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Concordance maps in knot Floer homology

ANDRÁS JUHÁSZ

MARCO MARENGON

We show that a decorated knot concordance C from K to K0 induces a homomor-
phism FC on knot Floer homology that preserves the Alexander and Maslov gradings.
Furthermore, it induces a morphism of the spectral sequences to cHF.S3/Š Z2 that
agrees with FC on the E1 page and is the identity on the E1 page. It follows that
FC is nonvanishing on bHFK0.K; �.K// . We also obtain an invariant of slice disks
in homology 4–balls bounding S3 .

If C is invertible, then FC is injective, hence

dim bHFKj .K; i/� dim bHFKj .K
0; i/

for every i; j 2 Z . This implies an unpublished result of Ruberman that if there is an
invertible concordance from the knot K to K0 , then g.K/�g.K0/ , where g denotes
the Seifert genus. Furthermore, if g.K/D g.K0/ and K0 is fibred, then so is K .

57M27, 57R58

1 Introduction

Knot Floer homology was introduced independently by Ozsváth and Szabó [28] and
Rasmussen [31], and the first author [16] defined maps induced on it by decorated knot
cobordisms. Given a knot K in S3, its knot Floer homology with Z2 coefficients is a
finite dimensional bigraded Z2 –vector spaceM

i;j2Z

bHFKj .K; i/;

well-defined up to isomorphism, where i is called the Alexander grading and j is the
homological grading. The Euler characteristic of bHFK�.K; i/ is the i th coefficient
of the symmetrized Alexander polynomial of K , and hence knot Floer homology can
be viewed as a categorification of the Alexander polynomial. First, we recall [16,
Definition 4.1].

Definition 1.1 For i 2 f0; 1g, let Yi be a connected, oriented 3–manifold, and let Li

be a nonempty link in Yi . Then a link cobordism from .Y0;L0/ to .Y1;L1/ is a
pair .X;F /, where
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(1) X is a connected, oriented cobordism from Y0 to Y1 ,

(2) F is a properly embedded, compact, orientable surface in X , and

(3) @F DL0[L1 .

Knots K0 and K1 in S3 are said to be concordant if there is a cobordism .X;F /

from .S3;K0/ to .S3;K1/ such that X D S3 � I and F is diffeomorphic to S1 � I.
In this case, we call .X;F / a concordance from K0 to K1 . In this paper, we also
allow more general concordances where X is a cobordism from S3 to S3 such that
H1.X /DH2.X /D 0.

In this paper, a decorated knot is a pair .K;P / such that K is a knot, P is a pair of
points in K , and we are given a decomposition of K into compact 1–manifolds RC.P /

and R�.P / such that RC.P / \ R�.P / D P. Given decorated knots .K0;P0/

and .K1;P1/ in S3 , a decorated concordance from .K0;P0/ to .K1;P1/ is a
triple .X;F; �/ such that .X;F / is a concordance from K0 to K1 , and � consists
of two disjoint, properly embedded arcs in F , one connecting RC.K0/ and RC.K1/,
the other R�.K0/ and R�.K1/.

Dylan Thurston and the first author [17] showed that knot Floer homology is natural for
decorated knots, and Sarkar [35] proved that moving the basepoints P around the knot
induces a nontrivial automorphism in many cases. Hence only decorated concordances
induce maps on knot Floer homology.

Recall from [28, Lemma 3.6] that for every decorated knot .K;P / in S3, there is a
corresponding spectral sequence

bHFK.K;P / D) bHF.S3/Š Z2:

Given an admissible doubly pointed Heegaard diagram .†;˛;ˇ; w; z/ for .K;P /,
the singly pointed diagram .†;˛;ˇ; w/ represents .S3; w/, and z gives rise to the
knot filtration on cCF.†;˛;ˇ; w/. The spectral sequence arises from this filtered
complex. The E0 page is the associated graded complex bCFK.†;˛;ˇ; w; z/, whose
homology is bHFK.K;P /, the E1 page. The spectral sequence limits to the homology
of cCF.†;˛;ˇ; w/, which is bHF.S3/ŠZ2 . The filtration level of the generator of Z2

in the E1 page is the Ozsváth–Szabó � invariant [26], denoted by �.K/.

The main result of this paper is that a decorated concordance C induces a nonvanishing
homomorphism FC on knot Floer homology that preserves the Alexander and homo-
logical gradings, and also induces a morphism of the corresponding spectral sequences.
The map FC is functorial and depends only on the decorated concordance C , while the
chain map fC (or even its filtered homotopy type) need not be functorial, and it can
depend on auxiliary data other than C .
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Theorem 1.2 Let .K0;P0/ and .K1;P1/ be decorated knots in S3. Let CD .X;F; �/
be a decorated concordance between them such that H1.X /DH2.X /D 0. Then

FC. bHFKj .K0;P0; i//� bHFKj .K1;P1; i/

for every i; j 2 Z.

Furthermore, given an admissible diagram .†r ;˛r ;ˇr ; wr ; zr / of .Kr ;Pr / for r

in f0; 1g, there is a filtered chain map

fC W cCF.†0;˛0;ˇ0; w0/! cCF.†1;˛1;ˇ1; w1/

of homological degree zero such that the induced morphism of spectral sequences agrees
with FC on the E1 page and with IdZ2

on the total homology and on the E1 page.

Note that the fact that the map induced by a filtered map f on the total homology
is an isomorphism in general does not imply that the map f1 induced between
the E1 pages is also an isomorphism. As an example, consider a complex C Š Z2

in filtration level one, and a complex C Š Z2 in filtration level zero. If f W C ! C is
an isomorphism, then H.f / is an isomorphism but f1 is not.

In the case of the filtered map fC induced by a decorated concordance C , the fact that
f1C is an isomorphism follows from the fact that �.K0/D �.K1/, which was shown
by Ozsváth and Szabó [26, Theorem 1.1]. An alternative proof of this can be given
by observing that a decorated concordance gives filtered maps both ways that induce
isomorphisms on the total homology, as in the proofs of Theorem 1 in Rasmussen [32]
and Theorem 3.4 in Sarkar [34].

The invariant �.K/ can also be defined as the smallest Alexander grading of an element
of bHFK.K;P / that represents a cycle on each page of the spectral sequence, and
whose homology class in the E1 page is 1. We denote the set of such elements
by A1.K/. Then we have the following nonvanishing result for the knot concordance
maps:

Corollary 1.3 Let .K0;P0/ and .K1;P1/ be decorated knots in S3, and suppose that
C D .X;F; �/ is a decorated concordance between them. Let � D �.K0/ D �.K1/.
Then, the map

FC W bHFK0.K0;P0; �/! bHFK0.K1;P1; �/

is nonzero, and FC.A1.K0//�A1.K1/.

In fact, for any decorated knot .K;P / in S3, we shall see that

A01.K/ WDA1.K/\ bHFK0.K;P; �.K//¤∅;
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and the map FC W A
0
1
.K0/!A0

1
.K1/ is nonzero.

Let B be an integral homology 4–ball with boundary S3. Suppose that S � B is a
slice disk for the decorated knot .K;P / in S3. If we remove a ball from B about a
point of S , we obtain a concordance C.S/ from the unknot U to K . By Lemma 3.11,
the element

tS;P WD FC.S/.1/ 2 bHFK0.K;P; 0/

is independent of what decoration we choose on C.S/. It is nonzero by Corollary 1.3,
and is an invariant of the surface S up to isotopy in B fixing K .

Question 1.4 Can tS;P distinguish different slice disks? More precisely, is there a
decorated knot .K;P / in S3 that has two different slice disks S and S 0 in D4 such
that tS;P ¤ tS 0;P ?

Note that, given different decorations P and P 0 on K , the basepoint moving map
of Sarkar [35] takes tS;P to tS;P 0 , so the answer is independent of the choice of
basepoints.

We can use the above viewpoint to refine the approach of Freedman, Gompf, Morrison
and Walker [6] for disproving the smooth 4–dimensional Poincaré conjecture (SPC4).
Suppose that we are given a counterexample to SPC4 with no 3–handles and a single
4–handle. Removing the 4–handle, we obtain an exotic 4–ball B with boundary
homeomorphic to S3. The belt circles of the 2–handles give a link L� @B , and the
cocores of the 2–handles give a collection of disks C � B with boundary L. If we
band sum the components of L in some way, we obtain a knot K � @B , together with
a disk D �B obtained from C . Hence D induces an element tD;P 2 bHFK.K;P / for
any decoration P . If tD;P ¤ tS;P for S an arbitrary slice disk of K , then this implies
that B is indeed exotic.

The approach of Freedman et al only works if K is not slice in the standard 4–ball, but
it is in the homotopy 4–ball B . By the work of Ozsváth and Szabó [26, Theorem 1.1],
the � invariant vanishes if K bounds a disk in a homotopy ball, and so does Rasmussen’s
s invariant according to Kronheimer and Mrowka [19], so neither can be used for the
above purpose. We could use any other theory equipped with knot concordance maps
in manifolds homeomorphic to S3 � I. However, note that the Khovanov homology
concordance maps of Jacobsson [12] are only defined when the ambient manifold is
diffeomorphic to S3 � I.

A knot is called doubly slice if it is a hyperplane cross-section of an unknotted S2 in S4.
Motivated by a question of Fox [5] asking which knots are doubly slice, Sumners [38]
introduced the notion of invertible knot cobordisms. In his terminology, cobordism
stands for concordance; we use the latter for clarity.
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Definition 1.5 Let K0 and K1 be knots in S3. We say that a concordance .S3�I;F /

from K0 to K1 is invertible if there is a concordance .S3�I;F 0/ from K1 to K0 such
that the composition of .S3�I;F / and .S3�I;F 0/ from K0 to K0 is equivalent to the
trivial cobordism. We write K0�K1 if there is an invertible cobordism from K0 to K1 .

In other words, F is invertible if and only if .S3 � I;F / has a left inverse in the
cobordism category of links. A knot K is doubly slice if and only if U � K . The
relation � is a partial order on the set of knots in S3, which follows from Silver and
Whitten [36], as we shall explain later.

Theorem 1.6 If there is an invertible concordance from K0 to K1 , then

dim bHFKj .K0; i/� dim bHFKj .K1; i/

for every i; j 2 Z.

This provides an obstruction to the existence of an invertible concordance from K0

to K1 . According to the work of Manolescu, Ozsváth and Sarkar [23], knot Floer ho-
mology is algorithmically computable, and Baldwin and Gillam [3] used this algorithm
to compute it for knots with at most 12 crossings.

For a knot K in S3, we denote its Seifert genus by g.K/. Ozsváth and Szabó [27]
proved that knot Floer homology detects the genus of a knot, in the sense that

g.K/Dmaxfi 2 Z W bHFK�.K; i/¤ 0g:

For a simpler proof of this fact, see Ni [25]. Furthermore, knot Floer homology also
detects fibredness of knots, as dim bHFK�.K;g.K// D 1 if and only if K is fibred.
This was shown by Ghiggini [8] in the genus one case, and by Ni [25] and the first
author [14; 15] in the general case. These two results, together with Theorem 1.6,
immediately imply the following unpublished result of Ruberman.

Corollary 1.7 The function g is monotonic with respect to the partial order � induced
by invertible concordance. More concretely, if there is an invertible concordance
from K0 to K1 , then g.K0/ � g.K1/. Furthermore, if K1 is fibred and g.K0/ is
equal to g.K1/, then K0 is also fibred.

We now outline a more elementary proof of these results communicated to us by
Ruberman, and which does not use the assumption g.K0/ D g.K1/ for the second
statement. Also see the proof of Silver and Whitten [36, Proposition 3.7] and the
paragraph following it.
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Proof Let F be an invertible concordance from K0 to K1 with inverse F 0. Then
there is a diffeomorphism d W S3 � I ! S3 � I such that d.F 0 ı F / D K0 � I

and d jS3�@I is the identity. Let i W S3! S3 � I be the embedding i.x/ D
�
x; 1

2

�
,

and let pW S3 � I ! S3 be the projection. Then the composition

f D p ı d ı i W S3
! S3

maps K1 to K0 such that f �1.K0/DK1 . We can isotope d such that d
�
K1�

˚
1
2

	�
becomes transverse to the I–fibration of K0 � I, and hence f jK1

is an embedding
with image K0 . If S is a minimal genus Seifert surface for K1 , then f jS satisfies the
conditions of [7, Corollary 6.23], hence there exists a Seifert surface T of K0Df .K1/

such that g.T /�g.S/. It follows that g.K0/�g.K1/. Recall that [7, Corollary 6.23]
is a deep generalization of Dehn’s lemma to higher genus surfaces due to Gabai. It
states that if M is a compact oriented 3–manifold, S a compact oriented surface
with connected boundary, and f W S !M a map such that f j@S is an embedding
and f �1.f .@S// D @S , then there exists an embedded surface T in M such that
@T D f .@S/ and g.T /� g.S/.

Let E.Ki/ denote the exterior of the knot Ki for i 2 f0; 1g. Then

f jE.K1/W E.K1/!E.K0/

is a degree-one map as it is an orientation-preserving diffeomorphism between the
boundary tori. Hence, by Rong [33, Lemma 1.2], it induces a surjection on the
fundamental groups, and also on the commutator subgroups. If K1 is fibred, then the
commutator subgroup �1.E.K1//

0 is finitely generated, hence �1.E.K0//
0 is also

finitely generated, so K0 is fibred by a result of Stallings [37].

