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On representation varieties of 3–manifold groups

MICHAEL KAPOVICH

JOHN J MILLSON

We prove universality theorems (“Murphy’s laws”) for representation varieties of fun-
damental groups of closed 3–dimensional manifolds. We show that germs of SL.2/–
representation schemes of such groups are essentially the same as germs of schemes
over Q of finite type.

14B12, 20F29, 57M05

1 Introduction

In this paper we will prove that there are no restrictions on local geometry of repre-
sentation schemes of 3–manifold groups to PO.3/ and SL.2/. Note that both groups
H D PO.3/ and H D SL.2/ are affine algebraic group schemes defined over Q; thus,
for every finitely generated group �, the representation schemes

Hom.�;H /

and character schemes
X.�;H /D Hom.�;H / ==H

are affine algebraic schemes over Q. Our goal is to show that, to some extent, these are
the only restrictions on local geometry of the representation and character schemes of
fundamental groups of closed 3–manifolds. The universality theorem we thus obtain
is one of many universality theorems about moduli spaces of geometric objects; see
Mnëv [11], Richter-Gebert [15], Kapovich and Millson [6; 7; 8], Vakil [18], Payne [13],
Rapinchuk [14].

Below is the precise formulation of our universality theorem. In what follows we use
the notation G D PO.3/ and zG D Spin.3/.

Theorem 1.1 Let X �CN be an affine algebraic scheme over Q and let x 2X be a
rational point. Then there exist

1. an open subscheme X 0 �X containing x ,

2. a closed 3–dimensional manifold M with fundamental group � ,
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1932 Michael Kapovich and John J Millson

3. a representation �0W � ! PO.3;R/, such that the image of �0 is dense in
PO.3;R/,

4. an open G–invariant subscheme R0 � Hom.�;G/, whose set of real points
contains �0 and a closed subscheme (over Q) R0c �R0 that is a cross-section
for the action

G �R0!R0;

5. an isomorphism of schemes over Q

f W R0c!X 0 �Gk with f .�0/D .x; 1/;

for some k , and

6. an isomorphism F W R0!X 0 �GkC1 and the composition of isomorphisms

R0 ŠR0c �G ŠX 0 �GkC1

(since R0c is a cross-section).

Remark 1.2 One can show that the same theorem holds for a homomorphism �1

whose image is a finite group with trivial centralizer in PO.3;R/.

Theorem 1.1 is proven in Section 6. In Section 7 we prove various corollaries of our
main theorem.

Corollary 1.3 With the notation of Theorem 1.1, there exists an open embedding of
schemes

X 0 �Gk ,!X.�;G/D Hom.�;G/ ==G

which sends .x; 1/ to Œ�0�. In particular, the analytic germ .X � C3k; x � 0/ is
isomorphic to the analytic germ .X.�;G/; Œ�0�/.

Since the groups PSL.2;C/ and PO.3;C/DG.C/ are isomorphic, and

zG.C/D Spin.3;C/Š SL.2;C/;

the “universality theorem” for PO.3/–representations leads to the one for SL.2/–
representations. In the next corollary, � and �0 are the 3–manifold group and its
representation to PO.3;R/ constructed in Theorem 1.1 given X and x . We note that
the action of SL.2/ on Hom.z�;SL.2// factors through an action of PSL.2/.

Corollary 1.4 Let X � CN be an affine algebraic scheme over Q and x 2 X be a
rational point. Then there exist

Geometry & Topology, Volume 21 (2017)



On representation varieties of 3–manifold groups 1933

1. an open subscheme X 0 �X containing x ,
2. a closed 3–dimensional manifold zM with fundamental group z� ,
3. a representation z�0W z�! SU.2/ < SL.2;C/, such that the image of z�0 is dense

in SU.2/,
4. an open SL.2/–invariant subscheme zR0�Hom.z�;SL.2//, such that z�02

zR0.C/,
5. a cross-section zR0c for the action of PSL.2/ on zR0,
6. a regular étale covering of schemes over C , equivariant with respect to the action

of SL.2/,
zqW zR0!R0 with zq.z�0/D �0;

such that the deck-transformation group of this cover is isomorphic to ZkCr
2

, for
some k and r .

By combining part 6 with Theorem 1.1, we also obtain an SL.2/–equivariant regular
étale covering

zR0!X 0 �PSL.2/kC1;

and the étale covering
zR0c!X 0 �PSL.2/k

sending z�0 to .x; 1/. The latter yields the regular étale covering

hW zR0 ==SL.2/!X 0 �PSL.2/k:

In particular, the morphisms zq and F (from Theorem 1.1) and h (as above) yield
isomorphisms of analytic germs�

Hom.z�;SL.2//; z�0

�
! .X 0 �C3kC3;x � 0/;�

X.z�;SL.2//; Œz�0�
�
! .X 0 �C3k;x � 0/;

for some k � 0. Thus, if the scheme X 0 is nonreduced at x , so are Hom.z�;SL.2//
and X.z�;SL.2//.

Remark 1.5 Despite our efforts, we were unable to replace an étale covering with
an isomorphism in Corollary 1.4. This is strangely reminiscent of the finite abelian
coverings appearing in our universality theorem for planar linkages; see Kapovich
and Millson [8]. Note that a relation between universality theorems for projective
arrangements and spherical linkages was established in Kapovich and Millson [7],
where a finite abelian covering appeared for essentially the same reason as in the
present paper.

Example 1.6 Pick a natural number `. Then there exists a closed 3–dimensional
manifold zM , an integer n and a representation �W �1. zM /! SU.2/ with dense image,

Geometry & Topology, Volume 21 (2017)



1934 Michael Kapovich and John J Millson

such that the completed local ring of the germ

X.�1. zM /;SL.2//; Œ��/

is isomorphic to the completion of the ring

CŒt; t1; : : : ; t3k �=.t
`/:

This shows that the representation and character schemes of 3–manifold groups can be
nonreduced (at points of Zariski density), which is why we refrain from referring to
these schemes as “varieties”, as is commonly done in the literature.

Remark 1.7 Recently Igor Rapinchuk [14, Theorem 3] proved a universality theorem
for character schemes of groups � satisfying Kazhdan’s property (T): it involves
representations of such groups � into SL.n;C/. Unlike the results in Kapovich
and Millson [6] and this paper, Rapinchuk’s theorem applies to the entire character
variety X red.�;SL.n;C// minus the trivial representation (which is an isolated point).
In Rapinchuk’s theorem, the number n (and the group � ) depend on the given affine
variety X over Q.

Acknowledgements Partial financial support to Kapovich was provided by the NSF
grant DMS-12-05312 and to Millson by the NSF grant DMS-15-18657. Kapovich is
also grateful to the Korea Institute for Advanced Study for its hospitality and excellent
working conditions. We are grateful to the referee and Michael Heusener for useful
remarks and corrections.

2 Preliminaries

2.1 Representation and character schemes

We will say that a subscheme Y �X is clopen if it is both closed and open. We will
use the topologist’s notation

Zm WD Z=mZ

for the cyclic group of order m. Given a subset S of a group G we will use the
notation hhSii for the normal closure of S in G .

Let G be an algebraic group scheme over a field k of characteristic zero (this will be
the default assumption through the rest of the paper) with Lie algebra g. Let � be a
finitely presented group with presentation

hs1; : : : ; spjr1 D 1; : : : ; rq D 1i:

(In fact, one needs � only to be finitely generated, but all finitely generated groups in

Geometry & Topology, Volume 21 (2017)



On representation varieties of 3–manifold groups 1935

this paper will be also finitely presented.) Every word w in the generators si and their
inverses s�1

i , for i D 1; : : : ;p , defines a morphism

wW Gp
!G;

obtained by substituting elements g˙1
1
; : : : ;g˙1

p 2 G in the word w for the letters
s˙1
1
; : : : ; s˙1

p . We then obtain the representation scheme

Hom.�;G/D f.g1; : : : ;gp/ 2Gp
j rj .g1; : : : ;gp/D 1; j D 1; : : : ; qg;

as every homomorphism �! G is determined by its values on the generators of �.
We will thus think of points of this scheme as homomorphisms �W � ! G . The
representation scheme is known to be independent of the presentation of the group �.
We refer the reader to [10; 17] for more details. We also refer the reader to [16; 17] for
detailed discussion of character varieties/schemes and a survey of their applications to
3–dimensional topology.

We will frequently use the following two facts about representation schemes; see eg [17]:

1. Hom.�1 ? � � �?�k ;G/Š
Qk

iD1 Hom.�i ;G/.

2. For each �2Hom.�;G.k// satisfying H1.�; gAd�/D 0, the point � is a smooth
point of the scheme Hom.�;G/. The G–orbit through � is open in Hom.�;G/.

In what follows we will use the simplified notation Hq.�;Ad �/ instead of Hq.�; gAd�/.

We assume from now on that the group G is affine; in particular, Hom.�;G/ is also
an affine scheme. The group G acts naturally on this scheme:

.g; �/ 7! �g where �g. /D g�. /g�1:

Assuming, in addition, that G is reductive, we obtain the GIT quotient

X.�;G/D Hom.�;G/ ==G;

which is a scheme of finite type known as the character scheme (or, more commonly,
as the character variety). However, as we will see, both representation and character
schemes can be nonreduced, so we will avoid the traditional representation/character
variety terminology.

We will use the notation

Homred.�;G/ and X red.�;G/

to denote the varieties which are the reductions of the schemes

Hom.�;G/ and X.�;G/:

Geometry & Topology, Volume 21 (2017)



1936 Michael Kapovich and John J Millson

Recall that for every � 2 Hom.�;G/, the vector space of cocycles

Z1.�;Ad �/

is isomorphic to the Zariski tangent space T� Hom.�;G/ and this isomorphism car-
ries the subspace of coboundaries B1.�;Ad �/ to the tangent space of the G–orbit
through � . Note, however, that H1.�;Ad �/ is not always isomorphic to the Zariski
tangent space of Œ�� 2X.�;G/; see [2, Section 6] as well as [17].

Suppose now that the group ˆ is finite. Then for every � 2 Hom.ˆ;G/,

H1.ˆ;Ad �/D 0:

(Furthermore, Hi.ˆ;Ad �/D 0 for i � 1.) In particular, the G–orbit of � is a clopen
(closed and open) subscheme

Hom�.ˆ;G/� Hom.ˆ;G/:

This subscheme is isomorphic to the quotient G=�G.�.ˆ//, where �G.H / denotes the
centralizer of the subgroup H in G . (Note that if �G.�.ˆ// equals the center of G ,
then the point Œ�� 2X.ˆ;G/ is a reduced isolated point in the character scheme and
the entire character scheme is smooth.) We obtain:

Lemma 2.1 For every finite group ˆ and connected affine group G , the scheme
Hom.ˆ;G/ is smooth and each of its irreducible components is G–homogeneous.
These irreducible components are the open subschemes Hom�.ˆ;G/. If the represen-
tation � is trivial, then Hom�.ˆ;G/ is a single point.

The following lemma is also immediate:

Lemma 2.2 Let �W � ! � 0 be a group homomorphism. Then the pull-back map
��.�/D � ı� is a morphism of schemes

Hom.� 0;G/! Hom.�;G/:

Lemma 2.3 Let � be a finitely presented group and let ‚� � be a finite subset with
the quotient group

� 0 WD �=hh‚ii:

Let �W �! � 0 denote the projection homomorphism. Then the pull-back morphism

��W Hom.� 0;G/! Hom‚.�;G/

is an isomorphism, where

Hom‚.�;G/� Hom.�;G/

Geometry & Topology, Volume 21 (2017)



On representation varieties of 3–manifold groups 1937

is the closed subscheme defined by

Hom‚.�;G/D f� 2 Hom.�;G/ j �.�/D 1 for all � 2‚g:

Proof Given a finite presentation P of � let P 0 be the presentation of � 0 obtained
from P by adding words representing elements of ‚ as the relators. Then the assertion
follows immediately from the definition of the representation scheme of a group using
a group presentation.

Corollary 2.4 Suppose that every element � 2‚ has finite order. Then the isomor-
phism ��W Hom.� 0;G/ ! Hom‚.�;G/ sends Hom.� 0;G/ to the open subscheme
Hom‚.�;G/� Hom.�;G/.

Proof Consider an element � 2‚ and the trivial representation �0;� W h�i !G . By
Lemma 2.1, the singleton

f�0;�g D Hom�0;� .h�i;G/� Hom.h�i;G/

is a reduced isolated point in the scheme Hom.h�i;G/. In particular, this point is open
in Hom.h�i;G/. We have the pull-back morphism

��� W Hom.�;G/! Hom.h�i;G/;

induced by the inclusion homomorphism �� W h�i ,! �. Therefore,

.��� /
�1
�
Hom�0;� .h�i;G/

�
� Hom.�;G/

is an open subscheme. Furthermore, by the definition of Hom‚.�;G/,

Hom‚.�;G/D
\
�2‚

.��� /
�1
�
Hom�0;� .h�i;G/

�
:

(A homomorphism belongs to Hom‚.�;G/ if and only if it sends each � 2‚ to 12G .)
Therefore, Hom‚.�;G/ is also open in Hom.�;G/.

2.2 Coxeter groups

We refer the reader to [3] for the basics of Coxeter groups.

Let � be a finite simplicial graph with the vertex and edge sets denoted V D V .�/

and E DE.�/, respectively. We will use the notation e D Œv; w� for the edge of �
connecting v and w , if it exists. We assume also that we are given a function

mW E!N with m.e/� 2 for all e 2E

labeling the edges of �. We will call the pair .�;m/ a labeled graph or a Coxeter

Geometry & Topology, Volume 21 (2017)



1938 Michael Kapovich and John J Millson

graph. Given a labeled graph, we define the associated Coxeter group � D �� by the
presentation˝
fgvgv2V jg

2
vD18v2V; gvgw � � �„ ƒ‚ …

m.e/ terms

D gwgv � � �„ ƒ‚ …
m.e/ terms

8v;w2V for which eD Œv; w�2E
˛
:

Alternatively, one can describe the relators of this group as g2
v D 1 and

.gvgw/
m
D 1

where mDm.e/, e D Œv; w�.

Remark 2.5 Note that the notation we use here is different from the one in Lie theory,
where two generators commute whenever the corresponding vertices are not connected
by an edge. In our notation, every such pair of elements of � generates an infinite
dihedral subgroup of �.

We also define the canonical central extension

(1) 1! Z2!
z�
�
!�! 1

of the group �, with the extended Coxeter group z� D z�� given by the presentation˝
z; fgvgv2V j z

2
D 1; Œgv; z�D 1; g2

v D z 8v 2 V;

gvgw � � �„ ƒ‚ …
m.e/ terms

D zm.e/C1gwgv � � �„ ƒ‚ …
m.e/ terms

8v;w 2 V for which e D Œv; w� 2E
˛
:

The number r D jV j (the cardinality of V ) is called the rank of � and z�. We will
refer to the generator z of the group � as the central element of �, even though, the
center of z� might be larger than Z2 : this happens precisely when � consists of a
single vertex.

A subgraph †�� is called full if for every pair of vertices v;w 2†, the edge Œv; w�
in � also belongs to †. Every subgraph †�� inherits labels from �. For the new
labeled graph (which we still denote †), we have the natural homomorphism

�†W �†! ��

sending each generator gv 2 �† , where v 2 V .†/, to the generator of �� with the
same name. It is immediate that the homomorphism �† lifts to a homomorphism

z�†W z�†! z��

sending each gv to itself (v 2 V .†/) and the central element z 2 z�† to the central
element z 2 z�� . We will use this construction in two special cases:
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a. † WD�∅ is the subgraph which has the same vertex set as �, but empty edge set.
Then

�† Š Fr and z�† Š Fr �Z2;

where Fr is the free group on r generators.

b. †�� is a full subgraph. In this case, the homomorphism �† is injective; see eg
[3, page 113]. It follows that the homomorphism z�† is injective as well.

For full subgraphs †��, the subgroups �†.�†/ < �� and z�†.z�†/ < z�� are called
parabolic subgroups of �� and z�� , respectively. We say that a parabolic subgroup
of �� or z�� is elementary, if it is a finite parabolic subgroup of rank � 2. The
latter requirement simply means that † consists of at most two vertices; the finiteness
condition means that if † consists of two vertices, then these vertices are connected
by an edge. We will refer to such subgraphs † as elementary as well.

Example 2.6 1. If � consists of a single edge e labeled 2, then ��ŠZ2�Z2 and

z�� ŠQ8;

the finite quaternion group.

2. If the edge e is labeled 4, then �� is the dihedral group I2.4/ of order 8; it
admits an epimorphism

��! Z2 �Z2

with kernel the center of �� , which is generated by the involution gvgwgvgw .

3 Representations of Coxeter groups and extended Coxeter
groups

In this section we prove some basic facts about representations of Coxeter and extended
Coxeter groups to PSL.2;C/ and SL.2;C/, respectively.

3.1 Representations of elementary Coxeter groups

Recall that the quotient map

pW zG.C/D SL.2;C/!G.C/D PSL.2;C/D SL.2;C/=f˙1g;

is a 2–fold covering. The extended Coxeter groups appear naturally in the context of
lifting homomorphisms of Coxeter groups from PSL.2;C/ to SL.2;C/.

Geometry & Topology, Volume 21 (2017)
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Consider the labeled graph �, consisting of two vertices v;w and the edge Œv; w�
labeled m� 2. The corresponding Coxeter group �� is a finite dihedral group, usually
denoted I2.m/. This group is isomorphic to the subgroup of the group of symmetries
of a regular planar 2m–gon, acting simply transitively on the set of edges of this
polygon. Hence, this group embeds canonically (up to conjugation) into O.2/ and thus
into PO.3;R/Š SO.3;R/ < PSL.2;C/. If m is odd, then such a group of symmetries
will lift isomorphically to a subgroup of SU.2/ < SL.2;C/. In contrast, we will be
interested (only) in the case when m is even; in fact, we will be using only Coxeter
graphs with the labels mD 2 and mD 4 in this paper.

Below we will prove several lemmas about faithful representations of elementary
Coxeter (and extended Coxeter) groups into G.C/ (and zG.C/).

Lemma 3.1 1. There exists, unique up to conjugation, a faithful representation
�W Z2 �Z2!G.C/.

2. There are no faithful representations Z2 �Z2!
zG.C/.

Proof 1. As the image of � is finite, it is conjugate to a subgroup of SO.3;R/<G.C/.
Part 1 now follows from the fact that the group SO.3;R/ acts transitively on the set of
pairs of orthogonal 1–dimensional subspaces of R3 (these subspaces, in our setting,
are fixed lines of the images of the direct factors of Z2 �Z2 under �).

2. Part 2 follows from the fact that any involution A 2 SL.2;C/ has both eigenvalues
equal to �1, ie A equals �1 2 SL.2;C/.

The next lemma and proposition generalize Lemma 3.1 to representations of the dihedral
group I2.4/.

Lemma 3.2 All injective representations �W � D I2.4/!G.C/ are conjugate to each
other.

Proof Since the group � is finite, its image in G.C/ lies in a conjugate of the
maximal compact subgroup SO.3;R/ < G.C/. Thus, we will assume that �.�/ is
contained in SO.3;R/. Since the product of the generating involutions �.gv/, �.gw/
of �.�/ has order 4, the fixed lines of �.gv/, �.gw/ meet at the angle �

4
in R3.

Now, the assertion follows from the fact that SO.3;R/ acts transitively on the set of
1–dimensional subspaces in R3 meeting at the given angle.

Proposition 3.3 Consider the dihedral group I2.2m/D �� and its isomorphism

�W ��! � <G.C/:

Then:
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1. For every choice of matrices zgu 2
zG.C/ projecting to the generators �.gu/ 2

� <G.C/, the map

gu! zgu for u 2 fv;wg

extends to a monomorphism z�W z��! zG.C/.

2. The centralizer of the group z�.z��/ in zG.C/ equals the center of zG.C/.

Proof The proof amounts to elementary linear algebra; we include the details for
the sake of completeness. For notational convenience we will identify the isomorphic
groups � and �� . After conjugating the subgroup � in G.C/, we can (and will)
assume that � lies in the subgroup SO.3;R/ < G.C/. The orthogonal subgroup is
covered by the unitary subgroup SU.2/ < SL.2;C/. We let Z.SU.2//Š Z2 denote
the center of SU.2/; this center consists of the matrices ˙1.

We begin with several trivial observations. Since � is injective, the involutions gv , gw
are distinct rotations in SO.3;R/. In particular, their fixed-point sets in CP1 are
pairwise disjoint. Suppose the elements zgu; zgv 2SU.2/ project to gv , gw , respectively.
Since the kernel of the covering zG!G is isomorphic to Z2 , the unitary transformations
zgv; zgw 2 SU.2/ have order at most 4:

zg2
u 2Z.SU.2// for u 2 fv;wg:

Note that the only involution in SU.2/ is the matrix �1. Since zgu projects nontrivially
to SO.3/, this matrix cannot be an involution. It follows that

zg2
u D�1 2 SU.2/ for u 2 fv;wg:

The eigenvalues of the matrices zgv , zgw have to be roots of unity of the order 4, which
implies that the spectrum of each matrix zgu , where u 2 fv;wg, equals fi;�ig.

We next claim that the eigenspaces of unitary transformations zgv , zgw are pairwise
distinct. If not, then these matrices would be simultaneously diagonalizable, which
would imply that their projections to PSL.2;C/ are equal. (Two involutions in SO.3;R/
which have same fixed-point sets have to be the same.)

Suppose now that A 2 SL.2;C/ is a matrix centralizing the subgroup hzgv; zgwi gen-
erated by zgv , zgw . We claim that A is a scalar matrix, ie an element of the center
of SL.2;C/. Indeed, since A commutes with both zgv , zgw , it has to preserve the
eigenspaces of each matrix zgv , zgw . (Here we are using the fact that the eigenvalues
of zgu are distinct for u 2 fv;wg.) However, a nonscalar matrix in SL.2;C/ cannot
have three distinct eigenlines. Therefore, A is a scalar matrix. This implies the second
claim of the lemma.
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The generators gv , gw satisfy

t D .gvgw/
m
D .gwgv/

m;

where t is an order-2 element, which belongs to the center of �. (In the geometric
realization of �† as a group of symmetries of a regular 2m–gon, the element t

corresponds to the order-2 rotation, the central symmetry of the polygon.)

If we had the relation
.zgv zgw/

m
D .zgw zgw/

m;

it would result in the monomorphism

˛W �! SU.2/ with ˛.gu/D zgu for u 2 fv;wg;

lifting the embedding �W � ,! SO.3;R/. The image of the center Z.�/ of � would
then be in the center of ˛.�/, hence, as we noted above, in the center of SU.2/. Then,
the composition �D p ı˛ would send Z.�/ to 1, which is a contradiction.

This leaves us with the only possibility

.zgv zgw/
m
D�.zgw zgv/

m:

To conclude, the map given by

gv 7! zgv; z 7! �1 2 SL.2;C/;

extends to an homomorphism z��! p�1.�/, sending the central element z 2 z�� to
the matrix �1 2 SL.2;C/. Injectivity of this homomorphism follows from injectivity
of the representation �! PSL.2;C/.

3.2 Representations faithful on elementary subgroups

For a Coxeter group � D �� we define two subschemes

Homo.�;G/� Hom.�;G/ and Homo.z�; zG/� Hom.z�; zG/:

The former consists of homomorphisms which are injective on every elementary
subgroup of � ; the latter consists of homomorphisms which are injective on every
elementary subgroup of z� and send z 2 z� to �1 2 SL.2;C/. (In fact, the requirement
for z follows from faithfulness on elementary subgroups, except when � has no edges.)
Since elementary subgroups of � and z� are finite, both Homo.�;G/ and Homo.z�; zG/

are open subschemes of the respective representation schemes. We will see later on
that these subschemes are also closed. For each

� 2 Homo.z�;G/
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we have �.z/D 1, while for each z� 2Homo.z�; zG/ which projects to � 2Homo.�;G/

we have z�.z/D�1.

In the paper we will be using the labeled graph � depicted in Figure 1: This graph has
five vertices and nine edges. The edges left unlabeled in the figure all have the label 2.
The vertices x , y are the only ones not connected to each other by an edge.

u

x

v

y

w

4

4 4

4

Figure 1: The graph �

In what follows, we will also use the subgraph ‡ ��, which is the complete graph on
the vertices u, v , w . The parabolic subgroup �‡ < �� is isomorphic to Z3

2
. Since

the group �‡ is finite, the representation scheme Hom.�‡ ;G/ is smooth.

Lemma 3.4 Each representation � 2 Homo.�;G.C// of the group � D �‡ satisfies:

1. The kernel of � is generated by the subgroup

hgugvgwi Š Z2;

and the image of � is isomorphic to Z2 �Z2 .

2. The centralizer of the abelian subgroup �.�/ <G.C/ in the group G.C/ equals
the subgroup �.�/ itself.

3. Homo.�;G.C// is the G.C/–orbit of a singleton f�‡g.

Proof This lemma is also elementary:

1. Consider a homomorphism � 2 Homo.�;G.C//. For each element  2 � we
let Fix. / denote the fixed-point set of �. / in CP1. The condition that all three
involutions �.gu/, �.gv/, �.gw/ are distinct implies that the three fixed-point sets
Fix.gu/, Fix.gv/, Fix.gw/ are pairwise disjoint.
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Remark 3.5 If g1 , g2 are commuting involutions in PSL.2;C/ with fixed-point sets
f�1; �1g, f�2; �2g, respectively, and �1 D �2 , then g2g1g�1

2
D g1 implies that

g2.f�1; �1g/D f�1; �1g:

Since g1.�1/D �1 , it follows that g2.�1/D�1 . However, each involution in PSL.2;C/
is determined by its fixed-point set. Therefore, g1 D g2 .

Commutativity of �.�/ implies that this group preserves the six-point set

F D Fix.gu/[Fix.gv/[Fix.gw/�CP1:

The element �.gu/ fixes Fix.gu/, of course, and defines nontrivial involutions of the
other two fixed-point sets

Fix.gv/! Fix.gv/ and Fix.gw/! Fix.gw/:

The same applies to gv and gw . It follows that

�.gugv/jF D �.gw/jF :

Hence
�.gugv/D �.gw/;

and thus
hgugvgwi< ker.�/:

The equality of these subgroups of � follows from the condition that

� 2 Homo.�;G.C//:

This establishes part 1 of the lemma.

2. To prove part 2, note that every g 2G centralizing �.�/ has to preserve each of
the sets Fix.gu/, Fix.gv/, Fix.gw/. After composing g with elements of �.�/, we
achieve that g fixes the set Fix.gu/[ Fix.gv/ pointwise. Therefore, g 2 �.�/. This
proves part 2 of the lemma.

3. To prove part 3 note that, by part 1, the pull-back morphism

Homo.Z
2;G.C//! Homo.�;G.C//

induced by the quotient homomorphism

1! hgugvgwi ! �! Z2

is surjective. Now, the claim follows from Lemma 3.1.
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Lemma 3.6 1. Homo.��;G.C// is a single orbit G.C/ � �� .

2. The representation �� is infinitesimally rigid: H1.��; sl.2;C//D 0.

3. For each �2Homo.��;G.C//, the adjoint action Ad � of �� on the Lie algebra
sl.2;C/ has no nonzero fixed vectors.

Proof 1. Consider � 2 Homo.��;G/. In view of Lemma 3.4, we can assume that
the restriction of � to the subgroup �‡ equals the representation �‡ . Consider now
the dihedral subgroups

hgu;gxi and hgx;gvi

in the group �� . It follows from Lemma 3.2 that there are exactly two extensions
(which are faithful on all elementary parabolic subgroups) of the representation

�jhgu;gvi

to the subgroup hgu;gx;gvi. We will denote these extensions �C and �� . For both
extensions, �˙.gx/ lies in SO.3;R/, its fixed line in R3 is contained in the span
of the fixed lines of �‡ .gu/, �‡ .gv/. This fixed line makes the angle �

4
with the

fixed lines of �‡ .gu/, �‡ .gv/ and is orthogonal to the fixed line of �.gw/. These
representations �˙ are conjugate via the element �.gv/2 SO.3/. Therefore, after such
conjugation, we fix the value �.gx/. We next repeat this argument for the subgroup
of �� generated by

fgv;gy ;gwg:

Since conjugation via �.gw/ does not alter �.gx/, we obtain the required uniqueness
statement.

2. In what follows we will be using the fact that the adjoint representation of PSL.2;C/
is isomorphic to the complexification V of the standard representation of SO.3;R/
on R3. We will also use the notation V and sl.2;C/ for the representation Ad � of
the group �� (and its subgroups) in the notation for cocycles and cohomology groups.
In particular, for each element a of

fu; v; w;x;yg;

the fixed-point set of Ad �.ga/ is a line in V , which we will denote by V a. An
elementary but useful geometric observation is that

V x
� V u

˚V v;

while
V D V u

˚V v
˚V w

D V u
˚V x

˚V w:
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Consider a cocycle � 2 Z1.��;V /. Since �‡ is finite, H1.�‡ ;V / D 0. Since the
restriction of � to the subgroup �‡ is a coboundary, by subtracting off a coboundary
from � , we can assume that � vanishes in �‡ . Similarly, there exist ˛; ˇ 2V such that

�.h/D ˛�Ad �.h/˛ for all h 2 hx;ui;

�.h/D ˇ�Ad �.h/ˇ for all h 2 hx; wi:

It follows that ˛ 2V u and ˇ 2V w. Moreover, by looking at the value �.x/, we see that

˛�ˇ 2 V x:

Since the lines V u, V x, V w also span V , it follows that ˛ D ˇ D 0. Therefore,
�.x/D 0. Similarly, �.y/D 0 and thus � D 0 on the entire group �� .

3. This follows from the fact that �.�‡ / has no nonzero fixed vectors in V D sl.2;C/.

Corollary 3.7 The scheme Homo.��;G/ is smooth.

From now on, we will be making the following assumption on the labeled graphs � of
Coxeter groups � :

Assumption 3.8 1. Every label of the graph � is even.

2. � contains as a full subgraph the graph � above.

Proposition 3.9 1. The schemes Homo.�;G/ and Homo.z�; zG/ are clopen sub-
schemes in Hom.�;G/ and Hom.z�; zG/, respectively.

2. There is a morphism of schemes qW Homo.z�; zG/! Homo.�;G/, such that for
every z� 2 Homo.z�; zG/ and �D q.z�/ we have

p ı z�D � ı �;

where �W z�! � is the quotient map from (1).

3. The morphism q is a regular étale covering with the deck-group Zr
2

, where r is
the rank of �.

Proof 1. We will give a proof for Homo.�;G/, since the other statement is similar.
Consider an elementary subgroup �† � � ; this subgroup is finite. In Lemma 2.1
we proved that each irreducible component of Hom.�†;G/ is a clopen subscheme
of Hom.�†;G/; furthermore, each component is a single G–orbit of a representation
�†!G . Then

Homo.�†;G/D Hom.�†;G/ n
[

�2�†�f1g

Homh�i.�†;G/
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is an open subscheme in Hom.�†;G/. It is also closed since every subscheme removed
was open.

For each elementary subgroup �† < � and inclusion map �†W �†! �, we have the
pull-back morphism

��†W Hom.�;G/! Hom.�†;G/:

Then we have the finite intersection, taken over all elementary subgraphs †��,

Homo.�;G/D
\
†

.��†/
�1.Homo.�†;G//:

Therefore, Homo.�;G/ � Hom.�;G/ is clopen as a finite intersection of clopen
subschemes.

2. For each z� 2 Homo.z�; zG.C//, the reduction modulo centers of z� and zG yields a
homomorphism � 2 Homo.�;G.C//. We need to check that the map

qW Homo.z�; zG.C//! Homo.�;G.C//; q.z�/D �;

obtained in this fashion comes from a morphism of schemes. First, the composition
z� 7! p ı � is clearly a morphism of schemes

Hom.z�; zG/! Hom.z�;G/:

For ‚D fzg, we obtain an isomorphism of schemes

Hom‚.z�;G/! Hom.�;G/

(see Lemma 2.3), and Hom‚.z�;G/ contains the image of Homo.z�; zG/. Therefore, q

is a composition of two morphisms.

We next verify surjectivity. Let � 2 Homo.�;G/. Define z�W z�! zG by sending gener-
ators gv to arbitrary elements of p�1.�.gv// and sending the central element z 2 z�

to �1 2 SL.2;C/. In view of Proposition 3.3, for each elementary subgroup �† in �,
the restriction of z� to the generators of z�† extends to a faithful homomorphism z�j�†

.

Since all the relators of the group z� come from elementary subgroups, it follows that
our map of the generators of z� to SL.2/ extends to a homomorphism z�W z�! SL.2/.
This homomorphism belongs to Homo.z�; zG/ since it is faithful on each elementary
subgroup.

Thus, we obtained a surjective morphism

qW Homo.z�; zG/! Homo.�;G/; q.z�/D �:
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The group Z2 is the group of automorphisms of the covering zG!G ; therefore, the
product of r copies of Z2 acts naturally on the product of r copies of zG as the group
of automorphisms of the (regular) cover

yp D p� � � � �pW

rY
iD1

zG!

rY
iD1

G:

Since the rank r of the group � is the number of its generators gv , we have the
morphism rY

iD1

zG Š Hom.Fr ; zG/
yp
�!

rY
iD1

G Š Hom.Fr ;G/;

where Fr is the free group on r generators. We also have the commutative diagram

Hom.z�; zG/
q- Hom.�;G/

Hom.Fr ; zG/

?
yp- Hom.Fr ;G/

?

where the vertical arrows are the inclusions of representation schemes induced by the
epimorphisms

Fr !
z� and Fr ! �

sending the free generators of Fr to the generators gr of the extended Coxeter and
Coxeter groups. It is elementary and left to the reader to verify that the group Zr

2

of automorphisms of yp preserves the subscheme Homo.z�; zG/. Therefore, this finite
group acts simply transitively on the fibers of the morphism q .

3. It remains to show that the map q is étale, ie that it is an isomorphism of analytic
germs at every point. Let z� be in Homo.z�;SL.2;C// and set � WD q.z�/.

Below is a proof which assumes the reader’s familiarity with [1], where the theory
of controlling differential graded Lie algebras for various deformation problems was
developed.

In view of [1, Theorem 6.8], it suffices to verify that the differential graded Lie algebras
controlling these germs are quasi-isomorphic. First, the Lie algebras of G and zG are
isomorphic under the covering p , which implies that the covering map p induces
isomorphisms

Hi.z�;Ad ız�/! Hi.z�;Ad ıp.z�// for i � 0:

Since the central subgroup Z2 of z� is finite,

Hi.Z2; sl.2;C//D 0 for i � 1:
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Therefore, applying the Lyndon–Hochschild–Serre spectral sequence to the central
extension (1), we obtain isomorphisms

(2) Hi.�;Ad ı�/! Hi.z�;Ad ız�/; where �D q.z�/; for i � 1:

(Actually, for i D 0 both cohomology groups vanish, which implies that they too are
isomorphic.) These isomorphisms ensure that the morphism

qW .Hom.z�; zG/; z�/! .Hom.�;G/; �/

is an isomorphisms of germs.

Remark 3.10 Below is an alternative argument proving that q is étale, which does
not reply upon differential graded Lie algebras. The morphism q is étale if and only if
q induces bijections of sets of A–points of representation schemes for all local Artin
C–algebras A; see [6, Theorem 2.2]. Let A be a local Artin C–algebra and �W A!C
be the quotient by the maximal ideal. Then we have natural bijections

Hom.�;G.A//Š Hom.�;G/.A/ and Hom.z�; zG.A//Š Hom.z�; zG/.A/

and the commutative diagram

Hom.z�; zKA/ - Hom.z�; zG.A// zu- Hom.z�; zG.C//

Hom.�;KA/

qKA

?
- Hom.�;G.A//

qA

?
u- Hom.�;G.C//

q

?

where zKA and KA are the respective kernels of the group homomorphisms

zG.A/! zG.C/ and G.A/!G.C/

induced by �W A!C . We observe that the group zKA is torsion-free and, since the cover-
ing map pW zG!G is étale, the induced map pKA

W zKA!KA is an isomorphism. Let us
prove that for each z�W z�! zG.C/, the restriction of qA to zu�1.z�/ is injective. Suppose
that z�A , z�0A 2 u�1.z�/ project via qA to the same homomorphism �AW �!G . Then

z�A. /D˙z�
0
A . / for each  2 z�:

Assume that z�A. /D gk D �z�0A . /D �gk 0, where g 2 SL.2;C/ and k; k 0 2 zKA .
Then kk 0 D�1 which contradicts the property that zKA is torsion-free. This proves
injectivity. Lastly, we verify surjectivity of the restriction map

qAju�1.z�/W zu
�1.z�/! f�AW �!G.A/ j u.�A/D �D q.z�/g;
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where z� 2 Homo.z�; zG.C//. Let �A 2 Hom.�;G.A// 2 u�1.�/, where q.z�/ D � .
Given zg 2 SL.2;C/, p.zg/D g and gk 2 SL.2;A/, where k 2KA , we lift gk to the
element zg zk D p�1

KA
.k/. We apply this construction to the images of each generator gv

(of � and of z� ) and the generator z of z�, under the homomorphisms z� and �A . We
leave it to the reader to verify that the resulting map of the generators of z� to SL.2;A/
defines a homomorphism z�A in Homo.z�;SL.2;A//. By the construction, zu.z�A/D z�

and qA.z�A/D �A .

3.3 Character schemes of representations
faithful on elementary subgroups

In this section we extend the results of the previous section from representation schemes
to character schemes.

3.3.1 Stability Given a reductive affine algebraic group H and a finitely generated
group ƒ, we have the algebraic action of the group H on the homomorphism scheme
Hom.ƒ;H / given by

.h; �/ 7! Inn.h/ ı �;

where Inn.h/ is the inner automorphism g 7! hgh�1 of the group H . Recall that the
character scheme is defined as the Mumford quotient

X.ƒ;H /D Hom.ƒ;H / ==H:

Geometrically speaking, the Mumford quotient is obtained by identifying the semisimple
points Homss.ƒ;H / of the H –action by the extended orbit equivalence relation, while
the restriction of the projection

�W Homss.ƒ;H /!X.ƒ;H /

to the stable locus Homst.ƒ;H / (consisting of stable points) is just the quotient by
the H –orbit equivalence. Hence the restriction of the projection to the stable locus has
especially simple form. We will use the notation

� 7! Œ��

for the projection �.

A sufficient condition for stability of representations � 2 Hom.ƒ;H / (under the H –
action) in terms of the Zariski closure of �.ƒ/ in H was established in [4]:

Theorem 3.11 A representation � 2 Hom.ƒ;H / is semistable provided that the
Zariski closure �.ƒ/ is reductive. A representation is stable provided that the Zariski
closure �.ƒ/ is reductive and the centralizer ZH .�.ƒ// of the image of � is finite.
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In the case of representations into H D PO.3/ and H D Spin.3/, the sufficient
condition for stability amounts to requiring that the image of � is not contained in
a Borel subgroup of H . Our next goal is to verify stability condition and identify
centralizers of the images of representations in the context of Coxeter and extended
Coxeter groups. Recall that we are using the notation G for PSL.2/ and zG for SL.2/
(regarded as group schemes).

Lemma 3.12 Let � be a Coxeter group and z� the corresponding extended Coxeter
group, satisfying Assumption 3.8. Then for each �2Homo.�;G/ and z�2Homo.z�; zG/

we have:

1. The representations � , z� are stable points in Mumford’s sense.
2. The centralizers of the images of � , z� equal the center of the target group.

Proof Recall that we require the group � to contain a subgroup �� . It suffices to
prove both 1 and 2 for the representations � 2 Homo.��;G/, z� 2 Homo.z��; zG/,
since we have to verify that the image of the representation is not contained in a Borel
subgroup and that its centralizer equals the center of the target group.

(i) First, we consider the case of representations z�W z� D z��! SL.2;C/. We restrict
our attention to the subgraph † � �, which consists of two vertices x , y and the
edge e D Œx;y� labeled 4. Each representation z� 2 Homo.z�; zG/ projects to a faithful
representation

�W �† ,! PSL.2;C/:

By Proposition 3.3, the centralizer of the subgroup z�.z�†/ equals the center of SL.2;C/.
Moreover, the images of the generators of z�† under z� have distinct eigenlines. It
follows that the subgroup z�.z†/ cannot have an invariant line in C2, thereby proving
that z�.z�/ is not contained in a Borel subgroup of SL.2;C/. This proves parts 1 and 2
for representations to SL.2;C/.

(ii) Consider now representations �W � ! G . By the assumption, � sends distinct
generators of � to distinct elements of G . It follows that the group �.�/ cannot fix a
point in CP1. In other words, the group �.�/ is not contained in a Borel subgroup
of G . This proves part 1.

To prove part 2, we will use subgroups �‡ and �� of the group �. Since � belongs
to Homo.�;PSL.2;C//, the centralizer of �.�‡ / in G equals the subgroup �.�‡ /
itself (Lemma 3.4). On the other hand, � is faithful on the subgroups generated by
fgu;gxg, fgv;gyg, fgw;gzg. Therefore,

Œ�.gu/; �.gx/�¤ 1; Œ�.gv/; �.gy/�¤ 1 and Œ�.gw/; �.gz/�¤ 1;

and hence the subgroup �.�/ has trivial centralizer in PSL.2;C/.
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3.3.2 Cross-sections Let Y be a quasiaffine scheme and G�Y !Y be an algebraic
group. Suppose that C � Y is a closed subscheme, such that the orbit map

G �C ! Y

is an isomorphism. In particular, C projects isomorphically onto Y ==G , since

.G �C / ==G Š C:

Such a subscheme C is called a cross-section for the action of G on Y . We leave it to
the reader to check that if Ac �A is a cross-section for the action of G on A and we
have an action G Õ B , then Ac�B is a cross-section for the product action on A�B .

Lemma 3.13 Suppose that Y is a (quasiaffine) scheme of finite type, G �Y ! Y is
an (algebraic) action of an affine algebraic group, C � X is a cross-section for this
action. Suppose that Y 0 � Y is a G–invariant subscheme. Then C 0 D Y 0\C is also a
cross-section for the action G �Y 0! Y 0.

Proof We need to show that the orbit map G�C 0! Y 0 is an isomorphism. It suffices
to show that for each commutative ring A, the orbit map

�0W G.A/�C 0.A/! Y 0.A/

of A–points is a bijection; see the appendix. We have C 0.A/D C.A/\Y .A/. Since
the orbit map

�W G.A/�C.A/! Y .A/

is a bijection and Y 0.A/ is G.A/–invariant, it follows that � is a bijection.

Note that if the scheme Y and its subscheme C �Y are both smooth then the condition
that C is a cross-section for the action of G is easier to check: It suffices to verify
that the set of complex points of C is a set-theoretic cross-section for the action of G

on Y .C/. Indeed, �W G�C ! Y , the restriction of the G–action on Y , is a morphism.
Our hypothesis amounts to the assumption that � induces a bijection of C–points. The
fact that � is an isomorphism now follows, for instance, from the Zariski Main Theorem.

We now specialize to the case of representation schemes. Let � 0 D �=N be a finitely
generated group (where � is a finitely generated group and N G� is a normal subgroup),
G be an affine algebraic group, and G�Hom.�;G/!Hom.�;G/ be the action of G by
conjugation on the representation scheme. We will assume that the scheme Hom.�;G/
is smooth. Suppose that U � Hom.�;G/ is a G–invariant open affine subscheme and
U 0 DU \Hom.� 0;G/. We assume that Uc �U is a closed smooth subscheme. Then,
in view of smoothness, the property that Uc is a cross-section for the G–action on U
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amounts to the condition that Uc.C/ is a cross-section for the action of G.C/ on U.
If this is the case, then, according to Lemma 3.13, the subscheme U 0c D Uc \U 0 is a
cross-section for the action of G on U 0.

3.3.3 Cross-sections of representation schemes We apply the above observations
in two situations. First, suppose that � is a Coxeter group satisfying Assumption 3.8;
we let G D PO.3/. We have the identity embedding ��W �� ,! � of the finite
subgroup �� . Recall that, according to Lemma 3.6, Homo.��;G.C// consists of a
single G–orbit G.C/ � �� . We then set

Homc.�;G/ WD .�
�
�/
�1.��/:

The next lemma is an analogue of Corollary 12.11 in [6]:

Lemma 3.14 The subscheme Homc.�;G/ is a cross-section for the action G Õ
Homo.�;G/. In particular,

Xo.�;G/Š Homc.�;G/:

Proof We let � 0D� and define the new group � as the Coxeter group whose Coxeter
graph is obtained from the one of � by removing all the edges which are not in �.
Define

�o WD Z2 ? � � �?Z2„ ƒ‚ …
n times

with one free factor for each vertex of the Coxeter graph not contained in �. We have

Homo.�o/D

nY
iD1

Homo.Z2;G/:

Then

� Š �o ?�� and Homo.�;G/Š Homo.�o;G/�Homo.��;G/:

The scheme U D Homo.��;G/ is smooth by Lemma 3.6, while Homo.Z2;G/ is
smooth since Z2 is finite; therefore, the representation scheme Homo.�;G/ is smooth
as well.

Clearly, � 0 D �=N for a normal subgroup N G � . We again have the inclusion
homomorphism �‡ W ��! � ; the subscheme

C D Homc.�;G/ WD .�
�
‡ /
�1.��/

is smooth since it is naturally isomorphic to Hom.�o;G/. The fact that C is a cross-
section for the action of G on U follows immediately from Lemma 3.6 and observations
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following Lemma 3.13. Lastly, note that

U 0 D Homc.�;G/D U \Hom.�;G/:

Now, the lemma follows from Lemma 3.13.

The second situation when we apply our description of cross-sections is the one of
representations of extended Coxeter groups z� (again satisfying Assumption 3.8) to
the group zG Š SL.2/. The group zG does not act faithfully on Hom.z�; zG/; this action
factors through the action of the group G D PO.3/.

Earlier, we defined the subscheme Homo.z�; zG/� Hom.z�; zG/. Set

Homc.z�; zG/ WD q�1.Homc.�;G//:

Lemma 3.15 Homc.z�; zG/ is a cross-section for the action of G on Homo.z�; zG/.

Proof We let � 0 D z�. Similarly to the proof of Lemma 3.14, we define the extended
Coxeter group � by eliminating all the edges which are not in the subgraph �. Then � 0

is isomorphic to a quotient of � and the same proof as in Lemma 3.14 goes through.

3.3.4 Character schemes We let Xo.�;G/ and Xo.z�; zG/ denote the projections
of Homo.�;G/ and Homo.z�; zG/ to the corresponding character schemes.

In view of Lemmata 3.14 and 3.15, the projections

Homo.�;G/!Xo.�;G/ and Homo.z�; zG/!Xo.z�; zG/

are trivial principal fiber bundles with structure group G D PSL.2;C/: the center of
the group zG acts trivially on Hom.z�; zG/. We record this as:

Corollary 3.16 There exist natural isomorphisms of germs

.Homo.z�; zG/; z�/Š .Homc.z�; zG/�G; z�� 1/

Š .Xo.z�; zG/�G; Œz��� 1/

and
.Homo.�;G/; �/Š Homc.�;G/�G; �� 1/

Š .Xo.�;G/�G; Œ��� 1/:

3.3.5 Adding a free factor Let Fk be the free group on k generators. For an
arbitrary finitely generated group ƒ and an algebraic group H we have an isomorphism
of schemes

(3) Hom.ƒ?Fk ;H /Š Hom.ƒ;H /�Hom.Fk ;H /Š Hom.ƒ;H /�H k:
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This isomorphism is H –equivariant; here and below the action of H is by conjugation
on the left side and the diagonal action (by conjugations) on the product space on the
right side.

We will use these isomorphisms in the following two special cases: ƒD �, H DG

and ƒ D z�, H D zG , where G D PSL.2/, zG D SL.2/, and �, z� are Coxeter and
extended Coxeter groups, respectively. Then the isomorphisms (3) for these groups
allow us to define clopen subschemes

Homo.� ?Fk ;G/� Hom.� ?Fk ;G/ and Homo.z� ?Fk ; zG/� Hom.z� ?Fk ; zG/

as the images of

Homo.�;G/�Gk and Homo.z�; zG/� zG
k;

respectively.

It follows from Lemmata 3.14 and 3.15 that Homc.�;G/�Gk is a cross–section for
the action of G on Homo.�;G/�Gk, while Homc.z�; zG/� zG

k is a cross–section for
the action of G on Homo.z�; zG/� zG

k.

We thus obtain:

Lemma 3.17 .Homo.�;G/�Gk/=G ŠXo.�;G/�Gk :

The étale covering q defined above yields, for each k , the étale covering

qk W Homo.z�; zG/� zG
k
ŠHomo.z�?Fk ; zG/!Homo.�?Fk ;G/ŠHomo.�;G/�Gk:

Corollary 3.18 1. Xo.� ?Fk ;G/ŠXo.�;G/�Gk.
2. Homo.z� ?Fk ; zG/ŠXo.z�; zG/� zG

k.
3. The covering qk is étale.

4 Universality theorem of Panov and Petrunin

The proofs of Theorem 1.1 and its corollaries hinge upon two results, the first of which
is the following:

Theorem 4.1 (Panov–Petrunin universality theorem [12]) Let � be a finitely pre-
sented group. Then there exists a closed 3–dimensional (nonorientable) hyperbolic
orbifold O such that �1.Y /Š �, where Y is the underlying space of O . Furthermore,
Y is a 3–dimensional pseudomanifold without boundary.

Remark 4.2 Examination of the proof in [12] shows that the orbifold O admits a
hyperbolic manifold cover zO!O with deck-transformation group Z4

2
.
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The singular set of the pseudomanifold Y consists of singular points yj for jD1; : : : ;2k ,
whose neighborhoods Cj in Y are cones over RP2. Note that, since RP2 has Euler
characteristic 1, the number of conical singularities has to be even. Observe also
that one needs k � 1 in this theorem, since fundamental groups of 3–dimensional
manifolds are very restricted among finitely presented groups. For instance, there are
no 3–manifolds M with �1.M /ŠZ4 ; therefore, for � ŠZ4, one cannot have k D 0

in Theorem 4.1.

Problem 4.3 Does Theorem 4.1 hold with k D 1?

Given � and Y as in Theorem 4.1, we will construct a closed (nonorientable) 3–
dimensional manifold M DM� as follows. (Formally speaking, this 3–manifold also
depends on the choice of an orbifold O in Theorem 4.1, which is very far from being
unique, however, in order to simplify the notation, we will suppress this dependence).

Let O be a 3–dimensional orbifold as in Theorem 4.1 and let Y be the underlying
space of O . Let Y 0 be obtained by removing open cones Cj for j D 1; : : : ; 2k from Y .
Then Y 0 is a compact 3–dimensional manifold with 2k boundary components each
of which is a copy of the projective plane RP2. We let �i denote the generator of
the fundamental group of the projective plane Pi Š RP2 � @M, which equals the
boundary of the cone Ci and let ˛i W h�ii ! h�kCii be the (unique) isomorphism. We
will regard each �i as an element of �1.Y

0/. Set

‚ WD f�1; : : : ; �kg:

Then
� D �1.Y /D �1.Y

0/=hh�1; : : : ; �2kii:

Next, let M be the closed 3–dimensional manifold obtained by attaching k copies
of the product RP2 � Œ0; 1� to Y 0 along the boundary projective planes, pairing the
projective planes Pi and PiCk for i D 1; : : : ; k . Then � D �1.M�/ is the iterated
HNN extension ���

�1.Y
0/?h˛1i

�
?h˛2i

�
� � �
�
?h˛ki

of �1.Y
0/ with stable letters t1; : : : ; tk .

Taking the quotient

(4) �W �! �=hh‚ii;

we therefore obtain the group � ?Fk , where Fk is the free group on k generators,
projections of the stable letters ti for i D 1; : : : ; k in the above HNN extension. We let

 W � ?Fk ! �
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denote the further projection to the first direct factor and set

(5) � WD  ı�W �! �:

Now, given an algebraic group H , we obtain

Hom‚.�;H /D ��.Hom.� ?Fk ;H //;

a clopen subscheme in Hom.�;H / (see Corollary 2.4). The isomorphism

Hom.�;H /�H k Š
�!Hom.� ?Fk ;H /

��
�!Hom‚.�;H /

restricted to Hom.�;H /� 1 equals ��. We thus obtain:

Lemma 4.4 For each open subscheme S � Hom.�;H /, there exists an open sub-
scheme R� Hom.�;H / isomorphic to S �H k via the morphism ��. Furthermore,
R contains ��.S/.

Proof Take R WD ��.S �H k/, where we identify Hom.�;H /�H k with the repre-
sentation scheme Hom.� ?Fk ;H /.

Note that, because of the H –equivariance of ��, if S is H –invariant and there exists a
cross-section Sc � S for the action H Õ S , then the pull-back Rc WD �

�.Sc �H k/

is a cross-section for H Õ R.

We will be using these results for Coxeter groups � as well as for the extended
Coxeter groups z� , with the group H given respectively by either H DGD PSL.2/ or
H D zG D SL.2/. In order to simplify the notation, we will refer to the fundamental
group �1.M�/ as � and the fundamental group �1.Mz�/ as z� . We will denote by ‚
the subset (defined above) of order-2 elements in � and by z‚ the similar subset in z� .

We obtain a commutative diagram

Homz‚.z�;
zG/ Š- Hom.z� ?Fk ; zG/

Š- Hom.z�; zG/� zGk

Hom‚.�;G/

yq

?
Š- Hom.� ?Fk ;G/

?
Š- Hom.�;G/�Gk

qk

?

where qk is an étale covering (see Section 3.3.5), and hence yq also is an étale covering.
The groups of covering transformations for both are ZkCr

2
, where r is the rank of the

Coxeter group �.

We let

Homo.�;G/� Hom‚.�;G/ and Homo.z�; zG/� Homz‚.z�;
zG/
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be the subschemes which are the preimages of Homo.Fk?�;G/ and Homo.z�?Fk ; zG/

under the isomorphisms

Hom‚.�;G/! Hom.� ?Fk ;G/ and Homz‚.z�;
zG/! Hom.z� ?Fk ; zG/;

respectively. Note also that the covering q is equivariant with respect to the morphism
pW zG ! G , hence yq is equivariant as well. Because of this equivariance, if Rc �

R� Hom‚.�;G/ is a cross-section, so is zRc WD yq
�1.Rc/� zR� Homz‚.z�;

zG/. The
cross-sections we will be using are

Homc.�;G/WDRc�RDHomo.�;G/ and Homc.z�; zG/WD zRc�
zRDHomo.z�; zG/:

We obtain:

Lemma 4.5 Consider a representation ' 2 Homo.�;G.C//; let � be its image
in Hom‚.�;G/ and pick

z� 2 yq�1.�/ 2 Homo.z�; zG.C//:

Then we have isomorphisms of germs

.X.z�; zG/; Œz��/Š .X.�;G/; Œ��/Š .Xo.�;G/�Gk; Œ'�� 1/;

where 1D .1; : : : ; 1/ 2Gk.

Proof These isomorphisms follow from the fact that yq is an étale covering and the
existence of the following cross-sections for the actions of G :

Rc D Homc.�;G/� Homo.�;G/; Homc.�;G/�Gk
� Homo.�;G/�Gk

and

zRc D Homc.z�; zG/� Homo.z�; zG/; Homc.z�; zG/� zG
k
� Homo.z�; zG/� zG

k:

5 A universality theorem for Coxeter groups

The second key ingredient we need is the following theorem, which is essentially con-
tained in Kapovich and Millson [6]. Before stating the theorem we recall (Lemma 3.14)
that the action G Õ Homo.�;G/ has a cross–section Homc.�;G/� Homo.�;G/, ie
Homo.�;G/ is G–equivariantly isomorphic to the product Xo.�;G/�G , where G

acts trivially on Xo.�;G/. As always, G D PO.3/.

Theorem 5.1 Let X and x 2 X be as in Theorem 1.1. Then there exists an open
subscheme X 0�X containing x , a finitely generated Coxeter group � (such that every
edge of its graph � has label 2 or 4) and a representation �c W �!PO.3;R/ with dense
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image, such that X 0 is isomorphic to an open subscheme S 0 �Xo.�;G/. The repre-
sentation �c belongs to Homo.�;PO.3;R//. Furthermore, under this isomorphism, x

corresponds to Œ�c �.

Remark 5.2 Since Homo.�;G/Š Xo.�;G/�G , with Homc.�;G/ containing �c

serving as a cross-section for the action G Õ Homo.�;G/, the preimage S 0o of S 0

in Homo.�;G/ is isomorphic to S 0c�GŠS 0�G . Here and in what follows, S 0c �S 0o
is the cross-section given by

S 0c WD Homc.�;G/\S 0o:

Furthermore, as we saw in Section 2.2, the representation �c lifts to a representation

z�c W
z�! SU.2/

of the canonical central extension z� of �.

Since the universality theorems proven in [6] are somewhat different from the one
stated above, we outline the proof of Theorem 5.1. The main differences are that
the results of [6] are about representations of Shephard and Artin groups rather than
Coxeter groups. Furthermore, the representation to PO.3;R/ constructed in [6] has
finite image (which was important for [6]), although the image group does have trivial
centralizer in PO.3;C/.

Outline of proof of Theorem 5.1 The arguments below are minor modifications of
the ones in [6].

Step 1 (scheme-theoretic version of Mnëv universality theorem) Without loss of
generality, we may assume that the rational point x is the origin 0 in the affine space
containing X. In [6] we first construct a based projective arrangement A, such that an
open subscheme BR0.A;P

2/ in the space of based projective realizations BR.A;P2/,
is isomorphic to X as a scheme over Q, and, moreover, the geometrization isomorphism

X
geo
�!BR0.A;P

2/

sends x 2X to a based realization  0W A! P2 whose image is the standard triangle.
Furthermore, the images of the points and lines in A under  0 are real.

Remark 5.3 Subsequently, a proof of this result was also given by Lafforgue in [9],
who was apparently unaware of [6].

Step 2 An arrangement A is a certain bipartite graph containing a subgraph T (the
“base”) which is isomorphic to the incidence graph of the “standard triangle” (also
known as “standard quadrangle”); see [6, Figure 7]. The subgraph T has five vertices
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v00 , vx , vy , c10 , v01 , v11 corresponding to the “points” of the standard triangle and
six vertices lx , ld , ly , lx1 , ly1 , l1 which correspond to the “lines” of the standard
triangle. In [6, Section 11] we further modify the bipartite graph A: we make the
identifications of vertices

v00 � l1; vx � ly and vy � lx;

and we also add to A the edges

Œv10; v00� and Œv01; v00�:

We will use the upper-case notation V00D 0.v00/, VxD 0.vx/, etc to denote vectors
in C3 which project to the images under  0 of the point-vertices of T . The choice
of this vectors is not unique, of course; we assume that V00 , Vx , Vy form a basis and

(6) V10 D V00CVx; V01 D V00CVy and V11 D V00CVxCVy :

This is possible because of the incidences in  0.T /.

However, here, unlike in [6], we will not add the edge Œv00; v11�. (The purpose of this
edge in [6] was to ensure that certain representation of a Shephard group is finite.) We
let A0 denote the resulting graph (no longer bipartite). We assign labels to the edges
of A0 as follows: all edges are labeled 2 except for the two edges

Œv10; v00� and Œv01; v00�;

which have the label 4. We then let � denote the Coxeter group corresponding to this
labeled graph. We let T 0 denote the labeled subgraph of A0, whose vertices are the
images of the vertices of the arrangement T .

The labeled graph � as in Figure 1 embeds into T 0 via the map given by

v 7! v00; x 7! v10; y 7! v01; u 7! vx; w 7! vy :

We equip the vector space C3 with a nondegenerate bilinear form, so that:

1. All subspaces which appear in the image  0.T /D  0.A/ are anisotropic (the
bilinear form has nondegenerate restriction to these subspaces).

2. The vectors V00;Vx;Vy 2C3 are pairwise orthogonal and have unit norm.

We let PO.3/ denote the projectivization of the orthogonal group O.3/ preserving this
bilinear form.

A realization  2R.A;P2/ is anisotropic if for each vertex v 2A, the image  .v/ is
an anisotropic subspace in C3. We will use the notation Ra.A;P2/ � R.A;P2/

and BRa.A;P2/ � BR.A;P2/ for open schemes of anisotropic realizations and
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anisotropic based realizations. By condition 1 on the inner product above, BRa.A;P2/

contains  0 .

To every anisotropic realization  2R.A;P2/, we associate a representation of the
group � by sending every generator gv 2� to the isometric involution in PO.3/ fixing
the subspace  .v/ in P2. As in [6], this map of generators of � to PO.3/ defines a
representation

� W �! PO.3;C/:
We define

�c WD � 0
:

By the construction, each representation � is faithful on elementary subgroups: For
the edges Œv; w� in A (where v is a point and w is a line), the incidence condition
 .v/ 2  .v/ in P2 forces the point reflection in  .v/ be distinct from the line
reflection in  .w/. For the edges

Œv10; v00� and Œv01; v00�;

condition (6) forces the point reflections in  .v00/,  .v10/,  .v01/ to be pairwise
noncommuting and hence both subgroups

� .hgv00
;gv10

i/ < PO.3;C/ and � .hgv00
;gv01

i/ < PO.3;C/

are isomorphic to I2.4/. We also note that

(7) � j��
D �� WD � 0

W ��! PO.3;C/:

We thus obtain the algebraization morphism of schemes

algW BRa.A;P
2/! Hom.�;PO.3// given by  7! � :

As in [6], the morphism alg is an isomorphism to its image. It follows from Lemma 3.14
and (7) that the subscheme

Sc WD alg.BRa.A;P
2//� Homc.�;PO.3//� Homo.�;PO.3//

is a cross-section for the action of G on the G–orbit of Sc , which we denote

S � Homo.�;PO.3//:

Let †�A0 denote the complete subgraph whose vertices are the vertices (points and
lines) of the standard triangle in A, except for the vertex v11 . As in [6], the image
under �c of the corresponding parabolic Coxeter subgroup �† � � is isomorphic to
the finite Coxeter group B3 (the symmetry group of the regular octahedron) divided by
the center Z2 . Such a group is a maximal finite subgroup of PO.3;R/. However, the
involution �c.gv11

/ does not belong to the group �c.�†/ (this would be an order-2
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rotation in the center of a face of the octahedron). Thus, the group �c.�/ has to be
dense in PO.3;R/, as it contains (actually, is equal to) the dense subgroup �c.�T 0/.
This is the only essential difference between the construction in this paper and in [6],
where it was important for the group �c.�/ to be finite.

We let
�W Homo.�;G/!Xo.�;G/

denote the restriction of the GIT quotient Hom.�;G/!X.�;G/. Since Homc.�;G/

is a cross-section for the G–action on Homo.�;G/, the morphism � is a trivial
principal G–bundle.

Theorem 5.4 algW BRa.A;P2/! Homc.�;PO.3;C// is an isomorphism.

Proof We will only sketch the proof since it follows closely the argument in [6,
Theorem 12.14] and the latter is quite long. One verifies that alg induces a nat-
ural isomorphism of functors of points. For instance, over the complex numbers,
each representation � 2 Homc.�;PO.3;C// gives rise to an anisotropic realization:
 .v/ 2 P2.C/ is the point fixed by �.gv/ (if v is a point-vertex) and  .v/ 2 P2.C/
is the line fixed by �.gv/ (if v is a line-vertex).

Corollary 5.5 1. Sc is a cross-section for the action of G on Homo.�;G/.

2. � ı algW BRa.A;P2/!Xo.�;G/ is an isomorphism.

3. S D � ı alg.BRa.A;P2//�X.�;G/ is an open subscheme.

Proof Part 1 follows from the fact that

Sc D alg.BRa.A;P
2.C//D Homc.�;PO.3;C//

and the latter is a cross-section for the G–action on Homo.�;G/ (Lemma 3.14). Part 2
is immediate from Theorem 5.4 and part 1. Part 3 follows from the fact that Xo.�;G/

is an open subscheme in X.�;G/.

We define X 0 WD geo�1.BRa.A;P2//�X, an open subscheme in X. The composition
of geo; alg and �

X �X 0
geo
�!BRa.A;P

2/\BR0.A;P
2/

alg
�!S 0c

�
�!S 0 �Xo.�;G/;

where X 0 �X and S 0 � S �Xo.�;G/ are open subschemes, yields an isomorphism

�W X 0! S 0 � S:

The isomorphism � sends the point x 2 X 0 to Œ�c � 2 Xo.�;G/. This concludes the
proof of Theorem 5.1.
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We let S 0o denote the preimage of S 0 in Homo.�;G/; then

S 0c D Sc \S 0o and S 0o DG �S 0c Š S 0c �G:

Inverting the isomorphism � and multiplying with the identity map G!G , we obtain:

Corollary 5.6 There exists isomorphisms of schemes over Q

!W S 0o!X 0 �G and �W S 0c!X 0

and a commutative diagram

S 0o
! - X 0 �G

S 0c

?
��1

- X 0
?

where the vertical arrows are quotients by the G–action.

6 Proof of Theorem 1.1

We continue with notation introduced in the previous sections. Given an affine
scheme X over Q and a rational point x 2 X, we use Theorem 5.1 to construct
a Coxeter group � and a representation �c W �! PO.3;R/ < PO.3;C/. Then, as in
Section 4, we will construct a closed 3–manifold M DM� with fundamental group � ,
and a clopen subscheme Homo.�;G/�Hom.�;G/ which is isomorphic to the product
Homo.�;G/�Gk. In (5) we defined an epimorphism

�W �
�
�!� ?Fk

 
�!�:

Set �0 WD ��.�c/ 2 Hom.�;G/. The subgroup �0.�/ D �c.�/ < G.R/ is dense
according to Theorem 5.1.

We next “convert” the open subscheme S 0o�Homo.�;G/ (from the end of the previous
section) to an open subscheme R0 � Hom.�;G/. Namely, given S 0o , we let R0 be the
subscheme as in Lemma 4.4, namely, ��.S 0o �Gk/.

By combining the isomorphism

R0! S 0o �Gk
� Hom.�;G/�Gk

with the isomorphism

! � idW S 0o �Gk
!X 0 �G �Gk

(where ! is from Corollary 5.6), we obtain an isomorphism

f W R0 Š�!S 0o �Gk Š
�!X 0 �GkC1

�X �GkC1;
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sending �0 2R0 to
x0 D x � 1 2X 0 �GkC1:

By the construction, R0 is open in Hom.�;G/ and X 0 �GkC1 is open in X �GkC1.

The cross-section S 0c � S 0o � Homo.�;G/ (see Remark 5.2) yields a cross-section
R0c �R0 � Hom.�;G/ for the action G Õ R0 :

R0c D �
�. �.S 0c/�Gk/:

This concludes the proof of Theorem 1.1.

7 Corollaries of Theorem 1.1

Theorem 1.1 deals with representation schemes of 3–manifold groups to G D PO.3/;
we now consider the corresponding character schemes. Since R0c � Homo.�;G/ is a
cross-section for the action of G on R0, part 5 of Theorem 1.1 immediately implies
Corollary 1.3.

We next consider representations of 3–manifold groups to the group zG D SL.2/; we
work over C and thus identify PSL.2;C/ with PO.3;C/.

Recall that, according to Theorem 5.1 (and Remark 5.2), for every affine scheme
X over Q and a rational point x 2 X, there exists an open subscheme X 0 � X

containing x , a Coxeter group � an open subscheme S 0o � Hom.�;G/, and an
isomorphism of schemes over C (which is the identity on the G–factor)

S 0o Š S 0c �G Š S 0 �G!X 0 �G;

sending �c 2 S 0c to x � 1. (S 0c is a certain cross-section for the action G Õ S 0o .)

Next, we consider representations of the corresponding extended Coxeter group z�.
Proposition 3.9 gives us a G–equivariant regular étale covering

qW Homo.z�; zG/! Homo.�;G/

with covering group ZkCr
2

. Restricting to S 0o�Homo.�;G/ we obtain a G–equivariant
regular étale covering

q0W zS 0o! S 0o where zS 0o D q�1.S 0o/� Homo.z�; zG/ and q0 D qj zS 0o
:

We let z�c W
z�! zG.C/ be a lift of �c . The subscheme zS 0o is open in Hom.z�; zG/.

Next, as in Section 4, given the group z� we construct a closed 3–manifold zM with
fundamental group z� . We obtain the epimorphism

z�W z�! z� �Fk !
z�
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and set z�0 WD
z��.z�c/ 2 Hom.z�; zG/.

We have an étale covering

yqW Homz‚.z�;
zG/! Hom‚.�;G/;

equivariant with respect to the action of G . Restricting to the open subscheme

zRD Homo.z�; zG/� Hom‚.z�; zG/� Hom.z�; zG/;

where zRD yq�1.R/ and RD Homo.�;G/� Hom‚.�;G/� Hom.�;G/;

we obtain the G–equivariant étale covering

zqW zR!R

with the group ZkCr
2

of covering transformations. According to Section 4 we also
have cross-sections

Rc �R and zRc D zq
�1.Rc/� zR

for the G–actions on the schemes. The open subschemes that appear in Corollary 1.4
are smaller; we let

zR0 D zq�1.R0/;

where R0�Hom.�;G/ is the subscheme appearing in Theorem 1.1. The cross-sections
for G–actions on these subschemes are zR0c and R0c , respectively, where zR0cDzq

�1.R0c/.
By the construction z�0 belongs to zR0c.C/. This proves Corollary 1.4.

8 Orbifold-group representations

Let y� be the fundamental group of the hyperbolic orbifold appearing in Theorem 4.1.
This group contains cyclic subgroups h�ii Š Z2 for i D 1; : : : ; 2k corresponding to
the singular points yi . The group � is the quotient

y�=hh y‚ii;

where y‚D f�1; : : : ; �2kg �
y�. Then for every algebraic group H ,

Hom.�;H /Š Homy‚.
y�;H /;

and the latter is an open subscheme in Hom.y�;H / (see Corollary 2.4). Now, let �
be a Coxeter group (as in Theorem 5.1) or its canonical central extension. In view of
Theorems 4.1 and 5.1, we obtain:

Corollary 8.1 Theorem 1.1 and Corollaries 1.3 and 1.4 also hold for groups � which
are fundamental groups of (nonorientable) 3–dimensional closed hyperbolic orbifolds.
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By passing to torsion-free subgroups of finite index of � , in view of [5, Theorem 5.1],
we obtain new examples of fundamental groups of hyperbolic 3–manifolds and their
representations to SO.3/ and SU.2/ with nonquadratic singularities of character va-
rieties; see [5, Theorem 5.1], where it is proven that nonquadratic singularities of
character schemes are inherited by finite index subgroups. (The first such examples
were constructed in [5].)

Question 8.2 Do Theorem 1.1 and Corollaries 1.3 and 1.4 also hold for groups �
which are fundamental groups of 3–dimensional closed hyperbolic manifolds? Do
they hold for 3–dimensional manifolds which are 3–dimensional (integer or rational)
homology spheres?

Appendix: Functor of points of affine schemes

The material of this section is standard; we include it for the sake of completeness.
While the results follow easily from the Yoneda lemma, we will give a direct proof.

Lemma A.1 Let f W R! S be a homomorphism of commutative rings, such that for
every commutative ring A the induced map

f �A W Hom.S;A/! Hom.R;A/

is a bijection. Then f is an isomorphism.

Proof First, we take ADR. Since

f �R W Hom.S;R/! Hom.R;R/

is a bijection, there exists g 2 Hom.S;R/ such that f �
R
.g/D idR , ie

g ıf D idR;

the identity map. For general A we have the composition

Hom.R;A/ g�
A�!Hom.S;A/ f

�
A�!Hom.R;A/

which satisfies f �
A
ıg�

A
D .g ıf /�

A
D id. Therefore, g�

A
is also a bijection.

Now, we take AD S . Since g�
S

is a bijection, there exists h 2 Hom.R;S/ such that

g�.idS /D h;

ie h ıg D idS . Thus

f D idS ıf D h ıg ıf D h ı idR D h:

Hence, f D h and the equations g ıf D idR and hıgD idS show that gD f �1.
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Suppose now that X and Y are affine schemes of finite type over a field k , ie schemes
associated with quotient rings RD kŒx1; : : : ;xm�=I and Y D kŒy1; : : : ;yn�=J. For a
commutative ring A the sets X.A/ of A–points of X and Y .A/ of Y are naturally
identified with the sets of homomorphisms Hom.R;A/ and Hom.S;A/.

Corollary A.2 If �W Y !X is a morphism which induces isomorphisms of functors
of A–points, ie bijections �AW Y .A/!X.A/ for all commutative rings A, then � is
an isomorphism of schemes.

Proof Consider the ring homomorphism f W R!S associated with � . The bijections
�A are identified with the bijections

f �A W Hom.S;A/! Hom.R;A/:

According to Lemma A.1, f is a ring isomorphism. Hence, � is an isomorphism of
schemes.
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Growth and order of automorphisms of free groups
and free Burnside groups

RÉMI COULON

ARNAUD HILION

We prove that an outer automorphism of the free group is exponentially growing if
and only if it induces an outer automorphism of infinite order of free Burnside groups
with sufficiently large odd exponent.

20E05, 20E36, 20F28, 20F50, 20F65; 68R15

1 Introduction

Let n be an integer. A group G has exponent n if for all g 2 G , gn D 1. In 1902,
W Burnside [7] asked the following question. Is a finitely generated group with finite
exponent necessarily finite? In order to study this question, the natural object to look
at is the free Burnside group of rank r and exponent n. It is defined to be quotient of
the free group Fr of rank r by the (normal) subgroup F n

r generated by the nth power
of all elements. We denote it by Br .n/. Every finitely generated group with finite
exponent is a quotient of a free Burnside group.

For a long time, hardly anything was known about free Burnside groups. It was only
proved that Br .n/ was finite for some small exponents: nD 2, Burnside [7]; nD 3,
Burnside [7] and Levi and van der Waerden [24]; n D 4, Sanov [35]; and n D 6,
Hall [21]. In 1968, P S Novikov and S I Adian [29; 30; 31] achieved a breakthrough by
providing the first examples of infinite Burnside groups. More precisely, they proved
the following theorem. Assume that r is at least 2 and n is an odd exponent larger than
or equal to 4381; then the free Burnside group of rank r and exponent n is infinite.

This result has been improved in many directions. Adian [1] decreased the bound on
the exponent. A Y Ol’shanskiı̆ [32] obtained a similar statement using a diagrammatical
approach of small cancellation theory. The case of even exponents has been solved by
S V Ivanov [22] and I G Lysënok [26]. More recently, T Delzant and M Gromov [17]
gave an alternative proof of the infiniteness of Burnside groups. To sharpen our
understanding of Burnside groups, we would like to study the symmetries of Br .n/.
This leads us to the outer automorphism group of Br .n/.
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The subgroup F n
r is characteristic. Hence the projection Fr�Br .n/ induces a natural

homomorphism Out.Fr /! Out.Br .n//. This map is neither one-to-one nor onto.
However, it provides numerous examples of automorphisms of Burnside groups. For
instance, the first author [13] proved that for sufficiently large odd exponents, the image
of Out.Fr / in Out.Br .n// contains free subgroups of arbitrary rank and free abelian
subgroups of rank

�
r
2

˘
. In this article, we are interested in the following question.

Question Which (outer) automorphism of Fr induces an (outer) automorphism of
infinite order of Br .n/?

Let G be a finitely generated group endowed with the word-metric. Given g 2G , the
length kgk of its conjugacy class is the length of the smallest word over the generators
which represents an element conjugated to g . Given an outer automorphism ˆ of G ,
one says that
� ˆ is exponentially growing if there exist g 2 G and � > 1 such that for all

integers k , kˆk.g/k> �k ,
� ˆ is polynomially growing if for every g 2G , there is a polynomial P such

that for all integers k , kˆk.g/k6 P .k/.

The word-metrics relative to two finite generating sets are bi-Lipschitz equivalent.
Therefore, the asymptotic behavior of kˆk.g/k does not depend on the choice of
generators. Automorphisms of free groups are either exponentially or polynomially
growing; see Bestvina and Handel [6] and Bestvina, Feighn and Handel [3]. See also
Levitt [25].

We study here the map Out.Fr /!Out.Br .n//. Our main theorem states that an auto-
morphism of Fr has exponential growth if and only if it induces an automorphism of in-
finite order of Br .n/ for sufficiently large exponents n. From the viewpoint of Out.Fr /,
this result provides an unexpected characterization of the growth of automorphisms of
free groups. At the level of Burnside groups, it completely describes the automorphisms
of Fr that induce automorphisms of infinite order of some Burnside groups.

Remark 1.1 Since Br .n/ is a torsion group, every inner automorphism of Br .n/ has
finite order. Therefore, an automorphism ' 2 Aut.Br .n// has finite order if and only
if its outer class does also. Hence, for our purpose, we can equivalently work with
Out.Br .n// or Aut.Br .n//.

The first examples of automorphisms of Br .n/ with infinite order were given by
E A Cherepanov [8]. In particular, he proved that the automorphism ' of F .a; b/

given by '.a/D ab and '.b/D a (also called the Fibonacci morphism) induces an
automorphism of infinite order of B2.n/ for all odd integers n> 665. In [13], the first
author provides a large class of automorphisms with the same property.
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Theorem 1.2 (Coulon [13, Theorem 1.3]) Let ' be a hyperbolic automorphism of Fr

(ie the semidirect product Fr Ì' Z is word-hyperbolic). There exists an integer n0

such that for all odd exponents n > n0 , the automorphism ' induces an element of
infinite order of Out.Br .n//.

The Fibonacci morphism ' used by Cherepanov is not hyperbolic. Indeed ' fixes the
commutator Œa; b�Daba�1b�1 . Hence the semidirect product F2Ì'Z contains a copy
of Z2 which is an obstruction to being hyperbolic. This observation has a more general
topological interpretation. Indeed, any automorphism ' of F2 can be represented by a
homeomorphism f of the punctured torus (if ' is the Fibonacci morphism, then f
is even pseudo-Anosov). This map f necessarily preserves the boundary component
of the torus — which corresponds to the commutator Œa; b�. Hence the mapping torus
induced by f contains an embedded torus. Its fundamental group F2Ì'Z is therefore
not hyperbolic.

Nevertheless, like hyperbolic automorphisms, the Fibonacci morphism is exponentially
growing. On the other hand, we also know that a polynomially growing automorphism
of Fr induces an automorphism of finite order of Br .n/ for every exponent n [13].
It suggests a link between the growth of an automorphism of Fr and its order as
automorphism of Br .n/. More precisely, we prove the following statement.

Theorem 1.3 Let ˆ 2 Out.Fr / be an outer automorphism of Fr . The following
assertions are equivalent:

(1) ˆ has exponential growth;

(2) there exists n 2 N such that ˆ induces an outer automorphism of Br .n/ of
infinite order;

(3) there exist �; n0 2N such that for all odd integers n> n0 , the automorphism ˆ

induces an outer automorphism of Br .�n/ of infinite order.

Remark In this article, we adopt the following convention. The notation N stands
for the set of nonnegative integers, whereas N� represents N n f0g.

In the statement of Theorem 1.3, (3) D) (2) is easy whereas (2) D) (1) follows from
the work of the first author [13, Theorem 1.6]. The new result of this article is the
implication (1) D) (3). Before sketching this proof, let us have a look at the arguments
used by Cherepanov [8]. The proof of the infiniteness of Br .n/ by Novikov and Adian
is based on the following important fact [1].

Proposition 1.4 Let w be a reduced word of Fr . If w does not contain a subword
of the form u16, then w induces a nontrivial element of Br .n/ for all odd exponents
n> 655.
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In particular, two distinct reduced words without an 8th power define distinct elements
of Br .n/. Compute now the orbit of b under the automorphism ' of F .a; b/ defined
by '.a/D ab and '.b/D a. It leads to the following sequence of words:

'1.b/D a; '5.b/D abaababa;

'2.b/D ab; '6.b/D abaababaabaab;

'3.b/D aba; '7.b/D abaababaabaababaababa;

'4.b/D abaab;
:::

None of these words contains a 4th power; see Karhumäki [23]. Therefore, they
induce pairwise distinct elements of Br .n/. In particular, ' seen as an automorphism
of Br .n/, has infinite order.

This argument can be generalized for any exponentially growing automorphism of F2

using an appropriate train track representative. However, it does not work anymore
in higher rank. Consider, for instance, the exponentially growing automorphism  

of F .a; b; c; d/ defined by  .a/D a,  .b/D ba,  .c/D cbcd and  .d/D c . As
previously, we compute the orbit of d under  :

 1.d/D c;

 2.d/D cbcd;

 3.d/D cbcdbacbcdc;

 4.d/D cbcdbacbcdcba2cbcdbacbcdccbcd;

 5.d/D cbcdbacbcdcba2cbcdbacbcdc2bcdba3cbcdbacbcdcba2 : : :

: : : cbcdbacbcdc2bcdcbcdbacbcdc:

This orbit is exponentially growing. Note that if  p.d/ contains a subword bam then
 pC1.d/ contains bamC1 . Hence as p tends to infinity,  p.d/ contains arbitrarily
large powers of a. This cannot be avoided by choosing the orbit of another element.
Proposition 1.4 is no more sufficient to tell us whether or not the  p.d/ are pairwise
distinct in Br .n/. Therefore, we need a more accurate criterion to distinguish two
different elements of Br .n/. This is done using elementary moves.

Let n 2N and � 2RC . An .n; �/–elementary move consists in replacing a reduced
word of the form pums 2 Fr by the reduced representative of pum�ns , provided m

is an integer larger than n
2
� � . The word u is called the support of the elementary

move. Note that an elementary move may increase the length of the word.
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c b c d b a c b c d c b a a c b c d b a c b c d c c b c d

Figure 1: The yellow-red decomposition of  4.d/

Theorem 1.5 (Coulon [12]) There exist integers n1 and � such that for all odd
exponents n> n1 , we have the following property. Let w and w0 be two reduced words
of Fr . If w and w0 define the same element of Br .n/, then there are two sequences of
.n; �/–elementary moves which respectively send w and w0 to the same word.

Remark As will be detailed in Section 6.1, this statement is a direct application of
the main theorem of Coulon [12]. Its proof relies on the geometric approach of the
Burnside problem developed by Delzant and Gromov [17]. Although Theorem 1.5 is
not explicitly mentioned in their articles, it should be possible to deduce an analogue
statement from the work of Adian [1] and Ol’shanskiı̆ [32]. For the convenience of the
reader who would be more familiar with Ol’shanskiı̆’s techniques, these analogies and
differences are discussed in Section 6.1 and in the Appendix.

Thanks to this tool, we can now explain using the example  how the implication
(1) D) (3) of Theorem 1.3 works. We need to understand the effect of elementary
moves on a word  p.d/. To that end, we assign colors to the letters. Let us say that
a and b are yellow letters (dotted lines on Figure 1) whereas c and d are red letters
(thick lines on the figure). The word  p.d/ is the concatenation of maximal yellow
and red subwords. To any word w over the alphabet fa; b; c; dg we associate its red
part Red.w/ obtained by removing from w all the yellow letters. We start with two
observations, one on the red words, the other on the yellow ones.

Red words We claim that the support of elementary moves that can be performed
on  p.d/ only contains yellow letters. Since the orbit of d grows exponentially, one
can prove that Red. p.d// does not contain large powers. More precisely, there is
an integer n2 such that for all p 2 N , the word Red. p.d// does not contain any
n th

2
power; see Proposition 5.11. This fact can be interpreted in terms of dynamical

properties of the attracting laminations associated to the automorphism  . Let n >

2n2C 2� . Assume now that the support u of an .n; �/–elementary move performed
on  p.d/ contains a red letter. By definition, there exists m > n2 such that um is
a subword of  p.d/. In particular, Red.u/m is a subword of Red. p.d//, which
contradicts the definition of n2 . It follows from this remark that the support of any
.n; �/–elementary move with n> 2n2C 2� only contains yellow letters.

Yellow words We now claim that elementary moves with yellow support cannot send
a maximal yellow subword of  p.d/ to the empty word. This fact is important for the
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Word before the elementary move:

Word after the elementary move:

w1 s un s�1 w2

w1 w2

Figure 2: An elementary move collapsing red letters

following reason. We explained that the support of an elementary move performed on
 p.d/ only contains yellow letters. Such a move could change the red part of  p.d/,
though. It could indeed completely collapse a maximal yellow subword and thus affect
the red letters; see Figure 2.

To prove this second claim, we look at the yellow subwords of  p.d/. Notice that
the image by  of a yellow word is still a yellow word. On the contrary, the image of
a red word may contain yellow subwords. Indeed b is a subword of  .c/. Actually,
the yellow subwords of  p.d/ can be sorted in two categories: the words that consist
in the single letter b which appear as a subword of  .c/ and the ones which arise
as the images by  of yellow subwords of  p�1.d/. In particular, all the maximal
yellow subwords of  p.d/ belong to the orbit under  of b . Consequently, there is
an integer n3 such that for every odd integer n> n3 , none of them becomes trivial in
Br .n/. In particular, no sequence of .n; �/–elementary moves sends a maximal yellow
subword of  p.d/ to the empty word.

We can now argue by contradiction. Let n>maxfn1; 2n2C 2�; n3g be an odd integer.
Assume that  induces an automorphism of finite order of Br .n/. In particular, there
exists p 2 N� such that  p.d/ and d have the same image in Br .n/. It follows
from Theorem 1.5 that a sequence of .n; �/–elementary moves sends  p.d/ to d .
We claim that performing .n; �/–elementary moves on  p.d/ does not change its red
part. Indeed, n> 2n2C2� ; thus these moves will only change the yellow subwords of
 p.d/. Moreover, since n> n3 , none of the yellow words can completely disappear.
In particular, the red word Red. p.d// associated to  p.d/ should be exactly d .
This is a contradiction.

The proof for an arbitrary exponentially growing automorphism of Fr follows the same
ideas. One has to replace the words in a; b; c; d by paths in an appropriate relative train
track. This leads to a technical difficulty, though. The red and yellow paths that we want
to consider do not necessarily represent elements of the free groups. This problem is han-
dled in Sections 4.2 and 5. There we use subtle aspects of the machinery of train-tracks
to show that the red words do not contain large powers (Proposition 5.11). In particular,
we need to pass to a finite-index subgroup of Fr . This operation actually ensures at
the same time that no yellow subpath will be removed by elementary moves (see the
prior discussion). Beside this fact, the main ingredients are the ones described above.
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2 Primitive matrices and substitutions

In this section, we summarize a few properties about primitive integer matrices and
substitutions on an alphabet that will be useful later.

2.1 Primitive matrices

A square matrix M of size ` whose entries are nonnegative integers is irreducible if
for each i; j 2 f1; : : : ; `g, there exists p 2N such that the .i; j /–entry of M p is not
zero. It is primitive when there exists p 2N such that any entry of M p is not zero.

The Perron–Frobenius theorem for an irreducible matrix M with nonnegative integer
entries states that there exists a unique dominant eigenvalue �> 1 of M associated to
an eigenvector with positive coordinates (see for instance Seneta’s book [36]). This � is
called the Perron–Frobenius-eigenvalue (or simply PF-eigenvalue) of M . In addition,
if �D 1, then M is a transitive permutation matrix.

2.2 Primitive substitutions

Let AD fa1; : : : ; a`g be a finite alphabet. The free monoid generated by A is denoted
by A�. We write 1 for the empty word, also called the trivial word. An infinite word
is an element of AN . Let m 2N�. A word w 2A� is an mth power if there exists a
nontrivial word u 2A� such that wD um . A nontrivial word w 2A� is primitive if it
is not an mth power with m at least 2 (ie if wD um , then uDw and mD 1). A word
w 2A� (or an infinite word w 2AN ) contains an mth power, if there exists a word
u 2 A� n f1g such that um is a subword of w . The shift is the map S W AN ! AN

which sends .wi/i2N to .wiC1/i2N . An infinite word w is said to be shift-periodic if
there exists q 2N� such that Sq.w/D w . If u stands for the word w0w1 � � �wq�1 ,
then we write w D u1 . Roughly speaking, it means that w is the infinite power of u.

An endomorphism of the free monoid A� is called a substitution defined on A. Such
a substitution � is indeed completely determined by the images �.a/ 2A� of all the
letters a 2 A. Moreover, it naturally extends to a map AN ! AN . The matrix M
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of a substitution � is a square matrix of size ` whose .i; j /–entry is the number of
occurrences of the letter ai in the word �.aj /. The substitution � is said to be primitive
when M is primitive.

Proposition 2.1 Let a be a letter of A. Let � be a primitive substitution on A such
that a is a prefix of �.a/.

(i) The sequence .�p.a// converges for the prefix topology to an infinite word
�1.a/ fixed by � .

(ii) If �1.a/ is not shift-periodic, then there exists an integer m> 2 such that for
all p 2N , the word �p.a/ does not contain an mth power.

(iii) If there exists a nontrivial primitive word u such that �1.a/D u1 , then there
exists an integer q > 2 such that �.u/D uq .

Remark 2.2 The case covered by Proposition 2.1(iii) is not vacuous. Consider for
instance the substitution defined on A D fa; b; cg by �.a/ D ab , �.b/ D c and
�.c/D abc . The transition matrix M of � and its square are

M D

0@1 0 1

1 0 1

0 1 1

1A ; M 2
D

0@1 1 2

1 1 2

1 1 2

1A :
In particular, � is primitive. However, .�n.a// converges to the infinite shift-periodic
word .abc/1 .

To prove Proposition 2.1, we use the following results due to B Mossé.

Proposition 2.3 (Mossé [27, Théorème 2.4]) Let � be a primitive substitution on a
finite alphabet A. Let u 2AN be an infinite word fixed by � . Then either

(i) u is shift-periodic, or

(ii) there exists an integer m> 2 such that u does not contain an mth power.

Lemma 2.4 (Mossé [27, Proposition 2.3]) Let u 2 A� be a primitive word. Let
m> 2 be an integer. If uwu is subword of um , then there exists an integer p > 0 such
that w D up .

Proof of Proposition 2.1 By assumption, a is a prefix of �.a/. Thus there exists
w 2A� such that �.a/D aw . Since � is primitive, w is not trivial. For every p 2N�,
it follows that �p.a/ is exactly the word

�p.a/D aw�.w/�2.w/ � � � �p�1.w/:
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In particular, �p.a/ is a prefix of �pC1.a/. Therefore, .�p.a// converges to an infinite
word �1.a/ fixed by � :

�1.a/D aw�.w/�2.w/ � � � �p.w/ � � � ;

which proves (i). Assume now that this infinite word is not shift-periodic. According
to Proposition 2.3, there exists m> 2 such that �1.a/ does not contain an mth power.
The same holds for the prefixes of �1.a/, in particular for all �p.a/, which proves (ii).

Finally, assume that �1.a/ D u1 , where u is a nontrivial primitive word. Since
�1.a/ is fixed by � , we obtain that u1 D �.u/1 . In particular, u is a prefix of
�1.u/. The substitution � being primitive, �.u/ is not shorter than u. We derive
that there exists w0 2A� such that �.u/D uw0 . Hence u1 D .uw0/

1 . Lemma 2.4
shows that there exists p 2N satisfying w0 D up . Thus �.u/D upC1 . Remember
that a is a prefix of u. Hence u can be written uD au0 . It follows that the length of
�.u/D aw�.u0/ is larger than that of u. Thus pC 1> 2, which proves (iii).

3 Train-tracks and automorphisms of free groups

In this section, we recollect some material about relative train-track maps. Details can
be found in [6], where they have been introduced by Bestvina and Handel. There exist
several improvements of relative train-track maps, and we will use here (very few of
the) improved relative train-track maps introduced by Bestvina, Feighn and Handel
in [4].

3.1 Paths and circuits

The graphs that we consider are metric graphs with oriented edges. By metric graph,
we mean a graph equipped with a path metric. If e is an edge of a graph G , then e�1

stands for the edge with the reverse orientation. The pair fe; e�1g is the unoriented
edge associated to e (or e�1 ). By abuse of notation, we will just say the unoriented
edge e for the pair fe; e�1g. Let ‚W E ! E be the map defined by ‚.e/ D e�1 .
Sometimes, it will be useful to consider a subset EE of E such that EE and ‚. EE/ give
rise to a partition of E (ie we choose a preferred oriented edge for each unoriented
edge). We call such a set EE a preferred set of oriented edges for G .

A path in a graph G is a continuous locally injective map ˛W I !G , where I D Œa; b�

is a segment of R. The initial point of ˛ is ˛.a/ and its terminal point is ˛.b/; both
˛.a/ and ˛.b/ are the endpoints of ˛ . We do not make any distinction between two
paths which differ by an orientation-preserving homeomorphism between their domains.
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A path is trivial if its domain is a point. When the endpoints of ˛ are vertices, ˛
can be viewed as a path of edges, ie a concatenation of edges ˛ D e1 � � � ep , where
the ei are edges of G such that the terminal vertex of ei is the initial vertex of eiC1

and ei ¤ e�1
iC1

. A circuit in G is a continuous locally injective map of an oriented
circle into G . We do not make any distinction between two circuits which differ by
an orientation-preserving homeomorphism between their domains. A circuit can be
viewed as a cyclically ordered sequence of edges without backtracking. If ˛ is a path
or a circuit, we denote by ˛�1 the path or circuit, with the reverse orientation.

A continuous map ˛W I !G , where I is segment in R, is homotopic relative to the
endpoints to a unique path denoted by Œ˛�. A nonhomotopically trivial continuous map
˛W S1!G is homotopic to a unique circuit denoted by Œ˛�.

3.2 Topological representatives

Marked graphs and topological representatives Let r > 2. We denote by Rr

the rose of rank r . It is a graph with one vertex ? and r unoriented edges. The
fundamental group �1.Rr ; ?/ is the free group Fr , with basis given by a preferred set
of oriented edges. A marked graph .G; �/ (often simply denoted by G ) is a connected
metric graph G having no vertex of valence 1, equipped with a homotopy equivalence
� W Rr !G . This homotopy equivalence � gives an identification of the fundamental
group �1.G; �.?// with Fr , well defined up to an inner automorphism. A topological
representative of an outer automorphism ˆ 2 Out.Fr / is a homotopy equivalence
f W G!G of a marked graph .G; �/ such that

� f takes vertices to vertices and edges to paths of edges,

� �� ıf ı � W Rr !Rr induces ˆ on Fr D �1.Rr ; ?/, where �� is a homotopy
inverse of � .

In particular, the restriction of f to an open edge is locally injective.

Induced map on paths and circuits If ˛ is a path or a circuit in G , one defines
f#.˛/ as being equal to Œf .˛/�.

Legal turns For any edge e of G , we let Df .e/ denote the first edge of f .e/. A
turn is a pair of edges .e1; e2/ of G which have the same initial vertex. The turn
.e1; e2/ is degenerate if e1 D e2 , and nondegenerate otherwise. A turn .e1; e2/ is
legal if ..Df /p.e1/; .Df /

p.e2// is nondegenerate for all p 2N ; otherwise, the turn
is illegal.

Geometry & Topology, Volume 21 (2017)



Growth and order of automorphisms of free groups and free Burnside groups 1979

3.3 Lifts

Let f W G!G be a topological representative of ˆ2Out.Fr /. Let zG be the universal
cover of G . The theory of covering spaces gives a one-to-one correspondence between
the set of the lifts of f to zG and the set of automorphisms in the outer class ˆ. More
precisely, a lift zf of f is in correspondence with the automorphism ' 2ˆ if

(1) zf ıg D '.g/ ı zf for all g 2 Fr ;

where the elements of Fr are viewed as deck transformations of zG .

3.4 Invariant filtrations and transition matrices

Let f W G!G be a topological representative of ˆ 2 Out.Fr /.

Filtration, strata and k–legal paths A filtration of a topological representative
f W G ! G is a strictly increasing sequence of f –invariant subgraphs ∅ D G0 �

G1 � � � � � Gm D G: The stratum of height k denoted by Hk is the closure of
Gk nGk�1 . The edges of height k are the edges of Hk . A path of height k is a path
in Gk which crosses Hk nontrivially; ie its intersection with Hk contains a nontrivial
path. A path (of edges) ˛ is k –legal if it is a path of Gk and for all subpaths e1e2

of ˛ with e1; e2 edges of height k , the turn .e�1
1
; e2/ is legal.

Transition matrices A transition matrix Mk is associated to the stratum Hk . We
choose a preferred set of oriented edges EE D fe1; : : : ; e`g for Hk (where ` is the
number of unoriented edges of Hk ). The transition matrix Mk of Hk is a square
matrix of size ` whose .i; j /–entry is the number of times the edge ei or the reverse
edge e�1

i occur in the path f .ej /.

The stratum Hk is irreducible when its transition matrix Mk is irreducible. Let �k be
the PF-eigenvalue of Mk ; see Section 2.1. If �k > 1, then Hk is called an exponential
stratum. If Mk is primitive, Hk is said to be aperiodic. When the stratum Hk is
irreducible and �k D 1, Hk is called a nonexponential stratum. When Mk is the zero
matrix, the stratum Hk is called a zero stratum.

Remark 3.1 Given a topological representative f W G!G and an invariant filtration
for f , up to refining the filtration, one can always suppose that any stratum is of one of
three possible types: exponential, nonexponential or zero. Moreover, up to replacing ˆ
by a positive power of ˆ, one can assume that ˆ admits a topological representative
f WG!G with the following properties [4]:

� each exponential stratum is aperiodic,
� each nonexponential stratum Hk consists of a single edge e , and that f .e/D eu

where u is loop in Gk�1 based at the endpoint of e .
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3.5 A quick review on relative train-track maps

Relative train-track maps A topological representative f W G!G of an outer auto-
morphism ˆ 2 Out.Fr / with a filtration ∅DG0 �G1 � � � � �Gm DG is a relative
train-track map (RTT) if for every exponential stratum Hk ,

(RTT-i) Df maps the set of edges of height k to itself (in particular, each turn
consisting of an edge of height k and one of height less than k is legal);

(RTT-ii) if ˛ is a nontrivial path with endpoints in Hk \ Gk�1 , then f#.˛/ is a
nontrivial path with endpoints in Hk \Gk�1 ;

(RTT-iii) for each k –legal path ˛ , the path f#.˛/ is k –legal.

In particular, an edge e of an exponential stratum Hk is k –legal. Theorem 5.12 in [6]
ensures that any outer automorphism ˆ of Fr can be represented by an RTT f . By
replacing ˆ by a positive power of ˆ if necessary, one can suppose that ˆ satisfies
Remark 3.1. In addition, we can ask that all the images of vertices are fixed by f (see
Theorem 5.1.5 in [4]). We sum up these facts in the following theorem.

Theorem 3.2 (Bestvina and Handel [6], Bestvina, Feighn and Handel [4]) Let ˆ
be an outer automorphism of Fr . There exists p > 1 such that ˆp has a topological
representative f W G!G which is an RTT, with the properties that

� for all vertices v of G , f .v/ is fixed by f ,
� every exponential stratum of f is aperiodic,
� each nonexponential stratum Hk consists of a single edge e , and that f .e/D eu,

where u is loop in Gk�1 based at the endpoint of e .

Splittings Let f W G ! G be a topological representative. A splitting of a path or
a circuit ˛ is a decomposition of ˛ as a concatenation of subpaths ˛ D ˛1˛2 � � �˛q

(with q > 1 if ˛ is a circuit, and q > 2 if ˛ is a path) such that for all p > 0,
f

p
# .˛/D f

p
# .˛1/f

p
# .˛2/ � � � f

p
# .˛q/. In that case, one writes ˛ D ˛1 �˛2 � � �˛q , and

˛1; ˛2; : : : ; ˛q are called the terms of the splitting. A basic, but important, property of
RTT is given by the following lemma.

Lemma 3.3 (Bestvina and Handel [6, Lemma 5.8]) Let f W G! G be an RTT. If
Hk is an exponential stratum, and if ˛ is a k –legal path, then the decomposition of ˛
as maximal subpaths in Hk or in Gk�1 is a splitting

˛ D ˛1 �ˇ1 �˛2 � � �˛q�1 �ˇq�1 �˛q;

where the ˛i are paths in Hk and the ˇi are paths in Gk�1 , all nontrivial (except
possibly ˛1 and ˛q ).
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3.6 Growth of automorphisms of free groups

As explained in [3, page 219], the growth of an outer automorphism ˆ 2 Out.Fr / can
be detected on an RTT representative [6]. For our purpose, we will use the following
observations.

Remark 3.4 [6; 3] Let ˆ 2 Out.Fr /.

(1) ˆ has either polynomial growth or exponential growth.

(2) Moreover, ˆ has exponential growth if and only if one (hence any) RTT
f W G!G representing ˆ has at least one exponential stratum.

A detailed discussion about the growth of a conjugacy class under iteration of an outer
automorphism can be found in [25].

4 Reductions of Theorem 1.3

In this section, we explain how to reduce our main theorem to an easier statement.
First, note that given an outer automorphism ˆ of the free group, ˆ has exponential
(polynomial) growth if and only if for every p 2N�, so does ˆp . In particular, to prove
Theorem 1.3, ˆ can be replaced by some positive power of ˆ. It will be advantageous
to do so, since it allows us to use relative train-track maps with better properties; see
Theorem 3.2. We now discuss three reductions.

(1) The first focuses on polynomially growing automorphisms of Fr ; see Section 4.1.
We explain that such an automorphism always induces a finite-order automorphism of
Burnside groups. Thus it is sufficient to look at exponentially growing automorphisms.

(2) The second reduction is rather technical. Let f WG ! G be an RTT of an
exponentially growing automorphism ˆ of Fr and H an exponential stratum. The
image under f of an edge e in H consists of edges of H and paths contained in
lower strata. Later we will need that for every p 2 N , maximal subpaths of f p

]
.e/

contained in the lower strata are not loops. In Section 4.2, we show that up to passing
to a finite-index subgroup, we can always assume that our RTT satisfies this property.

(3) The RTT of an exponentially growing automorphism may contain several expo-
nential strata. In Section 4.3, we prove that it is sufficient to consider automorphisms
whose RTT has only one exponential stratum, which is also the top one.

4.1 Polynomially growing automorphisms

Arguing by induction on the rank r of Fr , the first author handled the case of polyno-
mially growing automorphisms.

Geometry & Topology, Volume 21 (2017)



1982 Rémi Coulon and Arnaud Hilion

Proposition 4.1 (Coulon [13, Theorem 1.6]) If ˆ 2 Out.Fr / is polynomially grow-
ing, then ˆ induces an outer automorphism of finite order of Br .n/ for all positive
integers n.

Remark 4.2 The same proof actually gives a quantitative bound for the order of ˆ
in Out.Br .n//. If ˆ is an outer polynomially growing automorphism of Fr , then
ˆp.r;n/ induces a trivial outer automorphism of Br .n/, where

p.r; n/D n2.2r�1�1/:

Example 4.3 A particular case of polynomially growing automorphisms is given by
the automorphisms of F2 induced by a Dehn-twist on a punctured torus. For instance,
the automorphism ' defined by '.a/ D a and '.b/ D ba. Here 'n is trivial in
Aut.Br .n//.

In view of Remark 3.4 (1) and Proposition 4.1, we see that Theorem 1.3 is a consequence
of the following proposition.

Proposition 4.4 If ˆ 2 Out.Fr / has exponential growth, then there exist �; n0 2N
such that for all odd integers n> n0 , the automorphism ˆ induces an outer automor-
phism of Br .�n/ of infinite order.

In the next section, we discuss a second reduction and prove that Proposition 4.4 is a
consequence of Proposition 4.8.

4.2 Passing to a finite-index subgroup

Let ˆ be an exponentially growing outer automorphism of Fr . By replacing ˆ

by a power of ˆ if necessary, we can assume that ˆ is represented by an RTT
f W G!G with a filtration ∅DG0 �G1 � � � � �Gm DG , satisfying the properties
of Theorem 3.2. We denote by Hk the stratum of height k . Let e be an edge of an
exponential stratum Hk . According to Lemma 3.3, f .e/ can be split as follows:

f .e/D ˛1 �ˇ1 �˛2 � � �˛q�1 �ˇq�1 �˛q;

where the ˛i are nontrivial paths contained in Hk and the ˇi are nontrivial paths
contained in Gk�1 . We denote by Pe the set fˇ1; : : : ; ˇq�1g. Let P be the union
of Pe for all edges e belonging to an exponential stratum. Note that P is finite.

Let p 2 N and e be an edge of the exponential stratum Hk . Recall that the image
under f of an edge of Hk starts and ends by an edge of Hk (property (RTT-i) of
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relative train-track maps). Thus if ˇ is a maximal subpath of f p
# .e/ contained in Gk�1 ,

then it is the image by some (possibly trivial) power of f# of a path in P . Moreover,
we assumed that the image by f of any vertex of G is fixed by f . Hence if ˇ is also
a loop, there exists a path ˇ0 in P [ f#.P/ which is a loop such that ˇ is the image
of ˇ0 by a (possibly trivial) power of f# . Since Fr is residually finite, there exists a
finite-index normal subgroup H of Fr with the following property. For every path
ˇ 2 P [f#.P/, if ˇ is a loop, then the conjugacy class of Fr that it represents does
not intersect H .

Recall that zG stands for the universal cover of G . Let us fix a base point x0 in G .
The fundamental group Fr D �1.G;x0/ can therefore be identified with the deck
transformation group acting on the left on zG . We fix a lift zf W zG ! zG of f . It
determines an automorphism ' in the outer class of ˆ such that for every g 2 Fr ,

(2) '.g/ ı zf D zf ıg:

There are only finitely many subgroups of Fr of a given index. Thus there exists an
integer q such that 'q.H /DH . Consequently, the intersection LD

T
p2Z '

p.H /

is also a normal finite-index subgroup of Fr . By definition, L is invariant by both '
and '�1 . It directly follows that ' induces an automorphism of L.

We now denote by � the index of L in Fr . Let yG be the space yG D Ln zG and
�W yG!G the natural projection induced by zG!G . The group Fr still acts on the
left on yG and L is the kernel of this action. The map zf induces a map yf W yG! yG
such that � ı yf D f ı � . Moreover, according to (2), for every g 2 Fr ,

(3) '.g/ ı yf D yf ıg:

Lemma 4.5 The map yf W yG! yG admits a filtration which makes yf an RTT repre-
senting the outer class of ' restricted to L. Moreover, for every exponential stratum yH

of yG , there exists an exponential stratum Hk of G such that

(1) yH is contained in ��1.Hk/, and

(2) yf sends yH into yH [ ��1.Gk�1/.

Proof We observe that, by construction, yf W yG! yG is a topological representative of '
restricted to L, and ∅D ��1.G0/� �

�1.G1/� � � � � �
�1.Gm/D yG is an invariant

filtration for yf . We are going to define a finer filtration . yGk;j / where the pairs .k; j /
are endowed with the lexicographical order such that for every k 2 f1; : : : ;mg, we have

��1.Gk�1/� yGk;1 �
yGk;2 � � � � �

yGk;s D �
�1.Gk/:
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Let k 2 f0; : : : ;mg. We focus on the stratum Hk of height k of G . We distinguish
three cases.

(1) If Hk is a zero stratum, we just put yGk;1 D �
�1.Gk/. Since � ı yf D f ı � , we

have yf . yGk;1/� �
�1.Gk�1/. Therefore, the associated stratum is a zero stratum.

(2) If Hk is a nonexponential stratum, it consists of a single edge e with f .e/D eu

where u is a loop in Gk�1 . Then ��1.e/ is a collection of � edges: ye1; : : : ; ye�
(recall that � is the index of L in Fr ). Since � ı yf D f ı � , the map yf induces a
permutation � of f1; : : : ; �g with the following property. For every j 2 f1; : : : ; �g, we
have yf .yej /D ye�.j/yuj , where yuj is a path in ��1.Gk�1/. We let yGk;1 D �

�1.Gk/.
Note that yf leaves yGk;1 invariant. The corresponding stratum is the closure of
��1.Gk/ n �

�1.Gk�1/. Its transition matrix is just the permutation matrix associated
to � . In particular, it is a nonexponential stratum.

(3) Assume now that Hk is an exponential stratum. We define a binary relation on
��1.Hk/. Given two edges ye1 and ye2 , we say that ye1 � ye2 if there exists p 2N such
that ye1 or ye�1

1
is an edge of yf p.ye2/. This relation is reflexive and transitive. We claim

that it is an equivalence relation. Let ye1 and ye2 be two edges of ��1.Hk/ such that
ye1�ye2 . We want to prove that ye2�ye1 . By definition of our relation, there exists p2N
such that ye1 or ye�1

1
is an edge of yf p.ye2/. For simplicity, we assume that ye1 belongs to

yf p.ye2/. The other case works in the same way. We write e1 D �.ye1/ and e2 D �.ye2/

for their respective images in G . Since the stratum Hk is aperiodic, there exists q 2N
such that e2 or e�1

2
is an edge of f q.e1/. For simplicity, we assume that e2 is an edge

f q.e1/. Since � ı yf D f ı � , there exists a preimage of e2 in yG which is an edge
of yf q.ye1/. Thus there exists u 2 Fr such that u � ye2 is an edge of yf q.ye1/. We now
prove by induction that u` � ye2 is an edge of yf `.pCq/Cq.ye1/ for every ` 2N , where

u` D '
`.pCq/.u/ � � �'pCq.u/u:

If `D 0, then the statement follows from the definition of u. Assume that it is true
for ` 2 N ; ie u` � ye2 is an edge of yf `.pCq/Cq.ye1/. Using (3) we get that 'p.u`/ �
yf p.ye2/D yf

p.u`ye2/ is a subpath of yf .`C1/.pCq/.ye1/. In particular, 'p.u`/ � ye1 lies
in yf .`C1/.pCq/.ye1/. With a similar argument, we get that 'pCq.u`/u � ye2 lies in
yf .`C1/.pCq/Cq.ye1/. However,

'pCq.u`/uD '
.`C1/.pCq/.u/ � � �'pCq.u/uD u`C1:

Thus the statement holds for `C 1, which completes the proof of the induction.

Since L has finite index in Fr , there exist ` 2N and t 2N� such that u` and u`Ct

are in the same L–coset, ie u`Ctu
�1
`
2L. However,

u`Ctu
�1
` D '

.`Ct/.pCq/.u/ � � �'.`C1/.pCq/.u/D '.`C1/.pCq/.ut�1/:
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Since L is '–invariant, we derive that ut�1 belongs to L. Recall that L is the kernel
of the action of Fr on yG ; hence ut�1 � ye2D ye2 . On the other hand, ut�1 � ye2 is an edge
of yf .t�1/.pCq/Cq.ye1/. Consequently, ye2�ye1 , which completes the proof of our claim.

We denote by yHk;1; : : : ; yHk;s the equivalence classes for the relation �. For every j 2

f1; : : : ; sg, we put yGk;jD
yHk;1[� � �[

yHk;j[�
�1.Gk�1/. By construction, the filtration

��1.Gk�1/� yGk;1 � � � � �
yGk;s D �

�1.Gk/

is yf –invariant. Moreover, the strata yHk;1; : : : ; yHk;s associated to this filtration are
irreducible. We claim that they are exponential. Let j 2 f1; : : : ; sg. Let Mk;j be the
transition matrix of yHk;j . It is known that if the PF-eigenvalue of Mk;j is 1, then Mk;j

is a permutation matrix. Thus there exists an edge ye2 yHk;j and a positive integer p such
that ye is the only edge of ��1.Hk/ in yf p.ye/. In particular, if e stands for eD�.ye/, we
get that e is the only edge of Hk in f p.e/. This contradicts the fact that H is aperiodic.
Hence the PF-eigenvalue of Mk;j is larger than 1, and the stratum yHk;j is exponential.

Finally, recall that f satisfies properties (RTT-i)–(RTT-iii). It follows from �ı yf Df ı�

that yf also satisfies these properties.

Lemma 4.6 For every edge ye in an exponential stratum yH of yG , for every p 2 N ,
every maximal subpath of yf p

# .ye/ that does not cross yH is not a loop.

Proof Let ye be an edge of an exponential stratum yH of yG . Let p 2 N . Let y̌ be
a maximal subpath of yf p

# .ye/ that does not cross yH . By Lemma 4.5, there exists
k 2 f1; : : : ;mg such that Hk is an exponential stratum of G , yH is contained in
��1.Hk/ and yf . yH / is a subset of yH [ ��1.Gk�1/. We denote by e the image of ye
by � . It belongs to Hk . Since � is a continuous locally injective map, yf p

# .ye/ is a lift
of f p

# .e/. It follows that ˇD �. y̌/ is a maximal subpath of f p
# .e/ contained in Gk�1 .

If ˇ is not a loop, neither is y̌. Therefore, we can assume that ˇ is a loop in G . By
construction of P , there exists a loop ˇ0 in P [f#.P/ such that ˇ is the image of ˇ0

by some power of f# . However, by definition, the conjugacy class of Fr represented
by ˇ0 does not intersect L�H . Since L is '–invariant, neither does the conjugacy
class of Fr represented by ˇ . Thus its lift y̌ in yG cannot be a loop.

Lemma 4.7 Let n be an integer. Recall that � is the index of L in Fr . If ˆ induces
an outer automorphism of finite order of Br .�n/, then its restriction to L induces an
outer automorphism of finite order of L=Ln .

Proof According to Remark 1.1, the image of ' in Aut.Br .�n// has finite order.
Hence there exists p 2N such that for every g 2 Fr , the element 'p.g/g�1 belongs
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to F �n
r . However, L has index � in Fr . It follows that g� lies in L for every g 2Fr .

In particular, F �n
r is a subset of Ln . Consequently, 'p.g/g�1 belongs to Ln for

every g 2L. It exactly means that, as an automorphism of L=Ln , 'p is trivial. Hence
the restriction of ˆ to L induces an automorphism of finite order of L=Ln .

Proposition 4.4 becomes a consequence of the following result.

Proposition 4.8 Let ˆ 2 Out.Fr / be an outer automorphism represented by an RTT
f W G ! G . Assume that for every edge e in an exponential stratum H , for every
p 2 N , every maximal subpath of f p

# .e/ that does not cross H is not a loop. Then
there exists n0 2N such that for all odd integers n> n0 , the automorphism ˆ induces
an outer automorphism of Br .n/ of infinite order.

In the next section, we discuss a third reduction and prove that Proposition 4.8 is a
consequence of Proposition 4.11.

4.3 Automorphisms with only one exponential stratum

The following lemma is proved by the first author in [13] using the structure of free
products.

Lemma 4.9 (Coulon [13, Lemma 1.9]) Let n be an integer. Let ' be an auto-
morphism of Fr which stabilizes a free factor H . We assume that ' induces an
automorphism of finite order of Br .n/. Then, the restriction of ' to H also induces
an automorphism of finite order of H =H n .

Let ˆ2Out.Fr / be an exponentially growing outer automorphism, and let f W G!G

be an RTT representing ˆ with a filtration ∅ D G0 � G1 � � � � � Gm D G . By
Remark 3.4 (2), f has at least one exponential stratum. We assume that f satisfies
the additional assumption of Proposition 4.8; ie for every edge e in an exponential
stratum H , for every p 2N , every maximal subpath of f p

# .e/ that does not cross H

is not a loop. By replacing ˆ by a power of ˆ if necessary, we can assume that the
exponential strata of the RTT are aperiodic. Note that this operation does not affect the
graph G . However, one might need to refine the filtration of the RTT. In particular, the
RTT does not necessarily satisfy the additional assumption of Proposition 4.8 anymore.
Nevertheless, for every edge e in the lowest exponential stratum Hk , for every p 2N ,
every maximal subpath of f p

# .e/ that does not cross Hk is not a loop.

Let G0 be the connected component of the graph Gk which contains Hk . We as-
sert that G0 is f –invariant, ie f .G0/ � G0 . Indeed, G0 \ f .G0/ is nonempty (it
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contains Hk ) and f .G0/ is connected. Let H be the free factor of Fr defined by
G0 � G , and let ‰ 2 Out.H / be the outer automorphism induced by the restriction
f 0 D f jG0 W G

0!G0 . We note that f jG0 W G0!G0 is an RTT representing ‰ , which
has exactly one exponential stratum, namely Hk , which is aperiodic and the top stratum
of f 0 . In particular, ‰ has exponential growth.

Lemma 4.10 If ‰ induces an outer automorphism of H =H n of infinite order, then
ˆ also induces an outer automorphism of Br .n/ of infinite order.

Proof There exists an automorphism ' in the class of ˆ which stabilizes H . Assume
that ˆ induces an outer automorphism of Br .n/ of finite order. In particular, the image
of ' in Aut.Br .n// has finite order; see Remark 1.1. It follows from the previous
lemma that the restriction to H of ' (and thus ‰ ) induces an automorphism (outer
automorphism) of finite order of H =H n .

It follows from our discussion that Proposition 4.8 is a consequence of the following
statement.

Proposition 4.11 Let ˆ 2Out.Fr / be an outer automorphism represented by an RTT
f W G! G with exactly one exponential stratum H , which is aperiodic and the top
stratum of f . Assume that for every edge e in H , for every p 2 N , every maximal
subpath of f p

# .e/ that does not cross H is not a loop. Then there exists n0 2N such
that for all odd integers n> n0 , the automorphism ˆ induces an outer automorphism
of Br .n/ of infinite order.

We have seen that Theorem 1.3 can be deduced from Proposition 4.11. The latter will
be proved in Sections 5 and 6.

5 Tracking powers

The next two sections are dedicated to the proof of Proposition 4.11. As we explained
in the introduction, the goal is to understand to what extent a periodic path can appear
in the orbit of a circuit under the iteration of the train-track map. This is the purpose of
this section.

The general strategy is the following. We consider an outer automorphism ˆ represented
by an RTT f WG!G with a single exponential stratum H which is aperiodic. Then,
we fix an edge e� in H . For every p 2N , we look at the path obtained by removing
from f

p
# .e�/ all the edges which are not in H . This sequence can be interpreted as the

orbit of e� under a substitution over the set of oriented edges of H ; see Lemma 5.1. It
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follows from the aperiodicity of H that this substitution is primitive. Therefore, we
would like to apply Proposition 2.1. We need to rule out first the case of an infinite
shift-periodic word, though (Proposition 2.1 (ii)). The dynamic of the substitution is
not sufficient to conclude here. Remark 2.2 provides indeed an example of a primitive
substitution � with an infinite shift-periodic fixed point. However, the particularity
of this example is that � does not represent an automorphism of F3 . Our proof (see
Proposition 5.2) strongly uses the fact that the substitution we are looking at comes
from an automorphism of the free group.

From now on, ˆ denotes an outer automorphism of Fr which can be represented by an
RTT f W G!G with exactly one exponential stratum H . Moreover, H is aperiodic
and the top stratum of f . We denote by E the set of all the oriented edges of H . In
addition, we assume that for every e 2 E , for every p 2N , every maximal subpath of
f

p
# .e/ that does not cross H is not a loop.

By replacing ˆ by a power of ˆ if necessary, we can assume that f .v/ is fixed by f
for every vertex v of G , and that there exists e� 2 E such that Df .e�/D e� . Note that
this operation does not affect the graph G or the exponential stratum. In particular,
H is still the only exponential stratum of f . It is aperiodic and the top stratum. By
choice of e� , we have that f fixes the initial vertex x0 of e� . Thus it naturally defines
an automorphism ' 2 Aut.�1.G;x0// in the outer class ˆ: if g is an element of
�1.G;x0/ represented by a loop ˛ based at x0 , then '.g/ is the homotopy class
of f .˛/ (relative to x0 ).

5.1 The yellow-red decomposition

We refer to the edges of H as red edges and to the edges of G nH as yellow edges.
Recall that zG denotes the universal cover of G . An edge of zG can be labeled by the
edge of G of which it is the lift. In particular, its color is given by the color of its label.

A k –legal path of G (where k is the height of H ) will be call a red-legal path. A path
(in G or in zG ) is a yellow path if it only crosses yellow edges. Red paths are defined
in the same way. Any path ˛ (in G or in zG ) can be decomposed as a concatenation of
maximal yellow and red subpaths: ˛ D ˛1 � � �˛q , where ˛i (16 i 6 q ) is a nontrivial
subpath of ˛ which is either yellow or red, and ˛i and ˛iC1 have not the same color for
all i 2 f1; : : : ; q� 1g. According to Lemma 3.3, this decomposition is a splitting of ˛ .

The red word associated to a path We associate to any path of edges ˛ in G or zG
a word Red.˛/ over the alphabet E . As a path of edges, ˛ is labeled by a word over
the alphabet that consists of all oriented edges of G . The word Red.˛/ is obtained
from this word by removing all the letters corresponding to yellow edges. We stress on
the fact that if ˛ is a reduced path, then Red.˛/ is not, in general, a reduced word.
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5.2 The induced substitution on red edges

Definition and first properties We associate to the RTT f a substitution � on E
called the induced substitution. It is defined as

�.e/D Red.f .e// for every e 2 E :

Lemma 5.1 Let ˛ be a red-legal path in G . For all p 2N , we have

Red.f p
# .˛//D �

p.Red.˛//:

Proof We consider a decomposition of ˛ as ˛D ˛1e1˛2e2 � � �˛qeq˛qC1 where each
ei 2 E is a red edge, and each ˛i is a (possibly trivial) yellow subpath. In particular,
Red.˛/D e1e2 � � � eq . The path ˛ being red-legal, Lemma 3.3 leads to

f#.˛/D f#.˛1e1˛2e2 � � �˛qeq˛qC1/

D f#.˛1/f .e1/f#.˛2/f .e2/ � � � f#.˛q/f .eq/f#.˛qC1/:

However, f sends yellow edges to yellow paths. We deduce that

Red.f#.˛//D Red.f .e1//Red.f .e2// � � �Red.f .eq//

D �.e1/�.e2/ � � � �.eq/D �.e1e2 � � � eq/D �.Red.˛//:

The image by f# of a red-legal path is still a red-legal path. Therefore, for all p 2N ,

Red.f pC1
# .˛//D Red.f#.f

p
# .˛///D �.Red.f p

# .˛///:

The result follows by induction on p .

Primitivity of the induced substitution The material of this paragraph is widely
inspired by the work of P Arnoux et al [2, Section 3]. Recall that ‚W E ! E is the
map which sends e to e�1 . We extend ‚ to the free monoid E� in the following way.
Let w be an element of E�. By definition, it can be written w D e1e2 � � � eq where
ei 2 E . We put ‚.w/D e�1

q � � � e
�1
2

e�1
1

. It defines an involution of E� called the flip
map. Moreover, we observe that � ı‚.e/ D ‚ ı �.e/ for all edges e 2 E . Thus �
and ‚ commute on E�. The substitution � is said to be orientable with respect to a
subset EE of E if

(i) EE and ‚. EE/ make a partition of E ,

(ii) �. EE/� EE�.

Note that (i) just says that EE is a preferred set of oriented edges for H . In that case, �
induces a substitution of EE�, that we still denote by � .

By assumption, the red stratum H of f is aperiodic. In other words, its transition
matrix M is primitive. Applying [2, Proposition 3.7], we know that either
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� � is not orientable, and then � is a primitive substitution on the alphabet E , or

� there exists a subset EE of E such that � is orientable with respect to EE , and then
� induces a primitive substitution on the alphabet EE .

Thus in both cases, there exists a subset E� of E containing e� such that �.E�/� E�
�

,
and the substitution � W E�

�
! E�

�
is primitive.

5.3 A red word without large powers

The infinite red word �1.e�/ Recall that e� is a red edge of E that has been chosen
in such a way that Df .e�/D e� . Because the red stratum is aperiodic, f .e�/D e� �˛

where Red.˛/ is nontrivial. In particular, e� is a prefix of �.e�/. According to
Proposition 2.1 the sequence .�p.e�// converges to an infinite word �1.e�/ of EN

�
.

Note that f .e�/D e� �˛ is a splitting. Hence for every p 2N ,

f
p

# .e�/D e� �˛ �f#.˛/ � � � f
p�1

# .˛/:

Hence .f p
# .e�// also converges to an infinite path

f1# .e�/D e� �˛ �f#.˛/ � � � f
p

# .˛/ � � � :

Proposition 5.2 The infinite word �1.e�/ is not shift periodic.

This proof combines a dynamical argument (� is a primitive substitution) and a group
theoretical one (' is an automorphism of Fr ). Let us sketch first the main steps. We
assume that the proposition is false. This means that if we restrict our attention to the
red edges, the path f1# .e�/ is periodic. We construct from G a colored graph � on
which f1# .e�/ coils up. More precisely, its fundamental group H can be decomposed
as a free product H DL� hhi, where L is generated by conjugates of yellow loops,
and h is represented by a loop y with the following property. If we collapse all the
yellow edges of � , we obtain a simple (red) loop which is exactly the image of y by
the same operation. Moreover, this red loop is the period of the red word associated
to f1# .e�/; see Figure 3. We show that the RTT f induces a homotopy equivalence
yf W�! � that catches two conflicting features of ˆ:

(1) Since the stratum H is exponential, yf should increase the length of the red
word associated to y ; see Proposition 5.7.

(2) The yellow components of G are invariant under f . It follows that the automor-
phism of H induced by yf sends h to gh˙1 , where g belongs to the normal
subgroup generated by L.
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yy1 yy2
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y̨2
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y̨`�1

y̨`

Figure 3: The graph �

The key fact is that these two properties can be observed in the abelianization of H ,
which leads to a contradiction.

Proof of Proposition 5.2 Assume that �1.e�/ is shift-periodic. Recall that � is
primitive as a substitution of E�

�
. Proposition 2.1 implies that there exist an integer

q > 2 and a primitive word u D e1e2 � � � e` of E�
�

such that �1.e�/ D u1 and
�.u/ D uq . Notice that e1 D e� . This means, in particular, that the infinite path
f1# .e�/ is obtained as a concatenation

f1# .e�/D 0 � 1 � 2 � � � k � � �

of loops
k D e1 �˛k`C1 � e2 �˛k`C2 � � � e` �˛.kC1/`;
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where the ˛i are (possibly trivial) yellow paths. Moreover, if ˛i is nontrivial, then
it is a maximal yellow subpath of the image by a power of f# of a red edge. By
assumption, none of them is a loop. Recall that x0 is the initial point of e1 D e� . For
every i 2 f1; : : : ; `g, we have that yi and xi respectively stand for the initial and the
terminal points of ˛i . In particular, x0 D x` . We now focus on the path  D 0 :

 D e1 �˛1 � e2 �˛2 � � � e` �˛`:

Lemma 5.3 The path f#. / is exactly 0 � � � q�1 . In particular, it is an initial subpath
of the infinite path f1# .e�/.

Proof By construction, there exists p 2N such that 0 �1 is a proper initial subpath
of f p

# .e�/. Moreover, the terminal point of 01 , which is also the initial vertex
of the red edge e1 D e� , is a splitting point of the yellow-red splitting of f p

# .e�/.
Thus f#.01/D f#.0/ �f#.1/ is an initial subpath of f pC1

# .e�/, hence of f1# .e�/.
However, by Lemma 5.1,

Red.f#.0//D �.Red.0//D �.u/D uq
D Red.0 � � � q�1/:

It follows that there exists a subpath ˛0 of ˛q` such that

f#.0/D Œ0 � � � q�2�Œe1˛.q�1/`C1e2˛.q�1/`C2 � � � e`˛
0�:

On the other hand, 1 and thus f#.1/ starts with the red edge e1D e� . Since f#.0/ �

f#.1/ is an initial subpath of f pC1
# .e�/, the path ˛0 is necessarily the whole ˛q` .

Consequently, f#. /D 0 � � � q�1 .

The graph � and the loop y Let i 2 f1; : : : ; `g. We define yGi to be a copy of the
largest connected yellow subgraph of G containing yi . We denote by y̨i (respectively
yyi and yxi ) the path ˛i (respectively the vertices yi and xi ) viewed as a path of yGi

(respectively as vertices of yGi ).

We now construct a graph � as follows. We start with the disjoint union of the yGi for
i 2 f1; : : : ; `g. Then for every i 2 f1; : : : ; `g, we add an oriented edge yei whose initial
and terminal points are respectively yxi�1 and yyi . The reverse edge ye�1

i is attached
accordingly. In this process, we think about the indices i as elements of Z=`Z. In
particular, yx0 should be understood as the point yx` of yG` . We denote by � the graph
obtained in this way; see Figure 3. Let � be the graph morphism �W �!G such that
for every i 2 f1; : : : ; `g, we have that �.yei/D ei and the restriction of � to yGi is the
natural embedding yGi ,! G . We color the edges of � by the color of their images
under � . In other words, the edges yei are red, whereas the edges of the subgraphs yGi

are yellow. By construction, the loop y defined below is a lift of  in � :

y D ye1 y̨1ye2 y̨2 � � � ye` y̨`:
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The subgroup H We denote by H the fundamental group �1.�; yx0/. Let us choose
a maximal tree Ti in each yGi . The union T defined below is a maximal tree of � :

T D

�[̀
iD1

Ti

�
[

� `�1[
iD1

yei

�
:

For every edge e of � not in T , we write ˇe for the path contained in T starting at yx0

and ending at the initial vertex of e . We define he as the element of H represented
by ˇeeˇ�1

e�1 . Let i 2 f1; : : : ; `g. For each unoriented edge of yGi nTi , we chose one
of the two corresponding oriented edges. We denote then by Fi the preferred set of
oriented edges obtained in this way. We write F for the union

F D
[̀
iD1

Fi :

Lemma 5.4 Let h be the element of H represented by y . The family B obtained by
taking the union of .he/e2F and fhg is a free basis of H .

Proof It follows from the definition of F that the family .he/e2F[fye`g
is a free basis

of H . By construction of � , we have hD g � hye`
where g is a product of some he

with e 2 F [F�1 . This implies that the family .he/e2F together with h forms a free
basis of H .

Let k 2 N and i 2 f1; : : : ; `g. The path ˛k`Ci and ˛i have the same endpoints,
namely yi (the terminal point of ei ) and xi (the initial point of eiC1 ). In particular,
they are contained in the same maximal yellow connected component of G . We denote
by y̨k`Ci the copy in yGi of ˛k`Ci ; see Figure 3. We put

yk D ye1 y̨k`C1ye2 y̨k`C2 � � � ye` y̨.kC1/`:

By construction, yk is a loop of � based at yx0 lifting k (ie � ı yk D k ).

Lemma 5.5 Let h be the element of H represented by y . Let k 2N . There exists g

in the normal subgroup generated by .he/e2F such that the element of H represented
by the loop yk is gh.

Proof It follows from the equality

yk D
�
ye1.y̨k`C1 y̨

�1
1 /ye�1

1

��
ye1 y̨1ye2.y̨k`C2 y̨

�1
2 /ye�1

2 y̨
�1
1 ye

�1
1

�
� � �

� � �
�
ye1 y̨1ye2 � � � ye`�1.y̨.kC1/`�1 y̨

�1
`�1/ye

�1
`�1� � � ye

�1
2 y̨

�1
1 ye

�1
1

��
y .y̨�1

` y̨.kC1/`/y
�1
�
y:
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Lemma 5.6 The map �W �!G is locally injective.

Proof We prove this lemma by contradiction. Let ye and ye0 be two distinct edges of �
with the same initial vertex yv . Suppose that �.ye/D �.ye0/. There exists i 2 f1; : : : ; `g

such that yv is a vertex of yGi . By construction, � preserves the color of the edges,
thus ye and ye0 necessarily have the same color. We distinguish two cases. Assume
first that ye and ye0 are both yellow edges. Recall that the restriction of � to yGi is
the inclusion yGi ,! G . Thus ye D ye0 , a contradiction. Assume now that ye and ye0

are red. By construction of � , at most two red edges have an initial vertex in yGi .
Without loss of generality, we can assume that ye�1 D yei and ye0 D yeiC1 (as previously,
if i D ` then yeiC1 corresponds to ye1 ). Then �.yv/ is the terminal vertex yi of ei and
the initial vertex xi of eiC1 . Thus the yellow path ˛i is either trivial or a loop of G .
By assumption, it cannot be a loop; thus ˛i is trivial and eiC1 D �.ye

0/D �.ye/D e�1
i .

This contradicts the fact that  is a path. Consequently, � is locally injective.

If follows from the lemma that � induces an embedding �� from H into �1.G;x0/.
From now on, we identify H with its image in �1.G;x0/.

The automorphism induced on H Recall that ' is the automorphism of �1.G;x0/

in the outer class ˆ induced by f . We now prove that ' induces an automorphism
of H . To that end, we lift the RTT f into a map yf W �! � .

Proposition 5.7 There exists a continuous map yf W �! � satisfying the following:

(1) f ı �D � ı yf ,

(2) yf .y / is homotopic relative to its endpoints to y0 � � � yq�1 .

Proof The map yf W� ! � is built step by step. Let us first define some auxiliary
objects that will be needed during the construction. Let �` be the graph obtained
from � by disconnecting ye1 from yG` at yx0 ; see Figure 4. It comes with a natural map
�`!� which is a local isometry. For simplicity, we use the same notation for the paths
of �` and their images in � . For instance, y can be seen as a subpath of �` . Similarly,
we still denote by � the locally injective map �W�`!G . For every i 2 f1; : : : ; `g, we
denote by �i the subgraph of �` consisting of the red edges ye1; : : : ; yei and the yellow
graphs yG1; : : : ; yGi . By convention, we put �0 D fyx0g.

Let i 2 f1; : : : ; `g. The path  can be split as follows:

 D .e1˛1 � � � ei˛i/ � .eiC1˛iC1 � � � e`˛`/:

Therefore, f#.e1˛1 � � � ei˛i/ is an initial subpath of f#. /D0 � � � q�1 ; see Lemma 5.3.
However, the path y0 � � � yq�1 is, by construction, the unique lift of 0 � � � q�1 in �
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yG1
yG2

yGi
yG`

yx0 yx1 yx2 yxi yx`yy1 yy2 yyi yy`
ye1 ye2 ye3 yei yeiC1 ye`

�i

Figure 4: The graph �`

starting at yx0 . We denote by y̌i the initial subpath of y0 � � � yq�1 such that � ı y̌i D
f#.e1˛1 � � � ei˛i/. In particular, y̌` D y0 � � � yq�1 . By convention, we define y̌0 to be
the trivial path equal to yx0 . We begin with the following claim whose proof is by
induction on i .

Claim For every i 2 f0; : : : ; `g, there exists a continuous map yfi W �i ! � satisfying
the following:

(1) f ı �D � ı yfi ,

(2) yfi.ye1 y̨1 � � � yei y̨i/ is homotopic relative to its endpoints to y̌i .

The base of induction By assumption, f fixes the vertex x0 . We put yf0.yx0/D yx0 ;
hence the claim holds for i D 0.

The inductive step Assume now that the claim holds for i 2f0; : : : ; `�1g. Our goal is
to extend yfi into a map yfiC1W �iC1!� . To that end, we need to define the restriction
of yfiC1 to yeiC1 and yGiC1 . We start with the following observation: yfi.yxi/ is exactly
the terminal point of y̌i . Indeed yxi is the terminal point of y̨i , hence of ye1 y̨1 � � � yei y̨i .
According to the induction hypothesis, yfi.ye1 y̨1 � � � yei y̨i/ is homotopic relative to its
endpoints to y̌i . In particular, they have the same terminal point, namely yfi.yxi/.

Let us now focus on yeiC1 . By construction, the path  splits as follows:

 D .e1˛1 � � � ei˛i/ � eiC1 �˛iC1 � .eiC2˛iC2 � � � e`˛`/:

Therefore, we have

f#. /D f#.e1˛1 � � � ei˛i/ �f .eiC1/ �f#.˛iC1/ �f#.eiC2˛iC2 � � � e`˛`/:

In particular, f .eiC1/ is a subpath of f#. /. As we explained before, y0 � � � yq�1

is the (unique) lift of f#. / in � starting at yx0 . Moreover, y̌i is the initial path of
y0 � � � yq�1 lifting f#.e1˛1 � � � ei˛i/. We denote by y� the subpath of y0 � � � yq�1 lifting
f .eiC1/ whose initial point is the terminal point of y̌i . As we noticed above the initial
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point of y� (ie the terminal point of y̌i ) is exactly yfi.yxi/. Consequently, we can extend
yfi W�i! � to a continuous map yfiC1W�i [ yeiC1! � by sending yeiC1 to y� .

The next step is to define the map yfiC1 on yGiC1 . Since eiC1 is a red edge, its image
under f starts and ends by a red edge. In particular, there exists j 2 f1; : : : ; `g such
that the last edge of y� is yej . It follows that f maps yiC1 (the terminal point of eiC1 )
to yj (the terminal point of ej ). On the other hand, f is continuous and sends yellow
edges to yellow paths. Therefore, it maps the largest yellow connected component
of G containing yiC1 to the largest yellow connected component of G containing yj.
It provides a continuous map from yfiC1W

yGiC1!
yGj such that yfiC1.yyiC1/D yyj and

� ı yfiC1 D f ı � . This completes the construction for i C 1. We end the proof of the
claim with the following lemma.

Lemma 5.8 The path yfiC1.ye1 y̨1 � � � yeiC1 y̨iC1/ is homotopic relative to its endpoints
to y̌iC1 .

Proof By construction,

yfiC1.ye1 y̨1 � � � yeiC1 y̨iC1/D yfi.ye1 y̨1 � � � yei y̨i/ yfiC1.yeiC1/ yfiC1.y̨iC1/:

In particular, it is homotopic relative to its endpoints to y̌i yfiC1.yeiC1/ yfiC1.y̨iC1/. By
construction, we also have that y̌i yf .yei/D y̌iy� is the initial path at yx0 of y0 � � � yq�1 lift-
ing f#.e1˛1 � � � ei˛ieiC1/. Note also that y̌iy� ends where yfiC1.y̨iC1/ starts, namely at
the point yfiC1.yyiC1/D yyj . Thus it is sufficient to prove that yfiC1.y̨iC1/ is homotopic
relative to its endpoints to the lift starting at yfiC1.yyiC1/ of f#.˛iC1/. However,
these last paths all belong to yGj . Moreover, the restriction of � to yGj is the natural
embedding yGj ,! G . The conclusion follows then from the fact that f .˛iC1/ and
f#.˛iC1/ are homotopic relative to their endpoints in the yellow connected component
of G to which they belong.

Lemma 5.9 The map yf`W�` ! � induces a continuous map yf W� ! � such that
f ı �D � ı yf .

Proof By definition, � is obtained from �` by attaching the initial point yx0 of ye1 to
the point yx` of yG` . Therefore, it is sufficient to prove that yf`.yx`/D yf`.yx0/. It follows
from the first step of the construction that yf`.yx0/D yx0 . On the other hand, yf`.y / and
y̌
`D y0 � � � yq�1 are homotopic relative to their endpoints. Thus the terminal point of y

(ie yx` ) is sent to the terminal point of yq�1 , ie yx0 . Hence yf`.yx`/D yf`.yx0/D yx0 .

We can now complete the proof of Proposition 5.7. Lemma 5.9 provides the map we
are looking for. The second point becomes a consequence of Lemma 5.8.
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Lemma 5.10 The map ' induces an automorphism of H .

Proof It follows from Proposition 5.7 that '.H / is a subgroup of H . It follows from
Lemma 6.0.6 in [4] that the restriction of ' to H is an automorphism.

The abelianization of H Now we complete the proof of Proposition 5.2. Let d be
the rank of the free group H . We consider the abelianization morphism H ! Zd .
In particular, ' induces an automorphism 'ab of Zd . We denote by C the image
in Zd of the free basis B of H given by Lemma 5.4. The first .d � 1/ elements
of B (the ones corresponding to oriented edges in F ) are conjugates of yellow loops
of � . However, f , and thus yf , maps yellow edges to yellow edges. Hence the
subgroup Zd�1 generated by the first .d � 1/ elements of C is invariant under 'ab .
By Proposition 5.7, yf .y / is homotopic relative to fyx0g to y0y1 � � � yq�1 . It follows
from Lemma 5.5 that the matrix R of 'ab in the basis C has the following shape:

RD

0BBB@
? � � � ? ?
:::
: : :

:::
:::

? � � � ? ?

0 � � � 0 q

1CCCA :
Since q > 2, the determinant of R cannot be invertible in Z, which contradicts the fact
that 'ab is an automorphism. We have thus proved that �1.e�/ is not shift-periodic.

Proposition 5.11 There exists an integer m> 2 such that for every p 2N , as a word
over E� , Red.f p

# .e�// does not contains an mth power.

Proof According to Lemma 5.1, for every p 2N , the red word associated to f p
# .e�/

is exactly �p.e�/. However, the substitution � is primitive and the infinite word
�1.e�/ is not shift-periodic. Hence the result follows from Proposition 2.1.

6 The automorphism of Br.n/ induced by '

6.1 A criterion of nontriviality in Br.n/

Let us have a pause in order to introduce a key ingredient for the sequel of the proof of
Proposition 4.11. As explained in the introduction, we need a tool to decide whether
two elements in a free Burnside group are distinct. The main theorem of [12] will
play that role. In [12], Coulon considers a more general situation than the one we
are interested in. Given a nonelementary torsion-free hyperbolic group G , he studies
the natural projection G!G=Gn , where Gn stands for the (normal) subgroup of G
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generated by the nth power of all elements of G . He provides a criterion to decide
whether two elements g;g0 2G have the same image in the quotient G=Gn. For our
purpose, we focus on the case where G is a free group. This is the situation that we
describe below.

Let .X;x0/ be a pointed simplicial tree. Given two points x and x0 of X , we denote
by jx�x0j the distance between them, whereas Œx;x0� stands for the geodesic joining x

and x0 . Let g be an isometry of X . Its translation length, denoted by kgk, is the
quantity kgkD infx2X jgx�xj. If X is the Cayley graph of Fr , then kgk is exactly the
length of the conjugacy class of g2Fr . The set of points AgDfx2X j jgx�xjDkgkg

is called the axis of g . It is a subtree of X. It is known that either kgk D 0 and Ag is
the set of fixed points of g , or kgk> 0 and Ag is a bi-infinite geodesic on which g

acts by translation of length kgk. In the first case, g is said to be elliptic, in the second
one hyperbolic. For more details, we refer the reader to [16]. We now assume that Fr

acts by isometries on X .

Definition 6.1 Let n 2 N and � 2 RC . Let y and z be two points of X . We say
that z is the image of y by an .n; �/–elementary move (or simply elementary move) if
there is a hyperbolic element u 2 Fr such that

(1) diam
�
Œx0;y�\Au

�
>
�

n
2
� �

�
kuk,

(2) z D u�ny .

The point z is the image of y by a sequence of .n; �/–elementary moves if there is a
finite sequence y D y0;y1; : : : ;y` D z such that for all i 2 f0; : : : ; `� 1g, the point
yiC1 is the image of yi by an .n; �/–elementary move.

Knowing that the hyperbolicity constant of a tree is zero, this notion of .n; �/–elementary
move is exactly the one defined in [12]. The next statement is a particular case of the
main theorem of [12] when the group G is free and the underlying space X is a tree.

Proposition 6.2 (Coulon [12]) Assume that Fr acts properly cocompactly by isome-
tries on .X;x0/. There exist n1 2 N and � 2 RC such that for every odd exponent
n> n1 the following holds: two isometries g;g0 2 Fr have the same image in Br .n/

if and only if there exist two finite sequences of .n; �/–elementary moves which
respectively send gx0 and g0x0 to the same point of X .

Remark 6.3 Roughly speaking, an elementary move allows us to replace a subword
of the form vm by vm�n provided m is sufficiently large. Assume indeed that .X;x0/

is the Cayley graph of Fr pointed at the identity element of Fr . There is a natural
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one-to-one correspondence between reduced words and geodesics of X starting at x0 .
More precisely, given an element g 2 Fr , the reduced word w which represents g

labels the geodesic between x0 and gx0 . Let us suppose now that w can be written
(as a reduced word) w D pvms with m> n

2
� � . It follows that

diam
�
Œx0;gx0�\Au

�
> kum

k>
�

n
2
� �

�
kuk;

where u is the element of Fr represented by pvp�1 . Thus u�ng , which is represented
by pvm�ns , is the image of g by an elementary move. With this dictionary in mind,
Theorem 1.5 becomes a direct application of Proposition 6.2, where .X;x0/ is the
Cayley graph of Fr based at 1.

Later in the proof, the tree X will be the universal cover of an RTT. Therefore, this
formulation, which extends the idea of substituting subwords, is more appropriate for
our purpose.

Proposition 6.2 provides in particular a criterion for detecting trivial elements in Br .n/.

Corollary 6.4 Assume that Fr acts properly cocompactly by isometries on .X;x0/.
There exist n1 2N and � 2RC such that for every odd exponent n> n1 , the following
holds: an element g 2 Fr is trivial in Br .n/ if and only if there exists a finite sequence
of .n; �/–elementary moves which sends gx0 to x0 .

However, despite the similarity with the word problem in a group, Corollary 6.4 is not
equivalent to Proposition 6.2. This comes from the fact that .n; �/–elementary moves
are not symmetric. One first has to see a large power along the geodesic Œx0;gx0�

before performing an elementary move. For instance, if a and b are two distinct
primitive elements of Fr , there is no sequence of elementary moves that sends an

to bn . Corollary 6.4 only implies a weaker form of Proposition 6.2 in the sense that we
need to allow a larger class of elementary moves: those of the form pvms! pvm�ns

with m> n
4
�
�
2

.

In our situation, we will apply this criterion with two elements of the form g and 'p.g/,
where g 2 Fr and ' is the automorphism we want to study. The theory of train-track
provides much information about the path Œx0; '

p.g/x0�. Therefore, it is also more
natural to have a criterion that uses conditions on Œx0;gx0� and Œx0; '

p.g/x0� rather
than Œgx0; '

p.g/x0�.

Remark Proposition 6.2 is “well known” to the experts of Burnside’s groups. To our
knowledge, it has never been formulated in such a level of simplicity, though. The reader
can, for instance, compare our definition of elementary moves with the one of simple r –
reversal of rank ˛ used by Adian; see [1, Section 4.18, pages 8–16] for the prerequisites.
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After consulting Adian and Ol’shanskiı̆, it seems that the closest published statements to
Proposition 6.2 are [1, Chapter VI, Lemma 2.8] and [32, Lemma 5.5]. They should lead
to a similar result, but with a weaker requirement to perform elementary moves. Adian’s
approach would provide an analogue of Theorem 1.5 with a sharper critical exponent
(n1 D 667) but where an elementary move is allowed as soon as m > 90 (instead
of m > n

2
� � ). This is unfortunately not enough for our purpose. In the Appendix,

we explain how our results on Out.Br .n// can be proved using Ol’shanskiı̆’s work
instead of Proposition 6.2. In particular, we prove an analogue of Theorem 1.5 where
elementary moves are allowed as soon as m> n

3
; see Proposition A.2.

6.2 Performing elementary moves in zG

We get back to the proof of Proposition 4.11. The notation is the same as in Section 5.

Metrics on zG For our purpose, the pointed tree .X;x0/ that appears in Proposition 6.2
will be the universal cover . zG; zx0/ of G where zx0 is preimage of x0 . By declaring
that any edge of zG is isometric to the unit real segment Œ0; 1�, we obtain an Fr –
invariant length metric on zG : the combinatorial metric. We denote by j˛j the resulting
combinatorial length of a path ˛ in zG .

We also define a pseudolength metric on zG in the following way. We first consider
that any yellow edge has length zero. Recall that E is the set of all the oriented red
edges of G . We chose a preferred set of oriented edges EE . Recall that the transition
matrix M of the red stratum of f is aperiodic. We denote by � > 1 the Perron–
Frobenius dominant eigenvalue of M , and we consider a positive right eigenvector
l D .le/e2EE associated to �. We declare the lifts of e isometric to the real segment
Œ0; le �. The resulting pseudometric is called the PF-pseudometric. We denote by j˛jPF

the resulting length of the path ˛ in zG : this is called the PF-length of ˛ . This length
only depends on the red word Red.˛/ 2 E�. If ˛ is a red-legal path, we thus get that
for all p 2N ,

jf
p

# .˛/jPF D �
p
j˛jPF:

Unless stated otherwise we will work with zG endowed with the combinatorial metric.

The element g and its orbit Recall that e� is the red edge fixed at the beginning of
Section 5. For all p 2 N , we have that f p

# .e�/ is a path starting by e� . Its yellow-
red decomposition is a splitting. The red stratum H is aperiodic. Thus if p is a
sufficiently large integer, one can find another occurrence of e� in f p

# .e�/: namely
f

p
# .e�/ D e��0e��1 . The path � D e��0 is a red-legal circuit, and the yellow-red

decomposition of � is a splitting. We denote by g the element of �1.G;x0/ represented
by � . By construction, the geodesic Œzx0;gzx0� is the lift in zG of � starting at zx0 .
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Lemma 6.5 There exists an integer n2 with the following property. Let p 2N . Let ˇ
be a path of zG such that the red words respectively associated to ˇ and f p

# .�/ are the
same. For all u 2 Fr n f1g, if

diam.ˇ\Au/ > n2kuk;

then the axis of u only contains yellow edges.

Proof By construction, there exists p0 2 N such that � is a prefix of f p0

# .e�/.
More generally, f p

# .�/ is a prefix of f pCp0

# .e�/ for every p 2 N . According to
Proposition 5.11, there exists m2N such that for every p 2N , the red word associated
to f p

# .�/ does not contain an mth power. Put n2 D mC 2. Note that n2 does not
depend on the path ˇ . Let u be a nontrivial element of Fr such that

diam.ˇ\Au/ > n2kuk:

In particular, there is a vertex x 2Au such that for every j 2 f0; : : : ;mg, the point uj x

belongs to ˇ . Assume now that Au contains a red edge e . Since Au is a u–invariant bi-
infinite geodesic, the geodesic Œx;ux� contains some red edges. In particular, if ˛ stands
for the path Œx;umx�, then Red.˛/ contains an mth power. However, ˇ is a path of zG .
Consequently, Œx;umx� is a subset, hence a subpath, of ˇ . Therefore, the red word
associated to ˇ , and thus to f p

# .�/, contains an mth power. This is a contradiction.

We finish this section with the proof of Proposition 4.11.

Proof of Proposition 4.11 Recall that g is the element of �1.G;x0/ represented
by the red legal circuit � D e��0 . Our goal is to prove that for sufficiently large
odd integers n, the sequence .'p.g//p2N of elements of Fr is embedded in Br .n/.
Since ' is an automorphism, it is sufficient to check that 'p.g/ 6� g in Br .n/ for
all p 2N�. We are going to use the criterion of Section 6.1. Recall that the geodesic
Œzx0;gzx0� is a lift in zG of � . We denote by n1 , � and n2 the constants given, accordingly,
by Proposition 6.2 and Lemma 6.5. For the rest of the proof, we fix an odd integer n

larger than

n0 Dmax
˚
n1; 2n2C 2�C 1; 2jzx0�gzx0jC 2�C 1

	
:

Note that this lower bound only depends on the outer automorphism ˆ and the RTT f .

Let p 2N�. By construction, the path ˇ D Œzx0; '
p.g/zx0� is a lift of f p

# .�/. Assume
now that 'p.g/�g in Br .n/. By Proposition 6.2, there exist two sequences of .n; �/–
elementary moves which respectively send gzx0 and 'p.g/zx0 to the same point of zG .
However, we fixed n> 2jzx0�gzx0jC 2� . Therefore, no .n; �/–elementary move can
be performed on Œzx0;gzx0�. It follows that there exists a sequence of .n; �/–elementary
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moves which sends 'p.g/zx0 to gzx0 . We denote by ˇi the reduced path obtained
from ˇ after the i th .n; �/–elementary move. In particular, ˇ0 D ˇ . Note that the
initial point of ˇi is always zx0 . Recall that F n

r is the normal subgroup of Fr generated
by the nth power of every element. We are going to show, by induction on i , that

(H1) the endpoints of a maximal yellow subpath of ˇi are not in the same F n
r –orbit,

(H2) Red.ˇi/D Red.ˇ/.

The base of induction Let ˛ be a maximal yellow subpath of ˇ0 . Recall that ˇ0 is
a lift of f p

# .�/. On the other hand, f p
# .�/ is a subpath of f q

# .e�/ for some q 2N . It
follows from our assumption that ˛ is not mapped by zG�G to a loop. In particular, its
endpoints are not in the same Fr –orbit, which provides (H1). Assertion (H2) is obvious.

The inductive step Assume that these two conditions hold for i . For simplicity, we
denote by zzi the terminal point of ˇi ; hence ˇi D Œzx0; zzi �. We focus on the .i C 1/st

elementary move. Let us denote by Au the axis of the elementary move performed
on ˇi . In particular, diam.ˇi \Au/>

�
n
2
� �

�
kuk in zG . By hypothesis (H2), the red

words associated to ˇi , ˇ and f p
# .�/ are the same. By Lemma 6.5, the axis Au only

contains yellow edges. In particular, Au crosses ˇi along (a part of) a maximal yellow
subpath of ˇi that we denote by ˛ ; see Figure 5.

Let zy and zy0 be the respective initial and terminal points of ˛ . By (H1), zy ¤ u�n zy0 .
Recall that the action of Fr on zG respects the yellow-red decomposition. Consequently,
the path ˇiC1 is exactly

ˇiC1 D Œzx0; zy�[ Œzy;u
�n
zy0�[ Œu�n

zy0;u�n
zzi �:

In particular, Red.ˇiC1/ D Red.ˇi/. Combined with (H2), we get Red.ˇiC1/ D

Red.ˇ/, which corresponds to (H2) at step i C 1. The maximal yellow subpaths
of ˇiC1 are of three kinds:

� the ones of Œzx0; zy� which are actually maximal yellow subpaths of ˇi ,

� the ones of Œu�n zy0;u�nzzi � which are translates of maximal yellow subpaths
of ˇi ,

� the geodesic Œzy;u�n zy0�.

By (H1), the endpoints of any maximal yellow path of the first two kinds are not in
the same F n

r –orbit. Thus zy and zy0 are not in the same F n
r –orbit, being the endpoints

of ˛ . Hence neither are zy and u�n zy0 . This gives (H2) at step i C 1, which completes
the induction.
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zx0

u�nzzi u�n zy0

zy zy0

Au

zzi

˛

zx0

u�nzzi u�n zy0

zy zy0

Au

zzi

˛

Figure 5: Performing a move on ˇi , the two possible configurations. The
thin lines refer to yellow paths, the thick ones to red paths. Top: ˛ does not
contain the full nth power of u . Bottom: ˛ contains the full nth power of u ,
but cannot be totally removed.

Recall that .ˇi/ is the collection of paths obtained by the sequence of elementary moves
which sends 'p.g/ to g . It follows from the previous discussion that at each step i ,
jˇi jPFD jˇjPF . In particular, jf p

# .�/jPFD jˇjPFD j�jPF . However, we build � in such
a way that jf p

# .�/jPF D �
pj�jPF . This contradicts our original assumption. Therefore,

'p.g/ 6� g in Br .n/ for every p 2N . In particular, ' (respectively ˆ) induces an
automorphism (respectively outer automorphism) of Br .n/ of infinite order.

7 Comments and questions

7.1 About other possible strategies of proof

In the introduction, we recalled the argument given by Cherepanov. It is easy to
elaborate a generalization to a wider class of automorphisms which does not require
the criterion stated in Proposition 6.2.

An outer automorphism ˆ 2Out.Fr / is irreducible with irreducible powers (or simply
iwip) if there is no (conjugacy class of a) proper free factor of Fr which is invariant
by some positive power of ˆ. An iwip outer automorphism can be represented by an
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(absolute) train-track map f W G!G with a primitive transition matrix [6]. Roughly
speaking, it implies that there are no “yellow strata” which were the ones responsible
for having large powers in our words. As a particular case of Proposition 5.11, there
exists a loop  in G and an integer n2 with the following property. For every p 2N ,
the word labeling the loop f p

# . / does not contain an nth
2

power (as a complete word,
not just its red part). Consequently, Proposition 1.4 is sufficient to conclude. Note also
that, in this context, Proposition 5.11 can be proved in a much easier way by using
either the action of Fr on the stable tree associated to ˆ [18, Theorem 2.1] or the
fact that the attracting laminations of ˆ cannot be carried by a subgroup of rank 1 [3,
Proposition 2.4].

However, as we explained in the introduction, there exist automorphisms for which
one cannot use the same strategy. Consider, for instance, the automorphism  of
F4DF .a; b; c; d/ defined in the introduction by  .a/D a,  .b/D ba,  .c/D cbcd

and  .d/D c . One can view  as a relative train-track map on the rose: there is only
one exponential stratum (the “red stratum” which corresponds to the free factor hc; di)
and the restriction of  to ha; bi has polynomial growth (and ha; bi gives rise to a
“yellow stratum”). We saw that ap�1 occurs as subword of  p.d/. Nevertheless, we
still do not need Proposition 6.2 to conclude here that the automorphism  satisfies
the statement of Theorem 1.3. It is sufficient to pass to the quotients of Fr and Br .n/

by the normal subgroup generated by a and b , and then to argue as previously.

Nevertheless, given an arbitrary automorphism, this trick (passing to a well chosen quo-
tient) seems to be less easy to run. Look at the automorphism  of F4DF .a; b; c; d/

defined by
 W a 7! a; b 7! ba; c 7! cd�1bd; d 7! dcd�1bd:

This automorphism grows exponentially. However, if one considers the quotient of F4

by the normal subgroup generated by a and b , it induces the Dehn twist c 7! c , d 7!dc ,
which has finite order as an automorphism of B2.n/.

Let ' be an automorphism of Fr . The geometry of the suspension Fr Ì' Z might
provide an alternative proof of Theorem 1.3. In [13], the first author solved indeed
the case where Fr Ì' Z is a hyperbolic group. Generalizing the Delzant–Gromov
approach of the Burnside Problem, he constructed a sequence of groups Hj with
lim
�!

Hj DBr .n/ such that for every j ,

� ' induces an automorphism of infinite order of Hj ,

� Hj Ì' Z is a hyperbolic group obtained from Hj�1Ì' Z by small cancellation.

It follows from the hyperbolicity that ' induces an automorphism of infinite order
of Br .n/.
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If ' is an arbitrary exponentially growing automorphism, then Fr Ì' Z is no more
hyperbolic. However, F Gautero and M Lustig proved that Fr Ì' Z is hyperbolic
relatively to a family of subgroups which consists of conjugacy classes that grow
polynomially under iteration by ' [19; 20]. Therefore, one could use a generalization
of the iterated small cancellation theory to relative hyperbolic groups. We refer the
reader to [14] for a detailed presentation of the Delzant–Gromov approach to the
Burnside problem and to [15] for a generalization. See also [34] for a theory of small
cancellation in relatively hyperbolic groups.

7.2 Quotients of Out.Fr/

The following remark is due to M Sapir. Proposition 4.1 says that for every integer
n > 1, polynomially growing automorphisms of Fr induce automorphisms of finite
order of Br .n/. More precisely, their orders divide

p.r; n/D n2.2r�1�1/:

Let us denote by Qr;n the quotient of Out.Fr / by the (normal) subgroup generated by

fˆp.r;n/
jˆ 2 Out.Fr / polynomially growingg:

In particular, the p.r; n/th power of the Nielsen transformations which generate
Out.Fr / are trivial in Qr;n . It follows from Proposition 4.1 that the map Out.Fr /!

Out.Br .n// induces a natural map Qr;n ! Out.Br .n//. Therefore, we have the
following results:

Theorem 7.1 Let r > 3. There exists n0 such that for all odd integers n > n0 , the
group Qr;n contains copies of F2 and Zbr=2c .

Proof This is a consequence of [13] Theorems 1.8 and 1.10.

Theorem 7.2 Let ˆ be an outer automorphism of Fr . The following assertions are
equivalent:

(1) ˆ has exponential growth;

(2) there exists n 2N such that the image of ˆ in Qr;n has infinite order;

(3) there exist �; n0 2 N such that for all odd integers n > n0 , the image of ˆ in
Qr;�n has infinite order.

Proof This is a consequence of our main theorem.
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7.3 Exponentially growing automorphisms of the free group can have
finite order in a free Burnside group

The constant n0 in Theorem 1.3 does depend on the outer automorphism ˆ 2Out.Fr /.
Indeed, we give in this section explicit examples of automorphisms in the kernel of
the natural map Aut.Fr /!Aut.Br .n// which have exponential growth. In particular,
there are iwip automorphisms in this kernel.

7.3.1 A first family of examples An outer automorphism ˆ 2 Out.Fr / induces, by
abelianization, an automorphism of Zr . This defines a homomorphism Out.Fr /!

GL.r;Z/, ˆ 7! Mˆ . Nielsen proved that for r D 2, this morphism is an isomor-
phism [28]. Moreover, ˆ has exponential growth if and only if the absolute value of
the trace of M 2

ˆ
2 GL.2;Z/ is larger than 2.

Examples Let fa; bg be a basis of the free group F2 . For n 2 N�, we define 'n 2

Aut.F2/ by 'n.a/ D a.ban/n , 'n.b/ D ban . We denote by ˆn the corresponding
outer class in Out.F2/. The outer class ˆn has exponential growth since the trace
of M 2

ˆn
equals n4C 4n2C 2. However, the outer automorphism of B2.n/ induced

by ˆn is the identity.

For r > 2, we consider a splitting of Fr as a free product Fr DF2�Fr�2 . For n2N�,
we consider the automorphism  nD'n�Id which is equal to 'n (defined in the previous
paragraph) when restricted to the first factor of the splitting and to the identity when
restricted to the second factor. Again, the outer class ‰n of  n has exponential growth
(since ˆn has), but the outer automorphism of Br .n/ induced by ‰n is the identity.

These examples show that the constant n0 in Theorem 1.3 is not uniform: it does depend
on the outer class ˆ 2Out.Fr /. The automorphisms ˆn are iwip automorphisms. But
this is not the case of the automorphisms ‰n . We fix this point in the next subsection.

7.3.2 Iwip automorphisms of Fr trivial in Out.Br.n// To produce iwip automor-
phisms in the kernel of the canonical map Out.Fr /! Out.Br .n//, one can follow
the idea of W Thurston to generically produce pseudo-Anosov homeomorphisms of a
surface by composing well chosen Dehn twist homeomorphisms [37].

In the context of automorphisms of free groups, there is a notion of a Dehn twist (outer)
automorphism (see for instance [10]) which generalizes the notion of a Dehn twist
homeomorphism of a surface: Example 4.3 provides such a Dehn twist automorphism.
In [9], M Clay and A Pettet explain how to generate iwip automorphisms of Fr by
composing two Dehn twist automorphisms associated to a filling pair of cyclic splittings
of Fr . We will not explicitly state these definitions here. For our purpose, we only
need to know that
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� Dehn twist automorphisms have polynomial growth (in fact linear growth), and

� there exist Dehn twist automorphisms �1; �2 2 Out.Fr / satisfying the hypoth-
esis of the following theorem.

Theorem 7.3 (Clay and Pettet [9, Theorem 5.3]) Let �1; �2 2Out.Fr / be the Dehn
twist outer automorphisms for a filling pair of cyclic splittings of Fr . There exists
N 2N such that for every p; q >N ,

� the subgroup of Out.Fr / generated by �p
1

and �q
2

is a free group of rank 2,

� if ˆ 2 h�p
1
; �

q
2
i is not conjugate to a power of either �p

1
or �q

2
, then ˆ is an

iwip outer automorphism.

We fix an exponent n 2N . We consider two such Dehn twist outer automorphisms �1

and �2 , and the integer N 2N given by Theorem 7.3. Since �1 and �2 have polyno-
mial growth, they induce an automorphism of finite order of Br .n/. In particular, there
exists p>N such that ˆD�p

1
�

p
2

is in the kernel of the map Out.Fr /!Out.Br .n//.
However, Theorem 7.3 ensures that ˆ is an iwip outer automorphism of Fr .

7.4 Growth rates in Out.Fr/ and Out.Br.n//

Let ˆ be an exponentially growing automorphism of Fr . Our study in Section 6 seems
to indicate that for odd exponents n large enough, some structure of ˆ is preserved in
Br .n/. Therefore, we wonder how much information could be carried through the map
Out.Fr /! Out.Br .n//. In particular, what can we say about the growth rate of ˆ?

Let G be a group generated by a finite set S . We endow G with the word-metric
with respect to S . The length of the conjugacy class of g 2 G , denoted by kgk, is
the length of the shortest element conjugated to g . An outer automorphism ˆ of G

naturally acts on the set of conjugacy classes of G . Consequently, as in the free group,
one can define the (exponential) growth rate of ˆ by

EGR.ˆ/D sup
g2G

lim sup
p!C1

p
p
kˆp.g/k:

Since the word-metrics for two distinct finite generating sets of G are bi-Lipschitz
equivalent, this rate does not depend on S . The automorphism ˆ is said to have
exponential growth if EGR.ˆ/ > 1.

By our knowledge, it is not known if there exist outer automorphisms of Burnside
groups with exponential growth. We would like to ask the following questions:
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� Are there automorphisms of Br .n/ with exponential growth?

� Let ˆ 2 Out.Fr / with exponential growth. Is there an integer n0 such that for
all (odd) exponents n> n0 , the automorphism ŷ n of Br .n/ induced by ˆ has
exponential growth? Such that EGR. ŷ n/D EGR.ˆ/?

� Are there automorphisms of Br .n/ of infinite order which do not have exponen-
tial growth?

On the other hand, it could be very interesting to understand to what extent the structure
of the attracting laminations associated to an outer automorphism of Fr is preserved
in Br .n/. Recall that theses laminations are the fundamental tool used by Bestvina,
Feighn and Handel to prove that Out.Fr / satisfies the Tits alternative [4; 5].

Appendix

Proposition 6.2 can be seen as a weak form of a Dehn algorithm associated to the
following presentation of the free Burnside group:

(4) Br .n/D ha1; : : : ; ar j x
n
D 1 for all x i:

Let w be a reduced word over the alphabet fa1; : : : ar g. If w contains a subword v
corresponding to almost half a relation from (4), we allow v to be replaced, in w , by
its complement. Proposition 6.2 states that if w represents the trivial element, then
after finitely many steps we will get the trivial word.

