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Mean curvature flow of Reifenberg sets

OR HERSHKOVITS

In this paper, we prove short time existence and uniqueness of smooth evolution by
mean curvature in RnC1 starting from any n–dimensional .";R/–Reifenberg flat
set with " sufficiently small. More precisely, we show that the level set flow in such
a situation is non-fattening and smooth. These sets have a weak metric notion of
tangent planes at every small scale, but the tangents are allowed to tilt as the scales
vary. As for every n this class is wide enough to include some fractal sets, we obtain
unique smoothing by mean curvature flow of sets with Hausdorff dimension larger
than n , which are additionally not graphical at any scale. Except in dimension one,
no such examples were previously known.

53C44

1 Introduction

A family of smooth embeddings �t W M
n!RnC1 for t 2 .a; b/ is said to evolve by

mean curvature if it satisfies the equation

(1.1) d

dt
�t .x/D

�!
H .�t .x//;

where
�!
H is the mean curvature vector. Equivalently, by the first variation formula,

mean curvature flow is the negative gradient flow of the area functional.

If a compact hypersurface M �RnC1 is of type C 2 , it follows from standard parabolic
PDE theory that there exists a unique mean curvature flow (abbreviated MCF) starting
from M for some finite maximal time T , and that in fact (see for instance [17]),

(1.2) lim
t!T

max
x2Mt

jA.x; t/j D1:

The question of mean curvature flow (and geometric flows in general) with rough initial
data, ie when the C 2 assumption is weakened, has been researched extensively; see
for instance Ecker and Huisken [5; 6], Wang [21], Simon [19], Koch and Lamm [14],
Lauer [15] and Clutterbuck [2]. In the case that M is merely Lipschitz, short time
existence was proved by Ecker and Huisken in the celebrated paper [6]. Their proof
is based on the fact that in the C 1 case, M can be written locally as a graph of a
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C 1 function, and the ellipticity of the graphical mean curvature equation is controlled
by an interior gradient estimate. Note that even in the Lipschitz case, the n–dimensional
Hausdorff measure is still finite, although the gradient of the area functional may not
be. In a different direction, in [15] Lauer was recently able to show that when nD 1,
for any Jordan curve  in R2 , if m. /D 0 (where m is the two dimensional Lebesgue
measure) then the level set flow (see Definition 1.8) is non-fattening and smooth. In
a very different direction, Clutterbuck showed in her PhD thesis [2] that on a mean
convex domain � � Rn , for any continuous function u0W �! R which vanishes
on the boundary, there exists a solution uW � � .0;T �! R to the graphical mean
curvature flow equation (see (5.48)) for some T > 0, satisfying uD 0 on @�� .0;T /,
that converges to u0 at t ! 0 in C 0 .

The current paper deals with the existence and uniqueness of smooth flows in RnC1

starting from a class of sets which is general enough to include some sets of Hausdorff
dimension larger than n.

Definition 1.3 (Reifenberg flat sets [18]) A compact, connected set X � RnC1

is called .";R/–Reifenberg flat if for every x 2 X and 0 < r < R there exists a
hyperplane P such that

(1.4) dH .B.x; r/\P;B.x; r/\X /� "r:

Here dH is the Hausdorff distance.

The point is that the approximating hyperplanes may tilt as the scales vary. In [18],
Reifenberg showed that provided " is sufficiently small, an .";R/–Reifenberg flat
set is a topological submanifold. As stated above, the Reifenberg condition is weak
enough to allow some fractal sets. For instance, as described in Toro [20], a variant
of the Koch snowflake, at which the angles in the construction are ˇ instead of �

3
, is

.";R/–Reifenberg with "D 4 sinˇ . Note that the snowflake is not graphical at any
scale. An analogue of this can be done in every dimension.

Before diving into more technicalities, we can already state a form of our main theorem.

Theorem 1.5 There exist some "0; c0 > 0 such that if X is .";R/–Reifenberg flat for
0<"<"0 then there exists a smooth solution to the mean curvature flow .Xt /t2.0;c0R2/

attaining the initial value X in the following sense:

(1.6) lim
t!0

dH .X;Xt /D 0:

Moreover, the flow .Xt / is unique (in a sense that will be explained shortly).
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Thus, the mean curvature flow provides a canonical smoothing of Reifenberg flat sets.

Remark 1.7 As described above, there exist previous results implying smoothing by
mean curvature flow of sets with Hausdorff dimension larger than n [15; 2]. However,
those results assumed either nD 1 or a global graph structure. Our results allow n to
be arbitrary and apply to sets which are not graphical at any scale.

To state the uniqueness result more accurately, we need the following definition.

Definition 1.8 (level set flow [13; 12]) A family .Xt /t2Œ0;b� of closed subsets of
RnC1 is said to be a weak set flow starting from X0 if it satisfies the avoidance principle
with respect to any smooth mean curvature flow. More precisely, for any smooth mean
curvature flow .�t /t2Œt0;t1� with 0� t0 � t1 � b such that

(1.9) �t0
\Xt0

D∅;

we have

(1.10) �t \Xt D∅

for every t 2 Œt0; t1�. The level set flow is the maximal weak set flow starting from X .

The level set flow was defined in Evans and Spruck [8] and Chen, Giga and Goto [1]
using the language of viscosity solutions for PDEs in order to develop a theory for
weak solutions of mean curvature flow. The more geometric definition above is from
Ilmanen [12], where the equivalence was also shown to hold. If X0 is a smooth
submanifold, the level set flow will coincide with the classical evolution by mean
curvature flow for as long as the latter is defined. An advantage of working with
the level set flow is that it is defined and unique for all time (so it is indifferent to
singularities), and it allows one to flow any closed set. The drawback of it is that
the Xt may develop an interior (in RnC1 ), even if X0 was the boundary of an open
set. The development of an interior is referred to as “fattening” and is the right notion
of non-uniqueness in this setting.

We are now ready to state the full version of our main theorem.

Theorem 1.11 (main theorem) There exist some "0; c0 > 0 such that if X is .";R/–
Reifenberg flat for 0 < " < "0 then the level set flow .Xt /t2Œ0;c0R2� starting from X

is a (non-vanishing) smooth evolution by mean curvature flow for t 2 .0; c0R2/ that
satisfies

(1.12) lim
t!0

dH .X;Xt /D 0:

In particular, the level set flow does not fatten.
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Remark 1.13 It follows immediately from the proof of Theorem 1.11 that the conver-
gence to the initial data is in fact in the parametrized C 0 sense. See Remark 3.79.

We will now give an outline of the argument. Our first goal will be to construct a
smooth solution to the mean curvature flow .Xt /t2.0;c0R2/ which converges to X in
the Hausdorff sense as t ! 0. To do that, we first approximate the set X by smooth
hypersurfaces at each scale, according to the following theorem, implicit in [11] (see
also Section 2).

Theorem 1.14 [11; 18] There exist some constants c1; c2 > 0 such that if X is
.";R/–Reifenberg flat for 0 < " < "0 , then there exists a family of hypersurfaces
.X r /0<r<R=4 such that:

(1) dH .X
r ;X /� c1"r .

(2) jAj � c2"=r for every x 2X r , where A is the second fundamental form of X r .

(3) For every x 2X , r 2 .0;R=4/ and s 2 .r;R=4/, B.x; s/\X r can be decom-
posed as

(1.15) B.x; s/\X r
DG [B;

where G is connected and B \B.x; .1� 20"/s/D∅.

We want to construct a smooth evolution of X by taking a limit of the flows emanating
from the X r . In order to do that, we derive the following uniform estimates for the
evolutions of the hypersurfaces X r .

Theorem 1.16 (uniform estimates) For every ƒ> 0 there exist some " and c0 , c1 ,
c2 , c3 such that if X is .";R/–Reifenberg flat, and considering the approximating
surfaces X r from Theorem 1.14, each X r flows smoothly by mean curvature for time
t 2 Œ0; c0R2�, and for every t 2 Œc3r2; c0R2� we have the following properties:

(1) Denoting by Ar .t/ the second fundamental form of X r
t ,

(1.17) jAr .t/j �
c1
p

t
:

(2) X r
t approximates X in the Hausdorff sense,

(1.18) dH .X
r
t ;X /� c2

p
t :

(3) For every x 2X and s 2 .
p

t=c1;R=4/ we have

(1.19) B.x; s/\X r
t DG [B;

where G is connected and B \B
�
x; 9

10
s
�
D∅.
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Moreover, the constants c1; c2 satisfy

(1.20) c1c2 <minf10�6; ƒ�1
g; c2

1 <
1

80
:

For reasons that will become apparent soon, it is convenient to make the following
definition.

Definition 1.21 (approximate solutions, physical solutions) An MCF .Yt /t2Œ0;c3R2/

that satisfies estimates (1.17)–(1.19) for every t 2 Œc3r2; c0R2� will be called a .ƒ)
r –approximate evolution of X . If it satisfies the estimate for every t 2 .0; c0R2�, we
say it is a (ƒ) physical solution.

Theorem 1.16 is the technical and functional heart of the argument; in addition to being
the hardest to prove, this is the last place in the argument at which the Reifenberg
assumption is explicitly used. While additional work is required in order to show the
uniqueness part, both existence and uniqueness are logical consequences of the uniform
estimates of Theorem 1.16. Thus, if one is able to prove a statement analogous to
Theorem 1.16 for some class of sets, existence and uniqueness will follow from the
work in our paper.

The proof of Theorem 1.16 is by iteration; the idea is the following. Interpolating
the Hausdorff bounds and the curvature bounds, we get that X r is locally a graph of
a function u with a small gradient over the hyperplane approximating X at scale r .
Letting X r flow for a short yet substantial time (compared to r2 ), we will be able to
extend those C 0 and C 2 estimates and interpolate again to provide a gradient bound
which will be, say, 1000000 times bigger than the initial gradient bound. Using a
new interior estimate for the graphical MCF (Theorem 3.1) we will get an improved
bound on the second fundamental form for the evolved hypersurface. By bounding the
displacement of X r

t from X r and by the Reifenberg property of X , we will see that
X r

t can serve as a good candidate for X �r for some fixed � > 1. This will allow us to
iterate. Most of the above strategy is carried out in Lemma 3.25.

Obtaining the desired improved curvature bound, while well expected, is not a trivial
task. The existing estimates of Ecker and Huisken ([6], see also Theorem 2.18) are
not good enough when the norm of the gradient jruj is small, as they depend on the
so-called gradient function

p
1Cjruj2 . There are several approaches to deriving

sharp estimates in our situation. It turns out that the optimal result using only the norms
of the gradient is not sufficiently good to perform iteration even in dimension one.
Indeed, even local regularity, which in the graphical case reduces to a weighted L1

estimate, does not give a sufficient bound in high dimensions. The standard Schauder
estimate, using the C 0 norm of u in a cylinder turns out to give an insufficient estimate
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too, since a priori, u remains comparable to its initial value for too little time. Instead,
thinking of the graphical mean curvature flow as a non-homogeneous heat equation on
a thick cylinder, we will have to use both the C 0 norm at the initial time slice to control
the contribution from the initial data, and the C 1 bound in the cylinder, to control
the contribution from the boundary and the effect of the non-linearity. As described
above, the gradient bound in the cylinder will be, say, 1000000 times bigger than at the
beginning, but as the contribution of the boundary is so weak and as the non-linearity is
so marginal (for small gradients, after a short while) this will not matter. The resulting
estimate, Theorem 3.1, is somewhat technical and will therefore not be stated precisely
in the introduction.

