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Cylindrical contact homology and topological entropy

MARCELO R R ALVES

We establish a relation between the growth of the cylindrical contact homology of
a contact manifold and the topological entropy of Reeb flows on this manifold. We
show that if a contact manifold .M; �/ admits a hypertight contact form �0 for which
the cylindrical contact homology has exponential homotopical growth rate, then the
Reeb flow of every contact form on .M; �/ has positive topological entropy. Using
this result, we provide numerous new examples of contact 3–manifolds on which
every Reeb flow has positive topological entropy.
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1 Introduction

The aim of this paper is to establish a relation between the behaviour of cylindrical
contact homology and the topological entropy of Reeb flows. The topological entropy is
a nonnegative number associated to a dynamical system which measures the complexity
of the orbit structure of the system. Positivity of the topological entropy means
that the system possesses some type of exponential instability. We show that if the
cylindrical contact homology of a contact 3–manifold is “complicated enough” from
a homotopical viewpoint, then every Reeb flow on this contact manifold has positive
topological entropy.

1.1 Basic definitions and history of the problem

We first recall some basic definitions from contact geometry. A 1–form � on a .2nC1/–
dimensional manifold Y is called a contact form if �^ .d�/n is a volume form on Y .
The hyperplane � D ker� is called the contact structure. For us a contact manifold
will be a pair .Y; �/ such that � is the kernel of some contact form � on Y (these
are usually called co-oriented contact manifolds in the literature). When � satisfies
� D ker�, we will say that � is a contact form on .Y; �/. On any contact manifold
there always exist infinitely many different contact forms. Given a contact form �, its
Reeb vector field is the unique vector field X� satisfying �.X�/D 1 and iX�d�D 0.
The Reeb flow �X� of � is the flow generated by the vector field X� . We will refer
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to the periodic orbits of �X� as Reeb orbits of �. The action A./ of a Reeb orbit is
defined by A./ WD

R
 �.

We study the topological entropy of Reeb flows from the point of view of contact
topology. More precisely, we search for conditions on the topology of a contact
manifold .M; �/ that force all Reeb flows on .M; �/ to have positive topological
entropy. The condition we impose is on the behaviour of a contact topological invariant
called cylindrical contact homology. We show that if a contact manifold .M; �/

admits a contact form �0 for which the cylindrical contact homology has exponential
homotopical growth, then all Reeb flows on .M; �/ have positive topological entropy.

The notion of exponential homotopical growth of cylindrical contact homology, which is
introduced in this paper, differs from the notion of growth of contact homology studied
by Colin and Honda [12] and by Vaugon [40]. For reasons explained in Section 2, the
growth of contact homology is not well adapted to study the topological entropy of
Reeb flows, while the notion of homotopical growth rate is (as we show) well suited for
this purpose. We begin by explaining the results which were previously known relating
the behaviour of contact topological invariants to the topological entropy of Reeb flow.

The study of contact manifolds all of whose Reeb flows have positive topological
entropy was initiated by Macarini and Schlenk [36]. They showed that if Q is an energy
hyperbolic manifold and �geo is the contact structure on the unit tangent bundle T1Q
associated to the geodesic flows, then every Reeb flow on .T1Q; �geo/ has positive
topological entropy. Their work was based on previous ideas of Frauenfelder and
Schlenk [20; 21] which related the growth rate of Lagrangian Floer homology to
entropy invariants of symplectomorphisms. The strategy to estimate the topological
entropy used in [36] can be briefly sketched as follows:

Exponential growth of Lagrangian Floer homology of the tangent fibre .TQ/jp
+

Exponential volume growth of the unit tangent fibre .T1Q/jp
for all Reeb flows in .T1Q; �geo/

+

Positivity of the topological entropy for all Reeb flows in .T1Q; �geo/.

To obtain the first implication, Macarini and Schlenk use the fact that .T1Q; �geo/ has
the structure of a Legendrian fibration, and apply the geometric idea of [20; 21] to show
that the number of trajectories connecting a Legendrian fibre to another Legendrian
fibre can be used to obtain a volume growth estimate. The second implication in this
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scheme follows from Yomdin’s theorem, which states that exponential volume growth
of a submanifold implies positivity of topological entropy.1

In the author’s Ph D thesis [2; 3], this approach was extended to deal with 3–dimensional
contact manifolds which are not unit tangent bundles. This was done by designing a
localized version of the geometric idea of [20; 21]. Globally most contact 3–manifolds
are not Legendrian fibrations, but a sufficiently small neighbourhood of a given Legen-
drian knot in a contact 3–manifold can always be given the structure of a Legendrian
fibration. It turns out that this is enough to conclude that if the linearized Legendrian
contact homology of a pair of Legendrian knots in a contact 3–manifold .M 3; �/ grows
exponentially, then the length of these Legendrian knots grows exponentially for any
Reeb flow on .M 3; �/. We then apply Yomdin’s theorem to obtain that all Reeb flows
on .M 3; �/ have positive topological entropy.

One drawback of these approaches is that they only give lower entropy bounds for C1–
smooth Reeb flows. The reason is that Yomdin’s theorem holds only for C1–smooth
flows. The approach presented in the present paper does not use Yomdin’s theorem
and gives lower bounds for the topological entropy of C 1–smooth Reeb flows.

Another advantage is that the cylindrical contact homology is usually easier to compute
than the linearized Legendrian contact homology. In fact, to apply the strategy of [2; 3]
to a contact 3–manifold .M 3; �/, one must first find a pair of Legendrian curves which
“should” have exponential growth of linearized Legendrian contact homology. This is
highly nontrivial since on any contact 3–manifolds there exist many Legendrian links
for which the linearized Legendrian contact homology does not even exist. On the
other hand, the definition of cylindrical contact homology involves only the contact
manifold .M 3; �/, and no Legendrian submanifolds.

1.2 Main results

Our results are inspired by the philosophy that a “complicated” topological structure
should force chaotic behaviour for dynamical systems associated to this structure.
Two important examples of this phenomenon are: the fact that on manifolds with
complicated loop space the geodesic flow always has positive topological entropy (see
Paternain [38]), and the fact that every diffeomorphism of a surface which is isotopic to
a pseudo-Anosov diffeomorphism has positive topological entropy (see Fel’shtyn [16]).

To state our results we introduce some notation. Let M be a manifold and X be a C k

(k � 1) vector field. Our first result relates the topological entropy of the flow �X to

1The same scheme was used by Frauenfelder and Schlenk [22] and by Frauenfelder, Labrousse and
Schlenk [19] to obtain positive lower bounds for the intermediate and slow entropies of Reeb flows on unit
tangent bundles.
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the growth (relative to T ) of the number of distinct homotopy classes which contain
periodic orbits of �X with period at most T . More precisely, let ƒTX be the set of free
homotopy classes of M which contain a periodic orbit of �X with period at most T .
We denote by NX .T / the cardinality of ƒTX .

Theorem 1 If for real numbers a > 0 and b there is a sequence Tn!C1 such that

NX .Tn/� e
aTnCb

for all Tn , then htop.�X /� a .

Theorem 1 might be a folklore result in the theory of dynamical systems. However,
as we have not found it in the literature, we provide a complete proof in Section 2.
It contains as a special case Ivanov’s inequality for surface diffeomorphisms; see
Jiang [31]. Our motivation for proving this result is to apply it to Reeb flows. Contact
homology allows one to carry over information about the dynamical behaviour of one
special Reeb flow on a contact manifold to all other Reeb flows on the same contact
manifold. In Section 4, we introduce the notion of exponential homotopical growth of
cylindrical contact homology. As we already mentioned, this growth rate differs from
the ones previously considered in the literature and is specially designed to allow one
to use Theorem 1 to obtain results about the topological entropy of Reeb flows. Recall
that a contact form is called hypertight if its Reeb flow has no contractible closed orbits.
We prove the following result:

Theorem 8 Let �0 be a hypertight contact form on a contact manifold .M; �/, and
assume that the cylindrical contact homology of �0 has exponential homotopical growth
with exponential weight a > 0. Then for every C k (k � 2) contact form � on .M; �/,
the Reeb flow of X� has positive topological entropy. More precisely, if f� is the
function such that �D f��0 , then

(1-1) htop.�X�/�
a

maxf�
:

Notice that Theorem 8 allows us to conclude the positivity of the topological entropy
for all Reeb flows on a given contact manifold .M; �/, once we show that .M; �/
admits one special hypertight contact form for which the cylindrical contact homology
has exponential homotopical growth. It is worth remarking that our proof of Theorem 8
is carried out in full rigour, and does not make use of the polyfold technology which is
being developed by Hofer, Wysocki and Zehnder. The reason is that we do not use the
linearized contact homology considered by Bourgeois, Ekholm and Eliashberg [7] and
Vaugon [40], but resort to a topological idea used by Hryniewicz, Momin and Salomão
[30] to prove existence of Reeb orbits in prescribed homotopy classes.
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Theorem 8 allows one to obtain estimates for the topological entropy for C 1–smooth
Reeb flows. As previously observed, the strategy used in [36; 2; 3] produces estimates
for the topological entropy only for C1–smooth contact forms as they depend on
Yomdin’s theorem, which fails for finite regularity.

Our other results are concerned with the existence of examples of contact manifolds
which have a contact form with exponential homotopical growth rate of cylindrical
contact homology. We show that in dimension 3 they exist in abundance, and it follows
from Theorem 8 that every Reeb flow on these contact manifolds has positive topological
entropy. In Section 5, we use a construction of Colin and Honda [12] to obtain many
such examples of contact 3–manifolds. In these examples, the underlying differentiable
3–manifold has nontrivial JSJ decomposition and a hyperbolic component that fibres
over the circle.

Theorem 9 Let M be a closed connected oriented 3–manifold which can be cut along
a nonempty family of incompressible tori into a family fMi ; 0� i � qg of irreducible
manifolds with boundary such that

� M0 is the mapping torus of a diffeomorphism hW S ! S with pseudo-Anosov
monodromy on a surface S with nonempty boundary.

Then M can be given infinitely many nondiffeomorphic contact structures �k such that
for each �k , there exists a hypertight contact form �k on .M; �k/ which has exponential
homotopical growth of cylindrical contact homology. It follows that on each .M; �k/,
all Reeb flows have positive topological entropy.

The contact structures studied in Theorem 9 are among the tight contact structures con-
structed by Colin and Honda [12] in closed connected irreducible toroidal 3–manifolds.

In Section 6, we study the cylindrical contact homology of contact 3–manifolds
.M; �.q;r// obtained via a special integral Dehn surgery on the unit tangent bundle
.T1S; �geo/ of a hyperbolic surface .S; g/. This Dehn surgery is performed on a
neighbourhood of a Legendrian curve Lr which is the Legendrian lift of a simple
closed separating geodesic r. The surgery we consider is the contact version of Handel–
Thurston surgery, which was introduced by Foulon and Hasselblatt in [18] to produce
nonalgebraic Anosov Reeb flows on 3–manifolds. We call this contact surgery the
Foulon–Hasselblatt surgery. This surgery produces not only a contact 3–manifold
.M; �.q;r//, but also a special contact form, which we denote by �FH , on .M; �.q;r//.
In [18], the authors restrict their attention to integer surgeries with positive surgery
coefficient q and prove that, in this case, the Reeb flow of �FH is Anosov. Our methods
also work for negative coefficients as the Anosov condition on �FH does not play a
role in our results. We obtain:
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Theorem 16 Let .M; �.q;r// be the contact manifold obtained from performing the
Foulon–Hasselblat q–surgery on the Legendrian curve Lr � .T1S; �geo/, and denote
by �FH the contact form on .M; �.q;r// obtained from this surgery. Then �FH is
hypertight, and its cylindrical contact homology has exponential homotopical growth.
It follows that every Reeb flow on .M; �.q;r// has positive topological entropy.

Organization of the paper In Section 2, we recall one of the definitions of the
topological entropy and present the proof of Theorem 1. In Section 3, we recall the
definition of cylindrical contact homology and its basic properties. In Section 4, we
introduce the notion of exponential homotopical growth of cylindrical contact homology
and prove Theorem 8. Section 5 is devoted to the proof of Theorem 9. In Section 6, we
present the definition of the integral Foulon–Hasselblatt surgery and prove Theorem 16.
In Section 7, we discuss the results obtained in this paper and propose some questions
for future research.

Remark We again would like to point out that all the results above do not depend
on the polyfolds technology which is being developed Hofer, Wysocki and Zehnder.
This is the case because the versions of contact homology used for proving the results
above involve only somewhere injective pseudoholomorphic curves. In this situation,
transversality can be achieved by “classical” perturbation methods as in Dragnev [13].

Acknowledgements I especially thank my advisors Frédéric Bourgeois and Chris
Wendl for their guidance, support and our many discussions which were crucial for
the development of this paper, which is a part of my Ph D thesis developed under their
supervision. I would like to thank professor Pedro Salomão for many helpful discussions
and for explaining to me the techniques used in [30] which made it possible to avoid
dealing with transversality problems arising from multiply covered pseudoholomorphic
curves. My thanks to professor Felix Schlenk for his interest in this work, his suggestions
for improving the exposition and for suggesting many directions for future work. My
personal thanks to Ana Nechita, André Alves, Hilda Ribeiro and Lucio Alves for
their unconditional personal support. This work was partially supported by a FRIA
fellowship from FNRS-Belgium.

2 Homotopic growth of periodic orbits
and topological entropy

Throughout this section, M will denote a compact manifold. We endow M with an
auxiliary Riemannian metric g , which induces a distance function dg on M , whose
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injectivity radius we denote by �g . Let �M be the universal cover of M , zg be the
Riemannian metric that makes the covering map � W �M !M an isometry, and dzg be
the distance induced by the metric zg .

Let X be a vector field on M with no singularities and �tX the flow generated by X .
We call PX .T / the number of periodic orbits of �t with period in Œ0; T �. For us, a
periodic orbit of X is a pair .Œ�c ; T /, where Œ�c is the set of parametrizations of a
given immersed curve cW S1!M , and T is a positive real number (called the period
of the orbit), such that

�  2 Œ�c if and only if  W R!M parametrizes c and P.t/DX..t//,

� for all  2 Œ�c , we have .T C t /D .t/ and .Œ0; T �/D c .

We say that a periodic orbit .Œ�c ; T / is in a free homotopy class l of M if c 2 l .

By a parametrized periodic orbit .; T / we mean a periodic orbit .Œ�c ; T / with a fixed
choice of parametrization  2 Œ�c . A parametrized periodic orbit .; T / is said to be
in a free homotopy class l when the underlying periodic orbit .Œ�c ; T / is in l .

