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Existence of Lefschetz fibrations on
Stein and Weinstein domains

EMMANUEL GIROUX
JOHN PARDON

We show that every Stein or Weinstein domain may be presented (up to deformation)
as a Lefschetz fibration over the disk. The proof is an application of Donaldson’s
quantitative transversality techniques.

32Q28; 32E10, 53D05, 53D35

1 Introduction

In this paper, we prove the existence of Lefschetz fibrations (certain singular fibrations
with Morse-type singularities) on Stein domains (from complex geometry) and on
Weinstein domains (from symplectic geometry). These two results are linked (in fact,
logically so) by the close relationship between Stein and Weinstein structures established
in the book by Cieliebak and Eliashberg [7] building on earlier work of Eliashberg [12].
Nevertheless, they can be understood independently from either a purely complex
geometric viewpoint or from a purely symplectic viewpoint.

1.1 Lefschetz fibrations on Stein domains

We begin by explaining our results for Stein domains.

Definition 1.1 A real-valued function ¢ on a complex manifold V is called J—convex
(or strictly plurisubharmonic) if and only if (id'd”$)(v, Jv) > 0 for every nonzero
(real) tangent vector v.

Definition 1.2 A Stein manifold is a complex manifold V' which admits a smooth
exhausting J—convex function ¢: V' — R.

Definition 1.3 A Stein domain is a compact complex manifold with boundary V

which admits a smooth J—convex function ¢: V — R with dV = {¢=0} as a regular
level set.
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For us, a complex manifold with boundary (or corners) shall mean one equipped
with a germ of (codimension zero) embedding into an (open) complex manifold. A
holomorphic function on a complex manifold with boundary (or corners) is one which
extends holomorphically to an open neighborhood in the ambient (open) complex
manifold.

For example, if V is a Stein manifold with smooth exhausting J—convex function
¢: V — R with {¢=0} as a regular level set, then V := {¢ <0} is a Stein domain. In
fact, it is not hard to see that every Stein domain is of this form.

Definition 1.4 Let D? C C denote the closed unit disk. A Stein Lefschetz fibration
is a holomorphic map 7: V — D?, where V is a compact complex manifold with
corners, such that:

e Singular fibration The map 7 is a (smooth) fibration with manifold with
boundary fibers, except for a finite number of critical points crit(;r) in the
interior of V.

¢ Nondegenerate critical points Near each critical point p € crit(rr), there are
local holomorphic coordinates in which 7 is given by

n
(z1,--. zn) > 7(p) —{—Zziz
i=1
(according to the complex Morse lemma, this holds if and only if the complex
Hessian at p is nondegenerate). Furthermore, all critical values are distinct.
e Stein fibers There exists a J—convex function ¢: V — R with d;V = {¢p=0}

as a regular level set, where 9,V = peD2 d(r~1(p)) denotes the “horizontal
boundary” of V.

Note that the boundary of V' is the union of the horizontal boundary 9,V and the
“vertical boundary” 9,V := 7~ 1(0D?), whose intersection 9,V N,V is the corner
locus.

The total space V' of any Stein Lefschetz fibration may be smoothed out to obtain a Stein
domain V*™, unique up to deformation. Specifically, for any function g: R.o — R
satisfying g’ > 0, g” > 0, and lim,_,o— g(x) = oo, the function

g :=g(7|*—1) + g(¢)

is an exhausting J —convex function on V' °. Moreover, the critical locus of ®g stays
away from 0V as g varies in any compact family; this follows from the obvious
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inclusion

crit(®g) & | crit(@],—1(,)

peD2

and the fact that the latter is a compact subset of V' \ 9,V . As a result, the sublevel
set {®y < M} is a Stein domain which, up to deformation, is independent of the
choice of g and the choice of M larger than all critical values of ®,. We denote this
(deformation class of) Stein domain by V™, which, of course, depends not only on V,
but also on .

The simplest (and weakest) version of our existence result is the following.

Theorem 1.5 Let V be a Stein domain. There exists a (Stein) Lefschetz fibration
. V! — D? with (V')*™ deformation equivalent to V .

Deformation is meant in the sense of a real 1—parameter family of Stein domains.
The nature of the deformation required is made explicit by considering the following
stronger version of our existence result.

Theorem 1.6 Let V' be a Stein domain. For every sufficiently large real number k,
there exists a holomorphic function w: V — C such that:

e For|m(p)|>1, wehave dlogn(p)=k-d'¢(p)+ O(k%).
e For|n(p)| <1 and p € dV, we have dJr(p)|E #£0.

We may, in addition, require that w—1(D?) contain any given compact subset of V°.

Theorem 1.5 follows from Theorem 1.6 by smoothing out the deformation of Stein
domains {7 ! (Drz)}>1§,<c,o (this argument is given in detail in Section 5). Theorem 1.6
is a corollary of the following, which is the main technical result of the paper.

Theorem 1.7 Let V be a Stein manifold, equipped with a smooth exhausting J —
convex function ¢: V — R. For every sufficiently large real number k , there exists a
holomorphic function f: V — C such that

o |f(p)|<ek®®) for peip <1},

e | f(p)] —I—k_%|df(p)|s| > n for p € {¢ = 0} (with df measured in the metric
induced by ¢ ),

where & denotes the Levi distribution on {¢p=0}C V', and 1 > 0 is a constant depending
only on the dimension of V.
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To prove Theorem 1.6 (for V := {¢ < 0}) from Theorem 1.7, we take 7 to be (a small
perturbation of) n~! - /', which works once k is sufficiently large (the details of this
argument are given in Section 5). To prove Theorem 1.7, we use methods introduced
by Donaldson [10] (this proof occupies Sections 2—4). A closely related result was
obtained by Mohsen [20] also using Donaldson’s techniques.