Once Theorem 1.16 is established the existence part of Theorem 1.11 follows immedi-
ately from compactness. It is easy to see that the limiting flow will actually be a weak
set flow in the sense of Definition 1.8 and that it will satisfy the physicality assumption
of Definition 1.21.

The main ingredient in the proof of the uniqueness of the flow is the following separation
estimate.

Theorem 1.22 (separation estimate) There exist ƒ> 0 and C > 0 such that if Y r
t

is an r –approximate evolution of X and Zs
t is an s–approximate evolution of X with

s � r , then with c0.ƒ/; : : : ; c3.ƒ/ from Theorem 1.16,

(1.23) dH .Y
r
t ;Z

s
t /� C r1=2t1=4 for every t 2 Œc3r2; c0R2�:

The following partial uniqueness result is an immediate corollary of Theorem 1.22 and
Theorem 1.16.

Corollary 1.24 With the choice of ƒ as in Theorem 1.22, and with ".ƒ/, c0.ƒ/,
: : : ; c3.ƒ/ as in Theorem 1.16, if X is .";R/–Reifenberg flat and X r

t are the outputs
of Theorem 1.16, the full limit

(1.25) lim
r!0

X r
t

exists and is in fact the unique physical evolution of X .

The idea of the proof of Theorem 1.22 is that the conditions of Definition 1.21 imply
that for fixed t > 0 and small r and s , Zs

t is a graph of a function u over Y r
t in a

tubular neighborhood of the latter. In Lemma 4.19 we derive a PDE for u, a derivation
which is the parabolic analogue of (and is based on) a similar calculation done for the
minimal surface case in Colding and Minicozzi [3]. Once this is done, a bootstrap
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argument based on the maximum principle, starting from the “crude” bounds coming
from (1.18), will give an estimate for dH .Y

s
t ;Y

r
t /.

While Theorem 1.11 is much stronger than Corollary 1.24, concluding it using what we
described already is very easy. The only thing one needs to note is that in Theorem 1.14,
the approximating hypersurfaces can be chosen to be either entirely in the compact
domain bounded by X or in its complement (see Corollary 2.11). Those inward
and outward r –approximate evolutions of X form barriers to the level set flow from
inside and outside. By Theorem 1.22 they converge to the same thing, from which
Theorem 1.11 follows.

The paper is organized as follows. In Section 2 we sketch the proof of Theorem 1.14 and
collect some more auxiliary results. In Section 3 we prove Theorem 1.16 assuming the
interior estimate, Theorem 3.1. In Section 4 we prove Theorem 1.22 and conclude the
proofs of Theorem 1.11. In Section 5 we close the argument by proving Theorem 3.1.

Acknowledgements The author wishes to thank his advisor Bruce Kleiner for sug-
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the anonymous referee for comments and suggestions. He further wishes to thank
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for his many suggestions and comments about an earlier version of this notes, and Jeff
Cheeger for his generous support during the months in which this project was initiated.
The author was partially supported by NSF grants DMS 1406407 and DMS 1105656.

2 Preliminaries

In this section we record some known theorems and derive several simple auxiliary
results which will be used later.

We first remark on the proof of Theorem 1.14, as it appears in [11]. The first reason we
do not regard this theorem as a black box is that condition (3) of Theorem 1.14 does
not appear in [11] explicitly. It is, however, a transparent corollary of their construction.
The second reason is that we will need to generalize it a bit to force the approximating
surfaces to be entirely inside or outside X ; see Corollary 2.11. Let X be an .";R/–
Reifenberg flat set, and let � be the domain bounded by X (recall that by [18] X

is a topological manifold, and so by Jordan’s separation theorem there exists such a
domain).

Sketch of proof of Theorem 1.14 [11] The approximating surfaces X r are con-
structed as level sets of mollifications at scale r of the characteristic function of
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the domain bounded by X . More precisely, choose a smooth radial bump function
�z 2 C1

0
.B.0; 1// such that

(i) 0� �z � 1

(ii) �zjB.0;1=2/ D 1

and let c1 be a constant such � D c1�z satisfies
R
�.x/ dx D 1. Define

(2.1) �r .x/D
1

rn
�
�

x

r

�
:

Now, since X is in particular a topological manifold (as was shown in [18]), by
the Jordan separation theorem we can set � to be the characteristic function of the
domain � bounded by X and let �r .x/D �r ?�.x/. The approximating sets X r are
defined to be

(2.2) X r
D ��1

r

�
1
2

�
:

(1) To show that X r satisfies the first condition of Theorem 1.14 for r <R=4, choose
xr 2X r , x 2X which is closest to xr , T a hyperplane that satisfies the Reifenberg
condition at x at scale 4r and � a normal to T such that

�\B.x; 4r/� fy W hy �x; �i � 4r"g\B.x; 4r/;(2.3)

�c
\B.x; 4r/� fy W hy �x; �i � �4r"g\B.x; 4r/:(2.4)

By the definition of X r , it is clear that B.xr ; r/ � B.x; 4r/ and (2.3), (2.4) imply
that jhxr � x; �ij � 4r", else �r .x

r / would be too low/high. This also implies that
d.xr ;X / < 8r". Similarly for any x 2X and T , � as above, �r .xC4r"�/> 1

2
while

�r .x�4r"�/ < 1
2

, so by the intermediate value theorem we also have d.x;X r /� 4r".
Thus,

(2.5) dH .X
r ;X /� 8"r:

(2) To show that X r satisfies the second condition of Theorem 1.14, choose x ,
T , � as above and let fe1; : : : ; eng be an orthonormal basis for T . Setting S D

fy W jhz � x; �ij � 4r"g and taking y 2 B.x; 2r/\S one can compute, splitting the
convolution integrals according to S and the two half spaces from (2.3) and (2.4) (see
[11, Lemma 2.2]), that if " is sufficiently small,

(2.6)
hr�r .y/; �i �

c1

r
; jhr�r .y/; eiij �

c2"

r
;

jHess�r .�; �/j �
c2

r2
; jHess�r .ei ; �/j �

c2"

r2
; jHess�r .ei ; ej /j �

c2"

r2
;

for some constants c1; c2 . Defining C.x; r/D fy W jT .y�x/j � rg, the first inequality
of (2.6) together with what was done in (1) shows that in B.x; 2r/ \ C.x; r/, the

Geometry & Topology, Volume 21 (2017)



Mean curvature flow of Reifenberg sets 449

set X r is a graph of a function u over T (thinking of T as an affine hyperplane
passing through x ), with

(2.7) juj � 4r":

The other inequalities of (2.6) further imply that

(2.8) jAj �
c3"

r
:

(3) Note that condition (2.8) together with X r being a graph over T in B.x; 2r/\

C.x; r/ imply that for " > 0 small enough, inj.X r / � r=2, where inj denotes the
injectivity radius of the normal exponential map. Now, considering the scale r=4, if
" is small enough, the same T as the one for scale r will work. By using parts (1)
and (2) for X r=4 and in particular, it being a graph over T at scale r=4, one sees
by interpolating (2.7) and (2.8) that X r=4 is a graph of a function u over X r with
ju.y/j � 6r" for every y 2X r (see also Lemma 4.16). To put it differently, there is a
homeomorphism �r W X

r !X r=4 with

(2.9) d.�r .y/;y/� 6r":

Composing those maps we see that there is a homeomorphism �k
r W X

r !X r=4k

with

(2.10) d.�k
r .y/;y/� 12r":

Now, note that the analysis in (1), (2) shows that for every x 2 X one can write
X r \B.x; r/DG [B , where G is connected and B \B.x; .1� 8"/r/D∅. Thus,
using (2.10) we see that one can write X r=4k

\B.x; r/DG[B , where G is connected
and B \B.x; .1� 20"/r/D∅.

This concludes the (sketch of the) proof of the theorem.

The following slight strengthening of Theorem 1.14 will play a role in the final stage
of our argument for uniqueness.

Corollary 2.11 There exist some constants c1 , c2 > 0 such that if X is .";R/–
Reifenberg flat for 0 < " < "0 and bounds a domain �, then there exists a family of
surfaces .X r

˙
/0<r<R=4 such that:

(1) dH .X
r
˙
;X /� c1"r .

(2) jA.x/j � c2"=r for every x 2X r
˙

.
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(3) For every x 2X , r 2 .0;R=4/ and s 2 .r;R=4/, B.x; s/\X r
˙

can be decom-
posed as

(2.12) B.x; s/\X r
˙ DG [B;

where G is connected and B \B.x; .1� 40"/s/D∅.

(4) X r
� �� and X r

C �
x�c .

Proof Let N be the exterior unit normal to the X r from Theorem 1.14. When " is
small enough, conditions (1) and (3) of Theorem 1.14 imply that X r has a tubular
neighborhood of thickness r=4 (see Lemma 4.4 for a proof in an analogous situation).
Moreover, computing the third partials for �r from the above theorem shows that the
X r also satisfy the estimate

(2.13) jrAj � c3
"

r2
:

Thus, considering

(2.14) X r
˙ D fx˙ 10"rN.x/ W x 2X r

g

we see that X r
˙

satisfy conditions (1)–(3). Let x 2X and let T , � be as in (1) in the
proof of Theorem 1.14. Then since for every y 2 B.x; r/\X r the tangent space to
X r at y is almost parallel to T by (2) in the proof, we see by part (1) of the proof that
one of the X r

˙
\B.x; r/ will lie in � and the other will lie in x�c . Thus, X r

˙
\X D∅,

with one of the X r
˙

in each component.

We will now recall the gradient estimate of Ecker and Huisken. Let X be a hypersurface
in RnC1 such that in B.x; r/ it can be parametrized locally as a graph of a function u

over the first n coordinates. If �.x/ is the unit normal to X at x , the gradient function
vW X \B.x; r/!RC is defined to be

(2.15) v.x/D
1

� �enC1
D

q
1Cjruj2:

Theorem 2.16 (Ecker–Huisken gradient estimate [6], see also [4]) Let .Xt /t2.t0;t1/

be a solution for the mean curvature flow in RnC1 and suppose that in the ball B.x0; r/,
Xt0

is locally a graph over the first n coordinates. Then Xt is locally a graph over the
first n co-ordinates in B.x0;

p
r2� 2n.t � t0//, and

(2.17)
�

1�
jx�x0j

2C 2n.t � t0/

r2

�
v.x; t/� max

x2B.x0;r/\Xt0

v.x; t0/:

Controlling the gradient in a space-time neighborhood allows one to control the second
fundamental form (and its derivatives) if one allows the hypersurface to evolve a little bit.
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Theorem 2.18 ([6], see also [4]) There exists a universal constant C D C.n/ such
that if v � v0 in B.x; r/� .t0; t0C r2/ then

(2.19) jAj2 � C
v4

0

r2
; jrAj2 � C

v4
0

r4
; j@tAj

2
� C

v4
0

r6
;

in B.x; r=2/� .t0C 3r2=4; t0C r2/.

