefore so does X� . Since we are only interested in differentials in a particular
range, we may (by naturality) only consider the Postnikov section ��2tX�. We get the
following basic step.

Proposition 6.2.2 In order to prove Theorem 6.1.1, it suffices to prove it for ��2tX�

(and the tautological class).
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In fact, we have a reasonable handle on what the functor ��2tX� looks like and can
entirely determine the BKSS. To see this, we recall the construction of F� ; compare
also the discussion in [44]. The functor

Lan
��t!�

.�/W �! S

sends any finite nonempty totally ordered set T to the nerve of the category ��t
=T

of
all order-preserving morphisms fS ! T g where

(1) S is a finite, nonempty totally ordered set, and

(2) jS j � t C 1.

Proposition 6.2.3 Lan��t!�.�/ is naturally equivalent to the functor which sends T
in � to the nerve of the poset P�tC1.T / of nonempty subsets of T of cardinality at
most t C 1.

Proof In fact, for any T , there is a natural map P�tC1.T / ! �
�t
=T

, which is a
homotopy equivalence as it is right adjoint to the functor ��t

=T
! P�tC1.T / which

sends S ! T to image.S ! T /� T .

In view of the last proposition, one can also consider the following approach to the left
Kan extension. There is a standard cosimplicial simplicial set sending Œn� 7!�n. The
functor of the proposition is equivalent to the barycentric subdivision of the cosimplicial
simplicial set Œn� 7! skt �n.

As in [44], the nerve of P�tC1.T /, for any choice of T , is (pointwise) homotopy
equivalent to a wedge of t –spheres, and contractible if jT j � tC1. We get from (6-2):

Proposition 6.2.4 The functor F�W � ! S� constructed above has the following
properties:

(1) For any T , F.T / is always a wedge of copies of S tC1 and S2tC1.

(2) Restricted to ��t, the functor F� is contractible. Restricted to ��2t, the functor
F� is pointwise a wedge of copies of S tC1.

6.3 Some technical lemmas

Our first goal is to understand the BKSS for G� D†1�1F� . Observe that pointwise,
this cosimplicial spectrum is a wedge of copies of S t and S2t by Proposition 6.2.4. In
order to do this, we need to understand the cosimplicial abelian group ��.†1�1F�/.
We will prove the following:
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Proposition 6.3.1 The cohomology H s.��.G
�// is given by

(6-3) H s.��.G
�//'

�
��S

t if s D t C 1;
��S

2t if s D 2.t C 1/:

In the spectral sequence, the differential dtC1 is an isomorphism.

6

5

4

3

2

1

0

�3 �2 �1 0 1 2 3

Z �1 �2 �3 : : :

Z �1 �2 �3 : : :

Figure 1: Bousfield–Kan spectral sequence for G�, with t D 2 (�k denotes �kS0 )

The spectral sequence is depicted in Figure 1. The proof of Proposition 6.3.1 will take
work and will be spread over two subsections. In the present subsection, our main
result is that the totalization of G� (and related cosimplicial spectra) is contractible, and
we will deduce the differentials from that. The approach to this is not computational
and relies instead on ideas involving the 1–categorical Dold–Kan correspondence
of Lurie.

We recall from [34, Notation 1.2.8.4] the cone construction, which associates to a
simplicial set K , the cone KC. If K is an 1–category, KC is as well, and is obtained
by adding a new initial object to K .

Lemma 6.3.2 Let K be a simplicial set and D an 1–category with colimits. Let
F W KC! D be a functor with the property that F carries the cone point to an initial
object of D . Then the natural map

lim
��!
K

F jK ! lim
��!
KC

F

is an equivalence in D .
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Proof It suffices to show12 that the natural map

(6-4) DKC=! DK=

is an equivalence of 1–categories. But we have DKC= ' D.�0?K/= ' .D�0=/K= in
view of the definition of the overcategory [34, Section 1.2.9], where ? denotes the
join of simplicial sets [34, Section 1.2.8]. However, we also know that the projection
map D�0=! D is an equivalence since �0! D maps to an initial object. Therefore,
we obtain that (6-4) is an equivalence, as desired.

Lemma 6.3.3 Let C , D be 1–categories and assume that D has colimits. Let
F W CC! D be a functor such that F carries the cone point to an initial object of D .
Let C0 � C be a full subcategory. Then the following are equivalent:

(1) F jC is a left Kan extension of its restriction to C0.

(2) F is a left Kan extension of its restriction to C0C.

Proof Suppose the first condition is satisfied. Then if c 2 C is arbitrary, the natural
map

lim
��!

c0!c2C0
=c

F.c0/! F.c/

is an equivalence. Now, we have an equivalence of 1–categories .C0
=c
/C ' .C0C/=c ,

because C adds a new initial object. Therefore, for arbitrary c 2 C , we also get that
the natural map

lim
��!

c0!c2.C0C/=c

F.c0/ ' lim
��!

c0!c2.C0
=c
/C
F.c0/! F.c/

is an equivalence, thanks to Lemma 6.3.2. At the cone point, the left Kan extension
condition is automatic. Thus, it follows that F is a left Kan extension of F jC0C . The
converse is proved in the same way.

Proposition 6.3.4 Let C be a stable 1–category and let F W ��n! C be any functor.
Suppose F is a left Kan extension of its restriction to ��n�1. Then lim

 ����n F is
contractible.

Proof Observe that the cone .��n/C is given by the category ��n
C

of the finite totally
ordered sets fŒi �g�1�i�n since Œ�1� is an initial object of this category. Consider the
functor zF W ��n

C
' .��n/C! C extending F that sends the cone point to the initial

12We are indebted to the referee for substantially simplifying our original argument here.
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object (one can always make such an extension). To show that lim
 ����n F is contractible,

it suffices to show that zF is a right Kan extension of FD zF j��n .

Now, we recall a basic result of Lurie [39, Lemma 1.2.4.19] (which we use for the
opposite category), a piece of the 1–categorical version of the Dold–Kan correspon-
dence: given any functor GW ��n

C
! C , G is a right Kan extension of Gj��n if and

only if G is a left Kan extension of Gj��n�1
C

. In our case, it follows that to show that
zF is a right Kan extension of F (as we would like to see), it suffices to show that zF

is a left Kan extension of zF j��n�1
C

. But by Lemma 6.3.3, this follows from the fact
that zF j��n D F is a left Kan extension of zF j��n�1 D F j��n�1 .

6.4 The BKSS for F

The goal of this subsection is to complete the proof of Proposition 6.3.1. To begin with,
we analyze the BKSS for the functor †1

C
Lan��t!�.�/W �! Sp.

Proposition 6.4.1 The BKSS for the cosimplicial spectrum †1
C

Lan��t!�.�/ satis-
fies

(6-5) E
s;�
2 DH

s
�
��.†

1
C Lan
��t!�

.�//
�
D

�
��.S

0/ if s D 0;
��.S

t / if s D t C 1:

The differential dtC1 is an isomorphism. (The result for t D 2 is displayed in Figure 2.)

3

2

1

0

�3 �2 �1 0 1 2 3

Z �1 �2 �3

Z �1 �2 �3 : : :

Figure 2: Bousfield–Kan spectral sequence for †1C Lan��t!�.�/ , with t D 2

Proof Observe that Lan��t!�.�/ is, pointwise, a wedge of t –spheres, so to compute
the desired cohomology H s

�
��.†

1
C

Lan��t!�.�//
�
, it suffices to do this for �t .

(The disjoint basepoint contributes the ��.S0/ for s D 0 in cohomology.) In other
words, we may consider the cosimplicial HZ–module M �DHZ^†1

C
Lan��t!�.�/.
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Now we know, for each n, that ��.M n/ is concentrated in degrees 0 and t , and that
�0.M

�/ is the constant cosimplicial abelian group Z. Moreover, by Proposition 6.3.4,
Tot.M �/ is contractible. A look at the spectral sequence for Tot.M �/ shows that
H s.�tM

�/ must be concentrated in degree s D t C 1 and must be a Z there. The
claim about differentials also follows from contractibility of the totalization.

Proof of Proposition 6.3.1 The definition (6-2) of F� and Proposition 6.4.1 together
give the E2–page of the spectral sequence, when one uses the long exact sequence
in homotopy groups. The differentials are forced, again, by Proposition 6.3.4 which
implies that Tot.G�/ is contractible.

6.5 Completion of the proof

Now we need to consider the cosimplicial E1–ring defined earlier

Y�
def
D ��2tX

�
' ��2t FreeCAlg.G

�/:

We recall that this is well defined as a cosimplicial E1–ring because G� is (pointwise)
connective.

In this subsection, we will determine the relevant piece of the BKSS for Y and then
complete the proof of Theorem 6.1.1. We have that

Y� ' ��2tS
0
_ ��2tG

�
_ ��2t ..G

�/^2h†2
/;

because, by a connectivity argument, no other terms contribute. In particular, the
cohomology H s.��.Y

�// picks up a copy of ��.S0/ for s D 0 (which is mostly
irrelevant). In Proposition 6.3.1, we determined the BKSS for G� ; in bidegrees .tC1; t/
and .2t C 2; 2t/, this picks up copies of Z such that the first one hits the second one
with a dtC1 . We will prove:

Proposition 6.5.1 E
2tC2;2t
2 ' Z˚Z=2 in the BKSS for Y�. The Z=2 is generated

by the square of the class in bidegree .t C 1; t/.

Proof We will use the notation and results of Appendix C. Let A� be the cosimplicial
abelian group �tG�, which is levelwise free and finitely generated. As we have seen
(Proposition 6.3.1), H tC1.A�/' Z and the other cohomology of A� vanishes. Now,
using the notation of Definition C.1,

�2t .G
�^2
h†2

/D

�
Sym2A

� for t even,gSym2A� for t odd:

By Proposition C.3, we find that the E2tC2;2t2 term of .G�/^2
h†2

is as claimed.

