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Shift operators and toric mirror theorem

HIROSHI IRITANI

We give a new proof of Givental’s mirror theorem for toric manifolds using shift
operators of equivariant parameters. The proof is almost tautological: it gives an
A–model construction of the I–function and the mirror map. It also works for
noncompact or nonsemipositive toric manifolds.

14N35, 53D45; 14J33, 53D37

1 Introduction

In 1995, Seidel [31] introduced an invertible element of quantum cohomology associated
to a Hamiltonian circle action. This has had many applications in symplectic topology.
Seidel himself used it to construct nontrivial elements of �1 of the group of Hamiltonian
diffeomorphisms. McDuff and Tolman [26] calculated Seidel’s elements in a more
general setting and obtained Batyrev’s ring presentation of quantum cohomology of
toric manifolds. Their method, however, does not yield explicit structure constants of
quantum cohomology, ie genus-zero Gromov–Witten invariants.

Recently, Braverman, Maulik and Okounkov [4], Maulik and Okounkov [25] and
Okounkov and Pandharipande [29] introduced a shift operator of equivariant parameters
for equivariant quantum cohomology. Their shift operators reduce to Seidel’s invertible
elements under the nonequivariant limit. In this paper, we show that equivariant genus-
zero Gromov–Witten invariants of toric manifolds are reconstructed only from formal
properties of shift operators. This means that the equivariant quantum topology of toric
manifolds is determined by its classical counterpart.

More specifically, we give a new proof of Givental’s mirror theorem for toric manifolds,
which is stated as follows:

Theorem 1.1 (Givental [14], Lian, Liu and Yau [24], Iritani [19] and Brown [5]; see
Section 4.2 for more details) Let X† be a semiprojective toric manifold having a torus
fixed point. Let I.y; z/ be the cohomology-valued hypergeometric series defined by

I.y; z/D ze
Pm
iD1 ui logyi=z

X
d2Eff.X†/

� mY
iD1

Q0
cD�1.ui C cz/Qui �d
cD�1.ui C cz/

�
Qdy

u1�d
1 � � �yum�dm ;
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316 Hiroshi Iritani

where ui for i D 1; : : : ; m is the class of a prime toric divisor. Then I.y;�z/ lies in
Givental’s Lagrangian cone LX† associated to X† .

We prove this theorem in the following way. Recall that equivariant genus-zero
Gromov–Witten invariants of a T–variety X can be encoded by an infinite-dimensional
Lagrangian submanifold LX of the symplectic vector space (see Givental [15])

HX DH�T .X/˝H�T .pt/ Frac.H�T .pt/Œz�/:

The space HX is called the Givental space and LX is called the Givental cone. By the
general theory, each C�–subgroup kW C�! T defines a shift operator Sk acting on
the Givental space HX and induces a vector field on LX ,

f 7! z�1Skf 2 Tf LX :

The operator Sk is determined by T–fixed loci in X and their normal bundles (see
Definition 3.13). For toric manifolds, we have a shift operator Si for each torus-
invariant prime divisor. Then we identify the I–function I.y; z/ with an integral curve
of the commuting vector fields f 7! z�1Sif .

Theorem 1.2 Givental’s I–function I.y; z/ is the unique integral curve which satisfies
the differential equation

@I.y; z/

@yi
D z�1SiI.y; z/; i D 1; : : : ; m;

and is of the form I.y; z/D ze
Pm
iD1 ui logyi=z

�
1C

P
d2Eff.X†/nf0g IdQ

dyd
�
, where

we set yd D
Qm
iD1 y

ui �d
i .

The I–function defines a mirror map y 7! �.y/ 2H�T .X/ via Birkhoff factorization;
see Coates and Givental [8] and Iritani [19]. As a corollary to our proof, we obtain the
following relationship between the equivariant Seidel elements Si .�/ and the mirror
map. This generalizes a previous result in the semipositive case obtained in joint work
with González [16].

Theorem 1.3 The mirror map �.y/ associated to the I–function is the unique integral
curve which satisfies the differential equation

@�.y/

@yi
D Si .�.y//; i D 1; : : : ; m;

and is of the form �.y/D
Pm
iD1 ui logyi C

P
d2Eff.X†/nf0g �dQ

dyd .
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The mirror map and the I–function are related by the formula

I.y; z/D zM.�.y/; z/‡.y; z/;

where M.�; z/ is a fundamental solution for the quantum differential equation (see
Proposition 2.2) and ‡.y; z/ is an H�T .X/Œz�–valued function. We can also character-
ize ‡.y; z/ by the differential equation

@‡.y; z/

@yi
D Œz�1Si .�.y//�C‡.y; z/;

where Si .�/ is the shift operator acting on quantum cohomology. The most technical
point in our proof is to show the existence of solutions �.y/ and ‡.y; z/ with prescribed
asymptotics (see Proposition 4.7).

Since we do not assume that c1.X†/ is nef, the mirror map �.y/ does not necessarily
lie in H�2T .X/. For this reason, we need to generalize shift operators to big quantum
cohomology. We also observe that shift operators are closely related to the y�–integral
structure introduced by Coates, Iritani and Jiang [9], Iritani [20] and Katzarkov, Kontse-
vich and Pantev [22]. We show that a flat section of the quantum connection associated
to an equivariant vector bundle in the formalism of y�–integral structure is invariant
under shift operators (Proposition 3.18).

This paper is structured as follows. In Section 2, we review equivariant quantum
cohomology and in Section 3, we study shift operators for big quantum cohomology.
In Section 4, we prove a mirror theorem for toric manifolds.

1.1 Notation

Unless otherwise stated, we consider cohomology groups with complex coefficients.
We use the following notation throughout the paper:

� T Š .C�/m is an algebraic torus;

� X is a smooth T–variety; X† is a smooth toric variety associated to a fan †;

� yT D T �C� ;

� � 2 Lie.T / and z 2 Lie.C�/ are equivariant parameters for yT ;

� the Givental space is

H yT .X/loc WDH
�

yT
.X/˝H�

yT
.pt/ Frac.H�

yT
.pt//

DH�T .X/˝H�T .pt/ Frac.H�T .pt/Œz�/:
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2 Equivariant quantum cohomology

2.1 Hypotheses on a T–space

Let T Š .C�/m be an algebraic torus. Let X be a smooth variety over C equipped
with an algebraic T–action. We assume the following conditions:

(1) X is semiprojective, ie the natural map X!X0 WDSpecH 0.X;O/ is projective;

(2) all T–weights appearing in the T–representation H 0.X;O/ are contained in a
strictly convex cone in Hom.T;C�/˝R and H 0.X;O/T DC .

A T–space X with these assumptions has nice cohomological properties; see eg [18].
These conditions ensure that the T–fixed set XT is projective. We also note the
following:

Proposition 2.1 A smooth T–variety X satisfying the conditions (1) and (2) is equiv-
ariantly formal, ie H�T .X/ is a free module over H�T .pt/ and there is a noncanonical
isomorphism H�T .X/ŠH

�.X/˝H�T .pt/ as an H�T .pt/–module.

Proof We use the argument of Kirwan [23, Proposition 5.8] (see also [27, Section 5.1]).
Choose a one-parameter subgroup kW C�!T such that k is negative on every nonzero
weight of H 0.X;O/. This defines a C�–action on X . Let L!X be a very ample
line bundle. The C�–action on X lifts to a C�–linearization on L, possibly after
replacing L with its power L˝i [12, Corollary 7.2]. Then L defines a C�–equivariant
closed embedding X ,! X0 � Pn , where Pn is equipped with a linear C�–action.
By assumption, we can embed the affine variety X0 D Spec.H 0.X;O// equivariantly
into a C�–representation V which has only positive1 weights. Thus we have a C�–
equivariant closed embedding X ,! V �Pn . The associated S1–action on V �Pn

admits, with respect to the standard Kähler metric, a moment map � which is proper
and bounded from below. These properties allow us to use Morse theory for the moment
map �jX . The argument in [23; 27] shows that �jX is a perfect Bott–Morse function
and X is equivariantly formal.

