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Rational cohomology tori

OLIVIER DEBARRE

ZHI JIANG

MARTÍ LAHOZ

APPENDIX BY WILLIAM F SAWIN

We study normal compact varieties in Fujiki’s class C whose rational cohomology
ring is isomorphic to that of a complex torus. We call them rational cohomology tori.
We classify, up to dimension three, those with rational singularities. We then give
constraints on the degree of the Albanese morphism and the number of simple factors
of the Albanese variety for rational cohomology tori of general type (hence projective)
with rational singularities. Their properties are related to the birational geometry of
smooth projective varieties of general type, maximal Albanese dimension, and with
vanishing holomorphic Euler characteristic. We finish with the construction of series
of examples.

In an appendix, we show that there are no smooth rational cohomology tori of general
type. The key technical ingredient is a result of Popa and Schnell on 1–forms on
smooth varieties of general type.

32J27, 32Q15, 32Q55; 14F45, 14E99

Introduction

Given a compact complex manifold, one fundamental problem is to determine how
much information is encoded in its underlying topological space.

Hirzebruch and Kodaira [24] proved that for n odd, any compact Kähler manifold which
is homeomorphic to Pn is actually isomorphic to Pn ; see also Morrow [32, Theorem 1].
A stronger property is actually conjectured: it should be sufficient to assume that the
rings H �.X;Z/ and H �.Pn;Z/D ZŒx�=.xnC1/ are isomorphic and c1.TX / > 0 to
deduce that X is isomorphic to Pn (this is known in dimensions at most 6; see Fujita
[20, Theorem 1], Libgober and Wood [31, Theorem 1] and Debarre [14]).

Catanese [8, Theorem 70] (see also Theorem 1.1) observed that complex tori X satisfy
this stronger property: they can be characterized among compact Kähler manifolds by
the fact that there is an isomorphism

(1)
V
�
H 1.X;Z/ ��!H �.X;Z/
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of graded rings. The Kähler assumption is essential since one can construct non-Kähler
compact complex manifolds (hence not biholomorphic to complex tori) that satisfy (1)
(see Example 1.6). If we replace (1) with an isomorphism

(2)
V
�
H 1.X;Q/ ��!H �.X;Q/

of graded Q–algebras, Catanese [8, Conjecture 71] asked whether this property still
characterizes complex tori.

We say that a normal compact variety X in Fujiki’s class C is a rational cohomology
torus if it satisfies (2). The main objective of this article is to study the geometry of
these varieties: give restrictive properties and construct examples (some smooth) which
are not complex tori, thereby answering Catanese’s question negatively.

The Albanese morphism of a smooth rational cohomology torus X is finite (see
Catanese [8, Remark 72]). A result of Kawamata (Remark 1.8) then says that there is
a morphism IX W X !X1 which is an Iitaka fibration for X (see Section 1.1 for the
definition) such that X1 is algebraic and has again a finite morphism to a torus. We
prove that X1 is also a rational cohomology torus, but possibly singular. This leads to
the following result, proved in Section 1.

Theorem A Let X be a normal compact class-C variety with a finite morphism to a
torus. Consider the sequence of Iitaka fibrations

X
IX
�!X1

IX1
��!X2! � � � !Xk�1

IXk�1
���!Xk;

where X1; : : : ; Xk are normal projective varieties. Then X is a rational cohomology
torus if, and only if, Xk is a rational cohomology torus. Moreover,

� either Xk is a point and we say that X is an Iitaka torus tower;

� or Xk is of general type (of positive dimension).

It is easy to construct smooth projective surfaces which are Iitaka torus towers but not
complex tori (Example 1.11). Since the product of two rational cohomology tori is
again a rational cohomology torus, this already gives a negative answer to Catanese’s
question in any dimension at least 2.

The next question is whether all rational cohomology tori are Iitaka torus towers. By
Theorem A, this is the same as asking whether there exist (possibly singular) projective
rational cohomology tori of general type. This reduces our problem to the algebraic cat-
egory; however, the price we have to pay is that we need to deal with singular varieties.
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Rational singularities turn out to be the suitable kind of singularities to work with,
because they are stable under the construction of the sequence of Iitaka fibrations
of Theorem A. Moreover, any desingularization of a projective rational cohomology
torus of general type with rational singularities has maximal Albanese dimension and
vanishing holomorphic Euler characteristic (Proposition 1.17). These varieties were
studied by Chen and Jiang [12] and Chen, Debarre and Jiang [9]. Building on these
results, we give a classification, in dimensions up to three, of rational cohomology tori
with rational singularities.

Theorem B Let X be a compact class-C variety with rational singularities.

(1) If X is a surface, X is a rational cohomology torus if, and only if, X is an Iitaka
torus tower.

(2) If X is a threefold, X is a rational cohomology torus if, and only if,
– either X is an Iitaka torus tower;
– or X has an étale cover which is a Chen–Hacon threefold (X is then singular,

of general type).

(3) Starting from dimension 4, there exist smooth rational cohomology tori that are
not Iitaka torus towers.

This theorem is proved in Section 2. Chen–Hacon threefolds were constructed in [11,
Section 4, Example] (see also Example 2.1 and Proposition 2.2). The n–folds we
construct for (3) have Kodaira dimension any number in f3; : : : ; n�1g. In Corollary A.2
of the appendix, William Sawin shows that smooth rational cohomology tori of general
type do not exist (but we construct in Example 4.4 singular rational cohomology tori
of general type in any dimension at least 3).

After this classification result, we focus on giving restrictions on rational cohomology
tori of general type.

Theorem C Let X be a projective variety of general type with rational singularities.
Assume that X is a rational cohomology torus, with Albanese morphism aX . There
exists a prime number p such that p2 jdeg.aX /.

Moreover, if deg.aX / D p2 , the morphism aX is a .Z=pZ/2–cover of its image
(Corollary 3.8).

We deduce Theorem C and Corollary 3.8 from the analogous restrictions on the degree
of the Albanese morphism of a smooth projective variety X of general type, of maximal
Albanese dimension and with �.X; !X /D 0 (Theorems 3.6 and 3.7). Theorem 3.6 is
probably the deepest result of this article and a key step in its proof is the description
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of minimal primitive varieties of general type with �D 0 (Theorem 3.4), primitive in
the sense that there exist no proper subvarieties with �D 0 through a general point,
and minimal with respect to the degree of birational factorizations of the Albanese
morphism (Definition 3.2). The most difficult part of the proof of Theorem 3.6 is to
realize these varieties as Galois quotients of products of lower-dimensional varieties
(Lemma 3.5).

Continuing with the idea of giving constraints to the existence of rational cohomology
tori of general type, we prove the following condition on the number of simple factors
of their Albanese varieties.

Theorem D Let X be a projective variety of general type with rational singularities.
Assume that X is a rational cohomology torus, with Albanese morphism aX W X!AX ,
and let p be the smallest prime divisor of deg.aX /. Then AX has at least pC1 simple
factors.

Section 4 is devoted to the construction of examples. First, we construct in Example 4.1,
for each prime p , minimal primitive varieties X of general type of dimension pC 1
with �.X; !X /D 0 whose Albanese morphisms are surjective .Z=pZ/2–covers of a
product of pC 1 elliptic curves; they are finite Galois quotients of a product of pC 1
curves. These examples show that the structure of primitive varieties with �D 0 is
much more complicated than expected by Chen and Jiang [12] (see Remark 4.2).

We then use techniques of Pardini [33] to produce (singular) rational cohomology
tori of general type in any dimension at least 3 (Examples 4.3 and 4.4). The first of
these examples shows that the lower bound on the degree of the Albanese morphism
in Theorem C is optimal, and so is the lower bound on the number of factors of the
Albanese variety in Theorem D.

The article ends with a series of examples of nonminimal primitive fourfolds with
�D 0 whose Albanese variety has 4 simple factors and whose Albanese morphism
has degree 8.

Notation We work over the complex numbers. A (complex) variety is reduced and
integral (and possibly singular; manifolds are smooth). A variety is in the (Fujiki)
class C if it is compact and bimeromorphic to a compact Kähler manifold (Fujiki [17,
Definition 1.2] and Ancona and Gaveau [2, Part I, Section 7.5]).

A projective variety is of general type if a (hence any) desingularization is of general
type, ie has maximal Kodaira dimension.

Given a compact Kähler manifold X , we denote by AX its Albanese torus and by
aX W X ! AX its Albanese morphism. Given a complex torus A, we denote by yA its
dual.
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A proper morphism X ! Y between normal varieties is a fibration if it is surjective
with connected fibers; it is birationally isotrivial if the general fibers are all birationally
isomorphic to a fixed variety F . When X and Y are algebraic, this is equivalent
to saying that after a finite (Galois) base change Y 0 ! Y , the product X �Y Y 0 is
birationally isomorphic, over Y 0, to F �Y 0 (Bogomolov, Böhning and von Bothmer [4]).

Acknowledgements We thank Fabrizio Catanese for explaining [8, Conjecture 72]
during a talk at the IMJ-PRG–ENS algebraic geometry seminar. This was the starting
point of this article. It is also a pleasure to thank Lie Fu, Sándor Kovács, Stefan
Schreieder and Claire Voisin for useful conversations and comments, and an anonymous
referee for her or his suggestions. Lahoz worked on this article during his stay at IMPA
(Brazil) and he is grateful for the support he received on this occasion. Lahoz is partially
supported by MTM2015-65361-P.