For our purpose, we actually do not need such a strong statement. The aim of this
appendix is to explain how Theorem 1.3 can be proved using only Ol’shanskiı̆’s work
on free Burnside groups [32]. It might be possible to proceed in the same way using
the Novikov–Adian approach [1]. The exposition would, however, be more technical.
We first recall some results of Ol’shanskiı̆, and then list the modifications that need to
be made to our original proof of Proposition 4.11.

Let .X;x0/ be a pointed simplicial tree endowed with an action by isometries of Fr .

Definition A.1 Let n 2N� and c 2 .0; 1/. Let y and z be two points of X . We say
that z is the image of y by an .c; n/–weak elementary move if there is a hyperbolic
element u 2 Fr such that

(1) diam
�
Œx0;y�\Au

�
> cnkuk,

(2) z D u�ny .
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The point z is the image of y by a sequence of .c; n/–weak elementary moves if there
is a finite sequence y D y0;y1; : : : ;y` D z such that for all i 2 f0; : : : ; `� 1g, the
point yiC1 is the image of yi by a .c; n/–weak elementary move.

Remark As we recalled previously, in our original framework, we allowed a regular
move to be performed if Œx0;y� contained almost half of a relation. Here we relax this
condition: one can perform a weak move even if Œx0;y� contains a (much) smaller ratio
of a relation. The allowed ratio is given by c . In practice we will always have c 6 1

3
.

Let us focus first on the case where X is the Cayley graph of Fr with respect to the
free basis fa1; : : : ; ar g. To avoid any ambiguity, we denote it by T . Let t0 be the
vertex of T corresponding to the identity. The following result is a consequence of
Ol’shanskiı̆’s work [32].

Proposition A.2 Let n > 1010 be an odd integer. An element g 2 Fr is trivial in
Br .n/ if and only if there exists a finite sequence of

�
1
3
; n
�
–weak elementary moves

which sends gt0 to t0 .

Remark The proof below relies on Ol’shanskiı̆’s diagrammatical approach of the
Burnside problem. To keep the appendix short, we do not recall all the necessary
background on diagrams. In particular, we use the vocabulary and notations of [32]
without any further explanation. For an extensive introduction to diagrams, we refer
the reader to [33].

Proof The “if” part directly follows from the definition of weak elementary moves.
Let us focus on the “only if” part. Let .Cj / be the system of independent relations of
Br .n/ defined in [32, page 203]:

Br .n/D ha1; : : : ; ar j C
n
1 ;C

n
2 ; : : : ;C

n
i ; : : : i:

Let g 2 Fr n f1g whose image in Br .n/ is trivial. Let w be the noncontractible word
over the group alphabet fa˙1

1
; : : : ; a˙1

r g representing g . As g is trivial in Br .n/,
there exists i > 1 such that g is trivial in ha1; : : : ; ar j C

n
1
;C n

2
; : : : ;C n

i i. In other
words, w labels the contour of a diagram of rank i that we denote by �. Without loss
of generality, we can assume that � is minimal [32, page 205].

The next arguments are a variation of [32, Lemma 5.5]. This lemma covers indeed
two cases, where � is a disc diagram or an annular diagram and requires therefore
the label of � to be cyclically noncontractible. In our case, we only need to consider
disc diagrams, hence the assumption that w is noncontractible will be sufficient.
Since w is not trivial, � contains a least one cell. By [32, Lemma 3.6], � admits
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a � –cell. Recall that � D 0:985, while  D 10�6=7. Consequently, its degree of
contiguity to a section p of the contour of � is at least 1

3
C 400 . Let … be a

� –cell whose corresponding contiguity subdiagram � has minimal type �.�/. Its
contour is decomposed as p1q1p2q2 , where q1 D � ^p and q2 D � ^…. Applying
[32, Lemma 2.1] one observes that jpi j6 2n minfjCk j; jCl jg, where k D r.…/ and
lD r.p/. It follows that jp1jCjp2j6400 j@…j; thus jq2j> 1

3
j@…jC100.jp1jCjp2j/.

Applying [32, Lemma 5.4], one gets that q1 and q2 have a common subpath q such
that jqj> j@…j=3. In other words, the contour of … can be decomposed as qxq where
q�1 is a section of the contour of � and jqj> j@…j=3. As � is a diagram of rank i ,
there exists j 6 i and a cyclic permutation D of C˙1

j such that the label of xqq is Dn .
On the other hand, the contour of � can be written rq�1s .

We now rephrase this observation using our geometric point of view. Let v and h

be the element of Fr represented by the respective labels of xqq (ie D ) and r . Let
uD hvh�1 . Let  be the path of T starting at t0 and labeled as q�1 . Recall that the
contour rq�1s of � is labeled by the noncontractible word w ; hence h is a subpath
of the geodesic Œt0;gt0�. On the other hand, the collection of words .Ci/ has been
chosen in a minimal way. In particular, Ci and thus D are cyclically reduced. As
a consequence,  is contained in Œt0; v�nt0� which lies in the axis of v . It follows
that h is a path contained in hAv , ie the axis of u. Hence

diam
�
Œt0;gt0�\Au

�
> j j> 1

3
j@…j D 1

3
jDj D n

3
kuk:

In other words, ung is obtained from g by performing a
�

1
3
; n
�
–weak elementary move.

Let �0 be the diagram obtained from � by removing the cell …. Its contour is exactly
rxqs . By our choice of v and h, its label represents ung . In other words, removing …
is equivalent to performing a

�
1
3
; n
�
–weak elementary move. By the very definition of

diagrams, � only contains finitely many cells. An induction on the number of cells
in � shows that after finitely many weak elementary moves gt0 is sent to t0 .

The proof of Proposition 4.11 does not take place in the Cayley graph of Fr but in the
universal cover of the underlying graph of an RTT map. Therefore, we need an analogue
of Proposition A.2 in an arbitrary tree. From now on, .X;x0/ is a pointed simplicial
tree. We assume that Fr acts properly cocompactly by isometries on X . There exists
a natural Fr –equivariant map F WT ! X sending t0 to x0 . Since Fr acts properly
cocompactly on X , there exist k > 1 and l > 0 such that F is a .k; l/–quasiisometry,
meaning that for every t; t 0 2 T ,

k�1
jt � t 0j � l 6 jF.t/�F.t 0/j6 k jt � t 0jC l:

We denote by @X the boundary at infinity of X .
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Lemma A.3 There exists B > 0 with the following property. Let t; t 0 2 T . Let
u 2 Fr n f1g and m 2N . Assume that we have

diam
�
Œt; t 0�\Au

�
>mkuk

in T . Then the following holds in X :

diam
�
ŒF.t/;F.t 0/�\Au

�
>mkuk�B:

Remark By abuse of notation, Au stands for the axis of u in both T and X . Similarly
with kuk.

Proof Recall first a well known statement of hyperbolic geometry: the stability
of quasigeodesics. There exists d > 0 with the following property. The Hausdorff
distance between a .k; l/–quasigeodesic of X and any geodesic with the same endpoints
(possibly in @X ) is bounded above by d [11, Chapitre 3, Théorème 1.3].

By assumption, there exists a point s in Œt; t 0�\Au such that ums still belongs to
Œt; t 0�\Au . Recall that the axis of u in T is an u–invariant geodesic. Hence its image
under F is a u–invariant .k; l/–quasigeodesic of X . It follows from the stability of
quasigeodesics that F.s/ and umF.s/ lie in the d –neighborhood of the axis of u

in X . In the same way, we see that F.s/ and umF.s/ lie in the d neighborhood of
ŒF.t/;F.t 0/�. Consequently, the following holds in X :

(5) mkuk6 jumF.s/�F.s/j6 diam
�
ŒF.t/;F.t 0/�Cd

\ACd
u

�
:

Here the notation Y Cd stands for the d –neighborhood of Y � X . However, we
observe that

(6) diam
�
ŒF.t/;F.t 0/�Cd

\ACd
u

�
6 diam

�
ŒF.t/;F.t 0/�\Au

�
C 2d:

The result follows from (5) and (6) with B D 2d .

Proposition A.4 There exists n1 2 N such that for every odd integer n > n0 , the
following holds: an element g 2Fr is trivial in Br .n/ if and only if there exists a finite
sequence of

�
1
4
; n
�
–weak elementary moves which sends gx0 to x0 .

Proof Let B be the parameter given by Lemma A.3. Let n1 Dmaxf1010; 12Bg. Let
n> n0 . Let g be an element of Fr . The tree X being simplicial, the translation length
in X of any nontrivial element of Fr is at least 1. It follows from our choice of n0 that
for every u2Fr nf1g, we have the following property. If diam

�
Œt0;gt0�\Au

�
> n

3
kuk

in T , then diam
�
Œx0;gx0�\Au

�
> n

4
kuk in X . In other words, to any

�
1
3
; n
�
–weak

elementary move in T corresponds a
�

1
4
; n
�
–weak elementary move in X . Hence the

result follows from Proposition A.2.
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Corollary A.5 There exists n1 2 N such that for every odd integer n > n0 , the
following holds: two isometries g;g0 2 Fr have the same image in Br .n/ if and only
if there exist two finite sequences of

�
1
8
; n
�
–weak elementary moves which respectively

send gx0 and g0x0 to the same point of X .

Proof We apply Proposition A.4 with g�1g0 .

Let us come back to Proposition 4.11. The main idea of the proof was the following.
The criterion (Proposition 6.2) gave us a sequence of moves performed in zG to send
'p.g/zx0 to zx0 . However, performing a move required us first to see a large part
of a relation along Œzx0; '

p.g/zx0�. Because of Lemma 6.5, the support of the moves
only contained yellow letters. Therefore, the red part was preserved, which led to
a contradiction. Note that it does not matter whether the requirement to perform a
move is to see one half, one fourth or one tenth of the relation. Therefore, the proof of
Proposition 4.11 works in exactly the same way with the following modifications:

(1) Replace Proposition 6.2 by Corollary A.5.

(2) Define the critical exponent n0 as

n0 Dmaxfn1; 8n2C 1; 8jgzx0� zx0jC 1g:

(3) Replace every .n; �/–elementary move by a
�

1
8
; n
�
–weak elementary move.
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Relations among characteristic classes of manifold bundles

ILYA GRIGORIEV

We study relations among characteristic classes of smooth manifold bundles with
highly connected fibers. For bundles with fiber the connected sum of g copies of a
product of spheres Sd �Sd , where d is odd, we find numerous algebraic relations
among so-called “generalized Miller–Morita–Mumford classes”. For all g > 1 , we
show that these infinitely many classes are algebraically generated by a finite subset.

Our results contrast with the fact that there are no algebraic relations among these
classes in a range of cohomological degrees that grows linearly with g , according
to recent homological stability results. In the case of surface bundles (d D 1), our
approach recovers some previously known results about the structure of the classical
“tautological ring”, as introduced by Mumford, using only the tools of algebraic
topology.

55R40, 55T10, 57R22

1 Introduction

Let M be a 2d–dimensional closed oriented smooth manifold. We denote by DiffM
the topological group of orientation-preserving diffeomorphisms of M . The bar
construction can be used to construct the space BDiff.M/ that classifies bundles with
fiber M . For any characteristic class of vector bundles p 2H�C2d .BSO2d IQ/, we
will define a generalized Miller–Morita–Mumford (MMM) class (or just kappa class)
�p 2H

�.BDiff.M/IQ/. These are the simplest examples of characteristic classes of
bundles1 with fiber M and structure group DiffM .

We are mainly interested in the case where the fiber is ]g S
d � Sd , the connected

sum of g copies of Sd �Sd . More generally, we let the fiber be a highly connected
manifold (see Definition 2.5) of genus g and dimension 2d , denoted M 2d

g or Mg .
Recall that H�.BSO2d IQ/DQŒp1; : : : ; pd�1; e�, where pi is the Pontryagin class
of degree 4i and e is the Euler class of degree 2d . Let S �H�.BSO2d IQ/ consist of

1A geometric example of such a bundle is a proper submersion f W E ! B of smooth, oriented
manifolds that has M as its fiber.
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2016 Ilya Grigoriev

the monomials in the Pontryagin classes and the Euler class. For each such monomial,
there is a corresponding MMM class in H�.BDiffMg IQ/, which gives rise to a map

Rd W QŒ�p j p 2 S�!H�.BDiffMg IQ/:

This paper presents a large family of polynomials in the MMM classes that lies in the
kernel of the map Rd , in the case that d is odd. In the d > 1 case, ours are the first
results of this kind. In the d D 1 case, we recover previously known results, but using
purely homotopy theoretic methods. Our first main result is the following.

Theorem 1.1 The image of Rd is finitely generated as a Q–algebra when d is odd
and g > 1.

In Proposition 5.8, we also show that for all odd d , the Krull dimension of the image
of Rd is at most 2d .

Our methods generalize the technique Randal-Williams developed for the d D 1 case
in [22], which in turn is based on the work of Morita [18]. They allow us to present many
specific elements in ker Rd . For instance, Randal-Williams found various relations
among the images of the classes

�i WD �eiC1 2H
2di .BDiffMg IQ/

under the map Rd in the case when d D 1. We find that the same relations hold for
any odd d (see Section 5.6 for details and examples). This is surprising, as no map
between subrings of H�.BDiffM 2d

g / for different d that takes �i to �i can preserve
the grading on the cohomology.

1.1 Manifolds with a fixed disk and homological stability

Let S 0�S be the set of monomials in the classes2 pd.dC1/=4e;pd.dC1/=4eC1; : : : ;pd�1 ,
and e of total degree greater than 2d . Let R0

d
denote the map Rd restricted to

QŒ�p j p 2 S 0�. Our second main result is:

Theorem 1.2 If d � 3 .mod 4/, the map R0
d

has nontrivial kernel in degree 2gC 2.
If d � 1 .mod 4/, the map R0

d
has nontrivial kernel in degree 6gC 6.

By contrast, the map R0
d

is known to be injective in a range of cohomological degrees
� � .g � 4/=2 when the fiber is ]g S

d � Sd and d ¤ 2. This fact and the related
phenomenon of homological stability are a large part of the motivation for our work.
We now describe them in more detail.

2 We use the notation d�e and b�c for rounding up and down (respectively) to the nearest integer.

Geometry & Topology, Volume 21 (2017)
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Let Diff.Mg ;D
2d / � Diff.Mg/ be the subgroup of those diffeomorphisms that fix

pointwise a chosen disk in Mg , and let f W BDiff.Mg ;D
2d /! BDiff.Mg/ be the

map induced on the bar constructions by the inclusion of groups. We define the map
Rı;d W QŒ�p jp 2S 0�!H�.BDiff.Mg ;D

2d /IQ/ as the map that makes the following
diagram commute:

(1.1.1)

QŒ�p j p 2 S�
Rd

// H�.BDiffMg IQ/

f �

��

QŒ�p j p 2 S 0�i
Rı;d

//

R0
d

44

?�

OO

H�.BDiff.Mg ;D
2d /IQ/

(The ı stands for “fixed disk”. See Appendix A for a comparison of the images of the
various maps in the diagram.)

The next fact, in the d D 1 case, is a consequence of the Madsen–Weiss theorem [15]
and the Harer stability theorem [11], with the improved stability range by Boldsen [3].
In the case when d > 2, the fact is a consequence of two theorems of Galatius and
Randal-Williams [10; 9].

Fact 1.3 If Mg D ]g S
d � Sd and d ¤ 2, the map Rı;d is an isomorphism in the

range of cohomological degrees � � .g� 4/=2. Thus the map R0
d

is injective in the
same range of degrees.

For d D 1, the range of degrees can be improved to � � 2g=3.

In particular, the ring H�
�
BDiff

�
]g S

d�Sd ;D2d
�
IQ
�

satisfies homological stability:
it is independent of g in a range of cohomological degrees. Theorem 1.2 implies that
this range of cohomological degrees cannot be improved beyond � � 2gC 1.

In Appendix A, we prove another version of Theorem 1.1.

Theorem A.4 The image of Rı;d is finitely generated as a Q–algebra when d is odd
and g > 1.

1.2 Comparison with known results for surface bundles

In the d D 1 case, the fiber of our bundle is an oriented genus-g surface †g DM 2
g D

]g S
1� S1 and the generalized Miller–Morita–Mumford classes correspond to the

classical ones, with �i D �eiC1 2 H
2i .BDiff.†g ;D2/IQ/. The map R1 takes the

form
R1W QŒ�1; �2; : : : �!H�.BDiff†g IQ/:

Geometry & Topology, Volume 21 (2017)
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The ring of characteristic classes of surface bundles in rational cohomology coincides
with the cohomology of the moduli space of Riemann surfaces Mg since

H�.BDiff†g IQ/DH�.B�g IQ/DH�.Mg IQ/;

where �g is the orientation-preserving mapping class group. (The first equality follows
from the theorem of Earle and Eells [5], which implies that the natural group homo-
morphism Diff†g ! �g is a homotopy equivalence, and thus the bar constructions
are weakly homotopy equivalent. The second is true only in rational cohomology
and follows from Teichmüller theory; see Farb and Margalit [8, Section 12.6] for an
overview.)

The image of R1 can therefore be thought of as a subring of H�.Mg IQ/. This
subring coincides with the classical tautological ring, as defined in Mumford [20].
Techniques of algebraic geometry and low-dimensional topology (hyperbolic geometry,
in particular) have been used to obtain many results about the structure of this ring. For
example, since Mg is a .6g�6/–dimensional orbifold, the image of R1 must vanish
above that degree, and thus be a finite-dimensional vector space over Q.

More precise results are known; we list the most relevant ones. The image of the
map R1 is trivial above degree 2.g � 2/ by a theorem of Looijenga [13], and in
degree 2.g� 2/ it is one-dimensional; see Faber [7] and Looijenga [13]. Morita [19]
showed that the kernel of R1 is nontrivial in degree 2bg=3cC 2. However, R1 is an
isomorphism in degrees � 2bg=3c according to Fact 1.3 together with the fact that
the map f �W H�.BDiff†g IZ/!H�.BDiff.†g ;D2/IZ/ is an isomorphism in the
same range of degrees; see Boldsen [3] and Harer [11]. For two conjectural, complete
descriptions of ker R1 , which differ for g > 23 but are known to be true for g � 23,
see Faber [7] and Pandharipande and Pixton [21].

Since the relations in Theorems 1.2 and 1.1 have high cohomological degree, they
follow from Looijenga’s theorem in the d D 1 case. We provide a new proof for the
relations of lower degree obtained by Randal-Williams in [22], including all of the
existing relations for g� 5. It is unclear whether our strengthening of Randal-Williams’
methods can result in genuinely new relations in the d D 1 case.

1.3 Outline of the paper

In Section 2, we define the generalized Miller–Morita–Mumford classes. We then
state the main technical result of the paper and the primary source of our relations,
Theorem 2.7. We outline its proof and apply it to prove Theorem 1.2.

The details of the proof of Theorem 2.7 take up Sections 3 and 4. In the special case of
surface bundles, this work leads to a stronger statement and a new proof of a result of
Morita [18, Section 3].

Geometry & Topology, Volume 21 (2017)
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In Section 5, we use Theorem 2.7 to prove Theorem 1.1 and our other results. These
calculations use methods Randal-Williams developed for surface bundles in [22],
originally based on Morita’s result.

Appendix A discusses the relationship between the maps Rd , R0
d

and Rı;d , and
proves Theorem A.4. Appendix B discusses alternative definitions of the pushforward
map on cohomology, which is a crucial ingredient in defining the MMM classes.
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2 Definitions and our main technical result

In this section, we give more precise definitions for terms used in the introduction. We
then state the main technical result of this paper and give an informal outline of its
proof. Finally, we apply it to prove Theorem 1.2.

Let M be an oriented smooth closed connected manifold and DiffM is the topological
group of orientation-preserving diffeomorphisms of M with the C1 topology.

Definition 2.1 By an oriented manifold bundle (or just manifold bundle), we mean a
bundle E! B with fiber M and structure group DiffM .

2.1 Pushforward maps

For an oriented manifold bundle � W E! B with fiber M , there is a map of abelian
groups �ŠW H�CdimM .EIZ/!H�.BIZ/ called the pushforward map, also known
as the umkehr map or the Gysin homomorphism. Note that �Š.1/D 0 when dimM ¤ 0

Geometry & Topology, Volume 21 (2017)
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because of the change of cohomological degree, and thus �Š is not a ring map. We
will give its definition (originally from [4]) in a more general setting in Section 3.3,
Definition 3.5.

To give a little substance to this notion, we mention that in the special case when E
and B are closed oriented manifolds, the map �Š coincides with the composition of
Poincaré duality in E , the natural map on homology induced by � , and Poincaré duality
in B . When restricted to de Rham cohomology, the map coincides with integration
along the fiber (these equivalences are discussed in detail in [2]).

For our present purposes, it is sufficient to recall one nontrivial property of �Š . The
pushforward map is natural in the sense that, if we form a pullback diagram of manifold
bundles

(2.1.1)
f �.E/

� 0

��

f 0
// E

�

��

A
f

// B

then for any a 2H�.E/, we have f �.�Š.a//D � 0Š.f
0�.a//.

Further properties of the pushforward map are discussed in Section 5.1.

2.2 Definition of the Miller–Morita–Mumford classes

Let P ! B be the principal DiffM–bundle corresponding to the manifold bundle
E! B . The group DiffM acts on the total space of the tangent bundle TM as well
as on M , and the bundle map TM !M is equivariant with respect to this action. So
the map

P �DiffM TM ! P �DiffMM DE

can be given the structure of a bundle over E with the same fiber and structure group
as the bundle TM !M .

Definition 2.2 The vertical tangent bundle T�E is the vector bundle of rank dimM

over E defined by the above map.

Remark 2.3 In the special case when the bundle map E ! B is a smooth map
between smooth manifolds, the vertical tangent bundle coincides with the subbundle
of TE that is the kernel of the derivative Df W TE! TB .

As we only consider orientation-preserving diffeomorphisms, T�E is an oriented vector
bundle. Its characteristic classes determine a map  W H�.BSOdimM IZ/!H�.EIZ/.

Geometry & Topology, Volume 21 (2017)
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Definition 2.4 Let E ! B be a manifold bundle with m–dimensional fiber and
p 2H lCm.BSOmIZ/. The corresponding generalized Miller–Morita–Mumford class
or kappa class is defined by

�p

�
E
#

B

�
WD �Š.

�.p// 2H l.BIZ/:

The kappa classes are natural with respect to pullbacks of bundles because of the
naturality property of pushforwards. To be more precise, the following diagram will
commute in the context of the pullback diagram (2.1.1):

H�Cm.BSOmIZ/

p 7!�p

�
f �.E/
#

A

�
))

p 7!�p

�
E
#

B

�
// H�.BIZ/

f �

��

H�.AIZ/

Every manifold bundle is a pullback of the universal bundle over BDiffM . So the
kappa classes for any bundle are pullbacks of universal classes �p 2H�.BDiffM IZ/.
Similarly, for p 2H�Cm.BSOmIQ/ there are classes

�p

�
E
#

B

�
2H�.BIQ/ and �p 2H

�.BDiffM IQ/:

2.3 Key source of the relations

Let us state the main technical result that underlies the relations discussed in this paper.
We will give an informal outline of the proof at the end of this section and postpone all
details to Sections 3 and 4.

We will consider bundles with fiber in the following class of manifolds.

Definition 2.5 By a highly connected manifold of genus g , we mean a 2d–dimensional
.d�1/–connected smooth oriented closed manifold with middle cohomology isomor-
phic to Z2g . Throughout the paper, Mg represents such a manifold.

This class includes the connected sum of g copies of Sd � Sd . To give another
example, let Q be the total space of a bundle such that the fiber and the base spaces
are smooth homotopy d–spheres. A connected sum of g copies of Q will be a highly
connected manifold of genus g .

Remark 2.6 If M is an oriented closed smooth 2d–dimensional .d�1/–connected
manifold, the universal coefficient theorem implies that Hd.M IZ/ŠHom.Hd.M/;Z/,
which is a free group. Poincaré duality and the fact that d is odd imply that the rank

Geometry & Topology, Volume 21 (2017)
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of this group must be even. So M is a highly connected manifold of genus g for some
integer g .

Theorem 2.7 Let d be an odd natural number and Mg be a 2d–dimensional highly
connected manifold of genus g . Let � W E! B be an oriented manifold bundle with
fiber M 2d

g and let a; b 2H�.EIZ/ be two classes such that �Š.a/ D 0, �Š.b/ D 0,
and deg.a/ is even.

Then the classes

�Š.a[ a/ 2H
2 deg.a/�2d .BIZ/ and �Š.a[ b/ 2H

deg.a/Cdeg.b/�2d .BIZ/

satisfy the two relations

.2gC 1/Š ��Š.a[ a/
gC1
D 0;(2.3.1)

.2gC 1/Š ��Š.a[ b/
2gC1

D 0:(2.3.2)

(Note the larger power in the second relation.)

Remark 2.8 Because of the .2gC 1/Š factor in the statement, the theorem is most
useful to give relations for cohomology with rational coefficients. It is likely that this
factor can be improved somewhat. In [18, Section 3], Morita proved the relation (2.3.1)
in the special case of d D 1 and deg aD 2 with a factor of .2gC 2/Š=.2gC1.gC 1/Š/
instead of .2gC 1/Š.

2.4 An application: proof of Theorem 1.2

In this section, we illustrate Theorem 2.7 by proving Theorem 1.2 as an application.
Further applications of Theorem 2.7 that result in more elaborate relations are discussed
in Section 5.

Proposition 2.9 Suppose d ¤ 1 is an odd integer. Let s D d.d C 1/=4e, and let ps
be the 4s–dimensional Pontryagin class. Then

�
gC1

p2s
D02H .2 or 6/.gC1/.BDiffMg IQ/; where deg �p2s D

�
2 if d � 3 .mod 4/;
6 if d � 1 .mod 4/:

Proof Let d � 3 be odd. Let � W E! .B D BDiffMg/ be the universal manifold
bundle with fiber M 2d

g . The 4s–dimensional Pontryagin class of the vertical tangent
bundle gives rise to the class ps 2H 4s.EIQ/.

Our choice of s insures that, depending on d mod 4, either 4sD dC1 or 4sD dC3.
Since under our assumptions 4s < 2d , we have �Š.ps/ D 0. Also, degps is even.
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Thus we can apply Theorem 2.7 to obtain the following relation concerning the class
�Š.p

2
s /, which is either 2– or 6–dimensional:

.2gC 1/Š�Š.p
2
s /
gC1
D 0 2H .2 or 6/.gC1/.BIQ/:

The class �Š.p2s / coincides with the class �p2s 2H
.2 or 6/.BDiffMg IQ/ by definition.

So rationally �gC1
p2s
D 0 2H .2 or 6/.gC1/.BDiffMg IQ/ as desired.

When d¤1, Proposition 2.9 immediately implies Theorem 1.2 since, in the terminology
of the introduction, p2s 2 S 0 .

Fact 1.3 implies that the class �p2s 2 H
�
�
BDiff

�
]g S

d � Sd ;D2d
�
IQ
�

is not zero
when g is large enough. Therefore we also have �p2s ¤ 02H

�
�
BDiff

�
]g S

d�Sd
�
IQ
�
,

even though we just showed �gC1
p2s
D 0.

When d D 1 and g > 1, Theorem 1.2 follows from Corollary 5.18, which in this case
is due to Morita (Looijenga’s theorem [13] is even stronger). The S1�S1 case can be
done by replacing ps with the class e�e2 in the above proof. The g D 0 case follows
from the fact that BDiffS2 ' BSO3 by a theorem of Smale.

2.5 Outline of the proof of Theorem 2.7

We aim to prove that a certain power of the class �Š.a[ b/ is torsion. If we wanted to
prove that 2˛2 D 0 for some integral cohomology class ˛ , it would be sufficient to
decompose it as product of a integral cohomology class of odd degree ˇ and another
class: ˛ D ˇ[  . Our proof is loosely analogous.

In Section 3, we will use the Serre spectral sequence for the fibration � W E! B to
define the pushforward map on cohomology �Š . The key result of Section 3 is that,
under the assumptions of Theorem 2.7, the cohomology class �Š.a[ b/ is the product
of two terms on the E2 page of the spectral sequence, at least one of which — we call
it � — has odd degree (Proposition 3.8).

The class � turns out to be a cohomology class with a 2g–dimensional, twisted coeffi-
cient system. In Section 4, we prove Proposition 4.1, which implies that since deg � is
odd, �2gC1 is torsion. We then relate various notions of cup product to conclude that
�Š.a[ b/

2gC1 and �Š.a[ a/gC1 are both torsion.

3 Spectral sequence argument

In this section, we begin the detailed proof of Theorem 2.7. A reader more interested
in applications might want to skip directly to Section 5.
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The proof of Theorem 2.7 is most naturally stated in the setting of oriented Serre
fibrations. This setting is more general than the setting of manifold bundles. We first
define the pushforward map in this generality. Then our goal is to prove Proposition 3.8,
which in certain cases allows us to decompose cohomology classes of the form �Š.a[b/.

3.1 Oriented Serre fibrations and twisted coefficient systems

By a twisted coefficient system over B , we will mean a bundle of abelian groups over B
with some fiber A and the discrete group AutA as its structure group. Given a basepoint
� 2 B , twisted coefficient systems correspond bijectively to ZŒ�1.B;�/�–modules
(see eg [16, Section 5.3]). Moreover, maps and tensor products of twisted coefficient
systems correspond to maps and tensor products of ZŒ�i .B;�/�–modules, respectively.

Let E!B be a Serre fibration, �2B be a chosen basepoint, and M be the homotopy
fiber at the basepoint. The homotopy-lifting property of Serre fibrations gives rise to an
action of �1.B;�/ on the cohomology groups H i .M IZ/ for all i . This gives rise to
a twisted coefficient system that we denote Hi .M/. The cup product on cohomology
H i .M IZ/˝H j .M IZ/!H iCj .M IZ/ is a map of ZŒ�i .B;�/�–modules. So there
is a well-defined cup product on twisted coefficient systems

(3.1.1) [W Hi .M/˝Hj .M/!HiCj .M/:

We are interested in the case in which the homotopy fiber is a closed, connected
manifold M 2d . An orientation for such a Serre fibration E ! B is a choice of a
trivialization for the twisted coefficient system corresponding to the top cohomology,
ie a choice of an isomorphism orW H2d .M/ �!� Z, where the right-hand side is the
untwisted coefficient system over B . An oriented Serre fibration is a Serre fibration
E! B that is equipped with a choice of an orientation.

Example 3.1 Any (oriented) manifold bundle in the sense of Section 2 is an example
of an oriented Serre fibration, since the structure group of the manifold bundle preserves
the given orientation of the fiber M .

3.2 Convergence of Serre spectral sequences

In this section, we recall the features of the convergence theorem for the cohomological
Serre spectral sequence that we will need.

As we will discuss in more detail in Section 4.1, for any coefficient systems A and B
over B , there is a notion of cohomology with twisted coefficients and a cup product
(different from the one defined in (3.1.1))

(3.2.1) [W Hp.BIA/˝H q.BIB/!HpCq.BIA˝B/:
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Moreover, any map of coefficient systems f W A!B determines a map on cohomology
that we will denote fcoeffW H

�.BIA/!H�.BIB/.

The Serre spectral sequence for a Serre fibration � W E ! B with fiber M (which,
for the purposes of the convergence theorem, can be any CW complex) relates the
following two objects:

(1) The cohomology of the total space H�.EIZ/ together with the cup product and
a filtration

(3.2.2) H�.EIZ/D � � � D F�1 D F 0H�.EIZ/� F 1H�.EIZ/� � � �

defined as follows. Let B.j / denote the j –skeleton of the CW complex B ,
J .j / D ��1.B.j //�E , and J .�1/ D∅. We set

F iH�.E/ WDker
�
H�.E/!H�.J .i�1//

�
D image

�
H�.E; J .i�1//!H�.E/

�
:

Note that this filtration respects the cup product, ie the cup product restricts to a
map F pH�.EIZ/˝F p

0

H�.EIZ/! F pCp
0

H�.EIZ/.

(2) The E2 page of the spectral sequence which is the bigraded ring

E
p;q
2 WDHp.BIHq.M//

with the product specified by the composition of maps

(3.2.3) �W E
p;q
2 ˝E

p0;q0

2 DHp.BIHq.M//˝Hp0.BIHq
0

.M//

[
���!
(3.2.1)

HpCp0.BIHp.M/˝Hq
0

.M//

[coeff
���!
(3.1.1)

HpCp0.BIHqCq
0

.M//DE
pCp0;qCq0

2 :

The convergence theorem relates these two objects by way of the E1 page of the
spectral sequence:

Theorem 3.2 (convergence theorem for the Serre spectral sequence [16, Theorem 5.2])
There is a spectral sequence with the E2 page as described above such that the following
two definitions of its E1 page are equivalent (together with the product structure):

(a) Successive quotients of the filtration (3.2.2) together with the cup product

Ep;q1 Š F pHpCq.EIZ/=F pC1HpCq.EIZ/:

(b) A subquotient of the E2 page obtained by repeatedly taking homology using the
differentials in the spectral sequence. Repeatedly taking subquotients of a group
results in a subquotient, so there are subgroups Bp;q �Zp;q �Ep;q2 such that

Ep;q1 DZp;q=Bp;q:
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By a small abuse of language, we write

Zp;q D ker.differentials out of .p; q/ terms/;

Bp;q D image.differentials into .p; q/ terms/:

The product structure is induced from the product structure on the E2 page. This
uses the fact that all the differentials respect the product on their respective pages
of the spectral sequence.

3.3 Pushforwards and spectral sequences

In this section, we assume that the fiber M 2d is a 2d–dimensional oriented closed
connected manifold.

Lemma 3.3 If M has dimension 2d , the filtration on cohomology is such that

F n�2dHn.EIZ/DHn.EIZ/ for all n:

If M is also .d�1/–connected, then we also have

F n�dHn.EIZ/D F n�2dC1Hn.EIZ/:

(For the indices in this and the following arguments, refer to Figure 1.)

Proof Since the fiber M is 2d–dimensional, En�q;q2 D 0 for q > 2d , and therefore
0DE

n�q;q
1 D F n�qHn.EIZ/=F n�qC1Hn.EIZ/ as well.

E1 page
p

q

2d

d

E
n�d;d
2 ŠHn�d.BIH/

E
n�2d;2d
2 ŠHn�2d.BIH2dŠZ/

p

q

2d

d

Hn.E/

F n�dHn=F n�dC1Hn

F n�2dHn=F n�2dC1Hn

E2 page

direction of
differentials

Figure 1: The E2 and E1 pages of the Serre spectral sequence with fiber a
.d�1/–connected oriented closed 2d–dimensional manifold M . The entries
with total degree n are highlighted. We abbreviate F iHn WD F iHn.EIZ/ .

Geometry & Topology, Volume 21 (2017)



Relations among characteristic classes of manifold bundles 2027

If M is .d�1/–connected, then H q.M IZ/D 0 for 2d > q > d by Poincaré duality.
Thus En�q;q2 D 0 as well in this range.

From the E2 page onwards, all the differentials in the spectral sequence go in the
down-and-right direction. In particular, there are no differentials into the 2d th row of
the spectral sequence (ie the En�2d;2di terms for i � 2). So

Bn�2d;2d D image.differentials into .n� 2d; 2d/ terms/D 0:

The convergence theorem implies that En�2d;2d1 �E
n�2d;2d
2 =Bn�2d;2d , so we have:

Lemma 3.4 E
n�2d;2d
1 �E

n�2d;2d
2 .

By definition, En�2d;2d1 D F n�2dHn.EIZ/=F n�2dC1Hn.EIZ/. We can now de-
fine the pushforward map that we use throughout this paper:

Definition 3.5 [4, Section 8] If the Serre fibration � W E!B with fiber M 2d is ori-
ented, we define the pushforward map on cohomology �ŠW H�.EIZ/!H��2d .BIZ/
to be the composition of maps

(3.3.1)
Hn.EIZ/D

F n�2dHn.EIZ/
�Š

33

// // E
n�2d;2d
1

� � // E
n�2d;2d
2

�

orcoeff
// Hn�2d .BIZ/:

Various properties of the pushforward map (which are not used in this section nor in
Section 4) are discussed in Sections 2.1 and 5.1.

3.4 Secondary pushforwards and the decomposition of pushforwards

Let us now assume that our Serre fibration is oriented and that the fiber M is a .d�1/–
connected 2d–dimensional oriented closed manifold. Let us consider the kernel of the
map �Š we just defined.

Lemma 3.6 Let .ker�Š/n WD .ker�Š/ \ Hn.EIZ/ � H�.EIZ/. If M is 2d–
dimensional and .d�1/–connected, then

.ker�Š/n D F n�dHn.EIZ/:

Proof By examining the map (3.3.1), we see that the quotient map

Hn.EIZ/DF n�2dHn.EIZ/� En�2d;2d1 DF n�2dHn.EIZ/=F n�2dC1Hn.EIZ/
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must take .ker�Š/n to zero and therefore .ker�Š/nDF n�2dC1Hn.EIZ/. Lemma 3.3
states that since M is .d�1/–connected, F n�2dC1Hn.EIZ/D F n�dHn.EIZ/.

We will now attempt to repeat the construction of the map (3.3.1). The lemma gives us
a quotient map .ker�Š/nDF n�dHn.EIZ/�E

n�d;d
1 (see also Figure 1 for indices).

It is no longer necessarily true that En�d;d1 is a subset of En�d;d2 , but the convergence
theorem states that it is in general a subset of a quotient:

Ep;q1 D
Zp;q

Bp;q
�
E
p;q
2

Bp;q
:

So we have the following sequence of maps:

(3.4.1)

.ker�Š/n

�

,,

F n�dHn.EIZ/ // // E
n�d;d
1

� � // E
n�d;d
2 =Bp;d

E
n�d;d
2 DHn�d .BIHd /

OOOO

We use the fact that the wrong-way map in this diagram is surjective to make the
following definition:

Definition 3.7 For each a 2 .ker�Š/n , we define its secondary pushforward �.a/ to
be some element in En�d;d2 D Hn�d .BIHd / which maps to the same element of
E
n�d;d
2 =Bp;d as a under the maps in (3.4.1). From now on, we assume that we have

fixed a choice of such a �.a/ for every a .

Since there is no reason for �W .ker�Š/nÜHn�d .BIHd / to be a group homomor-
phism, we will call it a correspondence rather than a map and denote it with a dashed
arrow.

Proposition 3.8 Let a 2 .ker�Š/pCd and b 2 .ker�Š/p
0Cd . The cohomology class

�Š.a[ b/ 2H
pCp0.BIZ/ is the image of �.a/˝ �.b/ under the following map:

(3.4.2)
E
p;d
2 ˝E

p0;d
2

�
// E
pCp0;2d
2

�

orcoeff
// HpCp0.BIZ/

�.a/˝ �.b/
� //

2

�Š.a[ b/

2

Proof Since the Serre spectral sequence is multiplicative, every term in the dia-
gram (3.4.1) is a subset of some ring. The following diagram combines the multiplica-
tion maps on every term:

Geometry & Topology, Volume 21 (2017)



Relations among characteristic classes of manifold bundles 2029

.a˝b/2 .ker�Š/pCd ˝ .ker�Š/p
0Cd [

// HpCp0C2d .EIZ/

�Š(a)

oo

F pHpCd .EIZ/˝F p
0

Hp0Cd .EIZ/

����

F pCp
0

HpCp0C2d .EIZ/

����

E
p;d
1 ˝E

p0;d
1

E1 mult.
//

� _

��

E
pCp0;2d
1 � _

��

E
p;d
2

Bp;d
˝
E
p0;d
2

Bp
0;d

E2 mult.

(b)
//
E
pCp0;2d
2

BpCp
0;2d
DE

pCp0;2d
2

orcoeff �

��

E
p;d
2 ˝E

p0;d
2

OOOO

�Š.a[b/2HpCp0.BIZ/3�.a/˝�.b/

We observe the following:

� The convergence theorem implies that the diagram commutes and the map (b) is
well defined.

� The composition of maps (a) coincides with the map (3.3.1) from the definition
of �Š .

� In the image of the map (b), the group BpCp
0;2d is zero as we discussed in the

proof of Lemma 3.4.

� The composition of maps from E
p;d
2 ˝E

p0;d
2 to HpCp0.BIZ/ in the diagram

is precisely the map (3.4.2).

By the construction of the secondary pushforward, the image of �.a/ ˝ �.b/ in
HpCp0.BIZ/ is the same as the image of a˝ b , which is precisely �Š.a[ b/.

4 Remainder of the proof of Theorem 2.7

The first goal of this section is to prove the following property of the cup product (3.2.1):

Proposition 4.1 Let H be a twisted coefficient system with fiber Zk with k � 2g .
Let � 2H�.BIH/ have odd degree. Then

.2gC 1/Š � �2gC1 D 0 2H .2gC1/ deg.�/.BIH˝2gC1/:
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This proposition is a generalization of the fact that if ˇ 2H�.BIZ/ has odd degree,
then 2ˇ2 D 0. Similarly to that fact, the proof relies on the generalized commutativity
of cup product with twisted coefficients.

Once we prove Proposition 4.1, we will relate it with Proposition 3.8 to complete the
proof of Theorem 2.7.

4.1 Cup product and twisted coefficients

In this section, we state the formal properties of cup product for cohomology with
twisted coefficients that we use. They generalize familiar properties of the usual cup
product. See [23] for a reference.

Cohomology with twisted coefficients assigns a graded abelian group H�.X IA/ to
the pair .X;A/ of a space and a twisted coefficient system. Given two coefficient
systems A and B over the same space X , the cup product with twisted coefficients we
mentioned in (3.2.1) is a map [W H�.X;A/˝H�.X;B/!H�.X;A˝B/. Also, given
a map of coefficient systems f W A! B , there is a corresponding map on cohomology
fcoeff W H

�.X IA/!H�.X IB/.

The following properties of cup products on cohomology with twisted coefficients will
be important for us:

� The cup product is associative in the sense that the two possible cup products of
three terms H�.X;A/˝H�.X;B/˝H�.X; C/!H�.X;A˝B˝ C/ are the
same.

� The cup product commutes with change of coefficients in the following sense:
Let f W A! B be and gW C! D be maps of coefficient systems (all over the
same space X ). There is a corresponding map f ˝ gW A˝ C! B˝D . The
following diagram commutes:

H�.X IA/˝H�.X I C/
fcoeff˝gcoeff

//

[

��

H�.X IB/˝H�.X ID/

[

��

H�.X IA˝ C/
.f˝g/coeff

// H�.X IB˝D/

� The cup product is graded-commutative in the following sense: Denote by
� W A˝B! B˝A the map that swaps the coordinates. For a 2Hp.X IA/ and
b 2H q.X IB/, we have

(4.1.1) ˛[ˇ D .�1/pq�coeff.ˇ[˛/:
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These facts can be proven in the same way as the corresponding facts for the regular
cup product; we refer to [23, Section 11] for details. As in the regular case, graded
commutativity of the cup product doesn’t hold in general on the level of chains.

4.2 Powers of odd classes and proof of Proposition 4.1

Before proving Proposition 4.1, we need to state two lemmas.

For any representation V of the symmetric group Sn , we denote by AltV the alter-
nating subrepresentation

AltV D fv 2 V j 8� 2 Sn; � � v D sgn.�/vg � V:

Let H be a twisted coefficient system. Then H˝t, for any t , is an St–representation
with the action defined by � � .h1˝ � � �˝ht /D .h�.1/˝ � � �˝h�.t//. This action on
coefficients also makes the cohomology H�.BIH˝t / into an St–representation.

Lemma 4.2 If � 2H deg.�/.BIH/ with deg.�/ odd, then �t 2 AltH�.BIH˝t /.

Proof First, consider the t D 2 case. Since � has odd degree, the formula for commu-
tativity of cup product states that, if � 2 S2 is the nontrivial transposition,

�coeff.�[ �/D��[ �D sgn.�/ � .�[ �/ 2H 2 deg.�/.BIH˝2/:

The general case follows from the facts that any permutation � 2St can be decomposed
into a product of transpositions, and that the number of these transpositions mod 2 is
determined by sgn.�/.

The inclusion i W AltH˝t ,! H˝t is a map of coefficient systems, and therefore
induces a map on cohomology. If our coefficient system was a Q–vector space,
we would want to prove that all of AltH�.BIH˝tQ / is in the image3 of the map
icoeffW H

�.BIAltH˝tQ /! H�.BIH˝tQ /. We prove an integral version of the same
statement.

Lemma 4.3 Suppose ˛ 2 AltH deg˛.BIH˝t /. Then t Š˛ is contained in the image
of the map icoeffW H

�.BIAltH˝t /!H�.BIH˝t /. By an abuse of notation, we will
denote this fact by t Š˛ 2H�.BIAltH˝t /.

Proof Consider the map on coefficient systems pW H˝t ! AltH˝t defined by

.v 2H˝t / p
7�!

� X
�2St

sgn.�/.� � v/
�
:

3With a little more work, one can show that icoeff induces an isomorphism H�.BIAltH˝tQ / ��!

AltH�.BIH˝tQ / .
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(It is easy to check that its image indeed lies in AltH˝t � H˝t .) The map on
cohomology pcoeff has image in H�.BIAltH˝t /.

At the same time, if ˛ 2AltH deg˛.BIH˝t /�H�.BIH˝t /, then �coeff �˛D sgn.�/˛ ,
and thus

pcoeff.˛/D
X
�2St

sgn.�/.�coeff �˛/D
X
�2St

sgn.�/2.˛/D t Š˛:

So t Š˛ 2H�.BIAltH˝t / as desired.

Proof of Proposition 4.1 Let � 2 H�.BIH/ have odd degree and suppose that the
twisted coefficient system H has a free abelian group of rank � 2g as fiber. Then
we have AltH˝2gC1 D 0. By the above two lemmas, t Š�t 2 H�.BIAltH˝t /. So
.2gC 1/Š�2gC1 D 0 as desired.

Remark 4.4 In the above proof, the full strength of the assumption that H is free
abelian is unnecessary. If the fiber of H is any finitely generated abelian group such
that dimQ.H˝Q/� 2g , then AltH˝2gC1 will be a torsion group, and so �2gC1 will
be torsion. If H is generated by 2g elements and has no 2–torsion, AltH˝2gC1 D 0.

4.3 Proof of Theorem 2.7

Let d be an odd natural number and � W E! B be an oriented Serre fibration with
fiber M 2d

g , a 2d–dimensional highly connected manifold of genus g .

Remark 4.5 The result we prove is more general than the statement of Theorem 2.7,
as we do not need to make any assumptions about smoothness of the bundle or of Mg .
However, to apply the theorem to more general bundles, one would need to define
some sort of “kappa classes” as pushforwards of some cohomology classes on the total
space. The results of Ebert and Randal-Williams from [6] show that this is possible in
rational cohomology for topological bundles with fiber Mg . Their results also suggests
that some kappa classes can be defined this way for block bundles with structure group
BDiffMg . To apply the full strength of our results, one would need also to define

intersection classes (see Definition 5.9) in such a way that Lemma 5.11 holds.

Let us restate Proposition 3.8 from the last section in a form that does not involve
spectral sequences. Let H denote the twisted coefficient system Hd .Mg/ and ! denote
the map

!W H˝H [
�!H2d .Mg/

or
�!Z:
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Proposition 4.6 Let a 2 H deg.a/.E/ and b 2 H deg.b/.E/ be two classes such that
�Š.a/D0 and �Š.b/D0. Then there are �2H deg.a/�d .BIH/ and �2H deg.b/�d .BIH/
that depend only on a and b (respectively) such that �Š.a[ b/ is the image of �˝ �
under the following composition of maps, where i D deg.a/C deg.b/� 2d :

(4.3.1)
H deg.a/�d.BIH/˝H deg.b/�d.BIH/ [

// H i.BIH˝H/
!coeff

// H i.BIZ/

�˝ �
� //

2
�Š.a[ b/

2

Proof The map (3.4.2) from Proposition 3.8 is the composition of the product on
the E2 page of the spectral sequence (3.2.3) with the orientation isomorphism on
coefficients:

.orcoeff ı �/W E
p;d
2 ˝E

p0;d
2 DHp.BIH/˝Hp0.BIH/ [

��!HpCp0.BIH˝H/
[coeff
��!HpCp0.BIH2d .Mg//

orcoeff
��!HpCp0.BIZ/:

The composition of the last two arrows in the above diagram is precisely !coeff , and
thus the maps (3.4.2) and (4.3.1) coincide.

Note that if deg.a/ is even while d is odd, then deg.�/ will be odd.

Now the following proposition implies that the map (4.3.1) commutes with taking
further cup products. The point is that one can compute the value of �Š.a[ b/l from
the values of �l and �l . More precisely, we have:

Proposition 4.7 The following diagram commutes (only up to sign in the top right
corner):

.�˝�/

:̋::
˝

.�˝�/

2

0@H deg.a/�d .BIH/
˝

H deg.b/�d .BIH/

1A˝l

[

��

[

**

˙

�permute coord.,
then [˝[

�
//

0@H .deg.a/�d/�l.BIH˝l/
˝

H .deg.b/�d/�l.BIH˝l/

1A
[

then permute
coefficients
��

3
˙.�[���[�/
˝

.�[���[�/

H i.BIH˝H/˝l [
//

.!coeff/
˝l

��

H il.BI .H˝H/˝l/

.!˝l /coeff
��

�Š.a[b/
˝l2H i.BIZ/˝l

[
// H il.BIZ˝lŠZ/ 3 �Š.a[b/l

Proof The commutativity of this diagram follows from repeated applications of the
associativity of cup product and the fact that cup product commutes with change of
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coefficients. In the top right corner, we need to also use the commutativity of cup
product, which may insert a sign.

Proof of Theorem 2.7 Let a; b 2 H�.EIZ/ be two classes such that �Š.a/ D 0,
�Š.b/D 0, and deg.a/ is even. By the Proposition 4.7 and the decomposition (4.3.1),
we see that there are

� 2H deg.a/�d .BIH/ and � 2H deg.b/�d .BIH/

such that �Š.a [ b/2gC1 is the image of �2gC1 [ �2gC1 under some group homo-
morphism (the composition of the vertical maps on the right side of the diagram in
Proposition 4.7). Since deg.a/ is even and d is odd, � has odd cohomological degree.
Since rankHD rankHd.Mg IZ/D2g , Proposition 4.1 states that .2gC1/Š � �2gC1D0.
This proves that .2gC 1/Š � �Š.a[ b/2gC1 D 0.

Similarly, �Š.a [ a/gC1 is the image of �gC1 [ �gC1 D �2gC1 [ � under a group
homomorphism. Again .2gC1/Š � �2gC1D 0 and thus .2gC1/Š ��Š.a[a/gC1D 0.

5 Generating relations using methods of Randal-Williams

In this section, we apply Theorem 2.7 to obtain the results claimed in the introduction
as well as some additional relations in kerRd .

5.1 Further properties of pushforwards

To do our calculations, we will use the following properties of the pushforward map.

Proposition 5.1 (properties of the pushforward map) Let � W E ! B be an ori-
ented Serre fibration with some closed manifold M as fiber. The pushforward map
�ŠW H

�Cdim.M/.EIZ/!H�.BIZ/, as defined in Definition 3.5, satisfies the follow-
ing:

(1) For any classes a 2H�.EIZ/ and b 2H�.BIZ/, we have

�Š.a[�
�.b//D �Š.a/[ b:

This makes the pushforward into a map of H�.BIZ/–modules, and is sometimes
called the push-pull formula.

(2) As already mentioned in Section 2.1, pushforwards are natural with respect to
maps f W A!B . If � 0W f �.E/!A is the pullback of the fibration � W E!B ,
then for any a 2H�.EIZ/, we have f �.�Š.a//D � 0Š.f

�.a//.
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(3) Suppose both maps G � 00
�!E and E �

�!B are oriented Serre fibrations with
(possibly different) closed oriented manifolds as fibers. Then so is the com-
position .� ı� 00/W G! B . Pushforward maps are functorial in the sense that
�Šı�

00
Š
D .� ı� 00/Š as maps from the cohomology of G to the cohomology of B .

For proofs, we refer to [4, Section 8].

We will also need the following well-known fact:

Lemma 5.2 Let � W E! B be an oriented manifold bundle such that B is connected
and the fiber is a closed connected oriented manifold M . Let e D e.T�E ! E/ 2

H dimM .EIZ/. Then �Š.e/ D �.M/ 2 H 0.BIZ/, where �.M/ 2 Z is the Euler
characteristic of M .

Proof First consider the case when B is a point and E DM . The vertical tangent
bundle then coincides with the tangent bundle of M . Its Euler class is e.TM !M/D

�.M/ � ŒM �, where ŒM � is the generator of H dimM .M IZ/ determined by the orien-
tation. It follows easily from Definition 3.5 that �Š.ŒM �/ D 1 and therefore, by the
push-pull formula, �Š.�.M/ � ŒM �/D �.M/ 2H 0.f�g/.

In general, consider the inclusion of a point f�g ,! B . The induced map on H 0 is
an isomorphism. The desired statement follows from the fact that the Euler class, the
vertical tangent bundle, and the pushforward map are all natural with respect to the
pullbacks of bundles.

Remark 5.3 For manifold bundles, there is a commonly used alternative definition
of the pushforward map that uses the Pontryagin–Thom construction (see [2] or [1,
Section 4]). It coincides with our definition of the pushforward map rationally and,
moreover, the two definitions coincide for integral cohomology as long as B is a
CW complex of finite type (see Appendix B). We do not know whether the two
definitions coincide nor whether Theorem 2.7 applies integrally to the Pontryagin–
Thom pushforward more generally, particularly when B D BDiffM .

5.2 Notation and conventions

For the remainder of this section, we assume that all cohomology has rational coeffi-
cients. Thus we ignore the integral multiple of Theorem 2.7.

Throughout, M 2d
g denotes a 2d–dimensional highly connected manifold of genus g

(Definition 2.5). The most important case is when Mg D ]g S
d�Sd .

We assume that 2� 2g ¤ 0 throughout, and that 2� 2g < 0 in Section 5.5. By the
tautological ring, we mean the image of the map Rd . We denote this subring by
R� D image.Rd /�H�.BDiffM 2d

g IQ/.
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5.3 Direct applications of Theorem 2.7 and the radical

In this section, we illustrate how one can obtain relations using Theorem 2.7 directly.
These calculations can serve as a warm-up for more complicated calculations described
in Section 5.5. We prove that the tautological ring modulo nilpotent elements is
generated by at most 2d elements.

Example 5.4 Consider a manifold bundle � W E!B with 2d–dimensional fiber M 2d
g

and d odd (for example, the universal bundle). If a Pontryagin class pi 2 H 4i .E/

satisfies 4i < dimMg then �Š.pi /D 0. So the argument of Proposition 2.9 applies to
it and we have the following relation concerning �p2

i
D �Š.p

2
i / 2H

4i �2�2d .B/:

.�p2
i
/gC1 D 0 2H .8i�2d/.gC1/.B/ for i < 1

2
d D 1

4
dimM:

Example 5.5 More generally, let p 2 H 2��.E/ be any characteristic class of even
degree. Assuming that the Euler characteristic � D 2� 2g is not zero, we can use
the Euler class of the vertical tangent bundle e 2 H 2d .E/ to construct the class
aDp�.e=�/���.�Š.p//2H

�.E/. Because of the push-pull formula (Proposition 5.1)
and Lemma 5.2, this class satisfies �Š.a/D 0.

Let q 2H 2��.E/ be another such class. We apply the procedure just described and
Theorem 2.7 to obtain the following formula (we use the notation �Š.p/D �p ):

(5.3.1) 0D

�
�Š

��
p�

e

�
�p

��
q�

e

�
�q

���2gC1
D

�
�pq �

�ep

�
�q �

�eq

�
�pC

�e2

�2
�p�q

�2gC1
:

Let
p
0�R� denote the radical of the tautological ring (that is, the ideal consisting of

all the nilpotent element, also known as the nilradical). The following easy fact, together
with our finite-generation result (Theorem 1.1), provides motivation to consider it.

Lemma 5.6 If a graded commutative ring A� is finitely generated as an A0–algebra
and A0 is a field, then the following statements are equivalent:

.1/ A� is finite-dimensional; .2/ A�=
p
0D A0; .3/ dimKrullA

�
D 0:

Example 5.5 implies:

Lemma 5.7 In the ring R�=
p
0, the class �pq is in the ideal generated by �p and �q .
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Proof The expression (5.3.1) implies that

�pq �
�ep

�
�q �

�eq

�
�pC

�e2

�2
�p�q 2

p
0:

Proposition 5.8 If g¤ 1, the ring R�=
p
0 is generated by the 2d elements in the set

E D f�pi ; �pi �e j 1� i � dg. So the Krull dimension of the ring R� is at most 2d .

Proof Every generator of R� that is not in E can be written as �pq so that p; q ¤ e .
This uses the fact that pd D e2 . It follows that whenever either �p or �q is not zero,
it has strictly positive cohomological degree. By Lemma 5.7, �pq is decomposable
in R�=

p
0 as a polynomial in classes of smaller degree. It follows that R�=

p
0 is

generated by the elements of E .

5.4 The classifying spaces of manifolds with marked points

To get additional relations, we will use the methods of [22]. Those methods involve
certain natural bundles with structure group DiffMg and fiber .Mg/

�nDMg�� � ��Mg .
In this section, we introduce these bundles and the special characteristic classes they
possess. The discussion is completely analogous to the two-dimensional case, as
described in [22, Section 2.1].

Notation In this section, we denote the universal bundle EDiffMg �DiffMg Mg !

BDiffMg with fiber Mg as E2dg !M2d
g . The notation refers to the fact that in the

case when d D 1, the space M2
g has the same rational cohomology as the moduli

space of Riemann surfaces. We will also use the notation == for homotopy quotients:
.�==DiffM/ WD .��DiffM EDiffM/. For example, Mg D �==DiffMg and Eg D
Mg ==DiffMg .

For a finite set I , we let Map.I IMg/ be the space of maps I !Mg ,

Mg.I / WDMap.I IMg/==DiffMg and Mg.n/ WDMg.f1; : : : ; ng/:

The fiber of the natural map Mg.n/!Mg is .Mg/
�n . So a map from any space B

to Mg.n/ gives rise to a manifold bundle over B with fiber Mg together with a choice
of n ordered points in each fiber.

For J�I, there are natural projections �IJ WMg.I /!Mg.J / and �I∅WMg.I /!Mg .
We can identify the bundle Mg.1/!Mg with the universal bundle Eg!Mg . More
generally, the pullback of the universal bundle .�I∅/

�.Eg/ and Mg.I t f?g/ are
canonically isomorphic as bundles over Mg.I /.
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Definition 5.9 By the tautological subring of the cohomology of Mg.I / we mean the
subring R�.Mg.I //�H

�.Mg.I // generated by the following three types of classes
that we call the fundamental tautological classes:

� The generalized MMM classes �c 2 H�.Mg.I // that are pulled back from
H�.Mg/ using the canonical map Mg.I /!Mg (there is one such class for
each c 2H�.BSO2d /).

� For each choice of i 2 I , there is a canonical map �Ii WMg.I /!Mg.fig/ŠEg .
The vertical tangent bundle determines a classifying map  W Eg ! BSO2d . For
each c 2H�.BSO2d / and i 2 I , we define the class c.i/ 2H�.Mg.I // as the
pullback of c via the composition of the above-mentioned maps.4

Note that given c; d 2H�.BSO2d /, we clearly have .cd/.i/ D c.i/d.i/ .

� For each subset S � I , we consider the intersection class

�.S/ 2H
2d �.jS j�1/.Mg.I //

defined below. We will write simply �.1;2/ for �.f1;2g/ .

Definition 5.10 For S � I , let Map.I=S IMg/ �Map.I IMg/ be those maps that
send all elements of S to the same point. Note that this inclusion has codimension
.jS j � 1/ � dimM . Let Mg.I=S/DMap.I=S IMg/==DiffMg . There is an inclusion
iS WMg.I=S/ ,!Mg.I /. As shown in [22, Lemma 2.1], this inclusion has a Thom
class

�0.S/ 2H
2d.jS j�1/

�
Mg.I /;Mg.I /�Mg.I=S/IZ

�
:

We define the intersection class �.S/ to be the image of �0
.S/

in H�.Mg.I //.

Lemma 5.11 The classes �.S/ satisfy the following:

(i) For S � I 0� I , the class �.S/ 2H�.Mg.I // is a pullback of the corresponding
class �.S/ 2H�.Mg.I

0// via the map .�II 0/
�.

(ii) If S and S 0 intersect at a single point, then �.S/�.S 0/ D �.S[S 0/ . For example,
in Mg.f1; 2; ?g/, we have �.1;?/�.2;?/ D �.1;?/�.1;2/ .

(iii) In Mg.2/, we have �2
.1;2/
D �.1;2/ � e.1/ , where e is the Euler class.

(iv) For any characteristic class c , we have �.1;2/ � c.1/ D �.1;2/ � c.2/ .

(v) The pushforward of the class �.1;2/ 2H 2d .Mg.2// is 1, ie

.�
f1;2g

f1g
/Š.�.1;2//D 1 2H

0.Mg.1//:

4We use parentheses in the notation to prevent confusion with the notation pi for the i th Pontryagin
class.
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The proof of this lemma is similar to the arguments in [17, Section 11]; see also [22,
Lemma 2.1]. The proof of part (v) is very similar to the proof of Lemma 5.2.

Our next goal is to be able to compute the pushforward of any tautological class in
H�.Mg.I // via the projection maps �IJ . We will use the properties of the pushforward
described in Section 5.1.

Lemma 5.11 and the naturality of the pushforward imply the following.

Lemma 5.12 For any finite set I , we have

.�
Itf?g
I /Š.�.i?//D 1 and .�

Itf?g
I /Š.c.?//D �c

for all i 2 I and c 2H�.BSO2d /. We use the convention �e D �D 2� 2g .

Furthermore, it is possible to rewrite a tautological class in H�.Mg.I tf?g// in terms
of a tautological classes in H�.Mg.I // as follows:

Lemma 5.13 We can simplify any monomial in the fundamental tautological classes
m 2H�.Mg.I t f?g// in one of the following ways:

� If the monomial contains �.i;?/ for some i 2 I , then it can be rewritten as
mD �.i;?/ �n

0 , where n0 is a monomial in classes that do not involve the marked
point ?. That is, n0 D .�Itf?gI /�.n/, where n is a monomial in tautological
classes of Mg.I /.

� Otherwise, the monomial can be rewritten as mD c.?/ �n0 , where c is a product
(possibly empty) of characteristic classes of the vertical tangent bundle and n0 is
as before.

Proof If m does not contain any �.i;?/ , reordering its terms will put it in the required
form. Otherwise, we use the relations

�.i;?/�.j;?/ D �.i;?/�.i;j / and �.i;?/c.?/ D �.i;?/c.i/

from Lemma 5.11 to get rid of any classes that involve ? except for the single �.i;?/ .

The push-pull formula and the above lemmas give us the following procedure to
compute the pushforward of a general tautological class:

Procedure 5.14 The result of applying the pushforward map

.�
Itf?g
I /ŠW H

�.Mg.I t f?g//!H�.Mg.I //
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to a tautological class can be computed as follows, one monomial at a time. First,
simplify the monomial m 2H�.Mg.I t f?g// using Lemma 5.13. Then apply the
push-pull formula and Lemma 5.12 to get one of the following results:

.�
Itf?g
I /Š.m/D .�

Itf?g
I /Š.�.i?// �nD n if mD �.i;?/ � .�

Itf?g
I /�.n/;

.�
Itf?g
I /Š.m/D .�

Itf?g
I /Š.c.?// �nD �c �n if mD c.?/ � .�

Itf?g
I /�.n/:

In the second case above, if we have c.?/ D 1, then the pushforward will be zero.

Example 5.15 We can compute a pushforward as follows:

.�
fi;j;?g

fi;j g
/Š
�
�3.i;?/�

2
.j;?/d.?/�e

�
D .�

fi;j;?g

fi;j g
/Š
�
�.i;?/e

2
.i/�

2
.i;j /d.i/�e

�
D e2.i/�

2
.i;j /d.i/�e:

Since pushforward maps are functorial, we can apply Procedure 5.14 several times to
calculate .�IJ /Š for any J � I . There also exist formulas for calculating .�I∅/Š of a
tautological monomial in H�.Mg.I // in one step. See [22, Section 2.7] for details.

5.5 Randal-Williams’ method and proof of Theorem 1.1

We can obtain numerous relations in the cohomology of Mg by applying the following
idea of [22].

Procedure 5.16 First, we construct some tautological class c 2 R�.Mg.I t f?g//

such that .�Itf?gI /Š.c/D 0. Applying Theorem 2.7 to one or two such classes will tell
us that some polynomial in the ring R�.Mg.I // is equal to zero. We may multiply
this relation by any other polynomial and apply .�I∅/Š to the result to get a relation
among the tautological classes of Mg .

We can obtain more relations than were obtained in [22] because the version of our
Theorem 2.7 used in [22] (from [18]) only applies when the cohomological degree of c
is 2 and does not allow using two cohomology classes at once.

Example 5.17 We illustrate this procedure by repeating, with our notation, the follow-
ing example from [22, Section 2.2]. Consider the bundle � WMg.f1; ?g/!Mg.1/

(which has fiber Mg ). The following class pushes forward to 0:

��.1?/� e.?/ 2H
�.Mg.f1; ?g//:
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Theorem 2.7 applies to give us the following relation in the ring R�.Mg.1//, which
we then simplify using Procedure 5.14 and related lemmas:

(5.5.1) 0D .�Š..��.1?/� e.?//
2//gC1

D .�Š.�
2�.1?/e.1/� 2��.1?/e.1/C e

2
.?///

gC1

D ..�� 2/�e.1/C �e2/
gC1
D

gC1X
iD0

�gC1
i

�
..�� 2/�e.1//

i .�e2/
gC1�i :

Let us now assume that � D 2� 2g < 0. For each integer k , we can multiply both
sides of the formula by ek

.1/
=..�� 2/�/gC1 and apply .�f1g∅ /Š to both sides to get the

following relation in the cohomology of Mg :

(5.5.2) 0D

gC1X
iD0

� gC1
i

�
�eiCk

�
�e2

.�� 2/�

�gC1�i
2H 2d.gCk/.Mg/

(where we should keep in mind that �e0 D 0 and �e1 D �).

Corollary 5.18 From the above example, we can see that for k � 0, the degree
2d.g C k/ class �gCk D �ekCgC1 can be written as a polynomial in lower kappa
classes.

Example 5.19 Assume that �¤ 0 and fix any p 2H 2i .BSO2d /. We obtain a relation
in the cohomology of Mg.1/ by applying the second part of Theorem 2.7 to the classes
aD �.1?/�e.?/=�2H

2d .Mg.f1; ?g// and bDp.?/�.e.?/=�/�p 2H 2i .Mg.f1; ?g/

(both classes push down to zero in Mg.1/). The theorem gives us the following
formula:

(5.5.3) 0D
�
.�
f1;?g

f1g
/Š
��
p.?/� .e.?/=�/�p

��
�.1?/� .e.?/=�/

���2gC1
D

�
p.1/�

�ep

�
�
e.1/�p

�
C
�e2�p

�2

�2gC1
2H�.Mg.1//:

We will use the above example to prove Theorem 1.1. First, we need the following
lemma.

Let A � R�.Mg/ be the augmentation ideal generated by all the elements of the
tautological subring that have a nonzero cohomological degree, and let DDA �A be
the ideal of the decomposable elements.

Lemma 5.20 Assume g > 1. There is an integer N >0 that depends only on g and d
such that for all p; q 2H�.BSO2d / with degp > 0,

�.pNq/ 2 D �R�.Mg/:
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Proof If 1 � degp < 2d , we replace p with p2dC1 . This allows us to assume
that degp > 2d .

Let A0; B0; D0 �R�.Mg.1// be the following ideals:

A0D
�
�t j t 2H

>2d.BSO2d /
�
; B0D

�
t.1/ j t 2H

>2d.BSO2d /
�
; D0DA0�.A0CB0/:

We observe that:

(1) p
2gC1

.1/
2D0 . To see this, note that e.1/�p and �e2�p are in D0 since deg.p/>2d .

Under our assumption that g > 1, the formula (5.5.3) implies that we have
p
2gC1

.1/
2 D0 as well.

(2) The pushforward operation .�f1g∅ /Š takes D0 �Mg.1/ into D �Mg .

It follows that p2gC1
.1/

q.1/D .p
2gC1q/.1/ 2D0 for all q 2H�.BSO2d / and, therefore,

�.p2gC1q/ 2 D .

Now we can finally prove that the tautological ring is finitely generated.

Proof of Theorem 1.1 The infinitely many elements �.ea0 QdiD1 paii / (where the ai
are nonnegative integers and the pi are the Pontryagin classes) generate the tautological
ring rationally. By the previous lemma, there is a constant N such that �.ea0 QdiD1 paii /
is decomposable whenever at least one of the ai is greater than N . In other words, any
such generator is expressible as a polynomial in kappa classes of lower cohomological
degree.

So the finitely many generators of cohomological degree less than deg.�.eN Qd
iD1 p

N
i
//

generate the whole tautological subring of H�.BDiffMg IQ/.

5.6 Randal-Williams’ calculations and high-dimensional manifolds

Using computer calculations, Randal-Williams obtained numerous examples5 of re-
lations in the d D 1 case for g D 3; 4; 5; 6; 9 in [22, Section 2] . He also produced a
more explicit family of relations in every genus in [22, Section 2.7].

Formally, all the equations and examples from [22] can be interpreted as generators for
some ideal IRW

g �QŒ�1; �2; : : : �. In this language, the result of [22] is that the ideal
IRW
g is in the kernel of the map QŒ�1; �2; : : : �!H�.BDiffM 2

g / in the d D 1 case.
We will show the following.

Proposition 5.21 For all odd d , the same ideal IRW
g is in the kernel of the correspond-

ing map QŒ�1; �2; : : : �!H�.BDiffM 2d
g /.

5These include all the relations that exist for d D 1 and g � 5 in degrees � � 2.g � 2/ . In higher
degrees, the tautological ring vanishes completely according to [13].
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As we mentioned in the introduction, this is surprising since the cohomological degree
of �i D �eiC1 2H

2di .BDiffM 2d
g / depends on d .

Example 5.22 ([22, Example 2.5] and Proposition 5.21) For all odd values of d and
g D 4, we have the following relations in H�.BDiffM 2d

4 /:

3�21 D�32�2 2H
4d.BDiffM 2d

4 / and �22 D �1�2 D �3 D 0 2H
6d.BDiffM 2d

4 /:

For more examples of relations, see [22, Examples 2.3–2.7].

Proof of Proposition 5.21 First, we repeat the key steps of [22] at our level of
generality.

(1) Let M 2d
g ! E �

!B be a manifold bundle. Let c 2 H 2d .E/ and q D �Š.c/ 2
H 0.B/Š Z. The relation (2.3.1) from Theorem 2.7 applied to the cohomology class
.� � c � q � e/=gcd.�; q/ implies that the cohomology class

(5.6.1) �.E; c/ WD
1

.gcd.�; q//2
.�2�Š.c

2/� 2q��Š.e � c/C q
2�1/ 2H

2d .B/

has the property that �.E; c/gC1 is torsion.

This is precisely the version of [22, Theorem A] that is stated on [22, top of page 1775]
for d D 1 (we use slightly different notation). Note that the only part of the expres-
sion (5.6.1) that depends on d is the cohomological degree.

(2) Consider the bundle Mg ! Eg.n/ !Mg.n/, defined as the pullback of the
universal bundle Eg!Mg to Mg.n/. Following [22], our next step is to apply (5.6.1)
to a particular class in the cohomology of its total space.

Recall that Eg.n/ ŠMg.f1; : : : ; n; ?g/. Given a vector A D .A1; : : : ; An/ 2 Zn ,
consider the class

cA WD

nX
iD1

Ai�.i?/ 2H
2d .Eg.n//DH 2d .Mg.f1; : : : ; n; ?g//:

We define the class �A WD �.Eg.n/; cA/ using (5.6.1). It will satisfy �gC1A D 0 2

H 2d.gC1/.Mg.n/IQ/. The expression for this class does not depend on d and
coincides with [22, (2.1)].

(3) We can now obtain nontrivial examples of relations as follows, repeating the
procedure from [22, Section 2.4]. Take the equation �

gC1
A D 0 for some values

of A and n, and perhaps multiply it by another tautological class that doesn’t involve
Pontryagin classes. Then apply the pushforward .�f1;:::;ng∅ /Š to the result to obtain
an element of the kernel of the map QŒ�i j i 2 N�! H�.Md

g ;Q/. Every relation
obtained in [22] lies in the ideal IRW

g �QŒ�i j i 2N� generated by such elements.
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To complete the proof, it remains to show that the ideal IRW
g does not depend on

the value of d . Any tautological class in H�.Mg.n/IQ/ that appears in the above
construction (and any tautological class that makes sense for d D 1) is in the image of
the polynomial algebra QŒ�.ij /; e.i/; �l j 1� i < j � n; 1� l <1�. The pushforward
maps factor through these polynomial algebras. That is to say, there is a map � that
makes the following diagram commute:

QŒ�.ij /; e.i/; �l j 1� i < j � n; 1� l <1� //

�

��

H�.Mg.n/IQ/�
�
f1;:::;ng

f1;:::;n�1g

�
Š

��

QŒ�.ij /; e.i/; �l j 1� i < j � n� 1; 1� l <1� // H�.Mg.n� 1/IQ/

This map � is determined by Procedure 5.14, and does not depend on the value of d
(in fact, only the value of �e D �D 2� 2g is at all affected by what the fiber of our
bundle is). The expressions for further pushforwards such as .�f1;:::;ng∅ /Š.b/2H

�.Mg/

also cannot depend on d , since they can be computed by applying Procedure 5.14
repeatedly. It follows that the expressions for the generators of the ideal IRW

g do
not depend on d , and thus all of Randal-Williams’ examples hold verbatim in the
2d–dimensional case whenever d � 1 is odd.

Appendix A: MMM classes related to low Pontryagin classes

In this appendix, we discuss of the images of the maps Rd , R0
d

and Rı;d defined in
Section 1.1. We prove that the image of Rı;d is finitely generated. From now on, we
omit the subscript d from the notation.

Proposition A.1 The maps R, R0 and f � pictured in diagram (1.1.1) are related as
follows:

(1) There are classes q1; : : : ; qd.dC1=4/e�1 2 image.R/ � H�.BDiffMg IQ/ that
generate image.R/ as an image.R0/–module.

(2) f �.qi /D 0 2H
�.BDiff.Mg ;D

2d /IQ/ for all i .

Proof Let � W U ! BDiffMg be the universal bundle and pi 2 H�.U IQ/ be the
Pontryagin classes of the vertical tangent bundle. Since Mg is .d�1/–connected, the
map ��W H�.BDiffMg IQ/!H�.U IQ/ is an isomorphism in degrees �< d (this
can be seen eg using the Serre spectral sequence). It follows that there are classes
qi 2H

�.BDiffMg IQ/ such that pi D ��.qi / for all i < d.d C 1/=4e.

Now let m2S . If degm� 2d , then �mD 0 or �m 2Q, so �m 2 imageR0 � imageR.
If degm > 2d , then m can be decomposed as a product of some n 2 S 0 and some
Pontryagin classes pi with i < d.d C 1/=4e. Since the pushforward is a map of
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H�.BDiffMg IQ/–modules, �m D �Š
�
n �
Q
��.qi /

�
D �n �

Q
qi for some indices i .

In other words, the qi generate image.R/ as an image.R0/–module, as desired.

Let us now prove that f �.qi / D 0 for all i . It is sufficient to consider the uni-
versal bundle with a fixed disk and prove that the corresponding universal classes
qi 2H

�.BDiff.Mg ;D
2d /IQ/ are zero. We can fix a basepoint b 2D2d �M 2d

g that
determines a section of the universal bundle (which we denote Uı ). The following
diagram describes the corresponding map on cohomology:

Uı D EDiff.Mg ;D
2d /�Diff.Mg;D2d /Mg

�

��

H�.Uı IQ/

s�

��

BDiff.Mg ;D
2d /

s

KK

H�.BDiff.Mg ;D
2d /IQ/

��

SS

As s is a section we must have s�.pi /D s�.��.qi //D qi as long as i < d.d C1/=4e.
So qi D s�.pi / is a characteristic class of the bundle s�.T�Uı/ over BDiff.Mg ;D

2d /.
Since a neighborhood of the point b is fixed by the action of Diff.Mg ;D

2d /, this
bundle is trivial, and so qi must be zero.

Observation A.2 For d>3, in the notation of the proof above, p1D��.q1/2H�.U /.
Therefore, for all g ,

��e2p1D��Š.e
2
���.q1//D�Š.e/ � q1 ��Š.e

2/D �ep1�e2 2H
�.BDiffMg IQ/:

So the map R has nontrivial relations in its kernel that do not depend on g . This cannot
happen in ker Rı or ker R0 by Fact 1.3.

Proposition A.1 implies the following.

Corollary A.3 f �.�m/ D 0 if �m 2 image.R/� image.R0/. So image.f � ıR/ D
image.Rı/.

Theorem A.4 The image of Rı;d is a finitely generated as a Q–algebra when d is
odd and g > 1.

Proof By the above corollary, the image of the map Rı is a quotient of the image of
the map R, which is finitely generated by Theorem 1.1.

Remark A.5 If we require that all the Pontryagin classes pi mentioned in Section 5
satisfy i � d.d C 1/=4e, all of the arguments in that section will apply to the map
R0W QŒ�p j p 2 S 0�!H�.BDiff.Mg/IQ/ without any further modification. This way,
one can prove that the image of the map R0 is also finitely generated. That gives
another proof that the image of Rı is finitely generated.
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Appendix B: The Pontryagin–Thom pushforward

While the definition of the pushforward map used throughout this paper applies to all
oriented Serre fibrations, in the case of manifold bundles (M is a smooth closed oriented
manifold and � W E ! B is a bundle with structure group DiffM ), there is another
commonly used definition of the pushforward map �ŠPTW H

�Cm.EIZ/!H�.BIZ/
that uses the Pontryagin–Thom construction; see [2] or [1, Section 4]. This Pontryagin–
Thom pushforward has the advantage of being defined even for generalized cohomology
theories if the bundle has an appropriate orientation. It is also necessary for constructing
the kappa classes as pullbacks of natural classes in the cohomology of the infinite-loop
space �1MTSO.2d/ in the manner of [14]. While we do not use that construction
explicitly, it is needed in the proof of Fact 1.3.

It is conceivable that the notion of kappa classes depends on which definition of the
pushforwards one uses. We do not know whether �Š and �ŠPT coincide for integral
cohomology when B DBDiffM . However, the following fact applies in most relevant
cases. It is accepted in the literature, but we provide a proof for completeness.

Proposition B.1 If E! B is a manifold bundle with structure group DiffM and B
is a CW complex of finite type, the pushforwards �ŠPT and �Š coincide.

In rational cohomology, �ŠPT and �Š coincide for any CW complex B .

Proof One can check that the Pontryagin–Thom construction commutes with bundle
pullbacks in an appropriate way so that �ŠPT satisfies the naturality property (2) from
Proposition 5.1. If we either work in rational cohomology or assume that B is a CW
complex of finite type, we have (see eg [12, Section 3.F] for an overview)

H�.B/D lim
 �
B 0�B

finite subcomplex

H�.B 0/:

So we can assume without loss of generality that B is a finite CW complex. Finally,
we use the Lemma B.2 below to reduce the case of a finite CW complex to the case
of B a closed oriented manifold.

In the case when B is a closed oriented manifold, the fact that �ŠPT and �Š coincide is
proven in [2]. Briefly, Boardman proves a multiplicativity property for the cap product,
similar to property (1) from Proposition 5.1, for both �Š and �ŠPT . He then deduces
that both pushforwards must coincide with the pushforward determined by Poincaré
duality.
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Lemma B.2 Any finite CW complex B is a retract of a smooth oriented closed
manifold D . In particular, there is a map f W D ! B such that f �W H�.BIZ/!
H�.DIZ/ is injective.

Proof 6 It is possible to embed B into a Euclidean space. A sufficiently small tubular
neighborhood T of such an embedding will be an oriented compact manifold with
boundary that deformation retracts onto T (see eg the appendix of [12]). In particular,
we have maps B i,!T

f 0
!B such that the composition is the identity.

Let D D T tıT .�T / be the double of T . It is a closed oriented manifold. There is
an obvious inclusion T ,!D and, crucially, the map f 0W T ! B extends to a map
f W D! B . So we have our retraction

B
� � i // T

� � //

f 0
88

D
f
// B:

The composition is the identity since it coincides with f 0 ı i .
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The Eynard–Orantin recursion and
equivariant mirror symmetry

for the projective line

BOHAN FANG

CHIU-CHU MELISSA LIU

ZHENGYU ZONG

We study the equivariantly perturbed mirror Landau–Ginzburg model of P 1 . We show
that the Eynard–Orantin recursion on this model encodes all-genus, all-descendants
equivariant Gromov–Witten invariants of P 1 . The nonequivariant limit of this result
is the Norbury–Scott conjecture, while by taking large radius limit we recover the
Bouchard–Mariño conjecture on simple Hurwitz numbers.

14N35

1 Introduction

The equivariant Gromov–Witten theory of P1 has been studied extensively. Okounkov
and Pandharipande [27; 28] completely solved the equivariant Gromov–Witten theory
of the projective line and established a correspondence between the stationary sector of
Gromov–Witten theory of P1 and Hurwitz theory. Givental [20] derived a quantization
formula for the all-genus descendant potential of the equivariant Gromov–Witten theory
of P1 (and more generally, Pn ). In the nonequivariant limit, these results imply the
Virasoro conjecture of P1 .

The Norbury–Scott conjecture [26] relates (nonequivariant) Gromov–Witten invariants
of P1 to Eynard–Orantin invariants [10] of the affine plane curven

x D Y C
1

Y

ˇ̌̌
.x;Y / 2C �C�

o
:

P Dunin-Barkowski, N Orantin, S Shadrin and L Spitz [5] relate the Eynard–Orantin
topological recursion to the Givental formula for the ancestor formal Gromov–Witten
potential, and prove the Norbury–Scott conjecture using their main result and Givental’s
quantization formula for the all-genus descendant potential of the (nonequivariant)
Gromov–Witten theory of P1 . It is natural to ask if the Norbury–Scott conjecture can
be extended to the equivariant setting, in a way that the original conjecture can be
recovered in the nonequivariant limit.
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1.1 Main results

Our first main result (Theorem A in Section 3.7) relates equivariant Gromov–Witten
invariants of P1 to the Eynard–Orantin invariants [10] of the affine curve�

x D t0
CY C

Qet1

Y
Cw1 log Y Cw2 log

Qet1

Y

ˇ̌̌
.x;Y / 2C �C�

�
;

where t0 and t1 are complex parameters, w1 and w2 are equivariant parameters of the
torus T D .C�/2 acting on P1 , and Q is the Novikov variable encoding the degree
of the stable maps to P1 (see Section 2.2). The superpotential of the T–equivariant
Landau–Ginzburg mirror of the projective line is given by

W w
t W C

�
!C; W w

t .Y /D t0CY C
Qet1

Y
Cw1 log Y Cw2 log

Qet1

Y
;

so Theorem A can be viewed as a version of all-genus equivariant mirror symmetry
for P1 . We prove Theorem A using the main result in [5] and a suitable version of
Givental’s formula [20] for all-genus equivariant descendant Gromov–Witten potential
of Pn (see also Lee and Pandharipande [24]).

Our second main result (Theorem B in Section 3.7) gives a precise correspondence
between genus-g , n–point descendant equivariant Gromov–Witten invariants of P1

and Laplace transforms of the Eynard–Orantin invariant !g;n along Lefschetz thimbles.
This result generalizes the known relation between the A–model, genus-0, 1–point
descendant Gromov–Witten invariants and the B–model oscillatory integrals.

1.2 Nonequivariant limit and the Norbury–Scott conjecture

Taking the nonequivariant limit w1 D w2 D 0, we obtain

Wt .Y /D t0
CY C

Qet1

Y
;

which is the superpotential of the (nonequivariant) Landau–Ginzburg mirror for the
projective line. We obtain all-genus (nonequivariant) mirror symmetry for the projective
line.

In the stationary phase t0 D t1 D 0 and QD 1, the curve becomes

fx D Y CY �1
W .x;Y / 2C �C�g;

and Theorem A specializes to the Norbury–Scott conjecture [26]. (See Section 4.2 for
details.)
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1.3 Large radius limit and the Bouchard–Mariño conjecture

Let w2 D 0, t0 D 0 and q DQet1

; we obtain

x D Y C
q

Y
Cw1 log Y;

which reduces to
x D Y Cw1 log Y

in the large radius limit q ! 0. The C�–equivariant mirror of the affine line C is
given by

W W C�!C; W .Y /D Y Cw1 log Y:

In the large radius limit, we obtain a version of all-genus C�–equivariant mirror
symmetry of the affine line C .

In particular, letting w1 D�1 and X D e�x , we obtain the Lambert curve

X D Ye�Y :

In this limit, Theorem A specializes to the Bouchard–Mariño conjecture [2] relating
simple Hurwitz numbers (related to linear Hodge integrals by the ELSV formula of
Ekedahl, Lando, Shapiro and Vainshtein [6] and Graber and Vakil [21]) to Eynard–
Orantin invariants of the Lambert curve. (See Section 5 for details.)

Borot, Eynard, Mulase and Safnuk [1] introduced a new matrix model representation
for the generating function of simple Hurwitz numbers, and proved the Bouchard–
Mariño conjecture. Eynard, Mulase and Safnuk [9] provided another proof of the
Bouchard–Mariño conjecture using the cut-and-joint equation of simple Hurwitz num-
bers. Recently, new proofs of the ELSV formula and the Bouchard–Mariño conjecture
have been given by Dunin-Barkowski, Kazarian, Orantin, Shadrin and Spitz [4].

Acknowledgment We thank P Dunin-Barkowski, B Eynard, M Mulase, P Norbury
and N Orantin for helpful conversations. The research of the authors is partially
supported by NSF DMS-1206667 and NSF DMS-1159416.

2 A–model

Let T D .C�/2 act on P1 by

.t1; t2/ � Œz1; z2�D Œt
�1
1 z1; t

�1
2 z2�:

Let CŒw� WDCŒw1;w2�DH�
T
.pointIC/ be the T–equivariant cohomology of a point.
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2.1 Equivariant cohomology of P 1

The T–equivariant cohomology of P1 is given by

H�T .P
1
IC/DCŒH;w�=h.H �w1/.H �w2/i;

where deg H D degwi D 2. Let p1 D Œ1; 0� and p2 D Œ0; 1� be the T fixed points.
Then H jpi

D wi . The T–equivariant Poincaré dual of p1 and p2 are H �w2 and
H �w1 , respectively. Let

�1 WD
H �w2

w1�w2

; �2 WD
H �w1

w2�w1

2H�T .P
1
IC/˝CŒw�C

h
w;

1

w1�w2

i
Then deg�˛ D 0, and

�˛ [�ˇ D ı˛ˇ�˛;

So f�1; �2g is a canonical basis of the semisimple algebra

H�T .P
1
IC/˝CŒw�C

h
w;

1

w1�w2

i
:

We have

�1C�2 D 1;

.�˛; �ˇ/ WD

Z
P1

�˛ [�ˇ D ı˛ˇ

Z
P1

�˛ D
ı˛ˇ

�̨
; ˛; ˇ 2 f1; 2g;

where
�1
D w1�w2; �2

D w2�w1:

Cup product with the hyperplane class is given by

H [�˛ D w˛�˛; ˛ D 1; 2:

2.2 Equivariant Gromov–Witten invariants of P 1

Suppose that d > 0 or 2g � 2C n > 0, so that Mg;n.P1; d/ is nonempty. Given
1; : : : ; n 2 H�

T
.P1;C/ and a1; : : : ; an 2 Z�0 , we define genus-g , degree-d , T–

equivariant descendant Gromov–Witten invariants of P1 :

h�a1
.1/ : : : �an

.n/i
P1;T
g;n;d

WD

Z
ŒMg;n.P1;d/�vir

nY
jD1

 
aj
j ev�j .j / 2CŒw�;

where evj WMg;n.P1; d/! P1 is the evaluation at the j th marked point, which is a
T–equivariant map. We define genus-g , degree-d primary Gromov–Witten invariants:

h1; : : : ; ni
P1;T
g;n;d

WD h�0.1/ � � � �0.n/i
P1;T
g;n;d

:
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Let t D t01C t1H . If 2g� 2C n> 0, define

hh�a1
.1/; : : : ; �an

.n/ii
P1;T
g;n WD

X
d�0

Qd
1X

lD0

1

l!
h�a1

.1/ � � ��an
.n/�0.t/ � � ��0.t/„ ƒ‚ …

l times

i
P1;T
g;nCl;d

:

Suppose that 2g� 2C nCm> 0. Given 1; : : : ; nCm 2H�
T
.P1/, we define

�
1

z1� 1

; : : : ;
n

zn� n
; nC1; : : : ; nCm

�P1;T

g;nCm;d

WD

X
a1;:::;an�0

h�a1
.1/ � � � �an

.n/�0.nC1/ � � � �0.nCm/i
P1;T
g;nCm;d

nY
jD1

z
�aj�1

j :

In particular, if nCm� 3 then

(1)
�

1

z1� 1

; : : : ;
n

zn� n
; nC1; : : : ; nCm

�P1;T

0;nCm;0

D
1

z1 � � � zn

�
1

z1
C � � �C

1

zn

�nCm�3
Z

P1

1[ � � � [ nCm;

where we use the fact M0;nCm.P
1; 0/DM0;mCn �P1 , and the identity

Z
M0;k

 
a1

1
� � � 

ak

k
D

8<:
.k�3/!Qk

jD1 aj !
if a1C � � �C ak D k � 3;

0 otherwise:

We use the second line of (1) to extend the definition of the correlator in the first line
of (1) to the unstable cases .n;m/D .1; 0/, .1; 1/, .2; 0/:

�
1

z1� 1

�P1;T

0;1;0

WD z1

Z
P1

1;�
1

z1� 1

; 2

�P1;T

0;2;0

WD

Z
P1

1[ 2;�
1

z1� 1

;
2

z2� 2

�P1;T

0;2;0

WD
1

z1Cz2

Z
P1

1[ 2:

Suppose that 2g�2CnCm> 0 or n> 0. Given 1; : : : ; nCm 2H�
T
.P1/, we define
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��
1

z1� 1

; : : : ;
n

zn� n
; nC1; : : : ; nCm

��P1;T

g;nCm

WD

X
d�0

X
l�0

Qd

l !

�
1

z1� 1

; : : : ;
n

zn� n
; nC1; : : : ; nCm; t; : : : ; t„ ƒ‚ …

l times

�P1;T

g;nCmCl;d

:

Let q DQet1

. Then, for m� 3,

hh1; : : : ; mii
P1;T
0;m
D

X
d�0

qd
h1; : : : ; mi

P1;T
0;m;d

D ım;3

Z
P1

1[� � �[mCq

mY
iD1

Z
P1

i :

2.3 Equivariant quantum cohomology of P 1

As a CŒw�–module, QH�
T
.P1IC/DH�

T
.P1IC/. The ring structure is given by the

quantum product � defined by

.1 ? 2; 3/D hh1; 2; 3ii
P1;T
0;3

;

or equivalently,

1 ? 2 D 1[ 2C q

�Z
P1

1

��Z
P1

2

�
;

where [ is the product in H�
T
.P1/ and q DQet1

. In particular,

H ?H D .w1Cw2/H �w1w2C q:

The T–equivariant quantum cohomology of P1 is

QH�T .P
1
IC/DCŒH;w; q�=h.H �w1/ ? .H �w2/� qi;

where deg H D degwi D 2 and deg q D 4.

The (nonequivariant) quantum cohomology of P1 is

CŒH; q�=hH ?H � qi:

Let

�1.q/D
1

2
C

H � 1
2
.w1Cw2/

.w1�w2/
p

1C 4q=.w1�w2/2
;

�2.q/D
1

2
C

H � 1
2
.w1Cw2/

.w2�w1/
p

1C 4q=.w1�w2/2
:

Then
�˛.q/ ? �ˇ.q/D ı˛ˇ�˛.q/;
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so f�1.q/; �2.q/g is a canonical basis of the semisimple algebra

QH�T .P
1
IC/˝C

h
w;

1

�1.q/

i
;

where �1.q/ is defined by (2). We also have

.�˛.q/; �ˇ.q//D .1?�˛.q/; �ˇ.q//D .1; �˛.q/ ? �ˇ.q//

D ı˛ˇ.1; �˛.q//D ı˛ˇ

Z
P1

�˛.q/D
ı˛ˇ

�̨ .q/
;

where

(2) �1.q/D .w1�w2/

r
1C

4q

.w1�w2/2
;

�2.q/D .w2�w1/

r
1C

4q

.w1�w2/2
D��1.q/:

Quantum multiplication by the hyperplane class is given by

H ?�˛ D
w1Cw2C�

˛.q/

2
�˛; ˛ D 1; 2:

Finally, we take the nonequivariant limit w2 D 0, w1! 0C . We obtain:

�1.q/D
1

2
C

H

2
p

q
; �2.q/D

1

2
�

H

2
p

q
;

�1.q/D 2
p

q; �2.q/D�2
p

q;

H ?�1.q/D
p

q�1.q/; H ?�2.q/D�
p

q�2.q/:

These nonequivariant limits coincide with the results in [29, Section 2].

2.4 The A–model canonical coordinates and the ‰ –matrix

Let ft0; t1g be the flat coordinates with respect to the basis f1;H g, and let fu1;u2g

be the canonical coordinates with respect to the basis f�1.q/; �2.q/g. Then

@

@u1
D

1

2

�
1�

w1Cw2

�1.q/

�
@

@t0
C

1

�1.q/

@

@t1
;

@

@u2
D

1

2

�
1�

w1Cw2

�2.q/

�
@

@t0
C

1

�2.q/

@

@t1
;

du1
D dt0

C
1

2
.�1.q/Cw1Cw2/dt1;

du2
D dt0

C
1

2
.�2.q/Cw1Cw2/dt1:
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The above equations determine the canonical coordinates u1 and u2 up to a constant
in CŒw1;w2; 1=.w1 �w2/�. Givental’s A–model canonical coordinates .u1;u2/ are
characterized by their large radius limits

(3) lim
q!0

.u1
� t0
�w1t1/D 0; lim

q!0
.u2
� t0
�w2t1/D 0:

For ˛ 2 f1; 2g and i 2 f0; 1g, define ‰ ˛
i by

du˛p
�̨ .q/

D

1X
iD0

dt i‰ ˛
i ;

and define the ‰–matrix to be

‰ WD

�
‰ 1

0
‰ 2

0

‰ 1
1

‰ 2
1

�
:

Then �
du1p
�1.q/

du2p
�2.q/

�
D Œ dt0 dt1 � ‰;

‰ ˛
0 D

1p
�̨ .q/

; ‰ ˛
1 D

�˛.q/Cw1Cw2

2
p
�̨ .q/

:

Let

‰�1
D

�
.‰�1/ 0

1
.‰�1/ 1

1

.‰�1/ 0
2
.‰�1/ 1

2

�
be the inverse matrix of ‰ , so that

1X
iD0

.‰�1/ i
˛ ‰

ˇ
i D ı

ˇ
˛ :

Then

.‰�1/ 0
˛ D

�˛.q/�w1�w2

2
p
�̨ .q/

; .‰�1/ 1
˛ D

1p
�̨ .q/

:

Let QD 1, ie q D et1

. We take the nonequivariant limit w2 D 0, w1! 0C :

u1
D t0
C 2
p

q; u2
D t0
� 2
p

q;

‰ D
1
p

2

�
e�

1
4

t1

�
p
�1e�

1
4

t1

e
1
4

t1 p
�1e

1
4

t1

�
;

‰�1
D

1
p

2

�
e

1
4

t1

e�
1
4

t1

p
�1e

1
4

t1

�
p
�1e�

1
4

t1

�
:

These nonequivariant limits agree with the results in [29, Section 2].
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2.5 The S–operator

The S–operator is defined as follows: for any cohomology classes a; b 2H�
T
.P1IC/,

.a;S.b//D
DD
a;

b

z� 

EEP1;T

0;2
:

The T–equivariant J–function is characterized by

.J; a/D .1;S.a//
for any a 2H�

T
.P1/.

Let
�1
D w1�w2; �2

D w2�w1:

We consider several different (flat) bases for H�
T
.P1IC/:

� The canonical basis: �1D .H �w2/=.w1�w2/ and �2D .H �w1/=.w2�w1/.
� The basis dual to the canonical basis with respect to the T–equivariant Poincaré

pairing: �1 D �1�1 and �2 D �2�2 .
� The normalized canonical basis y�1 D

p
�1�1 and y�2 D

p
�2�2 , which is

self-dual: y�1 D y�1 and y�2 D y�2 .
� The natural basis: T0 D 1 and T1 DH .
� The basis dual to the natural basis: T 0 DH �w1�w2 and T 1 D 1.

For ˛; ˇ 2 f1; 2g, define
S˛ˇ.z/ WD .�

˛;S.�ˇ//:

Then S.z/ D .S˛
ˇ
.z// is the matrix1 of the S–operator with respect to the ordered

basis .�1; �2/:

(4) S.�ˇ/D
2X
˛D1

�˛S˛ˇ.z/:

For i 2 f0; 1g and ˛ 2 f1; 2g, define

S y̨
i .z/ WD .Ti ;S.y�˛//:

Then .S y̨
i / is the matrix of the S–operator with respect to the ordered bases .y�1; y�2/

and .T 0;T 1/:

(5) S.y�˛/D
1X

iD0

T iS y̨
i .z/:

1We use the convention that the left superscript/subscript is the row number and the right super-
script/subscript is the column number.
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We have

z
@J

@t i
D

2X
˛D1

S y̨
i .z/y�˛:

By [17; 25], the equivariant J–function is

J D e.t
0Ct1H /=z

�
1C

1X
dD1

qdQd
mD1.H �w1Cmz/

Qd
mD1.H �w2Cmz/

�
:

For ˛ D 1; 2, define

J˛ WD J jp˛ D e.t
0Ct1w˛/=z

1X
dD0

qd

d!zd

1Qd
mD1.�

˛Cmz/
:

Then

z
@J

@t0
D J D

2X
˛D1

J˛�˛; z
@J

@t1
D z

2X
˛D1

@J˛

@t1
�˛;

so

S y̨
i .z/D

z
p
�˛
�
@J˛

@t i
:

Following Givental, we define

zS y̨
i .z/ WD S y̨

i .z/ exp
�
�

1X
nD1

B2n

2n.2n� 1/

�
z

�˛

�2n�1 �
:

Then

zS y̨
0 .z/D

1
p
�˛

exp
�

t0C t1w˛

z
�

1X
nD1

B2n

2n.2n� 1/

�
z

�˛

�2n�1 �
�

� 1X
dD0

qd

d!zd

1Qd
mD1.�

˛Cmz/

�
;

zS y̨
1 .z/D

1
p
�˛

exp
�

t0C t1w˛

z
�

1X
nD1

B2n

2n.2n� 1/

�
z

�˛

�2n�1 �
�

�
w˛

1X
dD0

qd

d!zd

1Qd
mD1.�

˛Cmz/
C

1X
dD1

qd

.d�1/!zd

1Qd
mD1.�

˛Cmz/

�
:
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2.6 The A–model R–matrix

By Givental [20], the matrix . zS
y̌

i /.z/ is of the form

zS
y̌

i .z/D

2X
˛D1

‰ ˛
i R ˇ

˛ .z/e
uˇ=z
D .‰R.z//

ˇ
i euˇ=z;

where R.z/D .R
ˇ
˛ .z//D I C

P1
kD1 Rkzk and is unitary, and

lim
q!0

R ˇ
˛ .z/D ı˛ˇ exp

�
�

1X
nD1

B2n

2n.2n� 1/

�
z

�ˇ

�2n�1 �
:

2.7 Gromov–Witten potentials

Introducing formal variables

uD
X
a�0

uaza; where ua D

2X
˛D1

u˛a�˛.q/;

we define

FP1;T
g;n .u; t/ WD

X
a1;:::;an

ai2Z�0

1

n!
hh�a1

.ua1
/ � � � �an

.uan
/iiP

1;T
g;n

D

X
a1;:::;an

ai2Z�0

1X
mD0

1X
dD0

Qd

n!m!

Z
ŒMg;nCm.P1;d/�vir

nY
jD1

ev�j .uaj / 
aj
j

mY
iD1

ev�iCn.t/:

We define the total descendent potential of P1 to be

DP1;T.u/D exp
�X

n;g

„
g�1FP1;T

g;n .u; 0/

�
:

Consider the map � WMg;nCm.P1; d/!Mg;n which forgets the map to the target
and the last m marked points. Let x i WD �

�. i/ be the pull-backs of the classes  i

for i D 1; : : : ; n from Mg;n . Then we can define

FP1;T
g;n .u; t/ WD

X
a1;:::;an

ai2Z�0

1X
mD0

1X
dD0

Qd

n!m!

Z
ŒMg;nCm.P1;d/�vir

nY
jD1

ev�j .uaj /
x 

aj
j

mY
iD1

ev�iCn.t/:

Let the ancestor potential of P1 be

AP1;T.u; t/D exp
�X

n;g

„
g�1FP1;T

g;n .u; t/

�
:
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2.8 Givental’s formula for equivariant Gromov–Witten potential and the
A–model graph sum

The quantization of the S–operator relates the ancestor potential and the descendent
potential of P1 via Givental’s formula. Concretely, we have (see [19])

DP1;T.u/D exp.FP1;T
1

/ yS�1AP1;T.u; t/;

where F
P1;T
1

denotes
P

n F
P1;T
1;n

.u; 0/ at u0 D u and u1 D u2 D � � � D 0, and yS
is the quantization [19] of S . For our purpose, we need to describe a formula for
a slightly different potential: F

P1;T
g;n .u; t/ — the descendent potential with arbitrary

primary insertions.

Now we first describe a graph sum formula for the ancestor potential AP1;T.u; t/.
Given a connected graph � , we introduce the following notation:

� V .�/ is the set of vertices in � .

� E.�/ is the set of edges in � .

� H.�/ is the set of half-edges in � .

� Lo.�/ is the set of ordinary leaves in � .

� L1.�/ is the set of dilaton leaves in � .

With the above notation, we introduce the following labels:

� Genus gW V .�/! Z�0 .

� Marking ˇW V .�/!f1; 2g. This induces ˇW L.�/DLo.�/[L1.�/!f1; 2g,
as follows: if l 2L.�/ is a leaf attached to a vertex v2V .�/, define ˇ.l/Dˇ.v/.

� Height kW H.�/! Z�0 .

Given an edge e , let h1.e/ and h2.e/ be the two half-edges associated to e . The order
of the two half-edges does not affect the graph sum formula in this paper. Given a
vertex v 2 V .�/, let H.v/ denote the set of half-edges emanating from v . The valency
of the vertex v is equal to the cardinality of the set H.v/, written val.v/D jH.v/j. A
labeled graph E� D .�;g; ˇ; k/ is stable if

2g.v/� 2C val.v/ > 0

for all v 2 V .�/.

Let �.P1/ denote the set of all stable labeled graphs E� D .�;g; ˇ; k/. The genus of a
stable labeled graph E� is defined to be

g.E�/ WD
X

v2V .�/

g.v/CjE.�/j � jV .�/jC 1D
X

v2V .�/

.g.v/� 1/C

� X
e2E.�/

1

�
C 1:
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Define

�g;n.P
1/D fE� D .�;g; ˇ; k/ 2 �.P1/ W g.E�/D g; jLo.�/j D ng:

Given ˛ 2 f1; 2g, define
u˛.z/D

X
a�0

u˛aza:

We assign weights to leaves, edges, and vertices of a labeled graph E� 2 �.P1/ as
follows:

(1) Ordinary leaves To each ordinary leaf l 2Lo.�/ with ˇ.l/D ˇ 2 f1; 2g and
k.l/D k 2 Z�0 , we assign

.Lu/
ˇ

k
.l/D Œzk �

� X
˛D1;2

u˛.z/p
�̨ .q/

R ˇ
˛ .�z/

�
:

(2) Dilaton leaves To each dilaton leaf l 2 L1.�/ with ˇ.l/ D ˇ 2 f1; 2g and
2� k.l/D k 2 Z�0 , we assign

.L1/
ˇ

k
.l/D Œzk�1�

�
�

X
˛D1;2

1p
�̨ .q/

R ˇ
˛ .�z/

�
:

(3) Edges To an edge connecting a vertex marked by ˛ 2 f1; 2g to a vertex marked
by ˇ 2 f1; 2g and with heights k and l at the corresponding half-edges, we
assign

E˛;ˇ
k;l
.e/D Œzkwl �

�
1

zCw

�
ı˛;ˇ �

X
D1;2

R ˛
 .�z/R ˇ

 .�w/

��
:

(4) Vertices To a vertex v with genus g.v/Dg2Z�0 and marking ˇ.v/Dˇ , with
n ordinary leaves and half-edges attached to it with heights k1; : : : ; kn 2 Z�0

and m more dilaton leaves with heights knC1; : : : ; knCm 2 Z�0 , we assign

.
p
�ˇ.q/ /2g�2CnCm

Z
Mg;nCm

 
k1

1
� � � 

knCm

nCm :

We define the weight of a labeled graph E� 2 �.P1/ to be

w.E�/D
Y

v2V .�/

.
p
�ˇ.v/.q//2g.v/�2Cval.v/

� Y
h2H .v/

�k.h/

�
g.v/

Y
e2E.�/

Eˇ.v1.e//;ˇ.v2.e//

k.h1.e//;k.h2.e//
.e/

�

Y
l2Lo.�/

.Lu/
ˇ.l/

k.l/
.l/

Y
l2L1.�/

.L1/
ˇ.l/

k.l/
.l/:
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Then

log.AP1;T.u; t//D
X

E�2� .P1/

„g.E�/�1w.E�/

jAut.E�/j
D

X
g�0

„
g�1

X
n�0

X
E�2�g;n.P1/

w.E�/

jAut.E�/j
:

Now we describe a graph sum formula for F
P1;T
g;n .u; t/ — the descendant potential with

arbitrary primary insertions. For ˛ D 1; 2, let

y�˛.q/ WD
p
�̨ .q/�˛.q/:

Then y�1.q/, y�2.q/ is the normalized canonical basis of QH�
T
.P1IC/, the T–equivari-

ant quantum cohomology of P1. Define

S
y̨

y̌
.z/ WD

�
y�˛.q/;S.y�ˇ.q//

�
:

Then this is the matrix of the S–operator with respect to the ordered basis .y�1.q/; y�2.q//:

(6) S.y�ˇ.q//D
2X
˛D1

y�˛.q/S
y̨

y̌
.z/:

We define a new weight of the ordinary leaves:

(1 0 ) Ordinary leaves To each ordinary leaf l 2Lo.�/ with ˇ.l/D ˇ 2 f1; 2g and
k.l/D k 2 Z�0 , we assign

. VLu/
ˇ

k
.l/D Œzk �

� X
˛;D1;2

u˛.z/p
�̨ .q/

S
y

y̨
.z/R.�z/ ˇ

�
:

We define a new weight of a labeled graph E� 2 �.P1/ to be

Vw.E�/D
Y

v2V .�/

.
p
�ˇ.v/.q//2g.v/�2Cval.v/

� Y
h2H .v/

�k.h/

�
g.v/

Y
e2E.�/

Eˇ.v1.e//;ˇ.v2.e//

k.h1.e//;k.h2.e//
.e/

�

Y
l2Lo.�/

. VLu/
ˇ.l/

k.l/
.l/

Y
l2L1.�/

.L1/
ˇ.l/

k.l/
.l/:

ThenX
g�0

„
g�1

X
n�0

FP1;T
g;n .u; t/D

X
E�2� .P1/

„g.E�/�1 Vw.E�/

jAut.E�/j
D

X
g�0

„
g�1

X
n�0

X
E�2�g;n.P1/

Vw.E�/

jAut.E�/j
:

We can slightly generalize this graph sum formula to the case where we have n ordered
variables u1; : : : ;un and n ordered ordinary leaves. Let

uj D

X
a�0

.uj /aza
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and let

FP1;T
g;n .u1; : : : ;un; t/ WD

X
a1;:::;an

ai2Z�0

1X
mD0

1X
dD0

1

m!

Z
ŒMg;nCm.P1;d/�vir

nY
jD1

ev�j ..uj /aj / 
aj
j

�

mY
iD1

ev�iCn.t/:

Define the set of graphs z�g;n.P1/ as the definition of �g;n.P1/ except that the n

ordinary leaves are ordered. Let fl1; : : : ; lng be the ordinary leaves in � 2 z�g;n.P1/

and for j D 1; : : : ; n let

. VLuj /
ˇ

k
.lj /D Œz

k �

� X
˛;D1;2

u˛j .z/p
�̨ .q/

S
y

y̨
.z/R.�z/ ˇ

�
:

Define the weight

Vw.E�/D
Y

v2V .�/

.
p
�ˇ.v/.q//2g.v/�2Cval.v/

� Y
h2H .v/

�k.h/

�
g.v/

Y
e2E.�/

Eˇ.v1.e//;ˇ.v2.e//

k.h1.e//;k.h2.e//
.e/

�

nY
jD1

. VLuj /
ˇ.lj /

k.lj /
.lj /

Y
l2L1.�/

.L1/
ˇ.l/

k.l/
.l/:

Then X
g�0

„
g�1

X
n�0

FP1;T
g;n .u1; � � � ;un; t/D

X
E�2z� .P1/

„g.E�/�1 Vw.E�/

jAut.E�/j

D

X
g�0

„
g�1

X
n�0

X
E�2z�g;n.P1/

Vw.E�/

jAut.E�/j
:

3 B–model

3.1 The equivariant superpotential and the Frobenius structure of
the Jacobian ring

Let Y be coordinates on C� . The T–equivariant superpotential W w
t W C

� ! C is
given by

W w
t .Y /D Y C t0C

q

Y
Cw1 log Y Cw2 log

q

Y
;

where q DQet1 and Y D ey . In this section, we assume w1 �w2 is a positive real
number. The Jacobian ring of W w

t is

Jac.W w
t /Š C ŒY;Y �1; q;w�

.�@W w
t

@y

�
DCŒY;Y �1; q;w�

.D
Y �

q

Y
Cw1�w2

E
:
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Let

B WD q
@W w

t

@q
D

q

Y
Cw2:

The Jacobian ring is isomorphic to QH�
T
.P1IC/ if one identifies B with H :

Jac.W w
t /ŠCŒB; q;w�=h.B �w1/.B �w2/� qi:

The critical points of W w
t are P1 and P2 , where

P˛ D
w2�w1C�

˛.q/

2
; ˛ D 1; 2:

Endow a metric on Jac.W w
q / by the residue pairing

.f;g/D

2X
˛D1

ResYDP˛

f .Y /g.Y /

@W w
t =@y

dY

Y
:

By direct calculation, we have

.B;B/D w1Cw2; .B; 1/D .1;B/D 1; .1; 1/D 0:

We let b0 D 1, b1 D B and define bi by .bi ; bj /D ı
i
j . These calculations show the

following well-known fact:

Proposition 3.1 There is an isomorphism of Frobenius manifolds

QH�T .P
1
IC/˝CŒw�C

h
w;

1

w1�w2

i
Š Jac.W w

t /˝CŒw�C
h
w;

1

w1�w2

i
:

We denote Jac.W w
t /˝CŒw� CŒw; 1=.w1 �w2/� by HB . The Dubrovin–Givental con-

nection is denoted by rB
v D z@vC v� on HB WDHB..z//.

3.2 The B–model canonical coordinates

The isomorphism of Frobenius structures automatically ensures their canonical coordi-
nates are the same up to a permutation and constants. We fix the B–model canonical
coordinates in this subsection by the critical values of the superpotential W w

t , and find
the constant difference to the A–model coordinates that we set up in earlier sections.

Let Cw
t D f.x;y/ 2C2 W x DW w

t .e
y/g be the graph of the equivariant superpotential.

It is a covering of C� , given by y 7! ey . Let †Š P1 be the compactification of C�

with Y 2 C� � P1 as its coordinate. At each branch point Y D P˛ , we have the
expansions

x D Lu˛ � �2
˛; y D Lv˛ �

1X
kD1

h˛k.q/�
k
˛ ;
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where h˛
1
.q/ D

p
2=�̨ .q/. Note that we define �˛ by �2

˛ D Lu
˛ � x , which differs

from the definition of � in [7; 11] by a factor of
p
�1.

The critical values are

Lu˛ D t0
Cw˛t1

C�˛.q/��˛ log
�˛C�˛.q/

2
:

Since
@ Lu˛

@t0
D 1;

@ Lu˛

@t1
D

q

P˛
Cw2 D

w1Cw2C�
˛.q/

2
;

we have

(7) d Lu˛ D du˛; ˛ D 1; 2:

Recall that limq!0�
1.q/D w1�w2 , so in the large radius limit q! 0 we have

(8) lim
q!0

. Lu˛ � t0
�w˛t1/D �˛ ��˛ log�˛:

From (7), (8) and (3), we conclude that

Lu˛ D u˛C a˛; ˛ D 1; 2;

where
a˛ D �

˛
��˛ log�˛:

3.3 The Liouville form and Bergman kernel

On Cw
t , let

�D x dy

be the Liouville form on C2 D T �C . Then d�D dx ^ dy . Let

ˆ WD �jCw
t
DW w

t .e
y/ dy D .ey

C t0C qe�y
C .w1�w2/yCw2 log q/ dy:

Then ˆ is a holomorphic 1–form on C . Recall that q DQet1

and Y D ey . Define

ˆ0 WD
@ˆ

@t0
D

dY

Y
;

ˆ1 WD
@ˆ

@t1
D

� q

Y
Cw2

�
dY

Y
:

Then ˆ0 and ˆ1 descend to holomorphic 1–forms on C� which extends to meromor-
phic 1–forms on P1 . We have:

� ˆ0 has simple poles at Y D 0 and Y D1, and

ResY!0ˆ0 D 1; ResY!1ˆ1 D�1:

� ˆ1�w2ˆ0 D�qd.Y �1/ is an exact 1–form.
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Let B.p1;p2/ be the fundamental normalized differential of the second kind on †
(see eg [16]). It is also called the Bergman kernel in [10; 11]. In this simple case with
†Š P1 , we have

B.Y1;Y2/D
dY1˝ dY2

.Y1�Y2/2
:

3.4 Differentials of the second kind

Following [7; 11], given ˛ D 1; 2 and d 2 Z�0 , define

d�˛;d .p/ WD .2d � 1/!! 2�d Resp0!P˛ B.p;p0/.
p
�1�˛/

�2d�1:

Then d�˛;d satisfies the following properties:

� d�˛;d is a meromorphic 1–form on P1 with a single pole of order 2dC2 at P˛ .
� In the local coordinate �˛ near P˛ ,

d�˛;d D

�
�.2d C 1/!!

2d
p
�1

2dC1
�2dC2
˛

Cf .�˛/

�
d�˛;

where f .�˛/ is analytic around P˛ . The residue of d�˛;d at P˛ is zero, so
d�˛;d is a differential of the second kind.

The meromorphic 1–form d�˛;d is characterized by the above properties; d�˛;d can
be viewed as a section in H 0

�
P1; !P1..2d C 2/P˛/

�
. In particular, d�˛;0 is

d�˛;0 D

r
�2

�̨ .q/
d

�
P˛

Y �P˛

�
:

Then we have

d

�
ˆ0

dW

�
D d

�
Y

.Y�P1/.Y�P2/

�
D

1

P1�P2
d

�
P1

Y�P1

�
P2

Y�P2

�
D

1
p
�1

1p
2�1.q/

d�1;0C
1
p
�1

1p
2�2.q/

d�2;0

D
1
p
�2

2X
˛D1

‰ ˛
0 d�˛;0;

d

�
ˆ1

dW

�
D d

�
qCw2Y

.Y�P1/.Y�P2/

�
D

1

P1�P2

d

�
qCP1w2

Y�P1

�
qCP2w2

Y�P2

�
D

1
p
�1

1

�1.q/

�r
�1.q/

2

�
q

P1

Cw2

�
d�1;0�

r
�2.q/

2

�
q

P2

Cw2

�
d�2;0

�
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D
1

2
p
�2

��p
�1.q/C

w1Cw2p
�1.q/

�
d�1;0C

�p
�2.q/C

w1Cw2p
�2.q/

�
d�2;0

�

D
1
p
�2

2X
˛D1

‰ ˛
1 d�˛;0;

so

(9)

0B@ d
�
ˆ0

dW

�
d
�
ˆ1

dW

�
1CAD 1

p
�2
‰

�
d�1;0
d�2;0

�
;
p
�2‰�1

0B@ d
�
ˆ0

dW

�
d
�
ˆ1

dW

�
1CAD � d�1;0

d�2;0

�
:

3.5 Oscillating integrals and the B–model R–matrix

For ˛; ˇ 2 f1; 2g, i 2 f0; 1g and z > 0, define

LS ˛
i .z/ WD

Z
y2˛

eW w
q .Y /=zˆi D�z

Z
y2˛

eW w
q .Y /=z d

�
ˆi

dW

�
;

where ˛ is the Lefschetz thimble going through P˛ such that W w
q .Y /!�1 near

its ends. It is straightforward to check that
P1

iD0 bi LS ˛
i is a solution to the quantum

differential equation rBf D 0 for ˛ D 1; 2. We quote the following theorem:

Theorem 3.2 [3; 18; 20] Near a semisimple point on a Frobenius manifold of
dimension n, there is a fundamental solution S to the quantum differential equation
satisfying the following properties:

(1) S has the form
S D‰R.z/eU=z;

where R.z/ is a matrix of formal power series in z and U D diag.u1; : : : ;un/

is a matrix formed by canonical coordinates.

(2) If S is unitary under the pairing of the Frobenius structure, then R.z/ is unique
up to a right multiplication of e

P1
iD1 A2i�1z2i�1

, where the Ak are constant
diagonal matrices.

Remark 3.3 For equivariant Gromov–Witten theory of P1 , the fundamental solution
S in Theorem 3.2 is viewed as a matrix with entries in CŒw; 1=.w1�w2/�..z//ŒŒq; t

0; t1��.
We choose the canonical coordinates fu˛.t/g such that there is no constant term by (3).
Then, if we fix the powers of q , t0 and t1 , only finitely many terms in the expansion
of eU=z contribute. So the multiplication ‰R.z/eU=z is well-defined and the result
matrix indeed has entries in CŒw; 1=.w1�w2/�..z//ŒŒq; t

0; t1��.
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Remark 3.4 For a general abstract semisimple Frobenius manifold defined over a
ring A, the expression S D ‰R.z/eU=z in Theorem 3.2 can be understood in the
following way. We consider the free module M D heu1=zi˚ � � �˚heun=zi over the ring
A..z//ŒŒt1; � � � ; tn��, where t1; : : : ; tn are the flat coordinates of the Frobenius manifold.
We formally define the differential deui=z D eui=z dui=z and we extend the differential
to M by the product rule. Then we have a map d W M !M dt1˚ � � �˚M dtn . We
consider the fundamental solution S D‰R.z/eU=z as a matrix with entries in M . The
meaning that S satisfies the quantum differential equation is understood by the above
formal differential.

In our case, the multiplication in the A–model fundamental solution S D‰R.z/eU=z

is formal in z , as in Remark 3.3. On the B–model side, we use the stationary phase
expansion to obtain a product of the form ‰R.z/eU=z . The multiplications ‰R.z/eU=z

on both the A–model and B–model can be viewed as matrices with entries in M , and
their differentials are obviously the same with the formal differential above.

We repeat the argument in Givental [19] and state it as the following fact:

Proposition 3.5 The fundamental solution matrix f LS ˛
i =
p
�2�zg has the asymptotic

expansion, where LR.z/ is a formal power series in z ,

LS ˛
i .z/
p
�2�z

�

2X
D1

‰


i
LR ˛
 .z/e

Lu˛=z :

Proof By the stationary phase expansion,

LS ˛
i .z/�

p
2�ze Lu

˛=z.1C a ˛
i;1zC a ˛

i;2z2
C � � � /;

it follows that f LS ˛
i g can be asymptotically expanded in the desired form (notice that

‰ is a matrix in z–degree 0). In particular, by (9),

LR ˛
ˇ .z/�

p
ze�Lu

˛=z

2
p
�

Z
˛

eW w
t =z d�ˇ;0:

The above B–model R–matrix LR ˛
ˇ
.z/ is related to f ˛

ˇ
.u/ in Eynard [8] by

(10) f ˛ˇ .u/D
LR ˛
ˇ

�
�

1

u

�
:

Following Eynard [8], define the Laplace transform of the Bergman kernel

LB˛;ˇ.u; v; q/ WD
uv

uCv
ı˛;ˇC

p
uv

2�
eu Lu˛Cv Lu

Ž
p12˛

Z
p22ˇ

B.p1;p2/e
�ux.p1/�vx.p2/;
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where ˛; ˇ 2 f1; 2g. By [8, Equation (B.9)] and (10),

(11) LB˛;ˇ.u; v; q/D
uv

uCv

�
ı˛;ˇ �

2X
D1

LR ˛


�
�

1

u

�
LR ˇ


�
�

1

v

��
:

Setting uD�v , we conclude that�
LR�
�

1

u

�
LR
�
�

1

u

��˛ˇ
D

� 2X
D1

LR ˛


�
1

u

�
LR ˇ


�
�

1

u

��
D ı˛ˇ:

This shows LR is unitary.

Following Iritani [22] (with slight modification), we introduce the following definition:

Definition 3.6 (equivariant K–theoretic framing) We define

�chz W KT .P
1/!H�T .P

1
IQ/

��
w1�w2

z

��
by the following two properties, which uniquely characterize it:

(a) �chz is a homomorphism of additive groups:�chz.E1˚ E2/D �chz.E1/C �chz.E2/:

(b) If L is a T–equivariant line bundle on P1 then

�chz.L/D exp
�
�

2�
p
�1.c1/T .L/

z

�
:

For any E 2KT .P
1/, we define the K–theoretic framing of E by

�.E/ WD .�z/1�.c1/T .T P1/=z�

�
1�

.c1/T .T P1/

z

��chz.E/;

where .c1/T .T P1/D 2H �w1�w2 .

By localization, property (b) in the above definition is characterized by

��p˛�.OP1.l1p1C l2p2//D .�z/1��
˛=z�

�
1�

�˛

z

�
e�2l˛�

p
�1�˛=z; ˛ D 1; 2;

where �p˛ W p˛! P1 is the inclusion map.

The following definition is motivated by [12; 14]:
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Definition 3.7 (equivariant SYZ T–dual) Let L D OP1.l1p1C l2p2/ be an equi-
variant ample line bundle on P1 , where l1 and l2 are integers such that l1C l2 > 0.
We define the equivariant SYZ T–dual SYZ.L/ of L to be the oriented graph

C1 C .2l2 � 1/� i

�1 C .�2l1 � 1/� i

.�2l1 � 1/� i

.2l2 � 1/� i

in C . We extend the definition additively to the equivariant K–theory group KT .P
1/.

� i

�� i

C1 C � i

�1 � � i �1
exp

0 1

Figure 1: The equivariant SYZ T–dual of OP1.p2/ in C and the (nonequiv-
ariant) SYZ T–dual of OP1.1/ in C�

The following theorem gives a precise correspondence between the B–model oscillatory
integrals and the A–model 1–point descendant invariants.

Theorem 3.8 Suppose that z; q; w1�w2 2 .0;1/. Then, for any L 2KT .P
1/,Z

y2SYZ.L/
eW w

t =z dy D

��
1;
�.L/
z� 

��P1;T

0;2

;(12)

Z
y2SYZ.L/

eW w
t =zy dx D�

��
�.L/
z� 

��P1;T

0;1

:(13)

Here dx D d.W w
t .y//.

Proof The left-hand side of (12) isZ
y2SYZ.L/

eW w
t =z dy D�

1

z

Z
y2SYZ.L/

eW w
t =zy d.W w

t /:

By the string equation, the right-hand side of (12) is��
1;
�.L/
z� 

��P1;T

0;2

D

��
�.L/

z.z� /

��P1;T

0;1

:

So (12) is equivalent to (13).
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It remains to prove (12) for L D OP1.l1p1 C l2p1/, where l1 C l2 � 0. We will
express both sides of (12) in terms of (modified) Bessel functions. A brief review of
Bessel functions is given in Appendix A. The equivariant quantum differential equation
of P1 is related to the modified Bessel differential equation by a simple transform (see
Appendix B).

Let l1;l2
be defined as in Appendix A. ThenZ

SYZ.L/
eW w

t =z dy D

Z
SYZ.L/

exp
�

eyCt0Cqe�yCw1yCw2.t
1�y/

z

�
dy

D e.t
0Cw2t1/=z

Z
l1;l2

exp
�

ey�i�Cqei��yC.w1�w2/.y�� i/

z

�
dy

D .�1/.w1�w2/=z exp
�

t0

z
C

w1Cw2

2z
t1

�
�

Z
l1;l2

exp
�
�

2
p

q

z
cosh

�
y�

t1

2

�
C

w1�w2

z

�
y�

t1

2

��
dy

D .�1/.w1�w2/=z exp
�

t0

z
C

w1Cw2

2z
t1

�
�

Z
l1;l2

exp
�
�

2
p

q

z
cosh.y/C

w1�w2

z
y

�
dy:

By Lemma A.1,Z
l1;l2

exp
�
�

2
p

q

z
cosh.y/C

w1�w2

z
y

�
dy

D
�

sin
�
..w2�w1/=z/�

��e�2�il1.w1�w2/=zI.w1�w2/=z

�
2
p

q

z

�
� e�2�il2.w2�w1/=zI.w2�w1/=z

�
2
p

q

z

��
D�

2X
˛D1

e�2�il˛�˛=z �

sin..�˛=z/�/
I�˛=z

�
2
p

q

z

�
:

Therefore, the left-hand side of (12) isZ
SYZ.L/

eW w
t =z dy

D� exp
�

t0

z
C

w1Cw2

2z
t1

� 2X
˛D1

e�.2l˛�1/� i�˛=z
�

sin..�˛=z/�/
I�˛=z

�
2
p

q

z

�
:
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Recall from Section 2.5 that

J˛ D

��
1;

�˛

z� 

��P1;T

0;2

D �˛
��

1;
�˛

z� 

��P1;T

0;2

:

We have

J˛ D e.t
0Ct1w˛/=z

1X
dD0

qd

d!zd

1Qd
mD1.�

˛Cmz/

D e.t
0Ct1w˛/=z

1X
mD0

�
2
p

q

z

�2m
�.�˛=zC 1/

m!�.� =̨zCmC 1/

D exp
�

t0

z
C

w1Cw2

2z
t1

�
z�
˛=z�

�
�˛

z
C 1

�
I�˛=z

�
2
p

q

z

�
;

�.L/D
2X
˛D1

.�z/�
˛=.�z/C1�

�
1�

�˛

z

�
e�2l˛�

p
�1�˛=z�˛:

So the right-hand side of (12) is��
1;
�.L/
z� 

��P1;T

0;2

D

2X
˛D1

.�z/�
˛=.�z/C1�

�
1�

�˛

z

�
e�2� il˛�

˛=z J˛

�˛

D� exp
�

t0

z
C

w1Cw2

2z
t1

�
�

2X
˛D1

.�1/�
˛=.�z/e�2�il˛�

˛=z �

sin..� =̨z/�/
I�˛=z

�
2
p

q

z

�
D� exp

�
t0

z
C

w1Cw2

2z
t1

�
�

2X
˛D1

e�.2l˛�1/�i�˛=z �

sin..� =̨z/�/
I�˛=z

�
2
p

q

z

�
:

Remark 3.9 Definition 3.6 (equivariant K–theoretic framing) and Definition 3.7 (equi-
variant SYZ T–dual) can be extended to any projective toric manifold. In [13], the first
author uses the mirror theorem [17; 25] and results in [22] to extend Theorem 3.8 to
any semi-Fano projective toric manifold. The left-hand side of (12) is known as the
central charge of the Lagrangian brane SYZ.L/.

Proposition 3.10 The A– and B–model R–matrices are equal:

R ˛
ˇ .z/D

LR ˛
ˇ .z/:
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Proof By the asymptotic decomposition theorem of the S –matrix (Theorem 3.2),we
only have to compare at the limit qD 0, t0D 0 since both zS and LS are unitary. Notice
that ‰ has a nondegenerate limit at q D 0, so it suffices to show that

zS y̨i e�u˛=z
ˇ̌
qD0; t0D0

�
1

p
�2�z

LS ˛
i e�Lu

˛=z
ˇ̌̌
qD0; t0D0

:

The Lefschetz thimble 2 is fY j Y 2 .�1; 0/g. While the Lefschetz thimble 1

could not be explicitly depicted, we could alternatively consider the thimble  0
1
D

fY j Y 2 .0;1/g for z < 0 of the oscillating integral
R

eW w
t =z dy . The integral yields

the same asymptotic answer once we analytically continue z < 0 to z > 0, since the
stationary phase expansion only depends on the local behavior (higher-order derivatives)
of W w

t at the critical points.

So, letting Y D�T z for ˛ D 2, or Y D�q=.T z/ for ˛ D 1,

e�Lu
˛=z LS ˛

0 D e��
˛.q/=z

�
�˛C�˛.q/

2

��˛
z

.�z/��
˛=z

Z 1
0

e�T e�q=.T z2/T �˛=z�1 dT:

Taking the limit q! 0,

1
p
�2�z

e�Lu
˛=z LS ˛

0

ˇ̌̌̌
qD0

D
1

p
�2�z

e��
˛=z

�
��˛

z

��˛
z

�

�
��˛

z

�

�

r
1

�˛
exp

�
�

1X
nD1

B2n

2n.2n� 1/

�
z

�˛

�2n�1 �
� zS y̨0 e�u˛=z

ˇ̌
qD0

:

Here we use the Stirling formula

log�.z/� 1

2
log.2�/C

�
z�

1

2

�
log z� zC

1X
nD1

B2n

2n.2n� 1/
z1�2n:

Notice that
LS ˛
1 D z

@

@t1
LS ˛
0 D z

Z
˛

eW w
t =z
�

q

Y
Cw2

�
dY

Y
;

and similar calculation shows (letting Y D�T z if ˛D 2 and Y D�q=.T z/ if ˛D 1)

1
p
�2�z

e�Lu
˛=z LS ˛

1

ˇ̌̌̌
qD0

� w˛
r

1

�˛
exp

�
�

1X
nD1

B2n

2n.2n� 1/

�
z

�˛

�2n�1
�

� zS y̨1 e�u˛=z
ˇ̌
qD0

:

This concludes the proof.
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Notice that the matrix LR is given by the asymptotic expansion. This theorem does not
imply zS y̨i e�u˛=z D LS ˛

i e�Lu
˛=z=
p
�2�z , which are unequal.

3.6 The Eynard–Orantin topological recursion and the B–model
graph sum

Let !g;n be defined recursively by the Eynard–Orantin topological recursion [10]:

!0;1 D 0; !0;2 D B.Y1;Y2/D
dY1˝ dY2

.Y1�Y2/2
:

When 2g� 2C n> 0,

!g;n.Y1; : : : ;Yn/D

2X
˛D1

ResY!P˛

�
R yY
�DY B.Yn; �/

2.log.Y /� log. yY //dW

�

�
!g�1;nC1.Y; yY ;Y1; : : : ;Yn�1/CX
g1Cg2Dg

X
I[JDf1;:::;n�1g

I\JD∅

!g1;jI jC1.Y;YI /!g2;jJ jC1. yY;YJ /

�
;

where Y ¤ P˛ is in a small neighborhood of P˛ and yY ¤ Y is the other point in the
neighborhood such that W w

q .
yY /DW w

q .Y /.

The B–model invariants !g;n can be expressed as graph sums [23; 7; 8; 5]. We will
use the formula stated in [5, Theorem 3.7], which is equivalent to the formula in [7,
Theorem 5.1]. Given a labeled graph E� 2 �g;n.P1/ with Lo.�/ D fl1; : : : ; lng, we
define its weight to be

w.E�/D.�1/g.
E�/�1Cn

Y
v2V .�/

�
h˛

1
p

2

�2�2g�val.v/� Y
h2H.v/

�k.h/

�
g.v/

Y
e2E.�/

LB
˛.v1.e//;˛.v2.e//

k.e/;l.e/

�

nY
jD1

1
p
�2

d�
˛.lj /

k.lj /
.Yj /

Y
l2L1.�/

�
�

1
p
�2

�
Lh
˛.l/

k.l/
:

Here,

Lh˛k D�
2.2k � 1/!! h˛

2k�1
p
�1

2k�1
; LB

˛;ˇ

k;l
D Œu�kv�l � LB˛;ˇ.u; v; q/:

Note that the definitions of LB˛;ˇ
k;l

, Lh˛
k

and d�˛k in this paper are slightly different from
those in [5]; for example, the definition of LB˛;ˇ

k;l
in this paper differs from [5, Equation

(3.11)] by a factor of 2�k�l�1 . In our notation, [5, Theorem 3.7] is equivalent to:
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Theorem 3.11 For 2g� 2C n> 0,

!g;n D

X
�2�g;n.P1/

w.E�/

jAut.E�/j
:

3.7 All-genus mirror symmetry

Given a meromorphic function f .Y / on P1 which is holomorphic on P1 n fP1;P2g,
define

�.f /D
df

dW
D

Y 2

.Y �P1/.Y �P2/

df

dY
:

Then �.f / is also a meromorphic function which is holomorphic on P1 n fP1;P2g.
For ˛ 2 f1; 2g, let

�˛;0 D
1
p
�1

r
2

�̨ .q/

P˛

Y �P˛
:

Then �˛;0 is a meromorphic function on P1 with a simple pole at Y D P˛ and
holomorphic elsewhere. Moreover, the differential of �˛;0 is d�˛;0 . For k > 0, define

W ˛
k WD d..�1/k�k.�˛;0//:

Define

(14) LS ˛
y̌
.z/D�z

Z
y2˛

ex=z d�ˇ;0
p
�2
; LS

�.L/
y̌

.z/D�z

Z
y2SYZ.L/

ex=z d�ˇ;0
p
�2
:

Then

LS ˛
y̌
.z/D�zkC1

Z
y2˛

eW .y/=z
W
ˇ

k
p
�2
; LS

�.L/
y̌

.z/D�zkC1

Z
y2SYZ.L/

eW .y/=z
W
ˇ

k
p
�2
:

Therefore,

(15)
Z

y2SYZ.L/
eW .y/=z

W
ˇ

k
p
�2
D�z�k�1 LS

�.L/
y̌

.z/D�z�k�1

��
y�˛.q/;

�.L/
z� 

��P1;T

0;2

;

where the last equality follows from Theorem 3.8.

For ˛ D 1; 2 and j D 1; : : : ; n, let

(16) zu˛j .z/D

2X
ˇD1

S
y̨

y̌
.z/

u
ˇ
j .z/p
�̌ .q/

:

Theorem A (all-genus equivariant mirror symmetry for P1 ) When n > 0 and
2g� 2C n> 0, we have

(17) !g;n

ˇ̌
W ˛

k
.Yj /=

p
�2D.zuj /

˛
k

D .�1/g�1CnFP1;T
g;n .u1; : : : ;un; t/:
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Proof We will prove this theorem by comparing the A–model graph sum in the end
of Section 2.8 and the B–model graph sum in Section 3.6.

� Vertex By Section 3.2, we have h˛
1
.q/D

p
2=�̨ .q/. So, in the B–model vertex,

h˛
1
=
p

2D
p

1=�̨ .q/. Therefore the B–model vertex matches the A–model vertex.

� Edge By (11), we know that

LB
˛;ˇ

k;l
D Œu�kv�l �

�
uv

uCv

�
ı˛;ˇ �

X
D1;2

LR ˛


�
�

1

u

�
LR ˇ


�
�

1

v

���

D Œzkwl �

�
1

zCw

�
ı˛;ˇ �

X
D1;2

LR ˛
 .�z/ LR ˇ

 .�w/

��
:

By definition,

E˛;ˇ
k;l
D Œzkwl �

�
1

zCw

�
ı˛;ˇ �

X
D1;2

R ˛
 .�z/R ˇ

 .�w/

��
:

By Proposition 3.10, LR ˛
ˇ
.z/DR ˛

ˇ
.z/, so

LB
˛;ˇ

k;l
D E˛;ˇ

k;l
:

� Ordinary leaf We have the following expression for d�˛
k

(see [15]):

d�˛k DW ˛
k �

k�1X
iD0

X
ˇ

LB
˛;ˇ

k�1�i;0
W
ˇ

i :

By the calculation for edge above, for k; l 2 Z�0 ,

LB
˛;ˇ

k;l
D Œzkwl �

�
1

zCw

�
ı˛;ˇ �

X
D1;2

R ˛
 .�z/R ˇ

 .�w/

��
:

We also have
Œz0�.R ˛

ˇ .�z//D ı˛;ˇ:

Therefore,

d�˛k D

kX
iD0

2X
ˇD1

.Œzk�i �R ˛
ˇ .�z//W

ˇ
i ;

so under the identification
1
p
�2

W ˛
k .Yj /D .zuj /

˛
k ;

the B–model ordinary leaf matches the A–model ordinary leaf.
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� Dilaton leaf We have the following relation between Lh˛
k

and f ˛
ˇ
.u; q/ (see [15]):

Lh˛k D Œu
1�k �

X
ˇ

p
�1h

ˇ
1
f ˛ˇ .u; q/:

By the relation

R ˛
ˇ .z/D f

˛
ˇ

�
�1

z

�
and the fact h

ˇ
1
.q/D

p
2=�̌ .q/, it is easy to see that the B–model dilaton leaf matches

the A–model dilaton leaf.

Taking Laplace transforms at appropriate cycles to Theorem A produces a theorem
concerning descendant potential.

Theorem B (all-genus full descendant equivariant mirror symmetry for P1 ) Suppose
that n> 0 and 2g�2Cn> 0. For any L1; : : : ;Ln 2KT .P

1/, there is a formal power
series identity

(18)
Z

y12SYZ.L1/

� � �

Z
yn2SYZ.Ln/

eW .y1/=z1C���CW .yn/=zn!g;n

D .�1/g�1

��
�.L1/

z1� 1

; : : : ;
�.Ln/

zn� n

��
g;n

:

Remark 3.12 By Theorem 3.8,

(19)
Z

y12SYZ.L/
eW .y1/=z1y dx D�

��
�.L1/

z1� 1

��P1;T

0;1

;

which is the analogue of (18) in the unstable case .g; n/D .0; 1/.

Proof of Theorem B By (16),

zu˛j .z/D

2X
ˇD1

p
�̨ .q/

��
�˛.q/;

�ˇ.q/

z� 

��P1;T

0;2

u
ˇ
j .z/:

Define the flat coordinates xu˛j by

2X
˛D1

u˛j .z/�˛.q/D

2X
˛D1

xu˛j .z/�˛.0/;

and a power series in 1
z

,

S
y̨

ˇ
.z/D

��
y�˛.q/;

�ˇ.0/

z� 

��
0;2

:
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Then

zu˛j .z/D

2X
ˇD1

���
y�˛.q/;

�ˇ.0/

z� 

��
xu
ˇ
j .z/

�
C

D

2X
ˇD1

.S
y̨

ˇ
.z/xu

ˇ
j .z//C :

Notice that .S y̨
ˇ
/ is unitary, ie

P
 S
y
˛.z/S

y

ˇ
.�z/D ı=�

ˇ

˛ˇ
. We have

2X
˛D1

.S
y̨
 .�z/zu˛j .z//C D

2X
˛D1

� 2X
ˇD1

S
y̨

ˇ
.z/S

y̨
 .�z/xu

ˇ
j .z/

�
D
xu

j .z/

�
:

Taking the Laplace transform of !g;n ,Z
y12SYZ.L1/

� � �

Z
yn2SYZ.Ln/

eW .y1/=z1C���CW .yn/=zn!g;n

D

Z
y12SYZ.L1/

� � �

Z
yn2SYZ.Ln/

e
Pn

iD1 W .yi /=zi .�1/g�1Cn

�

� X
ˇi ;ai

�� nY
iD1

�ai
.�ˇi

.0//

��
g;n

nY
iD1

.xui/
ˇi
ai

�ˇ̌̌̌
.zuj /

ˇ

k
DW

ˇ

k
.yj /=

p
�2

D

Z
y12SYZ.L1/

� � �

Z
yn2SYZ.Ln/

e
Pn

iD1 W .yi /=zi .�1/g�1Cn

�

� X
ˇi ;ai

�� nY
iD1

�ai
.�ˇi

.0//

��
g;n

nY
iD1

�
�ˇi

2X
˛D1

X
k2Z�0

Œz
ai�k
i �S

y̨

ˇi
.�zi/

W ˛
k
.yi/

p
�2

��
:

Using (15),Z
y12SYZ.L1/

� � �

Z
yn2SYZ.Ln/

eW .y1/=z1C���CW .yn/=zn!g;n

D .�1/g�1Cn

� X
ˇi ;ai

�� nY
iD1

�ai
.�ˇi

.0//

��
g;n

�

nY
iD1

�
�ˇi

2X
˛D1

X
k2Z�0

.Œz
ai�k
i �S

y̨

ˇi
.�zi//S

�.Li /

y̨
.zi/.�z�k�1

i /

��

D .�1/g�1
X
ˇi ;ai

�� nY
iD1

�ai
.�ˇi

.0//

��
g;n

nY
iD1

�ˇi .�ˇi
.0/; �.Li//z

�ai�1
i

D .�1/g�1

��
�.L1/

z1� 1

; : : : ;
�.Ln/

zn� n

��
g;n

:
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4 The nonequivariant limit and the Norbury–Scott
conjecture

In this section, we consider the nonequivariant limit w1 D w2 D 0.

4.1 The nonequivariant R–matrix

By [20, Section 1.3], R.z/D I C
P1

nD1 Rnzn is uniquely determined by:

(1) The recursive relation .d C‰�1d‰/Rn D ŒdU;RnC1�.

(2) The homogeneity of R.z/: Rnqn=2 is a constant matrix.

The unique solution R.z/ satisfying the above conditions was computed explicitly
in [29]:

Lemma 4.1 [29, Lemma 3.1] We have

Rn D q�n=2 .2n� 1/!! .2n� 3/!!

n!24n

�
�1 2n

p
�1.�1/nC1

2n
p
�1 .�1/nC1

�
:

By Proposition 3.10 , R.z/D LR.z/. In this subsection, we recover the above lemma
by computing the stationary phase expansion of LS .

We assume z; q 2 .0;1/, where q DQet1

. Then

LS 2
0 D

Z yDC1

yD�1

e.t
0Cey�i�Cqe�.y�i�//=z dy

D et0=z

Z yDC1

yD�1

e�2
p

q cosh.y�t1=2/=z dy

D et0=z

Z yDC1

yD�1

e�2
p

q cosh.y/=z dy

D 2e.t
0�2
p

q/=z

Z yDC1

yD0

e�2
p

q.cosh.y/�1/=z dy:

Let T D 2
p

q.cosh.y/� 1/=z ; then

y D cosh�1
�
1C

zT

2
p

q

�
; dy D

1

2
q�

1
4 T �

1
2

r
z

1CzT=.4
p

q/
;
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LS 2
0 D e.t

0�2
p

q/=z
1X

nD0

�
z
p

q

�nC 1
2

�
�1=2

n

�
2�2n

Z TDC1

TD0

e�T T n� 1
2 dT

D e.t
0�2
p

q/=z
1X

nD0

�
z
p

q

�nC 1
2 .�1/n.2n� 1/!!

n!23n
�
�
nC

1

2

�
D
p
�e.t

0�2
p

q/=z
1X

nD0

�
z
p

q

�nC 1
2 .�1/n..2n� 1/!!/2

n!24n
;

LS 2
1 D z

@

@t1
LS 2
0

D
p
�ze.t

0�2
p

q/=z
1X

nD0

�
z
p

q

�n� 1
2
�
1C

�
1

4
C

n

2

�
z
p

q

�.�1/nC1..2n� 1/!!/2

n!24n
:

Similarly,

LS 1
0 D

p
��e.t

0C2
p

q/=z
1X

nD0

�
z
p

q

�nC 1
2 ..2n� 1/!!/2

n!24n
I

LS 1
1 D

p
��ze.t

0C2
p

q/=z
1X

nD0

�
z
p

q

�n� 1
2
�
1�

�
1

4
C

n

2

�
z
p

q

�..2n� 1/!!/2

n!24n
:

Therefore,

zS.z/D
1

p
�2�z

LS.z/; Œzn�. zS.z/e�U=z/D

�
A B

C D

�
;

where

AD
..2n� 1/!!/2

p
2n!24nq

1
2

nC 1
4

; B D

p
�1.�1/nC1..2n� 1/!!/2

p
2n!24nq

1
2

nC 1
4

;

C D
..2n� 1/!!/2

p
2n!24nq

1
2

n� 1
4

�

�
n

2
�

1

4

� ..2n� 3/!!/2

p
2.n� 1/!24n�4q

1
2

n� 1
4

;

D D

p
�1.�1/n..2n� 1/!!/2

p
2n!24nq

1
2

n� 1
4

C

�
n

2
�

1

4

�p
�1.�1/nC1..2n� 3/!!/2

p
2.n� 1/!24n�4q

1
2

n� 1
4

;

and

Rn D

0BB@ �
.2n�1/!! .2n�3/!!

n!24n

p
�1.�1/nC1.2n�1/!! .2n�3/!!

.n�1/!24n�1
p
�1.2n�1/!! .2n�3/!!

.n�1/!24n�1

.�1/nC1.2n�1/!! .2n�3/!!

n!24n

1CCA q�
1
2

n

D q�
1
2

n .2n� 1/!! .2n� 3/!!

n!24n

�
�1 2n

p
�1.�1/nC1

2n
p
�1 .�1/nC1

�
:
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4.2 The Norbury–Scott conjecture

In this subsection, we assume w1 D w2 D t0 D 0. Then

hh�a1
.H / � � � �an

.H /iiP
1

g;n D q
1
2
.
Pn

iD1 ai/C1�g
h�a1

.H / � � � �an
.H /iP

1

g;n:

Note that when 1
2

�Pn
iD1 ai

�
C 1�g is not an nonnegative integer, both sides are zero.

When 2g� 2C n> 0, the symmetric n–form !g;n is holomorphic near Y D 0, and
one may expand it in the local holomorphic coordinate zx D x�1 D .Y C q=Y /�1 .

Theorem 4.2 Suppose that 2g�2Cn> 0. Then, near Y D 0, the symmetric n–form
!g;n has the expansion

!g;n D .�1/g�1Cn
X

a1;:::;an

ai2Z�0

hh�a1
.H / � � � �an

.H /iiP
1

g;n

nY
jD1

.aj C 1/!

xajC2
dxj :

The Norbury–Scott conjecture corresponds to the specialization q D 1, ie t1 D 0

and QD 1.

Proof Define �W ˛
k

by

1
p
�2

�W ˛
k D zu

˛
k

ˇ̌
t0
aD0; t1

aD.aC1/!x�a�2dx
:

By Theorem A, it suffices to show that �W ˛
k

agrees with the expansion of W ˛
k

near
Y D 0 in zx D x�1 .

We now compute �W ˛
k

explicitly:

J D e.t
0Ct1H /=z

�
1C

1X
dD1

qdQd
mD1.H Cmz/2

�

D et0=z
�
1C t1 H

z

��
1C

1X
dD1

qd

z2d .d!/2
� 2

� 1X
dD1

qd

z2d .d!/2

dX
mD1

1

m

�
H

z

�

D et0=z

�
1C

1X
dD1

qd

z2d .d!/2

�

C et0=z

�
t1

�
1C

1X
dD1

qd

z2dC1.d!/2

�
� 2

1X
dD1

qd

z2dC1.d!/2

dX
mD1

1

m

�
H;
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z
@J

@t1
D et0=z

� 1X
dD1

dqd

z2d�1.d!/2

�
C et0=z

�
t1

� 1X
dD1

dqd

z2d .d!/2

�
C 1C

1X
dD1

qd

z2d .d!/2

�
1� 2d

dX
mD1

1

m

��
H;

S0
0.z/D .H;S.1//D

�
1; z

@J

@t1

�
D et0=z

�
t1

� 1X
dD1

dqd

z2d .d!/2

�
C 1C

1X
dD1

qd

z2d .d!/2

�
1� 2d

dX
mD1

1

m

��
;

S1
0.z/D .1;S.1//D .1;J /

D et0=z

�
t1

�
1C

1X
dD1

qd

z2dC1.d!/2

�
� 2

1X
dD1

qd

z2dC1.d!/2

dX
mD1

1

m

�
;

S0
1.z/D .H;S.H //D .H; z

@J

@t1
/D et0=z

� 1X
dD0

qdC1

z2dC1d!.d C 1/!

�
;

S1
1.z/D .1;S.H //D .H;J /D et0=z

�
1C

1X
dD1

qd

z2d .d!/2

�

S
y̨

j .z/D

1X
iD0

‰ ˛
i S i

j .z/;

S
O1

1
.z/D

1
p

2
et0=z

1X
nD0

.
p

q/nC
1
2

zn

1

bn=2c!dn=2e!
;

S
O2

1
.z/D

1
p

2
et0=z

1X
nD0

.�
p

q/nC
1
2

zn

1

bn=2c!dn=2e!
;

zu˛.z/D

1X
iD0

S
y̨

i.z/t
i.z/;

zu1
k

ˇ̌
t0
aD0
D

1
p

2

1X
nD0

.
p

q/nC
1
2

bn=2c!dn=2e!
t1
kCn;

zu2
k

ˇ̌
t0
aD0
D

1
p

2

1X
nD0

.�
p

q/nC
1
2

bn=2c!dn=2e!
t1
kCn:

For ˛ D 1; 2,

(20) �W ˛
k D
p
�2zu˛k

ˇ̌
t0
aD0; t1

aD.aC1/!x�a�2dx
D d

��
�

d

dx

�k
z�˛;0

�
;
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where

z�1;0 WD �
1
p
�1

1X
nD0

.
p

q/nC
1
2

� n

bn=2c

�
x�n�1;(21)

z�2;0 WD �
1
p
�1

1X
nD0

.�
p

q/nC
1
2

� n

bn=2c

�
x�n�1:(22)

Recall that

(23) W ˛
k D d

��
�

d

dx

�k
�˛;0

�
:

By (20) and (23), to complete the proof it remains to show that z�˛;0 agrees with the
expansion of �˛;0 near Y D 0 in zx D x�1 D

�
Y C q

Y

��1 .

Assume that q 2 .0;1/. We have

P1 D
p

q; �1
D 2
p

q; �1;0 D
1
p
�1

q
1
4

Y �
p

q
;

P2 D�
p

q; �2
D�2

p
q; �2;0 D

q
1
4

Y C
p

q
:

The nth coefficient in the expansion of zx D
�
Y C q

Y

��1 at Y D 0 is given by the
residue

ResYD0zx
�n�1�1;0d zx D�

1
p
�1

q
1
4 ResYD0

�
Y C

q

Y

�n�1�
1�

q

Y 2

� dY

Y �
p

q

D�
1
p
�1

q
1
4 ResYD0

.Y 2C q/n�1.Y C
p

q/

Y nC1
dY

D�
1
p
�1
.
p

q/n�
1
2

� n�1

bn=2c

�
;

where

�1;0 D�
1
p
�1

1X
nD1

.
p

q/n�
1
2

� n�1

bn=2c

�
zxn
D�

1
p
�1

1X
nD0

.
p

q/nC
1
2

� n

b.nC1/=2c

�
zxnC1

D�
1
p
�1

1X
nD0

.
p

q/nC
1
2

� n

bn=2c

�
x�n�1;

which agrees with z�1;0 , defined in (21), and

ResYD0zx
�n�1�2;0d zx D� q

1
4 ResYD0

�
Y C

q

Y

�n�1�
1�

q

Y 2

� dY

Y C
p

q
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D� q
1
4 ResYD0

.Y 2C q/n�1.Y �
p

q/

Y nC1
dY

D�
1
p
�1
.�
p

q/n�
1
2

� n�1

bn=2c

�
;

where

�2;0 D�
1
p
�1

1X
nD0

.�
p

q/nC
1
2

� n

bn=2c

�
x�n�1;

which agrees with z�2;0 , defined in (22).

5 The large radius limit and the Bouchard–Mariño
conjecture

In this section, we will specialize Theorem A to the large radius limit case. In this
case, Theorem A relates the invariant !g;n of the limit curve to the equivariant de-
scendent theory of C . After expanding �˛;0 in suitable coordinates, we can relate the
corresponding expansion of !g;n to the generation function of Hurwitz numbers and
therefore reprove the Bouchard–Mariño conjecture [2] on Hurwitz numbers.

Let w2 D 0 and t0 D 0, and take the large radius limit q! 0. Then our mirror curve
becomes

x D Y Cw1 log Y:

When w1 D�1, this is just the Lambert curve. Recall that the two critical points P1

and P2 of W w
t .Y / are

P˛ D
w2�w1C�

˛.q/

2
:

Since �1.0/D w1�w2 , we have P1! 0 under the limit q! 0. In other words, P1

goes out of the curve under the limit q! 0 and �1;0 D
p

2=�̨ .q/P1=.Y �P1/! 0.
As a result, W 1

k
D d.�k.�1;0// also tends to zero under the large radius limit.

Under the identification W ˛
k
.Yj /=

p
�2D .zuj /

˛
k

in Theorem A, we have .zuj /
1
k
! 0

when q! 0. On the A–model side, since q D 0, the S�matrix . VS˛
ˇ
.z// is diagonal.

Therefore, we also have .uj /
1
k
! 0 when q! 0 under the identification in Theorem A.

This means that in the localization graph of the equivariant GW invariants of P1 , we
can only have a constant map to p2 2 P1 . Since H jp2

D w2 D 0 and t0 D 0, we
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cannot have any primary insertions. Therefore, in the large radius limit, we get

FP1;C�
g;n .u1; � � � ;unI t/D

X
a1;:::;an2Z�0

Z
ŒMg;n.P1;0/�vir

nY
jD1

ev�j ..uj /
2
aj
�2.0// 

aj
j

D

X
a1;:::;an2Z�0

1

�w1

Z
Mg;n

nY
jD1

.uj /
2
aj
 

aj
j ƒ_g .�w1/;

where

ƒ_g .u/D ug
��1ug�1

C � � �C .�1/g�g

and �j D cj .E/ is the j th Chern class of the Hodge bundle. At the same time, we
also have VS2

2
D .y�2.0/; y�2.0//D 1, so .uj /

2
k
=
p
�w1D .zuj /

2
k

. Therefore Theorem A
specializes to

!g;njW 2
k
.Yj /=

p
�2D.uj /

2
k
=
p
�w1
D.�1/g�1Cn

X
a1;:::;an

ai2Z�0

1

�w1

Z
Mg;n

nY
jD1

.uj /
2
aj
 

aj
j ƒ
_
g.�w1/:

Now we study the expansion of �2;0 near the point Y D 0 in the coordinate ZD ex=w1 .
We have

�2;0 D
1
p
�1

r
2

�w1

�w1

Y Cw1

:

Since Z D YeY=w1 , by taking the differential we have

dZ

Z
D

Y Cw1

Y w1

dY:

Therefore,

�2;0 D�
1
p
�1

r
2

�w1

dY

dZ=Z

1

Y
:

Let

�2;0 D

1X
�D0

C�Z�

near the point Y D 0. Then we have

C� D ResY!0 �2;0Z��
dZ

Z
D�

1
p
�1

r
2

�w1
ResY!0 e��Y=w1

dY

Y �C1

D�
1
p
�1

r
2

�w1

.��=w1/
�

�!
:
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Therefore,

W 2
k D�

1
p
�1

r
2

�w1
w1

1X
�D0

.��=w1/
�

�!

�
�
�

w1

�kC1
Z��1dZ:

On the A–model side, let

.uj /
2
aj
D

1X
�jD0

.��j=w1/
�j

�j !

�
�j

w1

�aj

Z
�j
j :

Then

FC;C�
g;n .u1; � � � ;un/

D

X
a1;:::;an

ai2Z�0

1

�w1

Z
Mg;n

nY
jD1

 
aj
j ƒ_g .�w1/

nY
jD1

� 1X
�jD0

.��j=w1/
�j

�j !

�
�
�j

w1

�aj

Z
�j
j

�

D

X
a1;:::;an

ai2Z�0

1

�w1

Z
Mg;n

nY
jD1

�
�
�j j

w1

�aj

ƒ_g .�w1/

nY
jD1

� 1X
�jD0

.��j=w1/
�j

�j !
Z
�j
j

�
:

By the ELSV formula [6; 21],

Hg;� D
.2g� 2Cj�jC n/!

jAut.�/j

nY
jD1

�
�j
j

�j !

Z
Mg;n

ƒ_g .1/Qn
jD1.1��j /

D
.2g� 2Cj�jC n/!

jAut.�/j

nY
jD1

�
�j
j

�j !

Z
Mg;n

ƒ_g .�w1/.�w1/
2g�3C2nQn

jD1.�w1��j /
;

so

FC;C�
D

X
l.�/Dn

jAut.�/j
.2g� 2Cj�jC n/!.�w1/2g�2Cj�jCn

Hg;�

X
�2Sn

nY
jD1

Z
�j
�.j/

:

When w1 D�1, this is just the generating function of the Hurwitz numbers.

Let Wg;n.Z1; : : : ;Zn/ be the expansion of !g;n.Y1; : : : ;Yn/ in the coordinate Z near
Y D 0. Then we have:

Corollary 5.1 (Bouchard–Mariño conjecture) For n > 0 and 2g � 2C n > 0, the
invariant Wg;n.Z1; � � � ;Zn/ for the curve x D Y Cw1 log Y satisfies
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Z Z1

0

� � �

Z Zn

0

Wg;n.Z1; � � � ;Zn/

D .�1/g�1Cn
X

a1;:::;an

ai2Z�0

1

�w1

Z
Mg;n

nY
jD1

 
aj
j ƒ_g .�w1/

�

nY
jD1

� 1X
�jD0

.��j=w1/
�jCaj

�j !
Z
�j
j

�

D .�1/g�1Cn
X

l.�/Dn

jAut.�/jHg;�

.2g� 2Cj�jC n/!.�w1/2g�2Cj�jCn

X
�2Sn

nY
jD1

Z
�j
�.j/

:

In particular, when w1 D �1, the right-hand side is the generating function of the
Hurwitz numbers and the Bouchard–Mariño conjecture is recovered.

Appendix A: Bessel functions

In this section, we give a brief review of Bessel functions.

The Bessel differential equation is

(24) x2 d2y

dx2
Cx

dy

dx
C .x2

�˛2/y D 0:

The Bessel function of the first kind is defined by

J˛.x/D

1X
mD0

.�1/m

m!�.mC˛C 1/

�
x

2

�2mC˛
:

The Bessel function of the second kind is defined by

Y˛.x/D
J˛.x/ cos.˛�/�J�˛.x/

sin.˛�/
:

When n is an integer, Yn.x/ WD lim˛!n Y˛.x/.

J˛.x/ and Y˛.x/ form a basis of the 2–dimensional space of solutions to the Bessel
differential equation (24).

Replacing x by ix in (24), one obtains the modified Bessel differential equation

(25) x2 d2y

dx2
Cx

dy

dx
� .x2

C˛2/y D 0:
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The modified Bessel function of the first kind is defined by

I˛.x/D i�˛J˛.ix/D

1X
mD0

1

m!�.mC˛C 1/

�
x

2

�2mC˛
:

The modified Bessel function of the second kind is defined by

K˛.x/D
�

2

I�˛.x/� I˛.x/

sin.˛�/
:

The following integral formulas are valid when <.x/ > 0:

I˛.x/D
1

�

Z �

0

ex cos � cos.˛�/ d� �
sin.˛�/
�

Z 1
0

e�x cosh t�˛t dt;

K˛.x/D

Z 1
0

e�x cosh t cosh.˛t/ dt D
1

2

Z
t20;0

e�x cosh t�˛t dt;

where 0;0 is the real line with the standard orientation:

C1�1

We have

e˛�iK˛.x/C i�I˛.x/

D
�

2

e˛� iI�˛.x/� e�˛�iI˛.x/

sin.˛�/

D
e˛�i

2

Z 0

�1

e�x cosh t�˛t dt C
e˛�i

2

Z 2�

0

e�x cos.i�/�˛.i�/ d.i�/

C
e�˛�i

2

Z 1
0

e�x cosh t�˛t dt

D
e˛�i

2

Z
0;1

e�x cosh t�˛t dt;

where 0;1 is the following contour:

C1 C 2� i

�1
0

2� i
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Therefore, Z
0;0

e�x cosh t�˛t dt D
�

sin.˛�/
.I�˛.x/� I˛.x//;(26) Z

0;1

e�x cosh t�˛t dt D
�

sin.˛�/
.I�˛.x/� e�2˛�iI˛.x//:(27)

For any integers l1 and l2 with l1C l2 � 0, let l1;l2
be the following contour:

C1 C 2l2� i

�1 � 2l1� i

�2l1� i

2l2� i

Lemma A.1 For any l1; l2 2 Z such that l1C l2 � 0, we have

(28)
Z
l1;l2

e�x cosh t�˛t dt D
�

sin.˛�/
.e2l1˛�iI�˛.x/� e�2l2˛� iI˛.x//:

Proof We observe that

(29)
Z
l1�k;l2Ck

e�x cosh t�˛t dt D e�2k˛�i

Z
l1;l2

e�x cosh t�˛t dt:

In particular,Z
l1;�l1

e�x cosh t�˛t dt D e2l1˛�i

Z
0;0

e�x cosh t�˛t dt

D
�

sin.˛�/
�
e�2l1˛�iI�˛.x/� e2l1˛�iI˛.x/

�
:

This proves (28) in the case l1C l2 D 0. If l1C l2 > 0 then

(30) l1;l2
D

l2�1X
kD�l1

1�k;k �

l2�1X
kD1�l1

�k;k :

Equations (29) and (30) implyZ
l1;l2

e�x cosh t�˛t dt

D

� l2�1X
kD�l1

e�2k˛�i

�Z
0;1

e�x cosh t�˛t dt�

� l2�1X
kD1�l1

e�2k˛�i

�Z
0;0

e�x cosh t�˛t dt:

Equation (28) follows from the above equation and (26)–(27).
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Appendix B: The equivariant quantum differential equation
for P 1

The equivariant quantum differential equation of P1 is the vector equation

zq
d

dq
EI D

�
0 q�w1w2

1 w1Cw2

�
EI ;

which is equivalent to the scalar equation

(31)
�
zq

d

dq
�w1

��
zq

d

dq
�w2

�
I D qI:

Let

I D exp
�
w1Cw2

2z
log q

�
y; x D

2
p

q

z
:

Then (31) is equivalent to

x2 d2y

dx2
Cx

dy

dx
�

�
x2
C

�
w1�w2

2z

�2 �
y D 0;

which is the modified Bessel differential equation (25) with ˛D .w1�w2/=.2z/. When
w1�w2 ¤ 0, any solution to (31) is of the form

I D exp
�
w1Cw2

2z
log q

��
c1I�1=z

�
2
p

q

z

�
C c2I�2=z

�
2
p

q

z

��
;

where �1 D w1�w2 D��
2 , and c1 and c2 are functions of w1 , w2 and z .
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The simplicial suspension sequence in A1–homotopy

ARAVIND ASOK

KIRSTEN WICKELGREN

BEN WILLIAMS

We study a version of the James model for the loop space of a suspension in unstable
A1–homotopy theory. We use this model to establish an analog of G W Whitehead’s
classical refinement of the Freudenthal suspension theorem in A1–homotopy theory:
our result refines F Morel’s A1–simplicial suspension theorem. We then describe
some E1–differentials in the EHP sequence in A1–homotopy theory. These results
are analogous to classical results of G W Whitehead. Using these tools, we deduce
some new results about unstable A1–homotopy sheaves of motivic spheres, including
the counterpart of a classical rational nonvanishing result.

14F42, 19E15; 55Q15, 55Q20, 55Q25

1 Introduction

If K is an .n�1/–connected pointed CW complex, then the suspension map

EW �q.K/! �qC1.†K/

fits into a long exact sequence of the form

�3n�2.K/
E
// �3n�1.†K/

H
// �3n�1.†K

^2/
P
// �3n�3.K/

E
// � � �

� � � // �q.K/
E
// �qC1.†K/

H
// �qC1.†K

^2/
P
// �q�1.K/ // � � � :

Together with an elementary connectivity estimate for †K^2, this exact sequence may
be viewed as a refinement of the Freudenthal suspension theorem. The exact sequence
above was first constructed by G W Whitehead [58, Theorem 1, page 211] if K D Sn

and by W D Barcus [9, Proposition 2.9] for K as above (see also Whitehead [59,
Theorem XII.2.2, page 543] for a textbook treatment of the general statement).

