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On representation varieties of 3–manifold groups

MICHAEL KAPOVICH

JOHN J MILLSON

We prove universality theorems (“Murphy’s laws”) for representation varieties of fun-
damental groups of closed 3–dimensional manifolds. We show that germs of SL.2/–
representation schemes of such groups are essentially the same as germs of schemes
over Q of finite type.

14B12, 20F29, 57M05

1 Introduction

In this paper we will prove that there are no restrictions on local geometry of repre-
sentation schemes of 3–manifold groups to PO.3/ and SL.2/. Note that both groups
H D PO.3/ and H D SL.2/ are affine algebraic group schemes defined over Q; thus,
for every finitely generated group �, the representation schemes

Hom.�;H /

and character schemes
X.�;H /D Hom.�;H / ==H

are affine algebraic schemes over Q. Our goal is to show that, to some extent, these are
the only restrictions on local geometry of the representation and character schemes of
fundamental groups of closed 3–manifolds. The universality theorem we thus obtain
is one of many universality theorems about moduli spaces of geometric objects; see
Mnëv [11], Richter-Gebert [15], Kapovich and Millson [6; 7; 8], Vakil [18], Payne [13],
Rapinchuk [14].

Below is the precise formulation of our universality theorem. In what follows we use
the notation G D PO.3/ and zG D Spin.3/.

Theorem 1.1 Let X �CN be an affine algebraic scheme over Q and let x 2X be a
rational point. Then there exist

1. an open subscheme X 0 �X containing x ,

2. a closed 3–dimensional manifold M with fundamental group � ,
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3. a representation �0W � ! PO.3;R/, such that the image of �0 is dense in
PO.3;R/,

4. an open G–invariant subscheme R0 � Hom.�;G/, whose set of real points
contains �0 and a closed subscheme (over Q) R0c �R0 that is a cross-section
for the action

G �R0!R0;

5. an isomorphism of schemes over Q

f W R0c!X 0 �Gk with f .�0/D .x; 1/;

for some k , and

6. an isomorphism F W R0!X 0 �GkC1 and the composition of isomorphisms

R0 ŠR0c �G ŠX 0 �GkC1

(since R0c is a cross-section).

Remark 1.2 One can show that the same theorem holds for a homomorphism �1

whose image is a finite group with trivial centralizer in PO.3;R/.

Theorem 1.1 is proven in Section 6. In Section 7 we prove various corollaries of our
main theorem.

Corollary 1.3 With the notation of Theorem 1.1, there exists an open embedding of
schemes

X 0 �Gk ,!X.�;G/D Hom.�;G/ ==G

which sends .x; 1/ to Œ�0�. In particular, the analytic germ .X � C3k; x � 0/ is
isomorphic to the analytic germ .X.�;G/; Œ�0�/.

Since the groups PSL.2;C/ and PO.3;C/DG.C/ are isomorphic, and

zG.C/D Spin.3;C/Š SL.2;C/;

the “universality theorem” for PO.3/–representations leads to the one for SL.2/–
representations. In the next corollary, � and �0 are the 3–manifold group and its
representation to PO.3;R/ constructed in Theorem 1.1 given X and x . We note that
the action of SL.2/ on Hom.z�;SL.2// factors through an action of PSL.2/.

Corollary 1.4 Let X � CN be an affine algebraic scheme over Q and x 2 X be a
rational point. Then there exist
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1. an open subscheme X 0 �X containing x ,
2. a closed 3–dimensional manifold zM with fundamental group z� ,
3. a representation z�0W z�! SU.2/ < SL.2;C/, such that the image of z�0 is dense

in SU.2/,
4. an open SL.2/–invariant subscheme zR0�Hom.z�;SL.2//, such that z�02

zR0.C/,
5. a cross-section zR0c for the action of PSL.2/ on zR0,
6. a regular étale covering of schemes over C , equivariant with respect to the action

of SL.2/,
zqW zR0!R0 with zq.z�0/D �0;

such that the deck-transformation group of this cover is isomorphic to ZkCr
2

, for
some k and r .

By combining part 6 with Theorem 1.1, we also obtain an SL.2/–equivariant regular
étale covering

zR0!X 0 �PSL.2/kC1;

and the étale covering
zR0c!X 0 �PSL.2/k

sending z�0 to .x; 1/. The latter yields the regular étale covering

hW zR0 ==SL.2/!X 0 �PSL.2/k:

In particular, the morphisms zq and F (from Theorem 1.1) and h (as above) yield
isomorphisms of analytic germs�

Hom.z�;SL.2//; z�0

�
! .X 0 �C3kC3;x � 0/;�

X.z�;SL.2//; Œz�0�
�
! .X 0 �C3k;x � 0/;

for some k � 0. Thus, if the scheme X 0 is nonreduced at x , so are Hom.z�;SL.2//
and X.z�;SL.2//.

Remark 1.5 Despite our efforts, we were unable to replace an étale covering with
an isomorphism in Corollary 1.4. This is strangely reminiscent of the finite abelian
coverings appearing in our universality theorem for planar linkages; see Kapovich
and Millson [8]. Note that a relation between universality theorems for projective
arrangements and spherical linkages was established in Kapovich and Millson [7],
where a finite abelian covering appeared for essentially the same reason as in the
present paper.

Example 1.6 Pick a natural number `. Then there exists a closed 3–dimensional
manifold zM , an integer n and a representation �W �1. zM /! SU.2/ with dense image,
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such that the completed local ring of the germ

X.�1. zM /;SL.2//; Œ��/

is isomorphic to the completion of the ring

CŒt; t1; : : : ; t3k �=.t
`/:

This shows that the representation and character schemes of 3–manifold groups can be
nonreduced (at points of Zariski density), which is why we refrain from referring to
these schemes as “varieties”, as is commonly done in the literature.

Remark 1.7 Recently Igor Rapinchuk [14, Theorem 3] proved a universality theorem
for character schemes of groups � satisfying Kazhdan’s property (T): it involves
representations of such groups � into SL.n;C/. Unlike the results in Kapovich
and Millson [6] and this paper, Rapinchuk’s theorem applies to the entire character
variety X red.�;SL.n;C// minus the trivial representation (which is an isolated point).
In Rapinchuk’s theorem, the number n (and the group � ) depend on the given affine
variety X over Q.

Acknowledgements Partial financial support to Kapovich was provided by the NSF
grant DMS-12-05312 and to Millson by the NSF grant DMS-15-18657. Kapovich is
also grateful to the Korea Institute for Advanced Study for its hospitality and excellent
working conditions. We are grateful to the referee and Michael Heusener for useful
remarks and corrections.

2 Preliminaries

2.1 Representation and character schemes

We will say that a subscheme Y �X is clopen if it is both closed and open. We will
use the topologist’s notation

Zm WD Z=mZ

for the cyclic group of order m. Given a subset S of a group G we will use the
notation hhSii for the normal closure of S in G .

Let G be an algebraic group scheme over a field k of characteristic zero (this will be
the default assumption through the rest of the paper) with Lie algebra g. Let � be a
finitely presented group with presentation

hs1; : : : ; spjr1 D 1; : : : ; rq D 1i:

(In fact, one needs � only to be finitely generated, but all finitely generated groups in
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this paper will be also finitely presented.) Every word w in the generators si and their
inverses s�1

i , for i D 1; : : : ;p , defines a morphism

wW Gp
!G;

obtained by substituting elements g˙1
1
; : : : ;g˙1

p 2 G in the word w for the letters
s˙1
1
; : : : ; s˙1

p . We then obtain the representation scheme

Hom.�;G/D f.g1; : : : ;gp/ 2Gp
j rj .g1; : : : ;gp/D 1; j D 1; : : : ; qg;

as every homomorphism �! G is determined by its values on the generators of �.
We will thus think of points of this scheme as homomorphisms �W � ! G . The
representation scheme is known to be independent of the presentation of the group �.
We refer the reader to [10; 17] for more details. We also refer the reader to [16; 17] for
detailed discussion of character varieties/schemes and a survey of their applications to
3–dimensional topology.

We will frequently use the following two facts about representation schemes; see eg [17]:

1. Hom.�1 ? � � �?�k ;G/Š
Qk

iD1 Hom.�i ;G/.

2. For each �2Hom.�;G.k// satisfying H1.�; gAd�/D 0, the point � is a smooth
point of the scheme Hom.�;G/. The G–orbit through � is open in Hom.�;G/.

In what follows we will use the simplified notation Hq.�;Ad �/ instead of Hq.�; gAd�/.

We assume from now on that the group G is affine; in particular, Hom.�;G/ is also
an affine scheme. The group G acts naturally on this scheme:

.g; �/ 7! �g where �g. /D g�. /g�1:

Assuming, in addition, that G is reductive, we obtain the GIT quotient

X.�;G/D Hom.�;G/ ==G;

which is a scheme of finite type known as the character scheme (or, more commonly,
as the character variety). However, as we will see, both representation and character
schemes can be nonreduced, so we will avoid the traditional representation/character
variety terminology.