We now recall a definition of topological entropy due to Bowen [10] which will be
very useful for us. Let T and ı be positive real numbers. A set S is said to be
T; ı–separated if for all q1 ¤ q2 2 S , we have

(2-1) max
t2Œ0;T �

dg
�
�tX .q1/; �

t
X .q2/

�
> ı:

We denote by nT;ı the maximal cardinality of a T; ı–separated set for the flow �X .
Then we define the ı–entropy hı.�X / as

(2-2) hı.�X /D lim sup
T!C1

log.nT;ı/
T

:

The topological entropy htop is then defined by

htop.�X /D lim
ı!0

hı.�X /:

One can prove that the topological entropy does not depend on the metric dg but only
on the topology determined by the metric. For these and other structural results about
topological entropy, we refer the reader to any standard textbook in dynamics such as
[34] and [39].

From the work of Kaloshin and others it is well known that the exponential growth
rate of periodic orbits,

(2-3) lim sup
T!C1

log.PX .T //
T

;
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can be much bigger than the topological entropy. This implies that the growth rate (2-3)
does not give a lower bound for the topological entropy of an arbitrary flow. There is,
however, a different growth rate that measures how quickly periodic orbits appear in
different free homotopy classes, which can be used to give such a lower bound of the
topological entropy of a flow.

Let ƒ denote the set of free homotopy classes of loops in M , and ƒ0 �ƒ the subset
of primitive free homotopy classes. We define the set ƒTX �ƒ in the following way:
% 2ƒTX if and only if there exists a periodic orbit of �tX with period at most T that
belongs to %. We denote by NX .T / the cardinality of ƒTX .

Let f.i ; Ti / W 1 � i � ng be a finite set of parametrized periodic orbits of X . For a
number T satisfying T � Ti for all i 2 f1; : : : ; ng and a constant ı > 0 , we denote by
ƒ
T;ı
X ..1; T1/; : : : ; .n; Tn// the subset of ƒ such that

� l 2ƒ
T;ı
X ..1; T1/; : : : ; .n; Tn// if and only if there exist a parametrized periodic

orbit .y; yT / with period yT � T in the free homotopy class l and a number
il 2 f1; : : : ; ng for which maxt2Œ0;T �

�
dg.il .t/; y.t//

�
� ı .

Notice that

(2-4) ƒ
T;ı
X ..1; T1/; : : : ; .n; Tn//D

[
i2f1;:::;ng

ƒ
T;ı
X ..i ; Ti //:

We are ready to prove the main result in this section. Theorem 1 below is well known
to be true in the particular cases when �X is a geodesic flow, where it follows from
Manning’s inequality (see [33] and [38]), and when �X is the suspension of a surface
diffeomorphism with pseudo-Anosov monodromy, where it follows from Ivanov’s
theorem (see [31]). It can be seen as a generalization of these results in the sense that it
includes them as particular cases and that it applies to many other situations. Our argu-
ment is inspired by the remarkable proof of Ivanov’s inequality given by Jiang in [31].

Theorem 1 If for real numbers a > 0 and b there is a sequence Tn!C1 such that

NX .Tn/� e
aTnCb

for all Tn , then htop.�X /� a .

Proof The theorem will follow if we prove that for all 0 < ı < �g=32, we have
hı.�X /� a . From now on, fix 0 < ı < �g=32.

Step 1 For any point p 2 M , let V4ı.p/ be the 4ı–neighbourhood of ��1.p/.
Because ı < �g=32, it is clear that V4ı.p/ is the disjoint union

(2-5) V4ı.p/D
[

zp2��1.p/

B4ı. zp/;

where the ball B4ı. zp/ is taken with respect to the metric zg .
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z 0.0/

B1

z 0
B2

B3

BmT. 0/�1

z 0.T /

BmT. 0/

Figure 1: The set fBj W 1� j �mT . 0; T 0/g

Because of our choice of ı < �g=32, it is clear that there exists a constant k1>0, which
does not depend on p , such that if B and B 0 are two distinct connected components
of V4ı.p/, we have dzg.B;B 0/ > k1 .

Because of compactness of M , we know that the vector field zX WD ��X is bounded
in the norm given by the metric zg . Combining this with the inequality in the last
paragraph, one obtains the existence of a constant k2 >0, which again does not depend
on p , such that if z�W Œ0; R�! �M is a parametrized trajectory of � zX with z�.0/ 2 B
and z�.R/ 2 B 0 , then R > k2 .

From the last assertion, we deduce the existence of a constant zK , depending only g
and X , such that for every p 2M and every parametrized trajectory z�W Œ0; T �! �M
of � zX , the number LT .p; z�/ of distinct connected components of V4ı.p/ intersected
by the curve z�.Œ0; T �/ satisfies

(2-6) LT .p; z�/ < zKT C 1:

Step 2 We claim that for every parametrized periodic orbit . 0; T 0/ of X , we have

(2-7) #
�
ƒ
T;ı
X .. 0; T 0//

�
< zKT C 1

for all T > T 0 .

To see this, take a lift z 0 of  0 to �M , and let p0 D  0.0/ and zp0 D z 0.0/. We consider
(see Figure 1) the set fBj W 1� j �mT . 0; T 0/g of connected components of V4ı.p0/
satisfying:

� Bj ¤ Bk if j ¤ k ,

� if B is a connected component of V4ı.p0/ which intersects z 0.Œ0; T �/, then
B D Bj for some j 2 f1; : : : ;mT . 0; T 0/g,

� if j < i , then Bj is visited by the trajectory z 0W Œ0; T �! �M before Bi .
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From step 1, we know that mT . 0; T 0/ < zKT C 1.

For each l 2 ƒT;ıX .. 0; T 0//, pick a parametrized periodic orbit .�
l
; Tl/ in l which

satisfies dg.�l.t/; 
0.t// < ı for all t 2 Œ0; T �. There exists a lift z�

l
of �

l
satisfying

dzg.z�l.t/; z
0.t// < ı for all t 2 Œ0; T �.

From the triangle inequality, it is clear that the point ql D z�l.0/ is in the connected
component B1 which contains zp0 . We will show that z�

l
.Tl/ is contained in Bj for

some j 2 f1; : : : ;mT . 0/g. Because �.z�
l
.0//D �.z�

l
.Tl//, we have

(2-8) dzg
�
z�l.Tl/; �

�1.p0/
�
D dzg

�
z�l.0/; �

�1.p0/
�
< ı;

which already implies that z�
l
.Tl/ 2 V4ı.p

0/. We denote by zpl
0 the unique element

in ��1.p0/ for which we have dzg.z�l.Tl/; zpl
0/ < ı . Using the triangle inequality we

now obtain

dzg
�
z 0.Tl/; zpl

0
�
� dzg

�
z 0.Tl/; z�l.Tl/

�
C dzg

�
z�l.Tl/; zpl

0
�
< ıC ı:

From the inequalities above we conclude that z 0.Tl/ and z�
l
.Tl/ are in the connected

component of V4ı.p0/ that contains zpl
0. Because this connected component contains

z 0.Tl/, it is therefore one of the Bj for j 2 f1; : : : ;mT . 0; T 0/g as we wanted to show.
We can thus define a map

(2-9) ‡
T;ı
. 0;T 0/

W ƒ
T;ı
X .. 0; T 0//! f1; : : : ;mT .. 0; T 0//g

which associates to each l 2ƒT;ıX . 0/ the unique j 2 f1; : : : ;mT . 0; T 0/g for which
z�
l
.Tl/ 2 Bj .

We now claim that if l ¤ l 0 , then z�
l
.Tl/ and z�

l 0
.Tl 0/ are in different connected

components of V4ı.p0/. To see this, notice that both z�
l
.0/ and z�

l 0
.0/ are in the

component B1 . Therefore, it is clear, because ı<�g=32, that if z�
l
.Tl/ and z�

l 0
.Tl 0/ are

in the same component of V4ı.p0/, then the closed curves �
l
.Œ0; Tl �/ and �

l 0
.Œ0; Tl 0 �/

are freely homotopic. This contradicts our choice of .�
l
; Tl/ and .�

l 0
; Tl 0/ and the

fact that l ¤ l 0 .

We thus conclude that the map (2-9) is injective, which implies that #.ƒT;ıX .. 0; T 0///�

mT . 0; T 0/ < zKT C 1.

Step 3 (inductive step) As an immediate consequence of step 2, we have that if
f.i ; Ti / W 1� i �mg is a set of parametrized periodic orbits of X , we have

#.ƒT;ıX ..1; T1/; : : : ; .m; Tm///�m. zKT C 1/:
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Inductive claim Fix T > 0, and suppose that STm D f.i ; Ti / W 1� i �mg is a set of
parametrized periodic orbits such that T �Ti for every i 2f1; : : : ; mg, and that satisfies:

(a) The free homotopy classes li of .i ; Ti / and lj of .j ; Tj / are distinct if i ¤ j .

(b) For every i ¤ j we have maxt2Œ0;T � dg.i .t/; j .t// > ı .

Then, if

m<
NX .T /

zKT C 1
;

there exists a parametrized periodic orbit .mC1; TmC1 � T / such that its homotopy
class lmC1 does not belong to the set fli W 1� i �mg and such that

(2-10) max
t2Œ0;T �

dg.mC1.t/; i .t// > ı

for all i 2 1; : : : ; m.

Proof of claim First, recall that #.ƒT;ıX ..1; T1/; : : : ; .m; Tm/// � m. zKT C 1/.
Therefore, because m<NX .T /=. zKT C1/, there exists a free homotopy class lmC1 2
ƒTXnƒ

T;ı
X ..1;T1/; : : : ; .m;Tm//. Choose a parametrized periodic orbit .mC1;TmC1/

with TmC1 � T in the homotopy class lmC1 .

As lmC1 … ƒ
T;ı
X ..1; T1/; : : : ; .m; Tm//, we must have (2-10) for all i 2 1; : : : ; m,

thus completing the proof of the claim.

Step 4 Obtaining a T; ı–separated set.

As usual, we denote by bNX .T /=. zKT C 1/c the largest integer which is at most
NX .T /=. zKT C 1/. The strategy is now to use the inductive step to obtain a set
STX D f.i ; Ti / W 1 � i � bNX .T /=.

zKT C 1/cg, satisfying conditions (a) and (b)
above, with the maximum possible cardinality. We start with a set ST1 D f.1; T1/g,
which clearly satisfies conditions (a) and (b), and if 1 < bNX .T /=. zKT C 1/c we
apply the inductive step to obtain a parametrized periodic orbit .2; T2 � T / such
that ST2 D f.1; T1/; .2; T2 � T /g satisfies (a) and (b). We can go on applying the
inductive step to produce sets STm D f.i ; Ti / W 1 � i � mg satisfying the desired
conditions (a) and (b) as long as m� 1 is smaller than bNX .T /=. zKT C 1/c. By this
process, we can construct a set STX D f.i ; Ti / W 1 � i � bNX .T /=. zKT C 1/cg such
that for all i; j 2 f1; : : : ; bNX .T /=. zKT C 1/cg, (a) and (b) above hold true.

For each i 2 f1; : : : ; bNX .T /=. zKT C 1/cg, let qi D i .0/. We define the set P TX WD
fqi W 1� i � bNX .T /=. zKT /cC1g. The condition (b) satisfied by STX implies that P TX
is a T; ı–separated set. It then follows from the definition of the ı–entropy hı that

(2-11) hı.�X /� lim sup
T!C1

log
�
bNX .T /=. zKT C 1/c

�
T

:
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Step 5 From the hypothesis of the theorem, we know that for the real numbers a > 0
and b , there exists a sequence Tn!C1 such that NX .Tn/� eaTnCb for all Tn .

For every � > 0, we know that for Tn big enough we have e�Tn > zKTnC 1. This
implies that

(2-12) lim sup
Tn!C1

log
�
bNX .Tn/=. zKTnC 1/c

�
Tn

� lim sup
Tn!C1

log.beaTnCb=e�Tnc/
Tn

D lim sup
Tn!C1

log.be.a��/TnCbc/
Tn

:

It is clear that lim supTn!C1 log.be.a��/TnCbc/=Tn D a� � . Combining this with
(2-11), we conclude that under the hypothesis of the theorem, hı.�X /� a�� . Because
� can be taken arbitrarily small, we obtain

(2-13) hı.�X /� a:

Step 6 So far, we have shown that for all ı < �g=32, we have hı.�X / � a . It then
follows that

(2-14) htop.�X /D lim
ı!0

hı.�X /� a;

finishing the proof of the theorem.

Remark One could naively believe that there exists a constant ıg > 0 depending only
on the metric g such that if two parametrized closed curves �1W R!M of period T1
and �2W R!M of period T2 satisfy supt2Œ0;maxfT1;T2g�fdg.�1.t/; �2.t//g< ıg , then
.1; T1/ and .2; T2/ are freely homotopic to each other. This would make the proof of
Theorem 1 much shorter. However such a constant does not exist. One can easily find
for any ı > 0 two parametrized curves in the 3–torus which are in different primitive
free homotopy classes and satisfy supt2Œ0;maxfT1;T2g�fdg.�1.t/; �2.t//g<ı . We sketch
the construction below.

Consider coordinates .x; y; z/ 2 .R=Z/3 on the three-dimensional torus T3 . Figure 2
above represents the universal cover of the two-dimensional torus T2 � T3 obtained
by fixing the coordinate zD 0 in T3 . The dotted points p0 , yp , p1 and p2 in Figure 2
represent lifts of a point p 2T2 . It is then clear that the curve c represented in Figure 2
projects to a smooth immersed curve in T2 � T3 .

We consider a parametrization by arc length &1W Œ0; T1�!R2 of the piece of c connect-
ing p0 and p1 . We can extend &1 periodically to R by demanding that &1.t CT1/D
&1.t/C .1; 2/ for all t 2R. This extension is a lift to R2 of the closed immersed curve
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p0

yp

p1

p2

x

y

Figure 2: The universal cover of T2 � T3

obtained by projecting &1.Œ0; T1�/ to T2 . By a very small perturbation of the projection
of &1.Œ0; T1�/, we can produce a closed smooth embedded curve �1W Œ0; T1�! T3

which closes at the point .p; 0/D �1.0/D �1.T1/. We consider the natural extension
of �1 to R obtained by demanding that �1.t/D �1.t �T1/ for all t 2R.

Analogously, we consider a parametrization by arc length &2W Œ0; T1C 1�!R2 of the
piece of c connecting p0 and p2 . We can also extend &2 periodically to R, this time
demanding that &2.t CT1C 1/D &2.t/C .1; 3/. By making a very small perturbation
of &2 , we can produce a closed smooth embedded curve �2W Œ0; T1C 1�! T3 which
closes at the point .p; ı=K/ D �2.0/ D �2.T1 C 1/ and which is disjoint from the
image of �1 . We consider the natural extension of �2 to R obtained by demanding
that �2.t/D �2.t � .T1C 1// for all t 2R.

We point out that the extensions &1W R!R2 and &2W R!R2 coincide on the interval
Œ0; T1C 1�. To see this just notice that the piece of c connecting p0 and yp and the
piece of c connecting p1 and p2 project to the same circle in T2 .