The morphisms H and P appearing in the above exact sequence were also studied by
Whitehead [57, Section 10] in great detail in the case where K D Sn. The morphism H
is the Hopf invariant, and Whitehead linked the morphism P with Whitehead products.
In more detail, begin by observing that the .nC1/–fold suspension EnC1W �q�n.Sn/!
�qC1.S

2nC1/ is an isomorphism for q < 3n� 1. Define P0W �q�n.Sn/! �q�1.S
n/

Published: 19 May 2017 DOI: 10.2140/gt.2017.21.2093
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2094 Aravind Asok, Kirsten Wickelgren and Ben Williams

by P0.˛/D Œ˛; �n�, where �n is the identity map on the n–sphere and the bracket denotes
the Whitehead product. For PW �qC1.S2nC1/! �q�1.S

n/, Whitehead observed that

PD P0 ı .EnC1/�1 if q < 3n� 1:

While Whitehead established this result for spheres, it has been known for some time
that the morphism P is, for general .n�1/–connected spaces, still closely related to
Whitehead products; see eg I M James [30, Section 2] or Ganea [20, Theorem 3.1 and
page 231] for a very general statement. In any case, these kinds of tools were used
to great effect in early computations of unstable homotopy groups of spheres, eg, by
James [29; 31] and Toda [52].

The goal of this paper, whose title pays homage to the work of James [31], is to
establish analogs of the above results in the Morel–Voevodsky unstable A1–homotopy
category [45] and to deduce some consequences of these results. The jumping-off point
is to give a James-style model for the loop space of a suspension in A1–homotopy
theory (see Theorem 2.4.2). Using this model, we deduce the following result, which
can be thought of as a refinement of the A1–simplicial suspension theorem of F Morel
[44, Theorem 6.61].

Theorem (see Theorem 3.2.1, Remark 3.2.3 and Theorem 4.2.1) Assume k is a
perfect field. If X is a pointed A1–.n�1/–connected simplicial presheaf on .Smk/Nis ,
with n� 2, then there is an exact sequence of A1–homotopy sheaves of the form

�A1
3n�2.X /

E
// �A1
3n�1.†X /

H
// �A1
3n�1.†X ^2/

P
// �A1
3n�3.X /

E
// � � �

� � � // �A1
q .X /

E
// �A1
qC1.†X /

H
// �A1
qC1.†X ^2/

P
// �A1
q�1.X / // � � � ;

where the map E is (simplicial) suspension, the map H is a James–Hopf invariant, and
the map P is described, as above, in terms of Whitehead products.

We go on to discuss various consequences of the existence of this exact sequence.
We analyze the low-degree portion of this sequence in Theorem 3.3.13 and give a
more explicit description of the sequence in the first degree where the suspension map
fails to be an isomorphism. When X is a motivic sphere, it is shown in Wickelgren
and Williams [61] that the exact sequences displayed above can be extended to all
degrees after localizing at 2. By suitably varying the input sphere, these sequences
can be strung together to obtain the EHP spectral sequence converging to the 2–local
S1–stable A1–homotopy sheaves of spheres.

By construction, the E1–differentials in this spectral sequence arise from the composite
map HP, which in certain degrees we can analyze integrally. To state the result,
recall that Morel [44, Corollary 6.43] computed the first nonvanishing A1–homotopy
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sheaf of a motivic sphere in terms of Milnor–Witt K-theory. Morel [44, Lemma 3.10]
also showed that there is an isomorphism of rings KMW

0 .k/Š GW.k/, ie the zeroth
Milnor–Witt K-theory group of a field k is isomorphic to the Grothendieck–Witt ring
of isomorphism classes of symmetric bilinear forms over k , defined to be the group
completion of the monoid of isomorphism classes of nondegenerate symmetric bilinear
forms. Given this terminology, the class of the composite HP can be seen to correspond
with a symmetric bilinear form, which we can describe. More precisely, we establish
the following result (see the statement in the body of the text and Remark 4.4.3 for a
more conceptual explanation of the formula).

Theorem (see Theorem 4.4.1) Assume k is a perfect field, and let p and q be
integers with p > 1 and q � 1. The map

HPW KMW
2q D �

A1
2pC3.†.S

pC1Cq˛/^2/ �! �2pC1.†.S
pCq˛/^2/DKMW

2q

corresponds to the element h1iC .�1/pC1Cqh�1iq 2 GW.k/.

One consequence of this result is the following analog of the classical fact, due to Hopf,
that �4n�1.S2n/ is nontrivial.

Theorem (see Theorem 5.3.1) Fix a base field k assumed to be perfect and to have
characteristic unequal to 2. Let n; q � 2 be even integers, and let j be an integer.
There is a surjection

�A1
2n�1Cj˛S

nCq˛
˝Q

H˝Q
���!KMW

2q�j ˝Q;

and the sheaf �A1
2n�1Cj˛S

nCq˛ ˝ Q is nontrivial if either k is formally real or
if j � 2n� 1.

Relying on the computations of Asok and Fasel [5], we analyze the low-degree portion
of the EHP sequence in great detail in the special case where X DA3 n0. In particular,
we give a description of the next nonvanishing A1–homotopy sheaf (ie beyond that
computed by Morel) of †A3 n 0Š P1

^3 in Theorem 5.2.5. The following statement
is an easy-to-state special case of a more general result.

Theorem (see Theorem 5.2.5) If k is a field of characteristic 0 containing an alge-
braically closed subfield, then, for any integer i � 0, there is an isomorphism of sheaves
of the form

�A1
4CiC5˛.S

3Ci
s ^G^3m /Š Z=24:

Remark Cohomology of homotopy sheaves of spheres such as those above appears in
concrete applications to problems in algebra via techniques of obstruction theory; see eg
Asok and Fasel [4; 5] for more details. Our description of the sheaf �A1

4 .S
3C3˛/ is well-
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suited to such cohomology computations. Our computation allows us to state a precise
conjecture (see Conjecture 5.2.10) regarding the structure of the sheaf �A1

n .A
n n 0/

for n� 4. An explicit description of the sheaf �A1
n .A

n n0/ for nD 2; 3 was a key step
in [4; 5] in the resolution of Murthy’s conjecture regarding splitting of rank-n vector
bundles on smooth affine .nC1/–folds over algebraically closed fields. A resolution
of Conjecture 5.2.10 would, similarly, imply Murthy’s conjecture in general.

We close this introduction with some general comments regarding prerequisites. When
working with the (unstable) A1–homotopy category in general and Morel’s A1–algebraic
topology in particular, with the goal of making this paper as self-contained as possible,
we have labored to present the material in an axiomatic framework involving the
“unstable A1–connectivity property”, which is introduced in Section 2.2. All of the
results in Sections 2 and 3 are written from this axiomatic perspective. We hope this
style of presentation makes the material accessible to people who have some familiarity
with homotopy theory of simplicial presheaves and the constructions of Morel and
Voevodsky [45], but not, for example, all of the technical results about strongly and
strictly A1–invariant sheaves contained in the first five chapters of Morel [44]. Moreover,
we hope that our presentation also makes [44] itself more accessible to the nonexpert.

For the most part, Section 4 is written in the same axiomatic framework. In contrast,
Sections 4.4 and 5 require more background. In particular, this portion of the text
requires familiarity with facts about strongly and strictly A1–invariant sheaves (see
Section 5.1 for more precise statements), and known explicit computations of homotopy
sheaves. In Section 5, we also appeal to structural results from the theory of quadratic
forms and both the affirmation of the Milnor conjecture on quadratic forms and the
Bloch–Kato conjecture.

Notation Throughout, the (undecorated) symbol S will be used to denote a base
scheme assumed Noetherian and of finite Krull dimension. We write SmS for the
category of schemes that are separated, smooth and of finite type over S . Script letters,
eg, X , Y , will typically be used to denote “spaces”, ie pointed simplicial presheaves
on SmS (from Section 2.2 onward), while capital roman letters will typically be used
to denote simplicial presheaves on more general sites. Typically, boldface letters will
be used to denote strongly A1–invariant sheaves of groups (again, from Section 2.2
onward), with the exception of C, which will always mean a category (often equipped
with the structure of a site) and R, which will be used to denote right derived functors.

Sheaf cohomology will always be taken with respect to the Nisnevich topology.
See 2.2.3 for our conventions regarding motivic spheres; unfortunately the letter S
appears in our notation for spheres, but since it will always be decorated with a
superscript, we hope no confusion arises. See 2.2.4 for a summary of notation pertaining
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The simplicial suspension sequence in A1–homotopy 2097

to homotopy sheaves, 2.2.5 for some discussion of our connectivity conventions, 2.2.9
for some recollections on our use of the term fiber sequence, 2.3.5 for conventions
about relative connectivity, 3.3.2 for notation regarding A1–homology sheaves, and
3.3.6 for notation regarding the A1–tensor product. Finally, our conventions for loop
spaces change in Sections 5.2 and 5.3; see 5.2.1 for more details.
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2 The James construction revisited

The James construction on a CW complex was originally introduced by James in [29].
Milnor observed that the construction could be recast in the language of simplicial sets
[39, page 120]. Using this translation, it is straightforward to develop a version of the
James construction in the category of simplicial presheaves. Section 2.1 reviews the
James construction in the category of simplicial sets and extends these constructions
to simplicial presheaves; the main result in the context of simplicial presheaves is
Proposition 2.1.6.

In this section, we aim to develop a version of the James model in the A1–homotopy
category; this idea is due originally to Morel. Section 2.2 recalls a number of structural
properties of the A1–homotopy category that will be used throughout the work: we
point the reader to Definition 2.2.6, Lemma 2.2.11 and Theorem 2.2.12. Section 2.3
studies some aspects of A1–fiber sequences in the context of the axiomatic setup of
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Section 2.2. Section 2.4 proves the main result, ie Theorem 2.4.2, which provides a
James-style model for loops on the suspension of a space in A1–homotopy theory; this
result depends on results about the Kan loop group in A1–homotopy theory, for which
we refer the reader to Theorem 2.3.2.

2.1 The James construction in simplicial homotopy theory

Textbook treatments of the James construction can be found in [59, Chapter VII.2], for
the category of CW complexes, and [62, Section 3.3.3] in the category of simplicial
sets.

The James construction for simplicial sets Let K be a pointed simplicial set. An
injection ˛W .1; 2; : : : ; m/! .1; 2; : : : ; n/ induces a map ˛�W Km!Kn. Let � denote
the equivalence relation on

`1
nD0K

n generated by x � ˛�.x/ for all order-preserving
injections ˛ . The James construction on K is defined by the formula

J.K/ WD

1a
nD0

Kn=�;

ie J.K/ is the free (pointed) monoid on the pointed simplicial set K . The assignment
K 7! J.K/ is functorial in K by definition. The James construction is filtered by
pointed simplicial sets Jn.X/� J.K/, defined by

Jn.K/ WD

na
mD0

Km=�:

We consider also F.K/, the pointed free group functor as in [23, page 293] or [62,
Section 3.2]. Because J.K/ is the free pointed monoid on K , there is an evident
inclusion map J.K/ ,!F.K/. If †K denotes the Kan suspension [23, page 191], and
G.K/ denotes the Kan loop group [23, page 276], then Milnor showed that there is a
weak equivalence F.K/'G.†K/ [23, Theorem V.6.15]. By [23, Corollary V.5.11],
since †K is reduced, we conclude that F.K/ is a model for �†K ; here � is the
derived loops (for a model, take naive loops on a fibrant model of the input). The
following result details the main properties of J.�/.

Theorem 2.1.1 [62, Theorems 3.24 and 3.25] Suppose K is a pointed simplicial set.

(1) If K is connected, there is a weak equivalence J.K/' F.K/.

(2) For any integer n� 1 there is a cofiber sequence of the form

Jn�1.K/ ,�! Jn.K/ �!K^n:

(3) The canonical map colimn Jn.K/! J.K/ is an isomorphism.
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Remark 2.1.2 Consider the map K D J1.K/! J.K/. Under the weak equivalence
J.K/'�†K of point (1) of Theorem 2.1.1, this map corresponds to the unit map
K!�†K of the loops-suspension adjunction.

The James construction for simplicial presheaves Suppose C is a site. We will con-
sider (pointed) simplicial presheaves on C, though we do not introduce any special nota-
tion for this category. The category of (pointed) simplicial presheaves can be equipped
with its injective local model structure [32]: cofibrations are given by monomorphisms,
weak equivalences are defined locally with respect to the Grothendieck topology on C
and fibrations are defined via the right-lifting property. Abusing terminology slightly,
we will refer to the associated homotopy category as the (pointed) simplicial homotopy
category. The category of pointed simplicial presheaves is a pointed category, ie the
canonical map from the initial to the final object is an isomorphism. We will typically
write � for the final object. With this terminology, one can extend the definition of the
James construction to (pointed) simplicial presheaves in a straightforward fashion by
applying the constructions above sectionwise.

Definition 2.1.3 Assume X is a pointed simplicial presheaf on C, and an n � 0 is
an integer. Define pointed simplicial presheaves G.X/, F.X/, J.X/ and Jn.X/ by
assigning to U 2 C the following simplicial sets:

G.X/.U / WDG.X.U //;

F.X/.U / WD F.X.U //;

J.X/.U / WD J.X.U //;

Jn.X/.U / WD Jn.X.U //:

We refer to the pointed simplicial presheaf J.X/ as the James construction of X , and
G.X/ as the Kan loop group of X .

Remark 2.1.4 Since we have not assumed X to be reduced (ie having presheaf of
0–simplices the constant presheaf �) in the above, the simplicial presheaf G.X/ will
not in general have the homotopy type of the loop space of X (eg, take X D�1 the
simplicial interval, in which case G.�1/ is the constant simplicial group on Z, which
is not contractible).

The assignments X 7!G.X/, X 7!F.X/, X 7! J.X/, X 7! Jn.X/ are all evidently
functorial in X . Moreover, there are morphisms Jn.X/! J.X/ for any integer n� 0.
We distinguish the morphism

(2.1.1) EW X D J1.X/ �! J.X/I

we will refer to this morphism as suspension (see Remark 2.1.2).
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Proposition 2.1.5 Suppose X is a reduced pointed simplicial presheaf on C, ie the
presheaf of 0–simplices is �. There is a weak equivalence

G.X/'�X:

Proof This follows by observing that the induced map on sections over U 2 C is a
weak equivalence by [23, Corollary V.5.11].

Proposition 2.1.6 Suppose X is a pointed simplicial presheaf on C.

(1) The map J.X/! F.X/ is a sectionwise equivalence.

(2) The simplicial presheaf J.X/ is locally weakly equivalent to �†X .

Both of the weak equivalences just mentioned are functorial in X .

Proof Point (1) follows immediately from Theorem 2.1.1(1): the inclusion maps
J.X.U //! F.X.U // are weak equivalences; these maps are evidently functorial
in U. For point (2), observe that [23, Theorem V.6.15] guarantees that for any object
U 2 C there is a functorial weak equivalence

G.†X.U //' F.X.U //;

where † is the Kan suspension. Since †X.U / is by construction reduced, the result
then follows from Proposition 2.1.5.

The classifying space of the Kan loop group Suppose H is a simplicial presheaf
of groups. If Y is a simplicial presheaf equipped with a right action aW Y �H ! Y

of H, we will say that the action is categorically free if the morphism

Y �H
.a;pY /
����!Y �Y

is a monomorphism. If Y carries a categorically free action of H, we write Y=H for
the quotient, ie the colimit of the diagram Y  Y �H ! Y .

2.1.7 Following [37, Chapter 7], if H is a presheaf of groups, Y is a space with a
right H –action and Z is a space with a left H –action, we may form the two-sided bar
construction B.Y;H;Z/ as the “geometric realization” of a certain functorially con-
structed simplicial object B.Y;H;Z/� having n–simplices of the form Y �H�n �Z .
In the present context, B.Y;H;Z/� is a simplicial object in the category of simplicial
presheaves and the “geometric realization” is the homotopy colimit over �op , ie

B.Y;H;X/ WD hocolim
n2�op

B.Y;H;Z/n:
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When Y DX D �, then we use the following special terminology: by the simplicial
classifying space BH we mean B.�;H;�/, by the universal bundle EH we mean
B.�;H;H/, and by the Borel construction we mean B.Y;H;�/.

The next result, which is a (pre)sheaf-theoretic variant of a classical fact about the
Kan loop group (see eg [14, point (5) on page 137]), follows immediately from
Proposition 2.1.5; we use this result in the next section.

Proposition 2.1.8 For X any reduced pointed simplicial presheaf on C, there is a
sectionwise weak equivalence X ' BG.X/.

2.2 The unstable A1–connectivity property

Before discussing the James construction in A1–homotopy theory, we will recall some
facts from A1–algebraic topology. We take C D SmS , ie the category of smooth
schemes over S .

This category will be endowed throughout with the Nisnevich topology, as in [45,
Section 3], and the category of simplicial presheaves on SmS may be equipped
with a simplicial model structure, [32], local with respect to this topology. That
is, the cofibrations are the monomorphisms of simplicial presheaves, and the weak
equivalences may be detected on Nisnevich stalks. We warn the reader that in [44]
and [45], contrary to our conventions, the motivic homotopy category is constructed
using simplicial sheaves. In [33, Theorem 1.2], Jardine shows that the sheafification
and the forgetful functor define an adjoint equivalent between the two theories.

By a pointed space, we will mean pointed simplicial presheaf on SmS . A model
structure for the A1–homotopy category H .S/ can be constructed by left Bousfield
localization of the simplicial model structure of simplicial presheaves on SmS .

We will adopt the convention, at variance with that of [25], that homotopy limits will be
calculated by first applying a functorial fibrant replacement objectwise to the diagram
in question.

A1–localization Recall from [45, Section 3.2] the notion of an A1–local object. It
will be useful to remember that the simplicial homotopy limit of a diagram of A1–local
objects is again A1–local, this is the case because the fibrant, A1–local objects are the
fibrant objects of a model category, and we may use [25, Theorem 18.5.2]. We begin
by recalling the basic properties of “the” A1–localization functor.

Proposition 2.2.1 There exists an endofunctor LA1 of the category of simplicial
presheaves on .SmS /Nis and a natural transformation � W id! LA1 such that, for any
space X , the following statements hold:
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(i) The space LA1X is fibrant and A1–local, and the map X ! LA1X is an
A1–weak equivalence.

(ii) If Y is any simplicially fibrant A1–local space, and f W X ! Y is a morphism,
then f factors as X ! LA1X ! Y .

(iii) The functor LA1 commutes with the formation of finite limits.

Comments on the proof Most of this statement is contained in [45]; we slightly
modify the A1–localization functor given in [45, page 107]. The functor is constructed
by repeated application of the singular construction and a fibrant replacement functor
in the category of simplicial presheaves. The singular construction commutes with
limits (see [45, page 87]). We use the Godement resolution functor of [45, Section 2,
Theorem 1.66] as our functorial fibrant replacement for simplicial presheaves; this
commutes with formation of finite limits by construction.

In Morel’s analysis, a distinguished role is played by Eilenberg–MacLane spaces [45,
page 56] or classifying spaces of Nisnevich sheaves of groups [45, page 128] that are
A1–local.

Definition 2.2.2 A sheaf of groups G is called strongly A1–invariant if BG is
A1–local. A sheaf of abelian groups A is called strictly A1–invariant if K.A; i/
is A1–local for every i � 0.

Homotopy sheaves and the unstable A1–connectivity property Suppose X and Y

are pointed spaces. We write ŒY ;X �s for morphisms in the homotopy category of the
injective local model structure (we will refer to this category as the simplicial homotopy
category) and ŒY ;X �A1 for morphisms in the A1–homotopy category. We now fix
some conventions that will remain in force throughout the paper.

Notation 2.2.3 (spheres, suspension and looping) Write S is to denote the simplicial
i–sphere, and write G^jm for the j –fold smash product of Gm (pointed by 1) with
itself. Following conventions of Z=2–equivariant homotopy theory, we write S iCj˛

for the sphere S is ^G^jm . If j D 0, the Gm–term shall be dropped from the notation.
The undecorated symbol † will be used for simplicial suspension. Likewise, we use �
for the derived simplicial loops, a model for which is obtained by first taking a functorial
fibrant replacement of the input and then applying naive loops.

Notation 2.2.4 (homotopy sheaves) We define homotopy sheaves �i .X ; x/ and
A1–homotopy sheaves �A1

i .X ; x/ as Nisnevich sheaves associated with the presheaves

U 7! ŒS is^UC; .X ; x/�s and U 7! ŒS is^UC; .X ; x/�A1D ŒS
i
s^UC; .LA1X ; x/�s:
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Likewise, �A1
iCj˛.X ; x/ is the sheafification for the Nisnevich topology of the presheaf

U 7! ŒS iCj˛ ^UC; .X ; x/�A1 :

For notational compactness, basepoints will typically be suppressed from notation.

Convention 2.2.5 (connectivity) We borrow various bits of terminology from clas-
sical homotopy theory: A pointed space .X ; x/ is simplicially connected (resp. A1–
connected) if the sheaf �0.X / (resp. �A1

0 .X /) is �. Similarly, if n� 1 is an integer,
we will say that .X ; x/ is simplicially n–connected (resp. A1–n–connected) if .X ; x/

is simplicially (resp. A1–)connected and �i .X ; x/ (resp. �A1
i .X /) is trivial for i � n.

Morel’s approach to A1–algebraic topology in [44] consists in studying A1–local spaces
via their Postnikov towers and, in doing this, it is important to understand the structural
properties of A1–homotopy sheaves. Our discussion is inspired by Morel’s axiomatic
discussion of the so-called stable A1–connectivity property in [43, Section 6].

Definition 2.2.6 We will say that the unstable A1–connectivity property holds for S
if the following two properties hold:

� �A1
1 .X / is strongly A1–invariant for any pointed space .X ; x/.

� Any strongly A1–invariant sheaf of abelian groups A is strictly A1–invariant.

For the most part, the results in this text will be proven assuming that the unstable
A1–connectivity holds over S . From this point of view, one of the key results of [44]
is the following.

Theorem 2.2.7 (Morel) If S is the spectrum of a perfect field, then the unstable
A1–connectivity property holds for S .

Proof See [44, Theorems 5.46 and 6.1]. Since the proof of [44, Lemma 1.15], a result
due to Gabber, requires the restriction that k be infinite, use [26] to obtain the result in
the stated generality.

Remark 2.2.8 The unstable A1–connectivity property does not hold if S is a Noether-
ian scheme of Krull dimension � 2; see Remark 3.3.5 for more details. Nevertheless,
it is expected that the unstable A1–connectivity property holds for the spectrum of an
arbitrary field. In fact, the perfection of the base field only intercedes in the verification
of point (2) of Definition 2.2.6. There is some hope that it may hold for base schemes S
that are regular of dimension � 1.
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Fiber sequences

Convention 2.2.9 (fiber and cofiber sequences) We use the terminology “(co)fiber
sequence” as in [27, Definition 6.2.6]; we refer the reader there for more formal
properties of (co)fiber sequences. We use the terminology simplicial fiber sequence
for a fiber sequence in the injective local model structure on simplicial presheaves and
A1–fiber sequence for a fiber sequence in the A1–local model structure. The theory of
fiber sequences is simplified slightly by the fact that the injective local and A1–local
model structures are right proper.

The following result, which is a version of [44, Lemma 6.51], studies the behavior
of A1–local objects in simplicial fiber sequences (see [19, e.6, page 5] for a com-
pletely analogous result for localizations of the classical homotopy category). There
appears to be a misprint in the statement of [44, Lemma 6.51]; the statement concerns
A1–connectivity whereas the hypothesis used and the conclusion reached appear to
concern A1–locality.

Lemma 2.2.10 Suppose
F �! E �!B

is a simplicial fiber sequence of pointed spaces. If B and F are both A1–local and B

is simplicially connected, then E is A1–local as well.

Proof The proof is that given in [44, Lemma 6.51], but we have added some details
for the convenience of the reader and for the sake of completeness. By means of the
existence of functorial factorizations, we may replace E !B by a simplicial fibration
between simplicially fibrant pointed spaces, and we may assume F is the fiber over
the basepoint of this map.

Write RHom.A1; � / to denote the derived internal mapping object in the category of
presheaves with the simplicial model structure. The model structure is closed monoidal,
by [10, Section 4] for example, and the functor RHom.A1; � / is a right Quillen functor,
[27, Chapter 4]. In particular, this means that RHom.A1; � / preserves simplicial fiber
sequences.

Condition (2) of [45, Lemma 2.2.8], combined with the definition of internal map-
ping objects, allows us to say a space X is A1–local if and only if the map X !

RHom.A1;X / induced by the projection map A1!� is a simplicial weak equivalence.
In the case of pointed spaces, we forget the basepoint and then apply this test.

Combining the above observations, one concludes that there is a morphism of simplicial
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fiber sequences of the following form:

(2.2.1)

F //

�

��

E //

��

B

�

��

RHom.A1; F / // RHom.A1; E / // RHom.A1;B/

The two indicated arrows are simplicial weak equivalences.

It is now possible to test whether the map E ! RHom.A1; E / a simplicial weak
equivalence by arguing at points of the Nisnevich site. We refer to [34, Chapter 3 and
Lemma 5.12] for the required local homotopy theory. If p� is point, then from (2.2.1)
we obtain a morphism of fiber sequences of Kan complexes of the following form:

p�F //

�

��

p�E //

��

p�B

�

��

p�RHom.A1; F / // p�RHom.A1; E / // p�RHom.A1;B/

We wish to show that the map in the middle is a weak equivalence of (possibly
disconnected) simplicial sets; that is, it induces an isomorphism on �0 and on all
homotopy groups for all choices of basepoint in p�E . It suffices, since p�E !p�B is
a fibration, to consider basepoints lying in p�F, the fiber over the canonical basepoint
of p�B .

The required isomorphism on homotopy groups and �0 follows from a 5–lemma
argument; the potentially problematic case of �0 is handled by identifying �0.p�E /
with the orbit space of �0.p�F / under the action of �1.p�B; b0/, and similarly for
the derived mapping spaces.

Basic consequences of the unstable A1–connectivity theorem We very briefly re-
call the Postnikov tower in the form we will use. For any pointed simplicially connected
space X , there is a tower of fibrations of the form

X

zz �� $$

� � �
piC2

// X .iC1/
piC1

// X .i/ pi
// X .i�1/ pi�1

// � � �

such that (a) hofib.pj /DK.�j .X /; j / for any integer j �0, and (b) X 'holimi X .i/

[45, Definition 1.31 and Theorem 1.37]. We now deduce some consequences of the
unstable A1–connectivity property.
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Lemma 2.2.11 Suppose the unstable A1–connectivity property holds for S .

(1) For any pointed space .X ; x/, and any integer i � 2, the sheaves �i .LA1X ; x/

are strictly A1–invariant.

(2) If .X ; x/ is a pointed, simplicially connected space, then X is A1–local if and
only if �1.X ; x/ is strongly A1–invariant and �i .X ; x/ is strictly A1–invariant
for any integer i � 2.

Proof For (1), �iLA1X is A1–local and simplicially fibrant for every i � 1. In
particular, the sheaf �1.�i�1LA1X / is strongly A1–invariant. Since this is abelian
when i � 2, we conclude by the assumption that the unstable A1–connectivity property
holds that �i .LA1X ; x/ is strictly A1–invariant for i � 2.

For point (2), we use the existence and convergence of the Postnikov tower, together
with an induction argument in combination with the results of point (1). Using this
tower, it suffices to show that if X is a pointed, simplicially connected A1–local space,
and we have a simplicial fiber sequence of the form

K.A; n/ �!X 0 �!X ;

where A is strongly A1–invariant if nD 1, and strictly A1–invariant if n � 2, then
X 0 is A1–local as well. Either assumption guarantees that K.A; n/ is A1–local and
the result then follows by appeal to Lemma 2.2.10.

The following result, which is called the unstable A1–connectivity theorem, justifies
our terminology; this result is an axiomatic form of [44, Theorem 6.38].

Theorem 2.2.12 (unstable A1–connectivity theorem) Suppose n � 0 is an integer,
and .X ; x/ is a pointed, simplicially n–connected space. The space LA1X is simpli-
cially connected, and if the unstable A1–connectivity property holds for S , then it is
simplicially n–connected.

Proof The case nD 0 of the theorem follows from [45, Section 2, Corollary 3.22] and
does not require the unstable A1–connectivity property to hold. That result is presented
without a proof in [45], but follows from the properties of the A1–localization functor.
For a detailed proof, see eg [51, Theorem 1.2.20].

Now, we treat the case n D 1. We begin by establishing a general result. For any
simplicially connected space X , and any Nisnevich sheaf of groups G , there is a
functorial bijection

Hom.�1.X ; x/;G /Š Œ.X ; x/; BG �s

by obstruction theory [44, Lemma B.7(1)]. If G is strongly A1–invariant, then BG is
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A1–local, and there are functorial bijections of the form

Œ.X ; x/; BG �s Š Œ.X ; x/; BG �A1

Š Œ.LA1X ; x/; BG �A1

Š Œ.LA1X ; x/; BG �s:

Since LA1X is simplicially connected by [45, Section 2, Corollary 3.22], we conclude
that there is a functorial bijection of the form

Hom.�1.LA1X ; x/;G /Š Œ.LA1X ; x/; BG �s:

Now, �1.LA1X ; x/D �A1
1 .X / by definition, so combining all of the above isomor-

phisms, we conclude that if G is strongly A1–invariant, then

(2.2.2) Hom.�1.X ; x/;G /Š Hom.�A1
1 .X /;G /:

Having established this bijection, we can proceed to the proof of the main result.

If X is simplicially 1–connected, then Hom.�1.X ; x/;G / D 0 for any sheaf of
groups G . If G is furthermore strongly A1–invariant, we conclude by the isomorphism
of (2.2.2) that Hom.�A1

1 .X /;G / D 0. Since the unstable A1–connectivity property
holds for k , we know that �A1

1 .X / is strongly A1–invariant. Therefore, by the Yoneda
lemma, we know that �A1

1 .X / must be trivial.

For the general case, one proceeds by induction on n. If X is a simplicially .n�1/–
connected space, n� 2, then for any sheaf of abelian groups A ,

Hom.�n.X /;A/Š Œ.X ; x/;K.A; n/�sI

this follows from [44, Lemma B.7(2)]. An argument completely analogous to the one
above, this time using Lemma 2.2.11(1) to conclude that the higher A1–homotopy
sheaves are strictly A1–invariant, shows that if A is any strictly A1–invariant sheaf, then

Hom.�n.X /;A/Š Hom.�A1
n .X /;A/:

If X is simplicially n–connected, then as before we can again conclude by appealing
to the Yoneda lemma.

Remark 2.2.13 We add one comment about the nD 0 case of the above theorem. In
fact, [45, Section 2, Corollary 3.22] establishes a more general statement that we will
frequently use below: if X !X 0 is an A1–weak equivalence with X 0 an A1–local
space, then the induced morphism �0.X /! �0.X

0/ is an epimorphism.
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2.3 Further consequences of the unstable A1–connectivity property

In this section, we study further consequences of the unstable A1–connectivity prop-
erty introduced in Section 2.2. In particular, we recast some results of Morel in our
axiomatic framework. First, we provide an analog of Proposition 2.1.5 in the context
of A1–homotopy theory (see Theorem 2.3.2); this result is a key technical tool in all
that follows. In particular, it allows us to establish Theorem 2.3.3, which is a statement
about preservation of simplicial fiber sequences under A1–localization. Consequences
of this result include a relative version of the unstable connectivity theorem, which
appears below as Corollary 2.3.6, and Theorem 2.3.8, which is a technical result about
the interaction between Postnikov towers and A1–localization.

On A1–homotopy types of connected spaces We begin by establishing a result about
the behavior of the classifying space of the Kan loop group under A1–localization;
this result is culled from the proof of [44, Theorem 6.46]. Suppose G is a simplicial
presheaf of groups. Since LA1 preserves finite products, LA1G is again a simplicial
presheaf of groups, the morphism G ! LA1G is a homomorphism, and there is an
induced morphism

(2.3.1) BG �! BLA1G:

Regarding this morphism, one has the following result.

Lemma 2.3.1 If G is a simplicial presheaf of groups, then the functorial map BG!
BLA1G is an A1–weak equivalence.

Proof Recall from 2.1.7 that

BG D hocolim
n2�op

B.�; G;�/n:

Since the map G�n ! .LA1G/
�n is an A1–weak equivalence, and since hocolim

preserves such equivalences [45, Section 2, Lemma 2.12], it follows that BG !
B.LA1G/ is an A1–weak equivalence.

Theorem 2.3.2 Suppose the unstable A1–connectivity property holds for S and
.X ; x/ is a pointed reduced space. If �0.LA1G.X // is strongly A1–invariant, then
the objects LA1X and BLA1G.X / are simplicially weakly equivalent.

Proof By Proposition 2.1.8, since X is reduced, we know that there is a simplicial
weak equivalence of the form X ' BG.X /. In particular, LA1X ' LA1 BG.X /. It
will be sufficient to prove that there is a simplicial weak equivalence LA1 BG.X /'

BLA1G.X /.
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We show that BLA1G.X / is A1–local. To this end, consider the sequence

LA1G.X / �!ELA1G.X / �! BLA1G.X /:

We know this is a simplicial fiber sequence by reference to [56] for instance. This fiber
sequence yields a long exact sequence of homotopy sheaves. Since ELA1G.X / is
simplicially contractible, we conclude that

�iC1.BLA1G.X //Š �i .LA1G.X //

for every integer i � 0. The space BLA1G.X / is simplicially connected as it is the
classifying space of a simplicial group. By assumption �0.LA1G.X // is strongly
A1–invariant, so we conclude that �1.BLA1G.X // is strongly A1–invariant. Since the
unstable A1–connectivity property holds for S , we conclude from Lemma 2.2.11(1)
that �j .BLA1G.X // is strictly A1–invariant for j � 2. Therefore, by applying
Lemma 2.2.11(2), we conclude that BLA1G.X / is itself A1–local, and the map
BLA1G.X /! LA1BLA1G.X / is a simplicial weak equivalence. By Lemma 2.3.1,
the map LA1 BG.X /! LA1BLA1G.X / is also a simplicial weak equivalence. It
follows that there is a map BLA1G.X /! LA1 BG.X / that is also a simplicial weak
equivalence, as required.

On A1–fiber sequences The following result is a slight variant of [44, Theorem 6.53],
which is presented there without proof.

Theorem 2.3.3 Assume the unstable A1–connectivity property holds for S . Suppose

F �! E
f
�!B

is a simplicial fiber sequence of pointed spaces and assume that B is simplicially
connected. If, in addition, �A1

0 .�B/ is strongly A1–invariant, then the canonical map

LA1F D LA1 hofib.f / �! hofib.LA1.f //

is a simplicial weak equivalence. In particular, if �1.B/ is strongly A1–invariant (eg,
trivial) then the canonical map of the previous display is a simplicial weak equivalence.

Proof The idea is to replace the simplicial fiber sequence in question by a “principal”
fibration under the Kan loop group of the base and use Theorem 2.3.2. To this end, we
begin with a reduction.

Step 1 For any simplicial presheaf X , the map X .U /! Ex X .U / is a (functorial)
simplicial weak equivalence. Thus, without loss of generality we can assume that
B is objectwise fibrant. Since B is connected, we can furthermore assume that B
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is also reduced. To see this, write B.0/ for the zeroth level of the (sectionwise)
Moore–Postnikov factorization of B , and set B.0/ to be the pullback of the diagram:

� �!B.0/ �BI

the space B.0/ is called the zeroth Eilenberg subcomplex of B (see [23, page 327,
proof of Lemma VI.3.6]). By the existence of functorial factorizations, we may assume
that, replacing E by a simplicially weakly equivalent space if necessary, that E !B

is a simplicial fibration. In that case, we replace E by the pullback of the diagram
B.0/!B E ; this does not change the simplicial homotopy type of the fiber.

Step 2 Since B is now assumed reduced, set G WD G.B/. Next, we claim that the
simplicial fiber sequence is equivalent to the simplicial fiber sequence associated with
a principal fibration under the Kan loop group. Indeed, since B is reduced, then
B ' BG by Proposition 2.1.8. Now, a priori there is an action of the h–group �B

on F. Since E !B is a simplicial fibration by assumption, if we set F 0 to be the
pullback of EG !BG 'B E , then F 0 is simplicially weakly equivalent to F and
carries an honest action of G (see 2.1.7 for our conventions regarding two-sided bar
constructions). One then checks that there is an induced simplicial weak equivalence
B.F 0; G ;�/! E making the simplicial fiber sequence F 0!B.F 0; G ;�/!BG (see
[37, Proposition 7.9]) weakly equivalent to the fiber sequence F! E !B with which
we began.

Step 3a We now study what happens under A1–localization. First, since the hypotheses
of Theorem 2.3.2 are satisfied by assumption, and the map G ! LA1G induces a
simplicial weak equivalence LA1B ' LA1BG ! BLA1G. In particular, BLA1G is
A1–local.

On the other hand, there is a simplicial fiber sequence of the form

LA1F
0
�! B.LA1F

0; LA1G ;�/ �! BLA1G :

Note that LA1F
0 is A1–local by assumption and BLA1G is A1–local and simplicially

connected. Thus, by appeal to Lemma 2.2.10, we conclude that B.LA1F
0; LA1G ;�/ is

A1–local as well.

Next, the maps F 0! LA1F
0 and G ! LA1G induce A1–weak equivalences

F 0 �G�n! LA1F
0
� .LA1G /

�n

for all n. Therefore, the induced morphism

B.F 0; G ;�/ �! B.LA1F
0; LA1G ;�/

is an A1–weak equivalence by [45, Section 2, Lemma 2.12].
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If RNis denotes the simplicial fibrant replacement functor, then the map

B.LA1F
0; LA1G ;�/!RNisB.LA1F

0; LA1G ;�/

is a simplicial weak equivalence and RNisB.LA1F
0; LA1G ;�/ is A1–fibrant. Therefore,

the composite map

B.F 0; G ;�/!RNisB.LA1F
0; LA1G ;�/

is also an A1–weak equivalence and factors through a simplicial weak equivalence of
the form

LA1B.F
0; G ;�/ �!RNisB.LA1F

0; LA1G ;�/:

Step 3b The evident projections give morphisms

LA1B.F
0; G ;�/ �! LA1BG and RNisB.LA1F

0; LA1G ;�/ �!RNisBLA1G

that fit into the following commutative diagram:

LA1B.F
0; G ;�/ //

��

RNisB.LA1F
0; LA1G ;�/

��

LA1BG // RNisBLA1G

The simplicial homotopy fiber of the first column is hofib.LA1f / by construction while
the simplicial homotopy fiber of the second column is LA1 hofib.f /. Moreover, the
diagram gives rise to a morphism of simplicial fiber sequences. Since the horizontal
maps in the diagram are simplicial weak equivalences by the conclusions of the previous
step, we conclude that the induced map of simplicial homotopy fibers is a simplicial
weak equivalence.

The final statement is an immediate consequence of Lemma 2.3.4 below.

Lemma 2.3.4 [44, Lemma 6.54] If X is a pointed connected space, such that
�1.X /D �0.�X / is A1–invariant, then the morphism

�0.�X / �! �0.LA1�X /

is an isomorphism. In particular, if �1.X / is strongly A1–invariant, then so is
�0.LA1�X /.

Proof By [45, Section 2, Corollary 3.22], the morphism �0.�X /! �0.LA1�X /

is always an epimorphism (see Remark 2.2.13). Since �0.�X / is A1–invariant and
has simplicial dimension 0 it is necessarily simplicially fibrant and therefore A1–local
by [45, Section 2, Proposition 3.19]. Therefore, the morphism �X ! �0.�X /

necessarily factors through LA1�X . Applying �0 , we see that the identity map of
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�0.�X / factors through �0.LA1�X /. Using the epimorphism from the first sentence,
we conclude that �0.�X /! �0.LA1�X / is an isomorphism.

The relative unstable A1–connectivity theorem Theorem 2.3.3 can be used to es-
tablish a relative version of the unstable connectivity theorem, Theorem 2.2.12. In the
form below, this result is a variant of [44, Theorem 6.56] and will be used repeatedly
in the sequel.

Convention 2.3.5 (relative connectivity) If f W E ! B is a morphism of pointed
spaces, we will say that f is simplicially i–connected or a simplicial i–equivalence
if the simplicial homotopy fiber of f is .i�1/–connected. Likewise, we will say
that f is A1–i–connected or an A1–i–equivalence if the A1–homotopy fiber of f is
A1–.i�1/–connected.

Corollary 2.3.6 Assume the unstable A1–connectivity property holds for S , and
suppose f W E !B is a morphism of pointed spaces in which B is connected. If

(i) �A1
0 .�B/D �0.LA1�B/ is strongly A1–invariant, and

(ii) hofib.f / is n–connected for some integer n� 2,

then the space hofib.LA1.f // is .n�1/–connected as well. In particular, under hypoth-
esis (i), if f is a simplicial n–equivalence, then f is also an A1–n–equivalence.

Proof Since the unstable A1–connectivity property holds for S , and since by hypothe-
sis (ii) the space hofib.f / is assumed .n�1/–connected, we may apply Theorem 2.2.12
to conclude that LA1 hofib.f / is again n–connected. Again using the unstable A1–
connectivity property for S , the fact that B is connected, and hypothesis (i), we may ap-
ply Theorem 2.3.3 to conclude that the canonical map LA1 hofib.f /! hofib.LA1.f //

is a simplicial weak equivalence. Combining these observations, we conclude that
hofib.LA1.f // is n–connected as well.

A1–localization of layers of Postnikov towers We can also deduce some stability
properties for the layers of Postnikov towers under A1–localization. To this end, assume
.X ; x/ is a pointed connected space. If X .n/ is the nth layer of the Postnikov tower
for X , then we write X hni for the space fitting into a simplicial fibration sequence of
the form

X hni �!X �!X .n/:

The space X hni is the n–fold connective cover of X , in particular it is n–connected.

Lemma 2.3.7 If .X ; x/ is a pointed simplicially connected space, and the unstable
A1–connectivity property holds for our base S , then .LA1X /hni is A1–local.

Geometry & Topology, Volume 21 (2017)



The simplicial suspension sequence in A1–homotopy 2113

Proof Assuming the unstable A1–connectivity property holds for our base S , we
conclude from Lemma 2.2.11 that .LA1X /.n/ is A1–local. Moreover, .LA1X /.n/ is
simplicially connected by Theorem 2.2.12 (though this does not require the unstable
A1–connectivity property). It follows that, under these hypotheses, .LA1X /hni is
A1–local since it is the simplicial homotopy fiber of the map LA1X ! .LA1X /.n/,
which has a connected base.

By functoriality of the Postnikov tower, there is an induced morphism X hni !

.LA1X /hni. Assuming the unstable A1–connectivity property holds for our base S , it
follows from Lemma 2.3.7 that there is an induced morphism

LA1.X hni/ �! .LA1X /hni:

Regarding this morphism, we have the following result, which is a variant of [44,
Theorem 6.59 and Corollary 6.60].

Theorem 2.3.8 Assume the unstable A1–connectivity property holds for S , and X

is a pointed, connected space. Fix an integer n � 1. Suppose for each integer i
with 1� i � n, the sheaf �i .X / is strongly A1–invariant.

(1) The universal map �i .X /! �A1
i .X / is an isomorphism if i � n.

(2) For each i � n, the morphism LA1.X hii/! .LA1X /hii is a simplicial weak
equivalence.

(3) The universal map �nC1.X /! �A1
nC1.X / is the initial map from �nC1.X / to

a strictly A1–invariant sheaf of groups.

Proof Since �1.X / is assumed strongly A1–invariant, and for any integer n� 1 the
map �1.X /! �1.X

.n// is an isomorphism, we conclude that �1.X .n// is strongly
A1–invariant for any n � 1. By assumption, the unstable A1–connectivity property
holds for S . Thus, for i � 2 (or i D 1 if �A1

1 .X / is abelian) we conclude that �i .X /

is strictly A1–invariant. We may also apply Theorem 2.3.3 to conclude that the sequence

LA1.X hni/ �! LA1X �! LA1.X
.n//

is always a simplicial fiber sequence.

By Theorem 2.2.12, we know that LA1.X hni/ is simplicially n–connected. Therefore,
we conclude that

(2.3.2)
�i .LA1X /Š �i .LA1.X

.n/// if i � n,

�nC1.LA1X / �! �nC1.LA1.X
.n/// is an epimorphism.
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There are also simplicial fiber sequences of the form

K.�i .X /; i/ �!X .i/
�!X .i�1/:

Since X is connected, point (2) of Lemma 2.2.11 and the assumptions about the
sheaves �i .X / guarantee that X .n/ is A1–local. Thus

(2.3.3) �i .X
.n//Š �i .LA1X

.n// if i � n:

Now, we can put these facts together to prove the results.

For point (1), notice that by combining the isomorphisms of (2.3.2) and (2.3.3) we
obtain for i � n the series of isomorphisms

�i .X /Š �i .X
.n//

Š �i .LA1X
.n//

Š �i .LA1X /

Š �A1
i .X /;

which is precisely what we wanted to show.

For point (2) we proceed as follows. From the isomorphisms established in point (1),
we conclude that the map X .i/! .LA1X /.i/ is a simplicial weak equivalence. On
the other hand, we already saw that X .i/ is A1–local for i � n. Thus, the map
LA1X

.i/! .LA1X /.i/ is a simplicial weak equivalence for i � n. Since .LA1X /hii

is by definition the simplicial homotopy fiber of LA1X ! .LA1X /.i/, it follows from
the fiber sequence in the previous paragraph that the induced map LA1.X hii/ !

.LA1X /hii is a simplicial weak equivalence for i � n.

Finally, for point (3), begin by observing that if A is a strictly A1–invariant sheaf,
then since X hni is n–connected, obstruction theory (see [44, Lemma B.7]) gives a
bijection

Hom.�nC1.X /;A/Š ŒX hni; K.A; nC 1/�s:

Since K.A; n C 1/ is A1–local, any map X hni ! K.A; n C 1/ factors through
LA1.X hni/. However, as LA1.X hni/! .LA1X /hni is a simplicial weak equivalence
by point (2), the result follows from the fact that �nC1..LA1X /hni/D �A1

nC1.X /.

2.4 James-style models for loop spaces in A1–homotopy theory

In this section, we discuss the James model for loop spaces in A1–homotopy theory.
The construction involves comparing the James model and the Kan loop group model,
as was the case in the setting of simplicial homotopy theory. If .X ; x/ is a pointed
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simplicially connected space, then �LA1X is a model for the A1–derived loop space
of X . The map �X !�LA1X factors through a morphism

LA1�X �!�LA1X ;

which need not be a simplicial weak equivalence. The following result, which is a
variant of [44, Theorem 6.46], gives a necessary and sufficient condition for the above
morphism to be a simplicial weak equivalence.

Theorem 2.4.1 Assume the unstable A1–connectivity property holds for S and sup-
pose .X ; x/ is a pointed space. If �0.LA1�X / is strongly A1–invariant, then

LA1�X �!�LA1X

is a simplicial weak equivalence.

Proof Since �X only depends on the simplicial connected component of the base-
point x , without loss of generality we can assume that X is simplicially connected. In
that case, the result follows immediately from Theorem 2.3.3 applied to the simplicial
fiber sequence �X !�!X .

We now use Proposition 2.1.6, the James construction in the category of simplicial
presheaves, together with the result just established about models for A1–derived loop
spaces to produce a James-style model for loops on the suspension in the A1–homotopy
category.

Theorem 2.4.2 Suppose that the unstable A1–connectivity property holds for S and
f W X ! Y is a morphism of pointed simplicially connected spaces.

(1) There is a functorial simplicial weak equivalence LA1J.X /'�LA1†X .

(2) If f is an A1–weak equivalence, the map J.f / is an A1–weak equivalence.

Proof By Proposition 2.1.6, there is a simplicial weak equivalence J.X /'�†X .
Thus, there is a simplicial weak equivalence

LA1J.X /' LA1�†X :

Since X is connected, †X is necessarily 1–connected (this follows by checking on
stalks). Therefore, by Lemma 2.3.4, we conclude that �0.LA1�†X / is strongly A1–
invariant. Thus, we can apply Theorem 2.4.1 to conclude that LA1�†X '�LA1†X .

For (2), it suffices to observe that if f W X !Y is an A1–weak equivalence, then by [45,
Section 3, Lemma 2.13] the map †X !†Y is an A1–weak equivalence. It follows
immediately that the induced morphism �†X !�†Y is an A1–weak equivalence.
By part (1), we conclude that J.X/! J.Y / is an A1–weak equivalence.
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3 The EHP sequence in A1–homotopy theory

In this section, we study the analog in A1–homotopy theory of Whitehead’s EHP exact
sequence from the introduction. We begin by recasting this exact sequence in the
homotopy theory of simplicial sets (see Proposition 3.1.2), and then explaining how
to extend this result to simplicial presheaves on a site (see Proposition 3.1.4). For
convenience, we will assume our site has enough points. In Section 3.2, we construct a
version of Whitehead’s exact sequence in A1–homotopy theory (see Theorem 3.2.1). In
Section 3.3, we study the low-degree portion of the exact sequence of Theorem 3.2.1 and
study very explicitly the first degree in which the suspension fails to be an isomorphism.
The main result is Theorem 3.3.13, which depends on various facts about A1–homology.

3.1 The EHP sequence in simplicial homotopy theory

In this section, we recall Whitehead’s refinement of the Freudenthal suspension theorem
and adapt this result to the context of simplicial presheaves. This result appears as
[59, Chapter XII, Theorem 2.2] and the main novelty of this section is that we give
a different derivation of the exact sequence that we learned from Mike Hopkins; this
version allows more precise control at the end of the sequence. The translation to the
setting of simplicial presheaves is then straightforward.

The classical EHP sequence We begin by recalling the combinatorial construction
of James–Hopf maps. We refer the reader to [62, page 169] for more details.

Definition 3.1.1 Suppose K is a pointed simplicial set and r � 1 is an integer. Define
a morphism of simplicial sets

Hr W J.K/! J.K^r/

that in each simplicial degree is given by the formula

Hr.x1 : : : xq/D
Y

1�i1<���<ir�q

xi1 ^ � � � ^ xir ;

where the product on the right-hand side is taken in (left-to-right) lexicographic order.
We refer to Hr as a simplicial James–Hopf invariant.

Note that Hr is, by definition, functorial in the input simplicial set K . Directly from the
definition of Hr it follows that if r � 2, then the composite K E

�!J.K/
Hr
�!J.K^r/
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is trivial. We fix r D 2, and write H for H2 . There is a commutative diagram:

(3.1.1)

K

E

$$

�

��

hofib H // J.K/
H
// J.K^2/

Proposition 3.1.2 Suppose K is .n�1/–connected where n� 2. Then the morphism
�W K! hofib H is .3n�2/–connected. In particular, we obtain a long exact sequence
of homotopy groups:

(3.1.2)

�3n�2.K/

����

�3n�1.†K/

Š

�3n�1.†.K
^2//

Š

�3n�2.hofib H/ // �3n�2.J.K//
H
// �3n�2.J.K

^2//
P
// �3n�3.K/

E
// � � �

� � � // �q.K/
E
// �q.J.K//

Š

H
// �q.J.K

^2//

Š

P
// �q�1.K/ // � � �

�qC1.†K/ �qC1.†.K
^2//

Proof Since K is .n�1/–connected, we conclude that K^2 is .2n�1/–connected.
Therefore, J.K/'�†K is .n�1/–connected, and J.K^2/'�†K^2 is .2n�1/–
connected.

We consider the Serre spectral sequence in homology H�. � ;Z/ associated with the
simplicial fiber sequence

hofib H �! J.K/ �! J.K^2/:

Since n� 1 by assumption, J.K^2/ is simply connected.

By use of the Hilton–Milnor splitting [59, Chapter VII, Theorem 2.10] there are
isomorphisms

zH�.J.K/;Z/Š
1M
iD1

zH�.K^i; Z/ and zH�.J.K^2/;Z/Š
1M
iD1

zH�.K^2i; Z/:

We remark in passing that the map EW K!J.K/ induces an isomorphism of zH�.K;Z/
with the first summand of zH�.J.K/;Z/Š

L1
iD1
zH�.K^i; Z/; this appears in the proof

of [59, Chapter VII, Theorem 2.10].

In the range where pCq <3n, the E2 page of the spectral sequence takes a particularly
simple form: E20;q DHq.hofibH;Z/ and E2p;0DHp.J.K^2/;Z/DHp.K^2;Z/, and
all other groups are necessarily 0.
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From [36, Theorem 6.2], we know that the composite map

H�.K^2; Z/ �! H�.J.K/;Z/ H
�!H�.J.K^2/;Z/ �! H�.K^2; Z/

is the identity. This observation implies that there are no nonzero differentials in our
spectral sequence having source E�p;0 with p <4n. For degree reasons, therefore, there
can be no nonzero differentials the targets of which are the groups E�0;q with q < 3n�1
either, and in the range where pC q � 3n� 2, the sequence collapses at the E2 page.
We obtain zH�3n�2.J.K/;Z/D zH�3n�2.K^2; Z/˚ zH�3n�2.hofib H;Z/.

In the given range, therefore, we have a commutative diagram of homology groups
(with Z coefficients)

0 // zH�3n�2.hofib H/ // zH�3n�2.J.K// // zH�3n�2.J.K^2// // 0

0 // zH�3n�2.K/ //

��

OO

zH�3n�2.K/˚ zH�3n�2.K^2/ // zH�3n�2.K^2/ // 0

from which it follows that the map �� is a homology isomorphism in the stated range.
In particular, the map � is .3n�2/–connected. The long exact sequence (3.1.2) now
follows from the long exact sequence in homotopy associated with the simplicial fiber
sequence

hofib H �! J.K/ �! J.K^2/:

The EHP sequence for simplicial presheaves Using the results of the previous
section, we can generalize Proposition 3.1.2 to the situation of pointed simplicial
presheaves on a site C equipped with a local model structure; for simplicity, we assume
that C has enough points. Functoriality of the simplicial James–Hopf invariants allows
Definition 3.1.1 to be extended to simplicial presheaves.

Definition 3.1.3 If X is a pointed simplicial presheaf on C, define morphisms

Hr W J.X/ �! J.X^r/

by Hr W J.X/.U /! J.X^r/.U /. Set H WD H2 .

As before, the composite map X E
�!J.X/ Hr�!J.X^r/ is null. The next result extends

Proposition 3.1.2 to simplicial presheaves.

Proposition 3.1.4 Suppose C is a site that has enough points. Suppose, n� 1 is an
integer, and X is a pointed .n�1/–connected simplicial presheaf. Let EW X ! J.X/

be as in (2.1.1), HW J.X/! J.X^2/ as in Definition 3.1.3, and let � be a lift of the
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map EW X ! J.X/ to a map �W X ! hofib H. The map � is .3n�2/–connected and
there is a long exact sequence of homotopy sheaves of the form

(3.1.3) �3n�2.X/
E
// �3n�2.J.X//

H
// �3n�2.J.X

^2//
P
// �3n�3.X/

E
// � � �

� � � // �q.X/
E
// �q.J.X//

H
// �q.J.X

^2//
P
// �q�1.X/ // � � � :

Remark 3.1.5 Proposition 2.1.6 guarantees the existence of isomorphisms of homo-
topy sheaves of the form �q.J.X//Š �qC1.X/ and �q.J.X^2//Š �qC1.X^2/.

Proof In outline, we argue at points to reduce to the classical EHP sequence. In more
detail, let F denote the homotopy fiber of the map HW J.X/! J.X^2/ in the local
model structure. Since the composite H ıEW X ! J.X/! J.X^2/ is null, there is a
lift of EW X ! J.X/ to a map �W X ! F as follows:

(3.1.4)

X

�
��

E

##

F // J.X/
H
// J.X^2/

If q� is a point of the site C, then q� preserves fiber sequences, and commutes with
the formation of J. � / and E, H. In particular, applying q� throughout, we see using
Proposition 3.1.2 that q�� is .3n�2/–connected. Since this holds for all such q�, we
deduce that the map � is itself .3n�2/–connected. The long exact sequence follows.

3.2 The construction of the EHP sequence in A1–homotopy theory

We now transport the EHP sequence studied in the previous section to A1–homotopy
theory. The basic idea is to appeal to Proposition 3.1.4 and use facts about when A1–
localization preserves simplicial fiber sequences from Section 2.3. If we A1–localize
the simplicial James–Hopf map H of Definition 3.1.3 (we abuse notation and write H
for the resulting map), then we can consider the following sequence of morphisms

(3.2.1) LA1X �!LA1J.X / H
�!LA1J.X

^2/:

The next result gives an analog of Whitehead’s classical exact sequence in A1–homotopy
theory.

Theorem 3.2.1 Assume the unstable A1–connectivity property holds for S and sup-
pose X is a pointed A1–.n�1/–connected space, with n � 2. There is an exact
sequence of homotopy sheaves of the form

(3.2.2) �A1
3n�2.X /

E
// �A1
3n�2.J.X //

H
// �A1
3n�2.J.X

^2//
P
// �A1
3n�3.X /

E
// � � �

� � � // �A1
q .X /

E
// �A1
q .J.X //

H
// �A1
q .J.X

^2//
P
// �A1
q�1.X / // � � � :
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Remark 3.2.2 Theorem 2.4.2 guarantees the existence of isomorphisms of sheaves
�A1
q .J.X //Š �A1

qC1.†X / and �q.J.X ^2//Š �A1
qC1.†X ^2/.

Proof We proceed as in the proof of Proposition 3.1.4, with the part of X played
by LA1X . By hypothesis, LA1X is simplicially .n�1/–connected. As before, set up
the diagram:

(3.2.3)

LA1X

�

��

E

%%

F // J.LA1X /
H
// J..LA1X /^2/

Since n � 1, the space J..LA1X /^2/ is simplicially 1–connected. Then, using the
unstable A1–connectivity property, we may apply Theorem 2.3.3 to conclude that
applying LA1 to the simplicial fiber sequence in (3.1.4) results in a simplicial fiber
sequence of the form

(3.2.4) LA1F �! LA1J.LA1X / �! LA1J..LA1X /^2/:

Since the map X ! LA1X is an A1–weak equivalence, Theorem 2.4.2(2) im-
plies that there are weak equivalences of the form LA1J.LA1X / ' LA1J.X / and
LA1J..LA1X /^2/' LA1J.X

^2/.

Since the unstable A1–connectivity property holds for S , the sheaves �A1
i .X / are

strictly A1–invariant by Lemma 2.2.11(1). Then Theorem 2.3.8 implies that

�i .F /Š �
A1
i .F /Š �i .LA1F /Š �i .LA1X /D �A1

i .X / for 1� i � 3n� 3:

These observations suffice to establish exactness everywhere except the leftmost part
of the long exact sequence.

The map �W LA1X ! F is simplicially .3n�2/–connected, and since n � 2, the
connectivity of X implies that �A1

0 .�F / ' �, by means of Theorem 2.2.12 for
example. Thus, we can apply Corollary 2.3.6 to conclude that LA1�W LA1X !

LA1F is also simplicially .3n�2/–connected. Therefore, there is a surjective map
��W �

A1
3n�2.X /��A1

3n�2.F / factoring EW �A1
3n�2.X /��A1

3n�2.J.X //, yielding the
exactness of the long exact sequence at the left as well.

Remark 3.2.3 Assume the unstable A1–connectivity property holds for S . If X

is a simplicially .n�1/–connected space, then J.LA1X
^2/ is at least A1–.2n�1/–

connected by Theorem 2.2.12. Theorem 3.2.1 is therefore a refinement of Morel’s
suspension theorem, [44, Theorem 6.61].
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3.3 Analyzing the A1–EHP sequence in low degrees

The goal of this section is to study the low-degree portion of the EHP sequence in
A1–algebraic topology. To do this, given an A1–.n�1/–connected space X , we will
show that X ^2 is at least A1–.2n�1/–connected, identify the first nonvanishing A1–
homotopy sheaf of X ^2 and use this to give a more explicit form of the EHP sequence
in the first degree in which the suspension map is not an isomorphism. Granted the
results of previous sections, and some results about A1–homology recalled below, the
argument is a straightforward translation of a classical argument due to J H C Whitehead
[60, Theorem 2] in the case of spheres and more generally by P Hilton [24, Theorem 2.1].

Some connectivity estimates Suppose .X ; x/ and .Y ; y/ are two pointed spaces.
We will assume that X is A1–.m�1/–connected, and Y is A1–.n�1/–connected.
Without loss of generality, we will assume that m� n.

Lemma 3.3.1 Assume the unstable A1–connectivity property holds over S . The
wedge sum X _Y is at least A1–.m� 1/–connected, and the smash product X ^Y

is at least A1–.mCn�1/–connected.

Proof For the first statement, observe that the map X _Y ! LA1X _LA1Y is an
A1–weak equivalence by [45, Section 2, Lemma 2.11]. Since taking stalks commutes
with coproducts, we conclude that the stalks of LA1X _LA1Y are at least .m�1/–
connected. Under the hypotheses, Theorem 2.2.12 implies that X _ Y is at least
.m�1/–connected.

The second statement is established similarly. By two applications of [45, Section 3,
Lemma 2.13] we can conclude that the map X ^Y ! LA1X ^LA1Y is an A1–weak
equivalence. Again by checking on stalks, and using the unstable A1–connectivity
theorem one concludes that X ^Y is at least A1–.mCn�1/–connected.

A1–homology The A1–derived category may be constructed as a left Bousfield local-
ization of the derived category of presheaves of abelian groups on SmS with respect to
a notion of A1–quasi-isomorphism [44, Section 6.2].1

Morel gives a construction of an A1–localization functor Lab
A1

[44, Lemma 6.18]; this
functor is an endofunctor of the category of chain complexes of Nisnevich sheaves of
abelian groups, and there is a natural transformation � W id! Lab

A1
such that for any

complex A, there is a quasi-isomorphism A! Lab
A1
.A/ with target that is fibrant and

A1–local.
1Morel works with the derived category of Nisnevich sheaves of abelian groups, but the exact functor

of Nisnevich sheafification induces a Quillen equivalence between the model we use and Morel’s model.
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Notation 3.3.2 If X is a space, then we consider C�.X /, the normalized chain
complex associated with the simplicial presheaf of free abelian groups Z.X /. The A1–
singular chain complex of X is the complex Lab

A1
C�.X /, which we may also denote

CA1
� .X /. The structure morphism X ! S induces a morphism CA1

� .X /! CA1
� .S/,

and we define zCA1
� .X / as the kernel of this morphism.

The A1–homology sheaves of X , denoted HA1
i .X /, are defined as the Nisnevich

sheafifications of the homology presheaves Hi .Lab
A1
C�.X //. If A is a complex of

presheaves of abelian groups, we will abuse notation and define HA1
i .A/ to be the

Nisnevich sheafification of the homology presheaf Hi .Lab
A1
A/. We define zHA1

i .X / as
ker.HA1

i .X /!HA1
i .S//.

The Dold–Kan adjunction shows that the Eilenberg–MacLane space associated with an
A1–local complex is an A1–local space [15, Proposition 4 and (3.5)]. Note, however,
that the ordinary singular chain complex of an A1–local space can fail to be A1–local
(the standard counterexample is Gm ). The following property is the analog of the
unstable A1–connectivity property of Definition 2.2.6 and was studied in [43, Section
6.2] in the closely related context of S1–spectra.

Definition 3.3.3 The stable A1–connectivity property holds for S if Lab
A1

preserves
.�1/–connected complexes.

Theorem 3.3.4 [43, Theorem 6.1.8] The stable A1–connectivity property holds for
the spectrum of a field.2

Remark 3.3.5 Ayoub [8] has shown that if S is a Noetherian scheme of Krull di-
mension d � 2, then the stable A1–connectivity property may fail for S in a very
strong sense. Ayoub’s counterexample is constructed in Voevodsky’s derived category
of motives. As noted above, if a complex of sheaves of abelian groups is A1–local,
then the associated Eilenberg–MacLane space is A1–local as well. Therefore, Ayoub’s
counterexample can be transported to yield a counterexample to the unstable A1–
connectivity property over S .

If the stable A1–connectivity property holds, the A1–derived category has a number
of very nice properties. Write AbS for the category of Nisnevich sheaves of abelian
groups on SmS , and AbA1

S for the full subcategory of strictly A1–invariant sheaves.
Before proceeding, we introduce the following notation.

2For k finite, use the result of [26] for the same reason as in the proof of Theorem 2.2.7.
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Notation 3.3.6 Given two strictly A1–invariant sheaves, set

A˝A1B WDHA1
0 .A˝

LB/:

Remark 3.3.7 The unit object for the A1–tensor product is the strictly A1–invariant
sheaf Z.

With this notation, the following result holds.

Lemma 3.3.8 [43, Lemma 6.2.13] If the stable A1–connectivity property holds
over S , then AbA1

S is an abelian category and the inclusion functor AbA1
S ! AbS is an

exact embedding. Moreover, the bifunctor .A;B/ 7!A˝A1B equips the category AbA1
S

with a symmetric monoidal structure.

The next result is closely related to [43, Remark 6.2.6] (apply that remark to shifted
suspension spectra of suitably highly connected pointed spaces).

Proposition 3.3.9 Assume the unstable and stable A1–connectivity properties hold
for S , and suppose m; n are integers � 1. If X is A1–.m�1/–connected, and Y is
A1–.n�1/–connected, there are canonical isomorphisms

zHA1
i .X �Y /

��!

(
zHA1
i .X /˚ zHA1

i .Y / if 0� i �mCn� 1;

. zHA1
m .X /˝A1 zHA1

n .Y //˚
zHA1
mCn.X /˚ zHA1

mCn.Y / if iDmCn:

Proof Consider the inclusion map

X _Y �!X �Y :

The cone of this inclusion map is X ^Y . Note also that after a single suspension,
the inclusion map is split by the projection. As a consequence, there are direct sum
decompositions of the form

zHA1
i .X �Y /Š zHA1

i .X /˚ zHA1
i .Y /˚

zHA1
i .X ^Y /:

Under the assumption that the unstable and stable A1–connectivity theorems hold
for S , Lemma 3.3.1 together with the usual A1–Hurewicz theorem [44, Theorem 6.57]
immediately imply the result for i �mCn� 1 (note that Morel’s Hurewicz theorem
holds in this context under the assumptions given: simply replace the appeal to [44,
Theorem 6.56] in Morel’s proof by an appeal to Corollary 2.3.6).

It remains to treat the case i DmCn. In that case, let zCA1
� .X / and zCA1

� .Y / be the
A1–chain complexes of X and Y ; recall that these are obtained by taking the chain
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complex associated with the free abelian group on X and then A1–localizing the result.
By replacing zCA1

� .X / by a shift, we may assume nD 0 and similarly for Y and mD 0.
The complex zCA1

� .X /˝L zCA1
� .Y / is also concentrated in degrees � 0, and since the

stable A1–connectivity property holds for S it follows that Lab
A1
. zCA1
� .X /˝L zCA1

� .Y //

is concentrated in degrees � 0. Since the zeroth homology is obtained by truncation
with respect to the homotopy t –structure, it follows that

HA1
0 .
zCA1
� .X /˝L zCA1

� .Y //ŠH
A1
0 .X /˝A1HA1

0 .Y /:

To conclude it remains to identify the left-hand side in terms of the smash product
X ^Y . For this, it suffices to observe that the Eilenberg–Zilber theorem implies the
existence of an isomorphism of the form zCA1

� .X /˝L zCA1
� .Y /Š

zCA1
� .X ^Y /.

Corollary 3.3.10 Assume the unstable and stable A1–connectivity properties hold
for S and suppose m; n are integers � 2. If .X ; x/ is a pointed A1–.m�1/–connected
space and .Y ; y/ is a pointed A1–.n�1/–connected space, then there is a canonical
isomorphism

�A1
nCm.X ^Y / ��!�A1

m .X /˝A1�A1
n .Y /:

Proof By Lemma 3.3.1, we know X ^Y is A1–.mCn�1/–connected. By the A1–
Hurewicz theorem [44, Theorem 6.57], it suffices to prove the result in A1–homology
(again, as in the proof of Proposition 3.3.9, this holds under our assumption that
the unstable and stable A1–connectivity properties hold). In that case, it follows
immediately from the proof of Proposition 3.3.9.

The connection with the results of Hilton and Whitehead mentioned at the beginning
of this section is contained in the next result, which describes the first “nonlinear”
A1–homotopy sheaf of a wedge sum. Given the above results, the proof is a direct
consequence of the A1–homotopy excision theorem (aka Blakers–Massey theorem;3

see eg [6, Theorem 3.1], [51, Theorem 2.3.8] or [61, Proposition 2.20]) and is left to
the reader.

Corollary 3.3.11 Assume the unstable and stable A1–connectivity properties hold
for S and suppose m; n � 2 are integers. Suppose X is a pointed A1–.m�1/–
connected space and Y is a pointed A1–.n�1/–connected space. There are canonical

3By inspecting the proof, one sees that this result is a direct consequence of the relative connectivity
theorem (Corollary 2.3.6) and therefore holds over any base scheme S for which the unstable A1–
connectivity property holds.
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isomorphisms

�A1
i .X _Y /

��!

(
�A1
i .X /˚�A1

i .X / if 1� i �mCn� 2;

�A1
mCn�1.X /˚�A1

mCn�1.X /˚�A1
m .X /˝A1�A1

n .Y / when i DmCn� 1:

Remark 3.3.12 As in classical homotopy theory, the computation of the homotopy of
a wedge sum allows one to study homotopy operations. The first “nonlinear” summand
in the homotopy of a wedge sum is closely related to the Whitehead product studied in
Section 4.1, though we have not attempted to establish equivalence of the definitions.

The EHP sequence in low degrees

Theorem 3.3.13 Assume the unstable and stable A1–connectivity properties hold
for S . Let n� 2 be an integer. If X is an A1–.n�1/–connected space, then there is
an exact sequence of the form

�A1
2nC1.†X / H

�!�A1
n .X /˝A1�A1

n .X / P
�!�A1

2n�1.X / E
�!�A1

2n .†X / �! 0:

In particular, one has an exact sequence as above if S is the spectrum of an (infinite)
perfect field.

Proof Consider the exact sequence of Theorem 3.2.1. Lemma 3.3.1 implies that
†X ^X is at least A1–2n–connected, and thus J.X ^X / is at least A1–.2n�1/–
connected. This immediately yields the surjectivity in the statement. Corollary 3.3.10
then yields the identification of �A1

2n .J.X ^X // with the A1–tensor product term.
The final statement is a consequence of Theorems 2.2.7 and 3.3.4.

Remark 3.3.14 The exact sequence of Theorem 3.3.13 when X DA3 n0 is precisely
the one described in [2, Theorem 4]. One notational benefit of the statement of
Theorem 3.3.13 is that the quadratic nature of the James–Hopf invariants is apparent.

4 Some E1 differentials in the A1–EHP sequence

The goal of this section is to analyze the morphisms in the A1–EHP sequence. As
mentioned in the introduction, classically, the morphism P can be described in terms
of Whitehead products. In Section 4.1, we extend the definition of Whitehead product
to the theory of simplicial presheaves (see Definition 4.1.2) to make it available in the
A1–homotopy category as well. These results are written in the generality of simplicial
presheaves on a site with enough points. We then use the results of Section 4.1 to show
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that the map P in Theorem 3.2.1 can indeed be expressed in terms of the Whitehead
product (see Theorem 4.2.1); this requires that the unstable A1–connectivity property
holds for S .

The A1–EHP spectral sequence is created by combining A1–EHP sequences into an
exact couple. However, since the A1–EHP sequences of Theorem 3.2.1 are truncated,
some algebraic manipulation is required to form an exact couple (for example extending
the sequences to the left by a kernel and then zeros), and the resulting spectral sequence
will differ from the A1–EHP spectral sequence. Nevertheless, it is shown in [61] that
after localizing at 2, the exact sequences of Theorem 3.2.1 are “low-degree portions”
of suitable long exact sequences, and these long exact sequences yield the 2–primary
A1–EHP sequence (with the expected convergence properties).

The analysis of morphisms in the A1–EHP sequence described above can be used to de-
scribe some differentials on the E1 page in the A1–EHP spectral sequence. The desired
E1–differentials (given by the composite HP linking the EHP sequences of different
spheres) are then determined by the James–Hopf invariant of a Whitehead product. The
axiomatic approach to Hopf invariants of Boardman and Steer [12] determines these
James–Hopf invariants. In Section 4.3, we recast some results of Boardman and Steer
in the context of simplicial presheaves. The main result is Proposition 4.3.5, which
holds in the generality of simplicial presheaves on a site with enough points. In contrast,
the remaining Section 4.4 is more specific to A1–homotopy theory; Theorem 4.4.1
identifies an E1–differential in the A1–EHP sequence with multiplication by a given
element of GW.k/.

4.1 Whitehead products for simplicial presheaves

In this section, we give a construction of Whitehead products in A1–homotopy theory,
the construction generalizes classical results of [13; 1] to the context of simplicial
presheaves. Suppose C is a site and as in Section 2.1 consider the category of pointed
simplicial presheaves on C with its injective local model structure. If X and Y are
pointed simplicial presheaves, we write ŒX; Y � for morphisms in the associated (pointed)
homotopy category. Unfortunately, it is also standard to use the notation Œ�;�� for
Whitehead products, but we hope that context will ensure that no confusion arises.

Recall that the constant simplicial presheaf S1 is an H–cogroup object in the cat-
egory of pointed simplicial presheaves on C, and there is an induced H–cogroup
structure on †W for any pointed space W . In particular, for any space Z , the space
Map.†W;Z/ has the structure of an H –group, functorially in both Z and W . We will
write � for the product in Map.†W;Z/ and .�/�1 for the inversion map; the constant
map to the basepoint � serves as a unit.
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Suppose given pointed simplicial presheaves X , Y and Z . The product projections
pX W X � Y ! X and pY W X � Y ! Y are pointed, and they induce morphisms
†pX W †.X �Y /!†X and †pY W †.X �Y /!†Y . In addition, the canonical map
X _Y !X �Y induces a morphism †.X _Y /'†X _†Y !†.X �Y / that fits
into a cofiber sequence with cofiber †.X ^Y /.

Construction 4.1.1 (Whitehead product) Given maps ˛W †X!Z and ˇW †Y !Z ,
composition with the projections yields morphisms a WD ˛ ı†pX and b WD ˇ ı†pY .
With respect to the product structure on Map.†.X �Y /;Z/, we may consider the map

.a�1 � b�1/ � .a � b/W †.X �Y / �!Z:

We embed the map .a�1 � b�1/ � .a � b/ into the following diagram:

†X _†Y //

''

†.X �Y / //

.a�1�b�1/�.a�b/
��

†.X ^Y /

Z

The pullback of .a�1 � b�1/ � .a � b/ to †.X _ Y / has a prescribed null-homotopy
described as follows. The composition of the inclusion †.X � �/ ! †.X � Y /

with �Y is the constant map. Thus, if we pull back .a�1 � b�1/ � .a � b/ to †.X ��/
the result coincides with the pullback of .a�1 � ��1/ � .a � �/. There is a canonical
homotopy between .a�1 � ��1/ � .a � �/ and the constant map �. Switching the roles of
X and Y and a and b , the pullback of .a�1 � b�1/ � .a � b/ to †.��Y / also admits a
specified null-homotopy. Thus, the pullback of .a�1 �b�1/ � .a �b/ to †.X _Y / comes
equipped with a specified null-homotopy. By means of this null-homotopy, the map
.a�1 � b�1/ � .a � b/ passes to a well-defined homotopy class of maps †.X ^Y /!Z ;
we write Œ˛; ˇ� for any representative of this class.

Since the sequence 1! Œ†.X^Y /;Z�! Œ†.X�Y /;Z�! Œ†.X_Y /�! 1 is exact,
the choice of null-homotopy does not affect the homotopy class of Œ˛; ˇ�.

Definition 4.1.2 Given maps ˛W †X !Z and ˇW †Y !Z , a representative for the
homotopy class of maps

Œ˛; ˇ�W †.X ^Y / �!Z:

in Construction 4.1.1 (or the homotopy class itself) is a Whitehead product of ˛ and ˇ .

Following classical conventions, we write �X for the identity map on a (pointed)
simplicial presheaf X , and by a slight abuse of notation, we also let �†X denote the
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inclusion †X!†X _†Y . The construction above with ˛ D �†X and ˇ D �†Y also
yields a canonical map

Œ�†X ; �†Y �W †.X ^Y / �!†X _†Y

that can be thought of as a universal Whitehead product in the sense that the Whitehead
product of Definition 4.1.2 can be obtained by composing Œ�†X ; �†Y � with the map
˛_ˇW †X _†Y !Z . Regarding this product, we have the following result, which
is a straightforward consequence of [1, Theorem 4.2].

To state this result, introduce the following notation. For X and Y pointed spaces, let
� W ††.X ^Y / ��!††.X ^Y / denote the map which switches the two suspensions
and is the identity on X ^ Y . Let }W ††.X ^ Y / ��!†X ^†Y be the map which
does not change the order of the suspensions and is the identity on X and Y .

Lemma 4.1.3 If X and Y are pointed connected spaces, then there is a cofiber
sequence of the form

†.X ^Y /
Œ�†X ;�†Y � // †X _†Y // †X �†Y;

where the second map is the usual map from the sum to the product, and such that the
induced weak equivalence

†2.X ^Y / ��!†X ^†Y

is homotopic to }� .

Proof Recall that if X and Y are two pointed spaces, their join, typically denoted
X �Y , is the homotopy pushout of the diagram X X �Y ! Y . There is a functorial
sectionwise weak equivalence X �Y '†X^Y . Using this identification, the universal
Whitehead product can be thought of as a map with source X �Y !†X _†Y (see
[1, Definition 2.3]).

We first treat the case of simplicial sets. Thus, suppose A and B are connected simplicial
sets. Let C

�
A�B!†A_†B

�
be the reduced mapping cone of Œ�†A; �†B �. In the

proof of [1, Theorem 4.2], one finds a natural map

‚W C
�
A�B!†A_†B

�
�!†A�†B

(this map is called G in [1] and is originally due to D E Cohen [13]). We claim the
map ‚ is a homology isomorphism. In [1, Theorem 4.2], this is fact is established
for A and B polyhedra with one of A or B compact. As a consequence, it is true for
finite simplicial sets. Since homology commutes with filtered direct limits and since
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the map ‚ is evidently compatible with passing to sub-simplicial-sets by inspection, it
follows that ‚ is a homology isomorphism for A and B arbitrary simplicial sets.

Now, we treat the general case of simplicial presheaves. Write C.Œ�†X ; �†Y �/ for
the cofiber of Œ�†X ; �†Y �W X � Y ! †X _ †Y . It follows that there is a map
‚W C.Œ�†X ; �†Y �/!†X �†Y defined sectionwise, ie for each object U 2 C define
‚.U /W C.Œ�†X ; �†Y �/.U /!†X.U /�†Y.U / to be the map above. For each such U,
the map ‚.U / is a homology equivalence between simply connected simplicial sets,
and therefore a sectionwise weak equivalence. Combining with the sectionwise weak
equivalence X �Y !†.X ^Y / and using the compatibility of the definitions of the
Whitehead product we have established the claimed cofiber sequence.

The cofiber sequence identifies the suspension of †.X ^Y / with the homotopy cofiber
of †X _†Y !†X �†Y . To prove that the homotopy class of the resulting map

(4.1.1) †2.X ^Y / ��!†X ^†Y

is }� , by working sectionwise it suffices to establish the analogous claim in the context
of simplicial sets, which in turn can be reduced to checking the claim in the context of
CW complexes, as considered in [1].

We recall the following constructions from [1]. Let S denote the unreduced suspension,
T denote the unreduced cone, and C denote the reduced cone. Let A and B be pointed,
locally finite, connected, CW complexes. The map ‚ induces a map

(4.1.2) C
�
A�B!†A_†B

�
=.†A_†B/ �! .†A�†B/=.†A_†B/:

By construction [1, Theorem 4.2, Lemma 4.1], (4.1.2) is induced from a map of pairs

(4.1.3) .T .A�B/;A�B/ �! .†A�†B;†A_†B/;

constructed as follows. Define

N W .T .A�B/;A�B/ �! .TA�TB; TA�B [A�TB/

by

N.u; .t; a; b//D

(
.u; a/�

�
1� 2t.1�u/; b

�
if 0� t � 1

2
;�

1� 2.1� t /.1�u/; a
�
� .u; b/ if 1

2
� t � 1:

For a space W , let tW W TW ! SW and sW W SW !†W be the quotient maps. Then

Geometry & Topology, Volume 21 (2017)



2130 Aravind Asok, Kirsten Wickelgren and Ben Williams

(4.1.3) is defined to be the composite:

.T .A�B/;A�B/
N

// .TA�TB; TA�B [A�TB/

tA�tB
��

.†A�†B;†A_†B/ .SA�SB; SA_SB/
SA�SB

oo

There is a weak equivalence �0W A�B!†A^B given by quotienting by points of
the forms .a;�; t / and .�; b; t/, where � denotes the base points, and t denotes the
coordinate of the interval in the standard representation of the join. Let � be a homotopy
inverse. The map (4.1.1) in the homotopy category is M ı†.�/, where M denotes
the map on quotient spaces associated to the map of pairs .SX �SY / ı .tX � tY / ıN.
It therefore suffices to show that

.u; t/ 7�!

( �
u; 1� 2t.1�u/

�
if 0� t � 1

2
;�

1� 2.1� t /.1�u/; u
�

if 1
2
� t � 1

determines an endomorphism of S1 ^S1 of degree �1. This is easily checked: for
example, the fiber over

�
1
4
; 3
4

�
consists of the single point .u; t/ D

�
1
4
; 1
6

�
and the

Jacobian determinant at the point
�
1
4
; 1
6

�
is negative.

Proposition 4.1.4 If Z is an h–space in the category of pointed simplicial presheaves
on C, then Œ˛; ˇ�D 0 for all ˛ 2 Œ†X;Z� and ˇ 2 Œ†Y;Z�.

Proof If Z is an h–space, then the group Œ†.X �Y /;Z� is an abelian group by the
Eckmann–Hilton argument. Therefore, the commutator must be zero.

4.2 On the map P in the A1–EHP sequence

In this section, we return to the setting of A1–homotopy theory and we analyze the map

PW �A1
iC1.J.X

^2// �! �A1
i .X /

in the exact sequence of Theorem 3.2.1 under the additional assumption that the pointed
space X is itself a suspension X D †Z (see the beginning of Section 2.2 for a
reminder regarding conventions). In direct analogy with the results mentioned in the
introduction, the map P can be described in terms of the Whitehead product introduced
in Definition 4.1.2; the main result is Theorem 4.2.1.

The map P was defined as the connecting homomorphism in the exact sequence of
Theorem 3.2.1. This exact sequence does not arise directly from a fiber sequence,
however. If X is as above, then we can recast the sequence of (3.2.1) as the homotopy
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commutative diagram:

LA1X

E
��

// �

��

LA1J.X /
H
// LA1J.X

^2/

By functoriality of homotopy fibers, there is an induced morphism

hofib
�
LA1X ! LA1J.X /

�
�!�LA1J.X

^2/

and the connectivity of this map is what allows us to define the map P in Theorem 3.2.1.

In the range where the map above is connected, it makes sense to consider the composite
map

(4.2.1) �A1
i .†Z ^Z / �! �A1

iC1.J.†Z ^†Z // P
�!�A1

i .†Z /:

Precisely, if Z is .n�2/–connected, then this composite is defined for i � 3n�3. We
shall furthermore see that, provided the A1–connectivity property holds for S and n�2,
the first map in (4.2.1) is in fact an isomorphism in the range being considered.

On the other hand, we saw in Section 4.1 that the Whitehead square of the identity
Œ�†Z ; �†Z � gives a morphism †Z ^Z ! †Z . We will abuse notation and write
Œ�†Z ; �†Z � for the map

Œ�†Z ; �†Z �W LA1†Z ^Z �! LA1†Z :

This morphism induces a pushforward map on homotopy sheaves

Œ�†Z ; �†Z ��W �
A1
i .†Z ^Z / �! �A1

i .†Z /

that we would like to compare with the map (4.2.1). The next result, which gives
precisely such a comparison, provides an analog of [59, Theorem XII.2.4] or, rather,
its extension to general .n�1/–connected spaces in the spirit of [20, Theorem 3.1 and
page 231], in the context of unstable A1–homotopy theory.

Theorem 4.2.1 Assume the unstable A1–connectivity property holds for S and sup-
pose n�2 is an integer. If Z is an A1–.n�2/–connected pointed space, and X D†Z ,
then for any positive integer i � 3n� 4 the composite morphism of (4.2.1) fits into a
commutative diagram of the following form:

�A1
i .†.Z ^Z //

�
//

Œ�†Z ;�†Z ��

44
�A1
iC1.J.X

^2//
P

// �A1
i .X /

The isomorphism of homotopy sheaves in the diagram is induced by 2–fold suspension.
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Proof Without loss of generality, assume Z is A1–fibrant.

We begin with the cofiber sequence

†.Z ^Z / u
�!†Z _†Z �!†Z �†Z

of Lemma 4.1.3. Here u denotes the “universal” Whitehead product; the map

Œ�†Z ; �†Z �W †.Z ^Z /!†Z

is obtained by composing u with a fold map.

By construction, the map u is represented by uW C !†Z _†Z , where C denotes the
reduced mapping cone of †.Z _Z /!†.Z �Z /. We now consider the following
commutative diagram:

(4.2.2)

C
u

// †Z _†Z //

��

†Z �†Z

��

// †Z ^†Z

C
Œ�†Z ;�†Z �

// †Z // J2.†Z / // †Z ^†Z

The vertical maps are, reading left to right, the identity, the fold map, the canonical map
from the product to J2 and the identity. The horizontal arrows †Z ! J2.†Z / in the
center are the canonical inclusions. We observe that the center square is a pushout,
being the definition of J2.†Z /, and therefore the rightmost two horizontal maps are
quotient maps. Since †Z _†Z !†Z �†Z is a cofibration, this square is in fact a
homotopy pushout square. The two rows are homotopy cofiber sequences.

We form the following diagram, where the upper row is a homotopy cofiber sequence
and the lower row a fiber sequence:

(4.2.3)

†Z ^Z
Œ�†Z ;�†Z �

//

g

��

†Z //

t

��

J2.†Z / //

��

†Z ^†Z

f

��

�J..†Z /^2/
s
// hofib H // J.†Z /

H
// J..†Z /^2/

The maps indicated by the dashed arrows are adjoint to one another: by [48, Chapter I.3,
proof of Proposition 6, 3.13] the map †2Z ^Z ! †Z ^†Z

f
! J..†Z /^2/ is

inverse adjoint to g . By Lemma 4.1.3, the map †2Z ^Z !†Z ^†Z is simplicially
homotopic to }� , which reverses the order of the two suspensions, inducing �1 in the
homotopy category.

The map f W †Z ^†Z ! J..†Z /^2/ is given by the canonical map †Z �†Z !

J.†Z / followed by H; an analysis of H (Definition 3.1.1) now shows that f is the
suspension map E as applied to †Z ^†Z . Therefore, g is the 2–fold suspension map.
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We may A1–localize throughout. We do not draw (4.2.3) a second time with LA1

prepended to all terms. Since all spaces appearing above are at least 1–connected,
Corollary 2.3.6 applies throughout and maps that are n–connected remain n–connected
after A1–localization. We apply �A1

i to the leftmost square to obtain a commuting
square:

�A1
i .†Z ^Z /

Œ�†Z ;�†Z �
//

g�
��

�A1
i .†Z /

t�
��

�A1
iC1.J..†Z /^2//

s�
// �A1
i .hofib H/

The map g� , the 2–fold suspension map, is an isomorphism when i � 4n� 3. When
i � 3n� 2, the map t� is an isomorphism, and by definition PD t�1� ı s� ; the result
follows.

4.3 The James–Hopf invariant of a Whitehead product

In this section, we collect some properties of the James–Hopf invariant defined in
Section 3.1. Probably due to proliferation of different definitions of “Hopf invariants”
made at the time, Boardman and Steer [12] made an axiomatic study of such invariants.
We adapt some of their results to the context under consideration.

Let C be a site with enough points and consider simplicial presheaves on C equipped
with the injective local model structure. For pointed simplicial presheaves X and Y , we
continue to use the notation ŒX; Y � for morphisms in the associated (pointed) homotopy
category, and rely on context to distinguish this notation from that for the Whitehead
product.

Cup products Before passing to the main results, it will be necessary to recall some
constructions from [12].

Construction 4.3.1 (cup product [12, Definition 1.3]) Let X , Y and Z be pointed
simplicial presheaves. The reduced diagonal map X !X ^X is the composite of the
diagonal X!X �X and the map X �X!X ^X ; this map is null-homotopic if X
is a suspension. The smash product induces a map

Œ†mX; Y �� Œ†nX;Z� �! Œ†mX ^†nX; Y ^Z�:

The reduced diagonal then induces a morphism

†mCnX �!†mCnX ^X '†mX ^†nX I
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the isomorphism on the right does not permute the suspension factors. The composite
of these two morphisms defines the cup-product pairing

^W Œ†mX; Y �� Œ†nX;Z� �! Œ†nCmX; Y ^Z�:

The following result, which is identical in form to [12, Lemma 1.4] summarizes the
properties of cup products we use.

Lemma 4.3.2 Suppose X , Y and Z are pointed simplicial presheaves on C.

(1) The cup-product pairing is bilinear and associative.

(2) If X is itself a suspension, the cup-product pairing is trivial.

Proof For point (1), note that the smash product is bilinear and associative, and the
pullback is a homomorphism. Thus, the bilinearity and associativity of the cup product
follow immediately. As regards point (2), if there exists a pointed simplicial presheaf W
such that X D†W , then the reduced diagonal map †W !†W ^†W is simplicially
null-homotopic, which means the cup-product pairing is trivial.

Hopf invariants after Boardman and Steer Now, fix a pointed space Z and consider
the James–Hopf invariant HW J.Z/! J.Z^2/ from Definition 3.1.3. Applying ŒX;��
to this morphism, the identification of J.�/ with �†.�/ of Proposition 2.1.6 and the
loops suspension adjunction, H determines a map

HW Œ†X;†Z� �! Œ†X;†Z ^Z�I

in an abuse of notation, we denote this map also by H, but the context should make
clear which version we mean.

Following Boardman and Steer [12, Definition 2.1], define

�2W Œ†X;†Z�! Œ†2X;†2.Z ^Z/�

by �2 D † ı H. Note that �2 vanishes on suspensions. The classical interaction
between �2 and the group operation � induced by the h–cogroup structure of a sus-
pension generalizes to the context under consideration; this is a special case of the
Cartan formula [12, Definition 2.1(c) and Theorem 3.15], which uses the notion of
cup products just introduced. To state the result, let }W †Z ^†Z ��!†2Z ^Z be
the map which does not change the order of the suspensions or the order of the copies
of Z . The next result provides a direct analog of [12, Formula 3.14], but we include
the proof for the convenience of the reader.
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Lemma 4.3.3 Suppose that X and Z are pointed simplicial presheaves on C. Given
˛1; : : : ; ˛n in ŒX;Z�, consider †˛i 2 Œ†X;†Z�. The following formula holds
in Œ†2X;†2Z ^Z�:

�2.†˛1 � � �†˛n/D
Y

1�i<j�n

}.†˛i^† j̨ /;

where the product†˛1 � � �†˛n is taken with respect to the group structure on Œ†X;†Z�
and

Q
denotes the group operation � ordered lexicographically from left to right.

Proof We abuse notation slightly and write ˛i for a specified representative of the
homotopy class of maps ˛i 2 ŒX;Z�. In that case, †˛1 � � �†˛n is adjoint to the element
of ŒX; J.Z/� determined by x 7! ˛1.x/˛2.x/ � � �˛n.x/ for x 2X.U /.

Then H.†˛1 � � �†˛n/ is adjoint to the element of ŒX; J.Z ^Z/� represented by

x 7!
Y

1�i<j�n

˛i .x/^ j̨ .x/D
Y

1�i<j�n

.˛i ^ j̨ /.x ^ x/;

where
Q

denotes the group operation on J.Z ^Z/ ordered lexicographically from
left to right. Thus, �2.†˛1 � � �†˛n/D

Q
1�i<j�n }.†˛i^† j̨ /, as claimed.

Let

sW †.X �Y / �!†.X ^Y / and SW †2.X �Y / �!†2.X ^Y /

be the suspension and 2–fold suspension of the usual map from the product to the
smash. The group operation on Œ†2.X � Y /;†2Z ^ Z� is abelian, so we use the
symbol C instead of � when writing this operation.

Proposition 4.3.4 Let X and Y be pointed simplicial presheaves on C and assume
both are suspensions. If ˛ 2 Œ†X;†Z� and ˇ 2 Œ†Y;†Z� are suspensions, then

S��2Œ˛; ˇ�D�}.�
�
Y ˇ^��X˛/C}.�

�
X˛^��Y ˇ/:

We remind the reader that Œ˛; ˇ� denotes the Whitehead product of ˛ and ˇ . Here
��X W Œ†X;†Z�! Œ†.X �Y /;†Z� is the map induced by projection.

Proof All cup products will be followed by } , so we suppress } from the notation.
By definition, s�Œ˛; ˇ� D ��X˛

�1 � ��Y ˇ
�1 � ��X˛ � �

�
Y ˇ . By the naturality of �2 and

Lemma 4.3.3,

S��2Œ˛; ˇ�D�
�
X˛
�1^��Y ˇ

�1
C��X˛

�1^��X˛C�
�
X˛
�1^��Y ˇ

C��Y ˇ
�1^��X˛C�

�
Y ˇ
�1^��Y ˇC�

�
X˛^��Y ˇ:
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Since X is a suspension, the cup product ˛�1^ ˛ vanishes by Lemma 4.3.2(2),
whence ��X˛

�1^��X˛ D 0. The same reasoning shows that ��Y ˇ
�1^��Y ˇ D 0.

By Lemma 4.3.2(1), the cup product is bilinear and associative, and so we obtain the
following formula:

S��2Œ˛; ˇ�D �
�
X˛^��Y ˇ��

�
X˛^��Y ˇ��

�
Y ˇ^��X˛C�

�
X˛^��Y ˇ

D���Y ˇ^��X˛C�
�
X˛^��Y ˇ:

Hopf invariants of Whitehead products Let Z be a pointed simplicial presheaf
on C. Consider the maps

Œ�†Z ; �†Z �W †Z ^Z �!†Z and †HŒ�†Z ; �†Z �W †2Z ^Z �!†2Z ^Z:

Let eW Z ^Z!Z ^Z denote the exchange map, ie the map that permutes the two
factors.

Proposition 4.3.5 Let Z be a pointed simplicial presheaf on C that is a suspension.
In the homotopy category, there is an equality

†HŒ�†Z ; �†Z �D�†2eC†2�Z^Z :

Proof Let �i W †.Z�Z/!†Z denote the suspension of the i th projection for iD1; 2.
Let �W †Z ! †Z denote the identity. Let }W †Z ^ †Z ! †2.Z ^ Z/ be the
permutation that does not change the order of suspensions, and let }�1W †2.Z^Z/!
†Z ^†Z be its inverse.

Consider the map SW †2.Z �Z/! †2.Z ^Z/ as introduced above. In that case,
Proposition 4.3.4 allows us to conclude the following equality holds:

S�†HŒ�; ��D�}.��2 �^��1 �/C}.�
�
1 �^��2 �/:

Write �W Z �Z! .Z �Z/^ .Z �Z/ for the reduced diagonal map. Let

}0W †2.Z �Z/^ .Z �Z/ �!†.Z �Z/^†.Z �Z/

denote the permutation which does not swap the order of the two suspensions in
†2.Z �Z/^ .Z �Z/. Note that

.��1 �^�
�
2 �/ ı}

0†2�W †2.Z �Z/ �!†.Z �Z/^†.Z �Z/ �!†.Z/^†.Z/

is homotopic to S followed by the permutation }�1. Therefore, up to homotopy,
.��1 �^�

�
2 �/ ı}

0†2�D }�1S.

By definition, ��1 �^��2 �D .�
�
1 �^�

�
2 �/ ı}

0†2�. Thus ��1 �^��2 �D }
�1S in the

homotopy category. Applying } to both sides, we conclude that

}.��1 �^��2 �/DS:
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Note that

.��2 �^�
�
1 �/ ı}

0†2�W †2.Z �Z/ �!†.Z �Z/^†.Z �Z/ �!†.Z/^†.Z/

is homotopic to }�1 ı†2e ıS, whence

}.��2 �^��1 �/DS�†2e:

It follows that
S�†HŒ�†Z ; �†Z �DS�.�†2eC†2�Z^Z/:

To conclude, we simply observe that S� is injective. Indeed, this follows from the
standard fact that for simplicial presheaves X and Y , after a single suspension, the
cofiber sequence X _Y !X �Y !X ^Y is split by the sum of the projections †pX
and †pY . In that case, the long exact sequence in homotopy obtained by mapping any
suspension of the above cofiber sequence into the space Z splits into a collection of
short exact sequences.

4.4 The composite HP for a sphere as an element of KMW
0
.k/

In this section, we analyze the composite map HP for a sphere. Up to this point in the
paper, we have worked either in the context of simplicial presheaves on a site having
enough points or in the unstable A1–homotopy theory over a base for which the unstable
A1–connectivity property holds. The results in this section differ from those earlier in
the paper because they will use finer structure of the A1–homotopy category over a
base field k assumed to be perfect (and infinite for those being especially careful). We
will try to be clear about exactly which ingredients do not follow from the “axiomatic”
point of view.

Morel shows the sheaf �A1
p .S

pCq˛/ (see Notation 2.2.4) is isomorphic to the Milnor–
Witt K-theory sheaf KMW

q for p� 2 (or, somewhat exceptionally, for pD 1 and qD 2)
[44, Theorem 1.23]. Stringing the EHP exact sequences of Theorem 3.2.1 for different
spheres together, one obtains the following diagram:

�A1
iC3.S

2pC3C2q˛/

P
��

�A1
i .S

pCq˛/
E
// �A1
iC1.S

pC1Cq˛/
H
//

E
��

�A1
iC1.S

2pC1C2q˛/
P
// �A1
i�1.S

pCq˛/

�A1
iC2.S

pC2Cq˛/
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The composite map HP becomes the E1–differential in the EHP spectral sequence.

When iD2p , the composite map HP is, by means of Morel’s computations, a morphism

HPW KMW
2q �!KMW

2q :

Note that by definition of Milnor–Witt K-theory sheaves, there is a ring homomorphism
KMW
0 .k/! Hom.KMW

2q ; K
MW
2q / induced on sections by multiplication; moreover this

homomorphism is necessarily injective. Lemma 5.1.3, combined with the computation
of contractions of Milnor–Witt K-theory sheaves (see the discussion after Lemma 5.1.1),
implies this morphism is an isomorphism if k has characteristic unequal to 2; that
this map is an isomorphism is also true if k has characteristic 2 but a different proof
is required; see the discussion after Lemma 5.1.1 for more details. In any case, the
map HP corresponds to an element of Hom.KMW

2q ; K
MW
2q /; we will see below that it

always lies in the subring KMW
0 .k/.

In order to state the result, we need some more precise information about the structure
of the Milnor–Witt K-theory ring. Recall that KMW

� .k/ is generated by elements
Œa� 2 k� of degree C1 and an element � of degree �1 subject to various relations [44,
Definition 3.1]. For a unit a 2 k�, set hai WD 1C �Œa�; the identification KMW

0 .k/Š

GW.k/ sends the element hai to the class of the 1–dimensional symmetric bilinear
form of the same name [44, Lemma 3.10]. Following Morel [44, page 51] or [40, Section
6.1], we set � WD �h�1i. The class � is related to the map Gm ^Gm! Gm ^Gm

that exchanges the two factors: see [40, Lemma 6.1.1(2)] for a “stable” statement or
[44, Lemma 3.43] for an “unstable” statement. Note that 1� � is the hyperbolic form
h, which intercedes in the definition of Milnor–Witt K-theory.

Theorem 4.4.1 Assume k is a perfect field and suppose p and q are integers
with p > 1 and q � 1. The map

HPW KMW
2q D �

A1
2pC2J..S

pC1Cq˛/^2/ �! �2pJ..S
pCq˛/^2/DKMW

2q

is given by 1� .�1/p�q 2KMW
0 .k/. Equivalently,

HPD

8̂̂̂<̂
ˆ̂:

0 if p and q are even;
2 if p is odd and q is even;
h if p is even and q is odd,

1C � if p and q are odd.

Remark 4.4.2 See Remark 5.1.2 for more details on the situation when k has charac-
teristic 2. There is a corresponding statement if q D 0 as well, but in that case, the
composite in question gets identified with an element of Z, not KMW

0 .k/ and the result
is the classical computation of HP.
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Proof Under the hypothesis on k , the unstable A1–connectivity property holds by
Theorem 2.2.7. The hypotheses on p and q are simply those that need to be imposed
to appeal to Morel’s computations of homotopy sheaves.

We begin by applying Theorem 4.2.1 with X D SpC1Cq˛, Z D SpCq˛, nD pC 1
and i D 2pC 1 to interpret P as a Whitehead product. More precisely, since 1� p , it
follows that i D .2pC 1/ � 3.pC 1/� 3, and so we know that P is induced by the
map Œ�†Z ; �†Z �� in degree 2pC 1. It follows that the composite HP is isomorphic to
the map obtained by applying �A1

2pC1 to HŒ�†Z ; �†Z �.

Next, we appeal to our results about James–Hopf invariants of Whitehead products
(Proposition 4.3.5) to produce an explicit formula for HP in terms of the exchange
map eW Z ^Z !Z ^Z . Indeed, Proposition 4.3.5 yields an equality of the form

†HŒ�†Z ; �†Z �D�†
2eC†2�Z^Z :

However, recall that by Theorem 3.2.1 (combined with Remark 3.2.3), the suspension
map

†W Œ†.Z ^Z /; †.Z ^Z /� �! Œ†2.Z ^Z /; †2.Z ^Z /�

is an isomorphism and we conclude that the following equality holds:

HŒ�†Z ; �†Z �D�†eC†�Z^Z :

Therefore, we see that HP is isomorphic to the map induced by applying �A1
2pC1

to �†eC†�Z^Z .

Now we identify the homotopy class of the exchange map, e . Since e can be effected
by pairwise exchanging copies of S1, and Gm , it suffices to understand the effect of
each such exchange on a homotopy class. By [44, Lemma 3.43], in the presence of a
single suspension, the exchange of copies of Gm contributes a factor of � . It is well
known that the permutation map on S1 ^ S1 has degree �1. Combining these two
observations, a straightforward induction argument allows us to conclude that e has
degree .�1/p�q. Thus, the map induced by applying �A1

2pC1.�/ to �†eC†�Z^Z is
multiplication by 1� .�1/p�q. Since �2 D 1 in KMW

0 .k/ by [44, Lemma 3.5], the
statement of the theorem follows by simply listing the possible cases.

Remark 4.4.3 Classically, the composite HP computed above is either 2 or 0 de-
pending on the parity of the dimension of the sphere in question (this follows im-
mediately from the definition of the James–Hopf invariant and symmetry properties
of the Whitehead square of the identity). If one invokes real realization [45, page
121], Theorem 4.4.1 can be viewed as a direct analog of this classical result. First,
observe that KMW

0 .R/ Š GW.R/ Š Z˚ Z; this identification sends a symmetric
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bilinear form over the real numbers to its rank and signature. Under real realization, the
sphere SpCq˛ is sent to the Z=2–equivariant sphere of the same name. In particular,
the Z=2–fixed-point locus of SpCq˛ is simply Sp, while the fixed-point locus under
the trivial group is the sphere SpCq. From this point of view, the formula for HP from
Theorem 4.4.1 simply reflects the relative parities of p and pC q : the signature keeps
track of the degree on fixed-point loci for Z=2, while the rank keeps track of the degree
on fixed-point loci for the trivial subgroup. For example, when p is even and q is odd,
HP is multiplication by h, which has rank 2 and signature 0.

5 Applications

Here we collect some computational applications of Theorems 3.2.1 and 3.3.13.
Section 5.1 is of a preliminary nature and contains a number of results about Milnor–
Witt K-theory sheaves that are used elsewhere in the text; some of these facts are
certainly well known, but we could not find good references. Section 5.2 contains
new computations of a family of unstable A1–homotopy sheaves of motivic spheres: it
contains the first computation since Morel’s of an S1–stable A1–homotopy sheaf (see
Theorems 5.2.5 and 5.2.9). Finally, Section 5.3 contains results regarding unstable ra-
tionalized motivic homotopy sheaves, and S1–stable homotopy sheaves of Voevodsky’s
mod m motivic Eilenberg–MacLane spaces (see Theorems 5.3.1 and 5.3.3). While
it should be clear from the referencing, essentially all of the results of this section
require finer properties of the unstable A1–homotopy category than merely the unstable
A1–connectivity property.

5.1 On Milnor–Witt K-theory sheaves

In this section we study some properties of the Milnor–Witt K-theory sheaves KMW
n [44,

Section 3]. By [44, Theorem 3.37], the sheaves KMW
n are strictly A1–invariant sheaves

for any integer n. In fact, for any integer n � 1, the sheaf KMW
n is the free strictly

A1–invariant sheaf on the sheaf of pointed sets G^nm , and KMW
0 is the free strictly

A1–invariant sheaf on Gm=G
�2
m by [44, Theorem 3.46] (not pointed in this case).

Basic properties of Milnor–Witt K-theory sheaves If M is a presheaf of groups
(actually, pointed sets suffices), then its contraction M�1 is the presheaf of groups
on Smk defined by

M�1.U / WD ker
�
M .Gm �U/

.1�id/�
���!M .U /

�
;

where 1W Spec k!Gm is the unit map. The next result summarizes the properties of
contractions we will use.
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Lemma 5.1.1 [44, Lemmas 2.32 and 7.33] The assignment M 7! M�1 defines
an endofunctor of the category of strictly (or strongly) A1–invariant sheaves which
preserves exact sequences.

We will freely use the fact [3, Lemma 2.9]4 that .KMW
n /�j DK

MW
n�j for any pair of

integers n; j . We write W for the sheaf of unramified Witt groups, and In � W
for the subsheaves of unramified powers of the fundamental ideal in the Witt ring
[42, Section 2.1]. For any integer m, we write KM

n =m for the mod m Milnor K-
theory sheaf. The contractions of KM

m are summarized in [3, Lemma 2.7]. There is a
canonical morphism KM

n =2! In=InC1 ; the Milnor conjecture on quadratic forms,
now a theorem, asserts that this morphism is an isomorphism [46; 42].

Suppose k is a base field of characteristic unequal to 2. Morel established [41,
Théorème 5.3] under this hypothesis that there is a fiber product presentation of KMW

n

relating the various sheaves described in the previous paragraph. For any integer n,
there is a fiber product diagram of the following form:5

KMW
n

//

��

In

��

KM
n

// KM
n =2

By convention KM
n DK

M
n =2D 0 for n < 0, whereas In ŠW for n < 0.

This fiber product presentation yields two fundamental exact sequences

(5.1.1)
0 �! InC1�!KMW

n �!KM
n �! 0;

0 �! 2KM
n �!KMW

n �! In �! 0:

We use these sequences repeatedly in the sequel.

Remark 5.1.2 The assumption that k has characteristic unequal to 2 is inessential
above: the fiber product presentation exists without this condition as one can see by
inspecting the proofs, and appealing to the results of Kato [35] on the characteristic 2
version of Milnor’s conjecture involving symmetric bilinear forms instead of [46].
However, a detailed proof of this generalization does not appear in the literature, and

4This identification is due to Morel and appears in several places in [44] but without a proof. The proof
given in [3] requires k to have characteristic unequal to 2 since it depends on the Gersten conjecture for
the sheaves Ij . The result can also be demonstrated when k has characteristic 2 if one appeals to Morel’s
Gersten–Schmid resolution of KMW

n . Nevertheless, since we will momentarily restrict to the case where k
has characteristic different from 2 for other reasons, the result from [3] is sufficient for our purposes.

5See [22] for some corrections to [41].
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since in later applications we will be restricted to the characteristic unequal to 2 case
anyway, we have not pursued this generalization.

On the structure of contracted sheaves

Lemma 5.1.3 Suppose M is a strictly A1–invariant sheaf.
(1) For any integer n� 1, there are isomorphisms

Hom.KMW
n ;M /ŠM�n.k/:

(2) If n � 2, the evident map Hom.KMW
n ;M /! Hom.KMW

n�1;M�1/ induced by
contraction is an isomorphism compatible with the identification of point (1).

Proof Write Hom� for the internal Hom in the category of presheaves of pointed
sets on Smk . In that case, unwinding the definitions, there is an identification M�1 D
Hom�.Gm;M/. A straightforward induction argument combined with the adjunction
between ^ and Hom� then shows M�n D Hom�.G

^n
m ; M/.

For n� 1, [44, Theorem 3.37] shows that KMW
n is the free strictly A1–invariant sheaf

of groups on the sheaf of pointed sets G^nm . As a consequence, there are functorial
identifications

Hom�.G
^n
m ; M/ ��!Hom.KMW

n ;M /;

where Hom on the right-hand side is the internal Hom in the category of presheaves of
abelian groups. To complete the verification of point (1), simply take sections over k .

In light of the discussion of the previous paragraphs, to establish point (2) one simply
observes that, as long as n� 2, the map in question arises via the following sequence
of identifications:

Hom.KMW
n ;M /Š Hom�.G

^n
m ;M /

Š Hom�.G
^.n�1/
m ; Hom�.Gm;M //

Š Hom.KMW
n�1;M�1/:

Lemma 5.1.4 Suppose M is a strictly A1–invariant sheaf.
(1) There is an isomorphism

Hom.KMW
0 ;M /ŠM .k/� hM�1.k/;

where hM�1.k/ is the h–torsion subgroup. The first map is induced by the
projection KMW

0 ! Z, while the second is induced by a splitting of the map
I!KMW

0 .

(2) For any integer n� 1, the map Hom.KMW
n ;M /! Hom.KMW

0 ;M�n/ induced
by contraction has image the factor M�n.k/ of the product described in point (1).
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Proof Note that KMW
0 DHA1

0 .Gm=G
�2
m /D zHA1

0 .Gm=G
�2
m C/ by [44, Theorem 3.46]

and what follows amounts to unwinding the proof of this result. Note that there is a
split cofiber sequence S0

k
!Gm=G

�2
m C!Gm=G

�2
m .

By adjunction, one then obtains identifications of the form

Hom.KMW
0 ;M /Š Hom�.Gm=G

�2
m C;M /

Š Hom�.S
0
k ;M /�Hom�.Gm=G

�2
m ;M /

Š Hom.Z;M /�Hom. zHA1
0 .Gm=G

�2
m /;M /

ŠM �Hom. zHA1
0 .Gm=G

�2
m /;M /:

Under this decomposition, the projection map KMW
0 !Z is precisely the rank map. On

the other hand, the splitting Gm=G
�2
m C Š S

0
k
_Gm=G

�2
m corresponds to the splitting

I!KMW
0 as described before [44, Corollary 3.47].

Next, there is an exact sequence of Nisnevich sheaves of abelian groups of the form

Gm
x 7!x2
���!Gm �!Gm=G

�2
m �! 0:

Taking reduced A1–homology (as the composite of taking the (based) free abelian
group functor and the exact functor Lab

A1
) yields an exact sequence of the form

zHA1
0 .Gm/ �!

zHA1
0 .Gm/ �!

zHA1
0 .Gm=G

�2
m / �! 0:

The map zHA1
0 .Gm/DK

MW
1 !KMW

1 induced by the squaring map on Gm is multi-
plication by hD h1iC h�1i by [44, Lemma 3.14]. Thus, we conclude that

Hom. zHA1
0 .Gm=G

�2
m /;M /Š hM�1.k/;

which is what we wanted to show.

For point (2), we appeal to Lemma 5.1.3. Indeed, it suffices by Lemma 5.1.3(2) and
induction to treat the case where nD 1. As in the proof of Lemma 5.1.3, adjunction
yields identifications of the form

Hom.KMW
1 ;M /Š Hom�.Gm;M /Š Hom�.S

0
k ;Hom�.Gm;M //Š Hom.Z;M�1/:

In particular, the map

Hom.KMW
1 ;M / �! Hom.KMW

0 ;M�1/

induced by contraction factors through the isomorphism

Hom.KMW
1 ;M /Š Hom.Z;M�1/:
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We treat the universal case: taking M D KMW
1 , we see that the map induced by

contraction factors through Hom.Z;KMW
0 /. Such homomorphisms correspond to

elements of KMW
0 .k/ via the image of 1 2 Z and under the identification, the identity

map KMW
1 !KMW

1 is sent to the class of h1i.

The identification .KMW
1 /�1ŠK

MW
0 can be seen in terms of the fiber product presenta-

tions KMW
1

��!KM
1 �KM1 =2

I and KMW
0

��!Z�Z=2W . The symbol map Gm!K
MW
1

can be thought of as a set-theoretic splitting of the projection map KMW
1 !KM

1 . After
contraction, this projection is sent to the rank map KMW

0 ! Z. The factorization
produced in the previous paragraph thus corresponds to a splitting of the rank map
KMW
0 ! Z. On the other hand, the decomposition in point (1) corresponded with a

decomposition KMW
0 ŠZ˚I and under this identification the unit h1i is sent to .1; 0/,

thus we conclude that the projection onto the other factor is the zero map.

Lemma 5.1.5 Fix a base field k . If �W KMW
n !M is a morphism of sheaves such

that ��j D 0, then

(1) if n� j � 0, the morphism � is trivial;

(2) if 0� n < j , the morphism � factors through a morphism KMW
n =Ij !M .

Proof Factor �W KMW
n � Im.�/ ,!M . Since the inclusion of the abelian category

of strictly A1–invariant sheaves into the abelian category of abelian sheaves is exact
(see Lemma 3.3.8) we can assume without loss of generality that Im.�/ is strictly
A1–invariant. Thus, it suffices to consider the case where �W KMW

n � M is an
epimorphism and M is strictly A1–invariant.

If M�0 D 0, then M D 0, and there is nothing to check. Therefore, we can assume
without loss of generality that j � 1. By Lemma 5.1.3, for any integer r � 1,
M�r.k/ Š Hom.KMW

r ;M /. For (1) we simply observe that if n � j , then the
morphism KMW

n !M is the trivial map since M�n.k/D 0 as well.

For (2), begin by observing that, since 0 � n < j , we can consider the following
diagram:

KMW
j � Ij ,! InC1 ,!KMW

n �M

Reading from the left, the first and third maps are those in the exact sequences in (5.1.1),
the map Ij ,! InC1 is the standard inclusion (since j � nC 1, this makes sense),
and the final epimorphism is the one given by the assumptions. Since M�j D 0 (and
j � 1 by assumption), this composite is trivial, which means the map KMW

n !M

factors through the quotient KMW
n =Ij.

Remark 5.1.6 This result will be applied below with KMW
n !M a map to a strictly

A1–invariant sheaf with strictly A1–invariant cokernel.
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Some result on A1–tensor products

Proposition 5.1.7 There is an isomorphism KMW
m ˝A1KMW

n
��! KMW

mCn , for any
integers m; n� 1.

Proof Morel computed zHA1
n�1.A

i n 0/ŠKMW
n [44, Theorem 6.40] (strictly speaking,

this result is stated for n� 2, but the result is true for nD 1 as well by unwinding the
definitions and appealing to [44, Theorem 3.37]). There are identifications

†Am n 0^An n 0 ' Am n 0�An n 0 ' AmCn n 0

(here � means join), for any m; n� 1. Proposition 3.3.9 then yields

KMW
m ˝

A1KMW
n Š zHA1

nCm�2.A
m
n 0^An n 0/;

which when combined with the suspension isomorphism zHA1
nCm�2.A

mn0 ^ Ann0/Š
zHA1
nCm�1.A

m n 0�An n 0/ŠKMW
nCm yields the result.

Lemma 5.1.8 For any integers m; n� 1, and any integer r � 0, there are canonical
isomorphisms KMW

m ˝A1KM
n =r ŠK

M
mCn=r . There are also canonical isomorphisms

KM
m =r ˝

A1KM
n =r ŠK

M
mCn=r .

Proof By Lemma 5.1.3, we can identify Hom.KMW
nC1;K

MW
n / Š KMW

�1 .k/ Š W .k/

for n� 2 (the final identification by [44, Lemma 3.10]). The group KMW
�1 .k/ contains

the element � and we refer to the corresponding map KMW
nC1!KMW

n using the same
notation. Unwinding the definitions, this map corresponds to the composite of the
KMW
nC1 ! InC1 defined on sections by multiplication by � and the inclusion map

InC1 ,!KMW
n .

By the discussion of the previous paragraph, the first exact sequence of (5.1.1) yields
the exact sequence

KMW
nC1

�
�!KMW

n �!KM
n �! 0:

Tensoring this exact sequence with KMW
m and applying Proposition 5.1.7 we conclude

that there is an exact sequence

KMW
mCnC1

�
�!KMW

mCn �!KMW
m ˝

A1KM
n �! 0:

However, this sequence identifies KMW
m ˝A1KM

n ŠK
M
mCn . Repeating this discussion

using the exact sequence KM
n ! KM

n ! KM
n =r we obtain the isomorphism of the

statement. Repeating this discussion in the other factor allows us to obtain the final
statement.
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Rationalized Milnor–Witt K-theory sheaves Now, we turn our attention to rational-
ized Milnor–Witt sheaves KMW

n ˝Q, which will reappear in Section 5.3.

Lemma 5.1.9 Fix a base field k , assumed to have characteristic unequal to 2.

(1) There is a canonical isomorphism KMW
n ˝Q ��!KM

n ˝Q� In˝Q for every
integer n.

(2) If k is not formally real, then In˝Q is trivial, ie KMW
n ˝Q ��!KM

n ˝Q.

Proof The first statement follows from the fiber product presentation of KMW
n together

with the fact that KM
n =2˝QD 0. For the second statement, since In is an unramified

sheaf, it suffices to show that In.L/˝QD 0 for L a finitely generated extension of k .
If k is not formally real, then any extension field has the same property, and the result
follows immediately from the fact that In.L/ is a 2–torsion sheaf if L is not formally
real [18, Proposition 31.4].

Corollary 5.1.10 Fix a base field k , assumed to have characteristic unequal to 2.

(1) KMW
n ˝Q is nontrivial for any integer n� 0.

(2) If k is formally real, then KMW
n ˝Q is nontrivial for any integer n.

Proof Both tensoring with Q and contraction are exact endofunctors of the category
of strictly A1–invariant sheaves (see Lemma 5.1.1) and it follows immediately from the
definitions that the two constructions commute, ie if M is strictly A1–invariant, then
.M ˝Q/�1 ŠM�1˝Q. Thus, to show KMW

n ˝Q is nontrivial, it suffices to show
that .KMW

n ˝Q/�mD .KMW
n /�m˝QŠKMW

n�m˝Q is nontrivial for some m>0. There
is a canonical identification KMW

n�m˝QŠKM
n�m˝Q˚In�m˝Q, by Lemma 5.1.9(1).

For (1), take mD n, and observe that KM
0 Š Z. For (2) observe that if m> n, then

KMW
n�m˝QŠW ˝Q. Since k is assumed formally real, we can choose an ordering

of k [18, Proposition 31.20], and thus find a real closed field k0 containing k . In
that case, observe that W.k0/Š Z by Sylvester’s law of inertia [18, Proposition 31.5].
Thus, W .k0/˝Q is nonzero, so the sheaf W ˝Q is nontrivial.

Remark 5.1.11 Once again, the assumption that k has characteristic unequal to 2 is
inessential. This assumption only appears by way of our appeal to Morel’s fiber square
presentation of KMW

n (see Remark 5.1.2).

Remark 5.1.12 Rationalized Milnor K-theory sheaves can be quite large. If L is an
infinite field, write Lalg for an algebraic closure. The Bloch–Kato conjecture [54; 55]
implies that for n� 2, the groups KMn .L

alg/ are (nontrivial) uniquely divisible (these
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groups are evidently divisible for n D 1). By using transfers in Milnor K-theory
[11, Section I.5] it is easy to see that the restriction map KMn .L/! KMn .L

alg/ is
injective modulo torsion. Any element ˛ 2 KMn .L/ that goes to zero in KMn .L

alg/

necessarily goes to zero in a finite extension L0=L. In that case, the composite
KMn .L/! KMn .L

0/! KMn .L/ of restriction with transfer is multiplication by the
degree. Thus, ŒL0 WL�˛D 0, ie ˛ is torsion. Equivalently, one can use the identification
of Milnor K-theory with motivic cohomology [38, Theorem 5.1] and transfers there.

5.2 On A1–homotopy sheaves of spheres

The goal of this section is to establish Conjecture 5 of [2]. The results below depends
rather heavily on the results of [5] and thus we assume throughout this section that k
is an infinite perfect field of characteristic unequal to 2.

On the computation of �A1

3Cj˛
.S 2C3˛/ To begin, we recall some results from [5]

where we used the notation �3;j .A3 n 0/ for the sheaf in the title. One begins by
considering the fiber sequence

(5.2.1) SL4 =Sp4 �! SL6 =Sp6 �!A5 n 0:

A stable range was described for the homotopy sheaves of SL2n =Sp2n in [5, Proposi-
tion 4.2.2] in terms of Grothendieck–Witt sheaves (see [5, Sections 3.1 and 3.3] and
the references there for explication of the notation). Also obtained there was a short
exact sequence of sheaves of the form

(5.2.2) GW 3
5 �!KMW

5 �! �A1
3 .S

2C3˛/ �!GW 3
4 �! 0:

The cokernel of morphism GW 3
5 ! KMW

5 was called F5 and a description of F5
was given in [5, Theorem 4.4.1]. Before discussing the structure of this morphism, we
introduce a further convention to simplify the notation.

Convention 5.2.1 Write �.�/ for the A1–derived loop functor, ie �LA1.�/.

The map KMW
5 !�A1

3 .S
2C3˛/ is by construction induced by a morphism �S4C5˛!

S2C3˛. The composite map

ıW S3C5˛ �!�S4C5˛ �! S2C3˛

was shown to be a generator of �3C5˛.S2C3˛/ in [5, Proposition 5.2.1]. We deduce a
few simple consequences of these results now.
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Lemma 5.2.2 Suppose j � 6 is an integer.
(1) There is a canonical isomorphism �A1

3Cj˛.S
2C3˛/ŠW .

(2) Any A1–homotopy class of maps S3Cj˛! S2C3˛ lifts uniquely along ı to a
map S3Cj˛! S3C5˛.

Proof For point (1), begin by applying [44, Theorem 6.13] to the exact sequence
of (5.2.2). By [5, Proposition 3.4.3], we observe that .GW 3

4/�j D 0 for j � 5.
By [5, Lemma 3.4.1], if j D 5, we conclude that .GW 3

5/�5 DGW
2
0 Š Z. Therefore,

.GW 3
5/�j D 0 for j � 6. Thus, we conclude that there is a sequence of isomorphisms

�A1
3Cj˛.S

2C3˛/Š �A1
3Cj˛.�S

4C5˛/Š �A1
4Cj˛.S

4C5˛/Š .KMW
5 /�j ŠW

if j � 6.

For point (2), take a map �W S3Cj˛ ! S2C3˛ as in the statement. Mapping S3Cj˛

into the fiber sequence of (5.2.2), the argument of point (1) shows that, for j � 6, such
a map lifts uniquely to a map S3Cj˛!�S4C5˛. Since S3C5˛ is A1–2–connected,
the unit of the loop-suspension adjunction S3C5˛!�S4C5˛ induces an isomorphism
on A1–homotopy sheaves in degrees � 4 by, eg, Theorem 3.2.1 and Remark 3.2.3.
Therefore, � lifts uniquely along ı .

On the computation of �A1

jC1
.S jC3˛/ for j � 3

Proposition 5.2.3 If k is a field of characteristic 0 and containing a quadratically
closed subfield, then �A1

4C6˛.S
3C3˛/D 0.

Proof With X equal to S2C3˛, which is A1–1–connected, Theorem 3.3.13, the
exactness of contraction and [44, Theorem 6.13] yield the following exact sequence:

(5.2.3) �A1
5C6˛.S

3C3˛/!�A1
5C6˛.S

5C6˛/ P
!�A1

3C6˛.S
2C3˛/!�A1

4C6˛.S
3C3˛/!0:

We have �A1
5C6˛.S

5C6˛/ŠKMW
0 again by Morel’s computations [44, Theorem 1.23].

By Theorem 4.2.1, the morphism P is induced by composition with

Œ�S2C3˛ ; �S2C3˛ �W S
3C6˛

�! S2C3˛I

we will refer to this map as composition with the Whitehead square of the identity. By
Lemma 5.2.2(2), this map lifts uniquely through ı to a map

Œ�S2C3˛ ; �S2C3˛ �W S
3C6˛

�! S3C5˛;

which (by [44, Corollary 6.43]) can be viewed as an element of W .k/. The exact
sequence (5.2.3) becomes, by Lemma 5.2.2(1),

KMW
0

P
�!W �! �A1

4C6˛.S
3C3˛/ �! 0:
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We claim each of the sheaves in the above exact sequence are sheaves of KMW
0 –modules

in a natural way, and that the morphisms are morphisms of sheaves of KMW
0 –modules.

To see this, it suffices to observe that the portion of the A1–EHP sequence under con-
sideration takes the form �3C6˛.�

2S5C6˛/! �A1
3C6˛.S

2C3˛/! �A1
3C6˛.�S

3C3˛/,
and the KMW

0 –module structure is induced by precomposition with �3C6˛.S3C6˛/.
From these observations it follows that the map P is determined by an element of
HomKMW

0
.KMW

0 ;W /DW .k/.

Assume first that k is a quadratically closed field of characteristic 0. In that case
W .k/ D Z=2, and, to establish the claim, it suffices to prove that our morphism is
nontrivial. To see this, fix an embedding k ,!C . Using complex realization (see [45,
Section 3, Lemma 3.4] or [16]), and the fact that complex realization takes spheres to
spheres, it suffices to prove that composition with the Whitehead square of the identity
is nontrivial after taking C–points. Serre showed that �9.S5/ D Z=2 and that the
Whitehead square of the identity on S5 is a generator, [50, Section 41]. Consequently,
we conclude that the our morphism P also corresponds to the nontrivial element
of W .k/ and is therefore an epimorphism.

If L=k is an extension field, then the morphism P in our sequence viewed over the base
field L is pulled back from the morphism P over k . Thus, by appeal to the conclusion of
the previous paragraph, we conclude in this case as well that the morphism KMW

0 !W

is necessarily the standard epimorphism, and therefore that �A1
4C6˛.S

3C3˛/D 0.

Remark 5.2.4 In the preceding proof, the assumption that k has characteristic 0 can
likely be weakened to the assumption that k has characteristic unequal to 2 via appeal
to étale realization [28]. As a consequence, the same remark applies to all statements
below appealing to Proposition 5.2.3. Removing the assumption that k contains a
quadratically closed subfield will probably require different techniques. Nevertheless,
it seems likely that the “lifted” map Œ�S2C3˛ ; �S2C3˛ �W S

3C6˛ ! S3C5˛ is simply a
suspension of � and the above result can be established without reference to realization
of any sort.

The above vanishing statement has a number of useful consequences.

Theorem 5.2.5 If k is a field of characteristic 0 and containing a quadratically closed
subfield, then for every integer j � 3, there is an exact sequence of the form

(5.2.4) 0 �! F 05 �! �A1
jC1.S

jC3˛/ �!GW 3
4 �! 0;

together with an epimorphism KM
5 =24 ! F 05 that becomes an isomorphism after

4–fold contraction. Moreover, the composite map KM
5 =24! �A1

4 .S
3C3˛/ determines

an isomorphism Z=24Š �A1
4C5˛.S

3C3˛/.
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Proof We treat the case where j D 3, building upon the analysis in the proof of
Proposition 5.2.3. Since S3C3˛ is A1–2–connected, the case j � 4 will follow
immediately from this case and the A1–simplicial suspension theorem (Theorem 3.2.1
and Remark 3.2.3).

Take X DS2C3˛ in Theorem 3.3.13 and consider the map PW KMW
6 D�A1

5 .S
5C6˛/!

�A1
3 .S

2C3˛/. Recall the exact sequence of (5.2.2), which appears as the horizontal line
of (5.2.5):

(5.2.5)

�A1
5 .S5C6˛/DKMW

6

P
�� ''

GW 3
5

// KMW
5

// �A1
3 .S

2C3˛/ //

E
��

GW 3
4

// 0

�A1
4 .S

3C3˛/

��

77

0

The vertical sequence is the EHP sequence applied to S2C3˛. The dotted diagonal map is
an element of Hom.KMW

6 ; GW 3
4/Š .GW

3
4/�6.k/ by Lemma 5.1.3. On the other hand,

[5, Proposition 3.4.3] allows us to conclude that .GW 3
4/�6 D 0 so this diagonal map

vanishes, and therefore there is an induced epimorphism, denoted by the dashed diagonal
arrow in (5.2.5), �A1

4 .S
3C3˛/!GW 3

4 , as required by the theorem. By combining a
portion of diagram (5.2.5) with the exact sequence 0! I6!KMW

5 !KM
5 ! 0 we

obtain diagram (5.2.6), ignoring the dotted arrow for the moment:

(5.2.6)

0

��

I6

��

GW 3
5

// KMW
5

��

// �A1
3 .S

2C3˛/ //

E
��

GW 3
4

// 0

KM
5

//

��

�A1
4 .S

3C3˛/

��

// GW 3
4

// 0

0 0
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As we know that �A1
4 .S

3C3˛/�6 D 0, it follows from Lemma 5.1.5 that the composite
map KMW

5 ! �A1
4 .S

3C3˛/ factors through KMW
5 =I6 DKM

5 , giving the dotted arrow
in diagram (5.2.6).

We define F5 , as in [5], to be the cokernel of the map GW 3
5!KMW

5 , and define F 05
to be the image of F5 in �A1

4 .S
3C3˛/. The exact sequence

0 �! F 05 �! �A1
4 .S

3C3˛/ �!GW 3
4 �! 0

is an immediate consequence of this definition. Furthermore, there is a diagram of
exact sequences:

(5.2.7)

0 // I6 // KMW
5

����

// KM
5

����

// 0

I6 // F5 // F 05
// 0

To determine the behavior of F 05 , we need finer information regarding the sheaf F5 as
described in [5, Theorems 4.3.1 and 4.4.1]. We provide a brief recapitulation of that
description here. The sheaf F5 is identified there as a quotient of a fibered product as
follows. One defines a sheaf S5 , the cokernel of a “Chern class” map KQ

5 !KM
5 [3,

Definition 3.6]. The sheaf S5 is equipped with a canonical surjection onto KM
5 =2 (see

[3, Lemma 3.13] and the subsequent discussion). One then defines a sheaf T5 to be
the fiber product of S5 and I5 over KM

5 =2 [3, page 911]; the maps I5!KM
5 =2 and

KM
5 ! S5!KM

5 =2 coincide with the defining maps in the fiber product presentation
in KMW

5 . By [5, Theorem 4.3.1] (see [5, Theorem 4.4.1]), there is an epimorphism
T5 ! F5 and this epimorphism becomes an isomorphism after 4–fold contraction
by [5, Lemma 5.1.1]. Assembling all the above, there is a diagram of short exact
sequences, enlarging (5.2.7),

(5.2.8)

0 // I6 // KMW
5

����

// KM
5

����

// 0

0 // I6 // T5 //

�
����

S5 //

�0

����

0

I6 // F5 // F 05
// 0

where � , and therefore �0, becomes an isomorphism after 4–fold contraction.

Geometry & Topology, Volume 21 (2017)



2152 Aravind Asok, Kirsten Wickelgren and Ben Williams

There is an epimorphism KM
5 =24� S5 that becomes an isomorphism after 4–fold

contraction, [3, Corollary 3.11]. It follows there is such an epimorphism KM
5 =24�F 05

as well.

Since .KM
5 /�5ŠZ, and .GW 3

4/�5D 0, the latter by [5, Proposition 3.4.3], the 5–fold
contraction of the sequence

0 �! F 05 �! �A1
4 .S

3C3˛/ �!GW 3
4 �! 0

reduces to an isomorphism Z=24Š �A1
4C5˛.S

3C3˛/.

Remark 5.2.6 Because of the observation of [5, Remark 5.1.2], we do not know
whether the map KM

5 =24! F 05 of Theorem 5.2.5 is an isomorphism after 3–fold
contraction. Nevertheless, it seems likely that this is the case.

Consider the motivic Hopf map �W S3C4˛ ! S2C2˛. The standard construction
of this map is via the Hopf construction [44, page 190] on the multiplication map
SL2 �SL2! SL2 .

Corollary 5.2.7 If k is a field having characteristic 0 and containing a quadratically
closed subfield, then for every integer j � 3, the group �A1

jC1C5˛.S
jC3˛/Š Z=24 is

generated by †j�2C˛� .

Proof This follows by combining Theorem 5.2.5 and [5, Corollary 5.3.1].

Remark 5.2.8 Since �W S1C2˛ ! S1C˛ we can consider � ^ �W S4C6˛ ! S3C3˛.
Proposition 5.2.3 then guarantees that � ^ � and �^ � are null-homotopic. Since they
remain null-homotopic after suspension, we obtain a purely unstable proof of one of
the motivic null-Hopf relations [17, Proposition 5.4].

Similarly, if �sW S3s ! S2s is the simplicial Hopf map, then we can consider the
composite map

†2C2˛� ı†2C3˛� ı†2C4˛� ı†1C6˛�sW S
4C6˛

�! S3C3˛:

Once again, Proposition 5.2.3 implies this composition is null-homotopic. Stabilizing
with respect to P1–suspension, this implies the relation �3�s D 0 in the motivic stable
homotopy ring. This relation is an incarnation of the fact that the topological Hopf
map �top satisfies �4top D 0.

The existence of such null-homotopies allows us to construct new elements in unstable
homotopy sheaves of motivic spheres using Toda brackets [52]. It would be interesting
to study such constructions more systematically.
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On the structure of �A1

nC1
.Sn�1Cn˛/ for n� 4 Finally, we are able to establish [2,

Conjecture 5] under the additional hypothesis that our base field contains a quadratically
closed field having characteristic 0.

Theorem 5.2.9 Suppose k is a field that contains a quadratically closed field having
characteristic 0. For every integer n � 4, the map �n WD †.n�2/C.n�2/˛� induces a
nontrivial morphism

.�n/�W K
M
nC2=24 �! �A1

nC1.S
nCn˛/:

Proof This follows essentially from Corollary 5.2.7. In more detail, the map .�n/�
determines a morphismKMW

nC2!�
A1
nC1.S

nCn˛/, but by construction, this morphism fac-
tors through P1–suspension. In particular, since the map KMW

5 ! �A1
4 .S

3C3˛/ factors
through a morphism KM

5 =24! �A1
4 .S

3C3˛/, we conclude that for any integer n� 4,
the morphism KMW

nC2! �A1
nC1.S

nCn˛/ factors through a map KMW
n�3˝

A1KM
5 =24!

�A1
nC1.S

nCn˛/. Lemma 5.1.8 allows us to conclude KMW
n�3˝

A1KM
5 =24Š K

M
nC2=24,

which is precisely what we wanted to show.

Recall that in [7, Theorem 5], a morphism

�A1
nC1.S

nCn˛/ �!GW n
nC1

is constructed using “Suslin matrices”. The composite map

KMW
nC2 �! �A1

nC1.S
nCn˛/ �!GW n

nC1

is, by means of Lemma 5.1.3, determined by an element of .GW n
nC1/�n�2.k/; since

the latter group is trivial by [5, Proposition 3.4.3], we conclude that this composite is
trivial. Combining these observations with Theorem 5.2.9 and the connectivity estimate
from the A1–simplicial suspension theorem (see Theorem 3.2.1 and Remark 3.2.3), we
now refine [2, Conjecture 7].

Conjecture 5.2.10 For any pair of integers n� 4 and i � 0, there is an exact sequence
of the form

KM
nC2=24 �! �A1

n .S
.n�1Ci/Cn˛/ �!GW n

nC1I

the right-hand map becomes an epimorphism after .n�3/–fold contraction, and the
sequence becomes a short exact sequence after n–fold contraction.

Remark 5.2.11 In private communication from 2005, Morel stated a conjecture about
the stable �1 sheaf of the motivic sphere spectrum. Conjecture 5.2.10 can be thought of
as an unstable refinement of Morel’s conjecture. Morel’s conjecture has been verified in
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various situations. K Ormsby and P-A Østvær verified Morel’s conjecture after taking
sections over fields of small cohomological dimension [47]. Much more generally,
work of Østvær, O Röndigs and M Spitzweck has verified Morel’s conjecture over
fields having characteristic 0 [49] (or, more generally, after inverting the characteristic
exponent of the base field). While these results provide evidence for Conjecture 5.2.10,
without a version of the suspension theorem for P1–suspension these stable results do
not imply our conjecture.

5.3 Other computations

In this section, we establish nontriviality of unstable rationalized A1–homotopy sheaves
of motivic spheres. We then go on to compute the first S1–stable A1–homotopy sheaf
of a mod m motivic Eilenberg–MacLane space.

Rationalized A1–homotopy sheaves of spheres The computations of Morel of A1–
homotopy sheaves of spheres yield isomorphisms �A1

2n�1S
2n�1C2q˛ Š KMW

2q for
2n� 1� 2 [44, Theorem 6.40]. By [44, Theorem 6.13] (see also [44, Corollary 6.43]),
for any integer j there are induced isomorphisms �A1

2n�1Cj˛S
2n�1C2q˛ Š .KMW

2q /�j .
In these degrees, the James–Hopf invariant map H of Section 3.2 yields a morphism

HW �A1
2n�1Cj˛S

nCq˛
�! �A1

2n�1Cj˛S
2n�1C2q˛

ŠKMW
2q�j :

We now study the rationalized version of this map. The next result provides an analog
of the fact, due to Hopf, that there is a surjection �4n�1.S2n/! Z.

Theorem 5.3.1 Fix a base field k , assumed to be perfect and to have characteristic
unequal to 2. Let n > 2 and q � 2 be even integers.

(1) For any integer j � 0, the sequence of sheaves

�A1
2n�2Cj˛S

n�1Cq˛
˝Q

E˝Q
���!�A1

2n�1Cj˛S
nCq˛

˝Q
H˝Q
���!KMW

2q�j˝Q�! 0

is exact.

(2) If k is not formally real, then for any integer j satisfying 0� j � 2q , the sheaf
�A1
2n�1Cj˛S

nCq˛˝Q is nontrivial.

(3) If k is formally real, then for any integer j � 0, the sheaf �A1
2n�1Cj˛S

nCq˛˝Q
is nontrivial.

Proof Tensoring with Q and contraction are exact functors on the category of
strictly A1–invariant sheaves of abelian groups (see Lemma 5.1.1). Combining [44,
Theorem 6.13] with the exact sequence of Theorem 3.2.1 (which applies since n� 3 by
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assumption) and then tensoring with Q, we obtain exactness of the above sequence at
�A1
2n�1S

nCq˛˝Q. Since n and q are even by assumption, the class 1C.�1/nCqh�1iq

equals 2. Surjectivity of H˝Q follows from Theorem 4.4.1.

Points (2) and (3) follow immediately from Corollary 5.1.10.

Remark 5.3.2 A corresponding statement holds for q D 0 as well, but that result
follows immediately from the classical computation of nonzero rational homotopy
groups of spheres.

Some S 1–stable A1–homotopy sheaves of motivic Eilenberg–MacLane spaces
Set Kn WDK.Z.n/; 2n/ and Kn=m WDK.Z=m.n/; 2n/ where for an abelian group A,
the spaceK.A.n/; 2n/ is a motivic Eilenberg–MacLane space in the sense of Voevodsky;
see, for example, [53, Section 2]. We write H i

ét.�
˝n
m / for the Nisnevich sheafification

of the presheaf U 7!H i
ét.U; �

˝m
m /. In the next result, which is an analog of a result

appearing in [9, Example 5.11], we adhere to Convention 5.2.1.

Theorem 5.3.3 Assume k is a field having characteristic exponent p . Fix integers
i � 1 and m; n� 2 and assume m is coprime to p .

(1) The space †iKn=m is A1–.nCi�1/–connected.

(2) If j is an integer satisfying 0� j � n� 1, then there are isomorphisms of the
form

�A1
nCjCi .†

iKn=m/ ��!H
n�j
ét .�˝nm /:

(3) There is an exact sequence of the form

H 0
ét .�

˝n
m / �! �A1

2nCi .†
iKn=m/ �!KM

2n=m �! 0;

and H 0
ét .�

˝n
m / is killed by a single contraction.

Proof The space Kn=m is A1–.n�1/–connected and it is possible to describe all its
higher A1–homotopy sheaves. If m is prime to p by the Bloch–Kato conjecture (in
Beilinson–Lichtenbaum form) together with A1–representability of mod m motivic co-
homology [54; 55], there are isomorphisms of the form �A1

nCr.Kn=m/ŠH
n�r
ét .�˝nm /.

In particular, H n�r
ét .�˝nm / is isomorphic to KM

n =m for r D 0 and vanishes for r > n.

We begin by investigating what occurs after a single suspension. By the A1–Freudenthal
suspension theorem, the map �A1

r .Kn=m/!�
A1
rC1.†Kn=m/ is an isomorphism for r�

2n� 2. We now show that this map is an isomorphism for r D 2n� 1 as well.

Theorem 3.3.13 applied with X DKn=m yields an exact sequence of the form

�A1
n .Kn=m/˝

A1�A1
n .Kn=m/ �! �A1

2n�1.Kn=m/ �! �A1
2n .†Kn=m/ �! 0:
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By the discussion of the previous paragraph combined with Lemma 5.1.8, we conclude
�A1
n .Kn=m/˝

A1�A1
n .Kn=m/ Š K

M
n =m˝

A1KM
n =m Š K

M
2n=m. Thus, in the above

exact sequence the left-hand map is a map KM
2n=mŠ �

A1
n .Kn=m/˝

A1�A1
n .Kn=m/!

�A1
2n�1.Kn=m/.

One knows .H i
ét.�
˝n
m //�sŠH

i�s
ét .�˝n�sm / (appeal to [38, Example 23.3] and sheafify).

Since étale cohomology vanishes in negative degrees, we conclude that H 1
ét .�

˝n
m /

is killed by 2–contractions. Since there is an epimorphism KMW
2n ! KM

2n=m, and
.KM

1 =m/�2n D 0, by appealing to Lemma 5.1.3, we may conclude that the left-hand
morphism in the exact sequence displayed in the previous paragraph is the trivial map.
Therefore, H 1

ét .�
˝n
m /Š �A1

2n�1.Kn=m/! �A1
2n .†Kn=m/ is an isomorphism.

In light of the discussion above, by reading the exact sequence of Theorem 3.3.13
farther to the left, we conclude that there is a short exact sequence of the form

�A1
2n .Kn=m/ �! �A1

2nC1.†Kn=m/ �!KM
2n=m �! 0:

Then �A1
2n .Kn=m/ Š H

0
ét .�

˝n
m / and this sheaf is killed by a single contraction as

discussed in the previous paragraph.

For i � 1 and 0 � j � n, the map �nCjCi .†iKn=m/! �A1
nCjCiC1.†

iC1Kn=m/

is an isomorphism by the A1–Freudenthal suspension theorem. Combining these
observations establishes the points listed above.

Remark 5.3.4 It is possible to treat the case where m is a power of p as well, but
the answer is simpler. If m is a power of p , then Geisser and Levine computed the
homotopy sheaves of Kn=m: by [21, Theorem 8.3], �A1

i .Kn=m/ is nonvanishing if
and only if i D n, in which case �A1

n .Kn=m/ may be described as the unramified
Milnor K-theory sheaf KM

n =m (see [21, Theorem 8.1]). In this case, we conclude that
�A1
nCjCi .†

iKn=m/ simply vanishes for 1 < i � n� 1.
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Symplectic and contact differential graded algebras

TOBIAS EKHOLM

ALEXANDRU OANCEA

We define Hamiltonian simplex differential graded algebras (DGA) with differentials
that deform the high-energy symplectic homology differential and wrapped Floer
homology differential in the cases of closed and open strings in a Liouville manifold
of finite type, respectively. The order-m term in the differential is induced by varying
natural degree-m coproducts over an .m�1/–simplex, where the operations near the
boundary of the simplex are trivial. We show that the Hamiltonian simplex DGA
is quasi-isomorphic to the (nonequivariant) contact homology algebra and to the
Legendrian homology algebra of the ideal boundary in the closed and open string
cases, respectively.

53D40, 53D42; 16E45, 18G55

1 Introduction

Let X be a Liouville manifold, and let L�X be an exact Lagrangian submanifold.
(We use the terminology of Cieliebak and Eliashberg [15] for Liouville manifolds,
cobordisms etc throughout the paper.) Assume that .X;L/ is cylindrical at infinity,
meaning that outside a compact set, .X;L/ looks like .Œ0;1/ � Y; Œ0;1/ � ƒ/,
where Y is a contact manifold, ƒ� Y a Legendrian submanifold, and the Liouville
form on Œ0;1/�Y is the symplectization form et˛ for ˛ a contact form on Y and t

the standard coordinate in Œ0;1/.

There are a number of Floer homological theories associated to this geometric situation.
For example, there is symplectic homology SH.X / which can be defined (see Bourgeois
and Oancea [11], Seidel [39] and Viterbo [42]) using a time-dependent Hamiltonian
H W X � I ! R, I D Œ0; 1�, which is a small perturbation of a time-independent
Hamiltonian that equals a small positive constant in the compact part of X and is
linearly increasing of certain slope in the coordinate r D et in the cylindrical end at
infinity, and then taking a certain limit over increasing slopes. The chain complex
underlying SH.X / is denoted by SC.X / and is generated by the 1–periodic orbits of the
Hamiltonian vector field XH of H , graded by their Conley–Zehnder indices. These fall
into two classes: low-energy orbits in the compact part of X and (reparametrizations of)
Reeb orbits of ˛ in the region in the end where H increases from a function that is
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close to zero to a function of linear growth. The differential counts Floer holomorphic
cylinders interpolating between the orbits. These are solutions uW R � S1 ! X ,
S1 D I=@I , of the Floer equation

(1-1) .du�XH ˝ dt/0;1 D 0;

where sC i t 2R�S1 is a standard complex coordinate and the complex antilinear
part is taken with respect to a chosen adapted almost complex structure J on X . The
1–periodic orbits of H are closed loops that are critical points of an action functional,
and cylinders solving (1-1) are similar to instantons that capture the effect of tunneling
between critical points. Because of this and analogies with (topological) string theory,
we say that symplectic homology is a theory of closed strings.

The open string analogue of SH.X / is a corresponding theory for paths with endpoints
in the Lagrangian submanifold L�X . It is called the wrapped Floer homology of L

and here denoted by SH.L/. Its underlying chain complex SC.L/ is generated by
Hamiltonian time-1 chords that begin and end on L, graded by a Maslov index. Again
these fall into two classes: high-energy chords that correspond to Reeb chords of the
ideal Legendrian boundary ƒ of L and low-energy chords that correspond to critical
points of H restricted to L. The differential on SC.L/ counts Floer holomorphic
strips with boundary on L interpolating between Hamiltonian chords, ie solutions

uW .R� I; @.R� I//! .X;L/

of (1-1).

We will also consider a mixed version of open and closed strings. The graded vector
space underlying the chain complex is simply SC.X;L/D SC.X /˚SC.L/, and the
differential d1W SC.X;L/! SC.X;L/ has the following matrix form with respect to
this decomposition (subscripts “c” and “o” refer to closed and open, respectively):

d1 D

�
dcc doc

0 doo

�
:

Here dcc and doo are the differentials on SC.X / and SC.L/, respectively, and
docW SC.L/ ! SC.X / is a chain map of degree �1. (There is also a closed-open
map dcoW SC.X /! SC.L/, but we will not use it here.) Each of these three maps
counts solutions of (1-1) on a Riemann surface with two punctures, one positive regarded
as input, and one negative regarded as output. For dcc the underlying Riemann surface
is the cylinder, for doo the underlying Riemann surface is the strip, and for doc the
underlying Riemann surface is the cylinder R � S1 with a slit at Œ0;1/ � f1g (or
equivalently, a disk with two boundary punctures, a sphere with two interior punctures,
and a disk with positive boundary puncture and negative interior puncture). We will
denote the corresponding homology by SH.X;L/.
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In order to count the curves in the differential over integers, we use index bundles to
orient solution spaces, and for that we assume that the pair .X;L/ is relatively spin; see
Fukaya, Oh, Ohta and Ono [26]. As the differential counts Floer-holomorphic curves,
it respects the energy filtration, and the subspace generated by the low-energy chords
and orbits is a subcomplex. We denote the corresponding high-energy quotient by
SCC.X;L/ and its homology by SHC.X;L/. We define similarly SCC.X /, SCC.L/,
SHC.X / and SHC.L/.

In the context of Floer homology, the cylinders and strips above are the most basic
Riemann surfaces, and it is well known that more complicated Riemann surfaces †
can be included in the theory as follows; see Ritter [36] and Seidel [39]. Pick a family
of 1–forms B with values in Hamiltonian vector fields on X over the appropriate
Deligne–Mumford space of domains and count rigid solutions of the Floer equation

(1-2) .du�B/0;1 D 0;

where B.s C i t/ D XHt
˝ dt in cylindrical coordinates s C i t near the punctures

of †. The resulting operation descends to homology as a consequence of gluing and
Gromov–Floer compactness. A key condition for solutions of (1-2) to have relevant
compactness properties is that B is required to be nonpositive in the following sense.
For each x 2 X , we get a 1–form B.x/D XHz

.x/˝ ˇ on † with values in TxX ,
where Hz W X !R is a family of Hamiltonian functions parametrized by z 2† and ˇ
is a 1–form on †. The nonpositivity condition is then that the 2–form d.Hz.x/ ˇ/

associated to B is a nonpositive multiple of the area form on † for each x 2X .

The most important such operations on SH.X / are the BV-operator and the pair-of-
pants product. The BV-operator corresponds to solutions of a parametrized Floer
equation analogous to (1-1) which twists the cylinder one full turn. The pair-of-pants
product corresponds to a sphere with two positive and one negative puncture and
restricts to the cup product on the ordinary cohomology of X , which here appears as
the low-energy part of SH.X /. Analogously on SH.L/, the product corresponding
to the disk with two positive and one negative boundary puncture restricts to the cup
product on the cohomology of L, and the disk with one positive interior puncture and
two boundary punctures of opposite signs expresses SH.L/ as a module over SH.X /.

The BV-operator and the pair-of-pants product are generally nontrivial operations. In
contrast, arguing along the lines of Seidel [39, Section 8a] and Ritter [36, Theorem 6.10],
one shows that the operations determined by Riemann surfaces with at least two negative
punctures are often trivial on SHC.X;L/. Basic examples of this phenomenon are
the operations Dm given by disks and spheres with one positive and m� 2 negative
punctures. By pinching the 1–form B in (1-2) in the cylindrical end at one of the m
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negative punctures, it follows that, up to homotopy, Dm factors through the low-energy
part of the complex SC.X;L/. In particular, on the high-energy quotient SCC.X;L/,
the operation is trivial if the 1–form is pinched near at least one negative puncture.

The starting point for this paper is to study operations dm that are associated to
natural families of forms B that interpolate between all ways of pinching near negative
punctures. More precisely, for disks and spheres with one positive and m negative
punctures, we take B in (1-2) to have the form BDXH ˝wj dt in the cylindrical end,
with coordinate sC i t in Œ0;1/� I for open strings and in Œ0;1/�S1 for closed
strings, near the j th puncture. Here wj is a positive function with a minimal value
called weight. By Stokes’ theorem, in order for B to satisfy the nonpositivity condition,
the sum of weights at the negative ends must be greater than the weight at the positive
end. Thus the choice of 1–form is effectively parametrized by an .m�1/–simplex
and the equation (1-2) associated to a form which lies in a small neighborhood of the
boundary of the simplex, where at least one weight is very small, has no solutions
with all negative punctures at high-energy chords or orbits. The operation dm is then
defined by counting rigid solutions of (1-2) where B varies over the simplex bundle.
Equivalently, we count solutions with only high-energy asymptotes in the class dual
to the fundamental class of the sphere bundle over Deligne–Mumford space obtained
as the quotient space after fiberwise identification of the boundary of the simplex to a
point. In particular, curves contributing to dm have formal dimension �.m� 1/.

Our first result says that the operations dm combine to give a DGA differential. The
Hamiltonian simplex DGA SCC.X;L/ is the unital algebra generated by the generators
of SCC.X;L/ with grading shifted down by 1, where orbits sign-commute with orbits
and chords but where chords do not commute. Let d W SCC.X;L/! SCC.X;L/ be
the map defined on generators b by

d b D d1bC d2bC � � �C dmbC � � � ;

and extend it by the Leibniz rule.

Theorem 1.1 The map d is a differential, d ı d D 0, and the homotopy type of
the Hamiltonian simplex DGA SCC.X;L/ depends only on .X;L/. Furthermore,
SCC.X;L/ is functorial in the following sense. If .X0;L0/D .X;L/, if .X10;L10/

is a Liouville cobordism with negative end .@X0; @L0/, and if .X1;L1/ denotes
the Liouville manifold obtained by gluing .X10;L10/ to .X0;L0/, then there is a
DGA map

ˆX10
W SCC.X1;L1/! SCC.X0;L0/;

and the homotopy class of this map is an invariant of .X10;L10/ up to Liouville
homotopy.
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If LD¿ in Theorem 1.1, then we get a Hamiltonian simplex DGA SCC.X / generated
by high-energy Hamiltonian orbits. This DGA is (graded) commutative. Also, the
quotient SCC.L/ of SCC.X;L/ by the ideal generated by orbits is a Hamiltonian
simplex DGA generated by high-energy chords of L. We write SHC.X;L/ for the
homology DGA of SCC.X;L/ and use the notation SHC.X / and SHC.L/ with
a similar meaning. If X is the cotangent bundle of a manifold X D T �M , then
SH.X / is isomorphic to the homology of the free loop space of M (see Abbondandolo
and Schwarz [2], Abouzaid [3], Salamon and Weber [38] and Viterbo [41]), and the
counterpart of d2 in string topology is nontrivial (see Goresky and Hingston [27]). Also,
if b is a generator of SCC.X1;L1/, then with ˆDˆX10

the DGA map in Theorem 1.1,
ˆ.b/ can be expanded as ˆ.b/Dˆ1.b/Cˆ2.b/C � � � , where ˆm.b/ represents the
homogeneous component of monomials of degree m. The linear component ˆ1 in
this expansion induces the Viterbo functoriality map SCC.X1;L1/! SCC.X0;L0/;
see Cieliebak and Oancea [17] and Viterbo [42].

Our second result expresses SCC.X;L/ in terms of the ideal boundary .Y; ƒ/ D

.@X; @L/. Recall that the usual contact homology DGA zA.Y; ƒ/ is generated by
closed Reeb orbits in Y and by Reeb chords with endpoints on ƒ; see Eliashberg,
Givental and Hofer [25]. Here we use the differential that is naturally augmented by
rigid once-punctured spheres in X and by rigid once-boundary punctured disks in X

with boundary in L. (In the terminology of Bourgeois, Ekholm and Eliashberg [7],
the differential counts anchored spheres and disks). In Bourgeois and Oancea [10],
a nonequivariant version of linearized orbit contact homology was introduced. In
Section 6, we extend this construction and define a nonequivariant DGA that we call
A.Y; ƒ/, which is generated by decorated Reeb orbits and by Reeb chords. We give two
definitions of the differential on A.Y; ƒ/, one using Morse–Bott curves and one using
curves holomorphic with respect to a domain dependent almost complex structure. In
analogy with the algebras considered above, we write A.Y / for the subalgebra generated
by decorated orbits and A.ƒ/ for the quotient by the ideal generated by decorated orbits.

In Sections 2.6 and 6.1, we introduce a continuous 1–parameter deformation of the sim-
plex family of 1–forms B that turns off the Hamiltonian term in (1-2) by sliding its sup-
port to the negative end in the domains of the curves and that leads to the following result.

Theorem 1.2 The deformation that turns the Hamiltonian term off gives rise to a
DGA map

ˆW A.Y; ƒ/! SCC.X;L/:

The map ˆ is a quasi-isomorphism that takes the orbit subalgebra A.Y / quasi-
isomorphically to the orbit subalgebra SCC.X /. Furthermore, it descends to the
quotient A.ƒ/ and maps it to SCC.L/ as a quasi-isomorphism.
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The usual (equivariant) contact homology DGA zA.Y; ƒ/ is also quasi-isomorphic to
a Hamiltonian simplex DGA that corresponds to a version of symplectic homology
defined by a time-independent Hamiltonian; see Theorem 6.5. For the corresponding
result on the linear level see Bourgeois and Oancea [12].

Remark 1.3 As is well known, the constructions of the DGAs zA.Y; ƒ/ and A.Y; ƒ/,
of the orbit augmentation induced by X , and of symplectic homology for time-
independent Hamiltonians with time-independent almost complex structures, require the
use of abstract perturbations for the pseudoholomorphic curve equation in a manifold
with cylindrical end. This is an area where much current research is being done and
there are several approaches, some of an analytical character (see eg Hofer, Wysocki and
Zehnder [29; 30]), others of more algebraic topological flavor (see eg Pardon [35]), and
others of more geometric flavor (see eg Fukaya, Oh, Ohta and Ono [26]). Here we will
not enter into the details of this problem but merely assume such a perturbation scheme
has been fixed. More precisely, the proofs that the differential in the definition of the
Hamiltonian simplex DGA squares to zero and that the maps induced by cobordisms
are chain maps of DGAs do not require the use of any abstract perturbation scheme;
standard transversality arguments suffice. On the other hand, our proof of invariance
of the Hamiltonian simplex DGA in Section 5.4 does use an abstract perturbation
scheme (in its simplest version: to count rigid curves over the rationals). Also, it gives
equivalences of DGAs under deformations as in the original version of symplectic field
theory; see Eliashberg, Givental and Hofer [25] and compare the discussion in Pardon
[34, Remark 1.3].

Theorem 1.2 relates symplectic field theory (SFT) and Hamiltonian Floer theory. On the
linear level the relation is rather direct (see Bourgeois and Oancea [10]), but not for the
SFT DGA. The first candidate for a counterpart on the Hamiltonian Floer side collects
the standard coproducts to a DGA differential, but that DGA is trivial by pinching. To
see that, recall the sphere bundle over Deligne–Mumford space obtained by identifying
the boundary points in each fiber of the simplex bundle. The coproduct DGA then
corresponds to counting curves lying over the homology class of a point in each fiber,
but that point can be chosen as the base point where all operations are trivial. The
object that is actually isomorphic to the SFT DGA is the Hamiltonian simplex DGA
related to the fundamental class of the spherization of the simplex bundle.

In light of this, the following picture of the relation between Hamiltonian Floer theory
and SFT emerges. The Hamiltonian Floer theory holomorphic curves solve a Cauchy–
Riemann equation with Hamiltonian 0–order term chosen consistently over Deligne–
Mumford space. These curves are less symmetric than their counterparts in SFT,
which are defined without additional 0–order term. Accordingly, the moduli spaces
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of Hamiltonian Floer theory have more structure and admit natural deformations and
actions, eg parametrized by simplices which control deformations of the weights at
the negative punctures and an action of the framed little disk operad; see Section 7.
The SFT moduli spaces are, in a sense, homotopic to certain essential strata inside
the Hamiltonian Floer theory moduli spaces (see also Remark 6.4), and the structure
and operations that they carry are intimately related to the natural actions mentioned.
From this perspective, this paper studies the most basic operations, ie the higher
coproducts, determined by simplices parametrizing weights at the negative punctures;
see Section 2.3.

We end the introduction by a comparison between our constructions and other well-
known constructions in Floer theory. In the case of open strings, the differential
d D

P1
jD1 dj can be thought of as a sequence of operations .d1; d2; : : : ; dm; : : : / on

the vector space SCC.L/. These operations define the structure of an 1–coalgebra
on SCC.L/ (with grading shifted down by one) and SC.L/C is the cobar construction
for this 1–coalgebra. This point of view is dual to that of the Fukaya category, in
which the primary objects of interest are 1–algebras. In the Fukaya category setting,
algebraic invariants are obtained by applying (variants of) the Hochschild homology
functor. In the DGA setting, invariants are obtained more directly as the homology of
the Hamiltonian simplex DGA.
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2 Simplex bundles over Deligne–Mumford space,
splitting compatibility and 1–forms

The Floer theories we study use holomorphic maps of disks and spheres with one positive
and several negative punctures. Configuration spaces for such maps naturally fiber over
the corresponding Deligne–Mumford space that parametrizes their domains. In this
section we endow the Deligne–Mumford space with additional structure needed to define
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the relevant solution spaces. More precisely, we parametrize 1–forms with nonpositive
exterior derivative by a simplex bundle over Deligne–Mumford space that respects
certain restriction maps at several level curves in the boundary. We then combine
these forms with a certain type of Hamiltonian to get nonpositive forms with values
in Hamiltonian vector fields, suitable as 0–order perturbations in the Floer equation.

2.1 Asymptotic markers and cylindrical ends

We will use punctured disks and spheres with a fixed choice of cylindrical end at
each puncture. Here, a cylindrical end at a puncture is defined to be a biholomorphic
identification of a neighborhood of that puncture with one of the following punctured
model Riemann surfaces:
� Negative interior puncture:

Z� D .�1; 0/�S1
�D2

n f0g;

where D2 �C is the unit disk in the complex plane.
� Positive interior puncture:

ZC D .0;1/�S1
�C n xD2:

� Negative boundary puncture:

†� D .�1; 0/� Œ0; 1�� .D2
n f0g/\H;

where H �C denotes the closed upper half plane.
� Positive boundary puncture:

†C D .0;1/� Œ0; 1�� .C n xD2/\H:

Each of the above model surfaces has a canonical complex coordinate of the form
z D sC i t . Here s 2 R at all punctures, with s > 0 or s < 0 according to whether
the puncture is positive or negative. At interior punctures, t 2 S1, and at boundary
punctures, t 2 Œ0; 1�.

The automorphism group of the cylindrical end at a boundary puncture is R and the
end is thus well defined up to a contractible choice of automorphisms. For a positive
or negative interior puncture, the corresponding automorphism group is R�S1 . Thus
the cylindrical end is well defined up to a choice of automorphism in a space homotopy
equivalent to S1 . To remove the S1 –ambiguity, we fix an asymptotic marker at
the puncture, ie a tangent half-line at the puncture, and require that it corresponds to
.0;1/�f1g or to .�1; 0/�f1g, 12S1 , at positive or negative punctures, respectively.
The cylindrical end at an interior puncture with asymptotic marker is then well defined
up to contractible choice.
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Figure 1: Inducing markers at negative interior punctures

We next consider various ways to induce asymptotic markers at interior punctures that
we will eventually assemble into a coherent choice of asymptotic markers over the space
of punctured spheres and disks. Consider first a disk D with interior punctures and
with a distinguished boundary puncture p . Then p determines an asymptotic marker
at any interior puncture q as follows. There is a unique holomorphic diffeomorphism
 W D!D2 �C with  .q/D 0 and  .p/D 1. Define the asymptotic marker at q

in D to correspond to the direction of the real line at 0 2D2 , ie the direction given by
the vector d �1.0/ � 1. See Figure 1.

Similarly, on a sphere S , a distinguished interior puncture p with asymptotic marker
determines an asymptotic marker at any other interior puncture q as follows. There is a
holomorphic map  W S!R�S1 taking p to1, q to �1 and the asymptotic marker
to the tangent vector of R� f1g. We take the asymptotic marker at q to correspond to
the tangent vector of R� f1g at �1 under  . See Figure 1.

For a more unified notation below we use the following somewhat involved convention
for our spaces of disks and spheres. Let h 2 f0; 1g. For h D 1 and m; k � 0,
let D0hIhm;k D D01Im;k denote the moduli space of disks with one positive boundary
puncture, m� 0 negative boundary punctures and k negative interior punctures. For
hD 0 and k � 0, let D0hIhm;k D D00I0;k denote the moduli space of spheres with one
positive interior puncture with asymptotic marker and k negative interior punctures.

As explained above there are then, for both h D 0 and h D 1, induced asymptotic
markers at all the interior negative punctures of any element in D0hIhm;k . The space
D0hIhm;k admits a natural compactification that consists of several level disks and
spheres; see [8, Section 4] and also [31]. We introduce the following notation to
describe the boundary. Consider a several-level curve. We associate to it a downwards
oriented rooted tree � with one vertex for the positive puncture of each component
of the several-level curve and one edge for each one of the negative punctures of the
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Figure 2: A curve in the main stratum of D0hIhm;k with hmC k D 3 (left)
and a 2–level curve in the boundary of D0hIhm;k with hmC k D 5 (right)

components of the several-level curves. See Figure 2 for examples. Here the root of
the tree is the positive puncture of the top-level curve and the edges attached to it are
the edges of the negative punctures in the top level oriented away from the root. The
definition of � is inductive: the vertex of the positive puncture of a curve C in the j th

level is attached to the edge of the negative puncture of a curve in the .j�1/st level
where it is attached. All edges of negative punctures of C are attached to the vertex
of the positive puncture of C and oriented away from it. Then the boundary strata
of D0hIhm;k are in one-to-one correspondence with such graphs � and the components
of the several-level curve are in one-to-one correspondence with downwards oriented
subtrees consisting of one vertex and all edges emanating from it. For example the
graph of a curve lying in the interior of D0hIhmIk is simply a vertex with hmCk edges
attached and oriented away from the vertex. To distinguish the edges of such graphs � ,
we call an edge a gluing edge if it is attached to two vertices and free if it is attached
only to one vertex.

Note next that the induced asymptotic markers are compatible with the level structure
in the boundary of D0hIhm;k in the sense that they vary continuously with the domain
inside the compactification. To see this, note that in a boundary stratum corresponding
to a graph � , it is sufficient to study neck stretching for cylinders corresponding to
linear subgraphs of � , and here the compatibility of asymptotic markers with the level
structure is obvious.