We will use the notation

Homred.�;G/ and X red.�;G/

to denote the varieties which are the reductions of the schemes

Hom.�;G/ and X.�;G/:
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Recall that for every � 2 Hom.�;G/, the vector space of cocycles

Z1.�;Ad �/

is isomorphic to the Zariski tangent space T� Hom.�;G/ and this isomorphism car-
ries the subspace of coboundaries B1.�;Ad �/ to the tangent space of the G–orbit
through � . Note, however, that H1.�;Ad �/ is not always isomorphic to the Zariski
tangent space of Œ�� 2X.�;G/; see [2, Section 6] as well as [17].

Suppose now that the group ˆ is finite. Then for every � 2 Hom.ˆ;G/,

H1.ˆ;Ad �/D 0:

(Furthermore, Hi.ˆ;Ad �/D 0 for i � 1.) In particular, the G–orbit of � is a clopen
(closed and open) subscheme

Hom�.ˆ;G/� Hom.ˆ;G/:

This subscheme is isomorphic to the quotient G=�G.�.ˆ//, where �G.H / denotes the
centralizer of the subgroup H in G . (Note that if �G.�.ˆ// equals the center of G ,
then the point Œ�� 2X.ˆ;G/ is a reduced isolated point in the character scheme and
the entire character scheme is smooth.) We obtain:

Lemma 2.1 For every finite group ˆ and connected affine group G , the scheme
Hom.ˆ;G/ is smooth and each of its irreducible components is G–homogeneous.
These irreducible components are the open subschemes Hom�.ˆ;G/. If the represen-
tation � is trivial, then Hom�.ˆ;G/ is a single point.

The following lemma is also immediate:

Lemma 2.2 Let �W � ! � 0 be a group homomorphism. Then the pull-back map
��.�/D � ı� is a morphism of schemes

Hom.� 0;G/! Hom.�;G/:

Lemma 2.3 Let � be a finitely presented group and let ‚� � be a finite subset with
the quotient group

� 0 WD �=hh‚ii:

Let �W �! � 0 denote the projection homomorphism. Then the pull-back morphism

��W Hom.� 0;G/! Hom‚.�;G/

is an isomorphism, where

Hom‚.�;G/� Hom.�;G/
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is the closed subscheme defined by

Hom‚.�;G/D f� 2 Hom.�;G/ j �.�/D 1 for all � 2‚g:

Proof Given a finite presentation P of � let P 0 be the presentation of � 0 obtained
from P by adding words representing elements of ‚ as the relators. Then the assertion
follows immediately from the definition of the representation scheme of a group using
a group presentation.

Corollary 2.4 Suppose that every element � 2‚ has finite order. Then the isomor-
phism ��W Hom.� 0;G/ ! Hom‚.�;G/ sends Hom.� 0;G/ to the open subscheme
Hom‚.�;G/� Hom.�;G/.

Proof Consider an element � 2‚ and the trivial representation �0;� W h�i !G . By
Lemma 2.1, the singleton

f�0;�g D Hom�0;� .h�i;G/� Hom.h�i;G/

is a reduced isolated point in the scheme Hom.h�i;G/. In particular, this point is open
in Hom.h�i;G/. We have the pull-back morphism

��� W Hom.�;G/! Hom.h�i;G/;

induced by the inclusion homomorphism �� W h�i ,! �. Therefore,

.��� /
�1
�
Hom�0;� .h�i;G/

�
� Hom.�;G/

is an open subscheme. Furthermore, by the definition of Hom‚.�;G/,

Hom‚.�;G/D
\
�2‚

.��� /
�1
�
Hom�0;� .h�i;G/

�
:

(A homomorphism belongs to Hom‚.�;G/ if and only if it sends each � 2‚ to 12G .)
Therefore, Hom‚.�;G/ is also open in Hom.�;G/.

2.2 Coxeter groups

We refer the reader to [3] for the basics of Coxeter groups.

Let � be a finite simplicial graph with the vertex and edge sets denoted V D V .�/

and E DE.�/, respectively. We will use the notation e D Œv; w� for the edge of �
connecting v and w , if it exists. We assume also that we are given a function

mW E!N with m.e/� 2 for all e 2E

labeling the edges of �. We will call the pair .�;m/ a labeled graph or a Coxeter
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graph. Given a labeled graph, we define the associated Coxeter group � D �� by the
presentation˝
fgvgv2V jg

2
vD18v2V; gvgw � � �„ ƒ‚ …

m.e/ terms

D gwgv � � �„ ƒ‚ …
m.e/ terms

8v;w2V for which eD Œv; w�2E
˛
:

Alternatively, one can describe the relators of this group as g2
v D 1 and

.gvgw/
m
D 1

where mDm.e/, e D Œv; w�.

Remark 2.5 Note that the notation we use here is different from the one in Lie theory,
where two generators commute whenever the corresponding vertices are not connected
by an edge. In our notation, every such pair of elements of � generates an infinite
dihedral subgroup of �.

We also define the canonical central extension

(1) 1! Z2!
z�
�
!�! 1

of the group �, with the extended Coxeter group z� D z�� given by the presentation˝
z; fgvgv2V j z

2
D 1; Œgv; z�D 1; g2

v D z 8v 2 V;

gvgw � � �„ ƒ‚ …
m.e/ terms

D zm.e/C1gwgv � � �„ ƒ‚ …
m.e/ terms

8v;w 2 V for which e D Œv; w� 2E
˛
:

The number r D jV j (the cardinality of V ) is called the rank of � and z�. We will
refer to the generator z of the group � as the central element of �, even though, the
center of z� might be larger than Z2 : this happens precisely when � consists of a
single vertex.

A subgraph †�� is called full if for every pair of vertices v;w 2†, the edge Œv; w�
in � also belongs to †. Every subgraph †�� inherits labels from �. For the new
labeled graph (which we still denote †), we have the natural homomorphism

�†W �†! ��

sending each generator gv 2 �† , where v 2 V .†/, to the generator of �� with the
same name. It is immediate that the homomorphism �† lifts to a homomorphism

z�†W z�†! z��

sending each gv to itself (v 2 V .†/) and the central element z 2 z�† to the central
element z 2 z�� . We will use this construction in two special cases:
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a. † WD�∅ is the subgraph which has the same vertex set as �, but empty edge set.
Then

�† Š Fr and z�† Š Fr �Z2;

where Fr is the free group on r generators.

b. †�� is a full subgraph. In this case, the homomorphism �† is injective; see eg
[3, page 113]. It follows that the homomorphism z�† is injective as well.

For full subgraphs †��, the subgroups �†.�†/ < �� and z�†.z�†/ < z�� are called
parabolic subgroups of �� and z�� , respectively. We say that a parabolic subgroup
of �� or z�� is elementary, if it is a finite parabolic subgroup of rank � 2. The
latter requirement simply means that † consists of at most two vertices; the finiteness
condition means that if † consists of two vertices, then these vertices are connected
by an edge. We will refer to such subgraphs † as elementary as well.

Example 2.6 1. If � consists of a single edge e labeled 2, then ��ŠZ2�Z2 and

z�� ŠQ8;

the finite quaternion group.

2. If the edge e is labeled 4, then �� is the dihedral group I2.4/ of order 8; it
admits an epimorphism

��! Z2 �Z2

with kernel the center of �� , which is generated by the involution gvgwgvgw .

3 Representations of Coxeter groups and extended Coxeter
groups

In this section we prove some basic facts about representations of Coxeter and extended
Coxeter groups to PSL.2;C/ and SL.2;C/, respectively.

3.1 Representations of elementary Coxeter groups

Recall that the quotient map

pW zG.C/D SL.2;C/!G.C/D PSL.2;C/D SL.2;C/=f˙1g;

is a 2–fold covering. The extended Coxeter groups appear naturally in the context of
lifting homomorphisms of Coxeter groups from PSL.2;C/ to SL.2;C/.
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Consider the labeled graph �, consisting of two vertices v;w and the edge Œv; w�
labeled m� 2. The corresponding Coxeter group �� is a finite dihedral group, usually
denoted I2.m/. This group is isomorphic to the subgroup of the group of symmetries
of a regular planar 2m–gon, acting simply transitively on the set of edges of this
polygon. Hence, this group embeds canonically (up to conjugation) into O.2/ and thus
into PO.3;R/Š SO.3;R/ < PSL.2;C/. If m is odd, then such a group of symmetries
will lift isomorphically to a subgroup of SU.2/ < SL.2;C/. In contrast, we will be
interested (only) in the case when m is even; in fact, we will be using only Coxeter
graphs with the labels mD 2 and mD 4 in this paper.

Below we will prove several lemmas about faithful representations of elementary
Coxeter (and extended Coxeter) groups into G.C/ (and zG.C/).

Lemma 3.1 1. There exists, unique up to conjugation, a faithful representation
�W Z2 �Z2!G.C/.

2. There are no faithful representations Z2 �Z2!
zG.C/.

Proof 1. As the image of � is finite, it is conjugate to a subgroup of SO.3;R/<G.C/.
Part 1 now follows from the fact that the group SO.3;R/ acts transitively on the set of
pairs of orthogonal 1–dimensional subspaces of R3 (these subspaces, in our setting,
are fixed lines of the images of the direct factors of Z2 �Z2 under �).

2. Part 2 follows from the fact that any involution A 2 SL.2;C/ has both eigenvalues
equal to �1, ie A equals �1 2 SL.2;C/.

The next lemma and proposition generalize Lemma 3.1 to representations of the dihedral
group I2.4/.

