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A 1–parameter family of spherical CR uniformizations
of the figure eight knot complement

MARTIN DERAUX

We describe a simple fundamental domain for the holonomy group of the boundary
unipotent spherical CR uniformization of the figure eight knot complement, and
deduce that small deformations of that holonomy group (such that the boundary
holonomy remains parabolic) also give a uniformization of the figure eight knot
complement. Finally, we construct an explicit 1–parameter family of deformations
of the boundary unipotent holonomy group such that the boundary holonomy is twist-
parabolic. For small values of the twist of these parabolic elements, this produces a
1–parameter family of pairwise nonconjugate spherical CR uniformizations of the
figure eight knot complement.

22E40, 32V05, 57M50

1 Introduction

The existence of a complete hyperbolic structure on a 3–manifold has important
topological consequences. For instance, this gives a definition of the volume of a
knot (when a knot admits a complete hyperbolic structure, that structure is unique by
Mostow rigidity, so the volume of that metric is a well-defined invariant).

In this paper, we focus on another kind of geometric structures on 3–manifolds, namely
structures modeled on the boundary of a symmetric space X of negative curvature
(transition maps are required to be locally given by isometries of X ). The visual
boundary @1X is then a 3–dimensional sphere if X DH 4

R or H 2
C .

The first case gives rise to the theory of flat conformal structures, and the second one to
the theory spherical CR structures. In the first case, one considers the unit ball model
of H 4

R , so the visual boundary is S3 �R4 , and the group of isometries of H 4
R acts as

Möbius transformations (ie transformations that map spheres into spheres, of possibly
infinite radius). Alternatively, one can use stereographic projection and think of S3 as
R3[f1g; this would also correspond to using the upper half plane model for H 3

R .

In the second case, using the ball model B2 �C2 , one can identify @1H 2
C with the

unit sphere S3 �C2 . The action on the boundary is best understood in stereographic
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projection, and identifying S3 n fp1g ' R3 ' C �R with the Heisenberg group.
Isometries of H 2

C fixing p1 then act as automorphisms of the Heisenberg group.
Of course, the Heisenberg group acting on itself by left translations gives many
automorphisms (which correspond to the action of unipotent matrices in U.2; 1/),
and one gets the full automorphism group by adjoining a rotation in C �R around
the R factor, and a scaling of the form .z; t/ 7! .�z; �2t/ (which corresponds to a
loxodromic isometry); see Section 3B.

Even though a lot of partial results have been obtained (see Kamishima and Tsuboi
[18], and Goldman [13], for instance), the classification of 3–manifolds that admit a
spherical CR structure is far from understood. When a manifold admits a spherical CR
structure, the moduli space of such structures is also quite mysterious.

In this paper, we will be interested in a special kind of spherical CR structures, namely
spherical CR uniformizations (in the literature, these are sometimes called complete
spherical CR structures). These are characterized by the fact that the developing map
of the structure is a diffeomorphism onto its image, which is an open set in S3 . In that
case, the holonomy group is a discrete subgroup � � PU.2; 1/, and the image of the
developing map is the domain of discontinuity �� of � (ie the largest open set where
the action is proper). The quotient � n�� is called the manifold at infinity of � .

The classification of 3–manifolds that admit a spherical CR uniformization is also an
open problem. Recall that H 2

C is homogeneous under the action of PU.2; 1/, and the
isotropy group of a point is isomorphic to U.2/. In particular, finite subgroups of U.2/

such that nontrivial elements fix only the origin (in other words the groups should not
contain any complex reflection) yield spherical CR uniformizable 3–manifolds with
finite fundamental group.

In a similar vein, quotients of the Heisenberg group yield Nil manifolds that trivially
admit a spherical CR uniformization such that the holonomy group has a global fixed
point, which is now in @1H 2

C instead of H 2
C .

It is also natural to consider stabilizers of totally geodesic subspaces in H 2
C , namely

copies of H 2
R or H 1

C . In that setting, Fuchsian groups (ie discrete subgroups of
SO.2; 1/ or SU.1; 1/, seen as subgroups of SU.2; 1/) produce as their manifold at
infinity a circle bundle over a surface (or more generally over a 2–orbifold). This class
is more interesting than the previous one, because it is known that the corresponding
groups often admit deformations (but not always: see Toledo [29]). We will summarize
the results in this well developed line of research by saying simply that many Seifert
3–manifolds admit spherical CR uniformizations; see Goldman and Kapovich [15],
Anan’in, Grossi and Gusevskii [1], Parker and Platis [20], Will [30] and others.
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The class of hyperbolic manifolds that admit a spherical CR uniformization is also far
from being understood. In a number of beautiful results that appeared in the last decade,
Schwartz [25; 27; 28] discovered that many hyperbolic manifolds admit spherical
CR uniformizations. His starting point was to consider representations of triangle
groups into PU.2; 1/ (see Schwartz [26]), and to determine the manifold at infinity of
well-chosen such representations.

More recently, the figure eight knot complement was shown to admit a spherical CR
uniformization by the author and Falbel [7] through a somewhat different strategy,
namely, it was found as a byproduct of Falbel’s program for finding representations of
fundamental groups of triangulated 3–manifolds into PU.2; 1/ (see Falbel [9]), or in
PGL.3;C/ (see Bergeron, Falbel and Guilloux [3]).

Falbel’s construction turned out to produce lots of representations, and in fact, so many
that the geometric properties of the resulting representations are, in general, difficult to
analyze. In order to make the list more tractable (and also for other reasons related to
the study of Bloch groups), the search is often restricted to representations such that
peripheral subgroups are mapped to unipotent matrices (matrices with 1 as their only
eigenvalue). The boundary unipotent representations for noncompact 3–manifolds
with low complexity (ie those that can be built by gluing up to three ideal tetrahedra)
are listed in Falbel, Koseleff and Rouillier [11], and the geometry of some of these
representations are analyzed in [7] and by the author in [6]. It turns out very few
representations in that list are discrete.

It is quite clear, however, that the unipotent restriction is somewhat artificial. Part of
the point of the present paper is to show that, at least in some cases, there are many
boundary parabolic representations that are not unipotent, and that these representations
carry just as much interesting geometric information about the 3–manifold.

Let M denote the figure eight knot complement. The main goal of this paper is to
show that M admits a 1–parameter family of pairwise nonconjugate spherical CR
uniformizations.

We will build on the fact that M admits a unique spherical CR uniformization with
unipotent boundary holonomy, as was shown in [7]. For future reference, we will refer
to that structure simply as the boundary unipotent uniformization of M (see the precise
uniqueness statement in [7]), and we denote the corresponding holonomy representation
by � . In view of Schwartz’s spherical CR Dehn surgery theorem [28], one expects that
small deformations of the boundary unipotent holonomy representation should still be
discrete, and they should have a manifold at infinity given by some Dehn filling of the
figure eight knot complement.
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In order to turn this into a proof, one could try and prove that the boundary unipotent
representation satisfies the hypotheses of Schwartz’s theorem, ie that its image is a
horotube group (without exceptional parabolic elements), and that its limit set is porous.
If that works, then it is enough to show that the group admits deformations, and to
study the type of the deformed unipotent element; Schwartz’s surgery formula shows,
in particular, that (under some technical assumptions) if there are deformations where
the unipotent peripheral holonomy stays parabolic, then the manifold at infinity should
not change at all in small deformations.

Although a few examples of noncompact hyperbolic manifolds are known to admit
spherical CR uniformizations (see [25; 27; 7]), the deformation theory of the holonomy
representations of these examples is still quite mysterious. In particular, there are only
two examples where nontrivial deformations are known to exist such that peripheral
elements map to parabolic elements. These two examples are the figure eight knot
complement and the Whitehead link complement. The results announced by Parker and
Will [21] say that there are at least two different spherical CR uniformizations of the
Whitehead link complement, and that there is a 1–parameter family of representations
interpolating between their holonomy representations.

Our first result gives an explicit construction of twist-parabolic deformations.

Theorem 1.1 There is a continuous 1–parameter family of irreducible representations
�t W �1.M /!PU.2; 1/, such that �t , for each t , maps peripheral subgroups of M onto
a cyclic group generated by a single parabolic element with eigenvalues eit ; eit ; e�2it .

Given the eigenvalue condition, it should be clear that the representations �t are
pairwise nonconjugate. We will choose �t so that �0 is the holonomy of the boundary
unipotent spherical CR uniformization.

Note that the existence of such parabolic deformations was independently discovered by
Pierre–Vincent Koseleff, using a variant of the method devised by Falbel to parametrize
boundary unipotent representations of 3–manifolds; see [9; 3; 11], for instance. An
alternative parametrization of this family can also be obtained from the description of
the full character variety; see Falbel, Guilloux, Koseleff, Rouillier and Thistlethwaite
[10], and also Heusener, Muñoz and Porti [17].

We will use a more naïve construction, which is closer in spirit to the parametrization
of the character variety of the figure eight knot group (or more generally 2–bridge knot
groups) into PSL2.C/ by Riley [23].

Our main result is the following.
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Theorem 1.2 There exists a ı > 0 such that for jt j < ı , �t is the holonomy of a
spherical CR uniformization of the figure eight knot complement.

In order to show this, we will study the Ford domain for the image of �0 , and we
will show that it is generic enough for its combinatorics to be preserved under small
deformations of �0 . Note that this argument turns out to fail for the Ford domain of
the holonomy of the spherical CR uniformization of the Whitehead link complement
announced by Parker and Will in [21]. Indeed, their Ford domain has the same local
combinatorial structure as the Dirichlet domain described in [7], and in particular, it
has lots of tangent spinal spheres.

It will be clear to the reader familiar with the notion of horotubes [28] that the Ford
domain exhibits an explicit horotube structure for the group, but since our construction
of horotubes is actually very close to proving Theorem 1.2, we will give a detailed
argument that does not quote Schwartz’s result. Of course, in many places, our proof
parallels some of the intermediate results in [28].

We will not attempt to give an explicit allowable range of parameters t in Theorem 1.2,
although it would certainly be interesting to do so (and also to try and make this
range optimal).

The bulk of the work will be to describe the Ford domain for the holonomy group of
the unipotent uniformization of M , and to study in detail the generic character of the
intersection of its sides, along facets of all dimensions. The genericity that we will
prove is genericity at infinity, namely, we will show that each ideal vertex in the Ford
domain lies on precisely three sides that intersect transversely at that point. For finite
vertices, no genericity is to be expected, since the group is known to contain elliptic
elements of orders 3 and 4; see [7]. In fact, all the deformations we consider will
preserve the conjugacy classes of these elliptic elements, and we will show that they
do not affect the nongeneric character of the fundamental domains at these points:

Proposition 1.3 The image of �t is a triangle group. More specifically, for all t ,
we have

�t .g2/
4
D �t .g1g2/

3
D �t .g2g1g2/

3
D id :
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2 The real hyperbolic Ford domain

Throughout this section, we denote by M the figure eight knot complement. We review
the description of a cusp neighborhood for M . This is probably familiar to most
readers, but the details will be used in the identification of the manifold at infinity of our
complex hyperbolic groups. Moreover, quite remarkably, the local combinatorics of the
real hyperbolic Ford domain turn out to be exactly the same as the local combinatorics
of our fundamental domain for the action of the group on the domain of discontinuity.

Recall that the fundamental group �1.M / has a presentation of the form

hg1;g2;g3 j g2 D Œg3;g
�1
1 �; g1g2 D g2g3 i;

with peripheral subgroup generated by g�1
3

and g1.g1g2/
�1g3g2g�1

3
.

From this, one can find all type-preserving representations of �1.M / up to conjugation,
as in [22]. Indeed, the generators g1 and g3 should be parabolic elements in SL2.C/,
which we denote by G1 and G3 . We may assume G1 (resp. G3 ) fixes 0 (resp. 1),
and since all parabolic elements are conjugate, we may also assume

G1 D

�
1 0

�! 1

�
and G3 D

�
1 1

0 1

�
for some ! 2C . The relation G1ŒG3;G

�1
1
�D ŒG3;G

�1
1
�G3 in PSL2.C/ is easily seen

to imply !2C!C 1, so we may take

! D
�1Ci

p
3

2
:

The stabilizer of 1 in PSL2.ZŒ!�/ is clearly given by translations by Eisenstein
integers, but the stabilizer in the group generated by G1 and G3 is slightly smaller, it
can be checked to be generated by translations by 1 and 2i

p
3; see [22] for more details.