1.2 Lefschetz fibrations on Weinstein domains

Next, we turn to our result for Weinstein domains.

Definition 1.8 A Weinstein domain (W, w, A, ¢) is a compact symplectic manifold
with boundary, equipped with a 1-form A satisfying dA = w, and a Morse function
¢: W — R which has dW = {¢ = 0} as a regular level set and for which X} (defined
by the condition w(X},-) = A) is gradient-like.

Definition 1.9 An abstract Weinstein Lefschetz fibration is a tuple

W=(W();L1,...,Lm)

consisting of a Weinstein domain Woz"_2 (the “central fiber”) along with a finite

sequence of exact parametrized! Lagrangian spheres L, ..., L, € W, (the “vanishing
cycles”).
From any abstract Weinstein Lefschetz fibration W = (Wy; Ly, ..., L,,), we may

construct a Weinstein domain |W/| (its “total space”) by attaching critical Weinstein
handles to the stabilization W x D? along Legendrians

Aj S Wox S Ca(Wyx D?)

near 277j/m € S' obtained by lifting the exact Lagrangians L j- We give this con-
struction in detail in Section 6.

We will prove the following existence result.

Theorem 1.10 Let W be a Weinstein domain. There exists an abstract Weinstein
Lefschetz fibration W' = (Wy; L1, ..., L,,) whose total space |W'| is deformation
equivalent to W.

TParametrized shall mean equipped with a diffeomorphism S”~1 =5 L defined up to precomposition
with elements of O(n).
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Deformation is meant in the sense of a 1—parameter family of Weinstein domains,
but where the requirement that ¢ be Morse is relaxed to allow birth—death critical
points. Theorem 1.10 is deduced from Theorem 1.5 using the existence theorem
for Stein structures on Weinstein domains proved by Cieliebak and Eliashberg [7,
Theorem 1.1(a)]. The main step is thus to show that a Stein Lefschetz fibration
m: V — D? naturally gives rise to an abstract Weinstein Lefschetz fibration whose
total space is deformation equivalent to V™ (the details of this argument are given in
Section 6).

In current work in progress, we hope to apply Donaldson’s techniques directly in the
Weinstein setting to produce on any Weinstein domain W an approximately holo-
morphic function f: W — C satisfying conditions similar to those in Theorem 1.7,
and thus give a proof of Theorem 1.10 which does not appeal to the existence of a
compatible Stein structure.

Given Theorem 1.10, it is natural to ask whether every deformation equivalence between
the total spaces of two abstract Weinstein Lefschetz fibrations is induced by a finite
sequence of moves of some simple type. Specifically, applying any of the following
operations to an abstract Weinstein Lefschetz fibration preserves the total space up to
canonical deformation equivalence, and it is natural to ask whether they are enough:

e Deformation Simultaneous Weinstein deformation of W, and exact La-
grangian isotopy of (Ly,..., Ly).
¢ Cyclic permutation Replace (Ly,..., Ly) with (Ly,..., Ly, Ly).

e Hurwitz moves Let t7 denote the symplectic Dehn twist around L, and
replace (L1,..., Ly) with either

(Lz,‘[Lle,Lg,, . ,Lm) or (‘L’ZIILQ,LI,Lg,, . ,Lm)

o Stabilization For a parametrized Lagrangian disk D"~ < W, with Legen-
drian boundary S”~2 = 9D"~! < dW) such that

0= [)\0] c Hl(Dn_l, aDn—l),

replace Wy with WO, obtained by attachmg a Weinstein handle to WO along
dD" !, and replace (L1,...,L,,) with (L Ly,...,Ly), where LCW,is
obtalned by gluing together D"~ ! and the core of the handle.

It would be very interesting if the methods of this paper could be brought to bear on
this problem as well.
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Remark 1.11 The reader is likely to be familiar with more geometric notions of
symplectic Lefschetz fibrations (eg as in Seidel [22, Section 15d] or Bourgeois, Ekholm
and Eliashberg [5, Section 8.1] and the references therein), and may prefer these to the
notion of an abstract Weinstein Lefschetz fibration used to state Theorem 1.10. We
believe, though, that the reader wishing to construct a symplectic Lefschetz fibration in
their preferred setup with the same total space as a given abstract Weinstein Lefschetz
fibration will have no trouble doing so (eg see Seidel [22, Section 16¢]).

Seidel [21; 22; 23; 24] has developed powerful methods for calculations in and of
Fukaya categories coming from Lefschetz fibrations, in particular relating the Fukaya
category of the total space to the vanishing cycles and the Fukaya category of the central
fiber. Our existence result shows that these methods are applicable to any Weinstein
domain. We should point out, however, that, while our proof of existence of Lefschetz
fibrations is in principle effective, it does not immediately lead to any practical way of
computing a Lefschetz presentation of a given Weinstein manifold.

1.3 Remarks about the proof

We outline briefly the proof of Theorem 1.7 (the main technical result of the paper),
which occupies Sections 2—4. As mentioned earlier, the proof is an application of
Donaldson’s quantitative transversality techniques, first used to construct symplectic
divisors inside closed symplectic manifolds [10] (somewhat similar ideas appeared
earlier in Cheeger and Gromov [6]).

The J—convex function ¢: ¥V — R determines a positive line bundle L on V. We
consider the high tensor powers L¥ of this positive line bundle. Using L2—methods
of Hormander [16] and Andreotti and Vesentini [1], one may construct “peak sections’
of Lk , that is, holomorphic sections s: V — L¥ which are “concentrated” over the
ball of radius k2 centered at any given point py € V := {¢ < 0} and have decay
[s(p)] = O(e=kA4P-207) for p e {¢ <1}.