1We use the (usual) convention that t 2C� acts on functions by f .x/ 7! f .t�1x/ .
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2.2 Gromov–Witten invariants

For a second homology class d 2H2.X;Z/ and a nonnegative integer n� 0, we denote
by X0;n;d the moduli stack of genus-zero stable maps to X of degree d with n marked
points. The T–action on X induces a T–action on X0;n;d . It has a virtual fundamental
class ŒX0;n;d �vir 2H�.X0;n;d ;Q/ of dimension D D dimX Cn� 3C c1.X/ �d . For
equivariant cohomology classes ˛1; : : : ; ˛n 2 H�T .X;Q/ and nonnegative integers
k1; : : : ; kn , the genus-zero T–equivariant Gromov–Witten invariant is defined by

h˛1 
k1 ; : : : ; ˛n 

kni
X;T
0;n;d

D

Z
ŒX0;n;d �vir

nY
iD1

ev�i .˛i / 
ki
i :

Here evi W X0;n;d!X is the evaluation map at the i th marked point and  i denotes the
equivariant first Chern class of the i th universal cotangent line bundle Li over X0;n;d .
When the moduli space X0;n;d is not compact, the right-hand side is defined via the
Atiyah–Bott localization formula [1; 17] and belongs to the fraction field Frac.H�T .pt//
of H�T .pt/.

2.3 Quantum cohomology

Let Eff.X/�H2.X;Z/ denote the semigroup of homology classes of effective curves.
We write Q for the Novikov variable and define MŒŒQ�� to be the space of formal
power series,

MŒŒQ��D

� X
d2Eff.X/

adQ
d
W ad 2M

�
;

with coefficients in a module M . When M is a ring, MŒŒQ�� is also a ring. Let . � ; � /
denote the T–equivariant Poincaré pairing on H�T .X/

.˛; ˇ/D

Z
X

˛[ˇ:

If X is not compact, we define the right-hand side via the localization formula.
Therefore . � ; � / takes values in Frac.H�T .pt// in general. Let f�igNiD0 be a basis
of H�T .X/ over H�T .pt/. We write f� igNiD0 for the dual coordinates on H�T .X/ and
� D

PN
iD0 �

i�i for a general point on H�T .X/. The (big) quantum product ? is defined
by the formula

.�i ?�j ; �k/D
X

d2Eff.X/

1X
nD0

Qd

nŠ
h�i ; �j ; �k; �; : : : ; �i

X;T
0;nC3;d

:
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We note that the quantum product �i ?�j is defined without localization:

�i ?�j 2H
�
T .X/ŒŒQ��ŒŒ�

0; : : : ; �N ��:

In fact, �i ?�j can be written as the push-forward

(2-1)
X

d2Eff.X/

1X
nD0

Qd

nŠ
PD ev3�

�
ev�1.�i / ev�2.�j /

nC3Y
lD4

ev�l .�/\ ŒX0;nC3;d �vir

�
along the proper evaluation map ev3 , and hence the localization is not necessary. The
properness of ev3 follows from the assumption that X is semiprojective.

2.4 Quantum connection and fundamental solution

The quantum connection is the operator

ri W H
�
T .X/Œz�ŒŒQ��ŒŒ�

0; : : : ; �N ��! z�1H�T .X/Œz�ŒŒQ��ŒŒ�
0; : : : ; �N ��

defined by

ri D
@

@� i
C
1

z
.�i?/:

The quantum connection has a parameter z : we identify it with the equivariant parameter
for an additional C�–action. Set yT D T � C� and consider the yT–action on X

induced by the projection yT ! T . Then we have H�
yT
.X/ŠH�T .X/Œz�. The quantum

connection is known to be flat, and admits a fundamental solution

M.�/W H�
yT
.X/ŒŒQ��ŒŒ�0; : : : ; �N ��!H�

yT
.X/locŒŒQ��ŒŒ�

0; : : : ; �N ��

satisfying the quantum differential equation

z
@

@� i
M.�/DM.�/.�i?/;

or equivalently
@

@� i
ıM.�/DM.�/ ıri ;

where H�yT .X/loc WDH
�

yT
.X/˝H�

yT
.pt/ Frac.H�

yT
.pt// is the localized equivariant coho-

mology. The following proposition is well-known; see [13, Section 1; 30, Proposition 2]:

Proposition 2.2 A fundamental solution is given by

.M.�/�i ; �j /D .�i ; �j /C
X

d2Eff.X/;n�0
.d;n/¤.0;0/

Qd

nŠ

�
�i ; �; : : : ; �;

�j

z� 

�X;T
0;nC2;d

:
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Remark 2.3 Expanding 1=.z � /D
P1
nD0  

n=znC1 , we find that M.�/�i takes
values in H�T .X/ŒŒz

�1��. By the localization calculation, it also follows that M.�/�i
takes values in H�

yT
.X/loc . The localized yT–equivariant cohomology H�

yT
.X/loc is also

called the Givental space [15].

3 Shift operator

The shift operator for equivariant quantum cohomology has been introduced by Ok-
ounkov and Pandharipande [29], Braverman, Maulik and Okounkov [4] and Maulik
and Okounkov [25]. We discuss its (straightforward) extension to the big quantum
cohomology.

3.1 Twisted homomorphism

We write yT D T �C� . For a group homomorphism kW C� ! T , we consider the
yT–action �k on X defined by

�k.t; u/x D tu
k
� x;

where .t; u/ 2 yT and x 2X , and uk 2 T denotes the image of u 2C� under k . Let
� 2 Lie.T / denote the equivariant parameter for T and let z 2 Lie.C�/ denote the
equivariant parameter for C� . The identity map idW .X; �0/! .X; �k/ is equivariant
with respect to the group automorphism

�k W yT ! yT ; �k.t; u/D .tu
�k; u/:

Therefore the identity map induces an isomorphism

ˆk W H
�

yT ;�0
.X/ŠH�

yT ;�k
.X/

such that

(3-1) ˆk.f .�; z/˛/D f .�C kz; z/ˆk.˛/;

where ˛ 2 H�
yT ;�0

.X/ and f .�; z/ 2 H�
yT
.pt/ is a polynomial function on Lie. yT /.

Referring to the property (3-1), we say that ˆk is a k–twisted homomorphism.

Notation 3.1 We write H yT ;�
�
.X/ for the yT–equivariant cohomology of X with respect

to the yT–action � on X . When � is omitted, H�
yT
.X/ means H�

yT ;�0
.X/.
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3.2 Bundle associated to a C�–subgroup

Definition 3.2 (associated bundle) Let kW C�! T be a group homomorphism. Con-
sider the C�–action on X�.C2nf0g/ given by s�.x; .v1; v2//D.sk �x; .s�1v1; s�1v2//.
Let Ek denote the quotient space

Ek WDX � .C
2
n f0g/=C�:

We have a natural projection � W Ek ! P1 given by �.Œx; .v1; v2/�/ D Œv1; v2� and
Ek is a fiber bundle over P1 with fiber X . We consider the yT–action on Ek given by
.t; u/ � Œx; .v1; v2/�D Œt � x; .v1; uv2/�. Let X0 denote the fiber of Ek! P1 at Œ1; 0�
and let X1 denote the fiber at Œ0; 1�. Note that we have

X0 Š .X; �0/ and X1 Š .X; �k/

as yT–spaces.

Definition 3.3 A group homomorphism kW C�! T is said to be seminegative if k is
nonpositive on each T–weight of H 0.X;O/. We say that k is negative if k is negative
on each nonzero T–weight of H 0.X;O/.

Remark 3.4 When X is complete, every C�–subgroup is negative.

