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Existence of Lefschetz fibrations on
Stein and Weinstein domains

EMMANUEL GIROUX

JOHN PARDON

We show that every Stein or Weinstein domain may be presented (up to deformation)
as a Lefschetz fibration over the disk. The proof is an application of Donaldson’s
quantitative transversality techniques.

32Q28; 32E10, 53D05, 53D35

1 Introduction

In this paper, we prove the existence of Lefschetz fibrations (certain singular fibrations
with Morse-type singularities) on Stein domains (from complex geometry) and on
Weinstein domains (from symplectic geometry). These two results are linked (in fact,
logically so) by the close relationship between Stein and Weinstein structures established
in the book by Cieliebak and Eliashberg [7] building on earlier work of Eliashberg [12].
Nevertheless, they can be understood independently from either a purely complex
geometric viewpoint or from a purely symplectic viewpoint.

1.1 Lefschetz fibrations on Stein domains

We begin by explaining our results for Stein domains.

Definition 1.1 A real-valued function � on a complex manifold V is called J –convex
(or strictly plurisubharmonic) if and only if .id 0d 00�/.v;Jv/ > 0 for every nonzero
(real) tangent vector v .

Definition 1.2 A Stein manifold is a complex manifold V which admits a smooth
exhausting J –convex function �W V !R.

Definition 1.3 A Stein domain is a compact complex manifold with boundary V

which admits a smooth J –convex function �W V !R with @V D f�D0g as a regular
level set.
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964 Emmanuel Giroux and John Pardon

For us, a complex manifold with boundary (or corners) shall mean one equipped
with a germ of (codimension zero) embedding into an (open) complex manifold. A
holomorphic function on a complex manifold with boundary (or corners) is one which
extends holomorphically to an open neighborhood in the ambient (open) complex
manifold.

For example, if V is a Stein manifold with smooth exhausting J –convex function
�W V !R with f�D0g as a regular level set, then V WD f� � 0g is a Stein domain. In
fact, it is not hard to see that every Stein domain is of this form.

Definition 1.4 Let D2 �C denote the closed unit disk. A Stein Lefschetz fibration
is a holomorphic map � W V ! D2 , where V is a compact complex manifold with
corners, such that:

� Singular fibration The map � is a (smooth) fibration with manifold with
boundary fibers, except for a finite number of critical points crit.�/ in the
interior of V .

� Nondegenerate critical points Near each critical point p 2 crit.�/, there are
local holomorphic coordinates in which � is given by

.z1; : : : ; zn/ 7! �.p/C

nX
iD1

z2
i

(according to the complex Morse lemma, this holds if and only if the complex
Hessian at p is nondegenerate). Furthermore, all critical values are distinct.

� Stein fibers There exists a J –convex function �W V !R with @hV D f�D0g

as a regular level set, where @hV WD
S

p2D2 @.��1.p// denotes the “horizontal
boundary” of V .

Note that the boundary of V is the union of the horizontal boundary @hV and the
“vertical boundary” @vV WD ��1.@D2/, whose intersection @hV \ @vV is the corner
locus.

The total space V of any Stein Lefschetz fibration may be smoothed out to obtain a Stein
domain V sm , unique up to deformation. Specifically, for any function gW R<0!R
satisfying g0 > 0, g00 > 0, and limx!0� g.x/D1, the function

ˆg WD g.j�j2� 1/Cg.�/

is an exhausting J –convex function on V ı . Moreover, the critical locus of ˆg stays
away from @V as g varies in any compact family; this follows from the obvious
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inclusion
crit.ˆg/�

[
p2D2

crit.�j
��1.p/

/

and the fact that the latter is a compact subset of V n @hV . As a result, the sublevel
set fˆg � M g is a Stein domain which, up to deformation, is independent of the
choice of g and the choice of M larger than all critical values of ˆg . We denote this
(deformation class of) Stein domain by V sm , which, of course, depends not only on V ,
but also on � .

The simplest (and weakest) version of our existence result is the following.

Theorem 1.5 Let V be a Stein domain. There exists a (Stein) Lefschetz fibration
� W V 0!D2 with .V 0/sm deformation equivalent to V .

Deformation is meant in the sense of a real 1–parameter family of Stein domains.
The nature of the deformation required is made explicit by considering the following
stronger version of our existence result.

Theorem 1.6 Let V be a Stein domain. For every sufficiently large real number k ,
there exists a holomorphic function � W V !C such that:

� For j�.p/j � 1, we have d log�.p/D k � d 0�.p/CO.k
1
2 /.

� For j�.p/j � 1 and p 2 @V , we have d�.p/j
�
¤ 0.

We may, in addition, require that ��1.D2/ contain any given compact subset of V ı .

Theorem 1.5 follows from Theorem 1.6 by smoothing out the deformation of Stein
domains f��1.D2

r /g1�r<1 (this argument is given in detail in Section 5). Theorem 1.6
is a corollary of the following, which is the main technical result of the paper.

Theorem 1.7 Let V be a Stein manifold, equipped with a smooth exhausting J –
convex function �W V !R. For every sufficiently large real number k , there exists a
holomorphic function f W V !C such that

� jf .p/j � e
1
2

k�.p/ for p 2 f� � 1g,

� jf .p/jC k�
1
2 jdf .p/j

�
j> � for p 2 f� D 0g (with df measured in the metric

induced by � ),

where � denotes the Levi distribution on f�D0g�V , and �>0 is a constant depending
only on the dimension of V .
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To prove Theorem 1.6 (for V WD f� � 0g) from Theorem 1.7, we take � to be (a small
perturbation of) ��1 �f , which works once k is sufficiently large (the details of this
argument are given in Section 5). To prove Theorem 1.7, we use methods introduced
by Donaldson [10] (this proof occupies Sections 2–4). A closely related result was
obtained by Mohsen [20] also using Donaldson’s techniques.

1.2 Lefschetz fibrations on Weinstein domains

Next, we turn to our result for Weinstein domains.

Definition 1.8 A Weinstein domain .W; !; �; �/ is a compact symplectic manifold
with boundary, equipped with a 1–form � satisfying d�D ! , and a Morse function
�W W !R which has @W D f� D 0g as a regular level set and for which X� (defined
by the condition !.X�; � /D �) is gradient-like.

Definition 1.9 An abstract Weinstein Lefschetz fibration is a tuple

W D .W0IL1; : : : ;Lm/

consisting of a Weinstein domain W 2n�2
0

(the “central fiber”) along with a finite
sequence of exact parametrized1 Lagrangian spheres L1; : : : ;Lm�W0 (the “vanishing
cycles”).

From any abstract Weinstein Lefschetz fibration W D .W0IL1; : : : ;Lm/, we may
construct a Weinstein domain jW j (its “total space”) by attaching critical Weinstein
handles to the stabilization W0 �D2 along Legendrians

ƒj �W0 �S1
� @.W0 �D2/

near 2�j=m 2 S1 obtained by lifting the exact Lagrangians Lj . We give this con-
struction in detail in Section 6.

We will prove the following existence result.

Theorem 1.10 Let W be a Weinstein domain. There exists an abstract Weinstein
Lefschetz fibration W 0 D .W0IL1; : : : ;Lm/ whose total space jW 0j is deformation
equivalent to W .

1Parametrized shall mean equipped with a diffeomorphism Sn�1 �!
�

L defined up to precomposition
with elements of O.n/ .
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Deformation is meant in the sense of a 1–parameter family of Weinstein domains,
but where the requirement that � be Morse is relaxed to allow birth–death critical
points. Theorem 1.10 is deduced from Theorem 1.5 using the existence theorem
for Stein structures on Weinstein domains proved by Cieliebak and Eliashberg [7,
Theorem 1.1(a)]. The main step is thus to show that a Stein Lefschetz fibration
� W V ! D2 naturally gives rise to an abstract Weinstein Lefschetz fibration whose
total space is deformation equivalent to V sm (the details of this argument are given in
Section 6).

In current work in progress, we hope to apply Donaldson’s techniques directly in the
Weinstein setting to produce on any Weinstein domain W an approximately holo-
morphic function f W W !C satisfying conditions similar to those in Theorem 1.7,
and thus give a proof of Theorem 1.10 which does not appeal to the existence of a
compatible Stein structure.

Given Theorem 1.10, it is natural to ask whether every deformation equivalence between
the total spaces of two abstract Weinstein Lefschetz fibrations is induced by a finite
sequence of moves of some simple type. Specifically, applying any of the following
operations to an abstract Weinstein Lefschetz fibration preserves the total space up to
canonical deformation equivalence, and it is natural to ask whether they are enough:

� Deformation Simultaneous Weinstein deformation of W0 and exact La-
grangian isotopy of .L1; : : : ;Lm/.

� Cyclic permutation Replace .L1; : : : ;Lm/ with .L2; : : : ;Lm;L1/.

� Hurwitz moves Let �L denote the symplectic Dehn twist around L, and
replace .L1; : : : ;Lm/ with either

.L2; �L2
L1;L3; : : : ;Lm/ or .��1

L1
L2;L1;L3; : : : ;Lm/:

� Stabilization For a parametrized Lagrangian disk Dn�1 ,!W0 with Legen-
drian boundary Sn�2 D @Dn�1 ,! @W0 such that

0D Œ�0� 2H 1.Dn�1; @Dn�1/;

replace W0 with zW0 , obtained by attaching a Weinstein handle to W0 along
@Dn�1 , and replace .L1; : : : ;Lm/ with . zL;L1; : : : ;Lm/, where zL � zW0 is
obtained by gluing together Dn�1 and the core of the handle.

It would be very interesting if the methods of this paper could be brought to bear on
this problem as well.
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Remark 1.11 The reader is likely to be familiar with more geometric notions of
symplectic Lefschetz fibrations (eg as in Seidel [22, Section 15d] or Bourgeois, Ekholm
and Eliashberg [5, Section 8.1] and the references therein), and may prefer these to the
notion of an abstract Weinstein Lefschetz fibration used to state Theorem 1.10. We
believe, though, that the reader wishing to construct a symplectic Lefschetz fibration in
their preferred setup with the same total space as a given abstract Weinstein Lefschetz
fibration will have no trouble doing so (eg see Seidel [22, Section 16e]).