Recall that the Ford isometric sphere of an element�
a b

c d

�
is bounded by the circle jczCd j D 1. The Ford domain turns out to be the intersection
of the exteriors of all spheres of radius 1 centered at Eisenstein integers. A schematic
picture is shown in Figure 1, where the sides corresponding to G˙1

1
are shaded in the

same color, so the corresponding 2–faces get identified by the corresponding isometries,
and similarly for G˙1

2
D ŒG3;G

�1
1
�˙1 . The complete description of identifications

on bottom face of the prism is given in Figure 2, and there are also identifications on
the vertical sides of the prism, which are simply given by translations whenever these
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Figure 1: A fundamental domain for the action of � is an infinite chimney
over the union of four hexagons, each hexagon living in a unit hemisphere
around the appropriate Eisenstein integer.

Figure 2: Bottom of the prism (spine of the figure eight knot complement)

sides are parallel. Note that these identifications are described in [22]; using current
computer technology, they can also be found using the pictures produced by SnapPy.

3 Basic complex hyperbolic geometry

In this section, we review some basic material about the complex hyperbolic plane.
The reader can find more details in [14].

Recall that C2;1 denotes C3 equipped with a Hermitian form of signature .2; 1/. The
standard such form is given by hV;W i D V1

SW3CV2
SW2CV3

SW1 DW �JV , where

J D

0@0 0 1

0 1 0

1 0 0

1A :
Geometry & Topology, Volume 20 (2016)
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We denote by U.2; 1/ the subgroup of GL.3;C/ that preserves that Hermitian form,
and by PU.2; 1/ the same group modulo scalar matrices. It is sometimes convenient to
work with SU.2; 1/, which is a 3–fold cover of PU.2; 1/.

The complex hyperbolic plane H 2
C is the set of negative complex lines in C2;1, equipped

with a Kähler metric that is invariant under the action of PU.2; 1/. Such a metric is
unique up to scaling, and it turns out to have constant holomorphic sectional curvature
(which one can choose to be �1).

It is well known that the maximal totally geodesic submanifolds of H 2
C are copies

of H 1
C (with curvature �1) and copies of H 2

R (with curvature �1=4).

3A Bisectors

The corresponding distance function is given by

cosh2 1
2
d.z; w/D

jhZ;W ij2

hZ;ZihW;W i
;

where Z (resp. W ) denotes a representative of z (resp. w ). Given two distinct points
p; q 2 H 2

C , the locus B.p; q/ of points that are equidistant of p and q is called a
bisector. Beware that isometries switching p and q do not fix the corresponding
bisector pointwise, and in fact bisectors are not totally geodesic. The copies of H 1

C
(resp. H 2

R ) in B.p; q/ are called its complex (resp. real) slices. All real slices intersect
along the same real geodesic, called the real spine of the bisector; see [14].

Every bisector in H 2
C is diffeomorphic to the unit ball in R3 in such a way that the

vertical axis is the real spine, complex slices are horizontal disks, and real slices are
disks in vertical planes containing the vertical axis. One way to do this explicitly
for the bisector B.p; q/ is to scale q by a complex number of modulus one so that
hp; qi is real and negative. Then an orthogonal basis for C2;1 is given by v0 D pC q ,
v1Dp�q , v2D v0 �v1 (� denotes the Hermitian cross product; see page 43 of [14]).
Of course, this basis can be made Lorentz orthonormal by scaling its vectors so that
hv0; v0i D �1, hv1; v1i D 1 and hv2; v2i D 1. The bisector then can be parametrized
by .z; t/ 2C �R by taking vectors of the form

v0C i tv1C zv2:

Given a set S �H 2
C , we write B.S/ for the locus equidistant of all point in S , which

can be thought of as an intersection of bisectors.

The intersection of two bisectors is usually not totally geodesic, but it can be in some
rare instances. When p , q and r are not in a common complex line (ie when lifts of
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these vectors are linearly independent), the locus B.p; q; r/ of points equidistant of
p , q and r is a smooth disk that is not totally geodesic, and is often called a Giraud
disk; see [12]. The following property is crucial when studying fundamental domains;
see [12; 14].

Theorem 3.1 If p , q and r are not in a common complex line, then B.p; q; r/ is
contained in precisely three bisectors, namely B.p; q/, B.q; r/ and B.q; r/.

Note that checking whether an isometry maps a Giraud disk to another is equivalent to
checking that the corresponding triple of points are mapped to each other.

In order to study Giraud disks, we will use spinal coordinates. The complex slices of
B.p; q/ are given explicitly by choosing a lift zp (resp. zq ) of p (resp. q ).

When p; q 2H 2
C , we simply choose lifts such that h zp; zp i D hzq; zq i. In this paper, we

will mainly use these parametrizations when p; q 2 @1H 2
C . In that case, the condition

h zp; zp i D hzq; zq i is vacuous, since all lifts are null vectors; we then choose some fixed
lift zp for the center of the Ford domain, and we take zq DG zp for some G 2 U.2; 1/.
If a different matrix G0 D SG , with S a scalar matrix, note that the diagonal element
of S is a unit complex number, so zq is well defined up to a unit complex number.

The complex slices of B.p; q/ are obtained as (the set of negative lines in) .xz zp�zq /? for
some arc of values of z2S1 , which is determined by requiring that hxz zp�zq;xz zp�zq i>0.

Since a point of the bisector is on precisely one complex slice, we can parametrize
B.p; q; r/ by .z1; z2/ 2 S1 �S1 via

(1) V .z1; z2/D .xz1p� q/� .xz2p� r/D q � r C z1r � pC z2p � q:

The Giraud disk corresponds to the .z1; z2/ 2 S1�S1 with hV .z1; z2/;V .z1; z2/i< 0

(it follows from the fact that the bisectors are covertical that this region is a topological
disk, but this is not obvious; see Chapters 8 and 9 in [14]).

The boundary at infinity @1B.p; q; r/ is a circle, given in spinal coordinates by
the equation

(2) hV .z1; z2/;V .z1; z2/i D 0:

Note that the choice of two lifts of q and r affects the spinal coordinates by rotation
on each of the S1 factors.

A defining equation for the trace of another bisector B.a; b/ on the Giraud disk
B.p; q; r/ can be written in the form

(3) jhV .z1; z2/; aij D jhV .z1; z2/; bij;
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provided that a and b are suitably chosen lifts. The expressions hV .z1; z2/; ai and
hV .z1; z2/; bi are affine in z1 , z2 .

These triple bisector intersections can be parametrized fairly explicitly, because one
can solve the equation jhV .z1; z2/; aij

2 D jhV .z1; z2/; bij
2 for one of the variables z1

or z2 simply by solving a quadratic equation. A detailed explanation of how this works
can be found in Section 2.3 of [7]; we will also review this in Section 5C3.

Note that our parameters also give a parametrization of the intersection in P2
C of the

extors extending the bisectors; see Chapter 8 of [14]. The Giraud disk is a disk in the
intersection of the extors, which is a torus.

3B The Siegel domain and the Heisenberg group

The complex analogue of the upper half space model for H n
R is the Siegel domain,

which is obtained by sending the line spanned by .1; 0; 0/ to infinity. We denote the
corresponding point of @1H 2

C by p1 .

More precisely, we take affine coordinates z1 D Z1=Z3 and z2 D Z2=Z3 , and a
negative complex line has a unique representative of the form z D .z1; z2; 1/ with

z�Jz D 2Re.z1/Cjz2j
2 < 0:

Since we are interested in geometric structures modeled on @1H 2
C , we will use mainly

the boundary of the Siegel domain, which is given by points z D .z1; z2; 1/ with
2Re.z1/C jz2j

2 D 0. It is best understood in terms of Heisenberg geometry, as we
now briefly recall.

A large part of the stabilizer of the point at infinity is given by unipotent upper triangular
matrices. One easily checks that such a matrix preserves the Hermitian form J if and
only if it can be written as 0@1 �xa

p
2 �jaj2Cis

0 1 a
p

2

0 0 1

1A
for some .a; s/ 2C �R. Since these upper triangular matrices form a group, we get a
group law on C �R, given by

(4) .a; s/� .a0; s0/D .aC a0; sC s0C 2 Im.axa0//:

This is the so-called Heisenberg group law.

The action of the unipotent stabilizer of p1 is simply transitive on @1H 2
C �fp1g,

so we will often identify the latter with C �R.
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The boundary at infinity of totally geodesic subspaces can be seen in somewhat simple
terms in C �R. The boundary of a copy of H 1

C (which is the intersection of an affine
line in C2 with the Siegel half space) is called a C–circle. These are ellipses that
project to circles in C (or possibly vertical lines, if they go through p1 ).

The boundary of copies of H 2
R (which are images under arbitrary isometries of the set

of real points in the Siegel half space) intersect the boundary at infinity in a so-called
R–circle. In the Heisenberg group, these are curves that project to lemniscates in C
(or possibly straight lines when they go through p1 ). For more on this, see Chapter 4
of [14], for instance.

The full stabilizer of p1 is generated by the above unipotent group, together with the
isometries of the forms 0@1 0 0

0 ei� 0

0 0 1

1A and

0@� 0 0

0 1 0

0 0 1=�

1A ;
where �; � 2R and �¤ 0. The first acts on Heisenberg as a rotation with vertical axis:

.a; s/ 7! .ei�a; s/;

whereas the second one acts as

.a; s/ 7! .�a; �2s/:

There is a natural invariant metric on the Heisenberg group, called the Cygan metric,
given by d.g;g0/D kg�1g0k, and the norm of an element of the Heisenberg group is
given by

(5) k.z; t/k D
ˇ̌
jzj2C i t

ˇ̌1=2
:

The Cygan sphere with center .z0; t0/ and radius r has equation

(6)
ˇ̌
jz� z0j

2
C i.t � t0C 2 Im.zxz0//

ˇ̌
D r2:

3C Ford domains and the Poincaré polyhedron theorem

Let � be a subgroup of PU.2; 1/, let q 2 @1H 2
C and let Q denote a lift of q in C2;1 .

Definition 3.2 The Ford domain for � centered at q is the set F�;q of points z 2H 2
C

such that
jhZ;Qij � jhZ;G.Q/ij;

where G is a matrix representative of some element g 2 � .
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The inequality is actually independent of the lift G 2 U.2; 1/ chosen for g 2 PU.2; 1/.
For a given g 2 � and lift G 2 U.2; 1/, we denote by Bg the bisector given in
homogeneous coordinates by

(7) jhZ;Qij D jhZ;G.Q/ij:

For concreteness, we mention that the boundary at infinity of Bg can be described as a
Cygan sphere in the Heisenberg group; see Section 3B. The Cygan sphere corresponding
to an element G has radius

p
2=jg31j (note that G fixes p1 if and only if g31 D 0)

and center .xg32=xg31; 2 Im.xg33=xg31/; see (6).

We let bg D Bg \F ; ie bg is the side of F that lies on the bisector Bg , and we refer
to it as the side corresponding to the group element g . For a general g 2 � , it may
be that bg has dimension smaller than 3 (in fact, it is often empty). A bisector of the
form Bg such that bg has dimension three will be called a bounding bisector.

The basic fact is that if q has trivial stabilizer in � , then F D F�;q is a fundamental
domain for its action. However, it is customary to take q to have a nontrivial stabilizer
H � � , in which case F is only a fundamental domain modulo the action of H . In
other words, in that case, F is a fundamental domain for the decomposition of � into
cosets of H .