Suppose that kW C�! T is seminegative and consider the C�–action on X induced
by k . Let L be a very ample line bundle on X . As discussed in the proof of
Proposition 2.1, we may assume that L admits a C�–linearization. By tensoring
L with a C�–character, we may assume that all the C�–weights on H 0.X;L˝n/

are negative for n > 0. Let pW X � C2 ! X be the natural projection. Then
p�L is a C�–equivariant line bundle on X � C2 , where C� acts on the base by
s � .x; .v1; v2//D .s

k � x; .s�1v1; s
�1v2//. We can see that

H 0.X �C2; .p�L/˝n/D

1M
iD0

H 0.X;L˝n/.�i/˝CŒv1; v2�
.i/;

where the superscript .l/ means the component of C�s –weight l . The unstable locus
for the C�–action on .X � C2; p�L/, in the sense of geometric invariant theory
(GIT), is X � f0g and therefore we find that Ek is the GIT quotient of X � C2 ,
ie Ek D Proj

�L1
nD0H

0.X �C2; .p�L/˝n/
�
. This proves:

Lemma 3.5 If k is seminegative, Ek is semiprojective.
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Let kW C�!T be a seminegative subgroup and consider the C�–action on X induced
by k . A C�–fixed point x 2X defines a section of Ek! P1 ,

(3-2) �x D .fxg �P1/�Ek :

We now define a minimal section among all such sections associated to fixed points.
Using the argument in the proof of Proposition 2.1, we obtain a C�–equivariant closed
embedding X ,! Pn �Cl , where Cl is a C�–representation with only nonnegative
weights. In particular, for every point x 2 X , the limit lims!0 sk � x exists. This
implies the existence of the Białynicki-Birula decomposition [3, Theorem 4.1] for X :
if XC�D

F
i Fi is the decomposition of the C�–fixed locus XC� into connected

components, we have the induced decomposition of X ,

X D
G
i

Ui ; Ui D
˚
x 2X W lim

s!0
sk � x 2 Fi

	
;

into locally closed smooth subvarieties Ui . In particular there exists a unique C�–fixed
component Fmin �X such that all the C�–weights on the normal bundle to Fmin are
positive. The moment map � for the associated S1–action attains a global minimum
on Fmin . We call the class of a section �min of Ek associated to a point in Fmin the
minimal section class. We write

H sec
2 .Ek;Z/D fd 2H2.Ek;Z/ W ��.d/D ŒP

1�g;

Eff.Ek/
sec
D Eff.Ek/\H

sec
2 .Ek;Z/:

Lemma 3.6 If k is seminegative, we have Eff.Ek/sec D �minCEff.X/.

Proof The compact case was discussed in [16, Lemma 2.2]. Take a negative one-
parameter subgroup l W C� ! T and consider the C�–action on Ek induced by
C� l
�! T � f1g � yT . Observe that all nonzero C�–weights on H 0.Ek;O/ are

negative. This means that Ek;0 WD SpecH 0.Ek;O/ has a unique C�–fixed point 0
and lims!0 s � x D 0 for all x 2 Ek;0 . Therefore every curve can be deformed, via
the C�–action, to a stable curve in the fiber K of Ek ! Ek;0 at 0 2 Ek;0 in the
same homology class. Since yT–action on Ek preserves K and K is compact, we may
further deform a curve in K to a yT–invariant stable curve. A yT–invariant stable curve
in Ek is a union of a section class �x associated to a T–fixed point x 2X and effective
curves in X0 tX1 . Suppose that two different fixed points x , y 2XT are connected
by a k.C�/–orbit, ie x D lims!1 sk � p and y D lims!0 sk � p for some p 2 X .
The closure C D k.C�/ �p is isomorphic to P1 , and �x and �y are contained in a
Hirzebruch surface

C � .C2
n f0g/=C� �Ek :
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Then one finds �x D �y C aŒC � for some a > 0. Using the Białynicki-Birula decom-
position for the k.C�/–action on X , we find that every T–fixed point is connected to
a T–fixed point on Fmin by a chain of k.C�/–orbits. The conclusion follows.

Lemma 3.7 We have an isomorphism

H�
yT
.Ek/Š

˚
.˛; ˇ/ 2H�

yT ;�0
.X/˚H�

yT ;�k
.X/ W ˛�ˆ�1k .ˇ/� 0 mod z

	
which sends � to .� jX0 ; � jX1/. Recall that z is the equivariant parameter for C� and
we have a canonical isomorphism H�

yT ;�0
.X/ŠH�T .X/Œz�.

Proof Consider the Mayer–Vietoris exact sequence associated to the covering Ek D
U0[U1 with U0 D ��1.C/ and U1 D ��1.P1 n f0g/. We have

H�
yT
.U0/ŠH

�

yT ;�0
.X/; H�

yT
.U1/ŠH

�

yT ;�k
.X/; H�

yT
.U0\U1/ŠHT .X/:

The map H�
yT
.U0/˚H

�

yT
.U1/!H�

yT
.U0\U1/ is surjective and is given by .˛; ˇ/ 7!

.˛�ˆ�1
k
ˇ/jzD0 .

Notation 3.8 By Lemma 3.7, for � 2 H�T .X/, there exists y� 2 H�yT .Ek/ such that
y� jX0 D � and y� jX1 Dˆk.�/. This defines a map yW H�T .X/!H�

yT
.Ek/. This is not

H�T .pt/–linear.

3.3 Shift operator

Definition 3.9 (shift operator) Let kW C�! T be a seminegative group homomor-
phism. For � 2H�T .X/, we define zSk.�/W H�yT ;�0

.X/ŒŒQ��!H�
yT ;�k

.X/ŒŒQ�� by

.zSk.�/˛; ˇ/D
X

yd2Eff.Ek/sec

Q
yd��min

nŠ
h�0�˛; �1�ˇ; y�; : : : ; y�i

Ek ; yT

0;nC2; yd
;

where . � ; � / in the left-hand side is the yT–equivariant Poincaré pairing on H�yT ;�k .X/,
˛ 2 H�yT ;�0

.X/, ˇ 2 H�
yT ;�k

.X/, �min is the minimal section class for Ek , and
�0W X0!Ek and �1W X1!Ek are the natural inclusions. We also define

Sk.�/Dˆ
�1
k ı
zSk.�/W H

�

yT
.X/ŒŒQ��!H�

yT
.X/ŒŒQ��:

Note that zSk is untwisted but Sk is .�k/–twisted (see (3-1)).

Remark 3.10 When k is seminegative, Ek is semiprojective by Lemma 3.5 and
thus the shift operator Sk is defined without localization: we may rewrite zSk as the
push-forward along an evaluation map (see (2-1)). When k is not seminegative, we
can still define Sk over Frac.H�T .pt// after choosing a suitable section class �min .
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Remark 3.11 Since the map � 7! y� is not H�T .pt/–linear, S.�/ cannot be written as
a formal power series in the H�T .pt/–valued variables �0; : : : ; �N . For ˛1; : : : ; ˛l 2
H�T .X/ and C–valued variables t1; : : : ; t l , the shift operator S.�/ with �D

Pl
iD1 t

i˛i
is a formal power series in t1; : : : ; t l .

Remark 3.12 (divisor equation) Suppose that � D hC � 0 with h 2H 2
T .X/. Using

the divisor equation, we have

.zSk.�/˛; ˇ/D e
�h.k/

X
d2Eff.X/

Qdeh�d

nŠ
h�0�˛; �1�ˇ; y�

0; : : : ; y� 0i
Ek ; yT
0;nC2;�minCd

;

where h.k/ is the pairing between k and the restriction hjx 2H 2
T .pt/Š Lie.T /� of

h to a fixed point x in the minimal fixed component Fmin (with respect to k ). Note
that yh � �min D�h.k/.

By the localization theorem of equivariant cohomology [1], the restriction to the T–fixed
subspace XT induces an isomorphism

��W H�
yT
.X/loc

Š
�!H�

yT
.XT /loc DH

�.XT /˝Frac.H�
yT
.pt//:

We use this to define the shift operator on the Givental space H�
yT
.X/loc .

