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Sharp geometric and functional inequalities in
metric measure spaces with lower Ricci curvature bounds

FABIO CAVALLETTI

ANDREA MONDINO

For metric measure spaces satisfying the reduced curvature–dimension condition
CD�.K;N / we prove a series of sharp functional inequalities under the additional
“essentially nonbranching” assumption. Examples of spaces entering this framework
are (weighted) Riemannian manifolds satisfying lower Ricci curvature bounds and
their measured Gromov Hausdorff limits, Alexandrov spaces satisfying lower curva-
ture bounds and, more generally, RCD�.K;N / spaces, Finsler manifolds endowed
with a strongly convex norm and satisfying lower Ricci curvature bounds.

In particular we prove the Brunn–Minkowski inequality, the p–spectral gap (or equiv-
alently the p–Poincaré inequality) for any p 2 Œ1;1/ , the log-Sobolev inequality,
the Talagrand inequality and finally the Sobolev inequality.

All the results are proved in a sharp form involving an upper bound on the diameter of
the space; all our inequalities for essentially nonbranching CD�.K;N / spaces take
the same form as the corresponding sharp ones known for a weighted Riemannian
manifold satisfying the curvature–dimension condition CD.K;N / in the sense of
Bakry and Émery. In this sense our inequalities are sharp. We also discuss the rigidity
and almost rigidity statements associated to the p–spectral gap.

In particular, we have also shown that the sharp Brunn–Minkowski inequality in the
global form can be deduced from the local curvature–dimension condition, provid-
ing a step towards (the long-standing problem of) globalization for the curvature–
dimension condition CD.K;N / .

To conclude, some of the results can be seen as answers to open problems proposed
in Villani’s book Optimal transport.

49J40, 49J52, 49Q20, 52A38, 58J35

1 Introduction

The theory of metric measure spaces satisfying a synthetic version of lower curvature and
upper dimension bounds is nowadays a rich and well-established theory; nevertheless
some important functional and geometric inequalities are in some cases still not proven
and in others not proven in a sharp form. The scope of this note is to generalize
several functional inequalities known for Riemannian manifolds satisfying a lower
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bound on the Ricci curvature to the more general case of metric measure spaces
satisfying the so-called curvature–dimension condition CD.K;N /, as defined by Lott
and Villani [43] and Sturm [59; 60]. More precisely, our results will hold under
the reduced curvature dimension condition CD�.K;N / introduced by Bacher and
Sturm [7] (which is, a priori, a weaker assumption than the classic CD.K;N /) coupled
with an essentially nonbranching assumption on geodesics. We refer to Section 2.1
for the precise definitions; here let us recall that remarkable examples of essentially
nonbranching CD�.K;N / spaces are (weighted) Riemannian manifolds satisfying
lower Ricci curvature bounds and their measured Gromov Hausdorff limits (for the
theory of Ricci limit spaces, see Cheeger and Colding [20; 21; 22; 23] and Colding and
Naber [24]), Alexandrov spaces satisfying lower curvature bounds and, more generally,
RCD�.K;N / spaces, Finsler manifolds endowed with a strongly convex norm and
satisfying lower Ricci curvature bounds; see Ohta [52].

Remark 1.1 To avoid technicalities in the introduction, all the results will be stated
for N > 1; nevertheless everything holds (and will be proved in the paper) also for
N D 1, but in this case CD�.K;N / has to be replaced by CDloc.K;N /. The two
conditions are equivalent for N > 1 and for N D 1, K � 0, but when N D 1 and
K < 0 the CDloc.K;N / condition is strictly stronger (see Section 2.1 for more details).

Before committing a paragraph to each of the functional inequalities we will consider
in this note, we underline that most of the proofs contained in this note are based on
L1 optimal transportation theory and in particular on one-dimensional localization.
This technique, having its roots in work of Payne and Weinberger [54] and developed
by Gromov and Milman [30], Lovász and Simonovits [44] and Kannan, Lovász and
Simonovits [34], consists in reducing an n–dimensional problem to a one-dimensional
one via tools of convex geometry. Recently Klartag [37] found an L1 –optimal trans-
portation approach leading to a generalization of these ideas to Riemannian manifolds;
the authors [14], via a careful analysis avoiding any smoothness assumption, generalized
this approach to metric measure spaces.

It is also convenient to introduce here the family of one-dimensional measures that will
be used several times for comparison:

FK ;N;D WD
˚
� 2 P.R/ j supp.�/� Œ0;D�; �D h� �L1; h� 2 C 2..0;D//;

.R; j � j; �/ 2 CD.K;N /
	
;

where .R; j � j; �/ 2 CD.K;N / means the metric measure space .R; j � j; �/ verifies
CD.K;N / or, equivalently,

.h1=.N�1/
� /

00

C
K

N �1
h1=.N�1/
� � 0:
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1.1 Brunn–Minkowski inequality

The celebrated Brunn–Minkowski inequality estimates from below the measure of the t –
intermediate points between two given subsets A0 and A1 of X for t 2 Œ0; 1�. For metric
measure spaces satisfying the reduced curvature–dimension condition CD�.K;N /

(see Section 2.1 for a brief account of different versions of the curvature–dimension
condition), almost by definition, for any A0 , A1 �X ,

(1-1) m.At /
1=N
� �

.1�t/
K ;N

.�/m.A0/
1=N
C �

.t/
K ;N

.�/m.A1/
1=N ;

where At is the set of t –intermediate points between A0 and A1 , that is,

At D et

�
f 2 Geo.X / j 0 2A0; 1 2A1g

�
;

(see Section 2 for the definition of e) � is the minimal/maximal length of geodesics
from A0 to A1 ,

� WD

�
inf.x0;x1/2A0�A1

d.x0;x1/ if K � 0;

sup.x0;x1/2A0�A1
d.x0;x1/ if K < 0;

and �
.t/
K ;N

.�/ is as defined in (2-3). Nevertheless, (1-1) is not sharp. Indeed, if
.X; d;m/ is a weighted Riemannian manifold satisfying CD�.K;N /, then (1-1) holds
but with better interpolation coefficients, that is, with � .t/

K ;N
.�/ and � .1�t/

K ;N
.�/ replacing

�
.t/
K ;N

.�/ and � .1�t/
K ;N

.�/, respectively. Indeed for a weighted Riemannian manifold
the two (a priori) different definitions of CD�.K;N / and CD.K;N / coincide and
then again, almost by definition — see Sturm [60] — one can obtain the improved (and
sharp) Brunn–Minkowski inequality (let us mention that a direct proof of the Brunn–
Minkowski inequality in the smooth setting was done earlier by Cordero-Erausquin,
McCann and Schmuckenschläger [25]; see also Milman and Rotem [49]).

A first main result of this paper is to establish the sharp inequality for essentially
nonbranching CD�.K;N / metric measure spaces.

Theorem 3.1 Let .X; d;m/ with m.X /<1 verify CDloc.K;N / for some K , N 2R
and N 2 .1;1/. Assume moreover that .X; d;m/ is essentially nonbranching. Then it
satisfies the following sharp Brunn–Minkowski inequality: for any A0 , A1 �X ,

m.At /
1=N
� �

.1�t/
K ;N

.�/m.A0/
1=N
C �

.t/
K ;N

.�/m.A1/
1=N ;

where At is the set of t –intermediate points between A0 and A1 and � is the mini-
mal/maximal length of geodesics from A0 to A1 .

Remark 1.2 The surprising feature of Theorem 3.1 is that the sharp Brunn–Minkowski
inequality in the global form can be deduced from the local curvature–dimension
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condition, providing a step towards (the long-standing problem of) globalization for the
curvature–dimension condition CD.K;N /. For an account and for partial results about
this problem we refer to Ambrosio, Mondino and Savaré [6], Bacher and Sturm [7],
Cavalletti [13], Cavalletti and Sturm [16], Rajala [56] and Villani [62].

1.2 p–spectral gap

In the smooth setting, a spectral gap inequality establishes a bound from below on the
first eigenvalue of the Laplacian. More generally, for any p 2 .1;1/ one can define
the positive real number �1;p

.X ;d;m/
as follows:

�
1;p

.X ;d;m/
WD inf

�R
X jrf j

p mR
X jf j

p m
j f 2Lip.X /\Lp.X;m/; f ¤ 0;

Z
X

f jf jp�2 mD 0

�
;

where jrf j is the slope (also called the local Lipschitz constant) of the Lipschitz
function f . The name is motivated by the fact that if .X; d;m/ is the m.m.s. corre-
sponding to a smooth compact Riemannian manifold then �1;p

.X ;d;m/
coincides with the

first positive eigenvalue of the problem

�pf D �jf j
p�2f;

on .X; d;m/, where �pf WD �div.jrf jp�2rf / is the so-called p–Laplacian.

We now state the main theorem of this paper on p–spectral gap inequality:

Theorem 4.4 Let .X; d;m/ be a metric measure space satisfying CD�.K;N / for
some K , N 2R with N 2 .1;1/ and assume moreover it is essentially nonbranching.
Let D 2 .0;1/ be the diameter of X .

Then, for any p 2 .1;1/,
�

1;p

.X ;d;m/
� �

1;p
K ;N;D

;

where �1;p
K ;N;D

is defined by

�
1;p
K ;N;D

WD inf
�2FK;N;D

inf
�R

Rju
0jp �R

Rjuj
p �

ˇ̌̌
u2Lip.R/\Lp.�/;

Z
R

ujujp�2�D0; u¤0

�
:

In other terms, for any Lipschitz function f 2Lp.X;m/ with
R
X f jf jp�2 m.dx/D 0,

�
1;p
K ;N;D

Z
X

jf .x/jp m.dx/�

Z
X

jrf jp.x/m.dx/:

For more about the quantity �1;p
K ;N;D

the reader is referred to Section 4.1, where the
model spaces are discussed in detail. From the last formulation of the statement, it is
clear that the sharp p–spectral gap above is equivalent to a sharp p–Poincaré inequality.
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Let us now give a brief (and incomplete) account on the huge literature about the
spectral gap.

When the ambient metric measure space is a smooth Riemannian manifold equipped
with the volume measure, the study of the first eigenvalue of the Laplace–Beltrami
operator has a long history, going back to Lichnerowicz [41], Cheeger [19], Li and
Yau [40], for example. For an overview the reader can consult for instance the book
by Chavel [17], the survey by Ledoux [39] or Schoen and Yau [58, Chapter 3] and
references therein.

We mention that the estimate of Theorem 4.4 in the case p D 2 started with Payne and
Weinberger [54] for convex domains in Rn , where a diameter-improved spectral gap
inequality for the Laplace operator was originally proved. Later this was generalized to
Riemannian manifolds with nonnegative Ricci curvature by Zhong and Yang [65], and
by Bakry and Qian [9] for manifolds with densities. The generalization to arbitrary
p 2 .1;1/ has been proved by Valtorta [61] for K D 0 and Naber and Valtorta [51]
for any K 2R. All of these results hold for Riemannian manifolds.

Regarding metric measure spaces, the sharp Lichnerowicz spectral gap for p D 2 was
proved by Lott and Villani [42] under the CD.K;N / condition. Jiang and Zhang [33]
recently showed, still for p D 2, that the improved version under an upper diameter
bound holds for RCD�.K;N / metric measure spaces. For Ricci limit spaces, in the
case K > 0 and D D �

p
.N � 1/=K , the p–spectral gap above has recently been

obtained by Honda [32] via proving the stability of �1;p under measured Gromov–
Hausdorff (mGH) convergence of compact Riemannian manifolds; this approach was
inspired by the celebrated work of Cheeger and Colding [23], where, in particular, it
was shown the stability of �1;2 under mGH convergence. We also obtain the almost
rigidity for the p–spectral gap: if an almost equality in the p–spectral gap holds, then
the space must have almost maximal diameter.

