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Universal polynomials for tautological integrals
on Hilbert schemes

JØRGEN VOLD RENNEMO

We show that tautological integrals on Hilbert schemes of points can be written in
terms of universal polynomials in Chern numbers. The results hold in all dimensions,
though they strengthen known results even for surfaces by allowing integrals over
arbitrary “geometric” subsets (and their Chern–Schwartz–MacPherson classes).

We apply this to enumerative questions, proving a generalised Göttsche conjecture
for all isolated singularity types and in all dimensions. So if L is a sufficiently ample
line bundle on a smooth variety X , in a general subsystem Pd � jLj of appropriate
dimension the number of hypersurfaces with given isolated singularity types is a
polynomial in the Chern numbers of .X;L/ .

When X is a surface, we get similar results for the locus of curves with fixed “BPS
spectrum” in the sense of stable pairs theory.

14C05, 14N10, 14N35

1 Results

Let X be a projective, nonsingular, connected, complex variety of dimension d ,
and let E be an algebraic vector bundle on X . Denote by X Œn� the Hilbert scheme
of length n subschemes of X , and let EŒn� be the tautological bundle on X Œn� with
fibre H 0.Z;EjZ/ at Z 2X Œn� .

We study integrals of products of Chern classes of EŒn� over what we call geometric
subsets of X Œn� . Geometric subsets form a natural class of subsets definable without
reference to the global geometry of X Œn� . We define the geometric subsets as follows.

Denote by Hilbn0.C
d / the punctual Hilbert scheme, that is, the closed subvariety

of Hilbn.Cd / parametrising subschemes supported at 0 2 Cd . Let Q1; : : : ;Qk be
constructible subsets of Hilbni0 .C

d / such that if Z 2Qi and Z0 ŠZ as C–schemes,
then Z0 2Qi . We can then define a subset P � Hilbn.X/ by

P D fZ 2X Œn� jZ DZ1 t � � � tZ; Zi is of type Qig;
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254 Jørgen Vold Rennemo

where t denotes disjoint union, nD
P
ni , and “Zi is of type Qi ” means that there

exists a Z 2Qi such that Zi ŠZ as a C–scheme. We declare P to be a geometric
subset, and in general define a geometric subset of X Œn� to be any subset obtained by
taking finite unions, intersections and complements of sets of this form.

The statement that P � X Œn� is geometric implies two properties of P : that P is
constructible and that for any Z;Z0 2 X Œn� such that Z Š Z0 , either Z;Z0 2 P
or Z;Z0 … P . Being geometric is a stronger requirement than satisfying these two
properties; see Example 2.9.

A k–variable Chern polynomial is a polynomial in the formal variables c.j /i , where i�1
and 1 � j � k . We treat such a Chern polynomial as a function from k–tuples of
vector bundles to cohomology by the rule

c
.j /
i .E1; : : : ; Ek/D ci .Ej /;

extended linearly and multiplicatively to all Chern polynomials.

A Chern monomial is a monomial in the variables c.j /i . The weight of a Chern
monomial c.j1/i1

� � � c
.jk/
ik

is defined to be
Pk
mD1 im , so that treating a Chern monomial

of weight l as a function, its image will be in H 2l.X/. Denote by CM.k; l/ the set
of k–variable Chern monomials of weight l .

Let Y be a complex, proper scheme. If P �Y is a closed, pure-dimensional subset, we
let cM.P / 2H�.Y / denote the Chern–Mather class of P . If P � Y is a constructible
subset, we let cSM.P / 2H�.Y / denote the Chern–Schwartz–MacPherson class of P .
The constructions and basic properties of these classes are reviewed in Section 2.

Theorem 1.1 Let X be a smooth, projective, connected variety of dimension d ,
E an algebraic vector bundle on X , and F a (1–variable) Chern polynomial. Let N
be given by either

(i) N D deg
�
F.EŒn�/\ŒP �

�
, for P �X Œn� closed, pure-dimensional and geometric,

(ii) N D deg
�
F.EŒn�/\ cM.P /

�
, for P �X Œn� closed, pure-dimensional and geo-

metric, or

(iii) N D deg
�
F.EŒn�/\ cSM.P /

�
, for P �X Œn� geometric.

Then there exists a polynomial G in the variables fxM gM2CM.2;d/ , depending only
on F , the rank of E and the type of P , such that if we assign to xM the Chern number
degM.TX ; E/\ ŒX�, we have N DG..xM //.

Moreover, if every point Z2P represents a subscheme with support in at most m points,
the degree of G is at most m.
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Part (i) of Theorem 1.1 follows easily from either (ii) or (iii). We state (i) sepa-
rately because it has applications to counting singular curves and hypersurfaces; see
Sections 1.1.1 and 1.1.2. Part (iii) yields a different application to the problem of
counting singular curves; see Section 1.1.3. While we give no separate applications of
part (ii), the initial step of our proof is a reduction to a statement close to (ii) — see
Lemma 4.4 — and so in the main part of the proof we work with Chern–Mather classes.

If dimX � 2 or n� 3, then X Œn� is nonsingular (Fogarty [7, Theorem 2.4]; Cheah [4,
Theorem 3.2.2]), and so the tangent sheaf TX Œn� is locally free. We can then extend
Theorem 1.1 by including Chern classes of TX Œn� as follows.

Theorem 1.2 Assume that either dimX � 2 or n� 3, so that X Œn� is smooth. Let F
be a 2–variable Chern polynomial. Theorem 1.1 then holds with F.E/ replaced
by F.TX Œn� ; E/ everywhere.

Remark Assuming that X is connected is not a big restriction, as the computation of
tautological integrals for a general X are easily reduced to the connected case.

An outline of the proof of Theorems 1.1 and 1.2 is given in Section 3, and the formal
proof occupies Sections 4 and 5.

In Section 6, we show that a certain generating function for some Chern integrals
of part (i) of Theorems 1.1 and 1.2 can be given a particular product form.

The strategy of the proof of the main theorem is motivated by J Li’s paper [23], where
he shows that the degree of the virtual fundamental class on the Hilbert scheme of
points on a threefold X is given by a universal polynomial in the Chern numbers
of X . We adopt an overall strategy similar to that in [23], ie to transfer the problem to
the Hilbert scheme of ordered points X ŒŒn�� (Definition 2.2) and then approximate by
classes defined on the schemes X ŒŒ˛�� (Section 3.2). Dealing with geometric subsets,
the tautological bundles EŒn� and Chern–Mather and Chern–Schwartz–MacPherson
classes requires new ingredients.

A special case of Theorem 1.2 has been proved by Ellingsrud, Göttsche and Lehn [6]
using a completely different method. In our terminology, they treat the case where X
is a surface and the geometric subset P is the whole of X Œn� .

We note that the method of [6] yields a recursion which computes the universal polyno-
mial explicitly. In contrast, our method is nonconstructive and relies at a crucial point
on the fact that an element in the cohomology ring of a Grassmannian is a polynomial
in the Chern classes of the universal bundle. Lacking a method of obtaining information
about this polynomial, there is no apparent way of turning our proof into an algorithm.
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When X is a surface, the cohomology groups H�.X Œn�/ have a well-understood
description by the work of Grojnowski [12] and Nakajima [29]. Using this description,
one can ask for a computation of tautological Chern classes lying in Hk.X Œn�/ for any k ,
instead of just the degree of a class in H 2n.X Œn�/; see eg Lehn [22], Boissière and
Nieper-Wisskirchen [2] and Nieper-Wisskirchen [30] for examples of such computations.
Our method is tailored to computing degrees rather than full cohomology classes and
does not apparently apply to these more general questions.

For smooth X of any dimension, Cappell, Maxim, Ohmoto, Schürmann and Yokura [3]
give an explicit formula for cSM.X

Œn�/, considered as an element in H�.Symn.X/;Q/
by pushing forward along the Hilbert–Chow morphism. Our proof relies on the fact
that the Chern–Mather class is defined by taking Chern classes of the Nash bundle,
and it is not obviously applicable to computations involving characteristic classes not
defined via a bundle in this way, such as the Todd and Hirzebruch classes treated in [3].

1.1 Enumerative applications

1.1.1 Counting singular curves in surfaces The main motivation for our result is
to generalise the result known as the Göttsche conjecture, which by now has several
proofs; see Kazaryan [16], Kool, Shende and Thomas [21], Liu [25] and Tzeng [35].
We recall the statement of the conjecture. Fix a surface S with a line bundle L which
is “sufficiently ample”, eg L is a sufficiently large power of a very ample line bundle.
The precise definition of sufficiently ample uses the concept of N–very ampleness;
see Section 7.

Let ı be a positive integer, and call a curve ı–nodal if it has ı nodes and no other
singularities. If L is sufficiently ample, the locus of ı–nodal curves in jLj has the
expected codimension ı , so that in a general linear subsystem P ı � jLj there is a
finite number of ı–nodal curves. The simplest form of the conjecture is then that there
exists a degree-ı polynomial Gı in four variables, independent of S and L, such that
the number of ı–nodal curves equals

Gı
�
c1.L/

2; c1.L/c1.S/; c1.S/
2; c2.S/

�
:

Our main application is the generalisation of this result to the case of curves with more
general specified singularity types. Our approach follows the idea of Göttsche used
in [10, Section 5] to reduce the problem of counting nodal curves to an integral on
the Hilbert scheme. He defines a closed subset W � S Œ3ı� and shows that the number
of ı–nodal curves in the linear system P ı equals the degree of

c2ı.L
Œ3ı�/\ ŒW �;
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assuming L is .5ı�1/–very ample. This idea was used by Tzeng [35] in her proof of
the Göttsche conjecture, which uses degenerations of S to show that the degree of the
above class is a polynomial in the Chern numbers of .S; L/.

The set W appearing above is geometric, hence our theorem yields a different proof
of Tzeng’s result. Since our main theorem deals with more general loci in the Hilbert
scheme of points, we may generalise the statement of Tzeng’s theorem, replacing
ı–nodal curves with curves having other specified singularity types.

Proposition 7.2 Let S be a smooth, projective, connected surface, let L be a line
bundle on S , and let T1; : : : ; Tk be analytic isolated singularity types. There are
expected codimensions di associated with each Ti , and we let d D

P
di .

There is an integer N and a rational polynomial G.Ti / of degree k in four variables,
depending only on the Ti , such that if L is N–very ample, then in a general Pd � jLj
the number of curves having precisely k singularities of types Ti is

G.Ti /
�
c21.L/; c1.L/c1.S/; c2.S/; c

2
1.S/

�
:

The same statement holds when the Ti are topological rather than analytic singularity
types.

For the original problem of counting nodal curves, the numbers of curves having k
nodes form a generating function

Gnodal.S; L/D
X
ı�0

Gı
�
c1.L/

2; c1.L/c1.S/; c1.S/
2; c2.S/

�
qı ;

which was conjectured by Göttsche [10, Proposition 2.3] and shown by Tzeng [35,
Theorem 1.3] to have a specific product form

Gnodal.S; L/D B
c21.L/

1 B
c1.L/c1.S/
2 B

c21.S/

3 B
c2.S/
4 where Bi 2QŒŒq��:

We generalise this statement as Corollary 7.3: Fixing distinct types Ti , collect the
universal polynomials for the number of curves having mi singularities of type Ti in a
generating function; this then admits a product expansion similar to the above.

Both Proposition 7.2 and Corollary 7.3 have recently been obtained independently
by Li and Tzeng [24] via a generalisation of Tzeng’s degeneration approach.

1.1.2 Counting singular hypersurfaces By the same method we are able to count
hypersurfaces with isolated singularities in arbitrary dimensions.
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Proposition 7.8 Let X be a smooth, projective, connected variety, let L be a line
bundle on X , and let T1; : : : ; Tk be analytic isolated singularity types. There are
expected codimensions di associated with each Ti , and we let d D

P
di .

There is an integer N and a rational polynomial G.Ti / in the Chern numbers of .X;L/,
depending only on the Ti , such that if L is N–very ample, then in a general Pd � jLj
the number of divisors having precisely k isolated singularities of types Ti is given
by G.Ti / .

As in the curve case, a generating function for these universal polynomials can be
written in a product form similar to the one of Corollary 7.3.

1.1.3 Counting curves with given BPS spectra A different application of the main
result concerns the locus of curves in a Pk � jLj having given “BPS spectrum”. For a
reduced, complete, locally planar curve C with arithmetic genus g.C / and geometric
genus xg.C /, we consider the generating function

HC .q/ WD

1X
kD0

�.C Œk�/qk :

Pandharipande and Thomas [32] show that there are ni;C 2Z for i D xg.C /; : : : ; g.C /
such that

HC .q/D

g.C/X
iDxg.C/

ni;C q
g.C/�i .1� q/2i�2:

If C is smooth, we have HC .q/D .1� q/2g.C/�2 , so this result can be interpreted as
saying that in general HC .q/ decomposes as a sum of ni;C copies of qg.C/�iHCi .q/
where Ci is smooth of genus i . We define mi;C D ng.C/�i;C , and it is then easy to
check that the sequence of integers .mi;C /1iD0 depends only on the analytic types of
the singularities of C . We refer to the sequence .mi;C / as the BPS spectrum of C .

Recent work of Maulik [28], settling a conjecture of Oblomkov and Shende [31],
shows that the BPS spectrum of C is explicitly determined by the Milnor numbers and
HOMFLY polynomials of the links of the singularities of C . As a consequence, the
BPS spectrum depends only on the topological types of the singularities of C .

We show the following proposition.

Proposition 7.9 Let S be a smooth, projective, connected surface, let L be a line
bundle on S , and let k 2 Z�0 . Let m D .mi /1iD0 be a BPS spectrum, and denote
by jLjm � jLj the locus of curves with BPS spectrum m.
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There is an integer N and a rational polynomial Gm in four variables, depending only
on k and m, such that if L is N–very ample, then for a general Pk � jLj we have

�.Pk \ jLjm/DGm
�
c1.L/

2; c1.L/c1.S/; c1.S/
2; c2.S/

�
:

This generalises the approach of the proof of Kool, Shende and Thomas [21] of the
Göttsche conjecture, which implicitly proves the special case of the above proposition
where m is the spectrum of a ı–nodal curve; that is mD .mi / with mi D

�
ı
i

�
.

Let us sketch part of the proof in order to illustrate how Theorem 1.1(iii) is applied.
Let V DCkC1�H 0.S; L/ be the linear subspace corresponding to the general Pk�jLj.
For any n, there is a canonical map �W V ˝OS Œn�!LŒn� , and we let Dr.�/� S Œn� be
the r th degeneracy locus, ie where the map � has rank � r . Applying basic properties of
the Euler characteristic and an elementary argument allows us to express �.Pk\jLjm/
as some sum of terms �.Dr.�/\P /, where P is a geometric subset in S Œn� .

Taking L sufficiently ample and V general, we may assume that � satisfies a certain
genericity condition. Then by Parusiński and Pragacz [33, Theorem 2.10] we may
express �.Dr.�/ \ P / as a polynomial in cSM.P / and the Chern classes of LŒn� ,
which we can further express as a universal polynomial in the Chern numbers of .S; L/
by Theorem 1.1(iii).

We note that in the proof of Proposition 7.9 it is essential to be able to take integrals
over general geometric subsets of S Œn� . This is in contrast to the argument of [21],
where the integrals needed were taken over the whole of S Œn� , and so were already
computed in Ellingsrud, Göttsche and Lehn [6].

1.2 Conventions

We work over the base field C throughout, and it is essential to our proof that we can
consider the underlying complex analytic spaces of the varieties involved.

In the proof of Lemma 5.9, our argument is based on singular (co)homology. Apart
from at this point the reader is free to use their favourite (co)homology theory (eg sheaf
cohomology).

We always take (co)homology with coefficients in Q. Note, however, that if the
polynomial F in the main theorems has integral coefficients, then the numbers N
computed will all be integers.

By the degree of a class in H�.X/ we mean its pushforward to H�.pt/ŠQ. In dealing
with algebraic subsets of Hilbert schemes we always give these the reduced scheme
structure; in particular, this applies to the Hilbert schemes themselves.
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If m is some number defined in terms of the data X , E , P , F of the theorem, we
will use the shorthand “m is universal” to mean that there exists a polynomial in the
variables xM computing m, depending only on F and the type of P , as in the main
theorem.

1.2.1 Douady spaces We will need the analogues of Hilbert schemes in the category
of complex analytic spaces. These are called Douady spaces and were first constructed
by Douady in [5]. If U is an analytic variety, we write U Œn� for the Douady space
parametrising closed 0–dimensional length-n subspaces.

If U is an analytic open subset of the projective algebraic variety X , then U Œn� �X Œn�

is an analytic open subset, and the structure of analytic space on U Œn� is inherited from
that on X Œn� . In particular the Douady space and Hilbert scheme of X are isomorphic
as analytic spaces. The two key properties we will need are:

� There is an analytic map U Œn� ! Symn.U / known as the Douady–Barlet
morphism, analogous to the Hilbert–Chow morphism in the algebraic setting.
Analyticity of the map follows from the fact that the Hilbert–Chow morphism is
algebraic; see also Magnússon [27].

� The structure of U Œn� is determined by the complex analytic structure of U , so
that an isomorphism of analytic varieties f W U ! V induces an isomorphism
f Œn�W U Œn�! V Œn� .

Acknowledgements I thank Martijn Kool, Ragni Piene, my supervisor Richard Thomas
and Yu-jong Tzeng for valuable discussions and comments on this paper. In particular,
Piene pointed out to me the results of [18] used in Section 7.1.2. Many thanks also to
the referees for very useful comments and corrections.

2 Preliminaries

Let X be a smooth, projective, connected variety of dimension d , and let E be an
algebraic vector bundle on X . We give the definition of the tautological bundle EŒn�

and recall the construction of the Chern–Mather and Chern–Schwartz–MacPherson
(CSM) classes.