Definition 3.13 (shift operator on the Givental space) Let XT D
F
i Fi be the

decomposition of XT into connected components. Let Ni be the normal bundle to Fi
in X . Let Ni D

L
˛ Ni;˛ denote the T–eigenbundle decomposition, where T acts on

Ni;˛ by the character ˛ 2 Hom.T;C�/. Let �i;˛;j for j D 1; : : : ; rank.Ni;˛/ denote
the Chern roots of Ni;˛ . For a seminegative k 2 Hom.C�; T /, we define

�i .k/DQ
�i��min

Y
˛

rank.Ni;˛/Y
jD1

Q0
cD�1.�i;˛;j C˛C cz/Q�˛�k
cD�1.�i;˛;j C˛C cz/

2H�
yT
.Fi /locŒŒQ��;

where ˛ is regarded as an element of H 2
T .pt;Z/, �i is the section class of Ek

associated to a fixed point in Fi and �min is the minimal section class of Ek . Note
that all but finitely many factors in the infinite product cancel. We define the operator
Sk W H�yT .X/loc!H�

yT
.X/loc by the commutative diagram

(3-3)

H�
yT
.X/loc

Sk
//

��

��

H�
yT
.X/loc

��

��

H�
yT
.XT /loc

L
i �i .k/e

�zk@�
// H�
yT
.XT /loc
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where we use the decomposition H�yT .X
T /loc Š

L
i H
�.Fi /˝ Frac.H yT .pt// in the

bottom arrow and e�kz@� acts on Frac.H yT .pt// by f .�; z/ 7! f .�� kz; z/. The
operator Sk is a .�k/–twisted homomorphism.

The following is a key property of the shift operator:

Theorem 3.14 We have M.�/ıSk.�/D Sk ıM.�/, where M.�/ is the fundamental
solution in Proposition 2.2.

Proof A similar intertwining property has been discussed in [29; 4; 25]. We calculate
zSk.�/ using yT–equivariant localization. We refer the reader to [17; 10] for localization
arguments in Gromov–Witten theory. Fix a section class yd 2 Eff.Ek/sec . A yT–fixed
stable map f W .C; x1; : : : ; xnC2/!Ek of degree yd is of the form
� C D C0[Csec[C1 with Csec Š P1 ;
� f0 D f jC0 is a T–fixed stable map to X0 ;
� f1 D f jC1 is a T–fixed stable map to X1 ;
� fsec D f jCsec is a section of Ek associated to a T–fixed point in X (see (3-2)).

Recall that the tangent space T 1 and the obstruction space T 2 at the stable map f fit
into the exact sequence

0! Ext0.�1C .x/;OC /!H 0.C; f �TEk /! T 1

! Ext1.�1C .x/;OC /!H 1.C; f �TEk /! T 2! 0;

where x D x1C � � �C xnC2 . The virtual normal bundle at f is

N vir
D T 1;mov

�T 2;mov
D �.f �TEk /

mov
��.�1C .x/;OC /

mov

where “mov” means the moving part with respect to the yT –action and �.E/ D
H 0.C; E/�H 1.C; E/ and �.E ;F/D Ext0.E ;F/�Ext1.E ;F/ denote the Euler char-
acteristics. Let p and q denote the nodal intersection points C0\Csec and C1\Csec ,
respectively. Using the normalization exact sequence 0!OC!OC0˚OCsec˚OC1!
Cp˚Cq! 0, we find

(3-4) �.f �TEk /
mov
D �.f �0 TX0/

mov
C�.f �1TX1/

mov
C�.f �secTEk /

C �C ��1� .Tf .p/E/
mov
� .Tf .q/E/

mov;

where � is the one-dimensional C�–representation of weight one. We write x D

x0Cx1 , where x0 and x1 are divisors on C0 and C1 , respectively. Then we have

(3-5) ��.�1C .x/;OC /
mov
D TpC0˝TpCsecCTqC1˝TqCsec

��.�1C0.x0Cp/;OC0/
mov

��.�1C1.x1C q/;OC1/
mov:
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The yT–fixed locus in the moduli space .Ek/0;nC2; yd is given byG
i

G
I1tI2Df1;:::;nC2g

G
d0Cd1C�iDyd

..X0/0;I1[p;d0/
T
�Fi ..X1/0;I2[q;d1/

T ;

where Fi and �i are as in Definition 3.13. Combining (3-4) and (3-5), we find that the
virtual normal bundle N vir

i on the component ..X0/0;I1[p;d0/
T�Fi ..X1/0;I2[q;d1/

T

is

N vir
i DN vir

0 CN vir
1 CNsec;i �NFi=X0 �NFi=X1 CL

�1
p ˝ �CL

�1
q ˝ �

�1;

where N vir
0 is the virtual normal bundle of .X0/T0;I1[p;d0 in .X0/0;I1[p;d0 , N vir

1 is
the virtual normal bundle of .X1/T0;I2[q;d1 in .X1/0;I2[q;d1 , Lp (resp. Lq ) is the
universal cotangent line bundle at p (resp. q ) and Nsec;i is the vector bundle with fiber
�.f �secTEk /

mov . Let NFi=X DNi D
L
˛ Ni;˛ be decomposition as in Definition 3.13.

The normal bundle of Fi �P1 in Ek isM
˛

Ni;˛ �OP1.�˛ � k/:

Thus we find

(3-6) Nsec;i D �˚ �
�1
˚

M
˛

Ni;˛˝

�M
c�0

�c �
M
c<˛�k

�c
�
:

The virtual localization formula gives

.zSk.�/˛; ˇ/D
X

i;k;l;a;b

X
d0Cd1C�iDyd

�
z˛; �; : : : ; �;

.�0;i /��i;a

z� 

�X0; yT
0;kC2;d0

Qd0

kŠ

�

�Z
Fi

Q�i��min

e yT .Nsec;i /
�ai �

b
i

��
.�1;i /��i;b

�z� 
; � 0; : : : ; � 0;�zˇ

�X1; yT
0;lC2;d1

Qd1

lŠ
;

where ˛ 2 H�
yT
.X0/, ˇ 2 H�yT .X1/, �

0 D ˆk.�/, the maps �0;i W Fi ! X0 and
�1;i W Fi ! X1 are the natural inclusions, f�i;ag � H�.Fi / is a basis, and f�ai g
is the dual basis such that

R
Fi
�i;a [�

b
i D ı

b
a . Note that we have, by (3-6),

Q�i��min

e yT .Nvir;i /
D

1

z.�z/

1

e yT .NFi=X1/
.ekz@��i .k//:

Combining these equations, we conclude

.zSk.�/˛; ˇ/D .zSkM.�; z/˛;M 0.� 0;�z/ˇ/;

where we write the argument z in the fundamental solution explicitly and
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� zSk W H yT .X0/loc!H yT .X1/loc is a map defined similarly to Sk by replacingL
i �i .k/e

�kz@� in the diagram (3-3) with
L
i .e

kz@��i .k//;
� M 0.� 0; z/ is defined similarly to Proposition 2.2 by replacing T–equivariant

Gromov–Witten invariants there with . yT ; �k/–equivariant invariants.

Note that M 0.� 0; z/Dˆk ıM.�; z/ıˆ�1k and zSk Dˆk ıSk . The conclusion follows
from the so-called “unitarity” M.�;�z/� DM.�; z/�1 of the fundamental solution
(see [13, Section 1]).

Theorem 3.14 and the differential equation @i ıM.�/DM.�/ ıri show:

Corollary 3.15 The shift operator commutes with the quantum connection, that is,
Œri ;Sk.�/�D 0 for i D 0; : : : ; N .

This corollary is shown in [25, Section 8] in the case where � D 0. We also remark
that the shift operators commute each other.

Corollary 3.16 We have Sk ıSl DQd.k;l/SkCl for some d.k; l/ 2H2.X;Z/ which
is symmetric in k and l . In particular, Sk ıSl DQ

d.k;l/SkCl , ŒSk;Sl �D ŒSk;Sl �D 0.