1 Catanese’s theorem and question

Catanese [8] proved the following topological characterization of complex tori.

Theorem 1.1 [8, Theorem 70] A compact Kähler manifold X is biholomorphic to a
complex torus if, and only if, there is an isomorphism

(3)
V
�
H 1.X;Z/ ��!H �.X;Z/

of graded rings.

Let us recall the proof. The Albanese map aX W X ! AX induces an isomorphism
a�1X W H

1.AX ;Z/
�
�!H 1.X;Z/ and (3) then implies that a�X W H

�.AX ;Z/!H �.X;Z/
is also an isomorphism. Set n WD dim.X/; that a�nX W H

2n.X;Z/ ��!H 2n.AX ;Z/ is
an isomorphism implies that aX is birational. Moreover, since we have an isomorphism
of the whole cohomology rings and X is Kähler, aX cannot contract any subvariety
of X and is therefore finite. Thus, aX is an isomorphism.

If we replace (3) with an isomorphism at the level of rational cohomology, Catanese
already observed that the Albanese morphism is still surjective and finite [8, Remark 72].

Definition 1.2 Let X be a normal compact class-C variety. We say that X is a rational
cohomology torus if there is an isomorphism

(�X )
V
�
H 1.X;Q/ ��!H �.X;Q/

of graded Q–algebras.

We also give an a priori slightly different definition.
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Definition 1.3 Let X be a normal compact class-C variety and let f W X ! A be a
morphism to a torus. We say that X is an f–rational cohomology torus if f induces
an isomorphism

(�f ) f �W H �.A;Q/ ��!H �.X;Q/

of graded Q–algebras.

Condition .�f / certainly implies condition .�X /. But because of singularities, the
converse is a priori not clear. However, we show that Definitions 1.2 and 1.3 are in fact
equivalent.

Proposition 1.4 Let X be a normal compact class-C variety. Assume that X is a
rational cohomology torus. There exists a finite morphism f W X ! A onto a complex
torus such that X is an f–rational cohomology torus. In particular, the Hodge structures
on H �.X/ are pure.

Proof Set n WD dim.X/. There are functorial mixed Q–Hodge structures on H �.X/
for which the cup product

V2n
H 1.X/! H 2n.X/ is a morphism of mixed Hodge

structures [18, Proposition (1.4.1); 2, Part II, Theorem 3.4]. Since X is compact,
H 2n.X/ is a 1–dimensional pure Hodge structure, hence h1.X/D 2n, W0H 1.X/D 0

and H 1.X/ carries a pure Hodge structure. Therefore, Hk.X/ '
Vk
H 1.X/ has a

pure Hodge structure for each k 2 f0; : : : ; 2ng.

Let �W X 0!X be a resolution of singularities with X 0 Kähler. Since H 1.X/ carries
a pure Hodge structure, the pullback map ��W H 1.X/!H 1.X 0/ is injective. Con-
sidering the Albanese morphism aX 0 W X

0! AX 0 , we note that a�X 0 W H
1.AX 0 ;Q/!

H 1.X 0;Q/ is an isomorphism. Thus H 1.AX 0/ has a sub-Hodge structure which is
isomorphic to H 1.X/. Therefore, there exists a quotient � W AX 0 ! A of complex
tori such that g�H 1.A/ D ��H 1.X/ as sub-Hodge structures of H 1.X 0/, where
g WD �aX 0 W X

0 ! A. We then have ��Hk.X;Q/ D g�Hk.A;Q/ as subspaces of
Hk.X 0;Q/.

We claim that g contracts every fiber of �. Otherwise, let F be an irreducible closed
subvariety contained in a fiber of � and assume dim.g.F // > 0. Let F 0 ! F be
a desingularization with F 0 Kähler and let t W F 0 ! F ,! X 0 be the composition.
Let ! 2 g�H 2.A;C/ � H 2.X 0;C/ be the pullback of a Kähler form on A. Since
dim.gt.F 0// > 0, the form t�! 2H 2.F 0;C/ is nonzero. This is a contradiction, since
! is in ��H 2.X;C/ and �t.F 0/ is a point.

Therefore, g contracts every fiber of �. Moreover, � is birational and X is normal,
hence ��OX 0 D OX . Thus the morphism gW X 0 ! A factors through a morphism
f W X ! A and X is an f–rational cohomology torus.
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Remark 1.5 If X is a rational cohomology torus, Proposition 1.4 provides a finite
morphism f W X!A which has a universal property (up to translations) for morphisms
from X to complex tori. We will call f the Albanese morphism and A the Albanese
variety of X .

The hypothesis “X Kähler” in Theorem 1.1 is essential: in dimension at least 3, the
topological characterization of tori is not true without this hypothesis, as we show in
the following example, whose origins can be traced to [3, page 163] (see also [39,
Example 5.1]).

Example 1.6 (a non-Kähler integral cohomology torus) Let E be an elliptic curve,
let L be a very ample line bundle on E and let ' and  be holomorphic sections of L
with no common zeroes on E . Set

J1 WD

�
1 0

0 1

�
; J2 WD

�
0 1

�1 0

�
; J3 WD

�
0
p
�1

p
�1 0

�
; J4 WD

�p
�1 0

0 �
p
�1

�
:

Since det
�P4

iD1 �iJi
�
D
P4
iD1 �

2
i , the group

� WD

4X
iD1

ZJi

�
'

 

�
is a relative lattice in the total space of the rank-2 vector bundle V WD L˚L over E .
The quotient M WD V=� is a complex manifold with a surjective holomorphic map
� W M!E . By construction, � is smooth, each fiber of � is a complex 2–dimensional
torus and its relative canonical bundle !M=E is ��L�2 .

One checks that M is diffeomorphic to a real torus, hence H �.M;Z/D
V
�
H 1.M;Z/,

but M is not a complex torus, since it is not Kähler: if it were, ��!M=E would be
semipositive [19, Theorem (2.7)].

Answering a question of Ottem, we note that the hypothesis that
V
�
H 1.X;Q/ '

H �.X;Q/ is a ring isomorphism is crucial to get a finite morphism to an abelian
variety: if we only assume that the Hodge numbers of X are those of a torus, the
Albanese morphism is not even necessarily finite as we show in the following example,
though strong constraints on these morphisms were found in [13].

Example 1.7 (a surface with the Hodge numbers of a torus but nonfinite Albanese
map) Let �W D! C be a double étale cover of smooth projective curves, where C
has genus 2, and let � be the associated involution of D . Let E be an elliptic curve and
let � be the involution of E given by multiplication by �1, with quotient morphism
�0W E! P1 . Let S WD .D �E/=h� � �i be the diagonal quotient. The surface S is
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smooth and its Hodge numbers are

1

2 2

1 4 1

Indeed, we have

��OD DOC ˚L�1; where L 2 Pic0.C / is a 2–torsion point,

�0�OE DOP1 ˚OP1.�2/:

If we denote by gW S ! C �P1 the natural double cover, we have

g�OS DOC�P1 ˚ .L
�1�OP1.�2//;

g��
1
S D .!C �OP1/˚ ..!C ˝L/�OP1.�2//˚ .OC �!P1/˚ .L

�1�OP1/;

g�!S D !C�P1 ˚ ..!C ˝L/�OP1/:

Note that the Albanese variety of S and the Jacobian J.C / are isogenous and that the
Albanese morphism of S contracts the elliptic curves E that are the fibers of S ! C .

1.1 Iitaka torus towers

By Proposition 1.4, studying rational cohomology tori is equivalent to studying f–
rational cohomology tori. For an f–rational cohomology torus X , the property .�f /
implies, since X is Kähler, that f is finite and surjective. A theorem of Kawamata
describes Iitaka fibrations for varieties with a finite morphism to a torus.

Recall from [38, Theorem 5.10] that given a normal compact complex variety X of
nonnegative Kodaira dimension �.X/, there exists a proper modification X� ! X

(with X� smooth) and a fibration IX W X�! Y � such that dim.Y �/D �.X/ and the
Kodaira dimension of a general fiber of IX is 0. The fibration IX is bimeromorphically
equivalent to the rational map on X defined by the sections of !˝mX , for m sufficiently
large and divisible. It is in particular unique up to bimeromorphic equivalence. Any
fibration X 0 ! Y 0 bimeromorphically equivalent to IX , with X 0 normal but not
necessarily smooth, will be called an Iitaka fibration of X .

Remark 1.8 (reduction to algebraic varieties) Let X be a normal compact complex
variety and let f W X ! A be a finite morphism to a torus. By [27, Theorem 23], there
are
� an abelian Galois étale cover � W zX ! X with group G , induced by an étale

cover of A,
� a subtorus K of A,
� a normal projective variety yY of general type, and
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� a commutative diagram

(4)

zX
�
//

IzX
��

X
f

finite
//

IX

��

A

��

yY
finite

// Y
fY

finite
// A=K

with the following properties:

� IX is the Stein factorization of the composition X ! A! A=K . It is an Iitaka
fibration of X , with general fiber an étale cover zK of K .