In Section 2.3 we introduce the scheme X ŒŒn�� and in Section 2.4 we discuss the notion
of geometric subsets of X Œn� and X ŒŒn�� .
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2.1 The tautological bundle

Denote by Z �X Œn� �X the universal subscheme over X Œn� , and let pW Z!X and
qW Z!X Œn� be the projections. The tautological bundle EŒn� on X Œn� is defined as

EŒn� D q�.p
�.E//:

The flatness of q implies that EŒn� is locally free, and we see that the fibre of EŒn� at
a point Z 2X Œn� is the vector space H 0.Z;EjZ/.

2.2 Chern classes

We next review the Chern–Mather and Chern–Schwartz–MacPherson classes. These
classes are generalisations to singular varieties of the Poincaré dual of c�.TY / for a
smooth, proper Y , so for such Y we have

cSM.Y /D cM.Y /D c�.TY /\ ŒY �:

2.2.1 Chern–Mather class Let Y be a reduced and pure-dimensional projective
scheme. The first step is to construct the Nash blow-up zY ! Y . Suppose for
a moment that Y is affine, reduced and irreducible of dimension d . Fix an em-
bedding f W Y !AN , and let Yns be the nonsingular part of Y . The tangent map
TYns ! f �.TAN / induces a morphism gW Yns! Gr.d;N /, and we take zY to be the
closure of the graph �g � Y �Gr.d;N /. The morphism zY ! Y is defined by the
projection Y �Gr.d;N /! Y , and we define the rank-d vector bundle T zY on zY by
restricting the universal bundle on Gr.d;N /.

It can be shown that this construction is independent of the choice of affine embedding
and globalises so that for any reduced, equidimensional scheme Y we get a well-defined
Y –scheme zY with a bundle T zY . The morphism zY ! Y is the Nash blow-up of Y and
the bundle T zY is the Nash bundle.

Definition 2.1 The Chern–Mather class cM.Y /2H�.Y / is defined as the pushforward
of c�.T zY /\ Œ zY � along zY ! Y .

An observation which is important for our proof is that this construction of the Nash
bundle is valid when Y is a complex analytic variety, in a way which is compatible
with restriction to a complex analytic open subset of an algebraic variety.
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2.2.2 Chern–Schwartz–MacPherson class We recall the definition and basic prop-
erties of the Chern–Schwartz–MacPherson class. For details, see [8, Example 19.1.7]
and [26].

Let Y be a projective scheme, let Z�.Y / be the group of all cycles on Y , and let F�.Y /
denote the group of constructible functions, where a function f W Y ! Z is called
constructible if there exists a finite partition of Y into constructible sets such that f is
constant on each set of the partition. Given a reduced pure-dimensional scheme V , the
local Euler obstruction EuV W V ! Z is a canonical constructible function determined
at a point x 2 V by the local analytic structure of V at x .

Let pW zV ! V be the Nash blow-up. By work of González-Sprinberg and Verdier,
we have EuV .x/D deg

�
c�.T zV jp�1.x//\s.p

�1.x/; zV /
�
, where p�1.x/ is the scheme-

theoretic inverse image and s.�;�/ denotes the Segre class [9].

There is a group homomorphism �W Z�.Y /!F�.Y / defined on a primitive cycle V by

�.V /.x/D

�
EuV .x/ if x 2 V;
0 if x … V:

The map � is an isomorphism, as can be shown using the fact that EuV .x/ D 1

if x is a nonsingular point of V . The Chern–Mather class defines a homomorphism
cW Z�.Y /!H�.Y / by letting

c.V /D i�.cM.V //;

where i W V ! Y is the inclusion of a primitive cycle.

The Chern–Schwartz–MacPherson class cSM.f / is now defined for any constructible
function f by

cSM.f /D c.�
�1.f //:

It is clear that cSM is a homomorphism. If S � Y is a constructible subset, we write
cSM.S/D cSM.1S /, where 1S is the characteristic function of S . Additivity of cSM

translates to

cSM.S1[S2/D cSM.S1/C cSM.S2/� cSM.S1\S2/:

Given a morphism of proper schemes gW Y1! Y2 , one can define a homomorphism
g�W F.Y1/! F.Y2/ by letting

g�.1V /.x/D �.g
�1.x/\ ŒV �/ for x 2 Y2;

where V � Y1 is a primitive cycle, and � is the topological Euler characteristic.1

The main property of CSM classes, shown in [26], is that g�.cSM.f //D cSM.g�.f //.

1The fact that this is well defined is shown in [26].
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Applying this to the case where Y is proper and g is the map Y ! pt, we find that
deg cSM.Y /D �.Y /.

2.3 The Hilbert scheme of ordered points

Following [23], we introduce the scheme X ŒŒn�� , which will play an essential role in
the proof of Theorems 1.1/1.2.

Definition 2.2 The Hilbert scheme of ordered points, denoted X ŒŒn�� , is the scheme
defined by the Cartesian diagram

X ŒŒn�� X Œn�

Xn Symn.X/

where the right-hand arrow is the Hilbert–Chow morphism taking a subscheme Z to
its support cycle. We denote by .Z; .xi // the point in X ŒŒn�� mapping to Z 2 X Œn�

and .xi / 2Xn .

While this definition endows X ŒŒn�� with a natural scheme structure, possibly nonre-
duced, it will suffice for our purposes to consider X ŒŒn�� as a reduced scheme throughout.

Since X ŒŒn��!X Œn� is finite, we can reduce questions about the degree of homology
classes on X Œn� to questions about similar classes on X ŒŒn�� . Roughly speaking, the
advantage of introducing X ŒŒn�� is that it naturally maps to Xn . This makes it easier to
handle than X Œn� , which maps to the more complicated scheme Symn.X/.

2.3.1 A stratification of Symn.X/ We may stratify Symn.X/ into disjoint locally
closed subsets Symn.ni /.X/, where .ni / is a partition of n, that is, where .ni / is a
sequence 0 < n1 � � � � � nk such that

P
ni D n. The subset Symn.ni /.X/ consists

of 0–cycles of the form
P
nixi , where xi 2 X are distinct points. Restricting the

map X Œn�! Symn.X/ to Symn.ni / gives an analytic (or étale) locally trivial fibration,
the fibres of which are isomorphic to

Q
i Hilbni0 .C

d /.

Similarly, we may define locally closed subsets Xn
.Ai /
� Xn , where .Ai /kiD1 is an

ordered partition of f1; : : : ; ng, that is, a sequence of disjoint nonempty subsets
of f1; : : : ; ng such that [Ai D f1; : : : ; ng. The subset Xn

.Ai /
consists of n–tuples

.xi / 2 X
n such that xi D xj if and only if i and j are contained in the same Al

for some l . Restricting the map X ŒŒn��!Xn to Xn
.Ai /

gives a Zariski locally trivial
fibration with fibres isomorphic to

Q
i HilbjAi j0 .Cd /.

Reordering the Ai does not change Xn
.Ai /

, so letting ˛ D fA1; : : : ; Akg be the un-
ordered partition of f1; : : : ; ng underlying A, we may define Xn˛ DX

n
.Ai /

. Then the
sets Xn˛ form a stratification of Xn when varying over all partitions ˛ .
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2.4 Geometric subsets

We now give the definition of geometric subsets of X Œn� and of X ŒŒn�� , along with some
results on these which will be needed later.

Let Hilbn0.C
d / be the punctual Hilbert scheme, defined to be the closed subset

of Hilbn.Cd / parametrising subschemes supported at the origin. We define punctual
geometric subsets to be the constructible subsets of the punctual Hilbert scheme
containing all 0–dimensional schemes of given isomorphism types.

Definition 2.3 A punctual geometric set is a subset Q � Hilbn0.C
d / which is con-

structible and satisfies: if Z 2 Q and Z0 2 Hilbn0.C
d / are such that Z Š Z0 (as

abstract C–schemes), then Z0 2Q .

A collection of punctual geometric subsets will naturally defines a subset of X Œn� :

Definition 2.4 Let Q1; : : : ;Qk be punctual geometric sets such that Qi�Hilbni0 .C
d /,

and let nD
P
ni .

We define P.Q1; : : : ;Qk/ � X Œn� to be the set of all Z D Z1 t � � � t Zk , where
every Zi is isomorphic to a Z0i 2Qi .

If we additionally specify how to label these Z , we obtain a subset of X ŒŒn�� :

Definition 2.5 Let Qi and ni be as above. Let A D .A1; : : : ; Ak/ be a k–tuple
of subsets of f1; : : : ; ng such that jAi j D ni and such that the Ai define a partition
of f1; : : : ; ng.

We define R.Q1; : : : ;QkIA/ � X ŒŒn�� to be the set of all .Z; .xi // such that Z is
equal to Z1 t � � � t Zk , where every Zi is isomorphic to a Z0i 2 Qi , and such
that xi D SuppZj if i 2 Aj .

Remark The subset R..Qi /IA/ is compatible with the locally closed subsets of Xn

described in Section 2.3.1. In particular, the image of R..Qi /IA/ under the mor-
phism X ŒŒn��!Xn is XnA , and over any point x 2XnA the fibre of R..Qi /IA/ is

R..Qi /IA/jx D

kY
iD1

Qi �

kY
iD1

HilbjAi j.Cd /DX ŒŒn��jx :

Similar remarks hold for P..Qi // and the stratification of Symn.X/.

We can now give the definition of geometric subsets of X Œn� and X ŒŒn�� :
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Definition 2.6 � A subset P �X Œn� is geometric if it can be expressed using sets
of the form P.Q1; : : : ;Qk/ and a finite composition of the operations union,
intersection and complement.

� A subset R � X ŒŒn�� is geometric if it can be expressed using sets of the form
R.Q1; : : : ;QkIA/ and a finite composition of the operations union, intersection
and complement.

An equivalent definition which will be convenient is the following.

Definition 2.7 � A subset P �X Œn� is geometric if it can be expressed using sets
of the form P.Q1; : : : ;Qk/, where the Qi are closed and irreducible, together
with a finite composition of the operations union, intersection and complement.

� A subset R � X ŒŒn�� is geometric if it can be expressed using sets of the
form R.Q1; : : : ;QkIA/, where the Qi are closed and irreducible, together
with a finite composition of the operations union, intersection and complement.

The equivalence of Definitions 2.6 and 2.7 is shown in Lemma 2.11(vii).

Example 2.8 The only geometric subsets of X Œ1� DX are ∅ and X . In X Œ2� there
are four geometric subsets: the sets ∅, X Œ2� , the set parametrising pairs of disjoint
points and the set parametrising length-2 subschemes with support in one point.

When X is a surface, a naturally occurring example of a geometric subset is the subset
of X Œ3ı� defined as the closure of

fZ 2X Œ3ı� jZ DZ1 t � � � tZı ; Zi D SpecOX;xi=m
2
xi
g:

This set appears in Tzeng’s proof of the Göttsche conjecture [35].

The statement that P � X Œn� is geometric implies two properties of P : that P
is constructible and that for any Z;Z0 2 X Œn� such that Z Š Z0 as C–schemes,
either Z;Z0 2 P or Z;Z0 … P . In other words, a geometric subset is a constructible
union of isomorphism classes of subschemes Z 2X Œn� .

Being geometric is a stronger requirement than having the two properties mentioned
above, as the following example shows.

Example 2.9 Let X be a surface, and let P � X Œ28� be the set containing all
Z DZ1 tZ2 such that (1) each Zi is defined by an ideal .m5xi ; fi / where fi is
a product of four distinct linear factors in mxi=m

2
xi

, and (2) the cross ratio of the
factors of f1 equals that of the factors of f2 . Then P is constructible and a union of
isomorphism classes of subschemes Z 2X Œ28� , but is not geometric.
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We have a notion of isomorphism between points of X ŒŒn�� , defined by saying that
.Z; .xi //Š .Z

0; .x0i // if there exists an isomorphism ZŠZ0 which takes Zjxi to Z0jx0
i

for every i . Then similarly a geometric subset of X ŒŒn�� is a union of isomorphism
classes of pairs.

Definition 2.10 Let X1 and X2 be smooth varieties of equal dimension, and for iD1; 2,
let Pi �X

Œn�
i be a geometric subset. We say that P1 and P2 are of the same type if

the isomorphism classes of the points in P1 are the same as the isomorphism classes
of points in P2 . It is clear that for any geometric subset of X Œn�1 , there is a unique
geometric subset of X Œn�2 of the same type.

The type of a geometric subset R �X ŒŒn�� is defined in the same way, using the notion
of isomorphism of pairs .Z; .xi // 2X ŒŒn�� defined above.

The following lemma contains some elementary facts about geometric subsets. Note
that there is a natural action of the symmetric group Sn on Xn , and hence on X ŒŒn�� .

Lemma 2.11 Let P � X Œn� and R � X ŒŒn�� be sets, and let pW X ŒŒn��! X Œn� be the
natural forgetful morphism.

(i) P is geometric ” p�1.P / is geometric.

(ii) R is geometric H) p.R/ is geometric. If R is Sn–invariant and p.R/ is
geometric, then R is geometric.

(iii) P is geometric ” P is a finite union of sets of the form P..Qi //.

(iv) R is geometric ” R is a finite union of sets of the form R..Qi /IA/.

(v) P is geometric, closed and irreducible ” P is of the form P..Qi // for
closed, irreducible Qi .

(vi) R is geometric, closed and irreducible ” R is of the form R..Qi /IA/ for
closed, irreducible Qi .

(vii) Definitions 2.6 and 2.7 are equivalent.

Proof In this proof, “geometric subset” means a set satisfying Definition 2.6.

(iv) It is sufficient to show that intersections and complements of sets having the
form R..Qi /IA/ are expressible as unions of such sets. Let R..Qi /IA/ be a geometric
set with AD .A1; : : : ; Ak/ and R..Q0i /IA

0// a geometric set with A0D .A01; : : : ; A
0
l
/.

Then, if R..Qi /IA/ \ R..Q0i /IA
0/ 6D ∅, we have k D l and the k–tuple A is a

permutation of the k–tuple A0 . In this case, we may relabel the indices of the A0i to
get AD A0 , and then R..Qi /IA/\R..Q0i /IA//DR..Qi \Q

0
i /IA/.
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Next we see that for any R..Qi /IA/ the set X ŒŒn�� nR..Qi /IA/ is the union of all
sets R..Hilbni0 .C

d //IA0/ where A0 is not a permutation of A and the sets

R.Hilbn10 .C
d /; : : : ;Hilbni0 .C

d / nQi ; : : : ;Hilbnk0 .C
d /IA/

for i D 1; : : : ; k .

(i) ) This follows from the fact that p�1.P.Qi // is the union of R..Qi /IA/ for
all admissible A.

(ii) The first claim follows from (iv) and p.R..Qi /IA//D P..Qi //. For the second
claim: if R is Sn–invariant, then RD p�1.p.R//, which is geometric by (i) ).

(i) ( This follows from (ii) and the surjectivity of p .

(iii) This follows from (i), (ii), (iv) and the surjectivity of p .

(v) By (iii), we may write P D [jP..Qi;j /i /, and since P is closed, we have
P D[jP..Qi;j /i /D[jP..Qi;j /i /. Irreducibility of P implies P DP..Qi;j /i / for
some j , so we may take Qi DQi;j . It remains to show that the Qi can be chosen to be
irreducible. Suppose not, then we have for instance Q1 reducible. Let Q1 D[jQ1;j
be the decomposition of Q1 into closed, irreducible subsets. Each Q1;j must be equal
to the closure of its orbit under the natural action of Aut.OAd ;0=m

n1
0 / on Hilbn10 .C

d /;
hence we see that the Q1;j are geometric.

We then have P D [jP.Q1;j ;Q2; : : : ;Qk/, and since P is irreducible, we may
replace Q1 with some Q1;j . Repeat to get all Qi irreducible, proving the )
implication. The ( implication is easy and omitted, but note that it depends on
the hypothesis that X is connected.

(vi) This is similar to (v).

(vii) It is obvious that a P satisfying Definition 2.7 satisfies Definition 2.6. For the
converse, note that the closed, geometric P generate all geometric subsets by unions,
intersections and complements. The proof of (v) shows that a closed, geometric P is
the union of sets of the form P..Qi // with Qi closed and irreducible. Hence closed,
geometric P satisfy Definition 2.7, and the claim follows. The case of R is similar.

2.4.1 Geometric functions The definitions and results of this section will only
be used in the proof of Lemma 4.3. We say that a constructible function on X Œn�

(resp. X ŒŒn�� ) is geometric if its level sets are geometric subsets. The geometric functions
on X Œn� (resp. X ŒŒn�� ) form a subring of the ring of constructible functions F.X Œn�/
(resp. F.X ŒŒn��/).
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The morphism pW X ŒŒn�� ! X Œn� gives a homomorphism p�W F.X
ŒŒn��/! F.X Œn�/

as described in Section 2.2.2, and a homomorphism p�W F.X Œn�/! F.X ŒŒn��/ given
by p�.f /D f ıp .

Lemma 2.12 Let f 2F.X Œn�/. Then f is geometric if and only if p�.f / is geometric.

Proof This follows from Lemma 2.11(i).

The symmetric group Sn acts on X ŒŒn�� and hence on X ŒŒn�� and F.X ŒŒn��/.

Lemma 2.13 Let f 2 F.X ŒŒn��/.

(i) If f is geometric, then p�.f / is geometric.

(ii) If f is Sn–invariant and p�.f / is geometric, then f is geometric.

Proof (i) Consider first the function 1X ŒŒn�� 2 F.X
ŒŒn��/. Let Z 2X Œn� have the form

ZDZ1t� � �tZk , where each Zi is supported at a point and has length ni . Then we get

p�.1X ŒŒn��/.Z/D jp
�1.Z/j D

nŠQ
i ni Š

:

It follows from this that p�.1X ŒŒn��/ is geometric, and hence p�p�.1X ŒŒn��/ is geometric.

For any f 2 F.X ŒŒn��/, we have

p�.f /D
1

nŠ

X
�2Sn

p�.�f /D
1

nŠ
p�

� X
�2Sn

�f

�
:

Let g D
P
�2Sn

�f . Since g is Sn–invariant, we get

p�p�.g/D p
�p�.1X ŒŒn��/ �g:

Hence p�p�.g/ is geometric. It follows that p�.g/ and hence p�.f /D p�.g/=.nŠ/
are both geometric.

