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The simplicial suspension sequence in A1–homotopy

ARAVIND ASOK

KIRSTEN WICKELGREN

BEN WILLIAMS

We study a version of the James model for the loop space of a suspension in unstable
A1–homotopy theory. We use this model to establish an analog of G W Whitehead’s
classical refinement of the Freudenthal suspension theorem in A1–homotopy theory:
our result refines F Morel’s A1–simplicial suspension theorem. We then describe
some E1–differentials in the EHP sequence in A1–homotopy theory. These results
are analogous to classical results of G W Whitehead. Using these tools, we deduce
some new results about unstable A1–homotopy sheaves of motivic spheres, including
the counterpart of a classical rational nonvanishing result.

14F42, 19E15; 55Q15, 55Q20, 55Q25

1 Introduction

If K is an .n�1/–connected pointed CW complex, then the suspension map

EW �q.K/! �qC1.†K/

fits into a long exact sequence of the form

�3n�2.K/
E
// �3n�1.†K/

H
// �3n�1.†K

^2/
P
// �3n�3.K/

E
// � � �

� � � // �q.K/
E
// �qC1.†K/

H
// �qC1.†K

^2/
P
// �q�1.K/ // � � � :

Together with an elementary connectivity estimate for †K^2, this exact sequence may
be viewed as a refinement of the Freudenthal suspension theorem. The exact sequence
above was first constructed by G W Whitehead [58, Theorem 1, page 211] if K D Sn

and by W D Barcus [9, Proposition 2.9] for K as above (see also Whitehead [59,
Theorem XII.2.2, page 543] for a textbook treatment of the general statement).

The morphisms H and P appearing in the above exact sequence were also studied by
Whitehead [57, Section 10] in great detail in the case where K D Sn. The morphism H
is the Hopf invariant, and Whitehead linked the morphism P with Whitehead products.
In more detail, begin by observing that the .nC1/–fold suspension EnC1W �q�n.Sn/!
�qC1.S

2nC1/ is an isomorphism for q < 3n� 1. Define P0W �q�n.Sn/! �q�1.S
n/
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by P0.˛/D Œ˛; �n�, where �n is the identity map on the n–sphere and the bracket denotes
the Whitehead product. For PW �qC1.S2nC1/! �q�1.S

n/, Whitehead observed that

PD P0 ı .EnC1/�1 if q < 3n� 1:

While Whitehead established this result for spheres, it has been known for some time
that the morphism P is, for general .n�1/–connected spaces, still closely related to
Whitehead products; see eg I M James [30, Section 2] or Ganea [20, Theorem 3.1 and
page 231] for a very general statement. In any case, these kinds of tools were used
to great effect in early computations of unstable homotopy groups of spheres, eg, by
James [29; 31] and Toda [52].

The goal of this paper, whose title pays homage to the work of James [31], is to
establish analogs of the above results in the Morel–Voevodsky unstable A1–homotopy
category [45] and to deduce some consequences of these results. The jumping-off point
is to give a James-style model for the loop space of a suspension in A1–homotopy
theory (see Theorem 2.4.2). Using this model, we deduce the following result, which
can be thought of as a refinement of the A1–simplicial suspension theorem of F Morel
[44, Theorem 6.61].

Theorem (see Theorem 3.2.1, Remark 3.2.3 and Theorem 4.2.1) Assume k is a
perfect field. If X is a pointed A1–.n�1/–connected simplicial presheaf on .Smk/Nis ,
with n� 2, then there is an exact sequence of A1–homotopy sheaves of the form

�A1
3n�2.X /

E
// �A1
3n�1.†X /

H
// �A1
3n�1.†X ^2/

P
// �A1
3n�3.X /

E
// � � �

� � � // �A1
q .X /

E
// �A1
qC1.†X /

H
// �A1
qC1.†X ^2/

P
// �A1
q�1.X / // � � � ;

where the map E is (simplicial) suspension, the map H is a James–Hopf invariant, and
the map P is described, as above, in terms of Whitehead products.

We go on to discuss various consequences of the existence of this exact sequence.
We analyze the low-degree portion of this sequence in Theorem 3.3.13 and give a
more explicit description of the sequence in the first degree where the suspension map
fails to be an isomorphism. When X is a motivic sphere, it is shown in Wickelgren
and Williams [61] that the exact sequences displayed above can be extended to all
degrees after localizing at 2. By suitably varying the input sphere, these sequences
can be strung together to obtain the EHP spectral sequence converging to the 2–local
S1–stable A1–homotopy sheaves of spheres.

By construction, the E1–differentials in this spectral sequence arise from the composite
map HP, which in certain degrees we can analyze integrally. To state the result,
recall that Morel [44, Corollary 6.43] computed the first nonvanishing A1–homotopy
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sheaf of a motivic sphere in terms of Milnor–Witt K-theory. Morel [44, Lemma 3.10]
also showed that there is an isomorphism of rings KMW

0 .k/Š GW.k/, ie the zeroth
Milnor–Witt K-theory group of a field k is isomorphic to the Grothendieck–Witt ring
of isomorphism classes of symmetric bilinear forms over k , defined to be the group
completion of the monoid of isomorphism classes of nondegenerate symmetric bilinear
forms. Given this terminology, the class of the composite HP can be seen to correspond
with a symmetric bilinear form, which we can describe. More precisely, we establish
the following result (see the statement in the body of the text and Remark 4.4.3 for a
more conceptual explanation of the formula).

Theorem (see Theorem 4.4.1) Assume k is a perfect field, and let p and q be
integers with p > 1 and q � 1. The map

HPW KMW
2q D �

A1
2pC3.†.S

pC1Cq˛/^2/ �! �2pC1.†.S
pCq˛/^2/DKMW

2q

corresponds to the element h1iC .�1/pC1Cqh�1iq 2 GW.k/.

One consequence of this result is the following analog of the classical fact, due to Hopf,
that �4n�1.S2n/ is nontrivial.

Theorem (see Theorem 5.3.1) Fix a base field k assumed to be perfect and to have
characteristic unequal to 2. Let n; q � 2 be even integers, and let j be an integer.
There is a surjection

�A1
2n�1Cj˛S

nCq˛
˝Q

H˝Q
���!KMW

2q�j ˝Q;

and the sheaf �A1
2n�1Cj˛S

nCq˛ ˝ Q is nontrivial if either k is formally real or
if j � 2n� 1.

Relying on the computations of Asok and Fasel [5], we analyze the low-degree portion
of the EHP sequence in great detail in the special case where X DA3 n0. In particular,
we give a description of the next nonvanishing A1–homotopy sheaf (ie beyond that
computed by Morel) of †A3 n 0Š P1

^3 in Theorem 5.2.5. The following statement
is an easy-to-state special case of a more general result.

Theorem (see Theorem 5.2.5) If k is a field of characteristic 0 containing an alge-
braically closed subfield, then, for any integer i � 0, there is an isomorphism of sheaves
of the form

�A1
4CiC5˛.S

3Ci
s ^G^3m /Š Z=24:

Remark Cohomology of homotopy sheaves of spheres such as those above appears in
concrete applications to problems in algebra via techniques of obstruction theory; see eg
Asok and Fasel [4; 5] for more details. Our description of the sheaf �A1

4 .S
3C3˛/ is well-
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suited to such cohomology computations. Our computation allows us to state a precise
conjecture (see Conjecture 5.2.10) regarding the structure of the sheaf �A1

n .A
n n 0/

for n� 4. An explicit description of the sheaf �A1
n .A

n n0/ for nD 2; 3 was a key step
in [4; 5] in the resolution of Murthy’s conjecture regarding splitting of rank-n vector
bundles on smooth affine .nC1/–folds over algebraically closed fields. A resolution
of Conjecture 5.2.10 would, similarly, imply Murthy’s conjecture in general.

We close this introduction with some general comments regarding prerequisites. When
working with the (unstable) A1–homotopy category in general and Morel’s A1–algebraic
topology in particular, with the goal of making this paper as self-contained as possible,
we have labored to present the material in an axiomatic framework involving the
“unstable A1–connectivity property”, which is introduced in Section 2.2. All of the
results in Sections 2 and 3 are written from this axiomatic perspective. We hope this
style of presentation makes the material accessible to people who have some familiarity
with homotopy theory of simplicial presheaves and the constructions of Morel and
Voevodsky [45], but not, for example, all of the technical results about strongly and
strictly A1–invariant sheaves contained in the first five chapters of Morel [44]. Moreover,
we hope that our presentation also makes [44] itself more accessible to the nonexpert.

For the most part, Section 4 is written in the same axiomatic framework. In contrast,
Sections 4.4 and 5 require more background. In particular, this portion of the text
requires familiarity with facts about strongly and strictly A1–invariant sheaves (see
Section 5.1 for more precise statements), and known explicit computations of homotopy
sheaves. In Section 5, we also appeal to structural results from the theory of quadratic
forms and both the affirmation of the Milnor conjecture on quadratic forms and the
Bloch–Kato conjecture.

Notation Throughout, the (undecorated) symbol S will be used to denote a base
scheme assumed Noetherian and of finite Krull dimension. We write SmS for the
category of schemes that are separated, smooth and of finite type over S . Script letters,
eg, X , Y , will typically be used to denote “spaces”, ie pointed simplicial presheaves
on SmS (from Section 2.2 onward), while capital roman letters will typically be used
to denote simplicial presheaves on more general sites. Typically, boldface letters will
be used to denote strongly A1–invariant sheaves of groups (again, from Section 2.2
onward), with the exception of C, which will always mean a category (often equipped
with the structure of a site) and R, which will be used to denote right derived functors.

Sheaf cohomology will always be taken with respect to the Nisnevich topology.
See 2.2.3 for our conventions regarding motivic spheres; unfortunately the letter S
appears in our notation for spheres, but since it will always be decorated with a
superscript, we hope no confusion arises. See 2.2.4 for a summary of notation pertaining
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to homotopy sheaves, 2.2.5 for some discussion of our connectivity conventions, 2.2.9
for some recollections on our use of the term fiber sequence, 2.3.5 for conventions
about relative connectivity, 3.3.2 for notation regarding A1–homology sheaves, and
3.3.6 for notation regarding the A1–tensor product. Finally, our conventions for loop
spaces change in Sections 5.2 and 5.3; see 5.2.1 for more details.
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2 The James construction revisited

The James construction on a CW complex was originally introduced by James in [29].
Milnor observed that the construction could be recast in the language of simplicial sets
[39, page 120]. Using this translation, it is straightforward to develop a version of the
James construction in the category of simplicial presheaves. Section 2.1 reviews the
James construction in the category of simplicial sets and extends these constructions
to simplicial presheaves; the main result in the context of simplicial presheaves is
Proposition 2.1.6.

In this section, we aim to develop a version of the James model in the A1–homotopy
category; this idea is due originally to Morel. Section 2.2 recalls a number of structural
properties of the A1–homotopy category that will be used throughout the work: we
point the reader to Definition 2.2.6, Lemma 2.2.11 and Theorem 2.2.12. Section 2.3
studies some aspects of A1–fiber sequences in the context of the axiomatic setup of
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Section 2.2. Section 2.4 proves the main result, ie Theorem 2.4.2, which provides a
James-style model for loops on the suspension of a space in A1–homotopy theory; this
result depends on results about the Kan loop group in A1–homotopy theory, for which
we refer the reader to Theorem 2.3.2.

2.1 The James construction in simplicial homotopy theory

Textbook treatments of the James construction can be found in [59, Chapter VII.2], for
the category of CW complexes, and [62, Section 3.3.3] in the category of simplicial
sets.