Let K and K0 be knots in S3 such that there is an epimorphism �1.E.K//!�1.E.K
0//

preserving peripheral structure. By Silver and Whitten [36], this induces a partial
order � on the set of knots. For example, if there is a degree-one map

.E.K/; @E.K//! .E.K0/; @E.K0//;

in particular if K �K0, then K �K0. Notice that this implies that � is also a partial
order. Based on the above proof and Theorem 1.6, it is natural to ask whether K �K0

also implies that

(1-1) dim bHFK�.K; i/� dim bHFK�.K0; i/

for every i 2Z. Note that this would imply [36, Conjecture 3.6] claiming that, if K�K0,
then g.K/ � g.K0/. Compare this with Karakurt and Lidman [18, Conjecture 9.4],
which claims that if f W Y ! Y 0 is a nonzero-degree map between integer homology
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spheres, then dimbHF.Y / � dimbHF.Y 0/. However, inequality (1-1) turns out to be
false due to the following example constructed by Jennifer Hom.

Example 1.8 Let K D .T2;3/2;3 be the .2; 3/–cable of the right-handed trefoil T2;3 ,
and let K0 D T2;3 . Then K �K0. In fact, there is a degree-one map

.E.K/; @E.K//! .E.K0/; @E.K0//:

Indeed, let T �E.K/ be the boundary of the solid torus used in the satellite construction
for K . Then the exterior of T is E.K0/, hence fibred over S1. If we collapse the fibres
to disks, we obtain a degree-one map from the exterior of T to D2�S1, and hence
from E.K/ to E.K0/. But both K and K0 are determined by their Alexander polyno-
mials, K0 because it is alternating, and K by the work of Hedden [9, Theorem 1.0.6].
The symmetrized Alexander polynomial of K is

t3
� t2
C 1� t�2

C t�3;

while the symmetrized Alexander polynomial of K0 is t�1C t�1. So bHFK.K; 1/D 0

and bHFK.K0; 1/D Z2 , violating inequality (1-1).

In light of this, we propose the following weaker question.

Question 1.9 Suppose that K �K0. Then is it true that

dim bHFK.K/� dim bHFK.K0/?

The paper is organized as follows: In Section 2, we review sutured manifold cobor-
disms and the maps induced by them on sutured Floer homology. In Section 3, we
define the knot concordance maps, show that they preserve the Alexander grading
(Proposition 3.10), and prove Theorem 1.6. Section 4 gives a brief overview of spectral
sequences arising from a filtered complex. In Section 5, we show that, on the chain
level, a knot concordance map can be represented by a chain map that preserves
the Alexander filtration (Theorem 5.4) and therefore induces a morphism of spectral
sequences (Theorem 5.5); this is precisely the second part of Theorem 1.2. Corollary 1.3
follows from Corollary 5.7. Finally, we prove in Section 6 that the knot concordance
maps preserve the homological grading, which concludes the proof of Theorem 1.2.
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2 Cobordisms of sutured manifolds

In this section, we briefly review sutured manifold cobordisms, and the maps they
induce on sutured Floer homology, as defined by the first author [16].

2A Sutured manifolds and sutured cobordisms

Definition 2.1 [7, Definition 2.6] A sutured manifold is a compact oriented 3–
manifold M with boundary together with a set  �@M of pairwise disjoint annuli A. /

and tori T . /. Furthermore, the interior of each component of A. / contains a
homologically nontrivial oriented simple closed curve, called a suture. We denote the
set of sutures by s. /.

Finally, every component of R. / D @M n Int. / is oriented such that @R. / is
coherent with the sutures. Let RC. / (or R�. /) denote the components of R. /

whose normal vectors points out of (into) M .

Definition 2.2 [13, Definition 2.2] We say that a sutured manifold .M;  / is balanced
if M has no closed components, �.RC. // is equal to �.R�. //, and the map
�0.A. //! �0.@M / is surjective.

From now on, we only consider sutured manifolds where T . /D∅, and view  as a
“thickened” oriented 1–manifold. So we often do not distinguish between  and s. /;
it shall be clear from the context which one we mean.

Definition 2.3 [16, Definition 2.3] Let .M;  / be a sutured manifold, and suppose
that �0 and �1 are contact structures on M such that @M is a convex surface with
dividing set  with respect to both �0 and �1 . Then we say that �0 and �1 are equivalent
if there is a 1–parameter family f�t W t 2 Ig of contact structures such that @M is
convex with dividing set  with respect to �t for every t 2 I. In this case, we write
�0 � �1 , and we denote by Œ�� the equivalence class of the contact structure � .

Definition 2.4 [16, Definitions 2.4 and 2.14] Let .M0; 0/ and .M1; 1/ be sutured
manifolds. A cobordism from .M0; 0/ to .M1; 1/ is a triple WD .W;Z; Œ��/, where

� W is a compact oriented 4–manifold with boundary,
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� Z � @W is a compact, codimension-0 submanifold with boundary (viewed
within @W ), such that @W n Int.Z/D�M0tM1 , and we view Z as a sutured
manifold with sutures 0[ 1 ,

� � is a positive contact structure on Z such that @Z is a convex surface with
dividing set i on @Mi for i 2 f0; 1g.

Finally, a cobordism is called balanced if both .M0; 0/ and .M1; 1/ are balanced.

In this paper, we will only consider balanced sutured manifolds and balanced cobor-
disms.

Definition 2.5 [16, Definition 2.7] We call two cobordisms W D .W;Z; Œ��/ and
W 0 D .W 0;Z0; Œ� 0�/ from .M0; 0/ to .M1; 1/ equivalent if there is an orientation-
preserving diffeomorphism 'W W ! W 0 such that d.Z/ D Z0, d�.�/ D � 0 and
d jM0[M1

D Id.

Definition 2.6 [16, Definition 10.4] A cobordism W D .W;Z; Œ��/ from .M0; 0/

to .N; 1/ is a boundary cobordism if W is balanced, N is parallel to M0[ .�Z/,
and we are also given a deformation retraction r W W � Œ0; 1� ! M0 [ .�Z/ such
that r0jW D IdW and r1jN is an orientation-preserving diffeomorphism from N

to M0[ .�Z/.

Definition 2.7 [16, Definition 5.1] We say that a cobordism W D .W;Z; Œ��/

from .M0; 0/ to .M1; 1/ is special if

(1) W is balanced,

(2) @M0 D @M1 , and Z D @M0 � I is the trivial cobordism between them,

(3) � is an I–invariant contact structure on Z such that each @M0�ftg is a convex
surface with dividing set 0 � ftg for every t 2 I with respect to the contact
vector field @=@t .

In particular, it follows from (3) that 0 D 1 .

Remark 2.8 Every sutured cobordism can be seen as the composition of a boundary
cobordism and a special cobordism; see [16, Definition 10.1]. Let W D .W;Z; Œ��/ be
a balanced cobordism from .M0; 0/ to .M1; 1/. Let .N; 1/ be the sutured manifold
.M0[ .�Z/; 1/. Then we can think of the cobordism W as a composition Ws ıWb ,
where Wb is a boundary cobordism from .M0; 0/ to .N; 1/ and Ws is a special
cobordism from .N; 1/ to .M1; 1/.
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2B Relative Spinc structures

Definition 2.9 [16, Definition 3.1] Given a sutured manifold .M;  /, we say that a
vector field v defined on a subset of M containing @M is admissible if it is nowhere
vanishing, it points into M along R�. /, it points out of M along RC. /, and vj is
tangent to @M and either points into RC. / or is positively tangent to  (we think
of @M as a smooth surface, and of  as a 1–manifold).

Let v and w be admissible vector fields on M . We say that v and w are homologous,
and we write v � w , if there is a collection of balls B �M , one in each component
of M , such that v and w are homotopic on M nB through admissible vector fields.
Then Spinc.M;  / is the set of homology classes of admissible vector fields on M .

If .M;  / is balanced, Spinc.M;  / is an affine space over H 2.M; @M /. Throughout
this paper, we will denote relative Spinc structures by sı , to distinguish them from
ordinary Spinc structures on oriented 3–manifolds, usually denoted by s.

Remark 2.10 Let v0 be a fixed vector field on @M arising as vj@M for some admissi-
ble vector field v on M . We define Spinc

v0
.M;  / as the set of nowhere vanishing vector

fields on M that restrict to v0 on @M , up to isotopy through such vector fields relative
to @M in the complement of a collection of balls. Since the space of all possible v0 is
contractible, Spinc

v0
.M;  / can be canonically identified with Spinc.M;  /. This was

the approach taken in [13].

Definition 2.11 [16, Definition 3.2] Let .M;  / be a sutured manifold. We say that
an oriented 2–plane field � defined on a subset of M containing @M is admissible if
there exists a Riemannian metric g on M such that �?g is an admissible vector field.
If � is defined on the whole manifold M , we write

sı� D Œ�
?g � 2 Spinc.M;  /:

This is independent of the choice of g since the space of metrics g for which �?g is
an admissible vector field is convex.

We now recall the notion of relative Spinc structures on sutured cobordisms. If J is an
almost complex structure on a 4–manifold W and H is a 3–dimensional submanifold,
then there is a 2–plane field induced on H called the field of complex tangencies
along H ; see [16, Lemma 3.4].

Definition 2.12 [16, Definition 3.5] Suppose that W D .W;Z; Œ��/ is a cobordism
from the sutured manifold .M0; 0/ to .M1; 1/. We say that an almost complex
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structure J defined on a subset of W containing @Z is admissible if the field of
complex tangencies on Mi (defined on a subset of Mi containing @Mi ) is admissible
in .Mi ; i/ for i 2 f0; 1g, and the field �J of complex tangencies on Z (defined on a
subset of Z containing @Z ) is admissible in .Z; 0[ 1/.

A relative Spinc structure on W is a homology class of pairs .J;P /, where

� P � Int.W / is a finite collection of points,

� J is an admissible almost complex structure defined over W nP ,

� if �J is the field of complex tangencies along Z , then sı
�
D sı

�J
.

We say that .J;P / and .J 0;P 0/ are homologous if there exists a compact 1–manifold
C � W n @Z such that P;P 0 � C ; furthermore, J jW nC and J 0jW nC are isotopic
through admissible almost complex structures. We denote by Spinc.W/ the set of
relative Spinc structures over W .

Remark 2.13 As in the case of sutured manifolds, we will denote relative Spinc

structures on sutured cobordisms by sı , in order to distinguish them from ordinary
Spinc structures on oriented 4–manifolds, which we denote by s, in analogy with the
case of oriented 3–manifolds.

Remark 2.14 Spinc.W/ is an affine space over

ker
�
H 2.W; @Z/!H 2.Z; @Z/

�
:

There are restriction maps

Spinc.W /! Spinc.Mi ; i/

for i 2 f0; 1g.

2C Sutured Floer homology

The first author [13] associated an F2 –vector space SFH.M;  / to each balanced
sutured manifold .M;  /, called the sutured Floer homology of .M;  /. It splits along
the relative Spinc structures on .M;  /:

SFH.M;  /D
M

sı2Spinc.M; /

SFH.M; ; sı/:

Each vector space SFH.M; ; sı/ is an invariant of the sutured manifold together with
the relative Spinc structure. Sutured Floer homology is a common generalization
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of Heegaard Floer homology of closed oriented 3–manifolds [29] and knot Floer
homology [28; 31].

The first author proved [16] that a balanced cobordism W from .M0; 0/ to .M1; 1/

induces a homomorphism

FW W SFH.M0; 0/! SFH.M1; 1/:

If W is endowed with a relative Spinc structure sı , then we also have a map

FW; sı W SFH.M0; 0; s
ı
jM0

/! SFH.M1; 1; s
ı
jM1

/:

Let BSut denote the category of balanced sutured manifolds and equivalence classes
of cobordisms, whereas VectF2

denotes the category of vector spaces over F2 .

Theorem 2.15 [16, Theorem 11.12] SFH defines a functor BSut! VectF2
, which

is a .3C1/–dimensional TQFT in the sense of [2] and [4].

We conclude this section by outlining the construction of the cobordism map associated
to a balanced cobordism. Let WD .W;Z; Œ��/ be a balanced cobordism from .M0; 0/

to .M1; 1/, and suppose that every component Z0 of Z intersects M1 (this last
hypothesis can actually be dropped; see [16, Section 10]). According to Remark 2.8,
we can view W as the composition of a boundary cobordism Wb from .M0; 0/

to .N; 1/ and a special cobordism Ws from .N; 1/ to .M1; 1/. Using the contact
gluing map defined by Honda, Kazez and Matić [11], the first author [16, Section 9]
constructed a map

FWb W SFH.M0; 0/! SFH.N; 1/

associated to the special cobordism Wb .

The special cobordism Ws also induces a map: Choose a decomposition of Ws

as W3 ıW2 ıW1 , where Wi is the trace of i–handle attachments. The first author [16]
defined a map FWi

associated to each cobordism Wi , and the map associated to Ws

is defined as

FWs D FW3
ıFW2

ıFW1
W SFH.N; 1/! SFH.M1; 1/:

Finally, the cobordism map FW is the composition FWs ıFWb , which is independent
of all the choices made.

All cobordism maps above admit refinements FW; sı along relative Spinc structures.
The map FW can be recovered from the maps FW; sı for all Spinc structures [16,
Definition 10.9 and Proposition 10.11], and the Spinc cobordism maps satisfy a type
of composition law [16, Theorem 11.3].
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3 Knot concordance maps

In [16], the first author constructed maps induced on knot Floer homology by decorated
link cobordisms. We recall the necessary definitions, starting with reviewing the real
blowup procedure.

Definition 3.1 Suppose that M is a smooth manifold, and let L�M be a properly
embedded submanifold. For every p 2 L, let NpL D TpM=TpL be the fibre of
the normal bundle of L over p , and let UNpL D .NpL n f0g/=RC be the fibre of
the unit normal bundle of L over p . Then the (spherical) blowup of M along L,
denoted by BlL.M /, is a manifold with boundary obtained from M by replacing each
point p 2 L by UNpL. There is a natural projection BlL.M /! M . For further
details, see Arone and Kankaanrinta [1].