’

Donaldson introduced a remarkable method to, given enough localized holomorphic
sections, construct a linear combination s: ¥ — LK which satisfies, quantitatively,
any given holomorphic transversality condition which is generic. The key technical
ingredient for Donaldson’s construction is a suitably quantitative version of Sard’s
theorem, and this step was simplified considerably by Auroux [4]. The function f
asserted to exist in Theorem 1.7 is simply the quotient of such a quantitatively transverse
section s: V — LK by a certain tautological section “17: V — Lk,

We take advantage of the fact that we are in the holomorphic category by working
with genuinely holomorphic functions, instead of the approximately holomorphic
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functions which are the standard context of Donaldson’s techniques. This allows us
to use simplified arguments at various points in the proof, and this is the reason for
our passage from the Weinstein setting to the Stein setting. It is not clear whether one
should expect to be able to generalize our arguments to apply directly to Weinstein
manifolds.

Note that in most applications of quantitative transversality techniques in symplec-
tic/contact geometry, the result in the integrable case requires only generic transversality,
and the passage from integrable to nonintegrable J is what necessitates quantitative
transversality. Here, quantitative transversality is needed in both the integrable and
nonintegrable settings (although indeed, one would need more quantitative transversality
in the nonintegrable case).

Besides Donaldson’s original paper [10], which is the best place to first learn the methods
introduced there, let us mention a few other papers where approximately holomorphic
techniques have been used to obtain results similar to Theorem 1.10. In addition to
constructing symplectic divisors [10], Donaldson also constructed Lefschetz pencils
on closed symplectic manifolds [11]. Auroux [2; 3] further generalized and refined
Donaldson’s techniques to 1—parameter families of sections and to high twists £ ® Lk
of a given Hermitian vector bundle E. In particular, he showed that Donaldson’s
symplectic divisors are all isotopic for fixed sufficiently large &, and that symplectic
four-manifolds can be realized as branched coverings of C P2. Ibort, Martinez-Torres
and Presas [17] obtained analogues for contact manifolds of Donaldson’s and Auroux’s
results, and these were used in Giroux [15] to construct open books on contact manifolds
in any dimension. Mohsen [19; 20] extended the techniques of Donaldson and Auroux to
construct sections whose restrictions to a given submanifold satisfy certain quantitative
transversality conditions. He also showed that this result implies both the uniqueness
theorem of Auroux on symplectic divisors and the contact theorem of Ibort, Martinez-
Torres and Presas. His main observation is that the quantitative Sard theorem applies
to real (not just to complex) polynomials. This plays an important role in the present
work; it makes it possible to obtain quantitative transversality for the restriction of a
holomorphic section to a real hypersurface.
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2 Review of complex geometry

We now provide for the reader a review of some classical results in complex geometry
which we need. Our specific target is the solution of the d”'—operator on Stein manifolds
via the L? methods of Hérmander [16] and Andreotti and Vesentini [1]. This will
be used later to construct the localized “peak sections” necessary for Donaldson’s
construction. The reader may refer to [10, Proposition 34] for an analogous discussion
in the case of compact Kihler manifolds.

2.1 Kaihler geometry

For a complex vector bundle E with connection d over a complex manifold M , we
denote by d’: EQQPY — EQQPT14 and d": EQQPY — E®QP4T! the complex
linear and complex conjugate linear parts of the exterior derivative d: E ® Qk
E ® QK1 When M is equipped with a Kihler metric and E is equipped with
a Hermitian metric, we let d’* and d”* denote the formal adjoints of d’ and d”
respectively, and we let A" :=d"*d' +d’'d"™ and A" :=d"*d" + d"d"* denote the
corresponding Laplacians.

Recall that on any holomorphic vector bundle with a Hermitian metric, there exists a
unique connection compatible with the metric and the holomorphic structure, called
the Chern connection.

Lemma 2.1 (Bochner—Kodaira—Nakano identity) Let E be a holomorphic Hermitian
vector bundle over a Kahler manifold. Then we have

-1 AL =ANg +[iO(E), Al

where ©(E) is the curvature of E and A is the adjointof L :==- Aw.

For a holomorphic Hermitian vector bundle E over a Kéhler manifold, there is an
induced Hermitian metric on E ® Q%9. The operator

dE®Q™ > E®QMM=EQ™eqQ"°
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further equips £ ® 2% with an anti-holomorphic structure. Together these induce a
Chern connection on E ® 299, We denote this connection by V = V' + V" where
V' =d’, and we denote the corresponding Laplacians by [0’ and O0”, where [0’ = A’.
Applying (2-1) to E ® Q%4 gives

=0

1
(2-2) O o0

[P +[iO(E ® Q%9), Al

Now since DlE@QM = A’ operating on E ® Q%4 we may combine (2-1) and (2-2)

to produce the following Weitzenbdck formula operating on E ® Q%4:

(2-3) Ay =00

reava T AOE Q%) — AiO(E).

We remark, for clarity, that the first composition is of maps EQQ%7 2 ERQ%I@Q !
and the second composition is of maps E ® %9 = E @ Q19+!, We have followed
Donaldson [9, page 36] in the derivation of this identity.

Lemma 2.2 (Morrey—Kohn—Ho6rmander formula) Let E be a holomorphic Hermitian
vector bundle over a Kihler manifold M . For any u € C2°(M, E ® Q%9), we have

(2-4) /|d”u|2—i—|d”*u|2:/|V”u|2—|—/(u,Ai@(E®QO’q)u)—(u,Ai@(E)u).

