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Minimal genera of open 4–manifolds

ROBERT E GOMPF

We study exotic smoothings of open 4–manifolds using the minimal-genus function
and its analog for end homology. While traditional techniques in open 4–manifold
smoothing theory give no control of minimal genera, we make progress by using the
adjunction inequality for Stein surfaces. Smoothings can be constructed with much
more control of these genus functions than the compact setting seems to allow. As an
application, we expand the range of 4–manifolds known to have exotic smoothings
(up to diffeomorphism). For example, every 2–handlebody interior (possibly infinite
or nonorientable) has an exotic smoothing, and “most” have infinitely many, or
sometimes uncountably many, distinguished by the genus function and admitting
Stein structures when orientable. Manifolds with 3–homology are also accessible.
We investigate topological submanifolds of smooth 4–manifolds. Every domain of
holomorphy (Stein open subset) in C2 is topologically isotopic to uncountably many
other diffeomorphism types of domains of holomorphy with the same genus functions,
or with varying but controlled genus functions.

57R10; 32Q28

1 Introduction

Classification theory for smooth structures on a fixed topological manifold is entirely
anomalous in dimension four. While the theory becomes trivial in dimensions three
and below, and reduces to obstruction theory in dimensions five and higher, the 4–
dimensional theory is much more subtle and complicated. The initial shock of discovery
came in the early 1980s, when the foundational theories of Freedman [14] and Donald-
son [9] completed prior work of Casson [6] to show that Euclidean 4–space R4 has
exotic smoothings, even though obstruction theory is trivial on contractible manifolds.
It soon developed that R4 and many other open 4–manifolds have uncountably many
diffeomorphism types of smoothings, arising in continuous families unique to dimension
four. This prompted a fundamental question that remains open three decades later:

Question 1.1 Does every open 4–manifold admit more than one diffeomorphism type
of smoothing? Infinitely many? Uncountably many?
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While this question seems to have languished in recent years, its compact analog
continues to be extensively studied. Compact 4–manifolds frequently have infinitely
many smoothings (necessarily countably many), in defiance of the high dimensional
obstruction theory. The compact theory, descended from Donaldson’s pioneering work
[10], is very concrete, with explicitly specified smooth 4–manifolds distinguished by
invariants that can often be computed and applied to basic topological problems. For
example, the adjunction inequality for these invariants provides information about
the minimal genus of smoothly embedded surfaces representing a given homology
class. In contrast, the traditional theory for open 4–manifolds is very indirect. The
smoothings are rarely specified explicitly, and are typically distinguished using proofs by
contradiction. There is a shortage of computable invariants, or even explicit manifolds
for which to compute them. The adjunction inequality is known for the class of open 4–
manifolds called Stein surfaces, but outside of that context, minimal genera of embedded
surfaces appear not to have been previously investigated on open 4–manifolds. The
present article addresses these issues by systematically studying smoothing theory on
open 4–manifolds via minimal genera. In contrast with the compact case, it seems
much easier to construct smoothings on open 4–manifolds with prespecified control
of minimal genera, and these genera can be packaged into powerful invariants. We
make substantial progress on the above question, sometimes with explicitly computed
invariants on explicit manifolds. The overall intent is to elucidate open 4–manifolds
by importing compact techniques into the noncompact world.

The background of the subject begins with the shadow of high dimensional smooth-
ing theory falling on dimension four. In this theory, it is natural to classify smooth
structures up to isotopy rather than just diffeomorphism: Two smooth structures on a
fixed topological manifold X with boundary are isotopic if there is a diffeomorphism
between them that is topologically ambiently isotopic to the identity (ie the diffeomor-
phism is related to the identity by a homotopy through homeomorphisms). There is
a canonical map from isotopy classes on X to those on X �R, which is a bijection
when dim X > 4. Thus, we can apply the high dimensional theory to 4–manifolds
by passing to dimension five to consider stable isotopy classes, ie isotopy classes on
X �R. Unlike in higher dimensions, a given stable isotopy class on a 4–manifold can
be represented by many isotopy classes of smoothings, or by none at all. For open 4–
manifolds, however, the map is surjective (see Quinn [35]), so every stable isotopy class
is realized by a smoothing of the 4–manifold. Clearly, isotopic smoothings are always
diffeomorphic. The converse fails, however, even in high dimensions. For smoothings
on 4–manifolds, stable isotopy and diffeomorphism are independent relations. The
techniques of this paper frequently distinguish infinitely many diffeomorphism types
within a given stable isotopy class. The primary obstruction to the existence of a smooth
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structure, extending a given smoothing on @X , is the Kirby–Siebenmann invariant of
[31] in H4.X n; @X nIZ2/. (We work rel boundary since the boundary of a 4–manifold
necessarily has a unique isotopy class of smoothings.) When this obstruction vanishes,
stable isotopy classes of smoothings on a 4–manifold are classified by H3.X; @X IZ2/.
That is, the set of such classes is in bijective correspondence with the group, canonically
once we specify which class corresponds to 0. See Freedman and Quinn [15] for further
discussion on smoothing theory and its 4–dimensional idiosyncrasies; also see the
author and Stipsicz [29] for background on many of the ideas used in this paper.

Section 9.4 of [29] summarized what was known about smooth structures on open
4–manifolds, and was current up to the work described in the present paper. Various
results on continuous families of smooth structures (see eg the author [23] and Fang
[12]) were combined and generalized into Theorem 9.4.24 of that book. For an open,
connected topological 4–manifold X , let V � X be the complement of a compact
subset, or a component with noncompact closure of such a complement. In the former
case, assume V is orientable. If V has a smoothing for which some finite cover
embeds smoothly in # nCP2 for some finite n, then X admits uncountably many
isotopy classes of smoothings, in each stable isotopy class agreeing with a particular one
on V . Under some circumstances, one can use this theorem to distinguish uncountably
many diffeomorphism types within every stable isotopy class. For example, this occurs
if some end of X is collared by M 3 �R (ie M is closed and M � Œ0;1/ properly
embeds in X ), where M has a bicollared topological embedding in # nCP2 , or if M is
orientable and has a finite cover smoothly embedding in # nCP2 ; see Corollary 9.4.25
of [29]. Many, but probably not all, closed 3–manifolds satisfy at least one of these
conditions. In a different direction, Taylor’s invariant [38] (extending earlier work by
Bižaca and Etnyre [3], descended in turn from the author’s work [23]) stems from
trying to embed X into a closed, spin 4–manifold with signature 0, and minimizing
the resulting b2 . (We suppress various crucial details here.) The resulting invariant,
which for spin manifolds takes values in Z�0 [ f1g, shows that if X is orientable,
admitting a smoothing with a proper Morse function X ! Œ0;1/ with only finitely
many critical points of index 3, and if H2.X / has finite dimension with both Z2 and
Q coefficients, then each stable isotopy class contains (at least countably) infinitely
many diffeomorphism types of smoothings; cf [29, Theorem 9.4.29(a)]. Note that none
of the techniques discussed so far allow any control of surfaces representing specific
homology classes.

The origin of the present paper is the remaining result in [29], ie Theorem 9.4.29(b). For
this, we assume that X is orientable, H2.X / is nonzero, and there is a proper Morse
function X ! Œ0;1/ with indices at most 2. (Throughout the text, we use homology
with integer coefficients except where otherwise specified.) These hypotheses allow us
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to access the adjunction inequality via Stein surfaces and Freedman theory. The theorem
concludes that X admits (at least countably) infinitely many isotopy classes of smooth
structures (realizing the unique stable isotopy class). Over time, the author expanded
this method in various directions (previously unpublished). Recently, in Akbulut and
Yasui [1] and Yasui [39], related techniques have been applied to distinguish infinite
families of smoothings on compact 4–manifolds with boundary, with arbitrarily large
finite subfamilies admitting Stein domain structures. (Their examples are constructed
with finitely many handles, whereas the examples in the present paper come from
infinite constructions involving Casson handles, as is typical of noncompact smooth
4–manifold constructions.)

The present paper uses Freedman theory to construct exotic smooth structures (smooth-
ings not diffeomorphic to a preassigned one), and the adjunction inequality for Stein sur-
faces to systematically study these via the smoothly embedded surfaces they contain. We
obtain various new existence theorems, such as this corollary of Theorems 3.4 and 3.5:

Theorem 1.2 If a smooth, open 4–manifold admits a proper Morse function X !

Œ0;1/ with indices at most 2, then it admits an exotic smooth structure. It admits
infinitely many diffeomorphism types of smoothings if H2.X / ¤ 0 or X is not a
K.�; 1/. It admits uncountably many if H2.X / has infinite rank.

For orientable X , the countably infinite case H2.X /¤ 0 is [29, Theorem 9.4.29(b)]
upgraded from isotopy classes to diffeomorphism types. The infinite collections of
smooth manifolds produced here all admit Stein structures when X is orientable.
Dropping the condition on Morse indices, we have (cf [3]):

Theorem 1.3 Let X be a connected topological 4–manifold (possibly with bound-
ary) with some end collared by M �R for a closed, connected 3–manifold M . If
X �M � .0;1/ is compact, assume its Kirby–Siebenmann invariant vanishes. Let �M
denote M (if orientable) or its orientable double cover. If H2. �M /¤ 0, then X has
infinitely many diffeomorphism types of smoothings.

See Theorem 5.1. This is not new, since Bižaca and Etnyre [3] proved that every
4–manifold with a collared end admits infinitely many diffeomorphism types of
smoothings. (Their missing case of infinitely many homeomorphic collared ends was
completed by an observation of Ganzell [18].) However, their approach gives no control
of genera of surfaces. Furthermore, Theorem 1.3 is a special case of the much more
general Theorem 5.7 that also covers examples such as the following (Theorem 5.5(b)):

Theorem 1.4 If X admits a Morse function as above with indices at most 1, then X

has infinitely many diffeomorphism types of smoothings. If H1.X / is not finitely
generated, there are uncountably many.
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There are other approaches to this latter theorem: Taylor’s invariant distinguishes
infinitely many diffeomorphism types, and for orientable X , [29, Theorem 9.4.24]
gives uncountably many isotopy classes (or diffeomorphism types if H1.X / is finitely
generated). What is most interesting here is that when H1.X /¤ 0, this theorem follows
just by studying genera of embedded surfaces, even though H2.X /D 0.

While these theorems include substantial progress on Question 1.1, they are mainly
presented as applications of controlling minimal genera, which is the main theme of the
paper. To this end, Section 2 presents our invariants derived from the genus function of a
4–manifold, along with required background material on Casson handles, Stein surfaces
and the adjunction inequality. Our main Lemma 3.2 provides control of these invariants
for smoothings of a handlebody interior with indices at most 2, and the rest of Section 3
provides simple applications, such as Theorem 1.2. For deeper applications, we analyze
ends of manifolds with the genus function at infinity. This is sensitive enough to detect
exotic smoothings on manifolds with trivial 2–homology such as in Theorem 1.4. Our
main lemma for controlling the genus function at infinity is presented in Section 4
and applied in Section 5. For simplicity, we focus on collared ends (eg Theorem 1.3),
although the techniques apply in much more generality. Again, the main theme is
flexible control of the genus function. We see, for example, that smoothings on S1�R3

realize all values in Z�0[f1g of the minimal genus of the generator at infinity; see
Theorem 5.5(a). The remaining sections are nearly independent of each other. Section 6
illustrates how badly topological submanifolds and isotopies can fail to respect smooth
structures in dimension 4. We define a notion of minimal-genus function for arbitrary
subsets of a smooth 4–manifold, and show that for tame topologically embedded
surfaces and 3–manifolds, this function can be flexibly changed by topological isotopy.
In the orientable case, for example, a smooth surface can be topologically adjusted
to realize any minimal genus exceeding the original. In Section 7, we compare our
genus invariants with older methods of detecting exotic smooth structures. We see
that under various hypotheses, our previous examples occur in uncountable families
for each choice of the genus functions. The theorems of this section, like those of
Section 3, are compatible with Stein structures. This allows us to prove a theorem
related to classical complex analysis in C2 . A domain of holomorphy is an open subset
of C2 (or of another Stein manifold) for which the inherited complex structure is Stein.
Corollary 7.5(a) implies:

Theorem 1.5 For every domain of holomorphy U in C2 (for example), the inclusion
map is topologically isotopic to other embeddings, whose images are also domains
of holomorphy and represent uncountably many diffeomorphism types of smoothings
of U, while having the same genus function.
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We can also flexibly control the genus function here. Section 8 further explores the
range of the genus function, and shows how additional information can sometimes be
obtained by allowing our surfaces to be immersed.

This paper is a streamlined version of the author’s preprint [27], which was refereed
without mathematical difficulty. For improved readability, some text has been simplified
or eliminated, with occasional references indicating what the interested reader can find
in the original preprint. Examples 4.7 and 5.8 on noncollared ends, and Theorem 8.6 on
Casson handles, are new in this version. The final example of [27] has been deleted. This
was posed as an example of an open 4–manifold not known to admit exotic smoothings.
However, Julia Bennett has observed that exotic smoothings can be constructed on it
and detected by the Taylor invariant, since it has “few essential 3–handles” as in [38].
She has also shown [2] that the Taylor invariant can often be controlled independently
of the constructions of this paper, by augmenting Section 7 with a novel exotic R4 .

Acknowledgments The author was partially supported by NSF grants DMS–0603958
and 1005304.

2 Preliminaries

We begin by reviewing the genus function and extracting the invariants that we will
need. Then we provide background on handlebodies, Stein surfaces, the adjunction
inequality and Casson handles.

For any smooth 4–manifold X (possibly with boundary), every homology class ˛ 2
H2.X / is represented by a smoothly embedded, closed, oriented surface F . (We will
frequently refer to such an F as a “surface representing ˛”, suppressing the remaining
adjectives.) The genus g.F / of F can be increased by any positive integer, simply by
adding small tubes. One cannot always decrease the genus, however.

Definition 2.1 The genus function GW H2.X /! Z�0 is the function assigning to
each ˛ the smallest possible genus of a surface F representing ˛ .

We define the genus of a disconnected surface to be the sum of the genera of its
components. Then we can always arrange F to be connected, provided that X is. For
closed, oriented 4–manifolds, and subsequently for Stein surfaces, the genus function
has been studied using Donaldson invariants and their descendants. General open
4–manifolds, however, seem largely unexplored by this method. We will show that the
genus function is especially powerful in this setting, due to an obvious inequality: For
any smooth embedding i W X ! Y of 4–manifolds, we have G.i�˛/�G.˛/. (We do
not require embeddings to be proper.) This allows us to constrain the genus function
on X by exploiting Donaldson-type invariants on many manifolds Y simultaneously.
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The genus function is an invariant of smooth structures on a 4–manifold X up to
isotopy, or more generally up to diffeomorphisms fixing H2.X /, but it is not preserved
by more general diffeomorphisms between smoothings of X . Nevertheless, many
diffeomorphism invariants can be constructed from it. One approach we will use is
the following: Suppose X is a smooth, oriented 4–manifold with torsion subgroup
T � H2.X /. For g 2 Z�0 , let �g D �g.X /� H2.X /=T denote the rational span of
G�1Œ0;g�\Q�1Œ�g;g�, where Q is the intersection form on H2.X /. That is, �g is
the set of elements of H2.X /=T realized up to scale as linear combinations of surfaces
with genus and self-intersection bounded (in absolute value) by g . These groups �g

are nested as g increases, so we obtain a nondecreasing function  .g/DRank.�g/, at
least as long as H2.X /=T is free abelian. (This is always true if there is a handlebody
whose interior is homeomorphic to X , and has only finitely many 3–handles.)