(ii) We have p�p�.f / D p�p�.1X ŒŒn��/ � f , and so, since p�p�.1X ŒŒn��/ is nonvan-
ishing at all points, we may write f D p�p�.f / � .p�p�.1X ŒŒn��//

�1 . Since p�p�.f /
and p�p�.1X ŒŒn��/ are geometric, it then follows that f is.

3 Outline of proof

We give an outline of the proof of the main theorems. We restrict our attention in the
outline to Theorem 1.1(i), ignoring the extra complications of (ii), (iii) and Theorem 1.2.
We assume that P is irreducible; the general case follows from this by Lemma 4.1.
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The set-up is then that we are given a closed, irreducible, geometric subset P of X Œn� ,
a Chern polynomial F and a vector bundle E , and we want to show that

degF.EŒn�/\ ŒP �

is given by a universal polynomial.

3.1 Reduction to X ŒŒn��

The first step is to replace X Œn� with the Hilbert scheme of ordered points X ŒŒn�� .

Define the bundle EŒŒn�� on X ŒŒn�� as the pullback of EŒn� along X ŒŒn�� ! X Œn� . In
Lemma 4.3 we construct a closed, irreducible R � X ŒŒn�� which is geometric, maps
properly and finitely onto P , and which is such that deg.R=P / and the type of R is
determined by the type of P . The projection formula then gives

deg.R=P /
�

degF.EŒn�/\ ŒP �
�
D degF.EŒŒn��/\ ŒR�:

Thus, it suffices to show that degF.EŒŒn��/\ ŒR� is given by a universal polynomial.

3.2 Approximating spaces

This section corresponds to Section 4.4. Let ˛ be a partition of f1; : : : ; ng. Follow-
ing [23], we then define the scheme X ŒŒ˛�� as follows. Considering ˛ as a set of subsets
of f1; : : : ; ng, we let

X ŒŒ˛�� D
Y
S2˛

X ŒŒjS j��:

So, for example, if ˛ is the partition of f1; : : : ; ng into n one-element sets, we
have X ŒŒ˛�� DXn . At the other extreme, for the trivial partition ƒD ff1; : : : ; ngg, we
have X ŒŒƒ�� D X ŒŒn�� . In general, the scheme X ŒŒ˛�� parametrises ordered collections
of n points in X , with the additional data that when k points with labels in the same
set in the partition ˛ come together at x , one must specify a length-k subscheme
supported at x .

Consider the open subset of X ŒŒn�� where no two points with labels in different sets
of ˛ come together. This subset is naturally isomorphic to an open subset of X ŒŒ˛�� , so
we get a rational map g˛W X ŒŒn�� ÜX ŒŒ˛�� . In Definition 4.7, we define a bundle EŒŒ˛��

on X ŒŒ˛�� such that g�˛.E
ŒŒ˛��/DEŒŒn�� on the locus where g˛ is defined.

A closed, irreducible geometric R � X ŒŒn�� as in Section 3.1 is, by Lemma 2.11, of
the form R D R..Qi /IA//. Let � D fAig be the partition of f1; : : : ; ng induced
by A. Then one checks that R intersects the domain of definition for g˛ if and
only if � � ˛ , where � means refinement of partitions, ie every element of � is
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contained in an element of ˛ . If �� ˛ , we may thus define a closed, irreducible subset
R˛ WD g˛.R/�X

ŒŒ˛�� . This in particular holds for the maximal partition ƒ, for which
we get EŒŒƒ�� DEŒŒn�� and Rƒ DR .

All the R˛ are birational to R . We define Y as the closure of the image of RÜ
Q
˛ R˛ ,

where the product is over all ˛ such that R˛ is defined. The projections from
Q
R˛

induce proper, birational morphisms from Y to every R˛ .

3.3 Approximating cohomology classes

This section corresponds to Section 4.5. In what follows we restrict attention to
partitions ˛ such that R˛ is defined. We define the class C˛ 2H�.Y / by

C˛ D F.E
ŒŒ˛��/;

suppressing the pullback of EŒŒ˛�� along Y ! R˛ . Let C D Cƒ . By the projection
formula, deg.C \ ŒY �/ D deg

�
F.EŒŒn��/\ ŒR�

�
, so the proof of the main theorem is

reduced to showing that degC \ ŒY � is universal.

In Definition 4.11, we introduce the class

D D C C
X
˛ 6Dƒ

k˛C˛;

where the k˛ are integers defined combinatorially via the Möbius inversion formula for
the partially ordered set of partitions of f1; : : : ; ng; see Section 4.5. There is a natural
morphism Y ! Xn , and one should think of the class D as being supported on (a
neighbourhood of) the set Y j� , where ��Xn is the small diagonal. The choice of
the integers k˛ is motivated by the fact (shown in Lemma 4.20; see also Remark 4.13)
that they make D vanish on the complement of this locus.

For any ˛ 6D ƒ, the scheme X ŒŒ˛�� is by definition a product of schemes X ŒŒm��

with m< n. This induces product decompositions of EŒŒ˛�� and R˛ , which allow
us to express deg.C˛ \ ŒY �/ in terms of integrals of Chern classes of EŒŒm�� over
geometric subsets of X ŒŒm�� with m < n. By induction on n we can thus show that
deg.C˛ \ ŒR˛�/ is universal for ˛ 6Dƒ. This argument gives Lemma 4.14, by which it
suffices to show that

deg.D\ ŒY �/

is universal.

3.4 Relative constructions

Consider the tangent bundle TX ! X , and let TX WD P .OX ˚ TX/ be the nat-
ural compactification. Let Hilbn.TX=X/ be the relative Hilbert scheme, which
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parametrises length-n subschemes of fibres of TX !X . Note that the formation of
the relative Hilbert scheme is compatible with base change; see [13, Remark 3.9] or
[20, Exercise 1.4.1.5]. Hence if U �X is an open subset such that TX jU ŠU �TX ,
then Hilbn.TX=X/ D U � .Pd /Œn� . In particular Hilbn.TX=X/! X is a Zariski
locally trivial fibration with fibres .Pd /Œn� .

Emulating the definition of Y and EŒŒ˛�� with Hilbn.TX=X/ replacing X Œn� , we define
the scheme Y and the bundles E ŒŒ˛�� on Y . The classes C˛;D 2H�.Y/ are defined
similarly to C˛ and D . The precise definitions of these objects are given in Section 4.7.

The point of introducing these relative objects is that we can show directly (see
Sections 3.5 and 4.8) that the numbers deg.C˛ \ ŒY�/ are universal. The numbers
deg.C˛ \ ŒY�/ and deg.C˛ \ Y / are in general unrelated. On the other hand, the
key technical result Lemma 4.20 implies that deg.D\ ŒY �/D deg.D\ ŒY�/, and the
number deg.D\ ŒY�/ is universal since it is a linear combination of the deg.C˛ \ ŒY�/.

Denote by TXn the n–fold fibre product of TX over X . There are natural morphisms
�Y W Y ! Xn and �Y W Y ! TXn , where �Y is given by composing Y ! X ŒŒn��

and X ŒŒn��!Xn , and �Y is defined similarly. Let ��Xn be the small diagonal, and
consider X as a subset of TXn � TXn using n copies of the 0–section.

Let U � Y and U � Y be Euclidean open neighbourhoods of ��1Y .�/ and ��1Y .X/,
respectively. Choosing U and U small enough, we show in Lemma 5.1 that we can
find a topological isomorphism f1W U ! U together with topological isomorphisms
of the bundles f �1 .E

ŒŒ˛��/Š EŒŒ˛�� . The map f1 moreover restricts to an orientation-
preserving homeomorphism on the nonsingular parts of U and U , where these are
oriented by their complex structure.

To define the map f1 , we follow [23] and begin with an exponential map expW TX!X2.
This map is defined near the 0–section X � TX , and maps a neighbourhood of
the 0–section homeomorphically onto a neighbourhood of the diagonal ��X2 . The
map exp is analytic when restricted to a fibre of TX .

In Lemma 5.2, we show that f1 further induces a local homeomorphism of Hilbert
schemes f2W X Œn� ! Hilbn.TX=X/, defined in a neighbourhood of the locus of
subschemes whose support is one point. Finally, tracing through the parallel steps
in the definitions of Y and Y we get Lemma 5.3, which gives the homeomorphism
f W U ! U . Crucially, we also show that f �.E ŒŒ˛��/ Š EŒŒ˛�� as topological vector
bundles.

Recall the class DDCC
P
˛ 6Dƒ k˛C˛ 2H

�.Y /. Lemma 4.20 says that the restriction
of D to Y nU vanishes. The proof uses the fact that the bundles EŒŒ˛�� are canonically
isomorphic over various open subsets of Y , together with the (nontrivial) fact that
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the contributions from different C˛ cancel out appropriately. This cancellation is the
property motivating the definition of the integers k˛ . Similarly Lemma 4.20 also shows
that D vanishes upon restriction to Y nU .

Hence the classes D and D are concentrated over U and U , respectively. In particular,
there are relative cohomology classes Drel 2H

�.Y; Y nU/ and Drel 2H
�.Y;Y nU/

lifting D and D .

There is a map f �W H�.Y;Y n U/! H�.Y; Y nU/, defined by excision, possibly
after shrinking U and U . Lemma 4.20 furthermore shows that we can choose Drel

and Drel in such a way that f �.Drel/DDrel .

We may define the “relative fundamental class” ŒY; Y n U � 2 H�.Y; Y n U/ as the
image of ŒY � under the map H�.Y /!H�.Y; Y nU/, and we may similarly define
ŒY;YnU �2H�.Y;YnU/. Since f is locally an orientation-preserving homeomorphism
on the nonsingular parts of Y and Y , we get f�.ŒY; Y nU �/D ŒY;Y nU �. Hence we get

degD\ ŒY �D degDrel\ ŒY; Y nU �D degDrel\ ŒY;Y nU �D degD\ ŒY�:

The proof of Lemma 4.20 is the most technical part of the paper and occupies Section 5.

See [14, Theorem 2.20] and [14, Section 3.3] for a description of excision and the cap
product in singular homology.

3.5 Pullback from the Grassmannian

Let H1! Gr.d;N1/ be the universal rank-d subbundle over a Grassmannian. Here
N1 is any integer large enough that TX embeds as a topological subbundle of ON1X , so
that there is a continuous classifying map  TX W X!Gr.d;N1/ with TX D �TX .H1/
as topological bundles. We define the scheme YGr by the same construction as Y ,
replacing Hilbn.TX=X/ with Hilbn.H 1=Gr.d;N1// throughout. There is a natural
morphism YGr! Gr.d;N1/ and the Cartesian diagram of topological spaces:

Y YGr

X Gr.d;N1/

�

 TX

Let  E W X ! Gr.r; N2/ be a continuous classifying map for E , and consider the
Cartesian diagram:

Y YGr �Gr.r; N2/

X Gr.d;N1/�Gr.r; N2/

g

�

. TX ; E/
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We emphasise that the horizontal arrows in these diagrams are not required to be
analytic. We define bundles E ŒŒ˛��Gr on YGr �Gr.r; N2/ such that g�.E ŒŒ˛��Gr /D E ŒŒ˛�� .

From the above it follows that there is a class DGr 2 H
�.Gr.d;N1/ � Gr.r; N2//,

depending only on F and the type of R , such that

��.D\ ŒY�/D . TX ;  E /�.DGr/\ ŒX�:

The rational cohomology ring of a Grassmannian is generated by the Chern classes of its
universal bundle. Combining this with the Künneth formula for Gr.d;N1/�Gr.r; N2/
we find that . TX ;  E /�.DGr/ is a polynomial in the Chern classes of TX and E .
We show that this polynomial is independent of the choice of N1 and N2 . Hence
degD\ ŒY� is a universal linear combination of the Chern numbers of .X;E/, which
concludes the proof of the main theorem.

4 Proof of main theorem

We now begin the formal proof of the main theorem. To avoid dealing with Theorems 1.1
and 1.2 separately, we adopt the following convention: when a formula includes TX Œn� ,
terms involving TX Œn� should be ignored unless X Œn� is nonsingular, and so should all
other statements involving TX Œn� . In this section and the next we have X , P , E , d
and F as in the main theorem.

4.1 Reduction to irreducible sets

We first show that we may assume P to be irreducible.

Lemma 4.1 In order to prove Theorems 1.1/1.2, it suffices to prove the same theorems
with the extra assumption that P is closed and irreducible.

Proof We first treat parts (i) and (ii) of the theorems. For a closed and pure-
dimensional P , we let P1; : : : ; Pj be its irreducible components. Arguing as in
the proof of Lemma 2.11(v), we see that the Pi are geometric of type determined by
the type of P . The statement of the lemma now follows from

ŒP �D
X

ŒPi � and cM.P /D
X

cM.Pi /:

For part (iii), let P be any constructible geometric subset. We may write the character-
istic function 1P as 1P D

P
i mi1Pi , where the mi are integers and the Pi are closed,

irreducible and geometric subsets. The mi and the types of the Pi are determined by
the type of P . The claim of the lemma follows.
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4.2 Reduction to X ŒŒn��

Recall the Hilbert scheme of ordered points X ŒŒn�� , defined by the Cartesian diagram

X ŒŒn�� X Œn�

Xn Symn.X/

where the right-hand arrow is the Hilbert–Chow morphism.

Definition 4.2 Denote the pullbacks of EŒn� and TX Œn� along X ŒŒn��!X Œn� by EŒŒn��

and T ŒŒn��
X Œn�

, respectively.

We use the projection formula to relate the degree of F.EŒn�; TX Œn�/\ ŒP � to a similar
class involving EŒŒn�� and T

ŒŒn��

X Œn�
on X ŒŒn�� . The first step is to produce a closed,

irreducible geometric subset R�X ŒŒn�� mapping finitely onto P with universal degree.

Lemma 4.3 For any closed, irreducible, geometric P � X Œn� , there exists a closed,
irreducible, geometric R � X ŒŒn�� such that the map X ŒŒn�� ! X Œn� maps R finitely
onto P . Up to a permutation of f1; : : : ; ng, the type of this R is uniquely determined
by the type of P .

Proof As P is closed and irreducible, by Lemma 2.11(v) we have P D P..Qi //
for closed and irreducible punctual geometric subsets Qi � Hilbni0 .C

d /. We then
take AD .A1; : : : ; Ak/ to be a k–element partition of f1; : : : ; ng such that jAkj D nk ,
and let R D R..Qi /IA/. By Lemma 2.11(vi), we see that R must have this form,
hence the second claim follows.

Lemma 4.4 In order to prove the main theorem, it suffices to prove the following
statement: if R is a closed, irreducible, geometric subset of X ŒŒn�� , then

degF.EŒŒn��; T ŒŒn��
X Œn�

/\ cM.R/

is given by a universal polynomial depending only on F and the type of R , such
that the degree of the polynomial is at most l , where l is the maximum number of
components of Z for .Z; .xi // 2R .

Proof We first show that part (iii) of the theorems follows from the hypothesis of the
lemma. Let pW X ŒŒn��!X Œn� be the natural morphism. Let P �X Œn� be a closed and
irreducible geometric subset; by Lemma 4.1 it suffices to prove the main theorems for
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such P . Let R�X ŒŒn�� be a closed, irreducible geometric set mapping finitely onto P ,
as provided by Lemma 4.3.

We claim that the level sets of the local Euler obstruction EuR are geometric. To
see this, begin by writing R as a union of sets of the form R..Qi /IA/, as can be
done by Lemma 2.11(iv). Next consider a point .Z; .xj // 2 R , and suppose that
.Z; .xj // 2 R..Qi /IA/ � R with A D .A1; : : : ; Ak/. We have Z D

F
i Zi with

each Zi isomorphic to an element of Qi and xj D SuppZi for j 2 Ai . The local
analytic structure around .Z; .xj // in R is determined by the isomorphism types
of the Zi . Furthermore, a sufficiently small neighbourhood of .Z; .xj // in R is
analytically isomorphic to a product

Qk
iD1 Ui , where the analytic structure of Ui is

determined by the isomorphism type of Zi .

Let �i be the locally defined projection R! Ui . Using the product formula for the
local Euler obstruction [26, page 426], we get

EuR
�
.Z; .xj //

�
D EuQUi �.Z; .xj //�DY

i

EuUi
�
�i ..Z; .xj //

�
:

Since EuUi
�
�i .Z; .xj //

�
depends only on the isomorphism type of Zi , this implies

that the level sets of EuR intersected with R..Qi /IA/ are geometric. It follows that
the complete level sets of EuR are geometric.

As we have cSM.EuR/D cM.R/ by definition, we get

cSM.R/D cSM.1R/D cSM.EuR/C cSM.1R �EuR/D cM.R/C
X

icSM.Ri /;

where the sum is finite and the Ri are geometric subsets of X ŒŒn�� of lower dimension
than R , with type depending only on the type of R . By induction on dimR , we may
assume the terms cSM.Ri / are universal, and the hypothesis of the lemma is that cM.R/

is as well. Hence degF.EŒŒn��; T ŒŒn��
X Œn�

/\ cSM.R/ is universal.

We may write
p�.1R/D deg.R=P / � 1P C

X
i2Z

i � 1Pi ;

where the Pi are constructible subsets of lower dimension than P . By Lemma 2.13
the Pi are geometric, and it is easy to see that their type is determined by the type
of P . The functorial property of CSM classes then gives

p�.cSM.R//D deg.R=P /cSM.P /C
X

icSM.Pi /:

By induction on dimP , we may assume that the integers degF.EŒn�; TX Œn�/\cSM.Pi /

are universal. Since degF.EŒn�; TX Œn�/\p�.cSM.R// is universal by the above, it fol-
lows that degF.EŒn�; TX Œn�/\ cSM.P / is universal. This proves Theorems 1.1/1.2(iii).
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For a closed, irreducible P , we have ŒP �D cSM.P /CC , where C is a class of lower
homological dimension. Hence part (i) follows from (iii).

For part (ii), note that cM.P /D cSM.EuP /. A similar argument to the one above shows
that the level sets of EuP are geometric, and hence part (ii) follows.