� IzX is the Stein factorization of IX� W zX ! Y . It is an Iitaka fibration of zX and
is an analytic fiber bundle with fiber zK . Hence, there is a natural G–action
on yY which may not be faithful, IzX is G–equivariant and Y D yY =G .

For any finite group G acting on a irreducible projective variety V , we have

H �.V;Q/G DH �.V=G;Q/I

see [6, Chapter III, Theorem 7.2]. Thus, we have isomorphisms

H �.X;Q/'H �. zX;Q/G

' .H �. yY ;Q/˝H �. zK;Q//G

'H �. yY ;Q/G ˝H �.K;Q/

'H �.Y;Q/˝H �.K;Q/

of graded Q–algebras, where the second isomorphism holds by the Leray–Hirsch
theorem applied to the fiber bundle IzX [5, Theorem 15.11] and the third isomorphism
holds because G acts trivially on H �. zK;Q/, which is isomorphic to H �.K;Q/. Thus,
.�f / holds if, and only if, .�fY / holds. In particular, this allows us to reduce the study
of property .�f / to algebraic varieties.

The following lemma, which implies Theorem A in the introduction, is an easy conse-
quence of the previous remark.

Lemma 1.9 Let f W X ! A be a finite morphism from a normal compact complex
variety to a torus. Let

(5) X
IX
�!X1

IX1
��!X2! � � � !Xk�1

IXk�1
���!Xk

be the tower of Iitaka fibrations as in diagram (4), where the general fibers of IXi are
complex tori, the Xi are normal projective varieties with morphisms fi W Xi ! Ai
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to quotient tori of A and Xk is of general type or a point. Then X is an f–rational
cohomology torus if, and only if, Xk is an fk –rational cohomology torus. In particular,
if Xk is a point, X is an f–rational cohomology torus.

Definition 1.10 We say that X is an Iitaka torus tower if, in (5), Xk is a point.

Example 1.11 (an Iitaka torus tower which is not a torus) Let �W C !E be a double
cover of smooth projective curves, where C has genus g � 2 and E is an elliptic
curve. Let � be the corresponding involution on C . Let E 0!E be a degree-2 étale
cover of elliptic curves and let � be the corresponding involution on E 0 . Let X be the
smooth surface .C �E 0/=h� � �i. Then X is an Iitaka torus tower but has Kodaira
dimension 1, hence is not a torus.

The answer to Catanese’s original conjecture [8, Conjecture 70] is therefore negative.
Nevertheless, we may still ask the following question.

Question 1.12 Is a compact Kähler manifold which is a rational cohomology torus
always an Iitaka torus tower?

To answer (negatively) this question, we study the variety Xk of Lemma 1.9, which is
a possibly singular projective variety.

1.2 Rational singularities

Recall the following classical definition.

Definition 1.13 Let X be a compact complex variety and let �W X 0 ! X be a
desingularization. We say that X has rational singularities if Ri��OX 0 D 0 for all
i > 0 and ��OX 0 DOX (equivalently, X is normal).

The following lemma explains why we work with rational singularities.

Lemma 1.14 Let f W X� A be a finite and surjective morphism from a projective
variety X with rational singularities to an abelian variety. Consider a quotient A� B

of abelian varieties. If the composition X�A�B factors through a finite morphism
Y ! B with Y normal, Y has rational singularities.

In particular, the lemma applies when X!Y !B is the Stein factorization of X!B .

Proof Since f W X ! A is finite, so is the induced morphism g in the commutative
diagram
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X
g

##

f

"" ""

%%

Y �B A

��

// A

����

Y // B

Since Y ! B is finite and surjective, so is Y �B A! A, hence the image of g is a
component zY of Y �B A. Since the induced morphism X ! zY is finite, the trace
operator induces a splitting of the natural morphism OX ! Rg�O zY . Thus, by [29,
Theorem 1], since X has rational singularities, so has zY . Finally, since A! B is
smooth, so is zY ,! Y �B A! Y . It follows that Y has rational singularities.

It follows from the lemma that if X has rational singularities, so do all the Xi in the
tower (5). Thus, in order to answer Question 1.12, it suffices to answer the following.

Question 1.15 Can a projective variety with rational singularities which is a rational
cohomology torus be of general type?

To answer (positively) this question, we first prove that any desingularization must
satisfy very strong numerical properties.

Lemma 1.16 Let X be a projective variety with rational singularities. For each k , we
have an isomorphism

Hk.X;OX /' Gr0FH
k.X/;

where F � is the Hodge filtration for Deligne’s mixed Hodge structure on Hk.X/.

Proof By [28, Theorem S], rational singularities are Du Bois. If ��X is the Deligne–
Du Bois complex of X [35, Definition 7.34], this means that �0X is quasi-isomorphic
to OX . By Deligne’s theorem [15, Sections 8.1, 8.2 and 9.3; 30, (4.2.4)], the spectral
sequence Ep;q1 D Hq.X;�

p
X /) HpCq.X;C/ degenerates at E1 and abuts to the

Hodge filtration of Deligne’s mixed Hodge structure. Thus, we have Hk.X;OX /'
Hk.X;�0X /D Gr0FH

k.X/.

Proposition 1.17 Let X be a projective variety with rational singularities. Assume
that X is a rational cohomology torus and let �W X 0!X be any desingularization.

(1) We have hk.X 0; !X 0/D hk.X; !X /D
�
n
k

�
; in particular, �.X 0; !X 0/D 0.

(2) The Albanese morphism aX 0 W X
0 ! AX 0 factors through � and the induced

morphism X!AX 0 is the Albanese morphism of X in the sense of Remark 1.5.
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Proof By Proposition 1.4, there is a finite morphism f W X ! A to an abelian variety
such that X is an f–rational cohomology torus. Hence we have isomorphisms of
Hodge structures f �W Hk.A/ ��!Hk.X/ for all k . In particular,

Gr0FH
k.X/' Gr0FH

k.A/DHk.A;OA/:

Since X has rational singularities, we have Hk.X;OX /'Gr0FH
k.X/ (Lemma 1.16).

Hence hk.X;OX /D
�
n
k

�
.

Let �W X 0!X be a desingularization. Since R��!X 0 D !X , we have

hk.X; !X /D h
k.X 0; !X 0/D h

n�k.X 0;OX 0/D hn�k.X;OX /D
� n
k

�
:

For (2), note that h1.X 0;OX 0/D n, hence dim.AX 0/D dim.X 0/D dim.X/D n. By
Proposition 1.4, there is a quotient morphism AX 0 ! A with connected fibers, hence
AX D AX 0 and aX 0 factors through �.

This simple but important proposition allows us to use the many known properties of
smooth projective varieties X 0 of maximal Albanese dimension with �.X 0; !X 0/D 0
and pg.X 0/D 1.

2 Rational cohomology tori in lower dimensions

Thanks to the work of Chen, Debarre and Jiang [9] on smooth varieties of maximal
Albanese dimension with pg D 1, we can give a classification of rational cohomology
tori up to dimension 3. We first recall some important examples.

Example 2.1 (Ein–Lazarsfeld & Chen–Hacon threefolds) For each j 2 f1; 2; 3g,
consider an elliptic curve Ej and a bielliptic curve Cj

2W1
�!Ej of genus gj � 2, with

corresponding involution �j of Cj . Set A WDE1 �E2 �E3 and consider the quotient
gW C1 �C2 �C3�Z by the involution �1 � �2 � �3 and the tower of Galois covers

C1 �C2 �C3
g
��Z

f
��A

of respective degrees 2 and 4. The threefold Z is of general type with rational
singularities and it has 23

Q3
jD1.gj � 1/ isolated singular points. We call Z an Ein–

Lazarsfeld threefold [16, Example 1.13]. If X�Z is any desingularization, we have
�.X; !X /D �.Z; !Z/D 0.

A variant of the previous construction gives us varieties with pg D 1, as follows.
Keeping the same notation, choose points �j 2 yEj of order 2 and consider the induced
double étale covers E 0j � Ej and C 0j � Cj , with associated involution �j of C 0j .
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The involution �j on Cj pulls back to an involution � 0j on C 0j (with quotient E 0j ). Let
g0W C 01 � C

0
2 � C

0
3� Z0 be the quotient by the group (isomorphic to .Z=2Z/4 ) of

automorphisms generated by id1�� 02��3 , �1� id2�� 03 , � 01��2� id3 and � 01��
0
2��

0
3

and consider the tower
C 01 �C

0
2 �C

0
3

g 0
��Z0

f 0
��A

of Galois covers of respective degrees 24 and 4. The threefold Z0 is of general type
and has rational singularities. We call Z0 a Chen–Hacon threefold [11, Section 4,
Example]. For any desingularization X 0�Z0, one has pg.X 0/D 1.

The étale cover E 01�E
0
2�E

0
3�E1�E2�E3 pulls back to an étale cover Z00!Z0,

where Z00 is an Ein–Lazarsfeld threefold; in particular, Z0 also has isolated singularities.
Moreover, the quotient of C 01 �C

0
2 �C

0
3 by the group of automorphisms generated by

id1 � � 02 � �3 , �1 � id2 � � 03 and � 01 � �2 � id3 is a smooth double cover of Z0, since
the group acts freely.

