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The higher Morita category of [£,—algebras

RUNE HAUGSENG

We introduce simple models for associative algebras and bimodules in the context
of nonsymmetric co—operads, and use these to construct an (oo, 2)—category of
associative algebras, bimodules and bimodule homomorphisms in a monoidal co—
category. By working with oo—operads over A™ we iterate these definitions and
generalize our construction to get an (oo, n+1)—category of [E, —algebras and iterated
bimodules in an E,-monoidal co—category. Moreover, we show that if C is an
E, +x—monoidal co—category then the (oo, n+1)—category of E, —algebras in C has
a natural Ex —monoidal structure. We also identify the mapping (oo, n)—categories
between two [, —algebras, which allows us to define interesting nonconnective
deloopings of the Brauer space of a commutative ring spectrum.

18D50, 55U35; 16D20

1 Introduction

The goal of this paper is to construct higher categories of [E, —algebras and their iterated
bimodules, using a completely algebraic or combinatorial approach to these objects,
and establish some of their basic properties. Our construction is motivated by the
interesting connections of these higher categories to topological quantum field theories,
and a notion of “higher Brauer groups” that can be extracted from them. We will
discuss these potential applications, both of which we intend to explore further in future
work, after summarizing the main results of the present paper.

1.1 Summary of results

If C is a monoidal category, then the associative algebra objects! in C and their
bimodules form a bicategory 2lg; (C). More precisely, this bicategory has

e associative algebras in C as objects,

e A-B-bimodules in C as 1-morphisms from A4 to B,

e bimodule homomorphisms as 2—morphisms,

LAlso commonly called associative monoids, but we will reserve the term monoid for the case when
the tensor product in C is the cartesian product.

Published: 10 May 2017 DOI: 10.2140/gt.2017.21.1631


http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=18D50, 55U35, 16D20
http://dx.doi.org/10.2140/gt.2017.21.1631

1632 Rune Haugseng

with composition of 1-morphisms given by taking tensor products: if M isan A-B-
bimodule and N is a B—C —bimodule then their composite is M ® p N with its natural
A-C -bimodule structure. Moreover, if C is a symmetric monoidal category, such
as Modg for R a commutative ring, then 2Alg;(C) inherits a symmetric monoidal
2 When R is a commutative ring, this symmetric monoidal bicategory
lg; (Modg) organizes a wealth of interesting algebraic information — for example,
two R-algebras are equivalent in 2lg; (Modg) precisely when they are Morita equiva-
lent, ie have equivalent categories of modules.

structure.

Since all the concepts involved have derived analogues, it is reasonable to expect that
there is a derived or higher-categorical version of the bicategory 2lg; (Modg), based
on chain complexes of R—modules up to quasi-isomorphism. More generally, it should
be possible to allow R to be a differential graded algebra— or even a ring spectrum,
with chain complexes replaced by R—modules in spectra up to stable weak equivalence.

In this paper we will indeed construct such generalizations of the bicategory of algebras
and bimodules. However, the coherence issues that must be solved to define these seem
intractable from the point of view of classical (enriched) category theory. To avoid this
problem, we instead work in the setting of co—categories.

Roughly speaking, an co—category (or (0o, 1)—category) is a structure that has objects
and morphisms like a category, but also “homotopies” (or invertible 2—morphisms)
between morphisms, “homotopies between homotopies” (or invertible 3—morphisms),
and so on. The morphisms can be composed, but the composition is not strictly
associative, only associative up to a coherent choice of (higher) homotopies. Using
homotopy theory there are a number of ways of making this idea precise in such a
way that one can actually work with the resulting structures; we will make use of the
theory of quasicategories as developed by Joyal and Lurie [28], which is by far the
best-developed variant.

Similarly, one can consider (oo, n)—categories for n > 1; these have i —morphisms
for all i that are required to be invertible when i > n, and are thus the “oco—version”
of n—categories. We will encounter them in the guise of Barwick’s n—fold Segal
spaces [9], which we will review below in Section 3.3.

In this higher-categorical setting there is a natural notion of a monoidal co—category,
ie an oo—category equipped with a tensor product that is associative up to coherent

2 Although it is intuitively clear that the tensor product on C induces such a symmetric monoidal
structure, this seems to have been completely defined only quite recently by Shulman [39], following a
construction of a braided monoidal structure by Garner and Gurski [15]. Considering the difficulty of even
defining symmetric monoidal bicategories in full generality, this is perhaps not entirely unsurprising — see
Schommer-Pries [37, Section 2.1] for a discussion of the history of such definitions.
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The higher Morita category of E,—algebras 1633

homotopy. Our first main result, which we will prove in Section 4, is a construction of
an (0o, 2)—category 2lg; (C) of algebras, bimodules, and bimodule homomorphisms
in any monoidal co—category C that satisfies some mild technical assumptions.

In the co—categorical setting it is also natural to ask how this structure extends to
E,,—algebras. In the context of ordinary categories, an object equipped with two
compatible associative multiplications is a commutative algebra. When we pass to
higher categories, however, this is no longer true. The most familiar example of this
phenomenon is iterated algebras in the 2—category of categories —if we consider
associative algebras in the appropriate 2—categorical sense, these are monoidal cate-
gories; categories with two compatible monoidal structures are then braided monoidal
categories, and ones with three or more monoidal structures are symmetric monoidal
categories. In general, objects with k compatible associative algebra structures in an
n—category are commutative algebras for k > n — this is a form of the Baez—Dolan
stabilization hypothesis;? in other words, in an n—category compatible associative
algebra structures give n + 1 different algebraic structures. For an co—category, then,
objects equipped with multiple compatible multiplications give an infinite sequence
of algebraic structures lying between associative and commutative algebras, namely
the E,—algebras for n = 1, 2,....% In particular, we can consider [E,—algebras in
the co—category Caty, of oco—categories, which gives the notion of E,—monoidal
oo—categories, ie co—categories equipped with n compatible tensor products.

The general version of our first main result, which we will prove in Section 5.3, is
then a construction of (0o, n+1)—categories of [, —algebras in any nice E, —monoidal
oco—category:

Theorem 1.1 Let C be a nice E,—monoidal co—category. Then there exists an
(00, n+1)—category 2lg,,(€) whose objects are E; —algebras in C, with 1 -morphisms
given by E,_j —algebras in bimodules in C, 2—morphisms by E,_,—algebras in bi-
modules in bimodules in €, and so forth.

Here the precise meaning of “nice” amounts to the existence of well-behaved relative
tensor products over algebras in C, which is needed to have well-defined compositions
in these higher categories. For example, we can take € to be the (symmetric monoidal)
oo—category Modg of modules over a commutative ring spectrum R or the “derived
oo—category” Do (R) of modules over an associative ring R, obtained by inverting
the quasi-isomorphisms in the category of chain complexes of R—modules. (More

3See Lurie [31, Corollary 5.1.1.7] for a proof of this statement.
4The Dunn—Lurie additivity theorem [31, Theorem 5.1.2.2] says that this iterative definition agrees
with the classical definition in terms of configuration spaces of little discs in R”.
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1634 Rune Haugseng

generally, we can consider the analogous localization of the category of dg-modules
over a dg-algebra R.)

If € is a symmetric monoidal co—category, we will also show that 2Alg,, (C) inherits
a symmetric monoidal structure. More precisely, our second main result (proved in
Section 5.4) is as follows:

Theorem 1.2 If C is a nice E,, 4, —monoidal co—category, then the (co,n+1)—
category g, (C) inherits a natural E,, —monoidal structure.

Finally, our third main result, which we prove in Section 5.5, explains how the
(00, n+1)—categories 2lg,, (C) are related for different n:

Theorem 1.3 Suppose C is a nice E,, —monoidal co—category. Then for any E, —
algebras A and B in C, the (0o, n)—category 2lg,, (C)(A, B) of maps from A to B
is equivalent to 2Alg,_;(Bimodg, g (C)), where Bimody, g (C) is the co—category of
A-B—-bimodules in C equipped with a natural E,,_; —monoidal structure. In particular,
if I is the unit of the monoidal structure then 2Ulg,, (C)({, ) ~ 2Alg,_1(C).

1.2 Higher Brauer groups

If C is a symmetric monoidal category, we say that an object X € C is invertible if
there exists another object X ™! such that X ® X! is isomorphic to the identity; by
considering the homotopy 1—category this gives a notion of invertible objects in any
symmetric monoidal (oo, n)—category.
In particular, if R is a commutative ring then the invertible objects of 2lg; (Modg) are
those associative R—algebras A that have an inverse A~! in the sense that A @ g A1
is Morita equivalent to R —these are precisely the Azumaya algebras over R. By
considering these invertible objects and the invertible 1— and 2—morphisms between
them we obtain a symmetric monoidal 2—groupoid Br;(R) with very interesting
homotopy groups:

e 79Bri(R), ie the set of isomorphism classes of objects in Bty (R), is the

classical Brauer group of Azumaya R-algebras.
e 71Bt1(R) is the Picard group of invertible R-modules.
o m%Br1(R) is the group R* of multiplicative units in R.

Moreover, the “loop space” QBt1(R) = Br1(R)(R, R) is the Picard groupoid of
invertible R—modules and isomorphisms.

Using the results of this paper, we can also consider the invertible objects in g, (C)
for any suitable symmetric monoidal co—category €. Restricting to the invertible i —
morphisms between these for all 7, we get a symmetric monoidal co—groupoid B, (C),
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or equivalently an [Eoo—space; we will call this the n—Brauer space of C. It is evident
from the definition of the invertible objects that this [E,—space is grouplike, ie the
induced multiplication on 7yBt, (€) makes this monoid a group, and so it corresponds
to a connective spectrum.

It follows immediately from Theorem 1.3 that the loop space Q2Bt,(C) is equivalent
to Br,—1(C). Thus the n—Brauer spaces Bt,(C) are a sequence of deloopings, and
so we can combine these spaces into a nonconnective “Brauer spectrum” B9R(C) with

7_kBR(C) = w1, Br,(C) for n>k.
If R is a commutative ring spectrum, the “n—Brauer groups”
Br,(R) := n_,BR(Modr) = moBt, (Modpg)

can be thought of as consisting of the [E, —analogues of (derived) Azumaya algebras,
considered up to an [E, —variant of Morita equivalence. In particular:

e For n =1 we recover the Brauer groups of commutative ring spectra and the de-
rived Brauer groups of commutative rings, as studied by Toén [41], Szymik [40],
Baker, Richter and Szymik [8], Antieau and Gepner [2] and others.

e For n =0 we recover the Picard group of invertible R—modules, as studied by
Hopkins, Mahowald and Sadofsky [20], May [33], Mathew and Stojanoska [32]
and others.

The “negative Brauer groups” (ie the positive homotopy groups of B (Modg)) are
also easy to describe: for * < 0 we get the homotopy groups of the units of R, ie
Br«(R) = m1—«(Q° R>), where Q°° R denotes the components of 2°° R lying over
the units in o R; for * < —1 we thus have Br«(R) = m1—«(R).

A fascinating question for future research is whether the spaces ‘Bt,(R) for R a
(connective) commutative ring spectrum satisfy étale descent in the same way as the
Brauer spaces Bt (R) (as proved by Toén [41] and Antieau and Gepner [2]).

If the étale-local triviality results of the same authors for Bt (R) also extend to n > 1,
it should be possible to use the resulting descent spectral sequence to compute the
higher Brauer groups in some simple cases. In fact, this would imply that the higher
Brauer groups are closely related to étale cohomology; generalizing the known results
for n =1 and 0 one might optimistically conjecture that in general

Bru(R) = HE(R; Z) x HETY(R; Gp),

where the first factor occurs since we are considering nonconnective R-modules (or
chain complexes of R—modules that are not required to be 0 in negative degrees).
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1.3 Topological quantum field theories

Topological quantum field theories (or TQFTs) were introduced by Atiyah [3] as a way
of formalizing mathematically some particularly simple examples of quantum field
theories constructed by Witten. The original definition is quite easy to state:

Definition 1.4 Let Bord(n) be the category with objects closed (n—1)-manifolds
and morphisms (diffeomorphism classes of) n—dimensional cobordisms between these
(thus a morphism from M to N is an (n-+1)-manifold with boundary B, with an
identification of dB with M 1I N). The disjoint union of manifolds gives a symmetric
monoidal structure on Bord(n), and an n—dimensional topological quantum field
theory valued in a symmetric monoidal category C is a symmetric monoidal functor
Bord(n) — C.

Requiring the manifolds and cobordisms to be equipped with various structures, such
as orientations or framings, gives different variants of the category Bord(n). We get
various flavours of TQFTs, such as oriented or framed TQFTs, by considering these
different versions of Bord(n). In examples the category C is usually the category
Vectc of complex vector spaces.

One reason mathematicians became interested in TQFTs is that they lead to interesting
invariants of manifolds: if Z: Bord(n) — Vectc is an n—dimensional TQFT, then Z
assigns a complex number to any closed n—manifold M — we can consider M as a
cobordism from the empty set to the empty set, and since this is the unit of the monoidal
structure on Bord(n), Z(M) is a linear map C — C, which is given by multiplication
with a complex number.

To compute the number Z(M') we can cut M along suitable submanifolds of codimen-
sion 1 and use the functoriality of Z. This is enough to compute these invariants in
very low dimensions (# < 2). In higher dimensions, however, we would like to be able
to cut our manifolds in more flexible ways, for example by choosing a triangulation
of M, to make the invariants more computable. This led mathematicians to consider
the notion of extended topological quantum field theories; this was formalized by Baez
and Dolan [7] in the language of n—categories (building on earlier work by Freed [14]
and Lawrence [26], among others).

Remark 1.5 For the definition of Baez and Dolan we consider an n—category Bord,,
whose objects are compact O—manifolds, with morphisms given by 1-dimensional
cobordisms between 0—manifolds, and in general i —morphisms for i =1,...,n given
by i —dimensional cobordisms between manifolds with corners. (For the n—morphisms
we take diffeomorphism classes of these.) The disjoint union should equip this with
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a symmetric monoidal structure, but giving a precise definition of this symmetric
monoidal n—category becomes increasingly intractable as n increases. A complete
definition has been given by Schommer-Pries [37] in the case n = 2, but for larger n it
seems that an appropriate notion of symmetric monoidal n—category has not even been
defined.

Definition 1.6 Given such a symmetric monoidal n—category Bord,, an n—dimen-
sional extended TQFT valued in a symmetric monoidal n—category € is a symmetric
monoidal functor Bord,, — €. As before, considering various structures on the mani-
folds in Bord,, gives different flavours of field theories, such as framed, oriented and
unoriented.

Baez and Dolan also conjectured that there is a simple classification of framed extended
topological quantum field theories:

Conjecture 1.7 (Cobordism Hypothesis) A framed extended TQFT Z: Bordflr — C
is classified by the object Z(x) € C. Moreover, the objects of C that correspond to
framed TQFTs admit a simple algebraic description: they are precisely the n—dualizable
objects. (We refer to Lurie [30, Section 2.3] for a precise definition of n—dualizable
objects.)

At the time, however, the foundations for higher category theory required to realize
their ideas did not yet exist. The necessary foundations have only been developed
during the past decade, with the work of Barwick, Bergner, Joyal, Lurie, Rezk and
many others. The resulting theory of (oo, n)—categories is often easier to work with
than the more restricted notion of n—category — in particular, it is not hard to give a
good definition of symmetric monoidal (oo, n)—categories for arbitrary 7.

We can then consider an (0o, n)—category Bord (s, ,) of cobordisms, where we take dif-
feomorphisms as our (74 1)—morphisms, smooth homotopies as the (r+2)—morphisms,
and so on. This also turns out to be much easier to define than the analogous n —category;
a sketch of a definition is given in [30], and the full details of the construction have
recently been worked out by Calaque and Scheimbauer [11].

It is then natural to define extended TQFTSs valued in a symmetric monoidal (oo, n)-
category as symmetric monoidal functors from Bord (e 5. In this more general setting,
Lurie was able to prove the cobordism hypothesis (although so far only a detailed
sketch [30] of the proof has appeared). In fact, Lurie also proves classification theorems
for other flavours of TQFTs, such as oriented or unoriented ones, in terms of the
homotopy fixed points for an action of the orthogonal group O(n) on the space of
n—dualizable objects in any symmetric monoidal (oo, n)—category.
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The cobordism hypothesis works for an arbitrary symmetric monoidal (co, n)—category,
and so leaves open the question of what the appropriate target is for the interesting field
theories that arise in physics and geometry. Motivation from physics (see Freed [14] and
Kapustin [25]) suggests that in general a TQFT should assign an (n—k—1)—category
enriched in vector spaces, or more generally in chain complexes of vector spaces, to a
closed k—manifold.”

The higher category of E,—algebras and iterated bimodules we will construct here can
be considered as a special case of this general target: [, —algebras in some co—category
C are the same thing as (oo, n)—categories enriched in € that have one object, one 1-
morphism, ... and one (n—1)—morphism. In fact, it is possible to extend the definitions
we consider here to get definitions of enriched (oo, n)—categories and iterated bimodules
between them; I hope to use these to construct an (oo, n+1)—category of enriched
(00, n)—categories in a sequel to this paper.

Although not completely general, the TQFTs valued in the symmetric monoidal
(00, n+1)—category of I, —algebras are still very interesting. This situation is discussed
in [30, Section 4.1], where the following results are stated without proof:

Conjecture 1.8 (i) All E, —algebrasin C are n—dualizable in 2lg,, (C), and so give
rise to framed n—dimensional extended TQFTs. (More precisely, all objects of
lg,, (C) are dualizable, and all i —morphisms have adjoints fori =1,...,n—1.)

(i) The framed n—dimensional extended TQFT associated to an [E,—algebra A4 is
given by the factorization homology or topological chiral homology of A. (These
invariants were first introduced by Lurie [31, Section 5.5] and also independently
by Andrade [1], and have since been extensively developed by a number of
other authors, in particular Francis and collaborators; see for example Ayala,
Francis and Rozenblyum [4], Ayala, Francis and Tanaka [5] and Francis [13].
An overview can also be found in Ginot’s lecture notes [17].)

(iii) An E,—algebra A is (n+1)—dualizable if and only if it is dualizable as a module
over its S¥ —factorization homology for all k = —1,0,1,...,n—1. (Forn =1,
this is equivalent to A being smooth and proper — see [31, Section 4.6.4].)

Scheimbauer [36] has constructed factorization homology as an extended TQFT valued
in a geometric variant of 2lg, (C) (defined using locally constant factorization algebras
on certain stratifications of R”), which confirms the first two parts of this conjecture. It
follows from Theorem 1.3 that (i) is equivalent to the 1-morphisms in 2(g, (C) having
adjoints for all n > 2, and we hope to use this to give algebraic proofs of (i) and (iii).

3To nonclosed manifolds it should assign a higher-categorical generalization of the notion of a bimodule
or profunctor between enriched categories, which is somewhat complicated to define.
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1.4 Related work

As already mentioned, a geometric construction of (oo, n+1)—categories closely related
to Alg,, (€) has been worked out by Scheimbauer [36]. However, the natural definition
of bimodules in the factorization algebra setting is not quite the same as ours: the
bimodules that arise from factorization algebras are pointed. 1f Ql[gEA(G) denotes
Scheimbauer’s (oo, n+1)—category of E,—algebras in C, we therefore expect the
relation to our work to be as follows:

Conjecture 1.9 Let C be a nice [E,—monoidal co—category. Then Ql[gEA(G) is equiv-
alent to 2Alg, (Cz/).

In order to carry out such a comparison, one would need to know that the iterated
bimodules we consider can equivalently be described as algebras for co—operads of
“little discs” on certain stratifications of R” — this would be a generalization of the
Dunn—-Lurie additivity theorem for E,—algebras. Such a result appears to follow from
forthcoming work of Ayala and Hepworth (extending their [6]); we hope to use this
to compare the algebraic version of 2lg, (C) we construct here to the factorization-
algebra-based version of Scheimbauer in a sequel to this paper.

An alternative geometric construction of 2lg,,(C) is also part of unpublished work of
Ayala, Francis and Rozenblyum, related to the construction sketched in the work of
Morrison and Walker on the blob complex [34].

In the case n = 1, an alternative construction of the double co—categories 2lg; (C)
using symmetric co—operads can be extracted from [31, Section 4.4]. Indeed, many
of the results in Section 4 are simply nonsymmetric variants of Lurie’s — the main
advantage of our setup is that our results generalize easily to n > 1.

A bicategory of dg-algebras and dg-bimodules, considered up to quasi-isomorphism, is
discussed by Johnson [22]. This should be the homotopy bicategory of our (oo, 2)—
category of algebras and bimodules in the corresponding “derived co—category” of
chain complexes.

Finally, an extension of our construction has been obtained by Johnson-Freyd and
Scheimbauer: in [21] they show that given an [Ej—monoidal (co, n)—category €, our
construction (as well as that of Scheimbauer) can be used to obtain an (co,n+k)—
category of [E; —algebras in C.

1.5 Overview

We begin by introducing our models for associative algebras, bimodules and their tensor
products in Section 2; we discuss them here only in the context of cartesian monoidal
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oco—categories, ie ones where the monoidal structure is the cartesian product, as this
allows us to clarify their underlying meaning without introducing the machinery of
oo—operads. Next, in Section 3 we discuss how iterating these definitions give models
for [E, —algebras and iterated bimodules, again in the cartesian setting. In Section 4 we
then construct the (oo, 2)—categories 2Alg; (C) for C a general monoidal co—category,
using nonsymmetric co—operads. By working with a notion of co—operads over
A"-°P the technical results we prove for associative algebras turn out to extend to the
setting of [, —algebras for n > 2, and so in Section 5 we construct the (co,n+1)—
categories 2lg, (€) without much more work; we also consider the functoriality of these
(00, n+1)—categories and their natural monoidal structures, and finish by identifying
their mapping (oo, n)—categories. Finally, in the appendix we discuss the technical
results we need about A" —oco—operads; these are mostly straightforward variants of
results from [31].

1.6 Notation and terminology

This paper is written in the language of co—categories, as developed in the guise
of quasicategories in the work of Joyal [23] and Lurie [28; 31]. This means that
terms such as “colimit”, “Kan extension” and “commutative diagram” are used (unless
otherwise specified) in their co—categorical (or “fully weak™) senses — for example,
a commutative diagram of shape J in an co—category C means a functor of co—
categories J — C, and thus means a diagram that commutes up to a coherent choice of
(higher) homotopies that is specified by this diagram. In general, we reuse the notation
and terminology used by Lurie [28; 31]; here are some exceptions and reminders:

e A is the simplicial indexing category, with objects the nonempty finite totally
ordered sets [n] := {0, 1,...,n} and morphisms order-preserving functions between
them. Similarly, A denotes the augmented simplicial indexing category, which also
includes the empty set [—1] = @.

e To avoid clutter, we write A" for the product A*", and use A';’IOP to mean

((AX™), 1) forany I € A",
e TI'°P is the category of pointed finite sets.

» Generic categories are generally denoted by single capital boldface letters (4, B, C')
and generic co—categories by single calligraphic letters (A, B, €). Specific categories
and oo—categories both get names in the normal text font.

e Setp is the category of simplicial sets, ie the category Fun(A°P, Set) of set-valued
presheaves on A .
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» 8 is the co—category of spaces; this can be defined as the coherent nerve N Set}
of the full subcategory Set} of the category Seta spanned by the Kan complexes,
regarded as a simplicial category via the internal Hom.

e We make use of the theory of Grothendieck universes to allow us to define
(oco-)categories without being limited by set-theoretical size issues; specifically, we
fix three nested universes, and refer to sets contained in them as small, large and very
large. When C is an oo—category of small objects of a certain type, we generally refer
to the corresponding co—category of large objects as €, without explicitly defining
this object. For example, Catyo is the (large) co—category of small co—categories, and
@oo is the (very large) co—category of large co—categories.

e If Cis an co—category, we write (C for the interior or underlying space of C, ie
the largest subspace of C that is a Kan complex.

e Ifafunctor f: C— D (of co—categories) is left adjoint to a functor g: D — €,
we will refer to the adjunction as f - g.

e We will say that a functor f: C — D of co—categories is coinitial if the opposite
functor f°P: C°P — DOP ig cofinal in the sense of Lurie [28, Section 4.1.1].

e If K is a simplicial set, we denote the cone points of the simplicial sets K>
and K<, obtained by freely adjoining a final and an initial object to K, by co and —oo,
respectively.

e We say an oo—category (or more generally any simplicial set) € is weakly con-
tractible if the map € — A° is a weak equivalence in the Kan—Quillen model structure
(as opposed to the Joyal model structure). This is equivalent to the co—groupoid obtained
by inverting all the morphisms in C being trivial, and to the geometric realization of
the simplicial set € being a contractible topological space.