4.3 Partitions

By a partition of f1; : : : ; ng, we mean a set ˛ of disjoint, nonempty subsets of f1; : : : ; ng,
such that

S
A2˛ A D f1; : : : ; ng. Following [23], we will define schemes X ŒŒ˛��

approximating X ŒŒn�� for each such ˛ . We fix some notation and conventions with
respect to partitions.

Definition 4.5 We let �˛ be the equivalence relation on f1; : : : ; ng given by letting
the elements of ˛ form equivalence classes.

We define a partial ordering on the set of partitions of f1; : : : ; ng by letting ˛ � ˇ
if every element of ˛ is contained in an element of ˇ , as in [34, Example 3.1.1.d].
Equivalently, ˛ � ˇ if �˛ is a finer relation than �ˇ .

We denote by ƒ the maximal partition under this ordering, that is, ƒD ff1; : : : ; ngg.
Given two partitions ˛ and ˇ , we denote by Œ˛; ˇ� the set of partitions 
 such
that ˛ � 
 � ˇ , and define Œ˛; ˇ/ etc similarly.

4.4 Approximating constructions

From this point on we fix a closed, irreducible, geometric subscheme R �X ŒŒn�� . In
this section, we define the schemes X ŒŒ˛�� , the bundles EŒŒ˛�� and T ŒŒ˛��

X Œn�
, the subsets

R˛ �X
ŒŒ˛�� and the cohomology classes C˛ and D .

Definition 4.6 If ˛ is a partition of f1; : : : ; ng, define the scheme X ŒŒ˛�� by

X ŒŒ˛�� D
Y
A2˛

X ŒŒA��;

where X ŒŒA�� ŠX ŒŒjAj�� and parametrises pairs .Z; .xi /i2A/ such that
P
i2A xi is the

fundamental cycle of Z .

There is a natural morphism X ŒŒ˛��!Xn defined by the decomposition XnD
Q
A2˛ X

A

and the natural morphisms X ŒŒA��!XA .
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Definition 4.7 Define the vector bundles EŒŒ˛�� and T ŒŒ˛��
X Œn�

on X ŒŒ˛�� by

EŒŒ˛�� D
M
A2˛

EŒŒA�� and T
ŒŒ˛��

X Œn�
D

M
A2˛

T
ŒŒA��

X ŒA�
;

where we suppress pullback along the projection X ŒŒ˛��!X ŒŒA�� .

Definition 4.8 If ˛ is a partition of f1; : : : ; ng, denote by �˛ the subset of Xn given
by

�˛ D f.x1; : : : ; xn/ 2X
n
j xi D xj if i �˛ j g:

We refer to the sets �˛ as diagonals.

Write RDR..Qi /IA/, as is possible by Lemma 2.11(vi). We define the partition �
of f1; : : : ; ng by �DfA1; : : : ; Akg. The image of R under the map X ŒŒn��!Xn is �� .

Our next task is to define schemes R˛ � X ŒŒ˛�� birational to R , for those ˛ such
that this is possible. For any ˛ , let f˛W X ŒŒn�� Ü X ŒŒ˛�� be the natural isomorphism
defined on the open set where the moduli problems X ŒŒn�� and X ŒŒ˛�� solve are the same.
Specifically, f˛ is defined on the set of points .Z; .xi // where xi 6D xj if i 6�˛ j .

The locus where f˛ is defined intersects R if and only if ˛��. For such ˛ we let R˛
be the closure of f˛.R/ in X ŒŒ˛�� .

Recall that �R˛ ! R˛ denotes the Nash blow-up. As �R˛ ! R˛ is birational, the
map f˛ induces a natural rational map g˛W RÜ �R˛ .

Definition 4.9 Let
g WD .g˛/˛��W RÜ

Y
˛��

�R˛;
and define Y to be the closure of g.R/ in

Q �R˛ .

For every ˛ there are birational proper morphisms Y ! �R˛!R˛ . Any cohomology
class on R˛ and �R˛ may be pulled back along these morphisms without changing the
degree, and we will suppress such pullbacks in the notation.

4.5 Approximations of the cohomology classes

The schemes and bundles defined in the previous section give rise to cohomology
classes approximate to the one we want to compute; see [23, Section 5.4]. Recall
that ƒ denotes the maximal partition of f1; : : : ; ng, and that T�R˛ is the Nash bundle
on �R˛ .
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Definition 4.10 Let ˛ be a partition � �. Define the class C˛ 2H�.Y / by

C˛ D F.E
ŒŒ˛��; T

ŒŒ˛��

X Œn�
/[ c�.T�R˛ /:

We let C D Cƒ .

Note that the main theorem is reduced to the claim that deg.C \ ŒY �/ is universal.

Definition 4.11 Let ˛ be a partition � �. Define the classes D˛ 2 H�.Y / by
putting D� D C� and for ˛ > � letting D˛ be defined inductively by

D˛ D C˛ �
X


2Œ�;˛/

D
 :

We let D DDƒ .

Remark 4.12 The definition of the D˛ is an instance of Möbius inversion. Namely,
consider the map from the partially ordered set .Œ�;ƒ�;�/ to H�.Y / given by ˛ 7!C˛ .
The Möbius inversion formula then gives

D˛ D
X


2Œ�;˛�

k.
; ˛/C
 ;

where k.
; ˛/ is the Möbius function of .Œ�;ƒ�;�/; see eg [34, Proposition 3.7.1].

The function k is easily calculated; see [34, Example 3.10.4]. In particular, we have
k˛ WD k.˛;ƒ/D .�1/

j˛j�1.j˛j � 1/Š and so

D D
X
˛��

.�1/j˛j�1.j˛j � 1/ŠC˛:

Except in the proof of Proposition 6.4, we will not need this, and we work instead
directly with the inductive definition of D˛ and D .

The motivation behind the definition of D˛ is as follows. First, it follows directly from
the definition that if deg.D\ ŒY �/ and deg.C˛ \ ŒY �/ are universal for ˛ 6Dƒ, then
deg.C \ ŒY �/ is universal as well. Using induction on n, we will show in Lemma 4.14
that the degree of C˛ \ ŒY � is universal for ˛ 6D ƒ, reducing the problem to that of
computing D .

Second, as we show in Lemma 4.20, D is such that the restriction of D to Y n .Y j�ƒ/
vanishes, which allows us to reduce the computation of its degree to studying a small
neighbourhood of Y j�ƒ .
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Remark 4.13 We can give a formal analogy explaining the combinatorics underlying
the definition of the D˛ . For any partition ˛ , let c˛ be a (not necessarily continuous)
function on Xn , such that c˛ D cˇ on the locus in Xn over which X ŒŒ˛�� and X ŒŒˇ��

agree. Specifically c˛ D cˇ on Xn n�˛;ˇ , where

�˛;ˇ WD
[
i�˛j
i 6�ˇj

�ij [
[
i�˛j
i 6�ˇj

�ij :

Here �ij �Xn is the set of points .xk/ 2Xn satisfying xi D xj . The functions c˛
are analogous to the classes C˛ , and the equality c˛ D cˇ over Xn n�˛;ˇ corresponds
to the fact that C˛ and Cˇ are canonically equal over this set.

We may now define d˛ by d˛ D c˛ �
P

<˛ d
 ; these functions are analogous to D˛ .

The functions d˛ then vanish on Xn n�˛ ; this is a combinatorial fact which is easy
to show by ascending induction on the partially ordered set of partitions. In particular
dƒ vanishes on Xn n�ƒ , in analogy with the vanishing of D DDƒ away from �ƒ
shown in Lemma 4.20 and Lemma 5.9.

4.6 Reduction to deg.D \ ŒY �/

If ˛ is a nonmaximal partition of f1; : : : ; ng, the scheme X ŒŒ˛�� is by definition a
product of schemes X ŒŒm�� with m<n. Hence we can reduce the computation of C˛ to
computations of cohomology classes on such X ŒŒm�� , and if these are universal, then C˛
will be as well. This argument leads to the following induction result.

Lemma 4.14 Let m be a positive integer. Suppose that Theorem 1.1/1.2 holds for
every n <m, and suppose that for nDm the degree of D\ ŒY � is given by a universal
linear polynomial in the Chern numbers of .X;E/. Then Theorem 1.1/1.2 holds
for nDm.

Proof Assume that the theorem holds for every n < m. We shall then show that
for every partition ˛ 2 Œ�;ƒ/, the degree of C˛ \ ŒY � is expressed by a universal
polynomial. Since we have C DDƒ�

P
˛2Œ�;ƒ/ k˛C˛ , the statement of the lemma

follows.

Let ˛ 2 Œ�;ƒ/. Recall first that by definition there is a product decomposition

X ŒŒ˛�� D
Y
A2˛

X ŒŒA��:

This gives rise to a product decomposition R˛ D
Q
A2˛ RA , where the RA�X ŒŒA�� are

closed, irreducible, geometric subsets. The Nash blow-up preserves products, by the
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nD 1 case of [36, Theorem 1.1], using the observation that in the notation of loc. cit.
the Nash blow-up of X is fNash1.X/; see [36, page 1001]. We therefore have�R˛ DY�RA;
as well as bundle decompositions

EŒŒ˛�� D
M

EŒŒA��; T�R˛ D
M

T�RA and T
ŒŒ˛��

X Œn�
D

M
T
ŒŒA��

X Œn�
:

Now, using the Whitney sum formula we can find an expression for

C˛ D F.E
ŒŒ˛��; T

ŒŒ˛��

X Œn�
/ � c�.T�R˛ /

as a polynomial in the Chern classes of EŒŒA�� , T ŒŒA��
X Œn�

and T�RA for different A 2 ˛ .
Since ˛ <ƒ, we have jAj<m for every A 2 ˛ . By the induction hypothesis, we thus
get a universal polynomial for

degC˛ \ ŒY �D degC˛ \ ŒR˛�;

as required.

The claim about the degree of the universal polynomial G in the main theorem also
follows by induction, using the assumption that deg.D\ ŒY �/ is linear as a polynomial
in the Chern numbers of .X;E/.

Since the theorem is clear for nD 0, it now suffices to show that the degree of D\ ŒY �
is given by a linear polynomial in the Chern numbers of .X;E/.

4.7 Relative constructions

We will show in Lemma 4.20 that the class D vanishes when restricted to the part of Y
lying over the complement of the small diagonal �ƒ � Xn . It may thus essentially
be computed by looking at a neighbourhood of Y j�ƒ . The next step is now to use
this to show that the degree of D equals that of a class D 2 H�.Y/, where Y is a
scheme defined similarly to Y , but with X Œn� replaced with the relative Hilbert scheme
Hilbn.TX=X/; see [13] or [20, Chapter 1] for background on relative Hilbert schemes.

We therefore repeat the constructions of approximating schemes and classes in this
relative setting. These are for the most part straightforward adaptations of the construc-
tions in Sections 4.4 and 4.5. The exception to this is the scheme R that corresponds
to R (and so the schemes R˛ and Y which are derived from R), where we impose
the condition that the first marked point must lie in the 0–section X � TX .

In order to integrate cohomology classes it will be convenient to work with proper
schemes. Hence we let TX denote the Pd–bundle P .OX ˚TX/, with the convention
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that P .V / is the set of lines through the origin in V . Let � W TX!X be the projection,
and let TXn , Symn.TX=X/ and Hilbn.TX=X/ denote, respectively, the fibre product,
relative symmetric product and relative Hilbert scheme of TX over X .

Definition 4.15 Define the scheme TX ŒŒn�� by the cartesian diagram:

TX ŒŒn�� Hilbn.TX=X/

TXn Symn.TX=X/

Note that as usual we will only consider the reduced scheme structures on Hilbn.TX=X/
and TX ŒŒn�� .

Definition 4.16 Let E Œn� be the tautological bundle on Hilbn.TX=X/ correspond-
ing to the vector bundle E D ��.E/ on TX , and let E ŒŒn�� be the pullback of E Œn�

to TX ŒŒn�� . If X Œn� is nonsingular, let TTX Œn� denote the relative tangent bundle
of Hilbn.TX=X/!X , and denote its pullback to TX ŒŒn�� by T ŒŒn��

TX Œn�
.

Definition 4.17 Let ˛ be a partition of f1; : : : ; ng. Define the scheme TX ŒŒ˛�� by

TX ŒŒ˛�� D
Y
A2˛

TX ŒŒA��;

where the product is the fibre product over X . Define the bundles E ŒŒ˛�� and T ŒŒ˛��
TX Œn�

on TX ŒŒ˛�� by

E ŒŒ˛�� D
M
A2˛

E ŒŒA�� and T
ŒŒ˛��

TX Œn�
D

M
A2˛

T
ŒŒA��

TX ŒA�
;

suppressing notation for the natural pullbacks.

For x 2X , let TXx D ��1.x/. Then the set of points in TX ŒŒn�� (resp. TX ŒŒ˛�� ) is the
union of .TXx/ŒŒn�� (resp. .TXx/ŒŒ˛�� ) for all x 2 X . A point of TX ŒŒn�� can thus be
described by a pair .Z; .vi /niD1/, where Z 2 .TXx/Œn� and vi 2 TXx for some x 2X ,
subject to the requirement that the support 0–cycle of Z equals

P
vi .

We can now define the subset R� TX ŒŒn�� which plays the role of R in the relative
setting. First let R0 be the subset of TX ŒŒn�� such that for each x 2 X , the set
R0\ .TXx/ŒŒn�� � .TXx/ŒŒn�� is the geometric subset of the same type as R , where the
type of a geometric subset is as in Definition 2.10.

Let pW TX ŒŒn��! TX be the morphism defined by p..Z; .vi //D v1 , and consider X
as a subset of TX by embedding along the 0–section. We then let RD p�1.X/\R0 .
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For every partition ˛ , there is a rational map f˛W TX ŒŒn�� Ü TX ŒŒ˛�� defined where
the moduli problems the two schemes solve are the same. Using these maps, we may
replace R by R in Definition 4.9 and the preceding paragraphs, thus defining the
schemes R˛ (for ˛ � �), �R˛ and Y . We omit the details.

Finally, we define the relative analogues of the classes C˛ and D˛ .

Definition 4.18 Let ˛ be a partition � �. Define the class C˛ 2H�.Y/ by

C˛ D F.E ŒŒ˛��; T
ŒŒ˛��

TX Œn�
/[ c�.T�R˛ /:

We let C D Cƒ .

Definition 4.19 Let ˛ be a partition � �. Define the classes D˛ 2 H�.Y/ by
putting D� D C� and for ˛ > � letting D˛ be defined inductively by

D˛ D C˛ �
X


2Œ�;˛/

D
 :

We let DD Dƒ .

4.8 Relating Dƒ to Dƒ

Let Y0 � Y be the restriction of Y to the small diagonal X D�ƒ � Xn . Similarly
let Y0 � Y be the restriction of Y to the set X � TXn where the inclusion of X is
given by n copies of the 0–section. The classes D and D are related by the following
lemma and its corollary.

Lemma 4.20 There exists a relatively compact pair of open neighbourhoods U 0 b U

of Y0 in Y , a relatively compact pair of open neighbourhoods U 0 b U of Y0 in Y ,
and a homeomorphism f W .U; U 0/ ! .U ;U 0/. Furthermore, there exists a class
Drel 2H

�.Y;Y nU 0/ lifting D 2H�.Y/ such that the composition

(4-1) H�.Y;YnU 0/!H�.U ;U nU 0/f
�

!H�.U; U nU 0/!H�.Y; Y nU 0/!H�.Y /

sends Drel to D .

By construction, the map f will be orientation-preserving when restricted to the
nonsingular open subsets Uns and Uns , where these are oriented by the complex
structure.

Corollary 4.21 The degree of D\ ŒY � equals the degree of D\ ŒY�.

Proof of Corollary 4.21 There are relative fundamental classes

Œ.Y;Y nU 0/�; Œ.U ;U nU 0/�; Œ.U; U nU 0/� and Œ.Y; Y nU 0/�

in the appropriate homology groups. Replacing H� with H� in the above sequence (and
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reversing the arrows) each fundamental class is sent to the next, so in the composition
the class ŒY � is sent to Œ.Y;Y nU/�. This implies

deg.D\ ŒY �/D deg
�
Drel\ Œ.Y;Y nU 0/�

�
:

Now, Œ.Y;Y nU 0/� is the pushforward of ŒY�, which shows that

deg
�
Drel\ Œ.Y;Y nU 0/�

�
D deg.D\ ŒY�/;

completing the proof.

The proof of Lemma 4.20 is quite technical and is postponed to Section 5. We now
show how the main theorem follows from Corollary 4.21.

Proof of Theorems 1.1/1.2 By Corollary 4.21, if degD\ ŒY� is given by a universal
linear polynomial, the same is true for degD \ ŒY �, which by Lemma 4.14 would
imply the main theorem.

Every construction made in Section 4.7 starting from TX ! X can be carried out
with the bundle TX ! X replaced by an arbitrary algebraic rank-d vector bundle.
In particular, we may construct the analogue of Y starting from the universal rank-d
subbundle H1 ! Gr.d;N1/, where N1 is any integer large enough that TX is the
pullback of H1 along a continuous classifying map  TX W X ! Gr.d;N1/. Call this
scheme YGr , and denote the analogues of R˛ by R˛;Gr .

Note that as the construction of the relative Hilbert scheme is local on the base ([13,
Remark 3.9] or [20, Exercise 1.4.1.5]) and the projection H1!Gr.d;N1/ is a Zariski
locally trivial fibration, it follows that Hilbn.H1=Gr.d;N1/!Gr.d;N1/ is a fibration.
This further implies that the projections YGr! Gr.d;N1/ and R˛! Gr.d;N1/ are
Zariski locally trivial fibrations. The same argument shows that Y!X and YGr!X

are Zariski locally trivial fibrations.