Proof Consider the X –bundle Ek;l over P1 �P1 given by

Ek;l DX � .C
2
n f0g/� .C2

n f0g/
ı

C� �C�;

where .s1; s2/ 2C� �C� acts on X �C2 �C2 by .s1; s2/ � .x; .a1; a2/; .b1; b2//D
.sk1 s

l
2; .s

�1
1 a1; s

�1
1 a2/; .s

�1
2 b1; s

�1
2 b2//. Note Ek;l jP1�Œ1W0�ŠEk , Ek;l jŒ1W0��P1ŠEl

and Ek;l j�.P1/ŠEkCl , where �.P1/�P1�P1 denotes the diagonal. The addition in
H2.Ek;l ;Z/ defines a map #W H sec

2 .El ;Z/�H
sec
2 .Ek;Z/!H sec

2 .EkCl ;Z/. For any
T–fixed point x , the section class �x (see (3-2)) associated to x satisfies �x#�x D �x .
A straightforward computation now shows that SkıSlDQ�min.kCl/��min.k/#�min.l/SkCl ,
where �min.k/ denotes the minimal section class of Ek . The conclusion follows by
setting d.k; l/D �min.kC l/� �min.k/#�min.l/ and the commutativity of #.

3.4 Relation to the Seidel representation

Taking the z! 0 limit of shift operators, we obtain a big quantum cohomology version
of the Seidel representation [31]. The author learned the idea of big Seidel elements
from Eduardo González during joint work with him [16].

Definition 3.17 (Seidel elements) Let k 2Hom.C�; T / be a seminegative homomor-
phism. The element Sk.�/ WD limz!0 Sk.�/1 of H�T .X/ŒŒQ��ŒŒ�

0; : : : ; �m�� is called
the Seidel element.
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By Corollary 3.15, the z! 0 limit of the operator Sk.�/ commutes with the quantum
multiplication, and therefore coincides with the quantum multiplication by Sk.�/ (see
also [25, Section 8]). By Corollary 3.16, we have

Sk.�/ ? Sl.�/DQ
d.k;l/SkCl.�/:

This is called the Seidel representation.

3.5 Relation to the y�–integral structure

We note a relationship between the shift operator and the y�–integral structure introduced
in [20; 22; 9]. For quantum cohomology of the Hilbert scheme of points on C2 , it has
been observed in [29] that certain �–factors play an important role in the difference
equation associated to the shift operators.

We recall the y�–class of X . Let ı1; : : : ; ıD denote the T–equivariant Chern roots of
the tangent bundle TX such that cT .TX/D .1C ı1/ � � � .1C ıD/. The T–equivariant
y�–class of X is the class

y�X D y�.TX/D

DY
iD1

�.1C ıi /

in H��T .X/D
Q1
pD0H

p
T .X/. Here �.z/D

R1
0 e�t tz�1dt is Euler’s �–function. By

Taylor expansion, the right-hand side becomes a symmetric formal power series in
ı1; : : : ; ıD and thus can be expressed in terms of the equivariant Chern classes of TX .

The y�–integral structure assigns the following homogeneous flat section s.E/ of the
quantum connection to a T–equivariant vector bundle E!X :

s.E/D .2�/�D=2M.�/�1z��zc1.X/y�X .2�i/deg =2 chT.E/;

where D D dimC X , M.�/ is the fundamental solution given in Proposition 2.2,
� 2 EndC.H

�
T .X// is the Hodge grading operator �.�i / D

�
1
2

deg�i � 1
2
D
�
�i ,

zc1.X/ D ec1.X/ log z and .2�i/deg =2 chT.E/ D
P1
pD0.2�i/p chTp .E/. The section

s.E/ is flat, ie ris.E/D 0 and is homogeneous in the sense that�
z
@

@z
C�C

NX
iD0

�
1�

1

2
deg�i

�
� i

@

@� i
C

NX
iD0

�i
@

@� i

�
s.E/D 0;

where we set c1.X/D
PN
iD0 �

i�i . A key property of s.E/ is that the pairing

.s.E/.�; e��iz/; s.F /.�; z//
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equals the T–equivariant Euler pairing z� deg =2.2�i/deg =2�.E; F /, where �.E; F /DPD
iD0.�1/

i chT.Exti .E; F //2H��T .pt/. This follows from an appropriate equivariant
Hirzebruch–Riemann–Roch formula. See [9, Section 2–3] for more details.

The T–equivariant K–group is a module over K0T .pt/DCŒT � and the Chern character
chT W K0T .pt/!H��T .pt/ can be viewed as the pull-back by the universal covering
expW Lie.T /DCm! T D .C�/m . A deck-transformation of this covering is given by
the shift2 of equivariant parameters �j ! �j C 2�i. This suggests that s.E/ should
be “invariant” under integral shifts of equivariant parameters.

Proposition 3.18 When the Novikov variable Q is set to be one, the flat section s.E/

is invariant under the shift operator:

Sks.E/D s.E/

for every seminegative k 2 Hom.C�; T /.

Proof As is discussed in [9, Section 3], the divisor equation shows that the specializa-
tion QD1 of the Novikov variable is well-defined for s.E/. In view of the intertwining
property in Theorem 3.14, it suffices to show that

zSk.z��zc1.X/y�X .2�i/deg =2 ch.E//D z��zc1.X/y�X .2�i/deg =2 ch.E/:

The restriction to the T–fixed component Fi gives

Œz��zc1.X/y�X .2�i/deg =2 ch.E/�Fi

D zD=2zc1.Fi /=z.z�
deg
2 y�Fi /

�Y
˛

rankN˛;iY
jD1

z.�i;˛;jC˛/=z�

�
1C

�i;˛;j

z
C
˛

z

��X
�

e2�i�=z;

where � ranges over T–equivariant Chern roots of E and we use the notation from
Definition 3.13. The conclusion easily follows from the identity �.1C z/D z�.z/.

4 Toric mirror theorem

In this section we give a new proof of a mirror theorem [14] for toric manifolds.

2The shift by 2�i is superseded by the shift by z because of the operators z�� and .2�i/deg =2 .
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4.1 Toric manifolds

We fix notation for toric manifolds. For background materials on toric manifolds, we
refer the reader to [28; 2; 11]. Let N Š ZD denote a lattice. A toric manifold is given
by a rational simplicial fan † in the vector space NR DN ˝R. We assume that

� each cone � of † is generated by part of a Z–basis of N ;

� the support j†j D
S
�2† � of † is convex and full-dimensional;

� † admits a strictly convex piecewise linear function �W j†j !R.

These assumptions ensure that the corresponding toric variety X† is smooth and
satisfies the hypotheses in Section 2.1. We do not require that X is compact, or c1.X/
is semipositive. Let b1; : : : ; bm2N be primitive integral generators of one-dimensional
cones of †. Let ˇW Zm!N be the homomorphism sending the standard basis vector
ei 2 Zm to bi . The fan sequence is the exact sequence

0! L! Zm ˇ
�!N ! 0

with LD Ker.ˇ/. Set K D L˝C� . The inclusion L ,! Zm induces the inclusion
K ,! .C�/m of tori and defines a linear K–action on Cm . The toric variety associated
to † is given by the GIT quotient

X† D U=K; U DCm
nZ;

where Z � Cm is the common zero set of monomials zI D zi1 � � � zik with I D

fi1; : : : ; ikg such that fbi W 1 � i � m; i … I g spans a cone in †. We consider the
T–action on X† induced by the T D .C�/m–action on Cm .

Let �i 2 H 2
T .pt/ Š Lie.T /� denote the class corresponding to the i th projection

T !C� . We have
H�T .pt/DCŒ�1; : : : ; �m�:

All the T–weights of H 0.X†;O/ are contained in the cone
Pm
iD1R�0.��i / and

therefore the condition (2) in Section 2.1 is satisfied. A cocharacter kW C�! T is
seminegative in the sense of Definition 3.3 if �i � k � 0 for all i D 1; : : : ; m.