Theorem 4.5 Let N > 1 and p 2 .1;1/ be fixed. Then for every " > 0 there exists
ı D ı.";N;p/ such that the following holds:

Let .X; d;m/ be an essentially nonbranching metric measure space that satisfies
CD�.N � 1� ı;N C ı/. If �1;p

.X ;d;m/
� �

1;p
N�1;N;�

C ı , then diam.X /� � � ".

As a consequence, by a compactness argument and using the maximal diameter theorem
proved recently for RCD�.K;N / by Ketterer [35], we have the following p–Obata
and almost p–Obata theorems:

Corollary 1.3 (p–Obata theorem) Let .X; d;m/ be an RCD�.N � 1;N / space for
some N � 2, and let 1< p <1. If

�
1;p

.X ;d;m/
D �

1;p
N�1;N;�

.D �1;p.SN / for integer N /;
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then .X; d;m/ is a spherical suspension, ie there exists an RCD�.N � 2;N � 1/ space
.Y; dY ;mY / such that .X; d;m/ is isomorphic to Œ0; ���N�1

sin Y .

Corollary 1.4 (almost p–Obata theorem) Let N � 2 and p 2 .1;1/ be fixed. Then
for every " > 0 there exists ı D ı.";N;p/ > 0 such that the following holds:

Let .X; d;m/ be an RCD�.N � 1� ı;N C ı/ space. If

�
1;p

.X ;d;m/
� �

1;p
N�1;N;�

C ı;

then there exists an RCD�.N � 2;N � 1/ space .Y; dY ;mY / such that

dmGH
�
.X; d;m/; Œ0; ���N�1

sin Y
�
� ":

Let us mention that the classical Obata’s theorem for RCD�.K;N / spaces, ie the
version of Corollary 1.3 for p D 2, was recently obtained by Ketterer [36] (see also
Jiang and Zhang [33]) with different methods.

Finally we recall that the case p D 1 can be attacked using the identity h.X ;d;m/ D

�
1;1
.X ;d;m/

, where h.X ;d;m/ is the so-called Cheeger isoperimetric constant; see Section 5.1.
Therefore Theorems 4.4 and 4.5 and Corollaries 1.3 and 1.4 for the case p D 1

follow from the analogous results proved for the isoperimetric profile in Cavalletti and
Mondino [14]. Nevertheless, for the reader’s convenience, the case p D 1 will be
discussed in detail in Section 5.

1.3 Log-Sobolev and Talagrand inequalities

Given a m.m.s. .X; d;m/, we say that it supports the log-Sobolev inequality with
constant ˛ > 0 if, for any Lipschitz function f W X! Œ0;1/ with

R
X f .x/m.dx/D 1,

(1-2) 2˛

Z
X

f logf m�

Z
ff >0g

jrf j2

f
m:

The largest constant ˛ such that (1-2) holds for any Lipschitz function f W X ! Œ0;1/

with
R
X f .x/m.dx/ D 1 will be called the log-Sobolev constant of .X; d;m/ and

denoted by ˛LS
.X ;d;m/

. The log-Sobolev inequality is already known — see Villani
[62, Theorem 30.22] — for essentially nonbranching metric measure spaces satisfying
CD.K;1/ for K > 0 with sharp constant ˛ D K , but it is an open problem (see
for instance Villani [62, Open Problem 21.6]) to get the sharp dimensional constant
˛K ;N D KN=.N � 1/ for metric measure spaces with N–Ricci curvature bounded
below by K . This is the goal of the next result.
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As already done above, let us introduce the model constant for the one-dimensional
case. Given K 2R, N � 1 and D 2 .0;C1/ we denote by ˛LS

K ;N;D
> 0 the maximal

constant ˛ such that

(1-3) 2˛

Z
R
f logf ��

Z
ff >0g

jf 0j2

f
� for all � 2 FK ;N;D

for every Lipschitz f W R! Œ0;1/ with
R
f �D 1.

Remark 1.5 If K > 0 and D D �
p
.N � 1/=K , it is known that the corresponding

optimal log-Sobolev constant is KN=.N � 1/ (for more details see the discussion in
Section 6.1). It is an interesting open problem, which we don’t address here, to give an
explicit expression of the quantity ˛LS

K ;N;D
for general K 2R, N � 1 and D 2 .0;1/.

Theorem (sharp log-Sobolev inequality; see Theorem 6.2 and Corollary 6.3) Let
.X; d;m/ be a metric measure space with diameter D 2 .0;1/ satisfying CD�.K;N /

for some K 2R and N 2 .1;1/. Assume moreover it is essentially nonbranching.

Then, for any Lipschitz function f W X ! Œ0;1/ with
R
X f mD 1,

2˛LS
K ;N;D

Z
X

f logf m�

Z
ff >0g

jrf j2

f
m:

In other terms, ˛LS
.X ;d;m/

� ˛LS
K ;N;D

.

As a consequence, if K > 0 and no diameter upper bound is assumed or D D

�
p
.N � 1/=K , then ˛LS

K ;N
D KN=.N � 1/, that is, for any Lipschitz function

f W X ! Œ0;1/ with
R
X f mD 1,

2KN

N �1

Z
X

f logf m�

Z
ff >0g

jrf j2

f
m:

In order to state the Talagrand inequality let us recall that the relative entropy functional
EntmW P.X /! Œ0;C1� with respect to a given m 2 P.X / is defined to be

Entm.�/D
Z

X

% log %m if �D %m

and C1 otherwise. Otto and Villani [53] proved that for smooth Riemannian manifolds
the log-Sobolev inequality with constant ˛ > 0 implies the Talagrand inequality with
constant 2=˛ preserving sharpness. The result was then generalized to arbitrary metric
measure spaces by Gigli and Ledoux [28].

Combining this result with Theorem 6.2 gives the following corollary, which improves
the Talagrand constant 2=K — which is sharp for CD.K;1/ spaces — by a factor
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.N � 1/=N if the dimension is bounded above by N . This constant is sharp for
CD�.K;N / (or CDloc.K;N /) spaces, indeed it is sharp already in the smooth setting;
see Villani [62, Remark 22.43]. Since both our proof of the sharp log-Sobolev inequality
and the proof of Theorem 6.4 are essentially optimal transport based, the following can
be seen as an answer to Villani [62, Open Problem 22.44].

Theorem 1.6 (sharp Talagrand inequality) Let .X; d;m/ be a metric measure space
with diameter D 2 .0;1/ satisfying CD�.K;N / for some K 2 R and N 2 .1;1/,
and assume moreover it is essentially nonbranching and m.X /D 1.

Then it supports the Talagrand inequality with constant 2=˛LS
K ;N;D

, where ˛LS
K ;N;D

was
defined in (1-3), ie

W 2
2 .�;m/�

2

˛LS
K ;N;D

Entm.�/ for all � 2 P.X /:

In particular, if K > 0 and no upper bound on the diameter is assumed or D D

�
p
.N � 1/=K , then

W 2
2 .�;m/�

2.N �1/

KN
Entm.�/ for all � 2 P.X /;

the constant in the last inequality being sharp.

1.4 Sobolev inequality

Sobolev inequalities have been studied in many different contexts and many papers
and books are devoted to this family of inequalities. Here we only mention two
references mainly dealing with them in the Riemannian manifold case and the smooth
CD condition case, respectively; see Hebey [31] and Ledoux [38].

We say that .X; d;m/ supports a .p; q/–Sobolev inequality with constant ˛p;q if, for
any f W X !R Lipschitz function,

(1-4) ˛p;q

p�q

��Z
X

jf jp m

�q
p

�

Z
X

jf jq m

�
�

Z
X

jrf jq m;

and the largest constant ˛p;q such that (1-4) holds for any Lipschitz function f will
be called the .p; q/–Sobolev constant of .X; d;m/and will be denoted by ˛p;q

.X ;d;m/
.

A Sobolev inequality is known to hold for essentially nonbranching m.m.s. satisfying
CD.K;N /, provided K < 0 — see Villani [62, Theorem 30.23] — and other Sobolev-
type inequalities have been obtained in Lott and Villani [42] for CD.K;N / spaces.
Let us also mention Profeta [55], where the sharp .2�; 2/–Sobolev inequality has been
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established for RCD�.K;N / spaces with K > 0 and N 2 .2;1/. The goal here is to
give a Sobolev inequality with sharp constant for essentially nonbranching CD�.K;N /

spaces for K 2R and N > 1, also taking into account an upper diameter bound.

Theorem 7.1 (sharp Sobolev inequality) Let .X; d;m/ be a metric measure space
with diameter D 2 .0;1/ and satisfying CD�.K;N / for some K 2 R;N 2 .1;1/.
Assume moreover it is essentially nonbranching.

Then, for any Lipschitz function,

˛
p;q
K ;N;D

p� q

��Z
X

jf .x/jp m.dx/

�q
p

�

Z
X

jf .x/jq m.dx/

�
�

Z
X

jrf .x/jq m.dx/;

where ˛p;q
K ;N;D

is defined as the supremum among ˛ > 0 such that

˛

p�q

��Z
X

jf jp �

�q
p

�

Z
X

jf jq �

�
�

Z
X

jrf jq � for all f 2 Lip; � 2 FK ;N;D :

In particular, if K > 0, N > 2 and no upper bound on the diameter is assumed or
D D �

p
.N � 1/=K , then, for any Lipschitz function f ,

KN

.p� 2/.N � 1/

��Z
X

jf jp m

�2
p

�

Z
X

jf j2 m

�
�

Z
X

jrf j2 m

for any 2< p � 2N=.N � 2/; in other terms, ˛p;2

.X ;d;m/
�KN=.N � 1/.

This last result can be seen as a solution to Villani [62, Open Problem 21.11].

Acknowledgements The authors wish to thank the Hausdorff Center of Mathematics
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2 Prerequisites

In what follows we say that a triple .X; d;m/ is a metric measure space (m.m.s. for
short) if .X; d/ is a complete and separable metric space and m has positive Radon
measure over X . For this note we will only be concerned with m.m.s. with m a
probability measure, that is, m.X / D 1, or at most with m.X / < 1, which will
be reduced to the probability case by a constant rescaling. The space of all Borel
probability measures over X will be denoted by P.X /.
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A metric space is a geodesic space if and only if, for each x , y 2 X , there exists
 2 Geo.X / such that 0 D x and 1 D y , with

Geo.X / WD f 2 C.Œ0; 1�;X / j d.s; t /D .s� t/d.0; 1/; s; t 2 Œ0; 1�g:

Recall that, for complete geodesic spaces, local compactness is equivalent to properness
(a metric space is proper if every closed ball is compact). We directly assume the
ambient space .X; d/ to be proper. Hence, from now on we assume the following: the
ambient metric space .X; d/ is geodesic, complete, separable and proper and m.X /D1.

We denote by P2.X / the space of probability measures with finite second moment
endowed with the L2 –Wasserstein distance W2 defined as follows: for �0 , �12P2.X /

we set

(2-1) W 2
2 .�0; �1/D inf

�

Z
X

d2.x;y/ �.dx dy/;

where the infimum is taken over all � 2P.X �X / with �0 and �1 as the first and the
second marginal. Assuming the space .X; d/ to be geodesic, the space .P2.X /;W2/

is also geodesic.