This terminology differs from that of [9]: there, Ein–Lazarsfeld and Chen–Hacon
threefolds refer to any of their desingularizations. Our singular threefolds can be
obtained from their smooth versions by considering the Stein factorizations of their
Albanese morphisms.

We can now prove the classification of rational cohomology tori up to dimension 3
stated in the introduction.

Proof of Theorem B Let X be a compact class-C variety with rational singularities
which is a rational cohomology torus. By Lemma 1.9, we may assume that X is
projective. Let �W X 0 ! X be a desingularization. By Proposition 1.17, we have
�.X 0; !X 0/D 0 and pg.X 0/D 1.

If dim.X/D 2 and X is of general type, we have �.X 0; !X 0/ > 0 by Riemann–Roch,
which is a contradiction. If �.X/D 0, then X is an abelian variety by [27, Corollary 2].
If �.X/D 1, in the diagram (4) of Remark 1.8, Y is an elliptic curve. Hence X is an
Iitaka torus tower. This proves (1).

Assume dim.X/ D 3. If X 0 is of general type, we can apply the structure theorem
[9, Theorem 6.3]: there exists an abelian étale cover zA� AX 0 such that, in the
Stein factorization X 0 �AX0 zA! zX ! zA, the variety zX is a Chen–Hacon threefold
(Example 2.1). As noted in Proposition 1.17(2), X appears in the Stein factorization
of the Albanese morphism of X 0, hence zX is an étale cover of X and X is singular.
We then apply Lemma 1.9 and part (1) to get the first part of (2).

For the second part of (2), it suffices to show that a Chen–Hacon threefold is a rational
cohomology torus. This follows from the more general Proposition 2.2 below.
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For (3), we note that there exists a smooth projective threefold yY with an involution
� such that Y WD yY =h�i is a Chen–Hacon threefold (Example 2.1), hence a rational
cohomology torus. Let � be a translation of order 2 on any nonzero abelian variety K .
The involution � � � acts freely on yY �K and X WD . yY �K/=h� � �i is a smooth
projective variety. Moreover, the natural morphism X! Y is the Iitaka fibration in (4).
Thus X is also a rational cohomology torus. Since Y is of general type, X is not an
Iitaka torus tower.

Moreover, by Example 4.4, there exists a rational cohomology torus Y with rational
singularities and of general type in any dimension at least 3 with a smooth double
cover yY . By the same construction, whenever 3�m� n� 1, there exists a smooth
rational cohomology torus X of dimension n with Kodaira dimension m.

The following proposition, which is further generalized to all abelian covers of abelian
varieties in [26], shows in particular that Chen–Hacon threefolds are rational cohomol-
ogy tori.

Proposition 2.2 For each j 2 f1; : : : ; ng, let �j W Cj !Ej be an abelian Galois cover
with group Gj , where Cj is a smooth projective curve and Ej an elliptic curve. Take a
subgroup G of G1�� � ��Gn and set X WD .C1�� � ��Cn/=G . Assume h0.X; !X /D 1;
then X is a rational cohomology torus with rational singularities.

Proof Set V WD C1 � � � � �Cn and A WDE1 � � � � �En , and let

�W V
f
��X

g
��A

be the quotient morphisms. The variety X has finite quotient singularities, which
are rational singularities. In particular, Hk.X/ has a pure Hodge structure for all
k 2 f0; : : : ; ng [35, Theorem 2.43]. More precisely, if �W Xreg ,!X is the smooth locus
of X and we set �Œp�X WD ��.�

p
Xreg
/, we have �Œp�X D .f��

p
V /
G and �Œ��X is a resolution

of the constant sheaf CX [35, Lemma 2.46]. Thus, H q.X;�
Œp�
X /DGrqF H

pCq.X;C/
[35, proof of Theorem 2.43].

We may assume that each projection G!Gj is surjective. Indeed, if we denote by
Hj the image of this projection, there are natural morphisms X ! Cj =Hj ! Ej .
Since X has maximal Albanese dimension, the condition h0.X; !X / D 1 implies
h0.Cj =Hj ; !Cj =Hj /D 1 [25, Lemma 2.3], so Cj =Hj is also an elliptic curve. Then
we simply replace Gj with Hj and Ej with Cj =Hj .

Let j 2 f1; : : : ; ng. Since �j is an abelian Galois cover, we may write

(6) �j�!Cj DOEj ˚
M

1¤�
j
2G_

j

L�
j
; �j�OCj DOEj ˚

M
1¤�

j
2G_

j

L�1�
j
;
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where G_j is the character group of Gj and L�
j

is the line bundle on Ej associated
with the character �j 2 G

_
j . Since G ! Gj is surjective, its dual G_j ! G_ is

injective.

Since �j�!Cj is a nef vector bundle on Ej [19, Theorem (3.1)], each line bundle L�
j

is nef and, for �j ¤ 1, it is either ample or nontrivial torsion in yEj . Moreover, if L�
j

is a torsion line bundle, so is L�m
j
D L˝m�

j
for each m 2 Z. Thus, L�

j
is nontrivial

torsion if, and only if, L��1
j
D L�1�

j
is nontrivial torsion.

We compute
g�!X D g�..f�!V /

G/D .��!V /
G

D

� M
�
j
2G_

j

1�j�n

.L�1 � � � ��L�n/
�G

D

M
�
j
2G_

j

�1:::�nD12G
_

.L�1 � � � ��L�n/:

Since OA is a direct summand of g�!X and h0.X; !X / D 1, we conclude that, for
any .�1; : : : ; �n/ 2G

_
1 � � � ��G

_
n not all trivial such that �1 � � ��n D 1 2G

_, at least
one of the corresponding line bundles L�

j
is nontrivial torsion.

For any subset J D fj1; : : : ; jpg of T WD f1; : : : ; ng, we set VJ WDCj1 �� � ��Cjp and
we let pJ W V ! VJ be the projection. We also denote by qj W A!Ej the projections.
Then

g��
Œp�
X D g�..f��

p
V /
G/D .���

p
V /
G

D

�
��

� M
J�T
jJ jDp

p�J!VJ

��G

D

� M
J�T
jJ jDp

� M
�
j
2G_

j

for all j2J

�O
j2J

q�j L�j

��
˝

� M
�
k
2G_

k

for all k2J c

� O
k2J c

q�kL
�1
�
j

���G

D

M
J�T
jJ jDp

M
�
j
2G_

j
; �
k
2G_

kQ
j2J �j

Q
k2Jc �

�1
k
D12G_

� O
�
j
2G_

j

j2J

q�j L�j

�
˝

� O
�
k
2G_

k

k2J c

q�kL
�1
�
k

�
:

For example, for J D f1; : : : ; pg, the fourth equality reads

��p
�
J!VJ D �1�!C1 � � � �� �p�!Cp � �pC1�OCpC1 � � � �� �n�OCn :
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For any nontrivial solution of
Q
j2J �j

Q
k2J c �

�1
k
D 1 2G_ , we have already seen

that the condition h0.X; !X /D 1 implies that either there exists j 2 J such that L�
j

is nontrivial torsion or there exists k 2 J c such that L��1
k

is nontrivial torsion, in
which case L�1�

k
is also nontrivial torsion. Thus, by the Künneth formula, only the

trivial direct summands of g��
p
X have nontrivial cohomology groups, since all the

others contain a nontrivial torsion line bundle. Therefore,

H q.X;�
Œp�
X /DH q.A; g��

Œp�
X /DH q.A;�

p
A/:

Since H q.X;�
Œp�
X /DGrqFH

pCq.X;C/, we conclude that X is a rational cohomology
torus.

3 Constraints on the Albanese morphism
In this section, we study how the condition �.X; !X / D 0 gives restrictions on the
degree of the Albanese morphism. Note that �.X; !X / is a birational invariant. It would
be interesting to study the nonbirational conditions �.X;�pX /D 0 for 0<p < dim.X/
to get further restrictions on the structure of rational cohomology tori.

We first recall some facts about projective varieties X of general type, of maximal
Albanese dimension and with �.X; !X /D 0 (see [9; 12] for more details).

Let X be a smooth projective variety and let f W X!A be a generically finite morphism
to an abelian variety. We set

V i .f�!X / WD fŒP � 2 yA jH
i .A; f�!X ˝P /¤ 0g:

By [21; 22; 37; 23], V i .f�!X / is a union of torsion translates of abelian subvarieties
of yA of codimension � i . The set

(7) Sf WD fT � yA j 9 i � 1 T is a component of V i .f�!X / with codim yA.T /D ig

controls the positivity of the sheaf f�!X [12; 25, Section 3].

We use the following notation: for any abelian subvariety yB � yA, we let

(8) X�XB
fB
�!B

be the Stein factorization of the composition X f
�!A� B . After birational modifi-

cations, we may assume that XB is also smooth. Note that when f is the Albanese
morphism of X and yB 2 Sf , the map fB is the Albanese morphism of XB .

Lemma 3.1 [21; 16; 9] Let X be a smooth projective variety of general type with a
generically finite morphism f W X ! A to an abelian variety.