Lemma 3.2 All injective representations �W � D I2.4/!G.C/ are conjugate to each
other.

Proof Since the group � is finite, its image in G.C/ lies in a conjugate of the
maximal compact subgroup SO.3;R/ < G.C/. Thus, we will assume that �.�/ is
contained in SO.3;R/. Since the product of the generating involutions �.gv/, �.gw/
of �.�/ has order 4, the fixed lines of �.gv/, �.gw/ meet at the angle �

4
in R3.

Now, the assertion follows from the fact that SO.3;R/ acts transitively on the set of
1–dimensional subspaces in R3 meeting at the given angle.

Proposition 3.3 Consider the dihedral group I2.2m/D �� and its isomorphism

�W ��! � <G.C/:

Then:
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1. For every choice of matrices zgu 2
zG.C/ projecting to the generators �.gu/ 2

� <G.C/, the map

gu! zgu for u 2 fv;wg

extends to a monomorphism z�W z��! zG.C/.

2. The centralizer of the group z�.z��/ in zG.C/ equals the center of zG.C/.

Proof The proof amounts to elementary linear algebra; we include the details for
the sake of completeness. For notational convenience we will identify the isomorphic
groups � and �� . After conjugating the subgroup � in G.C/, we can (and will)
assume that � lies in the subgroup SO.3;R/ < G.C/. The orthogonal subgroup is
covered by the unitary subgroup SU.2/ < SL.2;C/. We let Z.SU.2//Š Z2 denote
the center of SU.2/; this center consists of the matrices ˙1.

We begin with several trivial observations. Since � is injective, the involutions gv , gw
are distinct rotations in SO.3;R/. In particular, their fixed-point sets in CP1 are
pairwise disjoint. Suppose the elements zgu; zgv 2SU.2/ project to gv , gw , respectively.
Since the kernel of the covering zG!G is isomorphic to Z2 , the unitary transformations
zgv; zgw 2 SU.2/ have order at most 4:

zg2
u 2Z.SU.2// for u 2 fv;wg:

Note that the only involution in SU.2/ is the matrix �1. Since zgu projects nontrivially
to SO.3/, this matrix cannot be an involution. It follows that

zg2
u D�1 2 SU.2/ for u 2 fv;wg:

The eigenvalues of the matrices zgv , zgw have to be roots of unity of the order 4, which
implies that the spectrum of each matrix zgu , where u 2 fv;wg, equals fi;�ig.

We next claim that the eigenspaces of unitary transformations zgv , zgw are pairwise
distinct. If not, then these matrices would be simultaneously diagonalizable, which
would imply that their projections to PSL.2;C/ are equal. (Two involutions in SO.3;R/
which have same fixed-point sets have to be the same.)

Suppose now that A 2 SL.2;C/ is a matrix centralizing the subgroup hzgv; zgwi gen-
erated by zgv , zgw . We claim that A is a scalar matrix, ie an element of the center
of SL.2;C/. Indeed, since A commutes with both zgv , zgw , it has to preserve the
eigenspaces of each matrix zgv , zgw . (Here we are using the fact that the eigenvalues
of zgu are distinct for u 2 fv;wg.) However, a nonscalar matrix in SL.2;C/ cannot
have three distinct eigenlines. Therefore, A is a scalar matrix. This implies the second
claim of the lemma.
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The generators gv , gw satisfy

t D .gvgw/
m
D .gwgv/

m;

where t is an order-2 element, which belongs to the center of �. (In the geometric
realization of �† as a group of symmetries of a regular 2m–gon, the element t

corresponds to the order-2 rotation, the central symmetry of the polygon.)

If we had the relation
.zgv zgw/

m
D .zgw zgw/

m;

it would result in the monomorphism

˛W �! SU.2/ with ˛.gu/D zgu for u 2 fv;wg;

lifting the embedding �W � ,! SO.3;R/. The image of the center Z.�/ of � would
then be in the center of ˛.�/, hence, as we noted above, in the center of SU.2/. Then,
the composition �D p ı˛ would send Z.�/ to 1, which is a contradiction.

This leaves us with the only possibility

.zgv zgw/
m
D�.zgw zgv/

m:

To conclude, the map given by

gv 7! zgv; z 7! �1 2 SL.2;C/;

extends to an homomorphism z��! p�1.�/, sending the central element z 2 z�� to
the matrix �1 2 SL.2;C/. Injectivity of this homomorphism follows from injectivity
of the representation �! PSL.2;C/.

3.2 Representations faithful on elementary subgroups

For a Coxeter group � D �� we define two subschemes

Homo.�;G/� Hom.�;G/ and Homo.z�; zG/� Hom.z�; zG/:

The former consists of homomorphisms which are injective on every elementary
subgroup of � ; the latter consists of homomorphisms which are injective on every
elementary subgroup of z� and send z 2 z� to �1 2 SL.2;C/. (In fact, the requirement
for z follows from faithfulness on elementary subgroups, except when � has no edges.)
Since elementary subgroups of � and z� are finite, both Homo.�;G/ and Homo.z�; zG/

are open subschemes of the respective representation schemes. We will see later on
that these subschemes are also closed. For each

� 2 Homo.z�;G/
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we have �.z/D 1, while for each z� 2Homo.z�; zG/ which projects to � 2Homo.�;G/

we have z�.z/D�1.

In the paper we will be using the labeled graph � depicted in Figure 1: This graph has
five vertices and nine edges. The edges left unlabeled in the figure all have the label 2.
The vertices x , y are the only ones not connected to each other by an edge.

u

x

v

y

w

4

4 4

4

Figure 1: The graph �

In what follows, we will also use the subgraph ‡ ��, which is the complete graph on
the vertices u, v , w . The parabolic subgroup �‡ < �� is isomorphic to Z3

2
. Since

the group �‡ is finite, the representation scheme Hom.�‡ ;G/ is smooth.

Lemma 3.4 Each representation � 2 Homo.�;G.C// of the group � D �‡ satisfies:

1. The kernel of � is generated by the subgroup

hgugvgwi Š Z2;

and the image of � is isomorphic to Z2 �Z2 .

2. The centralizer of the abelian subgroup �.�/ <G.C/ in the group G.C/ equals
the subgroup �.�/ itself.

3. Homo.�;G.C// is the G.C/–orbit of a singleton f�‡g.

Proof This lemma is also elementary:

1. Consider a homomorphism � 2 Homo.�;G.C//. For each element  2 � we
let Fix. / denote the fixed-point set of �. / in CP1. The condition that all three
involutions �.gu/, �.gv/, �.gw/ are distinct implies that the three fixed-point sets
Fix.gu/, Fix.gv/, Fix.gw/ are pairwise disjoint.
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Remark 3.5 If g1 , g2 are commuting involutions in PSL.2;C/ with fixed-point sets
f�1; �1g, f�2; �2g, respectively, and �1 D �2 , then g2g1g�1

2
D g1 implies that

g2.f�1; �1g/D f�1; �1g:

Since g1.�1/D �1 , it follows that g2.�1/D�1 . However, each involution in PSL.2;C/
is determined by its fixed-point set. Therefore, g1 D g2 .

Commutativity of �.�/ implies that this group preserves the six-point set

F D Fix.gu/[Fix.gv/[Fix.gw/�CP1:

The element �.gu/ fixes Fix.gu/, of course, and defines nontrivial involutions of the
other two fixed-point sets

Fix.gv/! Fix.gv/ and Fix.gw/! Fix.gw/:

The same applies to gv and gw . It follows that

�.gugv/jF D �.gw/jF :

Hence
�.gugv/D �.gw/;

and thus
hgugvgwi< ker.�/:

The equality of these subgroups of � follows from the condition that

� 2 Homo.�;G.C//:

This establishes part 1 of the lemma.

2. To prove part 2, note that every g 2G centralizing �.�/ has to preserve each of
the sets Fix.gu/, Fix.gv/, Fix.gw/. After composing g with elements of �.�/, we
achieve that g fixes the set Fix.gu/[ Fix.gv/ pointwise. Therefore, g 2 �.�/. This
proves part 2 of the lemma.

3. To prove part 3 note that, by part 1, the pull-back morphism

Homo.Z
2;G.C//! Homo.�;G.C//

induced by the quotient homomorphism

1! hgugvgwi ! �! Z2

is surjective. Now, the claim follows from Lemma 3.1.
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Lemma 3.6 1. Homo.��;G.C// is a single orbit G.C/ � �� .

2. The representation �� is infinitesimally rigid: H1.��; sl.2;C//D 0.

3. For each �2Homo.��;G.C//, the adjoint action Ad � of �� on the Lie algebra
sl.2;C/ has no nonzero fixed vectors.

Proof 1. Consider � 2 Homo.��;G/. In view of Lemma 3.4, we can assume that
the restriction of � to the subgroup �‡ equals the representation �‡ . Consider now
the dihedral subgroups

hgu;gxi and hgx;gvi

in the group �� . It follows from Lemma 3.2 that there are exactly two extensions
(which are faithful on all elementary parabolic subgroups) of the representation

�jhgu;gvi

to the subgroup hgu;gx;gvi. We will denote these extensions �C and �� . For both
extensions, �˙.gx/ lies in SO.3;R/, its fixed line in R3 is contained in the span
of the fixed lines of �‡ .gu/, �‡ .gv/. This fixed line makes the angle �

4
with the

fixed lines of �‡ .gu/, �‡ .gv/ and is orthogonal to the fixed line of �.gw/. These
representations �˙ are conjugate via the element �.gv/2 SO.3/. Therefore, after such
conjugation, we fix the value �.gx/. We next repeat this argument for the subgroup
of �� generated by

fgv;gy ;gwg:

Since conjugation via �.gw/ does not alter �.gx/, we obtain the required uniqueness
statement.