Proof By the definition of the adjoint, integrating by parts gives
(2-5) /|d”u|2+ |d"*u|? = /(u,A”u).
The same integration by parts with V in place of d gives

(2-6) /|V"u|2 :/(u,l:l"u).

Now we take the difference of these two identities and use (2-3) to obtain (2-4). O

2.2 L? theory of the d”-operator

The L2 theory that we review here is due to Hormander [16] and Andreotti and
Vesentini [1].

Lemma 2.3 Let E be a holomorphic Hermitian vector bundle over a complete Kéhler
manifold M . We consider sections u of E ® QP-1.

e Ifu,d”’u € L? (in the sense of distributions), then there exists a sequence
u; € CX such that (u;,d"u;) — (u,d"u) in L%.
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o Ifu,d”u,d"*u e L? (in the sense of distributions), then there exists a sequence
u; € C such that (u;, d"u;,d"*u;) — (u,d"u,d"*u) in L?.

Proof This is essentially a special case of Friedrichs’ result [14], which applies more
generally to any first order differential operator. We outline the argument, which is also
given in Hormander [16, Proposition 2.1.1] and Andreotti and Vesentini [1, Lemma 4,
Proposition 5].

We prove the first statement only, as the proof of the second is identical. Let u be
given. Composing the distance function to a specified point in M with the cutoff
function x > max(1 —ex,0), we get a function fe: M — R with sup| fe| <1 and
sup |dfe| < €, such that fe — 1 uniformly on compact subsets of M as € — 0. Using
these properties, it follows that feu — u in L? and that d”( feu) — d”u in L?. Since
M is complete, f is compactly supported. Hence we may assume without loss of
generality that u is compact supported.

Since u is compactly supported, we may use a partition of unity argument to reduce to
the case when u is supported in a given small coordinate chart of M . Now in a small
coordinate chart, choosing trivializations of the bundles in question, the operator d” is
a first order differential operator D with smooth coefficients. It can now be checked
(and this is the key point) that || D(u * @e) — Du * @c|l — 0, where ¢ := ¢ " @(x/¢€)
is a smooth compactly supported approximation to the identity. It follows that the
convolutions u * ¢ give the desired approximation of u by smooth functions of
compact support. i

Proposition 2.4 Let E be a holomorphic Hermitian vector bundle over a complete
Kihler manifold M . Fix q, and suppose that for all u € C2°(M, E ® 2%4), we have

(2-7) /|u|2§A/|d”u|2+|d”*u|2.

Then forany u € L*(M, EQQ%Y) satistying d"u=0, thereis £ € L>(M, EQQ%471)
satisfying d"§ = u and

(2-8) /|s|2 SA/ ul?

(d” is taken in the sense of distributions).

Proof We follow an argument from notes by Demailly [8, page 33, (8.4) Theorem].

We wish to find & such that d”& = u, or, equivalently, [(d"*¢,&) = [{(p,u) for all
@ € CX(M, E ®Q%9). We claim that the existence of such a & with [|£]*> < B is
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equivalent to the estimate

2
(2-9) ‘ / (w.u)| <B / d" g2

for all ¢ € CZ(M, E ® 2%9). Indeed, given (2-9), the map d"*¢ — [(p,u) on
d"™*(CX(M, E ® Q%)) is well-defined and L? bounded, and thus it is of the form
[{d"™* ¢, &) for a unique & in the closure of

d"™(CX(M,E®Q%) C L*(M,E Q%)
satisfying [|£|> < B. Thus we are reduced to showing (2-9) for B = 4 [|u|?.

To prove (2-9), argue as follows. Since L? convergence implies distributional conver-
gence, the kernel (in the sense of distributions) kerd” € L?(M, E ® Q%9) is a closed
subspace. Hence for any ¢ € C®°(M, E ® Q%9), we may write ¢ = @1 + ¢, where
@1 € kerd” and ¢, € (kerd”)*. Now since u € kerd”, we have

2-10) ‘[(w) 2 [t zs/|u|2-/|¢1|2.

Since ¢, L kerd” 2 imd”, it follows that ¢, € kerd”* (in the sense of distributions).
Hence

(2_11) [|d//(p1|2+|d//*§01|2=/|d//*(p|2.

Combining (2-10) and (2-11), we see that to prove (2-9) with B=A4 [ lu|?, it suffices
to show that

-12) [1oP =4 [ 1@ + 0ol
This is true by hypothesis (2-7) for ¢ € C2°(M, E ® Q°9), and hence by Lemma 2.3
it holds given just that ¢, d" ¢y, d"*¢, € L?. a

2.3 Stein manifolds and solving the d” —operator

Let V be a Stein manifold or a Stein domain. A smooth J—convex function ¢: V — R
induces a symplectic form wg := id'd”¢ and a Riemannian metric g4(X,Y) :=
wy(X,JY) (s0 hy := g4 —iwg is a Hermitian metric) whose distance function we
denote by dy(-,-). The function ¢ also gives rise to a holomorphic Hermitian line
bundle L? over V, namely the trivial complex line bundle C equipped with its standard
holomorphic structure d¢. and the Hermitian metric |- |y ¢ := e~2¢ |- |c. Then the
resulting Chern connection on L? is given by

(2-13) dre =dc—d'¢,
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with curvature O(L?) = d'd"¢ = —iw,. (Equivalently, L? is the trivial complex
line bundle equipped with its standard Hermitian metric and the holomorphic structure
dé + %d "¢, with resulting Chern connection d¢ + %i J*d¢. This is equivalent to the
first definition via multiplication by 29 J)

The following result (due to Hormander [16] and Andreotti and Vesentini [1]) allows
us to produce many holomorphic sections of L? for sufficiently J—convex ¢.

