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Arboreal singularities

DAVID NADLER

We introduce a class of combinatorial singularities of Lagrangian skeleta of symplec-
tic manifolds. The link of each singularity is a finite regular cell complex homotopy
equivalent to a bouquet of spheres. It is determined by its face poset, which is
naturally constructed starting from a tree (nonempty finite acyclic graph). The choice
of a root vertex of the tree leads to a natural front projection of the singularity along
with an orientation of the edges of the tree. Microlocal sheaves along the singularity,
calculated via the front projection, are equivalent to modules over the quiver given by
the directed tree.

32S05, 53D37

1 Introduction

This paper is part of a project devoted to combinatorial models of symplectic topology,
in particular of singular Lagrangian skeleta. After a summary of our main results
immediately below, we discuss in Section 1.2 the subsequent development in Nadler [15]
of the theory, which proves a refined version of a conjecture of Kontsevich [11],
and has applications to mirror symmetry; see Nadler [18; 17]. On the one hand,
this paper introduces the main objects and core calculations and is essential to what
follows. On the other hand, by design, this paper can be read independently of further
developments and with a minimal amount of geometric background: its constructions
are of a combinatorial nature, and its results give elementary realizations of microlocal
invariants. Its main results include calculations of microlocal sheaves where the answer
can be viewed as an appealing alternative to traditional technical definitions. Low-
dimensional examples of the main objects also arise naturally in recent advances in
Legendrian knot theory found in Shende, Treumann and Zaslow [21], Ng, Rutherford,
Shende, Sivek and Zaslow [19] and related work.

1.1 Summary

We will introduce a class of combinatorial singularities, first as coarse topological
spaces, then naturally embedded as Legendrian singularities.

Our starting point is a tree T in the sense of a nonempty finite connected acyclic graph.
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Figure 1: Example of a tree T

To each tree T , we associate a stratified space LT called an arboreal singularity. It
is of pure dimension jT j � 1 where we write jT j for the number of vertices of T . It
comes equipped with a compatible metric and contracting R>0–action with a single
fixed point. We refer to the compact subspace Llink

T � LT of points unit distance from
the fixed point as the arboreal link. The R>0–action provides a canonical identification

LT ' Cone.Llink
T /

so that one can regard the arboreal singularity LT and arboreal link Llink
T as respective

local models for a normal slice and normal link to a stratum in a stratified space. It
follows easily from the constructions that the arboreal link Llink

T is homotopy equivalent
to a bouquet of jT j spheres each of dimension jT j � 1.

As a stratified space, the arboreal link Llink
T , and hence the arboreal singularity LT as

well, admits a simple combinatorial description. To each tree T , there is a natural finite
poset PT whose elements are correspondences of trees

pD .R
q��S i,�!T /

where i is the inclusion of a subtree and q is a quotient of trees. More precisely, the
tree S is the full subgraph (or vertex-induced subgraph) on a subset of vertices of T ;
the tree R results from contracting a subset of edges of S . Two such correspondences

pD .R
q��S i,�!T / and p0 D .R0

q0��S 0 i 0,�!T 0/

satisfy p� p0 if there is another correspondence of the same form

qD .R�Q ,!R0/

such that pDqıp0 . In particular, the poset PT contains a unique minimum representing
the identity correspondence

p0 D .T
D��T D,�!T /:
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Recall that a finite regular cell complex is a Hausdorff space X with a finite collection
of closed cells ci � X whose interiors cıi � ci provide a partition of X and whose
boundaries @ci � X are unions of cells. A finite regular cell complex X has the
intersection property if the intersection of any two cells ci ; cj �X is either another cell
or empty. The face poset of a finite regular cell complex X is the poset with elements
the cells of X with relation ci � cj whenever ci � cj . The order complex of a poset
is the natural simplicial complex with simplices the finite totally ordered chains of the
poset. (Useful references include Billera and Björner [4], Björner [5] and Wachs [25].)

As topological spaces, arboreal singularities take the following simple combinatorial
form. If we were only interested in their topology, we could take the below description
as definition. Instead, we will approach them with a geometric construction that leads
to their natural realization as Legendrian singularities.

Theorem 1.1 Let T be a tree.

The arboreal link Llink
T is a finite regular cell complex, with the intersection property,

with face poset PT n fp0g, and thus homeomorphic to the order complex of PT n fp0g.

Remark 1.2 It follows from the theorem and the poset structure on PT that the
normal slice to the stratum LT .p/� LT indexed by a partition

pD .R
q��S i,�!T /

is homeomorphic to the arboreal singularity LR .

Example 1.3 Let us highlight the simplest class of trees.

When T consists of a single vertex, LT is a single point.

When T consists of two vertices v1 , v2 (necessarily connected by an edge), LT is the
local trivalent graph given by the cone over the three distinct points Llink

T representing
the three correspondences

.fv1g
D��fv1g ,�!T /; .fv2g

D��fv2g ,�!T / and .fvg��T D,�!T /:

More generally, consider the class of An–trees Tn consisting of n vertices connected by
n�1 successive edges. The associated arboreal singularity LTn admits an identification
with the cone of the .n�2/–skeleton of the n–simplex

LTn ' Cone.skn�2�n/

or in a dual realization, the .n�1/–skeleton of the polar fan of the n–simplex. This
space arises in many places (all intimately related to symplectic topology):
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(1) as a tropical hyperplane in n–dimensional tropical projective space (Ardila and
Develin [1], Develin and Sturmfels [6] and Speyer and Sturmfels [22]),1

(2) as the universal planar tree over the .n�2/–dimensional associahedron Kn�2
(Stasheff [23; 24], Loday [12] and Seidel [20]),

(3) in geometric realizations of Waldhausen’s S–construction in K–theory (Dycker-
hoff and Kapranov [7], Dyckerhoff and Kapranov [8] and Nadler [14]).

Figure 2: The A3–arboreal singularity

Example 1.4 The first example beyond An–trees is that of the D4–tree with a central
vertex connected to three other vertices. The corresponding arboreal singularity is
the union of a Euclidean space R3 and three closed Euclidean halfspaces R�0 �R2

each glued along its boundary R2 D @.R�0 �R2/ to the Euclidean space R3 along a
distinct coordinate hyperplane R2 �R3 .

Arboreal singularities offer a natural generalization of the above singularities associated
to An–trees. We will next explain their appearance as Legendrian singularities whose
front projections are particularly simple cooriented singular hypersurfaces. (Then in
Section 1.2 below we will discuss their related appearance as Lagrangian singularities.)

To this end, our refined starting point is a rooted tree T D .T; �/ in the sense of a
tree T together with a distinguished vertex � called the root vertex.

The set of vertices V.T / naturally forms a poset with the root vertex � 2 V.T / the
unique minimum and in general ˛ < ˇ 2 V.T / if the former is nearer to � than the
latter.

Let RT denote the Euclidean space of real tuples fxg indexed by vertices  2 V.T /.
Let us write S�RT for its spherically projectivized cotangent bundle or, equivalently,
unit cosphere bundle. Points of S�RT are pairs .x; Œv�/ where x 2RT and Œv� is the
positive ray or, equivalently, unit covector, in the direction of v 6D 0 2 T �x RT . Recall
that S�RT is naturally a cooriented contact manifold.

1We thank E Zaslow for pointing this out to us, and D Auroux for noting this perspective appears in
Kontsevich’s expectations [11]. No doubt it holds significance for mirror symmetry.
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To each rooted tree T D .T; �/, we associate a singular hypersurface HT �RT called
an arboreal hypersurface. On the one hand, the arboreal hypersurface HT �RT admits
a homeomorphism with the rectilinear hypersurface defined by coordinate equalities
and inequalities

HT '
[

˛2V.T /

fx˛ D 0; xˇ > 0 for all ˇ < ˛g �RT :

On the other hand, the arboreal hypersurface HT �RT is in good position in the sense
that it has finitely many normal Gauss directions even across its singularities. Thus it
defines a conormal Legendrian L�HT

� S�RT whose front projection provides a finite
surjection

L�HT
� HT :

The following shows that the arboreal singularity LT associated to a tree T naturally
arises as a Legendrian singularity. The choice of the root vertex � 2 V.T / plays the
role of a polarization enabling this presentation.

Theorem 1.5 Let T D .T; �/ be a rooted tree.

The conormal Legendrian L�HT
� S�RT of the arboreal hypersurface HT � RT is

homeomorphic to the arboreal singularity LT .

Example 1.6 An instructive example is that of the A3–tree T3 with its two possible
inequivalent rooted structures. On the one hand, we could take one of the two end
vertices as root vertex to obtain a rooted tree. On the other hand, we could take the
middle vertex as root vertex to obtain a rooted tree. The resulting arboreal hypersurfaces
are quite different though their conormal Legendrians are homeomorphic.

With the theorem in mind, we will write LT � S
�RT in place of L�HT

� S�RT , using
the subscript T as opposed to T to emphasize the dependence of the embedding on
the poset structure.

We next calculate the categorical quantization of the Legendrian singularity LT � S
�RT

in the form of microlocal sheaves supported along it. (We recommend the compre-
hensive book Kashiwara and Schapira [9] for the general notions that appear in what
follows, along with Keller [10] and the references therein for working in a differential
graded setting.)

Fix once and for all a field k , and let Sh.RT / denote the dg category of cohomologically
constructible complexes of sheaves of k–vector spaces on RT . Recall that to any
object F 2 Sh.RT /, one can associate its singular support ss.F/� S�RT . This is a
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closed Legendrian subspace recording those codirections in which the propagation of
sections of F is obstructed. In particular, one has the vanishing ss.F/D∅ if and only
if the cohomology sheaves of F are locally constant.

Introduce the dg category ShLT .R
T / of constructible complexes of sheaves of k–vector

spaces on RT microlocalized along LT � S
�RT : Thanks to the simplicity of the

situation, we can concretely work with ShLT .R
T / as the full dg subcategory of Sh.RT /

consisting of objects F 2 Sh.RT / with the prescribed singular support and vanishing
global sections

(1) ss.F/� LT , and

(2) HomSh.RT /.kRT ;F/' 0.

Recall that we can regard the set of vertices V.T / of the rooted tree T D .T; �/

as a poset with the root vertex � 2 V.T / the unique minimum. To each nonroot
vertex ˛ 6D � 2 V.T / there is a unique parent vertex y̨ 2 V.T / such that ˛ > y̨ and
there are no vertices strictly between them.

Now let us regard the rooted tree T D .T; �/ as a quiver with a unique arrow pointing
from each nonroot vertex ˛ 6D � 2 V.T / to its parent vertex y̨ 2 V.T /. Symbolically,
we replace the relation ˛ > y̨ with the relation ˛! y̨ .

Let Mod.T / denote the dg derived category of finite-dimensional complexes of modules
over T regarded as a quiver. Objects assign to each vertex ˛2V.T / a finite-dimensional
complex of k–vector spaces M.˛/, and to each arrow ˛! y̨ a degree zero chain map
m˛W M.˛/!M.y̨/.

Remark 1.7 Let us point out two natural generating collections for Mod.T /. There
are the simple modules S˛ 2Mod.T / that assign

S˛.ˇ/D

�
k when ˇ D ˛;
0 when ˇ 6D ˛;

with all maps mˇ W S˛.ˇ/! S˛. y̌/ necessarily zero. There are also the projective
modules P˛ 2Mod.T / that assign

P˛.ˇ/D

�
k when ˇ � ˛;
0 when ˇ > ˛;

with the maps mˇ W P˛.ˇ/! P˛. y̌/ the identity isomorphism whenever both domain
and range are nonzero.