The James construction for simplicial sets Let K be a pointed simplicial set. An
injection ˛W .1; 2; : : : ; m/! .1; 2; : : : ; n/ induces a map ˛�W Km!Kn. Let � denote
the equivalence relation on

`1
nD0K

n generated by x � ˛�.x/ for all order-preserving
injections ˛ . The James construction on K is defined by the formula

J.K/ WD

1a
nD0

Kn=�;

ie J.K/ is the free (pointed) monoid on the pointed simplicial set K . The assignment
K 7! J.K/ is functorial in K by definition. The James construction is filtered by
pointed simplicial sets Jn.X/� J.K/, defined by

Jn.K/ WD

na
mD0

Km=�:

We consider also F.K/, the pointed free group functor as in [23, page 293] or [62,
Section 3.2]. Because J.K/ is the free pointed monoid on K , there is an evident
inclusion map J.K/ ,!F.K/. If †K denotes the Kan suspension [23, page 191], and
G.K/ denotes the Kan loop group [23, page 276], then Milnor showed that there is a
weak equivalence F.K/'G.†K/ [23, Theorem V.6.15]. By [23, Corollary V.5.11],
since †K is reduced, we conclude that F.K/ is a model for �†K ; here � is the
derived loops (for a model, take naive loops on a fibrant model of the input). The
following result details the main properties of J.�/.

Theorem 2.1.1 [62, Theorems 3.24 and 3.25] Suppose K is a pointed simplicial set.

(1) If K is connected, there is a weak equivalence J.K/' F.K/.

(2) For any integer n� 1 there is a cofiber sequence of the form

Jn�1.K/ ,�! Jn.K/ �!K^n:

(3) The canonical map colimn Jn.K/! J.K/ is an isomorphism.
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Remark 2.1.2 Consider the map K D J1.K/! J.K/. Under the weak equivalence
J.K/'�†K of point (1) of Theorem 2.1.1, this map corresponds to the unit map
K!�†K of the loops-suspension adjunction.

The James construction for simplicial presheaves Suppose C is a site. We will con-
sider (pointed) simplicial presheaves on C, though we do not introduce any special nota-
tion for this category. The category of (pointed) simplicial presheaves can be equipped
with its injective local model structure [32]: cofibrations are given by monomorphisms,
weak equivalences are defined locally with respect to the Grothendieck topology on C
and fibrations are defined via the right-lifting property. Abusing terminology slightly,
we will refer to the associated homotopy category as the (pointed) simplicial homotopy
category. The category of pointed simplicial presheaves is a pointed category, ie the
canonical map from the initial to the final object is an isomorphism. We will typically
write � for the final object. With this terminology, one can extend the definition of the
James construction to (pointed) simplicial presheaves in a straightforward fashion by
applying the constructions above sectionwise.

Definition 2.1.3 Assume X is a pointed simplicial presheaf on C, and an n � 0 is
an integer. Define pointed simplicial presheaves G.X/, F.X/, J.X/ and Jn.X/ by
assigning to U 2 C the following simplicial sets:

G.X/.U / WDG.X.U //;

F.X/.U / WD F.X.U //;

J.X/.U / WD J.X.U //;

Jn.X/.U / WD Jn.X.U //:

We refer to the pointed simplicial presheaf J.X/ as the James construction of X , and
G.X/ as the Kan loop group of X .

Remark 2.1.4 Since we have not assumed X to be reduced (ie having presheaf of
0–simplices the constant presheaf �) in the above, the simplicial presheaf G.X/ will
not in general have the homotopy type of the loop space of X (eg, take X D�1 the
simplicial interval, in which case G.�1/ is the constant simplicial group on Z, which
is not contractible).

The assignments X 7!G.X/, X 7!F.X/, X 7! J.X/, X 7! Jn.X/ are all evidently
functorial in X . Moreover, there are morphisms Jn.X/! J.X/ for any integer n� 0.
We distinguish the morphism

(2.1.1) EW X D J1.X/ �! J.X/I

we will refer to this morphism as suspension (see Remark 2.1.2).
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Proposition 2.1.5 Suppose X is a reduced pointed simplicial presheaf on C, ie the
presheaf of 0–simplices is �. There is a weak equivalence

G.X/'�X:

Proof This follows by observing that the induced map on sections over U 2 C is a
weak equivalence by [23, Corollary V.5.11].

Proposition 2.1.6 Suppose X is a pointed simplicial presheaf on C.

(1) The map J.X/! F.X/ is a sectionwise equivalence.

(2) The simplicial presheaf J.X/ is locally weakly equivalent to �†X .

Both of the weak equivalences just mentioned are functorial in X .

Proof Point (1) follows immediately from Theorem 2.1.1(1): the inclusion maps
J.X.U //! F.X.U // are weak equivalences; these maps are evidently functorial
in U. For point (2), observe that [23, Theorem V.6.15] guarantees that for any object
U 2 C there is a functorial weak equivalence

G.†X.U //' F.X.U //;

where † is the Kan suspension. Since †X.U / is by construction reduced, the result
then follows from Proposition 2.1.5.

The classifying space of the Kan loop group Suppose H is a simplicial presheaf
of groups. If Y is a simplicial presheaf equipped with a right action aW Y �H ! Y

of H, we will say that the action is categorically free if the morphism

Y �H
.a;pY /
����!Y �Y

is a monomorphism. If Y carries a categorically free action of H, we write Y=H for
the quotient, ie the colimit of the diagram Y  Y �H ! Y .

2.1.7 Following [37, Chapter 7], if H is a presheaf of groups, Y is a space with a
right H –action and Z is a space with a left H –action, we may form the two-sided bar
construction B.Y;H;Z/ as the “geometric realization” of a certain functorially con-
structed simplicial object B.Y;H;Z/� having n–simplices of the form Y �H�n �Z .
In the present context, B.Y;H;Z/� is a simplicial object in the category of simplicial
presheaves and the “geometric realization” is the homotopy colimit over �op , ie

B.Y;H;X/ WD hocolim
n2�op

B.Y;H;Z/n:
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When Y DX D �, then we use the following special terminology: by the simplicial
classifying space BH we mean B.�;H;�/, by the universal bundle EH we mean
B.�;H;H/, and by the Borel construction we mean B.Y;H;�/.

The next result, which is a (pre)sheaf-theoretic variant of a classical fact about the
Kan loop group (see eg [14, point (5) on page 137]), follows immediately from
Proposition 2.1.5; we use this result in the next section.

Proposition 2.1.8 For X any reduced pointed simplicial presheaf on C, there is a
sectionwise weak equivalence X ' BG.X/.

2.2 The unstable A1–connectivity property

Before discussing the James construction in A1–homotopy theory, we will recall some
facts from A1–algebraic topology. We take C D SmS , ie the category of smooth
schemes over S .

This category will be endowed throughout with the Nisnevich topology, as in [45,
Section 3], and the category of simplicial presheaves on SmS may be equipped
with a simplicial model structure, [32], local with respect to this topology. That
is, the cofibrations are the monomorphisms of simplicial presheaves, and the weak
equivalences may be detected on Nisnevich stalks. We warn the reader that in [44]
and [45], contrary to our conventions, the motivic homotopy category is constructed
using simplicial sheaves. In [33, Theorem 1.2], Jardine shows that the sheafification
and the forgetful functor define an adjoint equivalent between the two theories.

By a pointed space, we will mean pointed simplicial presheaf on SmS . A model
structure for the A1–homotopy category H .S/ can be constructed by left Bousfield
localization of the simplicial model structure of simplicial presheaves on SmS .

We will adopt the convention, at variance with that of [25], that homotopy limits will be
calculated by first applying a functorial fibrant replacement objectwise to the diagram
in question.

A1–localization Recall from [45, Section 3.2] the notion of an A1–local object. It
will be useful to remember that the simplicial homotopy limit of a diagram of A1–local
objects is again A1–local, this is the case because the fibrant, A1–local objects are the
fibrant objects of a model category, and we may use [25, Theorem 18.5.2]. We begin
by recalling the basic properties of “the” A1–localization functor.

Proposition 2.2.1 There exists an endofunctor LA1 of the category of simplicial
presheaves on .SmS /Nis and a natural transformation � W id! LA1 such that, for any
space X , the following statements hold:
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(i) The space LA1X is fibrant and A1–local, and the map X ! LA1X is an
A1–weak equivalence.

(ii) If Y is any simplicially fibrant A1–local space, and f W X ! Y is a morphism,
then f factors as X ! LA1X ! Y .

(iii) The functor LA1 commutes with the formation of finite limits.

Comments on the proof Most of this statement is contained in [45]; we slightly
modify the A1–localization functor given in [45, page 107]. The functor is constructed
by repeated application of the singular construction and a fibrant replacement functor
in the category of simplicial presheaves. The singular construction commutes with
limits (see [45, page 87]). We use the Godement resolution functor of [45, Section 2,
Theorem 1.66] as our functorial fibrant replacement for simplicial presheaves; this
commutes with formation of finite limits by construction.

In Morel’s analysis, a distinguished role is played by Eilenberg–MacLane spaces [45,
page 56] or classifying spaces of Nisnevich sheaves of groups [45, page 128] that are
A1–local.

Definition 2.2.2 A sheaf of groups G is called strongly A1–invariant if BG is
A1–local. A sheaf of abelian groups A is called strictly A1–invariant if K.A; i/
is A1–local for every i � 0.

Homotopy sheaves and the unstable A1–connectivity property Suppose X and Y

are pointed spaces. We write ŒY ;X �s for morphisms in the homotopy category of the
injective local model structure (we will refer to this category as the simplicial homotopy
category) and ŒY ;X �A1 for morphisms in the A1–homotopy category. We now fix
some conventions that will remain in force throughout the paper.

Notation 2.2.3 (spheres, suspension and looping) Write S is to denote the simplicial
i–sphere, and write G^jm for the j –fold smash product of Gm (pointed by 1) with
itself. Following conventions of Z=2–equivariant homotopy theory, we write S iCj˛

for the sphere S is ^G^jm . If j D 0, the Gm–term shall be dropped from the notation.
The undecorated symbol † will be used for simplicial suspension. Likewise, we use �
for the derived simplicial loops, a model for which is obtained by first taking a functorial
fibrant replacement of the input and then applying naive loops.

Notation 2.2.4 (homotopy sheaves) We define homotopy sheaves �i .X ; x/ and
A1–homotopy sheaves �A1

i .X ; x/ as Nisnevich sheaves associated with the presheaves

U 7! ŒS is^UC; .X ; x/�s and U 7! ŒS is^UC; .X ; x/�A1D ŒS
i
s^UC; .LA1X ; x/�s:
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Likewise, �A1
iCj˛.X ; x/ is the sheafification for the Nisnevich topology of the presheaf

U 7! ŒS iCj˛ ^UC; .X ; x/�A1 :

For notational compactness, basepoints will typically be suppressed from notation.

Convention 2.2.5 (connectivity) We borrow various bits of terminology from clas-
sical homotopy theory: A pointed space .X ; x/ is simplicially connected (resp. A1–
connected) if the sheaf �0.X / (resp. �A1

0 .X /) is �. Similarly, if n� 1 is an integer,
we will say that .X ; x/ is simplicially n–connected (resp. A1–n–connected) if .X ; x/

is simplicially (resp. A1–)connected and �i .X ; x/ (resp. �A1
i .X /) is trivial for i � n.

Morel’s approach to A1–algebraic topology in [44] consists in studying A1–local spaces
via their Postnikov towers and, in doing this, it is important to understand the structural
properties of A1–homotopy sheaves. Our discussion is inspired by Morel’s axiomatic
discussion of the so-called stable A1–connectivity property in [43, Section 6].

