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Growth and order of automorphisms of free groups
and free Burnside groups
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We prove that an outer automorphism of the free group is exponentially growing if
and only if it induces an outer automorphism of infinite order of free Burnside groups
with sufficiently large odd exponent.
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1 Introduction

Let n be an integer. A group G has exponent n if for all g 2 G , gn D 1. In 1902,
W Burnside [7] asked the following question. Is a finitely generated group with finite
exponent necessarily finite? In order to study this question, the natural object to look
at is the free Burnside group of rank r and exponent n. It is defined to be quotient of
the free group Fr of rank r by the (normal) subgroup F n

r generated by the nth power
of all elements. We denote it by Br .n/. Every finitely generated group with finite
exponent is a quotient of a free Burnside group.

For a long time, hardly anything was known about free Burnside groups. It was only
proved that Br .n/ was finite for some small exponents: nD 2, Burnside [7]; nD 3,
Burnside [7] and Levi and van der Waerden [24]; n D 4, Sanov [35]; and n D 6,
Hall [21]. In 1968, P S Novikov and S I Adian [29; 30; 31] achieved a breakthrough by
providing the first examples of infinite Burnside groups. More precisely, they proved
the following theorem. Assume that r is at least 2 and n is an odd exponent larger than
or equal to 4381; then the free Burnside group of rank r and exponent n is infinite.

This result has been improved in many directions. Adian [1] decreased the bound on
the exponent. A Y Ol’shanskiı̆ [32] obtained a similar statement using a diagrammatical
approach of small cancellation theory. The case of even exponents has been solved by
S V Ivanov [22] and I G Lysënok [26]. More recently, T Delzant and M Gromov [17]
gave an alternative proof of the infiniteness of Burnside groups. To sharpen our
understanding of Burnside groups, we would like to study the symmetries of Br .n/.
This leads us to the outer automorphism group of Br .n/.
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The subgroup F n
r is characteristic. Hence the projection Fr�Br .n/ induces a natural

homomorphism Out.Fr /! Out.Br .n//. This map is neither one-to-one nor onto.
However, it provides numerous examples of automorphisms of Burnside groups. For
instance, the first author [13] proved that for sufficiently large odd exponents, the image
of Out.Fr / in Out.Br .n// contains free subgroups of arbitrary rank and free abelian
subgroups of rank

�
r
2

˘
. In this article, we are interested in the following question.

Question Which (outer) automorphism of Fr induces an (outer) automorphism of
infinite order of Br .n/?

Let G be a finitely generated group endowed with the word-metric. Given g 2G , the
length kgk of its conjugacy class is the length of the smallest word over the generators
which represents an element conjugated to g . Given an outer automorphism ˆ of G ,
one says that
� ˆ is exponentially growing if there exist g 2 G and � > 1 such that for all

integers k , kˆk.g/k> �k ,
� ˆ is polynomially growing if for every g 2G , there is a polynomial P such

that for all integers k , kˆk.g/k6 P .k/.

The word-metrics relative to two finite generating sets are bi-Lipschitz equivalent.
Therefore, the asymptotic behavior of kˆk.g/k does not depend on the choice of
generators. Automorphisms of free groups are either exponentially or polynomially
growing; see Bestvina and Handel [6] and Bestvina, Feighn and Handel [3]. See also
Levitt [25].

We study here the map Out.Fr /!Out.Br .n//. Our main theorem states that an auto-
morphism of Fr has exponential growth if and only if it induces an automorphism of in-
finite order of Br .n/ for sufficiently large exponents n. From the viewpoint of Out.Fr /,
this result provides an unexpected characterization of the growth of automorphisms of
free groups. At the level of Burnside groups, it completely describes the automorphisms
of Fr that induce automorphisms of infinite order of some Burnside groups.

Remark 1.1 Since Br .n/ is a torsion group, every inner automorphism of Br .n/ has
finite order. Therefore, an automorphism ' 2 Aut.Br .n// has finite order if and only
if its outer class does also. Hence, for our purpose, we can equivalently work with
Out.Br .n// or Aut.Br .n//.

The first examples of automorphisms of Br .n/ with infinite order were given by
E A Cherepanov [8]. In particular, he proved that the automorphism ' of F .a; b/

given by '.a/D ab and '.b/D a (also called the Fibonacci morphism) induces an
automorphism of infinite order of B2.n/ for all odd integers n> 665. In [13], the first
author provides a large class of automorphisms with the same property.

Geometry & Topology, Volume 21 (2017)



Growth and order of automorphisms of free groups and free Burnside groups 1971

Theorem 1.2 (Coulon [13, Theorem 1.3]) Let ' be a hyperbolic automorphism of Fr

(ie the semidirect product Fr Ì' Z is word-hyperbolic). There exists an integer n0

such that for all odd exponents n > n0 , the automorphism ' induces an element of
infinite order of Out.Br .n//.

The Fibonacci morphism ' used by Cherepanov is not hyperbolic. Indeed ' fixes the
commutator Œa; b�Daba�1b�1 . Hence the semidirect product F2Ì'Z contains a copy
of Z2 which is an obstruction to being hyperbolic. This observation has a more general
topological interpretation. Indeed, any automorphism ' of F2 can be represented by a
homeomorphism f of the punctured torus (if ' is the Fibonacci morphism, then f
is even pseudo-Anosov). This map f necessarily preserves the boundary component
of the torus — which corresponds to the commutator Œa; b�. Hence the mapping torus
induced by f contains an embedded torus. Its fundamental group F2Ì'Z is therefore
not hyperbolic.

Nevertheless, like hyperbolic automorphisms, the Fibonacci morphism is exponentially
growing. On the other hand, we also know that a polynomially growing automorphism
of Fr induces an automorphism of finite order of Br .n/ for every exponent n [13].
It suggests a link between the growth of an automorphism of Fr and its order as
automorphism of Br .n/. More precisely, we prove the following statement.

Theorem 1.3 Let ˆ 2 Out.Fr / be an outer automorphism of Fr . The following
assertions are equivalent:

(1) ˆ has exponential growth;

(2) there exists n 2 N such that ˆ induces an outer automorphism of Br .n/ of
infinite order;

(3) there exist �; n0 2N such that for all odd integers n> n0 , the automorphism ˆ

induces an outer automorphism of Br .�n/ of infinite order.

Remark In this article, we adopt the following convention. The notation N stands
for the set of nonnegative integers, whereas N� represents N n f0g.

In the statement of Theorem 1.3, (3) D) (2) is easy whereas (2) D) (1) follows from
the work of the first author [13, Theorem 1.6]. The new result of this article is the
implication (1) D) (3). Before sketching this proof, let us have a look at the arguments
used by Cherepanov [8]. The proof of the infiniteness of Br .n/ by Novikov and Adian
is based on the following important fact [1].

Proposition 1.4 Let w be a reduced word of Fr . If w does not contain a subword
of the form u16, then w induces a nontrivial element of Br .n/ for all odd exponents
n> 655.
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In particular, two distinct reduced words without an 8th power define distinct elements
of Br .n/. Compute now the orbit of b under the automorphism ' of F .a; b/ defined
by '.a/D ab and '.b/D a. It leads to the following sequence of words:

'1.b/D a; '5.b/D abaababa;

'2.b/D ab; '6.b/D abaababaabaab;

'3.b/D aba; '7.b/D abaababaabaababaababa;

'4.b/D abaab;
:::

None of these words contains a 4th power; see Karhumäki [23]. Therefore, they
induce pairwise distinct elements of Br .n/. In particular, ' seen as an automorphism
of Br .n/, has infinite order.

This argument can be generalized for any exponentially growing automorphism of F2

using an appropriate train track representative. However, it does not work anymore
in higher rank. Consider, for instance, the exponentially growing automorphism  

of F .a; b; c; d/ defined by  .a/D a,  .b/D ba,  .c/D cbcd and  .d/D c . As
previously, we compute the orbit of d under  :

 1.d/D c;

 2.d/D cbcd;

 3.d/D cbcdbacbcdc;

 4.d/D cbcdbacbcdcba2cbcdbacbcdccbcd;

 5.d/D cbcdbacbcdcba2cbcdbacbcdc2bcdba3cbcdbacbcdcba2 : : :

: : : cbcdbacbcdc2bcdcbcdbacbcdc:

This orbit is exponentially growing. Note that if  p.d/ contains a subword bam then
 pC1.d/ contains bamC1 . Hence as p tends to infinity,  p.d/ contains arbitrarily
large powers of a. This cannot be avoided by choosing the orbit of another element.
Proposition 1.4 is no more sufficient to tell us whether or not the  p.d/ are pairwise
distinct in Br .n/. Therefore, we need a more accurate criterion to distinguish two
different elements of Br .n/. This is done using elementary moves.

Let n 2N and � 2RC . An .n; �/–elementary move consists in replacing a reduced
word of the form pums 2 Fr by the reduced representative of pum�ns , provided m

is an integer larger than n
2
� � . The word u is called the support of the elementary

move. Note that an elementary move may increase the length of the word.
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c b c d b a c b c d c b a a c b c d b a c b c d c c b c d

Figure 1: The yellow-red decomposition of  4.d/

Theorem 1.5 (Coulon [12]) There exist integers n1 and � such that for all odd
exponents n> n1 , we have the following property. Let w and w0 be two reduced words
of Fr . If w and w0 define the same element of Br .n/, then there are two sequences of
.n; �/–elementary moves which respectively send w and w0 to the same word.

Remark As will be detailed in Section 6.1, this statement is a direct application of
the main theorem of Coulon [12]. Its proof relies on the geometric approach of the
Burnside problem developed by Delzant and Gromov [17]. Although Theorem 1.5 is
not explicitly mentioned in their articles, it should be possible to deduce an analogue
statement from the work of Adian [1] and Ol’shanskiı̆ [32]. For the convenience of the
reader who would be more familiar with Ol’shanskiı̆’s techniques, these analogies and
differences are discussed in Section 6.1 and in the Appendix.

Thanks to this tool, we can now explain using the example  how the implication
(1) D) (3) of Theorem 1.3 works. We need to understand the effect of elementary
moves on a word  p.d/. To that end, we assign colors to the letters. Let us say that
a and b are yellow letters (dotted lines on Figure 1) whereas c and d are red letters
(thick lines on the figure). The word  p.d/ is the concatenation of maximal yellow
and red subwords. To any word w over the alphabet fa; b; c; dg we associate its red
part Red.w/ obtained by removing from w all the yellow letters. We start with two
observations, one on the red words, the other on the yellow ones.

Red words We claim that the support of elementary moves that can be performed
on  p.d/ only contains yellow letters. Since the orbit of d grows exponentially, one
can prove that Red. p.d// does not contain large powers. More precisely, there is
an integer n2 such that for all p 2 N , the word Red. p.d// does not contain any
n th

2
power; see Proposition 5.11. This fact can be interpreted in terms of dynamical

properties of the attracting laminations associated to the automorphism  . Let n >

2n2C 2� . Assume now that the support u of an .n; �/–elementary move performed
on  p.d/ contains a red letter. By definition, there exists m > n2 such that um is
a subword of  p.d/. In particular, Red.u/m is a subword of Red. p.d//, which
contradicts the definition of n2 . It follows from this remark that the support of any
.n; �/–elementary move with n> 2n2C 2� only contains yellow letters.

Yellow words We now claim that elementary moves with yellow support cannot send
a maximal yellow subword of  p.d/ to the empty word. This fact is important for the
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Word before the elementary move:

Word after the elementary move:

w1 s un s�1 w2

w1 w2

Figure 2: An elementary move collapsing red letters

following reason. We explained that the support of an elementary move performed on
 p.d/ only contains yellow letters. Such a move could change the red part of  p.d/,
though. It could indeed completely collapse a maximal yellow subword and thus affect
the red letters; see Figure 2.

To prove this second claim, we look at the yellow subwords of  p.d/. Notice that
the image by  of a yellow word is still a yellow word. On the contrary, the image of
a red word may contain yellow subwords. Indeed b is a subword of  .c/. Actually,
the yellow subwords of  p.d/ can be sorted in two categories: the words that consist
in the single letter b which appear as a subword of  .c/ and the ones which arise
as the images by  of yellow subwords of  p�1.d/. In particular, all the maximal
yellow subwords of  p.d/ belong to the orbit under  of b . Consequently, there is
an integer n3 such that for every odd integer n> n3 , none of them becomes trivial in
Br .n/. In particular, no sequence of .n; �/–elementary moves sends a maximal yellow
subword of  p.d/ to the empty word.

We can now argue by contradiction. Let n>maxfn1; 2n2C 2�; n3g be an odd integer.
Assume that  induces an automorphism of finite order of Br .n/. In particular, there
exists p 2 N� such that  p.d/ and d have the same image in Br .n/. It follows
from Theorem 1.5 that a sequence of .n; �/–elementary moves sends  p.d/ to d .
We claim that performing .n; �/–elementary moves on  p.d/ does not change its red
part. Indeed, n> 2n2C2� ; thus these moves will only change the yellow subwords of
 p.d/. Moreover, since n> n3 , none of the yellow words can completely disappear.
In particular, the red word Red. p.d// associated to  p.d/ should be exactly d .
This is a contradiction.