Consider the bundle C0hIhm;k ! D0hIhm;k , with h 2 f0; 1g and m; k � 0, of disks or
spheres with punctures with cylindrical ends compatible with the markers. The fiber of
this bundle is contractible so there exists a section. We next show that there is also a
section over the compactification of D0hIhm;k . The proof is by induction on hmCk � 3.
We first choose cylindrical ends for disks and spheres with three punctures. Gluing
these we get cylindrical ends in a neighborhood of the boundary of the moduli space of
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disks and spheres with four punctures. Since the fiber of C0hIhmIk is contractible, this
choice can be extended continuously over the whole space of disks and spheres with
four punctures. Assume by induction that cylindrical ends for disks and spheres with
less than hmC k negative punctures have been chosen to be splitting compatible; ie
in such a way that near the boundary of any moduli space of disks and spheres with
hm0C k 0 < hmC k negative punctures, the cylindrical ends are induced via gluing
from the moduli spaces of disks and spheres with less than hm0Ck 0 negative punctures.
We claim that such a choice that is splitting compatible determines a well-defined
splitting compatible section of the bundle C0hIhm;k ! D0hIhm;k near its boundary via
gluing. Indeed, given a stratum in the boundary corresponding to a graph � as above,
the gluing construction determines a section on the intersection between D0hIhm;k and
some open neighborhood of that stratum in the compactification of D0hIhm;k . Splitting
compatibility ensures that local sections determined by different strata in the boundary
coincide on overlaps; see [40, Lemma 9.3]. Finally, to complete the induction, note
that the resulting section defined in a neighborhood of the boundary extends to a global
section because the fiber of the bundle C0hIhm;k ! D0hIhm;k is contractible.

Let fDhIhm;kgh2f0;1g;k;m�0 , DhIhm;k W D0hIhm;k! C0hIhm;k denote a system of sections
as in the inductive construction above, with DhIhm;k defined over the compactification
of D0hIhm;k . We say that

DD
[

h2f0;1gIm;k�0

DhIhm;k

is a system of cylindrical ends that is compatible with breaking.

We identify DhIhm;k with its graph and think of it as a subset of C0hIhm;k . The projection
of DhIhm;k onto D0hIhm;k is a homeomorphism and, after using smooth approximation,
a diffeomorphism with respect to the natural stratification of the space determined by
several-level curves. Via this projection we endow DhIhm;k with the structure of a set
consisting of (several-level) curves with additional data corresponding to a choice of a
cylindrical end neighborhood at each puncture.

A neighborhood of a several-level curve S 2DhIhm;k can then be described as follows.
Consider the graph � determined by S . Let V .�/ D fv0; v1; : : : ; vr g denote the
vertices of � with v0 the top vertex, and let Eg.�/D fe1; : : : ; esg denote the gluing
edges of � . Let Uj be neighborhoods in Dhj Ihjmj ;kj of the component corresponding
to vj . Then a neighborhood U of S is given by

(2-1) U D

� Y
vj2V .�/

Uj

�
�

� Y
el2Eg.�/

.�0Il ;1/

�
;

where �0Il � 0 for 1 � j � s . Here the gluing parameters �l 2 .�0Il ;1/ measure
the length of the breaking cylinder or strip corresponding to the gluing edge el . More
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xSi

Figure 3: Gluing of a nodal curve in cylindrical coordinates

precisely, assume that el connects vi and vj and corresponds to the curve Sj of vj
attached at its positive puncture pj to a negative puncture qi of the curve Si of vi .
Then, given the cylindrical ends .�1; 0� � S1 (interior case) or .�1; 0� � Œ0; 1�
(boundary case) for qi , respectively Œ0;1/ � S1 (interior case) or Œ0;1/ � Œ0; 1�
(boundary case) for pj , the glued curve corresponding to the parameter �l 2 .�0Il ;1/

is obtained via the gluing operation on these cylindrical ends defined by cutting out�
�1; �1

2
�l

�
�S1 or

�
�1;�1

2
�l

�
� Œ0; 1� from the cylindrical end of qi , cutting out�

1
2
�l ;1

�
� S1 or

�
1
2
�l ;1

�
� Œ0; 1� from the cylindrical end of pj , and gluing the

remaining compact domains in the cylindrical ends by identifying
˚
�

1
2
�l

	
�S1 with˚

1
2
�l

	
�S1, respectively

˚
�

1
2
�l

	
� Œ0; 1� with

˚
1
2
�l

	
� Œ0; 1�. We refer to the resulting

compact domain as the breaking cylinder or strip, and we refer to
˚
�

1
2
�l

	
� S1 �˚

1
2
�l

	
�S1 or

˚
�

1
2
�l

	
� Œ0; 1��

˚
1
2
�l

	
� Œ0; 1� as its middle circle or segment. Given

a several-level curve S in this neighborhood we write xSj for the closures of the
components that remain if the middle circle or segment in each breaking cylinder or
strip is removed, and that correspond to subsets of the levels Sj of the broken curve.
See Figure 3.

2.2 Almost complex structures

We next introduce splitting compatible families of almost complex structures over D .
Let J .X / denote the space of almost complex structures on X compatible with !
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and adapted to the contact form ˛ in the cylindrical end; ie if J 2 J then in the
cylindrical end J preserves the contact planes and takes the vertical direction to the
Reeb direction. Our construction of a family of almost complex structures is inductive.
We start with strips, cylinders and cylinders with slits with coordinates sC i t . Here
we require that J D Jt depends only on the I or I=@I coordinate. Assume that
we have defined a family of almost complex structures Jz for all curves DhIhm;k ,
hmC k � p which have the form above in every cylindrical end and which commute
with restriction to components for several-level curves. By gluing we then have a
field of almost complex structures in a neighborhood of the boundary of DhIhm;k for
hmC k D pC 1. Since J is contractible, it is easy to see that we can extend this
family to all of DhIhm;k . We call the resulting family of almost complex structures
over the universal curve corresponding to D splitting compatible.

2.3 A simplex bundle

Consider the trivial bundle

EhmCk�1
D DhIhm;k ��

hmCk�1
! DhIhm;k

over DhIhm;k , with fiber the open .hmCk�1/–simplex

�hmCk�1
D
˚
.s1; : : : ; shmCk/ W

P
i si D 1; si > 0

	
:

Since the bundle is trivial, it extends as such over the compactification of DhIhm;k . We
think of the coordinates of a point .s1; : : : ; shmCk/ 2�

hmCk�1 over a disk or sphere
DhIhm;k 2 DhIhm;k as representing weights at its negative punctures, and we think of
the positive puncture as carrying the weight 1.

We next define restriction maps for EhmCk�1 over the boundary of DhIhm;k . Let
s D .s1; : : : ; shmCk/ 2 �

hmCk�1 denote the weights of a several-level curve S in
the boundary of DhIhm;k with graph � . Let Sj be a component of this building
corresponding to the vertex vj of � , with positive puncture q0 and negative punctures
q1; : : : ; qn . Define the weight w.ql/ at ql for l D 0; : : : ; n as follows. For l D 0,
w.q0/ equals the sum of all weights at negative punctures q of the total several-level
curve for which there exists a level-increasing path in � from vj to q . For l � 1,
if the edge of the negative puncture ql is free then w.ql/ equals the weight of the
puncture ql as a puncture of the total several-level curve, and if the edge is a gluing
edge connecting vj and vt , then w.ql/ equals the sum of all weights at negative
punctures q of the total several-level curve for which there exists a level-increasing
path in � from vt to q . Note that w.q0/D w.q1/C � � �Cw.qn/ by construction.
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Figure 4: Component restriction maps

The component restriction map rj then takes the point s2�hmCk�1 over S to the point

rj .s/D
1

w.q0/
.w.q1/; : : : ; w.qn// 2�

n�1

over Sj in En�1 . The component restriction map rj is defined on the restriction of
EhmCk�1 to the stratum that corresponds to � in the boundary of DhIhm;k .

2.4 Superharmonic functions and nonpositive 1–forms

Our main Floer homological constructions involve studying Floer holomorphic curves
parametrized by finite-dimensional families of 1–forms with values in Hamiltonian
vector fields. As discussed in Section 1, it is important that the 1–forms are nonpositive;
ie the associated 2–forms are nonpositive multiples of the area form. Furthermore, in or-
der to derive basic homological algebra equations, the 1–forms must be gluing/breaking
compatible on the boundary of Deligne–Mumford space. In this section we construct
a family of superharmonic functions parametrized by E that is compatible with the
component restriction maps at several-level curves. The differentials of these functions
multiplied by the complex unit i then give a family of 1–forms with nonpositive
exterior derivative that constitutes the basis for our construction of the 0–order term in
the Floer equation.
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Fix a smooth decreasing function �W .0; 1�! Œ0;1/ such that �.1/D 0 and

(2-2) lim
s!0C

�.s/DC1:

We will refer to � as a stretching profile.

We will construct a family of functions over curves in D parametrized by the bundle E
in the following sense. If e 2 E belongs to the fiber over a one-level curve DhIhm;k 2

DhIhm;k , then geW DhIhm;k ! R. If DhIhm;k is a several-level curve with graph �
and components Sj corresponding to its vertices vj for j D 0; : : : ; s , then ge is
the collection of functions gr0.e/; : : : ;grs.e/ on S0; : : : ;Ss , where rj denotes the
component restriction map to Sj . Our construction uses induction on the number of
negative punctures and on the number of levels.

In the first case, hmCkD 1, and the domain is the strip R� Œ0; 1�, the cylinder R�S1

or the cylinder with a slit (which we view as a subset of R�S1 ). Over these domains,
the fiber of E is a point e , and we take the function ge to be the projection to the
R–factor.

For hmCk>1, we specify properties of the functions separately for one-level curves in
the interior of DhIhm;k and for a neighborhood of several-level curves near the boundary.
We start with one-level curves. Let e be a section of E over one-level curves in the
interior VDhIhm;k . Let DhIhm;k 2

VDhIhm;k and write eD .w1; : : : ; whmCk/2�
hmCk�1 .

We say that a smooth family of functions ge over the interior satisfies the one-level
conditions if the following hold (we write � W E! D for the projection):

(I) There is a constant c0 D c0.�.e// such that in a neighborhood of infinity in the
cylindrical end at the positive puncture

(2-3) ge.sC i t/D c0C s;

where sC i t is the complex coordinate in the cylindrical end, ie in Œ0;1/�S1

for an interior puncture and in Œ0;1/ � Œ0; 1� for a boundary puncture; see
Section 2.1.

(II1) There are constants � D �.�.e// 2 Œ1; 2/, RD R.�.e// > 0, cj D cj .e/ and
c0j D c0j .e/ for j D 1; : : : ; hmCk , such that in a neighborhood of infinity in the
cylindrical end of the j th negative puncture of the form .�1; 0��S1 for interior
punctures or .�1; 0��Œ0; 1� for boundary punctures, we have ge.sCi t/Dge.s/,
where

(2-4) ge.s/D

�
c0j C �wj s for �R� s � �R� �.wj /;

cj C s for �R� �.wj /� 1� s > �1;
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is a concave function, g00e .s/ � 0, and where � is the stretching profile (2-2).
In particular, for each weight wj at a negative puncture there is a cylinder or
strip region of length at least �.wj / along which ge.sC i t/ D �sCC , with
0< � � 2wj .

(III) The function is superharmonic: �ge � 0 everywhere.

(IV) When hD 1 so that DhIhm;k is a disk, the derivative of ge in the direction of
the normal � of the boundary @DhIhm;k vanishes everywhere:

@ge

@�
D 0 along @DhIhm;k :

Remark 2.1 The reason for having ge.s/D cj C s rather than ge.s/D cj C �wj s

near infinity in (2-4) is to make the functions compatible with splitting. Indeed, the
weight equals 1 at the positive puncture of any domain.

Remark 2.2 For the boundary condition IV, note that for the cylinder with a slit, in
local coordinates uC iv , v � 0, at the end of the slit, the standard function looks like
ge.uC iv/D u2� v2 , and @ge=@v D 0.

Remark 2.3 The appearance of the “extra factor” � in (2-4) is to allow for a certain
interpolation below; see the proof of Lemma 2.4. As we shall see, we can take �
arbitrarily close to 1 on compact sets of VDhIhm;k . As mentioned in Section 1, one of
the main uses of weights is to force solutions to degenerate for small weights, and for
desired degenerations it is enough that � be uniformly bounded. At the opposite end
we find the following restriction on � : superharmonicity in the cylindrical end near
a negative puncture where the weight is wj implies that �wj � 1, and in particular
� ! 1 if wj ! 1. In general, superharmonicity of the function ge is equivalent to the
differential d.�i�dge/ being nonpositive with respect to the conformal area form on
the domain DhIhm;k . This is compatible with Stokes’ theorem, which givesZ

DhIhm;k

�d.i�dge/D 1� .hmC k/� 0:

We will next construct families of functions satisfying the one-level condition over any
compact subset of the interior of DhIhm;k . Later we will cover all of DhIhm;k with
a system of neighborhoods of the boundary where condition II1 above is somewhat
weakened but still strong enough to ensure degeneration for small weights.

Lemma 2.4 If eW VDhIhm;k ! E is a constant section, then over any compact subset
K � VDhIhm;k , there is a family of functions ge that satisfies the one-level conditions.
Moreover, we can take � in II1 arbitrarily close to 1.
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Proof For simpler notation, let DDDhIhm;k . Consider first the case when the positive
puncture p and all the negative punctures q1; : : : ; qk are interior. Fix an additional
marked point in the domain. For each qj , fix a conformal map to R � S1 which
takes the positive puncture to 1, the marked point to some point in f0g � S1 , and
the negative puncture to �1. Fix � 2 .1; 2/ and let g0j W D ! R be the function
g0j D

1
2
.1C �/wj sj C cj with sj the R–coordinate on R�S1 . Let gj be a concave

approximation of this function with second derivative nonzero only on two intervals
of finite length located near ˙1, linear of slope wj near C1 and linear of slope
�wj near �1; see Figure 5. Note in particular that since � > 1 the derivative of gj

will be strictly negative in both intervals. We will use these regions below. Consider
the function

g D

kX
jD1

gj :

Then g is superharmonic but it does not quite have the right behavior at the punc-
tures. Here however, the leading terms are correct and the errors are exponentially
small. To see this consider a negative puncture qj as a point in the cylinder R�S1

used to define gm for j ¤ m. Let s C i t 2 .�1; 0/ � S1 be the coordinates
of the cylindrical end near qj . The change of variables z D e2�.sCit/ defines a
complex coordinate centered at qj , with respect to which gm has a Taylor expan-
sion gm.z/ D am;0C am;1z C am;2z2C � � � around 0. We thus find gm.s C i t/ D

am;0C am;1e2�.sCit/C am;2e4�.sCit/C � � � , so that in the cylindrical end near qj ,

g.sC i t/D gj .sC i t/C
X
m¤j

am;0CO.e�2�jsj/:

Thus the error
g.sC i t/�gj .sC i t/� constDO.e�2�jsj/

is exponentially small. We turn off these exponentially small errors in a neighborhood
of qj in the region of support of the second derivative of gj so that g.s C i t/ D

gj .sC i t/C const in a neighborhood of infinity as desired.

We can arrange the parameters so that the resulting function satisfies (2-3) near the
positive puncture, and it satisfies the top equation in the right-hand side of (2-4) in some
neighborhood of qj . In order to achieve the bottom equation in a neighborhood of qj

we use �wj � 1 and simply replace the linear function of slope �wj by a concave
function that interpolates between it and the linear function of slope 1. The fact that
we can take � arbitrarily close to 1 follows from the construction.

The case of boundary punctures can be treated in exactly the same way. In case of a
positive boundary puncture and a negative interior puncture we replace the cylinder
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gj

d2

ds2
j

gj < 0

sj

g0j

Figure 5: A function gj that is strictly concave on the region of concavity
near C1

above with the cylinder with a slit along Œ0;1/� f1g and in case of both positive and
negative boundary punctures we use the cylinder with a slit all along R� f1g.

Remark 2.5 For future reference we call the regions in the cylindrical ends where
�ge < 0 regions of concavity.

We next want to define a corresponding notion for several-level curves. To this end we
consider nested neighborhoods

� � � �N `
�N `�1

�N `�2
� � � � �N 2;

where N j is a neighborhood of the subset Dj � D of j –level curves. Consider
constant sections e of EhmCk�1 over VDhIhm;k and let ge be a family of functions.
The `–level conditions are the same as the one-level conditions I , III and IV, and also
the following new condition:

.II`/ For curves in N `�N `�1 with eD .w1; : : : ; whmCk/ and any j , there is a strip
or cylinder region of length at least �..wj /

1=`/, where ge.sC i t/D �sCC for
0< � � 2.wj /

1=` .

Our next lemma shows that there is a family of functions ge that satisfies the `–level
condition and that is also compatible with splittings into several-level curves in the
following sense.

We say that a family of functions ge as above is splitting compatible if the following
holds. If S� 2 VDhIhm;k , �D 1; 2; 3; : : : , is a family of curves that converges as �!1
to an `–level curve with components S0; : : : ;Sm and if K� � S� is any compact
subset that converges to a compact subset Kj of Sj , then there is a sequence of
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constants c� such that the restriction gejK� C c� converges to grj .ej /jKj , where rj .e/

is the component restriction of e to Sj .

Lemma 2.6 There exists a system of neighborhoods

� � � �N `
�N `�1

�N `�2
� � � � �N 2;

and a splitting compatible family of functions ge parametrized by constant sections
of E that satisfies the `–level condition for all `� 1.

Proof The proof is inductive. In the first case hmC k D 2 there are only one-level
curves and we use the canonical functions ge discussed above. Consider next a gluing
compatible section e over DhIhm;k with hmC k D 3. This space is an interval and
the boundary points correspond to two-level curves S with both levels S0 and S1

in DhIhm;k , hmC k D 2. Consider a neighborhood of such a two-level curve in
DhIhm;k parametrized by a gluing parameter � 2 Œ0;1/; see (2-1). Assume that the
positive puncture of S1 is attached at a negative puncture of S0 . Write S.�/2DhIhm;k ,
hmC k D 3 for the resulting domain, and write Sj .�/ for the part of the curve S.�/

that is naturally a subset of Sj . Note that �!1 as we approach the boundary; see the
discussion in Section 2.1. Let gr0.e/ and gr1.e/ denote the functions of the component
restrictions of e to S0 and S1 . If we are sufficiently close to the boundary so that � is
sufficiently large, then there is a constant c.�/ such that

(2-5) c.�/D gr0.e/j@S0.�/�gr1.e/j@S1.�/:

We then define the function ge.�/W S.�/!R as

ge.�/D

�
gr0.e/ on S0.�/;

c.�/Cgr1.e/ on S1.�/:

Then ge.�/ is smooth, satisfies I , III and IV, and has the required properties for
restrictions to levels. Furthermore, the restriction of ge.�/ to S0.�/ satisfies (2-4)
with �wj replaced by �w.q0/, where w.q0/ is the weight of r0.e/ at the negative
puncture q0 of S0 where S1 is attached (except that the interval in the second equation
is not infinite but finite) and the restriction of ge.�/ to S1.�/ satisfies (2-4) with the
weights of r1.e/ at the negative ends of S1 . Let wj .r1.e// denote the weights at
the negative punctures qj of S which are negative punctures of S1 , seen as negative
punctures of S1 . Then by definition,

wj D w.q0/wj .r1.e//:

Since
.wj /

1=2
D
�
w.q0/wj .r1.e//

�1=2
�min

�
w.q0/; wj .r1.e//

�
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and

�..wj /
1=2/� �.min.w.q0/; wj .r1.e////Dmax

�
�.w.q0//; �.wj .r1.e///

�
;

we find that there exists a strip or cylinder region of length at least �..wj /
1=2/ where

ge.sC i t/D �sCC , with 0< � � 2.wj /
1=2 . Thus the two-level condition II2 holds.

We next want to extend the family of functions over all of DhIhm;k , hmC k D 3,
respecting condition II2 . To this end we consider a neighborhood N 20 of the broken
curves in the boundary where the glued functions described above are defined. Using
the gluing parameter this neighborhood can be identified with a half infinite interval
.�0;1/, where 1 corresponds to the broken curve. In some neighborhood .�1;1/

of 1 we use the glued functions above. As the gluing parameter decreases in .�0; �1/

we deform the derivative of the function as follows: we decrease it uniformly below the
gluing region and increase the length of the region near the negative puncture where
it is small, until we reach the one-level function. See Figure 6. For this family ge ,
conditions I , II2 , III and IV hold everywhere, and II1 holds in the compact subset of
VDhIhm;k which is the complement of a suitable subset N 2 �N 20 .

For more general two-level curves with hmC k > 3 lying in N2 �N3 , we argue in
exactly the same way using the gluing parameter to interpolate between the natural
gluing of the functions of the component restrictions of e and the function of e (see
Lemma 2.4) satisfying the one-level condition.

Consider next the general case. Assume that we have found a splitting compatible
family of functions ge , associated to a constant section e defined over the subset D`

consisting of all curves in D with at most ` levels, that satisfies conditions I , III
and IV everywhere, and assume that there are nested neighborhoods

N `
�N `�1

�N `�2
� � � � �N 2;

where N j is a neighborhood of Dj in D` such that condition IIj holds in N j�N j�1 .

Consider a curve S in the boundary of DhIhm;k with ` C 1 levels. Assume that
the top-level curve S0 of S has r negative punctures at which there are curves
S1; : : : ;Sr of levels � ` attached. Let rj .e/ denote the component restriction to Sj for
j D 0; 1; : : : ; r . Our inductive assumption gives a smooth splitting compatible family
of superharmonic functions with properties I , III and IV for curves in a neighborhood
of these broken configurations depending smoothly on rj .e/. Denote the corresponding
functions by gr.ej /W Sj ! R. Consider now a coordinate neighborhood U of the
form (2-1) around S :

U D U 0
�

rY
jD1

.�
j
0
;1/�U j :
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Let �D .�1; : : : ; �r /. For curves Sj 2 U j , write S.�/ for the curve that results from
gluing these according to � and in analogy with the two-level case, write Sj .�/ for
the part of S.�/ that is naturally a subset of Sj . Our inductive assumption then shows
that there are constants cj .r0.e/; rj .e/; �j / for j D 1; : : : ; r such that

(2-6) cj .r0.e/; rj .e/; �j /D g0
r0.e/
j@jS0.�/�grj .e/j@Sj .�/;

where @j S0.�/ is the boundary component of S0.�/ where Sj .�/ is attached. Define
the function ge.�/W S.�/!R as

ge.�/D

�
gr0.e/ on S0.�/;

grj .e/C cj .r0.e/; rj .e/; �j / on Sj .�/; j D 1; : : : ; r:

The splitting compatibility of the cylindrical ends (see Section 2.1) guarantees that
the cylindrical ends on the curves in a neighborhood of the .`C1/–level curve are
independent of breaking, ie independent of the way in which the curve is obtained by
gluing from some other curve with more levels. Since the shifting constants above are
defined in terms of gluing parameters in cylindrical ends, this splitting compatibility
then implies the splitting compatibility of the family of functions. It is immediate that
the function ge.�/ satisfies I , III and IV. We show that condition II`C1 holds. Let q

be a negative puncture in some Sj for j D 1; : : : ; r . Let

wj 0
q D w

0
j w

j
q ;

where w0
j is the weight of r0.e/ at the negative puncture of S0 where Sj is attached

and where wj
q is the weight of rj .e/ at the negative puncture q . Then wj 0

q w
j 0
q is the

weight of the puncture q seen as a negative puncture of S . Since

.wj 0
q /

1=.`C1/
D .w0

j w
j
q /

1=.`C1/
�min.w0

j ; .w
j
q /

1=`/

and

�..wj 0
q /

1=.`C1//� �.min.w0
j ; .w

j
q /

1=`//Dmax.�.w0
j /; �..w

j
q /

1=`//;

we deduce that condition II`C1 holds.

This defines ge.�/ in a collar neighborhood of the boundary of D`C1 . As in the two-
level case above we get a family g0e on the complement of half the collar neighborhood,
and then by interpolation we obtain a gluing compatible family over all of D`C1 that
satisfies conditions II` and II`C1 with respect to an appropriate neighborhood N `C1 ,
as required.

Using the splitting compatible family of subharmonic functions parametrized by E , we
define a family of nonpositive 1–forms on the domains in D , likewise parametrized
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increase the region
of small weight
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s1dt s2dt

dt

dt dt

t1dt t2dt

�.s1/
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dt dt

dt
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s1dt s2dt

t1dt t2dt
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s1dt s2dt�.s1/

�.w2/
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�.w1/
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e D .s1t1; s1t2; s2/

�.t1/

�.s1t1/�.t1/

(I)

(II)

Figure 6: The top picture shows a function that meets the one-level condition.
The size of the derivative of the function is indicated by the width of the strip.
The lower picture shows how the function changes in a neighborhood of the
boundary: very near to the broken curve, we simply glue the functions of the
pieces. Moving away from the boundary, we increase the region where the
slope is small as indicated and increase the length of the thin regions near
the negative puncture until they meet the one-level condition. Further in (not
shown in the picture), we interpolate to the one-level function.
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by E , as follows. Let i denote the complex structure on the domain DhIhm;k and define

(2-7) ˇe D�i�dge D
@ge

@�
d� �

@ge

@�
d�;

where � C i� is a complex coordinate on DhIhm;k . Then we find that

dˇe D .�ge/d� ^ d� � 0;

with strict inequality in regions of concavity.

2.5 Hamiltonians

We consider two types of Hamiltonians: one for defining the Hamiltonian simplex DGA
that we call one-step Hamiltonian and one for defining cobordism maps between DGAs
that we call two-step Hamiltonian. We use the following convention: if H W X !R is a
Hamiltonian function then we define the corresponding Hamiltonian vector field XH by

!.XH ; � /D�dH:

Let .X;L/ be a Liouville pair with end Œ0;1/�.Y; ƒ/, and recall our notation r D et ,
where t is the coordinate on the factor Œ0;1/. We first consider time-independent
one-step Hamiltonians H W X !R. Such a function has the following properties:

� For small � > 0, �
2
�H � � and H is a Morse function on the compact manifold

with boundary X n .0;1/�Y .

� On Œ0;1/ � Y , we have that H.r;y/ D h.r/ is a function of r only with
h0.r/ > 0 and h00.r/� 0 such that H.r/D arCb for r � 1, where a> 0 and b

are real constants. We require that a is distinct from the length of any closed
Reeb orbit or of any Reeb chord with endpoints on ƒ.

Note that in the symplectization part, where H D h.r/, the Hamiltonian vector field is
proportional to the Reeb vector field R of the contact form ˛ on Y :

XH D h0.r/R:

Consider the time-1 flow of the Hamiltonian vector field XH of H . Hamiltonian
chords and orbits then come in two classes. Low-energy orbits that correspond to
critical points of H that we take to lie off of L and low-energy chords that correspond
to critical points of H jL . The low-energy chords and orbits are generically transverse.
High-energy orbits and chords are reparametrizations of Reeb chords and orbits. The
chords are generically transverse but the orbits are generically transverse only in the
directions transverse to the orbit but not along the orbit. Following [16], we pick a small
positive time-dependent perturbation of H near each orbit based on a Morse function
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on the orbit that gives two orbits of the time-dependent Hamiltonian corresponding
to H . We call the resulting Hamiltonian a time-dependent one-step Hamiltonian.

Let .X0;L0/ be a Liouville pair with end Œ0;1/� .Y0; ƒ0/ and consider a symplec-
tic (Liouville) cobordism .X10;L10/ with negative end .Y0; ƒ0/ and positive end
.Y1; ƒ1/. Gluing .X10;L10/ to .X0;L0/, we build a new Liouville pair .X1;L1/

which contains the compact part of .X0;L0/, connected via Œ�R; 0�� .Y0; ƒ0/ to a
compact version .X 0

10
;L0

10
/ of the cobordism, and finally its cylindrical end. Con-

sider time-independent two-step Hamiltonians H W X1!R. Such functions have the
following properties:

� For small � > 0, we have that �
2
�H � � and that H is a Morse function on

X 0
0

, the complement of Œ�R; 0��Y0 in the compact part of X0 .

� On Œ�R;�1�� Y0 , we have that H.r;y/D h.r/ is a function of r only with
h0.r/ > 0 and h00.r/� 0 such that H.r/D arCb for r ��RC1, where a> 0

and b are real constants. We require that a is distinct from the length of any
closed Reeb orbit or Reeb chord with endpoints on ƒ0 in Y0 .

� h0.r/� 0 on Œ�1; 0��Y0 , and the function becomes constant near 0�Y0 .

� Over X 0
10

, the function is an approximately constant Morse function.

� Finally, in the positive end, the function has the standard affine form of a one-step
Hamiltonian.

Let H1 be a time-dependent one-step Hamiltonian on X1 and let H0 be a two-step
Hamiltonian on X1 with respect to the cobordism X01 such that H0 �H1 .

We consider chords and orbits of both Hamiltonians. The action of a chord or orbit
 W Œ0; 1�!X of Hj is

a. /D

Z 1

0

 ���

Z 1

0

Hj . .t// dt:

The nonpositivity of our 1–forms implies that, if we have D1Im;k 2 D1Im;k and
uW .D1Im;k ; @D1Im;k/ ! .X1;L1/ lies in the space of solutions of the Floer equa-
tion F.aIb;�/ as defined in Section 4.1 below, with a a chord, bD b1 � � � bm a word
in chords, and �D �1 � � � �k a word in periodic orbits, then

a.a/� .a.b1/C � � �C a.bm//� .a.�1/C � � �C a.�k//� 0:

Likewise if u 2 F.;�/ as defined in Section 4.1 below, with  a periodic orbit and
�D �1 � � � �k a word in periodic orbits, then

a. /� .a.�1/C � � �C a.�k//� 0:
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f0g �Y1f0g �Y0f�Rg �Y0
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Figure 7: Hamiltonians for the cobordism map

Lemma 2.7 The Hamiltonian chords and orbits of H1 decompose into the following
subsets:

� OX1
: the chords and orbits that correspond to critical points of H1 in X1 . If

 2OX1
, then a. /� 0.

� CX1
: Hamiltonian chords and orbits located near f0g�Y1 , and corresponding to

Reeb chord and orbits in .Y1; ˛1/. If  2 CX1
, then a. / > 0.

The Hamiltonian chords and orbits of H0 decompose into the following subsets:

� OX0
: the chords and orbits that correspond to critical points of H0 in X0 . If

 2OX0
, then a. /� 0.

� CX0
: Hamiltonian chords and orbits located near f�Rg �Y0 . If  2 CX0

, then
a. / > 0.

� C�
X0

: Hamiltonian chords and orbits located near f0g�Y0 . Given � > 0, if R is
chosen small enough, then every  2 C�

X0
has a. / < 0.

� OX01
: the chords and orbits that correspond to critical points of H0 in X01 . If

 2OX01
, then a. / < 0.

� C�
X1

: Hamiltonian chords or orbits located near f0g �Y1 . If a0 < �.1� e�R/,
then for any chord or orbit � 2 C�

X1
, we have a.�/ < 0.

Proof Straightforward calculation.
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2.6 Nonpositive 1–forms of Hamiltonian vector fields

Let H be a one-step time-independent Hamiltonian and Ht , t 2 Œ0; 1�, an associated
time-dependent one-step Hamiltonian on X . We will define nonpositive 1–forms
with values in Hamiltonian vector fields parametrized by splitting compatible constant
sections of E . As before, our construction is inductive. Before we enter the actual
construction, recall the notion of nonpositivity for 1–forms B on a Riemann surface †
with values in Hamiltonian vector fields on X ; see Section 1. Each x 2 X gives a
1–form on † with values in TxX , B.x/ D XHz

.x/˝ ˇ , where Hz W X ! R, is a
family of Hamiltonian functions parametrized by z 2 † and ˇ is a 1–form on †.
The nonpositivity condition is then that the 2–form associated to B , d.Hz.x/ ˇ/, is a
nonpositive multiple of the area form on † for each x 2X .

Let I D Œ0; 1� and S1 D I=@I . For cylinders, strips, and cylinders with a slit with
coordinates sC i t , s 2R, t 2 I or t 2 I=@I we use the time-dependent Hamiltonian
throughout and define

B DXHt
˝ dt:

For x 2X , the associated 2–form is d.Ht .x/ dt/D 0 and B is nonpositive.

Consider next disks and spheres in DhIhm;k with hmC k D 2. Fix a cut-off function
 W DhIhm;k ! Œ0; 1� which equals 0 outside the cylindrical ends, which equals 1 in
a neighborhood of each cylindrical end, and such that d has support in the regions
of concavity only. Furthermore, we take the cut-off function to depend on the first
coordinate only in the cylindrical end Œ0;1/�S1 or .�1; 0��S1 at interior punctures
and Œ0;1/� Œ0; 1� or .�1; 0�� Œ0; 1� at boundary punctures. Let Ht , t 2 I , denote
the time-dependent one-step Hamiltonian and H the time-independent one, chosen
such that Ht .x/�H.x/ for all .x; t/ 2X � I . Let H

 
t D .1� /H C Ht . Define

B DX
H
 
t

˝ˇ:

For x 2X the associated 2–form is as follows: in the complements of cylindrical ends
near the punctures it is given by

d.H
 
t .x/ˇ/DH.x/dˇ � 0;

since H.x/ � 0, and in the cylindrical ends near the punctures, with coordinates
sC i t , by

d.H
 
t .x/ˇ/D  

0.s/
�
Ht .x/�H.x/

�
ds ^ˇC

�
.1� /H C Ht

�
dˇ � 0;

where the last inequality holds provided Ht is sufficiently close to H , so that the
second term dominates when the first is nonvanishing. (Here we used that dt ^ˇ D 0
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in the cylindrical end.) We now extend this field of 1–forms with values in Hamiltonian
vector fields over all of D using induction. For one-level curves in the interior of
DhIhm;k , a straightforward extension of the above including more than two ends gives
a nonpositive form. For several-level curves, gluing the 1–forms of the components
define forms with desired properties in a neighborhood of the boundary of DhIhm;k .
Finally, we interpolate between the two fields of forms over a collar region near the
boundary using the interpolation of the form part ˇ ; see Lemma 2.6. We denote the
resulting form with nonpositive differential by B .

Consider next the case of two-step Hamiltonians. As for the one-level Hamiltonians we
insert a small time-dependent perturbation near all Reeb orbits of positive action and
we get a 0–order term B exactly as above, just replace the one-step Hamiltonian with
the two-step Hamiltonian everywhere. Note that, with this definition, the Hamiltonian
is time dependent near each puncture. We use this when relating the nonequivariant
contact homology to the Morse–Bott version of symplectic homology; see Section 6.

We will consider one further type of 1–form with values in Hamiltonian vector fields
that we use to interpolate between one-step and two-step Hamiltonians. Let H0 DH

be the two-step Hamiltonian above and let H1 be a one-step Hamiltonian on X1

with H1 � H0 everywhere. Let �W R! R be a smooth function with nonpositive
derivative supported in Œ�1; 1� such that � D 1 in .�1;�1� and � D 0 in Œ1;1/.
Let �T D �. � � T / for T 2 R so that �T has nonpositive derivative supported in
ŒT � 1;T C 1�, �T D 1 in .�1;T � 1�, and �T D 0 in ŒT C 1;1/. Recall the
superharmonic field of functions g D ge , e 2 E and let B0 and B1 be the fields of 1–
forms parametrized by E associated to H0 and H1 , respectively, constructed above. Fix
an orientation-reversing diffeomorphism T W .0; 1/!R. Then the interpolation form

(2-8) B� D .1��T .�/ ıg/B1C .�T .�/ ıg/B0

is a 1–form with values in Hamiltonian vector fields of the Hamiltonian

.1��T .�/ ıg/H1C .�T .�/ ıg/H0:

We check that it is nonpositive. For fixed x 2X1 , the associated 2–form is

dB� D d
�
.1��T ıg/H1.x/ˇC .�T ıg/H0.x/ˇ

�
D .1��T ıg/d.H1ˇ/C .�T ıg/d.H0ˇ/C�

0
T .g/

�
H0.x/�H1.x/

�
dg^ˇ

� 0;

where the inequality follows since the first term is a convex combination of nonpositive
forms and the second is nonpositive as well since ˇ D�i�dg and hence dg^ˇ � 0.
Note also that for � D 0 and � D 1, we have B� D B0 and B� D B1 , respectively.
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2.7 Determinant bundles and orientations

We use the field of 1–forms B parametrized by constant splitting compatible sections
of E and almost complex structures over D to define the Floer equation

x@F uD .du�B/0;1 D 0

for uW .DhIhm;k ; @DhIhm;k/! .X;L/. In order to study properties of the solution space
we will consider the corresponding linearized operator Lx@F which maps vector fields v
with one derivative in Lp into complex antilinear maps Lx@F .v/W TzDhIhm;k!Tu.z/X ,
in case of nonempty boundary the vector fields are tangent to L along the boundary.
The linearized operator is elliptic and it defines an index bundle over the space of maps.
This index bundle is orientable provided the Lagrangian L is relatively spin as was
shown in [26]. In this paper we will not use specifics of the index bundle beyond it
being orientable. We will however use it to orient solution spaces of the Floer equation.
For that purpose we fix capping operators for each Hamiltonian chord and orbit and
use linear gluing results to find a system of coherent orientations of the index bundle.
The main requirement here is that the positive and negative capping operator at each
chord or orbit glues to the operator on a disk or sphere which has a fixed orientation of
the index bundle over domains without punctures. The details of this linear analysis
are similar to [21] for chords and [25] for orbits. There is however one point where the
situation in this paper differs. Namely, our main equation depends on extra parameters
corresponding to the simplex and the orientations we use depend on this. In order to
get the right graded sign behavior for our Hamiltonian simplex DGA we will use the
following conventions.

The index bundle corresponding to the parametrized problem is naturally identified
with the index bundle for the unparametrized problem stabilized by the tangent space
of the simplex. Here we use the following orientation convention for the simplex. The
simplex is given by the equation

w1C � � �Cwm D 1;

and we think of its tangent space stably as the kernel-cokernel pair .Rm;R/. We use
the standard oriented basis @1; : : : ; @m of Rm and @0 of R. We then think of the
direction @j as a stabilization of the capping operator of the j th negative puncture and
of @0 as a stabilization of that at the positive puncture and get the induced orientation
of the index bundle over E by gluing these stabilized operators. Then the index
bundle orientations reflect Conley–Zehnder/Maslov grading in the DGA as usual.
We give a more detailed discussion of index bundles and sign rules in the DGA in
the appendix.
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3 Properties of Floer solutions

In this section we establish two basic results about Floer holomorphic curves. First
we prove that the R–factor of any Floer holomorphic curve in the cylindrical end of a
Liouville manifold satisfies a maximum principle. This result allows us to establish the
correct form of Gromov–Floer compactness for our theories. Second we establish an
elementary energy bound that ensures our Floer equations do not have any solutions
with only high-energy asymptotes near the boundary of the parametrizing simplex.

3.1 A maximum principle for solutions of Floer equations

Consider a 1–parameter family of fields of splitting compatible 1–forms B D B� ,
� 2 Œ0; 1�, parametrized by constant sections of E and constructed from one-step and
two-step Hamiltonians as in Section 2.6. (Fields of forms constructed only from a
one-step Hamiltonian appear here as special cases corresponding to constant � D 1.)
Let J be a splitting compatible field of almost complex structures over D . Recall that
this means in particular that if S DDhIhm;k 2 DhIhm;k , then Jz is an almost complex
structure on X for each z 2 S such that in any cylindrical end with coordinate sC i t ,
JsCit D Jt ; see Section 2.2.

We make the following nondegeneracy assumption. The one and two-step Hamiltonians
are both linear at infinity H.r;y/D h.r/D arCb for real constants a> 0 and b . We
assume that the length ` of any Reeb orbit or Reeb chord satisfies

(3-1) `¤ a:

Note that the set of Reeb chord and orbit lengths is discrete and hence the condition on
the Hamiltonians holds generically.

Consider now a solution uW S !X of the Floer equation

.du�B/0;1 D 0;

where the complex antilinear component of the map .du�B/W TzS!Tu.z/X is taken
with respect to the almost complex structures Jz on X and j on S .

Lemma 3.1 If the nondegeneracy condition at punctures (3-1) is satisfied, then u.S/

is contained in the compact subset fr � 1g.

Proof Assume that there exists z 2 S such that

(3-2) r.z/D r.u.z// > 1:

Following [4, Section 7], we show that (3-2) leads to a contradiction. Fix a regular
value r 0 > 1 of the smooth function r ıu such that

S 0 D fz 2 S W r ıu.z/� r 0g ¤¿:
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Then S 0 is a Riemann surface with boundary with corners and its boundary can be
decomposed as @S 0 D @r 0S

0 [ @LS 0 , where u.@r 0S
0/ � fr D r 0g and u.@LS 0/ � L.

Here both @r 0S
0 and @LS 0 are finite unions of circles and closed intervals. The intervals

in @r 0S
0 and @LS 0 intersect at their endpoints that are the corners of @S 0 .

Define the energy of uW S !X to be

E.u/D
1

2

Z
S

kdu�Bk2;

where we measure the norm with respect to the metric !. � ;Jz � /. A straightforward
computation shows that

E.u/D

Z
S

u�! �u�dHz ^ˇ:

Recall the family of 2–forms �.x/D d.Hz.x/ˇ/ associated to the one form B with
values in Hamiltonian vector fields parametrized by x 2X , and recall the nonpositivity
condition for B which says that �.x/ is a nonpositive 2–form for each x 2 X ; see
Section 1. Consider the energy of S 0 :

E.ujS 0/D

Z
S 0

u�! �u�dHz ^ˇ

�

Z
S 0

u�! �u�dHz ^ˇ� �.u.z//

D

Z
@S 0

u� r˛�Hz.u.z//ˇ:

Since ˛jL D 0 and ˇj@S D 0, and since Hz.r;y/ D ar C b in the region fr � 1g

where b < 0 for a> 0 sufficiently large, the last integral satisfiesZ
@S 0

u� r˛�Hz.u.z//ˇ D

Z
@r 0S

0

u� r˛� a u�r ˇ� bˇ

D

Z
@r 0S

0

u� r˛� a u�r ˇ� b

Z
S 0

dˇ

�

Z
@r 0S

0

u� r˛� a u�r ˇ

D r 0
Z
@r 0S

0

˛ ı .du�XH ˝ˇ/

D r 0
Z
@r 0S

0

˛ ıJz ı .du�XH ˝ˇ/ ı .�i/� 0;

where i is the complex structure on S . Here we use the identities ˛ ı Jz D dr and
dr.XHz

/ D 0. The last inequality uses that u.S 0/ is contained in fr � r 0g. Indeed,

Geometry & Topology, Volume 21 (2017)



Symplectic and contact differential graded algebras 2191

if v is a positively oriented tangent vector to @r 0S
0 , then �iv points outwards, and

therefore d.r ıu/.�iv/� 0.

We find that E.ujS 0/ � 0, which implies that u satisfies du�XH ˝ ˇ D 0 on S 0 .
Since u intersects the level r D r 0 , it then follows that the image of any connected
component of S 0 under u is contained in the image of a Reeb orbit or chord in this
level set. Note that this conclusion is independent of the choice of regular level set
r 0 > 1 such that S 0 D u�1.fr � r 0g/¤¿. Since such regular level sets exist (and are
actually dense) in the interior of the original interval .1; r 0/, we get a contradiction.

3.2 An action bound

In this section we establish an elementary action bound that we will use to show that
our E –families of Floer equations have no solutions with only high-energy asymptotes
near the boundary of the fiber simplex. Consider a Liouville manifold with an exact
Lagrangian submanifold .X;L/ and let Ht be a one or two-step time-dependent
Hamiltonian as above and let �0 > 0 denote the smallest value of the action

(3-3) a. /D

Z


��Ht dt

of a Hamiltonian chord or orbit  corresponding to a Reeb chord or orbit. Then any
high-energy chord or orbit has action at least �0 .

Let uW S !X for S DDhIhm;k be a solution of the Floer equation

.du�B/0;1 D 0;

asymptotic at the positive puncture to a periodic orbit or chord  .

Lemma 3.2 There are constants L; � > 0 such that the following holds for any
L0 � L and 0 < �0 � � . If there is a strip region V D Œ0;L0�� I or cylinder region
V D Œ0;L0� � S1 in S of length L0 that separates a negative puncture q from the
positive puncture p and such that B DXH ˝�dt , in standard coordinates sC i t in V ,
where H does not depend on sC i t , then q maps to a low-energy chord or orbit.

Remark 3.3 As will be seen from the proof, the constant L > 0 depends only
on �0 , the action EC of the Hamiltonian chord or orbit at p , M Dmaxfr�1gH and
C Dmaxfr�1g k�k, where � is the Liouville form, while the constant � > 0 depends
also on F Dmaxfr�1g kXH k.
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Proof We use notation as in the proof of Lemma 3.1 and Remark 3.3. Consider
the energy

E D

Z
S

kdu�Bk2 D

Z
S

u�! �u�dHz ^ˇ

�

Z
S

u�! �u�dHz ^ˇ� �.u.z//

DEC�

hmCkX
iD1

Ei;� ;

where EC is the action at the positive puncture and Ei;� , i D 1; : : : ; hmC k are the
actions at the negative punctures. In particular, the action Ei;� at any of the negative
punctures satisfies

(3-4) Ei;� �EC:

Also, because each of the actions Ei;� is positive, we have

E �EC:

Consider now the contribution to the energy from the strip or cylinder region V . Fix
�> 0 and note that, in the strip case, the measure of the set of points s 2 Œ0;L� such thatZ

fsg�Œ0;1�

k@tu� �XH k
2 dt � �

is bounded by E=� (similarly for the integral over fsg �S1 in the cylinder case). In
particular if L>E=� we have that there are slices  0Dfs0g� Œ0; 1� in the strip case or
 0Dfs0g�S1 in the cylinder case for which k@tu.s0; � /��XH k

2
L2 ��, which implies

k@tu.s0; � /kL2 �
p
�C �F:

We obtain for the action of  0 the estimateˇ̌̌̌Z
 0
�� �H dt

ˇ̌̌̌
� Ck@tu.s0; � /kL1 C �M

� C
p
�C �.CF CM /:

Applying Stokes’ theorem to the energy integral of the part S 0 of S containing  0 and
the negative puncture q then shows as in (3-4) that the energy of the chord or orbit
at q is < �0 , provided �DE=L and � are sufficiently small.
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4 Properties of spaces of Floer solutions

Let .X;L/ be a Liouville pair as before. Consider an E –family B� , � 2 Œ0; 1�, of
interpolation splitting compatible 1–forms over D with values in Hamiltonian vector
fields (see Section 2.6), and a field of domain dependent almost complex structures (see
Section 2.2) where the Hamiltonians satisfy the nondegeneracy condition at infinity.
Here we think of .X;L/D .X1;L1/ constructed from a cobordism if � 2 Œ0; 1/, and
if � D 1 we also allow standard Liouville pairs.

This data allows us to study the Floer equation

(4-1) .du�B� /
0;1
D 0

for uW .DhIhm;k ; @DhIhm;k/! .X;L/. We will refer to solutions of (4-1) as Floer
holomorphic curves.

4.1 Transversality and dimension

In order to express the dimensions of moduli spaces of Floer holomorphic curves,
we use Conley–Zehnder indices for chords and orbits (with conventions as in [13,
Appendix A.1]). They are defined as follows. If  is a Hamiltonian orbit, then fix a
disk D (recall that we assume �1.X /D 1) that bounds  and a trivialization of the
tangent bundle TX over D . The Conley–Zehnder index CZ. /2Z of a Hamiltonian
orbit is then defined using the path of linear symplectic matrices that arises as the
linearization of the Hamiltonian flow along  in this trivialization; see [37]. Then
CZ. / is independent of the choice of trivialization since c1.X /D 0.

If c is a Hamiltonian chord, we pick a capping disk Dc mapping the unit disk into X

as follows. Pick a base point in each component of the Lagrangian L. Fix paths
connecting base points in different components and along these paths fix paths of
Lagrangian tangent planes connecting the tangent planes of the Lagrangian L at the
base points. (We use the constant path with the constant tangent plane at the base point
connecting the base point in a given component to itself.) In the disk Dc we map
the boundary arc @D�c between �1 and 1 to the Hamiltonian chord, and we map the
boundary arc @DCc between 1 and �1 as follows: the boundary arc between 1 and
e�i=4 is mapped to the component of L that contains the Hamiltonian chord endpoint,
and connects the latter to the base point; the arc between e� i=4 and e3�i=4 follows
the path between base points; finally, the arc between e3�i=4 and �1 is mapped to
the connected component of L that contains the Hamiltonian chord start point, and
connects the base point to the Hamiltonian chord start point. This then gives the
following loop �c of Lagrangian planes: along @DCc we follow first the tangent planes
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of L starting at the endpoint of the chord and ending at the base point, then the planes
along the path connecting base points, then again planes tangent to L from the base
point to the start point of the chord; along @D�c we transport the tangent plane of
the Lagrangian at the chord start point by the linearization of the Hamiltonian flow
along the chord, and finally we close up by a rotation along the complex angle in the
positive direction connecting the transported Lagrangian plane to the tangent plane at
the endpoint of the chord. We define

CZ.c/D �.�c/;

where � denotes the Maslov index of �c read in a trivialization of TX over @Dc that
extends over Dc . This is then well defined since c1.X / D 0 and since the Maslov
class of L vanishes.

Remark 4.1 The Conley–Zehnder index CZ.c/ of a Reeb chord c with both endpoints
in one component of the Lagrangian submanifold is independent of all choices. For
chords with endpoints in distinct components CZ is independent up to an over all shift
that depends on the choice of tangent planes along the path connecting base points.

We also define positive and negative capping operators. For chords c these operators
o˙.c/ are defined using capping disks. This capping operator is a linearized Floer-
operator on a once boundary-punctured disk, with Lagrangian boundary condition
given by the tangent planes along the capping path oriented from the endpoint of the
chord to the start point for the positive capping operator oC.c/ and with the reverse
path for the negative capping operator o�.c/. We assume (as is true for generic data)
that the image of the Lagrangian tangent plane at the start point of the chord under the
linearized flow is transverse to the tangent plane at the endpoint. For orbits, the capping
operators o˙. / are operators on punctured spheres with positive or negative puncture
with asymptotic behavior determined by the linearized Hamiltonian flow along the
orbit  . More precisely, the capping operators are then x@–operators perturbed by a
0–order term acting on the Sobolev space of vector fields v on the punctured sphere S

or disk D that in the latter case are tangent to the Lagrangian along @D with one
derivative in Lp , p > 2.

We find that the chord capping operators are Fredholm and their index is given by the
formula [32; 22]

index.oC.c//D nC .CZ.c/� n/D CZ.c/; index.o�.c//D n�CZ.c/:

The orbit capping operators have index [3; 13]

index.oC. //D nCCZ. /; index.o�. //D n�CZ. /:
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Let a be a Hamiltonian chord,  a Hamiltonian orbit, b D b1 � � � bm a word of
Hamiltonian chords and � D �1 � � � �k a word of Hamiltonian orbits. Let � 2 E be
a splitting compatible constant section over D , which takes values in the simplex
�hmCk�1 over the interior of DhIhm;k .

When the number of boundary components of the source curve is hD 1, we consider
the moduli space F �� .aIb;�/ of solutions

uW .D1Im;k ; @D1Im;k/! .X;L/; D1Im;k 2 D1Im;k ;

of the Floer equation

.du�B�� /
0;1
D 0:

Here B�� is the 1–form with values in Hamiltonian vector fields determined by � 2 E .
The map u converges at the positive puncture to a, and at the negative punctures to
b1; : : : ; bm; �1; : : : ; �k . Note that if � ¤ 1, then a is a chord of the Hamiltonian H0

and bj and �l chords and orbits of H1 . The interior negative punctures are endowed
with asymptotic markers induced from the positive boundary puncture as in Section 2.1.
We write

F� .aIb;�/D
[

�2�hmCk�1

F �� .aIb;�/:

(Recall that the family B� depends smoothly on � .) We also write

FR.aIb;�/D
[

�2.0;1/

F� .aIb;�/; F �R.aIb;�/D
[

�2.0;1/

F �� .aIb;�/:

In the case that the domain is a cylinder or strip we will discuss the definition of the
moduli space FR with more details in Remark 4.3. (Intuitively, the parameter � moves
the interpolation region along the domain, but in these domains we also divide by
the natural R–translation. This then together has the same effect as simply fixing the
location of the interpolation region.)

When the number of boundary components of the source curve is hD 0, we similarly
consider the moduli space F �� . I�/ of solutions

uW D0I0;k !X; D0I0;k 2 D0I0;k ;

of the Floer equation

.du�B�� /
0;1
D 0;
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converging at the positive puncture to  , and at the negative punctures to �1; : : : ; �k .
Again, if � ¤ 1, then  is an orbit of the Hamiltonian H0 and the �l orbits of H1 .
Here the positive puncture has a varying asymptotic marker, which induces asymptotic
markers at all the negative punctures as described in Section 2.1. We write

F� . I�/D
[

�2�k�1

F �� . I�/

and

FR. I�/D
[

�2.0;1/

F� . I�/; F �R. I�/D
[

�2.0;1/

F �� . I�/:

Remark 4.2 Floer equations corresponding to one-step Hamiltonians are a special
case of the above, corresponding to � D 1. We sometimes use a simpler notation for
such spaces: we drop the � D 1 subscript and write F � D F �

1
and F D F1 .

Remark 4.3 More precise definitions of the moduli space FR in the case that the do-
main is a strip or a cylinder are as follows: For a given Hamiltonian H the moduli space
F DF1 is the space of solutions of the Floer equation .du�XH ˝ dt/0;1 D 0 modulo
the R–action by translations in the source. This interpretation of F is compatible with
breaking.

When we interpolate between two Hamiltonians, we define the moduli space FR as the
space of solutions F�0

, �0 2 .0; 1/, for a fixed value � D �0 2 .0; 1/. This interpretation
of FR is compatible with breaking as follows. Consider a one-step Hamiltonian H1

and a two-step Hamiltonian H0 � H1 , and a fixed �0 2 .0; 1/ such that FR D F�0

for cylinders and strips, where F�0
is the space of solutions of the Floer continuation

equation

.du�X.1��T .�0/
.s//H1C�T .�0/

.s/H0
˝ dt/0;1 D 0;

where �T is the function used in (2-8) in order to define the 1–form

B� DX.1��T .�/.s//H1C�T .�/.s/H0
˝ dt:

If a strip splits off from such a domain and if the interpolation region (the support of
the derivative of �T ) lies in this strip, then since the functions �T are defined as shifts
�T .s/D �.s�T / of a given function � (see the discussion preceding (2-8)), there is a
unique translation of the parametrization of the domain of the split-off strip or cylinder
such that we get a solution in F�0

D FR .
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Theorem 4.4 Assume hmCk � 2. For generic families of almost complex structures
and Hamiltonians, the moduli spaces F� .;�/, F� .aIb;�/, FR. I�/ and FR.aIb;�/

are manifolds of dimensions

dimF� . I�/D dimFR. I�/� 1

D .CZ. /C .n� 3//�

kX
jD1

.CZ.�j /C .n� 3//� 1;

dimF� .aIb;�/D dimFR.aIb;�/� 1

D .CZ.a/� 2/�

mX
jD1

.CZ.bj /� 2/�

kX
jD1

.CZ.�j /C .n� 3//� 1:

For generic fixed � 2 �hmCk�1 , the corresponding moduli spaces F � . I�/ and
F � .aIb;�/ are manifolds of dimensions

dimF �� . I�/D dimF �R. I�/� 1

D .CZ. /C .n� 2//�

kX
jD1

.CZ.�j /C .n� 2//� 1;

dimF �� .aIb;�/D dimF �R.aIb;�/� 1

D .CZ.a/� 1/�

mX
jD1

.CZ.bj /� 1/�

kX
jD1

.CZ.�j /C .n� 2//� 1:

Furthermore, for generic data, the projection of the moduli spaces FR and F �R to
the line R (interpolating between the Hamiltonians) is a Morse function with distinct
critical values.

Remark 4.5 In the case where hmC k D 1, ie the domain is a strip or a cylinder,
the parameter � is irrelevant since the simplex consists of a single point, and the
dimensions of the relevant moduli spaces are

dimF1. I �/D CZ. /�CZ.�/� 1; dimFR. I �/D CZ. /�CZ.�/;

dimF1.aI b/D CZ.a/�CZ.b/� 1; dimFR.aI b/D CZ.a/�CZ.b/:

Proof of Theorem 4.4 To see this we first note that the operator we study is Fredholm.
The expected dimension of the moduli space is then given by the sum of the index of
the operator acting on a fixed surface and the dimension of auxiliary parameter spaces
(ie the space of conformal structures on the domain and the space which parametrizes
the choice of 1–forms).
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Consider first the case when hD 1. We denote the index of the operator on the fixed
surface by index.aIb;�/. To compute it, we glue on capping operators at all punctures.
Additivity of the index under gluing at a nondegenerate chord or orbit together with
the Riemann–Roch formula then gives

nD index.aIb;�/C n�CZ.a/C
mX

jD1

CZ.bj /C

kX
jD1

.CZ.�j /C n/:

The dimension is then obtained by adding the dimension of the space of conformal
structures and that of the space of 1–forms:

dimF.aIb;�/D index.aIb;�/C .m� 2/C 2kC .mC k � 1/:

When the form B� is fixed, we simply subtract mC k � 1, the dimension of the
simplex. The calculation in the case hDmD 0 is similar and gives

dimF. I�/D .CZ. /C n/�

kX
jD1

.CZ.�j /C n/C 2k � 3C .k � 1/;

where 2k � 3 is the dimension of the space of conformal structures on the sphere with
kC1 punctures where there is a varying asymptotic marker at one of the punctures. In
the case where the form B� is fixed we subtract the dimension of the simplex, k � 1.

Finally, to see that these are manifolds, we need to establish surjectivity of the linearized
operator for generic data. This is well known in the current setup and follows from
the unique continuation property of pseudoholomorphic curves in combination with
an application of the Sard–Smale theorem. The key points are that J (and H ) are
allowed to depend on all parameters and that .X;L/ is exact so that no bubbling of
pseudoholomorphic spheres or disks occurs; see eg [6, Appendix] and [32, Section 9.2].

The last statement is a straightforward consequence of the Sard–Smale theorem.

Remark 4.6 Note that letting the markers at the negative ends be determined by that
at the positive end is compatible with splitting, which is essential for the description of
moduli space boundaries. Also, in the case that the domain is a cylinder our moduli
spaces are the same as the usual moduli spaces of Floer cylinders defined by the fixed
domain R�S1 with the distinguished line R� f1g.

We next show that there are no solutions of the Floer equation with only high-energy
asymptotes if the 0–order term corresponds to a constant section of E that lies suffi-
ciently close the boundary of the simplex.
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Lemma 4.7 For any E > 0, there exists � > 0 such that if � is a constant section
of E that lies in an � neighborhood of the boundary of the simplex, and if a.a/ < E

and a. / < E , then for any nontrivial words b and � of high-energy chords and
orbits, respectively, and for any � 2 Œ0; 1�, the moduli spaces F �� .aIb;�/ and F �� . I�/
are empty.

Proof This is an immediate consequence of the `–level condition on the nonnegative
1–form ˇ and Lemma 3.2.

4.2 Compactness and gluing

For simpler notation, we write F� , F �� , FR and F �R with unspecified punctures as
common notation for either type of moduli space (corresponding to either hD 0 or
hD 1) in Theorem 4.4. We also write FC� and FCR for components of F� and FR

where all asymptotic chords and orbits are of high energy. Recall that, if B� is a
splitting compatible field of 1–forms determined by a constant splitting compatible
section � of E then, over a several-level curve, B� determines 1–forms depending on
constant sections over its pieces.

Theorem 4.8 The spaces F �� and FC� admit compactifications as manifolds with
boundary with corners, where the boundary corresponds to several-level curves in F ��
and FC� respectively, joined at Hamiltonian chords or orbits.

Proof The fact that any sequence of curves in F �� has a subsequence that converges to
a several-level curve is a well-known form of Gromov–Floer compactness for .X;L/
exact. In order to find a neighborhood of the several-level curves in the boundary of
the moduli space we use Floer gluing. That the Floer equation is compatible with
degeneration in the moduli space of curves is a consequence of the gluing compatibility
condition for the family of 1–forms B� , � 2 E . Both compactness and gluing are
treated in [32, Chapters 4 and 10] and in [40, Chapter 9]; see also eg [24, Appendix A]
for a treatment of family gluing.

For FC� , by Lemma 4.7 note that there are no solutions near the boundary of the
simplex so the only possible boundary are broken curves joined at high-energy chords
or orbits.

We next consider compactifications of moduli spaces FCR which consist of solutions
of the Floer equation with the interpolation form B� as � varies over .0; 1/. Similar
results hold for moduli spaces F �R , but we focus on the high-energy case since that is
all we use later and since we then need not involve any low-energy chords and orbits.
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Theorem 4.9 The moduli spaces FCR admit compactifications as manifolds with
boundary with corners, where the boundary corresponds to several-level curves joined
at Hamiltonian chords and orbits of the following form:

� Exactly one level S (possibly of several components) lies in FCR .

� At the positive punctures of S are attached several-level curves in FC
1

in X1

that solve the Floer equation

.du�B1/
0;1
D 0:

� At the negative punctures of S are attached several-level curves in FC
0

in X1

corresponding to the Floer equation

.du�B0/
0;1
D 0:

In fact, the curves in FC
0

in X1 can be canonically identified with the curves
in FC in X0 that solve the Floer equation with B0 constructed from the
Hamiltonian that equals H0 on X0 that continues to grow linearly over the
end of X0 . (Note for this identification that all chords and orbits have positive
action; compare the definition of the map in Section 5.2.)

Proof The proof is a repetition of the proof of Theorem 4.8, except for the last
statement. The last statement follows from Lemma 3.1 which shows that a curve with
positive puncture at a chord or orbit in CX0

(notation as in Lemma 2.7) lies inside
fr � 1g, where r D et is the coordinate in the symplectization end of X0 .

5 Definition of the Hamiltonian simplex DGA

In this section we define the Hamiltonian simplex DGA. In order to simplify grading
and dimension questions we assume that �1.X /D 0, c1.X /D 0 and that the Maslov
class �L of the Lagrangian submanifold L vanishes; see Section 7 for a discussion of
the general case.

5.1 DGA for fixed Hamiltonian

Let H be a one-step time-independent Hamiltonian, let Ht an associated time-
dependent perturbation of it, let B be an E –family of 1–forms associated to H

and fix a family of almost complex structures; see Section 2.6.

Define the algebra SCC.X;LIH / to be the algebra generated by high-energy Hamil-
tonian chords c of H , graded by

jcj D CZ.c/� 2;
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and by high-energy 1–periodic orbits  of H , graded by

j j D CZ. /C .n� 3/:

We impose the condition that orbits sign-commute with chords and that orbits sign-
commute with orbits. See also Remark A.2.

Define the map

ıW SCC.X;LIH /! SCC.X;LIH /; ı D ı1C ı2C � � �C ımC � � � ;

to satisfy the graded Leibniz rule and as follows on generators. For a Hamiltonian
chord a,

ır .a/D
X

jaj�jbj�j�jD1

1

k!
jFC.aIb;�/j�b;

where the sum ranges over all words b D b1 � � � bm and � D �1 � � � �k which satisfy
the grading condition and are such that mC k D r . Here jFCj denotes the algebraic
number of elements in the oriented 0–dimensional manifold FC . Similarly, for a
Hamiltonian orbit  ,

ır . /D
X

j j�j�jD1

1

r !
jFC. I�/j�;

where the sum ranges over all words �D �1 � � � �r which satisfy the grading condition.

Remark 5.1 For r D 1 above, the map ı1 counts elements in the moduli spaces
of strips or cylinders which means that it counts solutions modulo R–translations in
the source; see Remark 4.3. In particular ı1 is exactly the usual differential on the
high-energy part of symplectic homology SHC.X;L/.

Lemma 5.2 The map ıW SCC.X;LIH /! SCC.X;LIH / has degree �1 and is a
differential, ie ı ı ı D 0.

Proof This is a consequence of Theorem 4.8: the terms in ı ı ı are in bijective
sign-preserving correspondence with the boundary components of the (oriented) 1–
dimensional compactified moduli spaces FC .

Remark 5.3 Repeating the above constructions replacing the moduli spaces FC

with F � for some generic constant splitting compatible section of E , we get a
differential on the DGA SCC.X;LIH / with grading shifted up by 1, denoted by
SCC.X;LIH /Œ�1�. This differential can be homotoped to a differential without higher-
degree terms by taking � sufficiently close to the boundary of the simplex.
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5.2 Cobordism maps for fixed Hamiltonians

Consider a symplectic cobordism .X10;L10/, and fix a two-step Hamiltonian H0 and
a one-step Hamiltonian H1 . As in Theorem 4.9, we think of H0 also as a Hamiltonian
on X0 only (basically removing the second step making it a one-step Hamiltonian).

Define the map

(5-1) ˆW SCC.X1;L1IH1/! SCC.X0;L0IH0/; ˆDˆ1Cˆ2C � � � ;

as the algebra map given by the following count on generators. (In the right-hand side,
we use the identification above and think of .X1;L1/ with H0 as being .X0;L0/ with
the corresponding one-step H0 .)
� For chords a,

ˆr .a/D
X

jaj�jbj�j�jD0

1

k!
jFCR .aIb;�/j�b;

where the sum ranges over all bD b1 � � � bm and �D �1 � � � �k with mCk D r .
� For orbits  ,

ˆr . /D
X

j j�j�jD0

1

r !
jFCR . I�/j�:

Remark 5.4 As a consequence of Lemma 3.1, the target SCC.X0;L0IH0/ of the
cobordism map ˆ can be interpreted as the quotient of SC.X1;L1IH0/ by the ideal
generated by chords and/or orbits which have negative action. Accordingly, one can
factor ˆ as a composition

SCC.X1;L1IH1/! SCC.X1;L1IH0/! SCC.X0;L0IH0/;

in which the second map is the projection and the first map is defined by the same
formulas as ˆ in which we replace the moduli spaces FCR by FR .

Remark 5.5 In the definition of the moduli space FCR in case the curve is a cylinder
or a strip we are interpolating between Hamiltonians in a fixed region around s D 0 in
the cylinder or strip; see Remark 4.3. Thus ˆ1 induces the usual Viterbo transfer map
on symplectic or wrapped Floer homology. Indeed, the Viterbo transfer map is just a
continuation map.

Theorem 5.6 The map ˆW SCC.X1;L1IH1/! SCC.X0;L0IH0/ is a chain map;
ie ıˆDˆı .

Proof By Theorems 4.4 and 4.9, contributions to ˆı�ıˆ correspond to the boundary
of an oriented 1–dimensional moduli space.
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5.3 The Hamiltonian simplex DGA

In order for the DGA introduced above to capture all aspects of the Reeb dynamics at
the boundary of the Liouville pair .X;L/ we need to successively increase the slope of
the Hamiltonian. Consider a family of one-level Hamiltonians Ha where Ha1

>Ha0

if a1 > a0 and Ha.r;y/D arCb in the cylindrical end Œ0;1/�Y . Inserting a trivial
cobordism, we change Ha1

to a two-step Hamiltonian H 0a1
with the slope a1 at the

end of the trivial cobordism as well. Then H 0a1
> Ha0

. We define the Hamiltonian
simplex DGA

SCC.X;L/D lim
�!

a!1 SCC.X;LIHa/;

where the direct limit is taken with respect to the directed system given by the cobor-
dism maps

ˆW SCC.X;LIHa0
/! SCC.X;LIH 0a1

/D SCC.X;LIHa1
/:

See Sections 4.2 and 5.4 for the last equality. Its homology is

SHC.X;L/D lim
�!

a!1H.SCC.X;LIHa//:

Remark 5.7 One can alternatively define the Hamiltonian simplex DGA SCC.X;L/
as the homotopy limit of the directed system fSCC.X;LIHa/g, obtained by the
algebraic mapping telescope construction as in [4, Section 3g]; see also [28, Chapter 3,
page 312].

5.4 Homotopies of cobordism maps

In this subsection, we study invariance properties of the cobordism maps defined in
Section 5.2. As a consequence we find that the homotopy type of the Hamiltonian
simplex DGA is independent of Hamiltonian, 0–order perturbation term and field of
almost complex structure, and depends only on the underlying Liouville pair .X;L/.

Let .X10;L10/ be a cobordism of pairs and consider a 1–parameter deformation of
the data used to define the cobordism map parametrized by s 2 I . We denote the
corresponding cobordism maps by

ˆsW SCC.X1;L1/! SCC.X0;L0/; s 2 I:

Here we take the deformation of the data to be supported in the middle region of the
cobordism. In other words the symplectic form, the field of almost complex structures,
and the Hamiltonians and associated 0–order terms in the Floer equation vary in the
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compact region in the cobordism between 0�Y0 and 0�Y1 but are left unchanged
inside 0�Y0 and outside 0�Y1 ; see Figure 7.

For fixed s 2 I we get an interpolation form Bs
� , � 2 I , and moduli spaces F s

R , as in
Section 4.2. Exactly as there, we suppress from the notation the punctures, and also the
constant section � on which Bs

� depends. We write the corresponding parametrized
moduli spaces as

F I
R D

[
s2I

F s
R:

We will show below that the chain maps ˆ0 and ˆ1 are chain homotopic. The proof
is however rather involved. To explain why we start with a general discussion pointing
out the main obstruction to a simple proof. The chain maps ˆ0 and ˆ1 are defined
by counting .�1/–disks in R–families of Floer equations, or in other words rigid
0–dimensional curves in F 0

R and F 1
R , respectively. A standard transversality argument

shows that for generic 1–parameter families s 2 I , the 0–dimensional components
of the moduli spaces F I

R constitute a transversely cut out oriented 0–manifold. From
the point of view of parametrized Floer equations this 0–manifold consists of isolated
.�2/–disks, where one parameter is � 2 I and the other is s 2 I .

Remark 5.8 In our notation below we always include the simplex parameters in the
dimension counts but view both the interpolation parameter � 2 I and the deformation
parameter s 2 I as extra parameters. With this convention we call a curve of formal
dimension d a .d/–curve.

In analogy with the definition of the chain maps induced by cobordisms, counting .�2/–
curves during a generic deformation of cobordism data should give a chain homotopy
between the chain maps ˆ0 and ˆ1 at the ends of the deformation interval I . However,
counting .�2/–curves is not entirely straightforward in the present setup because of the
following transversality problem: since the curves considered may have several negative
punctures mapping to the same Hamiltonian chord or orbit, an isolated .�2/–curve can
be glued to the negative ends of a .d/–curve (asymptotic to Reeb chords or orbits of the
Hamiltonian H1 in X1 ), d > 0 a number of .d C 1/ times, resulting in a several-level
curve of formal dimension

d C .d C 1/.�2C 1/D�1;

on the boundary of the space of .�1/–curves but not accounted for in the chain
homotopy equation. In order for the boundary of the space of .�1/–curves to be
compatible with the chain homotopy equation, the .�2/–curve should appear only
once in combination with the .0/–curve that gives the differentials.
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To resolve this problem, we restrict attention to a small time interval around the critical
.�2/–curve moment and “time-order” the negative ends of the curves in the moduli
space of Floer holomorphic curves in the positive end, ie Floer holomorphic curves
in X1 with respect to the Hamiltonian H1 . Similar arguments are used in eg [18; 4]. In
these constructions there are differences between interior and boundary punctures. In
case the positive puncture of the .�2/–curve is a chord (boundary puncture) the time
ordering argument is simpler since there is a natural order of the boundary punctures
in the disks where the .�2/–curve can be attached, and that ordering can be used in
building the perturbation scheme. In the orbit case (interior puncture) there is no natural
ordering and we are forced to add a homotopy of homotopies argument on top of the
ordering perturbation. We sketch these constructions below but point out that actual
details do depend on the existence of a suitable perturbation scheme that will not be
discussed here; see Remark 1.3.

We now turn to the proof that ˆ0 and ˆ1 are chain homotopic. Consider first the case in
which there are no .�2/–curve instances in the interval Œ0; 1�. Then the 1–dimensional
component of F I

R gives an oriented cobordism between the 0–dimensional moduli
spaces used to define the cobordism maps and hence ˆ0 Dˆ1 . A general deformation
can be perturbed slightly into general position and then it contains only a finite number
of transverse .�2/–curve instances. By subdividing the family it is then sufficient to
show that ˆ0 and ˆ1 are homotopic for deformation intervals that contain exactly one
such transverse .�2/–curve. The following result expresses the effect of a .�2/–curve
algebraically. The proof is rather involved and occupies the rest of this section.

Lemma 5.9 Assume that the deformation interval contains exactly one .�2/–curve.
Then the DGA maps ˆ0 and ˆ1 are chain homotopic; ie there exists a degree-.C1/

map KW SCC.X1;L1/! SCC.X0;L0/ such that

(5-2) ˆ1 Dˆ0e.Kıd1�d0ıK /;

where d1 and d0 are the differentials on SCC.X1;L1/ and SCC.X0;L0/, respectively.

Remark 5.10 The exponential in (5-2) is the usual power series of operators.

Remark 5.11 For the chord algebra SCC.L/, Lemma 5.9 follows from an extended
version of [18, Lemma B.15] (that takes orientations of the moduli spaces into account),
which is stated in somewhat different terminology. In the proof below, we will adapt
the terminology used there to the current setup so as to include (parametrized) orbits as
well. Here, it should be mentioned that [18, Lemma B.15], and consequently also the
current result, depend on a perturbation scheme for so-called M-polyfolds (the most
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basic level of polyfolds), the details of which are not yet worked out, and hence it
should be viewed as a proof strategy rather than a proof in the strict sense.

We prove Lemma 5.9 in two steps. In the first step we relate ˆ0 and ˆ1 using an
abstract perturbation that time orders the negative punctures in all moduli spaces of
curves with punctures at chords and orbits in CX1

. In the case that there are only chords
there is a natural order of the negative punctures given by the boundary orientation of
the disk and in that case the relation between ˆ0 and ˆ1 derived using the natural
ordering perturbation can be turned into an algebraic relation. In the case that there are
also orbits there is no natural ordering and to derive an algebraic formula we use all
possible orderings and study homotopies relating different ordering perturbations.

Consider the first step. We construct a perturbation that orders the negative punctures of
any curve in F I

1
(which is just a product with F s

1
�I for any fixed s 2 I ) with negative

punctures at chords or orbits in CX1
. We choose this ordering so that when restricted

to the boundary punctures of any disk it respects the ordering of the negative punctures
induced by the orientation of the boundary of the disk and the positive puncture. We
need to carry out this perturbation energy level by energy level. Consider first the lowest
action generator  of H1 with action bigger than the chord or orbit at the positive
puncture of the .�2/–curve. We perturb curves with positive puncture at  and with
negative punctures at generators in CX1

by abstractly perturbing the Floer equation

.du�B1/
0;1
D 0

near the negative punctures. Near chords and orbits in CX1
the data of the Floer equation

is independent of both the R–parameter and of s 2 I . (Recall that the deformations are
supported in the compact cobordism.) Thus, if the abstract time ordering perturbation
is chosen sufficiently small then there are no .d/–curves for d < 0 after perturbation
and the moduli space of .d/–curves for d � 0 after abstract perturbation is canonically
isomorphic to the corresponding moduli space before abstract perturbation. Assume
that such a perturbation is fixed.

Let G.X1;L1/ denote the set of generators of SCC.X1;L1/. For  2 G.X1;L1/ we
write d"1 for the sum of monomials that contribute to the differential of  , ie sum
over I –components of the moduli spaces in F I

1
, equipped with the additional structure

of ordering of the generators as dictated by ".

Lemma 5.12 There is a map K"W GC.X1;L1/ ! SCC.X0;L0/ such that for any
generator  (chord or orbit),

(5-3) ˆ1. /�ˆ0. /D�
"
K"
.d"1 /C d0�

"
K"
. /:
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Here, �"K" acts on monomials with an extra ordering of generators. For a monomial of
chords and orbits ˇ D ˇ1 � � �ˇk we have

�
"
K"
.ˇ/D

kX
jD1

.�1/�jˆ�.1;j/.ˇ1/ � � �ˆ�.j�1;j/. ǰ�1/K". ǰ /ˆ�.jC1;j/. ǰC1/ � � �ˆ�.k;j/.ˇk/;

where �j Djˇ1jC� � �Cj ǰ�1j, �.i; j /D1 if ˇi is before ǰ in the order perturbation "
and �.i; j /D 0 if ˇi is after ǰ .

Proof Consider the parametrized moduli space

F I
R. Iˇ/

as above. Recall that SCC.Xj ;Lj / is defined as a direct limit using the action filtration
corresponding to increasing slopes of Hamiltonians. We work below a fixed energy
level with a fixed slope of our Hamiltonians and assume that the unique .�2/–curve
forms a transversely cut-out 0–manifold.

We use the .�2/–curve to construct a chain homotopy. To this end we next extend
the ordering perturbation " to all curves in F I

R. Iˇ/. Before we start the actual
construction, we point out that our perturbation starts from the very degenerate situation
where all negative punctures lie at the same time. Thus one cannot avoid that new
.�2/–curves arise when the perturbation is turned on. Gluing these to the perturbed
moduli space of curves with negative asymptotes in CX1

then gives new .�1/–curves
with positive puncture at  . We next show how to take these .�1/–curves into account.

We now turn to the description of the perturbation scheme. It is organized energy level
by energy level in such a way that the size of the time separation of negative punctures
of curves with positive and negative punctures in CX1

is determined by the action
of the Reeb chord at the positive puncture. In particular the time distances between
positive punctures of the newly created .�2/–curves at a given energy level are of the
size of the time separation at this energy level. As we move to the next energy level,
the time separation is a magnitude larger, so that the following holds. Consider a curve
on the new energy level with a negative puncture q followed in the order by a negative
puncture q0 . Then q passes all the positive punctures of the .�2/–curves created on
lower energy levels before q0 enters the region where .�2/–curves exist. Consequently,
only one lower energy .�2/–curve at a time can be attached to a curve on the next
energy level. As the energy level is given by the action at the positive puncture and the
action at any negative puncture is smaller than that at the positive puncture, the energy
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level E0 of any .�2/–curve attached at a negative puncture to a curve at energy level E

satisfies E0 <E . Consequently, there is only one .�2/–curve attached to any curve.

Consider the parametrized 1–dimensional moduli space F I
R. Iˇ/ of .�1/–curves

defined using the perturbation scheme just described. The boundary of F I
R. Iˇ/ then

consists of the 0–manifolds F 0
R. Iˇ/ and F 1

R. Iˇ/ as well as broken curves that
consist of one .�2/–curve at some s 2 I and several .�1/–curves with a .0/–curve
in the upper or lower end attached. For a generator  , let K�. / denote the count of
.�2/–curves after the ordering perturbation scheme described above is turned on:

K�. /D
X

j j�jˇjD�1

1

m.ˇ/!
jF I

R. Iˇ/jˇ;

where m.ˇ/ is the number of orbit generators in the monomial ˇ . To finish the proof we
check that the .�2/–curves in the ordering perturbation scheme accurately accounts for
the broken curves at the ends of the 1–dimensional moduli space. By construction, the
separation of negative ends increases by a magnitude when we increase the energy level,
and only one negative puncture of a curve in F I

1
can pass a .�2/–curve moment at a

time. At the punctures which are ahead of this puncture with respect to ", curves in ˆ1

are attached, and at punctures which are behind it, curves in ˆ0 are attached. Thus,
counting the boundary points of oriented 1–manifolds we conclude that (5-3) holds.

Lemma 5.12 expresses ˆ1 in terms of ˆ0 in a way that depends on an ordering of the
negative asymptotics, Reeb chords and orbits. On the chord algebra SCC.L/ we use
the ordering naturally induced by the orientation of the boundary of the disk, which is
also part of the noncommutative structure of the underlying algebra, and the formula in
Lemma 5.12 is a chain homotopy of noncommutative DGAs. However, on the orbit part
of the algebra there is no naturally induced ordering of the negative asymptotics and
the chosen ordering is an additional choice that is not part of the underlying algebraic
structure. In order to get an expression with the desired algebraic properties also for
the orbit part of SCC.X;L/, we study how the .�2/–curves counted by K" depend
on the choice of ordering perturbation ". To this end we consider almost ordering
perturbations "u , u 2 I which are time-ordering perturbations of the sort considered
above of the negative ends of Floer curves in the positive end of the cobordism. Here
an almost ordering is a true ordering except at isolated instances in I when two ends
are allowed to cross through with nonzero time derivative. It is clear that any two
orderings can be connected through a 1–parameter family of almost orderings. Fix such
a 1–parameter family �u , u2 I , of almost orderings that connects orderings "0 and "1 .
Let K"0

. / and K"1
. / denote the count of .�2/–curves with positive puncture at 

for the ordering perturbations "0 and "1 , respectively. More precisely, we think of the

Geometry & Topology, Volume 21 (2017)



Symplectic and contact differential graded algebras 2209

whole 1–parameter family of moduli spaces associated to the orderings "u , u 2 I , as
follows. Recall that in the construction above the counts of .�2/–curves were obtained
by following the curves in the positive end with ordered negative punctures through a
1–parameter family that passes the original .�2/–curve moment. Here we consider a
1–parameter family, parametrized by u2 I , of such 1–parameter family of curves with
negative ends (almost) ordered by �u passing the .�2/–curve moment. Geometrically
we think of this path of paths as corresponding to a unit disk D that interpolates
between two paths corresponding to the orderings "0 and "1 . More precisely, the
boundary segment in the lower half plane in the boundary of the disk D between �1

and 1 is the path with ordering "0 , the boundary segment in the upper half plane that
with ordering "1 , and the disk is foliated by the paths interpolating between these two.

Lemma 5.13 Generically, there is a 1–dimensional locus � in D corresponding
to .�2/–curves with transverse self-intersections and with boundary corresponding
to .�3/–curves splittings, and at any .�3/–curve moment, the path has a definite
ordering (ie no two negative ends are at the same time coordinate). Furthermore, after
deformation of D , we may assume that there are no self-intersections of � (but that
the disk still interpolates between the paths "1 and "0 ).

Proof The first part of the lemma is a straightforward transversality result. View
the ordering paths as paths in larger-dimensional spaces of problems where time
coordinates are associated to the negative ends. Choosing these finite-dimensional
perturbations generically there is a transversely cut out .�2/–curve hypersurface in
the larger spaces. The .�2/–curves in D now correspond to intersections of the .�2/–
curve hypersurfaces with D considered as paths of paths in the larger spaces. For
generic D this then gives a curve � with a natural compactification and with normal
crossings. Endpoints of � correspond to one .�3/–curve breaking off. Double points
of � correspond to two .�2/–curves which can be attached at the same disk with
negative punctures in CX1

.

We next deform the disk D in order to remove the double points of � . This is
straightforward: closed components of � bound disks in D and can hence be shrunk
by isotopy. Intersections of other types can be pushed across the boundary of D .
This push results in two new intersections between the .�2/–curve hypersurface and
a component of @D . These two intersections correspond to two copies of the same
.�2/–curve with opposite signs and can be taken to lie arbitrarily close to each other.
There is a third .�2/–curve between these two copies. However, by our original choice
of abstract ordering perturbations all these three disks have positive puncture at almost
the same moment in the 1–parameter family in @D . For curves along @D with negative
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ends where these disks can be attached, the time-separation of these negative ends is
then larger than the separation between the two .�1/–curves of opposite signs, and
hence their contributions cancel.

Consider the two counts of .�2/–curves K" and K� corresponding to two ordering
perturbations " and � . Lemma 5.13 shows that there is a disk D in which the 1–
manifold of .�2/–curves is embedded. Furthermore, if there are no .�3/–curves in D

the 1–manifold of .�2/–curves gives a cobordism between the .�2/–curves along the
boundary arcs and in this case K" DK� . Thus, in order to relate in the general case,
we only need to study what happens when the ordering path crosses a .�3/–curve
moment. Moreover, there is a fixed ordering of negative ends "0D " or "0D � mapping
to orbits in CX1

at such moments. Our next result expresses this change algebraically.

Lemma 5.14 In the above setup, there is an operator K"� such that

(5-4) K". /�K� . /D�
"0

K"�
.d"
0

1 . //C d0.�
"0

K"�
. //:

Proof The difference between K". / and K� . / corresponds to the intersection
of D and the codimension-2 variety of .�3/–curves. The corresponding split curves
are accounted for by the terms in the right-hand side of (5-4).

Proof of Lemma 5.9 By Lemma 5.12 we have

ˆ1. /�ˆ0. /D�
"
K"
.d"1 /C d0�

"
K"
. /;

where " corresponds to any ordering perturbation. We first show that we can replace K"

in this formula with K� for any ordering perturbation � . To this end we use Lemma 5.14
which shows that with � as there and "D "0 (otherwise exchange the roles of � and "),
we have

�
"
K"�K�

.d"1 /C d0�
"
K"�K�

. /

D�
"
K"�d"1

.d"1 /C�
"
d0K"�

.d"1 /C d0d0K"� . /C d0�
"
K"�

.d"1 /:

Here the third term in the right-hand side vanishes. We study the sum of the remaining
three terms in the right-hand side.

The operator �"K"�d"1
acts as follows on monomials ˇ1 � � �ˇk : act by d"1 on ǰ ,

attach K"� at one of the arising negative punctures, and attach ˆ0 at all punctures
before this puncture in " and ˆ1 at all punctures after. The sum

d0�
"
K"�

.d"1 /C�
"
d0K"�

.d"1 /
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counts configurations of the following form: act by d"1 on  , attach K"� at one
of its negative punctures, attach ˆ0 or ˆ1 at all remaining punctures, according to
the ordering ", then act by d0 at the resulting negative punctures that do not come
from K"� . (The terms in which d0 acts on negative punctures of K"� are counted twice
with opposite signs in the above sum and hence cancel.) Using the chain map property
of ĵ we rewrite this instead as first acting with d1 on the positive puncture where ĵ

was attached and then attaching ĵ (and also remove the d0 at the corresponding
negative ends). We thus conclude that we can write the sum of the remaining terms in
the right-hand side as follows:

�
"
K"�d"1

.d"1 /C�
"
d0K"�

.d"1 /C d0�
"
K"�

.d"1 /D�
"
K"�

.d"1d"1 /D 0;

where the first term in the left-hand side counts the terms where K"� is attached at a
negative end in the lower-level curve in d"1d"1 and the sum of the last two counts the
terms where it is attached at a negative end in the upper level. To see that d"1d"1 D 0

note that it counts the end points of an oriented compact 1–manifold.

We thus find that

�
"
K"
.d"1 /C d0�

"
K"
. /D�

"
K�
.d"1 /C d0�

"
K�
. /:

Using this formula successively and noticing that if there are no .�3/–curves K does
not change over D , we find that

�
"
K�
.d"1 /C d0�

"
K�
. /D�

�
K�
.d�1 /C d0�

�
K�
. /:

Thus for a specific ordering perturbation " we can move all the ˆ0 –factors across and
using the splitting repeatedly we express the right-hand side of (5-2) as the sum over all
r –level trees, r � 0. Here r –level trees are defined inductively as follows. A 0–level
tree is a ˆ0 –curve. A 1–level tree is a curve contributing to d"1 with a .�2/–curve
attached at one of its negative punctures and ˆ0 –curves at all others. An r –level tree is
a curve contributing to d"1 with a .�2/–curve attached at one of its negative punctures.
At punctures after that, trees with < r levels are attached.

By the above we may take the .�2/–curves K"DK to be independent of the ordering
perturbation chosen and averaging over all ordering perturbations then gives

ˆ1. /Dˆ0 e.Kd1�d0K /. /

by definition of the exponential.

Corollary 5.15 The chain maps induced by deformation equivalent cobordisms are
chain homotopic.
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5.5 Composition of cobordism maps

We next study compositions of cobordism maps. Let .X0;L0/, .X1;L1/ and
.X2;L2/ be Liouville pairs, and let .X01;L01/ and .X12;L12/ be two cobordisms
between .X0;L0/ and .X1;L1/ and between .X1;L1/ and .X2;L2/, respectively.
We can then glue the cobordisms to form a cobordism .X02;L02/ from .X0;L0/ to
.X2;L2/. This gives three cobordisms maps ˆ01 , ˆ12 and ˆ02 , and we have the
following result relating them:

Theorem 5.16 The chain maps ˆ01 ıˆ12 and ˆ02 are homotopic.

Proof The maps ˆ01 , ˆ12 and ˆ02 are induced by interpolations of Hamiltonians
H0 and H1 , H1 and H2 , and H0 and H2 , respectively. For the proof we consider
these interpolations simultaneously. More precisely consider the Floer moduli space
with two interpolation regions, and three Hamiltonians as shown in Figure 8. Recall
that our Floer moduli spaces used to define the cobordism map interpolate between
two Hamiltonians in a region determined by a level set of the superharmonic function
in the domains moving along R; see Section 4. Here we use similar moduli spaces
but with two moving interpolation regions, parametrized by R� .0;1/. Here the first
coordinate determines the location of the first interpolation region where we interpolate
between H0 and H1 , the second coordinate determines the separation between the
levels where we interpolate and near the second level we interpolate between H1

and H2 . We then note that when the second coordinate is sufficiently large then all
Floer solutions are close to broken curves and conversely broken curves can be glued
to solutions. Consequently the chain map induced by two interpolation regions that are
sufficiently far separated equals the composition ˆ01 ıˆ12 . At the other end, where
the second coordinate equals 0 we interpolate directly from H0 to H2 and we get the
chain map ˆ02 . The results in Section 5.4 imply that the maps are homotopic.

Corollary 5.17 The DGA SCC.X;L/ is invariant under deformations of .X;L/ as
well as choice of Hamiltonian and almost complex structure.

Proof Apply the homotopy of chain maps to the obvious deformation that takes the
composition of the cobordism induced by a 1–parameter family of deformations of the
data and the inverse 1–parameter family to the trivial cobordism.

6 Isomorphism with contact homology

In this section we prove that the Hamiltonian simplex DGA SCC.X;L/ is quasi-
isomorphic to the (nonequivariant) contact homology DGA A.Y; ƒ/ of its ideal
boundary .Y; ƒ/. The quasi-isomorphism is obtained using the cobordism map ˆ
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Figure 8: Hamiltonians for composition of cobordism maps

in Section 5.2 for vanishing Hamiltonian H1 D 0. For the versions of contact ho-
mology where orbits and chords are not mixed this result implies that SCC.L/ is
quasi-isomorphic to the Legendrian contact homology DGA of ƒ, and that SCC.X /
is isomorphic to the (nonequivariant) contact homology DGA of Y . These results
extend the corresponding isomorphisms between the high-energy symplectic homology
of X and the nonequivariant linearized contact homology of Y [10], or between the
high-energy wrapped Floer homology of L and the linearized Legendrian homology
of ƒ; see eg [19] and [23, Theorem 7.2].

The nonequivariant orbit contact homology DGA is a natural generalization of the
nonequivariant linearized contact homology, but is not described in the literature.
We include a short description of the construction in Section 6.1. In Section 6.2,
we discuss the better known equivariant case that in our setup corresponds to the
Hamiltonian simplex DGA associated to a time-independent Hamiltonian and time-
independent almost complex structure J near the punctures. It should be mentioned
that the transversality problems for the Floer equation in this setting are similar to the
transversality problems for punctured holomorphic spheres in the symplectization end.

6.1 Nonequivariant contact homology orbit DGAs

We give a brief description of nonequivariant contact homology. In essence this is
simply a Morse–Bott theory for holomorphic disks and spheres with several negative
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interior punctures, where each Reeb orbit is viewed as a Morse–Bott manifold. (The
chords are treated as usual, so our result for the Legendrian DGA is unaffected by the
discussion here.)

Consider the contact manifold Y which is the ideal contact boundary of X . To each
Reeb orbit in Y we will associate two decorated Reeb orbits y and L ; see [10; 7]. The
gradings of these decorated orbits are

j L j D CZ. /C .n� 3/ and jy j D CZ. /C .n� 2/:

The differential in nonequivariant contact homology counts rigid Morse–Bott curves.
These are several-level holomorphic buildings where the asymptotic markers satisfy
evaluation conditions with respect to a marked point on each Reeb orbit. Unlike in
previous sections we here study curves in the symplectization. However, we still would
like to use input from the filling. More precisely, as in [7; 10] we will consider anchored
curves. This means that all our curves have additional interior and boundary punctures
where rigid holomorphic spheres and rigid holomorphic disks, respectively are attached.
We will not mention the anchoring below but keep it implicit.

Recall first that in D1Im;k the positive boundary puncture determines an asymptotic
marker at any interior negative puncture and that in D0I0;k any asymptotic marker at
the positive puncture determines markers at all negative punctures. If q is a puncture,
we write evq for the point on the Reeb orbit which is determined by the asymptotic
marker. We next define Morse–Bott curves.

Fix a point x on each geometric Reeb orbit. A several-level holomorphic curve with
components S0; : : : ;Sm with domain in DhIhm;k is a Morse–Bott building if the
following hold:

� If the top-level curve has a positive interior puncture p , then the following hold:

– If the asymptotic orbit is L , then evp D x .
– If the asymptotic orbit is y , then evp is arbitrary.

� For each component Sj and for each negative interior puncture q of Sj , the
following hold:

– If there is a curve Sm with positive interior puncture at p attached to Sj at q ,
then the oriented asymptotic Reeb orbit induces the cyclic order .x; evq; evp/

on the marked point and the two asymptotic markers.
– If there is no curve attached at q and the asymptotic orbit is y , then evqDx .
– If there is no curve attached at q and the asymptotic orbit is L , then evq is

arbitrary.
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Let A.Y; ƒ/ denote the graded unital algebra generated by the Reeb chords of ƒ and
decorated Reeb orbits, where as above chords and decorated orbits sign-commute and
where decorated orbits sign-commute with each other. The differential on A.Y; ƒ/
is given by a holomorphic curve count. Using notation analogous to the above we
write M.aIb; z�/, bD b1 � � � bm and z�D z�1 � � � z�k , where z�j is a decorated orbit, for
the moduli space of anchored Morse–Bott curves uW D1Im;k ! .R�Y;R�ƒ/ with
positive boundary puncture where the map is asymptotic at 1 to the holomorphic
Reeb chord strip R� a, and m negative boundary punctures and k negative interior
punctures where the map is asymptotic to the Reeb chord strips R� bj and the Reeb
orbit cylinders R� �j at �1. Similarly, we write M.z I z�/ for the moduli space of
anchored Morse–Bott curves uW D0I0;k!R�Y with positive interior puncture where
the map is asymptotic at 1 to the holomorphic Reeb orbit cylinder R �  , and k

negative interior punctures where the map is asymptotic to the Reeb orbit cylinders
R� �j at �1. Note that in the definition of the moduli spaces of Morse–Bott curves
the R–action in the target is divided out at each level of the corresponding buildings.
In particular, if a building consists of a single level we divide by the R–action in the
target as usual in SFT.

Define the differential d to satisfy the Leibniz rule and to be given as follows on
generators: for chords,

daD
X

jaj�jbj�jz�jD1

1

k!
jM.aIb; z�/j z�b;

and for orbits,
d z D

X
jz j�jz�jD1

1

k!
jM.z I z�/j z�:

Here jMj denotes a sign count of elements of a rigid moduli space with respect to a
system of coherent orientations and k is the number of orbits in the monomial z�. See
[11, Section 4.4] for a discussion of orientations for fibered products that is relevant in
the case at hand. Then, much like in Lemma 5.2, we have d2 D 0.

Remark 6.1 Instead of using the Morse–Bott framework above, one can give an alter-
native definition of the nonequivariant DGA A.Y; ƒ/ by considering gluing compatible
almost complex structures which are time-dependent and periodic in cylindrical end
coordinates near interior punctures, ie J D Jt , t 2 S1 . The relevant moduli spaces
would then have to be defined in terms of asymptotic incidence conditions determined
by a choice of reference point on each periodic Reeb orbit.

We next describe the moduli spaces used to establish the isomorphism between contact
homology and Hamiltonian simplex DGAs. The constructions correspond to a version
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of the construction presented in Section 5.2 where H1 D 0 and B1 D 0, and where
the cobordism is replaced by the trivial cobordism, ie the symplectization of Y . As in
Section 5.2, we consider a 2–step Hamiltonian H0 with an associated family B0 of
nonpositive 1–forms with values in Hamiltonian vector fields parametrized by splitting
compatible constant sections in E .

The moduli spaces from Section 4.1 which we used in order to define the cobordism
map need to be reinterpreted as follows in this context.

First, we define Morse–Bott buildings with free negative ends exactly as Morse–Bott
buildings, defined above, except that we do not impose any condition on the evaluation
maps at the negative interior punctures where no curve is attached.

Second, let a be a Reeb chord,  a Reeb orbit, b a word of Hamiltonian chords and �

a word of Hamiltonian orbits. We define the moduli spaces FR.aIb;�/ and FR. I�/

as the moduli spaces FR.a
0Ib;�/ and FR.

0I�/ for a0 a Hamiltonian chord and  0

a Hamiltonian orbit, in Section 4.1, with the following modifications: any element
in FR.aIb;�/ is asymptotic at the positive puncture at 1 to the holomorphic Reeb
chord strip R� a, and any element in FR. I�/ is asymptotic at the positive puncture
at 1 to the holomorphic Reeb orbit cylinder R�  . Note that these conditions make
sense since the 1–forms B�� are equal to 0 near the positive puncture. Here � 2 .0; 1/
and � 2 E is a splitting compatible constant section over D . Note also that we do
not impose any constraint on the asymptotic marker in the case of an interior positive
puncture, this marker is allowed to vary and induces the location of the markers at all
negative punctures.

Third, let a be a Reeb chord, z a decorated Reeb orbit, b D b1 � � � bm a word of
Hamiltonian chords and �D �1 � � � �k a word of Hamiltonian orbits.

We define the moduli space FR.aIb;�/ to consist of a Morse–Bott building with free
negative ends whose top-level curve is asymptotic at its positive puncture at 1 to
the holomorphic Reeb chord strip R� a, together with curves in the moduli spaces
defined in the second step above, attached at all its negative punctures. Whenever such
a curve with positive puncture p is attached at an interior negative puncture q of the
Morse–Bott building with free ends, we require that the common oriented asymptotic
Reeb orbit induces the cyclic order .x; evq; evp/ on the marked point x and the images
of the two asymptotic markers evq and evp . Finally, we require that the word obtained
by reading the boundary negative punctures of the resulting multilevel curve is equal
to b , and the word determined by the interior negative punctures is equal to �. We
point out that the Morse–Bott building with free negative ends is allowed to be a trivial
Reeb chord strip R� a.
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We define, in a similar way, the moduli space FR.z I�/ to consist of a Morse–Bott
building with free negative ends and with positive asymptote at the decorated Reeb
orbit z , together with curves in the moduli spaces defined in the second step above
attached at all its negative punctures. For each such curve with positive puncture p

which is attached at a negative puncture q of the Morse–Bott building with free ends, we
require again that the common oriented asymptotic Reeb orbit induces the cyclic order
.x; evq; evp/ on the marked point x and the images of the two asymptotic markers evq

and evp . Finally, we require that the word determined by the negative punctures of the
resulting multilevel curve is equal to �. We point out that the Morse–Bott building with
free negative ends is allowed to be a trivial cylinder over the Reeb orbit underlying z .

Define the algebra map ˆW A.Y; ƒ/! SCC.X;LIH0;J0/ as follows on generators:
for chords,

ˆ.a/D
X

jaj�jbj�j�jD0

1

k!
jFR.aIb;�/j�b;

and for orbits,
ˆ.z /D

X
jz j�j�jD0

1

k!
jFR.z I�/j�:

Passing to the direct limit as the slope of H0 goes to infinity we obtain an induced map

ˆW A.Y; ƒ/! SCC.X;L/:

Remark 6.2 Let the word � consist of a single letter �. The moduli spaces FR.z I �/

then coincide with the moduli spaces giving the isomorphism map between nonequiv-
ariant linearized contact homology and symplectic homology in [10, Section 6]. (Note
that the latter isomorphism used an intermediate neck-stretching procedure which is
unnecessary in our setup since anchored curves appear naturally in the compactification
of the relevant 1–dimensional moduli spaces.) Similarly, in case the word b consists
of a single letter b and the word � is empty, the moduli spaces FR.aI b/ coincide with
the moduli spaces giving the isomorphism map between wrapped Floer homology and
linearized Legendrian contact homology in [23, Theorem 7.2].

Theorem 6.3 The induced map ˆW A.Y; ƒ/! SCC.X;L/ is a chain isomorphism.

Proof The fact that ˆ is a chain map follows as usual by identifying contributing terms
of dˆ�ˆd with the endpoints of a 1–dimensional moduli space. The isomorphism
statement is a consequence of the fact that interpolating strips of Reeb chords and inter-
polating cylinders of Reeb orbits contribute 1, together with a standard action-filtration
argument. Here the interpolating strips and cylinders are simply reparametrizations of
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trivial strips over Reeb chords and cylinders over Reeb orbits cut off in the r –slice where
the corresponding Hamiltonian chord or orbit lies. See [10, Proof of Proposition 4,
pages 660–662] for orbits and [23, Theorem 7.2] for chords.

Remark 6.4 In the proof of Theorem 6.3 the curves which split-off at positive infinity
do not have weights since the 1–forms B�� are zero near the positive puncture for
all values of the parameters � and � . Note that Reeb chords and (decorated) orbits
have identical gradings in contact homology and in the Hamiltonian simplex DGA (for
a small time-independent perturbation of the Hamiltonian as in [10]). The grading
shift corresponding to the simplex in the Hamiltonian DGA corresponds on the contact
homology side to the Morse–Bott degeneracy in the symplectization direction at a
negative puncture.

To see how this works consider .X;L/ as above and recall that the (nonequivariant)
linearized contact homology of the boundary .Y; ƒ/ is isomorphic to the high-energy
symplectic homology of .X;L/ and that the isomorphism is given by a count of rigid
holomorphic cylinders and strips along which we interpolate from zero Hamiltonian at
the positive end, where the curves are asymptotic to Reeb chords and orbits, to nonzero
Hamiltonian at the negative end where the curves are asymptotic to Hamiltonian
chords and orbits. Consider now the higher-degree parts (quadratic, cubic, etc.) of the
differential in the (nonequivariant) contact homology DGA. We would like to interpret
also this part of the differential in terms of symplectic homology, by composing it
with the above isomorphism map. Consider thus a curve in the symplectization with
one positive and several negative punctures that contributes to the contact homology
differential; ie the curve is rigid up to translations. Composing this curve with the
isomorphism map corresponds geometrically to gluing an interpolating cylinder or strip
at each negative end.

This is a standard gluing problem in SFT, and provided there is one gluing (or translation)
parameter at each negative puncture the Floer–Picard lemma applies and the gluing
results in curves moving in a unique 1–dimensional moduli space. Note however that
the independent gluing parameters at the negative ends give rise to different 1–form-
perturbations of the Cauchy–Riemann equation on domains in the same conformal class.
The actual 1–form is determined by the values of all gluing parameters but the shift
in the symplectization direction identifies forms that differ by an overall translation
in the whole domain. The domains with such families of 1–forms are related to the
curve with varying weights in the Hamiltonian simplex DGA, sliding the interpolation
region at a puncture towards minus infinity corresponds to lowering the weight at that
puncture. In this sense the translation degree of freedom at the ends of SFT curves
corresponds to the weight degree of freedom in the Hamiltonian simplex DGA.

Geometry & Topology, Volume 21 (2017)



Symplectic and contact differential graded algebras 2219

6.2 Equivariance and autonomous Hamiltonians

In order to relate the usual (equivariant) contact homology zA.Y; ƒ/ of the ideal contact
boundary to a Hamiltonian simplex DGA we can use more or less the same argument
as in the nonequivariant case. The starting point here is to set up an equivariant
version of the Hamiltonian simplex DGA. To this end we use a time-independent
one-step Hamiltonian and define a version �SCC.X;L/ of the Hamiltonian simplex
DGA generated by unparametrized Hamiltonian orbits. To establish transversality for
this theory one needs to use abstract perturbations. Assuming that such a perturbation
scheme — that also extends to curves in the symplectization with no Hamiltonian —
has been fixed, we can repeat the constructions of Section 6.1 word by word to prove:

Theorem 6.5 The map ẑ W zA.Y; ƒ/! �SCC.X;L/ is a chain isomorphism.

Proof Analogous to Theorem 6.3.

7 Examples and further developments

In this section we first discuss examples where the Hamiltonian simplex DGA is known
via the isomorphism to contact homology. Then we discuss how the theory can be
generalized to connect Hamiltonian Floer theory to other parts of SFT.

7.1 Knot contact homology

Our first class of examples comes from Legendrian contact homology. By Theorem 6.3,
this corresponds to the chord case of our secondary DGA.

Given a knot K�S3 , one considers its conormal bundle �K�X DT �S3 . This is an
exact Lagrangian that is conical at infinity, that has vanishing Maslov class, and whose
wrapped Floer homology WH.�K/ was shown in [1] to be equal to the homology of
the space PK S3 of paths in S3 with endpoints on K , ie

WH.�K/'H.PK S3/:

One can prove that the homotopy type of the space PK S3 does not change as the knot is
deformed in a 1–parameter family possibly containing immersions. Since any two knots
in S3 can be connected by a path that consists of embeddings except at a finite number
of values of the deformation parameter, where it consists of immersions with a single
double point, we infer that PK S3 has the same homotopy type as PU S3 , where U �S3

is the unknot. As a matter of fact, the homotopy equivalence can be chosen to be
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compatible with the evaluation maps at the endpoints, showing that H.PK S3/ '

H.PU S3/ as algebras with respect to the Pontryagin–Chas–Sullivan product. Moreover,
we also have isomorphisms H.PK S3;K/ ' H.PU S3;U / induced by homotopy
equivalences. We infer that WH.�K/ and its high-energy version WHC.�K/ '
H.PK S3;K/ are too weak as invariants in order to distinguish knots.

In contrast, for the superficially different case K � R3 , the Legendrian contact ho-
mology of �K , also called knot contact homology, was proved in [20] to coincide
with the combinatorial version of [33] and, as such, to detect the unknot. Theorem 6.3
can be extended in a straightforward way to cover the case of T �R3 in order to
show that Legendrian contact homology of �K is isomorphic to the homology of the
Hamiltonian simplex DGA SCC.�K/. In particular, the higher coproducts constituting
the differential on SCC.�K/ are rich and interesting operations. This contrasts to the
naive higher coproducts defined without varying the weights which are rather trivial.
In terms of PK the operations of the Hamiltonian simplex DGA correspond to fixing
points on the paths with endpoints on K , constraining these points to map to the
knot K , and then averaging over the locations of these points. This gives a string
topological interpretation of knot contact homology, where chains of strings split as
the strings cross the knot as studied in [14].

As a final remark, the coefficient ring of knot contact homology involves a relative
second homology group that in the unit cotangent bundle of R3 contains also the class
of the fiber, which is killed in the full cotangent bundle. This extra variable is key to
the relation between knot contact homology and the topological string (see [5]) and
indicates that it would be important to study the extension of the theory described in
the current paper to a situation where the contact data at infinity does not have any
symplectic fillings.

7.2 A1 , L1 and the diagonal

As already mentioned in the introduction, the Hamiltonian simplex DGA SCC.X / in
the orbit case can be viewed as the cobar construction on the vector space generated by
the high-energy orbits, viewed as an 1–Lie coalgebra with the sequence of operations
.d1; d2; : : : /. Note that 1–Lie coalgebras are dual to L1 , or 1–Lie algebras.

In a similar vein, given a Lagrangian L�X the Hamiltonian simplex DGA SCC.L/
in the chord case can be viewed as the cobar construction on the vector space generated
by the high-energy chords, viewed as an 1–coalgebra, a type of structure that is dual
to A1–algebras.

It turns out that one can produce an 1–algebra structure in the orbit case by im-
plementing exactly the same construction subject to the additional condition that all
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punctures lie on a circle on the sphere. This condition is invariant under conformal
transformations and yields well-defined moduli spaces, which effectively appear as
submanifolds inside the moduli space that define the operations on SCC.X /. The
resulting DGA is not an 1–Lie coalgebra, but simply an 1–coalgebra.

Doubling chords to orbits and holomorphic disks to holomorphic spheres with punctures
on a circle using Schwarz reflection, it is straightforward to show that the resulting
DGA coincides with SCC.�X /, the Hamiltonian simplex DGA of the Lagrangian
diagonal �X � X � X . This fact parallels the well-known isomorphism between
periodic Hamiltonian Floer homology and Lagrangian Floer homology of the diagonal.

This example shows in particular that the relationship between the Hamiltonian simplex
DGAs in the closed and in the open case is subtler than its linear counterpart.

7.3 Chern class, Maslov class and exactness

We discuss in this section some of the standing assumptions in the paper.

A first set of assumptions imposed in Section 5 is that �1.X / D 0, c1.X / D 0 and
�L D 0. These are the simplest technical assumptions under which the theory has a
unique Z–grading. If �1.X / D 0 but c1.X / or �L are nonzero, the closed theory
would be uniquely graded modulo the positive generator of c1.X / �H2.X /, and the
open theory would be uniquely graded modulo the positive generator of �L �H2.X;L/.
There are also ways to dispose of the condition �1.X /D 0 at the expense of possibly
further weakening the grading; see the discussion in [25]. In any case, the grading is
not unique if �1.X / is nontrivial.

A standing assumption of a quite different and much more fundamental kind is that the
manifold X and the Lagrangian L be exact. This is a simple way to rule out, a priori, the
bubbling-off of pseudoholomorphic spheres in X , respectively of pseudoholomorphic
discs with boundary on L. The advantage of this simple setup is that it allows us to
focus on the new algebraic structure. The theory would need to be significantly adapted
should one like to consider nonexact situations.

7.4 Dependence on the filling

The Hamiltonian simplex DGA depends, a priori, on the filling, and this is reflected in
the definition of the nonequivariant contact homology DGA A.Y; ƒ/ by the fact that
its differential involves curves which are anchored in .X;L/.

The Hamiltonian simplex DGA can be defined also in the absence of a filling under the
index-positivity assumptions explained for example in [17], namely if Y admits a contact
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form such that every closed Reeb orbit is nondegenerate and has Conley–Zehnder index
CZ. /C n� 3> 1 and every Reeb chord is nondegenerate and has Conley–Zehnder
index CZ.c/ > 1. The nonequivariant contact homology DGA A.Y; ƒ/ can be defined
in the absence of a filling under the same assumptions.

This is to be contrasted with the definition of the contact homology DGA from SFT [25],
which does not require the existence of a filling, though it is subject to the same caveats
regarding the existence of an abstract perturbation scheme as explained in Remark 1.3.
The reason is that, within the setup of Floer theory, bubbling-off at the negative end of
the symplectization always produces curves which satisfy a Cauchy–Riemann equation
without zero order perturbation. These objects are external to the framework of our
Hamiltonian simplex DGA, whereas they are incorporated in the definition of the
differential for the contact homology DGA.

To resolve this discrepancy one needs to clarify the relationship between the nonequiv-
ariant Hamiltonian simplex DGA and the contact homology DGA. One direction of
study would be to build a mixed theory combining the two. Another direction is
discussed further below.

7.5 Further developments

At a linear level, S1 –equivariant symplectic homology is obtained from its nonequiv-
ariant counterpart using (an 1–version of) the BV-operator [12]. The BV-operator
is an operation governed by the fundamental class of the moduli space of spheres
with two punctures and varying asymptotic markers at the punctures. Note that this
moduli space is homeomorphic to a circle and the BV-operator has degree C1 as a
homological operation, which corresponds to the fact that the fundamental class of the
moduli space lives in degree 1. It was proved in [12] that the high-energy, or positive
part of S1 –equivariant symplectic homology recovers linearized cylindrical contact
homology of the contact boundary Y . One advantage of the S1 –equivariant point of
view over the symplectic field theory (SFT) point of view is that it does not require any
abstract perturbation theory.

Question What is the additional structure on the nonequivariant Hamiltonian sim-
plex DGA SCC.X / that allows to recover the equivariant Hamiltonian simplex DGA
described in Section 6.2?

Though one can construct an 1–version of the BV-operator in the DGA setting that
we consider in this paper by methods similar to those of [12], it is not clear whether
this is enough in order to recover the equivariant DGA from the nonequivariant one. It
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may be that one needs more information coming from the structure of an algebra over
the operad of framed little 2–disks that exists on any Hamiltonian Floer theory.

From the point of view of SFT, the natural next steps are to understand the algebraic
structure that is determined on Hamiltonian Floer theory by moduli spaces of genus-0
curves with an arbitrary number of positive punctures, respectively by moduli spaces
of curves with an arbitrary number of positive punctures and arbitrary genus. These
would provide in particular nonequivariant analogues of the rational SFT and full SFT.

Appendix: Determinant bundles and signs

In this appendix, we give a more detailed discussion of how the sign rules of the
Hamiltonian simplex DGA derive from orientations of determinant bundles. The
material here has been discussed at many places in this context; see for example
[40, Section 11; 32, Appendix A.2; 9; 43; 26; 21].

If V is a finite-dimensional vector space, then
Vmax

V D
Vdim V

V is its highest exterior
power. For the 0–dimensional vector space,

Vmax
.0/DR. If

0! V1

f1
�! V2

f2
�! � � �

fn
�! VnC1! 0

is an exact sequence of finite-dimensional vector spaces, then there is a canonical
isomorphism O

k odd

Vmax
Vk Š

O
k even

Vmax
Vk

that does depend on the maps f1; : : : ; fn . For example, if dim V1 is odd and the
map f1 is changed to �f1 , then the isomorphism changes sign.

If X and Y are Banach spaces and DW X ! Y is a Fredholm operator, then the
determinant line det.D/ of D is the 1–dimensional vector space

det.D/D
Vmax

.coker D/�˝
Vmax ker D:

We think of det.D/ as a graded vector space supported in degree index.D/.

We next discuss stabilization. We first stabilize in the source. Let DW X ! Y be a
Fredholm operator, V a finite-dimensional real vector space and ˆW V ! Y a linear
map. The stabilization of D by ˆ is the Fredholm operator DV DD˚ˆW X �V !Y ,
.x; v/ 7!DxCˆv . The exact sequence

0! ker D! ker DV
! V

ˆ
�! coker D! coker DV

! 0
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gives a canonical isomorphism that depends on the map ˆ:

det.DV /Š det D˝
Vmax

V:

For example, if the map ˆ changes sign and if dim coker D � dim coker DV is odd,
then the isomorphism changes sign.

Similarly we can stabilize in the target. If W is a finite-dimensional vector space
and ‰W X !W is a continuous linear map, then with DW D .D; ‰/W X ! Y �W ,
x 7! .Dx; ‰x/, we get

0! ker DW ! ker D
‰
�!W ! coker DW ! coker D! 0;

which gives a canonical isomorphism that depends on ‰ :

det.DW /Š
�Vmax

W
��
˝ det D:

For example, if the map ‰ changes sign and dim ker D�dim ker DW is odd, then the
isomorphism changes sign.

Finally, combining the two, if ˛W V !W is a linear map, then the map

DV
W W X �V ! Y �W; DV

W .x; v/D .DxCˆv;‰xC˛v/

gives a canonical isomorphism that depends on ˆ, ‰ and ˛ :

(A-1) det.DV
W /Š

�Vmax
W
��
˝ det D˝

Vmax
V:

Remark A.1 For the isomorphism above, one also needs to specify conventions
for orientations of direct sums corresponding to stabilizations. The details of these
conventions, however, do not affect our discussion here.

If D 2 F.X;Y /, then by stabilizing in the domain, one may make all operators in a
neighborhood of D surjective and that together with the above isomorphism allows for
the definition of a locally trivial line bundle det!F.X;Y / over the space of Fredholm
operators acting from X to Y with fiber over D equal to det.D/.

Assume DW O! F.X;Y / is a continuous map defined on some topological space O .
Consider the pull-back bundle D�det ! O and note that it admits a trivialization
provided the first Stiefel–Whitney class vanishes, w1.D�det/D 0.

If V and W are finite-dimensional vector spaces, we consider in line with the discus-
sion above the bundle OV

W
D O�Hom.V;Y /�Hom.X;W /�Hom.V;W / and the

map DV
W
W OV

W
!F.X �V;Y �W / defined as follows: DV

W
.p; ˆ;‰; ˛/ is the linear

map which takes .x; v/ 2X �V to

.D.p/xCˆv; ‰xC˛v/ 2X �W:
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Using the natural base point in Hom.V;Y / � Hom.X;W / � Hom.V;W / given by
.ˆ;‰; ˛/ D 0 and the natural isomorphism (A-1), we transport orientations ofVmax

W �˝D�det˝
Vmax

V !O to orientations of .DV
W
/�det ! OV

W
, and back.

Here V !O and W !O denote the trivial bundles O�V !O and O�W !O
respectively.

We now apply this setup to spaces of (stabilized) Cauchy–Riemann operators used in
the definition of the Hamiltonian simplex DGA. Indeed, the linearized operator for our
family of Cauchy–Riemann equations parametrized by the simplex �m�1 is of the
type DTw�

m�1

. Since Tw�
m�1D ker `� with `� W Rm!R, `�.�/D h�; �i, where �

is the vector � D .1; 1; : : : ; 1/, we have a canonical isomorphism det.DTw�
m�1

/'

det.DRm

R /, with DRm

R .x; �/ D
�
DTw�

m�1

.x; ��/; `�.�/
�

and � W Rm ! Tw�
m�1

the orthogonal projection parallel to � . We can thus view the linearization of our
parametrized Cauchy–Riemann problem as an element of a suitable space ORm

R of
Fredholm operators of Cauchy–Riemann type.

The negative orbit and chord capping operators o�. / and o�.c/ belong to natural
spaces O�. / and O�.c/ of Cauchy–Riemann operators with fixed asymptotic be-
havior determined by the linearized Hamiltonian flow along  and respectively c ,
acting between appropriate Sobolev spaces of sections W 1;p!Lp , p > 2 (see [11,
Section 4.4] for the orbit case and [40, Section 11; 4, Section 9] for the chord case).
These spaces of Cauchy–Riemann operators with fixed asymptotes are contractible,
and consequently the determinant line bundle can be trivialized over each of them.
We similarly define natural spaces of Cauchy–Riemann operators OC. / and O�.c/
containing the positive orbit and chord capping operators oC. / and oC.c/.

Our procedure for the construction of coherent orientations for the parametrized Cauchy–
Riemann equation is then the following:

(i) Given the canonical orientation on C , we orient the determinant bundles over the
spaces O.CP1/ of Cauchy–Riemann operators over CP1 by the canonical orientation
of complex linear operators. Since all the Euclidean spaces Rn are canonically oriented,
this induces orientations of the determinant bundles over all spaces ORk

R`
.CP1/ for

arbitrary k; ` 2 Z�0 .

Similarly, following [26], the choice of a relative spin structure on the Lagrangian L

determines an orientation of the determinant bundle over all spaces of Cauchy–Riemann
operators O.D2/ defined on the pull-back of TX over the disk D2 by arbitrary
smooth maps uW .D2; @D2/! .X;L/, with totally real boundary conditions given
by uj�@D2TL. This then induces orientations of the determinant bundles over all spaces
ORk

R`
.D2/ for arbitrary k; ` 2 Z�0 .
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(ii) We choose orientations of the determinant lines over the spaces O�. / and O�.c/,
which determine in turn orientations of the determinant lines over all spaces O�R

0
. /

and O�R
0
.c/.

(iii) By gluing, we obtain orientations of the determinant lines over the spaces OC. /
and OC.c/, which determine in turn orientations of the determinant lines over all
spaces OCR

0
. / and OCR

0
.c/.

(iv) If b D b1 � � � bm is a word of Hamiltonian chords and � D �1 � � � �k a word of
Hamiltonian orbits, then we write

OCR
0 .b;�/DOCR

0 .b1/� � � � �OCR
0 .bm/�OCR

0 .�1/� � � � �OCR
0 .�k/

and
OCR

0 .�/DOCR
0 .�1/� � � � �OCR

0 .�k/:

Given a Hamiltonian chord a, we write O.aIb;�/ for the space of Cauchy–Riemann
operators defined on a punctured disc with one positive boundary puncture, m negative
boundary punctures, and k negative interior punctures, with Lagrangian boundary
conditions given by the pull-back of TL via a map on the disk into X with boundary
in L, and with asymptotic behavior at the punctures according to the Hamiltonian
chords and orbits a, b and �. Similarly, given a Hamiltonian orbit  we write O. I�/
for the space of Cauchy–Riemann operators defined on a sphere with one positive
puncture and k negative punctures, and with asymptotic behavior at the punctures
determined by the linearized flow along the Hamiltonian orbits  , �. We then have
spaces ORmCkC1

0
.aIb;�/ and ORkC1

0
. I�/, and ORmCk

R .aIb;�/ and ORk

R . I�/.

(v) Cauchy–Riemann operators which are stabilized by finite-dimensional spaces at
the source can be glued much like usual, ie nonstabilized, Cauchy–Riemann operators;
see eg [24, Section 4.3]. The gluing operations

O�R
0 .a/�ORmCkC1

0 .aIb;�/�OCR
0 .b;�/ ! OR2.mCkC1/

0 .D2/

and
O�R

0 . /�ORkC1

0 . I�/�OCR
0 .�/ ! OR2.kC1/

0 .CP1/

induce isomorphisms of determinant bundles which are canonical up to homotopy.
From our previous choices we obtain orientations of all the spaces ORmCkC1

0
.aIb;�/

and ORkC1

0
. I�/. After restricting to the slice given by the zero stabilization map, we

obtain as explained above orientations of all the spaces ORmCk

R .aIb;�/ and ORk

R . I�/.
These orientations are used in order to count rigid holomorphic curves with signs in
the relevant moduli spaces.

Our choice of coherent orientations gives the following graded commutativity property.
As in Section 4.1, let jcj D CZ.c/� 2 and j j D CZ. /C n� 3. Let bD b1 � � � bm
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and � D �1 � � � �k be words in Hamiltonian chords and orbits respectively as above.
Consider spaces of stabilized Cauchy–Riemann operators ORmCkC1

0
.aIb;�/ and

ORkC1

0
. I�/ for Hamiltonian chords and orbits a and  . Given 1 � i � k � 1, let

�i D �1 � � � �i�1�iC1�i�iC2 � � � �k . There are canonical identifications

ORmCkC1

0 .aIb;�/ŠORmCkC1

0 .aIb;�i/ and ORkC1

0 . I�/ŠORkC1

0 . I�i/

obtained by relabeling the i th and .iC1/st interior punctures of the domain. Accord-
ingly, the determinant line bundles over these spaces of operators are canonically
identified. Each of them comes with an induced orientation as above, and these
orientations differ by the sign

.�1/j�ijj�iC1j:

Indeed, these orientations differ by the same sign as the orientations of the determinant
lines over OCR

0
.i/�OR

0
.iC1/ and OCR

0
.iC1/�OR

0
.i/, identified via the obvious

exchange of factors. By [40, page 150], the latter sign is equal to

.�1/
index.DR

0 i
/�index.DR

0 iC1
/
D .�1/j�i jj�iC1j;

where DR
0 i
2OCR

0
.i/ and DR

0 iC1
2OCR

0
.iC1/. This holds because

index.DR
0 i/D CZ.�i/C nC 1� j�i j .mod 2/

and
index.DR

0 iC1/D CZ.�iC1/C nC 1� j�iC1j .mod 2/I

see Section 4.1.

This shows that orbits sign-commute in the Hamiltonian simplex DGA of Section 5.

Remark A.2 In the Hamiltonian simplex DGA of Section 5 orbits sign-commute with
chords. That is not a consequence of coherent orientations. It is just an algebraic choice
that reflects the interpretation of orbits as coefficients for the algebra generated by
chord generators. Indeed, we can always order the negative punctures of a holomorphic
curve by first considering boundary punctures and then considering interior punctures
(analogous to normal ordering of operators).
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The stable cohomology of the Satake compactification of Ag

JIAMING CHEN

EDUARD LOOIJENGA

Charney and Lee have shown that the rational cohomology of the Satake–Baily–Borel
compactification Abb

g of Ag stabilizes as g !1 and they computed this stable
cohomology as a Hopf algebra. We give a relatively simple algebrogeometric proof
of their theorem and show that this stable cohomology comes with a mixed Hodge
structure of which we determine the Hodge numbers. We find that the mixed Hodge
structure on the primitive cohomology in degrees 4r C 2 with r � 1 is an extension
of Q.�2r � 1/ by Q.0/; in particular, it is not pure.

14G35, 32S35

1 The theorem

Let Ag D Ag.C/ denote the coarse moduli space of principally polarized complex
abelian varieties of genus g endowed with the analytic (Hausdorff) topology. Recall that
the Satake–Baily–Borel compactification jgW Ag �Abb

g realizes Ag as a Zariski open
dense subset in a normal projective variety Abb

g . Forming the product of two principally
polarized abelian varieties defines a morphism of moduli spaces Ag �Ag0 !AgCg0

which extends to these compactifications: we have a commutative diagram

(1)

Ag �Ag0 ����! AgCg0

jg�jg0

??y ??yjgCg0

Abb
g �Abb

g0 ����! Abb
gCg0

By taking g0 D 1 and choosing a point of A1 , we get the “stabilization maps”

(2)

Ag ����! AgC1

jg

??y ??yjgC1

Abb
g ����! Abb

gC1

whose homotopy type does not depend on the point we choose, for A1 is isomorphic to
the affine line and hence connected. Since we are only concerned with homotopy classes
and commutativity up to homotopy, we can for the definition of the map Abb

g !Abb
gC1

Published: 19 May 2017 DOI: 10.2140/gt.2017.21.2231
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even choose this point to be represented by the singleton A0 . Then this map is a
homeomorphism onto the Satake boundary (since Abb

1
Š P1 the maps are not just

homotopic, but even induce the same map on Chow groups). We shall see that this
gives rise to two Hopf algebras with a mixed Hodge structure.

Before we proceed, let us recall that Ag is a locally symmetric variety associated to
the Q–algebraic group Spg and that the Q–rank of Spg is g . According to Borel and
Serre [4, Corollary 11.4.3] the virtual cohomological dimension of Sp.2g;Z/ equals
dimR Ag �g . This implies that the rational cohomology of Ag , and more generally,
the cohomology of a sheaf F on Ag defined by a representation of Sp.2g;Z/ on a
Q–vector space, vanishes in degrees > dimR Ag �g . Since Ag is an orbifold, this is
via Poincaré–Lefschetz duality equivalent to H k

c .AgIF/ being zero for k < g . We
shall use this basic fact in the proofs of Lemmas 1.1 and 2.1.

Lemma 1.1 The stabilization maps Ag ,! AgC1 (multiplication by a fixed elliptic
curve) and Abb

g !Abb
gC1

(mapping onto the boundary) defined above induce on rational
cohomology an isomorphism in degrees < g and are injective in degree g .

Proof Recall that Ag is a locally symmetric variety associated to the Q–algebraic
group Spg and that the Q–rank of Spg is g . The first assertion then follows from
a theorem of Borel [2, Theorems 7.5 and 11.1]. The second stability assertion is
equivalent to the vanishing of the relative cohomology H k.Abb

gC1
;Abb

g IQ/ for k � g .
As this is just H k

c .AgC1IQ/, this follows from the Borel–Serre result quoted above.

We then form the stable rational cohomology spaces

H k.A1IQ/ WD lim
 ��

g

H k.AgIQ/; H k.Abb
1IQ/ WD lim

 ��
g

H k.Abb
g IQ/;

where the notation is only suggestive, for there is here no pretense of introducing
spaces A1 and Abb

1 . If we take the direct sum over k we get a Q–algebra in either
case. It follows from the homotopy commutativity of the diagram (2) above that the
inclusions jg define a graded Q–algebra homomorphism

j �1W H
�.Abb
1IQ/!H �.A1IQ/:

The multiplication maps exhibited in diagram (1) are (almost by definition) compatible
with the stabilization maps and hence induce a graded coproduct on either algebra
so that j �1 becomes a homomorphism of (graded bicommutative) Hopf algebras.
Since the multiplication maps and the stability maps are morphisms in the category of
complex algebraic varieties, these Hopf algebras come with a natural mixed Hodge
structure such that j �1 is also a morphism in the mixed Hodge category. The Hopf
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The stable cohomology of the Satake compactification of Ag 2233

algebra H �.A1IQ/ is well-known and due to Borel [2, 11.4]: it has as its primitive
elements classes ch2rC12H 4rC2.A1IQ/, r �0, where ch2rC1 restricts to Ag as the
rational .2rC1/st Chern character of the Hodge bundle on Ag , and so H �.A1IQ/D
QŒch1; ch3; ch5; : : : � with ch2rC1 of type .2rC1; 2rC1/ (if we are happy with multi-
plicative generators, we can just as well replace ch2rC1 by the corresponding Chern
class c2rC1 , for c2rC1 is expressed universally in ch1; ch3; ch5; : : : ; ch2rC1 and vice
versa). The principal and essentially only result of this paper is Theorem 1.2. Its first
assertion is due Charney and Lee [5, Theorem 4.2], who derive this from a determination
of a limit of homotopy types. We shall obtain this in a relatively elementary manner
by means of algebraic geometry and the classical vanishing results of Borel and of
Borel and Serre. Our approach has the advantage that it helps us to understand the new
classes that appear here geometrically, to the extent that this enables us to determine
their Hodge type. We address the homotopy discussion of Charney and Lee and a
generalization thereof in another paper [6] that will not be used here.

Theorem 1.2 The graded Hopf algebra H �.Abb
1IQ/ has for every integer r � 1

a primitive generator yr of degree 4r C 2 and for every integer r � 0 a primitive
generator �ch2rC1 of degree 4rC2 such that the map j �1W H

�.Abb
1IQ/!H �.A1IQ/

sends �ch2rC1 to ch2rC1 and is zero on yr when r � 1. In particular, if zc2rC1 2

H 4rC2.Abb
1IQ/ denotes the lift of c2rC1 2 H 4rC2.A1IQ/ that is obtained from

our choice of the �ch1; : : : ; �ch2rC1 (as a universal polynomial in these classes), then
H �.Abb

1IQ/DQŒy1;y2;y3 : : : ; zc1; zc3; zc5; : : : � as a commutative Q–algebra.

The mixed Hodge structure on H �.Abb
1IQ/ is such that yr is of bidegree .0; 0/ and�ch2rC1 (or equivalently, zc2rC1 ) is of bidegree .2rC1; 2rC1/.

Remark 1.3 So for r � 1, the primitive part H 4rC2
pr .Abb

1IQ/ of the Hopf algebra
H �.Abb

1IQ/ is two-dimensional in degree 4r C 2 and defines a Tate extension

0!Q!H 4rC2
pr .Abb

1IQ/!Q.�2r � 1/! 0;

with Q spanned by yr and Q.�2r �1/ spanned by ch2rC1 . We discuss the nature of
this extension briefly in Remark 3.1.

Acknowledgement We thank the referee for helpful comments on an earlier version.
These led to an improved exposition.

2 Determination of the stable cohomology as a Hopf algebra

According to [8, Chapter V, Theorem 2.3(3)], Abb
g XAg is as a variety isomorphic

to Abb
g�1

. In particular, we have a partition into locally closed subvarieties: Abb
g D

Ag tAg�1 t � � � tA0 .

Geometry & Topology, Volume 21 (2017)
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We will use the fact that the higher direct images R�jg�QAg
are locally constant on

each stratum Ar . Each point of Ar has a neighborhood basis whose members meet Ag

in a virtual classifying space of an arithmetic group Pg.r/ defined below (for a more
detailed discussion we refer to [12, Example 3.5]; see also [6, Section 4]), so that
R�jg�QAg

can be identified with the rational cohomology of Pg.r/.

Let H stand for Z2 (with basis denoted .e; e0/) and endowed with the symplectic form
characterized by he; e0i D 1. We also put I WD Ze . We regard H g as a direct sum of
symplectic lattices with g summands. In terms of the decomposition H gDH r˚H g�r ,
Pg.r/ is the group of symplectic transformations in H g that are the identity on H r˚0

and preserve H r ˚ Ig�r . The orbifold fundamental group of Ar is isomorphic to
Sp.H r / (the isomorphism is of course given up to conjugacy) and its representation
on a stalk of R�jg�QAg

jAr corresponds to its obvious action (given by conjugation)
on Pg.r/. Note that this action is algebraic in the sense that it extends to a representation
of the underlying affine algebraic group (which assigns to a commutative ring R the
group Sp.H r ˝R/). If p 2Ar and Up is a regular neighborhood of p in Abb

g such
that the natural map H �.Up \AgIQ/! .R�jg�QAg

/p is an isomorphism, then for
every r � s � g and q 2 Up \As the restriction map yields a map of Q–algebras
.R�jg�QAg

/p! .R�jg�QAg
/q . Under the above identification this is represented by

the Sp.H r /–orbit of the obvious inclusion Pg.s/ ,! Pg.r/. Similarly, the restriction
to Ar �Ar 0 �Ag �Ag0 of the natural sheaf homomorphism

R�jgCg0�QAgCg0
jAbb

g �A
bb
g0!R�.jg �jg0/�QAg�Ag0

ŠR�jg�QAg
�R�jg0�QAg0

(we invoked the Künneth isomorphism) is induced by the obvious embedding

Pg.r/�Pg0.r
0/ ,! PgCg0.r C r 0/;

or rather its Sp.H rCr 0/–orbit.

The proof of the first assertion of our main theorem rests on careful study of the Leray
spectral sequence for the inclusion jgW Ag �Abb

g ,

(3) E
p;q
2
DHp.Abb

g ;R
qjg�Q/ ) H pCq.AgIQ/:

Such a spectral sequence can be set up in the category of mixed Hodge modules
(see [13]), so that this is in fact a spectral sequence of mixed Hodge structures.

Lemma 2.1 Let r � g . Then the natural map

Hp.Abb
g ;R

�jg�Q/!Hp.Abb
r ;R

�jg�Q/

is an isomorphism for p < r and is injective for p D r .

Geometry & Topology, Volume 21 (2017)
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Proof It suffices to show that when r < g , the natural map Hp.Abb
rC1

;R�jg�Q/!
Hp.Abb

r ;R
�jg�Q/ has this property. For this we consider the exact sequence

� � � !Hp
c .ArC1;R

�jg�Q/!Hp.Abb
rC1;R

�jg�Q/!Hp.Abb
r ;R

�jg�Q/

!H pC1
c .ArC1;R

�jg�Q/! � � � :

The restriction Rqjg�QjArC1 is a local system whose monodromy comes from an
action of the algebraic group Sp.H r /. Following the Borel–Serre result mentioned
above, H i

c .ArC1;R
�jg�Q/ vanishes for i � r and so the lemma follows.

By viewing Ig�r as the subquotient .H r˚Ig�r /=.H r˚0/ of H g , we see that there
is a natural homomorphism of arithmetic groups Pg.r/! GL.Ig�r /D GL.g� r;Z/.

Lemma 2.2 The homomorphism Pg.r/! GL.g� r;Z/ induces an isomorphism on
rational cohomology in degrees < 1

2
.g�r�1/. In that range the rational cohomology of

GL.g� r;Z/ is stable and is canonically isomorphic to the cohomology of GL.Z/ WDS
r GL.r;Z/. The inclusion Pg.r/ � Pg0.r

0/ � PgCg0.r C r 0/ induces on rational
cohomology in the stable range (relative to both factors) the coproduct in the Hopf
algebra H �.GL.Z/IQ/.

Proof According to Borel [3, Theorem 4.4], the cohomology of the arithmetic group
GL.r;Z/ with values in an irreducible representation of the underlying algebraic group
SL˙r (the group of invertible matrices of determinant ˙1) is zero in degrees < 1

2
.r�1/,

unless the representation is trivial. Let Ng.r/ be the kernel of Pg.r/! GL.g� r;Z/.
This is a nilpotent subgroup whose center, when written additively, may be identified
with the symmetric quotient Sym2.I

g�r / of Ig�r ˝ Ig�r . The quotient of Ng.r/ by
this center is abelian, and when written additively, naturally identified with the lattice
H r ˝ Ig�r . So in view of the Leray spectral sequence

Hp.GL.g� r;Z/;H q.Ng.r/;R// ) H pCq.Pg.r/;R/;

it suffices to show that H q.Ng.r/IR/ does not contain the trivial representation of
SL˙1.g� r;R/ in positive degrees q < 1

2
.g� r �1/. This follows from another Leray

spectral sequence

H s.Ig�r
˝H r ;H t .Sym2 Ig�r ;R// ) H sCt .Ng.r/;R/:

The left-hand side is isomorphic toVs Hom.Ig�r
˝H r ;R/˝

Vt Hom.Sym2 Ig�r ;R/

as a representation of SL˙1.g� r;R/. The invariant theory of SL.g� r IR/ tells us
that the trivial representations in the tensor algebra generated by Hom.Ig�r ;R/ come
from the formation of powers of the determinant

Vg�r Hom.Ig�r ;R/ŠR (see for

Geometry & Topology, Volume 21 (2017)
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example [9, Proposition F.10]). Since the displayed representation of SL˙1.g� r;R/
is a quotient of this tensor algebra, it will not contain the trivial representation when
0<sC2t<g�r . Hence the first part of the lemma follows. The second assertion merely
quotes a theorem of Borel [2, Theorems 7.5 and 11.1], and the last assertion is easy.

Corollary 2.3 For q < 1
2
.g� r � 1/, Rqjg�QjAbb

r is a constant local system whose
stalk is canonically isomorphic to H q.GL.Z/;Q/. This identification is compatible
with the multiplicative structure. It is also compatible with the coproduct in the sense
that when 0� r 0 � g0 , then in degrees < 1

2
minfg� r �1;g0� r 0�1g, the natural map

R�jgCg0�QAgCg0
jAbb

r �Abb
r 0 ! .R�jg�QAg

jAbb
r /� .R�jg0�QAg0

jAbb
r 0 /

is stalkwise identified with the coproduct on H �.GL.Z/IQ/.

Proof of the first assertion of Theorem 1.2 We have shown (Lemma 2.1 and
Corollary 2.3) that when p < r and q < 1

2
.g� r � 1/ we have

E
p;q
2
DHp.Abb

g ;R
qjg�Q/DHp.Abb

r ;Q/˝H q.GL.Z/IQ/

The Leray spectral sequences (3) for jg� and jgC1� are compatible and so we may
form a limit: we fix p and q , but we let r and g� r tend to infinity. This then yields
a spectral sequence

(4) E
p;q
2
DHp.Abb

1IQ/˝H q.GL.Z/IQ/ ) H pCq.A1IQ/:

This spectral sequence is not just multiplicative, but also compatible with the coproduct.
So the differentials take primitive elements to primitive elements (or zero) and the
spectral sequence restricts to one of graded vector spaces by restricting to the primitive
parts. The primitive part of E

p;q
2

is zero unless p D 0 or q D 0. A theorem of Borel
[2, 11.4] tells us that H �.GL.Z/IQ/pr has for every positive integer r a generator ar

in degree 4r C 1 (and is zero in all other positive degrees) and that H �.A1IQ/pr

has for every odd integer s a primitive generator chs in degree 2s (and is zero in all
other positive degrees). This implies that dk.1˝ ar / D 0 for k D 2; 3; : : : 4r C 1,
but that yr WD d4rC2.1˝ ar / will be nonzero and primitive. We also see that for
s > 0 odd, H 2s.Abb

g IQ/ must contain a lift �chs of chs . Since H �.Abb
1IQ/ is a Hopf

algebra, it then follows that the Hopf algebra H �.Abb
1IQ/ is primitively generated by

y1;y2; : : : ; �ch1; �ch3; �ch5; : : : . So as a commutative Q–algebra it is freely generated
by y1;y2; : : : ; zc1; zc3; zc5; : : : .

The spectral sequence (4) suggests that the space A1 (which we did not define) has the
homotopy type of a BGL.Z/–bundle over Abb

1 (which we did not define either). Indeed,
Charney and Lee provide in [5, Theorem 3.2] an appropriate homotopy substitute for
such a fibration (which they attribute to Giffen), namely, a homotopy fibration whose
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fiber is a model of BGL.Z/C (where “C” is the Quillen plus construction) and whose
total space is Q–homotopy equivalent to BSp.Z/C , so that the base (which admits
an explicit description as the classifying space of a category) may be regarded as a
Q–homotopy type representing Abb

1 .

Remark 2.4 The long exact sequence for the pair .Abb
g ;Ag/ shows that the co-

homology H �.Abb
g ;AgIQ/ stabilizes as well with g and is equal to the ideal in

QŒy1;y2; : : : ; zc1; zc3; zc5; : : : � generated by the yr . We shall therefore denote this
ideal by H �.Abb

1;A1IQ/. We use the occasion to point out that the y–classes are
canonically defined, but that this is not at all clear for the zc–classes (for more on this,
see Remark 3.1).

Remark 2.5 We can account geometrically for the classes yr as follows. Denote the
single point of A0 �Abb

g by 1 (the worst cusp of Abb
g ), and take g so large that the

natural maps

H 4rC1.GL.Z/IQ/!H 4rC1.GL.g;Z/IQ/! .R4rC1jg�Q/1;

H 4rC2.Abb
1;A1IQ/!H 4rC2.Abb

g ;AgIQ/

are isomorphisms. Choose a regular neighborhood U1 of 1 in Abb
g so that if we put

VU1 WD U1\Ag , the natural maps

.R4rC1jg�Q/1 H 4rC1. VU1IQ/
ı
�!H 4rC2.U1; VU1IQ/

are also isomorphisms. If we identify ar 2 H 4rC1.GL.Z/IQ/ with its image in
H 4rC1. VU1IQ/, then ı.ar / 2 H 4rC2.U1; VU1IQ/ is precisely the image of yr

under the restriction map

H 4rC2.Abb
1;A1IQ/ŠH 4rC2.Abb

g ;AgIQ/!H 4rC2.U1; VU1IQ/:

We may also get a homology class this way: the Hopf algebra H�.GL.Z/IQ/ has
a primitive generator in H4rC1.GL.Z/IQ/ that is dual to ar , and if we represent
this generator as .4rC1/–cycle Br in VU1 , then Br bounds both in U1 (almost
canonically) and in Ag (not canonically). The two bounding .4rC2/–chains make up
a .4rC2/–cycle in Abb

g whose class zr 2H4rC2.Abb
g IQ/ pairs nontrivially with the

image of yr in H 4rC2.Abb
g IQ/.

3 The mixed Hodge structure on the primitive
stable cohomology

Proof that the y–classes are of weight zero In view of Remark 2.5 it is enough to
show that the image of H �.GL.Z/IQ/ in the stalk .R�jg�Q/1 has weight zero. For
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this we will need a toroidal resolution of U1 as described in [1, Chapter III, Section 1],
but we will try to get by with the minimal input necessary (for a somewhat more
detailed review of this construction one may consult [6]).

Consider the symmetric quotient Sym2 Zg of Zg˝Zg and regard it as a lattice in the
space Sym2 Rg of quadratic forms on Hom.Zg;R/. The positive definite quadratic
forms make up a cone Cg � Sym2 Rg that is open and convex and is as such spanned
by its intersection with Sym2 Zg . Let CCg � Cg be the convex cone spanned by
SCg \ Sym2 Zg ; this is just the set of semipositive quadratic forms on Hom.Zg;R/,
whose kernel is spanned by its intersection with Hom.Zg;Z/. The obvious action of
GL.g;Z/ on Sym2 Zg preserves both cones and is proper on Cg .

Consider the algebraic torus Tg WD C� ˝Z Sym2 Zg . If we apply the “log norm”
lgnmW z 2C� 7! log jzj 2R to the first tensor factor, we get a GL.g;Z/–equivariant ho-
momorphism lgnmTg

W Tg!Sym2 Rg with kernel the compact torus U.1/˝ZSym2 Zg .
We denote by Tg �Tg the preimage of Cg so that we have defined a proper GL.g;Z/–
equivariant homomorphism of semigroups lgnmTg

W Tg ! Cg . Since GL.g;Z/ acts
properly on Cg it does so on Tg and hence the orbit space VV WD GL.g;Z/nTg has
the structure of a complex-analytic orbifold. There is a natural extension of V � VV

in the complex analytic category (it is in fact the Stein hull of VV in case g > 1) that
comes with a distinguished point that we will (for good reasons) also denote by 1
and which is such that VV is open-dense in V and .V;V X VV / is topologically the
open cone over a pair of spaces with vertex 1. It has the property that there exists an
open embedding of U1 in V that takes 1 to 1 and identifies U1 with a regular
neighborhood of1 in V in such a way that VU1DU1\ VV . This justifies our focus on
the triple .V; VV I1/. All else we need to know about V is that the toroidal extension
of VV that we are about to consider provides a resolution of V as an orbifold.

The universal cover of Tg is contractible (with covering group Sym2 Zg ) and hence
the universal cover of VV as an orbifold is also contractible and has covering group
GL.g;Z/Ë Sym2 Zg (it is in fact a virtual classifying space for this group). Similarly,
the orbit space Ig WD GL.g;Z/nCg exists as a real-analytic orbifold and is a virtual
classifying space for GL.g;Z/. The map lgnmTg

induces a projection �W VV ! Ig

and the classes that concern us lie in the image of

(5) H �.GL.Z/IQ/!H �.GL.g;Z/IQ/!H �.IgIQ/
��

�!H �. VV IQ/:

A nonsingular admissible decomposition of CCg is a collection f�g�2† of closed
cones in CCg , each of which is spanned by a partial basis of Sym2 Zg , such that the
collection is closed under “taking faces” and “taking intersections” and whose relative
interiors are pairwise disjoint with union CCg . Let † be such a decomposition that
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is also GL.g;Z/–invariant and is fine enough in the sense that every GL.g;Z/–orbit
in C

g
C meets every member of † in at most one point. Such decompositions exist

[1, Chapter II, Corollary 5.23]. (One usually also requires that GL.g;Z/ has only
finitely many orbits in †, but this is in fact implied by the other conditions; see [11,
Theorem 3.8].) The associated torus embedding Tg � T†

g is then nonsingular and
comes with an action of GL.g;Z/. We denote by T †g the interior of the closure of
Tg in T†

g . This is an open GL.g;Z/–invariant subset of T†
g on which GL.g;Z/

acts properly, so that V † WD GL.g;Z/nT †g exists as an analytic orbifold. It is of
the type alluded to above: we have a natural proper morphism f W V † ! V that is
complex-algebraic over V and is an isomorphism over VV . Moreover, the exceptional
set is a simple normal crossing divisor in the orbifold sense.

As for every torus embedding, there is also a real counterpart in the sense that
lgnmTg

extends in a GL.g;Z/–equivariant manner to a proper and surjective map
lgnmT †

g
W T †g !C†

g , where C†
g is a certain stratified locally compact Hausdorff space

which contains Cg as an open dense subset. In the present case C†
g is simply a

manifold with corners, because † is nonsingular. The strata of C†
g are indexed by †,

with the stratum defined by � being the image of Cg under the projection along the
real subspace of Sym2 Rg spanned by � . So each stratum of C†

g appears as a convex
open subset of some vector space and it is all of this vector space precisely when the
relative interior of � is contained in Cg . This is also equivalent to the stratum having
compact closure in C†

g .

Let us define a wall of C†
g to be the closure of a stratum defined by a ray (ie a one-

dimensional member) of †. So a wall is compact if and only if the associated ray
lies in Cg [ f0g. We denote by @prC

†
g the union of these compact walls. This is a

closed subset of C†
g and its covering by such compact walls is a Leray covering: the

covering is locally finite and each nonempty intersection is contractible (and is in fact
the closure of a stratum). Its nerve is easily expressed in terms of †. Let us say that a
member of † is proper if it is contained in Cg[f0g. The proper members of † make
up a subset †pr �† that is also closed under “taking faces” and “taking intersections”
and their union makes up a GL.g;Z/–invariant cone contained in Cg [ f0g. If we
projectivize that cone we get a simplicial complex in the real projective space of
Sym2 Rg that we denote by P .†pr/. A vertex of P .†pr/ corresponds of course to a
ray of †pr , and this in turn defines a compact wall of C†

g . In this way P .†pr/ can be
identified in a GL.g;Z/–equivariant manner with the nerve complex of the covering
of @prC

†
g by the compact walls of C†

g . A standard argument shows that we have a
GL.g;Z/–equivariant homotopy equivalence between @prC

†
g and the nerve P .†pr/

of this covering.
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Each stratum closure in C†
g can be retracted in a canonical manner onto its inter-

section with @prC
†
g and we thus find a GL.g;Z/–equivariant deformation retraction

C†
g ! @prC

†
g . This shows at the same time that the inclusion Cg �C†

g is a GL.g;Z/–
equivariant homotopy equivalence. So if we put

I†g WD GL.g;Z/nC†
g and @prI†g WD GL.g;Z/n@prC

†
g ;

then we end up with homotopy equivalences Ig � I†g � @prI†g . We also have a
homotopy equivalence @prI†g � GL.g;Z/nP .†pr/.

Taking the preimage under lgnm makes walls of C†
g correspond to irreducible com-

ponents of the toric boundary T †g X Tg and a wall of C†
g is compact if and only

if the associated irreducible component is. So the preimage @prT †g of @prC
†
g is the

union of the compact irreducible components of the toric boundary. It is clear that
P .†pr/ is also the nerve of the covering of @prT †g by its irreducible components. The
image of @prT †g in V (in other words, its GL.g;Z/–orbit space) is the normal crossing
divisor f �1.1/. The inclusion f �1.1/� V † is also a deformation retract. So in
the commutative diagram

VV V † f �1.1/

Ig I†g @prI†

the inclusion on the top right and those at the bottom are homotopy equivalences. It
follows that the composite map in diagram (5) factors through the rational cohomology
of I†g and hence also through the rational cohomology of V † and that the nonzero
classes in H �.V †IQ/ŠH �.f �1.1/IQ/ that we thus obtain come from the nerve
of the covering of f �1.1/ by its irreducible components. Such classes are known to
be of weight zero [7, Proposition 8.1.20].

Remark 3.1 Goresky and Pardon [10, Corollary 11.9] have constructed a lift cbb
r of

the real Chern class cr 2H 2r .AgIR/ to H 2r .Abb
g IR/. The second author [12, Theo-

rem 2.8] recently proved that cbb
r (and hence also the corresponding Chern character

chbb
r ) lies in F rH 2r.Abb

g IR/. So the class of the Tate extension in Remark 1.3 is up
to a rational number given by the value of cbb

2rC1
on the class zr 2 H4rC2.Abb

g IQ/
found in Remark 2.5 (two choices of zr differ by a class of the form jg�.w/ with
w 2 H4rC2.AgIQ/ and cbb

2rC1
takes on such a class the rational value c2rC1.w/).

Arvind Nair, after learning of our theorem, informed us that his techniques enable him
to show that this extension class is nonzero. Subsequently a different proof (based on
the Beilinson regulator) was given in [12, Theorem 5.1].
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Collar lemma for Hitchin representations

GYE-SEON LEE

TENGREN ZHANG

There is a classical result known as the collar lemma for hyperbolic surfaces. A
consequence of the collar lemma is that if two closed curves A and B on a closed
orientable hyperbolizable surface intersect each other, then there is an explicit lower
bound for the length of A in terms of the length of B , which holds for every
hyperbolic structure on the surface. In this article, we prove an analog of the classical
collar lemma in the setting of Hitchin representations.

57M50; 30F60, 32G15

1 Introduction

Let S be a closed connected oriented topological surface of genus g � 2, and let � be
its fundamental group. The Teichmüller space of S , which we denote by T .S/, is the
space of hyperbolic structures on S , ie the space of isotopy classes of hyperbolic metrics
on S . Via the holonomy representation, T .S/ can be identified with a component of
the space of conjugacy classes of representations from � to PSL.2;R/. One advantage
of doing so is that it allows us to generalize T .S/ in the following way. It is a
standard fact in representation theory that for any n � 2, there is a unique (up to
conjugation) irreducible representation �nW PSL.2;R/! PSL.n;R/. This gives, via
postcomposition, an embedding

T .S/ ,! Xn.S/ WD Hom.�;PSL.n;R//=PSL.n;R/:

The image of this embedding is known as the Fuchsian locus and the component
of Xn.S/ containing the Fuchsian locus is the nth Hitchin component, which we denote
by Hitn.S/. By definition, Hit2.S/D T .S/, so Hitchin representations can be thought
of as generalizations of Fuchsian representations.

For the hyperbolic structures in T .S/, there is a classical result due to Keen [14]
known as the collar lemma. It gives an effective lower bound on the width of the
maximal collar neighborhood of a simple closed curve in a hyperbolic surface, which
grows to 1 as the length of the simple closed curve is shrunk to 0. A consequence
of the collar lemma is that if two closed curves � and  in a hyperbolic surface have

Published: 19 May 2017 DOI: 10.2140/gt.2017.21.2243

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57M50, 30F60, 32G15
http://dx.doi.org/10.2140/gt.2017.21.2243


2244 Gye-Seon Lee and Tengren Zhang

nonvanishing geometric intersection number and  is simple, then there is an explicit
lower bound on the length of � in terms of the length of  . This is a powerful tool
that has been used to understand surfaces. For example, it was used to study the length
spectrum of Riemann surfaces; see Buser [5].

The goal of this paper is to generalize a version of the classical collar lemma to
Hitchin representations. By Labourie [15], for any Hitchin representation � and any
nonidentity element X in � , we know that �.X / is diagonalizable over R with
eigenvalues that have pairwise distinct moduli. For the rest of this paper, we will denote
by xC;x� 2 @1� the attracting and repelling fixed points, respectively, of X 2� nfidg.
With this notation, we now state the main theorem of this paper.

Theorem 1.1 Let A, B be elements in � such that aC , bC , a� , b� lie in @1� in
that cyclic order. Also, let � 2Hitn.S/ and let ˛n < � � �< ˛1 and ˇn < � � �< ˇ1 be the
moduli of the eigenvalues of �.A/ and �.B/, respectively. For every k D 0; : : : ; n� 2,
the following hold:

(1)
˛1

˛n
>

ˇkC1

ˇkC1�ˇkC2

:

(2) Let � and  be closed curves in S corresponding to A and B , respectively,
and let i.�;  / be the geometric intersection number between � and  . If  is
simple, then

˛1

˛n
>

�
ˇkC1

ˇkC1�ˇkC2

�u

�

�
ˇn�k�1

ˇn�k�1�ˇn�k

�i.�; /�u

for some nonnegative integer u� i.�;  / that is independent of k .

Observe that Theorem 1.1(2) does not depend on the choice of orientation on � or  .
We can also say what the constant u in Theorem 1.1(2) is. Choose orientations on �
and  and let {̂.�;  / be the algebraic intersection number between � and  . Then

uD 1
2

�
i.�;  /Cj{̂.�;  /j

�
:

In the setting of Hitchin representations, the width of a collar neighborhood is not well
defined since Hitchin representations in general do not give a metric on S . However,
for every Hitchin representation � , we do still have a natural notion of length for free
homotopy classes of closed curves in S . Given any representation � in Hitn.S/ and
any closed curve  in S , we can define the �–length of  to be

l�. /D log
�
�1

�n

�
;
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where �1 and �n are the largest and smallest moduli of the eigenvalues of �.X /,
respectively, and X 2 � corresponds to the closed curve  equipped with a choice of
orientation. Observe that the �–length does not depend on the choice of orientation on 
or the choice of X , and is constant on each free homotopy class of closed curves in S .

If � 2 Hit2.S/, then l�. / is exactly the hyperbolic length of the geodesic homo-
topic to  , measured in the hyperbolic metric corresponding to � . Also, Choi and
Goldman [7] proved that representations in Hit3.S/ are exactly holonomies of convex
RP2 structures on S . Moreover, each such convex RP2 structure also induces a natural
Finsler metric, known as the Hilbert metric, on S . One can then verify, in the case
when � 2 Hit3.S/, that l�. / is the length of the geodesic homotopic to  , measured
in the Hilbert metric induced by the convex RP2 structure corresponding to � .

With this notion of �–length, we have the following corollary of Theorem 1.1, which
one can think of as a generalization of the collar lemma.

Corollary 1.2 Let S be a surface of genus g � 2, and let � and  be two essential
closed curves in S . Then, for any n� 2 and any � 2 Hitn.S/, the following hold:

(1) If i.�;  /¤ 0, then

1

exp.l�.�//
< 1�

1

exp.l�. /=.n� 1//
:

(2) If i.�;  /¤ 0 and  is simple, then there are nonnegative integers u and v with
u� v and uC v D i.�;  / such that

1

exp.l�.�//
<

�
1�

1

exp.l�. /=.n� 1//

�u�
1�

1

exp.l�. //

�v
:

(3) Let ın > 0 be the unique real solution to the equation e�xC e�x=.n�1/ D 1. If
� is a nonsimple closed curve, then

l�.�/ > ın:

The quantity u in the above corollary is the same u as in Theorem 1.1. Observe that
ın is an increasing unbounded sequence, and ı2D log.2/. Also, the expressions on the
right hand side of the inequalities in parts (1) and (2) of Corollary 1.2 are maximized
when nD2. Hence, we can replace n by 2 in the right hand side of all three inequalities
in Corollary 1.2, and they will still hold.

In the case of T .S/, the first inequality in Corollary 1.2 can be rewritten as�
exp.l�.�//� 1

��
exp.l�. //� 1

�
> 1:
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This is weaker than a version of the classical collar lemma, which is the inequality

(1-1) sinh
�

1
2
l�.�/

�
sinh

�
1
2
l�. /

�
> 1;

although in both inequalities, l�.�/ grows logarithmically with 1=l�. /. In general, it
is not known if the inequality (1-1) holds for all Hitchin components. However, it is
a consequence of recent work of Tholozan [18] that it in fact holds for Hit3.S/. See
Section 3.3 for more details.

Choi [6] proved an analog of the Margulis lemma for convex RP2 surfaces. As a
consequence, he showed the existence of a collar neighborhood in the convex RP2

surface about a simple closed curve of sufficiently short length, and found (nonexplicit)
lower bounds for the width of this collar neighborhood in terms of the length of the
simple closed curve. This analog of the Margulis lemma was later extended by Cooper,
Long and Tillman [8] to all convex real projective manifolds. Burger and Pozzetti [4]
also recently proved a statement analogous to Theorem 1.1 for maximal representations
into PSp.2k;R/.

The image of the irreducible representation �nW PSL.2;R/ ! PSL.n;R/ lies in a
conjugate of the subgroup PSO.k; kC 1/� PSL.2kC 1;R/ when nD 2kC 1, and a
conjugate of PSp.2k;R/� PSL.2k;R/ when nD 2k . Hence, we can define Hitchin
components in

Hom.�;PSO.k; kC 1//=PSO.k; kC 1/; Hom.�;PSp.2k;R//=PSp.2k;R/

in the same way as we did for PSL.n;R/. Denote these Hitchin components by
Hitn.S/0 . Since the image of �7 in particular lies in the exceptional Lie group G2 �

PSO.3; 4/, we can also define a Hitchin component Hit.S;G2/ in Hom.�;G2/=G2 .
Note that Hitn.S/0 and Hit.S;G2/ can be naturally identified with a subset of Hitn.S/
and Hit7.S/0 , respectively. In the case when � 2 Hitn.S/ happens to be an element
of Hitn.S/0 , we can strengthen Theorem 1.1(2), which we state as the following
corollary.

Corollary 1.3 Let A and B be elements in � such that aC , bC , a� , b� lie in @1�
in that cyclic order. Let � 2 Hitn.S/0 and let ˛n < � � �< ˛1 and ˇn < � � �< ˇ1 be the
moduli of the eigenvalues of �.A/ and �.B/, respectively. Finally, let � and  be
closed curves on S corresponding to A and B , respectively. If  is simple, then for
every k D 0; : : : ; n� 2,

˛2
1 >

�
ˇkC1

ˇkC1�ˇkC2

�i.�; /

:
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Hitchin representations into PSp.2k;R/ are special examples of maximal representa-
tions. In this case, the inequality in the above corollary is stronger than the one given
by Burger and Pozzetti [4].

The proof of our results relies heavily on the seminal work of Labourie [15], who
showed that every Hitchin representation into PSL.n;R/ (and hence into PSp.2k;R/,
PSO.k; k C 1/ and G2 ) naturally comes with an equivariant Frenet curve; see
Theorem 2.5. While Hitchin representations can be defined for any split real group,
properties of the limit curve of these Hitchin representations are still poorly understood
in general. As such, we are unable to generalize our techniques to prove an analog of
Theorem 1.1 for Hitchin representations into split real groups other than PSL.n;R/,
PSp.2k;R/, PSO.k; kC 1/ and G2 .

Unfortunately, for �2Hitn.S/ when n�4, it is not known whether there exists a metric
on S that induces l� as its length function. However, we can still interpret Corollary 1.2
geometrically by considering the PSL.n;R/ symmetric space �M . Normalize the
Riemannian metric on �M so that for any Z 2 PSL.n;R/ with real eigenvalues,

inffd�M .o;Z � o/ W o 2 �M g Dr2
nP

iD1

.log�i/
2;

where �1; : : : ; �n are the moduli of the eigenvalues of Z and d �M is the distance
function on �M induced by the normalized Riemannian metric. Let M WD �.�/n �M ,
and for any closed curve ! in M , let lM .!/ be the length of ! measured in the
Riemannian metric on M induced by the normalized Riemannian metric on �M . Then
the following corollary holds.

Corollary 1.4 Let � and  be two essential closed curves in S and let X and Y be
elements in � corresponding to � and  , respectively. For any � 2 Hitn.S/, let �0 and
 0 be two closed curves in M that correspond to X;Y 2 � , respectively. Then the
statements in Corollary 1.2 hold, with l�.�/ and l�. / replaced by lM .�0/ and lM . 0/,
respectively.

It is an important remark that this corollary (and hence Corollary 1.2) is not simply a
quantitative version of the Margulis lemma on PSL.n;R/ because the closed curves �0

and  0 do not need to intersect, even when i.�;  /¤ 0.

Theorem 1.1 is a property that is special to Hitchin representations. In fact, for any pair
of simple closed curves in S , one can find a sequence of quasi-Fuchsian representations

�i W �! PSO.3; 1/C � PSL.4;R/

Geometry & Topology, Volume 21 (2017)
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such that the lengths of the geodesics in �i.�/n �M corresponding to both of these two
simple closed curves converge to 0 along this sequence. In particular, Corollary 1.2
does not hold on the space of quasi-Fuchsian representations. This is explained in
greater detail in Section 3.2.

Theorem 1.1 can also be generalized to the setting where we allow S to be compact
but not necessarily closed; see Corollary 3.4.

As a final consequence of Theorem 1.1, we have the following properness result.

Corollary 1.5 Let C WDf1; : : : ; kg be a collection of closed curves in S that contains
a pants decomposition, such that the complement of C in S is a union of discs. Then
the map

Hitn.S/!Rk ; � 7! .l�.1/; : : : ; l�.k//;

is proper.

In other words, in order for a sequence f�ig
1
iD1

in Hitn.S/ to escape, the �i –length
of some curve in C must grow to 1. We will give the proof of this corollary in the
Appendix because it uses some technical results from Zhang [19]. Refer to Section 3.1
for more corollaries of Theorem 1.1.
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2 Proof of Theorem 1.1

We start this section by discussing some useful topological properties of � and its
boundary in Section 2.1. Then for the sake of demonstrating the proof without too many
technical details, we prove Theorem 1.1(1) for the special case Hit3.S/ in Section 2.2.
Next, we develop the technical tools that we need in Section 2.3, and apply them in
Section 2.4 to prove Theorem 1.1 in its full generality.
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2.1 Properties of the boundary of the group

It is well known that � is Gromov hyperbolic, so the Cayley graph of � has a natural
boundary, which we denote by @1� , and the action of � on its Cayley graph extends
to an action on @1� . Moreover, if we choose � 2 T .S/, ie a hyperbolic structure
on S , we get a �–equivariant identification of @1� with the boundary @H2 of the
hyperbolic plane H2 .

For any hyperbolic element A 2 PSL.2;R/, the axis of A, which we denote by LA , is
the unique geodesic in H2 whose endpoints are the repelling and attracting fixed points
of A in @H2 . The proof of the main theorem relies crucially on an important property
of the action of � on @1� , which we state as Lemma 2.2. These are well-known facts
about surface groups, but for lack of a good reference, we will give the proof here.

Lemma 2.1 Let B and B0 be noncommuting elements in PSL.2;R/ that generate
a subgroup consisting only of hyperbolic isometries. If the translation lengths of B

and B0 are the same and LB0 \LB D∅, then .B �LB0/\LB0 D∅.

Proof Since B and B0 do not commute, LB ¤LB0 . Since the commutator ŒB;B0� is
not parabolic, B and B0 cannot share a fixed point. Hence, by changing coordinates and
replacing B and B0 with their inverses if necessary, we can assume that LB and LB0

are as in Figure 1, and that B and B0 translate along their axes in the directions drawn.

Let L be the geodesic in H2 that is perpendicular to both LB0 and LB , and let R

be the reflection about L. There is a unique geodesic K that is perpendicular to LB

and whose distances to L and B �L are equal. Let S be the reflection about K , and
note that B D SR. Also, observe that the distance between K and L is realized only
by the points K\LB and L\LB , and is half the translation length of B , which we
denote by T . Furthermore, .B �LB0/\LB0 D .SR �LB0/\LB0 D .S �LB0/\LB0

is empty if and only if K\LB0 is empty.

Thus, it is sufficient to show that K \LB0 is empty. Suppose for contradiction that
it is not. As before, there is a unique geodesic K0 such that B0 D S 0R, where S 0 is
the reflection about K0 . Since the translation lengths of B and B0 are the same, the
symmetry between B and B0 ensures that K0\LB is also nonempty.