Let r be the rank of E , and let N2 be a sufficiently large integer. There is then a
classifying map  E W X ! Gr.r; N2/ with  �E .H2/ŠE , where H2 is the universal
subbundle on Gr.r; N2/. There is then a Cartesian diagram

(4-2)
Y YGr �Gr.r; N2/

X Gr.d;N1/�Gr.r; N2/

g

�X �Gr�id

. TX ; E/

in the category of topological spaces, where �Gr is the product of the natural projection
YGr! Gr.d;N1/. Note that the horizontal maps are in general not analytic.
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If ˛ � �, let the bundle H ŒŒ˛��
2 on YGr �Gr.r; N2/ be defined by

H
ŒŒ˛��
2 DH2˝OŒŒ˛��

Hn
1

;

where H2 and OŒŒ˛��
Hn
1

are pulled back from Gr.r; N2/ and YGr , respectively. We then
have

g�.H
ŒŒ˛��
2 /D E ŒŒ˛��:

The scheme YGr also carries a bundle T ŒŒ˛��
H
Œn�
1

, defined in the same way as T ŒŒ˛��
TX Œn�

, and
we have

g�.T
ŒŒ˛��

H
Œn�
1

/D T
ŒŒ˛��

TX Œn�
:

For any ˛ � �, define the relative Nash bundle T�R˛;Gr=Gr on YGr as the kernel of the
natural map T�R˛;Gr

! ��Gr

�
TGr.d;N1/

�
.

This map is surjective since R˛;Gr! Gr.d;N1/ is a locally trivial fibration. Hence
there is a short exact sequence

0! T�R˛;Gr=Gr! T�R˛;Gr
! ��Gr

�
TGr.d;N1/

�
! 0:

Similarly define T�R˛=X by the short exact sequence

0! T�R˛=X ! T�R˛ ! ��X .TX /! 0:

The restriction of T�R˛=X to a fibre Yjx of Y!X is canonically identified with the
Nash bundle on the Nash blow-up of R˛jx . A similar statement holds for T�R˛;Gr=Gr
when restricted to a fibre of YGr! Gr.d;N1/.

We then have g�.T�R˛;Gr=Gr/D T�R˛=X . Define a bundle G˛ on YGr by

G˛ D T�R˛;Gr=Gr˚�
�
Gr.H1/:

In the Grothendieck K-group of topological vector bundles we then have g�.G˛/DT�R˛.
Define the class C˛;Gr 2H

�.YGr �Gr.r; N2// by

C˛;Gr D F.E
ŒŒ˛��
Gr ; T

ŒŒ˛��

H
Œn�
1

/ � c�.G˛/:

The above discussion shows that g�.C˛;Gr/D C˛ .

There are Gysin maps .�X /Š and .�Gr � id/Š in cohomology, defined by

.�X /Š.˛/D PD
�
.�X /�.˛\ ŒY�/

�
and

.�Gr � id/Š.˛/D PD
�
.�Gr � id/�.˛\ ŒYGr �Gr.r; N2/�/

�
;

where PD denotes the Poincaré dual.

Geometry & Topology, Volume 21 (2017)



Universal polynomials for tautological integrals on Hilbert schemes 285

There is a similar Gysin map . TX ; E /ŠWH�.Gr.d;N1/�Gr.r;N2//!H�.X/, which
by base change along the Cartesian diagram (4-2) induces a map gŠWH�.YGr/!H�.Y/.
Since the vertical arrows of (4-2) are fibre bundles, we get gŠ.ŒYGr�/D ŒY�.

This implies the relation

.�X /Šg
�
D . TX ;  E /

�.�Gr � id/Š:

As a consequence, we get .�X /Š.C˛/D g�..�Gr � id/Š.C˛;Gr//, which implies

(4-3) deg.C˛ \ ŒY�/D deg
�
g�..�Gr � id/Š.C˛;Gr//\ ŒX�

�
:

Any rational cohomology class on Gr.d;N1/�Gr.r; N2/ can be expressed as a polyno-
mial in Chern classes of the universal bundles. If moreover the Ni are sufficiently large,
then there are no relations between these Chern classes in degree 2d , so this polynomial
is unique. In particular, the degree-2d part of .�Gr � id/Š.C˛;Gr/ is equal to such a
polynomial. This polynomial is independent of the Ni , because the class C˛;Gr is pre-
served by the pullbacks induced by the natural morphisms Gr.d;N1/!Gr.d;N1C1/
and Gr.r; N2/! Gr.r; N2C 1/.

It follows then that the right-hand side of (4-3) is equal to a linear combination of the
Chern numbers of .X;E/. Consequently, deg C˛\ŒY� is a universal linear combination
of the Chern numbers of .X;E/. As D is a linear combination of the C˛ , the same is
true for degD\ ŒY�, which is what we needed to show.

5 Proof of Lemma 4.20

As the proof is somewhat complicated, let us first give a brief outline. In Section 5.1,
specifically in Lemma 5.3, we show that there exist U �Y and U�Y , and a homeomor-
phism f W U !U where U (resp. U ) is neighbourhood of Y0�Y (resp. Y0�Y ). The
first claim of Lemma 4.20 follows from this. We also show that this homeomorphism
is compatible with the relevant vector bundles on Y and Y , ie we find isomorphisms
of topological vector bundles

(5-1) f �.E ŒŒ˛��/ŠEŒŒ˛��; f �.T
ŒŒ˛��

TX Œn�
/Š T

ŒŒ˛��

X Œn�
and f �.T�R˛=X /Š T�R˛=X :

The second claim of Lemma 4.20 is that D can be lifted to a relative cohomology class
Drel 2H

�.Y;Y nU 0/ which is sent to D 2H�.Y / by the composed map

H�.Y;Y nU 0/!H�.U ;U nU 0/ f
�

!H�.U; U nU 0/!H�.Y; Y nU 0/!H�.Y /:

Our approach is to construct explicitly singular cocycles D and D representing D
and D , such that D (resp. D) vanishes on Y nU 0 (resp. Y nU 0 ). Then D (resp. D)
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defines a class Drel 2 H
�.Y; Y nU 0/ (resp. Drel 2 H

�.Y;Y n U 0/). We will further
show that there is an equality of cocycles f �.DjU /DDjU , and the second claim of
Lemma 4.20 then follows.

In Section 5.2 we first introduce certain subsets of Xn and TXn , which are needed
in the proof of the later Lemma 5.9. For any partition ˛ , we let U˛ be a small open
neighbourhood of �˛ in Xn . If ˛<ˇ , we also define the open subset V˛;ˇ �XnnUˇ ,
which is a certain large subset of the locus over which X ŒŒ˛�� and X ŒŒˇ�� are canonically
isomorphic. We similarly define U˛;V˛;ˇ � TXn .

Let now F ŒŒ˛�� denote either EŒŒ˛�� , T�R˛=X or T ŒŒ˛��
X Œn�

, and denote the trivial line bundle
on Y by OY . If ˛ < ˇ , then over V˛;ˇ the bundles F ŒŒ˛�� and F ŒŒˇ�� are canonically
isomorphic. We use this observation to get Lemma 5.8, which says that we can find an N
and for each ˛ an inclusion of topological vector bundles F ŒŒ˛�� ,!ONY , where these
inclusions have the following property: if ˛ < ˇ , then over V˛;ˇ , the bundles F ŒŒ˛��

and F ŒŒˇ�� are equal as subbundles of ONY .

Lemma 5.8 similarly gives inclusions of E ŒŒ˛�� , T�R˛=X and T ŒŒ˛��
TX Œn�

into ONY , with the
same compatibility property over V˛;ˇ . Moreover it shows that with these inclusions
the isomorphisms of (5-1) are strengthened to equalities of subbundles of ONY :

(5-2) f �.E ŒŒ˛��/DEŒŒ˛��; f �.T
ŒŒ˛��

TX Œn�
/D T

ŒŒ˛��

X Œn�
and f �.T�R˛=X /D T�R˛=X :

Using the above inclusions into ONY , we can find, for i D 1; 2; 3, a Grassmannian
Gri D Gr.ri ; N / with canonical subbundle Hi and maps

�˛;i W Y ! Gri and  ˛;i W Y! Gri
such that

��˛;1.H1/DE
ŒŒ˛��; ��˛;2.H2/D T

ŒŒ˛��

X Œn�
; ��˛;3.H3/D T�R˛=X ;

and

 �˛;1.H1/D E ŒŒ˛��;  �˛;2.H2/D T
ŒŒ˛��

TX Œn�
;  �˛;3.H3/D T�R˛=X :

Let GrDGr1 �Gr2 �Gr3 , let �˛ D
Q
i �˛;i and let  ˛ D

Q
i  ˛;i . We get a diagram,

commutative by (5-2):

(5-3)
U Y

U Y Gr

f
�˛

 ˛

As a consequence of Lemma 5.8, we have �˛jV˛;ˇ D �ˇ jV˛;ˇ and  ˛jV˛;ˇ D  ˇ jV˛;ˇ
for any ˛ < ˇ .
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Since C˛ is a fixed polynomial in the Chern classes of EŒŒ˛�� , T ŒŒ˛��
X Œn�

and T�R˛=X , we
can find a class CGr on Gr such that ��˛.CGr/D C˛ for all ˛ . We choose a singular
cocycle CGr representing CGr , which in turn leads to singular cocycles ��˛.CGr/DC ˛
representing C˛ . We then get the singular cocycle D representing D by the same
formula as the one defining D in terms of C˛ in Definition 4.11. Similarly we get
cocycles C˛ D  �˛ .CGr/ and D on Y .

Now, using the fact that �˛D�ˇ over V˛;ˇ , in Lemma 5.9 we show that D vanishes as
a cocycle when restricted to Y jXnnUƒ . Shrinking Uƒ , we can ensure that Y jUƒ �U

0 ,
and so it follows from this that D vanishes on Y nU 0 . The argument for this is given
in Section 5.4. Similarly D vanishes on Y nU 0 .

Finally, the commutativity of (5-3) implies that f �.DjU /DDjU , and this completes
the proof.

Note that our proof depends on the fact that pairs of bundles, eg EŒŒ˛�� and EŒŒˇ�� , are
isomorphic over the open subset V˛;ˇ , in the strong sense that the bundles can all
compatibly be made equal as subbundles of ON . In particular, the fact that C˛ and Cˇ
are equal cohomology classes over V˛;ˇ is not strong enough to give our claim (in the
same way that a cohomology class in general is not determined by its restriction to an
open covering).

5.1 Defining the map from Y to Y

Let p1; p2W X � X ! X be the projections to the first and second factors, and
let � W TX !X be the tangent bundle.

Lemma 5.1 There is an open neighbourhood U1 of the diagonal ��X �X , an open
neighbourhood U1 of the 0–section X � TX and a homeomorphism f1W U1! U1 ,
such that

� ıf1 D p1

and such that f1j� is the identification between � and the 0–section of TX . Further-
more, the restriction of f1 to each fibre p�11 .x/ is holomorphic.

There is an isomorphism of topological vector bundles p�1 .E/jU ! p�2 .E/jU , which
is an isomorphism of holomorphic bundles on the restriction to each fibre p�11 .x/.

Proof See [23, Lemma 2.4] for the first two statements. Holomorphic exponential
maps can be constructed on small open sets, and these can be globalised using a partition
of unity. This globalisation preserves holomorphicity on fibres of p1 as required.
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For the statement about E , we argue similarly. Cover X with open balls Bi , and choose
holomorphic trivialisations �i W EjBi

Š
�!OnBi . Using these, define local holomorphic

isomorphisms

 i W p
�
1 .E/jBi�Bi

p�1 .�i /
�����!OnBi�Bi

p�2 .�
�1
i
/

�����!p�2 .E/jBi�Bi :

Let fti W X!Rg be a smooth partition of unity subordinate to the covering fBig, and let
U1D

S
i Bi �Bi . Define  W p�1 .E/!p�2 .E/ at x 2U1 by  .x/D

P
ti .p1.x// � i .

This map  is holomorphic on fibres of p1 . Restricted to �, the map  is the identity,
and so after shrinking U1 if necessary,  is an isomorphism.

Let X ŒŒn��0 �X ŒŒn�� be the set of pairs .Z; .xi // such that Z is supported at a single point,
and let TX ŒŒn��0 � TX ŒŒn�� denote the set of pairs .Z; .vi // such that Z is supported at
the 0–section of TX .

Let qX ŒŒn�� W X
ŒŒn��!X be defined by qX ŒŒn��.Z; .xi //D x1 and qTX ŒŒn�� W TX

ŒŒn��!X

be defined by qTX ŒŒn��
�
.Z; .vi //

�
D�.v1/. Let W be the set of pairs .Z; .vi //2TX ŒŒn��

such that v1 lies in the 0–section of TX .

Lemma 5.2 There is an open neighbourhood U2 of X ŒŒn��0 in X ŒŒn�� , an open neigh-
bourhood U2 of TX ŒŒn��0 in W , and a homeomorphism f2W U2 ! U2 , such that
qX ŒŒn�� D qTX ŒŒn�� ı f2 . Moreover, f2 restricted to q�1

X ŒŒn��
.x/ is a biholomorphic

map between the fibres q�1
X ŒŒn��

.x/ and q�1
TX ŒŒn��

.x/ for all x 2 X . In particular, f2 is
orientation-preserving on the nonsingular subsets of U2 and U2 . There are isomor-
phisms of topological vector bundles f �2 .T

ŒŒn��

TX Œn�
/! T

ŒŒn��

X Œn�
and f �2 .E

ŒŒn��/!EŒŒn�� .

Proof Let U1 , U1 and f1 be as provided by Lemma 5.1. Define f2 by

f2
�
.Z; .xi //

�
D
�
.f1/�.fqX ŒŒn��.x/g �Z/; .f1.qX ŒŒn��.x/; xi //

�
:

The right-hand side is well-defined if fqX ŒŒn��.x/g � Z is contained in U1 . Let
U2 �X

ŒŒn�� be the open set where this is the case, so that f2 is defined on U2 .
Then f2 is a local homeomorphism such that qX ŒŒn�� D qTX ŒŒn�� ı f2 . We claim that
for all x 2 X , the restriction f2jq�1

XŒŒn��
.x/ is a local analytic isomorphism between

q�1
X ŒŒn��

.x/ and q�1
TX ŒŒn��

.x/.

The analytic structure of q�1
X ŒŒn��

.x/ (resp. of q�1
TX ŒŒn��

.x/) is determined by the analytic
structure on p�11 .x/ (resp. on ��1.x/), as can be seen using Douady spaces (see
Section 1.2.1) and the fact that each step in the construction of X ŒŒn�� (resp. W ) could
have been carried out in the analytic category. The claim that f2 is a local isomorphism
on fibres follows from the fact that f1 gives a local isomorphism p�11 .x/Š ��1.x/,
and the local isomorphism property mentioned in Section 1.2.1.
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We now describe the isomorphism T
ŒŒn��

X Œn�
Šf �2 .T

ŒŒn��

TX Œn�
/. Over a point .Z; .xi //2X ŒŒn�� ,

this is the composition�
T
ŒŒn��

X Œn�

�
.Z;.xi //

D
�
TX Œn�

�
Z
Š
�!

�
TTX Œn�

�
.f1/�.fx1g�Z/

D
�
T
ŒŒn��

TX Œn�

�
f2.Z;.xi //

;

where the middle map is the differential of the map Z 7! .f1/�.fx1g �Z/.

Finally, we describe the isomorphism f �2 .E
ŒŒn��/ŠEŒŒn�� . Over a point .Z; .xi //2X ŒŒn�� ,

we have

f �2
�
E ŒŒn��

�
.Z;.xi //

DEx1 ˝H
0
�
Of1.fx1g�Z/

�
ŠEx1 ˝H

0.Ofx1g�Z/

ŠH 0
�
fx1g �Z; p

�
1 .E/jfx1g�Z

�
:

The isomorphism p�1 .E/! p�2 .E/ of Lemma 5.1 now gives an isomorphism

H 0
�
fx1g �Z;p

�
1 .E/jfx1g�Z

�
Š
�!H 0

�
fx1g �Z;p

�
2 .E/jfx1g�Z

�
DE

ŒŒn��

.Z;.xi //
:

Recall that Y0 � Y and Y0 � Y are the subsets of points having image in � � Xn

and X � TXn under the natural morphisms Y !Xn and Y! TXn , respectively.

Let the relative Nash bundles T�R˛=X and T�R˛=X respectively be the kernels of the
surjective homomorphisms T�R˛ ! q�

X ŒŒn��
.TX / and T�R˛ ! q�

TX ŒŒn��
.TX /.

Lemma 5.3 There is an open neighbourhood U of Y0 in Y , an open neighbourhood U
of Y0 in Y , and a homeomorphism f W U ! U , as well as isomorphisms of topological
vector bundles

f �.E ŒŒ˛��/!EŒŒ˛��; f �.T
ŒŒ˛��

TX Œn�
/! T

ŒŒ˛��

X Œn�
and f �.T�R˛=X /! T�R˛=X :

Proof The map f2 constructed in Lemma 5.2 gives rise to local isomorphisms
R˛!R˛ . The Nash blow-up is determined analytically locally, and qX ŒŒn�� W R˛!X

(resp. qTX ŒŒn�� W R˛ ! X ) is a locally trivial fibrations in a neighbourhood of Y0
(resp. Y0 ).

In general, if V1 and V2 are complex analytic spaces with V2 smooth, then the Nash
blow-up BV1 �V2 is canonically isomorphic to �V1 � V2 ; see [36, Corollary 4.1]. It
follows that the Nash blow-ups �R˛ and �R˛ are locally trivial fibrations over X , and
that the local isomorphisms R˛!R˛ extend uniquely to isomorphisms of the Nash
blow-ups. This in turn induces a local isomorphism Y ! Y .

The first two bundle isomorphisms are induced by the ones produced in Lemma 5.2, and
the third follows similarly, taking into account the fact that R˛!R˛ is holomorphic
on the fibres of qX ŒŒn�� and qTX ŒŒn�� .
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5.2 The subsets U˛ , V˛;ˇ , U˛ and V˛;ˇ

In order to prove the claim of Lemma 4.20, we will construct the relative cohomology
classes D 2 H�.Y; Y n U/ and D 2 H�.Y;Y n V / explicitly as singular cochains.
Adapting the argument in Section 5.3 of [23], we first define certain open subsets
U˛ and V˛;ˇ of Xn which we will later use to compare the bundles EŒŒ˛�� (or T ŒŒ˛��

X Œn�

or T�R˛ ) for various ˛ .