Seidel [21; 22; 23; 24] has developed powerful methods for calculations in and of
Fukaya categories coming from Lefschetz fibrations, in particular relating the Fukaya
category of the total space to the vanishing cycles and the Fukaya category of the central
fiber. Our existence result shows that these methods are applicable to any Weinstein
domain. We should point out, however, that, while our proof of existence of Lefschetz
fibrations is in principle effective, it does not immediately lead to any practical way of
computing a Lefschetz presentation of a given Weinstein manifold.

1.3 Remarks about the proof

We outline briefly the proof of Theorem 1.7 (the main technical result of the paper),
which occupies Sections 2–4. As mentioned earlier, the proof is an application of
Donaldson’s quantitative transversality techniques, first used to construct symplectic
divisors inside closed symplectic manifolds [10] (somewhat similar ideas appeared
earlier in Cheeger and Gromov [6]).

The J –convex function �W V ! R determines a positive line bundle L on V . We
consider the high tensor powers Lk of this positive line bundle. Using L2 –methods
of Hörmander [16] and Andreotti and Vesentini [1], one may construct “peak sections”
of Lk , that is, holomorphic sections sW V ! Lk which are “concentrated” over the
ball of radius k�

1
2 centered at any given point p0 2 V WD f� � 0g and have decay

js.p/j DO.e���k�d.p;p0/
2

/ for p 2 f� � 1g.

Donaldson introduced a remarkable method to, given enough localized holomorphic
sections, construct a linear combination sW V ! Lk which satisfies, quantitatively,
any given holomorphic transversality condition which is generic. The key technical
ingredient for Donaldson’s construction is a suitably quantitative version of Sard’s
theorem, and this step was simplified considerably by Auroux [4]. The function f
asserted to exist in Theorem 1.7 is simply the quotient of such a quantitatively transverse
section sW V !Lk by a certain tautological section “1”W V !Lk .

We take advantage of the fact that we are in the holomorphic category by working
with genuinely holomorphic functions, instead of the approximately holomorphic
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functions which are the standard context of Donaldson’s techniques. This allows us
to use simplified arguments at various points in the proof, and this is the reason for
our passage from the Weinstein setting to the Stein setting. It is not clear whether one
should expect to be able to generalize our arguments to apply directly to Weinstein
manifolds.

Note that in most applications of quantitative transversality techniques in symplec-
tic/contact geometry, the result in the integrable case requires only generic transversality,
and the passage from integrable to nonintegrable J is what necessitates quantitative
transversality. Here, quantitative transversality is needed in both the integrable and
nonintegrable settings (although indeed, one would need more quantitative transversality
in the nonintegrable case).

Besides Donaldson’s original paper [10], which is the best place to first learn the methods
introduced there, let us mention a few other papers where approximately holomorphic
techniques have been used to obtain results similar to Theorem 1.10. In addition to
constructing symplectic divisors [10], Donaldson also constructed Lefschetz pencils
on closed symplectic manifolds [11]. Auroux [2; 3] further generalized and refined
Donaldson’s techniques to 1–parameter families of sections and to high twists E˝Lk

of a given Hermitian vector bundle E . In particular, he showed that Donaldson’s
symplectic divisors are all isotopic for fixed sufficiently large k , and that symplectic
four-manifolds can be realized as branched coverings of CP2 . Ibort, Martínez-Torres
and Presas [17] obtained analogues for contact manifolds of Donaldson’s and Auroux’s
results, and these were used in Giroux [15] to construct open books on contact manifolds
in any dimension. Mohsen [19; 20] extended the techniques of Donaldson and Auroux to
construct sections whose restrictions to a given submanifold satisfy certain quantitative
transversality conditions. He also showed that this result implies both the uniqueness
theorem of Auroux on symplectic divisors and the contact theorem of Ibort, Martínez-
Torres and Presas. His main observation is that the quantitative Sard theorem applies
to real (not just to complex) polynomials. This plays an important role in the present
work; it makes it possible to obtain quantitative transversality for the restriction of a
holomorphic section to a real hypersurface.
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2 Review of complex geometry

We now provide for the reader a review of some classical results in complex geometry
which we need. Our specific target is the solution of the d 00–operator on Stein manifolds
via the L2 methods of Hörmander [16] and Andreotti and Vesentini [1]. This will
be used later to construct the localized “peak sections” necessary for Donaldson’s
construction. The reader may refer to [10, Proposition 34] for an analogous discussion
in the case of compact Kähler manifolds.

2.1 Kähler geometry

For a complex vector bundle E with connection d over a complex manifold M , we
denote by d 0W E˝�p;q!E˝�pC1;q and d 00W E˝�p;q!E˝�p;qC1 the complex
linear and complex conjugate linear parts of the exterior derivative d W E ˝�k !

E ˝�kC1 . When M is equipped with a Kähler metric and E is equipped with
a Hermitian metric, we let d 0� and d 00� denote the formal adjoints of d 0 and d 00

respectively, and we let �0 WD d 0�d 0C d 0d 0� and �00 WD d 00�d 00C d 00d 00� denote the
corresponding Laplacians.

Recall that on any holomorphic vector bundle with a Hermitian metric, there exists a
unique connection compatible with the metric and the holomorphic structure, called
the Chern connection.

Lemma 2.1 (Bochner–Kodaira–Nakano identity) Let E be a holomorphic Hermitian
vector bundle over a Kähler manifold. Then we have

(2-1) �00E D�
0
E C Œi‚.E/;ƒ�;

where ‚.E/ is the curvature of E and ƒ is the adjoint of L WD � ^! .

For a holomorphic Hermitian vector bundle E over a Kähler manifold, there is an
induced Hermitian metric on E˝�0;q . The operator

d 0W E˝�0;q
!E˝�1;q

DE˝�0;q
˝�1;0
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further equips E˝�0;q with an anti-holomorphic structure. Together these induce a
Chern connection on E˝�0;q . We denote this connection by r D r 0Cr 00 , where
r 0 D d 0 , and we denote the corresponding Laplacians by �0 and �00 , where �0 D�0 .
Applying (2-1) to E˝�0;q gives

(2-2) �00
E˝�0;q D�0

E˝�0;q C Œi‚.E˝�
0;q/;ƒ�:

Now since �0
E˝�0;q D�

0
E

operating on E˝�0;q , we may combine (2-1) and (2-2)
to produce the following Weitzenböck formula operating on E˝�0;q :

(2-3) �00E D�00
E˝�0;q Cƒi‚.E˝�0;q/�ƒi‚.E/:

We remark, for clarity, that the first composition is of maps E˝�0;q �E˝�0;q˝�1;1

and the second composition is of maps E˝�0;q � E˝�1;qC1 . We have followed
Donaldson [9, page 36] in the derivation of this identity.

Lemma 2.2 (Morrey–Kohn–Hörmander formula) Let E be a holomorphic Hermitian
vector bundle over a Kähler manifold M . For any u 2 C1c .M;E˝�0;q/, we have

(2-4)
Z
jd 00uj2Cjd 00�uj2D

Z
jr
00uj2C

Z
hu; ƒi‚.E˝�0;q/ui�hu; ƒi‚.E/ui:

Proof By the definition of the adjoint, integrating by parts gives

(2-5)
Z
jd 00uj2Cjd 00�uj2 D

Z
hu; �00ui:

The same integration by parts with r in place of d gives

(2-6)
Z
jr
00uj2 D

Z
hu;�00ui:

Now we take the difference of these two identities and use (2-3) to obtain (2-4).

2.2 L2 theory of the d 00–operator

The L2 theory that we review here is due to Hörmander [16] and Andreotti and
Vesentini [1].

Lemma 2.3 Let E be a holomorphic Hermitian vector bundle over a complete Kähler
manifold M . We consider sections u of E˝�p;q .

� If u; d 00u 2 L2 (in the sense of distributions), then there exists a sequence
ui 2 C1c such that .ui ; d

00ui/! .u; d 00u/ in L2 .
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� If u; d 00u; d 00�u 2L2 (in the sense of distributions), then there exists a sequence
ui 2 C1c such that .ui ; d

00ui ; d
00�ui/! .u; d 00u; d 00�u/ in L2 .

Proof This is essentially a special case of Friedrichs’ result [14], which applies more
generally to any first order differential operator. We outline the argument, which is also
given in Hörmander [16, Proposition 2.1.1] and Andreotti and Vesentini [1, Lemma 4,
Proposition 5].

We prove the first statement only, as the proof of the second is identical. Let u be
given. Composing the distance function to a specified point in M with the cutoff
function x 7! max.1� �x; 0/, we get a function f�W M ! R with sup jf�j � 1 and
sup jdf�j � � , such that f�! 1 uniformly on compact subsets of M as �! 0. Using
these properties, it follows that f�u! u in L2 and that d 00.f�u/! d 00u in L2 . Since
M is complete, f� is compactly supported. Hence we may assume without loss of
generality that u is compact supported.

Since u is compactly supported, we may use a partition of unity argument to reduce to
the case when u is supported in a given small coordinate chart of M . Now in a small
coordinate chart, choosing trivializations of the bundles in question, the operator d 00 is
a first order differential operator D with smooth coefficients. It can now be checked
(and this is the key point) that kD.u�'�/�Du�'�k2! 0, where '� WD ��n'.x=�/

is a smooth compactly supported approximation to the identity. It follows that the
convolutions u � '� give the desired approximation of u by smooth functions of
compact support.