2. In what follows we will be using the fact that the adjoint representation of PSL.2;C/
is isomorphic to the complexification V of the standard representation of SO.3;R/
on R3. We will also use the notation V and sl.2;C/ for the representation Ad � of
the group �� (and its subgroups) in the notation for cocycles and cohomology groups.
In particular, for each element a of

fu; v; w;x;yg;

the fixed-point set of Ad �.ga/ is a line in V , which we will denote by V a. An
elementary but useful geometric observation is that

V x
� V u

˚V v;

while
V D V u

˚V v
˚V w

D V u
˚V x

˚V w:
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Consider a cocycle � 2 Z1.��;V /. Since �‡ is finite, H1.�‡ ;V / D 0. Since the
restriction of � to the subgroup �‡ is a coboundary, by subtracting off a coboundary
from � , we can assume that � vanishes in �‡ . Similarly, there exist ˛; ˇ 2V such that

�.h/D ˛�Ad �.h/˛ for all h 2 hx;ui;

�.h/D ˇ�Ad �.h/ˇ for all h 2 hx; wi:

It follows that ˛ 2V u and ˇ 2V w. Moreover, by looking at the value �.x/, we see that

˛�ˇ 2 V x:

Since the lines V u, V x, V w also span V , it follows that ˛ D ˇ D 0. Therefore,
�.x/D 0. Similarly, �.y/D 0 and thus � D 0 on the entire group �� .

3. This follows from the fact that �.�‡ / has no nonzero fixed vectors in V D sl.2;C/.

Corollary 3.7 The scheme Homo.��;G/ is smooth.

From now on, we will be making the following assumption on the labeled graphs � of
Coxeter groups � :

Assumption 3.8 1. Every label of the graph � is even.

2. � contains as a full subgraph the graph � above.

Proposition 3.9 1. The schemes Homo.�;G/ and Homo.z�; zG/ are clopen sub-
schemes in Hom.�;G/ and Hom.z�; zG/, respectively.

2. There is a morphism of schemes qW Homo.z�; zG/! Homo.�;G/, such that for
every z� 2 Homo.z�; zG/ and �D q.z�/ we have

p ı z�D � ı �;

where �W z�! � is the quotient map from (1).

3. The morphism q is a regular étale covering with the deck-group Zr
2

, where r is
the rank of �.

Proof 1. We will give a proof for Homo.�;G/, since the other statement is similar.
Consider an elementary subgroup �† � � ; this subgroup is finite. In Lemma 2.1
we proved that each irreducible component of Hom.�†;G/ is a clopen subscheme
of Hom.�†;G/; furthermore, each component is a single G–orbit of a representation
�†!G . Then

Homo.�†;G/D Hom.�†;G/ n
[

�2�†�f1g

Homh�i.�†;G/
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is an open subscheme in Hom.�†;G/. It is also closed since every subscheme removed
was open.

For each elementary subgroup �† < � and inclusion map �†W �†! �, we have the
pull-back morphism

��†W Hom.�;G/! Hom.�†;G/:

Then we have the finite intersection, taken over all elementary subgraphs †��,

Homo.�;G/D
\
†

.��†/
�1.Homo.�†;G//:

Therefore, Homo.�;G/ � Hom.�;G/ is clopen as a finite intersection of clopen
subschemes.

2. For each z� 2 Homo.z�; zG.C//, the reduction modulo centers of z� and zG yields a
homomorphism � 2 Homo.�;G.C//. We need to check that the map

qW Homo.z�; zG.C//! Homo.�;G.C//; q.z�/D �;

obtained in this fashion comes from a morphism of schemes. First, the composition
z� 7! p ı � is clearly a morphism of schemes

Hom.z�; zG/! Hom.z�;G/:

For ‚D fzg, we obtain an isomorphism of schemes

Hom‚.z�;G/! Hom.�;G/

(see Lemma 2.3), and Hom‚.z�;G/ contains the image of Homo.z�; zG/. Therefore, q

is a composition of two morphisms.

We next verify surjectivity. Let � 2 Homo.�;G/. Define z�W z�! zG by sending gener-
ators gv to arbitrary elements of p�1.�.gv// and sending the central element z 2 z�

to �1 2 SL.2;C/. In view of Proposition 3.3, for each elementary subgroup �† in �,
the restriction of z� to the generators of z�† extends to a faithful homomorphism z�j�†

.

Since all the relators of the group z� come from elementary subgroups, it follows that
our map of the generators of z� to SL.2/ extends to a homomorphism z�W z�! SL.2/.
This homomorphism belongs to Homo.z�; zG/ since it is faithful on each elementary
subgroup.

Thus, we obtained a surjective morphism

qW Homo.z�; zG/! Homo.�;G/; q.z�/D �:
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The group Z2 is the group of automorphisms of the covering zG!G ; therefore, the
product of r copies of Z2 acts naturally on the product of r copies of zG as the group
of automorphisms of the (regular) cover

yp D p� � � � �pW

rY
iD1

zG!

rY
iD1

G:

Since the rank r of the group � is the number of its generators gv , we have the
morphism rY

iD1

zG Š Hom.Fr ; zG/
yp
�!

rY
iD1

G Š Hom.Fr ;G/;

where Fr is the free group on r generators. We also have the commutative diagram

Hom.z�; zG/
q- Hom.�;G/

Hom.Fr ; zG/

?
yp- Hom.Fr ;G/

?

where the vertical arrows are the inclusions of representation schemes induced by the
epimorphisms

Fr !
z� and Fr ! �

sending the free generators of Fr to the generators gr of the extended Coxeter and
Coxeter groups. It is elementary and left to the reader to verify that the group Zr

2

of automorphisms of yp preserves the subscheme Homo.z�; zG/. Therefore, this finite
group acts simply transitively on the fibers of the morphism q .

3. It remains to show that the map q is étale, ie that it is an isomorphism of analytic
germs at every point. Let z� be in Homo.z�;SL.2;C// and set � WD q.z�/.

Below is a proof which assumes the reader’s familiarity with [1], where the theory
of controlling differential graded Lie algebras for various deformation problems was
developed.

In view of [1, Theorem 6.8], it suffices to verify that the differential graded Lie algebras
controlling these germs are quasi-isomorphic. First, the Lie algebras of G and zG are
isomorphic under the covering p , which implies that the covering map p induces
isomorphisms

Hi.z�;Ad ız�/! Hi.z�;Ad ıp.z�// for i � 0:

Since the central subgroup Z2 of z� is finite,

Hi.Z2; sl.2;C//D 0 for i � 1:
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Therefore, applying the Lyndon–Hochschild–Serre spectral sequence to the central
extension (1), we obtain isomorphisms

(2) Hi.�;Ad ı�/! Hi.z�;Ad ız�/; where �D q.z�/; for i � 1:

(Actually, for i D 0 both cohomology groups vanish, which implies that they too are
isomorphic.) These isomorphisms ensure that the morphism

qW .Hom.z�; zG/; z�/! .Hom.�;G/; �/

is an isomorphisms of germs.

Remark 3.10 Below is an alternative argument proving that q is étale, which does
not reply upon differential graded Lie algebras. The morphism q is étale if and only if
q induces bijections of sets of A–points of representation schemes for all local Artin
C–algebras A; see [6, Theorem 2.2]. Let A be a local Artin C–algebra and �W A!C
be the quotient by the maximal ideal. Then we have natural bijections

Hom.�;G.A//Š Hom.�;G/.A/ and Hom.z�; zG.A//Š Hom.z�; zG/.A/

and the commutative diagram

Hom.z�; zKA/ - Hom.z�; zG.A// zu- Hom.z�; zG.C//

Hom.�;KA/

qKA

?
- Hom.�;G.A//

qA

?
u- Hom.�;G.C//

q

?

where zKA and KA are the respective kernels of the group homomorphisms

zG.A/! zG.C/ and G.A/!G.C/

induced by �W A!C . We observe that the group zKA is torsion-free and, since the cover-
ing map pW zG!G is étale, the induced map pKA

W zKA!KA is an isomorphism. Let us
prove that for each z�W z�! zG.C/, the restriction of qA to zu�1.z�/ is injective. Suppose
that z�A , z�0A 2 u�1.z�/ project via qA to the same homomorphism �AW �!G . Then

z�A. /D˙z�
0
A . / for each  2 z�:

Assume that z�A. /D gk D �z�0A . /D �gk 0, where g 2 SL.2;C/ and k; k 0 2 zKA .
Then kk 0 D�1 which contradicts the property that zKA is torsion-free. This proves
injectivity. Lastly, we verify surjectivity of the restriction map

qAju�1.z�/W zu
�1.z�/! f�AW �!G.A/ j u.�A/D �D q.z�/g;
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where z� 2 Homo.z�; zG.C//. Let �A 2 Hom.�;G.A// 2 u�1.�/, where q.z�/ D � .
Given zg 2 SL.2;C/, p.zg/D g and gk 2 SL.2;A/, where k 2KA , we lift gk to the
element zg zk D p�1

KA
.k/. We apply this construction to the images of each generator gv

(of � and of z� ) and the generator z of z�, under the homomorphisms z� and �A . We
leave it to the reader to verify that the resulting map of the generators of z� to SL.2;A/
defines a homomorphism z�A in Homo.z�;SL.2;A//. By the construction, zu.z�A/D z�

and qA.z�A/D �A .