Let dX be a metric on X inducing the Euclidean topology. Define the metric dXn
on Xn by

dXn
�
.xi /

n
iD1; .yi /

n
iD1

�
D max
1�i�n

dX .xi ; yi /:

Let dTX be a metric on TX inducing the Euclidean topology, and let dTXn be the
metric on TXn defined in the same way as dXn .

Let x D .x1; : : : ; xn/ 2 X
n and let ˛ be a partition. Recall that �˛ � Xn is the

diagonal set
f.x1; : : : ; xn/ j xi D xj if i �˛ j g;

and let �˛;TX � TX
n be defined in the same way. In the following, we will use the

inequalities

(5-4) 1

2
sup

fi;j ji�˛j g

dX .xi ; xj /� dXn.x;�˛/� sup
fi;j ji�˛j g

dX .xi ; xj /

and their variants for dTX and dTXn , all of which follow easily from the definitions
and the triangle inequality.

Definition 5.4 Let P.n/ be the set of partitions of f1; : : : ; ng, and let �W P.n/!R>0

be a function. At various points in the proof, the quantities

max
˛2P.n/

�.˛/ and max
˛<ˇ2P.n/

�.˛/

�.ˇ/

will be assumed to be sufficiently small.

Definition 5.5 Let U˛ � Xn be the open �.˛/–neighbourhood of �˛ � Xn , and
let U˛ be the open �.˛/–neighbourhood of �˛;TX � TX

n .

Definition 5.6 Let ˛ and ˇ be partitions such that ˛<ˇ . Define the set V˛;ˇ �Xn as

V˛;ˇ D .X
n
nUˇ / n

� [

<ˇ

 6�˛

U 


�
;
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and define the set V˛;ˇ � TXn as

V˛;ˇ D .TXn nUˇ / n
� [

<ˇ

 6�˛

U

�
:

Let i; j 2 f1; : : : ; ng. Define an equivalence relation �.i;j / on the set of partitions by
saying ˛ �.i;j / ˇ if �˛ and �ˇ agree when evaluated on the pair .i; j /. For any pair
of partitions ˛; ˇ , define the set �˛ˇ �Xn to be the set of points over which X ŒŒ˛��

and X ŒŒˇ�� are not canonically equal. Explicitly, we have

�˛ˇ D
[

fi;j j˛ 6�.i;j /ˇg

�ij ;

where �ij denotes the set of points x 2Xn for which xi Dxj . Define �˛ˇ;TX �TX
n

similarly.

The following lemma summarises the important properties of V˛;ˇ and V˛;ˇ .

Lemma 5.7 (i) Let ˇ be a partition. The sets fV˛;ˇ g˛<ˇ form an open covering
of Xn nUˇ . The sets fV˛;ˇ g˛<ˇ form an open covering of .TXn/ nUˇ .

(ii) Let ˛ , ˇ and 
 be partitions such that ˛ < ˇ , 
 � ˇ and 
 6� ˛ . Then

U
 \V˛;ˇ D∅ and U
 \V˛;ˇ D∅:

(iii) Let � D min
 �.
/, and let ˛ < ˇ . If x 2 V˛;ˇ , we have d.x;�˛ˇ / � � .
If x 2 V˛;ˇ , we have d.x;�˛ˇ;TX /� � .

Proof We prove the statements for V˛;ˇ ; the case of V˛;ˇ is exactly the same.

(i) Assume x D .xi / 2 Xn nUˇ , and let ˛ be maximal among partitions < ˇ such
that x 2U ˛ . Such a partition exists since for the smallest partition !Dff1g; : : : ; fngg,
we have U! DXn . We claim that x 2 V˛;ˇ .

Assume x … V˛;ˇ , there is then a partition 
 such that 
 6� ˛ , 
 < ˇ and x 2 U 
 . By
the maximality property of ˛ , we cannot have ˛ <
 . It follows that ˛; 
 < .˛_
/�ˇ ,
where ˛_ 
 is the smallest partition majorising ˛ and 
 .

Let i; j be two indices such that i �˛_
 j and such that d.xi ; xj / is maximal for
pairs with this property. There is a sequence of integers i1; i2; : : : ; il such that i1 D i ,
il D j and such that for every k with 1� k < l , either ik �˛ ikC1 or ik �
 ikC1 is
true. By (5-4), we now have

d.x;�˛_
 /� d.xi ; xj /� d.xi1 ; xi2/C � � �C d.xil�1 ; xil /:

Since x 2 U ˛ , we have d.x;�˛/� �.˛/, and similarly for 
 . By (5-4), each term in
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the above sum is therefore � 2max.�.˛/; �.
//. The sum is therefore smaller than

2.l � 1/max.�.˛/; �.
// < �.˛_ 
/;

where the last inequality uses the second smallness assumption in the definition of � .
Hence we have d.x;�˛_
 /<�.˛_
/, so that x 2U˛_
 . If ˛_
 6Dˇ , this contradicts
the maximality of ˛ , and if ˛_ 
 D ˇ , it contradicts the assumption that x … Uˇ .

(ii) This is obvious from the definition.

(iii) Let xD .xi / 2 V˛;ˇ . For every i; j 2 f1; : : : ; ng, let 
i;j be the partition defined
by the equivalence relation such that i �
i;j j and no other nontrivial relations hold.
If ˛ < ˇ , we have

�˛ˇ D
[
i�ˇj
i 6�˛j

�
i;j :

For every pair i; j occurring in the union, we have 
i;j 6� ˛ , hence by part (ii) of the
lemma we have x … U
i;j . This gives

d.x;�˛ˇ /D min
i�ˇj
i 6�˛j

d.x;�
i;j / > min
i�ˇj
i 6�˛j

�.
i;j /� �:

5.3 Constructing maps to Grassmannians

Recall that T�R˛=X and T�R˛=X are the relative Nash bundles defined above Lemma 5.3.
Denote the trivial bundle of rank N by ON .

Lemma 5.8 (i) For each ˛ � �, let F˛ denote one of EŒŒ˛�� , T�R˛=X or T ŒŒ˛��
X Œn�

,
considered as a topological bundle on Y . There is an integer M and for every ˛
an injection i˛W F˛ ! OM such that if ˛ � ˇ , then over V˛;ˇ the bundles
i˛.E

ŒŒ˛��/ and iˇ .EŒŒ˛��/ are equal as subbundles of OM .

(ii) For each ˛ � �, let F˛ denote one of E ŒŒ˛�� , T�R˛=X or T ŒŒ˛��
TX Œn�

, considered as
a topological bundle on Y . There is an integer N and for every ˛ an injec-
tion j˛W F˛ ! ON such that if ˛ � ˇ , then over V˛;ˇ the bundles j˛.F ŒŒ˛��/
and iˇ .F ŒŒ˛��/ are equal as subbundles of ON .

(iii) Let f W U ! U be the local homeomorphism constructed in Lemma 5.3. We
may choose M DN and the injections i˛ and j˛ in such a way that the diagram

f �.F˛/ F˛

f �.ON / ON
f �.j˛/

Š

i˛

of bundles on U commutes, where the upper isomorphism is the one constructed
in Lemma 5.3.
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Proof In this proof, all partitions are assumed to be � �.

(i) For each ˛ begin by choosing an injective homomorphism i 0˛W F˛ ! OM˛ .
Let k˛ˇ W F˛! Fˇ be the natural isomorphisms, defined over Xn n�˛ˇ . Recall that
� D min˛ �.˛/. Let t W R�0! R�0 be a continuous function such that when x � �
we have t .x/ D 1 and such that when x � �=2 we have t .x/ D 0. For x 2 Y , put
tij .x/D t

�
d.�Y .x/;�ij /

�
, where �Y W Y !Xn is the natural morphism. Let

t˛ˇ D
Y

fi<j j˛ 6�.i;j /ˇg

tij :

As t˛ˇ is supported away from �˛ˇ , the homomorphism t˛ˇ � k˛ˇ is defined on the
whole of Y .

For any two partitions ˛ and 
 , let i˛
 D i 0
 ı .t˛
 � k˛
 /. We take M D
P
M
 , and

set

i˛ D
M



.i˛
 /
 W E˛!
M

CM
 DCM :

It remains to show that i˛ has the properties stated. As i˛˛ D i 0˛ is injective, it is clear
that i˛ is an injection.

Let ˛ < ˇ , and let 
 be arbitrary. First we show that if x 2 Y lies over V˛;ˇ , then

(5-5) .t˛
 � k˛
 /.x/D .tˇ
 � kˇ
 ı k˛ˇ /.x/:

To this end, observe that we may write

t˛


tˇ

D

Y
fi<j j˛ 6�.i;j /ˇg

t
s.i;j /
ij ;

where each s.i; j /2 f�1; 0; 1g. Now, since p.x/2 V˛;ˇ , we have tij .x/D 1 for every
factor on the right-hand side, using Lemma 5.7(iii). Hence t˛
 .x/ D tˇ
 .x/ holds.
If t˛
 D 0, this shows (5-5). If not, then all the morphisms k˛ˇ , kˇ
 , k˛
 are defined
at x , and by the naturality of these the cocycle condition k˛
 D kˇ
 ı k˛ˇ holds.

The above paragraph shows that i˛
 D iˇ
 ı k˛ˇ over V˛;ˇ and hence i˛ D iˇ ı k˛ˇ .
Consequently the two subbundles i˛.E˛/ and iˇ .Eˇ / of CM are equal as claimed.

(ii) This is similar to (i).

(iii) Let k0
˛ˇ
W F˛ ! Fˇ be the homomorphisms defined like the k˛ˇ in the proof

of (i). Let g˛W F˛ ! f �.F˛/ be the isomorphism of Lemma 5.3. We then have
gˇ ı k˛ˇ D f

�.k0
˛ˇ
/ ıg˛ .
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Let U 0 � U and U 0 � U be smaller open neighbourhoods of Y0 and Y0 such
that f .U 0/D U 0 . Let sW Y ! R>0 be a function which is 1 on U 0 and 0 on Y nU .
Replace i˛ with

i 0˛ WD
�
.1� t /i˛; s �f

�.j˛/ ıg˛
�
W F˛!OMCN ;

where j˛W F˛ ! ON is the homomorphism of part (ii). If we also replace j˛ with
j 0˛ D .0; j˛/W F˛ ! OM ˚ON , then obviously i 0˛ D f

�.j 0˛/ ı g˛ over U 0 . After
replacing U with U 0 , it now remains to be shown that the statement in part (i) of the
lemma still holds for i 0˛ .

After enlarging the metric on TX and shrinking U and U , we may assume that if x 2U
lies over V˛;ˇ , then f .x/ lies over V˛;ˇ . Over V˛;ˇ we thus have

i 0˛ D
�
.1� s/i˛; s �f

�.j˛/ ıg˛
�
D
�
.1� s/iˇ ı k˛ˇ ; s �f

�.jˇ ı k
0
˛ˇ / ıg˛

�
D
�
.1� s/iˇ ; s �f

�.jˇ / ıgˇ
�
ı k˛ˇ D i

0
ˇ ı k˛ˇ :

5.4 Conclusion of proof of Lemma 4.20

Let ˛ be a partition ��. The inclusions produced in Lemma 5.8 (taking there M DN )
define continuous maps �˛;i W Y ! Gri and  ˛;i W Y ! Gri for i D 1; 2; 3, where
the Gri are Grassmannians with universal subbundles Hi , such that

��˛;1.H1/DE
ŒŒ˛��; ��˛;2.H2/D T

ŒŒ˛��

X Œn�
; ��˛;3.H3/D T�R˛=X ;

and

 �˛;1.H1/D E ŒŒ˛��;  �˛;2.H2/D T
ŒŒ˛��

TX Œn�
;  �˛;3.H3/D T�R˛=X :

We let GrD
Q
i Gri , let �˛ D

Q
i �˛;i and let  ˛ D

Q
i  ˛;i .

Choose a singular cocycle CGr on Gr representing the class

CGr D F.H1;H2/ � c�.H3/ 2H
�.Gr/:

Define singular cocycles C ˛ and D˛ by C ˛ D ��˛.A/ and

D˛ D C ˛ �
X


2Œ�;˛/

D
 :

Clearly, the classes of C ˛ and D˛ are C˛ and D˛ , respectively. Let C D Cƒ
and D D Dƒ . We similarly define singular cocycles C˛ D  �˛ .A/, D˛ , C D Cƒ
and DD Dƒ .

Lemma 5.9 The singular cocycle D (resp. D) vanishes when restricted to Y jXnnUƒ
(resp. YjTXnnUƒ ).
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Proof We treat the case of D , the other case follows similarly.

We will show that Dˇ jXnnUˇ D 0 for any partition ˇ � �, by ascending induction on
the ordering of partitions. The base case is clear, as Y jXnnU� D∅.

Assume now that D˛jXnnU˛D0 for every ˛<ˇ . If D has cohomological degree k , we
must show that for every singular k–simplex aW �k! Y jXnnUˇ we have Dˇ .a/D 0.

Since Dˇ is a cocycle, we may replace a by any subdivision of a and prove the
vanishing for each simplex in the subdivision. By Lemma 5.7(i), fV˛;ˇ g˛<ˇ is an
open covering of Xn nUˇ , so we may assume there is an ˛ < ˇ such that a maps
into Y jV˛;ˇ .

If 
 < ˇ is such that 
 6� ˛ , then by Lemma 5.7(ii) we have U
 \V˛;ˇ D∅, and so
by the induction hypothesis D
 .a/D 0. This implies

Dˇ .a/D C ˇ .a/�
X

�˛

D˛.a/D C ˇ .a/�C ˛.a/;

where the last equality follows directly from the definition of D˛ . By Lemma 5.8(ii)
we have �˛ D �ˇ over V˛;ˇ , hence Dˇ .a/D 0 and the claim follows.

Taking � small enough we may assume that Y n U 0 lies over Xn n Uƒ , and then
Lemma 5.9 shows that D is a relative cocycle for the pair .Y; Y nU 0/. Similarly D is
a relative cocycle for .Y;Y nU 0/.

By Lemma 5.8(iii), the diagram

(5-6)
U Y

U Y Gr

f
�˛

 ˛

is commutative. It follows that f �.DjU /DDjU , and hence the homomorphism

H�.Y;Y nU 0/!H�.U ;U nU 0/ f
�

!H�.U; U nU 0/!H�.Y; Y nU 0/

sends D to D . This concludes the proof of Lemma 4.20.

6 A generating function

As was noted in [6] and elsewhere, the existence of universal polynomials can be
strengthened to a statement about the form of the generating function of Chern integrals.
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Throughout this section, we let X be as in the main theorem and let Q1; : : : ;Qk be
distinct closed, irreducible punctual geometric subsets with Qi � Hilbni0 .C

d /. For
any sequence of integers m1; : : : ; mk � 0, let n.mi / D

P
mini . We let

S.mi / D f.j; l/ j 1� j � k; 1� l �mj g � Z2:

Definition 6.1 We define the geometric set P..Qmii //�X Œn.mi /� as the set of Z of the
form ZD

F
.j;l/2S.mi /

Z.j;l/ such that every Z.j;l/ is isomorphic to an element of Qj .

In other words, P..Qmii // is the set of Z that are the disjoint union of m1 subschemes
from Q1 and m2 subschemes from Q2 and so on. Specifying appropriate additional
data, we can define similar geometric subsets of X ŒŒn.mi /�� :

Definition 6.2 Let AD .A.j;l//.j;l/2S.mi / be a collection of subsets of f1; : : : ; n.mi /g,
such that jA.j;l/j D nj and such that the A.j;l/ define a partition of f1; : : : ; n.mi /g.

We define the geometric set R..Qmii /IA/�X ŒŒn.mi /�� to be the set of all .Z; .xi /
n.mi /
iD1 /

such that Z D
F
.j;l/2S.mi /

Z.j;l/ , where every Z.j;l/ is isomorphic to an element
of Qj , and such that xi equals SuppZ.j;l/ if i 2 A.j;l/ .

Lemma 6.3 Choosing an A as above, the generic fibre of R..Qmii /IA/!P..Q
mi
i //

has cardinality
Q
i mi Š.

Proof We may assume the Qi are ordered in such a way that if i < j , then Qi 6�Qj .
Fix a generic point Z 2 P..Qmii //. The number of points in R..Q

mi
i /IA/ lying

above Z equals the number of ways of labelling the components of Z by S.mi / in
such a way that Z.j;l/ is isomorphic to an element of Sj .

Fix one such labelling Z D
F
.j;l/2SjZ.j;l/ . We claim that if Z D

F
.j;l/2SjZ

0
.j;l/

is
a different labelling, then if Z.j;l/ DZ0.j 0;l 0/ , we must have j D j 0 .

Assume for a contradiction that this is not the case. Then there must be an equal-
ity Z.j;l/ D Z0

.j 0;l 0/
such that j < j 0 . We know that Z.j;l/ is isomorphic to an

element of Qj , and by the ordering of the Qj that Qj 6� Qj 0 . Since Qj and Qj 0
are closed and irreducible and Z is generic in P..Qmii //, it follows that Zj;l is not
isomorphic to an element of Qj 0 , which is a contradiction, since Z.j;l/DZ0.j 0;l 0/ 2Qj 0 .

Thus the permissible labellings of the components of Z are given by permutations
of S.mi / such that each .j; l/ is sent to some .j; l 0/, of which there are

Q
i mi Š.

Recall that CM.2; d/ denotes the set of 2–variable Chern monomials of weight d . For
a d–dimensional X with a bundle E on it, we denote by M.X;E/ the Chern number
corresponding to an M 2 CM.2; d/, ie

M.X;E/D degM.TX ; E/:
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Proposition 6.4 Let X be a smooth, connected projective variety of dimension d ,
let E be an algebraic vector bundle and let Q1; : : : ;Qk be distinct closed, irreducible
punctual geometric subsets.