Definition 2.2 We will call the function  W Z�0!Z�0[f1g the genus-rank function
of X (or of its given smoothing). The integers g such that  .g/¤  .g� 1/ (where
 .�1/ D 0) will be called the characteristic genera of X , and the corresponding
subgroups �g will be called the genus filtration of X .

Clearly, any diffeomorphism X ! Y (between oriented 4–manifolds but possibly
reversing orientation) sends the genus filtration of X to that of Y , and the genus-rank
function is a diffeomorphism invariant of smooth structures on X , determined by the
genus function (and intersection form up to sign).

Every smooth manifold X admits a proper Morse function f W X ! Œ0;1/, although
infinitely many critical points may be required. In the finite case, it is well known that
such a function exhibits X as the interior of a finite handlebody H . Similarly, in the
infinite case, X is the interior of an infinite handlebody H with the maximal index of
its handles equal to that of the critical points of f . (See [26] for a proof.) We require
handles to be attached in order of increasing index, and infinitely many 0–handles are
required so as to avoid clustering of attaching regions on compact boundaries. We can
now state our theorems in the language of handle theory without loss of generality.
We call H a k –handlebody if its handles have index at most k , with the case k D 2

of special interest. Then H3.X IZ2/D 0, so there is a unique stable isotopy class of
smoothings. Furthermore, there are no 3–chains, so H2.X / is free abelian (although
not necessarily finitely generated). If H0 is a subhandlebody of a 2–handlebody H ,
ie H is made from the handlebody H0 by attaching handles (to handles of lower
index), the long exact sequence of the pair shows that H2.H0/ is a direct summand of
H2.H /. The handle structure is part of the defining data of a handlebody. We always
assume (without loss of generality in dimension-4) that the attaching maps defining a
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handlebody are smooth, although we sometimes topologically embed handlebodies or
otherwise construct exotic smoothings on their interiors.

Stein surfaces are complex surfaces (hence oriented 4–manifolds) arising as closed
subsets of CN . They have a long and continuing history in complex analysis, but we
will only need a few basic facts about them. (See [29] for more details and [7] for a
broader perspective.) By work of Eliashberg (implicit in [11], see also [7]), a smooth,
oriented, open 4–manifold X admits a Stein structure if and only if it has a proper
Morse function X ! Œ0;1/ with indices at most 2 and a certain framing condition
satisfied. This, in turn, is equivalent (by [26, Theorem A.2] in the infinite case) to
exhibiting X as the interior of a 2–handlebody with suitably framed 2–handles. The
practical effect is that for a 1–handlebody H0 , oriented as a 4–manifold, and a proper
embedding into @H0 of a disjoint union of circles, the latter can always be framed
so that the handlebody H obtained by adding 2–handles to these framed circles has
Stein interior (inducing the preassigned orientation). Given any such framing, any other
framing obtained from it by adding left twists will also determine a manifold admitting
a Stein structure. However, adding enough right twists typically produces a manifold
that admits no Stein structure.

The most basic invariant of a Stein surface S is the Chern class c1.S/ 2 H2.S/ of its
tangent bundle with the induced complex structure. If S is exhibited as the interior of a
handlebody H as above, then this class is represented by a Chern cocycle for the cellular
cohomology of the associated CW 2–complex (with a k –cell for each k –handle of H ).
The Chern cocycle is well defined once we fix a complex trivialization of the tangent
bundle over the 0– and 1–handles, for example, by drawing a suitable diagram for
the handlebody. Its value on each oriented 2–cell is called the rotation number of the
corresponding (suitably oriented) attaching circle, and can be read from a diagram. If
we change H by removing one 2–handle and replacing it, with an additional left twist
in the framing, the corresponding rotation number will change by ˙1. We can choose
the sign arbitrarily, so we obtain two Stein structures on the same handlebody interior,
with two different Chern cocycles. If these cocycles determine different cohomology
classes, then the Stein structures are distinguished by their complex tangent bundles (ie
they determine almost-complex structures that are not homotopic).

We can now state the adjunction inequality for Stein surfaces. The following version is
adapted from Nemirovski [34].

Theorem 2.3 Let F be a closed, oriented surface of genus g.F /, generically smoothly
immersed in a Stein surface S , with k positive double points (and some number of neg-
ative double points). If F is not a nullhomotopic sphere (or disjoint union thereof ), then

2g.F /C 2k � 2� F �F Cjhc1.S/;Fij:
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In [34] and elsewhere in the literature, F is assumed to be connected, but the statement
easily generalizes to the disconnected case [27]. The latter is useful, for example, for
dealing with multiple ends of a manifold. The version in [34] also tracks some negative
double points. We do not need that version here, and outside of our final Section 8,
only need the embedded version (so k D 0). The inequalities under discussion descend
from a long line of adjunction inequalities, originating on closed manifolds via gauge
theory pioneered by Donaldson and subsequently upgraded to Seiberg–Witten theory.
For further references and a current exposition, see [13].

To construct exotic smooth structures, we will need to replace 2–handles by Casson
handles [6; 14]. Let h be a 2–handle attached to a 4–manifold X along a circle
C � @X , and let D � h be a generically immersed 2–disk with @D D C . Then
the singularities of D are all transverse double points, which have well-defined signs
once an orientation for the 4–manifold h is specified. Let T1 be a compact regular
neighborhood of D , which we think of as an oriented 4–manifold abstractly attached
to X in place of h, along the same framed circle. When D is not embedded, we will
call T1 a kinky handle or 1–stage tower with core D and attaching region T1 \X .
The oriented diffeomorphism type of the pair .T1;C / is determined by the numbers
of double points of each sign. In fact, T1 is obtained from a 2–handle h� by self-
plumbing to create the given numbers of double points of each sign in the core disk,
although the framing for attaching h� is obtained from that of h by subtracting twice
the signed count Self.D/ of the double points. (The canonical framing of C in h is the
unique framing determining a parallel push-off C 0 of C for which C and C 0 bound
disjoint surfaces in h. The framing retains this property in T1 . However, the canonical
framing of h� is determined by a parallel push-off of D in T1 , which intersects D in
2 Self.D/ points, counted with sign, and to compensate we must subtract this number
from the original framing to get the framing for attaching h� .) There is a canonical
local procedure for adding a double point of either sign to an immersed surface in a
4–manifold, and repeatedly applying this to the core of h gives a disk D as above
realizing any given numbers of double points of each sign. Furthermore, the local
procedure is reversible in that we can find a 2–handle attached to T1 in h near each
double point, so that attaching the 2–handles changes T1 back into h. If we replace
these 2–handles by kinky handles inside them, we obtain a 2–stage tower T2 . Iterating
the construction, we obtain n–stage towers, T1 � T2 � T3 � � � � , for all n 2 ZC ,
each obtained from the previous one by attaching kinky handles to a suitable framed
link. The union of these towers, with all boundary outside of X removed, is called a
Casson handle CH attached to X with attaching circle C (framed as for h and T1 ).
By construction, CH has a standard embedding in the 2–handle h. Note that while
each tower has free fundamental group generated by the top-stage double points, the
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inclusion maps are �1 –trivial, so CH is simply connected. In fact, Freedman proved
that every Casson handle is homeomorphic (rel the framed attaching circle) to an open
2–handle D2 �R2 , which led immediately to revolutionary developments such as his
classification of closed, simply connected, topological 4–manifolds ([14], as sharpened
by Quinn [35]). The failure of such results in the smooth category, as first discovered
by Donaldson, implies that Casson handles are typically not diffeomorphic to open
2–handles (cf Theorem 8.6). Thus, we obtain exotic smoothings of D2�R2 by pulling
back the smoothings of Casson handles via Freedman homeomorphisms. Replacing
2–handles by Casson handles in a 2–handlebody can now be thought of as creating
new smooth structures on its interior.

Casson handles are classified, up to orientation-preserving diffeomorphism respecting
the subtowers, by based, signed trees with no finite branches. To define the tree for
a given Casson handle, start with a vertex for each kinky handle, with the base point
corresponding to T1 . Then add an edge for each pair of kinky handles that are directly
attached to each other, labeled with the sign of the associated double point. We obtain
a bijection sending Casson handles to based signed trees where only the base point is
allowed to have valence one. If the based, signed tree for CH is contained in that of
CH0 , then CH0 is called a refinement of CH, and by construction, there is an orientation-
preserving embedding CH0�CH respecting the framed attaching circles (and attaching
regions) of the Casson handles. Any finite collection of Casson handles has a common
refinement, the quickest construction being to identify the base points of their trees.

Our main tool for constructing exotic smooth structures for which the adjunction
inequality can be applied is the following theorem:

Theorem 2.4 [24] Every oriented 2–handlebody has interior X orientation-preserv-
ing homeomorphic to a Stein surface, whose Chern class pulls back to a preassigned
lift of the Stiefel–Whitney class w2.X /.

The main idea is that replacing a 2–handle by a kinky handle with Self.D/ > 0 is
equivalent to replacing it by a new 2–handle with a more left-twisted framing, and then
doing self-plumbings. By choosing each Self.D/ sufficiently large, we can arrange the
result of attaching the new 2–handles to have Stein interior, and the self-plumbings do
not disturb the Stein condition. Iterating the construction, we can build a Stein surface
with Casson handles in place of the original 2–handles, and this is homeomorphic to X

by Freedman’s theorem. Choosing each first-stage Self.D/ even larger provides enough
flexibility to realize any preassigned Chern cocycle, yielding the required Chern class,
and more generally, any preassigned homotopy class of almost-complex structures [24].
The necessary values of Self.D/ at the first stage depend on the original handlebody
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and Chern cocycle, and can be computed from a diagram. At higher stages it suffices to
use any kinky handles with Self.D/ > 0, so a single double point (positive) is sufficient.

3 Controlling the genus function

The simplest application of Theorem 2.4 to smoothing theory is to construct Stein
exotic smoothings on a 2–handlebody interior and distinguish them by the adjunction
inequality. We gain extra generality, allowing nonorientable manifolds for example,
by passing to a cover first. For this reason, our convention throughout the text is
not to assume orientations on manifolds, unless otherwise stated such as in reference
to Stein surfaces or negative-definite manifolds, and not to assume that maps such
as homeomorphisms preserve orientation. The smoothings resulting from the main
Lemma 3.2 of this section are (in principle) completely explicit, with the complexity of
the Casson handles determined as in Theorem 2.4. In preparation, we introduce some
useful terminology.

Definition 3.1 Let H be a 2–handlebody. We will say a smooth structure on int H

has Casson type if it is obtained from the standard smooth structure by replacing some
of the 2–handles with Casson handles. If H is oriented, and the smoothing admits a
compatibly oriented Stein structure constructed as in Theorem 2.4, we will say int H

has Stein–Casson type.

Both of these properties pull back under covering maps, as does being a refinement
of some Stein–Casson smoothing (ie being a Casson-type smoothing obtained from
a Stein–Casson smoothing by refining each Casson handle). Note that by definition,
the above smooth and Stein structures are standard on the 0– and 1–handles, which
avoids technicalities with removing handles or attaching new ones.

Our main lemma allows us to flexibly control the genus filtration and characteristic
genera for Casson-type smoothings, as well as for their covers. Recall that in a
handlebody H , a subhandlebody is a subset consisting of a union of handles of H that
themselves comprise a handlebody. There will typically be many ways to write H as a
nested union of subhandlebodies, and further flexibility results if we first modify H

by handle moves. For a fixed n 2 f2; 3; : : : ;1g, consider a nested sequence H1 �

H2 � � � � �Hn of subhandlebodies of a 4–dimensional 2–handlebody Hn , each with
possibly infinitely many handles. If nD1, assume H1D

S1
iD1Hi . Let � W zHn!Hn

be a covering. For i D 1; : : : ; n, let Xi D int Hi and zXi D int zHi D �
�1.Xi/, and

let Ai be the image of H2. zXi/ in AnDH2. zXn/. (Recall that Ai ŠH2. zXi/ is a direct
summand of the free abelian group An .)

Geometry & Topology, Volume 21 (2017)



118 Robert E Gompf

Lemma 3.2 Suppose that zXn is orientable and that each Ai with i < n has finite rank.
Then there is a smooth structure † on Xn for which each Ai lies in the genus filtration
of zXn . In fact, there is an increasing sequence fki j 1 � i < ng of integers such that,
for 1� i < n, each Ai D �ki

. zXn/ equals the span in An of all surfaces F in zXn that
are smoothly embedded with respect to ��† and have g.F / and jF �F j � ki . The
sequence fkig can be chosen to increase arbitrarily rapidly from an arbitrarily large k1 .

This holds more generally [27] with each Ai replaced by Ai=A0 , where A0DH2. zX0/

for some subhandlebody H0 �H1 . The extra generality is useful when each Ai=A0

is finitely generated but A0 is an infinite rank homeomorphism-invariant subgroup (eg
Examples 3.6(b)). Note that when X1 is empty, k1 provides a strict lower bound for
minimal genera of all nontrivial classes ˛ in H2. zXn/ with j˛ �˛j � k1 .

To prove the lemma by induction, and for the main lemma of Section 4, we must be able
to preserve a preassigned smoothing on one of the given subhandlebody interiors Xm .
(This also has immediate consequences such as [27, Theorem 3.9].) For simplicity,
we assume that each Xi is connected and that X1 is not orientable unless Xn is.
(These hypotheses can always be arranged when Xn is connected, by including more
1–handles in each Xi . The subgroups Ai then remain unchanged.) Let yXi denote Xi

if it is orientable, and its orientable double cover otherwise. Then � factors through yXn .
Fix an orientation on yXn and lift it to zXn .

Addendum 3.3 The smoothing † given by Lemma 3.2 has Casson type, lifting to a
refinement of some Stein–Casson smoothing y† on yXn that equals † when yXn DXn

and realizes a preassigned homotopy class of almost-complex structures on yXn . The
smoothings † and y† can be chosen arbitrarily over X1 , subject to the conditions of
the previous sentence. Similarly, for fixed m with 1 <m < n, they can be chosen to
agree with corresponding smoothings previously constructed for Xm by the lemma and
addendum, with the same values of k1; : : : ; km�1 . Furthermore, † can be chosen to
also be a refinement of a preassigned Casson-type smoothing of Xn (that extends the
preassigned one on Xm if given, m� 1).

Proof of Lemma 3.2 and Addendum 3.3 If † and y† were not preassigned over X1 ,
we must first construct them. If yX1 DX1 , let y†D† be any Stein–Casson smoothing
of X1 respecting the given orientation and almost-complex structure, and refining
the preassigned smoothing. Otherwise, choose a Stein–Casson smoothing y† on yX1

suitably respecting the data. Each 2–handle h of X1 has two lifts to yX1 , inheriting
two different Casson handle structures from y†. Because of the orientation mismatch,
orienting h results in one Casson handle having excess positive double points, and the
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other having excess negativity. Define † so that h is a common refinement of these
two Casson handles (and of the preassigned one if given).