Proposition 2.4 Let E be a holomorphic Hermitian vector bundle over a complete
Kähler manifold M . Fix q , and suppose that for all u 2 C1c .M;E˝�0;q/, we have

(2-7)
Z
juj2 �A

Z
jd 00uj2Cjd 00�uj2:

Then for any u2L2.M;E˝�0;q/ satisfying d 00uD0, there is �2L2.M;E˝�0;q�1/

satisfying d 00� D u and

(2-8)
Z
j�j2 �A

Z
juj2

(d 00 is taken in the sense of distributions).

Proof We follow an argument from notes by Demailly [8, page 33, (8.4) Theorem].

We wish to find � such that d 00� D u, or, equivalently,
R
hd 00�'; �i D

R
h';ui for all

' 2 C1c .M;E˝�0;q/. We claim that the existence of such a � with
R
j�j2 � B is
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equivalent to the estimate

(2-9)
ˇ̌̌̌Z
h';ui

ˇ̌̌̌2
� B

Z
jd 00�'j2

for all ' 2 C1c .M;E ˝�0;q/. Indeed, given (2-9), the map d 00�' 7!
R
h';ui on

d 00�.C1c .M;E˝�0;q// is well-defined and L2 bounded, and thus it is of the formR
hd 00�'; �i for a unique � in the closure of

d 00�.C1c .M;E˝�0;q//�L2.M;E˝�0;q�1/

satisfying
R
j�j2 � B . Thus we are reduced to showing (2-9) for B DA

R
juj2 .

To prove (2-9), argue as follows. Since L2 convergence implies distributional conver-
gence, the kernel (in the sense of distributions) ker d 00 �L2.M;E˝�0;q/ is a closed
subspace. Hence for any ' 2 C1c .M;E˝�0;q/, we may write ' D '1C'2 , where
'1 2 ker d 00 and '2 2 .ker d 00/? . Now since u 2 ker d 00 , we have

(2-10)
ˇ̌̌̌Z
h';ui

ˇ̌̌̌2
D

ˇ̌̌̌Z
h'1;ui

ˇ̌̌̌2
�

Z
juj2 �

Z
j'1j

2:

Since '2 ? ker d 00 � im d 00, it follows that '2 2 ker d 00� (in the sense of distributions).
Hence

(2-11)
Z
jd 00'1j

2
Cjd 00�'1j

2
D

Z
jd 00�'j2:

Combining (2-10) and (2-11), we see that to prove (2-9) with B DA
R
juj2 , it suffices

to show that

(2-12)
Z
j'1j

2
�A

Z
jd 00'1j

2
Cjd 00�'1j

2:

This is true by hypothesis (2-7) for '1 2C1c .M;E˝�0;q/, and hence by Lemma 2.3
it holds given just that '1; d

00'1; d
00�'1 2L2 .

2.3 Stein manifolds and solving the d 00–operator

Let V be a Stein manifold or a Stein domain. A smooth J –convex function �W V !R
induces a symplectic form !� WD id 0d 00� and a Riemannian metric g�.X;Y / WD

!�.X;J Y / (so h� WD g� � i!� is a Hermitian metric) whose distance function we
denote by d�. � ; � /. The function � also gives rise to a holomorphic Hermitian line
bundle L� over V , namely the trivial complex line bundle C equipped with its standard
holomorphic structure d 00C and the Hermitian metric j � jL� WD e�

1
2
�
j � jC . Then the

resulting Chern connection on L� is given by

(2-13) dL� D dC � d 0�;
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with curvature ‚.L�/ D d 0d 00� D �i!� . (Equivalently, L� is the trivial complex
line bundle equipped with its standard Hermitian metric and the holomorphic structure
d 00CC

1
2
d 00� , with resulting Chern connection dCC

1
2
iJ�d� . This is equivalent to the

first definition via multiplication by e
1
2
� .)

The following result (due to Hörmander [16] and Andreotti and Vesentini [1]) allows
us to produce many holomorphic sections of L� for sufficiently J –convex � .

Proposition 2.5 For every Stein manifold V with complete Kähler metric g , there
exists a continuous function cW V !R>0 with the following property. Let �W V !R
be J –convex and satisfy g� � c � g (pointwise inequality of quadratic forms). Then
for any u 2 L2.V;L� ˝�0;q/ (with q > 0) satisfying d 00u D 0, there exists � 2
L2.V;L� ˝�0;q�1/ satisfying d 00� D u and

(2-14)
Z
j�j2 �

Z
juj2:

Proof By Proposition 2.4, it suffices to show the estimate

(2-15)
Z
jd 00uj2Cjd 00�uj2 �

Z
juj2

for all u 2 C1c .V;L˝�0;q/. Applying the Morrey–Kohn–Hörmander identity (2-4)
to the left-hand side, it suffices to show the pointwise curvature estimate

(2-16) hu; ƒi‚.L˝�0;q/ui � hu; ƒi‚.L/ui � juj2:

Expanding ‚.L˝�0;q/D‚.L/˝ id�0;q CidL˝‚.�
0;q/, it suffices to show that

(2-17) hu; ƒi.‚.L/˝ id/ui � hu; ƒi‚.L/ui �
�
1Cjƒj j‚.�0;q/j

�
juj2:

We remark for clarity that the first composition is of maps L˝�0;q � L˝�0;q˝�1;1

and the second composition is of maps L˝�0;q � L˝�1;qC1 . Let ˛1; : : : ; ˛n

denote the scaling factors associated to a simultaneous diagonalization of g and g� ,
meaning that jvi j

2
g�
D ˛i jvi j

2
g for a simultaneous orthogonal basis v1; : : : ; vn . We

may now calculate (see Voisin [25, Lemma 6.19])

(2-18) ƒi.‚.L/˝ id/uD
� nX

iD1

˛i

�
u:

The operator ƒi‚.L/ has an orthonormal basis of eigenvectors with eigenvaluesP
i2I ˛i for all I�f1; : : : ; ng with jI jDn�q . Thus to ensure (2-17), it suffices to have

q min˛i�1Cjƒj j‚.�0;q/j, which can be achieved by choosing cD1Cjƒj j‚.�0;q/j

since q > 0.
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Lemma 2.6 Let �W .Cn; 0/!R be a germ of a smooth J –convex function. For all
� > 0, there exists a germ of a holomorphic function uW .Cn; 0/!C satisfying

(2-19)
ˇ̌
Re u.z/� Œ�.z/� 1

2
d�.z; 0/

2�
ˇ̌
� � � d�.z; 0/

2

in a neighborhood of zero.

Proof The statement depends only on � up to second order, so we may assume
without loss of generality that � is a real degree two polynomial on Cn . Any real
polynomial on Cn may be expressed uniquely as a polynomial in zi and xzi with
coefficients ci1;:::;ik ;xi1;:::;xi`

2C satisfying ci1;:::;ik ;xi1;:::;xi`
D ci1;:::;i`;xi1;:::;xik

. In the case
of degree two, we thus have

(2-20) �.z/D aC
X

i

Re aizi C

X
i;j

Re aij zizj C

X
i;j

bij zixzj ;

where a2R, ai ; aij ; bij 2C and bij D bji . The statement is also unaffected by adding
the real part of a holomorphic function to � , so we may assume that aD ai D aij D 0.
Finally, the statement is unaffected by precomposing � with a germ of biholomorphism
of Cn near zero, so we may apply an element of GLn.C/ so that the positive definite
Hermitian matrix .bij / becomes the identity matrix. Hence we have without loss of
generality that �.z/D jzj2 , for which we may take u� 0.

3 Donaldson’s construction

We now prove Theorem 1.7.

Let us begin by fixing some notation/terminology. We fix a Stein manifold V and
a smooth exhausting J –convex function �W V ! R. We let V WD f� � 0g, so
@V D f�D0g. We denote by g WD g� the induced metric on V , with associated
distance function d WD d� . We denote by L WDL� the associated line bundle. For any
positive real number k , we let

gk WD gk� D kg; dk WD dk� D k
1
2 d and Lk

WDLk� :

In what follows, we treat k as a fixed real parameter, and most statements — in particular,
the notations O. � / and o. � / — are meant in the limit k!1 (ie for k sufficiently
large). Most implied constants are independent of .V ; �/ (unless stated otherwise),
however how large k must be may (and almost always will) depend on .V ; �/.

Near any point p0 2 V , there exist a holomorphic coordinate chart ‰W .U; 0/ !
.V ;p0/, where U �Cn is an open subset containing zero, and a holomorphic function
uW ‰.U /!C , satisfying

Geometry & Topology, Volume 21 (2017)



976 Emmanuel Giroux and John Pardon

� B.r/� U for r�1 DO.1/,

� ‰�� D a Re z1CO.jzj2/ if p0 2 @V , where aD jd�.p0/j,

� ‰�g D gCn CO.jzj/,

� �.p/� 3
4
d.p;p0/

2 � Re u.p/� �.p/� 1
4
d.p;p0/

2 .

(For the existence of u, we appeal to Lemma 2.6.) There exists such a triple .U; ‰;u/
for which the implied constants above are bounded as p0 varies over any compact
subset of V . It is convenient to also have at our disposal the rescaled coordinates
‰k W .B.2/; 0/! .V ;p0/ defined by ‰k. � /D‰.k

� 1
2 � / and the rescaled function ku

(for sufficiently large k ), which satisfy

� ‰�
k
� D ak�

1
2 Re z1CO.k�1jzj2/ if p0 2 @V , where aD jd�.p0/j,

� ‰�
k
gk D gCn CO.k�

1
2 jzj/,

� k�.p/� 3
4
dk.p;p0/

2 � Re ku.p/� k�.p/� 1
4
dk.p;p0/

2 .

Now the section � WD e
1
2

ku of Lk satisfies

(3-1) e�
3
8

dk.p;p0/
2

� j�.p/j � e�
1
8

dk.p;p0/
2

over its domain of definition ‰.U /. This “reference section” provides a convenient
local holomorphic trivialization of Lk over ‰k.B.2//. We also need holomorphic
sections of Lk defined on all of V which satisfy a decay bound similar to (3-1) over
f� � 1g and which approximate � over ‰k.B.2//. That such sections exist is the
content of the following lemma.

