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Genus-two trisections are standard

JEFFREY MEIER

ALEXANDER ZUPAN

We show that the only closed 4–manifolds admitting genus-two trisections are
S2 �S2 and connected sums of S1 � S3 , CP 2 and CP 2 with two summands.
Moreover, each of these manifolds admits a unique genus-two trisection up to dif-
feomorphism. The proof relies heavily on the combinatorics of genus-two Heegaard
diagrams of S3 . As a corollary, we classify tunnel number one links with an integral
cosmetic Dehn surgery.

57N12, 57R65; 57M25

1 Introduction

A trisection of a smooth 4–manifold X is a decomposition of X into three pieces,
each of which is diffeomorphic to a 4–dimensional handlebody. Trisections have been
introduced by Gay and Kirby [6] as a 4–dimensional analogue to Heegaard splittings
of 3–manifolds. An explicit goal of the theory of trisections is to provide a vehicle to
apply 3–manifold techniques to problems in 4–dimensional topology. In their seminal
paper, they prove that every closed, orientable 4–manifold admits a trisection, and
any two trisections for the same 4–manifold become isotopic after some number of
iterations of a natural stabilization operation, akin to the Reidemeister–Singer theorem
in dimension three.

While a Heegaard splitting of a 3–manifold has only one complexity parameter (the
genus of the splitting), a trisection comes equipped with two such parameters. A
.g; k/–trisection of a closed, orientable, smooth 4–manifold X is a decomposition

X DX1[X2[X3;

where each Xi is a 4–dimensional 1–handlebody obtained by attaching k 1–handles
to one 0–handle, each Yij D Xi \Xj is a 3–dimensional genus-g handlebody, and
† D X1 \X2 \X3 is a closed genus-g surface, which we call a trisection surface.
Observe that † is a Heegaard surface for each 3–manifold @Xi D #k.S1�S2/; hence,
the definition implies that g � k .
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Since the field is still in its infancy, there are many basic questions about trisections
which have not yet been answered. In terms of 3–manifolds, the only manifold Y with
a genus-zero Heegaard splitting is S3 , and the manifolds with genus-one splittings (lens
spaces, S1 �S2 and S3 ) are neatly parametrized by the extended rational numbers.
This leads to the following general question.

Question 1.1 To what extent can we enumerate .g; k/–trisections for small values
of g?

In addition to proving the existence of trisections, Gay and Kirby relate them to handle
decompositions. They show that a 4–manifold admitting a .g; k/–trisection has a
handle decomposition with one 0–handle, k 1–handles, .g � k/ 2–handles, k 3–
handles and one 4–handle. As such, it is easy to classify .g;g/–trisections. If X has
a .g;g/–trisection, then X has a handle decomposition with no 2–handles; therefore,
by Laudenbach and Poénaru [14], we have that X is diffeomorphic to #g.S1 �S3/

(where #0.S1 �S3/D S4 ). It follows that there is a unique genus-zero trisection: the
standard .0; 0/–trisection of S4 into three 4–balls, two of which are glued to each
other along one hemisphere of their 3–sphere boundaries, and the third of which is
attached along the resulting 3–sphere boundary.

Note that every Heegaard splitting Y DH1[†H2 can be presented by a Heegaard dia-
gram (in fact, infinitely many Heegaard diagrams), which is a triple denoted .†; ˛; ˇ/.
This notion has an analogue in terms of trisections: a .g; k/–trisection diagram is
a quadruple .†; ˛; ˇ;  / such that each Heegaard diagram .†; ˛; ˇ/, .†; ˇ;  / and
.†; ˛;  / presents a genus-g splitting of #k.S1�S2/. Every trisection diagram yields
a straightforward construction of a trisected 4–manifold X ; see Section 2.

The manifolds that admit genus-one trisections are not difficult to classify; they are
described in detail by Gay and Kirby [6], and diagrams of these trisections are pictured
in Figure 1. There are precisely two manifolds which admit .1; 0/–trisections: CP2

and CP2 . Thus, the situation is somewhat different here than in dimension three,
suggesting another basic question.

Question 1.2 What is the smallest value of g for which there are infinitely many
4–manifolds X which admit a .g; k/–trisection for some k ?

In [18], the authors prove that the answer to Question 1.2 satisfies g � 3. It is shown
that if X is the double cover of S4 branched over a k –twist spun 2–bridge knot
where k ¤˙1, then X admits a minimal genus .3; 1/–trisection. Hence, Question 1.2
reduces to understanding genus-two trisections. This brings us to the main result of the
present paper.
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Figure 1: The three possible genus-one trisection diagrams: the (1,0)–
trisection diagrams for CP 2 (left) and CP 2 (middle), and the (1,1)–trisection
diagram for S1 �S3 (right)

Theorem 1.3 If X admits a genus-two trisection, then X is either S2 � S2 or a
connected sum of S1 �S3 , CP2 and CP2 with two summands. Moreover, each of
these 4–manifolds has a unique genus-two trisection up to diffeomorphism.

Proof Suppose X admits a .2; k/–trisection X D X1 [X2 [X3 . If k D 2, then
trivially X is diffeomorphic to .S1 �S3/ # .S1 �S3/ and has a trisection diagram
.˛; ˇ;  / such that ˛ D ˇ D  . If k D 1, then by Proposition 7.3, the trisection
is reducible and can be written as the connected sum of one of the standard .1; 0/–
trisections and the standard .1; 1/–trisection shown in Figure 1. It follows that X

is diffeomorphic to .S1 � S3/ # CP2 or .S1 � S3/ # CP2 . Finally, if k D 0, then
by Theorem 6.5, the trisection has a diagram homeomorphic to one of the standard
diagrams pictured in Figure 2, and thus X is diffeomorphic to S2 �S2 , CP2 # CP2

or CP2 # CP2 by [6].

The bulk of this paper is devoted to proving Theorem 6.5, the classification of .2; 0/–
trisections, by understanding .2; 0/–trisection diagrams .†; ˛; ˇ;  /. In this case, each
of .†; ˛; ˇ/, .†; ˇ;  / and .†; ; ˛/ is a genus-two Heegaard diagram for S3 , and
these are well-studied objects in 3–manifold topology. A result of Homma, Ochiai and
Takahashi [11] states that every nontrivial genus-two Heegaard diagram of S3 can be
reduced algorithmically (see Section 2), and this is the main input into our proof of
Theorem 6.5.

The case of .2; 1/–trisections, which is much less involved, is taken up in Section 7.
In fact, the classification of .2; 1/–trisections has been simplified by the authors and
Schirmer [17] as part of a larger classification of unbalanced trisections (ie trisections
in which the 4–dimensional 1–handlebodies are allowed to have different genus),
including unbalanced genus-two trisections.

As a corollary to the main theorem, we obtain the following result; see Section 7 for
definitions.
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Figure 2: The three standard (2,0)–trisection diagrams: S2 � S2 (top),
CP 2 # CP 2 (middle) and CP 2 # CP 2 (bottom). By Theorem 1.3, every
.2; 0/–trisection is represented by one of these three diagrams.

Corollary 1.4 Suppose that L is a tunnel number one link that admits an S3 surgery
with integral slope. Then there is a genus-two Heegaard surface † for S3 containing L

such that a series of handle slides on L contained in † converts L to a .˙1/–framed
unlink or a 0–framed Hopf link.

Note that the first examples of nontrivial tunnel number one links with nontrivial surg-
eries were given by Berge [1], and have since been studied extensively by Ishihara [12],
Mayrand [16], Matsuda, Ozawa and Shimokawa [15], Ochiai [20] and Teragaito [21].
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In Section 7, we discuss how Corollary 1.4 relates to the search for exotic, simply
connected 4–manifolds with b2 D 2. We also remark on the similarity between
Corollary 1.4 and the Generalized Property R Conjecture in Gompf, Scharlemann and
Thompson [7]. (See [17] for more details.)

Organization In Section 2, we introduce notation and terminology which will be
used in the rest of the paper. In Section 3, we define a complexity measure for .2; 0/–
trisection diagrams and prove some preliminary results about this complexity. Section 4
includes a digression into a special type of Heegaard diagram for S3 , which we will
use to further reduce the complexity of an arbitrary trisection diagram in Section 5.
We prove the main theorem about .2; 0/–trisections in Section 6 and conclude by
classifying .2; 1/–trisections and establishing Corollary 1.4 in Section 7.

Acknowledgements The authors would like to thank Ken Baker and David Gay for
their interest in this project and for their insightful comments at the outset, as well as
Cameron Gordon for helpful discussions related to the intricacies of the arguments
presented below. We would also like to thank the anonymous referee for a careful
reading of the manuscript. The first author is supported by NSF grant DMS-1400543,
and the second author is partially supported by NSF grant DMS-1203988.

2 Preliminary set-up

Manifolds are orientable and connected unless otherwise specified. For the remainder
of the paper, we fix a genus-two surface † and let �. � / denote an open regular
neighborhood in †. We use the term curve to mean an isotopy class of simple closed
curves in †. Given two distinct curves c1 and c2 in †, we assume that c1 and c2 have
been isotoped so that jc1\ c2j is minimal, and we let �.c1; c2/ denote this geometric
intersection number. By orienting c1 and c2 , we can also compute the algebraic
intersection number, denoted c1 � c2 , by counting the signed intersection number of c1

and c2 .

A cut system ˛ for † is a pair of disjoint curves ˛1 and ˛2 that cut † into a four-
punctured sphere, which we will denote †˛ . In a slight abuse of language, we refer
to †˛ as both a four-punctured sphere and a sphere with four boundary components.
A Heegaard diagram .†; ˛; ˇ/ consists of two cut systems ˛ and ˇ for †, whereas
a trisection diagram .†; ˛; ˇ;  / consists of three cut systems ˛ , ˇ and  for †
with the additional restrictions described above. We often suppress † and simply
write .˛; ˇ/ and .˛; ˇ;  / for Heegaard and trisection diagrams, respectively. Given a
Heegaard diagram .˛; ˇ/, we may construct a 3–manifold by gluing 3–dimensional
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2–handles along ˛ and ˇ on opposite sides of a product neighborhood †� I of †
and capping off the resulting 2–sphere boundary components with 3–balls. Similarly,
given a trisection diagram .†; ˛; ˇ;  /, we may construct a 4–manifold by taking
a 4–dimensional regular neighborhood † �D of † and attaching 4–dimensional
2–handles along ˛ � f1g, ˇ � fe2� i=3g and  � fe4�i=3g, where D is viewed as the
complex unit disk and the framings of the handle attachments are given by †� fpg.
Finally, we cap off boundary components with 3– and 4–handles, which can be done
in a unique way by [14].

We begin by stating several standard lemmata dealing with genus-two Heegaard dia-
grams of S3 . We say that a Heegaard diagram .˛; ˇ/ for S3 , where ˛D f˛1; ˛2g and
ˇD fˇ1; ˇ2g, is trivial if �.˛i ; ǰ /D ıij . Trivial Heegaard diagrams are unique (up to
homeomorphism). Given a Heegaard diagram .˛; ˇ/, we define the intersection matrix
M.˛; ˇ/ of .˛; ˇ/ to be

M.˛; ˇ/D

�
˛1 �ˇ1 ˛1 �ˇ2

˛2 �ˇ1 ˛2 �ˇ2

�
:

Lemma 2.1 If .˛; ˇ/ is a Heegaard diagram for S3 , then jdet.M.˛; ˇ//j D 1.

It follows immediately that if .˛;ˇ/ is a Heegaard diagram for S3 satisfying �.˛;ˇ/D 2,
then .˛; ˇ/ is the trivial diagram. Now, suppose that ˛1 , ˛2 and ˛3 are pairwise disjoint
curves in †, and let ˛D f˛1; ˛2g and ˛0D f˛2; ˛3g. We say that ˛ and ˛0 are related
by a handle slide.

Lemma 2.2 [13] Two Heegaard diagrams .˛; ˇ/ and .˛0; ˇ0/ determine the same
Heegaard splitting if and only if there are sequences of handle slides taking ˛ to ˛0 and
ˇ to ˇ0 .

We now turn our attention to trisection diagrams. The first lemma is due to Gay
and Kirby.

Lemma 2.3 [6] Two trisection diagrams .˛; ˇ;  / and .˛0; ˇ0;  0/ determine the
same trisection if and only if there are sequences of handle slides taking ˛ to ˛0 , ˇ
to ˇ0 , and  to  0 .

We say that a .2; 0/–trisection diagram .˛; ˇ;  / is standard if �.˛; ˇ/ D �.˛;  / D
�.ˇ;  /D 2. In Figure 2, †˛ is shown for each of the three standard .2; 0/–trisection
diagrams. The main theorem presented in this paper asserts that for any .2; 0/–trisection
diagram .˛; ˇ;  /, there is a sequence of handle slides taking .˛; ˇ;  / to one of these
three standard diagrams.
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Figure 3: An example of the Whitehead graph †˛.ˇ/ (left) and the corre-
sponding reduced Whitehead graph G˛.ˇ/ (right) obtained from a Heegaard
splitting .˛; ˇ/ .

