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The character of the total power operation

TOBIAS BARTHEL

NATHANIEL STAPLETON

We compute the total power operation for the Morava E–theory of any finite group
up to torsion. Our formula is stated in terms of the GLn.Qp/–action on the Drinfel’d
ring of full level structures on the formal group associated to E–theory. It can be
specialized to give explicit descriptions of many classical operations. Moreover,
we show that the character map of Hopkins, Kuhn and Ravenel from E–theory to
GLn.Zp/–invariant generalized class functions is a natural transformation of global
power functors on finite groups.

55N22, 55S25; 55P42

1 Introduction

Power operations and their variants are ubiquitous throughout homotopy theory. The
Steenrod operations on mod p cohomology and the Adams operations on topological
K–theory are familiar examples. These operations have proven extremely useful; for
instance, the Adams operations were used to give a short and elegant proof of the Hopf
invariant one problem; see Adams and Atiyah [2]. More generally, many cohomology
theories are equipped with this extra structure, which is a consequence of an E1–ring
structure on the representing spectrum.

It is a theorem of Goerss, Hopkins and Miller [11] that Morava E–theory admits a
unique E1–ring structure. In the homotopy category, the E1–ring structure manifests
itself as an H1–ring structure which is equivalent to the data of a collection of
multiplicative cohomology operations known as total power operations. The study of
these operations began in earnest in Ando [3], in which a connection is established
between the total power operations and isogenies of the formal group associated to En .
In this paper, we give a formula for the total power operations applied to a finite group
in terms of the action of GLn.Qp/ on the Drinfel’d ring of full level structures on
the formal group associated to En . This is the same action that appears in the local
Langlands correspondence; see Carayol [7].
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1.1 Motivation and background

Fix a prime p , a natural number n and a height n formal group law � over � , a perfect
field of characteristic p . This data determines the E1–ring spectrum En known as
Morava E–theory. It has been studied extensively because of its close relationship to
several areas of mathematics: Work of Devinatz and Hopkins [8] as well as Rognes [19]
demonstrates that En is a Galois extension of the K.n/–local sphere, a fundamental
object of the stable homotopy category. It is closely connected to algebraic geometry,
as the coefficient ring E0n carries the universal deformation G of � . Morava E–theory
is also related to representation theory, being a generalization of p–adic K–theory
that admits a well-behaved character theory. We will take advantage of the last two
relationships to study the total power operations determined by the unique E1–ring
structure on En .

Let X be a topological space and let E†m �†m X
m be the Borel construction for the

canonical †m–action on Xm . The total power operations are natural multiplicative
nonadditive maps

PmW E
0
n.X/!E0n.E†m �†m X

m

/;

defined for all m > 0. These maps are quite mysterious and notoriously difficult
to compute; see Rezk [18]. At height 2, Pm has been explicitly determined for X
a point when p D 2 and m D 2 and when p D 3 and m D 3; see Rezk [17] and
Zhu [27]. Above height 2 there have been no explicit computations. Many of the most
important operations on En , including the Adams operations, Hecke operations and
the logarithm — see Rezk [16] — can be built out of the total power operations using
various simplifications of Pm .

A useful simplification of Pm is obtained as the restriction of the total power operation
along the diagonal X !Xm . This produces a map

PmW E
0
n.X/!E0n.B†m �X/ŠE

0
n.B†m/˝E0n E

0
n.X/;

the isomorphism being a consequence of the freeness of E0n.B†m/ as a module
over E0n ; see Strickland [25, Proposition 3.6]. Let I � E0n.B†pk / be the image of
the transfer along the inclusion †p

pk�1
�†pk ; then the quotient

Ppk=I W E
0
n.X/!E0n.B†pk /=I ˝E0n E

0
n.X/

is a ring map; see Bruner, May, McClure and Steinberger [6, Chapter VIII, Proposition
1.4(iv)] and Strickland [25, Lemma 8.11]. Thus it is reasonable to hope that Ppk=I
may be attacked using algebraic geometry associated to G . For X D BA, where A
is a finite abelian group, this was accomplished by Ando [3] and Ando, Hopkins and
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Strickland [4]. In contrast to these approaches, we apply a form of character theory
available for En in order to simplify Pm .

Generalized character theory for Morava E–theory was constructed by Hopkins, Kuhn
and Ravenel [12], building on work of Adams [1] on p–adic K–theory and extended by
the second author [23]. An introduction to the subject is available in Stapleton [22]. As
E–theory is constructed homotopy-theoretically, it is surprising that E0n.BG/ behaves
so much like a (completed) “higher” representation ring.

Let LDZnp and T DL� , the p–typical Pontryagin dual, so that there is a noncanonical
isomorphism T Š .Qp=Zp/n . Hopkins, Kuhn and Ravenel construct a p�1E0n –
algebra C0 that corepresents isomorphisms of p–divisible groups between T and G :

hom.C0; R/Š Iso.R˝T ; R˝G/:

Thus there is an obvious action of Aut.T /, the automorphisms of T , on C0 .

Let Cln.G; C0/ be the ring of generalized class functions on G taking values in C0 .
Concretely, Cln.G; C0/ is the set of C0–valued functions on hom.L; G/=� , the
quotient of the set hom.L; G/ by the conjugation action of G . Note that Aut.T /
is contravariantly isomorphic to GLn.Zp/ by taking the Pontryagin dual. There
is an Aut.T /–action on Cln.G; C0/ given by combining the action of Aut.T / on
hom.L; G/=� by precomposition with the Pontryagin dual and the action of Aut.T /
on C0 [12, Section 6.3].

In [12, Section 6], Hopkins, Kuhn and Ravenel construct a map of E0n –algebras called
the generalized character map

�W E0n.BG/! Cln.G; C0/:

Theorem C in [12] proves that the induced map

C0˝�W C0˝E0n E
0
n.BG/

Š
�!Cln.G; C0/

is an isomorphism for any finite group. Theorem C further states that the isomorphism
C0˝� is Aut.T /–equivariant and restricts to an isomorphism on fixed points

p�1E0n.BG/
Š
�!Cln.G; C0/Aut.T/:

This brings us to the motivating question for this paper: Does there exist a multiplicative
natural transformation on generalized class functions that is compatible with the total
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power operation for En through the generalized character maps of [12]:

E0n.BG/
Pm

//

�

��

E0n.BG o†m/

�

��

Cln.G; C0/
9‹
// Cln.G o†m; C0/

There is no formal reason why this might be possible,1 and yet the construction of such
a natural transformation is one of the goals of this paper.

1.2 Main results

In fact, we construct an infinite family of multiplicative natural transformations that
answer the question. In order to state the results precisely we need to establish some
notation.

Let Isog.T / be the monoid of endoisogenies of T , ie the monoid of endomorphisms
with finite kernel, and let Sub.T / be the set of finite subgroups in T . There is an
Aut.T /–principal bundle

Isog.T /� Sub.T /

given by taking an isogeny to its kernel. For each section � of this principal bundle we
construct a multiplicative natural transformation

P�mW Cln.�; C0/) Cln.� o†m; C0/

that is compatible with the total power operation Pm through the character map �. We
refer the reader to the paragraphs leading up to Definition 5.6 for the explicit formula
for P�m .

Theorem A (Theorem 9.1) For all n, m � 0, let Pm be the total power operation
for Morava En , let � be a section of the principal bundle above and let � be the
generalized character map. There is a commutative diagram

E0n.BG/
Pm

//

�

��

E0n.BG o†m/

�

��

Cln.G; C0/
P�m
// Cln.G o†m; C0/

natural in G .
1It is not possible to base change Pm to C0 because Pm is not a ring map. Further, simplifications of

Pm such as Ppk=I , which are ring maps, are not E0n –algebra maps.
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As part of Theorem 10.1, we further prove that each of these “total power operations”
P�m may be restricted to the Aut.T /–fixed points. In Corollary 10.2, we show that the
result is independent of � and we call it the “rational total power operation”

PQ
m W p

�1E0n.BG/! p�1E0n.BG o†m/:

Theorem B (Theorem 10.1) With the notation of Theorem A, there is a commutative
diagram

E0n.BG/
Pm

//

�

��

E0n.BG o†m/

�

��

p�1E0n.BG/
PQ
m

// p�1E0n.BG o†m/:

We note that the rationalization p�1E0n.BG/ retains much of the information contained
in E0n.BG/, so our result approximates the total power operation closely. In fact,
E0n.BG/ is finitely generated and free for many finite groups G . These are the so-
called good groups; see Barthel and Stapleton [5], Hopkins, Kuhn and Ravenel [12]
and Schuster [21]. Finally, we show that PQ

m deserves to be called the rational total
power operation by proving it is a global power functor in the sense of Ganter [10,
Section 4].

Theorem C (Theorem 10.4, Corollary 10.5) The rational total power operation PQ
m

is a global power functor in such a way that the character map

�W E0n.B�/! p�1E0n.B�/

is a map of global power functors.

Note that Theorem C is not a direct consequence of Theorem B because Theorem B
does not say anything about composites of rational total power operations.

1.3 Outline

In Section 2, we establish notation and terminology that will be used in the rest of the
paper.

The first part of this paper, comprised of Section 3 through Section 6, contains results
that do not rely on Morava E–theory. We hope that some of the ideas in these sections
might be of interest to readers outside of stable homotopy theory. The goal of Section 3
is a thorough study of conjugacy classes of commuting elements in wreath products
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G o†m and their algebrogeometric interpretation. We suspect that this material is
well-known, but were unable to locate a reference in the literature. Section 4 deals with
the action of the isogenies of T on the Drinfel’d ring of full level-structures on G .
This is fundamental for the rest of the paper and extends work of Hopkins, Kuhn and
Ravenel [12]. For all m� 0 we construct multiplicative natural transformations P�m on
class functions in Section 5 and study their basic properties. The question of whether
one can choose a section � such that the associated transformation P�m inherits the
structure of a global power functor is considered in Section 6. We give an affirmative
answer for heights 1 and 2 by stipulating an explicit solution.

The second part begins in Section 7 with some recollections on Morava E–theory and
power operations. As a first step towards the proof of our main theorem, we consider
the case of abelian groups in Section 8. Using work of Schlank and Stapleton [20],
we extend the algebrogeometric description of the additive total power operations for
abelian groups due to Ando, Hopkins and Strickland [4]. Inspired by Artin induction,
Section 9 then proves Theorem A by reducing it to the case of abelian groups. Our
work culminates in Section 10, where the previous results are combined to descend
the multiplicative natural transformations to rationalized E–theory. We prove unique-
ness and establish the global power structure on the resulting multiplicative natural
transformation.

Acknowledgements It is a pleasure to thank Charles Rezk and Tomer Schlank for
their valuable input. Without some of their ideas this project would not have gotten off
the ground. We would like to thank Nora Ganter, Justin Noel and Chris Schommer-Pries
for helpful conversations, and Drew Heard for useful comments on an earlier draft.
The referee and Haynes Miller made many comments leading to an improvement of
the exposition of the paper. We also thank the Max Planck Institute for Mathematics
for its hospitality.

2 Notation and conventions

Let G be a finite group and fix a prime p and a natural number n� 0. We set LDZnp
and let hom.L; G/ be the set of continuous homomorphisms of groups from L to G .
Fixing a basis of L gives a bijection

hom.L; G/Š
˚
.g1; : : : ; gn/ j Œgi ; gj �D e and gp

k

i D e for some k > 0
	
;

where the target is the set of n–tuples of pairwise commuting prime-power order
elements in G . The group G acts on this set by conjugation; we write hom.L; G/=�
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for the set of conjugacy classes. Moreover, we will write Œ˛� for the conjugacy class of
a map ˛W L!G .