We now review decorated links, required to define knot Floer homology functorially.
The following is [16, Definition 4.4].

Definition 3.2 A decorated link is a triple .Y;L;P /, where L is a nonempty link
in the connected oriented 3–manifold Y , and P � L is a finite set of points. We
require that for every component L0 of L, the number jL0\P j is positive and even.
Furthermore, we are given a decomposition of L into compact 1–manifolds RC.P /

and R�.P / such that RC.P /\R�.P /D P .

We can canonically assign a balanced sutured manifold Y .L;P /D .M;  / to every
decorated link .Y;L;P /, as follows. Let M D BlL.Y / and  D

S
p2P UNpL.

Furthermore,
R˙. / WD

[
x2R˙.P/

UNxL;

oriented as ˙@M , and we orient  as @RC. /.

The following is [16, Definiton 4.2].

Definition 3.3 A surface with divides .S; �/ is a compact orientable surface S , pos-
sibly with boundary, together with a properly embedded 1–manifold � that divides S

into two compact subsurfaces that meet along � .

We are now ready to define decorated link cobordisms. The following is [16, Defini-
tion 4.5].

Definition 3.4 We say that the triple X D .X;F; �/ is a decorated link cobordism
from .Y0;L0;P0/ to .Y1;L1;P1/ if
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(1) .X;F / is a link cobordism from .Y0;L0/ to .Y1;L1/,

(2) .F; �/ is a surface with divides such that the map

�0.@�/! �0..L0 nP0/[ .L1 nP1//

is a bijection,

(3) we can orient each component R of F n � such that whenever @R crosses a
point of P0 , it goes from RC.P0/ to R�.P0/, and whenever it crosses a point
of P1 , it goes from R�.P1/ to RC.P1/,

(4) if F0 is a closed component of F, then � \F0 ¤∅.

Finally, we recall how to associate a sutured manifold cobordism complementary to
a decorated link cobordism. For this purpose, we first discuss S1–invariant contact
structures on circle bundles; see also [16, Section 4]. Let � W M ! F be a principal
circle bundle over a compact oriented surface F . An S1–invariant contact structure �
on M determines a diving set � on the base F , by requiring that x 2 � if and only if
� is tangent to ��1.x/, and a splitting of F as RC.�/[R�.�/. The image of any
local section of � is a convex surface with dividing set projecting onto � . According
to Lutz [21] and Honda [10, Theorem 2.11 and Section 4], given a dividing set �
on F that intersects each component of F nontrivially and divides F into subsurfaces
RC.�/ and R�.�/, there is a unique S1–invariant contact structure �� on M , up to
isotopy, such that the dividing set associated to �� is exactly � , the coorientation of ��
induces the splitting R˙.�/, and the boundary @M is a convex.

The following is [16, Definition 4.9].

Definition 3.5 Let .X;F; �/ be a decorated link cobordism from the decorated
link .Y0;L0;P0/ to .Y1;L1;P1/. We define the sutured cobordism W DW.X;F; �/

as follows. Choose an arbitrary splitting of F into RC.�/ and R�.�/ such that
RC.�/ \ R�.�/ D � , and orient F such that @RC.�/ (with RC.�/ oriented as
a subsurface of F ) crosses P0 from RC.P0/ to R�.P0/ and P1 from R�.P1/

to RC.P1/. Then W is defined to be the triple .W;Z; Œ��/, where W D BlF .X /
and Z D UNF , oriented as a submanifold of @W , finally � D �� is an S1–invariant
contact structure with dividing set � on F and convex boundary @Z with dividing set
projecting to P0[P1 .

The contact vector fields with respect to which a local section of UNF!F and @Z are
transverse are different, so they can project to different subsets of L0[L1 . Specifically,
the dividing set for @Z projects to P0[P1 , while @� is disjoint from P0[P1 .
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Notice that if F does not have any closed component, then it deformation retracts onto
a 1–dimensional CW complex, and therefore any S1–bundle on it has a section, hence
is trivial if the bundle is orientable. In particular, UNF � F �S1.

In the present paper, we only consider decorated links .Y;L;P / where Y D S3, the
link L has a single component, and jP j D 2. Hence, we drop Y from the notation
and only write .K;P / for such a decorated knot.

Definition 3.6 A decorated concordance is a decorated link cobordism .X;F; �/

such that

(1) X is an integer homology S3 � I with boundary .�S3/tS3,

(2) the surface F is an annulus, and

(3) � consists of two arcs connecting the two components of @F.

If X D S3 � I, we drop X from the notation and only write .F; �/.

Lemma 3.7 Let X be an oriented cobordism from S3 to S3. Then X has the same
homology and cohomology as S3 � I if and only if H1.X /DH2.X /D 0.

Proof The “only if” part is obvious. So suppose that H1.X /DH2.X /D 0. Then
let X be the closed 4–manifold obtained by gluing two 4–balls to @X . We denote
by B �X the union of these 4–balls. Then, for i 2 f1; 2g, we have

0DHi.X /ŠH 4�i.X; @X /ŠH 4�i.X ;B/ŠH 4�i.X /:

Here, the first isomorphism follows from Poincaré–Lefschetz duality, the second from
excision, and the third from the cohomological long exact sequence of the pair .X ;B/.
So H 2.X /DH 3.X /D 0, hence

H1.X /ŠH 3.X /D 0 and H 1.X /D Hom.H1.X /;Z/D 0:

As X has the same integral cohomology is S4, after removing two balls, X has the
same integral homology and cohomology as S3 � I.

It follows from [16, Proposition 4.10] that a decorated concordance C D .X;F; �/
from .K0;P0/ to .K1;P1/ induces a homomorphism

FC W bHFK.K0;P0/! bHFK.K1;P1/;

where bHFK.Ki ;Pi/ are the natural knot Floer homology groups defined in [17].
Indeed, W D W.X;F; �/ is a cobordism from the sutured manifold S3.K0;P0/

to S3.K1;P1/, and hence induces a homomorphism

FW W SFH.S3.K0;P0//! SFH.S3.K1;P1//:
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But SFH.S3.K0;P0//Š bHFK.K0;P0/ and SFH.S3.K1;P1//Š bHFK.K1;P1/ tau-
tologically. This assignment is functorial under composition of link cobordisms.

3A Relative Spinc structures and knot concordances

In the case of knot concordances, the relative Spinc structures behave nicely, as
explained in this section.

Lemma 3.8 Suppose C D .X;F; �/ is a decorated concordance from .K0;P0/

to .K1;P1/. If .Mi ; i/D S3.Ki ;Pi/ is the balanced sutured manifold complemen-
tary to .Ki ;Pi/ for i 2 f0; 1g, and W DW.C/D .W;Z; Œ��/ is the sutured manifold
cobordism from .M0; 0/ to .M1; 1/ complementary to C , then

(3-1) FW D
M

sı2Spinc.W/

FW; sı :

Furthermore, Spinc.W/ is an affine space over H 2.W;Z/ Š Z, and the restriction
maps

ri W Spinc.W/! Spinc.Mi ; i/

are isomorphisms for i 2 f0; 1g.

Proof As in Remark 2.8, we write WDWsıWb , where Wb is a boundary cobordism
from .M0; 0/ to .N; 1/, where N DM0[ .�Z/, and Ws is a special cobordism
from .N; 1/ to .M1; 1/. As Z is a product, N is diffeomorphic to the knot comple-
ment M0 � S3 nN.K0/, and hence H2.N /D 0. So, by [16, Remark 10.10] and [16,
Proposition 10.11],

FW D
M

sı2Spinc.W/

FW; sı :

As H k.Z; @M1/D 0 for k 2 f1; 2g, we can apply [16, Lemma 3.7] to conclude that

Spinc.W/ŠH 2.W; @M1/:

Of course, H 2.W; @M1/ Š H 2.W; @M0/ Š H 2.W;Z/. By excision, we have that
H 2.W;Z/ŠH 2.X;N.F //, where N.F / is a regular neighbourhood of F . From the
long exact sequence of the pair .X;N.F // and the fact that H 1.X /DH 2.X /D 0,
and since H 1.N.F //ŠH 1.S1/Š Z, we obtain that H 2.X;N.F //Š Z.

The restriction maps
ri W Spinc.W/! Spinc.Mi ; i/
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for i 2 f0; 1g are modelled on the restriction maps H 2.W; @Mi/! H 2.Mi ; @Mi/

for i 2 f0; 1g. From the long exact sequence of the triple .W;Mi ; @Mi/, the sequence

(3-2) H 2.W;Mi/!H 2.W; @Mi/!H 2.Mi ; @Mi/!H 3.W;Mi/

is exact. Now consider the relative Mayer–Vietoris sequence of the pairs .W;Mi/

and .N.F /;N.Ki//, whose union is .X; @iX /, where @iX � S3 is the ingoing
boundary component of X when i D 0 and is the outgoing boundary component
when i D 1:

H k.X; @iX /!H k.W;Mi/˚H k.N.F /;N.Ki//!H k.Z; @Mi/:

Here, H k.X; @iX / Š H k.S3 � I;S3 � f0g/ D 0, and the last term is zero as Z

deformation retracts onto @Mi . Consequently, H k.W;Mi/D 0 for every k , and by
the exact sequence (3-2), this means that the restriction maps ri are isomorphisms
for i 2 f0; 1g.

In the following lemma, v0 denotes any fixed vector field on a balanced sutured mani-
fold .M;  / obtained by restricting an admissible vector field to @M ; see Definition 2.9
and Remark 2.10.

Lemma 3.9 Let C D .X;F; �/ be a knot concordance from .K0;P0/ to .K1;P1/.
As in Lemma 3.8, let .Mi ; i/D S3.Ki ;Pi/ for i 2 f0; 1g, and let

W DW.C/D .W;Z; Œ��/:

For i 2 f0; 1g, let Si be a Seifert surface for Ki , and let ti be the trivialization of v?
0

given by a vector field tangent to @Mi in the meridional direction. Then, for any relative
Spinc structure sı 2 Spinc.W/,

(3-3) hc1.r0.s
ı/; t0/; ŒS0�i D hc1.r1.s

ı/; t1/; ŒS1�i;

where r0 and r1 are the restriction maps in Lemma 3.8.

From Lemma 3.9, we can already deduce the following proposition, which can be seen
as a first step towards the proof of Theorem 1.2.

Proposition 3.10 If C is a decorated concordance between two knots .K0;P0/

and .K1;P1/, then the map induced between the knot Floer homologies preserves the
Alexander grading; that is,

FC. bHFK.K0;P0; i//� bHFK.K1;P1; i/

for every i 2 Z.
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Proof We use the same notation as in Lemmas 3.8 and 3.9. It follows from Lemma 3.8
that the map FCDFW splits as the sum of the maps FW; sı for sı2Spinc.W/; see (3-1).
It is therefore sufficient to check that, for every relative Spinc structure sı 2 Spinc.W/,
the map

FW; sı W SFH.M0; 0; s
ı
jM0

/! SFH.M1; 1; s
ı
jM1

/

preserves the Alexander grading.

According to the proof of [14, Theorem 1.5] on page 333, if ti is the trivialization
of v?

0
given by a vector field tangent to @Mi in the meridional direction, then

SFH.Mi ; i ; s
ı/D bHFK

�
Ki ;Pi ;�

1
2
hc1.s

ı; ti/; ŒSi �i
�
;

where Si is a Seifert surface of Ki for i 2 f0; 1g. The result now follows from
Lemma 3.9, which states that

hc1.s
ı
jM0

; t0/; ŒS0�i D hc1.s
ı
jM1

; t1/; ŒS1�i:

Proof of Lemma 3.9 Choose an admissible almost complex structure J on W nP

whose homology class is sı , where P � Int.W / is a finite set of points, as in
Definition 2.12. Let �J be the field of complex tangencies of J along Z . Then,
by definition, sı

�
D sı

�J
. In fact, we can choose J such that �J D � . Choose a

trivialization of the normal S1–bundle of F whose total space is Z . If we identify F

with S1 � I such that � maps to P0 � I for P0 D � \K0 , then this identification,
together with the above trivialization, induces a diffeomorphism d W Z! S1�S1� I,
where the first factor is the fibre direction, and such that � is mapped to an I–invariant
contact structure with dividing set S1 �P0 � fag on S1 �S1 � fag for every a 2 I,
and f�g �P0 � I on f�g � S1 � I for every � 2 S1. Hence, we can perturb the 2–
plane field � such that it is always tangent to the second S1 factor, ie the longitudinal
direction. So we can choose J such that �J is also invariant in the � direction, and it
contains the longitude direction. If v is a nowhere zero section of �J tangent to the
longitude direction, then — under a homotopy of �J j@Mi

to v?
0

through admissible
2–plane fields — the vector field vj@M0

represents a trivialization �0 that corresponds
to t0 and vj@M1

represents a trivialization �1 that corresponds to t1 .

The 2–plane field �J , together with the trivialization given by v , gives a complex 1–
dimensional subbundle of .TW jZ ;J / together with a trivialization. The complement
of �J is also trivial, canonically trivialized by its intersection with TZ , which then
gives rise to a trivialization � of TW jZ . As J is defined over the 3–skeleton of W ,
it makes sense to talk about the relative Chern class c1.TW;J; �/ 2H 2.W;Z/. If �i

J

denotes the field of complex tangencies of J along Mi , then the complement of �i
J

is
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a trivial bundle (trivialized by its intersection with TMi ), so

c1.�
i
J ; �i/D c1.TW jMi

;J; �/D c1.TW;J; �/jMi
;

where the second equality follows from the naturality of Chern classes. By construction,
�i

J
represents sıi .