The categorical quantization of the Legendrian singularity LT � S
�RT admits the

following simple description.
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Theorem 1.8 Let T D .T; �/ be a rooted tree.

The dg category ShLT .R
T / of constructible complexes microlocalized along LT�S

�RT

is canonically equivalent to the dg category of modules Mod.T /.

Remark 1.9 The dg category Mod.T / is noncanonically independent of the choice
of root vertex and resulting quiver structure. Namely, for a different choice of orien-
tations of arrows, reflection functors, Bernstein, Gelfand and Ponomarev [2] provide
equivalences between the corresponding module categories. Thus the dg category of
microlocal sheaves along the arboreal singularity LT is noncanonically independent of
its presentation as the conormal Legendrian to a particular arboreal hypersurface.

It is also possible to describe the natural microlocal restriction functors. Recall that the
normal slice to the stratum LT .p/� LT indexed by a partition

pD .R
q��S i,�!T /

is homeomorphic to the arboreal singularity LR . Note that the quiver structure on T
naturally induces quiver structures on S and R which we denote by S and R respec-
tively. Under the equivalence of the theorem, the corresponding microlocal restriction
functor is the natural composite quotient functor

Mod.T / i�
�� Mod.S/ qŠ

�� Mod.R/

where i� kills the projective object P˛ 2 Mod.T / attached to ˛ 2 V.T / such that
˛ 62 i.V .S//, and qŠ identifies the projective objects P˛; Pˇ 2 Mod.S/ attached
to ˛; ˇ 2 V.S/ such that q.˛/D q.ˇ/ 2 V.R/.

1.2 Motivation

We briefly discuss here the role of this paper in a broader undertaking. The definitions
and discussion of this section will not be used in the rest of the paper.

Our primary aim is to construct a combinatorial model and computational tool for the
“quantum category” of A–branes mathematically captured by the Kashiwara–Schapira
theory [9] of microlocal sheaves (topology), the Floer–Fukaya–Seidel theory of wrapped
and infinitesimal Fukaya categories (analysis), and the theory of holonomic modules
over deformation quantizations (algebra), exemplified by D–modules; see Bernstein
[3]. In parallel with the cohomology of manifolds, where one has singular complexes
(topology), Morse and Hodge theory (analysis), and de Rham complexes (algebra), we
seek a parallel to simplicial complexes (combinatorics) in the study of the intersection
theory of Lagrangians in symplectic manifolds. The arboreal singularities of the current
paper provide a local model for realizing such a combinatorial model.

To explain this further, let us introduce some basic constructions and useful terminology.
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Let N be a cooriented contact .2nC1/–dimensional manifold with contact field
� D ker.�/ defined by a contact form �. By a Legendrian subvariety L � N , we
will mean a closed n–dimensional Whitney stratified subspace (satisfying some mild
additional properties spelled out in Nadler [15]) such that �jY D 0 for any sub-
manifold Y � N contained within L. By a Legendrian singularity centered at a
submanifold Y �N , we will mean the germ along Y �N of a Legendrian subvariety
containing Y as a closed stratum.

Recall the contact Darboux theorem that any contact manifold N is locally equivalent to
the spherical projectivization S�RnC1 with its standard contact structure. Thus given a
directed tree T , with jT jDnC1�k , we can view the product LT �Rk�S�.RT �Rk/
as a Legendrian singularity within N .

For the sake of the current discussion, let us proceed with the following definition
which is more concrete but less flexible than possible alternatives.

Definition 1.10 A Legendrian subvariety L � N is said to have arboreal singular-
ities if its singularity at each of its points is equivalent via a contactomorphism to a
Legendrian singularity of the form LT �Rk , for a directed tree T , with jT jDnC1�k .

Remark 1.11 If a Legendrian subvariety L � N has arboreal singularities, then
the dg category of microlocal sheaves on N supported along L can be calculated
combinatorially via Theorem 1.8 and the functoriality described thereafter.

In the sequel to this paper, Nadler [15], we study arbitrary Legendrian singularities
and prove the following theorem. The term noncharacteristic in its statement refers
to the property that the dg category of microlocal sheaves supported along the Legen-
drian singularity is unchanged by the deformation. The phrase degenerate arboreal
singularities refers to a modest variation on arboreal singularities discussed in [15].
For example, in one dimension, a trivalent vertex of a graph is an arboreal singularity,
and a univalent vertex is a degenerate arboreal singularity.

Theorem 1.12 [15] Any Legendrian singularity admits a noncharacteristic deforma-
tion to a Legendrian subvariety with arboreal and degenerate arboreal singularities.

Roughly speaking, to prove the theorem, given a Legendrian singularity, we expand each
of its strata into an irreducible component to arrive at a Legendrian subvariety whose
singularities are governed by the combinatorics of the interaction of its irreducible
components. With the theorem in hand, the calculation of microlocal sheaves may be
performed in terms of finite-dimensional modules over trees, appealing to the results
of the current paper. One could compare the situation with Morse theory or resolutions
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with normal crossing divisors in algebraic geometry, where complicated singularities
are reduced to combinatorial assemblages of simple singularities to calculate invariants.

Last, to connect with Lagrangian skeleta, let M be an exact symplectic 2n–dimensional
manifold, with symplectic form ! and primitive ˛ . By an exact Lagrangian sub-
variety ƒ �M , we will mean a closed n–dimensional Whitney stratified subspace
(satisfying some mild additional properties), admitting a continuous function f W ƒ!R,
such that for any submanifold Y �M contained within ƒ, we have !jY D 0, and
f jY is differentiable with d.f jY /D ˛jY . By a Lagrangian singularity centered at a
submanifold Y �M , we will mean the germ along Y �M of a Lagrangian subvariety
containing Y as a closed stratum.

Now let us set N DM�R to be the contactification of M with contact field �D ker.�/
defined by the contact form �D dtC˛ , where we write t for a coordinate on R. Then
any exact Lagrangian subvariety ƒ�M , equipped with a primitive f W ƒ!R, lifts
to a Legendrian subvariety given by the graph

Lƒ;f D f.m;�f .m// 2ƒ�Rg �N:

Note that alternative primitives will differ from f by a locally constant function on ƒ,
and hence the corresponding lift will differ from Lƒ;f by a locally constant translation.
In this way, we can embed the study of exact Lagrangian singularities and subvarieties
into that of Legendrian singularities and subvarieties. Notably, we may lift Lagrangian
skeleta to Legendrian subvarieties, and then apply the above theory to their singularities.

Definition 1.13 An exact Lagrangian subvariety ƒ�M , with primitive f W ƒ!R,
is said to have arboreal singularities if the Legendrian subvariety Lƒ;f � N has
arboreal singularities.

Remark 1.14 Forming the contactification, or further forming its symplectification,
leaves invariants such as microlocal sheaves with prescribed support unchanged.

Example 1.15 A basic example of Lagrangian skeleta are ribbon graphs in punctured
Riemann surfaces. Such a Lagrangian skeleton has arboreal and degenerate arboreal
singularities if and only if each of its vertices is trivalent or univalent.

Example 1.16 A common example of a Lagrangian singularity is given by the union
of two smooth Lagrangian submanifolds intersecting transversely. Thus the geometry
is locally modeled by M D T �Rn 'Rn �Rn , L1 DRn � f0g, L2 D f0g �Rn and
LDL1[L2 . This is not an arboreal singularity, but we may apply the above theory to it.
Depending on choices in the algorithm underlying Theorem 1.12, what results is one of
two possible arboreal Lagrangian subvarieties L˙ �M given by the respective unions

L˙ D .L1 #˙L2/[Dn˙;
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where L1 #˙L2 �M is either the positive or negative Lagrangian surgery, Dn
˙
�M

are the respective vanishing thimbles, and they meet along the respective vanishing
spheres Sn�1

˙
D @Dn

˙
�L1 #˙L2 . Thus the arboreal Lagrangian subvariety L˙ �M

is smooth except along Sn�1
˙

where its normal geometry is equivalent to the trivalent
vertex of the A2–arboreal singularity. In the basic case of dimension nD 1, we recover
the two standard trivalent deformations of a four-valent vertex.

As a sample first application in Nadler [18], we apply this circle of ideas to an
important example in mirror symmetry: the Landau–Ginzburg A–model with back-
ground M DC3 and superpotential W D z1z2z3 . (Natural generalizations appear in
the later work Nadler [16].) Due to the fact that the critical locus fdW D 0g �M
is not smooth or proper, this Landau–Ginzburg A–model is not easily approached
with traditional methods. The main theorem of [18] is the calculation of microlocal
sheaves along the natural singular Lagrangian thimble LD Cone.T 2/�M , and more
basically the construction of a deformation of L to a Lagrangian skeleton with arboreal
singularities. The description obtained is in the form of a quiver with relations, and
immediately equivalent to the B–model of the pair-of-pants P1nf0; 1;1g as predicted
by mirror symmetry.

Acknowledgements I thank D Auroux, J Lurie, D Treumann, L Williams and E Zaslow
for their interest, encouragement and valuable comments. I also thank D Ben-Zvi for
many inspiring discussions on a broad range of related and unrelated topics.

I am very grateful to the NSF for the support of grant DMS-1319287.

2 Arboreal singularities

2.1 Gluing construction

By a graph G , we will mean a set of vertices V.G/ and a set of edges E.G/ satisfying
the simplest convention that E.G/ is a subset of the set of two-element subsets of V.G/.
Thus E.G/ records whether pairs of distinct elements of V.G/ are connected by an
edge or not. We will write f˛; ˇg 2E.G/ and say that ˛; ˇ 2 V.T / are adjacent if an
edge connects them.

By a tree T , we will mean a nonempty finite connected acyclic graph. Thus for any
vertices ˛; ˇ 2 V.T /, there is a unique minimal path (nonrepeating sequence of edges)
connecting them. Thus it makes sense to call the number of edges in the sequence the
distance between the vertices.

Fix a tree T with vertex set V.T / and edge set E.T /.
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Definition 2.1 For each vertex ˛ 2 V.T /, define LT .˛/ D RV.T /nf˛g to be the
Euclidean space of tuples of real numbers

fx .˛/g with  2 V.T / n f˛g:

Definition 2.2 For an edge f˛; ˇg 2 E.T /, define the f˛; ˇg–edge gluing to be the
quotient of the disjoint union of Euclidean spaces

.LT .˛/q LT .ˇ//=�

where we identify points fx .˛/g � fx .ˇ/g whenever the following hold:

xˇ .˛/D x˛.ˇ/� 0 and x .˛/D x .ˇ/ for all  6D ˛; ˇ 2 V.T /:

Definition 2.3 The arboreal singularity LT associated to a tree T is the quotient of
the disjoint union of Euclidean spaces

LT D

� a
˛2V.T /

LT .˛/

�ı
�

by the equivalence relation generated by the edge gluings for all edges f˛; ˇg 2E.T /.

Example 2.4 For the tree T with a single vertex, LT is a single point. For the tree T
with two vertices (necessarily) connected by an edge, LT is the cone over three points.
For a general An–tree, see Section 2.3 below.

Remark 2.5 Arboreal singularities inherit two natural structures from their Euclidean
space constituents.

(1) The Euclidean metric on each LT .˛/� LT is respected by the edge gluings and
hence induces a metric on LT whose restriction to each LT .˛/ � LT is the original
Euclidean metric.

(2) The positive dilation on each LT .˛/ � LT that sends fx .˛/g 7! frx .˛/g,
for r 2R>0 , is also respected by the edge gluings and hence induces a positive dilation
on LT whose restriction to each LT .˛/� LT is the original positive dilation.

The two structures satisfy the following evident compatibility.

