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Distinguishing geometries using finite quotients
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We prove that the profinite completion of the fundamental group of a compact 3–
manifold M satisfies a Tits alternative: if a closed subgroup H does not contain
a free pro-p subgroup for any p , then H is virtually soluble, and furthermore of
a very particular form. In particular, the profinite completion of the fundamental
group of a closed, hyperbolic 3–manifold does not contain a subgroup isomorphic
to OZ2 . This gives a profinite characterization of hyperbolicity among irreducible
3–manifolds. We also characterize Seifert fibred 3–manifolds as precisely those for
which the profinite completion of the fundamental group has a nontrivial procyclic
normal subgroup. Our techniques also apply to hyperbolic, virtually special groups,
in the sense of Haglund and Wise. Finally, we prove that every finitely generated
pro-p subgroup of the profinite completion of a torsion-free, hyperbolic, virtually
special group is free pro-p .

57N10; 20E26, 57M05

In a heuristic commonly used to distinguish 3–manifolds M and N , one computes all
covers M1; : : : ;Mm of M and N1; : : : ; Nn of N up to some small degree, and then
compares the resulting finite lists .Mi / and .Nj /. If they can be distinguished, then
one has a proof that M and N are not homeomorphic.

It is natural to ask whether this method always works. A more precise question was
formulated by Calegari, Freedman and Walker [6], who asked whether the fundamental
group of a 3–manifold is determined by its finite quotients or, equivalently, by its
profinite completion. (A standard argument shows that two finitely generated groups
have the same set of finite quotients if and only if their profinite completions are
isomorphic.) Bridson, Conder and Reid [5] have answered the corresponding question
for Fuchsian groups positively, while Long and Reid [29] have given a positive answer
to a related question. We refer the reader to Reid [40, Section 8] for a discussion of
this and related problems.

Funar [9] used work of Stebe [46] to exhibit Sol manifolds that answer the Calegari–
Freedman–Walker question in the negative, and more recently Hempel [21] has exhibited
Seifert fibred examples. Nevertheless, because of the effectiveness of the above heuristic,
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it remains natural to ask how much information about a given 3–manifold is contained
in the profinite completion of its fundamental group.

Our first theorem shows that the hyperbolicity of a closed 3–manifold M is determined
by this profinite completion. Recall that the sphere theorem and the Kneser–Milnor
decomposition imply that a closed, orientable 3–manifold M is aspherical if and only
if M is irreducible and its fundamental group is infinite.

Theorem A Let M be a closed, orientable, aspherical 3–manifold. Then M is
hyperbolic if and only if the profinite completion 1�1M does not contain a subgroup
isomorphic to yZ2 .

This can be thought of as a profinite analogue of the hyperbolization theorem, which
asserts that M is hyperbolic if and only if �1M does not contain a subgroup isomorphic
to Z2 . This is one case of the geometrization theorem, proved by Perelman [37; 38; 39]
(see also Kleiner and Lott [28] and Morgan and Tian [33; 34]). We also have the
following profinite characterization of Seifert fibred 3–manifolds:

Theorem B Let M be a closed, orientable, aspherical 3–manifold. Then M is Seifert
fibred if and only if the profinite completion 1�1M has a nontrivial procyclic normal
subgroup.

The Seifert conjecture, which follows from the geometrization theorem but was proved
earlier by Casson and Jungreis [7] and Gabai [10], building on work of Mess [30] and
Tukia [47], asserts that if �1M is infinite then M is Seifert fibred if and only if �1M
has an infinite cyclic normal subgroup.

In fact, the geometrization theorem is equivalent to the hyperbolization theorem and
the Seifert conjecture, together with the elliptization theorem, which asserts that M is
spherical if and only if �1M is finite; see Scott [44]. Since 3–manifold groups are
residually finite (see Hempel [20]), �1M is finite if and only if its profinite completion
is, so there is no distinct profinite analogue of the elliptization theorem. Theorems
A and B can therefore be thought of as providing a complete profinite analogue of
the geometrization theorem (although one should note, of course, that our proofs rely
essentially on geometrization). In Theorem 8.4, we proceed to show that the profinite
completion of the fundamental group detects the geometry of a closed, orientable,
irreducible 3–manifold.

Alternatively, Theorem A can be thought of as a classification result for the abelian
subgroups of profinite completions of fundamental groups of hyperbolic manifolds.
In fact, we prove a much more general “Tits alternative” for profinite completions of
3–manifold groups. We use the notation Z� to denote

Q
p2� Zp .
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Theorem C If M is any compact 3–manifold and H is a closed subgroup of 1�1M
that does not contain a free nonabelian pro-p subgroup for any prime p then either

(1) H is conjugate to the completion of a virtually soluble subgroup of �1M , or

(2) H is isomorphic to ..Z� �Z�/ÌC/, where � and � are (possibly empty) sets
of primes with � \ � D¿ and C is procyclic (possibly finite).

Note that virtually soluble 3–manifold groups are classified, so the first possibility is
well understood; see Aschenbrenner, Friedl and Wilton [3, Theorem 1.11.1]. For the
second possibility, there are in fact additional constraints on the structure of H , depend-
ing on the geometry of M . We refer the reader to Theorem 5.2 and Proposition 9.4 for
details.

The proof of Theorem A uses the dramatic recent developments of Agol [1], Kahn
and Markovic [27] and Wise [50], whose work implies that the fundamental groups
of closed hyperbolic 3–manifolds are also fundamental groups of compact, virtually
special cube complexes (see [3] for a summary of these developments). Indeed, we
prove the following theorem:

Theorem D Let G be hyperbolic, virtually special group. If H is a closed subgroup
of yG that does not contain a free nonabelian pro-p subgroup for any p then H is
virtually isomorphic to Z� Ì Z� , where � and � are disjoint (possibly empty) sets of
primes. If G is torsion-free, then “virtually” can be omitted.

As well as hyperbolic 3–manifold groups, many other classes of hyperbolic groups are
now known to be virtually special: word-hyperbolic Coxeter groups (see Haglund and
Wise [15]); C 0

�
1
6

�
small-cancellation groups (see Wise [49] and Agol [1]); random

groups at density less than 1
6

(see Ollivier and Wise [36] and Agol [1]); and one-relator
groups with torsion (see Wise [50]). Most of these examples are torsion-free, with the
exception of Coxeter groups and one-relator groups. In the one-relator case, we can
improve our classification:

Theorem E Let G be a one-relator group with torsion and H a closed subgroup of yG
that does not contain a free nonabelian pro-p subgroup for any p . Then H is virtually
soluble and has one of the following forms:

(1) H Š Z� Ì Z� , where � and � are disjoint sets of primes.

(2) H is a profinite dihedral group Z� ÌC2 .

(3) H is a profinite Frobenius group Z� ÌCn , ie the order of every prime divisor p
of n divides q� 1 for some q 2 � and the centralizers of nonidentity elements
of Cn coincide with Cn .
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We then turn to analyse the pro-p subgroups of yG , whose structure turns out to be
amazingly restricted: they are all free whenever G is torsion-free, hyperbolic and
virtually special (such as the fundamental group of a hyperbolic 3–manifold).

Theorem F Let G be a torsion-free, hyperbolic, virtually special group (such as the
fundamental group of a compact hyperbolic 3–manifold). Any finitely generated pro-p
subgroup H of yG is free pro-p .

Also, if G has torsion, then a finitely generated pro-p subgroup H of yG is virtually
free pro-p and therefore, by the main result of Herfort and Zalesskii [23], admits a pro-p
analogue of Karras, Pietrowsky and Solitar’s description, ie as the pro-p fundamental
group of a finite graph of finite p–groups (see Corollary 11.3).

We conclude this introduction by outlining the structures of the proofs in this paper.
Since Theorem A follows immediately from Theorem D, we will first illustrate the
proof of Theorem D by sketching the proof that the profinite completion of a hyperbolic
virtually special group cannot contain a subgroup isomorphic to yZ2 .

Any hyperbolic virtually special group G has a subgroup G0 of finite index that
admits a malnormal quasiconvex hierarchy (see Definition 1.3). There is a well-known
geometric proof that hyperbolic groups cannot contain subgroups isomorphic to Z2 ,
but one can give an alternative proof of this fact for hyperbolic virtually special groups
using the malnormal hierarchy, as follows: since the edge groups in the hierarchy are
malnormal, the corresponding action of G0 on the Bass–Serre tree is 1–acylindrical
(see Definition 7.1); but Z2 does not admit an acylindrical action on a tree, so any Z2

subgroup of G0 is conjugate into a lower level of the hierarchy, and we conclude by
induction. Note that, in this proof, only the malnormality of the hierarchy was used;
this makes it suitable for translation to the profinite setting, where malnormality makes
sense.

The proof of Theorem D is a profinite analogue of this argument. Classical Bass–Serre
theory is replaced by the theory of groups acting on profinite trees (see Sections 5
and 6). As in the discrete setting, the key fact needed is that the edge stabilizers should
be malnormal. This is provided by the following theorem, which is of independent
interest. (See Theorem 3.3 for a more comprehensive statement.)

Theorem G Let G be a hyperbolic virtually special group and let H be a quasiconvex,
almost malnormal subgroup. Then yH is also almost malnormal in yG .

Theorem G is proved using detailed properties of the canonical completion for im-
mersions of special cube complexes, developed by Haglund and Wise [14; 16] (see
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Section 2 for details). This completes our sketch of the proof of Theorem D (and hence
Theorem A).