It is usually very hard to determine F explicitly; in order to prove that a given polyhe-
dron is equal to F , the main tool is the Poincaré polyhedron theorem. The basic idea
is that the sides of F should be paired by isometries, and the images of F under these
so-called side-pairing maps should give a local tiling of H 2

C . If they do (and if the
quotient of F by the identifications given by the side-pairing maps is complete), then the
Poincaré polyhedron theorem implies that the images of F actually give a global tiling.

Once a fundamental domain is obtained, one gets an explicit presentation of � in terms
of the generators given by the side-pairing maps together with a generating set for the
stabilizer H , the relations corresponding to so-called ridge cycles (which correspond
to the local tiling near each codimension-two face).

For more details on this theorem, see [7; 8; 19].

4 A boundary parabolic family of representations

In this section, we parametrize a neighborhood of the unipotent solution in the character
variety �.�1.M /;PU.2; 1//. We will use the presentation

hg1;g2;g3 j g1g2 D g2g3; g2 D Œg3;g
�1
1 �i:
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In order to describe representations, we seek to parametrize triples G1;G2;G3 of
matrices in SU.2; 1/ that satisfy the same relations as g1 , g2 , g3 (possibly up to
multiplication by a scalar matrix, since we are really after representations in PU.2; 1/).

If the fixed points of G1 and G3 are distinct, we may assume

(8) G1 D

0@� a b

0 x�2 c

0 0 �

1A and G3 D

0@� 0 0

f x�2 0

e d �

1A ;
where j�j D 1.

Note that the representation considered in [7] is obtained by taking

�D 1; aD d D 1; c D f D�1; b D xe D�
1Ci
p

7

2

in (8).

The fact that G1 and G3 are isometries of the form J implies

(9)
�

c D�xax�; jd j2Cxe�C ex�D 0;

f D�xd x�; jaj2C xb�C bx�D 0:

We then compute the commutator G2D ŒG3;G
�1
1
� and consider the system of equations

given by RD 0, where

(10) RDG1G2�G2G3:

Note that this already restricts the character variety, since we only consider representa-
tions into U.2; 1/ rather than PU.2; 1/, but this is fine if we are after a neighborhood
of the boundary unipotent solution, where the relation (10) holds in U.2; 1/.

The .1; 1/–entry of R is given by

(11) .jaj2e� jd j2b/.1Cxad ��3
�x�3/:

The first factor does not vanish for the boundary unipotent solution, so in its component
we must have

(12) 1Cxad D �3
Cx�3:

Note that by conjugation by a diagonal matrix with diagonal entries k1; k2; k3 , we
can assume that a 2R (and we can also impose that jbj is given by any positive real
number). Then (12) implies that d is real as well, so from this point on we assume

a; d 2R:
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The .2; 2/–entry of R can then be written as

�.jaj2e� jd j2b/.a2ex�4
C a2d2x�3

� ad C bex�5
� 1C bd2x�4/;

so we get the expression

(13) a2ex�4
C a2d2x�3

� ad C bex�5
� 1C bd2x�4:

Using the relations (9) and (12), we have that (13) can be rewritten as

(14) be�D �3
Cx�3:

As mentioned above, by conjugation by a diagonal matrix, we can adjust jbj, for
instance, so that

jbj2 D �3
Cx�3;

and in that case, (14) implies
jej2 D jbj2:

We will now show that, given �, the following system has precisely two solutions:

(15)

8̂̂̂̂
<̂̂
ˆ̂̂̂:

a2
C xb�C bx�D 0;

d2
Cxe�C ex�D 0;

1C ad D �3
Cx�3;

eb�D �3
Cx�3;

jbj2 D �3
Cx�3:

In order to do that, note that the first four imply

bxeC xbe D 1� 2.�3
Cx�3/;

and the last two imply
e D xbx�:

Putting these two together, we get

(16) Re.b2�/D 1
2
� 2�;

where we have written

(17) � D .�3
Cx�3/=2:

The equation Re.z/D 1
2
� 2� has a solution with jzj D 2� if and only if

2� � 1
2
� 2�;

and in that case one gets a simple formula for the solutions (intersect a vertical line
with the circle of radius j2�j centered at the origin).
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We get that (16) has solutions if and only if � � 1
8

, and the solutions are given by

(18) b2�D 1
2
� 2�˙ i

q
1
2

�
4� � 1

2

�
:

This determines b up to its sign, opposite values clearly giving conjugate groups (they
differ by conjugation by a diagonal matrix). The two values also yield isomorphic
groups, obtained from each other by complex conjugation.

We will choose the solution to match the notation for the unipotent solution given in [7],
which corresponds to �D 1, aD d D 1, b D�1

2
.1C i

p
7/ and e D�1

2
.1� i

p
7/.

As a consequence, we take

b D�
1Ci
p

8��1

2
p
�

;

where we take the square root to vary continuously near �D 1.

The system (15) then gives values for the other parameters, namely

e D 2�=b�D�
1�i
p

8��1

2
p
�

;

and one easily writes explicit formulas for a and d (once again, these are determined
only up to sign, but changing a to �a can be effected by conjugation by a diagonal
matrix). The formulas are

aD

q
.4�2�3/�C

p
8��1.4�2�1/�; d D

q
.4�2�3/��

p
8��1.4�2�1/�;

where we have written
p
�D �C i� with �, � real. In terms of this new parameter,

the condition � > 1
8

translates into

� > cos
�

1
3

arctan
p

7
3

�
D 0:9711209254 : : : :

In fact, in order to get a and d to be real, we also need

.4�2
� 3/��

p
8� � 1.4�2

� 1/� � 0;

which translates into � � cos.�=18/. The value � D cos.�=18/ corresponds to a
situation where d D 0.
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4A Triangle group relations

The following matrices can be computed explicitly:

G2 D

0@ 1C�3 ax�� xbd .eC b/x�

ab� dx�2 ��3 0

.eC b/x� 0 0

1A ;
G1G2 D

0@ � a.1��3/� ed�2 .eC b/

�x�2.aeC dx�2/ �� 0

.eC b/ 0 0

1A ;
G2

1G2 D

0@ x� ��3.a�C ed/ .eC b/�

�2.abC d�/ �x� 0

.eC b/� 0 0

1A :
In particular,

tr.G2/D 1; tr.G1G2/D 0; tr.G2G1G2/D 0;

or in other words,

G4
2 D id; .G1G2/

3
D id; .G2

1G2/
3
D id :

The last two relations imply that

.G2G1G2/
3
D id :

Proposition 4.1 Throughout the twist parabolic deformation, we have G1G2DG2G3 ,
G2 D ŒG3;G

�1
1
�, G4

2
D id, .G1G2/

3 D id, .G2G1G2/
3 D id.

4B Fixed points of elliptic elements

Note also that for each of the three matrices G2 , G1G2 and G2
1
G2 , the negative

eigenvector is the one with eigenvalue 1 (indeed, this is true for the unipotent solution,
so it holds throughout the corresponding component of the character variety).

For future reference, we give explicit formulas for these fixed points:

p2 D
�
1C�3; ab� dx�2; .x�C�2/.eC b/

�
;

p12 D
�
1C�;�x�2.aeC dx�2/; .1Cx�/.eC b/

�
;

p112 D
�
1Cx�; �2.abC dx�/; .x�Cx�2/.eC b/

�
:

Lemma 4.2 Throughout the deformation, p2 is on six bounding bisectors, correspond-
ing to the following group elements (written in word notation; see Section 5 ):

2; 2; 3; 12; 12; 13:
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Proof The statement about G˙1
2

is obvious since p2 is fixed by G2 . The other four
statements all follow from

(19) d.p2;p0/D d.p2; .G2G1/
�1p0/:

Indeed,

d.p2; .G2G1/
�1p0/D d.p2;G

�1
2 G�1

1 G�1
2 p0/D d.p2;G1G2p0/;

where we have used G1p0 D p0 and .G1G2/
3 D id. Similarly, using G1G2 DG2G3 ,

we get

d.p2;G1G2p0/D d.p2;G
�1
2 G1G2p0/D d.p2;G3p0/:

Finally, using G2 D ŒG3;G
�1
1
� we get

d.p2;G3p0/D d.p2;G
�1
2 G3p0/D d.p2;G

�1
1 G3p0/:

In order to prove (19), we compute

G�1
1 G�1

2 p0 D .xbCxe /�.xb; a; x�/;

and we observe j.xbCxe /�j D 1, so we need only check

jhp2;p0ij D jhp2;X ij;

where X D .xb; a; x�/. Now

jhp2;p0ij
2
D j.�Cx�2/.xeC xb/j2 D j1C�3

j
2
D 2C�3

Cx�3;

and

hp2;X i D x�.2��
3
�x�3

� b2�/;

and so,

jhp2;X ij
2
D 2C�3

Cx�3:

Lemma 4.3 Through the deformation, p121DG�1
1

p2 stays on six bounding bisectors,
corresponding to the following group elements (using the word notation introduced in
the next section):

2; 12; 12; 13; 112; 113:

Proof The statement follows from Lemma 4.2 by conjugation by G�1
1

(which by
definition fixes p0 ).
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5 Combinatorics of the Ford domain in the unipotent case

In this section, we denote by � the image of �0 . It is generated by the matrices

G1 D

0@1 1 1
2
.�1�

p
7i/

0 1 �1

0 0 1

1A ; G3 D

0@ 1 0 0

�1 1 0
1
2
.�1C

p
7i/ 1 1

1A :
One then sets

G2 D ŒG3;G
�1
1 �:

We will often use word notation in the generating set G1 , G2 , G3 , using bars to denote
inverses. For instance, 2313 denotes G2G3G�1

1
G3 .

We consider the Ford domain centered at the fixed point of G1 , which is p1 in the
notation of Section 3C, and work in the Siegel half space. We let P denote hG1i,
and F the corresponding Ford domain. We wish to prove that F is a fundamental
domain for the action of the cosets of P in � .

We let S denote fG2;G
�1
2
;G3;G

�1
3
g, and SP the set of all conjugates of elements

of S by powers of G1 . We consider the partial Ford domain D defined in homogeneous
coordinates Z by the inequalities

jhZ;Qij � jhZ;G.Q/ij

for all G 2 SP . Clearly F �D , but we mean to prove:

Theorem 5.1 F DD .

The key steps in the proof of Theorem 5.1 will be the following:

� Determine the combinatorics of D .

� Show that the elements in SP define side-pairing maps for D .

� Verify the hypotheses of the Poincaré polyhedron theorem.

5A Statement of the combinatorics

Clearly D is G1 –invariant, so it is enough to describe the combinatorics of the sides
corresponding to g2S , ie gDG2;G3;G

�1
2
;G�1

3
. We will call the corresponding four

sides b1 , b2 , b3 and b4 , respectively, and refer to them as core sides; the corresponding
bisectors will be denoted by B1 , B2 , B3 and B4 . The spinal spheres at infinity of these
four bisectors will be denoted by S1 , S2 , S3 , S4 .
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3
p2

131

121

121

p121

p1212

12212

121

12312

p213

13313 131
p2

121

3

121

p323

p3232

12212

3

121

p233

131

Figure 3: The combinatorics of the face corresponding to G2 (left) and
G�1

2
(right); all 2–faces are labeled, except for the boundary at infinity,

which is a disk bounded by the most exterior curve (shown in red). We also
label the finite vertices, namely, for w 2 � , we let pw denote the isolated
fixed point of the group element corresponding to the word w (1 D G1 ,
2DG2 , 3DG3 , 1DG�1

1
, etc).

We will sometimes index other sides than the four basic sides just described, mostly
when describing computations that would unreasonable to perform by hand. We will
order them by concatenating sets of four conjugates of the base group elements 2; 2; 3; 3

by different powers of G1 , powers being arranged by increasing values of the absolute
values of the exponent (positive powers first). The words corresponding to the first 20

bisectors are given by

2; 2; 3; 3; 121; 121; 131; 131; 121; 121; 131; 131;

12212; 12212; 12312; 12312; 12212; 12212; 12312; 12312:

For example, B5DG1.B1/ is the bisector corresponding to G1G2G�1
1

(or equivalently
for G1G2 , since G1 fixes the center of our Ford domain), B10DG�1

1
.B2/ is the bisector

for G�1
1

G�1
2

G1 .