To complete the proof when n D 2, extend y† to a Stein–Casson smoothing of yX2 .
Choose a finite collection fFr g of oriented surfaces in zX1 , smoothly embedded with
respect to ��†, and spanning A1 . Choose any integer k1 larger than each g.Fr /

and jFr �Fr j. Let fhlg be the set of 2–handles of zH2 disjoint from zX1 , oriented as
2–chains lifting a fixed choice of orientations on H2 . For each l and choice of sign,
obtain a Stein surface S˙

l
homeomorphic to zX2 , by lifting y† from yX2 to zX2 and then

refining hl , leaving its complement unchanged, so that the Chern cocycle r.S˙
l
/ on hl

is bounded away from 0 by ˙3k1 . For fixed sign, we can use the same refinement for
each hl over a given 2–handle of yX2 . This allows us to extend † to a Casson-type
smoothing of X2 with each 2–handle interior smoothed as a refinement of each of
its lifts to the corresponding Stein surfaces S˙

l
(and a refinement of the preassigned

smoothing if given). Clearly, A1 is spanned as required by the smooth surfaces fFr g.
However, any cycle representing a homology class outside of A1 has the form mhlC˛

for some l , where m is nonzero and ˛ is the contribution from other 2–handles. If F

is a ��†–smooth surface representing this class with jF �F j � k1 , then it includes
smoothly in the two corresponding Stein surfaces S˙

l
. By the adjunction inequality,

2g.F /� 2� F �F Cjhc1.S
˙
l /;Fij � �k1Cjmhr.S

˙
l /; hliC hr.S

˙
l /; ˛ij � 2k1;

if we choose the sign for S˙
l

so that the two terms in the absolute value bars have
the same sign. (Note that the latter of these is independent of the sign.) In particular,
g.F / > k1 as required. If yX2 D X2 , redefine y† to be †, which we can assume has
Stein–Casson type.

For n > 2, we apply induction. For a given i > 2, we assume Xi�1 has already
been smoothed by the lemma and addendum. We apply the n D 2 version to the
pair Xi�1 � Xi , suitably extending the smoothing from Xi�1 to Xi using the first
sentence of the addendum. This extends our previous y†, and hence our previous
Stein surfaces S˙

l
. Together with the newly constructed Stein surfaces, these give the

required lower bounds on minimal genera. (Without reusing the old Stein surfaces S˙
l

,
it would be conceivable that the new handles of Xi could lower the minimal genus of a
class in A2�A1 below k1 , for example.) If nD1, the induction gives a smoothing
on each Xi with i finite. These all agree on their overlaps, so we obtain a smoothing
on X1 , which has the required properties by compactness of the relevant surfaces.

We can now create many exotic smooth structures, using control of the genus function
to distinguish them. The rest of this section illustrates the method with some sample

Geometry & Topology, Volume 21 (2017)



120 Robert E Gompf

applications. The subsequent two sections apply the lemma more deeply to study
minimal genera at infinity.

Theorem 3.4 Let X be the interior of a (connected ) 2–handlebody. Then X admits
more than one diffeomorphism type of smooth structure. It admits infinitely many
provided that one of the following conditions holds:

(a) H2.X /¤ 0,

(b) X is nonorientable and its orientable double cover zX has H2. zX /¤ 0,

(c) X is not a K.�; 1/,

(d) X has an orientable (connected ) cover zX with H2. zX / ¤ 0, and such that
�1. zX / � �1.X / has only finitely many images under the homeomorphism
group of X , up to inner automorphism.

The orientable case of (a) is proved up to isotopy in [29, Theorem 9.4.29(b)] by a
simpler application of the same idea. The �1 condition in (d) is always true for a
cover zX of finite degree d when �1.X / is finitely generated, for then the latter is
realized by a 2–complex with finite 1–skeleton, which has only finitely many d –fold
covers. The smoothings of (a)–(d) have Stein–Casson type when X is oriented.

Proof For nonorientable X , hypothesis (a) implies (b), since b2. zX /� b2.X /. The
covering map in (b) is uniquely determined by the homeomorphism type of X , as is
the universal covering in (c), so (a), (b) and (c) are all special cases of (d). In that
case, the hypothesis on �1 guarantees that X has finitely many coverings zXm!X

such that every self-homeomorphism of X lifts to a homeomorphism zX ! zXm for
some m. Let † be a smoothing of X . For each m, H2. zXm/Š H2. zX /¤ 0, so we
can choose a homologically essential surface in zXm that is smooth with respect to the
lift of †. Let gm and qm be its genus and self-intersection. Lemma 3.2 with nD 2

and H1 empty gives us another smoothing †0 of X for which every smooth essential
surface F in its lift to zX has g.F / or jF �F j > maxmfgm; jqmjg. There can be no
diffeomorphism from X†0 to X† , for this would be a self-homeomorphism of X .
Lifting to a homeomorphism zX! zXm for some m, we would obtain a diffeomorphism
between the corresponding lifts of †0 and †. But by construction, the latter lift has
an essential surface of genus gm and self-intersection qm , whereas the former cannot,
yielding the required contradiction. Now repeat the entire construction with †0 in place
of †, and inductively obtain a sequence of nondiffeomorphic smooth structures on X .

To see that X always admits more than one smooth structure, it now suffices to consider
the case when X is a K.�; 1/. In that case, the universal cover zX is contractible
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and has no 3–handles, so by [38, Theorem 4.3], the standard smooth structure on zX
has vanishing Taylor invariant. If we form the end-sum of X with an exotic R4 (cf
Section 7) whose Taylor invariant is nonzero, then the universal cover will have nonzero
(possibly infinite) Taylor invariant. Thus, we have two smooth structures on X with
nondiffeomorphic universal covers.

Note that unlike our previous orientable examples, the exotic smooth structure we obtain
when (a)–(d) fail cannot be Stein or Casson type. This is because its universal cover
has nonzero Taylor invariant, so admits no handle decomposition without 3–handles.
In fact, any handle decomposition of the exotic R4 summand requires infinitely many
3–handles [38], and no such decomposition is explicitly known, making this case the
only nonconstructive proof in this section.

It should not be surprising that when H2.X / has infinite rank, the genus-rank function
distinguishes uncountably many diffeomorphism types of smoothings, and these are
Stein–Casson if X is oriented. The proof merely requires careful bookkeeping. More
generally, we have the following [27], where the �1 –condition again is automatic if
�1.X / is finitely generated:

Theorem 3.5 Let X be the interior of a 2–handlebody. Suppose X has an orientable
finite cover zX with H2. zX / not finitely generated, and such that �1. zX / � �1.X /

has only countably many images under the homeomorphism group of X , up to inner
automorphism. Then X admits uncountably many diffeomorphism types of smooth
structures, distinguished by their genus-rank functions on zX .

Examples 3.6 (a) In [29] (following Theorem 9.4.29), the infinite connected sum
of copies of S2 �S2 with a single end was given as an example with infinitely many
isotopy classes of smoothings, but which was not known to admit uncountably many
smoothings. Theorem 3.5 distinguishes uncountably many diffeomorphism types, with
considerable flexibility in the resulting genus filtration, and hence in the group of
self-diffeomorphisms. See [27] for more details on the examples in this section.

(b) Let fFmg be a countable, nonempty family of closed, connected surfaces (not
necessarily orientable), and let X be an end-sum of R2 –bundles over these. When the
family fFmg is finite, [3] produces (countably) infinitely many smoothings, and if X

is also orientable, there are uncountably many smoothings, cf [29, Corollary 9.4.25],
up to diffeomorphism in each case. These smoothings are made by end-sum with an
exotic R4 , which cannot increase minimal genera or obstruct orientation-preserving
self-diffeomorphisms. In contrast, our method gives infinitely many diffeomorphism
types with control on minimal genera, even when fFmg is infinite: One can construct a
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homeomorphism-invariant finite cover zX of X (with degree 1, 2 or 4), with orientable
domain, such that each lift of each Fm is orientable [27], then apply Theorem 3.4(d).
For infinite fFmg, such manifolds X were posed in [29] (with each Fm diffeomor-
phic to RP2 ) as examples not known to have exotic smooth structures. Applying
Theorem 3.5 to zX , we obtain uncountably many diffeomorphism types of exotic
smoothings on X , again with control of self-diffeomorphisms. For example, when
everything is orientable, the subgroup A0 � H2.X / generated by surfaces Fm with
a fixed upper bound on genus is preserved by continuous maps. We can arrange
the diffeomorphism group to act transitively on infinite collections of such surfaces
(when such collections exist with fixed genus and Euler number) while disallowing
any permutations among homology classes of higher genus surfaces Fm . (Apply
Lemma 3.2 relative to the infinite rank subgroup A0 .)

(c) We can sometimes use Lemma 3.2 to study an open 4–manifold X that is not a
2–handlebody interior. Theorem 5.3 does this when X DM 3�R by embedding it in a
2–handlebody. For a different approach, suppose L�X is a properly, tamely embedded
1–complex with image invariant (up to proper homotopy) under homeomorphisms
of X . There is then a well-defined map from isotopy or diffeomorphism types of
smoothings † on X to those on X �L, by first isotoping † so that L is smooth,
then deleting L; cf [5]. It then suffices to distinguish the image smoothings in X �L

or note that the map preserves G . For example, if X is a finite connected sum of
2–handlebody interiors (so H3.X /¤ 0), we can take X �L to be their end-sum, and
Lemma 3.2 produces smoothings that are distinguished both on X �L and X .

When H2.X / is finitely generated, we obtain complete control of the genus filtration.

Theorem 3.7 Let X be the interior of a connected 2–handlebody. Suppose that X

is oriented and H2.X / is finitely generated. Then any filtration of H2.X / consisting
of b2.X /C 1 distinct direct summands is realized as the genus filtration of some
Stein–Casson smoothing on X , and the characteristic genera can be chosen to increase
arbitrarily rapidly.

Proof Let ˛1; : : : ; ˛b2.X / be a basis for H2.X / such that the i th subgroup in the
filtration is the span of ˛1; : : : ; ˛i�1 . This basis is carried by some finite subhandlebody
of X . Slide handles so that the first b2.X / 2–handles each represent the corresponding
elements ˛i . Now apply Lemma 3.2 with � D idX .

Having exploited lower bounds for the genus function, we now investigate how to
control it more precisely. Our method can be applied in general via Legendrian Kirby
diagrams, but we focus on a case avoiding this technology. Let X be an orientable
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manifold that is an R2 –bundle over a closed, connected surface F of genus g . Let ˛
be a generator of H2.X / if F is orientable, and otherwise a generator of H2. zX / for
the double cover zX to which F lifts orientably (which is a bundle over an orientable
surface of genus g�1). We determine all possible values of G.˛/ when F is orientable,
with a similar statement in the nonorientable case.

Theorem 3.8 For the bundle X ! F as above, we have the following:

(a) If F is orientable, then X admits a smoothing with G.˛/ D g0 if and only if
g0 � g .

(b) If F is nonorientable, g0 � g and g0 � g mod 2, then X admits a smoothing
for which G.˛/D g0� 1. If g0 < g , then no such smoothing exists.

These smoothings have Stein–Casson type for some orientation on X , unless g0 D g

and X is a bundle over F D RP2 with Euler number e.X / D 0 or over S2 with
je.X /j � 1. There are such Stein–Casson smoothings for each orientation of X

whenever je.X /j � ��.F /, where � denotes the Euler characteristic.

The case of orientable F is treated from a somewhat different viewpoint in [25,
Example 6.1(b)]. For nonorientable F , one can similarly analyze the minimal genus
of the generator of H2.X IZ2/, for nonorientable surfaces whose w1 pulls back from
that of F , by reducing to the orientable case in zX [27].

Proof It suffices to realize the required smoothings, with the negative results following
since a map from an orientable surface to one with larger genus must have degree 0.
We start by building a model family of Stein surfaces homeomorphic to R2 –bundles.
The cotangent bundle T �F of F has oriented total space and Euler number e.T �F /D

��.F /. We can construct T �F as a Stein surface by complexifying the real-analytic
manifold F , or by explicitly drawing a link diagram as in [24]. Let Vk be the Stein
surface obtained by performing k positive self-plumbings in the 2–handle of T �F .
The generator of H2.Vk/ (with Z2 coefficients if F is nonorientable) is represented by
a smoothly embedded surface Fk diffeomorphic to F # kT 2 , obtained by smoothing
the double points of the immersed copy of F . Then Fk �Fk D e.T �F /C 2k , since
a local model of each double point exhibits two intersections between a pair of copies
of Fk . (This is basically the framing correction for the newly created kinky handle.)
Let U˙g;n;k (where nD e.T �F /C 2k and C denotes the case of orientable F ) be the
Stein surface obtained from Vk by adding k Casson handles, with a single double point
(positive) at each stage, to convert the kinky handle of Vk into a Casson handle. This
is homeomorphic to the R2 –bundle over F with Euler number n, and is defined for all
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g; k � 0 (except gD 0 for �) and n�2kD e.T �F /D 2g�2 (for C) or g�2 (for �).
We can then extend the notation to include Stein surfaces with all smaller values of the
Euler number n by removing the Casson handle and reattaching it with left twists added
to the framing. When F is orientable and n is maximal, the adjunction inequality shows
that Fk �UCg;n;k has minimal genus in its homology class, and c1 D 0. For smaller n,
we control the signs of the rotation number corrections so that Fk �Fk C jhc1;Fkij

is independent of n, and Fk � UCg;n;k still has minimal genus. In the nonorientable
case, the orientable double covering of F determines a double covering of U�g;n;k by
UCg�1;2n;2k , since the two lifts of the Casson handle can be combined into a single
Casson handle with 2k positive double points at the first stage. The smooth surface Fk

in U�g;n;k lifts to the corresponding orientable surface with minimal genus.

Now given X as in the theorem, orient it to fix the sign of e.X /. Then X is orientation-
preserving homeomorphic to each U˙g;n;k for the given sign, with g the genus of F and
nD e.X /. These are defined for all k � 0, provided that e.X /� 2g�2 (resp. g�2).
Furthermore, if X is oriented so that e.X /� 0, these are defined except when k D 0

and X is one of the specified exceptions. In the orientable case, UCg;n;k pulls back to
a Stein–Casson smoothing on X with G.˛/D gC k , for each k � 0 except for the
exceptional cases where k D g D 0, realized by the standard smoothing. The theorem
follows immediately for orientable F . When F is nonorientable, U�g;n;k similarly
induces a smoothing, double covered by UCg�1;2n;2k .

4 Minimal genus at infinity

Before defining the genus function at infinity, we briefly review the theory of ends of
manifolds with boundary, eg [30]. Informally, we explore the behavior of a topological
manifold X at infinity by considering the complements of successively larger compact
subsets. More precisely, let fKi j i 2 ZCg be an exhaustion of X by compact subsets,
meaning that Ki � int KiC1 for each i and X D

S1
iD1 Ki . Consider the neighborhood

system of infinity fX �Kig.

Definition 4.1 The space of ends of X is E.X /D lim �0.X �Ki/.