Any geodesic .�t /t2Œ0;1� in .P2.X /;W2/ can be lifted to a measure � 2 P.Geo.X //
such that .et / ] � D �t for all t 2 Œ0; 1�. Here et , for any t 2 Œ0; 1�, denotes the
evaluation map

et W Geo.X /!X; et . / WD t :

Given �0 , �12P2.X /, we denote by OptGeo.�0; �1/ the space of all �2P.Geo.X //
for which .e0; e1/ ] � realizes the minimum in (2-1). If .X; d/ is geodesic, then the set
OptGeo.�0; �1/ is nonempty for any �0 , �1 2P2.X /. It is worth also introducing the
subspace of P2.X / formed by all those measures absolutely continuous with respect
to m; it is denoted by P2.X; d;m/.

2.1 Geometry of metric measure spaces

Here we briefly recall the synthetic notions of lower Ricci curvature bounds; for more
detail we refer to [7; 43; 59; 60; 62].

In order to formulate curvature properties for .X; d;m/ we introduce the following
distortion coefficients: given two numbers K , N 2 R with N � 1, we set, for
.t; �/ 2 Œ0; 1��RC ,
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(2-2) � .t/
K ;N

.�/ WD

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

1 if K�2 �N�2;

sin.t�
p

K=N /

sin.�
p

K=N /
if 0<K�2 <N�2;

t if K�2 < 0 and N D 0; or if K�2 D 0;

sinh.t�
p
�K=N /

sinh.�
p
�K=N /

if K�2 � 0 and N > 0:

We also set, for N � 1, K 2R and .t; �/ 2 Œ0; 1��RC ,

(2-3) �
.t/
K ;N

.�/ WD t1=N �
.t/
K ;N�1

.�/.N�1/=N :

As we will consider only the case of essentially nonbranching spaces, we recall:

Definition 2.1 A metric measure space .X; d;m/ is essentially nonbranching if and
only if, for any �0; �1 2 P2.X / which are absolutely continuous with respect to m,
any element of OptGeo.�0; �1/ is concentrated on a set of nonbranching geodesics.

A set F �Geo.X / is a set of nonbranching geodesics if and only if, for any  1 ,  22F ,

9Nt 2 .0; 1/ 8t 2 .0; Nt/  1
t D 

2
t D) 8s 2 Œ0; 1�  1

s D 
2
s :

After [15] we can give the following equivalent definition:

Definition 2.2 (CD condition) An essentially nonbranching m.m.s. .X; d;m/ ver-
ifies CD.K;N / if and only if, for each pair �0 , �1 2 P2.X; d;m/, there exists
� 2 OptGeo.�0; �1/ such that

(2-4) %
�1=N
t .t /� �

.1�t/
K ;N

.d.0; 1//%
�1=N
0

.0/C �
.t/
K ;N

.d.0; 1//%
�1=N
1

.1/

for �–ae  2 Geo.X / for all t 2 Œ0; 1�, where et ] � D %tm.

For the general definition of CD.K;N / see [43; 59; 60]. It is worth recalling that,
if .M;g/ is a Riemannian manifold of dimension n and h 2 C 2.M / with h > 0,
then the m.m.s. .M;g; h vol/ verifies CD.K;N / with N � n if and only if (see [60,
Theorem 1.7])

Ricg;h;N �Kg; Ricg;h;N WD Ricg � .N � n/
r2

gh1=.N�n/

h1=.N�n/
:

In particular, if N D n the generalized Ricci tensor Ricg;h;N D Ricg makes sense
only if h is constant. In particular, if I �R is any interval, h 2 C 2.I/ and L1 is the
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one-dimensional Lebesgue measure, the m.m.s. .I; j � j; hL1/ verifies CD.K;N / if and
only if

(2-5) .h1=.N�1//00C
K

N �1
h1=.N�1/

� 0;

and verifies CD.K; 1/ if and only if h is constant.

We also mention the more recent Riemannian curvature dimension condition RCD�

introduced in the infinite-dimensional case in [3; 4; 1] and analyzed in the finite-
dimensional case in [26; 5]. We refer to these papers and references therein for a
general account on the synthetic formulation of Ricci curvature lower bounds for metric
measure spaces. Here we only mention that RCD�.K;N / condition is an enforcement
of the so-called reduced curvature dimension condition, denoted by CD�.K;N /, that
has been introduced in [7]; in particular, the additional condition is that the Sobolev
space W 1;2.X;m/ is a Hilbert space; see [2; 3].

The reduced CD�.K;N / condition asks for the same inequality (2-4) of CD.K;N / but
the coefficients � .t/

K ;N
.d.0; 1// and � .1�t/

K ;N
.d.0; 1// are replaced by � .t/

K ;N
.d.0; 1//

and � .1�t/
K ;N

.d.0; 1//, respectively.

Hence, while the distortion coefficients of the CD.K;N / condition are formally ob-
tained by imposing one direction with linear distortion and N � 1 directions affected
by curvature, the CD�.K;N / condition imposes the same volume distortion in all N

directions.

It was proved in [57] that the RCD�.K;N / condition implies the essentially nonbranch-
ing property, so this is a fairly natural assumption in the framework of m.m.s. satisfying
lower Ricci bounds.

For both the CD and CD� definitions there is a local version that is of some relevance
for our analysis. Here we state only the local formulation CD.K;N /, the one for
CD�.K;N / being similar.

Definition 2.3 (CDloc condition) An essentially nonbranching m.m.s. .X; d;m/
satisfies CDloc.K;N / if, for any point x 2 X , there exists a neighborhood X.x/

of x such that, for each pair �0 , �1 2 P2.X; d;m/ supported in X.x/, there exists
� 2 OptGeo.�0; �1/ such that (2-4) holds true for all t 2 Œ0; 1�. The support of et ] �

is not necessarily contained in the neighborhood X.x/.

One of the main properties of the reduced curvature dimension condition is the globaliza-
tion one: under the essentially nonbranching property, CD�loc.K;N / and CD�.K;N /

are equivalent (see [7, Corollary 5.4]). Let us mention that the local-to-global property
is satisfied also by the RCD�.K;N / condition; see [6].
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Remark 2.4 (CD�.K;N / vs CDloc.K;N /) Results of [7] imply the following chain
of implications: if .X; d;m/ is a proper, essentially nonbranching, metric measure
space, then

CDloc.K�;N / () CD�loc.K�;N / () CD�.K;N /;

provided K , N 2 R with N > 1 or N D 1 and K � 0. On the other hand,
CD�.K; 1/ does not imply CDloc.K; 1/ for K < 0: indeed it is possible to check
that .X; d;m/D .Œ0; 1�; j � j; c sinh. � /L1/ satisfies CD�.�1; 1/ but not CDloc.�1; 1/,
which would require the density to be constant. Hence CD�.K;N / and CDloc.K;N /

are equivalent if 1 < N <1 or N D 1 and K � 0, but for N D 1 and K < 0 the
CDloc.K;N / condition is strictly stronger than CD�.K;N /.

Lastly, for K > 0, CD�.K;N / implies CD.K�;N /, where K� DK.N � 1/=N . For
a deeper analysis on the interplay between CD� and CD we refer to [13; 16].

2.2 Measured Gromov–Hausdorff convergence and stability
of RCD�.K;N /

Let us first recall the notion of measured Gromov–Hausdorff convergence (mGH for
short). Since in this work we will apply it to compact m.m.s. endowed with probability
measures having full support, we will restrict to this framework for simplicity (for a
more general treatment see for instance [29]).

Definition 2.5 A sequence .Xj ; dj ;mj / of compact m.m.s. with supp.mj / D Xj

and mj .Xj / D 1 is said to converge in the mGH topology to a compact m.m.s.
.X1; d1;m1/ with supp.m1/DX1 and m1.X /D 1 if and only if there exists a
separable metric space .Z; dZ / and isometric embeddings f�j W .X; dj /! .Z; dZ /gi2N
such that, for every " > 0, there exists j0 such that, for every j > j0 ,

�1.X1/� BZ
" Œ�j .Xj /� and �j .Xj /� BZ

" Œ�1.X1/�;

where BZ
" ŒA� WD fz 2Z j dZ .z;A/ < "g for every subset A�Z , andZ

Z

'..�j /].mj //!

Z
Z

'..�1/].m1// for all ' 2 Cb.Z/;

where Cb.Z/ denotes the set of real-valued bounded continuous functions in Z .

The following theorem summarizes the compactness/stability properties we will use
in the proof of the almost rigidity result (notice these hold more generally for every
K 2R by replacing mGH with pointed mGH convergence).
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Theorem 2.6 (metrizability and compactness) Let K > 0 and N > 1 be fixed.
Then the mGH convergence restricted to (isomorphism classes of) RCD�.K;N /

spaces is metrizable by a distance function dmGH . Furthermore, every sequence
.Xj ; dj ;mj / of RCD�.K;N / spaces admits a subsequence which mGH-converges
to a limit RCD�.K;N / space.

The compactness follows by the standard argument of Gromov; indeed, for fixed K> 0

and N > 1, the spaces have uniformly bounded diameter, moreover the measures of
RCD�.K;N / spaces are uniformly doubling, hence the spaces are uniformly totally
bounded and thus compact in the GH topology; the weak compactness of the measures
follows using the doubling condition again and the fact that they are normalized. For
the stability of the RCD�.K;N / condition under mGH convergence see for instance
[7; 26; 29]. The metrizability of mGH convergence restricted to a class of uniformly
doubling normalized m.m.s. having uniform diameter bounds is also well known; see
for instance [29].

2.3 Warped product

Given two geodesic m.m.s. .B; dB;mb/ and .F; dF ;mF / and a Lipschitz function
f W B!RC , one can define a length function on the product B�F : for any absolutely
continuous curve  W Œ0; 1�! B �F with  D .˛; ˇ/, define

L. / WD

Z 1

0

�
j P̨ j

2.t/C .f ı˛/2.t/j P̌j2.t/
�1=2

dt

and define accordingly the pseudodistance

j.p;x/; .q;y/j WD inffL. / j 0 D .p;x/; 1 D .q;y/g:

Then the warped product of B with F is defined as

B �f F WD .B �F=�; j � ; � j/;

where .p;x/ � .q;y/ if and only if j.p;x/; .q;y/j D 0. One can also associate a
measure and obtain the object

B �N
f F WD .B �f F;mC /; mC WD f

NmB˝mF :

Then B �N
f

F will be a metric measure space called a measured warped product. For
a general picture on the curvature properties of warped products, we refer to [35].
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2.4 Localization method

The next theorem represents the key technical tool of the present paper. The roots
of such a result, known in the literature as a localization technique, can be traced
back to work of Payne and Weinberger [54], further developed in the Euclidean space
by Gromov and Milman [30], Lovász and Simonovits [44] and Kannan, Lovász and
Simonovits [34]. The basic idea consists in reducing an n–dimensional problem to
a one-dimensional one via tools of convex geometry. Recently Klartag [37] found
an L1 –optimal transportation approach, leading to a generalization of these ideas to
Riemannian manifolds; the authors [14], via a careful analysis avoiding any smoothness
assumption, generalized this approach to metric measure spaces.