Let G o†m be the wreath product of G with †m , which is constructed as the semidirect
product Gm Ì†m with respect to the permutation action of †m on Gm . The wreath
product fits into a short exact sequence

1!Gm!G o†m
�
�!†m! 1:

We will always write � for the projection onto the symmetric group, and represent
elements in G o†m as .g1; : : : ; gmI �/ with gi 2G and � 2†m . We may abbreviate
this to .xgI �/, where xg D .g1; : : : ; gm/ and xgi D gi . Multiplication in the wreath
product is given by

(1) .xgI �/.xhI �/D .xg.� xh/I ��/;

where .� xh/i D h��1i .

We call a map ˛W L!†m transitive if the map represents a transitive L–set of order m.
Equivalently, the image im˛ of the map ˛ is a transitive abelian subgroup of †m .
This can only occur when mD pk . We say that a map

˛W L!G o†pk

is transitive if �˛ is transitive. Let hom.L; G o†pk /
trans be the set of transitive maps

and let hom.L; G o†pk /
trans
=�

be the set of conjugacy classes of transitive maps.

Pontryagin duality is pervasive throughout this paper. We will use the notation .�/�

for the (p–typical) Pontryagin duality endofunctor on abelian groups. Thus for an
abelian group A, we write

A� D hom.A;Qp=Zp/

for the dual abelian group. For a map of abelian groups A f
�!B , we write f � for the

dual map. Let T D L� ; then we have a noncanonical isomorphism

T Š .Qp=Zp/
n:

Let Œpk�W T ! T the multiplication by pk map and let T Œpk� be the pk –torsion
in T .

Let Subpk .T / be the set of subgroups of order pk in T . Let Summ.T / be the set
of formal sums of subgroups

L
i Hi with Hi � T and

P
i jHi j D m. It is clear

that Subpk .T / is a subset of Sumpk .T /. Given a subgroup H � T of order pk , let
fH W H ,! T be the inclusion. The Pontryagin dual of fH ,

f �H W L�H�;
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has the associated short exact sequence

0! ker.f �H / ,! L�H�! 0:

The kernel of f �H is canonically isomorphic to .T =H/� and noncanonically isomorphic
to L. We set LH D ker.f �H /� L.

More generally, we define Subpk .T ; G/ to be the set of pairs consisting of a subgroup
of order pk , H � T , and a conjugacy class in hom.LH ; G/. We will write such a
pair as .H; Œ˛�/. We define Summ.T ; G/ to be the collection of formal sums of pairsL
i .Hi ; Œ˛i �/, where the subgroups Hi � T are such that

P
i jHi j Dm and

Œ˛i � 2 hom.LHi ; G/=�:

If e is the trivial group, then we have

Subpk .T ; e/D Subpk .T /

and
Summ.T ; e/D Summ.T /:

Finally, given an isogeny �H W T ! T with kernel H , it is necessary to have notation
for the induced triangle:

T
�H

�� ��

qH

||||

T =H
 H

Š
// T

The Pontryagin dual triangle then takes the form:

L

LH
. �

q�H

>>

L
/ O

��H

__

 �H

Š
oo

3 Conjugacy classes in wreath products

The purpose of this section is to establish a canonical bijection between conjugacy
classes in wreath products and formal sums of subgroups in T :

F W hom.L; G o†m/=�
Š
�! Summ.T ; G/:
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In fact, we have canonical bijections, which are natural in G , as indicated in the table
below:

conjugacy classes subgroups

hom.L; †pk /
trans
=�

Subpk .T /
hom.L; †m/=� Summ.T /
hom.L; G o†pk /

trans
=�

Subpk .T ; G/
hom.L; G o†m/=� Summ.T ; G/

In the case that LD Zp , these isomorphisms can be obtained from [26, Section 7.7].

We will use F for any of the bijections in the table (they are all special cases of the
bottom entry of the table). The top two bijections are well-known; we will begin by
describing F in these cases.

The canonical bijection between hom.L; †pk /
trans
=�

and Subpk .T / is constructed as
follows: Let L ˛

�!†pk be a transitive map and let L0 D ker˛ . The map sends Œ˛� to
the kernel of the Pontryagin dual of the map L0 ,! L,

H D ker.L�� .L0/�/:

Since a conjugate map has the same kernel, this assignment does not depend on the
chosen representative ˛ for the conjugacy class Œ˛�. The resulting subgroup H is an
invariant of the conjugacy class Œ˛�. There is another description of this subgroup. The
map ˛ determines a transitive L–set of order pk . The lattice L0 is the stabilizer of
any element in the set and then H may be formed as the kernel above.

The second bijection is constructed similarly. A map ˛W L! †m is an L–set X
of order m. Let X D

`
i Xi be the decomposition of X into transitive L–sets. By

following the recipe above, each component gives a subgroup Hi � T . Since a
conjugate map corresponds to an isomorphic L–set, this collection of subgroups of T
is an invariant of the conjugacy class:

Œ˛� 7! F.Œ˛�/D
M
i

Hi :

Now we establish the third and fourth bijections in the table above. Let G be a left
G–torsor (a free transitive left G–set) and let m be a set with m 2N elements and
a trivial G–action. We will make use of three basic lemmas regarding G–sets of the
form G �m.

Let xx D .x1; : : : ; xm/ be a set of generators for G �m as a G–set. This choice of
generators induces an isomorphism

(2) xx�W AutG.G �m/ŠG o†m:
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We may be more explicit about this isomorphism. An automorphism f 2AutG.G�m/
permutes the m G–torsors; call this permutation �f . Thus f .xi /D g�f .i/x�f .i/ for
some g�f .i/ 2G . The isomorphism is given by

f 7! xx�.f /D .g�11 ; : : : ; g�1m I �f /D .xg
�1
I �f /:

This defines a homomorphism: If h 2 AutG.G �m/ maps to

h 7! .xk�1I �h/ 2G o†m;

then
.h ıf /.xi /D h.g�f .i/x�f .i//D g�f .i/k�h�f .i/x�h�f .i/

and, by (1),

.xk�1.�hxg
�1/I �h�f /.xi /D ..xk

�1.�hxg
�1//�h�f .i//

�1x�h�f .i/

D .k�1�h�f .i/.�hxg
�1/�h�f .i//

�1x�h�f .i/

D .�hxg/�h�f .i/k�h�f .i/x�h�f .i/

D g��1
h
�h�f .i/

k�h�f .i/x�h�f .i/

D g�f .i/k�h�f .i/x�h�f .i/:

Given a group homomorphism sW G!K and a G–set X , we may functorially form
the left K–set

K �G X;

which is the quotient of K �X by the relation .ks.g/; x/� .k; gx/. This is a K–set
through the left action of K on itself. The operation K �G � is left adjoint to the
functor from K–sets to G–sets given by viewing a K–set as a G–set through s . The
K–set

K �G .G �m/

is a disjoint union of m K–torsors and the unit of the adjunction is a canonical map of
G–sets

�W G �m!K �G .G �m/:

Given a set of generators xx of G �m, �.xx/ is a set of generators of K �G .G �m/
and this induces the following commutative diagram:

(3)

AutG.G �m/
xx�

//

��

G o†m

��

AutK.K �G .G �m//
�.xx/�

// K o†m
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Although the isomorphism of (2) depends on a choice of generators of G�m, the next
lemma shows that this dependence is removed by passing to conjugacy classes.

Lemma 3.1 There is a canonical isomorphism, natural in the group G ,

hom.L; G o†m/=� Š hom.L;AutG.G �m//=�:

Proof Let xx and xy be sets of generators of G �m as a G–set. Then there exists an
automorphism of f of G �m such that f .xi /D yi . This automorphism induces an
automorphism

AutG.G �m/
cf
�!AutG.G �m/

given by conjugation with f and the following diagram commutes:

AutG.G �m/
xx
//

cf
��

G o†m

AutG.G �m/
xy

77

For ˛ and ˛0 conjugate elements in hom.L;AutG.G �m//, it suffices to prove that
xx�.˛/ is conjugate to xy�.˛0/. Assume that ˛0 D g˛g�1 ; then the following diagram
commutes:

AutG.G �m/

cg
��

xx
// G o†m

��

L

˛
88

˛0
// AutG.G �m/

xy

''

cf
��

AutG.G �m/
xx
// G o†m

The dashed arrow is built by passing through the isomorphisms and is thus given by
conjugation. Thus xx�.˛/ is conjugate to xy�.˛0/.

The isomorphism is natural by diagram (3).

A map L!AutG.G�m/ corresponds to an L–set structure on G�m in the category
of G–sets. By adjunction, this corresponds to an L�G–set of order jGj �m with a
free G–action.

Lemma 3.2 By adjunction, there is a canonical isomorphism that is natural in the
group G between

hom.L;AutG.G �m//=�

and the set of isomorphism classes of L�G–sets of order jGj�m with a free G–action.
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The projection map G �m!m induces

AutG.G �m/! Aut.m/:

Thus it makes sense to define

hom.L;AutG.G �m//trans
=�

to consist of the conjugacy classes that induce a transitive L–action on m under the
projection. These, in turn, give rise to isomorphism classes of transitive L�G–sets
with a free G–action under the isomorphism of the lemma above. Transitive L–actions
on m only exist when m has cardinality pk for some k . In the transitive case we will
write pk instead of m.

As usual, isomorphism classes of transitive L�G–sets of order jGj �pk correspond
(canonically) to conjugacy classes of index jGj�pk subgroups of L�G . The conjugacy
classes of subgroups giving rise to a transitive L�G–set with a free G–action have a
nice description.

Lemma 3.3 There is a canonical isomorphism, natural in the group G , between
conjugacy classes of index jGj�pk subgroups M of L�G such that .L�G/=M has
a free G–action and pairs

.LH � L; Œ˛H W LH !G�/

consisting of an index pk sublattice LH � L and a conjugacy class of maps

Œ˛H W LH !G�:

Proof Subgroups M �L�G with the property that .L�G/=M has a free G–action
are in correspondence with subgroups of L�G that intersect 0�G � L�G trivially.

The data of a subgroup with this property has a very simple description. If M �L�G
intersects 0�G trivially, then the composite

M ,! L�G! L

is injective, where the last map is the projection: If m¤m0 2M map to .l; g/¤ .l; g0/,
respectively, then m.m0/�1 maps to .0; g.g0/�1/, which is not the identity. This
contradicts the assumption that the intersection with 0�G is trivial.

Thus M may be identified with LH for some LH �L with H �T of order m. Since
L is abelian, a conjugacy class of subgroups is a subgroup. Thus a conjugacy class of
subgroups of L�G of order jGj �pk that intersect 0�G trivially corresponds to a
subgroup LH � L of index pk and a conjugacy class of maps Œ˛H W LH !G�.
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Next we prove that the isomorphism is natural. Let sW G!K be a group homomor-
phism. The induced map

id� sW L�G! L�K

sends conjugacy classes of subgroups to conjugacy classes of subgroups. If M �L�G
intersects 0�G trivially, then so does .id� s/.M/.

Also, s induces the map on pairs .LH ; Œ˛�/ sending

.LH ; Œ˛�/ 7! .LH ; Œs˛�/:

Now, by the construction above of .LH ; ˛/ from a subgroup M that intersects 0�G
trivially, we see that s.M/ is sent to .LH ; s˛/. Conjugating the subgroup M just
conjugates s˛ .

By construction, the isomorphism of Lemma 3.1 restricts to a canonical isomorphism

hom.L; G o†pk /
trans
=� Š hom.L;AutG.G �pk//trans

=� :

For Œ˛� 2 hom.L; G o†pk /
trans
=�

, we may use the previous three lemmas to define

F.Œ˛�/D .H; Œ˛H �/:

Proposition 3.4 The map

F W hom.L; G o†pk /
trans
=�

Š
�! Subpk .T ; G/;

given by F.Œ˛�/D .H; Œ˛H �/, is a canonical isomorphism that is natural in G .

Proof Combine the canonical isomorphisms of the previous three lemmas.