Definition 2.2.6 We will say that the unstable A1–connectivity property holds for S
if the following two properties hold:

� �A1
1 .X / is strongly A1–invariant for any pointed space .X ; x/.

� Any strongly A1–invariant sheaf of abelian groups A is strictly A1–invariant.

For the most part, the results in this text will be proven assuming that the unstable
A1–connectivity holds over S . From this point of view, one of the key results of [44]
is the following.

Theorem 2.2.7 (Morel) If S is the spectrum of a perfect field, then the unstable
A1–connectivity property holds for S .

Proof See [44, Theorems 5.46 and 6.1]. Since the proof of [44, Lemma 1.15], a result
due to Gabber, requires the restriction that k be infinite, use [26] to obtain the result in
the stated generality.

Remark 2.2.8 The unstable A1–connectivity property does not hold if S is a Noether-
ian scheme of Krull dimension � 2; see Remark 3.3.5 for more details. Nevertheless,
it is expected that the unstable A1–connectivity property holds for the spectrum of an
arbitrary field. In fact, the perfection of the base field only intercedes in the verification
of point (2) of Definition 2.2.6. There is some hope that it may hold for base schemes S
that are regular of dimension � 1.
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Fiber sequences

Convention 2.2.9 (fiber and cofiber sequences) We use the terminology “(co)fiber
sequence” as in [27, Definition 6.2.6]; we refer the reader there for more formal
properties of (co)fiber sequences. We use the terminology simplicial fiber sequence
for a fiber sequence in the injective local model structure on simplicial presheaves and
A1–fiber sequence for a fiber sequence in the A1–local model structure. The theory of
fiber sequences is simplified slightly by the fact that the injective local and A1–local
model structures are right proper.

The following result, which is a version of [44, Lemma 6.51], studies the behavior
of A1–local objects in simplicial fiber sequences (see [19, e.6, page 5] for a com-
pletely analogous result for localizations of the classical homotopy category). There
appears to be a misprint in the statement of [44, Lemma 6.51]; the statement concerns
A1–connectivity whereas the hypothesis used and the conclusion reached appear to
concern A1–locality.

Lemma 2.2.10 Suppose
F �! E �!B

is a simplicial fiber sequence of pointed spaces. If B and F are both A1–local and B

is simplicially connected, then E is A1–local as well.

Proof The proof is that given in [44, Lemma 6.51], but we have added some details
for the convenience of the reader and for the sake of completeness. By means of the
existence of functorial factorizations, we may replace E !B by a simplicial fibration
between simplicially fibrant pointed spaces, and we may assume F is the fiber over
the basepoint of this map.

Write RHom.A1; � / to denote the derived internal mapping object in the category of
presheaves with the simplicial model structure. The model structure is closed monoidal,
by [10, Section 4] for example, and the functor RHom.A1; � / is a right Quillen functor,
[27, Chapter 4]. In particular, this means that RHom.A1; � / preserves simplicial fiber
sequences.

Condition (2) of [45, Lemma 2.2.8], combined with the definition of internal map-
ping objects, allows us to say a space X is A1–local if and only if the map X !

RHom.A1;X / induced by the projection map A1!� is a simplicial weak equivalence.
In the case of pointed spaces, we forget the basepoint and then apply this test.

Combining the above observations, one concludes that there is a morphism of simplicial
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fiber sequences of the following form:

(2.2.1)

F //

�

��

E //

��

B

�

��

RHom.A1; F / // RHom.A1; E / // RHom.A1;B/

The two indicated arrows are simplicial weak equivalences.

It is now possible to test whether the map E ! RHom.A1; E / a simplicial weak
equivalence by arguing at points of the Nisnevich site. We refer to [34, Chapter 3 and
Lemma 5.12] for the required local homotopy theory. If p� is point, then from (2.2.1)
we obtain a morphism of fiber sequences of Kan complexes of the following form:

p�F //

�

��

p�E //

��

p�B

�

��

p�RHom.A1; F / // p�RHom.A1; E / // p�RHom.A1;B/

We wish to show that the map in the middle is a weak equivalence of (possibly
disconnected) simplicial sets; that is, it induces an isomorphism on �0 and on all
homotopy groups for all choices of basepoint in p�E . It suffices, since p�E !p�B is
a fibration, to consider basepoints lying in p�F, the fiber over the canonical basepoint
of p�B .

The required isomorphism on homotopy groups and �0 follows from a 5–lemma
argument; the potentially problematic case of �0 is handled by identifying �0.p�E /
with the orbit space of �0.p�F / under the action of �1.p�B; b0/, and similarly for
the derived mapping spaces.

Basic consequences of the unstable A1–connectivity theorem We very briefly re-
call the Postnikov tower in the form we will use. For any pointed simplicially connected
space X , there is a tower of fibrations of the form

X

zz �� $$

� � �
piC2

// X .iC1/
piC1

// X .i/ pi
// X .i�1/ pi�1

// � � �

such that (a) hofib.pj /DK.�j .X /; j / for any integer j �0, and (b) X 'holimi X .i/

[45, Definition 1.31 and Theorem 1.37]. We now deduce some consequences of the
unstable A1–connectivity property.

Geometry & Topology, Volume 21 (2017)



2106 Aravind Asok, Kirsten Wickelgren and Ben Williams

Lemma 2.2.11 Suppose the unstable A1–connectivity property holds for S .

(1) For any pointed space .X ; x/, and any integer i � 2, the sheaves �i .LA1X ; x/

are strictly A1–invariant.

(2) If .X ; x/ is a pointed, simplicially connected space, then X is A1–local if and
only if �1.X ; x/ is strongly A1–invariant and �i .X ; x/ is strictly A1–invariant
for any integer i � 2.

Proof For (1), �iLA1X is A1–local and simplicially fibrant for every i � 1. In
particular, the sheaf �1.�i�1LA1X / is strongly A1–invariant. Since this is abelian
when i � 2, we conclude by the assumption that the unstable A1–connectivity property
holds that �i .LA1X ; x/ is strictly A1–invariant for i � 2.

For point (2), we use the existence and convergence of the Postnikov tower, together
with an induction argument in combination with the results of point (1). Using this
tower, it suffices to show that if X is a pointed, simplicially connected A1–local space,
and we have a simplicial fiber sequence of the form

K.A; n/ �!X 0 �!X ;

where A is strongly A1–invariant if nD 1, and strictly A1–invariant if n � 2, then
X 0 is A1–local as well. Either assumption guarantees that K.A; n/ is A1–local and
the result then follows by appeal to Lemma 2.2.10.

The following result, which is called the unstable A1–connectivity theorem, justifies
our terminology; this result is an axiomatic form of [44, Theorem 6.38].

Theorem 2.2.12 (unstable A1–connectivity theorem) Suppose n � 0 is an integer,
and .X ; x/ is a pointed, simplicially n–connected space. The space LA1X is simpli-
cially connected, and if the unstable A1–connectivity property holds for S , then it is
simplicially n–connected.

Proof The case nD 0 of the theorem follows from [45, Section 2, Corollary 3.22] and
does not require the unstable A1–connectivity property to hold. That result is presented
without a proof in [45], but follows from the properties of the A1–localization functor.
For a detailed proof, see eg [51, Theorem 1.2.20].

Now, we treat the case n D 1. We begin by establishing a general result. For any
simplicially connected space X , and any Nisnevich sheaf of groups G , there is a
functorial bijection

Hom.�1.X ; x/;G /Š Œ.X ; x/; BG �s

by obstruction theory [44, Lemma B.7(1)]. If G is strongly A1–invariant, then BG is
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A1–local, and there are functorial bijections of the form

Œ.X ; x/; BG �s Š Œ.X ; x/; BG �A1

Š Œ.LA1X ; x/; BG �A1

Š Œ.LA1X ; x/; BG �s:

Since LA1X is simplicially connected by [45, Section 2, Corollary 3.22], we conclude
that there is a functorial bijection of the form

Hom.�1.LA1X ; x/;G /Š Œ.LA1X ; x/; BG �s:

Now, �1.LA1X ; x/D �A1
1 .X / by definition, so combining all of the above isomor-

phisms, we conclude that if G is strongly A1–invariant, then

(2.2.2) Hom.�1.X ; x/;G /Š Hom.�A1
1 .X /;G /:

Having established this bijection, we can proceed to the proof of the main result.

If X is simplicially 1–connected, then Hom.�1.X ; x/;G / D 0 for any sheaf of
groups G . If G is furthermore strongly A1–invariant, we conclude by the isomorphism
of (2.2.2) that Hom.�A1

1 .X /;G / D 0. Since the unstable A1–connectivity property
holds for k , we know that �A1

1 .X / is strongly A1–invariant. Therefore, by the Yoneda
lemma, we know that �A1

1 .X / must be trivial.

For the general case, one proceeds by induction on n. If X is a simplicially .n�1/–
connected space, n� 2, then for any sheaf of abelian groups A ,

Hom.�n.X /;A/Š Œ.X ; x/;K.A; n/�sI

this follows from [44, Lemma B.7(2)]. An argument completely analogous to the one
above, this time using Lemma 2.2.11(1) to conclude that the higher A1–homotopy
sheaves are strictly A1–invariant, shows that if A is any strictly A1–invariant sheaf, then

Hom.�n.X /;A/Š Hom.�A1
n .X /;A/:

If X is simplicially n–connected, then as before we can again conclude by appealing
to the Yoneda lemma.

Remark 2.2.13 We add one comment about the nD 0 case of the above theorem. In
fact, [45, Section 2, Corollary 3.22] establishes a more general statement that we will
frequently use below: if X !X 0 is an A1–weak equivalence with X 0 an A1–local
space, then the induced morphism �0.X /! �0.X

0/ is an epimorphism.
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2.3 Further consequences of the unstable A1–connectivity property

In this section, we study further consequences of the unstable A1–connectivity prop-
erty introduced in Section 2.2. In particular, we recast some results of Morel in our
axiomatic framework. First, we provide an analog of Proposition 2.1.5 in the context
of A1–homotopy theory (see Theorem 2.3.2); this result is a key technical tool in all
that follows. In particular, it allows us to establish Theorem 2.3.3, which is a statement
about preservation of simplicial fiber sequences under A1–localization. Consequences
of this result include a relative version of the unstable connectivity theorem, which
appears below as Corollary 2.3.6, and Theorem 2.3.8, which is a technical result about
the interaction between Postnikov towers and A1–localization.

On A1–homotopy types of connected spaces We begin by establishing a result about
the behavior of the classifying space of the Kan loop group under A1–localization;
this result is culled from the proof of [44, Theorem 6.46]. Suppose G is a simplicial
presheaf of groups. Since LA1 preserves finite products, LA1G is again a simplicial
presheaf of groups, the morphism G ! LA1G is a homomorphism, and there is an
induced morphism

(2.3.1) BG �! BLA1G:

Regarding this morphism, one has the following result.

Lemma 2.3.1 If G is a simplicial presheaf of groups, then the functorial map BG!
BLA1G is an A1–weak equivalence.

Proof Recall from 2.1.7 that

BG D hocolim
n2�op

B.�; G;�/n:

Since the map G�n ! .LA1G/
�n is an A1–weak equivalence, and since hocolim

preserves such equivalences [45, Section 2, Lemma 2.12], it follows that BG !
B.LA1G/ is an A1–weak equivalence.