The above classical curvature estimate of Ecker and Huisken will not be good enough
for our purposes. We will be interested in considering the case where jruj is very
small, in which the above estimate is not very useful. Indeed, since v D

p
1Cjruj2

the above estimate will yield that jAj2 is, up to a constant, smaller than 1=r2 , even if
jruj were very small (in the entire neighborhood). When jruj D 0, however, jAj D 0

so there is clearly a big gap to be filled in that regime. The entire Section 5, culminating
in the proof of Theorem 3.1, will deal with proving a curvature estimate suitable for
small jruj (and small initial juj).

Controlling the second fundamental form at a certain time allows one to control it for a
little bit.

Lemma 2.20 For every ı > 0 there exists cD c.ı/ > 0 such that if Xt flows by mean
curvature and

(2.21) jA.0/j � ˛;

then

(2.22) jA.t/j � .1C ı/˛

for 0� t � c=˛2 .

Proof Since under the mean curvature flow

(2.23) d

dt
jAj2 D�jAj2� 2jrAj2C 2jAj4 ��jAj2C 2jAj4

(see [17], for instance), by the maximum principle we obtain that

(2.24) jA.t/j �
˛

p
1�2˛2t

for as long as the denominator does not vanish. The result follows.

We will conclude this section with the following simple geometric lemma for the
interpolation of Hausdorff bounds and curvature bounds.
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Lemma 2.25 (interpolation) For every ı>0 and ˛>0 there exists ˇ0.˛; ı/>0 such
that for every ˇ < ˇ0 the following holds. Assume p 2X where X is a hypersurface
such that in B.p; r/ we have

(1) jAj � ˛=r ,

(2) dH .P \Bn.p; r/;X \Bn.p; r//� ˇr for P D spanfe1; : : : ; eng.

Then inside B.p; r/\ .Bn.p; .1�ı/r/�R/, the connected component of p is a graph
of a function u over P and we have the estimate

(2.26) jruj �

p
2ˇ˛�˛2ˇ2

1�˛ˇ
Š
p

2ˇ˛;

and juj � ˇr .

Proof Assume without loss of generality that rD1 and pD0 and denote QDP? and
Cı;ˇDBn.0; .1�ı//�Œ�ˇ; ˇ�. For ˇ sufficiently small, Cı=4;ˇ�B.0; 1/ and ˛ˇ< 1.
Now, let x 2Cı=2;ˇ and let  .t/ be a unit speed geodesic in X with  .0/D 0. We may
assume without loss of generality, by possibly changing the parametrization according
to t 7! �t , that h 0.0/; enC1i D maxv2Q; kvkD1h

0.0/; vi and that xnC1. .t// � 0.
Letting f .t/D xnC1. .t// we find f 0.t/D h 0.t/; enC1i and

f 00.t/D h 00.t/; enC1i D h
00.t/; enC1� h

0.t/; enC1i
0.t/i � �˛

p
1�f 0.t/2:

The equality case of the above ODE for f 0.t/ corresponds to a circle of radius 1=˛ .
Letting �.t/W R! R2 be a clockwise and unit speed parametrized circle of radius
1=˛ with �.0/ D .0; 0/ and h�0.0/; e2i D f 0.0/, we see that as long as x2.�.t//

is increasing, and as long as  .t/ 2 Cı=4;ˇ , one has xnC1. .t// � x2.�.t//. For ˇ
sufficiently small (depending on ˛ and ı ) x2.�.t// will reach its maximum at time
0 < T < ı=4, so the extra condition  .t/ 2 Cı=4;ˇ is redundant. Thus x2.�.t// �

xnC1. .t//� ˇ , and an easy calculation for circles in the plane gives the bound

(2.27) tan†.TxX;P /�

p
2ˇ˛�˛2ˇ2

1�˛ˇ

for ˇ sufficiently small.

What remains to be shown is that the connected component of p is indeed a graph.
Assume there exist x1;x2 2X\Cı;ˇ with x1¤x2 but P .x1/DP .x2/, where we use
P both for the hyperplane and for the projection operator to it. Observe that by (2.27),
X \Cı;ˇ is a submanifold with boundary. Let  W Œ0; a�!X \Cı;ˇ be a minimizing
geodesic between x1 and x2 . Such a geodesic is always C 1 and is smooth for as long
as  .t/ is away from the boundary. For such t however kP . 00.t//k �

p
3˛ˇ˛ by
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(2.27) and so for ˇ sufficiently small, as  0.0/ is almost parallel to P , the projection
P . .t// is almost a straight line until it hits the boundary (at some t < 4). Since
 .t/ is C 1 , and intersects the boundary with an exterior normal component, this is a
contradiction.

To see that for every y 2 Bn.0; 1� ı/ there is some x 2X with P .x/D y , note that
by the Hausdorff condition, we can find xx 2 X \B.0; .1� ı=2// with d.xx;y/ � ˇ

(when ˇ is small). Taking xy D P .xx/ we see, again, by (2.27) for xx , and the fact that
the curvature scale 1=˛ is far bigger than ˇ , that there will exist a point over y as
well.

3 Uniform estimates and existence of smooth evolution

The purpose of this section is to prove Theorem 1.16 which will immediately imply the
existence part of Theorem 1.11, ie that at least one weak set flow (see Definition 1.8) of
an .";R/–Reifenberg flat set is smooth whenever " > 0 is small enough. In Section 3.1
we will state the interior estimate we will employ and remark on why it is plausible.
The proof will be deferred to Section 5. In Section 3.2 we will perform the iteration
step that was described in the introduction. In Section 3.3 we will prove Theorem 1.16
and derive the existence of a smooth weak set flow.

3.1 Interior estimate for graphical mean curvature flow

In order to implement the iteration, it would be the most comfortable to work with the
following interior estimate for mean curvature flow, which will be proved in Section 5.

Theorem 3.1 (main estimate) There exists some c � 1 such that for every ı > 0 and
M > 0, there exist positive �0 D �0.M; ı/� 1 and �0 D �0.M; ı/� 1 such that
for every 0 < � < �0 there exists some "0 D "0.ı;M; �/ such that for every ˇ > 0,
0< � < �0 and " < "0 , the following statement holds.

If uW B.p; r/� Œ0; � r2�!R is a graph moving by mean curvature such that

(1) for every .x; t/ 2 B.p; r/� Œ0; � r2�,

(3.2) jru.x; t/j �M ";

(2) for every .x; t/ 2 B.p; r/� Œ0; �� r2�,

(3.3) jru.x; t/j � ";
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(3) for every .x; t/ 2 B.p; r/� Œ0; � r2�,

(3.4) ju.x; t/j �M 2ˇr;

(4) for every .x; t/ 2 B.p; r/� Œ0; �� r2�,

(3.5) ju.x; t/j � ˇr;

then for every .x; t/ 2 B.p; .1� ı/r/� Œ0; � r2�,

jA.p; t/j � .cC ı/
"
p

t
;(3.6)

jA.p; t/j � c
ˇr

t
C ı

"
p

t
:(3.7)

Remark 3.8 The statement of the above estimate may appear somewhat confusing.
We hope that the following trailer to Section 5 will make it appear more plausible.
There is nothing wrong with fixing r D 1.

(1) When jruj is very small, we are dealing essentially with the heat equation, as
the non-linearity is very small. The estimate

(3.9) jru.x; t/j �
p
�

Vol.Sn�1/

Vol.Sn/

ku.�; 0/k1
p

t

is what one gets when estimating the first derivative to the physical solution of
the heat equation in the full space at time t in terms of the sup norm of the
initial time slice. Estimate (3.6) reflects that fact, as the derivative of a solution
to the heat equation satisfies the heat equation itself. The first term in estimate
(3.7) reflects a similar bound on the second derivative.

(2) Since we are dealing with a domain with boundary, one cannot expect to get
the same estimate as for the entire space. However, for � very small, from
the perspective of the point .0; �/, the 0 time slice — a ball of radius 1 —
will look like the entire space. Therefore we should get a constant very close
to
p
� Vol.Sn�1/=Vol.Sn/, as expressed in (3.6). The parameter M in the

estimate makes sure that the contribution from the boundary doesn’t change the
result by too much. A similar reasoning leads to the first term of (3.7).

(3) Since the equation is non-linear, there should also be a term coming from the
non-linearity. Since the non-linearity is quadratic in the gradient, when the bound
jruj is small enough, it will contribute as little as any small fraction of that
gradient bound.
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3.2 Iteration

Before we dive into the iteration lemma, we need the following two similar calculations.
The first allows one to extend the curvature and Hausdorff bounds for a short time.

Lemma 3.10 For every ı > 0 there exists some zc D zc.n; ı/ > 0 with the following
property. Assume ˛; ˇ are such that ˛ˇ < 1 and Y is a smooth hypersurface such that
for some r > 0:

(1) For every y 2 Y there exists a hyperplane Py such that

(3.11) dH .B.y; r/\Py ;B.y; r/\Y /� ˇr:

(2) For every y 2 Y ,

(3.12) jA.y/j �
˛

r
:

Then, denoting by Yt the mean curvature flow emanating from Y and writing ED 2˛ˇ ,
for every 0� t � .zc=˛2/Er2 we have:

(1) jA.t/j � .1C ı/ ˛
r

.

(2) dH .B.p; .1� 10�5ıˇ/r/\P;B.p; .1� 10�5ıˇ/r/\Yt /� .1C ı/ˇr .

Proof Assume r D 1. Using the global curvature bound ˛ , by Lemma 2.20 we can
find c1 D c1.ı/ such that if

(3.13) 0� t � c1
1

˛2
;

we have

(3.14) jA.t/j �
�
1C

ı

4

�
˛:

Using the curvature bound to estimate the motion, we see that there exists c2.n; ı/ < c1

such that for t � c2ˇ=˛ the surface moves by at most 10�6ıˇ . Since ˛ˇ < 1, for
every

(3.15) 0� t � c2 min
n
ˇ

˛
;

1

˛2

o
D c2

1

˛2
2˛ˇ

we have:

(1) jA.t/j � .1C ı/˛ .

(2) dH

�
B.p; .1� 10�5ıˇ//\P;B.p; .1� 10�5ıˇ//\Yt

�
� .1C ı/ˇ .
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See also Lemma 3.44 for how motion bounds are used to obtain Reifenberg flatness at
a certain scale.