It is worth noting an equivalent way to obtain .H; Œ˛H �/ from Œ˛�2hom.L; Go†pk /
trans
=�

.
We have a commutative diagram

LH
.ˇi /

//

q�H
��

Gp
k

��

L
˛
//

�˛
##

G o†pk

�

��

†pk
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defining pk maps ˇi W LH ! G . A set of generators xx of G � pk produces an
isomorphism

xx�W AutG.G �pk/!G o†pk

and the image of .q�H ; ˇi /W LH !L�G is the stabilizer of xi in the transitive L�G–
set determined by the composite .xx�/�1˛ . By Lemma 3.3, all of the maps ˇi are
conjugate and we may take ˛H to be any of the ˇi .

Corollary 3.5 We may choose ˛ 2 Œ˛� 2 hom.L; G o†pk /
trans
=�

with the property that
it factors through the inclusion:

.im˛H / o†pk
� _

��

L
˛

//

::

G o†pk

Proof For any ˛ 2 Œ˛�, the pk maps

LH !G

are all conjugate. Thus we may choose elements g2; : : : ; gpk 2G conjugating them
to the first one. The element .1; g2; : : : ; gpk I e/ 2 G o†pk conjugates ˛ to a map
satisfying the required condition.

Since the isomorphism class of a finite L�G–set is determined by the isomorphism
classes of the transitive components of a representative, for Œ˛� 2 hom.L; G o†m/=�
we may define

F.Œ˛�/D
M
i

.Hi ; Œ˛Hi �/;

where the pairs .Hi ; Œ˛Hi �/ are determined by the transitive components of the L�G–
set associated to Œ˛�.

Proposition 3.6 There is a canonical isomorphism, which is natural in G ,

F W hom.L; G o†m/=�
Š
�! Summ.T ; G/;

given by F.Œ˛�/D
L
i .Hi ; Œ˛Hi �/.

Remark 3.7 There is a more geometric interpretation of the above results; see [10,
Section 3.3.4, Corollary 3.7]. Conjugacy classes of tuples of commuting elements are
the homotopy classes

ŒB L; BG o†m�:
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The space B L is the p–complete torus. The homotopy classes ŒB L; B†m� are the
(isomorphism classes of) m–fold covers of the p–complete torus and the homotopy
classes ŒB L; BG o †m� are the (isomorphism classes of) principal G–bundles on
m–fold covers of the p–complete torus.

Now that we have proved the main result of this section, we draw several consequences
and prove related results that will be used in the remaining part of the paper.

Lemma 3.8 If
P
j ajp

j is the p–adic expansion of m, then the inclusion
Q
j †

aj

pj
�

†m induces a surjectionY
j

Sumpj .T ; G/
�aj � Summ.T ; G/:

Proof This is immediate from the definitions.

Proposition 3.9 The map �W G �†pk !G o†pk induces the map

Subpk .T /� hom.L; G/=�! Subpk .T ; G/

defined by .H; Œ˛W L!G�/ 7! .H; Œ˛q�H �/.

Proof Let ˇW L! †pk be transitive with the property that F.Œˇ�/ D H ; we are
interested in the composite

L ˛�ˇ
��!G �†pk !G o†pk :

This fits in the commutative diagram

LH

q�H
��

˛q�H
// G

��

�
// Gp

k

��

L
˛�ˇ

// G �†pk

%%

�
// G o†pk

��

†pk

where the top row consists of the kernels of the maps to †pk . It follows that

Œ.�.˛�ˇ//H �D Œ˛.q
�
H /�:
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Note that we now have a way of describing conjugacy classes in iterated wreath products
of symmetric groups. By Proposition 3.6, there is a bijection

hom.L; G o†s o†t /=� Š Sumt .T ; G o†s/:

Conjugacy classes from LHi to G o†s satisfy the same kind of formula; thus we may
write M

i

.Hi ; Œ˛Hi �/D
M
i

�
Hi ;

M
j

�
Ki;j ; Œ.˛Hi /Ki;j �

��
;

where Ki;j � T =Hi .

Proposition 3.10 Let st Dm; then the natural inclusion

rW G o†s o†t !G o†m

induces the mapM
i

�
Hi ;

M
j

�
Ki;j ; Œ.˛Hi /Ki;j �

��
7!

M
i;j

�
Ti;j ; Œ.˛Hi /Ki;j �

�
D

M
i;j

.Ti;j ; Œ˛Ti;j �/;

where Ti;j is defined as the pullback in the following diagram:

Ti;j

��

// T

��

Ki;j // T =Hi

Proof It suffices to show this on ˛W L ! G o †pj o †pt with ˛ transitive and
˛H W LH ! G o †pj transitive. When ˛ and ˛H are transitive, r˛ is transitive.
In this case, we have K � T =H and the pullback T is the kernel of the composite

T
qH
�!T =H ! .T =H/=K:

Now we check that Œ.˛H /K �D Œ.r˛/T �. By Corollary 3.5, ˛ 2 Œ˛� can be chosen so
that

.LH /K //

��

L

˛

��

G
�

//

D

��

G o†s o†t

r

��

// †s o†t

��

G
�

// G o†m // †m
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commutes, where .LH /K is the kernel of the composite L!G o†s o†t !†s o†t .
Since †s o†t !†m is injective, .LH /K D LT and .˛H /K D ˛T .

Let L0 Š Znp be another rank n lattice and let T 0 D .L0/� . Let

� W T Š
�!T 0

be an isomorphism. Precomposition with �� induces a bijection

hom.L; G o†m/=�
Š
�! hom.L0; G o†m/=�:

We explain the effect of this map on Summ.T ; G/.

Proposition 3.11 Precomposition with �� on hom.L; G o†m/=� induces the map

Summ.T ; G/! Summ.T 0; G/

given by M
i

.Hi ; Œ˛Hi �/ 7!
M
i

�
�.Hi /; Œ˛Hi�

�
jL0
�.Hi /

�
�
:

Proof First we will verify the claim on the subgroups Hi � T . If LHi stabilizes
x 2m�˛ , then Hi is the kernel of T DL�!L�Hi . The stabilizer of x 2m�˛�� is the
preimage of L�Hi under �� . The kernel of the map .L0/�! ..��/�1LHi /

� is �Hi .

Now we may assume that we have a transitive map L ˛
�!G o†pk such that Œ�˛�

corresponds to H . By Corollary 3.5, we may assume that ˛jLH D �˛H . Since
.��/�1LH D L�H , the diagram

L0�H
//

��
j
L0
�.H/

��

L0

��

��

LH //

˛H

��

L

˛

��

G
�
// G o†pk

shows that Œ˛H � is sent to Œ˛H��jL0
�.H/

�.

There is an obvious left action of Aut.T / on hom.L; G o†m/=� given by precomposi-
tion with the Pontryagin dual. The previous proposition gives a formula for this action
on Summ.T ; G/.
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Corollary 3.12 The left action of � 2Aut.T / on Summ.T ; G/ induced by the action
of Aut.T / on hom.L; G o†m/=� is given byM

i

.Hi ; Œ˛Hi �/
�
7!

M
i

�
�.Hi /; Œ˛Hi�

�
jL�.Hi /

�
�
:

4 The action of isogenies on C0

Let � be a height n formal group over a perfect field � of characteristic p . In this
section we introduce three rings depending on this data: the Lubin–Tate ring En , the
Drinfel’d ring D1 , and the rationalized Drinfel’d ring C0 .

The Lubin–Tate ring En , which is noncanonically isomorphic to W.�/ŒŒu1; : : : ; un�1��,
first appears in the study of formal groups in [13]. The Lubin–Tate moduli problem
associates to a complete local ring R with residue field � the groupoid Def�.R/ with
objects deformations of � to R and morphisms ?–isomorphisms; see [15, Section 4].
The main theorem of Lubin and Tate produces an equivalence of groupoids

Spf.En/.R/' Def�.R/:

The ring En carries the universal deformation G of � .

Let Dk be the Drinfel’d ring of full level-k structures on G , which was introduced in
[9, Section 4B]. Note that Drinfel’d omits the word “full” as all of his level structures
are full. The ring Dk is a complete local En–algebra that is finitely generated and free
as an En–module, with the property that

Spf.Dk/Š Level.T Œpk�;G/;

where Level.T Œpk�;G/ is the functor sending a complete local En–algebra R to the
set of level structures Level.T Œpk�; R˝G/. In particular, Dk has been studied by
homotopy theorists in [12, Sections 6.1 and 6.2; 3, Section 2.4; 4, Part 3; 24, Section 7].

For H � T Œpk�� T a finite subgroup, the formal group G=H may be defined as a
deformation over Dk and thus is classified by a map QH W En!Dk . It follows that
there is a (necessarily unique) ?–isomorphism

Dk ˝
QH

En
G Š .Dk˝En G/=H:

Let
D1 D colimkDk D colimk � Level.T Œpk�;G/;

where the maps in the indexing diagram are induced by the precomposition

.T Œpk�!G/ 7! .T Œpk�1� ,! T Œpk�!G/:
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We define2 hom.D1; R/D limk hom.Dk; R/, an element in this set being an infinite
compatible family of level structures.

There are actions of several large groups on D1 ; see [7, Section 1.4]. There is an action
of Aut.T / on D1 that plays a prominent role in the theorems in [12]. This action is
given by precomposing a level structure T ,!G with the given automorphism of T .
Now let Isog.T / be the monoid of endoisogenies (endomorphisms with finite kernel)
of T . Note that Isog.T / is contravariantly isomorphic to M det¤0

n .Zp/, the monoid of
n�n matrices with coefficients in Zp that have nonzero determinant. We will extend
the opposite of the action of Aut.T / on D1 to an action of Isog.T / on D1 . After
proving this result, the authors discovered that it seems to be well-known. Because we
were unable to locate a proof in the literature, we include the argument.

Proposition 4.1 The action of the group Aut.T / by En–algebra maps on D1 given
by precomposing a level structure with the inverse automorphism extends to an action
of Isog.T / by ring maps.

Proof Fix an isogeny �H W T ! T with kernel H . We want to construct a map

D1
�H
�!D1

by mapping to a cofinal subcategory of the diagram category. For H � T Œpk�� T ,
fix k0 � k such that T Œpk�� �H .T Œpk

0

�/. Consider the diagram

En
QH

//

��

Dk

��

Dk // Dk0 // R

where QH is the map classifying the deformation G=H . We would like to construct
the dashed map.

The map Dk0 ! R is a map of En–algebras for the standard En–algebra structure
on Dk0 . Thus we have a level structure T Œpk

0

� ,!R˝G . Taking the quotient by H
gives the level structure

T Œpk
0

�=H Š �H .T Œp
k0 �/ ,! .R˝G/=H:

We put a different En–algebra structure on R by using QH . We abuse notation and
denote the composite En

QH
�!Dk0 ! R by QH . Recall that we have the canonical

2We are treating D1 as an ind-object since the colimit is not a complete local ring.
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isomorphism .R ˝En G/=H Š R ˝
QH

En
G . Precomposition with the inclusion

T Œpk�� �H .T Œpk
0

�/ gives

T Œpk� ,!R ˝
QH

En
G;

which is classified by a map Dk!R making the whole diagram commute. Now take
RDDk0 .

To check compatibility of the maps, it suffices to consider the following situation. Let
l > k and l 0 > k0 be such that T Œpl �� �H .T Œpl

0

�/; then the commutative diagram

T Œpk
0

�
� � //

� _

��

Dl 0 ˝En G

D
��

T Œpl
0

�
� � // Dl 0 ˝En G

gives rise to a commutative diagram:

T Œpk� �
�

//
� _

��

�H .T Œpk
0

�/
� � //

� _

��

.Dl 0 ˝En G/=H
Š
//

D

��

Dl 0 ˝
QH

En
G

D

��

T Œpl � �
�

// �H .T Œpl
0

�/
� � // .Dl 0 ˝En G/=H

Š
// Dl 0 ˝

QH
En

G

This implies that the diagram

En
QH

//

��

Dk

��

Dk

��

// Dk0

��

Dl // Dl 0

commutes. We can now make precise the (more informal sounding) statement that �H
sends the universal level structure T ,!D1˝En G to the composite

T
 �1H
��!T =H ! .D1˝En G/=H Š

�!D1 ˝
QH

En
G:

Finally we show that this action extends the action of Aut.T / on D1 by precomposition
with the inverse automorphism. Indeed, by the above, the automorphism �e 2 Aut.T /
sends the universal level structure T ,!D1˝En G to the composite

T
��1e
��!T !D1˝En G;
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because in this case  e D �e , due to the following diagram:

T
�e

//

qeDid
$$

T

T =e D T

 e

OO

This concludes the proof.