Now, note that K0\LB0 lies between K\LB0 and L\LB0 because

d.K\LB0 ;L\LB0/ > d.K\LB;L\LB/D
1
2
T D d.K0\LB0 ;L\LB0/:

Similarly, K\LB lies between K0\LB and L\LB . This implies that K and K0

have a common point of intersection, p ; see Figure 1. Observe that B0B�1 D

S 0RR�1S�1 D S 0S fixes p , but that is impossible because B0B�1 is not elliptic.
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LB0

B0

K

K0

L

p

B

LB

Figure 1: An impossible configuration of K and K0 in Lemma 2.1

Lemma 2.2 Let A, B and B0 be pairwise noncommuting elements in � such that B

and B0 are conjugate. If
aC; b0C; bC; a�; b�; b0�

lie in @1� in that cyclic order, then

aC; b0C; B � aC; bC; a�; b�; B�1
� aC; b0�

lie in @1� in that cyclic order; see Figure 2.

Proof Let s0 be the open subsegment of @1� with endpoints b0� and bC that does
not contain b� , and let s1 be the open subsegment of @1� with endpoints b0C and bC

that does not contain b� . Observe that B � b0� lies in s0 and B � b0C lies in s1 .

Choose a hyperbolic metric on S . This identifies @1� with @H2 and � with a discrete,
torsion-free subgroup of PSL.2;R/. Since

aC; b0C; bC; a�; b�; b0�

lie in @1� in that cyclic order, LB and LB0 have to be disjoint. Moreover, B and B0

have the same translation lengths and do not commute. Hence, we can apply Lemma 2.1
to conclude that B �LB0 and LB0 are disjoint. This implies that both B � b0� and
B � b0C have to lie in s1 . Since aC lies in s0 between b0� and b0C , we have that
B � aC must lie in s1 between B � b0� and B � b0C . In particular,

aC; b0C; B � aC; bC; a�

lie in @1� in that cyclic order; see Figure 2.

A similar argument, using B�1 instead of B , shows that

a�; b�; B�1
� aC; b0�; aC

lie in @1� in that cyclic order. This proves the lemma.
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s1

s0 b0C

B �b0�

B �aC B �b0C

bC

B �LB0

LB0

B �LA

B �a�

aC
LA

a�

b0�

B�1� aC

B�1� a�

LB

b�

Figure 2: The cyclic order of the attracting and repelling fixed points of A ,
B , B0 and BAB�1 along @1� in Lemma 2.2

2.2 Proof in the PSL.3; R/ case

In order to demonstrate the main ideas of the proof without involving too many
technicalities, we will first prove Theorem 1.1(1) in the special case when n D 3,
ie �W �! PSL.3;R/D SL.3;R/ is a Hitchin representation.

By Choi and Goldman [7], we know that in this case, � is the holonomy of a convex
RP2 structure on S . In other words, there is a strictly convex domain �� in RP2

which is preserved by the � –action on RP2 induced by � , and on which the �–
action is properly discontinuous and cocompact. Moreover, �.X / is diagonalizable
with positive pairwise distinct eigenvalues for any nonidentity element X 2 � (see
Goldman [11, Theorem 3.2]), so �.X / has an attracting and repelling fixed point
in @�� . Since the Hilbert metric in �� is invariant under projective transformations
and the geodesics of the Hilbert metric are lines, one can use the Švarc–Milnor lemma
[3, Proposition 8.19] to construct a continuous map

�.1/W @1�! @��

which identifies the attracting fixed point of any X 2 �nfidg to the attracting fixed
point of �.X /.

Pick any four projective lines in RP2 that intersect at a common point, such that no
three of the four agree. There is a classical projective invariant of these four projective
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P1

P2

P3

Œl1�
Œl3�

Œl4� Œm�

Œl2�

P4

Figure 3: A choice of vectors li to compute the cross ratio .P1;P2;P3;P4/

lines, called the cross ratio, which can be defined as follows. Let the four projective
lines be P1 , P2 , P3 , P4 and let m be a vector in R3 such that Œm�, the projective
point corresponding to the R–span of m, is the common point of intersection of the Pi .
For each i , choose a vector li 2R3 so that Œli �¤ Œm� and Œli � lies in Pi ; see Figure 3.
By choosing a linear identification

f W
V3R3

!R;

we can evaluate the expression

.P1;P2;P3;P4/ WD
m^ l1 ^ l3

m^ l1 ^ l2
�
m^ l4 ^ l2

m^ l4 ^ l3

as an extended real number. One can then verify that the cross ratio .P1;P2;P3;P4/

does not depend on the choice of m, l1 , l2 , l3 , l4 or the choice of identification f .

This definition of the cross ratio agrees with the classical notion of the cross ratio of
four points on a line in the following way. By taking the dual, the four lines P1; : : : ;P4

become four points p1; : : : ;p4 2 .RP2/� , and they lie in the projective line in .RP2/�

that is dual to the point Œm� in RP2 . One can then check that .P1;P2;P3;P4/ is
exactly the cross ratio of the four collinear points p1; : : : ;p4 .

Proof of Theorem 1.1(1) when n D 3 Observe that

aC; A � bC; bC; a�; b�; A � b�
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�.A/ � �.B/C
�.B/ � �.A/C

�.B/C
P�.BAB�1/

P 0
2 P�.B/

�.B/��.A/�

�.A/C
P�.A/

�.A/�
�.B/0

P2 P3

P1

P�.ABA�1/
P 0

3

�.A/ � �.B/� �� �.B/�

Figure 4: A schematic for the comparison between the cross ratios
.P1;P2;P�.B/;P3/ and .P1;P

0
2
;P�.B/;P

0
3
/

lie in @1� in that cyclic order. By Lemma 2.2, we see that

aC; A � bC; B � aC; bC; a�; b�; B�1
� aC; A � b�

lie in @1� in that cyclic order, because A � bC and A � b� are the attracting and
repelling fixed points of ABA�1 , respectively.

Choose any � 2Hit3.S/. For any nonidentity element X 2 � , let �.X /C , �.X /0 and
�.X /� be the three fixed points for �.X /, where �.X /C is attracting and �.X /� is re-
pelling. Denote by P�.X / the line segment in �� with endpoints �.X /C and �.X /� .

Now, let

� P1 be the line through �.B/� and �.A/C ,

� P2 be the line through �.B/� and P�.A/\P�.ABA�1/ ,

� P3 be the line through �.B/� and �.A/� ,

� P 0
2

be the line through �.B/� and �.B/ � �.A/C ,

� P 0
3

be the line through �.B/� and �.B/0 .

By using �.1/ to identify @1� with @�� , we have that

�.A/C; �.A/ � �.B/C; �.B/ � �.A/C; �.B/C; �.A/�; �.B/�

Geometry & Topology, Volume 21 (2017)



2254 Gye-Seon Lee and Tengren Zhang

lie in @�� in that cyclic order; see Figure 4. It is a classically known property of the
cross ratio (see Proposition 2.10) that

.P1;P2;P�.B/;P3/ > .P1;P
0
2;P�.B/;P

0
3/:

It is an easy cross ratio computation (see Lemmas 2.8 and 2.9) that

.P1;P
0
2;P�.B/;P

0
3/D

ˇ1

ˇ1�ˇ2

and .P1;P2;P�.B/;P3/D
˛1

˛3

:

Hence, we have
˛1

˛3

>
ˇ1

ˇ1�ˇ2

:

Similarly, by reversing the roles of �.B/� and �.B/C , and using �.B/�1 in place
of �.B/, we can also show that

˛1

˛3

>
ˇ2

ˇ2�ˇ3

:

This proves Theorem 1.1(1) in the case when nD 3.

2.3 Properties of Frenet curves of Hitchin representations

Next, we want to generalize the proof given in Section 2.2 to any Hitchin representation.
We will devote this section to developing the tools needed to do so. In the rest of the
paper, we use the same notation for points in RPn�1 and for lines in Rn . It should be
clear to which we are referring from the context.

Denote by F.Rn/ the space of complete flags in Rn . Labourie [15] and Guichard [12]
gave a beautiful characterization of representations in Hitn.S/ as representations
that admit an equivariant Frenet curve @1� ! F.Rn/. When n D 3, the Frenet
curve, postcomposed with the projection from F.R3/ to RP2 , is exactly the map
�.1/W @1� ! @�� described in Section 2.2. This characterization will be the main
tool we use to extend our proof in Section 2.2 to the general case.

We will start by first defining the Frenet property.

Notation 2.3 Let �W S1 ! F.Rn/ be a continuous closed curve and denote the
Grassmannian of k –dimensional subspaces of Rn by Gr.k; n/. For any kD1; : : : ; n�1

and any point x 2 S1 , let �.x/.k/ WD �k.�.x//, where �k W F.Rn/! Gr.k; n/ is the
obvious projection.
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Definition 2.4 A closed curve �W S1! F.Rn/ is Frenet if for every set of distinct
points x1; : : : ;xk in S1 , for every x 2 S1 , and for all positive integers n1; : : : ; nk

such that m WD
Pk

iD1ni � n,

dim
kX

iD1

�.xi/
.ni / Dm and lim

xi!x;8i

xi¤xj ;8i¤j

kX
iD1

�.xi/
.ni / D �.x/.m/:

The Frenet property ensures � has good continuity properties and is “maximally
transverse”. Combining the work of Labourie [15, Theorem 1.4] and Guichard [12,
théorème 1], one can characterize the representations in the Hitn.S/ as those that
preserve an equivariant Frenet curve.

Theorem 2.5 (Guichard, Labourie) A representation � in

Hom.�;PSL.n;R//=PSL.n;R/

lies in Hitn.S/ if and only if there exists a �–equivariant Frenet curve �W @1� !
F.Rn/. If � exists, then it is unique.

We will now prove several properties of these Frenet curves that will be needed. These
are special cases of more general properties that appear in Section 2 of Zhang [19].
However, for the sake of completeness, we will reproduce the proofs.

Lemma 2.6 Let a, m0 , b , m1 , m2 and m3 be distinct points on @1� in that
cyclic order, and let � 2 Hitn.S/ with corresponding Frenet curve � . Also, let P WD

P
�
�.a/.1/C �.b/.1/

�
. Then the following hold:

(1) Let k0 , k1 , k2 and k3 be nonnegative integers that sum to n � 2, and let
M WD

P3
iD0�.mi/

.ki / . The map

fM W @1�! P

given by

fM W x 7!

(
P
�
�.x/.1/C

P3
iD0 �.mi/

.ki /
�
\P if x ¤mj ;

P
�
�.mj /

.kjC1/C
P

i¤j �.mi/
.ki /

�
\P if x Dmj ;

is a homeomorphism with fM .a/D �.a/.1/ and fM .b/D �.b/.1/ .

(2) Let k0 , k1 and k2 be nonnegative integers that sum to n� 1, and let s be the
closed subsegment of @1� with endpoints a and b that does not contain m0 .
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Also, let M WD �.m0/
.k0/ . Then there is some closed subsegment ! of P with

endpoints �.a/.1/ and �.b/.1/ such that the map

gM W s! !

given by

gM W x 7!

(
P
�
�.x/.k2/C �.m1/

.k1/C �.m0/
.k0/

�
\P if x ¤m1;

P
�
�.m1/

.k1Ck2/C �.m0/
.k0/

�
\P if x Dm1;

is a homeomorphism with gM .a/D �.a/.1/ and gM .b/D �.b/.1/ .

Proof Before we start the proof, observe that for any nonnegative integers t0; : : : ; t4
such that

P4
iD0 ti D n� 1, the intersection P

�
�.x/.t4/ C

P3
iD0 �.mi/

.ti /
�
\P is a

single point; otherwise, P
�
�.a/.1/C �.b/.1/

�
� P

�
�.x/.t4/C

P3
iD0 �.mi/

.ti /
�
, which

contradicts the Frenet property of � .

(1) Since � is Frenet, fM is continuous. Moreover, because the domain and target
of fM are both topologically a circle, it is sufficient to show that fM is injective.
Suppose for contradiction that there exist x¤ x0 such that fM .x/D fM .x0/. We will
assume that x;x0 ¤mi for all i D 0; 1; 2; 3 as the other cases are similar. Then

3X
iD0

�.mi/
.ki /C �.x/.1/ D

3X
iD0

�.mi/
.ki /CfM .x/

D

3X
iD0

�.mi/
.ki /CfM .x0/

D

3X
iD0

�.mi/
.ki /C �.x0/.1/;

which is impossible because � is Frenet. The fact that fM .a/D �.a/.1/ and fM .b/D

�.b/.1/ is easily verified.

(2) First, observe that gM viewed as a map from s to P is continuous. Also, for
any x in s , we have that gM .x/D �.a/.1/ if and only if x D a and gM .x/D �.b/.1/

if and only if x D b . This proves that the image of gM is a subsegment ! of P with
endpoints �.a/.1/ and �.b/.1/ .

To finish the proof, we only need to show that gM is injective. Choose x and x0 in the
interior of s with x ¤ x0 , and assume without loss of generality that a, x0 , x and b

lie along s in that order. Again, we assume that x;x0 ¤ m1 as the other cases are
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similar. For any positive integer i � k2 , let

Mi WD �.x/
.i�1/

C �.x0/.k2�i/
C �.m1/

.k1/C �.m0/
.k0/:

By (1), we know that fMi
.x/ lies on ! strictly between fMi

.x0/ and fMi
.b/D�.b/.1/ .

Also, observe that fMi
.x/D fMiC1

.x0/. This implies that fMk2
.x/ lies on ! strictly

between fM1
.x0/ and �.b/.1/ . In particular, gM .x/DfMk2

.x/¤fM1
.x0/DgM .x0/,

so gM is injective.

In the proof of the nD 3 case given in Section 2.2, the classical cross ratio in RP2

was the main computational tool used to obtain our estimates. We will now define a
generalization of the cross ratio for RPn�1 .

Definition 2.7 Let P1; : : : ;P4 be four hyperplanes in Rn that intersect along a .n�2/–
dimensional subspace M D Spanfm1; : : : ;mn�2g � Rn , such that no three of the
four Pi agree. For i D 1; : : : ; 4, let Li D Œli � be a line through the origin in Pi that
does not lie in M . Define the cross ratio by

.P1;P2;P3;P4/ WD
m1 ^ � � � ^mn�2 ^ l1 ^ l3

m1 ^ � � � ^mn�2 ^ l1 ^ l2
�
m1 ^ � � � ^mn�2 ^ l4 ^ l2

m1 ^ � � � ^mn�2 ^ l4 ^ l3
:

In the above definition, choose an identification between
Vn
.Rn/ and R to evaluate

the fraction on the right as a real number. One can check that this number does not
depend on the identification chosen, the choice of basis fm1; : : : ;mn�2g for M , the
choice of Li in Pi , or the choice of representatives li for Li . When convenient, we
sometimes use the notation

.L1;L2;L3;L4/M WD .P1;P2;P3;P4/:

Also, at times, in our notation for the cross ratio, we replace the subspaces Li , Pi

and M of Rn with their projectivizations. As with the nD 3 case, this definition of
the cross ratio agrees with the classical cross ratio of four points along a projective line
in .RPn�1/� .

The following two lemmas summarize some basic properties of this cross ratio.

Lemma 2.8 Let L1; : : : ;L5 be pairwise distinct lines in Rn through 0 and let M

and M 0 be .n�2/–dimensional subspaces of Rn not containing Li for any iD1; : : : ; 5,
such that no three of the five M CLi agree and no three of the five M 0CLi agree.

(1) .X �L1; : : : ;X �L4/X �M D .L1; : : : ;L4/M for any X 2 PSL.n;R/.

(2) If L1;L2;L3;L4 lie in a plane, then .L1;L2;L3;L4/M D.L1;L2;L3;L4/M 0 .

Geometry & Topology, Volume 21 (2017)



2258 Gye-Seon Lee and Tengren Zhang

(3) .L1;L2;L3;L4/M D .L4;L3;L2;L1/M .

(4) .L1;L2;L3;L5/M � .L1;L3;L4;L5/M D .L1;L2;L4;L5/M .

(5) .L1;L2;L3;L4/M � .L1;L3;L2;L4/M D 1.

(6) .L1;L2;L3;L4/M D 1� .L1;L2;L4;L3/M .

Proof (1), (3), (4) and (5) follow immediately from the definition of the cross ratio.
To prove (2), observe that there is a projective transformation X that fixes L1 , L2

and L3 , and maps M to M 0 . Since L4 lies in the plane containing L1 , L2 and L3 ,
X must also fix L4 . This allows us to use (1) to get (2).

To prove (6), assume that MCL1; : : : ;MCL4 are distinct; the other cases are similar.
Choose a basis e1; : : : ; en for Rn so that

MDSpanfe1; : : : ;en�2g; L1D Œen�1�; L4D Œen�; L2D

�
nP

iD1

ei

�
; L3D

�
nP

iD1

˛iei

�
for some real numbers ˛1; : : : ; ˛n . The assumption that M CL1; : : : ;M CL4 are
pairwise distinct implies that ˛n�1 and ˛n are nonzero real numbers. One can then
easily compute that

.L1;L2;L3;L4/M D
˛n

˛n�1

and .L1;L2;L4;L3/M D
˛n�1�˛n

˛n�1

:

In view of Lemma 2.8(2), we will denote .L1;L2;L3;L4/M by .L1;L2;L3;L4/ in
the case when L1 , L2 , L3 and L4 lie in the same plane.

Lemma 2.9 Let X 2 PSL.n;R/ be diagonalizable with n real eigenvalues �1; : : : ; �n

(these are only well defined up to sign) of pairwise distinct moduli, such that j�nj <

� � �< j�1j. Let Li and Lj be fixed lines through the origin in Rn corresponding to the
eigenvalues �i and �j , respectively, with i < j , and let L be a line through the origin
in the plane Li CLj such that Li ¤L¤Lj . Then

.Lj ;L;X �L;Li/D
�i

�j
:

Proof Choose a basis e1; : : : ; en for Rn so that Œek � is a fixed line through the origin
of �.X / corresponding to the eigenvalue �k . In this basis, �.X / is the diagonal matrix
Œxu;v �, where

xu;v D

�
0 if u¤ v;

�u if uD v:

Let M be the .n�2/–dimensional subspace Spanfe1; : : : ; yei ; : : : ; yej ; : : : ; eng of Rn .
Via a projective transformation that fixes e1; : : : ; en , we can assume L D Œei C ej �.
The lemma follows from an easy computation using the cross ratio definition.
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The next task is to understand how the cross ratio interacts with Frenet curves.

Proposition 2.10 Let � 2Hitn.S/, and let � be the corresponding Frenet curve. Also,
let a, b , c , m0 , d and m1 be distinct points along @1� in that cyclic order, and let k0

and k1 be nonnegative integers that sum to n� 2. For any x 2 @1� , define

Px D

(
�.x/.1/C �.m0/

.k0/C �.m1/
.k1/ if x ¤m0;m1;

�.mi/
.kiC1/C �.m1�i/

.k1�i / if x Dmi :

Then the following hold:

(1) .Pa;Pb;Pm0
;Pd / > .Pa;Pb;Pm0

;Pm1
/.

(2) .Pa;Pb;Pm0
;Pd / > .Pa;Pc ;Pm0

;Pd /.

Proof We will only show the proof of (1); the same proof together with Lemma 2.8
gives (2). Let

Lm0
D Pm0

\
�
�.a/.1/C �.b/.1/

�
;

Lm1
D Pm1

\
�
�.a/.1/C �.b/.1/

�
;

Ld D Pd \
�
�.a/.1/C �.b/.1/

�
:

Choose vectors lm0
; lm1

; la; lb; ld 2Rn such that

Œlm0
�DLm0

; Œlm1
�DLm1

; Œla�D �.a/
.1/; Œlb �D �.b/

.1/; Œld �DLd :

By Lemma 2.6(1), we can ensure, by replacing each li with �li if necessary, that

lm0
D ˛laC .1�˛/lb;

ld D ˇlaC .1�ˇ/lb;

lm1
D  laC .1�  /lb

for 0< ˛ < ˇ <  < 1. Then we can compute

.Pa;Pb;Pm0
;Pd /D

1�˛

1�˛=ˇ

>
1�˛

1�˛=

D .Pa;Pb;Pm0
;Pm1

/:

2.4 Proof in the PSL.n; R/ case

We will now use the technical facts established in Section 2.3 to prove Theorem 1.1.
For the rest of this section, fix � 2Hitn.S/ and let � be its corresponding Frenet curve.
The next lemma is the main computation in the proof of Theorem 1.1.
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Lemma 2.11 Let B be a nonidentity element in � . Pick k D 0; : : : ; n� 2, and for
any x 2 @1� , define

Px D P .k/
x WD

8̂<̂
:
�.x/.1/C �.bC/.k/C �.b�/.n�k�2/ if x ¤ bC; b�;

�.bC/.kC1/C �.b�/.n�k�2/ if x D bC;

�.bC/.k/C �.b�/.n�k�1/ if x D b�:

Suppose that x1 , x2 and x3 are points in @1� such that

x1; x2; B �x1; bC; x3; b�

lie on @1� , in that cyclic order. Then

.Px1
;Px2

;PbC ;Px3
/ >

ˇkC1

ˇkC1�ˇkC2

;

where 0< ˇn < � � �< ˇ1 are the eigenvalues of �.B/.

Proof By Proposition 2.10 and parts (5) and (6) of Lemma 2.8, we have

(2-1) .Px1
;Px2

;PbC ;Px3
/ > .Px1

;PB�x1
;PbC ;Pb�/

D
1

.Px1
;PbC ;PB�x1

;Pb�/

D
1

1� .PbC ;Px1
;PB�x1

;Pb�/
:

Note that for all j D 1; : : : ; n,

Lj WD �.b
C/.j/\ �.b�/.n�jC1/

is the fixed line through the origin in Rn of �.B/ corresponding to the eigenvalue ǰ .
Also, observe that PbC and Pb� intersect the plane �.bC/.kC2/\�.b�/.n�k/ at LkC1

and LkC2 , respectively. Let

L WD Px1
\
�
�.bC/.kC2/

\ �.b�/.n�k/
�
;

and it is clear that PB�x1
\
�
�.bC/.kC2/\ �.b�/.n�k/

�
D �.B/ �L. Thus, we can use

Lemma 2.9, to conclude that

.PbC ;Px1
;PB�x1

;Pb�/D .LkC1;L; �.B/ �L;LkC2/D
ˇkC2

ˇkC1

:

Combining this with inequality (2-1) proves the lemma.

Applying Lemma 2.11 to our setting, we can now prove Theorem 1.1.
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Proof of Theorem 1.1 (1) Let ! be the subsegment of P
�
�.aC/.1/C�.a�/.1/

�
with

endpoints �.aC/.1/ and �.a�/.1/ that has nonempty intersection with P
�
�.bC/.kC1/C

�.b�/.n�k�2/
�
. Define

p WD P
�
�.bC/.kC1/

C �.b�/.n�k�2/
�
\!;

q WD P
�
�.A � bC/.1/C �.bC/.k/C �.b�/.n�k�2/

�
\!;

and note that q exists by Lemma 2.6(1). Also, observe that

�.A/ �p D P
�
�.A � bC/.kC1/

C �.A � b�/.n�k�2/
�
\!;

so Lemma 2.6(2) implies that �.A/ �p lies between �.aC/.1/ and q in ! . Lemma 2.8,
Lemma 2.9 and Proposition 2.10 together then allow us to conclude that

˛1

˛n
D
�
�.aC/.1/; �.A/ �p;p; �.a�/.1/

�
>
�
�.aC/.1/; q;p; �.a�/.1/

�
D .PaC ;PA�bC ;PbC ;Pa�/;

where

Px D P .k/
x WD

8̂<̂
:
�.x/.1/C �.bC/.k/C �.b�/.n�k�2/ if x ¤ bC; b�;

�.bC/.kC1/C �.b�/.n�k�2/ if x D bC;

�.bC/.k/C �.b�/.n�k�1/ if x D b�:

By Lemma 2.2, we know that aC , A � bC , B �aC , bC , a� , b� lie along @1� in that
cyclic order. This allows us to apply Lemma 2.11 with x1 , x2 and x3 as aC , A � bC

and a� , respectively, to obtain the desired inequality.

(2) Let r� and rC be the closed subsegments of @1� with endpoints a� and aC

such that b� lies in r� , while bC lies in rC . Orient both r� and rC from a� to aC.
Define B to be the set of unordered pairs fb0C; b0�g in the � –orbit of fbC; b�g such
that b0C lies in rC between bC and A�bC, while b0� lies in r� between b� and A�b�.

Every pair in B is the set of attracting and repelling fixed points for some B0 in � that is
conjugate to B . Since  is simple, for every fb0C; b0�g and fb00C; b00�g in B , we know
that b0C precedes b00C (in the orientation on rC ) if and only if b0� precedes b00� (in the
orientation of r� ). The orientations on r� and rC thus induce an ordering on B . Also,
observe that jBj D i.�;  /C1, so we can label the pairs in B according to the order; ie

B D
˚
fbC

1
; b�1 g; : : : ; fb

C

mC1
; b�mC1g

	
;

where bC
1
D bC , b�

1
D b� , bC

mC1
DA � bC , b�

mC1
DA � b� and mD i.�;  /.
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For each i , let Bi be the element in � that is conjugate to either B or B�1 such that
its attracting and repelling fixed points are bCi and b�i , respectively. By Lemma 2.2,
aC , bC

iC1
, Bi � a

C , bCi , a� , b�i lie along @1� in that cyclic order, so we can apply
Lemma 2.11 with x1 , x2 and x3 as aC, bC

iC1
and a� , respectively, to conclude that

(2-2) .PaC;i ;Pb
C

iC1
;i
;P

b
C

i
;i
;Pa�;i/ >

ˇkC1

ˇkC1�ˇkC2

if Bi is conjugate to B , and

(2-3) .PaC;i ;Pb
C

iC1
;i
;P

b
C

i
;i
;Pa�;i/ >

ˇn�k�1

ˇn�k�1�ˇn�k

if Bi is conjugate to B�1 , where

Px;i D P
.k/
x;i WD

8̂<̂
:
�.x/.1/C �.bCi /

.k/C �.b�i /
.n�k�2/ if x ¤ bCi ; b

�
i ;

�.bCi /
.kC1/C �.b�i /

.n�k�2/ if x D bCi ;

�.bCi /
.k/C �.b�i /

.n�k�1/ if x D b�i :

Fix any kD 0; : : : ; n�2, and let ! be the subsegment of P
�
�.aC/.1/C�.a�/.1/

�
with

endpoints �.aC/.1/ , �.a�/.1/ whose intersection with P
�
�.bCi /

.kC1/C�.b�i /
.n�k�2/

�
is nonempty. For i D 1; : : : ;mC 1, define

pi WD P
�
�.bCi /

.kC1/
C �.b�i /

.n�k�2/
�
\!;

and for i D 1; : : : ;m, define

qi WD P
�
�.bC

iC1
/.1/C �.bCi /

.k/
C �.b�i /

.n�k�2/
�
\!:

Observe that Lemma 2.6(2) implies that pi and qi are well defined, and that �.a�/.1/,
p1 , q1 , p2 , q2 , : : : , pm , qm , pmC1 , �.aC/.1/ lie in ! in that order. Hence, by
similar arguments as those used in the proof of (1), we have�

�.aC/.1/;piC1;pi ; �.a
�/.1/

�
>
�
�.aC/.1/; qi ;pi ; �.a

�/.1/
�

D .PaC;i ;Pb
C

iC1
;i
;P

b
C

i
;i
;Pa�;i/:

We can then use Lemmas 2.9 and 2.8 to obtain

(2-4)
˛1

˛n
D
�
�.aC/.1/;pmC1;p1; �.a

�/.1/
�

D

mY
iD1

�
�.aC/.1/;piC1;pi ; �.a

�/.1/
�

>

mY
iD1

.PaC;i ;Pb
C

iC1
;i
;P

b
C

i
;i
;Pa�;i/:
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Let BC WD fi W Bi is conjugate to Bg and B� WD fi W Bi is conjugate to B�1g, and let
u WD jBCj. Then combining the inequalities (2-2), (2-3) and (2-4) yields

˛1

˛n
>
Y

i2BC

.PaC;i ;Pb
C

iC1
;i
;P

b
C

i
;i
;Pa�;i/ �

Y
i2B�

.PaC;i ;Pb
C

iC1
;i
;P

b
C

i
;i
;Pa�;i/

>

�
ˇkC1

ˇkC1�ˇkC2

�u

�

�
ˇn�k�1

ˇn�k�1�ˇn�k

�i.�; /�u

:

3 Further remarks

In this section, we prove some corollaries of Theorem 1.1, show that it does not hold
for quasi-Fuchsian representations, and perform a comparison with the classical collar
lemma.

3.1 Corollaries

Theorem 1.1 has some interesting consequences. The first is an analog of the classical
collar lemma for Hitchin representations.

Corollary 1.2 Let S be a surface of genus g � 2, and let � and  be two essential
closed curves in S . Denote the geometric intersection number between � and  by
i.�;  /. Then for any n� 2 and any � 2 Hitn.S/, the following hold:

(1) If i.�;  /¤ 0, then

1

exp.l�.�//
< 1�

1

exp.l�. /=.n� 1//
:

(2) If i.�;  /¤ 0 and  is simple, then there are nonnegative integers u and v with
u� v and uC v D i.�;  / such that

1

exp.l�.�//
<

�
1�

1

exp.l�. /=.n� 1//

�u�
1�

1

exp.l�. //

�v
:

(3) Let ın > 0 be the unique real solution to the equation e�xC e�x=.n�1/ D 1. If
� is a nonsimple closed curve, then

l�.�/ > ın:

Proof In this proof, we will use the same notation as we used in Theorem 1.1.

(1) Choose orientations on � and  . The hypothesis on � and  imply that there are
group elements A and B in � corresponding to � and  , respectively, such that

aC; bC; a�; b�
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lie along @1� in that cyclic order. Let 0< ˛n < � � �< ˛1 and 0< ˇn < � � �< ˇ1 be
the eigenvalues of �.A/ and �.B/, respectively. By Theorem 1.1(1), we know that for
all k D 0; : : : ; n� 2,

˛1

˛n
>

ˇkC1

ˇkC1�ˇkC2

;

which implies that
ˇkC2

ˇkC1

< 1�
˛n

˛1

:

Taking the product over all k D 0; : : : ; n� 2, we get

˛n

˛1

C

�
ˇn

ˇ1

�1=.n�1/

< 1:

Since l�.�/D log.˛1=˛n/ and l�. /D log.ˇ1=ˇn/, the above inequality gives us (1).

(2) By Theorem 1.1(2), we know that there is some nonnegative integer u� i.�;  /

such that for any k D 0; : : : ; n� 2, we have

˛n

˛1

<

�
1�

ˇkC2

ˇkC1

�u�
1�

ˇn�k

ˇn�k�1

�i.�; /�u

:

In particular, we also have that for any k D 0; : : : ; n� 2,

˛n

˛1

<

�
1�

ˇkC2

ˇkC1

�i.�; /�u�
1�

ˇn�k

ˇn�k�1

�u

;

so we can assume that

˛n

˛1

<

�
1�

ˇkC2

ˇkC1

�u�
1�

ˇn�k

ˇn�k�1

�v
for some nonnegative integers u and v such that u � v and uC v D i.�;  /. This
implies that

˛n

˛1

<

�
1�

ˇkC2

ˇkC1

�u�
1�

ˇn

ˇ1

�v
;

which we can rewrite as

ˇkC2

ˇkC1

< 1�
.˛n=˛1/

1=u

.1�ˇn=ˇ1/v=u
:

By taking the product of the above inequality over k D 0; : : : ; n� 2, we have�
ˇn

ˇ1

�1=.n�1/

< 1�
.˛n=˛1/

1=u

.1�ˇn=ˇ1/v=u
;
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which can be rewritten as

˛n

˛1

<

�
1�

�
ˇn

ˇ1

�1=.n�1/�u�
1�

ˇn

ˇ1

�v
;

from which (2) follows.

(3) Choose an orientation on �. Since � is nonsimple, there are group elements A

and B corresponding to � such that

aC; bC; a�; b�

lie along @1� in that cyclic order. Let 0< ˛n < � � �< ˛1 and 0< ˇn < � � �< ˇ1 be
the eigenvalues of �.A/ and �.B/, respectively. Note that �.B/ is either conjugate
to �.A/ or �.A/�1 , so ˇn=ˇ1 D ˛n=˛1 . Hence, the same computation as the proof
of (1) then yields the inequality

˛n

˛1

C

�
˛n

˛1

�1=.n�1/

< 1;

which is equivalent to

(3-1)
�
1�

˛n

˛1

�n�1

�
˛n

˛1

> 0:

Consider the polynomial Pn.x/D xn�1C x � 1. Note that for n � 2, we have that
Pn.x/ is strictly increasing on the interval Œ0; 1�, Pn.0/D�1 and Pn.1/D 1. Hence,
Pn has a unique zero in the interval .0; 1/, which we denote by xn . It then follows that

fx 2 Œ0; 1� W Pn.x/ > 0g D .xn; 1�:

Also, observe that

Pn

�
1�

˛n

˛1

�
D

�
1�

˛n

˛1

�n�1

�
˛n

˛1

and 0 < 1�˛n=˛1 < 1. Since ˛n=˛1 satisfies the inequality (3-1), we have

xn < 1�
˛n

˛1

< 1:

This implies that

l�.�/D log
�
˛1

˛n

�
> ın WD � log.1�xn/:

An easy consequence of Corollary 1.2 is the following.
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Corollary 3.1 For any n � 2 and any � 2 Hitn.S/, there are at most 3g� 3 closed
curves in S of �–length at most ın .

In the case of T .S/, one can replace the number ı2 D log.2/ with 4 � sinh�1.1/; see
Buser [5, Theorem 4.2.2].

Proof By Corollary 1.2(1), if � and  are closed curves in S such that i.�;  /¤ 0,
then l�.�/ and l�. / cannot both be smaller than ın . Moreover, Corollary 1.2(3) tells
us that any closed curve of �–length less than ın has to be simple. Thus, the set of
closed curves of �–length less than ın has to be a pairwise disjoint collection of simple
closed curves, so the size of this collection is at most 3g� 3.

Let �M be the PSL.n;R/ symmetric space, and let d �M be the distance function given
by the Riemannian metric on �M . It is well known that for any Z 2 � , the translation
length of �.Z/, namely inffd �M .o; �.Z/ � o/ W o 2 �M g, is

cn

r
nP

iD1

.log�i/
2

for some positive constant cn depending only on n. Here, 0 < �n < � � � < �1 are
the eigenvalues of �.Z/. (See Chapter II.10 of Bridson and Haefliger [3].) For our
purposes, we normalize the metric on �M so that cn D

p
2, ie so that the image of the

totally geodesic embedding of H2 in �M induced by �nW PSL.2;R/! PSL.n;R/ has
sectional curvature �6=.n.n�1/.nC1//. Then for any discrete, faithful representation
�W � ! PSL.n;R/, and for any rectifiable closed curve ! in M WD �.�/n �M , let
lM .!/ be the length of ! in the Riemannian metric on M .

In the case when � 2 Hitn.S/, we can use Corollary 1.2, to obtain a relationship
between the lengths of curves in the quotient locally symmetric space M .

Corollary 1.4 Let � and  be two essential closed curves in S and let X and Y be
elements in � corresponding to � and  , respectively. For any � 2 Hitn.S/, let �0

and  0 be two closed curves in �.�/n �M DWM that correspond to X;Y 2� D�1.M /,
respectively. Then the statements in Corollary 1.2 hold, with l�.�/ and l�. / replaced
by lM .�0/ and lM . 0/, respectively.

Proof Pick any Z 2 � n fidg, and let ! in S and !0 in M be closed curves cor-
responding to Z . Observe then that the translation length of �.Z/ in �M is a lower
bound for lM .!0/.

Also, since

2

nX
iD1

x2
i � .x1�xn/

2
D .x1Cxn/

2
C 2.x2

2 C � � �Cx2
n�1/� 0;
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we have that

.x1�xn/
2
� 2

nX
iD1

x2
i :

This allows us to compute

l�.!/D log
�
�1

�n

�
�

r
2

nP
iD1

.log�i/
2
� lM .!0/;

where 0< �n < � � �< �1 are the eigenvalues of �.Z/.

Let f W S !M WD �.�/n �M be a �1 –injective map such that f .�/ and f . / are
rectifiable curves in the Riemannian metric on M . It then follows from Corollary 1.4
that the statements in Corollary 1.2 hold, with l�.�/ and l�. / replaced with lM .f .�//

and lM .f . //, respectively. In particular, we have a collar lemma for the image of the
harmonic maps corresponding to Hitchin representations that were given by Corlette [9].

Corollary 1.2 also allow us to deduce consequences that are similar to Corollary 1.4,
but with the Hilbert metric on the symmetric space instead of the Riemannian one. The
symmetric space �M can be given a Hilbert metric in the following way. Let S.n;R/
be the space of symmetric n� n matrices with real entries and let P .n;R/ be the set
of positive-definite matrices in S.n;R/. Let P .P / and P .S/ be the projectivizations
of P .n;R/ and S.n;R/, respectively, and observe that P .P / is a properly convex
domain in P .S/'RPN�1 , where N D 1

2
.n.nC 1//. This allows us to equip P .P /

with a Hilbert metric.

Moreover, we can define a PSL.n;R/–action on P .S/ by g �A WD gAgT for any
g 2 PSL.n;R/ and any A 2 P .S/. Note that this action preserves the projective
structure on P .S/, and also preserves P .P /. In fact, PSL.n;R/ acts transitively
on P .P /, and the stabilizer of the projective class of the identity matrix in P .P / is
PSO.n/, so the symmetric space �M can be identified with P .P /. This equips �M
with a Hilbert metric. Denote �M equipped with the Hilbert metric by �M 0 , and for any
discrete, faithful representation �W �! PSL.n;R/, let lM 0 be the length function on
M 0 WD �.�/n �M 0 induced by the Hilbert metric. Corollary 1.2 then also implies the
following corollary.

Corollary 3.2 Let � and  be two essential closed curves in S and let X and Y be
elements in � corresponding to � and  , respectively. For any � 2 Hitn.S/, let �0

and  0 be two closed curves in M 0 that correspond to X;Y 2�D�1.M
0/, respectively.

Then the statements in Corollary 1.2 hold, with l�.�/ and l�. / replaced with 1
2
lM 0.�

0/

and 1
2
lM 0.

0/, respectively.
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Proof For any Z 2� nfidg, let 0<�n< � � �<�1 be the eigenvalues of �.Z/. We can
assume without loss of generality that �.Z/ is a diagonal. Let Eij be the n�n matrix
with 1 at position .i; j / and zero everywhere else, and let Bij DEijCEji . Obviously,
fBij gi�j is a basis of S.n;R/DRN , and it is easy to verify that �.Z/�Bij D�i�j Bij .
That means Bij is an eigenvector of �.Z/ with eigenvalue �i�j . Consequently, the
translation length of �.Z/ is

log
�
�2

1

�2
n

�
D 2 log

�
�1

�n

�
I

see Cooper, Long and Tillmann [8, Proposition 2.1]. The corollary follows easily.

As mentioned in the introduction, if we restrict to Hitchin representations that lie in
Hitn.S/0 � Hitn.S/, then we can strengthen Theorem 1.1(2).

Corollary 1.3 Let A and B be elements in � such that aC , bC , a� , b� lie in @1�
in that cyclic order. Let � 2 Hitn.S/0 and let ˛n < � � �< ˛1 and ˇn < � � �< ˇ1 be the
moduli of the eigenvalues of �.A/ and �.B/, respectively. Finally, let � and  be
closed curves on S corresponding to A and B , respectively. If  is a simple closed
curve in S , then for every k D 0; : : : ; n� 2,

˛2
1 >

�
ˇkC1

ˇkC1�ˇkC2

�i.�; /

:

Proof Since �.B/ is a diagonalizable element in PSO.k; k C 1/ or PSp.2k;R/,
we see that ˇkC1 D 1=ˇn�k for k D 0; : : : ; n � 1, and ˛n D 1=˛1 . Apply this to
Theorem 1.1(2).

From this corollary, the same proof as Corollary 1.2(2) allows us to obtain the following
stronger inequality in the case when � 2 Hitn.S/0 .

Corollary 3.3 Let � and  be two essential closed curves in S such that  is simple
and i.�;  /¤ 0. Then for any � 2 Hitn.S/0 ,

1

exp.l�.�//
<

�
1�

1

exp.l�. /=.n� 1//

�i.�; /

:

Our results can be generalized to surfaces with boundaries in the following way. Let S 0

be a connected, oriented, topological surface with boundary, such that the double of S 0

is S , a closed connected, oriented topological surface of genus g � 2. Let � 0 be
the fundamental group of S 0 , and note that by choosing appropriate basepoints in the
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universal covers of S and S 0 , the inclusion S 0 � S induces an inclusion � 0 � � ,
which in turn induces an inclusion @� 0 � @� . In particular, @� 0 inherits a natural
cyclic order from @� .

The inclusion � 0 � � also allows us to define the restriction map

resW Hitn.S/! Xn.S
0/ WD Hom.� 0;PSL.n;R//=PSL.n;R/

by resW Œ�� 7! Œ�j� 0 �. Using this, define the nth Hitchin component of S 0 to be

Hitn.S 0/ WD res.Hitn.S//:

(See the introduction of Labourie and McShane [16] for an alternative definition.)
While Hitn.S 0/ is still topologically a cell, it is no longer a connected component of
Xn.S

0/, so it is properly contained in its closure Hitn.S 0/ in Xn.S
0/.

Corollary 3.4 Theorem 1.1 holds with � replaced with � 0 , Hitn.S/ replaced with
Hitn.S 0/, and the strict inequalities > replaced with weak inequalities �.

Proof For any closed curve  in S , let X 2� be a corresponding group element. First,
note that the moduli of the eigenvalues of �.X / and res.�/.X / agree, so Theorem 1.1
clearly holds for � 2 Hitn.S 0/.

Since ˛n < � � �< ˛1 and ˇn < � � �< ˇ1 on Hitn.S 0/, these moduli of eigenvalues are
still well defined on Hitn.S 0/, and satisfy the weak inequalities ˛n � � � � � ˛1 and
ˇn � � � � � ˇ1 . Furthermore, as functions on Hitn.S 0/, they are continuous. As such,
the inequalities in Theorem 1.1 hold on Hitn.S 0/, with > replaced with �.

3.2 Counterexample for non-Hitchin representations

Note that in our proof, we used very strongly that the representations we consider are
in Hitn.S/ because we used properties of the Frenet curve to obtain our estimates. In
fact, the collar lemma is special to Hitchin representations, and does not hold even on
the space of discrete and faithful representations from � to PSL.n;R/.

To see this, consider the space of conjugacy classes of quasi-Fuchsian representations
from � to PSL.2;C/D PSO.3; 1/C � PSL.4;R/, which is the group of orientation-
preserving isometries of H3 . These are discrete and faithful representations whose
limit set in the Riemann sphere @H3 is a Jordan curve. It is well known that each
quasi-Fuchsian representation � induces a convex cocompact hyperbolic structure
on the three-manifold S � I . Also, for any nonidentity element X in � , the closed
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geodesic  in S�I (equipped with the hyperbolic metric induced by �) corresponding
to X has �–length

l�. /D log
�
�1

�4

�
;

where �1 and �4 are the moduli of eigenvalues of �.X / with largest and smallest
modulus, respectively.

It is a theorem of Bers [1, Theorem 1] that the space of quasi-Fuchsian representations
can be naturally identified with T .S/�T . xS/, where xS is S with the opposite orienta-
tion. For any quasi-Fuchsian representation � let .�C; ��/ denote the pair of Fuchsian
representations that corresponds to � , such that �C 2 T .S/ and �� 2 T . xS/. Then for
any essential closed curve  in S , let � be the geodesic representative of  in the
hyperbolic metric on S � I corresponding to � , and let �C and �� be the geodesic
representatives of  in the hyperbolic metrics on S and xS corresponding to �C and �� ,
respectively. By Epstein, Marden and Markovic [10, Theorem 3.1], we know that

l�.�/�minf2 � l�C.�C/; 2 � l��.��/g:

For any pair of simple closed curves � and  , and for any � > 0, let � be a quasi-
Fuchsian representation such that

l�C.��C/ <
1
2
� and l��.��/ <

1
2
�:

Hence, l�.��/ and l�.�/ are both smaller than � . This implies that the analog of
Corollary 1.2 does not hold on the space of discrete and faithful, or even Anosov,
representations from � to PSL.4;R/. (See Guichard and Wienhard [13] for more
background on Anosov representations.)

3.3 Comparison with the classical collar lemma

Let � be a representation in the Fuchsian locus of Hitn.S/ and let h be the corre-
sponding Fuchsian representation in T .S/. Also, let X be a nonidentity element in �
and let  be a curve in S corresponding to X . If ��1 and � are the two eigenvalues
of h.X /, then ��nC1 , ��nC3; : : : ; �n�3 , �n�1 are the n eigenvalues of �.X /. Hence
we can get the lengths

lh. /D 2 log.�/ and l�. /D 2.n� 1/ log.�/:

Since h 2 T .S/, the classical collar lemma holds. In other words, for any pair of
curves � and  in S such that  is simple and i.�;  / > 0, we have

(3-2) I�; .h/ WD sinh
�

1
2
lh.�/

�
sinh

�
1
2
lh. /

�
> 1I
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Figure 5: The upper curve sinh
�

1
2
x
�

sinh
�

1
2
y
�
D 1 and the lower curve

.ex � 1/.ey � 1/D 1

see Buser [5, Corollary 4.1.2]. This inequality is sharp, in the sense that for any S ,
there are simple curves � and  in S and a sequence of Fuchsian representations fhig

such that I�; .hi/ converges to 1. For more details, refer to Section 6 of Matelski [17].

On the other hand, Corollary 1.2(1), specialized to the nD 2 case, is the inequality

.elh.�/� 1/.elh. /� 1/ > 1:

This is weaker than the inequality (3-2) because

ex
� 1> 1

2
e�x=2.ex

� 1/D sinh
�

1
2
x
�

for every x > 0; see Figure 5. Moreover, we are unable to show that the inequality
(3-2) fails in Hitn.S/ for any n> 2. This led us to conjecture in an earlier version of
this paper, that for any � in Hitn.S/, there is some representation �0 in the Fuchsian
locus of Hitn.S/ such that

l�. /� l�0. / for any  2 �:

This conjecture implies that

sinh
�

l�.�/

2.n� 1/

�
sinh

�
l�. /

2.n� 1/

�
> 1

for any �2Hitn.S/, which is sharp on every Hitn.S/ because it is sharp when restricted
to the Fuchsian locus.

Recently, Tholozan proved (Section 0.4 of [18]) that the conjecture holds in the case
when nD 3. Furthermore, Labourie disproved our conjecture in the case when n� 4.
We will give his argument here.
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Proposition 3.5 (Labourie) When n � 4, there is some � 2 Hitn.S/ such that for
any �0 in the Fuchsian locus of Hitn.S/, there is some closed curve  in S such that
l�. / < l�0. /.

Proof For any closed curve  in S , let L W Hitn.S/! R denote the map given
by L .�/ D l�. /. As before, let Hitn.S/0 be the PSp.2k;R/ or PSO.k; k C 1/

Hitchin components when nD 2k or nD 2kC1, respectively, and recall that l�. /D

2 log�1.�.X // for all � 2 Hitn.S/0 , where X 2 � is a group element corresponding
to  and �1.�.X // is the modulus of eigenvalue of �.X / with largest modulus.
Proposition 10.3 of Bridgeman, Canary, Labourie and Sambarino [2] then implies that
for any � 2 Hitn.S/0 , the set of differentials fdL W  a closed curve in Sg generates
the entire cotangent space of Hitn.S/0 at � .

Observe that if n� 4, then Hitn.S/0 � Hitn.S/ properly contains the Fuchsian locus.
Thus, it is sufficient to prove the proposition on Hitn.S/0 . Suppose for contradiction
that the proposition is false on Hitn.S/0 . Choose a point �0 in the Fuchsian locus,
and take a smooth path �t for t 2 .��; �/ with � > 0, whose nonzero tangent vector
U 2 T�0

Hitn.S/0 is not tangential to the Fuchsian locus. Along the path, choose a
sequence of representations f�ti

g1
iD1

which converges to �0 as i !1 so that ti > 0

for all i .

Since the proposition is false on Hitn.S/0 , there exists the corresponding sequence
of Fuchsian representations �0ti

such that L .�ti
/�L .�

0
ti
/ for any closed curve 

in S . Also, since �ti
converges to �0 , we see that L .�

0
ti
/ is bounded for all  ,

so the sequence f�0ti
g1
iD1

lie in a compact subset of the Fuchsian locus. By picking
subsequence, we can assume without loss of generality that f�0ti

g1
iD1

converges to
some �0

0
in the Fuchsian locus. The continuity of L then implies that L .�0/ �

L .�
0
0
/ for all  , so �0 D �

0
0

because both �0 and �0
0

lie in the Fuchsian locus.

Thus, the sequence f�0ti
g1
iD1

converges to �0 as well. Choose a Riemannian metric on
a neighborhood of �0 in Hitn.S/0 . By taking a further subsequence of f�ti

g1
iD1

, we
can also assume that either one of the following cases hold:

(i) �0ti
D �0 for all i ;

(ii) the unit vectors at �0 that are tangential to the geodesic between �0ti
and �0

converge to some unit vector V ¤ 0 in T�0
Hitn.S/0 that is tangential to the

Fuchsian locus.

If (i) holds, then we have that dL .U /� 0 for all  . On the other hand, if (ii) holds,
then for all closed curves  in S ,
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dL .U /D
d

dt
L .�t /jtD0

D lim
i!1

L .�ti
/�L .�0/

ti

� lim
i!1

L .�
0
ti
/�L .�

0
0
/

ti

D

�
lim

i!1
si

�
� dL .V /

for some sequence of positive numbers fsig
1
iD1

. More precisely, if Vi denotes the
tangent vector whose exponential is �0ti

and kVik is the norm of Vi with respect to
the chosen Riemannian metric, then si D kVik=ti .

Note that if limi!1 si D1, then dL .V /� 0 for all  , which is impossible since
V ¤ 0 is tangential to the Fuchsian locus. Hence, dL .U C sV /� 0 for some s � 0.

In either case, there is some vector W 2 T�0
Hitn.S/0 (possibly the zero vector) that is

tangential to the Fuchsian locus such that dL .U CW /� 0 for all  . Furthermore,
since U CW ¤ 0, the fact that the differentials dL generate the cotangent space of
Hitn.S/0 at �0 implies that dL .U CW / > 0 for some  . By a similar argument,
we can also show that there is some vector W 0 2 T�0

Hitn.S/0 that is tangential to
the Fuchsian locus such that dL .�U CW 0/� 0 for all  , and this inequality holds
strictly for some  .

Adding these two inequalities together gives dL .W C W 0/ � 0 for all  , and
dL .W CW 0/ > 0 for some  . However, this is impossible since W CW 0 is
tangential to the Fuchsian locus.

Note that Labourie’s argument to disprove our conjecture relied very heavily on the
fact that Hitn.S/0 � Hitn.S/ properly contains the Fuchsian locus. There is thus still
hope that the following modified conjecture might be true.

Conjecture 3.6 Let � be a representation in Hitn.S/. Then there is some representa-
tion �0 in Hitn.S/0 such that

l�. /� l�0. /

for any closed curve  in S .

Appendix: Proof of Corollary 1.5

In this appendix, we will prove the properness result stated as Corollary 1.5. We begin
by recalling some results from Zhang [19] that we will need.
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Let P WD f1; : : : ; 3g�3g be an oriented pants decomposition of S , ie a maximal col-
lection of pairwise nonintersecting, pairwise nonhomotopic, homotopically nontrivial,
oriented simple closed curves on S . These curves cut S into 2g� 2 pairs of pants,
which we label by P1; : : : ;P2g�2 , and also gives us a real analytic diffeomorphism

Hitn.S/! .RC/.3g�3/.n�1/
�R.3g�3/.n�1/

�R.2g�2/.n�1/.n�2/;

which one should think of as a generalization of the Fenchel–Nielsen coordinates on
the Teichmüller space T .S/; see [19, Proposition 3.5].

The first .3g� 3/.n� 1/ positive numbers are called the boundary invariants. For any
� 2 Hitn.S/, these are the numbers

ˇj ;k WD log
�
�k.�.Xj //

�kC1.�.Xj //

�
;

where k D 1; : : : ; n� 1 and j D 1; : : : ; 3g� 3. Here, Xj 2 � is a group element that
corresponds to j , and �1.�.Xj //; : : : ; �n.�.Xj // are the moduli of eigenvalues of
�.Xj / arranged in decreasing order. Note that each of the 3g � 3 curves in P are
associated n� 1 of these numbers. They capture the eigenvalue data of the holonomy
about each of the curves in P , and are a generalization of the Fenchel–Nielsen length
coordinates.

The next .3g�3/.n�1/ real numbers are called the gluing parameters, and these are also
associated to the curves in P . Informally, the n�1 gluing parameters associated to each
curve in P is the data specifying how one should “glue” the representations on adjacent
pair of pants together along a common boundary component. Hence, these generalize
the Fenchel–Nielsen twist coordinates. Just like the Fenchel–Nielsen twist coordinates,
to specify these gluing parameters formally, we need to make additional topological
choices to define what is “zero gluing”. In this case, this additional topological choice
we make is a pair of distinct points aj ; bj 2 @1� so that x�j , aj , xCj , bj lie in @1�
in that cyclic order.

For simplicity, we will fix such a choice once and for all in the following way. Let
P1 and P2 be the two pairs of pants that have j as a common boundary component
(it is possible for P1 D P2 ). For i D 1; 2, choose Ai , Bi and Ci to be elements
in � corresponding the boundary components of Pi so that Ci � Bi � Ai D id and
A1 D A�1

2
D Xj . Let aj be the repelling fixed point of B1 and bj be the repelling

fixed point of C2 . The gluing parameters are then

gj ;k WD log
�
�.Pk;1;Pk;2;Pk;4;Pk;3/

�
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for k D 1; : : : ; n�1, where �W @1�!F.Rn/ is the Frenet curve corresponding to � ,
and

Pk;1 WD �.x
C
j /

.k/
C �.x�j /

.n�k�1/;

Pk;2 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.aj /

.1/;

Pk;3 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k/;

Pk;4 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.bj /

.1/

are four hyperplanes in Rn that intersect at Mk WD �.x
C
j /

.k�1/C �.x�j /
.n�k�1/ .

Finally, the remaining .2g � 2/.n � 1/.n � 2/ real numbers are called the internal
parameters, and are associated to the pairs of pants P1; : : : ;P2g�2 . To each Pj ,
we associate .n � 1/.n � 2/ internal parameters, and they parametrize the Hitchin
representations on a pair of pants after the boundary invariants are fixed. These are
defined in great detail in Section 3 of [19]. For our purposes though, we do not need to
know what these parameters are, but only the following proposition.

Proposition A.1 Fix a pair of pants Pj0
given by P . Let f�ig be a sequence in

Hitn.S/ such that

� the boundary invariants corresponding to @Pj0
remain bounded away from 0 and

1 along f�ig, and

� some internal parameter corresponding to Pj0
grows to 1 or �1 along f�ig.

Let  be a closed curve in S with the property that any closed curve homotopic to 
has nonempty intersection with Pj0

. Then limi!1 l�i
. /D1.

Proof The proof of this proposition is a slight modification of the proof of the main
theorem given in Section 5.1 of [19]. In Section 3.2 of [19], there is a description of a
particular way to cut each Pj into two ideal triangles that share all three edges. Doing
this over all Pj gives us 6g� 6 edges. Here, we view each of these edges e D Œa; b�

as a � –orbit of a pair of distinct points a; b 2 @1� .

Let � 2 Hitn.S/ and � the corresponding Frenet curve. As was done in Section 4.4
of [19], one can associate a particular positive number KŒa; b� to each of these 6g� 6

edges Œa; b�. Using this, define

K.�; j0/ WDminfKŒa; b� W Œa; b�� Pj0
g:

The same argument as given in Section 5.1 of [19] proves that

lim
i!1

K.�i ; j0/D1:
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Let X 2 � be a group element corresponding to  . Let e D Œa; b� be an edge
in Pj0

such that there is a lift ze D fa; bg with the property that x�, a, xC, b lie in
@1� in that cyclic order. Such an edge exists by the hypothesis we imposed on  .
For any p D 0; : : : ; n� 1, one can define subsegments cp.ze/ of the projective line
P
�
�.x�/.1/ C �.xC/.1/

�
� RPn�1 associated to each lift ze D fa; bg of e D Œa; b�.

These are called the crossing .p/–subsegments; see Definition 4.7 of [19]. Using the
cross ratio, we can define a notion of length for these subsegments, which we denote
by l.cp.ze//; see Definition 4.8 of [19].

By the proof of [19, Proposition 4.16], we see that

1

n

n�1X
pD0

l.cp.ze//�K.�; j0/:

Furthermore, by Lemmas 4.9 and 4.10 of [19], we have

l�. /� l.cp.ze//

for all p D 0; : : : ; n� 1, which allows us to conclude that

l�. /�K.�; j0/:

Combining this with the fact that limi!1K.�i ; j0/D1 gives the proposition.

With the above proposition, we are ready to prove Corollary 1.5. Let f�ig be a
sequence in Hitn.S/, let C WD f1; : : : ; kg satisfy the hypothesis of Corollary 1.5 and
let P WD f1; : : : ; 3g�3g � C be a pants decomposition. Observe that the hypothesis
on C ensures the following:

� For any  2 P , there is some  0 2 C that intersects  transversely.
� For each pair of pants P given by P , there is some  2 C such that any closed

curve homotopic to  has nonempty intersection with P .

The pants decomposition P then gives us a parametrization of Hitn.S/ as described
above. We will prove Corollary 1.5 in the following steps.

(1) If there is some boundary invariant ˇj ;k such that limi!1 ˇj ;k.�i/ D 1,
then limi!1 l�i

.j /D1.

(2) If there is some boundary invariant ˇj ;k such that limi!1 ˇj ;k.�i/D 0, then
limi!1 l�i

. /D1 for any closed curve  that intersects j transversely.

(3) If all the boundary invariants remain bounded away from 0 and 1 and
some internal parameter associated to a pair of pants P grows to ˙1, then
limi!1 l�i

. /D1 for any closed curve  with the property that any closed
curve homotopic to  has nonempty intersection with P .
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(4) If all the boundary invariants remain bounded away from 0 and 1 and there
is some gluing parameter gj ;k such that limi!1 gj ;k.�i/ D ˙1, then
limi!1 l�i

. /D1 for any  that intersects j transversely.

Note that together, the four statements above prove Corollary 1.5. Statement (1) is
obvious because

l�.j /D

n�1X
kD1

ˇj ;k.�/;

and all the boundary invariants are positive. Also, statement (3) is a restatement of
Proposition A.1, and statement (2) is an immediate consequence of Theorem 1.1(1),
which is a main result in this paper. The rest of this appendix will be the proof of
statement (4).

Let Xj ;X 2 � correspond to j and  , respectively, such that x�j , x�, xCj , xC lie
in @1� in that cyclic order. We previously chose a pair of points aj ; bj 2 @1� so
that x�j , aj , xCj , bj lie in @1� in that cyclic order in order to define the gluing
parameters gj ;k associated to j . If we choose X l

j � aj and X m
j � bj in place of aj

and bj , we get another collection of gluing parameters, which we denote by gl;m
j ;k

.
The next lemma explains the relationship between gj ;k D g0;0

j ;k
and gl;m

j ;k
. Its proof

is an easy computation which we omit.

Lemma A.2 Let � 2 Hitn.S/, and let �1; : : : ; �n be the moduli of eigenvalues of
�.Xj / arranged in decreasing order. For any integers l and m, we have

g
l;m
j ;k

.�/D .l �m/ log
�
�k

�kC1

�
Cgj ;k.�/:

In particular, when the boundary invariants corresponding to j are bounded away
from 0 and 1 along a sequence of representations f�ig in Hitn.S/, then we have
limi!1 gj ;k.�i/D˙1 if and only if limi!1 gl;m

j ;k
.�i/D˙1. Statement (4) then

follows immediately from this observation and the following proposition.

Proposition A.3 Let � 2Hitn.S/ and let j ,  , x�j , xCj , x�, xC, aj , bj be as above.
Let l and m be integers such that x�j , X l�1

j � aj , x�, X l
j � aj , xCj , X mC1

j � bj , xC,
X m

j � bj lie in @1� in that cyclic order. Then

3l�. /� g
l�1;mC1
j ;k

.�/ and 3l�. /� �g
l;m
j ;k

.�/

for all k D 1; : : : ; n� 1.
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Proof The technique used in this proof is the same as that used in the proof of [19,
Lemma 4.18]. For any k D 1; : : : ; n� 1, let

Pk;0 WD �.x
C
j /

.k/
C �.x�j /

.n�k�1/;

Pk;1 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.x�/.1/;

Pk;2 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.X l�1

j � aj /
.1/;

P 0k;2 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.X l

j � aj /
.1/;

Pk;3 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k/;

Pk;4 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.X m

j � bj /
.1/;

P 0k;4 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.X mC1

j � bj /
.1/;

Pk;5 WD �.x
C
j /

.k�1/
C �.x�j /

.n�k�1/
C �.xC/.1/:

Also, for all i , let

L0k;i WD P 0k;i \
�
�.x�/.1/C �.xC/.1/

�
;

Lk;i WD Pk;i \
�
�.x�/.1/C �.xC/.1/

�
;

and let

Lk;aj WD
�
�.X l

j � aj /
.k�1/

C �.X l�1
j � aj /

.n�k/
�
\
�
�.x�/.1/C �.xC/.1/

�
;

Lk;bj WD
�
�.X mC1

j � bj /
.k�1/

C �.X m
j � bj /

.n�k/
�
\
�
�.x�/.1/C �.xC/.1/

�
:

It follows from [19, Lemma 2.5] that

�.x�/.1/; Lk;aj ; Lk;2; Lk;3; Lk;4; Lk;bj ; �.x
C/.1/

lie in the projective line �.x�/.1/ C �.xC/.1/ in that cyclic order. Also, by [19,
Lemma 4.11], we know

3l�. /� log
�
�.x�/.1/;Lk;aj ;Lk;bj ; �.x

C/.1/
�
;

which implies that

3l�. /� log
�
�.x�/.1/;Lk;2;Lk;3; �.x

C/.1/
�
;

3l�. /� log
�
�.x�/.1/;Lk;3;Lk;4; �.x

C/.1/
�
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by Lemma 2.9. Using Lemmas 2.8 and 2.6, we can also deduce that�
�.x�/.1/;Lk;2;Lk;3; �.x

C/.1/
�
D
�
�.x�/.1/;Lk;2;Lk;3; �.x

C/.1/
�
Mk

D .Pk;1;Pk;2;Pk;3;Pk;5/

� .Pk;0;Pk;2;Pk;3;P
0
k;4/

D 1� .Pk;0;Pk;2;P
0
k;4;Pk;3/

D 1C e
g

l�1;mC1

j ;k

� e
g

l�1;mC1

j ;k

and �
�.x�/.1/;Lk;3;Lk;4; �.x

C/.1/
�
D
�
�.x�/.1/;Lk;3;Lk;4; �.x

C/.1/
�
Mk

D .Pk;1;Pk;3;Pk;4;Pk;5/

� .P 0k;2;Pk;3;Pk;4;Pk;0/

D 1�
1

.Pk;0;P
0
k;2
;Pk;4;Pk;3/

D 1C e
�g

l;m

j ;k

� e
�g

l;m

j ;k ;

where Mk WD �.x
C
j /

.k�1/C �.x�j /
.n�k�1/ .
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Top-dimensional quasiflats in CAT(0) cube complexes

JINGYIN HUANG

We show that every n–quasiflat in an n–dimensional CAT.0/ cube complex is at
finite Hausdorff distance from a finite union of n–dimensional orthants. Then we
introduce a class of cube complexes, called weakly special cube complexes, and
show that quasi-isometries between their universal covers preserve top-dimensional
flats. This is the foundational result towards the quasi-isometric classification of
right-angled Artin groups with finite outer automorphism group.

Some of our arguments also extend to CAT.0/ spaces of finite geometric dimension.
In particular, we give a short proof of the fact that a top-dimensional quasiflat in
a Euclidean building is Hausdorff close to a finite union of Weyl cones, which
was previously established by Kleiner and Leeb (1997), Eskin and Farb (1997) and
Wortman (2006) by different methods.

20F67; 20F65, 20F69

1 Introduction

1.1 Summary of results

A quasiflat of dimension d in a metric space X is a quasi-isometric embedding
�W Ed !X , ie there exist positive constants L;A such that for all x;y 2 Ed ,

L�1d.x;y/�A� d.�.x/; �.y//�Ld.x;y/CA:

Top-dimensional (or maximal) flats and quasiflats in spaces of higher rank are analogues
of geodesics and quasigeodesics in Gromov hyperbolic spaces, which play a key role
in understanding the large scale geometry of these spaces. In particular, several quasi-
isometric rigidity results were established on the study of such flats or quasiflats. Here
is a list of examples:
� Euclidean buildings and symmetric spaces of noncompact type; see Mostow [34],

Kleiner and Leeb [30], Eskin and Farb [17], Kramer and Weiss [32].
� Universal covers of certain Haken manifolds (see Kapovich and Leeb [27]);

higher-dimensional graph manifolds (see Frigerio, Lafont and Sisto [18]); two-
dimensional tree groups and their higher dimensional analogues (see Behrstock,
Januszkiewicz and Neumann [7; 5].
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� CAT.0/ 2–complexes; see Bestvina, Kleiner and Sageev [9], with applications to
the quasi-isometric rigidity of atomic right-angled Artin groups in their paper [8].

� Flats generated by Dehn twists in mapping class groups; see Behrstock, Kleiner,
Minsky and Mosher [6].

In this paper, we will mainly focus on top-dimensional quasiflats and flats in CAT.0/
cube complexes. All cube complexes in this paper will be finite-dimensional. Our first
main result shows how the cubical structure interacts with quasiflats.

Theorem 1-1 If X is a CAT.0/ cube complex of dimension n, then for every n–
quasiflat Q in X , there is a finite collection O1; : : : ;Ok of n–dimensional orthant
subcomplexes in X such that

dH

�
Q;

k[
iD1

Ok

�
<1;

where dH denotes the Hausdorff distance.

An orthant O of X is a convex subset which is isometric to the Cartesian product of
finitely many half-lines R�0 . If O is both a subcomplex and an orthant, then O is called
an orthant subcomplex. We caution the reader that the definition of orthant subcomplex
here is slightly different from other places, ie we require an orthant subcomplex to be
convex with respect to the CAT.0/ metric.

The 2–dimensional case of Theorem 1-1 was proved in [9]. We will use this theorem as
one of the main ingredients to study the coarse geometry of right-angled Artin groups
(see Corollary 1-4 below and the remarks after). Also note that recently Behrstock,
Hagen, and Sisto have obtained a quasiflat theorem of quite a different flavor in [4].
Their result does not imply our result and vice versa.

Based on Theorem 1-1, we study how the top-dimensional flats behave under quasi-
isometries. In general, quasi-isometries between CAT.0/ complexes of the same
dimension do not necessarily preserve top dimension flats up to finite Hausdorff
distance, even if the underlying spaces are cocompact. However, motivated by Haglund
and Wise [20], we can define a large class of cube complexes such that top-dimensional
flats behave nicely with respect to quasi-isometries between universal covers of these
complexes. Our class contains all compact nonpositively curved special cube complexes
up to finite cover [20, Proposition 3.10].

Definition 1-2 A cube complex W is weakly special if and only if it has the following
properties:

Geometry & Topology, Volume 21 (2017)
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(1) W is nonpositively curved.

(2) No hyperplane self-osculates or self-intersects.

The notions of self-osculation and self-intersection were introduced in [20, Defini-
tion 3.1].

Theorem 1-3 Let W 0
1

and W 0
2

be two compact weakly special cube complexes with
dim.W 0

1
/ D dim.W 0

2
/ D n, and let W1 and W2 be the universal covers of W 0

1
and

W 0
2

, respectively. If f W W1 ! W2 is an .L;A/–quasi-isometry, then there exists a
constant C D C.L;A/ such that for any top-dimensional flat F �W1 , there exists a
top-dimensional flat F 0 �W2 with dH .f .F /;F

0/ < C .

We now apply this result to right-angled Artin groups (RAAGs). Recall that for every
finite simplicial graph � with its vertex set denoted by fvigi2I , one can define a group
using the following presentation:

hfvigi2I j Œvi ; vj �D 1 if vi and vj are adjacenti:

This is called the right-angled Artin group with defining graph � , and we denote it by
G.�/. Each G.�/ can be realized as the fundamental group of a nonpositively curved
cube complex xX .�/, which is called the Salvetti complex (see Charney [13] for a
precise definition). The 2–skeleton of the Salvetti complex is the usual presentation
complex for G.�/. The universal cover of xX .�/ is a CAT.0/ cube complex, which
we denote by X.�/.

Corollary 1-4 Let �1 , �2 be finite simplicial graphs, and let �W X.�1/!X.�2/ be
an .L;A/–quasi-isometry. Then:

(1) dim.X.�1//D dim.X.�2//.

(2) There is a constant D D D.L;A/ such that for any top-dimensional flat F1

in X.�1/, we can find a flat F2 in X.�2/ such that dH .�.F1/;F2/ <D .

This is the foundation for a series of work on quasi-isometric classification and rigidity
of RAAGs by the author and Kleiner [21; 22; 24; 23].

Remark We could also use Theorem 1-3 to obtain an analogous statement for quasi-
isometries between the Davis complexes of certain right-angled Coxeter groups, but in
general the dimensions of maximal flats in a Davis complex are strictly smaller than the
dimension of complex itself, so we need extra condition on the right-angled Coxeter
groups; see Corollary 5-18 for a precise statement.

Geometry & Topology, Volume 21 (2017)
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Corollary 1-4 implies that � maps chains of top-dimensional flats to chains of top-
dimensional flats, and this gives rise to several quasi-isometry invariants for RAAGs.
More precisely, we consider a graph Gd .�/ where the vertices are in 1–1 correspondence
to top-dimensional flats in X.�/ and two vertices are connected by an edge if and
only if the coarse intersection of the corresponding flats has dimension � d . The
connectedness of Gd .�/ can be read off from � , which gives us the desired invariants.

Definition 1-5 Let d � 1 be an integer. Let � be a finite simplicial graph and let
F.�/ be the flag complex that has � as its 1–skeleton. � has property .Pd / if and
only if:

(1) Any two top-dimensional simplices �1 and �2 in F.�/ are connected by a
.d�1/–gallery.

(2) For any vertex v 2 F.�/, there is a top-dimensional simplex �� F.�/ such
that � contains at least d vertices that are adjacent to v .

A sequence of n–dimensional simplices f�ig
p
iD1

in F.�/ is a k –gallery if �i\�iC1

contains a k –dimensional simplex for 1� i � p� 1.

Theorem 1-6 Gd .�/ is connected if and only if � has property .Pd /. In particular,
for any d � 1, property .Pd / is a quasi-isometry invariant for RAAGs.

Remark Another interesting fact in the case d D 1 is that one can tell whether �
admits a nontrivial join decomposition by looking at the diameter of G1.�/. This
basically follows from the argument in Dani and Thomas [14]. See Theorem 5-30 for
a precise statement. Thus in the case of X.�/, one can determine whether the space
splits as a product by looking at the intersection pattern of top-dimensional flats. We
ask whether this is true in general: if Z is a cocompact geodesically complete CAT.0/
space that has n–flats but not .nC1/–flats, can one determine whether Z splits as a
product of two unbounded CAT.0/ spaces by looking at the intersection pattern of
n–flats in Z?

Actually, a large portion of our discussion generalizes to n–dimensional quasiflats in
CAT.0/ spaces of geometric dimension D n (the notion of geometric dimension and
its relation to other notions of dimension are discussed in Kleiner [28]). This will be
discussed in the appendix and see Theorem A-18 and Theorem A-19 for a summary.

In particular, this leads to a short proof of the following result, which was previously
established in Kleiner and Leeb [30], Eskin and Farb [17], and Wortman [37] by
different methods, and it is one of the main ingredients in proving quasi-isometric
rigidity for Euclidean buildings.

Geometry & Topology, Volume 21 (2017)
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Theorem 1-7 Let Y be a Euclidean building of rank n, and let Q � Y be an n–
quasiflat. Then there exist finitely many Weyl cones fWig

h
iD1

such that

dH

�
Q;

h[
iD1

Wi

�
<1:

On the way to Theorem 1-7, we also give a more accessible proof of the following
weaker version of one of the main results in Kleiner and Lang [29].

Theorem 1-8 Let qW Y ! Y 0 be a quasi-isometric embedding, where Y and Y 0

are CAT.0/ spaces of geometric dimension � n. Then q induces a monomorphism
q�W Hn�1.@T Y /!Hn�1.@T Y 0/. If q is a quasi-isometry, then q� is an isomorphism.

Here @T Y and @T Y 0 denote the Tits boundary of Y and Y 0 respectively.

1.2 Sketch of proofs

1.2.1 Proof of Theorems 1-1 and 1-7 The proof of Theorem 1-1 has five steps, as
below. The first one follows Bestvina, Kleiner and Sageev [9] closely, but the others
are different, since part of the argument in [9] depends heavily on special features of
dimension 2, and does not generalize to the n–dimensional case.

Let X be a CAT.0/ piecewise Euclidean polyhedral complex with dim.X /D n, and
let QW En!X be a top-dimensional quasiflat in X .

Step 1 Following [9], one can replace the top-dimensional quasiflat, which usually
contains local wiggles, by a minimizing object which is more rigid.

More precisely, let us assume without of loss of generality that Q is a continuous
quasi-isometric embedding. Let ŒEn� be the fundamental class in the nth locally finite
homology group of En and let Œ� �DQ�.ŒEn�/. Let S be the support set (Definition 3-1)
of Œ� �. It turns out that S has nice local property (it is a subcomplex with geodesic
extension property) and asymptotic property (it looks like a cone from far away).
Moreover, dH .S;Q/ <1.

In the next few steps, we study the structure of S by looking at its “boundary”.

Recall that X has a Tits boundary @T X , whose points are asymptotic classes of
geodesic rays in X , and the asymptotic angle between two geodesic rays induces a
metric on @T X . See Section 2.2 for a precise definition. We define the boundary of S ,
denoted @T S , to be the subset of @T X corresponding to geodesic rays inside S .

Geometry & Topology, Volume 21 (2017)
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Step 2 We produce a collection of orthants in X from S . More precisely, we find an
embedded simplicial complex K � @T X such that @T S �K . Moreover, K is made
of right-angled spherical simplices, each of which is the boundary of an isometrically
embedded orthant in X . This step depends on the cubical structure of X , and is
discussed in Section 4.1.

Step 3 We show @T S is actually a cycle. Namely, it is the “boundary cycle at infinity”
of the homology class Œ� �. This step does not depend on the cubical structure of X

and is actually true in greater generality by the much earlier, but still unpublished work
of Kleiner and Lang [29]. However, their paper was based on metric current theory.
Under the assumption of Theorem 1-1, we are able to give a self-contained account
which only requires homology theory; see Section 4.2.

Step 4 We deduce from the previous two steps that @T S is a cycle made of .n�1/–
dimensional all-right spherical simplices. Moreover, each simplex is the boundary of
an orthant in X .

Step 5 We finish the proof by showing S is Hausdorff close to the union of these
orthants. See Section 4.3 for the last two steps.

If X is a Euclidean building, then it is already clear that the cycle at infinity can be
represented by a cellular cycle, since the Tits boundary is a polyhedral complex (a
spherical building). The problem is that X itself may not be a polyhedral complex.
There are several ways to get around this point. Here we deal with it by generalizing
several results of [9] to CAT.0/ spaces of finite geometric dimension, which is of
independent interest.

1.2.2 Proof of Theorem 1-3 Let W1 and W2 be the universal covers of two weakly
special cube complexes. We also assume dim.W1/D dim.W2/D n. Our starting point
is similar to the treatment in Kleiner and Leeb [30] and Bestvina, Kleiner and Sageev [8].
Let KQ.Wi/ be the lattice generated by finite unions, coarse intersections and coarse
subtractions of top-dimensional quasiflats in Wi , modulo finite Hausdorff distance.
Any quasi-isometry qW W1!W2 will induce a bijection q]W KQ.W1/! KQ.W2/.

It suffices to study the combinatorial structure of KQ.Wi/. By Theorem 1-1, each
element ŒA� 2 KQ.Wi/ is made of a union of top-dimensional orthants, together with
several lower dimensional objects. We denote the number of top-dimensional orthants
in ŒA� by jŒA�j. ŒA� is essential if jŒA�j > 0, and ŒA� is minimal essential if for any
ŒB� 2 KQ.Wi/ with ŒB� � ŒA� (ie B is coarsely contained in A) and ŒB�¤ ŒA�, we
have jŒB�j D 0.

It suffices to study the minimal essential elements of KQ.Wi/, since every element
in KQ.Wi/ can be decomposed into minimal essential elements together with several
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lower dimensional objects. In the case of universal covers of special cube complexes,
these elements have nice characterizations and behave nicely with respect to quasi-
isometries:

Theorem 1-9 If ŒA� 2 KQ.Wi/ is minimal essential, then there exists a convex
subcomplex K �Wi which is isometric to .R�0/

k �Rn�k such that ŒK�D ŒA�.

Theorem 1-10 jq].ŒA�/j D jŒA�j for any minimal essential element ŒA� 2 KQ.W1/.

Theorem 1-3 essentially follows from the above two results.

1.3 Organization of the paper

In Section 2 we will recall several basic facts about CAT.�/ spaces and CAT.0/ cube
complexes. We also collect several technical lemmas in this section, which will be
used later.

In Section 3 we will review the discussion in [9] which will enable us to replace the
top-dimensional quasiflat by the support set of the corresponding homology class. In
Section 4 we will study the geometry of this support set and prove Theorem 1-1. In
Sections 5.1 and 5.2, we look at the behavior of top-dimensional flats in the universal
covers of weakly special cube complexes and prove Theorem 1-3 and Corollary 1-4.
In Section 5.3, we use Corollary 1-4 to establish several quasi-isometric invariants for
RAAGs.

In the appendix, we generalize some results of Sections 3 and 4 to CAT.0/ spaces of
finite geometric dimension and prove Theorem 1-8 and Theorem 1-7.

Acknowledgements This paper is part of the author’s PhD thesis and it was finished
under the supervision of B Kleiner. The author would like to thank B Kleiner for all
the helpful suggestions and stimulating discussions. The author is grateful to B Kleiner
and U Lang for sharing the preprint [29], which influenced several ideas in this paper.
The author also thanks the referee for extremely helpful comments and clarifications.

2 Preliminaries

We start with some basic notation. The open balls and closed balls of radius r in
a metric space will be denoted by B.p; r/ and xB.p; r/ respectively. The sphere of
radius r centered at p is denoted by S.p; r/. The open r –neighborhood of a set A in
a metric space is denoted by Nr .A/. The diameter of A is denoted by diam.A/.
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For a metric space K , C�K denotes the �–cone over K ; see [11, Definition I.5.6].
When � D 0, we call it the Euclidean cone over K and denote it by CK for simplicity.
All products of metric spaces in this paper will be l2 –products.

The closed and open stars of a vertex v in a polyhedral complex are denoted by st.v/
and st.v/ respectively. We use “�” for the join of two polyhedral complexes and “ı”
for the join of two graphs.

2.1 Mk –polyhedral complexes with finite shapes

In this section, we summarize some results about Mk –polyhedral complexes with
finitely many isometry types of cells from [11, Chapter I.7], see also [10].

An Mk –polyhedral complex is obtained by taking a disjoint union of a collection of
convex polyhedra from the complete simply connected n–dimensional Riemannian
manifolds with constant curvature equal to k (n is not fixed) and gluing them along
isometric faces. The complex is endowed with the quotient metric (see [11, Defini-
tion I.7.37]). Note that the topology induced by the quotient metric may be different
from the topology as a cell complex.

An M1 –polyhedral complex is also called a piecewise spherical complex. If the
complex is made of right-angled spherical simplices, then it is also called an all-right
spherical complex. A M0 –polyhedral complex is also called a piecewise Euclidean
complex.

We are mainly interested in the case where the collection of convex polyhedra we use
to build the complex has only finitely many isometry types. Following [11], we denote
the isometry classes of cells in K by Shape.K/. Note that we can barycentrically
subdivide any Mk –polyhedral complex twice to get an Mk –simplicial complex.

For an Mk –polyhedral complex K and a point x 2 K , we denote the unique open
cell of K which contains x by supp.x/ and the closure of supp.x/ by Supp.x/. We
also denote the geometric link of x in K by Lk.x;K/; see [11, Section I.7.38]. In
this paper, we always truncate the usual length metric on Lk.x;K/ by � . If an �–ball
B.x; �/ around x has the properties that

� B.x; �/ is contained in the open star of x in K ,
� B.x; �/ is isometric to the �–ball centered at the cone point in Ck.Lk.x;K//,

then we call B.x; �/ a cone neighborhood of x .

Theorem 2-1 [11, Theorem I.7.39] Suppose K is an Mk –polyhedral complex with
Shape.K/ finite. Then for every x 2K , there exists a positive number � (depending
on x ) such that B.x; �/ is a cone neighborhood of x .
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Theorem 2-2 [11, Theorem I.7.50] Suppose K is an Mk –polyhedral complex with
Shape.K/ finite. Then K is a complete geodesic metric space.

Lemma 2-3 If K is an Mk –polyhedral complex with Shape.K/ finite, then there
exist positive constants c1 and c2 , which depend on Shape.K/, such that every geodesic
segment in K of length L is contained in a subcomplex which is a union of at most
c1LC c2 closed cells.

This lemma follows from [11, Corollaries I.7.29 and I.7.30].

2.2 CAT.�/ spaces

Please see [11] for an introduction to CAT.�/ spaces.

Let X be a CAT.0/ space and pick x;y 2X . We denote by xy the unique geodesic
segment joining x and y . For any y; z 2 X n fxg, we denote the comparison angle
between xy and xz at x by †x.y; z/ and the Alexandrov angle by †x.y; z/.

The Alexandrov angle induces a distance on the space of germs of geodesics emanating
from x . The completion of this metric space is called the space of directions at x

and is denoted by †xX . The tangent cone at x , denoted TxX , is the Euclidean cone
over †xX . Following [9], we define the logarithmic map logpW X n fxg !†xX by
sending y 2X nfxg to the point in †xX represented by xy . Similarly, one can define
logx W X ! TxX . For a constant speed geodesic l W Œa; b�! X , we denote by l�.t/

and lC.t/ respectively the incoming and outgoing directions in †l.t/X for t 2 Œa; b�.
Note that if X is a CAT.0/ Mk –polyhedral complex with finitely many isometry types
of cells, then †xX is naturally isometric to Lk.x;X /, so we will identify these two
objects.

Let us denote the Tits boundary of X by @T X . We also have a well-defined map
logx W @T X !†xX . For �1; �2 2 @T X , recall that the Tits angle †T .�1; �2/ between
them is defined as

†T .�1; �2/D sup
x2X

†x.�1; �2/:

This induces a metric on @T X , which is called the angular metric. There are several
different ways to define †T .�1; �2/ (see [30, Section 2.3] or [11, Chapter II.9]):

Lemma 2-4 Let X be a complete CAT.0/ space and let �1; �2 be as above. Pick a
base point p 2X , and let l1 and l2 be two unit speed geodesic rays emanating from p

such that li.1/D �i for i D 1; 2. Then:
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(1) †T .�1; �2/D limt;t 0!1†p.l1.t/; l2.t
0//

(2) †T .�1; �2/D limt!1†l1.t/.�1; �2/

(3) 2 sin.†T .�1; �2/=2/D limt!1 d.l1.t/; l2.t//=t

The space .@T X;†T / is CAT.1/; see [11, Chapter II.9]. We denote the Tits cone,
which is the Euclidean cone over @T X , by CT X . Note that CT X is CAT.0/. Denote
the cone point of CT X by o. Then for each p 2X , there is a well-defined 1–Lipschitz
logarithmic map logpW CT X !X sending a geodesic ray o� � CT X (� 2 @T X ) to
the geodesic ray p� � X . This also gives rise to two other 1–Lipschitz logarithmic
maps,

logpW CT X ! TpX; logpW @T X !†pX:

We always have †p.�1; �2/ � †T .�1; �2/, and the following flat sector lemma (see
[30, Section 2.3] or [11, Chapter II.9]) describes when the equality holds.

Lemma 2-5 Let X , �1 , �2 , l1 , l2 and p be as above. If †T .�1; �2/D†p.�1; �2/<� ,
then the convex hull of l1 and l2 in X is isometric to a sector of angle †p.�1; �2/ in
the Euclidean plane.

Any convex subset C �X is also a CAT.0/ space (with the induced metric) and there
is an isometric embedding i W @T C ! @T X . There is a well-defined nearest point
projection �C W X ! C , which has the following properties.

Lemma 2-6 Let X;C and �C be as above. Then:

(1) �C is 1–Lipschitz.

(2) For x 62 C and y 2 C such that y ¤ �C .x/, we have †�C .x/.x;y/�
�
2

.

See [11, Chapter II.2] for a proof of the above lemma.

Two convex subset C1 and C2 are parallel if d. � ;C1/jC2
and d. � ;C2/jC1

are constant.
In this case, the convex hull of C1 and C2 is isometric to C1�Œ0; d.C1;C2/�. Moreover,
�C1
jC2

and �C2
jC1

are isometric inverse to each other; see [30, Section 2.3.3] or [11,
Chapter II.2].

Let Y �X be a closed convex subset. We define the parallel set of Y , denoted by PY ,
to be the union of all convex subsets which are parallel to Y . PY is not a convex set
in general, but when Y has the geodesic extension property, PY is closed and convex.

Now we turn to CAT.1/ spaces. In this paper, CAT.1/ spaces are assumed to have
diameter � � (we truncate the length metric on the space by � ). We say a subset of a
CAT.1/ space is convex if it is � –convex.
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For a CAT.1/ space Y and p 2 Y , K � Y , we define the antipodal set of z in K to
be Ant.p;K/ WD fv 2K j d.v;p/D �g.

Let Y and Z be two metric spaces. Their spherical join, denoted by Y � Z , is
the quotient space of Y �Z �

�
0; �

2

�
under the identifications .y; z1; 0/� .y; z2; 0/

and
�
y1; z;

�
2

�
�
�
y2; z;

�
2

�
. One can write the elements in Y �Z as formal sums

.cos˛/yC .sin˛/z , where ˛ 2
�
0; �

2

�
, y 2 Y and z 2Z . Let

w1 D .cos˛1/y1C .sin˛1/z1; w2 D .cos˛2/y2C .sin˛2/z2:

Their distance in Y �Z is defined to be

dY �Z .w1; w2/D cos˛1 cos˛2 cos
�
d�Y .y1;y2/

�
C sin˛1 sin˛2 sin

�
d�Z .z1; z2/

�
;

where d�
Y

is the metric on Y truncated by � , similarly for d�
Z

.

When Y is only one point, Y �Z is the spherical cone over Z . When Y consists of
two points a distance � from each other, Y �Z is the spherical suspension of Z . The
spherical join of two CAT.1/ spaces is still CAT.1/.

Definition 2-7 (cell structure on the link) Let X be an M� –polyhedral complex and
pick a point x2X . Suppose �x is the unique closed cell which contains x as its interior
point. Then Lk.x;X / is isometric to Lk.x; �x/ � Lk.�x;X / D Sk�1 � Lk.�x;X /,
where k is the dimension of �x . Note that Lk.�x;X / has a natural M1 –polyhedral
complex structure which is induced from the ambient space X .

When X is made of Euclidean rectangles, Lk.�x;X / is an all-right spherical complex.
Moreover, there is a canonical way to triangulate Lk.x; �x/ into an all-right spherical
complex which is isomorphic to an octahedron as simplicial complexes. The vertices of
Lk.x; �x/ come from segments passing through x which are parallel to edges of �x .
Thus Lk.�x;X / has a natural all-right spherical complex structure. In general, there
is no canonical way to triangulate Lk.x; �x/. However, there are still cases when we
want to treat Lk.x;X / as a piecewise spherical complex. In such cases, one can pick
an arbitrary all-right spherical complex structure on Lk.x; �x/.

If X is CAT.0/, then we can identify †xX with Lk.x;X /. In this case, †xX is
understood to be equipped with the above polyhedral complex structure.

Any two points of distance less than � from each other in a CAT.1/ space are joined
by a unique geodesic. A generalization of this fact would be the following.

Lemma 2-8 Let Y be CAT.1/ and let �� Y be an isometrically embedded spherical
k –simplex with its vertices denoted by fvig

k
iD0

. Pick v 2� and v0 2 Y . If d.v0; vi/�

d.v; vi/ for all i , then v D v0 .
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By spherical simplices, we always means those which are not too large, ie those
contained in an open hemisphere.

Proof We proceed by induction. When k D 1, it follows from the uniqueness
of geodesics. In general, since 4 D 41 � 42 , where 41 is spanned by vertices
fvig

k�2
iD0

and 42 is spanned by vk�1 and vk , there exists w 2 42 such that v 2
41 � fwg. Triangle comparison implies d.v0; w/ � d.v; w/, so we can apply the
induction assumption to the .k�1/–simplex 41 � fwg, which implies v D v0 .

Lemma 2-9 Let Y be a CAT.1/ piecewise spherical complex with finitely many
isometry types of cells, and let K� Y be a subcomplex which is a spherical suspension
(in the induced metric). Pick a suspension point v 2K . Then all points in Supp.v/ are
suspension points of K and we have a splitting KDSk�K0 , where kD dim.Supp.v//
and Sk is the standard sphere of dimension k .

Proof By Theorem 2-1, v has a small neighborhood isometric to the �–ball centered
at the cone point in the spherical cone over †vK . Since v is a suspension point,
KDS0�Lk.v;K/DS0�†vK . However, †vKD†v Supp.v/�K0DSk�1�K0 for
some K0 , thus K D Sk �K0 . Also every point in Supp.v/ belongs to the Sk –factor,
hence is a suspension point.

2.3 CAT.0/ cube complexes

All cube complexes in this paper are assumed to be finite-dimensional.

Every cube complex X (a polyhedral complex whose building blocks are cubes) has
a canonical cubical metric: endow each n–cube with the standard metric of the unit
cube in Euclidean n–space En , then glue these cubes together to obtain a piecewise
Euclidean metric on X . This metric is complete and geodesic if X is of finite dimension,
and is CAT.0/ if the link of each vertex is a flag complex [11; 19].

Now we come to the notion of hyperplane, which is the cubical analogue of “track”
introduced in [16]. A hyperplane h in a cube complex X is a subset such that:

(1) h is connected.

(2) For each cube C �X , h\C is either empty or a union of mid-cubes of C .

(3) h is minimal, ie if there exists h0 � h satisfying (1) and (2), then hD h0 .

Recall that a mid-cube of C D Œ0; 1�n is a subset of form f �1
i

�
1
2

�
, where fi is one of

the coordinate functions.
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For each edge e 2X , there exists a unique hyperplane which intersects e in one point.
This is called the hyperplane dual to the edge e . Following [20], we say a hyperplane h

self-intersects if there exists a cube C such that C \h contains at least two different
mid-cubes. A hyperplane h self-osculates if there exist two different edges e1 and e2

such that (1) e1 \ e2 ¤ ∅; (2) e1 and e2 are not consecutive edges in a 2–cube;
(3) ei \ h¤∅ for i D 1; 2.

Let X be a CAT.0/ cube complex, and let e �X be an edge. Denote the hyperplane
dual to e by he . Suppose �eW X ! e Š Œ0; 1� is the CAT.0/ projection. It is known
that:

(1) he is embedded, ie the intersection of he with every cube in X is either a
mid-cube, or an empty set.

(2) he is a convex subset of X , and he with the induced cell structure from X is
also a CAT.0/ cube complex.

(3) he D �
�1
e

�
1
2

�
.

(4) X n he has exactly two connected components; they are called halfspaces.

(5) If Nh is a union of closed cells in X which has nontrivial intersection with he ,
then Nh is a convex subcomplex of X and Nh is isometric to he � Œ0; 1�. We
call Nh the carrier of he . Note that NhDPe , where Pe is the parallel set of e .

We refer to [36] for more information about hyperplanes.

Now we investigate the coarse intersection of convex subcomplexes. The following
lemma adjusts [8, Lemma 2.3] to our cubical setting.

Lemma 2-10 Let X be a CAT.0/ cube complex of dimension n, and let C1 , C2 be
convex subcomplexes. Suppose 4D d.C1;C2/, Y1 D fy 2 C1 j d.y;C2/D4g and
Y2 D fy 2 C2 j d.y;C1/D4g. Then:

(1) Y1 and Y2 are not empty.

(2) Y1 and Y2 are convex; �C1
maps Y2 isometrically onto Y1 and �C2

maps Y1

isometrically onto Y2 ; the convex hull of Y1[Y2 is isometric to Y1 � Œ0;4�.

(3) Y1 and Y2 are subcomplexes.

(4) There exists ADA.�; n; �/ such that if p12C1 , p22C2 and d.p1;Y1/��>0,
d.p2;Y2/� � > 0, then

(2-11) d.p1;C2/�4CAd.p1;Y1/; d.p2;C1/�4CAd.p2;Y2/:
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Proof For assertion (1), since X has finite dimension, X has only finitely many
isometry types of cells; we use the “quasicompact” argument of Bridson [10]. Suppose
we have sequences of points fxng

1
nD1

in C1 and fyng
1
nD1

in C2 such that

(2-12) d.xn;yn/ <4C
1
n
:

Then by Lemma 2-3, there exists an integer N such that for every n, the geodesic
joining xn and yn is contained in a subcomplex Kn which is a union of at most N

closed cells. Write C1n D C1 \Kn and C2n D C2 \Kn , which are also subcom-
plexes. Since there are only finitely many isomorphisms types among fKng

1
nD1

,
we can assume, up to a subsequence, that there exist a finite complex K1 and
subcomplexes C11 , C21 of K1 such that for any n, there is a simplicial iso-
morphism 'nW Kn ! K with 'n.C1n/ D C11 and 'n.C2n/ D C21 . By (2-12),
dK1.C11;C21/ �4 in the intrinsic metric of K1 , so there exist x1 2 C11 and
y1 2 C21 such that dK1.x1;y1/ � 4 by compactness of K1 . It follows that
dX .'

�1
n .x1/; '

�1
n .y1//� dKn

.'�1
n .x1/; '

�1
n .y1//�4.

We prove (4) with � D 1; the other cases are similar. A similar argument as above
implies that there is a constant A > 0, such that if x 2 C1 and d.x;Y1/ D 1, then
d.x;C2/ >AC4. Note that the combinatorial complexity depends on � and n, so A

also depends on � and n. Now for any p1 2C1 and d.p1;Y1/� 1, let p0D�Y1
.p1/

and let l W Œ0; d.p0;p1/�! X be the unit speed geodesic from p0 to p1 . We have
l.1/ 2 fx 2 C1 j d.x;Y1/ D 1g, so d.l.1/;C2// > AC4 while d.l.0/;C2// D 4.
Then (2-11) follows from the convexity of the function d. � ;C2/.

The assertion (2) is a standard fact in [11, Chapter II.2].

To prove (3), it suffices to prove that for every y1 2 Y1 , we have Supp.y1/ 2 Y1 .
Denote y2 D �C2

.y1/ 2 Y2 (hence y1 D �C1
.y2/ by (2)) and l W Œ0; ��!X the unit

speed geodesic from y1 to y2 . Recall that we use l�.t/ and lC.t/ to denote the
incoming and outgoing directions of l in †l.t/X for t 2 Œ0; ��. Our goal is to construct
a “parallel transport” of Supp.y1/ (which is a k –cube) along l .

Since X has only finitely many isometry types of cells, l is contained in a finite union
of closed cells, and we can find a sequence of closed cubes fBig

N
iD1

and 0 D t0 <

t1 < � � �< tN�1 < tN D4 such that each Bi contains fl.t/ j ti�1 < t < tig as interior
points. We denote Supp.y1/ by �t0

from now on.

Starting At l.0/D y1 , we have a splitting †y1
X D†y1

�t0
�K1 for some convex

subset K1 � †y1
X . Since y1 D �C1

.y2/ and �t0
� C1 , by Lemma 2-6 we know

d†y1
X .l
C.t0/; †y1

�t0
/ � �

2
. Thus lC.t0/ 2K1 and d†y1

X .v; l
C.t0//D

�
2

for any
v 2 †y1

�t0
. It follows that the segment B1 \ l is orthogonal to �t0

in B1 . Since
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�t0
is a subcube of B1 , by geometry of cubes, there is an isometric embedding

e1W �t0
� Œ0; t1� ! B1 with e1.y1; t/ D l.t/. Denote �t1

D e1.�t0
� ft1g/; then

l.t1/ 2�t1
� Supp.l.t1//� B1\B2 . Note that �t1

is not necessarily a subcomplex
of B1 (or B2 ), but it is always parallel to some subcube of B1 (or B2 ).

Continuing By construction we know d†l.t1/
.l�.t1/; v/D

�
2

for v 2†l.t1/�t1
, so

d†l.t1/
.lC.t1/; †l.t1/�t1

/ � �
2

, since d†l.t1/
.l�.t1/; l

C.t1//D � . However, there is
a splitting †l.t1/X D †l.t1/�t1

�K2 for some convex subset K2 � †l.t1/X . Thus
lC.t1/ 2 K2 and d†l.t1/

X .v; l
C.t1// D

�
2

for any v 2 †l.t1/�t1
. It follows that

inside B2 , the segment B2\ l is orthogonal to �t1
. Recall that �t1

is parallel to a
subcube of B2 , hence by geometry of cubes, we have an isometric embedding

e2W �t1
� Œt1; t2�! B2

with e2.y; t/ D l.t/ for some y 2 �t1
. Write �t2

D e2.�t1
� ft2g/; we know �t2

is parallel to some subcube of B3 , so one can proceed to construct an isometric
embedding e3 as before. More generally, we can build ei W �ti�1

� Œti�1; ti �!Bi with
ei.y; t/D l.t/ for some y 2�ti�1

and �ti
D ei.�ti�1

� ftig/ inductively. Note that
l.ti/ 2�ti

� Supp.l.ti//� Bi \BiC1 by construction.

Arriving Since y2 D l.tN / 2 BN \C2 , where BN and C2 are subcomplexes, we
have l.tN / 2 �tN

� Supp.l.tN // � BN \ C2 by construction. Moreover, we can
concatenate the embeddings feig

N
iD1

constructed in the previous step to obtain a map
eW �t0

� Œ0;4�!X such that

� e.y; t/D l.t/ for some y 2�t0
;

� e.�t0
� f0g/� C1 ;

� e.�t0
� f4g/� C2 ;

� e is 1–Lipschitz (e is actually an isometric embedding, since e is a local
isometric embedding by construction).

Therefore d.y;C2/�4 for any y 2�t0
(recall that Supp.y1/D�t0

), which implies
assertion (3).

Remark 2-13 (1) By the same proof, items (1), (2) and (4) in the above lemma are
true for piecewise Euclidean CAT.0/ complexes with finitely many isometry
types of cells. However, (3) might not be true in such generality.

(2) If C1 and C2 are orthant subcomplexes, then by items (2) and (3), Y1 (or Y2 )
is isometric to O �

Qk
iD1 Ii , where O is an orthant and each Ii is a finite

interval. In other words, there exists an orthant subcomplex O �X such that
dH .Y1;O/ <1.
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(3) Equation (2-11) implies that for any R1;R2 > 0, we have

NR1
.C1/\NR2

.C2/�NR0
1
.Y1/; NR1

.C1/\NR2
.C2/�NR0

2
.Y2/;

where

R01 Dmin
�
1;

R1CR2��

A
CR2

�
; R02Dmin

�
1;

R1CR2��

A
CR1

�
;

with ADA.�; n; 1/. Moreover, @T C1\ @T C2 D @T Y1 D @T Y2 .

The last remark implies that Y1 and Y2 capture the information about how C1 and C2

intersect coarsely. We use the notation I.C1;C2/D .Y1;Y2/ to describe this situation,
where I stands for the word “intersect”. The next lemma gives a combinatorial
description of Y1 and Y2 .

Lemma 2-14 Let X , C1 , C2 , Y1 and Y2 be as in Lemma 2-10. Pick an edge e

in Y1 .or Y2/, and let h be the hyperplane dual to e . Then h\Ci ¤∅ for i D 1; 2.
Conversely, if a hyperplane h0 satisfies h0\Ci ¤∅ for i D 1; 2, then

I.h0\C1; h
0
\C2/D .h

0
\Y1; h

0
\Y2/

and h0 comes from the dual hyperplane of some edge e0 in Y1 .or Y2/.

Proof The first part of the lemma follows from the proof of Lemma 2-10. Let
I.h0 \ C1; h

0 \ C2/ D .Y
0
1
;Y 0

2
/. Pick x 2 Y 0

1
and set x0 D �h0\C2

.x/ 2 Y 0
2

. Then
�h0\C1

.x0/Dx . We identify the carrier of h0 with h0�Œ0; 1�. Since Ci is a subcomplex,
.h0\Ci/�

�
1
2
� �; 1

2
C �

�
D Ci \

�
h0 �

�
1
2
� �; 1

2
C �

��
for i D 1; 2 and � < 1

2
. Thus

for any y 2 C2 , one has †x0.x;y/�
�
2

, which implies that x0 D �C2
.x/. Similarly,

x D �C1
.x0/ D �C1

ı �C2
.x/, hence x 2 Y1 and Y 0

1
� Y1 . By the same argument,

Y 0
2
� Y2 , thus Y 0i D Yi \ h0 for i D 1; 2 and the lemma follows.

Definition 2-15 We call an isometrically embedded orthant O straight if for any
x 2 O , the space †xO is a subcomplex of †xX (see Definition 2-7 for the cell
structure on †xX ). In particular, if the orthant is 1–dimensional, we will call it a
straight geodesic ray. Note that O itself may not be a subcomplex.

Remark 2-16 Any k –dimensional straight orthant O �X is Hausdorff close to an
orthant subcomplex of X .

To see this, let k 0 D maxx2Ofdim.Supp.x//g; we proceed by induction on k 0 � k .
The case k 0 � k D 0 is clear. Assume k 0 � k D m � 1 and pick x0 2 O such that
dim.Supp.x0// D k 0 . Then there exists B � Supp.x0/ such that B Š Œ0; 1�k , B is
parallel to a k –dimensional subcube of Supp.x0/ and O \ Supp.x0/� B . Choose a
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line segment e Š Œ0; 1� in Supp.x0/ such that x0 2 e , e is orthogonal to B and e is
parallel to some edge e0 of Supp.x0/.

Suppose h is the hyperplane dual to e and suppose Nh Š e � h is the carrier of h.
For any other point x 2O , the segment x0x is orthogonal to e by our construction,
thus there exists a point y 2 e such that O � fyg � h � Nh . Now we can endow
fyg � h with the induced cubical structure and use our induction hypothesis to find an
orthant complex O1 in the k –skeleton of fyg � h such that dH .O;O1/ <1. Since
Nh Š e � h, we can slide O1 along e in Nh to get an orthant subcomplex in the
k –skeleton of X .

Lemma 2-17 Let X be a CAT.0/ cube complex. If l1 and l2 are two straight geodesic
rays in X , then either †T .l1; l2/D 0, or †T .l1; l2/�

�
2

.

Proof We can assume without loss of generality that l1 and l2 are in the 1–skeleton
and l1.0/ is a vertex of X . We parametrize these two geodesic rays by unit speed.
Let fbmg

1
mD1

be the collection of hyperplanes in X such that bm\ l1 D l1
�

1
2
Cm

�
,

and let hm be the halfspace bounded by bm which contains l1 up to a finite segment.
Suppose Nm is the carrier of bm .

Suppose l2\ bm ¤∅ for infinitely many m. Since each bm separates X , there exists
an m0 such that l2\ bm ¤∅ for all m�m0 . Recall that l2 is in the 1–skeleton, so
for each m�m0 , there exists an edge em such that em � l2 , em �Nm and em\ bm

is a point. Consider the function f .t/D d.l2.t/; l1/ for t � 0. Then f is convex and
there exist infinitely many intervals of unit length (they come from em for m�m0 )
such that f restricted to each interval is constant, so there exists a t0 such that f jŒt0;1/

is constant, which implies †T .l1; l2/D 0.

If l2\ bm ¤∅ for finitely many m, then there exists an m0 such that hm0
\ l2 D∅,

which implies the CAT.0/ projection of l2 to l1 is a finite segment. If †T .l1; l2/ <
�
2

,
then �l1

.l2/ is an infinite segment by Lemma 2-4, which is a contradiction, so
†T .l1; l2/�

�
2

.

We will see later on that the subset of @T X which is responsible for the behavior of
top-dimensional quasiflats is spanned by those points represented by straight geodesic
rays. The following lemma makes the word “span” precise.

Lemma 2-18 Let X be a CAT.0/ cube complex, and let fligkiD1
be a collection

of straight geodesic rays in X , emanating from the same base point p , such that
†T .li ; lj / D †p.li ; lj / D

�
2

for i ¤ j . Then the convex hull of fligkiD1
is a k –

dimensional straight orthant.
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One may compare this lemma with [3, Propositions 2.10 and 2.11].

Proof By Lemma 2-5, li and lj together bound an isometrically embedded quarter
plane for i ¤ j . We prove the lemma by induction and assume the claim is true
for fligk�1

iD1
. We parametrize lk by arc length and denote by O0 the straight orthant

spanned by fligk�1
iD1

. Note that O0\ lk D p .

For s > 0 and 1 � i � k � 1, let ci be the geodesic ray such that (1) ci is in the
quarter plane spanned by lk and li ; (2) ci starts at lk.s/; (3) ci is parallel to li .
Thus †T .ci ; cj / D

�
2

and †lk.s/.ci ; cj / �
�
2

for i ¤ j . Note that fcig
k�1
iD1

are also
straight geodesic rays, and floglk.s/

cig
k�1
iD1

are distinct points in the 0–skeleton of
†lk.s/X . It follows that actually †lk.s/.ci ; cj /D

�
2

for i ¤ j . Hence by the induction
assumption, there is a straight orthant Os spanned by fcig

k�1
iD1

.

By Lemma 2-8, @T O0 D @T Os . Let l � Os be a unit-speed geodesic ray emanat-
ing from lk.s/. Then d.l.t/;O0/ is a bounded convex function. Since †lk.s/Os

is an all-right spherical simplex in †lk.s/X spanned by floglk.s/
cig

k�1
iD1

, we have
†lk.s/.l.t/; lk.0// D

�
2

for any t > 0. Similarly, we have †lk.0/.y; lk.s// D
�
2

for
any y 2O0 n fls.0/g. Hence by triangle comparison, d.l.t/;O0/ attains its minimum
at t D 0. Thus d.l.t/;O0/ has to be a constant function. Thus d.x;O0/� s for any
x 2Os , and similarly d.x;Os/� s for any x 2O0 , which implies the convex hull of
O0 and Os is isometric to O0 � Œ0; s�; see eg [11, Chapter II.2]. Moreover, the convex
hull of O0 and Os is contained in the convex hull of O0 and Os0 for s � s0 . So the
convex hull of fligkiD1

is a straight orthant O .

3 Proper homology classes of bounded growth

In this section we summarize some results from [9] about locally finite homology
classes of certain polynomial growth and make some generalizations to adjust the
results to our situation.

3.1 Proper homology and supports of homology classes

For an arbitrary metric space Z , we define the proper (singular) homology of Z with
coefficients in an abelian group G , denoted H

p
�.ZIG/, as follows. Elements in the

proper n–chain group C
p
n .ZIG/ are of the form †�2ƒg��� (here ƒ may be infinite,

g� 2G and the �� are singular n–simplices) such that for every bounded set K �Z ,
the set f�2ƒ jg�¤ Id and ��.4n/\K¤∅g is finite. The usual boundary map gives
rise to a group homomorphism @W C

p
n .ZIG/!C

p
n�1

.ZIG/, yielding a chain complex
C

p
�.ZIG/, and H

p
�.ZIG/ is defined to be the homology of this chain complex.
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We will use Greek letters ˛; ˇ; : : : to denote (proper) singular chains. We denote the
union of images of singular simplices in a (proper) singular chain ˛ by Im ˛ . If ˛ is a
(proper) cycle, we denote the corresponding (proper) homology class by Œ˛�.

We also define the relative version of proper homology H
p
�.Z;Y / for Y � Z in

a similar way (Y is endowed with the induced metric). Then there is a long exact
sequence

� � � !H
p
n.Y /!H

p
n.Z/!H

p
n.Z;Y /!H

p
n�1

.Y /!H
p
n�1

.Z/! � � � :

Moreover, by the usual procedure of subdividing the chains, we know excision holds.
Namely, for a subspace W such that the closure of W is in the interior of Y , the
map H

p
�.Z�W;Y �W /!H

p
�.Z;Y / induced by inclusion is an isomorphism. As a

corollary, if B �Z is bounded, then there is a natural isomorphism H
p
�.Z;Z�A/Š

H�.Z;Z�A/, since we can replace the pair .Z;Z�A/ by .O;O �B/ by excision,
where O is a bounded open neighborhood of B . Pick a point z 2Z nY ; then there
is a homomorphism i W H

p
k
.Z;Y /!H

p
k
.Z;Z n fzg/ŠHk.Z;Z n fzg/ induced by

the inclusion of pairs .Z;Y / ! .Z;Z � fzg/. The map i is called the inclusion
homomorphism.

If Z is also a simplicial complex or polyhedral complex, we can similarly define the
proper simplicial (or cellular) homology by considering the former sum of simplices or
cells such that for every bounded subset K � Z , we have only finitely many terms
which intersect K nontrivially. The simplicial version (or the cellular version) of the
homology theory is isomorphic to the singular version in a simplicial complex (or
polyhedral complex) by the usual proof in algebraic topology.

The proper homology depends on the metric of the space, so it is not a topological
invariant. By definition, every proper chain is locally finite and we have a group homo-
morphism H

p
�.Z;Y /!H lf

� .Z;Y /, where H lf
� .Z;Y / is the locally finite homology

defined in [9]. If Z is a proper metric space, then these two homology theories are the
same.

A continuous map f W Z1!Z2 is (metrically) proper if the inverse image of every
bounded subset is bounded. In this case, we have an induced map on proper homology
f�W H

p
k
.Z1;G/!H

p
k
.Z2;G/.

In the rest of this paper, we will always take G D Z=2Z and omit G when we write
the homology.

Definition 3-1 For z 2Z nY , let i W H
p
k
.Z;Y /!Hk.Z;Z n fzg/ be the inclusion

homomorphism defined as above. For Œ� �2H
p
k
.Z;Y /, we define the support set of Œ� �,

denoted SŒ��;Z;Y , to be fz 2Z nY j i�Œ� �¤ Idg. We will write SŒ��;Z if Y is empty,
and use SŒ�� to denote the support set if the underlying spaces Z and Y are clear.
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It follows that SŒ�� D
�T

Œ� 0�DŒ��2H
p
k
.Z;Y / Im � 0

�
nY .

If Z �Z1 , then SŒ��;Z;Y � SŒ��;Z1;Y . These two sets are equal if Z is open in Z1 .
If Z is a polyhedral complex and Y D∅, then the support set is always a subcomplex.
In particular, if Œ� � 2 H

p
n.Z/ is a nontrivial top-dimensional class, then Œ� � can be

represented by a top-dimensional polyhedral cycle, which implies the support set
SŒ��¤∅. But the support of a nontrivial class can be empty if it is not top-dimensional.

The support sets of (proper) homology classes behave like the support sets of currents
in the following situation.

Lemma 3-2 Let Z1 be a metric space of homological dimension �n, and let Y1�Z1

be a subspace. Pick Œ� � 2 H
p
n.Z1;Y1/. If f W .Z1;Y1/! .Z2;Y2/ is a proper map,

then Sf�Œ�� � f .SŒ��/.

Recall that Z1 has (Z=2Z)–homological dimension � n if Hr .U;V / D 0 for any
r > n and U;V open in Z1 .

Proof Pick y 2Sf�Œ�� . Since f �1.y/ is bounded, we have the following commutative
diagram:

H
p
n.Z1;Y1/

f�
����! H

p
n.Z2;Y2/??yi�

??yi�

Hn.Z1;Z1 nf
�1.y//

f�
����! Hn.Z2;Z2 n fyg/

Thus if Sf�Œ�� ¤∅, then Œ� 0�D i�Œ� � 2Hn.Z1;Z1 nf
�1.y// is nontrivial. It suffices

to show there exists x 2 f �1.y/ such that Œ� 0� is nontrivial when viewed as an element
in Hn.Z1;Z1 n fxg/.

Fix a singular chain � 0 2 Cn.Z1;Z1 n f
�1.y// which represents Œ� 0�. We argue by

contradiction and assume that Œ� 0� is trivial in Hn.Z1;Z1 n fxg/ for any x 2 f �1.y/.
Let K D f �1.y/ \ Im � 0 . For each x 2 K , there exists an �.x/ > 0 such that
xB.x; 2�.x// \ Im @� 0 D ∅ and Œ� 0� is trivial in Hn

�
Z1;Z1 n

xB.x; 2�.x//
�
. Since

f �1.y/ is bounded and closed, K is compact and we can find finitely many points
fxig

N
iD1

in K such that K �
SN

iD1 B.xi ; �.xi//. Let U D
SN

iD1 B.xi ; �.xi// and let
U 0 D .Z1 n f

�1.y//[U . Then Im � 0 � U 0 and Œ� 0� is trivial in Hn.Z1;U
0/. We

put U 00 D U 0 n
�SN

iD1
xB.xi ; 2�.xi//

�
. Then Im @� 0 � U 00 and U 00 � Z1 n f

�1.y/.
So if we can show that Œ� 0� is trivial in Hn.Z1;U

00/, then Œ� 0� must be trivial in
Hn.Z1;Z1 nf

�1.y//, which yields a contradiction.
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Let us assume N D 1. Then there is a Mayer–Vietoris sequence

HnC1

�
Z1;U

0
[ .Z1 n

xB.x1; 2�.x1///
�
!Hn.Z1;U

00/

!Hn.Z1;U
0/˚Hn

�
Z1;Z1 n

xB.x1; 2�.x1//
�
:

The first term is trivial since Z1 has homological dimension � n and Œ� 0� is trivial
in the last term by construction, so Œ� 0� has to be trivial in the second term. Using an
induction argument, we can obtain the contradiction similarly for N � 2.

Remark 3-3 (1) The assumption on Z1 is satisfied if Z1 is a CAT.�/ space of
geometric dimension � n, see [28, Theorem A].

(2) The assumption on Z1 is satisfied if Z1 is a locally finite n–dimensional
polyhedral complex (with the topology of a cell complex) or an Mk –polyhedral
complex of finite shape, since such a space supports a CAT.1/ metric which
induces the same topology as its original metric.

3.2 The growth condition

In Sections 3.2–3.3, Y will be a piecewise Euclidean CAT.0/ complex of dimension n.
The following result shows every top-dimensional quasiflat in Y is Hausdorff close to
the support set of some proper homology class. Therefore to understand quasiflats, we
can focus on the support sets, which have nice local and asymptotic properties.

Lemma 3-4 [9, Lemma 4.3] If Q� Y is an .L;A/–quasiflat of dimension n, then
there exists Œ� � 2H

p
n.Y / satisfying the following conditions:

(1) There exists a constant D DD.L;A/ such that dH .S;Q/�D , where S is the
support set of Œ� �.

(2) There exists aD a.L;A/ such that for every p 2 Y ,

(3-5) Hn.B.p; r/\S/� a.1C r/n:

Here Hn denotes the n–dimensional Hausdorff measure and dH denotes the Hausdorff
distance.

Since Y is uniformly contractible, we can approximate the .L;A/–quasi-isometric
embedding qW Rn! Y by a Lipschitz .L;A/–quasi-isometric embedding zq , which
is proper. Then Œ� � is chosen to be the pushforward of the fundamental class of Rn

under zq .

The support set of a top-dimensional homology class enjoys the following geodesic
extension property.
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Lemma 3-6 [9, Lemma 3.1] Let S be the support set of some top-dimensional
proper homology class in Y . Pick arbitrary p 2 Y and y 2 S . Then there is a geodesic
ray y� � S , which fits together with the geodesic segment py to form a geodesic
ray p� .

Note that this lemma does not imply S is convex; see [9, Remark 3.2]. However, we
still can define the Tits boundary of S .

Definition 3-7 Let Z be a CAT.0/ space and let A �Z be any subset. We define
the Tits boundary of A, denoted @T A, to be the set of points � 2 @T Z such that there
exists a geodesic ray x� such that x� �A. The Tits boundary @T A is endowed with
the usual Tits metric. We define the Tits cone of A, denoted CT A, to be the Euclidean
cone over @T A.

Let S be as in Lemma 3-6. Then @T S is nonempty if S is nonempty.

There is a similar version of the geodesic extension property for the link †yS �†yY ,
where y 2 S .

Lemma 3-8 Let S be as in Lemma 3-6. Then for any point y 2 Y , †yS is the
support set of some top-dimensional homology class in †yY .

Proof By subdividing Y in an appropriate way, we may assume y is a vertex of Y .
Suppose S DSŒ�� . We can represent Œ� � as a cellular cycle � D†�2ƒ�� , where the ��
are closed top-dimensional cells in Y (recall that we are using Z=2Z coefficients, so
all the coefficients are either 0 or 1). Then S D

S
�2ƒ �� . Let ƒy D f�2ƒ j y 2 ��g.

Since � is a cycle, �y D †�2ƒy
Lk.y; ��/ is a top-dimensional cycle in the link

Lk.y;Y /Š†yY . Moreover, SŒ�y � D
S
�2ƒy

Lk.y; ��/D Lk.y;S/.

Lemma 3-9 Let K be a k –dimensional CAT.1/ piecewise spherical complex, and
let K0 � K be the support set of a top-dimensional homology class. Pick arbitrary
w 2K , v 2K0 , and suppose wv is a local geodesic joining v and w . Then there is
a (nontrivial) local geodesic segment vv0 �K0 which fits together with wv to form a
local geodesic segment wv0 . Moreover, length.vv0/ can be as large as we want.

Now we turn to the global properties of S . Since we are in a CAT.0/ space, for
any p 2 Y and 0 < r � R, we have a map ˆr;RW B.p;R/! B.p; r/ obtained by
contracting points toward p by a factor of r=R. This contracting map together with
Lemma 3-6 implies B.p; r/\S �ˆr;R.B.p;R/\S/ [9, Corollary 3.3, item 1].

Since ˆr;R is .r=R/–Lipschitz, we have the following result.
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Theorem 3-10 [9, Corollary 3.3] Let S be the support set of some top-dimensional
proper homology class in Y , and let nD dim.Y /. Then:

(1) Monotonicity of density For all 0� r �R,

(3-11)
Hn.B.p; r/\S/

rn
�

Hn.B.p;R/\S/

Rn
:

(2) Lower density bound For all p 2 S and r > 0,

(3-12) Hn.B.p; r/\S/� !nrn;

with equality only if B.p; r/\ S is isometric to an r –ball in En , where !n is the
volume of an n–dimensional Euclidean ball of radius 1.

From (3-11) we know the quantity

(3-13)
Hn.B.p; r/\S/

rn

is monotone increasing with respect to r , and (3-5) tells us that if S comes from a top-
dimensional quasiflat, then (3-13) is bounded above by some constant. Thus the limit
exists and is finite as r !1. More generally, we will consider those top-dimensional
proper homology classes whose support sets S satisfy

(3-14) lim
r!C1

Hn.B.p; r/\S/

rn
<1;

where n D dim.Y /. We call them proper homology classes of C rn growth. These
classes form a subgroup of H

p
n.Y /, which will be denoted by H

p
n;n.Y /.

The following lemma can be proved by a packing argument.

Lemma 3-15 [9, Lemma 3.12] Pick Œ� � 2H
p
n;n.Y / and let S D SŒ�� . Then given a

base point p 2Y , for all � > 0 there is an N such that for all r � 0, the set B.p; r/\S

does not contain an �r –separated subset of cardinality greater than N .

Lemma 3-16 Let S and p be as in Lemma 3-15. Denote the cone point in CT S by o.
Then

(3-17) lim
r!C1

dGH
�

1
r
.B.p; r/\S/;B.o; 1/

�
D 0:

Here dGH denotes the Gromov–Hausdorff distance, B.o; 1/ is the ball of radius 1 in
CT S centered at o and 1

r
.S \B.p; r// means we rescale the metric on S \B.x; r/

by a factor 1
r

.
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Proof We follow the argument in [9]. It suffices to prove that for any � >0, there exists
R> 0 such that for any r >R, we can find an �–isometry between 1

r
.B.p; r/\S/

and B.o; 1/.

For r > 0, we denote the maximal cardinality of an �r –separated net in B.p; r/\S

by mr . By Lemma 3-15, there exists N0 such that mr �N0 for all r . Pick R1 such
that mr �mR1

for all r ¤R1 and denote the corresponding �R1 –net in B.p;R1/\S

by fxig
N
iD1

. By Lemma 3-6, for each i , we can extend the geodesic pxi to obtain a
geodesic ray p�i such that xi�i �S . Let li W Œ0;1/! Y be a constant-speed geodesic
ray joining p and �i such that li.R1/D xi and li.0/D p .

Since the quantity d.li.t/; lj .t//=t is monotone increasing, fli.t/gNiD1
is a maximal

�t –separated net in B.p;R1/\S for t �R1 . We pick R>R1 such that for all t >R

and 1� i; j �N , we have

(3-18)
ˇ̌̌̌
d.li.t/; lj .t//

t
� lim

t!C1

d.li.t/; lj .t//

t

ˇ̌̌̌
< �:

Now we fix t >R and define a map such that for each i , li.t/2B.p; t/\S is mapped
to the point yi 2 B.o; 1/� CT S satisfying yi 2 o�i and d.yi ; o/D d.li.t/;p/=t . It
follows from (3-18) that

(3-19)
ˇ̌̌̌
d.li.t/; lj .t//

t
� d.yi ;yj /

ˇ̌̌̌
< �:

We claim fyig
N
iD1

is an �–net in B.o; 1/.

Pick an arbitrary y 2 B.o; 1/ and suppose y 2 o� for � 2 @T S . We parametrize the
geodesic ray p� by constant speed D d.y; o/ and denote this ray by l . Since there
exists a geodesic p0� � S such that dH .p�;p0�/D C <1, we can find x 2 p0� � S

with d.x; l.t// <C for every t . Thus x 2B.p; td.y; o/CC /\S �B.p; tCC /\S ,
which implies there exists some i such that d.li.tCC /;x/� �.tCC /. These estimates
together with d.li.t CC /; li.t//� C (the ray li has speed � 1) imply

(3-20) d.l.t/; li.t//� �t C .2C �/C:

Here i might depend on t , but we can choose a sequence ftkg1kD1
such that tk!C1

and

(3-21) d.l.tk/; li0
.tk//� �t C .2C �/C

for every k with i0 fixed, thus

(3-22) d.y;yi0
/D lim

k!C1

d.l.tk/; li0
.tk//

tk
� �:
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So fyig
N
iD1

is an �–net in B.o; 1/; this fact together with (3-19) give us the �–isometry
as required.

Remark 3-23 (1) Define @p;r S D f� 2 @T S j p� �B.p; r/[Sg. Then the above
proof shows

(3-24) lim
r!C1

dH .@p;r S; @T S/D 0:

(2) @T S has similar behavior to the Tits boundary of a convex subset in the following
aspect. Let l W Œ0;1/! Y be a constant-speed geodesic ray. If there exist a
constant C <1 and a sequence ti!C1 such that d.l.ti/;S/ < C , then @T l

is an accumulation point of @T S . The proof is similar to the above argument.

3.3 �–splittings

As we have seen from Lemma 3-16, the growth bound (3-14) implies that S looks
more and more like a cone if one observes S from a farther and farther away point
(this is called asymptotic conicality in [9]). So one would expect some regularity of S

near infinity. The following key lemma from [9] will be our starting point.

Lemma 3-25 [9, Lemma 3.13] Let S and p be as in Lemma 3-15. Then for all
ˇ > 0 there is an r <1 such that if x 2 S nB.p; r/, then the antipodal set satisfies

(3-26) diam.Ant.logx p; †xS// < ˇ:

The proof of this lemma in [9] actually shows something more. Given a base point p2Y

and x 2 S , we define the antipode at 1 of logx p in S , denoted Ant1.logx p;S/,
to be f� 2 @T S j x� � S and x 2 p�g. Then we have:

Lemma 3-27 Let S and p be as in Lemma 3-15. Then for all ˇ > 0 there is an
r <1 such that if x 2 S nB.p; r/, then

(3-28) diam.Ant1.logx p;S// < ˇ:

The diameter here is with respect to the angular metric on @T X .

Lemma 3-25 tells us that †yS looks more and more like a suspension as d.y;p/!1

(for y 2 S ). If we also assume Shape.Y / is finite, then for all y 2 S , †yS is built
from cells of finitely many isometry types. Moreover, by Theorem 3-10, there is a
positive constant N such that †yS has at most N cells for any y 2 S . Thus the
family f†ySgy2S has only finite possible combinatorics. As ˇ! 0, one may expect
†yS to actually be a suspension (this is called isolated suspension in [9]).
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Now we restrict ourselves to the case of finite-dimensional CAT.0/ cube complexes of
finite dimension. Then the spaces of directions are finite-dimensional all-right spherical
CAT.1/ complexes (see Definition 2-7 for the definition of cell structure on the spaces
of directions).

Lemma 3-29 Suppose F is a family of all-right spherical CAT.1/ complexes with
dimension at most d . Then for every ˛ > 0 and N > 0, there is a constant ˇ D
ˇ.d;N; ˛/ > 0 such that if K0 satisfies the following conditions:

(1) K0 �K is a subcomplex of some K 2 F ,

(2) the number of cells in K0 is bounded above by N ,

(3) K0 has the geodesic extension property in the sense of Lemma 3-9,

(4) there exists v 2K such that diam.Ant.v;K0// < ˇ ,

then K0 is a metric suspension (in the metric induced from K ) and v lies at a distance
< ˛ from a suspension point of K0 .

Proof We prove the lemma by contradiction. Suppose there exist ˛ > 0, N > 0 and
a sequence fK0ig

1
iD1

such that for each i , K0i satisfies conditions (2) and (3), K0i is a
subcomplex of some Ki 2 F , and there exists a vi 2Ki such that

(3-30) diam.Ant.vi ;K
0
i// <

1
i
;

but no point in the ˛–neighborhood of vi is suspension point of K0i .

Let wi be the point in K0i which realizes the minimal distance to vi in the length
metric of Ki (note that the original metric on Ki is the length metric truncated by � ).
If li is the geodesic segment (in the length metric) joining vi and wi , then by (3-30)
and the geodesic extension property of K0i , there exists a C such that length.li/ < C

for all i . So for any i , there exists a subcomplex Li �Ki such that li �Li and the
number of cells in Li are uniformly bounded by constant N1 (by Lemma 2-3).

Let Mi be the full subcomplex spanned by K0i [Li , ie Mi is the union of simplices
in Ki whose vertex sets are in K0i [Li . Then Mi is a � –convex, hence CAT.1/,
subcomplex of Ki , and the number of cells in Mi is uniformly bounded above by
some constant N2 . Without loss of generality, we can replace Ki by Mi . Since Mi

has only finitely many possible isometry types, after passing to a subsequence, we can
assume there exist a finite CAT.1/ complex M and a subcomplex K0 �M such that
for every i , there is a simplicial isomorphism �i W Mi !M mapping K0i onto K0

(here �i is also an isometry).

Since M is compact, there is a subsequence of f�i.vi/g
1
iD1

converging to a point
v 2 M . We claim Ant.v;K0/ is exactly one point. First Ant.v;K0/ ¤ ∅ by the
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geodesic extension property of K0 . If there were two distinct points u;u0 2Ant.v;K0/,
then we could extend the geodesic segment viu, viu0 into K0 , yielding a contradiction
with (3-30) for large i .

Suppose Ant.v;K0/D fv0g. Then Ant.v0;K0/D v . In fact, if this were not true, then
we would have some point w 2Ant.v0;K0/ such that 0< d.v; w/ < � . Then we could
extend the geodesic segment vw into K0 to get a local geodesic vw0 with w0 2K0

and length.vw0/ D � . This would actually be a geodesic since we are in a CAT.1/
space, thus w0 2 Ant.v;K0/ and w0 ¤ v0 , contradicting Ant.v;K0/D v0 .

Now pick a point k 2K0 , with k¤ v and k¤ v0 . Then d.k; v0/ < � and d.k; v/ < � .
We extend the geodesic segment v0k into K0 to get a geodesic of length � , then the
other end must hit v since Ant.v0;K0/ D v . Thus kv � K0 by the uniqueness of
geodesic joining k and v . Similarly we know kv0 � K0 , thus there is a geodesic
segment in K0 passing through k and joining v and v0 . By CAT.1/ geometry, K0

(with the induced metric from M ) splits as a metric suspension and v , v0 are suspension
points. However, by the assumption at the beginning of the proof, f�i.vi/g

1
iD1

should
have distance at least ˛ from a suspension point for every i , so v should also be
˛–away from a suspension point; this contradiction finishes the proof.

Remark 3-31 (1) The above proof also shows the following result. Let K be
a piecewise spherical CAT.1/ complex, and let K0 � K be a subcomplex
with geodesic extension property in the sense of Lemma 3-9. Pick v 2K . If
Ant.v;K0/ is exactly one point, then v 2K0 and v is a suspension point of K0 .

(2) By the same proof, it is not hard to see Lemma 3-29 is also true when F is a
finite family of finite piecewise spherical CAT.0/ complexes (not necessarily
all-right).

From Lemmas 3-4, 3-25 and 3-29, we have the following analogue of [9, Theorem 3.11].

Theorem 3-32 Let X be an n–dimensional CAT.0/ cube complex, and let S D SŒ�� ,
where � 2H

p
n;n.X /. Then for every p 2X and every � > 0, there is an r <1 such

that if x 2S nB.p; r/, then †xS is a suspension and logx p is �–close to a suspension
point of †xS .

Remark 3-33 By the same proof, the conclusion of Theorem 3-32 is also true if X is
a proper n–dimensional CAT.0/ complex with a cocompact (cellular) isometry group.
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4 The structure of the top-dimensional support sets

Throughout this section, X is an n–dimensional CAT.0/ cube complex. Pick a
homology class Œ� � 2H

p
n;n.X / and let S D SŒ�� . Also recall that †xX is an all-right

spherical CAT.1/ complex for each x 2X ; see Definition 2-7.

Let �k be the k –dimensional all-right spherical simplex, and let �k
mod be the quotient

of �k by the action of its isometry group (�k
mod is endowed with the quotient metric).

Define the function �W �k ! .0;C1/ by

(4-1) �.v/D inffd.v; v0/ j v0 2�k and Supp.v0/\ v D∅g:

Recall that Supp.v0/ denotes the unique closed face of �k which contains v0 as an
interior point. By symmetry of �k , � descends to a function �W �k

mod! .0;C1/.

For any k 0 � k , we have a canonical isometric embedding i W �k
mod ,! �k0

mod with
�D � ı i . Let �mod D lim

��!
�k

mod be the corresponding direct limit of metric spaces.

Let Y be an all-right spherical CAT.1/ complex. Then there is a well-defined 1–
Lipschitz map

� W Y !�mod

such that � restricted to any k –face �k � Y is the map �k ! �k
mod ,! �mod .

Moreover, for v 2 Y ,

(1) v 2 Supp.v0/ if d.v; v0/ < �.�.v//,

(2) � ı � is continuous on the interior of each face of Y .

When Y D†xX for some x 2X and v 2†xX , we also call �.v/ the �mod direction
of v .

4.1 Producing orthants

In this section, we study geodesic rays with constant �mod direction, ie unit-speed
geodesic rays l W Œ0;1/! S with �.l�.t//D �.lC.t//D �.l�.t 0//D �.lC.t 0// for
any t ¤ t 0 . Here are two examples.

(1) If a geodesic ray l stays inside an orthant subcomplex of O � Y (or more
generally a straight orthant), then it has constant �mod direction. Moreover, the
�mod direction of @T l in @T O is equal to �.l˙.t//.

(2) If Y is a product of trees, then each geodesic ray in l 2 Y has constant �mod

direction. Again, the �mod direction of @T l in @T Y (in this case @T Y is an
all-right spherical complex) is equal to �.l˙.t//.
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Later, geodesic rays with constant �mod direction will play an important role in the
construction of orthants; see Lemma 4-9. First we show such geodesics exist in the
support set of a top-dimensional proper cycle and there are plenty of them.

Lemma 4-2 If Y is a k –dimensional all-right spherical CAT.1/ complex and if
K � Y is the support set of some top-dimensional homology class, then for any v 2K ,
there exists a v0 2K such that d.v; v0/D � and �.v/D �.v0/.

Recall that the metric on Y is the length metric on Y truncated by � .

Proof The lemma is clear when k D 1 by Lemma 3-9. We assume it is true for
i � k�1. Denote k 0D dim.Supp.v//. We endow Sk0 with the structure of an all-right
spherical complex and pick w2Sk0 such that �.v/D�.w/. Suppose w0DAnt.w;Sk0/

and suppose  0W Œ0; ��!Sk0 is a unit-speed geodesic joining w and w0 . It is clear that
�.w/D �.w0/. Our goal is to construct a unit-speed local geodesic  W Œ0; ��!K such
that  .0/D v and �. .s//D �. 0.s// for all s 2 Œ0; ��, as in the following diagram:

Œ0; ��
 0

����! Sk0



??y ??y�
K

�
����! �mod

Then  is actually a geodesic and we can take v0 D  .�/ to finish the proof.

There exists a sequence of faces f�0j g
N
jD1

in Sk0 and 0D t0< t1< � � �< tN�1< tN D�

such that each �0j contains f 0.t/ j tj�1< t < tj g as interior points. Let �1D Supp.v/.
Then since �.v/ D �.w/, we can find v1 2 �1 such that there exists an isometry
ˆW �1 ! �0

1
with ˆ.v/ D w and ˆ.v1/ D 

0.t1/, in particular �.v1/ D �.
0.t1//.

Define  W Œ0; t1�!K to be the geodesic segment vv1 .

Recall that we have identified †v1
Y with Lk.v1;Y /; see Definition 2-7. Now let

�1 D Supp.v1/ and k1 D dim.�/ � 1. Then †v1
Y D Lk.v1; �1/ � Lk.�1;Y / D

Sk1 �Lk.�1;Y /. Similarly, †v1
K D Lk.v1; �1/�Lk.�1;K/D Sk1 �Lk.�1;K/. Let

K1 D Lk.�1;K/ and Y1 D Lk.�1;Y /. Then they are all-right spherical complexes,
K1 is a subcomplex of Y1 , and Y1 is CAT.1/. Moreover, since †v1

K is the support
set of some top-dimensional homology class in †v1

Y (Lemma 3-8), so is K1 in Y1 .
As �.t1/ 2†v1

K D Sk1 �K1 , we write

(4-3) �.t1/D .cos˛1/x1C .sin˛1/y1

for x1 2Sk1 and y1 2K1 . By the induction assumption, we can find y0
1
2Ant.y1;K1/

such that �.y0
1
/ D �.y1/. Let x0

1
D Ant.x1;S

k1/. Suppose �2 � K is the unique
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face (v1 2 �2 ) such that Supp..cos˛1/x
0
1
C .sin˛1/y

0
1
/ D †v1

�2 . Let v1v2 � �2

be the geodesic segment which starts at v1 , and goes along the direction .cos˛1/x
0
1
C

.sin˛1/y
0
1

until it hits some boundary point v2 of �2 . Note that vv1 and v1v2 fit
together to form a local geodesic in K .

On the other hand, at  0.t1/2Sk0 , we have † 0.t1/S
k0DLk. 0.t1/; � 01/�Lk.� 0

1
;Sk0/D

Sk1 �Lk.� 0
1
;Sk0/, where � 0

1
D Supp. 0.t1// and k1 is the same as the previous para-

graph. Write  0�.t1/D .cos˛1/u1C .sin˛1/v1 for u1 2 Sk1 and v1 2 Lk.� 0
1
;Sk0/,

where we have the same ˛1 as (4-3) since ˆ is an isometry. Then  0C.t1/ D

.cos˛1/u
0
1
C .sin˛1/v

0
1

for u0
1
D Ant.u1;S

k1/ and v0
1
D Ant.v1;Lk.� 0

1
;Sk0//. Note

that �.v0
1
/D �.v1/D �.y1/D �.y

0
1
/, so we can extend the isometry ˆ to get a map

ˆ0W �1[�2!�0
1
[�0

2
such that ˆ0 is an isometry with respect to the length metric

on both sides and ˆ0.v1v2/D  .Œt1; t2�/. Thus d.v1; v2/D t2� t1 and we can define
 W Œt1; t2�!K to be the geodesic segment v1v2 . It is clear that �. .s//D �. 0.s//
for all s 2 Œ0; t2�. We can repeat this process to define the required local geodesic
 W Œ0; ��!K .

Corollary 4-4 For any x 2S and v 2†xS , there exists a geodesic ray x� �S which
has constant �mod direction and logx � D v .

Proof Since x has a cone neighborhood in S , we can find a short geodesic seg-
ment xx0 in the cone neighborhood such that logx x0 D v . There is a unique closed
cube C1 � S such that xx0 � C1 and v is an interior point of †xC1 . We extend
xx0 in C1 until it hits the boundary of C1 at x1 . By Lemma 4-2, there exists a
v1 2 Ant.logx1

x; †x1
S/ with �.v1/ D �.logx1

x/ D �.v/. Now we choose cube
C2 � S and segment x1x2 � C2 with logx1

x2 D v1 as before. Note that xx1 and
x1x2 together form a local geodesic segment (hence a geodesic segment). We repeat
the previous process to extend the geodesic. Since S is a closed set, the extension can
not terminate, which will give us the geodesic ray x� as required.

Corollary 4-5 The set of points in @T S which can be represented by a geodesic ray
in S with constant �mod direction is dense.

Proof Fix a base point p , pick some � 2 @T S . For any � > 0, by (3-24), we can find
an r1 such that

(4-6) dH .@p;r S; @T S/ < 1
2
�

for all r > r1 . By Lemma 3-27, we can find r2 such that for r > r2 ,

(4-7) diam.Ant1.logx p;S// < 1
2
�

for any x 2 S nB.p; r/.
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If r0 D maxfr1; r2g, then we can find p�1 � B.p; r0/[S such that †T .�1; �/ �
�
2

by (4-6). Pick x 2 p�1 such that d.p;x/ > r0 . By Corollary 4-4, we can find a
geodesic ray x�2 � S of constant �mod direction such that x�2 fits together with px

to form a geodesic ray p�2 , thus †T .�1; �2/ <
�
2

by (4-7). Then †T .�; �2/ < � , which
finishes the proof since � and � are arbitrary.

Let l be a geodesic ray of constant �mod direction. Then we define �.l/ to be �.l˙.t//.
The definition does not depend on the choice of sign ˙ and t .

Lemma 4-8 If l � S is a unit-speed geodesic ray of constant �mod direction, then
there exists a t0 <1, which depends on the position of l.0/ and �.l/, such that for
any t > t0 , †l.t/S D†l.t/l �Yt for some Yt �†l.t/S .

Proof We apply Theorem 3-32 with p D l.0/ and � D �.�.l// (see (4-1) for the
definition of �) to get t0<1 such that †l.t/S is a metric suspension and the suspension
point is �.�.l//–close to lC.t/ (or l�.t/) for all t > t0 . By Lemma 2-9, lC.t/ and
l�.t/ are suspension points, thus †l.t/S D†l.t/l �Yt .

Based on Lemma 4-8, we define a parallel transport of †l.t/S along l as follows.
Let t0 be as in Lemma 4-8. For any t > t0 , l.t/ has a product neighborhood in S of
form Xt � .t � �; t C �/, where Xt is some subset of X with the induced metric. So
for any jt 0 � t j < � , we can identify †l.t/S and †l.t 0/S . Moreover, for any t1 > t0
and t2 > t0 , we can cover the geodesic segment l.t1/l.t2/ by finitely many product
neighborhoods, which will induce an identification of †l.t1/S and †l.t2/S . This
identification does not depend on the covering we choose.

To see this identification more concretely, take t > t0 , a product neighborhood Xt �

.t � �; t C �/ of l.t/ in S , and v 2†l.t/S , we construct a short geodesic l.t/xt � S

in the cone neighborhood of l.t/ going along the direction v . If jt 0� t j< � , we can
find an isometrically embedded parallelogram in the product neighborhood such that
l.t/xt and l.t 0/xt 0 are opposite sides of the parallelogram and l.t/l.t 0/ is one of the
remaining sides (we might have to shorten l.t/xt a little).

In general, for any t 0> t0 , we can cover the geodesic segment l.t/l.t 0/ by finitely many
product neighborhoods as before and construct a local isometric embedding � from a
parallelogram to X such that two opposite sides of the parallelogram are mapped to
some geodesic segments l.t/xt and l.t 0/xt 0 and one of the remaining sides is mapped
to l.t/l.t 0/. Since X is CAT.0/, � is actually an isometric embedding. So we have a
well-defined parallel transport of †l.t/S along l.t/ for t > t0 .

In the construction of the above parallelogram, the length of l.t/xt (or l.t 0/xt 0 ) may
go to 0 as jt 0� t j !1. However, in the special case where there exists s0 > 0 such
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that †l.t/l is contained in the 0–skeleton of †l.t/S for all t > s0 (or equivalently
l.Œs0;1// is parallel to some geodesic ray in the 1–skeleton of X ), l.Œt0;1// has a
product neighborhood of the form X 0� Œt0;1/ in S , where X 0 is a subcomplex of X

with the induced metric. Therefore for any t > t0 and a segment l.t/xt � S short
enough, we can parallel transport l.t/xt along l to infinity, ie there is an isometrically
embedded “infinite parallelogram” with one side l.t/xt and one side l.Œt;1//.

Lemma 4-9 If l W Œ0;1/! S is a unit-speed geodesic ray of constant �mod direction,
then there exists an orthant subcomplex O �X satisfying the following conditions:

(1) @T l 2 @T O .

(2) If dim.O/D k and if fligkiD1
are the geodesic rays emanating from the tip of

the orthant such that O is the convex hull of fligkiD1
, then @T li 2 @T S for all i .

Proof By the previous lemma, we can choose some r > 0 such that for t > r ,
the l˙.t/ are suspension points in †l.t/S . Pick some t > r and let k be the di-
mension of Supp.lC.t//. Let fvt

i g
k
iD1

be vertices of Supp.lC.t//. Suppose that
˛i D d†l.t/S .v

t
i ; l
C.t//, where the values of k and ˛i are the same for all t > r by the

splitting in Lemmas 4-8 and 2-9. Moreover, we would like the labels vt
i to be consistent

under parallel transportation, ie for t 0¤ t (with t 0> r ), vt 0

i is the parallel transport of vt
i

along l . By Theorem 3-32, we can choose r 0 � r such that if x 2 S nB.l.0/; r 0/, then
logx l.0/ is �–close to some suspension point in †xS for �Dmin1�i�k

˚
1
2

�
�
2
�˛i

�	
.

Now we pick some t > r 0 , and construct a short geodesic segment l.t/xi � S going
along the direction of vt

i in the cone neighborhood of l.t/. We choose an arbitrary
extension of l.t/xi into S and call the geodesic ray l t

i for 1� i � k . We claim that
for any y 2 l t

i (with y ¤ l.t/),

(4-10) †yS D†yl t
i �Y

for some Y �†yS , hence the extension is unique and l t
i is a straight geodesic.

Suppose the claim were not true. Pick the first point yi 2 l t
i such that (4-10) is not

satisfied. Since †l.t/.yi ; l.0// � � � ˛i >
�
2

, hence d.yi ; l.0// > d.l.0/; l.t// > r 0 .
By our choice of r 0 , there is a suspension point in †yi

S which has distance less than
1
2
.�

2
� ˛i/ from logyi

l.0/. Since †yi
.l.0/; l.t// < ˛i , logyi

l.t/ has distance less
than ˛iC

1
2

�
�
2
�˛i

�
< �

2
from a suspension point. Since all points in l t

i between l.t/

and yi satisfy (4-10), logyi
l.t/ is a vertex in the all-right spherical complex †yi

S .
Thus logyi

l.t/ is also a suspension point and (4-10) must hold at y D yi , which is a
contradiction.
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We claim next that l t
i is parallel to l t 0

i for any t > r 0 and t 0 > r 0 . In fact, fixing t , by
the discussion before Lemma 4-9 and the uniqueness of l t 0

i , we know the claim is true
for jt 0� t j< � , where � depends on t . For the general case, we can apply a covering
argument as before.

Fix t0 > r 0 . By Lemma 2-4, for all i ,

(4-11) †T .l
t0

i ; l/D lim
t!C1

†l.t/.l
t
i ; l/D ˛i <

�
2
:

Thus †T .l
t0

i ; l/D†l.t0/.l
t0

i ; l/D ˛i for all i . It follows that l and l
t0

i bound a flat
sector by Lemma 2-5.

We fix a pair i; j with i ¤ j , and parametrize l
t0

i by arc length. We can assume without
loss of generality that l.t0/ is in the 0–skeleton. Let fhmg

1
mD1

be the collection of
hyperplanes such that hm \ l

t0

i D l
t0

i

�
mC 1

2

�
. Then (4-11) and Lemma 2-4 imply

that the CAT.0/ projection of l onto l
t0

i is surjective, thus there exists a sequence
ftmg

1
mD1

such that l.tm/ 2 hm . Recalling that j ¤ i , note that l
tm

j starts at l.tm/,
†l.tm/.l

tm

i ; l
tm

j /D �
2

and l
tm

i is orthogonal to hm , so l
tm

j � hm .

By convexity of hm , we can find a geodesic ray cm which starts at l
t0

i

�
mC 1

2

�
, stays

inside hm and is asymptotic to l
tm

j for every m, thus by Lemma 2-4,

(4-12) †T .l
t0

i ; l
t0

j /D lim
m!C1

†
l

t0
i
.mC 1

2
/
.l

t0

i ; cm/D
�
2
:

By (4-12), †T .l
t0

i ; l
t0

j /D†l.t0/.l
t0

i ; l
t0

j /D
�
2

for i ¤ j . By Lemma 2-18, we know
that the geodesic rays fl t0

i g
k
iD1

span a straight orthant O . Moreover, Lemma 2-8
together with (4-11) imply @T l 2 @T O . By Remark 2-16, we can replace O by an
orthant subcomplex which is Hausdorff close to O .

4.2 Cycle at infinity

By Lemma 4-9 and Corollary 4-5, there exists a dense subset G of @T S such that for
any v 2 G , there exists an orthant subcomplex Ov 2 X such that v 2 4v D @T Ov .
Denote the vertices of 4v by Fr.v/, then Fr.v/� @T S by Lemma 4-9.

It is clear that G�
S
v2G4v . We claim

S
v2G4v is a finite union of all-right spherical

simplices. In fact, it suffices to show
S
v2G Fr.v/ is a finite set, which follows from

Lemmas 2-17, 3-15 and 4-9 (note that each point in
S
v2G Fr.v/ is represented by a

straight geodesic contained in S ).

Moreover,
S
v2G �v has the structure of a finite simplicial complex. Take two simplices

�v1
and �v2

. We know �vi
D @T Ovi

for orthant subcomplex Ovi
, and Remark 2-13

implies �v1
\�v2

is a face of �1 (or �2 ).
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We endow K D
S
v2G4v � @T Y with the angular metric and denote the Euclidean

cone over K by CK , which is a subset of CT X .

Lemma 4-13 (1) K is a topologically embedded finite simplicial complex in @T X .

(2) CK is linearly contractible.

Recall that linearly contractible means there exists a constant C such that for any
d > 0, every cycle of diameter � d can be filled in by a chain of diameter � Cd .

Proof Let †T be the angular metric on K and dl be the length metric on K as
an all-right spherical complex. Our goal is to show that IdW .K;†T /! .K; dl/ is a
bi-Lipschitz homeomorphism. Let f�ig be the collection of faces of K (each �i is
an all-right spherical simplex). Suppose fOig

N
iD1

are orthant subcomplexes of X such
that @T Oi D�i . If points x and y are in the same �i for some i , then

(4-14) dl.x;y/D†T .x;y/:

If x and y are not in the same simplex, then we put �i D Supp.x/, �j D Supp.y/
and �k D�i \�j . Assume without loss of generality that dl.x; �k/ �

1
2
dl.x;y/.

Let .Y1;Y2/ D I.Oi ;Oj /. Then @T Y1 D @T Y2 D �k . Moreover, it follows from
(2-11) and Lemma 2-4 that

(4-15) †T .x;y/� 2 arcsin
�

1
2
A sin.dl.x; �k//

�
� 2 arcsin

�
1
2
A sin

�
1
2
dl.x;y/

��
;

where A can be chosen to be independent of i and j since fOig
N
iD1

is a finite
collection. Equations (4-14) and (4-15) imply IdW .K;†T /! .K; dl/ is a bi-Lipschitz
homeomorphism, thus (1) is true.

To see (2), it suffices to prove .K;†T / is linearly locally contractible, ie there exist
C <1 and R > 0 such that for any d < R, every cycle of diameter � d can be
filled in by a chain of diameter � Cd . By the above discussion, we only need to prove
.K; dl/ is locally linearly contractible.

Since .K; dl/ is compact and can be covered by finitely many cone neighborhoods
(see Theorem 2-1), it suffices to show each cone neighborhood is linearly contractible;
but any cone neighborhood is isometric to a metric ball in the spherical cone of some
lower dimensional finite piecewise spherical complex, thus we can finish the proof by
induction on dimension.

Since G is a dense subset of @T S and K is compact, it follows that @T S �K and
CT S � CK � CT X . We denote the base point of CT X by o.

Lemma 4-16 K has the structure of an .n�1/–simplicial cycle.
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Proof In the following proof, we will use d to denote the metric on X , and use xd to
denote the metric on CT X .

Pick a base point p 2X . By the proof of Lemma 3-16, we know that for any � > 0,
there exist a finite collection of constant speed geodesic rays fligNiD1

and an R� <1

such that li.t/ 2 S and fli.t/gNiD1
is a �t –net in B.p; t/ \ S for t � R� . Write

�i D @T li and define f�W S!CT S �CK by sending li.t/ to the point in o�i �CT S

which has distance d.li.t/;p/ from o (t �R� ). For x 62
SN

iD1 li ŒR�;1/, we pick a
point y 2

SN
iD1 li ŒR�;1/ which is nearest to x and define f�.x/D f�.y/.

It is clear that

(4-17) jd.x;p/� xd.f�.x/; o/j � �maxfd.x;p/;R�g

for any x 2 S , and

(4-18) jd.x;y/� xd.f�.x/; f�.y//j � �maxfd.p;x/; d.p;y/;R�g

for any x 2 S and y 2 S . Moreover,

(4-19) xdH .f�.B.p; r/\S/;B.o; r/\CT S/� �maxfr;R�g:

We might need to pick a larger R� for (4-19).

We want to approximate f� by a continuous map. Let us cover S by a collection
of open sets fB.x; rx/ \ Sgx2S , where rx D �maxfd.x;p/;R�g. Since S has
topological dimension � n, this covering has a refinement fUig

1
iD1

of order � n;
see [25, Chapter V]. Note that diam.Ui/ � 2�maxfd.p;Ui/;R�g. Denote the nerve
of fUig

1
iD1

by N , which is a simplicial complex of dimension � n.

Now we define a map b0W N ! CK as follows. For any vertex vi 2L, pick xi 2 Ui

where Ui is the open set associated with vertex vi , then set b0.vi/ D f�.xi/. Then
use the linear contractibility of CK to extend the map skeleton by skeleton to get b0 .
By choosing a partition of unity subordinate to the covering fUig

1
iD1

, we obtain a
barycentric map b from S to the nerve N (see [25, Chapter V]), then the continuous
map b0 ı bW S ! CK also satisfies (4-17)–(4-19) with � replaced by L0� , where L0 is
some constant which only depends on the linear contractibility constant of CK . So we
can assume without loss of generality that f�W S!CK is continuous and (4-17)–(4-19)
still hold for f� .

Recall that S is the support set of some top-dimensional proper homology class Œ� �.
We can also view Œ� � as the fundamental class of S and assume � is the proper singular
cycle representing this class. If ˛ D f�.�/, then Œ˛� 2H

p
n.CK/ since f� is a proper

map by (4-17). Our next goal is to show

(4-20) SŒ˛� D CK
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for � small enough. Since K is a simplicial complex, (4-20) would imply K also has
a fundamental class whose support set is exactly K itself, proving Lemma 4-16.

Recall that we have a 1–Lipschitz logarithmic map logpW CT X ! X sending base
point o to p . By (4-17) and (4-18), there exists a constant L<1 such that

(4-21) xd.z; o/D d.logp.z/;p/

for all z 2 Imf� , and

(4-22) j xd.z; w/� d.logp.z/; logp.w//j �L�maxf xd.o; z/; xd.o; w/;R�g

for all z; w 2 Imf� . Moreover,

(4-23) d.logp ıf�.x/;x/�L�maxfd.x;p/;R�g

for all x 2 S .

By (4-21), logp is proper. Let ˇ D logp.˛/D logp ıf�.�/. By (4-23), the geodesic
homotopy between logp ıf�W S!X and the inclusion map i W S!X is proper, thus
Œˇ�D Œ� � and SŒˇ� D SŒ�� D S . By Lemma 3-2,

(4-24) logp.SŒ˛�/� SŒˇ� D S:

Equations (4-24), (4-22) and (4-23) imply there exists L<1 such that

(4-25) xdH .B.o; r/\SŒ˛�;B.o; r/\ Imf�/�L�maxfr;R�g:

This together with (4-19) imply

(4-26) xdH .B.o; r/\SŒ˛�;B.o; r/\CT S/�L�maxfr;R�g:

Since K is a simplicial complex, SŒ˛� D CK0 , where K0 is some subcomplex of K .
Recall that by the construction of K , the only subcomplex of K that contains @T S is
K itself. Now (4-26) implies the Hausdorff distance between @T S and K0 is bounded
above by L� , thus for � small enough, K0 DK and (4-20) holds. We also know @T S

is dense in K from this.

We actually defined a boundary map

(4-27) @W H
p
n;n.X /!Hn�1.@T X /

in the proof of the above lemma; namely, for � small enough, we send Œ� � 2H
p
n;n.X /

to f��Œ� � 2 H
p
n.CT X /, which passes to an element in Hn�1.@T X / via the map

H
p
n.CT X /!Hn.CT X;CT X n fog/ŠHn�1.@T X /.

In the construction of f� , we have to choose a base point, the geodesic rays fli.t/gNiD1
,

the covering fUig
1
iD1

and the maps b and b0 . However, different choices give maps
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in the same proper homotopy class if the corresponding � is small enough. Also the
geodesic homotopy from f�1

to f�2
is proper if �1 and �2 are small enough, so the

above boundary map is well-defined.

Next we construct a map in the opposite direction as follows. Let �0 be a Lipschitz
.n�1/–cycle in @T X . Let ˛0 be the cone over �0 . Note that one can cone off elements
in Cn�1.@T X / to obtain elements in C

p
n .CT X /, which induces a homomorphism

Hn�1.@T X /!H
p
n.CT X /. Actually Œ˛0�2H

p
n;n.CT X / since the cone over a Lipschitz

cycle would satisfy the required growth condition. If � 0D log.˛0/, then Œ� 0�2H
p
n;n.X /

since log is 1–Lipschitz. Now we define the “coning off” map

(4-28) cW Hn�1.@T X /!H
p
n;n.X /

by sending Œ�0� to Œ� 0�. The base point in the definition of log does not matter because
different base points give maps which are of bounded distance from each other. It is
easy to see that c is a group homomorphism.

For � > 0, pick a finite �–net of Im �0 and denote it by f�igNiD1
. Suppose p D log.o/

and suppose fligNiD1
are the unit-speed geodesic rays emanating from p with @T liD �i .

Pick R� > 0 such that

(4-29)
ˇ̌̌̌
d.li.t/; lj .t//

t
� lim

t!C1

d.li.t/; lj .t//

t

ˇ̌̌̌
< �

for t >R� . Let I� 0 be the smallest subcomplex of X which contains Im � 0 . By using
the rays fligNiD1

as in the proof of Lemma 4-16, we can construct a continuous proper
map g�W I� 0 ! CT X skeleton by skeleton so that

(4-30) d.g� ı log.x/;x/�L�maxfd.x; o/;R�g

for x 2 Im˛0 , which implies g��Œ�
0�D Œ˛0� for � small.

Let Œ� 00� be the fundamental class of SŒ� 0� and let f��W SŒ� 0�! CT X be the map in
Lemma 4-16. We claim that g��Œ�

0�D f��Œ�
00� for � small, which would imply

(4-31) @ ı c D Id :

To see the claim, note that Œ� 0�D Œ� 00� in H
p
n.I� 0/. For � small, there is a proper geodesic

homotopy between g�jSŒ�0� and f� by (4-23) and (4-30), thus g��Œ�
00� D f��Œ�

00�.
Moreover, g��Œ�

00�D g��Œ�
0�, so f��Œ� 00�D g��Œ�

0�D Œ˛0�.

From (4-23) and the discussion after it we know

(4-32) c ı @D Id :

Thus @ is also a group homomorphism and we have the following result.
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Corollary 4-33 If X is an n–dimensional CAT.0/ cube complex, then:

(1) @W H
p
n;n.X /!Hn�1.@T X / is a group isomorphism, and the inverse is given by

cW Hn�1.@T X /!H
p
n;n.X /.

(2) If qW X !X 0 is a quasi-isometric embedding from X to another n–dimensional
CAT.0/ cube complex X 0 , then q induces a monomorphism q�W Hn�1.@T X /!

Hn�1.@T X 0/. If q is a quasi-isometry, then q� is an isomorphism.

Proof We only need to prove (2). Let us approximate q by a Lipschitz quasi-isometric
embedding and denote the smallest subcomplex of X 0 that contains Im q by Iq . Now
we have a homomorphism

(4-34) q�W H
p
n;n.X /!H

p
n;n.Iq/ ,!H

p
n;n.X

0/:

We can define a continuous map pW Iq ! X skeleton by skeleton in such a way
that d.x;p ı q.x// < D for all x 2 X (here D is some positive constant), which
induces p�W H

p
n;n.Iq/! H

p
n;n.X /. It is easy to see p� ı q� D Id and q� ıp� D Id,

so the first map in (4-34) is an isomorphism. Note that the second map in (4-34) is a
monomorphism, thus q� is injective and .2/ follows from .1/.

We refer to Theorem A-19 and the remarks after it for generalizations of the above
corollary.

Remark 4-35 Though we are working with Z=2 coefficients, it is easy to check that
the analogue of Corollary 4-33 for arbitrary coefficients is also true (the same proof
goes through).

Remark 4-36 By the above proof and the argument in Lemma 4-16, there exists a
positive D0 , which depends on the quasi-isometry constant of q , such that

(4-37) dH .q.SŒz��/;Sq�Œz��/ <D0

for any Œz�� 2H
p
n;n.X /.

4.3 Cubical coning

Note that the above coning map c does not give us much information about the
combinatorial structure of the support set. Now we introduce an alternative coning
procedure based on the cubical structure. We can assume, by Lemma 4-16, that
K D

SN
iD1�i , where each �i is an all-right spherical .n�1/–simplex. Let fOig

N
iD1

be the collection of top-dimensional orthant subcomplexes in X such that @T Oi D�i .
By (2-11), we can pass to suborthants and assume fOig

N
iD1

is a disjoint collection.
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The natural quotient map
FN

iD1�i !K induces a quotient map QW
FN

iD1 Oi ! CK
sending the tip of each Oi to the cone point of CK . We define an inverse map
F W CK!

FN
iD1 Oi �X by sending each x 2 CK to some point in Q�1.x/.

Lemma 4-38 F W CK!X is a quasi-isometric embedding.

Recall that CK is endowed with the induced metric from CT X .

Proof Let oi be the tip of Oi and LD maxi¤j d.oi ; oj /. For x 2 Oi and y 2 Oj ,
let ci;x � Oi be the constant-speed geodesic ray with ci;x.0/D oi and ci;x.1/D x .
We can define cj ;y �Oj similarly. Let c0j be the geodesic ray which (1) is asymptotic
to cj ;y ; (2) has the same speed as cj ;y ; (3) satisfies c0j .0/D oi . Then by Lemma 2-4
and convexity of d.ci.t/; c

0
j .t//,

(4-39) d.Q.x/;Q.y//D lim
t!1

d.ci;x.t/; cj ;y.t//

t

D lim
t!1

d.ci;x.t/; c
0
j .t//

t

� d.ci;x.1/; c
0
j .1//

� d.ci;x.1/; cj ;y.1//� d.c0j .1/; cj ;y.1//

� d.x;y/� d.oi ; oj /

� d.x;y/�L:

It follows that

(4-40) d.F.x/;F.y//� d.x;y/CL

for any x;y 2 CK .

For the other direction, pick x 2 Oi and y 2 Oj , and let us assume without loss
of generality that i ¤ j and x;y are interior points of Oi and Oj . We extend oix

(or oj y ) to get a ray oi�1 � Oi (or oj�2 � Oj ). Let .Y1;Y2/ D I.Oi ;Oj /. Since
d.x;y/� d.x;Y1/Cd.Y1;Y2/Cd.y;Y2/� d.x;Y1/Cd.y;Y2/CL, we can assume
without loss of generality that

(4-41) d.x;Y1/�
1
2
.d.x;y/�L/:

From (4-15), we have

(4-42) d.F.x/;F.y//� d.x; oi/ sin.†T .�1; �2//�
1
2
Ad.x; oi/ sin.†T .�1; @T Y1//

�
1
2
Ad.x;Y1/�L0

�
1
4
Ad.x;y/�L0� 1

2
L

Geometry & Topology, Volume 21 (2017)



2320 Jingyin Huang

if †T .�1; �2/ <
�
2

, and

(4-43) d.F.x/;F.y//� d.x; oi/� d.x;Y1/�L0 � d.x;y/�L0� 1
2
L

if †T .�1; �2/�
�
2

. Here A and L0 depend on Oi and Oj , but there are finitely many
orthants, so we can make A and L0 uniform.

Since X is linearly contractible, we can approximate F by a continuous quasi-isometric
embedding F 0 such that d.F.x/;F 0.x//�L for some constant L and any x 2 CK .
Let K.n�2/ be the .n�2/–skeleton of K and define �W CK! Œ0; 1� to be

�.x/D

8̂<̂
:

1 if d.x;CK.n�2//� 1;

2� d.x;CK.n�2// if 1< d.x;CK.n�2// < 2;

0 if d.x;CK.n�2//� 2:

Let
F1.x/D �.x/F

0.x/C .1� �.x//F.x/

for x 2 CK , where �.x/F 0.x/C .1� �.x//F.x/ denotes the point in the geodesic
segment F 0.x/F.x/ which has distance �.x/d.F 0.x/;F.x// from F.x/. Though F

may not be continuous, F1 is continuous, since the only discontinuity points of F

are in the 1–neighborhood of CK.n�2/ , however inside such a neighborhood we have
F1 D F 0 by definition. Also note that d.F.x/;F1.x//�L0 for all x 2 CK .

Since F1 D F outside the 2–neighborhood of CK.n�2/ , there exists an orthant sub-
complex O 0i �Oi such that F�1

1
.O 0i/ is an orthant in CK for 1� i �N and

(4-44) dH

�
Im F1;

N[
iD1

O 0i

�
<1:

Let ŒCK� 2H
p
n.CK/ be the fundamental class. If Œ� �D .F1/�ŒCK� 2H

p
n;n.X /, then

(4-45)
N[

iD1

O 0i � SŒ�� � Im F1:

The first inclusion follows from the construction of O 0i and the second follows from
Lemma 3-2. Equations (4-44) and (4-45) immediately imply:

Lemma 4-46 dH

�
SŒ��;

N[
iD1

O 0i

�
<1:

Now we are ready to prove the main result.
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Theorem 4-47 Let X be a CAT.0/ cube complex of dimension n. Pick Œ� �2H
p
n;n.X /

and suppose S D SŒ�� . Then there is a finite collection O1; : : : ;Ok of n–dimensional
orthant subcomplexes of S such that

dH

�
S;

k[
iD1

Ok

�
<1:

Proof By Lemma 4-46, it suffices to show Œ� � D Œ� � in H
p
n.X /. Note that (4-45)

implies @T SŒ�� D K , so @.Œ� �/ D ŒK� D @.Œ��/, where ŒK� is the fundamental class
of K and @ is the map in (4-27). Thus Œ� �D Œ� � by Corollary 4-33.

In particular, by Lemma 3-4 and Theorem 4-47, we have:

Theorem 4-48 If X is a CAT.0/ cube complex of dimension n, then for every n–
quasiflat Q in X , there is a finite collection O1; : : : ;Ok of n–dimensional orthant
subcomplexes in X such that

dH

�
Q;

k[
iD1

Ok

�
<1:

5 Preservation of top-dimensional flats

5.1 The lattice generated by top-dimensional quasiflats

We investigate the coarse intersection of the top-dimensional quasiflats in this section.

Let X be a finite-dimensional CAT.0/ cube complex. For two subsets A and B , we
say they are coarsely equivalent (denoted A� B ) if dH .A;B/ <1. We assume the
empty subset is coarsely equivalent to any bounded subset. Denote by ŒA� the coarse
equivalence class which contains A. We say ŒA�� ŒB� if there exists an r <1 such
that A�Nr .B/. If ŒA�� ŒB� and ŒA�¤ ŒB�, we will write ŒA�¨ ŒB�. Also we define
the union ŒA�[ ŒB� to be ŒA[B�, but intersection is not well-defined in general.