Theorem 2.3.2 Suppose the unstable A1–connectivity property holds for S and
.X ; x/ is a pointed reduced space. If �0.LA1G.X // is strongly A1–invariant, then
the objects LA1X and BLA1G.X / are simplicially weakly equivalent.

Proof By Proposition 2.1.8, since X is reduced, we know that there is a simplicial
weak equivalence of the form X ' BG.X /. In particular, LA1X ' LA1 BG.X /. It
will be sufficient to prove that there is a simplicial weak equivalence LA1 BG.X /'

BLA1G.X /.
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We show that BLA1G.X / is A1–local. To this end, consider the sequence

LA1G.X / �!ELA1G.X / �! BLA1G.X /:

We know this is a simplicial fiber sequence by reference to [56] for instance. This fiber
sequence yields a long exact sequence of homotopy sheaves. Since ELA1G.X / is
simplicially contractible, we conclude that

�iC1.BLA1G.X //Š �i .LA1G.X //

for every integer i � 0. The space BLA1G.X / is simplicially connected as it is the
classifying space of a simplicial group. By assumption �0.LA1G.X // is strongly
A1–invariant, so we conclude that �1.BLA1G.X // is strongly A1–invariant. Since the
unstable A1–connectivity property holds for S , we conclude from Lemma 2.2.11(1)
that �j .BLA1G.X // is strictly A1–invariant for j � 2. Therefore, by applying
Lemma 2.2.11(2), we conclude that BLA1G.X / is itself A1–local, and the map
BLA1G.X /! LA1BLA1G.X / is a simplicial weak equivalence. By Lemma 2.3.1,
the map LA1 BG.X /! LA1BLA1G.X / is also a simplicial weak equivalence. It
follows that there is a map BLA1G.X /! LA1 BG.X / that is also a simplicial weak
equivalence, as required.

On A1–fiber sequences The following result is a slight variant of [44, Theorem 6.53],
which is presented there without proof.

Theorem 2.3.3 Assume the unstable A1–connectivity property holds for S . Suppose

F �! E
f
�!B

is a simplicial fiber sequence of pointed spaces and assume that B is simplicially
connected. If, in addition, �A1

0 .�B/ is strongly A1–invariant, then the canonical map

LA1F D LA1 hofib.f / �! hofib.LA1.f //

is a simplicial weak equivalence. In particular, if �1.B/ is strongly A1–invariant (eg,
trivial) then the canonical map of the previous display is a simplicial weak equivalence.

Proof The idea is to replace the simplicial fiber sequence in question by a “principal”
fibration under the Kan loop group of the base and use Theorem 2.3.2. To this end, we
begin with a reduction.

Step 1 For any simplicial presheaf X , the map X .U /! Ex X .U / is a (functorial)
simplicial weak equivalence. Thus, without loss of generality we can assume that
B is objectwise fibrant. Since B is connected, we can furthermore assume that B
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is also reduced. To see this, write B.0/ for the zeroth level of the (sectionwise)
Moore–Postnikov factorization of B , and set B.0/ to be the pullback of the diagram:

� �!B.0/ �BI

the space B.0/ is called the zeroth Eilenberg subcomplex of B (see [23, page 327,
proof of Lemma VI.3.6]). By the existence of functorial factorizations, we may assume
that, replacing E by a simplicially weakly equivalent space if necessary, that E !B

is a simplicial fibration. In that case, we replace E by the pullback of the diagram
B.0/!B E ; this does not change the simplicial homotopy type of the fiber.

Step 2 Since B is now assumed reduced, set G WD G.B/. Next, we claim that the
simplicial fiber sequence is equivalent to the simplicial fiber sequence associated with
a principal fibration under the Kan loop group. Indeed, since B is reduced, then
B ' BG by Proposition 2.1.8. Now, a priori there is an action of the h–group �B

on F. Since E !B is a simplicial fibration by assumption, if we set F 0 to be the
pullback of EG !BG 'B E , then F 0 is simplicially weakly equivalent to F and
carries an honest action of G (see 2.1.7 for our conventions regarding two-sided bar
constructions). One then checks that there is an induced simplicial weak equivalence
B.F 0; G ;�/! E making the simplicial fiber sequence F 0!B.F 0; G ;�/!BG (see
[37, Proposition 7.9]) weakly equivalent to the fiber sequence F! E !B with which
we began.

Step 3a We now study what happens under A1–localization. First, since the hypotheses
of Theorem 2.3.2 are satisfied by assumption, and the map G ! LA1G induces a
simplicial weak equivalence LA1B ' LA1BG ! BLA1G. In particular, BLA1G is
A1–local.

On the other hand, there is a simplicial fiber sequence of the form

LA1F
0
�! B.LA1F

0; LA1G ;�/ �! BLA1G :

Note that LA1F
0 is A1–local by assumption and BLA1G is A1–local and simplicially

connected. Thus, by appeal to Lemma 2.2.10, we conclude that B.LA1F
0; LA1G ;�/ is

A1–local as well.

Next, the maps F 0! LA1F
0 and G ! LA1G induce A1–weak equivalences

F 0 �G�n! LA1F
0
� .LA1G /

�n

for all n. Therefore, the induced morphism

B.F 0; G ;�/ �! B.LA1F
0; LA1G ;�/

is an A1–weak equivalence by [45, Section 2, Lemma 2.12].
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If RNis denotes the simplicial fibrant replacement functor, then the map

B.LA1F
0; LA1G ;�/!RNisB.LA1F

0; LA1G ;�/

is a simplicial weak equivalence and RNisB.LA1F
0; LA1G ;�/ is A1–fibrant. Therefore,

the composite map

B.F 0; G ;�/!RNisB.LA1F
0; LA1G ;�/

is also an A1–weak equivalence and factors through a simplicial weak equivalence of
the form

LA1B.F
0; G ;�/ �!RNisB.LA1F

0; LA1G ;�/:

Step 3b The evident projections give morphisms

LA1B.F
0; G ;�/ �! LA1BG and RNisB.LA1F

0; LA1G ;�/ �!RNisBLA1G

that fit into the following commutative diagram:

LA1B.F
0; G ;�/ //

��

RNisB.LA1F
0; LA1G ;�/

��

LA1BG // RNisBLA1G

The simplicial homotopy fiber of the first column is hofib.LA1f / by construction while
the simplicial homotopy fiber of the second column is LA1 hofib.f /. Moreover, the
diagram gives rise to a morphism of simplicial fiber sequences. Since the horizontal
maps in the diagram are simplicial weak equivalences by the conclusions of the previous
step, we conclude that the induced map of simplicial homotopy fibers is a simplicial
weak equivalence.

The final statement is an immediate consequence of Lemma 2.3.4 below.

Lemma 2.3.4 [44, Lemma 6.54] If X is a pointed connected space, such that
�1.X /D �0.�X / is A1–invariant, then the morphism

�0.�X / �! �0.LA1�X /

is an isomorphism. In particular, if �1.X / is strongly A1–invariant, then so is
�0.LA1�X /.

Proof By [45, Section 2, Corollary 3.22], the morphism �0.�X /! �0.LA1�X /

is always an epimorphism (see Remark 2.2.13). Since �0.�X / is A1–invariant and
has simplicial dimension 0 it is necessarily simplicially fibrant and therefore A1–local
by [45, Section 2, Proposition 3.19]. Therefore, the morphism �X ! �0.�X /

necessarily factors through LA1�X . Applying �0 , we see that the identity map of
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�0.�X / factors through �0.LA1�X /. Using the epimorphism from the first sentence,
we conclude that �0.�X /! �0.LA1�X / is an isomorphism.

The relative unstable A1–connectivity theorem Theorem 2.3.3 can be used to es-
tablish a relative version of the unstable connectivity theorem, Theorem 2.2.12. In the
form below, this result is a variant of [44, Theorem 6.56] and will be used repeatedly
in the sequel.

Convention 2.3.5 (relative connectivity) If f W E ! B is a morphism of pointed
spaces, we will say that f is simplicially i–connected or a simplicial i–equivalence
if the simplicial homotopy fiber of f is .i�1/–connected. Likewise, we will say
that f is A1–i–connected or an A1–i–equivalence if the A1–homotopy fiber of f is
A1–.i�1/–connected.

Corollary 2.3.6 Assume the unstable A1–connectivity property holds for S , and
suppose f W E !B is a morphism of pointed spaces in which B is connected. If

(i) �A1
0 .�B/D �0.LA1�B/ is strongly A1–invariant, and

(ii) hofib.f / is n–connected for some integer n� 2,

then the space hofib.LA1.f // is .n�1/–connected as well. In particular, under hypoth-
esis (i), if f is a simplicial n–equivalence, then f is also an A1–n–equivalence.

Proof Since the unstable A1–connectivity property holds for S , and since by hypothe-
sis (ii) the space hofib.f / is assumed .n�1/–connected, we may apply Theorem 2.2.12
to conclude that LA1 hofib.f / is again n–connected. Again using the unstable A1–
connectivity property for S , the fact that B is connected, and hypothesis (i), we may ap-
ply Theorem 2.3.3 to conclude that the canonical map LA1 hofib.f /! hofib.LA1.f //

is a simplicial weak equivalence. Combining these observations, we conclude that
hofib.LA1.f // is n–connected as well.

A1–localization of layers of Postnikov towers We can also deduce some stability
properties for the layers of Postnikov towers under A1–localization. To this end, assume
.X ; x/ is a pointed connected space. If X .n/ is the nth layer of the Postnikov tower
for X , then we write X hni for the space fitting into a simplicial fibration sequence of
the form

X hni �!X �!X .n/:

The space X hni is the n–fold connective cover of X , in particular it is n–connected.

Lemma 2.3.7 If .X ; x/ is a pointed simplicially connected space, and the unstable
A1–connectivity property holds for our base S , then .LA1X /hni is A1–local.
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Proof Assuming the unstable A1–connectivity property holds for our base S , we
conclude from Lemma 2.2.11 that .LA1X /.n/ is A1–local. Moreover, .LA1X /.n/ is
simplicially connected by Theorem 2.2.12 (though this does not require the unstable
A1–connectivity property). It follows that, under these hypotheses, .LA1X /hni is
A1–local since it is the simplicial homotopy fiber of the map LA1X ! .LA1X /.n/,
which has a connected base.

By functoriality of the Postnikov tower, there is an induced morphism X hni !

.LA1X /hni. Assuming the unstable A1–connectivity property holds for our base S , it
follows from Lemma 2.3.7 that there is an induced morphism

LA1.X hni/ �! .LA1X /hni:

Regarding this morphism, we have the following result, which is a variant of [44,
Theorem 6.59 and Corollary 6.60].

Theorem 2.3.8 Assume the unstable A1–connectivity property holds for S , and X

is a pointed, connected space. Fix an integer n � 1. Suppose for each integer i
with 1� i � n, the sheaf �i .X / is strongly A1–invariant.

(1) The universal map �i .X /! �A1
i .X / is an isomorphism if i � n.

(2) For each i � n, the morphism LA1.X hii/! .LA1X /hii is a simplicial weak
equivalence.

(3) The universal map �nC1.X /! �A1
nC1.X / is the initial map from �nC1.X / to

a strictly A1–invariant sheaf of groups.

Proof Since �1.X / is assumed strongly A1–invariant, and for any integer n� 1 the
map �1.X /! �1.X

.n// is an isomorphism, we conclude that �1.X .n// is strongly
A1–invariant for any n � 1. By assumption, the unstable A1–connectivity property
holds for S . Thus, for i � 2 (or i D 1 if �A1

1 .X / is abelian) we conclude that �i .X /

is strictly A1–invariant. We may also apply Theorem 2.3.3 to conclude that the sequence

LA1.X hni/ �! LA1X �! LA1.X
.n//

is always a simplicial fiber sequence.