Geometry & Topology, Volume 20 (2016)



3178 Akhil Mathew and Vesna Stojanoska

We are now ready to complete the proof and determine the differential in the gl1
spectral sequence. Using the notation of the beginning of this section, it follows
that EtC1;ttC1 ' Z and E2tC1;2ttC1 ' Z˚Z=2, and similarly for E . The dtC1 carries
the Z into the other Z. By naturality of the spectral sequence, it follows that there
must exist a universal formula

(6-6) d tC1.x/D adtC1.x/C �x2 for a 2 Z and � 2 f0; 1g:

The main claim is that aD � D 1. Our first goal is to compute a .

Lemma 6.5.2 We have an equivalence of 1–categories between the 1–category
FunL.Sp�0;Sp�0/ of cocontinuous functors Sp�0! Sp�0 and Sp�0 given by eval-
uating at the sphere. The inverse equivalence sends a connective spectrum Y to the
functor X 7!X ˝Y .

Proof It suffices to show that evaluation at the sphere induces an equivalence of 1–
categories FunL.Sp�0;Sp/'Sp (with inverse given as above). But the1–category Sp
is the stabilization [39, Section 1.4] of Sp�0 (as one sees easily from the fact that † is
fully faithful on Sp�0 and an equivalence on Sp), so that, by [39, Corollary 1.4.4.5],
we have an equivalence FunL.Sp;Sp/' FunL.Sp�0;Sp/ given by restriction. But we
know that FunL.Sp;Sp/' Sp by evaluation at the sphere spectrum, with inverse given
by the smash product; see [39, Section 4.8.2].

We need the following fact about gl1 .

Proposition 6.5.3 Let X be a connective spectrum, and let S0_X be the square-zero
E1–ring. Then there is a natural equivalence of spectra,

gl1.S
0
_X/' gl1.S

0/_X:

On homotopy groups, this equivalence is compatible with the purely algebraic equiva-
lence �t gl1.S0 _X/' �t .S0 _X/' �t .S0/˚�t .X/' �t .gl1.S0//˚�t .X/.

Proof Given the connective spectrum X , we can use the composite S0!S0_X!S0,
in which the second map sends X to 0, to get a natural splitting

gl1.S
0
_X/' gl1.S

0/_F.X/;

where F W Sp�0 ! Sp�0 is a certain functor that we want to claim is naturally iso-
morphic to the identity. First, observe that F commutes with colimits. Namely, F
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commutes with filtered colimits (as one can check on homotopy groups), F takes �
to �, and given a pushout square

(6-7)

X1

��

// X2

��

X3 // X4

in Sp�0 , the analogous diagram

(6-8)

F.X1/

��

// F.X2/

��

F.X3/ // F.X4/

is a pushout square in Sp�0 . This in turn follows by considering long exact sequences
in homotopy groups. More precisely, given the pushout square (6-7), the diagram
of E1–rings

S0 _X1

��

// S0 _X2

��

S0 _X3 // S0 _X3

is a homotopy pullback in E1–rings, so that applying gl1 (which is a right adjoint)
leads to a pullback square

gl1.S
0 _X1/

��

// gl1.S
0 _X2/

��

gl1.S
0 _X3/ // gl1.S

0 _X4/

and in particular, (6-8) is homotopy cartesian too in Sp�0 . Therefore, it is homotopy
cocartesian as well if we can show that the map

�0.gl1.S
0
_X3//˚�0.gl1.S

0
_X2//! �0.gl1.S

0
_X4//

is surjective. This follows from the analogous fact that �0.X3/˚�0.X2/! �0.X4/

is surjective as (6-7) is a pushout.

Therefore, as F commutes with colimits, F is necessarily of the form X 7!X ˝Y

for some Y 2 Sp�0 , by Lemma 6.5.2. For X DHZ, we find F.X/DHZ, so that
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HZ˝Y is concentrated in degree zero and is isomorphic to HZ. This forces Y ' S0

and proves the claim.

Proof of Theorem 6.1.1 Proposition 6.5.3 implies that in the universal formula (6-6),
the constant a D 1. In fact, we know that if X� is any cosimplicial spectrum, then
the cosimplicial spectra gl1.S

0 _X�/ and gl1.S
0/_X� are identified in a manner

compatible with the identifications of homotopy groups. In particular, the differentials
in the spectral sequence for gl1.S

0 _X�/ and in the spectral sequence for S0 _X�

are identified, forcing aD 1.

It remains to show that �D 1. For this, we need an example where the two differentials
do not agree. This will be a generalization of Example 5.2.1. Consider the E1–ring R
of Proposition 5.2.2, with nD t , so that, in particular, gl1.R/ has homotopy groups in
dimensions t and 2t only. Proposition 5.2.2 shows that the k–invariant is nontrivial.

Consider the space X DK.F2; t C 1/, and consider the Atiyah–Hirzebruch spectral
sequences for the homotopy groups of gl1.R/

X and RX (these can be identified
with BKSS’s by choosing simplicial resolutions of X by points). The latter clearly
degenerates because R is an Eilenberg–Mac Lane spectrum, but we claim that the
former does not.

More precisely, we claim that there is no map of spectra

†�1†1K.F2; t C 1/! gl1.R/;

inducing an isomorphism on �t . The degeneration of the AHSS would certainly imply
the existence of such a map. To see this, it is equivalent to showing that there is no
map of (pointed) spaces

K.F2; t C 1/! BGL1.R/;

with the same properties. If there existed such a map, then we could combine it with the
map ��2tC1BGL1.R/'K.F2; 2tC1/!BGL1.R/ via the infinite loop structure to
obtain a map

K.F2; t C 1/�K.F2; 2t C 1/! BGL1.R/;

which would be an equivalence by inspection of homotopy groups. However, this
contradicts Proposition 5.2.2, which shows that the space BGL1.R/ has a nontrivial
k–invariant.

This completes the proof of Theorem 6.1.1.
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Part III Computations

7 Picard groups of real K –theory and its variants

Before we embark on the lengthy computations for the Picard groups of the various
versions of topological modular forms, let us work out in detail the case of real K–
theory, as well as the Tate K–theory spectrum KO..q//. In particular, these examples
will illustrate our methodology without being computationally cumbersome.

7.1 Real K –theory

In this subsection, we compute the Picard group of KO using C2–Galois descent
from the C2–Galois extension KO! KU and the Comparison Tool 5.2.4 (but not the
universal formula of Theorem 6.1.1).

We begin with the basic case of complex K–theory.

Example 7.1.1 (complex K–theory) The complex K–theory spectrum has a very
simple ring of homotopy groups KU� D ZŒu˙1� with u in degree 2. In particular,
KU is even periodic with a regular noetherian �0 , so its Picard group is algebraic
by Theorem 2.4.6. The inner workings of Theorem 2.4.6 would use that the only
(homogeneous) maximal ideals of KU� are generated by prime numbers p ; for each p ,
there is a corresponding residue field spectrum, namely mod p K–theory, also known
as an extension of the Morava K–theory of height one at the given prime. As the
Picard group of KU0DZ is trivial, and Pic.KU�/'Z=2, any invertible KU–module
is equivalent to either KU or †KU.

To compute Pic.KO/, we start with this knowledge that, thanks to Example 7.1.1,
�0 pic.KU/D Pic.KU/ is Z=2. We have the spectral sequence from (3-5)

H�.C2; �� pic.KU//) ��.pic.KU//hC2

which will allow us to compute �0.pic.KU//hC2 ' Pic.KO/. We note that

�1 pic.KU/' .KU0/� D Z=2

and
H�.C2;Z=2/D Z=2Œx�;

where x is in cohomological degree 1. The higher homotopy groups of pic.KU/
coincide (as C2–modules) with those of KU, suitably shifted by one.
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Recall, moreover, that the E2–page of the HFPSS for ��KO is given by the bigraded
ring

E
�;�
2 D ZŒu2; u�2; h1�=.2h1/ with ju2j D .4; 0/ and jh1j D .1; 2/;

where u2 is the square of the Bott class in ��KU'ZŒu˙1�, and h1 detects in homotopy
the Hopf map �. The class h1 is in bidegree .s; t/D .1; 2/, so it is drawn using Adams
indexing in the .1; 1/ place. The differentials are determined by d3.u2/D h31 and the
spectral sequence collapses at E4 . For convenience, we reproduce a picture in Figure 3;
the interested reader can find the detailed computation of this spectral sequence in [22,
Section 5].

6

4

2

0

�4 �2 0 2 4 6 8

� � u2�
h1

h21

h31

Figure 3: Homotopy fixed point spectral sequence for �� KO' ��.KUhC2/

(� denotes Z=2 and � denotes Z)

Therefore, the E2–page of the spectral sequence for .pic.KU//hC2 is as in Figure 4.
To deduce differentials, we use our Comparison Tool 5.2.4: in the homotopy fixed
point spectral sequence for KU, there are only (nontrivial) d3–differentials. By the
Comparison Tool 5.2.4, we conclude that we can “import” those differentials to the
HFPSS for pic.KU/ when they involve terms with t � 4. In particular, we see that
the differentials drawn in Figure 4 are nonzero; moreover, everything that is above
the drawn range and in the s D t column either supports or is the target of a nonzero
differential. Note that we are not claiming that there are no other nonzero differentials,
but these suffice for our purposes.

We deduce from this that �0 pic.KU/hC2 D Pic.KO/ has cardinality at most eight. On
the other hand, the fact that KO is 8–periodic gives us a lower bound Z=8 on Pic.KO/.
Thus we get:

Theorem 7.1.2 (Hopkins; Gepner and Lawson [15]) Pic.KO/ is precisely Z=8,
generated by †KO.
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6

4

2

0

�4 �2 0 2 4 6 8

�u2
h1

h21

h3
1

u2

Figure 4: Homotopy fixed point spectral sequence for pic.KU/hC2

Theorem 7.1.2 was proved originally by Hopkins (unpublished) using related tech-
niques. The approach via descent theory is due to Gepner and Lawson in [15]. Their
identification of the differentials in the spectral sequence is, however, different from
ours: they use an explicit knowledge of the structure of gl1.KU/ with its C2–action
(which one does not have for TMF).

Remark 7.1.3 In view of Remark 3.3.2, we conclude that the relative Picard group of
the C2–extension KO! KU is ��1.gl1 KU/hC2 ' Z=4.