We then haveX
.mi /2Zk

�0

deg c�.EŒn.mi /�/\ ŒP..Qmii //�x
m1
1 � � � x

mk
k
D

Y
M2CM.2;d/

B
M.X;E/
M ;

where the BM are elements of QŒŒx1; : : : ; xk�� with BM .0/D 1, which depend only
on the Qi and the rank of E .

Note that the term of the left-hand side sum obtained by setting mi D 0 for all i is 1.
For degree reasons, the only nonzero term from c�.E

Œn.mi /�/ appearing in the formula
is cdimP..Q

mi
i
//

�
EŒn.mi /�

�
.

Proof Let F be the generating function in the proposition. By the main theorem, the
coefficients of F , and therefore those of logF , are polynomials in the Chern numbers
of .X;E/. We will show that the coefficients of logF are in fact linear polynomials in
the Chern numbers. This means that logF D

P
M.X;E/bM for bM 2QŒŒy1; : : : yk��,

and taking BM D exp.bM / will then give the proposition.

Given a sequence .mi /kiD1 , let R.mi / D R..Q
mi
i /IA.mi // � X

ŒŒn.mi /�� , where A.mi /
is some appropriate S.mi /–indexed partition of f1; : : : ; n.mi /g. Let

G D
X

.mi /2Zk
�0

deg c�.EŒŒn.mi /��/\ ŒR.mi /�x
m1
1 � � � x

mk
k
:

We use the notation .mi /ŠD
Q
i mi Š and denote the coefficient of the xm11 � � � x

mk
k

–term
of a series by a lower index .mi /. By Lemma 6.3 and the projection formula, we have

(6-1) G.mi / D .mi /ŠF.mi /:

Fix now a sequence .mi /, and let R D R.mi / , n D n.mi / and A D A.mi / . Let �
be the partition of f1; : : : ; ng induced by A, and let ˛ be a partition of f1; : : : ; ng
such that ˛ � �. As explained in Section 4.4, for such an ˛ there is an associated
R˛ �X

ŒŒ˛�� birational to R , and we let

G˛ D deg c�.EŒŒ˛��/\ ŒR˛�:

For 1 � j � k , let Sj D f.j; l/ j 1 � l � mj g � S . Giving a partition ˛ � � is
equivalent to giving a partition of S , and we will denote this partition of S by x̨ . Thus,
given a partition ˛ � �, for every B 2 x̨ we get a sequence .jB \Sj j/kjD1 .
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As explained in the proof of Lemma 4.14, we can decompose R˛ and EŒŒ˛�� as
products, and in this case the decompositions can be written as R˛ D

Q
B2x̨ R.jB\Sj j/

and EŒŒ˛�� D
L
B2x̨ E

ŒŒn.jB\Sj j/�� . As in the proof of Lemma 4.14, we can now use the
Whitney sum formula and the Künneth decomposition to get

deg c�.EŒŒ˛��/\ ŒR˛�D
Y
B2x̨

deg c�.E
ŒŒn.jB\Sj j/��/\ ŒR.jB\Sj j/�;

which implies that

(6-2) G˛ D
Y
B2˛

G.jB\Si j/ D
Y
B2˛

.jB \Si j/ŠF.jB\Si j/:

Let C˛ D c�.E
ŒŒ˛��/, and let D be defined (on the space Y as in the proof of the

main theorem) inductively in terms of the C˛ as in Definition 4.11. As explained
in Remark 4.12, we have D D

P
˛��.�1/

j˛j�1.j˛j � 1/ŠC˛ . By the argument in
Section 4.8, degD\ ŒY � is a linear polynomial in Chern numbers of .X;E/. We have

degD\ ŒY �D
X
˛��

.�1/j˛j�1.j˛j � 1/ŠC˛ \ ŒY �D
X
˛��

.�1/j˛j�1.j˛j � 1/ŠG˛;

and therefore

(6-3) H.mi / WD
X
˛��

.�1/j˛j�1.j˛j � 1/ŠG˛

is a linear combination of Chern numbers.

Using (6-1), (6-2) and (6-3), we see that the terms of H.mi / admit a combinatorial
expression in the terms of F , and we claim that

(6-4) H.mi / D .mi /Š.logF /.mi /:

It follows from this that the terms of logF are linear polynomials in Chern numbers,
and so the proposition follows.

We give the proof of (6-4) in the case when k D 1; the general case can be treated with
similar combinatorics. Fix an m� 0, and consider

Hm D
X
˛

.�1/j˛j�1.j˛j � 1/Š
Y
B2˛

jBjŠFjBj;

where the sum is over all partitions ˛ of f1; : : : ; mg (so that H0 WD 0). Given a parti-
tion ˛ of f1; : : : ; mg, let ˛ be the underlying partition of m, ie the sum

P
B2˛jBjDm.

For a partition P D
Pl
iD1 ki of m, we use the notation

jPj D l; PŠD
Y
i

ki Š; Aut.P/D
Y
j�1

jfi j ki D j gjŠ and FP D
Y
i

Fki :
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Let P be a partition of m, and let

HP D
X
f˛j˛DPg

.�1/j˛j�1.j˛j � 1/Š
Y
B2˛

jBjŠFjBj:

All terms in this sum are equal, so we get

HP D jf˛ j ˛ D Pgj � .�1/jPj�1.jPj � 1/ŠPŠFP :

The first term of this product equals
mŠ

PŠ�Aut.P/ :

We thus get
HP D

mŠ

Aut.P/ � .�1/
jPj�1

�
jPjŠ
jPj FP :

On the other hand, since F.0/D 1, we can write

logF D .F � 1/� 1
2
.F � 1/2C � � � D

X
m�0

X
P`m

rPFPx
m

for some rP 2Q. All contributions to rP come from the term .�1/jPj�1.F �1/jPj=jPj.
Expanding out we see that rP equals .�1/jPj�1=jPj times the number of distinct ways
of ordering the terms in P , which is jPjŠ=Aut.P/.

Comparing the terms we see that HP D mŠrPFP . Since Hm D
P

P`mHP and
.logF /m D

P
P`m rPFP , Equation (6-4) follows.

7 Enumerative applications

We present some applications of the main theorem to the problem of counting geometric
objects with prescribed singularities. We treat three different problems. In Section 7.1
we study curves on a surface having prescribed singularity type, where by singularity
type we mean either analytic or topological (equisingular) type. If L is a sufficiently
ample line bundle on a surface S , we show that the number of such curves in a general
linear system Pd � jLj of appropriate dimension is given by a universal polynomial
in the Chern numbers of .S; L/. Similar and in some ways more general results to this
effect have recently been obtained independently by Li and Tzeng in [24].

In Section 7.2, we consider divisors having fixed isolated analytic singularity types
on a smooth variety X of arbitrary dimension. We show that the number of such in a
general linear system Pd � jLj is universal. The proofs carry over from the analytic
curve singularity case and are omitted.

Finally, in Section 7.3, we consider again the case of curves on a surface. We study the
locus jLjm � jLj of curves having prescribed BPS spectrum m and show that if L is
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sufficiently ample, the Euler characteristic of jLjm\Pk is universal.

All of our results use the assumption that L is sufficiently ample. This is required to
ensure that the objects we consider occur in the expected codimension in jLj, as well
as in other places in the argument. A natural way of measuring the ampleness of a line
bundle in this setting is N–very ampleness, defined as follows.

Definition 7.1 Let X be a nonsingular, projective variety, and let L be a line bundle
on X . We say that L is N–very ample if for every length-.NC1/ subscheme Z �X ,
the map H 0.X;L/!H 0.Z;LjZ/ is surjective.

Equivalently, we say that the line bundle L is N–very ample if the sheaf homomorphism
H 0.X;L/˝OX ŒNC1�!LŒNC1� is surjective. Being 0–very ample is the same as being
globally generated, and being 1–very ample is the same as being very ample. If L1
and L2 are N1– and N2–very ample, then L1˝L2 is .N1CN2/–very ample [15].

7.1 Curves with specified singularities

We begin by fixing some terms. By a curve singularity we mean a pair .C; p/ where C
is a reduced, locally planar algebraic curve and p is a singular point of C .

Let .C; p/ be a curve singularity. By the analytic type of the singularity .C; p/ we
mean the isomorphism type of the complete local C–algebra yOC;p . By the topological
type (equivalently, equisingularity type) of .C; p/ with C embedded in a smooth
surface S , we mean the homeomorphism type of the pair

�
B�.p/; C \B�.p/

�
, where

B�.p/ is a sufficiently small open ball in S centred at p .

Proposition 7.2 Let S be a smooth, projective, connected surface, let L be a line
bundle on S , and let T1; : : : ; Tk be analytic isolated singularity types. There are
expected codimensions di associated with each Ti , and we let d D

P
di .

There is an integer N and a rational polynomial G.Ti / of degree k in four variables,
depending only on the Ti , such that if L is N–very ample, then in a general Pd � jLj
the number of curves having precisely k singularities of types Ti is

G.Ti /
�
c21.L/; c1.L/c1.S/; c2.S/; c

2
1.S/

�
:

The same statement holds when the Ti are topological rather than analytic singularity
types.

The same proposition has recently been obtained by Li and Tzeng in [24], using
essentially the same strategy. One could also choose a sequence of singularity types Ti
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where some are analytic and some are topological, and count the curves having these
singularity types. In this case, the same proposition can be proved by the same approach,
ie by constructing a geometric set W DP

�
W..Ti //

�
, which is a straightforward mixture

of the corresponding sets in the analytic and topological cases. Proving the bijection
between f.Z; C / j Z � C;Z 2 W g and fC j C has singularities of types Tig as in
Lemmas 7.6 and 7.7 then becomes somewhat subtle in the case where there are i; j
such that Ti is an analytic singularity type and Tj the corresponding topological type.
As [24] in fact proves this more general version of Proposition 7.2, we omit the details.

Remark We will not be concerned with the precise ampleness condition required
on L for the universal polynomial to give the correct answer, and refrain from making
the N in the statement of the proposition explicit. Instead, we will take N large enough
whenever the N–very ampleness of L is required; it will be clear that N depends only
on the types Ti . A value for N may be recovered from the proof, but already in the
case of nodal singularities, the N provided by this method is known to be larger than
required by a factor of 5; compare the bounds obtained by our model [10] with those
obtained by [21].

The main idea of the proof, taken from [10], is to set up a correspondence between
curves having given singularities and curves containing 0–dimensional subschemes of
given isomorphism type.

Choosing analytic or topological singularity types Ti , we find an n and a geometric set
W DW..Ti //� S

Œn� , such that a generic curve containing a Z 2W has the specified
singularities. Then, using a proposition from [10] we get that in a general Pd � jLj,
the number of curves containing a subscheme Z 2W equals deg

�
cdimW .L

Œn�/\ ŒW �
�
,

which is universal by Theorem 1.1. We then show that there is a bijection between such
pairs .Z; C / and curves in Pd with singularities of types Ti , completing the proof.

Corollary 7.3 Let T1; : : : ; Tk be distinct analytic singularity types, and let m1; : : : ;mk
be nonnegative integers. Denote by G.mi / the universal polynomial computing the
number of curves having precisely mi singularities of type Ti and no other singularities.
There are then power series B1; B2; B3; B4 2QŒŒx1; : : : ; xk�� such thatX

.mi /2Zk
�0

G.mi /x
m1
1 � � � x

mk
k
D B

c21.L/

1 B
c1.L/c1.S/
2 B

c21.S/

3 B
c2.S/
4 :

The same statement holds when the Ti are topological types.

Proof This follows from Proposition 6.4 and the proof of Proposition 7.2, using the
fact that W is irreducible in both the analytic and the topological case.
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7.1.1 Analytic types We treat first the case of analytic singularity types. Fix a
smooth, projective, connected surface S , a line bundle L on S , and analytic singularity
types T1; : : : ; Tk . We assume that L is N–very ample, where N will be taken to be
sufficiently large at various points in the proof.

In order to associate a 0–dimensional subscheme to an analytic singularity type, we
need the following lemma, which states that for an analytic singularity type T , there
exists an integer I.T / such that a singularity .C; p/ is of analytic type T if it looks
like a singularity of type T to I.T /th order at the singular point.

Lemma 7.4 Let .C; p/ be a curve singularity of analytic type T . There is a positive
integer I.T / such that if .C 0; p0/ is a curve singularity, the analytic type of .C 0; p0/
is T if and only if OC;p=mI.T / ŠOC 0;p0=mI.T / .

Proof This follows from [11, Corollary 2.24]; in fact we can take I.T / D � C 2,
where � is the Tjurina number of T .

Given a singularity type T we define a punctual geometric subscheme W.T / as follows.
Let .C; p/ be a germ of type T , and let I.T / be the integer that is given by Lemma 7.4.
Suppose that the length of OC;p=m

I.T /
p is n.T /. Let W.T /�Hilbn.T /0 .C2/ be the set

of subschemes Z 2 Hilbn.T /0 .C2/ with Z Š SpecOC;p=mI.T / .

Let now ni Dn.Ti /, let nD
Pk
iD1 ni , and define W �S Œn� to be the set of subschemes

of the form Z1 t � � � tZk , where Zi is isomorphic to a point in W.Ti / for every i .

It is clear that W is a geometric subset, and in the notation of Section 2.4 we have
W D P

�
.W.Ti //

�
. We define the expected codimension of the singularity Ti to be

di D ni � dimW.Ti /. We let d D n� dimW D
P
di .

Note that W.Ti / is irreducible and locally closed, as it is the orbit of a given point
in Hilbni0 .C

2/ under the action of the connected algebraic group Aut.OC2;0=m
I.Ti //.

It follows that W is irreducible and locally closed.

Lemma 7.5 Let Y � S Œn� be a locally closed subset, and assume L is .n�1/–very
ample.

(i) Let Z � S Œn� � jLj denote the incidence locus of pairs .Z; C / with Z 2 Y
and Z � C . We have dimZ D dimjLjC dimY �n.

(ii) Let e D n� dimY , and let P e � jLj be a general linear subspace. The number
of pairs .Z; C / such that Z 2 Y , C 2 P e and Z � C is equal to

deg cdimY .L
Œn�/\ ŒY �:
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Proof (i) For any Z 2 Y , the fibre of Z ! Y over Z is the projectivisation of
the kernel of H 0.S; L/! H 0.Z;LjZ/. By the .n�1/–very ampleness of L, this
homomorphism is surjective, so Z ! Y is a projective space bundle with fibres of
dimension jLj �n. The claim follows.

(ii) See the proof of [10, Proposition 5.2].

Applying Lemma 7.5(ii) with Y DW , the following lemma now concludes the proof
of Proposition 7.2 in the analytic case.

Lemma 7.6 Let Pd � jLj be a general subsystem, and assume L is N–very ample.
Suppose .Z; C / is a pair such that Z 2 W , C 2 Pd and Z � C . Then C has k
singularities of analytic types Ti , and C contains no other point of W .

Proof Let Pd , C and Z be as in the statement of the lemma, and suppose ZD
F
Zi ,

where Zi is supported at xi 2C and where Zi is isomorphic to a point in W.Ti /. We
show the following claims: (1) that C has precisely k singularities, (2) that C has a
singularity of type Ti at xi , and (3) that C contains precisely one Z 2W .

(1) Clearly, C has at least k singularities. Assume for a contradiction that C has more
than k singularities. It must then contain a subscheme of the form Z tZ0 , where Z0

is defined by an ideal m2x for some x 2 S where C is singular. The geometric set

W 0 WD fZ tZ0 jZ 2W and Z0 D SpecOS;x=m2xg � S
ŒnC3�

has dimension 2 greater than W . By Lemma 7.5(i), we see that the set of C 2 jLj
containing an element of W 0 has codimension > d C 1 in jLj if L is .nC2/–very
ample. The intersection of this set with a general Pd � jLj is empty, contradicting the
original assumption.

(2) Suppose for a contradiction that the singularity type of C at x1 is T 01 6D T1 .
Let R D OS;x1=mI.T1/. As T 01 6D T1 , we have Z1 ¨ C \ SpecR . Let f; g 2 R be
defining equations of Z1 and C \SpecR in R , we then have .g/¨ .f /. This implies
that .g/ � m � .f / � mord.f /C1 \ .f /, where ord.f / is the maximal integer such
that f 2mord.f / .

Hence C contains a subscheme of the form

Z01 tZ2 t � � � tZk;

where Z01 D SpecR=mord.f /C1[Z1 . Let W 0 be the set of subschemes which can be
written in this way. Then W 0 is geometric and has dimension � dimW .
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Let n0 be the length of the points of W 0. Clearly, we have n0 > n, so we have

n0� dimW 0 > n� dimW D d:

As L is N–very ample, applying Lemma 7.5(i) shows that the codimension of the
locus of points containing a point from W 0 is > d , if N � nC 1. As C 2 Pd for a
general Pd , it is not contained in this locus.

(3) By (1) and (2), we know that C has a singularity of type Ti at pi , and suppose for
a contradiction that there is a Z0 2W with Z0�C such that Z0 6DZ . Let Z0D

F
Z0i

with Z0i supported at pi . Assume that Zi 6DZ0i as subschemes. But by part (2), the
singularity type associated to Z0i must be Ti , and hence we have

Zi D SpecOC;pi=m
I.Ti / DZ0i :

7.1.2 Topological singularities We now turn to the case of topological singularities.
Let S and L be as before, and fix topological singularity types T1; : : : ; Tk . For any
planar curve singularity .C; p/ the infinitely near points in C over p define a combi-
natorial structure called the Enriques diagram, which determines the equisingularity
type of .C; p/; see [18]. Let D be the Enriques diagram of the Ti , that is the union of
the Enriques diagrams for each Ti .

The degree of an Enriques diagram is defined in [18], and we let n D deg.D/.
Let W.D/ � S Œn� be the subscheme denoted H.D/ in [18]. It has the property
that if Z 2W.D/ and C is a generic curve containing Z , then the singularities of C
correspond to the Enriques diagram D . The subset W.D/ is geometric and irreducible
[19, Corollary 5.8].

Let d D n� dimW.D/. The following lemma is a reformulation of [18, Lemma 3.7].