The proof for an arbitrary exponentially growing automorphism of Fr follows the same
ideas. One has to replace the words in a; b; c; d by paths in an appropriate relative train
track. This leads to a technical difficulty, though. The red and yellow paths that we want
to consider do not necessarily represent elements of the free groups. This problem is han-
dled in Sections 4.2 and 5. There we use subtle aspects of the machinery of train-tracks
to show that the red words do not contain large powers (Proposition 5.11). In particular,
we need to pass to a finite-index subgroup of Fr . This operation actually ensures at
the same time that no yellow subpath will be removed by elementary moves (see the
prior discussion). Beside this fact, the main ingredients are the ones described above.

Geometry & Topology, Volume 21 (2017)



Growth and order of automorphisms of free groups and free Burnside groups 1975

Acknowledgments Most of this work was done while Coulon was staying at the Max-
Planck-Institut für Mathematik, Bonn, Germany. He wishes to express his gratitude
to all faculty and staff from the MPIM for their support and warm hospitality. Hilion
would like to thank Michael Handel and Gilbert Levitt for helpful conversations. Many
thanks also go to the referees for their helpful comments and corrections. Hilion is
supported by the grant ANR-10-JCJC 01010 of the Agence Nationale de la Recherche.

2 Primitive matrices and substitutions

In this section, we summarize a few properties about primitive integer matrices and
substitutions on an alphabet that will be useful later.

2.1 Primitive matrices

A square matrix M of size ` whose entries are nonnegative integers is irreducible if
for each i; j 2 f1; : : : ; `g, there exists p 2N such that the .i; j /–entry of M p is not
zero. It is primitive when there exists p 2N such that any entry of M p is not zero.

The Perron–Frobenius theorem for an irreducible matrix M with nonnegative integer
entries states that there exists a unique dominant eigenvalue �> 1 of M associated to
an eigenvector with positive coordinates (see for instance Seneta’s book [36]). This � is
called the Perron–Frobenius-eigenvalue (or simply PF-eigenvalue) of M . In addition,
if �D 1, then M is a transitive permutation matrix.

2.2 Primitive substitutions

Let AD fa1; : : : ; a`g be a finite alphabet. The free monoid generated by A is denoted
by A�. We write 1 for the empty word, also called the trivial word. An infinite word
is an element of AN . Let m 2N�. A word w 2A� is an mth power if there exists a
nontrivial word u 2A� such that wD um . A nontrivial word w 2A� is primitive if it
is not an mth power with m at least 2 (ie if wD um , then uDw and mD 1). A word
w 2A� (or an infinite word w 2AN ) contains an mth power, if there exists a word
u 2 A� n f1g such that um is a subword of w . The shift is the map S W AN ! AN

which sends .wi/i2N to .wiC1/i2N . An infinite word w is said to be shift-periodic if
there exists q 2N� such that Sq.w/D w . If u stands for the word w0w1 � � �wq�1 ,
then we write w D u1 . Roughly speaking, it means that w is the infinite power of u.

An endomorphism of the free monoid A� is called a substitution defined on A. Such
a substitution � is indeed completely determined by the images �.a/ 2A� of all the
letters a 2 A. Moreover, it naturally extends to a map AN ! AN . The matrix M
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of a substitution � is a square matrix of size ` whose .i; j /–entry is the number of
occurrences of the letter ai in the word �.aj /. The substitution � is said to be primitive
when M is primitive.

Proposition 2.1 Let a be a letter of A. Let � be a primitive substitution on A such
that a is a prefix of �.a/.

(i) The sequence .�p.a// converges for the prefix topology to an infinite word
�1.a/ fixed by � .

(ii) If �1.a/ is not shift-periodic, then there exists an integer m> 2 such that for
all p 2N , the word �p.a/ does not contain an mth power.

(iii) If there exists a nontrivial primitive word u such that �1.a/D u1 , then there
exists an integer q > 2 such that �.u/D uq .

Remark 2.2 The case covered by Proposition 2.1(iii) is not vacuous. Consider for
instance the substitution defined on A D fa; b; cg by �.a/ D ab , �.b/ D c and
�.c/D abc . The transition matrix M of � and its square are

M D

0@1 0 1

1 0 1

0 1 1

1A ; M 2
D

0@1 1 2

1 1 2

1 1 2

1A :
In particular, � is primitive. However, .�n.a// converges to the infinite shift-periodic
word .abc/1 .

To prove Proposition 2.1, we use the following results due to B Mossé.

Proposition 2.3 (Mossé [27, Théorème 2.4]) Let � be a primitive substitution on a
finite alphabet A. Let u 2AN be an infinite word fixed by � . Then either

(i) u is shift-periodic, or

(ii) there exists an integer m> 2 such that u does not contain an mth power.

Lemma 2.4 (Mossé [27, Proposition 2.3]) Let u 2 A� be a primitive word. Let
m> 2 be an integer. If uwu is subword of um , then there exists an integer p > 0 such
that w D up .

Proof of Proposition 2.1 By assumption, a is a prefix of �.a/. Thus there exists
w 2A� such that �.a/D aw . Since � is primitive, w is not trivial. For every p 2N�,
it follows that �p.a/ is exactly the word

�p.a/D aw�.w/�2.w/ � � � �p�1.w/:
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In particular, �p.a/ is a prefix of �pC1.a/. Therefore, .�p.a// converges to an infinite
word �1.a/ fixed by � :

�1.a/D aw�.w/�2.w/ � � � �p.w/ � � � ;

which proves (i). Assume now that this infinite word is not shift-periodic. According
to Proposition 2.3, there exists m> 2 such that �1.a/ does not contain an mth power.
The same holds for the prefixes of �1.a/, in particular for all �p.a/, which proves (ii).

Finally, assume that �1.a/ D u1 , where u is a nontrivial primitive word. Since
�1.a/ is fixed by � , we obtain that u1 D �.u/1 . In particular, u is a prefix of
�1.u/. The substitution � being primitive, �.u/ is not shorter than u. We derive
that there exists w0 2A� such that �.u/D uw0 . Hence u1 D .uw0/

1 . Lemma 2.4
shows that there exists p 2N satisfying w0 D up . Thus �.u/D upC1 . Remember
that a is a prefix of u. Hence u can be written uD au0 . It follows that the length of
�.u/D aw�.u0/ is larger than that of u. Thus pC 1> 2, which proves (iii).

3 Train-tracks and automorphisms of free groups

In this section, we recollect some material about relative train-track maps. Details can
be found in [6], where they have been introduced by Bestvina and Handel. There exist
several improvements of relative train-track maps, and we will use here (very few of
the) improved relative train-track maps introduced by Bestvina, Feighn and Handel
in [4].

3.1 Paths and circuits

The graphs that we consider are metric graphs with oriented edges. By metric graph,
we mean a graph equipped with a path metric. If e is an edge of a graph G , then e�1

stands for the edge with the reverse orientation. The pair fe; e�1g is the unoriented
edge associated to e (or e�1 ). By abuse of notation, we will just say the unoriented
edge e for the pair fe; e�1g. Let ‚W E ! E be the map defined by ‚.e/ D e�1 .
Sometimes, it will be useful to consider a subset EE of E such that EE and ‚. EE/ give
rise to a partition of E (ie we choose a preferred oriented edge for each unoriented
edge). We call such a set EE a preferred set of oriented edges for G .

A path in a graph G is a continuous locally injective map ˛W I !G , where I D Œa; b�

is a segment of R. The initial point of ˛ is ˛.a/ and its terminal point is ˛.b/; both
˛.a/ and ˛.b/ are the endpoints of ˛ . We do not make any distinction between two
paths which differ by an orientation-preserving homeomorphism between their domains.
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A path is trivial if its domain is a point. When the endpoints of ˛ are vertices, ˛
can be viewed as a path of edges, ie a concatenation of edges ˛ D e1 � � � ep , where
the ei are edges of G such that the terminal vertex of ei is the initial vertex of eiC1

and ei ¤ e�1
iC1

. A circuit in G is a continuous locally injective map of an oriented
circle into G . We do not make any distinction between two circuits which differ by
an orientation-preserving homeomorphism between their domains. A circuit can be
viewed as a cyclically ordered sequence of edges without backtracking. If ˛ is a path
or a circuit, we denote by ˛�1 the path or circuit, with the reverse orientation.

A continuous map ˛W I !G , where I is segment in R, is homotopic relative to the
endpoints to a unique path denoted by Œ˛�. A nonhomotopically trivial continuous map
˛W S1!G is homotopic to a unique circuit denoted by Œ˛�.

3.2 Topological representatives

Marked graphs and topological representatives Let r > 2. We denote by Rr

the rose of rank r . It is a graph with one vertex ? and r unoriented edges. The
fundamental group �1.Rr ; ?/ is the free group Fr , with basis given by a preferred set
of oriented edges. A marked graph .G; �/ (often simply denoted by G ) is a connected
metric graph G having no vertex of valence 1, equipped with a homotopy equivalence
� W Rr !G . This homotopy equivalence � gives an identification of the fundamental
group �1.G; �.?// with Fr , well defined up to an inner automorphism. A topological
representative of an outer automorphism ˆ 2 Out.Fr / is a homotopy equivalence
f W G!G of a marked graph .G; �/ such that

� f takes vertices to vertices and edges to paths of edges,

� �� ıf ı � W Rr !Rr induces ˆ on Fr D �1.Rr ; ?/, where �� is a homotopy
inverse of � .

In particular, the restriction of f to an open edge is locally injective.

Induced map on paths and circuits If ˛ is a path or a circuit in G , one defines
f#.˛/ as being equal to Œf .˛/�.

Legal turns For any edge e of G , we let Df .e/ denote the first edge of f .e/. A
turn is a pair of edges .e1; e2/ of G which have the same initial vertex. The turn
.e1; e2/ is degenerate if e1 D e2 , and nondegenerate otherwise. A turn .e1; e2/ is
legal if ..Df /p.e1/; .Df /

p.e2// is nondegenerate for all p 2N ; otherwise, the turn
is illegal.

Geometry & Topology, Volume 21 (2017)



Growth and order of automorphisms of free groups and free Burnside groups 1979

3.3 Lifts

Let f W G!G be a topological representative of ˆ2Out.Fr /. Let zG be the universal
cover of G . The theory of covering spaces gives a one-to-one correspondence between
the set of the lifts of f to zG and the set of automorphisms in the outer class ˆ. More
precisely, a lift zf of f is in correspondence with the automorphism ' 2ˆ if

(1) zf ıg D '.g/ ı zf for all g 2 Fr ;

where the elements of Fr are viewed as deck transformations of zG .

3.4 Invariant filtrations and transition matrices

Let f W G!G be a topological representative of ˆ 2 Out.Fr /.

Filtration, strata and k–legal paths A filtration of a topological representative
f W G ! G is a strictly increasing sequence of f –invariant subgraphs ∅ D G0 �

G1 � � � � � Gm D G: The stratum of height k denoted by Hk is the closure of
Gk nGk�1 . The edges of height k are the edges of Hk . A path of height k is a path
in Gk which crosses Hk nontrivially; ie its intersection with Hk contains a nontrivial
path. A path (of edges) ˛ is k –legal if it is a path of Gk and for all subpaths e1e2

of ˛ with e1; e2 edges of height k , the turn .e�1
1
; e2/ is legal.

Transition matrices A transition matrix Mk is associated to the stratum Hk . We
choose a preferred set of oriented edges EE D fe1; : : : ; e`g for Hk (where ` is the
number of unoriented edges of Hk ). The transition matrix Mk of Hk is a square
matrix of size ` whose .i; j /–entry is the number of times the edge ei or the reverse
edge e�1

i occur in the path f .ej /.

The stratum Hk is irreducible when its transition matrix Mk is irreducible. Let �k be
the PF-eigenvalue of Mk ; see Section 2.1. If �k > 1, then Hk is called an exponential
stratum. If Mk is primitive, Hk is said to be aperiodic. When the stratum Hk is
irreducible and �k D 1, Hk is called a nonexponential stratum. When Mk is the zero
matrix, the stratum Hk is called a zero stratum.

Remark 3.1 Given a topological representative f W G!G and an invariant filtration
for f , up to refining the filtration, one can always suppose that any stratum is of one of
three possible types: exponential, nonexponential or zero. Moreover, up to replacing ˆ
by a positive power of ˆ, one can assume that ˆ admits a topological representative
f WG!G with the following properties [4]:

� each exponential stratum is aperiodic,
� each nonexponential stratum Hk consists of a single edge e , and that f .e/D eu

where u is loop in Gk�1 based at the endpoint of e .
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3.5 A quick review on relative train-track maps

Relative train-track maps A topological representative f W G!G of an outer auto-
morphism ˆ 2 Out.Fr / with a filtration ∅DG0 �G1 � � � � �Gm DG is a relative
train-track map (RTT) if for every exponential stratum Hk ,

(RTT-i) Df maps the set of edges of height k to itself (in particular, each turn
consisting of an edge of height k and one of height less than k is legal);

(RTT-ii) if ˛ is a nontrivial path with endpoints in Hk \ Gk�1 , then f#.˛/ is a
nontrivial path with endpoints in Hk \Gk�1 ;

(RTT-iii) for each k –legal path ˛ , the path f#.˛/ is k –legal.

