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Homological stability for spaces of embedded surfaces

FEDERICO CANTERO MORÁN

OSCAR RANDAL-WILLIAMS

We study the space of oriented genus-g subsurfaces of a fixed manifold M and, in
particular, its homological properties. We construct a “scanning map” which compares
this space to the space of sections of a certain fibre bundle over M associated to its
tangent bundle, and show that this map induces an isomorphism on homology in a
range of degrees.

Our results are analogous to McDuff’s theorem on configuration spaces, extended
from 0–dimensional submanifolds to 2–dimensional submanifolds.
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1 Introduction

Let M be a smooth manifold, not necessarily compact and possibly with boundary.
Our object of study will be certain spaces of oriented surfaces in M, which we define
as follows. Let †g denote a connected closed oriented smooth surface of genus g , and
let Emb.†g ;M/ denote the space of all smooth embeddings of this surface into the
interior of M, equipped with the C1 topology. The topological group DiffC.†g/ of
orientation preserving diffeomorphisms acts continuously and freely on Emb.†g ;M/,
and we define

EC.†g ;M/ WD Emb.†g ;M/=DiffC.†g/

to be the quotient space. As a set, EC.†g ;M/ is in bijection with the set of all subsets
of M which are smooth manifolds diffeomorphic to †g , equipped with an orientation:
hence we refer to EC.†g ;M/ as the moduli space of genus g oriented surfaces in M.

We will study the space EC.†g ;M/ using a technique called scanning, which compares
this space of surfaces in M with a certain space of “formal surfaces in M ”. In order
to introduce this space, we define, for an inner product space .V; h�;�i/, the space

S?2 .V / WD Th.?2 ! GrC2 .V //:

That is, we take the Grassmannian GrC2 .V / of oriented 2–planes in V , consider the
tautological 2–plane bundle 2�V �GrC2 .V /, and form its orthogonal complement ?2
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using the inner product on V . Then we take the Thom space of this vector bundle. We
will denote the point at infinity by 12 S?2 .V /.

If V ! B is a vector bundle with metric, we let S?2 .V /! B be the fibre bundle
obtained by performing this construction fibrewise to V . The constant section with
value 1 in each fibre gives a canonical section of this bundle.

We fix a Riemannian metric g on M. The space of formal surfaces in M is defined to be

�c.S?2 .TM/!M I1/;

the space of sections of S?2 .TM/!M which are compactly supported, ie agree with
the canonical section 1 outside of a compact set and on @M. Every such section
chooses for each point x 2M either an oriented affine 2–dimensional subset of TxM
or the empty subset. The scanning construction associates to each oriented surface
† �M such a section by — loosely speaking — assigning to each x 2M the best
approximation to † by an affine subset of TxM.

To make this precise, we let E� .†g ;M/ � .0;1/� EC.†g ;M/ be the set of pairs
.�;W / such that the exponential map expW NW !M from the normal bundle of W
to M (defined using the metric g on M ) restricts to an embedding of the subspace
N �W � NW of vectors of length less than � . We also fix a smooth family of
diffeomorphisms '�W Œ0;1/Š Œ0; �/.

We then define a map M � E� .†g ;M/! S?2 .TM/ by

.p; .�;W // 7!

�
12 S?2 .TpM/ if p … exp.N �W /;

.Dv exp/
�
TqW �'

�1
� .kvk/ � v

�
� TpM if p D exp.v 2N �

qW /;

where we consider the affine oriented 2–plane TqW �'�1� .kvk/ � v in TqW ˚NqW
as lying inside Tv.N �W / using the canonical linear isomorphism between these last
two vector spaces. The adjoint to this map,

S �
g W E

� .†g ;M/! �c.S?2 .TM/!M I1/;

is the scanning map; cf Section 11.2. As the forgetful map E� .†g ;M/! EC.†g ;M/

is a weak homotopy equivalence, we often consider S �
g as a map from EC.†g ;M/.

In Section 11.1, we construct a function �W �c.S?2 .TM/!M I1/ ! Z such that
� ıS �

g takes constant value 2� 2g ; we think of � as sending a formal surface to its
Euler characteristic, and write �c.S?2 .TM/!M I1/g D ��1.2� 2g/. The simplest
form of our theorem is then as follows.

Theorem 1.1 If M is simply connected and of dimension at least 5, then the scanning
map S �

g W E.†g ;M/! �c.S?2 .TM/!M I1/g induces an isomorphism in integral
homology in degrees smaller than or equal to 1

3
.2g� 2/.
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This should be compared with the theorem of McDuff [17, Theorem 1.1], which can be
viewed as a similar result for spaces of embedded 0–manifolds, ie configuration spaces.

Remark 1.2 In principle, the homology of spaces of embeddings of a surface into
Euclidean space modulo diffeomorphisms can be computed as follows: by Arone, Lam-
brechts and Volić [1], the rational homology of the fibre of the map from embeddings
in Euclidean space to immersions can been computed; by Smale–Hirsch theory, the
homology of the space of immersions can be computed; then one can study the spectral
sequence for the action of the diffeomorphism group of the surface on the space of
embeddings. In practice, there are many difficulties in following this programme. By
contrast, Theorem 1.1 can be used to compute these rational homology groups in one
step. Such calculations will appear in forthcoming work of the first author.

Theorem 1.1 follows from two rather more technical results. First, a homology stability
theorem analogous to Harer stability [11]. To make sense of such a result, it is essential
to discuss surfaces with boundary, and we will shortly define spaces of surfaces with
boundary inside a manifold M with nonempty boundary. A large part of our work is
devoted to proving this homology stability theorem, which requires new techniques. The
second technical result is analogous to the Madsen–Weiss theorem [16] and identifies
the stable homology of these spaces of surfaces. To describe these results, we must
introduce more terminology.

1.1 Surfaces with boundary

Now we suppose that M has nonempty boundary @M and that we are given a collar
C W @M � Œ0; 1/ ,!M. Let †g;b be a fixed smooth oriented surface of genus g with b
boundary components, and let cW @†g;b � Œ0; 1/ ,! †g;b be a collar. We also fix an
embedding ıW @†g;b ,! @M, which we call a boundary condition.

Let Emb.†g;b;M I ı/ be the set of those embeddings f that extend to an embedding
F W †g;b [ .@†g;b � I /!M [ .@M � I / such that for all x 2 @†g;b and t 2 I ,

f .x/D ı.x/ and F.x; t/D .f .x/; t/:

Similarly, let DiffC.†g;b/ be the group of those diffeomorphisms that extend to a
diffeomorphism of †g;b [ .@†g;b � I / that is the identity on †g;b � I . We endow
both sets with the Whitney topology and define

EC.†g;b;M I ı/D Emb.†g;b;M I ı/=DiffC.†g;b/:

Let QW @M Ý N be a cobordism which is collared at both boundaries. Then we
can glue Q to M along @M to obtain a new manifold M ıQ (using the collars to
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obtain a smooth structure). Similarly, if eW †bCb0 ,!Q is an embedding of a surface
with b boundary components in @M and b0 in N (which we call the incoming and
outgoing boundaries @in and @out , respectively) such that every component of the
surface intersects the incoming boundary, and if e.@in†bCb0/ D Im.ı/, we obtain a
gluing map

EC.†g;b;M I ı/! EC.†h;b0 ;M ıQI ej@out†bCb0
/;

.W �M/ 7! .W [ e.†bCb0/�M ıQ/;

where the value of h depends on the combinatorics of the topology of †bCb0 (note
that, as †g;b is connected and every component of †bCb0 intersects the incoming
boundary, †g;b [†bCb0 is connected).

In particular, if we let QD@M�Œ0; 1� and choose a diffeomorphism MıQŠM (for ex-
ample, by reparametrising the collar in M ), we obtain gluing maps EC.†g;b;M I ı/!
EC.†h;b0 ;M I ı0/.

1.2 Homological stability

There are three basic types of gluing maps which suffice to generate all general gluing
maps under composition. These are when †bCb0 is

(i) the disjoint union of a pair of pants with the legs as incoming boundary and a
collection of cylinders;

(ii) the disjoint union of a pair of pants with the waist as incoming boundary and a
collection of cylinders;

(iii) the disjoint union of a disc with its boundary incoming and a collection of
cylinders.

When these surfaces are embedded in @M � Œ0; 1�, we call them stabilisation maps,
and we denote them by

˛g;b D ˛g;b.M I ı; ı
0/W EC.†g;b;M I ı/! EC.†gC1;b�1;M I ı0/;

ˇg;b D ˇg;b.M I ı; ı
0/W EC.†g;b;M I ı/! EC.†g;bC1;M I ı0/;

g;b D g;b.M I ı; ı
0/W EC.†g;b;M I ı/! EC.†g;b�1;M I ı0/:

See Figure 1. As a warning to the reader, we remark that the notation does not determine
the map: we will often write, for example, ˇg;b to denote any gluing map of this type.
There are many because there can be many nonisotopic embeddings of †bCb0 into
@M � Œ0; 1�.

The following is our main result concerning homological stability.
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Figure 1: The three basic types of stabilisation maps acting on a surface in the
space E.†2;2;D3I ı/ of surfaces in the disc of dimension 3: ˛2;2.D3/ (left),
ˇ2;2.D

3/ (middle) and 2;2.D3/ (right)

Theorem 1.3 Let M be a simply connected manifold of dimension at least 5. If the
dimension of M is 5, we assume that the pairs of pants defining stabilisation maps are
contained in a ball.

(i) Every map ˛g;b induces an isomorphism in homology in degrees less than or
equal to 1

3
.2g� 2/, and an epimorphism in the next degree.

(ii) Every map ˇg;b induces an isomorphism in homology in degrees less than or
equal to 1

3
.2g� 3/, and an epimorphism in the next degree. If one of the newly

created boundaries of the pair of pants is contractible in @M, then the map ˇg;b
is also a monomorphism in all degrees.

(iii) Every map g;b.M I ı; ı0/ induces an isomorphism in homology in degrees less
than or equal to 2

3
g , and an epimorphism in the next degree. If b � 2, then it is

always an epimorphism.

Note that we do not require that @M is simply connected, only that M is. Thus there
can be many nonisotopic boundary conditions.

These stability ranges are essentially optimal. The space EC.†g;b;R1I ı/ is a model
for the classifying space of the mapping class group of �g;b , for which the stability
ranges of Theorem 1.3 are known to be essentially optimal; see Boldsen [3].

Another generalisation of McDuff’s stability theorem has been developed by Martin
Palmer [21]. He considers the space of all embedded submanifolds of a chosen diffeo-
morphism type in a background manifold satisfying certain hypotheses, and stabilises
by repeatedly adding disjoint copies of a chosen submanifold near the boundary of the
background manifold. The case of 1–dimensional manifolds in R3 is not covered by
Palmer’s result, but is nonetheless true; see Kupers [13].
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1.2.1 Remarks on the proof of Theorem 1.3 The proof follows the general structure
of [25] by the second author, where it is proven that the moduli space of surfaces with
tangential structures satisfies homological stability. It is important to observe that
embeddings are not determined by a local condition; hence they do not arise as a
tangential structure.

As in [25], we approximate the moduli space EC.†g;b;M I ı/ by a semisimplicial space
whose spaces of i –simplices are themselves moduli spaces of surfaces W together with
a decomposition of the surface W into iC1 1–handles and a surface of smaller genus.
In our case, each handle comes with a preferred isotopy to the boundary of M. We
have found two ways of dealing with this extra data: The first one breaks the problem
into two steps by first considering semisimplicial spaces X� that do not incorporate this
extra information, and then further taking a semisimplicial approximation Y� of the
space X0 of 0–simplices, which exclusively contains information about the preferred
isotopies to the boundary. The second way uses a new simplicial technique of Galatius
and the second author. An earlier draft of this paper used the first method, and the
interested reader can find this argument in the second arXiv version of this paper. Here
we present the second method, which is somewhat shorter.

The other main difference from [25] arises in Section 7 and concerns the notion called
“1–triviality”. Whereas in [25] this amounted to (in the case of oriented surfaces) the
classification of surfaces, here it involves classifying surfaces embedded in a manifold
that is not simply connected (a collar of @M ), and is far more complicated. A final
technical difference, not necessary but enlightening, is the technical Lemma 7.5. This
is an alternative to [25, Lemma 8.2] and Palmer [22, Lemma 6.2], and allows us to
work at the level spaces in the whole of Section 7.4, instead of at the level of homology
as in those papers.

1.3 Stable homology

To identify the stable homology groups resulting from Theorem 1.3, we require a
version of the scanning map for surfaces with boundary. We will not describe it in full
detail here, but just say that it is a map

Sg;bW EC.†g;b;M I ı/! �c.S?2 .TM/!M I xı/g

to the space of sections of the bundle S?2 .TM/!M which are compactly supported and
which in addition are equal to a fixed section xıW @M!S?2 .TM/j@M on the boundary.

Theorem 1.4 If M is simply connected and of dimension at least 5, then the map

Sg;bW EC.†g;b;M I ı/! �c.S?2 .TM/!M I xı/g

induces an isomorphism in homology in degrees less than or equal to 1
3
.2g� 2/.
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This theorem will be proved in Sections 9 and 10 for manifolds M with nonempty
boundary. An additional argument in Section 11 establishes this theorem in full
generality. Theorem 1.1 follows as the particular case when b D 0.

1.3.1 Remarks on the proof of Theorem 1.4 The proof of this theorem relies on
the results of Galatius, Tillmann, Madsen and Weiss [8] and the second author [24],
where the homotopy type of the cobordism category of submanifolds in a background
manifold was found using an h–principle argument. This homotopy type in the case
M DRn was previously found by Galatius at the end of [5].

The idea of the proof in the case @M ¤ ∅ is to choose an embedding Rn�1 � @M
and then consider the space of all (possibly disconnected) embedded surfaces in M
as a module over the cobordism category of surfaces in Rn�1 � Œ0; 1�, and apply a
group completion argument as in [8]. This is done in Section 9. As in [8], we are
required to perform a parametrised surgery move in order to pass to a subcategory of
“positive boundary” cobordisms. However, we then require an additional surgery step
to pass to the “connected surfaces” submodule. In practice, we do these two moves
simultaneously.

While the surgery moves, which are done in Section 10, broadly follow Galatius and the
second author [7], we give a new technical development of this method. For example,
we construct the “do surgery” maps as semisimplicial maps, rather than as ad hoc maps
defined on the geometric realisation as in [7]. This is a simplification which will be
useful elsewhere.

When @M D∅, we can not use this argument. One might hope then that the method
used by McDuff [17] to solve the analogous problem for configuration spaces in closed
manifolds could be adapted, but this is not the case (she uses a long exact sequence

� � � !Hi
�
Ck.Mnfptg/

�
!Hi .Ck.M//!Hi�dimM

�
Ck�1.Mnfptg/

�
! � � � ;

which does not have a useful generalisation in the case of embedded surfaces).

Therefore, when @M D ∅, we introduce a new technique, which we develop in
Section 11.3. We approximate the moduli space of surfaces in M by a semisimplicial
space whose space of i –simplices is the moduli space of pairs .N;W /, where N �M
is the complement of iC1 balls in M , and W is a surface in N . We construct a similar
approximation of the target of the scanning map, and we observe that the scanning
map extends to a semisimplicial map between these semisimplicial spaces. Finally,
as @N ¤ ∅, we can apply the case of the theorem already proved to show that this
extension of the scanning map induces a levelwise homology isomorphism in a range
of degrees, from which we deduce the same for the scanning map.
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This technique should also be useful elsewhere: for example, it can be adapted to give
a new proof of McDuff’s theorem for configuration spaces in closed manifolds.
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2 Manifolds, submanifolds and fibre bundles

2.1 Manifolds with corners

Let A�Rn and B �Rm , and let f W A! B be a continuous map. We say that f is
smooth if it extends to a smooth map from an open neighbourhood of A to Rm . If f is
a homeomorphism, we say that it is a diffeomorphism if it is smooth and has a smooth
inverse. In particular, this defines the notion of diffeomorphism between subsets of
Rm
C
WD Œ0;1/m .

A manifold with corners M of dimension m is a Hausdorff, second countable topolog-
ical space locally modelled on the space Rm

C
and its diffeomorphisms [4; 14].

In detail, a smooth atlas of M is a family of topological embeddings (called charts)
f'i W Ui ! Œ0;1/mgi2I , where each Ui is an open subset of M and if Ui \Uj ¤∅,
then the composite 'j'�1i is a diffeomorphism from 'i .Ui \ Uj / to 'j .Ui \ Uj /.
A smooth structure on a Hausdorff, second countable topological space is a smooth
atlas which is maximal with respect to inclusion.

A k–submanifold of a manifold with corners is a subset W �M such that for each point
p 2W , there is a chart .U; '/ of M with p 2 U such that W \U D '�1.vCRk

C
/,

where v 2Rm
C

; see [4, Definition 1.3.1].

Let N and M be manifolds with corners. A continuous function f W M!R is smooth
if the composition f ı'W U !R is smooth for any chart .U; '/ of M. A continuous
map gW N !M is smooth if for each smooth function f W M ! R, the composite
f ıg is smooth. A diffeomorphism is a smooth map with smooth left and right inverse.
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An embedding is a smooth map whose image is a submanifold and that induces a
diffeomorphism onto its image.

The tangent space TpRm
C

at a point p 2Rm
C

is defined to be TpRm . Since diffeomor-
phisms of Rm

C
induce isomorphisms between tangent spaces of Rm

C
, we can define the

tangent bundle of a manifold with corners following the usual procedure. A smooth map
f W N !M induces a fibrewise linear map Df W TN! TM between tangent bundles.

If .U; '/ is a chart and p 2 U , then the number c.p/ of zero coordinates in '.p/ is
independent of the chart. The boundary of M is the subspace

@M D fp 2M j c.p/ > 0g:

A connected k–face of M is the closure of a component of the subspace

fp 2M j c.p/D kg:

A manifold with corners M is a manifold with faces if each p 2M belongs to c.p/
connected 1–faces. A face is a (possibly empty) union of pairwise disjoint connected
k–faces for some k , and is itself a manifold with faces. Observe that the boundary of
a k–face is a union of .k�1/–faces.

Definition 2.1 If M is a manifold and @0M is a 1–face in M, a collar of @0M is an
embedding c of the manifold @0M � Œ0; 1/ into M such that c.x; 0/D x and such that
cj.F\@0M/�Œ0;1/ is a collar of @0M \F in F for any other 1–face F . A manifold is
collared if a 1–face @0M and a collar of @0M are given.

Note that if M is collared, then we can endow M [ .@M �I / with a canonical smooth
structure.

Definition 2.2 A map eW B !M between collared manifolds B and M is a map
of B into M that extends to a map

F W B [ .@0B � I /!M [ .@0M � I /

such that for all x 2 @0B and t 2 I , we have F.x; t/D .f .x/; t/.

Notation During the first seven sections, the word manifold will be used synonymously
with collared manifold with faces, and the word map (or embedding, or diffeomorphism)
will always refer to a map between collared manifolds.

A smooth map f W B!M between manifolds is transverse to a submanifold W �M
if for each p 2 B such that f .p/ 2 W , we have Df.TpB/C Tf .p/W D Tf .p/M.
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A smooth map f W B!M to a manifold M is transverse to @M if it is transverse to
any connected face. A neat embedding f is an embedding that is transverse to the
boundary and that is collared if B is collared. A neat submanifold is the image of a
neat embedding.

If A and W are submanifolds of manifolds B and M, a neat embedding of the pair
.B;A/ into the pair .W;M/ is an embedding eW B!M such that e�1.W /D A and
such that dim.e.TpB/CTe.p/W /DminfdimBC dimW; dimM g.

2.2 Boundary conditions for spaces of embeddings

Let B and M be collared manifolds, and f W B!M be an embedding. Following
Cerf, we denote by

Emb.B;M I Œf �/� Emb.B;M/

the subspace of neat embeddings gW B!M such that for each x 2 B the point g.x/
lies in the same face of M as f .x/, equipped with Whitney C1 topology. Similarly,
if f W .B;A/! .M;W / is an embedding of a pair, we denote by

Emb
�
.B;A/; .M;W /I Œf �

�
� Emb.B;M I Œf �/

the subspace consisting of neat embeddings of pairs.

We call a function

qW fconnected faces of B g ! fsubspaces of M g

a face constraint, and we let

Emb.B;M I q/� Emb.B;M/

denote the subspace of those embeddings gW B!M such that for each face F � B ,
g.F /� q.F /. Similarly we denote by

Emb..B;A/; .M;W /I q/� Emb.B;M I q/

the subspace consisting of neat embeddings of pairs.

We denote by Diff.M/ (resp. Diffc.M/) the space of diffeomorphisms (resp. compactly
supported diffeomorphisms) of M which restrict to diffeomorphisms of each connected
face, endowed with the Whitney C1 topology. If W1; : : : ; Wk is a set of submanifolds
of M then we denote by

Diff.M IW1; : : : ; Wk/� Diff.M/
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the subspace of those diffeomorphisms of M which restrict to a diffeomorphism of
each Wj , which is orientation-preserving if Wj is oriented. We denote by Diff@.M/

the space of diffeomorphisms of M which restrict to the identity on the boundary.

For a boundary condition q , we write Diff.M I q/ for Diff.M IW1; : : : ; Wk/ where
W1; : : : ; Wk are the values of the function q .

If f; gW B!M are neat embeddings, we say that f and g have the same jet along @M
if f �1.@M/ D g�1.@M/ and all the partial derivatives of f and g at all points in
f �1.@M/ agree. This defines an equivalence relation on the set of neat embeddings,
and we let

J W Emb.B;M/! J@.B;M/

be the quotient map. If d 2 J@.B;M/, we write

Emb.B;M I d/ WD J�1.d/

for the subspace of all neat embeddings of B into M whose jet is d .