The above argument implies in particular that, after passing to a finite-index subgroup,
the profinite completion of the fundamental group of a closed hyperbolic 3–manifold
admits an acylindrical action on a profinite tree (see Definition 7.2). In fact, the same
holds true for every closed 3–manifold M which is neither Seifert fibred nor a Sol
manifold: if M is reducible then the profinite tree is induced by the Kneser–Milnor
decomposition, and if M is irreducible and not geometric then the profinite tree is
induced by the JSJ decomposition. The bulk of the proof of Theorem B consists of
these observations, together with a result (Proposition 6.6) which implies that a profinite
group acting acylindrically on a profinite tree cannot have a nontrivial procyclic normal
subgroup. Again, this is the profinite analogue of a well-known lemma from classical
Bass–Serre theory. A separate argument is needed to show that profinite completions
of Sol manifolds do not admit nontrivial procyclic normal subgroups. With Theorem B
in hand, we go on to show that the profinite completion of the fundamental group of a
geometric 3–manifold determines its geometry (see Theorem 8.4).

As in the case of Theorem D, the proof of Theorem C is by induction on a suitable
hierarchy. By applying first the (profinite) Kneser–Milnor decomposition and then
the (profinite) JSJ decomposition, the theorem is reduced to the cases of Seifert fibred
and hyperbolic manifolds, possibly with cusps. The main difficulty at this point is
provided by hyperbolic manifolds with cusps; as in the closed case, one needs to know
that (after passing to a finite-sheeted cover) there is a suitable hierarchy in which the
corresponding actions on profinite trees are profinitely acylindrical. We resolve this
difficulty with a combinatorial Dehn filling argument (see Section 9A), which reduces
the problem to the setting of hyperbolic virtually special groups, where Theorem G
applies.

The proof of Theorem E amounts to a careful analysis of the hierarchy used by Wise
to show that one-relator groups with torsion are virtually special. Finally, the main
additional ingredient of Theorem F is Theorem 11.1, of interest in its own right, which
asserts that a pro-p group acting 1–acylindrically on a profinite tree actually splits as a
free (pro-p ) product.
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1 Hierarchies for virtually special groups

Haglund and Wise [14] defined a nonpositively curved cube complex to be special if
its hyperplanes do not exhibit a certain finite list of pathologies (they are not one-sided,
and do not self-intersect, directly self-osculate, or inter-osculate). The reader is referred
to that paper for details, but we will not need them here.

We will call a group G virtually special if some finite-index subgroup is the fundamental
group of a compact, special cube complex. (Note that, in some other contexts, the
compactness hypothesis is omitted. This leads to a different class of groups.)

Since the hyperplanes in a special cube complex are embedded and two-sided, one
can cut along them to obtain a hierarchical decomposition of the fundamental group.
This can be thought of as a more geometric version of the hierarchy admitted by a
Haken 3–manifold. Indeed, in the word-hyperbolic case, results of Haglund and Wise
characterize virtually special groups as precisely those that admit a sufficiently well
behaved hierarchy.

In order to state their results, we first need to describe the sorts of hierarchies that we
are interested in.

Definition 1.1 The class of word-hyperbolic groups with a quasiconvex hierarchy is
the smallest class of groups, closed under isomorphism, that contains the trivial group
and is such that, if

(1) G D A�C B , and A and B each have a quasiconvex hierarchy, or

(2) G D A�C and A has a quasiconvex hierarchy,

and C is quasiconvex in G , then G also has a quasiconvex hierarchy.

The quasiconvex subgroups referred to above are the “geometrically well-behaved”
subgroups of a word-hyperbolic group. The following, algebraic, notion of “good
behaviour” will also concern us:

Definition 1.2 A subgroup H �G is called malnormal if

H 
\H D 1

whenever  …H . In groups G with torsion, it is often more appropriate to consider
almost malnormal subgroups: a subgroup H is almost malnormal if H  \H is finite
whenever  …H ; in particular, if G is torsion-free then almost malnormal subgroups
are malnormal.
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It is frequently also useful to generalize this definition to families of subgroups: a
family HD fH; : : : ;Hng of subgroups of a group G is called malnormal if

Hi \H

j ¤ 1 D) i D j and  2Hi

for any  2G and any indices i and j . As above, one may also relax the definition of
a malnormal family of subgroups to obtain a notion of an almost malnormal family of
subgroups.

We can use this definition to define a more restrictive notion of hierarchy.

Definition 1.3 The class of word-hyperbolic groups with a malnormal quasiconvex
hierarchy is the smallest class of groups, closed under isomorphism, that contains the
trivial group and is such that, if

(1) G D A�C B , and A and B each have a malnormal quasiconvex hierarchy, or

(2) G D A�C and A has a malnormal quasiconvex hierarchy,

and C is malnormal and quasiconvex in G , then G also has a malnormal quasiconvex
hierarchy.

With these definitions in hand, we can summarize some deep results of Haglund, Hsu
and Wise in the following theorem:

Theorem 1.4 [16; 26; 50] Let G be a word-hyperbolic group. The following are
equivalent:

(1) G is virtually special;

(2) G has a subgroup G0 of finite index with a malnormal quasiconvex hierarchy;

(3) G has a subgroup G1 of finite index with a quasiconvex hierarchy.

Proof The equivalence of (1) and (2) follows from theorems of Hsu and Wise [26]
and Haglund and Wise [16]. Wise used these results in his proof of the equivalence of
(1) and (3) [50].

Although quasiconvex subgroups of word-hyperbolic groups may not be (almost)
malnormal, they enjoy a weaker algebraic property that is almost as useful, first studied
by Gitik, Mitra, Rips and Sageev [11].

Geometry & Topology, Volume 21 (2017)



352 Henry Wilton and Pavel Zalesskii

Definition 1.5 Let H be a subgroup of a group G . The width of H is the maximal
cardinality of a set of distinct right cosets

fHig �HnG

such that jH i \H j j D1 for all i and j .

In particular, note that the width of H is 0 if and only if H is finite, and the width of
H is 1 if and only if H is infinite and almost malnormal.

Theorem 1.6 [11] If G is hyperbolic and H is quasiconvex in G then the width of
H is finite.

Recall that a subgroup H is separable if it is closed in the profinite topology on G .
The following lemma is often useful when combined with Theorem 1.6:

Lemma 1.7 If a subgroup H of a torsion-free group G is both separable and has
finite width, then there is a subgroup G0 of finite index in G that contains H and such
that H is malnormal in G0 .

Therefore, as long as we know that H is separable (as is the case for quasiconvex
subgroups of virtually special groups, for instance), we may promote finite width to
malnormality, by passing to a finite-index subgroup.

The connection to 3–manifolds arises from Agol’s solution to the virtual Haken con-
jecture [1] which, in addition to the above theorems of Haglund, Hsu and Wise, makes
essential use of the work of Kahn and Markovic [27].

Theorem 1.8 (Agol) If M is a closed hyperbolic 3–manifold then �1M is hyper-
bolic and virtually special.

In summary, the virtual Haken conjecture asserts that, after passing to a finite-index
subgroup, every closed hyperbolic 3–manifold admits a Haken hierarchy. However,
Agol proved the even stronger result that, after passing to a finite-index subgroup, every
closed hyperbolic 3–manifold admits a quasiconvex malnormal hierarchy.

The malnormality of the hierarchy will be crucial to our argument, since we will be
working in the profinite setting, where there is no well-developed notion of quasi-
convexity. Malnormality, however, is a purely algebraic notion, and therefore makes
perfect sense for subgroups of profinite completions.
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2 Haglund and Wise’s canonical completion

One important element of the proof of Theorem 1.4 is Haglund and Wise’s combination
theorem for virtually special cube complexes [16]. Their principal tool is the canonical
completion of a quasiconvex subgroup. In this section, we extract an algebraic property
of the canonical completion, which we will then be able to apply in the profinite setting.
Our main result is as follows:

Theorem 2.1 Let G be a hyperbolic group and the fundamental group of a com-
pact, virtually special cube complex, and let H D fH;Kg be a malnormal family of
quasiconvex subgroups. For any finite-index subgroup G1 of G there exists a finite-
index subgroup G0 �G1 and a retraction map �W G0!H \G1 with the following
properties:

(1) �.H  \G0/D 1 unless  2HG1 ; and

(2) �.K \G0/D 1 for all  2G .

To prove this we assemble some definitions and results of Haglund and Wise. We refer
to their paper and the references therein for definitions.

Let X be a compact special cube complex, and let A;B �X be subcomplexes. Then
Haglund and Wise define the wall projection WX .A! B/, a subcomplex of X . We
refer to their paper for the definition, the details of which we will not need, but we note
that WX .A! B/ is said to be trivial if every loop in WX .A! B/ is null-homotopic
in X .

Theorem 2.2 Let A;B be locally convex subcomplexes of a special cube complex X .
There is finite-sheeted covering space C.A;X/! X to which the inclusion A! X

lifts, and a retraction r W C.A;X/! A. Furthermore, if B0 is the full preimage of B
in C.A;X/, then

r.B0/�WX .B! A/:

Proof The existence of C.A;X/ and r were proved in [14]. The inclusion is [16,
Lemma 3.16].

The covering space C.A;X/ is called the canonical completion of A, and the map r
is the canonical retraction. The above result shows that the image of the canonical
retraction is controlled by the wall projection. Ensuring that wall projections are trivial
is a delicate problem, and much of the difficulty of [16] lies in its resolution. In order
to resolve the problem, we need to recall the definition of an elevation.
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Definition 2.3 Let f W Y ! X be a continuous map of topological spaces and let
pW X 0!X be a covering map. Recall that the fibre product

Y �X X
0
D f.y; x0/ 2 Y �X 0 j f .y/D p.x0/g

is naturally a covering space of Y and is equipped with a natural lift f 0W Y �XX 0!X 0 .
The restriction of f 0 to a path component Y 0 of Y �X X 0 is called an elevation of f
to X 0 .