The second calculation allows one to extend gradient estimates for longer times, gaining
a definite large multiplicative error.

Lemma 3.16 For every ı > 0 and ˛ > 1 there exist an M D M.n; ˛/ > 0 and a
ˇ0Dˇ0.n; ˛; ı/ > 0 such that for every 0<ˇ <ˇ0 , if we set ED 2˛ˇ and T DEr2 ,
the following holds. Assume that .Yt /t2Œ0;T � is a mean curvature flow with

(3.17) jA.0/j �
˛

r

such that for every y 2 Y0 there exists a hyperplane Py such that

(3.18) dH .B.y; r/\Py ;B.y; r/\Y0/� ˇr:

Then setting .�t /t2Œ0;T � to be the parametrized flow starting from Y .so Yt D �t .Y / /

and assuming without loss of generality that y D 0 and Py D spanfe1; : : : ; eng, the
connected components of �t .y/ in Yt \B.y; r/\ .Bn.y; .1� ı/r/�R/ is a graph of
a function uW Bn.y; .1� ı/r/� Œ0;T �!R flowing by mean curvature. Moreover, we
have the estimates

(3.19) jru.z; t/j �M
p

E; ju.z; t/j �M 2ˇr;

for every z2Bn.y; .1�ı/r/ and 0� t�T . Letting zc be the constant from Lemma 3.10,
for z 2 Bn.y; .1� ı/r/ and 0� t � zc=˛2T we have the better estimates

(3.20) jru.z; t/j � 2
p

E; ju.z; t/j � 2ˇr:

Proof Assume without loss of generality that r D 1. Since T D 2˛ˇ , according to
Lemma 2.20 we have for ˇ < ˇ0.˛/ that

(3.21) jA.t/j � 2˛

for every 0� t � T . Thus, we can bound the motion to obtain

(3.22) d.�t .z/; �0.z//� 4
p

n˛2ˇ

for every 0 � t � T and z 2 Y . Now, when ˇ < ˇ0 this displacement is very small
so as before (see also Lemma 3.44) we get 5

p
n˛2ˇ closeness to planes on a slightly

smaller ball. We can now use Lemma 2.25 to obtain graphicality for every 0� t � T ,
as well as the estimates

jru.z; t/j � 2

q
2˛ � 5

p
n˛2ˇ DM.˛/

p
E;(3.23)

ju.z; t/j � 5
p

n˛2ˇ �M.˛/2ˇ:(3.24)
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The second estimate now follows from Lemma 3.10.

The main technical point of the argument is carried out in the following lemma.

Lemma 3.25 For every ƒ> 0 there exist some ˛; ˇ > 0 and a “scale change” param-
eter � > 20 such that setting E D 2˛ˇ and T DEr2 , the following holds.

Assume Y is a smooth hypersurface such that for some r > 0,

(1) for every y 2 Y there exists a hyperplane Py such that

(3.26) dH .B.y; r/\Py ;B.y; r/\Y /� ˇr;

(2) for every y 2 Y ,

(3.27) jA.y/j �
˛

r
:

Then Y flows smoothly by mean curvature for time T . Moreover, setting .�t /t2Œ0;T �
to be the parametrized flow starting from Y and letting Yt be the flow of hypersurfaces
.so Yt D �t .Y / /, we have:

A. d.�0.y/; �T .y//�
1

20
ˇ.� r/ for every y 2 Y , and in particular,

dH .Y;YT /�
1

20
ˇ.� r/:

B. For every y 2 YT ,

(3.28) jA.y/j �
˛

� r
:

Moreover, we can choose the parameters in such a way that the following relations hold:

I. 2�E <minf10�6; ƒ�1g.

II. ˛ > 100.

III. ˛3ˇ < 1
640

.

Proof We want to set things up in a way that will allow us to use Theorem 3.1. Assume
without loss of generality that r D 1, fix p 2 Y and assume without loss of generality
that Pp D spanfe1; : : : ; eng.

Step 1 (choice of parameters)

(1) (choosing ı ) Take ı D 1=.1600
p

nc/.

(2) (choosing ˛ ) Choose ˛ D 800
p

nc2 , where c is from Theorem 3.1.

(3) (choosing M ) Choose M DM.˛/ from Lemma 3.16.
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(4) (choosing �0 and �0 ) Having fixed M and ı we can choose �0.M; ı/ and
�0.M; ı/ as in Theorem 3.1.

(5) (choosing �) Let zc.n; ı/ be the constant from Lemma 3.10, and choose

(3.29) �D �.ı; ˛; �0/Dmin
n
zc

˛2
; �0

o
:

(6) (choosing � D T ) Assuming E is small enough, T can be made to be smaller
than �0 and so we let � D T . Note that E is still free, so we have just expressed
our wish to set � DE without really fixing � .

(7) (choosing "0 ) Choose "0 D "0.M; ı; �/ as in Theorem 3.1.

(8) (choosing � ) Set � D 320 000nc3 > 20.

(9) (choosing ˇ ) Choose ˇ such that the following conditions hold:

(a) ˇ < ˇ0.˛; ı=8/ of Lemma 2.25.
(b) ˇ < ˇ0.n; ˛; ı=4/ of Lemma 3.16.
(c)
p

E D
p

2˛ˇ < "0=2 (so that Theorem 3.1 will hold, see Step 5).
(d) 2�E D 4˛ˇ� <minf10�6; ƒ�1g (to comply with the statement).
(e) ˛3ˇ < 1

640
(to comply with the statement).

As all those conditions want ˇ to be small, they can be satisfied simultaneously.

(10) (choosing ") We finally set "D
p

E .

Step 2 (initial bounds) By the choice of ˇ , we know that .˛; ˇ; ı=8/ satisfy the
conditions of Lemma 2.25. Therefore, we get that the connected component of p in
Y \ .Bn.p; .1� ı=4// � Œ�ˇ; ˇ�/ is a graph of a function u over Bn.p; .1� ı=4//

with

(3.30) jruj � 3
2

p
2ˇ˛ D 3

2

p
E:

Step 3 (obtaining bounds for long positive times) If ˇ < ˇ0.n; ˛; ı=4/, then by
Lemma 3.16, u remains a function on Bn.p; .1� ı=4//� Œ0;T �, where the following
estimates hold:

(3.31) jru.y; t/j �M
p

E; ju.y; t/j �M 2ˇ:

Step 4 (obtaining bounds for small positive times) According to the second part of
Lemma 3.16, for t 2 Œ0; �T �, Yt satisfies the conditions of Lemma 2.25 and so we
obtain that for those times, for y 2 Bn.p; .1� ı=2//,

(3.32) jru.y; t/j � 2
p

E; ju.y; t/j � 2ˇ:
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Step 5 (applying Theorem 3.1, estimating the curvature) By the first estimate of
Theorem 3.1 we have that for every t 2 Œ0;E� and y 2 Yt ,

(3.33) jA.y; t/j �
4c
p

E
p

t
;

and by the second estimate of Theorem 3.1 and by our choice of ˛ and ı , at the final
time T we have

(3.34) jA.y;T /j �
2cˇ

E
C 2ı

p
E
p

E
D

1

400
p

nc
WD ˛0:

Step 6 (estimating the motion) The curvature bound (3.33) implies the mean curva-
ture bound

(3.35) jH.y; t/j �
4c
p

n
p

E
p

t
;

which can be integrated to obtain the motion bound

(3.36) d.�0.y/; �T .y//� 8c
p

nE WD ˇ0:

Step 7 (conclusion) Note that by our choice of � and by (3.34) and (3.36), we have

jA.y;T /j � ˛0 D
˛

�
;(3.37)

˛0ˇ0 D 1
50

E < 1
20
˛ˇ;(3.38)

implying

(3.39) d.�0.y/; �T .y//� ˇ
0
�

1
20
ˇ�:

Remark 3.40 Note that the motion estimate in Step 6 illustrates why we needed
estimate (3.7) of Theorem 3.1. Using the optimal form of estimate (3.6) of Theorem 3.1
up to time T , we obtain that, in the language of Step 6, for t 2 Œ0;T �,

jA.y; t/j �
p
�

Vol.Sn�1/

Vol.Sn/

p
E
p

t
;(3.41)

jH.y; t/j �
p

n
p
�

Vol.Sn�1/

Vol.Sn/

p
E
p

t
;(3.42)

and thus by integration,

(3.43) dH .Y0;YT /� 2
p

n
p
�

Vol.Sn�1/

Vol.Sn/
E:
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Thus, as Vol.Sn�1/=Vol.Sn/ �
p

n, for the corresponding ˛0 and ˇ0 we will nec-
essarily have ˛0ˇ0 > ˛ˇ which will preclude us from iterating, this time with YT at
scale � (see also Section 3.3).

3.3 Uniform estimates

Before proving Theorem 1.16 we need the following elementary lemma about restricting
the triangle inequality to balls.

Lemma 3.44 Suppose X is a .ˇ=10;R/–Reifenberg set and let Y be a compact set
such that for some r <R,

(3.45) dH .X;Y /�
1

10
ˇr:

Then for every y0 2 Y there exists a hyperplane P passing through y such that

(3.46) dH .B.y0; .1�ˇ=5/r/\P;B.y0; .1�ˇ=5/r/\Y /� 3
5
ˇr:

Proof Take x0 2X with

(3.47) d.x0;y0/�
1

10
ˇr

and choose a plane xP passing through x0 such that

(3.48) dH .B.x0; r/\ xP ;B.x0; r/\X /� 1
10
ˇr:

Let P be the plane parallel to xP passing through y0 . Now, taking any
y 2 B.y0; .1�ˇ=5/r/ and x with

(3.49) d.x;y/� 1
10
ˇr;

we see that x 2 B.x0; r/ and so there is a point xp 2 xP \B.x0; r/ with

(3.50) d. xp;y/� 1
5
ˇr:

Moving a bit inward, this implies that there exists a xp1 2
xP \B.x0; .1� 3ˇ=10/r/�

B.y0; .1�ˇ=5/r/ with

(3.51) d. xp1;y/�
5

10
ˇr;

and so taking p 2 P closest to xp1 we obtain p 2 P \B.y0; .1�ˇ=5/r/ with

(3.52) d.p;y/� 3
5
ˇr:
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In the other direction, given p2P\B.y0; .1�ˇ=5/r/ and xp1 2
xP\B.x0; .1�ˇ=5/r/

closest to p , we can move inward to find xp 2 B.x0; .1� 5ˇ=10/r/\ xP with

(3.53) d. xp;p/� 2
5
ˇr:

Choosing

x 2X with d.x; xp/� 1
10
ˇr;(3.54)

y 2 Y with d.x;y/� 1
10
ˇr;(3.55)

we get

(3.56) d.p;y/� 3
5
ˇr;

and y 2 B.x0; .1� 3ˇ=10/r/� B.y0; .1�ˇ=5/r/.

We are now in a position to prove Theorem 1.16.