Remark 7.1.4 In the usual descent spectral sequence for KO, the class h31=u
2 (in

red) supports a d3 . By Theorem 6.1.1 and the multiplicative structure of the usual
SS, h31=u

2 does not support a d3 in the descent SS for Pic. We saw that above by
counting: if h31=u

2 did not survive, the Picard group of KO would be too small. For
2–local TMF, simple counting arguments will not suffice and we will actually need to
use Theorem 6.1.1 as well.

Remark 7.1.5 We can also deduce from the spectral sequence that the cardinality of
the relative Brauer group for KO =KU, which is isomorphic to ��1.pic.KU//hC2, is
at most eight. However, we do not know how to construct necessarily nontrivial elements
of this Brauer group in order to deduce a lower bound as in the Picard group case.

7.2 KOŒq�; KOŒŒq�� and KO..q//

We now include a variant of the above example where one adds a polynomial (resp.
power series, Laurent series) generator, where we will also be able to confirm the answer
using a different argument. This example can be useful for comparison with TMF
using topological q–expansion maps. We begin by introducing the relevant E1–rings.
This subsection will not be used in the sequel and may be safely skipped by the reader.
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Definition 7.2.1 We write for S0Œx� the suspension spectrum †1
C

Z�0 . Since Z�0
is an E1–monoid in spaces (in fact, a commutative topological monoid), S0Œx�
naturally acquires the structure of an E1–ring. Given an E1–ring R , we will write
RŒx�DR^S0Œx�.

We can also derive several other variants:

(1) We will let RŒŒx�� denote the x–adic completion of RŒx�, so its homotopy groups
look like a power series ring over ��R .

(2) We will let RŒx˙1� denote the localization RŒx�Œ1=x�, so its homotopy groups
are given by Laurent polynomials in ��R .

(3) We will let R..x//DRŒŒx��Œ1=x�, so that its homotopy groups look like formal
Laurent series over ��R .

On the one hand, ��.RŒx�/' .��R/Œx� is a polynomial ring over ��R on a generator
in degree zero. On the other hand, as an E1–algebra under R , the universal property
of RŒx� is significantly more complicated than that of the “free” E1–R–algebra on
a generator (often denoted Rfxg). A map RŒx�! R0, for an E1–R–algebra R0, is
equivalent to an E1–map

Z�0!�1R0;

where �1R0 is regarded as an E1–space under multiplication. In general, given a
class in �0R0, there is no reason to expect an E1–map RŒx�!R0 carrying x to it,
since Z�0 as an E1–monoid is quite complicated. Classes for which this is possible
(together with the associated maps RŒx�!R0 ) have been called “strictly commutative”
by Lurie.

Example 7.2.2 There is a map RŒx�! R satisfying x 7! 1. This comes from the
map of E1–spaces Z�0!�!�1S0 where � maps to the unit in �1S0.

Example 7.2.3 There is a map RŒx�!R satisfying x 7! 0.13

To obtain this in the universal case RD S0, we consider the adjunction

.†1; �1/W S�� Sp:

Here S� and Sp are symmetric monoidal with the smash product and †1 is a sym-
metric monoidal functor. In particular, †1 carries commutative algebra objects in S�
to E1–ring spectra.

13We are grateful to the referee for suggesting this argument over our previous one.
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We start with the commutative monoid M with a single element m. Then we have that
MC D f�; mg 2 S� is a commutative algebra object of S� with respect to the smash
product: in fact, it is the unit S0 as a pointed space. Similarly, .Z�0/C is a commutative
algebra object of S� . Now we have equivalences of E1–ring spectra †1.MC/' S0

and †1.Z�0/C '†1CZ�0 . There is a map of commutative monoids in S�

.Z�0/C!MC;

which carries 0 2 Z�0 to m and everything else to �. After applying †1 , we obtain
the desired map S0Œx�! S0 of E1–rings.

The map RŒx� ! R given in Example 7.2.3 has the property that it exhibits the
RŒx�–module R as the cofiber RŒx�=x . It follows in particular that if R0 is any
E1–R–algebra and x0 2 �0R0 is a strictly commutative element, then we can give
the cofiber R0=x0 'R0˝RŒx�R the structure of an E1–R0–algebra.

Remark 7.2.4 Consider the sphere spectrum S0. No cofiber S0=n for n … f˙1; 0g
can admit the structure of an E1–ring by, for example, [43, Remark 4.3].14 It
follows that the only element of �0S0 ' Z, besides 0 and 1, that can potentially
be strictly commutative is �1. Now, �1 is not strictly commutative in the K.1/–
local sphere LK.1/S0 at the prime 2 because of the operator � of [24]: we have
�.�1/ D 1

2
..�1/2 � .�1// D 1 ¤ 0, while power operations such as � annihilate

strictly commutative elements. Therefore, �1 cannot be strictly commutative in S0.
(One could have applied a similar argument with power operations to every other integer,
too.) However, we observe that it is strictly commutative in S0

�
1
2

�
: the obstruction is

entirely 2–primary (Proposition 7.2.6 below).

Example 7.2.5 Let a , b 2 �0R be strictly commutative elements for R an E1–ring.
Then ab is also strictly commutative. If a is a unit, then a�1 is strictly commutative.
This follows because there is a natural addition on E1–maps Z�0!�1R .

Proposition 7.2.6 Let R be an E1–ring with n invertible. Then any u 2 �0R

with un D 1 (ie an nth root of unity) admits the structure of a strictly commutative
element.

Proof We consider the map of E1–monoids Z�0! Z=nZ and the induced map
of E1–ring spectra

(7-1) RŒx�!R^†1CZ=nZ:

14It is an unpublished result of Hopkins that no Moore spectrum can even admit the structure of an
E1–algebra.
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Since 1=n 2 �0R , we have that R ^†1
C

Z=nZ is étale over R and the homotopy
groups are given by ��RŒx�=.xn � 1/. We can thus produce a map of E1–rings
R^†1

C
.Z=nZ/!R sending 1 2 Z=nZ to u by étaleness.15 Composing with (7-1)

gives us the strictly commutative structure on u.

Using these ideas, we will be able to give a direct computation of the Picard group of
the E1–ring KOŒŒq��. (We have renamed the power series variable to “q” in accordance
with “q–expansions”.)

Proposition 7.2.7 The map Pic.KO/! Pic.KOŒŒq��/ is an isomorphism, where q is
in degree zero.

Proof Suppose M is an invertible KOŒŒq��–module such that M=qM 'M˝KOŒŒq�� KO
is equivalent to KO. We will show that then M is equivalent to KOŒŒq�� using Bock-
steins. Specifically, consider the generating class in �0.M=qM/ ' Z; we will lift
this to a class in �0M . It will follow that the induced map KOŒŒq��!M becomes an
equivalence after tensoring with KO' KOŒŒq��=q . Since M is q–adically complete, it
will follow that KOŒŒq��'M .

By induction on k , suppose that:

(1) ��1.M=q
kM/D 0.

(2) �0.M=q
kM/! �0.M=qM/ is a surjection.

These conditions are clearly satisfied for k D 1. If these conditions are satisfied for k ,
then the cofiber sequence of KOŒŒq��–modules

M=qkM !M=qkC1M !M=qM

shows that they are satisfied for k C 1. In the limit, we find that there is a map
KOŒŒq��!M which lifts the generator of �0.M=qM/, which proves the claim.

Proposition 7.2.7 can also be proved using Galois descent, but unlike for KO, we need
to use Theorem 6.1.1.

Second proof of Proposition 7.2.7 The faithful C2–Galois extension KO ! KU
induces upon base-change a faithful C2–Galois extension KOŒŒq��! KUŒŒq��. The
Picard group of KUŒŒq��, again by Theorem 2.4.6, is Z=2 generated by the suspension.

15The étale obstruction theory has been developed by a number of authors; a convenient reference for
the result that we need is [39, Theorem 8.5.4.2].
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Consider now the descent spectral sequence for .pic.KUŒŒq��//hC2, which is a modifica-
tion of the descent spectral sequence for KUhC2 in Figure 4. One difference is that
every term with t � 2 is replaced by its tensor product over Z with ZŒŒq��; the other is
that the t D 1 line now contains the C2–cohomology of the units in �0 KUŒŒq��, which
is a bigger module than .�0 KU/� D Z=2. Namely, these units are Z=2˚ qZŒŒq��,
with trivial C2–action. The resulting E2–page is displayed in Figure 5.

6

4

2

0

�4 �2 0 2 4 6 8
� �

Figure 5: Homotopy fixed point spectral sequence for pic.KUŒŒq��/hC2

(� denotes Z=2 , � denotes Z=2ŒŒq�� , and � denotes ZŒŒq��)

Since the d3 is the only differential in the ordinary HFPSS for ��KOŒŒq��, as be-
fore, it follows that the only contributions to Pic.KOŒŒq��/ can come from the Z=2
with t D s D 0 (the suspension), the Z=2 with .s; t/D .1; 1/ (ie the algebraic Picard
group), and the Z=2ŒŒq�� in bidegree .s; t/D .3; 3/.

But here, E3;32 D Z=2ŒŒq��.h31=u
2/ is infinite, so unlike previously, we do not get

the automatic upper bound of eight on jPic.KOŒŒq��/j. On the other hand, we can
use Theorem 6.1.1 to determine the d3 supported here. Note that in the HFPSS
for .KUŒŒq��/hC2, we have

d3.f .q/.h
3
1=u

2//D f .q/.h61=u
4/ for f .q/ 2 Z=2ŒŒq��:

Therefore, in view of (6-1), in the HFPSS for pic.KUŒŒq��/hC2, we have

d3.f .q/.h
3
1=u

2//D .f .q/Cf .q/2/.h61=u
4/:

(Note that a crucial point here is that in the HFPSS for KO, squaring or applying d3
to h31=u

2 yields the same result.) It follows from this that in the HFPSS, the kernel
of d3 on E3;32 is Z=2 generated by 1.h31=u

2/: the equation f .q/C f .q/2 D 0 has
only the solutions f .q/� 0, 1. Therefore, we do get an upper bound of eight on the
cardinality of Pic.KOŒŒq��/ after all, as nothing else in E3;32 lives to E4 .
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Corollary 7.2.8 The maps KO! KOŒq� and KO! KO..q// induce isomorphisms
on Picard groups.