For ˛D f˛1; ˛2g and C a collection of curves in †, intersection C\†˛ is a collection
of properly embedded essential arcs. Viewing the boundary components of †˛ as four
fat vertices and the essential arcs as edges, we may consider C \†˛ as a (topological)
graph, the Whitehead graph of C with respect to ˛ , denoted †˛.C/. By collapsing each
boundary component of †˛ to a vertex and collections of parallel edges in †˛.C/ to a
single edge, we construct the reduced Whitehead graph G˛.C/. To avoid confusion,
we will refer to edges in †˛.C/ as arcs and edges in G˛.C/ as edges. If an arc a in
†˛.C/ corresponds to an edge e in G˛.C/, we say that a is in the edge e . The weight
of an edge e 2 G˛.C/, denoted wC.e/, is the number of arcs in e . If C0 � C , then
†˛.C0/ is a subgraph of †˛.C/ and G˛.C0/ is a subgraph of G˛.C/. In this case we let
wC0.e/ denote the weight of e as an edge in G˛.C0/. We use ˛˙i (i D 1; 2) to denote
the vertices of both †˛.C/ and G˛.C/.

Nonisotopic arcs a and b in †˛ contained in curves c and d in † can intersect in
two fundamentally different ways. For an intersection point p 2 a\ b , if there is an
isotopy of c and d in † which pushes p through ˛˙i without introducing additional
intersections of c or d with ˛ , we call p an inessential point of intersection based
in ˛˙i . Note that an outermost such intersection point is a vertex in a triangle cobounded
by subarcs of a, b and a boundary component ˛˙i . A point p 2 a\ b which is not
inessential is called an essential point of intersection. See Figure 4. Observe that
essential points of intersection are present in G˛.c [ d/ but we lose all information
about inessential points of intersection when passing from †˛.c [ d/ to G˛.c [ d/.

An arc a in †˛ with endpoints in disjoint boundary components is called a seam.
Otherwise a is called a wave. Seams in †˛ may be parametrized by the extended
rational numbers xQ in the following way: Choose four pairwise disjoint seams which
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Figure 4: At left, an example of †˛.ˇ;  / such that ˇ\  contains a total
of three inessential intersection points, all based in the vertices ˛�i . At right,
curves in  have been isotoped so that inessential intersections are based in
the vertices ˛Ci .

cut † into two squares with their vertices removed. Assign the left and right sides of
the square the slope 1

0
and the top and bottom the slope 0

1
. Any other seam may be

isotoped to have constant rational slope in each of the squares, and we assign this slope
to the seam.

We call a seam in †˛ that connects either ˛C1 or ˛�1 to either ˛C2 or ˛�2 a cross-
seam, since it travels across †˛ from one pair of boundary components to the other.
Cross-seams come in pairs: There is a hyperelliptic involution J of † that leaves
every curve invariant [9]. Thus, the restriction of J to †˛ is a homeomorphism of †˛
which maps ˛˙i to ˛�i . It follows that if c is a curve in † and aC is a cross-seam of
c \†˛ connecting to ˛C1 to ˛˙2 , then since J.c/D c , we have that a� D J.aC/ is a
cross-seam of c \†˛ connecting ˛�1 to ˛�2 . See Figure 9.

Next, we show that the slopes of seams determine the number of times they intersect
essentially. For each essential arc a � †˛ , there is a unique essential curve in †˛ ,
which we will henceforth call �a , such that a\�a D∅. See Figure 5.

Lemma 2.4 If a and b are seams in †˛ parametrized by slopes w
x

and y
z

, respectively,
and a and b have endpoints on k common boundary components of @†˛ (where
k 2 f0; 1; 2g), then a and b intersect essentially in 1

2
.jwz�xyj � k/ points.

Proof It is well-known that �.�a; �b/ D 2jwz � xyj. Each common boundary
component of a and b contributes two points of intersection to �a \�b , and each
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Figure 5: An example depicting the relationship between �.a; b/ and
�.�a; �b/ for arcs a of slope 1
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and b of slope �1

3
, as discussed in the

proof of Lemma 2.4

essential point of intersection of a and b contributes four points of intersection to
�a\�b . See Figure 5. If there are q essential points of a\ b , it follows that

2jwz�xyj D 2kC 4q;

which easily yields the desired statement.

Given a Heegaard diagram .˛; ˇ/, an ˛–wave for .˛; ˇ/ is wave ! properly embedded
in †˛ such that ! \ˇ D∅. A ˇ–wave is defined similarly. If such an arc exists, we
say that .˛; ˇ/ contains a wave based in ˛ (resp. ˇ ) and that †˛.ˇ/ (resp. †ˇ.˛/)
contains a wave. Let ˛ D f˛1; ˛2g and ˛3 D�! , and suppose that @! � ˛˙1 . Then
˛0 D f˛2; ˛3g is related to ˛ by a handle slide, and we say that the diagram .˛0; ˇ/ is
the result of wave surgery (or just surgery, for short) on ˛ along ! .

Proposition 2.5 [11] Let .˛; ˇ/ be a Heegaard diagram for S3 that contains a wave
based in ˛ , and let .˛0; ˇ/ be the diagram obtained by wave surgery on ˛ . Then
�.˛0; ˇ/ < �.˛; ˇ/.

Thus, it is desirable for a nontrivial Heegaard diagram to contain a wave, as it allows for
a straightforward simplification of the diagram. Unfortunately, this is not the case for
Heegaard diagrams of S3 of arbitrary genera [19]. However, the situation in genus two
is much more manageable, as is shown by the following theorem of Homma, Ochiai
and Takahashi.
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Figure 6: The three possible reduced Whitehead graphs G˛.ˇ/ correspond-
ing to a genus-two Heegaard splitting: from left to right, Types I, II and III

Theorem 2.6 [11] Every nontrivial genus-two Heegaard diagram for S3 contains
a wave.

Wave surgery has a dual notion, known as banding. Let ˛0 D f˛2; ˛3g and suppose �
is an arc with one endpoint on each of ˛2 and ˛3 and whose interior is disjoint from ˛0

(we call � a band). Then one component ˛1 of @�.˛0[ �/ is not isotopic to ˛2 or ˛3 ,
and we that say ˛1 is the result of banding ˛2 to ˛3 . For every wave ! such that wave
surgery on ˛ D f˛1; ˛2g yields ˛0 D f˛2; ˛3g, there is a dual band � such that ˛1 is
the result of banding ˛2 to ˛3 ; thus, banding and wave surgery are inverse processes.

We now state several general facts about the reduced Whitehead graphs corresponding
to genus-two Heegaard diagrams. First, every such graph is isomorphic to one of the
graphs shown in Figure 6 (see [19]), which we henceforth refer to as Type I, Type II and
Type III as labeled in the figure. We will automatically assume that a graph of one of
these types inherits the edge labelings shown. Note that if all edge weights are nonzero,
then the three families are mutually exclusive; however, if some edge weights are zero
there may be graphs that fall into more than one family. In addition, the existence of
the involution J implies that wˇ.aC/D wˇ.a�/ and wˇ.bC/D wˇ.b�/ and so we
may denote these weights wˇ.a/ and wˇ.b/ without ambiguity.

If a reduced Whitehead graph G˛.ˇ/ contains exactly four edges and one 4–cycle, we
will call G˛.ˇ/ a square graph. Equivalently, a square graph is a Type I graph such
that wˇ.b/D 0 and all other edges have nonzero weights. If G˛.ˇ/ is a graph of any
type such that wˇ.a/; wˇ.c/¤ 0 while wˇ.b/D wˇ.d/D 0, we say that G˛.ˇ/ is a
c-graph (as its shape looks like the letter “c”).

The next lemma provides basic information about some of the weights in G˛.ˇ/ when
.˛; ˇ/ is a diagram for S3 .
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Figure 7: An ˛–wave ! in a Type III graph. If the weight of a or b is
nonzero, then �.�! ; ˇ/ < �.˛1; ˇ/ .

Lemma 2.7 [11, Lemma 9] If .˛; ˇ/ is a nontrivial diagram for S3 , then †˛.ˇ/
contains a cross-seam.

Observe that if .˛; ˇ/ contains a wave based in ˛ , then the graph G˛.ˇ/ must be of
Type III. A graph of Type I or II that admits a wave must also fall under the Type III
category. Figure 7 shows the obvious wave in this case. Equivalently, .˛; ˇ/ contains a
wave based in ˛ if and only if a vertex in G˛.ˇ/ has valence one (recall that G˛.ˇ/ is
a reduced graph). Note that Theorem 2.6 implies that if .˛; ˇ/ is a Heegaard diagram
for S3 , then there is a wave based in either ˛ or ˇ . However, if G˛.ˇ/ is a c-graph,
we can say something stronger:

Lemma 2.8 If .˛; ˇ/ is a diagram for S3 and G˛.ˇ/ is a c-graph, then .˛; ˇ/ contains
a wave based in ˛ and a wave based in ˇ .

Proof In this case, †n�.˛[ˇ/ contains some number of rectangular regions and one
12–sided region, which we will call U , where the boundary of U alternates between a
set of six arcs in ˛ and a set of six arcs in ˇ . See Figure 8. A choice of orientation ˛
and ˇ orients each arc in @U clockwise or counterclockwise. Moreover, each ˛–arc
comes from either ˛1 or ˛2 . Therefore, there are four labeling options for each ˛–arc.
However, since there are six ˛–arcs, at least two have a common labeling, and an
arc !˛ in U connecting two such arcs is a wave based in ˛ . See Figure 8 (right). A
parallel argument shows that there is a wave !ˇ in U based in ˇ .

In the case-by-case arguments that follow, we attempt to rule out the existence of certain
waves for a Heegaard diagram, so we lay the groundwork for that strategy here. If two
oriented curves meet in two points, we say that these points are coherently oriented if
they have the same sign and oppositely oriented if they have opposite sign. Note that
this definition is independent of the choice of orientations on the curves. If .˛; ˇ/ is a
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Figure 8: When G˛.ˇ/ is a c-graph, there are waves in ˛ and ˇ . The
obvious wave !˛ is shown (left), and the rendering of the 12–gon U (right)
implies the existence of !ˇ .

Heegaard diagram and there is a choice of orientations on curves in ˛ and ˇ so that all
points of ˛\ˇ are coherently oriented, we call .˛; ˇ/ a positive Heegaard diagram.

Suppose that .˛; ˇ/ is a Heegaard diagram and that ˇ1 contains an arc a that meets ˛1

only in its oppositely oriented endpoints and meets ˛2 in one point in its interior. We
call an arc a satisfying these conditions a wave-busting arc. Similarly, if ˇ contains
two arcs c and d such that c meets ˛1 only in its coherently oriented endpoints and
avoids ˛2 , while d meets ˛2 only in its coherently oriented endpoints and avoids ˛1 ,
we say that the pair .c; d/ is a wave-busting pair. The next lemma makes clear our use
of the term “wave-busting”.

Lemma 2.9 If .˛; ˇ/ is a nontrivial Heegaard diagram such that ˇ contains a wave-
busting arc a or a wave-busting pair .c; d/, then .˛; ˇ/ does not contain a wave based
in ˛ .

Proof A wave-busting arc a contributes two cross-seams to G˛.ˇ/, one from ˛˙1
to ˛C2 and one from ˛˙1 to ˛�2 . It follows by the symmetry of G˛.ˇ/ that each vertex
has valence at least two, and thus G˛.ˇ/ cannot be a graph of Type III. On the other
hand, a wave-busting pair contributes seams connecting ˛C1 to ˛�1 and ˛C2 to ˛�2 ,
again implying that G˛.ˇ/ is not a Type III graph.

To conclude this section, we discuss how homeomorphisms of †˛ can be used to
reduce the number of cases in the arguments that follow. The five homeomorphisms

Geometry & Topology, Volume 21 (2017)



Genus-two trisections are standard 1595
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˛C
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˛�1 ˛�2

˛C
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˛C
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˛�1 ˛�2

˛C
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˛C
2

˛�1 ˛�2

J 0

J

c'

cH

aC
bC

c

d

a�

b�
c 

Figure 9: The five homeomorphisms of the four-punctured sphere †˛ that will
be useful throughout the paper. First, J and J 0 are rotations through � radians
about the axes shown (top left), and H is a reflection across the plane that
intersects the sphere in cH . The homeomorphism ' is a half-twist fixing c'
and exchanging ˛C2 and ˛�2 (top right), and the action of  is shown as a
reflection across the plane intersecting the page in the line c (bottom).

most relevant to our proof are shown in Figure 9. The mapping class group of a
four-punctured sphere is generated by PGL2.Z/ and two involutions [2], the first of
which is the hyperelliptic involution J discussed above, and the second of which we
will call J 0 and is depicted in Figure 9 (top left). Note that J and J 0 preserve the
slopes of arcs in †˛ , so to determine the behavior of slopes of arcs with respect to a
given homeomorphism � , we need only specify an element of PGL2.Z/, which we
will call M� .