Lemma 3.1 Let .V ; �/ be as above. Fix p0 2 f� D 0g and consider the associated
coordinates ‰ and reference section � as above. There are holomorphic sections
z�; z�1; : : : ; z�nW V !Lk satisfying

� jz�.p/j � e�
1
9

dk.p;p0/
2

C e��k over f� � 1g,

� jz�r .p/j � e�
1
9

dk.p;p0/
2

C e��k over f� � 1g for r D 1; : : : ; n,

� j.z�=�/ ı‰k � 1j � e��k over B.2/,

� j.z�r=�/ ı‰k � zr j � e��k over B.2/ for r D 1; : : : ; n,

for some � > 0 depending on .V ; �/ and sufficiently large k .

Proof Fix a smooth cutoff function ˇW V ! Œ0; 1� supported inside ‰.U / which
equals 1 in a neighborhood of p0 . Now kd 00.ˇ�/k2 � e��k in the fixed metric g for
sufficiently large k and some � > 0 depending on .V ; �/.
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Fix a smooth exhausting J –convex function �1W V !R which coincides with � over
f� � 2g and for which gk�1

� c �g for sufficiently large k (for c as in Proposition 2.5).
We apply Proposition 2.5 to .V ;g; k�1/ and conclude that there exists a section �
of Lk for which ˇ� C � is holomorphic and ke

1
2

k�.���1/�k2 � kd
00.ˇ�/k2 � e��k .

Let us now show that z� WD ˇ� C � satisfies the desired properties. Over the set
where ˇ D 1, the section � is holomorphic. In particular, the function .�=�/ ı‰k is
holomorphic over B.3/ (for sufficiently large k ). We have k.�=�/ı‰kkB.3/;2� e��k ,
from which it follows that j.�=�/ı‰k j � e��k over B.2/ (for a possibly smaller � > 0

and larger k ) since .�=�/ı‰k is holomorphic. Thus we have j.z�=�/ı‰k�1j � e��k

over B.2/.

Now let p2f��1g and consider the associated coordinates ‰0 and reference section � 0

as above. We have k.z�=� 0/ ı‰0
k
kB.3/;2 D O.e�

1
8

dk.p;p0/
2

C e��k/, from which it
follows that

jz�.p/j DO.e�
1
8

dk.p;p0/
2

C e��k/

(since .z�=� 0/ ı‰0
k

is holomorphic), which gives the desired decay bound on z� .

The argument for fz�r g1�r�n is identical, with .zr ı‰
�1
k
/ � � in place of � .

It is helpful to rephrase Theorem 1.7 as follows in terms of the line bundle Lk and the
rescaled metric gk on V .

Theorem 3.2 Let V be a Stein manifold, equipped with a smooth exhausting J –
convex function �W V !R. For every sufficiently large real number k , there exists a
holomorphic section sW V !Lk such that

� js.p/j � 1 for p 2 f� � 1g,

� js.p/jCjds.p/j
�
j>� for p 2 f�D 0g (with ds measured in the metric induced

by k� ),

where � denotes the Levi distribution on f� D 0g � V , and � > 0 is a constant
depending only on the dimension of V .

Proof The proof follows Donaldson [10, Section 3], as simplified by Auroux [4].

Part I Fix a maximal collection of points p1; : : : ;pN 2 @V whose pairwise dk –
distances are � 1. Since this collection is maximal, the unit dk –balls Bi centered
at the pi cover @V . The dk –balls of radius 1

2
centered at the pi are disjoint, so by

volume considerations, the total number of points satisfies N DO.V ;�/.k
2n�1/, where

n is the complex dimension of V .
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We now specify the form of the section sW V ! Lk we will construct. For each pi ,
we will define a holomorphic section si W V !Lk satisfying the bound

(3-2) jsi.p/j � e�
1
9

dk.p;pi /
2

C e��k for p 2 f� � 1g

for some � > 0 depending on .V ; �/, and we will let

(3-3) s WD

NX
iD1

si :

Let us observe immediately that this bound on jsi j implies that

js.p/j �

NX
iD1

e�
1
9

dk.p;pi /
2

C e��k

�

Z
@V

e�
1
9

dk.p;p0/
2

dgk.p0/CO.V ;�/.k
2n�1e��k/DO.1/

for p 2 f� � 1g. In particular, this ensures the first condition js.p/j � 1 (after dividing
by a constant factor depending only on nD dim V ).

Remark 3.3 (C 0 –bounds imply C1–bounds for holomorphic functions) For a
holomorphic function f defined on B.1C �/�Cn , we have

(3-4) kf kC `.B.1// � cn;`

�
1C

1

�`

�
kf kC 0.B.1C�//:

(Indeed, we have jD`f .0/j � cn;` supB.1/ f by the Cauchy integral formula, and
applying this to balls of radius � > 0 along with the maximum principle yields the
above estimate.)

For simplicity of notation, we have stated the upper bounds in (3-1), Lemma 3.1, (3-2),
and (3-5) below only in the C 0 –norm, though of course we will often need to use
the resulting bounds on higher derivatives implied by (3-4). If we were working in
the approximately holomorphic setting, we would need to explicitly bound the higher
derivatives up to some appropriate fixed finite order.

Definition 3.4 A section sW V ! Lk will be called �–transverse at p 2 @V if and
only if js.p/jC

ˇ̌
ds.p/j

�

ˇ̌
> �. The property of being �–transverse is obviously stable

under C 1 –perturbation, and for holomorphic sections it is in fact stable under C 0 –
perturbation by (3-4) with ` D 1, as long as the perturbation is defined in a fixed
neighborhood of p .
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Remark 3.5 This particular quantitative transversality condition was first considered
by Mohsen [20], and is closely related to those used by Donaldson and Auroux.
Donaldson [10] called a section sW V ! Lk �–transverse at p if and only if either
js.p/j � � or jds.p/j � � (this is equivalent, up to a constant, to requiring that
js.p/jCjds.p/j��). Mohsen [20] generalized this notion to quantitative transversality
relative to a given submanifold Y . Specifically, he called a section �–transverse relative
to Y if and only if either js.p/j � � or ds.p/j

T Y
has a right inverse of norm � ��1 .

In the case of the submanifold @V � V and an (approximately) holomorphic section s ,
this condition is equivalent, up to a constant, to our formulation js.p/jC jds.p/j

�
j> �

(see [20, Section 2]). Thus, Theorem 3.2 can be thought of as a holomorphic version
of Mohsen’s transversality theorem for hypersurfaces.

Part II Our goal is to construct sections si satisfying the decay bound (3-2) so that s

is �–transverse over @V for some � > 0 depending only on n.

We will define the sections si in a series of steps, at each step achieving (quantitative)
transversality over some new part of @V , while maintaining (quantitative) transversality
over the part of @V already dealt with. The most naive version of this procedure,
choosing si to achieve transversality over Bi while maintaining transversality over
B1; : : : ;Bi�1 , runs into trouble, essentially due to the rather large number of steps.
Instead, we first construct a suitable coloring of the points pi , and then in the inductive
procedure we choose the si for the pi of a particular color simultaneously (so there is
one step per color). For this to work, we must ensure that points of the same color are
sufficiently far apart.

Let D <1 be a (large) positive real number, to be fixed (depending only on n) at
the end of the proof. We color the pi so that the dk –distance between any pair of
points of the same color is at least D . More precisely, we construct such a coloring by
iteratively choosing a maximal collection of as yet uncolored points pi with pairwise
distances �D and then coloring this collection with a new color. Because each color
was chosen from a maximal collection of as yet uncolored points, it follows that the ball
of radius D centered at any point colored with the final color contains points of every
other color. Hence by volume considerations, it follows that the total number of colors
M is O.D2n�1/. Let us denote the coloring function by cW f1; : : : ;N g!f1; : : : ;M g.

Part III Let p < 1 and A < 1 be (large) positive real numbers, to be fixed
(depending only on n) later in the proof. To be precise, we must first choose A

(depending on n), then choose p (depending on n and A), and finally choose D

(depending on n, A, and p ).

It suffices to construct sections si so that:
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� For all j 2 f1; : : : ;M g and c.i/D j , we have

(3-5) jsi.p/j �
1

A
�j�1

�
e�

1
9

dk.p;pi /
2

C e��k
�

for p 2 f� � 1g:

� For all j 2 f1; : : : ;M g, we have

(3-6) sj
WD

NX
iD1I c.i/�j

si is �j –transverse over Xj WD

N[
iD1I c.i/�j

Bi :

Here 1
4
D �0 > �1 > � � �> �M > 0 are defined by �j D �j�1jlog �j�1j

�p (the reason
for this particular choice will become apparent later).

We construct such sections si by induction on j . More precisely, it suffices to sup-
pose that sections si are given for c.i/ � j � 1 (satisfying the above in the range
f1; : : : ; j � 1g) and to construct sections si for c.i/D j (satisfying the above in the
range f1; : : : ; j g).

Part IV As a first step, let us fix an index i with c.i/D j , and construct a section si

satisfying (3-5) so that sj�1C si is �j�1jlog �j�1j
�p –transverse over Bi (for some

p <1 depending on n and A).

Fix a triple .U; ‰;u/ based at pi 2 @V (as discussed at the beginning of this section),
with rescaling ‰k and reference section � D e.1=2/ku . We will use the local coor-
dinates ‰k and the reference section � to measure the transversality of sj�1 C si

over Bi . Precisely, we claim that it suffices to construct si satisfying (3-5) so that

(3-7) sj�1Csi

�
ı‰k

is �j�1jlog �j�1j
�p –transverse over B

�
3
2

�
\‰�1

k
.@V /. Indeed, � is bounded above

and below by (3-1), so using (3-4) with `D 1 this implies that the section sj�1C si

is 1
C
�j�1jlog �j�1j

�p –transverse over Bi for some constant C <1 depending only
on n (which we can absorb into the last factor by increasing p ).