By Theorem 2.2.12, we know that LA1.X hni/ is simplicially n–connected. Therefore,
we conclude that

(2.3.2)
�i .LA1X /Š �i .LA1.X

.n/// if i � n,

�nC1.LA1X / �! �nC1.LA1.X
.n/// is an epimorphism.
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There are also simplicial fiber sequences of the form

K.�i .X /; i/ �!X .i/
�!X .i�1/:

Since X is connected, point (2) of Lemma 2.2.11 and the assumptions about the
sheaves �i .X / guarantee that X .n/ is A1–local. Thus

(2.3.3) �i .X
.n//Š �i .LA1X

.n// if i � n:

Now, we can put these facts together to prove the results.

For point (1), notice that by combining the isomorphisms of (2.3.2) and (2.3.3) we
obtain for i � n the series of isomorphisms

�i .X /Š �i .X
.n//

Š �i .LA1X
.n//

Š �i .LA1X /

Š �A1
i .X /;

which is precisely what we wanted to show.

For point (2) we proceed as follows. From the isomorphisms established in point (1),
we conclude that the map X .i/! .LA1X /.i/ is a simplicial weak equivalence. On
the other hand, we already saw that X .i/ is A1–local for i � n. Thus, the map
LA1X

.i/! .LA1X /.i/ is a simplicial weak equivalence for i � n. Since .LA1X /hii

is by definition the simplicial homotopy fiber of LA1X ! .LA1X /.i/, it follows from
the fiber sequence in the previous paragraph that the induced map LA1.X hii/ !

.LA1X /hii is a simplicial weak equivalence for i � n.

Finally, for point (3), begin by observing that if A is a strictly A1–invariant sheaf,
then since X hni is n–connected, obstruction theory (see [44, Lemma B.7]) gives a
bijection

Hom.�nC1.X /;A/Š ŒX hni; K.A; nC 1/�s:

Since K.A; n C 1/ is A1–local, any map X hni ! K.A; n C 1/ factors through
LA1.X hni/. However, as LA1.X hni/! .LA1X /hni is a simplicial weak equivalence
by point (2), the result follows from the fact that �nC1..LA1X /hni/D �A1

nC1.X /.

2.4 James-style models for loop spaces in A1–homotopy theory

In this section, we discuss the James model for loop spaces in A1–homotopy theory.
The construction involves comparing the James model and the Kan loop group model,
as was the case in the setting of simplicial homotopy theory. If .X ; x/ is a pointed
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simplicially connected space, then �LA1X is a model for the A1–derived loop space
of X . The map �X !�LA1X factors through a morphism

LA1�X �!�LA1X ;

which need not be a simplicial weak equivalence. The following result, which is a
variant of [44, Theorem 6.46], gives a necessary and sufficient condition for the above
morphism to be a simplicial weak equivalence.

Theorem 2.4.1 Assume the unstable A1–connectivity property holds for S and sup-
pose .X ; x/ is a pointed space. If �0.LA1�X / is strongly A1–invariant, then

LA1�X �!�LA1X

is a simplicial weak equivalence.

Proof Since �X only depends on the simplicial connected component of the base-
point x , without loss of generality we can assume that X is simplicially connected. In
that case, the result follows immediately from Theorem 2.3.3 applied to the simplicial
fiber sequence �X !�!X .

We now use Proposition 2.1.6, the James construction in the category of simplicial
presheaves, together with the result just established about models for A1–derived loop
spaces to produce a James-style model for loops on the suspension in the A1–homotopy
category.

Theorem 2.4.2 Suppose that the unstable A1–connectivity property holds for S and
f W X ! Y is a morphism of pointed simplicially connected spaces.

(1) There is a functorial simplicial weak equivalence LA1J.X /'�LA1†X .

(2) If f is an A1–weak equivalence, the map J.f / is an A1–weak equivalence.

Proof By Proposition 2.1.6, there is a simplicial weak equivalence J.X /'�†X .
Thus, there is a simplicial weak equivalence

LA1J.X /' LA1�†X :

Since X is connected, †X is necessarily 1–connected (this follows by checking on
stalks). Therefore, by Lemma 2.3.4, we conclude that �0.LA1�†X / is strongly A1–
invariant. Thus, we can apply Theorem 2.4.1 to conclude that LA1�†X '�LA1†X .

For (2), it suffices to observe that if f W X !Y is an A1–weak equivalence, then by [45,
Section 3, Lemma 2.13] the map †X !†Y is an A1–weak equivalence. It follows
immediately that the induced morphism �†X !�†Y is an A1–weak equivalence.
By part (1), we conclude that J.X/! J.Y / is an A1–weak equivalence.
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3 The EHP sequence in A1–homotopy theory

In this section, we study the analog in A1–homotopy theory of Whitehead’s EHP exact
sequence from the introduction. We begin by recasting this exact sequence in the
homotopy theory of simplicial sets (see Proposition 3.1.2), and then explaining how
to extend this result to simplicial presheaves on a site (see Proposition 3.1.4). For
convenience, we will assume our site has enough points. In Section 3.2, we construct a
version of Whitehead’s exact sequence in A1–homotopy theory (see Theorem 3.2.1). In
Section 3.3, we study the low-degree portion of the exact sequence of Theorem 3.2.1 and
study very explicitly the first degree in which the suspension fails to be an isomorphism.
The main result is Theorem 3.3.13, which depends on various facts about A1–homology.

3.1 The EHP sequence in simplicial homotopy theory

In this section, we recall Whitehead’s refinement of the Freudenthal suspension theorem
and adapt this result to the context of simplicial presheaves. This result appears as
[59, Chapter XII, Theorem 2.2] and the main novelty of this section is that we give
a different derivation of the exact sequence that we learned from Mike Hopkins; this
version allows more precise control at the end of the sequence. The translation to the
setting of simplicial presheaves is then straightforward.

The classical EHP sequence We begin by recalling the combinatorial construction
of James–Hopf maps. We refer the reader to [62, page 169] for more details.

Definition 3.1.1 Suppose K is a pointed simplicial set and r � 1 is an integer. Define
a morphism of simplicial sets

Hr W J.K/! J.K^r/

that in each simplicial degree is given by the formula

Hr.x1 : : : xq/D
Y

1�i1<���<ir�q

xi1 ^ � � � ^ xir ;

where the product on the right-hand side is taken in (left-to-right) lexicographic order.
We refer to Hr as a simplicial James–Hopf invariant.

Note that Hr is, by definition, functorial in the input simplicial set K . Directly from the
definition of Hr it follows that if r � 2, then the composite K E

�!J.K/
Hr
�!J.K^r/
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is trivial. We fix r D 2, and write H for H2 . There is a commutative diagram:

(3.1.1)

K

E

$$

�

��

hofib H // J.K/
H
// J.K^2/

Proposition 3.1.2 Suppose K is .n�1/–connected where n� 2. Then the morphism
�W K! hofib H is .3n�2/–connected. In particular, we obtain a long exact sequence
of homotopy groups:

(3.1.2)

�3n�2.K/

����

�3n�1.†K/

Š

�3n�1.†.K
^2//

Š

�3n�2.hofib H/ // �3n�2.J.K//
H
// �3n�2.J.K

^2//
P
// �3n�3.K/

E
// � � �

� � � // �q.K/
E
// �q.J.K//

Š

H
// �q.J.K

^2//

Š

P
// �q�1.K/ // � � �

�qC1.†K/ �qC1.†.K
^2//

Proof Since K is .n�1/–connected, we conclude that K^2 is .2n�1/–connected.
Therefore, J.K/'�†K is .n�1/–connected, and J.K^2/'�†K^2 is .2n�1/–
connected.

We consider the Serre spectral sequence in homology H�. � ;Z/ associated with the
simplicial fiber sequence

hofib H �! J.K/ �! J.K^2/:

Since n� 1 by assumption, J.K^2/ is simply connected.

By use of the Hilton–Milnor splitting [59, Chapter VII, Theorem 2.10] there are
isomorphisms

zH�.J.K/;Z/Š
1M
iD1

zH�.K^i; Z/ and zH�.J.K^2/;Z/Š
1M
iD1

zH�.K^2i; Z/:

We remark in passing that the map EW K!J.K/ induces an isomorphism of zH�.K;Z/
with the first summand of zH�.J.K/;Z/Š

L1
iD1
zH�.K^i; Z/; this appears in the proof

of [59, Chapter VII, Theorem 2.10].

In the range where pCq <3n, the E2 page of the spectral sequence takes a particularly
simple form: E20;q DHq.hofibH;Z/ and E2p;0DHp.J.K^2/;Z/DHp.K^2;Z/, and
all other groups are necessarily 0.
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From [36, Theorem 6.2], we know that the composite map

H�.K^2; Z/ �! H�.J.K/;Z/ H
�!H�.J.K^2/;Z/ �! H�.K^2; Z/

is the identity. This observation implies that there are no nonzero differentials in our
spectral sequence having source E�p;0 with p <4n. For degree reasons, therefore, there
can be no nonzero differentials the targets of which are the groups E�0;q with q < 3n�1
either, and in the range where pC q � 3n� 2, the sequence collapses at the E2 page.
We obtain zH�3n�2.J.K/;Z/D zH�3n�2.K^2; Z/˚ zH�3n�2.hofib H;Z/.

In the given range, therefore, we have a commutative diagram of homology groups
(with Z coefficients)

0 // zH�3n�2.hofib H/ // zH�3n�2.J.K// // zH�3n�2.J.K^2// // 0

0 // zH�3n�2.K/ //

��

OO

zH�3n�2.K/˚ zH�3n�2.K^2/ // zH�3n�2.K^2/ // 0

from which it follows that the map �� is a homology isomorphism in the stated range.
In particular, the map � is .3n�2/–connected. The long exact sequence (3.1.2) now
follows from the long exact sequence in homotopy associated with the simplicial fiber
sequence

hofib H �! J.K/ �! J.K^2/:

The EHP sequence for simplicial presheaves Using the results of the previous
section, we can generalize Proposition 3.1.2 to the situation of pointed simplicial
presheaves on a site C equipped with a local model structure; for simplicity, we assume
that C has enough points. Functoriality of the simplicial James–Hopf invariants allows
Definition 3.1.1 to be extended to simplicial presheaves.

Definition 3.1.3 If X is a pointed simplicial presheaf on C, define morphisms

Hr W J.X/ �! J.X^r/

by Hr W J.X/.U /! J.X^r/.U /. Set H WD H2 .

As before, the composite map X E
�!J.X/ Hr�!J.X^r/ is null. The next result extends

Proposition 3.1.2 to simplicial presheaves.

Proposition 3.1.4 Suppose C is a site that has enough points. Suppose, n� 1 is an
integer, and X is a pointed .n�1/–connected simplicial presheaf. Let EW X ! J.X/

be as in (2.1.1), HW J.X/! J.X^2/ as in Definition 3.1.3, and let � be a lift of the
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map EW X ! J.X/ to a map �W X ! hofib H. The map � is .3n�2/–connected and
there is a long exact sequence of homotopy sheaves of the form

(3.1.3) �3n�2.X/
E
// �3n�2.J.X//

H
// �3n�2.J.X

^2//
P
// �3n�3.X/

E
// � � �

� � � // �q.X/
E
// �q.J.X//

H
// �q.J.X

^2//
P
// �q�1.X/ // � � � :

Remark 3.1.5 Proposition 2.1.6 guarantees the existence of isomorphisms of homo-
topy sheaves of the form �q.J.X//Š �qC1.X/ and �q.J.X^2//Š �qC1.X^2/.