Proposition 2.5 For every Stein manifold V' with complete Kahler metric g, there
exists a continuous function c: V — R~ with the following property. Let ¢: V — R
be J —convex and satisty g4 > ¢ - g (pointwise inequality of quadratic forms). Then
for any u € L>(V,L? @ Q%4) (with ¢ > 0) satisfying d”u = 0, there exists £ €
L*(V,L? ® Q%971 satistying d"& = u and

(2-14) /IEIZS/IuIZ-

Proof By Proposition 2.4, it suffices to show the estimate

(2-15) / (d"ul? + |d"*ul? > / uf?

forall u e CX(V, L ® Q04). Applying the Morrey—Kohn—Hérmander identity (2-4)
to the left-hand side, it suffices to show the pointwise curvature estimate

(2-16) (u, Ai®(L @ Q%) u) — (u, Ni O(L)u) > |u|?.
Expanding O(L ® Q%9) = O(L) ® idgo.s +id; ® ©(2%9), it suffices to show that
(2-17) (u, Ai (O(L) @ id)u) — (u, Ai O(L)u) = (1 + |A]|O(Q%7)]) ul?.

We remark for clarity that the first composition is of maps L@ Q%7 2 L®Q%®Q !
and the second composition is of maps L ® Q%7 2 L ® Q19+ Let «;, ..., a,
denote the scaling factors associated to a simultaneous diagonalization of g and g,
meaning that |v,~|§¢ = oz,-|v,-|§, for a simultaneous orthogonal basis vy, ...,v,. We
may now calculate (see Voisin [25, Lemma 6.19])

n

(2-18) Ai(O(L) ®id)u = (Zai)u.

i=1
The operator Ai®(L) has an orthonormal basis of eigenvectors with eigenvalues
Y ey i forall 1 €{1,... n} with |[I|=n—q. Thus to ensure (2-17), it suffices to have
gmine; > 1+|A||®(2%9)|, which can be achieved by choosing ¢ = 1+|A| |®(2%9)]
since g > 0. a

Geometry & Topology, Volume 21 (2017)



Existence of Lefschetz fibrations on Stein and Weinstein domains 975

Lemma 2.6 Let ¢: (C",0) — R be a germ of a smooth J —convex function. For all
€ > 0, there exists a germ of a holomorphic function u: (C",0) — C satistying

(2-19) IRe u(z) — [p(2) — 3dp(z.0)*]| < €-dy(z,0)
in a neighborhood of zero.
Proof The statement depends only on ¢ up to second order, so we may assume

without loss of generality that ¢ is a real degree two polynomial on C”. Any real
polynomial on C” may be expressed uniquely as a polynomial in z; and z; with

coefficients ¢; ;7,7 € C satisfying Citoig oo = Ciyooig 1y - I the case
of degree two, we thus have
(2-20) ¢(z)=a+» Reazi+» Rea;jzizj + Y bijziZj,

i L,j L,j

where a € R, a;,a;j,b;j € C and b;j = E The statement is also unaffected by adding
the real part of a holomorphic function to ¢, so we may assume that a = a; = a;; = 0.
Finally, the statement is unaffected by precomposing ¢ with a germ of biholomorphism
of C" near zero, so we may apply an element of GL, (C) so that the positive definite
Hermitian matrix (b;;) becomes the identity matrix. Hence we have without loss of
generality that ¢(z) = |z|?, for which we may take u = 0. a

3 Donaldson’s construction

We now prove Theorem 1.7.

Let us begin by fixing some notation/terminology. We fix a Stein manifold ¥V and
a smooth exhausting J—convex function ¢: ¥V — R. We let V := {¢ < 0}, so
dV = {¢=0}. We denote by g := g4 the induced metric on V, with associated
distance function d := dg4. We denote by L := L? the associated line bundle. For any

positive real number k, we let
8k = 8kp = kg, di:=dyy= k2d and LK:=Lk?

In what follows, we treat k as a fixed real parameter, and most statements — in particular,
the notations O(-) and o(-) —are meant in the limit k£ — oo (ie for k sufficiently
large). Most implied constants are independent of (7, ¢) (unless stated otherwise),
however how large k must be may (and almost always will) depend on (V, ¢).

Near any point po € V, there exist a holomorphic coordinate chart W: (U, 0) —
(V, po), where U € C" is an open subset containing zero, and a holomorphic function
u: W(U) — C, satisfying
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e B(r)CU for r~! =0(1),

o U*p =qgRez; + O(|z]?) if po € IV, where a = |d¢(po)|,
s Wrg=gcn+0(z]),

© ¢(p)—3d(p, po)* <Reu(p) < ¢(p)— 5d(p, po)*.

(For the existence of u, we appeal to Lemma 2.6.) There exists such a triple (U, ¥, u)
for which the implied constants above are bounded as p, varies over any compact
subset of V. It is convenient to also have at our disposal the rescaled coordinates
Wi (B(2),0) = (V, po) defined by Wy (-) = lI!(k_% -) and the rescaled function ku
(for sufficiently large k), which satisfy

o Wrp=ak 3Rezy + O(k™"|z[?) if po € IV, where a = |de(po)|,

. Wigk=gon+ Ok z)),

© k¢(p)—3di(p, po)* =Reku(p) <kd(p)— 3di(p, po)*.
Now the section o := e2%¥ of LK satisfies
(3_1) e—%dk(P:pO)Z E |0—(p)| S e_édk(p:p())z
over its domain of definition W(U). This “reference section” provides a convenient
local holomorphic trivialization of L* over W (B(2)). We also need holomorphic
sections of LK defined on all of V which satisfy a decay bound similar to (3-1) over

{¢ < 1} and which approximate o over W (B(2)). That such sections exist is the
content of the following lemma.