Proof This result is not a corollary of Proposition 7.2.7 but rather of its second
proof. In fact, the same argument shows that d3 has a Z=2 as kernel on the relevant
term E3;32 , which gives an upper bound of cardinality eight on the Picard group of KOŒq�
or KO..q// as before.

Remark 7.2.9 Corollary 7.2.8 cannot be proved using the Bockstein spectral sequence
argument used in the first proof of Proposition 7.2.7. However, a knowledge of the
Picard group of KOŒŒq�� can be used to describe enough of the C2–descent spectral
sequence to make it possible to prove Corollary 7.2.8 without the explicit formula (6-1).
We leave this to the reader.

8 Picard groups of topological modular forms

In the rest of the paper we proceed to use descent to compute the Picard groups of various
versions of topological modular forms. We will analyze the following descent-theoretic
situations:

� The Galois extension TMF
�
1
2

�
! TMF.2/, with structure group GL2.Z=2/,

also known as the symmetric group on three letters.

� The Galois extension TMF
�
1
3

�
! TMF.3/, with structure group GL2.Z=3/, a

group of order 48 which is a nontrivial extension of the binary tetrahedral group
and C2 .

� Étale descent from the (derived) moduli stack of elliptic curves or its compactifi-
cation.

In each of these cases, we will start with the knowledge of the original descent spectral
sequence, computing the homotopy groups of the global sections or homotopy fixed
point spectrum. This information plus some additional computation of the differing
cohomology groups will provide the data for the E2–page of the descent spectral
sequence for the Picard spectrum. The additional computations are somewhat lengthy,
hence we are including them separately in the appendices.

8.1 The Picard group of TMF
�

1
2

�
When 2 is inverted, the moduli stack of elliptic curves Mell has a GL2.Z=2/–Galois
cover by Mell.2/, the moduli stack of elliptic curves with full level 2 structure. This
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remains the case for the derived versions of these stacks, and on global sections
gives a faithful Galois extension TMF

�
1
2

�
! TMF.2/ by [42, Theorem 7.6]. The

extension is useful for the purposes of descent as the homotopy groups of TMF.2/ are
cohomologically very simple.

To be precise, we have that

TMF.2/� D Z
�
1
2

�
Œ�˙11 ; �˙12 �Œ.�1��2/

�1�;

where the (topological) degree of each �i is four. To see this, one can use the presenta-
tion of the moduli stack Mell.2/ from [63, Section 7]. There it is computed that Mell.2/

is equivalent to (the stacky) Proj Z
�
1
2

�
Œ�1; �2�. Moreover, the substack classifying

smooth curves, ie Mell.2/, is the locus of nonvanishing of �21�
2
2.�1 � �2/

2. More
precisely, Mell.2/, as a stack, is the Gm–quotient of the ring

Z
�
1
2

�
Œ�1; �2; .�

2
1�
2
2.�1��2//

�1�;

where the Gm–action is as follows: a unit u acts as �i 7! u2�i for i D 1, 2, so that it
is an open substack of a weighted projective stack.

In particular, TMF.2/� has a unit in degree 4, and is zero in degrees not divisible by 4.
It will be helpful to write TMF.2/� differently, so as to reflect this periodicity more
explicitly; for example, we have that TMF.2/� D TMF.2/0Œ�˙12 �, and

TMF.2/0 D Z
�
1
2

�
Œs˙1; .s� 1/�1�;(8-1)

where s D �1=�2 . Therefore, Corollary 2.4.7 applies to give the following conclusion.

Lemma 8.1.1 Pic.TMF.2// is Z=4, generated by the suspension †TMF.2/.

Remark 8.1.2 The proof of Corollary 2.4.7 relies on the construction of “residue
field” spectra; let us specify what they are in the case at hand. The maximal ideals
in TMF.2/0 are mD .p; f .s//, where p is an odd prime and f .s/ a monic polynomial
irreducible modulo p (and not congruent mod p to s , s�1). For each of these ideals,
we have an associative ring spectrum (the “residue field”) with homotopy groups
TMF.2/�=m by [3]; denote it temporarily by TMF.2/=m. After extending scalars so
that f splits, we get that TMF.2/=m is a product of (extensions of) mod p Morava
K–theory spectra at height one or two, one for each zero of f . By [62, Chapter V,
Theorem 4.1], the factor associated to the zero a of f has height two precisely when

.p�1/=2X
iD0

 
.p� 1/=2

i

!
ai

is zero modulo p .
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Next we use descent from TMF.2/ to TMF
�
1
2

�
to obtain the following result.

Theorem 8.1.3 Pic
�
TMF

�
1
2

��
is Z=72, generated by the suspension †TMF

�
1
2

�
. In

particular, this Picard group is algebraic.

Proof We use the homotopy fixed point spectral sequence (3-5)

H s
�
GL2.Z=2/; �t pic.TMF.2//

�
) �t�s pic.TMF.2//hGL2.Z=2/:(8-2)

To begin with, note that the homotopy groups �t pic.TMF.2// for t � 2 are isomorphic
to �t�1 TMF.2/ as GL2.Z=2/–modules. This tells us that the t � 2 part of the E2–
page of the HFPSS (8-2) for pic.TMF.2// is a shifted version of the corresponding
part for TMF.2/.

The latter is immediately obtained from the analogous computation for Tmf.2/ depicted
in [63, Figure 2], as we now describe. Recall that TMF.2/'Tmf.2/Œ��1�; the nonneg-
ative homotopy groups ��0 Tmf.2/ are the graded polynomial ring ƒDZ

�
1
2

�
Œ�1; �2�

[63, Proposition 8.1], and the class � 2 �24 Tmf.2/ is

�D 16�21�
2
2.�2��1/

2

by [63, Proposition 10.3]. Now, by [63, Proposition 10.8] we have that

H�
�
GL2.Z=2/; �� TMF.2/

�
DH�

�
GL2.Z=2/;ƒ

�
Œ��1�:

In particular, the invariants H 0
�
GL2.Z=2/;ƒ

�
Œ��1� are the ring of �–inverted mod-

ular forms
Z
�
1
2

�
Œc4; c6; �

˙1�=.123�� c34 C c
2
6/:

The higher cohomology H>0
�
GL2.Z=2/;ƒ

�
is computed in [63, Section 10.1], and

in particular is killed by c4 and c6 . Consequently,

H>0
�
GL2.Z=2/; ��0 TMF.2/

�
DH>0

�
GL2.Z=2/;ƒ

�
DH>0.GL2.Z=2/; ��0 Tmf.2//:

Let us recall (the names of) certain interesting classes in these cohomology groups:

(1) There is the class a in H 1.GL2.Z=2/; �4 TMF.2// D Z=3, hence also in
H 1

�
GL2.Z=2/; �5 pic.TMF.2//

�
(so, a is in bidegree .s; t/ D .1; 5/ in the

Picard HFPSS, and depicted in position .s; t � s/ D .1; 4/ using the Adams
convention). In homotopy, this element detects the Greek letter element ˛1 in
the Hurewicz image in TMF

�
1
2

�
.

(2) There is b in H 2
�
GL2.Z=2/; �13 pic.TMF.2//

�
DZ=3 (b is in bidegree .2; 13/

or position .2; 11/); in homotopy it detects ˇ1 .
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Then, H>0
�
GL2.Z=2/;TMF.2/�

�
is precisely the ideal of Z=3Œa; b�Œ�˙1�=.a2/ of

positive cohomological degree. For example

H 5
�
GL2.Z=2/; �5 pic.TMF.2//

�
DH 5

�
GL2.Z=2/; �4 TMF.2/

�
D Z=3;

generated by ab2��1. We see this class depicted in red in Figure 6.

Next, we turn to the information which is new for the Picard HFPSS, ie the group
cohomology of �0 and �1 of the spectrum pic.TMF.2//. By Lemma 8.1.1, we know
that the zeroth homotopy group is Z=4, and since it is generated by the suspension
†TMF.2/, the action of GL2.Z=2/ on this Z=4 is trivial. Even though for our
purposes only the invariants H 0

�
GL2.Z=2/; �0 pic.TMF.2//

�
are necessary, we can

in fact compute all the cohomology groups. This is done in Lemma A.1.

The last piece of data needed for the determination of the E2–page of the Picard HFPSS
is the group cohomology with coefficients in �1 pic.TMF.2//D .�0 TMF.2//� . This
is done in Proposition A.2. The range s � 15 and �6 � t � s � 7 of the spectral
sequence is depicted in Figure 6. Note that in this range, the t � s D 0 column has
three nonzero entries: there is a Z=4 for s D 0, a Z=6 for s D 1 and a Z=3 for s D 5.

14

12

10

8

6

4

2

0

�6 �4 �2 0 2 4 6
�

� �
a

�

� �

ab2

�
�

�

�

b5

�2

�

b7

�3
�

�

Figure 6: Homotopy fixed point spectral sequence for
�
pic.TMF.2//

�hGL2.Z=2/

(� denotes Z , � denotes Z=2 , and � denotes Z=3)

Now we are ready to study the differentials in the HFPSS for pic.TMF.2//hGL2.Z=2/ .
Comparison with the HFPSS for the GL2.Z=2/–action on TMF.2/ gives a number of

Geometry & Topology, Volume 20 (2016)



3192 Akhil Mathew and Vesna Stojanoska

differentials, using our Comparison Tool 5.2.4. To distinguish between the differentials
in the two spectral sequences, let us denote by dor those in the HFPSS of TMF.2/.
The superscript o stands for “original”.