Proof In outline, we argue at points to reduce to the classical EHP sequence. In more
detail, let F denote the homotopy fiber of the map HW J.X/! J.X^2/ in the local
model structure. Since the composite H ıEW X ! J.X/! J.X^2/ is null, there is a
lift of EW X ! J.X/ to a map �W X ! F as follows:

(3.1.4)

X

�
��

E

##

F // J.X/
H
// J.X^2/

If q� is a point of the site C, then q� preserves fiber sequences, and commutes with
the formation of J. � / and E, H. In particular, applying q� throughout, we see using
Proposition 3.1.2 that q�� is .3n�2/–connected. Since this holds for all such q�, we
deduce that the map � is itself .3n�2/–connected. The long exact sequence follows.

3.2 The construction of the EHP sequence in A1–homotopy theory

We now transport the EHP sequence studied in the previous section to A1–homotopy
theory. The basic idea is to appeal to Proposition 3.1.4 and use facts about when A1–
localization preserves simplicial fiber sequences from Section 2.3. If we A1–localize
the simplicial James–Hopf map H of Definition 3.1.3 (we abuse notation and write H
for the resulting map), then we can consider the following sequence of morphisms

(3.2.1) LA1X �!LA1J.X / H
�!LA1J.X

^2/:

The next result gives an analog of Whitehead’s classical exact sequence in A1–homotopy
theory.

Theorem 3.2.1 Assume the unstable A1–connectivity property holds for S and sup-
pose X is a pointed A1–.n�1/–connected space, with n � 2. There is an exact
sequence of homotopy sheaves of the form

(3.2.2) �A1
3n�2.X /

E
// �A1
3n�2.J.X //

H
// �A1
3n�2.J.X

^2//
P
// �A1
3n�3.X /

E
// � � �

� � � // �A1
q .X /

E
// �A1
q .J.X //

H
// �A1
q .J.X

^2//
P
// �A1
q�1.X / // � � � :
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Remark 3.2.2 Theorem 2.4.2 guarantees the existence of isomorphisms of sheaves
�A1
q .J.X //Š �A1

qC1.†X / and �q.J.X ^2//Š �A1
qC1.†X ^2/.

Proof We proceed as in the proof of Proposition 3.1.4, with the part of X played
by LA1X . By hypothesis, LA1X is simplicially .n�1/–connected. As before, set up
the diagram:

(3.2.3)

LA1X

�

��

E

%%

F // J.LA1X /
H
// J..LA1X /^2/

Since n � 1, the space J..LA1X /^2/ is simplicially 1–connected. Then, using the
unstable A1–connectivity property, we may apply Theorem 2.3.3 to conclude that
applying LA1 to the simplicial fiber sequence in (3.1.4) results in a simplicial fiber
sequence of the form

(3.2.4) LA1F �! LA1J.LA1X / �! LA1J..LA1X /^2/:

Since the map X ! LA1X is an A1–weak equivalence, Theorem 2.4.2(2) im-
plies that there are weak equivalences of the form LA1J.LA1X / ' LA1J.X / and
LA1J..LA1X /^2/' LA1J.X

^2/.

Since the unstable A1–connectivity property holds for S , the sheaves �A1
i .X / are

strictly A1–invariant by Lemma 2.2.11(1). Then Theorem 2.3.8 implies that

�i .F /Š �
A1
i .F /Š �i .LA1F /Š �i .LA1X /D �A1

i .X / for 1� i � 3n� 3:

These observations suffice to establish exactness everywhere except the leftmost part
of the long exact sequence.

The map �W LA1X ! F is simplicially .3n�2/–connected, and since n � 2, the
connectivity of X implies that �A1

0 .�F / ' �, by means of Theorem 2.2.12 for
example. Thus, we can apply Corollary 2.3.6 to conclude that LA1�W LA1X !

LA1F is also simplicially .3n�2/–connected. Therefore, there is a surjective map
��W �

A1
3n�2.X /��A1

3n�2.F / factoring EW �A1
3n�2.X /��A1

3n�2.J.X //, yielding the
exactness of the long exact sequence at the left as well.

Remark 3.2.3 Assume the unstable A1–connectivity property holds for S . If X

is a simplicially .n�1/–connected space, then J.LA1X
^2/ is at least A1–.2n�1/–

connected by Theorem 2.2.12. Theorem 3.2.1 is therefore a refinement of Morel’s
suspension theorem, [44, Theorem 6.61].
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3.3 Analyzing the A1–EHP sequence in low degrees

The goal of this section is to study the low-degree portion of the EHP sequence in
A1–algebraic topology. To do this, given an A1–.n�1/–connected space X , we will
show that X ^2 is at least A1–.2n�1/–connected, identify the first nonvanishing A1–
homotopy sheaf of X ^2 and use this to give a more explicit form of the EHP sequence
in the first degree in which the suspension map is not an isomorphism. Granted the
results of previous sections, and some results about A1–homology recalled below, the
argument is a straightforward translation of a classical argument due to J H C Whitehead
[60, Theorem 2] in the case of spheres and more generally by P Hilton [24, Theorem 2.1].

Some connectivity estimates Suppose .X ; x/ and .Y ; y/ are two pointed spaces.
We will assume that X is A1–.m�1/–connected, and Y is A1–.n�1/–connected.
Without loss of generality, we will assume that m� n.

Lemma 3.3.1 Assume the unstable A1–connectivity property holds over S . The
wedge sum X _Y is at least A1–.m� 1/–connected, and the smash product X ^Y

is at least A1–.mCn�1/–connected.

Proof For the first statement, observe that the map X _Y ! LA1X _LA1Y is an
A1–weak equivalence by [45, Section 2, Lemma 2.11]. Since taking stalks commutes
with coproducts, we conclude that the stalks of LA1X _LA1Y are at least .m�1/–
connected. Under the hypotheses, Theorem 2.2.12 implies that X _ Y is at least
.m�1/–connected.

The second statement is established similarly. By two applications of [45, Section 3,
Lemma 2.13] we can conclude that the map X ^Y ! LA1X ^LA1Y is an A1–weak
equivalence. Again by checking on stalks, and using the unstable A1–connectivity
theorem one concludes that X ^Y is at least A1–.mCn�1/–connected.

A1–homology The A1–derived category may be constructed as a left Bousfield local-
ization of the derived category of presheaves of abelian groups on SmS with respect to
a notion of A1–quasi-isomorphism [44, Section 6.2].1

Morel gives a construction of an A1–localization functor Lab
A1

[44, Lemma 6.18]; this
functor is an endofunctor of the category of chain complexes of Nisnevich sheaves of
abelian groups, and there is a natural transformation � W id! Lab

A1
such that for any

complex A, there is a quasi-isomorphism A! Lab
A1
.A/ with target that is fibrant and

A1–local.
1Morel works with the derived category of Nisnevich sheaves of abelian groups, but the exact functor

of Nisnevich sheafification induces a Quillen equivalence between the model we use and Morel’s model.
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Notation 3.3.2 If X is a space, then we consider C�.X /, the normalized chain
complex associated with the simplicial presheaf of free abelian groups Z.X /. The A1–
singular chain complex of X is the complex Lab

A1
C�.X /, which we may also denote

CA1
� .X /. The structure morphism X ! S induces a morphism CA1

� .X /! CA1
� .S/,

and we define zCA1
� .X / as the kernel of this morphism.

The A1–homology sheaves of X , denoted HA1
i .X /, are defined as the Nisnevich

sheafifications of the homology presheaves Hi .Lab
A1
C�.X //. If A is a complex of

presheaves of abelian groups, we will abuse notation and define HA1
i .A/ to be the

Nisnevich sheafification of the homology presheaf Hi .Lab
A1
A/. We define zHA1

i .X / as
ker.HA1

i .X /!HA1
i .S//.

The Dold–Kan adjunction shows that the Eilenberg–MacLane space associated with an
A1–local complex is an A1–local space [15, Proposition 4 and (3.5)]. Note, however,
that the ordinary singular chain complex of an A1–local space can fail to be A1–local
(the standard counterexample is Gm ). The following property is the analog of the
unstable A1–connectivity property of Definition 2.2.6 and was studied in [43, Section
6.2] in the closely related context of S1–spectra.

Definition 3.3.3 The stable A1–connectivity property holds for S if Lab
A1

preserves
.�1/–connected complexes.

Theorem 3.3.4 [43, Theorem 6.1.8] The stable A1–connectivity property holds for
the spectrum of a field.2

Remark 3.3.5 Ayoub [8] has shown that if S is a Noetherian scheme of Krull di-
mension d � 2, then the stable A1–connectivity property may fail for S in a very
strong sense. Ayoub’s counterexample is constructed in Voevodsky’s derived category
of motives. As noted above, if a complex of sheaves of abelian groups is A1–local,
then the associated Eilenberg–MacLane space is A1–local as well. Therefore, Ayoub’s
counterexample can be transported to yield a counterexample to the unstable A1–
connectivity property over S .

If the stable A1–connectivity property holds, the A1–derived category has a number
of very nice properties. Write AbS for the category of Nisnevich sheaves of abelian
groups on SmS , and AbA1

S for the full subcategory of strictly A1–invariant sheaves.
Before proceeding, we introduce the following notation.

2For k finite, use the result of [26] for the same reason as in the proof of Theorem 2.2.7.

Geometry & Topology, Volume 21 (2017)



The simplicial suspension sequence in A1–homotopy 2123

Notation 3.3.6 Given two strictly A1–invariant sheaves, set

A˝A1B WDHA1
0 .A˝

LB/:

Remark 3.3.7 The unit object for the A1–tensor product is the strictly A1–invariant
sheaf Z.

With this notation, the following result holds.

Lemma 3.3.8 [43, Lemma 6.2.13] If the stable A1–connectivity property holds
over S , then AbA1

S is an abelian category and the inclusion functor AbA1
S ! AbS is an

exact embedding. Moreover, the bifunctor .A;B/ 7!A˝A1B equips the category AbA1
S

with a symmetric monoidal structure.

The next result is closely related to [43, Remark 6.2.6] (apply that remark to shifted
suspension spectra of suitably highly connected pointed spaces).

Proposition 3.3.9 Assume the unstable and stable A1–connectivity properties hold
for S , and suppose m; n are integers � 1. If X is A1–.m�1/–connected, and Y is
A1–.n�1/–connected, there are canonical isomorphisms

zHA1
i .X �Y /

��!

(
zHA1
i .X /˚ zHA1

i .Y / if 0� i �mCn� 1;

. zHA1
m .X /˝A1 zHA1

n .Y //˚
zHA1
mCn.X /˚ zHA1

mCn.Y / if iDmCn:

Proof Consider the inclusion map

X _Y �!X �Y :

The cone of this inclusion map is X ^Y . Note also that after a single suspension,
the inclusion map is split by the projection. As a consequence, there are direct sum
decompositions of the form

zHA1
i .X �Y /Š zHA1

i .X /˚ zHA1
i .Y /˚

zHA1
i .X ^Y /:

Under the assumption that the unstable and stable A1–connectivity theorems hold
for S , Lemma 3.3.1 together with the usual A1–Hurewicz theorem [44, Theorem 6.57]
immediately imply the result for i �mCn� 1 (note that Morel’s Hurewicz theorem
holds in this context under the assumptions given: simply replace the appeal to [44,
Theorem 6.56] in Morel’s proof by an appeal to Corollary 2.3.6).