The class ŒA� is admissible if it can be represented by a subset which is a finite union
of (not necessarily top-dimensional) orthant subcomplexes in X (here A is allowed
to be empty). Let A.X / be the collection of admissible classes of subsets in X .
Pick ŒA1�; ŒA2� 2A.X /. We define another two operations between ŒA1� and ŒA2� as
follows.
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(1) By Lemma 2-10(4), there exists an r <1 such that

ŒNr1
.A1/\Nr1

.A2/�D ŒNr2
.A1/\Nr2

.A2/�

for any r1 � r and r2 � r . We define the intersection ŒA1� \ ŒA2� to be
ŒNr .A1/\Nr .A2/�, which is also admissible.

(2) By Lemma 2-10(4), there exists an r <1 such that

ŒA1 nNr1
.A2/�D ŒA1 nNr2

.A2/�

for any r1� r and r2� r . Define the subtraction ŒA1��ŒA2� to be ŒA1nNr .A2/�,
which is also admissible.

If Y is another CAT.0/ cube complex with dim.Y /D dim.X / and there is a quasi-
isometry f W X ! Y , then we define f].ŒA�/ to be Œf .A/�. This is well-defined since
A� B implies f .A/� f .B/. Note that:

(1) f].ŒA�/[f].ŒB�/D f].ŒA�[ ŒB�/.

(2) If ŒA�; ŒB�; Œf .A/� and Œf .B/� are all admissible, then

f].ŒA�/\f].ŒB�/D f].ŒA�\ ŒB�/ and f].ŒA�/�f].ŒB�/D f].ŒA�� ŒB�/:

We only verify the last equality. Since f is a quasi-isometry, there exist constants
a> 1, b > 0 such that for r large enough, we have

f .A/ nNarCb.f .B//� f .A nNr .B//� f .A/ nN.r=a/�b.f .B//:

Since Œf .A/� and Œf .B/� are admissible, the first term and the last term of the above
inequality are in the same coarse class for r large enough. This finishes the proof.

Let Q.X / be the collection of top-dimensional quasiflats in X , modulo the above
equivalence relation. Theorem 4-48 implies Q.X / � A.X /. Let KQ.X / be the
smallest subset of A.X / which contains Q.X / and is closed under union, intersection
and subtraction as defined above. More precisely, each element KQ.X / can be written
as a finite string of elements of Q.X / with union, intersection or subtraction between
adjacent terms and braces which indicate the order of these operations. Let f W X ! Y

be a quasi-isometry. Then by induction on the length of the string, one can show
Œf .A/� is admissible and Œf .A/� 2KQ.Y / for each ŒA� 2KQ.X /. By considering the
quasi-isometry inverse of f , we have the following theorem.

Theorem 5-1 Let X and Y be n–dimensional CAT.0/ cube complexes. If f W X!Y

is a quasi-isometry, then f induces a bijection f]W KQ.X /! KQ.Y /. Moreover, for
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ŒA�; ŒB� 2 KQ.X /, we have:

f].ŒA�/[f].ŒB�/D f].ŒA�[ ŒB�/;

f].ŒA�/\f].ŒB�/D f].ŒA�\ ŒB�/;

f].ŒA�/�f].ŒB�/D f].ŒA�� ŒB�/:

For ŒA� admissible, pick a representative in ŒA� which is a finite union of orthant
complexes. Define the order of ŒA�, denoted jŒA�j, to be the number of top-dimensional
orthant complexes in the representative. By Lemma 2-10, this definition does not
depend on the choice of representative. Since every element in KQ.X / is admissible,
we have a map KQ.X /! f0g[ZC with the following properties:

(1) jŒQ�j � 2dim X for ŒQ� 2Q.X /.
(2) jŒA�[ ŒB�j D jŒA�jC jŒB�j � jŒA�\ ŒB�j for ŒA�; ŒB� 2 KQ.X /.
(3) Let f be as in Theorem 5-1. Then jŒA�j D 0 if and only if jf].ŒA�/j D 0 for

ŒA� 2 KQ.X /.

The first assertion follows from (3-12).

We say an element ŒA� 2 KQ.X / is essential if jŒA�j > 0. We call ŒA� a minimal
essential element if for any ŒB� 2KQ.X / with ŒB�¨ ŒA�, we have jŒB�j D 0. Minimal
essential elements have the following properties:

(1) For any ŒA� 2 KQ.X /, there is a decomposition ŒA�D
�SN

iD1ŒAi �
�
[ ŒB� such

that each ŒAi � is a minimal essential element and jŒB�j D 0. We also require ŒB�
and each ŒAi � to be in KQ.X /.

(2) For two different minimal essential elements ŒA1�; ŒA2� 2 KQ.X /, we have
jŒA1�\ ŒA2�j D 0, thus jŒA1�[ ŒA2�j D jŒA1�jC jŒA2�j.

(3) Let f be as above. If ŒA� is a minimal essential element in KQ.X /, then f].ŒA�/
is also a minimal essential element.

We only prove (1). For each top-dimensional orthant subcomplex ŒOi � such that
ŒOi �� ŒA�, let ŒAi � be the minimal element in KQ.X / which contains ŒOi �. We claim
that ŒAi � is minimal essential. Suppose the contrary true, ie there exists ŒA0i � 2KQ.X /
such that jŒA0i �j ¤ 0 and ŒA0i �¨ ŒAi �. The minimality of ŒAi � implies ŒOi �� ŒA

0
i � does

not hold. However, in such a case ŒOi � � ŒAi �� ŒA
0
i � ¨ ŒAi �, which contradicts the

minimality of ŒAi �. We choose ŒB�D ŒA��
�SN

iD1 Ai

�
.

Lemma 5-2 Let X , Y be n–dimensional CAT.0/ cube complexes and let f W X!Y

be an .L0;A0/–quasi-isometry. If jf].ŒA�/jDjŒA�j for any minimal essential element ŒA�
in KQ.X /, then there exists a constant CDC.L0;A0/ such that for any top-dimensional
flat F �X , there exists a top-dimensional flat F 0 � Y such that dH .f .F /;F

0/ < C .
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Proof By Theorem 5-1 and the above discussion, we know jf].ŒA�/j D jŒA�j for any
ŒA� 2 KQ.X /, in particular jŒf .F /�j D jŒF �j D 2n (here n D dim.X / D dim.Y /).
By Lemma 3-4, let Œ� � 2 H

p
n.Y / be the class such that dH .SŒ��; f .F // <1. By

Theorem 4-47, SŒ�� is Hausdorff close to a union of 2n orthant subcomplexes. Thus
@T SŒ�� is contained in 2n right-angled spherical simplices of dimension n� 1. Then
Hn�1.@T SŒ��/ � Hn�1.Sn�1/. We pick a base point p 2 SŒ�� and consider the
logarithmic map logpW CT Y ! Y . Lemma 3-6 implies SŒ�� � logp.CT SŒ��/. Thus

Hn.B.p; r/\SŒ��/

rn
�

Hn.B.p; r/\ logp.CT SŒ��//

rn
�

Hn.B.o; r/\CT SŒ��/

rn
� !n:

Here o is the cone point in CT Y and !n is the volume of unit ball in En . The second
inequality follows from the fact that logp is 1–Lipschitz and the third inequality follows
from Hn�1.@T SŒ��/�Hn�1.Sn�1/. By Theorem 3-10(2), SŒ�� is isometric to En .

5.2 The weakly special cube complexes

It is shown in [8] that the assumption of Lemma 5-2 is satisfied for 2–dimensional
RAAGs. Our goal in this section is to find an appropriate class of cube complexes which
shares some key properties of the canonical CAT.0/ cube complexes of RAAGs such
that the assumption of Lemma 5-2 is satisfied. In [20], Haglund and Wise introduced
a class of RAAG-like cube complexes, which are called special cube complexes. We
adjust their definition for our purposes in the following way.

Definition 5-3 A cube complex K is weakly special if:

(1) K is nonpositively curved.

(2) No hyperplane self-osculates or self-intersects.

The second condition means that for any vertex v and two distinct edges e1 and e2

such that v 2 e1\ e2 , the hyperplanes dual to e1 and e2 are different.

If K is compact, then there exists a finite sheet, weakly special cover xK of K such
that every hyperplane in xK is two-sided, ie there exists a small neighborhood of the
hyperplane which is a trivial interval bundle over the hyperplane. This follows from
the argument in [20, Proposition 3.10].

In the rest of this section, we will denote by W 0 a compact weakly special cube
complex, and W the universal cover of W 0 . Since we mainly care about W , there is
no loss of generality in assuming every hyperplane in W 0 is two-sided. The goal of
this section is to prove the following theorem.
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Theorem 5-4 Let W 0
1

and W 0
2

be two compact weakly special cube complexes with
dim.W 0

1
/ D dim.W 0

2
/ D n. Suppose W1 , W2 are the universal covers of W 0

1
, W 0

2

respectively. If f W W1!W2 is a .L;A/–quasi-isometry, then there exists a constant
C D C.L;A/ such that for any top-dimensional flat F � W1 , there exists a top
dimensional flat F 0 �W2 with dH .f .F /;F

0/ < C .

This theorem follows from Lemma 5-2 and the following lemma.

Lemma 5-5 Let W1;W2 and f be as in Theorem 5-4. If f]W KQ.W1/!KQ.W2/ is
the induced bijection in Theorem 5-1, then jf].ŒA�/j D jŒA�j for any minimal essential
element ŒA� 2 KQ.W1/.

In the rest of this section, we will prove Lemma 5-5.

We label the vertices and edges of W 0 by fxvig
Nv
iD1

and fxeig
Ne

iD1
such that: (1) different

vertices have different labels; (2) two edges have the same label if and only if they are
dual to the same hyperplane. We also choose an orientation for each edge such that if
two edges are dual to the same hyperplane, then their orientations are consistent with
parallelism (this is possible since each hyperplane is two-sided). All the labelings and
orientations lift to the universal cover W . The edges in W dual to the same hyperplane
also share the same label.

For every edge-path ! in W 0 or W , define L.!/ to be the word xvi xe
�i1
i1
xe �i2

i2
xe �i3

i3
� � � ,

where xvi is the label of the initial vertex of ! , xeij is the label of the j th edge and
�ij D˙1 records the orientation of the j th edge.

Definition 5-3 and the way we label W 0 imply:

(1) For two edges e0
1

and e0
2

in W 0 dual to the same hyperplane, e0
1

is embedded if
and only if e0

2
is embedded, ie its end points are distinct.

(2) Pick any vertex v0i 2W 0 . Then two distinct edges e0
1

and e0
2

with v0i 2 e0
1
\ e0

2

have different labels.

(3) If !0
1

and !0
2

are two edge paths in W 0 such that L.!0
1
/DL.!0

2
/, then !0

1
D!0

2
.

If !1 and !2 are two edge paths in W such that L.!1/D L.!2/, then there
exists a unique deck transformation  such that  .!1/D !2 .

We will be using the following simple observation repeatedly.

Lemma 5-6 Pick vertices v1 and v2 in W which have the same label. For i D 1; 2,
let flij gkjD1

be a collection such that each lij is a geodesic ray, a geodesic segment or
a complete geodesic that contains vi . Suppose that:
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(1) Each lij is a subcomplex of W .

(2) For each j , there is a graph isomorphism �j W l1j ! l2j which preserves the
labels of vertices and edges and the orientations of edges, moreover �j .v1/D v2 .

(3) The convex hull of fl1j g
k
jD1

, which we denote by K1 , is a subcomplex isometric
to
Qk

jD1 l1j .

Then the convex hull of fl2j g
k
jD1

, which we denote by K2 , is a subcomplex isometric
to
Qk

jD1l2j . Moreover, let  be the deck transformation such that  .v1/D v2 . Then
 .K1/DK2 .

Let dim.W /D n and let O be a top-dimensional orthant subcomplex in W . We now
construct a suitable doubling of O which will serve as a basic move to analyze the
minimal essential elements in KQ.W /.

Let frj gniD1
be the geodesic rays emanating from the tip of O such that O is the

convex hull of frj gnjD1
. We parametrize r1 by arc length. Since the labeling of W is

finite, we can find a sequence of nonnegative integers fnj g
1
jD1

with nj !1 such that
the label and orientation of the incoming edge at r1.nj /, the label and orientation of
the outgoing edge at r1.nj / and the label of r1.nj / do not depend on j .

We identify O with Œ0;1/�O 0 , where O 0 is an .n�1/–dimensional orthant orthogonal
to r1 . By our choice of r1.n1/ and r1.n2/, we can extend r1.n2/r1.n1/ over r1.n1/

to reach a vertex v such that L.r1.n1/v/D L.r1.n2/r1.n1//. Here v does not need
to lie on r1 ; see Figure 1.

u

r (0)
1

r (n  )
1 1

r (n  )
1 2

r (n  )
1 3

v

r (n  )v
1 1

r (n  )
1 2

r (n  )
1 1

r (n  )
1 3

r (n  )
1 2

Figure 1

Let K1 be the convex hull of fn2g � O 0 and r1.n2/r1.n1/. Then K1 is of form
K1 D Œn1; n2��O 0 . Note that the parallelism map between fn1g �O 0 and fn2g �O 0

preserves labeling and orientation of edges. Then it follows from Lemma 5-6 that
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the convex hull of fn1g �O 0 and r1.n1/v is a subcomplex isometric to r1.n1/v�O 0 .
(Actually if  2 �1.W

0/ is the deck transformation satisfying  .r1.n2// D r1.n1/,
then  .K1/ is the convex hull of fn1g �O 0 and r1.n1/v .) We call this subcomplex
the mirror of K1 and denote it by K0

1
. Since K1 \K0

1
D fn1g �O 0 , it follows that

K0
1
[ .Œn1;1/�O 0/ is again an orthant; see Figure 2.

u

u

K'

1 u2

1

K3K2K1

K'2

K'3

u3

v

Figure 2

Let K2 D Œn2; n3� �O 0 . We extend r1.n1/v over v to reach a vertex u such that
L.vu/ D L.r1.n3/r1.n2//. Note that the parallelism map between fvg � O 0 and
fn3g�O 0 preserves labeling and orientation of edges. Then it follows from Lemma 5-6
that the convex hull of fvg �O 0 and vu is a subcomplex isometric to K2 . (Actually
if  2 �1.W

0/ is the deck transformation satisfying  .r1.n3// D v , then  .K2/ is
the convex hull of fvg �O 0 and vu.) This convex hull is called the mirror of K2 ,
and is denoted by K0

2
. Since vu and r1.n1/v fit together to form a geodesic segment,

K0
1
\K0

2
D fvg �O 0 . Thus K0

2
[K0

1
[ .Œn1;1/�O 0/ is again an orthant. We can

continue this process, and consecutively construct the mirror of Ki D Œni ; niC1��O 0

in W (denoted K0i ) arranged in the pattern indicated in the above picture. Similarly
one can verify that K0i is isometric to Ki , and K0i \K0

iC1
is isometric to O 0 .

Now we obtain a subcomplex KD
�S1

iD1 Ki

�
[
�S1

iD1 K0i
�
. It is clear that ŒO �� ŒK�.

The discussion in the previous paragraph implies that
S1

iD1 K0i is also a top-dimensional
orthant. We will call it the mirror of O . Moreover, K is isometric to R� .R�0/

n�1 .
More generally, by the same argument as above and Lemma 5-6, we have the following
result.
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Lemma 5-7 If K �W is a convex subcomplex isometric to .R�0/
k �Rn�k , then

there exists a convex subcomplex K0 isometric to .R�0/
k�1 � Rn�kC1 such that

ŒK�� ŒK0�.

Pick a minimal essential element ŒA� 2 KQ.W /. Then there exists a top-dimensional
orthant O with ŒO � � ŒA�, where ŒO � may not be an element in KQ.W /. Using
Lemma 5-7, we can double the orthant n times to get a top-dimensional flat F with
ŒO �� ŒF �. Since ŒA� is minimal, ŒA�\ ŒF �D ŒA�, which implies the following result.

Corollary 5-8 If ŒA� 2 KQ.W / is a minimal essential element, then there exists a
top-dimensional flat ŒF � such that ŒA�� ŒF �. In particular, jŒA�j � 2dim.W / D 2n .

Pick a top-dimensional orthant subcomplex O and denote the .n�1/–faces of O

by fOig
n
iD1

. We say that ŒOi � is branched if there exist top-dimensional orthant
subcomplexes O 0 and O 00 such that ŒO �, ŒO 0� and ŒO 00� are distinct elements and
ŒO �\ ŒO 0�D ŒO �\ ŒO 00�D ŒOi �; otherwise ŒOi � is called unbranched.

Lemma 5-9 If O and Oi are as above, then ŒOi � is branched if and only if there exists
a suborthant O 0i � Oi and geodesic rays l1 , l2 and l3 emanating from the tip of O 0i
such that:

(1) ŒO 0i �D ŒOi �.

(2) Œl1�, Œl2� and Œl3� are distinct.

(3) The convex hull of lj and O 0i is a top-dimensional orthant for 1� j � 3.

Proof If Oi is branched, let O 0 and O 00 be the orthant subcomplexes as above. We
can assume O 0 \O D O 00 \O D ∅. Let .Y1;Y2/ D I.O;O 0/. Since Y1 and Y2

bound a copy of Y1 � Œ0; d.O;O
0/� inside W , we have dim.Y1/D dim.Y2/ � n� 1.

However, (2-11) implies ŒY1�D ŒO �\ŒO
0�D ŒOi �, so Y1 and Y2 are .n�1/–dimensional

orthant subcomplexes. We can find a copy of Y2 � Œ0;1/ inside O 0 and we claim
Y1 � Œ0; d.O;O

0/�[Y2 � Œ0;1/ is also a top-dimensional orthant subcomplex.

To see this, note that .Y1 � Œ0; d.O;O
0/�/\ .Y2 � Œ0;1//D Y2 . Pick y 2 Y2 , and let

fvig
n�1
iD1

be mutually orthogonal directions in †yY2 . Moreover, we can assume each vi

is in the 0–skeleton of †yY2�†yW . Let v 2†y.Y1� Œ0; d.O;O
0/�/ be the direction

corresponding to the Œ0; d.O;O 0/� factor and let v0 2†y.Y2� Œ0;1// be the direction
corresponding to the Œ0;1/ factor. It is clear that v and v0 are distinct points in the
0–skeleton of †yW . If d.v; v0/ D �

2
, then v , v0 and fvig

n�1
iD1

would be mutually
orthogonal directions, which yields a contradiction with the fact that dim.W / D n.
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Thus d.v; v0/D � and Y1 � Œ0; d.O;O
0/�[Y2 � Œ0;1/ is indeed a top-dimensional

orthant subcomplex.

Note that the orthant constructed above is the convex hull of Y1 and some geodesic
ray l emanating from the tip of Y1 . We can repeat this argument for O 00 to obtain the
required suborthants and geodesic rays in the lemma. The other direction of the lemma
is trivial.

Let O , frj gnjD1
, fnig

1
iD1

, Ki and K0i be as in the discussion before Lemma 5-7. Let
aj D njC1� n1 for j � 0. We identify

�S1
iD1 Ki

�
[
�S1

iD1 K0i
�

with R�
Qn

jD2 rj
such that Ki D Œai�1; ai ��

Qn
jD2 rj . Thus K0i D Œ�ai ;�ai�1��

Qn
jD2 rj . Let l be

the unit-speed complete geodesic line in W such that l.0/D r1.n1/ and it is parallel
to the R factor. For x 2 R, we denote the geodesic ray in

�S1
iD1 Ki

�
[
�S1

iD1 K0i
�

that starts at l.x/ and goes along the rj factor by fxg � rj .

Let i 2 �1.W
0/ be the deck transformation satisfying i.l.ai//D l.�ai�1/. Then

by our construction, i.Ki/DK0i . Moreover, under the product decomposition Ki D

Œai�1; ai ��
Qn

jD2 rj and K0iD Œ�ai ;�ai�1��
Qn

jD2 rj , we have that i maps Œai�1; ai �

to Œ�ai ;�ai�1� and fixes the factor
Qn

jD2 rj pointwise.

Let zO D
S1

iD1 K0i be the mirror of O . There is an isometry � acting on� 1[
iD1

Ki

�
[

� 1[
iD1

K0i

�
DR�

nY
jD2

rj

by flipping the R factor (the other factors are fixed). For 1 � j � n, let Oj be the
.n�1/–face of O which is orthogonal to rj and let zOj be the .n�1/–face of zO such
that Œ�. zOj /�D ŒOj �. (Recall that ŒO �D

�S1
iD1 Ki

�
.)

Lemma 5-10 ŒOj � is branched if and only if Œ zOj � is branched.

Proof If j D 1, then ŒO1� D Œ zO1� D ŒO � \ Œ zO � and the lemma is trivial, so let us
assume j ¤ 1. If ŒOj � is branched, then by Lemma 5-9, we can assume without loss
of generality (one might need to modify Ki and K0i by cutting off suitable pieces
and replace l by a geodesic in R�

Qn
jD2 rj which is parallel to l ) that there exist

i0 � 0 and geodesic rays c1 , c2 , c3 emanating from l.ai0
/ such that Œc1�, Œc2�, Œc3� are

distinct elements and the convex hull of cm , l.Œai0
;1// and fai0

g� rk (for k ¤ 1; j ),
which we denote by Hm , is a top-dimensional orthant subcomplex for 1�m� 3.

Let  be the deck transformation satisfying  .l.ai0
// D l.�ai0

/. Such a  exists
by the construction of l (in the previous paragraph, we might possibly replace the
original l by a geodesic parallel to l , however the same  works). Let zcm D  .cm/
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for 1�m� 3. Then Œzc1�, Œzc2�, Œzc3� are distinct since  is an isometry. Since  is label
and orientation preserving, cm and zcm correspond to the same word for 1 �m � 3,
moreover  .faig � rk/D f�aig � rk for k ¤ 1. To prove Œ zOj � is branched, it suffices
to show the convex hull of zcm , l..�1;�ai0

�/ and f�ai0
g � rk (for k ¤ 1; j ) is a

top-dimensional orthant subcomplex.

For mD 1, we chop H1 into pieces so that

H1 D

1[
iDi0C1

Li ; where Li D c1 � l.Œai�1; ai �/�
Y

k¤1;j

rk :

Let i be the deck transformation defined before Lemma 5-10 and let L0i D  .Li/.
We claim that

i

�
c1 � fai�1g �

Y
k¤1;j

rk

�
D iC1

�
c1 � faiC1g �

Y
k¤1;j

rk

�
for i � i0 C 1. This claim follows from the following two observations: (1) both
sides of the equality contain l.�ai/; (2) i , iC1 and the parallelism between
c1�fai�1g�

Q
k¤1;j rk and c1�faiC1g�

Q
k¤1;j rk preserve labeling and orientation

of edges. It follows from the claim that H 0
1
D
S1

iDi0C1 L0i is a top-dimensional orthant
subcomplex. By a similar argument as before, we know



�
c1 � faig �

Y
k¤1;j

rk

�
D i0C1

�
c1 � fai0C1g �

Y
k¤1;j

rk

�
;

thus H 0
1

is the convex hull of zc1 , l..�1;�ai �/ and f�aig�rk , for k¤1; j . Moreover,
ŒH 0

1
�\ Œ zO �D Œ zOj �. We can repeat this construction for zc2 and zc3 , which implies Œ zOj � is

branched. By the same argument, if Œ zOj � is branched, we can prove ŒOj � is branched.

Remark 5-11 It is important that we keep track of information from the labels of O

while constructing the mirror of O ; in other words, if we construct zO by the pattern
indicated in Figure 3, we will not be able to conclude that ŒOj � is branched from the
fact that Œ zOj � is branched.

K0
1

K0
1

K0
1 K1 K2 K3

Figure 3
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Lemma 5-12 If ŒA� 2 KQ.W / is a minimal essential element, then:

(1) jŒA�j D 2i for some integer i with 1� i � n.

(2) There exists a top-dimensional flat F and another 2n�i�1 minimal essential
elements fAj g

2n�i�1
jD1

with jŒAj �j D jŒA�j such that ŒF �D ŒA�[
�S2n�i�1

jD1 ŒAj �
�
.

Proof We find a top-dimensional orthant subcomplex O such that ŒO � � ŒA�. By
the argument before Lemma 5-7, we can double this orthant n times to a get top-
dimensional flat F such that ŒO �� ŒF �. Assume without loss of generality that O �F .
Denote by fOig

n
iD1

the .n�1/–faces of O and let �i W F ! F be the isometry that
fixes Oi pointwise and flips the direction orthogonal to Oi .

Let G be the group generated by f�ig
n
iD1

. Then G Š .Z=2/n . We define

ƒb D f1� i � n j ŒOi � is branchedg; ƒu D f1� i � n j ŒOi � is unbranchedg:

Let Gb be the subgroup generated by f�igi2ƒb
and let Gu be the subgroup generated

by f�igi2ƒu
. We denote by Gi the subgroup generated by f�1 � � � �i�1; �iC1 � � � �ng.

Claim 1 For any  2G , ŒOi � is branched if and only if Œ .Oi/� is branched.

Proof Writing  D �i1
�i2
� � � �ik

, we prove it by induction on k . The case k D 0

is trivial. In general, suppose ŒOi � is branched if and only if Œ�i2
� � � �ik

.Oi/� is
branched. It follows from the way we construct F that Œ�i1

�i2
� � � �ik

.O/� is the
mirror of Œ�i2

� � � �ik
.O/�. So by Lemma 5-10, Œ�i1

�i2
� � � �ik

.Oi/� is branched if and
only if Œ�i2

� � � �ik
.Oi/� is branched, thus the claim is true.

Claim 2 ŒA��

� [
2Gu

 .O/

�
:

Proof If ŒOi � is branched, by Lemma 5-9 there exists a subcomplex Mi isometric to
.R�0/

n�1�R such that ŒMi �\ŒF �D ŒO �. By Lemma 5-7 we can find a top-dimensional
flat Fi such that ŒMi �� ŒFi �. Since Fi\F ¤∅, by Lemma 2-10 ŒF\Fi �D ŒF �\ ŒFi �.
Note that F \ Fi is a convex subcomplex of F with jŒF \ Fi � \ Œ�i.O/�j D 0, so
ŒF \Fi ��

�S
2Gi

 .O/
�
. Recall that ŒA� is a minimal essential element, so

ŒA�� ŒF �\

� \
i2ƒb

ŒFi �

�
D

\
i2ƒb

.ŒFi �\ ŒF �/�
\

i2ƒb

� [
2Gi

 .O/

�
D

� [
2Gu

 .O/

�
:

Claim 3
� [
2Gu

 .O/

�
� ŒA�:
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Proof First we need the following observation. Let ŒP1� and ŒP2� be two different
top-dimensional orthant complexes. Suppose each ŒQ� 2Q.X / satisfies the property
that either ŒP1�� ŒQ� and ŒP2�� ŒQ�, or ŒP1�ª ŒQ� and ŒP2�ª ŒQ�. Then this property
is also true for each element in KQ.X /. To see this, let AP1;P2

.X / be the collection of
elements in A.X / which satisfy this property. Then one readily verifies that AP1;P2

.X /

is closed under union, intersection and subtraction. Moreover, Q.X / � AP1;P2
.X /.

Thus KQ.X /�AP1;P2
.X /.

Pick an unbranched face ŒOi �. By Lemma 4-16, Equation (4-34) and Remark 4-36, for
every top-dimensional quasiflat Q with ŒO �� ŒQ�, there exists another top-dimensional
orthant complex O 0 such that ŒO 0�� ŒQ� and @T O 0\@T OD @T Oi . This together with
Lemma 2-10 (see also Remark 2-13) imply ŒO �\ ŒO 0�D ŒOi �, thus ŒO 0�D Œ�i.O/� and
Œ�i.O/�� ŒQ� (recall that ŒOi � is unbranched). Similarly, one can prove if Œ�i.O/�� ŒQ�

for a top-dimensional quasiflat Q, then ŒO �� ŒQ�. It follows from the above observation
that Œ�i.O/�� ŒA� for i 2ƒu .

Let  2 Gu . Write  D �i1
�i2
� � � �ik

with ij 2 ƒu for 1 � j � n. We will prove
Claim 3 by induction on k . The case k D 1 is already done by the previous paragraph.
In general, we assume Œ�i1

�i2
� � � �ik�1

.O/�� ŒA�. Note that ŒO �\ Œ�ik
.O/�D ŒOik

�,
where ŒOik

� is unbranched, so

Œ�i1
�i2
� � � �ik�1

.O/�\ Œ�i1
�i2
� � � �ik

.O/�D Œ�i1
�i2
� � � �ik�1

.Oik
/�.

Claim 1 implies Œ�i1
�i2
� � � �ik�1

.Oik
/� is also unbranched, so Œ�i1

�i2
� � � �ik

.O/�� ŒA�

by the same argument as in the previous paragraph.

Claim 2 and Claim 3 imply
�S

2Gu
 .O/

�
D ŒA�. So jŒA�j D jGuj, where jGuj

is the order of Gu . Now the first assertion of the lemma follows. Moreover, for
any  2 G , let ŒA � 2 KQ.W / be the unique minimal essential element such that
Œ .O/� � ŒA �. Claim 1 implies fŒ .Oi/�gi2ƒb

and fŒ .Oi/�gi2ƒu
are the branched

faces and unbranched faces of Œ .O/� respectively. By the same argument as in
Claim 2 and Claim 3, we can show ŒA � D

�S
 02Gu

 0.O/
�
, where Gu denotes

the corresponding coset of Gu . Since there are jGj=jGuj cosets of Gu , the second
assertion of the lemma also follows.

Proof of Lemma 5-5 If jŒA�j D 2n , by Corollary 5-8 we know there exists a top-
dimensional flat F such that ŒA� � ŒF �, so actually ŒA� D ŒF �. Then f .A/ is a
top-dimensional quasiflat, thus jf].ŒA�/j � 2n . However, f].ŒA�/ is also minimal
essential, so by Corollary 5-8 we actually have jf].ŒA�/j D 2n D jŒA�j. Let g be a
quasi-isometry inverse of f . If ŒA0� 2 KQ.W2/ is a minimal essential element, then
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by the same argument, we know that jŒA0�j D 2n implies jg].ŒA0�/j D 2n D jŒA0�j. So
jŒA�j D 2n if and only if jf].ŒA�/j D 2n for minimal essential element ŒA� 2 KQ.W1/.

In general, we assume inductively that jŒA�j D k if and only if jf].ŒA�/j D k for any
k � 2n�iC1 and any minimal essential element ŒA�2KQ.W1/ (we are doing induction
on i ). If ŒB1� 2 KQ.W1/ is a minimal essential element with jŒB1�j D 2n�i , then by
Lemma 5-12, we can find a top-dimensional flat F and another 2i�1 minimal essential
elements fŒBj �g

2i

jD2
such that jŒBj �j D jŒB1�j and

(5-13) ŒF �D

2i[
jD1

ŒBj �:

Since f .F / is a top-dimensional flat, we have

(5-14) jf].F /j D

ˇ̌̌̌
f]

� 2i[
jD1

ŒBj �

�ˇ̌̌̌
D

ˇ̌̌̌ 2i[
jD1

f].ŒBj �/

ˇ̌̌̌
D

2iX
jD1

jf].ŒBj �/j � 2n:

But our induction assumption implies

(5-15) jf].ŒBj �/j< 2n�iC1:

Since f].ŒBj �/ is minimal essential element for each j , Equation (5-15) together with
assertion (1) of Lemma 5-12 imply

(5-16) jf].ŒBj �/j � 2n�i :

Now (5-14) and (5-16) imply

(5-17) jŒBj �j D jf].ŒBj �/j D 2n�i

for all j . By considering the quasi-isometry inverse, we know jŒB�j D 2n�i if and only
if jf].ŒB�/j D 2n�i for minimal essential element ŒB� 2 KQ.W1/. By Lemma 5-12(1)
and our induction assumption, we have actually proved that jŒB�j D k if and only if
jf].ŒB�/j D k for any k � 2n�i and any minimal essential element ŒB� 2KQ.W1/.

5.3 Application to right-angled Coxeter groups and Artin groups

5.3.1 The right-angled Coxeter group case For a finite simplicial graph � with
vertex set fvigi2I , there is an associated right-angled Coxeter group (RACG), denoted
by C.�/, with the following presentation:

hfvigi2I j v
2
i D 1 for all i I Œvi ; vj �D 1 if vi and vj are joined by an edgei:
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The group C.�/ has a nice geometric model D.�/, called the Davis complex. The
1–skeleton of D.�/ is the Cayley graph of C.�/ with edges corresponding to vi , v�1

i

identified. For n� 2, the n–skeleton D.n/.�/ of D.�/ is obtained from D.n�1/.�/

by attaching an n–cube whenever one finds a copy of the .n�1/–skeleton of an n–cube
inside D.n�1/.�/. This process will terminate after finitely many steps and one obtains
a CAT.0/ cube complex where C.�/ acts properly and cocompactly.

The action of C.�/ on D.�/ is not free; however, D.�/ can be realized as the
universal cover of a compact cube complex. The following construction is from [15].
Let feigi2I be the standard basis of RI and let �I D Œ0; 1�I �RI be the unit cube
with the standard cubical structure. Let F.�/ be the flag complex of � . For each
simplex �� F.�/, let R� be the linear subspace spanned by feigvi2� . Define

K.�/D
[
�

˚
faces of �I parallel to R�

	
;

where � varies among all simplices in F.�/. Then the Davis complex D.�/ is exactly
the universal cover of K.�/; see [15, Proposition 3.2.3].

One can verify that K.�/ is weakly special. In order to apply Theorem 5-4 in a
nontrivial way, we need the following extra condition:

(�) There is an embedded top-dimensional hyperoctahedron in F.�/:

One can check there exists a top-dimensional flat in D.�/ if and only if (�) is true.

Corollary 5-18 Let �1 and �2 be two finite simplicial graphs satisfying (�). If
�W D.�1/! D.�2/ is an .L;A/–quasi-isometry, then dim.D.�1// D dim.D.�2//.
Moreover there is a constant D DD.L;A/ such that for any top-dimensional flat F1

in D.�1/, we can find a flat F2 in D.�2/ such that

dH .�.F1/;F2/ <D:

Proof It suffices to show that dim.D.�1// D dim.D.�2//. The rest follows from
Theorem 5-4 and the above discussion.

We can assume the quasi-isometry � is defined on the 0–skeleton of D.�1/. Since
D.�2/ is CAT.0/, we can extend � skeleton by skeleton to obtain a continuous quasi-
isometry. Similarly, we assume the quasi-isometry inverse �0 is also continuous. Since
� and �0 are proper, there are induced homomorphisms for the proper homology
��W H

p
�.D.�1//!H

p
�.D.�2// and �0�W H

p
�.D.�2//!H

p
�.D.�1//; see Section 3.1.

Note that the geodesic homotopy between �0 ı� (or � ı�0 ) and the identity map is
proper, so �� ı�0� D Id and �0� ı�� D Id. Hence �� is an isomorphism.
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By symmetry, it suffices to show dim.D.�1// � dim.D.�2//. If dim.D.�1// <

dim.D.�2//, then H
p
n.D.�1// is trivial (n D dim.D.�2//) since there are no n–

dimensional cells in D.�1/. On the other hand, (�) implies there is a top-dimensional
flat in D.�2/, thus H

p
n.D.�2// is nontrivial, which yields a contradiction.

5.3.2 The right-angled Artin group case Recall that for every simplicial graph � ,
there is a corresponding RAAG G.�/. Suppose xX .�/ is the Salvetti complex of G.�/.
Then the 1–cells and 2–cells of xX .�/ are in 1–1 correspondence with the vertices and
edges in � receptively. The closure of each k –cell in xX .�/ is a k –torus, which we
call a standard k –torus. One can verify that the Salvetti complex xX .�/ is a weakly
special cube complex.

We label the vertices of � by distinct letters (they correspond to the generators of G.�/),
which induces a labeling of the edges of the Salvetti complex. We choose an orientation
for each edge in the Salvetti complex and this gives us a directed labeling of the edges
in X.�/. If we specify some base point v 2X.�/ (here v is a vertex), then there is a
1–1 correspondence between words in G.�/ and edge paths in X.�/ which start at v .

A subgraph � 0 � � is a full subgraph if there does not exist an edge e � � such that
the two endpoints of e belong to � 0 but e ª � 0 . In this case, there is an embedding
xX .� 0/ ,! xX .�/ which is locally isometric. If pW X.�/! xX .�/ is the universal cover,

then each connected component of p�1. xX .� 0// is a convex subcomplex isometric
to X.� 0/. Following [8], we call these components standard subcomplexes associated
with � 0 . Note that there is a 1–1 correspondence between standard subcomplexes
associated with � 0 and left cosets of G.� 0/ in G.�/. A standard k –flat is the standard
complex associated with a complete subgraph of k vertices. When k D 1, we also call
it a standard geodesic.

Given a subcomplex K �X.�/, we denote the collection of labels of edges in K by
label.K/ and the corresponding collection of vertices in � by V .K/.

Let V � � be a set of vertices. We define the orthogonal complement of V , denoted
by V ? , to be the set fw 2 � j d.w; v/D 1 for any v 2 V g.

The following theorem follows from Theorem 5-4.

Theorem 5-19 Let �1 , �2 be finite simplicial graphs, and let �W X.�1/! X.�2/

be an .L;A/–quasi-isometry. Then dim.X.�1//D dim.X.�2//. Moreover there is a
constant D DD.L;A/ such that for any top-dimensional flat F1 in X.�1/, we can
find a flat F2 in X.�2/ such that

dH .�.F1/;F2/ <D:
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One can argue as in Corollary 5-18 or using the invariance of cohomological dimension
to show dim.X.�1//D dim.X.�2//.

Using Theorem 5-19, we can set up some immediate quasi-isometry invariants for
RAAGs. Let F.�/ be the flag complex of � . We will assume nD dim.F.�// in the
following discussion, then dim.X.�//D nC 1.

We construct a family of new graphs fGd .�/g
n
dD1

, where the vertices of Gd .�/ are
in 1–1 correspondence with the top-dimensional flats in X.�/, and two vertices v1

and v2 are joined by an edge if and only if the associated flats F1 and F2 satisfy
the condition that there exists an r > 0 such that Nr .F1/\Nr .F2/ contains a flat of
dimension d . Let Gs

d
.�/ be the full subgraph of Gd .�/ spanned by those vertices

representing standard flats of top dimension.

Lemma 2-10 and Theorem 5-19 yield the following result.

Corollary 5-20 Given a pair of finite simplicial graphs �1 , �2 and a quasi-isometry
qW X.�1/! X.�2/, there is an induced graph isomorphism q�W Gd .�1/! Gd .�2/

for 1� d � dim.F.�1//D dim.F.�2//.

The relation between Gd .�/ and � is complicated, but several basic properties of Gd .�/

can be directly read from � . We first investigate the connectivity of Gd .�/.

Lemma 5-21 Suppose 1� d � n. Then Gd .�/ is connected if and only if Gs
d
.�/ is

connected.

Proof For the ( direction, it suffices to show every point v 2 Gd .�/ is connected
to some point in Gs

d
.�/. Let Fv be the associated top-dimensional flats. Pick a

vertex x 2 Fv and suppose feig
nC1
iD1

are mutually orthogonal edges in Fv emanating
from x . Let e?

1
be the subspace of Fv orthogonal to e1 and let li be the unique

standard geodesic such that ei � li . Then by Lemma 5-6, the convex hull of l1 and
e?

1
is a top-dimensional flat Fv;1 . By construction, Fv;1 is adjacent to Fv in Gd .�/.

Now we can replace Fv by Fv;1 , and run the same argument with respect to l2 .
After finitely many steps, we will arrive at a standard flat F which is the convex hull
of flignC1

iD1
, moreover F is connected to Fv in Gd .�/. Note that F only depends on

the choice of base vertex x and the frame feig
nC1
iD1

at x . So we also denote F by
F D Fv.x; e1; : : : ; enC1/.

Now we prove the other direction. Pick a different base point x0 2 Fv and frame
fe0ig

nC1
iD1

at x0 . We claim Fv.x; e1; : : : ; enC1/ and Fv.x
0; e0

1
; : : : ; e0

nC1
/ are connected

in Gs
d
.�/. Note that:
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(1) If x0D x , e0i D ei for 2� i � nC1 and e0
1
D�e1 , then F and F 0 are adjacent

inside Gs
d
.�/.

(2) If x0 is the other end point of e1 , e0
1
D
��!
x0x and e0i is parallel to ei for 2� i�nC1,

then F D F 0 .

In general, we can connect x and x0 by an edge path ! � Fv and use the previous
two properties to induct on the combinatorial length of ! .

Let fFig
m
iD1

be a chain of top-dimensional flats representing an edge path in Gd .�/

such that F1 and Fm are standard flats. Pick i , let .Y;Y 0/ D I.Fi ;FiC1/ and let
�W Y ! Y 0 be the isometry induced by CAT.0/ projection as in Lemma 2-10(2). Since
Y contains a d –dimensional flat, for vertex x 2 Y there are d mutually orthogonal
edges feig

d
iD1

such that x 2 ei � Y . Let x0 D �.x/ and let e0i D �.ei/. We add more
edges such that feig

nC1
iD1

and fe0ig
nC1
iD1

become bases for Fi and FiC1 respectively. Let
Fi;i D Fi.x; e1; : : : ; enC1/ and FiC1;i D FiC1.x

0; e0
1
; : : : ; e0

nC1
/. By Lemma 2-14,

Fi;i and FiC1;i are adjacent in Gs
d
.�/ for 1� i �m�1. Moreover, for 2� i �m�1,

Fi;i and Fi;i�1 are connected by a path inside Gs
d
.�/ by the previous claim. Thus F1

and Fm are connected inside Gs
d
.�/.

Recall that the notion of k –gallery is defined in Definition 1-5.

Lemma 5-22 Gs
d
.�/ is connected if and only if � satisfies the following conditions:

(1) For any vertex v 2 F.�/, there is a top-dimensional simplex � � F.�/ such
that �\ v? contains at least d vertices.

(2) Any two top-dimensional simplices �1 and �2 in F.�/ are connected by a
.d�1/–gallery.

Proof For the only if part, pick vertex x 2 X.�/ and let �d;x be the full subgraph
of Gs

d
.�/ generated by those vertices representing top-dimensional standard flats

containing x . Then there is a canonical surjective simplicial map �W Gs
d
.�/! �d;x

by sending any top-dimensional standard flat F to the unique standard flat F 0 with
x 2 F 0 and label.F /D label.F 0/. Since Gs

d
.�/ is connected, �d;x is also connected

and (2) is true.

To see (1), suppose there exists a vertex v 2 F.�/ such that for any top-dimensional
simplex ��F.�/, �\v? contains less than d vertices. Pick a vertex x1 2X.�/. If
e �X.�/ is the unique edge such that V .e/D v and x1 2 e , then by our assumption,
e is not contained in any top-dimensional standard flat. This is also true for any edge
parallel to e . Let h be the hyperplane dual to e . Suppose x2 is the other endpoint of e .
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For i D 1; 2, let Fi be the top-dimensional standard flat such that xi 2 Fi . Then F1

and F2 are separated by h. Since F1 and F2 are joined by a chain of top-dimensional
standard flats such that each flat in the chain has trivial intersection with h (otherwise
some edge parallel to e would be contained in a top-dimensional standard flat), we can
find F 0

1
and F 0

2
in this chain which are adjacent in Gs

d
.�/ and separated by h. Let

.Y1;Y2/DI.F 0
1
;F 0

2
/. Then for a vertex y 2Y1 , there are d mutually orthogonal edges

feig
d
iD1

such that y 2 ei � Y1 . Let hi be the hyperplane dual to ei . Then hi \h¤∅
for 1� i � d by Lemma 2-14, hence in � we have d.V .ei/;V .e//D d.V .ei/; v/D 1

for 1� i � d , which yields a contradiction.

For the other direction, note that (2) implies that �d;x is connected for any vertex
x2X.�/ and (1) implies that for adjacent vertices x1;x22X.�/, there exist vi 2�d;xi

for i D 1; 2 such that v1 and v2 are either adjacent or identical in Gs
d
.�/, thus Gs

d
.�/

is connected.

The next result follows from Corollary 5-20, Lemma 5-21 and Lemma 5-22.

Theorem 5-23 Given G.�1/ and G.�2/ which are quasi-isometric to each other, for
1� d � dim.F.�1//, the graph �1 satisfies conditions (1) and (2) in Lemma 5-22 if
and only if �2 also satisfies these conditions.

Now we turn to the diameter of G1.�/.

If � admits a nontrivial join decomposition �D�1ı�2 , then diam.G1.�//� 2. To see
this, take two arbitrary top-dimensional flats F1 and F2 in X.�/, then Fi DAi �Bi ,
where Ai and Bi are top-dimensional flats in X.�1/ and X.�2/ respectively for
i D 1; 2; see [30, Lemma 2.3.8]. Let F DA1�B2 . Then diam.Nr .Fi/\Nr .F //D1

for some r > 0 and i D 1; 2, thus diam.G1.�// � 2. Our next goal is to prove the
following converse.

Lemma 5-24 If diam.G1.�//�2 and if � is not one point, then � admits a nontrivial
join decomposition � D �1 ı�2 .

In the first part of the following proof, we will use the argument in [14, Section 4.1].

Proof Following [14, Section 4.2], let �c be the complement graph of � . So �c

and � have the same vertex set, and two vertices are adjacent in �c if and only if they
are not adjacent in � . It suffices to show �c is disconnected.

We argue by contradiction and suppose �c is connected. Pick a top-dimensional
simplex � in the flag complex F.�/ of � , where we identify � with the 1–skeleton
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of F.�/. Note that � corresponds to a top-dimensional standard torus T� in the
Salvetti complex. For any vertex x 2X.�/, we denote the unique standard flat in X.�/

which contains x and covers T� by F�;x .

If � does not contain vertices other than those in �, then we are done; otherwise we
can find a vertex zv 2 � with

(5-25) zv 62�:

Let ! be an edge path of �c which starts at zv , ends at zv and travels through every
vertex in �c . By recording the labels of consecutive vertices in ! , we obtain a word W .
Let W 0 be the concatenation of eight copies of W .

Pick a vertex x1 2X.�/ and let l be the edge path which starts at x1 and corresponds
to the word W 0 . Let x2 be the other endpoint of l . Note that l is actually a geodesic
segment by our construction of W 0 . For i D 1; 2, let Fi D F�;xi

and let wi be the
vertex in G1.�/ corresponding to Fi . We claim d.w1; w2/ > 2.

If d.w1; w2/� 2, then there exists a top-dimensional flat F such that

(5-26) diam.Nr .Fi/\Nr .F //D1

for some r > 0 and i D 1; 2. Let .Y1;Y /D I.F1;F /. By (5-26) and Lemma 2-10,
Y1 is not a point (and neither is Y ) and we can identify the convex hull of Y [Y1 with
Y1 � Œ0; d.F1;F /�. Pick an edge ea � Y1 and let K1 be the strip ea � Œ0; d.F1;F /�

inside Y1� Œ0; d.F1;F /�. By considering the pair F and F2 , we can similarly find an
edge eb � F2 and a strip K2 isometric to eb � Œ0; d.F2;F /� which joins F and F2 .
See Figure 4.

F F1

K1 K2

F2

ea eb

Figure 4

We parametrize the geodesic segment l D x1x2 by arc length such that l.0/ D v1 .
Assume l.N / D x2 . Let hi be the hyperplane dual to the edge l.i � 1/l.i/ for
1� i �N . Note that

(5-27) hj separates hi and hk for i < j < k:

Moreover, each hi separates F1 and F2 by (5-25), hence also separates ea and eb .
Consider the set K1[F [K2 , which is connected and contains ea and eb , so each hi

must have nontrivial intersection with at least one of K1 , F and K2 .
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We claim each of K1 , F and K2 could intersect at most 2M hyperplanes from the
collection fhig

N
iD1

, where M is the length of word W (and M > 1 since � contains
more than one vertex). This will yield a contradiction since N D 8M . We prove the
claim for K1 ; the case of K2 is similar.

Let ha be the hyperplane dual to ea and let ƒD f1� i �N j ha\ hi ¤∅g. Then

(5-28) f1� i �N jK1\ hi ¤∅g �ƒ:

If ha D hi0
for some i0 , then by (5-27), hi0

is the only hyperplane in fhig
N
iD1

intersecting K1 . Hence we are done in this case. Now we assume ha 62 fhig
N
iD1

. Let
ei be an edge dual to hi . Then it follows from ha\ hi ¤∅ that for any i 2ƒ,

(5-29) d.V .ei/;V .ea//D 1

in � . If the claim for K1 is not true, then (5-28) implies ƒ has cardinality bigger
than 2M ; moreover, it follows from (5-27) that if i 2ƒ and j 2ƒ, then k 2ƒ for
any i � k � j . By the construction of the word W , we know every vertex of � is
contained in the collection fV .ei/gi2ƒ , which contradicts (5-29).

Now we prove the claim for F . Suppose F \ hi ¤ ∅. Then V .ei/ 2 �. By the
construction of W 0 , we know there exist positive integers a; a0 < M such that
d.V .eiCa/;V .ei// � 2 and d.V .ei�a0/;V .ei// � 2 in � . Then F \ hj D ∅ for
j D iCa and j D i �a0 . By (5-27), F \hj D∅ for j > iCa and j < i �a0 . Thus
the claim is true for F .

Theorem 5-30 The following are equivalent:

(1) diam.G1.�// <1.

(2) diam.G1.�//� 2.

(3) � admits a nontrivial join decomposition or � is one point.

Moreover, these properties are quasi-isometry invariants for right-angled Artin groups.

Note that .1/) .3/ follows by considering the concatenation of arbitrarily many
copies of W in Lemma 5-24 and applying the same argument.

Remark 5-31 It is shown in [2] and [1] that G.�/ has linear divergence if and only if
� is a nontrivial join, which also implies that � being a nontrivial join is quasi-isometry
invariant. Moreover, their results together with [26, Theorem B and Proposition 4.7]
implies the following stronger statement.

Given X DX.�/ and X 0DX.� 0/, let � D�ı�1ı� � �ı�k be the join decomposition
such that � is the maximal clique factor, and each �i does not allow nontrivial further
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join decomposition. Similarly, let � D�0 ı� 0
1
ı � � � ı� 0

k0
. Let X DRn�

Qk
iD1 X.�i/

and let X 0 D Rn0 �
Qk0

jD1 X.� 0j / be the corresponding product decomposition. If
�W X !X 0 is an .L;A/ quasi-isometry, then nD n0 , k D k 0 and there exist constants
L0 DL0.L;A/, A0 DA0.L;A/, D DD.L;A/ such that after re-indexing the factors
in X 0 , we have an .L0;A0/ quasi-isometry �i W X.�i/!X.� 0i/ so that

d

�
p0 ı�;

kY
iD1

�i ıp

�
<D;

where pW X !
Qk

iD1 X.�i/ and p0W X 0!
Qk

iD1 X.� 0i/ are the projections.

More generally, let X and X 0 be locally compact CAT.0/ cube complexes which admit
a cocompact and essential action. Let X D

Qn
jD1 Zj �

Qk
iD1 Xi be the finest product

decomposition of X , where the Zj are exactly the factors which are quasi-isometric
to R. Suppose Z D

Qn
jD1 Zj . Then X DZ �

Qk
iD1 Xi . Similarly, we decompose

X 0 as X 0DZ0�
Qk0

iD1 X 0i . Then any quasi-isometry between X and X 0 respects such
product decompositions in the sense of the previous paragraph. This is a consequence
of [26, Theorem B], [26, Proposition 4.7] and [12, Theorem 6.3].

Appendix: Top-dimensional support sets in spaces of finite
geometric dimension, and application to Euclidean buildings

In this section we adjust previous arguments to study the structure of top-dimensional
quasiflats in Euclidean buildings and prove the following result.

Theorem A-1 If Y is a Euclidean building of rank n and Œ� � 2H
p
n;n.Y /, then there

exist finitely many Weyl cones fWig
h
iD1

such that

dH

�
SŒ��;

h[
iD1

Wi

�
<1:

Moreover, we can assume Wi � SŒ�� for all i .

For the case of discrete Euclidean buildings, our previous method goes through without
much modification. One way to handle the nondiscrete case is to use [30, Lemma 6.2.2],
which says the support set of a top-dimensional class locally looks like a polyhedral
complex, to reduce to the discrete case. But this lemma relies on the local structure
of Euclidean buildings. We introduce another way, based on the generalization of
results in Section 3.2 to CAT.0/ spaces of finite geometric dimension (or homological
dimension), which is of independent interest.
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Lemma A-2 Lemma 3-4 is true under the assumption that Y is a CAT.0/ space of
homological dimension � n.

Proof Let �W En! Y be a top-dimensional .L;A/–quasiflat. We can assume � is
Lipschitz as before since Y is CAT.0/. Let ŒEn� be the fundamental class of En . Pick
� D ��.ŒEn�/ and let S D SŒ�� be the support set. Pick � > 0, suppose U is the
1–neighborhood of Im� and suppose fU�g�2ƒ is a covering of U , where each U�
is an open subset of U with diameter < 1. Since every metric space is paracompact,
we can assume this covering is locally finite and define a continuous map 'W U ! En

via the nerve complex of this covering as in Lemma 4-16, such that there exists a
constant C such that

(A-3) d.' ı�.x/;x/ < C

for any x 2 En , thus '�.Œ� �/ D ŒEn�. Then we have SŒEn� D En � '.SŒ��/ by
Lemma 3-2. It follows that dH .S; Im�/ <D DD.L;A/.

Remark A-4 In the above proof, we need to define ' in an open neighborhood of
Im� since SŒ��;Im� might be strictly smaller than SŒ��;Y . Also we do not need to
bound the dimension of the nerve complex of fU�g�2ƒ as in Lemma 4-16 since Y is
CAT.0/, while in Lemma 4-16, the target space CK is linearly contractible with the
contractibility constant possibly greater than 1.

Recall that in a polyhedral complex, every top-dimensional homology class can be
represented by a cycle with image inside the support of the homology class. However,
we do not know if this is still true in the case of an arbitrary metric space of homological
dimension n. The following result helps us to get around this point.

Lemma A-5 Let Y be a metric space of homological dimension �n and Œ� �2H
p
n.Y /.

If O is an open neighborhood of SŒ�� , then there exists a proper cycle � 0 such that
Œ� �D Œ� 0� and Im � 0 �O .

Proof We first prove a relative version of the above lemma for the usual homology
theory. Let V �U be open sets in Y . Pick Œ˛�2Hn.U;V / and let KDSŒ˛� . We claim
for any open neighborhood O �K , there exist chains ˇ and  such that Imˇ � U ,
Im  � V [O and ˛ D @ˇC  .

Let K0 D Im˛ n .V [ O/. For every point x 2 K0 , there exists �.x/ > 0 such
that xB.x; 2�.x// � U n Im @˛ and Œ˛� is trivial in Hn.U;U n xB.x; 2�.x///. Since
K0 is compact, we can find finitely many points fxig

N
iD1

in K0 such that K0 �SN
iD1 B.xi ; �.xi//. Suppose UK 0 D

SN
iD1 B.xi ; �.xi// and W D V [ O [ UK 0 .
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Then Im˛�W and Œ˛� is trivial in Hn.U;W /. Let W 0DW n
�SN

iD1
xB.xi ; 2�.xi//

�
.

Then Im @˛ �W 0 � V [O , so it suffices to show Œ˛� is trivial in Hn.U;W
0/, but this

follows from the Mayer–Vietoris argument in Lemma 3-2.

Now we turn to the case of Œ� � 2H
p
n.Y /. Pick a base point p 2 Y , put

U1 WD B.p; 4/; Ui WD B.p; 3i
C 1/ n xB.p; 3i�1

� 1/ for i > 1I

U 01 WD Y n xB.p; 3/; U 0i WD B.p; 3i�1/[ .Y n xB.p; 3i// for i > 1:

By barycentric subdivision, we can assume every singular simplex in � has image of
diameter � 1

3
.

Set �0D � , V0DY and Vi DY n xB.p; 3i/ for i � 1. Given �i with Im �i � .O[Vi/

(this is trivially true for iD0), we define �iC1 inductively as follows. First subdivide �i

to get a proper cycle � 0
iC1

such that

� Im �i D Im � 0
iC1

,
� � 0

iC1
D �i C @ˇiC1 with ImˇiC1 � UiC1 , and

� � 0
iC1
D � 0

iC1;1
C � 0

iC1;2
for Im � 0

iC1;1
� UiC1 and Im � 0

iC1;2
� U 0

iC1
.

It follows that Im @� 0
iC1;1

� UiC1 \U 0
iC1

and Im @� 0
iC1;1

� Im �i � .O [ Vi/. So
we can view Œ� 0

iC1;1
� as an element in Hn.UiC1;UiC1 \ U 0

iC1
\ .O [ Vi//. Then

by the previous claim, there exists a chain ˇ0
iC1

with Imˇ0
iC1
� UiC1 such that

Im.� 0
iC1;1

C @ˇ0
iC1

/� F , where

F D .UiC1\U 0iC1\ .O [Vi//[ .O \UiC1/D .UiC1\U 0iC1\Vi/[ .O \UiC1/

D .UiC1\ViC1/[ .O \UiC1/

D .O [ViC1/\UiC1:

Let �iC1 D �i C @.ˇiC1Cˇ
0
iC1

/. Then

Im �iC1 � .F [ Im � 0iC1;2/� .F [ .O [Vi//� .O [ViC1/

and the induction goes through.

Let � 0D �C
P1

iD1 @.ˇiCˇ
0
i/. Since Im.ˇiCˇ

0
i/�Ui , the infinite summation makes

sense and � 0 is a proper cycle. Also Im � 0 �O by construction.

Remark A-6 The above proof also shows that Œ� � 2H
p
n.Y / is nontrivial if and only

if SŒ�� ¤∅. This is not true for lower-dimensional cycles.

Corollary A-7 Let Z be a CAT.1/ space of homological dimension n. If Œ� � 2
Hn.Z/ is a nontrivial element, then for every point x 2Z , there exists a point y 2 SŒ��
such that d.x;y/D � .
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Proof We argue by contradiction and assume there exists a point x 2 Z such that
SŒ���B.x; �/. Then by Lemma A-5, there exists a cycle � 0 such that Im � 0�B.x; �/

and Œ� 0�D Œ� �. However, B.x; �/ is contractible and Œ� 0� must be trivial, which yields
a contradiction.

Let Y be a CAT.0/ space. Pick p 2 Y and let TpY be the tangent cone at p . Denote
the base point of TpY by o. Recall that there are logarithmic maps logpW Y ! TpY

and logpW Y nfpg!†pY . By [31, Theorem 3.5] (see also [33]), logpW Y nfpg!†pY

is a homotopy equivalence. Thus we get:

Lemma A-8 The map .logp/�W H�.Y;Y nfpg/!H�.TpY;TpY nfog/ is an isomor-
phism.

We need a simple observation about support sets in cones before we proceed. Let Z

be a metric space and let CZ be the Euclidean cone over Z with base point o. Pick a
Œ� � 2Hi.CZ;CZ nB.o; r//. Recall that there is an isomorphism

@W Hi.CZ;CZ nB.o; r//!Hi�1.Z/

induced by the boundary map.

Lemma A-9 Suppose S D S@Œ��;Z and suppose CS is the cone over S inside CZ .
Then SŒ��;CZ;CZnB.o;r/ D CS \B.o; r/.

The next lemma is an immediate consequence of [28, Theorem A].

Lemma A-10 If Z is a CAT.�/ space of homological dimension � n, then for any
p 2Z , †pZ is of homological dimension � n� 1.

Now we are ready to prove the geodesic extension property for top-dimensional support
sets. The argument is similar to [9, Lemma 3.1].

Lemma A-11 Let Y be a CAT.0/ space of homological dimension n. Pick an element
Œ� � 2H

p
n.Y / and let S D SŒ�� . Then for a geodesic segment pq � Y with q 2 S , there

exists a geodesic ray q� � S such that pq and q� fit together to form a geodesic ray.

Proof First we claim that for any � > 0, there exists a point z 2 S \S.p; �/ such that
the concatenation of pq and qz is a geodesic. Let

logqW .Y;Y nB.q; 2�//! .TqY;TqY nB.o; 2�//;
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and let ˛D logq.�/. By Lemma A-10, the homological dimension of TpY is bounded
above by n. Then by Lemma 3-2,

(A-12) SŒ˛�;TqY;TqY nB.o;2�/ � f .SŒ��;Y;Y nB.q;2�//D f .S \B.q; 2�//:

Let @W Hn.TqY;TqY nB.o; 2�//!Hn�1.†qY / be the isomorphism and let Œˇ�D@Œ˛�.
Then Œˇ� is nontrivial in Hn�1.†qY / by Lemma A-8 and this commuting diagram:

Hn.Y;Y nB.q; 2�//
.logq/�
����! Hn.TqY;TqY nB.o; 2�//??y ??y

Hn.Y;Y n fqg/
.logq/�
����! Hn.TqY;TqY n fog/

Let CSŒˇ� be the Euclidean cone over SŒˇ� �†qY inside TqY . Then

(A-13) CSŒˇ�\B.o; 2�/D SŒ˛�;TqY;TqY nB.o;2�/ � f .S \B.q; 2�//

by (A-12) and Lemma A-9. Moreover, by Corollary A-7 and Lemma A-10, there exists
an x 2 SŒˇ� such that

(A-14) d.x; logq.p//D �;

where logqW Y n fqg !†qY . So the claim follows from (A-13).

By repeatedly applying the above claim, for each positive integer n we can obtain a
unit-speed geodesic cnW Œ0; ��! Y such that c.0/D q , c.m�=2n/ 2 S for any integer
0�m� 2n and logq.c.�//D x , where x is the point in (A-14). Note that S\ xB.q; �/

is compact, so we assume without loss of generality that r D limn!1 cn.�/. If
cW Œ0; ��! Y is the unit-speed geodesic joining q and r , then cn converges uniformly
to c , which implies c.Œ0; ��/� S . Moreover, logq.c.�//D x . Thus the concatenation
of pq and qr is a geodesic by (A-14). Now we can repeatedly apply this �–extension
procedure to obtain the geodesic ray as required.

In general, the above set S\ xB.q; �/ is not equal to the geodesic cone Cq.S\S.q; �//

based at q over S \S.q; �/ no matter how small � is. However, we have

lim
�!0

dGH
�

1
�
.Cq.S \S.q; �///;CSŒˇ�\ xB.o; 1/

�
D lim
�!0

dGH
�

1
�
.S \ xB.q; �//;CSŒˇ�\ xB.o; 1/

�
D 0:

Thus the tangent cone of S exists for every point in S .

Remark A-15 By the same proof, we know Lemma A-11 is still true if Y is an
Alexandrov space which has curvature bounded above and homological dimension D n.
In this case, p� is locally geodesic.
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Lemma A-16 Let Z be a CAT.1/ space of homological dimension � n and let
Œ� � 2 zHn.Z/ be a nontrivial class. Then the following assertions hold.

(1) Hn.SŒ��/�Hn.Sn/.

(2) Let V .n; r/ be the volume of r –ball in Sn . Then for any 0 � r �R < � and
any p 2 SŒ�� ,

1�
Hn.B.p; r/\SŒ��/

V .n; r/
�

Hn.B.p;R/\SŒ��/

V .n;R/
:

(3) If Hn.SŒ��/DHn.Sn/, then SŒ�� is an isometrically embedded copy of Sn .

Here Sn denotes the n–dimensional standard sphere with constant curvature 1.

Proof We claim there exists a 1–Lipschitz map from a subset of SŒ�� to a full-measure
subset of Sn . Let us assume this is true for i D n� 1. Pick p 2 SŒ�� , let S0 �†pZ

be the spherical suspension of †pZ and let o be one of the suspension points. Then
there is a well-defined 1–Lipschitz map logpW B.p; �/! S0 �†pZ sending p to o.
Let Œˇ� be the image of Œ� � under the map

zHn.Z/!Hn.Z;Z n fpg/!Hn.B.p; �/;B.p; �/ n fpg/

.logp/�
����!Hn.B.o; �/;B.o; �/ n fog/! zHn�1.†pZ/:

We can slightly adjust the proof of Lemma A-11 to show that

(A-17) logp.SŒ��\B.p; �//� .S0
�SŒˇ�/\B.o; �/:

The induction assumption implies that there are a subset K 2 SŒˇ� and a 1–Lipschitz
map f W K ! Sn�1 such that Hn�1.Sn�1 n f .K// D 0. Note that f induces a 1–
Lipschitz map zf W S0 �K! S0 �Sn�1 D Sn whose image also has full measure, thus
by (A-17), there exists K0 � SŒ�� such that the image of zf ı logpW K

0! Sn has full
measure. It follows that Hn.SŒ��/�Hn.Sn/.

The first inequality of (2) follows from (1) and (A-17). The second inequality follows
from Remark A-15 and the proof of [9, Corollary 3.3].

Now we prove (3). By Remark A-15, for every point x 2 SŒˇ� , there exists a geodesic
segment lx � SŒ�� emanating from p along the direction x , which has length D � .
Let A be the closure of

S
x2SŒˇ�

lx . Then A � SŒ�� and Hn.A/ � Hn.Sn/. Then
(2) implies that actually ADSŒ�� . Pick arbitrary q 2SŒ��\B.p; �/. Then there exists
a sequence fqng

1
nD1
�
S

x2SŒˇ�
lx such that limn!1 qn D q . Since qnp � SŒ�� by

construction, qp � SŒ�� . It follows that SŒ�� is � –convex in Y . Then SŒ�� can be
viewed as a compact and geodesically complete CAT.1/ space. By [35, Proposition 7.1],
SŒ�� is isometric to Sn .
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We can recover the monotonicity (3-11) and the lower density bound (3-12) from
Lemma A-11 and Lemma A-16, then we can define the group H

p
n;n.Y / as before when

Y is a CAT.0/ space of homological dimension � n and the rest of the discussion in
Section 3.2 goes through without any change. Recall that the homological dimension of
a CAT.0/ space is equal to its geometric dimension [28, Theorem A], so the following
result holds.

Theorem A-18 Let Y be a CAT.0/ space of geometric dimension n. Pick an element
Œ� � 2H

p
n;n.Y / and let S D SŒ�� . Then:

(1) Local property I Each point p 2 Y has a well-defined tangent cone TpY .

(2) Local property II S has the geodesic extension property in the sense of
Lemma 3-6.

(3) Monotonicity and lower density bound For all 0� r �R and p 2 Y ,

Hn.B.p; r/\S/

rn
�

Hn.B.p;R/\S/

Rn
:

If p 2 S , then
Hn.B.p; r/\S/� !nrn;

with equality only if B.p; r/\S is isometric to an r –ball in En . Here !n is
the volume of an n–dimensional Euclidean ball of radius 1.

(4) Asymptotic conicality I Let B.o; 1/ be the unit ball in CT S centered at the
cone point o. For any p 2 Y ,

lim
r!C1

dGH
�

1
r
.B.p; r/\S/;B.o; 1/

�
D 0:

Moreover, putting @p;r S WD f� 2 @T S j p� � B.p; r/[Sg, then

lim
r!C1

dH .@p;r S; @T S/D 0:

(5) Asymptotic conicality II For all ˇ > 0 there is an r <1 such that if x 2

S nB.p; r/, then

diam.Ant1.logx p;S// < ˇ;

where the diameter is with respect to the angular metric on @T Y .

Now we reinterpret the group H
p
n;n.Y /. Recall that there is another logarithmic map

logpW CT Y ! Y sending the base point o of CT Y to p 2 Y . Since logp is proper
and 1–Lipschitz, it induces a map H

p
n;n.CT Y /!H

p
n;n.Y /.
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Next we define a map in the other direction. Pick Œ� � 2 H
p
n;n.Y /, let S D SŒ�� be

the support set and let US be the 1–neighborhood of S . By Lemma A-5, we can
assume Im � �US . For � > 0, we define the map f�W US ! CT S as in Lemma 4-16.
To approximate f� by a continuous map, we choose a locally finite covering of
US by its open subsets which satisfies the diameter condition in Lemma 4-16, then
proceed as before to obtain a continuous map f�W US ! CT X . Here the image
may not stay inside CT S , however it is sublinearly close to CT S . Now we define
exp�.Œ� �/D lim�!0 f��.Œ� �/; note that f��.Œ� �/ does not depend on � when it is small.
Since (4-23) is still true, .logp/� ı exp� D Id.

To see that exp� ı.logp/� D Id, we follow the proof of (4-30); the only difference is
that we need to replace I� 0 there by the 1–neighborhood of Im � 0 , then use the nerve
complex of a suitable covering to approximate g� as we did for f� . So

.logp/�W H
p
n;n.CT Y /!H

p
n;n.Y /

is an isomorphism, with the inverse map exp� defined as above.

Let h�W CT Y ! CT Y be the homothety map with respect to the base point o and
a factor �. Then h� is properly homotopic to h1 for any 0 < � <1, so for any
Œˇ� 2H

p
i .CT Y /, we have h��.Œˇ�/D Œˇ� and h�.SŒˇ�/D SŒˇ� . It follows that every

cycle in H
p
i .CT Y / is conical. Thus the map

j W H
p
i .CT Y /!Hi.CT Y;CT Y n fog/!Hi�1.@T Y /

is an isomorphism with inverse given by the “coning off” procedure. It follows that the
map defined in (4-27) and (4-28) are isomorphisms, and the analogues of Corollary 4-33
and Remark 4-36 in the case of CAT.0/ spaces with finite homological dimension are
still true (again, for our argument to go through, we need to replace the set Iq in the
proof of Corollary 4-33 by some r –neighborhood of the image of q ). This discussion
can be summarized as follows.

Theorem A-19 Let qW Y ! Y 0 be a quasi-isometric embedding, where Y and Y 0 are
CAT.0/ spaces of geometric dimension � n. Then:

(1) The map @ WD j ı.exp�/W H
p
n;n.Y /!Hn�1.@T Y / is a group isomorphism, with

inverse given by the coning off map cW Hn�1.@T Y /!H
p
n;n.Y /; see (4-28).

(2) The map q induces a monomorphism q�W Hn�1.@T Y /!Hn�1.@T Y 0/. If q is
a quasi-isometry, then q� is an isomorphism.

(3) There exists a D0 > 0, depending on the quasi-isometry constants of q , such that

dH .q.SŒz��/;Sq�Œz��/ <D0

for any Œz�� 2H
p
n;n.Y /.
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We refer to the work of Kleiner and Lang [29] for a more general version of the above
theorem.

Remark A-20 Pick Œ� � 2Hn�1.@T Y /. Then by Lemma A-8 and Theorem A-19,

Sc.Œ��/ D fy 2 Y j Œ� � is nontrivial under .logy/�W Hn�1.@T Y /!Hn�1.†yY /g;

where c is the coning off map in (4-28).

Now we are ready to prove Theorem A-1. To avoid repetition, we will only sketch the
main steps.

Proof of Theorem A-1 If Y is a Euclidean building of rank n, it follows from [30,
Corollary 6.1.1] that the homological dimension of Y is less than or equal to n. This
also follows from [28, Theorem A] by noticing that †pY is a spherical building of
dimension n� 1 for any p 2 Y . Let Œ� � 2H

p
n;n.Z/.

Step 1 Let Œ˛�D exp�.Œ� �/ 2H
p
n;n.CT Y /. Since @T Y is a spherical building, SŒ˛� is

a cone over K , where K D
Sh

iD1 Ci and each Ci is a chamber in @T Y .

Step 2 Let Wi � Y be a Weyl cone such that @T Wi D Ci . Note that for any i ¤ j ,
there is an apartment of @T Y which contains Ci and Cj . Thus we can assume Wi

and Wj are contained in a common apartment of Y . So Wi and Wj satisfy inequalities
similar to (2-11). The quotient map

Fh
iD1 Ci!K induces a map 'W CK! Y which

is a quasi-isometric embedding as in Lemma 4-38. We can assume ' is continuous.
Put Œ� �D '�.ŒCK�/, where ŒCK� is the fundamental class of CK . Then it follows from
the proof of Lemma 4-46 that dH

�
SŒ��;

Sh
iD1 Wi

�
<1. Moreover, we can assume

that Wi � SŒ�� .

Step 3 It suffices to show that Œ� �D Œ� �. Pick p 2 Y . Note that there exists a D > 0

such that d.logp.x/; '.x// <D for any x 2 CK . Then

Œ� �D '�.ŒCK�/D .logp/�.Œ˛�/D ..logp/� ı exp�/.Œ� �/D Œ� �:

The following result is an immediate consequence of Lemma A-2 and Theorem A-1.

Corollary A-21 If Y is a Euclidean building of rank n and Q� Y is an n–quasiflat,
then there exist finitely many Weyl cones fWig

h
iD1

such that

dH

�
Q;

h[
iD1

Wi

�
<1:
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A characterisation of alternating knot exteriors

JOSHUA A HOWIE

We give a topological characterisation of alternating knot exteriors based on the pres-
ence of special spanning surfaces. This shows that being alternating is a topological
property of the knot exterior and not just a property of diagrams, answering an old
question of Fox. We also give a characterisation of alternating link exteriors which
have marked meridians. We then describe a normal surface algorithm which can
decide if a knot is alternating given a triangulation of its exterior as input.

57M25

1 Introduction

Let L be a link in S3 , and let N.L/ be a regular open neighbourhood. Then the link
exterior X Š S3 nN.L/ is a compact 3–manifold with torus boundary components.
A planar link diagram �.L/ is a projection

� W S2
� I ! S2;

where L has been isotoped to lie in some S2 � I � S3 , together with crossing
information. A diagram �.L/ is alternating if the crossings alternate between over-
and under-crossings as we traverse the projection of the link. A nontrivial link is
alternating if it admits an alternating diagram. We take the convention that the unknot
is not alternating.

A simple Euler characteristic argument shows that if �.L/ is a planar diagram with n

crossings and checkerboard surfaces † and †0 , then

�.†/C�.†0/C nD 2:

Furthermore, if �.L/ is reduced, nonsplit and alternating, then † and †0 are both
�1–essential in X and 2n is the difference between the aggregate slopes of † and †0 .
If K is a knot, then 2n is the difference between their boundary slopes.

Our main result is to prove the converse, where we think of the difference in boundary
slopes of † and †0 as the minimal geometric intersection number of @† and @†0

on @X , which we denote by i.@†; @†0/.
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Theorem 3.1 Let K be a nontrivial knot in S3 with exterior X . Then K is alternating
if and only if there exist a pair of connected spanning surfaces †, †0 in X which
satisfy

(?) �.†/C�.†0/C 1
2
i.@†; @†0/D 2:

Notice that all the conditions on X in this characterisation are topological in nature.
Theorem 3.1 answers an old question, attributed to Ralph Fox, “What is an alternating
knot?” This question has been interpreted as requesting a nondiagrammatic description
of alternating knots; see Lickorish [16, page 32].

A similar characterisation of alternating knot exteriors has been independently obtained
by Greene [7]. Alternating knot exteriors are characterised by a pair of spanning
surfaces which are positive and negative definite with respect to the Gordon–Litherland
bilinear form.

By a theorem of Gordon and Luecke [6], a knot exterior has a unique meridian so the
concept of a spanning surface is well-defined in X . For link exteriors, this is not true
(see Gordon [5]) and there are 3–manifolds which are homeomorphic to the exterior of
both alternating and nonalternating links. However, X together with a marked meridian
on each boundary component does uniquely determine a link in S3 . With the addition
of an extra condition on intersection numbers, we are able to give a characterisation of
alternating link exteriors with marked meridians in Theorem 3.2.

For the second half of this article we turn to normal surface theory, and show that given
a 3–manifold with connected torus boundary X , it is possible to decide if X is the
exterior of an alternating knot in S3 . We also show that given a nonalternating planar
diagram of a knot K , we can decide if K is alternating, and if so, we can produce an
alternating diagram of either K or its mirror image.

Theorem 5.2 Let X be the exterior of a knot K � S3 . Given X , there is a normal
surface algorithm to decide if K is alternating.

In an appendix to [7], Juhász and Lackenby have also found a normal surface algorithm
to decide if a knot is prime and alternating based on Greene’s characterisation.

Organisation In Section 2, we describe how two spanning surfaces for a link intersect.
In Section 3, we prove Theorem 3.1, and give the version for links. In Section 4, we
give some background on normal surface theory and the boundary solution space. In
Section 5, we detail the algorithm which can decide if a knot manifold is the exterior
of an alternating knot.

Acknowledgement The author would like to thank Hyam Rubinstein for many inter-
esting conversations and help with the algorithm.
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2 Intersections of spanning surfaces

Let L be a link with m components denoted by Lj for j D 1; : : : ;m. Denote the
boundary components of X by Cj D @N.Lj / where each Cj is a torus.

A curve �j �Cj is a meridian of X if �j bounds an embedded disk in N.Lj / which
intersects Lj transversely exactly once. Given X , a set of marked meridians is a set of
curves f�j g with one �j on each Cj such that Dehn filling along each �j produces
the 3–sphere.

We define a preferred longitude �j of Cj to be the unique nontrivial curve on Cj which
meets �j exactly once and bounds an orientable surface Sj in S3 nN.Lj /. Note that
Sj is not necessarily embedded in X since it may intersect other components of L.

Let † be a compact surface embedded in S3 . Then † is a spanning surface for a link L

if @†DL. Let † be a surface with boundary, properly embedded in X . Then † is a
spanning surface for X if each component of @† has minimal geometric intersection
number one with the meridian �j of Cj . These two notions of spanning surface are
related since †DX \† whenever † is in general position with respect to @X , and
† can be extended to † by attaching a small annulus in each component of N.L/.

Spanning surfaces † and †0 are in general position in X if they intersect in a set of
properly embedded arcs and embedded loops. In particular, there are no triple points
or branch points, since each spanning surface is properly embedded.

For j D 1; : : : ;m, let f�j g be the components of @† and let f� 0j g be the components
of @†0 . Fix an orientation on each longitude �j and define the orientation of each
meridian �j so that the .�j ; �j / form a right-handed basis for each torus boundary
component Cj . Then Œ�j �D pj Œ�j �C Œ�j � and Œ� 0j �D p0j Œ�j �C Œ�j �, where pj ;p

0
j 2Z.

We define the algebraic intersection number of �j and � 0j to be

ia.�j ; �
0
j /D pj �p0j D�ia.�

0
j ; �j /;

while the geometric intersection number is

i.�j ; �
0
j /D jia.�j ; �

0
j /j D jpj �p0j j:

Define the geometric intersection number of @† and @†0 to be

i.@†; @†0/D

mX
jD1

i.�j ; �
0
j /:

This geometric intersection number measures the difference in aggregate slopes of the
two spanning surfaces, as defined in [1]. For a knot this is the difference in boundary
slopes.
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If we isotope † and †0 so that they realise i.@†; @†0/, then �j and � 0j form a quadran-
gulation Qj of Cj , where each quadrangular face has one pair of nonadjacent vertices
on its boundary which are identified. There are ij D i.�j ; �

0
j / vertices, 2ij edges, and

ij faces in Qj . We refer to
Fm

jD1 Qj as a boundary quadrangulation of @X . When
forming a quadrangulation on Cj , every intersection of �j and � 0j has the same sign.

µ

λ

∂Σ

∂Σ'

Figure 1: A boundary quadrangulation of @X formed by @† and @†0 in the
case of a knot exterior

An arc of intersection between two spanning surfaces † and †0 in a link exterior X

is called a double arc. Let ˛ be a double arc and let ˛ be its extension to S3 such that
@˛ �L. There are two types of double arc.

Let W be a regular neighbourhood of ˛ in S3 . Let ˇ and ˇ0 be the two components
of W \L. We can choose W so that V DW \X is a compact handlebody of genus
two, and so that †\V and †0\V are both disks.

Fix an orientation on ˇ . This induces orientations on the disks †\V and †0\V . If
these both induce the same orientation on ˇ0 , then ˛ is a parallel arc. If they induce
opposite orientations on ˇ0 , then ˛ is a standard arc.

N (L)

α

Σ

Σ'

Figure 2: A parallel arc of intersection between two spanning surfaces

This is equivalent to saying @.†\V / and @.†0\V / have algebraic intersection number
zero if ˛ is a parallel arc, and algebraic intersection number two if ˛ is a standard arc.
The intersections on @X at the endpoints of a parallel arc ˛ have the same sign if ˛ is
standard, but opposite signs when ˛ is parallel.
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A characterisation of alternating knot exteriors 2357

If we collapse a standard arc to a point, then .†[†0/\W collapses to a disk. If
we try to collapse a parallel arc to a point, then .†[†0/\W collapses to an object
homeomorphic to a neighbourhood of the apex of a double cone.

Lemma 2.1 Let † and †0 be spanning surfaces for a link L, isotoped so that their
boundaries realise the intersection number i.@†; @†0/ on @X . If

i.@†; @†0/D

ˇ̌̌̌ mX
jD1

ia.�j ; �
0
j /

ˇ̌̌̌
;

then every double arc of intersection between † and †0 is standard.

Proof By definition i.@†; @†0/D
Pm

jD1 i.�j ; �
0
j /. Ifˇ̌̌̌ mX

jD1

ia.�j ; �
0
j /

ˇ̌̌̌
D

mX
jD1

i.�j ; �
0
j /;

then for every j D 1; : : : ;m, either every intersection between �j and � 0j is positive,
or every intersection between �j and � 0j is negative. A parallel arc only occurs when a
double arc connects a positive intersection to a negative intersection.

Note that Lemma 2.1 implies that parallel arcs of intersections can only occur when
the double arc runs between different components of @X . Hence if K is a knot, then
every arc of intersection between two spanning surfaces realising minimal intersection
number must be standard.

Figure 3: Black and white checkerboard surfaces for a knot

For any nonsplit planar link diagram �.L/, there is a standard position for the associated
checkerboard surfaces. Away from a crossing the checkerboard surfaces are embedded
in S2 , but in a small regular neighbourhood of a crossing, we think of the link lying
on the surface of a ball U . The ball U intersects S2 in an equatorial disk, and the
over-strand runs over the upper hemisphere, while the under-strand runs under the
lower hemisphere. Each checkerboard surface intersects U in a half-twisted band.
The ball U is called a bubble and this viewpoint of checkerboard surfaces for planar
alternating diagrams was introduced by Menasco [17].

Geometry & Topology, Volume 21 (2017)
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Σ

L

U

Figure 4: A checkerboard surface in standard position near a bubble U

In standard position, the checkerboard surfaces † and †0 do not intersect in any loops,
and intersect only in double arcs corresponding to the north-south axis of each bubble.
These double arcs are all standard. The intersection of the corresponding spanning
surfaces † and †0 is a disjoint union of trivalent graphs and loops consisting of the
link L and the collection of vertical axes of the bubbles. If we assume that �.L/ is
nonsplit, then every component of L is involved in a crossing of �.L/, so that †\†0

forms a graph � 0 , where each connected component is 3–regular.

For a nonsplit alternating planar projection �.L/ in standard position, as we traverse
the image of Lj in �.L/, it can be seen that �j rotates in a positive manner say, with
respect to S2 , while � 0j rotates in a negative manner. Hence the checkerboard surfaces
in standard position already realise the minimal geometric intersection number of their
boundaries, and their boundaries form a boundary quadrangulation of @X .

Thus if �.L/ is a nonsplit planar alternating diagram of an m–component link L,
which has n crossings, then

2nD i.@†; @†0/D

mX
jD1

i.�j ; �
0
j /:

A method for calculating the boundary slopes of the checkerboard surfaces associated
to a reduced alternating knot diagram is detailed in [3], where it can be seen that 2n is
the difference between the boundary slopes of the two checkerboard surfaces. If † is a
spanning surface for a knot and Œ@†�D pŒ��C Œ��, then the boundary slope of † is
p 2 2Z.

Note that if �.L/ is a nonalternating planar diagram with n crossings, then somewhere
there are two consecutive over-crossings, which forces the boundaries of the associated
checkerboard surfaces to create a bigon on some component of Cj . In this case
n> 1

2
i.@†; @†0/.

The Euler characteristics of the checkerboard surfaces arising from a planar projection
are related to the Euler characteristic of the projection sphere by the equation

�.†/C�.†0/C nD �.S2/D 2:

Geometry & Topology, Volume 21 (2017)
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A spanning surface † is �1–essential in a knot exterior X if the induced homomorphism

�1.†/! �1.X /

and the induced map
�1.†; @†/! �1.X; @X /

are both injective. This implies that † is both incompressible and boundary-incom-
pressible in X . Aumann [2] proved that both checkerboard surfaces associated to a
planar reduced alternating projection of a knot K are �1–essential in X .

3 Characterisation

We now give the proof of the nondiagrammatic characterisation of alternating knot
exteriors.

Theorem 3.1 Let K be a nontrivial knot in S3 with exterior X . Then K has an
alternating projection onto S2 if and only if there exist a pair of connected spanning
surfaces †, †0 for X which satisfy

(?) �.†/C�.†0/C 1
2
i.@†; @†0/D 2:

Proof One direction follows from the discussion in Section 2. For the converse, let
†0 and †0

0
be a pair of connected spanning surfaces for X which satisfy (?).

Since X is not a solid torus, X is boundary-irreducible, so K does not bound a disk
in S3 . Hence �.†0/C�.†

0
0
/� 0, so i.@†0; @†

0
0
/ 6D 0 by (?).

Isotope †0 and †0
0

in X so that their boundaries realise the minimal geometric intersec-
tion number i.@†0; @†

0
0
/. Hence @†0 and @†0

0
form a boundary quadrangulation Q,

and Q will remain fixed throughout the proof. We may assume that †0 and †0
0

are in
general position, so that they intersect in a set of proper arcs A and a set of embedded
loops L0 .

Recall that †0 is the extension of †0 to S3 , so that @†0 D K . Assume that the
interiors of †0 and †0

0
are in general position, and no loops of intersection have been

introduced by the extension process. Let F 0
0
D†0[†

0
0

and let � 0 D .†0\†
0
0
/ nL0 ,

both of which are connected. Let A be the extension of A to S3 , or in other words,
let A be the closure of � 0 nK .

If we collapse each component of A to a point, then F 0
0

collapses to an immersed
surface F0 because X is a knot exterior and every arc of A is standard by Lemma 2.1.

Geometry & Topology, Volume 21 (2017)
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Cutting F 0
0

, †0 and †0
0

along � 0 allows us to calculate that

�.F 00/D �.†0/C�.†
0
0/C

1
2
i.@†0; @†

0
0/;

from which the equation (?) tells us that �.F 0
0
/D 2. The 3–regular graph � 0 collapses

to a 4–regular graph � . Let
f0W S0 # S3

be the immersion of a surface S0 such that f0.S0/D F0 . There are no triple points of
self-intersection in F0 since †0 and †0

0
are embedded, and the only double loops of

self-intersection are precisely the elements of L0 . It follows that

�.S0/D �.F0/D �.F
0
0/D 2;

which implies that S0 is a 2–sphere.

Suppose L0 6D∅ and let B0 be the collection of loops f �1
0
.L0/ on S0 . Since B0 is

the preimage of double loops, we know that B0 contains an even number of elements.
Because S0 is a 2–sphere, each loop ˇ 2 B0 is separating, and B0 cuts S0 into a
collection of planar surfaces with boundary. Let zh be the number of planar surfaces
in S0 nB0 which have h boundary components. Exactly one component of S0 nB0

contains the connected graph f �1
0
.�/.

Using an Euler characteristic argument, Nowik [19] points out thatX
h�1

.2� h/zh D 2;

which in particular implies that z1 , the number of disk regions in S0 nB0 , is at least 2.
Of course, for any collection of disjoint curves on a 2–sphere, there is an innermost
one. Thus there is at least one loop in L0 which bounds a disk in F0 .

Let `0 be a loop in L0 which bounds a disk D0 in either †0 or †0
0

. Without loss of
generality assume D0 � †0 . Let fˇ0; ˇ

0
0
g D f �1

0
.`0/ where f0.N.ˇ0// � †0 and

f0.N.ˇ
0
0
//�†0

0
. Notice that f �1

0
restricted to the interior of D0 is a homeomorphism

onto the interior of a disk in S0 nB0 .

Let A0 D `0 � .�1; 1/ be a regular neighbourhood of `0 in †0
0

. We perform surgery
on †0

0
along D0 , by removing the annulus A0 from †0

0
and gluing in the two disks

D0 � f�1g and D0 � f1g.

Let .†1; †
0
1
/ be the result of performing surgery along D0 on .†0; †

0
0
/. Define S1

to be the result of doing surgery along f �1
0
.D0/ in S0 to remove the loop ˇ0

0
, and

deleting the curve ˇ0 .
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D0

Σ'
0

Σ00

Σ'
1

Σ1

Figure 5: Surgery on †00 along the disk D0 �†0

Suppose jL0j D k � 0. For 0� j � k �1, inductively define .†jC1; †
0
jC1

/ to be the
result of performing surgery along the disk Dj , where @Dj D j̀ � Lj and Dj is a
subdisk of either †j or †0j . Let LjC1 D Lj n j̀ so that LjC1 is the set of loops of
intersection of †jC1 and †0

jC1
. Let F 0

jC1
be the result of the corresponding surgery

on the 2–complex F 0j . Define SjC1 to be the result of doing surgery along f �1
j .Dj /

in Sj and deleting the curve ˇ0j or ǰ .

A similar calculation to Nowik’s shows thatX
h�0

.2� h/zh D �.Sj /D 2C 2j ;

where Sj is a collection of jC1 closed 2–spheres since ǰ and ˇ0j are separating
in Sj . Since � is connected and disjoint from L0 , f �1

j .�/ is contained in exactly
one component of Sj . Hence z0 � j , so that z1 � 2, and therefore the disk Dj exists.

Continue this inductive surgery process until we have constructed †k and †0
k

. At
this stage Lk is empty, and Sk consists of kC1 2–spheres. Hence F 0

k
consists of k

unmarked embedded 2–spheres and one 2–complex, denoted F 0 , which contains � 0 .

Define † and †0 to be the components of †k and †0
k

, respectively, which constitute F 0 .
Then † and †0 are connected spanning surfaces for X which satisfy (?), and whose
intersection is exactly A. Collapsing the arcs of A to points collapses F 0 and � 0 to F

and � , respectively. Since �.F 0/D 2, it follows that �.F /D 2, so F is an embedded
2–sphere, which will be our desired projection surface.

Since @† and @†0 realise i.@†; @†0/ D i.@†0; @†
0
0
/, we can recover the crossing

information of �.K/ from � � F . This is because every double arc is standard, so in-
stead of collapsing every arc of A to a point, we could collapse a regular neighbourhood
of each ˛ to a bubble. The diagram �.K/ must be alternating since, otherwise, there
would be a bigon between @† and @†0 on @X , which contradicts that the boundary
quadrangulation Q has remained fixed. Note that �.K/ is not necessarily reduced.
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If �.K/ is a nonalternating planar diagram with checkerboard surfaces † and †0 , then
there is a bigon on @X between @† and @†0 . Any attempt to isotope the checkerboard
surfaces to remove all bigons and obtain a boundary quadrangulation causes † and †0 to
create an alternating diagram onto a nonplanar surface F . This surface F could be either
embedded or immersed, and in the latter case may even be nonorientable [10, page 146].

Note that Theorem 3.1 is not concerned with primeness. However, a knot is prime
if there are no essential annuli properly embedded in X at meridional slope. If a
nontrivial knot is prime and alternating, then X is atoroidal, since no prime alternating
knot is satellite [17].

In [10, Theorem 4.1], using a different method, the author also proved a variation of
Theorem 3.1 which required both spanning surfaces to be �1–essential in X . We also
note that a more complicated characterisation can be obtained as a special case of a
theorem proved in [10, Theorem 3.33] which gives a topological characterisation of
a class of links which have certain alternating diagrams onto orientable surfaces of
higher genus. This will be written up in a forthcoming article with Rubinstein [11].

We have not stated any of the theorems in this section for links. The issue is that, given
two spanning surfaces, there could be parallel arcs between different components of @X .
If the two spanning surfaces have been isotoped to create a boundary quadrangulation
and there are parallel arcs of intersection, then the complex F 0

0
does not collapse to a sur-

face. We note that there exists an example [10, page 139] of a pair of spanning surfaces
for a nonsplit 2–component link which intersect in parallel arcs, yet still satisfy (?).

However, if we assume that all arcs of intersection are standard, then we have the
following theorem.

Theorem 3.2 Let L be a nontrivial nonsplit link in S3 with exterior X which has a
marked meridian on each boundary component. Then L has an alternating projection
onto S2 if and only if there exist a pair of connected spanning surfaces †, †0 for X

which satisfy

(?) �.†/C�.†0/C 1
2
i.@†; @†0/D 2;

and

i.@†; @†0/D

ˇ̌̌̌ mX
jD1

ia.�j ; �
0
j /

ˇ̌̌̌
:

Proof Let �.L/ be a reduced nonsplit alternating projection of L onto S2 , and let
† and †0 be the associated checkerboard surfaces in standard position. Then �.L/, †
and †0 are connected, so every arc of intersection between † and †0 is standard.
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This means every algebraic intersection number ia.�j ; �
0
j / is either positive or every

ia.�j ; �
0
j / is negative, which implies the second equation. The first equation follows

from the two displayed equations on page 2358.

For the converse, the concept of a spanning surface for X is well-defined since a set
of meridians for X are specified. Lemma 2.1 ensures that every arc of intersection is
standard. Then the rest of the proof goes through as in Theorem 3.1. Since † and †0

are connected, �.L/ must be nonsplit.

4 Normal surface theory

In this section we provide the background material necessary to construct our algorithm.
Kneser introduced the concept of a normal surface, before Haken [8] developed normal
surface theory into an important tool for algorithmic topology. We will give a brief
outline of the theory; for full details the reader is referred to [15].

A knot manifold is a compact irreducible 3–manifold with connected torus boundary.
A triangulation T of a knot manifold M is a collection of t tetrahedra and a set
of equations which identify some pairs of faces of the tetrahedra, so that the link of
every vertex is either a 2–sphere or a disk, and the unglued faces form the boundary
torus @M .

A normal surface S is a properly embedded surface in M which is transverse to the
2–skeleton of T , and such that S \4 is a collection of triangular or quadrilateral
disks, where 4 is any tetrahedron of T , and each disk intersects each edge of 4 in
at most one point. There are seven normal isotopy classes of normal disks, four are
triangular and three are quadrilateral, and each of these is known as a disk type.

If we fix an ordering of the disk types d1; d2; : : : ; d7t , then a normal surface S can
be represented uniquely up to normal isotopy by a 7t–tuple of nonnegative integers
n.S/ D .x1;x2; : : : ;x7t /, where xi is the number of disks of type di , and t is the
number of tetrahedra in T .

Conversely, given a 7t–tuple of nonnegative integers n, we can impose restrictions on
the xi so that n represents a properly embedded normal surface. We require that at
least two of the three quadrilateral disk types are not present in each tetrahedra. This
ensures that the surface is embedded. We also need to make sure that the disk types
match up with the disk types in neighbouring tetrahedra.

An arc type is the normal isotopy class of the intersection of a normal surface with a
face of a tetrahedron. There are three arc types in each face of each tetrahedron, and
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each arc type is contributed to by two different disk types, one triangular, the other
quadrilateral. We require that the number of each arc type in each face agrees with the
number of arcs of the corresponding type in the face of the tetrahedron which is glued
to it. This condition can be described by a linear equation for each arc type. Together
they are called the matching equations for the normal surface S , and in a one-vertex
triangulation of a knot manifold M there are 6t � 3 matching equations.

The set of nonnegative integer solutions to the normal surface equations lie within an
infinite linear cone ST �R7t . The linear cone ST is called the solution space.

The additional condition that
7tX

iD1

xi D 1

turns the solution space into a compact, convex, linear cell PT � ST . We call PT the
projective solution space, and we let On.S/ represent the projective class of the normal
surface S . The carrier of a normal surface S , denoted CT .S/, is defined to be the
unique minimal face of PT which contains On.S/.

Let S be a properly embedded surface in a 3-manifold M with triangulation T .
Haken [8] showed that after a series of isotopies, compressions, boundary-compressions
and the removal of trivial 2–spheres and disks, S 0 can be represented as the union of
properly embedded normal surfaces with respect to T . In particular, if S is �1–essential
in M , then S can be isotoped to be normal with respect to T .

Two normal surfaces S and S 0 are compatible if, for each tetrahedron 4 of T ,
S and S 0 do not contain quadrilateral disks of different types. If S and S 0 are
compatible, then we can form the Haken sum of S and S 0 , which we denote S ˚S 0 .
The Haken sum is a geometric sum along each arc and loop of intersection between
S and S 0 , which is uniquely defined by the requirement that S ˚ S 0 is a normal
surface. Any other choice of geometric sums would produce a surface with folds.
If n.S/ D .x1;x2; : : : ;x7t / and n.S 0/ D .x0

1
;x0

2
; : : : ;x0

7t
/ are representatives of

compatible normal surfaces S and S 0 in a triangulation T of a 3–manifold M , then
n.S ˚S 0/D n.S/Cn.S 0/D .x1Cx0

1
;x2Cx0

2
; : : : ;x7t Cx0

7t
/. Also, �.S ˚S 0/D

�.S/C�.S 0/.

A normal surface S is called a vertex surface if On.S/ lies at a vertex of the projective
solution space. This means that whenever some multiple of S can be written as a
Haken sum of two surfaces, both the summands are also multiples of S .

A normal surface S is called a fundamental surface if n.S/ cannot be written as
the sum of two solutions to the normal surface equations. Every vertex surface is a
fundamental surface, but there exist fundamental surfaces which are not vertex surfaces.
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All normal surfaces can be written as a finite sum of fundamental surfaces. There
are a finite number of fundamental surfaces. They can be found algorithmically and
Haken used this fact to construct his algorithms. Many of these algorithms have
been subsequently improved so that they use vertex solutions rather than fundamental
solutions, which makes the algorithms more efficient.

A triangulation is 0–efficient if the only normal disks or normal spheres are vertex-
linking. Jaco and Rubinstein [12] showed that every compact orientable irreducible
and boundary-irreducible 3–manifold with nonempty boundary admits a 0–efficient
triangulation. Since the solid torus admits a one-vertex triangulation, it then follows
that every knot exterior admits a one-vertex triangulation.

Let T be a one-vertex triangulation of a knot manifold M . Then there is an induced
one-vertex triangulation T@ of @M . The boundary triangulation T@ consists of one
vertex, three edges and two faces. There are six normal arc types; however, a normal
curve is determined by just three of these arc types. Every curve on @M has a unique
normal representative. This means that isotopy classes of curves on @M correspond to
normal isotopy classes of curves on T@ .

a3

a3

a2

a2

a1

a1

Figure 6: Normal arc types in the boundary triangulation

Fix an ordering of the disk types in T such that d1; : : : ; d7 represent the disk types
in one of the tetrahedra which meets @M in a face � . Furthermore, let d1; : : : ; d4

represent triangular disk types, and d5; d6; d7 represent quadrilateral disks, such that
di and diC4 meet � in the same arc type ai for i D 1; 2; 3. Here d4 is the triangular
disk type which is disjoint from � .

Let yi be the number of arcs of type ai in � . It follows that

yi D xi CxiC4

for i D 1; 2; 3. Jaco and Sedgwick [14, Theorem 3.6] showed that y1;y2;y3 and the
matching equations for normal curves determine the number of arcs of each type in the
other 2–simplex of T@ . We define the boundary solution space of @M to be

ST@
D f.y1;y2;y3/ j yi 2N0g �R3;

where N0 DN [f0g. If @S is the boundary of a properly embedded normal surface,
then @S is represented by n.@S/D .y1;y2;y3/ in ST@

.
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If each coordinate of n.@S/ is nonzero, then @S contains a trivial curve. Hence if S

is an incompressible surface, then at least one of the coordinates of n.@S/ is zero.

Jaco and Sedgwick [14, Section 3.3] proved that if S is a properly embedded �1–
essential normal surface with boundary in a compact 3–manifold M with triangula-
tion T , then every surface in CT .S/ is either closed, or has the same slope as S . This
means that if p=q is a boundary slope of X , then there is a vertex surface S which has
slope p=q . Hence it is only necessary to check the vertices of PT in order to list all
boundary slopes of X . In proving this theorem, Jaco and Sedgwick have given another
proof of a theorem of Hatcher [9] that there are only a finite number of slopes bounding
�1–essential surfaces in any knot exterior. Recall that the set of slopes of a link exterior
which bound �1–essential surfaces is not necessarily finite, so our algorithm is only
designed to work for knots.

Jaco and Sedgwick [14, Theorem 6.4] also gave an algorithm to decide if a knot
manifold M is a knot exterior in S3 , which is also an algorithm to find the unique merid-
ian � of a knot exterior X . This algorithm makes use of the Rubinstein–Thompson
algorithm [21; 22] which can decide if a 3–manifold is homeomorphic to the 3–sphere.
There is also an algorithm which can decide if X is a solid torus [8], which is equivalent
to deciding if K is the unknot, and it is now known that some spanning disk for K

can be found as a vertex solution if K is the unknot.

The boundary triangulation T@ consists of two 2–simplices and three edges. We can
modify the triangulation T by gluing two faces of a tetrahedron 4 to T@ . The resulting
triangulation T 0 D T [4 is another one-vertex triangulation of M , and T 0 is called a
layered triangulation. In effect, this is a .2; 2/–Pachner move on T@ . The other two
faces of 4 form the boundary triangulation T 0

@
.

Layering a tetrahedron changes the slope of one of the edges in the boundary triangula-
tion. It is always possible to layer a triangulation with a sequence of tetrahedra so that
the edges of T 0

@
have slopes 1; k; kC 1, for some k 2 Z. We will choose to do this

so that .1; 0; 0/ 2 ST@
represents the meridian �.

5 Alternating algorithm

We now describe an algorithm to decide if a knot is alternating on S2 . The input
is a triangulation T of a knot exterior X . If instead we are given a nonalternating
planar diagram �.K/, then there is a method of Petronio [20] to construct a spine of
the knot complement S3 nK from the diagram �.K/. Dual to this spine is an ideal
triangulation of S3 nK . We can then use an inflation of Jaco and Rubinstein [13] to
construct a one-vertex triangulation of the knot exterior X from the ideal triangulation.
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First we need one more result on spanning surfaces.

Lemma 5.1 Suppose that † and †0 are spanning surfaces for a knot K � S3 . If

�.†/C�.†0/C 1
2
i.@†; @†0/ > 2;

then at least one of † or †0 is not connected.

Proof Isotope † and †0 so that they are in general position and realise i.@†; @†0/

on @X . As in the proof for Theorem 3.1, we form the pseudo-2–complex F 0D†[†0

and collapse the arcs of intersection to points to obtain an immersed surface F , where
�.F / D �.†/C �.†0/C 1

2
i.@†; @†0/ > 2. Let f W S # S3 be an immersion of a

closed surface S such that f .S/D F . The only possible self-intersections of f .S/
are loops, so �.S/ D �.F / > 2, and therefore S is not connected. Hence either †
or †0 is not connected.

Theorem 5.2 Let X be the exterior of a knot K � S3 . Given X , there is a normal
surface algorithm to decide if K is alternating.

Proof Let T 0 be a one-vertex triangulation of X . As shown in [14], any other
triangulation of X can be modified to a one-vertex triangulation.

Use the Jaco–Sedgwick algorithm to find the unique meridian � of X . Included in
this process is a check whether X is a solid torus. If X is a solid torus, then K is the
unknot, which by our convention is not alternating.

Layer the triangulation until one of the edges in the boundary is parallel to �. Then
the other edges in the boundary are parallel to �C k� and �C .k C 1/� for some
k 2 Z. Call this triangulation T .

Let 4 be one of the two tetrahedra that meets the boundary and let � be a face
of 4 which lies in the boundary. Let .x1;x2;x3;x4;x5;x6;x7/ describe the normal
coordinates of S \4 where S is a properly embedded surface with boundary in X .
Let .y1;y2;y3/ describe the normal coordinates of @S \� . As described in Section 4,
we label the arc and disc types so that yi D xiCxiC4 for each i D 1; 2; 3, and so that
.1; 0; 0/ represents � in @X . Let .0; 1; 0/ represent �Ck� so that .0; 0; 1/ represents
�C .kC 1/� for some k 2 Z.

Any spanning surface for X meets � exactly once. It follows that if .y1;y2;y3/

represents a spanning surface, then y2Cy3 D 1. So there are two types of coordinates
in ST@

which can represent spanning surfaces: .y; 1; 0/ and .y; 0; 1/ for some y 2N0 .

Let † and †0 be normal spanning surfaces in X . We can read off the minimal
geometric intersection number of their boundaries from their coordinates in ST@

. Let
y;y0 2N0 . There are three cases:
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Figure 7: Normal curves in the boundary triangulation after layering

(1) If @† and @†0 are represented by .y; 1; 0/ and .y0; 1; 0/, respectively, then
i.@†; @†0/D jy �y0j.

(2) If @† and @†0 are represented by .y; 0; 1/ and .y0; 0; 1/, respectively, then
i.@†; @†0/D jy �y0j.

(3) If @† and @†0 are represented by .y; 1; 0/ and .y0; 0; 1/, respectively, then
i.@†; @†0/D yCy0C 1. See Figure 7 for an example of this case.

Note that we could continue layering the triangulation until kD 0, which would require
detection of a Seifert surface, but this is not necessary since we are only interested in
the differences of spanning slopes, and not the boundary slopes themselves.

Theorem 3.1 tells us that we need to find a pair of connected spanning surfaces at even
boundary slope, which satisfy

(?) �.†/C�.†0/C 1
2
i.@†; @†0/D 2:

The checkerboard surfaces † and †0 associated to a reduced alternating diagram of K

are one such pair of surfaces. Aumann [2] showed that they are both �1–essential in X ,
so we know that both † and †0 must have normal representatives in their isotopy
classes.

Let † and †0 be a pair of connected �1–essential normal spanning surfaces which
satisfy (?). Suppose that n.†/ is not a fundamental solution. Then † can be written
as a Haken sum of fundamental surfaces,

†D†1˚ � � �˚†a˚S1˚ � � �˚Sb;

where each †i is a properly embedded compact surface with boundary, and each Sj

is a properly embedded closed surface.

Since † is �1–essential, it follows from Jaco and Sedgwick [14, Section 3.3] that that
each †i must have the same slope as †. Since † is a spanning surface, then a must
equal 1, and †1 is also a spanning surface at the same slope as †. In fact, †1 must
be fundamental.
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Since X is irreducible and embedded in S3 , it follows that �.Sj / � 0 for each
j D 1; : : : ; b . Suppose that for some k , we have �.Sk/��2. But then �.†/<�.†1/

which implies that
�.†1/C�.†

0/C 1
2
i.@†1; @†

0/ > 2:

Hence, by Lemma 5.1, at least one of †1 or †0 must be disconnected. Every funda-
mental surface is connected, so †0 must be disconnected, which gives a contradiction.

Hence �.Si/D 0 for each i , and every Si is an embedded torus. Moreover, �.†/D
�.†1/. Similarly,

†0 D†01˚S 01˚ � � �˚S 0c ;

where †0
1

is fundamental spanning surface with the same slope and Euler characteristic
as †0 , and S 0j is an embedded torus for each j D 1; : : : ; c . Therefore †1 and †0

1
are

fundamental spanning surfaces which satisfy (?).

Let F be the set of all fundamental spanning surfaces in X . For each pair of sur-
faces †;†0 2 F , calculate the intersection number i.@†; @†0/, and calculate �.†/
and �.†0/. There is an algorithm to compute the Euler characteristic of a properly
embedded normal surface described in [15, Algorithm 9.1]. If † and †0 satisfy (?),
then K is alternating by Theorem 3.1. If no pair of surfaces from F satisfy (?), then
K is not alternating.

Let �.K/ be an alternating diagram of the prime knot K with associated checkerboard
surfaces † and †0 . Let ��.K/ be a different alternating diagram of K with associated
checkerboard surfaces †� and †0� . If �.K/ and ��.K/ are both reduced, then we
know from a theorem of Menasco and Thistlethwaite [18] that �.K/ and ��.K/ are
related by a sequence of flypes. In that case, † and †� are homeomorphic and have
the same boundary slope, but † and †� may not be isotopic in X . The same is true
for †0 and †0� .

However, every checkerboard surface for a reduced alternating diagram is �1–essential,
and thus will appear amongst our collection of fundamental spanning surfaces F . The
collection F may also contain some pairs of surfaces which correspond to an alternating
diagram which is not reduced. In this case, at least one of the checkerboard surfaces
fails to be �1–essential.

Let † and †0 have minimal intersection number amongst all surfaces from F which
satisfy (?). Place an orientation on @†, and label the vertices of @† \ @†0 in the
order they are encountered as one traverses @† by 1; : : : ; i , where i D i.@†; @†0/.
Then each arc of intersection between † and †0 is labelled by two numbers, one even
and one odd. These pairs of numbers, listed as a sequence of even positive integers
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in the order of their paired odd numbers, correspond to the Dowker–Thistlethwaite
notation [4] of a planar alternating diagram of K or its mirror image.

Therefore, given a nonalternating planar diagram of a knot K , there is an algorithm to
decide if K is alternating, and if so, there is an algorithm to produce an alternating
diagram of K up to chirality.
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Homology of FI-modules

THOMAS CHURCH

JORDAN S ELLENBERG

We prove an explicit and sharp upper bound for the Castelnuovo–Mumford regularity
of an FI-module in terms of the degrees of its generators and relations. We use this
to refine a result of Putman on the stability of homology of congruence subgroups,
extending his theorem to previously excluded small characteristics and to integral
homology while maintaining explicit bounds for the stable range.

18G10, 20C30

1 Introduction

In recent years, there has been swift development in the study of various abelian
categories related, in one way or another, to stable representation theory; see Church,
Ellenberg and Farb [4], Church, Ellenberg, Farb and Nagpal [5], Sam and Snowden [14]
and Wiltshire-Gordon [16]. The simplest of these is the category of FI-modules
introduced in [4], which can be seen as a category of modules for a certain twisted
commutative algebra. A critical question about these categories is whether they are
noetherian; that is, whether a subobject of a finitely generated object is itself finitely
generated.1

The category of FI-modules over Z is noetherian [5, Theorem A], so any finitely
generated FI-module V can be resolved by finitely generated projectives. One can
ask for more — in the spirit of the notion of Castelnuovo–Mumford regularity from
commutative algebra, one can ask for a resolution of V whose terms have explicitly
bounded degree. Castelnuovo–Mumford regularity has proven to be a very useful
invariant in commutative algebra, and we expect the same to be the case in this twisted
commutative setting. In the present paper, we prove a strong bound for the Castelnuovo–
Mumford regularity of FI-modules, and explain how this regularity theorem allows us
to refine a result of Putman [12] on the homology of congruence subgroups. Although
much of the paper is homological-algebraic in nature, the heart of the main results is
Theorem E; this is a basic structure theorem for FI-modules, whose proof at the core

1In some contexts, such abelian categories are called “locally noetherian”, the term “noetherian” being
reserved for categories where every object is noetherian. We use “noetherian” here in the broader sense,
but we acknowledge that not every FI-module is finitely generated.
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boils down to a combinatorial argument on injections from Œd � to Œn� involving certain
sets of integers enumerated by the Catalan numbers.

The theorems we obtain with these combinatorial methods naturally hold for FI-
modules with coefficients in Z. This is in contrast with earlier representation-theoretic
approaches, which tend to apply only to FI-modules with coefficients in a field, usually
required to have characteristic 0. On the other hand, the approach via representation
theory provides a very beautiful theory unifying the study of many different categories
(see eg Sam and Snowden [13]), while the arguments of the present paper are quite
specific to FI-modules. It would be very interesting to understand the extent to which
the combinatorics in Section 3 can be generalized beyond FI-modules to the family of
stable representation categories considered by Sam and Snowden.

Notation FI is the category of finite sets and injections; an FI-module W is a functor
W W FI! Z–Mod. Given a finite set T , we write WT for W.T /. For every n 2N D
f0; 1; 2; : : : g, we set Œn� WD f1; : : : ; ng, and we write Wn for WŒn� DW.Œn�/.

When W is an FI-module, we write degW for the largest k 2N such that Wk ¤ 0. To
include edge cases such as W D 0, we formally define degW 2 f�1g[N [f1g by

degW WD inf
˚
k 2 f�1g[N [f1g

ˇ̌
Wn D 0 for all n > k 2N

	
:

FI-homology The functor H0W FI-Mod! FI-Mod captures the notion of “minimal
generators” for an FI-module. Given an FI-module W , the FI-module H0.W / is the
quotient of W defined by

H0.W /T WDWT = span.imf�W WS !WT j f W S ,! T; jS j< jT j/:

This is the largest FI-module quotient of W such that all maps f�WH0.W /S!H0.W /T
with jS j < jT j are zero. An FI-module W is generated in degree at most m if
degH0.W /�m.

The functor H0 is right exact, and we define HpW FI-Mod! FI-Mod to be its pth

left-derived functor. One can think of Hp.W / as giving minimal generators for the
“pth syzygy” of the FI-module W . Our first main theorem bounds Hp.W / in terms of
H0.W / and H1.W /.

Theorem A Let W be an FI-module with degH0.W / � k and degH1.W / � d .
Then W has regularity at most kC d � 1: that is, for all p > 0, we have

degHp.W /� pC kC d � 1:

It is natural to shift our indexing by writing dp.W / WD degHp.W / � p ; with this
indexing, Theorem A states simply that dp.W /� d0.W /C d1.W /.
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We will define in Section 2.1 the notion of a free FI-module, and we will see that
Hp.W / can be computed explicitly from a free resolution of W . For now, we record
one corollary:

Corollary B Let M be a free FI-module generated in degree at most k , and let V
be an arbitrary FI-module generated in degree at most d . For any homomorphism
V !M , the kernel ker.V !M/ is generated in degree at most kC d C 1.

Uniform description of an FI-module Our next main result is the following theorem,
which gives a uniform description of an FI-module in terms of a explicit finite amount
of data.

Theorem C Let W be an arbitrary FI-module, and define

N WDmax.degH0.W /; degH1.W //:

Then for any finite set T ,

(1) WT D colim
S�T
jS j�N

WS :

Moreover, N is the smallest integer such that (1) holds for all finite sets.

We deduce Theorem C from [5, Corollary 2.24] by showing that the complex zS��W we
introduced there computes the FI-homology H�.W /. An alternate proof of Theorem C
has recently been given by Gan and Li [8]; in contrast with our approach via FI-
homology, they prove directly that an FI-module that is presented in finite degree
admits a description as in (1).

Homology of congruence subgroups As an application of these theorems, we have
the following result on the homology of congruence subgroups, which strengthens a
recent theorem of Putman [12]. For L¤ 0 2 Z, let �n.L/ be the level-L principal
congruence subgroup

�n.L/ WD ker
�
GLn.Z/! GLn.Z=LZ/

�
:

For S � Œn�, let �S .L/� �n.L/ be the subgroup

�S .L/ WD fM 2 �n.L/ jMij D ıij if i … S or j … Sg:

Notice that if jS j Dm, the subgroup �S .L/ is isomorphic to �m.L/.

Theorem D For all L¤ 0 2 Z, all n� 0, and all k � 0,

Hk.�n.L/IZ/D colim
S�Œn�

jS j<11�2k�2

Hk.�S .L/IZ/:

Geometry & Topology, Volume 21 (2017)



2376 Thomas Church and Jordan S Ellenberg

In fact, we prove a version of Theorem D for any ring satisfying one of Bass’s stable
range conditions; see Theorem D 0 in Section 5.2. This theorem has already been used
by Calegari and Emerton [2, Section 5] to prove stability for the completed homology
of arithmetic groups.

The conclusion of Theorem D is based on the main result of Putman in [12] on
“central stability” for Hk.�n.M/IZ/, but its formulation here is a combination of [12,
Theorem B] and our earlier theorem with Farb and Nagpal [5, Theorem 1.6]. Our
main improvement over Putman is that Theorem D applies to homology with integral
coefficients (or any other coefficients), while [12] only applied to coefficients in a field
of characteristic at least 2k�2 �18�3. This limitation was removed in Church, Ellenberg,
Farb and Nagpal [5], but at the cost of losing any hope of an explicit stable range. The
methods of the present paper maintain the applicability to arbitrary coefficients while
recovering Putman’s stable range.

Ingredients of Theorem D In light of Theorem C, in order to obtain the conclusion of
Theorem D, we must bound the degree of H0 and H1 for the FI-module Hk satisfying
.Hk/n DHk.�n.L/IZ/. The key technical ingredients are Theorem A and a theorem
of Charney on a congruence version of the complex of partial bases. We obtain in
Proposition 5.13 a spectral sequence with E2pq DHp.Hq/. Charney’s theorem tells us
that this spectral sequence converges to zero in an appropriate sense, and Theorem A
then lets us work backward to conclude that E2pq vanishes outside the corresponding
range, giving the desired bound on the degree of H0.Hq/ and H1.Hq/.

Remark The argument of Theorem D bears an interesting resemblance to that of
the second author with Venkatesh and Westerland in [6]. In that paper, one proves
a stability theorem for the cohomology of Hurwitz spaces, using the fact that this
cohomology carries the structure of module for a certain graded Q–algebra R . As
in the present paper (indeed most stable cohomology theorems), the topological side
of the argument requires proving that a certain complex, carrying an action of the
group whose cohomology we wish to control, is approximately contractible. The
algebraic piece of [6] involves showing that deg TorRi .M;Q/ can be bounded in terms
of deg TorR0 .M;Q/ and deg TorR1 .M;Q/ [6, Proposition 4.10]. Exactly as in the proof
of Theorem D, it is these bounds that allow us to carry out an induction in the spectral
sequence arising from the quotient of the highly connected complex by the group
of interest.

Combinatorial structure of FI-modules Our last theorem is a basic structural prop-
erty of FI-modules; this structural theorem provides the technical foundation for our
other results, and is also of independent interest in its own right.
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An FI-module M is torsion-free if for every injection f W S ,! T between finite sets,
the map f�W MS ! MT is injective. In this case, for any subset S � T , we may
regard MS as a submodule of MT by identifying it with its image under the canonical
inclusion.

Theorem E Let M be a torsion-free FI-module generated in degree at most k , and
let V � M be a sub-FI-module generated in degree at most d . Then for all n >
min.k; d/C d and any a � n,

Vn\
�
MŒn��f1gC � � �CMŒn��fag

�
D VŒn��f1gC � � �CVŒn��fag:

Theorem E holds for any d � 0 and k � 0. However, in the cases of primary interest,
we will have k < d , so in practice, the threshold for Theorem E will be n > kC d .
We note also that Theorem E is trivially true for a > d : the inclusion

VŒn��f1gC � � �CVŒn��fag � Vn\
�
MŒn��f1gC � � �CMŒn��fag

�
always holds, and it is easy to show that VŒn��f1gC � � �CVŒn��fag D Vn when a > d .

Stating Theorem E without M Although Theorem E seems to be a theorem about
the relation between the FI-module M and its submodule V , actually the key object
is V ; the role of M is somewhat auxiliary. In fact, in Section 3.1, we will give a more
general formulation in Theorem E 0 that makes no reference to M ; in place of the
intersection Vn\ .MŒn��f1gC � � �CMŒn��fag/, we use the subspace of Vn annihilated
by the operator

Qa
iD1.id � .i nCi// 2 ZŒSnCa�; see Section 3.1 for more details.

Theorem E 0 is stronger than Theorem E and has content even in the case corresponding
to V DM , when Theorem E says nothing. Aside from their application to FI-homology
in this paper, these results are fundamental properties of the structure of FI-modules,
and should be of interest on their own.

Theorem E and homology We will show that if M is a free FI-module, Theorem E
has a natural homological interpretation as a bound on the degree of vanishing of a
certain derived functor applied to M=V ; see Remark 2.7 and Corollary 4.5 for details. It
is this interpretation that allows us to connect Theorem E with the bounds on regularity
in Theorem A.

Bounds on torsion The conclusion of Theorem E can be phrased as a statement
about the quotient FI-module M=V , and in the case aD 1, this conclusion becomes
particularly simple: it states that the map .M=V /Œn��f1g! .M=V /Œn� is injective when
n >min.k; d/C d . This yields the following corollary of Theorem E. In general, an
FI-module W is torsion-free in degrees at least m if the maps f�W MS !MT are
injective whenever jS j �m.
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Corollary F If M is torsion-free and generated in degree at most k , and its sub-FI-
module V is generated in degree at most d , then the quotient M=V is torsion-free in
degrees at least min.k; d/C d .

Alternate proofs of Theorem A In the time since this paper was first posted, alternate
proofs of Theorem A have been given by Li [10] (based partly on Li and Yu [11]) and
Gan [7]. The structure of those proofs is different from ours. In this paper, we prove
Theorem E in a self-contained way and then deduce Theorem A as a direct consequence.
By contrast, both Li and Gan use Corollary F as a stepping stone (replacing the need for
the full strength of Theorem E); they prove both Theorem A and Corollary F together,
using an induction on k that bounces back and forth between those two results.

Sharpness of Theorem E Before moving on, we give a simple example showing that
the bound of min.k; d/C d in Theorem E and Corollary F is sharp.

Example Fix any k � 0 and any d > k . Let M be the FI-module over Q such
that MT is freely spanned by the k–element subsets of T . The FI-module M is
torsion-free and generated in degree k by Mk 'Q.

For any d –element set U , consider the element vU WD
P
S�U; jS jDk eS . Let V �M

be the sub-FI-module such that VT is spanned by the elements vU 2 MT for all
d –element subsets U � T . The FI-module V is generated by vŒd� 2 Vd ' Q, so
Corollary F asserts that the quotient W WDM=V should be torsion-free in degrees at
least kC d .

In fact, we have Wn¤ 0 for n<kCd and WnD 0 for n� kCd , which we can verify
as follows. By definition, Vn is spanned by the

�
n
d

�
elements vU as U ranges over the

d –element subsets U � Œn�, so the dimension of Vn is at most
�
n
d

�
. When n < kCd ,

we have dimVn �
�
n
d

�
<
�
n
k

�
D dimMn so Vn ¤Mn , verifying the first claim. On the

other hand, with a bit of work, one can check directly that VkCd DMkCd , which then
implies Vn DMn for all n� kC d , verifying the second claim.

Since WnD 0 for n� kCd , we see that W is torsion-free in degrees at least kCd as
guaranteed by Corollary F; however, the fact that WkCd�1 ¤ 0 shows that this bound
cannot be improved.

Castelnuovo–Mumford regularity What we prove in Theorem A is that

degHp.V /� cV Cp

for some constant cV depending on V . By analogy with commutative algebra, this
statement could be thought of as saying that the Castelnuovo–Mumford regularity of V
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is at most cV . For FI-modules over fields of characteristic 0, that all finitely generated
FI-modules have finite Castelnuovo–Mumford regularity in this sense is a recent result
of Sam and Snowden [14, Corollary 6.3.4].

We emphasize that Theorem A gives an explicit description of the regularity of V
which depends only on the degrees of generators and relations for V . This is much
stronger than the bounds for the regularity of finitely generated modules M over
polynomial rings CŒx1; : : : ; xr �, which depend on the number of generators of M . We
take this strong bound on regularity as support for the point of view that the category
of FI-modules is in some sense akin to the category of graded modules for a univariate
polynomial ring CŒT �. (See Table 1 for more details of this analogy.) Of course, in the
latter context, the fact that the regularity is bounded by the degree of generators and
relations is a triviality because Hp.V /D 0 for all p > 1; by contrast, the category of
FI-modules has infinite global dimension.

Despite these analogies, we would like to emphasize one surprising feature of the
bound

degHp.V /�p � degH0.V /C degH1.V /� 1

we obtain for FI-modules: one cannot expect a bound of this form to hold for graded
modules over a general graded ring, for the simple reason that the bound is not invariant
under shifts in grading.2 The existence of such a bound for FI-modules reflects the fact
that, although a version of the grading shift does exist for FI-modules (see Section 2.2),
its effect on generators and relations is considerably more complicated. In particular,
this shift is not invertible for FI-modules.

Infinitely generated FI-modules One striking feature of Theorem A, and another
contrast with polynomial rings, is that its application is not restricted to finitely generated
FI-modules: Theorem A bounds the regularity of any FI-module which is presented in
finite degree. This is critical for the applications to homology of congruence subgroups
in Section 5.2: for congruence subgroups such as

�n.t/D ker
�
GLn.CŒt �/! GLn.C/

�
;

the FI-modules arising from the homology of �n.t/ are not even countably generated!
Nevertheless, the bounds in Theorem D 0 below apply equally well to this case.

2Indeed, since degHi .V Œk�/ D degHi .V / � k for graded modules, applying this inequality to
V Œk� rather than V would shift the left side by �k but the right side by �2k , leading to the absurd
conclusion that degHp.V /�p � degH0.V /C degH1.V /� 1� k for any k . This is impossible unless
degHp.V /D�1 for p>1 , meaning the ring has homological dimension 1 (as we saw for CŒT � above).
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2 Summary of FI-modules

In this introductory section, we record the basic definitions and properties of FI-modules
that we will use in this paper. Experts who are already familiar with FI-modules can
likely skip Section 2 on a first reading (with the exception of Lemma 2.6 and Remark 2.7,
which are less standard and play a key role in later sections).

As we mentioned in the introduction, there is a productive analogy between FI-modules
and graded CŒT �–modules. For the benefit of readers unfamiliar with FI-modules, in
Table 1 we have listed all the constructions for FI-modules described in this section,
along with the analogous construction for CŒT �–modules. These analogies are not
intended as precise mathematical assertions, only as signposts to help the reader orient
themself in the world of FI-modules.

(Those readers used to the six-functors formalism may prefer to dualize the right side of
Table 1, thinking of 'W FB ,! FI as analogous to the structure map f W Spec CŒT �!
Spec C , so that the adjoint functors M � '� correspond to f �1� f� . Similarly,
� W Z FI� Z FB is analogous to the closed inclusion i W Spec C! Spec CŒT �, and
the adjunctions �� ��� � correspond to i�1� i� D iŠ� i Š .)

2.1 Free FI-modules and generation

FB-modules Just as FI denotes the category of finite sets and injections, FB denotes
the category of finite sets and bijections. An FB-module W is an element of FB-Mod,
the abelian category of functors W W FB ! Z–Mod. An FB-module W is just a
sequence Wn of ZŒSn�–modules, with no additional structure.
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FI a category CŒT � an algebra over
FB� FI its subcat. of isos C �CŒT � a field

'W FB ,! FI C ,!CŒT �

'�W FI-Mod! FB-Mod forget action CŒT �–Mod!C–Mod take underlying
of nonisos vector space

M W FB-Mod! FI-Mod left adjoint of '� C–Mod!CŒT �–Mod V 7!CŒT �˝CV
D “free FI-mod on W ” D free CŒT �–Mod on V

� W Z FI� Z FB nonisos 7! 0 CŒT ��C T 7! 0

��W FB-Mod! FI-Mod make nonisos act by 0 C–Mod!CŒT �–Mod make T act by 0
�W FI-Mod! FB-Mod left adjoint of �� CŒT �–Mod!C–Mod M 7!M=TM

(extend scalars by �) DM ˝CŒT � C

H0W FI-Mod! FI-Mod H0 WD �
� ı� M=TM considered as CŒT �–Mod

�W FI-Mod! FB-Mod right adjoint of �� CŒT �–Mod!C–Mod M 7!MŒT �

D ker.M T
�!MŒ1�/

S W FI-Mod! FI-Mod .SW /T WDWTtf?g grading shift M 7!MŒ1�

DW FI-Mod! FI-Mod coker.W!SW / coker.M T
�!MŒ1�/

KW FI-Mod! FI-Mod ker.W!SW / ker.M T
�!MŒ1�/

D �� ı �

Table 1: Analogies between FI-modules and graded CŒT �–modules

Free FI-modules FB is the subcategory of FI consisting of all the isomorphisms
(its maximal subgroupoid). From the inclusion 'W FB ,! FI, we obtain a natural
forgetful functor '� from FI-Mod to FB-Mod that simply forgets about the action of
all nonisomorphisms. Its left adjoint M W FB-Mod! FI-Mod takes an FB-module W
to the “free FI-module M.W / on W ”. We call any FI-module of the form M.W / a
free FI-module.

We recall from [4, Definition 2.2.2] an explicit formula for M.W /, from which we
can see that M is exact:

(2) M.W /T D
M
S�T

WS :

For notational convenience, for m 2 N we write M.m/ WD M.ZŒSm�/. These FI-
modules have the defining property that HomFI-Mod.M.m/; V / ' Vm , since we can
write M.m/' Z

�
HomFI.Œm�;�/

�
.

As a consequence, M.m/ is a projective FI-module (they are the “principal projective”
FI-modules). In general, an FI-module is projective if and only if it is a summand of
some

L
i2I M.mi /.
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We point out that despite the name, free FI-modules need not be projective (since
nonprojective ZŒSn�–modules are in abundance!).3 Nevertheless, for our purposes
free FI-modules will be just as good as projective FI-modules (see Lemma 2.3 and
Corollary 4.5), so this discrepancy will not bother us.

Generation in degree at most k Every FI-module V has a natural increasing filtration

Vh�0i � Vh�1i � � � � � Vh�mi � � � � � V D
[
m�0

Vh�mi;

where Vh�mi is the sub-FI-module of V “generated by elements in degree at most m”.
This filtration, which is respected by all maps of FI-modules, can be defined as follows.

Given an FI-module V , by a slight abuse of notation we write M.V / for the free
FI-module on the FB-module '�V underlying V . From the adjunction M � '� we
have a canonical map M.V /� V , which is always surjective. We modify this slightly
to define the filtration Vh�mi .

Definition 2.1 Let V�m be the FB-module defined by .V�m/T D VT if jT j �m and
.V�m/T D 0 if jT j > m. Then the natural inclusion of FB-modules V�m ,! '�V

induces a map of FI-modules M.V�m/! V .

We define Vh�mi�V to be the image of the canonical map M.V�m/!V . Equivalently,
Vh�mi is the smallest sub-FI-module U � V satisfying Un D Vn for all n �m. We
sometimes write Vh<mi as an abbreviation for Vh�m�1i .

In the introduction we said that an FI-module W is generated in degree at most m if
degH0.W /�m, but there are many equivalent ways to formulate this definition.

Lemma 2.2 Let V be an FI-module, and fix m� 0. The following are equivalent:

(i) V is generated in degree at most m.

(ii) degH0.V /�m.

(iii) V D Vh�mi .

(iv) V admits a surjection from
L
i2I M.mi / with all mi �m.

(v) The natural map M.Wm/!W is surjective in degrees at least m.

3For example, consider the FI-module V for which VT WD ZŒefi;j g�i¤j2T , the free abelian group
on the 2–element subsets of T . This FI-module V is free on the FB-module W having W2 ' Z (the
trivial ZŒS2�–module) and Wn D 0 for n¤ 2 . However, V is not projective, since W2 is not a projective
ZŒS2�–module.
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The functor H0 In the other direction, we do not quite have a projection from FI
to FB, because the noninvertible morphisms in FI have nowhere to go. One wants to
map them to zero, but there’s no “zero morphism” in FB. This problem can be solved
by passing to the Z–enriched versions Z FI and Z FB of these categories: we now
have a functor � W Z FI! Z FB which sends all noninvertible morphisms to zero and
is the identity on isomorphisms.

This induces the “extension by zero” functor ��W FB-Mod! FI-Mod which takes
an FB-module W and simply regards it as an FI-module by defining f� D 0 for all
noninvertible f W S ! T . This functor is exact and has both a left adjoint � and right
adjoint � .

In this section, we consider the left adjoint �W FI-Mod ! FB-Mod. Since every
noninvertible map f W S ,! T increases cardinality, we have the formula .�V /n D
.V=Vh<ni/n . This is almost exactly the definition of H0W FI-Mod! FI-Mod given in
the introduction; the only difference is that �V is an FB-module whereas H0.V / is
the same thing regarded as an FI-module, ie H0 D �� ı�.

We adopt the convention in this paper that if F is a right-exact functor, HF
p denotes

its pth left-derived functor. As we explained in the introduction, we write Hp.V / for
the derived functors HH0

p .V / of H0 , and call these the FI-homology of V .

Lemma 2.3 Free FI-modules are H0–acyclic.

Proof Our goal is to prove that Hp.M.W //D 0 for p > 0. Since M is exact and
takes projectives to projectives, there is an isomorphism Hp.M.W //'H

H0ıM
p .W /.

However, the composition H0ıM is just the exact functor �� . Indeed, the composition
� ı ' is the identity, so '� ı �� D id. It follows that its left adjoint � ıM is the
identity as well. Since H0D �� ı�, we have H0 ıM D �� ı�ıM D �� as claimed.
We conclude that Hp.M.W //'HH0ıM

p .W /DH��

p .W /, which vanishes for p > 0
since �� is exact.

We can now explain how Corollary B follows from Theorem A.

Proof of Corollary B If M D 0, the corollary is trivial, so assume that M ¤ 0. Let
KDker.V !M/ and W D coker.V !M/. Thanks to the equivalences in Lemma 2.2,
the statement of the corollary is that degH0.K/� degH0.M/C degH0.V /C 1.

From the exact sequence 0!K! V !M !W ! 0, we obtain the inequalities

degH0.W /� degH0.M/;

degH1.W /�max
�
degH0.V /; degH1.M/

�
;

degH0.K/�max
�
degH0.V /; degH1.M/; degH2.W /

�
:
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Therefore, to prove the corollary, it suffices to show that the degrees of H0.V /,
H1.M/ and H2.W / are bounded by degH0.M/C degH0.V /C 1. For H0.V /,
this is trivial, since degH0.M/ � 0. Since M is free, H1.M/ D 0 by Lemma 2.3,
so degH1.M/D�1; this also shows degH1.W / � degH0.V /. Finally, applying
Theorem A to W shows that, as desired,

degH2.W /� degH0.W /C degH1.W /C 1� degH0.M/C degH0.V /C 1:

2.2 Shifts and derivatives of FI-modules

The shift functor S Fix a one-element set f?g. Let tW Sets�Sets! Sets be the
coproduct, ie the disjoint union of sets. This must be formalized in some fixed functorial
way such as S tT WD .S � f0g/[ .T � f1g/; but since the coproduct is unique up to
canonical isomorphism, the choice of formalization is irrelevant.

The disjoint union with f?g defines a functor � W FI! FI by T 7! T t f?g. The shift
functor S W FI-Mod! FI-Mod is given by precomposition with � : the FI-module SV

is the composition SV W FI
�
�! FI

V
�! Z–Mod. Concretely, for any finite set T we have

.SV /T D VTtf?g . The functor S is evidently exact.

The kernel functor K and derivative functor D The inclusion of S into S t f?g
defines a natural transformation from idFI to � . From this we obtain a natural trans-
formation � from idFI-Mod to S . Concretely, this is a natural map of FI-modules
�W V ! SV which, for every finite set T , sends VT to .SV /T D VTtf?g via the map
corresponding to the inclusion iT of T into T t f?g.

The functor DW FI-Mod! FI-Mod, the derivative, is defined to be the cokernel of
this map:

DV WD coker.V
�
�! SV /:

We similarly define KW FI-Mod! FI-Mod to be the kernel KV WD ker.V
�
�! SV /.

For any FI-module, we have a natural exact sequence

0!KV ! V ! SV !DV ! 0:

Since id and S are exact functors, D is right exact and K is left exact. Concretely,
we have

.DV /T 'VTtf?g= im.VT !VTtf?g/ and .KV /T Dfv2VT j i.v/D02VTtf?gg:

From this formula for KV , one can check that the functor K essentially coincides
with the right adjoint �W FI-Mod! FB-Mod of �� ; as we saw with H0 , the only
difference is that KV is �V considered as an FI-module, ie K D �� ı � .
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Remark 2.4 Readers paying attention to the analogies in Table 1 might object that
although H0 and D are very different functors of FI-modules, the table indicates that
both correspond to the functor M 7!M=TM of graded CŒT �–modules. But this is
not quite right, and by being careful with gradings we can see the distinction: H0
corresponds to coker.MŒ�1� T�!M/ whereas D corresponds to coker.M T

�!MŒ1�/.
In the graded case we rarely need to worry about the distinction, since grading shifts
are invertible. But for FI-modules this is not true, and the distinction is important.
(Lemma 4.4 below may clarify the behavior of D .)

Lemma 2.5 An FI-module V is torsion-free if and only if KV D 0.

Proof Recall that an FI-module V is torsion-free if for any injection f W S ,! T of
finite sets, the map f�W VS ! VT is injective. By a simple induction, this holds if and
only if f� is injective for all f W S ,!T with jT jD jS jC1. However, such an inclusion
can be factored as f DgıiS for some bijection gW Stf?g'T . Since g� is necessarily
injective, we see that V is torsion-free if and only if �S D .iS /�W VS ! VStf?g is
injective for all finite sets S , ie if KV D 0.

Iterates of shift and derivative We can iterate the shift functor S , obtaining FI-
modules SbV for any b � 0. To avoid the notational confusion of writing .S2V /T '
VTtf?gtf?g , we adopt the notation that Œ?b� denotes a fixed b–element set Œ?b� WD
f?1; : : : ; ?bg. We can then naturally identify .S2V /T ' VTtŒ?2� , and so on.

The iterates Da are also right exact and can be described quite explicitly. For every
FI-module V and every finite set T , we have

(3) .DaV /T '
VTtŒ?a�Pa

jD1 im.VTtŒ?a��f?j g
/
;

where im.VTtŒ?a��f?j g
/ denotes the image of the natural map VTtŒ?a��f?j g

!VTtŒ?a�

induced by the inclusion T t Œ?a��f?j g � T t Œ?a�. We remark that Da is the left
adjoint of the functor Ba of [5, Definition 2.16].

For any submodule V �M the inclusion induces a map DaV !DaM .

Lemma 2.6 If M is a torsion-free FI-module and V �M a submodule,

ker.DaV !DaM/n�a D 0 ()

Vn\
�
MŒn��f1gC � � �CMŒn��fag

�
D VŒn��f1gC � � �CVŒn��fag:

Proof Since M is torsion-free we can identify MS with its image in MStf?g and so
on, so

ker.DaV !DaM/T ' ker
�

VTtŒ?a�Pa
jD1 VTtŒ?a��f?j g

!
MTtŒ?a�Pa

jD1MTtŒ?a��f?j g

�
:
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In other words,

ker.DaV !DaM/T D 0 () VTtŒ?a�\

� aX
jD1

MTtŒ?a��f?j g

�
D

aX
jD1

VTtŒ?a��f?j g
:

Setting T DfaC1; : : : ; ng and identifying Œ?a� with f1; : : : ; ag, we obtain the desired
expression.

Remark 2.7 Notice that the right side of Lemma 2.6 is precisely the conclusion
of Theorem E. Therefore, we can restate Theorem E as saying: if M is torsion-
free and generated in degree at most k , and V � M is generated in degree at
most d , then ker.DaV ! DaM/n�a vanishes for n > d C min.k; d/; in other
words, deg ker.DaV !DaM/ � d Cmin.k; d/� a . This observation will be used
in Section 4, and specifically in the proof of Theorem 4.8 to obtain bounds on HDa

p .

3 Combinatorics of finite injections and FI-modules

The goal of this section is to prove Theorem E. In Section 3.1 we generalize Theorem E
to Theorem E 0 which does not refer to the ambient FI-module M , and is of independent
interest. In Section 3.2 we establish the combinatorial properties of Z

�
HomFI.Œd �; Œn�/

�
that make our proof possible; throughout that section we do not mention FI-modules at
all. In Section 3.3 we apply these properties to prove Theorem E 0 . But before moving
to the combinatorics, we begin by motivating the connections with FI-modules.

3.1 The ideal Im and Theorem E 0

The ideal Im For each pair of distinct elements i ¤ j in Œn�, we write .i j / for the
transposition in Sn interchanging i and j , and we define J ij WD id� .i j / 2 ZŒSn�.
Note that J ij D J

j
i

, and that J ij and J kl commute when their four indices are distinct
(since the transpositions .i j / and .k l/ commute in this case).

For m 2 N , define Im � ZŒSn� to be the two-sided ideal generated by products of
the form

J i1j1
J i2j2
� � �J imjm

;

where i1; j1; : : : ; im; jm are 2m distinct elements of Œn�. (In particular, the terms of
the product commute.) Multiplying out such a product, we have

(4) J i1j1
J i2j2
� � �J imjm

D

X
K�Œm�

.�1/jKj
Y
k2K

.ik jk/D
X

�2.Z=2/m

.�1/��;
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where .Z=2/m denotes the subgroup generated by the commuting transpositions
.ik jk/, and .�1/� denotes the image of � under the sign homomorphism Sn!˙1.

Although the ideals Im will play multiple different roles in the proof of Theorem E,
the following property provides a simple illustration of why we consider these ideals.
Recall that the group ring ZŒSn� acts on Wn for any FI-module W .

Proposition 3.1 Let M be an FI-module generated in degree at most k . Then
IkC1 �Mn D 0 for all n� 0.

Proof We prove first that Im annihilates the free module M.a/ if a < m, meaning
that Im �M.a/n D 0 for all n. For any a , we have a basis for M.a/n given by
injections f W Œa� ,! Œn�. The key observation is that given f W Œa� ,! Œn� and a
generator J i1j1

J i2j2
� � �J imjm

2 Im ,

(5) if im f \fi`; j`g D∅ for some ` 2 Œm�, then J i1j1
J i2j2
� � �J imjm

�f D 0.

Indeed the assumption implies .i` j`/ıf Df , so J i`j`
D id�.i` j`/ satisfies J i`j`

�f D0.
Since the terms of the product commute, it follows that J i1j1

J i2j2
� � �J imjm

�f D 0.

However, when a < m, for every f W Œa� ,! Œm� and J D J i1j1
J i2j2
� � �J imjm

2 Im there
exists some ` for which imf \fi`; j`gD∅. Therefore, J �f D 0 for all basis elements
f 2M.a/n and all generators J 2 Im , proving that Im �M.a/D 0 as claimed.

Returning to the general claim, let M be an FI-module generated in degree at most k .
By Lemma 2.2(iv), M is a quotient of a sum of free modules M.a/ generated in
degrees a � k . We have just proved that IkC1 annihilates any such free module, so it
annihilates the quotient M as well.

Generalizing Theorem E by removing M The statement of Theorem E can be
generalized by removing M from its statement. Recall that Theorem E states that if M
is a torsion-free FI-module and V �M is a submodule, then

(6) Vn\
�
MŒn��f1gC � � �CMŒn��fag

�
D VŒn��f1gC � � �CVŒn��fag

for sufficiently large n. Though it may not be obvious, the central object in this
statement is V . In fact, we can remove the FI-module M from the statement entirely,
and at the same time strengthen the theorem.

Consider the case a D 1, when our goal (6) is that Vn \MŒn��f1g coincides with
VŒn��f1g for large enough n. When M is free, the submodule MŒn��f1g �MŒn� can
be cut out as

MŒn��f1g D fm 2MŒn� �MŒn�tŒ?1� j .1 ?1/ �mDmg:
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In other words, recalling that �W Œn� ,! Œn�t Œ?1� denotes the standard inclusion, the
element zJŒ1� WD J ?1

1 ı � 2 Z
�
HomFI.Œn�; Œn�t Œ?1�/

�
has the property that

MŒn��f1g D ker zJŒ1�jMŒn�

when M is free. For general M we need not have equality here, but we do always
have the containment MŒn��f1g � ker zJŒ1�jMŒn�

. Intersecting with V , we always have
the containments

VŒn��f1g � Vn\MŒn��f1g � ker zJŒ1�jVŒn�
:

The statement of Theorem E is that the first containment is an equality for large
enough n. But we can actually prove the stronger statement that both are equalities:
VŒn��f1gD ker zJŒ1�jVŒn�

for large enough n. Notice that this statement no longer makes
reference to M !

For larger a , we consider the element zJŒa� WDJ ?1
1 � � �J

?a
a ı�2Z

�
HomFI.Œn�; Œn�tŒ?a�/

�
.

We saw in the previous paragraph that MŒn��fig � kerJ ?i
i (identifying MŒn��fig with

its image). Since all the operators J ?i
i commute, this implies that MŒn��fig � ker zJ Œa�

for any i 2 Œa�, so
MŒn��f1gC � � �CMŒn��fag � ker zJŒa�jMŒn�

:

This means that

(7) VŒn��f1gC � � �CVŒn��fag � Vn\
�
MŒn��f1gC � � �CMŒn��fag

�
� ker zJŒa�jVŒn�

for any n� a . This leads us to the following generalization of Theorem E.

Theorem E 0 Let V be a torsion-free FI-module generated in degree at most d satis-
fying IKC1 �V D 0. Then for all n > KC d and any a � n,

VŒn��f1gC � � �CVŒn��fag D ker zJŒa�:

Theorem E 0 is proved in Section 3.3 below, but we first verify here that it implies
Theorem E.

Proof that Theorem E 0 implies Theorem E We begin in the setup of Theorem E,
so let M be a torsion-free FI-module generated in degree at most k , and let V be a
submodule of M generated in degree at most d .

Proposition 3.1 states that IkC1 �M D 0, so the same is true of its submodule V .
Applying Proposition 3.1 to V directly shows that IdC1 �V D 0. Therefore, if we set
K Dmin.k; d/, we have IKC1 �V D 0.

Applying Theorem E 0 , we conclude that VŒn��f1g C � � � C VŒn��fag D ker zJŒa�jVŒn�

for all n > K C d . In light of (7), this implies that VŒn��f1g C � � � C VŒn��fag D
Vn\

�
MŒn��f1gC � � �CMŒn��fag

�
for n > KC d , as desired.
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In fact, Theorem E 0 is strictly stronger than Theorem E. To see this, notice that
Theorem E says nothing when V D M , while Theorem E 0 implies the following
structural statement (by taking aDKC 1 and noting that zJŒKC1� 2 IKC1 ), which is
nontrivial whenever K < d .

Corollary 3.2 Let V be a torsion-free FI-module generated in degree at most d
satisfying IKC1 � V D 0. (For example, this holds if V can be embedded into some
FI-module generated in degree at most K .) Then for all n > KC d ,

Vn D VŒn��f1gC � � �CVŒn��fKgCVŒn��fKC1g:

3.2 The combinatorics of Z
�
HomFI.Œd�; Œn�/

�
The discussion above did not depend on any ordering on Œn� (essentially treating it as
an arbitrary finite set). By contrast, throughout the rest of this section we rely heavily
on the ordering on Œn�. This is inconsistent with the philosophy of FI-modules, so
throughout Section 3.2 we will not mention the category FI at all.

Definition 3.3 (the collection †.b/) For b2N , let †.b/ denote the set of b–element
subsets S � Œ2b� satisfying the following property:

(��) The i th largest element of S is at most 2i � 1:

For a 2 N with 1 � a � b , let †.a; b/ � †.b/ consist of all those S 2 †.b/
containing Œa�:

(8) †.a; b/ WD fS 2†.b/ j Œa�� S � Œ2b�g:

For example, it follows from (��) that 1 2 S for any S 2†.b/, so for any b 2N we
have †.1; b/ D †.b/. At the other extreme, we have †.b; b/ D fŒb�g. The subsets
†.a; b/ interpolate between †.1; b/D†.b/ and †.b; b/D fŒb�g; for example,

†.1; 4/D 1234; 1235; 1236; 1237; 1245; 1246; 1247; 1256; 1257;

1345; 1346; 1347; 1356; 1357I

†.2; 4/D 1234; 1235; 1236; 1237; 1245; 1246; 1247; 1256; 1257I

†.3; 4/D 1234; 1235; 1236; 1237I

†.4; 4/D 1234:

We have written the elements of †.a; b/ in lexicographic order, which ordering we
denote by 4. We denote by xS the complement xS WD Œ2b� nS . We will only use this
notation for b–element subsets S � Œ2b�, so the notation is unambiguous; in particular,
xS is always a b–element subset of Œ2b� as well.
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Remark 3.4 We record some relations between the different collections †.a; b/:

(a) For any S 2 †.b/ and any m � 2b C 1 with m … S , the union S [ fmg

belongs to †.bC 1/. In particular, this holds if m 2 xS . If S 2 †.a; b/, then
S [fmg 2†.a; bC 1/.

(b) For any S 2†.b/ and any c � b , if R � S is the c–element subset consisting
of the c smallest elements, then R 2†.c/. If S 2†.a; b/ for a � c � b , then
R 2†.a; c/ as well.

(c) If S; T 2 †.b/ satisfy T 4 S and S 2 †.a; b/, then T 2 †.a; b/ as well. In
other words, †.a; b/ is an “initial segment” of †.b/ (this is immediately visible
in the description of †.a; 4/ above).

Descendants The condition (��) gives one way to define the Catalan numbers: the
nth Catalan number is j†.n/j D .1=.nC1//

�
2n
n

�
. This is not a coincidence; our interest

in †.b/ comes from the following characterization of the sets S 2 †.b/, which is
related to another definition of the Catalan numbers.

Given any b–element subset S � Œ2b�, write the elements of S in increasing order as
s1; : : : ; sb and the elements of xS in increasing order as t1; : : : ; tb . Let .Z=2/S denote
the subgroup of S2b generated by the commuting transpositions .sk tk/ 2 S2b . If we
define JS 2 Ib as

(9) JS WD
Y
i

J tisi ;

by (4) we have JS D
P
�2.Z=2/S .�1/

�� . In these terms, the defining property (��)
of †.b/ has the following formulation:

(10) S 2†.b/ () S is lexicographically first among f� �S j � 2 .Z=2/Sg:

Given S 2†.b/, we refer to the subsets f� �S j � 2 .Z=2/Sg as the descendants of S ;
by (10), S lexicographically precedes all of its descendants.4 In fact, we will use the
following generalization. For any subset U � Œn� with S � U , and any b distinct
elements u1 < � � �< ub of Œn� nU , we can consider the subgroup .Z=2/b generated
by the disjoint transpositions .si ui /. By comparison with (10), it is straightforward
to conclude:

Lemma 3.5 S 2†.b/ implies U is lexicographically first among f� �U j� 2 .Z=2/bg.

4A set S and its descendant � �S need not determine the same subgroup .Z=2/S ¤ .Z=2/� �S , so the
relation of being a descendant is neither symmetric nor transitive. For example, if S D f1; 2g � Œ4� , then
S 0 D f1; 4g is a descendant of S , but .Z=2/S D h.1 3/; .2 4/i whereas .Z=2/S

0
D h.1 2/; .3 4/i . The

descendants of S are S D 12 , S 0 D 14 , 23 and 34 whereas the descendants of S 0 are S 0 D 14 , 23 , 13
and 24 .
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The Sn –module F and subgroups Fix d 2 N and n 2 N for the remainder of
Section 3. Let F denote the ZŒSn�–module associated to the permutation action on
the set of injections f W Œd � ,! Œn�. (In other words, as an Sn–module F is isomorphic
to Z

�
HomFI.Œd �; Œn�/

�
; however, we will wait until the next section to explore this

connection with the category FI.)

Definition 3.6 We define certain subgroups of the free abelian group F corresponding
to particular subsets of the basis ff W Œd � ,! Œn�g. In these definitions, S is a b–element
subset S 2†.b/:

F¤S WD hf W Œd � ,! Œn� j S 6� imf i;

F b WD hf W Œd � ,! Œn� j 8S 2†.b/; S 6� imf i D
\

S2†.b/

F¤S ;

F a;b WD hf W Œd � ,! Œn� j 8S 2†.a; b/; S 6� imf i D
\

S2†.a;b/

F¤S ;

FDS WD hf W Œd � ,! Œn� j imf \ Œ2b�D Si:

In general none of these subgroups are preserved by the action of Sn on F .

We emphasize the contrast between F¤S and FDS : for fixed b , a given injection
f W Œd � ,! Œn� may lie in F¤S for many different S 2 †.b/; in contrast, f lies in
FDS for at most one S 2 †.b/ (namely S D imf \ Œ2b�, if this subset happens to
belong to †.b/).

Since †.b/ D †.1; b/ � � � � � †.b; b/, we have F b D F 1;b � F 2;b � � � � � F b;b .
Similarly, from Remark 3.4(b) we have F a;a � � � � � F a;b � � � � . In other words, if
a � a0 and b � b0 , then F a;b � F a

0;b0 . Note that, since †.a; a/ consists of the single
set S D Œa�, the subgroup F a;a is spanned by injections f W Œd � ,! Œn� with i … imf

for some i 2 Œa�.

We make no assumptions whatsoever on d , n or b in this section, although in some
cases the definitions become rather trivial. (For example, when b > d , we have
F D F b ; when d > n, we have F D 0; when 2b > n, we have Ib D 0.)

Proposition 3.7 For any b such that n� bC d , we have

F D Ib �F CF
b:

Proof It is vacuous that Ib �F CF b � F , so we must prove that F � Ib �F CF b.
Assume otherwise; then some basis element f does not lie in Ib �F CF b . Choose f
so that imf is lexicographically last among all such f . Since f … F b , there exists
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some S 2†.b/ with S � imf . Since n� bCd , we may choose b distinct elements
u1 < � � �< ub from Œn� n imf . Let J D J u1

s1
� � �J ub

sb
, and consider the element

.J � id/ �f D
X

�¤12.Z=2/b

.�1/�� �f:

By Lemma 3.5 we have im.� � f /D � � imf � imf for all � ¤ 1. By our definition
of f (that its image was lexicographically last), � �f is contained in Ib �F CF b for
all � ¤ 1, so .J�id/ �f 2 Ib �F CF b . However, J �f 2 Ib �F by definition, so this
implies that J �f �.J�id/�f Df lies in Ib �FCF b , contradicting our assumption.

Decomposing F in terms of the subgroups JS FDS We will also need, for a dif-
ferent purpose, a more specific version of Proposition 3.7. For each S 2 †.b/, we
have defined in (9) the operator JS 2ZŒS2b�. For any n� 2b we may consider this as
an operator in ZŒSn�, which we also denote by JS .

Proposition 3.8 For any a � b such that 2b � n,

F a;bC1 � F a;bC
X

S2†.a;b/

JSFDS :

Proof For this proof only, define

(11) F .a;b/ WD F a;bC
X

S2†.a;b/

FDS

D
˝
f W Œd � ,! Œn�

ˇ̌
ÀS 2†.a; b/ s.t. S ¨ imf \ Œ2b�

˛
:

In words, F .a;b/ is spanned by those injections f W Œd � ,! Œn� such that imf \ Œ2b�

does not properly contain any element of †.a; b/ (but imf \ Œ2b� is allowed to be
equal to some S 2†.a; b/).

We begin by showing that F a;bC1 � F .a;b/ . Consider a basis element f which does
not lie in F .a;b/ . By definition, there exists S 2†.a; b/ such that S ¨ imf \ Œ2b�.
Choose m2 imf \Œ2b� with m…S , and define T DS[fmg. We have T 2†.a; bC1/
by Remark 3.4(a), so f … F a;bC1 as desired.

We now show that for any S 2†.a; b/, we have

(12) FDS � JSFDS CF
a;b
C

X
S 02†.a;b/
S 0�S

FDS 0 :

Consider a basis element f 2 FDS and the associated element

.JS � id/ �f D
X

�¤12.Z=2/S

.�1/�� �f:
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By assumption, imf \ Œ2b� D S , so im.� � f /\ Œ2b� D � � imf \ Œ2b� D � � S is
a descendant of S . By (10), the fact that S 2 †.a; b/ means that � � S � S for all
� ¤ 1 2 .Z=2/S . Thus for each � , there are two possibilities for the b–element
subset � �S : either � �S does not belong to †.a; b/, in which case � �f 2 F a;b ; or
� �S 2†.a; b/ but � �S � S , in which case � �f 2 FD� �S . In other words,

.id�JS / �f 2 F a;bC
X

S 02†.a;b/
S 0�S

FDS 0 :

Writing f D JS �f � .JS � id/ �f , this demonstrates (12).

Beginning with (11), we apply (12) to each S 2 †.a; b/ in lexicographic order to
obtain the desired

F a;bC1 � F .a;b/D F a;bC
X

S2†.a;b/

FDS �
X

S2†.a;b/

JSFDS CF
a;b:

3.3 Proof of Theorem E 0

We are now ready to apply the combinatorial apparatus above to FI-modules and prove
Theorem E 0 .

Proof of Theorem E 0 We continue with the notation of Section 3.2, so F denotes the
Sn–module Z

�
HomFI.Œd �; Œn�/

�
, and F b and F a;b are the subgroups of F defined in

Definition 3.6. Define subgroups V b�Vn and V a;b�Vn by V b WD im.F b˝Vd!Vn/

and V a;b WD im.F a;b˝Vd ! Vn/. From the containments following Definition 3.6
we see that V b D V 1;b � V 2;b � � � � � V b;b .

Let us understand these subgroups V a;b more concretely. To say that V is generated
in degree at most d means that Vn is spanned by its subgroups VT as T ranges over
subsets T � Œn� with jT j D d . (Throughout this proof, T will always denote a subset
T � Œn� with jT j D d .)

By definition, V b is the subgroup of Vn spanned by f�.Vd / where f W Œd � ,! Œn�

ranges over injections for which imf does not contain any S 2†.b/. In other words,

V b D span
˚
VT

ˇ̌
T � Œn�; jT j D d s.t. T does not contain any S 2†.b/

	
:

Similarly, V b;b is by definition the subgroup of Vn spanned by those VT for which
Œb� 6� T and jT j D d . Since VŒn��fig is the subgroup spanned by those VT where
i … T , we see that

(13) V b;b D VŒn��f1gC � � �CVŒn��fbg:
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Fix some n > K C d and some a � n. According to (13), the desired conclusion
of the theorem states that ker zJŒa� D V a;a when n > K C d . From (7), we know
that V a;a � ker zJŒa� for all n, so what we need to prove is that ker zJŒa� � V a;a

when n > K C d . We accomplish this by proving by reverse induction on b that
ker zJŒa� � V a;b for all b � a .

Our base case is b D K C 1. In this case we will prove something much stronger
than the inductive hypothesis; we will prove Corollary 3.2 by showing that it is a
direct consequence of Proposition 3.7. Recall that we always have the containments
V KC1�V a;KC1�V KC1;KC1�Vn . The statement of Proposition 3.7 for bDKC1
is that F D IKC1 � F C F ` , and the hypothesis is satisfied since n � .K C 1/C d .
Therefore,

Vn D im.IKC1 �F ˝Vd /CV
KC1
D IKC1 �VnCV

KC1:

Since IKC1 �Vn D 0 by assumption, we conclude that

Vn D V
KC1
D V a;KC1 D V KC1;KC1:

Notice that VnDV KC1;KC1 is precisely the conclusion of Corollary 3.2, as mentioned
above. This concludes the base case.

For the inductive step, The key is to show that for all a � b �K we have

(14) V a;bC1\ ker zJŒa� � V
a;b:

Given this, if we assume ker zJŒa� � V a;bC1 by induction, (14) implies ker zJŒa� D
V a;bC1\ ker zJŒa� � V a;b , which is the desired inductive hypothesis. The remainder
of the argument thus consists of the proof of (14).

For convenience, we would like to assume that K � d . If K > d , replacing K by d
in the statement of Theorem E 0 makes the conclusion stronger, while the hypothesis
is still satisfied because IdC1 � V D 0 by Proposition 3.1. Therefore, making this
replacement if necessary, we may assume that K � d . Our assumption on n thus
implies n>KCd � 2K � 2b . Therefore, we may apply Proposition 3.8, which states
that F a;bC1 � F a;bC

P
S2†.a;b/ JSFDS . We conclude that every v 2 V a;bC1 can

be written as

(15) v D va;bC
X

S2†.a;b/

vS ; where va;b 2 V a;b; vS 2 JSFDS �Vd :

It will suffice to show that if an element v as in (15) lies in ker zJŒa� , then in fact each
term vS is zero, which implies (14).

Geometry & Topology, Volume 21 (2017)



Homology of FI-modules 2395

Assume that v 2 V a;bC1 \ ker zJŒa� , and suppose for a contradiction that vS ¤ 0 for
some S 2†.a; b/. Let S be the lexicographically first such element of †.a; b/. We
may thus write

(16) v D va;bC vS C
X

T2†.a;b/
S�T

vT :

For any S 2†.a; b/, write the elements of S in order as s1 < � � �< sb , and define

zJS WD J
?1
s1
� � �J ?b

sb
ı � 2 Z

�
HomFI.Œn�; Œn�t Œ?b�/

�
:

We will establish a series of claims about zJS , which hold for any S 2†.a; b/.

Claim 3.9 zJS � .ker zJŒa�/D 0.

Proof To say that S 2†.a; b/ means that Œa��S , so the elements of S are necessarily
1 < 2 < � � �< a < saC1 < � � �< sb . Therefore,

zJS D J
?1
1 � � �J

?a
a J ?aC1

saC1
� � �J ?b

sb
D zJŒa� �X:

Since zJS D zJŒa� �X DX � zJŒa� , we have ker zJŒa� � ker zJS as claimed.

By (5), we have

(17) zJS �f D 0 for any f W Œd � ,! Œn� with S 6� imf

since for any such f there exists si … imf , so fsi ; ?ig \ imf D ∅. This has the
following consequences.

Claim 3.10 zJS �F
a;b D 0.

Proof By definition, any f 2 F a;b has S 6� imf , so zJS �f D 0 by (17).

Claim 3.11 zJS �JTFDT D 0 for any T 2†.a; b/ such that S � T .

Proof Given a generator f 2FDT we know that imf \ Œ2b�D T . As in the proof of
Proposition 3.8, the terms of JT �f consist of � �f for � 2 .Z=2/T . The intersections
im.� � f / \ Œ2b� are precisely the descendants � � T . Since T 2 †.a; b/ we have
� � T < T . In particular, since S � T 4 � � T , every term satisfies S 6� im.� � f /.
By (17), zJS �JTFDT D 0 as desired.
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We now apply these consequences to the decomposition (16). By Claim 3.9, our
assumption that v 2 ker zJŒa� implies that zJS � v D 0. Claims 3.10 and 3.11 show that
zJS � v

a;b D 0 and zJS � vT D 0. We conclude that zJS � vS D zJS � v D 0; it remains to
show that this implies vS D 0 2 Vn .

We show this using the following two claims, which we prove in turn. Define � 2
EndFI.Œn� t Œ?b�/ to be the involution � WD .t1 ?1/ � � � .tb ?b/, where .t1; : : : ; tb/
denotes the complement of S in Œ2b� as before.

Claim 3.12 zJS �JS D zJS when restricted to FDS .

Proof As in Claim 3.11, given f 2 FDS with imf \ Œ2b� D S , the terms of
JS �f consist of f together with � � f for � ¤ 1 2 .Z=2/S . Each of the latter
has im.� �f /\ Œ2b�D � �S � S . Therefore, S 6� � � f for � ¤ 1, so zJS � � � f D 0
by (17). We conclude that zJS �JS �f D zJS �.f C

P
.�1/�� �f /D zJS �f , as claimed.

Claim 3.13 � zJs D � ıJS when restricted to FDS .

Proof Note that �.J ?1
s1
� � �J ?b

sb
/��1 D J t1s1 � � �J

tb
sb

. Therefore,

� zJS D J
t1
s1
� � �J tbsb ı � ı � 2 Z

�
HomFI.Œn�; Œn�t Œ?b�/

�
:

By definition, the image of a map f 2 FDS does not contain ti , so when restricted
to FDS , we have � ı � D �. We conclude that � zJS D J t1s1 � � �J

tb
sb
ı � D � ı JS , as

claimed.

We now complete the proof. Write vS D JS �wS for wS 2FDS �Vd � Vn . Claim 3.12
implies that zJS �vS D zJS �JS �wS D zJS �wS . Thus zJS �wS D0, so certainly � zJSwS D0.
Claim 3.13 implies that � zJSwS D �.JSwS /D �.vS /. Combining these, we see that
�.vS /D 0. Since V is torsion-free, � is injective, so this proves that vS D 0.

This contradicts our assumption that vS ¤ 0, so we conclude from (15) that v 2 V a;b .
This concludes the proof of the containment (14); as we explained following (14), this
completes the proof of the inductive hypothesis and thus concludes the proof of the
theorem.

4 Bounds on the homology of FI-modules

An outline of the proof of Theorem A Before launching into the proof of Theorem A,
we outline the steps that we will take. Recall that Theorem A states that for an FI-
module W , the degree of the FI-homology Hp.W / can be bounded in terms of certain
invariants of W . In this outline, whenever we speak of a “bound on” a particular
FI-module, we mean a bound on its degree:
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(1) We prove that a bound on DaX can be converted to a bound on H0.X/

(Proposition 4.6).

(2) We show that Theorem E gives a bound on the degree of HDa

1 .W / for all a .

(3) Using homological properties of the functor D , we show that this bound on
HDa

1 .W / implies a bound on HDa

p .W / for all p and all a .

(4) If Xp is the pth syzygy of W ,5 it is almost true that Hp.W / D H0.Xp/;
specifically, we have Hp.W /DH1.Xp�1/ and Hp.W / ,!H0.Xp/. Similarly,
it is almost true that HDa

p .W / D Da.Xp/, and we prove that for sufficiently
large a this is true. Therefore, by using step (1), we can convert our bound on
HDa

p .W / to the desired bound on Hp.W /.

4.1 Relations and H1

Our main theorems will be proved in terms of a presentation of the FI-module in
question. We saw in Lemma 2.2 that W is generated in degree at most k if and only
if degH0.V / � k . The existence of a presentation for W with relations in degree
at most d is very close to the condition degH1.W / � d , but they are not quite
equivalent.6 Therefore, we distinguish these in our terminology as follows.

Definition 4.1 We say that an FI-module W is generated in degree at most k and
related in degree at most d if there exists a short exact sequence

0! V !M !W ! 0;

where M is a free FI-module generated in degree at most k and V is generated in
degree at most d .