Let c' D �a for a seam a of slope 1
0

, and let the homeomorphism ' be given by
fixing ˛˙1 and c' and performing a half-twist on ˛˙2 which exchanges these two
punctures, as in Figure 9 (top right). The matrices for ' and '�1 are given by

M' D

�
1 1

0 1

�
and M'�1 D

�
1 �1

0 1

�
:

The remaining two homeomorphisms reverse the orientation of †˛ . Let H be the
horizontal reflection fixing the curve cH shown in Figure 9 (top left), and let  be
a reflection of †˛ fixing the four arcs denoted c in Figure 9 (bottom). Note that
 preserves a Type III graph; edges a˙ and b˙ are fixed, while edges c and d are
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exchanged. The matrices for H and  are given by

MH D

�
�1 0

0 1

�
and M D

�
�1 0

2 1

�
:

3 The complexity of a .2 ; 0/–trisection diagram

To classify .2; 0/–trisections, we will show that a trisection diagram which minimizes
a prescribed complexity over all diagrams corresponding to a fixed .2; 0/–trisection
must be a standard diagram. Define the complexity C.˛; ˇ;  / of a trisection diagram
.˛; ˇ;  / to be the triple given by

C.˛; ˇ;  /D .�.˛2;  /; �.˛1;  /; �.ˇ;  //:

For a .2; 0/–trisection X DX1[X2[X3 , we call a trisection diagram minimal if it
minimizes the complexity C (with the dictionary ordering) among diagrams satisfying
�.˛; ˇ/D 2. A plurality of this paper (Sections 3–5) is devoted to proving the following
proposition, which we will use later to classify .2; 0/–trisections in Section 6.

Proposition 3.1 If .˛; ˇ;  / is minimal, then �.˛;  /D 2.

To prove the proposition, we will suppose by way of contradiction that .˛; ˇ;  / is
minimal, but .˛;  / is not trivial, so that �.˛;  / > 2. We may also suppose that .ˇ;  /
is not trivial; otherwise C.ˇ; ; ˛/ < C.˛; ˇ;  / and .˛; ˇ;  / is not minimal. One case
is quite easy to rule out.

Lemma 3.2 If G .˛/ is a Type III graph, then .˛; ˇ;  / is not minimal.

Proof In this case, † .˛/ contains a wave, and we let  0 be the result of surgery
on  along this wave, so that  and  0 are related by a handle slide. With Figure 7 in
mind, we compute

�.˛2;  /D 2w˛2
.a/C 2w˛2

.b/Cw˛2
.c/Cw˛2

.d/(1)

�.˛2; 
0/D w˛2

.a/Cw˛2
.c/Cw˛2

.d/:(2)

Thus, if w˛2
.a/ or w˛2

.b/ is nonzero in G .˛/, then �.˛2; 
0/ < �.˛2;  / and

C.˛; ˇ;  0/ < C.˛; ˇ;  /. Otherwise, we have �.˛2;  /D �.˛2; 
0/. However, since  0

is surgery on  along a wave, �.˛;  0/< �.˛;  /, which implies that �.˛1; 
0/< �.˛1;  /

and, once again, C.˛; ˇ;  0/ < C.˛; ˇ;  /. In either case, .˛; ˇ;  / is not minimal.

Using equations (1) and (2), we also have the next lemma.
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Lemma 3.3 If G .˛2/ is a Type III graph that contains a cross-seam, then .˛; ˇ;  /
is not minimal.

Proof In this case, we have w˛2
.a/¤ 0, and so .˛; ˇ;  / is not minimal by the proof

of Lemma 3.2.

By Theorem 2.6 and the assumption that .˛;  / is not trivial, we have that .˛;  /
contains a wave ! . If ! is based in  , then G .˛/ is a Type III graph, so .˛; ˇ;  / is
not minimal by Lemma 3.2. Thus, we may assume that ! is based in ˛ , and G˛. / is a
Type III graph. Since .˛; ˇ;  / is minimal, we have that �.˛2;  /� �.˛1;  /; otherwise
we could change the labeling of ˛D f˛1; ˛2g to reduce complexity. Therefore, we can
assume that @! � ˛1 .

We parametrize arcs in G˛. / by assigning the seams connecting ˛C1 to ˛�1 the
slopes 1

0
and �1

2
, and the seams connecting ˛˙1 to ˛˙2 the slope 0

1
. Since �.˛; ˇ/D 2,

each intersection ˇi \†˛ is a single seam connecting ˛Ci and ˛�i for i D 1; 2, and
these two seams have the same slope. Let m

n
denote the slope of these seams, noting

that m must be odd and n must be even, and we suppose that m> 0. We also assume
that �.˛i ; ǰ / D ıij . In the case that m D 1, there is a curve ˇ3 such that ˇ3 \†˛
consists of two cross-seams of slope 0

1
and ˇ3\ˇ D∅. See Figure 10. We call the

curve ˇ3 the 0–replacement for ˇ .

Lemma 3.4 If mD 1, then .˛; ˇ;  / is not minimal.

Proof Let ˛0 D f˛3; ˛2g be the result of surgery on ˛ along the wave ! , let ˇ3

be the 0–replacement for ˇ , and let ˇ0 D fˇ1; ˇ3g. Then ˛ and ˇ are related to ˛0

and ˇ0 by handle slides, and �.˛0; ˇ0/ D 2. However, �.˛3;  / < �.˛1;  / and thus
C.˛0; ˇ0;  / < C.˛; ˇ;  /. See Figure 10.

We suppose for the remainder of this section that m � 3. Our plan of attack is as
follows: We show that, in most cases, .ˇ;  / contains a wave based in  and that
.˛; ˇ;  / is not minimal by Lemma 3.6. In the exceptional case, we will prove in
Section 5 that .ˇ;  / is not a Heegaard diagram for S3 , a contradiction.

Before we proceed, we require a technical lemma, which we state in greatest generality
for use in later sections.

Lemma 3.5 Suppose that .ı; �/ is a Heegaard diagram such that �.ı1; �2/ D 0 and
Gı.�/ is a square graph. Then .ı; �/ is not a Heegaard diagram for S3 .

Geometry & Topology, Volume 21 (2017)



1598 Jeffrey Meier and Alexander Zupan

˛C
1

˛C
2

˛�1 ˛�2

˛3

ˇ1

ˇ2

ˇ3

Figure 10: The case in which mD 1 , so that arcs of ˇi have slope 1
n

(shown
with n D 2). Replacing ˛1 with ˛3 and ˇ2 with the 0–replacement ˇ3

lowers the complexity of the diagram.

Proof We label the edges of the Type I graph Gı.�/ as in Figure 6, noting that �2

contributes to only one edge, d , in Gı.�/. Let k1 D w�2
.d/. Since Gı.�/ is a square

graph, we may orient ı and � so that all intersection points have the same sign; thus,
.ı; �/ is a positive Heegaard diagram. It follows that �.ıi ; �j /D ıi � �j . Since all edges
of Gı.�/ have nonzero weights, �1 intersects ı2 in k2 D w�.a/ > 0 points and ı1 in
k3 D w�.a/Cw�.c/ > 1 points. This implies that the intersection matrix M.ı; �/ is

M.ı; �/D

�
k3 0

k2 k1

�
;

where jdet.M.ı; �//j D k1k3 > 1. Thus, .ı; �/ is not a Heegaard diagram for S3 by
Lemma 2.1.

Now, we return to .˛; ˇ;  /. If ˇ� is a seam in †˛.ˇ/ connecting ˛Ci to ˛�i , then the
slope of ˇ� is m

n
. A seam  � in †˛. / connecting ˛C1 to ˛1� has slope 1

0
or �1

2
,

while a cross-seam has slope 0
1

. It follows from Lemma 2.4 that ˇ� intersects  �

essentially. The same is true if  � is a wave arc. Recall that we have assumed that
.ˇ;  / is not trivial, so by Theorem 2.6, .ˇ;  / contains a wave.

Lemma 3.6 If .ˇ;  / contains a wave based in  , then .˛; ˇ;  / is not minimal.

Proof If .ˇ;  / contains a wave based in  , then G .ˇ/ is a Type III graph, and
thus each vertex ˙

2
is incident to only one edge a˙ in G .ˇ/. Isotope ˛ so that any

inessential intersections of ˛ and ˇ in † based in ˙
2

(there are at most two of them)
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aC C
2

e

Figure 11: A local picture of † near C2 . All arcs of † .ˇ/ and all but
one arc of † .˛/ meeting C

2
are in the edge aC , and the one exceptional

arc of ˛ is in the edge e .

are based in �
2

. We note that C
2

does not contain two consecutive intersections
with ˛ . Otherwise, the subarc connecting such intersections corresponds to an arc  �

in †˛. / which avoids ˇ , contradicting that every such arc  � intersects an arc of ˇ
essentially in †˛ .

It follows that in † .˛; ˇ/, all ˛–arcs meeting C
2

with possibly one exception are
situated between ˇ–arcs in the edge aC . In other words, in the reduced graph G .˛/,
the vertex C

2
is incident to at most two edges, one of which has the same slope as aC

in G .ˇ/, and so we will call this edge aC , and the other of which we will call e .
See Figure 11. Note that w˛.e/D 1. We split the remainder of the argument into four
cases, based on possible values of w˛2

.a/ and w˛2
.e/.

Case 1 w˛2
.a/ ¤ 0 and w˛2

.e/ D 0. In this case, the vertex C
2

has valence one
in G .˛2/ and G .˛2/ contains the cross-seam aC . By Lemma 3.3, the diagram
.˛; ˇ;  / is not minimal.

Case 2 w˛2
.a/D 0 and w˛2

.e/¤ 0. If e is a cross-seam, then by the same argument
as in Case 1, .˛; ˇ;  / is not minimal. Otherwise, e connects C

2
to �

2
. By the

argument above, ˙
2

is incident to exactly two edges a˙ and e in G .˛/. If ˙
1

has valence one in G .˛/, then G .˛/ is a c-graph and there is a wave for .˛;  /
based in  by Lemma 2.8 and thus .˛; ˇ;  / is not minimal by Lemma 3.2. If C

1
has

valence greater than one, there is another edge c incident to C
1

in G .˛/, and c must
connect C

1
to �

1
. It follows that G .˛/ is a Type I graph with only one cross-seam;

equivalently, G .˛/ is a square graph, and the assumption w˛2
.a/D 0 implies that

�.˛2; 1/D 0. However, in this case Lemma 3.5 implies that .˛;  / is not a Heegaard
diagram for S3 , a contradiction.

Case 3 w˛2
.a/¤ 0 and w˛2

.e/¤ 0. Here, w˛2
.e/D 1 and thus w˛1

.e/D 0. Let
3 D�a and  0 D f2; 3g so that  is related to  0 by a handle slide. There are two
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Figure 12: The two subcases of Case 3 considered in the proof of Lemma 3.6:
G .˛2/ is a Type II graph (left), and G .˛2/ is a square graph (right). In
each case, replacing 1 by 3 D�a reduces complexity.

subcases to consider; refer to Figure 12. Suppose first that e is a cross-seam, so that
there is another cross-seam e0 which meets �

2
by the symmetry of G .˛/. Since

the valence of C
2

in G .˛/ is two, we have G .˛/ is a Type II graph. Let c and d

denote the two distinct edges connecting C
1

to �
1

. We compute

�.˛2; 1/D w˛2
.a/Cw˛2

.c/Cw˛2
.d/C 1;

�.˛2; 3/D w˛2
.c/Cw˛2

.d/C 2:

It follows from w˛2
.a/¤ 0 that �.˛2; 

0/� �.˛2;  /. If this inequality is strict, then
.˛; ˇ;  / is not minimal. Otherwise, we assume �.˛2; 

0/D �.˛2;  /. Since w˛1
.e/D0,

G .˛1/ is a Type III graph. Thus, if w˛1
.a/ ¤ 0, then �.˛1; 

0/ < �.˛1;  / so that
C.˛; ˇ;  0/ < C.˛; ˇ;  /. Otherwise, w˛1

.a/D 0 and thus �.˛1; 
0/D �.˛1;  /. Now,

since  0 is the result of surgery on a wave for .ˇ;  /, we have �.ˇ;  0/ < �.ˇ;  /

in addition to �.˛2; 
0/ D �.˛2;  / and �.˛1; 

0/ D �.˛1;  /; hence C.˛; ˇ;  0/ <
C.˛; ˇ;  /.

In the second case, we suppose that e connects C
2

to �
2

. If the valence of ˙
1

in
G .˛2/ is one, then .˛; ˇ;  / is not minimal by Lemma 3.3. Otherwise, the valence
of ˙

1
is greater than one in G .˛/, and since the valence of C

2
is two, G .˛/ is a

Type I graph with one cross-seam; equivalently, G .˛/ is a square graph. Here we
let c denote the single edge connecting C

1
and �

1
. As above, we compute

�.˛2; 1/D w˛2
.a/Cw˛2

.c/;

�.˛2; 3/D w˛2
.c/C 1:
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If w˛2
.a/ > 1, then �.˛2; 

0/ < �.˛2;  / and .˛; ˇ;  / is not minimal. On the other
hand, if w˛2

.a/ D 1, then �.˛2;  / D �.˛2; 
0/, while G .˛1/ is a Type III graph,

which implies C.˛; ˇ;  0/ < C.˛; ˇ;  / as above.