3.3 Character schemes of representations
faithful on elementary subgroups

In this section we extend the results of the previous section from representation schemes
to character schemes.

3.3.1 Stability Given a reductive affine algebraic group H and a finitely generated
group ƒ, we have the algebraic action of the group H on the homomorphism scheme
Hom.ƒ;H / given by

.h; �/ 7! Inn.h/ ı �;

where Inn.h/ is the inner automorphism g 7! hgh�1 of the group H . Recall that the
character scheme is defined as the Mumford quotient

X.ƒ;H /D Hom.ƒ;H / ==H:

Geometrically speaking, the Mumford quotient is obtained by identifying the semisimple
points Homss.ƒ;H / of the H –action by the extended orbit equivalence relation, while
the restriction of the projection

�W Homss.ƒ;H /!X.ƒ;H /

to the stable locus Homst.ƒ;H / (consisting of stable points) is just the quotient by
the H –orbit equivalence. Hence the restriction of the projection to the stable locus has
especially simple form. We will use the notation

� 7! Œ��

for the projection �.

A sufficient condition for stability of representations � 2 Hom.ƒ;H / (under the H –
action) in terms of the Zariski closure of �.ƒ/ in H was established in [4]:

Theorem 3.11 A representation � 2 Hom.ƒ;H / is semistable provided that the
Zariski closure �.ƒ/ is reductive. A representation is stable provided that the Zariski
closure �.ƒ/ is reductive and the centralizer ZH .�.ƒ// of the image of � is finite.
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In the case of representations into H D PO.3/ and H D Spin.3/, the sufficient
condition for stability amounts to requiring that the image of � is not contained in
a Borel subgroup of H . Our next goal is to verify stability condition and identify
centralizers of the images of representations in the context of Coxeter and extended
Coxeter groups. Recall that we are using the notation G for PSL.2/ and zG for SL.2/
(regarded as group schemes).

Lemma 3.12 Let � be a Coxeter group and z� the corresponding extended Coxeter
group, satisfying Assumption 3.8. Then for each �2Homo.�;G/ and z�2Homo.z�; zG/

we have:

1. The representations � , z� are stable points in Mumford’s sense.
2. The centralizers of the images of � , z� equal the center of the target group.

Proof Recall that we require the group � to contain a subgroup �� . It suffices to
prove both 1 and 2 for the representations � 2 Homo.��;G/, z� 2 Homo.z��; zG/,
since we have to verify that the image of the representation is not contained in a Borel
subgroup and that its centralizer equals the center of the target group.

(i) First, we consider the case of representations z�W z� D z��! SL.2;C/. We restrict
our attention to the subgraph † � �, which consists of two vertices x , y and the
edge e D Œx;y� labeled 4. Each representation z� 2 Homo.z�; zG/ projects to a faithful
representation

�W �† ,! PSL.2;C/:

By Proposition 3.3, the centralizer of the subgroup z�.z�†/ equals the center of SL.2;C/.
Moreover, the images of the generators of z�† under z� have distinct eigenlines. It
follows that the subgroup z�.z†/ cannot have an invariant line in C2, thereby proving
that z�.z�/ is not contained in a Borel subgroup of SL.2;C/. This proves parts 1 and 2
for representations to SL.2;C/.

(ii) Consider now representations �W � ! G . By the assumption, � sends distinct
generators of � to distinct elements of G . It follows that the group �.�/ cannot fix a
point in CP1. In other words, the group �.�/ is not contained in a Borel subgroup
of G . This proves part 1.

To prove part 2, we will use subgroups �‡ and �� of the group �. Since � belongs
to Homo.�;PSL.2;C//, the centralizer of �.�‡ / in G equals the subgroup �.�‡ /
itself (Lemma 3.4). On the other hand, � is faithful on the subgroups generated by
fgu;gxg, fgv;gyg, fgw;gzg. Therefore,

Œ�.gu/; �.gx/�¤ 1; Œ�.gv/; �.gy/�¤ 1 and Œ�.gw/; �.gz/�¤ 1;

and hence the subgroup �.�/ has trivial centralizer in PSL.2;C/.
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3.3.2 Cross-sections Let Y be a quasiaffine scheme and G�Y !Y be an algebraic
group. Suppose that C � Y is a closed subscheme, such that the orbit map

G �C ! Y

is an isomorphism. In particular, C projects isomorphically onto Y ==G , since

.G �C / ==G Š C:

Such a subscheme C is called a cross-section for the action of G on Y . We leave it to
the reader to check that if Ac �A is a cross-section for the action of G on A and we
have an action G Õ B , then Ac�B is a cross-section for the product action on A�B .

Lemma 3.13 Suppose that Y is a (quasiaffine) scheme of finite type, G �Y ! Y is
an (algebraic) action of an affine algebraic group, C � X is a cross-section for this
action. Suppose that Y 0 � Y is a G–invariant subscheme. Then C 0 D Y 0\C is also a
cross-section for the action G �Y 0! Y 0.

Proof We need to show that the orbit map G�C 0! Y 0 is an isomorphism. It suffices
to show that for each commutative ring A, the orbit map

�0W G.A/�C 0.A/! Y 0.A/

of A–points is a bijection; see the appendix. We have C 0.A/D C.A/\Y .A/. Since
the orbit map

�W G.A/�C.A/! Y .A/

is a bijection and Y 0.A/ is G.A/–invariant, it follows that � is a bijection.

Note that if the scheme Y and its subscheme C �Y are both smooth then the condition
that C is a cross-section for the action of G is easier to check: It suffices to verify
that the set of complex points of C is a set-theoretic cross-section for the action of G

on Y .C/. Indeed, �W G�C ! Y , the restriction of the G–action on Y , is a morphism.
Our hypothesis amounts to the assumption that � induces a bijection of C–points. The
fact that � is an isomorphism now follows, for instance, from the Zariski Main Theorem.

We now specialize to the case of representation schemes. Let � 0 D �=N be a finitely
generated group (where � is a finitely generated group and N G� is a normal subgroup),
G be an affine algebraic group, and G�Hom.�;G/!Hom.�;G/ be the action of G by
conjugation on the representation scheme. We will assume that the scheme Hom.�;G/
is smooth. Suppose that U � Hom.�;G/ is a G–invariant open affine subscheme and
U 0 DU \Hom.� 0;G/. We assume that Uc �U is a closed smooth subscheme. Then,
in view of smoothness, the property that Uc is a cross-section for the G–action on U
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amounts to the condition that Uc.C/ is a cross-section for the action of G.C/ on U.
If this is the case, then, according to Lemma 3.13, the subscheme U 0c D Uc \U 0 is a
cross-section for the action of G on U 0.

3.3.3 Cross-sections of representation schemes We apply the above observations
in two situations. First, suppose that � is a Coxeter group satisfying Assumption 3.8;
we let G D PO.3/. We have the identity embedding ��W �� ,! � of the finite
subgroup �� . Recall that, according to Lemma 3.6, Homo.��;G.C// consists of a
single G–orbit G.C/ � �� . We then set

Homc.�;G/ WD .�
�
�/
�1.��/:

The next lemma is an analogue of Corollary 12.11 in [6]:

Lemma 3.14 The subscheme Homc.�;G/ is a cross-section for the action G Õ
Homo.�;G/. In particular,

Xo.�;G/Š Homc.�;G/:

Proof We let � 0D� and define the new group � as the Coxeter group whose Coxeter
graph is obtained from the one of � by removing all the edges which are not in �.
Define

�o WD Z2 ? � � �?Z2„ ƒ‚ …
n times

with one free factor for each vertex of the Coxeter graph not contained in �. We have

Homo.�o/D

nY
iD1

Homo.Z2;G/:

Then

� Š �o ?�� and Homo.�;G/Š Homo.�o;G/�Homo.��;G/:

The scheme U D Homo.��;G/ is smooth by Lemma 3.6, while Homo.Z2;G/ is
smooth since Z2 is finite; therefore, the representation scheme Homo.�;G/ is smooth
as well.

Clearly, � 0 D �=N for a normal subgroup N G � . We again have the inclusion
homomorphism �‡ W ��! � ; the subscheme

C D Homc.�;G/ WD .�
�
‡ /
�1.��/

is smooth since it is naturally isomorphic to Hom.�o;G/. The fact that C is a cross-
section for the action of G on U follows immediately from Lemma 3.6 and observations
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following Lemma 3.13. Lastly, note that

U 0 D Homc.�;G/D U \Hom.�;G/:

Now, the lemma follows from Lemma 3.13.

The second situation when we apply our description of cross-sections is the one of
representations of extended Coxeter groups z� (again satisfying Assumption 3.8) to
the group zG Š SL.2/. The group zG does not act faithfully on Hom.z�; zG/; this action
factors through the action of the group G D PO.3/.