Proposition 4.2 Any FI-module W is generated in degree at most degH0.W / and
related in degree at most max.degH0.W /; degH1.W //.

Proof Set M WDM.Wh� degH0.W /i/. By Lemma 2.2, the natural map M �W is
surjective.

5Here we consider syzygies relative to a free resolution of W that is minimal in the sense that all maps
become 0 after applying H0 .

6For instance, a FI-module W admitting a finite-length filtration whose graded pieces are free has
H1.W /D 0 , but such a W need not itself be free (recall that free FI-modules need not be projective). If
we could always find a surjection M.H0.W //�W lifting the isomorphism on H0 , there would be no
problem, but such a surjection does not always exist. For example, it can happen that H0.W /n ' Z=2Z
while Wn is a free abelian group, in which case there is no map H0.W /n!Wn at all.
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Let V be its kernel, so that 0! V !M ! W ! 0 is a presentation of W as in
Definition 4.1. By Lemma 2.3 M is H0–acyclic, so we have the exact sequence

0!H1.W /!H0.V /!H0.M/:

From this, we conclude that degH0.V / is bounded by the degrees of the other
two terms. Since H0.M/ D W� degH0.W / , we see in particular that degH0.M/ D

degH0.W /. Thus V is generated in degree at most max.degH0.W /; degH1.W //,
as desired.

From this proposition, we see that relations will indeed behave as we would expect,
as long as degH0.W / � degH1.W /. We will reduce to this case in the proof of
Theorem A using the following proposition, whose proof was explained to us by Eric
Ramos; we are grateful to the referee for suggesting the current statement. Similar
arguments appear in Li and Yu [11] in the proof of Corollary 3.4 and the second proof
of Lemma 3.3.

Given an FI-module W and some m� 0, consider the FI-module ZDWh�mi=Wh<mi .
Note that H0.Z/ vanishes except in degree m, where H0.Z/m D Zm DH0.W /m ,
so we have a surjection M.Zm/�Z . In terms of the original FI-module W , we have
a natural surjection from M.H0.W /m/ to Wh�mi=Wh<mi which is an isomorphism in
degree m.

Proposition 4.3 Let W be an FI-module with degH0.W / <1. Then the natural
surjection

M.H0.W /m/�Wh�mi=Wh<mi

is an isomorphism whenever m � degH1.W / or m> degH0.W /. In particular, the
inclusion Wh< degH1.W /i ,!W induces an isomorphism on Hi for all i > 0.

Proof We proceed by reverse induction on m, showing both that M.H0.W /m/ '
Wh�mi=Wh<mi and that the inclusion Wh<mi ,! W induces isomorphisms on Hi
for all i > 0. Our base case consists of all m > degH0.W /, when both claims are
essentially tautological: in this case M.H0.W //m D 0 and Wh<mi D Wh�mi D W ,
so both sides of the claimed isomorphism vanish, proving the first claim. Similarly
Wh<mi DW if m> degH0.W /, so the second claim is automatic.

For “usual” FI-modules with degH0.W / < degH1.W / there is nothing left to prove;
it remains to handle FI-modules with degH1.W /� degH0.W /.

For the inductive step, write Z for the quotient Z WD Wh�mi=Wh<mi , and let A be
the kernel of the surjection M.Zm/�Z , so that 0! A!M.Zm/!Z! 0. The
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FI-module A vanishes in degrees at most m: in degree m the map M.Zm/m!Zm is
an isomorphism, and M.Zm/ itself is zero in degrees less than m. Since A vanishes
in degrees at most m, H0.A/ also vanishes in degrees at most m; since H0.M.Zm//
vanishes in degrees greater than m, the map H0.A/! H0.M.Zm// is zero. Since
M.Zm/ is H0–acyclic, we conclude that there is an isomorphism H1.Z/'H0.A/.

Now consider the long exact sequence

� � � !H1.Wh�mi/!H1.Z/!H0.Wh<mi/! � � � :

By induction, we know that degH1.Wh�mi/ D degH1.W / � m, and by definition
degH0.Wh<mi/ < m. Therefore, degH1.Z/�m.

We showed above that H1.Z/ vanishes in degrees greater than m, while H0.A/
vanishes in degrees at most m, so H1.Z/DH0.A/D 0. Therefore, AD 0, and the
natural map M.H0.W /m/ D M.Zm/ ! Z is an isomorphism, as claimed. Since
free FI-modules are H0–acyclic, we conclude that the inclusion Wh<mi ,! Wh�mi
induces an isomorphism on Hi for all i > 0; the inclusion Wh�mi ,! W induces
an isomorphism on Hi for all i > 0 by induction, so we have proved the inductive
hypothesis.

4.2 Homological properties of the derivative

Considering FB-Mod as a full subcategory of FI-Mod, the functor S restricts to a
functor S W FB-Mod! FB-Mod.

Lemma 4.4 There is a natural isomorphism of functors

D ıM DM ıS W FB-Mod! FI-Mod :

Proof There is automatically a natural transformation M ı S ! D ıM . It would
suffice to check that this is an isomorphism on free FB-modules, but it will be no more
difficult to check this on arbitrary FB-modules W . From the formula (2) for M.W /
we see that .SM.W //T D

L
S�Ttf?gWS , with �W M.W /! SM.W / the inclusion

of those summands with ? … S . (Incidentally, this shows that free FI-modules are
torsion-free.) It follows that

.DM.W //T D
M

S�Ttf?g
?2S

WS D
M
R�T

WRtf?g D
M
R�T

.SW /R DM.SW /T ;

as claimed (for the second equality we reindex by S DRt f?g). It is straightforward
to check that this identification agrees on morphisms as well.
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Corollary 4.5 Free FI-modules are Da–acyclic for all a � 1.

Proof Just as in the proof of Lemma 2.3, we have HDa

p .M.W // ' HDaıM
p .W /.

However, Lemma 4.4 implies that Da ıM DM ı Sa . This is exact since both M
and S are, so HMıSa

p D 0 for all p > 0.

Proposition 4.6 If V is an FI-module generated in degree at most k , then DaV D 0
for all a > k . On the other hand, if degDaV � m for some m � �1, then V is
generated in degree at most mC a .

Proof If V is generated in degree at most k , there is a surjection M.V�k/� V .
Since Da is right exact, we have a surjection DaM.V�k/� DaV for any a . By
Lemma 4.4, DaM.V�k/ 'M.SaV�k/. However, SaV�k D 0 when a > k , since
.SaV�k/R D .V�k/RtŒ?a� D 0. Therefore, DaV D 0 for a > k .

For the second claim, to say that degDaV � m means that .DaV /T D 0 when-
ever jT j > m. The formula (3) for .DaV /T shows that the defining surjection
VTtŒ?a�� H0.V /TtŒ?a� factors through .DaV /T � H0.V /TtŒ?a� , so it follows
that H0.V /R D 0 whenever jRj>mCa . In other words, V is generated in degree at
most mC a .

The derived functors of D We can now establish the basic properties of the derived
functors HD

p of the derivative D .

Lemma 4.7 Let W be an FI-module.

(i) The derived functor HD
1 coincides with K , so there is a natural exact sequence

0!HD
1 .W /!W ! SW !DW ! 0:

(ii) W is torsion-free if and only if HD
1 .W /D 0.

(iii) HD
p D 0 for all p > 1.

(iv) D takes projective FI-modules to projective FI-modules.

(v) If Y is an FI-module of finite degree, then we have degDY � degY � 1 and
degHD

1 .Y /� degY .

Proof Given W , let M be a free FI-module with M � W ; for instance, we may
take the universal M DM.W /�W . Let V be the kernel of this surjection, so we
have 0! V !M !W ! 0. Since M is free, HD

1 .M/D 0 by Corollary 4.5, so
we have an isomorphism HD

1 .W /' ker.DV !DM/.
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(i) The key properties are that S is exact and that M
�
�! SM is injective, ie that free

FI-modules are torsion-free (which we saw in the proof of Lemma 4.4). Thus we have
a diagram:

V //

��

SV //

��

DV //

��

0

0 // M // SM // DM // 0

Applying the snake lemma, we obtain the desired exact sequence

ker.SV ! SM/D 0!HD
1 .W /!W ! SW !DW ! 0:

In particular, this identifies HD
1 .W / with KW D ker.W ! SW /.

(ii) Given that HD
1 DK , this is the statement of Lemma 2.5.

(iii) Since M is D–acyclic, we have HD
2 .W / ' HD

1 .V /. The FI-module V is
torsion-free, being a submodule of M , so HD

1 .V /D 0 by (ii). Since W was arbitrary,
this proves that HD

2 D 0, which implies that HD
p D 0 for all p > 1.

(iv) Since projective FI-modules are summands of
L
M.mi /, it suffices to prove this

for M.m/DM.ZŒSm�/. Lemma 4.4 states that

DM.m/DDM.ZŒSm�/'M.SZŒSm�/'M

� mM
iD1

ZŒSm�1�

�
D

mM
iD1

M.m� 1/;

which is indeed projective.

(v) It is clear that degSY D degY � 1, since .SY /n D YŒn�tŒ?� ' YnC1 (unless
degY D 0, when degSY D�1). Both claims now follow from (i), the first from the
surjection SY �DY and the second from the injection HD

1 .Y / ,! Y .

4.3 Proof of Theorem A

We now have in place all the tools we need to prove our main theorems bounding the
degree of homology of FI-modules. The key technical result is Theorem E, together with
Lemma 2.6 and Remark 2.7 establishing a connection between its conclusion and Da .

Theorem 4.8 Let W be an FI-module generated in degree at most k and related in
degree at most d , and let N WD d Cmin.k; d/� 1. For all a � 1 and all p � 1,

(�ap) degHDa

p .W /�N � aCp:
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Proof We will reduce by induction to the case when aD 1 or p D 1. To accomplish
this reduction, we prove that .�a�1p /C .�a�1p�1/D) .�ap/ for any a � 2 and p � 2.

Fix a� 2 and p� 2. By Lemma 4.7(iv), Da takes projective FI-modules to projective
FI-modules, so we may compute the left derived functors of Da by means of the
Grothendieck spectral sequence applied to the composition D ıDa�1 . Thanks to the
vanishing of HD

p for p > 1 from Lemma 4.7(iii), this spectral sequence has only two
nonzero columns, so it degenerates to the short exact sequences

(18) 0!DHDa�1

p .W /!HDa

p .W /!HD
1 .H

Da�1

p�1 W /! 0:

The assertions .�a�1p / and .�a�1p�1/ state respectively that

degHDa�1

p .W /�N � .a� 1/Cp DN � aCpC 1;

degHDa�1

p�1 .W /�N � .a� 1/C .p� 1/DN � aCp:

Lemma 4.7(v) tells us that degDY � degY � 1 and degHD
1 .Y / � degY , so these

bounds imply

degDHDa�1

p .W /�N � aCp;

degHD
1 .H

Da�1

p�1 .W //�N � aCp:

The short exact sequence (18) now implies

degHDa

p .W /�N � aCp;

which is precisely the assertion .�ap/. This establishes that .�a�1p /C .�a�1p�1/D) .�ap/

for any a � 2 and p � 2.

Given this implication, it suffices to prove directly that .�ap/ holds when either aD 1 or
pD 1, since all remaining cases with a� 2 and p� 2 then follow by induction. When
aD 1 and p � 2, we have HD

p .W /D 0 by Lemma 4.7(iii), so degHD
p .W /D�1

and the bound .�ap/ certainly holds. What remains as the unavoidable core of the
problem is the bound (�ap ) when p D 1, namely that degHDa

1 .W /�N � aC 1 for
all a � 1.

To compute HDa

1 .W /, consider a presentation 0 ! V ! M ! W ! 0 as in
Definition 4.1, with M free and generated in degree at most k and V generated
in degree at most d . Since M is free, it is Da–acyclic by Corollary 4.5, so

HDa

1 .W /' ker.DaV !DaM/:

But recall from Remark 2.7 that the conclusion of Theorem E can be restated as a
claim about the map DaV ! DaM and its kernel! Specifically, the conclusion of
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Theorem E says for any a � 1, that

ker.DaV !DaM/n�a D 0 for all n > d Cmin.k; d/;

or in other words, that

deg ker.DaV !DaM/� d Cmin.k; d/� aDN C 1� a:

This means that the conclusion of Theorem E applied to the relations V � M is
precisely the claim (�ap ) for p D 1 and all a � 1. As explained above, all other cases
now follow by induction.

Proof of Theorem A Fix k0 � 0 and d � 0, and let U be an FI-module with
degH0.U / � k0 and degH1.U / � d . Our goal is to prove that degHp.U /� p �
k0C d � 1 for all p > 0.

We first reduce to the case when k0 < d . Let k WD min.k0; d � 1/ and define W to
be the submodule W WD Uh�ki . In the most common case when k0 < d , this has
no effect: we have k D k0 and W D U . In the other case when k0 � d , we have
degH1.U /� d D kC1, so Proposition 4.3 states that Hp.W /'Hp.U / for all p >0.
Since k � k0 in either case, to prove the theorem it suffices to prove that

degHp.W /�p � kC d � 1 for all p > 0.

For the rest of the proof, we discard the FI-module U and work only with W , which
has degH0.W /� k and degH1.W /� d with k < d .

Given these bounds, Proposition 4.2 tells us that W is generated in degree at most k
and related in degree at most max.k; d/ D d . Therefore, there exists a surjection
M�W from a free FI-module M generated in degree at most k , whose kernel is
generated in degree at most d . Set M0 WDM and extend this to a resolution of W by
free FI-modules:

� � � !M2!M1!M0!W ! 0:

For each p > 0, let Xp be the pth syzygy of W , namely Xp WD im.Mp!Mp�1/'

ker.Mp�1!Mp�2/. Let us assume that this resolution is minimal in the very weak
sense that degH0.Xp/DdegH0.Mp/ for all p>0. (The existence of such a resolution
is a consequence of the fact that every FI-module V generated in degree at most k
admits a surjection from a free FI-module generated in degree at most k , namely
M.V�k/ as discussed in Proposition 4.6.) Set X0 WDW .

For all p � 1, we have an exact sequence

(19) 0!Xp!Mp�1!Xp�1! 0:
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Since the Mi are H0–acyclic by Corollary 4.5, applying H0 to (19) gives Hi .Xp/'
HiC1.Xp�1/ for all i � 1; iterating, we obtain Hp.W / ' H1.Xp�1/. Similarly,
HDa

p .W /'HDa

1 .Xp�1/ for any a � 1.

Let us write
N WD d C k� 1I

so our eventual goal is to prove that degHp.W /�N Cp for all p � 1. Before that,
we prove that for all p � 1,

(20) degH0.Xp/�N Cp:

By construction X1 D ker.M !W /; by our hypothesis, X1 is generated in degree
at most d , so degH0.X1/ � d � d C k D N C 1. This proves (20) for p D 1; we
proceed by induction on p .

Fix p � 2, and assume by induction that (20) holds for p�1, ie that degH0.Xp�1/�
N C p � 1. By minimality of the resolution, degH0.Mp�1/ D degH0.Xp�1/, so
Mp�1 is generated in degree at most N C p � 1. By Proposition 4.6, this implies
that DNCpMp�1 D 0. Then applying DNCp to (19) yields a long exact sequence
containing the segment

HDNCp

1 .Xp�1/!DNCpXp! 0DDNCpMp�1:

This shows that DNCpXp is a quotient of HDNCp

1 .Xp�1/ ' HDNCp

p .W /. We
proved in Theorem 4.8 that

degHDNCp

p .W /�N � .N Cp/Cp D 0;

so degDNCpXp � 0. (The statement of Theorem 4.8 has d Cmin.k; d/� 1, but this
coincides with N D d C k� 1 since k < d .) By Proposition 4.6, this implies that Xp
is generated in degree at most N Cp , which is the result to be proved. This concludes
the proof of (20).

We saw above that (19) implies Hi .Xp/'HiC1.Xp�1/ for i � 1. To complete the
proof of the theorem, we consider the segment of the long exact sequence involving
i D 0:

0DH1.Mp�1/!H1.Xp�1/!H0.Xp/!H0.Mp�1/!H0.Xp�1/:

This shows that Hp.W /'H1.Xp�1/ injects into H0.Xp/ for all p > 0. We proved
in (20) that degH0.Xp/�N Cp , so we conclude that degHp.W /�N Cp for all
p > 0, as desired.
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5 Application to homology of congruence subgroups

5.1 A complex computing Hi .V /

For any category C , let C–Mod denote the category of functors C! Z–Mod. Given
V 2C–Mod and W 2Cop–Mod, their tensor product over C is an abelian group V ˝CW .
It can be defined as the largest quotient ofM

X2Ob C

V.X/˝ZW.X/

in which

vX ˝f
�.wY / 2 V.X/˝W.X/ � f�.vX /˝wY 2 V.Y /˝W.Y /

for all X; Y 2 Ob C , vX 2 V.X/, wY 2W.Y / and f 2 HomC.X; Y /.7

In this paper we will be interested in the tensor product of an FI-module V and
co-FI-module W . This can be described explicitly as follows.

Definition 5.1 Given V 2 FI-Mod and W 2 FIop-Mod, the abelian group V ˝FIW

is defined by

V ˝FIW

D

� M
T2Ob FI

VT ˝ZWT

�.˝
f�.vS /˝wT � vS ˝f

�.wT /
ˇ̌
f W S ,! T

˛
D

�M
n�0

Vn˝ZSn
Wn

�.˝
f�.vn/˝wnC1 � vn˝f

�.wnC1/
ˇ̌
f W Œn� ,! ŒnC 1�

˛
:

We think of an FI-module V 2 FI-Mod as a “right module over FI”, and a co-FI-
module W 2 FIop-Mod as a “left module over FI”. This is consistent with our notation
V ˝FIW for the tensor. Moreover, if W is an FIop

�FI-module, we will say that W
is an FI-bimodule; in this case V ˝FI W is not just an abelian group, but in fact an
FI-module. This is familiar from the analogous situation with R–modules: the tensor
of a right R–module with an R–bimodule is a right R–module. To verify the claim in
this setting, just note that

.FIop
�FI/-ModD ŒFIop

�FI;Z–Mod�D ŒFI; ŒFIop;Z–Mod��D ŒFI;FIop-Mod�:

7The reader may recognize this as an example of a coend: given V and W we can define a functor
V �W W C � Cop ! Z–Mod; then V ˝C W coincides with the coend

R C
V �W , and the quotient

construction above is just the standard coequalizer formula for a coend.
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In other words, we can think of an FI-bimodule W as a functor from FI to FIop-Mod;
after tensoring with V 2 FI-Mod, we are left with a functor from FI to Z–Mod, which
is just an FI-module.

Definition 5.2 The FIop
�FI-module K is defined on objects by

K.S; T /D ZŒBij.S; T /�I

in particular, K.S; T /D 0 if jS j ¤ jT j. Given a morphism

.f W S 0 ,! S; gW T ,! T 0/ in HomFIop �FI
�
.S; T /; .S 0; T 0/

�
;

we consider two cases. If f and g are both bijective, K.f;g/W K.S; T /!K.S 0; T 0/

is the map defined by Bij.S; T / 3 ' 7! g ı' ıf 2 Bij.S 0; T 0/. If either f or g is not
bijective, K.f;g/ D 0.

Since K is an FI-bimodule, the tensor V ˝FI K is itself an FI-module. In fact, this
FI-module is already familiar to us! To avoid confusion, in the remainder of the paper
we will write H FI

i .V / for the FI-homology of V , which was denoted simply by Hi .V /
in previous sections.

Proposition 5.3 Given V 2 FI-Mod, the FI-module V ˝FI K is isomorphic to the
FI-module H FI

0 .V / defined in the introduction. As a consequence,

H FI
i .V /D TorFI

i .V;K/ for any i � 0:

Proof Definition 5.1 presents V ˝FIK as a quotient ofM
n�0

Vn˝ZSn
Kn;

so we first identify the FI-module Vn˝ZSn
Kn . Since K is not only a co-FI-module

but an FI-bimodule, Kn is an Sn � FI-module: as an FI-module Kn sends a set T to
ZŒBij.Œn�; T /�, and the action of Sn by precomposition commutes with this FI-module
structure. Thus the FI-module Vn˝ZSn

Kn sends T to VT if jT j D n, and to 0 if
jT j ¤ n. Passing to the direct sum, we find that

L
n�0 Vn˝ZSn

Kn sends T to VT for
any finite set T of any cardinality; in other words, the FI-module

L
n�0 Vn˝ZSn

Kn
can be identified with V itself.

We now consider the relations: Definition 5.1 states that V ˝FIK is the quotient of
V '

L
Vn˝ZSn

Kn by the relations

f�.vn/˝ knC1 � vn˝f
�.knC1/ for all f W Œn� ,! ŒnC 1�:
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However, by definition, f � acts as 0 on K whenever f is not bijective. Therefore,
these relations reduce to f�.vn/� 0 for all vn 2Vn and f W Œn� ,! ŒnC1�. The quotient
of
L
n Vn by these relations is precisely H FI

0 .V / as we defined it in the introduction.
The assertion that H FI

i .V / D TorFI
i .V;K/ is then tautological (but see Remarks 5.4

and 5.5 for further discussion).

Remark 5.4 The notation TorFI
� .V;W / requires some justification, since this could

denote the left-derived functors of V ˝FI � or of �˝FI W . Fortunately, the tensor
product functor

�˝FI�W FI-Mod�FIop-Mod! Z–Mod

is a left-balanced functor in the sense of [15, Definition 2.7.7], so by [15, Exercise 2.7.4]
its left-derived functors in the first variable and in the second variable coincide. In other
words, these derived functors TorFI

� .V;W / can be computed either from a resolution V�
of V by projective FI-modules, or from a resolution W� of W by projective FIop-
modules, as we would expect.

Remark 5.5 When W is an FI-bimodule, V ˝FI W and thus TorFI
� .V;W / are FI-

modules, but there is one important point to make. We can compute the FI-module
TorFI

i .V;W / from a projective resolution W�!W of FI-bimodules, but in fact some-
thing much weaker suffices. We do not need the terms Wi of this resolution to be
projective FI-bimodules; it suffices that each FI-bimodule Wi be “FIop-projective”,
meaning that for each finite set T 2 Ob FI the FIop-module .Wi /T is a projective
FIop-module.

This is familiar from the situation of R–modules: if M is a right R–module and N is
an R-S –bimodule, then to compute the S –modules TorR� .M;N / from a resolution
N�! N by R-S –bimodules, it suffices that each Ni be projective (or even flat) as
an R–module. The reason is that such an R-S –bimodule is acyclic for the functor
M ˝R �W R-S–Mod! S–Mod; the situation for FI-modules is the same.

The only projective FIop-modules we will need to consider are the corepresentable func-
tors ZŒInj.�; U /�D ZŒHomFIop.U;�/� for a fixed finite set U (such corepresentable
functors are always projective).

We may therefore describe H FI
i .V / in a uniform way that applies to all FI-modules V

by finding an appropriate resolution C�!K of FIop-projective FI-bimodules.

A uniform construction of FI-complexes We will make use of the same construction
in multiple places below, so we begin by describing this construction in a general context;
we are grateful to the referee for suggesting this.
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Definition 5.6 We denote by FI the twisted arrow category whose objects are pairs
.T; U / where T is a finite set and U � T is a subset, and where a morphism from
.T; U / to .T 0; U 0/ is an injection f W T ,! T 0 such that f .U /� U 0 .

Given an FI -module F , we will construct two chain complexes of FI-modules. In
fact, for any functor F from FI to any abelian category A, we construct two chain
complexes CF

�
and zCF

�
taking values in ŒFI;A�.

Construction 5.7 (the complexes CF
�

and zCF
�

) Given a functor F W FI !A, for
each k � 0, define zCF

k
W FI!A by

zCFk .T /D
M

f W Œk�,!T

F.T; imf /:

An FI-morphism gW T ,! T 0 defines for each f W Œk� ,! T an FI -morphism
gW .T; imf / ! .T 0; img ı f /, and g�W zC

F
k
.T / ! zCF

k
.T 0/ is given by the in-

duced maps.

Next, we define the boundary map @W zCF
k
! zCF

k�1
. For k � 1 and 1 � i � k ,

let ıi W Œk� 1� ,! Œk� be the ordered injection whose image does not contain i .
For any f W Œk� ,! T , the identity idT defines an FI -morphism from .T; imf /

to .T; imf ı ıi /. Let di W zCFk ! zCF
k�1

be the map induced on each factor by
idT W .T; imf / ! .T; imf ı ıi /; note that this commutes with the FI-action g�
defined above.

We define @W zCF
k
! zCF

k�1
by @ WD

P
.�1/idi . The familiar formula ıi ııj D ıjC1ııi

for i � j implies that dj ı di D di ı djC1 by the functoriality of F , so @2 D 0.
Therefore, the differential @ makes zCF

�
a chain complex with values in ŒFI;A�.

We define the complex CF
�

as the quotient of zCF
�

by the following relations. The
permutations � 2Sk act on zCF

k
by precomposition, and breaking up into orbits we have

zCFk .T /D
M

U�T; jU jDk

M
f W Œk�'U

F.T; U /:

We define CF
k

to be the quotient of zCF
k

by the relations �� D .�1/� for all � 2 Sk ;
in other words, we pass to the quotient where Sk acts by the sign representation. The
functoriality of F guarantees that CF

k
is still a functor FI!A.

The individual homomorphisms di do not respect these relations, so they do not
descend to CF

k
. However, the alternating sum @ D

P
.�1/idi does descend to a

differential @W CF
k
! CF

k�1
, and so we obtain a chain complex

CF
�
D � � � ! CFk ! CFk�1! � � � ! CF0
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with values in ŒFI;A�. Note that on objects we have

.CFk /T D
M

U�T; jU jDk

F.T; U /;

where FI-morphisms act with a factor of ˙1 coming from the orientation of the
subset U .

Remark 5.8 When the finite set T is fixed, the following standard argument shows
that the chain complex CF

�
.T / is a summand of zCF

�
.T /. Choosing an ordering

of T , let zC ord
�
.T / be the subcomplex of zCF

�
.T / spanned by those summands where

f W Œk� ,! T is order preserving. The differential @ preserves this subcomplex, and
the projection zCF

�
.T / ! CF

�
.T / restricts to an isomorphism zC ord

�
.T / ' CF

�
.T /.

However, we emphasize that CF
�

is not a summand of zCF
�

when these are considered
as complexes of FI-modules.

We now use this construction to define a complex C�! K of FI-bimodules, which
will give us our resolution of K .

Definition 5.9 (the complex C� ) Given U � T , let F.T; U / be the FIop-module
defined by F.T; U /S D ZŒf W S ,! T n U �. One easily checks that this defines a
functor F W FI ! FIop-Mod, so Construction 5.7 defines a chain complex C� WD CF�
with values in ŒFI;FIop-Mod�, ie a complex of FI-bimodules. Concretely, Ck.S; T /
is the free abelian group on pairs .U � T; f W S ,! T / where jU j D k and imf is
disjoint from U .

Remark See [5, Equation (10)] and the surrounding section for more discussion of this
complex. A caution: we could similarly have defined a complex zCF

�
of FI-bimodules,

but be warned that the FIop
�FI-module BV discussed following [5, Corollary 2.18]

is not isomorphic to zCF
�

, although they contain much the same information.

The resolution C� ! K We consider the augmentation map @W C0!K defined by

C0.S; T / 3 .∅; f W S ,! T / 7!

�
f 2 Bij.S; T / if jS j D jT j;
0 if jS j< jT j;

2K.S; T /:

Since C1.S; T / has basis .fug � T; f W S ,! T n fug/, the composition @2W C1 !
C0!K is 0. Therefore, this augmentation extends C� to a complex

� � � ! C1! C0!K! 0:
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Proposition 5.10 The complex C�! K is a resolution of K by FIop-projective FI-
bimodules. As a consequence, given any FI-module V , the FI-homology of V is
computed by the FI-chain complex V ˝FI C� :

H FI
i .V /DHi .V ˝FI C�/:

Proof We first verify that C�!K is a resolution, ie that H0.C�/'K and H�.C�/D0
for �> 0. It suffices to check this pointwise, so fix finite sets S and T and consider
the chain complex of abelian groups C�.S; T /.

For each hW S ,! T , let C h
k
.S; T / be the summand of Ck.S; T / spanned by the

elements of the form .U; h/. The differential @ preserves this summand, so we have a
direct sum decomposition C�.S; T /D

L
hWS,!T C

h
�
.S; T /. Similarly, let Kh.S; T /

be the corresponding summand of K.S; T /; concretely, this summand is isomorphic
to Z if h is bijective and 0 otherwise. It therefore suffices to show for fixed hW S ,! T

that C h
�
.S; T / is a resolution of Kh.S; T /.

Let �T�h.S/ be the .jT�h.S/j�1/–dimensional simplex with vertex set T � h.S/,
and let zC�.�T�h.S// be its reduced cellular chain complex. A basis for C h

k
.S; T / is

given by the k–element subsets U of T �h.S/, oriented appropriately. In other words,
we can identify C h

k
.S; T /' zCk�1.�

T�h.S//, and this extends to an isomorphism of
chain complexes C h

�
.S; T /' zC��1.�

T�h.S//.

If T � h.S/ is nonempty, the simplex �T�h.S/ is contractible, so H�.C h� .S; T //'
zH��1.�

T�h.S//D 0 for all � � 0. Since Kh.S; T /D 0 when h is not bijective, this
is as desired. In the remaining case when h is a bijection and �T�h.S/ is empty, the
only nonzero term of this resolution is C h0 .S; T /' zC�1.∅/' Z'Kh.S; T /, which
again is as desired.

We next verify that the FI-bimodules Ck are FIop-projective, meaning that for each finite
set T the FIop-module Ck.�; T / is a projective FIop-module. For a fixed k–element
subset U � T , let CU

k
.S; T / be the summand of Ck.S; T / spanned by elements

.U; f W S ,!T nU/. These summands are preserved by FIop-morphisms, so this defines
a summand CU

k
.�; T / of the FIop-module Ck.�; T /. This summand CU

k
.�; T / is

isomorphic to the corepresentable functor ZŒInj.�; T nU/�D ZŒHomFIop.T nU;�/�.
Since Ck.�; T /D

L
CU
k
.�; T /, this shows that Ck.�; T / is a projective FIop-module,

as desired.

It now follows from Proposition 5.3 and Remark 5.5 that H FI
i .V /DHi .V ˝FIC�/.

Remark 5.11 A result essentially equivalent to the conclusion of Proposition 5.10
has been proved independently in a recent preprint of Gan and Li [9, Theorem 1].
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Remark 5.12 It is possible to interpret C� as the “Koszul resolution of FI over K ”,
thinking of f 2 HomFI.S; T / as graded by jT j � jS j D jT � f .S/j. Moreover, under
Schur–Weyl duality C� corresponds to the classical Koszul resolution of Sym� V byV�

V _˝ Sym� V . For reasons of space we will not pursue this further here; see [14,
Section 6] for more details, including strong theorems regarding this Koszul duality for
FI-modules over C .

We can now prove Theorem C.

Proof of Theorem C The desired result states for a particular integer N (namely the
maximum of degH FI

0 .V / and degH FI
1 .V /), that

(21) colim
S�T; jS j�N

VS D VT for all finite sets T:

We introduced in [5, Definition 2.19] a certain complex of FI-modules zS��V , and
combining our earlier results [5, Theorem C, Corollary 2.24] shows that (21) holds if
and only if H0. zS��V /n D 0 and H1. zS��V /n D 0 for all n > N .

Our main goal will be therefore to prove that V ˝FI C� ' zS��.V /. Given this, we
know that

Hi . zS��V /'Hi .V ˝FI C�/' TorFI
i .V;K/'H

FI
i .V /;

where the second isomorphism holds by Proposition 5.10 and the third isomorphism
holds by Proposition 5.3. Therefore, (21) holds if and only if H FI

0 .V /n D 0 and
H FI
1 .V /n D 0 for all n > N . In other words, the desired condition (21) holds ex-

actly when degH FI
0 .V / � K and degH FI

1 .V / � N , which is precisely what the
theorem claims.

Recall from Definition 5.6 the category FI . For any FI-module V , we can define an
FI -module FV by FV .T; U /D VT nU , since an FI -morphism .T; U /! .T 0; U 0/

restricts to an inclusion T nU ,!T 0nU 0 . We first show that the complex of FI-modules
V ˝FI C� coincides with the complex CFV

�
of Construction 5.7.

We saw in the proof of Proposition 5.10 that Ck.�; T /D
L
jU jDk C

U
k
.�; T / where

CU
k
.�; T / is the corepresentable functor ZŒHomFIop.T nU;�/�. By the Yoneda lemma,

the tensor of V with a functor corepresented by R is simply VR . Therefore, as abelian
groups we have an isomorphism

.V ˝FI Ck/T '
M
jU jDk

VT nU ' C
FV

k
.T /:

Checking the morphisms and differential, we see that V ˝FI C� and CFV
�

coincide as
chain complexes of FI-modules.
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We conclude by showing that CFV
�

coincides with zS��.V /. We will in fact show that
zCFV
�

coincides with the Sn–complex of FI-modules B�.V / of [5, Equation (10)]. As
an abelian group

zC
FV

k
.T /D

M
f W Œk�,!T

VT nimf ;

and Bk.V /T is defined by the same formula [5, Definition 2.9]. Given an injection
gW T ,!T 0 , unwinding Construction 5.7 shows that the map g�W zC

FV

k
.T /! zC

FV

k
.T 0/

sends the summand labeled by f to the summand labeled by g ı f W Œk� ,! T 0 by
the map .gjT nimf /�W VT nimf ! VT 0nimgıf . This is precisely the FI-structure on
Bk.V /. Finally, the maps di of Construction 5.7 agree with those defined just before
[5, Equation (10)], so the resulting differentials @D

P
.�1/idi agree as well.

The Sk –actions on zCFV

k
and on Bk.V / agree, and CFV

k
and zS�k.V / are respectively

obtained from these by tensoring over Sk with the sign representation. So we conclude
that V ˝FI zC� ' C

FV
�

is isomorphic to zS��.V / as chain complexes of FI-modules, as
desired.

5.2 Homology of congruence subgroups

In this section, we state and prove Theorem D 0 , a more general version of Theorem D
from the introduction.

Let R be a commutative ring satisfying Bass’s stable range condition SRdC2 , and
fix a proper ideal p ¨ R . (We use Bass’s indexing convention, under which a field
satisfies SR2 , and any noetherian d –dimensional ring satisfies SRdC2 .) Let �n.p/ be
the congruence subgroup defined by the exact sequence of groups:

1! �n.p/! GLn.R/! GLn.R=p/:

As explained in [5, Section 3], these groups form an FI-group �.p/ (a functor FI!
Groups satisfying �.p/T ' �jT j.p/), and thus their integral homology forms an FI-
module:

Hk WDHk.�.p/IZ/:

Theorem D 0 Let R be a commutative ring satisfying Bass’s stable range condition
SRdC2 , and let p¨R be a proper ideal. Then for all k � 2,

degH FI
0 .Hk/� 2

k�2.2d C 9/� 2 and degH FI
1 .Hk/� 2

k�2.2d C 9/� 1:

In particular, for all n� 0 and all k � 0, we have

(22) Hk.�n.p/IZ/D colim
S�Œn�

jS j<2k�2.2dC9/

Hk.�S .p/IZ/:
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Theorem D is the special case of Theorem D 0 when R D Z. Indeed, any Dedekind
domain R satisfies Bass’s condition SR3 (ie SRdC2 for d D 1), yielding the bound
jS j<11 �2k�2 in Theorem D. Note that although we take group homology with integer
coefficients in the statement of Theorem D 0 , these coefficients could be replaced by
any other abelian group; the proof applies unchanged.

By the stable range, we mean the range n� 2k�2.2d C 9/ where the description (22)
is not vacuous. Our stable range is slightly better than that of [12], where Putman
obtained the range n� 2k�2.2d C 16/� 3. For example, [12, Theorem B] gives for a
Dedekind domain R the stable range n� 18 � 2k�2� 3, while Theorem D 0 gives the
stable range n� 11 � 2k�2 .

Proof of Theorem D 0 To avoid confusion with the homology of a chain complex,
in this section we write H FI

p .W / for the FI-homology of an FI-module W (which in
previous sections was denoted simply by Hp.W /).

An action of an FI-group � on an FI-module M is a collection of actions of �T
on MT that are consistent with the FI-structure. Given such an action, the coinvariants
form an FI-module Z˝� M , whose components are simply Z˝�T

MT . The left-
derived functors Hi .�IM/ are simply the FI-modules defined by Hi .�IM/T WD

Hi .�T IMT /. In the special case when M D M.0/ and the action is trivial, we
write Hi .�/; this is the group homology, considered as an FI-module Hi .�/T WD
Hi .�T IZ/.

We will need the following proposition, which constructs for any FI-group a spectral
sequence based on the FI-homology of its group homology.

Proposition 5.13 To any FI-group � there is naturally associated an explicit FI-chain
complex X�

�
on which � acts, for which we have a spectral sequence:

E2pq DH
FI
p .Hq.�//D)HpCq.�IX

�
�
/:

Proof Recall from Definition 5.6 the category FI used in Construction 5.7. Define
the FI -module A by A.T;U / D ZŒ�T =�T nU �. An FI -morphism f W .T; U /!

.T 0; U 0/ has f .U / � U 0 , so the induced map f�W �T ! �T 0 satisfies f�.�T nU / �
�T 0nU 0 , verifying that A is indeed an FI -module.

The FI-chain complex X� D X�� we are interested in will be the FI-chain complex
X� WD C

A
�

arising from A via Construction 5.7:

Xk.T /D
M

U�T; jU jDk

ZŒ�T =�T nU �:
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For each T the obvious action of �T on ZŒ�T =�T nU � induces an action of �T on
Xk.T /. The FI-module structure on Xk is induced by the FI-structure maps �T !�T 0 ,
and the differential @ descends from the identity on �T . Therefore, the action of �T
on Xk.T / is compatible with both, giving an action of the FI-group � on the FI-chain
complex X� .

From this action, we obtain two spectral sequences converging to the homology
H�.�IX�/ of the complex X� :

xE2pq DHp.�IHq.X�//D)HpCq.�IX�/;

E1pq DHq.�IXp/D)HpCq.�IX�/:

The desired spectral sequence mentioned in the proposition is the second one (though we
will use the first spectral sequence later). It remains to identify E2pq with H FI

p .Hq.�//,
so let us compute E1pq DHq.�IXp/.

By definition Xp.T / is a direct sum of factors ZŒ�T =�T nU �. By Shapiro’s lemma, the
contribution of such a factor to Hq.�T IXp.T // is precisely Hq.�T nU /DHq.�/T nU .
We find that

Hq.�IXp/T DHq.�T IXp.T //D
M

U�T; jU jDp

Hq.�/T nU D .Hq.�/˝FI Cp/T ;

where the last equality comes from the proof of Theorem C. We conclude that

E1pq DHq.�IXp/'Hq.�/˝FI Cp:

Moreover, the differential d1WHq.�IXp/!Hq.�IXp�1/ is induced by @WXp!Xp�1 ,
and comparing the definitions of X� and C� shows that .E1pq; d1/D .Hq.�/˝FIC�; @/.
By Proposition 5.10 we conclude that, as claimed,

E2pq D TorFI
p .Hq.�/;K/DH

FI
p .Hq.�//D)HpCq.�IX�/:

We now continue with the proof of Theorem D 0 . Returning to the notation of that
theorem, let � be the congruence FI-group �.p/, and Hk D Hk.�.p// its group
homology. We would like to apply Proposition 5.13, but to do this we need to bound the
equivariant homology HpCq.�IX�/. We can do this using the other spectral sequence
xE2pq DHp.�IHq.X�//D)HpCq.�IX�/ if we can bound Hq.X�/. And fortunately,

this complex X� (or a complex quite close to it) has already been considered by Charney!

In Proposition 5.13 we defined X�DCA� based on the functor A.T;U /DZŒ�T =�T nU �.
Let zX� WD zCA� be the ordered version of this complex; concretely, we can write

zXk.T /D
M

.t1;:::;tk/�T

ZŒ�T =�T�ft1;:::;tkg�:
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In the foundational paper [3], Charney considered (in the case T D f1; : : : ; ng) a
complex Y�.T / that is similar to zX�.T / but somewhat larger. Her key technical
result in that paper is that Y�.T / is q–acyclic if jT j � 2q C d C 1. Moreover, [3,
Proposition 3.2] implies that Yq.T / coincides with zXq.T / as long as jT j � qCd , so
Charney’s result8 implies that zX�.T / is q–acyclic if jT j � 2qCdC1. By Remark 5.8
we know that X�.T / is a summand of zX�.T /, so X�.T / is q–acyclic in the same
range. Said differently, Hq.X�/T D 0 for jT j>2qCd ; that is, degHq.X�/� 2qCd .

Any FI-module M with degM �N automatically has degHi .�IM/�N for all i ,
since H�.�IM/ D H�.�T I 0/ D 0 when jT j > N . Therefore, Charney’s bound
degHq.X�/� 2qC d implies, for all p ,

deg xE2pq D degHp.�IHq.X�//� 2qC d:

Since this spectral sequence converges to xE2pq D)HpCq.�IX�/, we conclude that

(23) degHk.�IX�/� 2kC d:

The bound (23) marks the end of the input from topology in this proof. The remainder
of the proof is just careful bookkeeping and repeatedly applying Theorem A to our
spectral sequence of FI-modules

E2pq DH
FI
p .Hq/D)HpCq.�IX�/:

In fact, this bookkeeping can be formulated as the following completely general
statement:

Claim 5.14 Consider a spectral sequence of FI-modules E2pq D) VpCq converging
to FI-modules Vk satisfying degVk � 2kC d for some integer d � 0. Suppose that
for all q , we know that

(˛) degE2pq � degE20qC degE21q � 1Cp;

and suppose for simplicity that E2p0 D 0 for p > 0. Then for all k � 2, we have

(24) degE20k � 2
k�2.2d C 9/� 2 and degE21k � 2

k�2.2d C 9/� 1:

Proof We would like to prove this claim (24) by induction on k for all k � 2, but
we need to modify it slightly so it holds in the base cases k 2 f0; 1g as well. Therefore,
we will prove along the way that

(25) 8p � 2; degE2pk � 2k�1.2d C 9/� 4Cp

8Note that our indexing differs from Charney’s in that her complex has zXq.T / in degree q� 1 ; this is
why we have 2qC d C 1 and qC d in place of her 2qC d C 3 and qC d C 1 , respectively.
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holds for all k � 0. Notice that (24) + (˛ ) D) (25), so this only requires additional
work in the base cases when k 2 f0; 1g. We first prove (25) in these base cases, and
then prove by induction on k that both (24) and (25) hold for all k � 2.

Case k D 0 Our assumption that E2p0 D 0 for all p � 1 implies degE2p0 D�1, so
(25) holds.

Case k D 1 Since E23;0 D 0 and E24;0 D 0, the spectral sequence degenerates at E2

for E20;1 and E21;1 , yielding E20;1 D E10;1 D V 1 and E21;1 D E11;1 � V 2 . Since
degV 1 � 2 C d and degV 2 � 4 C d , we conclude that degE20;1 � d C 2 and
degE21;1�dC4. Applying the assumption (˛ ), we conclude that degE2p;1�2dC5Cp
for all p � 2; this is precisely the bound (25) in the case k D 1.

General case Let Np;m WD 2m�1.2dC9/�4Cp be the bound occurring in (25). Fix
k � 2, and assume by induction that (25) holds for all m<k ; that is, degE2p;m�Np;m
for all p � 2 and all m< k .

Now consider the entry E20;k . Since E10;k is a constituent of V k , we have degE10;k �
degV k � 2d Ck . No nontrivial differential has source Er0;k , but we have differentials
d r W Err;k�rC1! Er0;k . The maximum of Nr;k�rC1 over r � 2 occurs when r D 2,
when we have N2;k�1D 2k�2.2dC9/�2. Therefore, for all r � 2 the sources of these
differentials satisfy degErr;k�rC1 � 2k�2.2d C 9/� 2. Since degE10;k � 2d C k <
2k�2.2d C9/�2, we conclude that degE20;k � 2

k�2.2d C9/�2, as claimed in (24).
Similarly, the degrees of the sources of the differentials d r W Er1Cr;k�rC1!Er1;k are
bounded above by N3;k�1 D 2k�2.2d C 9/� 1. Since

degE11;k � degV kC1 � 2d C kC 1 < 2k�2.2d C 9/� 1;

we conclude that degE21;k � 2
k�2.2d C 9/� 1, as claimed in (24).

Now applying the assumption (˛ ) to (24), we conclude that (25) holds for k as well.
This concludes the proof of the claim.

We now finish the proof of Theorem D 0 by applying this claim to the spectral sequence
E2pqDH

FI
p .Hq/D)HpCq.�IX�/ of Proposition 5.13. The hypothesis E2p0D 0 of the

claim is satisfied because H0 is the free FI-module H0'M.0/, so E2p0DH FI
p .H0/D0

for p > 0. The assumption (˛ ) is precisely the statement of Theorem A, and the bound
degHk.�IX�/� 2kC d was obtained in (23) above.

The description (22) for k � 2 follows from (24) by Theorem C. The only thing that
remains is some arithmetic to check that (22) holds for k D 0 and k D 1 as well.
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For k D 0 this is trivial, since H0 DM.0/ is free: this means degH FI
0 .H0/D 0 and

degH FI
1 .H0/D�1, so Theorem C then gives an identification as in (22) over jS j � 0.

Since d � 0, we have 20�2.2d C 9/� 9
4
> 1, so the bound in (22) holds.

Similarly, for k D 1 we saw in the proof above that degH FI
0 .H1/D degE20;1 � 2Cd

and degH FI
1 .H1/D degE21;1 � 4Cd , so Theorem C gives an identification as in (22)

over jS j � 4C d . For integer m the conditions m < 21�2.2d C 9/ D d C 9
2

and
m� d C 4 are equivalent, so again the bound in (22) follows.

We close with a variant of Theorem D 0 which has been used by Calegari and Emerton [2]
in their study of completed homology. An inclusion of ideals q� p induces an inclusion
�n.q/��n.p/, so given an inverse system of ideals such as � � � � pi � � � � � p2� p, we
can consider the inverse limit lim

 �
Hk.�n.p

i // of the homology of the corresponding
congruence subgroups.

Theorem D 00 Let R be the ring of integers in a number field, and let .pi /i2I be an in-
verse system of proper ideals in R . Fix N >1. Then for all n�0 and all k�0, we have

lim
 �
i2I

Hk.�n.pi /IZ=N/D colim
S�Œn�

jS j<11�2k�2

lim
 �
i2I

Hk.�S .pi /IZ=N/:

Proof Any number ring R is a Dedekind domain, so R satisfies Bass’s stable range
condition SR3 . Therefore, for any n � 0 and any k � 0, we can deduce from
Theorem D 0 that

lim
 �
i2I

Hk.�n.pi /IZ=N/D lim
 �
i2I

colim
S�Œn�

jS j<11�2k�2

Hk.�S .pi /IZ=N/:

It remains to check that we can exchange the limit and colimit. This is of course not true
in general, but we can verify that it is true in this case as follows. The existence of the
Borel–Serre compactification [1] implies that Hk.�n.p/IZ=N/ is a finitely generated
Z=N –module for any p�R . This is enough to give the desired result: since this colimit
is over a finite poset, it can therefore be written as a coequalizer of finitely generated
Z=N –modules. The limit of the coequalizers is the coequalizer of the limits (any inverse
system of finite abelian groups satisfies the Mittag-Leffler condition, so the lim1 term
vanishes), which is to say that the limit and colimit can be exchanged as desired.
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Hodge modules on complex tori and generic vanishing
for compact Kähler manifolds

GIUSEPPE PARESCHI

MIHNEA POPA

CHRISTIAN SCHNELL

We extend the results of generic vanishing theory to polarizable real Hodge modules
on compact complex tori, and from there to arbitrary compact Kähler manifolds. As
applications, we obtain a bimeromorphic characterization of compact complex tori
(among compact Kähler manifolds), semipositivity results and a description of the
Leray filtration for maps to tori.

14C30; 14F17

A Introduction

The term “generic vanishing” refers to a collection of theorems about the cohomology
of line bundles with trivial first Chern class. The first results of this type were obtained
by Green and Lazarsfeld in the late 1980s [13; 14]; they were proved using classical
Hodge theory and are therefore valid on arbitrary compact Kähler manifolds. About ten
years ago, Hacon [15] found a more algebraic approach, using vanishing theorems and
the Fourier–Mukai transform, that has led to many additional results in the projective
case; see also Chen and Jiang [9], Pareschi and Popa [23] and Popa and Schnell [26].
The purpose of this paper is to show that the newer results are in fact also valid on
arbitrary compact Kähler manifolds.

Besides Hacon [15], our motivation also comes from a paper by Chen and Jiang [9], in
which they prove, roughly speaking, that the direct image of the canonical bundle under
a generically finite morphism to an abelian variety is semiample. Before we can state
more precise results, recall the following definitions (see Section 13 for more details).

Definition Given a coherent OT –module F on a compact complex torus T , define

S i.T;F /D fL 2 Pic0.T / jH i.T;F ˝L/¤ 0g:

We say that F is a GV-sheaf if codim S i.T;F /� i for every i � 0; we say that F

is M–regular if codim S i.T;F /� i C 1 for every i � 1.
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Hacon [15, Section 4] showed that if f W X ! A is a morphism from a smooth
projective variety to an abelian variety, then the higher direct image sheaves Rjf�!X

are GV-sheaves on A; in the special case where f is generically finite over its image,
Chen and Jiang [9, Theorem 1.2] proved the much stronger result that f�!X is, up
to tensoring by line bundles in Pic0.A/, the direct sum of pullbacks of M–regular
sheaves from quotients of A. Since GV-sheaves are nef, whereas M–regular sheaves
are ample, one should think of this as saying that f�!X is not only nef but actually
semiample. One of our main results is the following generalization of this fact:

Theorem A Let f W X ! T be a holomorphic mapping from a compact Kähler
manifold to a compact complex torus. Then, for j � 0, one has a decomposition

Rjf�!X '

nM
kD1

.q�kFk ˝Lk/;

where each Fk is an M–regular (hence ample) coherent sheaf with projective support
on the compact complex torus Tk , each qk W T ! Tk is a surjective morphism with
connected fibers, and each Lk 2 Pic0.T / has finite order. In particular, Rjf�!X is a
GV-sheaf on T .

This leads to strong positivity properties for higher direct images of canonical bundles
under maps to tori. For instance, if f is a surjective map that is submersive away from
a divisor with simple normal crossings, then Rjf�!X is a semipositive vector bundle
on T . See Section 20 for more on this circle of ideas.

One application of Theorem A is the following effective criterion for a compact Kähler
manifold to be bimeromorphically equivalent to a torus; this generalizes a well-known
theorem of Chen and Hacon in the projective case [6].

Theorem B A compact Kähler manifold X is bimeromorphic to a compact complex
torus if and only if dim H 1.X;C/D 2 dim X and P1.X /D P2.X /D 1.

The proof is inspired by the approach to the Chen–Hacon theorem given by Pareschi [20];
even in the projective case, however, the result in Corollary 16.2 greatly simplifies
the existing proof. In Theorem 19.1, we deduce that the Albanese map of a compact
Kähler manifold with P1.X / D P2.X / D 1 is surjective with connected fibers; in
the projective case, this was first proved by Jiang [16], as an effective version of
Kawamata’s theorem about projective varieties of Kodaira dimension zero. It is likely
that the present methods can also be applied to the classification of compact Kähler
manifolds with dim H 1.X;C/ D 2 dim X and small plurigenera; for the projective
case, see for instance Chen and Hacon [8].
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In a different direction, Theorem A combined with results of Lazarsfeld, Popa and
Schnell [18] leads to a concrete description of the Leray filtration on the cohomology
of !X , associated with a holomorphic mapping f W X ! T as above. Recall that,
for each k � 0, the Leray filtration is a decreasing filtration L�H k.X; !X / with the
property that

gri
L H k.X; !X /DH i.T;Rk�if�!X /:

One can also define a natural decreasing filtration F �H k.X; !X / induced by the cup
product action of H 1.T;OT /, namely

F iH k.X; !X /D Im
�Vi

H 1.T;OT /˝H k�i.X; !X /!H k.X; !X /
�
:

Theorem C The filtrations L�H k.X; !X / and F �H k.X; !X / coincide.

We give a dual description of the filtration on global holomorphic forms in Corollary 21.3.
Despite the elementary nature of the statement, we do not know how to prove Theorem C
using only methods from classical Hodge theory; finding a more elementary proof is
an interesting problem.

Our approach to Theorem A is to address generic vanishing for a larger class of
objects of Hodge-theoretic origin, namely polarizable real Hodge modules on compact
complex tori. This is not just a matter of higher generality; we do not know how to
prove Theorem A using methods of classical Hodge theory in the spirit of Green and
Lazarsfeld [13]. This is precisely due to the lack of an a priori description of the Leray
filtration on H k.X; !X / as in Theorem C.

The starting point for our proof of Theorem A is a result by Saito [29], which says
that the coherent OT –module Rjf�!X is part of a polarizable real Hodge module
M D .M;F�M;MR/ 2 HMR.T; dim X C j / on the torus T ; more precisely,

Rjf�!X ' !T ˝Fp.M /M

is the first nontrivial piece in the Hodge filtration F�M of the underlying regular
holonomic D –module M. (Please see Section 1 for some background on Hodge
modules.) Note that M is supported on the image f .X /, and that its restriction to the
smooth locus of f is the polarizable variation of Hodge structure on the .dimfCj /th

cohomology of the fibers. The reason for working with real coefficients is that the
polarization is induced by a choice of Kähler form in H 2.X;R/ \ H 1;1.X /; the
variation of Hodge structure itself is of course defined over Z.

In light of the above identity, Theorem A is a consequence of the following general
statement about polarizable real Hodge modules on compact complex tori:
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Theorem D Let M D .M;F�M;MR/ 2 HMR.T; w/ be a polarizable real Hodge
module on a compact complex torus T . Then, for each k 2Z, the coherent OT –module
grF

k
M decomposes as

grF
k M'

nM
jD1

.q�j Fj ˝OT
Lj /;

where qj W T ! Tj is a surjective map with connected fibers to a complex torus, Fj is
an M–regular coherent sheaf on Tj with projective support and Lj 2 Pic0.T /. If M

admits an integral structure, then each Lj has finite order.

Let us briefly describe the most important elements in the proof. In Popa and Schnell [26]
we already exploited the relationship between generic vanishing and Hodge modules
on abelian varieties, but the proofs relied on vanishing theorems. What allows us to
go further is a beautiful idea by Botong Wang [41], namely that, up to taking direct
summands and tensoring by unitary local systems, every polarizable real Hodge module
on a complex torus actually comes from an abelian variety. (Wang showed this for
Hodge modules of geometric origin.) This is a version with coefficients of Ueno’s
result [39] that every irreducible subvariety of T is a torus bundle over a projective
variety, and is proved by combining this geometric fact with some arguments about
variations of Hodge structure.

The existence of the decomposition in Theorem D is due to the fact that the regular
holonomic D –module M is semisimple, hence isomorphic to a direct sum of simple
regular holonomic D –modules. This follows from a theorem by Deligne and Nori (see
Deligne [11]), which says that the local system underlying a polarizable real variation of
Hodge structure on a Zariski-open subset of a compact Kähler manifold is semisimple.
It turns out that the decomposition of M into simple summands is compatible with the
Hodge filtration F�M; in order to prove this, we introduce the category of “polarizable
complex Hodge modules” (which are polarizable real Hodge modules together with
an endomorphism whose square is minus the identity), and show that every simple
summand of M underlies a polarizable complex Hodge module in this sense.

Note Our ad hoc definition of complex Hodge modules is good enough for the purposes
of this paper, but is certainly not the final word. A more satisfactory treatment, in terms
of D –modules and distribution-valued pairings, is currently being developed by Claude
Sabbah and the third author [27].

The M–regularity of the individual summands in Theorem D turns out to be closely
related to the Euler characteristic of the corresponding D –modules. The results in [26]
show that when .M;F�M/ underlies a polarizable complex Hodge module on an
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abelian variety A, the Euler characteristic satisfies �.A;M/� 0, and each coherent
OA –module grF

k
M is a GV-sheaf. The new result (in Lemma 15.1) is that each grF

k
M

is actually M–regular provided that �.A;M/ > 0. That we can always get into the
situation where the Euler characteristic is positive follows from some general results
about simple holonomic D –modules from Schnell [34].

Theorem D implies that each graded quotient grF
k
M with respect to the Hodge filtration

is a GV-sheaf, the Kähler analogue of a result in [26]. However, the stronger formulation
above is new even in the case of smooth projective varieties, and has further useful
consequences. One such is the following: for a holomorphic mapping f W X ! T that
is generically finite onto its image, the locus

S0.T; f�!X /D fL 2 Pic0.T / jH i.T; f�!X ˝OT
L/¤ 0g

is preserved by the involution L 7! L�1 on Pic0.T /; see Corollary 16.2. This is a
crucial ingredient in the proof of Theorem B.

Going back to Wang’s paper [41], its main purpose was to prove Beauville’s conjecture,
namely that, on a compact Kähler manifold X , every irreducible component of every
†k.X /D f� 2 Char.X / jH k.X;C�/¤ 0g contains characters of finite order. In the
projective case, this is of course a famous theorem by Simpson [37]. Combining the
structural Theorem 7.1 with known results about Hodge modules on abelian varieties
(Schnell [35]) allows us to prove the following generalization of Wang’s theorem (which
dealt with Hodge modules of geometric origin):

Theorem E If a polarizable real Hodge module M 2 HMR.T; w/ on a compact
complex torus admits an integral structure, then the sets

S i
m.T;M /D f� 2 Char.T / j dim H i.T;MR˝R C�/�mg

are finite unions of translates of linear subvarieties by points of finite order.

The idea is to use Kronecker’s theorem (about algebraic integers all of whose conjugates
have absolute value one) to prove that certain characters have finite order. Roughly
speaking, the characters in question are unitary because of the existence of a polarization
on M , and they take values in the group of algebraic integers because of the existence
of an integral structure on M .

Projectivity questions

We conclude by noting that many of the results in this paper can be placed in the
broader context of the following problem: how far are natural geometric or sheaf-
theoretic constructions on compact Kähler manifolds in general, and on compact
complex tori in particular, from being determined by similar constructions on projective
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manifolds? Theorems A and D provide the answer on tori in the case of Hodge-theoretic
constructions. We thank János Kollár for suggesting this point of view, and also the
statements of the problems in the paragraph below.

Further structural results could provide a general machine for reducing certain questions
about Kähler manifolds to the algebraic setting. For instance, by analogy with positivity
conjectures in the algebraic case, one hopes for the following result in the case of
varying families: if X and Y are compact Kähler manifolds and f W X ! Y is a fiber
space of maximal variation, ie such that the general fiber is bimeromorphic to at most
countably many other fibers, then Y is projective. More generally, for an arbitrary
such f , is there a mapping gW Y !Z , with Z projective, such that the fibers of f
are bimeromorphically isotrivial over those of Y ?

A slightly more refined version in the case when Y D T is a torus, which is essentially
a combination of Iitaka fibrations and Ueno’s conjecture, is this: there should exist
a morphism hW X !Z , where Z is a variety of general type generating an abelian
quotient gW T ! A, such that the fibers of h have Kodaira dimension 0 and are
bimeromorphically isotrivial over the fibers of g .

B Real and complex Hodge modules

1 Real Hodge modules

In this paper, we work with polarizable real Hodge modules on complex manifolds. This
is the natural setting for studying compact Kähler manifolds, because the polarizations
induced by Kähler forms are defined over R (but usually not over Q, as in the projective
case). Saito originally developed the theory of Hodge modules with rational coefficients,
but as explained in [29], everything works just as well with real coefficients and with
the following weaker assumption on the local monodromy: the eigenvalues of the
monodromy operator on the nearby cycles are allowed to be arbitrary complex numbers
of absolute value one, rather than just roots of unity. This has already been observed
several times in the literature [33]; the point is that Saito’s theory rests on certain results
about polarizable variations of Hodge structure [32; 43; 5], which hold in this generality.

Let X be a complex manifold. We first recall some terminology.

Definition 1.1 We denote by HMR.X; w/ the category of polarizable real Hodge
modules of weight w ; this is a semisimple R–linear abelian category, endowed with a
faithful functor to the category of real perverse sheaves.

Saito constructs HMR.X; w/ as a full subcategory of the category of all filtered regular
holonomic D –modules with real structure, in several stages. To begin with, recall that a
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filtered regular holonomic D –module with real structure on X consists of the following
four pieces of data: (1) a regular holonomic left DX –module M; (2) a good filtration
F�M by coherent OX –modules; (3) a perverse sheaf MR with coefficients in R;
(4) an isomorphism MR˝R C ' DR.M/. Although the isomorphism is part of the
data, we usually suppress it from the notation and simply write M D .M;F�M;MR/.
The support Supp M is defined to be the support of the underlying perverse sheaf MR ;
one says that M has strict support if Supp M is irreducible and if M has no nontrivial
subobjects or quotient objects that are supported on a proper subset of Supp M .

Now M is called a real Hodge module of weight w if it satisfies several additional
conditions that are imposed by recursion on the dimension of Supp M . Although they
are not quite stated in this way in [28], the essence of these conditions is that (1) every
Hodge module decomposes into a sum of Hodge modules with strict support, and (2)
every Hodge module with strict support is generically a real variation of Hodge structure,
which uniquely determines the Hodge module. Given k 2Z, set R.k/D .2� i/kR�C ;
then one has the Tate twist

M.k/D .M;F��kM;MR˝R R.k// 2 HMR.X; w� 2k/:

Every real Hodge module of weight w has a well-defined dual DM , which is a
real Hodge module of weight �w whose underlying perverse sheaf is the Verdier
dual DMR . A polarization is an isomorphism of real Hodge modules DM 'M.w/,
subject to certain conditions that are again imposed recursively; one says that M is
polarizable if it admits at least one polarization.

Example 1.2 Every polarizable real variation of Hodge structure of weight w on X

gives rise to an object of HMR.X; wC dim X /. If H is such a variation, we denote
the underlying real local system by HR , its complexification by HC DHR˝R C and
the corresponding flat bundle by .H;r/; then H'HC˝C OX . The flat connection
makes H into a regular holonomic left D –module, filtered by F�HD F��H; the real
structure is given by the real perverse sheaf HRŒdim X �.

We list a few useful properties of polarizable real Hodge modules. By definition, every
object M 2 HMR.X; w/ admits a locally finite decomposition by strict support; when
X is compact, this is a finite decomposition

M '

nM
jD1

Mj ;

where each Mj 2 HMR.X; w/ has strict support equal to an irreducible analytic
subvariety Zj �X . There are no nontrivial morphisms between Hodge modules with
different strict support; if we assume that Z1; : : : ;Zn are distinct, the decomposition
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by strict support is therefore unique. Since the category HMR.X; w/ is semisimple,
it follows that every polarizable real Hodge module of weight w is isomorphic to a
direct sum of simple objects with strict support.

One of Saito’s most important results is the following structure theorem, relating
polarizable real Hodge modules and polarizable real variations of Hodge structure.

Theorem 1.3 (Saito) The category of polarizable real Hodge modules of weight w
with strict support Z�X is equivalent to the category of generically defined polarizable
real variations of Hodge structure of weight w� dim Z on Z .

In other words, for any M 2 HMR.X; w/ with strict support Z , there is a dense
Zariski-open subset of the smooth locus of Z over which it restricts to a polarizable
real variation of Hodge structure; conversely, every such variation extends uniquely to
a Hodge module with strict support Z . The proof in [30, Theorem 3.21] carries over
to the case of real coefficients; see [29] for further discussion.

Lemma 1.4 The support of M 2HMR.X; w/ lies in a submanifold i W Y ,!X if and
only if M belongs to the image of the functor i�W HMR.Y; w/! HMR.X; w/.

This result is often called Kashiwara’s equivalence, because Kashiwara proved the
same thing for arbitrary coherent D –modules. In the case of Hodge modules, the point
is that the coherent OX –modules FkM=Fk�1M are in fact OY –modules.

2 Compact Kähler manifolds and semisimplicity

In this section, we prove some results about the underlying regular holonomic D –
modules of polarizable real Hodge modules on compact Kähler manifolds. Our starting
point is the following semisimplicity theorem:

Theorem 2.1 (Deligne, Nori) Let X be a compact Kähler manifold. If

M D .M;F�M;MR/ 2 HMR.X; w/;

then the perverse sheaf MR and the D –module M are semisimple.

Proof Since the category HMR.X; w/ is semisimple, we may assume without loss
of generality that M is simple, with strict support an irreducible analytic subvariety
Z �X . By Saito’s Theorem 1.3, M restricts to a polarizable real variation of Hodge
structure H of weight w� dim Z on a Zariski-open subset of the smooth locus of Z ;
note that H is a simple object in the category of real variations of Hodge structure. Now
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MR is the intersection complex of HR , and so it suffices to prove that HR is semisimple.
After resolving singularities, we can assume that H is defined on a Zariski-open subset
of a compact Kähler manifold; in that case, Deligne and Nori have shown that HR is
semisimple [11, Section 1.12]. It follows that the complexification MR˝R C of the
perverse sheaf is semisimple as well; by the Riemann–Hilbert correspondence, the
same is true for the underlying regular holonomic D –module M.

A priori, there is no reason why the decomposition of the regular holonomic D –module
M into simple factors should lift to a decomposition in the category HMR.X; w/.
Nevertheless, it turns out that we can always chose the decomposition in such a way
that it is compatible with the filtration F�M.

Proposition 2.2 Let M 2HMR.X; w/ be a simple polarizable real Hodge module on
a compact Kähler manifold. Then one of the following two statements is true:

(1) The underlying perverse sheaf MR˝R C is simple.

(2) There is an endomorphism J 2 End.M / with J 2 D� id such that

.M;F�M;MR˝R C/D ker.J � i � id/˚ ker.J C i � id/;

and the perverse sheaves underlying ker.J ˙ i � id/ are simple.

We begin by proving the following key lemma:

Lemma 2.3 Let H be a polarizable real variation of Hodge structure on a Zariski-open
subset of a compact Kähler manifold. If H is simple, then

(a) either the underlying complex local system HC is also simple,

(b) or there is an endomorphism J 2 End.H/ with J 2 D� id such that

HC D ker.JC � i � id/˚ ker.JCC i � id/

is the sum of two (possibly isomorphic) simple local systems.

Proof Since X is a Zariski-open subset of a compact Kähler manifold, the theorem of
the fixed part holds on X , and the local system HC is semisimple [11, Section 1.12].
Choose a base point x0 2X , and write HR for the fiber of the local system HR at the
point x0 ; it carries a polarizable Hodge structure

HC DHR˝R C D
M

pCqDw

H p;q;

say of weight w . The fundamental group � D �1.X;x0/ acts on HR , and, as we
remarked above, HC decomposes into a sum of simple � –modules. The proof of
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[11, Proposition 1.13] shows that there is a nontrivial simple � –module V � HC

compatible with the Hodge decomposition, meaning that

V D
M

pCqDw

V \H p;q:

Let V �HC denote the conjugate of V with respect to the real structure HR ; it is
another nontrivial simple � –module with

V D
M

pCqDw

V \H p;q:

The intersection .V CV /\HR is therefore a � –invariant real sub-Hodge structure
of HR . By the theorem of the fixed part, it extends to a real subvariation of H; since
H is simple, this means that HC D V CV . Now there are two possibilities:

(1) If V D V , then HC D V , and HC is a simple local system.

(2) If V ¤ V , then HC D V ˚V , and HC is the sum of two (possibly isomorphic)
simple local systems.

The endomorphism algebra End.HR/ coincides with the subalgebra of � –invariants
in End.HR/; by the theorem of the fixed part, it is also a real sub-Hodge structure.
Let p 2 End.HC/ and xp 2 End.HC/ denote the projections to the two subspaces
V and V ; both preserve the Hodge decomposition, and are therefore of type .0; 0/.
This shows that the element J D i.p� xp/ 2 End.HC/ is a real Hodge class of type
.0; 0/ with J 2 D� id; by the theorem of the fixed part, J is the restriction to x0 of
an endomorphism of the variation of Hodge structure H . This completes the proof
because V and V are exactly the ˙i –eigenspaces of J .

Proof of Proposition 2.2 Since M is simple, it has strict support equal to an irre-
ducible analytic subvariety Z �X ; by Theorem 1.3, M is obtained from a polarizable
real variation of Hodge structure H of weight w � dim Z on a dense Zariski-open
subset of the smooth locus of Z . Let HR denote the underlying real local system;
then MR is isomorphic to the intersection complex of HR . Since we can resolve the
singularities of Z by blowing up along submanifolds of X , Lemma 2.3 applies to this
situation; it shows that HC DHR˝R C has at most two simple factors. The same is
true for MR˝R C and, by the Riemann–Hilbert correspondence, for M.

Now we have to consider two cases. If HC is simple, then M is also simple, and
we are done. If HC is not simple, then by Lemma 2.3 there is an endomorphism
J 2 End.H/ with J 2 D� id such that the two simple factors are the ˙i –eigenspaces
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of J . By Theorem 1.3, it extends uniquely to an endomorphism of J 2 End.M / in
the category HMR.X; w/; in particular, we obtain an induced endomorphism

J WM!M

that is strictly compatible with the filtration F�M by [28, Proposition 5.1.14]. Now
the ˙i –eigenspaces of J give us the desired decomposition

.M;F�M/D .M0;F�M0/˚ .M00;F�M00/I

note that the two regular holonomic D –modules M0 and M00 are simple because the
corresponding perverse sheaves are the intersection complexes of the simple complex
local systems ker.JC˙ i � id/, where JC stands for the induced endomorphism of the
complexification MR˝R C .

3 Complex Hodge modules

In Saito’s recursive definition of the category of polarizable Hodge modules, the
existence of a real structure is crucial: to say that a given filtration on a complex
vector space is a Hodge structure of a certain weight, or that a given bilinear form is a
polarization, one needs to have complex conjugation. This explains why there is as yet
no general theory of “polarizable complex Hodge modules” — although it seems likely
that such a theory can be constructed within the framework of twistor D –modules
developed by Sabbah and Mochizuki. We now explain a workaround for this problem,
suggested by Proposition 2.2.

Definition 3.1 A polarizable complex Hodge module on a complex manifold X is a
pair .M;J /, consisting of a polarizable real Hodge module M 2 HMR.X; w/ and an
endomorphism J 2 End.M / with J 2 D� id.

The space of morphisms between two polarizable complex Hodge modules .M1;J1/

and .M2;J2/ is defined in the obvious way:

Hom..M1;J1/; .M2;J2//D ff 2 Hom.M1;M2/ j f ıJ1 D J2 ıf g:

Note that composition with J1 (or equivalently, J2 ) puts a natural complex structure
on this real vector space.

Definition 3.2 We denote by HMC.X; w/ the category of polarizable complex Hodge
modules of weight w ; it is C–linear and abelian.

From a polarizable complex Hodge module .M;J /, we obtain a filtered regular holo-
nomic D –module as well as a complex perverse sheaf, as follows. Denote by

MDM0˚M00 D ker.J � i � id/˚ ker.J C i � id/

Geometry & Topology, Volume 21 (2017)



2430 Giuseppe Pareschi, Mihnea Popa and Christian Schnell

the induced decomposition of the regular holonomic D –module underlying M , and
observe that J 2 End.M/ is strictly compatible with the Hodge filtration F�M. This
means that we have a decomposition

.M;F�M/D .M0;F�M0/˚ .M00;F�M00/

in the category of filtered D –modules. Similarly, let JC 2 End.MC/ denote the
induced endomorphism of the complex perverse sheaf underlying M ; then

MC DMR˝R C D ker.JC � i � id/˚ ker.JCC i � id/;

and the two summands correspond to M0 and M00 under the Riemann–Hilbert corre-
spondence. Note that they are isomorphic as real perverse sheaves; the only difference
is in the C–action. We obtain a functor

.M;J / 7! ker.JC � i � id/

from HMC.X; w/ to the category of complex perverse sheaves on X ; it is faithful, but
depends on the choice of i .

Definition 3.3 Given .M;J / 2 HMC.X; w/, we call

ker.JC � i � id/�MC

the underlying complex perverse sheaf, and

.M0;F�M0/D ker.J � i � id/� .M;F�M/

the underlying filtered regular holonomic D –module.

There is also an obvious functor from polarizable real Hodge modules to polarizable
complex Hodge modules: it takes M 2 HMR.X; w/ to the pair

.M ˚M;JM /; JM .m1;m2/D .�m2;m1/:

Not surprisingly, the underlying complex perverse sheaf is isomorphic to MR˝R C ,
and the underlying filtered regular holonomic D –module to .M;F�M/. The proof of
the following lemma is left as an easy exercise.

Lemma 3.4 A polarized complex Hodge module .M;J / 2 HMC.X; w/ belongs to
the image of HMR.X; w/ if and only if there exists r 2 End.M / with

r ıJ D�J ı r and r2
D id :

In particular, .M;J / should be isomorphic to its complex conjugate .M;�J /, but this
in itself does not guarantee the existence of a real structure — for example when M is
simple and End.M / is isomorphic to the quaternions H .
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Proposition 3.5 The category HMC.X; w/ is semisimple, and the simple objects are
of the following two types:

(i) .M ˚M;JM /, where M 2 HMR.X; w/ is simple and End.M /DR.
(ii) .M;J /, where M 2 HMR.X; w/ is simple and End.M / 2 fC;Hg.

Proof Since HMR.X; w/ is semisimple, every object of HMC.X; w/ is isomorphic
to a direct sum of polarizable complex Hodge modules of the form

(3.6) .M˚n;J /;

where M 2 HMR.X; w/ is simple and J is an n� n matrix with entries in End.M /

such that J 2 D� id. By Schur’s lemma and the classification of real division algebras,
the endomorphism algebra of a simple polarizable real Hodge module is one of R, C
or H . If End.M / D R, elementary linear algebra shows that n must be even and
that (3.6) is isomorphic to the direct sum of n

2
copies of (i). If End.M / D C , one

can diagonalize the matrix J ; this means that (3.6) is isomorphic to a direct sum
of n objects of type (ii). If End.M / D H , it is still possible to diagonalize J , but
this needs some nontrivial results about matrices with entries in the quaternions [42].
Write J 2Mn.H/ in the form J D J1CJ2j , with J1;J2 2Mn.C/, and consider the
“adjoint matrix”

�J D

�
J1 J2

� xJ2
xJ1

�
2M2n.C/:

Since J 2 D � id, one also has �2
J
D � id, and so the matrix J is normal by [42,

Theorem 4.2]. According to [42, Corollary 6.2], this implies the existence of a unitary
matrix U 2Mn.H/ such that U�1AU D i � id; here unitary means that U�1 D U � is
equal to the conjugate transpose of U . The consequence is that (3.6) is again isomorphic
to a direct sum of n objects of type (ii). Since it is straightforward to prove that both
types of objects are indeed simple, this concludes the proof.

Note The three possible values for the endomorphism algebra of a simple object
M 2 HMR.X; w/ reflect the splitting behavior of its complexification .M ˚M;JM /

in HMC.X; w/: if End.M / D R, it remains irreducible; if End.M / D C , it splits
into two nonisomorphic simple factors; if End.M /DH , it splits into two isomorphic
simple factors. Note that the endomorphism ring of a simple polarizable complex
Hodge module is always isomorphic to C , in accordance with Schur’s lemma.

Our ad hoc definition of the category HMC.X; w/ has the advantage that every
result about polarizable real Hodge modules that does not explicitly mention the
real structure extends to polarizable complex Hodge modules. For example, each
.M;J / 2 HMC.X; w/ admits a unique decomposition by strict support: M admits
such a decomposition, and since there are no nontrivial morphisms between objects
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with different strict support, J is automatically compatible with the decomposition.
For much the same reason, Kashiwara’s equivalence (in Lemma 1.4) holds also for
polarizable complex Hodge modules.

Another result that immediately carries over is Saito’s direct image theorem. The
strictness of the direct image complex is one of the crucial properties of polarizable
Hodge modules; in the special case of the morphism from a projective variety X to a
point, it is equivalent to the E1 –degeneration of the spectral sequence

E
p;q
1
DH pCq.X; grF

p DR.M0//)H pCq.X;DR.M0//;

a familiar result in classical Hodge theory when M0 D OX .

Theorem 3.7 Let f W X ! Y be a projective morphism between complex manifolds.

(a) If .M;J / 2 HMC.X; w/, then for each k 2 Z, the pair

Hkf�.M;J /D .Hkf�M;Hkf�J / 2 HMC.Y; wC k/

is again a polarizable complex Hodge module.
(b) The direct image complex fC.M0;F�M0/ is strict, and HkfC.M0;F�M0/ is

the filtered regular holonomic D –module underlying Hkf�.M;J /.

Proof Since M 2 HMR.X; w/ is a polarizable real Hodge module, Hkf�M is in
HMR.Y; wCk/ by Saito’s direct image theorem [28, Théorème 5.3.1]. Now it suffices
to note that J 2 End.M / induces an endomorphism Hkf�J 2 End.Hkf�M / whose
square is equal to minus the identity. Since

.M;F�M/D .M0;F�M0/˚ .M00;F�M00/;

the strictness of the complex fC.M0;F�M0/ follows from that of fC.M;F�M/,
which is part of the above-cited theorem by Saito.

On compact Kähler manifolds, the semisimplicity results from the previous section can
be summarized as follows:

Proposition 3.8 Let X be a compact Kähler manifold.

(a) A polarizable complex Hodge module .M;J / 2 HMC.X; w/ is simple if and
only if the underlying complex perverse sheaf

ker
�
JC � i � idW MR˝R C!MR˝R C

�
is simple.

(b) If M 2 HMR.X; w/, then every simple factor of the complex perverse sheaf
MR˝R C underlies a polarizable complex Hodge module.

Proof This is a restatement of Proposition 2.2.
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4 Complex variations of Hodge structure

In this section, we discuss the relation between polarizable complex Hodge modules
and polarizable complex variations of Hodge structure.

Definition 4.1 A polarizable complex variation of Hodge structure is a pair .H;J /,
where H is a polarizable real variation of Hodge structure and J 2 End.H/ is an
endomorphism with J 2 D� id.

As before, the complexification of a real variation H is defined as

.H˚H;JH/; JH.h1; h2/D .�h2; h1/;

and a complex variation .H;J / is real if and only if there is an endomorphism
r 2 End.H/ with r ıJ D�J ı r and r2D id. Note that the direct sum of .H;J / with
its complex conjugate .H;�J / has an obvious real structure.

The definition above is convenient for our purposes; it is also not hard to show that it
is equivalent to the one in [11, Section 1], up to the choice of weight. (Deligne only
considers complex variations of weight zero.)

Example 4.2 Let � 2 Char.X / be a unitary character of the fundamental group, and
denote by C� the resulting unitary local system. It determines a polarizable complex
variation of Hodge structure in the following manner. The underlying real local system
is R2 , with monodromy acting by�

Re � � Im �

Im � Re �

�
I

the standard inner product on R2 makes this into a polarizable real variation of Hodge
structure H� of weight zero, with J� 2 End.H�/ acting as J�.x;y/D .�y;x/; for
simplicity, we continue to denote the pair .H�;J�/ by the symbol C� .

We have the following criterion for deciding whether a polarizable complex Hodge
module is smooth, meaning induced by a complex variation of Hodge structure.

Lemma 4.3 Given .M;J / 2 HMC.X; w/, let us denote by

MDM0˚M00 D ker.J � i � id/˚ ker.J C i � id/

the induced decomposition of the regular holonomic D –module underlying M . If M0

is coherent as an OX –module, then M is smooth.

Proof Let MC D ker.JC � i � id/˚ ker.JCC i � id/ be the analogous decomposition
of the underlying perverse sheaf. Since M0 is OX –coherent, it is a vector bundle with
flat connection; by the Riemann–Hilbert correspondence, the first factor is therefore

Geometry & Topology, Volume 21 (2017)



2434 Giuseppe Pareschi, Mihnea Popa and Christian Schnell

(up to a shift in degree by dim X ) a complex local system. Since it is isomorphic to
MR as a real perverse sheaf, it follows that MR is also a local system; but then M is
smooth by [28, Lemme 5.1.10].

In general, the relationship between complex Hodge modules and complex variations
of Hodge structure is governed by the following theorem; it is of course an immediate
consequence of Saito’s results (see Theorem 1.3).

Theorem 4.4 The category of polarizable complex Hodge modules of weight w with
strict support Z �X is equivalent to the category of generically defined polarizable
complex variations of Hodge structure of weight w� dim Z on Z .

5 Integral structures on Hodge modules

By working with polarizable real (or complex) Hodge modules, we lose certain arith-
metic information about the monodromy of the underlying perverse sheaves, such as the
fact that the monodromy eigenvalues are roots of unity. One can recover some of this
information by asking for the existence of an “integral structure” [35, Definition 1.9],
which is just a constructible complex of sheaves of Z–modules that becomes isomorphic
to the perverse sheaf underlying the Hodge module after tensoring by R.

Definition 5.1 An integral structure on a polarizable real Hodge module M in
HMR.X; w/ is a constructible complex E 2 Db

c.ZX / such that MR 'E˝Z R.

As explained in [35, Section 1.2.2], the existence of an integral structure is preserved by
many of the standard operations on (mixed) Hodge modules, such as direct and inverse
images or duality. Note that even though it makes sense to ask whether a given (mixed)
Hodge module admits an integral structure, there appears to be no good functorial
theory of “polarizable integral Hodge modules”.

Lemma 5.2 If M 2 HMR.X; w/ admits an integral structure, then the same is true
for every summand in the decomposition of M by strict support.

Proof Consider the decomposition

M D

nM
jD1

Mj

by strict support, with Z1; : : : ;Zn �X distinct irreducible analytic subvarieties. Each
Mj is a polarizable real Hodge module with strict support Zj , and therefore comes from
a polarizable real variation of Hodge structure Hj on a dense Zariski-open subset of Zj .
What we must prove is that each Hj can be defined over Z. Let MR be the underlying
real perverse sheaf, and set dj D dim Zj . According to [2, Proposition 2.1.17], Zj is
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an irreducible component in the support of the .�dj /
th cohomology sheaf of MR and

Hj ;R is the restriction of that constructible sheaf to a Zariski-open subset of Zj . Since
MR 'E˝Z R, it follows that Hj is defined over Z.

6 Operations on Hodge modules

In this section, we recall three useful operations for polarizable real (and complex)
Hodge modules. If Supp M is compact, we define the Euler characteristic of M D

.M;F�M;MR/ 2 HMR.X; w/ by the formula

�.X;M /D
X
i2Z

.�1/i dimR H i.X;MR/D
X
i2Z

.�1/i dimC H i.X;DR.M//:

For .M;J / 2 HMC.X; w/, we let MDM0˚M00 D ker.J � i � id/˚ ker.J C i � id/
be the decomposition into eigenspaces, and define

�.X;M;J /D
X
i2Z

.�1/i dimC H i.X;DR.M0//:

With this definition, one has �.X;M /D �.X;M;J /C�.X;M;�J /.

Given a smooth morphism f W Y !X of relative dimension dimf D dim Y �dim X ,
we define the naive inverse image

f �1M D .f �M; f �F�M; f �1MR/:

One can show that f �1M 2HMR.Y; wCdimf /; see [36, Section 9] for more details.
The same is true for polarizable complex Hodge modules: if .M;J / 2 HMC.X; w/,
then one obviously has

f �1.M;J /D .f �1M; f �1J / 2 HMC.Y; wC dimf /:

One can also twist a polarizable complex Hodge module by a unitary character.

Lemma 6.1 For any unitary character � 2 Char.X /, there is an object

.M;J /˝C C� 2 HMC.X; w/

whose associated complex perverse sheaf is ker.JC � i � id/˝C C� .

Proof In the notation of Example 4.2, consider the tensor product

M ˝R H� 2 HMR.X; w/I

it is again a polarizable real Hodge module of weight w because H� is a polarizable
real variation of Hodge structure of weight zero. The square of the endomorphism
J ˝J� is the identity, and so

N D ker.J ˝J�C id/�M ˝R H�
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is again a polarizable real Hodge module of weight w . Now K D J ˝ id 2 End.N /

satisfies K2D� id, which means that the pair .N;K/ is a polarizable complex Hodge
module of weight w . On the associated complex perverse sheaf

ker.KC � i � id/�MC˝C H�;C;

both JC˝ id and id˝J�;C act as multiplication by i , which means that

ker.KC � i � id/D ker.JC � i � id/˝C C�:

The corresponding regular holonomic D –module is obviously

N 0 DM0˝OX
.L;r/;

with the filtration induced by F�M0 ; here .L;r/ denotes the flat bundle corresponding
to the complex local system C� , and MDM0˚M00 as above.

Note The proof shows that

NC D
�
ker.JC � i � id/˝C C�

�
˚
�
ker.JCC i � id/˝C Cx�

�
;

N D
�
M0˝OX

.L;r/
�
˚
�
M00˝OX

.L;r/�1
�
;

where x� is the complex conjugate of the character � 2 Char.X /.

C Hodge modules on complex tori

7 Main result

The paper [26] contains several results about Hodge modules of geometric origin on
abelian varieties. In this chapter, we generalize these results to arbitrary polarizable
complex Hodge modules on compact complex tori. To do so, we develop a beautiful
idea due to Wang [41], namely that, up to direct sums and character twists, every such
object actually comes from an abelian variety.

Theorem 7.1 Let .M;J / 2 HMC.T; w/ be a polarizable complex Hodge module on
a compact complex torus T . Then there is a decomposition

(7.2) .M;J /'

nM
jD1

q�1
j .Nj ;Jj /˝C C�j

;

where qj W T ! Tj is a surjective morphism with connected fibers, �j 2 Char.T / is a
unitary character and .Nj ;Jj /2HMC.Tj ; w�dim qj / is a simple polarizable complex
Hodge module with Supp Nj projective and �.Tj ;Nj ;Jj / > 0.
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For Hodge modules of geometric origin, a less precise result was proved by Wang [41].
His proof makes use of the decomposition theorem, which in the setting of arbitrary
compact Kähler manifolds is only known for Hodge modules of geometric origin [29].
This technical issue can be circumvented by putting everything in terms of generically
defined variations of Hodge structure.

To get a result for a polarizable real Hodge module M 2HMR.T; w/, we simply apply
Theorem 7.1 to its complexification .M ˚M;JM / 2 HMC.T; w/. One could say
more about the terms in the decomposition below, but the following version is enough
for our purposes.

Corollary 7.3 Let M 2HMR.T; w/ be a polarizable real Hodge module on a compact
complex torus T . Then, in the notation of Theorem 7.1, one has

.M ˚M;JM /'

nM
jD1

q�1
j .Nj ;Jj /˝C C�j

:

If M admits an integral structure, then each �j 2 Char.T / has finite order.

The proof of these results takes up the rest of the chapter.

8 Subvarieties of complex tori

This section contains a structure theorem for subvarieties of compact complex tori. The
statement is contained in [41, Propositions 2.3 and 2.4], but we give a simpler argument
below.

Proposition 8.1 Let X be an irreducible analytic subvariety of a compact complex
torus T . Then there is a subtorus S � T with the following two properties:

(a) S CX DX and the quotient Y DX=S is projective.

(b) If D � X is an irreducible analytic subvariety with dim D D dim X � 1, then
S CD DD .

In particular, every divisor on X is the preimage of a divisor on Y .

Proof It is well known that the algebraic reduction of T is an abelian variety. More
precisely, there is a subtorus S � T such that A D T=S is an abelian variety, and
every other subtorus with this property contains S ; see eg [4, Chapter 2, Section 6].

Now let X � T be an irreducible analytic subvariety of T ; without loss of generality,
we may assume that 02X and that X is not contained in any proper subtorus of T . By
a theorem of Ueno [39, Theorem 10.9], there is a subtorus S 0 � T with S 0CX �X
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and such that X=S 0 � T=S 0 is of general type. In particular, X=S 0 is projective; but
then T=S 0 must also be projective, which means that S � S 0 . Setting Y DX=S , we
get a cartesian diagram

X T

Y A

with Y projective. Now it remains to show that every divisor on X is the pullback of
a divisor from Y .

Let D �X be an irreducible analytic subvariety with dim D D dim X � 1; as before,
we may assume that 02D . For dimension reasons, either SCDDD or SCDDX ;
let us suppose that S CD D X and see how this leads to a contradiction. Define
TD �T to be the smallest subtorus of T containing D ; then SCTD DT . If TD DT ,
then the same reasoning as above would show that S CD DD ; therefore TD ¤ T ,
and dim.TD \S/� dim S � 1. Now

D\S � TD \S � S;

and, because dim.D\S/D dim S � 1, it follows that D\S D TD \S consists of
a subtorus S 00 and finitely many of its translates. After dividing out by S 00 , we may
assume that dim S D 1 and that D \S D TD \S is a finite set; in particular, D is
finite over Y , and therefore also projective. Now consider the addition morphism

S �D! T:

Since S CD DX , its image is equal to X ; because S and D are both projective, it
follows that X is projective, and hence that T is projective. But this contradicts our
choice of S . The conclusion is that S CD DD , as asserted.

Note It is possible for S to be itself an abelian variety; this is why the proof that
S CD ¤X requires some care.

9 Simple Hodge modules and abelian varieties

We begin by proving a structure theorem for simple polarizable complex Hodge modules
on a compact complex torus T ; this is evidently the most important case, because every
polarizable complex Hodge module is isomorphic to a direct sum of simple ones. Fix a
simple polarizable complex Hodge module .M;J / 2HMC.T; w/. By Proposition 3.5,
the polarizable real Hodge module M 2 HMR.X; w/ has strict support equal to an
irreducible analytic subvariety; we assume in addition that Supp M is not contained in
any proper subtorus of T .
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Theorem 9.1 There is an abelian variety A, a surjective morphism qW T ! A with
connected fibers, a simple .N;K/ 2 HMC.A; w� dim q/ with �.A;N;K/ > 0, and a
unitary character � 2 Char.T /, such that

(9.2) .M;J /' q�1.N;K/˝C C�:

In particular, Supp M D q�1.Supp N / is covered by translates of ker q .

Let X D Supp M . By Proposition 8.1, there is a subtorus S �T such that SCX DX

and such that Y DX=S is projective. Since Y is not contained in any proper subtorus,
it follows that AD T=S is an abelian variety. Let qW T !A be the quotient mapping,
which is proper and smooth of relative dimension dim q D dim S . This will not be our
final choice for Theorem 9.1, but it does have almost all the properties that we want
(except for the lower bound on the Euler characteristic).

Proposition 9.3 There is a simple .N;K/2HMC.A; w�dim q/ with strict support Y

and a unitary character � 2 Char.T / for which (9.2) holds.

By Theorem 4.4, .M;J / corresponds to a polarizable complex variation of Hodge
structure of weight w � dim X on a dense Zariski-open subset of X . The crucial
observation, due to Wang, is that we can choose this set to be of the form q�1.U /,
where U is a dense Zariski-open subset of the smooth locus of Y .

Lemma 9.4 There is a dense Zariski-open subset U � Y , contained in the smooth
locus of Y , and a polarizable complex variation of Hodge structure .H;J / of weight
w � dim X on q�1.U / such that .M;J / is the polarizable complex Hodge module
corresponding to .H;J / in Theorem 4.4.

Proof Let Z�X be the union of the singular locus of X and the singular locus of M .
Then Z is an analytic subset of X , and according to Theorem 1.3, the restriction of M

to X nZ is a polarizable real variation of Hodge structure H of weight w�dim X . By
Proposition 8.1, no irreducible component of Z of dimension dim X �1 dominates Y ;
we can therefore find a Zariski-open subset U � Y , contained in the smooth locus
of Y , such that the intersection q�1.U /\Z has codimension � 2 in q�1.U /. Now H
extends uniquely to a polarizable real variation of Hodge structure on the entire complex
manifold q�1.U /, see [32, Proposition 4.1]. The assertion about J follows easily.

For any y 2 U , the restriction of .H;J / to the fiber q�1.y/ is a polarizable complex
variation of Hodge structure on a translate of the compact complex torus ker q . By
Lemma 11.1, the restriction to q�1.y/ of the underlying local system

ker.JC � i � idW HC!HC/
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is the direct sum of local systems of the form C� for � 2 Char.T / unitary; when M

admits an integral structure, � has finite order in the group Char.T /.

Proof of Proposition 9.3 Let �2Char.T / be one of the unitary characters in question,
and let x� 2 Char.T / denote its complex conjugate. The tensor product .H;J /˝C Cx�
is a polarizable complex variation of Hodge structure of weight w � dim X on the
open subset q�1.U /. Since all fibers of qW q�1.U /! U are translates of the com-
pact complex torus ker q , classical Hodge theory for compact Kähler manifolds [43,
Theorem 2.9] implies that

(9.5) q�..H;J /˝C Cx�/

is a polarizable complex variation of Hodge structure of weight w� dim X on U ; in
particular, it is again semisimple. By our choice of � , the adjunction morphism

q�1q�..H;J /˝C Cx�/! .H;J /˝C Cx�

is nontrivial. Consequently, (9.5) must have at least one simple summand .HU ;K/ in
the category of polarizable complex variations of Hodge structure of weight w�dim X

for which the induced morphism q�1.HU ;K/! .H;J /˝C Cx� is nontrivial. Both
sides being simple, the morphism is an isomorphism; consequently,

(9.6) q�1.HU ;K/˝C C� ' .H;J /:

Now let .N;K/ 2 HMC.A; w � dim q/ be the polarizable complex Hodge mod-
ule on A corresponding to .HU ;K/; by construction, .N;K/ is simple with strict
support Y . Arguing as in [34, Lemma 20.2], one proves that the naive pullback
q�1.N;K/ 2 HMC.T; w/ is simple with strict support X . By (9.6), this means that
.M;J / is isomorphic to q�1.N;K/˝C C� in the category HMC.T; w/.

We have thus proved Theorem 9.1, except for the inequality �.A;N;K/ > 0. Let N
denote the regular holonomic D –module underlying N ; then

N DN 0˚N 00 D ker.K� i � id/˚ ker.KC i � id/;

where K 2 End.N / refers to the induced endomorphism. By Proposition 3.8, both N 0

and N 00 are simple with strict support Y . Since A is an abelian variety, one has, for
example by [34, Section 5], that

�.A;N;K/D
X
i2Z

.�1/i dim H i.A;DR.N 0//� 0:

Now the point is that a simple holonomic D –module with vanishing Euler characteristic
is always (up to a twist by a line bundle with flat connection) the pullback from a
lower-dimensional abelian variety [34, Section 20].

Geometry & Topology, Volume 21 (2017)



Hodge modules on complex tori and generic vanishing for compact Kähler manifolds 2441

Proof of Theorem 9.1 Keeping the notation from Proposition 9.3, we have a surjective
morphism qW T ! A with connected fibers, a simple polarizable complex Hodge
module .N;K/ 2 HMC.Y; w � dim q/ with strict support Y D q.X /, and a unitary
character � 2 Char.T / such that

.M;J /' q�1.N;K/˝C C�:

If .N;K/ has positive Euler characteristic, we are done, so let us assume from now on
that �.A;N;K/D 0. This means that N 0 is a simple regular holonomic D –module
with strict support Y and Euler characteristic zero.

By [34, Corollary 5.2], there is a surjective morphism f W A!B with connected fibers
from A to a lower-dimensional abelian variety B , such that N 0 is (up to a twist by a
line bundle with flat connection) the pullback of a simple regular holonomic D –module
with positive Euler characteristic. Setting

MDM0˚M00 D ker.J � i � id/˚ ker.J C i � id/;

it follows that M0 is (again up to a twist by a line bundle with flat connection) the
pullback by f ı q of a simple regular holonomic D –module on B . Consequently,
there is a dense Zariski-open subset U � f .Y / such that the restriction of M0 to
.f ıq/�1.U / is coherent as an O –module. By Lemma 4.3, the restriction of .M;J / to
this open set is therefore a polarizable complex variation of Hodge structure of weight
w � dim X . After replacing our original morphism qW T ! A by the composition
f ı qW T ! B , we can argue as in the proof of Proposition 9.3 to show that (9.2) is
still satisfied (for a different choice of � 2 Char.T /, perhaps).

With some additional work, one can prove that now �.A;N;K/ > 0. Alternatively,
the same result can be obtained by the following more indirect method: as long as
�.A;N;K/D 0, we can repeat the argument above; since the dimension of A goes
down each time, we must eventually get to the point where �.A;N;K/ > 0. This
completes the proof of Theorem 9.1.

10 Proof of the main result

As in Theorem 7.1, let .M;J / 2HMC.T; w/ be a polarizable complex Hodge module
on a compact complex torus T . Using the decomposition by strict support, we can
assume without loss of generality that .M;J / has strict support equal to an irreducible
analytic subvariety X � T . After translation, we may assume moreover that 0 2X .
Let T 0 � T be the smallest subtorus of T containing X ; by Kashiwara’s equivalence,
we have .M;J /D i�.M

0;J 0/ for some .M 0;J 0/2HMC.T
0; w/, where i W T 0 ,!T is

the inclusion. Now Theorem 9.1 gives us a morphism q0W T 0!A0 such that .M 0;J 0/

is isomorphic to the direct sum of pullbacks of polarizable complex Hodge modules
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twisted by unitary local systems. Since i�1W Char.T /! Char.T 0/ is surjective, the
same is then true for .M;J / with respect to the quotient mapping qW T ! T= ker q0 .
This proves Theorem 7.1.

Proof of Corollary 7.3 By considering the complexification

.M ˚M;JM / 2 HMC.T; w/;

we reduce the problem to the situation of Theorem 7.1. It remains to show that all the
characters in (7.2) have finite order in Char.T / if M admits an integral structure. By
Lemma 5.2, every summand in the decomposition of M by strict support still admits
an integral structure, and so we may assume without loss of generality that M has strict
support equal to X � T and that 0 2 X . As before, we have .M;J /D i�.M

0;J 0/,
where i W T 0 ,!T is the smallest subtorus of T containing X ; it is easy to see that M 0

again admits an integral structure. Now we apply the same argument as in the proof of
Theorem 7.1 to the finitely many simple factors of .M;J /, noting that the characters
� 2 Char.T / that come up always have finite order by Lemma 11.1 below.

Note As in the proof of Lemma 6.1, it follows that M ˚M is isomorphic to the
direct sum of the polarizable real Hodge modules

(10.1) ker.q�1
j Jj ˝J�j

C id/� q�1
j Nj ˝R H�j

:

Furthermore, one can show that, for each j D 1; : : : ; n, exactly one of two things
happens:

(1) Either the object in (10.1) is simple, and therefore occurs among the simple
factors of M ; in this case, the underlying regular holonomic D –module M will
contain the two simple factors

.q�j N
0

j ˝OT
.Lj ;rj //˚ .q

�
j N
00

j ˝OT
.Lj ;rj /

�1/:

(2) Or the object in (10.1) splits into two copies of a simple polarizable real Hodge
module, which also has to occur among the simple factors of M . In this case,
one can actually arrange that .Nj ;Jj / is real and that the character �j takes
values in f�1;C1g. The simple object in question is the twist of .Nj ;Jj / by
the polarizable real variation of Hodge structure of rank one determined by �j ;
moreover, M will contain q�j N

0
j ˝OT

.Lj ;rj /' q�j N
00

j ˝OT
.Lj ;rj /

�1 as a
simple factor.

11 A lemma about variations of Hodge structure

The fundamental group of a compact complex torus is abelian, and so every polarizable
complex variation of Hodge structure is a direct sum of unitary local systems of rank
one; this is the content of the following elementary lemma [35, Lemma 1.8]:
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Lemma 11.1 Let .H;J / be a polarizable complex variation of Hodge structure on a
compact complex torus T . Then the local system HC DHR˝R C is isomorphic to a
direct sum of unitary local systems of rank one. If H admits an integral structure, then
each of these local systems of rank one has finite order.

Proof According to [11, Section 1.12], the underlying local system of a polarizable
complex variation of Hodge structure on a compact Kähler manifold is semisimple;
in the case of a compact complex torus, it is therefore a direct sum of rank-one local
systems. The existence of a polarization implies that the individual local systems are
unitary [11, Proposition 1.13]. Now suppose that H admits an integral structure, and
let �W �1.A; 0/! GLn.Z/ be the monodromy representation. We already know that
the complexification of � is a direct sum of unitary characters. Since � is defined
over Z, the values of each character are algebraic integers of absolute value one; by
Kronecker’s theorem, they must be roots of unity.

12 Integral structure and points of finite order

One can combine the decomposition in Corollary 7.3 with known results about Hodge
modules on abelian varieties [35] to prove the following generalization of Wang’s
theorem:

Corollary 12.1 If M 2 HMR.T; w/ admits an integral structure, then the sets

S i
m.T;M /D f� 2 Char.T / j dim H i.T;MR˝R C�/�mg

are finite unions of translates of linear subvarieties by points of finite order.

Proof The result in question is known for abelian varieties: if M 2 HMR.A; w/ is
a polarizable real Hodge module on an abelian variety, and if M admits an integral
structure, then the sets S i

m.A;M / are finite unions of “arithmetic subvarieties” (namely
translates of linear subvarieties by points of finite order). This is proved in [35, Theo-
rem 1.4] for polarizable rational Hodge modules, but the proof carries over unchanged
to the case of real coefficients. The same argument shows more generally that if the
underlying perverse sheaf MC of a polarizable real Hodge module M 2 HMR.A; w/

is isomorphic to a direct factor in the complexification of some E 2Db
c.ZA/, then each

S i
m.A;M / is a finite union of arithmetic subvarieties.

Now let us see how to extend this result to compact complex tori. Passing to the
underlying complex perverse sheaves in Corollary 7.3, we get

MC '

nM
jD1

.q�1
j Nj ;C˝C C�j

/I

Geometry & Topology, Volume 21 (2017)



2444 Giuseppe Pareschi, Mihnea Popa and Christian Schnell

recall that Supp Nj is a projective subvariety of the complex torus Tj , and that
�j 2 Char.T / has finite order. In light of this decomposition and the comments
above, it is therefore enough to prove that each Nj ;C is isomorphic to a direct factor in
the complexification of some object of Db

c.ZTj
/.

Let E 2 Db
c.ZT / be some choice of integral structure on the real Hodge module M ;

obviously MC ' E˝Z C . Let r � 1 be the order of the point �j 2 Char.T /, and
denote by Œr �W T ! T the finite morphism given by multiplication by r . We define

E0 DRŒr ��.Œr �
�1E/ 2 Db

c.ZT /

and observe that the complexification of E0 is isomorphic to the direct sum of E˝ZC� ,
where �2Char.T / runs over the finite set of characters whose order divides r . This set
includes ��1

j , and so q�1
j Nj ;C is isomorphic to a direct factor of E0˝Z C . Because

qj W T ! Tj has connected fibers, this implies that

Nj ;C 'H� dim qj qj�.q
�1
j Nj ;C/

is isomorphic to a direct factor of

H� dim qj qj�.E
0
˝Z C/:

As explained in [35, Section 1.2.2], this is again the complexification of a constructible
complex in Db

c.ZTj
/, and so the proof is complete.

D Generic vanishing theory

Let X be a compact Kähler manifold, and let f W X ! T be a holomorphic mapping
to a compact complex torus. The main purpose of this chapter is to show that the higher
direct image sheaves Rjf�!X have the same properties as in the projective case (such
as being GV-sheaves). As explained in the introduction, we do not know how to obtain
this using classical Hodge theory; this forces us to prove a more general result for
arbitrary polarizable complex Hodge modules.

13 GV-sheaves and M–regular sheaves

We begin by reviewing a few basic definitions. Let T be a compact complex torus,
yT D Pic0.T / its dual, and P the normalized Poincaré bundle on the product T � yT .
It induces an integral transform

RˆP W Db
coh.OT /! Db

coh.O yT /; RˆP .F /DRp2�.p
�
1F ˝P /;

where Db
coh.OT / is the derived category of cohomologically bounded and coherent

complexes of OT –modules. Likewise, we have R‰P W Db
coh.O yT /! Db

coh.OT / going
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in the opposite direction. An argument analogous to Mukai’s for abelian varieties
shows that the Fourier–Mukai equivalence holds in this case as well [3, Theorem 2.1].

Theorem 13.1 With the notations above, RˆP and R‰P are equivalences of derived
categories. More precisely, one has

R‰P ıRˆP ' .�1/�T Œ� dim T � and RˆP ıR‰P ' .�1/�
yT
Œ� dim T �:

Given a coherent OT –module F and an integer m� 1, we define

S i
m.T;F /D fL 2 Pic0.T / j dim H i.T;F ˝OT

L/�mg:

It is customary to denote

S i.T;F /D S i
1.T;F /D fL 2 Pic0.T / jH i.T;F ˝OT

L/¤ 0g:

Recall the following definitions, from [23] and [21], respectively.

Definition 13.2 A coherent OT –module F is called a GV-sheaf if the inequality

codimPic0.T / S i.T;F /� i

is satisfied for every integer i � 0. It is called M–regular if the inequality

codimPic0.T / S i.T;F /� i C 1

is satisfied for every integer i � 1.

A number of local properties of integral transforms for complex manifolds, based only
on commutative algebra results, were proved in [22; 25]. For instance, the following is
a special case of [22, Theorem 2.2]:

Theorem 13.3 Let F be a coherent sheaf on a compact complex torus T . Then the
following statements are equivalent:

(i) F is a GV-sheaf.

(ii) RiˆP .R�F /D 0 for i ¤ dim T , where R�F WDRHom.F ;OT /.

Note that this statement was inspired by work of Hacon [15] in the projective setting.
In the course of the proof of Theorem 13.3, and also for some of the results below,
the following consequence of Grothendieck duality for compact complex manifolds is
needed:

(13.4) RˆP .F /'R�.RˆP�1.R�F /Œdim T �/I

see the proof of [22, Theorem 2.2], and especially the references there. In particular, if
F is a GV-sheaf, then if we let �F WDRdim TˆP�1.R�F /, Theorem 13.3 and (13.4)
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imply that

(13.5) RˆP .F /'RHom. �F ;O yA/:
As in [24, Proposition 2.8], F is M–regular if and only if �F is torsion-free.

The fact that Theorems 13.1 and 13.3 and (13.5) hold for arbitrary compact complex tori
allows us to deduce important properties of GV-sheaves in this setting. Besides these
statements, the proofs only rely on local commutative algebra and base change, and
so are completely analogous to those for abelian varieties; we will thus only indicate
references for that case.

Proposition 13.6 Let F be a GV-sheaf on T .

(a) One has Sdim T .T;F /� � � � � S1.T;F /� S0.T;F /� yT .

(b) If S0.T;F / is empty, then F D 0.

(c) If an irreducible component Z � S0.T;F / has codimension k in Pic0.X /,
then Z � Sk.T;F /, and hence dim Supp F � k .

Proof For (a), see [23, Proposition 3.14]; for (b), see [20, Lemma 1.12]; for (c), see
[20, Lemma 1.8].

14 Higher direct images of dualizing sheaves

Saito [29] and Takegoshi [38] have extended to Kähler manifolds many of the funda-
mental theorems on higher direct images of canonical bundles proved by Kollár for
smooth projective varieties. The following theorem summarizes some of the results in
[38, pages 390–391] in the special case that is needed for our purposes.

Theorem 14.1 (Takegoshi) Let f W X ! Y be a proper holomorphic mapping
from a compact Kähler manifold to a reduced and irreducible analytic space, and
let L 2 Pic0.X / be a holomorphic line bundle with trivial first Chern class.

(a) The Leray spectral sequence

E
p;q
2
DH p.Y;Rqf�.!X ˝L//)H pCq.X; !X ˝L/

degenerates at E2 .

(b) If f is surjective, then Rqf�.!X ˝ L/ is torsion-free for every q � 0; in
particular, it vanishes for q > dim X � dim Y .

Saito [29] obtained the same results in much greater generality, using the theory of
Hodge modules. In fact, his method also gives the splitting of the complex Rf�!X
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in the derived category, thus extending the main result of [17] to all compact Kähler
manifolds.

Theorem 14.2 (Saito) Keeping the assumptions of the previous theorem, one has

Rf�!X '

M
j

.Rjf�!X /Œ�j �

in the derived category Db
coh.OY /.

Proof Given [29], the proof in [31] goes through under the assumption that X is a
compact Kähler manifold.

15 Euler characteristic and M–regularity

In this section, we relate the Euler characteristic of a simple polarizable complex Hodge
module on a compact complex torus T to the M–regularity of the associated graded
object.

Lemma 15.1 Let .M;J / 2 HMC.T; w/ be a simple polarizable complex Hodge
module on a compact complex torus. If Supp M is projective and �.T;M;J / > 0,
then the coherent OT –module grF

k
M0 is M–regular for every k 2 Z.

Proof Supp M is projective, hence contained in a translate of an abelian subvariety
A� T ; because Lemma 1.4 holds for polarizable complex Hodge modules, we may
therefore assume without loss of generality that T DA is an abelian variety.

As usual, let MDM0˚M00 D ker.J � i � id/˚ ker.J C i � id/ be the decomposition
into eigenspaces. The summand M0 is a simple holonomic D –module with positive
Euler characteristic on an abelian variety, and so [34, Theorem 2.2 and Corollary 20.5]
show that

(15.2) f� 2 Char.A/ jH i.A;DR.M0/˝C C�/¤ 0g

is equal to Char.A/ when i D 0, and is equal to a finite union of translates of linear
subvarieties of codimension � 2i C 2 when i � 1.

We have a one-to-one correspondence between Pic0.A/ and the subgroup of unitary
characters in Char.A/; it takes a unitary character � 2Char.A/ to the holomorphic line
bundle L� DC�˝C OA . If � 2 Char.A/ is unitary, the twist .M;J /˝C C� is still a
polarizable complex Hodge module by Lemma 6.1, and so the complex computing its
hypercohomology is strict. It follows that

H i.A; grF
k DR.M0/˝OA

L�/ is a subquotient of H i.A;DR.M0/˝C C�/:
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If we identify Pic0.A/ with the subgroup of unitary characters, this means that

fL 2 Pic0.A/ jH i.A; grF
k DR.M0/˝OA

L/¤ 0g

is contained in the intersection of (15.2) and the subgroup of unitary characters.
When i � 1, this intersection is a finite union of translates of subtori of codimension
� i C 1; it follows that

codimPic0.A/fL 2 Pic0.A/ jH i.A; grF
k DR.M0/˝OA

L/¤ 0g � i C 1:

Since the cotangent bundle of A is trivial, a simple induction on k as in the proof of
[26, Lemma 1] gives

codimPic0.A/fL 2 Pic0.A/ jH i.A; grF
k M0˝OA

L/¤ 0g � i C 1;

and so each grF
k
M0 is indeed M–regular.

Note In fact, the result still holds without the assumption that Supp M is projective;
this is an easy consequence of the decomposition in (7.2).

16 Chen–Jiang decomposition and generic vanishing

Using the decomposition in Theorem 7.1 and the result of the previous section, we
can now prove the most general version of the generic vanishing theorem, namely
Theorem D in the introduction.

Proof of Theorem D We apply Theorem 7.1 to the complexification .M ˚M;JM /

in HMC.T; w/. Passing to the associated graded in (7.2), we obtain a decomposition
of the desired type with Fj D grF

k
N 0j and Lj DC�j

˝C OT , where

Nj DN 0j ˚N 00j D ker.Jj � i � id/˚ ker.Jj C i � id/

is as usual the decomposition into eigenspaces of Jj 2 End.Nj /. Since Supp Nj is
projective and �.Tj ;Nj ;Jj / > 0, we conclude from Lemma 15.1 that each coherent
OTj

–module Fj is M–regular.

Corollary 16.1 If M D .M;F�M;MR/ 2 HMR.T; w/, then for every k 2 Z the
coherent OT –module grF

k
M is a GV-sheaf.

Proof This follows immediately from Theorem D and the fact that, if pW T ! T0 is a
surjective homomorphism of complex tori and G is a GV-sheaf on T0 , then F D f �G

is a GV-sheaf on T . For this last statement and more refined facts (for instance when
G is M–regular), see eg [9, Section 2], especially Proposition 2.6. The arguments
in [9] are for abelian varieties, but given the remarks in Section 13, they work equally
well on compact complex tori.
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By specializing to the direct image of the canonical Hodge module RX Œdim X � along a
morphism f W X!T , we are finally able to conclude that each Rjf�!X is a GV-sheaf.
In fact, we have the more refined Theorem A; it was first proved for smooth projective
varieties of maximal Albanese dimension by Chen and Jiang [9, Theorem 1.2], which
was a source of inspiration for us.

Proof of Theorem A Denote by RX Œdim X � 2 HMR.X; dim X / the polarizable real
Hodge module corresponding to the constant real variation of Hodge structure of rank
one and weight zero on X . According to [29, Theorem 3.1], each Hjf�RX Œdim X � is
a polarizable real Hodge module of weight dim X C j on T ; it also admits an integral
structure [35, Section 1.2.2]. In the decomposition by strict support, let M be the
summand with strict support f .X /; note that M still admits an integral structure by
Lemma 5.2. Now Rjf�!X is the first nontrivial piece of the Hodge filtration on the
underlying regular holonomic D –module [31], and so the result follows directly from
Theorem D and Corollary 16.1. For the ampleness, see Corollary 20.1.

Note Except for the assertion about finite order, Theorem A still holds for arbitrary
coherent OT –modules of the form

Rjf�.!X ˝L/

with L 2 Pic0.X /. The point is that every such L is the holomorphic line bundle
associated with a unitary character � 2 Char.X /; we can therefore apply the same
argument as above to the polarizable complex Hodge module C�Œdim X �.

If the given morphism is generically finite over its image, we can say more:

Corollary 16.2 If f W X ! T is generically finite over its image, then S0.T; f�!X /

is preserved by the involution L 7!L�1 of Pic0.T /.

Proof As before, we define M DH0f�RX Œdim X � 2 HMR.T; dim X /. Recall from
Corollary 7.3 that we have a decomposition

.M ˚M;JM /'

nM
jD1

.q�1
j .Nj ;Jj /˝C C�j

/:

Since f is generically finite over its image, there is a dense Zariski-open subset of f .X /
where M is a variation of Hodge structure of type .0; 0/; the above decomposition
shows that the same is true for Nj on .qj ıf /.X /. If we pass to the underlying regular
holonomic D –modules and remember Lemma 6.1, we see that

M˚M'
nM

jD1

.q�j N
0

j ˝OT
.Lj ;rj //˚

nM
jD1

.q�j N
00

j ˝OT
.Lj ;rj /

�1/;
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where .Lj ;rj / is the flat bundle corresponding to the character �j . By looking at the
first nontrivial step in the Hodge filtration on M, we then get

f�!X ˚f�!X '

nM
jD1

.q�j F 0j ˝OT
Lj /˚

nM
jD1

.q�j F 00j ˝OT
L�1

j /;

where F 0j D Fp.M /N 0j and F 00j D Fp.M /N 00j , and p.M / is the smallest integer with
the property that FpM¤ 0. Both sheaves are torsion-free on .qj ı f /.X /, and can
therefore be nonzero only when Supp Nj D .qj ı f /.X /; after reindexing, we may
assume that this holds exactly in the range 1� j �m.

Now we reach the crucial point of the argument: the fact that Nj is generically a
polarizable real variation of Hodge structure of type .0; 0/ implies that F 0j and F 00j
have the same rank at the generic point of .qj ıf /.X /. Indeed, on a dense Zariski-open
subset of .qj ı f /.X /, we have F 0j DN 0j and F 00j DN 00j , and complex conjugation
with respect to the real structure on Nj interchanges the two factors.

Since F 0j and F 00j are M–regular by Lemma 15.1, we have (for 1� j �m)

S0.T; q�j F 0j ˝OT
Lj /DL�1

j ˝S0.Tj ;F
0

j /DL�1
j ˝Pic0.Tj /;

and similarly for q�j F 00j ˝OT
L�1

j ; to simplify the notation, we identify Pic0.Tj / with
its image in Pic0.T /. The decomposition from above now gives

S0.T; f�!X /D

m[
jD1

.L�1
j ˝Pic0.Tj //[

m[
jD1

.Lj ˝Pic0.Tj //;

and the right-hand side is clearly preserved by the involution L 7!L�1 .

17 Points of finite order on cohomology support loci

Let f W X ! T be a holomorphic mapping from a compact Kähler manifold to a
compact complex torus. Our goal in this section is to prove that the cohomology
support loci of the coherent OT –modules Rjf�!X are finite unions of translates of
subtori by points of finite order. We consider the refined cohomology support loci

S i
m.T;R

jf�!X /D fL 2 Pic0.T / j dim H i.T;Rjf�!X ˝L/�mg � Pic0.T /:

The following result is well-known in the projective case:

Corollary 17.1 Every irreducible component of S i
m.T;R

jf�!X / is a translate of a
subtorus of Pic0.T / by a point of finite order.
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Proof As in the proof of Theorem A (in Section 16), we let M 2HMR.T; dim XCj /

be the summand with strict support f .X / in the decomposition by strict support of
Hjf�RX Œdim X �; then M admits an integral structure, and

Rjf�!X ' Fp.M /M;

where p.M / again means the smallest integer such that FpM ¤ 0. Since M still
admits an integral structure by Lemma 5.2, the result in Corollary 12.1 shows that the
sets

S i
m.T;M /D f� 2 Char.T / j dim H i.T;MR˝R C�/�mg

are finite unions of translates of linear subvarieties by points of finite order. As in the
proof of Lemma 15.1, the strictness of the complex computing the hypercohomology
of .M ˚M;JM /˝C C� implies that

dim H i.T;MR˝R C�/D
X
p2Z

dim H i.T; grF
p DR.M/˝OT

L�/

for every unitary character �2Char.T /; here L�DC�˝C OT . Note that grF
p DR.M/

is acyclic for p�0, and so the sum on the right-hand side is actually finite. Intersecting
S i

m.T;M / with the subgroup of unitary characters, we see that each set�
L 2 Pic0.T /

ˇ̌̌ X
p2Z

dim H i.T; grF
p DR.M/˝OT

L/�m

�
is a finite union of translates of subtori by points of finite order. By a standard argument
[1, page 312], it follows that the same is true for each of the summands; in other words,
for each p 2 Z, the set

S i
m.T; grF

p DR.M//� Pic0.T /

is itself a finite union of translates of subtori by points of finite order. Since

grF
p.M / DR.M/D !T ˝Fp.M /M'Rjf�!X ;

we now obtain the assertion by specializing to p D p.M /.

Note Alternatively, one can deduce Corollary 17.1 from Wang’s theorem [41] about
cohomology jump loci on compact Kähler manifolds, as follows. Wang shows that
the sets S

p;q
m .X / D fL 2 Pic0.X / j dim H q.X; �

p
X
˝L/ � mg are finite unions of

translates of subtori by points of finite order; in particular, this is true for !X D�
dim X
X

.
Takegoshi’s results about higher direct images of !X in Theorem 14.1 imply the
E2 –degeneration of the spectral sequence

E
i;j
2
DH i.T;Rjf�!X ˝L/)H iCj .X; !X ˝f

�L/
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for every L 2 Pic0.T /, which means that

dim H q.X; !X ˝f
�L/D

X
kCjDq

dim H k.T;Rjf�!X ˝L/:

The assertion now follows from Wang’s theorem by the same argument as above.

E Applications

18 Bimeromorphic characterization of tori

Our main application of generic vanishing for higher direct images of dualizing sheaves
is an extension of the Chen–Hacon birational characterization of abelian varieties [6]
to the Kähler case.

Theorem 18.1 Let X be a compact Kähler manifold with P1.X /D P2.X /D 1 and
h1;0.X /D dim X . Then X is bimeromorphic to a compact complex torus.

Throughout this section, we take X to be a compact Kähler manifold, and denote by
f W X ! T its Albanese mapping; by assumption, we have

dim T D h1;0.X /D dim X:

We use the following standard notation, analogous to that in Section 13:

S i.X; !X /D fL 2 Pic0.X / jH i.X; !X ˝L/¤ 0g

To simplify things, we shall identify Pic0.X / and Pic0.T / in what follows. We begin
by recalling a few well-known results.

Lemma 18.2 If P1.X /D P2.X /D 1, there cannot be any positive-dimensional ana-
lytic subvariety Z � Pic0.X / such that both Z and Z�1 are contained in S0.X; !X /.
In particular, the origin must be an isolated point in S0.X; !X /.

Proof This result is due to Ein and Lazarsfeld [12, Proposition 2.1]; they state it only
in the projective case, but their proof actually works without any changes on arbitrary
compact Kähler manifolds.

Lemma 18.3 Assume that S0.X; !X / contains isolated points. Then the Albanese
map of X is surjective.

Proof By Theorem A (for j D 0), f�!X is a GV-sheaf. Proposition 13.6 shows that
any isolated point in S0.T; f�!X /D S0.X; !X / also belongs to Sdim T .T; f�!X /;
but this is only possible if the support of f�!X has dimension at least dim T .
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To prove Theorem 18.1, we follow the general strategy introduced in [20, Section 4],
which in turn is inspired by [12; 7]. The crucial new ingredient is of course Theorem A,
which had only been known in the projective case. Even in the projective case however,
the argument below is substantially cleaner than the existing proofs; this is due to
Corollary 16.2.

Proof of Theorem 18.1 The Albanese map f W X ! T is surjective by Lemmas 18.2
and 18.3; since h1;0.X /D dim X , this means that f is generically finite. To conclude
the proof, we just have to argue that f has degree one; more precisely, we shall use
Theorem A to show that f�!X ' OT .

As a first step in this direction, let us prove that dim S0.T; f�!X /D 0. If

S0.T; f�!X /D S0.X; !X /

had an irreducible component Z of positive dimension, Corollary 16.2 would imply
that Z�1 is contained in S0.X; !X / as well. As this would contradict Lemma 18.2,
we conclude that S0.T; f�!X / is zero-dimensional.

Now f�!X is a GV-sheaf by Theorem A, and so Proposition 13.6 shows that

S0.T; f�!X /D Sdim T .T; f�!X /:

Since f is generically finite, Theorem 14.1 implies that Rjf�!X D 0 for j > 0, which
gives

Sdim T .T; f�!X /D Sdim T .X; !X /D Sdim X .X; !X /D fOT g:

Putting everything together, we see that S0.T; f�!X /D fOT g.

We can now use the Chen–Jiang decomposition for f�!X to get more information.
The decomposition in Theorem A (for j D 0) implies that

fOT g D S0.T; f�!X /D

n[
kD1

L�1
k ˝Pic0.Tk/;

where we identify Pic0.Tk/ with its image in Pic0.T /. This equality forces f�!X to
be a trivial bundle of rank n; but then

nD dim H dim T .T; f�!X /D dim H dim X .X; !X /D 1;

and so f�!X ' OT . The conclusion is that f is generically finite of degree one, and
hence birational, as asserted by the theorem.

19 Connectedness of the fibers of the Albanese map

As another application, one obtains the following analogue of an effective version of
Kawamata’s theorem on the connectedness of the fibers of the Albanese map, proved
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by Jiang [16, Theorem 3.1] in the projective setting. Note that the statement is more
general than Theorem 18.1, but uses it in its proof.

Theorem 19.1 Let X be a compact Kähler manifold with P1.X /DP2.X /D 1. Then
the Albanese map of X is surjective, with connected fibers.

Proof The proof goes entirely along the lines of [16]. We only indicate the neces-
sary modifications in the Kähler case. We have already seen that the Albanese map
f W X ! T is surjective. Consider its Stein factorization:

X

Y T

g
f

h

Up to passing to a resolution of singularities and allowing h to be generically finite, we
can assume that Y is a compact complex manifold. Moreover, by [40, Théorème 3],
after performing a further bimeromorphic modification, we can assume that Y is in
fact compact Kähler. This does not change the hypothesis P1.X /D P2.X /D 1.

The goal is to show that Y is bimeromorphic to a torus, which is enough to conclude.
If one could prove that P1.Y / D P2.Y / D 1, then Theorem 18.1 would do the job.
In fact, one can show precisely as in [16, Theorem 3.1] that H 0.X; !X=Y /¤ 0, and
consequently that

Pm.Y /� Pm.X / for all m� 1:

The proof of this statement needs the degeneration of the Leray spectral sequence for
g�!X , which follows from Theorem 14.1, and the fact that f�!X is a GV-sheaf, which
follows from Theorem A. Besides this, the proof is purely Hodge-theoretic, and hence
works equally well in the Kähler case.

20 Semipositivity of higher direct images

In the projective case, GV-sheaves automatically come with positivity properties;
more precisely, on abelian varieties it was proved in [10, Corollary 3.2] that M–regular
sheaves are ample, and in [24, Theorem 4.1] that GV-sheaves are nef. Due to Theorem D
a stronger result in fact holds true for arbitrary graded quotients of Hodge modules on
compact complex tori.

Recall that to a coherent sheaf F on a compact complex manifold one can associate
the analytic space P .F /DP .Sym�F /, with a natural mapping to X and a line bundle
OP.F /.1/. If X is projective, the sheaf F is called ample if the line bundle OP.F /.1/

is ample on P .F /.
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Corollary 20.1 Let M D .M;F�M;MR/ be a polarizable real Hodge module on a
compact complex torus T . Then, for each k 2 Z, the coherent OT –module grF

k
M

admits a decomposition

grF
k M'

nM
jD1

.q�j Fj ˝OT
Lj /;

where qj W T ! Tj is a quotient torus, Fj is an ample coherent OTj
–module whose

support Supp Fj is projective, and Lj 2 Pic0.T /.

Proof By Theorem D we have a decomposition as in the statement, where each Fj

is an M–regular sheaf on the abelian variety generated by its support. But then [10,
Corollary 3.2] implies that each Fj is ample.

The ampleness part in Theorem A is then a consequence of the proof in Section 16
and the statement above. It implies that higher direct images of canonical bundles have
a strong semipositivity property (corresponding to semiampleness in the projective
setting). Even the following very special consequence seems to go beyond what can be
said for arbitrary holomorphic mappings of compact Kähler manifolds (see eg [19]).

Corollary 20.2 Let f W X ! T be a surjective holomorphic mapping from a compact
Kähler manifold to a complex torus. If f is a submersion outside of a simple normal
crossings divisor on T , then each Rif�!X is locally free and admits a smooth hermitian
metric with semipositive curvature (in the sense of Griffiths).

Proof Note that if f is surjective, then Theorem 14.1 implies that Rif�!X are all
torsion-free. If one assumes in addition that f is a submersion outside of a simple
normal crossings divisor on T , then they are locally free; see [38, Theorem V]. Because
of the decomposition in Theorem A, it is therefore enough to show that an M–regular
locally free sheaf on an abelian variety always admits a smooth hermitian metric with
semipositive curvature. But this is an immediate consequence of the fact that M–regular
sheaves are continuously globally generated [22, Proposition 2.19].

The existence of a metric with semipositive curvature on a vector bundle E implies
that the line bundle OP.E/.1/ is nef, but is in general known to be a strictly stronger
condition. Corollary 20.2 suggests the following question:

Problem Let T be a compact complex torus. Suppose that a locally free sheaf E

on T admits a smooth hermitian metric with semipositive curvature (in the sense of
Griffiths or Nakano). Does this imply the existence of a decomposition

E '

nM
kD1

.q�kEk ˝Lk/
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as in Theorem A, in which each locally free sheaf Ek has a smooth hermitian metric
with strictly positive curvature?

21 Leray filtration

Let f W X ! T be a holomorphic mapping from a compact Kähler manifold X to
a compact complex torus T . We use Theorem A to describe the Leray filtration on
the cohomology of !X , induced by the Leray spectral sequence associated to f .
Recall that, for each k , the Leray filtration on H k.X; !X / is a decreasing filtration
L�H k.X; !X / with the property that

gri
L H k.X; !X /DH i.T;Rk�if�!X /:

On the other hand, one can define a natural decreasing filtration F �H k.X; !X / induced
by the action of H 1.T;OT /, namely

F iH k.X; !X /D Im
�Vi

H 1.T;OT /˝H k�i.X; !X /!H k.X; !X /
�
:

It is obvious that the image of the cup product mapping

(21.1) H 1.T;OT /˝LiH k.X; !X /!H kC1.X; !X /

is contained in the subspace LiC1H kC1.X; !X /. This implies that

F iH k.X; !X /�LiH k.X; !X / for all i 2 Z:

This inclusion is actually an equality, as shown by the following result:

Theorem 21.2 The image of the mapping in (21.1) is equal to LiC1H kC1.X; !X /.
Consequently, the two filtrations L�H k.X; !X / and F �H k.X; !X / coincide.

Proof By [18, Theorem A], the graded module

Q
j
X
D

dim TM
iD0

H i.T;Rjf�!X /

over the exterior algebra on H 1.T;OT / is 0–regular, hence generated in degree 0.
(Since each Rjf�!X is a GV-sheaf by Theorem A, the proof in [18] carries over to
the case where X is a compact Kähler manifold.) This means that the cup product
mappings Vi

H 1.T;OT /˝H 0.T;Rjf�!X /!H i.T;Rjf�!X /

are surjective for all i and j , which in turn implies that the mappings

H 1.T;OT /˝ gri
L H k.X; !X /! griC1

L
H kC1.X; !X /

are surjective for all i and k . This implies the assertion by ascending induction.
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If we represent cohomology classes by smooth forms, Hodge conjugation and Serre
duality provide for each k � 0 a hermitian pairing

H 0.X; �n�k
X /�H k.X; !X /!C; .˛; ˇ/ 7!

Z
X

˛^ x̌;

where nD dim X . The Leray filtration on H k.X; !X / therefore induces a filtration
on H 0.X; �n�k

X
/; concretely, with a numerical convention which again gives us a

decreasing filtration with support in the range 0; : : : ; k , we have

LiH 0.X; �n�k
X /D f˛ 2H 0.X; �n�k

X / j ˛ ?LkC1�iH k.X; !X /g:

Using the description of the Leray filtration in Theorem 21.2, and the elementary fact
that Z

X

˛^ � ^ˇ D

Z
X

˛^ x� ^ x̌

for all � 2H 1.X;OX /, we can easily deduce that LiH 0.X; �n�k
X

/ consists of those
holomorphic .n�k/–forms whose wedge product withVkC1�i

H 0.X; �1
X /

vanishes. In other words, for all j we have:

Corollary 21.3 The induced Leray filtration on H 0.X; �
j
X
/ is given by

LiH 0.X; �
j
X
/D

n
˛ 2H 0.X; �

j
X
/
ˇ̌
˛^

VnC1�i�j
H 0.X; �1

X /D 0
o
:

Remark It is precisely the fact that we do not know how to obtain this basic description
of the Leray filtration using standard Hodge theory that prevents us from giving a proof
of Theorem A in the spirit of [13], and forces us to appeal to the theory of Hodge
modules for the main results.
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Non-Kähler complex structures on R4

ANTONIO J DI SCALA

NAOHIKO KASUYA

DANIELE ZUDDAS

We construct the first examples of non-Kähler complex structures on R4 . These
complex surfaces have some analogies with the complex structures constructed in the
early fifties by Calabi and Eckmann on the products of two odd-dimensional spheres.
However, our construction is quite different from that of Calabi and Eckmann.

32Q15; 57R40, 57R42

1 Introduction

In the early fifties, Calabi and Eckmann [3] constructed an integrable complex structure
on the Cartesian product of odd-dimensional spheres Mp;q D S2pC1 �S2qC1 . These
complex manifolds are nothing but complex tori for p D q D 0, while for p � 1 and
q D 0 (or p D 0 and q � 1), they are Hopf manifolds; see Hopf [9]. It is remarkable
that the manifolds Mp;q (for all nonzero p and q ) were the first examples of simply
connected, compact complex manifolds which are not algebraic. Moreover, there is a
holomorphic torus bundle hp;qW Mp;q!CPp

�CPq given by the Hopf fibration on
each factor.

By removing a point on each sphere and taking the product, we get an open subset
Ep;q �Mp;q which is diffeomorphic to R2pC2qC2 . If p; q � 1, most fibers of the
bundle hp;q are contained in Ep;q . Thus, Ep;q contains embedded holomorphic tori.
Therefore, it neither admits a Kähler metric nor can be covered by a single holomorphic
coordinate chart. Calabi and Eckmann also proved that the only holomorphic functions
on Ep;q are the constants.

Definition 1.1 A complex manifold M is said to be of Calabi–Eckmann type if
there exist a compact complex manifold X of positive dimension and a holomorphic
immersion kW X !M which is null-homotopic as a continuous map.

It follows that a Calabi–Eckmann type complex manifold cannot be tamed by a symplec-
tic form, and in particular it is not Kähler. As a consequence, Stein manifolds, complex
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algebraic manifolds, and open subsets of Cn with the induced complex structure are
not of Calabi–Eckmann type.

On the other hand, the manifolds Mp;q and Ep;q are of Calabi–Eckmann type for
p; q� 1. Notice that R4 is not included in this list. Also notice that the Hopf manifolds
Mp;0 D S2pC1 �S1 , p � 1, are not of Calabi–Eckmann type, since their universal
cover is CpC1�f0g (see Proposition 1.2).

The aim of this article is to construct Calabi–Eckmann type complex structures on R4 .
This represents a major improvement of our previous result [5], where we constructed
a nonintegrable almost complex structure on R4 that contains embedded holomorphic
tori and an immersed holomorphic sphere with one node. The methods used there
were inspired by previous work of the second author [10; 11] (see also Di Scala and
Vezzoni [6] and Di Scala and Zuddas [7] for related results).

The following proposition is an immediate consequence of the definition.

Proposition 1.2 Let M and N be complex manifolds, with M of Calabi–Eckmann
type. Then N is of Calabi–Eckmann type if either

(1) there is an immersion of M into N , or

(2) there is a covering map pW N !M.

Throughout this paper, we denote by P the open subset of the plane defined by

P D
˚
.�1; �2/ 2R2

j 0< �1 < 1; 1< �2 < �
�1
1

	
;

and we always assume .�1; �2/ 2 P.

We are now ready to state our main theorem.

Theorem 1.3 There is a family of Calabi–Eckmann-type complex structures fJ.�1;�2/g

on R4 , parametrized by .�1; �2/ 2 P , and a surjective map f W R4!CP1 with only
one critical point, such that:

(1) f is holomorphic with respect to J.�1; �2/ and the complex hessian at the
critical point of f is of maximal rank, for all .�1; �2/ 2 P ;

(2) the only holomorphic functions on .R4;J.�1; �2// are the constants;

(3) J.�1; �2/ depends smoothly on .�1; �2/ 2 P ;

(4) .R4;J.�1; �2// is not biholomorphic to .R4;J.�0
1
; �0

2
// for any .�1; �2/ ¤

.�0
1
; �0

2
/;

(5) the fibers of f are either an immersed holomorphic sphere with one node,
embedded holomorphic cylinders, or embedded holomorphic tori.

We denote by E.�1; �2/ the complex manifold .R4;J.�1; �2//.

Geometry & Topology, Volume 21 (2017)
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Remark Property (1) implies that f can be locally expressed by f .z1; z2/D z2
1
Cz2

2

in a neighborhood of the critical point, with respect to suitable local holomorphic
coordinates in the complex structure J.�1; �2/. In other words, f has a Lefschetz
critical point. In fact, as we shall see below, f is the restriction of an achiral Lefschetz
fibration on S4 .

As far as we know, J.�1; �2/ are the first examples of non-Kähler complex structures
on R4 . In [4] we prove some further properties of E.�1; �2/, as well as an existence
result for Calabi–Eckmann-type complex structures on all smooth connected open
oriented 4–manifolds.

Remark Ramanujam in [14] proved that a complex algebraic surface homeomorphic
to C2 must be isomorphic to C2 . Among many known constructions of nonstandard
complex R4s, we mention Boc Thaler and Forstnerič [2] and Wold [15].

The following proposition gives a classification of the holomorphic curves of E.�1; �2/.

Proposition 1.4 If S is a compact connected Riemann surface and gW S!E.�1; �2/

is holomorphic, then either g is constant or g.S/ is a compact fiber of f . It follows
that the only compact holomorphic curves of E.�1; �2/ are the compact fibers of f ,
namely embedded holomorphic tori or the immersed holomorphic sphere.

The following is a corollary of Theorem 1.3.

Corollary 1.5 The blowup E.�1; �2/ # mCP2 is a Calabi–Eckmann-type complex
manifold. In particular, mCP2

�fptg admits uncountably many non-Kähler complex
structures that are pairwise biholomorphically distinct. Moreover, the only holomorphic
functions on the blowup E.�1; �2/ # mCP2 are the constants.

The paper is organized as follows. In Section 2, we recall the construction of the
Matsumoto–Fukaya torus fibration on S4 , which is a genus-1 Lefschetz fibration
over S2 . This fibration plays a central role in the proof of Theorem 1.3. As an
application, we derive a certain decomposition of R4 in Proposition 2.1.

In Section 3, we construct the complex structure J.�1; �2/ and the holomorphic map f ,
and we prove Theorem 1.3 and Corollary 1.5.

2 The Matsumoto–Fukaya fibration on S 4

In the early eighties, Yukio Matsumoto [13] constructed a genus-1 achiral Lefschetz
fibration f W S4!S2 , having two critical points of opposite signs. As was remarked by
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Matsumoto himself in the same article, Kenji Fukaya gave an important contribution in
the understanding of this fibration. For this reason, in a private conversation Matsumoto
suggested to us to call f the Matsumoto–Fukaya fibration, and we are glad to follow
his suggestion.

Without going into details, f can be defined as follows. Start with the Hopf fibration
hW S3! S2 , and take the suspension ˙hW ˙S3!˙S2 . There is a canonical smooth-
ing ˙SnŠSnC1 , which makes the suspension ˙h into a smooth map ˙hW S4!S3 ;
see also our paper [5] for an explicit computation.

The composition f 0 D h ı˙h is a torus fibration with two Lefschetz singularities, but
the two critical points belong to the same fiber. Indeed, the following formula can be
easily obtained [5]:

f 0.z1; z2;x/D
�
4z1 Nz2.jz1j

2
� jz2j

2
� ix

p
2�x2 /; 8jz1j

2
jz2j

2
� 1

�
;

where S2n is thought as the unit sphere in Cn �R defined by the equation

jz1j
2
C � � �C jznj

2
Cx2

D 1:

In order to get two distinct singular fibers, we slightly perturb f 0 and the result is
the Matsumoto–Fukaya torus fibration f W S4! S2 . A description of this fibration is
given also in the book of Gompf and Stipsicz [8, Example 8.4.7] in terms of a Kirby
diagram, which is depicted in Figure 1, where the framings are with respect to the
blackboard framing.

1 �1 0

1

[ 2H 3[H 4

Figure 1: The Matsumoto–Fukaya fibration on S4

We now explain this Kirby diagram and show how it can be derived. Let a1 2 S2

be the positive critical value of f , and let a2 be the negative one. Decompose the
base space S2 as the union of two disks D1 and D2 such that aj 2 Int Dj , and put
Nj D f

�1.Dj /. Then Nj is a tubular neighborhood of Fj D f
�1.aj /� S4 .

Geometry & Topology, Volume 21 (2017)
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It follows that @N1 and @N2 are torus bundles over the circle that are identified by a
fiber-reversing diffeomorphism. So @N1 and @N2 are essentially the same torus bundle,
but with different orientations.

Let us consider the (achiral) Lefschetz fibration fj D fjNj
W Nj !Dj Š B2 , having

only one critical point. It can be easily realized that the monodromy of f1 is a right-
handed Dehn twist ı about an essential simple curve c�T 2 that can be identified with
a meridian of the torus, while the monodromy of f2 is given by ı�1 . For generalities
on Lefschetz fibrations and their monodromies, a good reference is [8]. A description of
the monodromy and the induced handlebody decomposition is given also in Apostolakis,
Piergallini and Zuddas [1].

Therefore, f2 can be identified with f1 by reversing the orientation of the base disk
and keeping the same orientation on the fiber.

Since f is built on the Hopf fibration, the monodromy of the latter reflects on the
gluing diffeomorphism � between N1 and N2 . Namely, we have

@N1 D
Œ0; 2���T 2

.0; ı.x;y//� .2�;x;y/
;

where .x;y/ are the angular coordinates in T 2 D S1 �S1 , and the attaching diffeo-
morphism �W @N1! @N2D�@N1 is given by �.t;x;y/D .t;x;yC t/, which passes
to the quotient. In other words, while running over @D1 , the fiber rotates along the
longitude of 2� radians.

In Figure 1 the two 2–handles attached along parallel curves correspond to the two
Lefschetz critical points, giving the corresponding vanishing cycles that are parallel to
the curve c . The 2–handle with framing 0 attached along the boundary of the punctured
torus is needed to close the fiber.

At this point, the Kirby diagram of Figure 2 describes the fiber sum of f1 and f2 along
an arc in @B2 .

In order to complete the fibration, we have to glue a trivial bundle B2 �T 2 by a fiber-
preserving diffeomorphism given by 2� radians rotation in the longitudinal direction.

Considering B2 as a 2–handle and taking the product with the standard handle decom-
position of T 2 , we get an extra 2–handle attached along a section, which follows the
longitude. A simple computation shows that this 2–handle has framing 1. Also, we get
two 3–handles and a 4–handle.

Removing a neighborhood X of the singular point of F2 which is diffeomorphic
to B4 , we obtain R4 . We define the subset X of N2 to be the standard model of the
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1 �1 0

Figure 2: The fiber sum of f1 and f2

�1 0

1

[H 3

Figure 3: The map f on B4

neighborhood of a negative Lefschetz singularity. That is, X is the total space of a
singular annulus fibration over D2 with one singular fiber and a left-handed Dehn twist
as the monodromy. It is well-known that X is diffeomorphic to B4 , up to smoothing
the corners. Then N2� Int X is the total space of a trivial annulus bundle over D2 .

In other words, from the Kirby diagram of Figure 1 we are removing a 4–handle, the
3–handle that comes from the longitude of the torus, and the 2–handle with framing 1
that comes from the negative Lefschetz critical point, thus obtaining the diagram of
Figure 3. A simple computation shows that this represents B4 , taking into account that
the 3–handle immediately cancels with the 0–framed 2–handle, as it results from its
attaching map.

This Kirby diagram encodes the map fjW S
4 � Int X Š B4 ! S2 as part of the

Matsumoto–Fukaya fibration.

The above considerations can be summed up in the following proposition, where
AD S1 � Œ0; 1�.
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Proposition 2.1 If we glue B2 �A to N1 along S1 �A so that for each t 2 @B2 D

�@D2
1
ŠS1 , the annulus ftg�A embeds in f �1.t/ŠT 2 as a thickened meridian, and

it rotates in the longitude direction once when t 2 S1 rotates once, then the resulting
manifold is diffeomorphic to B4 , and so the interior is diffeomorphic to R4 .

3 Construction of the complex structures

In the following we make use of the notation �.r0; r1/ D fz 2 C j r0 < jzj < r1g,
�.r1/D fz 2C j jzj< r1g, for 0� r0 < r1 . We put also C� DC�f0g. For a given
w 2C� such that jwj< 1, we consider the smooth elliptic curve T 2

w DC�=ZŠ T 2 ,
where the action is given by n � z D wnz . We call the curve �D fjzj D 1g � T 2

w the
meridian of T 2

w . For 0< argw< 2� , we also consider the curve �Dfwt j t > 0g�T 2
w ,

which we call the longitude of the torus, where wt D jwjteit argw . These meridian and
longitude can be identified with those of the previous section.

Proof of Theorem 1.3 We begin with the construction of the complex structure
J.�1; �2/. Since N1 is the total space of a positive genus-1 Lefschetz fibration over
the 2–disk with one singular fiber, there exists a complex structure such that the fibration

fjN1
W N1!D1

is holomorphic. Indeed, we consider a holomorphic elliptic fibration over S2 , and
we take a tubular neighborhood of a singular fiber which is fiberwise diffeomorphic
with N1 (see also [8]). According to Kodaira [12], we can give a more explicit model of
Int N1 by the Weierstrass curves. For 0<�1< 1, we consider the complex submanifold

S D
˚
.Œz0 W z1 W z2�; �/ j z

2
1z2�4z3

0�z2
0z2Cg2.�/z0z2

2Cg3.�/z
3
2 D 0

	
�CP2

��.�1/;

where

g2.�/D 20

1X
nD1

.1� �n/�1n3�n;

g3.�/D
1

3

1X
nD1

.1� �n/�1.7n5
C 5n3/�n:

For each � 2�.�1/, the fiber fz2
1
z2�4z3

0
�z2

0
z2Cg2.�/z0z2

2
Cg3.�/z

3
2
D 0g �CP2

is an elliptic curve and it is singular only for � D 0. Using the coordinates .x;y/D
.z0=z2; z1=z2/, the singular elliptic fiber is defined by the equation

y2
� 4x3

�x2
D 0
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and it has an ordinary double point at x D y D 0. Hence, the canonical projection

� W CP2
��.�1/!�.�1/

restricts to a holomorphic map �jS W S!�.�1/, which is a genus-1 holomorphic Lef-
schetz fibration over the 2–disk with one singular fiber. Thus, the complex manifold S

is a complex model of Int N1 .

Now, we consider the quotient .C� ��.0; �1//=Z, where for any n 2 Z, the action is
given by

n � .z; w/D .zwn; w/:

This elliptic fibration extends over �.�1/. Let us denote the completion by W . Kodaira
gave an explicit biholomorphism between W and S (see [12, pages 597–599]). So, in
the following we shall consider W as the model of Int N1 , instead of the Weierstrass
model S .

We fix a holomorphic atlas on the Riemann sphere given by two open disks D0
1
�D1

and D0
2
�D2 . The disk D0

1
is biholomorphic with �.�1/ and D0

2
is biholomorphic

with �.��1
0
/, where �0 2 .0; �1/ is arbitrarily chosen, and the transition function

 W �.�0; �1/!�.��1
1
; ��1

0
/ is given by  .z/D z�1 .

We define the complex structure on the topologically trivial annulus bundle N2�X ,
considered over �.��1

0
/ŠD0

2
, by the product structure �.1; �2/��.�

�1
0
/.

Next, we want to glue W Š Int N1 with �.1; �2/��.�
�1
0
/Š Int N2�X analytically

along �.1; �2/ � �.�
�1
1
; ��1

0
/ � �.1; �2/ � �.�

�1
0
/, so that the attaching map is

isotopic to that of the Matsumoto–Fukaya fibration, implying that the resulting manifold
is diffeomorphic to R4 . In order to do this, we need to choose an attaching region
in W which is biholomorphic to the product �.1; �2/��.�

�1
1
; ��1

0
/. In the following

argument, we show how to take such a region in W .

We begin with a multivalued holomorphic function �W �.�0; �1/ ! C� such that
multiplication by wn for all n 2 Z determines a transitive Z–action on the set of the
branches of � . In other words, given any branch �0 of � , all the other branches are of
the form wn�0.w/ for an arbitrary n 2 Z.

For example, as can be easily verified, we can take

�.w/D exp
�

1
4� i

.logw/2� 1
2

logw
�
;

where the two logarithms are taken simultaneously with all of their possible branches.

Next, consider the open subset Y �C� ��.0; �1/ defined by

Y D
˚
.z; w/ 2C� ��.�0; �1/ j z�.w/

�1
2�.1; �2/ for some value of �.w/

	
:
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Then Y can be parametrized by the multivalued local holomorphic immersion

ˆW �.1; �2/��.�0; �1/!C� ��.0; �1/

defined by ˆ.z; w/D .z�.w/;w/. Notice that Y is invariant under the action of Z
on C� ��.0; �1/.

It follows that the composition of ˆ with the quotient map

� W C� ��.0; �1/! .C� ��.0; �1//=Z�W

is a single-valued holomorphic embedding, and we denote by V the image of Y in W .

Also notice that fjV W V !�.�0; �1/ is a holomorphic annulus bundle, and ˆ deter-
mines a trivialization of this bundle.

Let j W �.1; �2/��.�0; �1/!�.1; �2/��.�
�1
1
; ��1

0
/ be the biholomorphism defined

by j .z; w/ D .z; w�1/. We use � ıˆ ı j�1W �.1; �2/ ��.�
�1
1
; ��1

0
/! V as the

attaching biholomorphism for making the union

E.�1; �2/D .�.1; �2/��.�0
�1//[V W;

which therefore is a complex manifold. We denote by J.�1; �2/ the complex structure
of E.�1; �2/.

In order to identify the topology of E.�1; �2/, we consider how the annulus fiber of
V D�.1; �2/��.�0; �1/ looks inside the toric fiber of W Š Int N1 . Let w2�.�0; �1/

be a complex number of some fixed modulus, and of arbitrary argument argw . When
argw varies from 0 to 2� , a point z of the fiber �.1; �2/ moves accordingly with
the Z–action on the branches of � , which encodes the attaching biholomorphism.
Namely, z goes to wz , which is in the next fundamental domain of the Z–action
on C� that gives the torus T 2

w DC�=Z. This means that when w rotates once in the
argument direction, the annulus �.1; �2/ rotates once in the longitude direction of the
fiber torus T 2

w , and this coincides with the attaching map of the Matsumoto–Fukaya
fibration restricted on S4�X . This implies that E.�1; �2/ is diffeomorphic to R4 .

Observe that the number �0 is auxiliary. Indeed, its role is just to provide an open
subset V of Int N1 which is necessary for the analytical gluing. Namely, �0 only
determines the size of the attaching region of the two complex manifolds. Hence,
E.�1; �2/ does not depend on �0 up to biholomorphisms.

Moreover, we can define a surjective holomorphic map

f�1;�2
W E.�1; �2/!CP1; f�1;�2

.z; w/D

�
w if .z; w/ 2W;

w�1 if .z; w/ 2�.1; �2/��.�0
�1/:
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Notice that f�1;�2
is isotopic to the restriction of the Matsumoto–Fukaya fibration f

(up to the diffeomorphism E.�1; �2/ŠR4 ). Actually, the isotopy can be chosen to be
smooth with respect to the parameters .�1; �2/, and up to this isotopy we can assume
that fjR4 itself is a holomorphic fibration with respect to all of the complex structures
J.�1; �2/. Moreover, the complex hessian of f at the critical point, computed with
respect to J.�1; �2/, is of maximal rank because this complex structure on W coincides
with that of the Weierstrass curves model.

Since f has holomorphic tori as fibers, it follows that E.�1; �2/ is of Calabi–Eckmann
type. Moreover, statements .1/, .3/ and .5/ of the theorem are implicit in the con-
struction.

The nonexistence of nonconstant holomorphic functions also follows easily, since there
is an open subset of E.�1; �2/, namely W , which is foliated by compact holomorphic
curves, hence a holomorphic function gW E.�1; �2/! C must be constant on these
fibers. Therefore, the differential of g is zero along those compact fibers. Since dg is a
holomorphic 1-form, it follows that dg is zero even along the annulus fibers of f , and
this implies that g is constant on the fibers of f . Thus, g factorizes by the fibration f .
Namely, there is a holomorphic function g0W CP1

!C such that g D g0 ı f . Since
g0 is constant, g is also constant. This proves statement .2/.

Now we give the proof of statement (4), which is based on Proposition 1.4, which
in turn will be proved at the end of this section. By Proposition 1.4, the union of all
compact holomorphic curves of E.�1; �2/ is the open subset W . Analogously, we
denote by W 0 the union of the compact holomorphic curves of E.�0

1
; �0

2
/.

Suppose that there is a biholomorphism gW E.�1; �2/!E.�0
1
; �0

2
/. We want to show

that .�1; �2/D .�
0
1
; �0

2
/.

The discussion above implies that g decomposes into two biholomorphisms gjWW!W 0

and gjW �.1; �2/��.�1
�1/!�.1; �0

2
/��.�0

1
�1
/. Moreover, g is fiber-preserving

on W , and so gjW passes to the quotient, giving a biholomorphism g0W �.�1/!�.�0
1
/.

By analyticity, g must be fiber-preserving also on �.1; �2/��.�1
�1/. This immedi-

ately gives �2 D �
0
2

, because of the well-known holomorphic classification of complex
annuli.

The torus T 2
w that corresponds to the complex number w 2�.0; �1/ is isomorphic to

a complex torus of the form C=.Z˚Zv/, where

v D 1
2�i

logw D 1
2�

argw� i
2�

log jwj;

and argw 2 Œ0; 2�/.

Geometry & Topology, Volume 21 (2017)



Non-Kähler complex structures on R4 2471

By the classification of complex nonsingular elliptic curves, g0 must be the identity
because T 2

w is isomorphic to g.T 2
w/ D T 2

g0.w/
for all w 2 �.0; �1/. Therefore, we

obtain �1 D �
0
1

.

Proof of Proposition 1.4 It is sufficient to show that f ı g is constant. In fact,
f ıgW S!CP1 is homotopic to a constant, since it factorizes through the contractible
space E.�1; �2/. Therefore, f ıg is of degree zero. Since it is a holomorphic map
between compact Riemann surfaces, it must be constant.

Finally, we prove Corollary 1.5.

Proof of Corollary 1.5 Since the blowup affects E.�1; �2/ only at finitely many
points, after blowing up, there are still embedded holomorphic tori which are homo-
topically trivial. Then, E.�1; �2/ # mCP2 is of Calabi–Eckmann type.

Moreover, if E.�1; �2/#mCP2 and E.�0
1
; �0

2
/#mCP2 are biholomorphic, then it fol-

lows that �1D�
0
1

and �2D�
0
2

by the same argument as in the proof of Theorem 1.3(4).
Since E.�1; �2/ # mCP2 is diffeomorphic to mCP2

� fpg, there are uncountably
many distinct non-Kähler complex structures on mCP2

�fpg.

Finally, if h is a holomorphic function on E.�1; �2/ # mCP2 , it must be constant on
the exceptional spheres, and so it factorizes through the blowup map

� W E.�1; �2/ # mCP2
!E.�1; �2/:

Hence, h is constant. This completes the proof.

Remark Corollary 1.5 holds even for mD1, and the proof is essentially the same.
By making the points for the blowups vary, we get even more pairwise inequivalent
complex structures on E.�1; �2/ # mCP2 .

Acknowledgements

The authors wish to thank Yukio Matsumoto, Ryushi Goto, and Ichiro Enoki. Yukio
Matsumoto gave us an important suggestion about Theorem 1.3. Ryushi Goto and
Ichiro Enoki gave us helpful advice for the model of the holomorphic elliptic fibration
in the proof of Theorem 1.3. Also thanks to Alberto Verjovsky for useful comments
on related results. Part of this article was written when Kasuya and Zuddas were
visiting the Department of Mathematical Sciences of Durham University, UK. They are
grateful to Durham University for its hospitality. Zuddas also thanks the Grey College
of Durham University for hospitality during his stay at Durham. We are also thankful

Geometry & Topology, Volume 21 (2017)



2472 Antonio J Di Scala, Naohiko Kasuya and Daniele Zuddas

to Wilhelm Klingenberg for helpful conversations and for having invited us to Durham
University.

Antonio J Di Scala and Daniele Zuddas are members of GNSAGA of INdAM.

References
[1] N Apostolakis, R Piergallini, D Zuddas, Lefschetz fibrations over the disc, Proc. Lond.

Math. Soc. 107 (2013) 340–390 MR
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Infinite order corks

ROBERT E GOMPF

We construct a compact, contractible 4–manifold C , an infinite order self-diffeomor-
phism f of its boundary, and a smooth embedding of C into a closed, simply
connected 4–manifold X , such that the manifolds obtained by cutting C out of X

and regluing it by powers of f are all pairwise nondiffeomorphic. The manifold C

can be chosen from among infinitely many homeomorphism types, all obtained by
attaching a 2–handle to the meridian of a thickened knot complement.

57N13, 57R55

1 Introduction

The wild proliferation of exotic smoothings of 4–manifolds highlights the failure of
high-dimensional topology to apply in dimension 4, notably through failure of the
h–cobordism theorem. Attempts to understand this issue led to the notion of a cork
twist. A cork, as originally envisioned, is a contractible, smooth submanifold C of
a closed 4–manifold X , with an involution f of @C , such that cutting out C and
regluing it by the twist f changes the diffeomorphism type of X (while necessarily
preserving its homeomorphism type). We can think of C as a control knob with two
settings, toggling between two smoothings of X . The first example of a cork was
discovered by Akbulut [1]. Subsequently, various authors (Curtis, Freedman, Hsiang
and Stong [6], Matveyev [15]; see Gompf and Stipsicz [14] for more history) showed
that any two homeomorphic, simply connected (smooth) 4–manifolds are related by a
cork twist. Since then, much work has been done (see eg Akbulut and Ruberman [3],
Akbulut and Yasui [4]) to understand and apply cork twists. Various people, going back
at least to Freedman in the 1990s, have asked whether higher-order corks may exist —
that is, knobs with n settings for n different diffeomorphism types, or possibly even
infinitely many settings all realizing distinct types. Recently, progress has been made
by modifying known examples of corks: Tange [19] exhibited knobs with n settings for
any finite n, displaying two diffeomorphism types on X . Independently, Auckly, Kim,
Melvin and Ruberman [5] constructed the desired finite order corks. More generally,
they constructed G–corks for any finite subgroup G of SO.4/, where the control knob
can be set to any element of G to yield jGj diffeomorphism types. However, both of

Published: 19 May 2017 DOI: 10.2140/gt.2017.21.2475

http://msp.org
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these latter papers pose the infinite order case as a still unsolved problem, in spite of
fruitless attacks by various mathematicians. The purpose of the present article is to
exhibit a large family of infinite order corks, arising from a simple general construction.

There is variation in the literature about the definition of a cork. All approaches share
the following:

Definition 1.1 A cork .C; f / is a smooth, compact, contractible 4–manifold C with
a diffeomorphism f W @C ! @C . The cork will be called nontrivial if f does not
extend to a self-diffeomorphism of C . If C is smoothly embedded in a 4–manifold X ,
cutting out C and regluing it by f to get .X � int C /[f C will be called a twist by f .

Note that .C; f k/ is then a cork for any k 2 Z, so we also talk about twisting by
powers f k. By Freedman’s topological h–cobordism theorem rel boundary [9; 10],
f necessarily extends to a self-homeomorphism of C , so a cork twist does not change
the homeomorphism type of a manifold. In some references, f is required to be an
involution, or extend to a finite cyclic (or other finite) group action on @C . Since we
are interested in Z–actions, no additional hypothesis is needed. We can now state our
main existence theorem, which is proved in Section 2.

Theorem 1.2 There is a cork .C; f / and a smooth embedding of C into a closed,
simply connected 4–manifold X , for which the manifolds Xk , k 2 Z, obtained by
twisting by f k are homeomorphic but pairwise nondiffeomorphic. Hence, the corks
.C; f k/ are distinct (up to diffeomorphism commuting with the maps), and nontrivial
unless k D 0.

In the terminology of [5], the embedding C ,!X is Z–effective and exhibits .C; f /
as the first example of a Z–cork.

Corollary 1.3 The homology 3–sphere @C bounds infinitely many smooth, con-
tractible manifolds that are all diffeomorphic, homeomorphic rel boundary and pairwise
nondiffeomorphic rel boundary.

Proof Identify @C as the boundary of C using each of the diffeomorphisms f k.

Corollary 1.4 There is a compact, contractible 4–manifold admitting infinitely many
nondiffeomorphic smooth structures.

Proof This follows immediately from the previous corollary and Akbulut and Ruber-
man [3, Theorem 5.3].

We obtain infinitely many examples of corks .C; f / as in the theorem, distinguished
by the homeomorphism types of their boundaries. However, our examples all have a
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simple form. For any knot � � S3 , let P be its closed complement, and let C.�;m/

be the oriented 4–manifold obtained from I �P , where I denotes the interval Œ�1; 1�

throughout the paper, by attaching a 2–handle along the meridian to � in f1g�P with
framing m. Note that I �P can be identified with the obvious ribbon complement of
� #� in B4 , so this is a special case of removing a slice disk and regluing it with a twist.
Either perspective reveals the identity C.�;m/� C.�;m/, and these are orientation-
reversingly diffeomorphic to C.�;�m/. Clearly, C.�;m/ is the 4–ball when mD 0 or
� is unknotted, but otherwise it is a contractible manifold whose boundary is irreducible
and not S3 . In fact, @C.�;m/ is obtained by

�
�

1
m

�
–surgery on � # � , and contains

two oppositely oriented copies of the complement P . When � is prime, the JSJ
decomposition of @C.�;m/ begins by splitting out these complements. (This gives the
entire decomposition unless � is a satellite knot, in which case the splitting continues
symmetrically.) Since the complements can then be recovered from @C.�;m/, it follows
that the manifolds C.�;m/ (� prime) are never orientation-preservingly homeomorphic
unless the corresponding knots are the same up to orientation and the (nonzero) integers
are equal. In our examples, � is the double twist knot �.r;�s/D �.�s; r/ shown in
Figure 1, where the boxes count full twists, right-handed when the integer is positive.
The resulting oriented 4–manifolds C.r; sIm/DC.�.r;�s/;m/, for r; s>0 and m¤0,
are not orientation-preservingly homeomorphic to each other unless the integers m

agree and the pairs .r; s/ agree up to order. In general, the incompressible torus
f0g � @P in @C.�;m/ can be used to create self-diffeomorphisms of the latter: Let
f W @C.�;m/! @C.�;m/ be obtained by rotating the torus ftg � @P parallel to the
canonical longitude of � , through angle .t C 1/� , t 2 I D Œ�1; 1�, as we pass through
I � @P , and extending as the identity. Our simplest cork, .C.1; 1I �1/; f / is made
in this manner from the figure-eight knot �.1;�1/. Its boundary is given by surgery
with coefficient 1 on the connected sum of two figure-eight knots, with the obvious
incompressible torus in the complement of this sum. More generally, we have:

Theorem 1.5 The cork C appearing in Theorem 1.2 can be taken to be any of the
infinitely many contractible manifolds C.r; sIm/ with r; s > 0 and m¤ 0, and f as
specified above. The manifolds Xk can be assumed to be irreducible, except possibly
if r , s or jmj equals 2.

Recall that a 4–manifold is irreducible if it cannot split as a smooth connected sum
unless one summand is homeomorphic to S4 . Other explicit constructions of corks in
the literature typically involve reducible (blown up) manifolds. It seems likely that the
restriction avoiding 2 is unnecessary; see Remarks 2.1(a).

Our incompressible torus in C.�;m/ can be also used to define other twists. Instead
of twisting parallel to the longitude, we could twist parallel to the meridian, or more
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�s

r

Figure 1: The double twist knot �.r;�s/

generally, twist using any element of H1.T
2/Š Z˚Z. Thus, it is natural to ask both

about other contractible manifolds and other twists:

Question 1.6 (a) Is every pair .C.�;m/; f /, for � a nontrivial knot, m¤ 0 and
f a longitudinal twist as given above, a Z–cork?

(b) Does twisting by other elements of H1.T
2/ ever extend these to .Z˚Z/–corks?

Akbulut, in a preliminary version of [2], previously studied the meridian twist for �
the trefoil and mD�1, trying to prove nontriviality. However, we show in [13] that
the meridian twist extends over every C.�;˙1/. Recently, Ray and Ruberman [17]
answered (a) in the negative for torus knots � when jmj D 1. It follows that every
boundary diffeomorphism extends over C.�;˙1/ for such knots [13]. See the latter
paper for further discussion and the translation of the main proofs of this paper into the
language of handle calculus. The question is still open for meridian twists when jmj� 2

and for longitudinal twists with nontorus knots � outside our family f�.r;�s/ j r; s>0g.

More recently, Tange has posted papers extending the methods of this article to exhibit
n–fold boundary sums of our Z–corks as Zn–corks [21] and providing constraints on
families of manifolds that can be related by Z–corks [20].
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2 Constructing corks

The closed manifolds Xk in Theorem 1.2 are made from the elliptic surface E.n/, for a
fixed n� 1, by the Fintushel–Stern knot construction [7]. Recall (see eg [14]) that E.n/
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@†
†

C�1CC1

Kk
Kk

Figure 2: The punctured torus † in the knot complement M D S3� �Kk (k D 0)

has a standard description in which it is built from S1�S1�D2 (a neighborhood of a
regular fiber F D S1 �S1 ) by adding handles. Of most interest for present purposes,
each of the two circle factors has 6n parallel copies (vanishing cycles) to which 2–
handles are attached with framing �1 (relative to the product framing of the boundary
3–torus). We will use three of these 2–handles. Given a knot K � S3 , let M denote
its closed complement. The knot construction consists of removing S1�S1�D2 from
E.n/ and replacing it by M �S1 , gluing by a diffeomorphism of the boundary 3–torus
that identifies the canonical longitude of K with fpointg�@D2 , and the meridian of K

and circle fpointg � S1 in M � S1 with copies of the two circle factors of F . As
detailed in [7], Freedman’s classification [9; 10] shows that the resulting manifold XK

retains the homeomorphism type of E.n/ (which is simply connected with b2D12n�2

and signature �8n, and is even if and only if n is). However, when n� 2, varying the
knot K results in diffeomorphism types that are distinguished by their Seiberg–Witten
invariants if and only if the knots in question are distinguished by their Alexander
polynomials. The structure of the Seiberg–Witten invariants then also shows that
each XK is irreducible. When nD 1 the discussion becomes more technical, but these
statements remain true for the k–twist knots Kk D �.k;�1/ with k 2 Z [8], except
that the unknot K0 yields the reducible manifold E.1/, a sum of copies of ˙CP2. For
fixed n� 1, let Xk be obtained as above from the twist knot Kk . Since these knots
are distinguished by their Alexander polynomials, Theorem 1.2 follows once we locate
a contractible C �X DX0 DE.n/ with a twist f for which each power f k gives
the corresponding Xk .