Now let �0W Œ0; T1 C 1� ! T2 be the parametrized curve obtained by projecting
&1W Œ0; T1C1�!R2 , which equals &2W Œ0; T1C1�!R2 , to the torus T2 . The curves
�1jŒ0;T1C1� and �2jŒ0;T1C1� are both perturbations of the parametrized curve �0 . By
making the perturbations sufficiently small we can guarantee that �1jŒ0;T1C1� and
�2jŒ0;T1C1� are arbitrarily close. It is immediate to see that �1jŒ0;T1C1� and �2jŒ0;T1C1�
are in distinct homotopy classes.

Geometry & Topology, Volume 20 (2016)



3532 Marcelo R R Alves

3 Contact homology

3.1 Pseudoholomorphic curves in symplectic cobordisms

To define the contact homologies used in this paper, we use pseudoholomorphic curves in
symplectizations of contact manifolds and symplectic cobordisms. Pseudoholomorphic
curves in symplectic manifolds were introduced by Gromov in [24] and adapted to
symplectizations and symplectic cobordisms by Hofer [26]; see also [8] as a general
reference for pseudoholomorphic curves in symplectic cobordisms.

3.1.1 Cylindrical almost complex structures Let .Y; �/ be a contact manifold
and � a contact form on .Y; �/. The symplectization of .Y; �/ is the product R�Y
with the symplectic form d.es�/ (where s denotes the R coordinate in R�Y ). The
2–form d� restricts to a symplectic form on the vector bundle � , and it is well known
that the set j.�/ of d�–compatible almost complex structures on the symplectic vector
bundle � is nonempty and contractible. Notice that if Y is 3–dimensional, the set j.�/
does not depend on the contact form � on .Y; �/.

For j 2 j.�/, we can define an R–invariant almost complex structure J on R�Y by
demanding that

(3-1) J@s DX� and J j� D j:

We will denote by J .�/ the set of almost complex structures in R � Y that are
R–invariant, d.es�/–compatible and satisfy (3-1) for some j 2 j.�/.

3.1.2 Exact symplectic cobordisms with cylindrical ends An exact symplectic
cobordism is, roughly, an exact symplectic manifold .W;$/ that, outside a compact
subset, is like the union of cylindrical ends of symplectizations. We restrict our attention
to exact symplectic cobordisms having only one positive end and one negative end.

Let .W;$ Dd�/ be an exact symplectic manifold without boundary, and let .Y C; �C/
and .Y �; ��/ be contact manifolds with contact forms �C and �� . We say that
.W;$ D d�/ is an exact symplectic cobordism from �C to �� if there exist sub-
sets W � , W C and �W of W and diffeomorphisms ‰CW W C! Œ0;C1/�Y C and
‰�W W �! .�1; 0��Y � , such that

(3-2)
�W is compact, W DW C[ �W [W �; W C\W � D∅;

.‰C/�.es�C/D � and .‰�/�.es��/D �:
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In such a cobordism, we say that an almost complex structure xJ is cylindrical if

xJ coincides with JC 2 J .CC�C/ in the region W C;(3-3)
xJ coincides with J� 2 J .C���/ in the region W �;(3-4)

xJ is compatible with $ in �W ;(3-5)

where CC > 0 and C� > 0 are constants.

For fixed JC 2 J .CC�C/ and J� 2 J .C���/, we denote by J .J�; JC/ the set
of cylindrical almost complex structures in .R�Y;$/ coinciding with JC on W C

and J� on W � . It is well known that J .J�; JC/ is nonempty and contractible. We
will write �C �ex �

� if there exists an exact symplectic cobordism from �C to ��

as above. We remind the reader that �C �ex � and � �ex �
� implies �C �ex �

� , or
in other words that the exact symplectic cobordism relation is transitive; see [8] for
a detailed discussion on symplectic cobordisms with cylindrical ends. Notice that a
symplectization is a particular case of an exact symplectic cobordism.

Remark We point out to the reader that in many references in the literature, a slightly
different definition of cylindrical almost complex structures is used: instead of de-
manding that xJ satisfies conditions (3-3) and (3-4), the stronger condition that xJ
coincides with J˙ 2 J .�˙/ in the region W ˙ is demanded. We need to consider this
more relaxed definition of cylindrical almost complex structures when we study the
cobordism maps of cylindrical contact homologies in Section 3.2.3.

3.1.3 Splitting symplectic cobordisms Let �C , � and �� be contact forms on
.Y; �/ such that �C �ex � and ��ex �

� . For � > 0 sufficiently small, it is easy to see
that one also has �C �ex .1C �/� and .1� �/��ex �

� . Then for each R > 0, we can
construct an exact symplectic form $R D d�R on W DR�Y , where

�R D e
s�R�2�C in ŒRC 2;C1/�Y;(3-6)

�R D f .s/� in Œ�R;R��Y;(3-7)

�R D e
sCRC2�� in .�1;�R� 2��Y;(3-8)

and f W Œ�R;R�! Œ1� �; 1C �� satisfies f .�R/D 1� � , f .R/D 1C � and f 0 > 0.
In .R�Y;$R/, we consider a compatible cylindrical almost complex structure zJR ,
but we demand an extra condition on zJR :

(3-9) zJR coincides with J 2 J .�/ in Œ�R;R��Y:

Again we divide W into regions: W CD ŒRC2;C1/�Y , W.�C; �/D ŒR;RC2��Y ,
W.�/D Œ�R;R��Y , W.�; ��/D Œ�R�2;�R��Y and W �D .�1;�R�2��Y .
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The family of exact symplectic cobordisms with cylindrical almost complex structures
.R�Y;$R; zJR/ is called a splitting family from �C to �� along �.

3.1.4 Pseudoholomorphic curves Let .S; i/ be a closed Riemann surface without
boundary and � � S a finite set. Let � be a contact form on .Y; �/, and let J 2 J .�/.
A finite energy pseudoholomorphic curve in the symplectization .R�Y; J / is a map
zw D .s; w/W S n�!R�Y that satisfies

N@J . zw/D d zw ı i �J ı d zw D 0(3-10)

and

(3-11) 0 < E. zw/D sup
q2E

Z
Sn�

zw�d.q�/;

where E D fqW R! Œ0; 1� W q0 � 0g. The quantity E. zw/ is called the Hofer energy and
was introduced in [26]. The operator N@J above is called the Cauchy–Riemann operator
for the almost complex structure J.

For an exact symplectic cobordism .W;$/ from �C to �� as considered above,
and for xJ 2 J .J�; JC/, a finite energy pseudoholomorphic curve is again a map
zwW S n�!W satisfying

(3-12) d zw ı i D xJ ı d zw

and

(3-13) 0 < E��. zw/CEc. zw/CE�C. zw/ <C1;

where

E��. zw/D sup
q2E

Z
zw�1.W �//

zw�d.q��/;

E�C. zw/D sup
q2E

Z
zw�1.WC/

zw�d.q�C/;

Ec. zw/D

Z
zw�1.W.�C;��//

zw�$:

These energies were also introduced in [26].

In splitting symplectic cobordisms, we use a slightly modified version of energy. Instead
of demanding 0 < E�. zw/CEc. zw/CEC. zw/ <C1, we demand that

(3-14) 0 < E��. zw/CE��;�. zw/CE�. zw/CE�;�C. zw/CE�C. zw/ <C1;

Geometry & Topology, Volume 20 (2016)



Cylindrical contact homology and topological entropy 3535

where
E�. zw/D sup

q2E

Z
zw�1W.�/

zw�d.q�/;

E��;�. zw/D

Z
zw�1.W.�;��//

zw�$;

E�;�C. zw/D

Z
zw�1.W.�C;�//

zw�$;

and where E��. zw/ and E�C. zw/ are as above.

The elements of the set � � S are called punctures of the pseudoholomorphic curve zw .
According to [26; 27], punctures fall into two classes, positive and negative, according
to the behaviour of zw in the neighbourhood of the puncture. Before presenting this
classification, we introduce some notation. Let Bı.z/ be the ball of radius ı centred
at the puncture z , and denote by @.Bı.z// its boundary. We can describe the types of
punctures as follows:

� z 2 � is called a positive interior puncture if limz0!z s.z0/DC1 and there
exist a sequence ın! 0 and a Reeb orbit C of X�C such that w.@.Bın.z///
converges in C1 to C as n!C1,

� z 2 � is called a negative interior puncture if limz0!z s.z0/D�1, and there
exist a sequence ın! 0 and a Reeb orbit � of X�� such that w.@.Bın.z///
converges in C1 to � as n!C1.

The results in [26] and [27] imply that these are indeed the only possibilities we need
to consider for the behaviour of zw near punctures. Intuitively, we have that at the
punctures, the pseudoholomorphic curve zw detects Reeb orbits. When for a puncture z ,
there is a subsequence ın such that w.@.Bın.z/// converges to a Reeb orbit  , we
will say that zw is asymptotic to this Reeb orbit  at the puncture z .

If a pseudoholomorphic curve zw is asymptotic to a nondegenerate Reeb orbit at a
puncture z , more can be said about its asymptotic behaviour in neighbourhoods of
this puncture. Take a neighbourhood U � S of z that admits a holomorphic chart
 U W .U; z/! .D; 0/. Using polar coordinates .r; t/ 2 .0;C1/� S1, we can write
x 2 .D n 0/ as x D e�r t . With this notation, it is shown in [26; 27], that if z is a
positive interior puncture at which zw is asymptotic to a nondegenerate Reeb orbit C

of X�C , then zw ı �1U .r; t/D .s.r; t/; w.r; t// satisfies

� wr.t/D w.r; t/ converges in C1 to a Reeb orbit C of X�C , exponentially
in r and uniformly in t .

Similarly, if z is a negative interior puncture at which zw is asymptotic to a non-
degenerate Reeb orbit � of X�� , then zw ı  �1U .r; t/ D .s.r; t/; w.r; t// satisfies
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� wr.t/D w.r; t/ converges in C1 to a Reeb orbit � of �X�� as r !C1,
exponentially in r and uniformly in t .

Remark The fact that the convergence of pseudoholomorphic curves near punctures
to Reeb orbits is of exponential nature is a consequence of the asymptotic formula
obtained in [27]. Such formulas are necessary for the Fredholm theory developed in
[28] that gives the dimension of the space of pseudoholomorphic curves with fixed
asymptotic data.

The discussion above can be summarized by saying that, near punctures, the finite
energy pseudoholomorphic curves detect Reeb orbits. It is exactly this behaviour that
makes these objects useful for the study of dynamics of Reeb vector fields.

For us, it will be important to consider the moduli spaces M.;  01; : : : ; 
0
mIJ / of

genus-0 pseudoholomorphic curves, modulo biholomorphic reparametrization, with
one positive puncture asymptotic to a nondegenerate Reeb orbit  , and negative
punctures asymptotic to nondegenerate Reeb orbits  01; : : : ; 

0
m . It is well known that

the linearization D N@J of N@J at any element of M.;  01; : : : ; 
0
mIJ / is a Fredholm

map (we remark that this property is valid for more general moduli spaces of curves
with prescribed asymptotic behaviour). One would like to conclude that the dimension
of a connected component of M.;  01; : : : ; 

0
mIJ / is given by the Fredholm index of

an element of M.;  01; : : : ; 
0
mIJ /. However, this is not always the case if the moduli

space contains multiply covered pseudoholomorphic curves.

Fact As a consequence of the exactness of the symplectic cobordisms considered
above, we obtain that the energy E. zw/ of zw satisfies E. zw/� 5A. zw/, where A. zw/ is
the sum of the action of the Reeb orbits detected by the punctures of zw counted with
multiplicity; see [8; 29].

3.2 Contact homologies

Contact homologies were introduced in [14] as homology theories which are topological
invariants of contact manifolds. In Sections 3.2.1 and 3.2.2, we give an introduction to
the more basic and well-known versions of contact homologies. This serves mainly as
a motivation to Section 3.2.3, where we present the version of contact homology that
will be used in this paper.2

2We stress that while the versions of contact homology presented in Sections 3.2.1 and 3.2.2 do depend
on the polyfold technology currently being developed by Hofer, Wysocki and Zehnder, the version of
contact homology which we use in this paper and present in Section 3.2.3 does not depend on polyfold and
can be constructed in complete rigour with technology that is available in the literature. See the detailed
discussion in Section 3.2.3 below.
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3.2.1 Full contact homology Full contact homology was introduced in [14] as an
important invariant of contact structures. We refer the reader to [14] and [6] for detailed
presentations of the material contained in this subsection.

Let .Y 2nC1; �/ be a contact manifold with � a nondegenerate contact form. We denote
by P.�/ the set of good periodic orbits of the Reeb vector field X� . To each orbit
 2 P.�/, we define a Z2–degree j j D .�CZ./C .n� 2// mod 2. An orbit  is
called good if it is either simple, or if  D . 0/i for a simple orbit  0 with j j D j 0j.

A.Y; �/ is defined to be the supercommutative, Z2–graded Q–algebra with unit gener-
ated by P.�/ (an algebra with these properties is called a commutative superalgebra or
a super-ring). The Z2–grading on the elements of the algebra is obtained by considering
(on the generators) the grading mentioned above and extending it to A.Y; �/.

A.Y; �/ can be equipped with a differential dJ . Denote by Mk.;  01; : : : ; 
0
mIJ / the

moduli space of finite energy pseudoholomorphic curves of genus 0 and Fredholm
index k , modulo reparametrization, with one positive puncture asymptotic to  and
negative punctures asymptotic to  01; : : : ; 

0
m in the symplectization .R� Y; J /. As

the almost complex structure J is R–invariant in R� Y , we have an R–action on
Mk.;  01; : : : ; 

0
mIJ /, and we write

�Mk.;  01; : : : ; 
0
mIJ /DMk.;  01; : : : ; 

0
mIJ /=R:

Lastly, we denote by Mk.;  01; : : : ; 
0
mIJ /, as presented in [8], the compactification

of �Mk.;  01; : : : ; 
0
mIJ /. The compactified moduli space Mk.;  01; : : : ; 

0
mIJ / also

involves pseudoholomorphic buildings that appear as limits of a sequence of curves
in �Mk.;  01; : : : ; 

0
mIJ / that “breaks”; we refer the reader to [8] for a more detailed

description of these moduli spaces. To define our differential, we need the following
hypothesis:

Hypothesis H There exists an abstract perturbation of the Cauchy–Riemann oper-
ator @J such that the compactified moduli spaces M.;  01; : : : ; 

0
mIJ / of solutions

of the perturbed equation are unions of branched manifolds with corners and rational
weights whose dimension is given by the Conley–Zehnder index of the asymptotic
orbits and the relative homology class of the solution.