We note a corollary of the proof.

Corollary 4.2 Given an endoisogeny �H of T with kernel H � T , the following
diagram commutes:

T
�H

//

qH
  

T �
�

// D1 ˝
QH

En
G

T =H
� � //

 H

OO

.D1˝En G/=H

Š

OO

The ring
C0 D p

�1D1 DQ˝D1

was introduced in [12, Section 6.2] (where it is called L.E0/) to serve as suitable coef-
ficients for the codomain of the generalized character map. By the previous proposition,
C0 is acted on by Isog.T /. Hopkins, Kuhn and Ravenel [12, Proposition 6.6] showed
that CAut.T/

0 Š p�1En . It seems reasonable to conjecture that C Isog.T/
0 ŠQp . The

ring C0 also has an algebrogeometric description as it carries the universal isomorphism
(of p–divisible groups) T Š

�!G .

Remark 4.3 The action defined above in Proposition 4.1 is a right action of Isog.T /
on D1 . The monoid Isog.T / is dual to M det¤0

n .Zp/, which acts on D1 on the
left. Given x 2 C0 and an isogeny �H , we will write ��H .x/ for the action by the
Pontryagin dual. One further remark seems necessary. In [12] the inverse action is
defined and they write it as a left action even though it is a right action. This could
cause confusion.

Example 4.4 Take n D 1 and the height 1 formal group yGm . In this case the
Drinfel’d ring Dk is just Zp adjoin all primitive .pk/th roots of unity. The isogeny
Œpk� acts trivially on D1 . This can be seen in many ways. To see it using the proof
above note that QH must be the standard algebra structure since En Š Zp . Thus
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.R˝ yGm/=H Š R˝ yGm canonically. Now the level structure ƒk ! R˝ yGm is
precisely the restriction to ƒk of the one we began with. Since every isogeny has the
form upk for some unit (automorphism) u, we see that

D
Isog.Qp=Zp/
1 DD

Aut.Qp=Zp/
1 D Zp:

Example 4.5 In fact, the isogeny Œpk�W T! T always acts by isomorphisms on D1 .
When � � Fpn and G is the universal deformation of the Honda formal group, Œpk�
acts by the identity. This is due to the fact that, in this case, there is a ?–isomorphism

.Dk˝En G/=T Œpk�ŠDk˝En G

covering the nk–fold Frobenius (which is the identity) on � .

5 Multiplicative natural transformations on class functions

The goal of this section is to construct a collection of operations on class functions,

P�mW Cln.G; C0/! Cln.G o†m; C0/;

that are multiplicative, nonadditive, natural in the finite group G . These operations
combine the action of isogenies on C0 with the description of conjugacy classes in
wreath products given in Section 3. In Section 9, we will show that the operations
constructed in this section are compatible with the total power operation in E–theory.

Recall that LDZnp and that hom.L; G/=� is the set of conjugacy classes of maps from
L to G (see Section 2). Given an isogeny �H W T ! T with kernel H � T , there is
an action map ��H W C0! C0 . Also recall that  H W T =H

Š
�!T is the isomorphism

induced by �H and that  �H W L! LH is the Pontryagin dual.

Definition 5.1 For a finite group G and a subgroup H � T , define ClHn .G; C0/ to
be the set of C0–valued functions on hom.LH ; G/=� . When H is the trivial group we
will abbreviate this to Cln.G; C0/. Recall that C0 depends on n and that ClHn .G; C0/
depends on the prime p even though it is not part of the notation.

Proposition 5.2 Given an isogeny �H W T ! T with kernel H we may produce a
natural map of rings

.�/�H W Cln.G; C0/! ClHn .G; C0/;

defined by f �H .Œ˛�/D ��Hf .Œ˛ 
�
H �/.
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Proof Note that the map is well defined.

To prove naturality, let K i
!G be a map of finite groups. This induces restriction

maps ResW Cln.G; C0/! Cln.K;C0/ and ResH W ClHn .G; C0/! ClHn .K;C0/. Now
we show that ResH �H D �H Res. Let ˛W LH !K ; then we have

ResH .f �H /.Œ˛�/D f �H .Œi˛�/

D ��Hf .Œi˛ 
�
H �/

D ��H Res.f /.Œ˛ �H �/

D Res.f /�H .Œ˛�/:

For completeness, we show the map is a ring map. Let f , g 2 Cln.G; C0/; then

.f Cg/�H .Œ˛�/D ��H .f Cg/.Œ˛ 
�
H �/

D ��H
�
f .Œ˛ �H �/Cg.Œ˛ 

�
H �/

�
D ��Hf .Œ˛ 

�
H �/C�

�
Hg.Œ˛ 

�
H �/

D f �H .Œ˛�/Cg�H .Œ˛�/

and
.fg/�H .Œ˛�/D ��H .fg/.Œ˛ 

�
H �/

D ��H
�
f .Œ˛ �H �/g.Œ˛ 

�
H �/

�
D ��Hf .Œ˛ 

�
H �/�

�
Hg.Œ˛ 

�
H �/

D f �H .Œ˛�/g�H .Œ˛�/:

Corollary 5.3 When restricted to Aut.T / � Isog.T / the maps defined above are
endomorphisms of Cln.G; C0/. This is the inverse of the action of GLn.Zp/ on class
function described by [12].

Proof The important thing to note is that qe D idW T ! T , so we have a triangle

T
�e

//

id
$$

T

T =e D T

 e

OO

factoring the identity map. Thus  e D �e and Proposition 5.2 produces a map

Cln.G; C0/! Cln.G; C0/
and

f �e .Œ˛�/D ��e f .Œ˛ 
�
e �/D �

�
e f .Œ˛�

�
e �/;

which is the action described in [12] after taking into account Remark 4.3.
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Remark 5.4 We will often use the canonical isomorphism

Cln.G; C0/˝C0 Cln.K;C0/
Š
�!Cln.G �K;C0/;

which follows immediately from the definition of Cln.�; C0/.

Our goal is to construct a family of multiplicative natural transformations

Cln.�; C0/D) Cln.� o†m; C0/

for all m� 0.

Let Sub.T / be the set of finite subgroups of T . We may produce a finite subgroup
of T from an isogeny ˛W T ! T by taking the kernel of ˛ . The induced surjection

Isog.T /! Sub.T /

makes Isog.T / into a principal Aut.T /–bundle over Sub.T /, and we denote its set of
sections by �.Sub.T /; Isog.T //.

Fix a section � 2 �.Sub.T /; Isog.T // and let �H D �.H/. Proposition 3.6 and
Proposition 4.1 may be combined to construct a map

P�mW Cln.G; C0/! Cln.G o†m; C0/:

For f 2 Cln.G; C0/, we define

P�m.f /

�M
i

.Hi ; Œ˛i �/

�
D

Y
i

f �Hi .Œ˛i �/D
Y
i

��Hif .Œ˛i 
�
Hi
�/:

Let F W hom.L; G o†m/=�
Š
�! Summ.T ; G/ be the isomorphism of Proposition 3.6.

For a conjugacy class Œ˛� 2 hom.L; G o†m/=� , we set

P�m.f /.Œ˛�/D P�m.f /.F.Œ˛�//D P�m.f /

�M
i

.Hi ; Œx̨i �/

�
:

Proposition 5.5 Each section � 2 �.Sub.T /; Isog.T // gives a natural multiplicative
transformation

P�mW Cln.�; C0/D) Cln.� o†m; C0/:

Proof Multiplicativity follows from Proposition 5.2. Indeed, for f , g 2 Cln.G; C0/
we haveY

i

f �H .Œ˛i �/
Y
i

g�H .Œ˛i �/D
Y
i

f �H .Œ˛i �/g
�H .Œ˛i �/D

Y
i

.fg/�H .Œ˛i �/:
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A map of groups K j
!G induces a map on conjugacy classes j�W hom.L; K/=�!

hom.L; G/=� and a restriction map Cln.G; C0/
Res
�!Cln.K;C0/. We show that the

diagram

Cln.G; C0/
P�m.G/

//

Res
��

Cln.G o†pk ; C0/

Res
��

Cln.K;C0/
P�m.K/

// Cln.K o†pk ; C0/

commutes. We have a commutative diagram:

K o†pk
//

��

G o†pk

��

†pk
D

// †pk

Thus

j�

�M
i

.Hi ; Œ˛i �/

�
D

M
i

.Hi ; j�Œ˛i �/;

and this implies the result.

Definition 5.6 We call the map

P�mW Cln.�; C0/D) Cln.� o†m; C0/

the pseudopower operation associated to � 2 �.Sub.T /; Isog.T //.

Remark 5.7 It is important to note that P�1 is not necessarily the identity. It depends
on the choice of automorphism �e 2 Isog.T /.

Note that there is an action of Aut.T / on �.Sub.T /; Isog.T // given by multiplication
on the left. For 
 2 Aut.T /, � 2 �.Sub.T /; Isog.T // and H 2 Sub.T /, we have

.
�/H D 
.�H /W T ! T :

This action is compatible with the action of Aut.T / on class functions.

Proposition 5.8 For 
 2 Aut.T / and � 2 �.Sub.T /; Isog.T //, we have

P�m.f

 /D P
�m .f /:

Proof It suffices to evaluate on conjugacy classes. By multiplicativity it suffices to
check the claim on elements of Subm.T ; G/. Let .H; Œ˛�/ 2 Subm.T ; G/; then

P�m.f

 /.H; Œ˛�/D ��Hf


 .Œ˛ �H �/D �
�
H

�f .Œ˛ �H


��/D P
�m .f /.H; Œ˛�/:
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6 A total power operation on class functions

In this section we study the basic properties of the pseudopower operations from the
previous section. Most importantly, we find that if � satisfies a certain combinatorial
identity, then P�m equips Cln.�; C0/ with the structure of a global power functor in
the sense of [10, Section 4]. We prove that there are sections � satisfying this identity
when nD 1, 2.

The functor Cln.�; C0/ is a global Green functor in the sense of [10, Section 3].
Transfers, restrictions, and their properties are discussed in [10, Section 3] and in [12,
Theorem D]. If K � G , f 2 Cln.K;C0/ and ˛W L! G , then the formula for the
transfer is

Tr.f /.Œ˛�/D
X

gK2.G=K/im˛

f .Œg˛g�1�/:

We begin by proving an analogue of [6, Proposition VIII.1.1].

Let i , j � 0 and consider the maps

(4)

rW G o†i o†j !G o†ij ;

�W G!G o†m;

�i;j W G o .†i �†j /!G o†iCj ;

ıW .G �K/ o†m! .G o†m/� .K o†m/:

Let
Tri;j W Cln.†i �†j ; C0/! Cln.†m; C0/

be the transfer along †i �†j �†m , where i C j Dm.

Proposition 6.1 Let � 2 �.Sub.T /; Isog.T // and m, l � 0; then the pseudopower
operations associated to � makes the following diagrams commute:

Cln.G; C0/
P�m�P�

l
//

P�
mCl

��

Cln.G o†m; C0/�Cln.G o†l ; C0/

�

��

Cln.G o†mCl ; C0/
��
m;l

// Cln.G o .†m �†l/; C0/

Cln.G; C0/�Cln.K;C0/
P�m�P�m

//

P�m ++

Cln.G o†m; C0/�Cln.K o†m; C0/

ı�

��

Cln..G �K/ o†m/
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Cln.G; C0/
P�m
//

.P�1 /
�m ((

Cln.G o†m; C0/

��

��

Cln.Gm; C0/

P�m.f1Cf2/D P�m.f1/CP�m.f2/C
m�1X
jD1

Trj;m�j .P
�
j .f1/�P�m�j .f2//

Proof These are all standard. We elaborate on the last formula.