We describe their combinatorics in the form of pictures; see Figures 3 and 4. Each
picture is drawn in projection from a picture where the bisector is identified with the
unit ball in R3 ; see Section 3A. Concretely, we use spinal coordinates on 2–faces and
parametrize 1–faces by solving equations of the form (3) for one of the variables.
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p2

2

131

121

2

131

121

p121

p323

131

121

12212

2

13213

131

p132

Figure 4: The combinatorics of the face corresponding to G3 (left) and G�1
3 (right)

We also give a list of vertices on the core sides and a list of the bounding bisectors that
each vertex lies on; see Tables 1 and 2.

5B Effective local finiteness

The goal of this section is to show that a given face of the Ford domain intersects
only finitely many faces. Since the domain is G1 –invariant by construction, we start
by normalizing G1 in a convenient form. We will work in the Siegel half space; see
Section 3B.

A natural set of coordinates is obtained by arranging that G2
2

maps p1 to the origin
in the Heisenberg group. There is a unique Heisenberg translation that achieves this,
given by

QD

0@1 1
4
.3� i

p
7/ �

1
2

0 1 1
4
.�3� i

p
7/

0 0 1

1A :
One then gets

QG1Q�1
D

0@1 1 �1
2

0 1 �1

0 0 1

1A and QG2
2Q�1

D

0@ 0 0 �1
2

0 �1 0

�2 0 0

1A :
Of course, one could make the last matrix even simpler by composing with a loxo-
dromic element.
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Word Bounding bisectors Indices

2 2; 2; 3; 121; 121; 131 1; 2; 3; 5; 10; 11

121 2; 121; 121; 131; 12212; 12312 1; 9; 10; 11; 18; 19

213 2; 121; 12212; 12312; 13213; 13313 1; 9; 18; 20; 26; 28

1212 2; 121; 121; 131; 12212; 12312 1; 5; 10; 12; 18; 20

Table 1: Finite vertices on the face for G2 . For each vertex v , we give a
word w for an element that fixes precisely v , and we list the words for the
bounding bisectors that contain v .

Word Bounding bisectors Indices

2 2; 2; 3; 121; 121; 131 1; 2; 3; 5; 10; 11

323 2; 3; 121; 121; 131; 12212 2; 4; 5; 10; 12; 13

233 2; 3; 121; 131; 12212; 13213 2; 4; 6; 8; 13; 21

3232 2; 3; 121; 121; 131; 12212 2; 3; 5; 6; 7; 13

Table 2: Finite vertices on the face for G�1
2

We let Aj denote QGj Q�1 . We then have

A2.1/D .˛; 0/; A2
2.1/D .0; 0/; A�1

2 .1/D .�˛; 0/;

where ˛ D .3C i
p

7/=.4
p

2/. Also,

A3.1/D

�
�

1

2
p

2
;�

p
7

8

�
; A�1

3 .1/D

�
�

1
p

2
;

p
7

2

�
:

The spinal sphere with center .0; 0/ and radius r has equation

(20) .x2
Cy2/2C t2

D r4;

so we get a spinal sphere centered at .aC ib;u/ by translation:

(21)
�
.x� a/2C .y � b/2

�2
C .t �u� ay � bx/2 D r4:

By writing out (7), squaring both sides and identifying with (21), one checks that
the spheres S1 and S2 have radius 1, whereas S3 and S4 have radius 2�1=4 . We
summarize this information in Table 3.

The action of A1 on the Heisenberg group is given by

(22) .z; t/ 7! .z� 1; t C Im.z//;
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Sphere Center Radius

S1

�
3C i
p

7

4
p

2
; 0

�
1

S2

�
�

3C i
p

7

4
p

2
; 0

�
1

S3

�
�

1

2
p

2
;�

p
7

8

�
2�1=4

S4

�
�

1
p

2
;

p
7

2

�
2�1=4

Table 3: Centers and radii of core spinal spheres

and in particular, we get the following:

Proposition 5.2 The element A1 preserves every R–circle of the form .x; 0; t0/ with
x 2R.

Recall that R–circles are, by definition, given by the trace at infinity of totally geodesic
copies of H 2

R in H 2
C . The corresponding real planes in H 2

C are preserved by A1 , and
their union is the so-called invariant fan of A1 ; see [16].

Among all these R–circles, the x axis is somewhat special because of the following:

Proposition 5.3 The R–plane bounded by the x axis contains the fixed point of G2 .

Indeed, the fixed point of A2 is given by

V D
�
�

1
2
; 0; 1

�
;

and for W D .�x2C i t;x
p

2; 1/, we have

hV;p1ihp1;W ihW;V i D �1
2
.1Cx2/C i t;

which is real if and only if t D 0.

Note that (22) shows that for any two bisectors B1 and B2 not containing p1 , we have
Gk

1
B1\B2D∅ whenever k is large enough. Indeed, it follows from the detailed study

of bisector intersection in [14] that, if two bisectors intersect, then the corresponding
spinal spheres must intersect.

Moreover, this claim can easily be made effective; ie one can get explicit bounds on how
large k needs to be for the above intersection to be empty. If Sj D @1Bj is contained
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in a strip j̨ � x � ǰ , one can simply take k > ˇ2 � ˛1 or k < ˛2 �ˇ2 . Note that
bounds j̨ ; ǰ can be computed fairly easily from the equations of the relevant spinal
spheres (see the Table 3 giving the centers and radii). In particular, we get:

Proposition 5.4 The intersections of the spheres listed below are nonempty only if k

lies in the corresponding interval:

Intersection Interval Intersection Interval

S1\Gk
1
S1 �2� k � 2 S1\Gk

1
S2 �4� k � 1

S1\Gk
1
S3 �3� k � 1 S1\Gk

1
S4 �4� k � 0

S2\Gk
1
S2 �2� k � 2 S2\Gk

1
S3 �2� k � 2

S2\Gk
1
S4 �2� k � 2 S3\Gk

1
S3 �2� k � 2

S3\Gk
1
S4 �2� k � 1 S4\Gk

1
S4 �2� k � 2

This is not an optimal result, since it takes into account only the variable x and the
fact that G1 translates by one unit in the direction of the x axis. The optimal result is
not far from this though; the point of Proposition 5.4 is to get down to a finite list of
bounding bisectors intersecting a given one (so that we can use effective computational
tools). We will give much more precise information in the next section.

5C Proof of the combinatorics

The techniques we use in order to justify the combinatorics are very similar to the ones
explained in detail in [7; 8]. Note that one can think of justifying the combinatorics
as a special case of finding the connected components of (many) semialgebraic sets.
Indeed, F is clearly semialgebraic, defined by inequalities indexed by I DN :

F D fz 2C2
W fi.z/ < 0 for all i 2 Ig:

For convenience, we make the convention that f0.z/ < 0 is the defining inequality for
the unit ball; in other words,

f0.z/D hzz; zz i;

where zz D .z; 1/. In particular, we consider the boundary at infinity of complex
hyperbolic space as a bounding face. All other inequalities have the form fj < 0, where

fj .z/D jhzz; zp0ij
2
� jhzz; j zp0ij

2:

The facets are of F described by taking some subset J �I and replacing the inequalities
indexed by elements of J by the corresponding equality:

FJ D fz 2C2
W fj .z/D 0 for all j 2 J and fi.z/ < 0 for all i 2 I nJ g:
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The fact that I is infinite will not be a problem because of the results in Section 5B,
which imply that our polytope is locally finite.

More generally, we will consider sets of the form

FJ ;K D fz 2C2
W fj .z/D 0 for all j 2 J and fi.z/ < 0 for all i 2Kg;

where J and K are disjoint. In particular, FJ is the same as FJ ;InJ , and FJ ;∅ is the
jJ j–fold bisector intersection containing FJ .

5C1 Terminology and specification The facets of our polytopes that have dimen-
sion k will be called k –faces. Moreover, 3–faces will be simply called sides, 2–faces
will be called ridges, 1–faces will be called edges, and 0–faces will be called vertices.

In terms of computations, it will be important to encode vertices. These can be of two
kinds, namely, they can be of the form FA;∅ for some A with jAj D 4, or they can be
singular points of FB;∅ with jBj D 3. In both cases, they can be obtained by solving
a 0–dimensional system (this is the content of Assumption 5.5). For each of them, we
encode the vertex by storing a rational univariate representation for the corresponding
solution set, and an isolating interval specifying a root of the rational parameter; see
Section 5C3.

Note that in the above description, the set A is not unique since a vertex may, in
general, lie on more than four bisectors (see the discussion in Section 4B, where we saw
examples of vertices lying on at least six bounding bisectors). Moreover, in general,
one cannot take A to be just any 4–tuple of bisectors that contain that vertex, since
some intersections may not be generic.

We will also need to encode 1–faces. There are two kinds of 1–faces, namely, those
that lie in triple bisector intersections (we call these finite 1–faces), and those that lie
in the intersection of the sphere at infinity @1H 2

C with the closure in H 2
C of a bisector

intersection (we call these ideal 1–faces, or 1–faces at infinity). Computationally, we
make no distinction between these two kinds of 1–faces, since both kinds are given in
terms of spinal coordinates for a bisector intersection by an equation that is quadratic
in both variables.

We use the term arc to mean a subset in H 2
C of a triple bisector intersection (or a subset

of the trace at infinity of a double bisector intersection) such that

� it is homeomorphic to a closed interval,

� it is parametrized by one of the spinal coordinates, and

� its endpoints are vertices of the polytope, but its interior contains no vertex of
the polytope.
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Note that a 1–face can always be described as a union of finitely many arcs (but one
arc may not suffice: think of a polytope that has a whole Giraud disk as a facet, so that
the boundary of that Giraud disk is a 1–face homeomorphic to a circle).

We now expand a little on how to parametrize (pieces of) 1–faces by a single coordinate
(we discuss only parametrization by t1 , as the other one is entirely similar). Recall from
Section 3A that the relevant defining functions h.t1; t2/ for triple bisector intersections
(or trace at infinity of double bisector intersections) have degree at most two in each
variable, so we can write them as

a2.t1/t
2
2 C a1.t1/t2C a0.t1/;

with aj at most quadratic. With respect to projection onto the first coordinate axis, the
curve usually has two branches, given by

t2 D
�a1.t1/˙

p
�.t1/

2a2.t1/
;

where
�.t1/D a1.t1/

2
� 4a2.t1/a0.t1/:

Specifically, this occurs above intervals of t1 such that a2.t1/ does not vanish. Above
such an interval, the “top branch” is obtained by taking C

p
� when a2.t1/ > 0, and

�
p
� when a2.t1/ > 0. We call the other branch the “bottom branch”.

If a2 is identically zero, then the curve is either empty or consists of a single vertical
line (so branches above the t1 axes are undefined, and there is a single branch with
respect to the projection onto the t2 axis).

If a2 is not identically zero, it vanishes at one or two points, and above each of these
points, one can check whether the curve contains one, two or infinitely many points
(one needs to determine whether a1 , a0 also vanish at these points).

5C2 General procedure The pictures in Section 5A include the statement that each
facet is topologically (in fact, piecewise smoothly) a disk with piecewise smooth
boundary (with pieces of the boundary corresponding to facets of codimension one
higher). This is not at all obvious; one of the difficulties is the fact that the sets FJ

are not connected in general, in strong contrast with Dirichlet or Ford domains in the
context of constant curvature geometries; see the discussion in [5].

For given J and K , there is an algorithm to decide whether FJ ;K is empty or not, and
furthermore, one can list its connected components (and even produce triangulations).
One possible approach to this is the cylindrical algebraic decomposition of semialgebraic
sets; see [2], for instance.
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The main issue when using such algorithms is that the number of semialgebraic sets
to study is extremely large. If F has N faces, in principle, one has to deal with

�
N
k

�
potential facets of codimension k , where k D 1; 2; 3; 4, which is a fairly large number
of cylindrical decompositions. Rather, we will bypass the cylindrical decomposition and
use as much geometric information as we can in order to restrict the number of verifica-
tions. Also, rather than using affine coordinates in C2 , we use natural parametrizations
for bisector intersections, deduced from spinal coordinates; see Section 3A.