Recall that in the HFPSS for TMF.2/, there are nonzero do5 and do9 differentials,
which are obtained, for example, by a comparison with the HFPSS for Tmf.2/ which is
fully determined in [63]. In particular, in the HFPSS for TMF.2/, the first differential
is do5 .�/D ab

2, and the rest of the do5 ’s are determined by multiplicativity and the
fact that a and b are permanent cycles. In particular, we have

do5

�
b5

�2

�
D
ab7

�3
and do5

�
b3

�

�
D�

ab5

�2
:(8-3)

Next (and last) is do9 ; we have that do9 .a�
2/D b5. Consequently, we also have

do9

�
ab2

�

�
D
b7

�3
:(8-4)

Let us now see which of these differentials also occur in the HFPSS for pic.TMF.2//;
according to Comparison Tool 5.2.4, the d5–differentials are imported in the t > 5
range, and the d9–differentials in the t > 9 range. In particular, the differentials
in (8-3) are the same in the Picard HFPSS; these are the two differentials drawn in
Figure 6. Moreover, everything in the zero column and above the depicted region, ie
such that s D t > 16, either supports a differential or is killed by one which originates
in the t > 9 range. Hence, everything above the depicted region is killed in the spectral
sequence and nothing survives to the E1–page.

Note, however, that we cannot (and should not attempt to) import the differential (8-4);
this would be a d9–differential with t D 5, so it does not satisfy the hypothesis of
Comparison Tool 5.2.4.

Let us analyze the potentially remaining contributions to �0 pic.TMF.2//GL2.Z=2/ ;
regardless of what the rest of the differentials could possibly be, we have

� a group of order at most 4 (and dividing 4) in position .0; 0/,

� a group of order at most 6 (and dividing 6) in position .0; 1/, and

� a group of order at most 3 (and dividing 3) in position .0; 5/.

Therefore Pic
�
TMF

�
1
2

��
D �0 pic.TMF.2//GL2.Z=2/ has order at most 4� 6� 3D 72,

and dividing 72. This is an upper bound. But we also have a well-known lower bound:
the suspension †TMF

�
1
2

�
generates a nontrivial element of Pic

�
TMF

�
1
2

��
of order 72

because TMF
�
1
2

�
is 72–periodic. Thus we have proven the result.
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Remark 8.1.4 Our computations give an independent proof of the result of Fulton and
Olsson [14] that the Picard group of the classical moduli stack of elliptic curves Mell

over Z
�
1
2

�
is Z=12. (Fulton and Olsson carry out the analysis over any base, though.)

This is a toy analog of the above analysis, as we now see.

The Picard groupoid of the moduli stack Mell
�
1
2

�
is the homotopy fixed points of

the GL2.Z=2/–action on the Picard groupoid of Mell.2/. Now the Picard group
of Mell.2/ is Z=2, as Mell.2/ is an open subset in a weighted projective stack over
a UFD, so that quasicoherent sheaves on Mell.2/ correspond simply to graded modules
over Z

�
1
2
; �1; �2; .�

2
1�
2
2.�1 � �2//

�1
�

and the only nontrivial invertible object is
the shift by one of the unit. Note that this is the algebraic setting: the generator
of Pic.Mell.2// would correspond to the two-fold suspension of TMF.2/.

Next, in the HFPSS for computing Pic
�
Mell

�
1
2

��
, we see by the above computation of

H 1
�
GL2.Z=2/; �.Mell.2/;O�/

�
that one gets a contribution of order 6. Together with Pic.Mell.2//D Z=2 from the
previous paragraph, we get that

ˇ̌
Pic
�
Mell

�
1
2

��ˇ̌
� 12, but we know that ! has order

twelve, so we are done.

8.2 The Picard group of TMF
�

1
3

�
This section will be similar to Section 8.1, but with more complicated computations
as is to be expected from 2–torsion. In this case we will use the GL2.Z=3/–Galois
extension TMF

�
1
3

�
! TMF.3/, coming from the Galois cover Mell.3/!Mell

�
1
3

�
of

the moduli stack of elliptic curves with 3 inverted by the moduli stack of elliptic curves
equipped with a full level 3–structure.

From [64, Section 4.2], we can immediately compute the homotopy groups of TMF.3/:
the moduli stack Mell.3/ is affine, and is given as the locus of nonvanishing of

�D 3�5�.1� �/31
3
2 .1C �2/

3.2� �1/
3

in the compact moduli stack Mell.3/ D Proj Z
�
1
3
; �
�
Œ1; 2�. Here i are variables

in (topological) degree 2, and � is a primitive third root of unity, whose appearance
is due to the fact that the Weil pairing on the 3–torsion points of an elliptic curve
equips Mell.3/ with a map to Spec Z

�
1
3
; �
�
.16 Hence the descent spectral sequence

computing TMF.3/� collapses to give

TMF.3/� D Z
�
1
3
; �
�
Œ˙11 ; ˙12 �Œ.1C �2/

�1; .2� �1/
�1�:

16The map is given by the usual Weil pairing on the locus of smooth curves; for what it does at the
cusps, see for example [11, IV.3.21].
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Written differently, we have that TMF.3/� D TMF.3/0Œ˙12 �, and

TMF.3/0 D Z
�
1
3
; �
�
Œt˙1; .1� �t/�1; .1C �2t /�1�;(8-5)

for t D 1=2 . In particular TMF.3/0 is regular noetherian, and TMF.3/ is even
periodic. Thus, Theorem 2.4.6 (together with the fact that the ring ZŒ�; t � and hence
any of its localizations has unique factorization) implies the following conclusion.

Lemma 8.2.1 The Picard group Pic.TMF.3// is Z=2, generated by †TMF.3/.

Naturally, we will use this lemma as an input in computing the HFPSS for the associated
Picard spectra.

Theorem 8.2.2 Pic
�
TMF

�
1
3

��
is Z=192, generated by the suspension †TMF

�
1
3

�
. In

particular, this Picard group is algebraic.

Proof As is to be expected, we use the HFPSS (3-5)

H s
�
GL2.Z=3/; �t pic.TMF.3//

�
) �t�s pic.TMF.3//hGL2.Z=3/:(8-6)

The homotopy groups �t .pic.TMF.3/// for t � 2 are isomorphic to �t�1 TMF.3/
as GL2.Z=3/–modules; therefore the t � 2 part of the E2–page of the HFPSS
for pic.TMF.3// is same as the corresponding part in the HFPSS for TMF.3/. We will
use the fact that TMF.3/' Tmf.3/Œ��1� to identify this part of the spectral sequence
for TMF.3/ and therefore for pic.TMF.3//.

Computed in [64], and depicted in Figure 9 of loc. cit., is the E2–page of the HFPSS
computing the homotopy groups of Tmfy2 as .Tmf.3/y2/hGL2.Z=3/ . Since we are work-
ing with 3 inverted, and 2 and 3 are the only primes dividing the order of GL2.Z=3/,
we conclude that

H>0.GL2.Z=3/; �� Tmf.3//DH>0.GL2.Z=3/; �� Tmf.3/y2/:

The invariants H 0.GL2.Z=3/; ��0 Tmf.3// are the ring of modular forms

Z
�
1
3

�
Œc4; c6; ��=.12

3�� c34 C c
2
6/:

Let � denote the graded ring Z
�
1
3
; �
�
Œ1; 2�. As in the case of level 2–structures, we

have that

H�.GL2.Z=3/; �� TMF.3//DH�.GL2.Z=3/; �/Œ�
�1�:

In the group cohomology of � , computed and depicted in [64, Figure 7], there are a
number of interesting torsion classes, including
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(1) h1 in bidegree .s; t/ D .1; 2/, depicted in position .s; t � s/ D .1; 1/, which
detects (the Hurewicz image of) the Hopf map � in homotopy,

(2) h2 in position .1; 3/, which detects (the Hurewicz image of) the Hopf map � ,

(3) d in position .2; 14/, which detects in homotopy the class known as � ,

(4) g in position .4; 20/, which detects in homotopy the class �̄ , and

(5) c in position .2; 8/, which detects in homotopy the class � .

The homotopy elements detected by these classes satisfy some relations; for example,

�3 D 4� and ��2 D 4�̄:

Let us also name one of the less famous elements in the descent spectral sequence
for tmf.2/ , which also appears in the HFPSS for TMF

�
1
3

�
. Namely, there is a Z=2 in

position .1; 5/; we will denote the generating class by the generic name x (in [6] it
bears the name a21h1 ).

All torsion classes with the exception of (powers of) h1 are annihilated by c4 and c6 .
In the Picard spectral sequence, all of these classes appear shifted by one to the right;
we have labeled some such classes in Figure 9. A zoomed in portion of the Picard
spectral sequence is depicted in Figure 8. There, and in all of the related spectral
sequences, lines of slope 1 denote h1–multiplication, and lines of slope 1

3
denote

h2–multiplication.

A zoomed out portion of the Picard HFPSS (8-6) is depicted in Figure 7; the elements
that are to the right of the t D 2 line are, of course, a shift of the corresponding elements
in the spectral sequence for TMF

�
1
3

�
. However, to avoid cluttering the picture, a family

of classes is not shown. The family consists precisely of the h1–power multiples of
nontorsion classes. An exception is made for the elements depicted in green, namely
h31c4c6=� and h61c

2
4=� (in the .0; 3/ and .�1; 6/ positions, respectively; these classes

are also labeled in Figure 8), as well as the tower supported on 1, which do belong to
this family, but are nonetheless depicted. In the zoomed in Figure 9 this family is also
not shown.

More specifically, the nontorsion subring of the E2–page of the TMF
�
1
3

�
spectral

sequence is precisely the part in cohomological degree 0 and consists of the ring of
modular forms MF�

�
1
3

�
D Z

�
1
3

�
Œc4; c6; �

˙1�=.123�� c34 C c
2
6/. On the E2–page,

these support infinite h1–multiples, ie MF�
�
1
3

�
Œh1�=.2h1/ is a subring of the E2–page.

Note in degree zero, MF0
�
1
3

�
DZ

�
1
3
; j
�
, where j D c34=� is the classical j –invariant.