1.7 Some key concepts

As an aid to readers who are not intimately familiar with [28], in this subsection we
briefly introduce some key concepts that we will make use of throughout this paper,
namely cocartesian fibrations, cofinal functors, and relative (co)limits.

Definition 1.10 If f: & — B is a functor of co—categories, a morphism ¢: e — ¢’ in
& lying over B: b — b’ in B is p—cocartesian if for every x € € the commutative®

6Recall that this means commutative in the co—categorical sense, so the square really includes the data
of a homotopy between the two composites, which we do not explicitly indicate.
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square
Map (', x) ——— Mapg (e, x)

| |

Mapg (', f(x)) % Mapy (b, f(x))

is cartesian, ie it is a pullback’ square.
This is equivalent to the induced map on fibres

Mapg (€', x) f — Mapg (€, X) pop

being an equivalence for all maps ¢: b’ — f(x), so this definition gives a natural
oo—categorical generalization of cocartesian morphisms in ordinary category theory.

Definition 1.11 We say that a functor of co—categories f: & — B is a cocartesian
fibration if for every e € € and f: f(e) — b there exists an f—cocartesian morphism
e — PBie over B; cocartesian fibrations are thus the natural co—categorical version of
Grothendieck opfibrations.

If we think of f as a map of simplicial sets, and assume (as we are free to do up to
equivalence) that it is an inner fibration, then this definition can be reformulated more
concretely in terms of the existence of liftings for certain horns, which is the definition
given in [28, Section 2.4.2].

If f: &€— B is a cocartesian fibration, then [28, Corollary 3.2.2.1] implies that the
induced functor Fun(K, £) — Fun(K, B) is also a cocartesian fibration for any K.
Given diagrams p: K — & and g: K® — B with f o p = ¢ := g|x we can therefore
define a cocartesian pushforward of p to a diagram p’: K — €5 lying in the fibre
over ¢(o0), by regarding ¢ as a morphism in Fun(K, B) from ¢ to the constant functor
at g(o0) and choosing a cocartesian morphism over this with source p.

Grothendieck proved [18] that Grothendieck opfibrations over a category C correspond
to (pseudo)functors from C to the category of categories. Lurie’s straightening equiva-
lence from [28, Section 3.2] establishes an analogous equivalence between cocartesian
fibrations over an co—category € and functors from C to the co—category Cats, of
oo—categories. For more details on cocartesian fibrations, and the dual concept of
cartesian fibrations, see [28, Sections 2.4 and 3.2], especially Subsections 2.4.1-2.4.4.

7Note that this means that it is a pullback in the co—categorical sense — if we choose some concrete
model for these mapping spaces as simplicial sets, this is equivalent to the corresponding diagram of
simplicial sets being a homotopy pullback.
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Definition 1.12 A functor F: A — B of co—categories is cofinal if for every diagram
p: B— €, the induced functor €,/ — €,/ is an equivalence. Dually, F' is coinitial if
FOP: AP — BOP is cofinal, ie the functor €,, — C/ o F is an equivalence for every p.

Since a colimit of p is the same thing as a final object in C,,, we see that if F is
cofinal then p has a colimit if and only if p o F has a colimit, and these colimits
are necessarily given by the same object in €. The key criterion for cofinality is
[28, Theorem 4.1.3.1]: F: A — B is cofinal if and only if for every b € B the slice
oo—category Ap, := A x3 Bp, is weakly contractible. For more details, see [28,
Section 4.1], especially Subsection 4.1.1.

Definition 1.13 Given a functor of co—categories f: & — B we say a diagram
p: K® — & is a colimit relative to f (oran f—colimir) of p := p|k if the commutative
square of co—categories

€50 — Brp/

|

€p) — Byps

is cartesian, ie the induced functor

€5/ = Ep) %7, Brpy
is an equivalence.

Ordinary colimits in € are the same thing as colimits relative to the functor & — * to
the terminal co—category. Notice also that if p: K — € is a diagram such that f p
is a colimit in B, then p is an f—colimit if and only if it is a colimit in €.

We can also reformulate the definition in terms of mapping spaces: p: K* — & is an
f—colimit if and only if for every e € £, the commutative square

Map, (p(00), ¢) ————— limge g Mapg (p(k). e)

Mapg (f p(00), f(e)) — limgegx Mape(fp(k). f(e))

is cartesian, or equivalently (since limits commute) if and only if for every map
¢: fp(co) — f(e) the map on fibres

Mapg (p(00), €)¢ — Jim Mapg (p(k). €)go(fp(k)— f B(c0))
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is an equivalence.

If f is a cocartesian fibration, then it follows from [28, Propositions 4.3.1.9 and
4.3.1.10] that a diagram p: K® — & with x = f p(o0) is an f—colimit if and only
if the cocartesian pushforward of p to the fibre over x is a colimit in £, and for
every morphism ¢: x — y in B the functor ¢y: Ex — &, induced by the cocartesian
morphisms over ¢ preserves this colimit. If f p is a colimit diagram in B, then this
gives a useful criterion for relating colimits in € to colimits in the fibres of f . For more
on relative colimits (and the dual concept of relative limits), see [28, Section 4.3.1].

Acknowledgements I thank Clark Barwick and Chris Schommer-Pries for sharing
their work on operator categories, of which much of the material in Section 5.5 is
a special case. In addition, I thank David Gepner and Owen Gwilliam for helpful
discussions about this project.

2 Algebras and bimodules in the cartesian setting

Our goal in this section is to introduce the models for algebras and bimodules we
will use in this paper, and to motivate our approach to defining an (oo, 2)—category of
these. Here we will only consider the case where the monoidal co—category these take
values in has the cartesian product as its tensor product — to consider general monoidal
oco—categories we must work in the context of (nonsymmetric) co—operads, and this
extra layer of formalism can potentially obscure the simple underlying meaning of
our definitions. In Section 2.1 we recall how associative monoids can be modelled as
certain simplicial objects, and in Section 2.2 we will see that bimodules can similarly
be described as certain presheaves on the slice category A /[1]. Next, in Section 2.3 we
discuss how relative tensor products of bimodules can be described in this context, using
presheaves on A /[5]. In Section 2.4 we recall that a more general class of simplicial
objects can be used to model internal categories in an co—category — in particular, we
review Rezk’s Segal spaces, which are a model for co—categories. We then indicate in
Section 2.5 how, by considering certain presheaves on A /[, for arbitrary n, we can
construct a Segal space that describes an co—category of algebras or bimodules — or
more generally a double co—category of these, from which the desired (oo, 2)—category
can be extracted.

2.1 A and associative algebras

The observation that simplicial spaces satisfying a certain “Segal condition” give a
model for A.,—spaces, ie spaces equipped with a homotopy-coherently associative

Geometry & Topology, Volume 21 (2017)



The higher Morita category of E,—algebras 1645

multiplication, goes back to unpublished work of Segal. Formulated in the language of
oo—categories, Segal’s definition of a homotopy-coherently associative monoid, which
in the co—categorical setting is the only meaningful notion of an associative monoid,
is the following:

Definition 2.1 Let € be an co—category with finite products. An associative monoid
in C is a simplicial object A,: A°°? — € such that for every [r] in A the natural map

Ay — A1 x--- X Ay,

induced by the maps p;: [1]— [n#] in A thatsend O to i —1 and 1 to i, is an equivalence.

To see that this definition makes sense, observe that the inner face map dp: [1] — [2]
induces a multiplication
A1 XA1 @Az&z‘ll,

and the degeneracy so: [1] — [0] induces a unit
* <~ Ao o, A
To see that the multiplication is associative, observe that the commutative square

dy
A3 E— A2

A2 E— Al
dq

exhibits a homotopy between the two possible multiplications Ai<3 — Ajp. Similarly,
the higher-dimensional cubes giving compatibilities between the different composites
of face maps [1] — [n] exhibit the higher coherence homotopies for the associative
monoid.

2.2 A /p11 and bimodules

We will now see that, just as simplicial objects give a natural notion of associative
monoids, presheaves on the slice category A [y} give a model for bimodules between
associative monoids:

Definition 2.2 Let C be an oo—category with finite products. A bimodule in C is a
functor

. AP
M: A/[l]

—C
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such that, for every object ¢: [n] — [1] in A /[17, the natural map

M(¢p) — M(¢p1) % --- X M(¢ppn),

induced by composition with the maps p;: [1] — [r], is an equivalence.

To see that such objects can indeed be interpreted as bimodules, observe that the
category A (1] can be described as having objects sequences (ig, ...,in), Where
0 <ig <ig41 <1, with a unique morphism (ig (o). - - -, i¢(n)) —> (io, ..., im) for every
¢: [n] = [m] in A. In terms of this description a functor M : Ao/p[l] — € is a bimodule
if and only if the object M (i, . ..,i,) decomposes as M (ig,i1) X -+ X M(in—1,in).
Thus every object decomposes as a product of M(0,0), M(0, 1) and M(1,1).

The two maps [0] — [1] induce functors A — A ;] —these are the inclusions of
the full subcategories of A ;1 with objects of the form (0,...,0) and (1,...,1).
Restricting along these we see that M (0,0) and M(1, 1) are associative monoids. The
maps (0,1) — (0,0,1) and (0,1) — (0,1, 1) in A ;) give multiplications
M(0,0)x M(0,1) <= M(0,0,1) — M(0, 1),
M0, 1) x M(1, 1) <= M(0,1, 1) — M(0, 1),
which exhibit M(0, 1) as a left M (0, 0)-module and a right M(1, 1)-module. More-
over, the commutative square

M(0,0,1,1) —— M(0, 1, 1)

|

M(0,0,1) —— M(0,1)

implies that these module structures are compatible. The remaining data given by M
shows that these actions are homotopy-coherently associative and compatible with the
multiplications in M(0,0) and M(1,1).

2.3 A/[2) and tensor products of bimodules

We can similarly define A [oj—monoids as certain presheaves on A ;. If we think of
A/[z] as having as objects sequences (ig, ..., ip) With 0 <ip <iri4; <2, then we
can phrase the definition as follows:

Definition 2.3 Let C be an co—category with finite products. Then a A j[5)—monoid
in € is a functor M: A(;IEZ] — C such that, for every object (ig,...,I»), the natural
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map
M(io,...,im) —>M(io,il)X-~-XM(in_1,in),

induced by composition with the maps p;, is an equivalence.

Unravelling this definition, we see that a A j;j—monoid M in C is given by the data of

e three associative monoids My = M(0,0), My = M(1,1) and M, = M(2,2),
given by the restrictions of M along the three natural inclusions A% — AO/[EZ];

e three bimodules: an My—M;-bimodule M (0,1), an M;—M,-bimodule M (1,2)
and an Mo—M>-bimodule M (0, 2), given by the restrictions of M along the

: : op op
three natural inclusions A Fivs e A 20

e an M;-balanced map M(0,1) x M(1,2) ~ M(0,1,2) — M(0,2), which we
can think of as the restriction of M along the inclusion j: A%} — A(}p[z] that
sends [n] to (0,1,...,1,2) (with n+1 I’sforn=-1,0,...).

We would like to understand what it means for the bimodule M (0, 2) to be the tensor
product M (0, 1) ®ps, M(1,2) in terms of this data. In classical algebra, if A is an
associative algebra and M is a right and N a left A-module, the tensor product
M ®4 N can be defined as the reflexive coequalizer of the two multiplication maps
M xAxN — M x N. As usual, in the co—categorical setting this coequalizer must be
replaced by its “derived” version, namely the colimit of a simplicial diagram, commonly
known as the “bar construction”: specifically, this is the diagram B(M, A, N), :=
M x A** x N with face maps given by multiplications and degeneracies determined
by the unit of 4.

For a A [j—monoid M, this diagram is precisely the restriction of the augmented
simplicial diagram j to A°P. Thus, the bimodule M (0, 2) is a tensor product precisely
when j is a colimit diagram, which leads us to make the following definition:

Definition 2.4 We say a A(ﬁz] —monoid M in C is composite if the map

op J op M
A+—>A/[2]—>G

is a colimit diagram.

2.4 A and oo-categories

As originally observed by Rezk [35], a generalization of Segal’s definition of associative
monoids gives a model for co—categories, namely Segal spaces. In the oco—categorical
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context, these are a special case of the natural definition of an internal category or
category object:

Definition 2.5 Let C be an co—category with finite limits. A category object in € is
a simplicial object X,: A°? — C such that for all [r] € A the natural map

Xn —)Xl XXO---XXOXI,

induced by the maps p;: [1] — [n] and the maps [0] — [r], is an equivalence. We write
Cat(C) for the full subcategory of Fun(A°P, C) spanned by the category objects.

A Segal space is a category object in the co—category & of spaces. We can think of a
Segal space X, as having a space Xo of “objects” and a space X; of “morphisms”;
the face maps X1 = Xy assign the source and target object to each morphism, and
the degeneracy so: Xo — X1 assigns an identity morphism to every object. Then
Xn >~ X1 Xx, -+ Xx, X1 1s the space of composable sequences of n morphisms, and
the face map dy: [1] — [2] gives a composition

X1 X)(0 X1 &X2i>X1.

The remaining data in X, gives the homotopy-coherent associativity data for this
composition and its compatibility with the identity maps.

Remark 2.6 We can regard the co—category Caty, of co—categories as the localization
of the co—category of Segal spaces at the fully faithful and essentially surjective
functors (in the appropriate homotopically correct sense). The main theorem of [35] is
that this localization is given by the full subcategory CSS(S) of Cat(S) spanned by
the complete Segal spaces. It was proved by Joyal and Tierney [24] that the model
category of complete Segal spaces is Quillen equivalent to Joyal’s model category
of quasicategories, and so the co—category Cat, defined using quasicategories, is
equivalent to CSS(S).

We will also make use of category objects in Cats,. These give a notion of double
oo—categories, just as double categories can be thought of as internal categories in Cat.
We will see below in Section 3.3 that, just as a double category has two underlying
bicategories, a double co—category has two underlying (co, 2)—categories.

2.5 A/ and the (0o, 2)—category of algebras and bimodules

As a preliminary to discussing the (oo, 2)—category of algebras and bimodules in an co—
category C with finite products, let us consider the underlying co—category alg, (C) of
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algebras and bimodules as a Segal space. From our discussion so far, we have an obvious
choice for the space alg; (C)g of objects, namely the space of associative monoids in C,
and for the space alg;(C); of morphisms, namely the space of A [;j—monoids in C.
These spaces are simply the appropriate collections of connected components in the
spaces Map(A°P, C) and Map(Ao/Iil], @), respectively. The source and target maps are
induced by composition with d; and dy: [0] — [1], and composition with sg: [1] — [0]
sends a monoid A to A considered as an A—A-bimodule, giving the correct identity
morphisms.

In order to construct a Segal space, the spaces alg; (C)2 and alg; (€)1 Xq(g, (), @191 (€)1
must be equivalent. On the other hand, the composition in alg;(C) should be given by
relative tensor products of bimodules, which we saw above corresponds to taking a
composite A /jj—monoid and composing with the middle face map dy: [1] — [2]; this
suggests that the space alg; (C)2 should be the space of composite A /[;j—monoids.
Luckily, it will turn out that the space of composite A [;j—monoids is indeed equivalent
to alg; (€)1 Xag, (e), @tg1(C€)1 via the appropriate forgetful maps, so this does actually
make sense.

To define the spaces alg; (C), for general n, we similarly consider composite A /[,1—
monoids for arbitrary n. If we think of A [, as having objects sequences (io, ..., im)
with 0 < iy <ixyq1 <n, we have the following definition:

Definition 2.7 Let C be an co—category with finite products. Then a A ;,)—monoid
in C is a functor M: (A ;,1)°® — C such that, for every object (ip, ..., in), the natural
map

M(io, .. .,im) — M(io,il) Xeee X M(in_l,in),

induced by composition with the maps p;, is an equivalence.

A A j[y1—monoid in € describes

e n+ 1 associative monoids My = M(0,0), My = M(1,1),..., M, = M(n,n);

e an M;—M;-bimodule M(i, j) for each pair (i, j) with 0 <i < j <n;

e an Mj-balanced map M(i, j) x M(j, k) — M(i, k) for each triple (i, j, k)

with 0 <i < j <k <n, compatible with the actions of M; and M ;
such that these bilinear maps are compatible, eg if 0 <i < j <k <[ <n then the
diagram
M@, jyxM(G, k)yx M(k,l) —— M, j)x M(j,1)

| |

M(i, k) x M(k, 1) M(i, 1)
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commutes. Composition with the maps ¢«: A [,; — A /[, given by composition with
amap ¢: [n] — [m] in A takes A [,,j—monoids in € to A ;,j—monoids.

We say that a A j,j—monoid M is composite if these maps exhibit the bimodule
M(i, j) as the iterated tensor product

M(lvl+1) ®Mi+l M(l +lyl +2)®Mi+2.“®Mj71 M(J_lv,])

As in the case n = 2, this condition can be formulated precisely in terms of certain
(multi)simplicial diagrams being colimits — we will discuss this in more detail below
in Section 4.2.

If alg; (C), denotes the space of composite A [,j—monoids, then the main results of
Section 4 will tell us:

* The composite monoids are preserved under composition, with the maps A /[, —>
A /[;n) coming from maps in A. Thus the spaces alg; (C), fit together into a
simplicial space.

e The spaces alg; (C). satisfy the Segal condition, ie the map

a[gl (e)n g a[gl (e)l Xalg; (@0 * " Xalg; ()0 a[gl (e)l
is an equivalence for all n.

In other words, alg;(C). is a Segal space. This (or more precisely its completion) is
our co—category of algebras and bimodules.

We can just as easily consider the co—categories 2A£&1(C), of composite A /[,,1—
monoids, ie the appropriate full subcategories of Fun(A(}IEn], ). We’ll show that
these form a category object A£L£B(C) in Catso, ie a double co—category — this
has associative monoids as objects, algebra homomorphisms as vertical morphisms,
bimodules as horizontal morphisms and bimodule homomorphisms as commutative
squares. As we will see below in Section 3.3, from this double co—category we
can then extract an (oo, 2)—category 2Alg;(C) of algebras, bimodules and bimodule
homomorphisms.

3 [E,-algebras and iterated bimodules in the cartesian
setting

The definitions we considered in Section 2 can be iterated, and in this section we
will discuss how this leads to an (oo, n+1)—category of [, —algebras, again in the
cartesian case. In Section 3.1 we consider iterated A —monoids, which gives a model for
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[E,, —algebras. Then in Section 3.2 we see that, similarly, iterating the notion of category
object gives n—uple co—categories, in the form of n—uple Segal spaces. This leads to
a notion of (oo, n)—categories in the form of Barwick’s iterated Segal spaces, which
we review in Section 3.3; this is the model of (oo, n)—categories we will use below
in Section 5. Finally, in Section 3.4 we indicate how the definition of the double co—
category of algebras and bimodules can be iterated to get (n+1)—uple co—categories
of [E, —algebras in a cartesian monoidal co—category.

3.1 A" and E,-algebras

The Dunn—Lurie additivity theorem [31, Theorem 5.1.2.2] implies that, in the co—
categorical setting, [£,, —algebras in some co—category C are equivalent to associative
algebras in E,_j—algebras in C. In the cartesian case we would thus expect that
associative monoids in associative monoids in ... in C give a model for [, —algebras
in € —we will prove a precise version of this claim below in Section A.3. Unwinding
the definition, we see that these objects can be described as certain multisimplicial
objects in C:

Definition 3.1 Let C be an co—category with finite products. A A" —monoid in € is
a multisimplicial object

At AP €
such that, for every object ([i1], ..., [in]) € A", the natural map
i in
Ajin = 1_[ l_[ A1,
=1 jun=1
induced by the maps (pj,, ..., pj,), is an equivalence.

Remark 3.2 It is convenient to introduce some notation to simplify this definition: let
C, denote the object ([1],...,[1]) in A™°P, and for I € A™°P let || denote the set of
(levelwise) inert maps C, — I, ie the maps (p;,, ..., pi,). Then the Segal condition
for a A" —monoid A can be stated as: for every I € A™°P, the natural map Ay — AéLH

induced by the maps in |/| is an equivalence.

3.2 A" and n-uple co—categories

Just as we can iterate the notion of associative monoid to get a definition of E,—
algebras in the cartesian setting, we can iterate the definition of a category object to get
a definition of n-uple internal categories. To state this definition more explicitly, it is
useful to first introduce some notation:
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Definition 3.3 A morphism f: [n] — [m] in A is inert if it is the inclusion of a
subinterval of [m], ie f(i) = f(0) +i for all i, and active if it preserves the extremal
elements, ie f(0) =0 and f(n) =m. More generally, we say a morphism ( f1,..., f»)
in A" is inert or active if each f; is inert or active. We write A", and A’ for the
subcategories of A" with active and inert morphisms, respectively.

Lemma 3.4 The active and inert morphisms form a factorization system on A" .
Proof This is a special case of [10, Lemma 8.3]; it is also easy to check by hand. O

Remark 3.5 Since the objects of A" have no nontrivial automorphisms, the factor-
izations into active and inert morphisms are actually strictly unique, rather than just
unique up to isomorphism.

Definition 3.6 Let S be asubsetof {1,...,n}. Wewrite Cs := ([i1]. ..., [in]), Where
ij is 1 for j € S and 0 otherwise. We refer to the objects C as cells and write Cell”
for the full subcategory of A” spanned by the objects Cg for all S € {1,...,n}.
Note that we have Cy, = Cyq,._»y.

Remark 3.7 The category Cell” is equivalent to the product (Cell')*”, where Cell!
is the category with objects [0] and [1] and the two inclusions [0] — [1] as its only
nonidentity morphisms.

Definition 3.8 For I € A", we write Cell7 ; for the category (A" )7 xar Cell” of
inert morphisms from cells to 7.

Definition 3.9 Let C be an co—category with finite limits. An n—uple category
object in C is a multisimplicial object X, .: A" — € such that, for all /] =
(li1)s- .., [in]) € A, the natural map
X7 — lim Xc
C—IeCell;”

is an equivalence. We write Cat” (C) for the full subcategory of Fun(A™°P, C) spanned
by the n—uple category objects.

Remark 3.10 To see that this is equivalent to iterating the definition of a category
object in C, observe that for / = ([i1],...,[in]) in A", the category Cell’/’ 7 is simply
the product Cell! i XX Cell! Ilin]® and so decomposing the limit we see that X,
is an n—uple category object if and only if X; . . . is an (n—1)-uple category object
for all i, and X, is a category object in (n— 1)—s1mplicia1 objects in C.

.....
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If € is the co—category & of spaces, an n—uple category object X,
of as consisting of

« can be thought

.....

e aspace Xo, .. o of objects;

e spaces X1,0,..0, ..., Xo,..,0,1 of n different kinds of 1-morphism, each with a
source and target in Xo,.. 0;

* spaces Xi1,0,..,0, etc, of “commutative squares” between any two kinds of
1-morphism;

e spaces X1,1,1,0....,0, etc, of “commutative cubes” between any three kinds of
1—morphism;

e aspace Xq,1,..,1 of “commutative n—cubes”;

together with units and coherently homotopy-associative composition laws for all these
different types of morphisms. In other words, an n—uple category object in 8 can be
regarded as an n—uple co—category.

Remark 3.11 Since co—categories can be thought of as (complete) Segal spaces, ie
category objects in 8§, we can think of n—uple category objects in Caty, as (n+1)—
uple co—categories. More precisely, regarding Cats, as the co—category of complete
Segal spaces we have an inclusion Cats, < Cat(§), and this induces an inclusion
Cat" (Cato) <> Cat"t1(8).

3.3 A" and (oo, n)—categories

We can view (oo, n)—categories as given by the same kind of data as an n—uple
oo—category, except that there is only one type of 1—-morphism, etc, so to define
(00, n)—categories as a special kind of n—uple co—category we want to require certain
spaces to be “trivial”. This leads to Barwick’s definition of an n—fold Segal object in
an oo—category:

Definition 3.12 Suppose C is an co—category with finite limits. A 1-fold Segal object
in € is just a category object in C. For n > 1 we inductively define an n—fold Segal
object in € to be an n—uple category object X such that

(i) the (n—1)—uple category object X, .. o is constant;

.....