Let us now specialise to the case where the manifold B is a connected orientable
surface. If †g;b is an oriented surface of genus g with b boundary components, and
M is a manifold, then we define

EC.†g;b;M/ WD Emb.†g;b;M/=DiffC.†g;b/;

�b.M/ WD�.†g;b;M/ WD J@.†g;b;M/=DiffC.†g;b/:

For the map induced by J between quotient spaces, write

ðW E.†g;b;M/!�b.M/;

and define, for ı 2�b.M/, the subspace

ECg;b.M I ı/ WD EC.†g;b;M I ı/ WD j�1.ı/:

Note that if ıD Œd �, there is a bijection ECg;b.M I ı/ŠEmb.†g;b;M I d/=DiffC
@
.†g;b/.

We write ı0 for the class of ıj@0†g;b , and Diff.M I ı/ for the space of those diffeomor-
phisms that preserve ı , ie the stabiliser of ı for the action of Diff.M/ on �b.M/.

2.3 Retractile spaces and fibrations

During the proof of Theorem 1.3, we will need to prove that certain restriction maps
onto spaces of embeddings or spaces of embedded surfaces are Serre fibrations. We
approach this problem in this section, following Palais and Cerf, through Lemma 2.5,
which says that if E and X are spaces with an action of a group G , then an equivariant
map f W E ! X between them is a locally trivial fibration (in particular, a Serre
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fibration) provided that X is “G–locally retractile”. We point out that the role of the
group G here is merely auxiliary to prove that a map is a fibration. The rest of the
section is devoted to verify that the spaces of embeddings and embedded surfaces that
will concern us are G–locally retractile when G is the diffeomorphism group of M.

Definition 2.3 [4; 20] Let G be a topological group. A G–space X is G–locally
retractile if for any x 2 X , there is a neighbourhood U of x and a continuous map
�W U ! G (called the G–local retraction around x ) such that y D �.y/ � x for all
y 2 U .

Lemma 2.4 If X is a G–locally retractile locally path connected space, and G0 �G
denotes the path-connected component of the identity, then X is also G0–locally
retractile.

Proof If �W U ! G is a local retraction around x 2 X , and x 2 U0 � U is a path-
connected neighbourhood of x , then since �.x/ D Id, we deduce that �jU factors
through G0 and defines a G0–local retraction around x .

Lemma 2.5 [4] A G–equivariant map f W E!X onto a G–locally retractile space
is a locally trivial fibration.

Proof For each x 2X , there is a neighbourhood U and a G–local retraction � that
gives a homeomorphism

f �1.x/�U ! f �1.U /; .z; y/ 7! �.y/ � z:

Lemma 2.6 If f W X ! Y is a G–equivariant map that has local sections and X is
G–locally retractile, then Y is also G–locally retractile. In particular, f is a locally
trivial fibration.

Proof The composite of a local section for f and a G–local retraction for X gives a
G–local retraction for Y .

Let P ! B be a principal G–bundle and let F be a left G–space. There is an
associated bundle of groups P �GGad!B , and we let �.P �GGad!B/ denote the
space of its sections, equipped with the compact-open topology. This space of sections
is a topological group, and it acts on the space �.P �G F ! B/ of sections of the
associated F –bundle.
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Lemma 2.7 Suppose B is compact and locally compact, F is a G–space that is
also G–locally retractile and for each neighbourhood V 0 of the diagonal D � F �F ,
there is a neighbourhood V of D contained in V 0 that deformation retracts onto D .
Then map.B; F / is map.B;G/–locally retractile. Similarly, for a principal G–bundle
P !B , the space of sections �.P �GF !B/ is �.P �GGad!B/–locally retractile.

Proof Here is a proof of the first part. A proof of the second part is similar to this
one, working with spaces over B .

Let ˆW G �F ! F �F be defined as ˆ.x; g/D .x; g �x/. If we prove that there is a
neighbourhood V of the diagonal D D f .B/�f .B/� F �F and a global section '
of the restriction ˆjV W ˆ�1.V /! V , then we obtain a map.B;G/–local retraction  
around any point f0 2map.B; F / as the composition

ADff j .f0�f /.B/�V g
f 7!f0�f
�������!map.B; V /

'ı�
���!map.B;G�F /

�
�!map.B;G/;

where the last map is induced by the projection onto the second factor. To see that this
is a local retraction, we first notice that A is an open neighbourhood of f0 because B is
compact and locally compact. Second, write ‰W map.B;G/�ff0g!map.B; F /, and

.‰ .f //.x/D
�
‰�'.f0 �f /

�
.x/D‰�'.f0.x/; f .x//

D
�
�'.f0.x/; f .x//

�
�f0.x/D f .x/:

So we only need to find V and ' . Let us write Gx;y D fg 2 G j gx D yg. Let
x0 2 F , and let �W Ux0 ! G � fx0g be a local retraction around x0 . Then there is a
homeomorphism

Ux0 �Ux0 �ˆ
�1.x0; x0/Š Ux0 �Ux0 �Gx0;x0

that sends a triple .x; y; g/ to the triple .x; y; �.y/�1g�.x//. Define V 0 to be the open
set

S
x2F Ux �Ux . The restriction ˆjV 0 W ˆ�1.V 0/! V 0 is locally trivial, hence a

fibre bundle.

Let V be a neighbourhood of D that is contained in V 0 and deformation retracts to D .
Then in the following pullback square of fibre bundles

ˆ�1.D/ //

��

ˆ�1.V /

��

D // V

the bottom map is a homotopy equivalence and the left vertical map has a global section
that sends a pair .x; x/ to the pair .x; e/, where e 2G is the identity element. Hence
the right vertical map has a global section � , too.
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If pW E! B is a rank-n vector bundle over a manifold B , we denote by

Vectk.E/ WD �.Grk.E/! B/

the space of rank-k vector subbundles of E . If P!B is the principal GLn.R/–bundle
associated to p , let

GL.E/ WD �.P �GLn.R/ GLn.R/ad
! B/

be the space of sections of its adjoint bundle. If L@2Vectk.Ej@B/ is a vector subbundle,
we denote by Vectk.EIL@/ � Vectk.E/ the subspace of those vector subbundles
whose restriction to @B is L@ . Similarly, we denote by GL@.E/ the group of bundle
automorphisms of E that restrict to the identity over @B . The Grassmannian Grk.Rn/
is GLn.R/–locally retractile, and the inclusion of the diagonal D�Grk.Rn/�Grk.Rn/
is a smooth submanifold; therefore, one can find a neighbourhood V of D contained
in V 0 that deformation retracts onto D by shrinking a tubular neighbourhood of D .
As a consequence, we have:

Corollary 2.8 If B is compact and locally compact, and E is a vector bundle over B ,
then the space Vectk.E/ is GL.E/–locally retractile, and the space Vectk.EIL@/ is
GL@.E/–locally retractile.

The following proposition and its corollary are consequences of a more general theorem
proved by Cerf [4, théorème 5 de (2.2.1), théorème 5 0 de (2.4.1)] in full generality for
manifolds with faces. Palais [20] proved it for manifolds without corners and Lima [15]
later gave a shorter proof.

Proposition 2.9 [4] If f W B!M is an embedding of a compact manifold B into
a manifold M, then Emb.B;M I Œf �/ is Diff.M/–locally retractile. If d is a jet of an
embedding of B into M, then Emb.B;M I d/ is Diff@.M/–locally retractile.

Applying Lemma 2.5 to the restriction map between spaces of embeddings, we obtain:

Corollary 2.10 [4] If A � B is a compact submanifold and f W B ! M is an
embedding, then the restriction map

Emb.B;M I Œf �/! Emb.A;M I Œf jA�/

is a locally trivial fibration.

We will need local retractability for the space of surfaces in a manifold. The following
theorem is stated for closed submanifolds in the reference, but its proof adapts to give
the following:
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Proposition 2.11 [2; 19] If B and M are manifolds and d is a jet of B in M, then
the quotient map

Emb.B;M I d/! Emb.B;M I d/=Diff@.B/

is a fibre bundle. Diff@.B/ may be replaced by DiffC
@
.B/ if B is oriented.

By definition, the space ECg;b.M I ı/ is the quotient Emb.†g;b;M I d/=Diff@.†g;b/
with d 2 ð�1.ı/. Hence from Lemma 2.6 and Proposition 2.11, we deduce that

Corollary 2.12 The space ECg;b.M I ı/ is Diff@.M/–locally retractile.

We will also need local retractability for two more spaces.

Proposition 2.13 Let W �M be a submanifold, and let A�B be manifolds. Then the
space of embeddings of pairs Emb..B;A/; .M;W // is Diff.M IW /–locally retractile.

More generally, the space Emb.B;M I q/ is Diff.M I q/–locally retractile and the space
Emb..B;A/; .M;W /I q/ is Diff.M IW; q/–locally retractile.

Proof Let e0 be one such embedding, and consider the diagram

Diff.M IW /� fe0g //

zz

��

Diff.M/� fe0g

zz

��

Diff.W /� fe0jAg //

��

Emb.W;M/

ıe0jA

��

X

zz

// Emb.B;M/

zz

Emb.A;W / // Emb.A;M/

where the space X � Emb.B;M/ is the subspace of those embeddings e such that
e.A/�W . Hence the bottom square is a pullback square and has a natural action of
Diff.M IW /. The space Emb..B;A/; .M;W // is a subspace of X and is invariant un-
der the action of Diff.M IW /. All the vertical maps except Emb.W;M/!Emb.A;M/

are orbit maps. All the vertical maps except possibly hW Diff.M IW /� fe0g !X are
locally trivial fibrations by Lemma 2.5 and Proposition 2.9. Moreover, h is the pullback
of the other three vertical maps, hence is also a locally trivial fibration, so it has local
sections. As the subspace Emb..B;A/; .M;W //�X is Diff.M IW /–invariant, any
Diff.M IW /–local retraction around e0 in X gives, by restriction, a local retraction
around e0 in Emb..B;A/; .M;W //.
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Recall that preserving a face constraint means preserving a sequence of submanifolds,
so the general case is obtained by iterating the above argument.

2.4 Tubular neighbourhoods

Let V �M be a neat submanifold and denote by NMV D TMjV =T V the normal
bundle of V in M. A tubular neighbourhood of V in M is a neat embedding

f W NMV !M

such that

(i) the restriction f jV is the inclusion V �M, and

(ii) the composition

T V ˚NMV
�
�! T .NMV /jV

Df
��! TMjV

proj
��!NMV

agrees with the projection onto the second factor.

If W � M is a submanifold and the inclusion map defines an embedding of pairs
of .V; V \W / into .M;W /, then we define a tubular neighbourhood of V in the
pair .M;W / to be a tubular neighbourhood f W NMV !M of V in M such that
f jNW .V\W / is a tubular neighbourhood of V \W .

We may compactify NMV fibrewise by adding a sphere at infinity to each fibre,
obtaining the closed normal bundle xNMV of V in M. We denote by S. xNMV /� xNMV
the subbundle of spheres at infinity. We define a closed tubular neighbourhood of
a collared submanifold V to be an embedding of xNMV into M whose restriction
to NMV is a tubular neighbourhood.

Note that V determines a face constraint q for xNMV in M, by assigning to each
connected face of xNMV the minimal face to which its projection to V belongs. We
denote by

Tub.V;M/� Emb
�
. xNMV; V /; .M; V /If

�
the subspace of tubular neighbourhoods. A boundary condition qN for a tubular
neighbourhood of V is a boundary condition for V in M, and we denote by

Tub.V;M I qN /� Tub.V;M/

the subspace of those tubular neighbourhoods t such that t .x; v/ � qN .x/. We
denote by

Tub.V; .M;W /I qN /� Tub.V;M I qN /
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the subspace of tubular neighbourhoods of V in the pair .M;W /. Finally, if q � qN
is a pair of boundary conditions, we denote by

Tub.V;M I .qN ; q//

the space of tubular neighbourhoods of V in M such that the restriction to each face F
is a tubular neighbourhood in the pair .qN .x/; q.x//, where x is any point in F .

The following lemma follows from the proof of [9, Proposition 31], where it is stated
for the space of all tubular neighbourhoods of compact submanifolds.

Lemma 2.14 If V and W are compact submanifolds of M, and qN is a boundary
condition for V in M such that qN .x/ is a neighbourhood of x in the face ŒV �M�.x/,
then the spaces Tub.V;M I qN / and Tub.V; .M;W /I qN / are contractible.

Proof Let us denote by Tub.V;M I qN / the space of all nonclosed, collared tubular
neighbourhoods of V in M. The proof in [9] has two steps. In the first, a tubular
neighbourhood f is fixed and a weak deformation retraction H of Tub.V;M I qN /
is constructed into the subspace Tf of all tubular neighbourhoods whose image is
contained in Imf . The second step provides a contraction of Tf to the point ff g.
It is easy to see that if f is a closed, collared tubular neighbourhood of a pair, then
both homotopies define homotopies for Tub.V; .M;W /I qN /, and the argument there
applies verbatim.

2.5 The space of thickened embeddings

Using the notion of tubular neighbourhood we have just defined, we introduce now a
space of embeddings equipped with a choice of tubular neighbourhood of their image.
We will show that the space can be topologised as a quotient of the space of thickened
embeddings. We will consider more generally that the image of the embeddings are
endowed with a field of subplanes of the tangent bundle of the background manifold.

2.5.1 The set xTEmbk;C .B; M I q; qN ; qC / Let B and M be manifolds and let
C � B be a submanifold. Let q and qN be face constraints for B in M and let qC
be a face constraint for C . The set xTEmbk;C .B;M I q; qN ; qC / is defined as the set
of triples .e; t; L/, where

(i) e 2 Emb.B;M I q/ is an embedding;
(ii) t 2 Tub.e.B/;M I .qN ; q//;

(iii) L 2 �
�
Grk.NM e.B//je.C/! e.C /INqC .@0C/e.@

0C/
�
.

If k D 0, the subset C is irrelevant and we will write xTEmb.B;W I q; qN / for
xTEmb0;C .B;M I q; qN /. Note that, if @0C ¤ ∅, then the last condition forces k D
dim qC .@

0C/� dim @0C .
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2.5.2 The action The set xTEmbk;C .B;M I q; qN ; qC / has a natural action of the
discretisation of the group Diff.M I q; qN ; qC / given as follows: If g is a diffeo-
morphism of M and t is a tubular neighbourhood as above, then g induces iso-
morphisms TMje.B/ ! TMjge.B/ and Te.B/ ! Tge.B/, hence an isomorphism
g�W NM e.B/!NMge.B/. We define g.t/ as the composite

NMge.B/
g�1�
���!NM e.B/

t
�!M

g
�!M:

We define g.L/ as g� ıL ıg�1 .

In what follows we omit the face constraints from the notation, for the sake of clarity.

2.5.3 The topology If V ! B is a vector bundle of dimension dim.M/� dim.B/,
then there is a map

�V W Emb.V;M/��.Grk.V jC /!C/! xTEmbk;C .B;M/

given by sending a pair .f; s/ to the triple�
B
f jB
���!M; NMf .B/

f �1�
���!V

f
�!M; f .C /

f j�1C
���!C

s
�!Grk.V jC /

f�
�!Grk.NMf .C //

�
;

where f�W V !NVB!NMf .B/ is the map induced by f on normal bundles.

If 'W V ! V is a bundle map, then �V .f ı '; '.s//D �V .f; s/, and furthermore if
�V .f; s/D �V .h; r/, then

(i) f jB D hjB ,

(ii) ff �1� D hh�1� , hence f D h ı .h�1� f�/, and

(iii) f�sf j
�1
B D h�rhj

�1
B , hence .h�1� f�/.s/D r .

(The first condition follows from the second, and the third follows from the first two
conditions.) Thus that part of the set xTEmbk;C .B;M/ which is the image of �V
may be described as the quotient of Emb.V;M/� �.Grk.V jC /!C/ by the action
of Bun.V; V / which we have described. We thus give xTEmbk;C .B;M/ the finest
topology making the maps �V continuous for every choice of V .

Lemma 2.15 (i) The map �V is a (locally trivial) principal Bun.V; V /–bundle
onto those components which it hits.

(ii) The action of Diff.M/ on xTEmbk;C .B;M/ is continuous.

Proof For part (i), choose a Diff.M/–local retraction of Emb.B;M/ around an
embedding e0 ,

�W U ! Diff.M/:
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Then we obtain a local trivialisation of �V as follows: Let yU �xTEmbk;C .B;M/ be the
preimage of U under the forgetful map to Emb.B;M/. Let .f0; s0/2 ��1V .e0; t0; L0/.
Then define � W ��1V . yU/! yU �Bun.V; V / by �V � , with

 .f; s/W V
f�
�!NMf .B/

�.f jB/
�1
�

������!NMf0.B/
f �10�
���! V:

Define � W yU�Bun.V; V /!��1V . yU/ by sending ..e; t; L/; ˛/ to the pair .f; s/ given by

f W V
˛
�! V

f0�
��!Ne0.B/M

�.e/�
���!Ne.B/M

t
�!M and s D f �1� Lf:

The maps � and � are both continuous, and if �..e; t; L/; ˛/ D .f; s/ then f� D

�.e/�f0�˛ , from which it follows that � and � are mutual inverses.

For part (ii), note that there is an action of Diff.M/ on Emb.V;M/��.Grk.V jC /!C/,
by postcomposition on the first factor. The map �V is equivariant with respect to these
actions, so there is a commutative square

Diff.M/�Emb.V;M/��.Grk.V jC /!C/

Id��V
��

// Emb.V;M/��.Grk.V jC /!C/

�V
��

Diff.M/� xTEmbk;C .B;M/ // xTEmbk;C .B;M/

where the horizontal maps are given by the action. The top map is continuous, as
Diff.M/ acts on Emb.V;M/ continuously, and the vertical maps are open since �V is
a locally trivial fibre bundle. It follows that the action of Diff.M/ on the image of �V
is continuous, and this holds for all V , so the action of Diff.M/ on xTEmbk;C .B;M/

is continuous.

This discussion also applies to the subspace xTEmbk;C ..B;A/; .M;W /I q; qN ; qC / of
tubular neighbourhoods of embeddings of a pair .B;A/ in a pair .M;W /, and this
latter space has a natural action of Diff.M IW; q; qN ; qC /.

Proposition 2.16 The space xTEmbk;C .B;M I q; qN ; qC / is Diff.M I q; qN ; qC /–
locally retractile.

Proof Since the source of �V is Diff.M/–locally retractile by Proposition 2.9, and
�V has local sections over its image, it follows that its image is also Diff.M/–locally
retractile by Lemma 2.6.

Using the proof of Proposition 2.13, and the previous lemma we obtain:

Corollary 2.17 The spaces xTEmbk;C ..B;A/; .M;W /I q; qN / are Diff.M I q; qN /–
locally retractile.
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3 Maps between spaces of subsurfaces

For a collared manifold M, we will use two kinds of maps between spaces of surfaces
of the form ECg;b.M I ı/. The first map glues a collar @0M � I to M and a surface
P � @0M � I to the surfaces in ECg;b.M I ı/. For the second map, we remove a
submanifold u0 � M from M. If a surface u00 � u0 is given, we may glue u00 to
the surfaces in M n u0 , obtaining a map from ECh;c.Mnu0I ı0/ to ECg;b.M I ı/, where
h; c; ı0 depend on the surfaces u00 . In the following paragraphs these constructions are
explained in detail.

The manifold M1 is defined as the union of the manifold @0M � Œ0; 1� and the mani-
fold M along @0M � f0g using the collar of M. The collar of M gives a canonical
collar both to @0M1 WD @

0M �f1g and to @0.@0M �I / WD @0M �f0; 1g. The boundary
condition ı also gives boundary conditions

zı D ð.ı0 � I / 2�2.@0M � I /;
xı D ð

�
W [ .ı0 � I /

�
2�2.M1/;

where W is any surface in ECg;b.M I ı/. Let †0 be another collared surface with
@†0 D @.@0†� I /. For each P 2 EC.†0; @0M � Œ0; 1�I zı/, there is a continuous map

�[P W EC.†;M I ı/! EC.†[†0;M1I
xı/

that sends a submanifold W to the union W [P . These are maps of type I .

Our main theorem will prove that the maps of type I have certain homology stability
properties. If P and P 0 are isotopic, then the induced maps �[P and �[P 0 will
be isotopic. The following lemma follows easily:

Lemma 3.1 Let M be of dimension at least 5. If P � @0M � Œ0; 1�, then there exist
P1; : : : ; Pk such that:

(i) P1 [ � � � [Pk ' k �P � @
0M � Œ0; k� (the product means taking a dilation in

the second coordinate).
(ii) Pi is a submanifold all of whose components but one have the form ı0�Œi; iC1��

@0M � Œi; i C 1�.
(iii) The projection to the second coordinate of @0M � Œi; i C 1� restricted to the

remaining component is a Morse function with at most one critical point.
(iv) If there is a critical point in this remaining component, then there exists a pair of

points q0; q1 2 ı0 such that qj � Œi; i C 1�� P , and˚
q0 � fig; q0 � fi C 1g; q1 � fig; q1 � fi C 1g

	
hits all the components of the boundary of the remaining component of P .
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Definition 3.2 If P is as in the previous lemma, it is called a basic cobordism, and
the remaining component will be called the relevant cobordism and the boundary of it
will be called the relevant boundary condition.

If † is a compact connected oriented surface of genus g and b boundary components,
and P is a basic cobordism, we will denote the map �[P by

˛g;b.M I ı; xı/W ECg;b.M I ı/! ECgC1;b�1.M I xı/;

ˇg;b.M I ı; xı/W ECg;b.M I ı/! ECg;bC1.M I xı/;

g;b.M I ı; xı/W ECg;b.M I ı/! ECg;b�1.M I xı/;

depending on the genus and the number of boundary components of the surfaces in the
target. Note that, if † has no corners, then P will be a disjoint union of connected sur-
faces, one of them a pair of pants or a disc, and the rest diffeomorphic to cylinders. Now
we define the second type of gluing map. Let s�†0 be either empty or a closed tubular
neighbourhood of an arc or a point in †. The complement † n s is again a collared
manifold, but if s is an arc and M is a manifold with boundary, its complement is no
longer a manifold with boundary. This justifies working with manifolds with corners.