It remains to treat the case i DmCn. In that case, let zCA1
� .X / and zCA1

� .Y / be the
A1–chain complexes of X and Y ; recall that these are obtained by taking the chain
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complex associated with the free abelian group on X and then A1–localizing the result.
By replacing zCA1

� .X / by a shift, we may assume nD 0 and similarly for Y and mD 0.
The complex zCA1

� .X /˝L zCA1
� .Y / is also concentrated in degrees � 0, and since the

stable A1–connectivity property holds for S it follows that Lab
A1
. zCA1
� .X /˝L zCA1

� .Y //

is concentrated in degrees � 0. Since the zeroth homology is obtained by truncation
with respect to the homotopy t –structure, it follows that

HA1
0 .
zCA1
� .X /˝L zCA1

� .Y //ŠH
A1
0 .X /˝A1HA1

0 .Y /:

To conclude it remains to identify the left-hand side in terms of the smash product
X ^Y . For this, it suffices to observe that the Eilenberg–Zilber theorem implies the
existence of an isomorphism of the form zCA1

� .X /˝L zCA1
� .Y /Š

zCA1
� .X ^Y /.

Corollary 3.3.10 Assume the unstable and stable A1–connectivity properties hold
for S and suppose m; n are integers � 2. If .X ; x/ is a pointed A1–.m�1/–connected
space and .Y ; y/ is a pointed A1–.n�1/–connected space, then there is a canonical
isomorphism

�A1
nCm.X ^Y / ��!�A1

m .X /˝A1�A1
n .Y /:

Proof By Lemma 3.3.1, we know X ^Y is A1–.mCn�1/–connected. By the A1–
Hurewicz theorem [44, Theorem 6.57], it suffices to prove the result in A1–homology
(again, as in the proof of Proposition 3.3.9, this holds under our assumption that
the unstable and stable A1–connectivity properties hold). In that case, it follows
immediately from the proof of Proposition 3.3.9.

The connection with the results of Hilton and Whitehead mentioned at the beginning
of this section is contained in the next result, which describes the first “nonlinear”
A1–homotopy sheaf of a wedge sum. Given the above results, the proof is a direct
consequence of the A1–homotopy excision theorem (aka Blakers–Massey theorem;3

see eg [6, Theorem 3.1], [51, Theorem 2.3.8] or [61, Proposition 2.20]) and is left to
the reader.

Corollary 3.3.11 Assume the unstable and stable A1–connectivity properties hold
for S and suppose m; n � 2 are integers. Suppose X is a pointed A1–.m�1/–
connected space and Y is a pointed A1–.n�1/–connected space. There are canonical

3By inspecting the proof, one sees that this result is a direct consequence of the relative connectivity
theorem (Corollary 2.3.6) and therefore holds over any base scheme S for which the unstable A1–
connectivity property holds.
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isomorphisms

�A1
i .X _Y /

��!

(
�A1
i .X /˚�A1

i .X / if 1� i �mCn� 2;

�A1
mCn�1.X /˚�A1

mCn�1.X /˚�A1
m .X /˝A1�A1

n .Y / when i DmCn� 1:

Remark 3.3.12 As in classical homotopy theory, the computation of the homotopy of
a wedge sum allows one to study homotopy operations. The first “nonlinear” summand
in the homotopy of a wedge sum is closely related to the Whitehead product studied in
Section 4.1, though we have not attempted to establish equivalence of the definitions.

The EHP sequence in low degrees

Theorem 3.3.13 Assume the unstable and stable A1–connectivity properties hold
for S . Let n� 2 be an integer. If X is an A1–.n�1/–connected space, then there is
an exact sequence of the form

�A1
2nC1.†X / H

�!�A1
n .X /˝A1�A1

n .X / P
�!�A1

2n�1.X / E
�!�A1

2n .†X / �! 0:

In particular, one has an exact sequence as above if S is the spectrum of an (infinite)
perfect field.

Proof Consider the exact sequence of Theorem 3.2.1. Lemma 3.3.1 implies that
†X ^X is at least A1–2n–connected, and thus J.X ^X / is at least A1–.2n�1/–
connected. This immediately yields the surjectivity in the statement. Corollary 3.3.10
then yields the identification of �A1

2n .J.X ^X // with the A1–tensor product term.
The final statement is a consequence of Theorems 2.2.7 and 3.3.4.

Remark 3.3.14 The exact sequence of Theorem 3.3.13 when X DA3 n0 is precisely
the one described in [2, Theorem 4]. One notational benefit of the statement of
Theorem 3.3.13 is that the quadratic nature of the James–Hopf invariants is apparent.

4 Some E1 differentials in the A1–EHP sequence

The goal of this section is to analyze the morphisms in the A1–EHP sequence. As
mentioned in the introduction, classically, the morphism P can be described in terms
of Whitehead products. In Section 4.1, we extend the definition of Whitehead product
to the theory of simplicial presheaves (see Definition 4.1.2) to make it available in the
A1–homotopy category as well. These results are written in the generality of simplicial
presheaves on a site with enough points. We then use the results of Section 4.1 to show
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that the map P in Theorem 3.2.1 can indeed be expressed in terms of the Whitehead
product (see Theorem 4.2.1); this requires that the unstable A1–connectivity property
holds for S .

The A1–EHP spectral sequence is created by combining A1–EHP sequences into an
exact couple. However, since the A1–EHP sequences of Theorem 3.2.1 are truncated,
some algebraic manipulation is required to form an exact couple (for example extending
the sequences to the left by a kernel and then zeros), and the resulting spectral sequence
will differ from the A1–EHP spectral sequence. Nevertheless, it is shown in [61] that
after localizing at 2, the exact sequences of Theorem 3.2.1 are “low-degree portions”
of suitable long exact sequences, and these long exact sequences yield the 2–primary
A1–EHP sequence (with the expected convergence properties).

The analysis of morphisms in the A1–EHP sequence described above can be used to de-
scribe some differentials on the E1 page in the A1–EHP spectral sequence. The desired
E1–differentials (given by the composite HP linking the EHP sequences of different
spheres) are then determined by the James–Hopf invariant of a Whitehead product. The
axiomatic approach to Hopf invariants of Boardman and Steer [12] determines these
James–Hopf invariants. In Section 4.3, we recast some results of Boardman and Steer
in the context of simplicial presheaves. The main result is Proposition 4.3.5, which
holds in the generality of simplicial presheaves on a site with enough points. In contrast,
the remaining Section 4.4 is more specific to A1–homotopy theory; Theorem 4.4.1
identifies an E1–differential in the A1–EHP sequence with multiplication by a given
element of GW.k/.

4.1 Whitehead products for simplicial presheaves

In this section, we give a construction of Whitehead products in A1–homotopy theory,
the construction generalizes classical results of [13; 1] to the context of simplicial
presheaves. Suppose C is a site and as in Section 2.1 consider the category of pointed
simplicial presheaves on C with its injective local model structure. If X and Y are
pointed simplicial presheaves, we write ŒX; Y � for morphisms in the associated (pointed)
homotopy category. Unfortunately, it is also standard to use the notation Œ�;�� for
Whitehead products, but we hope that context will ensure that no confusion arises.

Recall that the constant simplicial presheaf S1 is an H–cogroup object in the cat-
egory of pointed simplicial presheaves on C, and there is an induced H–cogroup
structure on †W for any pointed space W . In particular, for any space Z , the space
Map.†W;Z/ has the structure of an H –group, functorially in both Z and W . We will
write � for the product in Map.†W;Z/ and .�/�1 for the inversion map; the constant
map to the basepoint � serves as a unit.
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Suppose given pointed simplicial presheaves X , Y and Z . The product projections
pX W X � Y ! X and pY W X � Y ! Y are pointed, and they induce morphisms
†pX W †.X �Y /!†X and †pY W †.X �Y /!†Y . In addition, the canonical map
X _Y !X �Y induces a morphism †.X _Y /'†X _†Y !†.X �Y / that fits
into a cofiber sequence with cofiber †.X ^Y /.

Construction 4.1.1 (Whitehead product) Given maps ˛W †X!Z and ˇW †Y !Z ,
composition with the projections yields morphisms a WD ˛ ı†pX and b WD ˇ ı†pY .
With respect to the product structure on Map.†.X �Y /;Z/, we may consider the map

.a�1 � b�1/ � .a � b/W †.X �Y / �!Z:

We embed the map .a�1 � b�1/ � .a � b/ into the following diagram:

†X _†Y //

''

†.X �Y / //

.a�1�b�1/�.a�b/
��

†.X ^Y /

Z

The pullback of .a�1 � b�1/ � .a � b/ to †.X _ Y / has a prescribed null-homotopy
described as follows. The composition of the inclusion †.X � �/ ! †.X � Y /

with �Y is the constant map. Thus, if we pull back .a�1 � b�1/ � .a � b/ to †.X ��/
the result coincides with the pullback of .a�1 � ��1/ � .a � �/. There is a canonical
homotopy between .a�1 � ��1/ � .a � �/ and the constant map �. Switching the roles of
X and Y and a and b , the pullback of .a�1 � b�1/ � .a � b/ to †.��Y / also admits a
specified null-homotopy. Thus, the pullback of .a�1 �b�1/ � .a �b/ to †.X _Y / comes
equipped with a specified null-homotopy. By means of this null-homotopy, the map
.a�1 � b�1/ � .a � b/ passes to a well-defined homotopy class of maps †.X ^Y /!Z ;
we write Œ˛; ˇ� for any representative of this class.

Since the sequence 1! Œ†.X^Y /;Z�! Œ†.X�Y /;Z�! Œ†.X_Y /�! 1 is exact,
the choice of null-homotopy does not affect the homotopy class of Œ˛; ˇ�.

Definition 4.1.2 Given maps ˛W †X !Z and ˇW †Y !Z , a representative for the
homotopy class of maps

Œ˛; ˇ�W †.X ^Y / �!Z:

in Construction 4.1.1 (or the homotopy class itself) is a Whitehead product of ˛ and ˇ .

Following classical conventions, we write �X for the identity map on a (pointed)
simplicial presheaf X , and by a slight abuse of notation, we also let �†X denote the
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inclusion †X!†X _†Y . The construction above with ˛ D �†X and ˇ D �†Y also
yields a canonical map

Œ�†X ; �†Y �W †.X ^Y / �!†X _†Y

that can be thought of as a universal Whitehead product in the sense that the Whitehead
product of Definition 4.1.2 can be obtained by composing Œ�†X ; �†Y � with the map
˛_ˇW †X _†Y !Z . Regarding this product, we have the following result, which
is a straightforward consequence of [1, Theorem 4.2].

To state this result, introduce the following notation. For X and Y pointed spaces, let
� W ††.X ^Y / ��!††.X ^Y / denote the map which switches the two suspensions
and is the identity on X ^ Y . Let }W ††.X ^ Y / ��!†X ^†Y be the map which
does not change the order of the suspensions and is the identity on X and Y .

Lemma 4.1.3 If X and Y are pointed connected spaces, then there is a cofiber
sequence of the form

†.X ^Y /
Œ�†X ;�†Y � // †X _†Y // †X �†Y;

where the second map is the usual map from the sum to the product, and such that the
induced weak equivalence

†2.X ^Y / ��!†X ^†Y

is homotopic to }� .

Proof Recall that if X and Y are two pointed spaces, their join, typically denoted
X �Y , is the homotopy pushout of the diagram X X �Y ! Y . There is a functorial
sectionwise weak equivalence X �Y '†X^Y . Using this identification, the universal
Whitehead product can be thought of as a map with source X �Y !†X _†Y (see
[1, Definition 2.3]).

