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Presentation complexes with the fixed point property

IVÁN SADOFSCHI COSTA

We prove that there exists a compact two-dimensional polyhedron with the fixed point
property and even Euler characteristic. This answers a question posed by R H Bing
in 1969. We also settle a second question by Bing regarding the homotopy invariance
of the fixed point property in low dimensions.

55M20, 57M05, 57M20

1 Introduction

In his influential article “The elusive fixed point property” [3], R H Bing stated twelve
questions. Since then eight of these questions have been answered; see Hagopian [12].
In this paper we answer Questions 1 and 8.

Recall that a space X is said to have the fixed point property if every map f W X !X

has a fixed point. By a polyhedron we mean a space homeomorphic to the geometric
realization of a simplicial complex. Motivated by an example of W Lopez [15], Bing [3]
asked the following question.

Question 1.1 (Bing’s Question 1) Is there a compact two-dimensional polyhedron
with the fixed point property which has even Euler characteristic?

This question was studied by Barmak and Sadofschi Costa [2] and Waggoner [18].
In [2] it is proved that the answer is negative if we restrict ourselves to spaces with
abelian fundamental group. In Corollary 2.7 below we show that there exists a compact
two-dimensional polyhedron with the fixed point property and Euler characteristic equal
to 2 whose fundamental group is nonabelian of order 243. This settles Question 1.1
affirmatively.

The example constructed by Lopez [15] shows that the fixed point property is not a
homotopy invariant for polyhedra of dimension 17. The smallest dimension n for
which the fixed point property fails to be a homotopy invariant coincides with the
smallest n such that there is an n–dimensional compact polyhedron without the fixed
point property which collapses by an elementary collapse to a complex with the fixed
point property. This follows from the next result, due to Jiang:
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Theorem 1.2 [13, Theorem 7.1] In the category of compact connected polyhedra
without global separating points, the fixed point property is a homotopy-type invariant.

Moreover, if X ' Y are compact connected polyhedra such that Y lacks the fixed
point property and X does not have global separating points, then X lacks the fixed
point property.

Recall that a point x in a connected polyhedron X is said to be a global separating
point if X �fxg is not connected.

In Theorem 2.12 below we show that there exists a compact polyhedron of dimension 2

without the fixed point property which collapses to a polyhedron with the fixed point
property. This settles a second question by Bing:

Question 1.3 (Bing’s Question 8) What is the smallest number n such that there
exists an n–dimensional polyhedron X with the fixed point property, and a disk D

such that X \D is an arc and X [D does not have the fixed point property?

According to C L Hagopian [12], Bing conjectured that the answer to Question 1.3 is
two. Theorem 2.12 proves this conjecture.

Acknowledgment I am grateful to Jonathan Barmak, without whose advice and sug-
gestions this paper would not have been possible. I would like to thank the referee for
helpful comments and suggestions.

2 Bing groups

By invariant factors of a finitely generated abelian group A we mean the nonnegative
integers d1 j � � � jdk such that ADZd1

˚� � �˚Zdk
. If P is a presentation of a group, the

presentation complex of P will be denoted by XP . Presentation complexes are in fact
polyhedra. If a group G has finite abelianization and is presented by a presentation P
with g generators and r relators, then r �g is at least the number of invariant factors
of the second homology group H2.G/ of G . If this lower bound is attained for P ,
then the presentation is said to be efficient. Equivalently, a presentation P of a group G

with finite abelianization is efficient if the rank of H2.XP/ is the number of invariant
factors of H2.G/. A group G is said to be efficient if it admits an efficient presentation.
If R is a principal ideal domain, the trace of an endomorphism � of a free R–module
of finite rank is denoted by tr.�/ 2R.
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Definition 2.1 Let G be a finitely presentable group and let d1 j � � � jdk be the invariant
factors of H2.G/. We say that G is a Bing group if H1.G/ is finite and for every
endomorphism �W G!G we have tr.H2.�/˝ 1Zd1

/¤�1 in Zd1
.

The above definition makes sense unless H2.G/ D 0. If G is a finitely presentable
group such that H1.G/ is finite and H2.G/D 0, we make the convention that G is a
Bing group.