In particular, an edge e of an exponential stratum Hk is k –legal. Theorem 5.12 in [6]
ensures that any outer automorphism ˆ of Fr can be represented by an RTT f . By
replacing ˆ by a positive power of ˆ if necessary, one can suppose that ˆ satisfies
Remark 3.1. In addition, we can ask that all the images of vertices are fixed by f (see
Theorem 5.1.5 in [4]). We sum up these facts in the following theorem.

Theorem 3.2 (Bestvina and Handel [6], Bestvina, Feighn and Handel [4]) Let ˆ
be an outer automorphism of Fr . There exists p > 1 such that ˆp has a topological
representative f W G!G which is an RTT, with the properties that

� for all vertices v of G , f .v/ is fixed by f ,
� every exponential stratum of f is aperiodic,
� each nonexponential stratum Hk consists of a single edge e , and that f .e/D eu,

where u is loop in Gk�1 based at the endpoint of e .

Splittings Let f W G ! G be a topological representative. A splitting of a path or
a circuit ˛ is a decomposition of ˛ as a concatenation of subpaths ˛ D ˛1˛2 � � �˛q

(with q > 1 if ˛ is a circuit, and q > 2 if ˛ is a path) such that for all p > 0,
f

p
# .˛/D f

p
# .˛1/f

p
# .˛2/ � � � f

p
# .˛q/. In that case, one writes ˛ D ˛1 �˛2 � � �˛q , and

˛1; ˛2; : : : ; ˛q are called the terms of the splitting. A basic, but important, property of
RTT is given by the following lemma.

Lemma 3.3 (Bestvina and Handel [6, Lemma 5.8]) Let f W G! G be an RTT. If
Hk is an exponential stratum, and if ˛ is a k –legal path, then the decomposition of ˛
as maximal subpaths in Hk or in Gk�1 is a splitting

˛ D ˛1 �ˇ1 �˛2 � � �˛q�1 �ˇq�1 �˛q;

where the ˛i are paths in Hk and the ˇi are paths in Gk�1 , all nontrivial (except
possibly ˛1 and ˛q ).
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3.6 Growth of automorphisms of free groups

As explained in [3, page 219], the growth of an outer automorphism ˆ 2 Out.Fr / can
be detected on an RTT representative [6]. For our purpose, we will use the following
observations.

Remark 3.4 [6; 3] Let ˆ 2 Out.Fr /.

(1) ˆ has either polynomial growth or exponential growth.

(2) Moreover, ˆ has exponential growth if and only if one (hence any) RTT
f W G!G representing ˆ has at least one exponential stratum.

A detailed discussion about the growth of a conjugacy class under iteration of an outer
automorphism can be found in [25].

4 Reductions of Theorem 1.3

In this section, we explain how to reduce our main theorem to an easier statement.
First, note that given an outer automorphism ˆ of the free group, ˆ has exponential
(polynomial) growth if and only if for every p 2N�, so does ˆp . In particular, to prove
Theorem 1.3, ˆ can be replaced by some positive power of ˆ. It will be advantageous
to do so, since it allows us to use relative train-track maps with better properties; see
Theorem 3.2. We now discuss three reductions.

(1) The first focuses on polynomially growing automorphisms of Fr ; see Section 4.1.
We explain that such an automorphism always induces a finite-order automorphism of
Burnside groups. Thus it is sufficient to look at exponentially growing automorphisms.

(2) The second reduction is rather technical. Let f WG ! G be an RTT of an
exponentially growing automorphism ˆ of Fr and H an exponential stratum. The
image under f of an edge e in H consists of edges of H and paths contained in
lower strata. Later we will need that for every p 2 N , maximal subpaths of f p

]
.e/

contained in the lower strata are not loops. In Section 4.2, we show that up to passing
to a finite-index subgroup, we can always assume that our RTT satisfies this property.

(3) The RTT of an exponentially growing automorphism may contain several expo-
nential strata. In Section 4.3, we prove that it is sufficient to consider automorphisms
whose RTT has only one exponential stratum, which is also the top one.

4.1 Polynomially growing automorphisms

Arguing by induction on the rank r of Fr , the first author handled the case of polyno-
mially growing automorphisms.
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Proposition 4.1 (Coulon [13, Theorem 1.6]) If ˆ 2 Out.Fr / is polynomially grow-
ing, then ˆ induces an outer automorphism of finite order of Br .n/ for all positive
integers n.

Remark 4.2 The same proof actually gives a quantitative bound for the order of ˆ
in Out.Br .n//. If ˆ is an outer polynomially growing automorphism of Fr , then
ˆp.r;n/ induces a trivial outer automorphism of Br .n/, where

p.r; n/D n2.2r�1�1/:

Example 4.3 A particular case of polynomially growing automorphisms is given by
the automorphisms of F2 induced by a Dehn-twist on a punctured torus. For instance,
the automorphism ' defined by '.a/ D a and '.b/ D ba. Here 'n is trivial in
Aut.Br .n//.

In view of Remark 3.4 (1) and Proposition 4.1, we see that Theorem 1.3 is a consequence
of the following proposition.

Proposition 4.4 If ˆ 2 Out.Fr / has exponential growth, then there exist �; n0 2N
such that for all odd integers n> n0 , the automorphism ˆ induces an outer automor-
phism of Br .�n/ of infinite order.

In the next section, we discuss a second reduction and prove that Proposition 4.4 is a
consequence of Proposition 4.8.

4.2 Passing to a finite-index subgroup

Let ˆ be an exponentially growing outer automorphism of Fr . By replacing ˆ

by a power of ˆ if necessary, we can assume that ˆ is represented by an RTT
f W G!G with a filtration ∅DG0 �G1 � � � � �Gm DG , satisfying the properties
of Theorem 3.2. We denote by Hk the stratum of height k . Let e be an edge of an
exponential stratum Hk . According to Lemma 3.3, f .e/ can be split as follows:

f .e/D ˛1 �ˇ1 �˛2 � � �˛q�1 �ˇq�1 �˛q;

where the ˛i are nontrivial paths contained in Hk and the ˇi are nontrivial paths
contained in Gk�1 . We denote by Pe the set fˇ1; : : : ; ˇq�1g. Let P be the union
of Pe for all edges e belonging to an exponential stratum. Note that P is finite.

Let p 2 N and e be an edge of the exponential stratum Hk . Recall that the image
under f of an edge of Hk starts and ends by an edge of Hk (property (RTT-i) of

Geometry & Topology, Volume 21 (2017)



Growth and order of automorphisms of free groups and free Burnside groups 1983

relative train-track maps). Thus if ˇ is a maximal subpath of f p
# .e/ contained in Gk�1 ,

then it is the image by some (possibly trivial) power of f# of a path in P . Moreover,
we assumed that the image by f of any vertex of G is fixed by f . Hence if ˇ is also
a loop, there exists a path ˇ0 in P [ f#.P/ which is a loop such that ˇ is the image
of ˇ0 by a (possibly trivial) power of f# . Since Fr is residually finite, there exists a
finite-index normal subgroup H of Fr with the following property. For every path
ˇ 2 P [f#.P/, if ˇ is a loop, then the conjugacy class of Fr that it represents does
not intersect H .

Recall that zG stands for the universal cover of G . Let us fix a base point x0 in G .
The fundamental group Fr D �1.G;x0/ can therefore be identified with the deck
transformation group acting on the left on zG . We fix a lift zf W zG ! zG of f . It
determines an automorphism ' in the outer class of ˆ such that for every g 2 Fr ,

(2) '.g/ ı zf D zf ıg:

There are only finitely many subgroups of Fr of a given index. Thus there exists an
integer q such that 'q.H /DH . Consequently, the intersection LD

T
p2Z '

p.H /

is also a normal finite-index subgroup of Fr . By definition, L is invariant by both '
and '�1 . It directly follows that ' induces an automorphism of L.

We now denote by � the index of L in Fr . Let yG be the space yG D Ln zG and
�W yG!G the natural projection induced by zG!G . The group Fr still acts on the
left on yG and L is the kernel of this action. The map zf induces a map yf W yG! yG
such that � ı yf D f ı � . Moreover, according to (2), for every g 2 Fr ,

(3) '.g/ ı yf D yf ıg:

Lemma 4.5 The map yf W yG! yG admits a filtration which makes yf an RTT repre-
senting the outer class of ' restricted to L. Moreover, for every exponential stratum yH

of yG , there exists an exponential stratum Hk of G such that

(1) yH is contained in ��1.Hk/, and

(2) yf sends yH into yH [ ��1.Gk�1/.

Proof We observe that, by construction, yf W yG! yG is a topological representative of '
restricted to L, and ∅D ��1.G0/� �

�1.G1/� � � � � �
�1.Gm/D yG is an invariant

filtration for yf . We are going to define a finer filtration . yGk;j / where the pairs .k; j /
are endowed with the lexicographical order such that for every k 2 f1; : : : ;mg, we have

��1.Gk�1/� yGk;1 �
yGk;2 � � � � �

yGk;s D �
�1.Gk/:
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Let k 2 f0; : : : ;mg. We focus on the stratum Hk of height k of G . We distinguish
three cases.

(1) If Hk is a zero stratum, we just put yGk;1 D �
�1.Gk/. Since � ı yf D f ı � , we

have yf . yGk;1/� �
�1.Gk�1/. Therefore, the associated stratum is a zero stratum.

(2) If Hk is a nonexponential stratum, it consists of a single edge e with f .e/D eu

where u is a loop in Gk�1 . Then ��1.e/ is a collection of � edges: ye1; : : : ; ye�
(recall that � is the index of L in Fr ). Since � ı yf D f ı � , the map yf induces a
permutation � of f1; : : : ; �g with the following property. For every j 2 f1; : : : ; �g, we
have yf .yej /D ye�.j/yuj , where yuj is a path in ��1.Gk�1/. We let yGk;1 D �

�1.Gk/.
Note that yf leaves yGk;1 invariant. The corresponding stratum is the closure of
��1.Gk/ n �

�1.Gk�1/. Its transition matrix is just the permutation matrix associated
to � . In particular, it is a nonexponential stratum.

(3) Assume now that Hk is an exponential stratum. We define a binary relation on
��1.Hk/. Given two edges ye1 and ye2 , we say that ye1 � ye2 if there exists p 2N such
that ye1 or ye�1

1
is an edge of yf p.ye2/. This relation is reflexive and transitive. We claim

that it is an equivalence relation. Let ye1 and ye2 be two edges of ��1.Hk/ such that
ye1�ye2 . We want to prove that ye2�ye1 . By definition of our relation, there exists p2N
such that ye1 or ye�1

1
is an edge of yf p.ye2/. For simplicity, we assume that ye1 belongs to

yf p.ye2/. The other case works in the same way. We write e1 D �.ye1/ and e2 D �.ye2/

for their respective images in G . Since the stratum Hk is aperiodic, there exists q 2N
such that e2 or e�1

2
is an edge of f q.e1/. For simplicity, we assume that e2 is an edge

f q.e1/. Since � ı yf D f ı � , there exists a preimage of e2 in yG which is an edge
of yf q.ye1/. Thus there exists u 2 Fr such that u � ye2 is an edge of yf q.ye1/. We now
prove by induction that u` � ye2 is an edge of yf `.pCq/Cq.ye1/ for every ` 2N , where

u` D '
`.pCq/.u/ � � �'pCq.u/u:

If `D 0, then the statement follows from the definition of u. Assume that it is true
for ` 2 N ; ie u` � ye2 is an edge of yf `.pCq/Cq.ye1/. Using (3) we get that 'p.u`/ �
yf p.ye2/D yf

p.u`ye2/ is a subpath of yf .`C1/.pCq/.ye1/. In particular, 'p.u`/ � ye1 lies
in yf .`C1/.pCq/.ye1/. With a similar argument, we get that 'pCq.u`/u � ye2 lies in
yf .`C1/.pCq/Cq.ye1/. However,

'pCq.u`/uD '
.`C1/.pCq/.u/ � � �'pCq.u/uD u`C1:

Thus the statement holds for `C 1, which completes the proof of the induction.

Since L has finite index in Fr , there exist ` 2N and t 2N� such that u` and u`Ct

are in the same L–coset, ie u`Ctu
�1
`
2L. However,

u`Ctu
�1
` D '

.`Ct/.pCq/.u/ � � �'.`C1/.pCq/.u/D '.`C1/.pCq/.ut�1/:
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Since L is '–invariant, we derive that ut�1 belongs to L. Recall that L is the kernel
of the action of Fr on yG ; hence ut�1 � ye2D ye2 . On the other hand, ut�1 � ye2 is an edge
of yf .t�1/.pCq/Cq.ye1/. Consequently, ye2�ye1 , which completes the proof of our claim.

We denote by yHk;1; : : : ; yHk;s the equivalence classes for the relation �. For every j 2

f1; : : : ; sg, we put yGk;jD
yHk;1[� � �[

yHk;j[�
�1.Gk�1/. By construction, the filtration

��1.Gk�1/� yGk;1 � � � � �
yGk;s D �

�1.Gk/

is yf –invariant. Moreover, the strata yHk;1; : : : ; yHk;s associated to this filtration are
irreducible. We claim that they are exponential. Let j 2 f1; : : : ; sg. Let Mk;j be the
transition matrix of yHk;j . It is known that if the PF-eigenvalue of Mk;j is 1, then Mk;j

is a permutation matrix. Thus there exists an edge ye2 yHk;j and a positive integer p such
that ye is the only edge of ��1.Hk/ in yf p.ye/. In particular, if e stands for eD�.ye/, we
get that e is the only edge of Hk in f p.e/. This contradicts the fact that H is aperiodic.
Hence the PF-eigenvalue of Mk;j is larger than 1, and the stratum yHk;j is exponential.