Going back to geometry, the inequality defining complex hyperbolic space in C2

(which corresponds to f0 ) is, of course, a bit different from the other inequalities. In
particular, when using the notation FJ ;K , we will always assume one of the index
sets J or K contains 0.

If K contains 0, then by definition, FJ ;K is contained in H 2
C ; we will denote by yFJ ;K

its extension to projective space, namely,

yFJ ;K D FJ ;Knf0g:

We will also refer to the following set as the trace at infinity of FJ ;K :

@1FJ ;K D FJ[f0g;Knf0g:

By xFJ ;K , we mean the set obtained from the definition of FJ ;K by replacing < by �:

xFJ ;K D fz 2C2
W fj .z/D 0 for all j 2 J and fi.z/� 0 for all i 2Kg;

which is also
xFJ ;K D

[
L�K

FJ[L;KnL:

Note that, in general, this is not the closure of FJ ;K in C2 .

We focus on an algorithm for determining the combinatorics of ridges, or in other
words, facets of the form FJ with jJ j D 2. In most cases, we will also assume 0 =2 J ;
ie we study finite facets rather than faces in @1H 2

C . The algorithm will produce a
description of the facets in @FJ , so we get a list of the 1– and 0–faces along the way.
The 3–faces are easily deduced from the 2–faces.

The basis for our analysis is the following, which follows from the theory of Gröbner
bases (see [4], for instance, and also Section 5C3 of the present paper). Let ` be a
number field.

� There is an algorithm to determine whether a system of n polynomial equations
defined over ` in n unknowns is 0–dimensional (ie whether there are only
finitely many solutions in Cn ).
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� If the system is indeed 0–dimensional, there is an algorithm to determine the list
of solutions; their entries lie in a finite extension k � `. One can also determine
the list of rational/real solutions.

� Polynomials with coefficients in ` can be evaluated at the solutions of a point
with coordinates in k , and one can determine whether the value is positive (or
negative or zero).

When such systems have solution sets with unexpectedly high dimension, there is
usually a geometric explanation (typically some of the intersecting bisectors share a
slice; see [8], for instance). We will not address this issue since it never occurs in the
situation of the present paper.

In all situations we will consider here, the field ` will be a quadratic number field, and
the extension k will have degree at most four over `. This makes all computations
very quick (using capabilities of recent computers, and standard implementations of
Gröbner bases).

For the rest of the discussion, we make the following assumptions.

Assumption 5.5 (1) For every L� I with jLj D 4, the dimension of FL is zero.

(2) For every J � I with jJ j D 2, and every x 2 I with x =2 J , the restriction gx

of fx to FJ ;∅ has nondegenerate critical points.

These assumptions are by no means necessary in order to determine the combinatorial
structure of FJ ;K , but they will simplify the discussion in several places. Note also
that they can be checked efficiently using a computer; in particular, we state

Proposition 5.6 Let M be the figure eight knot complement. Then the Ford domain
of the irreducible boundary unipotent representation �W �1.M /! PU.2; 1/, centered
at the fixed point of the holonomy of any peripheral subgroup, satisfies Assumption 5.5.

In contrast, the domains that appear in [8] do not satisfy these hypotheses.

The combinatorial description of FJ (ie its connected components and the list of facets
adjacent to it) can be obtained by starting from a description of FJ ;∅ and repeatedly
studying FJ ;K[fxg from FJ ;K , where x 2 I is not in J [K . The latter inductive
step is done as follows.

The boundary @FJ ;K can be described as a union of arcs contained in FJ[fkg;Knfkg

for some k 2 K . For computational purposes, we will always assume that an arc
is homeomorphic to a closed interval, that its endpoints are vertices, but none of its
interior points are vertices.
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Note also that the arcs may not be equal to FJ[fkg;Knfkg , since FJ[fxg;∅ may have a
double point.

For each arc a in @FJ ;K as above, we study the set

FJ[fk;xg;

which, by Assumption 5.5(1), is obtained by solving a 0–dimensional system. Keeping
only solutions that lie in a, we get a subdivision of a into connected components of
anFJ[fk;xg , and for each such component, we check whether or not it is in FJ[fkg;fxg .
If so, it is a component of the boundary of FJ ;K[fxg .

We then compute the critical points of the restriction to FJ of fx (this can be done
because of Assumption 5.5(2)) and determine whether any such critical point is in-
side FJ ;K .

Suppose c is in a component CJ ;K of FJ ;K .

� If gx.c/D0 and c is a saddle point for the restriction gx of fx , then a neighborhood
of c in xFJ ;K[fxg is the union of two sectors meeting in their apex. FJ ;K[fxg will
have four boundary arcs in a neighborhood of c . Each such arc will either connect c

to another saddle point of gx , or it will connect it to a vertex in the boundary of CJ ;K .
For each such arc, we take a sample point to check whether it is contained in FJ[fxg;K .

� If gx.c/ ¤ 0, there could be an isolated component of FJ[fxg;K that winds
around c . In order to determine whether this happens or not, we consider the slice
t1 D ˛1 , and intersect it with gx D 0. Recall that this intersection contains either 0, 1

or 2 points (because it is obtained by solving an equation that has degree at most two,
which is not identically zero because gx.c/¤ 0). Then there is an isolated component
if and only if the intersection consists of precisely two points, and the two intersection
points lie in the same connected component of FJ ;K .

Now collecting the boundary arcs with the inside arcs (joining two points that are
either saddle or boundary vertices in FJ\fk;xg ), we get a stratum decomposition
for FJ ;K[fxg .

Moreover, if we make the following assumption, then all components of FJ ;K[fxg are
topological disks, since their boundary consists of a single component.

Assumption 5.7 (3) The curves FJ[fxg;K have no isolated components in FJ ;K .

Once again, in the special case of the Ford domain relevant to the irreducible boundary
unipotent rank one, it turns out this hypothesis is satisfied.
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5C3 Rational univariate representation We briefly recall what we need about
rational univariate representations; for details on this technique, see [24]. Recall that
given a 0–dimensional polynomial system

(23)
�
f .t1; t2/D 0;

g.t1; t2/D 0;

with coefficients in the number field `, we can write it as a polynomial system with
rational coefficients by using a primitive element for `; the corresponding system
has one more variable (which we denote by s ), and one more equation (which is the
minimal polynomial of a primitive generator for `). We write it in the form

(24)

8<:
zf .t1; t2; s/D 0;

zg.t1; t2; s/D 0;

m.s/D 0;

where zf is obtained from f by expressing its coefficients as polynomials in the
primitive element for `. In the cases that interest us, ` will be a totally real number
field, which we assume from now on.

In this discussion, we consider systems of two equations in two variables (so we get
three equations in three variables, counting the extra variable corresponding to the
primitive element of the number field), but we could also allow systems that have more
equations than the number of variables (the important point is that the ideal generated
by the equations should be 0–dimensional).

Now the key point is that there exists a 1–variable polynomial r such that the solutions
are parametrized as rational functions of the roots of r . More specifically, there exist
polynomials r , p0 , p1 , p2 and q with integer coefficients such that the solutions of
the system can be written in the form

(25) s D p0.u/=q.u/; t1 D p1.u/=q.u/; t2 D p2.u/=q.u/;

and the latter formula gives a solution of (24) if and only if u is a root of r . Of
course, since the minimal polynomial m has several roots in general, this produces
more solutions of system (23) than we would like. The solutions of (23) can easily be
obtained by sifting the solutions of (24) once we know isolating intervals for the roots
of m.

Note that even though all the equations relevant to this paper have coefficients in a
fixed number field (namely `DQ.

p
7/), the vertices usually have entries in a larger

number field (namely the field generated by a given root of the rational parametrizing
polynomial r ).
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Note also that the solutions lie in a subfield L� C if and only if the corresponding
root u of r lies in L. In particular, if we want to find real solutions of the system, we
can restrict to studying real roots of r , which can be specified by isolating intervals.

Using a rational univariate representation for the vertices provides a convenient set of
methods that allow us to

(i) find the list of faces that contain a given vertex;

(ii) for each bounding bisector not containing a vertex, check which side the vertex
is in;

(iii) check if two vertices are the same;

(iv) check whether a given vertex is inside a given arc;

(v) if two vertices in FJ[fxg;∅ are given, check whether these two vertices are
joined by an arc in FJ[fxg;∅ .

Items (i) and (ii) are very simple because all our equations are defined over a given `.
Given a polynomial h.t1; t2/D zh.t1; t2; s/, we start by substituting the parametriza-
tion (25) in zh, replacing u by the appropriate interval of values of the rational parameter.
If the corresponding interval does not contain 0, we know the sign of h at that vertex.

Otherwise, we keep the exact parametrization (25) and get a rational function in u

that represents h at the solutions of (24), and we check whether it vanishes at the
appropriate root of r . This corresponds to checking whether our favorite root of the
rational parametrizing polynomial r is also a root of another given polynomial with
integer coefficients (namely the numerator of the above rational function); this can be
done by computing their greatest common divisor, and isolating its real roots.

If the rational function does not vanish, we compute a more precise interval for the
value of zh, and refine precision until the interval does not contain 0. Of course, in
all generality, this may require such high precision that it would exhaust the system
memory, but this does not seem to happen for the verifications that appear in this paper,
at least for our implementation on standard modern computers.

We now sketch how to implement item (iii). Suppose we are given two rational
parametrizations

s D p0.u/=q.u/; t1 D p1.u/=q.u/; t2 D p2.u/=q.u/;

s D a0.v/=b.v/; t1 D a1.v/=b.v/; t2 D a2.v/=b.v/;

where u (resp. v ) is to be taken to be a specific root of r.u/ (resp. c.v/). Equality
corresponds to verifying whether p1.u/b.v/�q.u/a1.v/ (resp. p2.u/b.v/�q.u/a2.v/)
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vanishes at the corresponding roots. If the rational parameters were the same, this
would simply amount to computing a greatest common divisor, but in general, the
parameters from both rational representations are different.

One way to handle this is to solve the system8<:
p1.u/b.v/� q.u/a1.v/D 0;

r.u/D 0;

c.v/D 0;

which can be done using a rational univariate representation once again. The result
then follows from sifting solutions and keeping only those that give the right root for u

and v , and checking whether the sift gives a solution of not.

In order to explain how to check (iv), we need to describe in more detail how we encode
arcs. We will assume

� that every arc is parametrized by one of the spinal coordinates (this can always
be achieved, perhaps after subdividing certain arcs if necessary),

� that the endpoints of every arc are vertices (parametrized by a rational univariate
representation, as discussed above), and

� that there are no vertices strictly inside any arc.

Then, in order to check whether a given vertex is inside an arc parametrized by t1 ,
we need to compare its t1 value with the t1 values of the endpoints of the arc. This
amounts to checking the sign of an expression of the form

p1.u/=q.u/� a1.v/=b.v/;

where u (resp. v ) is a specific root of r (resp. c ). This is the same as the test that
occurs in item (iii).

If the vertex t1 value is between the t1 –values of the endpoints of the arc, we still need
to check whether it is in the correct arc.

5C4 Sample computations We explicitly determine some sets FJ with jJ j D 2, in
order to illustrate the phenomena that can occur when applying the algorithm from
the previous section. The general scheme to parametrize FJ ;∅ is explained in [7],
for instance.

When 0 =2 J D fj ; kg, we distinguish two basic cases, depending on whether p0 , pj

and pk are in a common complex line. This happens if and only if some/any lifts
zpj 2 C3 are linearly dependent. In that case, the bisectors Ffjg and Ffkg have the

Geometry & Topology, Volume 20 (2016)



3602 Martin Deraux

same complex spine, and their intersection is either empty or a complex line (this never
happens in the Ford domains studied in this paper).

Otherwise, FJ ;∅ can be parametrized by vectors of the form

.xz1p0�pj /� .xz2p0�pk/D z1pk0C z2p0j Cpjk ;

with jz1j D jz2j D 1, and where pmn denotes pm � pn ; see Section 3A.