Remark 2.4 By standard covering space theory, after choosing base points there is a
natural bijection between the set of double cosets

f��1Y n�1X=�1X
0

and the path components of Y �X X 0 . If this bijection is denoted by

.f��1Y /�1X
0
7! Y

then
f 0��1Y D .f��1Y /


\�1X

0;

where the subscript star means the induced homomorphism of the fundamental groups.

We are now ready to state a theorem of Haglund and Wise, which guarantees that we
can make wall projections trivial in a finite-sheeted cover.

Theorem 2.5 [16, Corollary 5.8] Let X be a compact, virtually special cube complex
with �1X word-hyperbolic. Suppose that A!X and B!X are local isometries (ie
�1A and �1B are quasiconvex subgroups of X ) and that f�1A;�1Bg is a malnormal
family of subgroups of �1X . There is a finite-sheeted covering space A0! A such
that any further finite-sheeted covering space A! A0 ! A can be completed to a
finite-sheeted covering space X !X with the following properties:

(1) Every elevation of A!X and B!X to X is injective.

(2) Every elevation A0 of A!X to X distinct from A has trivial WX .A
0! A/.

(3) Every elevation B of B!X to X has trivial WX .B! A/.

We will also need the simple observation that the property of trivial wall projections is
preserved under passing to finite-sheeted covers.

Lemma 2.6 [16, Lemma 5.2] Suppose that X 0!X is a covering map of connected
cube complexes, and that A;B � X are connected sub-complexes. If WX .B ! A/

is trivial then, for any pair of elevations A0 and B 0 (of A and B , respectively) to X 0 ,
WX 0.B

0! A0/ is also trivial.
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We can combine these to obtain the result that we need:

Proof of Theorem 2.1 Let X be a virtually special cube complex with G Š �1X .
Since H and K are quasiconvex subgroups, they are realized by local isometries of
cube complexes A!X and B!X respectively. Let G1 be any finite-index subgroup
of G and let X1 be the corresponding covering space of X .

We first prove the following: for any  …HG1 , there exists a finite-sheeted covering
space X 0!X such that

(1) the trivial elevation A0!X 0 of A!X is injective;

(2) the elevation A0 !X 0 of A!X corresponding to the double coset H�1X 0

is injective;

(3) the wall projections WX 0.A0 ! A0/ are trivial.

To prove this, let X1!X be the covering space corresponding to G1 , let A1!X1

be the elevation of A! X to X1 that corresponds to the trivial double coset, and
let A1 ! X1 be the elevation corresponding to HG1 . Since fH \G1;H  \G1g

is a malnormal pair of subgroups of G1 , we may apply Theorem 2.5 with X1 in the
role of X , A1 in the role of A and A1 in the role of B to obtain a finite-sheeted
covering space A0 ! A1 (such as the one denoted by A0 in the statement of the
theorem) and a corresponding “completion” to a finite covering space X 0 of X1 .
Now, by Theorem 2.5(1), the maps A0!X 0 and A0 !X 0 are injective and, by (3),
WX 0.A

0
 ! A0/ is trivial.

Since the above covering space X 0 depends on the element  , we will denote it by X1
(although note that it actually only depends on the double coset HG1 ).

In exactly the same way, we may also prove the following: for any  2G , there exists
a finite-sheeted covering space X 0!X such that

(1) the trivial elevation A0!X 0 of A!X is injective;

(2) the elevation B 0 !X 0 of B!X corresponding to the double coset K�1X 0

is injective;

(3) the wall projections WX 0.B 0 ! A0/ are trivial.

We will denote this covering space X 0 by X2 .

Now let X be the finite-sheeted covering space of X such that

�1X D
\

…HG1

�1X

1 \

\
2G

�1X

1 ;
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which has the property that it covers every X1 and X2 . For any  2G , let A!X be
the elevation of A!X corresponding to H�1X and let B !X be the elevation
of B ! X corresponding to H�1X . Let A ! X be the elevation of A ! X

corresponding to the trivial coset. By the construction of X and by Lemma 2.6, we
have that WX .A !A/ is trivial whenever  …HG1 , and WX .B !A/ is trivial for
all  .

Finally, let G0 D �1C.A;X/ and let � be the map induced on fundamental groups by
the canonical retraction r . Theorem 2.1 now follows immediately from Theorem 2.2.

3 Malnormality in the profinite completion

In this section we prove that, for quasiconvex subgroups of hyperbolic, virtually special
groups, malnormality passes to the profinite closure. In preparation, we need to observe
that the profinite completion of a torsion-free, virtually special group is itself torsion-
free. For this we need to explain Serre’s notion of a good group, which we will need in
the proof.

Definition 3.1 A group G is good if the natural homomorphism G ! yG of the
group in its profinite completion induces an isomorphism on cohomology with finite
coefficients.

In particular, the profinite completion of a good group of finite cohomological dimension
is of finite cohomological dimension and so is torsion-free. It follows quickly from the
results of [13] and the standard theory of virtually special groups that a torsion-free,
virtually special group is good.

Proposition 3.2 If a group G has a finite-index subgroup G0 which is the fundamental
group of a compact, special cube complex then G is good. If G is torsion-free then so
is yG .

Proof Let G0 be a subgroup of G which is the fundamental group of a compact,
special cube complex. The results of [14] combined with [13, Theorem 1.4] imply that
G0 is good, and therefore G is also good by [13, Lemma 3.2]. If G is torsion-free then
it is of finite cohomological dimension; by goodness, yG is also of finite cohomological
dimension and hence torsion-free.

We are now ready to prove the main theorem of this section.
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Theorem 3.3 Let G be word-hyperbolic and the fundamental group of a compact,
virtually special cube complex. Let H D fH1; : : : ;Hng be a malnormal family of
quasiconvex subgroups. Then the family yHD f yH1; : : : ; yHng is a malnormal family of
subgroups of the profinite completion yG .

Proof It suffices to take nD 2. First, we prove that yH D yH1 is a malnormal subgroup
of yG .

Let y 2 yG X yH and suppose that yı 2 yH \ yH y , so yı D y�y for y� 2 yH . Since yH is
closed, there exists a finite quotient qW G!Q whose continuous extension yqW yG!Q

satisfies yq.y/ … q.H/. Let G1 D ker q , and let G0 be the finite-index subgroup and
� the retraction guaranteed by Theorem 2.1. Let n be such that yın 2 yG0 . If y� is the
continuous extension of � to yG0 then

yın D y�.yın/D y�..y�n/y //D 1;

where the final equality follows from Theorem 2.1(1) by continuity, using that the
closure HG1 is clopen in yG . So yı is torsion and therefore trivial, since yG is torsion-free
by Proposition 3.2. This proves that yH1 is malnormal.

To complete the proof that yH is a malnormal family, suppose that yı D y�y , where
yı 2 yH1 and y� 2 yH2 . Let G1 DG and, as before, let G0 be the finite-index subgroup
guaranteed by Theorem 2.1 and let n be such that yın 2 yG0 . Then, as before, we have
that

yın D y�.yın/D y�..y�n/y //D 1;

where the final inequality follows from Theorem 2.1(2) by continuity. Again, since yG
is torsion-free, we deduce that yı D 1, which proves the theorem.

In the statement of Theorem 3.3, the group G is assumed to be the fundamental group
of a compact, virtually special cube complex. In particular, G is torsion-free. However,
we can weaken the hypotheses on G in a small but significant way, and instead assume
that G is merely virtually special, meaning that it has a subgroup of finite index which
is the fundamental group of a compact special cube complex. In particular, such a G
may have torsion. As mentioned above, in this context it is preferable to work with
almost malnormal families of subgroups.

We can quickly deduce a similar result in this setting, which will be useful later.

Corollary 3.4 Let G be word-hyperbolic and virtually special. Let HDfH1; : : : ;Hng
be an (almost) malnormal family of quasiconvex subgroups. Then the family yH D
f yH1; : : : ; yHng is an (almost) malnormal family of subgroups of the profinite comple-
tion yG .
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Proof Let G0 be a subgroup of finite index in G that is the fundamental group of a
compact special cube complex. For each i let fij g be a set of representatives for the
double coset space HinG=G0 . For each i and j , let Kij DH

ij

i \G0 . Then KDfKij g
is a malnormal family of quasiconvex subgroups G0 . By Theorem 3.3 it follows that
yK D f yKij g is a malnormal family of subgroups of the profinite completion yG0 . It
follows that yH is an (almost) malnormal family of subgroups of yG .

Likewise, we can deduce that the notion of finite width also passes to the profinite
completion.

Corollary 3.5 Let G be word-hyperbolic and virtually special, and let H be a quasi-
convex subgroup of G . Then yH has finite width in the profinite completion yG .

Proof Since H is separable in G , by Lemma 1.7, we may pass to a subgroup G0
of finite index in G in which H is malnormal. Therefore, by Corollary 3.4, yH is
malnormal in yG0 . Suppose now that f yH yig is a subset of yHn yG and yH yi \ yH yj

is infinite for all i and j . Then yH yi y
�1
j \ yH is also infinite, whence yi y�1j … yG0

if i ¤ j . Therefore, the map

f yH yig ! yG0n yG ŠG0nG

induced by the inclusion yH ! yG0 is an injection. This completes the proof.

4 Malnormality in the relative case

In order to deal with cusped hyperbolic manifolds, we will also need relative versions
of the results of the previous section. A toral relatively hyperbolic is a group that is
torsion-free and hyperbolic relative to sets of finitely generated abelian subgroups. We
refer the reader to [25] for a survey of the various equivalent definitions of relative
hyperbolicity.

There is a notion of a relatively quasiconvex subgroup of a relatively hyperbolic group.
Again, the reader is referred to [25] for various equivalent definitions. We will also be
interested in a relatively hyperbolic version of malnormality.