Finally, recall that f satisfies properties (RTT-i)–(RTT-iii). It follows from �ı yf Df ı�

that yf also satisfies these properties.

Lemma 4.6 For every edge ye in an exponential stratum yH of yG , for every p 2 N ,
every maximal subpath of yf p

# .ye/ that does not cross yH is not a loop.

Proof Let ye be an edge of an exponential stratum yH of yG . Let p 2 N . Let y̌ be
a maximal subpath of yf p

# .ye/ that does not cross yH . By Lemma 4.5, there exists
k 2 f1; : : : ;mg such that Hk is an exponential stratum of G , yH is contained in
��1.Hk/ and yf . yH / is a subset of yH [ ��1.Gk�1/. We denote by e the image of ye
by � . It belongs to Hk . Since � is a continuous locally injective map, yf p

# .ye/ is a lift
of f p

# .e/. It follows that ˇD �. y̌/ is a maximal subpath of f p
# .e/ contained in Gk�1 .

If ˇ is not a loop, neither is y̌. Therefore, we can assume that ˇ is a loop in G . By
construction of P , there exists a loop ˇ0 in P [f#.P/ such that ˇ is the image of ˇ0

by some power of f# . However, by definition, the conjugacy class of Fr represented
by ˇ0 does not intersect L�H . Since L is '–invariant, neither does the conjugacy
class of Fr represented by ˇ . Thus its lift y̌ in yG cannot be a loop.

Lemma 4.7 Let n be an integer. Recall that � is the index of L in Fr . If ˆ induces
an outer automorphism of finite order of Br .�n/, then its restriction to L induces an
outer automorphism of finite order of L=Ln .

Proof According to Remark 1.1, the image of ' in Aut.Br .�n// has finite order.
Hence there exists p 2N such that for every g 2 Fr , the element 'p.g/g�1 belongs
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to F �n
r . However, L has index � in Fr . It follows that g� lies in L for every g 2Fr .

In particular, F �n
r is a subset of Ln . Consequently, 'p.g/g�1 belongs to Ln for

every g 2L. It exactly means that, as an automorphism of L=Ln , 'p is trivial. Hence
the restriction of ˆ to L induces an automorphism of finite order of L=Ln .

Proposition 4.4 becomes a consequence of the following result.

Proposition 4.8 Let ˆ 2 Out.Fr / be an outer automorphism represented by an RTT
f W G ! G . Assume that for every edge e in an exponential stratum H , for every
p 2 N , every maximal subpath of f p

# .e/ that does not cross H is not a loop. Then
there exists n0 2N such that for all odd integers n> n0 , the automorphism ˆ induces
an outer automorphism of Br .n/ of infinite order.

In the next section, we discuss a third reduction and prove that Proposition 4.8 is a
consequence of Proposition 4.11.

4.3 Automorphisms with only one exponential stratum

The following lemma is proved by the first author in [13] using the structure of free
products.

Lemma 4.9 (Coulon [13, Lemma 1.9]) Let n be an integer. Let ' be an auto-
morphism of Fr which stabilizes a free factor H . We assume that ' induces an
automorphism of finite order of Br .n/. Then, the restriction of ' to H also induces
an automorphism of finite order of H =H n .

Let ˆ2Out.Fr / be an exponentially growing outer automorphism, and let f W G!G

be an RTT representing ˆ with a filtration ∅ D G0 � G1 � � � � � Gm D G . By
Remark 3.4 (2), f has at least one exponential stratum. We assume that f satisfies
the additional assumption of Proposition 4.8; ie for every edge e in an exponential
stratum H , for every p 2N , every maximal subpath of f p

# .e/ that does not cross H

is not a loop. By replacing ˆ by a power of ˆ if necessary, we can assume that the
exponential strata of the RTT are aperiodic. Note that this operation does not affect the
graph G . However, one might need to refine the filtration of the RTT. In particular, the
RTT does not necessarily satisfy the additional assumption of Proposition 4.8 anymore.
Nevertheless, for every edge e in the lowest exponential stratum Hk , for every p 2N ,
every maximal subpath of f p

# .e/ that does not cross Hk is not a loop.

Let G0 be the connected component of the graph Gk which contains Hk . We as-
sert that G0 is f –invariant, ie f .G0/ � G0 . Indeed, G0 \ f .G0/ is nonempty (it
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contains Hk ) and f .G0/ is connected. Let H be the free factor of Fr defined by
G0 � G , and let ‰ 2 Out.H / be the outer automorphism induced by the restriction
f 0 D f jG0 W G

0!G0 . We note that f jG0 W G0!G0 is an RTT representing ‰ , which
has exactly one exponential stratum, namely Hk , which is aperiodic and the top stratum
of f 0 . In particular, ‰ has exponential growth.

Lemma 4.10 If ‰ induces an outer automorphism of H =H n of infinite order, then
ˆ also induces an outer automorphism of Br .n/ of infinite order.

Proof There exists an automorphism ' in the class of ˆ which stabilizes H . Assume
that ˆ induces an outer automorphism of Br .n/ of finite order. In particular, the image
of ' in Aut.Br .n// has finite order; see Remark 1.1. It follows from the previous
lemma that the restriction to H of ' (and thus ‰ ) induces an automorphism (outer
automorphism) of finite order of H =H n .

It follows from our discussion that Proposition 4.8 is a consequence of the following
statement.

Proposition 4.11 Let ˆ 2Out.Fr / be an outer automorphism represented by an RTT
f W G! G with exactly one exponential stratum H , which is aperiodic and the top
stratum of f . Assume that for every edge e in H , for every p 2 N , every maximal
subpath of f p

# .e/ that does not cross H is not a loop. Then there exists n0 2N such
that for all odd integers n> n0 , the automorphism ˆ induces an outer automorphism
of Br .n/ of infinite order.

We have seen that Theorem 1.3 can be deduced from Proposition 4.11. The latter will
be proved in Sections 5 and 6.

5 Tracking powers

The next two sections are dedicated to the proof of Proposition 4.11. As we explained
in the introduction, the goal is to understand to what extent a periodic path can appear
in the orbit of a circuit under the iteration of the train-track map. This is the purpose of
this section.

The general strategy is the following. We consider an outer automorphism ˆ represented
by an RTT f WG!G with a single exponential stratum H which is aperiodic. Then,
we fix an edge e� in H . For every p 2N , we look at the path obtained by removing
from f

p
# .e�/ all the edges which are not in H . This sequence can be interpreted as the

orbit of e� under a substitution over the set of oriented edges of H ; see Lemma 5.1. It
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follows from the aperiodicity of H that this substitution is primitive. Therefore, we
would like to apply Proposition 2.1. We need to rule out first the case of an infinite
shift-periodic word, though (Proposition 2.1 (ii)). The dynamic of the substitution is
not sufficient to conclude here. Remark 2.2 provides indeed an example of a primitive
substitution � with an infinite shift-periodic fixed point. However, the particularity
of this example is that � does not represent an automorphism of F3 . Our proof (see
Proposition 5.2) strongly uses the fact that the substitution we are looking at comes
from an automorphism of the free group.

From now on, ˆ denotes an outer automorphism of Fr which can be represented by an
RTT f W G!G with exactly one exponential stratum H . Moreover, H is aperiodic
and the top stratum of f . We denote by E the set of all the oriented edges of H . In
addition, we assume that for every e 2 E , for every p 2N , every maximal subpath of
f

p
# .e/ that does not cross H is not a loop.

By replacing ˆ by a power of ˆ if necessary, we can assume that f .v/ is fixed by f
for every vertex v of G , and that there exists e� 2 E such that Df .e�/D e� . Note that
this operation does not affect the graph G or the exponential stratum. In particular,
H is still the only exponential stratum of f . It is aperiodic and the top stratum. By
choice of e� , we have that f fixes the initial vertex x0 of e� . Thus it naturally defines
an automorphism ' 2 Aut.�1.G;x0// in the outer class ˆ: if g is an element of
�1.G;x0/ represented by a loop ˛ based at x0 , then '.g/ is the homotopy class
of f .˛/ (relative to x0 ).

5.1 The yellow-red decomposition

We refer to the edges of H as red edges and to the edges of G nH as yellow edges.
Recall that zG denotes the universal cover of G . An edge of zG can be labeled by the
edge of G of which it is the lift. In particular, its color is given by the color of its label.

A k –legal path of G (where k is the height of H ) will be call a red-legal path. A path
(in G or in zG ) is a yellow path if it only crosses yellow edges. Red paths are defined
in the same way. Any path ˛ (in G or in zG ) can be decomposed as a concatenation of
maximal yellow and red subpaths: ˛ D ˛1 � � �˛q , where ˛i (16 i 6 q ) is a nontrivial
subpath of ˛ which is either yellow or red, and ˛i and ˛iC1 have not the same color for
all i 2 f1; : : : ; q� 1g. According to Lemma 3.3, this decomposition is a splitting of ˛ .

The red word associated to a path We associate to any path of edges ˛ in G or zG
a word Red.˛/ over the alphabet E . As a path of edges, ˛ is labeled by a word over
the alphabet that consists of all oriented edges of G . The word Red.˛/ is obtained
from this word by removing all the letters corresponding to yellow edges. We stress on
the fact that if ˛ is a reduced path, then Red.˛/ is not, in general, a reduced word.
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5.2 The induced substitution on red edges

Definition and first properties We associate to the RTT f a substitution � on E
called the induced substitution. It is defined as

�.e/D Red.f .e// for every e 2 E :

Lemma 5.1 Let ˛ be a red-legal path in G . For all p 2N , we have

Red.f p
# .˛//D �

p.Red.˛//:

Proof We consider a decomposition of ˛ as ˛D ˛1e1˛2e2 � � �˛qeq˛qC1 where each
ei 2 E is a red edge, and each ˛i is a (possibly trivial) yellow subpath. In particular,
Red.˛/D e1e2 � � � eq . The path ˛ being red-legal, Lemma 3.3 leads to

f#.˛/D f#.˛1e1˛2e2 � � �˛qeq˛qC1/

D f#.˛1/f .e1/f#.˛2/f .e2/ � � � f#.˛q/f .eq/f#.˛qC1/:

However, f sends yellow edges to yellow paths. We deduce that

Red.f#.˛//D Red.f .e1//Red.f .e2// � � �Red.f .eq//

D �.e1/�.e2/ � � � �.eq/D �.e1e2 � � � eq/D �.Red.˛//:

The image by f# of a red-legal path is still a red-legal path. Therefore, for all p 2N ,

Red.f pC1
# .˛//D Red.f#.f

p
# .˛///D �.Red.f p

# .˛///:

The result follows by induction on p .

Primitivity of the induced substitution The material of this paragraph is widely
inspired by the work of P Arnoux et al [2, Section 3]. Recall that ‚W E ! E is the
map which sends e to e�1 . We extend ‚ to the free monoid E� in the following way.
Let w be an element of E�. By definition, it can be written w D e1e2 � � � eq where
ei 2 E . We put ‚.w/D e�1

q � � � e
�1
2

e�1
1

. It defines an involution of E� called the flip
map. Moreover, we observe that � ı‚.e/ D ‚ ı �.e/ for all edges e 2 E . Thus �
and ‚ commute on E�. The substitution � is said to be orientable with respect to a
subset EE of E if

(i) EE and ‚. EE/ make a partition of E ,

(ii) �. EE/� EE�.

Note that (i) just says that EE is a preferred set of oriented edges for H . In that case, �
induces a substitution of EE�, that we still denote by � .

By assumption, the red stratum H of f is aperiodic. In other words, its transition
matrix M is primitive. Applying [2, Proposition 3.7], we know that either
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� � is not orientable, and then � is a primitive substitution on the alphabet E , or

� there exists a subset EE of E such that � is orientable with respect to EE , and then
� induces a primitive substitution on the alphabet EE .

Thus in both cases, there exists a subset E� of E containing e� such that �.E�/� E�
�

,
and the substitution � W E�

�
! E�

�
is primitive.

5.3 A red word without large powers

The infinite red word �1.e�/ Recall that e� is a red edge of E that has been chosen
in such a way that Df .e�/D e� . Because the red stratum is aperiodic, f .e�/D e� �˛

where Red.˛/ is nontrivial. In particular, e� is a prefix of �.e�/. According to
Proposition 2.1 the sequence .�p.e�// converges to an infinite word �1.e�/ of EN

�
.

Note that f .e�/D e� �˛ is a splitting. Hence for every p 2N ,

f
p

# .e�/D e� �˛ �f#.˛/ � � � f
p�1

# .˛/:

Hence .f p
# .e�// also converges to an infinite path

f1# .e�/D e� �˛ �f#.˛/ � � � f
p

# .˛/ � � � :

Proposition 5.2 The infinite word �1.e�/ is not shift periodic.