The proof that Hypothesis H is true is still not written. Establishing its validity is one
of the main reasons for the development of the polyfold technology by Hofer, Wysocki
and Zehnder. We define

(3-15) dJ  Dm./
X

 01;:::;
0
m

C.;  01; : : : ; 
0
m/

mŠ
 01
0
2 : : : 

0
m;
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where C.;  01; : : : ; 
0
m/ is the algebraic count of points in the 0–dimensional manifold

(3-16) �M1.;  01; : : : ; 
0
mIJ /;

and m./ is the multiplicity of  . The map dJ is extended to the whole algebra by the
Leibnitz rule. Under Hypothesis H, it was proved in [14] that .dJ /2D 0. We therefore
have that .A.Y; �/; dJ / is a differential Z2–graded supercommutative algebra.

Definition 2 The full contact homology CH.�; J / of � is the homology of the
complex .A; dJ /.

Under Hypothesis H, it was also proved in [14] that the full contact homology does not
depend on the contact form � on .Y; �/, nor on the choice of the cylindrical almost
complex structure J 2 J .�/.

3.2.2 Cylindrical contact homology Suppose now that .Y; �/ is a contact manifold,
and � is a nondegenerate hypertight contact form on .Y; �/. Fix a cylindrical almost
complex structure J 2 J .�/. For hypertight contact manifolds, we can define a
simpler version of contact homology called cylindrical contact homology. We denote
by CHcyl.�/ the Z2–graded Q–vector space generated by the elements of P.�/.
The differential d cyl

J W CHcyl.�/! CHcyl.�/ will count elements in the moduli space�M1.;  0IJ /. For the generators  2 P.�/, we define

(3-17) d cyl
J ./D cov./

X
 02P.�/

C.;  0IJ / 0;

where C.;  0IJ / is the algebraic count of elements in �M1.;  0IJ / and cov./ is
the covering number of  . For � hypertight, and assuming Hypothesis H is true,
Eliashberg, Givental and Hofer proved in [14] that .d cyl

J /2 D 0.

Definition 3 The cylindrical contact homology CHcyl.�/ of � is the homology of the
complex .CHcyl.�/; d

cyl
J /.

Under Hypothesis H, the cylindrical contact homology does not depend on the hypertight
contact form � on .Y; �/, nor on the cylindrical almost complex structure J 2 J .�/.

Denote by ƒ the set of free homotopy classes of Y . It is easy to see that for each
� 2ƒ, the subspace CH�cyl.�/�CHcyl.�/ generated by the set P�.�/ of good periodic
orbits in � is a subcomplex of .CHcyl.�/; d

cyl
J /. This follows from the fact that the

number C.;  0IJ / can only be nonzero for Reeb orbits  0 that are freely homotopic
to  , which implies that the restriction d cyl

J jCH�cyl has image in CH�cyl.�/. From now
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on, we will denote the restriction d cyl
J jCH�cyl W CH�cyl.�/! CH�cyl.�/ by d�J . Denoting

by CH�
cyl the homology of .CH�cyl.�/; d

�
J /, we thus have

(3-18) CHcyl.�/D
M
�2ƒ

CH�
cyl.�/:

The fact that we can define partial versions of cylindrical contact homology restricted
to certain free homotopy classes will be of crucial importance for us. It will allow us
to obtain our results without resorting to Hypothesis H. This is explained in the next
subsection.

3.2.3 Cylindrical contact homology in special homotopy classes Maintaining the
notation of the previous sections, we denote by .Y; �/ a contact manifold endowed
with a hypertight contact form �.

Let ƒ0 denote the set of primitive free homotopy classes of Y . Let � 2ƒ be either an
element of ƒ0 , or a free homotopy class which contains only simple Reeb orbits of �.
Assume that all Reeb orbits in P�.�/ are nondegenerate. By the work of Dragnev [13],
we know that there exists a generic subset J �reg.�/ of J .�/ such that for all J 2J �reg.�/

we have:

� For all Reeb orbits 1; 2 2 � , the moduli space of pseudoholomorphic cylinders
M.1; 2IJ / is transverse, ie the linearized Cauchy–Riemann operator D N@J . zw/
is surjective for all zw 2M.1; 2IJ /.

� For all Reeb orbits 1; 2 2 � , each connected component L of the moduli space
M.1; 2IJ / is a manifold whose dimension is given by the Fredholm index of
any element zw 2 L.

In this case, for J 2 J �reg.�/, we define

(3-19) d�J ./D cov./
X

 02P�.�/

C �.;  0IJ / 0 D
X

 02P�.�/

C �.;  0IJ / 0;

where C �.;  0IJ / is the number of points of the moduli space �M1.;  0IJ /. The
second equality follows from the fact that all Reeb orbits in � are simple, which implies
cov./D 1.

For � and � as above and J 2 J �reg.�/, the differential d�J W CH�cyl.�/! CH�cyl.�/

is well-defined and satisfies .d�J /
2 D 0. Thus, in this situation, we can define the

cylindrical contact homology CH�;J
cyl .�/ without imposing Hypothesis H. Once the

transversality for J has been achieved, and using coherent orientations constructed
in [9], the proof that d�J is well-defined and that .d�J /

2 D 0 is a combination of
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compactness and gluing, similar to the proof of the analogous result for Floer homology.
For the convenience of the reader, we sketch these arguments below:

Claim For � as above, d�J W CH�cyl.�/ ! CH�cyl.�/ is well-defined, and for every
 2 P�.�/, the differential d�J ./ is a finite sum.

Proof The moduli space �M1.;  0IJ / can be nonempty only if A. 0/�A./. It then
follows from the nondegeneracy of � that, for a fixed  , the numbers C cyl.;  0IJ /

can be nonzero for only finitely many  0 . To see that C cyl.;  0IJ / is finite for every
 0 2 � , suppose by contradiction that there is a sequence zwi of distinct elements of�M1.;  0IJ /. By the SFT compactness theorem [8], such a sequence has a convergent
subsequence that converges to a pseudoholomorphic building zw which has Fredholm
index 1. Because of the hypertightness of �, no bubbling can occur and all the
levels zw1; : : : ; zwk of the building zw are pseudoholomorphic cylinders. As all Reeb
orbits of � in � are simple, it follows that all these cylinders are somewhere injective
pseudoholomorphic curves, and the regularity of J implies that they must all have
Fredholm index at least 1. As a result, we have 1D IF . zw/D

P
.IF . zw

l//� k , which
implies k D 1. Thus zw 2 �M1.;  0IJ /, and it is the limit of a sequence of distinct
elements of �M1.;  0IJ /. This is absurd, because �M1.;  0IJ / is a 0–dimensional
manifold. We thus conclude that the numbers C cyl.;  0IJ / are all finite.

Claim For � as above, .d�J /
2 D 0.

Proof If we write

(3-20) d�J ı d
�
J ./D

X
 002P�.�/

m; 00
00;

we know that m; 00 is the number of two-level pseudoholomorphic buildings zw D
. zw1; zw2/ such that zw1 2 �M1.;  0IJ / and zw2 2 �M1. 0;  00IJ / for some  0 2P�.�/.
Because of transversality of zw1 and zw2 , we can perform gluing. This implies that zw
is in the boundary of the moduli space M2.;  00IJ /. Taking a sequence zwi of
elements in �M2.;  00IJ / converging to the boundary of M2.;  00IJ / and arguing
similarly as above, we have that this sequence converges to a pseudoholomorphic
building zw1 whose levels are somewhere injective pseudoholomorphic cylinders.
Using that IF . zw1/D 2, we obtain that zw1 can have at most 2 levels. As zw1 is in
the boundary of M2.;  00IJ /, it cannot have only one level, and is therefore a two-level
pseudoholomorphic building whose levels have Fredholm index 1. Summing up, zw1D
. zw11; zw

2
1/, where zw112 �M1.;  0IJ / and zw212 �M1. 0;  00IJ /, for some  02P�.�/.
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The discussion above implies that m; 00 is the count with signs of boundary components
of the compactified moduli space M2.;  00IJ / which is homeomorphic to a one-
dimensional manifold with boundary. Because the signs of this count are determined
by coherent orientations of M2.;  00IJ /, it follows that m; 00 D 0.

These claims give us the following:

Proposition 4 Let .Y; �/ be a contact manifold with a hypertight contact form �. Let
� 2ƒ be either an element of ƒ0 or a free homotopy class which contains only simple
Reeb orbits of �. Assume that all Reeb orbits in P�.�/ are nondegenerate and pick
J 2J �reg.�/. Then d�J is well defined and .d�J /

2D 0. Under these conditions we define
CH�

cyl.�/ as the homology of the pair .CH�cyl.�/; d
�
J /.

Exact symplectic cobordisms induce homology maps for the SFT-invariants. We
describe how this is done for the version of cylindrical contact homology considered in
this section. Let .Y C; �C/ and .Y �; ��/ be contact manifolds, with hypertight contact
forms �C and �� . Let .W; !/ be an exact symplectic cobordism from �C to �� .
Assume that � is either a primitive free homotopy class or that all the closed Reeb
orbits of both �C and �� which belong to � are simple. Assume moreover that all
Reeb orbits of both P�.�C/ and P�.��/ are nondegenerate. Choose almost complex
structures JC 2J �reg.�

C/ and J� 2J �reg.�
�/. From the work of Dragnev [13] (see also

Section 2.3 in [37]) we know that there is a generic subset J �reg.J
�; JC/2J .J�; JC/

such that for yJ 2 J �reg.J
�; JC/, C 2 P�.�C/ and � 2 P�.��/, we have that

� all the curves zw in the moduli spaces M.C; �I yJ / are Fredholm regular,

� the connected components V of M.C; �I yJ / have dimension equal to the
Fredholm index of any pseudoholomorphic curve in V .

In this case, we can define a map ˆ yJ W CH�cyl.�
C/! CH�cyl.�

�/, given on elements of
P�.�C/, by

(3-21) ˆ
yJ.C/D

X
�2P�.��/

nC;� 
�;

where nC;� is the number of pseudoholomorphic cylinders with Fredholm index 0,
positively asymptotic to C and negatively asymptotic to � . Using a combination of
compactness and gluing (see [6]) one proves that ˆ yJ ı d�JC D d

�
J� ıˆ

yJ . As a result
we obtain a map ˆ yJ W CH�;JC

cyl .�C/! CH�;J�

cyl .��/ on the homology level.

We study the cobordism map in the following situation: take .V DR�Y;$/ to be an
exact symplectic cobordism from C� to c�, where C > c > 0 and � is a hypertight
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contact form. Suppose that one can make an isotopy of exact symplectic cobordisms
.R� Y;$t / from C� to c�, with $t satisfying $0 D$ and $1 D d.es�0/. We
consider the space zJ .J; J / of smooth homotopies

(3-22) Jt 2 J .J; J /; t 2 Œ0; 1�;

such that J0 D JV , J1 2 Jreg.�/, and Jt is compatible with $t for every t 2 Œ0; 1�.
Here Jt is a deformation of J0 to J1 through asymptotically cylindrical almost complex
structures in the cobordisms .R�Y;$t /. For Reeb orbits ;  0 2 P�.�/, we consider
the moduli space

(3-23) �M1.;  0IJt /D
˚
.t; zw/ j t 2 Œ0; 1� and zw 2 �M1.;  0IJt /

	
:

By using the techniques of [13], we know that there is a generic subset zJreg.J; J /�
zJ .J; J / such that �M1.;  0IJt / is a 1–dimensional smooth manifold with boundary.

The crucial condition that makes this valid is again the fact that all the pseudoholomor-
phic curves that make part of this moduli space are somewhere injective.

The following proposition follows from combining the work of Eliashberg, Givental
and Hofer [14] and Dragnev [13].

Proposition 5 Let .Y; �/ be a contact manifold with a hypertight contact form �. Let
�CDC� and ��D c�, where C > c > 0 are constants, and let � be either a primitive
free homotopy class or a free homotopy class in which all Reeb orbits of � are simple.
Assume that all Reeb orbits in P�.�/ are nondegenerate. Choose an almost complex
structure J 2 J �reg.�/, and set JC D J� D J. Let .W D R � Y;$/ be an exact
symplectic cobordism from C� to c�, and choose a regular almost complex structure
yJ 2 J �reg.J

�; JC/. Then, if there is a homotopy .R � Y;$t / of exact symplectic
cobordisms from C� to c� with $0 D$ and $1 D d.es�/, it follows that the map

ˆ
yJ W CH�;Jcyl .�/! CH�;Jcyl .�/

is chain homotopic to the identity.

The proof is again a combination of compactness and gluing, and we sketch it below.
We refer the reader to [6] and [14] for the details.

Sketch of the proof We initially define the map

(3-24) KW CH�cyl.�/! CH�cyl.�/

that counts finite energy Fredholm index-.�1/ pseudoholomorphic cylinders in the
cobordisms .R � Y;$t / for t 2 Œ0; 1�. Because of the regularity of our homotopy,
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the moduli space of index �1 cylinders whose positive puncture detects a fixed Reeb
orbit  is finite, and therefore the map K is well defined.

Notice that for tD1, the cobordism map ˆ yJ1 is the identity, and the pseudoholomorphic
curves that define it are just trivial cylinders over Reeb orbits. For t D 0, the map
ˆ yJ0 Dˆ yJ counts index-0 cylinders in the cobordism .R�Y;$/. From the regularity
of J0 , J1 and the homotopy Jt , we have that the pseudoholomorphic cylinders involved
in these two maps belong to the 1–dimensional moduli spaces �M1.;  0IJt /.

By using a combination of compactness and gluing we can show that the boundary
of the moduli space �M1.;  0IJt / is exactly the set of pseudoholomorphic build-
ings zw with two levels, zwcob and zwsymp , such that zwcob is an index-.�1/ cylinder in
a cobordism .R� Y;$t /, and zwsymp is an index-1 pseudoholomorphic cylinder in
the symplectization of � above or below zwcob . Such two-level buildings are exactly
the ones counted in the map K ı d cyl

J C d
cyl
J ıK . As a consequence, one has that the

difference between the maps ˆ yJ1 D Id and ˆ yJ is equal to K ı d cyl
J C d

cyl
J ıK . This

implies that ˆ yJ is chain homotopic to the identity.

The result above can be used to show that CH�
cyl.�/ does not depend on the regular

almost complex structure J used to define the differential dJ .

4 Exponential homotopical growth rate
of cylindrical contact homology and estimates for htop

In this section, we define the exponential homotopical growth of contact homology
and relate it to the topological entropy of Reeb vector fields. The basic idea is to
use the fact that the cylindrical contact homology of .M; �/ in a free homotopy class
is nonvanishing to obtain existence of Reeb orbits in such a homotopy class for any
contact form on .M; �/; this idea is present in [30; 37]. It is straightforward to see that
the period and action of a Reeb orbit are equal, and in the sequel, we will use the same
notation to refer to period and action of Reeb orbits.