Definition 4.1 Suppose that a group G is hyperbolic relative to a collection of para-
bolic subgroups fP1; : : : ; Png. A subgroup H of G is called relatively malnormal if,
whenever an intersection of conjugates H  \H is not conjugate into some Pi , we
have  2H .

The next theorem, which is the main result of this section, is an analogue of Theorem 3.3
in the toral relatively hyperbolic setting.
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Theorem 4.2 Suppose that G is a virtually compact special group which is also toral
relatively hyperbolic with parabolic subgroups P1; : : : ; Pn . Let H be a subgroup
which is relatively malnormal and relatively quasiconvex. Then yH is also a relatively
malnormal subgroup of yG , in the sense that yH \ yH y is conjugate into yPi (for some i )
whenever y … yH .

One could envisage a proof of this theorem along the lines of the techniques of Section 3,
again using Haglund and Wise’s canonical completion. However, this would require
a generalization of Theorem 2.5 to the relatively hyperbolic setting, which is not
currently in the literature. Instead, we will appeal to [50, Lemma 16.13], which is a
relatively hyperbolic version of the malnormal special quotient theorem of Wise [50,
Theorem 12.3].

Theorem 4.3 Suppose G is toral relatively word-hyperbolic and virtually compact
special and PDfP1; : : : ; Pkg is an almost malnormal family of quasiconvex subgroups
of G . There are subgroups of finite index Ki � Pi such that, for all subgroups of finite
index Li �Ki , the quotient

G=hhL1; : : : ; Lnii

is word-hyperbolic and virtually the fundamental group of a compact special cube
complex.

Proof This is a special case of [50, Lemma 16.13].

We will also need to make use of a relatively hyperbolic extension of the results of
Agol, Groves and Manning from [2].

Theorem 4.4 [12] Let G be a toral relatively hyperbolic group, with parabolic
subgroups fP1; : : : ; Png and let H be a subgroup which is relatively quasiconvex and
relatively malnormal. There exist subgroups of finite index K 0i � Pi (for all i ) such
that, for all subgroups of finite index Li �K 0i , if

�W G!QDG=hhL1; : : : ; Lnii

is the quotient map, the quotient Q is word-hyperbolic and the image �.H/ in Q is
quasiconvex and almost malnormal.

Proof of Theorem 4.2 Suppose that yh 2 yH , y … yH and yhy 2 yH . Since y … yH ,
there exists a finite quotient q0W G !Q0 such that, when extended to the profinite
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completion, yq0.y/ … q0.H/ and also yq0.yh/¤ 1. Let qW G!Q be any finite quotient
of G such that q0 factors through q . For each i , let

Li D ker q\Ki \K 0i

for Ki as in Theorem 4.3 and K 0i as in Theorem 4.4. Now we Dehn fill to obtain

�W G!G=hhL1; : : : ; Lnii DW�;

and let K D �.H/. By Theorem 4.3, � is virtually special. Note that q0 factors
through �, so y�.y/ … yK and y�.yh/¤ 1. By Theorem 4.4, K is quasiconvex and almost
malnormal in �.

Hence, by Corollary 3.4, yK is also almost malnormal in y�. But y�.yh/ 2 yK \ yK y�.y/
�1

,
and so y�.yh/ has finite order, and hence is conjugate into y�. yPi / for some i . In particular,
yq.yh/ is conjugate into yq. yPi / for some i .

Since q was an arbitrarily deep finite quotient of G , it follows that yh is conjugate into
yPi for some i . This completes the proof.

In the case of cusped hyperbolic manifolds, it is also an important fact that the peripheral
subgroups form a malnormal family. We will need the profinite version of this fact
(Lemma 4.5). This result was also needed in [19], but the result stated there [19,
Lemma 4.7] is slightly weaker, as noticed independently by Gareth Wilkes and the
second author. We therefore provide a strengthened result here, with thanks to Emily
Hamilton.

Lemma 4.5 (cf [19, Lemma 4.7]) Let � be the fundamental group of a cusped
hyperbolic manifold and let fPig be conjugacy representatives of the cusp subgroups.
Then the set of their closures fP ig in the profinite completion y� forms a malnormal
family; that is, if P i \P

y
j is nontrivial for some y 2 y� then i D j and y 2 P i .

Note that it is enough to consider the case of two cusps, so we adopt the notation
P D P1 and QD P2 . We first consider the intersection P \Qy . The next lemma is
a slight modification of [19, Lemma 4.6].

Lemma 4.6 Let M DH3=� be a cusped hyperbolic 3–manifold of finite volume. Let
P and Q be nonconjugate cusp subgroups of � . Then there exists a positive integer n
with the following property: for each integer m� n, there exist finite fields F1 and F2
and group homomorphisms f1W �! PSL.2; F1/ and f2W �! PSL.2; F2/ such that

(1) the image of P under f1 �f2 is isomorphic to Z=mZ�Z=mZ;
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(2) for every element p 2 P and every i , if fi .p/ is nontrivial, then trfi .p/¤˙2;

(3) for every element q 2Q and every i , trfi .q/D˙2.

In particular, if every fi .p/ is conjugate into fi .Q/, then .f1 �f2/.p/ is trivial.

Proof Since P and Q are nonconjugate, they correspond to distinct cusps of M . Let
T be the cusp of M corresponding to P . The group P is free abelian of rank 2. By
Thurston’s hyperbolic Dehn surgery theorem, there exist a basis fp1; p2g of P and
complete hyperbolic 3–manifolds M1 and M2 of finite volume, obtained by Dehn
surgery on M along T , such that if

�1W �! �1.M1/ and �2W �! �1.M2/

are the homomorphisms induced by inclusion, then �1.p1/ is a loxodromic isometry
of �1.M1/, �1.p2/ is trivial, �2.p1/ is trivial and �2.p2/ is a loxodromic isometry
of �1.M2/.

Since M1 has finite volume and �1.p1/ is loxodromic, there exists a discrete, faithful
representation

�1W �1.M1/! PSL.2;C/

such that �1.�1.M1//� PSL.2; L1/ for some number field L1 and

�1.�1.p1//D˙

�
! 0

0 !�1

�
; j!j ¤ 1:

Let R1 be the ring in L1 generated by the coefficients of the generators of �1.�1.M1//

over Z. Then �1.�1.M1//� PSL.2; R1/� PSL.2; L1/. By [18, Corollary 2.5], there
exists a positive integer n with the following property: for each integer m � n,
there exist a finite field F1 and a ring homomorphism �1W R1 ! F1 such that the
multiplicative order of �1.!/ is equal to 2m. This ring homomorphism induces a
group homomorphism

 1W �1.�1.M1// ,! PSL.2; R1/! PSL.2; F1/:
Let

f1W �! PSL.2; F1/

denote the composition  1 ı �1 ı�1 . Then f1.p1/ has order m and f1.p2/ is trivial.
For every element q 2Q , �1ı�1.q/ is parabolic. Therefore, trf1.q/D˙2. For every
element p 2 P ,

�1.�1.p//D˙

�
!k 0

0 !�k

�
for some k 2 Z:
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If �1.!k C!�k/ D 2, then �1.!k/ D �1.!�k/ D 1. If �1.!k C!�k/ D �2, then
�1.!

k/D �1.!
�k/D�1. Therefore, if f1.p/ is nontrivial, then trf1.p/¤˙2.

In a similar way, we can choose n such that for each integer m� n there exist a finite
field F2 and a group homomorphism

f2W �! PSL.2; F2/

such that f2.p1/ is trivial, f2.p2/ has order m, trf2.q/D˙2 for every q 2Q , and,
for every p 2 P , if f2.p/ is nontrivial then trf2.p/¤˙2. The homomorphisms f1
and f2 then satisfy the three conditions above.

We can now easily prove that the peripheral subgroups form a profinite malnormal
family.

Proof of Lemma 4.5 Consider first the intersection P \Qy . Let yp be an element
of the intersection P \Qy . Let f be an arbitrary homomorphism from � to a finite
group, and let f0 be the restriction of f to P . Choose f1 and f2 as in Lemma 4.6 so
that f0 factors through .f1�f2/jP , and extend them by continuity to homomorphisms
yfi from the profinite completion. Choose p 2P so that fi .p/D yfi . yp/ for all i . Since
yp is conjugate into Q , (3) implies that trfi .p/D tr yfi . yp/D 2 for every i . Item (2) then
implies that fi .p/D 1 for every i , and so by (1), yf0. yp/D f0.p/D 1. Thus, every
finite quotient of � kills yp , and so yp D 1 by the definition of the profinite completion.
We have shown that the intersection P \Qy is trivial.

We now consider the intersection P \P y , and suppose that y …P . Since P is closed,
there is a subgroup �0 of finite index in � that contains P but such that y�0 � y�
does not contain y . Let y D  y0 , where  2 � X �0 and y0 2 y�0 . Then �0 is the
fundamental group of a closed hyperbolic manifold with nonconjugate cusp subgroups
P and QD P  \�0 (since P is malnormal in � ). By the argument of the previous
paragraph applied to �0 , the intersection P \Qy0 is trivial. Since Q is of finite index
in P  , it follows that the intersection P \P y is finite. But 3–manifold groups are
torsion-free and good, whence their profinite completions are also torsion-free. In
particular, P \P y is trivial.

5 Profinite trees

In order to prove our main theorems, our strategy is to promote the action of a group
on a tree to an action of its profinite completion on a profinite tree. In this section, we
recall the necessary elements of the theory of profinite trees.
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A graph � is a disjoint union E.�/[V.�/ with two maps d0; d1W �! V.�/ that are
the identity on the set of vertices V.�/. For an element e of the set of edges E.�/,
d0.e/ is called the initial and d1.e/ the terminal vertex of e .