(1) We have �.X; !X / D 0 if, and only if, V 0.f�!X / is a proper subset of yA. If
these properties hold, the abelian variety A has at least 3 simple factors.
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(2) If �.X; !X / D 0 and T is an irreducible component of V 0.f�!X /, we have
T 2 Sf . More precisely, T is an irreducible component of V i .f�!X /, where
i D codim yA.T /.

(3) For any abelian variety yB 2 Sf , the variety XB is of general type and we have
�.XB ; !XB / > 0.

Proof The equivalence in (1) follows from generic vanishing [21, Theorem 1; 16,
Remark 1.6, Theorem 1.2] and the other statement is [9, Corollary 3.4]. For (2), see
[16, Claim (1.10)]. For (3), see [9, Theorem 3.1].

We introduce the notion of primitive and minimal primitive varieties. In Section 3.1,
we study the structure of minimal primitive varieties and prove Theorem C. We provide
examples in Section 4.

Definition 3.2 [12, Definition 6.1] Let X be a smooth projective variety of general
type, of maximal Albanese dimension and with �.X; !X / D 0. We say that X is
primitive if there exist no proper smooth subvarieties F through a general point of X
such that �.F; !F /D 0.

We say that X is minimal primitive if it is primitive and, for any rational factorization
X aÜY !AX of the Albanese morphism of X through a smooth projective variety Y
of general type, the map a is birational.

This definition of primitive is different from [7, Definition 1.24] but is equivalent to
[12, Definition 6.1].

We will use the following results about primitive varieties.

Lemma 3.3 [9; 12] Let X be a smooth projective variety of general type, of maximal
Albanese dimension and with �.X; !X /D 0.

(1) If f W X ! A is a morphism to an abelian variety, then there exists a quotient
A� B of abelian varieties such that the general fiber FB of the induced
morphism X�XB is primitive with �.FB ; !FB /D 0.

Assume now that X is primitive.

(2) The Albanese morphism aX W X ! AX is surjective.

(3) For any quotient AX�B to a simple abelian variety, with connected fibers, the
composition X aX

�!AX� B is a fibration.

(4) If the abelian variety A has m simple factors, then V 0.f�!X / has at least
m irreducible components; each component is a torsion translate of an abelian
variety with m� 1 simple factors and the intersection of these components has
dimension 0.
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Proof For the first assertion in (1), see [9, Theorem 3.1]. The second follows from
[12, Proposition 6.2]. For (2), see [9, Lemma 4.6] and the definition of primitive. For
(3), see [12, Lemma 6.4]. Statement (4) also follows from [12, Lemma 6.4], since for
any quotient yAX� yK of abelian varieties, the composition V 0.f�!X / ,! AX� yK

is surjective.

3.1 The structure of minimal primitive varieties

We describe the structure of minimal primitive varieties X : we prove that each simple
factor Kj of the Albanese variety AX has a birational model K 0j that admits a Galois
cover Fj !K 0j with finite Galois group Gj such that X is a quotient of the product
of the Fj by a subgroup of the product of the Gj . When the Fj are curves, these
quotient varieties already played an important role in Proposition 2.2.

Theorem 3.4 Let X be a smooth projective variety of general type, of maximal
Albanese dimension and with �.X; !X /D 0. We assume that X is minimal primitive.
For some m� 3, there exist

� smooth projective varieties F1; : : : ; Fm of general type,
� nontrivial finite groups Gj acting faithfully on Fj such that the quotient Fj =Gj

is birationally isomorphic to a simple (nonzero) abelian variety Kj ,

� an isogeny K1 � � � � �Km! AX which induces an étale cover zX !X ,
� a subgroup G of G1 � � � � �Gm ,

such that zX is birationally isomorphic to .F1 � � � � �Fm/=G .

Furthermore, we can assume that the projections

�ij W G!G1 � � � � �Gi�1 �GiC1 � � � � �Gj�1 �GjC1 � � � � �Gm

are injective and the projections G�Gi are surjective whenever 1� i < j �m.

We summarize part of the conclusions of the theorem in a commutative diagram:

F1 � � � � �Fm
=G1�����Gm

++ ++

=G
����

zX // //

Ketale
����

K1 � � � � �Km

Ketale
����

�

X
aX

// // AX

Minimal primitive varieties with �D 0 will be constructed in Examples 4.1 and 4.3.
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Proof The proof is divided into four steps.

Step 1 (reduction via étale covers) Taking if necessary an étale cover of AX (which
induces an étale cover of X ), we may assume that each element of SaX (see (7)),
which by Lemma 3.1(1)–(2) is nonempty, contains the origin 0 yAX.

Assume that AX has m simple factors. Since we are assuming that X is primitive,
there exist by Lemma 3.3(4) irreducible components yA1; : : : ; yAm of V 0.aX�!X / such
that each yAj has m� 1 simple factors and

(9) dim
� \
1�j�m

yAj

�
D 0:

The quotient yKj WD yAX= yAj is a simple abelian variety and we consider the dual
injective morphism Kj ,! AX . By (9), the sum morphism

� W A0 WDK1 � � � � �Km! AX

is an isogeny.

If X 0�X is the étale cover induced by � , then ��. yAj /D yK1�� � ��f0 yKj g�� � �� yKm .
Thus V 0.aX 0�!X 0/ contains at least the m components yK1 � � � � � f0 yKj g � � � � �

yKm .
Moreover, AX 0 DK1 � � � � �Km .

Thus, we have constructed the following elements from the statement of the theorem:
the simple abelian varieties Ki and the isogeny K1 � � � � �Km! AX . We still need
to identify the fibers Fj and the groups Gj and G .

Step 2 (a special property of fiber products) By Step 1, we can suppose that yAj WD
yK1�� � ��f0 yKj

g� � � �� yKm is a component of V 0.aX�!X / and AX DK1�� � ��Km .

For each 1 � i < j � m, set yAij WD yAi \ yAj . Using the notation (8), we have a
commutative diagram

(10)