Valid pairs .z1; z2/ in the Clifford torus jz1j D jz2j D 1 are given by pairs with

hz1pk0C z2p0j Cpjk ; z1pk0C z2p0j Cpjki< 0;

which can be rewritten as

Re.�0.z1/z2/D �0.z1/;

for �0 and �0 affine in z1;xz1 .

In terms of the notations of Section 5C2, the restriction g0 of f0 to FJ ;∅ is given by

g0.z1; z2/DRe.�0.z1/z2/� �0.z1//:

In order to draw pictures, we will sometimes use log-coordinates .t1; t2/ for FJ ;∅ , and
we write, for j D 1; 2,

zj D exp.2� i tj /:

Given l =2 J , we already mentioned in Section 3A how to write the restriction gl of fl

to FJ . Note that hpk0;p0i D hp0j ;p0i D 0, so the equation fx D 0 reads

jhpjk ;p0ij D jhz1pk0C z2p0j Cpjk ;plij;

which again can be written in the form

Re.�l.z1/z2/D �l.z1/:

In order to compute the critical points of the restriction to jz1j D jz2j D 1 of a function
h.z1;xz1; z2;xz2/, we search for points where

@h

@z1

z1�
@h

@xz1

xz1 D 0 and
@h

@z2

z2�
@h

@xz2

xz2 D 0:

Gröbner bases for the corresponding systems tell us whether these critical points are
nondegenerate (see Assumption 5.7), and if so, we can compute them fairly explicitly,
ie describe their coordinates as roots of explicit polynomials (in particular, they can be
computed to arbitrary precision).

Proposition 5.8 Let J D f1; 2g. Then FJ is empty, and xFJ is a singleton, given by
Ff1;2;3;5;10;11g .
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The singleton in the proposition is fp2g, for p2 as in Lemma 4.2. It follows from the
proposition that p2 lies precisely on six bounding bisectors (Lemma 4.2 only showed
that it was on at least six, listed in Tables 1 and 2).

Proof For J D f1; 2g, we get

�0.z1/D�2�xz1; �0.z1/D�3C z1Cxz1:

The discriminant
j�j2� �2

D�6C 16Re z1� 2Re z2
1

vanishes for precisely four complex values of z1 , which are the roots of

(26) z4
1 � 8z3

1 C 6z2
1 � 8z1C 1:

Since we know FJ ;f0g is connected [14, Theorem 9.2.6], we know that at most two of
these roots lie on the unit circle. In fact, z1D z2D 1 gives a point in FJ ;f0g , so FJ ;f0g

is nonempty; hence there must be two (complex conjugate) roots on the unit circle.
Indeed, these roots have argument 2� t with t D˙0:20682703 : : : .

A more satisfactory way to check that the polynomial (26) has precisely two roots on
the unit circle is to split z1 D x1C iy1 into its real and imaginary parts (this gives a
general method that does not rely on geometric arguments).

Indeed, z1 is a root of (26) if and only if .x1;y1/ is a solution of the system
�6C 16x1� 2x2

1
C 2y2

1
D 0, x2

1
Cy2

1
D 1. These equations imply that x1D 2˙

p
3,

and then
y2

1 D 2� 4x1;

which is positive only for x1 D 2�
p

3, and then we get y1 D˙

p
4
p

3� 6.

In order to run the algorithm from the preceding section, we write the restriction g3

of f3 to FJ ;∅ , which is given by

�3C 2Re
�

1�i
p

7

2
z1C

5�i
p

7

2
z2C

�3Ci
p

7

2
z1xz2

�
:

Gröbner basis calculations show the system g0.z/D g3.z/D jz1j
2�1D jz2j

2�1D 0

has precisely two solutions, given in log-coordinates by

.�0:20418699 : : : ;�0:03294828 : : : /; .0:15576880 : : : ;�0:07655953 : : : /:

Once again, the most convenient way to use Gröbner bases is to work with four variables
x1;y1;x2;y2 given by real and imaginary parts of z1 and z2 (with extra equations
x2

j Cy2
j D 1).
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Ff1;2g;f0g Ff1;2g;f0;3g Ff1;2g;f0;3;5g Ff1;2g

Figure 5: Steps of the algorithm to determine Ff1;2g

The combinatorics of FJ ;K for K D f0; 3g are illustrated in Figure 5 (middle left). It
is a disk with two boundary arcs, given by Ff1;2;0g;f3g and Ff1;2;3g;f0g .

As the next element to include in K , we choose 5 rather than 4, in order to shorten
the discussion slightly. The curve Ff1;2;5g;∅ intersects Ff1;2;0g;∅ two points, given in
log-coordinates by

.0:04600543 : : : ; 0:20593006 : : : /; .0:05483483 : : : ;�0:17019919 : : : /:

Only the second one is inside the arc Ff1;2;0g;f3g .

The curve Ff1;2;5g;∅ intersects Ff1;2;3g;∅ in five points .z1; z2/, given by

.1; 1/; .i;�i/; .�i; i/;
�

9C5i
p

7

16
;
�3Ci

p
7

4

�
;

�
�3Ci

p
7

4
;

1�3i
p

7

8

�
;

only one of which is in Ff1;2;3g;f0g , namely .1; 1/.

Now Ff1;2g;f0;3;5g has three boundary arcs, given by Ff1;2;0g;f3;5g , Ff1;2;3g;f0;5g and
Ff1;2;5g;f0;3g ; see Figure 5 (middle right).

Next, we include 10 in K . The curve Ff1;2;10g;∅ intersects Ff1;2;0g;∅ in two points,
none of which is in Ff1;2;0g;f3;5g . Hence the arc Ff1;2;0g;f3;5g is either completely
inside or completely outside Ff1;2;0g;f3;5;10g . One easily checks that it is outside, by
taking a sample point.

The curve Ff1;2;10g;∅ intersects Ff1;2;3g;∅ in five points, and none of these is in
Ff1;2;3g;f0;5g . The arc Ff1;2;3g;f0;5g is either completely inside or completely outside
Ff1;2;3g;f0;5;10g , and a sample point shows it is outside.

Similarly, the curve Ff1;2;10g;∅ intersects Ff1;2;5g;∅ in six points, none of which is in
Ff1;2;5g;f0;3g , and the arc Ff1;2;5g;f0;3g is completely outside Ff1;2;3g;f0;5;10g .

This implies that Ff1;2g is empty; see Figure 5 (far right).

Finally, consider the intersection of Ff1;2;10g;∅ with the three vertices of Ff1;2g;f0;3;5g .
One easily checks that the only intersection is the point with complex spinal coordinates
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given by .1; 1/, and this point is indeed a vertex of F . It is in homogeneous coordinates
in C3 given by �

3�i
p

7

2
;�2;�

3�i
p

7

2

�
;

and it is on precisely six bounding bisectors (by construction it is on B1 and B2 , and it
is also in B3 , B5 , B10 and B11 ). In terms of the notation of Section 5C2, this point is

Ff1;2;3;5;10;11g:

In fact one easily checks that this point is the fixed point of G2 (which, by definition
of the bounding bisectors, is obviously in B1\B2 ).

Remark 5.9 (1) Throughout the proof of Proposition 5.8, we have ignored the
issue of critical points. In principle, at each stage, we may have missed some
isolated components of the curves Ff1;2;kg;∅ ; if this were the case, the set Ff1;2g
would still be contained in the set which we just described. Hence it must be
empty anyway.

(2) The curves Ff1;2;10g;∅ and Ff1;2;3g;∅ are, in fact, tangent at .1; 1/, which is a
vertex of F . We shall come back to this point later, when discussing stability of
the combinatorics of F under deformations.

Proposition 5.10 Ff1;3g is combinatorially a triangle, with three boundary arcs given
by Ff1;3;0g , Ff1;3;5g and Ff1;3;11g , and three vertices given by Ff0;1;3;5g , Ff0;1;3;11g

and Ff1;2;3;5;10;11g .

Note that this triangle appears in Figure 3 (left) and 4 (left), it is the intersection of the
bounding bisectors B1 and B3 corresponding to G2 and G3 , respectively. The edges
in H 2

C are on B5 , which corresponds to G1G2G�1
1

, and B11 , which corresponds to
G�1

1
G3G1 .

Proof As in the argument for Ff1;2g , we study FJ ;K for increasing sets K , freely
choosing the order we use to increase K . We describe an efficient way to get down
to Ff1;3g in the form of a picture; see Figure 6.

We start by studying Ff1;3g;f5g . Note that the curve Ff1;3;5g;∅ has two double points.
These points can be obtained by writing the equation g5 D 0 as

Re.�.z1/z2/D �.z1/;

where

�.z1/D
3Ci
p

7

2
�xz1; �.z1/D 1�Re

�
3Ci
p

7

2
z1

�
:
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Ff1;3g;f0;5g Ff1;3g;f0;5;11g Ff1;3g;f0;5;11;2;10g

10

2 10

2

2

10

Figure 6: Steps of the algorithm to determine Ff1;3g

The discriminant j�.z1/j
2� �.z1/

2 is given by

2CRe
�
�1�3i

p
7

4
z2

1

�
;

which vanishes for z1 D˙
1
4
.3� i

p
7/. Plugging this back into the equation g5 D 0

gives z2 D�
1
4
.3� i

p
7/. One easily checks that g0.z1; z2/ > 0 for these two double

points, ie they lie outside complex hyperbolic space.

One checks that Ff1;3;5g;∅ intersects Ff1;3;0g;∅ in precisely two points (and these
intersections are transverse), so we get two arcs in the boundary of Ff1;3g;f0;5g , namely
Ff1;3;5g;f0g and Ff1;3;0g;f5g ; see Figure 6 (left).

In principle, there could be an extra arc in Ff1;3;5g;f0g , not intersecting Ff1;3;0g;∅ , so
we compute critical points of g5 . They are given by the solutions of the system8̂<̂

:
Im
��
xz2C

3Ci
p

7

2

�
z1

�
D 0;

Im
��
xz1C

3Ci
p

7

2

�
z2

�
D 0;

that satisfy jz1j D jz2j D 1.

There are four such critical points, and they have the form .˙˛;˙˛/, where ˛ D
1
4
.3 � i

p
7/ (of course this list includes the double points computed before). The

corresponding points are outside F ; in fact, g0.˙˛;˙˛/ > 0.

A similar analysis justifies the middle part of Figure 6, ie that xFf1;3g;f0;5;11g is combi-
natorially a triangle (with one side on @1H 2

C ).

We sketch how to justify that Ff1;3g D Ff1;3g;f0;5;11g . For k D 2 and k D 10,
the curve Ff1;3;kg;∅ actually goes through a vertex of Ff1;3g D Ff1;3g;f0;5;11g ; if
k ¤ 0; 2; 5; 10; 11, then Ff1;3;kg;∅ does not intersect even xF f1;3g;f0;5;11g .
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We start by studying Ff1;3;0g;∅ \Ff1;3;2g;∅ . In order to use standard root isolation
methods, we use real equations in x1;y1;x2;y2 . Computing a Gröbner basis for the
ideal generated by g0 , g3 , x2

1
Cy2

1
� 1 and x2

2
Cy2

2
� 1, we see that it contains

39� 840
p

7y2C 4088y2
2 C 608y3

2

p
7� 9152y4

2 C 1024y5
2

p
7C 7168y6

2 ;

which has precisely two real roots, given approximately by y .1/

2 D 0:01815877 : : :

and y .2/

2 D 0:65602473 : : : .

The Gröbner basis also gives an expression for x1 , y1 and x2 in terms of y2 , namely

x1 D
1

14725

�
�4943C 16836

p
7y2� 142640y2

2

C 53184y3
2

p
7C 72128y4

2 � 75264y5
2

p
7
�
;

y1 D
1

14725

�
5058
p

7C 45888y2� 112560y2
2

p
7

C 309472y3
2 C 74432y4

2

p
7� 422912y5

2

�
;

x2 D
1

19

�
20� 21

p
7y2C 16y2

2 C 32y3
2

p
7
�
:

Substituting either value y .j /

2 gives two points a.j /
D .x .j /

1 ;y .j /

1 ;x .j /

2 ;y .j /

2 / for
j D 1; 2, and we claim that g5.a

.1/ / > 0 and g11.a
.2/ / > 0. Clearly this can be

checked by simple interval arithmetic, in fact

g5.a
.1/
/D 3:80716606 : : : ; g11.a

.2/
/D 3:94518313 : : : :

The analysis of Ff1;3;5g;∅\Ff1;3;2g;∅ is in a sense simpler, because all the solutions
to the corresponding system are defined over Q.i;

p
7/. The system has precisely five

solutions, given by�
i;

1C
p

7

4
C i

1�
p

7

4

�
;

�
�i;

1�
p

7

4
� i

1C
p

7

4

�
;�

�3Ci
p

7

4
;
3�i
p

7

4

�
;

�
9C5i

p
7

16
;�

9C5i
p

7

16

�
;

�
1;

3Ci
p

7

4

�
:

Only one of these solutions satisfies g0 � 0, namely the last one (in other words, only
one intersection point lies H 2

C ).