On the one hand, there is a unique fixed point of positive dilation denoted by 0 2 LT
which we will call the central point of LT . It is contained in LT .˛/ � LT , for
all ˛ 2 V.T /, with coordinates satisfying x .˛/D 0, for all  2 V.T / n f˛g.

On the other hand, by the arboreal link Llink
T � LT , we will mean the compact subspace

of points unit distance from 0 2 LT .
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Positive dilation provides a canonical homeomorphism

Llink
T �R>0

�
�! LT n f0g

realizing the arboreal singularity as the cone over the link

LT ' Cone.Llink
T /;

where for any space X , the cone is the quotient Cone.X/DX � Œ0; 1/[X�f0g pt:

Next we will record two useful lemmas regarding arboreal singularities.

For any ˛; ˇ 2 V.T /, there is a unique minimal path in T connecting them. Suppose
the path consists of k edges with successive adjacent vertices

0 D ˛; 1; : : : ; k�1; k D ˇ 2 V.T /:

When ˛; ˇ 2 V.T / are adjacent, so that k D 1 and there are no intermediate vertices,
the following lemma reduces to the f˛; ˇg–edge gluing.

Lemma 2.6 The Euclidean spaces LT .˛/ and LT .ˇ/ are glued inside of LT along
the closed quadrants where we identify points fx .˛/g � fx .ˇ/g whenever

x1.˛/D x˛.ˇ/; x2.˛/D x1.ˇ/; : : : ; xk�1.˛/D xk�2.ˇ/; xˇ .˛/D xk�1.ˇ/� 0

and
x .˛/D x .ˇ/ for all  6D ˛; 1; : : : ; k�1; ˇ 2 V.T /:

Proof Note that since T is acyclic, the gluings for other edges play no role.

Let us proceed by induction on k .

For k D 1, this is simply the f˛; ˇg–edge gluing.

Suppose the assertion is established for k� 1 so that LT .˛/ and LT .k�1/ are glued
inside of LT along the closed quadrants where we identify points fx .˛/g�fx .k�1/g
whenever

x1.˛/D x˛.k�1/; x2.˛/D x1.k�1/; : : : ; xk�1.˛/D xk�2.k�1/� 0

and
x .˛/D x .k�1/ for all  6D ˛; 1; : : : ; k�1 2 V.T /:

Then it suffices to observe that the fk�1; ˇg–edge gluing prescribes that LT .k�1/
and LT .ˇ/ are glued inside of LT where we identify points fx .k�1/g � fx .ˇ/g
whenever

xˇ .k�1/Dxk�1.ˇ/�0 and x .k�1/Dx .ˇ/ for all  6Dk�1; ˇ2V.T /:

Composing equations, we immediately obtain the asserted equations.
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By a terminal vertex of a tree T , we will mean a vertex contained in a unique edge.
By an internal vertex, we will mean a vertex that is not a terminal vertex. (By this
convention, if T consists of a single vertex alone, then the vertex is an internal vertex.)

Suppose T is a tree with � 2V.T / a terminal vertex and f�; ˛g2E.T / the unique edge
containing � . Introduce the tree T� where we delete the vertex � and the edge f�; ˛g.

Lemma 2.7 There is a canonical homeomorphism

LT ' .LT� �Rf�g/
a

LT� .˛/�f0g

.LT� .˛/�Rf˛g
�0 /:

Proof The edge gluing for the edge f�; ˛g 2E.T / attaches the Euclidean space

LT .�/' LT� .˛/�Rf˛g

to the product LT� �Rf�g along the closed subspace

LT� .˛/�Rf˛g
�0 � LT� .˛/�Rf˛g:

The gluing of the lemma results from removing the redundant open subspace

LT� .˛/�Rf˛g>0 � LT� .˛/�Rf˛g

and only attaching the closed complement

LT� .˛/�Rf˛g
�0 � LT� .˛/�Rf˛g:

Remark 2.8 The choice of a terminal vertex is not canonical, but the collection of all
terminal vertices is. For a more invariant statement, one could simultaneously apply
the above lemma to all terminal vertices (as long as there are three or more vertices).

Corollary 2.9 The arboreal link Llink
T is homotopy equivalent to a bouquet of jV.T /j

spheres each of dimension jV.T /j � 2.

Proof Let us adopt the setting and notation of the previous lemma.

By induction, Llink
T�

is homotopy equivalent to a bouquet of jV.T /j � 1 spheres each of
dimension jV.T /j � 3, and hence the suspension

†.Llink
T�
/' .LT� �Rf�g/link

is homotopy equivalent to a bouquet of jV.T /j�1 spheres each of dimension jV.T /j�2.

By the previous lemma, Llink
T results from starting with †.Llink

T�
/ and attaching the

.jV.T /j�2/–cell LT� .˛/ along the inclusion of its boundary .jV.T /j�3/–sphere

LT� .˛/
link
�†.Llink

T�
/
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induced by the inclusion LT� .˛/� LT� . Therefore Llink
T is homotopy equivalent to a

bouquet of jV.T /j spheres each of dimension jV.T /j � 2.

2.2 Combinatorial description

Let us first review some terminology.

Given a graph G , by a subgraph S � G , we will mean a full subgraph (or vertex-
induced subgraph) in the sense that its vertices are a subset V.S/� V.G/ and its edges
are the subset E.S/ � E.G/ such that f˛; ˇg 2 E.S/ if and only if f˛; ˇg 2 E.G/
and ˛; ˇ 2 V.S/. By the complementary subgraph G nS �G , we will mean the full
subgraph on the complementary vertices V.T nS/D V.T / nV.S/.

Given a tree T , any subgraph S � T is a disjoint union of trees. By a subtree S � T ,
we will mean a subgraph that is a tree. The complementary subgraph T nS � T is not
necessarily a tree but in general a disjoint union of subtrees. Given a subtree S � T ,
and a vertex ˛ 2 V.T nS/, there is a unique vertex  2 V.S/ nearest to ˛ .

Given a tree T , by a quotient tree T �Q , we will mean a tree Q with a surjection
V.T /� V.Q/ such that each fiber comprises the vertices of a subtree of T . We will
refer to such subtrees as the fibers of the quotient T �Q . Given a vertex ˛ 2 V.T /,
we will sometimes write x̨ 2V.Q/ for its image, and Tx̨�T for the fiber containing ˛ .

By a partition of a tree T , we will mean a collection of subtrees Ti 2 T , for i 2 I ,
that are disjoint V.Ti /\V.Tj /D∅, for i 6D j , and cover V.T /D

`
i2I V.Ti /. Note

that the data of a quotient T �Q is equivalent to the partition of T into the fibers.

Now let T be a tree with arboreal singularity LT . A point x 2 LT defines the following
invariants.

First, we introduce the function

vx W V.T /! fyes; nog

such that vx.˛/D yes when x 2 LT .˛/� LT , and vx.˛/D no when x 62 LT .˛/� LT .

Define the subgraph S �T to consist of those vertices ˛2V.T / such that vx.˛/Dyes,
and those edges f˛; ˇg 2E.T / such that vx.˛/D vx.ˇ/D yes.

Lemma 2.10 S is a tree.

Proof We must show S is connected (since S is a subgraph of T , it is clearly
acyclic). Suppose ˛; ˇ 2 V.S/ so that x 2 LT .˛/\ LT .ˇ/� LT . Suppose the unique
minimal path in T connecting them consists of k edges with successive vertices
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0 D ˛ , 1; : : : ; k�1 , k D ˇ 2 V.T /. By Lemma 2.6, for all i D 1; : : : ; k � 1,
we see that x is contained in the intermediate Euclidean spaces LT .i / � LT , and
thus ˛; ˇ 2 V.S/ are connected by a path in S .

Remark 2.11 Consider the complementary graph T n S that consists of those ver-
tices ˛ 2 V.T / such that vx.˛/ D no, and those edges f˛; ˇg 2 E.T / such that
vx.˛/D vx.ˇ/D no. In general, it is the disjoint union of subtrees Ni � T , for i 2 I ,
but not necessarily connected.

Let us continue with the invariants of a point x 2 LT .

Observe that f˛; ˇg 2 E.S/ means x 2 LT .˛/\ LT .ˇ/ � LT , and the f˛; ˇg–edge
gluing implies an equality of nonnegative coordinates xˇ .˛/D x˛.ˇ/� 0 evaluated
at x .

Next, we introduce the function

ex W E.S/! f0;Cg

such that ex.f˛; ˇg/D 0 when xˇ .˛/Dx˛.ˇ/D 0 evaluated at x , and ex.f˛; ˇg/DC
when xˇ .˛/D x˛.ˇ/ > 0 evaluated at x .

Define the tree R to be the quotient of S where we contract those edges f˛; ˇg 2E.S/
such that e.f˛; ˇg/ D C. Therefore the vertex set V.R/ is the quotient of V.S/
where we identify vertices ˛; ˇ 2 V.S/ that can be connected by a path through
edges f˛; ˇg 2E.S/ such that ex.f˛; ˇg/DC. The edge set E.R/ can be taken to
consist of those edges f˛; ˇg 2E.S/ such that e.f˛; ˇg/D 0.

Altogether, we see that the point x 2 LT defines a correspondence of trees

R
q��S p

,�!T

where p is the inclusion of a subtree, and q is a quotient map of trees. Here and in
what follows, we take such correspondences up to the strictest notion of equivalence:
two such correspondences

R
q��S p

,�!T and R
q0��S 0 p0

,�!T

are equivalent if and only if there is a bijection bW S 0 ��! S such that q0 D q ı b

and p0 D p ı b .

Here is a useful reformulation of the data of such a correspondence.

Lemma 2.12 The set of correspondences

R
q��S p

,�!T
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where p is the inclusion of a subtree, and q is a quotient map of trees, is in natural
bijection with the set of partitions of T into a collection of subtrees

.fNigi2I ; fFj gj2J /

such that J is nonempty, and for any i 2 I , the complement T nNi is connected.

Proof Given such a correspondence, define the subtrees Ni � T , for i 2 I , to be the
connected components of the complementary graph T nS . Define the subtrees Fj � T ,
for j 2 J , to be the fibers of the quotient map qW S �R . Since S is nonempty, J is
nonempty.

Suppose there is some i 2 I such that T nNi is disconnected. Since S is connected, it
lies in one of the components of T nNi . But then there is another component of T nNi
contained in T nS and connected to Ni , contradicting that Ni itself is a component
of T nS .

Conversely, given such a partition, the full subgraph S D j̀2J Fj � T is nonempty
since J is nonempty. Furthermore, S is connected, and hence a subtree, else there is
some i 2 I such that T nNi is disconnected. Finally, take the quotient map qW S �R

to be that with fibers given by Fj � S , for j 2 J .

We will show that the arboreal singularity LT is the cone over a regular cell complex
with each cell the subspace of points leading to a given correspondence. We will arrive
at this in Theorem 2.20 below, but first observe that such subspaces and their closures
are naturally convex polyhedra.

Definition 2.13 Let T be a tree with associated arboreal singularity LT .

Define LT .p/� LT to be the subspace of points leading to a given correspondence

pD .R
q��S i,�!T /

where i is the inclusion of a subtree, and q is a quotient map of trees.

Define the rank �.p/D jV.T /j � jV.R/j.

Proposition 2.14 Let T be a tree with associated arboreal singularity LT .

The subspace LT .p/� LT of points leading to a given correspondence

pD .R
q��S i,�!T /

is an open cell of dimension �.p/ D jV.T /j � jV.R/j. Its closure is naturally a
convex polyhedron in a Euclidean space, and in fact cut out by explicit equalities and
inequalities on coordinate functions (appearing in the proof below).
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Proof Fix any ˛ 2 V.S/ and observe that LT .p/� LT .˛/ since vx.˛/D yes.