(ii) the (n—1)—uple category object X, . . is an (n—1)—fold Segal object for
all k.

We write Seg,, (C) for the full subcategory of Cat”(C) spanned by the n—fold Segal
objects. When € is the co—category & of spaces, we refer to n—fold Segal objects in &
as n—fold Segal spaces.
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Remark 3.13 Unwinding the definition, an n—fold Segal space X consists of

e aspace Xy, o of objects,
e aspace X1,,..0 of 1-morphisms,

e aspace X1,1,0,..,0 of 2—morphisms,

e aspace Xi,..1 of n—morphisms,

together with units and coherently homotopy-associative composition laws for these
morphisms.

Given a double category object X: AZ°P — @, there is a canonical way to extract a
2—fold Segal object X':

» We take X|) , to be the constant simplicial object at X¢ .

e For n > 0 we define X ,’1,. to be the pullback

/
Xn,- an.

|

Xy, — Xo.

where the bottom horizontal map is induced by the degeneracies. This amounts
to forgetting the objects of Xo,1 that are not in the image of the degeneracy map
Xo,0 = Xo,1 —1ie we are forgetting all the nontrivial 1-morphisms of one kind.

This construction can be iterated to extract an n—fold Segal object from an n—uple
category object— in fact, by permuting the n coordinates we can extract n different
Segal objects. More formally, we have:

Proposition 3.14 [19, Proposition 4.12] Let € be an oco—category with finite limits.
The inclusion Seg,, (C) — Cat" (C) has a right adjoint Use,: Cat”(C) — Seg,(C). O

Although n—fold Segal spaces describe (oo, n)—categories, the co—category Seg,, (S)
is not the correct homotopy theory of (oo, n)—categories, as we have not inverted the
appropriate class of fully faithful and essentially surjective maps. This localization can
be obtained by restricting to the full subcategory CSS,(8) of complete n—fold Segal
spaces, as proved by Barwick [9]; we denote the localization Seg,, (8) — CSS,(S)
by L,, but we will not need the details of the definition in this paper.
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Remark 3.15 There is a canonical way to extract an (oo, n)—category from an n—uple
oo—category C, namely the completion L, Use,C of the underlying n—fold Segal space
of C. Moreover, the functor L, Use,: Cat" (8) — Cat(s ) is symmetric monoidal with
respect to the cartesian product—since Useg is a right adjoint it preserves products, and
L, preserves products by [19, Lemma 7.10]. In particular, if € is an [E,,—monoidal
n-uple co—category, then L; Use:C is an [, —monoidal (oo, n)—category. Similarly,
we can extract an underlying (oo, n+1)—category from an n—uple category object C
in Catoo as Ly 41Usegi C where i denotes the inclusion Cat”(Caty) — Cat"t1(8).
The functor Ly 41 Usegi: Cat” (Catoo) — Cat(so n41) also preserves products, since i
is another right adjoint.

34 A’; I and iterated bimodules

We will now consider how to extend the definition of the double co—category 2A£81(C)
of algebras, algebra homomorphisms, and bimodules in C we outlined above to get
an (n+1)—-uple co—category A£6,(C) of E,—algebras. We take the co—category
ALSG1(C)o,...,0 of objects to be the co—category of A”—monoids in € —a full sub-
category of Fun(A™°P €). To define the remaining structure, we first observe that
we can iterate the definition of A ;;j—monoids to get a notion of A’; 7 —monoids for
all 7 € A™:

Definition 3.16 Let C be an co—category with products, and suppose I € A". A
A’} ;—monoid in C is a functor X: A'}’IOP — C such that, for every object ¢: J — 1,
the natural map
X@)— [[ X@ow)
a€l|]|
is an equivalence.

Just as in the case n = 1, however, we do not want A£6,(C); to contain all the
A’} ;—monoids, only those that are “composite” in the sense that they decompose appro-
priately as tensor products. We will define this notion precisely below in Section 5.2.
The main result of this paper, restricted to the cartesian case, is then that this does
indeed give an (n+1)—uple oco—category. More precisely, if for every I € A", we let
ALG,(C)r denote the co—category of composite A’} ;—monoids (a full subcategory of

Fun(A';’IOp, ©)), then:

e The composite monoids are preserved under composition with the maps A’} i
A’;J coming from maps / — J in A”. Thus the objects A£&,(C),
a multisimplicial co—category.

.....
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e The oo—categories ALB,(C).,.. . satisfy the Segal condition, ie the map
ALG,(C); — lim ALG,(C) ¢
C—IeCell;”
is an equivalence for all 7.

In other words, A£&,(C) is an n—uple category object in Cato,. From this we can
then extract an (oo, n+1)—category 2Alg,, (€) as the underlying complete (n+1)—fold
Segal space Lj41UseeiALB,(C), as discussed above.

4 Algebras and bimodules

In Section 2 we sketched our approach to constructing a double co—category of algebras
and bimodules in the cartesian case, ie when the algebras are defined with respect
to the monoidal structure given by the cartesian product. However, although this
case is certainly not without interest, many key examples of symmetric monoidal
oo—categories where we want to consider algebras and bimodules have noncartesian
tensor products — for example spectra, modules over a ring spectrum, or the “derived
oo—category” of chain complexes in an abelian category with quasi-isomorphisms
inverted. To extend our definitions to apply also to such noncartesian examples, we
will work with the theory of co—operads. Specifically, in this section we will make
use of the theory of nonsymmetric co—operads to construct a double co—category
ALG1(C) of associative algebras in any nice monoidal co—category C, with algebra
homomorphisms and bimodules as the two kinds of 1-morphisms.

In Section 4.1 we recall the basics of nonsymmetric co—operads, and then in Section 4.2
we observe that using these the definition of bimodules we discussed above in Section 2
has a natural extension to the noncartesian setting, which lets us define the co—categories
ALB1(C) that will make up the simplicial co—category AL (C). In Section 4.3 we
check that these co—categories satisfy the Segal condition, and in Section 4.4 we show
that they are functorial and so do indeed form a simplicial object in Caty,. Finally, in
Section 4.5 we study the forgetful functor from bimodules to pairs of algebras in more
detail — the results we prove here will be used below in Section 5.5.

4.1 Nonsymmetric co—operads

In this subsection we will review some basic notions from the theory of nonsymmetric
oo—operads. For more motivation for these definitions, we refer the reader to the
extensive discussion in [16, Sections 2.1-2.2].

In ordinary category theory a monoidal category can be viewed as being precisely an
associative monoid in the 2—category of categories, provided we interpret “associative
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monoid” in an appropriately 2—categorical sense. Similarly, we can define a monoidal
oo—category to be an associative monoid in the co—category Caty, of co—categories.
As we saw in Section 2.1, we can take this to mean a simplicial object in Cat, satisfying
a “Segal condition”. Using Lurie’s straightening equivalence, we get an equivalent
definition of monoidal co—categories as certain cocartesian fibrations over A°P:

Definition 4.1 A monoidal co—category is a cocartesian fibration C® — A° such
that for each [n] the map G‘[%’l] — (Gﬁ’])xn, induced by the cocartesian morphisms over
the maps p; in A°P, is an equivalence.

One advantage of this definition is that it can be weakened to give a definition of
nonsymmetric co—operads:

Definition 4.2 A nonsymmetric co—operad is a functor of co—categories 7: O — A°P
such that:

(i) For every inert morphism ¢: [m] — [n] in A°? and every X € O[] there exists
a m—cocartesian morphism X — ¢ X over ¢.

(i) For every [n] € A°P the functor
Oy = (O™

induced by the cocartesian morphisms over the inert maps p; fori =1,...,n
is an equivalence of co—categories.

(iii) For every morphism ¢: [n] — [m] in A°?, X € Op,} and Y € Of,,), composition
with the cocartesian morphisms Y — Y; over the inert morphisms p; gives an
equivalence

Mapg(X, Y) = HMapgi°¢(X, Yi),

1

where Mapg (X.Y) denotes the subspace of Mapy (X, Y) of morphisms that
map to ¢ in A°P. (Equivalently, Y is a w—limit of the Y; in the sense of [28,
Section 4.3.1].)

Remark 4.3 To see how this definition is related to the usual notion of nonsymmetric
(coloured) operad (or multicategory), recall that to any nonsymmetric (coloured) operad
in sets we can associate its category of operators, which is a category over A°P. These
categories of operators are characterized precisely by the 1—categorical analogues of
conditions (i)—(iii) above — for more details see [16, Section 2.2].
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Remark 4.4 This definition is a special case of Barwick’s notion of an co—operad
over an operator category [10], namely the case where the operator category is the
category of finite ordered sets.

Remark 4.5 Since A is an ordinary category, a map O — A°P? where O is an
oo—category is automatically an inner fibration by [28, Proposition 2.3.1.5].

Definition 4.6 If O and P are nonsymmetric co—operads, a morphism of nonsymmet-
ric co—operads from O to P is a commutative diagram

¢
O ——7
A°P
such that ¢ carries cocartesian morphisms in O that map to inert morphisms in A°P
to cocartesian morphisms in P. We will also refer to a morphism of nonsymmetric
oo—operads O — P as an O—algebra in P. We write Alg(l9 (P) for the oo—category of

O-algebras in P, defined as a full subcategory of the co—category of functors from O
to P over AP,

We will actually need to work with a somewhat more general notion than that of
nonsymmetric oo—operad. To introduce this, recall from Section 2.4 that a double
oo—category can be defined as a simplicial object in Cat, that satisfies a more general
variant of the Segal condition that defines monoids. Reformulating this in terms of
cocartesian fibrations, we get the following analogue of our definition of a monoidal
oo—category above:

Definition 4.7 A double co—category is a cocartesian fibration M — A°P such that
for each [n] the map

Mpng = Mg Xy =+ - Xy M1,

induced by the cocartesian morphisms over the maps p; and the maps [n] — [0] in A°P,
is an equivalence.

Now we can contemplate the analogous variant of the definition of a nonsymmetric
oo—operad:

Definition 4.8 A generalized nonsymmetric co—operad is a functor of co—categories
m: O — A°P such that:
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(i) For every inert morphism ¢: [m] — [n] in A° and every X € O] there exists
a m—cocartesian morphism X — ¢ X over ¢.

(ii) For every [n] € A°P the functor
Otn1 = Oy Xopgy *** %0107 O]

induced by the cocartesian arrows over the inert maps p; (i =1,...,n) and the
maps [n] — [0] is an equivalence of co—categories.

(iii) Given Y € Oy, choose a cocartesian lift of the diagram of inert morphisms from
[m] to [1] and [0]: let Y — Y(;_;); be a cocartesian morphism over the map
pi:[ml—[1](G=1,...,m)andlet Y — Y; (i =0,...,m) be a cocartesian
morphism over the map o;: [m] — [0] corresponding to the inclusion of {i}
in [m]. Then for any map ¢: [n] — [m] in A°P and X € Of,, composition with
these cocartesian morphisms induces an equivalence

Map? (X, Y) = Map2'°? (X, Yo1) XMap?°® (X, Y1)

p1o¢
*MapZm=1° (X Yy M0 (X Ym—1ym).

(Equivalently, any cocartesian lift of the diagram of inert maps from [m] to [1]
and [0] is a w—limit diagram in O.)

Remark 4.9 As discussed in [16, Sections 2.3-2.4], generalized nonsymmetric co—
operads are an co—categorical analogue of the fc-multicategories of Leinster [27] (also
called virtual double categories in [12]), which are a common generalization of double
categories and multicategories.

We can define morphisms of generalized nonsymmetric co—operads in the same way as
we define morphisms of nonsymmetric co—operads, ie as maps over A°P that preserve
cocartesian morphisms over inert morphisms. Again, we will refer to a morphism
M — N of generalized nonsymmetric co—operads as an M-algebra in N, and define
an oco—category Algjlw (N) of these as a full subcategory of the co—category of functors
from M to N over A°.

4.2 Bimodules and their tensor products

We now have a natural way to extend the definitions of Section 2 to the noncartesian
setting because of the following observation:

Lemma 4.10 The projection A(}p[n] — AP is a double co—category for all [n] € A.
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Proof This projection is the opfibration associated to the functor
Homa (-, [n]): A°® — Set.

It thus suffices to check that this functor satisfies the Segal condition, which it does
since [k] is the iterated pushout [1] Lgy--- Loy [1] in A. O

Remark 4.11 As a double (co—)category, AO/IEn] is rather degenerate: it is the double
category corresponding to the category (or partially ordered set)

0—>1—-.-—>n.

In particular, it has no nontrivial morphisms in one direction.

Definition 4.12 Let C be a monoidal co—category. An associative algebra object in
C is a A°P—algebra, and a bimodule in € is a A(;p[l]—algebra.

Thus, to define the double oo—category AL£61(C), natural choices for the co—categories
of objects and morphisms are Alg! Ao (C) and Alg} Ao/p[ ](G) respectively. At the next
level, we want to consider a full subcategory of Alg} A% (@) that consists of “composite”
A /[EZ] —algebras. We want the composmon of bimodules in 21£&;(C) to be given by
tensor products, so the composite A’ /2] —algebras should be those algebras M where
M(0,2) is exhibited as the tensor product M(0, 1) ®as(1,1) M(1,2). As discussed in
Section 2.3, this amounts to the diagram AO_E — C, obtained by taking the cocartesian
pushforward of

—e®

op Jj
A —>A/[2]

to the fibre over [1], being a colimit diagram. To get a more convenient version of this
condition, and its generalization to A ;[,j—algebras, it will be useful to reformulate it
in terms of operadic Kan extensions. In order to do this, we must first introduce some
notation:

Definition 4.13 A morphism ¢: [k] — [m] in A is cellular if ¢p(i +1) <¢p(i)+1
forall i =0,...,k. We write A [, for the full subcategory of A [, spanned by the
cellular maps. (In other words, A /[, is the full subcategory of A [,] spanned by the
objects (ig,...,ix) where i;41 —i; <1.)

Lemma 4.14 The projection A(/)l[)n] — AP js a generalized nonsymmetric oo —operad,
and the inclusion

AP s AP

/[n] /[n]

is a morphism of generalized nonsymmetric co—operads.
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This is a special case of the following observation:

Lemma 4.15 Suppose 7: O — AP is a generalized nonsymmetric co—operad and C
a full subcategory of Opy. Let P be the full subcategory of O spanned by the objects
X such that p; )X lies in C for all inert maps p;: [1] — m(X). Then the restricted
projection P — AP is also a generalized nonsymmetric co—operad, and the inclusion
P — O is a morphism of generalized nonsymmetric co—operads.

Proof If X € P, ¢: [m] — [n] is an inert map, and X — ¢ X is a cocartesian
morphism over ¢ in O, then ¢ X is also in P. Hence P has cocartesian morphisms
over inert morphisms in A°P, which is condition (i) in Definition 4.8, and the inclusion
P — O preserves these. Moreover, for every [n] we have a pullback diagram

Pin > € Xopg X0 ©

|

O = Oy Xopy *** X0p0) O]
which implies condition (ii) since the bottom horizontal map is an equivalence. Condi-
tion (iii) is also satisfied, since P is a full subcategory. a

Proof of Lemma 4.14 A map ¢: [m] — [n] is cellular if and only if all its composites
¢pi: [1] — [n] with the inert maps [1] — [m] is cellular. Thus A‘;l[)n] is the full
subcategory of A(ﬁn] determined by a full subcategory over [1]. It is therefore a
generalized nonsymmetric co—operad by Lemma 4.15. |

The A(;p[n] —algebras that are given by tensor products in the appropriate way will turn out
to be those that are left operadic Kan extensions along the inclusion 7,: A ] AP ]
For this to make sense, we must first check that the map 7, is extendable in the sense
of Definition A.49, so that we can apply Proposition A.50:

Proposition 4.16 The inclusion t;: A’ i~ AP /1] is extendable for all i .

Proof We must show that, for any map &: [j] — [i] in A, the map

aCt aCt
AJije — H(A/m Jeop

is cofinal, or equivalently that the map

J
A~ [ 1A,
r=1
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is coinitial, where pp: [1] — [/] is the inert map sending O to p—1 and 1 to p. By [28
Theorem 4.1.3.1], to see this it suffices to show that for every X € ]_[p LA i £np/°
the co—category ((A /[1])“‘) /x is weakly contractible.

The object X is given by diagrams

1]\4/[”1)]

for p=1,...,j, where f), is active and c, is cellular. But since the f, are active we
see that

cp(np) = Cpfp(l) =&(p)= Cp+1fp+1(0) = Cp—i—l(o),

so the ¢p glue together to a unique map c: [n] — [i] such that c¢np = ¢p, where we
let n = Z;;=1 np and np: [np] — [n] is the inert map n,(q) =n1+---+np_1 +4q.
Moreover, c is clearly cellular. The maps f, then glue to an active map f: [j] — [n]
given by f(p) =n1+ ...+ np. The resulting object

“\ /

is then final in ((A /[,])“Ct) /x » hence this co—category is indeed weakly contractible. O
The following observation lets us analyze operadic Kan extensions along 7, :

Lemma 4.17 Forall (i,i +k) € (A/[ ])[1] (with k > 1) the functor

)act

/[n]’/(,i+k)

thatsends ([a1],...,[ar_1]) to (i,i+1,...,i+]1,...,i+(k=1),...,i+(k—1),i+k),

where there are a;j + 1 copies of i + j, is cofinal. In particular, there is a cofinal map

from a product of copies of A°P to (A(/)P[’ )aCt forall i and j, and so a cofinal map
act is thus sifted.

from A°P by [28, Lemma 5.5.8.4]; the s1mp11c1a1 set (A/[n])/(i i +k)

Y

Proof This follows from [28, Theorem 4.1.3.1], since the category (A%—1)-0p) , has
an initial object for all X e (A/[n])z/‘c(;’l.%). |
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Definition 4.18 We say a monoidal co—category has good relative tensor products
if it is t, —compatible (in the sense of Definition A.59) for all n. Similarly, we say a
monoidal functor is compatible with relative tensor products if it is T, —compatible (in
the sense of Definition A.62) for all n.

Lemma4.19 Let C be a monoidal co—category. Then C has good relative tensor prod-
act

ucts if and only if for every algebra A: AO/IEZ] — C®, the diagram A — (A° /[2]) 1(0.2) ™
obtained from A by cocartesian pushforward to the fibre over [1], has a colimit, and
this colimit is preserved by tensoring (on either side) with any object of C. Moreover, a
monoidal functor is compatible with relative tensor products if and only if it preserves
these colimits.

Proof This follows from Lemma 4.17 and Corollary A.44. a
Applying Corollary A.60, we get:

Corollary 4.20 Suppose C is a monoidal oo—category with good relative tensor
products. Then the restriction

¥ Algly, (€)= Algl,, (€
n gA/p[n]( ) gA/‘in]( )

has a fully faithful left adjoint t, 1. A A(;‘En] —algebra M is in the image of 1, if and
only if M exhibits M (i, j) as the tensor product

MG, i+1D)®umi+1,i+0)ME+1,i+2)Qpm12,i+2) " OM(-1,j-yM(j—1,j). O
Thus, the following is a good definition of the co—categories AL®(C), for all n:

Definition 4.21 Let C be a monoidal co—category with good relative tensor products.
We say that a A°? /] —algebra M in C is composite if the counit map v, 17, M — M is
an equivalence, or equivalently if M is in the essential image of the functor ;. We
write ALB(C),, for the full subcategory of Algl AT (G) spanned by the composite
A(;[ ! —algebras.

4.3 The Segal condition

Our goal in this subsection is to prove that the co—categories 2A£81(C); satisfy the
Segal condition, ie that the natural map

QLS@] ((‘3), — Q[S@] (e)l ng@l(e)o s Xmg@l(e)o QLQ@](G)]
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is an equivalence of co—categories. We will prove this by showing that for every i the
generalized nonsymmetric co—operad A(/)I[)l.] is equivalent to the colimit

Ay U oL A

/1] /101 /[0] /(1]

in OpdA £ To do this we use the model category (Set A)Dgen defined in Section A.1
and check that A(;IE y is a homotopy colimit; this boils down to checking that a certain
map is a trivial cofibration.

We write AL /[ ] P for the ordinary colimit A’} ] 1 AT, LT 4 A 1] in (marked)
simplicial sets (over A°P). Since this colimit can be wrltten as an iterated pushout
along injective maps of simplicial sets, this colimit in simplicial sets is a homotopy
colimit corresponding to the oo—categorlcal colimit we’re interested in. Moreover,
there is an obvious inclusion A /[’?p — A )i Our aim in this subsection is then to
prove the following:

Proposition 4.22 The inclusion A];I[’l.(])p > A(/)E.] is a trivial cofibration in the model
category (SetZ)D“ie“~

Before we turn to the proof, let us first see that this does indeed imply the Segal
condition for AL, (C):

Corollary 4.23 Let M be a generalized nonsymmetric oo—operad. The restriction
map

1 1 1
Algyem V) = Algpo V0 XL, 00 Xalgho 00 Alas VD
is an equivalence of oo—categories.

Proof Since the model category (Set A)D gen is enriched in marked simplicial sets
and the inclusion A /[’O]p — AP SRR trivial cofibration by Proposmon 4.22, for
any generalized nonsymmetric oo—operad M the restriction map Alg} AT M) —

Alg 11.0p (M) 1is a trivial Kan fibration, and the map
A

A]g 11.0p (M) — Alg A, (M) XAlg o V) Alg};op ) Algle/p[]] (M)

A/[n]

is an equivalence of co—categories since Al /[ ] is a homotopy colimit. a

Corollary 4.24 Let C be a monoidal oco—category with good relative tensor products.
Then the natural restriction map

ALSE1(C)n — ALB1(C)1 Xues,(C) *** XALH, (€)o ALB1(C)1

is an equivalence.

Geometry & Topology, Volume 21 (2017)



The higher Morita category of E,—algebras 1665

Proof This map factors as a composite of the maps
ALB(C), — Algk% ](e) — ALB1(C)1 Xa1ee, ()0 ** - X6, ()0 ALB1(C)1,

where the first is an equivalence by definition and the second by Corollary 4.23. O

We will deduce Proposition 4.22 from a rather technical result about trivial cofibrations
in (SetJAr) o To state this, we first need to introduce some terminology for simplices
in the nerve of A°P.

Warning 4.25 Throughout the remainder of this section we are really working with
marked simplicial sets. However, to simplify the notation we will not indicate the
marking in any way — thus if eg O is a generalized nonsymmetric co—operad we are
really thinking of it as the marked simplicial set (O, /) where [ is the collection of inert
morphisms. Similarly, all simplicial subsets of generalized nonsymmetric co—operads
are really marked by the inert morphisms that they contain.

Definition 4.26 Let o be an n—simplex in NA°P, ie a diagram
o = lrol 2> [r1] L L ]

in A°? (where, in terms of the category A, each f; is a map of ordered sets from
[ri] to [r;—1]); for convenience, we will let the symbols [r;] and f; denote the objects
and morphisms in any such n—simplex we encounter from now on. We say that o
is narrow if r, = 1 and wide if r, > 1. If o is wide, we have an induced diagram
. A" *x N (Cell}[rn])Op — NA®P by adding the inert morphisms from [r,] to [1]
and [0]. The decomposition simplices of ¢ are the simplices in the image of this
diagram.

Definition 4.27 We say a morphism ¢ in A°P is neutral if it is neither active nor inert.
If o is an n—simplex of NA°P such that f; is neutral, we say that o is k—factorizable.
The k—factored (n+1)—simplex of o is then that obtained by taking the inert—active
factorization of fy .

From the definition of the model structure for a categorical pattern 13 in [31, Section B.2]
it follows that the 3—anodyne morphisms defined in [31, Definition B.1.1] are trivial
cofibrations. In the case P = D%en, we have in particular that:

e If o is a wide n—simplex in NA°P and 7r5: A" % N(Cell}[rn])"p — NA®P is the
diagram as above, then the inclusion
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A" % N(Cell}[rn])"p — S A"x N(Cell}[rn])"p

\ /
NA°P

is a trivial cofibration.

e If 0 is a k—factorizable n—simplex and o’ is its k—factored (n+1)-simplex,
then the inclusion

AZ-H s ARTL

N

NAP

is a trivial cofibration.