Now as k!1, the real hypersurface B
�

3
2

�
\‰�1

k
.@V / approaches B

�
3
2

�
\fRe z1D0g

in C1 , uniformly over the choice of pi 2 @V . Since (3-7) is bounded uniformly
over B.2/, using (3-4) with `D2 we see that �–transversality over B

�
3
2

�
\fRe z1D0g

implies .�� o.1//–transversality over B
�

3
2

�
\‰�1

k
.@V / (of course, the condition of

�–transversality over a real hypersurface is with respect to its own Levi distribution).
Since the number of colors M is bounded independently of k , it follows that �j�1 is
bounded away from zero as k!1. Hence it suffices to show that the section (3-7) is
�j�1jlog �j�1j

�p –transverse over B
�

3
2

�
\fRe z1 D 0g (we again lose a constant on

the transversality estimate, but as before it can be absorbed into the exponent p ).
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For any vector w D .w0; w2; : : : ; wn/ 2Cn , we consider the holomorphic function on
B.2/ given by

(3-8) sj�1

�
ı‰k Cw0Cw2z2C � � �Cwnzn:

A quantitative transversality theorem, Proposition 4.1 (whose proof we defer to later)
says that for 1

3
>�> 0, there exists a vector wD .w0; w2; : : : ; wn/2Cn with jwj � �

such that (3-8) is �jlog �j�p –transverse over B
�

3
2

�
\fRe z1 D 0g (for some p <1

depending only on n). This fact that with a perturbation of size � we can achieve
�jlog �j�p –transversality is what forces the choice of recursion �j D�j�1jlog �j�1j

�p

declared above.

Let z� and fz�r g1�r�n denote the “peak sections” based at p0 D pi from Lemma 3.1.
We define si WD w0z� Cw2z�2C � � � Cwnz�n (for w to be determined), so now (3-7)
equals

(3-9) sj�1

�
ı‰k Cw0

z�

�
ı‰k Cw2

z�2

�
ı‰k C � � �Cwn

z�n

�
ı‰k :

There is a constant C <1 (depending only on n) such that for jwj� 1
A�C

�j�1 , the sec-
tion si satisfies the decay bound (3-5). By Proposition 4.1, there exists jwj � 1

A�C
�j�1

for which (3-8) is �j�1jlog �j�1j
�p –transverse over B

�
3
2

�
\fRe z1 D 0g (absorbing

constants into p ). It follows that (3-9), so also (3-7), is
�
�j�1jlog �j�1j

�p�O.e��k/
�
–

transverse over B
�

3
2

�
\fRe z1 D 0g, which is enough.

Part V We have constructed sections si for c.i/D j with the property that sj�1Csi

is �j�1jlog �j�1j
�p –transverse over Bi (for some p <1 depending on n and A).

Now let us argue that with this choice of sections, sj is �j –transverse over Xj (for
some possibly different p <1 depending on n and A).

We know that sj differs from sj�1 over Xj�1 by O
�

1
A
�j�1

�
and that sj�1 is �j�1 –

transverse over Xj�1 . Hence sj is
�
1�O

�
1
A

��
�j�1 –transverse over Xj�1 , which

gives �j –transversality over Xj�1 once A and p are large.

We know that sj differs from sj�1Csi over Bi by O.�j�1e�
1
9

D2

/ and that sj�1Csi is
�j�1jlog �j�1j

�p –transverse over Bi , so sj is .�j�1jlog �j�1j
�p�O.�j�1e�

1
9

D2

//–
transverse over Bi . This gives �j –transversality over Bi (increasing p to make up for
the lost constant factor) as long as we have

(3-10) e�
1
9

D2

�
1

B
jlog �j�1j

�p

for some constant B <1 depending only on n.
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Hence we conclude that the entire construction succeeds as long as (3-10) holds for
j D 1; : : : ;M . It is elementary to observe that the recursive definition of �j yields
rough asymptotics �j � e�c�j log j (with c depending on p ). Thus it suffices to ensure
that, for some B0 <1 depending on n and p ,

(3-11) e�
1
9

D2

�
1

B0
.M log M /�p:

We observed earlier that M D O.D2n�1/, so this inequality is satisfied once D is
sufficiently large.

Remark 3.6 A common theme in h–principle arguments à la Gromov, in which we
want to construct some structure globally on a given manifold X , is to extend the
desired structure to larger and larger subsets � � � � Xj�1 � Xj � � � � in a series of
steps. This reduces the desired result to an extension problem from Xj�1 to Xj (see
for example Eliashberg and Mishachev [13]). For example, Xj is usually taken to
be (an open neighborhood of) the j –skeleton of X (under a fixed triangulation), the
point being that now the topology governing the extension from Xj�1 to Xj is easy to
understand. Donaldson’s method, used in the proof above, employs a similar inductive
procedure, but where one instead controls the geometry governing the extension from
Xj�1 to Xj (the key point being that we can do local modifications independently at
any collection of points which are sufficiently far away from each other).

4 Quantitative transversality theorem

We now prove the quantitative transversality theorem (Proposition 4.1), which was
the key technical ingredient in Donaldson’s construction, as used in the proof of
Theorem 3.2. The statement and proof are similar to Auroux [3, Section 2.3]; see
also [4]. A key ingredient is an upper bound on the volume of tubular neighborhoods
of real algebraic sets (Lemma 4.4) due to Wongkew [27].

Proposition 4.1 Let B.1/� B.1C �/�Cn be the balls centered at zero. Fix a holo-
morphic function f W B.1C �/!C with jf j � 1. For a vector wD .w0; w2; : : : ; wn/

in Cn , we define

(4-1) fw WD f Cw0Cw2z2C � � �Cwnzn:

For all 1
3
> � > 0, there exists a vector w 2Cn satisfying jwj � �jlog �jp such that

jfw.z/jC jdfw.z/j� j> � for z 2 B.1/ with Re z1 D 0;

where � denotes the Levi distribution of fz 2 B.1/ W Re z1 D 0g, and p <1 depends
only on the dimension n and � > 0.
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Remark 4.2 A stronger version of Proposition 4.1 (a true quantitative Sard theorem
where we only perturb f by a constant, ie w2D� � �DwnD0 above) is due to Donaldson
[10; 11] and Mohsen [20] with a rather more difficult proof. Mohsen’s result could be
used in Section 3 in place of Proposition 4.1, resulting in a simpler definition si WDw0z� ,
eliminating the need for the remaining z�2; : : : ; z�n . We have chosen instead to present
the argument following Auroux’s observation that the weaker Proposition 4.1, whose
proof is more elementary, is sufficient for the argument in Section 3.

Proof For a given z 2 B.1/ with Re z1 D 0, the quantity jfw.z/j C
ˇ̌
dfw.z/j�

ˇ̌
vanishes for exactly one value of w . The function F W fz 2 B.1/ W Re z1 D 0g ! Cn

which associates to a given z this unique w is the restriction of a holomorphic function
F W B.1C �/!Cn . Explicitly,

(4-2) F.z/D

�
�f C z2

@f

@z2

C � � �C zn
@f

@zn
;�

@f

@z2

; : : : ;�
@f

@zn

�
:

In fact, the quantity jfw.z/jC jdfw.z/j� j is bounded below by (a constant depending
only on n, times) the distance from w to F.z/. Hence it suffices to show that

B.ı/ nN�
�
F.fz 2 B.1/ W Re z1 D 0g/

�
is nonempty for ı D �jlog �jO.1/ .

We may approximate F to within error � � on B.1/ by a polynomial zF of degree
O.jlog �j/. Indeed, the error in the degree m Taylor approximation of F is expo-
nentially small in m, uniformly over B.1/, since F is holomorphic and bounded
effectively on B

�
1C �

2

�
by (3-4) with `D 1. To see this, observe that (by the U.n/

symmetry) it is enough to prove an effective exponential upper bound on the error over
B.1/\.C�f0gn�1/, and this is just the well-known single-variable case (proved using
the Cauchy integral formula).

It thus suffices to show that B.ı/ n N2�

�
zF .fz 2 B.1/ W Re z1 D 0g/

�
is nonempty

for ı D �jlog �jO.1/ . Since zF is a polynomial of degree O.jlog �j/, a pigeonhole
principle argument (Lemma 4.3 below) implies that its image is contained in a real
algebraic hypersurface X �Cn of degree � jlog �jO.1/ . Hence it suffices to show that
B.ı/ nN2�.X / is nonempty for ı D �jlog �jO.1/ and any real hypersurface X �Cn

of degree � jlog �jO.1/ .

Wongkew’s estimate [27] (Lemma 4.4 below) on the volume of a tubular neighborhood
of a real algebraic variety gives

(4-3) vol2n.N2�.X /\B.ı//D ı2n
�O
��
ı
jlog �jO.1/

�
:

For ı D �jlog �jO.1/ , this is less than the total volume of B.ı/, which is enough.
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Lemma 4.3 (Auroux [3, page 565]) Let F W Rn ! Rm be a real polynomial map
of degree � d , where n < m. Then the image of F is contained in a real algebraic
hypersurface of degree D �

˙�
m!
n!

dn
�1=.m�n/�.

Proof The space of real polynomials G of degree �D on Rm has dimension
�
mCD

m

�
.

The composition G ıF has degree � dD . Hence there exists a nonzero G for which
the composition is zero provided

�
mCD

m

�
>
�
nCdD

n

�
, or equivalently,

.DC1/ � � � .DCm/

.dDC1/ � � � .dDCn/
>

m!

n!
:

The left-hand side is bounded below by Dm=.dD/n , and so there exists a suitable G

as long as Dm�n �
m!
n!

dn .

Lemma 4.4 (Wongkew [27]) Let X � Rn be a real algebraic variety of codimen-
sion m defined by polynomials of degree � d . Then we have the estimate

(4-4) voln.N�.X /\ Œ0; 1�n/DO..�d/m/;

where the implied constant depends only on n.