What we have omitted drawing in Figure 7 and 9 are all of the elements coming
from this subring, with the exception of the mentioned classes. For comparison, these
elements are drawn in the smaller-range Figure 8.
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Figure 7: Homotopy fixed point spectral sequence for pic.TMF.3//hGL2.Z=3/ :
zoomed out version with some h1–omissions (� denotes Z , � denotes Z=2 ,
� denotes Z=2Œj � , and � denotes Z=3)
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14
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8
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4

2

0

�4 �2 0 2 4 6

‹
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‹

h61
c2

4
�

h31
c4c6
�

�

�

h1

h2

Figure 8: Homotopy fixed point spectral sequence for pic.TMF.3//hGL2.Z=3/ :
zoomed in version without omissions (� denotes Z , � denotes Z=2 , �
denotes Z=2Œj � , and � denotes Z=3)
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dh1
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2

�2
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�
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�
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Figure 9: Homotopy fixed point spectral sequence for pic.TMF.3//hGL2.Z=3/ :
zoomed in version with some h1–omissions (� denotes Z , � denotes Z=2 ,
� denotes Z=2Œj � , and � denotes Z=3)
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Remark 8.2.3 The two classes h31c4c6=� and h61c
2
4=�, which we have depicted in

green (in the .0; 3/ and .�1; 6/ positions, respectively), do not appear in the spectral
sequence for Tmf

�
1
3

�
, as they involve a negative power of �. Another difference

between the Tmf and TMF situation is that in the E2–page of the latter, there are
infinite groups, isomorphic to Z=2Œj � and generated by h1 , h21 , h31 , etc, in positions
.1; 1/, .2; 2/, .3; 3/, etc. Moreover, the element x in position .1; 5/ also generates an
infinite Z=2Œj �, as do all of its h1–multiples.

Note that in the range that we are considering (namely, t > 1), the HFPSS for
the GL2.Z=3/–action on Tmf.3/ coincides with the descent spectral sequence for
Tmf

�
1
3

�
as the sections of Otop over Mell

�
1
3

�
, and the differentials in the latter have

been fully determined in Johan Konter’s master thesis [32]. Of course, these differentials
really come from the connective tmf, whose descent spectral sequence is fully computed
in [6]. In these spectral sequences, do3 is the first nontrivial differential, followed by
do5 ; d

o
7 ; d

o
9 ; : : : ; d

o
23 . In particular, we have the following differentials [6, Section 8]:

(8-7)

do3 .c6/D c4h
3
1; do3 .x/D h

4
1;

do5 .�/D gh2; do7 .4�/D gh
3
1;

do9 .�
2h1/D g

2c; do11.d�
2/D g3h1;

and a number of others.

Let us see now which of these differentials we can import using our Comparison Tool
5.2.4. In the TMF

�
1
3

�
spectral sequence, we have that do3 .h

3
1c4c6=�/D h

6
1c
2
4=�; in

the Picard SS, the element corresponding to h31c4c6=� has t D 3, thus we cannot
import this differential. We deal with this class later, ie in the next paragraph. However,
all the other classes which are on the s D t column and are h1–power multiples
of nontorsion classes, ie members of the family which we have not drawn in Figure 7,
are well within the t > 3 range, so that we can indeed conclude by Comparison Tool
5.2.4 that they either support a differential or are killed by one. For example, the
h1–multiple of the differential just discussed does happen, ie in the Picard SS we
have d3.h41c4c6=�/D h

7
1c
2
4=�. In particular, we need not worry about these omitted

classes any more.

We turn to the question of whether any differentials are supported on the .s; t�s/D .3; 0/
position in the HFPSS for pic.TMF.3//hGL2.Z=3/ . For this purpose we use the universal
formula (6-1) of Theorem 6.1.1, just as we did in the second proof of Proposition 7.2.7.
We have that E3;32 of the Picard spectrum HFPSS is Z=2Œj � generated by h31c4c6=�;
the corresponding element in the original HFPSS has

do3

�
h31
c4c6

�

�
D h61

c24
�
:
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Now we have that�
h31
c4c6

�

�2
D h61

c24c
2
6

�2
D .j � 123/h61

c24
�
D jh61

c24
�
;

using the fact that 123�D c34�c
2
6 and that by definition, j D c34=�. Thus we conclude

by (6-1) that in the Picard HFPSS, the differential d3W E3;33 !E6;53 is given by

d3

�
f .j /h31

c4c6

�

�
D .f .j /C jf .j /2/h61

c24
�
;

where .f .j /h31c4c6=�/ is an arbitrary element of E3;33 . However, .f .j /C jf .j /2/
in Z=2Œj � is zero only if f .j / is zero, hence this d3 is injective and has trivial kernel.
(Note this is an interesting difference between the present situation and the one in
Proposition 7.2.7.) Consequently, E3;34 is zero.

Further use of Comparison Tool 5.2.4 determines that all the differentials we have
drawn in blue in Figures 7–9 are nonzero. Note that of the classes in the s D t column,
ie the one which contributes to the Picard group of TMF

�
1
3

�
, everything with s � 8 is

killed. However, h2g=�, generating a Z=4 in s D 5, and h31g=� generating a Z=2
in s D 7, remain. In the original spectral sequence, the first one of these supported
a do5 and a do13 , and the second supported a do23 .

Next we need to determine the rest of the spectral sequence, ie the part which in-
volves �0 and �1 of the Picard spectrum of TMF.3/. Detailed computations for
this are deferred until Appendix B. The piece in which we are most interested is
H 1

�
GL2.Z=3/; �1 pic.TMF.3//

�
, which is a cyclic group of order 12 according

to Proposition B.1; we have also determined H�
�
GL2.Z=3/; �0 pic.TMF.3//

�
in

Proposition B.2 using a more general result of Quillen.

Now we are ready to make conclusions about the Picard group of TMF
�
1
3

�
: in the t D s

vertical line of the HFPSS, ie the one that abuts to �0 pic
�
TMF

�
1
3

��
D Pic

�
TMF

�
1
3

��
,

nothing above the s D 7 line survives the spectral sequence. The following might
survive:
� at most a group of order 2 in position .0; 0/,
� at most a group of order 12 in .1; 0/,
� at most a group of order 4 in .5; 0/, and
� at most a group of order 2 in .7; 0/.

The upshot is that we get an upper bound of 2 � 12 � 4 � 2 D 192 on the order of
the Picard group. But TMF

�
1
3

�
is 192–periodic, so this upper bound must also be

a lower bound. In conclusion, Pic
�
TMF

�
1
3

��
D Z=192, as claimed, generated by

†TMF
�
1
3

�
.
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Remark 8.2.4 As in Remark 8.1.4, we can use some of our computations to reprove
Fulton and Olsson’s [14] result that the moduli stack of elliptic curves Mell

�
1
3

�
also has

a Picard group Z=12. Namely, we start with the knowledge that Pic.Mell.3// is trivial,
as Mell.3/ is the prime spectrum of a UFD. Then, we consider the Picard HFPSS for
the algebraic stack Mell

�
1
3

�
, which must collapse. The only contribution towards the

Picard group is
H 1

�
GL2.Z=3/; �.Mell.3/;O�/

�
;

which we saw by Proposition B.1 has order 12. But ! has order 12, hence Pic
�
Mell

�
1
3

��
is cyclic of order 12.

8.3 Calculation of Pic.TMF/

In this section we will compute the Picard group of the integral periodic version of
topological modular forms TMF. The result, as stated in the introduction, is:

Theorem A The Picard group of integral TMF is Z=576, generated by †TMF.

Proof There is no nontrivial Galois extension of the integral TMF by [40, Theorem
10.1], but we can use étale descent, as TMF is obtained as the global sections of the
sheaf Otop of even-periodic E1–rings on the moduli stack of elliptic curves. Namely,
we can use Theorem 3.2.1 because the map Mell!MFG is known to be affine. The
spectral sequence is

H s.Mell; �t picOtop/) �t�s�.picOtop/;

and we are interested in �0 . Using Theorem 3.2.1, the E2–page of this spectral
sequence is given by (for t � s � 0)

E
s;t
2 D

8̂̂̂̂
<̂
ˆ̂̂:

Z=2 if t D s D 0;

H s.Mell;O�Mell
/ if t D 1;

H s.Mell; !
.t�1/=2/ if t � 3 is odd,

0 otherwise.

Over a field k of characteristic ¤ 2, 3, Mumford [51] showed that

H 1..Mell/k;O�Mell
/' Z=12;

ie the Picard group of the moduli stack is Z=12, generated by the line bundle ! that
assigns to an elliptic curve the dual of its Lie algebra. This result is also true over Z by
the work of Fulton and Olsson [14]. However, using descent we can reprove that result.
Namely, in Remarks 8.1.4 and 8.2.4 we saw that the Picard groups of both Mell

�
1
2

�
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and Mell
�
1
3

�
are Z=12, both generated by ! . Cover the integral stack Mell by these two;

their intersection is Mell
�
1
6

�
, which is the weighted projective stack Proj Z

�
1
6

�
Œc4; c6�

(with c4 and c6 in degrees17 4 and 6 respectively), and which therefore has Picard
group Z=12 also generated by ! . The descent spectral sequence for pic associated to
this cover gives the result.

Since Mell
�
1
6

�
has no higher cohomology, the groups H s.Mell; !

.t�1/=2/, when s > 0,
are given as the direct sum of the corresponding cohomology groups of Mell

�
1
2

�
and Mell

�
1
3

�
. These groups, in turn, are isomorphic to

H s
�
GL2.Z=p/; �t�1 TMF.p/

�
DH s

�
GL2.Z=p/;H

0.Mell.p/; !
.t�1/=2/

�
;

where p is 2 or 3, as the map Mell.p/! Mell
�
1
p

�
is Galois, and Mell.p/ has no

higher cohomology. We computed these groups in the previous examples.

The machinery of Section 5 now allows us to compare this Picard descent spectral se-
quence to the one which computes the homotopy groups of TMF. From Corollary 5.2.3
and an analogue of Comparison Tool 5.2.4, we conclude that the differentials involving
3–torsion classes wipe out everything above the s D 5 line, and those involving
2–torsion classes wipe out everything above the s D 7 line. These differentials are
identical to what happens in the homotopy fixed point spectral sequences in the previous
two examples. We conclude that the following are the only groups that can survive:

� at most a group of order 2 in .t � s; s/D .0; 0/,

� at most a group of order 12 in .0; 1/,

� at most a group of order 12 in .0; 5/, and

� at most a group of order 2 in .0; 7/.