Proof of Theorem 1.16 Fix ˛ , ˇ , � , E as in Lemma 3.25, let r <R and recall that
�E < 10�6 . Choose " > 0 sufficiently small that:

(1) c1" <
1

10
ˇ .

(2) " < 1
10
ˇ .

(3) c2" < ˛ .

Here c1 , c2 are the constants from Theorem 1.14. Letting Y D X r , with the above
choice of " we have:

(Ar) For every y 2 Y ,

jA.y/j � ˛=r �
˛

.1�ˇ=5/r
:

(Br) dH .Y;X /�
1

10
ˇr .

(Cr) By Lemma 3.44, for every y 2 Y there exists a plane P such that

(3.57) dH .B.y; .1�ˇ=5/r/\P;B.y; .1�ˇ=5/r/\Y /� 3
5
ˇr � ˇ.1�ˇ=5/r:

Conditions (Ar) and (Cr) allow us to apply Lemma 3.25, so we can let Y flow smoothly
for time T DE.1�ˇ=5/2r2 . Moreover, we have:

(A�r) For every y 2 YT ,

(3.58) jA.y/j �
˛

.1�ˇ=5/.� r/
:
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(B�r) For every y 2 Y ,

(3.59) d.�0.y/; �T .y//�
1

20
ˇ.�.1�ˇ=5/r/;

so by condition B.r/ and the fact that � > 20,

(3.60) dH .X;YT /�
1

10
ˇr C 1

20
ˇ.�.1�ˇ=5/r/� 1

20
ˇ.� r/C 1

20
ˇ.�.1�ˇ=5/r/

< 1
10
ˇ.� r/:

(C�r) If � r <R, we can use Lemma 3.44 to obtain

(3.61) dH .B.y; .1�ˇ=5/� r/\P;B.y; .1�ˇ=5/� r/\YT /�
3
5
ˇ.� r/

� ˇ.1�ˇ=5/.� r/:

Thus, we conclude that YT satisfies the same conditions as Y , this time with respect
to the scale � r , so we can restart the process with YT instead of Y at scale � r instead
of r and iterate. The iterations will be performed at times

(3.62) tk D
�
1� 1

5
ˇ
�2
.1C �2

C � � �C �2.k�1//Er2

starting from k D 1, and we will be able to proceed with the iteration for as long as
�kr <R=4. Thus, at the last step we would have R=.4�/� �kr <R=4 and as

(3.63) 1
2
�2.k�1/Er2

� tk �
1

16
�2kEr2

(since � > 20), this gives existence for time duration c0R2 with

(3.64) c0 D
E

32�4
:

Using the second inequality of (3.63), the estimates above imply that

(3.65) jA.tk/j �
2˛

�kr
�
˛
p

E
p

tk
:

Similarly, letting .�t /t2Œ0;c0R2� be the flow starting from Y , using the first inequality
of (3.63) we have

(3.66) d.�tk
.y/; �0.y//�

1
2
ˇ�kr �

ˇ�
p

tk
p

E
;

and in particular,

(3.67) dH .Ytk
;X /�

ˇ�
p

tk
p

E
C

1
2
ˇr �

2ˇ�
p

tk
p

E
:

Geometry & Topology, Volume 21 (2017)



Mean curvature flow of Reifenberg sets 463

The above calculations are only valid for the iteration times, but choosing " sufficiently
small, we can make A.s/, B.s/, C.s/ hold for all Yt with t 2 Œ0;Er2/ and r � s� � r .
Thus, we get that for every t 2 Œ2Er2; c0R2� we have

jA.t/j �
c1
p

t
;(3.68)

dH .Yt ;X /� c2

p
t ;(3.69)

with c1 D 2˛
p

E and c2 D 2ˇ�=
p

E . Note that by Lemma 3.25, c2
1
< 1

80
and

c1c2 <min.10�6; ƒ�1/.

For the last part of Theorem 1.16, fix c3 D 4˛2E , let t 2 Œc3r2; c0R2� and let
s 2 .

p
t=.2˛

p
E/;R=4/. Since s �

p
t=.2˛

p
E/ � r , by the third condition of

Theorem 1.14, for every x 2X one can write

(3.70) B.x; s/\X r
0 DG [B;

where G is connected and B\B.x; .1�20"/s/D∅, and as "< 1
10
ˇ < 1

10
E < 1

10
�E ,

we have B \B.x; .1� 2�E/s/D∅. On the other hand, note that by (3.66), we have
the motion bound

(3.71) d.�t .y/; �0.y//�
2�ˇ
p

t
p

E
D
�E
p

t

˛
p

E
� 2�Es;

so we obtain that

(3.72) B.x; s/\X r
t DGt [Bt ;

where Gt is connected and Bt \B.x; .1� 4�E/s/D∅. In particular, we have that
Bt \B

�
x; 9

10
s
�
D∅.

Having established Theorem 1.16, the existence parts of Theorem 1.11 follow easily.

Theorem 3.73 With the constants ", c0 , c1 , c2 , c3 as in Theorem 1.16, if X is an
.";R/–Reifenberg set, there exists a smooth MCF .Xt /t2.0;c0R2/ satisfying

(3.74) lim
t!0

dH .Xt ;X /D 0:

Moreover, setting X0DX , this solution is also a weak set flow (see Definition 1.8) and
a physical solution (see Definition 1.21).

Proof Using the estimates of Theorem 1.16 and the standard estimates for the higher
derivatives of A, the existence of a smooth solution .Xt /t2.0;c0R2� follows immediately
by an Arzelà–Ascoli argument. Since the flow .Xt /t2.0;c0R2/ is smooth, we only need
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to check avoidance with respect to smooth flows starting at time 0. Take a smooth flow
.�t /t2Œ0;T � for T � c0R2 with

(3.75) dH .�0;X /D ı > 0:

For r sufficiently small we have

(3.76) dH .X
r ; �0/�

1
2
ı;

so by avoidance we will also have

(3.77) dH .X
r
t ; �t /�

1
2
ı:

As Xt D limj!1X
rj
t with rj ! 0 as j !1, this implies

(3.78) Xt \�t D∅:

Remark 3.79 Using estimate (3.66), along with an Arzelà–Ascoli argument that
utilizes the uniform curvature estimate of Theorem 1.16, it follows that the convergence
is in fact in the parametrized C 0 sense.

4 Uniqueness

In this section we will conclude the proof of Theorem 1.11. In Section 4.1 we will see
that at any positive time, the approximating flows of small enough scales can be written
as graphs over one another. In Section 4.2 we will derive a PDE for such a situation
which will be used to obtain the separation estimate, Theorem 1.22 in Section 4.3.
Finally, we will conclude the proof of Theorem 1.11 in Section 4.4 (assuming the
interior estimate, Theorem 3.1, which will in turn be proved in Section 5). Throughout
this section we will assume freely that the parameters ˛ , ˇ , � , c0 satisfy the inequalities
of Theorem 1.16.

4.1 Graph representation

Recall that .Y r
t /t2.0;c0R2/ is called a (ƒ) r –approximate evolution of X if for t 2

Œc3r2; c0R2�,

jAr .t/j �
c1
p

t
;(4.1)

dH .Y
r
t ;X /� c2

p
t ;(4.2)

and for any t 2 Œc3r2; c0R2� and s 2 .
p

t
c1
;R=4/ and x 2X we have

(4.3) B.x; s/\Y r
t DG [B;
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where G is connected and B \ B
�
x; 9

10
s
�
D ∅. We will always assume that the

parameters satisfy the relations of Theorem 1.16. To be more precise, we assume:

(1) c1c2 <minf10�6; ƒ�1g

(2) c2
1
< 1

80

We start by making the following two observations.

Lemma 4.4 If .Y r
t /t2.0;c0R2/ is an r –approximate evolution of X , then for every

t 2 Œc3r2; c0R2�,

(4.5) inj.Y r
t /�min

� p
t

4c1
; 1

4
R
�
:

Here inj denotes the injectivity radius of the normal exponential map. In particular, Y s
t

is contained in a tubular neighborhood of Y r
t for every s � r .

Proof Set � to be the distance function from Y r
t . The curvature bound (4.1) implies

that there are no focal points with ��
p

t=c1 . By the characterization of the injectivity
radius we know that if p is a cut point with �.p/ D inj.Y r

t / �
p

t=4c1 , then there
exist y1;y2 2 Y r

t such that

d.y1;y2/�

p
t

2c1

;(4.6)

.y1�y2/? Tyi
Y r

t for i D 1; 2:(4.7)

Fix x 2X such that

(4.8) d.x;y1/� c2

p
t D

c1c2

p
t

c1

< 10�6

p
t

c1

;

and consider the intersection B.x;
p

t=c1/\ Y r
t D G [B , where the splitting is by

(4.3). By (4.6) we know that y1;y2 2G and since y1 is very close to x , the curvature
bound (4.1) together with the perpendicularity of the tangent spaces (4.7) will force the
connected component of y1 to leave the ball before being able to return to y2 , which
is a contradiction.

In fact, we even have the following.

Lemma 4.9 For t 2 Œc3r2; c0R2� and s � r , Y s
t is a graph of a function u over Y r

t .
By that we mean that

(4.10) Y s
t D fyCu.y; t/N.y; t/ W y 2 Y r

t g;

where N.y; t/ is the normal to Y r
t at y .
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Proof By the above lemma, we know that Y s
t � N .Y r

t / D N D B.Y r
t ; inj.Y r

t //.
Denote Y D Y r

t and Z D Y s
t and denote by � W N ! Y the projection to the nearest

point.

In one direction, suppose that there are z1¤ z2 2Z such that �.z1/D �.z2/D y 2 Y .
By applying (4.2) for both Y and Z , we see that

(4.11) d.zi ;y/� 2 � c2

p
t � 2 � 10�6

p
t

c1

;

and that there exists an x 2X such that

(4.12) d.x;y/� 10�6

p
t

c1

:

By (4.3) we can write

(4.13) B

�
x;

p
t

c1

�
\Z DG [B

and z1; z2 2G . The curvature bounds and distance bounds (4.1), (4.2) will not allow
that. In fact, by the following lemma, we have that

(4.14) tan.†.TyY;Tzi
Z//� 6

1000
:

As .zi �y/? TyY we see that .z2� z1/=kz2� z1k is almost perpendicular to Tzi
Z

and so z1 and z2 are two points in G that are very close to the center of B.x;
p

t=c1/

with almost parallel tangent planes that lie one above the other. The curvature bound
(4.1) prevents that since, as before, it will force the connected component of z1 to leave
the ball before returning to z2 . Thus over every point in Y lies at most one point in Z .

On the other hand, given any y 2 Y there is z0 2Z with

(4.15) d.z0;y/� 2 � 10�6

p
t

c1

:

Letting y0 D �.z0/ we see again that tan.†.Ty0Y;Tz0Z//�
6

1000
, so by the curvature

bounds (4.1), and since y and y0 are very close compared to the scale
p

t=c1 , there
will be a point z over y . This completes the proof.