Recall that points x 2 LT .˛/ consist of tuples of real numbers

fx .˛/g with  2 V.T / n f˛g:

We claim that those points x 2 LT .˛/ that lie in LT .p/� LT .˛/ are precisely cut out
by the following equations on their coordinates x .˛/ depending on the location of  :

(1) Suppose  lies in the fiber Fx̨ � S containing ˛ . Then we have x .˛/ > 0.

(2) Suppose  lies in S but not in the fiber Fx̨ � S containing ˛ . Suppose also
that  is the nearest vertex to ˛ within the fiber Fx � S containing  . Then
we have x .˛/D 0.

(3) Suppose  lies in S but not in the fiber Fx̨ � S containing ˛ . Suppose also
that  is not the nearest vertex to ˛ in the fiber Fx � S containing  . Then we
have x .˛/ > 0.

(4) Suppose  lies in T nS so that  is in some subtree Ni � T nS . Suppose also
that  is the nearest vertex to ˛ within Ni . Then we have x .˛/ < 0.

(5) Suppose  lies in T nS so that  is in some subtree Ni � T nS . Suppose also
that  is not the nearest vertex to ˛ within Ni . Then we allow x .˛/ to be
arbitrary.

To confirm this, on the one hand, by Lemma 2.6, if x .˛/ < 0, then x 62 LT ./, and
so  does not lie in S . On the other hand, suppose  lies in T n S . Consider the
minimal path connecting ˛ and  , and let  0 be the closest point to ˛ that lies on the
path and in T nS . By Lemma 2.6, we have x 0.˛/ < 0, and x .˛/ can be arbitrary
if  6D  0 . Thus x 2 LT .˛/ leads to the right half of the correspondence,

S ,! T;

if and only if the following coarser equations hold:

(10 ) Suppose  lies in the fiber Fx̨ � S containing ˛ . Then we have x .˛/� 0.

(20 ) Suppose  lies in S but not in the fiber Fx̨ � S containing ˛ . Suppose also
that  is the nearest vertex to ˛ within the fiber Fx � S containing  . Then
we have x .˛/� 0.

(30 ) Suppose  lies in S but not in the fiber Fx̨ � S containing ˛ . Suppose also
that  is not the nearest vertex to ˛ in the fiber Fx � S containing  . Then we
have x .˛/� 0.

(4) Suppose  lies in T nS so that  is in some subtree Ni � T nS . Suppose also
that  is the nearest vertex to ˛ within Ni . Then we have x .˛/ < 0.
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(5) Suppose  lies in T nS so that  is in some subtree Ni �T nS . Suppose also that
 is not the nearest vertex to ˛ within Ni . Then we allow x .˛/ to be arbitrary.

Now it remains to determine that in cases (10 ) and (30 ) the coordinate x .˛/ should
be positive as in cases (1) and (3), and in case (20 ) it should be zero as in case (2).

Again apply Lemma 2.6 to see that for x 2LT .˛/ satisfying the above coarser equations,
and for  2 V.S/ so that x 2 LT ./, we have the equality of functions x .˛/D xz ./,
where z 2V.S/ is the vertex adjacent to  and one edge nearer to ˛ . Thus by definition
x 2 LT .˛/ also leads to the left half of the correspondence,

R� S;

if and only if in cases (10 ) and (30 ) the coordinate x .˛/ is positive, and in case (20 ) it
is zero.

Finally, for the dimension assertion, recall that dim LT .˛/D jV.T /j � 1, and note that
there are precisely jV.R/j � 1 equalities in the above equations given by case (2).

Next we will calculate the closure relations among the cells. Consider a pair of
correspondences of trees

qD .P c��Q i,�!R/ and pD .R d��S j
,�!T /

where i and j are inclusions of subtrees, and c and d are quotient maps of trees.
Define the composed correspondence

q ı pD .P zc��Q�R S z|
,�!T /

by forming the fiber product

Q�R S

�Q

||||

� q

�S

""

Q

c

����

� q

i

##

S
d

{{{{

� n

j

��

P R T

and setting zc D c ı�Q and z| D j ı�S , where �Q and �S are the natural projections.

Definition 2.15 Let T be a tree.

(1) Let PT denote the poset whose elements are correspondences of trees

pD .R d��S j
,�!T /

where j is the inclusion of a subtree, and d is a quotient map of trees.
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We define the order relation on correspondences

pD .R d��S j
,�!T /� p0 D .R0 d 0��S 0 j 0

,�!T /

and say the second correspondence refines the first, if there is a third correspondences
of trees

qD .R c��Q i,�!R0/

where i is the inclusion of a subtree, and c is a quotient map of trees, such that

pD q ı p0:

(2) Let QT denote the poset whose elements are partitions of T into a collection of
subtrees

.fNigi2I ; fFj gj2J /

such that J is nonempty, and for any i 2 I , the complement T nNi is connected.

We define the order relation on partitions

.fNigi2I ; fFj gj2J /� .fN
0
kgk2K ; fF

0
`g`2L/

and say the second partition refines the first, if each N 0
k

lies in some Ni and each F 0
`

lies in some Ni or some Fj .

Remark 2.16 There is the unique minimum p0 2PT given by the identity correspon-
dence

p0 D .T
D��T D,�!T /:

It indexes the cell Lp0 � LT comprising the central point 0 2 LT alone.

We have the following upgrading of Lemma 2.12.

Lemma 2.17 The bijection of Lemma 2.12 is a poset isomorphism PT 'QT .

Proof Suppose

pD .R d��S j
,�!T / and p0 D .R0 d 0��S 0 j 0

,�!T /

satisfy p� p0 because pD q ı p0 with

qD .R c��Q i,�!R0/:

Then the corresponding partitions satisfy

.fNigi2I ; fFj gj2J /� .fN
0
kgk2K ; fF

0
`g`2L/

since j factors through j 0 , so each N 0
k

lies in some Ni , and d factors through the
base change of d 0 by the inclusion i , so each F 0

`
lies in some Fj .
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Conversely, suppose

.fNigi2I ; fFj gj2J /� .fN
0
kgk2K ; fF

0
`g`2L/

and consider the corresponding correspondences

pD .R d��S j
,�!T / and p0 D .R0 d 0��S 0 j 0

,�!T /:

Since each N 0
k

lies in some Ni , and S 0 D T n
`0
k2K N

0
k

and S D T n
`
i2I Ni ,

we have S � S 0 or, in other words, j factors through j 0 . Define the quotient map
S �Q to be that with fibers given by F 0

`
\S , for ` 2L. Then the inclusion S ,! S 0

descends to an inclusion i W Q ,! R0 . Finally, the quotient map d W S � R factors
through S �Q , providing a quotient map cW Q�R , since each F 0

`
lies in some Fj .

Thus p� p0 because pD q ı p0 with

qD .R c��Q i,�!R0/:

Proposition 2.18 Two elements p; p0 2 PT indexing cells LT .p/; LT .p
0/ � LT

satisfy p � p0 if and only if LT .p
0/ intersects the closure of LT .p/. If this holds,

then in fact LT .p0/ lies in the closure of LT .p/.

Proof We will proceed in the language of partitions as in Lemmas 2.12 and 2.17
though one could equally well translate the arguments back into the language of
correspondences.

Consider two elements p; p0 2PT representing respective partitions

.fNigi2I ; fFj gj2J / and .fN 0kgk2K ; fF
0
`g`2L/;

comprising subtrees of complementary components and fibers.

Suppose p� p0 so that the partition associated to p0 refines that associated to p. We
will show that LT .p0/ is in the closure of LT .p/.

Choose any fiber Fj . Then Fj contains some fiber F 0
`
. Fix any vertex ˛ 2 V.F 0

`
/.

Then we have ˛ 2 V.Fj / as well. Thus we have

LT .p/; LT .p
0/� LT .˛/:

Returning to the proof of Proposition 2.14, we find explicit equations for these subspaces
to contain a point x 2 LT .˛/ in terms of its coordinates

fx .˛/g with  2 V.T / n f˛g:

We have the following possibilities depending on the location of  . The fact that the
partition associated to p0 refines that associated to p implies simple constraints on the
location of  with respect to the partitions and ˛ .
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(1) Suppose  lies in the fiber Fx̨ � S containing ˛ so that

x 2 LT .p/ D) x .˛/ > 0:

Then  must lie in some fiber F 0
x � Fx̨ so that

x 2 LT .p
0/ D) x .˛/� 0:

(2) Suppose  lies in S but not in the fiber Fx̨ � S containing ˛ . Suppose also that
 is the nearest vertex to ˛ within the fiber Fx � S containing  so that

x 2 LT .p/ D) x .˛/D 0:

Then  must lie in some fiber F 0
x � Fx and  must be the nearest vertex to ˛ within

the fiber F 0
x � Fx so that

x 2 LT .p
0/ D) x .˛/D 0:

(3) Suppose  lies in S but not in the fiber Fx̨ � S containing ˛ . Suppose also that
 is not the nearest vertex to ˛ in the fiber Fx � S containing  so that

x 2 LT .p/ D) x .˛/ > 0:

Then  must lie in some fiber F 0
x � Fx so that

x 2 LT .p
0/ D) x .˛/� 0:

(4) Suppose  lies in T nS so that  is in some subtree Ni � T nS . Suppose also
that  is the nearest vertex to ˛ within Ni so that

x 2 LT .p/ D) x .˛/ < 0:

Then either (a)  must lie in some fiber F 0
x �Ni and  must be the nearest vertex to

˛ within the fiber F 0
x �Ni so that

x 2 LT .p
0/ D) x .˛/D 0

or (b)  must lie in some subtree N 0
k
� Ni and  must be the nearest vertex to ˛

within the subtree N 0
k
�Ni so that

x 2 LT .p
0/ D) x .˛/ < 0:

(5) Suppose  lies in T nS so that  is in some subtree Ni � T nS . Suppose also
that  is not the nearest vertex to ˛ within Ni so that

x 2 LT .p/ D) x .˛/ arbitrary:

Thus we need not worry about the possible constraints imposed by x 2 LT .p0/.
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From the above equations, we conclude that LT .p0/ is in the closure of LT .p/.

Conversely, suppose LT .p
0/ intersects the closure of LT .p/ at some point x 2 LT . We

will show that the partition of p0 refines that of p. To begin, choose any ˛ 2 V.T /
such that LT .p/� LT .˛/. Hence the closure of LT .p/ also lies in LT .˛/. Thus LT .p

0/

intersects LT .˛/, and hence LT .p
0/�LT .˛/. Thus we have x2LT .˛/ with coordinates

fx .˛/g with  2 V.T / n f˛g:

Now we will proceed by contradiction. Suppose some subtree N 0
k
� T n S 0 is not

contained in any subtree Ni � T nS . Then the vertex ˇ within N 0
k

closest to ˛ must
lie in some fiber Fj . But turning to the equations for xˇ .˛/ of Proposition 2.14, and
applying case (1), (2) or (3) to LT .p/ and case (4) to LT .p

0/, we find

x 2 LT .p/ D) xˇ .˛/� 0 and x 2 LT .p
0/ D) xˇ .˛/ < 0

and hence a contradiction.

Next suppose some fiber F 0
`

is not contained in any subtree Ni or fiber Fj . Then there
is a vertex ˇ within F 0

`
that is not the nearest to ˛ within F 0

`
but is the nearest to ˛

within whichever subtree Ni or fiber Fj contains ˇ . Again turning to the equations
for xˇ .˛/ of Proposition 2.14, and applying case (2) or (4) to LT .p/ and case (1) or (3)
to LT .p

0/, we find

xˇ .˛/ 2 LT .p/ D) xˇ .˛/� 0 and xˇ .˛/ 2 LT .p
0/ D) xˇ .˛/ > 0

and hence a contradiction.