This proof combines a dynamical argument (� is a primitive substitution) and a group
theoretical one (' is an automorphism of Fr ). Let us sketch first the main steps. We
assume that the proposition is false. This means that if we restrict our attention to the
red edges, the path f1# .e�/ is periodic. We construct from G a colored graph � on
which f1# .e�/ coils up. More precisely, its fundamental group H can be decomposed
as a free product H DL� hhi, where L is generated by conjugates of yellow loops,
and h is represented by a loop y with the following property. If we collapse all the
yellow edges of � , we obtain a simple (red) loop which is exactly the image of y by
the same operation. Moreover, this red loop is the period of the red word associated
to f1# .e�/; see Figure 3. We show that the RTT f induces a homotopy equivalence
yf W�! � that catches two conflicting features of ˆ:

(1) Since the stratum H is exponential, yf should increase the length of the red
word associated to y ; see Proposition 5.7.

(2) The yellow components of G are invariant under f . It follows that the automor-
phism of H induced by yf sends h to gh˙1 , where g belongs to the normal
subgroup generated by L.
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yG1
yG2

yGi

yG`�1

yG`

ye1

ye2

ye3

yei

yeiC1

ye`�1

ye`

yx1

yx2

yxi
yx`�1

yx` D yx0

yy1 yy2

yyi

yy`�1

yy`

y̨1

y̨2

y̨i

y̨k`Ci

y̨`�1

y̨`

Figure 3: The graph �

The key fact is that these two properties can be observed in the abelianization of H ,
which leads to a contradiction.

Proof of Proposition 5.2 Assume that �1.e�/ is shift-periodic. Recall that � is
primitive as a substitution of E�

�
. Proposition 2.1 implies that there exist an integer

q > 2 and a primitive word u D e1e2 � � � e` of E�
�

such that �1.e�/ D u1 and
�.u/ D uq . Notice that e1 D e� . This means, in particular, that the infinite path
f1# .e�/ is obtained as a concatenation

f1# .e�/D 0 � 1 � 2 � � � k � � �

of loops
k D e1 �˛k`C1 � e2 �˛k`C2 � � � e` �˛.kC1/`;
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where the ˛i are (possibly trivial) yellow paths. Moreover, if ˛i is nontrivial, then
it is a maximal yellow subpath of the image by a power of f# of a red edge. By
assumption, none of them is a loop. Recall that x0 is the initial point of e1 D e� . For
every i 2 f1; : : : ; `g, we have that yi and xi respectively stand for the initial and the
terminal points of ˛i . In particular, x0 D x` . We now focus on the path  D 0 :

 D e1 �˛1 � e2 �˛2 � � � e` �˛`:

Lemma 5.3 The path f#. / is exactly 0 � � � q�1 . In particular, it is an initial subpath
of the infinite path f1# .e�/.

Proof By construction, there exists p 2N such that 0 �1 is a proper initial subpath
of f p

# .e�/. Moreover, the terminal point of 01 , which is also the initial vertex
of the red edge e1 D e� , is a splitting point of the yellow-red splitting of f p

# .e�/.
Thus f#.01/D f#.0/ �f#.1/ is an initial subpath of f pC1

# .e�/, hence of f1# .e�/.
However, by Lemma 5.1,

Red.f#.0//D �.Red.0//D �.u/D uq
D Red.0 � � � q�1/:

It follows that there exists a subpath ˛0 of ˛q` such that

f#.0/D Œ0 � � � q�2�Œe1˛.q�1/`C1e2˛.q�1/`C2 � � � e`˛
0�:

On the other hand, 1 and thus f#.1/ starts with the red edge e1D e� . Since f#.0/ �

f#.1/ is an initial subpath of f pC1
# .e�/, the path ˛0 is necessarily the whole ˛q` .

Consequently, f#. /D 0 � � � q�1 .

The graph � and the loop y Let i 2 f1; : : : ; `g. We define yGi to be a copy of the
largest connected yellow subgraph of G containing yi . We denote by y̨i (respectively
yyi and yxi ) the path ˛i (respectively the vertices yi and xi ) viewed as a path of yGi

(respectively as vertices of yGi ).

We now construct a graph � as follows. We start with the disjoint union of the yGi for
i 2 f1; : : : ; `g. Then for every i 2 f1; : : : ; `g, we add an oriented edge yei whose initial
and terminal points are respectively yxi�1 and yyi . The reverse edge ye�1

i is attached
accordingly. In this process, we think about the indices i as elements of Z=`Z. In
particular, yx0 should be understood as the point yx` of yG` . We denote by � the graph
obtained in this way; see Figure 3. Let � be the graph morphism �W �!G such that
for every i 2 f1; : : : ; `g, we have that �.yei/D ei and the restriction of � to yGi is the
natural embedding yGi ,! G . We color the edges of � by the color of their images
under � . In other words, the edges yei are red, whereas the edges of the subgraphs yGi

are yellow. By construction, the loop y defined below is a lift of  in � :

y D ye1 y̨1ye2 y̨2 � � � ye` y̨`:
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The subgroup H We denote by H the fundamental group �1.�; yx0/. Let us choose
a maximal tree Ti in each yGi . The union T defined below is a maximal tree of � :

T D

�[̀
iD1

Ti

�
[

� `�1[
iD1

yei

�
:

For every edge e of � not in T , we write ˇe for the path contained in T starting at yx0

and ending at the initial vertex of e . We define he as the element of H represented
by ˇeeˇ�1

e�1 . Let i 2 f1; : : : ; `g. For each unoriented edge of yGi nTi , we chose one
of the two corresponding oriented edges. We denote then by Fi the preferred set of
oriented edges obtained in this way. We write F for the union

F D
[̀
iD1

Fi :

Lemma 5.4 Let h be the element of H represented by y . The family B obtained by
taking the union of .he/e2F and fhg is a free basis of H .

Proof It follows from the definition of F that the family .he/e2F[fye`g
is a free basis

of H . By construction of � , we have hD g � hye`
where g is a product of some he

with e 2 F [F�1 . This implies that the family .he/e2F together with h forms a free
basis of H .

Let k 2 N and i 2 f1; : : : ; `g. The path ˛k`Ci and ˛i have the same endpoints,
namely yi (the terminal point of ei ) and xi (the initial point of eiC1 ). In particular,
they are contained in the same maximal yellow connected component of G . We denote
by y̨k`Ci the copy in yGi of ˛k`Ci ; see Figure 3. We put

yk D ye1 y̨k`C1ye2 y̨k`C2 � � � ye` y̨.kC1/`:

By construction, yk is a loop of � based at yx0 lifting k (ie � ı yk D k ).

Lemma 5.5 Let h be the element of H represented by y . Let k 2N . There exists g

in the normal subgroup generated by .he/e2F such that the element of H represented
by the loop yk is gh.

Proof It follows from the equality

yk D
�
ye1.y̨k`C1 y̨

�1
1 /ye�1

1

��
ye1 y̨1ye2.y̨k`C2 y̨

�1
2 /ye�1

2 y̨
�1
1 ye

�1
1

�
� � �

� � �
�
ye1 y̨1ye2 � � � ye`�1.y̨.kC1/`�1 y̨

�1
`�1/ye

�1
`�1� � � ye

�1
2 y̨

�1
1 ye

�1
1

��
y .y̨�1

` y̨.kC1/`/y
�1
�
y:
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Lemma 5.6 The map �W �!G is locally injective.

Proof We prove this lemma by contradiction. Let ye and ye0 be two distinct edges of �
with the same initial vertex yv . Suppose that �.ye/D �.ye0/. There exists i 2 f1; : : : ; `g

such that yv is a vertex of yGi . By construction, � preserves the color of the edges,
thus ye and ye0 necessarily have the same color. We distinguish two cases. Assume
first that ye and ye0 are both yellow edges. Recall that the restriction of � to yGi is
the inclusion yGi ,! G . Thus ye D ye0 , a contradiction. Assume now that ye and ye0

are red. By construction of � , at most two red edges have an initial vertex in yGi .
Without loss of generality, we can assume that ye�1 D yei and ye0 D yeiC1 (as previously,
if i D ` then yeiC1 corresponds to ye1 ). Then �.yv/ is the terminal vertex yi of ei and
the initial vertex xi of eiC1 . Thus the yellow path ˛i is either trivial or a loop of G .
By assumption, it cannot be a loop; thus ˛i is trivial and eiC1 D �.ye

0/D �.ye/D e�1
i .

This contradicts the fact that  is a path. Consequently, � is locally injective.

If follows from the lemma that � induces an embedding �� from H into �1.G;x0/.
From now on, we identify H with its image in �1.G;x0/.

The automorphism induced on H Recall that ' is the automorphism of �1.G;x0/

in the outer class ˆ induced by f . We now prove that ' induces an automorphism
of H . To that end, we lift the RTT f into a map yf W �! � .

Proposition 5.7 There exists a continuous map yf W �! � satisfying the following:

(1) f ı �D � ı yf ,

(2) yf .y / is homotopic relative to its endpoints to y0 � � � yq�1 .

Proof The map yf W� ! � is built step by step. Let us first define some auxiliary
objects that will be needed during the construction. Let �` be the graph obtained
from � by disconnecting ye1 from yG` at yx0 ; see Figure 4. It comes with a natural map
�`!� which is a local isometry. For simplicity, we use the same notation for the paths
of �` and their images in � . For instance, y can be seen as a subpath of �` . Similarly,
we still denote by � the locally injective map �W�`!G . For every i 2 f1; : : : ; `g, we
denote by �i the subgraph of �` consisting of the red edges ye1; : : : ; yei and the yellow
graphs yG1; : : : ; yGi . By convention, we put �0 D fyx0g.

Let i 2 f1; : : : ; `g. The path  can be split as follows:

 D .e1˛1 � � � ei˛i/ � .eiC1˛iC1 � � � e`˛`/:

Therefore, f#.e1˛1 � � � ei˛i/ is an initial subpath of f#. /D0 � � � q�1 ; see Lemma 5.3.
However, the path y0 � � � yq�1 is, by construction, the unique lift of 0 � � � q�1 in �
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yG1
yG2

yGi
yG`

yx0 yx1 yx2 yxi yx`yy1 yy2 yyi yy`
ye1 ye2 ye3 yei yeiC1 ye`

�i

Figure 4: The graph �`

starting at yx0 . We denote by y̌i the initial subpath of y0 � � � yq�1 such that � ı y̌i D
f#.e1˛1 � � � ei˛i/. In particular, y̌` D y0 � � � yq�1 . By convention, we define y̌0 to be
the trivial path equal to yx0 . We begin with the following claim whose proof is by
induction on i .

Claim For every i 2 f0; : : : ; `g, there exists a continuous map yfi W �i ! � satisfying
the following:

(1) f ı �D � ı yfi ,

(2) yfi.ye1 y̨1 � � � yei y̨i/ is homotopic relative to its endpoints to y̌i .

The base of induction By assumption, f fixes the vertex x0 . We put yf0.yx0/D yx0 ;
hence the claim holds for i D 0.

The inductive step Assume now that the claim holds for i 2f0; : : : ; `�1g. Our goal is
to extend yfi into a map yfiC1W �iC1!� . To that end, we need to define the restriction
of yfiC1 to yeiC1 and yGiC1 . We start with the following observation: yfi.yxi/ is exactly
the terminal point of y̌i . Indeed yxi is the terminal point of y̨i , hence of ye1 y̨1 � � � yei y̨i .
According to the induction hypothesis, yfi.ye1 y̨1 � � � yei y̨i/ is homotopic relative to its
endpoints to y̌i . In particular, they have the same terminal point, namely yfi.yxi/.

Let us now focus on yeiC1 . By construction, the path  splits as follows:

 D .e1˛1 � � � ei˛i/ � eiC1 �˛iC1 � .eiC2˛iC2 � � � e`˛`/:

Therefore, we have

f#. /D f#.e1˛1 � � � ei˛i/ �f .eiC1/ �f#.˛iC1/ �f#.eiC2˛iC2 � � � e`˛`/:

In particular, f .eiC1/ is a subpath of f#. /. As we explained before, y0 � � � yq�1

is the (unique) lift of f#. / in � starting at yx0 . Moreover, y̌i is the initial path of
y0 � � � yq�1 lifting f#.e1˛1 � � � ei˛i/. We denote by y� the subpath of y0 � � � yq�1 lifting
f .eiC1/ whose initial point is the terminal point of y̌i . As we noticed above the initial
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point of y� (ie the terminal point of y̌i ) is exactly yfi.yxi/. Consequently, we can extend
yfi W�i! � to a continuous map yfiC1W�i [ yeiC1! � by sending yeiC1 to y� .

The next step is to define the map yfiC1 on yGiC1 . Since eiC1 is a red edge, its image
under f starts and ends by a red edge. In particular, there exists j 2 f1; : : : ; `g such
that the last edge of y� is yej . It follows that f maps yiC1 (the terminal point of eiC1 )
to yj (the terminal point of ej ). On the other hand, f is continuous and sends yellow
edges to yellow paths. Therefore, it maps the largest yellow connected component
of G containing yiC1 to the largest yellow connected component of G containing yj.
It provides a continuous map from yfiC1W

yGiC1!
yGj such that yfiC1.yyiC1/D yyj and

� ı yfiC1 D f ı � . This completes the construction for i C 1. We end the proof of the
claim with the following lemma.

Lemma 5.8 The path yfiC1.ye1 y̨1 � � � yeiC1 y̨iC1/ is homotopic relative to its endpoints
to y̌iC1 .