We will prove Proposition 4.22 by constructing a rather intricate filtration where each
inclusion is a pushout of a trivial cofibration of one of these two types. To define this
we need some more notation:

Notation 4.28 We define the following sets of simplices in NA°P:

e For 1 <r <k <n,let A,(k,r) be the set of nondegenerate narrow n—simplices o
such that f; isinert, f; is neutral and f, is active for r < p <k and p > k.

o Forl<r<k<n,let A, (k,r) be the set of nondegenerate (n+1)-simplices &
such that r, =1, ry,41 = 0, f, is inert, f is neutral and f, is active for
r<p<kand p>k.

e For 1 <k <n,let B,(k) be the set of nondegenerate narrow n—simplices o
such that fj is neutral, f, is active for p > k and o is not contained in A, (k,r)
for any r.

e For 1 <k <n,let B, (k) be the set of nondegenerate (n+1)-simplices ¢ such
that r, =1, 1,41 =0, fi is neutral, f, is active for k < p <n+1 and o is
not contained in Aj, (k,r) for any r.

Now define §, € NA®P to be the simplicial subset containing all the nondegenerate
i —simplices for i < n together with:

e For every wide 7 —simplex with i < n, its decomposition simplices.

e The k—factored (i +1)-simplices of the simplices in A;(k,r) and B;(k) for all
k,randalli <n.
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 The k—factored (i 4-2)-simplices of the simplices in A’ (k,r) and B/ (k) for all
k,randalli <n.

Then let ;" denote the simplicial subset containing the simplices in T, together with
the narrow active (n+1)—simplices, meaning those such that all the morphisms f; are
active.

A “prototype” version of our technical result is then: For every n, the inclusion
3:—1 <> §p is a trivial cofibration in the generalized nonsymmetric co—operad model
structure. We actually need a slightly more general “relative” version of this, which we
are ready to state and prove after introducing a little more notation:

Notation 4.29 Let O be an ordinary category whose objects have no nontrivial
automorphisms, equipped with a map O — A°P that exhibits O as a generalized
nonsymmetric co—operad. We say a simplex in NO is narrow, wide or k—factorizable
if this is true of its image in NA°P. For such O the inert—active factorizations in O
are strictly unique (rather than just unique up to isomorphism), and we can define
the decomposition simplices of a wide simplex and the k —factored (n+1)—simplex
of a k—factorizable n—simplex just as before. If NOy is a simplicial subset of NO
we (slightly abusively) write §, O for the simplicial subset of NO containing the
simplices in NOy together with those lying over the simplices in §,; we also define
55O similarly.

Proposition 4.30 Let O be as above. Suppose NQOy is a simplicial subset of NO
such that:

e For every wide simplex contained in NQy, its decomposition simplices are also
contained in NQOy.

e For every n—simplex in NOy whose image in NA®? is in A, (k,r) or B, (k)
for some k and r, its k —factored (n+1)—simplex is also in NOy.

e For every (n+1)-simplex in NOy whose image in NA® is in A} (k,r) or
B/ (k) for some k and r, its k —factored (n+2)-simplex is also in NOy.

Then the inclusion
3,050

is a trivial cofibration in the generalized nonsymmetric oo—operad model structure.

Remark 4.31 It is not really necessary to assume that the objects of O have no
automorphisms for the proof to go through: it suffices, as in the proof of [31, Theorem
3.1.2.3], to assume that the inert—active factorization system can be refined to a strict
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factorization system, ie one where the factorizations are defined uniquely, not just up
to isomorphism. This slight generalization is not needed for any of our applications,
however.

Proof The basic idea of the proof is to define a filtration of §, O, starting with S:{_l 0,
such that each step in the filtration is a pushout of a trivial cofibration of one of the
two types we discussed above.

Let us say that a simplex in §, O is old if it is contained in 3;:'_1 0O, and new if it is
not. We also write A, (k,r) for the set of new n—simplices whose image in NAP lies
in A, (k,r), and define A}, (k,r), B,(k) and B’ (k) similarly. The filtration is then
defined as follows:

o SetFo:=F 0.

e Let S; be the set of nondegenerate wide new n—simplices such that f, is inert. We
let 1 be the simplicial subset of §, O containing Fy together with the n—simplices
in S; as well as their decomposition (n+1)— and (n+2)-simplices.

e Let S;(r) be the set of nondegenerate wide new n—simplices such that f, is inert
and f), is active for p > r. We set J, to be the simplicial subset of §, O containing
F1 together with

— the n—simplices in S, (r) for all r and their decomposition (n+1)—and (n+2)—
simplices;

— the n—simplices in A, (k,r) for all k and r and their k—factored (n+1)—
simplices;

— the (n+1)—simplices in A’ (k,r) for all k and r and their k—factored (n+2)-
simplices.

e Let J3 be the simplicial subset of 5, O containing F, together with the n—simplices
in B, (k) for all k and their k—factored (n+1)—simplices, as well as the (n+1)—
simplices in B!, (k) for all k and their k—factored (n-+2)—simplices.

e Let S4 be the set of nondegenerate wide new n—simplices that are not contained
in F3. Then F4 := §, O consists of the simplices in F3 together with the n—simplices
in Sy and their decomposition (n+41)— and (n+2)-simplices.

We then need to prove that the four inclusions F,,—1 < J, are all trivial cofibrations.
m =1 If o is an n—simplex in NO, we write 7, for the induced diagram

A" % N(Celljp, 1) = NO
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and JTg for the restriction of this map to dA”™ x N (Cell}[rn])"p. For ¢ in S7, observe
that since any narrow new n—simplex whose final map is inert is contained in JFy, as is
any new (n-+1)—simplex whose final map is [1] — [0] and whose penultimate map is
inert, the map Jl’g factors through Jo. Thus we have a pushout diagram:

Lyes, A" « N(Celll, )" —— lpes, A" « N(Celll, )

EF() 3:1

Since the upper horizontal map is Dglen—anodyne, so is the lower horizontal map.

m = 2 This is the most convoluted step, as we must consider several subsidiary
filtrations for the inclusion F; < F,. We will inductively define a filtration

F1=52 S 901 S Gn1 S-S5 S5 =52
where G/, is itself defined via a filtration
9r+1 - Jrr - Jr r+1 = c jr,r-i-l c...C j;,n - jr,n = 9;

This goes as follows:

e We define 7' rk 10 be the simplicial subset of J, containing the simplices in
Jrk—1 together with the n—simplices in A, (k,r) as well as their k—factored
(n+1)—simplices.

* We define J, ;. to be the simplicial subset of J, containing the simplices in
J k together with the (n+1)-simplices in A/, (k,r) as well as their k—factored
(n+2)—simplices.

e We define G, to be the simplicial subset of F, containing G, together with
the n—simplices in S, (r) as well as their decomposition (n+1)— and (n+2)—
simplices.

Then it suffices to show that the inclusions f; x: J, x—1 <> j:',k’ 8rk: J/r,k ~J,k and
hy: G, — G, are all trivial cofibrations.

Observe that for o in A, (k, r) with k—factored (n+1)—simplex t, the faces d ;T with
J # k are contained in J, x_;. Thus we get a pushout diagram

+1 N 1
]_[aezn (k,r) AZ ]—[oefin(k,r) AT

jr,k—l Jlr,k
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and so f, is a trivial cofibration. Similarly, for o in Al (k,r) with k—factored
(n+2)—simplex t the faces djt with j # k are contained in J/ - We therefore have
another pushout diagram

_ n+2 _ n+2
Use,oen At~ — Uoeaygen A

j;c,r jk,r
hence g, x is also a trivial cofibration.

Now for o € S,(r) the map ﬂg factors through G/, so we have a pushout square

Hpes, @ 00" * N(Celly, )P —— [[5es,0) A" * N(Celljy, )P

Sr Sr

which implies that /4, is a trivial cofibration.
m =3 We again need to define a subsidiary filtration
Fo=Ho SH; CH; C--- CH, CSH, =T,

Here we inductively define J(;_to be the subset of F3 containing };_; together with
the n—simplices in B, (k) as well as their k—factored (n+1)—simplices, and then
define JHj to be that containing .’H;{ together with the (n+1)—simplices in B, (k) as
well as their k—factored (n+2)—simplices. It then suffices to prove that the inclusions
Hy—1 = Hj and I < H are trivial cofibrations. If o € B, (k) and 7 is its
k —factored simplex, then d; 7 lies in Hy_; for j # k, so we have a pushout square

+1
]—[aef?n(k) AZ ]—lael?n(k) Al

Heey 30,

and hence the inclusion Hjy_; — fH;C is a trivial cofibration. Similarly, we have a
pushout square
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+2
ucefi’;(k) AZ uoefi‘é,(k) A2

J-C;c Hr
so the inclusion J—C;c <> Hj, is also a trivial cofibration.

m =4 Observe that for o in S4 the diagram 7'[2. factors through J3, and so we have
a pushout diagram:

[es, 967+ NCelljy ) ——» [as, &%« N(Celll, )

I3 T4

The inclusion F3 — F4 is therefore also a trivial cofibration, which completes the
proof. a

Corollary 4.32 Let O be an ordinary category whose objects have no nontrivial
automorphisms, equipped with a map O — A°P that exhibits O as a generalized
nonsymmetric co—operad. Suppose NOy is a simplicial subset of NO such that

e every narrow active simplex in NO is contained in NQOy ;

e for every wide simplex contained in NQy, its decomposition simplices are also
contained in NOy ;

e for every n—simplex in NOgy whose image in NA? is in A,(k,r) and B, (k)
for some k and r, its k —factored (n+1)—simplex is also in NOy;

» for every (n+1)-simplex in NOy whose image in NA°? is in A} (k,r) and
B, (k) for some k and r, its k —factored (n+2)—simplex is also in NOy.

Then the inclusion NOg — NO is a trivial cofibration of generalized nonsymmetric
oo —operads.

Proof Since NOg contains all narrow active simplices in NO, the simplicial subsets
&, O and S;'[ O of NO coincide. The inclusion NOg < NO is therefore the composite
of the inclusions §,-10 = ;3’;{_1 0O — §, 0, which are all trivial cofibrations by

Proposition 4.30. a
Proof of Proposition 4.22 We apply Corollary 4.32 to the inclusion AI;I[’Z.?p — Ao/p[l.].
The required hypotheses hold since a simplex of A(/)I[)l.] lies in A];I[’l.?p if and only if its
source is of the form (i, ...,i,) with i, —ig < 1. |
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4.4 The double co—category of algebras

Our goal in this subsection is to prove that the co—categories A£®(C), fit together into
a simplicial co—category. We will do this by checking that composite A(}p[n]—algebras
map to composite A‘}‘Em]—algebras under composition with the map

— A®

. op
Pt A = Al

induced by a map ¢: [m] — [n] in A.
Definition 4.33 Suppose € is a monoidal co—category. Let A£G (C) — AP de-
note a cocartesian fibration associated to the functor A°? — Cat, that sends [n] to

Alg} A%, (G) Write 2£61(C) for the full subcategory of AL (C) spanned by the
obJects of ALB1(C), for all n, ie the composite A algebras for all n.

We wish to prove that the restricted projection awl(e) — AP is a cocartesian
fibration, with the cocartesian morphisms inherited from 20£&(C). The key step in
the proof is showing that a certain functor is cofinal; to state the required result we first
need the following technical generalization of cellular maps:

Definition 4.34 Suppose ¢: [m] — [n] is an injective morphism in A. We say a
morphism «: [k] — [n] is ¢—cellular if
(1) for a(i) < ¢(0) we have (i +1) <a(i) +1,
(i) for ¢(j) <a(@i) <¢(j +1) wehave a(i +1) <¢(j + 1),
(iii) for (i) > ¢p(m) we have (i + 1) < (i) + 1.
Remark 4.35 We recover the previous notion of cellular maps to [n] as the ¢—cellular
maps with ¢ = id[,.

Definition 4.36 For [n] € A and ¢: [m] — [n] any injective morphism in A, we write
A /[n)[¢#] for the full subcategory of A /[,) spanned by the ¢—cellular maps to [n].

Proposition 4.37 (i) If ¢: [m] — [n] is an injective morphism in A, then for any
y: [k] — [m] the map

Ps: (Aypm)y) = (A9,
given by composition with ¢ is coinitial.
(ii) If ¢: [m] — [n] is a surjective morphism in A, then for any y: [k] — [m] the
map
Px: (Aypm))y) = (Ayn))y,

given by composition with ¢ is coinitial.
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Proof We first prove (i), ie we consider an injective map ¢ . To show that ¢ is coinitial,
recall that by [28, Theorem 4.1.3.1] it suffices to prove that for each X € (A ) [gb]);f;/ /0

act

the category ((A /[l])y /) /x is weakly contractible. The object X is a diagram
(k] —— [p]
[] —— [n
[7] p [n]

where £ is a ¢—cellular map and « is active, and an object X € ((A/[l]);c/‘)/x is a
diagram

(e —
yl% lé
[/] p [n]

where 0 is a cellular map and 7 and A are active.

Since ¢ is injective, this category has a final object, given as follows: Let [¢] =& 1([I]),
let A be the inclusion [¢] — [p] and let 8 be the induced projection [¢] — [/] — since
& is ¢—cellular, 6 hits everything in [/] and so is cellular. Moreover, « factors through
amap m: [k] = [¢q], since Ex = ¢y and so the image of « in [p] maps to the image
of ¢ in [n]. But then, since « is active, the maps 7 and A must also be active, so we
have defined an object of ((A /[l])';‘f/t) /x - Any other object of the category has a unique
map to this, ie this is a final object. This implies that the category ((A /[1])2;/‘) /x 1s
weakly contractible.

We now consider (ii), the surjective case. We can write ¢ as a composite of elementary
degeneracies, and so it suffices to consider the case where ¢ is an elementary degeneracy
s¢: [I + 1] — [I]. We again wish to apply [28, Theorem 4.1.3.1] and show that for
each X € (A1), the category ((A /[1+1])‘;/°/‘) /x is weakly contractible. Let X be

sey/
as above, and let /t\ x denote the partially ordered set of pairs (a, ) where

e a,be]p],
e S@=§&0) =1,
e a<b,

if i € [k] satisfies y(i) =t then (i) <a,
if i € [k] satisfies y(i) =¢+ 1 then a(i) > b,
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where (a,b) <(da’,b’) if a <a’ <b’ <b. Define a functor Gx: Ay — ((A/[l+1])?,c/t)/x
by sending (a, b) to the diagram

o

K] — 2 [P+ A +a=b)] —[p]

(a,b) (a,b)
Y §

[ +1] - ]
where

L _JED,  isa,
9@”’)(’)_{5(1‘)“, i>a,

i i<a
A(a’b)(l)_{l—(l—i-a_b)y l’>a,

0 {a(i), i<a,
T(a,p)\l) = Ot(i)+(1+a_b)’ i>a.

Here 04 p) is cellular, the maps A, ) and 7(, p) are active, and the diagram commutes.
The maps from (a, b) to (a,b—1) and (a+1, b) are sent by Gy to the obvious transfor-
mations of diagrams including the face maps dj,, dg: [p+(1+a—b)]— [p+(2+a—b)],
respectively.

Now observe that Gy has a left adjoint Fy: ((A"‘/C[tl])y /);x — Ax. This sends a
diagram as above to (a,b) where a is maximal such that there exists i € [¢g] with
(i) =t and A(i) = a, and b is minimal such that there exists i with 6(i) =t + 1
and A({) = b. We have FxGy = id, and the unit map id — Gx Fx is given by the
natural diagram containing the map A: [g] — [p + (1 + a — b)] defined by

_[AG), i <a,

A+ (A +a—b), i>a.

Since adjunctions of co—categories are in particular weak homotopy equivalences of
simplicial sets, it follows that ((Ac/e[ll]]aa)y /)/x is weakly contractible if and only if
Ay is. But Ax has an initial object, namely (A, B) where A is minimal such that
£(A) =1t and A > (i) for any i € [k] such that y(i) = ¢, and B is maximal such
that £(B) =t + 1 and B <«(i) for any i € [k] such that y(i) =t + 1. This implies
that Ay is indeed weakly contractible, which completes the proof. a

()

Corollary 4.38 Suppose C is a monoidal co—category with good relative tensor
products. Then the projection A£®1(C) — A°P is a cocartesian fibration.
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Proof Since AL (C) — A is a cocartesian fibration, it suffices to show that if
X is an object of AL (C) over [n] € A, and X — X is a cocartesian morphism
in 2A£6(C) over ¢: [m] — [n] in A, then X is also in A£S(C). In other words,
we must show that if X is a composite AOpn]—module, then (¢«)* X is a composite
A/[ ! —module for any map ¢: [m] — [n], ie the counit map T T (P5)* X — (s)* X
is an equivalence, where 1, is the inclusion A’} Jim] ™ AP Jim]" Using the definition of
Tm,1 as an operadic left Kan extension and the criterion of Lemma A.53, it suffices to
show that for each y € A’} Jim]’ the natural map

coim  E(¢y') > E(¢y)

n:y—=y'€((A /tm1))))°P
op,act

is an equivalence, where E: A ;1" — €~ C? denotes the cocartesian pushforward

along the unique active maps to [1] of the restrlctlon of X to Ajp[’a]m

It suffices to consider separately the cases where ¢ is either surjective or injective. If
¢ is surjective, then the map ¢«: (A /[m])‘j‘Ct — (A /[n]) "y gives a factorization of this
map as

=

colim E(py) — colim E(y") — E(py).
n:y—=>y €((A /pm1)3))°P n: ¢y =y (A /i)y, )P

Here the first map is an equivalence by Proposition 4.37(ii) and the second map is an
equivalence since X is composite.

Now suppose ¢ is injective. Then the functor (A /tm))y a“ — (A [n)[9] gft / gives a
factorization of the map above as

colim X(py') — colim X(y") = X(¢y).
n:y—>y E((A/[m])‘m)()p 77:¢)/—>V”€((A/[n][¢])a¢f;,/)°p

Here the first map is an equivalence by Proposition 4.37(i). Moreover, since X is a
composite A" Jin] —algebra and the inclusions

(A /)iy ) = (A (8D, ) — (A Dy )T
are fully faithful, the map

colim E(y") — E(py)
n: 6y -y (A /D, )

~

is also an equivalence, since Z is a left Kan extension of its restriction to (A ;)P
by Lemma A.53. a

Combining Corollary 4.38 with Corollary 4.24, we have proved:

Theorem 4.39 Suppose C is a monoidal co—category with good relative tensor prod-
ucts. Then the projection A£61(C) — AP is a double co—category. o
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Definition 4.40 Let C be a monoidal co—category with good relative tensor products.
Then we define 20lg;(C) to be the (oo, 2)—category underlying the double co—category
ALG1(C), ie the completion Ly Usei ALG1(C) of the underlying 2—fold Segal space
of AL (C) (see Remark 3.15).

4.5 The bimodule fibration

Let € be a monoidal co—category. We will write Bimod(C) for the co—category
Alglep (€) and Ass(C) for the co—category Alglep(G). There is a projection
/m

7: Bimod(C) — Ass(€)*?

that sends an A—B-bimodule M in € to the pair (A4, B). Our goal in this subsection
is to analyze this functor, as well as the projection

U: Bimod(€C) — Ass(C) x € x Ass(C)

that sends an A—B-bimodule M in € to (A, X, B), where X is the object of C
underlying M ; we will make use of this work below in Section 5.5. Our first task is to
prove that the map U is given by restriction along an extendable map of generalized
nonsymmetric co—operads, from which it will follow that U has a left adjoint.

Definition 4.41 We can identify objects of A /(1] with lists (ig,...,in) where 0 <
ij <ij4+1 <1, and for every ¢: [m] — [n] in A there is a unique morphism

(ip(0)s-- - ig(m)) = (0. ... in)

over ¢ in A°?. Let U denote the subcategory of A [} containing all the objects and
the morphisms (ig (o), - - - - ig(m)) —> (io. - -..in) as before, where, if 7 is the largest
index j such that i; =0 and s is the largest index j such that ig(;y = 0, then either
t =—1, t = m or the image of ¢ contains both s and s + 1.

Remark 4.42 It is easy to see that the projection U°P — AP is a generalized nonsym-
metric co—operad. A U—algebra A in € contains the information of two associative
algebras in €, since we have retained the full subcategories of AO/[EI] on the objects of the
form (0,...,0) and (1,...,1). The algebra A also determines an object A(0, 1) € C,
but we have omitted the maps in A(}IEI that describe the action of the two algebras on
this object. Indeed, as we will see in Proposition 4.47 below, a U—algebra consists
precisely of this information — two associative algebras, and an additional object.

Lemma 4.43 Let i denote the inclusion U —> A(ﬁl].

(1) 1 is an extendable morphism of generalized nonsymmetric co—operads.

Geometry & Topology, Volume 21 (2017)



The higher Morita category of E,—algebras 1677

(ii) For every monoidal co—category C, the functor i *: Bimod(C) — Alg&((‘f) has
a left adjoint iy.

Proof The oco—category u‘/’g’;‘"‘“ has a final object for every X € Ao/p[l] (eg (0,0,1,1)

is final in UOP’aCt)). This implies that i is extendable and, by Proposition A.50, that

/(0,1
operadic left Kan extensions along i always exist. The left adjoint 7, therefore always
exists by Corollary A.60. a

Next, we want to prove that the adjunction iy 4 i* is monadic. For this, we need a
criterion for the existence of colimits for sifted diagrams of algebras:

Proposition 4.44 Suppose M is a generalized nonsymmetric co—operad and C is
a monoidal oo—category, and let K be a sifted simplicial set. Then a diagram
p: K — Algjlvt(@) has a colimit if for every x € M) the diagram evy o p: K — C
has a monoidal colimit in C (ie it has a colimit that is preserved by tensoring with
objects of C). Moreover, if this holds then this colimit is preserved by the forgetful
functors evy .

Proof This follows from the same argument as in the proof of [16, Theorem A.5.3]. O

Corollary 4.45 Let C be a monoidal co—category and suppose K is a sifted simplicial
set. A diagram p: K — Bimod(C) has a colimit if the functors ev(; jyo p: K — C for
(i, j)=1(0,0), (0,1), (1,1) all have monoidal colimits in C. Moreover, such colimits
are preserved by i*: Bimod(C) — Alg;(C).

Proof This follows by applying Proposition 4.44 to Bimod(C) and Algﬁ(@). a

Corollary 4.46 For any monoidal co—category C, the adjunction

ir: Alg{(C) 2 Bimod(C) :i *

is monadic.

Proof Suppose given a diagram F: A°° — Bimod(C) that is i *—split in the sense of
[31, Definition 4.3.7.2], ie the diagram i * F extends to a diagram F’: A%, — Alg%l(@) .
A split simplicial object is always a colimit diagram by [28, Lemma 6.1.3.16], so i * F
has a colimit in Algh(@). Moreover, for the same reason the underlying diagrams in C
are monoidal colimit diagrams, since tensoring with a fixed object of C again gives a
split simplicial diagram. It then follows from Corollary 4.45 that F' has a colimit in
Bimod(C) and this colimit is preserved by i *. The forgetful functors from Bimod(C)
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and Algh(@) to Fun({(0, 0), (0, 1), (1, 1)}, C) are conservative by [16, Lemma A.5.5];
since the diagram

Bimod(C)

Alg! (@)

Fun({(0,0), (0. 1), (1, D}, €)

commutes, it follows that i* also conservative. The Barr—Beck theorem for oco—
categories, ie [31, Theorem 4.7.4.5], now implies that the adjunction iy —i* is monadic.
O

We now wish to identify the functor i *: Bimod(C) — Alglll((i’) with the projection U .
To do this, we define X to be the full subcategory of A /(1] spanned by the objects (0),
(1) and (0, 1). The projection X°? — A°P is a generalized nonsymmetric co—operad,
and the functor Alg&op(e) — C given by evaluation at (0, 1) is an equivalence for any
monoidal co—category C. We can thus identify the projection U with the map induced
by composition with the inclusion AP LIy, X L ¢(1y; A% <> A(}Iil].