Finally, for the last assertion, we have shown that if p � p0 then LT .p
0/ lies in the

closure of LT .p/, and also that if LT .p
0/ intersects the closure of LT .p/ then p� p0 .

Thus we conclude that if LT .p
0/ intersects the closure of LT .p/ then LT .p

0/ lies in
the closure of LT .p/.

Recall from Remark 2.5 that the arboreal singularity LT inherits a natural metric
from its Euclidean constituents, and the arboreal link Llink

T � LT refers to the compact
subspace of points unit distance from the center 0 2 LT . Positive dilation provides a
canonical homeomorphism

Llink
T �R>0

�
�! LT n f0g

realizing the arboreal singularity as the cone over the link

LT ' Cone.Llink
T /:

Note that all of the subspaces LT .p/� LT are invariant under positive dilation.
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Definition 2.19 Fix an element p 2PT n fp0g.

Introduce the open cell
Llink
T .p/D Llink

T \ LT .p/

of dimension �.p/� 1.

Now the two preceding propositions coupled with general theory [5; 13] immediately
imply the following. Recall that a finite regular cell complex is a Hausdorff space X
with a finite collection of closed cells ci �X whose interiors cıi � ci provide a partition
of X and boundaries @ci � X are unions of cells. A finite regular cell complex X
has the intersection property if the intersection of any two cells ci ; cj � X is either
another cell or empty. (This holds for example if the closed cells are convex polyhedra
in Euclidean spaces glued along convex subspaces as found in Proposition 2.14.) The
order complex of a poset is the natural simplicial complex with simplices the finite
totally ordered chains of the poset. (Other useful references include [4; 25].)

Theorem 2.20 Let T be a tree with associated arboreal link Llink
T .

The decomposition of the arboreal link Llink
T into the cells Llink

T .p/, for p 2PT n fp0g,
is a regular cell complex with the intersection property. It is homeomorphic to the order
complex of PT n fp0g.

Before continuing on, let us also record the local structure of arboreal singularities.

Definition 2.21 Fix an element p 2PT .

(1) Introduce the poset

PT .� p/D fq 2PT j q� pg

equipped with the induced partial order.

(2) Introduce the open neighborhood

LT .� p/D
a

q2PT .�p/

LT .q/� LT

of the cell LT .p/� LT .

Lemma 2.22 Given an element p 2PT representing a correspondence

pD .R d��S j
,�!T /

the natural poset map is an isomorphism

PR
�
�!PT .� p/ where q 7! q ı p:
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Proof The map is surjective by the definition of the partial order and we must show it
is injective. Suppose we have q; q0 2PR representing correspondences

qD .P d��Q j
,�!R/ and q0 D .P 0 d��Q0 j

,�!R/

such that qıp'q0ıp. So we may assume that P DP 0 and need to show that Q;Q0�R
are the same subset. But qıp' q0 ıp implies that Q�RS DQ0�RS � S , and hence
the surjection S �R implies that QDQ0 � S .

Corollary 2.23 Let T be a tree with associated arboreal singularity LT .

Fix an element p 2 PT indexing the cell LT .p/ � LT and an open neighborhood
LT .� p/� LT .

The poset isomorphism
PR

�
�!PT .� p/

induces a homeomorphism

LT .p/� LR
�
�! LT .� p/:

2.3 Example: An–trees

By the An–tree Tn , we will mean the tree with n vertices labeled v1; : : : ; vn and an
edge connecting the vertices vi and viC1 , for all i D 1; : : : ; n� 1.

Let �n denote the n–simplex. Let Œn�D f0; 1; : : : ; ng denote its vertices so that the
subsimplices of �n are in natural bijection with nonempty subsets of Œn�.

Let skn�2�n denote the .n�2/–skeleton of �n . The subsimplices of skn�2�n are
in natural bijection with nonempty subsets of Œn� containing at most n� 1 elements.

Proposition 2.24 There is an identification of regular cell complexes

LTn ' Cone.skn�2�n/:

Proof Let Pn denote the poset of nonempty subsets of Œn� containing at most n� 1
elements with the standard partial order: for A;A0 � Œn�, we set A � A0 if and only
if A� A0 .

By Theorem 2.20, it suffices to establish an isomorphism of posets

'W PTn n fp0g
�
�!Pn:
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It will be more straightforward to pass to complements and think of Pn as the poset of
proper subsets of Œn� containing at least two elements with the opposite partial order:
for A;A0 � Œn�, we have A� A0 if and only if A� A0 .

Thus we will associate a subset '.p/� Œn�D f0; 1; : : : ; ng of at least two elements to
each correspondence

pD .R
q��S i,�!Tn/

where i is the inclusion of a subtree, and q is a quotient map of trees. (The identity
correspondence p0 2PTn will go to the whole subset Œn�� Œn�.)

It is useful to introduce the AnC2–tree zTn with vertices V. zTn/D V.Tn/[fv0; vnC1g
and an additional edge connecting v0 and v1 and another connecting vn and vnC1 .

Following Lemma 2.17, we can think of elements of PTn equally well as partitions
of zTn into connected subsets N0; F1; : : : ; Fr ; Nn with v0 2 N0 , vn 2 Nn , and
i.S/D F1[ � � � [Fr .

We will identify the elements of Œn�D f0; 1; : : : ; ng with the edges of zTn by match-
ing i 2 Œn� with the edge connecting vi and viC1 , for all i D 0; : : : ; n.

Now we define ' by including the element i 2 '.p/ if and only if vi and viC1 are
in different parts of the partition of zT corresponding to p. (In particular, we have
'.p0/D Œn�.) Note that '.p/ has at least two elements since i.S/ is nonempty, so that
there is at least one part F1 as well as the parts N0 and Nn . If p0 refines p in the sense
of Lemma 2.17 so that p � p0 then clearly we have '.p/ � '.p0/. Finally, any such
partition is uniquely determined by the collection of those edges separating its parts.

This concludes the proof of the proposition.

3 Arboreal hypersurfaces

3.1 Rectilinear version

By a rooted tree T D .T; �/, we will mean a tree T equipped with a distinguished
vertex � 2 V.T / called the root vertex.

The vertices V.T / of a rooted tree naturally form a poset with the root vertex � 2V.T /
the unique minimum and ˛ < ˇ 2 V.T / if the former is nearer to � than the latter.
To each nonroot vertex ˛ 6D � 2 V.T / there is a unique parent vertex y̨ 2 V.T / such
that y̨ < ˛ and there are no vertices strictly between them.

Let us write RT DRV.T / for the Euclidean space of real tuples

fxg with  2 V.T /:
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Definition 3.1 Fix a rooted tree T D .T; �/ and a vertex ˛ 2 V.T /.

(1) Define the quadrant Q˛ �RT to be the closed subspace

Q˛ D fxˇ � 0 for all ˇ � ˛g:

(2) Define the hypersurface H˛ �RT to be the boundary

H˛ D @Q˛:

Remark 3.2 Note that the hypersurface H˛ �RT is homeomorphic (in a piecewise
linear fashion) to a Euclidean space of dimension jV.T /j � 1.

Definition 3.3 The rectilinear arboreal hypersurface HT associated to a rooted
tree T D .T; �/ is the union of hypersurfaces

HT D
[

˛2V.T /

H˛ �RT :

Remark 3.4 The rectilinear arboreal hypersurface admits the less redundant presenta-
tion

HT D
[

˛2V.T /

fx˛ D 0; xˇ > 0 for all ˇ < ˛g �RT :

3.2 Smoothed version

We construct here a smoothed version of the rectilinear arboreal hypersurface of a
rooted tree. We will show in the next section that they are homeomorphic as embedded
hypersurfaces inside of Euclidean space.

Fix a continuously differentiable function bW R>0!R with the properties:

(1) b is nonpositive.

(2) limt!0 b.t/D 0.

(3) limt!0 b
0.t/D�1.

(4) b.t/D 0, for t � 0.

Given the above function bW R>0!R, choose a continuously differentiable function
f W R2!R with the properties:

(1) f is a submersion.

(2) ff .x1; x2/D 0g D fx1 D 0; x2 � 0g[ fx1 > 0; x2 D b.x1/g.

(3) ff .x1; x2/ > 0g D fx1 > 0; x2 > b.x1/g.

(4) ff .x1; x2/ < 0g D fx1 < 0g[ fx1 D 0; x2 < 0g[ fx1 > 0; x2 < b.x1/g.
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Remark 3.5 If preferred, one can fix some N greater than or equal to 1, and arrange
that limt!0 b

.k/.t/ D �1, for all 1 � k � N . Then one can choose f to be
correspondingly highly differentiable. One can also take N D1 and then choose f
to be smooth.

Definition 3.6 Fix a rooted tree T D .T; �/.

(1) For the root vertex � 2 V.T /, set

h� D x�W R
T
!R:

(2) For a nonroot vertex ˛ 6D � 2 V.T /, inductively define

h˛W R
T
!R by h˛ D f .hy̨; x˛/;

where y̨ 2 V.T / is the parent vertex of ˛ .

Remark 3.7 (1) Note that h˛ depends only on the coordinates xˇ , for ˇ � ˛ .

(2) Note also that h˛ � 0 implies hˇ � 0, for ˇ � ˛ .

Definition 3.8 Fix a rooted tree T D .T; �/ and a vertex ˛ 2 V.T /.

(1) Define the halfspace Q˛ �RT to be the closed subspace

Q˛ D fh˛ � 0g:

(2) Define the hypersurface H˛ �RT to be the zero-locus

H˛ D fh˛ D 0g:

Definition 3.9 The smoothed arboreal hypersurface HT associated to a rooted tree
T D .T; �/ is the union of hypersurfaces

HT D
[

˛2V.T /

H˛ �RT :

Remark 3.10 The smoothed arboreal hypersurface admits the less redundant presen-
tation

HT D
[

˛2V.T /

fhx˛ D 0; hxy̨ > 0g �RT

where y̨ 2 V.T / is the parent vertex of ˛ .
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3.3 Comparison

We next compare the rectilinear and smoothed arboreal hypersurfaces.

Given the function bW R>0! R, define the continuous function 'W R2! R by the
formula

'.x1; x2/D

�
x2 when x1 � 0;

x2� b.x1/ when x1 > 0:

Definition 3.11 (1) For the root vertex � 2 V.T /, define

F�W R
T
!R by F� D x�:

(2) For a nonroot vertex ˛ 6D � 2 V.T /, define

F˛W R
T
!R by F˛ D '.hy̨; x˛/;

where y̨ 2 V.T / is the unique parent of ˛ .

(3) Define the continuous map

FT W R
T
!RT by FT D fF˛g:

Remark 3.12 Note that F˛ depends only on the coordinates xˇ , for ˇ � ˛ .

Proposition 3.13 The map FT W R
T ! RT is a homeomorphism and restricts to a

homeomorphism from the smoothed to rectilinear arboreal hypersurface

FT W HT
�
�!HT

satisfying FT .Q˛/DQ˛ and FT .H˛/DH˛ , for all ˛ 2 V.T /.

Proof We will proceed by induction on the size of the vertex set V.T /. In the base
case when V.T / has a single element, the assertions are evident: HT DHT Df0g�R,
and FT W R!R is the identity.