Definition 5.1 A profinite graph � is a graph such that

(1) � is a profinite space (ie an inverse limit of finite discrete spaces);

(2) V.�/ is closed; and

(3) the maps d0 and d1 are continuous.

Note that E.�/ is not necessary closed.

By [54, Proposition 1.7] every profinite graph � is an inverse limit of finite quotient
graphs of � .

For a profinite space X that is the inverse limit of finite discrete spaces Xj , ŒŒyZX��
is the inverse limit of ŒyZXj �, where ŒyZXj � is the free yZ–module with basis Xj . For
a pointed profinite space .X;�/ that is the inverse limit of pointed finite discrete
spaces .Xj ;�/, ŒŒyZ.X;�/�� is the inverse limit of ŒyZ.Xj ;�/�, where ŒyZ.Xj ;�/� is the
yZ–module with basis Xj n f�g [42, Chapter 5.2].

For a profinite graph � define the pointed space .E�.�/;�/ as �=V.�/ with the
image of V.�/ as a distinguished point �, and denote the image of e 2 E.�/ by Ne .
By definition a profinite tree � is a profinite graph with a short exact sequence

0! ŒŒyZ.E�.�/;�/�� ı
�! ŒŒyZV.�/�� �

�! yZ! 0;

where ı. Ne/D d1.e/� d0.e/ for every e 2E.�/ and �.v/D 1 for every v 2 V.�/. If
v and w are elements of a profinite tree T , we denote by Œv; w� the smallest profinite
subtree of T containing v and w and call it geodesic.

By definition a profinite group G acts on a profinite graph � if we have a continuous
action of G on the profinite space � that commutes with the maps d0 and d1 .

If a profinite group G acts on a profinite tree T then by [52, Lemma 1.5] there exists
a minimal G–invariant subtree D of T (note that in the classical Bass–Serre theory
there is another possibility, namely the group can have an invariant end; this possibility
is missing in the profinite case because of the compactness of T ); moreover D is
unique if it is not a vertex. If D is finite then it is a vertex and so G stabilizes a vertex.
Therefore, if G does not stabilize a vertex, D is infinite.

We state now the general Tits alternative-type result from [52] that is the key result for
our use.
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Theorem 5.2 [52] Let H be a profinite group acting on a profinite tree T . Suppose
H does not possess a nonabelian free pro-p subgroup for every prime p . Then either
H stabilizes a vertex or there exists a unique infinite minimal H–invariant subtree D
of T such that the quotient group LDH=K modulo the kernel of the action on D is
soluble and isomorphic to one of the following groups:

(1) Z� Ì Z� , where � and � are disjoint sets of primes.

(2) A profinite dihedral group Z� ÌC2 .

(3) A profinite Frobenius group Z� ÌCn , ie the order of every prime divisor p of n
divides q� 1 for some q 2 � and the centralizers of nonidentity elements of Cn
coincide with Cn .

Note that the group of automorphisms Aut.Z�/ coincides with the group of units of
the ring Z� D

Q
p2� Zp and so is the direct product

Q
p2� Z�p of groups of units

of Zp . Note also that Z�p Š Zp �Cp�1 for p ¤ 2 and Z�2 Š Z2 �C2 .

Remark 5.3 If in the notation of Theorem 5.2 H acts k–acylindrically for some
natural k (see Definition 7.2 below) then K D 1. If in addition H is torsion-free we
have just the first case of a projective soluble group H Š Z� Ì Z� , where � and �
are disjoint sets of primes. In this case any torsion-free profinite group containing H
as an open subgroup has a similar structure.

6 Graphs of groups and their profinite analogues

In this section, we describe the basic theory of profinite graphs of groups in the case
when underlying graph is finite (see [54, Section 3]). We shall need only this case here;
in the general case the definitions and terminology are much more involved (see [55]).

Let � be a connected finite graph. A graph of groups .G; �/ over � assigns a
group G.m/ to each m 2�, and monomorphisms @i W G.e/! G.di .e// for each edge
e 2E.�/. If each G.m/ is a profinite group and the monomorphisms @i are continuous,
we say that .G; �/ is a graph of profinite groups.

The abstract fundamental group

…abs
D…abs

1 .G; �/

of the graph of groups .G; �/ can be defined by means of a universal property. Fix a
maximal subtree T of �. Then …abs is an abstract group equipped with a collection
of homomorphisms

�mW G.m/!…abs .m 2�/;
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and a map E.�/!…abs , denoted e 7! te (e 2E.�/), such that te D 1 if e 2E.T /,
and

.�d0.e/@0/.x/D te.�d1.e/@1/.x/t
�1
e for all x 2 G.e/; e 2E.�/:

The defining universal property of …abs is then as follows.

If one has the following data:

� H an abstract group;

� ˇmW G.m/!H .m 2�/ a collection of homomorphisms; and

� a map e 7! se 2H (e 2E.�/), with se D 1 if e 2E.T /, satisfying

.ˇd0.e/@0/.x/D se.ˇd1.e/@1/.x/s
�1
e for all x 2 G.e/; e 2E.�/I

then there exists a unique homomorphism ıW …abs ! H such that ı.te/ D se .e 2
E.�//, and for each m 2� the diagram

…abs

ı

��

G.m/

�m

==

ˇm ""

H

commutes.

In [8, Chapter I, Definition 7.3 and Corollary 7.5] and in [45, Part I, Sections 5.1
and 5.2] the fundamental group …abs is defined explicitly in terms of generators and
relations; there it is also proved that the definition given above is independent of the
choice of the maximal subtree T , and furthermore it is proved that the homomorphisms
�mW G.m/! …abs are injective for every m 2 �. We use the notation …abs.m/ D

Im.�m/; so …abs.m/Š G.m/ for m 2�.

The definition of the profinite fundamental group

…D…1.G; �/

of a graph .G; �/ of profinite groups over a finite graph � is formally as above: one
simply assumes that all the conditions take place in the category of profinite groups, ie
all groups involved are profinite and all homomorphisms are assumed to be continuous.
The explicit construction of … is as follows; see [54, (3.3)]. Consider the family

N D fN Gf …abs
1 .G; �/ jN \G.v/Go G.v/g
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of all normal subgroups of finite index whose intersection with vertex groups are open.
The profinite fundamental group …1.G; �/ is just

…1.G; �/D lim
 ��
N2N

…abs
1 .G; �/=N;

which is to say the completion of …abs
1 .G; �/ with respect to the topology defined

by N .

There is one important difference with the abstract case: in the profinite setting, the
canonical homomorphisms �mW G.m/!… .m 2�/ are not embeddings in general
(see [42, Examples 9.2.9 and 9.2.10]). We use the notation ….m/D Im.�m/ for m2�.

Associated with the graph of groups .G; �/ there is a corresponding standard graph
(or universal covering graph)

S abs
D

[
m2�

…abs=…abs.m/:

The set of vertices of S abs is given by

V.S abs/D
[

v2V.�/

…abs=…abs.v/;

and the incidence maps of S abs are given by the following formulae:

d0.g…
abs.e//D g…abs.d0.e//I

d1.g…
abs.e//D gte…

abs.d1.e// .e 2E.�//:

In fact S abs is a tree, usually called the Bass–Serre tree (see [8, Chapter I, Theorem 7.6]
or [45, Part I, Section 5.3]). There is a natural left action of …abs on S abs , and clearly
…absnS abs D�.

Analogously, there is a profinite standard graph S D
S
…=….m/ associated with a

graph of profinite groups .G; �/, with the space of vertices and edges and with incidence
maps defined as above. In fact, S is a profinite tree (see [54, Proposition 3.8]), and …
acts continuously on S with …nS D�.

Given an abstract graph of groups .G; �/, there is a naturally associated graph of
profinite groups .G; �/. Under certain natural hypotheses, we shall further see that
.G; �/ is closely related to .G; �/.

First, suppose that …abs D …abs.G; �/ is residually finite, and let … be the pro-
finite completion of …abs . For each m 2 �, the profinite topology of …abs induces
on …abs.m/ a certain profinite topology (which is not necessarily its full profinite
topology) and so on G.m/. Define G.m/ to be the completion of G.m/ with respect
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to this topology. Then the monomorphisms @i W G.e/! G.di .e// induce continuous
monomorphisms which are again denoted by @i W G.e/! G.di .e// .i D 0; 1/. We then
have a graph .G; �/ of profinite groups over �. The canonical injection G.m/!…abs

induces an injection G.m/! … .m 2 �/; furthermore, if we denote by ….m/ the
image of G.m/ on … under this injection, then ….m/ D …abs.m/, the closure of
…abs.m/ in ….

Clearly
@0.g/D te@1.g/t

�1
e .g 2 G.e/; e 2E.�//

in … (there a certain abuse of notation here, as we are identifying G.v/ with its image
in …, and similarly we are denoting both the original elements te (e 2 E.�/) and
their images in …, which is justified since with our assumptions …abs injects into …).
Furthermore, one checks immediately the following result:

Proposition 6.1 The profinite completion … of …abs is the fundamental profinite
group …1.G; �/ of the graph of profinite groups .G; �/. The canonical homomor-
phisms G.m/!…D…1.G; �/ are injective .m 2�/.

We make a further assumption, namely that .G; �/ is sufficient.

Definition 6.2 A graph of groups .G; �/ is sufficient if
(1) the fundamental group …abs D…abs

1 .G; �/ is residually finite; and
(2) …abs.m/ is closed in the profinite topology of …abs for each m 2� (or, equiva-

lently, ….m/\…abs D…abs.m/).