Definition 6 Let .M; �/ be a contact manifold and �0 a hypertight contact form on
.M; �/. We denote by ƒ.M/ the set of free homotopy classes of loops in M. For
T > 0, we define the subset zƒT .�0/�ƒ.M/ by the following condition:

� � 2 zƒT .�0/ if and only if all Reeb orbits of X�0 in � are simply covered,
nondegenerate, have action/period at most T , and CH�

cyl.�0/¤ 0.

We define N cyl
T .�0/ WD #zƒT .�0/.
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Definition 7 We say that the cylindrical contact homology of �0 has exponential
homotopical growth with exponential weight a > 0 if there exist a number b and a
sequence Tn!C1 such that N cyl

Tn
.�0/� e

aTnCb for all Tn .

Remark Notice that in Definition 7, we do not demand that �0 is nondegenerate. We
only demand the weaker condition that the Reeb orbits of �0 belonging to some free
homotopy classes are nondegenerate.

The main result of this section is the following:

Theorem 8 Let �0 be a hypertight contact form on a contact manifold .M; �/, and
assume that the cylindrical contact homology of �0 has exponential homotopical growth
with exponential weight a > 0. Then for every C k (k � 2) contact form � on .M; �/,
the Reeb flow of X� has positive topological entropy. More precisely, if f� is the
function such that �D f��0 , then

(4-1) htop.�X�/�
a

maxf�
:

Proof We write E Dmaxf� .

Step 1 We assume first that � is nondegenerate and C1 . For every � > 0 we can
construct an exact symplectic cobordism from .EC�/�0 to �. Analogously, for �0>0
small enough, it is possible to construct an exact symplectic cobordism from � to �0�0 .

Using these cobordisms, we can construct a splitting family .R�M;$R; JR/ from
.EC�/�0 to �0�0 , along �, such that for every R>0, we have that .R�M;$R; JR/
is homotopic to the symplectization of �0 . For a fixed � 2 zƒT .�0/, we pick a regular
almost complex structure J0 2 J

�
reg.�0/ and J 2 J .�/, and demand that JR coincides

with J0 in the positive and negative ends of the cobordism, and with J on Œ�R;R��M.

We claim that for every R , there exists a finite energy pseudoholomorphic cylinder zw
in .R�M;JR/ that is positively asymptotic to a Reeb orbit in P�.�0/ and negatively
asymptotic to an orbit in P�.�0/.

If this was not true for a certain R > 0, then because of the absence of pseudo-
holomorphic cylinders asymptotic to Reeb orbits in P�.�0/, we would have that
JR 2 J �reg.J0; J0/. Therefore, the map ˆJR W CH�

cyl.�0/! CH�
cyl.�0/ induced by

.R �M;$R; JR/ is well-defined. But because there are no pseudoholomorphic
cylinders asymptotic to Reeb orbits in P�.�0/, we have that ˆJR vanishes. On
the other hand, from Proposition 5 in Section 3.2.3, we know that ˆJR is the identity.
As ˆJR vanishes and is the identity, we conclude that CH�

cyl.�0/D 0, contradicting
that � 2 zƒT .�0/.
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Step 2 Let � 2 zƒT .�0/, let Rn!C1 be a strictly increasing sequence, and let
zwnW .S

1�R; i/! .R�M;JRn/ be a sequence of pseudoholomorphic cylinders with
one positive puncture asymptotic to an orbit in P�.�0/ and one negative puncture
asymptotic to an orbit in P�.�0/. Notice that because of the properties of � , the energy
of zwn is uniformly bounded.

Therefore, we can apply the SFT compactness theorem to obtain a subsequence of zwn
which converges to a pseudoholomorphic building zw . Notice that in order to apply the
SFT compactness theorem, we need to use the nondegeneracy of �. Moreover, we can
give a very precise description of the building.

Let zwk for k 2f1; : : : ; mg be the levels of the pseudoholomorphic building zw . Because
the topology of our curve zw does not change after breaking, we have the following
picture:

� The upper level zw1 is composed of one connected pseudoholomorphic curve,
which has one positive puncture asymptotic to an orbit 0 2 P�.�0/, and several
negative punctures. All of the negative punctures detect contractible orbits,
except one that detects a Reeb orbit 1 which is also in � .

� On every other level zwk , there is a special pseudoholomorphic curve which has
one positive puncture asymptotic to a Reeb orbit k�1 in � , and at least one, but
possibly several, negative punctures. Of the negative punctures, there is one that is
asymptotic to an orbit k in � , while all the others detect contractible Reeb orbits.

Because of the splitting behaviour of the cobordisms .R�M;JRn/, it is clear that
there exists a k0 such that the level zwk0 is in an exact symplectic cobordism from
.EC �/�0 to �. This implies that the special orbit k0 is a Reeb orbit of X� in the
homotopy class � .

Notice that A.0/ � .E C �/T . This implies that all the other orbits appearing as
punctures of the building zw have action smaller than .EC �/T and, in particular, that
k0 has action smaller than .EC �/T .

As we can do the construction above for any � > 0, we can obtain a sequence of Reeb
orbits �j which are all in � such that A.�j /� .EC 1=j /T . Using the Arzela–Ascoli
theorem, one can extract a convergent subsequence of �j . Its limit � is clearly a Reeb
orbit of � in the free homotopy class � , with action at most ET .

Step 3 (estimating NX�.T /)
3 From step 2, we know that if � 2 zƒT .�0/, then there

is a Reeb orbit � of the Reeb flow of X� with A.�/ � ET . Recalling that the

3Recall from Section 2 that NX�.T / is the number of free homotopy classes of M that contain
periodic orbits of X� with period at most T .
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period and the action of a Reeb orbit coincide, we obtain that NX�.T /� #zƒT=E .�0/.
Under the hypothesis of the theorem, there exists a sequence Tn !C1 such that
#zƒT=E .�0/� eaTn=ECb for all Tn . We then conclude that

(4-2) NX�.Tn/� e
aTn=ECb

for all elements of the sequence Tn . Applying Theorem 1, we obtain htop.�X�/� a=E .
This proves the theorem in the case that � is C1 and nondegenerate.

Step 4 Here we pass to the case of a general C k�2 contact form � (the case where �
is degenerate is included here).

Let �i be a sequence of nondegenerate smooth contact forms converging in the C k–
topology to a contact form � which is C k (k � 2) and possibly degenerate. For every
� > 0, there is i0 such that for i > i0 , there exists an exact symplectic cobordism from
.EC �/�0 to �i .

Fixing a homotopy class � 2 zƒT .�0/, we know, by the previous steps, that there exists
a Reeb orbit �.i/ of �i in the homotopy class � with action smaller than .EC �/T .
By applying the Arzela–Ascoli theorem to �.i/, we obtain a subsequence which
converges to a Reeb orbit �;� of X� with A.�;�/� .EC �/T . Notice that here we
use that � is at least C 2 (so that X� is at least C 1 ) in order to be able to use the
Arzela–Ascoli theorem.

Because � > 0 above can be taken arbitrarily close to 0, we can actually obtain a
sequence j;� of Reeb orbits of X� , whose homotopy class is � , such that the actions
A.j;�/ converges to a number at most ET . Again applying the Arzela–Ascoli theorem,
we obtain that the sequence j;� has a convergent subsequence which converges to an
orbit � satisfying A.�/�ET .

Reasoning as in step 3 above, we conclude that NX�.Tn/� e
aTn=ECb for all elements

of the sequence Tn!C1. Applying Theorem 1, we obtain the desired estimate for
the topological entropy. This finishes the proof of the theorem.

5 Contact 3–manifolds with a hyperbolic component

In this section, we prove the following theorem:

Theorem 9 Let M be a closed connected oriented 3–manifold which can be cut along
a nonempty family of incompressible tori into a family fMi ; 0� i � qg of irreducible
manifolds with boundary, such that
� M0 is the mapping torus of a diffeomorphism hW S ! S with pseudo-Anosov

monodromy on a surface S with nonempty boundary.

Geometry & Topology, Volume 20 (2016)



Cylindrical contact homology and topological entropy 3547

Then M can be given infinitely many nondiffeomorphic contact structures �k such that
for each �k , there exists a hypertight contact form �k on .M; �k/ which has exponential
homotopical growth of cylindrical contact homology. It follows that on each .M; �k/,
all Reeb flows have positive topological entropy.

We denote by S a compact surface with nonempty boundary and by ! a symplectic
form on S . Let h be a symplectomorphism of .S; !/ to itself, with pseudo-Anosov
monodromy and which is the identity on a neighbourhood of @S . We follow a well-
known recipe to construct a suitable contact form on the mapping torus †.S; h/.

We choose a primitive ˇ for ! such that, for coordinates .r; �/ 2 Œ��; 0� � S1 in
a neighbourhood V of @S , we have ˇ D f .r/d� , where f > 0 and f 0 > 0. We
pick a smooth nondecreasing function F0W R! Œ0; 1� which satisfies F0.t/D 0 for
t 2
�
�1; 1

100

�
and F0.t/D 1 for t 2

�
1
100
;C1

�
. For i 2Z, define Fi .t/DF0.t� i/.

Fixing � > 0, we define a 1–form z̨ on R�S by

(5-1) z̨ D dt C �.1�Fi .t//.h
i /�ˇC �Fi .t/.h

iC1/�ˇ for t 2 Œi; i C 1/:

This defines a smooth 1–form on R�S , and a simple computation shows that if � is
small enough, the 1–form z̨ is a contact form. For t 2 Œ0; 1�, the Reeb vector field Xz̨
is equal to @t C v.p; t/, where v.p; t/ is the unique vector tangent to S that satisfies
!.v.p; t/; � /D F 00.t/.ˇ� h

�ˇ/.

Consider the diffeomorphism H W R�S !R�S defined by H.t; p/D .t � 1; h.p//.
The mapping torus †.S; h/ is defined by

(5-2) †.S; h/ WD .R�S/=.t; p/�H.t; p/;

and we denote by � W R�S !†.S; h/ the associated covering map.

Because H� z̨ D z̨ , there exists a unique contact form ˛ on †.S; h/ such that ��˛D z̨ .
Notice that in the neighbourhood S1 �V of @†.S; h/, we have ˛ D dt C �f .r/d� ,
which implies that X˛ is tangent to @†.S; h/.

The Reeb vector field X˛ on †.S; h/ is transverse to the surfaces ftg�S for t 2R=Z.
This implies that f0g �S is a global surface of section for the Reeb flow of ˛ , and by
our expression of Xz̨ , the first return map of the Reeb flow of ˛ is isotopic to h.

It follows from [1, Theorem 13] that we can make a perturbation of ˛ supported in
the interior M†.S; h/ of †.S; h/ to obtain a contact form y̨ on †.S; h/ (whose kernel
coincides with that of ˛ ) satisfying that all Reeb orbits of y̨ which are contained
in M†.S; h/ are nondegenerate. By doing the perturbation small enough, we can also
guarantee that f0g �S is still a global surface of section for the flow of Xy̨ . Since the
perturbation is supported in the interior of †.S; h/, the Reeb flow of y̨ is also tangent
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to the boundary of †.S; h/. It is clear that the first return map yhW f0g �S ! f0g �S
of �Xy̨ is a diffeomorphism isotopic to h.

5.1 Contact 3–manifolds containing .†.S; h/; y̨/ as a component

Let M be a closed connected oriented 3–manifold which can be cut along a nonempty
family of incompressible tori into a family fMi ; 0� i � qg of irreducible manifolds
with boundary, such that the component M0 is diffeomorphic to †.S; h/. Then it
is possible to construct hypertight contact forms on M which match with y̨ in the
component M0 . More precisely, we have the following result due to Colin and Honda,
and Vaugon:

Proposition 10 [12; 40] Let M be a closed connected oriented 3–manifold which
can be cut along a nonempty family of incompressible tori into a family fMi ; 0� i � qg

of irreducible manifolds with boundary, such that the component M0 is diffeomorphic
to †.S; h/. Then, there exists an infinite family f�k; k 2 Zg of nondiffeomorphic
contact structures on M such that

� for each k 2 Z, there exists a hypertight contact form �k on .M; �k/ which
coincides with y̨ on the component M0 .

We briefly recall the construction of the contact forms �k and refer the reader to
[12; 40] for the details. For i � 1, we apply [12, Theorem 1.3] to obtain a hypertight
contact form ˛i on Mi which is compatible with the orientation of Mi , and whose
Reeb vector field X˛i is tangent to the boundary of Mi . On the special piece M0 , we
consider the contact form ˛0 equal to y̨ constructed above.

Let fTj j 1� j �mg be the family of incompressible tori along which we cut M to
obtain the pieces Mi . Then the contact forms ˛i give a hypertight contact form on each
component of M n

Sm
j�1V .Tj /, where V .Tj / is a small open neighbourhood of Tj .

This gives a contact form y� on M n
Sm
j�1V .Tj /. Using an interpolation process (see

[40, Section 7]), one can construct contact forms on the neighbourhoods V .Tj / which
coincide with y� on @V .Tj /. The interpolation process is not unique and can be done
in ways so as to produce an infinite family of distinct contact forms f�k j k 2Zg on M
that extend y�, and which are associated to contact structures �k WD ker�k that are all
nondiffeomorphic. The contact topological invariant used to distinguish the contact
structures �k is the Giroux torsion; see [40, Section 7].

5.2 Proof of Theorem 9

It is clear that Theorem 9 will follow if we establish that the cylindrical contact homology
of �k has exponential homotopical growth. This is the content of the following:
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Proposition 11 The cylindrical contact homology of �k has exponential homotopical
growth.

Before proving the proposition, we introduce some necessary ideas and notation. The
first return map of Xy̨ is a diffeomorphism yhW S ! S which is homotopic to h and,
therefore, to a pseudo-Anosov map  W S!S . The Reeb orbits of Xy̨ are in one-to-one
correspondence with periodic orbits of yh. Moreover, we have that two Reeb orbits 1
and 2 of Xy̨ are freely homotopic if and only if their associated periodic orbits are
in the same Nielsen class. Thus there is an injective map „ from the set N of Nielsen
classes to the set ƒ.†.S; h// of free homotopy classes of Reeb orbits in †.S; h/.

We now recall some facts about Nielsen theory for pseudo-Anosov maps in surfaces
with boundary, which the reader can find in [11; 15; 16]. Let Pn be the set of periodic
orbits of  with period n which are contained in the interior of S . Because pseudo-
Anosov maps have Markov partitions [15; 16], we know that there exist numbers a > 0
and b such that

#Pn > eanCb

for every n 2N . It follows from [11, Lemma 1.1] that all periodic orbits in Pn belong
to distinct Nielsen classes, and that these Nielsen classes are unrelated to the boundary
of S . By this, we mean that for every periodic orbit in Pn , its suspension is a curve in
†.S; h/ which cannot be homotoped to a curve completely contained in the boundary
of †.S; h/.