It can be seen via simple examples that this bound is sharp, up to the implied constant.
For completeness, we reproduce Wongkew’s argument below.

Proof We proceed by induction on n, the case n D 0 being clear. All implied
constants depend only on n. We assume for convenience that � � 1 (otherwise the
desired estimate is clear).

Let H be the collection of hyperplanes H �Rn given by constraining any one of the
coordinates to lie in Œ�2�; 1C 2��\ .�ZC ı/, where ı is chosen so that X intersects
each H 2H properly (ie X \H has codimension m inside H ). Such a ı exists by
Bertini’s theorem. Clearly #H DO.��1/. This set of hyperplanes partitions Rn into
some unbounded components and some cubes of side length � . We denote the set of
such cubes by C.

We call a cube C 2 C exceptional if and only if X intersects the interior of C but
not its boundary. The number of exceptional cubes is clearly bounded by dim H0.X /,
which by a result of Milnor [18] is bounded by d.2d � 1/n�1 DO.dn/.

It is straightforward to check that

(4-5) N�.X /\ Œ0; 1�
n
�

�
N.1C

p
n/�

�
X \

[
H2H

H

�
\ Œ0; 1�n

�
[

� [
C2C

C exceptional

N�.C /

�
:
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Indeed, suppose p 2 Œ0; 1�n and d.p;X /� � . There exists x 2X with d.p;x/� � ,
and x 2 C for some (closed) cube C 2 C . If C is exceptional, then p lies in the
second term above. If C is not exceptional, then X \ @C is nonempty. It thus follows
that d.p; @C \X / � �C d.x; @C \X / � �C �

p
n, and so p lies in the first term

above.

Now the inclusion (4-5) implies the following inequality on volumes:

voln.N�.X /\ Œ0; 1�n/�
X

H2H

2.1C
p

n/� voln�1.N.1C
p

n/�.X \H /\H \ Œ0; 1�n/

C

X
C2C

C exceptional

.3�/n

If m D n, then the first term vanishes (each X \H is empty by assumption), and
Milnor’s bound on the second term gives the desired result. If m � n� 1, then we
apply the induction hypothesis to the first term and Milnor’s result to the second term.
The result is

(4-6) voln.N�.X /\ Œ0; 1�n/DO
�
.�d/mC .�d/n

�
:

This implies the desired estimate for �d � 1, and for �d � 1 the desired estimate is
trivial.

5 Lefschetz fibrations on Stein domains

We now show how the function f , guaranteed to exist by Theorem 1.7, gives rise to a
Lefschetz fibration. To be precise, we will show that Theorem 1.7 implies Theorem 1.6
and that Theorem 1.6 implies Theorem 1.5.

Proof of Theorem 1.6 from Theorem 1.7 Fix an embedding V ,! V of the Stein
domain V into a Stein manifold V of the same dimension, and fix an exhausting
J –convex function �W V !R with V D f� � 0g.

By Theorem 1.7 there exists, for sufficiently large k , a holomorphic function f W V !C
such that

� jf .p/jC k�
1
2 jdf .p/j

�
j> � for p 2 @V ,

� jf .p/j � e
1
2

k�.p/ for p 2 f� � 1g.

We claim that the bound jf .p/j � e
1
2

k�.p/ implies

� jdf .p/� k �f .p/ � d 0�.p/j DO.k
1
2 e

1
2

k�.p// for p 2 V .
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To see this, argue as follows. Fix a point p 2 V and choose a holomorphic function u

defined in a neighborhood of p such that Re u.q/D �.q/CO.d.p; q/2/. It follows
that f .q/ � e�

1
2

ku.q/
DO.1/ for d.p; q/DO.k�

1
2 /, and hence it follows that

d.f � e�
1
2

ku/.p/DO.k
1
2 /:

Expanding the left-hand side and using the fact that du.p/D 2d 0 Re u.p/D 2d 0�.p/,
the claim follows.

Now we take � WD ��1 �f , which satisfies the desired properties.

Proof of Theorem 1.5 from Theorem 1.6 By Theorem 1.6 there exists, for suffi-
ciently large k , a holomorphic function � W V !C such that

� for j�.p/j � 1, we have d log�.p/D k � d 0�.p/CO.k
1
2 /,

� for j�.p/j � 1 and p 2 @V , we have d�.p/j
�
¤ 0.

Note that these conditions together imply that the critical locus of � is contained in the
interior of ��1.D2/. Both conditions are preserved under small perturbations of � ,
hence we may perturb � so that

� all critical points of � on V are nondegenerate and have distinct critical values.

Indeed, the existence of such a perturbation follows from the standard fact that global
holomorphic functions on any Stein manifold V generate OV and �1

V
at every point

(this follows from Cartan’s Theorems A and B, or by properly embedding V in CN ).

Now � W ��1.D2/ ! D2 is a Stein Lefschetz fibration, so it suffices to construct
a deformation of Stein domains from V to ��1.D2/sm . Let gW R<0 ! R satisfy
g0 > 0, g00 > 0, and limx!0� g.x/ D1. Consider the family f��1.D2

r /g1�r<1 ,
and consider its smoothing fr�3g.j�j2�r2/C g.�/ � M g1�r<1 for some large
M <1. Since ��1.D2

r / is cut out by the inequalities � � 0 and Re log� � log r ,
this smoothing gives the desired deformation as long as for every point p 2 V with
j�.p/j � 1, the differentials d�.p/ and Re d log�.p/ are either linearly independent
or positively proportional. Since d log�.p/D k � d 0�.p/CO.k

1
2 /, this condition is

clearly satisfied for sufficiently large k .

6 Lefschetz fibrations on Weinstein domains

We now show how the existence of Lefschetz fibrations on Stein domains (Theorem 1.5)
may be used to deduce the same for Weinstein domains (Theorem 1.10). For this
implication, we use the result of Cieliebak and Eliashberg [7, Theorem 1.1(a)] that
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every Weinstein domain may be deformed to carry a compatible Stein structure. The
main step (Proposition 6.2) is thus to show that for any Stein Lefschetz fibration
� W V !D2 , there exists an abstract Weinstein Lefschetz fibration whose total space
is deformation equivalent to V sm .

6.1 From Stein structures to Weinstein structures

We give a very brief review of the relationship between Stein and Weinstein structures;
for a complete treatment, the reader may consult [7, Section 1]. Let .V; �/ be a
pair consisting of a Stein domain V and a smooth J –convex function �W V ! R
with @V D f�D0g as a regular level set. If � is Morse (which can be achieved by
small perturbation), then it induces the structure of a Weinstein domain on V , namely
taking the 1–form �� WD �J�d� and the function � itself. This Weinstein domain is
denoted W.V; �/. For any deformation of Stein domains .Vt ; �t /t2Œ0;1� where every
�t is generalized Morse (any f�tgt2Œ0;1� may be perturbed to satisfy this condition),
the associated family W.Vt ; �t /t2Œ0;1� is a deformation of Weinstein domains. In
particular, the deformation class of W.V; �/ is independent of � , so we may denote it
by W.V /. Now a decisive result is the following (we state a simplified version which
is sufficient for our purpose).

Theorem 6.1 (Cieliebak and Eliashberg [7, Theorem 1.1(a)]) Every deformation
class of Weinstein domain is of the form W.V / for a Stein domain V .

6.2 From Stein Lefschetz fibrations to abstract Weinstein
Lefschetz fibrations

Theorem 1.10 follows from Theorem 1.5, Theorem 6.1, and the following proposition.

Proposition 6.2 Let � W V ! D2 be a Stein Lefschetz fibration. There exists an
abstract Weinstein Lefschetz fibration W D .W0IL1; : : : ;Lm/ whose total space jW j
is deformation equivalent to W.V sm/.

The abstract Weinstein Lefschetz fibration associated to a Stein Lefschetz fibration may
be described as follows. The “central fiber” W0 is the Weinstein domain associated
to a regular fiber ��1.p/ of � W V ! D2 , and the “vanishing cycles” L1; : : : ;Lm

are the images of the critical points of � under symplectic parallel transport along a
set of disjoint paths from the critical values of � to the regular value p . Hence the
content of the proposition is that (as a Weinstein manifold) V sm may be described as a
small product neighborhood of a regular fiber with Weinstein handles attached along
the vanishing cycles.
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We now give a detailed definition of the total space of an abstract Weinstein Lefschetz
fibration.

Definition 6.3 Let W D ..W0; �0; �0/IL1; : : : ;Lm/ be an abstract Weinstein Lef-
schetz fibration. Its total space jW j is defined as follows. We equip W0 �C with
the Liouville form �0 � J�d

�
1
2
jzj2

�
and the Morse function �0 C jzj

2 for which
the resulting Liouville vector field X�0

C
1
2

�
x @
@x
C y @

@y

�
is gradient-like. Fix Leg-

endrian lifts ƒj � .W0 � S1; �0 CNd�/ of the exact Lagrangians Lj � W0 such
that ƒj projects to a small interval around 2�j=m 2 S1 (here we choose N <1

sufficiently large so that these intervals are disjoint). Now the embedding S1 ,! C
as the circle of radius

p
N pulls back the Liouville form �J�d

�
1
2
jzj2

�
to the contact

form Nd� . Hence we may think of ƒj as lying inside W0 �C as a Legendrian on
the level set fjzj D

p
N g. The downward Liouville flow applied to ƒj gives rise

to a map ƒj �R�0! W0 �C , which intersects the level set f�0C jzj
2 D 0g in a

Legendrian ƒ0j (here we choose N <1 so that the projection of f�0 C jzj
2 � 0g

to C is contained inside the disk of radius
p

N ). The total space jW j is defined as
the result of attaching Weinstein handles [26] to the Weinstein domain f�0Cjzj

2 � 0g

along the Legendrians ƒ0j (marked via the maps Sn�1!Lj
�
!ƒj

�
!ƒ0j ). It is easy

to see that jW j is well-defined up to canonical deformation (we will remark in detail
on the well-definedness of Weinstein handle attachment in Lemma 6.6).