Lemma 4.16 Let M 2 � N .M 1/, where M 1 and M 2 are hypersurfaces in RnC1 ,
and let � W N .M 1/ ! M 1 be the nearest point projection. If we have the bounds
max.jA1j; jA2j/ � a, dH .M

1;M 2/ � b and jabj � 1, then for every m2 2 M2 ,
setting m1 D �.m2/ we have

(4.17) tan.†.Tm1
M 1;Tm2

M 2//�
.2� ab/

p
ab� a2b2=4

2.1� ab=2/2� 1
� 3
p

ab:
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Remark 4.18 The proof of the above lemma is similar to that of Lemma 2.25.
This time we obtain a lower bound for juj. Assume the tangent spaces are not the
same (else there is nothing to prove) and that, without loss of generality, Tm1

M 1 D

spanfe1; : : : ; eng, m1 D 0 and m2 D .0; : : : ; 0; z/ with z � 0. By drawing two balls
of radius 1=a, one starting horizontally that bounds M 1 from above and the other
starting parallel to Tm2

M 2 that bounds M 2 from below, those two barriers will force
M 2 to drift apart from M 1 until the angle will be halved. This will give a lower bound
on the Hausdorff distance, which should be less than b by assumption. The details are
left to the reader.

4.2 The graph PDE for two evolving surfaces

Having discovered that Y s
t is a graph of a function u over Y r

t when s� r and t � c3r2 ,
let us compute the evolution equation in such a situation. The computation done here
is the parabolic analogue for the one done in [3, Lemma 2.26] for the minimal surface
case.

Lemma 4.19 Let .M 1
t /t2.0;T / flow by mean curvature and let Nt be a tubular neigh-

borhood of M 1
t . Let .M 2

t /t2.0;T / be another flow by mean curvature such that for
every t 2 .0;T /, one has M 2

t �Nt . Let
�!
N.x; t/ denote the inner-pointing unit normal

to M 1
t at x and write M 2

t as a graph of a function u.x; t/ over M 1
t , so

(4.20) M 2
t D fxCu.x; t/N.x; t/ W x 2M 1

t g:

Then u satisfies an equation of the form

(4.21) ut D .1C "/ div..I CL/ru/CjAj2u�Qij Aij ;

where A is the second fundamental form of M 1 , Aij are its components in a local
orthonormal frame, and for some constant D > 0 we have j"j; jLj �D.jAjjujC jruj/

and jQij j �D.jAjjujC jruj/2 .

Proof We want to derive an expression for the mean curvature
�!
H 2 of M 2, for some

fixed time t , in terms of u and its derivatives, and in terms of the geometric quantities
of M 1. Once we have done that, the derivation of the equation will follow easily. Let
A, H and dVol be the second fundamental form, mean curvature and the volume form
of M 1 respectively. Choose m1 2M 1 and let E1; : : : ;En be a local orthonormal
basis for M 1 around m1 . Extend E1; : : : ;En , along with N , to normal fields in a
neighborhood of m1 in N by parallel translating along N . The vectors

(4.22) Xi DEi CuiN �uAikEk
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form a basis to the tangent space of M 2 . Therefore

(4.23) gij D ıij Cuiuj � 2uAij Cu2AikAjk D ıij � 2uAij CQij ;

and so

(4.24) gij
D ıij C 2uAij CQij :

Now, taking a variation zu.x; s/D u.x/C sv.x/ for some function vW M 1!R which
is localized in the above neighborhood and computing the corresponding quantities,
we get

(4.25) d

ds

ˇ̌̌
sD0

p
det gij

D
1
2

p
det gij trace

�
gij d

ds

ˇ̌̌
sD0

gij

�
D

1
2

p
det gij .ıij C 2uAij CQij /.viuj Cuivj � 2vAij C 2uvAikAjk/

D
p

det gij Œhru;rvi � vH �uvjAj2ChLru;rviCQij Aijv�

D h.I CL/ru;rviC
p

det gij Œ�vH �uvjAj2CQij Aijv�;

where in the last equality we have used

(4.26)
p

det gij D 1�uH CQ

to absorb
p

det gij into .I CL/. Thus, by integration by parts we get

(4.27) �
d

ds

ˇ̌̌
sD0

Z p
det gij dVol

D

Z p
det gij v Œ.1C "/ div..I CL/ru/CH CujAj2CQij Aij � dVol;

where we have used (4.26) to write 1=
p

det gij D 1C ". On the other hand, by the
definition of the mean curvature vector, we obtain

(4.28) �
d

ds

ˇ̌̌
sD0

Z p
det gij dVolD

Z
vhN;

�!
H 2i

p
det gij dVol;

so

(4.29) hN;
�!
H 2i D .1C "/ div..I CL/ru/CH CujAj2CQij Aij :

Having done that, deriving the PDE is easy. Indeed, writing M i as �i.x; t/ we get

(4.30) �2.x; t/D �1.x; t/Cu.x; t/N.x; t/;
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so differentiating with respect to time we obtain

(4.31)
�!
H 2 D

�!
H Cut

�!
N�urH;

so

(4.32) ut D h
�!
H 2;N i �H D .1C "/ div..I CL/ru/CujAj2CQij Aij :

4.3 The separation estimate

We now come to the proof of the separation estimate, Theorem 1.22. In fact, we are
going to prove a slightly stronger theorem, from which Theorem 1.22 will follow easily.
At long last, we are going to fix the parameter ƒ, on which the output of Theorem 1.16
and thus the definition of an r –approximate evolution depended.

Theorem 4.33 There exists a constant C > 0 with the following significance. Let
s � r and let Y r

t and Zs
t be .ƒ/ r –approximate and s–approximate evolutions of X

with ƒD 2D , where D is the constant from Lemma 4.19. Then writing Y s
t as a graph

of a function u over Y r
t for s � r and t 2 Œc3r2; c0R2�, we have the estimate

(4.34) juj � C r1=2t1=4:

Proof The idea is to use Equation (4.21) and the maximum principle to bootstrap and
obtain more and more improved estimates for u. In order to start the bootstrapping,
note that by (4.1) and (4.2) we have

jA.t/j D jAr .t/j �
c1
p

t
;(4.35)

ju.t/j � 2c2

p
t :(4.36)

Notice that at a maximum point of u, the jruj dependence of the bounds on the
coefficients in Equation (4.21) disappears. Note further that by Cauchy–Schwartz and
estimates (4.35) and (4.36),

(4.37) jQij Aij j �D.jAjjuj/2jAj � 2Dc1c2jujjAj
2
� jujjAj2;

where we have used the relation c1c2 < ƒ
�1 D .2D/�1. Therefore, using estimates

(4.35) and (4.36) and applying the maximum principle for Equation (4.21) we obtain

(4.38) d

dt
u.xmax; t/� 2u.xmax; t/jA.xmax; t/j

2
� 2c2

2c2
1
p

t
<

2c2

40

1
p

t
;

where the last inequality holds since c2
2
< 1

80
. A similar calculation is done for u.xmin/.

Integrating starting from t0 D c3r2 , we get the improved estimate

(4.39) ju.t/j � 2c2

�p
c3r C 1

10

p
t
�
� 2c2

�
c

1=4
3

r1=2t1=4
C

1
10

p
t
�
:
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Plugging this back into the inequality, we get

(4.40) d

dt
u.xmax; t/� 2c2

�
1

40

c
1=4
3

r1=2

t3=4
C

1

400

1
p

t

�
;

which yields

(4.41) ju.t/j � 2c2

��
1C 1

10

�
c

1=4
3

r1=2t1=4
C

1
100

p
t
�
:

Continuing the bootstrapping, this will yield

(4.42) ju.t/j � 4c2c
1=4
3

r1=2t1=4;

as required.

Proof of Theorem 1.22 This follows directly from Theorem 4.33.

Proof of Corollary 1.24 Fixing t > 0, for r sufficiently small we have t � c3r2 . By
Theorem 1.22, for every s � r ,

(4.43) dH .Y
r
t ;Y

s
t /� C.t/

p
r :

Thus, for every sequence frng
1
nD1

with rn > 0 and limn!1 rn D 0, fY rn

t g
1
nD1

forms
a Cauchy sequence in the Hausdorff sense. Therefore limr!0 Y r

t exists. The second
part follows since every physical solution is an r –approximate evolution for every
r > 0, so given two physical flows, we can use Theorem 1.22 with any choice of r .

4.4 The level set flow

We start this section by adapting what we have done so far a little bit. According
to Corollary 2.11 we can choose approximations X r

C and X r
� instead of the X r,

such that if � is the bounded open domain with @� D X , then X r
C �

x�c and
X r
� � �. There are two differences between the estimates for X r that we have

been working with and the ones for X r
˙

. The first one is that the constants c1; c2 in
Theorem 1.14 and Corollary 2.11 are different. The second difference is in property (3),
namely, the marginal connected components of X r \B.x; s/ for s � r are inside the
annulus .B.x; s/�B.x; .1�20"/s//, while for X r

˙
they will be in the slightly thicker

annulus .B.x; s/�B.x; .1� 40"/s//. These two differences clearly do not influence
our arguments in any way so in particular, Theorem 1.16 is still valid for the flows
emanating from X r

˙
. Thus, choosing ƒ as in Theorem 4.33 and with the "; c0; : : : ; c3

of Theorem 1.16, we know that X r
˙;t exist for time duration c0R2, and

(4.44) lim
r!0

X r
�;t D lim

r!0
X r
C;t DXt ;

where Xt is the unique physical flow emanating from X .
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Proof of Theorem 1.11 Let zXt be the level set flow of X . By Theorem 3.73 we
know that Xt �

zXt . On the other hand, by the avoidance principle, we know that since
X \X r

˙
D∅ we have

(4.45) zXt \X r
˙;t D∅:

Denoting by �r
˙;t the bounded domains with @�r

˙;t DX r
˙;t we claim that

(4.46) zXt �
x�r
C;t ��

r
�;t WDN r

t :

This is true since, considering

(4.47) T r
D inff0� t � c0R2

W zXt \ .N
r
t /

c
¤∅g;

we clearly have that T r > 0 by avoiding balls, since the two sets start a positive
distance apart. Given .xi ; ti/ such that xi 2

zXti
\ .N r

ti
/c with ti ! T r we see

(by avoiding balls and since the evolution of @N r
t D X r

C;t [ X r
�;t is smooth) that

d.xi ; @N
r
ti
/! 0. By compactness we get limj!1 xij D x 2 @N r

T r . On the other hand,
by the level set definition of the level set flow, zXt D f

�1
t .0/ for some continuous

function f W Œ0; c0R2��RnC1! R (see [8; 1]) and so we see that x 2 zXT r . Thus,
x 2 zXT r \X r

˙;T r which contradicts (4.45).