Now suppose V.T / contains at least two elements. Let � 2 V.T / be a maximal vertex
in the partial order (in particular � will not be the root vertex �). Introduce the rooted
tree T� D .T� ; �/ where we delete the vertex � and the edge f�; y�g where y� 2 V.T / is
the parent vertex of � . Suppose the assertions are already established for T� .

Let us first show FT W R
T !RT is a homeomorphism given that FT� W R

T� !RT� is
a homeomorphism. Under the identification RT DRT� �Rf�g , by definition we have

FT D .FT� ; '.hy� ; x� //:
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By construction, we can regard 'W R2 ! R as a family of homeomorphisms in
its second variable depending on its first variable. (In fact, for fixed value of the
first variable, the homeomorphism in the second variable is either the identity or a
translation.) Since hy� is independent of the variable x� , we see that FT is similarly a
parametrized homeomorphism over FT� , and hence itself a homeomorphism.

To finish the proof, it suffices to show for all ˛ 2 V.T / that we have

FT .Q˛/D FT .fh˛ � 0g/D fxˇ � 0 for all ˇ � ˛g DQ˛;

since passing to boundaries, we will have FT .H˛/DH˛ , for all ˛ 2 V.T /, and hence
passing to the unions of the boundaries FT .HT /DHT .

Thus we will show that for all ˛ 2 V.T /, and x 2RT , we have

h˛.x/� 0 () Fˇ .x/� 0 for all ˇ � ˛:

Recall that for all ˛ 2 V.T� /, the functions h˛ and F˛ depend only on the subtree T� .
Hence by induction, for all ˛ 2 V.T� /, and x 2RT , we have

h˛.x/� 0 () Fˇ .x/� 0 for all ˇ � ˛:

Therefore it suffices to show

h� .x/� 0 () Fˇ .x/� 0 for all ˇ � �:

Recall that h� .x/� 0 implies hˇ .x/� 0, for all ˇ � � . Hence by induction, it suffices
to assume hy� .x/� 0, where y� 2 V.T / is the parent vertex of � , and show

h� .x/� 0 () F� .x/� 0:

Returning to the definitions, on the one hand, we have h� .x/D f .hy� .x/; x� /. Under
the assumption hy� .x/� 0, the prescribed properties of f ensure

h� .x/D f .hy� .x/; x� /� 0 () x� � b.hy� .x//:

On the other hand, we have F� .x/D '.hy� .x/; x� /. Under the assumption hy� .x/� 0,
we have '.hy� .x/; x� /D x� � b.hy� .x//. Thus we similarly conclude

F� .x/D '.hy� .x/; x� /� 0 () x� � b.hy� .x//� 0:

Remark 3.14 By scaling the original function b by a positive constant, one obtains a
family of smoothed arboreal hypersurfaces all compatibly homeomorphic. Moreover,
their limit as the scaling constant goes to zero will be the rectilinear arboreal hypersur-
face. Thus one can view the smoothed arboreal hypersurface as a topologically trivial
deformation of the rectilinear arboreal hypersurface.
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3.4 Directed hypersurfaces

Let us first review some notions from microlocal geometry.

Let M denote a smooth n–dimensional manifold with � W T �M!M its cotangent bun-
dle. Let P �M denote the projectivization of T �M . Points of P �M are pairs .x; Œv�/
where x 2M and Œv�D R � v � T �xM is the line through v 6D 0 2 T �xM . Let S�M
denote the spherical projectivization of T �M . Points of S�M are pairs .x; Œv�/
where x 2M and Œv�DR�0 � v � T �xM is the ray through v 6D 0 2 T �xM .

Given a submanifold Y � M , let T �YM � T
�M denote its conormal bundle. Let

P �YM � P �M denote the projectivized conormal bundle. Points of P �YM are
pairs .y; Œv�/ where y 2Y and Œv�DR�v�T �YM jy is the line through v 6D02T �YM jy .
Let S�YM � S�M denote the spherically projectivized conormal bundle. Points
of S�YM are pairs .y; Œv�/ where y 2 Y and Œv� D R�0 � v � T �YM jy is the ray
through v 6D 0 2 T �YM jy . Suppose M is equipped with a complete Riemannian metric.
Then the spherical projectivization S�M is identified with the unit sphere bundle inside
of T �M .

Throughout what follows, by a hypersurface H � M , we will mean a closed sub-
space such that M admits a Whitney stratification with H the closure of the .n�1/–
dimensional stratum. Thus there exists an open dense locus H sm � H which is a
locally closed .n�1/–dimensional differentiable submanifold of M .

We have a natural diagram of maps

S�H smM ! P �H smM !H sm

where the first is a two-fold cover and the second is a diffeomorphism.

Definition 3.15 A hypersurface H �M , with open dense smooth locus H sm �H ,
is said to be in good position if the closure

L�H D P
�
H smM � P

�M

is finite over H . If this holds, we refer to L�H as the coline bundle of H .

Remark 3.16 Equivalently, we could require the closure

R�H D S
�
H smM � S

�M

be finite over H . If this holds, we refer to R�H as the coray bundle of H .
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Remark 3.17 If H �M is in good position, we have a natural diagram of finite maps

R�H ! L�H !H

where the first is a two-fold cover and the second is a diffeomorphism over H sm �H .

Example 3.18 (1) All Whitney stratified plane curve singularities are in good posi-
tion.

(2) The singular quadratic cones� kX
iD1

x2i �

nX
jDkC1

x2j D 0

�
�Rn for n > 2; n > k > 0

are not in good position.

Definition 3.19 (1) By a coorientation of a hypersurface H �M in good position,
we will mean a section

R�H // L�H

�
uu

of the natural two-fold cover from the coray to coline bundle.

(2) By a directed hypersurface .H; �/, we will mean a hypersurface H �M in good
position equipped with a coorientation � .

(3) By the positive ray bundle of a directed hypersurface .H; �/, we will mean the
image of the coorientation

RCH D �.L
�
H /� S

�M:

Now let us return to a rooted tree T D .T; �/ and its smoothed arboreal hypersurface

HT D
[

˛2V.T /

H˛ �RT :

Since f is a submersion, each h˛W RT !R is a submersion, hence each hypersurface
H˛ Dfh˛ D 0g �RT is in good position with the natural projection a homeomorphism

� W L�H˛
�
�!H˛:

Thus the smoothed arboreal hypersurface HT �RT is in good position (since it is a
finite union of these hypersurfaces).

Moreover, each hypersurface H˛ � RT comes equipped with a preferred coorienta-
tion �˛ given by the codirection pointing towards the halfspace Q˛ D fh˛ � 0g �RT .
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Theorem 3.20 Let T D .T; �/ be a rooted tree with arboreal singularity LT and
smoothed arboreal hypersurface HT �RT .

(1) The smoothed arboreal hypersurface HT �RT admits a natural coorientation �
whose restriction to each H˛ � HT is the coorientation �˛ .

(2) Let L�HT
� P �RT be the coline bundle of HT �RT . There is a homeomorphism

'W LT
�
�!L�HT

whose composition with the natural projection � W L�HT
! HT restricts to homeomor-

phisms
� ı'jLT .˛/W LT .˛/

�
�!H˛ for all ˛ 2 V.T /:

Remark 3.21 Note that the composition � ı 'W LT ! HT will not in general be a
homeomorphism but only a finite map. It is possible that distinct points of LT will
map to the same point of HT but correspond to different coorientations at that point.

Proof of Theorem 3.20 The bulk of the proof will be of assertion (2).

We will proceed by induction on the size of the vertex set V.T /. In the base case
when V.T / has a single element, all assertions are evident: HT D f0g � R, the
coorientation points towards the halfspace R�0 �R, and LT D f0g.

Now suppose V.T / contains at least two elements. Let � 2 V.T / be a maximal vertex
in the partial order. Introduce the rooted tree T� D .T� ; �/ where we delete the vertex �
and the edge f�; y�g where y� 2 V.T / is the parent vertex of � .

Suppose the assertions of the theorem are established for T� . By definition, inside
of RT , we have an identification of hypersurfaces

HT D .HT� �Rf�g/[H�

where each factor in the union is a closed subspace. Therefore inside of P �RT , we
have an identification of subspaces

(3-1) L�HT
D L�

HT��Rf�g
[L�H� :

Note that the first factor in the union admits the presentation

L�
HT��Rf�g

' L�HT�
�Rf�g:

Now let us more closely analyze the second factor L�H� in the union (3-1). By
Proposition 3.13 and Remark 3.2, there is a homeomorphism

(3-2) H� 'RjV.T /j�1:
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Introduce the subspaces

HC� D H� \fhy� > 0g; H0� D H� \fhy� D 0g and H�� D H� \fhy� < 0g:

Recall that h� � 0 implies hy� � 0, so that H�� D∅ and hence

H� D HC� [H0� :

Note as well that
H0� � Hy� � HT �Rf�g:

Let xHC� � H� denote the closure of HC� . Then since H�� D ∅ and H0� � HT �Rf�g ,
the union (3-1) admits the refinement

(3-3) L�HT
D L�

HT��Rf�g
[L�
xH
C
�

where each factor in the union is a closed subspace.

By Proposition 3.13, the homeomorphism (3-2) can be chosen to restrict to a homeo-
morphism

(3-4) xHC� 'RjV.T /j�2 �R�0:

Furthermore, again by Proposition 3.13, under the above identifications, we have

(3-5) @xHC� 'RjV.T /j�2 � f0g ' Hy� \fx� D 0g:

Next observe that projection along the �–direction is a diffeomorphism

HC� D fhy� > 0; h� D 0g
�
�!fhy� > 0; x� D 0g;

so that we have the nonintersection of coline bundles

L�
HT��Rf�g

\L�
H
C
�

D∅:

We conclude by the identifications (3-3), (3-4), (3-5), and induction, there is the required
homeomorphism

LT
�
�!L�HT

since we have the presentation

L�HT
' .L�HT�

�Rf�g/
a

RjV.T /j�2�f0g

.RjV.T /j�2 �R�0/

exactly as appears for LT in Lemma 2.7.
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Finally, to see assertion (1), first note that the coorientation of HT� naturally extends to
a coorientation of HT� �Rf�g . Thus by induction, it suffices to return to the union (3-1)
and check that the coorientations of HT� �Rf�g and H� agree along their intersection

H0� D fh� D hy� D 0g:

Recall that h� � 0 implies hy� � 0 or, in other words, Q� � Qy� . By definition, the
coorientations of H� ;Hy� �RT point towards the respective halfspaces Q� ;Qy� �RT ,
hence the coorientations of HT� �Rf�g and H� agree along H0� :

4 Microlocal sheaves

4.1 Stalk calculation

Fix a rooted tree T D .T; �/ where as usual T is a tree and � 2 V.T / is the root vertex.
Recall that RT denotes the Euclidean space of real tuples

fxg with  2 V.T /:

and S�RT denotes its spherically projectivized cotangent bundle. The latter is naturally
a cooriented contact manifold.

Recall that we have constructed the smoothed arboreal hypersurface

HT D
[

˛2V.T /

H˛ �RT :

It is in good position and comes equipped with a natural coorientation so that its positive
ray bundle is homeomorphic to the arboreal singularity

LT D
[

˛2V.T /

LT .˛/:

Via this identification, we can regard LT and its Euclidean constituents LT .˛/ as
Legendrian subspaces of S�RT . When doing so, we will use T in the notation in
place of T .

Fix once and for all a field k , and let Sh.RT / denote the dg category of cohomologically
constructible complexes of sheaves of k–vector spaces on RT .