Lemma 3.1 Let (V,¢) be as above. Fix po € {¢ = 0} and consider the associated
coordinates ¥V and reference section o as above. There are holomorphic sections
0,01,...,00. V — Lk satisfying

5 (p)| < e~ 5% (P:20)* 1 =€k over ¢ < 1},

e |5,(p) = e~ 5k (P.P0)* | o€k oyer {p<1}forr=1,...,n,
o |(5/0)o W —1| <e~¢k over B(2),
o |(6/0)oWy —z,| <e Kk over BQ2) forr =1,....,n,

for some € > 0 depending on (V ,¢) and sufficiently large k .
Proof Fix a smooth cutoff function f: ¥V — [0, 1] supported inside W(U) which

equals 1 in a neighborhood of py. Now ||d”(Bo )|z < e~¢¥ in the fixed metric g for
sufficiently large k£ and some € > 0 depending on (V, ¢).
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Fix a smooth exhausting J —convex function ¢;: ¥ — R which coincides with ¢ over
{¢ <2} and for which g4, > c-g for sufficiently large k (for ¢ as in Proposition 2.5).
We apply Proposition 2.5 to (V, g, k¢;) and conclude that there exists a section &
of L¥ for which Bo + £ is holomorphic and ||e%k'(¢_¢‘)§||2 < ||d"(Bo)ll, < e<k.

Let us now show that ¢ := fo + & satisfies the desired properties. Over the set
where B8 = 1, the section £ is holomorphic. In particular, the function (§/0) o Wy, is
holomorphic over B(3) (for sufficiently large k). We have [[(§/0) oWk | p(3),2 < o<k,
from which it follows that |(£/0) o Wy | < ek over B(2) (for a possibly smaller € > 0
and larger k) since (£/0) oWy is holomorphic. Thus we have |(5 /o) o Wy —1| < e~k
over B(2).

Now let p € {¢ <1} and consider the associated coordinates W’ and reference section ¢’
as above. We have [(G/0”) o ¥} | p@3),2 = O(e_é”l"(p’l"’)2 + e~<k), from which it
follows that

[§(p)| = O™ 3% PP 4 o=k)

(since (G/0") o W} is holomorphic), which gives the desired decay bound on 5.

The argument for {6, };<,<, is identical, with (z, o \III:I) -0 in place of o. o

It is helpful to rephrase Theorem 1.7 as follows in terms of the line bundle L* and the
rescaled metric gz on V.

Theorem 3.2 Let V be a Stein manifold, equipped with a smooth exhausting J —
convex function ¢: V — R. For every sufficiently large real number k , there exists a
holomorphic section s: V — L* such that

e Is(p)=1forpefp=1j,
e |s(p)|+ |ds(p)|$| >n for p € {¢p =0} (with ds measured in the metric induced
by k),

where & denotes the Levi distribution on {¢ = 0} € V', and n > 0 is a constant
depending only on the dimension of V.

Proof The proof follows Donaldson [10, Section 3], as simplified by Auroux [4].

Part I Fix a maximal collection of points pi,..., py € dV whose pairwise dy—
distances are > 1. Since this collection is maximal, the unit dj —balls B; centered
at the p; cover dV . The dj —balls of radius % centered at the p; are disjoint, so by
volume considerations, the total number of points satisfies N = 0(17’ ) (k2"=1), where

n is the complex dimension of V.
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We now specify the form of the section s: ¥ — L¥ we will construct. For each p;,
we will define a holomorphic section s;: V — Lk satisfying the bound

(3-2) Isi(p)] < e"3UPPD* L o=k for pefp <1}

for some € > 0 depending on (V, ¢), and we will let

N
(3-3) 5= Zsi.

i=1

Let us observe immediately that this bound on |s;| implies that

N
s(p) =Y e slk(popi) ek

i=1
~ [ e_édk(PaPO)zdgk(po) + 0(17 ¢)(k2n—le—€k) — 0(1)
v ’

for p € {¢ < 1}. In particular, this ensures the first condition |s(p)| <1 (after dividing
by a constant factor depending only on 7 = dim V).

Remark 3.3 (C°-bounds imply C*—bounds for holomorphic functions) For a
holomorphic function f defined on B(1 +¢€) € C”, we have

(3-4) /ey < ane(1+ 22 )1/ Tcowa ey

(Indeed, we have | D¢ f(0)] < Cnsupp() S by the Cauchy integral formula, and
applying this to balls of radius € > 0 along with the maximum principle yields the
above estimate.)

For simplicity of notation, we have stated the upper bounds in (3-1), Lemma 3.1, (3-2),
and (3-5) below only in the C°—norm, though of course we will often need to use
the resulting bounds on higher derivatives implied by (3-4). If we were working in
the approximately holomorphic setting, we would need to explicitly bound the higher
derivatives up to some appropriate fixed finite order.

Definition 3.4 A section s: V — L¥ will be called n—transverse at p € dV if and
only if |s(p)| + |ds( p)| } > 1. The property of being n—transverse is obviously stable
under C'! —perturbatlon and for holomorphic sections it is in fact stable under C°—
perturbation by (3-4) with £ = 1, as long as the perturbation is defined in a fixed
neighborhood of p.
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Remark 3.5 This particular quantitative transversality condition was first considered
by Mohsen [20], and is closely related to those used by Donaldson and Auroux.
Donaldson [10] called a section s: V — Lk n—transverse at p if and only if either
|s(p)| = n or |ds(p)| = n (this is equivalent, up to a constant, to requiring that
ls(p)|+1ds(p)| = n). Mohsen [20] generalized this notion to quantitative transversality
relative to a given submanifold Y . Specifically, he called a section n—transverse relative
to Y if and only if either [s(p)| = n or ds(p)|;y has aright inverse of norm < n1L.
In the case of the submanifold 0V C V' and an (approximately) holomorphic section s,
this condition is equivalent, up to a constant, to our formulation |s(p)| + |ds(p)| S' >
(see [20, Section 2]). Thus, Theorem 3.2 can be thought of as a holomorphic version
of Mohsen’s transversality theorem for hypersurfaces.