Theorem 2.7 Let .X; d;m/ be an essentially nonbranching metric measure space
with m.X / D 1 satisfying CDloc.K;N / for some K , N 2 R and N 2 Œ1;1/. Let
f W X !R be m–integrable such that

R
X f mD 0 and assume the existence of x0 2X

such that
R
X jf .x/j d.x;x0/m.dx/ <1.

Then the space X can be written as the disjoint union of two sets Z and T with T
admitting a partition fXqgq2Q , where each Xq is the image of a geodesic; moreover,
there exists a family of probability measures fmqgq2Q � P.X / with the following
properties:

� For any m–measurable set B � T ,

m.B/D

Z
Q

mq.B/ q.dq/;

where q is a probability measure over Q�X .

� For q–almost every q 2Q, the set Xq is a geodesic with strictly positive length
and mq is supported on it. Moreover q 7! mq is a CD.K;N / disintegration,
that is, mq D g.q; � / ] .hq �L1/, with

(2-6) hq..1� s/t0C st1/
1=.N�1/

� �
.1�s/
K ;N�1

.t1� t0/hq.t0/
1=.N�1/

C �
.s/
K ;N�1

.t1� t0/hq.t1/
1=.N�1/

for all s 2 Œ0; 1� and for all t0 , t1 2 Dom.g.q; � // with t0 < t1 , where g.q; � /

is the isometry with range Xq . If N D 1, for q–ae q 2 Q the density hq is
constant.

� For q–almost every q 2Q, we have
R
Xq
f mq D 0 and f D 0 m–ae in Z .
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Remark 2.8 Inequality (2-6) is the weak formulation of the following differential
inequality on hq;t0;t1

:

(2-7) .h
1=.N�1/
q;t0;t1

/00C .t1� t0/
2 K

N �1
h

1=.N�1/
q;t0;t1

� 0

for all t0 < t1 2 Dom.g.q; � //, where hq;t0;t1
.s/ WD hq..1� s/t0C st1/. It is easy to

observe that the differential inequality (2-7) on hq;t0;t1
is equivalent to the following

differential inequality on hq :

.h1=.N�1/
q /00C

K

N �1
h1=.N�1/

q � 0;

which is precisely (2-5). Then Theorem 2.7 can be alternatively stated as follows: If
.X; d;m/ is an essentially nonbranching m.m.s. verifying CDloc.K;N / and 'W X!R
is a 1–Lipschitz function, then the corresponding decomposition of the space in maximal
rays fXqgq2Q produces a disintegration fmqgq2Q of m such that, for q–ae q 2Q,

the m.m.s. .Dom.g.q; � //; j � j; hqL1/ verifies CD.K;N /:

Accordingly, from now on we will say that the disintegration q 7!mq is a CD.K;N /

disintegration.

A few comments on Theorem 2.7 are in order. From (2-6) it follows that

(2-8) ft 2 Dom.g.q; � // j hq.t/ > 0g is convex

and t 7! hq.t/ is locally Lipschitz continuous:

The measure q is the quotient measure associated to the partition fXqgq2Q of T and
Q is its quotient set; see [14] for details.

3 Sharp Brunn–Minkowski inequality

In this section we prove the sharp Brunn–Minkowski inequality for m.m.s. satisfying
CDloc.K;N /. It follows from Theorem 2.7 that the same result holds under CD�.K;N /

for any K , N 2R provided N 2 .1;1/ or N D 1 and K � 0. See also Remark 1.1.
The same will hold for all the inequalities proved in the paper.

Theorem 3.1 Let .X; d;m/ with m.X /<1 verify CDloc.K;N / for some N , K2R
and N 2 Œ1;1/. Assume moreover .X; d;m/ to be essentially nonbranching. Then it
satisfies the following sharp Brunn–Minkowski inequality: for any A0 , A1 �X ,

(3-1) m.At /
1=N
� �

.1�t/
K ;N

.�/m.A0/
1=N
C �

.t/
K ;N

.�/m.A1/
1=N ;
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where At is the set of t –intermediate points between A0 and A1 , that is,

At D et

�
f 2 Geo.X / j 0 2A0; 1 2A1g

�
and � is the minimal/maximal length of geodesics from A0 to A1 :

� WD

�
inf.x0;x1/2A0�A1

d.x0;x1/ if K � 0;

sup.x0;x1/2A0�A1
d.x0;x1/ if K < 0:

Before starting the proof of Theorem 3.1 we recall the classical result of Borell [11]
and Brascamp and Lieb [12] characterizing one-dimensional measures satisfying the
Brunn–Minkowski inequality.

Lemma 3.2 Let � be a Borel measure defined on R admitting the representation
�D h �L1 . The following are equivalent:

(i) The density h is .K;N /–concave on its convex support, that is,

.h1=.N�1//00C
K

N �1
h1=.N�1/

� 0

in the weak sense; see (2-6).

(ii) For any subsets A0 , A1 of R,

�.At /� �
.1�t/
K ;N

.�/ �.A0/
1=N
C �

.t/
K ;N

.�/ �.A1/
1=N ;

where At WD f.1� t/xC ty j x 2 A0; y 2 A1g and � is the minimal/maximal
length of geodesics from A0 to A1 :

� WD

�
ess inf.x0;x1/2A0�A1

d.x0;x1/ if K � 0;

ess sup.x0;x1/2A0�A1
d.x0;x1/ if K < 0:

For the reader’s convenience we include here a proof that (i) implies (ii), which is the
implication we will use later.

Proof Consider the N–entropy: for any �D � � �

SN .�j�/ WD �

Z
��1=N .x/ �.dx/:

Observe that (ii) is implied by displacement convexity of SN with respect to the
L2 –Wasserstein distance over .R; j � j/. Just consider �0 WD �.A0/

�1�xA0
and �1 WD

�.A1/
�1�xA1

and use Jensen’s inequality. Consider therefore a geodesic curve

Œ0; 1� 3 t 7! �t � 2W2.R; j � j/; Tt ] �0�D �t �;
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where Tt D id.1� t/C tT and T is the (�0 –essentially) unique monotone rearrange-
ment such that T ] �0 D �1 . Thanks to the approximate differentiability of T , one
can use the change of variable formula

�t .Tt .x//h.Tt .x//j.1� t/C tT 0j.x/D �0.x/h.x/

and obtain the chain of equalitiesZ
supp.�t /

�t .x/
.N�1/=N �.dx/

D

Z
supp.�t /

�t .x/
.N�1/=N h.x/ dx

D

Z
supp.�0/

�t .Tt .x//
.N�1/=N h.Tt .x//j.1� t/C tT 0j dx

D

Z
supp.�0/

�0.x/
.N�1/=N

�
h.Tt .x//

h.x/

� 1
N
j.1� t/C tT 0j.x/1=N �.dx/:

Hence the claim has become to prove that t 7! Jt .x/
1=N is concave, where Jt is the

Jacobian of Tt with respect to � and

Jt .x/D J G
t .x/ �J

W
t .x/; J G

t .x/D j.1� t/C tT 0j.x/; J W
t .x/D

h.Tt .x//

h.x/
;

where J G is the geometric Jacobian and J W the weighted Jacobian. Since t 7!J G
t .x/

is linear, using Hölder’s inequality the claim follows straightforwardly from the .K;N /–
convexity of h.

We can now move to the proof of Theorem 3.1.

Proof of Theorem 3.1 First of all notice that, up to replacing m with the normalized
measure .1=m.X //m, we can assume that m.X /D 1. Let A0 , A1 �X be two given
Borel sets of positive m–measure.

Step 1 Consider the function f WD �A0
=m.A0/ � �A1

=m.A1/ and observe thatR
X f m D 0. From Theorem 2.7, the space X can be written as the disjoint union

of two sets Z and T with T admitting a partition fXqgq2Q and a corresponding
disintegration of mxT , namely fmqgq2Q , such that

mxTD
Z

Q

mq q.dq/;

where q is the quotient measure, for q–almost every q 2Q the set Xq is a geodesic,
mq is supported on it and q 7!mq is a CD.K;N / disintegration. Finally, for q–almost
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every q 2Q, we have
R
Xq
f mq D 0 and f D 0 m–ae in Z . We can also consider

the trivial disintegration of m restricted to Z where each equivalence class is a single
point:

mxZD

Z
Z

ız m.dz/;

where ız stands for the Dirac delta in z . Then define yq WD qCmxZ and ymq Dmq if
q 2Q and ymq D ıq if q 2 Z . Since Q\Z D ∅, the previous definitions are well
posed and we have the decomposition of m on the whole space

mD

Z
Q[Z

ymq yq.dq/:

Step 2 Use the notation A0;q WD A0 \ Xq , A1;q WD A1 \ Xq and the set of t –
intermediate points between A0;q and A1;q in Xq is denoted with At;q �Xq . Then,
from Lemma 3.2, for yq–ae q 2Q,

mq.At;q/�
�
�
.1�t/
K ;N

.�/mq.A0;q/
1=N
C �

.t/
K ;N

.�/mq.A1;q/
1=N

�N
:

Since
R
fmq D 0 implies mq.A0;q/=m.A0/Dmq.A1;q/=m.A1/, it follows that

(3-2) mq.At;q/�
mq.A0;q/

m.A0/

�
�
.1�t/
K ;N

.�/m.A0/
1=N
C �

.t/
K ;N

.�/m.A1/
1=N

�N
:

We now show that (3-2) holds also for yq–ae (or equivalently m–ae) q 2 Z . Note
that in this case mq has to be replaced by ıq . Since, by construction, 0 D f D

�A0
=m.A0/��A1

=m.A1/ on Z , then necessarily

m
�
Z n

�
.A0\A1/[X n .A0[A1/

��
D 0:

It follows that if Z does not have m–measure zero, we have two possibilities,

m
�
Z\.X n.A0[A1//

�
> 0; or m.A0/Dm.A1/ and m.Z\.A0\A1//> 0:

Therefore, if m.Z/ > 0, for yq–ae (or equivalently m–ae) q 2Z we have two possibil-
ities:

q 2X n .A0[A1/; or q 2A0\A1:

Interpreting the intermediate points as the point itself, in the first case, (3-2) (with mq

replaced by ıq ) holds trivially (ie we get 0� 0). In the second case it reduces to show
that

.�
.1�t/
K ;N

.�/C �
.t/
K ;N

.�//N � 1:

For K � 0, since we are in the case m.A0 \ A1/ > 0, it follows that � D 0 and
therefore � .t/

K ;N
.�/ D t , proving the previous inequality. For K < 0, recalling that
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K! �
.t/
K ;N

.�/ is nondecreasing (see [7, Remark 2.2]) by Hölder’s inequality,

.�
.1�t/
K ;N

.�/C �
.t/
K ;N

.�//N � .1� t C t/ � .�
.1�t/
K ;N�1

.�/C �
.t/
K ;N�1

.�//N�1
� 1;

as desired. We have therefore proved that

(3-3) ymq.At;q/�
ymq.A0;q/

m.A0/
.�
.1�t/
K ;N

.�/m.A0/
1=N
C �

.t/
K ;N

.�/m.A1/
1=N /N

for yq–ae q 2Q[Z . Taking the integral of (3-3) in q 2Q[Z one obtains that

m.At /D

Z
Q[Z

ymq.At \Xq/ yq.dq/

�

Z
Q[Z

ymq.At;q/ yq.dq/

�.�
.1�t/
K ;N

.�/m.A0/
1=N
C �

.t/
K ;N

.�/m.A1/
1=N /N

Z
Q[Z

ymq.A0;q/

m.A0/
yq.dq/

D.�
.1�t/
K ;N

.�/m.A0/
1=N
C �

.t/
K ;N

.�/m.A1/
1=N /N ;

and the claim follows.