Case 4 w˛2
.a/ D w˛2

.e/ D 0. If w˛.a/ D w˛.e/ D 0, then Lemma 2.7 implies
that .˛;  / is trivial. If one of w˛.a/ or w˛.e/ is zero, then G .˛/ is a Type III
graph and .˛; ˇ;  / is not minimal by Lemma 3.2. Otherwise, w˛1

.e/ D 1 and
w˛1

.a/¤ 0. Suppose first that e is a cross-seam, so that by the symmetry of G .˛1/,
there is another weight-one cross-seam e0 which meets �

2
. Since the valence of ˙

2

is two and G .˛/ contains two distinct cross-seams, the graph G .˛/ is a Type II
graph (as in Figure 12 (left)). Let c and d denote the edges connecting C

1
to �

1
,

let 3 D �a , and let  0 D f2; 3g so that  0 is related to  by a handle slide.
Then �.˛2; 3/ D �.˛2; 1/ D w˛2

.c/Cw˛2
.d/, and, using w˛1

.e/ D w˛1
.e0/ D 1,

we compute
�.˛1; 1/D w˛1

.a/Cw˛1
.c/Cw˛1

.d/C 1;

�.˛1; 3/D w˛1
.c/Cw˛1

.d/C 2:

Thus, if w˛1
.a/ > 1, then �.˛1; 

0/ < �.˛1;  / so that C.˛; ˇ;  0/ < C.˛; ˇ;  /. Other-
wise, w˛1

.a/ D 1 and thus �.˛1; 
0/ D �.˛1;  /. As above, since  0 is the result

of surgery on a wave for .ˇ;  /, we have �.ˇ;  0/ < �.ˇ;  /; hence C.˛; ˇ;  0/ <
C.˛; ˇ;  /.

In the second subcase, suppose that e is a seam connecting C
2

to �
2

. Since an
˛2 –arc contributes an edge, call it c , connecting C

1
to �

1
in G .˛/, it follows that

G .˛/ is a Type I graph with only one cross-seam (see Figure 12 (right)); that is,
G .˛/ is a square graph. Moreover, w˛2

.a/D w˛2
.e/D 0 implies �.˛2; 2/D 0, so

by Lemma 3.5, we have .˛;  / is not a Heegaard diagram for S3 , a contradiction.

In the two lemmas that follow, we return our attention to G˛.ˇ;  /. These two lemmas,
together with our previous work in this section, prove Proposition 3.1 in all but one
exceptional case. This case is significantly more complicated and requires the arguments
in Sections 4 and 5 to settle.

Lemma 3.7 If w .b/¤ 0 in G˛. /, then .ˇ;  / does not contain a wave based in ˇ .

Proof Observe that there is an arc ˇ� of ˇ2 which connects ˛C2 to a point p contained
in an arc 0 in the edge bC of G˛. /. See Figure 13 (left). Since m � 3, we have
that ˇ1 intersects arcs in the edge a essentially, which implies that ˇ1 meets 0 in
a nonempty set of pairs of oppositely oriented points. It follows that 0 contains a
wave-busting arc  � containing the point p ; hence Gˇ. / does not contain a wave by
Lemma 2.9.
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Figure 13: Wave-busting arcs in  � in the case that w .b/ ¤ 0 (left) and
that w .b/D 0 (right), but the slope m

n
6D �.n˙ 1/=n

We now assume that w .b/ D 0. Recall that the homeomorphism  described in
Section 2 maps G˛. / onto itself.

Lemma 3.8 If m
n
¤�.n˙ 1/=n, then .ˇ;  / does not contain a wave based in ˇ or

.˛; ˇ;  / is not minimal.

Proof First, we note that w .a/, w .c/ and w .d/ are not zero; otherwise, G .˛/ is
a c-graph and contains a wave by Lemma 2.8, so .˛; ˇ;  / is not minimal by Lemma 3.2.
To prove the lemma, we will view †˛ as two unit squares I and I 0 glued together
along their boundaries with a neighborhood of their vertices removed. We describe
points in I with Cartesian coordinates, where ˛�1 D .0; 0/. First, suppose that m

n
< 0

and 1 <m < jnj � 1. Let ˇ�2 denote the arc of ˇ2 \ I which meets the vertex of I

at the coordinates .1; 0/. Since the slope of ˇ�2 is � m
jnj

, the coordinates of the other
endpoint of ˇ�2 are

�
0; m
jnj

�
. In I, there are two arcs of ˇ1, call them ˇ0

1
and ˇ00

1
, which

are adjacent to ˇ�2 . The endpoints are given by�
0;

mC1

jnj

�
and

�
1;

1

jnj

�
for ˇ01;

�
0;

m�1

jnj

�
and

�
m�1

jnj
; 0

�
for ˇ001 :

See Figure 13 (right). The assumption that 1<m< jnj � 1 ensures that none of these
four endpoints is a vertex of I . In addition, we note that in I 0 , the endpoints

�
1; 1
jnj

�
and

�
.m� 1/=jnj; 0

�
are connected by an arc in ˇ1 . Thus, an arc in †˛. / which has

slope 1
0

contains a subarc  � connecting oppositely oriented points of intersection
with ˇ1 , namely

�
0; .mC1/=jnj

�
and

�
0; .m�1/=jnj

�
. Further,  � meets ˇ2 precisely

once in the point
�
0; m
jnj

�
. Therefore,  � is a wave-busting arc and .ˇ;  / does not

contain a wave by Lemma 2.9.

For the other cases, we will show that by applying the homeomorphism  to †˛ , we
can reduce the argument to the one above. Since  preserves G˛. /, we need only
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determine the action of  on the slope of m
n

of arcs in ˇ . Suppose that either m
n
> 0

or m
n
< 0 and m> jnjC 1. We have

 

�
m

n

�
D

�
�m

2mC n

�
:

If m
n
> 0, then certainly �m=.2m C n/ < 0 and m < 2m C n � 1. Hence, the

above argument shows that there exists a wave-busting arc  � �  , so .ˇ;  / does
not contain a wave based in  . Now, suppose that n < 0 and m > jnj C 1 and let
k D 2mC n D 2m� jnj, so that k > mC 1 and thus m < k � 1. Once again, we
have that �m=.2mCn/D�m

k
is of the form handled by the above argument, and we

conclude that .ˇ;  / does not contain a wave based in ˇ .

The remaining case to consider in the proof of Proposition 3.1 occurs when m
n
D

�.n˙ 1/=n, and we postpone our examination of this case until Section 5.

4 A brief digression into square graphs

Recall some of the assumptions and conclusions we have made up to this point. First,
.˛; ˇ;  / is minimal, and so neither G .˛/ nor G .ˇ/ is a Type III graph. Second,
the weight w .b/D 0 in G˛. /, which is a Type III graph. This implies that ˛ and 
can be oriented so that all points of intersection occur are coherently oriented; in other
words, .˛;  / is a positive Heegaard diagram. In this case, we consider G .˛/.

Lemma 4.1 The graph G .˛/ is a square graph.

Proof Since G .˛/ does not contain a wave by assumption, we know that it falls
under Type I or Type II. Refer to Figure 6. In addition, .˛;  / is a positive Heegaard
diagram, so all cross-seams in † .˛/ originating from C

1
and terminating in ˙

2
must

terminate in the same vertex, say C
2

. Thus, G .˛/ contains an edge connecting C1
to C

2
, its symmetric image connecting �

1
to �

2
, and no edges connecting ˙

1
to �2 .

It follows that if G .˛/ is a graph of Type II, then w˛.b/D 0 and G .˛/ contains a
wave, a contradiction. Thus, G .˛/ is a graph of Type I and w˛.b/D 0, as desired.

Recall that we assume that the edges in a square graph or a c-graph have nonzero
weights. By Lemma 2.7, a graph for S3 with only two edges is trivial, and such a
graph must be Type I with w.a/D w.b/D 0 and w.c/D w.d/D 1. In keeping with
Figure 6, we will refer to the edges a˙ of a square graph as horizontal edges and the
edges c and d as vertical edges. Note that if .ı; �/ is a positive Heegaard diagram
for S3 such that Gı.�/ is a square graph, then Gı.�/ is not a Type III graph and as
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such, there is no wave based in ı for .ı; �/. By Theorem 2.6, it follows that there must
be a wave based in � . In this setting, we may keep track of the structure of Gı.�/ after
doing wave surgery.

Lemma 4.2 Suppose that .ı; �/ is a positive Heegaard diagram for S3 such that
Gı.�/ is a square graph, and let .ı; �0/ be the result of doing wave surgery on .ı; �/.
Then Gı.�

0/ is either a square graph or a c-graph.

Proof Let ı D fı1; ı2g, � D f�1; �2g and �0 D f�2; �3g. Observe that �3 can be
embedded disjointly from � and consider Gı.�1[�2[�3/. The curve �3 may introduce
at most one additional edge; however, doing wave surgery introduces no new points of
intersection and does not change the sign of existing intersection points. Therefore,
.ı; �0/ remains a positive diagram, and Gı.�

0/ cannot have such an edge. Thus Gı.�
0/

is a subgraph of Gı.�/.

We must show that Gı.�
0/ has more than two edges. Suppose by way of contradiction

that Gı.�
0/ has two edges, so that it is the trivial diagram. It follows that �.ı; �2/D 1,

so we may assume that �.ı1; �2/D 0. By Lemma 3.5, .ı; �/ is not a Heegaard diagram
for S3 , a contradiction.

As an immediate consequence, we have the next lemma.

Lemma 4.3 Suppose that .ı; �/ is a positive Heegaard diagram for S3 and Gı.�/ is a
square graph. Then there is a sequence of diagrams .ı;�/D.ı; �l/; .ı; �l�1/; : : : ; .ı; �0/

such that .ı; �i/ is the result of wave surgery on .ı; �iC1/, the graph Gı.�
i/ is a square

graph for i > 0, and Gı.�
0/ is a c-graph.

Proof By Lemma 4.2, Gı.�
l�1/ is either a square graph or a c-graph. By induction

on .l � i/, suppose that Gı.�
i/ is square graph. Observe that .ı; �i/ always contains

a wave, that the wave must be based in �i , and that ı is preserved by the wave
surgery. Since �.ı; �i�1/ < �.ı; �i/, finitely many applications of Lemma 4.2 yield the
desired result.

Observe that †n�.ı[�i/, for i>0, is a collection of rectangles and two octagons whose
sides alternate between arcs in ı and arcs in �i . It follows that G�i .ı/ is a Type III
graph with wı.b/D 0 and all other edge weights nonzero. As such, there is a unique
way to do wave surgery on �i , and so we call the sequence f� D �l ; �l�1; : : : ; �0g

guaranteed by Lemma 4.3 the reducing sequence for � (without ambiguity). See
Figure 14.
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!3 !2

!1

�3

�2 �1

Figure 14: The reducing sequence for a diagram .ı; �/ . All four graphs
shown have alternating adjacency. Note that we have suppressed the gluing
information needed to pass from †ı.�

i/ to a Heegaard diagram for S3 ,
although determining it is straightforward.

The involution of † maps one of the octagons cut out by ı and �i to the other octagon,
and thus it suffices to examine one of the octagons, which we will call Oi . Since the
diagram is positive, any wave or band for .ı; �i/ must connect opposite arcs of �i

contained in the boundary of Oi . We will call a wave ! parallel to a horizontal edge
of Gı.�

i/ a horizontal wave; otherwise ! is parallel to a vertical edge and we call ! a
vertical wave. The notions of a horizontal band and vertical band are defined similarly.

Let !i denote the wave for .ı; �i/ such that surgery on !i yields .ı; �i�1/, and let �i

denote the band dual to each !i (so that banding .ı; �i�1/ along �i yields .ı; �i/).
Let �i D f�i

1; �
i
2g. Note that !i necessarily has endpoints in the same component of �i ,

whereas �iC1 always connects �i
1 to �i

2 . In addition, �i is vertical if and only if !i

is horizontal.

Lemma 4.4 Every wave !i is a horizontal wave.

Proof The band �1 is contained in the c-graph Gı.�
0/, and thus it must be a vertical

band. It follows that !1 is a horizontal wave. Suppose by way of induction that !i is
a horizontal wave in Gı.�

i/. Since the band �i is also contained in Gı.�
i/, we have
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that �iC1 cannot be parallel to !i since !i connects the same component of �i while
�iC1 connects distinct components of �i . Thus, �iC1 is vertical, which implies that
its dual wave !iC1 is horizontal as well.

Here we introduce some terminology to better understand what happens to arcs of
†ı.�

i/ when two curves are banded together. We say that two arcs in †ı.�i/ are
adjacent if they cobound a rectangle in † n �.ı[ �i/ with arcs in ı .

Lemma 4.5 If �i
3 is the result of banding �i

1 to �i
2 along �iC1 , then �.ı; �i

3/D �.ı; �
i/.

In addition, in †ı.�i [ �i
3/, every arc of �i is adjacent to an arc of �i

3 .

Proof In order to construct �i
3 from �i

1 and �i
2 in †ı , we begin with two parallel

copies of �i
1 and �i

2 which have been pushed off of �i so that two of their horizontal
arcs lie in the octagon Oi . Attaching the band �iC1 to these two arcs transforms
them into two vertical arcs and leaves all other arcs of �i unchanged, proving the first
statement. Since the vertical band �iC1 connects �i

1 to �i
2 , we have w�i

j .a/ � 1 for
j D 1; 2. Thus w�i .a/� 2, and every arc of �i is adjacent to some arc of its push-off
that has not been changed by attaching the band �iC1 . See Figure 15.

Now, we return to the trisection diagram .˛; ˇ;  /. By Lemma 4.1, G .˛/ is a square
graph, and, as such, ˛ has a reducing sequence f˛D ˛l ; ˛l�1; : : : ; ˛0g by Lemma 4.3.
The next lemma examines this reducing sequence more closely.

Lemma 4.6 Suppose that ˛0 and ˛l have a curve ˛0
� in common. Then .˛; ˇ;  / is

not minimal.