Consider a tuple uD .u0; u00; u000/ consisting of a neat embedding u000 2Emb.B;M I q/,
a closed tubular neighbourhood u0 of u000 in M, and a (possibly empty) surface
u00 2 E.s; u0I ıŒu�/ such that ıŒu�\ ı D ıŒu�0 . Then cl.M nu0/ is a collared manifold
with @0 cl.M nu0/D cl.@0M n @0u0/. The boundary conditions ı and ıŒu� give rise
to a boundary condition

ı.u/D ð.cl.W nu00// 2�2.clM nu0/;

where W 2 ECg;b.M I ı/ is any surface that contains u00 .

The triple uD .u0; u00; u000/ defines a map

E.cl†ns; clMnu0I ı.u//! E.†;M I ı/

that sends a submanifold W to the union W [u00 . These are maps of type II.

Notation First, since the map defined above is completely determined by the tuple u,
we will use the notation M.u/ for clM nu0 . Second, for maps of type I, we denote
with a tilde z the objects that we glue to the space of surfaces and with a dash x the
objects obtained by removing or gluing surfaces to ECg;b.M I ı/. For maps of type II,
we denote with brackets Œ � the objects that we remove from the space of surfaces
and with parentheses . / the result of removing those objects. In addition, we denote
with 000 the submanifold, with 0 the tubular neighbourhood and with 00 the surface in
the tubular neighbourhood. We will be consistent with these notations. Third, for maps
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of type I, the triple u defines triples zu and xu in the manifolds @0M �I and M1 given
by zuD @0u� I and xuD u[ zu. If we assume in addition that P \ zu0 D zu00 and that
.@0s/� I �†0 , then in the diagram

EC.†.s/;M.u/I ı.u//

��

// EC
�
.†[†0/.xs/;M1.xu/I xı.xu/

�
��

EC.†;M I ı/ // EC.†[†0;M1I
xı/

we may construct the upper horizontal arrow as �[P n zu00 . As before, we will use
the notation P.zu/D P n zu00 .

4 Homotopy resolutions

A semisimplicial space, also called �–space, is a contravariant functor

X�W �
op
inj! Top

from the category �inj whose objects are nonempty finite ordinals and whose morphisms
are injective order-preserving inclusions to the category Top of topological spaces.
The image of the ordinal n is written Xn and we denote by @j W XnC1 ! Xn the
image of the inclusion nD f0; 1; : : : ; n� 1g ,! f0; 1; : : : ; ng D nC 1 that misses the
element j 2 f0; 1; : : : ; ng. These are called face maps and the whole structure of X�
is determined by specifying the spaces Xn for each n together with the face maps in
each level.

A semisimplicial space augmented over a topological space X is a semisimplicial
space X� together with a continuous map �W X0! X (the augmentation) such that
�@0D �@1W X1!X . Alternatively, an augmented semisimplicial space is a contravari-
ant functor

X�W �
op
inj;0! Top

from the category �inj;0 whose objects are (possibly empty) ordinals and whose
morphisms are injective order-preserving inclusions to the category Top. As above,
we denote by @j W Xn!XnC1 the image of the inclusion that misses j and we denote
by � the image of the unique inclusion ∅! 0. We denote by �i W Xi !X the unique
composition of face maps and the augmentation map.

A semisimplicial map between (augmented) semisimplicial spaces is a natural trans-
formation of functors. If ��W X�!X and �0

�
W Y�! Y are augmented semisimplicial

spaces, a semisimplicial map f� is equivalent to a sequence of maps fnW Xn! Yn
such that di ıfnD fn�1 ıdi for all i and all n, together with a map f W X! Y such
that �0 ıf0 D f ı � .
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There is a realisation functor [26]

j � jW Semisimplicial spaces! Top;

and we say that an augmented semisimplicial space X� over a space X is a resolution
of X if the map induced by the augmentation,

j��jW jX�j !X;

is a weak homotopy equivalence. It is an n–resolution if the map induced by the
augmentation is n–connected (ie the relative homotopy groups �i .X; jX�j/ vanish
when i � n).

We will use the spectral sequences given by the skeletal filtration associated with aug-
mented semisimplicial spaces as they appear in [25]. For each augmented semisimplicial
space ��W X�!X , there is a spectral sequence defined for t � 0 and s � �1,

E1s;t DHt .Xs/D)HsCtC1.X; jX�j/;

and for each map between augmented semisimplicial spaces f�W X�! Y� , there is a
spectral sequence defined for t � 0 and s � �1,

E1s;t DHt .Ys; Xs/D)HsCtC1
�
.j�Y
�
j/; .j�X

�
j/
�
;

where, for a continuous map f W A!B , we denote by Mf the mapping cylinder of f
and by .f / the pair .Mf ; A/.

The following criteria will be widely used throughout the paper.

Criterion 4.1 [23, Lemma 2.1] Let ��W X�! X be an augmented semisimplicial
space. If each �i is a fibration and Fibx.�i / denotes its fibre at x , then the realisation
of the semisimplicial space Fibx.��/ is weakly homotopy equivalent to the homotopy
fibre of j��j at x .

An augmented topological flag complex is defined to be an augmented semisimplicial
space ��W X�!X such that

(i) the product map Xi !X0 �X � � � �X X0 is an open embedding;

(ii) a tuple .x0; : : : ; xi / is in Xi if and only if for each 0 � j < k � i , the pair
.xj ; xk/ 2X0 �X X0 is in X1 .

Criterion 4.2 [7, Theorem 6.2] Let ��W X�!X be an augmented topological flag
complex. Suppose the following:
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(i) X0!X has local sections; that is, � is surjective, and for each x0 2X0 such
that �.x0/D x , there is a neighbourhood U of x and a map sW U ! X0 such
that �.s.y//D y and s.x/D x0 .

(ii) Given any finite collection fx1; : : : ; xng �X0 in a single fibre of � over some
x 2X , there is an x1 in that fibre such that each .xi ; x1/ is a 1–simplex.

Then j��jW jX�j !X is a weak homotopy equivalence.

Remark 4.3 For the second condition, we could also ask that there is an x0 such that
each .x0; xi / is a 1–simplex, and the conclusion still holds.

4.1 A criterion for homological stability

Criterion 4.4 Let f�W X�! Y� be a map of augmented semisimplicial spaces such
that j�X

�
jW jX�j!X is .l�1/–connected and j�Y

�
jW jY�j! Y is l –connected. Suppose

there is a sequence of path connected based spaces .Bi ; bi / and maps pi W Yi ! Bi ,
and form the map

gi W hofibbi .pi ıfi /! hofibbi .pi /

induced by composition with fi . Suppose that there is a k � l C 1 such that

Hq.gi /D 0 when qC i � k , except if .q; i/D .k; 0/.

Then the map induced in homology by the composition of the inclusion of the fibre and
the augmentation map,

Hq.g0/!Hq.f0/
�
�!Hq.f /;

is an epimorphism in degrees q � k .

If in addition Hk.g0/D 0, then Hq.f /D 0 in degrees q � k .

Proof We have a homotopy fibre sequence of pairs .gi / ! .fi / ! Bi , and so a
relative Serre spectral sequence

zE2p;q DHp.Bi IHq.gi //D)HpCq.fi /;

where Hq.gi / denotes homology with twisted coefficients. Since Hq.gi / D 0 for
all q � k � i except .q; i/ D .k; 0/, we have that Hq.fi / D 0 for all q C i � k
except .q; i/ D .k; 0/. Moreover, if i D 0, all differentials with target or source
H0.BIHq.g0// for q � k are trivial, and these are the only possibly nontrivial groups
with total degree pC q � k . Hence

Hq.g0/!H0.BIHq.g0//!Hq.f0/

is the composition of two epimorphisms if q � k .

Geometry & Topology, Volume 21 (2017)



Homological stability for spaces of embedded surfaces 1411

The first page of the spectral sequence for the resolution .f�/! .f / is

E1p;q DHq.fp/; p � �1;

and it converges to zero in total degrees pCq� l . Since Hq.fp/D 0 for all pCq� k
except .p; q/D .0; k/, any differential with target Er

�1;q for q � k and r � 2,

dr W E
r
r�1;q�rC1!Er�1;q;

has source a quotient of Hq�rC1.fr�1/, which is trivial. As k�1� l , and the spectral
sequence converges to zero in total degrees pC q � l , we have that for each q � k
there is an r � 1 such that Er

�1;q D 0; hence the homomorphisms induced by the
augmentation map d1W Hq.f0/!Hq.f / are epimorphisms in degrees q � k .

For the second part, note that in that case all epimorphisms Hq.g0/!Hq.f0/!Hq.f /
have trivial source when q � k ; hence the target is also trivial in those degrees.

There is one final concept that we will use rather often to describe the homotopy type
of the fibre of a fibration. We say that a pair of maps

A
g
�! B

f
�! C

is a homotopy fibre sequence if f ı g is homotopic to the constant map to a point
c 2 C , and the induced map A! hofibc.f / is a weak homotopy equivalence. For our
purposes, such data can be treated as if f were a fibration and f were the inclusion
of the fibre over c .

5 Resolutions of spaces of surfaces

In this section we construct two .g�1/–resolutions of the space ECg;b.M I ı/, where
M is a collared manifold with nonempty boundary, and ı 2�C2 .M/ is a nonempty
boundary condition (in particular, b � 1). We will also characterise the space of
i –simplices of each resolution as the total space of a certain homotopy fibration. After-
wards we will explain how these .g�1/–resolutions give rise to a .g�1/–resolution or
a g–resolution of the stabilisation maps (the connectivity of each resolution depends
on the stabilisation map), and how to characterise their spaces of i –simplices.

5.1 Resolutions of a single surface

In the proof of [25, Proposition 5.3] the following semisimplicial space was introduced:
If W is a compact connected oriented surface with nonempty boundary, and `0; `1 are
embedded intervals in @W , the semisimplicial space O.W I k0; k1/� (denoted A0.X/
in the cited reference) is defined as follows: An i –simplex is a tuple .v0; : : : ; vi / of
pairwise disjoint embeddings of the interval Œ0; 1� in W such that
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(i) vj .0/ 2 k0 and vj .1/ 2 k1 ;

(ii) the complement of v0[ � � � [ vi in W is connected;

(iii) the ordering at the endpoints of the arcs is

.v0.0/; : : : ; vi .0// in k0 and .vi .1/; : : : ; v0.1// in k1 ,

where k0 and k1 are ordered according to the orientation of ı .

The j th face map forgets the j th arc. In order to simplify the notation we will write Œi �
for f0; : : : ; ig. The set of i –simplices is topologised as a union of components of the
space Emb.I � Œi �;W I q/ with q.x/D kj if x 2 fj g � Œi � and q.x/DW otherwise.
Let �0O.W; k0; k1/� be the semisimplicial set obtained by applying levelwise the
functor �0 .

Proposition 5.1 [25, Theorem 5.3] The realisation j�0O.W I k0; k1/�j is .g�2/–
connected, where g is the genus of W .

This proposition is the hardest step in the proof of homological stability for diffeomor-
phism groups of surfaces, and the change in the definition of this complex of curves
yielded various improvements [12; 3; 23] of the original complex of Harer [11]. A
detailed proof of the above proposition may also be found in [28].

5.2 Resolutions of spaces of surfaces

We will use the following notation:

(i) DCr D f.x1; x2/ 2R2 j x2 � 0; k.x1; x2/k � rg;

(ii) @0DCr D f.x1; x2/ 2D
C
r j x2 D 0g;

(iii) @1DCr D f.x1; x2/ 2D
C
r j k.x1; x2/k D rg.

We sometimes will identify @1DC
1=2

with Œ0; 1� using the map .x; y/ 7! xC 1
2

.

Definition 5.2 Let ` � @0M be an open ball that intersects ı0 in two intervals
`0 and `1 . There is a semisimplicial space Og;b.M I ı; `/� (for which we write
Og;b.M I ı/� for brevity) whose i –simplices are tuples .W; u0; : : : ; ui / with uj D
.u0j ; u

00
j ; u
000
j /, where

(i) W 2 ECg;b.M I ı/;
(ii) u000j W .D

C
1 ; @

1DC
1=2
/! .M;W / is an embedding of pairs, and the restriction

to @0DC1 has image in `;

(iii) .u0j ; u
00
j / is a closed tubular neighbourhood of u000j in the pair .M;W /;
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and such that

(iv) if vj denotes the restriction of u000j to @1DC
1=2

, then .v0; : : : ; vi / is an i –simplex
in O.W; `0; `1/;

(v) u00; : : : ; u
0
i are pairwise disjoint.

The j th face map forgets uj ; that is, it sends an i –simplex .W; u0; : : : ; ui / to the
.i�1/–simplex .W; u0; : : : ; yuj ; : : : ; ui /. There is an augmentation map �� to the space
ECg;b.M I ı/ that forgets everything but W . This defines a semisimplicial set, and we
topologise the set of i –simplices as a subspace of

ECg;b.M I ı/� xTEmb.I�Œi �;M/:

If we want to emphasise that ` intersects a single component of ı , we denote the
semisimplicial space by O1g;b.M I ı; `/� ; if we want to emphasise that ` intersects two
distinct components of ı , we denote the semisimplicial space by O2g;b.M I ı; `/� .

We denote by wj the image of the restriction of u00j to vj , which is a piece of surface.

Proposition 5.3 Og;b.M I ı; `/� is a .g�1/–resolution of ECg;b.M I ı/.

Proof In order to find the connectivity of the homotopy fibre of �� , we use Criterion 4.1
to assure that the semisimplicial fibre FibW .��/ of �� over a surface W is homotopy
equivalent to the homotopy fibre of j��j: the space ECg;b.M I ı/ is Diff@.M/–locally
retractile by Corollary 2.12, and as the group Diff.M I ı; `/ also acts on this space,
any local retraction for Diff@.M/ gives also a local retraction for Diff.M I ı; `/. In
addition, the augmentation maps �i are Diff.M I ı; `/–equivariant for all i . Therefore,
by Lemma 2.5, they are locally trivial fibrations.

For this proof only, we define Og;b.M I ı; `/?� to be the semisimplicial space that
results from forgetting the data of the tubular neighbourhoods in the definition of
Og;b.M I ı; `/� . That is, we take spaces of tuples .W; u0000 ; : : : ; u

000
i / as above, remove

condition (iii) and replace condition (v) by requiring that u0000 ; : : : ; u
000
i must be pairwise

disjoint. Again, it is augmented over ECg;b.M I ı/, and we denote the augmentation
by �? .

The i –simplices of FibW .��/ are tuples .u0; : : : ; ui / with uj D.u0j ; u
00
j ; u
000
j /, where u000j

are embeddings of a half disc in W and .u0j ; u
00
j / are pairwise disjoint closed tubular

neighbourhoods of u000j in the pair .W;M/. Forgetting the closed tubular neighbour-
hoods gives a levelwise Diff.M IW; ı; `/–equivariant semisimplicial map

r�W FibW .��/! FibW .�?� /;
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and the space of i –simplices of O.W I `0; `1/� is Diff.W /–locally retractile, and also
Diff.M IW; ı; `/–locally retractile by Proposition 2.13. Therefore, by Lemma 2.5, r�
is a levelwise locally trivial fibration. The fibre of r� over an i –simplex is a space of
closed tubular neighbourhoods of discs in the pair .M;W /, which is contractible by
Lemma 2.14, so r� is a homotopy equivalence. In the next paragraph we will show
that kFibW .�?� /k is .g�2/–connected, finishing the proof of the proposition.

Taking the discrete topology on the semisimplicial space FibW .�?� /, we get a semisim-
plicial set FibW .�?� /

disc , and a pair of maps

FibW .�?� / FibW .�?� /
disc g�
��! �0O.W I `0; `1/�:

The first map is the identity on points, and the second map sends each tuple uj to its
restriction vj to @1DC

1=2
, and then takes isotopy classes. Now we use the techniques

in [6] as summarised in [13, Theorem A.7]. The theorem says that FibW .�?� / is
.g�2/–connected if the following hold:

(i) �0O.W I `0; `1/� is weakly Cohen–Macaulay of dimension g�1; ie it is .g�2/–
connected, and the link of each i –simplex is .g�i�3/–connected.

(ii) FibW .�?� / is a Hausdorff ordered flag space.

(iii) The map jg�jW j FibW .�?� /
discj ! j�0O.W I `0; `1/�j is simplexwise injective.

(iv) If u0001 ; : : : ; u
000
i are 0–simplices in FibW .�?� / and Œv�2�0O.W I `0; `1/0 is such

that .Œv�; Œv000j �/ is a 1–simplex for all j , then there exists a u0000 with g0.u0000 /D Œv�
such that u0000 ¤ u

000
j for all j and .u0000 ; u

000
j / is a 1–simplex for all j .

For the first condition, Proposition 5.1 above says that this is indeed .g�2/–connected.
The link of an i –simplex .Œv0�; : : : ; Œvi �/ is canonically isomorphic to the complex
�0O.W n .v0 [ � � � [ vi /I k0; k1/ (for certain embedded intervals k0; k1 ), and the
surface W n .v0[ � � � [ vi / has genus g� i � 1 or g� i , depending on whether `\ ı
is connected or not; see Proposition 5.5. In both cases, the link is .g�i�3/–connected,
and so it is weakly Cohen–Macaulay of dimension g� 1.

The second condition holds by inspection, and the third condition is automatic as jg�j
is the geometric realisation of a semisimplicial map. Finally, the fourth condition
holds by general position: Since M is simply connected, it is possible to find a map
u0000 W D

C
1 !M such that its restriction to @0DC1 lies in ` and its restriction to @1DC

1=2

is v . Because the dimension of M is at least 5, a small perturbation of u0000 makes
it to be embedded and also disjoint from each of the other u000j . Then .u0000 ; u

000
j / is a

1–simplex for all j .

We now wish to understand the homotopy type of the spaces Og;b.M I ı; `/i of i –
simplices in these semisimplicial resolutions. We will show that they can be described in

Geometry & Topology, Volume 21 (2017)



Homological stability for spaces of embedded surfaces 1415

terms of a certain space Ai .M I ı; `/ and a space of surfaces ECg 0;b0.M 0I ı0/ in a different
manifold M 0 , with different boundary conditions and different genus and number of
boundaries. This description will allow us to deduce homological information about
ECg;b.M I ı/ from similar information about spaces of surfaces of smaller genus.

Definition 5.4 Let Ai .M Iı;`/ be the set of tuples .a0; : : : ; ai / with aj D.u000j ; u
0
j ; Lj /

such that

(i) the u000j W D
C
1 !M are pairwise disjoint embeddings with @0u000j � `, and both

`0\u
000
j > `0\u

000
k

and `1\u000j < `1\u
000
k

if j > k ;

(ii) u0j is a closed tubular neighbourhood of u000j in M disjoint from u0
k

if j ¤ k ,
whose restriction to @0DC1 is a closed tubular neighbourhood in `� @0M ;

(iii) Lj �NM@
1u000j is an oriented 1–dimensional subbundle such that Lj j@@1u000

j
D

Nı\`.@@
1u000j /, ie Lj 2 GrC1 .NM@

1u000j INı\`.@@
1u000j //.

This space is a union of components of the space

xTEmb
1;@1D

C

1=2
�Œi�

.DC1 � Œi �;M I q; qN ; qC /;

where C D @1DC
1=2

and

qC
�˚�
�
1
2
; 0
�	�
D `0; q.@0DC1 /D `;

qC
�˚�

1
2
; 0
�	�
D `1; qN .@

0DC1 /D `;

and q.x/DM otherwise. We use this to give a topology to Ai .M I ı; `/.

There are restriction maps

(5-1) Og;b.M I ı; `/i ! Ai .M I ı; `/

that send .W; u0; : : : ; ui / to .a0; : : : ; ai /, where aj D .u000j ; u
0
j ; NW vj /.

Proposition 5.5 The restriction maps (5-1) are fibrations, and using the notation of
Section 3, their fibres over a point uD .u0; : : : ; ui / in Ai .M I ı; `/ are given by

ECg�i�1;bCiC1.M.u/I ı.u//!O1g;b.M I ı; `/i ! Ai .M I ı; `/;

ECg�i;bCi�1.M.u/I ı.u//!O2g;b.M I ı; `/i ! Ai .M I ı; `/;

depending on how many components of ı intersect `.

The manifold M.u/ is obtained from M by cutting out an open half disc, which does
not change the manifold up to diffeomorphism. It is for this reason that we have cut
out a neighbourhood of a half disc rather than a neighbourhood of an arc, and we will
use this property in Section 7.
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Figure 2: A background manifold M D D2 � Œ0; 1/ , a boundary condition
consisting of two circles, and an embedded ball ` (in grey) that intersects the
circles in two intervals (left) and a 1–simplex in the boundary resolution (right).

Definition 5.6 When i D 0, the composition of the inclusion of the fibre in (5-1) with
the augmentation

Og;b.M I ı; `/0! ECg;b.M I ı/

is called the approximate augmentation of the resolution Og;b.M I ı/� over the i –
simplex u.

Proof of Proposition 5.5 The restriction maps are Diff.M I ı; `/–equivariant and, by
Proposition 2.16, the space Ai .M I ı; `/ is Diff.M I ı; `/–locally retractile; hence the
restriction maps are locally trivial fibrations by Lemma 2.5.

The fibre over a point u is the space of surfaces W in M that contain the strips
.u000; : : : ; u

00
i / and such that W n.u000; : : : ; u

00
i / lies outside u00 [ � � � [ u

0
i . If we take a

parametrisation f W †!W of any surface and write

sD .s0; : : : ; si /D .f
�1
ıw0; : : : ; f

�1
ıwi /;

then this space is canonically homeomorphic to the space E.†.s/;M.u/I ı.u//, so we
just need to classify †.s/.

Removing a strip from † is the same as removing a 1–cell, up to homotopy equivalence;
hence �.†.s//D �.†/C iC1. Now, let us say that a strip sj in † is of type I if both
components of @sj are contained in a single component of @†..s0; : : : ; sj�1//, and
that it is of type II otherwise.