Proposition 4.47 The inclusion A°® Ly X 1)y A’ — W is a trivial cofibration
: +
in (SetA)Dﬁff"'

Proof We apply Corollary 4.32 — it is clear from the definition of U as a subset of
A(;[EI] that the required hypotheses hold. |

Corollary 4.48 Let C be a monoidal oco—category. The projection U: Bimod(C) —
Ass(C)x Cx Ass(C) has a left adjoint F such that UF(A, M, B) >~ (A, AQM ® B, B).
Moreover, the adjunction F < U is monadic. O

Corollary 4.49 Forany A, B € Ass(C), let Bimody,g(C) denote the fibre of

7: Bimod(@) — Ass(€)*?
at (A, B). Then:

(i) The pullback Uy, p: Bimody,p(C) — € of U has a left adjoint F4 g such that
the unit map M — Uy pF4 p(M) is the map M — A® M ® B given by
tensoring with the unit maps of A and B.

(i) If K is a sifted simplicial set, then a diagram p: K — Bimodg, g(C) has a
colimit if the underlying diagram Uy g o p: K — C has a monoidal colimit.
Moreover, the forgetful functor Uy, g detects such colimits.

(iii) The adjunction F4,p Uy, p is monadic.
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Proof The existence of the adjunction F4 g - Uy, p follows from Corollary 4.48 and
[31, Proposition 7.3.2.5].

Suppose p: K — C is as in (ii). Since K is weakly contractible, a constant diagram in
C indexed by K® is a colimit diagram, and for the same reason it is also a monoidal
colimit diagram. The composite diagram p: K — Bimod(C) therefore has a co-
limit K* — Bimod(€) by Corollary 4.45, and this factors through Bimodg g (C).
Since Bimody, g(C) is a pullback, and the projections of the diagram to € and
Ass(C) x € x Ass(€) are colimits, it follows that this diagram is also a colimit diagram
in A—B-bimodules. This proves (ii).

Since a Uy, p—split diagram in Bimodg, g (C) gives a U —split diagram in C, it now
follows from Corollary 4.48 that Bimodg, g(C) has colimits of Uy, g—split simplicial
diagrams and these are preserved by Uy, p. Since the inclusions {4} x € x {B} <
Ass(C) x € x Ass(C) and Bimody g(€C) — Bimod(C) also detect equivalences, it
follows that the adjunction F4 g o Uy, p is monadic by [31, Theorem 4.7.4.5]. O

Corollary 4.50 Let C be a monoidal oco—category, and let I be the unit of C re-
garded as an associative algebra. Then the projection Uy r: Bimody j (C) — C is an
equivalence.

Proof By Corollary 4.49 the functor Uy ; has a left adjoint Fy ; and the adjunction
Fy.; 41U, is monadic. Moreover, the unit map M — Uy j Fy ;M is the canonical
equivalence M — I ® M ® I . It follows from [31, Corollary 4.7.4.16] applied to the
diagram

Bimody ;1 (C) 4> ¢

that Uy 1 is an equivalence of co—categories. a

Our next goal is to show that the projection 77: Bimod(€) — Ass(€)*? is a cocartesian
fibration if C has good relative tensor products. This requires some technical preliminary
observations:

Proposition 4.51 Suppose p: € — C is an inner fibration, and that p has a left adjoint

F: C — &. Then a morphism ¢: e — ¢’ in & is p—cocartesian if and only if the
commutative square
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F
Fpie) 2P Fp(er

e — ¢’

is a pushout square, where ¢ denotes the counit of the adjunction.

Proof For any x € £ we have a commutative diagram

Mapg (€. x) ——— Mapg(e. x)

| |

Mapg (Fpe’, x) —— Mapg(Fpe, x)

I 5

Mape(pe’, px) —— Mape(pe, px)

where the vertical composites are equivalent to the maps coming from the functor p by
the adjunction identities. The map ¢ is thus p—cocartesian if and only if the composite
square is cartesian for all x, and the commutative square

F
Fpie) 2P Fp(er

e — ¢’

is a pushout if and only if the top square is cartesian for all x. But since the lower
vertical maps are equivalences the bottom square is always cartesian, hence the top
square is cartesian if and only if the composite square is. a

Corollary 4.52 Suppose p: € — C is a categorical fibration between co—categories,
and that p has a left adjoint F': C — €. Then the following are equivalent:

(1) p is a cocartesian fibration.

(2) For every e € £ and every morphism ¢: p(e) — x in C, there is a pushout
square
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Fp(e) M F(x)

e ———— X

¢
in €, where c is the counit for the adjunction, such that the composite
x5 pF(x) 22 p(®)
is an equivalence, where u is the unit of the adjunction.
Proof Suppose (2) holds. Given e € € and ¢: p(e) — x, we must show that there

exists a p—cocartesian morphism e — ¢re over ¢. By assumption, there exists a
pushout square

Fp(e) M F(x)

in &€ such that the composite
x5 pF(x) 2% p(F)
is an equivalence. The adjunction identities imply that the map v factors as

F x© — Cx _—
Fx —>(u P prc—>x,

where the first map is an equivalence, and that the composite

F(uxo —
Fp(e) ﬂ> F(x) w) Fp(x)

is Fp(¢). Thus we have a pushout square

Fp(¢) _
Fp(e) —— Fp(X)

e4_>x

¢

which implies that ¢ is p—cocartesian by Proposition 4.51. Since p is a categorical
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fibration, by [28, Corollary 2.4.6.5] there exists an equivalence X — X’ lying over
the equivalence (ux o p(v))~! in €, and the composite e — X’ is a p—cocartesian
morphism over ¢, which proves (1).

Conversely, if (1) holds, then for any e € £ and ¢: p(e) — x in € there exists a
p—cocartesian morphism ¢: e — X in & over ¢. By Proposition 4.51 this means we
have a pushout square:

Fp() _
Fp(e) —— Fp(x)

e ——— X

¢

But as ¢ lies over ¢, this gives (2). o

Proposition 4.53 Suppose C is a monoidal co—category with good relative tensor
products. Then the restriction 7: Bimod(C) — Ass(C)*? is a cocartesian fibration.
Moreover, if M is an A—B-bimodule and f: A— A’ and g: B — B’ are morphisms
of algebras in C, then the cocartesian pushforward ( f, g)iM is the tensor product
A’ X4 M B B’.

Proof Let us first assume that C has an initial object @ and the monoidal structure
is compatible with this (ie ¢ ® @ ~ @ ® ¢ >~ & for all ¢ € €). Then the projection
Ass(C) x € x Ass(€) — Ass(C)*? has a left adjoint, which sends (4, B) to (A, @, B).
By Corollary 4.48 it follows that 7 has a left adjoint F’, which sends (4, B) to
F(A,9,B).

Moreover, for any M € Bimod(C) and any morphism (f, g): (A, B) >~ n(M) —
(A’, B'), the pushout

(UF)"(A,2,B) —— (UF)"(A’,2,B’)

(UF)"UM) —————— X,

exists in Ass(C) x € x Ass(C): since € is compatible with initial objects, the top
horizontal morphism can be identified with (4,2, B) — (A’, @, B’) and the left
vertical morphism with (4, @, B) — (4, A®" @ M ® B®", B), so that X,, is simply
(A", A" @ M @ B®", B’). We then get a simplicial object F(X,) in Bimod(C).
Evaluated at (0,0) and (1, 1) this is constant at A" and B’, respectively, and at (0, 1)

Geometry & Topology, Volume 21 (2017)



The higher Morita category of E,—algebras 1683

we get A’ ® A®*® M ® B®* ® B’. Since € has good relative tensor products, the
colimit of this simplicial diagram exists, is monoidal, and can be identified with the
relative tensor product A’®4 M ® g B’. It follows from Corollary 4.45 that the diagram
F(X,) has a colimit in Bimod(C). Moreover, since F is a left adjoint and colimits
commute we can identify this colimit as

|F(Xo)| ~ |F(UF)*UM) Upwrysa,0,8) F(UF)*(A', 2, B")|
~ |F(UF)*UM)| U rwF)sa,0,8) | F(UF)* (A", @, B')|
~M HF(A,Z,B) F(A/, d, B/).

Thus the pushout M L /(4 p) F'(A’, B') exists in Bimod(C). It then follows from
Corollary 4.52 that 7 is a cocartesian fibration, and that the object of C underlying
(frgnMis A @4 M Qp B’.

Now consider a general monoidal co—category C. By [31, Proposition 4.8.1.10] (or by
a direct construction) the co—category €< has a monoidal structure that is compatible
with the initial object —oo and such that the inclusion € <> € is monoidal. Moreover,
this inclusion preserves geometric realizations (and in general colimits other than the
initial object), and thus €< also has good relative tensor products. By our previous
argument we then have a cocartesian fibration Bimod(CY) — Ass(€)*2. The initial
object in € does not admit an associative algebra structure (since it has no map from
the unit), so the inclusion Ass(C) — Ass(CY) is an equivalence. We thus wish to show
that the restriction of the projection Bimod(C¥) — Ass(€)*? to Bimod(C) is still a
cocartesian fibration. For this it suffices to show that if M is an A—B-bimodule in
Cand f: A— A’ and g: B — B’ are maps of associative algebras, then (f, g)1M
(computed in Bimod(C)) is also in Bimod(C). But this is true since the underlying
object of (f, g)1M is given by a relative tensor product that cannot be the initial
object —oo. a

5 [E,-algebras and iterated bimodules

In this section we extend the results of Section 4 to the case n > 1: if C is a nice
E;,, —monoidal co—category we will construct an (n+1)—fold co—category A£G, (C)
of [E, —algebras; we can then define the (oo, n+1)—category 2lg,, (C) of E,—algebras
in € as the completion of the underlying (n+1)—fold Segal space of AL&,(C).

In order to iterate our results in the case n = 1 it is convenient to work with a theory
of co—operads over AP (or A" —oco—operads); we will introduce these objects in
Section 5.1 (with the more technical results we need delegated to the appendix). Then
in Section 5.2 we observe that the definitions of Section 4.2 can be iterated and use this
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to define the co—categories ALB, (C); for I € A™°P, and in Section 5.3 we prove that
these oo—categories satisfy the Segal condition and give a functor A*°P — Cat,. In
Section 5.4 we then show that 2A£&,(C) is a lax monoidal functor in € and conclude
from this that if C is an E, 4, —monoidal co—category then 2A£8,(C) inherits an
E;,—monoidal structure. Finally, in Section 5.5 we identify the (oo, n)—category of
maps from A to B in Alg, (C) with Alg,,_;(Bimodg, g (C)).

5.1 oo-operads over A™°P

In this subsection we will introduce the notion of co—operads over AP or A" —oco—
operads, which is the setting in which we will iterate the constructions of Section 4.

In Section 3.1 we introduced A”—monoids in an co—category € with finite products,
by iterating the definition of an associative monoid. Applying this to the co—category
Cato, of oo—categories, we get a notion of A" —monoidal co—category. Using the
straightening equivalence, we can reinterpret these as certain cocartesian fibrations
over A"*-°P:

Definition 5.1 A A”—monoidal co—category is a cocartesian fibration C® — A”-°P
such that, for any object I € A™-°P the functor

® ® Xx|I|
¢y — (€ Cn) ,
induced by the cocartesian morphisms over the maps in |/ |, is an equivalence.

Remark 5.2 The A"-monoidal co—categories can be interpreted as oo—categories
equipped with n compatible associative monoid structures, ie as n—tuply monoidal
oo—categories. We will see below in Corollary A.31 that they are also equivalent to
E,, —monoidal co—categories as defined in [31], ie to algebras for the [E, —co—operad
in Catyg.

Lurie [31] defines symmetric co—operads by weakening the definition of a symmetric
monoidal co—category as a cocartesian fibration over I' °?, and above in Definition 4.2
we defined nonsymmetric co—operads by analogously weakening the definition of a
monoidal co—category as a cocartesian fibration over A°P. Applying the same idea to
A" —monoidal co—categories gives a definition of A”—oco—operads:

Definition 5.3 A A" —oco-operad is a functor of co—categories 7: O — A™°P such
that:

(i) For each inert map ¢: I — J in A™°P and every X € O such that 7(X) =1,
there exists a w—cocartesian morphism X — ¢ X over ¢.
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(i) Forevery I in A™°P  the functor

|1

0y —>0 c,

induced by the cocartesian morphisms over the inert maps C, — I in A™°P is
an equivalence.

(iii) For every morphism ¢: I — J in AP X € Oy and Y € Oy, composition
with the cocartesian morphisms ¥ — ¥; over the inert morphisms i: I — C,
gives an equivalence

Mapg (X,Y)= l_[ Mapg’d’ (X, Y,
i

where Mapg (X.Y) denotes the subspace of Mapy (X, Y) of morphisms that
map to ¢ in AP, (Equivalently, Y is a w—limit of the Y;.)

Remark 5.4 We will see in Section A.2 that there is an adjunction between A" —oco—
operads and symmetric co—operads over [, . In the case n = 1 this adjunction is an
equivalence by [31, Proposition 4.7.1.1]. We expect that this is true also for n > 1.
Thus, A”—oco-operads should be thought of as a more combinatorial or explicit model
for symmetric co—operads over E,, where we do not need to deal with configuration
spaces of points in R”.

Remark 5.5 A" -—oo—operads are a special case of Barwick’s notion of co—operads
over an operator category as defined in [10]. Specifically, they are co—operads over
the cartesian product QO*", where O is the operator category of finite ordered sets.

Remark 5.6 A A”-monoidal co—category as we defined it above is the same thing
as a A" —oco—operad that is also a cocartesian fibration.

To extend the definitions of iterated bimodules from Section 3 to the noncartesian
setting, we will need to consider a more general notion than that of A”—oco—operads.
To introduce this, recall that by iterating the definition of category object in Catso
we can define A" —uple co—categories (which model (n+1)—uple co—categories) as
certain functors from A™°P to Cats,. Rephrasing this in terms of cocartesian fibrations,
we get the following definition:

Definition 5.7 A A" -uple co—category is a cocartesian fibration M — A™°P such
that, for any I € A™°P_ the functor

M; — lim Mc,

n.op
C—IeCell)}
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induced by the cocartesian morphisms over the inert morphisms C — I in A", is an
equivalence.

We can now weaken this definition in the same way as that which gave us the definition
of A" —oo—operads from that of A” -monoidal co—categories:

Definition 5.8 A generalized A" —oco—operad is a functor of co—categories 7: M —
A"-°P guch that:

(i) For every inert morphism ¢: I — J in A™°P and every X € Oy, there exists a
m—cocartesian edge X — ¢1 X over ¢.

(i) For every I in A™°P the functor
M; — lim Mc,
C—1

induced by the cocartesian arrows over the inert maps C — [ in Cell';fp, is an
equivalence.

7}Op < — O of the diagram of

inert morphisms J — C with 7(—o0) >~ Y. Then for any map ¢: I — J in
A" and X € Oy, the diagram 7 induces an equivalence

(iii) Given Y in Oy, choose a cocartesian lift 7: (Cell

Mapg (X,Y) ~ lim Maplboqb (X, n@))-
i:C—IeCell);”

(Equivalently, any cocartesian lift of the diagram (Cell';fp 45 AP g g —
limit diagram in O.)

Remark 5.9 A A"-uple co—category as we defined it above is the same thing as a
generalized A" —oco—operad that is also a cocartesian fibration.

Definition 5.10 Let 7: M — A be a (generalized) A" —oco—operad. We say that a
morphism f in M is inert if it is cocartesian and 7 ( /) is an inert morphism in A°P.
We say that f is active if w(f) is an active morphism in A°P.

Lemma 5.11 The active and inert morphisms form a factorization system on any
generalized A" —oco—operad.

Proof This is a special case of [31, Proposition 2.1.2.5]. a
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Definition 5.12 A morphism of (generalized) A”—oo—operads is a commutative dia-

gram
M—2
A-0P

where M and N are (generalized) A" —oco—operads, such that ¢ carries inert morphisms
in M to inert morphisms in N. We will also refer to a morphism of (generalized) A" -
oo—operads M — N as an M—algebra in N; we write Algy (N) for the co—category
of M-algebras in N, defined as a full subcategory of the co—category of functors
M — N over A™°P,

Definition 5.13 If M and N are A" —uple co—categories, a A" —uple functor from M
to N is a commutative diagram

¢
M———— N
A:0P
where ¢ preserves all cocartesian morphisms; if M and N are in fact A” -monoidal co—
categories we will also refer to A" —uple functors as A" —monoidal functors. We write

Fun®" (M, N) for the co—category of A”—uple functors, defined as a full subcategory
of the co—category of functors M — N over A™:°P,

5.2 Iterated bimodules for E,—-algebras and their tensor products

In Section 3 we considered iterated bimodules for [, —algebras as monoids for the
overcategories A';’I(’p. Using generalized A" —oco—operads we now have a natural way to
extend this definition to the noncartesian setting, because of the following observation:

Lemma 5.14 Let I be any object of A". Then the forgetful functor A';’IOP — AP
is a A" —uple co—category.
Proof The forgetful functor A';’IOP — A" is the cocartesian fibration associated to
the functor

Homan (-, I): AP — Set.
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This fibration is a A" —uple oco—category if and only if the associated functor satisfies
the Segal condition, which it does (for instance since, if I = ([i1],..., [in]), it is the
product of the functors Homa (-, [ix]) which satisfy the Segal condition for A°P). O

By Corollary A.26 A™-°P—algebras in a A” —-monoidal co—category C are equivalent to
E;, —algebras. To define the n—fold category object A£6,(€) in Caty, of |E;, —algebras,
a natural choice for the co—category of objects is thus Alg'y, .,(C). Similarly, the n
different co—categories of 1-morphisms are given by

ALG, (e)(l,o ..... 0) = Ang‘}r’[l]XA(n—l),op(e)a
Q['S@n (e)(O,I,O,...,O) = Alg’;opr"/P[l]xA(n—Z).op (e)’

ALG, (e)(o ..... 0,1) -= Ang(n—l).anAO/P[l] (©),
and more generally the oco—categories of commutative k—cubes are given by
Ql/gqin (e)[ = A]g’;nop (G),
/1

where I = ([i1],...,[in]) with each i; either 0 are 1 and exactly k 1’s. To define
the remaining oo—categories 20£®,(C); we must define an appropriate notion of
composite A'}’;’p—algebras; luckily, there is a natural generalization of our definition in
the case n = 1:

Definition 5.15 We say a morphism (@1, ..., ¢,) in A" is cellular if ¢; is cellular
for all i. For I € A", we write A'} ; for the full subcategory of A’} ; spanned by the
cellular maps.

Lemma 5.16 The projection A");® — A™°P is a generalized A" —co-operad, and the
inclusion t7: A /fp > A'; Ip is a morphism of generalized A" —oo—operads.

Proof This is as Lemma 4.14, using the A”—analogue of Lemma 4.15. O
Proposition 5.17 Forevery I € A", the inclusion tj: A’;’IOP — A'}’IOP is extendable.

Proof We must show that for any / € A" and any map &: J — [ in A", the map

n,op act n,opyact
WihiE =TT )i
&:Cp—>J

is cofinal, or equivalently that the map

t t
g~ 1 @i,
¢:Cp—J
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is coinitial. This map decomposes as a product, hence, since a product of coinitial
maps is coinitial, this follows from the proof of Proposition 4.16. a

Definition 5.18 We say a A” —-monoidal co—category has good relative tensor prod-
ucts if it is Ty —compatible for all 7 € A™°P. Similarly, we say a A” —-monoidal functor
is compatible with relative tensor products if it is Ty —compatible for all 7.

Applying Corollary A.60, we get:

Proposition 5.19 Suppose C is a A" —-monoidal oo —category with good relative tensor
products. Then the restriction t;: Alg', A" w(C) — Alg" AT (©) has a fully faithtul left
adjoint Ty ). a

Next, we observe that the notion of having good relative tensor products has a simple
equivalent reformulation:

Lemma 5.20 Let C be a A" -monoidal co—category. The following are equivalent:

(1) € has good relative tensor products.

(2) Any one of the underlying monoidal co—categories of C (obtained by pulling
back along the inclusions {[1]} X- - - X A% x- - -x {[1]} = A™°P) has good relative
tensor products in the sense of Definition 4.18.

(3) Any one of the underlying monoidal co—categories of C satisfies the criterion of
Lemma 4.19.

Moreover, a A" —monoidal functor is compatible with relative tensor products if and
only if any one of its underlying monoidal functors is compatible with relative tensor
products.

Proof By definition, we must show that, for any A’P-algebra A in € and any
Xe A'; 7", the colimit of the induced diagram (An Op)a“ — C exists and is preserved
tensoring with any object of € using each of the n tensor products. But since the A”—
monoidal co—category C arises from an [E, —-monoidal co—category by Corollary A.31,
these n tensor product functors are all equivalent. It therefore suffices to show that if
one of the underlying monoidal co—categories of € has good relative tensor products,
then the colimits above exist in € and are preserved by tensoring (on either side) with

any object of C.

But the category (A" /1 )alCt decomposes as a product
t
H(A/[zk] /X
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(where I = ([i1],....[in]) and X = (X1,..., X)), and for each Y € (A° [lk])%t(k
with k # j, the restriction of the diagram to

Y} x- X(A/[l ])act X {Yp}—>C
is obtained by tensoring a number of diagrams associated to A°?. . —algebras in €

with some fixed objects. By siftedness, the colimits of these dlagrams therefore exist
in C, and our desired colimit can be obtained by an iterated colimit of such diagrams.
It follows that the colimit over (A'}’IOP)?C;( does indeed exist, and is preserved under
tensoring, as required. Similarly, a A” —monoidal functor is compatible with relative
tensor products if and only if one of its underlying monoidal functors is. O

We can now define the co—categories AL, (C); for all I:

Definition 5.21 Let C be a A" -monoidal co—category with good relative tensor prod-
ucts. We say thata Ar;’IOp—algebra M in C is composite if the counit map 77,17, M — M
is an equivalence, or equivalently if M is in the essential image of the functor 7. We
write 2A£&,(C); for the full subcategory of Alg" A" .op(€) spanned by the composite

A'} Io P_algebras.

5.3 The (n+1)—fold oco—category of E,—algebras

Our goal in this subsection is to extend the results of Sections 4.3 and 4.4 to the case of
[E,, —algebras, ie to prove that the co—categories AL&, (C); satisfy the Segal condition
and are functorial in 7. Luckily, it turns out that these results both follow from those
in the case n = 1 by simple inductions.

We first prove that 2A£8, (C); satisfies the Segal condition. Let (A’} I)H"’p denote the
ordinary colimit
colim (A" )P
I>Ce(cen» /€

in (marked) simplicial sets (over A™:°P). From the structure of Cell” it is easy to see
that this colimit can be written as an iterated pushout along injective maps of simplicial
sets, so this is a homotopy colimit in the generalized A" —oco—operad model structure
of Section A.1. We wish to prove that the inclusion (A’; I)H’Op — A’}fp is a trivial
cofibration in this model structure:

Lemma 5.22 Suppose I = ([i1],..., [in]) is an object of A". Then the natural map

n
@) — [T g™
p=1
is an isomorphism.

Geometry & Topology, Volume 21 (2017)



The higher Morita category of E,—algebras 1691

Proof The category (Celly /)0p is isomorphic to the product category [ [ (Cell[ll.k] /)OP,
and the functor (I —-C) —~ (A’; )°P is isomorphic to the product of the functors
(ix]—=1jD — A% i (where j = 0 or 1). Since the cartesian product of (marked)
simplicial sets preserves colimits in each variable, the result follows. a

Proposition 5.23 Let I be an object of A". The inclusion (A” ydop A'} IO P

trivial cofibration in the model category (Set A)gn .

Proof Suppose I = ([i1],...,[in]). By Lemma 5.22 we may identify the inclusion
(A P A';’IOP with the product over p = 1,...,n of the inclusions

(A )P > AT

By Proposition A.11 and Corollary A.15, the cartesian product is a left Quillen bifunctor
(SetJA“)D1 X (SetX) Op_] = (SetZ) o, » S0 by induction it suffices to prove the result in
the case n = 1, which is Proposition 4.22. O

Corollary 5.24 Let M be a generalized A" —co—operad. The restriction map

Alg" ;oo (M) — lim Algl i 1o (M)
gAup I—CeCell);” (AT

is an equivalence of oo—categories.