Having established (4.46) and noting that by Theorem 1.22, dH .N
r
t ;X

r
C;t /�C.t/r1=2 ,

we finally conclude that

(4.48) zXt �

\
0<r<R=4

N r
t � lim

r!0
N r

t DXt :

Thus zXt DXt and we are done.

5 Proof of Theorem 3.1

The main purpose of this section is to prove Theorem 3.1, which was an essential
ingredient in the proof of Theorem 1.16 and is thus a cornerstone for the entire argument.
In Section 5.1 we will state Theorem 1.16 in slightly different terms. In Section 5.2
we will derive an a priori estimate for the non-homogeneous heat equation which is
suitable for thick space-time cylinders. In Section 5.3 we will derive a Hölder gradient
estimate suitable for our situation and in Section 5.4 we will conclude the proof of
Theorem 5.1.
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5.1 Main estimates

Theorem 1.16 will follow immediately from the following “centered form” of the
estimate, the proof of which will be described through the rest of this section.

Theorem 5.1 (main estimate, II) There exists some c > 0 such that for every ı > 0

and M > 0, there exist positive �0 D �0.M; ı/� 1 and �0 D �0.M; ı/� 1 such that
for every 0 < � < �0 , there exists some "0 D "0.ı;M; �/ such that for every ˇ > 0,
0< � < �0 and " < "0 the following statement holds.

If uW B.p; r/� Œ0; � r2�!R is a graph moving by mean curvature such that

(1) for every .x; t/ 2 B.p; r/� Œ0; � r2�,

(5.2) jru.x; t/j �M ";

(2) for every x 2 B.p; r/, we have

(5.3) jru.x; �� r2/j � ";

(3) for every .x; t/ 2 B.p; r/� Œ0; � r2�,

(5.4) ju.x; t/j �M 2ˇ;

(4) for every x 2 B.p; r/, we have

(5.5) ju.x; �� r2/j � ˇ;

then

jA.p; � r2/j � .cC ı/
"
p
�r
;(5.6)

jA.p; � r2/j � c
ˇ

� r2
C ı

"
p
�r
:(5.7)

5.2 Estimates for the non-homogeneous heat equation on thick cylinders

The first key point in obtaining the main estimate — Theorem 5.1 — is a non-standard
Schauder-type estimate for the non-homogeneous heat equation. Before stating it, we
record the following definitions.

Definition 5.8 The parabolic ball of radius r with center .p; t/ is defined to be

(5.9) P .p; t; r/D B.p; r/� Œt � r2; t �:

When it is clear from the context which point is p , we write P r D P .p; r2; r/. For
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�; � < 1 we define the narrow r; � cylinder to be

(5.10) P r;�
D B.p; r/� Œ0; � r2�;

and the �–truncated narrow r; � cylinder to be

(5.11) P r;�;�
D B.p; .1�

p
� /r/� Œ�� r2; � r2�:

Theorem 5.12 There exists a constant c > 0 such that for every ı > 0 and M > 0,
there exist positive �0 D �0.M; ı/� 1 and �0 D �0.M; ı/� 1 such that for every
0 < � < �0 and 0 < ˛ < 1, there is a constant C D C.�; ˛/ > 0 such that for every
0< � < �0 , the following statement holds.

If u is a solution to the non-homogeneous heat equation

(5.13) ut ��uD f

on B.p; r/� Œ0; � r2� such that

(1) for every .x; t/ 2 B.p; r/� Œ0; � r2�,

(5.14) jru.x; t/j �M ";

(2) for every x 2 B.p; r/, we have

(5.15) jru.x; �� r2/j � ";

(3) for every .x; t/ 2 B.p; r/� Œ0; � r2�,

(5.16) ju.x; t/j �M 2ˇ;

(4) for every x 2 B.p; r/, we have

(5.17) ju.x; �� r2/j � ˇ;

then
p
�r jr2v.0; � r2/j �(5.18)

.cCı/"C
C.˛; �/
p
�r

�
sup

z12P r;�

d2
z1
jf .z1/jC sup

z1; z22P r;�

d2C˛
z1;z2

jf .z2/�f .z1/j

d.z2; z1/˛

�
;

p
�r jr2v.0; � r2/j �(5.19)

cˇ
p
�r
C

C.˛; �/
p
�r

�
sup

z12P r;�

d2
z1
jf .z1/jC sup

z1; z22P r;�

d2C˛
z1; z2

jf .z2/�f .z1/j

d.z2; z1/˛

�
;
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where

(5.20) d..x1; t1/; .x2; t2//D

q
jx1�x2j

2Cjt1� t2j;

and dz1
D d.z1; @D/, dz1; z2

Dmin.dz1
; dz2

/.

Remark 5.21 There are two main differences between the standard Schauder estimate
and the one above. The first and less important one is that in the standard Schauder
estimates the term juj0 appears on the right-hand side instead of jruj0 . In the elliptic
case, an estimate similar to the one above follows from the standard Schauder estimate
by integration. In the parabolic case this is not as trivial, as we do not assume anything
about jut j. The second and more important difference is that in our estimate there is a
distinction between a leading term coming from the initial time slice and a negligible
term coming from the rest of the parabolic boundary. In the standard Schauder estimate
there is no such distinction.

In order to prove this version of the Schauder estimate, we need the following two
lemmas. The first one is a standard result for Gaussian potentials; see for instance the
proof of [9, Chapter 4.3, Theorem 2] and [10, Theorems 4.6 and 4.8].

Lemma 5.22 For every 0 < ˛ < 1 there exists a constant C with the following
property. Let ˆ be the fundamental solution for the heat equation and let w be the
Gaussian potential corresponding to f , ie

(5.23) w.x; t/D

Z t

0

Z
B.0;r/

ˆ.x�y; t � s/f .y; s/ dy ds:

Then wt ��w D f , and for every z 2D � B.0; r/� Œ� r2� we have

(5.24) jw.z/jC dzjrw.z/jC d2
z jr

2wj

� C

�
sup

z12D

d2
z1
f .z1/C sup

z1; z22D

d2C˛
z1; z2

jf .z2/�f .z1/j

d.z2; z1/˛

�
:

The following lemma gives a good interior derivative estimate for the heat equation at
times that are very close to 0 compared to the initial scale.

Lemma 5.25 There exists some c> 0 with the following significance. For every ı > 0

and M > 0 there exists a positive �0 D �0.M; ı/� 1 such that for every 0< � < �0 ,
the following statement holds.

If u is a solution to the homogeneous heat equation

(5.26) ut ��uD 0

on B.p; r/� Œ0; � r2� such that
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(1) for every .x; t/ 2 B.p; r/� Œ0; � r2�,

(5.27) ju.x; t/j �M ";

(2) for every x 2 B.p; r/,

(5.28) ju.x; 0/j � ";

then

(5.29) jru.p; � r2/j � .cC ı/
"
p
�r
:

Proof The proof is modeled on that of [7, Theorem 2.3.8].

By scaling, it suffices to prove that if u is such a solution on B.0;R/� Œ0; 1� for R

sufficiently large, we have

(5.30) jru.0; 1/j � .cC ı/":

First, fix a positive cut-off function � 2 C1
0
.B.0;R// with �jB.0;R�1/ D 1, 0� � � 1

and jr�j; jr2�j � C.n/. Considering the function

(5.31) v.x; t/D �.x/u.x; t/;

we have that vW Rn � Œ0; 1�!R is defined and satisfies

(5.32) vt ��v D�u�� � 2ru � r�:

As v is bounded we have the representation formula

(5.33) v.x; t/D

Z
Rn

ˆ.x�y; t/v.y; 0/ dy

C

Z t

0

Z
Rn

ˆ.x�y; t � s/
�
�u.y; s/��.y/

� 2ru.y; s/ � r�.y/
�

dy ds

D

Z
Rn

ˆ.x�y; t/v.y; 0/ dy

C

Z t

0

Z
Rn

�
ˆ.x�y; t � s/��.y/

C 2ryˆ.x�y; t � s/ � r�
�
u.y; s/ dy ds:
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Differentiating under the integral sign we obtain

(5.34) rv.x; t/D

Z
Rn

rxˆ.x�y; t/v.y; 0/ dy

C

Z t

0

Z
Rn

�
rxˆ.x�y; t � s/��.y/

C 2rxryˆ.x�y; t � s/ � r�
�
u.y; s/ dy ds:

We will bound the two integrals appearing in this expression for rv.0; 1/Dru.0; 1/.
The first integral is bounded by

kv.�; 0/k1 � krˆ.�; 1/kL1 � c"; where c D krˆ.�; 1/kL1 :

As for the second integral, the integrand is zero outside the annulus R�1< jyj<R, so
as both rˆ and r2ˆ are summable on .Rn�B.0; 1//�.0; 1/, and by our assumptions
on u and � , we get that for R large enough,

(5.35) jru.0; 1/j � .cC ı/":

The following lemma is proved similarly.

Lemma 5.36 There exists some C > 0 such that for every M > 0, there exists a
positive �0 D �0.M /� 1 such that for every 0 < � < �0 and ˇ > 0, the following
statement holds.

If u is a solution to the homogeneous heat equation

(5.37) ut ��uD 0

on B.p; r/� Œ0; � r2� such that

(1) for every .x; t/ 2 B.p; r/� Œ0; � r2�,

(5.38) ju.x; t/j �M 2ˇ;

(2) for every x 2 B.p; r/,

(5.39) ju.x; 0/j � ˇ;

then

(5.40) jr
2u.p; � r2/j � C

ˇ

� r2
:
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Proof of Theorem 5.12 By scaling we can assume r D 1. Let vD u�w where w is
the Gaussian potential from Lemma 5.22. Taking �� 1 we therefore have the estimate

(5.41)
p
�
p
� jrwjP1;�;�

� C.˛/

�
sup

z12P1;�

d2
z1
jf .z1/jC sup

z1; z22P1;�

d2C˛
z1; z2

jf .z2/�f .z1/j

d.z2; z1/˛

�
;

so

(5.42) jrwjP1;�;�

�
C.˛; �/
p
�

�
sup

z12P1;�

d2
z1
jf .z1/jC sup

z1; z22P1;�

d2C˛
z1; z2

jf .z2/�f .z1/j

d.z2; z1/˛

�
:

Similarly,

(5.43)
p
� jr2wjP1;�;�

�
C.˛; �/
p
�

�
sup

z12P1;�

d2
z1
jf .z1/jC sup

z1; z22P1;�

d2C˛
z1; z2

jf .z2/�f .z1/j

d.z2; z1/˛

�
and consequently:

(1) For every x 2 B.p; .1�
p
�/r/,

(5.44) jrv.x; ��/j

� "C
C.˛; �/
p
�

�
sup

z12P1;�

d2
z1
jf .z1/jC sup

z1; z22P1;�

d2C˛
z1; z2

jf .z2/�f .z1/j

d.z2; z1/˛

�
:

(2) For every .x; t/ 2 P1;�;� ,

(5.45) jrvjP1;�;ˇ;�

�M"CM
C.˛; �/
p
�

�
sup

z12P1;�

d2
z1
jf .z1/jC sup

z1;z22P1;�

d2C˛
z1;z2

jf .z2/�f .z1/j

d.z2; z1/˛

�
:

Note that v solves the heat equation and therefore so do @v=@xi for every i D 1; : : : ; n.
By choosing �0 and � sufficiently small we obtain, by Lemma 5.25,

(5.46)
p
� jr2v.0; �/j

� .cCı/"C
C.˛; �/
p
�

�
sup

z12P1;�

d2
z1
jf .z1/jC sup

z1;z22P1;�

d2C˛
z1;z2

jf .z2/�f .z1/j

d.z2; z1/˛

�
:

By (5.43) the desired result for u follows. The second estimate is proved similarly,
using Lemma 5.36.
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5.3 Hölder gradient estimate

The second key ingredient in proving Theorem 5.1 is the following Hölder gradient
estimate for our equation.