Recall that Si is a Seifert surface of Ki for i 2 f0; 1g. Note that H2.W;Z/ŠZ, and
that there is a bilinear intersection pairing

H2.W;Z/˝H2.W;M0[M1/! Z:

Consider the cycle m D S1 � fptg � I in C2.W;M0 [M1/. As both S0 and S1

intersect m once positively, they both represent the generator of H2.W;Z/ Š Z.
Hence

hc1.s
ı
0; �0/; ŒS0�i D hc1.W;J; �/; ŒS0�i D hc1.TW;J; �/; ŒS1�i D hc1.s

ı
1; �1/; ŒS1�i;

and (3-3) follows as we saw that �0 corresponds to t0 and �1 corresponds to t1 .

As a consequence of Proposition 3.10, we can prove Theorem 1.6.

Proof of Theorem 1.6 Suppose that F is an invertible concordance from K0 to K1 .
Choose an arbitrary pair of points P0 on K0 and P1 on K1 , making them into decorated
knots, and an arbitrary pair of arcs � on F making F into a decorated concordance
from .K0;P0/ to .K1;P1/. Let F 0 be the inverse of F , and choose a decoration � 0

on it such that .F 0; � 0/ is a decorated concordance from .K1;P1/ to .K0;P0/. As
the composition of F and F 0 is equivalent to the trivial cobordism K0 � I from K0

to K0 , we can choose � 0 such that the composition of C D .F; �/ and C0 D .F 0; � 0/
is equivalent to the product decorated cobordism .K0� I;P � I/, where P D � \K0

is a pair of points. By the functoriality of FC and the fact that a product cobordism
induces the identity map,

FC0 ıFC D IdbHFK.K0;P0/
;

and so FC is injective. We shall see in Section 6 that FC preserves the homological
grading. Hence Proposition 3.10 implies that

dim bHFKj .K0;P0; i/� dim bHFKj .K1;P1; i/

for every i; j 2 Z. Up to isomorphism, bHFKj .Ki ;Pi/ is independent of the choice
of Pi , and the result follows.

We shall see in Section 6 that the concordance maps also preserve the homological
grading. Then we have the following.
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Lemma 3.11 Suppose C D .X;F; �/ is a decorated concordance from .K0;P0/

to .K1;P1/. If K0 is the unknot U , then the element

FC.1/ 2 bHFK0.K1;P1; 0/

is independent of the decorations � and P0 , where 1 2 bHFK.K0;P0/Š Z2 .

Proof Suppose that � 0 is another decoration with the same endpoints as � , let
C0 D .X;F; � 0/, and define

k D Œ� 0� �� 2H1.F /Š Z:

Consider the decorated concordance Ck D .S3 � I; U � I; �k/, where �k spirals
around k times. Then C0 D C ı Ck . As bHFK.U / Š Z2 , we have FCk

D IdZ2
. By

the functoriality of the knot concordance maps, we obtain that FC0 D FC . Since
bHFK.U /Š Z2 has no nontrivial automorphisms, it does not matter how we choose

the markings P0 .

4 Filtered complexes and spectral sequences

In this section, we briefly recall the definitions and properties of spectral sequences
that we need. We mainly refer to the book of McCleary [24]. The spectral sequences
we are interested in arise from filtered chain complexes, so we focus on this case only.

Definition 4.1 A filtered chain complex is a chain complex
�
C D

L
k2Z Ck ; @

�
, such

that @Ck � Ck�1 , with a nested sequence of subcomplexes

� � � � Fp�1C � FpC � FpC1C � � � �

such that
S

p2Z FpC D C and @.FpC /� FpC .

We say that the filtered chain complex is bounded if there are integers a� b such that

f0g D FaC � � � � � FbC D C:

We obtain a spectral sequence from a filtered chain complex as follows; see [24, Proof
of Theorem 2.6].

Definition 4.2 For p; q; r 2 Z, we define

Zr
p;q D FpCpCq \ @

�1.Fp�r CpCq�1/;

Br
p;q D FpCpCq \ @.FpCr CpCqC1/;

Z1p;q D FpCpCq \ ker @;

B1p;q D FpCpCq \ im @:
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For 0 � r � 1, the r–page (or r–term) is the complex
�
Er D

L
p;q2Z Er

p;q; @
r
�
,

where

Er
p;q D

Zr
p;q

Zr�1
p�1;qC1

CBr�1
p;q

;

and the differential
@r
W Er

p;q!Er
p�r;qCr�1

is induced by the differential @ on the complex C .

Sometimes we only focus on the p grading. In such cases, we drop q from the notation,
and write Er

p D
L

q2Z Er
p;q . For the following, see [24, Proof of Theorem 2.6].

Theorem 4.3 The pages f.Er ; @r /g induced by a filtered chain complex form a
spectral sequence in the sense of [24, Definition 2.2]; ie

ErC1
p;q DHp;q.E

r
�;�; @

r / WD
ker.@r jEr

p;q
/

im.@r jEr
pCr;q�rC1

/
:

If the filtration is bounded, then there is a canonical isomorphism

E1p;q Š
Fp.HpCq.C //

Fp�1.HpCq.C //
;

where the filtration on the total homology H.C /D
L

k2Z Hk.C / is the one induced
from C :

Fp.H.C // WD im
�
H.FpC; @jFpC /!H.C; @/

�
:

Remark 4.4 Notice that E0
p;q is the graded module

FpCpCq

Fp�1CpCq

associated with the filtration. The page E1
p;q is the homology Hq.E

0
p;�; @

0/ of the
associated graded module with the induced differential.

4A Morphisms of spectral sequences

According to McCleary [24], we have the following.

Definition 4.5 Let .Er ; @r / and .Er ; x@r / be spectral sequences. A morphism of
spectral sequences is a sequence of module homomorphisms f r W Er

�;� ! Er
�;�

for r 2N , of bidegree .0; 0/, such that f r commutes with the differentials; that

Geometry & Topology, Volume 20 (2016)



3644 András Juhász and Marco Marengon

is, f r ı @r D x@r ıf r, and each f rC1 is induced by f r on homology; ie f rC1 is the
composite

f rC1
W ErC1
�;� ŠH.Er

�;�; @
r /

H .f r /
����!H.Er

�;�;
x@r /ŠErC1

�;� :

Remark 4.6 Let f W C ! C be a map of filtered complexes of homological degree
zero; ie

� f .Ck/� C k ,

� f ı @D x@ ıf ,

� f .FpC /� FpC .

Then f induces a morphism between the spectral sequences associated to C and C .

Remark 4.7 If .Er; @r / and .Er; x@r / are bounded spectral sequences, ff r W Er!Er g

is a morphism of spectral sequences, and f1 is nonzero on E1p;q , then f r is nonzero
on Er

p;q for all r 2N .

4B The � invariant

In this subsection, we recall the definition and few properties of the Ozsváth–Szabó �
invariant, and we discuss it in a slightly more general setting.

Definition 4.8 If C is a nonacyclic bounded filtered complex over F2 , we define

�.C / WDminfp 2 Z WH.FpC /!H.C / is nontrivialg:

Definition 4.8 generalizes the Ozsváth–Szabó � invariant in the sense that, if CDcCF.H/
for some Heegaard diagram for a decorated knot .K;P /, then �.C /D�.K/.

Remark 4.9 An alternative definition of �.C / is given by the following property:

E1p .C /

�
D 0 if p < �.C /;

6D 0 if p D �.C /:

Furthermore, if the total homology H.C /D F2 , then

E1p .C /

�
D 0 if p 6D �.C /;

6D 0 if p D �.C /:

We conclude the section with a technical lemma that we will use to prove that a
decorated concordance induces a nontrivial map between the E1 pages of the spectral
sequences arising from the knot filtrations.

Geometry & Topology, Volume 20 (2016)



Concordance maps in knot Floer homology 3645

Lemma 4.10 Let f W C ! C be a filtered map of degree zero between nonacyclic
bounded filtered complexes over F2 such that

(1) H.C /Š F2 and H.C /Š F2 ,

(2) �.C /D �.C /, and

(3) H.f /W H.C /!H.C / is an isomorphism.

Then E1� .C /Š F2 and E1� .C /Š F2 , and the map f1W E1� .C /!E1� .C / is also
an isomorphism.

Proof Since (1) and (2) hold, by Theorem 4.3 and Definition 4.8, there are canonical
isomorphisms

E1� .C /ŠH.C /Š F2 and E1� .C /ŠH.C /Š F2:

The commutativity of the following diagram concludes the proof:

E1� .C /
f1
//

w

��

E1� .C /

w

��

H.C /
'

H .f /

// H.C /

5 Concordance maps preserve the knot filtration

5A The knot filtration

Let K be a null-homologous knot in a closed oriented 3–manifold Y . Ozsváth and
Szabó [28], and independently Rasmussen [31], proved that K gives rise to a filtration of
the Heegaard Floer chain complex cCF.Y /, well-defined up to filtered chain homotopy
equivalence, called the knot filtration. Such a filtration can be defined in terms of the
Alexander grading; see also [28, Section 2.3].

Definition 5.1 Let S be a Seifert surface for the knot K , and let .†;˛;ˇ; w; z/ be a
doubly pointed Heegaard diagram for K , as defined by Ozsváth and Szabó [28]. Given
a generator x 2 T˛ \Tˇ , its S–Alexander grading is

AS .x/D
1
2
hc1.s.x//; ŒS �i;

where s.x/ is the Spinc structure on Y0.K/ extending s.x/ 2 Spinc.Y /. We denote
the corresponding filtration by FS .
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Remark 5.2 Consider the sutured manifold Y .K/D .M;  / complementary to K .
As in the proof of [14, Theorem 1.5] on page 333, let t be the trivialization of v?

0

given by a vector field tangent to @M in the meridional direction. Then

AS .x/D
1
2
hc1.s

ı.x/; t/; ŒS �i;

where sı.x/ now denotes an element of Spinc.M;  /.

If Y is a rational homology 3–sphere, all Seifert surfaces of K are homologous in the
knot exterior, so the Alexander grading does not depend on S , and we simply denote
it by A.x/, and the filtration by F.x/.

The following lemma describes how the relative Alexander grading can be read off the
Heegaard diagram; see [28, Lemma 2.5] and [31, page 25].

Lemma 5.3 Let .†;˛;ˇ; w; z/ be a Heegaard diagram for a null-homologous knot K

in a 3–manifold Y , and let S be a Seifert surface for K . If � 2 �2.x;y/, then

nz.�/� nw.�/DAS .x/�AS .y/:

5B Knot filtration and concordances

Our aim is to prove that the knot filtration is preserved by the chain maps induced by
concordances.

Theorem 5.4 Let C be a decorated concordance from .K0;P0/ to .K1;P1/, and let
.†i ;˛i ;ˇ i ; wi ; zi/ be a doubly pointed diagram representing .Ki ;Pi/ for i 2 f0; 1g.
Then there is a chain map

fC W cCF.†0;˛0;ˇ0; w0; z0/! cCF.†1;˛1;ˇ1; w1; z1/

preserving the knot filtration; ie for every generator x 2 T˛0
\Tˇ0

,

A.fC.x//�A.x/;

such that fC induces the identity of bHF.S3/ on the total homology, and FC on the
homology of the associated graded complexes.

Theorem 5.4 yields a morphism of spectral sequences in the sense of Definition 4.5,
hence we have the following corollary.

Theorem 5.5 Suppose that C is a decorated concordance from .K0;P0/ to .K1;P1/.
Then there is a morphism of spectral sequences from bHFK.K0;P0/ D) bHF.S3/

to bHFK.K1;P1/ D)bHF.S3/ such that the map induced on the E1 page is FC , and
the map induced on the E1 page is IdbHF.S3/

.
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Proof Suppose that C D .X;F; �/. Since H1.X / D H2.X / D 0, it follows from
the work of Ozsváth and Szabó [26, Theorem 1.1] that �.K0/D �.K1/. Indeed, the
knot K DK0 # K1 bounds a disk in a homology 4–ball W with boundary S3, and
hence �.K/D �.K0/� �.K1/D 0 by [26, Theorem 1.1]. By Theorem 5.4, we have a
filtered map fC that induces an isomorphism on the total homology. We can therefore
apply Lemma 4.10 to conclude that the map induced on the E1 page is also an
isomorphism.

Definition 5.6 We say that an element x 2 bHFK.K;P / survives the spectral sequence
to bHF.S3/Š Z2 if there is a sequence of cycles xi 2Ei for i � 1 such that x1 D x

and xiC1 D Œxi �; we denote the set of such elements by A.K/. Furthermore, we have
a partition A.K/ D A0.K/[A1.K/, where Aj .K/ consists of those elements for
which xi D j 2Z2 for i sufficiently large (note that the spectral sequence is bounded).

The subset A0.K/ is a linear subspace of A.K/, and A1.K/ is an affine translate
of A0.K/. Each of the sets A.K/, A0.K/ and A1.K/ is a knot invariant.

It follows from the definition of the Ozsváth–Szabó � invariant [26] that

(5-1) A1.K/\ bHFK.K; i/
�
D∅ if i 6D �.K/;

6D∅ if i D �.K/:

If a 2A1.K/, let a0 denote the homogeneous component of a in homological grading
zero. It is straightforward to check that a0 survives the spectral sequence. Since
the homological grading on bCFK is inherited from the one on cCF , and since the
homological grading of 1 2bHF.S3/ is zero, it follows that a0 2A1.K/. Combined
with (5-1), this implies that

(5-2) A01.K/ WDA1.K/\ bHFK0.K; �.K// 6D∅:

Notice that A0
1
.K/ is also a knot invariant.

The following result is a straightforward consequence of Theorem 5.5, Proposition 3.10
and (5-2), and implies Corollary 1.3 of the introduction.