We denote by Nn the set of Nielsen classes associated to the periodic orbits Pn of  .
Notice that N equals the disjoint union

S
n2N Nn . It follows from the discussion

above that
#Nn > eanCb

for all n 2N . It is immediate to see that the fixed points of yh belong to a finite number
of Nielsen classes, and we denote by c the number of elements in N1 . We write
N1 D f�1; : : : ; �cg. For each �i 2N1 we will denote by �ni the Nielsen class in Nn
which n–covers �i in the following sense: if xi is a fixed point in �i , then �ni is the
Nielsen class that contains the periodic orbit of period n that “covers” xi .

As observed previously, there exists an injective map „W N !ƒ.†.S; h//. Let p be
a prime number, and let � 2„.Np/. Then there are two possibilities:

(a) � contains only simple Reeb orbits,

(b) � contains a Reeb orbit  which is a p–cover of a simple orbit 0 that intersects
f0g �S once.
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The reason why these are the only two possibilities is that every Reeb orbit  2 �
intersects f0g � S exactly p times. If  is a multiple cover of a simple orbit 0 ,
then the number of intersections of 0 with f0g �S must be a divisor of p . As p is
prime, this number is either p , which implies that  is simple, or 1. It is clear that if
�2„.Np/ satisfies (b), then �D„.�pi / for some �i 2N1 . We denote by N simp

p the set
Np n f�

p
1 ; : : : ; �

p
i ; : : : ; �

p
q g. As a consequence we conclude that if ƒpsimp WD„.N simp

p /

is the set of elements in „.Np/ satisfying (a), then

#ƒpsimp D #Np � c

for every prime number p . Since #Np > eapCb for every prime p , we conclude that
there exists a prime number p0 such that for every prime p � p0 ,

#ƒpsimp � e
apCq:

Let x be a periodic orbit of yh of period n. Viewing yh as the first return map for a
global surface of section of the Reeb flow �Xy̨ we know that there is a Reeb orbit x
of y̨ (and also of �k ) which is the suspension of x. Because of the compactness of S ,
we know that there exists a number � > 0, depending only on yh and y̨ , such that
A.x/� �n.

We are now ready for the proof of Proposition 11. The main ideas of the argument are
due to Vaugon, who estimated in [40] a different growth rate of the cylindrical contact
homology �k .

Proof of Proposition 11 Step 1 Let i W †.S; h/! M be the injection we obtain
from viewing †.S; h/ as a component of M . Because of the incompressibility of
@†.S; h/ in M , the associated map i�W ƒ.†.S; h//!ƒ.M/ is injective (here ƒ.M/

denotes the free loop space of M ).

For each prime number p , we define Tp WD �p . Recall that if � 2ƒpsimp , then � does
not contain curves completely contained in the boundary of †.S; h/. It follows from
this and from the incompressibility of @†.S; h/ in M , that if %2 i�.ƒpsimp/, then every
loop in % must intersect the interior †.S; h/.

Using that the Reeb flow of �k is tangent to @†.S; h/, it follows that if % 2 i�.ƒpsimp/,
then all Reeb orbits of �X�k that belong to % are contained in the interior of †.S; h/.
This implies that % contains only nondegenerate4 Reeb orbits of �X�k . Combining
this with the injectivity of i� and „, we conclude that every Reeb orbit �k in % is the
suspension of a periodic orbit of yh in the Nielsen class � WD .i� ı„/�1% 2N simp

p . This
implies that

4Recall that because of our choice of y̨ , Reeb orbits contained in int.†.S; h// are nondegenerate.

Geometry & Topology, Volume 20 (2016)



Cylindrical contact homology and topological entropy 3551

(c) all Reeb orbits of �k in the free homotopy class % are nondegenerate and simple,

(d) all Reeb orbits of �k in the free homotopy class % have action � Tp .

Hypertightness of �k and (c) imply that if % 2 i�.ƒpsimp/, then CH%
cyl.�k/ is well

defined.

Step 2 For every % 2 i�.ƒpsimp/, we have CH%
cyl.�k/¤ 0. Indeed, Vaugon showed

(see the proofs of Lemma 7.11 and Theorems 1.3 and 1.2 in [40]) that the number of
Reeb orbits in % of even and odd degree differ. For Euler characteristic reasons, this
implies that CH%

cyl.�k/¤ 0. Combining this with (d) from step 1, we conclude that
every % 2 i�.ƒpsimp/ belongs to the set zƒTp .�k/ as defined in Definition 6.

Step 3 Recall that in Definition 6 of Section 4, we defined N cyl
T .�k/ as the cardinality

of #zƒT .�k/. That is, N cyl
T .�k/ is the number of free homotopy classes % in ƒ.M/

which contain only nondegenerate simple Reeb orbits with action smaller than T and
that satisfy CH%

cyl.�k/¤ 0.

Because of the injectivity of i� , we know that #i�.ƒpsimp/D #ƒpsimp . Combining this
with steps 1 and 2, it follows that for every element of the sequence Tp!C1,

(5-3) N
cyl
Tp
.�k/� #i�.ƒpsimp/D #ƒpsimp � e

aTp=�Cb;

which establishes the proposition.

Proof of Theorem 9 As mentioned previously, Theorem 9 follows directly from
combining Proposition 11, Proposition 10 and Theorem 8.

It would be interesting to obtain an upper bound on the constant � above. This could
provide a more precise estimate for the homotopical growth rate of the cylindrical
contact homology of �k .

6 Graph manifolds and Handel–Thurston surgery

In [25], Handel and Thurston used Dehn surgery to obtain nonalgebraic Anosov flows
in 3–manifolds. Their surgery was adapted to the contact setting by Foulon and
Hasselblatt in [18], who interpreted it as a Legendrian surgery and used it to produce
nonalgebraic Anosov Reeb flows on 3–manifolds. In this section, we apply the Foulon–
Hasselblatt Legendrian surgery to obtain more examples of contact 3–manifolds which
are distinct from unit tangent bundles, and on which every Reeb flow has positive
topological entropy.
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Some clarifications regarding the surgeries we consider are in order. On one hand, we
restrict our attention to the Foulon–Hasselblatt surgery on Legendrian lifts of embedded
separating geodesics on hyperbolic surfaces. This is an important restriction, since
Foulon and Hasselblatt perform their surgery on the Legendrian lift of any immersed
closed geodesic on a hyperbolic surface. On the other hand, for this restricted class of
Legendrian knots, the surgery we consider is a bit more general than the one in [18].
They restrict their attention to Dehn surgeries with positive integer coefficients, while
we consider the case of any integer coefficient, as is explained in Section 6.1.

6.1 The surgery

We start by fixing some notation. Let .S; g/ be an oriented hyperbolic surface and
rW S1! S an embedded oriented separating geodesic of g . We let � W .D; g/! .S; g/

denote a locally isometric covering of .S; g/ by the hyperbolic disc .D; g/ with the
property that .�1; 1/� f0g � ��1.r.S1//. Such a covering always exists since the
segment .�1; 1/� f0g of the real axis is a geodesic in .D; g/. We denote by v.�/
the unique unitary vector field along r.�/ satisfying †.r0.�/; v.�// D ��=2. Our
orientation convention is chosen so that for coordinates z D xC iy 2 D , the lift of
v.�/ to .�1; 1/�f0g is a positive multiple of the vector field �@y along .�1; 1/�f0g.
Also, let …W T1S ! S denote the base point projection.

Because r is a separating geodesic, we can cut S along r to obtain two oriented
hyperbolic surfaces with boundary which we denote by S1 and S2 . Our labelling is
chosen so that the vector field v.�/ points into S2 and out of S1 . This decomposition
of S induces a decomposition of T1S into T1S1 and T1S2 . Both T1S1 and T1S2 are
3–manifolds whose boundary is the torus formed by the unit fibres over r.

Denote by Vr;ı the closed ı�neighbourhood of the geodesic r for the hyperbolic
metric g . For ı > 0 sufficiently small, we have that Vr;ı is an annulus such that the
only closed geodesics contained in Vr;ı are the covers of r, and such that Vr;ı satisfies
the following convexity property: if MV is the connected component of ��1.Vr;ı/
containing .�1; 1/� f0g, then every segment of a hyperbolic geodesic starting and
ending in MV is completely contained in MV . It also follows from the conventions adopted
above that, if we denote by UC the upper hemisphere of D composed of points with
positive imaginary part and by U� the lower hemisphere of the D composed of points
with negative imaginary part, we have

(6-1) MV \UC � ��1.S1/ and MV \U� � ��1.S2/:

This fact has the following important consequence: if �.Œ0;K�/ is a hyperbolic geodesic
segment starting and ending at Vr;ı and contained in one of the Si , then Œ�� is a
nontrivial homotopy class in the relative fundamental group �1.Si ; Vr;ı/.
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On the unit tangent bundle T1S , we consider the contact form �g whose Reeb vector
field is the geodesic vector field for the hyperbolic metric g . It is well known that
the lifted curve Lr.�/D .r.�/; v.�// in T1S is Legendrian on the contact manifold
.T1S; ker�g/. The geodesic vector field X�g along Lr coincides with the horizontal
lift of v (see [38, Section 1.3]), points into T1S2 and out of T1S1 , and is normal to
@T1S2 D @T1S1 for the Sasaki metric on T1S .

Moreover, if ı > 0 is small enough, we know that for every # 2Lr , there exist numbers
t1 < 0 and t2 > 0 such that

�
t1
�g
.#/ 2 T1S1 n…

�1.Vr;ı/;(6-2)

�
t2
�g
.#/ 2 T1S2 n…

�1.Vr;ı/:(6-3)

Following [18], we know that there exists a neighbourhood B3�2� of Lr on which we
can find coordinates .t; s; w/ 2 .�3�; 3�/�S1 � .�2�; 2�/ such that

�g D dt Cwds;(6-4)

Lr D f0g �S
1
� f0g;(6-5)

where f0g�f#g� .�2�; 2�/ is a local parametrization of the unitary fibre over # 2Lr ,
and � < �=.4jqj�/, with q being a fixed integer. Let W� D f�3�g �S1 � .�2�; 2�/
and WC D fC3�g�S1� .�2�; 2�/. It is clear that ….W�/� S1 and ….WC/� S2 .
Because on xB3�2� , the Reeb vector field X�g is given by @t , it is clear that for every point
p 2 B

3�
2� , there are p� 2W� , pC 2WC , t� 2 .�6�; 0/ and tC 2 .0; 6�/ for which

(6-6) �t
�

X�g
.p/D p� and �t

C

X�g
.p/D pC:

This means that trajectories of the flow of X�g that enter the box B3�2� enter through
W� and exit through WC . They cannot stay inside B3�2� for a very long positive or
negative interval of time. We can say even more about these trajectories.

For � D .p; Pp/ 2 S �TpS in WC[W� let z� D .zp; Pzp/ be a lift of � to the unit tangent
bundle T1D such that zp 2 MV . The geodesic vector field X�g at z� coincides with the
horizontal lift of Pp [38, Section 1.3]. For ı , � > 0 and � < �=.4jqj�/ sufficiently
small, we can guarantee that

� ….B
3�
2� / is contained in Vr;ı ,

� for the lifts z� D .zp; Pzp/ of points in WC[W� as above, the vector Pzp (which is
the projection of the geodesic vector field X�g.z�/) satisfies †. Pzp;�@y/ < ı .
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With such a choice of ı > 0, � > 0 and 0 < � < �=.4jqj�/, we obtain that for every
�C 2WC there exists t�C >0, and for every �� 2W� there exists t�� <0, such that

�
t�C
X�g

.�C/ 2 .T1S2/ n…
�1.Vr;ı/ and 8t 2 Œ0; t�C �; �

t
X�g

.�C/ … B
3�
2� ;(6-7)

�
t��
X�g

.��/ 2 .T1S1/ n…
�1.Vr;ı/ and 8t 2 Œt�� ; 0�; �

t
X�g

.�C/ … B
3�
2� :(6-8)

To prove the last condition above one uses the fact that †. Pzp;�@y/ < ı is small and
studies the behaviour of geodesics in .D; g/ starting at points close to the real axis and
with initial velocity close to �@y . It is easy to see that such geodesics have to intersect
the region Vr;ı and visit the interior of both S1 nVr;ı and S2 nVr;ı . From now on we
will assume that ı > 0, � > 0 and 0 < � < �=.8jqj�/ are such that all the properties
described above hold simultaneously.

Consider the map F W B2�2� n xB
�
� ! B

2�
2� n

xB
�
� defined by

(6-9) F.t; s; w/D .t; sCf .w/;w/ for .t; s; w/ 2 .�; 2�/�S1 � .�2�; 2�/;

where f .w/ D �qR.w=�/ (for our previously chosen integer q ) and RW Œ�1; 1�!
Œ0; 2�� satisfies RD 0 on a neighbourhood of �1, RD 2� on a neighbourhood of 1,
0�R0 � 4 and R0 is an even function.

Our new 3–manifold M is obtained by gluing T1S n xB
�
� and B2�2� using the map F :

(6-10) M D .T1S n xB
�
� /[B

2�
2�

ı
.x 2 B

2�
2� n

xB
�
� /� .F.x/ 2 T1S n xB

�
� /:

Notice that

T1S D .T1S n
xB
�
� /[B

2�
2�

ı
.x 2 B

2�
2� n

xB
�
� /� .x 2 T1S n xB

�
� /:

This clarifies our construction of M and shows that M is obtained from T1S via a
Dehn surgery on Lr . We follow [18] to endow M with a contact form which coincides
with �g outside B2�2� . As a preparation, we define the function ˇW .�3�; 3�/!R:

� ˇ is equal to 1 on an open neighbourhood of Œ�2�; 2��,

� jˇ0j � �=� and suppˇ is contained in Œ�3�; 3��.

Using ˇ we define

(6-11) r.t; w/D
ˇ.t/

2

Z w

�2�

xf 0.x/ dx:

We point out that supp.r/ is contained in B3�� , and therefore, so is supp.dr/. Notice
also that in B2�2� n xB

�
� , one has dr D 1

2
wf 0.w/dw .
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Again following [18], we define in T1S n xB
�
� the 1–form Ar :

Ar D dt CwdsC dr for t 2 .�3�;��/;(6-12)

Ar D dt Cwds� dr for t 2 .�; 3�/;(6-13)

Ar D �g otherwise:(6-14)

Notice that because supp.dr/ is contained in B3�� , the 1–form Ar is well defined.

On the box B2�2� , we define

(6-15) zAD dt CwdsC dr:

A direct computation shows that F �.Ar/D zA, which means that the gluing map F
allows us to glue the 1–forms Ar and zA. We denote by �FH the 1–form on M

obtained by gluing zA and Ar . We will denote by zB the following region:

(6-16) zB D ..B
3�
2� n

xB
�
� /�M/[B

2�
2�

ı
.x 2 B

2�
2� n

xB
�
� /� .F.x/ 2 .B

3�
2� n

xB
�
� //:

The importance of this region lies in the fact that in M n zB D T1S nB
3�
2� , the contact

form �FH coincides with �g .