Earlier, we defined the subscheme Homo.z�; zG/� Hom.z�; zG/. Set

Homc.z�; zG/ WD q�1.Homc.�;G//:

Lemma 3.15 Homc.z�; zG/ is a cross-section for the action of G on Homo.z�; zG/.

Proof We let � 0 D z�. Similarly to the proof of Lemma 3.14, we define the extended
Coxeter group � by eliminating all the edges which are not in the subgraph �. Then � 0

is isomorphic to a quotient of � and the same proof as in Lemma 3.14 goes through.

3.3.4 Character schemes We let Xo.�;G/ and Xo.z�; zG/ denote the projections
of Homo.�;G/ and Homo.z�; zG/ to the corresponding character schemes.

In view of Lemmata 3.14 and 3.15, the projections

Homo.�;G/!Xo.�;G/ and Homo.z�; zG/!Xo.z�; zG/

are trivial principal fiber bundles with structure group G D PSL.2;C/: the center of
the group zG acts trivially on Hom.z�; zG/. We record this as:

Corollary 3.16 There exist natural isomorphisms of germs

.Homo.z�; zG/; z�/Š .Homc.z�; zG/�G; z�� 1/

Š .Xo.z�; zG/�G; Œz��� 1/

and
.Homo.�;G/; �/Š Homc.�;G/�G; �� 1/

Š .Xo.�;G/�G; Œ��� 1/:

3.3.5 Adding a free factor Let Fk be the free group on k generators. For an
arbitrary finitely generated group ƒ and an algebraic group H we have an isomorphism
of schemes

(3) Hom.ƒ?Fk ;H /Š Hom.ƒ;H /�Hom.Fk ;H /Š Hom.ƒ;H /�H k:
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This isomorphism is H –equivariant; here and below the action of H is by conjugation
on the left side and the diagonal action (by conjugations) on the product space on the
right side.

We will use these isomorphisms in the following two special cases: ƒD �, H DG

and ƒ D z�, H D zG , where G D PSL.2/, zG D SL.2/, and �, z� are Coxeter and
extended Coxeter groups, respectively. Then the isomorphisms (3) for these groups
allow us to define clopen subschemes

Homo.� ?Fk ;G/� Hom.� ?Fk ;G/ and Homo.z� ?Fk ; zG/� Hom.z� ?Fk ; zG/

as the images of

Homo.�;G/�Gk and Homo.z�; zG/� zG
k;

respectively.

It follows from Lemmata 3.14 and 3.15 that Homc.�;G/�Gk is a cross–section for
the action of G on Homo.�;G/�Gk, while Homc.z�; zG/� zG

k is a cross–section for
the action of G on Homo.z�; zG/� zG

k.

We thus obtain:

Lemma 3.17 .Homo.�;G/�Gk/=G ŠXo.�;G/�Gk :

The étale covering q defined above yields, for each k , the étale covering

qk W Homo.z�; zG/� zG
k
ŠHomo.z�?Fk ; zG/!Homo.�?Fk ;G/ŠHomo.�;G/�Gk:

Corollary 3.18 1. Xo.� ?Fk ;G/ŠXo.�;G/�Gk.
2. Homo.z� ?Fk ; zG/ŠXo.z�; zG/� zG

k.
3. The covering qk is étale.

4 Universality theorem of Panov and Petrunin

The proofs of Theorem 1.1 and its corollaries hinge upon two results, the first of which
is the following:

Theorem 4.1 (Panov–Petrunin universality theorem [12]) Let � be a finitely pre-
sented group. Then there exists a closed 3–dimensional (nonorientable) hyperbolic
orbifold O such that �1.Y /Š �, where Y is the underlying space of O . Furthermore,
Y is a 3–dimensional pseudomanifold without boundary.

Remark 4.2 Examination of the proof in [12] shows that the orbifold O admits a
hyperbolic manifold cover zO!O with deck-transformation group Z4

2
.
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The singular set of the pseudomanifold Y consists of singular points yj for jD1; : : : ;2k ,
whose neighborhoods Cj in Y are cones over RP2. Note that, since RP2 has Euler
characteristic 1, the number of conical singularities has to be even. Observe also
that one needs k � 1 in this theorem, since fundamental groups of 3–dimensional
manifolds are very restricted among finitely presented groups. For instance, there are
no 3–manifolds M with �1.M /ŠZ4 ; therefore, for � ŠZ4, one cannot have k D 0

in Theorem 4.1.

Problem 4.3 Does Theorem 4.1 hold with k D 1?

Given � and Y as in Theorem 4.1, we will construct a closed (nonorientable) 3–
dimensional manifold M DM� as follows. (Formally speaking, this 3–manifold also
depends on the choice of an orbifold O in Theorem 4.1, which is very far from being
unique, however, in order to simplify the notation, we will suppress this dependence).

Let O be a 3–dimensional orbifold as in Theorem 4.1 and let Y be the underlying
space of O . Let Y 0 be obtained by removing open cones Cj for j D 1; : : : ; 2k from Y .
Then Y 0 is a compact 3–dimensional manifold with 2k boundary components each
of which is a copy of the projective plane RP2. We let �i denote the generator of
the fundamental group of the projective plane Pi Š RP2 � @M, which equals the
boundary of the cone Ci and let ˛i W h�ii ! h�kCii be the (unique) isomorphism. We
will regard each �i as an element of �1.Y

0/. Set

‚ WD f�1; : : : ; �kg:

Then
� D �1.Y /D �1.Y

0/=hh�1; : : : ; �2kii:

Next, let M be the closed 3–dimensional manifold obtained by attaching k copies
of the product RP2 � Œ0; 1� to Y 0 along the boundary projective planes, pairing the
projective planes Pi and PiCk for i D 1; : : : ; k . Then � D �1.M�/ is the iterated
HNN extension ���

�1.Y
0/?h˛1i

�
?h˛2i

�
� � �
�
?h˛ki

of �1.Y
0/ with stable letters t1; : : : ; tk .

Taking the quotient

(4) �W �! �=hh‚ii;

we therefore obtain the group � ?Fk , where Fk is the free group on k generators,
projections of the stable letters ti for i D 1; : : : ; k in the above HNN extension. We let

 W � ?Fk ! �
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denote the further projection to the first direct factor and set

(5) � WD  ı�W �! �:

Now, given an algebraic group H , we obtain

Hom‚.�;H /D ��.Hom.� ?Fk ;H //;

a clopen subscheme in Hom.�;H / (see Corollary 2.4). The isomorphism

Hom.�;H /�H k Š
�!Hom.� ?Fk ;H /

��
�!Hom‚.�;H /

restricted to Hom.�;H /� 1 equals ��. We thus obtain:

Lemma 4.4 For each open subscheme S � Hom.�;H /, there exists an open sub-
scheme R� Hom.�;H / isomorphic to S �H k via the morphism ��. Furthermore,
R contains ��.S/.

Proof Take R WD ��.S �H k/, where we identify Hom.�;H /�H k with the repre-
sentation scheme Hom.� ?Fk ;H /.

Note that, because of the H –equivariance of ��, if S is H –invariant and there exists a
cross-section Sc � S for the action H Õ S , then the pull-back Rc WD �

�.Sc �H k/

is a cross-section for H Õ R.

We will be using these results for Coxeter groups � as well as for the extended
Coxeter groups z� , with the group H given respectively by either H DGD PSL.2/ or
H D zG D SL.2/. In order to simplify the notation, we will refer to the fundamental
group �1.M�/ as � and the fundamental group �1.Mz�/ as z� . We will denote by ‚
the subset (defined above) of order-2 elements in � and by z‚ the similar subset in z� .

We obtain a commutative diagram

Homz‚.z�;
zG/ Š- Hom.z� ?Fk ; zG/

Š- Hom.z�; zG/� zGk

Hom‚.�;G/

yq

?
Š- Hom.� ?Fk ;G/

?
Š- Hom.�;G/�Gk

qk

?

where qk is an étale covering (see Section 3.3.5), and hence yq also is an étale covering.
The groups of covering transformations for both are ZkCr

2
, where r is the rank of the

Coxeter group �.

We let

Homo.�;G/� Hom‚.�;G/ and Homo.z�; zG/� Homz‚.z�;
zG/
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be the subschemes which are the preimages of Homo.Fk?�;G/ and Homo.z�?Fk ; zG/

under the isomorphisms

Hom‚.�;G/! Hom.� ?Fk ;G/ and Homz‚.z�;
zG/! Hom.z� ?Fk ; zG/;

respectively. Note also that the covering q is equivariant with respect to the morphism
pW zG ! G , hence yq is equivariant as well. Because of this equivariance, if Rc �

R� Hom‚.�;G/ is a cross-section, so is zRc WD yq
�1.Rc/� zR� Homz‚.z�;

zG/. The
cross-sections we will be using are

Homc.�;G/WDRc�RDHomo.�;G/ and Homc.z�; zG/WD zRc�
zRDHomo.z�; zG/:

We obtain:

Lemma 4.5 Consider a representation ' 2 Homo.�;G.C//; let � be its image
in Hom‚.�;G/ and pick

z� 2 yq�1.�/ 2 Homo.z�; zG.C//:

Then we have isomorphisms of germs

.X.z�; zG/; Œz��/Š .X.�;G/; Œ��/Š .Xo.�;G/�Gk; Œ'�� 1/;

where 1D .1; : : : ; 1/ 2Gk.