That is, an end � 2 E.X / is given by a sequence U1 � U2 � U3 � � � � , where each Ui

is a component of X �Ki . If we use a different exhaustion of X , the resulting
space E.X / will be canonically equivalent to the original: The set is preserved when
we pass to a subsequence, but any two exhaustions have interleaved subsequences. An
equivalent definition of E.X / is as the set of equivalence classes of rays, proper maps
Œ0;1/!X , where we call two rays equivalent if their restrictions to ZC are properly
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homotopic. A neighborhood of the end � is an open subset of X containing one of
the subsets Ui . This notion allows us to topologize the set X [ E.X / so that X is
homeomorphically embedded as a dense open subset and E.X / is totally disconnected
[17]. The resulting space is Hausdorff with a countable basis. When X has only
finitely many components, this space is compact, and called the Freudenthal or end
compactification of X . In this case, E.X / is homeomorphic to a closed subset of
a Cantor set. As a simple example, one can realize many homeomorphism types of
end-spaces, from a single point to a Cantor set, starting with a fixed countable collection
of closed manifolds (even just 2–spheres) and connected-summing them via various
trees. A proper topological embedding M � Œ0;1/!X , for some closed, connected
manifold M with codimension 1 in X , determines an end of X , which is topologically
collared by the embedding. Equivalently, a collared end is obtained from a manifold
by removing a boundary component identified with M . Clearly, not all ends can be
collared, but those that can are a good test case for our invariants.

The genus function at infinity has domain given by a naive attempt at defining homology
at infinity. Given a manifold X with an exhaustion fKig by compact subsets, fix
k 2 Z�0 and consider the inverse limit H 

k
.X / D lim Hk.X �Ki/ induced by

inclusion. Each ˛2H 
k
.X / is a sequence of elements ˛i 2Hk.X�Ki/ that are mapped

to each other by the corresponding inclusions. Clearly, H 
k
.X / is independent of the

choice of sequence of compact subsets. If an end of X has a neighborhood collared by
some M , then it determines a direct summand of H 

k
.X / canonically isomorphic to

Hk.M /, and for different collared ends (possibly infinitely many), these summands are
independent. When X is a 4–manifold and kD 2, the elements ˛i representing a given
˛ 2H 2 .X / always have ˛i �˛i D 0. This is because ˛i 2 H2.X �Ki/ is represented
by a surface contained in some Kj , but equals the image of j̨ 2 H2.X �Kj /. We
obtain more useful information from the genus function:

Definition 4.2 The genus function at infinity for a smooth 4–manifold X is the func-
tion G1W H 2 .X /! Z�0[f1g for which G1.˛/ is the limit of the nondecreasing
sequence of minimal genera G.˛i/ in X �Ki .

That is, each ˛ 2 H 2 .X / is represented by a sequence of homologous oriented
surfaces avoiding successively larger compact subsets of X , and G1.˛/ is the minimal
possible limit of genera of such a sequence. This is clearly independent of the choice
of exhaustion. We can now talk about the genus-rank function at infinity and genus
filtration at infinity by analogy with Definition 2.2, or discuss these for a single end.
Unlike G , the function G1 is subadditive, since we can add classes using disjoint
representative surfaces. In particular, the classes with finite G1 form a subgroup.
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Remarks 4.3 (a) Our naive end homology H 
k
.X / is a quotient of the usual end

homology, with kernel given by the derived limit lim1
 HkC1.X � int Ki/ [32, Propo-

sition 2.6]; see also [30].

(b) One can define an analog of G1 using H 
3

in place of H 2 and minimizing the
first Betti numbers of the resulting sequences of 3–manifolds. This was discussed
from a different viewpoint in [4] in the case where X DR is an exotic R4 , using the
generator of H 

3
.R/Š Z. This engulfing index, denoted e.R/, is bounded below by

Taylor’s invariant. For large exotic R4s (those with a compact subset K not smoothly
embedding in S4 ) Taylor’s invariant is frequently nontrivial, but it seems a good
conjecture that e.R/ is always infinite in this case (except possibly for punctured exotic
4–spheres). For small exotic R4s (those that are not large), there are examples with
e.R/ � 1 [4], but Taylor’s invariant always vanishes and there are no known lower
bounds on e.R/.

We first analyze G1 on an end � of X topologically collared by a closed 3–manifold M .
We can also realize this M as the boundary of some compact 2–handlebody H0 . If
C � H0 is the core 2–complex of H0 , then H0 �C is identified with the domain
M � Œ0;1/ of the collar. This product structure gives a canonically embedded infinite
sequence H0 � H1 � H2 � � � � of identical handlebodies with parallel boundaries,
whose common intersection is C . The open sets int Hi �C then comprise a neighbor-
hood system of the end of H0�C , which is identified with � . Let � W zH0!H0 be a
finite covering. In our applications, this will usually be the identity (so that tildes can be
ignored) or the orientable double covering, but other coverings can also be useful. The
lifted handlebodies zHiD�

�1.Hi/ are nested, with common intersection zCiD�
�1.Ci/.

Now choose a nested sequence of subhandlebodies H s
0
� H s

1
� H s

2
� � � � � H0 ,

with H s
0

empty and H s
1

containing all of the 1–handles of H0 . In the upcoming
proof, we will take H s

i to be a subhandlebody of Hi rather than H0 , but for our
present homological discussion, we can think of all handlebodies Hi as being the
same. Let zH s

i D �
�1.H s

i /, and let Bi �H2. zH0/ denote the image under inclusion of
H2. zH

s
i �
zC /. This is the span in H2. zH0/ of all surfaces in @ zHi D �

�1.M / that lie
in zH s

i . Suppose inclusion induces an injection �W H2.@ zH0/! H2. zH0/. Then we can
identify the groups Bi as nested subgroups of H2.@ zH0/DH 2 . zH0�

zC /. In particular,
when � D idH0

, we have identified a filtration of the summand of H 2 .X / coming
from � , and the end of any finite cover of X is similarly accessible. If the manifold
made by gluing together X and H0 admits a smoothing, our main Lemma 4.4 modifies
its restriction to X so that the filtration fBig becomes part of the genus filtration at
infinity of � (or its cover). This modified smoothing has a special form that will be
useful: It is induced by a topological isotopy of H0�C rel boundary.
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Lemma 4.4 Let H0 , � and fH s
i g be as above, with zH0 oriented and � injective.

Then for any smooth structure † on int H0 , there is an (arbitrarily rapidly) increasing
sequence fki j i > 0g of integers and a topological isotopy 't of the inclusion map
'0W H0 � C ! H0 , rel a neighborhood of @H0 , so that in the pulled back smooth
structure '�

1
†, each Bi with i > 0 is the span in H 2 . zH0�

zC / of all classes ˛ with
G1.˛/� ki .

Since H0 is compact, it has only finitely many subhandlebodies. However, we take
the index set of fH s

i g to be Z�0 . The filtration stabilizes at some Bn �H 2 . zH0�
zC /

(whose rank or corank could be 0). The present purpose of the terms ki with i � n is
to imply that Bn is the subgroup of all classes with finite G1 .

Proof To construct our isotopy, we will need Quinn’s handle straightening theorem
[35, 2.2.2]; see [25, Section 5] for an exposition. Suppose f W Dk � R4�k ! W

is a homeomorphism from an open k –handle to a smooth manifold, restricting to
a diffeomorphism of the boundaries. If k D 0; 1, Quinn’s theorem states that f is
topologically isotopic, rel boundary and a neighborhood of the end, to a homeomorphism
that is a local diffeomorphism in a neighborhood of the core Dk � f0g. If k D 2 this
fails, but after such an isotopy we can assume, by [35, Proposition 2.2.4] strengthened
as in [25, Theorem 5.2], that f .D2�D2/ lies in a smoothly embedded Casson handle
CH�W , and that f jD2 �D2 extends to a homeomorphism D2 �R2! CH. The
Casson handle CH will typically have many double points of both signs at each stage,
but the construction is sufficiently flexible that we can replace the given CH by any
refinement of it without affecting the discussion. For example, if f is initially the
identity map of an open 2–handle, then any standardly embedded Casson handle fits
into such a description. In general, we can obtain one further property. We think of CH
as being obtained from its first stage T by adding Casson handles comprising the higher
stages and removing excess boundary. Since T is a smooth regular neighborhood of an
immersed disk, we can smoothly isotope it to a smaller neighborhood T 0�T of the disk,
intersecting @T only in its attaching region. Since each higher-stage Casson handle
is itself homeomorphic to D2 �R2 , it contains a canonically embedded topological
2–handle D2 �D2 that, after a smooth isotopy, attaches to T 0 inside CH. Then the
union h of T 0 with these new 2–handles is itself a 2–handle inside CH, and CH�int h

is a collar of the outer boundary of h, homeomorphic to D2 � .R2� int D2/. Thus, h

is unknotted in CH, so it can be assumed to equal f .D2 �D2/. In conclusion, any
f W D2�R2!W as above is topologically isotopic, rel boundary and a neighborhood
of the end (so ambiently), to a new homeomorphism sending D2�D2 to a topological
2–handle h inside a smoothly embedded Casson handle CH�W that is an arbitrary
refinement of some fixed one, and h is obtained by smoothly shrinking the first stage
of CH and then adding topological 2–handles to it.
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F F 0

h1

h2

0zHi

h1

h2

0

CH

0

Figure 1: The closed surface F (left) goes over the handle h1 comprising zH s
i

but must be disjoint from h2 (which intersects zC ). It is homologous in
@ zH s

i �
zC to the surface F 0 (right) that lies in @ zTi (realized by h1 and the

dotted circle).

We will also need to locate smooth surfaces representing elements ˛ 2 Bi for each i .
Any such element is carried by @ zH s

i �
zC . Suppose that the smoothing on int Hi

has Casson type. Let Ti denote the manifold obtained from H s
i by replacing its

2–handles with the first-stage towers of the corresponding Casson handles. We can
then recover int H s

i with its Casson-type smoothing by adding the higher-stage Casson
handles onto Ti and removing the remaining boundary, and the same holds for the
lift zTi to zH s

i . The class ˛ is represented by some closed surface F in @ zH s
i that is

disjoint from zC . Figure 1 (left) shows an example with zHi made from 2–handles h1

and h2 , where only h1 lies in zH s
i . The surface necessarily avoids h2 , whose core lies

in zC . We obtain zTi from zH s
i by adding dotted circles that are Whitehead doubles of

meridians of attaching circles. These puncture F , but only in algebraically canceling
pairs, so the punctures can be repaired as in Figure 1 (right). We obtain a surface F 0

that is homologous to F in @ zH s
i �
zC . Since each higher-stage Casson handle CH

is attached to a meridian of a new dotted circle, it can be assumed to be disjoint
from F 0 . Thus, F 0 lies in @ zTi avoiding both zC and the higher-stage Casson handles,
and represents ˛ as required.

We construct the required isotopy 't by perturbing the identity on H0 to smooth the 0–
and 1–handles of H1 , then applying induction on the handlebodies Hi . For each i > 0,
we wish to ambiently isotope Hi inside Hi�1 (or more precisely, inside the image
of Hi�1 under the previous isotopy) so that Hi becomes embedded in a larger copy Ui

of int Hi whose smooth structure inherited from † as an open subset of H0 arises
from Lemma 3.2 for the subhandlebodies H s

1
� H s

2
� � � � � H s

i�1
� Hi and some

sequence fkj j 1 � j < ig, with the required generating surfaces for each Aj lying
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in zTj . We also require each 2–handle of Hi to sit inside the corresponding Casson
handle as in the first paragraph of the proof. As an induction hypothesis, we assume
the copy of H s

i�1
in Hi has already been isotoped into a suitable U s

i�1
in this manner,

as is vacuously true when i D 1. Choose a finite generating set for Bi�1 , represented
by surfaces Fr in @ zTi�1 �

zH s
i�1

as constructed in the previous paragraph. The handle
straightening theorem isotopes Hi rel H s

i�1
to make its 2–handles suitably embedded

in Casson handles so that U s
i�1

extends to a suitable Ui containing Hi . Since the new
Casson handles could have been refined arbitrarily during the construction, we can
choose them to arise from Lemma 3.2 for the sequence H s

1
� � � � �H s

i�1
�Hi , using

each previous kj (defined for j < i � 1), and choosing ki�1 larger than the genus of
each Fr and generating surface in zTi�1 for Ai�1 . (Addendum 3.3 guarantees that we
can do this without disturbing U s

i�1
, refining the originally embedded Casson-type

smoothing. When i D 1, this step merely achieves the first sentence of that addendum
for H1 .) To restore the induction hypothesis, note that each 2–handle of H s

i �Hi is
built from a copy of the first stage of its containing Casson handle by adding topological
2–handles. The smooth handles and kinky handles of H s

i comprise an embedding of Ti .
Smoothly squeezing Ti into its interior, and topologically squeezing the topological
2–handles, yields a subset that can be identified with the copy of H s

i in HiC1 after
we topologically isotope the latter. This version of H s

i is embedded in U s
i (obtained

from Ui by removing Casson handles) as required for the induction, with each kj

continuing to work as required in U s
i since each Tj was squeezed smoothly and

inclusion induces an injection H2. zH
s
i /! H2. zHi/.

To complete the proof, note that we now have the required increasing sequence fkig,
and a sequence of topological ambient isotopies that together comprise a family of
homeomorphisms of H0 rel a neighborhood of @H0 , parametrized by Œ0; 1/ and begin-
ning with idH0

. Every point in H0�C lies outside some Hi , so has a neighborhood on
which the family is independent of t sufficiently close to 1. Thus, there is an induced
continuous family 't W H0�C!H0 , for 0� t �1, that is easily seen to be a topological
isotopy (not ambient) of the inclusion map, fixing a neighborhood of @H0 . For each
i>0, we exhibited '�

1
†–smooth surfaces of genus at most ki in @ zTi�

zC generating Bi .
Since the induction smoothly squeezes zTi into each subsequent stage, these surfaces
have smoothly isotopic copies in each subspace zHm�

zC for m� i , determining classes
in H 2 . zH0 �

zC / with G1 � ki generating Bi . To see that every ˛ 2 H 2 . zH0 �
zC /

with G1.˛/� ki lies in Bi , note that ˛ �˛D 0, so the genus constraint implies that ˛
maps to the subgroup Ai D H2. zH

s
i / of H2. zH0/, as well as to the subgroup H2.@ zHi/

(by definition). The union of these two subspaces zH s
i and @ zHi lies H2 –injectively

in zH0 (since all 1–handles of zHi lie in zH s
i ), so the Mayer–Vietoris sequence of the

pair shows that ˛ pulls back to the intersection. Thus, ˛ lies in Bi as required.
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Remark 4.5 The proof gives more detailed information about the smoothing of the
end: Each class in H2. zH

s
i �
zC / is represented by a surface F in @ zH s

i �
zC that extends

via the canonical product structure on zH s
i �
zC to a '�

1
†–smooth, proper embedding

F � Œ0;1/! zH s
i �
zC . These surfaces can be chosen before ki is defined.

While Lemma 4.4 is powerful enough for most of our applications, it is also highly
restricted, since more typical ends are not collarable. However, the above proof works
in much more generality. Instead of requiring the handlebodies Hi to be canonically
nested copies of H0 , we can take any infinite topological nest of nonempty, compact
2–handlebodies intersecting in a compactum C , and use this to analyze manifolds with
proper topological embeddings of H0 �C . Any such nest realizes a neighborhood
of infinity in some manifold without boundary, for example, the double of H0 with
one copy of C removed. We do not need the 2–handlebodies to be connected, so
the end space may be a Cantor set. Similarly, the group H 2 .H0 �C / need not be
finitely generated. The proof of the lemma requires the subhandlebodies H s

i �Hi to
be stable in the sense that each H s

i has a subhandlebody that is a canonically embedded
copy of H s

i�1
, and the remaining handles of Hi respect the resulting product structure

@H s
i�1
� I . We introduce a finite covering � as before with zH0 oriented, and replace

our map � by the inclusion-induced map

�1W H 2 . zH0�
zC /D lim

 
H2. zHi �

zC /! lim
 

H2. zHi/:

This no longer need be injective, provided that we work in Im �1 , or equivalently, in
H 2 . zH0�

zC / modulo ker �1 . We let BiD �1.H2. zH
s
i �
zC //. (These need not stabilize

as in the collared case.) The requirement that all 1–handles lie in H s
1

can be replaced
by the weaker notion of controlled instability, the H2 –injectivity condition asserting
that the final Mayer–Vietoris argument works. We obtain the following lemma [27]:

Lemma 4.6 For any smooth structure † on int H0 , there is an (arbitrarily rapidly)
increasing sequence fki j i > 0g of integers and a topological isotopy 't of the inclusion
map '0W H0�C!H0 , rel a neighborhood of @H0 , such that in the pulled back smooth
structure '�

1
†, each Bi with i > 0 is the span in Im �1 of all classes ˛ 2H 2 . zH0�

zC /

with G1.˛/� ki .