We now introduce a variant of the above construction, which will be used in the proof
of Proposition 6.2.

Definition 6.4 Let W D .� W V !D2; �;gIL1; : : : ;Lm/ consist of a Stein Lefschetz
fibration � W V !D2 , a J –convex function �W V !R with @hV Df�D0g as a regular
level set, a function gW R<0!R with g> 0, g0> 0, g00> 0, and limx!0� g.x/D1,
and a collection of exact parametrized Lagrangian (with respect to �g.�/ ) spheres Lj �

Vpj WD�
�1.pj /, for distinct points p1; : : : ;pm2S1D@D2 , ordered counterclockwise.

Define its total space jW j as follows. Consider the J –convex function �g.�/C 1
2
j�j2

on V . The induced contact form on ��1.@D2/ may be written as ��g.�/C d� . Let
us center the S1 –coordinate at pj 2 S1 , rescale it by ��1 , and rescale the contact
form by ��1 . In the limit �! 0, this rescaling of ��1.@D2/ converges to the contact
manifold .Vpj �R; �g.�/ C dt/. In Vpj �R, there is a unique (up to translation)
Legendrian ƒj projecting to Lj . During the deformation of Vpj�R back to ��1.@D2/

for small � > 0, there clearly exists a simultaneous Legendrian isotopy ƒ�j ��
�1.@D2/

starting at ƒ0
j D ƒj . Now the downward Liouville flow applied to ƒ�j intersects˚

�g.�/C 1
2
.j�j2�1/D 0

	
in a Legendrian ƒ�0j . The total space jW j is defined as the

result of attaching Weinstein handles to the Weinstein domain
˚
�g.�/C 1

2
.j�j2�1/�0
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along these Legendrians. This total space is independent of the choice of sufficiently
small � > 0 and the family fƒ�i g��0 up to canonical deformation.

Definition 6.4 reduces to Definition 6.3 in the special case of a product fibration, in the
sense that there is a canonical deformation equivalence

(6-1)
ˇ̌
.V0 �D2

!D2; �0;gIL1 � f˛1g; : : : ;Lm � f˛mg/
ˇ̌
Dˇ̌

.W.V0;g.�0//IL1; : : : ;Lm/
ˇ̌
;

where �0W V0!R is J –convex with @V0Df�0D0g as a regular level set, L1; : : : ;Lm

are exact parametrized Lagrangian spheres in V0 with respect to �g.�0/ , and the points
˛1; : : : ; ˛m 2 S1 D @D2 are ordered counterclockwise. The right-hand side of (6-1)
is a slight abuse of notation, as we should really write W

�
fg.�0/ �M g;g.�0/

�
for

sufficiently large M .

Proof of Proposition 6.2 We assume that 0 2 D2 is a regular value of � and that
each critical value of � has a distinct complex argument (this may be achieved by
post-composing � with a generic Schwarz biholomorphism D2!D2 ).

Fix a smooth J –convex function �W V ! R with @hV D f�D0g as a regular level
set (as is guaranteed to exist by Definition 1.4). We let V0 WD ��1.0/ denote the
central fiber, and we assume that �0 WD �jV0

is Morse (this can be achieved by a small
perturbation of � ).

By Lemma 6.5 below, there exists a smooth function gW R<0!R satisfying g > 0,
g0 > 0, g00 > 0 and limx!0� g.x/ D 1 such that the symplectic connection on
� W V n @hV !D2 induced by !g.�/ is complete. Fix one such g .

We consider parallel transport along radial paths in D2 with respect to the symplectic
connection induced by !g.�/ . Under this parallel transport, each critical point of �
sweeps out a Lagrangian disk called a Lefschetz thimble (to see this, apply the stable
manifold theorem to the Hamiltonian vector field XIm log� , and recall that the critical
values of � have distinct complex arguments). The fiber over 0 2D2 of a Lefschetz
thimble is an exact Lagrangian sphere called a vanishing cycle. Let L1; : : : ;Lm � V0

denote the vanishing cycles of all the critical points of � , ordered by angle. As
stable manifolds of the vector field XIm log� , they come equipped with parametrizations
Sn�1!Lj , which are well-defined in Diff.Sn�1;Lj /=O.n/ up to contractible choice.

Now W WD .W.V0;g.�0//IL1; : : : ;Lm/ is an abstract Weinstein Lefschetz fibration,
and it remains to show that its total space jW j is deformation equivalent to W.V sm/.
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We consider the J –convex function �g.�/Ch.j�j=ı/ on V n @hV for small �; ı > 0,
where

(6-2) h.r/ WD

�
log r if r � 1;
1
2
.r2� 1/ if r � 1:

We claim that for .�; ı/! .0; 0/, the sublevel set

(6-3)
n
�g.�/C h

�
j�j

ı

�
� log 1

ı

o
� V

is deformation equivalent to V sm . Indeed, consider the � log.1=ı/ sublevel set of
the linear interpolation between �g.�/C h.j�j=ı/ and �g.�/C �g.j�j2 � 1/. As
.�; ı/! .0; 0/, the boundary of this deformation stays arbitrarily close to @V , and the
critical locus of the linear interpolation stays away from @V (note that this critical locus
is always contained in the fiberwise critical locus of � ). Thus (6-3) is deformation
equivalent to V sm as claimed.

As .�; ı/! .0; 0/, the critical points of �g.�/Ch.j�j=ı/ over D2nD2
ı

are in bijective
correspondence with crit.�/ (note that the critical locus is contained in the fiberwise
critical locus of � ). Over D2 n D2

ı
, the stable manifolds of these critical points

approach the Lefschetz thimbles as �! 0 and ı > 0 is fixed. Indeed, h is harmonic
over D2 nD2

ı
, and hence the Liouville vector field of �g.�/C h.j�j=ı/ is given by

Xg.�/C �
�1XIm log� over D2 nD2

ı
, where Xg.�/ is the Liouville vector field of g.�/

and XIm log� is the Hamiltonian vector field with respect to !g.�/ of Im log� .

Denote by xƒ�;ıj � ��1.@D2
ı
/ the intersections of the stable manifolds of �g.�/C

h.j�j=ı/ with ��1.@D2
ı
/. Thus xƒ�;ıj is Legendrian with respect to the contact form

��g.�/Cd� . Let Lıj denote the intersections of the Lefschetz thimbles with ��1.@D2
ı
/.

Thus as �! 0 and ı > 0 is fixed, we have that xƒ�;ıj ! Lıj in C1 . Now we claim
that xƒ�;ıj is in fact (Legendrian isotopic to) the Legendrian lift ƒ�;ıj of Lıj (as in
Definition 6.4) for sufficiently small � > 0. In the rescaled limit as � ! 0, the
projection of xƒ�;ıj to Vpj approaches Lıj in C1 , and this is enough to show that
it converges (up to translation) to ƒ0;ı

j as � ! 0. Hence the claim is valid, so we
conclude that W.V sm/ is deformation equivalent to

(6-4) j.� W ��1.D2
ı /!D2

ı IL
ı
1; : : : ;L

ı
m/j:

We have used Lemma 6.6 below to show that the Weinstein cobordismn
0� �g.�/C h

�
j�j

ı

�
� log 1

ı

o
is a Weinstein handle attachment.
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In the limit ı! 0, rescaling D2
ı

to D2 , clearly (6-4) converges to

(6-5) j.V0 �D2
!D2

IL1 � f˛1g; : : : ;Lm � f˛mg/j;

where j̨ 2 S1 D @D2 are the angles of the critical points of � . Hence using
(6-1) we have shown the desired deformation equivalence between W.V sm/ and
j.W.V0;g.�0//IL1; : : : ;Lm/j.

Lemma 6.5 Let � W V ! D2 be a Stein Lefschetz fibration, and let �W V ! R be
J –convex with @hV D f�D0g as a regular level set. There exists a smooth function
gW R<0!R satisfying g0> 0, g00> 0 and limx!0� g.x/D1 such that the symplec-
tic connection on � W V n @hV !D2 induced by !g.�/ is complete, in the sense that
parallel transport along a smooth path in the base D2 gives rise to a diffeomorphism
between the corresponding fibers (away from the critical points of � ).

Proof We will in fact show that there exists a natural contractible family of functions g

which satisfy the desired conclusion for all .V; �/.

Let gW R<0 ! R be such that g0 > 0, g00 > 0, and limx!0� g.x/ D 1. Let ?�
(resp. ?g.�/ ) denote orthogonal complement with respect to !� (resp. !g.�/ ), so the
horizontal distribution of the symplectic connection induced by !g.�/ is .ker d�/?g.�/ .

Our first goal is to show that in a neighborhood of @hV , every horizontal vector field X

satisfies

(6-6) jX�j DO

�
g0.�/

g00.�/

�
� j��X j;

as long as g0.�/=g00.�/ is sufficiently small. Note that in a neighborhood of @hV ,
there is a direct sum decomposition

(6-7) TV D .ker d� \ ker d 0�/˚ .ker d� \ ker d 0�/?� \ ker d�

˚ .ker d� \ ker d 0�/?� \ ker d 0�

into subspaces of real dimension 2n� 4, 2, 2, respectively. Now suppose that X D

X1˚X2˚X3 2 TV is horizontal, ie X ?g.�/ ker d� . Note the explicit form

(6-8) !g.�/ D g0.�/ �!� Cg00.�/ � id 0� ^ d 00�:

We may choose a vector v 2 .ker d� \ ker d 0�/?� \ ker d� with jvjg� D 1 such that
j.id 0� ^ d 00�/.v;X2/j � jX2jg� (where g� denotes the metric induced by � ). Now
since v 2 ker d� , it pairs to zero with X under !g.�/ , so we have

(6-9) 0D g0.�/ �!�.v;X2CX3/Cg00.�/ � .id 0� ^ d 00�/.v;X2/:
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It follows from this that

jX2jg� DO

�
g0.�/

g00.�/

�
� jX3jg�

for g0.�/=g00.�/ sufficiently small. This implies the desired estimate (6-6) since
j��X j � jX3jg� and jX�j � jX2jg� .