Proof These isomorphisms follow from the fact that yq is an étale covering and the
existence of the following cross-sections for the actions of G :

Rc D Homc.�;G/� Homo.�;G/; Homc.�;G/�Gk
� Homo.�;G/�Gk

and

zRc D Homc.z�; zG/� Homo.z�; zG/; Homc.z�; zG/� zG
k
� Homo.z�; zG/� zG

k:

5 A universality theorem for Coxeter groups

The second key ingredient we need is the following theorem, which is essentially con-
tained in Kapovich and Millson [6]. Before stating the theorem we recall (Lemma 3.14)
that the action G Õ Homo.�;G/ has a cross–section Homc.�;G/� Homo.�;G/, ie
Homo.�;G/ is G–equivariantly isomorphic to the product Xo.�;G/�G , where G

acts trivially on Xo.�;G/. As always, G D PO.3/.

Theorem 5.1 Let X and x 2 X be as in Theorem 1.1. Then there exists an open
subscheme X 0�X containing x , a finitely generated Coxeter group � (such that every
edge of its graph � has label 2 or 4) and a representation �c W �!PO.3;R/ with dense
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image, such that X 0 is isomorphic to an open subscheme S 0 �Xo.�;G/. The repre-
sentation �c belongs to Homo.�;PO.3;R//. Furthermore, under this isomorphism, x

corresponds to Œ�c �.

Remark 5.2 Since Homo.�;G/Š Xo.�;G/�G , with Homc.�;G/ containing �c

serving as a cross-section for the action G Õ Homo.�;G/, the preimage S 0o of S 0

in Homo.�;G/ is isomorphic to S 0c�GŠS 0�G . Here and in what follows, S 0c �S 0o
is the cross-section given by

S 0c WD Homc.�;G/\S 0o:

Furthermore, as we saw in Section 2.2, the representation �c lifts to a representation

z�c W
z�! SU.2/

of the canonical central extension z� of �.

Since the universality theorems proven in [6] are somewhat different from the one
stated above, we outline the proof of Theorem 5.1. The main differences are that
the results of [6] are about representations of Shephard and Artin groups rather than
Coxeter groups. Furthermore, the representation to PO.3;R/ constructed in [6] has
finite image (which was important for [6]), although the image group does have trivial
centralizer in PO.3;C/.

Outline of proof of Theorem 5.1 The arguments below are minor modifications of
the ones in [6].

Step 1 (scheme-theoretic version of Mnëv universality theorem) Without loss of
generality, we may assume that the rational point x is the origin 0 in the affine space
containing X. In [6] we first construct a based projective arrangement A, such that an
open subscheme BR0.A;P

2/ in the space of based projective realizations BR.A;P2/,
is isomorphic to X as a scheme over Q, and, moreover, the geometrization isomorphism

X
geo
�!BR0.A;P

2/

sends x 2X to a based realization  0W A! P2 whose image is the standard triangle.
Furthermore, the images of the points and lines in A under  0 are real.

Remark 5.3 Subsequently, a proof of this result was also given by Lafforgue in [9],
who was apparently unaware of [6].

Step 2 An arrangement A is a certain bipartite graph containing a subgraph T (the
“base”) which is isomorphic to the incidence graph of the “standard triangle” (also
known as “standard quadrangle”); see [6, Figure 7]. The subgraph T has five vertices
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v00 , vx , vy , c10 , v01 , v11 corresponding to the “points” of the standard triangle and
six vertices lx , ld , ly , lx1 , ly1 , l1 which correspond to the “lines” of the standard
triangle. In [6, Section 11] we further modify the bipartite graph A: we make the
identifications of vertices

v00 � l1; vx � ly and vy � lx;

and we also add to A the edges

Œv10; v00� and Œv01; v00�:

We will use the upper-case notation V00D 0.v00/, VxD 0.vx/, etc to denote vectors
in C3 which project to the images under  0 of the point-vertices of T . The choice
of this vectors is not unique, of course; we assume that V00 , Vx , Vy form a basis and

(6) V10 D V00CVx; V01 D V00CVy and V11 D V00CVxCVy :

This is possible because of the incidences in  0.T /.

However, here, unlike in [6], we will not add the edge Œv00; v11�. (The purpose of this
edge in [6] was to ensure that certain representation of a Shephard group is finite.) We
let A0 denote the resulting graph (no longer bipartite). We assign labels to the edges
of A0 as follows: all edges are labeled 2 except for the two edges

Œv10; v00� and Œv01; v00�;

which have the label 4. We then let � denote the Coxeter group corresponding to this
labeled graph. We let T 0 denote the labeled subgraph of A0, whose vertices are the
images of the vertices of the arrangement T .

The labeled graph � as in Figure 1 embeds into T 0 via the map given by

v 7! v00; x 7! v10; y 7! v01; u 7! vx; w 7! vy :

We equip the vector space C3 with a nondegenerate bilinear form, so that:

1. All subspaces which appear in the image  0.T /D  0.A/ are anisotropic (the
bilinear form has nondegenerate restriction to these subspaces).

2. The vectors V00;Vx;Vy 2C3 are pairwise orthogonal and have unit norm.

We let PO.3/ denote the projectivization of the orthogonal group O.3/ preserving this
bilinear form.

A realization  2R.A;P2/ is anisotropic if for each vertex v 2A, the image  .v/ is
an anisotropic subspace in C3. We will use the notation Ra.A;P2/ � R.A;P2/

and BRa.A;P2/ � BR.A;P2/ for open schemes of anisotropic realizations and
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anisotropic based realizations. By condition 1 on the inner product above, BRa.A;P2/

contains  0 .

To every anisotropic realization  2R.A;P2/, we associate a representation of the
group � by sending every generator gv 2� to the isometric involution in PO.3/ fixing
the subspace  .v/ in P2. As in [6], this map of generators of � to PO.3/ defines a
representation

� W �! PO.3;C/:
We define

�c WD � 0
:

By the construction, each representation � is faithful on elementary subgroups: For
the edges Œv; w� in A (where v is a point and w is a line), the incidence condition
 .v/ 2  .v/ in P2 forces the point reflection in  .v/ be distinct from the line
reflection in  .w/. For the edges

Œv10; v00� and Œv01; v00�;

condition (6) forces the point reflections in  .v00/,  .v10/,  .v01/ to be pairwise
noncommuting and hence both subgroups

� .hgv00
;gv10

i/ < PO.3;C/ and � .hgv00
;gv01

i/ < PO.3;C/

are isomorphic to I2.4/. We also note that

(7) � j��
D �� WD � 0

W ��! PO.3;C/:

We thus obtain the algebraization morphism of schemes

algW BRa.A;P
2/! Hom.�;PO.3// given by  7! � :

As in [6], the morphism alg is an isomorphism to its image. It follows from Lemma 3.14
and (7) that the subscheme

Sc WD alg.BRa.A;P
2//� Homc.�;PO.3//� Homo.�;PO.3//

is a cross-section for the action of G on the G–orbit of Sc , which we denote

S � Homo.�;PO.3//:

Let †�A0 denote the complete subgraph whose vertices are the vertices (points and
lines) of the standard triangle in A, except for the vertex v11 . As in [6], the image
under �c of the corresponding parabolic Coxeter subgroup �† � � is isomorphic to
the finite Coxeter group B3 (the symmetry group of the regular octahedron) divided by
the center Z2 . Such a group is a maximal finite subgroup of PO.3;R/. However, the
involution �c.gv11

/ does not belong to the group �c.�†/ (this would be an order-2
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rotation in the center of a face of the octahedron). Thus, the group �c.�/ has to be
dense in PO.3;R/, as it contains (actually, is equal to) the dense subgroup �c.�T 0/.
This is the only essential difference between the construction in this paper and in [6],
where it was important for the group �c.�/ to be finite.

We let
�W Homo.�;G/!Xo.�;G/

denote the restriction of the GIT quotient Hom.�;G/!X.�;G/. Since Homc.�;G/

is a cross-section for the G–action on Homo.�;G/, the morphism � is a trivial
principal G–bundle.

Theorem 5.4 algW BRa.A;P2/! Homc.�;PO.3;C// is an isomorphism.

Proof We will only sketch the proof since it follows closely the argument in [6,
Theorem 12.14] and the latter is quite long. One verifies that alg induces a nat-
ural isomorphism of functors of points. For instance, over the complex numbers,
each representation � 2 Homc.�;PO.3;C// gives rise to an anisotropic realization:
 .v/ 2 P2.C/ is the point fixed by �.gv/ (if v is a point-vertex) and  .v/ 2 P2.C/
is the line fixed by �.gv/ (if v is a line-vertex).

Corollary 5.5 1. Sc is a cross-section for the action of G on Homo.�;G/.

2. � ı algW BRa.A;P2/!Xo.�;G/ is an isomorphism.

3. S D � ı alg.BRa.A;P2//�X.�;G/ is an open subscheme.

Proof Part 1 follows from the fact that

Sc D alg.BRa.A;P
2.C//D Homc.�;PO.3;C//

and the latter is a cross-section for the G–action on Homo.�;G/ (Lemma 3.14). Part 2
is immediate from Theorem 5.4 and part 1. Part 3 follows from the fact that Xo.�;G/

is an open subscheme in X.�;G/.