Proof Let ˛l D f˛l
1; ˛

0
�g. If .˛; ˇ;  / is minimal, then �.˛1;  / � �.˛2;  /, and by

Lemma 4.5, �.˛l
1;  / � �.˛

0;  / > �.˛0
�;  /. It follows that ˛1 D ˛

l
1 and ˛2 D ˛

0
� .

In addition, we have that G .˛2/ is a subgraph of the c-graph G .˛
0/. If G .˛2/

contains a cross-seam, them .˛; ˇ;  / is not minimal by Lemma 3.3. Otherwise,
�.˛2; j /D 0 for either j D 1 or j D 2; therefore, .˛;  / is not a Heegaard diagram
for S3 by Lemma 3.5.

In order to deal with the intricacy of the remaining case in Section 5, we will need to
keep track of the cyclic ordering of arcs at the vertices of †˛. /. One way to obtain
this information is to understand adjacency in † .˛/, since the regions of †n�.˛[ /
appear in both graphs. We say that .˛i ;  / has upper alternating adjacency (resp. lower
alternating adjacency) if the horizontal boundary arc of Oi in the edge aC (resp. a� )
is adjacent to an arc in the opposite curve of ˛i . See Figure 14. If .˛i ;  / has both
upper and lower alternating adjacencies, we say that it has alternating adjacency. The
remainder of the section includes several lemmas which establish that G .˛/ has
alternating adjacency.
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1

viC1
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3

Figure 15: The graph G .˛
i/: (left) exhibits upper alternating adjacency,

(middle) shows the parallel push offs of ˛i
1

and ˛i
2

, and (right) shows ˛i
3

,
the result of the banding.

Lemma 4.7 If .˛i ;  / has upper (resp. lower) alternating adjacency, then .˛iC1;  /

has upper (resp. lower) alternating adjacency.

Proof By Lemma 4.4, the band �iC1 dual to the horizontal wave !iC1 is vertical.
Let ˛i

3 correspond to the curve created by banding ˛i
1 to ˛i

2 along �iC1 , so that ˛iC1

is either f˛i
1; ˛

i
3g or f˛i

2; ˛
i
3g.

Let ˛� D f˛i
1; ˛

i
2; ˛

i
3g and consider † .˛�/, letting O� denote the octagon in † n

�.˛�[ / such that O��OiC1 . By the proof of Lemma 4.5, both vertical arcs of @O�
in ˛� are in ˛i

3 , and @O� has one horizontal arc in each of ˛i
1 and ˛i

2 ; call these
arcs ˛�1 and ˛�2 , respectively. Suppose that ˛�1 is in the edge aC (resp. a� ). Then by
Lemma 4.5, ˛�1 is adjacent to an arc in ˛i

3 , which in turn is adjacent to an arc in ˛i
2

by the upper (resp. lower) alternating adjacency of f˛i ;  g. Thus, independently of
whether ˛i

1 2 ˛
iC1 or ˛i

2 2 ˛
iC1 , the diagram .˛iC1;  / must also have upper (resp.

lower) alternating adjacency. See Figure 15.

Note that, in the proof of Lemma 4.7, if ˛i
12˛

iC1 , then we need not require that .˛i ;  /

have upper (resp. lower) alternating adjacency. The next lemma follows immediately.

Lemma 4.8 If an arc in ˛i
j is in the upper (resp. lower) horizontal boundary of Oi

and ˛i
j 2 ˛

iC1 , then .˛iC1;  / has upper (resp. lower) alternating adjacency.

Now, we combine Lemmas 4.7 and 4.8 to determine adjacency for .˛;  / when .˛; ˇ;  /
is minimal.

Lemma 4.9 If ˛0 and ˛l do not have a curve in common, then .˛l ;  / has alternating
adjacency.

Proof Note that the band �1 is vertical, so it connects ˛0
1 to ˛0

2 . Suppose without
loss of generality that �1 connects an upper horizontal arc of ˛0

1 to a lower horizontal
arc of ˛0

2 , and suppose further that ˛0
1 2 ˛

1 . By Lemma 4.8, .˛1;  / has upper
alternating adjacency, and by Lemma 4.7, .˛i ;  / has upper alternating adjacency for
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all i > 0. Let k be the largest index such that ˛0
1 2 ˛

k , and suppose ˛k D f˛0
1 ; ˛

k
2 g.

By assumption, k < l , and following the proof of Lemma 4.7, we have that the
upper horizontal boundary of Ok is an arc in ˛0

1 while the lower boundary is an arc
in ˛k

2 . Since ˛0
1 62˛

kC1 , we have ˛k
2 2˛

kC1 and thus .˛kC1;  / has lower alternating
adjacency by Lemma 4.8. Finally, Lemma 4.7 implies that .˛i ;  / has lower alternating
adjacency for all i > k , and thus .˛l ;  / has alternating adjacency as desired.

In summary, we have the following.

Lemma 4.10 If G .˛/ is a square graph, then .˛;  / has alternating adjacency or
.˛; ˇ;  / is not minimal.

Proof By Lemma 4.3, there is a reducing sequence ˛ D ˛l ; ˛l�1; : : : ; ˛0 for .˛;  /.
If ˛l and ˛0 have no curve in common, then .˛;  / has alternating adjacency by
Lemma 4.9. Otherwise, .˛; ˇ;  / is not minimal by Lemma 4.6.

5 The case in which mD�n˙ 1

Up to this point in the paper, our arguments have not required information about the
cyclic ordering of the intersections of arcs with the fat vertices in †˛.ˇ;  /. However,
this case is significantly more delicate than the preceding ones, and thus we must be
more precise about how we recover .˛; ˇ;  / from †˛.ˇ;  /. We will assume that ˇ
has been isotoped so that all inessential intersections between ˇ and  correspond to
triangles based in ˛C1 or ˛C2 .

Let us recall our current assumptions. First, neither diagram .˛;  / or .ˇ;  / is trivial,
there is no wave based in  , and the trisection diagram .˛; ˇ;  / is minimal. Second,
G˛. / is a Type III graph such that wb. / D 0 and all other weights are nonzero.
This implies that † n �.˛[  / contains some number of rectangular regions and two
octagonal regions, which we call O 0 and O 00 . Third, G .˛/ is a square graph with
alternating adjacency and .˛;  / contains a wave based in ˛1 . Fourth, by Lemma 3.6
we may assume that .ˇ;  / does not contain a wave based in  , so that it must contain
a wave based in ˇ . Finally, the slopes of the ˇ–arcs in †˛.ˇ;  / are both �.n˙1/=n.
Since the slopes of the ˇ–arcs differ from the slopes of the  –arcs, and since there
are no inessential intersection points based at ˛�i , we have that ˇi intersects ˛�i in an
edge of either O 0 or O 00 for i D 1; 2.

Lemma 5.1 If G .˛/ has an edge of weight one, then .˛; ˇ;  / is not minimal.
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Proof Suppose that in the square graph G .˛/, one of the edges a˙ , c or d has
weight one (see Figure 6). Note that each octagon O 0 and O 00 contains three boundary
components in ˛1 and one boundary component in ˛2 . By Lemma 4.3, there is a
horizontal wave contained in † .˛/, and so both vertical boundary arcs of O 0 in
† .˛/ are in ˛1 . This means that O 0 has horizontal boundary arcs in both ˛1 and ˛2 ;
thus w˛.a/� 2.

Consequently, we suppose without loss of generality that w˛.d/D 1. If w˛2
.d/D 0,

then G .˛2/ is a Type III graph containing a cross-seam and .˛; ˇ;  / is not minimal by
Lemma 3.3. If w˛2

.d/D 1, let 3D�a and let  0Df2; 3g. Then  0 is related to 
by a handle slide, so by the minimality of .˛; ˇ;  /, we have that �.˛2;  /� �.˛2; 

0/

and thus �.˛2; 1/ � �.˛2; 3/. But this implies that w˛2
.a/Cw˛2

.c/ � w˛2
.c/C 1

and so w˛2
.a/ D 1 and �.˛2;  / D �.˛2; 

0/. By the above arguments, w˛1
.a/ > 0,

and so

�.˛1; 
0/D w˛1

.a/Cw˛1
.c/ < 2w˛1

.a/Cw˛1
.c/D �.˛1;  /:

This implies C.˛; ˇ;  0/ < C.˛; ˇ;  /, as desired.

The next lemma uses our work from Section 4 to determine how ˇ1 meets ˛C1 relative
to  in †˛.ˇ;  /.

Lemma 5.2 For i D 1; 2, the arc ˇi intersects ˛Ci between parallel arcs of  in the
edge aC .

Proof Let ˛� � ˛1 denote the boundary arc of the octagon, say O 0 , which contains
the intersection of ˇ1 with ˛�1 , and observe by examination of †˛. / that in O 0

the arc ˛� is opposite an arc in ˛2 . See Figure 16. By Lemma 4.4, the wave ! for
.˛;  / is horizontal, and thus opposite pairs of vertical arcs in † .˛/ contained in @O 0

meet ! and are in the same curve ˛1 . This implies that ˛� is a horizontal arc in
one of a˙ in G .˛/. Now, we invoke Lemma 4.10, which asserts that .˛;  / has
alternating adjacency. It follows that ˛� also cobounds a rectangular component R

of † n �.˛ [  /, and is opposite an arc of ˛2 in R. Since the only such rectangles
in †˛. / lie between parallel arcs in the edge aC , the desired statement follows. A
parallel argument shows that the same is true for ˇ2 and ˛C2 .

We note that if the weight of the edge aC in † .˛/ is large, then ˇ1 and ˇ2 will not
necessarily intersect ˛C1 and ˛C2 between the same set of parallel arcs in the edge aC
in †˛. / as in Figure 16. We will also keep track of how ˇ and  intersect near the
vertices ˛Ci , but we require the following lemma first.
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Figure 16: An example of †˛.ˇ;  / (left), along with the corresponding
† .˛/ (right). At left, W1 D

13
5

, W2 D
1
3

, and the slope of the ˇ–curves
is �3

4
. Notice that .ˇ;  / is a positive Heegaard diagram according with

Lemma 5.5. We have assumed that there are no inessential intersections
at ˛�1 , which prescribes that ˇ1 leaves this vertex as shown. The existence
of the rectangle R on the right dictates that ˇ1 intersects ˛C1 as shown, as in
Lemma 5.2.

Lemma 5.3 All essential points of ˇ\  are coherently oriented.

Proof Consider †˛.ˇ;  /. Choose an orientation for  and note that since .˛;  / is
a positive diagram, each arc corresponding to a single edge in G˛. / has the same
orientation. Thus, we may orient the edges of G˛. / so that oriented arcs originate
in ˛C1 and ˛�2 and terminate in ˛�1 and ˛C2 . Now, we may orient ˇ1 and ˇ2 so that
all essential points of intersection of ˇ and the edge aC are coherently oriented. The
involution J preserves ˇ1 and ˇ2 setwise while reversing their orientations; hence
essential points of ˇ \ aC and ˇ \ a� are coherently oriented. Since the slope m

n

of ˇ is negative, it follows that essential points of ˇ\ c and ˇ\ a� are coherently
oriented as well. Finally, the homeomorphism  of G˛.ˇ;  / swaps  –arcs in the
edge c with those in the edge d while preserving their orientations and maps ˇ–arcs
of slope �.nC 1/=n to arcs of slope �.nC 1/=.nC 2/. Thus, by applying  to
G˛.ˇ;  /, we may make a parallel argument that all essential points of ˇ \ d and
ˇ\a� are coherently oriented. We conclude that all essential intersections of ˇ and 
in G˛.ˇ;  / are coherently oriented. See Figure 16 and Figure 18 (left).
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Now, we define the winding of ǰ relative to  at ˛i , denoted Wi. ǰ / (or simply Wi

when the relevant ˇ–curve is clear), to be the number of inessential intersections
(counted with sign) of ˇ and  that are vertices of triangles based in ˛Ci divided by
�.˛i ;  / for i D 1; 2. An inessential intersection is positive if it is coherently oriented
with the essential points of intersection and negative otherwise. In the next four lemmas,
we place restrictions on the values of W1 and W2 by showing that certain combinations
of windings imply that .˛; ˇ;  / is not minimal or .ˇ;  / does not contain a wave
based in ˇ , which contradicts our prior assumptions.

Lemma 5.4 If W1 or W2 is an integer, then .˛; ˇ;  / is not minimal.

Proof If the winding of ˇ relative to  at ˛1 is an integer, then the two octagonal
regions of † n �.˛[  / are separated by a single arc contained in ˛1 . It follows that
in the square graph G .˛/, one of the edges has weight one and thus .˛; ˇ;  / is not
minimal by Lemma 5.1.

Lemma 5.5 If Wi < 0 for either i D 1 or i D 2, then Gˇ. / does not contain a wave.

Proof Consider †˛.ˇ;  / and note that there is a subarc of a  –arc contained in the
edge aC with endpoints in essential intersections of ˇ1 and ˇ2 ; thus Gˇ. / contains
an edge connecting ˇC1 to ˇC2 . For any arc of  originating from ˛C1 , its first essential
intersection is with ˇ2 . Suppose that ˇ1\ contains an inessential point of intersection
based in ˛C1 which is oriented opposite the essential points of intersection. Then there
is an arc of  connecting an inessential point of intersection with ˇ1 with an oppositely
oriented essential point of intersection with ˇ2 . It follows that Gˇ. / contains an edge
connecting ˇC1 to ˇ�2 , and by the argument of Lemma 2.9, Gˇ. / does not contain
a wave.