Proof Since the model category (Set A) o is enriched in marked simplicial sets and
(A )H P < AP is a trivial cofibration by Proposition 5.23, for any generalized
A”—oo—operad M the restriction map

n n
AlgAr;-Iop (M) — Alg(Af}I)H,op M)
is a trivial Kan fibration. Moreover, we have an equivalence of co—categories

Alg? i 1o (M) lim  Algln oo (M)
(A7 e I—>Cecell;” (A7 c)r

since the colimit (A’; I)H’Op is a homotopy colimit. a
Corollary 5.25 Let C be a A" —monoidal co—category with good relative tensor
products. Then the natural restriction map

AL£6,(C)r — lim  AL6,(C)c
I—>CeCell);®

is an equivalence.
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Proof This map factors as a composite of the maps

ALG,(C) — Alg’;\n,OP ©) — lim AL6,(C)c,
/1 I—CeCell);”

where the first is an equivalence by definition and the second by Corollary 5.24. 0O

Next we prove that the co—categories AL, (C)y for I € A™°P give a multisimplicial
object.

Definition 5.26 Suppose C is a A" —monoidal co—category. Let 2A£&,(C) — A™-°P
denote a cocartesian fibration associated to the functor A”°°P — Cat, that sends / to
Alg”Af; .Iop(G). We write 2A£8,,(C) for the full subcategory of 2A£&,(C) spanned by the

objects of ALS,, (C); for all 7, ie by the composite A';’IOP —algebras for all 1 € A™°P,

We wish to show that the projection 2£&,(C) — A™°P is a cocartesian fibration. To

prove this, we extend the definitions of Section 4.4 in the obvious way:

Definition 5.27 Suppose ® = (¢1,...,¢,): I — J is an injective morphism in A”.
We say that a morphism («1,...,0,): K— J in A" is ®—cellular if «; is ¢;—cellular
foralli=1,...,n.

Definition 5.28 For I € A" and ®: J — [ an injective morphism in A", we write
A’} ;[®] for the full subcategory of A’} ; spanned by the ®—cellular maps to /.

Proposition 5.29 (1) If ®: J — [ is an injective morphism in A", then for any
I': K — J the map

Py (A )T — (A [@Dgr,
given by composition with ® is coinitial.

(2) If ®: J — [ is a surjective morphism in A", then for any I': K — J the map
(N]F) = (V) gt

given by composition with ® is coinitial.

Proof Since products of coinitial functors are coinitial, this is immediate from
Proposition 4.37. o

Corollary 5.30 Suppose C is a A" —-monoidal oo—category compatible with small
colimits. Then the projection AL &, (C) — A*-°P is a cocartesian fibration.

Geometry & Topology, Volume 21 (2017)



The higher Morita category of E,—algebras 1693

Proof Since ALE, (C) — A™P is a cocartesian fibration, it suffices to show that if
X is an object of ALB,(C) over I € AP, and X — X is a cocartesian morphism
in AL, (C) over ®: J — I in A", then X is also in AL, (C). This follows by the
same argument as in the proof of Corollary 4.38, using Proposition 5.29. a

Combining Corollary 5.30 with Corollary 5.25, we have proved:

Theorem 5.31 Let C be a A" —monoidal co—category with good relative tensor prod-
ucts. Then the projection A£&,(C) — A™"°P js a A" —uple co—category. o

Remark 5.32 Suppose C® and D® are A”-monoidal co—categories with good
relative tensor products, and f®: @® — D® is a A” —monoidal functor compatible
with relative tensor products. Composition with f® induces a functor fx: A£G, (C) —
ALS, (D). It follows from Lemma A.63 that this functor takes the full subcategory
AL, (C) into ALB, (D), and so induces a map fi: ALB,(C) — ALG,(D) of
(n+1)—fold co—categories.

Definition 5.33 Let C be a A”-monoidal co—category with good relative tensor
products. We write 2lg,, (C) for the completion L Useyi ALS,(C) of the underlying
(n+1)—fold Segal space UsegiALS, (C) of the image of ALS, (C) under the forgetful
functor i: UplA" ~ Cat” (Cateo) — Cat"t1(8). Thus g, (C) is a complete (n+1)—
fold Segal space, ie an (0o, n+1)—category.

5.4 Functoriality and monoidal structures

Our goal in this subsection is to show that the (n+1)—fold co—categories AL£®, (C)
we constructed above are functorial in C, and moreover that this functor is lax monoidal.
From this it will follow immediately that if € is an E;4,,—monoidal co—category
with good relative tensor products, then the (oo, n+1)—category 2Alg, (€) inherits a
canonical E,,—monoidal structure. We begin by introducing some notation for the
source of our functor:

Definition 5.34 Let I\Z(Tngon denote the co—category of A”-monoidal co—categories
and A”-monoidal functors. We write 1\@1?0’1 ORTP for the subcategory of Mon gon
determined by the A" -monoidal co—categories with good relative tensor products and
the A" —monoidal functors compatible with these. If n = 1 we also denote this by

\ 1T, GRTP
Mong .

Definition 5.35 Let Alg" — (Opd "2 » OpdA, " be defined in the same way
as the cocartesian fibration in Section A.7, but allowing the target generalized A" —oo—
operads to be large. Then we define 2A£8, by the pullback square
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ALS, Alg"

— n An —— An
A" x Mon & ORTP ____, (Opd2€")oP x Opd 4, &

where the bottom horizontal map is the product of A’}’((iI;: AP s (Opd2Emyor and
the forgetful functor from large A”-monoidal co—categories with good relative tensor
products to large generalized A" —oo—operads. Write 2A£&,, for the full subcategory
of ALSB,, spanned by the objects in AL, (C) for all A”-monoidal co—categories C

Vion A -GRTP.
in Mong,’

Proposition 5.36 The restricted projection A£®, — A™°P x Mo nA ORTP ¢ a co-

cartesian fibration.

Proof Suppose X is an object of A£B, over (/,C) and (P, F): (I,€C) — (J,D) is
a morphism in A”°P x MonA “ORTP Then it suffices to prove that if X — (&, F)i X
is a cocartesian morphism in ALSB,,, then (D, F1 X lies in AL£SB,.

It is enough to consider the morphisms (®,ide) and (idy, F') separately. We know that
(®,ide)1 X is in AL, by Corollary 5.30, and the object (id, F) X lies in ALS, by
Remark 5.32. a

Corollary 5.37 There is a functor ALS, (-): M&léo"’GRTP — Cat"(Catyo) that sends
C to ALG,(C).

Proof By Proposition 5.36 there is a functor Mongo ORTP

equivalently

x AP — Caty,, Or

MonA"-ORTP _, Fun(A™°P, Cat).

associated to the cocartesian fibration 2A£6, — A™°P x MonA ORTP . By Corollary

5.25 this functor lands in the full subcategory Cat” (Caty,) of n—uple category objects.
O

Lemma 5.38 (i) The co—category MonSR™ has products, and the forgetful func-

tor MonC‘RTP — Mones preserves these.
— n
(ii) The co—category Mon, *°f™ is equivalent to Alg" P 1,0 (MonSRTPy
(iii) The oo—category MonoAO ORTP hag products for all n, and the forgetful functor
—— n
MonoAo GRTP _, Mon go preserves these.
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Proof Suppose €® and D® are monoidal co—categories with good relative tensor
products. We will show that the product (€ x D)® := C® x a0 D® in Mon, is also
a product in the subcategory Mong’gTP . Thus, we need to prove:

(1) The product (C x D)® has good relative tensor products.

(2) If & € MonSR™  then a monoidal functor F: & — € x D is compatible with
relative tensor products if and only if the monoidal functors Fi: € — € and
F>: € — D obtained by composing with the projections are both compatible
with relative tensor products.

To prove (1), we use Lemma 4.19. A AO/[ 2] —algebrain CxD is given by a A 2] —algebra
A in € and an algebra B in D. Moreover, the induced diagram (A /[2])‘/% 2~ CxD
is the composite

op op \:

(A 02 = AJ12)]l0.2) X (0.2 = € D-

Since (AO/D[z])?c(t(),Z) is sifted by Lemma 4.17, this colimit is therefore given by the pair
of colimits in € and D. It follows that C x D has good relative tensor products. Then
(2) follows from a similar argument, again using siftedness. This proves (i).

To prove (ii), observe that Mongo ORTP and Al o L) o (MonSRTP) can both be iden-
tified with subcategories of MonA ~ » and it follows from Lemma 5.20 that they are
the same subcategory. Now (iii) follows by the same argument as for (i), or using the
description of limits in co—categories of algebras from [31, Corollary 3.2.2.4]. a

Definition 5.39 Let Alg™® — (Opd ’ge“)Op X (Opd ’gen)x be the obvious variant
of the cocartesian fibration of generalized symmetric co—operads defined in Section A.7.
Then we define ALBE by the pullback square

ALBR Alg"®

AT-OP 5 @lgo”,GRTP,X _ (Opdgo”,gen)op « (@go”,gen)x
where the bottom horizontal map is the product of A';((il; and the symmetric monoidal
structure on the forgetful functor that arises since this preserves products. Then
m;? — AP x M&léon’GRTP’X is a cocartesian fibration of generalized symmetric
oo—operads. Write QLS@,? for the full subcategory of m,? spanned by the objects
corresponding to lists of objects of ALS,,.

Proposition 5.40 The restricted projection 2[£®® AP x Mon A ORTP. X

cocartesian fibration of generalized symmetric co—operads.

S a
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Proof Since QIEQS;? is the full subcategory of mf’ determined by the full sub-
category ALB, of ALG, ~ (m;‘?)(l) , it is a generalized symmetric co—operad.
Moreover, it is easy to see from Proposition 5.36 and Remark A.68 that QLQ@S? inherits
cocartesian morphisms from ALBE. O
Corollary 541 2£8, defines a lax symmetric monoidal functor Mong ORTP
Cat” (Catyo). In particular, if € is an Ej 4, —monoidal co—category then AL£&,(C)
inherits a canonical E,, —monoidal structure.

Proof Since Ql2®® — AP x Mo nA “ORTP.X i a cocartesian fibration of generalized
symmetric co—operads, the associated functor A”-°P x MonA ORTP> Cato 1S
a monoid object. The corresponding functor Mongo ORTP. X, Fun(A°P, Catso) is
then also a monoid object, and lands in the full subcategory Cat” (Catoo) of n—fold
category objects. This therefore corresponds to a lax monoidal functor Mon Qo" ORTP _,
Cat” (Catso) by [31, Proposition 2.4.2.5]. |
Corollary 5.42 2lg, defines a lax symmetric monoidal functor Mongon ORTP
Cat(oo,n) - In particular, if C is an [y, —monoidal oo—category, then 2lg,, (C) inherits

a canonical E,, —-monoidal structure.

Proof By definition, 2Alg,, is the composite of the lax monoidal functor
ALG,: MonA-ORTP _, Cat" (Catoo)

with the inclusion i: Cat”(Catoo) — Cat”T!(8), the functor Use,: Cat"t!(8) —
Seg,, (8) that takes an n—uple Segal space to its underlying n—fold Segal space, and
Ly: Seg,(8) — CSS,(8) ~ Cat(x,z), the completion functor. The functor L;, Usegi is
symmetric monoidal by Remark 3.15, and so the composite 1\71-&1?;1 ORTP _, Cat(oo,n)

is also lax symmetric monoidal. a

5.5 The mapping (oo, n)—categories of 2lg,(C)

Our goal in this subsection is to prove that if A and B are [E,—algebras in an E;,—
monoidal co—category C, then the (oo, n)—category g, (C)(A, B) of maps from A
to B in Alg, (C) can be identified with the (oo, n)—category 2lg,,_; (Bimodg, g(C))
of E,_;—algebras in the oo—category Bimody, g (C) of A—B-bimodules, equipped
with a natural E,_;-monoidal structure.

First we will show that in this situation Bimody4,g(€) does in fact inherit an E,,_—
monoidal structure:
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Definition 5.43 Let C be a A" 1 _monoidal co—category. We write Bimod®(C) for
the internal hom ALGAOP (6) and Ass® (@) for ALGIAS,H(G) By Lemma A.75
these are both A" —mon01dal oo—categories, and the natural map Bimod®(C) —
Ass® (@) x an.op Ass® (C) induced by the map of generalized nonsymmetric co—operads
A°P 1T A% — A(ﬁl] is a A" —monoidal functor.

Proposition 5.44 Let C® be a A1 —monoidal co—category with good relative ten-
sor products. Then the projection T1: Bimod® (€) — Ass®(C) x an.0 Ass®(€) is a
cocartesian fibration of A" —monoidal oo —categories.

For the proof we use the following criterion:
Proposition 5.45 Suppose given a commutative triangle

of functors between oo—categories such that:

(1) p and g are cartesian fibrations.
(2) f takes p—cartesian edges to q —cartesian edges.

(3) For each object ¢ € € the induced map on fibres f.: & — D, is a cartesian
fibration.

(4) Suppose given a commutative square
x 7 < ’
o’ —— e

I

('b*eT)e

in € lying over the degenerate square
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in G, where o and § are p—cartesian edges and y is f.—cartesian. Then B
is fer—cartesian. (In other words, the induced functor ¢*: €, — &, takes
fe—cartesian edges to f.—cartesian edges.)

Then f is also a cartesian fibration.

Proof By [28, Proposition 2.4.4.3] we must show that f —cartesian morphisms exist
in €. More precisely, suppose given e € € lying over d € D and ¢ € € (ie d >~ f(e)
and ¢ >~ p(e) ~ g(d)) and a morphism §: d’ — d in D lying over y: ¢’ — ¢ in C.
Then we must show that there exists an f —cartesian morphism ¢’ — e over §.

Since p is a cartesian fibration, there exists a p—cartesian morphism f: y*e — e
over y, and as f takes p—cartesian edges to g—cartesian edges, its image in D is a
q—cartesian edge f(B): y*d — d . There is then an essentially unique factorization of
8 through f(f), as

' yra TP 4,

Now « is a morphism in D, so since f,/ is a cartesian fibration there exists an f./—
cartesian edge €: a*y*e — y*e. We will show that the composite foe: a*y*e —
y*e — e is an f —cartesian morphism over §.

To see this, we consider the commutative diagram

Mapg (x, a*y*e) —— Mapg(x, y*e) ———— Mapg(x, e)

Mapy, (f(x),d’) —— Mapy(f(x),y*d) —— Mapp(f(x).d)

Mape(p(x), ¢') ———— Mape(p(x), ¢') ——— Mape(p(x), ¢)

where x is an arbitary object of £. By [28, Proposition 2.4.4.3], to see that S o€ is
f —cartesian we must show that the composite of the two upper squares is cartesian. We
will prove this by showing that both of the upper squares are cartesian. By construction,
B is p—cartesian and f(B) is g—cartesian, so the composite of the two right squares
and the bottom right square are both cartesian, hence so is the upper right square.

Since a commutative square of spaces is cartesian if and only if the induced maps on
all fibres are equivalences, to see that the upper left square is cartesian it suffices to
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show that the square

Map; (x,a*y*e),, —— Mapg(x, y*e),

l l

Mapy (f(x).d") —— Mapy(f(x).y*d)

obtained by taking the fibre at p: p(x) — ¢’ is cartesian for every map . Now taking
p—and g—cartesian pullbacks along  we can (since f takes p-—cartesian morphisms
to g—cartesian morphisms) identify this with the square:

Mapg (x, u*a*y*e) ——— Mapg (x,u*y™e)

Mapy,, . (f(x). u*d") —— Mapy,,  (f(x), uxy*d)

But this is cartesian since by assumption the map u*a*y*e — pu*y*e is fy)—
cartesian (because € is f,/—cartesian). |

Proof of Proposition 5.44 We know that the projections Bimod® (C) — AP and
Ass®(C) — A™°P are cocartesian fibrations, and that the map IT preserves cocartesian
morphisms. By Proposition 5.45 it thus suffices to check that:

(a) The map on fibres
Bimod®(C); — Ass®(C)}?
is a cocartesian fibration for all / € A"°P,
(b) For every map ¢: I — J in A™°P the induced functor
Bimod®(€); — Bimod® (@)
takes Il —cocartesian morphisms to ITy—cocartesian morphisms.

But by Corollary A.77 we may identify the map II; with the map Bimod(@% .)) —
Ass(@% .))Xz, which is a cocartesian fibration by Proposition 4.53; this proves (a).

Moreover, the map
Bimod®(€); — Bimod®(C);

induced by ¢ can be identified with the map Bimod(@?.) — Bimod(@?.) induced by
composition with ¢r: G?. — GQJZ’.. This is a A" —monoidal functor, and it is compatible
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with relative tensor products since C® has good relative tensor products. The description
of the IT;—cocartesian morphisms in Proposition 4.53 therefore implies (b). a

Corollary 5.46 Let C be a A"t! —monoidal oo—category with good relative tensor
products, and suppose A and B are A"t1:°P_algebras in C. Then we can regard A
and B as A"™°P—algebras in Ass®(C). Define an oo—category Bimodﬁ 5(C) by the
pullback square:

Bimod? ;(€) —————— Bimod®(€)

| |

AT-0P W Ass®(C) x an.p Ass®(C)

Then the projection Bimodff 5(C) — A™°P is a A" —monoidal oo—category with un-
derlying oo—category Bimody, g(C). a

Lemma 5.47 Let C be a A" —monoidal co—category with good relative tensor
products, and suppose A and B are A" 1P _algebras in C. Then the A" —monoidal
oo—category Bimody, g (C) has good relative tensor products.

Proof By Lemma 5.20 it suffices to consider the case n = 1, in which case we use the
criterion of Lemma 4.19. Suppose given an algebra U: A /‘E i Bimod® 4 5(C). The
induced diagram F: (AP 2l *(‘3‘2) — Bimody, g (C) can be identified with the cocartesian
pushforward to the fibre over (A, B) of the corresponding dlagram F’ (A /2] ‘(‘g 2~
Bimod(@) for the composite algebra U’: A /IE 2~ Bimod®(C). Projecting the latter
diagram to Ass(C) x Ass(C) gives the simplicial diagrams A ® A®* ® A and B ®
B®* ® B with colimits A ®4 A~ A and B ®p B ~ B. To see that F has a colimit,
it then suffices by [28, Propositions 4.3.1.9 and 4.3.1.10] to show that F’ has a colimit.
For this we use Corollary 4.45, since (AP /2] a(‘(c)tz) is sifted by Lemma 4.17. The
projections to C of this diagram are all relative tensor product diagrams, and so have
monoidal colimits since € has good relative tensor products, so the colimit of F’
does exist in Bimod(€). The colimit in Bimody4,g(€) is moreover preserved under
tensoring with objects of Bimody4, g (€) by a similar argument, since the tensor product
in A—B-bimodules projects to a relative tensor product in C. a

Proposition 5.48 Let C be a A" ! —monoidal co—category with good relative tensor
products, and suppose A and B are A"+1-°P _algebras in © and

U: A’;IOP—>B1m0d B(G)
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isa A';’IOP —~algebra in Bimody g(C). Then U is composite if and only if the algebra U’
in Bimod(C) obtained by composing with the inclusion is a composite A’;’IOP —algebra

in Bimod® (C).

Proof For X € A")7P we can conclude, using [28, Propositions 4.3.1.9 and 4.3.1.10]
as in the proof of Lemma 5.47, that the diagram £’: ((A’;fp %) — Bimod(C) in-
duced by U’ is a colimit diagram if and only if the corresponding diagram ¢ for U,
which is obtained as the cocartesian pushforward of ? to the fibre over (A4, B), is a
colimit in Bimody, g(C€) and this is preserved by the functors ( f, g);: Bimodg, g(C) —
Bimody’,p/(C) induced by the cocartesian morphisms over any maps f: A — A" and
g: B — B’ of associative algebras. On the other hand, we know that & := §| (A7)
does have a colimit in Bimod4, g(C) whose underlying diagram in € is a monoidal
colimit diagram. Using Corollary 4.45 this implies that this colimit is necessarily
preserved by the functors (f, g);. The two conditions are therefore equivalent, as

required. o

Corollary 5.49 Let C be a A"*! —monoidal co—category compatible with geometric
realizations and initial objects, and suppose A and B are A"+ 1-°P_algebras in C. Then
we have a pullback square

ALS, (Bimody, 5(C)) —— ALB,11(C)pg

T

ALG,+1(C)]

(A.B)

of n—uple category objects in Cate .

Proof By the universal property of the internal hom ALGZ’_’)LI’1 (=), we can identify
the map
ALG,+1(C)(11.1) = ALE1+1(C) (1. 1y
with
Algly .o (Bimod®(@)) — Alghn.op (Ass®(C) x pan.p Ass®(C)).
2 /1

Since Alg'An,;p (-) preserves limits, and A™°P is the final A”—-monoidal co—category,
we obtain a pullback square
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ALS, (Bimody, g(C)); —— ALS,+1(C) (),
*

natural in /. Proposition 5.48 implies that this restricts to a pullback square

Of g% X2
(A. B) ALEn+1(C)q1,1)

ALS, (Bimody, g(C)); —— ALS,+1(C) (),

X2
(4, B) 2[26,14-1(@)([0],1)

and the naturality in I then gives a pullback square of n—fold category objects in
Catso, since the inclusion of these into all functors AP — Caty is a right adjoint
and so preserves limits. a

From this we can now prove the main result of this subsection:

Theorem 5.50 Let C be a A”+! —monoidal co—category with good relative tensor
products, and suppose A and B are A"tT1-°P_algebras in C. Then the (oo, n)—category
Alg,+1(C)(A, B) is naturally equivalent to Alg, (Bimodg, g(C)).

This will follow from Corollary 5.49 together with the following observation:

Lemma 5.51 Suppose X is an (n+1)—fold Segal space and x and y are two objects
of X. Then the n—fold Segal space (L,+1X)(x, y) of maps in the completion of X is
the completion L, (X(x, y)) of the n—fold Segal space X(x, y) of maps from x to y
in X.

Proof We can write the localization L, 41: Seg, 1 1(8) — CSS;+1(8) as a composite

Ly «
Seg,+1(8) =25 Seg(CSS,(8)) 2> CSSy11(8).

By [29, Theorem 1.2.13], the natural map Y — AY is fully faithful and essentially
surjective for all Y € Seg(CSS,,(8)); in particular, we have a pullback square:

Y1 — AYs

|

13;)(2 AH();Z
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Applying this to L, X we see that we have an equivalence
(LnxX)(x, ¥) > (ALp +X)(x, ) = (Lng10)(x, ).

The n—fold Segal space (L, «X)(x, y) is defined by the pullback square:

(LnxX)(x,y) — LpXy

|

s L2

But by [19, Lemma 7.10] the functor L, preserves pullbacks over constant diagrams,
so this fibre is equivalent to L, (X(x, y)), which completes the proof. a

Proof of Theorem 5.50 Let Us’gl: Cat"t1(8) — Seg, 1 (8) denote the right adjoint
to the inclusion, and let i,,: Cat” (Cats,) — Cat”1(8) denote the inclusion, which is
also a right adjoint. By Corollary 5.49 we then have a pullback square

UL, A28, (Bimoda, g(C) —— UL iy (ALS,41(C)p1p)

Seg ‘/ Seg

* Ude in(A£68,41(C) (o)

of (n+1)—fold Segal spaces. This factors through the pullback square

(Uget 2in 41228 11 (€) 1y —— Ugey in (AL 11(@)y)

(Usy “in412A20n41(C)fgp — Usy i (LB 11(C)po)*?

and so we may identify Ug!'i,2£8,(Bimods g(€)) with the (n+1)—fold Segal

space of maps from A to B in the (n+2)—fold Segal space Us”e'gfzinHQlS@nH(G).
By Lemma 5.51 it follows that the completion

Alg, (Bimody, g (€)) = Ly1+1Ug! ' inALE, (Bimody, 3 (C))

is equivalent to the mapping (oo, n+1)—category

g, +1(C)(A, B) = (Ln+1 Uglegzin+19l2®n+1 (©)(4, B). o
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Corollary 5.52 Let C be a A"+ —monoidal co—category with good relative tensor
products, and write I for the unit of the monoidal structure, regarded as a (trivial)
E, +1—algebra in C. Then we have an equivalence

Alg, 41 (€)1, 1) >~ Alg, (C).
Proof By Theorem 5.50 there is an equivalence
Alg,41(C)(, I) ~ Alg, (Bimodz,1 (C)).