Note that we already found one point in Ff1;3;2g;∅\Ff1;3;5g;∅ , namely the fixed point
of G2 ; see the proof of Proposition 5.8.

Similarly, one verifies that Ff1;3;2g;∅\Ff1;3;11g;∅ contains precisely six points, only
one of which gives a point in (the closure of) complex hyperbolic space.

Once again, since we already know one point in this intersection (namely the fixed
point of G2 ), we get that the intersection of Ff1;3;2g;∅ with @Ff0;1;3;5;11g;∅ consists
of precisely one point. This implies that @Ff0;1;3;5;11g;∅ is either completely inside or
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completely outside @Ff0;1;3;5;11;2g;∅ . It is easy to check that it is inside by testing a
sample point (for instance one of the other vertices of the triangle @Ff0;1;3;5;11g;∅ ).

We now show that Ff1;3;2g;∅ does not intersect Ff0;1;3;5;11g;∅ by computing the critical
points of g2 . There are six critical points, given by�

�1;�
1C3i

p
7

8

�
;

�
3�i
p

7

4
;

3�i
p

7

4

�
;

�
˙

1Ci
p

7
p

8
;˙

1�i
p

7
p

8

�
;

and one easily checks that none of them is inside Ff0;1;3;5;11g;∅ . In particular, we get
that the minimum value of g3 on xFf0;1;3;5;11g;∅ is 0, and it is realized precisely at
one vertex (namely the fixed point of G2 ).

In other words, we get Ff0;1;3;5;11g;∅ D Ff0;1;2;3;5;11g;∅ ; ie including the inequal-
ity g2 < 0 at this stage has no effect. An entirely similar computation shows that
Ff0;1;2;3;5;11g;∅ D Ff0;1;2;3;5;10;11g;∅ .

For all k ¤ 0; 1; 2; 3; 5; 10; 11, we have that Ff0;1;3;kg;∅ does not intersect even the
closure xF f0;1;2;3;5;11g;∅ ; one can use arguments as above using interval arithmetic.

Similar arguments allow us to handle the detailed study of all the polygons that appear
on Figures 3 and 4.

Proposition 5.11 Ff1;4g;∅ is a Giraud disk, which is entirely contained in the exterior
of B5 . In particular, Ff1;4g is empty.

Proof We will prove that Ff5g;∅ does not intersect the Giraud torus yFf1;4g;∅ . In order
to see this, we use complex spinal coordinates and write g5.z1; z2/ for the restriction
of f5 to the Clifford torus jz1j D jz2j D 1.

One computes explicitly that

g5.z1; z2/D 4C 2Re
�

1Ci
p

7

2
z1xz2

�
:

This is clearly always positive when jz1j D jz2j D 1.

In other words, the Giraud torus yFf1;4g;∅ is entirely outside F .

Proposition 5.12 Ff1;6g;∅ is empty. The Giraud torus yFf1;6g;∅ is completely outside
complex hyperbolic space; in other words, the bisectors B1 and B6 are disjoint.

Proof We write the equation of Ff0;1;6g;∅ in spinal coordinates for the Giraud torus
Ff1;6g;∅ , which reads

g0.z1; z2/D 18� 2Re.4.z1C z2/C z1xz2/:
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Clearly this is nonnegative when jz1j D jz2j D 1, and in that case, it is zero if and only
if z1 D z2 D 1.

In other words, yB1 and yB2 intersect in a point in H 2
C . Note that this point is not in the

closure of F ; in fact, it is strictly outside the half spaces bounded by B2 , B3 , B5 , B7

and B11 .

Proposition 5.13 Ff3;8g is empty. The Giraud torus Ff3;8g;∅ contains a disk in H 2
C ,

but xFf3;8g;f2;6g is empty.

Proof The proof is actually very similar to that of Proposition 5.10, but since the
corresponding set is empty, we go through some of the details.

The curve Ff3;8;2g;∅ intersects Ff3;8;0g;∅ in precisely two points, and cuts out a disk
in the Giraud disk Ff3;8g;∅ , so that Ff3;8g;f0;2g is a disk with only two boundary arcs.

One then easily verifies that Ff3;8;6g;∅ does not intersect xFf3;8g;f0;2g , so Ff3;8g;f0;2;6g
is either equal to Ff3;8g;f0;2g or is empty (one needs to check critical points in order to
verify this).

By taking a sample point z and checking f6.z/ > 0, one gets that Ff3;8g;f0;2;6g
is empty.

The study of B1 \ Bk for various values of k is similar to one of the previous few
propositions; we list the relevant arguments in Table 4. When the proof is similar
to Proposition 5.11, the indices l listed in brackets indicate that B1 \Bk is entirely
outside the half space bounded by Bl .

The corresponding list of arguments used to study of B3\Bk for various values of k

in Table 5.

Note that the arguments for B2 (resp. B4 ) are, of course, almost the same as those
for B1 (resp. B3 ), since the corresponding faces are actually paired by G2 (resp. G3 ).

5C5 Genericity In order to study deformations �t of the boundary unipotent rep-
resentation �0W �1.M / ! PU.2; 1/, we will need more information that just the
combinatorics.

We will determine the nontransverse bisector intersections and prove that they remain
nontransverse in the family of Ford domains for groups in the 1–parameter family
where the unipotent generator becomes twist parabolic.

The next proposition follows from the restrictive character of bounding bisectors,
namely that they are all covertical (because they define faces of a Ford domain).
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Proposition Indices

5.4 8, 14–16, 21–25, 29–33, 35
5.8 2, 12, 19, 26
5.10 3, 5, 9, 10, 11, 18, 20, 28
5.11 4[5, 10], 7[3], 13[2, 5, 10], 17[9], 27[9, 18], 36[17, 28, 34]
5.12 6, 34

Table 4: Indices where the arguments of each proposition apply to study B1\Bk

Proposition Indices

5.4 16, 17, 22–36
5.8 10, 13
5.10 1, 2, 5, 6, 7, 11
5.11 9[11], 14[7], 15[7], 18[1,10], 19[11], 20[7], 21[6,13]
5.12 4, 12
5.13 8

Table 5: Indices where the arguments of each proposition apply to study B3\Bk

Proposition 5.14 Let J Dfj ; kg with j ¤k . Then the intersection Ffjg;∅\Ffkg;∅D

FJ ;∅ is transverse at every point of FJ ;∅ .

The analogous statement is not true when jJ j � 3, since FJ ;∅ can have singular
points; see Figure 5, for instance. This will not be bothersome in the context of our
polyhedron F because of the following:

Proposition 5.15 Suppose jJ j D 3 and FJ is nonempty. Then the corresponding
intersection of three bisectors (or two bisectors and @1H 2

C ) is transverse at every point
of FJ .

Proof This follows from the fact that double points of FJ ;∅ occur only away from the
face FJ . Indeed, one can easily locate these double points by the techniques explained
in Section 5C4, and check that they are outside F by using interval arithmetic.

The situation near vertices is slightly more subtle, mainly because our group contains
some torsion elements; hence one expects the intersections to be nongeneric near the
fixed points of those torsion elements.

We will check possible tangencies between 1–faces intersecting at each vertex. More
generally, for each j ¤ k , we will study tangencies between all the curves of the form
Ffj ;k;lg;∅ for l ¤ j ; k that occur at a vertex of F .
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Proposition 5.16 Let p be an ideal vertex of F , ie a vertex in @1H 2
C . Then there

are precisely three bounding bisectors Bi , Bj and Bk meeting at p (where i; j ; k > 0).
The intersection of the four hypersurfaces in C2 given by the three extors, yBi , yBj

and yBk , and @1H 2
C is transverse; in particular, none of the four incident 1–faces are

tangent at p .

Note that the ideal 1–faces are drawn in red on Figures 3 and 4, so the vertices on the
red curves are the ideal ones. The indices .i; j ; k/ that appear in the proposition, ie
the bounding bisectors that contain a given ideal vertex, can be read off Figure 7. For
example, .1; 3; 5/; .1; 3; 11/; .1; 9; 11/; : : : are triples of indices that correspond to
ideal vertices.

Proof We treat the example of Ff0;1;3;5g , the other ones being entirely similar. The
parametrization of the Giraud disk Ff1;3g;f0g was already explained in Section 5C4.

The relevant vertex satisfies

(27)
x1 D 0:80979557 : : : ; y1 D�0:58671213 : : : ;

x2 D�0:53336432 : : : ; y2 D 0:84588562 : : : :

We write the equations of the bisectors in affine coordinates for complex hyperbolic
space corresponding to the spinal coordinates, ie such that .z1; z2/ corresponds to

p13C z1p30C z2p01;

where pjk denotes, as before, the box product pj � pk .

In these coordinates, B1 is given by jz1j D x2
1
C y2

1
D 1 and B3 is given by jz2j D

x2
2
Cy2

2
D 1; of course, other bisectors have more complicated equations.

The equation of the boundary of the ball is

2�
p

7y2�4x1�x2�y2

p
7x1Cx2

p
7y1C2x2

1C2y2
1Cx2

2Cy2
2�x2x1�y2y1D 0;

and the equation for B5 is given by

3.x1Cx2/�
p

7.y1Cy2/� 2x2x1� 2y2y1�x2
1 �y2

1 �x2
2 �y2

2 D 0:

One then computes the gradient of the left hand side of each of these four equations,
and checks that they are linearly independent at the point from (27) (this is readily
done using interval arithmetic).

Proposition 5.17 There are precisely six bounding bisectors containing p2 , indexed
by 1, 2, 3, 5, 10, 11. The pairwise and 3–fold intersections of these six bisectors
are all transverse, but some 4–fold are not, namely f1; 2; 3; 10g, f1; 2; 5; 11g and
f3; 5; 10; 11g.
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G�2
1
.S4/DS20 G�3

1
.S4/DS28

G1.S1/D S5 S1 G�1
1
.S1/D S9

G1.S3/D S7 S3 G�1
1 .S3/DS11

G1.S2/D S6 S2 G�1
1 .S2/DS10

G1.S4/D S8 S4 G�1
1 .S4/DS12

G3
1.S1/D S21 G2

1.S1/D S13

Figure 7: The combinatorics at infinity of the fundamental domain, near the
faces for G˙

2
and G˙

3
, which are representatives of all faces modulo the

action of G1

The precise list of bisectors that contain this vertex were already justified in Section 4B;
see Lemma 4.2 and Proposition 5.8. The point of Proposition 5.17 is to give precise
information about transversality. Recall from Section 4B that p2 is, by definition,
the isolated fixed point of G2 , and the bisectors B1 , B2 , B3 , B5 , B10 and B11 are
the bounding bisectors corresponding to the group elements G2 , G�1

2
, G3 , G1G2 ,

G�1
1

G�1
2

and G�1
1

G3 , respectively; see Section 5A.