The proof is essentially the same as before, with added care surrounding the Mayer–
Vietoris argument. (In Figure 1, zC might now appear as, for example, a Bing continuum
in the attaching region of h2 , with F wrapped through it, but the proof still works.) A
high-dimensional argument shows that the resulting smoothing '�

1
† always lies in the

stable isotopy class obtained by restricting the unique one on H0 .
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In principle, Lemma 4.6 is much more powerful than Lemma 4.4, although examples
for which it is required are necessarily somewhat complicated. The extra power of this
lemma seems useful for attacking Question 1.1 in full generality. We apply it to infinite
1–handlebody interiors in Theorem 5.5(b), to more general manifolds in Theorem 5.7,
and to collared ends with � not injective in Theorem 6.1.

Example 4.7 Let H0 be a handlebody on a framed link L � @B4 whose linking
pairing vanishes on one component K . Modify L by leaving K alone but using the
satellite construction to insert a topologically slice link into a tubular neighborhood
of each other component, respecting the framing. (For example, connected summing
with topologically slice knots, Whitehead and Bing doubling, .n; 1/–cabling and their
ramified versions are special cases for the 0–framing.) The resulting handlebody H1

topologically embeds in H0 with a stable 2–handle on K . Continue by induction to
get an infinite nest of 2–handlebodies, with H s

i the handlebody on K for i > 1, but
empty for smaller i . Since there are no 1–handles, each inclusion Hi �Hj �Hi is
H2 –injective, as is �1 , so B2 ¤ 0 but B1 D 0. Thus, the lemma gives infinitely many
diffeomorphism types of smoothings on H0�C (cf Example 5.8).

5 Applications of minimal genera at infinity

We first consider a connected topological 4–manifold X (possibly with boundary)
with an end � collared by a closed, connected 3–manifold M . We take the associated
proper embedding to be inclusion of a closed subset M � Œ0;1/ � X . Let X � D

X �M � .1;1/ be the result of replacing the end by a boundary component. We
assume its Kirby–Siebenmann invariant ks.X �/ vanishes. (This is automatic unless X �

is compact.) Recall that H2.M / is a direct summand of H 2 .X /. We show that any
filtration of H2.M / by direct summands lies in the genus filtration of that end for some
smoothing of X , provided that M is orientable. Otherwise, a similar statement holds
for the orientable double cover �M of M .

Theorem 5.1 Suppose X has a collared end as above, with ks.X �/ D 0 if X � is
compact. If M is orientable, let C1 � C2 � � � � � Cn � H2.M / be a filtration by
direct summands. Then there is a smoothing of X and an arbitrarily rapidly increasing
sequence fki j 1 � i < ng such that Ci is the span of all classes in H2.M / with
finite minimal genus at infinity (if i D n) or minimal genus at infinity at most ki (if
i <n). If H2.M /¤ 0, then X has infinitely many diffeomorphism types of smoothings
distinguished by G1 . If M is nonorientable, the same holds for any Z2 –invariant
filtration of H2. �M / by direct summands (where the smoothings of X are distinguished
by G1 in the orientable double cover of X ).
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It follows that Cn is the set of all classes in H2.M / with finite G1 . The hypotheses
allow Cn to be 0 or all of H2.M /.

Proof We begin with the case when M is orientable and X � is smoothable. To
exhibit M as the boundary of a suitable handlebody, first choose a basis f˛r g for
H2.M / for which each Ci is the span of some subcollection. For the corresponding
dual basis in H1.M / mod torsion, represent each element by an embedded circle. Add
a 2–handle to M � I along each of these circles to obtain a cobordism V from M

to a new orientable 3–manifold. This, in turn, bounds a compact 4–manifold W

consisting of a 0–handle and 2–handles. The handlebody H0 D W [ V bounded
by M also consists of a 0–handle and 2–handles. To apply Lemma 4.4, note that the
inclusion-induced map �W H2.M /! H2.H0/ is injective, since H0 has no 1–handles
and so is built from its boundary M by adding handles of index ¤ 3. For 1� i � n,
let H s

i be the subhandlebody of H0 obtained from W together with the 2–handles
of V constructed (upside down) from the duals of the basis for Ci . Then the subset
of f˛r g carried by H s

i �C is precisely our basis for Ci , so Bi D Ci . (Every such
basis element clearly lies in Bi . Conversely, every class in H2.M / is uniquely a
linear combination of classes ˛r . By injectivity of �, if any ˛r =2 Ci appears, the class
cannot lie in Bi .) For i > n, let H s

i DH s
n so Bi D Cn . Lemma 4.4, applied to the

standard smoothing of int H0 , gives smoothings of M � .0;1/ that we can assume
are standard on M � .0; 2/. These fit together with the given smoothing on X � (by
unique smoothing of 3–manifolds) to give the required smoothings of X .

When H2.M /¤ 0, it is easy to distinguish infinitely many diffeomorphism types if X

has only one end: Take C1 D 0 but C2 ¤ 0, and vary k1 . Otherwise, we need to rule
out diffeomorphisms sending � to a different end. If there is an end that is not collared,
then we can we can smooth � as above with C2¤ 0, smooth all remaining M –collared
ends as above with Cn D 0, and then extend over the remaining noncompact manifold.
Any diffeomorphism between two of the resulting smoothings must then preserve � ,
so k1 distinguishes the smoothings as before. If all ends are collared, then the end
space E.X / is discrete and hence finite. Fix an arbitrary smoothing on the noncompact
manifold X � , and extend this over X as before. Each end of X � has a genus (possibly
infinite) minimized over its nonzero homology classes. When the smoothings on � are
chosen so that k1 exceeds all such finite minimal genera, then any diffeomorphism
again preserves � so that infinitely many smoothings are again distinguished on X .

We now sketch the remaining cases. (See [27] for details.) The proof for a nonori-
entable M is similar, with V constructed from M�I using pushed down circles arising
from the filtration of H2. �M /. Since the handlebody W capping the other boundary
of V is nonorientable, it must contain a 1–handle, so more work is required to arrange �
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to be injective. Then Z2 –invariance of the filtration guarantees that Bi D Ci , and the
rest follows as before. In the final case, X � is unsmoothable, so it must be compact
with ks.X �/D 0. Thus, by standard smoothing theory (see [15]), we can smooth the
connected sum X �#mS2�S2 for sufficiently large m. For H0 as before, the compact
manifold Y D .X � #mS2�S2/[@H0 then inherits a smooth structure that is standard
on H0 . Each S2�S2 summand determines a topologically embedded handlebody hr

(r D 1; : : : ;m) in Y with boundary S3 , consisting of a 0–handle and two 2–handles.
Let H 0

0
be the handlebody obtained from H0 by ambiently attaching each hr along a

1–handle, and let C 0 be its core. Then Y �C 0 is homeomorphic to X , so it suffices
to apply Lemma 4.4 to int H 0

0
, with smoothing † inherited from Y (exotic on each

int hr ), and all of the subhandlebodies enlarged to contain each hr .

Remark 5.2 This family of smoothings lies in a single stable isotopy class. We can
choose this to be any stable class restricting to the standard one on each collar to which
we applied Lemma 4.4. We can arrange to only use one collar unless every collared
end of X is homeomorphic to infinitely many others.

We can sometimes combine constraints on G1 with those of the ordinary genus
function G :

Theorem 5.3 Let M be a closed, connected 3–manifold, and let �M denote M (if
orientable) or its orientable double cover. Let fCig and fDj g be filtrations of H2. �M /

by direct summands, where the largest Ci is allowed to be a proper summand, and both
filtrations are required to be Z2 –invariant in the nonorientable case. Then there is a
smoothing of M �R for which each Dj is in the genus filtration of �M �R, and fCig

is contained in the genus filtration of one end as in Theorem 5.1. The corresponding
sequences of integers can be chosen to increase arbitrarily rapidly, with those for fDj g

chosen first.

Of course, the genus-rank function of �M �R is a diffeomorphism invariant of the
smooth structure on M �R, and the corresponding genus-rank function of one end is
invariant under end-preserving diffeomorphisms. For example, we recover the result
of Bižaca and Etnyre [3] that every M �R has infinitely many diffeomorphism types
of smoothings, under the additional hypothesis that b2. �M / ¤ 0 (which could be
relaxed by considering other covers, cf Example 5.6). The smoothings constructed
here are quite different from those of [3], which are obtained by end-summing with an
exotic R4 , so contain a smoothly embedded copy of M and have G and G1 bounded
above by those of the standard smoothing (cf Theorem 7.1). Many 3–manifolds have
the property that every self-homotopy equivalence is homotopic to the identity. For
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such M , the entire genus function of �M �R is a diffeomorphism invariant of the
smooth structure on M �R, and the corresponding genus function at infinity is invariant
under end-preserving diffeomorphisms.

Proof Construct a handlebody H bounded by M as in the previous proof, using
the filtration fDj g (so Bj D Dj ). The proof of Lemma 4.4 (at a finite stage of the
induction) gives a smooth structure †0 on int H and an arbitrarily rapidly increasing
finite sequence fkj g such that each Dj � H2. �M /� H2. zH / is the span of all smooth
surfaces in int zH with genus at most kj and representing classes in H2. �M /: We
constructed a finite spanning set of such surfaces Fr in the complement of the core zC ,
and any such surface lies in Dj by the final Mayer–Vietoris argument. Let H 0 �H

be a canonically embedded handlebody in a neighborhood of C disjoint from the
image of each Fr for each Dj . We now adjust the end of H �C inside H 0 : After
sliding 2–handles of H 0 , we can assume it was constructed as in the previous proof,
but using the filtration fCig. Lemma 4.4 gives an isotopy 't W H � C ! H that is
the identity outside H 0 , such that fCig behaves as required for the smooth structure
'�

1
†0 . Since the smooth structure has not been changed outside H 0 , each Dj is still

spanned by the previous surfaces Fr of genus at most kj in int zH � zC D �M �R.
But in this new smoothing, every surface with genus at most kj still pulls back from
int zH , representing a class in H2. �M /, so this class lies in Dj (by our choice of †0 ).
Thus, Dj is the span of all ��'�

1
†0 –smooth surfaces with genus at most kj in �M �R,

as required.

Remark 5.4 This idea can be used whenever X , with its chosen ends capped by
2–handlebodies, embeds into some 2–handlebody. We can apply Lemma 3.2 to control
the genus function of X , and separately control the genus functions of collared ends as
above. As another variation, we can specify the genus filtration of each end of M �R
separately, while leaving M � f0g smoothly embedded.

Next we illustrate the reach of G1 with some examples. We first consider 1–handlebody
interiors. While the 2–homology, and hence the genus function, of any cover of these
are trivial, we can distinguish infinitely many smoothings by the genus function at
infinity. In the simplest case, we realize all possible values of G1 on a generator. At
the opposite extreme, infinite 1–handlebody interiors have noncollarable ends, but are
accessible by Lemma 4.6. The subsequent Example 5.6 shows the utility of using other
covers of an end, even if they are not defined on all of the 4–manifold.

Theorem 5.5 (a) Let ˛ 2 H 2 .S
1 �R3/ Š Z be a generator. Then every k 2

Z�0[f1g is realized as G1.˛/ for some smooth structure on S1 �R3 .
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(b) For any 1–handlebody interior X with H1.X / ¤ 0, there are infinitely many
diffeomorphism types of smooth structures distinguished by G1 (on the ori-
entable double cover if relevant). If H1.X / is not finitely generated, then there
are uncountably many.

Proof For (a), embed S1�R3 in S4 as the complement of the standard S2 . The latter
is an intersection of canonically nested handlebodies Hi diffeomorphic to S2 �D2 ,
each consisting of a 0–handle and 2–handle. The inclusion � is an isomorphism, so
letting each H s

i be empty in Lemma 4.4 immediately realizes kD1. For finite k > 0,
we let H s

i be Hi for each i > 0, and sharpen the proof of Lemma 4.4. Let U1DUC0;0;k
as in the proof Theorem 3.8 be standardly embedded in H0 . As in the proof of the
lemma, we can assume the 2–handle of each Hi is made by attaching topological
2–handles to a narrower version of the first stage of U1 , which has k double points.
By construction, the surface F 0 from the proof of Lemma 4.4, representing ˛ in
H2.Hi �S2/, has genus k for each i . Since this is the minimal genus of the generator
of UC0;0;k , the resulting topological isotopy completes the proof of (a).

For (b), it is routine to reduce to the connected case. Then for H1.X / finitely generated,
Theorem 5.1 completes the proof. Otherwise, we must first find a suitable nest of
2–handlebodies realizing the end. Write X as a nested union of compact, connected 1–
handlebodies, each canonically embedded in a subhandlebody of the next. We can then
inductively embed X in S4 or (if nonorientable) in RP4 , by attaching the 1–handles
of X ambiently. Each complementary region Hi is diffeomorphic to a boundary sum
of copies of S2�D2 , and one disk bundle over RP2 in the nonorientable case. These
admit 2–handlebody structures, and by arranging the successive 1–handles from X to
avoid chosen 2–handles of Hi , we can construct subhandlebodies H s

i so that H2.H
s
i /

increases without bound. Lemma 4.6 now controls infinitely many characteristic genera
at infinity, so the result follows by careful bookkeeping.

By construction, these smooth manifolds all embed as open subsets of S4 (if orientable)
or RP4 , so have vanishing Taylor invariant. As is typical, we have great flexibility
in controlling the genus filtration and genus-rank function at infinity for the above
smoothings of X , as well as their diffeomorphism groups. Note that part (a) generalizes
to the complement in any smooth, closed 4–manifold of a smooth 2–sphere with trivial
normal bundle.

Example 5.6 It can be useful to consider covers other than an orientable double cover.
For example, let H0 be orientable and made from a single handle of each index 0, 1

and 2, with �1.H0/ŠZn for n> 1. Let zH0 be its universal cover, which is homotopy
equivalent to a wedge of n� 1 spheres. Then @H0 is a rational homology 3–sphere,
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but @ zH0 can be arranged not to be, with � injective. (In the simplest case, zH0 is a
boundary sum of n� 1 copies of S2 �D2 .) We know @H0 also bounds a smooth,
simply connected 4–manifold, whose interior X has trivial G1 and no nontrivial
covers. However, Lemma 4.4 still gives infinitely many nondiffeomorphic smoothings
of X , distinguished by G1 on the cover @ zH0�R of a neighborhood of infinity in X .
(Note that @H0 has only finitely many Zn –covers.)