Let
L
i .Hi ; Œ˛i �/ 2 Summ.T ; G/. Note that

P�m.f1Cf2/

�M
i

.Hi ; Œ˛i �/

�
D

Y
i

�
��Hif1.Œ˛ 

�
Hi
�/C��Hif2.Œ˛ 

�
Hi
�/
�

and expand this into a sum (without simplifying). Assume that the sum of subgroups is
indexed by S , so that M

i

Hi D
M
i2S

Hi :

The formula is completely combinatorial. Let

Zj D
˚
T � S j

P
i2T

jHi j D j
	
:

By a standard argument, the transfer equals

Trj;m�j .P
�
j .f1/�P�m�j .f2//

�M
i2S

.Hi ; Œ˛i �/

�
D

X
T2Zj

P�j .f1/

�M
i2T

.Hi ; Œ˛i �/

�
P�m�j .f2/

� M
i2SnT

.Hi ; Œ˛i �/

�
:

As j varies this hits exactly the summands from the expanded sum.

Let J � Cln.G o†pk ; C0/ be the ideal generated by the image of the transfer along
the maps

G o .†i �†j /!G o†pk

for i , j >0 and iCj Dpk. In the special case that GDe , we will let I �Cln.†pk ; C0/
be the ideal generated by the transfer along the maps †i �†j �†pk .

We now give a description of J in the spirit of Section 3.
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Proposition 6.2 The ideal J consists of the factors of

Cln.G o†pk ; C0/D
Y

Sum
pk
.T ;G/

C0

corresponding to the sums with more than one summand.

Proof This follows immediately from the formula for the transfer. If there is a lift

G o .†i �†j /

��

L
˛

//

99

G o†pk

up to conjugacy, then F.Œ�˛�/ must have more than one subgroup. Now the transfer
of the characteristic class function concentrated on the lift is a generator of the factor
corresponding to Œ˛�.

Remark 6.3 We could define J for m¤ pk, but the previous proposition shows that,
in this case, J D Cln.G o†m; C0/.

We define some simplifications of P�m . Consider

P�
pk
=J W Cln.G; C0/! Cln.G o†pk ; C0/=J;

P �m D�
�P�mW Cln.G; C0/! Cln.G; C0/˝C0 Cln.†m; C0/;

where �W G �†pk !G o†pk , and

P
�

pk
=I W Cln.G; C0/! Cln.G; C0/˝C0 Cln.†pk ; C0/=I:

Corollary 6.4 The maps P�
pk
=J and P �

pk
=I are both ring maps.

Proof This follows immediately from the definition of P�m and Proposition 6.2.

Remark 6.5 By construction, the pseudopower operation P�m restricts to a map

Cln.G;D1/! Cln.G o†m;D1/:

Instead of defining P�
pk
=J and P �

pk
=I as above, we could have defined them as the

rationalization of a map with domain Cln.G;D1/. This is not true of P�m as it is not
additive.
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Example 6.6 Let .H; Œ˛�/ 2 Subpk .T ; G/. We compute the effect of P �
pk
=I on

Cln.G; C0/. Using Proposition 3.9 we see that

.P
�

pk
=I /.f /.H; Œ˛�/D P�

pk
.f /.H; Œ˛q�H �/

D f �H .Œ˛q�H �/

D ��Hf .Œ˛q
�
H 
�
H �/

D ��Hf .Œ˛�
�
H �/:

Example 6.7 When mD pkn , there is a further natural simplification of P�m . If we
choose � to take T Œpk� to Œpk�W T ! T , then we may compose P �

pkn
=I further with

the map
Cln.†pkn ; C0/=I ! C0

that projects onto the factor corresponding to T Œpk�. This gives a map

 p
k

W Cln.G; C0/! Cln.G; C0/;

known as the Adams operation corresponding to T Œpk�. The formula for it can be
derived from the previous example:

.P
�

pkn
=I /.f /.T Œpk�; Œ˛�/D ��T Œpk�f .Œ˛�

�

T Œpk��/:

When ��Fpn and G is the universal deformation of the Honda formal group (following
Example 4.5), this simplifies to give

f .Œ˛��T Œpk��/:

This map is induced by the map on conjugacy classes hom.L; G/=�! hom.L; G/=�
sending

Œ˛W L!G� 7! ŒL
pk
�!L ˛

�!G�;

recovering the usual formula for the Adams operations on class functions when nD 1.

We see that we have analogues of all of the parts of [6, Proposition VIII.1.1] except
part (ii), which is the fundamental relation that a global power functor satisfies (see [10,
Section 4] as well). Now we classify the sections � that give rise to a pseudopower
operation that does satisfy this relation.

Definition 6.8 A section � 2 �.Sub.T /; Isog.T // is a power section if, for all H �
T � T ,

�T D �T=H�H ;

where T=H D �H .T /.
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Proposition 6.9 The pseudopower operation P�m is a global power functor if and only
if � is a power section.

Proof Assume � is a power section. Let st Dm; we must show that

Cln.G; C0/
P�m

//

P�s
��

Cln.G o†m; C0/

r�

��

Cln.G o†s; C0/
P�t
// Cln.G o†s o†t ; C0/

commutes.

Recall that Ti;j fits into the following commutative diagram:

Ti;j

��

// T

��

�Hi
// T

Ki;j // T =Hi

 Hi

<<

Thus we have an induced map

 Hi=Ki;j W T =Ti;j ! T = Hi .Ki;j /:

This fits into the following commutative diagram:

(5)

T

qHi
��

�Hi

((
T =Hi

 Hi
//

��

T

q Hi
.Ki;j /

��

�Ti;j =HiD� Hi
.Ki;j /

''
T =Ti;j

 Hi =Ki;j

// T = Hi .Ki;j /  Ti;j =Hi
// T

Since � is a power section, we have the relation

�Ti;j =Hi�Hi D �Ti;j :

The composite of the left-hand vertical maps is qTi;j . Thus we have an equality

 Ti;j =Hi Hi=Ki;j D  Ti;j :

Applying Pontryagin duality to this equality gives

 �Ti;j D  
�
Hi
jL Hi .Ki;j /

 �Ti;j =Hi :
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This relation is used in going from the seventh to the eighth line in the display below.

Proposition 3.10 shows that a generalized conjugacy class in G o†s o†t has the formM
i

�
Hi ;

M
j

.Ki;j ; Œ.˛Hi /Ki;j �/

�
:

Now we may use the definition of the pseudopower operation to compute the effect of
P�t P�s and P�m on a class function f 2 Cln.G; C0/. Let f 2 Cln.G; C0/; then

P�t .P
�
s .f //

�M
i

�
Hi ;

M
j

�
Ki;j ; Œ.˛Hi /Ki;j �

���

D

Y
i

.P�s .f //
�Hi

�M
j

�
Ki;j ; Œ.˛Hi /Ki;j �

��

D

Y
i

��HiP
�
s .f /

��M
j

�
Ki;j ; Œ.˛Hi /Ki;j �

��
 �Hi

�

D

Y
i

��HiP
�
s .f /

�M
j

�
 Hi .Ki;j /; Œ.˛Hi /Ki;j 

�
Hi
jL Hi .Ki;j /

�
��

D

Y
i

��HiP
�
s .f /

�M
j

�
�Hi .Ti;j /; Œ.˛Hi /Ki;j 

�
Hi
jL Hi .Ki;j /

�
��

D

Y
i

Y
j

��Hi .f /
�Ti;j =Hi

�
Œ.˛Hi /Ki;j 

�
Hi
jL Hi .Ki;j /

�
�

D

Y
i

Y
j

��Hi�
�
Ti;j =Hi

f
�
Œ.˛Hi /Ki;j 

�
Hi
jL Hi .Ki;j /

 �Ti;j =Hi �
�

D

Y
i

Y
j

��Ti;j f
�
Œ.˛Hi /Ki;j 

�
Ti;j

�
�

D P�m.f /

�M
i;j

�
Ti;j ; Œ.˛Hi /Ki;j �

��
:

Going from the third to the fourth line of the equalities we have used Proposition 3.11
applied to  Hi .

The reverse implication follows immediately.

Example 6.10 When nD 1, there is an obvious power section: for Z=pk �Qp=Zp
we let �Z=pk be the multiplication by pk map on Qp=Zp .

The authors have been unable to find a general method for producing power sections
for all n. We now turn to the case of n D 2, which is important for applications to
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elliptic cohomology. We write elements of Isog..Qp=Zp/2/ as matrices with entries
in Zp , but view these as acting on .Qp=Zp/2 .

Lemma 6.11 For each H 2 Subp..Qp=Zp/2/, there exists a matrix �H such that

�2H D Œp�D

�
p 0

0 p

�
and �H ..Qp=Zp/

2Œp�/DH:

Proof Associate to the subgroup generated by .1=p; i=p/ the matrix�
�i 1

p� i2 i

�
and to the subgroup generated by .0; 1=p/ the matrix�

0 p

1 0

�
:

Let us fix endomorphisms for each subgroup of order p as in the above lemma and let
N be the submonoid of End.Z2p/ generated by the associated matrices �H . Note that,
if H denotes a finite cyclic subgroup of .Qp=Zp/2 , then there exists a unique ordered
tuple of matrices .�K1 ; : : : ; �Ki / associated to subgroups Kj of order p such that
H D ker.�Ki � � ��K1/. The next lemma provides a generalization of this observation to
arbitrary finite subgroups H � .Qp=Zp/2 , thereby producing a normal form for �H .

Lemma 6.12 Suppose H � .Qp=Zp/2 and let k be the unique natural number with
.Qp=Zp/2Œpk��H and .Qp=Zp/2ŒpkC1�ªH . Choose subgroups K˛ of order p
such that

H D ker.�Ki � � ��K1/; ie jH j D pi I

then the matrix Œpk� divides �Ki � � ��K1 in N . Moreover, writing �Ki � � ��K1 D

Œpk��Ls � � ��L1 , the �Lˇ are uniquely determined by H .

Proof We prove this by induction on the order of H . We may assume that

.Qp=Zp/
2Œpk�ªH1 WD ker.�Ki�1 � � ��K1/:

If not, then we are done by induction on the order.

Thus we are in the situation where H Š Z=pk � Z=pj with k � j and H1 Š

Z=pk�1 �Z=pj . By induction, there exist subgroups L1; : : : ; Ls of order p such
that

�Ki�1 � � ��K1 D Œp
k�1��Ls � � ��L1 :
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By definition,

�Ls Œp
k�1��Ls�1 � � ��L1.H/D Œp

k�1��Ls � � ��L1.H/D �Ki�1 � � ��K1.H/DKi :

Now, since H ŠZ=pk�Z=pj , where k�j and H1ŠZ=pk�1�Z=pj , we must have
that ��1Ls .Ki /D .Qp=Zp/2Œp�. To see this, note that Œpk�1��Ls�1 � � ��L1.H/ŠZ=p2

would imply that .Qp=Zp/2Œpk�ªH , contradicting our assumption. It follows that

Ki D �Ls ..Qp=Zp/
2Œp�/D Ls:

So �Ki D �Ls and

�Ki � � ��K1 D �Ki Œp
k�1��Ls � � ��L1 D Œp

k�1��2Ls�Ls�1 � � ��L1 D Œp
k��Ls�1 � � ��L1 :

This finishes the inductive construction. In order to see uniqueness, let �Ki � � ��K1 and
�K0

i
� � ��K01

be two decompositions corresponding to two composition series for H as
above. Assume .Qp=Zp/2Œpk��H and .Qp=Zp/2ŒpkC1�ªH ; then

�Ki � � ��K1 D Œp
k��Ls � � ��L1

and
�K0

i
� � ��K01

D Œpk��L0s � � ��L01
:

We have that Œpk�H ŠH=Œpk�H is cyclic and thus admits a unique decomposition.
Therefore, Lˇ D L0ˇ for 1� ˇ � s .