A similar argument shows that if ˇ2\  has an oppositely oriented inessential inter-
section point based in ˛C2 , then Gˇ. / again does not contain a wave.

It follows that Wi > 0 for i D 1; 2; hence, .ˇ;  / is a positive diagram, and G .ˇ/ is
a square graph.

Lemma 5.6 If 0<Wi < 1 for both i D 1; 2, then Gˇ. / does not contain a wave.

Proof If 0<W1 < 1, then there is an arc  0 in  whose endpoints lie in ˛C1 and ˇ2 .
See Figure 17 (left). By assumption, there are no inessential intersections of ˇ and 
based at ˛�1 , and so every arc of  with an endpoint on ˛�1 meets ˇ2 . Thus, the
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Figure 17: The cases in which W1 < 1 (left) and W1 > 1 (right)

endpoint of  0 in ˛C1 is the endpoint of another arc  00 connecting ˛�1 to ˇ2 , and in
the graph Gˇ. /, the arc  0[  00 is in an edge connecting ˇC2 to ˇ�2 .

A parallel argument shows that if 0<W2 < 1, then Gˇ. / contains an arc in an edge
connecting ˇC1 to ˇ�1 . Together, these two arcs constitute a wave-busting pair, and by
Lemma 2.9, we have that Gˇ. / does not contain a wave.

Lemma 5.7 If Wi > 1 for both i D 1; 2, then Gˇ. / does not contain a wave.

Proof If W1 > 1, then there is an arc of  emanating from ˛C1 that meets ˇ in two
consecutive inessential points of ˇ1\  which are coherently oriented. See Figure 17
(right). Such an arc contributes an edge connecting ˇC1 to ˇ�1 in Gˇ. /. Similarly,
if W2 > 1, then Gˇ. / contains an edge connecting ˇC2 and ˇ�2 , and thus Gˇ. /

contains a wave-busting pair. We conclude that Gˇ. / does not contain a wave by
Lemma 2.9.

Thus, we are left with two cases: Wi > 1 and 0 < Wj < 1 for fi; j g D f1; 2g.
Unfortunately, in both of these cases it is possible for .ˇ;  / to admit a wave based
in ˇ , and so a more sophisticated argument is required — especially since the result ˇ0

of wave surgery on ˇ no longer satisfies �.˛; ˇ0/ D 2. Hence, we must appeal to
a line of reasoning other than that involving minimal complexity C.˛; ˇ;  /. In the
remaining two lemmas, we complete the proof of Proposition 3.1 by using Lemma 4.3
to determine that .ˇ;  / is not a Heegaard diagram for S3 .

Lemma 5.8 If W1> 1 and 0<W2< 1, then .ˇ;  / is not a Heegaard diagram for S3.

Proof First, we note that .ˇ;  / contains a wave ! : Since W1 > 1, an octagonal
component O 0 of † n �.˛ [  / contains an arc ˇ� of ˇ1 , both of whose endpoints
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Figure 18: Before (left) and after (right) the surgery along the ˇ1 –wave !
in † n �.˛[  /

are inessential points of ˇ\  , such that there is an arc ! which avoids ˇ[  in its
interior, has one endpoint on ˇ� , meets ˛�2 in a single point contained in O 0 , and
continues through a rectangular component of †n�.˛[ / to meet ˇ1 in an oppositely
oriented point. See Figure 18 (left).

As depicted in Figure 18 (right), we let ˇ3 denote the new curve created by doing surgery
on ˇ1 along ! . The curve ˇ3 intersects G˛.ˇ;  / in two arcs, each having slope �1

1
.

Further, W1.ˇ3/DW1.ˇ1/�1 while W2.ˇ3/D 1�W2.ˇ2/. Let ˇ0 D fˇ2; ˇ3g. We
claim that .ˇ0;  / does not contain a wave based in  . By Lemma 5.1, each edge c

and d of G .˛/ has weight at least two, which implies that †n�.˛[ / contains two
rectangles R1 and R2 such that Ri has two opposite boundary components contained
in i . See Figure 19. Since the slope of ˇ2 is �.n˙ 1/=n, we have that ˇ2 intersects
each edge of G˛. / essentially, and thus ˇ2 meets R1 and R2 in arcs ˇ1

� and ˇ2
� . In

G .ˇ
0/, the pair fˇ1

�; ˇ
2
�g is a wave-busting pair, and thus G .ˇ

0/ does not contain a
wave by Lemma 2.9.

Now, suppose that W1.ˇ1/ > 2, so that W1.ˇ3/ > 1. In this case, as in the proof
of Lemma 5.7, there is an arc  �

3
of  which meets ˇ3 in its coherently oriented

endpoints and avoids ˇ0 in its interior. In addition, 0<W2.ˇ2/ < 1; hence there is an
arc  �

2
contained in the edge aC which meets ˇ2 in its coherently oriented endpoints

and avoids ˇ0 in its interior. See Figure 20. It follows that f �
2
;  �

3
g is a wave-busting

pair and Gˇ0. / does not contain a wave by Lemma 2.9. In this case, we conclude that
.ˇ0;  /, and therefore .ˇ;  /, is not a Heegaard diagram for S3 by Theorem 2.6.

On the other hand, suppose that 1<W1.ˇ1/ < 2, so that 0<W1.ˇ3/ < 1. In this case
the situation is considerably more complicated. Suppose (by applying  if necessary
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Figure 19: The fact that no edge in G .˛/ has weight one gives rise to a
pair of rectangles in † .˛/ (left) that in turn produce a wave-busting pair
.ˇ1
�; ˇ

2
�/ in †˛.ˇ0;  / (right). Each arc ˇi

� comes from a component of
ˇ2\Ri .

˛C1 ˛C2

ˇ2

ˇ3

 �2

 �3

Figure 20: A local view of the ˛Ci in the case that W1.ˇ3/ > 1 . In this case,
f �

2
;  �

3
g is a wave-busting pair of arcs.

and noting that  does not alter the values of W1 and W2 ) that the slope of ˇ2 is
m
n
D �.jnj � 1/=jnj. By Lemma 2.4, the curve ˇ2 has exactly k D jnj

2
� 1 essential

intersections with each arc in the edges a˙ . Consider the arc !0 connecting ˛C1
to ˛�2 in the octagon O 0 . By the symmetry of G˛.ˇ;  / under the involution J

and Lemma 5.2, if we extend !0 through ˛1 , it intersects ˛�1 between parallel arcs
corresponding to the edge a� . See Figure 21. Thus, !0 may be extended from ˛�1 and
from ˛C2 to an arc !� which avoids ˇ3 and meets ˇ2 in 2k points, where k of these
points arise from the k essential intersections of ˇ2 with aC and the other k points
arise from the intersections of ˇ2 with a� . Moreover, each intersection point of the first

Geometry & Topology, Volume 21 (2017)



Genus-two trisections are standard 1615

˛C
1

˛�1

˛C
2

˛�2

ˇ2

ˇ3

!�

1

2

p
C

1
p
C

2
p
C

3

p�
3

p�
2

p�
1

Figure 21: An example of †˛.ˇ0;  / in the case that W1.ˇ3/ < 1 , along
with the nested wave sequence !� . The slope of ˇ2 is �7

6
.

type is naturally paired with an intersection point of the second type. For this reason,
we will label the points of intersection of !� with ˇ2 as pC

1
; : : : ;pC

k
;p�

k
; : : : ;p�

1
.

We call the arc !� a nested wave sequence, because it gives rise to k successive waves.
Let !i denote the subarc of !� connecting pCi to p�i , so that !�D !1 . Let ˇ�k D ˇ2

and let ˇ0
k
D ˇ0 D fˇ�k ; ˇ3g. Observe that !k is a wave for .ˇ0

k
;  / based in ˇ�k , and

let ˇ0
k�1
D fˇ�k�1; ˇ3g be the result of doing surgery on ˇ�k along !k . Inductively,

!� gives rise a to sequence of wave surgeries: We will let ˇ0i D fˇ
�
i ; ˇ3g, where ˇ�i is

the result of doing surgery on ˇ�iC1 along the wave !iC1 for the diagram ˇ0
iC1

. See
Figure 22.

Observe that by construction, the curve ˇ�0 does not intersect the edge aC essentially;
however, for i � 1, we have that ˇ�i intersects all edges of G˛. / essentially. As
in the argument for the above case (shown in Figure 19), it follows that for i � 1,
ˇ�i intersects the rectangles R1 and R2 in a wave-busting pairs; thus G .ˇ

0
i/ does

not contain a wave by Lemma 2.9. Lemmas 2.8 and 4.2 then imply that G .ˇ
0
i/ is a

square graph, and so ˇ; ˇ0
k
; : : : ; ˇ0

1
are contained in the reducing sequence for ˇ with

respect to  guaranteed by Lemma 4.3. Therefore, G .ˇ
0
0
/ is either a square graph or

a c-graph and as such .ˇ0
0
;  / contains a wave based in ˇ0

0
.

Now, each arc of ˇ�0 has nonzero winding relative to  at both ˛�1 and ˛C2 , and so there
is an arc  �

0
that originates at the innermost inessential point of ˇ�0 \  based at ˛C2 ,
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Figure 22: The fat graph †˛.ˇ0;  / after the first wave move in !� (left)
and after all of the wave moves in !� (right). On the right, we see a pair of
wave-busting arcs f �

0
;  �

3
g .

travels through ˛2 , and extends from ˛�2 along an arc in the edge a� to meet ˇ�0 and
has coherently oriented endpoints. See Figure 22 (right). In addition, by Lemma 5.2,
the curve ˇ3 meets ˛C1 in a point between parallel arcs in the edge aC , and we have
already established that 0<Wi.ˇ3/ < 1 for i D 1; 2. Thus, there is an arc  �

3
in the

edge aC that meets ˇ3 in its coherently oriented endpoints. The pair . �
0
;  �

3
/ is a

wave-busting pair for Gˇ0
0
. /, implying that .ˇ0

0
;  / does not contain a wave based

in ˇ0
0

by Lemma 2.9, contradicting our previous assumptions. This completes the proof
of the lemma.

There is one final case to consider, which mirrors the proof of Lemma 5.8 almost
exactly, and so we give an abbreviated proof.

Lemma 5.9 If 0<W1< 1 and W2> 1, then .ˇ;  / is not a Heegaard diagram for S3.

Proof The proof in this case is virtually identical to the proof of Lemma 5.8. As above,
.ˇ;  / contains a wave based in ˇ : An arc connecting ˛C1 to ˛�2 extends to a wave !
based in ˇ2 . Let ˇ0Dfˇ1; ˇ3g be the result of surgery on ˇ along ! . If W2 > 2, then
.ˇ0;  / and thus .ˇ;  / is not a Heegaard diagram for S3 . Otherwise, we find a nested
wave sequence that gives rise to a partial reducing sequence ˇ; ˇ0

k
; : : : ; ˇ0

1
for ˇ with

respect to  , implying that .ˇ0
0
;  / contains a wave based in ˇ0

0
, where ˇ0

0
Dfˇ�0 ; ˇ3g.

The only distinction in this proof is that the roles of  �
0

and  �
3

from the proof of
Lemma 5.8 are reversed. Now,  �

0
is an arc in aC connecting coherently oriented points

of ˇ�0 whereas  �
3

runs over ˛2 to connect coherently points of ˇ3 . See Figure 23.
Of course, f �

0
;  �

3
g remains a wave-busting pair for Gˇ0

0
. /, a contradiction.

Geometry & Topology, Volume 21 (2017)



Genus-two trisections are standard 1617

˛C
1

˛�
1

˛C
1

˛�
1

˛C
1

˛�
1

˛C
2

˛�
2

˛C
2

˛�
2

˛C
2

˛�
2

ˇ1 ˇ1

ˇ1

ˇ�0

ˇ2

ˇ3

ˇ3

1 1

1

2
2

2

!

!�

 �
0

 �
3

p
C

1

p�
1

Figure 23: The case in which 0 < W1 < 1 and W2 > 1 . The wave ! (top
left), the nested wave sequence !� (top right), and the wave-busting pair
f �0 ; 

�
3 g (bottom) appear in the proof of Lemma 5.9.

We summarize the previous three sections.

Proof of Proposition 3.1 Suppose that .˛; ˇ;  / is a minimal diagram for the genus-
two trisection X DX1[X2[X3 which satisfies �.˛; ˇ/D 2, and suppose by way of
contradiction that .˛;  / is not the trivial diagram. By the minimality of .˛; ˇ;  /, the
diagram .ˇ;  / is also nontrivial. By Theorem 2.6, there are waves for both .˛;  / and
.ˇ;  /. By Lemma 3.2, .˛;  / does not contain a wave based in  , and so G˛. / is a
Type III graph, and we parametrize the two arcs of ˇ in †˛.ˇ;  / with slope m

n
. By

Lemma 3.4, we have m¤ 1. In addition, Lemma 3.6 asserts .ˇ;  / does not contain
a wave based in  ; therefore, it must have a wave based in ˇ , and so w .b/D 0 in
G˛. / by Lemma 3.7.
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Figure 24: An example of †˛.ˇ;  / in which the ˇ–arcs have slope 1
4

, and
the winding numbers W1 and W2 are both zero

Lemma 3.8 then implies that m
n

must be �.n˙1/=n, the case dealt with in this section.
Concerning the winding numbers W1 and W2 of ˇ with respect to  , Lemmas 5.4, 5.5,
5.6 and 5.7 yield that Wi > 1 and 0<Wj < 1 for fi; j g D f1; 2g. However, Lemmas
5.8 and 5.9 show that, in these two cases, .ˇ;  / is not a Heegaard diagram for S3, a
contradiction. We conclude that .˛;  / must be the trivial diagram.