Consider the natural morphism of graphs

'W S abs
! S;

which on vertices and edges is

g…abs.v/ 7! g….v/; g…abs.e/ 7! g….e/ .g 2…abs; v 2 V.�/; e 2E.�//:

If .G; �/ is sufficient then ' is an injection of graphs; we think of S abs as a subgraph
of S . Moreover it is clear that S abs is dense in S . We collect all of this in the following
proposition:

Proposition 6.3 Let .G; �/ be a sufficient graph of abstract groups over a finite
connected graph �, and consider the graph .G; �/ of profinite groups over � such
that each G.m/ is the completion of G.m/ with respect to the topology induced by the
profinite topology of …abs . Then the standard tree S abs D S abs.G; �/ of the graph of
groups .G; �/ is canonically embedded in the standard profinite tree S D S.G; �/ of
the graph of profinite groups .G; �/, and S abs is dense in S .
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The situation is particularly attractive if the profinite topology induced on the vertex
and edge groups G.m/ coincides with their intrinsic profinite topology.

Definition 6.4 Suppose that .G; �/ is sufficient and that …abs is the fundamental
group. If, furthermore, for each m 2 �, each finite-index subgroup H of G.m/ is
closed in the profinite topology on …abs , then .G; �/ is called efficient.

In this case, the vertex and edge stabilizers in the profinite tree are conjugate to the
profinite completions of the vertex and edge stabilizers in the standard tree. Results of
Haglund and Wise imply that the graphs of groups arising in quasiconvex hierarchies
of virtually special groups are efficient [14].

Definition 6.5 We say that .G; �/ is of dihedral type if …abs has a normal subgroup
V contained in a vertex group such that …abs=N is either infinite dihedral or cyclic.

We shall need the following proposition for the proof of Theorem B:

Proposition 6.6 Let …abs D …abs
1 .G; �/ be the fundamental group of an efficient

finite graph of groups .G; �/ not of dihedral type and K a closed normal subgroup of
y…D…1.G; �/ having no nonabelian free profinite subgroup. Then K is contained in
the completion of a vertex group of y….

Proof Use a decomposition

y…D lim
 ��
N

…abs
1 .G; �/=N;

where N ranges over normal subgroups of finite index in …abs . For any such N define
a graph of group .GN ; �/ replacing G.m/ by G.m/N=N for all m 2�. Note that

…1.GN ; �/D 5…abs
1 .GN ; �/

and so contains a free profinite group as an open subgroup. It is clear also that it is a
quotient group of y… and

y…D lim
 ��
N

…1.GN ; �/:

We denote by KN the image of K in …1.GN ; �/. Since .G; �/ is not of dihedral
type, .GN ; �/ is not of dihedral type for some N as well. Hence

5…abs
1 .GN ; �/
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contains an open nonabelian free profinite subgroup F . Then, by [42, Theorem 8.6.6],
KN \F D 1 and so KN is finite. Hence, by [54, Theorem 3.10], KN is contained in
a vertex group of …1.GN ; �/. It follows then from the decomposition

y…D lim
 ��
N

…1.GN ; �/

that K is contained in a vertex group of …1.G; �/, as needed.

7 Virtually special hyperbolic groups

In this section we prove Theorem D. By Theorem 1.4, a hyperbolic, virtually special
group � has a subgroup �0 of finite index that admits a malnormal quasiconvex
hierarchy. (Note that this statement does not need the most difficult parts of Theorem 1.4;
it is a consequence of the fact that quasiconvex subgroups of hyperbolic groups have
finite width, together with the fact that hyperplane stabilizers in virtually special groups
are separable.) Our proof of Theorem D will be by induction on the length of the
hierarchy for �0 .

Recall the following standard definition:

Definition 7.1 The action of a group � on a tree T is said to be k–acylindrical, for
k a constant, if the set of fixed points of  has diameter at most k whenever  ¤ 1.

We may make the analogous definition in the profinite setting.

Definition 7.2 The action of a profinite group y� on a profinite tree T is said to be
k–acylindrical, for k a constant, if the set of fixed points of  has diameter at most k
whenever  ¤ 1.

A malnormal hierarchy for �0 implies that �0 has a 1–acylindrical action on a tree.
This result carries over to the profinite setting.

Lemma 7.3 Suppose that … is the (profinite) fundamental group of a graph of profinite
groups .G; �/ with one edge e , and suppose that the edge group ….e/ is malnormal
in …. Then the action of … on the standard tree S is 1–acylindrical.

Proof For an action to be 1–acylindrical means that the intersection of the stabilizers of
any two distinct edges is trivial. The hypothesis that there is only one edge e means that
any distinct pair of edges of S correspond to distinct left cosets g….e/ and h….e/, and
their stabilizers are the conjugates g….e/g�1 and h….e/h�1 . Malnormality implies
that the intersection of these is trivial.
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We are now ready to prove that closed subgroups of the profinite completions of virtually
special hyperbolic groups satisfy a Tits alternative.

Proof of Theorem D Put H0D y�0\H , where �0 is the subgroup from Theorem 1.4.
By Proposition 3.2, y�0 is torsion-free. We prove that H0ŠZ� ÌZ� , with �\�D∅,
by induction on the length of the malnormal hierarchy. By Theorem 3.3 and Lemma 7.3,
y�0 acts 1–acylindrically on a profinite tree and therefore so does H0 . By the inductive
hypothesis, the vertex stabilizers in H0 have the claimed structure. If H0 stabilizes a
vertex by the induction hypothesis we are done. Otherwise, by Remark 5.3, H0 has
the claimed structure.

Theorem A follows as a quick consequence:

Proof of Theorem A By Theorem 1.8, if M is a closed hyperbolic 3–manifold then
�1M is virtually special, and hence Theorem D applies to show that there are no yZ2

subgroups. Conversely, if 1�1M contains no subgroups isomorphic to yZ2 then, by
Hamilton’s result that abelian subgroups of 3–manifold groups are separable [17],
�1M contains no subgroups isomorphic to Z2 and so, by the hyperbolization theorem,
M is hyperbolic.

8 Seifert fibred 3–manifolds

This section is devoted to characterizing certain features of Seifert fibred 3–manifolds
using the profinite completions of their fundamental groups. We start by proving
Theorem B, which shows that the profinite completion of the fundamental group
distinguishes Seifert fibred 3–manifolds among all 3–manifolds.

Proof of Theorem B Suppose that M is closed, orientable and irreducible. If M
is Seifert fibred then �1M has a cyclic normal subgroup Z . Since every finitely
generated subgroup of �1M is separable, [43] 1�1M has a procyclic normal subgroup,
as claimed.

Suppose therefore that M is not Seifert fibred. If M is a Sol manifold, then �1M Š
Z2 Ì Z, where the action of ZD hzi on Z2 is Anosov, in the sense that no nontrivial
power of z fixes a nontrivial element of Z2 . This induces 1�1M Š yZ2 Ì yZ.

We next show that z does not fix a nontrivial element of yZ2 . Since yZ2 D
Q
p Z2p it

suffices to show that z does not fix a nontrivial vector in Z2p . We show in fact that
z does not fix a vector in Q2

p . Indeed, if it does then det.z � I /D 0 and so z has a
nonzero fixed point in Q2 and hence in Z2 , a contradiction.
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Thus any procyclic normal subgroup of 1�1M Š yZ2 Ì yZ intersects yZ2 trivially and so
is in the kernel of the natural homomorphism �hzi!Aut.yZ2/ŠGL2.yZ/. Therefore to
conclude that 1�1M does not have procyclic normal subgroups in this case, it suffices
to observe now that the closure of hzi in GL2.yZ/ is isomorphic to yZ. To see this
it is enough to show that all Sylow subgroups of �hzi are infinite. As GL2.yZ/ DQ
p GL2.Zp/ and GL2.Z/ embeds in the virtually pro-p group GL2.Zp/, the closure

of hzi in GL2.Zp/ has infinite Sylow p–subgroup for each p and therefore so does �hzi.
If M is nongeometric or hyperbolic, then 1�1M acts acylindrically on a profinite tree.
(In the hyperbolic case, this follows from the results of the previous section. In the
nongeometric case, this follows from the results of [19; 48].) By Proposition 6.6, a
procyclic normal subgroup yZ of 1�1M is contained in a vertex stabilizer, and hence
acts trivially on the profinite tree [54, Theorem 2.12]. This would contradict the fact
that the action is acylindrical unless yZD 1.

A compact Seifert fibred 3–manifold M can admit any of six different geometries.
We next explain how these geometric structures are also distinguished by the profinite
completion of the fundamental group. The reader is referred to [44] for details of the
theory of Seifert fibred 3–manifolds. Consider the corresponding short exact sequence

1!Z! �1M ! �1O! 1;

where Z is cyclic and O is a compact, cone-type 2–orbifold. The geometric structure
of M is determined by two invariants: the geometric structure of O ; and the “Euler
number” e.M/ [44, Table 4.1].

We first note that the geometry of O is detected by the profinite completion of �1M .

Lemma 8.1 Let M be a compact, Seifert fibred 3–manifold, as above.

(1) O is spherical if and only if 1�1M is virtually procyclic.

(2) O is Euclidean if and only if 1�1M is virtually nilpotent.

Proof This follows immediately from the following facts: O is spherical if and only
if �1M is virtually cyclic; O is Euclidean if and only if �1M is virtually nilpotent;
�1M is residually finite.

If M is not spherical then O is a good orbifold, and so is covered by a compact,
orientable surface †. The short exact sequence for �1M then pulls back along the
covering map †!O to a short exact sequence

1!Z! �1N ! �1†! 1;
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where N is a finite-sheeted covering space of M . We next explain how to the Euler
number of M manifests itself in the structure of �1M . The following lemma can be
deduced from [44]:

Lemma 8.2 Let M be a compact, Seifert fibred 3–manifold.

(1) If O is spherical then e.M/D 0 if and only �1M is infinite.

(2) If O is not spherical then e.M/ D 0 if and only if, for some finite-sheeted
surface cover † of O , the short exact sequence

1!Z! �1N ! �1†! 1

splits.