� If sj is of type I, then @†.s0; : : : ; sj / has one more boundary component than ı ,
and as a consequence of the last condition of the definition of O.†/� , the strip
sjC1 is again of type I.
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� If s00j is of type II, then @†.s0; : : : ; sj / has one less boundary component than ı ,
and as a consequence of the last condition of the definition of O.†/� , the strip
sjC1 is of type I.

Hence, the only strip of type II that may occur in the construction of @†.s/ is the one
given by s0 in O2.†/� . Hence @†.s/ has bC i C 1 components if s 2O1.†/� and
bC i � 1 components if s 2O2.†/� . Finally, we obtain the genus of †.s/ from the
formula g D 1

2
.2��� b/.

5.3 Stabilisation maps between resolutions

In this subsection, we show how to extend the stabilisation maps defined in Section 3
to maps between the resolutions we have constructed:

(5-2)

O2g;b.M I ı; `/i //

�i

��

O1gC1;b�1.M1I
xı; x̀/i

�i
��

ECg;b.M; ı/
˛g;b.M Iı;

xı/
// ECgC1;b�1.M1I

xı/

O1g;b.M I ı; `/i //

�i

��

O2g;bC1.M1I
xı; x̀/i

�i
��

ECg;b.M; ı/
ˇg;b.M Iı;

xı/
// ECg;bC1.M1I

xı/

In Section 3, we defined the maps ˛g;b.M I ı; xı/ by gluing a cobordism P � @0M �I

to each surface in ECg;b.M I ı/. As we did there, in the following constructions we will
assume, without loss of generality, that

(i) x̀D `� f1g;

(ii) P \ .`� Œ0; 1�/D .`\ ı/� Œ0; 1�; in particular, x̀\ xı D .`\ ı/� f1g;

(iii) `0[ `1 hits all components of the relevant part of ı0 ; see Definition 3.2.

These assumptions make the extension of the stabilisation map canonical: Let us define
zuj D @

0uj � I . Then, joining each term in the tuple .u0; : : : ; ui / (which is a subset
of M ) to each term in .zu1; : : : ; zui / (which is a subset of @0M � Œ0; 1�), we obtain a
new tuple .xu1; : : : ; xui / whose terms are defined as xuj D u[ zuj (which is a subset of
M1 ). This yields the dashed maps ˛g;b.M I ı; xı/i in the first diagram. These maps
commute with the face maps and with the augmentation maps, so they define a map of
semisimplicial spaces

˛g;b.M I ı; xı/�W O2g;b.M I ı; `/�!O1gC1;b�1.M1I
xı; x̀/�;

which is augmented over .˛g;b.M I ı; xı//. Analogously, we can define a map

ˇg;b.M I ı; xı/�W O1g;b.M I ı; `/�!O2g;bC1.M1I
xı; x̀/�;

which is augmented over .ˇg;b.M I ı; xı//.
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Corollary 5.7 (to Proposition 5.3) The semisimplicial pair .˛g;b.M I ı; xı/�/, to-
gether with the natural augmentation map to .˛g;b.M I ı; xı//, is a g–resolution. The
semisimplicial pair .ˇg;b.M I ı; xı/�/, together with the natural augmentation map to
.ˇg;b.M I ı; xı//, is a .g�1/–resolution.

There is a commutative square

(5-3)

O2g;b.M I ı; `/i

��

˛g;b.M Iı;xı/i
// O1gC1;b�1.M1I

xı;; x̀/i

��

Ai .M I ı; `/
u 7!xu

// Ai .M1I
xı; x̀/

where the lower map is a homotopy equivalence. Hence we obtain a map between the
fibres over the points u and xu of the fibrations of Proposition 5.5,

(5-4) ECg�i;bCi�1.M.u/I ı.u//! ECg�i;bCi .M1.xu/I xı.xu//:

More concretely, this is a map of type I given by the cobordism P.u/ WD P n zu00 �

@0M.u0/� I , which is denoted ˇg�i;bCi�1.M.u/I ı.u/; xı.xu//, as can be seen from
the difference between the genus of the surfaces in the source and target spaces.

Since the map Ai .M I ı; `/ ! Ai .M1I
xı; x̀/ is a homotopy equivalence, the space

ECg�i;bCi�1.M.u/I ı.u// is homotopy equivalent to the homotopy fibre of the compo-
sition of the augmentation map of O2g;b.M I ı; `/� with this map. Moreover, we have
shown that the map between the fibres of the locally trivial fibrations of diagram (5-3)
is a stabilisation map ˇg�i;bCi�1.M.u/I ı.u/; xı.xu//.

As a consequence, we have a diagram

(5-5)

ECg�i;bCi�1.M.u/I ı.u//
ˇg�i;bCi�1.M.u/Iı.u/;xı.xu//

//

'

��

ECg�i;bCi .M1.xu/I xı.xu//

'

��

hofibxu.�/ //

��

hofibxu.�0/

��

O2g;b.M I ı; `/i
�

))

˛g;b.M Iı;xı/i
// O1gC1;b�1.M1I

xı; x̀/i

�0

uu

Ai .M1I
xı; x̀/

This gives that the pair .hofibxu.�0/; hofibxu.�// is homotopy equivalent to the pair
.ˇg�i;bCi�1.M.u/I ı.u/; xı.xu///.
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Following the same procedure with the map ˇg;b.M I ı; xı/, we obtain that the pair
given by the map from the homotopy fibre of

O1g;b.M I ı; `/i ! Ai .M1I
xı; x̀/

to the fibre of the composition

O1g;b.M I ı/i ! Ai .M I ı; `/! Ai .M1I
xı; x̀/

is homotopy equivalent to the pair given by

ECg�i�1;bCiC1.M.u/I ı.u//! ECg�i;bCi .M1.xu/I xı.xu//;

which is a map of type ˛g�i�1;bCiC1.M.u/I ı.u/; xı.xu//.

Corollary 5.8 (to Proposition 5.5) There are homotopy fibre sequences

.ˇg�i;bCi�1.M.u/I ı.u///! .˛g;b.M I ı/i /! Ai .M1I
xı; x̀/;

.˛g�i�1;bCiC1.M.u/I ı.u///! .ˇg;b.M I ı/i /! Ai .M1I
xı; x̀/:

That is, the homotopy fibre over xu is homotopy equivalent to the pair shown.

Definition 5.9 When i D 0, the composition of the inclusion of the fibre in the fibre
sequences of the last corollary with the relative augmentations

.ˇg;b�1.M.u/I ı.u///! .˛g;b.M I ı/0/! .˛g;b.M I ı//;

.˛g�1;bC1.M.u/I ı.u///! .ˇg;b.M I ı/0/! .ˇg;b.M I ı//;

are called the approximate augmentations of the resolutions .˛g;b.M I ı/�/ and
.ˇg;b.M I ı/�/ over the i –simplex u.

6 Homological stability for surfaces with boundary

In this section we prove the first two assertions of Theorem 1.3, leaving some details
until Section 7. The proof of the last assertion will be deferred to Section 8.

Proposition 6.1 Let M be a simply connected manifold of dimension at least 5. If
the dimension of M is 5, we assume in addition that the pairs of pants defining the
stabilisation maps are contractible in @0M � Œ0; 1�. Then

(i) Hk.˛g;b.M//D 0 for k � 1
3
.2gC 1/;

(ii) Hk.ˇg;b.M//D 0 for k � 2
3
g .
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This proposition will be proven by induction: Lemma 6.4 gives the starting step and
Lemma 6.2 gives the inductive step. The proof of Proposition 6.1 broadly follows the
proof of Theorem 7.1 in [25]. In the language in that paper, stabilisation on �0 is
covered by Lemma 6.4 and 1–triviality will be the subject of Section 7.

6.1 The inductive step

Let M be the class of simply connected manifolds of dimension at least 5 with
nonempty boundary. We define the following statements, which we will prove by
simultaneous induction: Firstly, for the stabilisation maps, we define:

Fg W Hk.˛h;b.M//D 0 for all M 2M, all h� g and all k � 1
3
.2hC 1/;

Gg W Hk.ˇh;b.M//D 0 for all M 2M, all h� g and all k � 2
3
h.

Secondly, for the approximated augmentations for the g–resolution ˛g;b.M/� and the
.g�1/–resolution ˇg;b.M/� over any 0–simplex u, we define:

Xg W Hk.ˇh;b�1.M.u///! Hk.˛h;b.M// is an epimorphism for all M 2M, all
h� g and all k � 1

3
.2hC 1/;

Ag W Hk.ˇh;b�1.M.u///!Hk.˛h;b.M// is zero for all M 2M, all h� g and all
k � 1

3
.2hC 2/;

Yg W Hk.˛h�1;bC1.M.u///!Hk.ˇh;b.M// is an epimorphism for all M 2M, all
h� g and all k � 2

3
h;

Bg W Hk.˛h�1;bC1.M.u///!Hk.ˇh;b.M// is zero for all M 2M, all h� g and
all k � 1

3
.2hC 1/.

Lemma 6.2 If M satisfies the hypotheses of Proposition 6.1, then

.i/ Xg and Ag D) Fg I .iii/ Gg D)Xg I .v/ Gg and Xg�1 D) Ag I

.ii/ Yg and Bg D)Gg I .iv/ Fg�1 D) Yg I .vi/ Fg�1 and Yg�1 D) Bg :

Proof (i) The morphism induced in homology by the approximate augmentation

Hk.ˇg;b�1.M.u///!Hk.˛g;b.M//

is both zero and an epimorphism in all degrees k� 1
3
.2gC1/ (since Xg and Ag hold),

so Hk.˛g;b.M//D 0 in these degrees. Similarly for (ii).

(iii) Consider the g–resolution ˛g;b.M I ı/� of ˛g;b.M I ı/ given by Corollary 5.7,
together with the homotopy fibre sequences�

ˇg�i;bCi�1.M.u/I ı.u//
�
! .˛g;b.M I ı/i /! Ai .M1I

xı/
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of Corollary 5.8. For all i � 1, we have the inequality 1
3
.2gC 1/� i � 2

3
.g� i/, and

so, as M.u/ is simply connected, by inductive assumption,

Hq
�
ˇg�i;bCi�1.M.u/I ı.u//

�
D 0

for q � 1
3
.2gC 1/� i . When i D 0, we have the inequality 1

3
.2gC 1/� 1� 2

3
g , so

Hq.ˇg;b�1.M.u/I ı.u///D 0 for q � 1
3
.2gC1/�1. In total, we deduce that we have

Hq.ˇg�i;bCi�1.M.u/I ı.u///D0 for q� 1
3
.2gC1/�i except .q; i/D

�
1
3
.2gC1/; 0

�
.

As
�
1
3
.2gC 1/

˘
� gC1 and Ai .M1; xı/ is path connected, Criterion 4.4 shows that the

approximate augmentations are epimorphisms for k � 1
3
.2gC 1/. Similarly for (iv).

The implications (v) and (vi) will be proven in Section 7.

6.2 Stability of connected components

In this section, we establish the base case of the induction by proving that the assertions
Xg , Yg , Ag and Bg hold for g D 0. This, together with Lemma 6.2, will finish the
proof of Proposition 6.1. For that, we first construct a (noncanonical) bijection between
�0.ECg;b.M I ı// and the second homology group of M.

Suppose that M is a simply connected manifold of dimension d �5, and let us describe
an action of the abelian group H2.M IZ/ on the set �0.ECg;b.M I ı// of isotopy classes
of surfaces of genus g in M with boundary condition ı . Let yeW †g;b ,!M be an
embedding with boundary condition ı , representing an element e 2 �0.ECg;b.M I ı//.
Let x 2 �2.M/ŠH2.M IZ/ be a homotopy class of maps from S2 to M.

As M has dimension at least 5, x may be represented by an embedding yxW S2 ,!M

disjoint from the image of ye , and we can then choose an embedded path from the
image of ye to the image of yx . Forming the ambient connected sum along this path we
obtain a new embedding yx � yeW †g;b ,!M.

Lemma 6.3 The map

H2.M IZ/��0.ECg;b.M I ı//! �0.ECg;b.M I ı//; .x; e/ 7! Œyx � ye�;

is well defined and gives a free and transitive action of H2.M IZ/ on �0.ECg;b.M I ı//.

If @WH2.M;ıIZ/!H1.ıIZ/ denotes the boundary homomorphism, and Œı�2H1.ıIZ/
denotes the fundamental class, then the map

�0.ECg;b.M I ı//! @�1.Œı�/; Œye� 7! ye�.Œ†g;b; @†g;b�/;

is an isomorphism of H2.M IZ/–sets.
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Proof Consider the natural Diff.†g;b/–equivariant inclusion

'W Emb.†g;b;M I ı/!map.†g;b;M I ı/:

As the dimension of M is at least 5 and it is simply connected, the main result of [10]
says that ' induces a bijection

(6-1) �0 Emb.†g;b;M I ı/Š �0 map.†g;b;M I ı/:

Consider the cofibre sequence S1
i
�!†1g;b!†g;b , where †1g;b denotes a 1–skeleton

of †g;b to which just a single 2–cell needs to be attached to obtain †g;b . The second
inclusion gives the locally trivial fibration

map.†g;b;M I ı/!map.†1g;b;M I ı/;

whose base space is connected because M is simply connected. The fibre over a point
� 2map.†1g;b;M I ı/ is the space map.D2;M I�/ of maps from the 2–disc D2 to M
that restrict to � ı i on the boundary.

By considering the long exact sequence on homotopy groups for this fibration, in low
degrees we find that �1.map.†1g;b;M I ı/; �/ acts on the set �0.map.D2;M I�// with
quotient �0.map.†g;b;M I ı//.

We have the composition

�0.map.D2;M I�//� �0.map.†g;b;M I ı//� @�1.Œı�/;

where the source has a free transitive �2.M/–action and the target has a free transitive
H2.M IZ/–action, and the map is equivariant with respect to the Hurewicz homo-
morphism. This shows that both maps are in fact bijections, and that the induced
�2.M/–action on the set �0.map.†g;b;M I ı// is free and transitive.

Given this calculation, it is clear that the group DiffC.†g;b/ acts trivially on the set
�0 Emb.†g;b;M I ı/, so there is an induced bijection

�0.ECg;b.M I ı//! @�1.Œı�/:

It is then easy to see that the H2.M IZ/–action on @�1.Œı�/ corresponds to the one
that we constructed on �0.ECg;b.M I ı//.

This lemma allows us to begin the inductive proof of Proposition 6.1, as it tells us what
the zeroth homology of ECg;b.M I ı/ is.

Lemma 6.4 If M is simply connected of dimension at least 5, then the statements F0
and G0 hold. As a consequence, the statements X0 , Y0 , A0 and B0 hold, too.
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Proof Each stabilisation map glues on a cobordism P with incoming boundary ı
and outgoing boundary xı . With the notation of Lemma 6.3, adding on the 2–chain
representing the relative fundamental class of P defines an isomorphism of H2.M IZ/–
sets @�1.Œı�/! @�1.Œxı�/ between the inverse images of the fundamental classes Œı�
and Œxı�, and hence F0 and G0 hold.

7 Trivial homology of approximate augmentations

This section is divided in two parts. In the first part we prove Lemma 7.1, which in
the language of [25] says that the space of embedded subsurfaces is 1–trivial. In the
second part, we apply this lemma to prove assertions (v) and (vi) in Lemma 6.2, hence
finishing the proof of Proposition 6.1.

Throughout this section, we assume for simplicity that the manifold M has no corners
(observe that M.u/ does have corners). In Figures 3, 4, 5 and the following Notation,
we recall the decorations xu; zu; u0; u00; P.u/; : : : given in Definition 5.2 and at the
beginning of Section 5.3.

Notation Recall that

� ` is a ball in @0M,

� M1 DM [ .@
0M � Œ0; 1�/,

� u000 is an embedding of a half disc DC1 whose boundary lies in W and in `,

� .u0; u00/ is a tubular neighbourhood of u000 in the pair .M;W /,

� v is the restriction of u000 to @1DC
1=2

,

� w is the image of u00 ı v , and it is the intersection u0\W ,

� xu0; xw; xv; : : : are the prolongations of u0; w; v; : : :�M to M1 ,

� M.u/ is the closure of the complement of u0 in M,

� M1.xu/ is the closure of the complement of xu0 in M,

� ı.u/ is the boundary condition in M obtained from ı by removing @0w and
adding @1w ,

� xı.xu/ is the boundary condition in M1 obtained from xı by removing @0 xw and
adding @1 xw ,

� P.u/ is the closure of P n zw .

We recall some of this notation in Figures 3, 4 and 5.
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u000 zu000

xu000

Figure 3: The discs u000�M, zu000�@0M�Œ0; 1� and xu000�M1 WDM[.@
0M�Œ0; 1�/ .

The subsets u0 , zu0 and xu0 are tubular neighbourhoods of them.

v zv

xv

zv

Figure 4: The arcs v �W �M, zv � P � @0M � Œ0; 1� and xv �W [P �M1

w zw

xw

zw

Figure 5: The strips w �W �M, zw � P � @0M � Œ0; 1� and xw �W [P �M1

7.1 A diagram of approximate augmentations

Let us denote by bg;b�1.u/ (resp. ag;b.u/) the approximate augmentation for the
resolution O2g;b.M I ı; `/� (resp. O1g;b.M I ı/� ) of ECg;b.M I ı/ over a 0–simplex u; see
Definitions 5.2 and 5.6. Then, for a stabilisation map ˛g;b.M I ı; xı/, we may extend it
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to the following diagram, which results from gluing diagram (5-2) to the big square of
diagram (5-5):

(7-1)

ECg;b�1.M.u/I ı.u//
ˇg;b�1.M.u/Iı.u//

//

bg;b�1.u/

��

ECg;b.M1.xu/I xı.xu//

ag;b.u/

��tt

ECg;b.M I ı/
˛g;b.M Iı/

// ECgC1;b�1.M1I
xı/

The first result of this section is Lemma 7.1, where we construct a dotted map as shown
making both triangles commute up to homotopy (and enjoying certain other properties).
In order to better understand the diagram, observe first that all its maps consist of gluing
to the background manifold a cobordism with a surface inside, as we did in Section 3.
In that notation, we have:

˛g;b.M I ı/D�[P with P � @0M � Œ0; 1� .type I/;

ˇg;b�1.M.u/I ı.u//D�[P.u/ with P.u/� @0M.u/� Œ0; 1� .type I/;

bg;b�1.u/D�[w with w � u0 .type II/;

ag;b.u/D�[ xw with xw � xu0 .type II/:

7.2 Enlarging the diagram

In practice, the only maps between spaces of submanifolds that we can define are
the ones in Section 3. Since M1.xu/ is not contained in M, such maps do not exist
on the nose. For that reason, we now enlarge diagram (7-1) by including M into
M2 WDM [ @

0M � Œ0; 2� and including M1 into M3 WDM [ @
0M � Œ0; 3� (see also

Figure 6):

(7-2)

ECg;b�1.M.u/I ı.u//
ˇg;b�1.M.u/Iı.u//

�[P.u/

//

bg;b�1.u/ �[w

��

ECg;b.M1.xu/I xı.xu//

ag;b.u/ �[ xw

��

ECg;b.M I ı/

i0.ı/ �[ı0�Œ0;2�

��

˛g;b.M Iı/

�[P
// ECgC1;b�1.M1I

xı/

i1.xı/ �[xı
0�Œ1;3�

��

ECg;b.M2I ıC 2/
˛g;b.M2/

�[.PC2/

// ECgC1;b�1.M3I
xıC 2/
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The maps in the bottom square are defined by

i0.ı/D�[ ı
0
� Œ0; 2� with ı0 � Œ0; 2�� @0M � Œ0; 2� .type I/;

i1.ı/D�[ ı
0
� Œ1; 3� with ı0 � Œ1; 3�� @0M � Œ1; 3� .type I/;

˛g;b.M2/D�[ .P C 2/ with P C 2� @0M � Œ2; 3� .type I/;

where P C 2 is the cobordism P translated 2 units. Finally, the new boundary
conditions are

.ıC 2/0 D ı0 � f2g; .xıC 2/0 D xı0 � f3g;

.ıC 2/1 D ı1[ .@ı0 � Œ0; 2�/; .xıC 2/1 D xı1[ .@xı0 � Œ1; 3�/:

(If M does not have corners, then ı1 D xı1 D .ıC2/1 D .xıC2/1 D∅.) By stretching
collars one sees that the maps i0.ı/ and i1.xı/ are weak homotopy equivalences and
that the bottom square commutes up to homotopy. Therefore, in order to find a diagonal
map in (7-1) making the two triangles commute up to homotopy it is enough to find a
diagonal map in (7-2) making the two triangles commute up to homotopy.

7.3 A diagonal factorisation of the enlarged diagram

Now, let N be the manifold with corners xu0 [ @0M � Œ1; 2�. As M1.xu/[N DM2 ,
any trivial cobordism Q �N satisfying the boundary condition

� WD .ı0�f2g/[ xı.xu/ inside @N D .@0M�f2g/[ @M1.xu/

defines a map

(7-3) �[QW ECg;b.M1.xu/I xı.xu//! ECg;b.M2I ıC 2/;

which is a diagonal map for the outer square in diagram (7-2). In order for this map
to make the two triangles commute up to homotopy, Q is required to have certain
properties: a Q enjoying the properties is shown to exist in the following lemma.

Lemma 7.1 If dimM � 5, there is an ` as in Definition 5.2, that depends only on P ,
for which there exist:

(i) a trivial cobordism Q 2 E.N I �/,
(ii) isotopies

P.u/[Q ' w[ .ı0�Œ0; 2�/ � u0[ @0M � Œ0; 2�;

Q[ .P C 2/ ' xw[ .xı0�Œ1; 3�/ � xu0[ @0M � Œ1; 3�;

relative to the boundaries.