6 The case in which �.˛; /D 2

Proposition 3.1 reveals that a minimal trisection diagram .˛; ˇ;  / for a .2; 0/–trisection
satisfies �.˛; ˇ/D �.˛;  /D 2. In this section, we show that, in addition, �.ˇ;  / must
also equal 2, which will complete the proof of the main theorem. The strategy is to
consider the graph †˛.ˇ;  /, in which each of curve in ˇ[  contributes a single arc,
and the slopes of ˇ–arcs agree and the slopes of the  –arcs agree. We may suppose
without loss of generality that the  –arcs have slope 1

0
and that the ˇ–arcs have

slope m
n

, where m is odd and n is even. Although this choice is somewhat nonstandard
(it seems more natural to let slopes of  –arcs vary) this convention allows us to import
techniques from Section 5 more consistently. We will orient ˇ and  so that oriented
arcs in †˛.ˇ;  / originate in ˛�i and terminate in ˛Ci , as shown in Figure 24.

Recall the homeomorphisms ' and '�1 of †˛ defined in Section 2 and given by

M' D

�
1 1

0 1

�
and M'�1 D

�
1 �1

0 1

�
:

Note that these homeomorphisms preserve  setwise but exchange ˛C2 and ˛�2 , which
results in a reversal of orientations of ˇ2 and 2 . When we apply such a homeomor-
phism, we will always relabel vertices and reorient the curves in ˇ and  to match the
conventions given above. See Figure 25.

Geometry & Topology, Volume 21 (2017)



Genus-two trisections are standard 1619

˛C
1

˛C
2

˛�1 ˛�2

˛C
1

˛C
2

˛�1 ˛�2

˛C
1

˛C
2

˛�1 ˛�2

ˇ1

ˇ1

ˇ1
ˇ2 ˇ2 ˇ21

1 1
2

2

2

Figure 25: An example of †˛.ˇ;  / (left) and the effects of the homeomor-
phisms '�1 (middle) and H ı'�1 (right)

Lemma 6.1 The slope m
n

for ˇ may be chosen so that �1
2
< m

n
�

1
2

.

Proof Observe that '˙1 preserves  and takes the slope m
n

of ˇ to .m˙n/=n. Since
there exists an integer m0 such that �n

2
<m0 � n

2
and m0 �m mod n, we may map

ˇ–arcs to arcs of slope m0

n
by repeated applications of either ' or '�1 , as desired.

As in previous sections, we will systematically rule out various configurations of ˇ
and  in †˛ until the only remaining cases are the ones in which �.ˇ;  /D 2, shown
in Figure 2.

Lemma 6.2 If m> 1, then .ˇ;  / is not a Heegaard splitting of S3 .

Proof We will show that there are wave-busting arcs contained in both ˇ and  ,
implying that .ˇ;  / does not contain a wave. By applying the horizontal reflection H

if necessary, we may suppose without loss of generality that �1
2
< m

n
< � 1

jnj
. Then,

m
n
¤�.n˙ 1/=n and by hypothesis, m> 1. Thus, by an argument identical to that of

Lemma 3.8, there exists a wave-busting arc  � � 1 for .ˇ;  / whose endpoints q1

and q2 are oppositely oriented points in ˇ1\1 . However, in this situation, q1 and q2

also cobound an arc ˇ�1 � ˇ1 which meets 2 in a single point, so that ˇ�1 is a wave-
busting arc for .ˇ;  /. See Figure 26 (left). By Lemma 2.9, neither Gˇ. / nor G .ˇ/

contains a wave, and thus .ˇ;  / is not a Heegaard diagram for S3 by Theorem 2.6.

We will assume for the remainder of the section that m D 1. As in Section 5, for
simplicity we will isotope ˇ so that all inessential intersections of ˇ and  are based
in ˛C1 and ˛C2 , and we define the winding Wi of ˇi relative to i at ˛i as above. The
main difference in this case is that �.˛i ;  /D 1, so Wi is a (signed) integer.

Lemma 6.3 If jWi j>1 for both iD1; 2, then .ˇ;  / is not a Heegaard splitting of S3.
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Figure 26: On the left, we see the wave-busting arcs ˇ�1 and  � that exist
when m > 1 . On the right, we see the wave-busting pairs fˇ�1 ; ˇ

�
2g and

f �1 ; 
�
2 g that exists when both windings are large.

Proof If jWi j > 1, then there is an arc  �i � i which meets ˇi in its coherently
oriented endpoints and avoids ˇ in its interior. See Figure 26 (right). Thus, . �

1
;  �

2
/

is a wave-busting pair and Gˇ. / does not contain a wave by Lemma 2.9. Let p1;p2

denote the endpoints of  �
1

and q1; q2 denote the endpoints of  �
2

. Note that there
are arcs ˇ�1 � ˇ1 and ˇ�2 � ˇ2 which have endpoints p1;p2 and q1; q2 , respectively,
and which avoid  in their interiors. Thus, .ˇ�1 ; ˇ

�
2 / is also wave-busting pair, and we

conclude that .ˇ;  / does not contain a wave and, as such, is not a Heegaard splitting
of S3 .

Recall from Section 3 the definition of the 0–replacement for a set of curves ı such
that †˛.ı/ contains two arcs of slope 1

n
.

Lemma 6.4 Suppose W2 D 0. If ˇ3 and 3 are the 0–replacements for ˇ and  ,
respectively, then �.ˇ2; 3/ D �.ˇ3; 2/ D 1. In addition, if W1.ˇ1/ � 2, then
�.ˇ3; 3/DW1.ˇ1/� 2.

Proof The fact that �.ˇ2; 3/ D �.ˇ3; 2/ D 1 is clear from Figure 27. Suppose
W1 � 2. Isotope ˇ1 so that all of the inessential intersections of ˇ1 and 1 are based
at ˛�1 . Then ˇ3 , isotoped to remain disjoint from ˇ1 , has precisely W1�2 inessential
intersections with 3 , all of which are based at ˛�1 . See Figure 27.

Finally, we use the techniques developed up to this point to prove that if .˛; ˇ;  / is a
minimal trisection diagram, then each Heegaard diagram .˛; ˇ/, .˛;  / and .ˇ;  / is
standard, from which the main theorem follows.
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Figure 27: The 0–replacement for ˇ and  in the case that W2 D 0 and
W1 D 3 . The curve ˛3 is suppressed for clarity; cf Figure 28.

Theorem 6.5 Suppose that .˛; ˇ;  / is a minimal diagram for a .2; 0/–trisection
X DX1[X2[X3 . Then �.˛; ˇ/ D �.˛;  / D �.ˇ;  / D 2, and .˛; ˇ;  / is homeo-
morphic to one of the standard diagrams pictured in Figure 2.

Proof By Proposition 3.1, if .˛; ˇ;  / is minimal, then �.˛; ˇ/D �.˛;  /D 2. It only
remains to show that �.ˇ;  /D 2. We may assume that in G˛.ˇ;  /, the two  –arcs
have slope 1

0
, and by Lemmas 6.1 and 6.2, the two ˇ–arcs have slope 1

n
for some

even n. Additionally, by Lemma 6.3, we may assume without loss of generality that
jW2j � 1.

First, suppose that jnj � 4. If n< 0, we may apply the horizontal reflection H ; hence,
we assume that n > 0. By Lemma 2.4, we have ˇi \ i contains n

2
� 1 essential

intersections, and ˇi \ j contains n
2

essential intersections for i ¤ j . Choose
orientations on ˇ and  so that all essential intersections are coherently oriented.
Since n � 4, each of ˇ1 and ˇ2 intersects both 1 and 2 essentially. This implies
that Gˇ. / contains an edge connecting ˇC1 to ˇC2 and G .ˇ/ contains an edge
connecting C

1
to C

2
. If ˇ1\1 contains an inessential point of intersection which is

oriented opposite the essential intersections, then there is an arc ˇ�1 �ˇ1 connecting an
inessential point of ˇ1\ 1 and an essential point of ˇ1\ 2 . Thus, G .ˇ/ contains
an edge connecting C

2
to �

1
, and, by the arguments in Lemma 2.9, G .ˇ/ does not

contain a wave. Similarly, 1 contains an arc connecting an inessential point of ˇ1\1

to an essential point of ˇ2 \ 1 , thus Gˇ. / does not contain a wave by the same
reasoning. A parallel argument shows that if ˇ2\2 contains an inessential intersection
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oriented opposite the essential intersections, then neither G .ˇ/ nor Gˇ. / contains a
wave, so by Theorem 2.6, .ˇ;  / is not a Heegaard diagram for S3 .

Therefore, we may assume that all points of ˇ \  are coherently oriented, so that
Wi � 0 for i D 1; 2 and .ˇ;  / is a positive Heegaard diagram. If W2 D 1, then
�.ˇ2; 1/D �.ˇ2; 2/D

n
2
> 1. But this implies that n

2
divides det.M.ˇ;  //, so that

M.ˇ;  /¤ S3 by Lemma 2.1, a contradiction. It follows that W2 D 0.

A similar argument shows that W1 ¤ 1. If W1 � 2, let a be a seam of slope 0
1

, let
˛3 D�a , and let ˇ3 and 3 be the 0–replacements for ˇ and  , respectively, as in
Figure 27. In addition, let ˛0 D f˛1; ˛3g, ˇ0 D fˇ2; ˇ3g and  0 D f2; 3g, so that
�.˛0; ˇ0/D �.˛0;  0/D 2. Using Lemma 6.4, we compute

�.ˇ0;  0/D �.ˇ2; 2/C �.ˇ2; 3/C �.ˇ3; 2/C �.ˇ3; 3/

D

�
n

2
� 1

�
C 1C 1CW1.ˇ1/� 2

D
n

2
CW1.ˇ1/� 1:

In addition, we have

�.ˇ;  /D �.ˇ1; 1/C �.ˇ1; 2/C �.ˇ2; 1/C �.ˇ2; 2/

D

�
n

2
� 1CW1.ˇ1/

�
C

n

2
C

n

2
C

�
n

2
� 1

�
D 2nCW1.ˇ1/� 2:

By the minimality of .˛; ˇ;  /, we have

(3) 2nCW1.ˇ1/� 2�
n

2
CW1.ˇ1/� 1;

and thus n� 2
3

, a contradiction.

The only remaining possibility in this case is that W1 D 0. However, this implies that
the intersection matrix of .ˇ;  / is

M.ˇ;  /D

�
n
2
� 1 n

2
n
2

n
2
� 1

�
:

By Lemma 2.1, we have jdet.M.ˇ;  //j D jn � 1j D 1, and so n D 0 or n D 2,
contradicting the assumption that n� 4.

Now suppose that nD 2. In this case, intersection matrix for .ˇ;  / is

M.ˇ;  /D

�
W1 1

1 W2

�
:
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Figure 28: The 0–replacements in the cases where the slope of the ˇ–arcs
is 1

2
and either W1 D 2 and W2 D 1 (left) or W1 D 1 and W2 D 0 (right)

It follows from Lemma 2.1 that W1W2 D 2 or W1W2 D 0. We may observe that if
W1;W2 � 0, we may replace ˇ and  with curves having the same slopes in †˛ and
nonnegative winding by applying Hı'�1 to †˛ . See Figure 25. Thus, suppose first that
W2 D 1, so that W1 D 2. In this case, there is a sequence of handle slides that reduces
complexity. To see this, let a be a seam of slope 0

1
, let ˛3 D�a , and let ˇ3 and 3

be the 0–replacements for ˇ and  , respectively, as in Figure 28 (left). In addition, let
˛0 D f˛1; ˛3g, ˇ0 D fˇ2; ˇ3g and  0 D f2; 3g. Then, �.˛0; ˇ0/D �.˛0;  0/D 2, but
�.ˇ0;  0/D �.ˇ;  /�3D 2. It follows that the C.˛0; ˇ0 0/ < C.˛; ˇ;  /, a contradiction.

In the other remaining case, suppose that W2 D 0. If W1 � 2, we note that Inequality
(3) is true in this case as well, and thus n� 2

3
by above arguments, a contradiction. If

W1 D 1, then as above we perform handle slides in ˛ , ˇ and  to reduce complexity:
Let a be a seam of slope 0

1
, let ˛3 D�a , and let ˇ3 and 3 be the 0–replacements

for ˇ and  , respectively, as in Figure 28 (right). In this case, the handle slides are
slightly different than above; let ˛0Df˛2; ˛3g, ˇ0Dfˇ1; ˇ3g and  0Df1; 3g. Then
�.˛0; ˇ0/D �.˛0;  0/D 2, but �.ˇ0;  0/D �.ˇ;  /� 1D 2, contradicting that .˛; ˇ;  /
is minimal. The only remaining case when nD 2 is that W1 DW2 D 0; thus .˛; ˇ;  /
is the standard diagram in Figure 2 (top) (with ˇ and  reversed).