This gives us an upper bound 2632 D 576 on the cardinality of �0 , which is exactly
the periodicity of TMF. The spectral sequence is depicted in Figure 10.

8.4 Calculation of Pic.Tmf/

We will now prove the following result stated in the introduction.

Theorem B The Picard group of Tmf is Z˚Z=24, generated by †Tmf and a certain
24–torsion invertible module.

17These are the algebraic degrees, which get doubled in topology.
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Figure 10: Descent spectral sequence for �.picOtop/ on Mell with some
h1–omissions as in Figure 7 (� denotes Z , � denotes Z=2 , � denotes
Z=2Œj � , and � denotes Z=3)
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While Tmf
�
1
n

�
can be described as the homotopy fixed point spectrum Tmf.n/hGL2.Z=n/

for nD 2; 3 just as in the periodic case, the extension Tmf
�
1
n

�
!Tmf.n/ is not Galois,

and therefore we cannot use Galois descent to compute the Picard group. However, we
can use Theorem 3.2.1 for the compactified moduli stack Mell .

First, we need a lemma.

Lemma 8.4.1 Let L be the line bundle on Mell obtained by gluing the trivial line
bundles on Mell D MellŒ�

�1� and MellŒc
�1
4 � via the clutching function j . Then

L' !�12.

Proof To give a section of L ˝ !12 over Mell is equivalent to giving sections
s1 2 �.Mell; !

12/ and s2 2 �.MellŒc
�1
4 �; !12/ such that

.js1/jMellŒc
�1
4 � D .s2/jMellŒc

�1
4 �:

We take s1 D� and s2 D c34 , and we get a nowhere vanishing section of L˝!12.

Proof of Theorem B The relevant part of the Picard descent spectral sequence is
similar to that of TMF, with the following exceptions: the algebraic part H 1.Mell;O�/
is now Z generated by ! , according to Fulton and Olsson [14], and all the torsion
groups are now finite, ie there are no Z=2Œj �’s appearing. In particular, E3;32 is zero,
and we have

� at most a group of order 2 in .t � s; s/D .0; 0/,

� a subquotient of Z in .0; 1/,

� at most a group of order 12 in .0; 5/, and

� at most a group of order 2 in .0; 7/

as potential contributions to the s D t line of the E1–page. The depiction is in
Figure 11.

Note that the Z=2 in .0; 0/, which corresponds to a single suspension of the even-
periodic spectra that Tmf is built from, is represented by †Tmf in the Picard group
of Tmf. Similarly, the element 1 2 Z D E0;12 D Pic.Mell/ corresponds to the line
bundle ! , which topologically is represented by †2 Tmf. Thus these groups survive
to the E1–page and are related by an extension. The rest of the E1–filtration now
tells us that Pic.Tmf/ sits in an extension

0! A! Pic.Tmf/! Z! 0;

where A is a finite group of order at most 24.
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We claim that AD Z=24 and therefore Pic.Tmf/D Z˚Z=24. To see this, we will
construct a line bundle I such that I˝24'Otop, but no lower power of I is equivalent
to Otop.

In order to proceed with the construction, we make the preliminary observation that
the modular function j D c34=� is a homotopy class in �0 TMFŒc�14 �, ie it survives
the descent spectral sequence

H�.MellŒ�
�1; c�14 �; !�/ŠH�.Mell; !

�/Œc�14 �) �� TMFŒc�14 �:

In fact, it is an invertible element of �0 TMFŒc�14 �. We reason as follows. The torsion
in the E2–page consists only of h1–towers supported on the nontorsion classes, since
all other torsion classes in H�.Mell; !

�/ are annihilated by c4 . Therefore, when c4 is
inverted only d3–differentials can be nonzero, and they wipe out everything above the
line s D 3. As � and c4 do not support any of those differentials, j is a permanent
cycle, as is j�1.

Construction 8.4.2 Consider the cover of Mell by MellŒ�
�1�DMell and MellŒc

�1
4 �

which fit in the pushout diagram:

MellŒ�
�1; c�14 � //

��

MellŒ�
�1�

��

MellŒc
�1
4 � // Mell

Let J be the line bundle on the derived moduli stack Mell D .Mell;Otop/ obtained
by gluing Otop on MellŒ�

�1� and Otop on MellŒc
�1
4 � using the clutching function

j D c34=� on MellŒ�
�1; c�14 �.

We claim that J is not a suspension of Otop, and that I D†24J is an element of the
Picard group of order 24.

To see the first assertion, note that by Lemma 8.4.1, �0J is !�12, so if J is a suspen-
sion of Otop, it ought to be †�24Otop. However, †�24Otop restricted to MellŒ�

�1� is
†�24Otop jMellŒ��1� , whereas J restricts to Otop jMellŒ��1� .

This argument can be repeated with any power J˝m such that m is not divisible by 24.
In this case, �0J˝m is !�12m, so if J˝m were a suspension of Otop, it would be
the .�24/mth suspension. At the same time, J˝m restricts to

.Otop/˝mjMellŒ��1� DOtop
jMellŒ��1�
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Figure 11: Descent spectral sequence for �.picOtop/ on Mell (� denotes Z ,
� denotes Z=2 , and � denotes Z=3)
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upon inverting �. If J˝m were a suspension, therefore, one would have that

†�24mOtop
jMellŒ��1� 'Otop

jMellŒ��1�:

By Theorem A, this holds if and only if m is divisible by 24.

This shows that the order of J in Pic.Otop/=Z, where the Z is generated by †Otop, is
at least 24. The spectral sequence argument above, however, showed that this quotient
has order at most 24.

The same analysis shows that Pic.Tmf.2//D Z˚Z=8 and Pic.Tmf.3//D Z˚Z=3,
the torsion being generated by the respective localizations of I . Moreover, when p is
greater than 3, Pic.Tmf.p//D Z.

8.5 Relation to the E2–local Picard group

Notice that I is the only “exotic” element in all of our examples involving the various
forms of topological modular forms. Let us see how it relates to the exotic piece of
the Picard group of the category of E2–local spectra, ie modules over the E2–local
sphere spectrum. The exotic phenomena only occur at p D 2 and p D 3, but since
only the 3–primary E2–local Picard group is known, let us concentrate on that case
for the remainder of this section.

In [17], the authors compute �2 , the exotic part of the Picard group of the category
of 3–primary K.2/–local spectra; they show �2 D Z=3�Z=3.

Additionally, they look at the localization map from the E2–local category to the
K.2/–local category and show that it induces an isomorphism �L2

! �2 , where �L2

denotes the exotic E2–local Picard group.

Consider now the commutative diagram

�L2
//

t
��

�2

tK.2/

��

Pic.Tmf.3// // Pic.TmfK.2//

in which the horizontal maps are given by K.2/–localization, and the vertical maps are
given by smashing with Tmf and TmfK.2/ , respectively. In [17, Theorem 5.5], the au-
thors show there is an element P of �2 such that LK.2/.P ^TmfK.2//'†48 TmfK.2/ ,
ie tK.2/P D 482Z=72�Pic.TmfK.2//. Under the top horizontal isomorphism, this P
lifts to an element zP of �L2

, such that t . zP / has order three in Pic.Tmf.3// and such
that the K.2/–localization of t . zP / is LK.2/.†48 Tmf/. Thus t . zP / must be twice
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the class of I . In other words, the exotic element zP of �L2
is detected as an exotic

element of Pic.Tmf.3//.

The other Z=3 in �2 , ie �2 modulo the subgroup generated by P , is generated by a
spectrum Q such that tK.2/Q D 0. This Q lifts to zQ 2 �L2

, still of order 3, which
must map under t to an element of order 3 in Pic.Tmf.3// which is in the kernel of
the bottom localization map. But there are no nontrivial elements of finite order in this
kernel, hence zQ is not detected in Pic.Tmf.3//.

Perhaps at the prime 2 as well there is an element of the exotic E2–local Picard group
which is detected in the torsion of Pic.Tmf.2//.

Appendices

Appendix A: Group cohomology computations for TMF.2/

In this appendix, we will compute the group cohomology for the GL2.Z=2/–action
on �0 pic.TMF.2//D Z=4 (with trivial action), and on �1 pic.TMF.2//D TMF.2/�0
with the natural action. The group GL2.Z=2/ is the symmetric group on three letters,
so it has a (unique) normal subgroup of order 3, which we denote by C3 , with
quotient C2 . We can therefore use the associated Lyndon–Hochschild–Serre spectral
sequence (LHSSS)

Hp.C2;H
q.C3;M//)HpCq.GL2.Z=2/;M/(A-1)

for GL2.Z=2/–modules M .

Let us first deal with the easier case.

Lemma A.1 The group cohomology for the GL2.Z=2/–action on the trivial mod-
ule Z=4 is

H�
�
GL2.Z=2/; �0 pic.TMF.2//

�
D

�
Z=4 if � D 0;
Z=2 if �> 0:

Proof Since 3 is invertible in Z=4, we have that H�.C3;Z=4/D Z=4 concentrated
in degree zero, and with trivial action by C2 D GL2.Z=2/=C3 . Hence the LHSSS
(A-1) collapses, giving

H s.GL2.Z=2/;Z=4/DH
s.C2;Z=4/;

which is Z=4 for s D 0 and Z=2 otherwise.
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Next we compute the group cohomology for the GL2.Z=2/–action on �1 pic.TMF.2//,
which is the multiplicative group of units in �0 TMF.2/. For brevity, we call this
module M , and to begin with, we explicitly describe the action of GL2.Z=2/ on M .

Let � and � be the generators of GL2.Z=2/ of order 3 and 2 respectively as chosen in
[63, Lemma 7.3]; of course, � generates the normal subgroup C3 . It follows from (8-1)
that M is isomorphic to Z=2˚Z˚3, where Z=2 is multiplicatively generated by �1,
and the Z’s are multiplicatively generated by 2, s and .s�1/. The action is determined
by [63, Lemma 7.3], where it is shown that the chosen generators � and � act as

� W s 7!
s� 1

s
and � W s 7!