Finally, we explain how the splitting of the short exact sequence

1!Z! �1N ! �1†! 1

is detected by the profinite completion.

Lemma 8.3 Let † be a compact, orientable surface. Then a short exact sequence

(1) 1! Z!G! �1†! 1

splits if and only if the induced exact sequence of profinite completions

(2) 1! yZ! yG! b�1†! 1

splits.

Proof If (1) splits then clearly so does (2). Suppose therefore that (1) does not split.

The exact sequence 1 ! Z ! Z ! Z=n ! 1 induces a long exact sequence in
cohomology, part of which is

� � � !H 2.�1†;Z/Š Z!H 2.�1†;Z=n/!H 1.�1†;Z/! � � � :

But H 2.�1†;Z=n/ŠZ=n, whereas H 1.�1†;Z/ is isomorphic to the abelianization
of �1†, which is torsion-free. Thus the induced map H 2.�1†;Z/!H 2.�1†;Z=n/
is surjective. In particular, if (1) does not split then neither does the corresponding
extension 1! Z=n!G! �1†! 1, for some n.

Since �1† is good, we have that H 2.b�1†;Z=n/ ! H 2.�1†;Z=n/, and so the
corresponding sequence 1! Z=n! yG! b�1† ! 1 does not split. Therefore, (2)
does not split, as required.
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We can summarize our results so far in the following theorem, which asserts that the
profinite completion detects the geometric structure of a closed, orientable, irreducible
3–manifold.

Theorem 8.4 Let M and N be closed, orientable, irreducible 3–manifolds, and
suppose that 1�1M Š b�1N . Then M admits one of Thurston’s eight geometric
structures if and only if N does, and in this case both M and N admit the same
geometric structure.

Proof By Theorem A, M is hyperbolic if and only if N is. Since 3–manifold groups
are residually finite and admit Sol geometry if and only if they are solvable but not
virtually nilpotent, it follows that M admits Sol geometry if and only if N does.
Finally, by Theorem B, M is Seifert fibred if and only if N is, and by Lemmas 8.1,
8.2 and 8.3, they are of the same geometric type.

9 3–manifold groups

In this section, we complete the proof of Theorem C. We start by addressing the cusped
hyperbolic case, and then deal with the Seifert fibred case, before concluding with the
irreducible nongeometric and reducible cases.

9A The cusped case

We need to generalize the results of the previous section to the case of noncompact
hyperbolic 3–manifolds of finite volume. As in [50, Corollary 14.16], the strategy is to
cut along a family of surfaces, in such a way that the pieces are hyperbolic without cusps.
We next exhibit the family of surfaces that we will need (cf [50, Corollary 14.16]).

Theorem 9.1 A hyperbolic 3–manifold M with cusps has a finite-sheeted covering
space N ! M that contains a disjoint family of connected, geometrically finite,
incompressible subsurfaces f†1; : : : ; †ng such that

(1) each cusp of N contains a boundary component of some †i ;

(2) each �1†i � �1N is relatively malnormal.

Proof By the “half lives, half dies” lemma, there is a homomorphism �1M !Z such
that each peripheral subgroup maps nontrivially. One can realize this by a smooth map
M ! S1 , and the preimage of a generic point is a (possibly disconnected) surface that
cuts every cusp, which can be compressed to obtain an incompressible surface with the
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same property. Passing to a finite-sheeted cover and applying an argument with the
Thurston norm, one can further ensure that each component is geometrically finite.

Let † be such a component. Geometrical finiteness implies that there are finitely many
double cosets �1†gi�1† such that the intersection �1†gi \�1† is nonperipheral.
By subgroup separability, we can pass to a finite-sheeted covering space to which †i
lifts but the elements gi do not. Doing this for every component, and passing to a
deeper regular covering space (still of finite index), we obtain the required covering
space.

Wise used a similar result to prove that cusped hyperbolic manifolds are virtually
compact special [50, Theorem 14.29]. We state this result here for future use.

Theorem 9.2 (Wise) Let M be a cusped hyperbolic 3–manifold of finite volume.
Then �1M is virtually compact special.

Cutting along the family of surfaces given by Theorem 9.1 produces a graph-of-groups
decomposition .G; �/ for �1N , with the property that every vertex and edge group is
hyperbolic and virtually special, and the stabilizer of any infinite subtree of the Bass–
Serre tree is cyclic. Note also that .G; �/ is efficient. Passing to the corresponding
graph of profinite groups .G; �/, it follows from Theorem 4.2 that the stabilizer of any
infinite subtree of the standard profinite tree is procyclic (possibly trivial).

We next state our main theorem in the cusped case.

Theorem 9.3 Let M be a cusped hyperbolic 3–manifold, �1M its fundamental group
and 1�1M its profinite completion. If H is a closed subgroup of 1�1M that does not
contain a free nonabelian pro-p subgroup for any p then H is isomorphic to Z� Ì Z� .
Furthermore, if H is not projective (ie �\�¤∅) then H is conjugate into the closure
of a cusp subgroup of �1M .

Proof Put H0 D b�1N \H , where N is the cover from Theorem 9.1. We first prove
that H0 has the claimed semidirect product structure. Consider the action of H0 on
the standard profinite tree. By Theorem D the stabilizers of vertices in H0 have the
claimed structure. Since the stabilizers of infinite subtrees are procyclic, the kernel K
of the action is torsion-free procyclic.

Suppose first that K is nontrivial. The closure of any peripheral subgroup yPi is
malnormal in 1�1M by Lemma 4.5, and since up to conjugation K is in yPi , we deduce
that K is central in H and H is abelian. So H is a subgroup of yZ� yZ in this case.
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Alternatively, if K is trivial then H0 is isomorphic to a soluble projective group
Z� Ì Z� by Theorem 5.2. Note now that 1�1M is torsion free, since � is good
(see Definition 3.1 and [13, Theorem 1.4] combined with Theorem 9.2). So H is
torsion-free and hence, by Remark 5.3, a semidirect product of the claimed form.

Finally, if H is not projective then K is necessarily nontrivial by Theorem 5.2, and
so the above argument shows that H is conjugate into the closure of some yPi , as
claimed.

9B Seifert fibred 3–manifolds

In this section we prove Theorem C when M is Seifert fibred. For many of the cases (if
M has Euclidean, spherical, Nil or S2 �R geometry), �1M is virtually soluble, and
there is nothing to prove. The next proposition addresses the remaining geometries —
H2 �R and ASL2R — in which the base orbifold is hyperbolic.

Proposition 9.4 Suppose that M is any compact, Seifert fibred 3–manifold and that
�1M is not virtually soluble. If H is a closed subgroup of 1�1M that does not contain
a free nonabelian pro-p subgroup for any p then H is isomorphic to .Z� �Z�/Ì Z� ,
where � \ �D¿ and Z� acts on Z� by inversion.

Proof The fundamental group G D �1M fits into a short exact sequence

1!Z �!G
p
�!�1.O/! 1;

where Z D hzi is cyclic and O is a cone-type 2–orbifold (see [44], for instance).

Since G is not virtually soluble, O is a hyperbolic orbifold, which is finitely covered
by an orientable hyperbolic surface †; passing to a further cover if necessary, we
may further assume that † admits an essential simple-closed  which is not boundary
parallel and that �1† is torsion-free.

The exact sequence above induces an exact sequence

1! yZ �! yG
yp
�! 1�1.O/! 1

of profinite completions. Then b�1† is naturally an open subgroup of 1�1.O/ , which
pulls back to an open subgroup b�1N of yG . Cutting † along  induces a splitting of
�1† in which the edge group is malnormal; this in turn induces a graph of profinite
groups for b�1† with procyclic malnormal edge group.

Since b�1† is torsion-free, by Theorem 5.2 yp.H/Š Zx� Ì Zx� is a projective soluble
group with x�\x�D¿. Let ı be the set of primes dividing the orders of torsion elements
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of 1�1.O/ . Then yZDZ� �Zı and H=Z� is a torsion-free soluble group containing a
projective group U . Hence H=Z� is soluble projective (projective groups are groups
of cohomological dimension 1 and torsion-free overgroups of finite index preserve
cohomological dimension — cf [42, Theorem 7.3.7]) and hence isomorphic to Z� ÌZ�
for some �\�D¿ (see [42, Exercise 7.7.8]). Thus H ŠZ�ÌH=Z�ŠZ�Ì.Z�ÌZ�/.
Since the action on yZ is induced from the action on Z , which is either trivial or
by inversion, moving the prime 2 from � to � if necessary we can rewrite H as
H Š .Z� �Z�/Ì Z� .

9C Irreducible 3–manifolds

We next consider the general case in which M is an arbitrary closed, orientable,
irreducible 3–manifold. The only remaining case to consider is when M has nontrivial
torus decomposition. Our previous results give a 4–acylindrical action on a profinite
tree, and the argument will now go through as before.

Proposition 9.5 Let M be a compact, orientable, irreducible 3–manifold whose torus
decomposition is nontrivial. If H is a closed subgroup of 1�1M that does not contain a
free nonabelian pro-p subgroup for any p then H is isomorphic to .Z� �Z�/Ì Z� ,
where Z� acts on Z� by inversion and � \ �D∅.

Proof By the results of [19; 48], 1�1M acts 4–acylindrically on a profinite tree.
Therefore so does H , and by Proposition 9.4 and Theorem 9.3 the stabilizers of vertices
in H have the claimed structure. So if H stabilizes a vertex we are done. Otherwise,
since the action is 4–acylindrical the kernel K is trivial. Then H is isomorphic to a
soluble projective group Z� Ì Z� by Remark 5.3 since 1�1M is torsion-free.

Since we have already dealt with the Seifert fibred and hyperbolic cases, and the
fundamental group of a Sol manifold is soluble, Theorem C follows whenever M is
closed, orientable and irreducible.