Corollary 5.7 Suppose C D .X;F; �/ is a decorated concordance from .K0;P0/

to .K1;P1/, and let � D �.K0/D �.K1/. Then, for j 2 f0; 1g,

FC.Aj .K0//�Aj .K1/

and hence it is nonzero from bHFK0.K0;P0; �/ to bHFK0.K1;P1; �/.
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Proof The fact that FC.Aj .K0//�Aj .K1/ follows from Theorem 5.5. In Section 6,
we shall see that FC preserves the homological grading. Then, by Proposition 3.10,
FC maps bHFK0.K0;P0; �/ to bHFK0.K1;P1; �/. So we only need to prove that this
map is nonzero.

By (5-2), we have A0
1
.K0/¤∅; let x 2A0

1
.K0/. Then, by the previous paragraph,

FC.x/ 2A1.K1/\ bHFK0.K1; �/DA01.K1/;

hence FC.x/¤ 0.

We now turn to the proof of Theorem 5.4, which will take the rest of this section.

5C Triviality of the gluing map

Given a sutured manifold cobordism W D .W;Z; Œ��/ from .M0; 0/ to .M1; 1/, the
map

FW W SFH.M0; 0/! SFH.M1; 1/

is the composition FWs ıˆ�� , where

ˆ�� W SFH.M0; 0/! SFH.N; 1/

is the gluing map given by Honda, Kazez and Matić [11] for the sutured submanifold
.�M0;�0/ of .�N;�1/ with N D M0 [ .�Z/, and FWs is a “surgery map”
corresponding to handles attached along the interior of the sutured manifold N . The
cobordism Ws is a special cobordism, meaning its vertical part is a product and the
contact structure on it is I–invariant.

If CD .X;F; �/ is a decorated concordance from .K0;P0/ to .K1;P1/, let WDW.C/
be the complementary sutured manifold cobordism from S3.K0;P0/ D .M0; 0/

to S3.K1;P1/ D .M1; 1/. Let T 2�I be a collar neighbourhood of @M0 such
that T 2�f1g is identified with @M0 . Since the dividing set on F consists of two
arcs connecting the two components of @F , there is a diffeomorphism d W T 2�I !

Z such that � 0 D d�.�/ is an I–invariant contact structure on T 2�I, and hence
induces the trivial gluing map by [11, Theorem 6.1]. More precisely, if we write
M 0

0
D M0n.T 2�I/ and  0

0
for the projection of 0 to T 2�f0g, then there is a

diffeomorphism 'W .M 0
0
;  0

0
/! .M0; 0/ supported in a neighbourhood of T 2�f0g

such that

ˆ��0 D '�W SFH.M 0
0; 
0
0/! SFH.M0; 0/:
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Let DW M0 ! N be the diffeomorphism that agrees with ' on M 0
0

and with d

on T 2� I, smoothed along T 2�f0g. By the diffeomorphism invariance of the gluing
construction, the diagram

SFH.M 0
0
;  0

0
/

'�
//

ˆ��0

��

SFH.M0; 0/

ˆ��
��

SFH.M0; 0/
D�

// SFH.N;  /

is commutative, hence ˆ�� DD� .

We now show that D� preserves the Alexander grading on the chain level. If we glue
D2 � S1 to N along @N such that the meridian is glued to a suture in s.1/, we
obtain a 3–manifold Y diffeomorphic to S3, and the image of f0g �S1 is a knot K0

in Y . We can canonically extend D to a diffeomorphism from .S3;K0/ to .Y;K0/.
Given a knot diagram H0 D .†0;˛0;ˇ0; w0; z0/ for .S3;K0/, its image D.H0/ is a
diagram of .Y;K0/. Given a Seifert surface S of K0 and a generator x 2 T˛0

\Tˇ0
,

the image D.S/ is a Seifert surface of K0, and D.x/ satisfies

hc1.s
ı.x/; t/; ŒS �i D

˝
c1

�
sı.D.x//;D�.t/

�
; ŒD.S/�

˛
:

As D.0/D 1 , the trivialization D�.t/ points in the meridional direction for K0, and
it follows that A.x/DA.D.x//. It is apparent from the above discussion that we can
identify .S3;K0/ and .Y;K0/ via D , so from now on we will think of W as a special
cobordism from .S3;K0/ to .S3;K1/.

5D Notation

In this subsection, we fix the notation for the rest of the paper. Recall that .K0;P0/

and .K1;P1/ denote two decorated knots in S3, and that we have a decorated concor-
dance C D .X;F; �/ from .K0;P0/ to .K1;P1/.

We denote by W D .W;Z; Œ��/ the sutured cobordism W.C/ associated to the knot
concordance C . It follows from the discussion in Section 5C that W can be thought of
as a special cobordism. The 4–manifold W can be obtained by attaching to M0 � I

along the interior of M0 � f1g a sequence of 4–dimensional 1–handles, followed
by 2–handles, and finally 3–handles. We denote the number of i–handles by ci

for i 2 f1; 2; 3g, and often write p for c1 and ` for c2 . We split the cobordism W into
three parts W1 , W2 and W3 , in such a way that Wi D .Wi ;Zi ; Œ�i �/ is a cobordism
from .Mi�1; i�1/ to .Mi ; i/, and is the trace of the i–handle attachments; see the left-
hand side of Figure 1. Notice that .M0; 0/DS3.K0;P0/ and .M3; 3/DS3.K1;P1/

by construction.
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M3

W3

Mˇ;ı
M2 DM˛;ı�W W� W2

M1 DM˛;ˇ

W1

M0

Y3 D S3

X3

Yˇ;ı �X
Y2 D Y˛;ı

X� X2

Y1 D Y˛;ˇ

X1

Y0 D S3

Figure 1: The left-hand side shows the sutured cobordism W D .W;Z; Œ��/ ,
and how we split it into different pieces. The picture on the right-hand side
shows the cobordism of 3–manifolds X , and the corresponding decomposi-
tion into smaller cobordisms.

In order to represent sutured manifolds, we use Heegaard diagrams with basepoints.
If w; z 2 † n .˛ [ ˇ/, the Heegaard diagram H D .†;˛;ˇ; w; z/ represents the
complement of a knot in a 3–manifold. In order to recover the sutured Heegaard
diagram as originally defined by the first author [13], one should remove a small disk
around each basepoint.

Let T D .†;˛;ˇ; ı; w; z/ be a doubly pointed triple diagram for the cobordism W2

(see Section 5H), where d D j˛j D jˇj D jıj. Furthermore, suppose that the 2–handles
are attached along an `–component framed link L. We further split the manifold W2

into two pieces according to [16, Proposition 6.6]: The piece W˛;ˇ;ı D .W4;Z4; �4/

denotes the sutured manifold cobordism obtained from the triangle construction in [16,
Sections 5 and 6], while Wˇ.L/D . �W ; �Z; y�/ is a sutured manifold cobordism from

.RC.1/; @RC.1/� I/ #
�d�`

#
iD1

.S2
�S1/

�
to ∅. The horizontal boundary of �W is the sutured manifold Mˇ;ı , defined by the
diagram .†;ˇ; ı; w; z/. By analogy, we also use the notation M˛;ˇ Š .M1; 1/ and
M˛;ı Š .M2; 2/.

We can fill in the vertical boundary of the sutured cobordism W by gluing D2�S1�I

along S1 � S1 � I to Z such that S1 � f.1; 0/g is glued to a meridian of K0 to
obtain cobordisms of closed 3–manifolds rather than knot complements. In terms of
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Heegaard diagrams, this amounts to forgetting the z basepoints. We denote the closed
3–manifolds by the letter Y rather than M . As for the cobordisms, we use the letter X

instead of the letter W . See the right-hand side of Figure 1.

Lastly, let S0 �M0 and S3 �M3 be Seifert surfaces for K0 and K1 , respectively.
Since .M1; 1/ is obtained from .M0; 0/ by taking connected sums with copies
of S1 � S2, the surface S0 also defines a surface S1 � M1 , which is contained
in the M0 summand of M1 . Analogously, the Seifert surface S3 induces a Seifert
surface S2 �M2 .

5E Definition of the chain map fC

We now define the chain map fC . Given an admissible doubly pointed diagram
H D .†;˛;ˇ; w; z/ for a decorated knot .Y;K;P /, we denote by cCF.H/ the Hee-
gaard Floer chain complex that counts disks avoiding w and filtered by z . Its homol-
ogy is bHF.Y; w/, while the homology of the associated graded complex bCFK.H/
is bHFK.Y;K;P /.

Suppose that the 1–handles are attached along p framed pairs of points P �M0 . Pick
an admissible diagram H0 of .M0;  / subordinate to P , and let

fH0;P W
cCF.H0/! cCF.H0

P /

be the 1–handle map defined in [16, Definition 7.5]. The 2–handles are attached along
an `–component framed link L�M1 . Choose an admissible diagram H1 subordinate
to L, and let

fH1;LW
cCF.H1/! cCF.H1

L/

be the 2–handle map defined in [16, Definition 6.8], on the chain level. This map counts
triangles that avoid w but might pass through z . Finally, let H2 be an admissible
diagram of .M2;  / subordinate to framed spheres S � M2 corresponding to the
3–handles. The corresponding 3–handle map

fH2;SW
cCF.H2/! cCF.H2

S/

was introduced in [16, Definition 7.8].

Given admissible diagrams H and H0 of a sutured manifold .M;  /, we refer the
reader to [16, Section 5.2] for the definition of the canonical isomorphism

FH;H0 W SFH.H/! SFH.H0/:

We can obtain a chain level representative by connecting H and H0 through a sequence
of ambient isotopies, (de)stabilizations, and equivalences of the attaching sets. If .M;  /
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is complementary to a knot .Y;K/, we can view this as a sequence of moves on knot
diagrams. Each induces a chain homotopy equivalence on cCF preserving the knot
filtration according to [28; 31], and induces an isomorphism both on the homology of
the whole complex (isomorphic to bHF.Y /), and the homology of the associated graded
complex (isomorphic to bHFK.Y;K/). Note that the triangle maps corresponding to
changing the attaching curves do not pass over w but might cross z , so they are in fact
naturality maps for the closed 3–manifold and not the knot. We proved in [17] that
the maps on the homology are independent of the sequence of moves connecting H
and H0. We write fH;H0 for the chain level representative of FH;H0 described above.
With the above notation in place, we set

fC WD fH2;S ıfH1
L;H2 ıfH1;L ıfH0

P ;H1 ıfH0;P ;

from cCF.H0/ to cCF.H2
S/. Note that each of the diagrams involved in the above

formula can be viewed as a knot diagram after gluing disks along s. / that do not
change during the cobordism, so we can distinguish z and w throughout. If we
are given diagrams H of .M0; 0/ and H0 of .M3; 3/, then we have to pre- and
postcompose the above map fC with fH2

S;H0
and fH;H0 .

We split the proof of Theorem 5.4 into a number of steps, and we prove that for each Wi

the knot filtration is preserved.

5F 1– and 3–handles

First, consider the case of the 1–handle attachments along the framed pairs of points
P � Int.M0/. As in Section 5D, we write W1 WDW.P / for the trace of the surgery
along P ; this is a cobordism from .M0; 0/ to .M1; 1/. Recall [16, Section 7] that
there is an isomorphism Spinc.W1/Š Spinc.M0; 0/. Furthermore, a Spinc structure
sı 2 Spinc.M1; 1/ extends to W1 if and only if c1.s

ı/ vanishes on the belt spheres
of all the 1–handles. Given sı 2 Spinc.W/, we write sı

0
for its restriction to .M0; 0/,

and sı
1

for its restriction to .M1; 1/.

Lemma 5.8 Let sı
0
2 Spinc.M0; 0/, and let sı

1
2 Spinc.M1; 1/ denote the corre-

sponding Spinc structure. Then

hc1.s
ı
0; t/; ŒS0�i D hc1.s

ı
1; t/; ŒS1�i:

Proof This is a consequence of the naturality of the first Chern class and the fact
that both S0 and S1 are actually contained in M0 n N.P /. We can suppose that
S0 is properly embedded in M0 nN.P /. By definition, S1 is a surface contained
in M0 nN.P /�M1 that is isotopic to S0 in M0 nN.P /.
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Since S0 and S1 are isotopic in M0 nN.P / and sı
1
jM0nN.P/ D sı

0
jM0nN.P/ , by the

naturality of the first Chern class

hc1.s
ı
1; t/; ŒS1�i D hc1.s

ı
1jM0nN.P/; t/; ŒS1�i

D hc1.s
ı
0jM0nN.P/; t/; ŒS0�i

D hc1.s
ı
0; t/; ŒS0�i:

Notice that the trivialization t of the vector field v0 on @M0 D @M1 does not change
because the boundary is left unaffected by the surgery.

Remark 5.9 Since c1.s
ı
1
; t/ vanishes on the belt spheres of the 1–handles, the above

result also holds for an arbitrary Seifert surface S1 .

Corollary 5.10 The map fH0;P W
cCF.H0/! cCF.H0

P / preserves the Alexander grad-
ing (see Definition 5.1) with respect to arbitrary Seifert surfaces S0 and S1 ; ie

AS1
.fH0;P .x//DAS0

.x/

for any x 2 T˛0 \Tˇ0 , where H0 D .†0;˛0;ˇ0; w0; z0/.

Proof This is a straightforward consequence of Lemma 5.8, Remark 5.9, and the fact
that the relative Spinc structure induced by sı.x/ on .M1;  / is exactly sı.fH0;P .x//.

A dual reasoning gives the following results for the map fH2;S , which are analogous
to Lemma 5.8 and Corollary 5.10.