With this in hand, we can produce power sections for nD 2.

Proposition 6.13 For each choice of endomorphisms for subgroups of order p in
.Qp=Zp/2 satisfying the conclusion of Lemma 6.11, there is a power section � 2
�.Sub.T /; Isog.T //, ie a section � such that, for K �H ,

�H D �H=K�K ;

where H=K D �K.H/.

Proof With notation as in the previous lemma, define �H to be the composite
�Ki � � ��K1 . The power section condition for � follows from the uniqueness of its
normal form, given by Lemma 6.12.

7 Recollections on Morava E –theory

In this section we recall the facts that we need about Morava E–theory before we can
proceed. For any space X we set

En.X/DE
0
n.X/:
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We will also set En D E0n . By Goerss, Hopkins and Miller [11] there is a unique
E1–ring structure on the spectrum En . In the homotopy category, this gives rise
to total power operations [6, Section VIII]. The total power operations are natural
multiplicative nonadditive maps

PmW En.X/!En.E†m �†m X
m/

for all m> 0 that satisfy the relations of Proposition 7.2.

A common simplification of Pm is given by restriction along the diagonal X �
�!Xm .

This gives a map

PmW En.X/!En.B†m �X/ŠEn.B†m/˝En En.X/;

the isomorphism being a consequence of the freeness of En.B†m/ over En [25,
Proposition 3.6]. Let J �En.E†pk �†pk X

pk / be the ideal generated by the image
of the transfers along the maps

E.†i �†j /�.†i�†j /X
pk
!E†pk �†pk X

pk

for i , j > 0 and i C j D pk, and let I � En.B†pk / be the ideal generated by the
image of the same transfer for X D �. Neither Pm nor Pm are additive, but they can
both be made so by taking the quotient by J and I , respectively. Thus we have ring
maps

Ppk=J W En.X/!En.E†pk �†pk X
pk /=J

and
Ppk=I W En.X/!En.B†pk �X/ŠEn.B†pk /=I ˝En En.X/:

Let us call Ppk=J the additive total power operation. For m¤ pk it is still possible to
define Pm=J , but these ring maps are uninteresting.

Remark 7.1 We have abused notation by calling these ideals I and J in conflict with
the I and J defined prior to Proposition 6.2.

We will apply these power operations to X D BG ; in this case,

E†m �†m X
m
' BG o†m:

Recall the maps of (4) from Section 6. The relations that we will need are the following:

Proposition 7.2 [6] For any x 2En.X/ and i , j , m� 0, we have

(1) r�Pij .x/D PiPj .x/,

(2) ��Pm.x/D xm ,

(3) ��i;jPiCj .x/D ı�.Pi .x/Pj .x//.
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Proof The proof can be found in [6, Chapter VIII].

Corollary 7.3 [6, Proposition VIII.1.1] There is a commutative diagram

En.BG/
P
pk

//

P
pk�1

��

En.BG o†pk /

r�

��

En.BG o†pk�1/
Pp
// En.BG o†pk�1 o†p/

// En.BG o†
p

pk�1
/

and the formula for the whole composite is just x 7! Ppk�1.x/˝ � � �˝Ppk�1.x/.

Proof The result follows immediately from Proposition 7.2(1) and (3).

Character theory for Morava E–theory is constructed in [12]. Hopkins, Kuhn and
Ravenel construct the ring C0 , which is introduced in Section 4, and produce a natural
character map

�W En.BG/! Cln.G; C0/

with the property that the induced map

C0˝En En.BG/
Š
�!Cln.G; C0/

is an isomorphism. They produce the action of Aut.T / on Cln.G; C0/, described in
Proposition 4.1, and prove further that the above isomorphism induces an isomorphism

p�1En.BG/
Š
�!Cln.G; C0/Aut.T/:

Note that En.BG/ is a Zp–algebra, so p�1En.BG/DQ˝En.BG/ is the rational-
ization of the ring.

Theorem D in [12] discusses the relationship between the character map and transfer
maps for En and class functions. For H �G there is a commutative diagram

En.BH/
Tr

//

�

��

En.BG/

�

��

Cln.H;C0/
Tr
// Cln.G; C0/

where
TrW Cln.H;C0/! Cln.G; C0/

is the transfer introduced in Section 6.
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There is a close relationship between the E–cohomology of finite groups and algebraic
geometry related to G . We will recall some of these results, and refer the interested
reader to [12; 25; 20] for the details.

Let Hom.A�;G/ be the scheme of maps from A� to G and define Subpk .G/ to be
the scheme of subgroups of order pk of G , sending an En–algebra R to the collection
of subgroups H �R˝G of order pk . Moreover, for A� � T 0 a finite abelian group,
SubA

�

pk jAj
.G˚T 0/ denotes the scheme with underlying functor

R 7!
˚
H �R˝G˚T 0 W jH j D pkjAj; pr.H/D A�

	
for an En–algebra R , where pr is induced by the natural projection G˚T 0! T 0 .
We often write pk

0

D pkjAj. The following table provides the dictionary we need:

topology algebraic geometry

En.BA/ Hom.A�;G/
En.B†pk /=I Subpk .G/
En.BA o†pk /=J SubA

�

pk
0 .G˚T 0/

These results can be found in [12, Proposition 5.12; 25, Theorem 9.2; 20, Theorem 7.11].

8 The additive total power operation applied to
abelian groups

Work of Ando [3] as well as Ando, Hopkins and Strickland [4] gives an algebrogeometric
description of the additive power operation Ppk=I applied to finite abelian groups. In
this section we recall their result and prove an extension, which is a key step in the
proof of the main theorem.

Lemma 8.1 For any finite group G , there is an induced map

En.BG o†pk /=J!En.BG/˝En En.B†pk /=I:

Proof The claim reduces to checking that the following commutative diagram is a
homotopy pullback for any i and j with i C j D pk :

B.G �†i �†j / //

��

BG o .†i �†j /

��

B.G �†pk /
// BG o†pk
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Since the square is commutative, it suffices to show that BG�†i �†j has the correct
homotopy type. This is obvious for �k for k > 1. To see that the pullback is connected,
consider the double coset formula. Every element g D .g1; : : : ; gpk I �/ 2 G o†pk
can be factored as .g1; : : : ; gpk I e/ı .1; : : : ; 1I �/, where .1; : : : ; 1I �/ 2G�†pk and
.g1; : : : ; gpk I e/2G o.†i�†j /. Finally, �1 of the pullback is given by the intersection
of G �†pk with G o .†i �†j / inside G o†pk , which clearly is G �†i �†j .

There are two En–algebra structures on En.B†pk /=I of interest to us, given by
the following two maps: the standard inclusion i induced by B†pk ! � and the
power operation Ppk=I W En!En.B†pk /=I . Using Lemma 8.1 and the commutative
diagram

En
P
pk
=I
//

��

En.B†pk /=I

��

En.BA/
P
pk
=J
// En.BA o†pk /=J

we thus obtain a commutative diagram of rings

(6)

En.BA/
P
pk
=J

//

((

P
pk
=I

..

En.BA o†pk /=J
// En.BA/˝

i
En
En.B†pk /=I

En.BA/˝
P
pk
=I

En
En.B†pk /=I

OO 44

where the superscripts on the tensor product indicate the relevant En–algebra structure
on En.B†pk /=I .

Remark 8.2 In our notation, A plays a very different role than in the setting of [4].
Indeed, they consider a level structure in place of our †pk and S1 instead of our A; the
translation is readily made by passing to torsion subgroups of S1 and using arbitrary
subgroups; see [4, Remark 3.12].

The following result is proven in [3, Lemma 4.2.5] and [4, Proposition 3.21].

Proposition 8.3 (Ando–Hopkins–Strickland) The additive power operation

En.BA/
P
pk
=I

���!En.BA/˝
i
En
En.B†pk /=I

is the ring of functions on the map

hom.A�;G/�Subpk .G/! hom.A�;G/
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induced by

.f W A�!R˝G; H �R˝G/ 7! .A�
f
�!R˝G! .R˝G/=H ŠR ˝

P
pk
=I

En
G/:

Fix a map Ztp D L0! A with A finite abelian and let T 0 D .L0/� . Let pk
0

D pkjAj.
Recall from [20] that there is a formal scheme SubA

�

pk
0 .G˚T 0/ that associates to any

En–algebra R the collection of subgroup schemes H �R˝ .G˚T 0/ of order pk
0

which project onto A� via the natural map G˚T 0! T 0 . The main result of [20]
implies that the ring of functions on SubA

�

pk
0 .G˚T 0/ is isomorphic to En.BAo†pk /=J .

Our extension of Proposition 8.3 can now be stated as follows:

Theorem 8.4 The additive total power operation modulo the transfer

En.BA/
P
pk
=J

���!En.BA o†pk /=J

is the ring of functions on the map

Q�
pk
W SubA

�

pk
0 .G˚T 0/! hom.A�;G/

given by

.H �R˝ .G˚T 0// 7! .A�!R˝G=K ŠR ˝
P
pk
=I

En
G/;

where K is the kernel in the map of short exact sequences

K //

D

��

H //

��

A�

��

K // G // G=K

and H maps to G through the projection G˚T 0�G .

The content of the theorem is that two maps between En.BA/ and En.BA o†pk /=J
are in fact the same map. The map Qpk is defined algebrogeometrically and the map
Ppk=J is the additive total power operation. By Proposition 8.3, we know that the
maps are equal after mapping further to En.BA/˝En En.B†pk /=I . But the map

En.BA o†pk /=J !En.BA/˝En En.B†pk /=I

is not injective in general. We will proceed by building a ring that En.BA o†pk /=J
injects into, and that can be attacked using Proposition 8.3.

Before giving the proof, we draw a consequence that is of interest in its own right:
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Corollary 8.5 The map

Ppk=J ˝
P
pk
=I

En
En.B†pk /=I W En.BA/˝

P
pk
=I

En
En.B†pk /=I!En.BA o†pk /=J

given in diagram (6) is an isomorphism.

Proof This is the map that occurs in Theorem 8.4 base changed to En.B†pk /=I . By
Theorem 8.4, there is a commutative diagram

En.BA/
P
pk
=J
//

Š

��

En.BA o†pk /=J

Š

��

� hom.A�;G/
Q
pk
// � SubA

�

pk
0 .G˚T 0/;

where the vertical isomorphisms are canonical. Thus it is enough to show that

Qpk ˝
P
pk
=I

En
En.B†pk /=I

is an isomorphism. Proposition 6.5 of [20] implies that it is an isomorphism.

The idea of the proof of Theorem 8.4 is to reduce the claim to Proposition 8.3 by
probing En.BA o†pk /=J by an appropriate family F.A o†pk / of abelian subgroups
of A o†pk that captures all of the transitive conjugacy classes. For each of the abelian
subgroups M 2 F.A o†pk /, we show how the composite

En.BA/
P
pk
=J

���!En.BA o†pk /=J !En.BM/=IM

can be attacked using Proposition 8.3, where IM is the ideal in En.BM/ generated by
the image of the transfer along all proper subgroups of M . This ring has been studied
in [4] and is closely related to M–level structures on G .

Definition 8.6 For each Œ˛� 2 hom.L; A o †pk /
trans
=�

, choose a representative that
satisfies Corollary 3.5. Let F.A o†pk / be the set of images of these representatives.

By definition these subgroups fit into the commutative diagram

(7)

K
�
//

D

��

M

��

�˛

&&

K //

��

K o†pk
//

��

†pk

D

��

A // A o†pk
// †pk

where K denotes the pullback or, equivalently, the kernel of �˛ and M 2F.A o†pk /.
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Lemma 8.7 For any abelian group A, the map

En.BA o†pk /=J!
Y

M2F.Ao†
pk
/

En.BM/=IM

induced by restriction is injective.