9D Reducible 3–manifolds

To finish the proof of Theorem C we double to obtain a retract of a closed 3–manifold M.
Now we argue as before, using the Grushko decomposition. After doubling, we may
assume that M is closed. We then have

�1M Š A1 � � � � �Am �B1 � � � � �Bn �F;

where the Ai are all finite, the Bi are all as considered in the previous section, and F
is free.
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Proof of Theorem C We consider the action of

1�1M D yA1q� � �q yAmq yB1q� � �q yBnq yF
on the standard profinite tree S associated to the free profinite product decomposition
of 1�1M . If H stabilizes a vertex then H is conjugate to a subgroup of a free factor,
so the structure of H is described in the previous results. Otherwise, it follows from
Theorem 5.2 combined with Remark 5.3 that H is as in Theorem C(2).

10 One-relator groups with torsion

One-relator groups with torsion are hyperbolic, and Wise proved further that they are
virtually special. Theorem D therefore applies. However, by carefully examining
the hierarchy that Wise used in his proof, we can improve the conclusions and prove
Theorem E.

Proof of Theorem E Every one-relator group G embeds naturally into a free product
G0 D G � Z which is an HNN extension HNN.L;M; t/ of a simpler one-relator
group H , where M is a free subgroup generated by subsets of the generators of the
presentation of G (cf the Magnus–Moldavanskii construction in [50, Section 18b]).
The hierarchy terminates at a virtually free group of the form Z=n�F , where F is
free. We use induction on the length of this hierarchy.

If G has torsion, this hierarchy is quasiconvex (see [50, Lemma 18.8]) and so (at
each step of the hierarchy) the edge group K has finite width by Theorem 1.6. By
Corollary 3.5, yK has finite width in yG0 . It follows that the stabilizer in yG0 of any
infinite subtree of the corresponding profinite standard tree S is trivial.

Consider the action of H on its minimal invariant profinite subtree. If H stabilizes a
vertex, then by induction on the length of the hierarchy we are done. Otherwise, by
Theorem 5.2, H is of one of the claimed forms. This finishes the proof.

11 Pro-p subgroups

Finally, we study the pro-p subgroups of profinite groups acting acylindrically on
profinite trees. The following general theorem is the main result of this section:

Theorem 11.1 Let G be a finitely generated pro-p subgroup of a profinite group �
acting 1–acylindrically on a profinite tree T . Then G is a free pro-p product of vertex
stabilizers and a free pro-p group.
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We start with the following:

Lemma 11.2 Let G be a profinite group acting on a profinite tree T and let e be an
edge of T . Suppose the stabilizers of the vertices v;w of the edge e are prosoluble
and do not coincide with Ge . Then the group H D hGv; Gwi has a free prosoluble
amalgamated product GvqGe

Gw as a quotient. In particular, H is not pro-p .

Proof Let D DH.e [ v [w/. Then for any open subgroup U of H the quotient
graph U nD is a finite connected quotient graph of D and since D D lim

 ��
U nD it is

a connected profinite subgraph of T . Then D is a profinite tree [54, (1.15)]. Since
H is generated by the vertex stabilizers, HnD is a profinite tree [54, Proposition 2.5]
and so fv;wg maps to HnD injectively, ie HnD is isomorphic to v [ e [w . Let
f W H !Hs be the maximal prosoluble quotient and let K be the kernel of f . Then
KnD is a profinite tree [51, Proposition 2.9(b)] and in particular is a prosoluble, simply
connected graph. Therefore by the prosoluble version of [55, Proposition 4.4] (it is
remarked in Section 5.4 there that it is valid in the prosoluble case) H=K is isomorphic
to the prosoluble fundamental group …s1.H;HnD/ of the graph of groups .H;HnD/,
where edge and vertex groups are the stabilizers of e and vertices v and w . This shows
that H=K is a free prosoluble amalgamated product GvqsGe

Gw .

We are now ready to prove the main theorem of this section.

Proof of Theorem 11.1 First note that a nontrivial stabilizer of any edge e coincides
with one of its vertex stabilizers Gv or Gw , say Gw , since otherwise by Lemma 11.2
the stabilizers of two vertices of e do not generate a pro-p group. Moreover, if e0 is
another edge with vertices w and u then Ge0 D f1g since, because of 1–acylindricity,
Gw DGe\G

0
eD 1. It follows that the connected components of the abstract subgraphs

of points with nontrivial stabilizers are at most stars. Let zG be the subgroup of G
generated by all vertex stabilizers of G . Then, by [54, Theorem 2.6], G= zG is a free
pro-p group and we denote its retract in G by F0 .

Now since G is finitely generated, its Frattini series ˆn.G/ is a fundamental system
of neighbourhoods of 1. Let B̂n.G/ be the subgroup of ˆn.G/ generated be all vertex
stabilizers of ˆn.G/. Then

Gn DG=B̂n.G/
acts on a profinite tree TnDB̂n.G/nT [54, Proposition 2.5] and ˆn.G/=B̂n.G/ acts
freely on Tn and therefore is free pro-p [54, Theorem 2.6]. Note that the vertex and
edge stabilizers of Gn acting on Tn are finite epimorphic images of the corresponding
vertex and edge stabilizers of G acting on T and so the images in Tn of edges of T
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with trivial edge stabilizers have trivial stabilizers. Therefore the (abstract) connected
components of the subgraph of points of Tn with nontrivial stabilizers in Gn are still at
most stars. Indeed, let Sn be the image of a star S of T with nontrivial edge stabilizers
and let en be an edge not in Sn having a vertex vn 2 Sn with nontrivial stabilizer. Let
v be a vertex of S whose image in Tn is vn . Then Gv ¤ f1g and there exists an edge
e incident to v whose image in Tn is en . But Ge is trivial and so Gen

is trivial.

By [22, Lemma 8] a virtually free pro-p group has only finitely many finite subgroups
up to conjugation and so Tn has only finitely many edges with nontrivial edge stabilizers
up to translation. Therefore the subgraph †n of points with nontrivial edge stabilizers
is closed in Tn , ie is a profinite subgraph (forest) of Tn . Collapsing all connected
components (stars) of †n in Tn , by [53, Proposition, page 486] we get a pro-p tree
Tn on which Gn acts with trivial edge stabilizers, so, by [24, Proposition 2.4], Gn is a
free pro-p product

Gn DG=B̂n.G/ D
�a
v

Gnv

�
qF0n

of representatives (chosen arbitrarily) of the nontrivial vertex stabilizers and of the
isomorphic image F0n of F0 in Gn .

Since G D lim
 ��

Gn and G is finitely generated, by choosing n large enough we may
assume that the number of free factors is the same for every m> n, ie v ranges over
a finite set V . By [41, Theorem 4.2] every finite subgroup of a free pro-p product
is conjugate to a subgroup of a free factor. Therefore, the free factors of GmC1 are
mapped onto the free factors of Gm up to conjugation. But in a free pro-p product
decomposition replacing any free factor by its conjugate does not change the group.
So, starting from n, we can inductively choose GmC1v in such a way that its image
in Gm is Gmv . Let Gv be the inverse limit of Gmv . Then, by [42, Lemma 9.1.5],
G D

`
v2V GvqF0 .

It remains to observe that Gmv is a stabilizer of a vertex in Tm so the set of fixed points
TGmv is nonempty and closed [41, Theorem 3.7]. Therefore, Gv is the stabilizer of a
nonempty set of vertices lim

 ��
TGmv . This finishes the proof.

Using Theorem 11.1 we can precisely describe the finitely generated pro-p subgroups
of the profinite completions of torsion-free hyperbolic virtually special groups.

Proof of Theorem F By Theorems 1.4 and 3.3 and Lemma 7.3, G has a subgroup
of finite index �0 whose profinite completion acts 1–acylindrically on a profinite tree.
Then by Theorem 11.1 H \ y�0 is a free pro-p product of vertex stabilizers and a free
pro-p group. By induction on the hierarchy vertex stabilizers are free pro-p , therefore
so is H \ y�0 . Finally by Serre’s theorem (see [42, Theorem 7.3.7]) H is free pro-p .
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Using the main result of [23] that describes finitely generated virtually free pro-p
groups, we can deduce a description of the finitely generated pro-p subgroups of the
profinite completion of a hyperbolic virtually special group.

Corollary 11.3 Let G be a hyperbolic, virtually special group. Any finitely generated
pro-p subgroup H of yG is the fundamental pro-p group of a finite graph of finite
p–groups.

Proof The group G contains a virtually special, torsion-free subgroup of finite index U.
Hence H \ yU is free pro-p . The result then follows from [23, Theorem 1.1].

Of course, Corollary 11.3 applies to one-relator groups with torsion by the work of
Wise [50]. However, a careful analysis gives a more refined classification in that case.

Theorem 11.4 Let G be a one-relator group with torsion and H a finitely generated
pro-p subgroup of yG . Then H is a free pro-p product of finite cyclic p–groups and a
free pro-p group.

Proof The group G contains a virtually special, torsion-free subgroup of finite index U.
Hence every finitely generated pro-p subgroup of yU is free pro-p .

Now we show that centralizers of torsion elements of yG are finite. First observe that all
torsion elements of yG are conjugate to elements of G (see [4, Theorem 2.1]). But, by
[32, Theorem 1.1] combined with [31, Proposition 3.2], the centralizer of any element
of G is dense in the centralizer of this element in yG . Thus, since the centralizer of any
torsion element of G is finite [35, Theorem 2], the centralizers of torsion elements in
yG are finite as well.

So any finitely generated pro-p subgroup of yG is virtually free and has finite centralizers
of torsion elements. Therefore by [22, Theorem 1] it has the claimed structure.
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