X

fi

~~~~

fj

    

fij
����

Yij

vvvv (( ((

XAi
gij

(( ((

XAj
gji

vvvv

XAij
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where Yij is a desingularization of the main component of XAi �XAij XAj . Since
AX D K1 � � � � �Km , we have Ai �Aij Aj ' AX . Hence, the Albanese morphism
factors as

(11) aX W X
fij
�!Yij ! AX :

Since XAi and XAj are of general type by Lemma 3.1(3), Yij is of general type by
Viehweg’s subadditivity theorem [40, Corollary IV]. Moreover, the assumption that X
is minimal implies that fij is birational.

In other words, X is birationally isomorphic to the fiber product of any two of the
fibrations induced by the simple factors of the Albanese variety.

Step 3 (the fj are all birationally isotrivial fibrations) We use the notation of (10).
Since f12 is birational, for a general point x 2 XA1 the fiber Fx of f1 is bira-
tionally isomorphic to g�121 .g12.x//. Hence Fx is birationally isomorphic to Fy
for y 2 g�112 .g12.x// general. Similarly, Fx is birationally isomorphic to Fy for
y 2 g�11j .g1j .x// general for all j 2 f2; : : : ; mg. Any two points of XA1 can be
connected by a chain of fibers of g12 , g13; : : : or g1m . For general points x and y
of XA1 , the fiber Fx is therefore birationally isomorphic to Fy and f1 is a birationally
isotrivial fibration.

By the same argument, we see that fj is a birationally isotrivial fibration for each
j 2 f1; : : : ; mg. We denote by Fj its general fiber; since X is of general type, so
is Fj .

We have now constructed the varieties Fj in the statement of the theorem. It remains to
see that there are finite groups Gj acting faithfully on Fj such that Fj =Gj is birationally
isomorphic to Kj and X is birationally isomorphic to the quotient .F1� � � � �Fm/=G
for some subgroup G of G1 � � � � �Gm .

Step 4 (the finite groups G1; : : : ; Gm and the subgroup G of G1 � � � � �Gm ) The
following lemma allows us to characterize varieties which are finite group quotients of
a product of varieties and finishes the proof of Theorem 3.4.

Lemma 3.5 Let f W X!V1�� � ��Vm be a generically finite and surjective morphism
between normal projective varieties. Assume that X is of general type and that, for
each j 2 f1; : : : ; mg, there is a commutative diagram

X

gj

** **f
// //

fj
����

'

)) ))

V1 � � � � �Vm

����

// // Vj

Xj // // V1 � � � � �Vj�1 �VjC1 � � � � �Vm
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where X
fj
�!Xj is the Stein factorization of ' , the variety Xj is of general type, fj is

a birationally isotrivial fibration with general fiber Fj and gj is a fibration.

Then there exists a finite group Gj acting faithfully on Fj such that Fj =Gj is bi-
rationally isomorphic to Vj . Moreover, X is birationally isomorphic to a quotient
.F1�� � ��Fm/=G , where G is a subgroup of G1�� � ��Gm with surjective projections
G�Gj .

Before giving the proof of the lemma, note that it applies to our situation

f W X !K1 � � � � �Km;

thanks to Step 3 and Lemma 3.3(3), which ensures that the gj W X!Kj are fibrations.

Proof Let zX1 be a general fiber of g1W X�V1 and let f j zX1 W
zX1�V2�� � ��Vm be

the induced generically finite morphism. For j 2f2; : : : ; mg, denote by zX1�V 0j�Vj
the Stein factorization of the natural morphism zX1� Vj . The induced morphism
f 0W zX1! V 02 � � � � �V

0
m is generically finite and surjective. For each j 2 f2; : : : ; mg,

let
zX1

f 0
j
��Yj� V 02 � � � � �V

0
j�1 �V

0
jC1 � � � � �V

0
m

be the Stein factorization of the natural morphism. We summarize these constructions
in the commutative diagram

zX1
_�

��

f 0
j
// // Yj // //

��

V 02 � � � � �V
0
j�1 �V

0
jC1 � � � � �V

0
m

// //

��

f�g
_�

��

X

g1

33 33
fj
// // Xj // // V1 � � � � �Vj�1 �VjC1 � � � � �Vm // // V1

where the second and third vertical arrows are finite. Since the images of the Yj in Xj
cover Xj , and Xj is of general type by hypothesis, Yj is also of general type; similarly,
zX1 is also of general type. Moreover, f 0j is also a birationally isotrivial fibration with

general fiber Fj .

The morphism f 0W zX1! V 02 � � � � �V
0
m satisfies again the hypotheses of the lemma.

Thus, by induction on m, we obtain that zX1 is birationally isomorphic to a quotient of
F2� � � � �Fm . Since a fixed variety can only dominate finitely many birational classes
of varieties of general type, g1W X ! V1 is birationally isotrivial.

Thus, after a suitable finite Galois base change F 01! V1 with Galois group G1 , where
F 01 is normal, we have a birational isomorphism F 01 �

zX1
�ÜF 01 �V1 X . Since zX1 is
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of general type, its birational automorphism group is finite. The action of G1 � id on
F 01�V1X therefore induces a birational action of G1 on zX1 such that X is birationally
isomorphic to the quotient of F 01 � zX1 by the diagonal action of G1 .

Note that G1 acts on the canonical models of zX1 and F 01 . After an equivariant resolution
of singularities [1, Theorem 0.1], we may assume that zX1 and F 01 are smooth, still
with G1–actions, and that G1 acts faithfully on F 01 . We have the commutative diagram

F 01 �
zX1 // //

�

77.F 01 �
zX1/=G1

�
// X

f
// //

f1
����

V1 � � � � �Vm

����

X1 // // V2 � � � � �Vm

Let x 2 F 01 be a general point; there is a dominant rational map f1x D f1 ı�jfxg� zX1 W
zX1Ü X1 . Since any family of dominant maps between varieties of general type

is locally constant, we have f1x D f1y for x and y general points of F 01 . Thus,
f1 contracts the image of F 01 in X and F 01

�ÜF1 , hence F1 ! V1 is a birational
Galois cover with Galois group G1 .

Similarly, for each j 2 f1; : : : ; mg, the map Fj ! Vj is a birational Galois cover with
Galois group Gj and there are dominant maps

F1 � � � � �Fm //

G1�����Gm

Galois
&&

X // V1 � � � � �Vm

Thus, there is a subgroup G of G1 � � � � �Gm such that X is birationally isomorphic
to .F1 � � � � �Fm/=G . Since gj W X ! Vj is a fibration, the projection G ! Gj is
surjective for each j 2 f1; : : : ; mg.

To finish the proof of Theorem 3.4, it only remains to prove the injectivity assertion
of the projection to the product with two factors missing. This follows from the
minimality assumption: the morphisms fij W X ! Yij are birational, thus a general
fiber of X ! XAij is birationally isomorphic to Fi � Fj . This implies that the
projections �ij are injective.

3.2 Divisibility properties of the degree of the Albanese morphism

The main result of this section is the following theorem.

Theorem 3.6 Let X be a smooth projective variety of general type and maximal
Albanese dimension and let aX be its Albanese morphism. If �.X; !X / D 0, there
exists a prime number p such that p2 divides the degree of aX onto its image.
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By Proposition 1.17, if X is a rational cohomology torus of general type with rational
singularities, we have �.X; !X /D �.X 0; !X 0/D 0 for any desingularization X 0!X .
Thus Theorem C in the introduction directly follows from Theorem 3.6.

Proof We first reduce to the case of minimal primitive varieties (see Definition 3.2)
using induction on the dimension. Then, we apply Theorem 3.4 and study the numerical
properties of the degree of the Albanese morphism.

Step 1 (reduction to minimal primitive varieties) We may assume that X is primitive
with �.X; !X /D 0. Otherwise, by Lemma 3.3(1) (see also (8)), there exists a quotient
AX� B WD AX=K such that the general fiber F of the induced fibration X�XB
is primitive with �.F; !F / D 0. The restriction aX jF W F ! K factors through the
(surjective) Albanese morphism of F and we can argue by induction on the dimension.

Moreover, if aX factors as XÜ Y ! AX through a variety of general type Y , after
birational modifications, we may assume that we have morphisms between smooth
projective varieties

aX W X� Y
aY
�!AX D AY :

Therefore, we can replace X with Y and study the structure of aY . Note that Y may
not be primitive and we need to reapply induction on the dimension as before. Finally,
we get an X which is a minimal primitive variety of general type.

The structure of aX remains the same after taking abelian étale covers of X . Thus,
using Theorem 3.4, we can assume that X is birationally isomorphic to

.F1 � � � � �Fm/=G;

where Fj is a smooth projective variety acted on faithfully by the finite group Gj such
that Fj =Gj is birationally isomorphic to a simple abelian variety Kj , the group G is
a subgroup of G1 � � � � �Gm and

AX DK1 � � � � �Km:

Furthermore, we can assume that, for all 1� i < j �m, the projection

G!G1 � � � � �Gj�1 �GjC1 � � � � �Gj�1 �GjC1 � � � � �Gm

is injective and the projection G�Gj is surjective.

Step 2 (computation of deg.aX /) Set g WD jGj. For each j 2 f1; : : : ; mg, set
gj WD jGj j. Since AX DK1 � � � � �Km and Kj is birationally isomorphic to Fj =Gj ,
we have

deg.aX /D
1

g

Y
1�j�m

gj :