Proof By construction,

yfiC1.ye1 y̨1 � � � yeiC1 y̨iC1/D yfi.ye1 y̨1 � � � yei y̨i/ yfiC1.yeiC1/ yfiC1.y̨iC1/:

In particular, it is homotopic relative to its endpoints to y̌i yfiC1.yeiC1/ yfiC1.y̨iC1/. By
construction, we also have that y̌i yf .yei/D y̌iy� is the initial path at yx0 of y0 � � � yq�1 lift-
ing f#.e1˛1 � � � ei˛ieiC1/. Note also that y̌iy� ends where yfiC1.y̨iC1/ starts, namely at
the point yfiC1.yyiC1/D yyj . Thus it is sufficient to prove that yfiC1.y̨iC1/ is homotopic
relative to its endpoints to the lift starting at yfiC1.yyiC1/ of f#.˛iC1/. However,
these last paths all belong to yGj . Moreover, the restriction of � to yGj is the natural
embedding yGj ,! G . The conclusion follows then from the fact that f .˛iC1/ and
f#.˛iC1/ are homotopic relative to their endpoints in the yellow connected component
of G to which they belong.

Lemma 5.9 The map yf`W�` ! � induces a continuous map yf W� ! � such that
f ı �D � ı yf .

Proof By definition, � is obtained from �` by attaching the initial point yx0 of ye1 to
the point yx` of yG` . Therefore, it is sufficient to prove that yf`.yx`/D yf`.yx0/. It follows
from the first step of the construction that yf`.yx0/D yx0 . On the other hand, yf`.y / and
y̌
`D y0 � � � yq�1 are homotopic relative to their endpoints. Thus the terminal point of y

(ie yx` ) is sent to the terminal point of yq�1 , ie yx0 . Hence yf`.yx`/D yf`.yx0/D yx0 .

We can now complete the proof of Proposition 5.7. Lemma 5.9 provides the map we
are looking for. The second point becomes a consequence of Lemma 5.8.
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Lemma 5.10 The map ' induces an automorphism of H .

Proof It follows from Proposition 5.7 that '.H / is a subgroup of H . It follows from
Lemma 6.0.6 in [4] that the restriction of ' to H is an automorphism.

The abelianization of H Now we complete the proof of Proposition 5.2. Let d be
the rank of the free group H . We consider the abelianization morphism H ! Zd .
In particular, ' induces an automorphism 'ab of Zd . We denote by C the image
in Zd of the free basis B of H given by Lemma 5.4. The first .d � 1/ elements
of B (the ones corresponding to oriented edges in F ) are conjugates of yellow loops
of � . However, f , and thus yf , maps yellow edges to yellow edges. Hence the
subgroup Zd�1 generated by the first .d � 1/ elements of C is invariant under 'ab .
By Proposition 5.7, yf .y / is homotopic relative to fyx0g to y0y1 � � � yq�1 . It follows
from Lemma 5.5 that the matrix R of 'ab in the basis C has the following shape:

RD

0BBB@
? � � � ? ?
:::
: : :

:::
:::

? � � � ? ?

0 � � � 0 q

1CCCA :
Since q > 2, the determinant of R cannot be invertible in Z, which contradicts the fact
that 'ab is an automorphism. We have thus proved that �1.e�/ is not shift-periodic.

Proposition 5.11 There exists an integer m> 2 such that for every p 2N , as a word
over E� , Red.f p

# .e�// does not contains an mth power.

Proof According to Lemma 5.1, for every p 2N , the red word associated to f p
# .e�/

is exactly �p.e�/. However, the substitution � is primitive and the infinite word
�1.e�/ is not shift-periodic. Hence the result follows from Proposition 2.1.

6 The automorphism of Br.n/ induced by '

6.1 A criterion of nontriviality in Br.n/

Let us have a pause in order to introduce a key ingredient for the sequel of the proof of
Proposition 4.11. As explained in the introduction, we need a tool to decide whether
two elements in a free Burnside group are distinct. The main theorem of [12] will
play that role. In [12], Coulon considers a more general situation than the one we
are interested in. Given a nonelementary torsion-free hyperbolic group G , he studies
the natural projection G!G=Gn , where Gn stands for the (normal) subgroup of G
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generated by the nth power of all elements of G . He provides a criterion to decide
whether two elements g;g0 2G have the same image in the quotient G=Gn. For our
purpose, we focus on the case where G is a free group. This is the situation that we
describe below.

Let .X;x0/ be a pointed simplicial tree. Given two points x and x0 of X , we denote
by jx�x0j the distance between them, whereas Œx;x0� stands for the geodesic joining x

and x0 . Let g be an isometry of X . Its translation length, denoted by kgk, is the
quantity kgkD infx2X jgx�xj. If X is the Cayley graph of Fr , then kgk is exactly the
length of the conjugacy class of g2Fr . The set of points AgDfx2X j jgx�xjDkgkg

is called the axis of g . It is a subtree of X. It is known that either kgk D 0 and Ag is
the set of fixed points of g , or kgk> 0 and Ag is a bi-infinite geodesic on which g

acts by translation of length kgk. In the first case, g is said to be elliptic, in the second
one hyperbolic. For more details, we refer the reader to [16]. We now assume that Fr

acts by isometries on X .

Definition 6.1 Let n 2 N and � 2 RC . Let y and z be two points of X . We say
that z is the image of y by an .n; �/–elementary move (or simply elementary move) if
there is a hyperbolic element u 2 Fr such that

(1) diam
�
Œx0;y�\Au

�
>
�

n
2
� �

�
kuk,

(2) z D u�ny .

The point z is the image of y by a sequence of .n; �/–elementary moves if there is a
finite sequence y D y0;y1; : : : ;y` D z such that for all i 2 f0; : : : ; `� 1g, the point
yiC1 is the image of yi by an .n; �/–elementary move.

Knowing that the hyperbolicity constant of a tree is zero, this notion of .n; �/–elementary
move is exactly the one defined in [12]. The next statement is a particular case of the
main theorem of [12] when the group G is free and the underlying space X is a tree.

Proposition 6.2 (Coulon [12]) Assume that Fr acts properly cocompactly by isome-
tries on .X;x0/. There exist n1 2 N and � 2 RC such that for every odd exponent
n> n1 the following holds: two isometries g;g0 2 Fr have the same image in Br .n/

if and only if there exist two finite sequences of .n; �/–elementary moves which
respectively send gx0 and g0x0 to the same point of X .

Remark 6.3 Roughly speaking, an elementary move allows us to replace a subword
of the form vm by vm�n provided m is sufficiently large. Assume indeed that .X;x0/

is the Cayley graph of Fr pointed at the identity element of Fr . There is a natural

Geometry & Topology, Volume 21 (2017)



Growth and order of automorphisms of free groups and free Burnside groups 1999

one-to-one correspondence between reduced words and geodesics of X starting at x0 .
More precisely, given an element g 2 Fr , the reduced word w which represents g

labels the geodesic between x0 and gx0 . Let us suppose now that w can be written
(as a reduced word) w D pvms with m> n

2
� � . It follows that

diam
�
Œx0;gx0�\Au

�
> kum

k>
�

n
2
� �

�
kuk;

where u is the element of Fr represented by pvp�1 . Thus u�ng , which is represented
by pvm�ns , is the image of g by an elementary move. With this dictionary in mind,
Theorem 1.5 becomes a direct application of Proposition 6.2, where .X;x0/ is the
Cayley graph of Fr based at 1.

Later in the proof, the tree X will be the universal cover of an RTT. Therefore, this
formulation, which extends the idea of substituting subwords, is more appropriate for
our purpose.

Proposition 6.2 provides in particular a criterion for detecting trivial elements in Br .n/.

Corollary 6.4 Assume that Fr acts properly cocompactly by isometries on .X;x0/.
There exist n1 2N and � 2RC such that for every odd exponent n> n1 , the following
holds: an element g 2 Fr is trivial in Br .n/ if and only if there exists a finite sequence
of .n; �/–elementary moves which sends gx0 to x0 .

However, despite the similarity with the word problem in a group, Corollary 6.4 is not
equivalent to Proposition 6.2. This comes from the fact that .n; �/–elementary moves
are not symmetric. One first has to see a large power along the geodesic Œx0;gx0�

before performing an elementary move. For instance, if a and b are two distinct
primitive elements of Fr , there is no sequence of elementary moves that sends an

to bn . Corollary 6.4 only implies a weaker form of Proposition 6.2 in the sense that we
need to allow a larger class of elementary moves: those of the form pvms! pvm�ns

with m> n
4
�
�
2

.

In our situation, we will apply this criterion with two elements of the form g and 'p.g/,
where g 2 Fr and ' is the automorphism we want to study. The theory of train-track
provides much information about the path Œx0; '

p.g/x0�. Therefore, it is also more
natural to have a criterion that uses conditions on Œx0;gx0� and Œx0; '

p.g/x0� rather
than Œgx0; '

p.g/x0�.

Remark Proposition 6.2 is “well known” to the experts of Burnside’s groups. To our
knowledge, it has never been formulated in such a level of simplicity, though. The reader
can, for instance, compare our definition of elementary moves with the one of simple r –
reversal of rank ˛ used by Adian; see [1, Section 4.18, pages 8–16] for the prerequisites.
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After consulting Adian and Ol’shanskiı̆, it seems that the closest published statements to
Proposition 6.2 are [1, Chapter VI, Lemma 2.8] and [32, Lemma 5.5]. They should lead
to a similar result, but with a weaker requirement to perform elementary moves. Adian’s
approach would provide an analogue of Theorem 1.5 with a sharper critical exponent
(n1 D 667) but where an elementary move is allowed as soon as m > 90 (instead
of m > n

2
� � ). This is unfortunately not enough for our purpose. In the Appendix,

we explain how our results on Out.Br .n// can be proved using Ol’shanskiı̆’s work
instead of Proposition 6.2. In particular, we prove an analogue of Theorem 1.5 where
elementary moves are allowed as soon as m> n

3
; see Proposition A.2.

6.2 Performing elementary moves in zG

We get back to the proof of Proposition 4.11. The notation is the same as in Section 5.

Metrics on zG For our purpose, the pointed tree .X;x0/ that appears in Proposition 6.2
will be the universal cover . zG; zx0/ of G where zx0 is preimage of x0 . By declaring
that any edge of zG is isometric to the unit real segment Œ0; 1�, we obtain an Fr –
invariant length metric on zG : the combinatorial metric. We denote by j˛j the resulting
combinatorial length of a path ˛ in zG .

We also define a pseudolength metric on zG in the following way. We first consider
that any yellow edge has length zero. Recall that E is the set of all the oriented red
edges of G . We chose a preferred set of oriented edges EE . Recall that the transition
matrix M of the red stratum of f is aperiodic. We denote by � > 1 the Perron–
Frobenius dominant eigenvalue of M , and we consider a positive right eigenvector
l D .le/e2EE associated to �. We declare the lifts of e isometric to the real segment
Œ0; le �. The resulting pseudometric is called the PF-pseudometric. We denote by j˛jPF

the resulting length of the path ˛ in zG : this is called the PF-length of ˛ . This length
only depends on the red word Red.˛/ 2 E�. If ˛ is a red-legal path, we thus get that
for all p 2N ,

jf
p

# .˛/jPF D �
p
j˛jPF:

Unless stated otherwise we will work with zG endowed with the combinatorial metric.

The element g and its orbit Recall that e� is the red edge fixed at the beginning of
Section 5. For all p 2 N , we have that f p

# .e�/ is a path starting by e� . Its yellow-
red decomposition is a splitting. The red stratum H is aperiodic. Thus if p is a
sufficiently large integer, one can find another occurrence of e� in f p

# .e�/: namely
f

p
# .e�/ D e��0e��1 . The path � D e��0 is a red-legal circuit, and the yellow-red

decomposition of � is a splitting. We denote by g the element of �1.G;x0/ represented
by � . By construction, the geodesic Œzx0;gzx0� is the lift in zG of � starting at zx0 .
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Lemma 6.5 There exists an integer n2 with the following property. Let p 2N . Let ˇ
be a path of zG such that the red words respectively associated to ˇ and f p

# .�/ are the
same. For all u 2 Fr n f1g, if

diam.ˇ\Au/ > n2kuk;

then the axis of u only contains yellow edges.

Proof By construction, there exists p0 2 N such that � is a prefix of f p0

# .e�/.
More generally, f p

# .�/ is a prefix of f pCp0

# .e�/ for every p 2 N . According to
Proposition 5.11, there exists m2N such that for every p 2N , the red word associated
to f p

# .�/ does not contain an mth power. Put n2 D mC 2. Note that n2 does not
depend on the path ˇ . Let u be a nontrivial element of Fr such that

diam.ˇ\Au/ > n2kuk:

In particular, there is a vertex x 2Au such that for every j 2 f0; : : : ;mg, the point uj x

belongs to ˇ . Assume now that Au contains a red edge e . Since Au is a u–invariant bi-
infinite geodesic, the geodesic Œx;ux� contains some red edges. In particular, if ˛ stands
for the path Œx;umx�, then Red.˛/ contains an mth power. However, ˇ is a path of zG .
Consequently, Œx;umx� is a subset, hence a subpath, of ˇ . Therefore, the red word
associated to ˇ , and thus to f p

# .�/, contains an mth power. This is a contradiction.

We finish this section with the proof of Proposition 4.11.