But it follows from Corollary 4.50 and the definition of Birnod?D ;7(C) that the natural
map Bimod}@ 1 (©) —> C® is a A"™!_monoidal equivalence. O

Remark 5.53 Applying Corollary 5.52 inductively, we see that if € is an E;,4,,—
monoidal co—category, then 2Alg, (C) is the endomorphism (oo, n+1)—category of the
identity m—morphism of the unit / in the (oo, n+m+1)—category 2lg, ,,(C). Thus
Alg,, (C) inherits an [E,,—monoidal structure (see [19, Section 10] for more details). It is
intuitively plausible that this is the same as the [E,, —monoidal structure we constructed
in Section 5.4, but at the moment we are unable to prove this.

Appendix: Higher algebra over A"

In this appendix we discuss the more technical results we need about A” —oco—operads.
Many of these are slight variants of results proved for symmetric co—operads in [31],
with essentially the same proofs, and when this is the case we have not included proofs
here. Much of the material in this section is also a special case either of results of [10]
or of unpublished work of Barwick and Schommer-Pries.

A.1 The oco—category of A" —-oo—operads

It is clear from the definition of morphisms of (generalized) A" -oo—operads that
the oo—category of these objects should be regarded as a subcategory of the slice
oo—category (Cateo)/An.op. In this subsection we will define model categories that
describe the co—categories of A" —oco—operads and generalized A" —co-operads, using
Lurie’s theory of categorical patterns, which is a machine for constructing nice model
structures for certain subcategories of such slice co—categories. We will use these model
structures to give an explicit model for a key oco—categorical colimit of generalized
A" —oco—operads in Section 4.3 and Section 5.2. We begin by recalling the definition
of a categorical pattern and Lurie’s main results concerning them:

Definition A.1 A categorical pattern 3 = (C, S, {pq}) consists of
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e an oco—category C,
e a marking of €, ie a collection S of 1-simplices in C that includes all the
degenerate ones,

* acollection of diagrams of co—categories py: K5 — C such that p, takes every
edge in K to a marked edge of C.

Remark A.2 Lurie’s definition of a categorical pattern in [31, Appendix B] is more
general than this: in particular, he includes the data of a scaling of the simplicial set C,
ie a collection T of 2—simplices in € that includes all the degenerate ones. In all the
examples we consider, however, the scaling consists of all 2—simplices of the simplicial
set C. We restrict ourselves to this special case as it gives a clearer description of the
—fibrant objects, and also simplifies the notation.

From a categorical pattern, Lurie constructs a model category that encodes the co—
category of ¥—fibrant objects, in the following sense:

Definition A.3 Suppose B = (C, S, {p«}) is a categorical pattern. A map of simplicial
sets X — C is P—fibrant if the following criteria are satisfied:

(1) The underlying map n: ¥ — C is an inner fibration. (In particular, ¥ is an
oo—category.)

(2) Y has all w—cocartesian edges over the morphisms in S.

(3) For every «, the cocartesian fibration 74: ¥ xe K5 — K, obtained by pulling
back 7 along pg, is classified by a limit diagram KJ — Cato.

(4) For every o, any cocartesian lift s: Ky — Y of py is a 7 -limit diagram.

Theorem A.4 (Lurie, [31, Theorem B.0.20]) Let B = (C, S, {ps}) be a categorical
pattern, and let C denote the marked simplicial set (C, S). There is a unique left proper
combinatorial simplicial model structure on the category (Setz) /e such that:

(1) The cofibrations are the morphisms whose underlying maps of simplicial sets are
monomorphisms. In particular, all objects are cofibrant.

(2) An object (X, T) — C is fibrant if and only if X — C is 3—fibrant and T is
precisely the collection of cocartesian morphisms over the morphisms in S .

We denote the category (SetZ) s equipped with this model structure by (SetZ)qg. a

Definition A.5 We will make use of the following categorical patterns:
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(i) Let O, be the categorical pattern
(A™P, I, {pr: Kj — A™°P}),

where [, is the set of inert morphisms in A”-°P and, for / € A", we write K for
the set of inert morphisms I — C,, in A™°P and p; for the functor K;' — AP
associated to the inclusion Kj < (A™°P);,. It is immediate from Definition 5.3
that a map ¥ — A™°P is O, —fibrant precisely if it is a A" —co—operad.

(i) Let 1, denote the categorical pattern
(A™P, A, {pr: Kj' — A™°P}),
where A, denotes the set of all morphisms in A”°P, Then a map ¥ — A™°P ig
M, —fibrant precisely if ¥ — A™°P is a A" —-monoidal co—category.

(iii) Let OF" be the categorical pattern
oy, ell/; — A™ .
AP, Iy {(Cell )" — AP

It is immediate from Definition 5.8 that a map ¥ — A™°P is O%"—fibrant if and
only if ¥ — AP ig a generalized A" —oo—operad.

(iv) Let 4, denote the categorical pattern
(A™P, NATP, {(Cell};™) — AP,

Then a map ¥ — A™°P is il,—fibrant if and only if ¥ — A™°P is a A" —uple
oo—category.

Definition A.6 The co—category OpdoA; of A" —oco—operads is the co—category asso-
ciated to the simplicial model category (SetX) o, » 1e the coherent nerve of its simplicial
subcategory of fibrant objects. Thus the objects of Opd?on can be identified with
A" —oco—operads. Moreover, since the maps between these in (SetZ) o, are precisely
the maps that preserve inert morphisms, it is also easy to see that the space of maps
from O to P in Opdc’?: is equivalent to the subspace of Mapan.p(O,P) given by
the components corresponding to inert-morphism-preserving maps, as expected. This
justifies calling Opdgon the co—category of A" —oco—operads.

Remark A.7 This oo—category of A”—-oo—operads is a special case of the oco-—
categories of co—operads over an operator category constructed by Barwick [10,

Theorem 8.15].

Definition A.8 Similarly, applying Theorem A.4 to the categorical patterns 9t , O
and i, gives simplicial model categories (SetZ)gmn, (Setz)oi"" and (SCtZ)un whose
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fibrant objects are, respectively, A" —monoidal co—categories, generalized A" —oco—
operads, and A" -uple co—categories. We write Mongj, Opdéf’ge“ and Uplvo" for
the co—categories associated to these simplicial model categories, and refer to them as
the co—categories of A" —monoidal co—categories, generalized A" —oco—operads and
A" —uple oco—categories.

Definition A.9 The morphisms in Mongs are the (strong) A”-monoidal functors
between A”-monoidal co—categories. We write Mongo 1% for the oo—category of
A" —monoidal co—categories and lax A" —monoidal functors, ie the full subcategory of

Opdg spanned by the A”-monoidal co—categories.

We now show that taking cartesian products gives left Quillen bifunctors relating A”—
oo—operads for varying n. This will allow us to reduce the proofs of the technical
results needed in Section 5 to the case where n = 1. First we introduce some notation
and recall a result of Lurie:

Definition A.10 Suppose P =(C, S, {py: K5 —C}) and Q= (D, T, {¢g: LB‘ —D})
are categorical patterns. The product categorical pattern 3 x £ is given by
(€xD,SxT.{pax{d}:d € DyU{{c}xqp:c €C}).

Proposition A.11 (Lurie, [31, Remark B.2.5]) Suppose B and £ are categorical
patterns. The cartesian product is a left Quillen bifunctor

(SetZ)m X (SetZ)Q — (Setz)mxﬂ. a

Definition A.12 Let us say that a categorical pattern 3 = (C, S, D) is objectwise if
the set of diagrams D is of the form {p,: K5 — C:x € C}, where py(—o0) =x. We
say that ¥} is reduced if moreover K. has an initial object for every ¢ in the image of
pxlk, forany x. If P =(C, S, {px: K — C}) and Q = (D, T, {gy: L; — €}) are
objectwise categorical patterns, we let 33 X Q be the objectwise categorical pattern

(Gx@,SxT,{(KxxLy)qaK;xL;m)CZxD:(x,y)EGXD}).

Proposition A.13 Suppose B and Q are objectwise reduced categorical patterns.
Then the model category structures (SetZ)mXQ and (SetJAr)smgQ on (SetZ) /(exD,SxT)
are identical.

For the proof we make use of the following obvious observation:
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Lemma A.14 Suppose given a commutative square

601*1>61

Cr—¢C
J2
of co—categories where all the maps are fully faithful such that every object of C is
contained in the essential image of either C; or Cp. If w: X — Y is an inner fibration
of co—categories and ¢: € — X is a functor, then ¢ is a w-right Kan extension of
@le, along jiiy =~ jip if and only if ¢|e, is a w-right Kan extension of ¢|e, along
J1 and @|e, is a w—right Kan extension of ¢|e, along j. O

Proof of Proposition A.13 By the uniqueness statement in Theorem A.4 it is enough
to check that the fibrant objects are the same in the two model structures. Supposing
Y — C is an inner fibration with all cocartesian morphisms over the morphisms in S,
we are interested in the following conditions:

(1) Forall (x,y) e CxD, the cocartesian fibration (KxxL,)¥xeY — (KxXxLy)*<
is classified by a limit diagram.
(1) Forall (x,y) € Cx D, the cocartesian fibrations (K5 x {y}) x¢ Y — K and
({x} x L;‘) xeY — L;‘ are classified by limit diagrams.
(2) Forall (x,y) € €x D, any cocartesian section s: (Kxx L,)9—Y isa 7-limit
diagram.
(2') For all (x,y) € € x D, any cocartesian sections s: K5 x {y} — Y and ¢:
{x}x Lj — Y are m-limit diagrams.
We must show that (1) and (1”) are equivalent, and that (2) and (2’) are equivalent.
To see that (1) implies (1), let ¢: K3 x L — Catoo be a diagram classified by the
cocartesian fibration (K3 x L})) xexp ¥ — K x L3 for some (x,y) € € xD. We
now wish to apply Lemma A.14 to the square:

KxXLy (KxXLy)<1

l l

(K3x Ly) Uk, xL, (Kx xL}) — KJx L]

By assumption ¢k, xL,)< is a right Kan extension of ¢ |k xr, , s0 it remains to prove
that the restriction of ¢ to (K5 x Ly) Ug, xr, (Kx X L;) is a right Kan extension of
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¢|k.xL, - In other words, we must show that for any z € L, the object ¢(—00,z) is
a limit of @|(k, xL,)_oo.-), - and that for any w € K the object ¢(w, —o0) is a limit
of Pl(K xLy)w ooy - The inclusion Ky x{z} = (Kx X Ly)(~co,7)/ is coinitial, so it
suffices to prove that the restriction of ¢ to Ky x {z} is a limit diagram. Since the
categorical pattern is reduced, by assumption the co—category L, has an initial object,
and so there is a coinitial map K x {z} — K, x L. Moreover, the restriction of ¢ to
K x{z} is also the restriction of the analogous functor (K; x L)< — Cats, which
is a limit diagram by assumption. Thus ¢(—o0, z) is indeed the limit of ¢|g ¢}, and
similarly ¢(w, —00) is the limit of @|(yyxz,, - It then follows from Lemma A.14 that
¢ is a right Kan extension of ¢|g xr, -

Now considering the factorization
Kxx Ly = Ky x Ly (KixLy)"— KxLj

we see that ¢|(ggxy )< s a limit of ¢|gs,7 . Since the inclusion {—oo} X Ly <
K3 %Ly is coinitial, it follows that ¢|;_ 1% L3 isalimitdiagram. Similarly, ¢|g sy o0}
is a limit diagram, which proves (1').

Conversely, to see that (1’) implies (1) we consider the square:

Ky x Ly — (K{ x Ly) Uk xL, (Kx x L})

| |

(K$x Ly KIxL]

Let ¢ be as above; then it follows from (1’) that ¢|(K;‘><Ly)HkxxLy (KoxL3) is aright
Kan extension of ¢k, xr, and @|gz,z, is aright Kan extension of ¢|k, xz, . Since
{—o0} x L, — K7 x Ly is coinitial, (1") also implies that Pl(k3xL,)< is a right
Kan extension of ¢|gsyz ,, and so by Lemma A.14 it follows that ¢ is a right Kan
extension of @[k, xL, - Butthen ¢|(x, xr,)< is also aright Kan extension of ¢|k xL,
which proves (1).

It follows by the same argument, applied to a cocartesian section ¢: K3 X L; -7,
that (2) is equivalent to (2'). O

Applying this to the categorical patterns we’re interested in, we get:

Corollary A.15

(i) The model categories (SetZ)gnxgm and (SetZ)Dn 4+ are identical.

(ii) The model categories (SetZ)mn x,, and (SCtZ)imn 4 are identical.
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(iii) The model categories (SetZ)oie“xgii“ and (SetX)Dieim are identical.

(iv) The model categories (SetZ)un xsl,, and (SetZ)un 4 are identical.

Proof The categorical patterns O,,, 9,, OF " and &I, are all objectwise reduced, and
we have identifications O, 1 =9, KO, Mpam =M, XM, O =OF"RKOL"

n+m
and Uy 4, = U, KL, . The result is therefore immediate from Proposition A.13 O

Corollary A.16 The cartesian product defines left Quillen bifunctors
(Set{)o, x (Seth)o,, = (Seth) o, m-
(Set)am, x (Set{)am,, — (Seth)on,im-
(Setx) pzen X (Sety) geen — (SetX)Dieim,

(Setf)st, X (Setf)s,, — (Set)st, -

Proof Combine Corollary A.15 with Proposition A.11. a
Finally, we recall a useful result on functoriality of categorical pattern model structures:

Definition A.17 Suppose P = (C, S, {ps}) and Q = (D, T,{gg}) are categorical
patterns. A morphism of categorical patterns f: 33 — Q is a functor f: ¢ — D such
that f(S) € f(T) and f o py liesin {gg} for all c.

Proposition A.18 (Lurie, [31, Proposition B.2.9]) Suppose f: ‘B — £ is a mor-
phism of categorical patterns. Then composition with f gives a left Quillen functor

S (SetZ)qg — (SetZ)Q.

A.2 A"-oo-operads and symmetric co—operads

In this subsection we will relate A”—oco—operads to the symmetric co—operads studied
in [31]. We first recall some definitions:

Definition A.19 For n a nonnegative integer, let (n) denote the set {0,1,...,n},
regarded as a pointed set with base point 0. A morphism f: (n) — (m) of finite
pointed sets is inert if £~1(i) has a single element for every i # 0, and active if
£71(0) = {0}. Recall that the inert and active morphisms form a factorization system
on I'°P,
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Definition A.20 A symmetric co—operad is a functor of co—categories 7: O — I'°P
such that:

(i) For every inert morphism ¢: (m) — (n) in I'°? and every X € Oy, there exists
a m—cocartesian morphism X — ¢ X over ¢.

(ii)) Let p;: (n) — (1), i =1,...,n, denote the (inert) map that sends i to 1 and
every other element of (n) to 0. For every (n) € I'°P the functor

Ony = (O1))™"

induced by the cocartesian arrows over the maps p; is an equivalence of co—
categories.

(iii) For every morphism ¢: (n) — (m) in I'°? and Y € O, composition with
cocartesian morphisms ¥ — ¥; over the inert morphisms p; gives an equivalence

Mapg(X, Y)= nMapgi°¢(X, Yi),

1

where Mapg (X.Y) denotes the subspace of Mapy (X, Y) of morphisms that
map to ¢ in A°P.
Definition A.21 Let 5 denote the categorical pattern (F P Is.{pn: P(;) — FOP}) ,
where I'°P is the category of finite pointed sets, Iy denotes the set of inert morphisms
in ['°P, and Py is the set of inert morphisms (n) — (1) in T'°P.

Definition A.22 The ©x—fibrant objects are precisely the symmetric co—operads,
and we write Opdf0 for the co—category associated to the model category (SetJAr)DZ .

Definition A.23 Let u!: A°° — I'°P be the functor defined as in [31, Construction
4.1.2.5] (this is the same as the functor introduced by Segal [38]). Recall that this sends
[n] to (n), and a map ¢: [n] — [m] in A to the map (m) — (n) given by
. Jjoife(j—1) <i=¢(),
ul (§)(i) = . o
0 if no such j exists.

This takes inert morphisms in A°P to inert morphisms in I'°P, and moreover induces a
morphism of categorical patterns from ©; to Oyx. Let pu: ['P x I'°P — I'°P be the
functor defined in [31, Notation 2.2.5.1]; this takes ((m), (n)) to (mn) and takes a
morphism (f: (m) — (m'), g: (n) — (n’)) to the morphism w( f, g) given by

0 if f(a)=0o0r g(b) =0,

) + b - = .
(/. &)an ") { f(a)n’ +g(b)—n’ otherwise.
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The functor p induces a morphism of categorical patterns Oy X Oy — Oy . We then
inductively define u": A™° — I'°P to be the composite

ul xyn=1
—

n—1, 1%
AP x AT0P o’ xrer s rop,

so that u” is a morphism of categorical patterns O, — Oy for all n. Thus u” induces
adjoint functors
n
up: Opd&’ = OpdZ w™*.

Moreover, since the induced Quillen functors are enriched in marked simplicial sets
we get equivalences
Algl (" *P) ~ Al o (P),

where O is a A" —oo—operad and P is a symmetric co—operad.

Remark A.24 The Quillen adjunction uy = u™* is a special case of the adjunctions
arising from morphisms of operator categories that are discussed in [10, Proposition
8.18].

By Corollary A.16 and Proposition A.18 we then have a commutative diagram of left
Quillen functors

~

(Set)o, x (Set})o, —— (Setx)o,x0, — (Setf)o, .,

ly}xu? l}ulxu”ﬁ ly?+l

(SetD)os x (Seth)oy — (Seth)ogxos ——— (Set])oy

where the left horizontal functors are given by the cartesian products. The Boardman—
Vogt tensor product of symmetric co—operads, as defined in [31, Section 2.2.5], is the
functor of co—categories induced by the composite functor along the bottom of this
diagram. On the level of co—categories we have therefore proved the following:

Proposition A.25 There is a commutative diagram

OpdA x OpdA” >, OpdA"™"

ly}xuf ly?+1

OpdZ x OpdZ, —&— OpdZ,
Invoking the Dunn—Lurie additivity theorem, we get:

Corollary A.26 The symmetric co—operad uj' (A"-°P) is equivalent to Ey, .
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Proof Applying Proposition A.25 we have an equivalence
uf (A"°P) ~ y (A®) @ uf ~H(A"~1°P).

By [31, Proposition 4.1.2.10 and Example 5.1.0.7], the symmetric co—operad u,1 (A°P)
is equivalent to [E;, so by induction we have an equivalence u{’ (A"-°P) ~ E?” . Now
[31, Theorem 5.1.2.2] says that the symmetric oo—operad ]E‘?” is equivalent to E,,,
which completes the proof. a

Corollary A.27 Let O be a symmetric oo—operad. Then there is a natural equivalence
Algg (0) 2 Alghy o (u™*0).
A.3 A"-monoid objects

We will now observe that A" —algebras in a cartesian monoidal co—category are equiv-
alent to the A" -monoids we discussed above in Section 3. More generally, we can
define O—monoids for any generalized A" —-oco—operad O as an equivalent way of
describing O—algebras in a cartesian monoidal co—category:

Definition A.28 Let C be an co—category with finite products and O a generalized A" —
oo—operad. An O-monoid in C is a functor F': O — € such that for every I € A™:°P
and X € Oy, the map F(X) — l_[iel 1) F(Xi), induced by the cocartesian morphisms
X — X; over i, is an equivalence. We write Mong,(C) for the full subcategory of
Fun(O, €) spanned by the O—monoids.

Proposition A.29 Suppose C is an oo—category with finite products, and let C*
denote the cartesian symmetric monoidal structure on C constructed in [31, Section
2.4.1]. If O is a (generalized) A" —oco—operad, then there is a natural equivalence
Monf (C) >~ Algfy(u™*C>).

Proof This is the same as the proof of [31, Proposition 2.4.2.5]. a

Corollary A.30 Let C be an oo—category with finite products. Then there is a natural
equivalence
Mong (€) 2 Mon/y,.»(€).

Proof Combine Corollary A.27 with Proposition A.29 and [31, Proposition 2.4.2.5] —
this gives a natural equivalence

Mong (€) = Algg (CX) = Alg,.0p (™€) 2 Monyy o (C). o

Corollary A.31 The co—category Monvon of A" —monoidal co—categories is equiva-

lent to the co—category MonEO’E” of |E,, —monoidal co—categories.

Proof This is just the special case of Corollary A.30 where C = Catso. O
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A.4 Weak operadic colimits

Suppose C is a A" —monoidal co—category. Then by Corollary A.31 € is equivalently
an E, -monoidal co—category. Moreover, if O is a A" —co—operad, then O—algebras
in C, regarded as A" -monoidal, are equivalent to uy O—algebras in €, regarded as
E;,, —monoidal, by the results of Section A.2. If f: O — P is a morphism of A”—oco—
operads, this means that we can apply the results of [31, Section 3.1.3] to uy f* to
conclude that if C is well-behaved, then the functor f*: Algf(C) — Algg(C) has a
left adjoint fj.

In [31, Section 3.1.3], such left adjoint functors are constructed by forming certain
concrete colimit diagrams. However, as we do not have any explicit understanding of
the symmetric co—operad u?(ﬁ), the results of [31] do not allow us to understand what
the functor fy does for f a morphism of A”—oo—operads. For the results of Sections 4
and 5 this is insufficient — in fact, we need an explicit description of such a left adjoint
for certain maps of generalized A" —oco—operads, which introduces another inexplicit
construction, namely the localization functor from generalized A”-oo—operads to
A" —oco-operads, before we can apply the results from [31]. For this reason, we will in
the next couple of subsections discuss analogues of many of the results in [31, Sections
3.1.1-3.1.3] in the setting of generalized A" —oco—operads. Luckily, these results can
generally be obtained by minor variations of the arguments from [31], and when this is
the case we have not included complete details.

In this section we consider the analogue, in the setting of A" —oco—operads, of the
weak operadic colimits introduced in [31, Section 3.1.1]. However, unlike in [31,
Section 3.1.1], we will not consider relative weak operadic colimits, as these are not
needed in this paper.

Remark A.32 In [31, Section 3.1.1], weak operadic colimits are considered as a
preliminary to a notion of operadic colimits. These do not have a straightforward
analogue in the A" —context. Instead, we will introduce a notion we call a monoidal
colimit, which is an adequate substitute such that the required arguments from [31] still
go through.

Notation A.33 Suppose O is a A" —oco—operad; we denote the subcategory of O
containing only the active morphisms by O**. If p: K — 0*' is a diagram, we write

act . a2c act : act :
Ocn,p/ for the oco—category O¢, X@at O thus an object of Ocn’p/ consists of a

p/
cone K” — 0% that restricts to p on K and with the image of the cone point in the

fibre over C,,.
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Definition A.34 Suppose O is a A" —oo—operad, let p: K® — O*! be a diagram,
and set p := p|x. We say that p is a weak operadic colimit diagram if the evident
forgetful map

act act
0¢,.5/ = OCu.p/

is an equivalence of oo—categories.

Remark A.35 If the image of the cone point of K under p lies over Cy, then p is
itself an object of (‘)‘*C’Z p/> SO p is a weak operadic colimit diagram if and only if it is

act
a final object of OC N
oact

Remark A.36 It follows from [28, Proposition 2.1.2.1] that the map Oa‘Ct 5~ 9C, »/
is always a left fibration. By [28, Proposition 2.4.4.6] it is therefore an equlvalence of
oo—categories if and only if it is a trivial Kan fibration.

Remark A.37 Suppose K* — 0! is a weak operadic colimit diagram and L — K
is a cofinal map. Then the composite L> — K* — 0% is also a weak operadic colimit
diagram.

Proposition A.38 Let O be a A" —co—operad. A diagram p: K® — O*' is a weak
operadic colimit if and only if for every n > 0 and every diagram

fo

K dA" —2— 0t

— o~
f.o-
////
-

K* An f 5 (An,op)act

there exists an extension f_ of ]70.
Proof This is the same as the proof of [31, Proposition 3.1.1.7]. a
Proposition A.39 Let O be a A" —oo—operad, let h: A' x K> — O be a natural

transformation from hg := h|{0}xK> to hy := h|{1}xK> Suppose that:

(1) For every vertex x € K, the restriction h| Alx{x} IS a cocartesian edge of O.

x{x
(2) The composite_A1 x {00} = O — A™°P js an identity morphism. (Equivalently,
the restriction h| 1y {0y 1S an equivalence in O.)