Part I Our goal is to construct sections s; satisfying the decay bound (3-2) so that s
is n—transverse over dV for some n > 0 depending only on 7.

We will define the sections s; in a series of steps, at each step achieving (quantitative)
transversality over some new part of dV', while maintaining (quantitative) transversality
over the part of dV already dealt with. The most naive version of this procedure,
choosing s; to achieve transversality over B; while maintaining transversality over
By, ..., B;_1, runs into trouble, essentially due to the rather large number of steps.
Instead, we first construct a suitable coloring of the points p;, and then in the inductive
procedure we choose the s; for the p; of a particular color simultaneously (so there is
one step per color). For this to work, we must ensure that points of the same color are
sufficiently far apart.

Let D < oo be a (large) positive real number, to be fixed (depending only on n) at
the end of the proof. We color the p; so that the dj—distance between any pair of
points of the same color is at least D. More precisely, we construct such a coloring by
iteratively choosing a maximal collection of as yet uncolored points p; with pairwise
distances > D and then coloring this collection with a new color. Because each color
was chosen from a maximal collection of as yet uncolored points, it follows that the ball
of radius D centered at any point colored with the final color contains points of every
other color. Hence by volume considerations, it follows that the total number of colors
M is O(D?*"~1). Let us denote the coloring functionby ¢: {1,... , NY—{1,..., M}.

Part III Let p < co and 4 < oo be (large) positive real numbers, to be fixed
(depending only on n) later in the proof. To be precise, we must first choose A4
(depending on n), then choose p (depending on n and A4), and finally choose D
(depending on n, 4, and p).

It suffices to construct sections s; so that:

Geometry & Topology, Volume 21 (2017)



980 Emmanuel Giroux and John Pardon

e Forall je{l,...,M} and c(i) = j, we have

(3-5) |Sz([7)| < %nj—l [e_édk(PsPi)z + e—ek] for pe {¢ < 1}
e Forall je{l,..., M}, we have
. N N
(3-6) s/ = Z s; 1s pj—transverse over Xj 1= U B;.
i=1;c()<j i=1;c()<j

Here % =10 > 11 >--->np > 0 are defined by n; = n;_;|logn;j_1|~? (the reason
for this particular choice will become apparent later).

We construct such sections s; by induction on j. More precisely, it suffices to sup-
pose that sections s; are given for ¢(i) < j — 1 (satisfying the above in the range
{1,...,j —1}) and to construct sections s; for ¢(i) = j (satisfying the above in the

range {1,...,j}).

Part IV As a first step, let us fix an index i with ¢(i) = j, and construct a section s;
satisfying (3-5) so that s/ =1 4 s; is nj—1|logn;—1|~ P —transverse over B; (for some
p < oo depending on n and A).

Fix a triple (U, W, u) based at p; € dV (as discussed at the beginning of this section),
with rescaling Wy and reference section o = e/2k% We will use the local coor-
dinates Wy and the reference section o to measure the transversality of s/ =1 4 ;
over B;. Precisely, we claim that it suffices to construct s; satisfying (3-5) so that

sj_1+s,-

(3-7) oWy

is nj_1|lognj_ |~ P —transverse over B(%) N ‘11;1 (V). Indeed, o is bounded above
and below by (3-1), so using (3-4) with £ = 1 this implies that the section s/ =1 4 s;
is %n i—1/logn;—1|~P —transverse over B; for some constant C < oo depending only
on n (which we can absorb into the last factor by increasing p).

Now as k — oo, the real hypersurface B(%) ﬂlIl;1 (0V') approaches B (%) N{Rez; =0}
in C®, uniformly over the choice of p; € dV. Since (3-7) is bounded uniformly
over B(2), using (3-4) with £ =2 we see that n—transversality over B (%) N{Rez; =0}
implies (n — o(1))—transversality over B(%) n ‘111:1 (V) (of course, the condition of
n—transversality over a real hypersurface is with respect to its own Levi distribution).
Since the number of colors M is bounded independently of k, it follows that n;_; is
bounded away from zero as k — oo. Hence it suffices to show that the section (3-7) is
nj—1|logn;—1|~ P —transverse over B(%) N{Rez; = 0} (we again lose a constant on
the transversality estimate, but as before it can be absorbed into the exponent p).
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For any vector w = (wq, W3, ..., wy,) € C", we consider the holomorphic function on
B(2) given by
571

(3-8) oWy +wo+ wazy 4+ -+ wWyzy.

A quantitative transversality theorem, Proposition 4.1 (whose proof we defer to later)
says that for % > 1> 0, there exists a vector w = (wg, W, ..., wy) € C" with |w| <n
such that (3-8) is n|log n|~? —transverse over B(%) N{Rez; = 0} (for some p < oo
depending only on n). This fact that with a perturbation of size n we can achieve
n|log n|~? —transversality is what forces the choice of recursion n; =n;_;[lognj_i|~?
declared above.