Therefore, in the square (7-1), a dashed diagonal map exists making both triangles
commute up to homotopy.
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ı.u/

xı.xu/ xı.xu/

ı ı

xı

xı

ı

ı.u/0[ .@ı.u/0 � Œ0; 1�/[xı

u0[ .@M � Œ0; 2�/ N D xu0[.@M� Œ1;2�/ xu0[ .@M � Œ1; 3�/

@M � Œ2; 3�

@0.M.u//� Œ0; 1�

Figure 6: Background manifolds (in black) and boundary conditions (in grey)
for the cobordisms P.u/ , w[ .ı0 � Œ0; 2�/ ,Q , xw[ .xı0 � Œ1; 3�/ and P C 2
that define the maps in diagram (7-2), with @M a ball (so M does not have
corners in the picture)
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Before entering into the proof of this lemma, we give some definitions to do with
surgery on embedded surfaces which will be used in the proof.

Notation If E! B is a vector bundle, we denote by S.E/ its unit sphere bundle.

Choose an embedding aW D2 � @D1!D2 �D1 such that aj@D2�@D1 is the identity
and the image of

˚
x 2D2 j kxk � 1

2

	
� @D1 is contained in @D2 �D1 .

Definition 7.2 Let W �M be an oriented surface, and let  � W be an oriented
embedded circle. The normal bundle NW  is then oriented. As it has rank 1, the
orientation is the same as a trivialisation. Let s0 be the section of S.NW / given
by the trivialisation. Let .D; s/ be a pair consisting of an embedded oriented 2–disc
D �M bounding  transverse to W , and a section s of S.NMD/ whose restriction
to S.NW / is s0 .

A surgery datum for .W; .D; s// is an embedding of pairs eW .D2�D1; @D2�D1/!
.M;W / such that

(i) the restriction of e to D2 � f0g is an orientation-preserving diffeomorphism
onto D ,

(ii) the canonical section of S.ND2�D1D
2/ is mapped to the section s of S.NMD/.

The ambient surgery on W along  by means of the pair .D; s/, denoted W \D , is
the submanifold of W obtained by removing e.@D2 �D1/ from W and then gluing
e ı a.D2 � @D1/. The orientation of W determines an orientation on W \D .

Any two parametrisations of D differ by an element of DiffC.D2/, which is connected.
Additionally, the restriction map

Emb..D2 �D1; @D2 �D1/; .M;W //! Emb.D2 � f0g; @D2 � f0g; .M;W //

is a fibration by Proposition 2.13 and Lemma 2.5, and the fibre is weakly contractible.
Therefore, any two surgery data of .W; .D; s// are isotopic, and we deduce that:

Lemma 7.3 The isotopy class of W \D is determined by W and .D; s/.

Lemma 7.4 Let B be a compact manifold, possibly with boundary. Let W be an
embedded oriented surface in B , not necessarily collared, with boundary condition ı ,
and let .;  0/ be either a pair of collared arcs in W with the same boundary, or a pair
of curves in W . If M is a compact manifold, possibly with boundary, contractible and
of dimension at least 5, and  and  0 are nonseparating (ie their complements are con-
nected), then there is an isotopy ft W M !M constant on the boundary of M such that

(i) f1.W /DW; (ii) f1./D 
0:
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˛

ˇ

�

q0

q1
p1

p0

v

Figure 7: The curves v , ˛ , ˇ and � in u0[P

ˇˇ

'

u P P

Figure 8: Illustration for the first isotopy in the proof of Lemma 7.1(ii)

Proof As DiffC
@
.W / acts transitively on the space of nonseparating arcs (curves)

in W , there is a diffeomorphism F that sends  to  0 . If d is a boundary condition
for Emb.W;M/ such that Œd � D ı , we have that the group DiffC

@
.W / acts on the

space Emb.W;M I d/ by precomposition. As dimM � 5, by [10] (see (6-1)) we have
that �0.Emb.W;M I d//Š �0.map.W;M I d//, and the latter is trivial because M is
contractible. Therefore, there exists a path of embeddings from the inclusion i W W �M
to the embedding i ıF . Using the parametrised isotopy extension theorem we promote
this isotopy of embeddings to an ambient isotopy ft .

Proof of Lemma 7.1 Let us denote by ' the image under xu000 of @1DC
1=2

(ie the image
of xv ). Let D' be the image of DC

1=2
under the embedding xu000 , and let � be the image

of @0DC
1=2

, so that D' is a disc in xu0 that bounds '[� . Observe that the isotopy class
of � is determined by `. Choose a section s' of S.NMD'/ that is trivial on ' (ie whose
restriction to ' is the constant section with value 1 of the trivialised bundle S.NW /)
and collared (ie as xu000 is collared, there is an � for which D' D � � .1� �; 1�, and
a canonical identification N@M�.1��;1�D' \ @M � .1� �; 1�Š .N�@M/� .1� �; 1�;
we say that s is collared if s.x; t/D .s.x; 0/; t/ under this identification).
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Let p0 and p1 be the initial and final points of the path ' . As p0 and p1 are contained
in `\ ı0 , they are points in the relevant boundary of P (see Definition 3.2). Let ˇ be
a path embedded in P , from p0 to p1 , with a unique minimum at the unique critical
point p of � W P � @0M � Œ0; 1�! Œ0; 1� and such that Tpˇ � TpP is the unstable
subspace.

Now, ` may be chosen so that � is isotopic to ˇ in @M � Œ0; 1�, so suppose this has
been done.

Then ˇ is isotopic to ' , so there is a ball B � u0 [ @0M � Œ0; 1� containing them
and D' . In addition, both are nonseparating: as w [ P has only critical points of
index 1, the stable submanifold at the point p connects both sides of the complement
of ' to the incoming boundary of w [P , which is connected. Regarding ˇ , again
both sides connect to the incoming boundary of w[P . By Lemma 7.4, there exists
an isotopy ft of u0[ @0M � Œ0; 1� supported on B such that

(i) f1.w[P /D w[P ,

(ii) f1.'/D ˇ .

Define Dˇ Df1.D'/ and sˇ Df1.s'/. We assume, without loss of generality, that Dˇ
has no critical points. Define P; ;̌ Dˇ � @M � Œ1; 2� to be the reflections of P , ˇ
and Dˇ along @M�f1g, and orient P compatibly with the orientation of ı0 . Similarly,
define the section sˇ to be the reflection of the section sˇ . The union xw [ Pis a
submanifold of N satisfying the boundary condition � , but it is not a trivial cobordism.

The circle ' [ �̌ xw[ Pis bounded by the disc D' [ Dˇ �N , on which we have
the section s' [ sˇ . Define

Q WD . xw[ P/ \ .D' [ Dˇ /:

We now show that P.u/[Q is isotopic to w[ ı0 � Œ1; 2�; see Figure 8. If we extend
the isotopy ft of u0[ @0M � Œ0; 1� to u0[ @0M � Œ0; 2� by the identity, we have that

P.u/[QD P.u/ [ .. xw[ P/ \ .D' [ Dˇ //

' f �11 Œ.P.u/[ xw[ P/ \ .D' [ Dˇ /�

D .f �11 ŒP.u/[ xw�[ P/ \ .f �11 ŒD' �[ Dˇ /

D .P.u/[ xw[ P/ \ .f �11 ŒD' �[ Dˇ /

D .w[P [ P/ \ .Dˇ [ Dˇ /

D w [ ..P [ P/ \ .Dˇ [ Dˇ //:

But � W P [ P� @0M � Œ0; 2�! Œ0; 2� has only two critical points which are cancelled
by the surgery along Dˇ [ Dˇ . Therefore, .P [ P/ \ .Dˇ [ Dˇ / has no critical
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points and is therefore a trivial cobordism. In addition, the part of this cobordism lying
in @0M � Œ1; 2� is a reflection of the part lying in @0M � Œ0; 1�, and therefore the union
is homotopic to ı0� Œ0; 2�, and therefore isotopic to it, too (because dimM � 5, using
again [10] as in (6-1)). This gives the first isotopy of statement (ii) of the lemma.

Since g1.P.u/[Q/ has a unique critical point and so does P.u/, it follows that Q
is a trivial cobordism. Hence Q is as in statement (i) of the lemma.

To show that Q [ .P C 2/ is isotopic to xw [ xı0 � Œ1; 3�, we proceed as follows:
Let q0 and q1 be the initial and final points of the path v . Let ˛ be a path embedded
in P , from q0 to q1 , with a unique minimum at the unique critical point p of
� W P � @0M � Œ0; 1�! Œ0; 1�, and such that Tp˛ � TpP is the stable subspace.

Let D˛ � @0M � Œ0; 1� be a collared half 2–disc transverse to P , bounding ˛ [ �
for some path � � @0M, and let s˛ be a section of S.NMD˛/ trivialised over ˛ and
collared (as in the first paragraph of this proof). Assume that the intersection of D˛
with Dˇ consists only on the point p . The discs D' [ Dˇ and D˛ [ .D˛ C 2/

intersect in a single point, namely the reflection of p in P; therefore, there is a ball B
that contains both discs. In addition, both ' [ˇ and ˛[ .˛C 2/ are nonseparating in
xw[ P[ .P C2/: each curve is transverse to the other and they meet in a single point;
therefore, the possible two sides of the complement of each curve are connected by
the other curve. By Lemma 7.4, there is an isotopy ht of xu0[ @0M � Œ1; 3� supported
on B such that

(i) h1. xw[ P[ .PC2//D xw[ P[ .PC2/, and

(ii) h1.' [ /̌D [̨ .˛C 2/.

Because h1.D' [ Dˇ / and D˛ [ .D˛ C 2/ are contained in the ball B , they are
isotopic, so there exists another isotopy h0t of xu0[@0M�Œ1; 3� supported on B such that

(i) h01. xw[ P[ .PC2//D xw[ P[ .P C 2/, and

(ii) h01.h1.D' [ Dˇ //D D˛ [ .D˛C 2/.

Therefore, endowing D˛ [ .D˛C 2/ with the section h01.h1.s' [ sˇ//, we have

Q[ .P C 2/D . xw[ P/ \ .D' [ Dˇ / [ .P C 2/

' h01 ı h1
�
. xw[ P/ \ .D' [ Dˇ /[ .P C 2/

�
D . xw[ P[ .P C 2// \ .h1ŒD' [ Dˇ �/

D . xw[ P[ .P C 2// \ . D˛ [ .D˛C 2//

D xw [ .. P[ .P C 2// \ . D˛ [ .D˛C 2///:
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But � W P[.P C2/� @0M � Œ1; 3�! Œ1; 3� has only two critical points which are can-
celled by the surgery along D˛ [.D˛C2/. Therefore, . P[.PC2//\. D˛ [.D˛C2//

has no critical points and is therefore a trivial cobordism. In addition, the part of this
cobordism lying in @0M � Œ2; 3� is a reflection of the part lying in @0M � Œ1; 2�, and
therefore the union is homotopic to ı0 � Œ1; 3�, and therefore isotopic (again, using
[10] as in (6-1)). This gives the second isotopy of statement (ii) of the lemma.

7.4 Zero in homology

During this section, if A!X is a map, we will denote by .X;A/ its mapping cone.
We will use the letter † for unreduced suspension, and write CX D Œ0; 1��X=f1g�X .

In this section, we give a slightly different treatment of the problem of 1–triviality as
approached in the literature. The difference is that using the methods of [25; 22], one can
prove that the composition h ı†ag�1;b.u0; u1/ in the first display of Proposition 7.7
is zero in homology, whereas we prove that it is in fact null-homotopic. This is done
via the following lemma, which has the additional advantage of avoiding the use of
maps that only exist at the level of homology.

Lemma 7.5 If

A
i
//

g
��

X

f
��

A0
j
// X 0

is a map of pairs and there is a map t W X ! A0 making the bottom triangle com-
mute up to a homotopy H W f ' jt , then the induced map between mapping cones
.f; g/W .X;A/! .X 0; A0/ factors as .X;A/ p�!CA[iCX

h
�! .X 0; A0/, where p comes

from the Puppe sequence. In addition, if there is also a homotopy GW g ' t i , then
the composite CA[i CX

h
�! .X 0; A0/

p0
�! CA0[j CX

0 is nullhomotopic.

Proof The map hW CA[i CX ! CA0[j X
0 is given by

h.a; s/D .g.a/; s/ 2 CA0 if .a; s/ 2 CA;

h.b; s/DH.b; 2s/ 2X 0 if .b; s/ 2 CX and 0� s � 1
2
;

h.b; s/D .t.b/; 2s� 1/ 2 CA0 if .b; s/ 2 CX and 1
2
� s � 1;

and it restricts to .f; g/ in the mapping cone CA[i X , hence hp D .f; g/.

For the second part, let C1=2Y D
˚
.y; s/ 2 CY j 0� s � 1

2

	
, notice that

.CA[i CX/=C1=2X Š†A_†X;
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and consider the diagram

CA[CAD†A

Id[Ci'

��

CA[i CX
h

//

collapse
C1=2X

��

CA0[j X
0
p0
// CA0[j CX

0

'

collapse
CX 0

// †A0

.CA[i CX/=C1=2X Š†A_†X
†g_†t

// †A0 _†A0

r

OO

which is easily checked to commute. As t i is homotopic to g , the lower composition
is homotopic to r ı .†g_†g/ı_, ie †g�†g , so it is nullhomotopic, as required.

We now return to (7-1), where we had chosen a 0–simplex u0 WD u 2 O2g;b.M I ı/0 .
Suppose that we have another 0–simplex u1 2O1g;b�1.M.u0/I ı.u0//0 (we can also
consider u1 as a point in O2g;b.M I ı/0 and u0 as a point in O1g;b�1.M.u1/I ı.u1//0 ).
We now construct the following diagram:

ECg�1;b.M.u0; u1//

.4/

//

ag�1;b.u0/

��

ECg;b�1.M.u0; u1// //

bg;b�1.u0/

��

˛g�1;b.M.u0; u1// //

��

†ECg�1;b.M.u0; u1//

��

ECg;b�1.M.u0//

.1/

//

bg;b�1.u0/

��

ECg;b.M.u0// //

ag;b.u0/

��

ˇg;b�1.M.u0//
p
//

��

†ECg;b�1.M.u0//

h
vv

ECg;b.M/

.2/

// ECgC1;b�1.M/ // ˛g;b.M/

ECg;b�1.M.u1//

.3/

//

bg;b�1.u1/

OO

ECg;b.M.u1// //

ag;b.u1/

OO

ˇg;b�1.M.u1//

OO

p0
// †ECg;b�1.M.u1//

h0
hh

ECg�1;b.M.u0; u1// //

ag�1;b.u0/

OO

ECg;b�1.M.u0; u1// //

bg;b�1.u0/

OO

˛g�1;b.M.u0; u1// //

OO

†ECg�1;b.M.u0; u1//

h00
hh

The third line of the diagram is the Puppe sequence for the stabilisation map ˛g;b.M Iı;xı/.
The second and fourth lines are the Puppe sequences for the approximate augmentations
corresponding to the data u0 and u1 , respectively. The first and fifth lines are the
Puppe sequences for the approximate augmentation of Og;b.M.u0/I ı.u0//� over the
0–simplex u1 and for the approximate augmentation of Og;b.M.u1/I ı.u1//� over the
0–simplex u0 . Note that the first and fifth lines are the same.
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We first apply Lemma 7.1 to the 0–simplex u0 2 Og;b.M.u1/I ı.u1//0 in order to
provide a cobordism

Q �N D xu00[ @
0M.u1/� Œ1; 2�

and a diagonal map �[Q that commutes up to homotopy in the square .3/. The
cobordism

Q0 WDQ[ zw1 �N
0
D xu00[ @

0M � Œ1; 2�

provides a diagonal map �[Q0 for the square (1). As the isotopies constructed in
that lemma for Q where the identity on the boundary of N , they extend through the
constant isotopy on N 0 , moreover, by construction of Q and Q0 we have:

Lemma 7.6 The composition of the diagonal map of (3) with bg�1;b.u1/ is the same
as the composition of ag�1;b.u0/ with the diagonal map of (1). The same holds for
the homotopies.

We continue by choosing any diagonal map and homotopies for the square .2/ using
again Lemma 7.1, and construct the maps p , h, p0 , h0 , p00 and h00 applying the first
part of Lemma 7.5 to the squares (1), (2) and (3).

The following finishes the proof of parts (v) and (vi) of Lemma 6.2.

Proposition 7.7 If Xg�1 holds, then the map .ˇg;b�1.M.u0/// ! .˛g;b.M// in-
duces the zero homomorphism in homology degrees at most 1

3
.2gC 2/. If Yg�1 holds,

then the map .˛g;b�1.M.u; v///! .ˇg;b.M// induces the zero homomorphism in
homology degrees at most 1

3
.2gC 1/.

Proof We find homotopies

h ı†ag�1;b.u0; u1/ ' .ag;b.u1/; bg;b�1.u1// ı h
00
' h0 ıp0 ı h00 ' �

by first applying Lemma 7.6 and then applying each part of Lemma 7.5. Since Xg�1
holds, the map †ag�1;b.u0; u1/ induces an epimorphism in homology degrees at
most 1

3
.2.g � 1/C 1/C 1 (although the map ag�1;b.u0; u1/ is not a map of type

˛g;b.M.u0; u1/, it is isotopic to such a map after rounding the corners of M ), hence,
in order to have that h ı †ag�1;b.u0; u1/ ' �, the map h must induce the zero
homomorphism in those degrees, and so must hp , which is the map in question again
by Lemma 7.5. The second part is proven similarly, mutatis mutandis.

8 Homological stability for closed surfaces

We have to prove the last assertion of Theorem 1.3, as well as the injectivity in homology
of the maps of type ˇ for which one of the newly created boundaries is contractible
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in @M. That ˇg;b.M I ı/ induces a monomorphism in homology in this case and that
g;b.M I ı/ induces an epimorphism in homology if b � 2 is a consequence of the fact
(see Remark 8.6) that for each such ˇg;b.M I ı/ (resp. each g;b.M I ı/), there is a
g;bC1.M I ı

0/ (resp. ˇg;b�1.M I ı0/) and homotopy retractions

g;bC1.M I ı
0/ˇg;b.M I ı/' Id and ˇg;b�1.M I ı

0/g;b.M I ı/' Id:

Moreover, by Proposition 6.1 the ˇ–maps induce isomorphisms in homology in
degrees at most 2

3
g � 1 and an epimorphism in the next degree, but since the ˇ

maps are monomorphisms, it follows that they also induce isomorphisms in homology
up to degree 2

3
g . Finally, this implies that g;b.M I ı/ is an isomorphism in those

degrees, too.

Therefore, it only remains to prove the third assertion of Theorem 1.3 when b D 1.
This is the purpose of this section.

8.1 Resolutions and fibrations

Consider the space ECg;b.M I ı/, and let `� @0M be a subset diffeomorphic to a ball
disjoint from ı . There is a semisimplicial space Pg;b.M I ı; `/� whose i –simplices
are tuples .W; p0; : : : ; pi /, where pj D .p0j ; p

00
j ; p

000
j / and

(i) W 2 ECg;b.M I ı/;

(ii) p000j W
�
Œ0; 1�;

˚
1
2

	�
! .M;W / is an embedding of pairs with p000j .0/ 2 ` and

p000j .1/ 2
VM ;

(iii) .p0j ; p
00
j / is a closed tubular neighbourhood of p000j .Œ0; 1�/ in the pair .M;W /;

(iv) the neighbourhoods p00; : : : ; p
0
i are disjoint.

The j th face map forgets pj and there is an augmentation map to ECg;b.M I ı/ that
forgets all the pj . We topologise the space of i –simplices as a subset of ECg;b.M I ı/�
xTEmb.I � Œi �;M I q; qN /, where

q.x/D qN .x/D ` if x D 0; q.x/D qN .x/DM if x ¤ 0:

Proposition 8.1 If M is connected and of dimension at least 3, then the semisimplicial
space Pg;b.M I ı/� is a resolution of ECg;b.M I ı/.

Proof The space ECg;b.M I ı/ is Diff@.M/–locally retractile by Proposition 2.9, and
therefore it is also Diff.M I ı; `/–locally retractile. For each i , the augmentation map

�i W Pg;b.M I ı/i ! ECg;b.M I ı/
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is Diff.M I ı; `/–equivariant for all i ; therefore, it is also a locally trivial fibration
by Lemma 2.5. As a consequence, the semisimplicial fibre FibW .��/ is homotopy
equivalent to the homotopy fibre of j��j by Criterion 4.1. The space of i –simplices
of the semisimplicial fibre is xTEmb

��
I � Œi �;

˚
1
2

	
� Œi �

�
; .M;W /I q; qN

�
. Let us define

the semisimplicial space P.W;M/� whose space of i –simplices is

Emb
��
I � Œi �;

˚
1
2

	
� Œi �

�
; .M;W /I q

�
;

and the face maps are given by forgetting embeddings. Forgetting the tubular neigh-
bourhoods yields a map

r�W FibW .��/! P.W;M/�

that is levelwise Diff.M IW; `/–equivariant onto the space P.W;M/� , which is level-
wise Diff.M IW; `/–locally retractile by Proposition 2.13, hence this map is a levelwise
fibration by Lemma 2.5. The fibre of the map ri over an i –simplex pD .p0000 ; : : : ; p

000
i /

is the space Tub.p000.I /; .M;W /I qN /, which is contractible by Lemma 2.14.

The semisimplicial space P.W;M/� is a topological flag complex, and we will apply
Criterion 4.2 to prove that it is contractible. As M is connected, for each tuple
.W; p0000 /; : : : ; .W; p

000
i�1/ of 0–simplices over a surface W there is another 0–simplex

.W; p000i / over W orthogonal to them all, by general position. Hence it is contractible
by Criterion 4.2.

Let Bi .M I `/ be the set of tuples .p0; : : : ; pi / with pj D .p0j ; p
00
j ; p

000
j /, where p000j is

an embedding of an interval in M, p0j is a tubular neighbourhood of p00j in M and
p00j is the restriction of p0j to some vector subspace Lj � xNMp000j

�
1
2

�
of dimension 2.