Then hy is a weak operadic colimit diagram if and only if hy is a weak operadic colimit
diagram.

Proof This is the same as the proof of [31, Proposition 3.1.1.15]. a
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Applied to a A" —monoidal co—category C®, this lets us reduce the question of whether
a diagram in (C®)™! is a weak operadic colimit diagram to whether a diagram in a
fibre G}@ is a weak operadic colimit diagram:

Corollary A.40 Let C® be A"-monoidal co—category, and suppose p: K> —
(C®)> js a diagram lying over §: K> — A™°P. Take p’ to be the cocartesian
pushforward to the fibre over g(co). Then p is a weak operadic colimit diagram
if and only if p’ is a weak operadic colimit diagram.

Proposition A.41 Let C® be a A" -monoidal co—category, and let p: K> — G? be
a diagram in the fibre over some I € A™°P, Then p is a weak operadic colimit diagram
if and only if, for m: I — C, the unique active map in A™°P, the composite

K> 2> e® m,

is a colimit diagram in C.

Proof This is the same as the proof of [31, Proposition 3.1.1.16]. a
Definition A.42 Let y/ denote the map (id, ..., d1,....id): ([1],....[2].....[1])) =
([1],....[1]) in A™°P (with d; in the j® place), and let C® be a A” —monoidal co—
category. We say a diagram p: K” — @ is a monoidal colimit diagram if, for every
x€Candevery j =1,...,n, the composite
> ~ P® Mvj
K x{x}—>€x(‘3_€’([l] ..... 2] [1])—_)6

is a colimit diagram. More generally, if p: K> — (€®)3 is a diagram with p(c0)
in G%’n , then we say that p is a monoidal colimit diagram if the cocartesian pushforward
to a diagram p’: K — G%n is a monoidal colimit diagram in the first sense.

Proposition A.43 Let O be a A" —oco—operad. Suppose given, for some I € A™"°P a
finite collection of simplicial sets K; for i € |I| and diagrams p;: K — Oc, . Suppose

the product diagram

[1 k- ][] 9c, ~0;

i€l i€l
is such that, for every i and every choice of k; € K J.D for j # i, the diagram

K> =5 {ky} x - x K x - x {kp} — Op < O™
is a weak operadic colimit diagram. Then the composite
n > n
(HK,-) —>1_[Kl‘->—>(‘)1 s (93¢t
i=1 i=1

is also a weak operadic colimit diagram.
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Proof This is the same as the proof of [31, Proposition 3.1.1.8]. a

Corollary A.44 Let C® be a A" —monoidal co—category. Suppose given, for some
I € A™°P a finite collection of simplicial sets K; for i € |I| and monoidal colimit
diagrams p;: K7 — C. Then the composite diagram

n > n
. > ~ (D ®act
(HK,)—> Ky — [] e~e? < (®)
i=1 i=1 iell|
is a weak operadic colimit diagram. Moreover, the cocartesian pushforward of this
diagram to G%ﬂ is a monoidal colimit diagram. a

A.5 Operadic left Kan extensions

In this section we introduce the notion of operadic left Kan extensions in the A" —setting.
We then use the results of the previous section to give two key results: first, we will see
that operadic left Kan extensions have a lifting property that will allow us to conclude,
in the next section, that they can be used to construct adjoints, and second we consider
an existence result for operadic left Kan extensions.

Definition A.45 If C is an co—category, a C—family of generalized A" —oco—operads
is a morphism M — A"-°P x C of generalized A" —oco-operads.

Definition A.46 Suppose M — A" x Al is a Al —family of generalized A”—oco—
operads between A := My and B := M. If O isa A" —oco—operad, an algebra M — O
is an operadic left Kan extension if, for every X € B, the diagram

(A% —>M—0
is a weak operadic colimit diagram.

Proposition A.47 Forn > 1, let M\ — A™°P x A" be a A" —family of generalized
A" —oco—operads and let O be a A" —oo—operad. Suppose we are given a commutative
diagram of generalized A" —oo—operads

MXAH Ag L O

2

- -
-
. -
-
-
-
-
-
-

-

M ——— Amop

such that the restriction of ]70 to M x an A1} js an operadic left Kan extension. Then
there exists an extension f of fy.
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Proof This is the same as the proof of [31, Theorem 3.1.2.3(B)]. (Note that when [31,
Proposition 3.1.1.7] is invoked in step (1) in the proof it is sufficient for the diagram to
be a weak operadic colimit.) a

Corollary A.48 Suppose M — A™P x Al is a Al —family of generalized A" —oco—
operads between A := My and B := My, and let O be a A" —oco—operad. Suppose
that n > 0 and that we are given a diagram

(.A X An) H(AX{)A") (M X BA”) % 9]

|

Mx A" An-op

of generalized A" —co—operads. If the restriction of fy to M x {0} is an operadic left
Kan extension, then there exists an extension f of fqy that is a map of generalized
A" —oco—operads.

Proof This is the same as the proof of [31, Lemma 3.1.3.16]. O

Definition A.49 We say a A!—family of generalized A" —oo—operads M — A7°Px Al
is extendable if for every object B € My, lying over I € A™°P_ with inert projections
B — B; over i € |I|, the map Mgc"/B = [Tien M‘E‘)C"/Bi is cofinal.

Proposition A.50 Let M — A™° x Al be an extendable A' —family of generalized
A" —co—operads and let @® be a A" -monoidal co—category. Suppose given a diagram

Jo

My — C®

s
f -
-
s
s
-
-
-

M —— AP

such that, for every x € Mc, 1, the diagram

M — Mo Lo e®

can be extended to a monoidal colimit diagram lifting the map (Mg )" — M — AP,
Then there exists an extension f: M — C® of f, that is an operadic left Kan extension.

Proof This is essentially the same as the proof of [31, Theorem 3.1.2.3(A)], with
a slight difference in step (1): To extend the functor to the O—simplices of M; we
use the monoidal colimits that exist by assumption. Then for the construction of the
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higher-dimensional simplices we need to show that the maps §: (Mgft/ B)'> — C® are

weak operadic colimits. If B lies over I € AP let
8 (MY 5)” — €7
denote the cocartesian pushforward along the active maps to I; by Corollary A.40 it

suffices to show that §" is a weak operadic colimit. Choose cocartesian morphisms
B — B; over the inert maps i: I — Cy,. Then &’ factors as

[16:
ot~ (T35 ) = TTos M [Te~ep
i i
The map Mg p — [[; M Ct/ _ is cofinal since M is extendable, so it suffices to show
that the map from ([]; Mgy B.)D is a weak operadic colimit diagram. This follows

from Corollary A.44, since the maps §; are monoidal colimit diagrams. a

Definition A.51 Suppose €® is a A”-monoidal co—category. If X is some class of
simplicial sets we say that C® is compatible with K—indexed colimits if

(1) the underlying co—category C has K—indexed colimits;

(2) for j =1,...,n, the functor u!j : €x € — C preserves K-indexed colimits in
each variable.

Corollary A.52 Let M — A x Al be an extendable A'—family of generalized
A" —co—operads and let @® be a A" —monoidal co—category that is compatible with
M?)Ct/ —indexed colimits for all x € Mc, 1. Suppose given a diagram:

Jo

My — C®

M —— AP

Then there exists an extension f: M — C® of f, that is an operadic left Kan extension.
O

We end this subsection with the following observation, which will be useful for recog-
nizing operadic left Kan extension:

Lemma A.53 Let i: A — B be a morphism of generalized A" —oo—operads, let
C® be a A" —monoidal co—category, and suppose given a B-algebra B in € and
a morphism A — i*B of A-algebras. Choose a factorization of the induced map
¢: Ax Al Hyxiy B — C® through a A' —family of generalized A" —oo—operads M.
Then the following are equivalent:
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(1) The map M — C® is an operadic left Kan extension.

(2) Choose a cocartesian pushforward
¢'s A X A U gaetreqry B — €~ CE

of the restriction of ¢ to the subcategories of active maps, along the unique active
maps to C,. Then ¢’ is a left Kan extension in the sense of [28, Definition
4.3.3.2].

Proof This is immediate from the description of weak operadic colimits in A”—
monoidal co—categories from Corollary A.40 and Proposition A.41. O

A.6 Free algebras

Definition A.54 Suppose i: O — P is a morphism of generalized A”—oco—operads
and C® is a A”—monoidal co—category. If 4 is a P—algebrain € and ¢: A — i*A
is a morphism of O—algebras, then we say that ¢ exhibits A as the free P—algebra
generated by A along i if for every P—algebra B the composite

MapAlg{})(e)(A, B) — MapAlgfé(e) (l *1‘1, Z*B) — MapAlgg(e) (A, l*B)
is an equivalence.

Lemma A.55 Leti: O — P be a morphism of generalized A" —oco—operads and let
C® be a A" —monoidal co—category. If for every O—algebra A in C there exists a
P—algebra A and a morphism A — i* A that exhibits A as the free P—algebra generated
by A along i, then the functor i *: Alg,(C) — Algy(C) induced by composition with i
admits a left adjoint iy such that the unit morphism A — i*iy A exhibits iyA as the free
P-algebra generated by A along i for all A € Algy(C).

Proof Apply [28, Lemma 5.2.2.10] to the cocartesian fibration associated to i*. O

Definition A.56 Suppose i: O — P is a morphism of generalized A”—-oo—operads
and C® is a A”—monoidal co—category. If 4 is a P—algebrain C and ¢: A —i*A
is a morphism of O—algebras, we have an induced diagram

(O x AY) Oy P — CZ.
Choose a factorization of this as
(Ox AY) Ugyqy P> M —C®

such that the first map is inner anodyne and M is a A!—family of generalized A”—oco—
operads. We say that ¢ exhibits A as an operadic left Kan extension of A along i if
the map M — C® is an operadic left Kan extension.

Geometry & Topology, Volume 21 (2017)



The higher Morita category of E,—algebras 1721

Proposition A.57 Suppose i: O — P is a morphism of generalized A" —oco—operads
and C® is a A" —monoidal co—category. If A is a P-algebrain C and ¢: A — i*A
is a morphism of O—algebras that exhibits A as an operadic left Kan extension of A
along i, then ¢ exhibits A as the free P—algebra generated by A along i .

Proof This is the same as the proof of [31, Proposition 3.1.3.2], using Corollary A.48.
O

Corollary A.58 Leti: O — P be a morphism of generalized A" —co—operads and let
C® be a A" —monoidal co—category. If for every O—algebra A in C there exists a P—
algebra A and a morphism A — i* A that exhibits A as the operadic left Kan extension
of A along i, then the functor i *: Algy(C) — Algy(C) induced by composition with i
admits a left adjoint i, such that the unit morphism A — i*iyA exhibits i)A as the
operadic left Kan extension of A along i for all A € Algy(C). Moreover, if i is fully
faithful, then so is iy.

Proof Combine Proposition A.57 with Lemma A.55. The full faithfulness follows
from the description of operadic left Kan extensions in terms of colimits: it is immediate
from this that if 7 is fully faithful then the unit morphism A — i*i;A is an equivalence.

O

Definition A.59 Let i: O — P be an extendable morphism of generalized A" —oco—
operads. We say that a A” —monoidal co—category C® is i —compatible if, for every
O-algebra A in € and every x € P, , the diagram

0l — 04> ®

can be extended to a monoidal colimit diagram.

Corollary A.60 Leti: O — P be an extendable morphism of generalized A" —oo—
operads. If C® is a A" —monoidal co—category that is i —compatible, then the functor
i*: Algp(C) — Algy(C) admits a left adjoint iy such that the unit morphism A — i *iyA
exhibits i) A as the operadic left Kan extension of A along i for all A € Algy(C).

Proof Combine Corollary A.58 with Proposition A.50. |

Corollary A.61 Leti: O — P be an extendable morphism of generalized A" —oco—
operads. If C® is a A" —monoidal co—category that is compatible with Oﬁ —indexed
colimits for all p € Pc,, then the functor i*: Algs(C) — Algy(C) admits a left
adjoint iy such that the unit morphism A — i*iyA exhibits iyA as the operadic left Kan
extension of A along i forall A € Algy(C).

Proof Combine Corollary A.58 with Corollary A.52. a
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We will also need an observation on the functoriality of free algebras, requiring some
terminology:

Definition A.62 Let i: O — P be an extendable morphism of generalized A" —oco—
operads. If €® and D® are i —compatible A" —-monoidal co—categories, we say that
a A" —monoidal functor F®: C® — D® is i —compatible if, for every O—algebra A
in C and every x € Pc, , the underlying functor F': € — D preserves the (monoidal)
colimit of the diagram O‘/‘;t — C.

Lemma A.63 Suppose i: O — P is an extendable morphism of generalized A" —oco—
operads, C® and D® are i —compatible A" —monoidal co—categories and F®: C® —
D® s an i —compatible A" —-monoidal functor. Then we have a commutative diagram:

Fi
Algi(C) —— Algp (D)

AIgh(€) —— Algh(D)

Proof We must show that for every O—algebra A in C, the map FxA — Fyi*ijA >~
i*Fxiy A exhibits Fyi)A as the free algebra generated by Fy A along i. This follows
from Proposition A.57 and the assumption that F is i —compatible, since this implies
that Fyi1A is a left operadic Kan extension of FyxA. a

A.7 Monoidal properties of the algebra functor

In this subsection we observe that the cartesian product of generalized A" —oco—operads
leads to natural monoidal structures on co—categories of algebras.

Definition A.64 For any categorical pattern 3, the model category (SetZ)YB is en-
riched in marked simplicial sets by Proposition A.11. The enriched Yoneda functor
therefore gives a right Quillen bifunctor

Hp: (SetZ)%’ X (SetZ)qg — SetZ.
Applied to P = D5, this induces at the level of co—categories a functor

Algl' ) (-): (Opdss ™) x Opdig ™" — Catoo.

. n A, gen A" gen . . .
We write Alg” — (Opdee™™ )% X Opdso ™ for an associated cocartesian fibration.
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Definition A.65 As (SetZ)sp is a (marked simplicially enriched) symmetric monoidal
model category with respect to the cartesian product, the functor $y is lax symmetric
monoidal with respect to the cartesian product. Thus, for ¢ = O%™" it induces on the
level of oo—categories a lax symmetric monoidal functor

((Opd5s =™ ") xpor (Opdis ™) — Cats,

A’ gen\op 1T : ; Agenyop .
where ((Opdee™ )°P)™ is the sz)gnmetrlc monoidal structure on (Opde,™ )P given
by the cartesian product in Opdes, ¥, since this is the cocartesian monoidal structure
on the opposite co—category. Using [31, Proposition 2.4.2.5] this corresponds to a
functor

¢: ((Opdae =™)°P) L xpop (Opdde ™) * — Catog

that is a ((OpdoA<:1 Eemyopy I o pop (Opdgon’gen)x—monoid in Caty, (ie it satisfies the rele-
vant Segal conditions). Let

Alg"® — ((Opdae =")*")™ xpo (Opdgs ™).

be the cocartesian fibration associated to ¢; since the functor ¢ satisfies the Segal
conditions, this is a cocartesian fibration of generalized symmetric co—operads.

This construction describes the “external product” that combines algebras A: O — O’
and B: P — P to AR B := A xpanp B: O Xpanp O — P xanp P'. Since we
are considering the cocartesian symmetric monoidal structure on (Opdé&: EMhop | by
[31, Example 2.4.3.5] there is a morphism of generalized symmetric co—operads
a: TP x (OpdoA; EMyop ((opdéo"’ge“)"r’)“. (Informally, this takes ({(n), O) to the list
(O,...,0) with n copies of O.) We define Alg”® by the pullback square:

Alg™® Alg™™

(Opdag™™™")"® x (Opdao ™) ——— ((Opdag™™")*) xrun (Opdag ™)

Then the projection 7: Alg™® — (Opdﬁé1 BEop 5 (Opdﬁé1 *81)% is again a cocartesian
fibration of generalized symmetric co—operads. Over O € (Opdoon #10P this describes
the “half-internalized” tensor product of O-algebras given by, for A: O — P and
B: 0—-Q,

AR B: 025 0 xane 0225, P pnw Q.
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. : . s A",gen [0} An:gen X
The functor associated to the cocartesian fibration 77 is a (Opdee™ )P X (Opdae ™= )™ —
monoid in Cats,, or equivalently a lax symmetric monoidal functor

Opd& & — Fun((Opda =), Cate).

Similarly, pulling back 7 along an arbitrary functor in the first variable, we get:

Proposition A.66 Let F: C— opdéo"’ge“ be any functor of co—categories. Then the
functor

Algh () P x Opdgon s Cateo

n
induces a lax symmetric monoidal functor OpdoAO 1 Fun(CP, Catyy). O

Corollary A.67 Suppose O is a generalized A" —oco—operad and C is an E;, 44, —
monoidal oco—category. Then Algf(C) is an IE,, -monoidal co—category.

Proof By Proposition A.66, appliend to the functor {O} — opdéf 1 there is a lax
symmetric monoidal functor OpdoA0 81 Cateo, which sends P to Algi(P). The
forgetful functor

n n
Mongo — Opdéo een

preserves products, so we get a lax symmetric monoidal functor Mong(;1 — Cateso, and
hence a functor

MonEO’]E”J”" ~ Alg%nm (Cateo) Alg%m (Mongon) — Alg%m (Cateo) MonEO’Em’
which sends an [E, 4, —monoidal co—category C to a natural E,,—monoidal structure

on Algy(C). O

Remark A.68 Let i: O — P be an extendable morphism of generalized A”—oco—
operads, and let C® and D® be i —compatible A” —monoidal co—categories. If the
oo—categories O?CIE are all sifted, then the description of free algebras in terms of weak
operadic colimits implies that there is a commutative diagram:

Algi(C) x Algg (D) —— Algngnqopo(G x D) —— Alg;(€x D)

ll'!xig l(iXAn.opi)y ll'!

Algh(C) x Algh(D) —— Alg’f})XAn’op?(G x D) —— Algh(Cx D)

In other words, i1(A® B) ~ i1A ® i1 B where ® denotes the “half-internalized” tensor
product of algebras. If C is a A"t _monoidal co—category such that its tensor product,
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regarded as a A” —monoidal functor C® x pn. C® — C® | is i —compatible, then by
Lemma A.63 we get a commutative square:

Alg’(€©) x Algh(€) —2— Alg’(€)
iy X0y ]

Algh(C) x Algh(C) T Algh(C)

A.8 A”"-uple envelopes

It is immediate from the definition of the model categories (SetZ)oae" and (SetZ)un
that the identity is a left Quillen functor (SetZ)Dien — (SetZ)un. On the level of
oo—categories, this means that the inclusion Upl? — Opdvo" 8" has a left adjoint. In
this subsection we observe that the arguments of [31, Section 2.2.4] give an explicit
description of this left adjoint.

Definition A.69 Let Act(A™°P) be the full subcategory of Fun(Al, A”-°P) spanned
by the active morphisms. If M is a generalized A" —oo—operad, we define Env,, (M)
to be the fibre product

M X Fun({0}, A" -op) ACt(An’Op).

We will refer to Env, (M) as the A" —uple envelope of M — this terminology is justified
by the next results:

Proposition A.70 The map Env, (M) — AP induced by evaluation at 1 in A is a
A" —uple co—category.

Proof This is the same as the proof of [31, Proposition 2.2.4.4]. |

Proposition A.71 Suppose N is a A" —uple oo—category and M a generalized A" —
oo—operad. The inclusion M — Env,, (M) induces an equivalence

Fun®" (Env, (M), N) — Algh (N).
Proof This is the same as the proof of [31, Proposition 2.2.4.9]. a

Lemma A.72 Suppose O is a generalized A" —oo—operad and P is a generalized
A" —oco—operad. There is a natural equivalence

Env, (0) X Envy, (P) >~ Envy, 47, (O x P).

Proof This is immediate from the definition. O
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A.9 The internal Hom

In this subsection we observe, following [10, Section 9], that if O is a generalized A” -
oo—operad and P is a generalized A™*"—oco—operad, then the co—category Algfh(P)
has a natural generalized A™—oo—operad structure. When P is a A" —monoidal
oo—category we will prove that this makes Algj(P) a A™-monoidal co—category,
and that this structure agrees with that we described in Section A.7.

Definition A.73 By Corollary A.16, the cartesian product gives a left Quillen bifunctor
+ en + en + en
(Sety ) gen X (Sety ) peen — (SetA)Di+m
It therefore induces a right Quillen bifunctor
ALGY" (-): (Set A) e X (Set) o > (Set) pen.
Similarly, there is a right Quillen bifunctor
FUN® () (Set)E X (Set ) p, — (Set)y,,.

right adjoint to the cartesian product.

On the level of co—categories, these right Quillen bifunctors induce functors

ALG!"(-): Opdag ™™ x Opdd & — Opd5, ",
FUN®” ™(2): UplA" x Upl&"™ — Uup12”,

with the universal property that there are natural equivalences of co—categories
Algl (ALG™(Q)) ~ Algh i (Q),

where O is a generalized A™—oo—operad, P is a generalized A" —oco—operad, and Q
is a generalized A™*" —oo—operad, and

un® ™ (L, FUN®™ (M, N)) ~ Fun® """ (£ x M, N),
where £ is a A™-uple co—category, M is a A" —uple co—category, and N isa A7 —

uple co—category.

Lemma A.74 (i) If O is a A"t™_oo—operad, then ALG';/Em (0) is a A" —o0—
operad for any generalized A" —oco—operad M.

(i) If C® is a A"*™ _monoidal oo—category, then FUN®"" (M, C®) is a A" —
monoidal co—category for any A" —uple co—category M.
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Proof We will prove (i); the proof of (ii) is similar. Suppose Cs # C, is a cell
of A™:°P_Then we have

ALG)" (0)c; == Algie, (ALGy™ (0)) =~ Algfd 1 (0),

which is contractible if O is a A™" —co—operad. o

Lemma A.75 Suppose M is a A"T™ _uple oo—category. Then there is a natural
equivalence

ALGy™ (M) ~ FUN®"" (Env, (0), M)
for all generalized A™—oco—operads O. In particular, ALGy"" (M) is a A™-uple

oo —category.

Proof Using Lemma A.72, we have natural equivalences
Map A g (P, ALGy™ (M) =~ Mapopdgomﬂ,gm (Px0O,M)
~ MapUplgngm (Envy 47, (P x O), M)
~ MapUpléerm (Envy, (P) x Env, (0), M)
~ Map;, am (Env,, (P), FUN®"™ (Eny,, (), M))
~ Map,  am (P, FUN®"™ (Env,(0),M)). O

If C® is a A"™™ _monoidal co—category, combining Lemmas A.74 and A.75 we see
that ALGg’m (€) is a A"™-monoidal co—category for any generalized A”—oco—operad
O; the underlying co—category of this is Alg{;(C). On the other hand, we saw in
Corollary A.67 that Alg((C) inherits an E,, —monoidal structure from the lax monoidal
functoriality of Algf(-); let us denote the resulting A”—monoidal co—category by
Algg’@’(e). We will now show that these two [E,,—monoidal structures agree:

Proposition A.76 Let C® be a A"1t™ _monoidal co—category, O a generalized A" —
oo—operad and M a A™ —uple oo—category. Then we have a natural equivalence

Mapyam (M, Algh®(©) ~ Map;,  antn (M X Env (), C®).

Proof We may identify Uplgom with a full subcategory of the oo—category of co-
cartesian fibrations over A”-°Pwhich is equivalent to Fun(A™°P, Cate); under this
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equivalence M corresponds to a functor p: A"™°P — Cateo. If y: AP — Mongon is
the A -monoid corresponding to C®, then we have a natural equivalence

Mapy,am (M, Algy® (€)) 2 Mappun(am o cateo) (145 Algh (1))
= MapFun(A’""’P,Catoo) (I’L’ Fun®’n (Envn (O)v V))
o~ MapFun(A’”"P,Catg’gl}‘knsop)(:u x Env, (0), y)

~ MapUplAn+m (M x Env,, (0), C®). o

Combining this with Lemma A.75, we get:

Corollary A.77 Let C® be a A"™™ _monoidal co—category and O a generalized
A" —0o—operad. Then the E,, —monoidal co—categories ALGl;™ (C) and Algly®(€)
are naturally equivalent. a
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