Let ¢ and {G,}1<r<, denote the “peak sections” based at pg = p; from Lemma 3.1.
We define s; := woG + w02 + -+ + wy,0, (for w to be determined), so now (3-7)
equals

j—1

3-9) o\I/k+w0£o\Pk+w220\Pk+---+wn@o\llk.

o o o
There is a constant C < co (depending only on 7) such that for |w| < A¥_C’7 j—1, the sec-
tion s; satisfies the decay bound (3-5). By Proposition 4.1, there exists |w| < A¥_C’7 -1
for which (3-8) is n;_;[lognj—|~? —transverse over B(%) N{Rez; = 0} (absorbing
constants into p). It follows that (3-9), so also (3-7), is (n;—1 [log nj—1 | —O(e~<k)) -
transverse over B(2) N {Rez; = 0}, which is enough.

Part V. We have constructed sections s; for ¢(i) = j with the property that s/ =1 4 s;
is nj_1|logn;j—1|~P —transverse over B; (for some p < oo depending on n and A).
Now let us argue that with this choice of sections, s/ is n;—transverse over X; (for
some possibly different p < oo depending on n and A).

We know that s/ differs from s/~! over X;_; by O(%n;_1) and that s/~ is n;_; -
transverse over X;_;. Hence s/ is (1—O(%))n;_;—transverse over X;_;, which
gives 7;—transversality over X;_; once A and p are large.

We know that s/ differs from s/ ~!+s; over B; by O(nj_le_éDz) and that s/ =1 4s; is
nj—1llogn;_1|~P —transverse over B;, so s7 is (mj—1llognj—1 |_1’—0(r]j_1e_$D2))—
transverse over B;. This gives n; —transversality over B; (increasing p to make up for
the lost constant factor) as long as we have

1

2 1 _
(3-10) e oP = gllogn;—17?

for some constant B < oo depending only on 7.
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Hence we conclude that the entire construction succeeds as long as (3-10) holds for
Jj=1,..., M. Itis elementary to observe that the recursive definition of n; yields
rough asymptotics 1; ~ e~¢J102J (with ¢ depending on p). Thus it suffices to ensure
that, for some B’ < oo depending on n and p,

(3-11) e~9D? < %(M log M)~P.

We observed earlier that M = O(D?"~1), so this inequality is satisfied once D is
sufficiently large. a

Remark 3.6 A common theme in 4—principle arguments a la Gromov, in which we
want to construct some structure globally on a given manifold X, is to extend the
desired structure to larger and larger subsets --- € X;_{ € X; C --- in a series of
steps. This reduces the desired result to an extension problem from X;_; to X; (see
for example Eliashberg and Mishachev [13]). For example, X; is usually taken to
be (an open neighborhood of) the j—skeleton of X (under a fixed triangulation), the
point being that now the ropology governing the extension from X;_; to Xj is easy to
understand. Donaldson’s method, used in the proof above, employs a similar inductive
procedure, but where one instead controls the geometry governing the extension from
Xj_1 to Xj (the key point being that we can do local modifications independently at
any collection of points which are sufficiently far away from each other).

4 Quantitative transversality theorem

We now prove the quantitative transversality theorem (Proposition 4.1), which was
the key technical ingredient in Donaldson’s construction, as used in the proof of
Theorem 3.2. The statement and proof are similar to Auroux [3, Section 2.3]; see
also [4]. A key ingredient is an upper bound on the volume of tubular neighborhoods
of real algebraic sets (Lemma 4.4) due to Wongkew [27].

Proposition 4.1 Let B(1) € B(1 4+ ¢) € C” be the balls centered at zero. Fix a holo-
morphic function f: B(1+4¢€) — C with | f| < 1. For a vector w = (wg, W3, ..., Wy)
in C", we define

4-1) Jwi=f 4w+ wrzy+ -+ wyzy.
For all % > 1 > 0, there exists a vector w € C" satisfying |w| < n|logn|? such that
| fw @)+ 1dfw(2)|g| >n for z € B(1) with Rez; =0,

where £ denotes the Levi distribution of {z € B(1) : Rez; = 0}, and p < oo depends
only on the dimension n and € > 0.
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Remark 4.2 A stronger version of Proposition 4.1 (a true quantitative Sard theorem
where we only perturb f by a constant, ie w, =--- = w, =0 above) is due to Donaldson
[10; 11] and Mohsen [20] with a rather more difficult proof. Mohsen’s result could be
used in Section 3 in place of Proposition 4.1, resulting in a simpler definition s; := w7,
eliminating the need for the remaining G5, ..., d,. We have chosen instead to present
the argument following Auroux’s observation that the weaker Proposition 4.1, whose
proof is more elementary, is sufficient for the argument in Section 3.

Proof For a given z € B(1) with Rez; = 0, the quantity | fy,(2)] + !dfw(z)|g‘
vanishes for exactly one value of w. The function F: {z € B(1) :Rez; =0} - C"
which associates to a given z this unique w is the restriction of a holomorphic function
F: B(1+¢)— C". Explicitly,

af af of af
(4-2) F(z)—( [zt 82’1,—@,...,_5).
In fact, the quantity | f,, (2)| + |dfw(2)] §| is bounded below by (a constant depending
only on 7, times) the distance from w to F(z). Hence it suffices to show that

B(8)\ Ny(F({z € B(1) :Rezy = 0}))
is nonempty for § = n|log M.

We may approximate F to within error < 7 on B(1) by a polynomial F of degree
O(|logn|). Indeed, the error in the degree m Taylor approximation of F is expo-
nentially small in m, uniformly over B(1), since F is holomorphic and bounded
effectively on B(l + %) by (3-4) with £ = 1. To see this, observe that (by the U(n)
symmetry) it is enough to prove an effective exponential upper bound on the error over
B(1)N(C x{0}"~1), and this is just the well-known singl