4 p–spectral gap

Given a metric space .X; d/, we denote by Lip.X / (resp. Lipc.X /) the vector space of
real-valued Lipschitz functions (resp. with compact support). For a Lipschitz function
f W X !R the local Lipschitz constant jrf j is defined by

jrf j.x/D

�
lim supy!x

jf .x/�f .y/j
d.x;y/

if x is not isolated,
0 otherwise.

For a m.m.s. .X; d;m/, for every p2.1;1/ we define the first eigenvalue �1;p.X; d;m/

of the p–Laplacian by

(4-1) �
1;p

.X ;d;m/
WD inf

�R
X jrf j

p mR
X jf j

p m

ˇ̌̌
f 2 Lip.X /\Lp.X;m/; f ¤ 0;Z

X

f jf jp�2 mD 0

�
:

4.1 p–spectral gap for m.m.s. over .R; j � j/: the model spaces

Consider the family of probability measures

(4-2) Fs
K ;N;D WD

˚
� 2 P.R/ j supp.�/� Œ0;D�; �D h�L1; h� � const if N D 1

h� verifies (2-6) and is continuous if N 2 .1;1/
	
;
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where D 2 .0;1/ and the corresponding synthetic first nonnegative eigenvalue of the
p–Laplacian is

s�
1;p
K ;N;D

WD inf
�2Fs

K;N;D

inf
�R

R ju
0jp �R

Rjuj
p �

ˇ̌̌
u2Lip.R/\Lp.�/;

Z
R

ujujp�2�D0; u¤0

�
:

The term synthetic refers to � 2 Fs
K ;N;D

, meaning that the Ricci curvature bound is
satisfied in its synthetic formulation: if �D h �L1 , then h verifies (2-6).

The first goal of this section is to prove that s�
1;p
K ;N;D

coincides with its smooth
counterpart �1;p

K ;N;D
, defined by

(4-3) �
1;p
K ;N;D

WD inf
�2FK;N;D

inf
�R

Rju
0jp �R

R juj
p �

ˇ̌̌
u 2 Lip.R/\Lp.�/;Z

R
ujujp�2�D 0; u¤ 0

�
;

where now FK ;N;D denotes the set of � 2 P.R/ such that supp.�/ � Œ0;D� and
�D h �L1 with h 2 C 2..0;D// satisfying

(4-4) .h1=.N�1//00C
K

N �1
h1=.N�1/

� 0:

It is easily verified that FK ;N;D � Fs
K ;N;D

.

In order to prove that s�
1;p
K ;N;D

D �
1;p
K ;N;D

, the following approximation result, proved
in [14, Lemma 6.2], will play a key role. In order to state it let us recall that a standard
mollifier in R is a nonnegative C1.R/ function  with compact support in Œ0; 1�
such that

R
R  D 1.

Lemma 4.1 Let D 2 .0;1/ and let hW Œ0;D�! Œ0;1/ be a continuous function. Fix
N 2 .1;1/ and, for " > 0, define

(4-5) h".t/ WD Œh
1=.N�1/

� ".t/�
N�1
WD

�Z
R

h.t � s/1=.N�1/ ".s/ ds

�N�1

D

�Z
R

h.s/1=.N�1/ ".t � s/ ds

�N�1

;

where  ".x/D .1="/ .x="/ and  is a standard mollifier function. The following
properties hold:

(1) h" is a nonnegative C1 function with support in Œ�";DC "�.

(2) h"! h uniformly as " # 0; in particular, h"! h in L1 .

(3) If h satisfies the convexity condition (2-6) corresponding to the above fixed
N > 1 and some K 2 R, then also h" does. In particular, h" satisfies the
differential inequality (4-4).
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Proposition 4.2 For every p 2 .1;C1/, N 2 Œ1;1/, K 2 R and D 2 .0;1/, we
have s�

1;p
K ;N;D

D �
1;p
K ;N;D

.

Proof First of all observe that, for N D 1, clearly we have FK ;N;D DFs
K ;N;D

, since
the density h� has to be constant. We can then assume without loss of generality that
N 2 .1;1/.

Since FK ;N;D � Fs
K ;N;D

, clearly s�
1;p
K ;N;D

� �
1;p
K ;N;D

.

Assume by contradiction the inequality is strict. Then there exists a measure � D
h �L1 2 Fs

K ;N;D
and ı > 0 such that

�
1;p

.R;j � j;�/ � �
1;p
K ;N;D

� 2ı:

Therefore, by the very definition of �1;p

.R;j � j;�/ , there exists u 2 Lip.R/ such that u¤ 0,R
R ujujp�2 h ds D 0 and

(4-6)
Z

R
ju0.s/jp h.s/ ds �

�
�

1;p
K ;N;D

�
3
2
ı
� Z

R
ju.s/jp h.s/ ds:

Now, Lemma 4.1 gives a sequence hk 2 C1.R/ such that

(4-7) supp.hk/�
h
�

1

k
;DC

1

k

i
; �k WD hk �L1

2 FK ;N;DC2=k ;

hk ! h uniformly on Œ0;D�:

Now if we define uk WD u � ck 2 Lip.R/ \ Lp.R; hkL1/ with ck 2 R such thatR
R uk juk j

p�2 hk ds D 0, thanks to (4-7) we have ck ! 0 and thusZ
R
juk.s/j

p hk.s/ ds!

Z
R
ju.s/jp h.s/ ds;Z

R
ju0k.s/j

p hk.s/ ds!

Z
R
ju0.s/jp h.s/ ds:

Therefore (4-6), combined with the continuity of " 7! �
1;p
K ;N;DC"

(see Theorem 4.3
below), implies that for k large enough one hasZ

R
ju0k.s/j

p hk.s/ ds � .�
1;p
K ;N;D

� ı/

Z
R
juk.s/j

p hk.s/ ds

�
�
�

1;p

K ;N;DC2=k
�

1
2
ı
�Z

R
juk.s/j

p hk.s/ ds;

contradicting the definition of �1;p

K ;N;DC2=k
given in (4-3).
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The next goal of the section is to understand the quantity �1;p
K ;N;D

. Since the density
of the reference probability measure is now smooth, we enter into a more classical
framework, where a number of people contributed. The sharp p–spectral gap in case
K > 0 and without upper bounds on the diameter was obtained by Matei [45]. The
case K D 0 and the diameter is bounded above was obtained in the sharp form by
Valtorta [61]. Finally the case K < 0 and diameter bounded above was obtained in
the sharp form by Naber and Valtorta [51]. Actually, as explained in their paper, the
arguments in [51] hold in the general case K 2 R and N 2 Œ1;1/ provided one
identifies the correct model space. As usual, to describe the model space one has
to examine separately the cases K < 0, K D 0 and K > 0; in order to unify the
presentation let us denote by tanK ;N .t/ the function

(4-8) tanK ;N .t/ WD

8<:
p
�K=.N � 1/ tanh.

p
�K=.N � 1/ t/ if K < 0;

0 if K D 0;p
K=.N � 1/ tan.

p
K=.N � 1/ t/ if K > 0:

Now, for each K 2R, N 2 Œ1;1/ and D 2 .0;1/, let y�1;p
K ;N;D

denote the first positive
eigenvalue on

�
�

1
2
D; 1

2
D
�

of the eigenvalue problem

(4-9) d

dt
. Pw.p�1//C .N � 1/ tanK ;N .t/ Pw

.p�1/
Cy�

1;p
K ;N;D

w.p�1/
D 0:

It is possible to show (see [51]) that y�1;p
K ;N;D

is the unique value of y� such that the
solution of 8<: P� D

� y�
p�1

�1=p
C

N �1

p�1
tanK ;N .t/ cos.p�1/

p .�/ sinp.�/;

�.0/D 0;

satisfies �
�

1
2
D
�
D

1
2
�p , where �p , cosp and sinp are defined as follows:

For every p 2 .1;1/ the positive number �p is defined by

�p WD

Z 1

�1

ds

.1� sp/1=p
D

2�

p sin.�=p/
:

The C 1.R/ function sinpW R! Œ�1; 1� is defined implicitly on
�
�

1
2
�p;

3
2
�p

�
by�

t D
R sinp.t/

0
ds=.1� sp/1=p if t 2

�
�

1
2
�p;

1
2
�p

�
;

sinp.t/D sinp.�p � t/ if t 2
�

1
2
�p;

1
2
3�p

�
;

and is periodic on R. Set also, by definition, cosp.t/ D d sinp.t/=dt . The usual
fundamental trigonometric identity can be generalized by jsinp.t/j

pCjcosp.t/jp D 1,
and so it is easily seen that cos.p�1/

p 2 C 1.R/. Clearly, if p D 2 one finds the usual
quantities: �2 D � , sin2 D sin and cos2 D cos.
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Theorem 4.3 [45; 61; 51] Let K 2R, N 2 Œ1;1/ and D 2 .0;1/. Then:

(1) �
1;p
K ;N;D

D y�
1;p
K ;N;D

, where �1;p
K ;N;D

was defined in (4-3) and y�1;p
K ;N;D

in (4-9).

(2) For every fixed p 2 .1;1/, the map K;N;D 7! �
1;p
K ;N;D

is continuous.

(3) If K > 0 then, for every D 2 .0; �
p

N � 1=K�,

�
1;p
K ;N;D

� �
1;p

K ;N;�
p

N�1=K

and equality holds if and only if D D �
p

N � 1=K . If, moreover, N 2N , then

�
1;p

K ;N;�
p

N�1=K
D �1;p.SN .

p
N � 1=K//;

ie �1;p

K ;N;�
p

N�1=K
coincides with the first eigenvalue of the p–Laplacian on the

round sphere of radius
p

N � 1=K .

(4) If K D 0 then �1;p
0;N;D

D .p� 1/.�p=D/
p .