Our main object of study will be the dg category ShLT .R
T / of constructible complexes

of k–vector spaces on RT microlocalized along the Legendrian subspace LT � S
�RT :

There are two equivalent ways to think about ShLT .R
T / in terms of Sh.RT / which

we will now explain.
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To any object F 2 Sh.RT /, one can associate its singular support ss.F/�S�RT . This
is a closed Legendrian subspace recording those codirections in which the propagation
of sections of F is obstructed. In particular, one has the vanishing ss.F/D∅ if and
only if the cohomology sheaves of F are locally constant.

Remark 4.1 To fix standard conventions [9], suppose i W U !RT is the inclusion of
an open subset with a smooth boundary hypersurface @U � RT . Then the singular
support of the extension by zero of the constant sheaf iŠkU 2 Sh.RT / consists of the
spherical projectivization of the outward conormal codirection along @U �RT .

Abstractly, one can define ShLT .R
T / as the dg quotient category of Sh.RT / by the

full subcategory of all objects F for which ss.F/\ LT D ∅. Equivalently, one can
take ShLT .R

T / to be the full dg subcategory of Sh.RT / consisting of objects F for
which

(1) ss.F/� LT , and

(2) HomSh.RT /.kRT ;F/' 0.

We will now give two concrete collections of generators for this subcategory, and one
could take their triangulated hulls inside of Sh.RT / as the definition of ShLT .R

T /.

Recall that for each ˛ 2 V.T /, the hypersurface H˛ � RT is the zero locus of the
function

h˛W R
T
!R:

Consider the inclusion of the open subspace

i˛W U˛ D fh˛ < 0g ,!RT :

Introduce the extension by zero

P˛ D i˛ŠkU˛ 2 Sh.RT /:

Observe the elementary properties

(1) ss.P˛/D LT .˛/,

(2) HomSh.RT /.kRT ;P˛/' 0.

Alternatively, recall that to each nonroot vertex ˛ 6D � 2 V.T / there is a unique parent
vertex y̨ 2 V.T / such that ˛ > y̨ and there are no vertices strictly between them.
Consider the inclusion of the open subspace

j˛W W˛ D fh˛ < 0; hy̨ > 0g ,! U˛ D fh˛ < 0g:
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Introduce the iterated extension

S˛ D i˛Šj˛�kW˛ 2 Sh.RT /:

For the root vertex � 2 V.T /, set

S� D P� D i˛ŠkU˛ 2 Sh.RT /:

Observe the collection of canonical exact triangles:

Py̨ D iy̨Ši Šy̨P˛ �!P˛ �! i˛Šj˛�j
�
˛P˛ D S˛

Œ1�
�!

With the analogous properties recorded above, the exact triangles imply the properties

(1) ss.S˛/� LT ,

(2) HomSh.RT /.kRT ;S˛/' 0.

Remark 4.2 In fact, the exact triangles imply the precise singular support calculation

ss.S˛/D closure of .LT .˛/[ LT .y̨// n .LT .˛/\ LT .y̨//:

Furthermore, the exact triangles also imply that the triangulated hull of the collection
of objects P˛ 2 Sh.RT /, for ˛ 2 V.T /, coincides with that of the collection of
objects S˛ 2 Sh.RT /, for ˛ 2 V.T /.

Proposition 4.3 The collection of objects P˛ 2 Sh.RT /, for ˛ 2 V.T /, or alterna-
tively the collection of objects S˛ , for ˛ 2 V.T /, generates the full dg subcategory
ShLT .R

T /� Sh.RT / consisting of objects F for which

(1) ss.F/� LT , and

(2) HomSh.RT /.kRT ;F/' 0.

Proof It suffices to prove the assertion for the collection of objects S˛ , for ˛ 2 V.T /.

For each ˛ 2 V.T /, recall the inclusion of the open subspace

i˛W U˛ D fh˛ < 0g ,!RT :

Introduce the complementary closed inclusion

q˛W Q˛ D fh˛ � 0g ,!RT

and the open inclusion of its interior

qı˛W Q
ı
˛ D fh˛ > 0g ,!RT :

Now let us begin with the first step of an iterative procedure to prove the assertion.
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Step (�) Fix an object F 2 ShLT .R
T /. To start, we have the canonical exact triangle:

i�Ši
Š
�F �!F �! q��q

�
�F

Œ1�
�!

Note that i�Ši Š�F is a sum of copies of S� . Furthermore, the canonical restriction map

q��q
�
�F ! qı��q

ı�
� F

is a quasi-isomorphism since its cone is an object supported within H� but with singular
support inside the codirection LT .�/ and hence must vanish.

Set F>� D qı�� F 2 Sh.Qı�/.

Consider the descendant set d.�/ � V.T / of those vertices ˛ 2 V.T / with parent
vertex y̨ D � 2 V.T /. Note that the inclusion of d.�/ into the disjoint union of
trees T n f�g gives a bijection with its connected components. Recall by construction
that LT .�/ is the union of LT .p/ for those partitions

pD .R
q��S i,�!T /

such that � 2 V.S/. The poset of those partitions p such that � 62 V.S/ is a disjoint
union indexed by d.�/ given by which component of T n f�g contains S . Thus by
Theorem 2.20, the complement LT n LT .�/ is a disjoint union indexed by d.�/, and
hence F>� is a corresponding direct sum indexed by d.�/.

For each ˛ 2 d.�/, set F�˛ � F>� to be the corresponding summand.

This concludes Step (�).

Step (˛), for each ˛ 2 d.�/ Now repeat the recollement pattern introduced above
at Step (�), but applied to each summand F�˛ corresponding to the root vertex ˛2d.�/
of a connected component of the remaining disjoint union of trees T n f�g. It results
in the expression of each F�˛ as an extension built out of sums of copies of S˛ and
a new sheaf F>˛ which is itself a sum of sheaves F�˛0 , for ˛0 2 d.˛/, to which we
can then apply the next iterative step. Here as before we write d.˛/� V.T / for the
descendant set of those vertices ˛0 2 V.T / with parent vertex y̨0 D ˛ 2 V.T /.

Let us spell out the general Step (˛ ) where we start with F�˛ �F>y̨ but do not assume
that ˛ 2 d.�/. We have the canonical exact triangle:

i˛Ši
Š
˛q
ı

y̨�
F�˛ �! qı

y̨�
F�˛ �! q˛�q

�
˛F�˛

Œ1�
�!

Note that i˛Ši Š˛q
ı

y̨�
F�˛ is a sum of copies of S˛ . Furthermore, the canonical restriction

map
q˛�q

�
˛F�˛! qı˛�q

ı�
˛ F�˛
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is a quasi-isomorphism since its cone is an object supported within H˛ but with singular
support inside the codirection LT .˛/ and hence must vanish.

Set F>˛ D qı�˛ F�˛ 2 Sh.Qı˛/.

Consider the descendant set d.˛/ � V.T / of those vertices ˛0 2 V.T / with parent
vertex y̨0 D ˛ 2 V.T /. By Theorem 2.20, observe that LT n .[ 6>˛LT .// is a disjoint
union indexed by d.˛/, and hence F>˛ is a corresponding direct sum indexed by d.˛/.

For each ˛0 2 d.˛/, set F�˛0 � F>˛ to be the corresponding summand.

Now continue inductively vertex by vertex following the partial order.

Now we will calculate the dg category ShLT .R
T / by calculating the morphisms between

the generating objects P˛ 2 Sh.RT /, for ˛ 2 V.T /.

Recall we can regard the rooted tree T D .T; �/ as a poset with the root vertex �2V.T /
the unique minimum. To each nonroot vertex ˛ 6D � 2 V.T / there is a unique parent
vertex y̨ 2 V.T / such that ˛ > y̨ and there are no vertices strictly between them.

Now let us regard the rooted tree T D .T; �/ as a quiver with a unique arrow pointing
from each nonroot vertex ˛ 6D � 2 V.T / to its parent vertex y̨ 2 V.T /. Symbolically,
we replace the relation ˛ > y̨ with the relation ˛! y̨ .

Let Mod.T / denote the dg derived category of finite-dimensional complexes of modules
over T regarded as a quiver. Objects assign to each vertex ˛2V.T / a finite-dimensional
complex of k–vector spaces M.˛/, and to each arrow ˛! y̨ a degree zero chain map
m˛W M.˛/!M.y̨/.

Let us point out two natural generating collections for Mod.T /. There are the simple
modules S˛ 2Mod.T / that assign

S˛.ˇ/D

�
k when ˇ D ˛;
0 when ˇ 6D ˛;

with all maps mˇ W S˛.ˇ/! S˛. y̌/ necessarily zero. There are also the projective
modules P˛ 2Mod.T / that assign

P˛.ˇ/D

�
k when ˇ � ˛;
0 when ˇ > ˛;

with the maps mˇ W P˛.ˇ/! P˛. y̌/ the identity isomorphism whenever both domain
and range are nonzero.
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Theorem 4.4 There is a canonical equivalence

'W ShLT .R
T / ��!Mod.T /

such that '.P˛/D P˛ and '.S˛/D S˛ , for all ˛ 2 V.T /.

Proof It suffices to establish the following:

Hom.P˛;Pˇ /' 0 when ˛ 6� ˇ 2 V.T /;

Hom.P˛;Pˇ /' k � eˇ˛ when ˛ � ˇ 2 V.T /;

where eˇ˛ is a generator of degree zero satisfying

e˛ D e


ˇ
ı eˇ˛ when ˛ � ˇ �  2 V.T /:

To start, for any ˛; ˇ 2 V.T /, we have

Hom.P˛;Pˇ /D Hom.i˛ŠkU˛ ; iˇŠkUˇ /

' Hom.kU˛ ; i
Š
˛iˇŠkUˇ /' C

�.U˛ \U ˇ ; U˛ \ @Uˇ I k/;

where the last term is the complex of relative singular cochains. Furthermore, the
composition of morphisms is the natural cup product

[W C �.U˛ \U ˇ ; U˛ \ @Uˇ I k/˝C
�.Uˇ \U  ; Uˇ \ @U I k/

! C �.U˛ \U  ; U˛ \ @U I k/

induced by viewing relative singular cochains as a subcomplex of singular cochains
and taking the restriction of the usual cup product.

When ˛ 6� ˇ 2 V.T /, then either of two cases hold: (i) ˛ > ˇ or (ii) ˛ and ˇ are not
comparable. Let us verify in each case the relative cohomology vanishes:

C �.U˛ \U ˇ ; U˛ \ @Uˇ I k/' 0:

We will appeal to Proposition 3.13 in order to assume the rectilinear presentation

U˛ ' fx < 0 for some  � ˛g; Uˇ ' fx < 0 for some  � ˇg

so that we also have

@Uˇ ' fx � 0 for all  � ˇI x D 0 for some  � ˇg:

Since Uˇ is homeomorphic to an open halfspace with @Uˇ homeomorphic to a hyper-
plane, it suffices to see that U˛ \ @Uˇ is contractible.

Therefore in case (i) when ˛ > ˇ , we have

U˛\@Uˇ'fx <0 for some ˇ<�˛I x �0 for all �ˇI xD0 for some �ˇg;
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which is clearly contractible: one can contract along straight lines taking x !�1,
for all ˇ <  � ˛ , and x ! 0, otherwise.

In case (ii) when ˛ and ˇ are not comparable, let � 2 V.T / be the maximal element
such that �� ˛; ˇ . Then we have

U˛\@Uˇ'fx <0 for some �<�˛I x �0 for all �ˇI xD0 for some �ˇg;

which is also clearly contractible: contract along straight lines taking x !�1, for
all � <  � ˛ , and x ! 0, otherwise.