Theorem 2.2 If P is an efficient presentation of a Bing group G then XP has the
fixed point property.

Proof Let X DXP and f W X !X be a map. If H2.G/D 0, X is rationally acyclic,
so f has a fixed point. Therefore we may assume H2.G/ ¤ 0. Let d1 j � � � jdk be
the invariant factors of H2.G/. There is a K.G; 1/ space Y with X D Y 2 . Now f

extends to a map xf W Y ! Y .

In the following commutative diagram, the horizontal arrows, induced by the inclusion
i W X ,! Y , are epimorphisms:

H2.X /

f�

��

i�
// // H2.Y /

xf�

��

H2.X /
i�

// // H2.Y /

Since P is efficient, the rank of H2.X / equals the number of invariant factors of H2.Y /.
Therefore the horizontal arrows in the following commutative diagram are isomor-
phisms:

H2.X /˝Zd1

f�˝1Zd1

��

i�˝1Zd1

�
// H2.Y /˝Zd1

xf�˝1Zd1
��

H2.X /˝Zd1 i�˝1Zd1

�
// H2.Y /˝Zd1

Now tr.f�˝ 1Zd1
/D tr. xf�˝ 1Zd1

/¤�1 in Zd1
since G is a Bing group. Here we

are using the natural isomorphism H2.BG/�H2.G/ of [16, Theorem 5.1.27]. Recall
that every map BG!BG is induced, up to homotopy, by an endomorphism G!G .

Finally we obtain tr.f�/ ¤ �1 in Z, since tensoring with Zd1
reduces the trace

modulo d1 . So L.f /¤ 0 and, by the Lefschetz fixed point theorem, f has a fixed
point.
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Example 2.3 Efficient Bing groups with trivial second homology are easy to find
(for example Zn or any other finite group with deficiency zero). But the presentation
complexes we get in this way are rationally acyclic, therefore have Euler characteristic 1.
Aside from cyclic groups, abelian groups are not Bing groups (this follows from [2,
Theorem 4.6]).

Example 2.4 If G is a group, we consider the action Aut.G/ Õ H2.G/. More-
over, if � 2 Inn.G/ then H2.�/ is the identity morphism. So there is an induced
action Out.G/ Õ H2.G/. When G is a finite simple group, every endomorphism
�W G!G is either trivial or an automorphism. For the trivial morphism � we have
tr.H2.�/˝1Zd1

/D 0. Therefore for a finite simple group G , understanding the action
Out.G/Õ H2.G/ suffices to determine if G is a Bing group. Using the classification
of the finite simple groups [9, Table I, page 8–9] and the description of this action
[10, Theorems 6.1.4, 6.3.1 and 2.5.12] we can prove that the only finite simple groups
with nontrivial second homology that are also Bing groups are the groups D2m.q/

for m > 2 and q odd. The smallest of these groups is D6.3/, a group of order
6762844700608770238252960972800. Simple groups of order at most 5000000 are
efficient, except perhaps C2.4/ [6; 7]. However, it is not known if An is efficient for
all n [6]. It is known that D2m.q/ has deficiency at most 24 [11, Theorem 10.1].
Since H2.D2m.q// D Z2˚Z2 , if these groups turn out to be efficient, they would
give examples of two dimensional polyhedra with the fixed point property and Euler
characteristic equal to 3. To answer Question 1.1 we will need another source of Bing
groups.

Proposition 2.5 The group G presented by

P D hx;y j x3; xyx�1yxy�1x�1y�1; x�1y�4x�1y2x�1y�1
i

is a finite group of order 35 . We have H2.G/D Z3 , so P is efficient. Moreover G is
a Bing group.