Moreover, we require that p0j be disjoint from p0
k

. This space is in canonical bijection
with xTEmb2;f1=2g�Œi�.I � Œi �;M I q; qN /, and we use this bijection to topologise it.

There is a map
Pg;b.M I ı; `/i ! Bi .M I `/

that sends a tuple .W; p0; : : : ; pi / to the tuple .p0; : : : ; pi /.

Proposition 8.2 For a point p 2 Bi .M I `/, with the notation of Section 3, there is a
homotopy fibre sequence

ECg;bCiC1.M.p/I ı.p//! Pg;b.M I ı/i ! Bi .M I `/:

Proof The map is Diff.M I ı; `/–equivariant and Bi .M I `/ is Diff.M I ı; `/–locally
retractile by Proposition 2.16; therefore, this map is a locally trivial fibration by
Lemma 2.5. The fibre over a point p is the space of surfaces W in M that meet the
tubular neighbourhoods p0j in the image of p00j . This space is canonically homeomor-
phic to the space ECg;bCiC1.M.p/I ı.p//.
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8.2 Stabilisation maps between resolutions

In this section we will show how to extend the stabilisation map g;b.M I ı/ to a map
between resolutions:

Pg;b.M I ı; `/i //

��

Pg;b�1.M1I
xı; x̀/i

��

ECg;b.M; ı/
g;b.M1Iı;xı/

// ECg;b�1.M1; xı/

To define the maps g;b.M I ı; xı/W ECg;b.M I ı/!ECg;b�1.M1; xı/, we joined each surface
with a cobordism P in @0M � I . We will assume, without loss of generality, that

(i) x̀D `� f1g;

(ii) .`� I /\P D∅.

As in previous constructions, we define zp0j D @0p0j � I and xp0j D p0j [ zp
0
j , and

similarly zp0j and xp0j . There is a map g;b.M I ı; xı/i making the diagram commute,
that sends a tuple .W;p/ to the tuple .W [P; xp/. These maps commute with the face
maps and with the augmentation maps, so they define a map of semisimplicial spaces
extending g;b.M I ı; xı/ (the resolution of g;b.M I ı; xı/):

g;b.M I ı; xı/�W Pg;b.M I ı/�! Pg;b�1.M1I
xı/�:

Corollary 8.3 (to Proposition 8.1) The pair .g;b.M/�; ı; xı/, together with the natu-
ral augmentation to the pair g;b.M I ı; xı/, is a resolution.

The diagram

Pg;b.M I ı/i
g;b.M Iı;xı/i

//

��

Pg;b�1.M I xı/i

��

Bi .M I `/
p 7! xp

// Bi .M1; `/

is an extension of the homotopy equivalence Bi .M I `/!Bi .M1I
x̀/. Hence we obtain

a well-defined map on the homotopy fibres over the points p and xp of the fibrations
of Proposition 8.2,

ECg;bCiC1.M.p/I ı.p//! ECg;bCi .M. xp/I xı. xp//;

obtained by gluing the cobordism P to each surface. This is a map of type

g;bCiC1.M.p/I ı.p/; xı. xp//:
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Corollary 8.4 (to Proposition 8.2) There is a relative homotopy fibre sequence�
g;bCiC1.M.p/I ı.p/; xı. xp//

�
! .g;b.M I ı; xı/i /! Bi .M I `/:

8.3 Homological stability

The following proposition finishes the proof of Theorem 1.3.

Proposition 8.5 Let M be a simply connected manifold of dimension at least 5
with nonempty boundary, and ı be a boundary condition. Then, for any boundary
condition xı ,

(i) for every map g;b.M I ı; xı/, we have Hk.g;b.M I ı; xı//D 0 for k � 2
3
gC 1;

(ii) every map ˇg;b.M I ı; xı/ for which one of the newly created components of xı is
contractible in @0M induces a monomorphism in all homology degrees;

(iii) every map g;b.M I ı; xı/ for which there is another component of ı in the same
component of @0M as the one which is closed induces an epimorphism in all
homology degrees.

Remark 8.6 Consider a stabilisation map g;b.M I ı; xı/, which is given by closing
off one of the boundaries b of ı (which must necessarily be nullhomotopic in @0M ).
If ı has another boundary component b0 in the same component of @0M as b , then
there exists a stabilisation map ˇg;b�1.M I ı0; ı/ creating the boundaries b and b0 . In
this case we may enlarge collars, and we have the composition

ECg;b�1.M I ı0/
ˇg;b�1.M Iı0;ı/
�����������! ECg;b.M1I ı/

g;b.M1Iı;xı/
���������! ECg;b�1.M2I

xı/;

which is homotopic to a stabilisation map which takes the union with a cylinder inside
@0M � Œ0; 2�. This map may not be homotopic to the identity — the cylinder may
be embedded in a nontrivial way — but it is a homotopy equivalence (as we may
find an inverse cylinder), so the map g;b.M1I ı; xı/ is split surjective in homology.
By the same argument, any map ˇg;b.M1I ı; xı/ which creates a boundary which is
nullhomotopic in @0M is split injective in homology.

Proof of Proposition 8.5 We have already shown the last two statements above.
Regarding the first statement, suppose first that there is another component of ı in the
same component of @0M as the one which is closed by g;b.M I ı; xı/, and choose
a ˇg;b�1.M I ı0; ı/ as in Remark 8.6. By Proposition 6.1, we know that the map
ˇg;b�1.M I ı0; ı/ induces an epimorphism in homology degrees at most 2

3
g , and it

also induces a monomorphism in all degrees: thus it induces an isomorphism in degrees
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at most 2
3
g . As g;b.M I ı; xı/ is a left inverse to it, this also induces an isomorphism

in these degrees. Hence Hk.g;b.M I ı; xı//D 0 for k � 1
3
.2gC 3/, as g;b.M I ı; xı/

induces an epimorphism in all degrees.

Now suppose that there is no other component of ı in the same component of @0M as
the one closed by g;b.M I ı; xı/. We choose a ball `� @0M and form the resolution
of g;b.M I ı; xı/ given by Corollary 8.3. Using Corollary 8.4 to identify the space of
i –simplices in this resolution, the pair g;bCiC1.M.p/I ı.p// is a map of type  for sur-
faces with (after rounding the corners of M ) at least iC1 extra boundary components of
ı.p/ in the component of @M containing the boundary which is closed off, so the discus-
sion above applies and shows that Hk.g;bCiC1.M.p/I ı.p///D 0 for k � 1

3
.2gC 3/.

Applying the second result of Criterion 4.4 to this resolution gives the result.

9 Stable homology of the space of surfaces
in a manifold with boundary

In these last three sections we prove Theorem 1.4. In Section 9 we prove the theorem
in the case where M has nonempty boundary, except for the proof of a proposi-
tion (Proposition 9.8), which we defer to the Section 10. We show how to deduce
Theorem 1.1 for manifolds without boundary in Section 11. In these three sections
we only work with manifolds and manifolds with boundary, but not manifolds with
corners, as we did in the previous sections.

This section gravitates around a group completion argument that takes place in
Proposition 9.9. Roughly speaking, the space of all compact connected oriented surfaces`
g;ı ECg;b.M I ı/ in M is a module over the cobordism category of cobordisms in

@M �I , and the group completion will invert the operation “gluing a torus in @M �I ”.
We will compare the homotopy type of these modules with the homotopy type of
certain spaces of sections in order to deduce Theorem 1.4 for background manifolds
with nonempty boundary.

9.1 Spaces of manifolds and scanning maps

Let M be a smooth manifold of dimension d , possibly with boundary. Recall from
[6, Definition 2.1] and [24, Section 3] that the set ‰.M/ of all smooth oriented 2–
dimensional submanifolds of VM which are closed as subsets of M can be endowed
with a topology.

More generally, for any real vector space V we can define the space ‰.V / of smooth
oriented 2–dimensional manifolds in V . If h�;�i is an inner product on V , there is a
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space S?2 .V / as in page 1387 in the introduction, and an inclusion

(9-1) i W S?2 .V /!‰.V /

given by sending a pair .L 2GrC2 .V /; v 2L
?/ to the oriented 2–manifold vCL� V ,

and sending the point at infinity to the empty manifold.

Proposition 9.1 [6] The inclusion i is a weak homotopy equivalence.

Let g be a Riemannian metric on M, not necessarily complete. There is an associated
partially defined exponential map expW TMÜM. The injectivity radius of g at p 2M
is the supremum of the real numbers r 2 .0;1/ such that exp is defined on TpM on
vectors of length less than r , and exp is injective when restricted to the open ball of
radius r in TpM.

Let aW M ! .0;1/ be a smooth map whose value at each point is strictly less than
the injectivity radius of the metric g at that point — such functions exist by a partition
of unity argument. If V is an inner product space, define an endomorphism h of V by
v 7!

�
1
�

arctan kvk
�
v . Let expaW TM!M be the composition of the endomorphism

of TM given by v 7! a.p/h.v/ if v 2 TpM and the exponential map.

Let ‰.TM/ denote the space of pairs .p;W / with p 2M and W 2‰.TpM/, ie the
space obtained by performing the construction ‰.�/ fibrewise to TM. There is a map

‰.M/�M !‰.TM/;

given by .W; p/ 7! ..expa jTpM /
�1.W /� TpM/, whose adjoint

saW ‰.M/! �.‰.TM/!M/;

a map to the space of sections of the bundle ‰.TM/! M, is called the nonaffine
scanning map.

Proposition 9.2 [24] If M has no compact components, then the nonaffine scanning
map sa is a weak homotopy equivalence.

9.2 Scanning maps with boundary conditions

We will also often need scanning maps when M has a boundary, and surfaces are
required to satisfy a boundary condition, as in Section 2.2. We formalise this as follows.

Let M be a manifold with boundary, cW .�1; 0�� @M !M be a collar, and � � @M
be a compact oriented 1–manifold. Write M.1/ DM [@M .Œ0;1/� @M/ for the
manifold obtained by attaching an infinite collar to M. Also let

‰.M I �/ WD
˚
W 2‰.M.1//

ˇ̌
W \ ..�1;1/� @M/ D .�1;1/� �

	
:
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By choosing a Riemannian metric g on M.1/ (which is a product on .�1;1/�@M )
and a function a as above, we obtain a scanning map sa for M.1/. If the function a
is chosen so that

expa.TM.1/jŒ0;1/�@M /� .�1;1/� @M;

then for W 2‰.M I �/, the section sa.W / is a product when restricted to Œ0;1/� @M,
and is independent of W . By a slight abuse of notation, we call this product sec-
tion sa.Œ0;1/ � �/, and write �.‰.TM/! M I sa.�// for the space of sections of
‰.TM/!M which agree with sa.Œ0;1/� �/j@M over @M. In this case there is a
scanning map

(9-2) saW ‰.M I �/! �.‰.TM/!M I sa.�//

by construction. As in Proposition 9.2, if M has no compact components then this
scanning map is a weak homotopy equivalence.

9.3 Adding tails to M

Suppose that M is a compact manifold with collared boundary, and let N;L� @M be
open codimension-0 submanifolds, with L diffeomorphic to a ball.

Definition 9.3 We define the following subspaces of @M � Œ0;1/:

NŒa;b� WDN � Œa; b�; LŒa;b� WD L� Œa; b�;

and we also write NŒ0;1/ DN � Œ0;1/ and Na DNŒa;a� , and similarly for L.

We then write
Ma;b WDM [NŒ0;a�[LŒ0;b�;

and let Ma;1 , M1;b or M1;1 have their obvious meaning.

Note that the boundary component Na �Ma;b has a canonical collar inside

..�1; 0�� @M/[@M .N � Œ0;1//I

similarly for the boundary component Lb �Ma;b .

For ı �N and � � L compact oriented 1–manifolds, we define

‰.Ma;bI ı; �/ WD‰.Ma;bI ı[ �/�‰.M1;1/;

as in Section 9.2. A careful examination of the topology of ‰.M1;1/ shows that
‰.Ma;bI ı; �/ is homeomorphic to the disjoint union

`
Œ†� E.†;Ma;bI ı[ �/ where Œ†�

runs along a set of compact oriented surfaces with boundary diffeomorphic to ı[ � ,
one in each diffeomorphism class.
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9.4 Semisimplicial models

In order to show that the map (9-2) induces an isomorphism in homology in a range of
degrees, we will pass through certain auxiliary semisimplicial spaces.

Definition 9.4 For ��Lb a boundary condition, let D.M1;bI �/p be the set of tuples
.a0; a1; : : : ; ap; W /, where

(i) 0 < a0 < a1 < � � �< ap are real numbers;

(ii) W 2‰.M1;bI �/ is a surface satisfying the boundary condition � , and the ai
are regular values for the projection pW W W \NŒ0;1/! Œ0;1/.

We give it the subspace topology from .Rı/pC1 �‰.M1;bI �/. The collection of all
the spaces D.M1;bI �/p for p � 0 forms a semisimplicial space, where the j th face
map is given by forgetting aj , and it is augmented over ‰.M1;bI �/.

Definition 9.5 Let D.N.0;1//p be the set of tuples .a0; a1; : : : ; ap; W /, where

(i) 0 < a0 < a1 < � � �< ap are real numbers;

(ii) W 2 ‰.N.0;1// and the ai are regular values for the projection pW W W !
Œ0;1/.

We topologise this as a subspace of .Rı/pC1�‰.N.0;1//. The collection of all these
spaces forms a semisimplicial space where the j th face map forgets aj . It is not
augmented.

Let yD.N.0;1//p be the quotient space of D.N.0;1//p by the relation

.a0; a1; : : : ; ap; W /� .a
0
0; a
0
1; : : : ; a

0
p; W

0/

if aj D a0j for all j and p�1W .Œa0;1// D p
�1
W 0.Œa0;1//. These again form a semi-

simplicial space by forgetting the aj .

There is a semisimplicial map

� W D.M1;bI �/�! yD.N.0;1//�;

given by sending a tuple .a0; a1; : : : ; ap; W / to Œa0; a1; : : : ; ap; W \N.0;1/�, which
factors through the quotient map r W D.N.0;1//�! yD.N.0;1//� . In addition to these
semisimplicial spaces, we require another pair with stricter requirements.

Definition 9.6 Let D@.M1;bI �/� � D.M1;bI �/� be the semisimplicial subspace
where, in addition,
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(i) W \Ma0;b is connected, and

(ii) each pair .p�1W Œai ; aiC1�; p
�1
W .ai // is connected.

Similarly, let yD@.N.0;1//� � yD.N.0;1//� be the semisimplicial subspace where,
in addition, each pair .p�1W Œai ; aiC1�; p

�1
W .ai // is connected. As before, there is a

semisimplicial map �@W D@.M1;bI �/�! yD@.N.0;1//� given by restriction.

If †� LŒb;c� is a surface satisfying the boundary condition � � Lb and the boundary
condition � 0 � Lc , we obtain a semisimplicial map

�[†W D.M1;bI �/�!D.M1;c I �
0/�

over � , and if .†;†\Lb/ is connected then we also obtain a semisimplicial map

�[†W D@.M1;bI �/�!D@.M1;c I �
0/�

over �@ .

9.5 Proof of Theorem 1.4 when @M ¤ ∅

Let us choose once and for all a surface †� L� Œ0; 3� which satisfies the boundary
condition � � L at both ends (with respect to the obvious collars), is connected, and
has positive genus. We define

D.M1;1I �/� WD colim
b!1

D.M1;bI �/�;

where the colimit is formed using the maps

�[†W D.M1;bI �/�!D.M1;bC3I �/�:

We define D@.M1;1I �/� in the same way. Similarly, we define

‰.M1;1I �/ WD colim
b!1

‰.M1;bI �/;

where the maps in the colimit are again given by union with †.

There is a commutative diagram

(9-3)

D@.M1;1I �/� //

�@
��

D.M1;1I �/�

�
��

D.M1;1I �/�

��

��
// ‰.M1;1I �/

��

yD@.N.0;1//� // yD.N.0;1//� D.N.0;1//�
r�

oo
��
// ‰.N.0;1//

which we will use to compare the leftmost and rightmost vertical maps after geometric
realisation. The first step in doing so is the following.
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Lemma 9.7 The map r� is a levelwise weak homotopy equivalence, and the two aug-
mentation maps labelled �� are weak homotopy equivalences after geometric realisation.

Proof The map r� can be treated with the techniques of [6, Theorem 3.9], and the
two augmentation maps can be treated with the techniques of [6, Theorem 3.10].

The second step in comparing the leftmost and rightmost vertical maps of (9-3) is
to show that the unlabelled horizontal maps are weak homotopy equivalences after
geometric realisation. This is much more complicated and it is deferred to Section 10,
although we state the result here.

Proposition 9.8 The maps

jD@.M1;1I �/�j ! jD.M1;1I �/�j and j yD@.N.0;1//�j ! j yD.N.0;1//�j

are weak homotopy equivalences.

Before the proof of this proposition, let us show how we will apply it. We choose a
Riemannian metric g on M1;1 , an a0 2 .0;1/, and a function aW M1;1! .0;1/

bounded above by the injectivity radius, and so that expa.TM1;1jNŒa0;1//�N.0;1/ .
The nonaffine scanning map gives the commutative diagram

(9-4)

‰.M1;bI �/
sa
//

��

�
�
‰.TM1;b/!M1;bI sa.�/

�
…a0;b
��

‰.N.0;1//
sa

// �
�
‰.TNŒa0;1//!NŒa0;1/

�
where both vertical maps are given by restriction. By Proposition 9.2, the two nonaffine
scanning maps are weak homotopy equivalences. (For the lower one, we must use that
the restriction map

�W �
�
‰.TN.0;1//!N.0;1/

�
! �

�
‰.TNŒa0;1//!NŒa0;1/

�
is an equivalence, and that if we choose a different function a0 bounded above by the
injectivity radius of gjN.0;1/ , then the functions sa and � ı sa0 are homotopic.)

Finally, as NŒa0;1/ ,!M1;b is a cofibration, the rightmost vertical map is a fibration,
so its homotopy fibre over a section f is equivalent to

�
�
‰.TMa0;b/!M0;b If jNa0 ; sa.�/

�
:

The following group completion argument lets us understand the homotopy fibre of j�@j.
Recall that a map f W X ! Y is a homology fibration if for each point y 2 Y , the
natural map fib.y/! hofib.y/ to the homotopy fibre is a homology equivalence, that
is, induces isomorphisms in homology groups.
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Proposition 9.9 If x D .a0; W / 2 yD@.N.0;1//0 then the fibre of j�@j over x is

F.a0; W / WD colim
b!1

�a
g�0

Eg;c.Ma0;bIp
�1
W .a0/; �/

�
;

where the colimit is formed by �[†, and c denotes the number of components of
p�1W .a0/[ � . Furthermore, the map j�@j is a homology fibration.

Proof Identifying the fibre is elementary. To show that j�@j is a homology fibration
we wish to apply [18, Proposition 4]. To do this, we observe that .�@/p is a fibration,
and that its fibre over Œa0; a1; : : : ; ap; W � is F.a0; W /. Thus the face maps di for
i > 0 induce homeomorphisms on fibres, but the face map d0 induces a map

colim
b!1

�a
g�0

Eg;c.Ma0;bIp
�1
W .a0/; �/

�
! colim

b!1

�a
g�0

Eg;c0.Ma1;bIp
�1
W .a1/; �/

�
on fibres, given by union with the cobordism p�1W .Œa0; a1�/. As this cobordism is
connected relative to p�1W .a0/, union with it may be expressed as a composition of
maps of type ˛ , ˇ and  , so by Theorem 1.3 the induced map on homology is an
isomorphism.

In all, taking geometric realisation and the colimit of diagrams (9-3) and (9-4) over
stabilisation of the top row by � [ †, we obtain a diagram where all horizontal
maps are homotopy equivalences. A choice of point .a0; W / 2D.N.0;1//0 such that
p�1W .a0/D∅ gives a compatible collection of basepoints in all the spaces on the bottom
row, and we obtain a zig-zag of weak homotopy equivalences between the homotopy
fibres of all the vertical maps, taken at this compatible collection of basepoints. In
particular, we obtain a zig-zag of homology equivalences between the actual fibres of
j�@j and …1 ,

(9-5) colim
b!1

�a
g�0

Eg;c.Ma0;bI∅; �/
�

and

(9-6) colim
b!1

�
�.‰.TMa0;b/!Ma0;bI sa.∅/; sa.�//

�
:

Lemma 9.10 The stabilisation maps between the spaces of sections

�
�
‰.TMa0;b/!Ma0;bI sa.∅/; sa.�/

�
are homotopy equivalences.
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Proof The stabilisation map is given by union with the section

sa.†/ 2 �c
�
‰.T .L� Œ0; 1�//!L� Œ0; 1�I sa.�/; sa.�/

�
DWX

obtained by scanning the surface †. The space X is a homotopy associative H –space,
by concatenating intervals and reparametrising. As L was chosen to be diffeomorphic
to Rd�1 , we may choose such a diffeomorphism; this identifies X with

mapc
�
Rd�1� Œ0; 1�; ‰.Rd /I sa.�/; sa.�/

�
'�sa.�/

�
�d�1‰.Rd /

�
as an H –group. In particular, �0.X/ is a group. Thus there is a section f such that
sa.†/ �f is homotopic to the constant section sa.�/� Œ0; 1�, but then union with the
section f gives a homotopy inverse to the stabilisation map.

Corollary 9.11 There is a bijection

�0
�
�
�
‰.TMa0;b/!Ma0;bI sa.∅/; sa.�/

��
Š Z�H2.M IZ/:

Proof The set of path components of (9-5) is isomorphic to Z � H2.M IZ/, by
Lemma 6.3.

In Section 11.1, we give a concrete description of this bijection. Combining the
homology equivalence between (9-5) and (9-6) with Lemma 9.10 and Theorem 1.3,
we see that the scanning map

Eg;c.Ma0;bI∅; �/! �
�
‰.TMa0;b/!Ma0;bI sa.∅/; sa.�/

�
is a homology isomorphism in degrees at most 2

3
.g� 1/. (We have used the fact that

L is contractible, so when we write † � L� Œ0; 3� as the composition of ˛ and ˇ
maps, the ˇ maps are always gluing on a pair of pants with nullhomotopic outgoing
boundary, so Theorem 1.3(ii) gives a stability range at most 2

3
g for gluing ˇ maps.)