For K ¤ 0 and p ¤ 2, it is not easy to give an explicit expression of the lower
bound �1;p

K ;N;D
. At least one can give some lower bounds; for instance recently Li and

Wang [63] obtained that

(4-10) �
1;p
K ;N;D

�
1

.p� 1/p�1

�
NK

N �1

�p=2
for K > 0; p � 2:

4.2 p–spectral gap for CDloc.K;N / spaces

Theorem 4.4 Let .X; d;m/ be a metric measure space satisfying CDloc.K;N / for
some K , N 2R with N � 1, and assume moreover it is essentially nonbranching. Let
D 2 .0;1/ be the diameter of X and fix p 2 .1;1/. Then, for any Lipschitz function
f 2Lp.X;m/ with

R
X f jf jp�2 m.dx/D 0,

(4-11) �
1;p
K ;N;D

Z
X

jf .x/jp m.dx/�

Z
X

jrf jp.x/m.dx/:

In other terms, �1;p

.X ;d;m/
� �

1;p
K ;N;D

. Notice that, for D D �
p
.N � 1/=K and N 2N ,

it follows that
�

1;p

.X ;d;m/
� �1;p.SN ..N � 1/=K//:

Proof Since the space .X; d/ is bounded, the CDloc.K;N / condition implies that
m.X / <1. Noting that the inequality (4-11) is invariant under multiplication of m by
a positive constant, we can assume without loss of generality that m.X /D1. Observing
that the function

(4-12) zf WD f jf jp�2
2 Lip.X /
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verifies the hypothesis of Theorem 2.7, we can write X D Y [ T with

zf .x/D 0 for m–ae y 2 Y; mxTD
Z

Q

mq q.dq/;

with mq D g.q; � / ] .hq �L1/, where the density hq verifies (2-6) for q–ae q 2Q and

0D

Z
X

zf .z/mq.dz/D

Z
Dom.g.q;� //

zf .g.q; t// � hq.t/L1.dt/

D

Z
Dom.g.q;� //

f .g.q; t//jf .g.q; t//jp�2
� hq.t/L1.dt/

for q–ae q 2 Q. Now consider the map t 7! fq.t/ WD f .g.q; t// and note that it
is Lipschitz. Since diam.Dom.g.q; � /// �D , from the definition of Fs

K ;N;D
and of

�
1;p
K ;N;D

we deduce that

�
1;p
K ;N;D

Z
R
jfq.t/j

phq.t/L1.dt/�

Z
R
jf 0q.t/j

phq.t/L1.dt/:

Noticing that jf 0q.t/j � jrf j.g.q; t// one obtains that

�
1;p
K ;N;D

Z
X

jf .x/jp m.dx/D �
1;p
K ;N;D

Z
T
jf .x/jp m.dx/

D �
1;p
K ;N;D

Z
Q

�Z
X

jf .x/jp mq.dx/

�
q.dq/

D �
1;p
K ;N;D

Z
Q

�Z
Dom.g.q;� //

jfq.t/j
p hq.t/L1.dt/

�
q.dq/

�

Z
Q

�Z
Dom.g.q;� //

jf 0q.t/j
p hq.t/L1.dt/

�
q.dq/

�

Z
Q

�Z
X

jrf jp.x/ .g.q; � // ] .hq.t/L1/.dx/

�
q.dq/

D

Z
X

jrf jp.x/m.dx/;

and the claim follows.

4.3 Almost rigidity for the p–spectral gap

Theorem 4.5 (almost equality in the p–spectral gap implies almost maximal diameter)
Let N > 1 and p 2 .1;1/ be fixed. Then, for every " > 0, there exists ı D ı.";N;p/
such that the following holds:

Let .X; d;m/ be an essentially nonbranching metric measure space that satisfies
CD�.N � 1� ı;N C ı/. If �1;p

.X ;d;m/
� �

1;p
N�1;N;�

C ı , then diam.X /� � � ".

Proof As above, without loss of generality we can assume m.X /D 1. Assume by
contradiction that there exists "0> 0 such that for every ı > 0 we can find an essentially
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nonbranching metric measure space .X; d;m/ satisfying CD�.N �1� ı;N C ı/, with
m.X /D 1, such that diam.X /� � � "0 but �1;p

.X ;d;m/
� �

1;p
N�1;N;�

C ı .

The definition of �1;p

.X ;d;m/
implies that there exists a function f 2 Lip.X /, withR

X f jf jp�2mD 0 and
R
X jf j

p m.dx/D 1, such that

(4-13)
Z

X

jrf jp.x/m.dx/� �
1;p

.X ;d;m/
C ı � �

1;p
N�1;N;�

C 2ı:

On the other hand, Theorem 4.3 ensures that there exists � > 0 such that

�
1;p
N�1;N;D

� �
1;p
N�1;N;�

C 2� for all D 2 Œ0; � � "0�:

Moreover, the continuity of K;N;D 7! �
1;p
K ;N;D

guarantees that for every D0 2 .0; 1/

there exists ı0 D ı0.N;D0/ such that

�
1;p

N�1�ı;NCı;D
� �

1;p
N�1;N;D

� � for all ı 2 Œ0; ı0�; D 2 ŒD0; 2��:

Since clearly by definition we have that �1;p
K ;N;D

� �
1;p
0;N;D

for every K > 0, N � 1

and p 2 .1;1/, Theorem 4.3 gives that

lim
D#0

�
1;p

N�1�ı;NCı;D
� lim

D#0
�

1;p

0;NCı;D
DC1

uniformly for ı 2 Œ0; ı0.N /�. The combination of the last two estimates yields

(4-14) �
1;p

N�1�ı;NCı;D
� �

1;p
N�1;N;�

C � for all D 2 Œ0; � � "0�; ı 2 Œ0; ı0.N /�:

By repeating the proof of Theorem 4.4, and observing that, by construction, we have
diam.Dom.g.q; � //� � � "0 , we then obtainZ

X

jrf jp.x/m.dx/D

Z
Q

�Z
X

jrf jp.x/ .g.q; � // ] .hq.t/L1/.dx/

�
q.dq/

�

Z
Q

�Z
Dom.g.q; � //

jf 0q.t/j
p hq.t/L1.dt/

�
q.dq/

�

Z
Q

�
1;p

N�1�ı;NCı;diam.Dom.g.q; � //

�

�Z
Dom.g.q; � //

jfq.t/j
p hq.t/L1.dt/

�
q.dq/

� .�
1;p
N�1;N;�

C�/

Z
Q

�Z
Dom.g.q; � //

jfq.t/j
p hq.t/L1.dt/

�
q.dq/

D �
1;p
N�1;N;�

C �;

contradicting (4-13), once we choose ı < 1
2
�.
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Corollary 4.6 (almost equality in the p–spectral gap implies mGH-closeness to a
spherical suspension) Let N � 2 and p 2 .1;1/ be fixed. Then for every " > 0 there
exists ı D ı.";N;p/ > 0 such that the following holds:

Let .X; d;m/ be an RCD�.N � 1� ı;N C ı/ space. If

�
1;p

.X ;d;m/
� �

1;p
N�1;N;�

C ı;

then there exists an RCD�.N � 2;N � 1/ space .Y; dY ;mY / such that

dmGH..X; d;m/; Œ0; ���
N�1
sin Y /� ":

Proof Fix N 2 Œ2;1/ and p 2 .1;1/ and assume by contradiction there exist
"0 > 0 and a sequence .Xj ; dj ;mj / of RCD�.N �1�1=j ;N C1=j / spaces such that
�

1;p

.X ;d;m/
� �

1;p
N�1;N;�

C 1=j , but

(4-15) dmGH.Xj ; Œ0; ���
N�1
sin Y /� "0 for every j 2N

and every RCD�.N � 2;N � 1/ space .Y; dY ;mY / with mY .Y /D 1. Observe that
Theorem 4.5 yields

(4-16) diam..Xj ; dj //! �:

By the compactness/stability property of RCD�.K;N / spaces recalled in Theorem 2.6
we get that up to subsequences the spaces Xj mGH-converge to a limit RCD�.N�1;N /

space .X1; d1;m1/. Since the diameter is continuous under mGH convergence of
uniformly bounded spaces, (4-16) implies that diam..X1; d1// D � . But then by
the maximal diameter theorem [35] we get that .X1; d1;m1/ is isomorphic to a
spherical suspension Œ0; ���N�1

sin Y for some RCD�.N �2;N �1/ space .Y; dY ;mY /

with mY .Y /D 1. Clearly this contradicts (4-15) and the thesis follows.

Corollary 4.7 (p–Obata theorem) Let .X; d;m/ be an RCD�.N � 1;N / space for
some N � 2, and let 1< p <1. If

�
1;p

.X ;d;m/
D �

1;p
N�1;N;�

;

which equals �1;p.SN / if N 2N , then .X; d;m/ is a spherical suspension, ie there
exists an RCD�.N � 2;N � 1/ space .Y; dY ;mY / such that .X; d;m/ is isomorphic
to Œ0; ���N�1

sin Y .

Proof Theorem 4.5 implies that diam..X; d//D � and the thesis then follows by the
maximal diameter theorem [35].
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Remark 4.8 Obata’s theorem for pD 2 in RCD�.N �1;N / spaces has been recently
obtained by Ketterer [35] by different methods (see also [33]); the approach proposed
here has the double advantage of length and of being valid for every p 2 .1;1/.

5 The case p D 1 and the Cheeger constant

It is well known (see for instance [32; 64]) that an alternative way of defining �1;p

.X ;d;m/
which extends also to p D 1 is the following. For every p 2 Œ1;1/ and every
f 2Lp.X / let

cp.f / WD inf
c2R

�Z
X

jf � cjp m

�1=p

:

For every p 2 .1;1/ it holds — see [32, Corollary 2.11] — that

�
1;p

.X ;d;m/
D inf

�Z
X

jrf jp m
ˇ̌̌
f 2 Lip\Lp.X /; cp.f /D kf kLp D 1

�
:

It is then natural to set

(5-1) �
1;1
.X ;d;m/

D inf
�Z

X

jrf jm
ˇ̌̌
f 2 Lip\L1.X /; c1.f /D kf kL1 D 1

�
:

Assuming that m.X /D 1, recall that a number Mf 2R is a median for f if and only
if

m.ff �Mf g/�
1
2

and m.ff �Mf g/�
1
2
:

It is not difficult to check that (see for instance [18, Section VI]) for every f 2L1.X /

there exists a median of f , and moreoverZ
X

jf �Mf jmD c1.f /

holds for every median Mf of f . This link between c1.f / and Mf is useful to prove
the equivalence between the Cheeger constant and �1;1

.X ;d;m/
. Recall that the Cheeger

constant h.X ;d;m/ is defined by

h.X ;d;m/ WD inf
�
mC.E/

m.E/

ˇ̌̌
E �X is Borel and m.E/ 2

�
0; 1

2

��
;

where

mC.E/ WD lim inf
"#0

m.E"/�m.E/

"

is the (outer) Minkowski content. As usual E" WD fx 2X j d.x;y/<" for some y 2Eg

is the "–neighborhood of E with respect to the metric d. The next result, due to
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Maz’ya [46] and Federer and Fleming [27] (see also [10] for a careful derivation, and
[47, Lemma 2.2; 32, Proposition 2.13] for the present formulation), rewrites Cheeger’s
isoperimetric inequality in functional form.

Proposition 5.1 Assume that .X; d;m/ is a m.m.s. with m.fxg/D 0 for every x 2X ,
ie m is atomless. Then

h.X ;d;m/ D �
1;1
.X ;d;m/

:

It is then clear that the comparison and almost rigidity theorems for �1;1 will be based
on the corresponding isoperimetric ones obtained by the authors in [14]. To this aim,
in the next subsection we briefly recall the model Cheeger constant for the comparison.

5.1 The model Cheeger constant hK;N;D

If K > 0 and N 2N , by the Lévy–Gromov isoperimetric inequality we know that, for
N–dimensional smooth manifolds having Ricci curvature bounded below by K , the
Cheeger constant i is bounded below by the one of the N–dimensional round sphere of
the suitable radius. In other words the model Cheeger constant is the one of SN . For
N � 1 and K 2R arbitrary real numbers the situation is more complicated, and just
recently E Milman [48] discovered what the model Cheeger constant is (more precisely
he discovered the model isoperimetric profile, which in turn implies the model Cheeger
constant). In this short section we recall its definition.

Given ı > 0, set

sı.t/ WD

8<:
sin.
p
ı t/=
p
ı if ı > 0;

t if ı D 0;

sinh.
p
�ı t/=

p
�ı if ı < 0;

cı.t/ WD

8<:
cos.
p
ı t/ if ı > 0;

1 if ı D 0;

cosh.
p
�ı t/ if ı < 0:

Given a continuous function f W R!R with f .0/� 0, we denote by fCW R!RC

the function coinciding with f between its first nonpositive and first positive roots,
and vanishing everywhere else, ie fC WD f �Œ��;�C� with �� D supf� � 0 j f .�/D 0g

and �C D inff� > 0 j f .�/D 0g.