Let ui 2H 2
T .X†/ denote the class of the torus-invariant divisor fzi D 0g defined as

the vanishing set of the i th coordinate zi on Cm . The T–equivariant cohomology ring
of X† is generated by these classes:

H�T .X†/ŠH
�
T .pt/Œu1; : : : ; um�=.I1C I2/;

where I1 is the ideal generated by
Q
i2I ui such that fbi W i 2 I g does not span a cone

in † and I2 is the ideal generated by
Pm
iD1 �.bi /.ui ��i / with � 2 Hom.N ;Z/.
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4.2 Mirror theorem

Define a cohomology-valued hypergeometric series I.y; z/ by the formula

I.y; z/D ze
Pm
iD1 ui logyi=z

X
d2Eff.X†/

� mY
iD1

Q0
cD�1.ui C cz/Qui �d
cD�1.ui C cz/

�
Qdy

u1�d
1 � � �yum�dm :

This formula defines an element of H�
yT
.X†/locŒŒQ��ŒŒlogy��. We may write I.y; z/ as

a sum over H2.X†;Z/ since the summand automatically vanishes if d … Eff.X†/.

Givental’s mirror theorem [14] (generalized later in [24; 19; 5]) states the following:

Theorem 4.1 The function I.y;�z/ lies on the Givental cone associated to genus-zero
Gromov–Witten theory of X† .

We explain the meaning of the statement. The Givental cone L [15] is a subset of
H�
yT
.X†/locŒŒQ�� consisting of points of the form

(4-1) �zC t.z/C

NX
iD0

1X
nD0

X
d2Eff.X†/

Qd

nŠ

�
�i

�z� 
; t. /; : : : ; t. /

�X;T
0;nC1;d

�i

with t.z/ 2 H�yT .X†/ŒŒQ�� D H
�
T .X†/Œz�ŒŒQ��. The Givental cone L can be written

as the graph of the differential of the genus-zero descendant Gromov–Witten poten-
tial, and encodes all genus-zero descendant Gromov–Witten invariants. Theorem 4.1
says that I.y; z/ is of the form (4-1) for some t.z/ 2 H�T .X†/Œz�ŒŒQ��ŒŒlogy�� with
t.z/jQDlogyD0D 0. For toric manifolds, the above I–function determines the Givental
cone and hence all the genus-zero Gromov–Witten invariants completely.

In this paper, we use an alternative description [15] of the Givental cone L. We can
write L as the union

LD
[

�2H�T .X†/ŒŒQ��

zT�

of the semi-infinite subspaces T� DM.�;�z/HT .X†/Œz�ŒŒQ��, where M.�;�z/ de-
notes the fundamental solution from Proposition 2.2 with the sign of z flipped. The
subspace T� is a (common) tangent space to L along zT� � L. Therefore, it suffices
to show that I.y; z/ can be written in the form

I.y; z/D zM.�.y/; z/‡.y; z/

for some �.y/ 2H�T .X†/ŒŒQ��ŒŒlogy�� and ‡.y; z/ 2H�T .X†/Œz�ŒŒQ��ŒŒlogy��.
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4.3 Proof

The idea of the proof is as follows. Let ei denote the cocharacter C�! T D .C�/m

given by the inclusion of the i th factor. Let Si D Sei and Si D Sei denote the
corresponding shift operators. In view of Theorem 3.14, the shift operator Si defines a
vector field on the Givental cone L,

(4-2) f 7! z�1Sif 2 Tf L:

These vector fields define commuting flows by Corollary 3.16. We will identify the
I–function with an integral submanifold of these vector fields.

Consider the C�–action on X† induced by the cocharacter ei 2 Hom.C�; T /. The
minimal fixed component Fmin for this C�–action is the toric divisor fzi D 0g. Let
Ei D Eei denote the associated bundle. For a fixed point x 2 XT† , we set di .x/ D
�x��min 2H2.X†;Z/, where �x 2H sec

2 .Ek/ is the section (3-2) of Ei associated to
x and �min 2H

sec
2 .Ek/ is the minimal section class of Ei . We write uj .x/ 2H 2

T .pt/
for the restriction of uj to x .

Lemma 4.2 With the notation as above, we have

uj .x/ � ei D ıij �uj � di .x/:

Proof Consider the yT–invariant divisor fzj D 0g �P1 in Ei and let yuj denote the
yT–equivariant Poincaré dual of the divisor. Then we have yuj j.x;Œ1;0�/ D uj .x/ and
yuj j.x;Œ0;1�/ D uj .x/C .uj .x/ � ei /z . The localization formula gives

yuj � �x D
yuj j.x;Œ1;0�/

z
C
yuj j.x;Œ0;1�/

�z
D�uj .x/ � ei :

Similarly we have yuj � �min D �uj .y/ � ei for any T–fixed point y in the divisor
FminD fzi D 0g. If i ¤ j , taking y away from fzj D 0g, we get uj .y/D 0. If i D j ,
uj .y/ � ei D 1. Therefore yuj � �min D�ıij . The conclusion follows.

Lemma 4.3 The I–function is an integral curve of the vector field (4-2), that is, for
i 2 f1; : : : ; mg, we have

z
@

@yi
I.y; z/D SiI.y; z/:

Proof Note that all the T–fixed points on X† are isolated. Let x 2 XT be a fixed
point. It suffices to show that

z
@

@yi
Ix.y; z/D�x.ei /e

�z@�i Ix.y; z/;
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where Ix.y; z/ is the restriction of the I–function to x and

�x.ei /DQ
di .x/

mY
jD1

Q0
cD�1.uj .x/C cz/Q�uj .x/�ei
cD�1 .uj .x/C cz/

:

Using Lemma 4.2, we have

�x.ei /e
�z@�i Ix.y; z/

D ze
Pm
jD1 uj .x/ logyj =ze� logyiC

Pm
jD1.uj �di .x// logyjQdi .x/

�

X
d2H2.X†;Z/

� mY
jD1

Q0
cD�1.uj .x/Ccz/Q�uj .x/�ei
cD�1 .uj .x/Ccz/

Q�uj .x/�ei
cD�1 .uj .x/Ccz/Quj �d�uj .x/�ei

cD�1 .uj .x/Ccz/

�
Qdyd ;

where yd D
Qm
jD1 y

uj �d

j . Changing variables d ! d � di .x/ and again using
Lemma 4.2, we find that this equals z @I.y; z/=@yi .

We identify the classical shift operators:

Notation 4.4 We set vi WD ui � �i 2 H 2
T .X†/ and write vi .x/ 2 H 2

T .pt/ for the
restriction of vi to a T–fixed point x .

Lemma 4.5 Let f .v; �/ be a cohomology class in H�T .X†/ expressed as a polyno-
mial in v1; : : : ; vm and �1; : : : ; �m . When we write � 2 H�T .X†/ as a polynomial
�.v; �/ in v1; : : : ; vm and �1; : : : ; �m , we have

lim
Q!0

Si .�/f .v; �/D uie
.�.v;��eiz/��.v;�//=zf .v; �� zei /;

where � � zei D .�1; : : : ; �i�1; �i � z; �iC1; : : : ; �m/. In particular, the classical
Seidel elements are given by

lim
Q!0

Si .�/D uie
�@�.v;�/=@�i :

Proof Recall from Theorem 3.14 that we have Si ıM.�/ D M.�/ ı Si .�/. Since
limQ!0M.�/D e�=z , we have

lim
Q!0

Si .�/f .v; �/D e
��=z

�
lim
Q!0

Si
�
e�=zf .v; �/:

By definition of Si , this vanishes when restricted to a fixed point outside of the minimal
fixed component fzi D 0g with respect to ei . On the other hand, for any T–fixed point
x in fzi D 0g, Lemma 4.2 implies that uj .x/ � ei D ıij and vj .x/ � ei D 0, and thus

lim
Q!0

Si .�/f .v; �/
ˇ̌
x
D e��.v.x/;�/=zui .x/e

�z@�i Œe�.v.x/;�/=zf .v.x/; �/�

D ui .x/e
.�.v.x/;��eiz/��.v.x/;�//=zf .v.x/; �� eiz/;
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where we set v.x/D .v1.x/; : : : ; vm.x//. The conclusion follows.

Lemma 4.6 Let x be a T–fixed point on X† . The restriction uj .x/ is a linear
combination of �i such that x does not lie on the divisor fzi D 0g.