Proof of Theorem 1.2 Let †�M be the punctured torus depicted in Figure 2 (near
the clasp of Kk , the �s D �1 twist box in Figure 1) with circles C˙1 generating
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its homology. Set k D 0 for this, but note that the corresponding picture for any k

(with the correct longitude) is then obtained from the k D 0 case by
�
�

1
k

�
–surgery on

the circle @†. To examine this surgery more closely, identify a tubular neighborhood
of † in M with I �†, where I D Œ�1; 1� and f1g �† contains the outer part of
the boundary of I �† visible in the figure. Let A be a collar of @† in †. Then we
can perform the required surgery by cutting out and regluing the solid torus I �A.
Since the surgery coefficient has numerator 1, we can take the gluing diffeomorphism
to be the identity everywhere except on the annulus I � @†. That is, we get from the
k D 0 case to the case of arbitrary k by slitting M open along the annulus I � @†

and regluing by gk for a suitable Dehn twist g of the annulus. Hence, to transform
X0 to Xk , we slit X0 open along the 3–manifold N D I � @†�S1 �M �S1 and
reglue by .g� idS1/k. (This operation can be viewed as a torus surgery, also called a
logarithmic transformation, and would be a Luttinger surgery if f0g � @†�S1 could
be made Lagrangian. The latter is ruled out, however, since Xk has no symplectic
structure unless jkj � 1.) Our goal is to find a contractible manifold C �X0 whose
boundary contains N. Extending g � idS1 as the identity over the rest of @C then
gives the required diffeomorphism f completing the proof.

Our first approximation to C is the manifold Y D I �†�S1 �M �S1 �X0 . Then
@Y clearly contains N , but Y is far from being contractible. In fact, Y is homotopy
equivalent to .S1_S1/�S1 , so it has b1 D 3 and b2 D 2, but no higher-dimensional
homology. Its fundamental group is generated by three circles C �i , i D �1; 0; 1

(suitably attached to the base point), where C �i D fig � Ci � f�ig for i D ˙1 and
distinct points �˙1 2 S1 , and C �

0
D f1g� fpg�S1 for some p 2 int†� .C�1[C1/.

A basis for H2.Y / is given by the pair of tori Ti D f0g �C 0i �S1 , i D ˙1, where
C 0i is parallel to Ci in †� fpg. To improve Y , observe in Figure 2 that the circles
C˙1 in M are both meridians of the knot K0 . Thus, the knot construction matches
all three circles C �i � @Y with vanishing cycles of E.n/. We obtain a new manifold
Y 0 �X0 by ambiently attaching a .�1/–framed 2–handle hi to Y along C �i for each
i D �1; 0; 1. Then Y 0 is simply connected with Ti , i D˙1, still giving a basis for
H2.Y

0/, and N still contained in @Y 0 . To eliminate the last homology, note that for
i D˙1, the core of the handle hi fits together with the annulus I�Ci�f�ig, forming a
pair of disks Di disjointly embedded rel boundary in Y 0 (with @Di Df�ig�Ci�f�ig).
Since each Di \Ti is empty, and Di \T�i is a single point of transverse intersection,
deleting tubular neighborhoods of these disks from Y 0 gives a manifold C with no
homology. To see that �1.C / vanishes, use the core of the 2–handle h0 to surger the
tori Ti to immersed spheres, without changing the intersections with the disks Di .
These spheres then provide nullhomotopies for the meridians of the disks. Thus, C is
a contractible manifold whose boundary contains N , as required.
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Proof of Theorem 1.5 To identify the cork C constructed in the proof of Theorem 1.2,
first consider any framed sphere S in a manifold Q. If we add a handle h to I �Q

along 1 � S , and then delete a neighborhood of the core of h, extended down to
f�1g �Q using the annulus I � S , the result is easily seen to be I �P , where P

is made from Q by surgery on S . We apply this trick with Q D †� S1 from the
previous proof. Attaching the handles h˙1 to Y D I �Q and deleting their cores D˙1

gives a manifold of the form I �P that will become C when h0 is attached. The
manifold P is obtained from Q by surgery on the disjoint curves C˙1 � f�˙1g, with
the framings induced from their identification with vanishing cycles of E.n/. These
framings are �1 relative to the oriented boundary of the fiber neighborhood in E.n/

on which we performed the Fintushel–Stern construction, and hence are �1 relative
to @Y . However, the circles C �

˙1
lie on opposite faces of Y (with I coordinate ˙1),

which inherit opposite orientations from Q. Thus, the framing coefficients are �1

relative to Q. To construct a surgery diagram of Q, we cap off † to get an embedding
QD†�S1�T 2�S1DT 3 , with the latter exhibited as 0–surgery on the Borromean
rings B . To recover Q, we remove its complementary solid torus in T 3. This has the
effect of undoing one Dehn filling, leaving one component of B unfilled. The curves
@†� f�g correspond to canonical longitudes of this drilled-out link component, and
fpg �S1 is a meridian of it. The surgery curves C˙1 � f�˙1g are then �1–framed
meridians of the other two components. Blowing down changes the unfilled curve
into a figure-eight knot �.1;�1/ in S3 , whose complement is P . Attaching h0 to
I � P along C �

0
now gives C D C.1; 1I �1/, and @† � S1 is identified with the

incompressible torus boundary of the figure-eight complement inside @C , with f
twisting longitudinally as required.

Now that we have realized C.1; 1I �1/ as the cork C in Theorem 1.2, using 4–
manifolds Xk generated from E.n/ (so irreducible except for X0 when n D 1),
we can easily realize any C.r; sIm/ with r; s > 0 > m by giving up irreducibility:
Just blow up points on the cores of the handles hi to suitably lower their framings (as
measured in E.n/). This replaces the original manifolds Xk by their .rCsCjmj�3/–
fold blowups, which remain pairwise nondiffeomorphic. To realize m > 0, simply
reverse the orientation on each Xk . Retaining irreducibility is no harder when the
integers r , s and m are all odd. Simply choose n large enough that E.n/ contains
1
2
.rCsCjmj�3/ disjoint spheres of square �2 avoiding the submanifolds used in our

construction. Tubing the 2–handle cores into these spheres has the same effect as
blowing up, without changing Xk . When the integers r , s and jmj are also allowed
to be even but not 2, we need an additional trick. For n � 3 we locate an E.2/

fiber-summand in X0 away from the construction site, then cut it out and reglue it by
a cyclic permutation of the circle factors of the boundary 3–torus. This modifies the
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manifolds Xk so that they each contain three (and more) disjoint spheres of square �3,
made from sections of E.2/ by capping off with vanishing cycles of E.n� 2/. Using
these along with our previous even spheres allows us to realize any positive values of r ,
s and jmj except 2. The manifolds remain pairwise nondiffeomorphic by a useful result
of Sunukjian [18]. (This shows that manifolds made by the Fintushel–Stern construction
on a given manifold X0 are distinguished by the associated Alexander polynomials, in
spite of subtleties introduced by automorphisms of ZŒH2.X /�.) Irreducibility follows
by examining the Seiberg–Witten basic classes. These are all linear combinations of
the fiber classes of the two elliptic summands (by Doug Park [16, Corollary 22] for X0 ,
extended to each Xk by the Fintushel–Stern formula [7]). Thus, all differences of basic
classes have square 0. However, if any Xk were reducible, it would split off a negative
definite summand carrying a homology class e with square �1. Any basic class c

would have nonzero (odd) value on e . By the gluing formula of [11, Theorem 14.1.1],
reversing the sign of hc; ei would give a new basic class c0 with .c� c0/2 negative.

Remarks 2.1 (a) This irreducibility argument misses the case with r , s or jmj equal
to 2, for the technical reason that a disjoint sphere of square �1 would mean our
starting manifold was reducible. It seems reasonable to conjecture that irreducibility is
still attainable by a different method in this case.

(b) Each of our Z–corks .C.r; sIm/; f / (for r; s > 0>m) generates many other sim-
ilar families of closed manifolds. We can vary the starting manifold X0 and distinguish
the resulting manifolds Xk from each other by Sunukjian’s result, then distinguish
various families from each other by their Seiberg–Witten invariants. Alternatively,
since our construction only uses a single clasp of the knots Kk , we can apply the
construction to other families of knots (or links) related by the twisting of a clasp
described by Figure 2.

(c) Our corks C.r; sIm/ all have Mazur type, built with a single handle of each
index 0, 1 and 2. This is because they have the form C.�;m/ for a 2–bridge knot �
(namely �.r;�s/). The complement P of � then has a handle decomposition with two
1–handles and a 2–handle, as does I �P . The final 2–handle h0 of C.�;m/ cancels
a 1–handle. (See Figure 3 of [13].)

(d) Each of these corks also embeds in the 4–sphere. In fact, the double of any
C.�;m/ is also obtained from the complement of the spin of � by filling trivially to
get S4 (for even m) or by Gluck filling (which gives S4 for all spun knots [12]). We
are left with the following question, which can be restated as a problem about certain
torus surgeries in S4 :

Question 2.2 Does iterated twisting on these corks in S4 always give the standard S4?

Geometry & Topology, Volume 21 (2017)
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Existence of minimizing Willmore Klein bottles
in Euclidean four-space

PATRICK BREUNING

JONAS HIRSCH

ELENA MÄDER-BAUMDICKER

Let K DRP 2 ]RP 2 be a Klein bottle. We show that the infimum of the Willmore
energy among all immersed Klein bottles f W K ! Rn for n � 4 is attained by a
smooth embedded Klein bottle. We know from work of M W Hirsch and W S Massey
that there are three distinct regular homotopy classes of immersions f W K! R4 ,
each one containing an embedding. One is characterized by the property that it
contains the minimizer just mentioned. For the other two regular homotopy classes
we show W.f / � 8� . We give a classification of the minimizers of these two
regular homotopy classes. In particular, we prove the existence of infinitely many
distinct embedded Klein bottles in R4 that have Euler normal number �4 or C4

and Willmore energy 8� . The surfaces are distinct even when we allow conformal
transformations of R4 . As they are all minimizers in their regular homotopy class,
they are Willmore surfaces.

53C42; 53C28, 53A07

1 Introduction

For a two-dimensional manifold † immersed into Rn via f W †!Rn , the Willmore
energy is defined as

W.f / WD
1

4

Z
jH j2 d�g;

where H is the mean curvature vector of the immersed surface, ie the trace of the
second fundamental form. Integration is due to the area measure with respect to the
induced metric g D f �ıeucl .

In this paper, we consider closed nonorientable manifolds † of (nonorientable) genus
pD 1; 2, ie our surfaces are of the type of RP2 or K WDRP2 ]RP2 (a Klein bottle).
We are interested in the existence and the properties of immersions f W †!Rn for n�4

that are regularly homotopic to an embedding and that have low Willmore energy.
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Concerning a lower bound on the Willmore energy, a result of Li and Yau [19] is very
useful for closed surfaces immersed into Rn : Let x 2 Rn be a point and �.x/ WD
jfz 2† W f .z/D xgj the (finite) number of distinct preimages of x . Then

W.f /� 4��.x/:

As any immersed RP2 in R3 has at least one triple point (see Banchoff [3]) it follows
that W.f / � 12� for any such immersion. Equality holds for example for Boy’s
surface; see Kusner [11]. Similarly, as an immersed Klein bottle in R3 must have
double points we have that W.f / � 8� for such immersions. Kusner conjectured
that Lawson’s minimal Klein bottle in S3 is (after inverse stereographic projection)
the minimizer of the Willmore energy for all Klein bottles immersed into R3 ; see
Kusner [11] and Lawson [18]. This immersion has energy about 9:7� .

Since any m–dimensional manifold can be embedded into R2m (Whitney [28]) it is
natural to ask what is known about real projective planes and Klein bottles immersed
into R4 . Li and Yau [19] showed that W.f /� 6� for any immersed RP2 in R4 , and
equality holds if and only if the immersion is the Veronese. It turns out that the Veronese
embedding and the reflected Veronese embedding are representatives of the only two
distinct regular homotopy classes of immersions containing an embedding. The number
of regular homotopy classes is due to Whitney and Massey (see Massey [21]) and
Hirsch [9]; see Section 3.

As in the case of RP2 , we can count the number of distinct regular homotopy classes
of immersions of a Klein bottle containing an embedding. There are three of them.
By a gluing construction of Bauer and Kuwert there is a Klein bottle embedded in R4

with Willmore energy strictly less than 8� ; see Bauer and Kuwert [4, Theorem 1.3].
We repeat parts of this gluing construction in Section 4 and conclude that this gives
a Klein bottle in the regular homotopy class characterized by Euler normal number
zero. As we can add arbitrary dimensions this construction yields an embedded Klein
bottle f W K ! Rn for n � 4 with W .f / < 8� . It follows that the infimum of the
Willmore energy among all immersed Klein bottles is less than 8� . E Kuwert and
Y Li proved in [14] a compactness theorem for so-called W 2;2 –conformal immersions
and a theorem about the removability of point singularities. With these methods we
prove that the infimum among immersed Klein bottles is attained by an embedding.
We know that the minimizer is smooth by the work of T Rivière [24; 25]. Note that
Rivière proved independently a compactness result similar to the one of Kuwert and Li
mentioned above; see [25, Theorem III.1].

The existence of the minimizer among immersed Klein bottles gives a partial answer to
a question that was stated by F Marques and A Neves [20, Section 4]: they asked about
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the infimum of the Willmore energy in R3 or R4 among all nonorientable surfaces of
a given genus or among all surfaces in a given regular homotopy class and they asked
whether it is attained. Here is the first existence result:

Theorem 1.1 Let S be the class of all immersions f W †!Rn where † is a Klein
bottle. Consider

ˇn
2 WD inffW.f / W f 2 Sg:

Then we have that ˇn
2
< 8� for n � 4. Furthermore, ˇn

2
is attained by a smooth

embedded Klein bottle for n� 4.

We want to point out that the upper bound ˇn
2
< 8� can be improved. Let z�3;1 be

the bipolar surface of Lawson’s �3;1 –torus [18]. It is an embedded minimal Klein
bottle in S4 . After stereographic projection, one obtains a Klein bottle f W K!R4

with Willmore energy W.f / D 6� E
�

2
p

2
3

�
; see Lapointe [16]. Here, E. � / is the

complete elliptic integral of the second kind. We conclude that ˇn
2
� 6� E

�
2
p

2
3

�
�

6:682� < 8� . There is some indication that z�3;1 is the actual minimizer among
immersed Klein bottles in R4 ; compare the forthcoming paper of Hirsch and Mäder-
Baumdicker [8].

We will show in Section 3 that immersions in one of the other two regular homotopy
classes of immersed Klein bottles in R4 satisfy W.f /� 8� . There are minimizing
representative embeddings fi W K! R4 for i D 1; 2 with Euler normal number �4

for f1 and C4 for f2 (for the definition of the Euler normal number, see Section 3).

We prove the following:

Theorem 1.2 There is a one-parameter family of smooth embedded Klein bottles
f r

i W K ! R4 for i D 1; 2 and r 2 RC , with W .f r
i / D 8� for i D 1; 2. The

embeddings f r
1

have Euler normal number e.�/ D �4. The oriented double cover
of the surfaces zf r

1
W Mr!R4 are conformal, where Mr DC=�r is the torus generated

by .1; i r/. Furthermore, the zf r
1

are twistor holomorphic. The second embeddings
f r

2
are obtained by reflecting f r

1
.K/ in R4 , and they have Euler normal number C4.

Every embedding f r
1

and f r
2

is a minimizer of the Willmore energy in its regular
homotopy class. Thus, all discovered surfaces are Willmore surfaces.

For r ¤ r 0 the surfaces f r
1
.K/ and f r 0

1
.K/ are different in the following sense: for all

conformal transformations ˆ of R4 we have f r
1
.K/¤ˆ ıf r 0

1
.K/ for r ¤ r 0 .

Furthermore, there is a classification (including a concrete formula) of immersed Klein
bottles in R4 that satisfy W.f /D 8� and je.�/j D 4.

Our techniques can also be used for any RP2 with W .f /D 6� . As such a surface
must be a conformal transformation of the Veronese embedding (Li and Yau [19]) we
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get an explicit formula for this surface:

Proposition 1.3 Define f W S2!C2 DR4 by

f .z/D

�
xz
jzj4� 1

jzj6C 1
; z2 jzj

2C 1

jzj6C 1

�
:

Then f .S2/ is the Veronese surface (up to conformal transformation of R4 ).

We give an overview of the structure of this paper. In Section 2 we prove that each
torus carrying an antiholomorphic involution without fixpoints is biholomorphically
equivalent to a torus T with a rectangular lattice generated by .1; �/. On T , the
involution has the form I.z/D xzC 1

2
up to Möbius transformations on T . Section 3

contains the proof in the nonorientable case of the so-called “Wintgen inequality”,
W.f / � 2�

�
� C je.�/j

�
; see Wintgen [29]. We then give an introduction to the

theory of twistor holomorphic immersions into R4 (see Friedrich [7]) and construct
the surfaces of Theorem 1.2 with this theory. The same methods yield the formula
for the Veronese embedding. We explain in Section 4 that the gluing construction of
Bauer and Kuwert [4] gives an embedded Klein bottle f W K! Rn for n � 4 with
Willmore energy strictly less that 8� (thus, with Euler normal number zero if nD 4).
This embedding is not in one of the regular homotopy classes of the embeddings of
Theorem 1.2. After this, we show that a sequence of Klein bottles fk W K!Rn where
the oriented double covers diverge in moduli space satisfies

lim inf
k!1

W .fk/� 8�:

We use this estimate together with techniques and results from Kuwert and Li [14] and
Rivière [24; 25] to show Theorem 1.1.

Remark In R3 , there is no immersed Klein bottle with Willmore energy 8� . If
it existed then we could invert at one of the double points in R3 . We would get a
complete minimal immersion in R3 with two ends. But due to Kusner [11] this surface
must be embedded, a contradiction.
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2 Antiholomorphic involutions on the torus

Let N be a nonorientable manifold of dimension two and zf W N ! Rn (n � 3) an
immersion. We equip N with the induced Riemannian metric zf �ıeucl . Consider
qW M !N , the conformal oriented two-sheeted cover of N , and define f WD zf ı q .
As every 2�dimensional oriented manifold can be locally conformally reparametrized,
M is a Riemann surface that is conformal to .M; f �ıeucl/. Let I W M !M be the
antiholomorphic order-two deck transformation for q . The map I is an antiholomorphic
involution without fixpoints such that f ı I D f .

Now consider the situation where N is the Klein bottle, ie N is compact, without
boundary and has nonorientable genus two. In this case, the oriented two-sheeted cover
qW T 2 ! N lives on the two-dimensional torus T 2 . It is the aim of this section to
classify all antiholomorphic involutions without fixpoints on a torus T 2 up to Möbius
transformation. A Möbius transformation is a biholomorphic map 'W T 2! T 2 . We
use the fact that every torus is a quotient space C=� , where � is a lattice in C , ie

� D fm!C n!0 Wm; n 2 Zg;

where ! , !0 2 C D R2 are vectors that are linearly independent over R. We call
.!; !0/ a generating pair of � .

Theorem 2.1 Consider a lattice � in C generated by a pair .1; �/ where =.�/ > 0,
�

1
2
<<.�/� 1

2
and j� j � 1. Let I W C=�!C=� be an antiholomorphic involution

without fixpoints. Then � must be a rectangular lattice, ie � 2 iRC , and, up to Möbius
transformation, the induced doubly periodic map yI W C!C is of the form

yI.z/D xzC 1
2

or yI.z/D�xzC 1
2
�:

Remarks (i) A similar result can be found in [13, Appendix F]. For the sake of
completeness we give a full proof of Theorem 2.1 in the following. The case that
� is a hexagonal lattice, ie generated by .1; ei�=3/, and ˛�D� with ˛D eli�=3

for l D 1; 2; 4; 5 is not considered in the proof of [13].

(ii) The expression “up to Möbius transformation” means that there is a Möbius
transformation 'W C=�!C=� such that '�1 ı I ı' is of the claimed form.
If I is an antiholomorphic involution without fixpoints on a torus C=� then
'�1 ı I ı ' is also an antiholomorphic involution without fixpoints on that
torus. Therefore, it only makes sense to classify such involutions up to Möbius
transformation.

(iii) Every map I W C=�!C=� induces a map yI W C!C that is doubly periodic
with respect to � . From now on we denote yI simply by I .
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We prove this theorem in several steps. But first we explain how we come to the case
of a general lattice.

Proposition 2.2 Let � be a lattice in C . Then there exists a generating pair .!; !0/
such that � WD !0=! satisfies =.�/ > 0, �1

2
<<.�/� 1

2
, j� j � 1 and, if j� j D 1, then

<.�/� 0. Let z� be the lattice generated by .1; �/. Then there exists a biholomorphic
map 'W C=�!C=z� .

Proof The pair .!; !0/ is sometimes called the “canonical basis”. The proof of the
existence of this basis can be found in [1, Chapter 7, Theorem 2]. For the biholomorphic
map we define z'.z/ WD z=! for z 2C . Then '.Œz�/ WD z'.z/ for Œz� 2C=� defines a
biholomorphic map 'W C=�!C=z�

Lemma 2.3 Let � be a lattice in C and I W C=�!C=� an antiholomorphic invo-
lution. Then I is of the form I.z/D axzC b , where a, b 2C with a� D � , jaj D 1

and axbC b 2 � . Here, � is the complex conjugation of � .

Proof Define  .z/ WD I.xz/. Notice  W C=� ! C=� is holomorphic. Let � be
generated by .�1; �2/. The derivative  0W C ! C is holomorphic and bounded on
the compact fundamental domain F WD ft1�1C t2�2 W 0� t1; t2 � 1g. The periodicity
of  0 implies that it is bounded in all of C . By Liouville’s theorem we get that  0D a

for some a 2 C . Therefore, we have that  .z/ D az C b for some b 2 C . Since
I W C=�!C=� , we have that

� 3 I.zC!/� I.z/D  .xzC x!/� .xz/D ax! for all ! 2 �;

which implies a� � � . For the other implication we use that  is one-to-one (if
restricted to the fundamental domain F ). The map ˆ WD xI is an inverse of  because
xI ı .z/D xI ıI.xz/D z mod� and  ı xI.z/D I.I.z//D z mod� . The same argument
as above implies that there are complex numbers c , d 2C such that ˆ.z/D czC d .
So we have that

� 3 xI.zC!/� xI.z/Dˆ.zC!/�ˆ.z/D c! for all ! 2 �;

which implies c� � � . We get that

id jC=�.z/D  ıˆ.z/D aczC ad C b;

which implies ac D 1 and 1
a
� � � .

Lemma 2.4 Let � be a lattice in C generated by .1; �/ with =.�/ > 0. Then all
Möbius transformations 'W C=�!C=� are of the form '.z/D ˛zC ı with ı 2C
and:
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(i) If � D i (quadratic lattice) then ˛ 2 f1;�1; i;�ig.

(ii) If � D ei�=3 or � D e2i�=3 (hexagonal lattice) then ˛ 2 feli�=3 W l D 1; : : : ; 6g.

(iii) If � is neither the quadratic lattice nor the hexagonal lattice then ˛ 2 f1;�1g.

Proof First we note that a translation '.z/D zC ı for a ı 2C is always a Möbius
transformation. Therefore, we assume that '.0/D 0 (by composing with a translation).
The rest of the proof can be found in [23, Chapter III, Proposition 1.12.].

Lemma 2.5 Let � be a lattice in C generated by .1; �/ with =.�/ > 0 and j� j D 1.
Let I be an antiholomorphic involution on C=� of the form I.z/ D axz C b with
a 2 fC�;��g. Then I has a fixpoint.

Proof Let '.z/D zC ı be a translation on C=� . We have that

'�1
ı I ı'.z/D a.xzCxı/C b� ı D axzC bC axı� ı:

Consider now a translation with ı 2R. Then we have that

zI.z/ WD '�1
ı I ı'.z/D˙�xzC .˙� � 1/ıC b:

By =.˙� � 1/ ¤ 0 we can choose ı 2 R such that .˙� � 1/ıC b 2 R. Hence by
passing from I to zI we can assume that the involution is of the form I.z/D˙�xzC b

with b 2R. Lemma 2.3 implies that ˙�bC b 2 � . Since .1; �/ is the generating pair
of � we get that b 2Z. But I.z/D˙�xzCn with n 2Z has the fixpoint 0. Then the
original involution also had a fixpoint.

Lemma 2.6 Let � be a lattice in C generated by .1; �/ with =.�/ > 0 and j� j D 1.
Let I be an antiholomorphic involution on C=� of the form I.z/ D axz C b with
a 62 fC1;�1g. Then I has a fixpoint.

Proof Since a satisfies a� D � and jaj D 1 (see Lemma 2.3) we want to know how
many lattice points lie on the unit circle S1 . There are two cases.

Case 1 (� � 1 62 S1 ) But j� � 1j2 ¤ 1 is here equivalent to <.�/ ¤ 1
2

since
j� � 1j2 D 2� 2<.�/. Therefore we know that � cannot be the hexagonal lattice and
there are exactly four lattice points on S1 , namely 1, �1, � and �� . Since a� D �

and 12� we have that a2�\S1 , which implies a2 f1;�1; �;��g. But we assumed
a 62 fC1;�1g, and a 2 f�;��g implies that I has a fixpoint by the previous lemma.

Case 2 (� � 1 2 S1 ) This corresponds to the hexagonal lattice, � D ei�=3 . There
are six lattice points lying on S1 , namely eli�=3 for l D 1; : : : ; 6. Again, as in the
first case, we have that a 2 � \ S1 . The cases l D 3 and l D 6 are not possible by
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assumption, therefore we get that a 2 f� l W l D 1; 2; 4; 5g. Now consider a Möbius
transformation of the hexagonal lattice '.z/ D ˛z with ˛ ¤ 0. Lemma 2.4 yields
x̨ 2 f�k W k D 1; : : : ; 6g. We compose

zI.z/ WD '�1
ı I ı'.z/D

x̨

˛
axzC

b

˛
D �2kCl

xzC x̨b:

If l is even, then we choose k such that 2kC l D 6. Thus, we are in the case aD 1.
If l D 5 then we compose with the Möbius transformation '.z/D ˛z , where ˛ D �4

(which is equivalent to k D�2). We have then reduced it to the case aD � , which is
Lemma 2.5.

Lemma 2.7 Consider a lattice � in C generated by a pair .1; �/ with =.�/ > 0,
�

1
2
<<.�/� 1

2
and j� j> 1. Let I W C=�!C=� be an antiholomorphic involution.

Then we have that I.z/D axzC b with a 2 f�1; 1g.

Proof By Lemma 2.3 we know that a� D � and jaj D 1. Hence a 2 S1 \� . We
claim that S1 \ � D f�1; 1g. Since j� j > 1, we know that ˙� 62 S1 \ � . But then
we only have to consider the case that z 2 S1\� is of the form z D�1C l� for an
l 2 Z n f0g. We use the assumptions on � and get

j�1C l� j2 D 1C l2
j� j2� 2l<.�/ > 1C l2

� l � 1:

This strict inequality shows the lemma.

Definition 2.8 A lattice � in C is called a real lattice if it is stable under complex
conjugation, ie � D � .

Lemma 2.9 Let � be a real lattice generated by .1; �/ with �1
2
<<.�/ � 1

2
. Then

we have that <.�/ 2
˚
0; 1

2

	
.

Proof Let � D xC iy . Then there are m, n 2 Z such that

x� D x� iy D nCm.xC iy/ () x� n�mx� i.myCy/D 0

() mD�1 and x.1�m/D n:

This implies that <.�/D x 2
�
�

1
2
; 1

2

�
\
˚

1
2
n W n 2 Z

	
D
˚
0; 1

2

	
.

Lemma 2.10 Let � be a lattice generated by .1; �/ with �1
2
< <.�/ � 1

2
and let

I.z/DaxzCb be an antiholomorphic involution with aD�1. Then the lattice is real and
<.�/ 2

˚
0; 1

2

	
. If <.�/D 1

2
then I has a fixpoint. If <.�/D 0 then I.z/D�xzC 1

2
�

(up to Möbius transformation) and I has no fixpoints.
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Proof As every lattice satisfies �� D � we have by Lemma 2.3 that � D�� D � ,
ie the lattice is real. The previous lemma yields <.�/ 2

˚
0; 1

2

	
.

Case 1
�
<.�/D 1

2

�
We note that

iR\� D f2mi=.�/ Wm 2 Zg:(1)

By composing I with a translation we can assume that b 2 iR: Consider the translation
'.z/D zC ı ; then

zI.z/ WD '�1
ı I ı'.z/D�xzC b�xı� ı D�xzC b� 2<.ı/:

Thus, we can subtract the real part of b and consider zI instead of I .

But from axbC b 2 � (see Lemma 2.3) and (1) we have that 2b D �xbC b 2 � and
2bD 2mi=.�/ for an m2Z. Composing the involution with another translation yields
that b Dm� for an m 2 Z. Hence I.z/D�xzCm� , which has the fixpoint 0.

Case 2 (<.�/D 0) Here, � is a rectangular lattice. By translation, as in the first case,
we assume b 2 i R. Therefore, we get that �xbC b D 2b 2 � \ i RD fm� Wm 2 Zg,
hence b D 1

2
m� for an m 2 Z. Observe that m cannot be even because otherwise I

would have a fixpoint. As the formula for I is only defined modulo � , we have that
I.z/D�xzC 1

2
� . We only have to show that this I has no fixpoint; an equality like

I.z/� z D�xz� zC 1
2
� D�2<.z/C 1

2
� D nCm�

cannot hold for numbers m; n 2 Z because � is purely imaginary.

Lemma 2.11 Let � be a lattice generated by .1; �/ with �1
2
< <.�/ � 1

2
and let

I.z/D xzC b be an antiholomorphic involution. Then, up to Möbius transformation,
I is of the form I.z/DxzC 1

2
and the lattice satisfies <.�/ 2

˚
0; 1

2

	
. If <.�/D 1

2
then

I has fixpoints

Proof By composing with a translation '.z/D zC ı we get

zI.z/ WD '�1
ı I ı'.z/D xzC bCxı� ı D�xzC b� 2i=.ı/:

Thus, we can assume that b 2 R. Now we have that 2b D xbC b 2 � \R D Z and
therefore b D 1

2
m for an m 2 Z. If m was even, then I would have the fixpoint 0,

and since the formula is only defined modulo � we have that b D 1
2

. As a� D �

with a D 1 we know that the lattice is real and hence satisfies <.�/ 2
˚
0; 1

2

	
(see

Lemma 2.9). It remains to check in which cases I has fixpoints: Let m; n 2 Z. If

I.z/� z D xz� zC 1
2
D�2i=.z/C 1

2
D nCm<.�/Cmi=.�/
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then =.z/D �1
2
m=.�/ and <.�/D .1� 2n/=2m. Hence, if the real part of � is an

odd number divided by an even number, then I has a whole line of fixpoints, otherwise
it has no fixpoints.

We are now able to prove Theorem 2.1:

Proof Any involution is of the form I.z/D axzC b by Lemma 2.3. If j� j > 1 then
Lemma 2.7 implies that a 2 f1;�1g. The case aD �1 is Lemma 2.10 and the case
a D 1 is Lemma 2.11. If j� j D 1 then we have that a 2 f�1; 1g by Lemma 2.6.
Lemmas 2.10 and 2.11 apply also for this case.

3 Willmore surfaces of Klein bottle type in R4

with energy 8�

Let M be a closed manifold of dimension two (orientable or nonorientable) immersed
into an oriented 4–dimensional Riemannian manifold .X 4; h/. The immersion induces
a metric g on M , a connection r on tangential bundle TM and a connection r? on
the normal bundle NM . Since TM and NM are both two-dimensional, their curvature
operator is determined by scalars. Let fE1;E2;N1;N2g be an orthonormal oriented
frame of X 4 in a neighborhood U of x0 2M such that E1 , E2 is a basis for TxM

and N1 , N2 a basis for NxM for all x 2 U . The scalars of interest are the Gauss
curvature, given on U by

K.x/DR.E1;E2;E2;E1/D hrE1
rE2

E2�rE2
rE1

E2�rŒE1;E2�E2;E1i;

and the trace of the curvature tensor of the normal connection, given on U by

K?.x/ WD hR?.E1;E2/N2;N1i D hr
?
E1
r
?
E2

N2�r
?
E2
r
?
E1

N2�r
?
ŒE1;E2�

N2;N1i:

We introduce the connection 1–forms fwj
i gi;jD1;2;3;4 given by

(2) Dvei WD w
j
i .v/ej for v 2 TxM;

where fE1;E2;N1;N2g D fe1; e2; e3; e4g and D is the Levi-Civita connection of X .
Classical calculations show that

R.X;Y /E2 D dw1
2.X;Y /E1 and R?.X;Y /N2 D dw3

4.X;Y /N1;

hence the definition of K and K? is independent of the orientation of E1 , E2 .

The Weingarten equation relates D to the connection r and the second fundamental
form A.v; w/D .Dvw/

? for vector fields v and w on M by DvwDrvwCA.v; w/.
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We can express R and R? in terms of the second fundamental form and the curvature
operator RX of the ambient manifold X 4 using Aij for A.Ei ;Ej /:

(3) K.x/DRX .E1;E2;E2;E1/Ch.DE1
E1/
?; .DE2

E2/
?
i

� h.DE1
E2/
?; .DE1

E2/
?
i

DRX .E1;E2;E2;E1/ChA11;A22i � hA12;A12i:

Similarly, one gets for the normal curvature

K?.x/DRX.E1;E2;N2;N1/Ch.DE1
N1/
>; .DE2

N2/
>
i�h.DE1

N2/
>; .DE2

N1/
>
i

DRX.E1;E2;N2;N1/C

� X
jD1;2

hA1j ;N1ihA2j ;N2i�hA1j ;N2ihA2j ;N1i

�
:

Observe that the second part can be expressed as
˝P

jD1;2 A1j ^ A2j ;N1 ^ N2

˛
.

Introducing the tracefree part Aıij DAij�
1
2
Hgij using Aı

11
CAı

22
D0 and A12DAı

12
,

the equation for K? simplifies to

(4) K?.x/DRX .E1;E2;N2;N1/C 2hAı11 ^Aı12;N1 ^N2i:

Recall that the Euler number of the normal bundle can be expressed similarly to the
Gauss–Bonnet formula [22] as

(5) e.�/D
1

2�

Z
M

K?:

As a corollary of these calculations we obtain a classical inequality by Wintgen.
This inequality was known to be true for oriented surfaces. We extend the result
to nonorientable surfaces.

Theorem 3.1 (Wintgen [29]) Let M be a closed manifold of dimension two (ori-
entable or nonorientable) and Euler characteristic �. Let f W M !R4 be an immersion
and denote by e.�/ the Euler normal number of f . Then we have that

W.f /� 2�
�
�Cje.�/j

�
;(6)

and equality holds if and only if

(7) jAı11j
2
D jAı12j

2; hAı11;A
ı
12i D 0 and K? does not change sign.

Proof The proof for the orientable case can be found in [29]. Note that in this case
e.�/D 2I (see [17]), where I is the self-intersection number due to Whitney; see [28].
And we have the equality �D 2� 2p , where p is the genus of M .
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The general case follows from (3) and (4) and the flatness of R4 . Equality (3) becomes
K D hA11;A22i � hA12;A12i and so jH j2 D jAj2 C 2K . Together with jAıj2 D
jAj2� 1

2
jH j2 , we have

1
2
jH j2 D 2KCjAıj2:

Equation (4) becomes K? D 2hAı
11
^Aı

12
;N1 ^N2i and we can estimate

jK?j D 2jAı11 ^Aı12jjN1 ^N2j D 2.jAı11j
2
jAı12j

2
� hAı11;A

ı
12i

2/1=2

� 2jAı11jjA
ı
12j � jA

ı
11j

2
CjAı12j

2
D

1
2
jAıj2;

with equality if and only if the first part of (7) holds. Combining both gives

1
2
jH j2 D 2KCjAıj2 � 2KC 2jK?j:

Multiplying by 1
2

and integrating over M gives

W.f /�

Z
M

KC

Z
M

jK?j �

Z
M

KC

ˇ̌̌̌Z
M

K?
ˇ̌̌̌
;

with equality if and only if K? does not change sign.

Remark As we are interested in the case pD 2, ie N DRP2 ]RP2 is a Klein bottle,
the inequality above does not give us any information about the Willmore energy in
the case e.�/ D 0. But we get information about the energy if the immersion is an
embedding, due to the following theorem.

Theorem 3.2 (Whitney, Massey [21]) Let N be a closed, connected, nonorientable
manifold of dimension two with Euler characteristic �. Consider an embedding
f W N ! R4 with Euler normal number e.�/. Then e.�/ can take the following
values:

�4C 2�; 2�; 2�C 4; 2�C 8; : : : ; 4� 2�:

Furthermore, any of these possible values is attained by an embedding of N into R4 .

Corollary 3.3 Let N D RP2 ] RP2 be a Klein bottle. Consider an immersion
f W N !R4 that is regularly homotopic to an embedding, and denote by e.�/ the Euler
normal number of f . If e.�/¤ 0 then W.f /� 8� .

Proof By [9, Theorem 8.2], two immersions f; gW N !R4 are regularly homotopic
if and only if they have the same normal class. By assumption, the given immersion f is
regularly homotopic to an embedding gW N !R4 . Theorem 3.2 and �.N /D 2�pD 0

implies that e.�f /D e.�g/ 2 f�4; 0; 4g. As e.�/¤ 0 we use Theorem 3.1 to see that
W.f /� 8� .
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Remark In the case of genus one, we get from Theorem 3.2 that the Euler normal
number of the Veronese embedding f W RP2 ! R4 must be e.�/ 2 f�2;C2g. By
the work of Hirsch [9] we get that there are exactly two regular homotopy classes
of surfaces of RP2 type containing an embedding. Each regular homotopy class is
represented by a Veronese embedding, one is the reflected surface of the other.

For the construction of immersed Klein bottles with W.f /D 8� and e.�/ 2 f�4;C4g

we need the theory of twistor holomorphic immersions. They were studied in [7], and
we follow that paper.

Definition 3.4 Let .X 4; h/ be an oriented, 4�dimensional Riemannian manifold.
Consider a point x 2X 4 and let Px be the set of all linear maps J W TxX 4! TxX 4

satisfying the following conditions:

(i) J 2 D�id.

(ii) J is compatible with the metric h, ie J is an isometry.

(iii) J preserves the orientation.

(iv) If we define the 2–form �.t1; t2/ WD h.J t1; t2/ for t1; t2 2TxX 4 , then ��^�
equals the given orientation of X 4 .

The set P WD
S

x2X 4 Px is a CP1�fiber bundle over X 4 (note SO.4/=U.2/ŠCP1 ).
We call P the twistor space of X 4 and denote by � W P !X 4 the projection of the
bundle.

Definition 3.5 (the lift of an immersion into the twistor space) Let M be an oriented
manifold of dimension two and f W M !X 4 an immersion. We decompose the tangent
space Tf .x/X

4 of the ambient manifold into the sum of the tangent space TxM and
the normal space NxM . Let E1 , E2 be a positively oriented orthonormal basis of
TxM and N1 , N2 an orthonormal basis of NxM such that fE1;E2;N1;N2g is a
positively oriented basis of Tf .x/X

4 . We define the lift of the immersion f by

(8) F.x/W Tf .x/X
4
! Tf .x/X

4;

F.x/E1 DE2; F.x/E2 D�E1;

F.x/N1 D�N2; F.x/N2 DN1;

ie F.x/ is the rotation around the angle �
2

in the positive (negative) direction on TxM

(on NxM ). In this way,1 F W M ! P is a lift of f .
1The frame fE1;E2;N1;N2g gives a local bundle chart of the pullback bundle f �P around x . The

defined linear map F.x/W Tf .x/X
4! Tf .x/X

4 is an element of the fiber Pf .x/ . Hence we can either
consider F to be a map into the pullback bundle f �P that is the identity on M or as a map into P by
� ıF.x/ WD f .x/ . We follow the classical line and think of F as a map into P .
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Definition 3.6 (twistor holomorphic) There exists an almost complex structure Y

on P coinciding with the canonical complex structure on the fibers SO.4/=U.2/ŠCP1 .
For a point J 2P the horizontal part T H

J
P is determined by the Levi-Civita connection

on X 4 and the complex structure on it is d��1J d� [7, Section 1]. The pair .P;Y /
is a complex manifold if and only if the manifold X 4 is self-dual; see [2]. Let M be
an oriented two-dimensional manifold and f W M ! X 4 an immersion. Denote by
I W TxM !TxM the complex structure of M with respect to the induced metric f �h.
The immersion f is called twistor holomorphic if the lift F W .M; I/! .P;Y / is
holomorphic, ie dF.I.t//D Y .dF.t//.

Remark The pair .M; I/ from the definition above is a Riemann surface and I only
depends on the conformal class of f �h. The map F has the property that for any
conformal coordinates 'W U �C!M the map F ı' is holomorphic. Furthermore,
the metric .f ı'/�h is conformal to the standard metric on C .

On the other hand, if a the lift F W M ! P of a map f W M ! X 4 from a Riemann
surface M has the property that F ı 'W U ! P is holomorphic for any conformal
coordinates 'W U ! M , it is not hard to check that F is twistor holomorphic, as
defined above. In fact, this is the picture we will use in the following.

Remark As we only want to use the construction of twistor spaces for X 4 DR4 we
have more information about the structure of P : using an isomorphism SO.4/=U.2/Š

CP1ŠS2 , the twistor space P of R4 is (as a set) the trivial S2�fiber bundle over R4 ,
ie P D R4 � S2 (see [2, Section 4]). On the other hand P carries a holomorphic
structure which is not the standard holomorphic structure on C2 �S2 but a twisted
one: If H is the standard positive line bundle over CP1 , then P is isomorphic to
H ˚H (the Whitney sum of H with itself); see [2, Section 4]. This is a bundle over
S2 with projection pW H ˚H ! S2 . Thus, we are in the following situation:

M
pıF

yy

F
��

f

%%

S2 H ˚H Š P
p

oo
�
// R4

Proposition 3.7 [7] Let f W M ! X 4 be an immersion of an oriented two-dimen-
sional manifold M ; then the following conditions are equivalent:

(i) f is twistor holomorphic.
(ii) The connection forms defined above satisfy on every neighborhood U

w4
2 Cw

3
1 �?w

3
2 C?w

4
1 D 0;

where ? is the Hodge star operator with respect to the induced metric f �h.
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(iii) For all x 2 U ,
F.x/Aı11.x/DAı12.x/:

Proof Although this proposition corresponds to [7, Proposition 2] we give here
a direct proof. Fix a point x and choose an orthonormal frame fE1;E2;N1;N2g

in a neighborhood U as in Definition 3.5. As described in Definition 3.5 the lift
corresponds to a matrix F.y/ 2 SO.4/ for all y 2 U . By definition of F.y/, being
twistor holomorphic is a condition on the vertical part of Tf .y/P , ie

(9) F.x/DvF.x/DDI.v/F.x/ for all v 2 TxM:

Observe that conditions (8) imply F.y/2D�1 and F.y/tD�F.y/ (where At denotes
the transpose of A) and so

DF.y/F.y/D�F.y/DF.y/; DF.y/t D�DF.y/:

Therefore DF.y/ maps the tangent space TyM into the normal space NyM . This
can be seen as follows:

hE1;DF.y/E2i D hE1;DF.y/F.y/E1i

D �hE1;F.y/DF.y/E1i D hE2;DF.y/E1i:

But the antisymmetry of DF.y/ implies

hE1;DF.y/E2i D �hE2;DF.y/E1i;

so hE1;DF.y/E2i D 0. Similarly one shows that hN1;DF.y/N2i D 0. Furthermore,
we have

DF.x/E2 DDF.x/F.x/E1 D�F.x/DF.x/E1;

hNi ;DF.x/Ej i D �hEj ;DF.x/Nii for i; j D 1; 2:

and conclude that (9) is satisfied if and only if

F.x/DvF.x/E1 DDI.v/F.x/E1 for all v 2 TxM:

To calculate DF.x/E1 we differentiate 0DhNi ;F.y/E1i along v 2TxM and obtain

0D hNi ;DF.x/E1iC hDvNi ;F.x/E1i � hF.x/Ni ;DvE1i

D hNi ;DF.x/E1i � hNi ;DvE2i �

X
jD1;2

hF.x/Ni ;Nj ihNj ;DvE1i

D hNi ;DF.x/E1i �

�
wiC2

2
.v/C

X
jD1;2

hF.x/Ni ;Nj iw
jC2
1

.v/

�
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using the 1–forms introduced in (2). We calculate

D. � /F.x/E1 D .w
3
2 �w

4
1/N1C .w

4
2 Cw

3
1/N2;

showing the equivalence of (i) and (ii), since

F.x/D. � /F.x/E1�DI. � /F.x/E1

D .w4
2 Cw

3
1 �?w

3
2 C?w

4
1/N1C .�w

3
2 Cw

4
1 C?w

4
2 C?w

3
1/N2:

It remains to check that (ii) is equivalent to (iii). Evaluating (ii) in E1 and E2 , recalling
wkC2

i .Ej /D hNk ;DEj
Eii D hNk ;Aij i we have

hN2;A12iC hN1;A11i � hN1;A22iC hN2;A12i D 2.hN2;A
ı
12iC hN1;A

ı
11i/;

hN2;A22iC hN1;A12iC hN1;A12i � hN2;A11i D 2.�hN2;A
ı
11iC hN1;A

ı
12i/:

This shows that (ii) holds if and only if F.x/Aı
11
DAı

12
.

Corollary 3.8 Let M be an oriented two dimensional manifold and f W M !R4 an
immersion into R4 ; then the following are equivalent:

(i) f is twistor holomorphic.

(ii) W.f /D 2�.��e.�//D 2�
�
�Cje.�/j

�
, ie equality holds in (6) and e.�/� 0.

Proof The equivalence follows from the fact that (7) is equivalent to condition (iii) in
the previous proposition, ie F.x/Aı

11
DAı

12
, because in this case

K? D 2hAı11 ^Aı12;N1 ^N2i D 2.hAı11;N1ihA
ı
12;N2i � hA

ı
11;N2ihA

ı
12;N1i/

D�2jAı11j
2
D�2jAı11jjA

ı
12j:

If (7) holds then either F.x/Aı
11
D Aı

12
or �F.x/Aı

11
D Aı

12
, but, since K? must

be nonpositive so that equality holds, the second is excluded.

Remark As the Veronese surface satisfies W.f / D 6� and e.�/ D �2 (when the
orientation of R4 is chosen appropriately), we get that the oriented double cover
zf W S2!R4 is twistor holomorphic.

Friedrich [7] considered twistor holomorphic immersions into R4 in detail. He used
the special structure of P to prove a kind of “Weierstrass representation” for such
immersions.

Theorem 3.9 (Friedrich [7]) Let M be an oriented two-dimensional manifold. Let
P ŠH ˚H be the twistor space of R4 (see the remark before Proposition 3.7). A
holomorphic map F W M ! P corresponds to a triple .g; s1; s2/, where
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(i) gW M ! S2 is a meromorphic function;

(ii) s1 and s2 are holomorphic sections of the bundle g�.H / over M .

Furthermore, there are holomorphic maps 'i ;  i W Mi ! C , where i D 1; 2 and
M1 WD fg ¤1g and M2 WD fg ¤ 0g, such that

s1 D .'
1; '2/; s2 D . 

1;  2/

with
'2
D

1

g
'1 and  2

D
1

g
 1 on M1\M2:

A holomorphic map F W M!P defines a twistor holomorphic immersion f W M!R4

via f D � ıF if and only if

jds1jC jds2j> 0:(10)

If (10) is satisfied, then f is given by the formula

f D

�
'1xg� x 1

1Cjgj2
;
x 1gC'1

1Cjgj2

�
:(11)

Conversely, if f is given by (11) with s1 and s2 satisfying (10) then f is a twistor
holomorphic immersion. Any such twistor holomorphic immersion satisfies the formula

W.f /D 4� deg.g/:(12)

Proof The proof is done in [7, Section 1, Remark 2 and Section 4, Example 4]. We
remark that the meromorphic function g is defined by g D p ıF .

Corollary 3.10 Let M be an oriented two-dimensional manifold and f W M ! R4

a twistor holomorphic immersion. Let .g; s1; s2/ be the triple corresponding to the
lift F W M ! P (see Theorem 3.9). Then the maps 'i and  i for i D 1; 2 can be
extended to meromorphic functions 'i ;  i W M ! S2 for i D 1; 2 with the following
properties: Denote by SP .h/ WD fx 2 M W h.x/ D north pole D 1g the poles and
by SN .h/ WD fx 2M W h.x/D south poleD 0g the zeros of a meromorphic function
hW M ! S2 , and let ordh.b/ for b 2 SP .h/ or b 2 SN .h/ be the order of the poles or
zeros of h. Then we have:

(i) SP .'
1/� SP .g/ and ord'1.b/� ordg.b/ for all b 2 SP .'

1/.

(ii) SP .'
2/� SN .g/ and ord'2.a/� ordg.a/ for all a 2 SP .'

2/.

(iii) SP . 
1/� SP .g/ and ord 1.b/� ordg.b/ for all b 2 SP . 

1/.

(iv) SP . 
2/� SN .g/ and ord 2.a/� ordg.a/ for all a 2 SP . 

2/.
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Proof On C n .SP .g/[SN .g//, we have '2g D '1 , and '1W C nSP .g/!C and
'2W C nSN .g/!C are holomorphic. Thus, either limz!b '

1.z/D1 for b 2SP .g/

or '1.b/ is a zero of order greater than or equal to � ordg.b/. In the latter case, '1 has
a removable singularity in b and can be extended smoothly. In the first case, '1 has
a pole in b . There are no other poles of '1 , and the order of a pole of '1 cannot
be bigger than that of g . Therefore, (i) holds. The other three claims follow in the
same way.

Proposition 3.11 The twistor space P DR4 � SO.4/=U.2/ of R4 naturally carries
an antiholomorphic involution J defined as being the identity on R4 and the multi-
plication by �1 on SO.4/=U.2/. The composition of this involution with a lift of
an immersed surface into the twistor space gives the lift of the same surface with
reversed orientation. Furthermore, the involution is fiber-preserving and induces the
antiholomorphic involution z 7! �1=xz on CP1 .

Proof As already mentioned, the twistor space P of R4 is isomorphic to H ˚H in
the sense that the following diagram commutes:

P
 
//

�
##

H ˚H

z�
��

R4

The projection z� is given by (11); compare [7, Section 4, Example 4]. One can under-
stand z� as follows: Define the local sections around a point z 2CP1n

˚
Œ.0; 1/�; Œ.1; 0/�

	
with representative .u1;u2/ 2C2 as

˛.z/D

�
u1

u2

; 1

�
; ˇ.z/D

�
1;

u2

u1

�
:

A holomorphic section in H ˚H can be parametrized by the real 4–parameter family

(13) � D .A˛.z/CBˇ.z/;B˛.z/�Aˇ.z//:

The projection z�.�/ is then .A;B/ 2C2 DR4 .

The space H ˚H is holomorphically embedded in C4 by inclusion. We define the
antiholomorphic involution

zI W C4
!C4; uD .u1;u2;u3;u4/ 7! .xu4;�xu3;�xu2; xu1/:

Let z 2 CP1 n
˚
Œ.0; 1/�

	
and u 2 H ˚H with p.u/ D z , ie z D u1=u2 D u3=u4 ;

then p ı zI.u/D�xu2=xu1 , hence zI defines an antiholomorphic involution on CP1 by
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z 7! �1=xz . Using the parametrization (13) one readily checks that

(14) zI.�/D
�
A˛
�
�

1

xz

�
CBˇ

�
�

1

xz

�
;B˛

�
�

1

xz

�
�Aˇ

�
�

1

xz

��
:

Due to the isomorphism  W H ˚H ! P we obtain an antiholomorphic involution
on P by J WD  ı zI ı �1 . Equation (14) implies that J is the identity on R4 . It
remains to show that J corresponds to the multiplication by �1 on SO.4/=U.2/. This
can be seen as follows: Let f W M ! R4 be a twistor holomorphic immersion with
holomorphic lift F W M ! P ; compare Definition 3.5. We denote by zF WD  ıF the
associated holomorphic map into H ˚H and let � W M !M be an antiholomorphic
involution on the Riemann surface M reversing the orientation. Using zI we obtain
a new holomorphic map zF2W M ! H ˚H by zF2 WD

zI ı zF ı � . Furthermore, we
have z� ı zF2.p/ D f .�.p// D f .p/ for all p 2 M , due to (14). Hence, F2 WD

 �1 ı zF2W M ! P has to be the lift corresponding to the immersion f ı� W M !R4

and therefore J must be the multiplication by �1 on SO.4/=U.2/.

Corollary 3.12 Let M be a two-dimensional oriented manifold and f W M !R4 a
twistor holomorphic immersion. Assume that M is equipped with an antiholomorphic
involution I W M !M without fixpoints such that f ı I D f . Let F W M ! P be the
lift into the twistor space and .g; s1; s2/ the corresponding triple (see Theorem 3.9).
Then we have that

(15) g ı I D�
1

xg

and

(16) '1
ı I D

x 1

xg
D x 2 and  1

ı I D�
x'1

xg
D�x'2:

The immersion f is given by the formula

f D .f1; f2/D

�
'1�'1 ı I

g�g ı I
;
x 1� x 1 ı I

xg� xg ı I

�
D

�
'1� x 2

gC 1
xg

;
x 1C'2

xgC 1
g

�
:(17)

Proof Let F W M ! P be the holomorphic lift of f as in the statement above. Then
g D p ı F , where pW P ! CP1 is the projection in H ˚H Š P . Consider the
holomorphic map zF WD J ıF ı I W M ! P , where J W P ! P is the antiholomorphic
involution from Proposition 3.11. By assumption we have f ı I D f , which implies
(together with the properties of J ) that zF is the lift of f , ie zF D F . As J induces
the antipodal map on CP1 we have that

g ı I D p ıF ı I D p ıJ ıF D�
1

xg
;
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which is (15). For (16), we use the same argument but now on H ˚H : Denote by
 W H˚H!P the isomorphism as in the proof of Proposition 3.11. The antiholomor-
phic involution zI on H˚H from the same proposition has the property zI ı zF ıI D zF ,
where zF WD ıF . By definition of zI we get x 2 ı I D '1 and �x 1 ı I D '2 , which
implies (16). Formula (17) is a consequence of (11) and (16).

Lemma 3.13 Let M D C=� be a torus that carries an antiholomorphic involution
I W M !M without fixpoints. Then M is biholomorphically equivalent to a torus
with a rectangular lattice. Moreover, there is a set of admissible parameters ƒ0 ¤∅
and a family of meromorphic functions g�W M ! S2 for � 2ƒ0 with deg.g�/D 4

and g� ı I D�1=xg� .

Proof By Proposition 2.2 we get a biholomorphic map 'W M ! zM , where zM is
generated by a “canonical basis” .1; �/. As zI WD ' ı I ı '�1 is an antiholomorphic
involution without fixpoints on zM we know that zM is generated by a rectangular
lattice and zI must be zI.z/D xzC 1

2
or zI.z/D�xzC 1

2
� ; see Theorem 2.1. If zI.z/D

�xzC 1
2
� , then we go again to another lattice by a biholomorphic map  W zM !C=�1 ,

 .z/D z=� . Then �1 has generator .�1; 1/, where �1 D��=j� j
2 and

 ı I ı �1.z/D  
�
�x�xzC

�

2

�
D�
x�

�
xzC

1

2
D xzC

1

2

because � is purely imaginary. Thus, we can assume that I.z/D xzC 1
2

and we have a
rectangular lattice generated by .1; �/.

The second step is the proof of the existence of g . As we are looking for an elliptic
function of degree 4, g must have four poles bk for kD1; : : : ; 4, and four zeros ak for
k D 1; : : : ; 4 (counting with multiplicities). For the theory of elliptic functions, see for
example [10]. Such an elliptic function exists if and only if

P4
kD1 bk �

P4
kD1 ak 2 � ;

see [10, Section 1.6]. Consider the function

h.z/ WD g
�
xzC 1

2

�
xg.z/:

We show that we can choose the poles and zeros of g so that h � �1, which is
equivalent to (15).

As g only has poles in bk , we require ak D I.bk/D xbk C
1
2

. Then

4X
iD1

bk �

4X
kD1

�
xbk C

1
2

�
D 2i

4X
kD1

=.bk/� 2 2 �

is a necessary condition for the existence of such g . Thus, there must be an m 2 Z
with

P4
kD1 =.bk/D

1
2
m=.�/. As I is an involution we have that I.ak/D bk , thus
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if g ı I has a pole in a point, then xg has a zero of the same order at that point (and
vice versa). It follows that h has no poles. As xh is elliptic without poles it is constant,
and h is constant as well. We have to find out if this constant can be �1. Define
!0 WD

P4
iD1 bk �

P4
kD1

�
xbk C

1
2

�
D m� � 2 2 � . Then, up to a complex constant

factor c , the function g is of the form

g.z/D e��.!0/z

Q4
kD1 �

�
z� xbk �

1
2

�Q4
kD1 �.z� bk/

;

where � W C!C denotes the Weierstrass sigma function and �W �!C is the group
homomorphism that satisfies the Legendre relation, ie

(18) �.!2/ !1� �.!1/ !2 D 2� i if =
�
!1

!2

�
> 0:

We collect some facts about � and �; see [10, Section 1.6]: This function � is an
entire function that has in all lattice points zeros of order one and no other zeros. As it
is nonconstant and has no poles it cannot be doubly periodic. But it has the property

�.zC!/D�e�.!/.zC!=2/�.z/;

when 1
2
! 62 � . If the lattice is real, then x�.z/ D �.xz/. This can be seen in the

representation formula

�.z/D z
Y

0¤!2�

�
1�

z

!

�
ez=!C.z=!/2=2:

For a rectangular lattice, � has the property that

(19)
�.!/ 2 iR for ! 2 � \ iR;

�.z!/ 2R for z! 2 � \R:

We use these properties to get

(20) h.z/D exp
�
��.!0/

�
xzC 1

2

�
� x�.!0/xz

�Q4
kD1 �.xz�

xbk/Q4
kD1 x�.z� bk/

Q4
kD1 x�

�
z� xbk �

1
2

�Q4
kD1 �

�
xz� bk C

1
2

�
D exp

�
�2<.�.!0//xz�

1
2
�.!0/

�Q4
kD1 x�

�
z� xbk �

1
2

�Q4
kD1 �

�
xz� bk C

1
2

�
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D exp
�
�2<.�.!0//xz�

1
2
�.!0/

�Q4
kD1 x�

�
z� xbk �

1
2

�Q4
kD1 �

�
xz� bk �

1
2

�
� .�1/4 exp

�
��.1/

4X
kD1

.xz� bk/

�

D exp
�
�2<.�.!0//xz�

1
2
�.!0/� 4�.1/xzC �.1/

4X
kD1

bk

�
:

As �.! C z!/ D �.!/C �.z!/ for all !; z! 2 � (� is a group homomorphism) and
�.0/D 0 we get that

�.!0/Dm�.�/� 2�.1/ and �.�/ 2 iR and �.1/ 2R:

Thus, (20) yields

h.z/D exp
�
C4�.1/xzC �.1/�

m

2
�.�/� 4�.1/xzC �.1/

4X
kD1

<.bk/C �.1/
m

2
�

�

D exp
�
�.1/

�
1C

4X
kD1

<.bk/

��
exp.m� i/;

where we used the Legendre relation (18) and property (19) in the last step. Thus,
for every combination of poles bk for k D 1; : : : ; 4 that satisfies i

P4
kD1 =.bk/ D

1
2
.2lC1/� for an l 2Z, we define R WD

P4
kD1<.bk/ and choose c WD e��.1/.1CR/=2 .

Then we have, with zg.z/ WD cg.z/ (g as above), that

h.z/D jcj2e�.1/.1CR/
� .�1/D�1;

which is equivalent to (15). As we can assume that bk 2 Œ0; 1�� Œ0;=.�/�, it suffices to
consider poles such that i

P4
kD1 =.bk/D

1
2
.2l C 1/� with l 2 f0; 1; 2; 3g. We collect

all such possible bk in ƒ0 . The set ƒ0 is obviously not empty.

Proposition 3.14 Let M DC=� be a torus that carries an antiholomorphic involution
I W M !M without fixpoints. Let gW M ! S2 be meromorphic with g ı I D�1=xg

(coming from Lemma 3.13). If there is a meromorphic function '1W M ! S2 with
2 � deg.'1/ � 4, SP .'

1/ � SP .g/ and ord'1.b/ � ordg.b/ for all b 2 SP .'
1/

and '1 ¤ cg C zc for all c; zc 2 C then there are unique meromorphic functions
 1;  2; '2W M ! S2 such that the triple .g; s1; s2/ with s1 D .'

1; '2/ and s2 D

. 1;  2/ corresponds to a twistor holomorphic immersion f W M !R4 . In particular,
the properties of Theorem 3.9 and Corollary 3.10 are satisfied.
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Proof As the existence of '1 is assumed, we define '2 D '1=g ,  2 D x'1 ı I and
 1 D �x'2 ı I . This defines  1;  2; '2W M ! S2 uniquely and we have all the
properties of Corollary 3.10. Then we define

f WD

�
'1xg� x 1

1Cjgj2
;
x 1gC'1

1Cjgj2

�
D

�
'1�'1 ı I

g�g ı I
;
x 1� x 1 ı I

xg� xg ı I

�
;

which is (11) and (17). In this way, we also know f ı I D f . We claim that f is
not constant. If f1 D c for a constant c 2C then '1�'1 ı I D c.g�g ı I/. This is
equivalent to '1� cg D .'1� cg/ ı I , which implies that '1� cg is holomorphic (as
a map into S2 ) and antiholomorphic. Thus, it must be a constant. But this contradicts
'1 ¤ cgCzc for all c; zc 2 C .

We do not know yet if jd'1jC jd'2jC jd 1jC jd 2j> 0. This is necessary for f
to be an immersion; see Theorem 3.9. Define

B WD
˚
z 2M W jd'1

j.z/Cjd'2
j.z/Cjd 1

j.z/Cjd 2
j.z/D 0

	
:

We assume B ¤∅. Considering 'i and  i as elliptic functions with finite degree we
know that jBj <1. As I has no fixpoints, jBj is an even number. By Friedrich’s
construction, f W M ! R4 is a branched conformal immersion with branch points
in B . The Riemann–Hurwitz formula for covering maps with ramification points yields
the formula

W.f /D 4� deg.g/D 16�;

as shown by Friedrich; see [7, Section 4, Example 4]. We combine this with the
Gauss–Bonnet formula for conformal branched immersions [6, Theorem 4],Z

M

K D 2�

�
�.M /C

X
p2B

m.p/

�
;

where m.p/ is the branching order in p , to get

1

4

Z
M

jAj2 DW.f /�
1

2

Z
M

K <1:

Since M is compact we have that Vol.f .M // < 1. Thus, f W M ! R4 is a
W 2;2�conformal branched immersion and we can apply [14]. For that, fix any
x0Df .p/ for some p 2B . Then

P
p2f �1.x0/

.m.p/C1/� 4. Define yf WDS ıJ ıf ,
where J.x/ WD x0 C .x � x0/=jx � x0j

2 and S W R4 ! R4 is any reflection. Then
yf W M nB!R4 is twistor holomorphic because Aı does not change by a conformal

transformation and by Proposition 3.7(iii) (note that the reflection makes sure that S ıJ
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is orientation-preserving). We apply [14, (3.1)] and get

(21) W. yf /DW.f /� 4�
X

p2f �1.x0/

.m.p/C 1/� 0:

Hence, yf W M nB!R4 is superminimal (ie twistor holomorphic and minimal). By a
classical result of Eisenhart [5], yf is locally given by two (anti)holomorphic functions
yf D .h1; h2/. But this yields a contradiction because yf ı I D yf implies that the

components of yf are holomorphic and antiholomorphic, and hence constant.

We now restate and prove our main theorem:

Theorem 3.15 On each torus Mr with rectangular lattice generated by .1; i r/ for
r 2 RC, there is a set of admissible parameters ƒ ¤ ∅ such that there are smooth
conformal immersions yf r

�
W Mr !R4 that are twistor holomorphic and double covers

of Klein bottles. The corresponding immersed Klein bottles f r
�
W K!R4 for � 2ƒ

satisfy W.f r
�
/ D 8� and e.�r

�
/ D �4. By reversing the orientation of R4 we get a

family of immersions zf r
�

with W . zf r
�
/D 8� and e.z�r

�
/DC4.

Every immersion f W K!R4 with W.f /D 8� and e.�/2 f�4;C4g is an embedding
and is either an element of ff r

�
W � 2ƒg or of f zf r

�
W � 2ƒg. Furthermore, every such

immersion is a minimizer of the Willmore energy in its regular homotopy class, thus it
is a Willmore surface.

Proof Every Klein bottle N is the quotient of its oriented double cover qW M !N

and the group fid; IgD hIi, where I W M !M is the antiholomorphic order-two deck
transformation on a torus M , ie N DM=hIi and qW M !M=hIi.

We consider the rectangular lattice generated by .1; �/ with =.�/ > 0 and the invo-
lution I.z/ D xz C 1

2
. As the imaginary part of � is not fixed we get the parameter

r WD =.�/ and a family of tori fMr gr2RC with the involution I . From now on we
keep r fixed and denote N WD Mr=hIi. We choose bk 2 Œ0; 1� � Œ0;=.�/� DW F

for k D 1; : : : ; 4, with i
P

kD1;:::;4 =.bk/ D
1
2
m� with m odd. As in the proof of

Lemma 3.13, each such combination yields a meromorphic functions g with (15).
Consider any p1 2 F n fb1; b2g and define p2 WD b1C b2�p1 . Then

b1C b2�p1�p2 D 0 2 �:(22)

If p2 2 fb1C�; b2C�g then we go to . zp1; zp2/D .p1C �;p2� �/ such that (22) is
still satisfied and f zp1; zp2g\ .fb1C�g[fb2C�g/D∅. By the existence theorem for
elliptic functions there exists a meromorphic '1W M ! S2 with poles in b1 and b2

and zeros in zp1 and zp2 . By construction and with deg.'1/ D 2 ¤ deg.g/ we have
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proven the existence of a '1 that we need for Proposition 3.14.2 Of course, this '1 is
only one choice. In ƒ we include each possible g and '1 . Then,

zf WD

�
'1xg� x 1

1Cjgj2
;
x 1gC'1

1Cjgj2

�
is a twistor holomorphic immersion with W. zf /D 16� and

e.�/D �.M /�
1

2�
W. zf /D�8;

due to Corollary 3.8(ii). We define f by zf D f ı q and get immersions f W N !R4

with W.f / D 8� and e.�f / D �4 (the equality e.�zf / D 2e.�f / can be seen for
example in (5)). By reversing the orientation of R4 and repeating the construction of
zf and f we get immersions yf W N !R4 with W. yf /D 8� and e.� yf /DC4. Note

that in this case zyf W M !R2 is not twistor holomorphic (Corollary 3.8).

On the other hand, every immersion f W N!R4 with W.f /D8� and e.�/2fC4;�4g

has all the properties shown in Theorem 3.9 and Corollaries 3.10 and 3.12. The proof
of Lemma 3.13 shows that every g from the triple .g; s1; s2/ must be one of the g�
that we found for our surfaces. Also '1 must be one of ours. Thus, by the “Weierstrass
representation” of Friedrich, f must be in ff� W � 2ƒg or f yf� W � 2ƒg.

It remains to check every immersion f W N!R4 with W.f /D8� and e.�/2fC4;�4g

is an embedding. We repeat an argument from the proof of Proposition 3.14. If
e.�/DC4, then we reverse the orientation of R4 and get an immersion with e.�/D�4.
We go to the oriented double cover and get an immersion zf W M!R4 with W. zf /D16�

and e.�/ D �8. As equality is satisfied in the Wintgen inequality, zf is twistor
holomorphic (Corollary 3.8). If f has a double point, then zf has a quadruple point
x0 2R4 . Inverting at @B1.x0/ and reflecting in R4 yields W. yf /D 0 as in (21), where
yf WD S ı J ı zf (J is the inversion, S the reflection). As S ı J is conformal and

orientation-preserving, yf is still twistor holomorphic (Proposition 3.7(iii)). But every
superminimal immersion into R4 is locally given by two (anti)holomorphic functions.
As yf ı I D yf for I antiholomorphic, yf1 and yf2 must be constant. Thus, it cannot be
an immersion, a contradiction.

Corollary 3.3 shows that every immersion with the properties above is a minimizer in
its regular homotopy class. As Willmore surfaces are defined as critical points of the
Willmore energy under compactly supported variations, the discovered immersions are
Willmore surfaces.

2The existence of '1 seems to be clear, but there are indeed cases where we have to be careful. If
b1 D � � � D b4 DW b are the poles of g then we cannot construct ' with a double pole in b and a double
zero in I.b/ , because then we have that i=.b/ D 1

8
m� with m odd and i=.b/ D 1

4
k� with k 2 Z ,

a contradiction.
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Corollary 3.16 Let K be a Klein bottle and f W K ! R4 be an immersion with
W.f / D 8� and je.�/j D 4. Let qW M ! K be the oriented double cover on the
corresponding torus M . Then M is biholomorphically equivalent to a torus Mr

generated by .1; i r/ for r 2 RC , via a map 'W M !Mr . Moreover, there are f r
�

,
zf r
�

and qr coming from Theorem 3.15 such that f ı q D f r
�
ı qr ı ' for e.�/D�4

or f ı q D zf r
�
ı qr ı' for e.�/DC4. Thus, the surface f .K/ is one of the surfaces

obtained in Theorem 3.15.

Proof By possibly changing the orientation of R4 we can assume e.�/ D �4. By
Corollary 3.8 we know that f is twistor holomorphic. The work of Friedrich [7] yields
the existence of a triple .g; s1; s2/ as in Theorem 3.9. By Corollary 3.12 we have
g ı I D�1=xg , where I comes from the order-two deck transformation of the oriented
cover. Lemma 3.13 shows that there is a biholomorphic map 'W M !Mr , where Mr

is generated by .1; i r/ for an r 2RC . From Theorem 3.15 we get that f ı q must be
f r
�
ı qr ı' for a � 2ƒ.

Proposition 3.17 The Lie group SO.4/ acts naturally and fiber-preserving on the
twistor space P . It induces a fiber-preserving action on H ˚H . The induced action
on CP1 is the action of the 3–dimensional Lie subgroup G of the Möbius group on
CP1 that commutes with the antipodal map z 7! �1=xz :

G WD

�
m.z/D

azC b

xbz�xa
W a; b 2C; jaj2Cjbj2 D 1

�
:

Proof We proceed via several claims:

Claim 1 The SO.4/ action 'W SO.4/�P ! P defined as

O � .y; j / WD .Oy;OjO t /

is natural and fiber-preserving.

Proof of Claim 1 The action preserves by definition the fibers. It is natural in the
sense that if f W M !R4 is a given immersion with corresponding lift F W M !R4

then for any O 2 SO.4/ the map O �F is the lift of the immersion Of . Fix a point
x 2M and an orthonormal frame fE1;E2;N1;N2g in a neighborhood U of x as in
Definition 3.5 with related matrix F.y/ 2 SO.4/ for y 2 U . As F satisfies conditions
(i)–(iv), so does OF.y/O t . Furthermore fOE1;OE2;ON1;ON2g is an orthonormal
frame of Of and OF.y/O t obviously satisfies the conditions (8) with respect to the
new orthonormal frame.

Claim 2 The action is holomorphic.
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Proof of Claim 2 Given a point .p; j / 2 P the complex structure J.p;j/ on

T.p;j/P D T H
.p;j/P ˚T V

.p;j/P D TpR4
˚Tj SO.4/=U.2/

is by definition the multiplication by j on TpR4 and by j on Tj SO.4/=U.2/. Hence,
given X CY 2 TpR4˚Tj SO.4/=U.2/ and O 2 SO.4/ we have

dOJ.p;j/.X CY /D dO.jX C j Y /

DOjO t OX COjO t OYO t
D JO �.p;j/dO.X CY /:

Thus, the action is holomorphic.

Claim 3 SO.4/ acts naturally and holomorphically and is fiber-preserving on H ˚H .
Hence it induces a group homomorphism hW SO.4/ 7! Aut.yC/, where Aut.yC/ is the
Möbius group of the Riemann sphere.

Proof of Claim 3 The isomorphism  W P DR4�SO.4/=U.2/!H ˚H induces a
natural, holomorphic action of SO.4/ on H ˚H by composition:

O � .u; v/D  ıO � ı �1.u; v/:

Recall that parallel transport (translation in R4 ) defines a fibration of P over one of
its fibers; compare [7, Remark 2]. This fibration defines the isomorphism  . Hence
we have a commutative diagram (compare the remark below):

SO.4/=U.2/
�

// CP1

P

OO

 

// H ˚H

p

OO

The action of SO.4/ on the SO.4/=U.2/–factor of P is independent of the basepoint
in R4 and therefore the induced action on H ˚H is fiber-preserving. Therefore,
the SO.4/ action on P induces an action of SO.4/ on SO.4/=U.2/ and via the
isomorphism �W SO.4/=U.2/!CP1 it induces also an action on CP1 . The action is
holomorphic, as proven in Claim 2. Therefore, SO.4/ acts on CP1 as biholomorphic
maps. The holomorphic automorphism group of the Riemann sphere CP1 Š yC is the
Möbius group, ie all rational functions of the form

m.z/D
azCb

czCd
with a; b; c; d 2C; ad � bc ¤ 0:

Claim 4 Let G be the image of the group homomorphism hW SO.4/! Aut.yC/; then

G D
n
m 2 Aut.yC/ W �1

m.z/
Dm

�
�1

xz

�o
;

ie G is a 3–dimensional Lie subgroup of Aut.yC/.
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Proof of Claim 4 The map h is induced by the group homomorphism � . Therefore,
its kernel corresponds to the normal subgroup

N WD fO 2 SO.4/ WO � j DOjO t
D j for all j 2 SO.4/=U.2/g;

which can be determined explicitly, using the isomorphism Sp.1/˝ Sp.1/! SO.4/
defined by

.a; b/ � q D aqxb for q 2HŠR4 and .a; b/ 2 Sp.1/˝Sp.1/;

where Sp.1/ is the group of unit quaternions; compare [26, Proposition 1.1]. Conditions
(i)–(iv) in Definition 3.4 determine

SO.4/=U.2/Š f.1; c/ W xc D�c 2 Sp.1/g:

Hence .a; b/ 2N if and only if .a; b/.1; c/.a; b/t D .1; c/ for all c 2H with jcj D 1

and xc D�c . This simplifies to

.a; b/.1; c/.a; b/t D .a; b/.1; c/.xa; xb/D .1; bcxb/D .1; c/ for all c 2Sp.1/; xcD�c

or, equivalently, cbD bc for all c 2Sp.1/; xcD�c:

The last line implies that b has to be real, and since jbj D 1 we conclude b 2 f�1;C1g.
Furthermore, we have

N D f.a; 1/ W a 2 Sp.1/g;

which is a 3–dimensional Lie subgroup of SO.4/. The Lie group SO.4/=N is also
3–dimensional, so G is isomorphic to SO.4/=N by the first isomorphism theorem.

Recall the antiholomorphic involution J on the twistor space P and the corresponding
involution zI on H ˚H introduced in Proposition 3.11. Applying J corresponds to
reversing the orientation of an immersed surface f W M ! R4 . Since reversing the
orientation of the manifold M commutes with the SO.4/ action on R4 , the natural
associated maps on the whole space and the base have to commute as well, ie

(23)

O � zI.u; v/D zI.O � .u; v// for all .u; v/ 2H ˚H; O 2 SO.4/;
�1

m.z/
Dm

�
�1

xz

�
for all z 2C; m 2G;

by the properties of J . The subgroup H of Aut.yC/ that commutes with the antipodal
map z 7! �1=xz is readily calculated to be

H D

�
m 2 Aut.yC/ Wm.z/D

azC b

xbz�xa
with a; b 2C; jaj2Cjbj2 D 1

�
:

We observe that H is also a 3–dimensional connected Lie subgroup. Property (23)
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implies that G �H . Since hW SO.4/=N !G is a Lie group isomorphism, G is open
and closed. As observed before, G and H are both connected and of dimension 3.
Hence we finally conclude that H DG .

Remark The translation-invariance of the isomorphism  W P ! H ˚H can also
be seen in the formulas of Friedrich as follows: Let CP1!H ˚H , z 7! .u; v/, be
holomorphic sections with u.z0/DA˛.z0/CBˇ.z0/ and v.z0/DB˛.z0/�Aˇ.z0/.
Consider the holomorphic sections zu.z/ D u.z/ � .A˛.z/ C Bˇ.z// and zv.z/ D
v.z/� .B˛.z/�Aˇ.z//. These sections still satisfy p.u/ D z D p.zu/ and p.v/ D

z D p.zv/, but z�.u; v/D z�.zu; zv/� .A;B/.

The isomorphism 'W CP1 ! SO.4/=U.2/ can explicitly be stated, identifying C2

with the quaternions H . Fix g 2C[f1g and let  2H be the unit quaternion  D�
�1=

p
1Cjgj2;g=

p
1Cjgj2

�
. The map ' can now be stated, using the quaternionic

multiplication, to be

CP1
! SO.4/=U.2/; g 7!Ag; where Agq D q.�x i / for all q 2HŠR4;

which is equivalent to

g 7!
1

jgj2C 1

0BB@
0 –jgj2C 1 2g2 –2g1

jgj2� 1 0 2g1 2g2

–2g2 –2g1 0 jgj2� 1

2g1 –2g2 –jgj2C 1 0

1CCA :
Corollary 3.18 Consider f ri

i W K ! R4 for i D 1; 2, a pair of Klein bottles with
W.f

ri

i / D 8� and je.�ri

i /j D 4. Let ˆW R4 ! R4 be a conformal diffeomorphism
such that f r1

1
.K/Dˆ ıf

r2

2
.K/; then r1 D r2 .

Proof We use the notation fi WD f
ri

i and keep in mind that the double covers possibly
live on different lattices. After changing the orientation of R4 we may assume without
loss of generality that e.�1/ D �4. The Willmore energy and the Euler normal
number are conformally invariant, hence f 0

2
WDˆıf2W K!R4 is a Klein bottle with

W.f 0
2
/D 8� and je.�0

2
/jD 4. The Euler normal number of an immersion only depends

on the image and not on the particular chosen immersion. Since f1.K/D f
0

2
.K/ we

deduce e.�1/D e.�0
2
/D �4. Hence it is sufficient to prove the statement under the

assumption that ˆ is the identity and e.�i/D�4 for i D 1; 2.

Let qi W Mri
D C=�i ! K be the oriented double cover of the related tori. By

Theorem 3.15, fi ı qi W Mri
!R4 are twistor holomorphic with related holomorphic

lifts Fi W Mri
! P Š H ˚H . By assumption we have F1.Mr1

/ D F2.Mr2
/. We

also have that fi ı qi ı I.z/ D fi ı qi.z/ for all z 2 C , where I.z/ D xz C 1
2

. The
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maps Fi restricted to one fundamental domain are homeomorphisms onto their images.
Hence G D F�1

1
ı F2W Mr2

! Mr1
is a homeomorphism between tori. As F1

and F2 are conformal and orientation-preserving, G is conformal and orientation-
preserving and therefore holomorphic. As a biholomorphic map between tori, G is of
the form G.z/D azC b with inverse G�1.z/D z

a
�

b
a

and a�2 D �1 . Furthermore,
zI DG�1 ıI ıG is an antiholomorphic fixpoint-free involution on Mr2

. Arguing as in
Corollary 3.12, using the natural involution J W P ! P , we deduce

J ıF2 ı
zI.z/D J ıF1 ı I ıG.z/D F1 ıG.z/D F2.z/D J ıF2 ı I.z/:

As J is an involution and F2 is (restricted to a fundamental domain) a homeomorphism
onto its image, we hence conclude zI D I . By direct computation following

G�1
ı I ıG.z/D

xa

a
xzC

1

2a
C
xb�b

a
D xzC

1

2
;

we deduce a D 1 and =.b/ D 0. This implies r1 D r2 and F1.zC b/ D F2.z/ for
some b 2 Œ0; 1/.

Corollary 3.19 Let f ri

i W K ! R4 for i D 1; 2 be a pair of Klein bottles with
W.f

ri

i /D 8� , e.�
ri

i /D�4 and f r1

1
.K/D �R ıf

r2

2
.K/ for a rigid motion R.x/D

O.xC v/ for x 2R4 , ie some O 2 SO.4/, v 2R4 and a scaling factor � 2RC . Then
we have that r1 D r2 . Furthermore, if gi W Mri

!CP1 are the related projections of
the holomorphic lifts, there is a Möbius transform mO 2 G of Proposition 3.17 and
b 2 Œ0; 1/ such that g1.z/DmO ıg2.zC b/.

Proof Firstly observe that scaling and rigid motions on R4 are conformal transforma-
tions. Corollary 3.18 hence implies that r1 D r2 . We use the notation fi WD f

ri

i .

Secondly we can assume that � D 1 and v D 0, ie f1.K/ D O � f2.K/ for some
O 2 SO.4/. Otherwise we may consider additionally the immersion f 0

2
WD �.f2C v/

and observe that
p ıF2.z/D p ıF 02.z/ for all z 2Mr2

;

where F2;F
0
2
W Mr2

! H ˚H are the related lifts and pW H ˚H ! CP1 is the
projection. This is easily seen because scaling and translation in R4 does not affect
the tangent space and so the lift in the twistor space is unaffected.

Let Fi W Mri
!H ˚H be the lift of fi W K!R4 and O 2 SO.4/ such that f1.K/D

O �f2.K/. The group SO.4/ acts naturally on P — compare Proposition 3.17 — hence
O �F2 is the lift of O �f2 . Using the proof of Corollary 3.18 we conclude the existence
of b 2 Œ0; 1/ such that

F1.z/DO �F2.zC b/ for all z 2Mr1
DMr2

:
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Furthermore, Proposition 3.17 implies the existence of a Möbius transform mO 2G

such that p ıO �F2 DmO ıp ıF2 . With gi D p ıFi we get

g1.z/DmO ıg2.zC b/ for all z 2Mr1
DMr2

:

Remark Concerning the question how many surfaces we have found in Theorem 3.15
we can say the following: As shown in the proof of Lemma 3.13 the parameter set
(of g� and therefore of f r

�
) is at least of the size of Œ0; 1�7 . In Corollary 3.19 we

studied how rigid motions and scaling in R4 and admissible reparametrizations of
the tori affect our surfaces, in particular the g� . Counting dimensions we still have a
parameter set Œ0; 1�3 for every torus Mr .

We finish this section with deducing the explicit formula for the double cover of the
Veronese embedding:

Proof of Proposition 1.3 Consider the triple .g; s1; s2/ with gD z3, s1D .'
1; '2/D

.z2; 1=z/ and s2 D . 1;  2/ D .z; 1=z2/. Then g satisfies g ı I D �1=xg for the
antiholomorphic involution z 7! �1=xz without fixpoints on S2 . Furthermore, our
choice of s1 and s2 yields (16). The immersion f is defined so that

f .z/D

�
'1xg� x 1

1Cjgj2
;
x 1gC'1

1Cjgj2

�
D

�
'1�'1 ı I

g�g ı I
;
x 1� x 1 ı I

xg� xg ı I

�
;

which is (11) and (17). It follows that f ıIDf . As jds1jCjds2j>0 on S2 , we defined
a twistor holomorphic immersion with W .f /D 12� ; see Theorem 3.9 or [7]. As S2

carries the involution I , we consider qW S2!S2=hIi and zf WDf ıq�1W S2=hIi!R4 .
We get an RP2 with W . zf / D 6� . By the work of Li and Yau [19], zf must be
a conformal transformation of the Veronese embedding.

4 A Klein bottle in R4 with Willmore energy less than 8�

In this final section we would like to consider the case of immersions f W K!R4 with
Euler normal number e.�/D 0. Our goal is to show the existence of the minimizer of
immersed Klein bottles in Rn for n� 4. For this, we need the following theorem:

Theorem 4.1 Let KDRP2 ]RP2 be a Klein bottle. Then there exists an embedding
f W K!R4 with e.�/D 0 and W.f / < 8� .

For the proof of the preceding theorem we use a construction by Bauer and Kuwert:
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Theorem 4.2 (M Bauer and Kuwert [4]) Let fi W †i ! Rn for i D 1; 2 be two
smoothly immersed, closed surfaces. If neither f1 nor f2 is a round sphere (ie totally
umbilical), then there is an immersed surface f W †!Rn with topological type of the
connected sum †1 ]†2 such that

W.f / <W.f1/CW.f2/� 4�:(24)

Remark Notice that the strategy for the gluing construction implemented by Bauer
and Kuwert was proposed by R Kusner [12].

A rough sketch of the construction of the connected sum in Theorem 4.2 is as follows:
The surface f1 is inverted at an appropriate sphere in order to obtain a surface yf1 with
a planar end and energy W. yf1/ DW.f1/� 4� . Then a small disk is deleted from
f2 and a suitably scaled copy of yf1 is implanted. An interpolation yields the strict
inequality (24). For the details we refer to [4].

For the Veronese embedding V W RP2! R4 we have W.V / D 6� . Hence we can
connect two Veronese surfaces and obtain a new surface f with W.f /< 8� . However,
by the previous sections we know that there is no Klein bottle in R4 with Euler normal
number 4 or �4 and Willmore energy less than 8� . In order to obtain a better
understanding of this situation we have to take a closer look on the construction of
Bauer and Kuwert:

For that, let fi W †i!Rn DR2Ck for i D 1; 2 be two immersions that are not totally
umbilical (ie no round spheres). Let A and B denote the second fundamental forms of
f1 and f2 , respectively. Moreover let pi 2 †i be two points such that Aı.p1/ and
Bı.p2/ are both nonzero. After a translation and a rotation we may assume

fi.pi/D 0; im Dfi.pi/DR2
� f0g for i D 1; 2:

Then Aı.p1/;B
ı.p2/W R

2 � R2 ! Rk are symmetric, tracefree, nonzero bilinear
forms.

In [4, (4.34), page 574], it is shown that Theorem 4.2 is true provided

hAı.p1/;B
ı.p2/i> 0:(25)

In order to achieve inequality (25), one exploits the freedom to rotate the surface f1 by
an orthogonal transformation R' .S;T / 2O.2/�O.k/�O.n/ before performing
the connected sum construction.

The second fundamental form AS;T of the rotated surface Rf1 at the origin is given
by

AS;T .�; �/D TA.S�1�;S�1�/ for all � 2R2:
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For the tracefree part we obtain

AıS;T .�; �/D TAı.S�1�;S�1�/ for all � 2R2:

We need the following linear algebra fact, which will be applied to Aı and Bı :

Lemma 4.3 Let P;QW R2�R2!Rk be bilinear forms that are symmetric, tracefree
and both nonzero.

(a) There exist orthogonal transformations S 2 SO.2/ and T 2O.k/ such that the
form PS;T .�; �/D TP .S�1�;S�1�/ satisfies hPS;T ;Qi> 0.

(b) We can choose S 2 SO.2/ and T 2 SO.k/ such that hPS;T ;Qi> 0, except for
the case that all of the following properties are satisfied:
� k D 2,
� jP .e1; e1/j

2 D jP .e1; e2/j
2 and jQ.e1; e1/j

2 D jQ.e1; e2/j
2 ,

� hP .e1; e1/;P .e1; e2/i D 0 and hQ.e1; e1/;Q.e1; e2/i D 0,
� fP .e1; e1/;P .e1; e2/g and fQ.e1; e1/;Q.e1; e2/g determine opposite ori-

entations of R2 .
In this case, if S 2 SO.2/ and T 2 O.2/ with hPS;T ;Qi > 0, then we have
T 2O.2/ nSO.2/.

In (b), the ordered set fe1; e2g is any positively oriented orthonormal basis of R2 . If
all four properties in (b) are satisfied for one such basis, they are also satisfied for any
other positively oriented orthonormal basis of R2 .

Proof See [4, Lemma 4.5, page 574]. The exceptional case in (b) is the case in [4] in
which k D 2, jbj D a, jd j D c , and b and d have opposite signs.

Proof of Theorem 4.1 Let V W RP2 ! R4 be the Veronese embedding. Consider
two copies fi W †i!R4 of V , ie †i DRP2 and fi D V for i D 1; 2. Let A and B

denote the second fundamental forms of f1 and f2 , respectively. Of course, AD B

and AıDBı . Choose p 2RP2 such that Aı.p/ is nonzero (in fact, this is satisfied for
any p 2RP2 ) and set P WDAı.p/ and Q WDBı.p/. Then P and Q are two bilinear
forms as in Lemma 4.3 with P DQ. Surely, the last condition in the exceptional case
of Lemma 4.3(b) fails to be true. Hence, by Lemma 4.3 we can rotate f1 by rotations
S; T 2 SO.2/ such that (25) is satisfied. Now we are able to perform the connected
sum construction: Inverting f1 and connecting f1 and f2 as described in [4] yields
a surface f W K! R4 with e.�/D 0 and W.f / < 8� . As any closed surface with
Willmore energy less than 8� is injective, f is an embedding.
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Let us finally explain why it is not possible to construct an immersion f W K! R4

with je.�/j D 4 with the method above: A direct calculation shows that the Veronese
embedding V satisfies jAı

11
j2D jAı

12
j2D 1 and hAı

11
;Aı

12
iD 0 in any point of RP2 .

Let P and Q be defined as in the preceding paragraph. Then P and Q satisfy the
second and the third condition of the exceptional case in Lemma 4.3. In order to obtain
a surface with je.�/jD 4 we have to reflect one of the Veronese surfaces before rotating
f1 and performing the gluing construction. But then also the last condition of the
exceptional case in Lemma 4.3(b) is satisfied. Hence we cannot choose T 2 SO.2/, ie
f1 has to be reflected another time. But then, after inverting f1 and connecting the
surfaces, e.�/D 0 for the new surface. Hence, in this very special case, the construction
above fails.

Remarks 4.4 (i) We can also argue the other way round: Theorem 3.1 implies
that we cannot choose S 2 SO.2/ in Lemma 4.3. This implies that jAı

11
j2 D

jAı
12
j2 and hAı

11
;Aı

12
i D 0 for the Veronese embedding. Moreover, the surface

f W K!R4 that we obtain from Theorem 4.2 must have Euler normal number 0

as W.f / < 8� .

(ii) As we can add arbitrary dimensions to R4 we get by Theorem 4.1 that every
Klein bottle can be embedded into Rn , n� 4, with W.f / < 8� .

The existence of a smooth embedding zf0W K!Rn for n� 4 minimizing the Willmore
energy in the class of all immersions zf W K!Rn can be deduced by a compactness
theorem of Kuwert and Li [14, Proposition 4.1, Theorem 4.1] and the regularity results
of Kuwert and R Schätzle [15] or Rivière [24; 25] if one can rule out diverging in
moduli space. We note that Rivière showed independently a compactness theorem
similar to the one of Kuwert and Li; see [25]. The nondegenerating property is shown
by combining the subsequent Theorem 4.5 and Theorem 4.1. We get the following
theorem:

Theorem 1.1 Let S be the class of all immersions f W †!Rn where † is a Klein
bottle. Consider

ˇn
2 WD inffW.f / W f 2 Sg:

Then we have that ˇn
2
< 8� for n � 4. Furthermore, ˇn

2
is attained by a smooth

embedded Klein bottle for n� 4.

Before we prove that a sequence of degenerating Klein bottles always has 8� Willmore
energy we explain how we apply certain techniques from [14] to nonorientable closed
surfaces.
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We repeat our general set-up from the beginning of Section 2: Let N be a nonorientable
closed manifold of dimension two and zf W N !Rn (n� 3) an immersion. Consider
qW M !N , the conformal oriented two-sheeted cover of N , and define f WD zf ı q .
As every 2–dimensional oriented manifold can be locally conformally reparametrized,
M is a Riemann surface that is conformal to .M; f �ıeucl/. Let I W M !M be the
antiholomorphic order-two deck transformation for q . The map I is an antiholomorphic
involution without fixpoints such that f ı I D f . From now on we will work with
the immersion f on the Riemann surface M equipped with an antiholomorphic
involution I . We are not arguing on the quotient space N DM=hIi.

For the Willmore energy of the immersion f we have

W.f /D 2W. zf /:

If p 2 f �1.y/ then I.p/ 2 f �1.y/, ie the number of preimages of f is always
even. We describe this in other words: Consider M as a varifold and consider the
push-forward of M via f , ie f]M . Then f]M is a compactly supported rectifiable
varifold with at least multiplicity 2 at every point.

We now consider the case that f is a proper branched conformal immersion (compare
[14, page 323]), ie there exists †�M discrete such that f 2W

2;2
conf;loc.M n†;R

n/

and Z
U

jAj2 d�f �ıeucl <1 and �f �ıeucl.U / <1 for all U b M:

We note once again that we have I.†/ D † since f ı I D f . If 'W B� ! M is
a local conformal parametrization around '.0/ 2 † such that '.B� / \† D '.0/,
we may apply the classification of isolated singularities result of Kuwert and Li [14,
Theorem 3.1] to f ı' and conclude that

�2.f ı']ŒŒB� ��; f ı'.0//DmC 1 for some m� 0:

Here, we considered ŒŒB� �� as a varifold itself. Furthermore I ı 'W B� !M is an
antiholomorphic parametrization around the point I ı'.0/. Applying once more [14,
Theorem 3.1] (I ı'.B� /\'.B� /D∅ by the choice of � )

�2.f ı I ı']ŒŒB� ��; f ı I ı'.0//Dm0C 1 for some m0 � 0:

We have mDm0 since f ıIDf . Combining both local estimates with the monotonicity
formula of Simon (which extends to branched conformal immersions) we obtain,
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for q D f ı'.0/D f ı I ı'.0/,

(26) W.f /� �2.f]M; q/

� �2.f ı']ŒŒB� ��; q/C �
2.f ı I ı']ŒŒB� ��; q/

� 2.mC 1/4�:

We remark that in general we could have started working on N DM=hIi with the
associated varifold zf]N which has density 1 at most points. But we decided to stick
to the oriented double cover M since all theorems in the literature are proven on
orientable Riemann surfaces.

The following theorem can be considered as the analog of [14, Theorem 5.2] for the
nonorientable situation. Our argumentation is inspired by the arguments of Kuwert
and Li.

Theorem 4.5 Let Km be a sequence of Klein bottles diverging in moduli space. Then
for any sequence of conformal immersions zfm 2W

2;2
conf.Km;Rn/ we have

lim inf
m!1

W. zfm/� 8�:

Proof Let qmW T
2
m!Km be the two sheeted oriented double cover and ImW T

2
m!T 2

m

the associated antiholomorphic order-two deck transformation. By Theorem 2.1 we
may assume that T 2

m D C=�m , where �m is a lattice generated by .1; ibm/ with
bm � 1 and Im is given by

(27) Im.z/D xzC
1
2

or Im.z/D�xzC
1
2
ibm:

Diverging in moduli space implies limm!1 bm D 1. We lift the maps zfm to the
double cover T 2

m and then to �m –periodic maps from C into Rn , and denote the lifted
maps by fm , ie fm ı Im D fm . By Gauss–Bonnet we may also assume that the maps
fmW C!Rn satisfy

lim sup
m!1

1

4

Z
T 2

m

jAfm
j
2 d�gm

D lim sup
m!1

W.fm/�W0 <1:

The theorem is proven if we show that

(28) lim inf
m!1

W.fm/� 16�:

We have to distinguish two cases. They are determined by the form of the involution.
After passing to a subsequence the involution is either of the second kind in (27) for
all m (Case 1) or it is the involution I.z/D xzC 1

2
for all m (Case 2).
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Following the notation of [14] we will denote by Ip the inversion at @B1.p/ in Rn ,
ie Ip.x/D pC .x�p/=jx�pj2 for x 2Rn . Furthermore, for ı 2R we define the
translations �ı.z/ WD zC iı for z 2C .

Case 1 Im.z/D�xzC
1
2
ibm for all m.

Proof of (28) in Case 1 The local L1–bound of the conformal factor [14, Corol-
lary 2.2] implies that fm is not constant on any circle CvD Œ0; 1��fvg. As fmıImDfm

we have that fm

�
Œ0; 1� �

�
0; 1

2
bm

��
D fm

�
Œ0; 1� �

�
1
2
bm; bm

��
. Thus, there exists

vm 2
�
0; 1

2
bm

�
such that

�m WD diam.fm.Cvm
//� diam.fm.Cv// for all v 2R:

As already mentioned in Lemma 2.5 the involution is not affected by these translations
because ��1

ı
ı Im ı �ı D Im� 2<.iı/D Im . Consider the two sequences

hm.z/D �
�1
m .fm ı �vm

.z/�fm ı �vm
.0//;

km.z/D �
�1
m .fm ı �bm=2Cvm

.z/�fm ı �bm=2Cvm
.0//:

We have that 1D diam.hm.C0//D diam.km.C0//, 0D hm.0/D km.0/ for all m and
hm.z/D km.�xz/. The immersions hm and km are immersed tori diverging in moduli
space. We can therefore repeat the proof of Kuwert and Li from [14, Theorem 5.2].
We find a suitable inversion Ix0

at a sphere @B1.x0/ and deduce that yhm WD Ix0
ıhm ,

ykm WD Ix0
ı km converge locally uniformly to branched conformal immersions yh and

yk satisfying W.yh/� 8� and W.yk/� 8� . Observe that

W.fm/DW.Ix0
ıfm/

D
1

4

Z
Œ0;1��Œvm�bm=4;vmCbm=4�

jHIx0
ıfm
j
2 d�ygm

C
1

4

Z
Œ0;1��ŒvmCbm=4;vmC3bm=4�

jHIx0
ıfm
j
2 d�ygm

DW.yhmjŒ0;1��Œ�bm=4;bm=4�/CW.ykmjŒ0;1��Œ�bm=4;bm=4�/:

We pass to the limit and get

lim inf
m!1

W.fm/� lim inf
m!1

W.yhm/C lim inf
m!1

W.ykm/�W.yh/CW.yk/� 16�:

Note that yh and yk parametrize the same sphere because of yh.z/D yk.�xz/. This sphere
has a double point, as shown in the proof of [14, Theorem 5.2].

Case 2 Im.z/D xzC
1
2

for all m.
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Proof of (28) in Case 2 Observe that we cannot translate into “imaginary direction”
without changing the involution because ��1

ı
ıI ı�ı.z/D I.z/�2iı . Another delicate

point is that the form of the involution does not help to find a “second” torus.

We fix a large integer M 2N such that 4�M �W0 .

For each m 2N pick um 2 f�M; : : : ;M g such that

(29) �m D diam.fm.Cum
//D min

u2f�M;:::;M g
diam.fm.Cu//:

By passing to a subsequence we may assume that umDu0 for all m. Furthermore, argu-
ing as in [14, Propositon 4.1] we obtain B1.x1/�Rn such that fm.T

2
m/\B1.x1/D∅

for all m. We consider the sequence

(30) hm.z/ WD Ix1

�
��1

m .fm.z/�fm ı �u0
.0//

�
:

Repeat the procedure and fix vm 2 f�M; : : : ;M g such that

(31) �m D diam.hm.Cbm=2Cvm
//D min

v2f�M;:::;M g
diam.hm.Cbm=2Cv//:

By passing to a subsequence we may assume vm D v0 for all m and define

km.z/ WD �
�1
m .hm ı �bm=2.z/� hm ı �bm=2Cv0

.0//:

The translations were chosen so that we still have hm ı I D hm and km ı I D km

for all m. As before we find x2 2 Rn with km.T
2
m/ \ B1.x2/ D ∅ and consider

ykm D Ix2
.km/. We have achieved that hm.T

2
m/ � B1.x1/ and ykm.T

2
m/ � B1.x2/.

Lemma 1.1 of [27] implies area bounds �gm
.T 2

m/ � C for both sequences. Up to a
subsequence, we have jAhm

j2 d�gm
!˛1 and jAykm

j2 d�gm
!˛2 as Radon measures

on the cylinder C D Œ0; 1��R. The sets †i WD
˚
z 2 C W ˛i.fzg/ � 4�

	
for i D 1; 2

are discrete. Theorem 5.1 in [14] yields that hm and ykm converge locally uniformly
on C n†1 and C n†2 , respectively. The limits either are conformal immersions
hW C n†1!Rn , ykW C n†2!Rn or points p1 and p2 . Note that by construction

(32) hm.Cu0
/� Ix1

.B1.0//�Rn
nB�1

.x1/ with �1 D
1

1Cjx1j
;

ykm.Cv0
/� Ix2

.B1.0//�Rn
nB�2

.x2/ with �2 D
1

1Cjx2j
:

Assume the second alternative holds for hm , ie hm! p1 locally uniformly. Observe
that Cu \†1 D ∅ for at least one u� 2 f�M; : : : ;M g. Otherwise there would be
points zu 2 Cu with ˛1.B1=4.zu// > 4� for each u 2 f�M; : : : ;M g contradictingPM

uD�M ˛1.B1=4.zu//� ˛1.C /�W0 .
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Due to (32) we have jp1�x1j� �1>0 and hence Ix1
.hm.Cu�//! Ix1

.p1/ uniformly.
But diam.Ix1

.hm.Cu�///� 1 by (29) and (30), a contradiction. In the same way we
exclude ykm! p2 .

By uniform local convergence we get

hD lim
m!1

hm D lim
m!1

hm ı I D h ı I;

yk D lim
m!1

ykm D lim
m!1

ykm ı I D yk ı I;

and we are in the situation of branched W 2;2 –conformal immersions that are in-
variant under I . We now investigate the behavior of h and yk at the ends f˙1g
of the cylinder C . We present the argument for h; the argument for yk works
analogously. We note that 'C.z/ WD �i

2�
ln.z/ is a holomorphic chart around C1

and I ı 'C.z/ D
i

2�
ln.xz/ C 1

2
is an antiholomorphic chart around �1. SinceR

C jAhj
2 d�g � ˛1.C / <1, the map hC.z/ WD h ı 'C.z/ is a W

2;2
loc .B�nf0g;R

n/–
conformal immersion with †1\'C.B� n f0g/D∅ for � > 0 sufficiently small. We
follow the explanations presented in front of Theorem 4.5 (page 2519) to conclude
that the varifold hC]ŒŒB� �� extends continuously to 0. This implies that h.Cv/! q1

for � !˙1 using the fact that I.Cv/ D C�v . Furthermore, applying the Li–Yau
inequality (a version for branched immersion can be found in [14, Formula (3.1)])
yields the following lower bound of the Willmore energy of h. A detailed explanation
how we apply this inequality to the oriented double covers was done on page 2519;
see (26). We have that

W.h/� �2.h]C; q1/

� �2.hC]ŒŒB� ��; q/C �
2.h ı I ı'C]ŒŒB� ��; q/

� 2.m.C1/C 1/ 4�:

Thus, if m.C1/ � 1 we have that W.h/ � 4 � 4� . The very same argument applies
to yk .

Similarly we exclude branch points for the maps h and yk in the interior of the cylinder
C as follows. Suppose that the application of the classification theorem of isolated
singularities [14, Theorem 3.1] to a point z 2†1 reveals a point with branching order
m.z/ � 1; then, by (26), we conclude W.h/ � 4 � 4� D 16� . In the same way we
can assume that all points z 2 †2 are removable singularities, ie m.z/ D 0 and yk
has removable singularities in ˙1.

It remains to handle the situation where h and yk are unbranched. Since h ı I D h and
yk ıI D yk , and h and yk extend smoothly to ˙1, they are double covers of immersions
of an RP2 into Rn . By the work of Li and Yau [19] we get minfW.h/;W.yk/g �
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2 � 6� D 12� as h and yk are the oriented double covers of the unoriented surfaces.
Recall once more that this also implies that #h�1.fxg/ and #yk�1.fxg/ are even for all
x 2Rn .

If #yk�1.fx1g/ > 2, the Li–Yau inequality implies W.yk/ � 4� � #yk�1.fx1g/ � 16� .
Otherwise let Cm WD Œ0; 1��

�
�

1
4
bm;

1
4
bm

�
. We observe that kmD Ix2

ı ykm! Ix2
ı yk

and

W.hm/DW.hmjCm
/CW.hmj�bm=2.Cm//DW.hmjCm

/CW.kmjCm
/:

With #yk.x1/� 2, we conclude by [14, Formula (3.1)] that

lim inf
m!1

W .hm/� lim inf
m!1

W.hmjCm
/C lim inf

m!1
W.kmjCm

/

�W.h/CW.Ix1
.yk//� 12� C .12� � 8�/D 16�:
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A spectral sequence for stratified spaces
and configuration spaces of points

DAN PETERSEN

We construct a spectral sequence associated to a stratified space, which computes the
compactly supported cohomology groups of an open stratum in terms of the compactly
supported cohomology groups of closed strata and the reduced cohomology groups
of the poset of strata. Several familiar spectral sequences arise as special cases. The
construction is sheaf-theoretic and works both for topological spaces and for the
étale cohomology of algebraic varieties. As an application we prove a very general
representation stability theorem for configuration spaces of points.

55R80; 55T05, 32S60, 14F25, 55N30

1 Introduction

Let X D
S
˛2P S˛ be a stratified space. By this we mean that the topological space X

is the union of disjoint locally closed subspaces S˛ called the strata, and that the
closure of each stratum is itself a union of strata. The set P of strata becomes partially
ordered by declaring that ˛ � ˇ if S˛ � Sˇ .

Let �c.�/ denote the compactly supported Euler characteristic of a space. Since this
invariant is additive over stratifications, one has an equality

(1) �c.S˛/D
X
˛�ˇ

�c.Sˇ /

for all ˛ 2P . By the Möbius inversion formula for the poset P , it therefore holds that

(2) �c.S˛/D
X
˛�ˇ

�P .˛; ˇ/ ��c.Sˇ /;

where �P is the Möbius function of the poset. This expresses the simple combinatorial
fact that if one knows all the integers �c.S˛/, then one can also determine the integers
�c.S˛/ by inclusion-exclusion.

Equation (1) can be upgraded (or “categorified”) to a relationship between actual
cohomology groups. Suppose � W P !Z is a function such that �.˛/ < �.ˇ/ if ˛ <ˇ .
Such a function defines a filtration of S˛ by closed subspaces, and the corresponding
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2528 Dan Petersen

spectral sequence in compactly supported cohomology reads

(3) E
pq
1 D

M
˛�ˇ

�.ˇ/D�p

HpCq
c .Sˇ ;Z/ D) HpCq

c .S˛;Z/:

By equating the Euler characteristics of the E1 and E1 pages of this spectral sequence
one recovers (1).

It is then natural to ask whether also the dual equation (2) admits a similar interpretation.
The quantity �P .˛; ˇ/ is also an Euler characteristic, by Philip Hall’s theorem: the
Möbius function �P .˛; ˇ/ equals the reduced Euler characteristic of N.˛; ˇ/, by
which we mean the nerve of the poset .˛; ˇ/, where .˛; ˇ/ denotes an open interval
in P . (The preceding is valid only if ˛ < ˇ : in the degenerate case ˛ D ˇ it is natural
to define the reduced cohomology of N.˛; ˇ/ to be Z in degree �2, as we explain
in Section 2.) In any case, one can expect such a categorification to also involve the
reduced cohomology groups of the poset.

In this paper, we construct a spectral sequence accomplishing this goal:

Theorem 1.1 There exists a spectral sequence

E
pq
1 D

M
˛�ˇ

�.ˇ/Dp

M
iCjC2DpCq

H j
c .Sˇ ;

zH i .N.˛; ˇ/;Z// D) HpCq
c .S˛;Z/:

Taking Euler characteristics of both sides, we recover (2). This would seem a very
natural question — given the cohomology of the closed strata, how does one compute
the cohomology of open strata? — and it is close in spirit to the work of Vassiliev
[30; 31]. Yet to my knowledge the result is new.

The proof is elementary and completely sheaf-theoretic, and the theorem we prove in
the body of the paper is a more general statement that is valid with coefficients given
by any sheaf or complex of sheaves F on X . It also works in the setting of `–adic
sheaves, if X is an algebraic variety: in this case, the spectral sequence is a spectral
sequence of `–adic Galois representations.

As an application of our result we prove a very general representation stability theorem
for configuration spaces of points. In particular, a novel feature is that if one is willing
to work with Borel–Moore homology (or, dually, compact support cohomology), then
one can prove homological stability results for an arbitrary topological space M
satisfying rather mild hypotheses; to my knowledge, all existing results in the literature
prove homological stability for configuration spaces of points on manifolds. In this
introduction we focus on the case when M is a (possibly singular) algebraic variety, in
which case the result is easier to state.

Geometry & Topology, Volume 21 (2017)
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Let M be a space, and let A be a finite collection of closed subspaces Ai � M ni.
We define a configuration space FA.M; n/, parametrizing n ordered points on M
“avoiding all A–configurations”. For instance, if A consists only of the diagonal
inside M 2 , then FA.M; n/ is the usual configuration space of distinct ordered points
on M.

Theorem 1.2 Let M be a geometrically irreducible d–dimensional algebraic variety
over a field � , and A an arbitrary finite collection of closed subvarieties Ai �M ni.

(1) For � DC , the (singular) Borel–Moore homology groups

HBM
iC2dn.FA.M; n/.C/;Z/

form a finitely generated FI-module for all i 2 Z.

(2) The (étale) Borel–Moore homology groups

HBM
iC2dn.FA.M; n/x� ;Z`.�dn//

form a finitely generated FI-module in `–adic Gal.x�=�/–representations, for all
i 2 Z, whenever ` is a prime different from char.�/.

In particular, the homology groups HBM
iC2dn

.FA.M; n/;Q/ form a representation stable
sequence of Sn–representations, and the Sn–invariants HBM

iC2dn
.FA.M; n/=Sn;Q/

satisfy homological stability as n!1.

If M is smooth, or at least a homology manifold, we may conclude instead that
the cohomology groups H i .FA.M; n/;Z/ form a finitely generated FI-module, by
Poincaré duality. See Remark 4.17.

The fact that we obtain a finitely generated FI-module over Z gives a homological stabil-
ity result with rational coefficients, but it also has interesting consequences for the mod p
homology of the unordered configuration spaces: by results of Nagpal [24], our theorem
implies that the groups HBM

iC2dn
.FA.M; n/=Sn;Fp/ become eventually periodic.

Vakil and Wood [29] introduced certain configuration spaces xwc
�
.M/ depending on

a partition �. For a suitable choice of A, one has FA.M; n/=Sn D xwc�.M/, so
Theorem 1.2 implies in particular a homological stability theorem for the spaces
xwc
�
.M/ as n!1, which gives a proof of [29, Conjecture F]. This conjecture has

previously been proven by Kupers, Miller and Tran [21]. Compared to their proof, our
proof gives the stronger assertion of representation stability, and makes no smoothness
assumptions about M (they assume M is a smooth manifold). On the other hand, their
proof gives in many cases integral stability for the unordered configuration space, and
they give an explicit stability range. The latter should be possible in our setting, too,
but we have not done so.

Geometry & Topology, Volume 21 (2017)
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Vakil and Wood formulated their conjecture after making point counts of varieties
over finite fields, and using the Grothendieck–Lefschetz trace formula to guess what
the cohomology should look like. Since the Grothendieck–Lefschetz trace formula
concerns compact support cohomology, it is in a sense natural that we obtain stronger
results when working with compact support cohomology/Borel–Moore homology from
the start.

As mentioned, one can prove also a version of Theorem 1.2 for an arbitrary topological
space, but the assumptions on M and A become more cumbersome to state. However,
if we let A be the arrangement leading to the configuration spaces considered by Vakil
and Wood, the hypotheses are quite simple: if M is any locally compact topological
space with finitely generated Borel–Moore homology groups, and such that there exists
an integer d � 2 for which HBM

d
.M;Z/Š Z and HBM

i .M;Z/D 0 for i > d , then
HBM
iCdn

.FA.M; n/;Z/ is a finitely generated FI-module if d is even; if d is odd, one
needs to twist by the sign representation, and HBM

iCdn
.FA.M; n/;Z/˝sgnn is a finitely

generated FI-module.

2 Generalities on posets

Let P be a poset, always assumed to be finite. We define its nerve NP to be the
simplicial complex with vertices the elements of P , and a subset S � P forms a face
if and only if all elements of S are pairwise comparable. The corresponding simplicial
set is exactly the usual nerve of P , when P is thought of as a category.

We use zC�.�/ to denote the reduced cellular chains of a simplicial complex �. The
group zCi .�/ is free abelian on the set of i–dimensional faces; we include the empty
set as a .�1/–dimensional face. The homology of this chain complex is zH�.�;Z/.
However, we will prefer to work with cohomology. The usual definition would be to set

zC �.�/D Hom. zC�.�/;Z/

but we will find it more convenient to use the distinguished basis of zCi .�/ to consider
zC i .�/ as also being free abelian on the set of i–dimensional faces; then the differential
becomes an alternating sum over ways of adding an element to a face.

If x � y in P , we denote by zC �.x; y/ the chain complex which in degree d is the
free abelian group spanned by the increasing sequences

x D z�1 < z0 < z1 < � � �< zd < zdC1 D y;

and whose differential @W zCd ! zCdC1 is an alternating sum over ways of adding an
element to the sequence. For x < y , zC �.x; y/ is equal to zC �.N.x; y//, where .x; y/

Geometry & Topology, Volume 21 (2017)
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denotes an open interval in P ; for x D y , it consists of Z placed in degree �2. We
denote by zH �.x; y/ the cohomology of this cochain complex.

Let � W P ! Z be a strictly increasing function, eg a grading or a linear extension.

Proposition 2.1 For x < y in P , there exists a spectral sequence

E
pq
1 D

M
x�z�y
�.z/Dp

zHpCq�1.x; z/

converging to zero.

Proof Consider the chain complex zC � D zC �.N.x; y�/, where .x; y� denotes a half-
open interval in P . Since .x; y� has a unique maximal element its nerve is contractible,
so the complex zC � is acyclic. We identify zC d with the set of increasing sequences

x D z�1 < z0 < z1 < � � �< zd � y:

Define a decreasing filtration on this complex by taking F p zC d to be the span of all
sequences with �.zd /� p . This makes zC � a filtered complex. Consider the quotient

F p zC �=F pC1 zC �

and its induced differential. Then F p zCd=F pC1 zCd has a basis consisting of sequences
such that �.zd / is exactly equal to p , and the differential is a sum over all ways of
adding an element to the sequence coming before zd . It therefore follows that the
quotient is isomorphic to the direct sumM

x�z�y
�.z/Dp

zC ��1.x; z/;

by an isomorphism taking the sequence

x D z�1 < z0 < z1 < � � �< zd � y 2 F
p zC d=F pC1 zC d

to the sequence

x D z�1 < z0 < z1 < � � � zd�1 < zd D zd 2 zC
d�1.x; zd /:

Thus the spectral sequence associated to this filtration has the required form.

Let Int.P / denote the set of pairs .x; y/ 2 P �P with x � y . We define the Möbius
function

�W Int.P /! Z

by �.x; y/D
P
i .�1/

i rank zH i .x; y/.

Geometry & Topology, Volume 21 (2017)
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Proposition 2.2 If x < y , then
P
x�z�y �.x; z/D 0.

Proof The left-hand side is the Euler characteristic of the E1 page of the spectral
sequence constructed in Proposition 2.1, and the right-hand side is the Euler character-
istic of the E1 page.

A consequence of this is a simple recursive procedure for calculating the Möbius
function: the Möbius function could equivalently have been defined as

�.x; y/D

�
1 if x D y;
�
P
x�z<y �.x; z/ if x < y:

In most treatments this is taken as the definition of the Möbius function. The fact
that �.x; y/ for x < y equals the reduced Euler characteristic of the nerve of the
interval .x; y/ is then called Philip Hall’s theorem. We may think of Proposition 2.1
as a categorification of the usual recursion for the Möbius function.

3 The construction and several examples

Let X D
S
˛2P S˛ be a stratified space. By this we mean that the space X is the

union of disjoint locally closed subspaces S˛ called the strata, and that the closure of
each S˛ is itself a union of strata. By a “space” we mean either:

(1) X is a locally compact Hausdorff topological space,

(2) X is an algebraic variety over some field.

In the former case, “sheaf” will just mean “sheaf of abelian groups”; in the latter case,
“sheaf” will mean “constructible `–adic sheaf, for ` different from the characteristic”.

The set P of strata becomes partially ordered by declaring that ˛ � ˇ if S˛ � Sˇ . We
assume for simplicity (and without loss of generality) that P has a unique minimal
element 0, ie a unique open dense stratum S0 .

For ˛ 2 P we denote by j˛ the locally closed inclusion S˛ ,! X , and by i˛ the
inclusion S˛ ,!X of the closure of a stratum.

For d � 0, define a sheaf

Ld .F/D
M

0D˛0<˛1<���<˛d2P

.i˛d /�.i˛d /
�F

on X . In particular, L0.F/D F . We may define a differential

Ld .F/! LdC1.F/

Geometry & Topology, Volume 21 (2017)
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as an alternating sum over ways of adding an element to the sequence ˛0<˛1< � � �<˛d ,
just as in our definition of zC �.�/ for a simplicial complex �; when the element we add
appears at the end of the sequence, ie as ˛dC1 > ˛d , then the differential uses the map

.i˛d /�.i˛d /
�F! .i˛dC1/�.i˛dC1/

�F

obtained from the fact that i˛dC1 factors through i˛d . This makes L�.F/ into a
complex, for the same reason that zC �.�/ is.

Proposition 3.1 The complex L�.F/ is quasi-isomorphic to j
0Š
j�10 F , where j0 is

the inclusion of the open stratum.

Proof We show that

j0Šj
�1
0 F! L0.F/! L1.F/! L2.F/! � � �

is an acyclic complex of sheaves. It suffices to check this on stalks. For x 2 S0 the
induced sequence on stalks reads

Fx! Fx! 0! 0! � � � ;

with the map Fx ! Fx the identity. Thus we may restrict attention to x in some
stratum Sˇ , ˇ ¤ 0. In this case .j

0Š
j�10 F/x will of course vanish, and we will have

Ld .F/x Š
M

0D˛0<˛1<���<˛d2P
˛d�ˇ

Fx;

with the differential on L�.F/x given by adding an element to the sequence of ˛i’s.
But this means that L�.F/x is (up to a degree shift) the tensor product of Fx with the
complex zC �.N.0; ˇ�/, which is acyclic because the poset .0; ˇ� has a unique maximal
element.

Remark 3.2 Another way to think about the complex L�.F/ is that j
0Š
j�10 FŒ�1�

can be calculated as the cone of F! i�i
�F , where i W .X nS0/!X is the inclusion.

Now i�i
�F may be calculated as the homotopy limit of the various .i˛/�.i˛/�F (for

˛ ¤ 0), and L�1.F/ is the bar resolution computing this homotopy limit.

Suppose we are given � W P ! Z an increasing function. We may now define a
decreasing filtration of L�.F/ by taking

F pLd .F/D
M

0D˛0<˛1<���<˛d2P
�.˛d /�p

.i˛d /�.i˛d /
�F:
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The compactly supported hypercohomology spectral sequence associated to this filtra-
tion reads

E
pq
1 DHpCq

c .X;GrpFL
�.F// D) HpCq

c .X;L�.F//DHpCq
c .S0; j

�1
0 F/;

where the second equality is the preceding proposition. Thus we should understand
the associated graded GrpFL

�.F/. By arguments just like those in the proof of
Proposition 2.1, the associated graded can be written as

GrpFL
d .F/D

M
ˇ2P
�.ˇ/Dp

M
0D˛0<˛1<���<˛dDˇ

.iˇ /�.iˇ /
�F;

and hence

GrpFL
�.F/D

M
ˇ2P
�.ˇ/Dp

zC �C2.0; ˇ/˝ .iˇ /�.iˇ /
�FD

M
ˇ2P
�.ˇ/Dp

zH �C2.0; ˇ/˝L .iˇ /�.iˇ /
�F:

The last equality uses that zC �C2.0; ˇ/ is a complex of free modules, so it calculates
the derived tensor product, and that any complex of abelian groups is quasi-isomorphic
to its cohomology.

In full generality, this cannot be simplified further. However, in most cases occurring
in practice it can:

(1) If F D R is a constant sheaf associated to the ring R , then zH �C2.0; ˇ/˝L

.iˇ /�.iˇ /
�F is the constant sheaf zH �C2.0; ˇIR/.

(2) If the cohomology groups zH i .0; ˇ/ are torsion-free, or if F is a sheaf of k–
vector spaces for some field k , then we may replace the derived tensor product
with the usual tensor product.

Let us state our main result only in these two simpler situations.

Theorem 3.3 Let X D
S
ˇ2P Sˇ be a stratified space, where the set P is partially

ordered by reverse inclusion of the closures of strata. Choose a function � W P ! Z
such that �.x/ < �.y/ if x < y .

(i) For any ring R , there is a spectral sequence

E
pq
1 D

M
ˇ2P
�.ˇ/Dp

M
iCjDpCq�2

H j
c .Sˇ ;

zH i .0; ˇIR// D) HpCq
c .S0; R/:
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(ii) If F is a sheaf on X , and we assume either that F is a sheaf of k–vector spaces
or that each interval .0; ˇ/ in P has torsion-free cohomology, then there is a
spectral sequence

E
pq
1 D

M
ˇ2P
�.ˇ/Dp

M
iCjDpCq�2

zH i .0; ˇ/˝H j
c .Sˇ ; i

�
ˇF/ D) HpCq

c .S0; j
�1
0 F/:

If in (ii) X is an algebraic variety and F is an `–adic sheaf, then this spectral sequence
is a spectral sequence of Galois representations, if the cohomology groups zH i .0; ˇ/

are given the trivial Galois action.

3.1 Examples and applications

Example 3.4 If the stratification consists only of a closed subspace i W Z ,!X , then
the complex L�.F/ reduces to the two-term complex F! i�i

�F , and the spectral
sequence reduces to the long exact sequence

� � � !Hk
c .X;F/!Hk

c .Z;F/!HkC1
c .X nZ;F/!HkC1

c .X;F/! � � � : G

Example 3.5 Let X be a complex manifold, and D DD1[ � � � [Dk a strict normal
crossing divisor. Consider the stratification of X by the various intersections of the
components of D . For I � f1; : : : ; kg, let DI D

T
i2I Di , including D∅ DX . Each

interval in the poset of strata is a boolean lattice, so its reduced cohomology vanishes
below the top degree, where it is one-dimensional. The spectral sequence therefore
reduces to

E
pq
1 D

M
jI jDp

H q
c .DI ;Z/ D) HpCq

c .X nD;Z/:

This is the Poincaré dual of the spectral sequence used by Deligne to construct the
mixed Hodge structure on a smooth noncompact complex algebraic variety [11]. In the
algebraic case, it is a spectral sequence of mixed Hodge structures/Galois representa-
tions. G

Example 3.6 Suppose X D An is affine space over a field, and the stratification
consists of all the intersections in some subspace arrangement. Let �.˛/D� dim.S˛/.
Let FDQ` . In this case the spectral sequence simplifies to

E
pq
1 D

M
ˇ2P
�.ˇ/Dp

zH qC3p�2.0; ˇ/˝Q`.p/ D) HpCq
c .S0;Q`/:
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Since all columns have different weight there can be no differentials in the spectral
sequence. It follows that (up to semisimplification of the Galois representation)

Hn
c .S0;Q`/D

nM
jD0

Q`.�j /˝

� M
ˇ Wdim.Sˇ/Dj

zHn�2j�2.0; ˇ/

�
;

which re-proves a result of Björner and Ekedahl [4]. G

Example 3.7 The aforementioned result of Björner and Ekedahl is the algebro-
geometric analogue of a theorem of Goresky and MacPherson [17] about real subspace
arrangements; the latter result, too, can be given an easy proof using our spectral
sequence. Goresky and MacPherson originally proved it as an application of their
stratified Morse theory; many different authors have subsequently given alternative
proofs and/or strengthenings. Their result, in turn, is a refinement of the work of Orlik
and Solomon on complex hyperplane arrangements [25]. In any case, suppose that X is
a real vector space, stratified according to intersections in a real subspace arrangement.
Let �.˛/D� dimR S˛ . The result of Goresky and MacPherson is equivalent to our
spectral sequence degenerating at E1 . The weight argument used in the case of a
complex subspace arrangement is of course not valid in this setting. We can instead
argue as follows:

Choose for each ˛ an open ball U˛ inside S˛ . Then C �c .U˛;Z/ (compactly supported
cochains) is a subcomplex of C �c .S˛;Z/ for all ˛ . The inclusion of each of these
subcomplexes is a quasi-isomorphism, and the restriction maps between these subcom-
plexes can be chosen to be identically zero (since U˛ may be taken to be disjoint from
all Sˇ with ˇ > ˛ ). By additionally choosing an arbitrary quasi-isomorphism between
C �c .U˛;Z/ and H �c .S˛;Z/ we thus get a quasi-isomorphism between the two functors
P ! Chk (where the poset P is thought of as a category) given by ˛ 7! S�c .S˛;Z/
and ˛ 7!H �c .S˛;Z/.

We can compute R�c.X;L�.Z// by means of a double complex, with each vertical
row a direct sum of complexes S�c .S˛;Z/, and the differentials in the horizontal row
given by the differentials in the complex L�.Z/; equivalently, given by the functor
˛ 7! S�c .S˛;Z/. If we apply the quasi-isomorphism of functors constructed in the
previous paragraph we can replace this double complex with one in which the vertical
rows have zero differential, and the horizontal rows are direct sums of complexes of
the form zC �C2.0; ˇ/.

Our spectral sequence arises from a filtration of this double complex. In this case, the
filtration clearly splits, and the spectral sequence degenerates immediately. G
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Example 3.8 Let us give two variations of our spectral sequence.

(1ı) Let D denote Verdier’s duality functor. The filtration on L�.F/ induces a filtra-
tion on DL�.F/, satisfying GrFDL�.F/'DGrFL�.F/ (see eg [18, (2.2.8.1)]).
Thus the associated graded pieces of DL�.F/ are quasi-isomorphic to

D

� M
�.ˇ/Dp

zH �C2.0; ˇ/˝L .iˇ /�.iˇ /
�F

�
D

M
�.ˇ/Dp

zH���2.0; ˇ/˝
L .iˇ /Š.iˇ /

ŠDF:

Since the cohomology of DR in negative degrees equals Borel–Moore homology
with coefficients in R , our filtration of DL�.F/ gives rise to a Borel–Moore
homology spectral sequence

E1pq D
M
ˇ2P
�.ˇ/Dp

M
iCjDpCq�2

HBM
j .Sˇ ; zHi .0; ˇIR// D) HBM

pCq.S0; R/:

(2ı) Instead of taking the compact support cohomology of L�.F/' j
0Š
j�10 F , we

may take the usual cohomology. Since j
0Š
j�10 FŒ1� is the cone of F! i�i

�F ,
where i is the inclusion .X nS0/ ,!X , this gives instead a spectral sequence

E
pq
1 D

M
ˇ2P
�.ˇ/Dp

M
iCjDpCq�2

H j .Sˇ ; zH
i .0; ˇIR// D) HpCq.X;X nS0IR/: G

Example 3.9 Let XDfX.n/g be a topological operad. Suppose that X.n/ is stratified
in such a way that the strata correspond to trees with n legs, the closed stratum corre-
sponding to a tree T is

Q
v2Vert.T /X.nv/, and the composition maps in the operad X

are given tautologically by grafting of trees. Let Y.n/ be the open stratum in X.n/ corre-
sponding to the unique tree with a single vertex. Examples of such operads abound: the
Stasheff associahedra, the Fulton–MacPherson model of the en–operads, the Deligne–
Mumford spaces M0;n , the Boardman–Vogt W –construction applied to an arbitrary
topological operad, Devadoss’s mosaic operad, the cactus operad, Brown’s dihedral
moduli spaces Mı

0;n , the brick operad B.n/ of Dotsenko, Shadrin and Vallette, etc.

Clearly, the compact support cohomology H �c .X.n/;Q/ will form a cooperad. More-
over, the degree-shifted cohomologiesH ��1c .Y.n/;Q/will form an operad: Y.n/�Y.m/
will be a stratum adjacent to Y.nCm�1/ inside X.nCm�1/, and there is a connecting
homomorphism H �c .Y.n/� Y.m/;Q/!H �C1c .Y.nCm� 1/;Q/ coming from the
long exact sequence of a pair in compact support cohomology.

If � is the function taking a stratum to the number of vertices in the corresponding
tree, then we get a filtration of X.n/. The corresponding spectral sequence in com-
pact support cohomology (equation (3) from the introduction) is a cooperad in the

Geometry & Topology, Volume 21 (2017)



2538 Dan Petersen

category of spectral sequences. Its E1 page is the associated graded for a filtration
on H �c .X.n/;Q/, and its E1 page is exactly the bar construction on the operad
H ��1c .Y.n/;Q/. This construction seems to have first been considered in [16, Sec-
tion 3.3], where it was used to prove Koszul self-duality of the en–operads (equivalently,
collapse of the spectral sequence), using the Fulton–MacPherson compactification.

Our Theorem 1.1 then gives a dual spectral sequence. All intervals in the poset of trees
are boolean lattices, and the spectral sequence of Theorem 1.1 takes the simple form

E
pq
1 D

M
#Vert.T /Dp

H q
c

� Y
v2Vert.T /

X.nv/;Q

�
D) HpCq�1

c .Y.n/;Q/:

This is now an operad in the category of spectral sequences, whose E1 page is the
associated graded for a filtration on H ��1c .Y.n/;Q/, and whose E1 page is exactly
the cobar construction on the operad H �c .X.n/;Q/.

Thus we see that working with compact support cohomology gives a quite general
setting for proving bar/cobar-duality results for such pairs of operads X , Y . G

Example 3.10 Suppose that the poset P is Cohen–Macaulay, or more generally that P
is graded with rank function � and that zHi .0; ˇ/D 0 for i < �.ˇ/� 2D dim N.0; ˇ/.
Then if we apply the spectral sequence for the function � , the spectral sequence
simplifies to

E
pq
1 D

M
ˇ2P
�.ˇ/Dp

zHp�2.0; ˇ/˝H q
c .Sˇ ; i

�
ˇF/ D) HpCq

c .S0; j
�1
0 F/:

In fact, something stronger is true: the chain complex L�.F/ is filtered quasi-isomorphic
to a complex of sheaves K�.F/, with

Kd .F/D
M
ˇ2P
�.ˇ/Dd

zHd�2.0; ˇ/˝ .iˇ /�.iˇ /
�F;

and which is filtered by the “stupid filtration”. The Cohen–Macaulay condition is
extremely well studied and is known for large classes of posets. See eg [32, Section 4].

G

Example 3.11 Suppose that X is a complex manifold, and that we are given an
“arrangement-like” divisor D on X , ie D can locally be defined by a product of linear
forms. Then the poset of strata is a geometric lattice and therefore Cohen–Macaulay.
The complex of sheaves K�.F/ is the Verdier dual of the one constructed in [22,
Section 2]. As part of his construction, he needs to inductively choose a certain free
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Z–module ES for each stratum S — the fact that such a choice is possible is not
obvious, and requires the Cohen–Macaulay condition! G

Example 3.12 Suppose that P is Cohen–Macaulay and the two contravariant functors
P ! Chk given by ˛ 7!R�c.S˛; i

�
˛F/ and ˛ 7!H �c .S˛; i

�
˛F/ are quasi-isomorphic.

Then the spectral sequence degenerates at E2 .

Indeed, we can realize R�c.X;K�.F// as a double complex, with each column a
direct sum of complexes R�c.S˛; i�˛F/, and the differentials in each row given by
the differentials in the complex K�.F/. If we have such a quasi-isomorphism we can
therefore replace this double complex with one in which all vertical differentials vanish.
Our spectral sequence is the spectral sequence given by filtering this double complex
column-wise, since K�.F/ has the stupid filtration. Thus it will indeed be the case that
the spectral sequence has nontrivial differential only on E1 .

Suppose that each closed stratum S˛ is a compact complex manifold on which the
dd c–lemma holds, eg a Kähler or Moishezon manifold, and that the sheaf F is the
constant sheaf R. Then the criterion stated in the first sentence of this example is
satisfied. Indeed, we may take as our model for R�c.S˛;R/DR�.S˛;R/ the real de
Rham complex of S˛ , and then the validity of the above criterion is a particular case
of [12, Section 6, Main Theorem (ii)]. G

Example 3.13 Suppose that P is Cohen–Macaulay, and that each closed stratum is
an algebraic variety whose compact support cohomology is of pure weight in each
degree (eg a smooth projective variety). Then the spectral sequence also degenerates
at E2 , using instead a weight argument. G

Example 3.14 For a space M , let F.M; n/ denote the configuration space of n
distinct ordered points on M . If M is an oriented manifold, a spectral sequence
calculating the cohomology of F.M; n/ was constructed by Cohen and Taylor [10].
Their construction was later simplified by Totaro, who noticed that the spectral se-
quence is just the Leray spectral sequence for the inclusion j W F.M; n/ ,!M n [28].
Getzler [15] then realized that the spectral sequence exists for a more or less arbitrary
topological space, if one works with compactly supported cohomology instead: more
precisely, Getzler constructed a complex of sheaves quasi-isomorphic to jŠj

�1F ,
whose compactly supported hypercohomology spectral sequence was Poincaré dual to
the spectral sequence of Cohen and Taylor in the case of an oriented manifold.

So suppose that X D M n for some space M , and let us stratify X according to
points coinciding. Then the poset of strata is the partition lattice …n , which is Cohen–
Macaulay. Our complex K�.F/ is exactly the one considered by Getzler, and the
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resulting spectral sequence

E
pq
1 D

M
ˇ2…n
�.ˇ/Dp

zHp�2.0; ˇ/˝H q
c .M

n�p;Z/ D) HpCq
c .F.M; n/;Z/

is the Poincaré dual of Cohen and Taylor’s if M is an oriented manifold. To see the
identification of K�.F/ with Getzler’s resolution we need to know the cohomology of
the partition lattice.

Note first of all that each lower interval Œ0; ˇ� in the partition lattice is itself a product
of partition lattices: eg if ˇ corresponds to the partition .136j27j45/, then Œ0; ˇ� Š
…3�…2�…2 . Thus by the Künneth theorem we only need to know the top cohomology
group zHn�3.…n;Z/. This calculation is hard to attribute correctly — it follows by
combining the results of [20] and [27]; see also [19, Section 4]. The result is in any
case that zHn�3.…n;Z/ has rank .n�1/Š and that as a representation of the symmetric
group Sn , it is isomorphic to Lie.n/˝ sgnn , where Lie.n/ is the arity-n component of
the Lie operad. But the same is also true for the cohomology group Hn�1.F.C; n/;Z/,
by the results of Cohen [9]; specifically, since the homology of the little disk operad is
the Gerstenhaber operad, and the Gerstenhaber operad in top degree is just a suspension
of the Lie operad, we get the above identification. This explains why the cohomology
groups of F.C; n/ appear in Getzler’s construction of the resolution: the decomposition
of H �.F.C; n// into summands corresponding to different partitions of f1; : : : ; ng
used by Getzler corresponds to

Hk.F.C; n/;Z/Š
M
ˇ2…n
�.ˇ/Dk

zHk�2.0; ˇ/:

If we instead consider the spectral sequence described in Example 3.8(2ı), applied
to the stratification of X DM n according to points coinciding, then we recover the
spectral sequence of Bendersky and Gitler [3]. G

Example 3.15 Consider the example X DM n of a configuration space. Let A�c.M/

be a cdga model for the compactly supported cochains on M with rational coefficients.
Then the criterion described in Example 3.12 is equivalent to A�c.M/ being formal, ie
that A�c.M/ and H �c .M/ are quasi-isomorphic. Hence if A�c.M/ is formal then the
Cohen–Taylor–Totaro spectral sequence degenerates after the first differential.

If in the same situation we consider the second variant of Example 3.8 (ie the Bendersky–
Gitler spectral sequence), then we see by the same argument that the spectral sequence
degenerates after the first differential whenever M is a formal space, a result which is
also proven in Bendersky and Gitler’s original paper. G
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3.2 Compatibility with Hodge theory

We have already mentioned several times that in the algebraic case, we obtain a spectral
sequence of `–adic Galois representations. It is natural to ask whether in the complex
algebraic setting we get a spectral sequence of mixed Hodge structures.

The answer is yes, and it follows from Saito’s theory of mixed Hodge modules [26]. Yet
some care must be taken here. Saito proves the existence of a six functors formalism
on the level of the derived categories Db.MHM.X//, where X is a complex algebraic
variety. We defined the complex L�.F/ in such a way that Ld .F/ is a sum of objects
of the form .i˛d /�.i˛d /

�F . Now if F is a mixed Hodge module then .i˛d /�.i˛d /
�F

is in general only going to be an object of Db.MHM.X//, and this is not good enough:
a “chain complex” of objects in a triangulated category T can in general have several
nonisomorphic totalizations to an object of T , or none at all.

Thus the construction can only be carried out if i�i� is a t–exact functor, for i a closed
immersion. This is of course true for the usual t–structure of constructible sheaves, but
it is false for the perverse t–structure on Dbc .X/: i� is still t–exact, but i� clearly is
not. Since a mixed Hodge module does not have an underlying constructible sheaf but
instead an underlying perverse sheaf, i� is not t–exact for mixed Hodge modules.

However, one can choose instead to give Db.MHM.X// a constructible (ie nonperverse)
t–structure, uniquely characterized by the functor ratW Db.MHM.X//!Dbc .X/ being
t–exact for the constructible t–structure on Dbc .X/ [26, Remark 4.6]. In other words,
an object F 2Db.MHM.X// is in the heart of the constructible t–structure if and only
rat.F/ is quasi-isomorphic to a constructible sheaf. In particular, i� will be t–exact
for this t–structure, and i� will be t–exact whenever i is a closed immersion.

Let H.X/ be the heart of the constructible t–structure of Db.MHM.X//, and let F be
an object of H.X/. Then for d � 0 we obtain an object

Ld .F/D
M

0D˛0<˛1<���<˛d2P

.i˛d /�.i˛d /
�F

of H.X/, and we can define a differential Ld .F/!LdC1.F/ just as before. Thus we
get an object L�.F/ of Db.H.X//, quasi-isomorphic to j

0Š
j�10 F 2 H.X/. Moreover,

we obtain a filtration of L�.F/ by the same procedure as before. This filtration allows
us to write down a Postnikov system in the triangulated category Db.H.X//, with
totalization L�.F/ [14, page 262]:

Grp�1F L�.F/Œ�1�

||

Grp�2F L�.F/Œ�1�

{{

Grp�3F L�.F/Œ�1�

{{

� � � F pL�.F/ // F p�1L�.F/

cc

// F p�2L�.F/ //

cc

F p�3L�.F/ � � �

cc
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Let T be a triangulated category with a t–structure, and T~ its heart. A realization
functor is an exact functor Db.T~/! T whose restriction to the full subcategory T~

is the inclusion into T. If T is itself the derived category of an abelian category (not
necessarily with its standard t–structure), then a realization functor always exists [2,
Section 3]; more generally, a realization functor always exists if T is the homotopy
category of a stable 1–category. In particular, we obtain a realization functor

realW Db.H.X//!Db.MHM.X//:

Exact functors preserve Postnikov systems, and we get a Postnikov system in
Db.MHM.X// whose terms are of the form real.GrpFL

�.F//, up to a degree shift.
Now we note that the functor real commutes with tensoring with a bounded complex
of free abelian groups. Hence, the terms in the Postnikov system in Db.MHM.X//

are given by

real.GrpFL
�.F//Š real

M
ˇ2P
�.ˇ/Dp

zC �C2.0; ˇ/˝ .iˇ /�.iˇ /
�F

Š

M
ˇ2P
�.ˇ/Dp

zC �C2.0; ˇ/˝ real.iˇ /�.iˇ /
�F

Š

M
ˇ2P
�.ˇ/Dp

zC �C2.0; ˇ/˝ .iˇ /�.iˇ /
�F;

using in the last step that .iˇ /�.iˇ /�F is in H.X/. Applying RfŠ to this Postnikov
system, where f W X ! Spec.C/ is the projection to a point, gives a Postnikov system
in the derived category of mixed Hodge structures (the category of mixed Hodge
modules over a point). The associated spectral sequence [14, page 263] is the one of
Theorem 3.3(ii), now equipped with the canonical mixed Hodge structure coming from
the fact that F is a mixed Hodge module.

Remark 3.16 It seems likely that Db.H.X//! Db.MHM.X// is an equivalence
of categories, which would be the analogue for mixed Hodge modules of Beı̆linson’s
theorem that the realization functor from the derived category of perverse sheaves to
the derived category of constructible sheaves is an equivalence [1], but I do not know
if this is known and I have not attempted to prove it.

4 Representation stability

The notion of representation stability was introduced by Church and Farb [8] as an
extension of homological stability to situations where the Betti numbers do not actually
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stabilize. Roughly, a sequence fV.n/g of representations of Sn over Q is said to be
representation stable if, for n� 0, the representation V.nC1/ is obtained from the
representation V.n/ by adding a single box to the top row of the Young diagram of each
irreducible representation occurring in V.n/. Thus V.nC1/ is completely determined
from V.n/ for sufficiently large n. Note in particular that the Sn–invariants satisfy
V.nC1/SnC1 Š V.n/Sn for n� 0; if fV.n/g were a sequence of homology groups,
the Sn–invariants would satisfy homological stability in the usual sense.

The theory was clarified by the introduction of FI-modules [6]. The key point is that
the underlying sequence of Sn–representations of an FI-module in Q–vector spaces is
representation stable if and only if the FI-module is finitely generated. Most examples
of representation stability arise from an FI-module in this way.

One of the main examples of representation stability is given by the following theorem
of Church [5]: if M is an oriented manifold, then H i .F.M; n/;Q/ is a representation
stable sequence of Sn–representations for any i . In this example, it was known since
[23] that the cohomology of the unordered configuration space F.M; n/=Sn satisfies
homological stability for integer coefficients if M is an open manifold, but also that
integral homological stability is false in general. Church’s result shows in particular that,
with Q–coefficients, the unordered configuration space always satisfies homological
stability.

This result of Church fits well into the general framework of FI-modules. The as-
signment S 7! F.M; S/ is a contravariant functor from FI to spaces: if S � T , then
F.M; T /! F.M; S/ is the map that forgets all the points indexed by elements of
T nS . On applying H i .�;Q/ one gets an FI-module, which turns out to be finitely
generated; in fact, finite generation holds already with integral coefficients [7].

For the remainder of this paper, we will prove a theorem extending Church’s result in
several ways:

(1) Our proof works in a uniform way for a much larger class of configuration-like
spaces, such as “k–equals” configuration spaces, the spaces xwc

�
.M/ considered

by Vakil and Wood, etc.

(2) We give a proof valid also in the algebrogeometric setting, so we get eg rep-
resentation stability in the category of `–adic Galois representations. (This
was previously proven for the spaces F.M; n/ in [13] under more restrictive
assumptions on M.)

(3) We allow M to have singularities. In the paper we focus on the case when M
is an algebraic variety (with arbitrary singularities); we comment towards the
end on the differences in the topological setting.

Geometry & Topology, Volume 21 (2017)



2544 Dan Petersen

In order to have representation stability in the more general setting of a singular space,
one needs to work with Borel–Moore homology/compactly supported cohomology.
Note that compactly supported cohomology is only contravariant for proper maps, and
the map F.M; T /! F.M; S/ is (almost) never proper, so H �c .F.M; S/;Q/ is not
directly an FI-module. This should in any case not be surprising: if we want to recover
Church’s theorem by Poincaré duality when M is an oriented manifold, then we had
better prove that the cohomology H �c .F.M; S/;Q/ satisfies representation stability
up to a degree shift by the dimension of F.M; S/.

4.1 Twisted commutative algebras and FI-modules

Our proof of representation stability uses the formalism of FI-modules and twisted
commutative algebras. We briefly recall the definitions for the reader’s convenience.
Let C be a symmetric monoidal category (the reader is encouraged to take C to be
the category of dg vector spaces over a field of characteristic zero). By a species
in C we mean a functor B ! C, where B the category of finite sets and bijections.
The category of species is equivalent to the category of sequences of representations
of the symmetric groups Sn in C. We write a species as S 7! A.S/ or n 7! A.n/,
depending on whether we wish to consider it as a functor of finite sets or as a sequence
of representations. We call A.n/ the arity-n component of the species A.

Let us consider B as a symmetric monoidal category, with monoidal structure given
by disjoint union. A twisted commutative algebra (tca) in C is a lax symmetric
monoidal functor B ! C. Thus a twisted commutative algebra in C consists of
a sequence fA.n/g of Sn–representations in C, equipped with multiplication maps
A.n/˝A.m/!A.nCm/ which are Sn�Sm–equivariant and satisfy suitable commu-
tativity and associativity axioms. An equivalent definition is that a tca is a left module
over the commutative operad Com in C. A third equivalent definition is that a tca is an
algebra over the operad Com in the category of species in C, where the tensor product
on the category of species is given by Day convolution:

.A˝B/.S/D
M

SDT1tT2

A.T1/˝B.T2/:

Suppose that C is the category of dg R–modules. Let A be a species in C. We define
the suspension SA by

SA.n/D A.n/Œ�n�˝ sgnn:

The suspension is a symmetric monoidal endofunctor on the symmetric monoidal
category of species. In particular, if A is a tca, then so is SA.
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Let FI denote the category of finite sets and injections. By an FI-module in the
category C we mean a functor FI! C.

Let Com be the twisted commutative algebra which has the monoidal unit with trivial
Sn–action in each arity, and for which all multiplication maps Com.S/˝Com.T /!

Com.S tT / are given by the canonical isomorphism 1˝ 1Š 1. In other words, we
are considering the commutative operad as a left module over itself. There is a general
notion of a module over an algebra over any operad, which in this case specializes to
an evident notion of a module over a tca.

Lemma 4.1 Every module over the tca Com is in a canonical way an FI-module, and
vice versa.

Sketch of proof Let M be a module over the tca Com, and let S � T . Then we have
a map

M.S/DM.S/˝ 1DM.S/˝Com.T nS/!M.S t .T nS//DM.T /;

where 1 denotes the monoidal unit in C and D denotes a canonical isomorphism. This
makes M into an FI-module. The converse construction is similar.

If A is a tca in C, then the choice of a morphism aW 1!A.1/ is the same as the choice
of a tca morphism Com! A. Thus the choice of such an a defines the structure of
FI-module on the underlying species of the tca A.

In particular, let C be the category of graded R–modules. For a tca A in C, let us write
Ai .n/ for the degree-i component of A.n/. Then any a 2 A0.1/ defines a structure
of FI-module on the collection Ai .n/, for all i 2 Z. We write jaj for the degree of a
homogeneous element in a graded vector space.

Lemma 4.2 Suppose A is a tca in graded R–modules, and that fa0; a1; a2; : : : g is a
set of generators. Suppose that a0 2A0.1/, jai j<0 for i >0 , and limi!1 jai jD�1 .
Then the FI-module n 7! Ai .n/ defined by multiplication with a0 is finitely generated
for all i 2 Z.

Proof The hypotheses imply that there are only finitely many monomials in fa1;a2; : : : g
(ie all generators except a0 ) of given degree. Those monomials of degree i generate
the FI-module n 7! Ai .n/.

Applying the previous lemma to the d–fold suspension SdA, we get the following:

Geometry & Topology, Volume 21 (2017)



2546 Dan Petersen

Lemma 4.3 Suppose A is a tca in graded R–modules, and that fa0; a1; a2; : : : g is a
set of generators. Suppose that if ak 2 Ai .n/ then i � nd , with equality only for a
single element a0 2 Ad .1/, and that for each p 2 Z, there are only finitely many k
for which ak 2 Ai .n/ and i � nd � p . If d is even, then n 7! AiCdn.n/ becomes
an FI-module by multiplication with a0 , and if d is odd, then n 7! AiCdn.n/˝ sgnn
becomes an FI-module in this way. This FI-module is finitely generated for all i 2 Z.

4.2 The “A–avoiding” configuration spaces

For each finite set S , let MS be the cartesian product of jS j copies of some space M.
The functor S 7!MS is a co-FI-space. If S ,!T , then we denote by �TS W M

T !MS

the projection.

Let A be a finite collection of closed subspaces fAi �MSi g`iD1 , where each Si is
some finite set. For every finite set T , consider the stratification of MT given by all
subspaces

.�TSi /
�1.Ai /�M

T ; i D 1; : : : ; `;

ranging over all inclusions Si ,! T , and all intersections of those subspaces. Let
PA.T / be the poset of strata in this stratification, and let FA.M; T / denote the open
stratum which is the complement of all of the .�TSi /

�1.Ai /.

Example 4.4 If A is a singleton with A1 D��M 2 , then FA.M; n/ is the classical
configuration space of n points on M . If A instead consists only of the small diagonal
in M k , then FA.M; n/ is the “k–equals” configuration space of points on M . G

Example 4.5 If a finite group G acts on M , then we can let A consist of all subspaces
f.x; g �x/ Wx 2M g inside M 2 , in which case FA.M; n/ parametrizes n distinct ordered
points all of which are in distinct G–orbits. An example of this is the complement of
hyperplanes in the Coxeter arrangement associated to the wreath product .�r/n ÌSn
acting on Cn . G

Example 4.6 Suppose that M D Y 2 for some other space Y , and that A consists of
the collection f�13; �14; �23; �24g of diagonals inside M 2 D Y 4. Then FA.M; n/

parametrizes points x1; : : : ; xn and y1; : : : ; yn in Y such that the xi may collide
amongst each other, and so may the yi , but xi ¤ yj for all i; j . G

Example 4.7 Let � be a partition of n. As our notation for partitions we use both
�D .�1; �2; �3; : : : / and �D .1n1 2n2 3n3 : : : /, so that nD

P
j�1 �j D

P
i�1 i �ni .

Vakil and Wood [29] defined an open subspace xwc
�
.M/�M n=Sn , and they studied
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the behavior of these spaces under the operation of “padding � with ones”, ie letting
n1 approach 1 while keeping all ni , i � 2, fixed.

We can understand their construction in our terms as follows: if � is a partition of n
with n1 D 0, let �� � M n be the locus where the first �1 points coincide, the
subsequent �2 points coincide, etc., and put AD f��g. If �0 is the partition of N � n
obtained by padding � with ones, then xwc

�0
.M/ D FA.M;N /=SN . In particular,

rational homological stability for the spaces xwc
�
.M/ under the operation of padding �

with ones follows from representation stability for the spaces FA.M; n/ as n!1. G

Example 4.8 The configuration space of n points in P2 such that no three of them
lie on a line and no six lie on a conic is of the form FA.M; n/, where M D P2 and A

has two elements which are closed subvarieties of M 3 and M 6 , respectively. G

We are going to prove a homological stability result for the spaces FA.M; n/. To
avoid dealing with trivial cases we will assume that jSi j � 2 for all i , and that no
subspace Ai can be written as

Ai D .�
Si
S 0
i

/�1.A0i /

where S 0i is a proper subset of S .

4.3 The setup

Observe that there is an open embedding

FA.M; S tT / ,! FA.M; S/�FA.M; T /:

This makes S 7!FA.M; S/ a twisted cocommutative coalgebra of spaces. Since Borel–
Moore homology is contravariant for open embeddings and admits cross products

HBM
�
.X;R/˝HBM

�
.Y;R/!HBM

�
.X �Y;R/

(which are isomorphisms if R is a field), we get a twisted commutative algebra in
graded R–modules:

S 7!HBM
�
.FA.M; S/;R/;

for any choice of coefficients R .

The functor S 7! PA.S/ forms a twisted commutative algebra in the category of
posets: the product of a stratum in MS and a stratum in MT is a stratum in MStT ,
which identifies PA.S/�PA.T / with an order ideal in PA.S tT /. If ˇ 2PA.S/ and
 2 PA.T /, then we write ˇ�  for their product in PA.S tT /.
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Let L�.S/ denote the complex of sheaves L�.R/ on MS constructed in the previous
part, associated to the stratification PA.S/. The previous paragraph implies that
L�.S/�L�.T / is a subcomplex of L�.S tT /, and DL�.S/�DL�.T / is a quotient
of DL�.S tT /. Applying R�.�/, we see that the functor

S 7!R���.MS ;DL�.S//

is a twisted commutative algebra of chain complexes, whose homology is the tca
S 7!HBM

�
.FA.M; S/;R/.

4.4 The hypotheses

Let us now describe the hypotheses on M and A that will lead to a proof of represen-
tation stability. Fix M and A as above, and a coefficient ring R .

Hypothesis 4.9 We assume that HBM
d
.M;R/ŠR , and that homology vanishes above

this degree. We assume that (possibly after refining the stratifications) all strata in all
spaces M n have finitely generated homology groups, and there exists an increasing
function � W PA.n/! Z for all n such that:

(1) If ˇ 2 PA.S/ satisfies �.ˇ/ D p and  2 PA.T / satisfies �./ D q , then
�.ˇ� /D pC q .

(2) If ˇ 2 PA.n/ satisfies �.ˇ/ D p , then HBM
i .Sˇ ; R/ vanishes above degrees

dn� 2p , and HBM
dn�2p

.Sˇ ; R/ is a projective R–module.

Example 4.10 Suppose that M is a geometrically irreducible algebraic variety of
dimension d

2
, and that A consists of closed subvarieties. Then it will indeed be the

case that HBM
d
.M;Z/Š Z, that HBM

i .M;Z/D 0 for i > d , and that all strata have
finitely generated homology. Let �.ˇ/ be the codimension of Sˇ . After refining the
stratifications we may assume all strata irreducible, in which case � becomes a strictly
increasing function, and conditions (1) and (2) are clearly satisfied. G

Example 4.11 Suppose that all the subspaces in A are given by diagonals, so all
closed strata are products of the same space M . This covers eg all the configuration
spaces considered by Vakil and Wood. In this case, for Sˇ ŠM k �M n, we can take
�.ˇ/ D .n� k/. If we suppose that M has finitely generated homology and finite
dimension d > 1, and HBM

d
.M;R/Š R , then Hypothesis 4.9 is satisfied. To verify

the second condition, note that if ˇ 2 PA.n/ satisfies �.ˇ/D p , then Sˇ ŠM n�p ,
whose highest nonzero Borel–Moore homology group is HBM

d.n�p/
.M n�p; R/ Š R .

Since we assumed d > 1, we get in particular vanishing above degree dn� 2p and
that the homology group in degree dn� 2p is projective. G

From now on we shall assume that Hypothesis 4.9 is satisfied.
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4.5 Proof with coefficients in a field

In this subsection, we fix a field k of coefficients, and all homology groups will be
taken with coefficients in k . In the algebraic case we take k D Q` , where ` is not
equal to the characteristic. We will later see that the proof can be modified to work
also for integral coefficients, but the added complications arising from the lack of a
Künneth isomorphism obscure the ideas somewhat.

Lemma 4.12 There exists a twisted commutative algebra of spectral sequences which
satisfies

E1pq.S/D
M

ˇ2PA.S/
�.ˇ/Dp

M
iCjDpCq�2

zHi .0; ˇ/˝H
BM
j .Sˇ ; k/;

and which converges to the twisted commutative algebra S 7!HBM
�
.FA.M; S/; k/.

Proof By condition (2) in Hypothesis 4.9, the filtration on L�.S/�L�.T / induced by
� agrees with the one on L�.StT /, when we consider L�.S/�L�.T / as a subcomplex
of L�.StT /. This makes the twisted commutative algebra S 7!R���.MS ;DL�.S//
a tca in filtered chain complexes, and the associated spectral sequence is given as above.

We say that an element ˇ 2 PA.T / is indecomposable if, whenever T D S tS 0 and ˇ
is in the image of the multiplication map PA.S/�PA.S

0/! PA.T /, then S or S 0 is
empty.

Lemma 4.13 There exists a constant C such that if ˇ 2 PA.T / is indecomposable,
then �.ˇ/� C � jT j.

Proof The stratum Sˇ is (an open stratum inside) an intersection of subspaces of
the form .�TSi

/�1.Ai /, for some collections of inclusions Si ,! T . We may assume
this collection of subspaces to be irredundant. In order that ˇ be indecomposable, it
is certainly necessary that the images of the Si ,! T cover T , which means that the
number of subspaces that one needs to intersect to obtain Sˇ grows linearly in jT j.
Moreover, since we assumed the collection irredundant and � increasing, the value of �
must go up by at least 1 for each subspace we intersect, which proves the result.

Let E be the twisted commutative algebra in graded vector spaces given by

S 7!E�.S/I Ei .S/D
M

pCqDi

E1pq.S/:
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Lemma 4.14 The tca E satisfies the hypotheses of Lemma 4.3, so that SdE is a
finitely generated FI-module.

Proof The tca E is generated by classes zHi .0; ˇ/˝HBM
j .Sˇ ; k/ where ˇ ranges

over indecomposable elements of PA.n/.

If ˇ 2 PA.n/ satisfies �.ˇ/ D p , then zHi .0; ˇ/ vanishes above degree p � 2, and
HBM
j .Sˇ ; k/ vanishes above degree dn� 2p . Thus the corresponding generators in

Ei .n/ satisfy i � dn�p . In particular, we get a generator in degree i D dn only for
p D 0. But the open stratum is indecomposable only when nD 1, in which case we
get a single generator in this degree from the one-dimensional space HBM

d
.M; k/.

Moreover, by Lemma 4.13, for each p � 0 there are only finitely many strata in PA.n/

(summed over all n) with �.ˇ/ � p , which means that only finitely many of these
generators satisfy i � dn�p . Thus the hypotheses of Lemma 4.3 are satisfied.

Theorem 4.15 The FI-module given by n 7!HBM
iCdn

.FA.M; n/; k/˝sgn˝dn is finitely
generated for all i 2 Z.

Proof By the previous lemma,

n 7! .SdE/.n/D
M

pCqDiCdn

E1pq.n/˝ sgn˝dn

is a finitely generated FI-module. Then so is n 7!
L
pCqDiCdnE

1
pq.n/˝ sgn˝dn ;

being a subquotient of a finitely generated FI-module [6, Theorem 1.3]. But the latter
is just the associated graded of the FI-module n 7!HBM

iCdn
.FA.M; n/; k/˝ sgn˝dn for

the Leray filtration.

Remark 4.16 The sign representation which appears for odd d arises from Lemma 4.3,
and does not play a role in the algebraic case since an algebraic variety has even (real)
dimension. That the sign representation should appear is clear, if we want to recover
representation stability for the usual cohomology H i .F.M; n/; k/ from Poincaré
duality when M is an oriented manifold. Indeed, the Poincaré duality isomorphism
for F.M; n/ involves capping with the fundamental class, which generates the 1–
dimensional vector space HBM

dn
.F.M; n/; k/ Š HBM

dn
.M n; k/. When d is even this

vector space carries the trivial representation of Sn , but when d is odd it has the sign
representation.

Remark 4.17 A space M is called an R–homology manifold of dimension d if for
all x 2M one has

Hi .M;M n fxgIR/Š

�
R if i D d;
0 if i ¤ d:
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Equivalently, DR Š RŒd�. A trivial example is an oriented d–manifold for any R ;
a more typical example is that a complex algebraic variety with finite quotient sin-
gularities is a Q–homology manifold (of dimension twice its dimension over C ).
An R–homology manifold of dimension d satisfies Poincaré duality in the form
HBM
i .M;R/ŠHd�i .M;R/. If we add to Hypothesis 4.9 the condition that M is an

R–homology manifold of dimension d , then the conclusion of Theorem 4.15 (if R is
a field, or the results of the next subsection if R is a PID) become equivalent to the
claim that n 7!H i .FA.M; n/;R/ is a finitely generated FI-module. For instance, if
M is a connected oriented manifold of dimension d > 1, then H i .F.M; n/;Z/ is a
finitely generated FI-module for all i ; this is how the results of [5; 7] can be obtained
as specializations of those in this paper.

4.6 Proof for integral coefficients

In the proof of Theorem 4.15 in the preceding subsection, we used that any subquotient
of a finitely generated FI-module is finitely generated. This was proven for field
coefficients in [6], but the result was then extended to any noetherian ring in [7]. We
will now use the latter result to give a proof also for integral coefficients.

However, the real reason we used field coefficients in the preceding subsection was to
have a robust Künneth isomorphism: without it, it would not be true that generators
for the twisted commutative algebra we considered arise from indecomposable strata.
Namely, if ˇ is decomposable — say Sˇ D S �S 0 — then the cross product map

HBM
�
.S ;Z/˝H

BM
�
.S 0 ;Z/!HBM

�
.Sˇ ;Z/

is not necessarily surjective. To remedy this, we will need to work on the chain level,
analogous to [7, Lemma 4.1].

For the remainder of this section we fix a coefficient ring R which we assume to be a
PID, eg RD Z or RD Z` . In order for the proof to work, we shall need to verify a
refinement of Hypothesis 4.9.

Lemma 4.18 Assume Hypothesis 4.9. For each stratum Sˇ in any of the spaces M n,
we can choose a quasi-isomorphism

C�.Sˇ /'R�
��.Sˇ ;DR/

where C�.Sˇ / is a bounded complex of finitely generated free modules, and such that

� for any decomposable stratum S˛ �Sˇ , we have an equality

C�.S˛/˝C�.Sˇ /D C�.S˛ �Sˇ /
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compatible with the quasi-isomorphism

R���.S˛;DR/˝R�
��.Sˇ ;DR/'R�

��.Sˇ �S˛;DR/I

� for S˛ � Sˇ , there is a map

C�.S˛/! C�.Sˇ /

compatible with the map

R���.S˛;DR/!R���.Sˇ ;DR/I

� if Sˇ �M n has �.ˇ/D p then CBM
�
.Sˇ ; R/ vanishes above degree dn� 2p ,

and Cd .M/ŠR .

It is immediate from Hypothesis 4.9 that such a complex C�.Sˇ / can be constructed
for each individual stratum, but we need the choices to satisfy various compatibilities.

Taking the lemma for granted for the moment, the idea will be to run nearly the
same proof, but instead of starting at the E1 page of the spectral sequence, we start
at E0 . Equivalently, we work directly on the level of the double complex comput-
ing R���.M n;DL�.R//, associated to our filtration of DL�.R/. The filtration on
DL�.R/ has its associated graded pieces quasi-isomorphic to sums of complexes of
the form zC���2.0; ˇ/˝.iˇ /�DR , where iˇ is the inclusion of a closed stratum, so the
columns of this double complex are of the form R���.M n; zC���2.0; ˇ/˝ .iˇ /�DR/.
Under our Lemma 4.18 we may (for all ˇ ) replace this with the totalization of the
double complex zC�C2.0; ˇ/˝ C�.Sˇ /. Then this collection of double complexes
becomes a twisted commutative algebra, and that we get a tca of spectral sequences:

Lemma 4.19 There exists a twisted commutative algebra of spectral sequences which
satisfies

E0pq.S/D
M

ˇ2PA.S/
�.ˇ/Dp

M
iCjDpCq�2

zCi .0; ˇ/˝Cj .Sˇ /;

and which converges to the twisted commutative algebra S 7!HBM
�
.FA.M; S/;R/.

If we consider the twisted commutative algebra in graded abelian groups given by

S 7!E�.S/I Ei .S/D
M

pCqDi

E0pq.S/;

then this tca will be generated by classes zCi .0; ˇ/˝ CBM
j .Sˇ ; R/ where ˇ ranges

over indecomposable elements of PA.n/. In particular, it satisfies the hypotheses of
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Lemma 4.3, for the same reason as the tca E considered in the previous subsection,
and the rest of the proof carries over without any changes.

Let us now argue that Lemma 4.18 is satisfied.

Proof of Lemma 4.18 First off, we replace each R���.Sˇ ;DR/ by a functorial free
resolution, and then apply the “wise” truncation functor ��.dn�2p/ . Let us call the
resulting complexes CBM

�
.Sˇ ; R/. Unfortunately, the truncation functor has the wrong

functoriality: there is for any chain complex C� a map C� ! ��nC� , but we need
a map in the opposite direction. However, the assumption that HBM

dn�2p
.Sˇ ; R/ is

projective and that R is a PID implies that CBM
dn�2p

.Sˇ ; R/ is itself free. In particular,
CBM
�
.Sˇ ; R/ is itself a free resolution, and the truncation map has a section. One

checks that any choice of section gives rise to a well-defined chain map CBM
�
.Sˇ ; R/!

CBM
�
.S˛; R/ for Sˇ � S˛ , making the assignment ˇ 7! CBM

�
.Sˇ ; R/ functorial.

To replace these complexes with ones that are finitely generated in each degree, we
work inductively, starting with M itself. If we have chosen complexes C�.Sˇ / �!�

CBM
�
.Sˇ ; R/ for all ˇ 2 PA.n/, n < N , then the condition that we have an “on-the-

nose” Künneth isomorphism determines our choice of C�.Sˇ / for all decomposable
strata ˇ 2 PA.N /. Now I claim that if we have compatible choices of C�.Sˇ / for
all ˇ in some order ideal I � PA.N /, and ˛ is any minimal element of PA.N / n I ,
then we can also choose C�.S˛/ compatibly (and thus the inductive procedure can be
continued). Indeed, consider the composition

colim
ˇ<˛

.C�.Sˇ //! colim
ˇ<˛

.CBM
�
.Sˇ ; R//! CBM

�
.S˛; R/:

We note that the colimit over a finite poset can be defined as the totalization of a
functorially defined chain complex, which is of finite rank in each degree if each
chain complex in the colimit is. By induction, the image of this composition is then
finitely generated in each degree, so we may choose a quasi-isomorphism C�.S˛/!

CBM
�
.S˛; R/ where C�.S˛/ is again finitely generated in each degree, such that the

image contains the image of colimˇ<˛.C�.Sˇ //. Then there is a factorization

colim
ˇ<˛

.C�.Sˇ //! C�.S˛/ �!
� CBM

�
.S˛; R/;

which proves the claim.
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