Theorem 5.47 There exist constants c1 > 0 and 0 < ˛ < 1, depending only on n,
such that if � � Rn �RC is a bounded domain and uW �! R solves the graphical
mean curvature equation

(5.48) ut D

�
ıij
�

@iu@j u

1Cjruj2

�
@i@j u

with kruk�;0 D " < 1, then

(5.49) sup
z1; z22�

d˛z1; z2

jru.z1/�ru.z2/j

d.z2; z1/˛
� c1":

Proof This follows from tracing how the constants are formed in the interior Holder
gradient estimate for quasilinear parabolic equations of general form, noticing that
the derivatives of the coefficients, as well as the ellipticity of the equation obtained
during the proof, are controlled; see [16, XII.3] or [10, 13.3] in the elliptic case. As
our situation is simpler than the general one, and for the convenience of the reader, we
carry it out here, following [16, XII.3] and [10, 13.3]. Before embarking on the proof,
let us recall that the oscillation of a real function f on a domain � is defined by

(5.50) osc� f D sup
�

f � inf
�
f:

Equation (5.48) is of the form

(5.51) ut D aij .ru/@i@j u;

with

(5.52) aij .p/D ıij
�

pipj

1Cjpj2
:

Differentiating with respect to k and regrouping, we get

(5.53) @t .@ku/D @i.a
ij@k@j u/C aijl.@k@lu/.@i@j u/

for aijl D @pl
aij � @pj ail . Considering the function v D jruj2 , we thus obtain

(5.54) @tv D @i.a
ij@jv/C aijl.@lv/.@i@j u/� 2aij .@r@j u/.@r@iu/;

so fixing a parameter  and considering

(5.55) w D w˙ D w˙k D˙@kuC v;
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we get

(5.56) �@twC @i.a
ij@jw/D�aijl.@lw/.@i@j u/C 2aij .@r@j u/.@r@iu/:

Since jruj � 1, the explicit form of the coefficients aij .p/ given in (5.52) implies
that �j�j2 � aij�i�j , jaij j � ƒ and aijl � c2 hold with �D 1

2
, ƒD 1 and c2 D 6.

Thus, by ellipticity and by Schwarz’s inequality we get, for some c3 D c3.n/,

(5.57) �.@tw/C @i.a
ij@jw/� �c3jDwj

2:

Now, assume .x0; t0/ 2� and r > 0 are such that P .x0; t0; 4r/�� and set

(5.58) xw D xw˙k D sup
P.x0;t0;4r/

w˙k :

Writing W D xw�w we get that, for every non-negative � 2 C 1
0
.�/,

(5.59)
Z
�.@tW /� � .aij@j W /.@i�/�

Z
�c3jrW j2�;

so replacing � with ec4W � for some c4 D c4.n/ we get, using bounded ellipticity,

(5.60) �.@tW /C @i.xa
ij@j W /i � 0

for

(5.61) xaij
D ec4W aij :

Note that if  � c5.n/ a bound on the ellipticity of xaij will still be determined,
regardless of " (as long as " < 1). If we are in such a regime, since W � 0 in
P .x0; t0; r/, by the Moser–Harnack inequality we get that for some c6 D c6.n/,

(5.62) r�n�2

Z
P.x0;t0�4r2;r/

. xw�w/ dx � c6 inf
P.x0;t0;r/

W D c6

�
xw� sup

P.x0;t0;r/

w

�
:

Now, choose  D 10n" and note that for any subdomain �0 ��, choosing k such
that osc�0

.@ku/� osc�0
.@iu/ for all i D 1; : : : ; n yields

(5.63) 8n" osc�0
.@ku/� osc�0

.w˙k /� 12n" osc�0
.@ku/;

which will yield (for w˙ D w˙
k

)

(5.64) inf
�0

. xwC�wCC xw��w�/� 10n"
�

sup
�0

uk � inf
�0

uk

�
C 2 inf

�0

v� 2 sup
�0

v

� 6n" osc�0
.uk/

�
1
2

osc�0
.w˙/:
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Thus, there exists some c7 D c7.n/ such that

(5.65) oscP.x0;t0;4r/.w
˙/�

c7

rnC2

Z
P.x0;t0�4r2;r/

. xw˙�w˙/ dx

holds for at least one of wC; w� . Combining this with (5.62), there exists c8 D c8.n/

such that, assuming the above holds for wDwC , and denoting oscillations and sup/inf
over the parabolic ball P .x0; t0; �/ by osc� , sup� and inf� , we have

(5.66) osc4r .w/� c8

�
sup
4r

w� sup
r
w
�
� c8.osc4r w� oscr .w//:

Recapitulating, we see that there exists some 0< �< 1 depending only on n such that
if P .x0; t0; 4r/�� and !˙i .r/D oscP.x0;t0;r/.w

˙
i /, then:

(1) For every i 2 f1; : : : ; ng, we have

(5.67) !˙i .r/� !
˙
i .4r/:

(2) If k is chosen such that oscP.x0;t0;4r/.@ku/ � oscP.x0;t0;4r/.@iu/ for i 2

f1; : : : ; ng, then for some sign � 2 fC;�g we have

!�k .r/� �!
�
k .4r/;(5.68)

8n" oscP.x0;t0;4r/.@ku/� !�k .4r/� 12n" oscP.x0;t0;4r/.@ku/:(5.69)

After proving the oscillation decay estimate (5.68), we can easily conclude the proof of
the theorem. Let z1D .x1; t1/, z2D .x2; t2/ 2� and recall that dz1

D d.z1; @�/ and
dz1;z2

D min.dz1
; dz2

/. If d.z1; z2/ �
1
4
dz1;z2

the conclusion of the theorem holds
trivially, so we may assume that d.z1; z2/<

1
4
dz1;z2

. Assume without loss of generality
that t1 � t2 , set RD 1

4
dz1;z2

, and let m 2N be such that

(5.70) 4�m�1R� d.z1; z2/ < 4�mR:

Thus we have a sequence of parabolic balls

(5.71) z1; z2 2 P .z1; 4
�mR/� P .z1; 4

�mC1R/� � � � � P .z1;R/��:

Setting .x0; t0/D z1 so that !˙i .r/D oscP.z0;r/.w
˙
i /, we can compare oscillations in

P .z1; 4
�jC1R/ and P .z1; 4

�j R/ for j D 1; 2; : : : ;m according to (5.67), (5.68) and
(5.69). Since at any step one of the w˙i decreases by a factor of �, and as there are
only 2n possibilities for index and sign, we can assume without loss of generality that
(5.68), (5.69) happened with k D 1 and � DC at least m=.2n/ times. This happened
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for the last time comparing the oscillations for the parabolic balls P .z1; 4
�jC1R/ and

P .z1; 4
�j R/ with j �m=.2n/. Thus,

(5.72) oscP.z1;4�jC1R/.@iu/� oscP.z1;4�jC1R/.@1u/�
C

"
!C

1
.4�jC1R/

�
C

"
�m=2n!.R/

� C�m=2n":

On the other hand, d.z1; z2/� 4�m�1R implies

(5.73) m�
1

log 4
log
�

R

4d.z1; z2/

�
;

so with a suitable choice of 0< ˛ < 1 this and (5.72) imply

(5.74) jru.z1/�ru.z2/j � C

�
d.z1; z2/

dz1;z2

�̨
"

as required.

5.4 Proof of the main estimate

Before coming back to proving the main estimate, we first derive a crude estimate for
the higher derivatives. This estimate ignores the fact that we have control over a thick
cylinder and treats it as a union of small parabolic balls.

Lemma 5.75 There exists a constant c such that if supB.p;r/�Œ0;� r2� jruj � 1, then

dzjr
2u.z/j � c;(5.76)

d1C˛
z1;z2

jr2u.z1/�r
2.u.z2//j

d.z1; z2/˛
� c:(5.77)

Proof The first estimate is a direct application of the Ecker–Huisken curvature estimate
of Theorem 2.18 for balls of radius dz1

. For the second part, if d.z1; z2/�
1
4
dz1;z2

, as
before there is nothing to prove. Otherwise, using Theorem 2.18 once more, we obtain

(5.78) d2
z jr

3u.z/j � c; d3
z j@tr

2u.z/j � c;

so by integrating, first along space and then along time, we get

(5.79) jr
2u.z1/�r

2u.z2/j �
c

d2
z1; z2

d.z1; z2/C
c

d3
z1; z2

d.z1; z2/
2

�
c

d2
z1; z2

d.z1; z2/
˛d1�˛

z1; z2
:
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Proof of Theorem 5.1 Assume again that r D 1. Let �0.M; ı/, 0 D 0.ı/ and
�0 D �0.M; ı/ be the constants from Theorem 5.12. Fix � < �0 , � < �0 and  < 0

such that the assumptions of the theorem are satisfied. The graphical mean curvature
equation is of the form

(5.80) ut ��uD f;

with

(5.81) f D
.@iu/.@j u/

1Cjruj2
@i@j u:

Setting ˛ as in Theorem 5.47, by Theorem 5.12 we have

(5.82)
p
� jr2v.0; �/j

� .cCı/"C
C
p
�

�
sup

z12P1;�

d2
z1
jf .z1/jC sup

z1;z22P1;�

d2C˛
z1;z2

jf .z2/�f .z1/j

d.z2; z1/˛

�
:

By our assumptions and Lemma 5.75,

(5.83) d2
z jf .z/j � Cdz.dzjr

2uj/jruj2 � C
p
�.M "/2:

Similarly, by our assumptions, the Hölder gradient estimate of Theorem 5.47 and
Lemma 5.75,

(5.84) sup
z1; z22P1;�

d2C˛
z1;z2

jf .z2/�f .z1/j

d.z2; z1/˛
� C
p
�.M "/2:

Thus, the contribution of the non-linearity is at most quadratic in the gradient (for small
gradients) so for " < "0 it will be smaller than ı . This concludes the proof of the first
estimate. The proof of the second estimate is similar, utilizing the second estimate of
Theorem 5.12.
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