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Moreover, since the projection G�Gj is surjective, we have gj jg , hence

(12) deg.aX /
ˇ̌̌ Y
2�j�m

gj :

Finally, since the projections G!G1�� � ��Gj�1�GjC1�� � ��Gk�1�GkC1�� � ��Gm
are injective, we have

(13) gjgk jdeg.aX / for all 1� j < k �m:

Let now p be a prime factor of g1 . Then p jdeg.aX / by (13), hence p jgj for some
j 2 f2; : : : ; mg by (12), and p2 jg1gj jdeg.aX / by (13) again. This finishes the proof
of Theorem 3.6.

Given a smooth projective variety X of general type, of maximal Albanese dimension
and primitive with �.X; !X /D 0, we know by Theorem 3.6 that p2 jdeg.aX / for some
prime number p . Using the proofs of Theorems 3.6 and 3.4, we study the extremal
case deg.aX /D p2 .

Theorem 3.7 Let X be a smooth projective variety of general type, of maximal
Albanese dimension and with �.X; !X / D 0. If deg.aX / D p2 for some prime
number p , the morphism aX is birationally a .Z=pZ/2–cover of its image.

Proof We use the same notation as in Theorem 3.4.

There exists by Lemma 3.3(1) a quotient AX � B D AX=K such that the general
fiber F of the induced fibration X�XB is primitive with �.F; !F /D 0. There is a
factorization

aX jF W F
aF
��AF

h
�!K ,! AX :

On the other hand, we have

p2 D deg.aX /D deg.haF / deg.XB
aXB��!B/:

By Theorem 3.6, deg.aF / is divisible by the square of a prime number. It follows that
this prime number must be p and that aXB is birational onto its image.

Let � 2XB be the generic point. The geometric generic fiber Xx� of X�XB is then
primitive and satisfies �.Xx�; !Xx�/D 0 and deg.Xx� ! Ax�/D p

2 . We are therefore
reduced to the case where X is primitive.

Note that aX W X ! AX is minimal (see Definition 3.2). We can therefore apply
Theorem 3.4. Keeping its notation, we see G has index deg.aX /Dp2 in G1�� � ��Gm ;
since �ij is injective whenever 1� i < j �m, we obtain that each Gj is isomorphic
to Z=pZ and that aX W X ! AX is a .Z=pZ/2–cover.
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Corollary 3.8 Let X be a projective variety of general type with rational singularities.
If X is a rational cohomology torus and deg.aX /Dp2 for some prime number p , then
aX is a .Z=pZ/2–cover.

Proof Let �W X 0!X be a desingularization. By Proposition 1.17, AX D AX 0 and
X is the Stein factorization of the Albanese morphism X 0 ! AX . Hence aX is a
.Z=pZ/2–cover.

3.3 Simple factors of the Albanese variety

Using the description of minimal primitive varieties of general type with �D 0, we
obtain restrictions on the number of simple factors of their Albanese varieties (which
we already know is at least 3 by Lemma 3.1(1)).

Proposition 3.9 Let X be a smooth projective variety of general type, of maximal
Albanese dimension, with �.X; !X / D 0. If p is the smallest prime divisor of the
degree of the Albanese map aX , the Albanese variety AX has at least pC 1 simple
factors.

Proof We argue by induction on dim.X/. As in Step 1 of the proof of Theorem 3.6,
we can assume that X is minimal primitive (in the sense of Definition 3.2). Then,
applying Theorem 3.4, we may assume, after taking an étale cover of X , that X is
birationally isomorphic to a quotient .F1 � � � � �Fm/=G , the abelian variety AX has
m simple factors, V 0.aX�!X / has m irreducible components

yB1 WD f0 yK1
g � yK2 � � � � � yKm;

yB2 WD yK1 � f0 yK2
g � � � � � yKm;

:::
yBm WD yK1 � � � � � yKm�1 � f0 yKm

g

and all elements of SaX contain the origin 0 yAX .

By the decomposition theorem [12, Theorems 1.1 and 3.5], we have

aX�!X D
M
yB2SaX

p�BFB ;

where pB W AX � B is the natural quotient and FB is a coherent sheaf supported
on B .
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On the other hand, by [12, Lemma 3.7], we have, for each j 2 f1; : : : ; mg,

aXBj �!XBj D
M
yB2SaX
yB� yBj

p�B;jFB ;

where pB;j W Bj� B is the natural quotient, hence

deg.aXBj /D 1C
X
yB2SaX
yB� yBj

rank.FB/:

Since all elements of SaX are contained in
S
1�j�m

yBj , we have

(14) deg.aX /� 1�
X

1�j�m

.deg.aXBj /� 1/:

With the notation of the proof of Theorem 3.4 (g D jGj and gj D jGj j), we get

deg.aX /D
1

g

Y
1�j�m

gj and deg.aXBk /D
1

g

Y
j¤k

gj :

We may assume that deg.aXB1 / is maximal among all deg.aXBk /. Using (14), we then
obtain m deg.aXB1 /� deg.aX /Cm�1>g1 deg.aXB1 /. Hence m�g1C1�pC1.

By Proposition 1.17, we obtain Theorem D in the introduction as a direct corollary.

4 Construction of examples

We show that the varieties in Theorem 3.7 and Corollary 3.8 actually exist. The lower
bounds on the degree of the Albanese morphisms in Theorem C, Theorem 3.6 and
Proposition 3.9 are therefore optimal.

We first construct, for every prime p , a series of examples of (smooth) minimal primitive
varieties X of general type with �.X; !X /D 0, such that X is a finite quotient of a
product of pC 1 curves and the Albanese morphism aX is a .Z=pZ/2–cover. Then
we show that a slight modification of this construction leads to rational cohomology
tori.

Example 4.1 ((smooth) minimal primitive varieties of general type with �D 0 whose
Albanese morphisms are .Z=pZ/2–covers of a product of pC1 elliptic curves) Let p
be a prime number. For each j 2 f1; : : : ; pC1g, let �j W Cj !Ej be a .Z=pZ/–cover,
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where Cj is a smooth projective curve of genus gj � 2 and Ej is an elliptic curve.
For each j 2 f1; : : : ; pC 1g, write, as in (6),

�j�!Cj DOEj ˚
M

1�m�p�1

L�m
j
;

where �j 2 .Z=pZ/_ is a generator and L�m
j
D L˝m�j is an ample line bundle on Ej

for each m 2 f1; : : : ; p�1g. Let �W V D C1� � � � �CpC1!ADE1� � � � �EpC1 be
the corresponding G–cover, where G WD .Z=pZ/pC1 .

We now construct a subgroup H of G isomorphic to .Z=pZ/p�1 . Actually, we
will describe dually the quotient morphism of character groups. Let pj W G! Z=pZ
be the projection to the j th factor, let � 2 .Z=pZ/_ be a generator and set �j WD
� ıpj W G!C� . Then .�1; : : : ; �pC1/ is a generating family of G_ ' .Z=pZ/pC1 .
On the other hand, let .e1; : : : ; ep�1/ be the canonical basis for .Z=pZ/p�1 . Define
the quotient morphism G_�H_ by

� W G_! .Z=pZ/p�1; �j 7!

8<:
ej for � j � p� 1;P
1�j�p�1 ej for j D p;P
1�j�p�1 jej for j D pC 1:

Let H be the corresponding subgroup of G and set X WD V=H . We consider

�W V
f
�!X

g
�!ADE1 � � � � �EpC1

and compute

��!V D
M
�2G_

L� D
M

.m1;:::;mpC1/2.Z=pZ/pC1

.L
�
m1
1

� � � ��L
�
mpC1
pC1

/:

Moreover, as in the proof of Proposition 2.2, we have

g�!X D .��!V /
H
D

M
�2G_

�.�/D12H_

L�

D

M
.m1;:::;mpC1/2.Z=pZ/pC1

mjCmpCjmpC1D0 for all j2f1;:::;p�1g

.L
�
m1
1

� � � ��L
�
mpC1
pC1

/

D

M
.a;b/2.Z=pZ/2

.L��a�b1
�L��a�2b2

� � � ��L
�
�a�.p�1/b
p�1

�L�ap �L�bpC1/:

For a and b both nontrivial, there exists a unique j 2 f1; : : : ; p � 1g such that
aC jb D 0 2 Z=pZ. Thus, �.X; !X /D �.A; g�!X /D 0.
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Moreover, we see that

(15) V 0.g�!X /D
[

1�j�pC1

yE1 � � � � � f0 yEj
g � � � � � yEpC1:

By [10, Theorem 1], X is of general type.

By studying the fibrations induced by the components of V 0.g�!X /, we deduce that
X is primitive by Lemma 3.3(1). Since deg.aX /D p2 , Theorem 3.6 implies that X is
minimal.

Remark 4.2 We saw that X is primitive in the sense of Definition 3.2 (see also
[12, Section 6]). However, gW X ! A is a .Z=pZ/2–cover. This shows that [12,
Conjecture 6.6] is false: the structure of primitive varieties with � D 0 is more
complicated than expected.

Example 4.3 (rational cohomology tori of general type with finite quotient singulari-
ties whose Albanese morphisms are .Z=pZ/2–covers of a product of pC 1 elliptic
curves) We first recall some constructions of Pardini. Let X be a normal projective
variety, let A be a smooth variety, let G be a finite abelian group and let gW X ! A

be a G–cover. We write, as in (6),

g�OX D
M
�2G_

L�1� ;

where the L� are line bundles on A. The algebra structure on g�OX gives rise to
effective divisors .D�;� 0/.�;� 0/2G_�G_ such that L�˝L� 0 'L� �� 0.D�;� 0/. Conversely,
the data .L� /�2G_ and .D�;� 0/.�;� 0/2G_�G_ define a G–cover as above; see [33,
Theorem 2.1].

Let p be a prime number, set G WD .Z=pZ/2 and consider the G–cover gW X ! A

from Example 4.1 with its associated data .L� /�2G_ and .D�;� 0/.�;� 0/2G_�G_ .

Let Pj and P 0j be p–torsion line bundles on Ej such that their classes ŒPj � and
ŒP 0j � generate the group yEj Œp� ' .Z=pZ/2 of p–torsion line bundles on Ej . Set
P WD P1� � � ��PpC1 and P 0 WD P 01� � � ��P

0
pC1 .

We pick generators �1 and �2 of G_ ' .Z=pZ/2 and, for .a; b/ 2 .Z=pZ/2 , we set

L0
�a1 ��

b
2

WD L�a1 ��
b
2
˝P˝a˝P 0˝b:

The relations L0� ˝L
0
� 0 ' L

0
� �� 0.D�;� 0/ hold for all .�; � 0/ 2G_ �G_ . Thus, by [33,

Theorem 2.1], we get a G–cover g0W X 0! A such that

g0�OX 0 D
M
�2G_

L0 �1� :
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Both covers have the same branch divisors D�;� 0 , so X 0 has the same singularities
as X . Therefore, X 0 has finite quotient singularities and we have by duality (as in (6))