Proof We work in spinal coordinates for B1\B3 , and as in the preceding proof, we
use zj D xj C iyj , j D 1; 2 as global coordinates on H 2

C . The point p2 is given by
z1 D 1, z2 D

1
4
.3C i

p
7/.
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Vector Tangent to Exit in C direction Exit in � direction

u1 1; 2; 3; 10 11 5

u2 1; 2; 5; 11 3 10

u3 3; 5; 10; 11 1 2

Table 6: Each direction tangent vector uk to a nontranverse quadruple inter-
section at p2 exits the polyhedron; in the last two columns we list the two
half spaces it exits (transversely) in the ˙uk direction.

The equations of the six bisectors are as follows:

1 W 4� 4.x2
1 Cy2

1/D 0;

2 W 2Cx1C 2x2C .y1� 2y2/
p

7C .x1y2�x2y1/
p

7

C 3.x1x2Cy1y2/� .x
2
1 Cy2

1/� 4.x2
2 Cy2

2/D 0;

3 W 4� 4.x2
2 Cy2

2/D 0;

5 W 3.x1Cx2/�
p

7.y1Cy2/� 2.x2x1Cy2y1/� .x
2
1 Cy2

1/� .x
2
2 Cy2

2/D 0;

10 W 2� 4.x1�x2/C 4.x2x1Cy2y1/� 2.x2
1 Cy2

1/� 2.x2
2 Cy2

2/D 0;

11 W 3� 2x2C 3x1C
p

7y1C 3.x1x2Cy1y2/C .x2y1�y2x1/
p

7

� 4.x2
1 Cy2

1/� .x
2
2 Cy2

2/D 0:

One computes the gradients at the point x1 D 1, y1 D 0, x2 D 3=4, y2 D
p

7=4,
which are given by

v1 D .�8; 0; 0; 0/; v5 D .�1=2;�3
p

7=2;�1=2;�3
p

7=2/;

v2 D .3;
p

7;�1;�3
p

7/; v10 D .�5;
p

7; 5;�
p

7/;

v3 D .0; 0;�6;�2
p

7/; v11 D .�9=2; 5
p

7=2;�1=2;�3
p

7=2/;

and the claim of the proposition follows from explicit rank computations.

The tangent vectors to the intersection are given by

u1 D .0; 8=3;�
p

7=3; 1/;

u2 D .0; 0;�3
p

7; 1/;

u3 D .�2
p

7=3;�2=3;�
p

7=3; 1/;

and one easily checks that any curve tangent to these vectors must exit the polyhedron
in a transverse fashion, more specifically, the exited bisectors are given in Table 6.
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6 Side pairings

6A Faces paired by G2

We now justify the fact that G�1
2

defines an isometry between the faces for G2 and G�1
2

.
On the level of 2–faces, this follows from the proposition below.

Proposition 6.1 The isometry G�1
2

maps

(1) G3p0 to G�1
1

G3p0 ;

(2) G�3
1

G�1
3

p0 to G1G�1
3

p0 ;

(3) G�1
1

G3p0 to G�1
1

G�1
2

p0 ;

(4) G�1
1

G2p0 to G�1
3

p0 ;

(5) G�2
1

G�1
3

p0 to G1G�1
2

p0 ;

(6) G1G2p0 to G3p0 ;

(7) G�1
1

G�1
2

p0 to G1G2p0 ;

(8) G�2
1

G�1
2

p0 to G2
1
G2p0 .

Proof We show a slightly stronger statement; namely, in order to show G�1
2

gp0Dhp0 ,
we will exhibit h�1G�1

2
g as an explicit power of G1 .

The result follows from the presentation of the group (strictly speaking, they only
depend on the relations we know to hold, not on the fact that this really gives a
presentation). For the sake of brevity, we use word notation.

(1) 3123D 21212212D 21212D 1;

(2) 312133D 212 � 121121 � 1 � 121121 � 2D 2.12121/.12121/1212D 241D 1;

(3) 21213D 2121212D 1;

(4) 3212D id;

(5) 212123D 2.121/22D 2.121/2D 1;

(6) 3212D id;

(7) 21212D 1;

(8) 2122122D 12 .
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On the level of vertices, we have

� G�1
2

p2 D p2 ;

� G�1
2

p121 D p323 ;

� G�1
2

p213 D p233 ;

� G�1
2

p1212 D p3232 D p121 .

6B Faces paired by G3

The corresponding statement about the side-pairing map for the other two base faces is
the following.

Proposition 6.2 The isometry G�1
3

maps

(1) G2p0 to G�1
1

G�1
3

p0 ;

(2) G�1
2

p0 to G�1
2

p0 ;

(3) G1G2p0 to G2
1
G2p0 ;

(4) G1G�1
2

p0 to G1G�1
3

p0 ;

(5) G1G3p0 to G3
1
G2p0 ;

(6) G�1
1

G3p0 to G�1
1

G�1
2

p0 .

Proof The method of proof is identical to that of Proposition 6.1.

(1) 3132D 21212122D 2.212/22D 1;

(2) 232D 221D 1;

(3) 212312D 21.212/2 D 21212D 1;

(4) 31312D id;

(5) 213313D 211 � 121 � 212 � 2212D 21.212/2 D 21212D 1;

(6) 21313D 212121212D 21212221212D .21212/3 D 12 .

On the level of vertices, we have

� G�1
3

p2 D p323 ;

� G�1
3

p121 D p132 .

The last equality holds because

31213D 212121212D 1.212/3112D 132:
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Ridge cycle Relation

2\ 3
2
��! 131\ 2

131
���! 3\ 131

3
��! 2\ 3 2D Œ3; 1�

2\ 13313 2
��! 131\ 2

131
���! 3\ 131

3
��! 13213\ 3 1331312D id

2\ 131
2
��! 121\ 2

121
���! 13313\ 121

13313

�����! 12212\ 13313 1312212D id

2\ 121
2
��! 3\ 2

3
��! 2\ 3

2
��! 121\ 2 12D 23

2\ 121
2
��! 121\ 2 .12/3

2\ 12212 2
��! 12212\ 2 .121/3

Table 7: Ridge cycles and the corresponding relations in the group

7 Ridge cycles

Because of Giraud’s theorem, the ridge cycles automatically satisfy the hypotheses of
the Poincaré polyhedron theorem. In particular, we get the following:

Theorem 7.1 D is a fundamental domain for the action of cosets of hG1i in � . In
particular, D D F (see Theorem 5.1).

Every ridge cycle is equivalent to one of the cycles listed in Table 7 (equivalent means
that we allow shifting within the cycle, and also conjugation by a power of G1 ). We
list the cycle until we come back to the image of the initial ridge under a power Gk

1

(in that case, we close up the cycle by G�k
1

).

Using the relations
12D 23; .12/3 D .121/3 D id;

the other relations give 24 D id. Indeed, 1331312D id gives

idD 12313121D 12212 � 1212 � 121D 1.121/221212.121/2 D 2123121D 21.24/12:

It is easy to check that the above set of relations is actually equivalent to

12D 23; .12/3 D .121/3 D 24
D id :

We summarize the above discussion in the following:

Theorem 7.2 The group � has a presentation given by˝
G1;G2;G3 j

G2 D ŒG3;G
�1
1 �; G1G2 DG2G3; G4

2 D id; .G1G2/3D id; .G2G1G2/
3
D id

˛
:
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8 Topology of the manifold at infinity

In this section, we prove that � n� is indeed homeomorphic to the figure eight knot
complement. This was already proved in [7] using a very different fundamental domain
for the action of the group.

We write F for the Ford domain for � , E for @1F , and C for @E . By construction,
F , E and C are all G1 –invariant.

We will use Heisenberg coordinates .z; t/ for @H 2
C n fp1g; see Section 5B. In these

coordinates, the action of G1 is given by

(28) G1.z; t/D .z� 1; t C Im.z//:

It follows from the results in Section 5A that C is tiled by hexagons, and that there are
four orbits of these hexagons under the action of G1 . We need a bit more information
about the identifications on these hexagons, namely, we need

� the incidence relations between various hexagons, and

� the identifications on C given by side-pairing maps.

The incidence relations follow immediately from the results in Section 5A, which are
summarized in Figure 7.

The union U of the four hexagons labeled 1, 2, 3, 4 is embedded in C , and the action
of G1 induces identifications on @U . We denote by � the corresponding equivalence
relation on U ; it is easy to check that U=� is a torus.

We get the following result.

Proposition 8.1 C is an unknotted topological cylinder, and E is the region exterior
to C .

Proof It follows from the fact that C is invariant under the action of G1 that it is an
unknotted cylinder in C �R (it is a Z–covering of C=hG1i). In fact, the real axis
gives a core curve for the solid cylinder bounded by C . In view of G1 –invariance, it
is enough to check that the interval Œ0; 1� on the x axis is outside E . This is readily
checked; in fact, this interval is actually completely inside the spinal sphere S1 .

The identifications in C come from side pairings, which are described in Section 6.
Figures 3 and 4 contain a list of vertices, which are uniquely determined by the list of
faces they are on (in fact they are on precisely three bisectors).
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For instance, there is a vertex on b1\b3\G1.b1/. By Proposition 6.1, G�1
2

maps this
to the vertex on b2\ b3\G�1

1
b3 . The vertex on b1\ b3\G�1

1
.b3/ is mapped to the

vertex on b2\G�1
1
.b2/\G�1

1
b3 . The image of these two points determine the image

of the entire hexagon on b1 (in Figure 7, the map flips the orientation of the hexagon).

By doing similar verifications, one checks that the identification pattern on the hexagons
on S1; : : : ;S4 is the same as the one for the Ford domain of the holonomy of the real
hyperbolic structure on the figure eight knot complement, see Figure 2.

Now since the exterior of C is homeomorphic to C � Œ0;C1Œ (in a G1 –equivariant
way), we get:

Corollary 8.2 � nE is homeomorphic to the figure eight knot complement.

9 Stability of the combinatorics

The first remark is that distinct bounding bisectors for the Ford domain for the unipotent
solution are never cospinal, and as a consequence, the intersections y1\y2 are uniquely
determined by the triple p0 , 1p0 , 2p0 . Of course, this property will hold for all
values of the twist parameter of G1 .

Now every point of an open 2–face is on precisely two bounding bisectors, and that
intersection is transverse. In other words, every open 2–face will survive in small
perturbations.

A similar remark holds for 1–faces, namely, no 1–face of the Ford domain for the
boundary unipotent case is contained in a geodesic. In fact, every point on an open
1–face is on precisely three bounding bisectors, and these intersect transversely as well.

The only issue is to analyze vertices. There is nothing to check for the ideal vertices
since they are defined as the intersection of four hypersurfaces (three bounding bisectors
and the boundary of the ball) that intersect transversely.

The finite vertices are on more than four bounding bisectors, but they are also fixed
by elliptic elements in the group. In fact, we already justified that they stayed on the
same bisectors for small deformations; see Section 4B, more specifically, Lemmas 4.2
and 4.3. The transversality statement of Proposition 5.17 will remain true for small
perturbations as well.

This implies that the combinatorics stay stable in small deformations.
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10 Stability of the side pairing

Let F .0/ be the Ford domain for the boundary unipotent group, and F .t / the one for
the twist parabolic group corresponding to parameter t .

The proof that F .0/ has side-pairings relies on the determination of the precise combi-
natorics, and also of the group relations. By the previous section, the combinatorics
are stable, and by Proposition 4.1, the relations hold throughout the deformation. The
proof of Propositions 6.1 and 6.2 then shows that F .t / has side-pairings, at least for
small values of t .

The verification that the Ford domain for the boundary unipotent group satisfies the
hypotheses of the Poincaré polyhedron theorem is given in Section 7. Since all intersec-
tions of bounding bisectors are Giraud disks, the cycle condition is a direct consequence
of the existence of pairings.

Let �t denote the image of �t . We now get:

Theorem 10.1 There exists a ı > 0 such that whenever jt j < ı , �t is discrete with
nonempty domain of discontinuity, its manifold at infinity is homeomorphic to the
figure eight knot complement, and it has the presentation˝
G1;G2;G3 j

G2 D ŒG3;G
�1
1 �; G1G2 DG2G3; G4

2 D id; .G1G2/
3
D id; .G2G1G2/

3
D id

˛
:
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