Following [18], one shows by a direct computation that .dtCwds˙dr/^.dw^ds/D
.1˙@r=@t/dt^dw^ds . Using the fact that � < �=.8�jqj/, one gets that j@r=@t j<1,
thus obtaining that .dt Cwds˙ dr/ is a contact form. It follows from this that Ar
and zA are contact forms in their respective domains, and therefore, �FH is a contact
form on M . More strongly, Foulon and Hasselblatt proceed to show that if q is
nonnegative, the Reeb flow of �FH is Anosov.

6.2 Hypertightness and exponential homotopical growth
of contact homology of �FH

For q 2N , the hypertightness of �FH follows from the fact that its Reeb flow is Anosov
[17]. In this subsection, we give an independent and completely geometrical proof of
the hypertightness of �FH , which is valid for every q 2 Z.

To understand the topology of Reeb orbits of �FH , we will study trajectories that enter
the surgery region zB . We start by studying trajectories in B2�2� . In this region, we have

(6-17) X�FH D
@t

1C @tr
:

This implies, similarly to what happens for �g , that for points p 2 B2�2� , the trajectory
�tX�FH

.p/ leaves the box B2�2� in forward and backward times. More precisely, there
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exists a constant za > 0, depending only on �FH , such that for p 2 B2�2� , there are
Mp� 2 MW�Df�2�g�S1�Œ�2�; 2��, MpC 2 MWCDfC2�g�S1�Œ�2�; 2��, Mt� 2 .�za; 0�

and MtC 2 Œ0; za/ such that

(6-18)
�tX�FH

. Mp/ is in the interior of B2�2� for every t 2 .t�; tC/;

�t
�

X�FH
. Mp/D Mp� and �t

C

X�FH
. Mp/D MpC:

We now analyse the trajectories of points Mp� 2 MW� and MpC 2 MWC . For this, we first
notice that on zB nB�� , the contact form �FH is given by dtCwds˙dr , and therefore,
we have in this region

(6-19) X�FH D
@t

1˙ @tr
;

which is still a positive multiple of @t .

This implies that for every Mp� 2 MW� and MpC 2 MWC , there exist t Mp
�

< 0 and t Mp
C

> 0

such that

(6-20) �t
Mp�

X�FH
. Mp�/ 2W� and �t

MpC

X�FH
. MpC/ 2WC:

Again using that X�FH is a positive multiple of @t on zB nB2�2� , we have that for every
point p in zB nB2�2� whose t coordinate is in Œ2�; 3��, the trajectory of the flow �tX�FH

going through p is a straight line, with fixed coordinates s and w , that goes from
MWC to WC . Analogously, for every point p in zB nB2�2� whose t coordinate is in
Œ�3�;�2��, the trajectory of the backward flow of �tX�FH

going through p is a straight
line from MW� to W� .

Summing up, with all the cases considered above, we have showed that for every point
p 2 zB , the trajectory of the flow �tX�FH

going through p for t D 0 intersects W� for
nonpositive time and WC for nonnegative time. In other words, all trajectories that
intersect zB enter through W� and leave through WC , which means that for all Lp 2 zB ,
there exist times Lt� � 0 and LtC � 0 such that

�
LtC

X�FH
. Lp/ 2WC;(6-21)

�
Lt�

X�FH
. Lp/ 2W�;(6-22)

�tX�FH
. Lp/ 2 zB for all t 2 ŒLt�; LtC�:(6-23)

Now, because on M n zBDT1SnB
3�
2� , the contact form �FH coincides with �g , we have

that trajectories of X�FH starting at W� at time t D 0 have to leave M nN (with N
defined as in (6-26) below) as time diminishes before reentering on zB . Similarly, the
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trajectories starting at WC have to leave M nN for positive time before reentering
to zB . More precisely, one can use (6-7) and (6-8) to show that for p� 2 W� and
pC 2WC , there exist tp� < 0 and tpC > 0 such that

�
t
pC

X�FH
.pC/ 2M2 nN and 8t 2 Œ0; tpC �; �

t
X�FH

.pC/ … zB;(6-24)

�
tp�

X�FH
.p�/ 2M1 nN and 8t 2 Œtp� ; 0�; �

t
X�FH

.p�/ … zB;(6-25)

where, denoting

B
2�
2� .�/D Œ�2�; 0��S

1
� .�2�; 2�/ and B

2�
2� .C/D Œ0; 2���S

1
� .�2�; 2�/;

the submanifolds M1 , M2 and N of M are defined as follows:

M1 D .T1S1nB
�
� /[B

2�
2� .�/

ı�
x 2 B

2�
2� .�/ n

xB
�
�

�
�
�
F.x/ 2 ..B

2�
2� \T1S1/ n

xB
�
� /
�
;

M2 D .T1S2nB
�
� /[B

2�
2� .C/

ı�
x 2 B

2�
2� .C/ n

xB
�
�

�
�
�
F.x/ 2 ..B

2�
2� \T1S2/ n

xB
�
� /
�
;

and

N D .…
�1.Vr;ı/ nB

�
� /[B

2�
2� .�/

ı
x � F.x/;(6-26)

with x 2 B2�2� .�/ n xB
�
� and F.x/ 2 ..B2�2� \T1S1/ n xB

�
� /.

Remark It is not hard to see that

M D M1[M2
ı
.x 2 @M1/� . zF .x/ 2 @M2/:

Here zF is a Dehn twist which coincides with .sCf .w/;w/ for w2 Œ�2�; 2�� and is the
identity elsewhere. This picture of M is closer to the one in the paper [25] and shows
that M is a graph manifold (a graph manifold is one whose JSJ decomposition consists
of Seifert S1 bundles). By using this description of M and applying van Kampen’s
theorem to analyse the fundamental group of M , Handel and Thurston show that, for q
not belonging to a finite subset of Z, no finite cover of M is a Seifert manifold, thus
obtaining that M is an “exotic” graph manifold.

From their definition, one sees that as manifolds, M1 Š T1S1 and M2 Š T1S2 . This
implies that @M1 and @M2 are incompressible tori in M1 and M2 , respectively. If we
look at M1 and M2 as submanifolds of M , their boundary T coincides and is also
incompressible in M . We remark that Mi nN is diffeomorphic to T1Si n…�1.Vc;ı/,
which is diffeomorphic to T1Si for i D 1; 2.

In a similar way, we can describe the topology of N . Let Ni DMi \N . Reasoning
identically as one does to show that Mi is diffeomorphic to T1Si , one shows that Ni
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is diffeomorphic to a thickened two torus T 2 � Œ�1; 1�. As N is obtained from N1
and N2 by gluing them along T (which is a boundary component of both of them),
we have that N is also diffeomorphic to the product T 2 � Œ�1; 1�.

The discussion above proves the following:

Lemma 12 For all Mp 2 zB , the trajectory f�tX�FH
. Mp/ j t 2 Rg intersects M1 nN and

M2 nN .

Proof We have already established that for Mp 2 zB , its trajectory intersects WC for
some nonnegative time and W� for some nonpositive time, as shown in (6-21) and
(6-22). One now applies (6-24) and (6-25) to finish the proof of the lemma.

Notice that trajectories can only enter in zB through the wall W� , which is contained
in M1 , and can only exit zB through the wall WC , which is contained in M2 . We
also point out that all trajectories of the flow �tX�FH

are transversal to T , with the
exception of the two Reeb orbits which correspond to parametrizations of the hyperbolic
geodesic r (they continue to exist as periodic orbits after the surgery because they are
out of the surgery region).

We will deduce, from the previous discussion, the following important lemma.

Lemma 13 Let .Œ0; T 0�/ be a trajectory of X�FH such that .0/; .T 0/ 2 T and for
all t 2 .0; T 0/ we have .t/ … T (notice that in such a situation, .Œ0; T 0�/�Mi for
i D 1 or i D 2). Then .Œ0; T 0�/\ .Mi nN/ is nonempty.

Proof We divide the proof in 3 possible scenarios.

Case 1 Suppose that .Œ0; T 0�/\ zB is empty. In this case, .Œ0; T 0�/ is a hyperbolic
geodesic with endpoints on the closed geodesic r. It follows from the convexity of
the hyperbolic metric that Œ.Œ0; T 0�/� 2 �1.T1Si ;T / is nontrivial. This implies that
Œ.Œ0; T 0�/� 2 �1.Mi ;T / is nontrivial, which can be true only if .Œ0; T 0�/\ .Mi nN/

is nonempty since N is a tubular neighbourhood of T .

Case 2 Suppose that .Œ0; T 0�/\ zB is nonempty and .Œ0; T 0�/�M2 . Take Ot 2 Œ0; T 0�
such that .Ot /2 zB . We know from our previous discussion that there are Ot1� Ot� Ot2 such
that .ŒOt1; Ot2�/� zB , .Ot1/ 2 .T \ zB/ and .Ot2/ 2WC ; notice that in the coordinates
.t; s; w/ for zB considered previously, T\ zB is the annulus f0g�S1�.�2�; 2�/. From
this picture, it is clear that for t smaller that Ot1 , the trajectory enters M1 . Therefore,
we must have Ot1 D 0 and .Œ0; Ot2�/ � zB . Notice also that for all t slightly bigger
than Ot2 , the trajectory is outside zB . Because trajectories of X�FH can only enter zB
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in M1 , we obtain that .ŒOt2; T 0�/ does not intersect the interior of zB and, therefore,
is a hyperbolic geodesic in T1S2 . Now, using (6-7) and (6-8), we obtain that, because
.Ot2/ 2WC , the trajectory  W ŒOt2; T 0�!M2 has to intersect M2 nN before hitting T
at t D T 0 . Thus there is some t 2 .Ot2; T 0/ for which .t/ 2M2 nN .

Case 3 The proof in the case where .Œ0; T 0�/\ zB is nonempty and .Œ0; T 0�/�M1

is analogous to the one of case 2.

These three cases exhaust all possibilities and, therefore, prove the lemma.

Our reason for introducing the above decomposition of M into M1 and M2 , and for
proving the lemmas above, is to introduce the following representation of Reeb orbits
of �FH . Let .; T / be a Reeb orbit of �FH which intersects both M1 nN and M2 nN .
We can assume that the chosen parametrization of  is such that .0/ 2 @N , and that
there are tC > 0 and t� < 0 such that

.tC/ 2M1 nN and .Œ0; tC�/ 2M1[N;(6-27)

.t�/ 2M2 nN and .Œt�; 0�/ 2M2[N:(6-28)

This means that in an interval of the origin,  is coming from M2 nN and going to
M1 nN . It follows from Lemma 13 that there exists a unique sequence 0D t0 < t1=2 <
t1 < t3=2 < � � �< tn D T such that for all k 2 f0; : : : ; n� 1g,

� .Œtk; tkC.1=2/�/�Mi for i D 1 or i D 2,

� .ŒtkC.1=2/; tkC1�/ 2 N and there is a unique ztk 2 ŒtkC.1=2/; tkC1� such that
.ztk/ 2 T ,

� if .Œtk; tkC.1=2/�/�Mi , then .ŒtkC1; tkC.3=2/�/�Mj for j ¤ i .

Notice that .Œt0; t1=2�/ � M1 and .Œtn�1; tn�.1=2/�/ � M2 . This implies that n
is even, so we can write n D 2n0 , and that .Œtk; tkC.1=2/�/ � M1 for k even and
.Œtk; tkC.1=2/�/ � M2 for k odd. For each k 2 f0; : : : ; 2n0 � 1g, the existence of
the unique ztk in the interval ŒtkC.1=2/; tkC1� for which .ztk/ 2 T is guaranteed by
Lemma 13 and the fact that T is the hypersurface that separates M1 and M2 .

In order to obtain information on the free homotopy class of .; T /, we observe
that .Œtk; tkC.1=2/�/ coincides with a hyperbolic geodesic segment in T1Si start-
ing and ending in Vr;ı . Therefore, as we have previously seen, the homotopy class
Œ.Œtk; tkC.1=2/�/� in �1.T1Si ; Vr;ı/ is nontrivial, which implies that .Œtk; tkC.1=2/�/
is a nontrivial relative homotopy class in �1.Mi ; N /. We consider now the curve
.Œztk; ztkC1�/: it is the concatenation of 3 curves, the first and the third ones being
completely contained in N and the middle one being .Œtk; tkC.1=2/�/. From this
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description and the fact that .Œtk; tkC.1=2/�/ is a nontrivial relative homotopy class
in �1.Mi ; N / it is clear that .Œztk; ztkC1�/ is also nontrivial in �1.Mi ; N / (and also
nontrivial in �1.Mi ;T /).

We now denote by �M the universal cover of M and y� W �M !M the covering map.
From the incompressibility of T , it follows that every lift of T is an embedded plane
in �M . We denote by zN 0 a lift of N . Because N is a thickened neighbourhood of
an incompressible torus, it follows that zN 0 is diffeomorphic to R2 � Œ�1; 1�, ie it is
a thickened neighbourhood of an embedded plane in �M . Because N separates M
into two components, it follows that zN 0 separates �M into two connected components.
Now, @ zN 0 is the union of two embedded planes, P 0� and P 0

C
, which are characterized

by the fact that there are neighbourhoods V� and VC of P 0� and P 0
C

, respectively, such
that y�.V�/�M1 and y�.VC/�M2 . We will denote by C 0� the connected component
of �M n zN 0 which intersects V� , and by C 0

C
the connected component of �M n zN 0

which intersects VC .

As seen earlier, Œ.Œtk; tkC.1=2/�/� is a nontrivial relative homotopy class in �1.Mi ; N /.
We show that this class remains nontrivial when seen in �1.M;N /. Let Ti D @N \Mi .
Because N is obtained by attaching over each point of Ti a small compact interval
(ie it is a bundle over Ti whose fibres are intervals), it follows that Œ.Œtk; tkC.1=2/�/�
is trivial in �1.Mi ;Ti / if and only if it is trivial in �1.Mi ; N /, which is not the case.
As Ti is isotopic to T , it is also an incompressible torus that divides M into two
components. Now, Œ.Œtk; tkC.1=2/�/� is trivial in �1..Mi n int.N //;Ti / if and only
if there exists a curve c in Ti , with endpoints .tk/ and .tkC.1=2//, such that the
concatenation  � c is contractible in Mi n int.N /. Because of the incompressibility
of Ti , such a curve  � c is contractible in Mi n int.N / if and only if it is contractible
in M . This implies that Œ.Œtk; tkC.1=2/�/� is trivial in �1.M;Ti / if and only if it
is trivial in �1..Mi n int.N //;Ti /, which we know not to be the case. Lastly, again
because N is an interval bundle over Ti , it is clear that as Œ.Œtk; tkC.1=2/�/� is not
trivial in �1.M;Ti /, it cannot be trivial in �1.M;N /, as we wished to show.