Finally, suppose that nD 0, so that both the ˇ and the  arcs have the same slope. In
this case,

M.ˇ;  /D

�
W1 0

0 W2

�
;

and thus W1;W2 D˙1 by Lemma 2.1. It follows that .˛; ˇ;  / is homeomorphic to
one of the standard diagrams in Figures 2 (middle) and (bottom). (If W1 DW2 D�1,
then apply H to recover Figure 2 (middle).)
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7 Cosmetic surgery, trisections and exotic 4–manifolds

In the final section, we complete the proof of Theorem 1.3 by proving Proposition 7.3.
We also explain and prove Corollary 1.4.

Let L D K1 [ � � � [Kn be an n–component link in a compact 3–manifold Y and
let Ti denote @�.Ki/ in the exterior YL of L, where YL D Y n �.L/. Suppose E�D
.�1; : : : ; �n/ is a framing on L; that is, each �i is a boundary slope in Ti . Let YE�.L/

denote the 3–manifold obtained by Dehn surgery on L with slope E� . We will discuss
surgeries having the property that YE�.L/Š Y . Clearly, Y.1=0;:::;1=0/.L/D Y , and so
this case is completely uninteresting. However, surgeries with the property YE�.L/Š Y

and �i 6D
1
0

for all i are quite uncommon, and we call such a surgery cosmetic.

Now, suppose that X is a closed 4–manifold admitting a .g; k/–trisection. Then X

has a handle decomposition consisting of one 0–handle, k 1–handles, g�k 2–handles,
k 3–handles and one 4–handle. Let X .i/ denote the union of the handles of index
at most i . By [14], there is a unique way to attach the union of 3–handles and the
4–handle to the boundary of X .2/ , so @X .1/ Š @X .2/ Š #k.S1 �S2/. Let L denote
the union of the attaching circles of the 2–handles. Then @X .2/ is obtained from
surgery on L in @X .1/ , and thus L is a .g�k/–component link in #k.S1�S2/ with
a cosmetic surgery.

We use this set-up to conclude our analysis of genus-two trisections.

7.1 .2 ; 1/–trisections are standard

If X admits a .2; 1/–trisection, then X has a decomposition with one 1–handle,
one 2–handle and one 3–handle. The 2–handle, call it h, is attached along a knot
L in S1 � S2 , the framing of h gives a cosmetic surgery slope for L in S1 � S2 .
However, by work of Gabai, S1�S2 admits no nontrivial cosmetic surgeries [5]. More
specifically, we have the following theorem.

Theorem 7.1 [5] Suppose L is a knot in S2 �S1 with a cosmetic surgery. Then L

is a .˙1/–framed unknot.

A Heegaard splitting of a compact 3–manifold Y with boundary is a decomposition
of Y as C1 [† C2 , where C1 and C2 are compression bodies. We will require the
following generalization of Haken’s lemma.

Lemma 7.2 [10] Let Y be a compact 3–manifold with a Heegaard splitting Y D

C1[† C2 , and suppose that D is a properly embedded disk in Y . Then there exists a
disk D0 � Y such that @D0 D @D and D0\† is a single simple closed curve.
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For two distinct trisections (of arbitrary genus) X 0 D X 0
1
[ X 0

2
[ X 0

3
and X 00 D

X 00
1
[X 00

2
[X 00

3
, there is a natural trisection of the connected sum X 0 #X 00 . The easiest

way to see this is to take the connected sum of trisection diagrams .†0; ˛0; ˇ0;  0/ and
.†00; ˛00; ˇ00;  00/, which yields an induced trisection diagram

.†0 #†00; ˛0[˛00; ˇ0[ˇ00;  0[  00/

for the natural trisection of X 0 # X 00 . Note that the induced diagram has the property
that there is a separating curve in †D†0 #†00 which bounds a compressing disk in
each of the three 3–dimensional handlebodies determined by the three sets of attaching
curves. In this case we call the trisection reducible. Conversely, if X DX1[X2[X3

is a reducible trisection, then it can be written as the connected sum of trisections of
4–manifolds X 0 and X 00 such that X DX 0 # X 00 . For more details, see [6].

In the following proposition, we show that every .2; 1/–trisection is reducible, and, as
such, can be written as the connected sum of a .1; 0/– and a .1; 1/–trisection. Since
the only X 0 admitting a .1; 0/–trisection are CP2 and CP2 , the only X 00 admitting
a .1; 1/–trisection is S1 �S3 , and the genus-one trisections of these manifolds are
unique up to diffeomorphism [6], this completes the classification of .2; 1/–trisections.

Proposition 7.3 Every .2; 1/–trisection is reducible.

Proof Let X D X1 [X2 [X3 be a .2; 1/–trisection with trisection surface †. As
described above, X admits a handle decomposition with one 1–handle, one 2–handle
which we will call h and one 3–handle. Let Y D @X1 D @X .1/ Š S2 � S1 . By
Lemma 13 of [6], there is a trisection diagram .˛; ˇ;  / for the trisection so that
.˛; ˇ/ is a Heegaard diagram for Y Š S2�S1 , the Heegaard diagram .˛;  / satisfies
�.˛1; 1/D 1 and ˛2 D 2 , and h is attached to Y along 1 with framing given by
the surface framing of 1 in †.

Let H12DX1\X2 and H13DX1\X3 be the 3–dimensional handlebodies determined
by ˛ and ˇ , respectively, so that H23 DX2\X3 is the handlebody determined by  .
We will show that there is a separating curve ı �† which bounds a disk in each of
H12 , H13 and H23 . By Theorem 7.1, 1 bounds a disk in Y DH12[† H13 , and 1

has surface framing ˙1 in †. Since �.˛1; 1/D 1 and ˛1 bounds a disk in H12 , a
positive or negative Dehn twist of 1 about ˛1 yields a curve ˇ� which has surface
framing zero and is isotopic in H12 to 1 . Note that ˇ� is also isotopic to a core
of H12 and that �.˛1; ˇ�/D �.1; ˇ�/D 1.

Since ˇ� is a 0–framed unknot in †, there is an embedded disk D � Y such that
@DDˇ� and a collar neighborhood of @D is disjoint from †. Let D0 be the image of D

under an isotopy which pushes ˇ� slightly into the interior of H12 , and let ˇ0 D @D0 .
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Figure 29: Three pictures of T1[ (1–handle) showing wave moves taking
˛1 and 1 to ˛0 and 0

Then ˇ0 is a core of H12 and C DH12 n �.ˇ
0/ is a compression body. In addition,

let T D @�.ˇ0/, so that D n �.ˇ0/ is a compressing disk for Y n �.ˇ0/ with boundary
in T . Then Y n �.ˇ0/D C [† H13 is a Heegaard splitting satisfying the hypotheses
of Lemma 7.2. It follows that there is a disk D0 properly embedded in Y n �.ˇ0/ such
that @D0 DD0\T and such that D0 intersects † in a single simple closed curve ˇ0 .
This implies that ˇ0 bounds a disk in H13 .

The compression body C may be viewed as the union of product neighborhood T �I ,
where T D T � f0g, and a three–dimensional 1–handle attached along T1 D T � f1g

whose cocore is a disk bounded by ˛2 in H12 . By construction, there are annuli
A0 �D0 \C and A0 �D0 \C such that the boundary of A0 in T agrees with the
boundary of A0 in T , while @A0\†D ˇ� and @A0\†D ˇ0 . Moreover, since T is
incompressible in C , these annuli are incompressible. By a standard innermost disk and
outermost arc argument, each annulus may be isotoped into T � I so that it is vertical
with respect to the product structure T � I . It follows that, after isotopy, ˇ� and ˇ0

are disjoint and thus isotopic in T1 , although (depending on where the 1–handle is
attached) ˇ� and ˇ0 may not be isotopic in †D @CC . See Figure 29 (left).

Since ˇ� is the result of Dehn twisting 1 around ˛1 , we have �.˛1[ˇ�/D�.˛1[1/.
The same may not be true for ˛1 and 1 with respect to ˇ0 ; in fact, it is possible that
�.˛1; ˇ0/; �.1; ˇ0/ > 1. See Figure 29 (left). However, there are curves ˛0 and 0

isotopic to ˛1 and 1 in T1 such that �.˛0; ˇ0/D �.˛0; 0/D �.ˇ0; 0/D 1 and ˇ0

is the result of Dehn twisting 0 around ˛0 . Moreover, by virtue of this isotopy, there
is a sequence of handle slides over ˛2 taking ˛1 to ˛0 . Likewise, there is a sequence
of handle slides over 2 D ˛2 taking 1 to 0 , as in Figure 29 (middle) and (right).
We conclude that ˛0 , ˇ0 and 0 bound disks in the handlebodies determined by ˛ , ˇ
and  .

Let ıD @�.˛0[ 0/. Since ˛0 bounds a disk ��H12 , we have that ı bounds a disk
in H12 consisting of two copies of � banded together along 0 . A similar argument
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shows that 0 bounding a disk in H23 implies that ı bounds a disk in H23 as well.
Finally, we note that ı is also equal to @�.˛0[ˇ0/. Thus, since ˇ0 bounds a disk
in H13 , the separating curve ı also bounds a disk in H13 . It follows that the trisection
is reducible, completing the proof.

7.2 Cosmetic 3–sphere surgeries and exotic 4–manifolds

Although neither S3 nor S2�S1 admits a cosmetic surgery on a knot L, the situation is
quite different when L is a 2–component link, leading to the following natural question.

Question 7.4 Which 2–component links in a 3–sphere admit a nontrivial cosmetic
Dehn surgery?

Suppose that L � S3 is such a link, so that L.�1; �2/ Š S3 . If �1; �2 2 Z, then
there is an associated closed 4–manifold X obtained by first attaching .�i/–framed
4–dimensional 2–handles to B4 along L � S3 D @B4 , and next capping off the
resulting 3–sphere with a 4–dimensional 4–handle. Since X is simply connected,
a theorem of Whitehead tells us that the homotopy type of X is determined by the
symmetric, bilinear intersection form QX . See [8] for complete details. Since X is
closed, QX is unimodular, and since b2.X /D 2, there are only three choices:

QX 2

��
1 0

0 1

�
;

�
1 0

0 �1

�
;

�
0 1

1 0

��
:

By Freedman and Quinn [3; 4], it follows that X is homeomorphic to either S2 �S2 ,
CP2 # CP2 or CP2 # CP2 . Thus, one way to look for an exotic simply connected
4–manifold X with b2.X /D 2 is to limit the search to those X arising from a cosmetic
surgery on a 2–component link L� S3 .

A 2–component link L in S3 is tunnel number one if there is an embedded arc a�S3

such that a intersects L only in its endpoints and S3n�.L[a/ is a handlebody. In this
case, †D @�.L[ a/ is a genus-two Heegaard surface for S3 , and for every integral
slope E� , there is an isotopy of L into † so that E� is the surface framing of L in †.
In this setting, we can apply the results of Theorem 1.3 to place restrictions on such
a link.

Lemma 7.5 Let .†; ˛; ˇ/ be a genus-two Heegaard diagram for S3 , let  be a cut
system for † with surface framing E� , and let L be the 2–component link in S3

determined by  . Then .†; ˛; ˇ;  / is a .2; 0/–trisection diagram if and only if
L. E�/Š S3 .
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Proof Let S3 DH˛ [† Hˇ be the Heegaard splitting determined by .†; ˛; ˇ/, and
note that we may construct L. E�/ by first gluing two 3–dimensional 2–handles to H˛

along  to get a compact 3–manifold H˛. / and gluing two 3–dimensional 2–handles
to Hˇ along  to get Hˇ. /, followed by attaching H˛. / to Hˇ. / along their
common 2–sphere boundary. In addition, H˛. / is a 3–ball if and only if .†; ˛; ˇ/
is a Heegaard diagram for S3 , and a similar statement holds for Hˇ. /. Finally,
L. E�/ D H˛. / [Hˇ. / Š S3 if and only if both H˛. / and Hˇ. / are 3–balls,
completing the proof.

Proof of Corollary 1.4 Suppose that L is tunnel number one and L admits a cosmetic
Dehn surgery with integral slope E� . Then L is a 2–component link which may be
isotoped into a genus-two Heegaard surface † for S3 so that the surface framing
of L in † is E� . Now .†; ˛; ˇ;L/ is a .2; 0/–trisection diagram by Lemma 7.5, so by
Theorem 1.3 there is a series of handle slides on ˛ , ˇ and L taking .˛; ˇ;L/ to one
of the standard diagrams pictured in Figure 2. It follows that there is a series of handle
slides on L contained in the surface † that converts L to a .˙1/–framed unlink or a
0–framed Hopf link.

There is much active research devoted to finding exotic simply connected 4–manifolds
with small b2 . This corollary can be viewed as a lower bound of sorts on the complexity
of link surgery descriptions of such manifolds. In particular, we see that such an exotic
manifold cannot be obtained by surgery on a tunnel number one link.

Finally, we remark that this corollary may be compared to the generalized property R
conjecture for two-component links, which states that if a 2–component link L has a 0–
framed #2.S1�S2/ surgery, then there is a series of handle slides converting L to the
0–framed unlink. See [7] for further details. For both the corollary and the conjecture,
the statements involve taking a link L with a specified surgery and converting it to an
obvious canonical example or examples with the same surgery via handle slides. For
more details, see [17].
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