Given H , K 2 R and N 2 Œ1;1/, set ı WD K=.N � 1/ and define the following
(Jacobian) function of t 2R:

JH ;K ;N .t/ WD

8̂<̂
:

�ftD0g if N D 1; K > 0;

�fH t�0g if N D 1; K � 0;�
cı.t/C

H

N �1
sı.t/

�N�1

C
if N 2 .1;1/:
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As last piece of notation, given a nonnegative integrable function f on a closed interval
L�R, we denote by �f;L the probability measure supported in L with density (with
respect to the Lebesgue measure) proportional to f there. In order to simplify the
notation a bit we will write h.L;f / in place of h.L; j � j;�f;L/ .

The model Cheeger constant for spaces having Ricci curvature bounded below by K2R,
dimension bounded above by N � 1 and diameter at most D 2 .0;1� is then defined
by

(5-2) hK ;N;D WD inf
H2R;a2Œ0;D�

h.Œ�a;D�a�;JH;K;N /:

The formula above has the advantage of considering all the possible cases in just one
equation, but probably it is also instructive to isolate the different cases in a more
explicit way. Indeed one can check [48, Section 4] that:

Case 1 If K > 0 and D <
p
.N � 1/=K � ,

hK ;N;D D inf
�2Œ0;

p
.N�1/=K ��D�

h.Œ�;�CD�;sin.
p

K=.N�1/ t/N�1/:

Case 2 If K > 0 and D �
p
.N � 1/=K � ,

hK ;N;D D h.Œ0;
p
.N�1/=K ��;sin.

p
K=.N�1/ t/N�1/:

Case 3 If K D 0 and D <1,

hK ;N;D Dmin
˚

inf
��0

h.Œ�;�CD�;tN�1/; h.Œ0;D�;1/
	

D
N

D
inf

��0;v2.0;1=2/

�
min.v; 1� v/.�C 1/N Cmax.v; 1� v/�N

�.N�1/=N

vŒ.�C 1/N � �N �
:

Case 4 If K < 0 and D <1,

hK ;N;D Dmin
n

inf
��0

h.Œ�;�CD�; sinh.
p
�K=.N�1/ t/N�1/; h.Œ0;D�; exp.

p
�K.N�1/ t//;

inf
�2R

h.Œ�;�CD�; cosh.
p
�K=.N�1/ t/N�1/

o
:

In all the remaining cases, the model Cheeger constant trivializes: hK ;N:D D 0.

5.2 Sharp comparison and almost rigidity for �1;1 D h

Theorem 5.2 Let .X; d;m/ be an essentially nonbranching CDloc.K;N / space for
some K 2 R and N 2 Œ1;1/, with m.X / D 1 and having diameter D 2 .0;C1�.
Then

(5-3) h.X ;d;m/ � hK ;N;D :
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Moreover, for K > 0 the following holds: for every N > 1 and " > 0 there exists
xıDxı.K;N; "/ such that, for every ı2 Œ0; xı�, if .X; d;m/ is an essentially nonbranching
CD�.K� ı;N C ı/ space such that

(5-4) h.X ;d;m/ � hK ;N;�
p
.N�1/=K C ı;

which equals h.SN .
p
.N�1/=K//Cı if N 2N , then diam.X /��

p
.N�1/=K�".

Proof Recall that the isoperimetric profile of .X; d;m/ is the largest function I.X ;d;m/W
Œ0; 1�!RC such that for every Borel subset E�X we have mC.E/�I.X ;d;m/.m.E//.
As discovered in [48] (see also [14, Section 2.5] for the present notation), for ev-
ery K 2 R, N 2 Œ1;1/ and D 2 .0;1� there exists a model isoperimetric profile
IK ;N;D W Œ0; 1�!RC ; it is straightforward to check that

h.X ;d;m/ D inf
v2.0;1=2/

I.X ;d;m/.v/
v

and hK ;N;D D inf
v2.0;1=2/

IK ;N;D.v/

v
:

Since in our previous paper [14, Theorem 1.2] we proved that, for every v > 0,

(5-5) I.X ;d;m/.v/� IK ;N;D.v/;

the first claim (5-3) follows.

In order to prove the second part of the theorem, note (5-4) implies that there exists
xv 2

�
0; 1

2

�
such that

I.X ;d;m/.xv/
xv

� h.X ;d;m/C ı � hK ;N;�
p
.N�1/=K C 2ı �

IK ;N;�
p
.N�1/=K .xv/

xv
C 2ı:

Multiplying by xv , we get

I.X ;d;m/.xv/� IK ;N;�
p
.N�1/=K .xv/C 2ıxv � IK ;N;�

p
.N�1/=K .xv/C ı:

The thesis then follows by direct application of [14, Theorem 1.5].

Before stating the result let us observe that if .X; d;m/ is an RCD�.K;N / space
for some K > 0 then, letting d0 WD

p
K=.N � 1/ d, we have that .X; d0;m/ is

RCD�.N � 1;N /; in other words, if the Ricci lower bound is K > 0 then up to
scaling we can assume it is actually equal to N � 1.

Arguing as in the proof of Corollaries 4.6–4.7 we get the following result:

Corollary 5.3 For every N 2 Œ2;1/ and " > 0, there exists xı D xı.N; "/ > 0 such
that the following hold: For every ı 2 Œ0; xı�, if .X; d;m/ is an RCD�.N �1�ı;N Cı/

space with m.X /D 1 satisfying

h.X ;d;m/ � hN�1;N;� C ı;
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which equals h.SN /C ı if N 2N , then there exists an RCD�.N � 2;N � 1/ space
.Y; dY ;mY / with mY .Y /D 1 such that

dmGH.X; Œ0; ���
N�1
sin Y /� ":

In particular, if .X; d;m/ is an RCD�.N � 1;N / space satisfying

h.X ;d;m/ D hN�1;N;� D h.SN /;

then it is isomorphic to a spherical suspension, ie there exists an RCD�.N � 2;N � 1/

space .Y; dY ;mY / with mY .Y /D1 such that .X; d;m/ is isomorphic to Œ0; ���N�1
sin Y .

6 Sharp log-Sobolev and Talagrand inequalities

6.1 Sharp log-Sobolev in diameter–curvature–dimensional form

Recall that a m.m.s. .X; d;m/ supports the log-Sobolev inequality with constant ˛ > 0

if, for any Lipschitz function f W X ! Œ0;1/ with
R
X f mD 1,

(6-1) 2˛

Z
X

f logf m�

Z
ff >0g

jrf j2

f
m:

The largest constant ˛ such that (6-1) holds for any Lipschitz function f W X ! Œ0;1/

with
R
X f mD 1, will be called the log-Sobolev constant of .X; d;m/ and denoted

by ˛LS
.X ;d;m/

.

As before we will reduce to the one-dimensional case. Given K 2 R, N � 1 and
D 2 .0;C1�, we denote by ˛LS

K ;N;D
> 0 the maximal constant ˛ such that

(6-2) 2˛

Z
R
f logf ��

Z
ff >0g

jf 0j2

f
� for all � 2 Fs

K ;N;D

for every Lipschitz f W R! Œ0;1/ with
R
f �D 1.

Remark 6.1 If K > 0 and D D �
p
.N � 1/=K , it is known that the corresponding

optimal log-Sobolev constant is KN=.N � 1/ (see the discussion below). It is an
interesting open problem, which we don’t address here, to give an explicit expression
of the quantity ˛LS

K ;N;D
for general K 2R, N � 1 and D 2 .0;1/.

Theorem 6.2 Let .X; d;m/ be a metric measure space with diameter D 2 .0;1/

and satisfying CDloc.K;N / for some K 2 R and N 2 Œ1;1/. Assume moreover it
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is essentially nonbranching. Then, for any Lipschitz function f W X ! Œ0;1/ withR
X f mD 1,

2˛LS
K ;N;D

Z
X

f logf m�

Z
ff >0g

jrf j2

f
m:

In other terms, ˛LS
.X ;d;m/

� ˛LS
K ;N;D

.

Proof Since CDloc.K;N / implies that the measure is locally doubling, the finiteness
of the diameter implies that m.X / <1. Observing that the log-Sobolev inequality
(6-1) is invariant under a multiplication of m by a constant, we can then assume without
loss of generality that m.X /D 1. Consider any Lipschitz function with

R
X f mD 1

and apply Theorem 2.7 to yf WD 1�f . Hence we can write X D Y [ T with

f .y/D 1 for m–ae y 2 Y; mxTD
Z

Q

mq q.dq/;

with mq D g.q; � / ] .hq �L1/, the density hq verifies (2-6) for q–ae q 2Q and

1D

Z
X

f .z/mq.dz/D

Z
Dom.g.q; � //

f .g.q; t// � hq.t/L1.dt/

for q–ae q 2 Q. Now consider the map t 7! fq.t/ WD f .g.q; t// and note that it
is Lipschitz. Since diam.Dom.g.q; � /// �D , from the definition of Fs

K ;N;D
and of

˛LS
K ;N;D

we deduce that

2˛LS
K ;N;D

Z
R
fq.t/ log.fq.t// hq.t/L1.dt/�

Z
ffq. � />0g

jf 0q.t/j
2

fq.t/
hq.t/L1.dt/:

Noticing that jf 0q.t/j � jrf j.g.q; t// and that f logf vanishes over Y , one obtains
that

2˛LS
K ;N;D

Z
X

f logf m.dx/

D 2˛LS
K ;N;D

Z
T
f logf m.dx/

D 2˛LS
K ;N;D

Z
Q

�Z
X

f logf mq.dx/

�
q.dq/

D 2˛LS
K ;N;D

Z
Q

�Z
Dom.g.q; � //

fq.t/ log.fq.t// hq.t/L1.dt/

�
q.dq/

�

Z
Q

�Z
Dom.g.q; � //\ffq. � />0g

jf 0q.t/j
2

fq.t/
hq.t/L1.dt/

�
q.dq/
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�

Z
Q

�Z
ff >0g

jrf j2

f
.g.q; � // ] .hq.t/L1/.dx/

�
q.dq/

�

Z
ff >0g

jrf j2

f
m.dx/;

and the claim follows.

If K > 0, by the Bonnet–Myers diameter bound, we know that if .X; d;m/ satisfies
CDloc.K;N / then diam.X /� �

p
.N � 1/=K . Recalling definition (6-2), we then set

˛LS
K ;N
WD ˛LS

K ;N;�
p
.N�1/=K for the log-Sobolev constant without an upper diameter

bound. By applying the regularization of the measures hL1 2 Fs
K ;N;�

p
.N�1/=K

discussed in Lemma 4.1 and arguing analogously to the proof of Proposition 4.2, we
get that in the definition of ˛LS

K ;N
it is equivalent to take the inf among measures in

FK ;N;�
p
.N�1/=K , defined in (4-4). But now if � 2FK ;N;�

p
.N�1/=K is a probability

measure on R with smooth density satisfying the CDloc.K;N / condition for K > 0, it
is known that the sharp log-Sobolev constant is ˛LS

K ;N
DKN=.N �1/ (see for instance

[8, Proposition 6.6]). More precisely, as proved by Mueller and Weissler [50], for
every K > 0 and N � 1, the sharp constant is attained by the usual model probability
measure on the interval Œ0;

p
.N � 1/=K �� proportional to sin.

p
K=.N � 1/ t/N�1 ;

notice that for N 2N it corresponds to the round sphere of radius
p
.N � 1/=K . We

then have the following corollary:

Corollary 6.3 (sharp log-Sobolev under CDloc.K;N /, K > 0 and N > 1) Let
.X; d;m/ be a metric measure space satisfying CDloc.K;N / for some K > 0 and
N > 1, and assume moreover it is essentially nonbranching. Then, for any Lipschitz
function f W X ! Œ0;1/ with

R
X f mD 1,

2KN

N �1

Z
X

f logf m�

Z
ff >0g

jrf j2

f
m:

In other terms, ˛LS
.X ;d;m/

�KN=.N � 1/.