Lemma 5.11 Let sı
3
2 Spinc.M3; 3/, and let sı

2
2 Spinc.M2; 2/ denote the corre-

sponding Spinc structure. Then

hc1.s
ı
2; t/; ŒS2�i D hc1.s

ı
3; t/; ŒS3�i:

Corollary 5.12 The map fH2;SW
cCF.H2/! cCF.H2

S/ preserves the Alexander grad-
ing with respect to arbitrary Seifert surfaces S2 and S3 ; ie

AS3
.fH2;S.x//DAS2

.x/

for any x 2 T˛2 \Tˇ2 such that fH2;S.x/¤ 0, where H2 D .†2;˛2;ˇ2; w2; z2/.
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5G 2–handles

The proof that the Alexander grading is preserved under the attachment of the 2–handles
is less straightforward than in the case of 1–handles and 3–handles.

Lemma 5.13 Let C be a decorated concordance from .K0;P0/ to .K1;P1/. With
the notation of Section 5D, let W2 denote the 2–handle cobordism from .M1; 1/

to .M2; 2/ obtained by surgery along a framed link L, and let S1 and S2 be
corresponding Seifert surfaces. Then there is an admissible doubly pointed triple
diagram .†;˛;ˇ; ı; w; z/ subordinate to a bouquet for L as follows: If x 2 T˛ \Tˇ
is such that s.x/ 2 Spinc.Y˛;ˇ/ extends to X1 , then for any y 2 T˛ \Tı that appears
with nonzero coefficient in fH1;L.x/, and such that s.y/ 2 Spinc.Y˛;ı/ extends to X3 ,
we have

FS2
.y/� FS1

.x/:

Moreover, if  is a holomorphic triangle connecting x , � (the top-graded generator
of cCF.†;ˇ; ı; w; z/), and y that does not cross w , then

(5-3) FS2
.y/D FS1

.x/� nz. /:

Notice that, in Lemma 5.13, we consider ordinary Spinc structures rather than relative
ones. Recall that relative Spinc structures are defined for sutured cobordisms, which
we denote by the letter W , while ordinary Spinc structures are defined for cobordisms
of 3–manifolds, which we denote by the letter X ; see Figure 1.

Idea of the proof Consider an admissible Heegaard triple diagram .†;˛;ˇ; ı/ sub-
ordinate to a bouquet for a framed link L, as explained in [16, Section 6]. Suppose that
x2T˛\Tˇ is such that s.x/2Spinc.Y˛;ˇ/ extends to X1 . Let � 2Tˇ\Tı be the top-
graded generator of cCF.†;ˇ; ı/, and let y 2T˛\Tı be such that s.y/2 Spinc.Y˛;ı/

extends to X3 . Given a holomorphic triangle  2 �2.x; �;y/, let

c DAS2
.y/�AS1

.x/C nz. /� nw. /:

First, we prove that c is independent of  , x and y . If  1;  2 2 �2.x; �;y/, then
the domain D. 1/�D. 2/ is triply periodic. If we prove that, for every triply periodic
domain D , we have

nz.D/� nw.D/D 0;

then c is independent of  . For this reason, the next subsection is devoted to the study
of triply periodic domains in the setting of Lemma 5.13.

Given two different intersection points x0 2 T˛ \ Tˇ and y 0 2 T˛ \ Tı such that
s.x0/ 2 Spinc.Y˛;ˇ/ extends to X1 and s.y 0/ 2 Spinc.Y˛;ı/ extends to X3 , there
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are domains Dx connecting x with x0 and Dy connecting y with y 0 that do not
pass through w (but might have nontrivial multiplicities at z ). Adding these domains
to D. /, we get a triangle domain connecting x0 , � and y 0 with the same c by
Lemma 5.3.

Then we show that cD 0 by isotoping ˛ to obtain a diagram where such x , y and  as
above exist, and invoke Lemma 3.9. Finally, if  appears in the surgery map fH1;L.x/,
then nw. /D 0 and it has a pseudoholomorphic representative, so nz. /� 0. Conse-
quently, AS2

.y/�AS1
.x/, as desired.

We now explain the missing details in the above outline.

5H Triply periodic domains

The following argument was motivated by the work of Manolescu and Ozsváth [22].

Definition 5.14 A doubly pointed triple Heegaard diagram is a tuple

T D .†;˛;ˇ; ı; w; z/;

where † is a closed, oriented surface, and there is an integer d � 0 such that the sets
˛, ˇ and ı all consist of d pairwise disjoint simple closed curves in † n fw; zg that
are linearly independent in H1.† n fw; zg/.

We denote by Y˛;ˇ , Y˛;ı and Yˇ;ı the 3–manifolds represented by the Heegaard
diagrams .†;˛;ˇ/, .†;˛; ı/ and .†;ˇ; ı/, respectively.

Definition 5.15 Let T D .†;˛;ˇ; ı; w; z/ be a doubly pointed triple Heegaard dia-
gram. Let D1; : : : ;Dl denote the closures of the components of †n .˛[ˇ[ı/. Then
the set of domains in T is

D.T /D ZhD1; : : : ;Dli:

We denote by nz.D/ (respectively nw.D/) the multiplicity of a domain D 2D.T / in
the region Di that contains z (respectively w ).

A triply periodic domain is an element P 2D.T / such that @P is a Z–linear combina-
tion of curves in ˛[ˇ [ ı . We denote the set of triply periodic domains by …˛;ˇ;ı .

A doubly periodic domain is an element P 2 D.T / such that @P is a Z–linear
combination of curves either in ˛[ˇ , or in ˇ [ ı , or in ˛[ ı . We denote the set of
the three types of doubly periodic domains by …˛;ˇ , …˛;ı and …ˇ;ı , respectively.
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The following result states that every triply periodic domain in the diagram describing
the surgery map for W2 can be written as a sum of doubly periodic domains.

Proposition 5.16 Let .†;˛;ˇ; ı/ denote a Heegaard diagram associated to the cobor-
dism X2 . Then

…˛;ˇ;ı D…˛;ˇC…˛;ıC…ˇ;ı:

Given a triple diagram associated to a surgery on an `–component link L, one can
construct a 4–manifold X4 as in [30, Section 2.2]; see [16, Section 5] for the analogous
construction in the sutured setting. The 3–manifolds Y˛;ˇ , Y˛;ı and Yˇ;ı , defined by
the Heegaard diagrams .†;˛;ˇ/, .†;˛; ı/ and .†;ˇ; ı/, respectively, naturally sit in
@X4 . The cobordism X2 corresponding to the attachment of the 2–handles is obtained
by gluing the 4–manifold �X D \`iD1

.S1 �D3/ to X4 along Yˇ;ı Š #`iD1.S
1 �S2/.

Lemma 5.17 [29, Propositions 2.15 and 8.3] Given a pointed triple Heegaard diagram
.†;˛;ˇ; ı; z/, there are isomorphisms

�˛;ˇW …˛;ˇ
'
�!Z˚H2.Y˛;ˇ/ and �˛;ˇ;ıW …˛;ˇ;ı

'
�!Z˚H2.X4/:

In both cases, the projection onto the Z summand is given by nz .

Lemma 5.18 Given a pointed triple Heegaard diagram .†;˛;ˇ; ı; z/, the isomor-
phisms from Lemma 5.17 fit into the commutative diagram

…˛;ˇ
�˛;ˇ

//

��

Z˚H2.Y˛;ˇ/

IdZ˚i�
��

…˛;ˇ;ı
�˛;ˇ;ı

// Z˚H2.X4/

where i W Y˛;ˇ!X4 is the embedding.

Proof Let P be a doubly periodic domain in …˛;ˇ . By construction, the 2–chain
in X� associated to P — thought of as a triply periodic domain — is homotopic, hence
homologous to i�.H.P//, where H.P/ is the 2–chain in Y˛;ˇ obtained by capping
off the boundary of the doubly periodic domain P. Therefore, the projections onto the
second summand commute. The projections onto the Z summands commute because
in both cases they are obtained by taking nz .
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Proof of Proposition 5.16 By Lemmas 5.17 and 5.18, it is sufficient to prove that the
map

�W H2.Y˛;ˇ/˚H2.Y˛;ı/˚H2.Yˇ;ı/!H2.X4/

is surjective.

From the long exact sequence associated to the pair .X4;Y˛;ˇ tY˛;ı tYˇ;ı/, we see
that the map � is surjective if and only if

'W H2.X4;Y˛;ˇ tY˛;ı tYˇ;ı/!H1.Y˛;ˇ tY˛;ı tYˇ;ı/

is injective. From the inclusion of pairs

i˛;ˇ;ıW .X4;Y˛;ˇ tY˛;ı tYˇ;ı/ ,! .X;X1 tX3 t
�X /;

we obtain the commutativity of the following diagram:

H2.X4;Y˛;ˇ tY˛;ı tYˇ;ı/
'
//

.i˛;ˇ;ı/�

w

��

H1.Y˛;ˇ/˚H1.Y˛;ı/˚H1.Yˇ;ı/

.i˛;ˇ/�˚.i˛;ı/�˚.iˇ;ı/�
��

H2.X;X1 tX3 t
bX /

'

z'

// H1.X1/˚H1.X3/˚H1.bX /

where i˛;ˇ , i˛;ı and iˇ;ı are the restrictions of i˛;ˇ;ı to Y˛;ˇ , Y˛;ı and Yˇ;ı , re-
spectively. The map .i˛;ˇ;ı/� is an isomorphism by excision. The fact that z' is an
isomorphism follows from the long exact sequence in homology associated with the
pair .X;X1 tX3 t

�X /, together with the fact that H2.X /DH1.X /D 0.

The commutativity of the above diagram implies that the map ' is injective, and
therefore concludes the proof of the proposition.

Remark 5.19 The important condition in Proposition 5.16 is that the map

�W H2.X1/˚H2.X3/˚H2.�X /!H2.X /

is surjective, which is obviously true as H2.X /D 0. The surjectivity of � is equivalent
to the injectivity of z' , which implies the injectivity of ' .

In Proposition 5.16, we saw that, in the case of a triple diagram describing the 2–handle
attachments in the cobordism X , every triply periodic domain can be expressed as a
sum of doubly periodic domains. We now analyze the doubly periodic domains.

Proposition 5.20 Consider a null-homologous knot K in a 3–manifold Y . Given a
doubly pointed Heegaard diagram .†;˛;ˇ; w; z/ for .Y;K/, every periodic domain P
satisfies

nz.P/� nw.P/D 0:
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Proof Let H.P/ 2 C2.Y / be the 2–cycle obtained by capping off the boundary
of P with the cores of the 3–dimensional 2–handles attached to †� I along ˛� f0g
and ˇ � f1g. Then nz.P/ � nw.P/ is precisely the algebraic intersection number
of H.P/ and K , which is zero as K is null-homologous.

5I Representing homology classes

Let .†;˛;ˇ/ be a Heegaard diagram for a 3–manifold Y . It is straightforward to see
that any element of H1.Y / can be represented by a 1–cycle in †. In this subsection,
we strengthen this result for the case of concordances in the following sense.

Lemma 5.21 Choose an arbitrary handle decomposition of the cobordism X from S3

to S3, and let X2 denote the trace of the 2–handle attachments. Suppose that
.†;˛;ˇ; ı; w; z/ is a doubly pointed triple Heegaard diagram subordinate to a bouquet
for a link L that defines X2 . Then the map

i W H1.†/!H1.Y˛;ˇ/˚H1.Y˛;ı/;

induced by the inclusions † ,! Y˛;ˇ and † ,! Y˛;ı , is surjective.

In other words, given any two classes in the first homologies of Y˛;ˇ and Y˛;ı , there is
a 1–cycle in † that represents both simultaneously.

Proof Consider the following short exact sequence of abelian groups:

0!
H1.†/

h˛;ˇi \ h˛; ıi
!

H1.†/

h˛;ˇi
˚

H1.†/

h˛; ıi
!

H1.†/

h˛;ˇ; ıi
! 0:

The middle term is isomorphic to H1.Y˛;ˇ/˚H1.Y˛;ı/, and the last term is isomorphic
to H1.X4/, where X4 is the 4–manifold obtained by the triangle construction; see [29,
Proposition 8.2]. The short exact sequence above can then be rewritten as

0!
H1.†/

h˛;ˇi \ h˛; ıi

f
!H1.Y˛;ˇ/˚H1.Y˛;ı/

g
!H1.X4/! 0:

If we prove that H1.X4/D 0, then by exactness we have that the map f is surjective.
So the map i in the statement of the lemma is surjective too, because it is obtained by
composing the following two maps:

H1.†/!
H1.†/

h˛;ˇi \ h˛; ıi

f
!H1.Y˛;ˇ/˚H1.Y˛;ı/:
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Therefore, we only need to prove that H1.X4/ D 0. For this purpose, consider the
Mayer–Vietoris long exact sequence associated to the decomposition X D A [B ,
where ADX4 and B DX1 tX3 t

�X . A portion of the long exact sequence is

H2.X /!H1.A\B/ �!H1.A/˚H1.B/!H1.X /:

Since X has trivial first and second homology groups, by exactness the map � gives an
isomorphism

(5-4) H1.Y˛;ˇ/˚H1.Y˛;ı/˚H1.Yˇ;ı/
�
��!H1.X4/˚H1.X1/˚H1.X3/˚H1.�X /:

If ck denotes the number of k–handles in the decomposition of the cobordism X

and d D j˛j, then it is straightforward to check that

H1.Y˛;ˇ/ŠH1.X1/Š Zc1 ;

H1.Yˇ;ı/ŠH1.�X /Š Zd�c2 ;

H1.Y˛;ı/ŠH1.X3/Š Zc3 :

It now follows from (5-4) that H1.X4/D 0, which concludes the proof.