Extending surfaces and sections cylindrically from M to Ma0;b gives a commutative
square

Eg;c.M I �/ //

��

�
�
‰.TM/!M I sa.�/

�
��

Eg;c.Ma0;bI∅; �/ // �
�
‰.TMa0;b/!Ma0;bI sa.∅/; sa.�/

�
where the vertical maps are clearly homotopy equivalences; this proves the first part of
Theorem 1.4. The second part of Theorem 1.4, in the case where the manifold M has

Geometry & Topology, Volume 21 (2017)



Homological stability for spaces of embedded surfaces 1447

nonempty boundary, follows from the commutative square

Eg;1.M I �/ //

g;1
��

�
�
‰.TM/!M I sa.�/

�
��

Eg.M1/ // �
�
‰.TM1/!M1I sa.∅/

�
where � � @M is a single nullhomotopic circle, g;1 is the map that glues on a collar
Œ0; 1��@M containing a disc, and the right-hand map is given by union with the section
obtained by scanning the disc. The right-hand map is an equivalence by an argument
analogous to that of Lemma 9.10, and the left-hand map is an isomorphism in homology
in degrees at most 2

3
g by Theorem 1.3. This finishes the proof of Theorem 1.4 in the

case where the manifold M has nonempty boundary. In Section 11 we show how to
deduce Theorem 1.4 in the case where M has empty boundary.

10 Surgery

In this section we prove Proposition 9.8. We will prove in detail that the map

(10-1) jD@.M1;1I �/�j ! jD.M1;1I �/�j

is a weak homotopy equivalence, and then briefly explain the changes in the argument
to show that

(10-2) j yD@.N.0;1//�j ! j yD.N.0;1//�j

is a weak homotopy equivalence.

The proof of these results uses a parametrised surgery move similar to that of [8; 7].
This will be used in two ways: to make properties (i) and (ii) of Definition 9.6 hold.
Making property (ii) hold is analogous to the “positive boundary subcategory” theorem
of [8], but property (i) does not have an analogue.

At a technical level, we construct the “do surgery” maps differently to [7]. There, these
maps are constructed between geometric realisations of semisimplicial spaces in terms
of barycentric coordinates, and need to be glued together very carefully. Instead, ours
will be semisimplicial maps and easy to define. The idea is quite general, and can for
example also be used with [7].

We first introduce two more auxiliary semisimplicial spaces.

Definition 10.1 Define a semisimplicial space D\
@
.M1;bI �/� whose space of i –

simplices is the space of tuples .W; a0; : : : ; ai / with the following properties:
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(i) 0 < a0 < a1 < � � �< ai 2R.

(ii) W 2‰.M1;bI �/.

(iii) Each aj is either a regular value of pW W W \NŒ0;1/! Œ0;1/, or p�1W .aj /

contains only Morse critical points of index at least 1. We denote ıj D p�1W .aj /.

(iv) For each j , the map �0.ıj /! �0.W \NŒaj ;ajC1// induced by the inclusion is
a surjection.

(v) W \ .M [NŒ0;a0/[LŒ0;b�/ is path connected.

Similarly, we let D\.M1;bI �/� have as i –simplices those tuples .W; a0; : : : ; ai /
which satisfy just the first three conditions above. In both cases, the simplices are
topologised as a subspace of .Rı/iC1 �‰.M1;bI �/ and the face maps are given by
forgetting the aj .

Lemma 10.2 The inclusions

jD@.M1;bI �/�j ! jD
\

@
.M1;bI �/�j and jD.M1;bI �/�j ! jD

\.M1;bI �/�j

are weak homotopy equivalences.

Proof The argument is the same in both cases; to be specific, we treat the first case.
Let J�;� be the bisemisimplicial space whose .i; j /–simplices consist of the tuples
.W; a0; : : : ; ai ; b0; : : : ; bj / such that .W; a0; : : : ; ai / is an i –simplex in D@.M1;bI �/�
and .W; a0; : : : ; ai ; b0; : : : ; bj / is an .iCjC1/–simplex in D\

@
.M1;bI �/� .

The .p; �/–face map forgets the value ap , and the .�; q/–face map forgets the value bq .
It has an augmentation ��;� to D

\

@
.M1;bI �/� given by forgetting all the values

a0; : : : ; ai and an augmentation ��;� to D@.M1;bI �/� given by forgetting all the
values b0; : : : ; bi . The following triangle commutes up to homotopy by construction:

jJ�;�j
j��;�j

xx

j��;�j

&&

jD@.M1;bI �/�j // jD
\

@
.M1;bI �/�j

The augmentation maps have local sections. We try to define a section of �i;�W Ji;0!
D@.M1;bI �/i through the point .W; a0; : : : ; ai ; b0/ on the open neighbourhood U
of .W; a0; : : : ; ai / consisting of those W 0 such that a0; : : : ; ai are still regular
values and b0 contains only Morse critical points of index at least 1, by the for-
mula .W 0; a0; : : : ; ai / 7! .W 0; a0; : : : ; ai ; b0/. To see that this defines a section,
we must check that p�1W 0.Œaj ; ajC1// and p�1W 0.Œai ; b0// all satisfy the connectivity
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requirement (iv). The first case is immediate: as the aj remain regular values,
p�1W 0.Œaj ; ajC1//Š p

�1
W .Œaj ; ajC1// and

W \ .M [NŒ0;a0/[LŒ0;b�/ Š W 0\ .M [NŒ0;a0/[LŒ0;b�/:

In the second case, p�1W 0.Œai ; b0// differs from p�1W .Œai ; b0// by adding 1– or 2–
handles, but this does not change the connectivity property with respect to the lower
boundary. We show that the augmentation map ��;j has local sections in a similar (but
easier) way.

The fibre F� of ��;� over .W; a0; : : : ; ai / has p–simplices those tuples of real numbers
.b0; : : : ; bp/ such that .W; a0; : : : ; ai ; b0; : : : ; bp/ is a simplex of D\

@
.M1;bI �/� , ie

p�1W .bj / contains only Morse critical points of index at least 1, and p�1W .Œai ; b0// and
each p�1W .Œbj ; bjC1// are connected relative to its lower boundary. These conditions
only involve pairs of the bj , so this is a topological flag complex (whose topology
is discrete). Given a finite collection b1; : : : ; bn of elements of F0 , we may choose
ai < c <min.bj / such that Œai ; c� consists of regular values of pW . Then c is also in
F0 , and .c; bj / 2 F1 for each bj . It follows from Criterion 4.2 (and Remark 4.3) that
j��;�j is a weak homotopy equivalence.

The fibre F 0
�

of ��;� over .W; b0; : : : ; bj / has p–simplices those tuples of real numbers
.a0; : : : ; ap/ which are regular values of pW , such that

.W; a0; : : : ; ap; b0; : : : ; bj /

is a simplex of D\
@
.M1;bI �/� , which is again seen to be a topological flag complex

(whose topology is discrete). For a finite collection a1; : : : ; an of elements of F 00 ,
choose max.aj / < c < b0 such that Œc; b0/ consists of regular values of pW . Then c
is also in F 00 , and we claim that each .aj ; c/ is a 1–simplex of F 0

�
, ie that p�1W .Œaj ; c//

is path connected relative to p�1W .aj /. To see this, first note that p�1W .Œaj ; b0// is path
connected relative to p�1W .aj / by assumption, so there is a path from any point of
p�1W .Œaj ; c// to p�1W .aj / inside of p�1W .Œaj ; b0//, but as Œc; b0/ consists of regular val-
ues p�1W .Œc; b0// is a cylinder, so this path may be homotoped into p�1W .Œaj ; c// relative
to its ends. It follows from Criterion 4.2 that j��;�j is a weak homotopy equivalence.

10.1 Local surgery move

Let wD .W; a0; : : : ; ai / be a simplex in D\.M1;bI �/� . We first construct a path from
this i –simplex to an i –simplex w0D .W 0; a0; : : : ; ai / in D\

@
.M1;bI �/� . In particular,

this will prove that the inclusion D
\

@
.M1;bI �/� ! D\.M1;bI �/� is levelwise 0–

connected. In the last section, we use this path to show that it is in fact a homotopy
equivalence after geometric realisation.
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Let R.w/D fW1; : : : ; Wkg be the set of connected components of W \Ma0;b , and
let W0 be the connected component that contains � . Define

Pa;b.W /D
˚
! 2 �0.p

�1
W Œa; b// j a … pW .!/

	
; P.w/D

i�1[
kD0

Pak ;akC1.W /:

Observe that w is in D\
@
.M I �/� if and only if R.w/ [ P.w/ D ∅. We define the

following subsets of R3 :

T 0 D .f0g � Œ�3; 3�/[ ..0; 5�� f0g/�R2 �R3;

T D f.x; y; z/ 2R3 j d.T 0; .x; y; z// < 1; jxj � 3; y < 5g;

and let x1; x2W T !R be the first and second coordinate functions.

Definition 10.3 Let w D .W; a0; : : : ; ai / be an i –simplex in D\.M I �/� . A local
surgery datum for w is a pair QD .ƒ; e/ where ƒ is a set and eW ƒ�T !M1;b is
a closed embedding, whose restriction ejf�g�T we denote by e� , such that

(i) e�1.W \Mai ;b/Dƒ� .T \ x
�1
2 .f�3; 3g//;

(ii) .Idƒ � x1/.e�1.W \NŒai ;1///�ƒ� .4; 5/;

(iii) e�.x
�1
2 .�3//�W0\Ma0;b for each � 2ƒ;

(iv) for each ! 2 P.w/[R.w/, there is a � 2ƒ such that e�.x�12 .3//� ! ;

(v) limx!5 e�.x; y; z/D1 for all � 2ƒ and all .y; z/ such that
p
y2C z2 < 1;

(vi) for each � 2 ƒ and for each j D 0; : : : ; i , there is an � > 0 such that for all
a 2 .aj � �; aj C �/, either x2e�1� .Naj / 2 .�2;�1/ or x1e�1� .Naj / 2 .2; 3/.

Proposition 10.4 A local surgery datum Q for an i –simplex w of D\.M I �/� deter-
mines a path ˆQ.t/ that starts at w and ends in an i –simplex of D\

@
.M1;bI �/� .

Proof Consider the 1–parameter family of diffeomorphisms of

Y D T [f.x; y; z/ 2R3 j x � 5; k.y; z/k< 1g

given by

ht .x; y; z/D

��
y; xC .x� 3/te2�1=.1�k.y;z/k

2/; z
�

if k.y; z/k< 1; x � 3;
.x; y; z/ otherwise:

The properties of this family which we will use are the following:

(i) h0 is the identity;

(ii) if x 2 .4; 5/ and k.y; z/k< 1=
p
2, then x1h�11 .x; y; z/ 2 .3; 4/;
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Figure 9: The effect of the family Ht in the surgery movement on discs in
x�11 ..2; 3// , x�11 ..3; 4// and x�11 ..4; 5//

(iii) ht is the identity on T \ x�11 .Œ�1; 3//;

(iv) ht extends to R3 with the identity outside T .

The family ht induces a 1–parameter family of maps

Ht W ‰.T /!‰.T /

given by sending a submanifold W to ht .W /\ T . From the first property of ht it
follows that H0 is the identity. In Figure 9 (bottom) we give a picture of the action
of Ht on the dark disc at the right of Figure 9 (top)).

Consider now the path � in ‰.T / given in Figure 10 that starts with the surface
x�12 .f�3; 3g/, which is the disjoint union of two open balls in T . It pushes both balls
to infinity, joins the balls there and then pulls them backwards. In Figure 10 (top left), a
picture at time 0 is given. The three vertical circles represent the balls x�11 .2/, x�11 .3/

and x�11 .4/, and the horizontal circle represents the ball x�12 .�1/. The planes in
the figure will be given an interpretation later. In Figures 10 (top right, middle left
and middle right), the ball is pushed to infinity, and in Figures 10 (bottom left and
bottom right), the surface returns in the shape of a (noncompact) pair of pants. The
main properties of this movement are the following:
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Figure 10: The path � in the surgery movement. The shadowed surface at
the top of the upper left figure is .t/ , starting with .0/ D x�12 .f�3; 3g/ .
The dotted planes are e�1.Naj / , and are still planes because of condition (vi)
of the local surgery data.

(i) �.0/D x�12 .f�3; 3g/;

(ii) all the values in .1; 2/ are regular values or Morse critical values of index 2 for
the restriction of x2 to �.t/;

(iii) all the values in .2; 3/ are regular values for the restriction of x1 to �.t/ or
Morse critical values of Morse index 1 or 2 (the former possibility happens only
in the step from 10 (bottom left) to (bottom right));

(iv) �.t/\ x�11 ..4; 5//�
˚
.x; y; z/ 2 T j k.y; z/k< 1=

p
2; y 2 .4; 5/

	
;

(v) in the surface �.1/, the circles x�12 .f�3; 3g/\ �.1/ are in the same connected
component.
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Now, let V 2 ‰.T / be the union of the balls V0 D x�12 .f�3; 3g/ and some surface
V1 � f.x; y; z/ 2 T j x 2 .4; 5/g. We define a path �V W I !‰.T / as

�V .t/D

�
H2t .V / if t 2

�
0; 1
2

�
;

H1.V1/[ �.2t � 1/ if t 2
�
1
2
; 1
�
:

Property (iii) of ht assures that both paths glue well: H1.V / D H1.V1/ [ V0 D

H1.V1/ [ �.0/. Property (ii) for ht and property (iv) for � assure that the union
H1.V1/[ �.2t � 1/ is a union of disjoint surfaces, hence a surface. Hence the path is
well-defined. We will use the following properties of this path:

(i) �V .0/D V by property (i) of ht ;

(ii) �V .1/\ x
�1
2 .f�3; 3g/ is connected, by property (v) of �.

If we are given a set Vƒ of surfaces V� � ‰.f�g � T / indexed by �, we denote by
�Vƒ.t/ the result of performing �V�.t/ in each ��T .

Now suppose we are given a surgery datum Q for w , and let us define a path ˆQ in
D\.M1;bI �/� starting at w D .W; a0; : : : ; ai / as

ˆQ.t/D .WQ.t/; a0; : : : ; ai /;

where
WQ.t/\ e D e�e�1.W /.t/; WQ.t/ne DW ne:

There are five things to check for each � 2ƒ in order to verify that this path is well-
defined. First, that e�1

�
.W / is the union of V0 and some surface V1 as above is granted

by conditions (i) and (ii) of the surgery data, hence �e�1
�
.W / is well-defined. Second,

that ˆQ.0/Dw follows from property (i) of �V . Third, that the union of the two pieces
of WQ.t/ is indeed a surface is guaranteed by property (iv) of ht . Fourth: as described,
the embedding e� does not induce a map f�g �‰.T /! ‰.M1;b/. Condition (v)
of the surgery data and properties (iii) and (iv) of ht grant that the precomposition
I ! ‰.T /! ‰.M1; b/ with �e�1

�
.W / is continuous. In other words, they grant

that the surface WQ.t/�M1;b is closed in M.1/ and that W \Ma;b is compact.
Fifth, that .a0; : : : ; ai / are regular values or Morse critical points of index 1 or 2 is
a consequence of properties (ii) and (iii) of the path �, together with the following
consequences of conditions (v) and (vi) of the surgery data:

(i) If x2e�1� .aj / 2 .�2;�1/, then p�1
WQ.t/

.aj /D x
�1
2 .bj / for some bj 2 .1; 2/.

(ii) If x1e�1� .aj / 2 .2; 3/, then p�1
WQ.t/

.aj /D x
�1
1 .bj / for some bj 2 .2; 3/.

(iii) .@=@x1/pW e�.x; y; z/ > 0 if y 2 .�2;�1/.

(iv) .@=@x2/pW e�.x; y; z/ < 0 if x 2 .2; 3/.
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Finally, from conditions (ii) and (iii) in the definition of surgery datum and property (ii)
of �V , it follows that P.ˆQ.1// [ R.ˆQ.1// is the empty set; hence ˆQ.1/ 2
D\.M1;bI �/� .

Remark 10.5 This move is a simplified version of the one used in [8]. The one used
there is more powerful and extends to surfaces with any tangential structure. Sadly,
that move needs to push parts of the surface to both C1 and �1, while here we are
only allowed to push things to C1.

10.2 Global surgery move

We now construct a bisemisimplicial space H�;� with an augmentation to D\.M1;bI�/�
which, over each simplex of D\.M1;bI �/� , consists of certain tuples of local surgery
data. This will allow us to compare it to D\

@
.M1;bI �/� by “doing surgery” in an

appropriate way.

Definition 10.6 Let H�;� denote the bisemisimplicial space whose space of .i; j /–
simplices is the space of tuples .w;Q0; : : : ;Qj ; s0; : : : ; sj /, where

(i) w is an i –simplex in D\.M1;bI �/� ;

(ii) each Qq is a local surgery datum for w ;

(iii) the embeddings in Q0; : : : ;Qj are pairwise disjoint;

(iv) .s0; : : : ; sj / 2 Œ0; 1�
jC1 .

The .p; �/–face map forgets the regular value ap 2 w and the .�; q/–face map is

@�;q.w;Q0; : : : ;Qi ; s0; : : : ; si /D.ˆQq.sq/;Q0; : : : ;
yQq; : : : ;Qi ; s0; : : : ; ysq; : : : ; si /:

There is an augmentation map ��;� to D\.M1;bI�/� given by performing the surgery Qq
on w up to time sq for all q and forgetting all the surgery data. Let H1

�;� be the
bisemisimplicial subspace of those simplices such that s0 D � � � D sj D 1. Note that
by Proposition 10.4 the restriction �1

�;� of ��;� to this subspace gives an augmentation
onto D\

@
.M1;bI �/� and the following diagram commutes:

(10-3)

H1
�;�

//

�1�;�
��

H�;�

��;�

��

D
\

@
.M1;bI �/� // D\.M1;bI �/�

Proposition 10.7 If M has dimension at least 4, the inclusion of H1
�;� into H�;� and

the augmentation maps are weak homotopy equivalences after geometric realisation.
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The first part of Proposition 9.8 now follows from the commutative diagram

jD@.M1;bI �/�j

��

// jD.M1;bI �/�j

��

jD
\

@
.M1;bI �/�j // jD\.M1;bI �/�j

after taking the limit when b ! 1, since the vertical maps are equivalences by
Lemma 10.2 and the lower map is an equivalence by (10-3) and Proposition 10.7. As
we remarked earlier, the second part of Proposition 9.8 is proved similarly.

Proof of Proposition 10.7 It is clear that the inclusion H1
�;�! H�;� is a levelwise

equivalence. To see that the augmentation map �1
�;� is a homotopy equivalence after

geometric realisation, we notice that the augmented semisimplicial space �1i;�W H
1
i;�!

D
\

@
.M1;bI �/i has a simplicial contraction, by adding the empty surgery data.

For the map ��;� , let H0
�;� be the semisimplicial subspace of H�;� where the simplices

are required to have all si equal to 0, and let H0
�;� be the semisimplicial space defined

as H0
�;� , but replacing condition (iii) in the definition of H�;� by:

(iii 0 ) The restrictions of the embeddings eq in each Qq D .ƒq; eq/ to the subspace
ƒ�T 0 �ƒ�T are pairwise disjoint.

Notice that H0
�;� �H0

�;� , and the following diagram is commutative:

H0
�;�

�0�;� %%

H0
�;�

�0�;�
��

oo // H�;�

��;�
yy

D\.M1;bI �/�

We next prove that the following statements are true, concluding that the augmentation
map ��;� for H�;� is a homotopy equivalence after geometric realisation, hence finishing
the proof of this proposition:

(i) The inclusion of H0
�;� into H�;� is a levelwise homotopy equivalence.

(ii) The inclusion of H0
�;� into H0

�;� is a levelwise homotopy equivalence.

(iii) The augmentation map �0
�;� is a homotopy equivalence.

Statement (i) is clear. For (ii), we will prove that the inclusion H0
�;�!H0

�;� is a levelwise
weak homotopy equivalence. Consider the deformation hW H0i;j � .0; 1�!H0i;j that
sends a tuple .w;Q0; : : : ;Qi / to the tuple .w; ht .Q0/; : : : ; ht .Qi //, where ht .Qq/D
.ƒq; ht .eq// and ht .eq/.x; y; z/D ht .tx; y; tz/. Under this deformation, any point
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eventually ends up, and stays, in the subspace H0i;j . If f W .Dn; Sn�1/! .H0i;j ;H
0
i;j /

represents a relative homotopy class, then because Dn is compact the map h.�; t /ıf
has image in H0i;j for some t , so the homotopy class of f is trivial.

For statement (iii), we notice that H0i;�!D\.M1;bI �/i is an augmented topological
flag complex, so we may apply Criterion 4.2 to show that it is a weak homotopy
equivalence. Then �0

�;� will be a levelwise equivalence in the i –direction, hence a weak
homotopy equivalence after realisation.

We will prove in Lemma 10.8 that the augmentation map is surjective and has lo-
cal sections. Moreover, given w 2 D\

@
.M1;bI �/i and a nonempty finite collection

.w;Q0/; : : : ; .w;Qj / of .i; 0/–simplices over w , as the dimension of M is greater
than 2, we can perturb the restriction e0jƒ�T 0 of e0 2 Q0 to be disjoint from
Q0; : : : ;Qj , and any extension ejC1 to ƒ � T of this perturbation will define a
0–simplex orthogonal to the given ones.

Lemma 10.8 The augmentation map �0i;0W H
0
i;0 ! D\.M1;bI �/i is surjective and

has local sections.