Let z be a lift of  such that z.0/2 zN 0 . We know that z.Œt2n0�.1=2/�T; t1=2�/� zN 0 .
It will be useful to define the sequence

(6-29) zti D qiT C tri ;

where qi and ri < 2n0 are the unique integers such that i D qi .2n0/C ri . To zti we
associate the lift zN i of N which is determined by the property that z.zti / 2 zN i . It is
clear that the sequence zN i contains all lifts of N which are intersected by the curve
z.R/. For the lifts zN i , we define the connected components C i� and C i

C
of �M n zN i ,

and the planes P i� and P i
C

in the same way as for zN 0 . A priori it could be that, for
i ¤ j , we have zN i D zN j . We will show that this cannot happen.
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Firstly, zN 0 ¤ zN 1 because .Œzt0; zt1�/ is nontrivial in �1.M;N /. Also, we have that
zN 1 � C 0� because .Œt0; t1=2�/�M1 . The same reasoning shows that zN 2 ¤ zN 1 and

(6-30) zN 2
� C 1C:

On the other hand, we have that zN 0 � C 1� , because z.Œzt0; t1=2�/ is a path totally
contained in �M n zN 1 connecting zN 0 and P 1� . As zN 2 � C 1

C
and zN 0 � C 1� , we must

have zN 2 ¤ zN 0 . In the same way, one shows that zN 3 ¤ zN 1 and, more generally, that
zN iC2 ¤ zN i and zN iC1 ¤ zN i . Now for zN 3 , we have that zN 3 � C 2� . As z.Œzt0; t3=2�/

is a path completely contained in �M n zN 2 connecting zN 0 and P 2
C

, we obtain that
zN 0 � C 2

C
and, therefore, zN 3 ¤ zN 0 .

Proceeding inductively along this line, one obtains that zN i ¤ zN 0 for all i ¤ 0 and,
more generally, zN i ¤ zN j for all i ¤ j . As a consequence, we obtain that the curve
z.R/ cannot be homeomorphic to a circle, and therefore, .R/ cannot be contractible.
We are ready for the main result of this subsection.

Proposition 14 �FH is hypertight.

Proof There are two possibilities for Reeb orbits.

Possibility 1 The Reeb orbit  visits both M1 nN and M2 nN . In this case, we have
just showed that  is not contractible.

Possibility 2 The Reeb orbit  is completely contained in Mi for i D 1 or i D 2.
In this case,  does not visit the surgery region zB . Therefore, it also existed before
the surgery as a closed hyperbolic geodesic in Mi n zB D T1Si nB

3�
2� . Such a closed

geodesic is noncontractible in T1Si , which is diffeomorphic to Mi . Thus  �Mi is
noncontractible in Mi .

Now looking at Mi as a submanifold with boundary of M , we recall that @Mi is an
incompressible torus in M . This implies that every noncontractible closed curve in Mi

remains noncontractible in M . Therefore,  is also a noncontractible Reeb orbit in
this case.

6.2.1 Exponential homotopical growth of cylindrical contact homology for �FH
We now obtain more information on the properties of periodic orbits of X�FH .

Lemma 15 If a Reeb orbit .; T / of �f visits both M1 nN and M2 nN , then any
curve freely homotopic to .; T / must intersect T .

Proof As we saw earlier, the lift z intersects all the elements of the sequence zNi (of
lifts of N ), which satisfy zNi ¤ zNj for all i ¤ j .
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Introducing an auxiliary distance d on the compact manifold M (coming from a
Riemannian metric), we obtain an auxiliary distance zd on �M by pulling d back by
the covering map. It is clear that for i sufficiently large, the zd–distance between zN˙i
and zN0 becomes arbitrarily large. As a consequence, one obtains that for each K > 0,
there exists tK > 0 such that zd.z.˙tK/; zN0/ > K .

Now let �W Œ0; T �!M be a closed curve freely homotopic to .Œ0; T �/. A homotopy
H W Œ0; T �� Œ0; 1�!M generates a homotopy zH W R� Œ0; 1�! �M from a lift z to
a lift z� . Using the fact that H is uniformly continuous, one sees that there exists a
constant C> 0 such that zd. zH.ftg � Œ0; 1�/; z.t// < C for all t 2R.

Now take K > 2C. Using the inequalities

zd.. zH.ftg � Œ0; 1�//; z.t// < C; zd.z.˙tK/; zN0/ > K;

and the triangle inequality, we obtain that H.ftKg � Œ0; 1�/ is always in the connected
component of z.tK/. This implies that z�.R/ visits both connected components of�M n zN0 and must thus intersect zN0 . Even more, because z�.R/ intersects both compo-
nents of @ zN0 , we have that � visits both components of M nN and, therefore, has to
intersect T . This completes the proof of the lemma.

We are now ready for the main result of this section:

Theorem 16 Let .M; �.q;r// be the contact manifold obtained from performing the
Foulon–Hasselblat q–surgery on the Legendrian curve Lr � .T1S; �geo/, and denote
by �FH the contact form on .M; �.q;r// obtained from this surgery. Then �FH is
hypertight, and its cylindrical contact homology has exponential homotopical growth.
It follows that every Reeb flow on .M; �.q;r// has positive topological entropy.

Proof It suffices to show that the cylindrical contact homology of �FH has exponential
homotopical growth, since this combined with Theorem 1 establishes the last assertion
of the theorem.

Step 1 (a special class of Reeb orbits) We will obtain our estimate by looking at Reeb
orbits which are completely contained in the component M1 . As we saw previously,
such orbits never cross the surgery region zB . Thus they are in a region where �FH

coincides with �g , and such Reeb orbits are closed geodesics in .S1; g/. Conversely,
every closed geodesic in .S1; g/ does not cross the region B3�2� and thus is a Reeb orbit
of �FH . This gives a bijective correspondence between closed geodesics of .S1; g/
which are not homotopic to a multiple of @S1 and Reeb orbits of �FH which are
contained in M1 .
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Let ƒ.S1/ denote the set of free homotopy classes of curves in S1 which are not covers
of Œ@S1�. We know that each � 2ƒ.S1/ contains exactly one closed geodesic c� . The
canonical lift � of c� to T1S1 is a Reeb orbit of �g . As we saw above, each � can
also be seen as a Reeb orbit of �FH . Because of the negative curvature of g we know
that the geodesic c� is hyperbolic. This implies that � is a nondegenerate Reeb orbit
of �g , and as �FH coincides with �g on a neighbourhood of � , we conclude that �
is also nondegenerate when viewed as a Reeb orbit of �FH .

We will denote by ƒ.S1/�T the set of primitive of free homotopy classes in ƒ.S1/
whose unique closed geodesic has period smaller or equal to T . Because g is hyperbolic,
it is a well known fact that there exist constants a > 0 and b such that #.ƒ.S1/�T /�
eaTCb. The map ‚W ƒ.S1/! ƒ.T1S1/ (where ƒ.T1S1/ is the free loop space of
T1S1 ) associating with c� the Reeb orbit � in T1S1 is easily seen to be injective.
Because T1S1 is diffeomorphic to M1 , we can also view ‚.ƒ.S1// as a subset of the
free loop space ƒ.M1/ of M1 .

Step 2 Let i W M1!M be the injection. As seen before, the boundary @.i.M1//DT
is an incompressible torus in M . We consider the induced map of free loop spaces
i�W ƒ.M1/! ƒ.M/. As a consequence of the incompressibility of @.i.M1//, the
restriction of i� to ‚.ƒ.S1// is injective.

To see this, it suffices to show the following claim: if � and �0 are curves in M1

which cannot be isotoped to a curve in @M1 and which are in the same free homotopy
class in M , then � and �0 are freely homotopic in M1 . For � and �0 satisfying the
hypothesis of our claim, there is a cylinder cyl in M , whose boundary components
are � and �0 , which intersects @M1 transversely. Then cyl intersects @M1 in a finite
collection of curves fwng which are all contractible in M ; the contractibility of these
curves is due to the fact that both � and �0 cannot be isotoped to a curve contained
in @M1 . The incompressibility of @M1 implies that these fwng are all contractible
in @M1 . Now we cut the discs in cyl whose boundary are the curves wn and substitute
them by discs contained in @M1 . This produces a cylinder cyl0 completely contained
in M1 whose boundaries are � and �0 . This implies that � and �0 are already in the
same free homotopy class in M1 , as we wished to show.

From step 1, we know that for each � 2 i�.‚.ƒ.S1///, there is a Reeb orbit � in � .

Step 3 We will show that for each � 2 i�.‚.ƒ.S1///, the Reeb orbit � considered
in step 1 is the unique Reeb orbit of �FH in � .

Let  be a Reeb orbit in � . If it is contained in M1 , we know that  is a closed
geodesic in .S1; g/. Using an argument as in step 2, it is easy to show that  and �
are freely homotopic in M1 and, therefore, also in T1S1 . Projecting to S1 , we obtain
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that  and � are lifts of geodesics of .S1; g/ in the same free homotopy class of S1 .
But for each free homotopy class of S1 , there is a unique closed geodesic of .S1; g/;
this implies that  D � .

Step 3 will now follow if we prove the following:

Claim Every Reeb orbit of �FH in � is completely contained in M1 .

Proof of the claim If  was contained in M2 , then it would be possible to isotope
� to a curve contained in @M1 . This is impossible by the definition of ƒ.S1/.

The only remaining possibility is that  visits both M1 and M2 . In this case, it has
to visit both M1 nN and M2 nN (indeed, if  is completely contained in Mi [N ,
convexity of the hyperbolic metric implies that  is in Mi ). We then know from
Lemma 15 that every curve which is freely homotopic to  has to intersect the torus T .
But � , which is freely homotopic to  , does not intersect T . This contradiction rules
out the possibility that  visits both M1 and M2 , and establishes the claim.

Step 4 From the previous steps, we know that for each � 2 i�.‚.ƒ.S1///, there
exists a unique nondegenerate5 Reeb orbit � 2 � . Hence for such � , the cylindrical
contact homology CH�

cyl.�FH/ is well-defined, and for Euler characteristic reasons,
CH�

cyl.�FH/¤ 0.

Let � 2 i�.‚.ƒ.S1/�T //. Then as we showed in the previous steps, the unique Reeb
orbit of �FH in � has action at most T , and CH�

cyl.�FH/¤ 0. This implies that

(6-31) N
cyl
T .�FH/� #.i�.‚.ƒ.S1/�T ///:

As i� restricted to ‚.ƒ.S1/�T // is injective, and ‚ is injective, we conclude that

(6-32) #.i�.‚.ƒ.S1/�T ///D #.ƒ.S1/�T /� eaTCb:

Combining formulas (6-31) and (6-32), we obtain

(6-33) N
cyl
T .�FH/� e

aTCb:

7 Conclusion

The works of Katok [32; 33] and of Lima and Sarig [35] imply that if � is a smooth
flow on a 3–manifold, generated by a nonvanishing vector field, then � has positive
topological entropy if and only if there exists a Smale “horseshoe” as a subsystem of

5Recall that we established in step 1 that � is nondegenerate.

Geometry & Topology, Volume 20 (2016)



Cylindrical contact homology and topological entropy 3565

the flow. For a flow, a “horseshoe” is a compact invariant set where the dynamics is
conjugate to that of the suspension of a shift map. In particular, the number of hyperbolic
periodic orbits on a “horseshoe” of a 3–dimensional flow � grows exponentially with
respect to the period. We remark that the result obtained in the recent work of Lima
and Sarig [35] is stronger: they show that there exists a compact invariant set K of �
where the dynamics is nonuniformly hyperbolic and such that htop.�K/D htop.�/.6

As a consequence, for the contact 3–manifolds .M; �/ considered in Theorems 9
and 16, we have that for every Reeb flow on .M; �/, the number of hyperbolic Reeb
orbits grows exponentially with the action. This can be summarized by saying that all
Reeb flows on these contact manifolds posses a “complicated” orbit structure which is
forced to exist by the “complicated” contact topology of these contact manifolds.

An interesting property of the entropy estimate used in this paper, and also in [3]
and [36], is that it gives estimates on the growth of the number of hyperbolic Reeb
orbits for degenerate contact forms as well. This kind of information is not obtainable
just by studying the growth rate of contact homology.

It is known that the consequences of positivity of topological entropy in higher di-
mensions are not as strong as in the low-dimensional case. In particular, positive
topological entropy for a flow in dimension greater than 3 does not imply the existence
of a “horseshoe” in the flow. It is, however, natural to ask the following question.

Question 1 In dimension greater than or equal to 5, does exponential homotopical
growth of periodic orbits for a Reeb flow imply the existence of a compact invariant
set where the dynamics is conjugate to a shift?

In another direction, one would like to know if it is possible to obtain more dynamical in-
formation about the Reeb flows on the contact manifolds covered by Theorems 9 and 16.

Question 2 Let .M; �/ be a manifold satisfying the hypothesis of Theorem 9 or 16,
and let � be a contact form on .M; �/. Is it true that for the Reeb flow �X� , there
exists an invariant region of positive measure (with respect to the measure �^ d�) on
which the dynamics of the Reeb flow is ergodic?

One important property of many of the contact 3–manifolds covered in Theorem 9
is that they have positive Giroux torsion. By a theorem of Gay [23] (see also [41]),

6We remark that in [32], Katok proves analogous results for diffeomorphisms on surfaces and only
states the results for flows on 3–manifolds in [33]. To the best of our knowledge, the complete proofs of
all the results mentioned above for 3–dimensional flows with positive topological entropy only appeared
in [35], which builds on the ideas of [32; 33].
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manifolds with positive Giroux torsion are not strongly fillable. This implies that many
of the contact manifolds satisfying the claims of Theorem 9 are not strongly fillable
and therefore different from the unit tangent bundles studied in [36], which are fillable.
It would be interesting to know if such examples also exist in higher dimensions.

Question 3 Are there examples of nonsymplectically fillable contact manifolds, with
dimension at least 5, on which every Reeb flow has positive topological entropy? Are
there examples, in dimension at least 5, of manifolds which admit infinitely many
different contact structures such that, on all of them, every Reeb flow has positive
topological entropy?

We remark also that in Theorem 9, we showed the existence of 3–manifolds with
hyperbolic components which can be given infinitely many different contact structures
whose Reeb flows always have positive topological entropy. From the perspective of
3–dimensional topology, it would be interesting to have examples of contact structures
on hyperbolic 3–manifolds on which every Reeb flow has positive topological entropy.

Question 4 Are there examples of contact structures on closed hyperbolic 3–manifolds
on which every Reeb flow has positive topological entropy?7 Are there hyperbolic
3–manifolds which admit multiple nondiffeomorphic contact structures, on which every
Reeb flow has positive topological entropy?

Lastly we mention that the techniques used in this paper, and in [3], can also be used
in combination with the ideas of Momin [37] to establish chaotic behaviour of Reeb
flows on .S3; �tight/ when these Reeb flows have a special link as a Reeb orbit. This
and similar results will appear in [5].
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