Proof Note that if x does not lie on the divisor fzi D 0g, we have ui .x/D 0 and thus
vi .x/D��i . This together with the linear relation

Pm
iD1 �.bi /viD0, �2Hom.N ;Z/

determines v1.x/; : : : ; vm.x/ uniquely. This implies the conclusion.

Let L D Ljz!�z denote the Givental cone with the sign of z flipped. By the
description in Section 4.2, we have a parametrization of the Givental cone L by
.�; ‡/ 2H�T .X/�H

�

yT
.X/DH�T .X/�H

�
T .X/Œz� as

.�; ‡/ 7! zM.�; z/‡ 2 L:

The vector field (4-2) on L corresponds to the vector field on H�T .X/�H
�
T .X/Œz�,

.Vi /�;‡ D .Si .�/; Œz
�1Si .�/�C‡/;

where Si .�/ is the Seidel element in Definition 3.17 and Œ � � � �C means the projection to
the polynomial part in z , ie Œz�1Si .�/�C‡Dz�1Si .�/‡�z�1Si .�/?�‡ . In fact, if we
have a curve t 7!.�.t/; ‡.t// with � 0.0/DSi .�.0// and ‡ 0.0/D Œz�1Si .�.0//�C‡.0/,
the corresponding curve f .t/D zM.�.t/; z/‡.t/ on L satisfies

f 0.0/DM.�.0/; z/.Si .�.0// ?�.0/‡.0//C zM.�.0/; z/Œz
�1Si .�.0//�C‡.0/

DM.�.0/; z/Si .�.0//‡.0/D z
�1Sif .0/;

where we used z@iM.�; z/DM.�; z/.�i?� / in the first line and Theorem 3.14 in the
second line. Since the vector fields (4-2) commute each other, the corresponding vector
fields Vi for i D 1; : : : ; m also commute each other. In what follows, we show the
existence of an integral curve for the vector field Vi with prescribed asymptotics.

Proposition 4.7 There exist unique functions

�.y/ 2H�T .X†/ŒŒQ��ŒŒlogy�� and ‡.y; z/ 2H�T .X†/Œz�ŒŒQ��ŒŒlogy��

which are of the form

�.y/D

mX
iD1

ui logyi C
X

d2Eff.X†/;d¤0

Qdyd �d ;

‡.y; z/D 1C
X

d2Eff.X†/;d¤0

Qdyd‡d ;
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with yd D
Qm
jD1 y

uj �d

j and give an integral curve for the vector field Vi :

@�.y/

@yi
D Si .�.y// and

@‡.y; z/

@yi
D Œz�1Si .�.y//�C‡.y; z/

for all 1� i �m.

Proof Write �.y/D
Pm
jD1 uj logyj C� 0 . The divisor equation in Remark 3.12 gives

Si .�.y//D y
�1
i Si .�

0
IQy/;

where Si .� IQy/ is obtained from Si .�/ by replacing Qd with Qdyd . Therefore
we need to solve the differential equations

(4-3) yi
@� 0

@yi
D Si .�

0
IQy/�ui and yi

@‡

@yi
D Œz�1Si .�

0
IQy/�C‡:

We expand

� 0 D
X

d2Eff.X†/;d¤0

z�d .y/Q
d ; ‡ D

X
d2Eff.X†/

z‡d .y/Q
d ;

with z‡0.y/D 1 and solve for the coefficients z�d .y/ and z‡d .y/ recursively. Note that
(4-3) holds true mod Q by Lemma 4.5.

First we solve for � 0 . Choose a Kähler class ! such that ! � d1 D ! � d2 for
d1 , d2 2 Eff.X†/ if and only if d1 D d2 . This defines a positive real grading on
the Novikov ring CŒŒQ�� such that degQd D ! �d . Take d0 2 Eff.X†/nf0g. Suppose
by induction that there exist z�d for all d with !�d <!�d0 such that z�dD�dyd for some
�d 2H

�
T .X/ and that � 0 D

P
!�d<!�d0

z�dQ
d satisfies the differential equation (4-3)

modulo terms of degree � ! � d0 . We write �d as a polynomial in v1; : : : ; vm and
�1; : : : ; �m . Comparing the coefficients of Qd0 of the differential equation, we obtain
using Lemma 4.5 that

yi
@z�d0
@yi
Cui

@z�d0
@�i
D

�
an expression in z�d
with ! � d < ! � d0

�
:

Here the right-hand side is of the form gi .v; �/y
d0 by the induction hypothesis, where

gi .v; �/ is a polynomial in v1; : : : ; vm and �1; : : : ; �m . Setting z�d0 D �d0y
d0 , we

obtain

.ui � d0/�d0 C .vi C�i /
@�d0
@�i
D gi .v; �/:

The Kähler class can be written as a nonnegative linear combination of ui , and thus there
exists i0 such that ui0 �d0 > 0. Then we can solve for the polynomial �d0 D �d0.v; �/
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from the above equation with i D i0 recursively from the highest-order term in �i0 .
Setting �.y/D

P
i ui logyi C

P
!�d�!�d0

�dy
dQd , we have

@�.y/

@yi
� Si .�.y//

modulo terms of degree � ! � d0 for i ¤ i0 and modulo terms of degree > ! � d0 for
i D i0 . The commutativity of the flow implies that we have, for i ¤ i0 ,

(4-4)
@

@yi0

�
@�

@yi
�Si .�.y//

�
D
@2�.y/

@yi@yi0
� .d @�.y/

@yi0

Si /.�.y//

�
@Si0.�.y//

@yi
� .dSi0 .�.y//

Si /.�.y//

D .d @�.y/
@yi

Si0/.�.y//� .dSi .�.y//Si0/.�.y//

D .d @�.y/
@yi
�Si .�.y//

Si0/.�.y//

modulo terms of degree > ! � d0 . Using the divisor equation again, we have

yi

�
@�.y/

@yi
�Si .�.y//

�
D ui Cyi

@� 0

@yi
�Si .�

0
IQy/:

Modulo terms of degree > ! � d0 , this is ˛.Qy/d0 for some ˛ D ˛.v; �/ 2H�T .X/.
Now the coefficient of Qd0 of (4-4) gives (by Lemma 4.5)

.ui0 � d0/˛Cui0
@˛

@�i0
D 0:

We want to show that ˛D 0 as a cohomology class. Consider the restriction ˛.x/ of ˛
to a T–fixed point x 2X† . If x lies in the divisor fzi0 D 0g, then vj .x/ 2H 2

T .pt/ is
a linear combination of �j 0 with j 0 ¤ i0 by Lemma 4.6. Thus

(4-5)
@˛

@�i0

ˇ̌̌̌
x

D
@˛.x/

@�i0
:

If x is not in the divisor fzi0 D 0g, then ui0.x/D 0. Therefore, by restricting to x ,
we have

.ui0 � d/˛.x/Cui0.x/
@˛.x/

@�i0
D 0:

This shows that ˛.x/D 0 recursively from the highest-order term in �i0 . Note that
the same argument shows the uniqueness of �d0 . This completes the induction.