g0�!X 0 D
M
�2G_

L0� :

Hence, V 0.g�!X 0/ still generates A, so X 0 is also of general type by [10, Theorem 1].

We saw in Example 4.1 that for any � nontrivial, L� is trivial when restricted to
some Ej . However, since Pj and P 0j generate yEj Œp�' .Z=pZ/2, L0� restricted to
Ej is a nontrivial torsion line bundle. Therefore, Hk.A;L0� /D 0 for any k 2Z and �
nontrivial. This implies h0.X 0; !X 0/D 1.

Let A0! A be the abelian cover induced by P and P 0 . Since they have the same
building data, the Galois covers X �A A0! A0 and X 0 �A A0! A0 are isomorphic
[33, Theorem 2.1]. This shows that X 0 �AA0 is a quotient of a product of curves as in
Proposition 2.2, hence so is X 0 . It follows from Proposition 2.2 that X 0 is a rational
cohomology torus.

Now we show that there exist rational cohomology tori of general type with mild
singularities in any dimension at least 3.

Example 4.4 (rational cohomology tori of general type with finite quotient singulari-
ties of any dimension at least 3) For each j 2 f1; 2; 3g, consider a nonzero abelian
variety Aj , an ample line bundle Lj on Aj , a smooth divisor Dj 2 j2Lj j and a
nontrivial line bundle Pj 2 yAj of order two. Let Xj ! Aj be the double cover
associated with the data Lj and Dj , with involution �j , and let X 0j !Xj be the étale
cover defined by Pj , with involution �j . Moreover, let � 0j be a lifting of �j to X 0j .

Set G WD .Z=2Z/2 . Let H1 , H2 and H3 be the nontrivial cyclic subgroups of G and
let �1 , �2 and �3 be the nontrivial characters of G , with Ker.�j / D Hj . We now
define data in order to construct a G–cover of A WD A1 �A2 �A3 . Let pj W A! Aj
be the projections. We define

L�1 WD P1�L2� .L3˝P3/;
L�2 WD .L1˝P1/�P2�L3;
L�3 WD L1� .L2˝P2/�P3;

DH1 WD p
�
1D1;

DH2 WD p
�
2D2;

DH3 WD p
�
3D3:

For fi; j; kg D f1; 2; 3g, we have L�
i
˝L�

i
' OA.DHj CDHk / and L�

i
˝L�

j
'

L�
k
.Dk/. By [33, Theorem 2.1], there exists a G–cover f W X ! A such that

f�OX DOA˚L�1�1 ˚L
�1
�2
˚L�1�3

;
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with branch locus D DDH1 CDH2 CDH3 . Since D is a normal crossing divisor, a
local computation shows that X has finite group quotient singularities. In particular, X
has rational singularities. Actually, X is isomorphic to the quotient of X 01 �X

0
2 �X

0
3

by the automorphism group generated by id1 � � 02 � �3 , �1 � id2 � � 03 , � 01 � �2 � id3
and � 01 � �

0
2 � �

0
3 .

As in Proposition 2.2, we set �Œs�X D ��.�
s
Xreg
/, where �W Xreg ,!X is the open subset

of smooth points. By [33, Theorem 4.1] or [34, Proposition 1.2], we have

f��
Œs�
X D�

s
A˚ .�

s
A.log.DH2 CDH3//˝L

�1
�1
/

˚ .�sA.log.DH3 CDH1//˝L
�1
�2
/

˚ .�sA.log.DH1 CDH2//˝L
�1
�3
/;

hence
H t .X;�

Œs�
X /'H

t .A;�sA/ for all s; t � 0;

and X is a rational cohomology torus of general type with finite quotient singularities.
Moreover, let Y be the quotient of X 01�X

0
2�X

0
3 by the automorphism group generated

by id1� � 02��3 , �1� id2� � 03 and � 01��2� id3 . Then Y !X is a double cover and
Y is smooth.

The following example exhibits (smooth) primitive fourfolds with �D 0 whose Al-
banese varieties have 4 simple factors and whose Albanese morphisms have degree 8,
which is not a square. Thus, we have constructed two essentially different series of
examples of (smooth) primitive varieties with �D 0 whose Albanese varieties have 4
simple factors: the minimal varieties provided by Example 4.1 taking p D 3 and the
following nonminimal primitive varieties.

Example 4.5 (nonminimal (smooth) primitive fourfolds of general type with �D 0
whose Albanese morphisms are .Z=2Z/3–covers of a product of 4 elliptic curves)
Let �1W C1 ! E1 be a .Z=2Z/2–cover, where C1 is a smooth projective curve of
genus g1 � 2 and E1 is an elliptic curve. Let � and � be generators of the Galois
group and let �_ and �_ be the dual characters. For j 2 f2; 3; 4g, let �j W Cj ! Ej
be a .Z=2Z/–cover with associated involution �j , where Cj is a smooth projective
curve of genus at least 2 and Ej an elliptic curve.

Thus, we are considering the case where G1D .Z=2Z/2 and G2DG3DG4DZ=2Z
in Proposition 2.2 or Theorem 3.4. We have

�1�!C1 DOE1 ˚L�_ ˚L�_ ˚L�_�_ ;

�j�!Cj DOEj ˚L�_j for j 2 f2; 3; 4g;
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where L�_ is an ample line bundle corresponding to the character �_ .

We then set X WD .C1 �C2 �C3 �C4/=h� � �1 � �2 � idF3 ; � � �1 � idF2 � �3i and
consider the .Z=2Z/2–quotient

f W C1 �C2 �C3 �C4!X:

With the notation of Theorem 3.4 or Proposition 2.2, we have G D .Z=2Z/2 .

Let gW X ! ADE1 �E2 �E3 �E4 be the morphism such that the composition

�W Z D C1 �C2 �C3 �C4
4W1

f
�!X

8W1

g
�!A

is the quotient by G1 �G2 �G3 �G4 .

Abusing the notation, we can describe the quotient .G1 �G2 �G3 �G4/_!G_ by

�_ 7! .1; 0/;

�_ 7! .0; 1/;

�_1 7! .1; 0/;

�_2 7! .0; 1/;

�_3 7! .1; 1/:

One checks that

g�!X ' .��!Z/
G

'OA˚ .OE1 �L�_1 �L�_2 �L�_3 /

˚ .L�_ �L�_1 �OE2 �OE3/˚ .L�_ �OE1 �L�_2 �L�_3 /

˚ .L�_ �OE1 �L�_2 �OE3/˚ .L�_ �L�_1 �OE2 �L�_3 /

˚ .L�_�_ �OE1 �OE2 �L�_3 /˚ .L�_�_ �L�_1 �L�_2 �OE3/:

Thus, �.X; !X /D �.A; g�!X /D 0. Moreover, we obtain

V 0.g�!X /D
[

1�j�4

yE1 � � � � � f0 yEj
g � � � � � yE4:

By [10, Theorem 1], X is of general type and, by studying the fibrations induced by
the components of V 0.g�!X /, we obtain that X is primitive by Lemma 3.3(1).

Note that X is not minimal primitive: if we consider the quotient

.G1 �G2 �G3 �G4/
_
!H_ ' .Z=2Z/3

defined by

�_ 7! .1; 0; 0/;

�_ 7! .0; 1; 0/;

�_1 7! .1; 0; 1/;

�_2 7! .0; 1; 1/;

�_3 7! .1; 1; 1/;
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and the varieties Z WD C1 �C2 �C3 �C4 and Y WDZ=H , we have a factorization

�W Z
4W1

f
�!X

2W1
�!Y

4W1

h
�!A:

One checks that

h�!Y D .��!Z/
H
DOA˚ .L�_ �OE1 �L�_2 �L�_3 /

˚ .L�_ �L�_1 �OE2 �L�_3 /

˚ .L�_�_ �L�_1 �L�_2 �OE3/:

Thus, �.Y; !Y /D �.A; h�!Y /D 0. Moreover, we have V 0.g�!X /D V 0.h�!Y /, so
by [10, Theorem 1], Y is of general type.

Appendix: Nonexistence of smooth rational cohomology tori
of general type
by William F Sawin

Theorem A.1 Let f W X ! A be a finite morphism from a smooth projective variety
of general type X to an abelian variety A, all over C . Let n be the dimension of X .
Then

.�1/n�top.X/ > 0:

Proof Recall that .�1/n�top.X/ is the top Chern class of the cotangent bundle, or,
equivalently, the intersection number of a section of the cotangent bundle and the zero
section. We will compute this by taking a generic 1–form of A and pulling it back
to X . We will show that its vanishing locus is 0–dimensional and nonempty, which
implies that the intersection number is positive.

First we will show that the vanishing locus is 0–dimensional. Let

Z �X �H 0.A;�1A/

be the locus of pairs of a point x 2X and a 1–form ! on A such that f �! vanishes
at x . Let m be the dimension of A. Then the dimension of Z is at most m: because it
is a closed subset, it is sufficient to check that for each subvariety Y �X of dimension k
with generic point �, the fiber Z� has dimension at most m� k . The map f remains
finite when restricted to Y and finite morphisms in characteristic 0 are generically
unramified, so the map

H 0.A;�1A/˝C C.�/D�1A;f .�/˝C.f .�//C.�/!�1Y;�
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from the cotangent space of f .�/ to the cotangent space of � is surjective, hence its
kernel has dimension m� k . Then the kernel of the natural map

H 0.A;�1A/˝C C.�/!�1X;�

has dimension at most m� k , because it is contained in the previous kernel. But Z�
is precisely the affine space corresponding to this kernel, viewed as a vector space
over C.�/. So the dimension of Z� equals the dimension of the kernel and is at most
m� k , and thus the dimension of Z is at most m, as desired. Hence the vanishing
locus of a generic 1–form from A is 0–dimensional.

By a result of Popa and Schnell [36, Conjecture 1], any 1–form on X vanishes at
some point. So the vanishing locus is nonempty. Now the Chern number cn.�1X /
is the intersection number of the zero section with this generic 1–form. Because
the intersection consists of finitely many points, the intersection number is a sum of
contributions at those points, which is 1 if they are transverse but is always positive in
general, so the total intersection number is positive. Thus

.�1/n�top.X/D cn.�
1
X / > 0:

Corollary A.2 Let X be a smooth projective variety of general type. Then X is not a
rational cohomology torus.

Proof If it is, then by a remark of Catanese [8, Remark 72], its Albanese morphism
X ! AX is finite. So by Theorem A.1, its topological Euler characteristic is nonzero.
But because its rational cohomology is the same as that of an abelian variety, its Euler
characteristic must be the same as that of an abelian variety, which is zero. This is a
contradiction, so X is not a rational cohomology torus.
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