5J Proof of Lemma 5.13

The cobordism W2 can be represented via surgery on a framed `–component link L.
Let T D .†;˛;ˇ; ı; w; z/ be a doubly pointed triple Heegaard diagram subordinate to
a bouquet for the framed link L. As in [16, Section 6], we suppose d D j˛j D jˇj D jıj

and that the curve ıi is an isotopic translate of ˇi for i 2 f`C 1; : : : ; dg.

Following notation established in Section 5D and in Figure 1, let Y˛;ˇ , Y˛;ı and Yˇ;ı
denote the closed manifolds associated to the Heegaard diagrams .†;˛;ˇ/, .†;˛; ı/,
and .†;ˇ; ı/, respectively. Each of these closed manifolds contains a knot, defined
by the basepoints w and z . We denote the knot exteriors — thought of as sutured
manifolds — by M˛;ˇ , M˛;ı and Mˇ;ı . We let  denote the sutures of all three
sutured manifolds.

Let s be the unique Spinc structure on X . By definition, sjX4 is the unique Spinc

structure on X4 that extends to the whole cobordism X . Suppose that x 2 T˛ \Tˇ
and y 2 T˛ \Tı are such that s.x/ D sjY˛;ˇ and s.y/ D sjY˛;ı . Let � 2 Tˇ \Tı
denote the top-graded generator. Consider a Whitney triangle  2�2.x; �;y/, possibly
crossing the basepoints z and w , and let

(5-5) c DAS2
.y/�AS1

.x/C nz. /� nw. /:

Our aim is to show that c D 0. First, we show that c is independent of the triangle  
in �2.x; �;y/ for fixed x and y . Indeed, let  1;  2 2 �2.x; �;y/. The domain
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P D D. 1/�D. 2/ is triply periodic. By Proposition 5.16, P can be expressed as
the sum of three doubly periodic domains P˛;ˇ , Pˇ;ı and P˛;ı .

Since .†;˛;ˇ; ı/ is subordinate to a bouquet for L, the diagrams .†;˛;ˇ; w; z/,
.†;ˇ; ı; w; z/ and .†;˛; ı; w; z/ each define a null-homologous knot in a connected
sum of a number of copies of S1 �S2. Hence, by Proposition 5.20, nz.P /D nw.P /

for every P 2 fP˛;ˇ; Pˇ;ı; P˛;ıg. So nz.P/D nw.P/, and

nz. 1/� nw. 1/D nz. 2/� nw. 2/:

Therefore, c is independent of the triangle  for fixed x and y ; see (5-5).

To check that c is independent of x , we consider another generator x0 such that
s.x0/ D sjY˛;ˇ D s.x/. Since x and x0 represent the same Spinc structure, there
is a Whitney disk � 2 �2.x

0;x/ (that possibly crosses the basepoints w and z ).
If  2 �2.x; �;y/, then � # 2 �2.x

0; �;y/. By Lemma 5.3, the number c defined
in (5-5) is the same for  and � # , so c does not depend on x . A similar reasoning
also proves that c is independent of y .

What remains to prove is that c D 0. We do this by constructing a Whitney triangle  
for which c D 0.

zyi zxi

�i

ˇi ıi

˛i

˛i

�i zyi

zxi

ˇi

ıi

Figure 2: This shows the domain of the Whitney triangle z . The curves
ˇi and ıi , for i 2 f`C 1; : : : ; dg , are small isotopic translates of each other,
and — after isotoping ˛i — we can find a “small” triangle bounded by ˛i , ˇi

and ıi , shown shaded on the left. For i 2 f1; : : : ; `g , after applying finger
moves to the ˛–curves, we can assume that there is a triangle, shown shaded
on the right. The sum of all these triangles is the domain of z .

By isotoping the ˛–curves, we can create intersection points zx in T˛ \Tˇ and zy
in T˛ \Tı such that there is a “small” triangle z 2 �2.zx; �; zy/. The domain of z is
shown in Figure 2. For each i 2 f`C 1; : : : ; dg, we isotope ˛i — pushing the other
˛–curves alongside — until it intersects both ıi and ˇi near �i , and consider the shaded
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triangle shown on the left-hand side of the figure. For each i 2 f1; : : : ; `g, after some
finger moves on the ˛–curves — again, pushing the other ˛–curves along — we can
assume that there is a small triangle near each intersection point �i D ˇi\ıi , as shown
shaded on the right-hand side of the figure. The sum of all these small triangles is
the domain of the Whitney triangle z . We denote the generators connected by z 
by zx 2 T˛;ˇ and zy 2 T˛;ı ; ie z 2 �2.zx; �; zy/.

The Whitney triangle z satisfies nz. z / D nw. z / D 0, but the constant c is not
necessarily defined for it, because s.zx/ and s. zy/ might not coincide with sjY˛;ˇ
and sjY˛;ı , respectively, where s 2 Spinc.X / is the unique Spinc structure; see (5-5).
The next lemma proves that we can replace z with a Whitney triangle  for which
the constant c is defined.

Lemma 5.22 We can further isotope the ˛–curves so that there is a Whitney triangle  
in �2.x; �;y/ satisfying

� nz. /D nw. /D 0,

� s.x/D sjY˛;ˇ and s.y/D sjY˛;ı .

Proof Given generators x0 D .x0
1
; : : : ;x0

d
/ and x00 D .x00

1
; : : : ;x00

d
/ in T˛ \ Tˇ ,

Ozsváth and Szabó associate to them [29, Definition 2.11] a class ".x0;x00/2H1.Y˛;ˇ/.
Choose 1–chains a� ˛ and b � ˇ such that

@aD @b D x001 C � � �Cx00d �x01� � � � �x0d :

Then a � b represents an element of H1.†/ whose image in H1.Y˛;ˇ/ under the
inclusion map is ".x0;x00/. Ozsváth and Szabó proved [29, Lemma 2.19] that

(5-6) s.x00/� s.x0/D PD.".x0;x00//:

Consider the Whitney triangle z 2 �2.zx; �; zy/ defined above, and whose domain is
shown in Figure 2. Its domain is the disjoint union of d triangles zT1; : : : ; zTd .

We define the homology classes h1 2H1.Y˛;ˇ/ and h2 2H1.Y˛;ı/ as

h1 D PD.sjY˛;ˇ � s.zx//;(5-7a)

h2 D PD.sjY˛;ı � s. zy//;(5-7b)

where s is the unique Spinc structure on X . By Lemma 5.21, there is a homology
class h 2H1.†/ such that i.h/D .h1; h2/; ie h represents h1 in H1.Y˛;ˇ/ and h2

in H1.Y˛;ı/. We can represent h as m�, where � is a simple closed curve on † that
satisfies the following conditions:

� � intersects the triangle zT1 as on the left-hand side of Figure 3,

Geometry & Topology, Volume 20 (2016)



3662 András Juhász and Marco Marengon

� � is disjoint from all the triangles zT2; : : : ; zTd , and

� � is disjoint from the basepoints z and w .

�

zy1 zT1 zx1

˛1

�1

ˇ1 ı1

y1 T1

�1

x1 possible other
˛–curves

Figure 3: The pictures above show how to modify the Whitney triangle z 
defined in Figure 2 to obtain a Whitney triangle  satisfying the requirements
of Lemma 5.22. The picture on the left shows the loop � near the triangle zT1 .
The picture on the right shows the new triangle T1 in the triple Heegaard
diagram obtained after performing a finger move on the ˛–curves along � .

If we perform a finger move on the ˛–curves along the loop m�, the result will
look like the right-hand side of Figure 3. If x1 and y1 are as on the right-hand side
of Figure 3, we define x D .x1; zx2; : : : ; zxd / and y D .y1; zy2; : : : ; zyd /. Notice that,
by construction,

(5-8) ".zx;x/D h1 and ". zy ;y/D h2:

Let  be a Whitney triangle with domain T1 t
zT2 t � � � t

zTd , where T1 is the shaded
triangle on the right-hand side of Figure 3. By construction, nz. / D nw. / D 0.
Furthermore, by (5-6), (5-8) and (5-7), we have

s.x/D s.zx/CPD.".zx;x//

D s.zx/CPD.h1/

D s.zx/C .sjY˛;ˇ
� s.zx//D sjY˛;ˇ :

Analogously, we have s.y/D sjY˛;ı .

Before showing that c D 0 for the triangle  2 �2.x; �;y/ constructed above, we
prove that the relative Spinc structure sı. / 2 Spinc.W2/ extends to a relative Spinc

structure on W .

Recall that Y1 D Y˛;ˇ is obtained from Y0 by performing surgery along some framed
0–spheres. The belt circles of the 1–handles involved give rise to embedded 2–spheres
O1; : : : ;Op � Y1 . Similarly, Y2 D Y˛;ı is obtained from Y3 by surgery along some
framed 0–spheres, giving rise to embedded spheres O 0

1
; : : : ;O 0s � Y2 . In Lemma 5.22,

Geometry & Topology, Volume 20 (2016)



Concordance maps in knot Floer homology 3663

we achieved that s.x/ D sjY˛;ˇ and s.y/ D sjY˛;ı . This implies that s.x/ extends
to X1 , or equivalently, that hc1.s.x//; ŒOi �i D 0 for every i 2 f1; : : : ;pg. Similarly,
hc1.s.y//; ŒO

0
j �i D 0 for every j 2 f1; : : : ; sg. However

hc1.s.x//; ŒOi �i D hc1.s
ı.x//; ŒOi �i D hc1.s

ı.x/; t/; ŒOi �i;

as sı.x/ and s.x/ are represented by the same vector field on M1 � Y1 . Since M0 is
obtained from M1 by compressing the 2–spheres O1; : : : ;Op , the equality

hc1.s
ı.x/; t/; ŒOi �i D 0

implies sı.x/ extends to sı
1
2Spinc.W1/. Similarly, sı.y/ extends to sı

3
2Spinc.W3/.

The Mayer–Vietoris sequence now implies that there is a Spinc structure sı2Spinc.W/

such that sıjW1
D sı

1
, sıjW2

D sı. / and sıjW3
D sı

3
.

We are now ready to prove that, for the Whitney triangle  constructed above, c D 0.
Recall that, by definition,

c DAS2
.y/�AS1

.x/D hc2.s
ı.y/; t/; ŒS2�i � hc1.s

ı.x/; t/; ŒS1�iI

see (5-5), Definition 5.1 and Remark 5.2. Since  is a Whitney triangle connecting
x , � and y , we have that sı. /jM1

D sı.x/ and sı. /jM2
D sı.y/, and therefore

c D hc1.s
ı. /; t/; ŒS2�i � hc1.s

ı. /; t/; ŒS1�i:

Notice that we can omit the restrictions of the (relative) Spinc structures by the naturality
of Chern classes.

Now the relative Spinc structure sı. / extends to some relative Spinc structure
sı 2 Spinc.W/. Then, by Lemmas 5.8 and 5.11, we have

c D hc1.s
ı; t/; ŒS3�i � hc1.s

ı; t/; ŒS0�i:

From Lemma 3.9, it finally follows that c D 0.

We can now conclude the proof of Lemma 5.13. By (5-5), for any Whitney triangle  
in �2.x; �;y/, where x 2 T˛ \Tˇ and y 2 T˛ \Tı are such that s.x/ and s.y/

extend to X1 and X3 , respectively, we have

AS2
.y/�AS1

.x/C nz. /� nw. /D 0:

If  contributes to the surgery map fH1;L.x/, then nw. /D 0, and it has a pseudo-
holomorphic representative, so nz. / � 0. Consequently, AS2

.y/ � AS1
.x/, as

desired.
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5K Naturality maps

Recall from [17] that, given two admissible Heegaard diagrams H and H0 for the same
3–manifold Y , there is a naturality map

fH;H0 W cCF.H/! cCF.H0/;

which is the composition of maps associated to isotopies of the attaching sets, han-
dleslides, (de)stabilisations, and diffeomorphisms of the Heegaard surface isotopic to
the identity in Y . On the homology, it induces an isomorphism

FH;H0 WbHF.H/!bHF.H0/

that is independent of the sequence of Heegaard moves.

In our case, H and H0 are doubly pointed Heegaard diagrams, which define the same
decorated knot .Y;K;P /. Together with Dylan Thurston, the first author proved [17,
Proposition 2.37] that H and H0 can be connected by a sequence of Heegaard moves
that do not cross the basepoints w and z . If we forget about the z basepoint, this
sequence induces the naturality map fH;H0 W cCF.H/!cCF.H0/ above. As we explained,
the z basepoints on H and H0 induce filtrations on cCF.H/ and cCF.H0/. It follows
from the work of Ozsváth and Szabó [28] and Rasmussen [31] that, if fH;H0 is the map
associated to either an isotopy, a handleslide, a (de)stabilization, or a diffeomorphism
of the Heegaard surface isotopic to the identity in Y , then it preserves the knot filtration.
If fH;H0 is an isotopy map or a handleslide map, then the map induced on the E1 page
is the corresponding naturality map FH;H0 on bHFK ; ie it is the map obtained by
counting all holomorphic triangles that do not cross z . If fH;H0 is a (de)stabilization
or diffeomorphism map, then it is an isomorphism of filtered complexes.

As the above result is only outlined in the works of Ozsváth and Szabó [28] and
Rasmussen [31], we provide a bit more detail. With the techniques of this paper, we
can prove the following analogue of Lemma 5.13.

Lemma 5.23 Let K be a null-homologous knot in Y D #p
iD1

.S1 � S2/. Choose
a Seifert surface S for K . Suppose that H and H0 are admissible doubly pointed
Heegaard diagrams for .Y;K;P / that only differ by an isotopy or a handleslide.