Proof We will need the following GAP [17] program, which uses the packages
HAP [8] and SONATA [1]:

LoadPackage("HAP");;
LoadPackage("SONATA");;
F:=FreeGroup(2);;
G:= F/[F.1^3, F.1*F.2*F.1^-1*F.2*F.1*F.2^-1*F.1^-1*F.2^-1,
F.1^-1*F.2^-4*F.1^-1*F.2^2*F.1^-1*F.2^-1];;
Order(G);

Geometry & Topology, Volume 21 (2017)



Presentation complexes with the fixed point property 1279

G:=SmallGroup(IdGroup(G));;
R:=ResolutionFiniteGroup(G,3);;
Homology(TensorWithIntegers(R),2);
Set(List(Endomorphisms(G),
f->Homology(TensorWithIntegers(EquivariantChainMap(R,R,f)),2)));

The program prints three lines. The first one contains the order of G , the second
one is a list with the invariant factors of H2.G/ and the third one is a list with the
endomorphisms of H2.G/ that are induced by an endomorphism of G . The output is:

243
[ 3 ]
[ [ f1 ] -> [ <identity ...> ], [ f1 ] -> [ f1 ] ]

Therefore jGj D 243 and H2.G/D Z3 . The third line of the output says that there
are only two endomorphisms of H2.G/ that are induced by an endomorphism of G .
The first endomorphism maps the generator f1 of H2.G/D Z3 to 0 2H2.G/, so it
is the zero morphism. The second endomorphism maps f1 to f1, so it is the identity
morphism of H2.G/. From this we conclude that, after tensoring with Z3 , the traces
of these endomorphisms are 0 and 1, proving that G is a Bing group.

Remark 2.6 Using GAP, it is easy to show that the group G in the previous proposition
is a semidirect product .Z9˚Z9/ÌZ3 . The action of Z3 in Z9˚Z9 is multiplication
by

�
0
2

1
5

�
.

By Theorem 2.2 and Proposition 2.5 we have:

Corollary 2.7 The complex XP associated to the presentation

P D hx;y j x3; xyx�1yxy�1x�1y�1; x�1y�4x�1y2x�1y�1
i

has the fixed point property. Moreover, �.XP/D 2.

Borsuk proved that a polyhedron with nontrivial first rational homology group retracts
to S1 [4, Théorème 30; 5, Korollar 11]. Therefore a two-dimensional polyhedron with
the fixed point property has positive Euler characteristic.

Corollary 2.8 There are compact 2–dimensional polyhedra with the fixed point prop-
erty and Euler characteristic equal to any positive integer n.

Proof For nD 1 this is immediate. For n > 1 take a wedge of n� 1 copies of the
space XP of Corollary 2.7.
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To prove Theorem 2.12 we will need another efficient Bing group:

Proposition 2.9 The group H presented by QD hx;y j x4;y4; .xy/2; .x�1y/2i is
a finite group of order 24 . We have H2.H /D Z2˚Z2 , so Q is efficient. Moreover,
H is a Bing group.

Proof As above we will use a GAP program:

LoadPackage("HAP");;
LoadPackage("SONATA");;
F:=FreeGroup(2);;
H:= F/[F.1^4, F.2^4, (F.1*F.2)^2, (F.1^-1*F.2)^2];;
Order(H);
H:=SmallGroup(IdGroup(H));;
R:=ResolutionFiniteGroup(H,3);;
Homology(TensorWithIntegers(R),2);
Set(List(Endomorphisms(H),
f->Homology(TensorWithIntegers(EquivariantChainMap(R,R,f)),2)));

The program produces the following output:

16
[ 2, 2 ]
[ [ f1, f2 ] -> [ <identity ...>, <identity ...> ],
[ f1, f2 ] -> [ f1, f2 ],[ f1, f2 ] -> [ f1^-1*f2^-1, f2^-1 ] ]

The first line says that jH jD 16. The second line says that H2.H /DZ2˚Z2 . Finally,
the last two lines say that there are only three endomorphisms of H2.H /D Z2˚Z2

that are induced by an endomorphism of H . The first of these endomorphisms maps
both generators f1 and f2 to 0 2H2.H /, so it is the zero morphism. The second one
maps f1 to f1 and f2 to f2, so it is the identity morphism. The third endomorphism
maps f1 to f1^-1*f2^-1=f1*f2 and f2 to f2^-1=f2. So in the basis given by f1
and f2 it is

�
1
1

0
1

�
. From this we see that, after tensoring with Z2 , the trace of each of

these endomorphisms is 0. Therefore H is a Bing group.

Remark 2.10 The group H in the previous proposition is a semidirect product
.Z2˚Z4/Ì Z2 . The action of Z2 in Z2˚Z4 is given by

�
1
0

1
1

�
.