Lemma 7.7 Let Pd � jLj be a general subsystem, and assume L is .n�1/–very
ample. Suppose .Z; C / is a pair such that Z 2W.D/, C 2 Pd and Z � C . Then C
has k singularities of topological types Ti , and C contains no other point of W.D/.

Proof Let Z be the incidence locus in jLj �W.D/, let jLjT � jLj be the set of
curves having prescribed singularity types, let � W jLj �W ! jLj be the projection
and let ZT D ��1.jLjT / � Z . By [18, Lemma 3.7], ZT is dense in Z when L is
.n�1/–very ample.2 We therefore have dimZnZT < dimZ , and applying Lemma 7.5
we find dimZ D dimjLj � d . So if Pd � jLj is general, then ��1.Pd /\Z � ZT ,
proving the first claim of the lemma. By [18, Lemma 3.7], the map ZT �

!jLjT is
bijective, which proves the second claim.

2The reference assumes LDL1˝L˝n2 for L1 globally generated and L2 very ample. However, the
proof given shows that L is then .n�1/–very ample, and the stronger assumption on L is not needed.
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If we apply Lemma 7.5(ii) with Y D W.D/, then Lemma 7.7 concludes the proof
of Proposition 7.2 in the topological case.

If D is a connected Enriques diagram, then every element Z 2W.D/ will have support
in one point. Since W.D/ is geometric, it is defined by a punctual geometric subset
W.D/0 � HilbdegD

0 .C2/.

For topological singularities T1; : : : ; Tk , the associated Enriques diagram D is given
by D D D1 t � � � tDk , where Di is the connected Enriques diagram associated
with Ti . In the notation of Section 2.4, we have W.D/D P

�
.W.Di /0/

�
, so we can

apply Proposition 6.4 to prove Corollary 7.3 for the case of topological singularity types.

7.2 General hypersurface singularities

Without any extra work, the above extends to counts of analytic types of isolated
singularities of hypersurfaces. Let .D; p/ be the pair of a divisor D in a nonsingular
variety X and an isolated singular point of D . The analytic type of the singular-
ity .D; p/ is the isomorphism type of the complete local C–algebra yOD;p .

Lemma 7.4 is valid for hypersurface singularities of all dimensions, and the following
proposition can be shown by the proof given in Section 7.1.1, mutatis mutandis. (Note
in particular that we do not use the nonsingularity of X Œn� anywhere in the argument.)

Proposition 7.8 Let X be a smooth, projective, connected variety, let L be a line
bundle on X , and let T1; : : : ; Tk be analytic isolated singularity types. There are
expected codimensions di associated with each Ti , and we let d D

P
di .

There is an integer N and a rational polynomial G.Ti / in the Chern numbers of .X;L/,
depending only on the Ti , such that if L is N–very ample, then in a general Pd � jLj
the number of divisors having precisely k isolated singularities of types Ti is given
by G.Ti / .

There is a similar corollary for the generating function of these universal polynomials
as in the curve case; we leave the statement of this to the reader.

7.3 BPS spectrum loci

Let C be a reduced, complete, locally planar algebraic curve, and consider the generat-
ing function

HC .q/D

1X
kD0

�.C Œk�/qk :
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Let the arithmetic and geometric genus of C be g.C / and xg.C /, respectively. In [32]
it is shown that there are integers ni;C , with ni;C D 0 unless xg � i � g , such that

(7-1) HC .q/D

g.C/X
iDxg.C/

ni;C q
g�i .1� q/2i�2:

For our purposes, it will be convenient to work with the index-shifted integers mi;C
given by mi;C WD ng�i;C . We define the BPS spectrum of C to be the sequence
of integers .mi;C /1iD0 . By the above, we have mi;C D 0 if i � g � xg . If C has k
singularities of analytic types T1; : : : ; Tk , then by stratifying C Œk� one can see that the
BPS spectrum of C depends only on the Ti .

By this observation, one may define the BPS spectrum of an analytic singularity type T
as the BPS spectrum of a complete, reduced curve having one singularity of type T . The
BPS spectrum of a singularity T is shown by Maulik [28] to be determined explicitly
by the Milnor number and the HOMFLY polynomial of the link of T . In particular,
the BPS spectrum of a locally planar curve depends only on the topological types of
the singularities of the curve.

Proposition 7.9 Let S be a smooth, projective, connected surface, let L be a line
bundle on S , and let k 2 Z�0 . Let m D .mi /1iD0 be a BPS spectrum, and denote
by jLjm � jLj the locus of curves with BPS spectrum m.

There is an integer N and a rational polynomial Gm in four variables, depending only
on k and m, such that if L is N–very ample, then for a general Pk � jLj we have

�.Pk \ jLjm/DGm
�
c1.L/

2; c1.L/c1.S/; c1.S/
2; c2.S/

�
:

If in addition it is known that Pk\jLjm is 0–dimensional, this implies an enumerative
result of the kind found in the previous subsection. This is essentially the argument used
in [21] to compute the number of ı–nodal curves and prove the Göttsche conjecture.

Remark Let d D dimjLj, and let us write cSM.jLjm/ D
P
ai ŒPd�i � 2 H�.jLj/.

Let �k D �.Pk \ jLjm/ for a general hyperplane Pk . Aluffi shows in [1] that the
sequence .ai / determines the sequence .�i / and vice versa.3 Concretely, we get

ad D �d and ai D
X
k�i

� d�k�1
i�k

�
�k :

Thus, Proposition 7.9 implies that there is a polynomial in d and the Chern numbers
of .S; L/ which computes ai , assuming L is N–very ample for some N depending
only on i .

3We thank the referee for pointing out this result.

Geometry & Topology, Volume 21 (2017)



Universal polynomials for tautological integrals on Hilbert schemes 307

The remainder of this section contains the proof of Proposition 7.9.

Lemma 7.10 Let l � 0 be an integer. Then �.Hilblp.C // can take only finitely many
values for .C; p/ a locally planar curve singularity.

Proof Let B D Spec CŒzi;j �0�iCj<l , which corresponds to the affine space of all
degree < l polynomials in CŒx; y� by the map

.ai;j / 2 B 7!
X

ai;jx
iyj 2CŒx; y�:

Let C � A2 � B be the divisor defined by the equation
P
0�iCj<l zi;jx

iyj. Let
Hilbj .C=B/ denote the relative Hilbert scheme, let Hilbj0.C=B/� Hilbj .C=B/ be the
subset of those Z � C with support in C \ .f0g �B/, and let � W Hilbl0.C=B/! B be
the projection.

For any given planar curve singularity .C; p/, the scheme Hilblp.C / depends only on
the structure of Spec.OC;p=mlp/. We can find a g 2CŒx; y� of degree < l such that
there is an isomorphism �W SpecOC;p=mlp! Spec CŒx; y�=.ml0; g/.

Denote by g also the corresponding point of B . We then get a bijective morphism
�Œl�W Hilblp.C /! ��1.g/. It follows that �.Hilblp.C // D �.�

�1.g// D ��.1/.g/,
where �� denotes the pushforward of constructible functions. Since ��.1/ is a con-
structible function, it takes only finitely many values, and this completes the proof.

Lemma 7.11 If L is k–very ample, then for a general Pk � jLj every curve C 2 Pk

is reduced and satisfies xg.C /� g.C /� k .

Proof See [21, Proposition 2.1].

Let Spk be the set of BPS spectra m satisfying the following condition: there exists
a k–very ample L such that for a general Pk � jLj, there is a C 2 Pk whose BPS
spectrum is m.

Lemma 7.12 The set Spk is finite.

Proof Let L be k–very ample, and let C 2Pk�jLj for a general Pk . By Lemma 7.11,
we have xg.C / � g.C / � k . By (7-1), the BPS spectrum of C is then determined
by �.C Œi�/ for 1� i � k .

Denote by Hilbjp.C /�C Œj � the set of subschemes supported at p2C . Stratifying C Œi� ,
we see that �.C Œi�/ is determined by �.C / and the integers �.Hilblp.C //, where p
ranges over the singular points of C and l � i . Applying Lemma 7.10, the claim
follows.
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Lemma 7.13 For each m 2 Spk , there is an Fm 2Q.g/Œx1; : : : ; xk� such that

Fm.g.C /; �.C /; : : : ; �.C
Œk�//

equals 1 if C has BPS spectrum m and equals 0 if C has BPS spectrum in Spk nfmg.

Proof Let C be a curve with BPS spectrum m. Using (7-1), we find that �.C Œi�/ is
a polynomial in g.C /:

�.C Œi�/D

iX
jD0

.�1/i�jmj

� 2.g.C /�j /�2
i�j

�
:

For each m 2 Spk , let Cm be a curve of BPS spectrum m. Let

pm D .�.C
Œ1�
m /; : : : ; �.C Œk�m // 2Q.g/k :

As in the proof of Lemma 7.12, we see that m is determined by �.C Œ1�m /; : : : ; �.C
Œk�
m /,

and hence the pm are all distinct. Therefore for each m we can find an element
Gm 2 Q.g/Œx1; : : : ; xk� such that Gm.pm0/ D 0 if and only if m D m0 . Putting
Fi D

Q
j 6Di .Gj =Gj .pi // gives the result.

Let now Pk � jLj be general, let C! Pk be the family of curves, and let CŒi�=Pk

denote the relative Hilbert scheme. Every monomial M 2QŒx1; : : : ; xk� determines a
scheme C.M/ by taking

C.xi /D CŒi�=Pk

and extending this by the rule

C.M1 �M2/D C.M1/�Pk C.M2/:

It is clear that

�.C.M//D
X
m2Spk

�.jLjm\Pk/M.�.C Œ1�m /; : : : ; �.C Œk�m //;

where Cm denotes a curve with BPS spectrum m.

We may write the polynomial Fm from Lemma 7.13 in the form

Fm D
X
M

fM .g/M;

where the sum is over all monomials M and where fM 2Q.g/ for each M . Since
g.C /D 1

2
.c1.L/

2� c1.L/c1.S//C 1, we get

�.jLjm\Pk/D
X
M

fM
�
1
2
.c1.L/

2
� c1.L/c1.S//C 1

�
�.C.M//:
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Lemma 7.14 below shows that �.C.M// is universal. This implies that �.jLjm\Pk/
admits a universal expression as G=H , where G is a polynomial in the Chern num-
bers of .S; L/ and H is a polynomial in g D 1

2
.c1.L/

2 � c1.L/c1.S// C 1. In
Section 7.4 we strengthen this to show that G=H is a polynomial, concluding the proof
of Proposition 7.9.

Lemma 7.14 Let L be a line bundle, and let Pk � jLj be a general linear subsystem.
Let C! Pk be the universal family of curves, and denote by CŒi�! Pk the relative
Hilbert scheme of i points for this morphism. Then the Euler characteristic

�.CŒi1� �Pk � � � �Pk C
Œil �/

is computed by a universal polynomial, provided that L is ..
P
j ij /�1/–very ample.

Proof For notational simplicity, we treat the case where l D 2; the general case is
essentially the same. The case l D 1 is simpler; see [21].

Let fnW CŒn� ! S Œn� be the natural morphism. We claim that there exists a finite
stratification of S Œn� by geometric sets Pn;i of universal type, such that

(7-2) �.CŒk1� �Pk C
Œk2�/D

k1Ck2X
nD1

X
i

i ��.CŒn�\f �1n .Pn;i //:

Consider the function gW S Œk1� �S Œk2�!
Fk1Ck2
nD1 S Œn� defined pointwise by

g.Z1; Z2/DZ1[Z2;

where the union is in the scheme-theoretic sense.

Define
Pn;i D fZ 2 S

Œn�
j �.g�1.Z//D ig:

One can check that Pn;i is geometric. Observing that Z1; Z2�C ” Z1[Z2�C ,
we also see that Pn;i satisfies (7-2). Lemma 7.15 now completes the proof.

Lemma 7.15 Let P be a geometric subset of S Œn� , and let Pk � jLj be a general
linear subsystem, with L an .n�1/–very ample line bundle. Let C! Pk be the family
of curves, let CŒn� be the relative Hilbert scheme of the family, and let f W CŒn�! S Œn�

be the natural morphism.

Then there exists a universal polynomial in the Chern numbers of .S; L/ which com-
putes �.f �1.P /\ CŒn�/.
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Proof The inclusion-exclusion principle for � lets us reduce to the case where P is
closed and irreducible. Consider the diagram:

f �1.P /\ CŒn� P

Pk

f

The fibres of f are all projective spaces, since for a point Z 2P , the fibre over Z is the
linear system of curves containing Z . Hence we have �.f �1.Z//D dimf �1.Z/C1.
Let Pm D fZ 2 P j �.f �1.Z//Dmg. On P , consider the surjective homomorphism

H 0.S; L/˝OP ! LŒn�;

let V �H 0.S; L/ be the .kC1/–dimensional subspace defining Pk , and let

�W V ˝OP ! LŒn�

be the induced homomorphism. Then

Pm D fZ 2 P j dim ker� Dmg:

Letting Dr.�/ denote the locus over which � has rank � r , we then have that
Pm DDkC1�m.�/ nDkC1�m�1.�/. It thus suffices to compute �.Dr.�// for all r .

By [33, Theorem 2.10], there exists a formula for the Euler characteristic of Dr.�/ as
a polynomial in the Chern classes of LŒn� capped with cSM.P /, assuming that � is
r–general in the sense of [33].

Choose a Whitney stratification of P , and let Y be any stratum. We consider the
bundle Hom.V ˝OY ; LŒn�/ as a scheme, and let Dr �Hom.V ˝OY ; LŒn�/ denote the
tautological rank-r degeneracy locus. To say that � is r–general means that for each
stratum Y , the graph �.�/�Hom.V ˝OY ; LŒn�/ intersects Dr nDr�1 transversely.

The .n�1/–very ampleness of L implies there is a surjection H 0.S; L/˝OP !LŒn� ,
inducing a morphism

P ! Gr
�
H 0.S; L/; n

�
:

Choosing a subspace V �H 0.S; L/, the intersection of �.�/ with Dr nDr�1 cor-
responds to the intersection of P with a certain smooth subset of Gr

�
H 0.S; L/; n

�
.

By the Kleiman–Bertini transversality theorem [17], for a general V �H 0.S; L/, the
intersection of each stratum Y with this set will be smooth of the expected dimension,
and hence � is r–general.

Hence the formula of [33, Theorem 2.10] applies, and by Theorem 1.1(ii), the statement
of the lemma follows.
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7.4 A bootstrap

Let ADQŒxc1.S/2 ; xc1.S/c1.L/; xc1.L/2 ; xc2.S/�. For any F 2 A, write F.S;L/ for
the value obtained by assigning the Chern numbers of .S; L/ to the xi . We have
shown above that there are G;H 2A such that G.S;L/=H.S;L/ computes the Euler
characteristic of �.Pk\jLjm/ when L is N–very ample. Furthermore, H is contained
in the subring QŒxg �, where xg D 1

2
.xc1.L/2 � xc1.L/c1.S//� 1.

The claim of Proposition 7.9 is that we may take H D 1 here, or equivalently that H
divides G . Lemma 7.18 below shows that this is indeed the case.

Lemma 7.16 Suppose F 2 Q.x/ is such that F.n/ is an integer for all n � 0.
Then F 2QŒx�.

Proof We can write F DQCR=H with H;Q;R 2QŒx� and with degR < degH .
Let N 2Z be such that NQ 2ZŒx�; then NF.n/�NQ.n/ is integral for n� 0. This
equals NR.n/=H.n/, which tends to 0 as n!1. Hence R.n/D 0 for n� 0, and
so RD 0.

Lemma 7.17 The set of quadruples�
c1.L/

2; c1.L/c1.S/; c1.S/
2; c2.S/

�
2 Z4;

where S is a smooth, connected, projective surface and L is an ample line bundle
forms a Zariski dense subset of C4 .

Proof Let S be the set of surfaces such that the Picard rank is � 2 and c1.S/ is
numerically nontrivial. Let S 2 S and let NS.S/ be the Néron–Severi group of S .
Since the ample classes in NS.S/˝R form an open cone, we see that fŒL� jL ampleg
is a Zariski dense subset of NS.S/˝C . One checks that the set

f.˛2; ˛c1.S// j ˛ 2 NS.S/˝Cg

is Zariski dense in C2 , and hence

f.c1.L/
2; c1.L/c1.S// j L ampleg

is Zariski dense in C2 .

Therefore the Zariski closure of the set in the statement of the lemma contains

f.a; b; c1.S/
2; c2.S// j a; b 2C; S 2 Sg:

Within S is the set S 0 of surfaces birational to the product of two curves of genera � 2.
One checks that f.c21.S/; c2.S// jS 2S

0g is Zariski dense in C2 . The claim follows.
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Lemma 7.18 Assume G 2A and H 2QŒxg ��A are such that if L is N–very ample,
then G.S;L/=H.S;L/ is an integer. Then H divides G .

Proof Consider the map A! AŒt� under which

xc1.L/2 7! t2xc1.L/2 and xc1.L/c1.S/ 7! txc1.L/c1.S/

and which leaves the other generators fixed. Let G0;H 0 2 AŒt� be the images of G;H
under this map. Then if t 2 Z we have G0.S; L/.t/DG.S; tL/ and likewise for H .

Ordering by t –degree, the leading term of H 0 is proportional to t2kxk
c1.L/2

for some k .
We may thus write G0DQH 0CR , where Q;R 2AŒx�1

c1.L/2
; t � and the t –degree of R

is less than that of H .

Let .S; L/ be such that L is ample. We have

G0.S; L/.t/=H 0.S; L/.t/DG.S; tL/=H.S; tL/ for t 2 Z:

If t � 0, then tL is N–very ample, and so G.S; tL/=H.S; tL/ is an integer. By
Lemma 7.16, H 0.S; L/ must then divide G0.S; L/. It follows that R.S;L/D 0. Since
this is true for all pairs .S; L/ with L ample, Lemma 7.17 implies that RD 0.

We thus have G0DQH 0. Setting tD1 gives GDPH , where P DQjtD12AŒx�1c1.L/2 �.
Since H 2QŒxg �, it is not divisible by xc1.L/2 , and it follows that P 2A. This proves
the claim.
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