Proof We first need to show that the map exists. The map exists if the homotopy
pullback of the diagram

B.A o .†i �†j //

��

BM // B.A o†pk /

is a disjoint union of classifying spaces of proper subgroups of M when i , j > 1 and
i C j D pk . The classifying spaces in the homotopy pullback are of the form

B.gMg�1\ .A o .†i �†j //;

where g is a representative of a double coset in

Mn.A o†pk /=.A o .†i �†j //:

The conjugate of a transitive subgroup is transitive and A o .†i �†j / is not transitive,
thus the intersection cannot be all of M .

Since En.BA o†pk /=J is a finitely generated free En–module [20, Proposition 5.3],
we may check injectivity after applying the character map. This allows us to check
the claim on class functions, where it follows immediately from the construction of
F.A o†pk /.

We now consider two maps between M and M o†pk . The first is the composite

M ,!K o†pk ,!M o†pk

and the second is the composite

M
id��˛
���!M �†pk

�
�!M o†pk :

Applying E–cohomology to these maps gives the same map because they are conjugate:
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Lemma 8.8 The square

En.BM o†pk /=J
//

��

En.BM/˝iEnEn.B†pk /=I

��

En.BK o†pk /=J
// En.BM/=IM

commutes, where the maps are induced by the maps described just above.

Proof We show that the two maps M �M o†pk are conjugate. The composites

M �M o†pk !†pk

coincide by construction. Thus, by Proposition 3.4, it suffices to show that the kernel K
factors through K �

�!K o†pk by the identity map in each case. But this follows from
the commutativity of the following two diagrams:

K
�

//

�

��

M

��

��

K //

D

��

�

��

M

��

��

M �†pk

��

K //

��

K o†pk

$$��

M
�
// M o†pk

// †pk M
�
// M o†pk

// †pk

Thus we have a commutative diagram in E–cohomology without taking any quotients.
For each ring we may take the quotient by the appropriate transfer ideal to get the
square in the statement of the lemma.

We are now ready to put the pieces together to prove the main theorem of this section.

Proof of Theorem 8.4 By Lemma 8.7, we may reduce to showing that the following
two composites coincide:

En.BA/

P
pk
=J
//

Q
pk

// En.BA o†pk /=J ,!
Y

M2F.Ao†
pk
/

En.BM/=IM
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We will prove this one factor at a time. Let M 2F.A o†pk / and consider the diagram:

En.BM/

P
pk
=J
//

Q
pk

//

f
����

En.BM o†pk /=J
//

��

En.BM/˝iEn En.B†pk /=I

��

En.BK/

P
pk
=J
//

Q
pk

// En.BK o†pk /=J
// En.BM/=IM

En.BA/

OO

P
pk
=J
//

Q
pk

// En.BA o†pk /=J

OO 44

The diagram commutes, where the Qpk’s commute with Qpk’s and the Ppk=J ’s
commute with Ppk=J ’s; for the top right square this follows from Lemma 8.8. The
composites on the top row are equal by Proposition 8.3. The surjectivity of f implies
that the middle two composites are equal. But now that these are equal, the composites
from En.BA/ to En.BM/=IM must be equal. This proves the claim.

9 The character of the total power operation

In this section we establish the relevance of the multiplicative natural transformations
constructed in Section 5. The goal of this section is to prove the following theorem.

Theorem 9.1 Let PmW En.BG/! En.BG o†m/ be the total power operation for
Morava E–cohomology applied to BG , and let �W En.BG/! Cln.G; C0/ be the
character map. For all n � 0, all m � 0 and any section � 2 �.Sub.T /; Isog.T //,
there is a commutative diagram

En.BG/
Pm

//

�

��

En.BG o†m/

�

��

Cln.G; C0/
P�m
// Cln.G o†m; C0/

which is natural in G .

We will prove the theorem in three steps. First, our extension of the work of Ando,
Hopkins and Strickland in Theorem 8.4 can be used to prove the theorem for the
additive total power operation applied to finite abelian groups. To extend this to all
finite groups, we use a modification of the fact that En.BG/ rationally embeds under
the restriction map into

Q
A�G En.BA/, where the product is over all abelian subgroups
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of G . Finally, an inductive argument using character theory extends the result from the
additive total power operation to the total power operation.

Proposition 9.2 For a finite abelian group A the diagram

(8)

En.BA/
P
pk
=J
//

��

En.BA o†pk /=J

��

Cln.A; C0/
P�
pk
=J
// Cln.A o†pk ; C0/=J

commutes.

Proof By Proposition 6.2, the terminal object in the square is the product

Cln.A o†pk ; C0/=J Š
Y

Sub
pk
.T ;A/

C0:

Thus it suffices to fix an element .H; Œ˛�/ 2 Subpk .T ; A/ and prove the result for the
factor corresponding to .H; Œ˛�/. Since P�

pk
=J is the rationalization of a map between

products of the Drinfel’d ring D1 by Remark 6.5, it suffices to replace C0 with D1 .
For R a complete local ring, a map D1 ! R out of the factor corresponding to
.H; Œ˛�/ is the data

(9) .H � T ; ˛W LH ! A; T ,!R˝En G/:

We are suppressing the data of the Lubin–Tate moduli problem. Note that, since A is
abelian, ˛ D Œ˛� and that we may replace ˛ by

˛�W A�! T =H:

Let L0 D Ztp and T 0 D .L0/� , where t is greater than or equal to the number of
generators of A. Let L0� A be a surjection. By the algebrogeometric description of
En.BA o†pk /=J in [20, Theorem 7.11], the right vertical map in (8) sends the data in
(9) to the pullback:

B //

��

G˚T 0

��

A� // .R˝En G/=H ˚T 0

The top horizontal map in (8) sends this data to the composite

(10) A�! .R˝En G/=H ŠR ˝
QH

En
G

by Proposition 8.3.
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Going around the other way first sends the data to the pair of composites

.A� ˛�
�!T =H

 H
�!T ; T

 �1H
��!T =H !R ˝

QH
En

G/

and then composes them to give

A�!R ˝
QH

En
G;

which is the same as the map in (10).

Lemma 9.3 There is an embedding

p�1En.BG o†pk /=J ,!
Y
A�G

p�1En.BA o†pk /=J:

Proof Since C0 is a faithfully flat p�1En–algebra it suffices to check this on class
functions. Thus the claim is equivalent to there being a surjection of setsa

A�G

Subpk .T ; A/! Subpk .T ; G/:

This is a surjection because any map LH !G factors through its image, which is an
abelian subgroup of G .

Proposition 9.4 For G a finite group, the diagram

En.BG/
P
pk
=J
//

��

En.BG o†pk /=J

��

Cln.G; C0/
P�
pk
=J
// Cln.G o†pk ; C0/=J

commutes.

Proof The map from the top arrow to the bottom arrow factors through the rationaliza-
tion because Ppk=J is a ring map and C0 is a rational algebra. It suffices to consider
the following cube:
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p�1En.BG/
P
pk
=J

xx

��

//
Q
A�G p

�1En.BA/Q
P
pk
=J

vv

��

p�1En.BG o†pk /=J

��

//
Q
A�G p

�1En.BA o†pk /=J

��

Cln.G; C0/
P�
pk
=J

xx

//
Q
A�G Cln.A; C0/Q

P�
pk
=J

vv

Cln.G o†pk /=J //
Q
A�G Cln.A o†pk /=J:

The top and bottom squares commute by naturality, the back and front squares commute
by character theory [12, Theorems C and D], and the right square commutes by
Proposition 9.2. Now, since the horizontal maps are injections, the left square must
commute.

Proposition 9.5 For all k > 0 and any finite group G , there is an injection

Cln.G o†pk ; C0/ ,! .Cln.G o†pk ; C0/=J /�Cln.G o†
p

pk�1
; C0/;

where the map to the left factor is the quotient and the map to the right factor is given
by restriction.

Proof It is just a matter of checking this on conjugacy classes. Every element of
Subpk .T ; G/� Sumpk .T ; G/ is hit by the left factor. By Proposition 3.6, the map to
the other factor is induced by the map

pY
lD1

Sumpk�1.T ; G/� Sumpk .T ; G/ nSubpk .T ; G/

defined by
pY
lD1

jlM
iD1

.Hi;l ; Œ˛i;l �/ 7!

pM
lD1

jlM
iD1

.Hi;l ; Œ˛i;l �/;

which is clearly surjective. Note that it is not an isomorphism as it sends an ordered
collection of sums to their (unordered) sum.

The following proposition is the base case of an induction on k in the proof of
Theorem 9.1:
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Proposition 9.6 There is a commutative diagram:

En.BG/
Pp

//

�

��

En.BG o†p/

�

��

Cln.G; C0/
P�p
// Cln.G o†p; C0/

Proof Consider the following diagram:

(11)

En.BG/
Pp

//

��

En.BG o†p/

��

// En.BG
p/� .En.BG o†p/=J /

��

Cln.G; C0/
P�p
// Cln.G o†p; C0/ // Cln.Gp; C0/� .Cln.G o†p; C0/=J /

The right vertical arrow is just the product of character maps. First we show that the
outer rectangle

(12)

En.BG/ //

��

En.BG
p/� .En.BG o†p/=J /

��

Cln.G; C0/ // Cln.Gp; C0/� .Cln.G o†p; C0/=J /

commutes. It commutes for the right factor by Proposition 9.4.

The commutativity of the left factor is proven as follows. It is a result of [12] that the
image of En.BG/ is in the Aut.T /Š GLn.Zp/ invariants of Cln.G; C0/, where the
Aut.T /–action is the action induced by Proposition 4.1. Recall that, for f 2Cln.G; C0/,
the action takes the form

f �e .Œ˛�/D ��e f .Œ˛ 
�
e �/;

where  e D �e since it factors the identity map:

T

idDqe $$

�e
// T

T =e D T

 e

OO

Next note that the inclusion Gp ,! G o†p induces the map on conjugacy classes
sending

.Œ˛i �/iD1:::p 7!
M
iD1:::p

.e; Œ˛i �/:
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Thus the composite of the bottom arrows sends

f 7!
O
i

f �e .Œ˛i �/:

For x 2En.BG/, the element �.x/ is fixed by this action, so �.x/ maps to
N
i �.x/D

�
�N

i x
�
. Now by Corollary 7.3 for k D 1, the square in (12) commutes.

Finally, the right square in (11) commutes by naturality of the character map. Since
the bottom right arrow is an injection by Proposition 9.5, the left square must commute
as well.

Now we finish the induction.

Proposition 9.7 The following diagram commutes:

En.BG/
P
pk

//

�

��

En.BG o†pk /

�

��

Cln.G; C0/
P�
pk
// Cln.G o†pk ; C0/

Proof Consider the following diagram:

En.BG/
P
pk

//

��

En.BG o†pk /

��

//
En.BG o†

p

pk�1
/�

.En.BG/˝En En.†pk /=I/

��

Cln.G; C0/
P�
pk
// Cln.G o†pk ; C0/ //

Cln.G o†
p

pk�1
; C0/�

.Cln.G; C0/˝C0 Cln.†pk ; C0/=I/

The outer rectangle commutes because we understand the maps to each factor in
the right lower corner. The map to the left factor is determined by induction and
Corollary 7.3. The map to the right factor commutes by Proposition 9.4. The bottom
right map is an injection by Proposition 9.5. Thus the left square must commute.

Finally, we finish the proof of Theorem 9.1.