Proof First we will show that �0i;0 is surjective: if w 2 D\
@
.M1;bI �/i , then let

ƒD P.w/[R.w/. As M is connected, it is clear that we may take a smooth map
e0W ƒ�T 0!M1;b satisfying the restriction of conditions (i), (ii), (iii), (iv) and (v)
of the local surgery data to T 0 , except that of being an embedding and that of being
disjoint from W outside e.x�11 ..4; 5///, e.0;�3; 0/ and e.0; 3; 0/. As the dimension
of M is at least 4, a small perturbation makes it satisfy the latter properties. Again, as
the dimension is greater than 3, we may thicken the embedding e0 to an embedding
eW ƒ�T !M1;b that satisfies all conditions except (vi), and we may deform e to
satisfy this last condition.

Next, we show that �0i;0 has local sections. Let .w; .ƒ; e// 2 H0i;0 . We need to find
a neighbourhood U of w in D\.M1;bI �/i and a section sW U ! H0i;0 such that
s.w/ D .w; .ƒ; e//. Write w D .W; b0; : : : ; bi / and choose a regular value a > bi
of pW . Let U be an open neighbourhood of w in D\.M1;bI �/i for which a remains
regular. The space

E WD
˚�
.W 0; b0; : : : ; bi /; x 2W

0
\Ma;b

�
2 U �Ma;b

	
over U is a fibre bundle, and so it is locally trivial. Choosing a trivialisation on a
smaller neighbourhood U 0 of w , we obtain a map

 W U 0! Emb.W \Ma;b;M1;b/;
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and using the Diffc.M1;b/–locally retractile property of Emb.W \Ma;b;M1;b/ we
obtain an even smaller neighbourhood U 00 and a map

�W U 00! Diffc.M1;b/

such that �.W 0; b0; : : : ; bi /.W \Ma;b/DW
0\Ma;b for .W 0; b0; : : : ; bi / 2 U 00 .

We now attempt to define a section sW U 00!H0i;0 by

s.W 0; b0; : : : ; bi /D
�
.W 0; b0; : : : ; bi /; .ƒ; �.W

0; b0; : : : ; bi / ı e/
�
:

To check that this is indeed a section, we must verify the six properties of Definition 10.3
for these data. Properties (i) and (iii) are immediate from the fact that inside Ma;b ,
the data .W 0; .ƒ; �.W 0; b0; : : : ; bi / ı e// agree with the data .W;Q/ modified by a
diffeomorphism of M1;b . Property (v) is automatic, and property (ii) holds at the
point w and is an open condition, so it also holds on some neighbourhood w2U 000�U 00 .
Property (vi) holds after perhaps shrinking U 00 , as then the diffeomorphisms �.U 00/
may be assumed to be supported away from e\p�1.fb0; : : : ; big/.

This leaves property (iv), which follows from the important observation that if w0

is sufficiently close to w , then P.w0/ and R.w0/ can only be smaller than P.w/
and R.w/; ie the amount of surgery we must do to obtain suitably connected surfaces
is upper semicontinuous.

More precisely, if w0 is sufficiently close to w then W 0\ .M [NŒ0;b0/[LŒ0;b�/ is
obtained from W \ .M [NŒ0;b0/[LŒ0;b�/ by attaching 1– and 2–handles at b0 , and
p�1W 0.Œbi ; biC1// is obtained from p�1W 0.Œbi ; biC1// by attaching 1– and 2–handles at
biC1 , or subtracting 1– and 2–handles at bi , neither of which change the required
connectivity properties.

11 Stable homology of the space of surfaces
in a closed manifold

In this, section we prove Theorem 1.4 for manifolds M with empty boundary. Be-
fore doing so, we briefly study the set of path components of the space of sections
�c.S.TM/!M/ for such manifolds. We fix a complete Riemannian metric g on M.

11.1 Path components of �c.S?
2 .TM/ ! M/

The space S?2 .TM/ is a bundle of Thom spaces over M, with fibre over p 2 M
given by Th.?2 !GrC2 .TpM//, the Thom space of the orthogonal complement to the
tautological bundle over the Grassmannian of oriented 2–planes in TpM. Similarly,
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we can form the bundle of Grassmannians qW GrC2 .TM/!M, which comes equipped
with a bundle injection 2 ,! q�TM from the tautological bundle to the pullback of
the tangent bundle of M. We let ?2 ! GrC2 .TM/ denote the orthogonal complement
to 2 in q�TM.

There is a map
cW S?2 .TM/! Th.?2 ! GrC2 .TM//

given by identifying all the points at infinity. If we choose an orientation of TM there
is an induced orientation of ?2 , hence a Thom class

u 2Hd�2
�
Th.?2 ! GrC2 .TM//IZ

�
:

There is also an Euler class e D e.2/ 2H 2.GrC2 .TM/IZ/, and so a class

u � e 2Hd
�
Th.?2 ! GrC2 .TM//IZ

�
:

By abuse of notation, we use the names u and u � e for the cohomology classes on
S?2 .TM/ given by c�.u/ and c�.u � e/, respectively.

There are maps

� W �c.S?2 .TM/!M/!Hd�2
c .M IZ/!H2.M IZ/; s 7! s�.u/ 7! �.s/;

�W �c.S?2 .TM/!M/!Hd
c .M IZ/!H0.M IZ/; s 7! s�.u � e/ 7! �.s/;

obtained by pulling back the classes e or u � e along a section, and then applying
Poincaré duality.

Lemma 11.1 If M is connected, then under the scanning map

S �
W Eg.M/! �c.S?2 .TM/!M/;

we have

�
�
S � .Œf W†g ,!M�/

�
D f�.Œ†g �/ 2H2.M IZ/;

�
�
S � .Œf W†g ,!M�/

�
D 2� 2g 2 ZDH0.M IZ/:

Proof The cohomology class u 2Hd�2.S?2 .TM/IZ/ is Poincaré dual to the class of
the submanifold GrC2 .TM/� S?2 .TM/, so if s is a (suitably transverse) section, then
s�.u/ is Poincaré dual to the submanifold s�1.GrC2 .TM//.

The cohomology class u � e 2 Hd .S?2 .TM/IZ/ is Poincaré dual to the class of the
submanifold Z � GrC2 .TM/� S?2 .TM/, which is the zero set of a transverse section
of 2!GrC2 .TM/. Thus if s is a (suitably transverse) section, then the class s�.u � e/
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is Poincaré dual to the set of zeros of a section of T s�1.GrC2 .TM// which is transverse
to the zero section. The latter is �.s�1.GrC2 .TM/// by the Poincaré–Hopf theorem.

The map obtained by scanning an embedded submanifold f .†g/ is suitably transverse,
and s�1.GrC2 .TM//D f .†g/, so the claimed identities hold.

Proposition 11.2 If M is connected, so H0.M IZ/DZ, then the map � takes values
in 2Z. If M is simply connected and of dimension d � 5, then the map

��� W �0
�
�c.S?2 .TM/!M/

�
! 2Z�H2.M IZ/

is a bijection.

Proof The space of compactly supported sections is the space of compactly supported
lifts along pW S?2 .TM/ ! M of the identity map of M. We will use the notation
F D S?2 .Rd / D Th.?2 ! GrC2 .R

d // for the fibre of the map p , and suppose for
simplicity that M is compact.

The map GrC2 .R
d /! GrC2 .R

1/ induces an isomorphism in cohomology in degrees
at most d � 1, so

ZŒe.2/�!H�.GrC2 .R
d /IZ/

is an isomorphism in degrees at most d � 1, and hence

u �ZŒe.2/�! zH�.S?2 .R
d /IZ/

is an isomorphism in degrees at most 2d � 3. As there are cohomology classes
u �ei 2H�.S?2 .TM/;M IZ/ restricting to u �e.2/i on the fibre, the bundle p satisfies
the conditions of the (relative) Leray–Hirsch theorem in degrees at most 2d � 3, so

H�.M IZ/˝ .u �ZŒe.2/�/!H�.S?2 .TM/;M IZ/

is an isomorphism in this range of degrees.

Let us show that � takes even values. As q�TM D 2 ˚ 
?
2 , we calculate in the

F2–cohomology of Th.?2 ! GrC2 .TM//,

Sq2.u/ D u �w2.
?
2 / D u � .w2.2/C q

�w2.M// D u � eCu � q�w2.M/;

and so pulling back via c , we have

Sq2.u/D u � eCu �p�w2.M/ 2Hd .S?2 .TM/IF2/:

Thus for any section s we have Sq2.s�u/ D s�.u � e/ C s�u � w2.M/ in the F2–
cohomology of M. However Sq2.s�u/D v2.M/ � s�uDw2.M/ � s�u as M is simply
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connected, and so s�.u � e/D 0 2Hd .M IF2/. Thus s�.u � e/ 2Hd .M IZ/D Z is
even, as claimed.

We will be required to know �k.S?2 .Rd // for k � d . By considering the cohomology
calculation above in degrees at most 2d�3, we see that as long as d � 4 then S?2 .Rd /
has a cell structure whose .dC1/–skeleton X consists of a .d�2/–cell and a d –cell.
Because

Sq2.u/D u �w2.?2 /D u �w2.2/¤ 0;

we see that the d –cell is attached along a nontrivial map Sd�1!Sd�2 , which must be
the Hopf map as long as d � 5. Thus X '†d�4CP2 , and it remains to calculate the
homotopy groups of this space in degrees at most d . By the Blakers–Massey theorem,
the map of pairs �k.Sd�2; Sd�1/! �k.X;�/ is an isomorphism for k � 2d � 5, so
for k � d as we have assumed that d � 5. Calculating by means of the known stable
homotopy groups of spheres in this range shows that

�d�2.S?2 .R
d //Š Z; �d�1.S?2 .R

d //D 0; �d .S?2 .R
d //Š Z;

and also that the Hurewicz map is injective in these degrees. (When d D 5, we must
use that �5.S3/ D Z=2h�2i, even though it is not in the stable range; this may be
found in Toda’s book [27].)

Let s0 and s1 be two sections of p which have the same value of the invariants �
and �, and let us show that they are fibrewise homotopic. We obtain a diagram

(11-1)

f0; 1g �M
s0[s1

//

��

S?2 .TM/

p

��

p�u
// M �K.Z; d � 2/

proj
��

Œ0; 1��M

88

proj
// M M

and we must supply the dashed arrow. By obstruction theory, the first possible obstruc-
tion lies in

Hd�1
�
Œ0; 1��M; f0; 1g �M I �d�2.S?2 .R

d //
�
ŠHd�2.M IZ/;

and it must be �.s0/� �.s1/, as it agrees with the first possible obstruction for the
(trivial) right-hand fibration in (11-1). But we have assumed that �.s0/��.s1/ is zero,
so there is no obstruction at this stage. The next possible obstruction lies in

HdC1
�
Œ0; 1��M; f0; 1g �M I �d .S?2 .R

d //
�
ŠHd .M IZ/;

and by comparing it with the trivial bundle M �K.Z; d /!M via p�.u �e/, as above,
and using the injectivity of the Hurewicz map, we see that this obstruction vanishes
if and only if �.s0/� �.s1/ does; we have assumed this. As M has dimension d ,
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there are no higher obstructions to constructing the dotted map, which gives a fibrewise
homotopy between the two sections.

11.2 A scanning map independent of the metric

In order to prove Theorem 1.4 for background manifolds without boundary, it is very
inconvenient that the source E� .†g ;M/ of the scanning map (see page 1387) depends
on the metric so does not admit an action of the diffeomorphism group of M, and as
a result, we cannot use the techniques in Section 2.3 to prove that certain maps are
fibrations. We present here an alternative definition of the scanning map which is defined
for surfaces in smooth manifolds (as opposed to surfaces in Riemannian manifolds).

Let E�g.M/ be the space of pairs .W; u/, where W 2 ECg .M/ and uW NW !M is a
tubular neighbourhood, topologised as a quotient of xTEmb.†g;b;M I ı/ by the action
of Diff.†g;b/. It has an action of Diff.M/ in the obvious way; cf. Section 2.5.

Lemma 11.3 The space E�g.M/ is Diff.M/–locally retractile.

Proof As in the proof of Lemma 2.15, one can produce a local trivialisation of the
quotient map using a Diff.M/–local retraction of ECg;b.M I ı/ and therefore prove that
the quotient map is a locally trivial fibration, and since the source of the quotient
map is Diff.M/–locally retractile, the target is also Diff.M/–locally retractile by
Lemma 2.6.

For a vector space V , define Sn�2.V / to be the Thom space of the tautological bundle
n�2.V /!GrCn�2.V / over the Grassmannian of oriented 2–planes in V . For a vector
bundle E , let Sn�2.E/ be the result of applying fibrewise this construction.

We then define a map M � E�g.M/! �c.Sn�2.TM/!M I1/ by

.p;W; u/ 7!

�
1p 2 Sn�2.TpM/ if p 62 u.NW /;�
Dvuq.TvNqW /;Dvuq.�v/

�
� n�2.TpM/ if p D u.q; v/;

where DvuqW TvNqW ! TpM is the differential of the restriction of the tubular
neighbourhood to the subspace NqW �NW and we consider �v 2Nq.M/ as lying
in TvNqM using the canonical isomorphism NqM ŠTvNqM. The adjoint to this map,

S �
W E�g.M/! �c.Sn�2.TM/!M I1/;

is the (smooth) scanning map. The forgetful map E�g.M/ ! ECg .M/ is a locally
trivial fibration because it is Diffc.M/–equivariant and ECg .M/ is Diffc.M/–locally
retractile. As its fibre is contractible by Lemma 2.14, it follows that the map is homotopy
equivalence.
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If a metric on M is given, we can canonically identify Sn�2.TM/ with S?2 .TM/, and
the diagram given by the Riemannian and the smooth scanning maps

�c.S?2 .TM/!M/
Š

// �c.Sn�2.TM/!M/

E� .†g ;M/
'

//

S �

OO

E�g.M/

S �

OO

commutes on the nose; hence the scanning map S � is a perfect replacement of the
scanning map S � .

We denote by 1p the point at infinity of Sn�2.TpM/ and write 1D
S
p1p , and

we define the support of f 2�c.Sn�2.TM/!M/, denoted suppf , to be the closure
of M nf �1.1/.

11.3 Proof of Theorem 1.4 when @M D ∅

Definition 11.4 Let Gg.M/� be the semisimplicial space whose i –simplices are tuples
.W; uI d0; : : : ; di /, where

(i) .W; u/ 2 E�g.M/;

(ii) d0; : : : ; di are disjoint embeddings of the closed unit disc into M ;

(iii) dj .0/ does not belong to the image of u for all j .

The semisimplicial structure is as usual given by forgetting data, which gives a semisim-
plicial space augmented over E�g.M/.

Proposition 11.5 If the dimension of M is at least 3, then Gg.M/� is a resolution
of E�g.M/.

Proof Let G� be the semisimplicial space constructed similarly to the above, with
i –simplices consisting of those tuples .W; uI d0; : : : ; di / such that condition (i) above,
as well as the following conditions, hold:

(ii 0 ) d0; : : : ; di W D
d ,!M are embeddings of the closed unit disc into M such that

the dj .0/ are distinct;

(iii 0 ) dj .0/\W D∅ for all j .

There is an inclusion Gg.M/� ,!G� , which is a levelwise weak homotopy equivalence,
by shrinking the discs and the tubular neighbourhood u. Now G� is an augmented
topological flag complex over ECg .M/, so we apply Criterion 4.2. The augmentation
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map is a fibration by Corollary 2.10, hence has local sections, and given any finite
(possibly empty) collection .W; u; d0/; : : : ; .W; u; di / of 0–simplices over .W; u/, the
complement M n

�
W [

S
dj .0/

�
is a nonempty manifold of dimension at least 3,

so there is an embedding diC1 of a closed d –ball into it. Then .W; u; diC1/ is a
0–simplex orthogonal to all the former 0–simplices.

Proposition 11.6 There are fibrations

E�g
�
Mn

S
dj .0/

�
! Gg.M/i ! Ci .M/DW Emb.f0; 1; : : : ; ig �Dd;M/;

where the fibre is taken over the point .d0; : : : ; di /.

Proof This is a consequence of Corollary 2.10.

In the notation of the last section, we let �c.Sn�2.TM/!M/g denote the collection
of path components ��1.2�2g/. Thus it consists of those sections which have “formal
genus g”.

Definition 11.7 Let Fg.M/� be the semisimplicial space whose i –simplices are
tuples .f; .d0; h0/; : : : ; .di ; hi //, where

(i) f 2 �c.Sn�2.TM/!M/g ;

(ii) d0; : : : ; di W D
d ,!M are disjoint embeddings of the closed unit disc of dimen-

sion d into M ;

(iii) h0; : : : ; hi W Œ0; 1��M ! Sn�2.TM/ are homotopies of sections such that

hj .0;�/D f .�/; dj .0/ … supp hj .1;�/;

and the homotopy hj is constant outside of the set dj .Dd /.

The j th face map forgets .dj ; hj /, and forgetting everything but f gives an augmen-
tation to the space �c.Sn�2.TM/!M/g .

Proposition 11.8 If M has dimension at least 3, then Fg.M/� is a resolution of
�c.Sn�2.TM/!M/g .

Proof Let us define Fg.M/� as the semisimplicial space whose i –simplices are tuples
.f; .d0; h0/; : : : ; .di ; hi // such that conditions (i) and (iii) above hold and condition (ii)
is replaced by

(ii 0 ) d0; : : : ; di W D
d ,!M are embeddings such that the dj .0/ are distinct,
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whose face maps are given by forgetting data, and which has an augmentation to
�c.Sn�2.TM/!M/g that forgets everything but f . There is an obvious semisimpli-
cial inclusion Fg.M/� ,! Fg.M/� over �c.Sn�2.TM/!M/g , and the lemma will
follow from the following statements:

(i) the semisimplicial inclusion is a levelwise weak homotopy equivalence, and

(ii) the augmentation of Fg.M/� is a weak homotopy equivalence.

For the first statement, take a smooth function �W Œ0;1/! Œ0; 1� with

�.Œ1;1//D 0; �
��
0; 1
2

��
D 1:

Consider the following deformation HsW Fg.M/i � .0; 1�! Fg.M/i (which restricts
to a deformation of Fg.M/i ):

Hs.f /D f; Hs.dj /.y/D dj .sy/;

Hs.hj /.t; x/D

�
hj .�.ksyk/t; sy/ if x D dj .sy/;
x otherwise:

Under this deformation, every i –simplex eventually ends up, and stays, in the subspace
Fg.M/i . If f W .Dn; Sn�1/! .Fg.M/i ;Fg.M/i / represents a relative homotopy
class, then because Dn is compact the map h.�; t / ı f has image in Fg.M/i for
some t , so the homotopy class of f is trivial.

For the second statement, note that Fg.M/� is a topological flag complex augmented
over ECg .M/ whose augmentation is a fibration by Lemmas 2.12 and 2.5. Given a
possibly empty, finite collection of 0–simplices

.f; d0; h0/; : : : ; .f; di ; hi /

over f , we may find an embedding of a disc diC1 such that diC1.0/ is differ-
ent from the points d0.0/; : : : ; di .0/. We may also find a homotopy hiC1 satisfy-
ing condition (iii) for the embedding diC1 and the section f , because the space
Sn�2.TdiC1.0/M/ is path connected. Hence the conditions of Criterion 4.2 hold, so
the augmentation for Fg.M/� is a weak homotopy equivalence.

Proposition 11.9 There are homotopy fibrations

�c
�
Sn�2

�
TMn

S
dj .0/

�
!Mn

S
dj .0/

�
g
! Fg.M/i ! Ci .M/;

where the fibre is taken over the point .d0; : : : ; di /.

Proof The space Ci .M/ is Diff@.M/–locally retractile by Proposition 2.9, and the
map is equivariant for the action of Diff@.M/; hence, by Lemma 2.5, this is a locally
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trivial fibration. The fibre is the space Fibi of tuples .f; h0; : : : ; hi / where f is in
�c.Sn�2.TM/!M/g and hj is a homotopy of f supported in dj such that hj .1;�/
is a section supported away dj .0/. Since the homotopies hj have disjoint support, we
may compose them. There is a homotopy

H W I �Fibi ! Fibi ;
�
t; .f; .h0; : : : ; hi //

�
7!
�
Ht .f /;Ht .h0/; : : : ;Ht .hi /

�
;

where

Ht .f /.�/D h0.t;�/ ı � � � ıhi .t;�/ and Ht .hj /.s;�/D hj .t C s.1� t /;�/:

This homotopy deformation retracts Fibi into the subspace Y consisting of those tuples
.f; h0; : : : ; hi / such that dj .0/ … supp hj and hj is the constant homotopy. Finally,
there is a map

Y ! �c
�
Sn�2

�
TMn

S
dj .0/

�
!Mn

S
dj .0/

�
g

given by sending .f; h0; : : : ; hi / (recall that these homotopies are all constant) to
f jMn

S
dj .0/ , and this map is a homeomorphism.

By condition (iii) of Definition 11.4, the scanning map

S �
W E�g.M/! �c.Sn�2.TM/!M/g

extends to a semisimplicial map S �
�
W Gg.M/�! Fg.M/� given on i –simplices by

sending each tuple .W; u; d0; : : : ; di / to the tuple .S �.W; u/; .d0; Id/; : : : ; .di ; Id//,
where Id denotes the constant homotopy.

Proposition 11.10 The resolution S �
�

of the scanning map is a levelwise homology
equivalence in degrees at most 1

3
.2g� 2/. Hence the scanning map is also a homology

equivalence in those degrees.

Proof The induced map on the space of i –simplices is a map of fibrations over
Ci .M/, and the induced map on fibres is

S �
i W E

�
g

�
Mn

S
dj .0/

�
! �c

�
Sn�2

�
TMn

S
dj .0/

�
!Mn

S
dj .0/

�
g
:

As S �
i is a scanning map, Theorem 1.4 for surfaces in a manifold with boundary (which

was proven in the preceding two sections) asserts that S �
i is a homology equivalence

in degrees at most 1
3
.2g�2/. Note that although M n

S
dj .0/ does not have boundary,

it does admit a boundary.
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