Given an admissible doubly pointed triple diagram .†;˛;ˇ; ı; w; z/ for the Heegaard
move H!H0, if x 2T˛\Tˇ , then for any y 2T˛\Tı that has nontrivial coefficient
in the expansion of fH;H0.x/, we have that

FS .y/� FS .x/:
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Furthermore, if  is a holomorphic triangle connecting x 2 T˛ \Tˇ , � 2 Tˇ \Tı
(the top-dimensional generator of cCF.†;ˇ; ı; w; z/) and y 2 T˛ \Tı that does not
cross w , then

(5-9) FS .y/D FS .x/� nz. /:

Remark 5.24 The (de)stabilization and diffeomorphism maps do not appear in the
statement of Lemma 5.23 because they are not triangle maps. They are already isomor-
phisms at the level of filtered chain complexes.

Idea of the proof As in the proof of Lemma 5.13, we let

c DAS .y/�AS .x/� nw. /C nz. /;

and prove that this is independent of  , x and y . The main differences from the proof
of Lemma 5.13 are the following:

Triply periodic domains We closely follow the proof of Proposition 5.16. In this
case, X Š Y � I, the boundary of the 4–manifold X4 consists of Y tY tYˇ;ı , and
the cobordisms X1 and X3 are replaced by identity cobordisms Y � I. Finally, the
proof of the injectivity of ' follows from the surjectivity of the map

�W H2.Y � I/˚H2.Y � I/˚H2.�X /!H2.X /;

as noted in Remark 5.19.

Doubly periodic domains One can use Proposition 5.20 for the two copies of Y and
for Yˇ;ı .

Proving that c D 0 This is easier than in the case of the 2–handle maps, because we
already know that the naturality map preserves the graded Euler characteristic, and this
forces the grading shift c to be 0. Also, as X1 and X3 are products, Spinc structures
automatically extend to them, hence we do not need to isotope the ˛–curves.

5L Proof of Theorem 5.4

We are now ready to prove Theorem 5.4. In the proof we use the notation introduced
in Section 5D, and we assume that the gluing map is the identity map, as explained in
Section 5C.

Suppose that x is a generator of cCF.H0/ such that fC.x/¤ 0. Let y be a generator
of cCF.H2

S/ that appears in the expression of fC.x/ with nonzero coefficient. Then there
exist generators x02cCF.H0

P /, x002cCF.H1/, y 002cCF.H1
L/ and y 02cCF.H2/ that ap-

pear with nonzero coefficient in fH0;P .x/, fH0
P ;H1

.x0/, fH1;L.x
00/ and fH1

L;H2.y 00/,
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respectively, and such that y appears with nonzero coefficient in fH2;S.y
0/. Notice

that, by construction, s.x00/ extends to X1 and s.y 00/ extends to X3 .

By Lemma 5.23, we know that the naturality maps preserve the knot filtration, and
by Corollaries 5.10 and 5.12 so do the maps fH0;P and fH2;S . Finally, Lemma 5.13
proves that FS2

.y 00/� FS1
.x00/. By putting all these together, we obtain that

(5-10) FS3
.y/D FS2

.y 0/� FS2
.y 00/� FS1

.x00/� FS1
.x0/D FS0

.x/:

Thus fC is a map of filtered complexes and so, by Remark 4.6, it induces a morphism
of spectral sequences.

Furthermore, each of the maps fH0;P , fH0
P ;H1 , fH1;L , fH1

L;H2 and fH2;S is a map
of filtered complexes. The map induced by fC on the E1 page is the composition of
the maps induced by each of the above maps on the E1 page.

We now consider the case when the inequalities in (5-10) are all equalities. Lemmas 5.8
and 5.11 imply that the maps induced by fH0;P and fH2;S on the E1 page are the 1–
and 3–handle maps for bHFK . As for the 2–handle map fH1;L , by (5-3) in Lemma 5.13,
we have that F.y 00/D F.x00/ if and only if there is a pseudoholomorphic triangle  
connecting x00 , � and y 00 such that nw. / D nz. / D 0, and in this case all such
holomorphic triangles satisfy this equality. Hence, the map induced by fH1;L on
the E1 page is the 2–handle map for bHFK . Finally, it follows from the discussion
in Section 5K that the maps induced on the E1 page by the naturality maps for cCF
are the naturality maps for bHFK . Alternatively, one can use (5-9) in Lemma 5.23 and
argue in the same way as for the 2–handle maps.

This immediately implies that the map induced by fC on the E1 page is obtained
by counting (for the naturality maps and the 2–handle map) the pseudoholomorphic
triangles that do not cross w and z , and so it is FC .

On the other hand, the map induced by fC on the total homology is given by count-
ing all holomorphic triangles that do not cross w but might cross z . This is pre-
cisely the map �FX W

bHF.S3/ !bHF.S3/ induced by the cobordism X . Because
H1.X /DH2.X /D 0, we have �FX D IdbHF.S3/

by [26, Lemma 3.4].

6 Concordance maps preserve the homological grading

In this section, we show that concordance maps also behave well with respect to another
grading of cCF , namely the homological grading.

Let H be an admissible pointed Heegaard diagram for the closed, connected, oriented,
based 3–manifold .Y; w/, together with a Spinc structure s 2 Spinc.Y / such that
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c1.s/ 2H 2.Y / is torsion. Ozsváth and Szabó [29, Section 4] showed that cCF.H; s/
admits a relative Z–grading. For generators x;y 2 cCF.H; s/ and � 2 �2.x;y/, we
have

(6-1) gr.x;y/D �.�/� 2nw.�/:

They showed [30, Theorem 7.1] that this can be lifted to an absolute Q–grading egr , in
the sense that gr.x;y/D egr.x/� egr.y/. Such a grading is called the Maslov grading
or homological grading.

Example 6.1 If Y D S3 with its unique Spinc structure s0 , and if H is a Heegaard
diagram of Y , then on cCF.H; s0/ the absolute Q–grading is actually an absolute
Z–grading. The generator of bHF.S3; s0/Š Z2 is homogeneous of grading zero.

More generally, if Y D #k
iD1.S

1�S2/ with Heegaard diagram H , and s0 2 Spinc.Y /

is such that c1.s0/D 0, then egr is an absolute Z–grading on cCF.H; s0/.

The main result of this section is the following.

Theorem 6.2 Let C be a decorated concordance from .S3;K0;P0/ to .S3;K1;P1/,
and let Hi be an admissible doubly pointed diagram of .S3;Ki ;Pi/ for i 2 f0; 1g.
Then, the chain map

fC W cCF.H0/! cCF.H1/

preserves the absolute homological grading; that is, if x 2cCF.H0/ is egr–homogeneous,
so is fC.x/, and if fC.x/¤ 0, then

egr.fC.x//D egr.x/:

Remark 6.3 Notice that the statement of Theorem 6.2 is stronger than the fact that
fC preserves the Maslov filtration. We actually claim that the Maslov grading is not
decreased by fC .

Idea of the proof We proceed similarly to the proof of Theorem 5.4, and use the
notation from Section 5D and Figure 1. As the diffeomorphism D constructed in
Section 5C induces a homomorphism D� that preserves the homological grading, we
can assume the gluing map is trivial and we are dealing with a special cobordism.

First, we prove that, in the right Spinc structure, the maps fH0;P , fH0
P ;H1 , fH1;L ,

fH1
L;H2 and fH2;S each preserve the relative Maslov grading gr. This is only implicit

in the work of Ozsváth and Szabó [30], so we provide more detail. Then we show that
the absolute grading shift of fC , which is the composition of all the above maps, is
zero.
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For the 1– and 3–handle maps fH0;P and fH2;S , it is straightforward to check that the
relative Maslov grading is preserved using (6-1) above.

Now consider the 2–handle map fH1;L . Let .†;˛;ˇ; ı; w; z/ be an admissible triple
Heegaard diagram subordinate to a bouquet for L. For generators x 2 T˛ \ Tˇ
and y 2 T˛ \Tı such that s.x/ D sjY˛;ˇ and s.y/ D sjY˛;ı , where s denotes the
unique Spinc structure on X , and for every Whitney triangle  2 �2.x; �;y/, we let

d D egr.y/� egr.x/C�. /� 2nw. /:

We show that d is independent of  , x and y . Since the triangles  contributing
to fH1;L have �. /D 0 and nw. /D 0, it follows that the absolute grading is shifted
by d , so the relative grading is preserved.

We already know from the work of Ozsváth and Szabó [29] that the naturality maps
fH0

P ;H1 and fH1
L;H2 preserve the relative homological grading gr. Alternatively, this

can also be shown using the techniques of Section 5K.

Finally, fC , which is the composition of all the above maps, preserves the relative
homological grading, or equivalently, it shifts the absolute homological grading by some
constant e . This implies that, for every r 2N , the map Er .fC/ shifts the homological
grading by the same constant e independent of r . Since we know that the map in
total homology is IdbHF.S3/

and preserves the absolute grading by [26, Lemma 3.4], it
immediately follows that e D 0.

The rest of this section is devoted to filling in the details of the above outline.

6A Spinc structures

Let s be the unique Spinc structure on X . Then

fC D fC; s D fH2;S; s ı � � � ıfH0;P; s;

where the restrictions of s are omitted for the sake of clarity.

So it suffices to consider the above maps in the Spinc structure s. In the rest of the
section, we will focus on the maps fH2;S; s; : : : ; fH0;P; s , and for simplicity, we will
denote the restrictions of s by the same letter.

6B 1– and 3–handles

The 1–handle map fH0;P; s satisfies the following.
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Lemma 6.4 Let x00; zx00 2 cCF.H0; s/ be generators. Then

gr.x00; zx00/D gr.fH0;P;s.x
00/; fH0;P;s.zx

00//I

ie the relative homological grading is preserved under the 1–handle map.

Proof Let � 2 �2.x
00; zx00/. Then the domain of � also represents a Whitney disk

between fH0;P .x
00/ and fH0;P .zx

00/ in the Heegaard diagram H0
P that we also denote

by � . By (6-1), we have

gr.x00; zx00/D �.�/� 2nw.�/D gr.fH0;P;s.x
00/; fH0;P;s.zx

00//:

A dual argument gives the following result for the 3–handle map fH2;S; s .

Lemma 6.5 Let y 0; zy 0 2 cCF.H2; s/ be generators such that fH2;S; s.y
0/ ¤ 0 and

fH2;S; s. zy
0/¤ 0. Then

gr.y 0; zy 0/D gr.fH2;S; s.y
0/; fH2;S; s. zy

0//I

ie the relative homological grading is preserved under the 3–handle map.

6C 2–handles

For 2–handles, we have the following.

Lemma 6.6 Let x; zx 2 cCF.H1/ be generators such that s.x/ D s.zx/ D s. Then
fH1;L; s.x/ and fH1;L; s.zx/ are egr–homogeneous, and if they are nonzero, then

gr.x; zx/D gr.fH1;L; s.x/; fH1;L; s.zx//:

Proof For x 2 cCF.H1/, y 2 cCF.H1
L/ and  2 �2.x; �;y/ such that s. /D s, let

(6-2) d D egr.y/� egr.x/C�. /� 2nw. /:

First, we check that d is independent of  . As in the proof of Lemma 5.13, it suffices
to show that, for every triply periodic domain P,

(6-3) �.P/D 2nw.P/:

Since, by Proposition 5.16, every triply periodic domain is the sum of doubly periodic
domains, it is sufficient to prove (6-3) in the case of doubly periodic domains in Heegaard
diagrams of Y˛;ˇ , Y˛;ı and Yˇ;ı .

Consider, for example, Y˛;ˇ and z2T˛\Tˇ , with a periodic domain P 2…˛;ˇ based
at z . As s.z/ extends to the cobordism X1 , we see that c1.s.z// vanishes on the belt
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spheres of the 1–handles. Furthermore, since H.P/ 2H2.Y / is a linear combination
of the belt spheres, we obtain that

hc1.s.z//;H.P/i D 0:

By the work of Ozsváth and Szabó [29, Theorem 4.9] and Lipshitz [20, Lemma 4.10],

�.P/D hc1.s.z//;H.P/iC 2nw.P/;

and the result follows. This proves that d is independent of  .

Next, we check that d is independent of x and y . Let zx be another generator
of cCF.H1/ such that s.zx/ D s. Then there is a Whitney disk � 2 �2.zx;x/, hence
� # 2 �2.zx; �;y/. Then, by (6-1),

d D egr.y/�egr.x/C�. /� 2nw. /

D egr.y/�egr.x/C�. /� 2nw. /C .egr.x/�egr.zx/C�.�/� 2nw.�//

D egr.y/�egr.zx/C�.� # /� 2nw.� # /:

Thus, d is independent of x . An analogous argument shows independence of y .

Finally, all the holomorphic triangles that appear in the definition of the map fH1;L; s

satisfy �. /D 0 and nw. /D 0. Then, it follows from (6-2) that fH1;L; s increases
the absolute grading egr by d . In particular, it preserves the relative grading gr.

6D Naturality maps

We already know from the work of Ozsváth and Szabó [29] that the naturality maps
preserve the Maslov grading. Alternatively, one can prove that the handleslide and
isotopy maps preserve the Maslov grading using the techniques of Lemma 6.6. The
(de)stabilization maps are already isomorphisms on the chain level.

6E Proof of Theorem 6.2

As explained in Section 6A,

fC D fH2;S; s ıfH1
L;H2;s ıfH1;L; s ıfH0

P ;H1;s ıfH0;P; s:

All the above maps preserve the relative Maslov grading by Lemmas 6.4, 6.5 and 6.6,
so fC shifts the absolute Maslov grading by some constant e . It follows that the maps
induced between the spectral sequences Er .fC/ shift the absolute Maslov grading by
the same constant e . On the other hand, the map in total homology is IdbHF.S3/

, which
is homogeneous of degree 0, so we obtain that e D 0.
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