Volume 20, issue 6 (2016)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Persistent homology and Floer–Novikov theory

Michael Usher and Jun Zhang

Geometry & Topology 20 (2016) 3333–3430

We construct “barcodes” for the chain complexes over Novikov rings that arise in Novikov’s Morse theory for closed one-forms and in Floer theory on not-necessarily-monotone symplectic manifolds. In the case of classical Morse theory these coincide with the barcodes familiar from persistent homology. Our barcodes completely characterize the filtered chain homotopy type of the chain complex; in particular they subsume in a natural way previous filtered Floer-theoretic invariants such as boundary depth and torsion exponents, and also reflect information about spectral invariants. Moreover, we prove a continuity result which is a natural analogue both of the classical bottleneck stability theorem in persistent homology and of standard continuity results for spectral invariants, and we use this to prove a C0–robustness result for the fixed points of Hamiltonian diffeomorphisms. Our approach, which is rather different from the standard methods of persistent homology, is based on a nonarchimedean singular value decomposition for the boundary operator of the chain complex.

persistence module, barcode, Floer homology, Novikov ring, nonarchimedean singular value decomposition
Mathematical Subject Classification 2010
Primary: 53D40
Secondary: 55U15
Received: 9 April 2015
Revised: 9 December 2015
Accepted: 3 January 2016
Published: 21 December 2016
Proposed: Leonid Polterovich
Seconded: Gang Tian, Yasha Eliashberg
Michael Usher
Department of Mathematics
University of Georgia
Athens, GA 30602
United States
Jun Zhang
School of Mathematical Sciences
Tel Aviv University
Ramat Aviv
Tel Aviv 69978