Proof of Theorem 9.1 Let
P
j ajp

j be the p–adic expansion of m. Then the
inclusion of groups Y

j

†
aj

pj
!†m
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induces a commutative square

En.BG o†m/ //

��

En
�Q

j BG o†
aj

pj

�
��

Cln.G o†m; C0/
� � // Cln

�Q
j G o†

aj

pj
; C0

�
in which the bottom arrow is an injection by Lemma 3.8. By Proposition 7.2(3), the
composite

En.BG/
Pm
�!En.BG o†m/!En

�Y
j

BG o†
aj

pj

�

is the external tensor product
N
j P
˝aj

pj
. Consider the following diagram:

En.BG/ //

��

En.BG o†m/ //

��

En
�Q

j BG o†
aj

pj

�
��

Cln.G; C0/ // Cln.G o†m; C0/
� � // Cln

�Q
j G o†

aj

pj
; C0

�
By Proposition 9.7, we know that the outer rectangle commutes, and the right square
commutes by naturality of the character map. This implies that the left square commutes.

Example 9.8 In [3, Proposition 3.6.1], Ando constructs Adams operations for Morava
E–theory. Reformulating his construction in terms of the power operation for En
shows that the Adams operations are the composite

 p
k

W En.BG/
P
pkn

=I
���!En.BG/˝En En.B†pkn/=I !En.BG/;

where the last map is induced by the map

En.B†pkn/=I !En;

picking out the subgroup GŒpk��G . Example 6.7 computes the same composite on
class functions. As a special case of Theorem 9.1, we have a commutative diagram:

En.BG/
 p

k

//

�

��

En.BG/

�

��

Cln.G; C0/
 p

k

// Cln.G; C0/
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When � � Fpn and G is the universal deformation of the Honda formal group, this
gives a generalization of the well-known formula from representation theory stating
that, for a representation � ,

�. m.�//.g/D �.�/.gm/:

10 The rational total power operation

Recall that there is an action of Aut.T / on Cln.G; C0/. It is [12, Theorem C] that
there is a canonical isomorphism

p�1En.BG/Š Cln.G; C0/Aut.T/:

In this section we prove that, for any section � , the map P�m sends Aut.T /–invariants
to Aut.T /–invariants and that the restriction of P�m to the Aut.T /–invariants is inde-
pendent of the choice of � . The resulting “rational total power operation” is a global
power functor.

Theorem 10.1 For all finite groups G and any section � 2 �.Sub.T /; Isog.T //, the
function

P�mW Cln.G; C0/! Cln.G o†m; C0/

sends Aut.T /–invariants to Aut.T /–invariants. By restricting P�m to the Aut.T /–
invariants, this gives rise to a commutative diagram:

En.BG/
Pm

//

��

En.BG o†m/

��

p�1En.BG/
P�m

// p�1En.BG o†m/

Proof By [12, Theorem C] and Theorem 9.1, it is enough to show that the multiplicative
natural transformation

P�mW Cln.G; C0/! Cln.G o†m; C0/

restricts to the Aut.T /–fixed points of both sides. To this end, recall from Corollary 3.12
that the action of � 2 Aut.T / on

L
i .Hi ; Œ˛i �/ 2 Summ.T ; G/ is given by

(13) � W
M
i

.Hi ; Œ˛i �/ 7!
M
i

.�Hi ; Œ˛i�
�
jLHi

�/;
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with notation as in the following commutative diagram:

L�Hi
//

��
jL�Hi

��

L

��

��

LHi
// L

Fix an automorphism � 2 Aut.T / and an invariant element f 2 Cln.G; C0/Aut.T/ .
Since �Hi and ��Hi� have the same kernel, there exists a unique isomorphism

i 2 Aut.T / making the diagram

T
�
//

�Hi
��

T

��Hi
��

T

i

Š
// T

commute. Upon dualizing and using the identities �Hi D  Hi ı qHi and ��Hi D
 �Hi ı q�Hi , we see that the inner squares and triangles in the next diagram commute:

LHi
q�Hi

!!

L�Hi

��
jL�Hi

oo

q��Hi

}}

L L
��
oo

L

��Hi

OO �Hi

XX

L

�
oo

���Hi

OO  ��Hi

EE

Therefore, the outer diagram commutes as well and hence gives

(14) ��
jL�Hi

 ��Hi D  
�
Hi

�:

Now we can check that P�m.f / is invariant under the action of Aut.T /:

P�m.f /
�

�M
i

.Hi ; Œ˛i �/

�
D ��

Y
i

P�m.f /..�Hi ; Œ˛i�
�
jL�Hi

�// by (13)

D

Y
i

�����Hif .Œ˛i�
�
jL�Hi

 ��Hi �/

D

Y
i

��Hi

�
i f .Œ˛i 

�
Hi

�i �/ by (14)
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D

Y
i

��Hif .Œ˛i 
�
Hi
�/ as f 2 Cln.G; C0/Aut.T/

D

Y
i

f �Hi .Œ˛i �/

D P�m.f /

�M
i

.Hi ; Œ˛i �/

�
:

Corollary 10.2 The restriction of P�m to the Aut.T /–invariants

P�mW p
�1En.BG/! p�1En.BG o†m/

is independent of the chosen section � .

First proof As in the proof of Theorem 9.1, we can reduce to the case mD pk . By
naturality and Lemma 9.3, it furthermore suffices to prove this for abelian groups,
since p�1En.BG/ embeds into the product of the rationalized E–cohomology of the
abelian subgroups of G . We have two maps

p�1En.BA/! p�1En.BA o†pk /=J I

the first is the rationalization Q˝Ppk=J of Ppk=J and the second is P�
pk
=J restricted

to the Aut.T /–fixed points. Because En.BA/ is a finitely generated free En–module,
we may choose a basis of En.BA/, which thus gives a basis for p�1En.BA/. By
Theorem 10.1 both maps send the basis elements to the same elements of the codomain,
thus the maps are the same.

We get the full result by induction. We use the embedding

p�1En.BA o†pk / ,! p�1En.BA o†pk /=J �p
�1En.BA o†

p

pk�1
/

and induct on k . The base case is clear and the induction follows by considering the
large diagram and right diagram just as in Proposition 9.7.

Second proof We give a second proof of the corollary which is intrinsic to the
construction of P�m and in particular does not rely on properties of Morava E–theory.
To this end, consider two sections � , �0 2 �.Sub.T /; Isog.T // with associated
isomorphisms  H ;  0H W T =H

Š
�! T for H � T as in Section 2. For a fixedL

i .Hi ; Œ˛i �/ 2 Summ.T ; G/, take 
Hi 2 Aut.T / to be the unique automorphism
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making the following diagram commute:

(15)

T
D
//

�0Hi
��

T

�Hi
��

T

Hi

Š
// T

As in the proof of Theorem 10.1 with �D id, we see that, for any f 2Cln.G; C0/Aut.T/ ,

P�m.f /

�M
i

.Hi ; Œ˛i �/

�
D

Y
i

��Hif .Œ˛i 
�
Hi
�/

D

Y
i

.�0Hi /
�
�Hif

�
Œ˛i . 

0
Hi
/�
�Hi �

�
by (15)

D

Y
i

.�0Hi /
�f
�
Œ˛i . 

0
Hi
/��
�

as f 2Cln.G;C0/Aut.T/

DP�
0

m .f /

�M
i

.Hi ; Œ˛i �/

�
;

hence P�m D P�
0

m on p�1En.BG/Š Cln.G; C0/Aut.T/ .

It follows that Q˝Ppk=J DP�
pk
=J after restricting P�m=J to p�1En.BG/. Therefore,

the following definition makes sense:

Definition 10.3 For any section � , let

PQ
m W p

�1En.BG/! p�1En.BG o†m/

be the restriction of P�m to p�1En.BG/. We will call this the rational total power
operation.

Theorem 10.4 The rational total power operation PQ
m is a global power functor.

Proof We must show that the diagram

p�1En.BG/
PQ
m

//

PQ
s
��

p�1En.BG o†m/

r
��

p�1En.BG o†s/
PQ
t

// p�1En.BG o†s o†t /

commutes, where st Dm and r is induced by the natural inclusion.
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This is a computation that follows the lines of the proof of Proposition 6.9. In
Proposition 6.9 we work with a power section and here we work with an Aut.T /–
invariant class functions. We will use the notation of Proposition 6.9.

Choose a section � 2 �.Sub.T /; Isog.T //. Since �Ti;j and �Ti;j =Hi�Hi have the
same kernel, there exists an automorphism � 2 Aut.T / such that

�Ti;j D ��Ti;j =Hi�Hi :

Diagram (5) implies that

 �Ti;j D  
�
Hi
jL Hi .Ki;j /

 �Ti;j =Hi�
�:

Now assume that f 2Cln.G; C0/Aut.T/ . The power section structure of � in the proof
of Proposition 6.9 is used in going from line 7 to line 8 in the sequence of equalities.
Up to line 7 we have the same sequence of equalities, which give

P�t .P
�
s .f //

�M
i

�
Hi ;

M
j

�
Ki;j ; Œ.˛Hi /Ki;j �

���
D

Y
i

Y
j

��Hi�
�
Ti;j =Hi

f
�
Œ.˛Hi /Ki;j 

�
Hi
jL Hi .Ki;j /

 �Ti;j =Hi �
�
:

Now we use the fact that f is Aut.T /–invariant to getY
i

Y
j

��Hi�
�
Ti;j =Hi

f
�
Œ.˛Hi /Ki;j 

�
Hi
jL Hi .Ki;j /

 �Ti;j =Hi �
�

D

Y
i

Y
j

��Hi�
�
Ti;j =Hi

��f
�
Œ.˛Hi /Ki;j 

�
Hi
jL Hi .Ki;j /

 �Ti;j =Hi�
��
�

D

Y
i

Y
j

��Ti;j f
�
Œ.˛Hi /Ki;j 

�
Ti;j

�
�

D P�m.f /

�M
i;j

�
Ti;j ; Œ.˛Hi /Ki;j �

��
:

In particular, this generalizes a result of Ganter [10, Proposition 4.12] to arbitrary
heights and answers a question that she poses after the proof of this result.

Corollary 10.5 The character map

�W En.B�/! p�1En.B�/Š Cln.�; C0/Aut.T/

is a map of global power functors.
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Example 10.6 We give an example of how these theorems may be used. Proposition
8.3 describes Ando, Hopkins and Strickland’s algebrogeometric interpretation of the
additive power operation

Ppk=I W En!En.B†pk /=I:

Let
L�En.B†pk o†ph/

be the ideal generated by the image of the transfer along the maps

.†i �†j / o†ph !†pk o†ph ;

where i , j > 0 and i C j D pk , as well as the maps

†pk o .†i �†j /!†pk o†ph ;

where i; j > 0 and i C j D ph . It is a folklore result of Rezk (now proved by Nelson
[14]) that

En.B†pk o†ph/=L

is finitely generated free as an En–module and corepresents the scheme Subpk ;ph.G/
of flags of subgroup schemes H0 �H1 �G , where jH0j D pk and jH1=H0j D ph .

By considering the power operation Pph applied to the transfer along †i �†j �†pk
for i , j > 0 and i C j D pk , there is a commutative ring map

En.B†pk /=I
P
ph
=L

���!En.B†pk o†ph/=L:

It is also natural to consider the composite

En
P
pk
=I

���!En.B†pk /=I
P
ph
=L

���!En.B†pk o†ph/=L:

Both Pph=L and Pph=L ıPpk=I can be understood algebrogeometrically by using
Theorem 9.1.

There is a natural map of formal schemes from flags of subgroups to subgroups

ZW Subpk ;ph.G/! Subph.G/; .H0 �H1 �G/ 7! .H1=H0 �G=H0/;

and a map

zW Subpk ;ph.G/! Subph.G/! Spf.En/; .H0 �H1 �G/ 7!G=H1:

Theorem 9.1 gives a way to see that the algebrogeometric maps and the power operations
agree. Using Theorem 10.4, it is easy to check that both maps make the following
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diagram commute:

En

P
ph
=LıP

pk
=I
//

z�
//

��

En.B†pk o†ph/=L

��

C0 // Cln.B†pk o†ph ; C0/=L

Since the vertical maps are injective, this implies that Pph=L ıPpk=I and z� are the
same map.
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