1

s
:

Written additively, so that mD.�; k; a; b/2M represents .�1/�2ksa.s�1/b2TMF.2/�0 ,
the action is given by

� W m 7! .�C b; k;�a� b; a/;

� W m 7! .�C b; k;�a� b; b/:

We use this information to compute H�.C3;M/ as a C2–module. We get that

H s.C3;M/D

8<:
Z=2˚Z if s D 0;
.Z=3/ if s � 0; 1.4/ and s > 0;
.Z=3/sgn if s � 2; 3.4/ and s > 0:

This gives the E2–page of the LHSSS (A-1), which must collapse and give that

(A-2) H s.GL2.Z=2/;M/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z=2˚Z if s D 0;
Z=2˚Z=3 if s � 1.4/;
Z=2˚Z=2 if s � 2.4/;
Z=2 if s � 3.4/;
Z=2˚Z=2˚Z=3 if s � 0.4/ and s > 0:

We have thus proven the following result.

Proposition A.2 The group cohomology for the GL2.Z=2/–action on �0 pic.TMF.2//
is as in (A-2). In particular, we have that H 1.GL2.Z=2/;TMF.2/�0 /D Z=6.

Appendix B: Group cohomology computations for TMF.3/

This appendix is devoted to computing the group cohomology for GL2.Z=3/ acting
on �1 pic.TMF.3/0/� ; we also determine the cohomology of �0 pic.TMF.3//D Z=2
as a simple consequence of a result of Quillen [55]. The group GL2.Z=3/ has order 48
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and has the binary tetrahedral group as a normal subgroup, in the guise of SL2.Z=3/.
We have found it difficult to compute the higher cohomology groups of .TMF.3/0/� ,
but since we are only using H 1.GL2.Z=3/; .TMF.3/0/�/ in Section 8.2, we will
concentrate on computing this group only.

In this section, we denote .TMF.3/0/� by M . From (8-1), we see that M � TMF.3/0
is isomorphic to Z=2˚Z=3˚Z˚4 multiplicatively generated by �1; � , .1� �/, t ,
.1� �t/ and .1C �2t /. (To see the appearance of .1� �/, note that .1� �/2 D�3� .)
The GL2.Z=3/–module structure is determined in [64, Section 4.3]; to describe it,
let x , y , z be the elements of GL2.Z=3/ chosen in loc. cit. Explicitly,

x D

�
0 �1

1 0

�
; y D

�
�1 �1

�1 1

�
; z D

�
0 �1

1 �1

�
:

Then x and y generate a quaternion group Q8 , and x , y , z generate SL2.Z=3/.
Let � be the matrix

�
1
0

0
�1

�
. These generate the whole group, and their action on the

element t D 1=2 is as determined in loc. cit.18 to be

x.t/D�
1

t
; y.t/D �2

1� �t

1C �2t
; z.t/D �

t

1C �2t
; �.t/D

1

t
:

The rest is determined by the fact that everything fixes Z
�
1
3

�
� TMF.3/0 , a matrix A

in GL2.Z=3/ takes � to �detA, and the action respects the ring structure.

To be brutally explicit, let mD .�; ˛; ˇ; a; b; c/ 2M denote the element

.�1/��˛.1� �/ˇ ta.1� �t/b.1C �2t /c :

Then the generators x , y , z , � 2 GL2.Z=3/ act as

(B-1)

xW m 7!.�C aC c; ˛C b� c; ˇ;�a� b� c; c; b/;

yW m 7!.�C bC c; ˛� a� c; ˇ; b; a;�a� b� c/;

zW m 7!.�; ˛C a; ˇ; a; c;�a� b� c/;

� W m 7!.�CˇC b;�˛�ˇ� bC c; ˇ;�a� b� c; b; c/:

Since we know a set of generators and relations for GL2.Z=3/, and the action is
given explicitly, we can compute H 1 directly as crossed homomorphisms modulo
coboundaries. We found it a little bit simpler, however, to do this for SL2.Z=3/, and
then use the Lyndon–Hochschild–Serre spectral sequence for the extension

1! SL2.Z=3/! GL2.Z=3/! C2! 1;

18Actually, the formulas in loc. cit. determine a right action, although the left action that we include
here is almost the same.
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in which C2 is generated by the image of � 2 GL2.Z=3/. The contributions to
H 1.GL2.Z=3/;M/ are from H 1.SL2.Z=3/;M/C2 and H 1.C2;M

SL2.Z=3//, and
there is a potential differential

d2W H
1.SL2.Z=3/;M/C2 !H 2.C2;M

SL2.Z=3//:(B-2)

To compute these groups and the differential, we note that the invariants M SL2.Z=3/

are the submodule Z=2˚Z=3˚Z with aD bD cD 0. Here, ker.1C�/D im.1��/,
so that H 1.C2;M

SL2.Z=3//D 0.

Next, suppose f W SL2.Z=3/!M represents a class in H 1.SL2.Z=3/;M/C2, ie it is
a crossed homomorphism which is � –invariant modulo coboundaries. Since each f .g/
is in the kernel of the norm of g , we must have that

f .x/D .�x; cx; 0; ax;�cx; cx/;

f .y/D .�y ;�ay � cy ; 0; ay ;�ay ; cy/;

f .z/D .0; ˛z; 0; 0; bz; cz/:

The relations x2 D y2 , xyx D y , xz D zy3 and zyx D yz , imply that

axC cx D ay C cy ; bz D�cx; cz D cy ; �x D cxC cy ; �y D ax :

One directly checks that any crossed homomorphism of this form is � –invariant modulo
coboundaries. Finally, suppose an f of this form is itself a coboundary, ie there is
an m D .�; ˛; ˇ; a; b; c/ 2 M , such that f .g/ D gm � m for all g 2 SL2.Z=3/.
Then 4b D ax C 3cx � 2cy , a D b � ax � cx C 2cy , c D b � cx and ˛z D a .
Consequently,

H 1.SL2.Z=3/;M/C2 D Z=12:(B-3)

It remains to compute the differential (B-2). This is a transgression, and we have an
explicit formula for it, for example in [31, Section 3.7] or [53, Section I.6]. One checks
that this formula gives that d2 is zero in our case. Thus we have proved the following.

Proposition B.1 H 1.GL2.Z=3/;TMF.3/�0 / is cyclic of order 12.

Although not directly affecting the computation of Pic
�
TMF

�
1
3

��
, we record the fol-

lowing result of Quillen that determines a few more entries in the spectral sequence
(8-6).

Proposition B.2 [55, Lemma 11] The cohomology ring H�.GL2.Z=3/;Z=2/ is
Z=2Œc1; c2�˝ƒ.e1; e2/, where the cohomological degrees are jci jD2i and jei jD2i�1.
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Appendix C: Derived functors of the symmetric square

The purpose of this appendix is to prove the necessary auxiliary results on symmetric
squares of cosimplicial abelian groups.

Definition C.1 Let A be an abelian group. We let Sym2.A/ D .A˝A/C2
be the

coinvariants for the C2–action on A˝A given by permuting the factors. We also
let gSym2.A/ denote the C2–coinvariants in .A˝A/˝Z� where the first factor is
given the permutation action and Z� is the sign representation. Note that if A is a free
abelian group, then the 2–torsion in gSym2.A/ is canonically isomorphic to A˝Z F2
via the “Frobenius” map

A=2A! gSym2.A/; a 7! a˝ a:

In [54], Priddy gives a complete description of the actions of the symmetric algebra
functor on cosimplicial vector spaces, or equivalently the analog of the Steenrod algebra
for cosimplicial algebras. We will only need a small piece of this, which we state
next. We note that the generators in question are the Steenrod squares applied to the
fundamental class �. For example, the generator in maximal degree is the cup square.

Proposition C.2 [54, Theorem 4.0.1] Let A� be a cosimplicial F2–vector space.
Suppose that H tC1.A�/'F2 and the cohomology of A� is concentrated in degree tC1
by a class �. Then

H i .Sym2A
�/'

�
F2 if t C 1� i � 2.t C 1/;
0 otherwise.

Proposition C.3 Let t � 2 and let A� be a levelwise free, finitely generated cosimpli-
cial abelian group with H�.A�/ concentrated in degree �D tC1 and H tC1.A�/DZ
generated by �. Then:

(1) If t is even, then H 2tC2.Sym2A
�/' Z=2, generated by �2.

(2) If t is odd, then H 2tC2.gSym2A�/' Z=2, generated by �2.

Proof Consider first the case t even. In this case, we have maps of cosimplicial
abelian groups

Sym2A
�
! A�˝A�! Sym2A

�

where the first map is the norm map and the second map is projection. The composite
is multiplication by two. Note that H 2tC2.A�˝A�/ ' Z, but since t is even, the
C2–action is the sign representation, so that the map H�.Sym2A

�/!H�.A�˝A�/
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must be the zero map as it lands in the C2–invariants on cohomology. In particular, the
cohomology of Sym2.A

�/ is all annihilated by 2. By the universal coefficient theorem, it
suffices to show that H 2tC2.Sym2A

�˝ZZ=2/'Z=2 and Hk.Sym2A
�˝ZZ=2/D0

for k > 2t C 2, which is the statement of Proposition C.2. In addition, we see that �2

is a generator, as desired, by working modulo 2.

Now suppose t is odd. Again, using the norm mapsgSym2A�! A�˝A�˝ �! gSym2A�;

we find that the cohomology of gSym2A� is annihilated by 2. We note that at the level
of cosimplicial abelian groups gSym2A�˝Z F2 ' Sym2A

�˝Z F2 , but working with
the underived tensor product is problematic here because gSym2A� has 2–torsion. If
we take the derived tensor product

gSym2.A�/
L
˝ F2;

we obtain in addition a copy of A�˝ZF2 (ie the 2–torsion in gSym2A� ) in �1 that does
not contribute in the relevant dimensions, so we may ignore it. Now, by Proposition C.2,
we know that

Hk.gSym2A�˝Z F2/'

�
F2 for k D 2t C 2;
0 for k > 2t C 2:

So we can apply the universal coefficient theorem as in the previous case. We conclude
that �2 is a generator similarly.
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