Let us mention that, since the reduction to a 1–dimensional problem is done via an
L1 –optimal transportation argument, Corollary 6.3 can be seen as a solution to [62,
Open Problem 21.6].

6.2 From sharp log-Sobolev to sharp Talagrand

First of all let us recall that the relative entropy functional EntmW P.X /! Œ0;C1�

with respect to a given m 2 P.X / is defined to be

Entm.�/D
�R

X % log %m if �D %m;
C1 otherwise:
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Otto and Villani [53] proved that for smooth Riemannian manifolds the log-Sobolev
inequality with constant ˛ > 0 implies the Talagrand inequality with constant 2=˛

preserving sharpness. The result was then generalized to arbitrary metric measure
spaces by Gigli and Ledoux [28], so that we can state:

Theorem 6.4 (from log-Sobolev to Talagrand [53; 28]) Let .X; d;m/ be a metric
measure space supporting the log-Sobolev inequality with constant ˛ > 0. Then it also
supports the Talagrand inequality with constant 2=˛ , ie

W 2
2 .�;m/�

2

˛
Entm.�/

for all � 2 P.X /.

Combining Theorem 6.2 with Theorem 6.4 we get Theorem 1.6, which improves the
Talagrand constant 2=K , which is sharp for CD.K;1/ spaces, by a factor .N �1/=N

if the dimension is bounded above by N . This constant is sharp for CDloc.K;N / spaces,
indeed it is sharp already in the smooth setting [62, Remark 22.43]. Since both our
proof of the sharp log-Sobolev inequality and the proof of Theorem 6.4 are essentially
optimal transport based, this be seen as an answer to [62, Open Problem 22.44].

Remark 6.5 (sharpness and estimates of the best constants) Recall that, for weighted
smooth manifolds, the log-Sobolev inequality implies the Talagrand inequality, which
in turn implies the Poincaré inequality every step without any loss in the constants
[62, Theorem 22.17]. Since, when we compute the comparison log-Sobolev con-
stant ˛LS

K ;N;D
and the comparison first eigenvalue �1;2

K ;N;D
, we work with the smooth

measures FK ;N;D on R, we always have the estimate

(6-3) ˛LS
K ;N;D � �

1;2
K ;N;D

:

Notice that for K > 0 and D D
p
.N � 1/=K� they actually coincide:

(6-4) KN

N �1
D ˛LS

K ;N;
p
.N�1/=K �

D �
1;2

K ;N;
p
.N�1/=K �

:

An interesting question we do not address here is if this is always the case, ie if in (6-3)
equality holds for every K 2R, N � 1 and D 2 .0;1/. Since the value of �1;2

K ;N;D
is

known in many cases, it would have as a consequence the determination of the explicit
value of the best constant in both the log-Sobolev and the Talagrand inequalities in
the curvature–dimension–diameter forms. This would also imply rigidity and almost-
rigidity statements attached to the log-Sobolev and Talagrand inequalities, as proven
here for the Poincaré inequality. Let us note that for the almost rigidity to hold for both
the log-Sobolev and Talagrand inequalities it would be enough to prove that for every
"> 0 there exists ı > 0 such that ˛LS

K ;N;D
� ˛LS

K ;N;
p
.N�1/=K�

CıDKN=.N �1/Cı

if D 2 Œ0;
p
.N � 1/=K "� ı�.
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7 Sharp Sobolev inequalities

Recall that .X; d;m/ supports a .p; q/–Sobolev inequality with constant ˛p;q if, for
any Lipschitz function f W X !R,

(7-1) ˛p;q

p�q

��Z
X

jf jp m

�q
p

�

Z
X

jf jq m

�
�

Z
X

jrf jq m:

The largest constant ˛p;q such that (7-1) holds for any Lipschitz function f will be
called the .p; q/–Sobolev constant of .X; d;m/ and will be denoted by ˛p;q

.X ;d;m/
.

Again we consider the one-dimensional case and given K 2R, N � 1 and D 2 .0;1�

we define s˛
p;q
K ;N;D

to be the maximal constant ˛ such that

˛

p�q

��Z
X

jf jp �

�q
p

�

Z
X

jf jq �

�
�

Z
X

jrf jq � for all � 2 Fs
K ;N;D

for every Lipschitz function f W R!R. Restricting the maximization to � 2 FK ;N;D ,
we obtain the constant ˛p;q

K ;N;D
. Using the approximation Lemma 4.1 and reasoning as

in Proposition 4.2 one obtains that

s˛
p;q
K ;N;D

D ˛
p;q
K ;N;D

:

Theorem 7.1 Let .X; d;m/ be a metric measure space with diameter D 2 .0;1/

and satisfying CDloc.K;N / for some K 2R and N 2 Œ1;1/. Assume moreover it is
essentially nonbranching. Then, for any Lipschitz function,

˛
p;q
K ;N;D

p� q

��Z
X

jf .x/jp m.dx/

�q
p

�

Z
X

jf .x/jq m.dx/

�
�

Z
X

jrf .x/jq m.dx/;

In other terms, it holds ˛p;q

.X ;d;m/
� ˛

p;q
K ;N;D

.

Proof First of all note that CDloc.K;N / coupled with the finiteness of the diameter
implies m.X / <1.

Step 1 (the case p > q ) With a slight abuse of notation, q will denote both the
exponent in the Sobolev embedding and the index in the disintegration; there should
be no confusion between the clearly different roles. Fix any Lipschitz function f
and consider the function yf .x/ WD 1� cjf .x/jp , with c WD 1=

�R
jf jpm

�
. ThereforeR

yf mD 0 and we can invoke Theorem 2.7. Hence X D Y [ T with

yf .y/D 0 for m–ae y 2 Y; mxTD
Z

Q

mq q.dq/;
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with mq D g.q; � / ] .hq �L1/, the density hq verifies (2-6) for q–ae q 2Q and

0D

Z
X

yf .z/mq.dz/D

Z
Dom.g.q; � //

yf .g.q; t// � hq.t/L1.dt/

for q–ae q 2Q.

Now consider the map t 7! fq.t/ WD f .g.q; t// and note that it is Lipschitz. Since
diam.Dom.g.q; � ///�D , from the definition of Fs

K ;N;D
and of ˛p;q

K ;N;D
we deduce

that�Z
R
jfq.t/j

phq.t/L1.dt/

�q
p

�

Z
R
jfq.t/j

qhq.t/L1.dt/C
p� q

˛
p;q
K ;N;D

Z
R
jf 0.t/jqhq.t/L1.dt/:

Since for q–ae q 2Q we have
R
yf mq D 0, it follows thatZ

X

jf .x/jp mq.dx/D
1

c
D

Z
X

jf .x/jp m.dx/:

Therefore the previous inequality reads as

1�

�
1R

jf .x/jp m.dx/

�q
p
�Z

X

jfqj
q mqC

p� q

˛
p;q
K ;N;D

Z
X

jf 0jq mq

�
:

Noticing that jf 0q.t/j � jrf j.g.q; t//, integrating over Q one obtains that

(7-2) m.T /�
�

1R
jf .x/jp m.dx/

�q
p
Z
T
jf .x/jq m.dx/

C
p� q

˛
p;q
K ;N;D

Z
T
jrf .x/jq m.dx/:

To complete the argument one should prove that, for each y 2 Y ,

1�

�
1R
jf jp m

�q
p
�
jf .y/jqC

p� q

˛
p;q
K ;N;D

jrf .y/jq
�
:

As for m–ae y 2 Y one has jf .y/jp D
R
X jf j

p m, this last inequality holds trivially.
Integrating this last inequality over Y and adding it to (7-2), we obtain the claim.

Step 2 (the case p < q ) This follows repeating the previous localization argument
and writing the Sobolev inequality in the form�Z

X

jf .x/jp m.dx/

�q
p

�

Z
X

jf .x/jq m.dx/�
q�p

˛

Z
X

jrf .x/jq m.dx/:
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As already observed, if K > 0 then diam.X /� �
p
.N � 1/=K and therefore one can

define
˛

p;q
K ;N
WD ˛

p;q

K ;N;�
p
.N�1/=K

;

the .p; q/–Sobolev inequality with no diameter upper bound. If �2FK ;N;�
p
.N�1/=K

with K> 0, it is known that the sharp .p; 2/–Sobolev constant verifies (see for instance
[38, Theorem 3.1])

˛
p;2
K ;N
�

KN

N �1
for 1� p �

2N

N �2
:

Moreover, for N 2N it is attained on the round sphere of radius
p
.N � 1/=K . We

then have the following corollary:

Corollary 7.2 Let .X; d;m/ be a metric measure space satisfying CD�.K;N / for
some K > 0 and N 2 .2;1/, and assume moreover it is essentially nonbranching.
Then, for any Lipschitz function f ,

KN

.p�2/.N �1/

��Z
X

jf jp m

�2
p

�

Z
X

jf j2 m

�
�

Z
X

jrf j2 m

for any 2< p � 2N=.N � 2/. In other terms, ˛p;2

.X ;d;m/
�KN=.N � 1/.

Corollary 7.2 can be seen as a solution to [62, Open Problem 21.11].

Appendix

All the inequalities we have presented here rely on the general scheme of applying one-
dimensional localization to a big family of inequalities, called 4–functions inequalities
(see for instance the work of Kannan, Lovász and Simonovits [34]).

The argument goes as follows. Suppose we are interested in proving that, for integrable
functions f1 , f2 , f3 and f4 and ˛ , ˇ > 0,

(A-1)
�Z

X

f1 m

�˛�Z
X

f2 m

�̌
�

�Z
X

f3 m

�̨ �Z
X

f4 m

�̌
:

Then consider the one-dimensional localization induced by g WD f3� cf1 , with c D�R
f3 m

�
=
�R
f1 m

�
,

mxTD
Z

Q

mq q.dq/;

Geometry & Topology, Volume 21 (2017)



Sharp geometric and functional inequalities in metric measure spaces 641

where X D T [Y and on Y we have g.x/D 0 for m–ae x 2 Y . Then it is sufficient
to prove that�Z

X

f1 mq

�̨ �Z
X

f2 mq

�̌
�

�Z
X

f3 mq

�̨ �Z
X

f4 mq

�̌
for q–ae q 2Q;

f2.x/� c˛=ˇf4.x/ for m–ae x 2 Y:

Indeed from the localization it follows that
R

g mq D 0 for q–ae q 2Q and thereforeZ
X

f2.x/mq.dx/� c˛=ˇ
Z

X

f4.x/mq.dq/ for q–ae q 2Q:

Integrating over Q and adding the integral over Y , (A-1) follows.
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