It now follows that the connection is complete as long as

(6-10) lim sup
x!0�

g0.x/

jxjg00.x/
<1:

Indeed, by (6-6) this condition guarantees that the derivative of log.��/ is bounded
along the horizontal lift of a smooth curve in the base D2 .

We now just need to exhibit a function gW R<0 ! R satisfying g0 > 0, g00 > 0,
limx!0� g.x/D1, and (6-10), which we may write as

(6-11) lim inf
x!0�

.log g0.x//0jxj> 0:

For example, we may take

(6-12) g.x/ WD

Z x

�1

e�t2�t�1

dt:

Moreover, the space of such functions is contractible, since the map g 7! .g.�1/; log g0/

gives a bijection with a convex set.

6.3 Uniqueness of Weinstein handle attachment

We record here a proof of the fact that an elementary Weinstein cobordism is “the same”
as a Weinstein handle attachment (the precise statement is Lemma 6.6), as was used
in the proof of Proposition 6.2. We were unable to find a precise reference for this
standard fact, though it is of course implicit in Weinstein’s original paper [26], as well
as in Cieliebak and Eliashberg [7].

Recall that a Weinstein cobordism .W; �; �/ is called elementary if and only if there is
no trajectory of X DX� between any two critical points. For a critical point p 2W ,
we denote by T˙p W the positive/negative eigenspaces of dpX W TpW ! TpW , and
we denote the stable manifold by W �p . For an elementary cobordism, each stable
manifold W �p intersects the negative boundary @�W in an isotropic sphere ƒp�@�W ;
note that ƒpD .W

�
p np/=R via the Liouville flow. A choice of exponential coordinates

exppW T
�

p W ! W �p and a small sphere centered at zero in T �p W determines a
diffeomorphism .W �p n p/=R D .T �p W n 0/=R. We thus obtain a diffeomorphism
�p 2 Diff..T �p W n 0/=R; ƒp/, which is well-defined up to contractible choice.
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Lemma 6.6 Let .Y 2n�1; �/ be a contact manifold with contact form, let ƒ1; : : : ; ƒm

be disjoint Legendrian spheres in Y , and let �j 2 Diff.Sn�1; ƒj /=O.n/. The space of
triples .W; i; q/ consisting of

� an elementary Weinstein cobordism .W 2n; �; �/ with critical points pj and
stable manifolds Vpj ,

� an isomorphism i W .@�W; �/
�
! .Y; �/ sending Vpj \ @�W to ƒj ,

� a path q between �j and the image of �pj in Diff.Sn�1; ƒj /=O.n/,

is weakly contractible, in the sense that for all k � 0, any family of such objects
.W; i; q/ over @Dk can be extended to a family over Dk .

There is also a version of Lemma 6.6 for any critical points of any index, though it is
more complicated to state since subcritical handle attachment requires an additional
piece of data (a framing of the symplectic normal bundle of the attaching sphere). In
this paper, we only need the case of critical handle attachment, so we omit the more
general statement and its proof. We thank Yasha Eliashberg for useful discussions
regarding the proof.

Proof Let a family over @Dk be given (k � 0).

We first equip the family with local Darboux charts near the critical points, and homotope
it so that the Liouville vector field coincides with a certain standard model in these
charts. We phrase this part of the argument as if there were just a single triple .W; i; q/

and a single critical point p , but it is clear that each step also works in families and for
multiple critical points. The details are as follows.

Fix a local symplectomorphism (Darboux chart) exppW .TpW; 0/! .W;p/ whose
derivative at zero is the identity. On the symplectic vector space TpW , the vector field
dpX W TpW !TpW is Liouville (this is just the linearization of the Liouville structure
of W near p ); it follows that the positive/negative eigenspaces T˙p W of dpX are
Lagrangian [7, Proposition 11.9].

We first homotope the function � so that

(6-13) exp�p � D �std near zero,

where �stdW TpW !R is given by �std.v/ WDjv
Cj2�jv�j2 . Here we fix positive definite

quadratic forms on T˙p W such that the Liouville vector field exp�p X is gradient-like
for �std near zero. Note that the space of such quadratic forms is clearly open and
convex, and it is seen to be nonempty by considering quadratic forms which are diagonal
with respect to a basis which puts dpX into Jordan normal form. Now we consider
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the homotopy f�C .�std��/t�gt2Œ0;1� for some smooth compactly supported cutoff
function �W TpW ! Œ0; 1� which equals 1 in a neighborhood of zero. Its differential
equals .1� t�/d�C t�d�stdC t.�std��/d�. We have �std��DO.jvj2/, so to ensure
that exp�p X is gradient-like throughout the homotopy, it suffices to choose � so that
jd�j is much smaller than jvj�1 . Such a cutoff function exists (supported in any given
neighborhood of zero) since

R 1
0 r�1 dr diverges. Thus we have achieved (6-13).

We next homotope the Liouville vector field X so that

(6-14) exp�p X DXstd near zero,

where XstdW TpW ! TpW acts by � id on T �p W and by 2 id on TCp W (observe that
this is indeed a Liouville vector field). Note that both vector fields exp�p X and Xstd

are gradient-like with respect to exp�p � D �std near zero. Write the Liouville form for
exp�p X as �, write the Liouville form for Xstd as �std , and write �std��D df for a
function f vanishing at zero. We consider the homotopy f�C d.t�f /gt2Œ0;1� for �
as above. We may write this as .1� t�/�C t��stdC tfd�. We have f DO.jvj2/, so
in order to guarantee that the resulting Liouville vector field remains gradient-like for
exp�p � D �std , it is again enough to choose � so that jd�j is much smaller than jvj�1 ,
which exists as before. This achieves (6-14).

We have now homotoped X and � near p so that they coincide via the chosen
Darboux chart exppW .TpW; 0/ ! .W;p/ with Xstd and �std as above near zero.
Since exp�p X DXstd in a neighborhood of zero, there is an induced diffeomorphism
�W .T �p W n 0/=R>0!ƒ.

Now Diff.Sn�1; ƒ/=O.n/ classifies vector bundles V along with a fiberwise diffeo-
morphism from the sphere bundle S.V / WD .V n 0/=R>0 to ƒ. Hence the data of q

determines an extension of the vector bundle T �p W from @Dk to Dk (which we also de-
note by T �p W ), an extension of the fiberwise diffeomorphism �W .T �p W n0/=R>0!ƒ

to Dk , and an extension of q itself from @Dk to Dk . We may also extend TCp W from
@Dk to Dk by observing that TCp W D .T �p W /� over @Dk (by virtue of the symplectic
form) and so defining TCp W WD .T �p W /� over Dk . Hence TpW WD T �p W ˚TCp W

is a symplectic vector bundle over Dk . We conclude that it suffices to extend W from
@Dk to Dk so that it has the chosen tangent spaces TpW , has exponential charts expp

satisfying (6-13) and (6-14) above, and so that it induces the chosen diffeomorphisms
�W .T �p W n 0/=R>0!ƒ.

Over any point in Dk , we have a co-oriented contact manifold .TpW n TCp W /=R
(quotient by the Liouville flow), and a Legendrian submanifold .T �p W n 0/=R>0

(quotient by dilation, which coincides with the Liouville flow). Over any point in @Dk ,
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the Liouville flow on W determines a germ of co-orientation-preserving contactomor-
phism z� between a neighborhood of this Legendrian submanifold and a neighborhood
of ƒp�Y , restricting to � . Conversely, a neighborhood of W �p in W is determined by
TpW DT �p W ˚TCp W and the germ of co-orientation-preserving contactomorphism z� .
Note that W always deforms down to a neighborhood of @�W [W �p . Thus it suffices
to extend z� from @Dk to Dk such that it restricts to � (such an extension determines
for us an extension of W from @Dk to Dk ).

To show that z� extends to Dk , it suffices to show that for any closed manifold M , the
restriction map from germs of co-orientation-preserving contactomorphisms of J 1M

mapping the zero section to itself to diffeomorphisms of M is a weak homotopy
equivalence (we will apply this to M D Sn�1 ). Equivalently, it suffices to show that
the space of germs of co-orientation-preserving contactomorphisms of J 1M fixing the
zero section pointwise is weakly contractible. Write J 1M D T �M �R with contact
form �� ds , and write ht for the flow of the contact vector field X�C s @

@s
. Fix any

germ of co-orientation-preserving contactomorphism f W J 1M ! J 1M fixing the
zero section pointwise, and we will define a canonical path from f to the identity
(clearly this is enough). We first consider the limit as t ! 1 of the conjugation
ht ı f ı h�1

t , which is nothing other than the vertical projection of the derivative of f
along the zero section. We are thus reduced to considering a co-orientation-preserving
contactomorphism f0W J

1M ! J 1M which is a linear map of bundles over M . Now
a general such linear map has the form

(6-15) .˛;g/ 7! .A˛CBg;C˛CDg/;

where AW M ! End.T �M /, BW M ! T �M , C W M ! TM and DW M ! R are
sections over M . As a contactomorphism, f0 preserves the Legendrian sections
.dg;g/ of J 1M over M , which means that

(6-16) A.dg/CgB D d.Cg/CgdDCDdg

for all functions gW M !R. Since d.Cg/ is the only second-order term, we conclude
that C � 0. Comparing first-order terms shows that ADD � id, and finally we may
solve for BDdD . Thus f0W J

1M!J 1M is given by .˛;g/ 7! .D �˛Cg �dD;D �g/

for some function DW M !R. Since f0 is a diffeomorphism, D is nonvanishing, and
since f0 is co-orientation-preserving, D > 0 everywhere. Finally, we may connect f0

to the identity using the obvious linear homotopy from D to the constant function 1.
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