Proof of Proposition 4.11 Recall that g is the element of �1.G;x0/ represented
by the red legal circuit � D e��0 . Our goal is to prove that for sufficiently large
odd integers n, the sequence .'p.g//p2N of elements of Fr is embedded in Br .n/.
Since ' is an automorphism, it is sufficient to check that 'p.g/ 6� g in Br .n/ for
all p 2N�. We are going to use the criterion of Section 6.1. Recall that the geodesic
Œzx0;gzx0� is a lift in zG of � . We denote by n1 , � and n2 the constants given, accordingly,
by Proposition 6.2 and Lemma 6.5. For the rest of the proof, we fix an odd integer n

larger than

n0 Dmax
˚
n1; 2n2C 2�C 1; 2jzx0�gzx0jC 2�C 1

	
:

Note that this lower bound only depends on the outer automorphism ˆ and the RTT f .

Let p 2N�. By construction, the path ˇ D Œzx0; '
p.g/zx0� is a lift of f p

# .�/. Assume
now that 'p.g/�g in Br .n/. By Proposition 6.2, there exist two sequences of .n; �/–
elementary moves which respectively send gzx0 and 'p.g/zx0 to the same point of zG .
However, we fixed n> 2jzx0�gzx0jC 2� . Therefore, no .n; �/–elementary move can
be performed on Œzx0;gzx0�. It follows that there exists a sequence of .n; �/–elementary
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moves which sends 'p.g/zx0 to gzx0 . We denote by ˇi the reduced path obtained
from ˇ after the i th .n; �/–elementary move. In particular, ˇ0 D ˇ . Note that the
initial point of ˇi is always zx0 . Recall that F n

r is the normal subgroup of Fr generated
by the nth power of every element. We are going to show, by induction on i , that

(H1) the endpoints of a maximal yellow subpath of ˇi are not in the same F n
r –orbit,

(H2) Red.ˇi/D Red.ˇ/.

The base of induction Let ˛ be a maximal yellow subpath of ˇ0 . Recall that ˇ0 is
a lift of f p

# .�/. On the other hand, f p
# .�/ is a subpath of f q

# .e�/ for some q 2N . It
follows from our assumption that ˛ is not mapped by zG�G to a loop. In particular, its
endpoints are not in the same Fr –orbit, which provides (H1). Assertion (H2) is obvious.

The inductive step Assume that these two conditions hold for i . For simplicity, we
denote by zzi the terminal point of ˇi ; hence ˇi D Œzx0; zzi �. We focus on the .i C 1/st

elementary move. Let us denote by Au the axis of the elementary move performed
on ˇi . In particular, diam.ˇi \Au/>

�
n
2
� �

�
kuk in zG . By hypothesis (H2), the red

words associated to ˇi , ˇ and f p
# .�/ are the same. By Lemma 6.5, the axis Au only

contains yellow edges. In particular, Au crosses ˇi along (a part of) a maximal yellow
subpath of ˇi that we denote by ˛ ; see Figure 5.

Let zy and zy0 be the respective initial and terminal points of ˛ . By (H1), zy ¤ u�n zy0 .
Recall that the action of Fr on zG respects the yellow-red decomposition. Consequently,
the path ˇiC1 is exactly

ˇiC1 D Œzx0; zy�[ Œzy;u
�n
zy0�[ Œu�n

zy0;u�n
zzi �:

In particular, Red.ˇiC1/ D Red.ˇi/. Combined with (H2), we get Red.ˇiC1/ D

Red.ˇ/, which corresponds to (H2) at step i C 1. The maximal yellow subpaths
of ˇiC1 are of three kinds:

� the ones of Œzx0; zy� which are actually maximal yellow subpaths of ˇi ,

� the ones of Œu�n zy0;u�nzzi � which are translates of maximal yellow subpaths
of ˇi ,

� the geodesic Œzy;u�n zy0�.

By (H1), the endpoints of any maximal yellow path of the first two kinds are not in
the same F n

r –orbit. Thus zy and zy0 are not in the same F n
r –orbit, being the endpoints

of ˛ . Hence neither are zy and u�n zy0 . This gives (H2) at step i C 1, which completes
the induction.
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zx0

u�nzzi u�n zy0

zy zy0

Au

zzi

˛

zx0

u�nzzi u�n zy0

zy zy0

Au

zzi

˛

Figure 5: Performing a move on ˇi , the two possible configurations. The
thin lines refer to yellow paths, the thick ones to red paths. Top: ˛ does not
contain the full nth power of u . Bottom: ˛ contains the full nth power of u ,
but cannot be totally removed.

Recall that .ˇi/ is the collection of paths obtained by the sequence of elementary moves
which sends 'p.g/ to g . It follows from the previous discussion that at each step i ,
jˇi jPFD jˇjPF . In particular, jf p

# .�/jPFD jˇjPFD j�jPF . However, we build � in such
a way that jf p

# .�/jPF D �
pj�jPF . This contradicts our original assumption. Therefore,

'p.g/ 6� g in Br .n/ for every p 2N . In particular, ' (respectively ˆ) induces an
automorphism (respectively outer automorphism) of Br .n/ of infinite order.

7 Comments and questions

7.1 About other possible strategies of proof

In the introduction, we recalled the argument given by Cherepanov. It is easy to
elaborate a generalization to a wider class of automorphisms which does not require
the criterion stated in Proposition 6.2.

An outer automorphism ˆ 2Out.Fr / is irreducible with irreducible powers (or simply
iwip) if there is no (conjugacy class of a) proper free factor of Fr which is invariant
by some positive power of ˆ. An iwip outer automorphism can be represented by an
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(absolute) train-track map f W G!G with a primitive transition matrix [6]. Roughly
speaking, it implies that there are no “yellow strata” which were the ones responsible
for having large powers in our words. As a particular case of Proposition 5.11, there
exists a loop  in G and an integer n2 with the following property. For every p 2N ,
the word labeling the loop f p

# . / does not contain an nth
2

power (as a complete word,
not just its red part). Consequently, Proposition 1.4 is sufficient to conclude. Note also
that, in this context, Proposition 5.11 can be proved in a much easier way by using
either the action of Fr on the stable tree associated to ˆ [18, Theorem 2.1] or the
fact that the attracting laminations of ˆ cannot be carried by a subgroup of rank 1 [3,
Proposition 2.4].

However, as we explained in the introduction, there exist automorphisms for which
one cannot use the same strategy. Consider, for instance, the automorphism  of
F4DF .a; b; c; d/ defined in the introduction by  .a/D a,  .b/D ba,  .c/D cbcd

and  .d/D c . One can view  as a relative train-track map on the rose: there is only
one exponential stratum (the “red stratum” which corresponds to the free factor hc; di)
and the restriction of  to ha; bi has polynomial growth (and ha; bi gives rise to a
“yellow stratum”). We saw that ap�1 occurs as subword of  p.d/. Nevertheless, we
still do not need Proposition 6.2 to conclude here that the automorphism  satisfies
the statement of Theorem 1.3. It is sufficient to pass to the quotients of Fr and Br .n/

by the normal subgroup generated by a and b , and then to argue as previously.

Nevertheless, given an arbitrary automorphism, this trick (passing to a well chosen quo-
tient) seems to be less easy to run. Look at the automorphism  of F4DF .a; b; c; d/

defined by
 W a 7! a; b 7! ba; c 7! cd�1bd; d 7! dcd�1bd:

This automorphism grows exponentially. However, if one considers the quotient of F4

by the normal subgroup generated by a and b , it induces the Dehn twist c 7! c , d 7!dc ,
which has finite order as an automorphism of B2.n/.

Let ' be an automorphism of Fr . The geometry of the suspension Fr Ì' Z might
provide an alternative proof of Theorem 1.3. In [13], the first author solved indeed
the case where Fr Ì' Z is a hyperbolic group. Generalizing the Delzant–Gromov
approach of the Burnside Problem, he constructed a sequence of groups Hj with
lim
�!

Hj DBr .n/ such that for every j ,

� ' induces an automorphism of infinite order of Hj ,

� Hj Ì' Z is a hyperbolic group obtained from Hj�1Ì' Z by small cancellation.

It follows from the hyperbolicity that ' induces an automorphism of infinite order
of Br .n/.
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If ' is an arbitrary exponentially growing automorphism, then Fr Ì' Z is no more
hyperbolic. However, F Gautero and M Lustig proved that Fr Ì' Z is hyperbolic
relatively to a family of subgroups which consists of conjugacy classes that grow
polynomially under iteration by ' [19; 20]. Therefore, one could use a generalization
of the iterated small cancellation theory to relative hyperbolic groups. We refer the
reader to [14] for a detailed presentation of the Delzant–Gromov approach to the
Burnside problem and to [15] for a generalization. See also [34] for a theory of small
cancellation in relatively hyperbolic groups.

7.2 Quotients of Out.Fr/

The following remark is due to M Sapir. Proposition 4.1 says that for every integer
n > 1, polynomially growing automorphisms of Fr induce automorphisms of finite
order of Br .n/. More precisely, their orders divide

p.r; n/D n2.2r�1�1/:

Let us denote by Qr;n the quotient of Out.Fr / by the (normal) subgroup generated by

fˆp.r;n/
jˆ 2 Out.Fr / polynomially growingg:

In particular, the p.r; n/th power of the Nielsen transformations which generate
Out.Fr / are trivial in Qr;n . It follows from Proposition 4.1 that the map Out.Fr /!

Out.Br .n// induces a natural map Qr;n ! Out.Br .n//. Therefore, we have the
following results:

Theorem 7.1 Let r > 3. There exists n0 such that for all odd integers n > n0 , the
group Qr;n contains copies of F2 and Zbr=2c .

Proof This is a consequence of [13] Theorems 1.8 and 1.10.

Theorem 7.2 Let ˆ be an outer automorphism of Fr . The following assertions are
equivalent:

(1) ˆ has exponential growth;

(2) there exists n 2N such that the image of ˆ in Qr;n has infinite order;

(3) there exist �; n0 2 N such that for all odd integers n > n0 , the image of ˆ in
Qr;�n has infinite order.

Proof This is a consequence of our main theorem.
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7.3 Exponentially growing automorphisms of the free group can have
finite order in a free Burnside group

The constant n0 in Theorem 1.3 does depend on the outer automorphism ˆ 2Out.Fr /.
Indeed, we give in this section explicit examples of automorphisms in the kernel of
the natural map Aut.Fr /!Aut.Br .n// which have exponential growth. In particular,
there are iwip automorphisms in this kernel.

7.3.1 A first family of examples An outer automorphism ˆ 2 Out.Fr / induces, by
abelianization, an automorphism of Zr . This defines a homomorphism Out.Fr /!

GL.r;Z/, ˆ 7! Mˆ . Nielsen proved that for r D 2, this morphism is an isomor-
phism [28]. Moreover, ˆ has exponential growth if and only if the absolute value of
the trace of M 2

ˆ
2 GL.2;Z/ is larger than 2.

Examples Let fa; bg be a basis of the free group F2 . For n 2 N�, we define 'n 2

Aut.F2/ by 'n.a/ D a.ban/n , 'n.b/ D ban . We denote by ˆn the corresponding
outer class in Out.F2/. The outer class ˆn has exponential growth since the trace
of M 2

ˆn
equals n4C 4n2C 2. However, the outer automorphism of B2.n/ induced

by ˆn is the identity.

For r > 2, we consider a splitting of Fr as a free product Fr DF2�Fr�2 . For n2N�,
we consider the automorphism  nD'n�Id which is equal to 'n (defined in the previous
paragraph) when restricted to the first factor of the splitting and to the identity when
restricted to the second factor. Again, the outer class ‰n of  n has exponential growth
(since ˆn has), but the outer automorphism of Br .n/ induced by ‰n is the identity.

These examples show that the constant n0 in Theorem 1.3 is not uniform: it does depend
on the outer class ˆ 2Out.Fr /. The automorphisms ˆn are iwip automorphisms. But
this is not the case of the automorphisms ‰n . We fix this point in the next subsection.

7.3.2 Iwip automorphisms of Fr trivial in Out.Br.n// To produce iwip automor-
phisms in the kernel of the canonical map Out.Fr /! Out.Br .n//, one can follow
the idea of W Thurston to generically produce pseudo-Anosov homeomorphisms of a
surface by composing well chosen Dehn twist homeomorphisms [37].

In the context of automorphisms of free groups, there is a notion of a Dehn twist (outer)
automorphism (see for instance [10]) which generalizes the notion of a Dehn twist
homeomorphism of a surface: Example 4.3 provides such a Dehn twist automorphism.
In [9], M Clay and A Pettet explain how to generate iwip automorphisms of Fr by
composing two Dehn twist automorphisms associated to a filling pair of cyclic splittings
of Fr . We will not explicitly state these definitions here. For our purpose, we only
need to know that
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� Dehn twist automorphisms have polynomial growth (in fact linear growth), and

� there exist Dehn twist automorphisms �1; �2 2 Out.Fr / satisfying the hypoth-
esis of the following theorem.

Theorem 7.3 (Clay and Pettet [9, Theorem 5.3]) Let �1; �2 2Out.Fr / be the Dehn
twist outer automorphisms for a filling pair of cyclic splittings of Fr . There exists
N 2N such that for every p; q >N ,

� the subgroup of Out.Fr / generated by �p
1

and �q
2

is a free group of rank 2,

� if ˆ 2 h�p
1
; �

q
2
i is not conjugate to a power of either �p

1
or �q

2
, then ˆ is an

iwip outer automorphism.