Theorem 5.1 can be extended to more general ends by using Lemma 4.6. We again start
with a topological 4–manifold X , but this time assume there is a proper embedding
H0�C!X for a nest of 2–handlebodies as in Lemma 4.6. This picks out a nonempty
subset of the end space E.X / (that is open, closed and possibly uncountable) to take
the place of the collared end � in Theorem 5.1. Fix a finite covering � W zH0! H0

with zH0 orientable. If this happens to extend over X , as for the identity or orientable
double cover, then we can identify H 2 . zH0�

zC / with a direct summand of H 2 . zX /.
Suppose we have a stable collection of subhandlebodies H s

i � Hi with controlled
instability for � , and that ks.X � int H0/D 0. Then there is a smoothing on X and an
arbitrarily rapidly increasing sequence fkig for which each Bi satisfies the conclusion
of Lemma 4.6 in H 2 . zH0�

zC /. (This is clear if X � int H0 is smoothable, and follows
as in the last paragraph of the proof of Theorem 5.1 otherwise.) One application is to
distinguish infinitely many smooth structures on a much larger class of manifolds [27]:

Theorem 5.7 Let X be a connected topological 4–manifold (possibly with boundary).
Let � W zX ! X be the identity on X if the latter is orientable, and its orientable
double covering otherwise. Suppose that there is a proper topological embedding
H0 �C ! X as above, with � extending over H0 so that �1 is injective, and with
controlled instability relative to a collection fH s

i g with some Bi ¤ 0. If X has just
one end, assume that ks.X � int H0/ D 0. Then G1 on zX distinguishes infinitely
many diffeomorphism types of smooth structures on X , and uncountably many if
limi!1 Rank Bi is infinite. The same holds for nonorientable X with � D idX ,
provided that H0 is orientable.

The main issue in the proof is to control diffeomorphisms sending ends of H0�C into
its complement. This is in the spirit of the second paragraph of the proof of Theorem 5.1,
but more delicate. Note that when X has more than one end, we can assume (after
replacing H0 by one component of some Hi ) that some end lies outside H0 so that
ks.X � int H0/D 0 trivially.

Example 5.8 Let X be a 4–manifold with ks.X /D0. For any topological embedding
in X of a nest of 2–handlebodies Hi as in Example 4.7, we obtain infinitely many
diffeomorphism types of smoothings on X�C , though it need not have a collared end.
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6 Topological submanifolds

We now digress to illustrate how our theory can be applied to topological submanifolds
of smooth 4–manifolds. We will see that minimal genera of neighborhoods of such
submanifolds can often be flexibly adjusted by topological ambient isotopy. This leads
to a notion of minimal genus for any subset of a smooth 4–manifold, distinguishing
topologically ambiently isotopic embeddings of surfaces and 3–manifolds. The question
immediately arises: distinguishing up to what notion of equivalence? We define an
equivalence relation between subsets of smooth manifolds that is weak enough to
overlook various local pathologies, but still conclude that the topological ambient
isotopy class of a typical tame surface or 3–manifold contains many of these “myopic
equivalence” classes. (Recall that a topologically embedded submanifold of X is tame
if it has a topological tubular neighborhood, ie if it is the 0–section of a vector bundle
topologically embedded in X with codimension 0.)

We begin by examining topologically embedded 3–manifolds, then proceed to surfaces.

Theorem 6.1 Let M 3 be the boundary of a compact, connected, orientable 2–
handlebody H topologically embedded in a smooth 4–manifold X . Assume M is tame
in X . For the inclusion-induced map �W H2.M /! H2.H /, let D1 � � � � �Dn D Im �

be a filtration by direct summands. Then there is an arbitrarily rapidly increasing
sequence fki j 1� i < ng and a topological ambient isotopy of X after which M has
arbitrarily small topological tubular neighborhoods U in which each ��1Di is the span
of all smooth surfaces in U with genus at most ki .

Such embeddings of 3–manifolds often arise in practice. Many constructions of closed,
smooth and symplectic 4–manifolds involve gluing pieces together along smooth 3–
manifolds, and frequently one piece fits the above description of H with � nonzero.
For example, the preimage of a generic disk under a Lefschetz fibration with closed
fibers always has such description.

Proof For each i , let Ai be the rational span of Di in H2.H /, so that A1 � � � � �

An �H2.H / is a filtration by direct summands, and Di DAi \ Im � for each i . Since
H2.H / is a direct summand in the 2–chain group of H , we can slide handles so that
each Ai is H2.H

s
i / for some subhandlebody H s

i �H containing all 1–handles of H .
We interpret these subhandlebodies as in Lemma 4.4. Since H s

1
contains all of the 1–

handles, the Mayer–Vietoris sequence for H s
i [M shows (as at the end of the proof of

Lemma 4.4) that Bi , which by definition is the image of H2.H
s
i \M /!H2.H /, equals

Ai\Im �DDi . The same sequence with i D 1 shows that ker � is the image in H2.M /

of ker.j W H2.H
s
1
\M /!H2.H

s
1
//. Apply Lemma 4.6 (or 4.4 if � is injective) with †
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induced by inclusion. Using Remark 4.5, we can represent a finite spanning set for
ker �D Im.ker j / by '�

1
†–smooth, proper embeddings F � Œ0;1/!H1�C with k1

exceeding their genera, and represent a similar set for each Di by such embeddings
with g.F /� ki . Then each ��1Di is spanned by surfaces (smooth in X ) with genus
at most ki , lying in '1.@HnC1/. Since the latter is ambiently isotopic to M via the
canonical product structure, the theorem follows for any U enclosed by '1.@Hn/.

Theorem 6.2 In a smooth 4–manifold X , let F be a compact, connected, tame surface
(without boundary). Then there is an arbitrarily large integer m and a topological
ambient isotopy after which F has arbitrarily small topological tubular neighborhoods
for which m is the minimal genus of the generator in the minimal cover of the neigh-
borhoods for which the surface and 4–manifold are orientable. Alternatively, the
isotopy can be chosen so that there is a tubular neighborhood system for which that
minimal genus increases without bound. When X is orientable and F is originally
smoothly embedded, one can realize any m� g.F / if F is orientable, and otherwise
any m� g. zF / with m� g. zF / mod 2 in the double cover. In each case, the resulting
tame surface can be assumed almost smooth, ie smooth except at one point.

Proof Freedman’s original paper [14] shows that embedded core disks of Casson
handles can be taken to be almost smooth, but rather than introduce his machinery, we
import the key ideas into our present setup. For any smooth manifold W homeomorphic
to D2�R2 , the proof of Lemma 4.4 showed how to isotope so that D2�D2 maps to
a topological 2–handle h inside a smooth Casson handle CH in W , with h obtained
from the first stage T of CH (squeezed into h) by adding topological 2–handles hr .
We need to further improve the picture by a topological isotopy in CH that is smooth
near T . First, perform the same construction in each hr to get a smaller topological
2–handle h0r � CHr � hr , with h0r topologically ambiently isotopic to hr rel its
attaching circle. By compactness, h0r lies in some finite subtower Tr of CHr . Let
T � � int CH be obtained by shrinking T away from the boundary of W , so that the
attaching circles of CH and T � are connected by an annulus in CH� int T � , and
then attaching the towers Tr . Then T � is a Casson tower, so it is diffeomorphic to a
tubular neighborhood of a wedge of circles. (The core of the tower can be collapsed
from the bottom up.) Since CH is simply connected, T � can be assumed after smooth
isotopy to lie in a preassigned open subset V of CH. Then T is seen as an arbitrarily
small, smooth, 1–stage tower in int CH, connected to the attaching circle of CH along
a smooth annulus A in CH. The 2–handles h0r also lie in V , disjointly from A, and
attaching them to T gives a topological 2–handle h0 � V which, when extended by a
tubular neighborhood of A, becomes topologically ambiently isotopic to h, smoothly
near T . In fact, up to a compactly supported topological isotopy of int W DR2 �R2 ,
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h0 is a standardly embedded D2 �D2 , connected to @W by the standard unknotted
annulus A.

Now for F �X as given, let H0 �X be a D2 –bundle neighborhood of F , realized
as a handlebody with a single 2–handle. By the method of Lemma 4.4, we construct
a canonical nest of topological 2–handlebodies in H0 . (Smooth the 0– and 1–handles,
then construct nested embeddings of the 2–handle inside Casson handles.) In the mini-
mal cover to which F and X lift orientably, we can either force the minimal genus of the
generator to increase without bound (by omitting the 2–handle from each H s

i ), or pre-
serve it as some arbitrarily large integer (by setting H s

2
DH2 ). If X is orientable and F

is smooth, then the proof of Theorem 3.8 gives the initial Casson-type smoothing U1 for
realizing a preassigned m as specified above. In each case, we assume each 2–handle is
determined by h0[A as in the previous paragraph, inside the corresponding handle h0 of
the previous stage, with the nested handles h0 intersecting in a single point x . Then the
common intersection C of the handlebodies is an almost-smooth surface topologically
ambiently isotopic to F : The core disk of the original 2–handle h of H0 has been re-
moved from F and replaced by the infinite union of the consecutive smooth annuli, one-
point compactified at x . Since each annulus is standard up to isotopy in the previous h0 ,
we can consecutively isotope the handles h0 and annuli onto a standard model in H0 .
The limiting isotopy extends continuously over x , isotoping C onto F as required.

Clearly, these theorems smoothly distinguish infinitely many embedded submanifolds
within a given topological ambient isotopy class, up to some equivalence relation. It is
uninteresting that the germs of the embeddings are distinct, since germs are sensitive to
tiny changes such as smoothing a corner. Instead, we define a much weaker equivalence
relation, by generalizing [20]:

Definition 6.3 Two subsets Zi �Xi of smooth manifolds are myopically related if
for any neighborhoods Ui of Zi (i D 1; 2) there are smaller neighborhoods Vi that
are diffeomorphic to each other, with each inclusion Zi � Vi a homotopy equivalence.
(Thus, we can’t distinguish the subsets without glasses). Two subsets are myopically
equivalent if they are connected by a finite sequence Zj � Xj of subsets for which
consecutive pairs are myopically related.

We may also restrict how the diffeomorphisms behave on homology or orientations.
However, we don’t require the diffeomorphisms to preserve the subsets Zi , which
would imply that the germs are the same. We then lose the obvious proof of transitivity,
but obtain (for those Zi having suitable neighborhoods for reflexivity, such as tame
submanifolds) a much weaker equivalence relation: Any two continuous sections of
a given smooth vector bundle are myopically related, and some PL locally knotted
surfaces in 4–manifolds are myopically related to smooth surfaces [27].
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Definition 6.4 For any subset Z � X 4 and ˛ 2 H2.Z/, the minimal genus of ˛
in Z is the supremum in Z�0 [ f1g of the minimal genera of the images of ˛ in
neighborhoods of Z .

This agrees with previous usage when Z is itself a 4–manifold (allowing a smooth
boundary), and is an invariant of myopic equivalences preserving ˛ . We use this
invariant, in the appropriate cover if necessary, to reinterpret the previous two theorems:

Corollary 6.5 In a smooth 4–manifold X , every tame compact surface F , and
every 3–manifold M as in Theorem 6.1 with � ¤ 0, is ambiently isotopic to other
submanifolds representing infinitely many myopic equivalence classes. One can realize
arbitrarily large integers and 1 as the minimal genus of the generator of F (or its
suitable cover). If X is orientable and F is smooth, one can realize any integer larger
than g. zF /, provided that its parity agrees with that of g. zF / if F is nonorientable.
For M , if Im � has rank at least 2, there are (infinitely many) pairs of submanifolds
ambiently isotopic to M such that each has a topological tubular neighborhood in
which no tubular neighborhood of the other embeds smoothly and injectively on H2 .

An analog of the last sentence for surfaces is given in Corollary 8.5.

Proof The assertions about F are immediate. For M , note that a smooth embedding
U 4! V 4 that is injective on H2 gives a pointwise inequality U � V of genus-rank
functions. Thus, a tame, compact submanifold inherits a limiting genus-rank function
x W Z�0! Z�0 from a tubular neighborhood system (independent of the choice of
system). This is an invariant of myopic equivalence, and distinguishes infinitely many
classes of submanifolds ambiently isotopic to M , obtained by setting n D 3 and
0DD1 ¤D2 D Im � in Theorem 6.1. It now suffices to prove the last sentence of the
corollary, by finding two submanifolds Mi ambiently isotopic to M , with functions x
not related by an inequality. We construct these simultaneously. Choose a nontrivial,
proper direct summand D of Im �. Start constructing M1 to obtain k for which ��1D

will be the span of all surfaces of genus at most k (with an arbitrarily large lower
bound on the genera of surfaces not in ker �). Construct M2 with a neighborhood in
which all surfaces not in ker � have genus larger than k , and let k 0 exceed the genera
of a spanning set for the homology. Then complete the construction of M1 so that all
surfaces outside ��1D have genus larger than k 0 .

In contrast to surfaces, the 3–manifolds constructed in Theorem 6.1 with �¤ 0 typically
have neighborhoods U in which they cannot be made smooth away from a point by iso-
topy. In fact, the nonsmooth set must intersect every embedded surface F �M whose
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genus is strictly smaller than G.ŒF �/ in U . This is consistent with Quinn’s work show-
ing that smoothing in dimension 4 breaks down on a set with codimension-2 intersection
properties. For an example without homology, a different method shows that Freedman’s
tame embedding of the Poincaré homology sphere † in S4 cannot be isotoped so that
smoothness fails only on some 3–ball embedded in † with tame boundary [27].

7 Uncountable families with the same genus functions

It should be apparent from previous sections that the exotic behavior detected by the
genus functions is quite different from that detected by older invariants that were
developed to study smoothings of the contractible manifold R4 . To see this contrast
more clearly, we now combine the two technologies. We show that under various
hypotheses, our previous results hold for uncountably many diffeomorphism types
for each choice of genus data. (Recent work of Bennett [2] shows that the Taylor
invariant also can often be controlled independently.) Our techniques are compatible
with the Stein condition, allowing us to prove a corollary for classical complex analysis
(Corollary 7.5) that yields uncountable families of exotic Stein domains as stated in
Theorem 1.5. This follows from the more general Theorem 7.1 involving manifolds
with definite intersection forms. (For an even more general version, see Remark 7.4.)

Theorem 7.1 Let � W zX ! X be a covering of noncompact 4–manifolds, with X

connected and zX oriented, lifting an orientation on X if one exists. Suppose there is
a smoothing † on X such that each compact, codimension-0 submanifold of zX can
be ��†–smoothly embedded (preserving orientation) into a smooth, closed, simply
connected, negative-definite 4–manifold. Then there are other such smoothings †t

of X , whose lifts ��†t realize uncountably many diffeomorphism types on each
component of zX . Each †t embeds in † and is stably isotopic to it, has the same genus
functions G and G1 as †, and for each ˛ 2H3.X / has the same 3–manifolds arising
as smoothly embedded representatives of ˛ . The smoothings ��†t are similarly
related to ��†. If † (resp. ��†) has a Stein structure respecting the orientation on zX ,
then so does each †t (resp. ��†t if X is orientable).