We define X 0 WD geo�1.BRa.A;P2//�X, an open subscheme in X. The composition
of geo; alg and �

X �X 0
geo
�!BRa.A;P

2/\BR0.A;P
2/

alg
�!S 0c

�
�!S 0 �Xo.�;G/;

where X 0 �X and S 0 � S �Xo.�;G/ are open subschemes, yields an isomorphism

�W X 0! S 0 � S:

The isomorphism � sends the point x 2 X 0 to Œ�c � 2 Xo.�;G/. This concludes the
proof of Theorem 5.1.
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We let S 0o denote the preimage of S 0 in Homo.�;G/; then

S 0c D Sc \S 0o and S 0o DG �S 0c Š S 0c �G:

Inverting the isomorphism � and multiplying with the identity map G!G , we obtain:

Corollary 5.6 There exists isomorphisms of schemes over Q

!W S 0o!X 0 �G and �W S 0c!X 0

and a commutative diagram

S 0o
! - X 0 �G

S 0c

?
��1

- X 0
?

where the vertical arrows are quotients by the G–action.

6 Proof of Theorem 1.1

We continue with notation introduced in the previous sections. Given an affine
scheme X over Q and a rational point x 2 X, we use Theorem 5.1 to construct
a Coxeter group � and a representation �c W �! PO.3;R/ < PO.3;C/. Then, as in
Section 4, we will construct a closed 3–manifold M DM� with fundamental group � ,
and a clopen subscheme Homo.�;G/�Hom.�;G/ which is isomorphic to the product
Homo.�;G/�Gk. In (5) we defined an epimorphism

�W �
�
�!� ?Fk

 
�!�:

Set �0 WD ��.�c/ 2 Hom.�;G/. The subgroup �0.�/ D �c.�/ < G.R/ is dense
according to Theorem 5.1.

We next “convert” the open subscheme S 0o�Homo.�;G/ (from the end of the previous
section) to an open subscheme R0 � Hom.�;G/. Namely, given S 0o , we let R0 be the
subscheme as in Lemma 4.4, namely, ��.S 0o �Gk/.

By combining the isomorphism

R0! S 0o �Gk
� Hom.�;G/�Gk

with the isomorphism

! � idW S 0o �Gk
!X 0 �G �Gk

(where ! is from Corollary 5.6), we obtain an isomorphism

f W R0 Š�!S 0o �Gk Š
�!X 0 �GkC1

�X �GkC1;
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sending �0 2R0 to
x0 D x � 1 2X 0 �GkC1:

By the construction, R0 is open in Hom.�;G/ and X 0 �GkC1 is open in X �GkC1.

The cross-section S 0c � S 0o � Homo.�;G/ (see Remark 5.2) yields a cross-section
R0c �R0 � Hom.�;G/ for the action G Õ R0 :

R0c D �
�. �.S 0c/�Gk/:

This concludes the proof of Theorem 1.1.

7 Corollaries of Theorem 1.1

Theorem 1.1 deals with representation schemes of 3–manifold groups to G D PO.3/;
we now consider the corresponding character schemes. Since R0c � Homo.�;G/ is a
cross-section for the action of G on R0, part 5 of Theorem 1.1 immediately implies
Corollary 1.3.

We next consider representations of 3–manifold groups to the group zG D SL.2/; we
work over C and thus identify PSL.2;C/ with PO.3;C/.

Recall that, according to Theorem 5.1 (and Remark 5.2), for every affine scheme
X over Q and a rational point x 2 X, there exists an open subscheme X 0 � X

containing x , a Coxeter group � an open subscheme S 0o � Hom.�;G/, and an
isomorphism of schemes over C (which is the identity on the G–factor)

S 0o Š S 0c �G Š S 0 �G!X 0 �G;

sending �c 2 S 0c to x � 1. (S 0c is a certain cross-section for the action G Õ S 0o .)

Next, we consider representations of the corresponding extended Coxeter group z�.
Proposition 3.9 gives us a G–equivariant regular étale covering

qW Homo.z�; zG/! Homo.�;G/

with covering group ZkCr
2

. Restricting to S 0o�Homo.�;G/ we obtain a G–equivariant
regular étale covering

q0W zS 0o! S 0o where zS 0o D q�1.S 0o/� Homo.z�; zG/ and q0 D qj zS 0o
:

We let z�c W
z�! zG.C/ be a lift of �c . The subscheme zS 0o is open in Hom.z�; zG/.

Next, as in Section 4, given the group z� we construct a closed 3–manifold zM with
fundamental group z� . We obtain the epimorphism

z�W z�! z� �Fk !
z�
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and set z�0 WD
z��.z�c/ 2 Hom.z�; zG/.

We have an étale covering

yqW Homz‚.z�;
zG/! Hom‚.�;G/;

equivariant with respect to the action of G . Restricting to the open subscheme

zRD Homo.z�; zG/� Hom‚.z�; zG/� Hom.z�; zG/;

where zRD yq�1.R/ and RD Homo.�;G/� Hom‚.�;G/� Hom.�;G/;

we obtain the G–equivariant étale covering

zqW zR!R

with the group ZkCr
2

of covering transformations. According to Section 4 we also
have cross-sections

Rc �R and zRc D zq
�1.Rc/� zR

for the G–actions on the schemes. The open subschemes that appear in Corollary 1.4
are smaller; we let

zR0 D zq�1.R0/;

where R0�Hom.�;G/ is the subscheme appearing in Theorem 1.1. The cross-sections
for G–actions on these subschemes are zR0c and R0c , respectively, where zR0cDzq

�1.R0c/.
By the construction z�0 belongs to zR0c.C/. This proves Corollary 1.4.

8 Orbifold-group representations

Let y� be the fundamental group of the hyperbolic orbifold appearing in Theorem 4.1.
This group contains cyclic subgroups h�ii Š Z2 for i D 1; : : : ; 2k corresponding to
the singular points yi . The group � is the quotient

y�=hh y‚ii;

where y‚D f�1; : : : ; �2kg �
y�. Then for every algebraic group H ,

Hom.�;H /Š Homy‚.
y�;H /;

and the latter is an open subscheme in Hom.y�;H / (see Corollary 2.4). Now, let �
be a Coxeter group (as in Theorem 5.1) or its canonical central extension. In view of
Theorems 4.1 and 5.1, we obtain:

Corollary 8.1 Theorem 1.1 and Corollaries 1.3 and 1.4 also hold for groups � which
are fundamental groups of (nonorientable) 3–dimensional closed hyperbolic orbifolds.
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By passing to torsion-free subgroups of finite index of � , in view of [5, Theorem 5.1],
we obtain new examples of fundamental groups of hyperbolic 3–manifolds and their
representations to SO.3/ and SU.2/ with nonquadratic singularities of character va-
rieties; see [5, Theorem 5.1], where it is proven that nonquadratic singularities of
character schemes are inherited by finite index subgroups. (The first such examples
were constructed in [5].)

Question 8.2 Do Theorem 1.1 and Corollaries 1.3 and 1.4 also hold for groups �
which are fundamental groups of 3–dimensional closed hyperbolic manifolds? Do
they hold for 3–dimensional manifolds which are 3–dimensional (integer or rational)
homology spheres?

Appendix: Functor of points of affine schemes

The material of this section is standard; we include it for the sake of completeness.
While the results follow easily from the Yoneda lemma, we will give a direct proof.

Lemma A.1 Let f W R! S be a homomorphism of commutative rings, such that for
every commutative ring A the induced map

f �A W Hom.S;A/! Hom.R;A/

is a bijection. Then f is an isomorphism.

Proof First, we take ADR. Since

f �R W Hom.S;R/! Hom.R;R/

is a bijection, there exists g 2 Hom.S;R/ such that f �
R
.g/D idR , ie

g ıf D idR;

the identity map. For general A we have the composition

Hom.R;A/ g�
A�!Hom.S;A/ f

�
A�!Hom.R;A/

which satisfies f �
A
ıg�

A
D .g ıf /�

A
D id. Therefore, g�

A
is also a bijection.

Now, we take AD S . Since g�
S

is a bijection, there exists h 2 Hom.R;S/ such that

g�.idS /D h;

ie h ıg D idS . Thus

f D idS ıf D h ıg ıf D h ı idR D h:

Hence, f D h and the equations g ıf D idR and hıgD idS show that gD f �1.
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Suppose now that X and Y are affine schemes of finite type over a field k , ie schemes
associated with quotient rings RD kŒx1; : : : ;xm�=I and Y D kŒy1; : : : ;yn�=J. For a
commutative ring A the sets X.A/ of A–points of X and Y .A/ of Y are naturally
identified with the sets of homomorphisms Hom.R;A/ and Hom.S;A/.

Corollary A.2 If �W Y !X is a morphism which induces isomorphisms of functors
of A–points, ie bijections �AW Y .A/!X.A/ for all commutative rings A, then � is
an isomorphism of schemes.

Proof Consider the ring homomorphism f W R!S associated with � . The bijections
�A are identified with the bijections

f �A W Hom.S;A/! Hom.R;A/:

According to Lemma A.1, f is a ring isomorphism. Hence, � is an isomorphism of
schemes.
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