We will also need the following:
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Proposition 2.11 [2, Proposition 3.3] Let X be a compact connected 2–dimensional
polyhedron. The following are equivalent:

� X is homotopy equivalent to a polyhedron Y having S2 as a retract.

� The number of invariant factors of H2.�1.X // is strictly smaller than the rank
of H2.X /.

Now we will show that the answer to Question 1.3 is 2:

Theorem 2.12 There is a compact 2–dimensional polyhedron Y without the fixed
point property and such that the polyhedron X , obtained from Y by an elementary
collapse of dimension 2, has the fixed point property.

Proof Let P and Q be the presentations of Propositions 2.5 and 2.9. By Theorem 2.2,
XP and XQ have the fixed point property, so X D XP _ XQ also has the fixed
point property. Since neither XP nor XQ have global separating points, by adding
a 2–simplex, we can turn X into a polyhedron Y , without global separating points
and such that, by collapsing that 2–simplex, we obtain X . We have H2.�1.Y // D

H2.�1.XP/��1.XQ//DH2.�1.XP//˚H2.�1.XQ//DZ2˚Z6 and rk.H2.Y //D3.
By Proposition 2.11 and Theorem 1.2, Y does not have the fixed point property.

Let †2.X / denote the image of the Hurewicz homomorphism hW �2.X /!H2.X /.
Then we have an exact sequence

0!†2.X /!H2.X /!H2.�1.X //! 0:

Lemma 2.13 [14, Lemma 1.4] Let X and Y be compact, connected, 2–dimensional
CW–complexes. If f W X!Y is a map and ıW H2.X /!†2.Y / is any homomorphism,
there is a map gW X ! Y such that �1.f /D �1.g/ and H2.g/DH2.f /C ı .

If X is a compact, connected 2–dimensional complex with fundamental group G , we
say that X has minimum Euler characteristic if any other such complex has Euler
characteristic greater than or equal to �.X /.

Theorem 2.14 Let X be a compact, connected, 2–dimensional polyhedron and let G

be its fundamental group. Suppose that G is not Bing, or that G is not efficient or that
X does not have minimum Euler characteristic. Then there is a map f W X !X with
L.f /D 0.
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Proof If H1.G/ is not finite, X retracts to S1 , so X has a self–map f with Lefschetz
number zero. Therefore we may assume that H1.G/ is finite. Let d1; : : : ; dn be the
invariant factors of H2.G/. Consider the inclusion �W †2X !H2.X /. Let m be the
rank of H2.X / and let k be the rank of †2.X /. We consider the Smith normal form
of �. Let ˛1 j � � � j˛k be the numbers on the diagonal and let fe1; : : : ; emg be the basis
of H2.X /. Since � is injective, ˛i is nonzero for i D 1; : : : ; k . By the short exact
sequence above we have H2.G/D Z˛1

˚ � � �˚Z˛k
˚Zm�k . Note that some of the

first ˛i may be equal to 1. But in any case (if k > 0) we have ˛1 jd1 .

Suppose G is not Bing. Then there is an endomorphism �W G ! G such that
tr.H2.�/˝1Zd1

/D�1 in Zd1
. Let zf W X !X be a map inducing � on fundamental

groups. We have tr.H2. zf // � �1 mod d1 . If d1 D 0 we are done. Otherwise,
k > 0 and since ˛1 jd1 there is c 2 Z such that tr.H2. zf //C c˛1 D �1. Define
ıW H2.X /! †2.X / by ı.e1/ D c˛1e1 and ı.ej / D 0 if 1 < j � m. Now, using
Lemma 2.13 we get a map f W X ! X with tr.H2.f // D tr.H2. zf //C tr.ı/ D �1,
therefore L.f /D 0.

Now suppose G is not efficient or X does not have minimum Euler characteristic.
Then m> n, so we must have k > 0 and ˛1D 1. By the argument above we get a map
f W X !X with L.f /D 0. Alternatively, in this case we could use Proposition 2.11.

The previous result can be seen as a converse to Theorem 2.2. Notice that this is not
enough to conclude that X does not have the fixed point property. To do that we would
need to find a map f with Nielsen number 0.
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