It follows that the smoothings †t realize uncountably many diffeomorphism types
whenever there is a base point for which Im�1. zX / � �1.X / has only countably
many images (up to inner automorphism) under the homeomorphism group of X ,
as is automatically true if �1.X / is finitely generated. Note that there is no claim
about 3–manifolds at infinity in the spirit of Remark 4.3(b). The proof shows that any
sequence of 3–manifolds approaching the end of some †t can also be found in † (and
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similarly for zX ), but the converse fails: If † is the standard smooth structure on R4 ,
then every compact subset is surrounded by a smooth 3–sphere, whereas this fails for
the smoothings †t arising in the proof (and for all exotic R4s if the 4–dimensional
smooth Poincaré conjecture holds).

All of our previously exhibited genus functions can now be realized by uncountably
many diffeomorphism types whenever the definiteness condition is satisfied [27]. Here
are some highlights:

Corollary 7.2 (a) Suppose an orientable X is an R2 –bundle over a closed, orientable
surface F . Then for any g0 � g.F / there are uncountably many smoothings for which
the minimal genus of a generator of H2.X / is g0 . If F is nonorientable, the same holds
for smoothings of X with minimal genus g0� 1 in the canonical double cover of X ,
provided that g0 � g.F / mod 2. These smoothings admit Stein structures oriented
with e.X /� 0, with the exceptions given in Theorem 3.8.

(b) For an end-sum of R2 –bundles Xi over surfaces, one can distinguish infinitely
many smoothings (uncountably many for an infinite end-sum) by the genus function as
in Example 3.6 (b ), and each resulting genus function is realized by uncountably many
diffeomorphism types provided that all Xi are orientable with Euler numbers of the
same sign (allowing 0), or that each orientable Xi has e D 0.

(c) For S1 � R3 , every k 2 Z�0 [ f1g is realized as the minimal genus of the
generator at infinity for uncountably many smoothings.

(d) If a 3–manifold M topologically embeds in # nCP2 as in Theorem 6.1, then the
preimage under � of any filtration of Im � by direct summands lies in the genus filtration
of some smoothing of M �R, with corresponding characteristic genera arbitrarily
large, and the same genus function is realized by uncountably many diffeomorphism
types embedding in # nCP2 . One can also similarly control minimal genera of one end
with a second filtration of Im �, in the manner of Theorem 5.3.

Proof It suffices to check the definiteness condition in the appropriate cover in each
case; then Theorem 7.1 applies to the relevant theorems and examples. For (a) and
(b), note that every orientable R2 –bundle over an orientable surface smoothly embeds
in # nCP2 for some finite n (eg by blowing up the trivial bundle in S4 ). Thus, the
relevant Stein–Casson smoothings also embed. An infinite end-sum of such bundles
need not have such an embedding, but every compact subset of it does if the Euler
numbers have the same sign. If the total space of a bundle is nonorientable, then its
orientable double cover has Euler number 0. For (c), the smoothings from Theorem 5.5
embed in S4 by construction (also yielding a result about arbitrary 1–handlebodies).
For (d), combine the proofs of Theorems 6.1 and 5.3.
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Proof of Theorem 7.1 If R is an exotic R4 , we can create a new smooth structure †0

on X by forming an end-sum of † with R (cf [21; 29]): Choose rays  and R

smoothly embedding Œ0;1/ into X† and R, respectively, with tubular neighbor-
hoods U and UR bounded by smoothly, properly embedded copies of R3 . Choose a
homeomorphism (preserving orientations if they have been specified) from R�UR to
cl U that is smooth near the boundary. (To find such a homeomorphism, use Quinn’s
handle straightening to smooth R and UR in the standard smoothing of R4 , and
conclude that they are topologically standard.) Then push forward the smooth structure
of R to U and extend it to agree with † outside U . The resulting smooth manifold X†0

can be thought of as X† glued together with R at infinity. Similarly, we can sum
with infinitely many exotic R4s using a proper embedding of ZC� Œ0;1/. The stable
isotopy class of † is preserved under such end-sums since cl U �R3 � Œ0;1/ has a
unique stable isotopy class of smoothings.

Remark The isotopy and diffeomorphism class of an end-sum of † with R depend
on the end of X specified by  , and the local orientations, but are otherwise well
defined if, for example, the end is simply connected or topologically collared, or X is
a handlebody interior with only finitely many 3–handles [5].

If R embeds smoothly in S4 , then †0 and its lift satisfy all of our requirements
for a smoothing †t except possibly the Stein condition. The first step in proving
this is to construct smooth embeddings i W X†! X†0 and j W X†0 ! X† that have
topological isotopies to the identity idX . For i , begin with the †–smooth family of
embeddings s.t/D  .t C s/, for 0 � s <1, sliding the ray  out to infinity. This
can be extended to a smooth family of diffeomorphisms of X , whose limit as s!1

has domain X � cl U and is the inverse of i . For j , choose smooth balls B � U and
BR � UR , then embed R� cl UR � S4 into X† by identifying S4 � int BR with
B � U � X† . Connecting the boundaries of U and UR by a thickened smooth arc
gives the embedding j W X†0!X† as the end-sum of X†�cl U with R�cl UR �B

along the arc. This j is topologically isotopic to idX by first radially shrinking the
half-space R�UR , then absorbing the arc into X � cl U , and finally applying our
previous isotopy of i .

To verify the conclusions of Theorem 7.1 for such a smoothing †0 , note that i sends
any smooth submanifold of X† to one in X†0 representing the same homology class,
and j does the same in the opposite direction. The statements about G and H3 follow
immediately for both †0 and ��†0 (since the latter is obtained from ��† by a multiple
end-sum), and ��†0 inherits the given relation to definite manifolds. To show that end-
summing with R cannot increase values of G1 , note that any smooth surface in X†
can be pushed off of the 1–manifold Im  while avoiding a preassigned compact subset.
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(This fails for embedded 3–manifolds.) For the reverse inequality, it suffices to show
that for every neighborhood X�K of infinity in X† , there is one in X†0 with a smooth
(not proper) embedding in .X�K/† that is isotopic in X�K to the inclusion. But this
is easily arranged by repeating our construction of j after truncating  to be disjoint
from K . Since end-summing is equivalent to attaching the corresponding handlebodies
by 1–handles, X†0 will be Stein if both X† and R are (since we assume the orientations
are respected), and similarly for zX . We obtain the necessary Stein exotic R4s below.

To obtain an uncountable family, we must choose R with additional care. The simplest
known exotic R4 , which we will denote R� , was constructed in [4]. (See also [29,
Theorem 9.3.8].) This smoothly embeds in S4 , and has Stein–Casson type [24], built
with two 1–handles, a 2–handle and the Casson handle with a positive, unique double
point at each stage. It arose as the limit of a sequence of exotic R4s associated to a
sequence of nontrivial h-cobordisms of elliptic surfaces. The R4s in the sequence are
each obtained from R� by refining the Casson handle (above successively higher stages),
and can be assumed (when suitably refined) to retain Stein–Casson type. Let R1 be the
first element of this sequence, associated to the h-cobordism W from @�W DK3#CP2

to @CW , a sum of ˙CP2s. (Presumably R� could be used in place of R1 below, but
the required gauge theory doesn’t seem to have been worked out carefully beyond the
first h-cobordism in the sequence.) The h-cobordism W is a product outside a compact
subset intersecting @�W in a compact, codimension-0 submanifold K contained
in, and oriented by, an embedded copy of R1 � @�W , and @CW is obtained from
@�W by removing a large neighborhood of K � R1 from @�W and regluing it by
a diffeomorphism near the end of R1 . We can now obtain a family fRt j t 2 Qg

of Stein exotic R4s, indexed by the standard Cantor set Q � I D Œ0; 1�, such that
K �Rs �Rt with compact closure whenever s < t : First note that any given compact
subset L�R1 has intersection with the Casson handle lying in some finite subtower Tn .
The complement of Tn in the Casson handle is a disjoint union of higher-stage Casson
handles. Setting LDK and applying Quinn’s handle straightening theorem (see proof
of Lemma 4.4), we can find Casson handles inside these, which when attached to Tn

produce R1=3 , a new Stein exotic R4 such that K �R1=3�R1 with compact closure.
Iterating, for all endpoints in Q of middle thirds, and passing to the limit as in [14],
gives the required family. (Such families of nested Casson handles indexed by Q were
a crucial part of Freedman’s proof that Casson handles are homeomorphic to 2–handles.
However, they are much harder to construct without presupposing Freedman’s theorem
through Quinn’s.) A gauge-theoretic argument developed by DeMichelis and Freedman
[8] shows that each diffeomorphism type in the family fRtg occurs only countably
often, whereas Q has the cardinality of the continuum, so there are uncountably many
diffeomorphism types (with this same cardinality in ZFC set theory). If the smooth
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structure †t on X is obtained by end-summing † with Rt as above, then Lemma 7.3
below, with each Xt a component of zX��† independent of t , generalizes this result
to the family f��†tg, completing the proof.

Lemma 7.3 For .R1;K/ as in the previous proof and a subset Q� I containing 1,
let f.Rt ;K/ j t 2 Qg be a family of smooth manifolds homeomorphic to R4 , each
containing a smoothly embedded copy of K , such that whenever s; t 2Q with s < t ,
there is a smooth embedding Rs,!Rt whose image has compact closure, restricting to
the identity on K . Let fXt j t 2Qg be any family of smooth, oriented, noncompact
4–manifolds (allowing boundary) such that each compact, codimension-0 submanifold
of each Xt smoothly embeds, preserving orientation, into a smooth, closed, simply
connected, negative-definite 4–manifold. For each t 2Q, let X 0t be obtained from Xt

by end-summing with (possibly infinitely many) copies of Rt , with at least one sum
respecting the orientations of Xt and K . Then in the family fX 0t j t 2 Qg, each
diffeomorphism type appears only countably often.

While we did not need Xt to depend on t , this generality causes no difficulties and
will be needed in [19] to give a sharper version of our Corollary 7.5.

Proof We use the method of [8] augmented as in [23]. First we show that for s; t 2Q

with s< t , no diffeomorphism (or even embedding) can map X 0t into X 0s so that the copy
of K in one Rt summand maps by the identity to K in some Rs summand respecting
the orientation of Xs . Otherwise, we could find an embedding i W Rs,!Rs # N , for
some negative definite N as given in the lemma (oriented compatibly with K �Rs ),
with i jK D idK , and with i.Rs/ having compact closure. We will see below that
this is a contradiction. To construct i , first compose the given rel K embeddings,
Rs,!Rt ,!X 0t ,!X 0s (so compact closure is inherited from the first embedding). Then
embed the latter into the end-sum X 00s of Xs with just the given copy of Rs , by
eliminating any other summands as in the previous proof, using the fact that R1

embeds in R� and hence in S4 . The image of Rs under the composite embedding
lies in a compact subset of X 00s , which we can assume (after enlarging as necessary) is
a 4–manifold intersecting the separating R3 in a 3–ball. Thus, it can be written as the
boundary sum K1\K2 of two pieces with K�K1�Rs and K2�Xs . By hypothesis,
K2 then embeds in a closed, negative-definite N . Form the connected sum Rs # N

using balls disjoint from K1;K2 but near their correct boundary components so that we
may ambiently add a 1–handle to get the required embedding Rs,!K1\K2,!Rs #N .

The required contradiction now arises exactly as in the proof of [23, Lemma 1.2]. Briefly,
for the cobordism W in the previous proof, we have embeddings Rs,!R1,!@�W

rel K and Rs �K,!@CW that are identified outside of K by the product structure
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on W . By repeatedly summing @�W with N and applying the embedding i , we
obtain @�W # nN with n consecutive rings, each diffeomorphic to Rs # N with a
fixed compact subset of i.Rs/ removed, separating a neighborhood of K from the rest
of the manifold. Removing the neighborhood of K and letting n!1, we obtain an
open 4–manifold with a negative definite, periodic end. A similar construction applies
to @CW , and these two end-periodic manifolds are diffeomorphic by construction.
However, the manifolds @˙W are distinguished by a gauge-theoretic invariant, which
by work of Taubes [37] (followed by [8]) is well defined on the end-periodic manifolds
but unchanged during their construction from @˙W . Since the end-periodic manifolds
are diffeomorphic, this is a contradiction.

Now for s¤ t , suppose there is a diffeomorphism 'W X 0t!X 0s . For any choice of end-
summands respecting orientations, we have shown that ' cannot be the identity on the
corresponding copies of K . Given another diffeomorphism  W X 0r !X 0s with r ¤ t ,
then 'jK and  jK cannot be smoothly isotopic for any such K , or else  �1ı' would
contradict this assertion. Thus, the set of t for which X 0t is diffeomorphic to a given X 0s
has cardinality bounded by that of the set of isotopy classes of embeddings K,!X 0s .
However, this latter cardinality is countable since K is compact. (For example, pass
to the PL category and note that any fixed triangulations of K and X 0s support only
countably many embeddings, then note that any given embedding is captured after
finitely many barycentric subdivisions.)

Remark 7.4 For zX connected, Theorem 7.1 remains true under the weaker hypothesis
that zX has a closed, noncompact subset Y with a compact, ��†–smooth 3–manifold
boundary, for which every compact submanifold of Y embeds as specified in the
theorem [27]. This is because Y has uncountably many smoothings but @Y has only
countably many embeddings in a given smoothing of zX . The theorem also sharpens
Lemma 4.6: If int zH0 is connected and embeds ��†–smoothly in a smooth, closed,
simply connected, negative-definite 4–manifold, then each combination of G and G1
that is realized by some '1 on int H0�C and int zH0�

zC can also be realized by other
isotopies yielding uncountably many smoothings on int zH0�

zC . Similar families arise
for coverings � W zX !X whose smoothings are obtained by applying Lemma 4.6 to a
proper topological embedding of H0�C . (Locate Y as above in int zH0�

zC .) This
gives some improvements in Section 5.

It is a classical problem to understand which open subsets of C2 are domains of
holomorphy, that is, are Stein surfaces in the complex structure inherited from the
embedding. The question is studied in C2 and in more general complex surfaces S in
[25; 28], where the subset is allowed to vary by topological, resp. smooth, isotopy of its
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inclusion map. Theorem 7.1 augments these results to show that such Stein open subsets
frequently occur in isotopic families realizing uncountably many diffeomorphism types.

Corollary 7.5 Let S be a complex surface that smoothly embeds (preserving orienta-
tion) in a possibly infinite blowup of C2 . Let f W X ,!S be a topological embedding
of an open 4–manifold.

(a) Suppose f .X / is a Stein open subset of S . Then f is topologically isotopic in S

to other embeddings with uncountably many diffeomorphism types of Stein images,
whose genus functions G and G1 are the same as for f .

(b) Alternatively, suppose X is homeomorphic to the interior of a 2–handlebody. Then
f is topologically isotopic to embeddings with uncountably many diffeomorphism
types of Stein images, whose genus functions G and G1 all agree, and for which G

can be controlled as in Lemma 3.2. If H2.X / is finitely generated, then any maximal
filtration of it can be chosen to be the genus filtration as in Theorem 3.7.

Remarks 7.6 (a) While we do not conclude that the isotopies are ambient, this can
be arranged if f extends smoothly (resp. tamely and properly) over the boundary of
the relevant handlebody [19].

(b) The hypothesis embedding S includes the classical case S D C2 , but is still
restrictive. However, many indefinite complex surfaces, such as those on the BMY line
and bundles over Riemann surfaces, are covered by open subsets of C2 . The corollary
easily extends to include such cases [27].