Now when ˛�ˇ2V.T /, we have U˛�Uˇ with U˛ contractible, hence the morphism
complex simplifies to

Hom.P˛;Pˇ /' C �.U˛I k/' k � eˇ˛ ;

where eˇ˛ denotes the constant cochain of degree zero and value 1 2 k . Furthermore,
for ˛ � ˇ �  2 V.T /, the composition

Hom.P˛;Pˇ /˝Hom.Pˇ ;P /! Hom.P˛;P /

simplifies to the natural cup product of cochains

[W C �.U˛I k/˝C
�.Uˇ I k/! C �.U˛I k/

which clearly satisfies eˇ˛ [ e


ˇ
D e


˛ .

4.2 Restriction functors

We continue with a fixed rooted tree T D .T; �/ with smoothed arboreal hypersurface

HT D
[

˛2V.T /

H˛ �RT

with conormal Legendrian the arboreal singularity

LT D
[

˛2V.T /

LT .˛/� S
�RT :

Recall that the strata LT .p/� LT are contractible and indexed by correspondences

pD .R
q��S i,�!T /

where i is the inclusion of a subtree, and q is a quotient map of trees. Furthermore,
the normal slice to the stratum is homeomorphic to the arboreal singularity LR .
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Fix any point � 2 LT .p/ with projection x D �.�/ 2 HT . Choose a small open
ball B.p/�RT around x . The open set ��.B/�S�RT intersects LT in possibly many
connected components. Let ƒ.p/� LT denote the connected component containing �.

Introduce the dg category Shƒ.p/.B.p// of constructible complexes of k–vector spaces
on B.p/ microlocalized along the Legendrian subspace ƒ.p/� S�B.p/. Restriction
of sheaves along the open inclusion B.p/�RT induces a natural microlocal restriction
functor

resW ShLT .R
T /! Shƒ.p/.B.p//:

Let us denote by N .p/� ShLT .R
T / the full dg subcategory generated by the objects

(1) P˛ 2 ShLT .R
T / when ˛ 62 i.V .S//,

(2) S˛ 2 ShLT .R
T / when ˛; y̨ 2 i.V .S// and q.˛/D q.y̨/ 2 V.R/.

Observe that the singular support of any of the above generating objects, and hence
any object of N .p/, is disjoint from LT .p/� LT . Thus we have the evident vanishing

res.F/' 0 for any F 2N .p/:

Remark 4.5 Thanks to the canonical exact triangle

Py̨ D iy̨Ši Šy̨P˛
u
�!P˛ �! i˛Šj˛�j

�
˛P˛ D S˛

Œ1�
�!

the vanishing res.S˛/' 0 is equivalent to res.u/ being a quasi-isomorphism.

We will see that the microlocal restriction functor exhibits Shƒ.p/.B.p// as the dg
quotient of ShLT .R

T / by the dg subcategory N .p/.

To spell this out, observe that the quiver structure on T induces one on the subtree S
and subsequent quotient tree R . Let us write S and R to denote S and R with their
respective quiver structures.

Consider the inclusion of the subtree i W S ,! T: Define the quotient functor

i�W Mod.T /!Mod.S/

by killing the projective modules P˛ 2Mod.T /, when ˛ 62 i.V .S//.

Consider the quotient map qW S �R . Define the quotient functor

qŠW Mod.S/!Mod.R/

by killing the simple modules S˛ 2Mod.S/, when q.˛/D q.y̨/ 2 V.R/.
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Observe that the composite

qŠi
�
W Mod.T /!Mod.R/

is the quotient functor by the full dg subcategory N.p/�Mod.T / generated by

(1) P˛ 2Mod.T / when ˛ 62 i.V .S//,

(2) S˛ 2Mod.T / when ˛; y̨ 2 i.V .S// and q.˛/D q.y̨/ 2 V.R/.

Proposition 4.6 There is a natural commutative diagram:

ShLT .R
T /

res
��

�
// Mod.T /

qŠi
�

��

Shƒ.p/.B.p//
�
// Mod.R/

Proof The proof is essentially a repeat of the proofs of Proposition 4.3 and Theorem 4.4.

Choose a vertex ˛ 2 V.T / in each fiber of qW S � R , and denote their union
by zV .R/� V.T /. Consider the collection of objects P˛ 2 Sh.RT /, for ˛ 2 zV .R/.
Denote by Px̨ 2 Sh.B.p//, for ˛ 2 zV .R/, their restrictions along the open inclusion
B.p/� Sh.RT /.

By the same argument as in the proof of Proposition 4.3, we see that the collection of
objects Px̨ 2 Sh.B.p//, for ˛ 2 zV .R/, generates Shƒ.p/.B.p//.

By the same argument as in the proof of Theorem 4.4, we see that the generating objects
Px̨ 2 Sh.B.p//, for ˛ 2 zV .R/, give an equivalence Shƒ.p/.B.p//'Mod.R/.

References
[1] F Ardila, M Develin, Tropical hyperplane arrangements and oriented matroids, Math.

Z. 262 (2009) 795–816 MR

[2] I N Bernstein, I M Gelfand, V A Ponomarev, Coxeter functors and Gabriel’s theorem,
Uspehi Mat. Nauk 28 (1973) 19–33 MR In Russian; translated in Russian Math.
Surveys 28 (1973) 17–32

[3] J Bernstein, Algebraic theory of D–modules, lecture notes Available at http://
www.math.uchicago.edu/~mitya/langlands.html

[4] L J Billera, A Björner, Face numbers of polytopes and complexes, from “Handbook
of discrete and computational geometry” (J E Goodman, J O’Rourke, editors), CRC,
Boca Raton, FL (1997) 291–310 MR

Geometry & Topology, Volume 21 (2017)

http://dx.doi.org/10.1007/s00209-008-0400-z
http://msp.org/idx/mr/2511751
http://mi.mathnet.ru/eng/umn4860
http://msp.org/idx/mr/0393065
http://dx.doi.org/10.1070/RM1973v028n02ABEH001526
http://dx.doi.org/10.1070/RM1973v028n02ABEH001526
http://www.math.uchicago.edu/~mitya/langlands.html
http://www.math.uchicago.edu/~mitya/langlands.html
http://msp.org/idx/mr/1730171


Arboreal singularities 1273

[5] A Björner, Posets, regular CW complexes and Bruhat order, European J. Combin. 5
(1984) 7–16 MR

[6] M Develin, B Sturmfels, Tropical convexity, Doc. Math. 9 (2004) 1–27 MR

[7] T Dyckerhoff, M Kapranov, Higher Segal spaces, I, preprint (2012) arXiv

[8] T Dyckerhoff, M Kapranov, Triangulated surfaces in triangulated categories, preprint
(2013) arXiv

[9] M Kashiwara, P Schapira, Sheaves on manifolds, corrected reprint of 1st edition,
Grundl. Math. Wissen. 292, Springer (1994) MR

[10] B Keller, On differential graded categories, from “International Congress of Mathe-
maticians, II” (M Sanz-Solé, J Soria, J L Varona, J Verdera, editors), Eur. Math. Soc.,
Zürich (2006) 151–190 MR

[11] M Kontsevich, Symplectic geometry of homological algebra, lecture notes (2009)
Available at http://www.ihes.fr/~maxim/TEXTS/Symplectic_AT2009.pdf

[12] J-L Loday, The multiple facets of the associahedron, preprint (2005) Available at
http://www-irma.u-strasbg.fr/~loday/PAPERS/MultFAsENG2.pdf

[13] C McCrory, Cone complexes and PL transversality, Trans. Amer. Math. Soc. 207
(1975) 269–291 MR

[14] D Nadler, Cyclic symmetries of An–quiver representations, Adv. Math. 269 (2015)
346–363 MR

[15] D Nadler, Non-characteristic expansions of Legendrian singularities, preprint (2015)
arXiv

[16] D Nadler, Mirror symmetry for the Landau–Ginzburg A-model M DCn , W Dz1 � � � zn ,
preprint (2016) arXiv

[17] D Nadler, Wrapped microlocal sheaves on pairs of pants, preprint (2016) arXiv

[18] D Nadler, A combinatorial calculation of the Landau–Ginzburg model M D C3 ,
W D z1z2z3 , Selecta Math. 23 (2017) 519–532 MR

[19] L Ng, D Rutherford, V Shende, S Sivek, E Zaslow, Augmentations are sheaves,
preprint (2015) arXiv

[20] P Seidel, Fukaya categories and Picard–Lefschetz theory, European Mathematical
Society, Zürich (2008) MR

[21] V Shende, D Treumann, E Zaslow, Legendrian knots and constructible sheaves,
preprint (2014) arXiv

[22] D Speyer, B Sturmfels, Tropical mathematics, lecture notes (2004) arXiv

[23] J D Stasheff, Homotopy associativity of H –spaces, I, Trans. Amer. Math. Soc. 108
(1963) 275–292 MR

Geometry & Topology, Volume 21 (2017)

http://dx.doi.org/10.1016/S0195-6698(84)80012-8
http://msp.org/idx/mr/746039
http://www.math.uiuc.edu/documenta/vol-09/01.html
http://msp.org/idx/mr/2054977
http://msp.org/idx/arx/1212.3563
http://msp.org/idx/arx/1306.2545
http://dx.doi.org/10.1007/978-3-662-02661-8
http://msp.org/idx/mr/1299726
http://msp.org/idx/mr/2275593
http://www.ihes.fr/~maxim/TEXTS/Symplectic_AT2009.pdf
http://www-irma.u-strasbg.fr/~loday/PAPERS/MultFAsENG2.pdf
http://www-irma.u-strasbg.fr/~loday/PAPERS/MultFAsENG2.pdf
http://dx.doi.org/10.2307/1997177
http://msp.org/idx/mr/0400243
http://dx.doi.org/10.1016/j.aim.2014.10.006
http://msp.org/idx/mr/3281139
http://msp.org/idx/arx/1507.01513
http://msp.org/idx/arx/1601.02977
http://msp.org/idx/arx/1604.00114
http://dx.doi.org/10.1007/s00029-016-0254-x
http://dx.doi.org/10.1007/s00029-016-0254-x
http://msp.org/idx/mr/3595901
http://msp.org/idx/arx/1502.04939
http://dx.doi.org/10.4171/063
http://msp.org/idx/mr/2441780
http://msp.org/idx/arx/1402.0490
http://msp.org/idx/arx/math.CO/0408099
http://msp.org/idx/mr/0158400


1274 David Nadler

[24] J D Stasheff, Homotopy associativity of H –spaces, II, Trans. Amer. Math. Soc. 108
(1963) 293–312 MR

[25] M L Wachs, Poset topology: tools and applications, from “Geometric combinatorics”
(E Miller, V Reiner, B Sturmfels, editors), IAS/Park City Math. Ser. 13, Amer. Math.
Soc., Providence, RI (2007) 497–615 MR

Department of Mathematics, University of California, Berkeley
Evans Hall, Berkeley, CA 94720-3840, United States

nadler@math.berkeley.edu

Proposed: Yasha Eliashberg Received: 30 October 2015
Seconded: Leonid Polterovich, Ciprian Manolescu Revised: 6 March 2016

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://msp.org/idx/mr/0158400
http://msp.org/idx/mr/2383132
mailto:nadler@math.berkeley.edu
http://msp.org
http://msp.org

	1. Introduction
	1.1. Summary
	1.2. Motivation

	2. Arboreal singularities
	2.1. Gluing construction
	2.2. Combinatorial description 
	2.3. Example: A_n–trees

	3. Arboreal hypersurfaces
	3.1. Rectilinear version
	3.2. Smoothed version
	3.3. Comparison
	3.4. Directed hypersurfaces

	4. Microlocal sheaves
	4.1. Stalk calculation
	4.2. Restriction functors

	References