We fix an exponent n 2N . We consider two such Dehn twist outer automorphisms �1

and �2 , and the integer N 2N given by Theorem 7.3. Since �1 and �2 have polyno-
mial growth, they induce an automorphism of finite order of Br .n/. In particular, there
exists p>N such that ˆD�p

1
�

p
2

is in the kernel of the map Out.Fr /!Out.Br .n//.
However, Theorem 7.3 ensures that ˆ is an iwip outer automorphism of Fr .

7.4 Growth rates in Out.Fr/ and Out.Br.n//

Let ˆ be an exponentially growing automorphism of Fr . Our study in Section 6 seems
to indicate that for odd exponents n large enough, some structure of ˆ is preserved in
Br .n/. Therefore, we wonder how much information could be carried through the map
Out.Fr /! Out.Br .n//. In particular, what can we say about the growth rate of ˆ?

Let G be a group generated by a finite set S . We endow G with the word-metric
with respect to S . The length of the conjugacy class of g 2 G , denoted by kgk, is
the length of the shortest element conjugated to g . An outer automorphism ˆ of G

naturally acts on the set of conjugacy classes of G . Consequently, as in the free group,
one can define the (exponential) growth rate of ˆ by

EGR.ˆ/D sup
g2G

lim sup
p!C1

p
p
kˆp.g/k:

Since the word-metrics for two distinct finite generating sets of G are bi-Lipschitz
equivalent, this rate does not depend on S . The automorphism ˆ is said to have
exponential growth if EGR.ˆ/ > 1.

By our knowledge, it is not known if there exist outer automorphisms of Burnside
groups with exponential growth. We would like to ask the following questions:
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� Are there automorphisms of Br .n/ with exponential growth?

� Let ˆ 2 Out.Fr / with exponential growth. Is there an integer n0 such that for
all (odd) exponents n> n0 , the automorphism ŷ n of Br .n/ induced by ˆ has
exponential growth? Such that EGR. ŷ n/D EGR.ˆ/?

� Are there automorphisms of Br .n/ of infinite order which do not have exponen-
tial growth?

On the other hand, it could be very interesting to understand to what extent the structure
of the attracting laminations associated to an outer automorphism of Fr is preserved
in Br .n/. Recall that theses laminations are the fundamental tool used by Bestvina,
Feighn and Handel to prove that Out.Fr / satisfies the Tits alternative [4; 5].

Appendix

Proposition 6.2 can be seen as a weak form of a Dehn algorithm associated to the
following presentation of the free Burnside group:

(4) Br .n/D ha1; : : : ; ar j x
n
D 1 for all x i:

Let w be a reduced word over the alphabet fa1; : : : ar g. If w contains a subword v
corresponding to almost half a relation from (4), we allow v to be replaced, in w , by
its complement. Proposition 6.2 states that if w represents the trivial element, then
after finitely many steps we will get the trivial word.

For our purpose, we actually do not need such a strong statement. The aim of this
appendix is to explain how Theorem 1.3 can be proved using only Ol’shanskiı̆’s work
on free Burnside groups [32]. It might be possible to proceed in the same way using
the Novikov–Adian approach [1]. The exposition would, however, be more technical.
We first recall some results of Ol’shanskiı̆, and then list the modifications that need to
be made to our original proof of Proposition 4.11.

Let .X;x0/ be a pointed simplicial tree endowed with an action by isometries of Fr .

Definition A.1 Let n 2N� and c 2 .0; 1/. Let y and z be two points of X . We say
that z is the image of y by an .c; n/–weak elementary move if there is a hyperbolic
element u 2 Fr such that

(1) diam
�
Œx0;y�\Au

�
> cnkuk,

(2) z D u�ny .
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The point z is the image of y by a sequence of .c; n/–weak elementary moves if there
is a finite sequence y D y0;y1; : : : ;y` D z such that for all i 2 f0; : : : ; `� 1g, the
point yiC1 is the image of yi by a .c; n/–weak elementary move.

Remark As we recalled previously, in our original framework, we allowed a regular
move to be performed if Œx0;y� contained almost half of a relation. Here we relax this
condition: one can perform a weak move even if Œx0;y� contains a (much) smaller ratio
of a relation. The allowed ratio is given by c . In practice we will always have c 6 1

3
.

Let us focus first on the case where X is the Cayley graph of Fr with respect to the
free basis fa1; : : : ; ar g. To avoid any ambiguity, we denote it by T . Let t0 be the
vertex of T corresponding to the identity. The following result is a consequence of
Ol’shanskiı̆’s work [32].

Proposition A.2 Let n > 1010 be an odd integer. An element g 2 Fr is trivial in
Br .n/ if and only if there exists a finite sequence of

�
1
3
; n
�
–weak elementary moves

which sends gt0 to t0 .

Remark The proof below relies on Ol’shanskiı̆’s diagrammatical approach of the
Burnside problem. To keep the appendix short, we do not recall all the necessary
background on diagrams. In particular, we use the vocabulary and notations of [32]
without any further explanation. For an extensive introduction to diagrams, we refer
the reader to [33].

Proof The “if” part directly follows from the definition of weak elementary moves.
Let us focus on the “only if” part. Let .Cj / be the system of independent relations of
Br .n/ defined in [32, page 203]:

Br .n/D ha1; : : : ; ar j C
n
1 ;C

n
2 ; : : : ;C

n
i ; : : : i:

Let g 2 Fr n f1g whose image in Br .n/ is trivial. Let w be the noncontractible word
over the group alphabet fa˙1

1
; : : : ; a˙1

r g representing g . As g is trivial in Br .n/,
there exists i > 1 such that g is trivial in ha1; : : : ; ar j C

n
1
;C n

2
; : : : ;C n

i i. In other
words, w labels the contour of a diagram of rank i that we denote by �. Without loss
of generality, we can assume that � is minimal [32, page 205].

The next arguments are a variation of [32, Lemma 5.5]. This lemma covers indeed
two cases, where � is a disc diagram or an annular diagram and requires therefore
the label of � to be cyclically noncontractible. In our case, we only need to consider
disc diagrams, hence the assumption that w is noncontractible will be sufficient.
Since w is not trivial, � contains a least one cell. By [32, Lemma 3.6], � admits
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a � –cell. Recall that � D 0:985, while  D 10�6=7. Consequently, its degree of
contiguity to a section p of the contour of � is at least 1

3
C 400 . Let … be a

� –cell whose corresponding contiguity subdiagram � has minimal type �.�/. Its
contour is decomposed as p1q1p2q2 , where q1 D � ^p and q2 D � ^…. Applying
[32, Lemma 2.1] one observes that jpi j6 2n minfjCk j; jCl jg, where k D r.…/ and
lD r.p/. It follows that jp1jCjp2j6400 j@…j; thus jq2j> 1

3
j@…jC100.jp1jCjp2j/.

Applying [32, Lemma 5.4], one gets that q1 and q2 have a common subpath q such
that jqj> j@…j=3. In other words, the contour of … can be decomposed as qxq where
q�1 is a section of the contour of � and jqj> j@…j=3. As � is a diagram of rank i ,
there exists j 6 i and a cyclic permutation D of C˙1

j such that the label of xqq is Dn .
On the other hand, the contour of � can be written rq�1s .

We now rephrase this observation using our geometric point of view. Let v and h

be the element of Fr represented by the respective labels of xqq (ie D ) and r . Let
uD hvh�1 . Let  be the path of T starting at t0 and labeled as q�1 . Recall that the
contour rq�1s of � is labeled by the noncontractible word w ; hence h is a subpath
of the geodesic Œt0;gt0�. On the other hand, the collection of words .Ci/ has been
chosen in a minimal way. In particular, Ci and thus D are cyclically reduced. As
a consequence,  is contained in Œt0; v�nt0� which lies in the axis of v . It follows
that h is a path contained in hAv , ie the axis of u. Hence

diam
�
Œt0;gt0�\Au

�
> j j> 1

3
j@…j D 1

3
jDj D n

3
kuk:

In other words, ung is obtained from g by performing a
�

1
3
; n
�
–weak elementary move.

Let �0 be the diagram obtained from � by removing the cell …. Its contour is exactly
rxqs . By our choice of v and h, its label represents ung . In other words, removing …
is equivalent to performing a

�
1
3
; n
�
–weak elementary move. By the very definition of

diagrams, � only contains finitely many cells. An induction on the number of cells
in � shows that after finitely many weak elementary moves gt0 is sent to t0 .

The proof of Proposition 4.11 does not take place in the Cayley graph of Fr but in the
universal cover of the underlying graph of an RTT map. Therefore, we need an analogue
of Proposition A.2 in an arbitrary tree. From now on, .X;x0/ is a pointed simplicial
tree. We assume that Fr acts properly cocompactly by isometries on X . There exists
a natural Fr –equivariant map F WT ! X sending t0 to x0 . Since Fr acts properly
cocompactly on X , there exist k > 1 and l > 0 such that F is a .k; l/–quasiisometry,
meaning that for every t; t 0 2 T ,

k�1
jt � t 0j � l 6 jF.t/�F.t 0/j6 k jt � t 0jC l:

We denote by @X the boundary at infinity of X .

Geometry & Topology, Volume 21 (2017)



Growth and order of automorphisms of free groups and free Burnside groups 2011

Lemma A.3 There exists B > 0 with the following property. Let t; t 0 2 T . Let
u 2 Fr n f1g and m 2N . Assume that we have

diam
�
Œt; t 0�\Au

�
>mkuk

in T . Then the following holds in X :

diam
�
ŒF.t/;F.t 0/�\Au

�
>mkuk�B:

Remark By abuse of notation, Au stands for the axis of u in both T and X . Similarly
with kuk.

Proof Recall first a well known statement of hyperbolic geometry: the stability
of quasigeodesics. There exists d > 0 with the following property. The Hausdorff
distance between a .k; l/–quasigeodesic of X and any geodesic with the same endpoints
(possibly in @X ) is bounded above by d [11, Chapitre 3, Théorème 1.3].

By assumption, there exists a point s in Œt; t 0�\Au such that ums still belongs to
Œt; t 0�\Au . Recall that the axis of u in T is an u–invariant geodesic. Hence its image
under F is a u–invariant .k; l/–quasigeodesic of X . It follows from the stability of
quasigeodesics that F.s/ and umF.s/ lie in the d –neighborhood of the axis of u

in X . In the same way, we see that F.s/ and umF.s/ lie in the d neighborhood of
ŒF.t/;F.t 0/�. Consequently, the following holds in X :

(5) mkuk6 jumF.s/�F.s/j6 diam
�
ŒF.t/;F.t 0/�Cd

\ACd
u

�
:

Here the notation Y Cd stands for the d –neighborhood of Y � X . However, we
observe that

(6) diam
�
ŒF.t/;F.t 0/�Cd

\ACd
u

�
6 diam

�
ŒF.t/;F.t 0/�\Au

�
C 2d:

The result follows from (5) and (6) with B D 2d .

Proposition A.4 There exists n1 2 N such that for every odd integer n > n0 , the
following holds: an element g 2Fr is trivial in Br .n/ if and only if there exists a finite
sequence of

�
1
4
; n
�
–weak elementary moves which sends gx0 to x0 .

Proof Let B be the parameter given by Lemma A.3. Let n1 Dmaxf1010; 12Bg. Let
n> n0 . Let g be an element of Fr . The tree X being simplicial, the translation length
in X of any nontrivial element of Fr is at least 1. It follows from our choice of n0 that
for every u2Fr nf1g, we have the following property. If diam

�
Œt0;gt0�\Au

�
> n

3
kuk

in T , then diam
�
Œx0;gx0�\Au

�
> n

4
kuk in X . In other words, to any

�
1
3
; n
�
–weak

elementary move in T corresponds a
�

1
4
; n
�
–weak elementary move in X . Hence the

result follows from Proposition A.2.
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Corollary A.5 There exists n1 2 N such that for every odd integer n > n0 , the
following holds: two isometries g;g0 2 Fr have the same image in Br .n/ if and only
if there exist two finite sequences of

�
1
8
; n
�
–weak elementary moves which respectively

send gx0 and g0x0 to the same point of X .

Proof We apply Proposition A.4 with g�1g0 .

Let us come back to Proposition 4.11. The main idea of the proof was the following.
The criterion (Proposition 6.2) gave us a sequence of moves performed in zG to send
'p.g/zx0 to zx0 . However, performing a move required us first to see a large part
of a relation along Œzx0; '

p.g/zx0�. Because of Lemma 6.5, the support of the moves
only contained yellow letters. Therefore, the red part was preserved, which led to
a contradiction. Note that it does not matter whether the requirement to perform a
move is to see one half, one fourth or one tenth of the relation. Therefore, the proof of
Proposition 4.11 works in exactly the same way with the following modifications:

(1) Replace Proposition 6.2 by Corollary A.5.

(2) Define the critical exponent n0 as

n0 Dmaxfn1; 8n2C 1; 8jgzx0� zx0jC 1g:

(3) Replace every .n; �/–elementary move by a
�

1
8
; n
�
–weak elementary move.
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