Proof To prove part (a) of the theorem, note that while S may be an infinite connected
sum with copies of CP2 , every compact subset of f .X / only intersects finitely many
summands, and so lies in a finite blowup of S4 D C2 [ f1g. Thus, Theorem 7.1
applies, with the smoothing † induced by f , yielding exotic smoothings †t obtained
by end-summing † with Rt . These all admit Stein structures respecting the complex
orientation of X , since † does by hypothesis. Each X†t

smoothly embeds into X†
and hence into S , and (by the proof of Theorem 7.1) the latter embedding ft is
topologically isotopic to f rel the core 2–complex C of X (which is the interior of
a 2–handlebody). By [28] (cf also [7, Theorem 13.8]), an embedding onto an open
subset of a complex surface is smoothly isotopic to one with Stein image if and only if
the induced complex structure on the domain is homotopic (through almost-complex
structures) to a Stein structure on it. This condition is trivially satisfied for †. Since the
Stein structures of † and †t are equal near C , which is a deformation retract of X ,
the condition is also satisfied by †t , so ft is †t –smoothly isotopic to an embedding
in S with Stein image.
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Part (b) follows from [25], which proves that any embedding of such an X into a
complex surface is topologically isotopic to one with Stein image. Another way to
view that theorem is that we can arrange X to have Stein–Casson type, realizing the
homotopy class of almost-complex structures induced by the embedding, then invoke
[28]. To control G , further refine the Stein–Casson smoothing using Lemma 3.2 and
Addendum 3.3 (before applying [28]). The result now follows from (a).

The hypothesis that subsets of zX embed in negative definite manifolds can be bypassed
by using a different technique for constructing uncountable families, related to the large
exotic R4 construction:

Theorem 7.7 Let X DX ��fxg, where X � is ˙CP2 , S2 �S2 , a K3-surface or a
finite connected sum of these. Let fAi j 0 � i � b2.X /g be a filtration of H2.X / by
distinct direct summands. Then there are uncountably many diffeomorphism types of
Stein smoothings on X , having genus filtration fAig and all having the same genus-
rank function, whose characteristic genera can be chosen to increase arbitrarily rapidly.
The smoothings can be assumed to have the same values of G.˛/ for any preassigned
finite collection of classes ˛ 2 H2.X /.

It is possible that every smooth, closed, simply connected 4–manifold is homeomor-
phic to some X � as given (with S4 the trivial connected sum); this is the notorious
11
8

– conjecture.

Proof Since the theorem is well known when X � D S4 , we may assume b2.X /¤ 0,
and orient X so that it is not negative definite. Let Y be Freedman’s [14; 15] closed,
simply connected, topological 4–manifold with vanishing Kirby–Siebenmann invariant
and intersection form E8˚h�1i (negative definite but not diagonalizable). Then Z D

X � # Y also has vanishing Kirby–Siebenmann invariant but intersection form odd and
indefinite, hence, diagonalizable. By Freedman’s classification, Z is homeomorphic to
a connected sum of copies of ˙CP2 , so it inherits a smooth structure. However X �

was chosen, there is a finite 2–handlebody with interior X (and no 1–handles). As in
the proof of Theorem 3.7, we can assume each Ai is the homology of a subhandlebody.
By Quinn’s handle straightening theorem (proof of Lemma 4.4), we can (nonambiently)
isotope the embedding of X in Z so that it inherits a Casson-type smoothing. Applying
Lemma 3.2 and Addendum 3.3, we can further refine the Casson handles so that the
genus filtration is fAig and X has Stein–Casson type. We will construct uncountably
many smoothings with the same genus filtration and genus-rank function as this one.
Choose a finite collection of surfaces in X including minimal-genus representatives of
each preassigned class ˛ and a spanning set for each subgroup in the genus filtration as
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guaranteed by the definition of the latter. Let T � cl X �Z be obtained by replacing
each Casson handle by its first few stages. By compactness, we can assume T contains
each surface in our finite collection, provided that enough stages of the Casson handles
have been included in T . Then any refinement of X containing int T must have the
same genus filtration, genus-rank function, and values of each G.˛/ as before. As
with fRtg in the last paragraph of the proof of Theorem 7.1, we can refine the Casson
handles to construct a family fXtg of such Stein–Casson smoothings of X indexed by
the Cantor set, such that Xs �Xt with compact closure whenever s < t . By a standard
argument, eg [29, Theorem 9.4.10], no two of these are diffeomorphic: If Xs and Xt

with s < t even have diffeomorphic neighborhoods of their ends, let W �Xt consist
of the two diffeomorphic neighborhoods and the region lying in between. Then W is
homeomorphic to S3 �R, and we can smoothly glue copies of W together near their
ends to get other manifolds homeomorphic to S3 �R. Glue an infinite stack of copies
of W onto Z�Xs to obtain a smooth manifold homeomorphic to Y �fyg but with a
periodic end. This contradicts a theorem of Taubes [37].

8 Related phenomena

In this final section, we extend our results in several directions. Having shown in
previous sections how to force the genus functions G and G1 to be large, we now
investigate how small they can be. We then amplify our invariants by allowing our
surfaces to be immersed rather than embedded. This allows us to distinguish orientations
and larger families of smoothings. We obtain deeper insight into topologically embedded
surfaces and the diffeomorphism classification problem for Casson handles.

For obvious lower bounds on our genus functions, we define topological genus functions
GTOP and GTOP

1 as in the smooth case, but using tame, topologically embedded surfaces.
These bound G and G1 below, for every smoothing on a given topological manifold.
We now prove that these lower bounds are sharp for open 4–manifolds.

Theorem 8.1 For every open 4–manifold X , every stable isotopy class admits a
smoothing for which X and all of its covers satisfy G DGTOP and G1 DGTOP

1 .

Sometimes such smoothings come in uncountable families, eg for R4 . However, the
construction uniquely picks an isotopy class of smoothings from each stable isotopy
class, and the set of these isotopy classes is preserved under homeomorphisms. It seems
unlikely that the theorem holds for closed 4–manifolds. There are tame topological
surfaces in CP2 (for example) that violate the adjunction inequality [36; 33]. However,
it seems hard to rule out exotic (nonsymplectic) smooth structures in which these
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surfaces could be smooth. The theorem yields a smoothing on CP2�fxg with smaller
genus function than the standard smoothing.

Proof Given a surface F (possibly disconnected or noncompact) properly and tamely
embedded in X , we first construct a smoothing †F of X in which F is smooth. Start
with the standard smoothing on a normal disk bundle N of F . Since X � int N has
no compact components, we can smooth it rel @N [35]. This smoothing fits together
with the one on N to give †F . We can arrange †F to represent any stable isotopy
class. This is because the map H3.X � int N; @N IZ2/ŠH3.X;F IZ2/!H3.X IZ2/

is surjective, so we can switch to any other stable isotopy class by changing the stable
isotopy class on X � int N , which can be chosen arbitrarily.

The required smoothing now results from a general construction of Freedman and
Taylor [16] using RU , their universal exotic R4 . Given a smoothing † of X , choose
a smooth, proper embedding  W Œ0;1/ � S ! X with discrete (hence countable)
index set S , so that the component rays of  determine a dense subset of the space
of ends E.X /. Let †� be the result of end-summing † with a copy of RU along
each of these rays. As is proved in [16], the isotopy class of †� is independent of
choice of  , and only depends on † through its stable isotopy class. Thus, for a fixed
stable isotopy class, the corresponding smoothing †� will have the desired properties:
Every tame surface F � X is smooth in †�

F
(provided that we choose  and its

tubular neighborhood disjoint from F ), so the given isotopy between smoothings also
smooths F in †� . Thus, †� satisfies G D GTOP . For ˛ 2 H 2 .X /, we can realize
GTOP
1 .˛/ by a tame, proper embedding of an infinite union of compact surfaces into X

(in successive neighborhoods of infinity), so we have G1DGTOP
1 . The same reasoning

applies to the domain of any covering � of X , since ��.†�/ is constructed from
��† using RU as above [27].

We can similarly deal with tame, compact 3–manifolds M �X in place of embedded
surfaces. The main differences are that a smoothing for which M is smooth may not
exist if M cuts out a compact subset of X , and smoothness of M restricts the stable
isotopy class of the ambient smooth structure.

Remark While it is tempting to conjecture that every open 4–manifold has uncount-
ably many smoothings (Question 1.1), some caution is suggested by the universal R4 .
Could there be a 4–manifold with ends constructed so that every smoothing must have
the form †� as above? There would then be a unique isotopy class of smoothings in
each stable class.
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Minimal-genus techniques can be supplemented by considering generically immersed
surfaces. For a smooth, oriented 4–manifold X and ˛ 2H2.X /, let gim.˛/ denote the
minimal genus of an immersed (or equivalently, continuously mapped) surface repre-
senting ˛ . For example, this vanishes when X is simply connected, and equals g.F /

when ˛ is a generator for an R2 –bundle over an orientable surface F .

Definition 8.2 The kinkiness of a class ˛ is the pair �.˛/D .�C.˛/; ��.˛//, where
�C.˛/ (resp. ��.˛/) is the minimum number of positive (resp. negative) double points
of smoothly, generically immersed surfaces of genus gim.˛/ representing ˛ .

This was first introduced in [20], in the context of immersed disks in manifolds with
boundary. Note that there may not be a single surface representing both �C.˛/ and
��.˛/ simultaneously. For example, if X is obtained from B4 by attaching a 2–handle
along a ˙1–framed figure-8 knot K , and ˛ generates its homology, then �.˛/D .0; 0/,
although there is no embedded sphere because the boundary has nontrivial Rohlin
invariant. (The relevant immersed spheres are constructed by noticing that K can be
unknotted by a single crossing change, and the sign of the crossing can be chosen
arbitrarily since K is amphichiral.) This also illustrates that there is no obvious general
relation between kinkiness and the corresponding genus function, although if one
counts double points without sign, one obtains an upper bound on both G �gim and
�CC �� . Kinkiness has the advantage of supplying two integer invariants, which can
sometimes be controlled independently. For example:

Theorem 8.3 For an oriented X that is an R2 –bundle over an orientable surface F ,
let ˛ 2 H2.X / be a generator. Then for each pair k; l 2 Z�0 , there are uncountably
many diffeomorphism types of smoothings of X with �.˛/ D .k; l/, provided that
je.X /j � 2g.F /, or more generally, that 2k � �.F /C e.X / (or k D 0) and 2l �

�.F /� e.X / (or l D 0). Thus, every X realizes all k or all l in this manner.

This provides information that cannot be obtained from the minimal-genus function.
For example, those smoothings with �C.˛/¤ ��.˛/ admit no orientation-reversing
self-diffeomorphism, even if e.X /D 0. More complicated 2–handlebody interiors can
be similarly analyzed by applying the method below to Legendrian Kirby diagrams.

Proof Let CHk be the Casson handle with all double points positive, having k double
points at the first stage and just one in each subsequent kinky handle. Write X as
the interior of a handlebody with a unique 2–handle, and let Wk;l be its Casson-type
smoothing whose Casson handle is the simplest common refinement of CHk and CHl

after we reverse orientation on the latter. Then ˛ is represented by an obvious immersed
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surface of the correct genus, with k positive and l negative double points, providing the
required upper bounds for �.˛/. To show �C.˛/� k , note that Wk;l embeds in Wk;0 ,
which for positive k as given above is the Stein surface UCg.F /;e.X /;k from the proof
of Theorem 3.8. The desired inequality follows from the adjunction inequality for im-
mersed surfaces, Theorem 2.3. The lower bound on �� follows similarly with reversed
orientation. Since each Wk;l smoothly embeds in X , and hence in a negative-definite 4–
manifold (for some orientation on Wk;l ), we obtain uncountably many diffeomorphism
types as in Theorem 7.1. (Summing with a small exotic R4 preserves � .)

As with minimal genus, we can define kinkiness on the 2–homology of any subset Z

of a smooth, oriented 4–manifold, using immersions of a surface that has minimal
genus for maps into Z representing the given class. Its values are ordered pairs of
elements of Z�0[f1g (cf Definition 6.4). This is an invariant of myopic equivalences
preserving orientation and the homology class. The method of Theorem 6.2, applied to
the manifolds Wk;l �X from the above proof, shows:

Theorem 8.4 Every orientable surface smoothly embedded in an oriented 4–manifold
is topologically ambiently isotopic to almost-smooth surfaces realizing all pairs �˙.˛/2
Z�0 [ f1g satisfying the restrictions of Theorem 8.3. For a tame, topological em-
bedding, all pairs with �˙.˛/ 2 fm; : : : ;1g for a sufficiently large m are similarly
realized.

The last sentence is stronger than its analog in Theorem 6.2 since negative double
points raise the obvious upper bound for G but not for �C . We can now complete our
discussion of Corollary 6.5:

Corollary 8.5 Let F be a tame, orientable, compact surface in a smooth, orientable
4–manifold X . Then for every n 2 ZC there are n almost-smooth surfaces ambiently
isotopic to F such that each has a neighborhood in which no neighborhood of any other
embeds smoothly, preserving ŒF � up to sign.

Proof Choose surfaces Fr such that ��.F1/< � � �<��.Fn/��C.Fn/< � � �<�C.F1/.
This works even for embeddings reversing orientation on X or ŒF �.

The first use of kinkiness [20] was rel boundary, for a circle in the boundary of a 4–
manifold, such as a classical knot in @B4 or the attaching circle of a Casson handle, and
for flat topological disks (the analog of Theorem 8.4). The above techniques generalize
easily to this context (and to more general rel boundary settings). We immediately
obtain the most general current results on classifying Casson handles up to orientation-
preserving diffeomorphism: Given a signed tree for a Casson handle CH, remove all

Geometry & Topology, Volume 21 (2017)



Minimal genera of open 4–manifolds 153

negative edges, take the connected component containing the base point, and prune
away all finite branches. Then the resulting valence of the base point is a lower bound
on �C.CH/ (and on G.CH/), defined relative to the attaching circle, and similarly with
reversed signs. For example, the Casson handles of the smoothings Wk:l in the proof
of Theorem 8.3 are all distinguished (up to orientation-preserving diffeomorphism) by
their kinkiness .k; l/. We obtain a stronger result, essentially by merging [20] with
[22, Proposition 4.1] (which produces uncountably many diffeomorphism types of
Casson handles):

Theorem 8.6 For each .k; l/ 2 Z�0 �Z�0 � f.0; 0/g, there are uncountably many
diffeomorphism types of Casson handles with kinkiness .k; l/.

Proof Reversing orientation if necessary, we may assume k>0. For the R2 –bundle X

over S2 with e.X / D 1, an embedding X ! Z as in the proof of Theorem 7.7 is
explicitly constructed in [20] so that the inherited smoothing of X has Casson type
with a unique double point (positive) in the first stage of its Casson handle. Refining,
we can assume the smoothing is a refinement of Wk;l with the same first stage as the
latter. The proof of Theorem 7.7 (ignoring the Stein condition) gives uncountably many
Casson-type diffeomorphism types on X with kinkiness .k; l/, and hence uncountably
many diffeomorphism types of Casson handles with this kinkiness. (Note that the map
from oriented to unoriented diffeomorphism types is at most 2 W 1.)

One can also define the kinkiness at infinity on classes in H 2 .X / with gim finite. How-
ever, this seems harder to control. While it is routine to adapt the methods of this paper to
construct lower bounds, upper bounds seem more difficult since the naturally arising im-
mersed surfaces intersect C . The author knows no examples of smoothings with a finite
value of �˙ at infinity that is strictly larger than the corresponding topological value.
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