Next we solve for ‡ assuming that � 0 is already solved. Let ! be a Kähler class as above
and d02Eff.X†/ be a nonzero effective class. Suppose by induction that there exist z‡d
for all d with ! � d < ! � d0 such that z‡d D ‡dyd and that ‡ D

P
!�d<!�d0

z‡dQ
d
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satisfies the differential equation (4-3) modulo terms of degree �! �d0 . We regard ‡d
as a polynomial in v1; : : : ; vm and �1; : : : ; �m . Comparing the coefficients of Qd0 of
the differential equation and using Lemma 4.5, we obtain

yi
@ z‡d0.v; �/

@yi
�.viC�i /z

�1. z‡d0.v; ��eiz/�
z‡d0.v; �//D

�
an expression in z‡d
with ! � d < ! � d0

�
:

Here the right-hand side is of the form gi .v; �/y
d0 for some polynomial gi .v; �/ in

v1; : : : ; vm and �1; : : : ; �m . Setting z‡d0 D ‡d0y
d0 , we have

.ui � d0/‡d0.v; �/� .vi C�i /z
�1.‡d0.v; �� eiz/�‡d0.v; �//D gi .v; �/:

As before, we can find i0 such that ui0 �d0>0. We can solve for ‡d0.v; �/ recursively
from the highest order term in �i0 using this equation with i D i0 . Setting ‡ DP
!�d�!�d0

‡dQ
d , we have

@‡.y/

@yi
� Œz�1Si .�.y//�C‡.y/

modulo terms of degree � ! � d0 for i ¤ i0 and modulo terms of degree > ! � d0 for
i D i0 . We have, for i ¤ i0 ,

@

@yi0

�
@‡.y/

@yi
� Œz�1Si .�.y//�C‡.y/

�
D
@2‡.y/

@yi@yi0
�

@

@yi0
Œz�1Si .�.y//�C‡.y/

�
@

@yi
Œz�1Si0.�.y//�C‡.y/�

@

@yi0
Œz�1Si .�.y//�C‡.y/

� Œz�1.dSi .�.y//Si0/.�.y//�C‡.y/C Œz
�1Si0.�.y//�C

@‡.y/

@yi

� Œz�1.dSi0 .�.y//
Si /.�.y//�C‡.y/� Œz

�1Si .�.y//�CŒz
�1Si0.�.y//�C‡.y/

modulo terms of degree > ! �d0 . The commutativity of the flows Vi for i D 1; : : : ; m
implies, for i ¤ j ,

Œz�1.dSi .�/Sj /.�/�C‡ C Œz
�1Sj .�/�CŒz

�1Si .�/�C‡

D Œz�1.dSj .�/Si /.�/�C‡ C Œz
�1Si .�/�CŒz

�1Sj .�/�C‡:
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Therefore we have

(4-6)
@

@yi0

�
@‡.y/

@yi
� Œz�1Si .�.y//�C‡.y/

�
� Œz�1Si0.�.y//�C

�
@‡.y/

@yi
� Œz�1Si .�.y//�C‡.y/

�
modulo terms of degree > ! � d0 . By the divisor equation, we have

yi

�
@‡.y/

@yi
� Œz�1Si .�.y//�C‡.y/

�
D yi

@‡.y/

@yi
� Œz�1Si .�

0
IQy/�C‡.y/:

This is of the form ˛.Qy/d0 for some ˛ D ˛.v; �; z/ 2H�
yT
.X†/, modulo terms of

degree > ! � d0 . Hence the differential equation (4-6) implies via Lemma 4.5 that

.ui0 � d0/˛�ui0z
�1.˛.v; �� ei0z; z/�˛.v; �; z//D 0:

We want to show that ˛ D 0 in the cohomology group. By restricting this to a T–fixed
point x and using a similar argument as before (see (4-5)), we obtain

.ui0 � d0/˛.x/� .vi0.x/C�i0/z
�1.e

�z@�i0 ˛.x/�˛.x//D 0

for the restriction ˛.x/2H�
yT
.pt/ of ˛ to x . We can easily see that ˛.x/D0 recursively

from the highest-order term in �i0 . Therefore ˛ D 0. Note that the same argument
also shows the uniqueness of ‡d0 . This completes the induction and the proof.

We now come to the final step of the proof. Let �.y/, ‡.y; z/ be as in Proposition 4.7.
Then, as discussed in the paragraph preceding Proposition 4.7,

y 7! f .y/ WD zM.�.y/; z/‡.y; z/

defines an integral manifold for the vector fields in (4-2). We shall show that f .y/D

I.y; z/. Using the divisor equation for M.�; z/, we find that f .y/ is of the form

(4-7) f .y/D ze
Pm
iD1 ui logyi=z

�
1C

X
d2Eff.X†/nf0g

fdQ
dyd

�
with fd 2H yT .X/loc . In view of Lemma 4.3, the following lemma shows that f .y/D

I.y; z/ and completes the proof of Theorem 4.1.

Lemma 4.8 The family of elements y 7!f .y/ of the form (4-7) satisfying @yif .y/D
z�1Sif .y/ for i D 1; : : : ; m is unique.

Proof Suppose that we have two families f1.y/ and f2.y/ of elements of the form
(4-7) satisfying @yifj .y/ D z�1Sifj .y/ for j D 1; 2 and i D 1; 2; : : : ; m. The
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difference g.y/D f1.y/�f2.y/ satisfies the same differential equation and is of the
form

g.y/D ze
Pm
iD1 ui logyi=z

X
d2Eff.X†/nf0g

gdQ
dyd :

Choose a Kähler class ! and suppose by induction that we know gd D 0 for all
d 2Eff.X†/ with ! �d <! �d0 for some d0 2Eff.X†/nf0g. Let x be a T–fixed point.
Let ı be the set of indices i such that x does not lie on the toric divisor fzi D 0g. The
Kähler class ! can be written as a positive linear combination of nonequivariant limits
of ui with i 2 ı . Therefore, there exists i0 2 ı such that ui0 � d0 > 0. The coefficient
in front of Qd0 of the equation @yi0g.y/D z

�1Si0g.y/ restricted to the fixed point x
gives

.ui0 � d0/gd0.x/D 0

since x does not lie on the minimal fixed component fzi0 D 0g with respect to ei0 .
Therefore gd0.x/D 0. Since x is arbitrary, gd0 D 0. This completes the induction
and the proof.

4.4 Example

Consider the toric variety X† D Pm�1 . In this case we have m shift operators
S1; : : : ;Sm corresponding to m toric divisors. It is well known that the mirror map
�.y/ and the function ‡.y/ are trivial:

�.y/D

mX
iD1

ui logyi ; ‡.y/D 1:

Generalizing the differential equation in Lemma 4.3, we can show that

Si1 � � �SiaI.y; z/D z@yi1 � � � z@yia I.y; z/

when i1; : : : ; ia are distinct. This together with the intertwining property Si ıM.�; z/D
M.�; z/ ıSi .�/ and the divisor equation Si .�.y//D y�1i Si .0IQy/ implies

Si1.0IQy/ � � �Sia.0IQy/1D zrui1 � � � zruia1
ˇ̌
�.y/
D

�
ui1 � � �uia if a < m,
Qy1 � � �ym if aDm;

where i1; : : : ; ia are distinct and Si .0IQy/ means Si .0/jQ!Qy1���ym . This determines
the action of Si .0/ completely. Since the one-parameter subgroup e1C � � �C em acts
on Pm�1 trivially, we have a relation S1.�/ ı � � � ı Sm.�/ D Q by Corollary 3.16.
Writing ui D vC�i for i D 1; : : : ; m, we recover the relation

.zrvC�1/ � � � .zrvC�m/1
ˇ̌
�D0
DQ

in the equivariant small quantum D–module of Pm�1 .
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4.5 Remarks

We first note a relation to the results in [16]. Let X† be a compact toric manifold such
that c1.X†/ is nef. In this case, the mirror map �.y/ takes values in H 2

T .X/. We
write

�.y/D

mX
iD1

.logyi �gi .y//ui

for some C–valued functions gi .y/. Using the divisor equation from Remark 3.12,
the differential equation in Proposition 4.7 implies:

yi
@�.y/

@yi
D eg

i .y/Si .0IQe
�.y//;

where we set Si .0IQe�.y//DSi .0/jQ!Qe�.y/ . The left-hand side is called the Batyrev
element in [16] and this recovers the relationship between the Seidel and the Batyrev
elements in [16, Theorem 1.1].

We should also recover a mirror theorem for the extended I–function [7] by considering
the shift operators corresponding to general seminegative cocharacters k 2 .Z�0/m �
Hom.C�; T /. It would be also interesting to see if our method can be generalized to
toric orbifolds [7; 6], toric fibrations [5] or other T–varieties.

Notes added in proof The extended I–function for toric manifolds has been recovered
in [21] by considering shift operators for arbitrary cocharacters k .
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