We first treat the case of simplicial sets. Thus, suppose A and B are connected simplicial
sets. Let C

�
A�B!†A_†B

�
be the reduced mapping cone of Œ�†A; �†B �. In the

proof of [1, Theorem 4.2], one finds a natural map

‚W C
�
A�B!†A_†B

�
�!†A�†B

(this map is called G in [1] and is originally due to D E Cohen [13]). We claim the
map ‚ is a homology isomorphism. In [1, Theorem 4.2], this is fact is established
for A and B polyhedra with one of A or B compact. As a consequence, it is true for
finite simplicial sets. Since homology commutes with filtered direct limits and since
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the map ‚ is evidently compatible with passing to sub-simplicial-sets by inspection, it
follows that ‚ is a homology isomorphism for A and B arbitrary simplicial sets.

Now, we treat the general case of simplicial presheaves. Write C.Œ�†X ; �†Y �/ for
the cofiber of Œ�†X ; �†Y �W X � Y ! †X _ †Y . It follows that there is a map
‚W C.Œ�†X ; �†Y �/!†X �†Y defined sectionwise, ie for each object U 2 C define
‚.U /W C.Œ�†X ; �†Y �/.U /!†X.U /�†Y.U / to be the map above. For each such U,
the map ‚.U / is a homology equivalence between simply connected simplicial sets,
and therefore a sectionwise weak equivalence. Combining with the sectionwise weak
equivalence X �Y !†.X ^Y / and using the compatibility of the definitions of the
Whitehead product we have established the claimed cofiber sequence.

The cofiber sequence identifies the suspension of †.X ^Y / with the homotopy cofiber
of †X _†Y !†X �†Y . To prove that the homotopy class of the resulting map

(4.1.1) †2.X ^Y / ��!†X ^†Y

is }� , by working sectionwise it suffices to establish the analogous claim in the context
of simplicial sets, which in turn can be reduced to checking the claim in the context of
CW complexes, as considered in [1].

We recall the following constructions from [1]. Let S denote the unreduced suspension,
T denote the unreduced cone, and C denote the reduced cone. Let A and B be pointed,
locally finite, connected, CW complexes. The map ‚ induces a map

(4.1.2) C
�
A�B!†A_†B

�
=.†A_†B/ �! .†A�†B/=.†A_†B/:

By construction [1, Theorem 4.2, Lemma 4.1], (4.1.2) is induced from a map of pairs

(4.1.3) .T .A�B/;A�B/ �! .†A�†B;†A_†B/;

constructed as follows. Define

N W .T .A�B/;A�B/ �! .TA�TB; TA�B [A�TB/

by

N.u; .t; a; b//D

(
.u; a/�

�
1� 2t.1�u/; b

�
if 0� t � 1

2
;�

1� 2.1� t /.1�u/; a
�
� .u; b/ if 1

2
� t � 1:

For a space W , let tW W TW ! SW and sW W SW !†W be the quotient maps. Then
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(4.1.3) is defined to be the composite:

.T .A�B/;A�B/
N

// .TA�TB; TA�B [A�TB/

tA�tB
��

.†A�†B;†A_†B/ .SA�SB; SA_SB/
SA�SB

oo

There is a weak equivalence �0W A�B!†A^B given by quotienting by points of
the forms .a;�; t / and .�; b; t/, where � denotes the base points, and t denotes the
coordinate of the interval in the standard representation of the join. Let � be a homotopy
inverse. The map (4.1.1) in the homotopy category is M ı†.�/, where M denotes
the map on quotient spaces associated to the map of pairs .SX �SY / ı .tX � tY / ıN.
It therefore suffices to show that

.u; t/ 7�!

( �
u; 1� 2t.1�u/

�
if 0� t � 1

2
;�

1� 2.1� t /.1�u/; u
�

if 1
2
� t � 1

determines an endomorphism of S1 ^S1 of degree �1. This is easily checked: for
example, the fiber over

�
1
4
; 3
4

�
consists of the single point .u; t/ D

�
1
4
; 1
6

�
and the

Jacobian determinant at the point
�
1
4
; 1
6

�
is negative.

Proposition 4.1.4 If Z is an h–space in the category of pointed simplicial presheaves
on C, then Œ˛; ˇ�D 0 for all ˛ 2 Œ†X;Z� and ˇ 2 Œ†Y;Z�.

Proof If Z is an h–space, then the group Œ†.X �Y /;Z� is an abelian group by the
Eckmann–Hilton argument. Therefore, the commutator must be zero.

4.2 On the map P in the A1–EHP sequence

In this section, we return to the setting of A1–homotopy theory and we analyze the map

PW �A1
iC1.J.X

^2// �! �A1
i .X /

in the exact sequence of Theorem 3.2.1 under the additional assumption that the pointed
space X is itself a suspension X D †Z (see the beginning of Section 2.2 for a
reminder regarding conventions). In direct analogy with the results mentioned in the
introduction, the map P can be described in terms of the Whitehead product introduced
in Definition 4.1.2; the main result is Theorem 4.2.1.

The map P was defined as the connecting homomorphism in the exact sequence of
Theorem 3.2.1. This exact sequence does not arise directly from a fiber sequence,
however. If X is as above, then we can recast the sequence of (3.2.1) as the homotopy
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commutative diagram:

LA1X

E
��

// �

��

LA1J.X /
H
// LA1J.X

^2/

By functoriality of homotopy fibers, there is an induced morphism

hofib
�
LA1X ! LA1J.X /

�
�!�LA1J.X

^2/

and the connectivity of this map is what allows us to define the map P in Theorem 3.2.1.

In the range where the map above is connected, it makes sense to consider the composite
map

(4.2.1) �A1
i .†Z ^Z / �! �A1

iC1.J.†Z ^†Z // P
�!�A1

i .†Z /:

Precisely, if Z is .n�2/–connected, then this composite is defined for i � 3n�3. We
shall furthermore see that, provided the A1–connectivity property holds for S and n�2,
the first map in (4.2.1) is in fact an isomorphism in the range being considered.

On the other hand, we saw in Section 4.1 that the Whitehead square of the identity
Œ�†Z ; �†Z � gives a morphism †Z ^Z ! †Z . We will abuse notation and write
Œ�†Z ; �†Z � for the map

Œ�†Z ; �†Z �W LA1†Z ^Z �! LA1†Z :

This morphism induces a pushforward map on homotopy sheaves

Œ�†Z ; �†Z ��W �
A1
i .†Z ^Z / �! �A1

i .†Z /

that we would like to compare with the map (4.2.1). The next result, which gives
precisely such a comparison, provides an analog of [59, Theorem XII.2.4] or, rather,
its extension to general .n�1/–connected spaces in the spirit of [20, Theorem 3.1 and
page 231], in the context of unstable A1–homotopy theory.

Theorem 4.2.1 Assume the unstable A1–connectivity property holds for S and sup-
pose n�2 is an integer. If Z is an A1–.n�2/–connected pointed space, and X D†Z ,
then for any positive integer i � 3n� 4 the composite morphism of (4.2.1) fits into a
commutative diagram of the following form:

�A1
i .†.Z ^Z //

�
//

Œ�†Z ;�†Z ��

44
�A1
iC1.J.X

^2//
P

// �A1
i .X /

The isomorphism of homotopy sheaves in the diagram is induced by 2–fold suspension.
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Proof Without loss of generality, assume Z is A1–fibrant.

We begin with the cofiber sequence

†.Z ^Z / u
�!†Z _†Z �!†Z �†Z

of Lemma 4.1.3. Here u denotes the “universal” Whitehead product; the map

Œ�†Z ; �†Z �W †.Z ^Z /!†Z

is obtained by composing u with a fold map.

By construction, the map u is represented by uW C !†Z _†Z , where C denotes the
reduced mapping cone of †.Z _Z /!†.Z �Z /. We now consider the following
commutative diagram:

(4.2.2)

C
u

// †Z _†Z //

��

†Z �†Z

��

// †Z ^†Z

C
Œ�†Z ;�†Z �

// †Z // J2.†Z / // †Z ^†Z

The vertical maps are, reading left to right, the identity, the fold map, the canonical map
from the product to J2 and the identity. The horizontal arrows †Z ! J2.†Z / in the
center are the canonical inclusions. We observe that the center square is a pushout,
being the definition of J2.†Z /, and therefore the rightmost two horizontal maps are
quotient maps. Since †Z _†Z !†Z �†Z is a cofibration, this square is in fact a
homotopy pushout square. The two rows are homotopy cofiber sequences.

We form the following diagram, where the upper row is a homotopy cofiber sequence
and the lower row a fiber sequence:

(4.2.3)

†Z ^Z
Œ�†Z ;�†Z �

//

g

��

†Z //

t

��

J2.†Z / //

��

†Z ^†Z

f

��

�J..†Z /^2/
s
// hofib H // J.†Z /

H
// J..†Z /^2/

The maps indicated by the dashed arrows are adjoint to one another: by [48, Chapter I.3,
proof of Proposition 6, 3.13] the map †2Z ^Z ! †Z ^†Z

f
! J..†Z /^2/ is

inverse adjoint to g . By Lemma 4.1.3, the map †2Z ^Z !†Z ^†Z is simplicially
homotopic to }� , which reverses the order of the two suspensions, inducing �1 in the
homotopy category.

The map f W †Z ^†Z ! J..†Z /^2/ is given by the canonical map †Z �†Z !

J.†Z / followed by H; an analysis of H (Definition 3.1.1) now shows that f is the
suspension map E as applied to †Z ^†Z . Therefore, g is the 2–fold suspension map.
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We may A1–localize throughout. We do not draw (4.2.3) a second time with LA1

prepended to all terms. Since all spaces appearing above are at least 1–connected,
Corollary 2.3.6 applies throughout and maps that are n–connected remain n–connected
after A1–localization. We apply �A1

i to the leftmost square to obtain a commuting
square:

�A1
i .†Z ^Z /

Œ�†Z ;�†Z �
//

g�
��

�A1
i .†Z /

t�
��

�A1
iC1.J..†Z /^2//

s�
// �A1
i .hofib H/

The map g� , the 2–fold suspension map, is an isomorphism when i � 4n� 3. When
i � 3n� 2, the map t� is an isomorphism, and by definition PD t�1� ı s� ; the result
follows.

4.3 The James–Hopf invariant of a Whitehead product

In this section, we collect some properties of the James–Hopf invariant defined in
Section 3.1. Probably due to proliferation of different definitions of “Hopf invariants”
made at the time, Boardman and Steer [12] made an axiomatic study of such invariants.
We adapt some of their results to the context under consideration.

Let C be a site with enough points and consider simplicial presheaves on C equipped
with the injective local model structure. For pointed simplicial presheaves X and Y , we
continue to use the notation ŒX; Y � for morphisms in the associated (pointed) homotopy
category, and rely on context to distinguish this notation from that for the Whitehead
product.

Cup products Before passing to the main results, it will be necessary to recall some
constructions from [12].

Construction 4.3.1 (cup product [12, Definition 1.3]) Let X , Y and Z be pointed
simplicial presheaves. The reduced diagonal map X !X ^X is the composite of the
diagonal X!X �X and the map X �X!X ^X ; this map is null-homotopic if X
is a suspension. The smash product induces a map

Œ†mX; Y �� Œ†nX;Z� �! Œ†mX ^†nX; Y ^Z�:

The reduced diagonal then induces a morphism

†mCnX �!†mCnX ^X '†mX ^†nX I
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the isomorphism on the right does not permute the suspension factors. The composite
of these two morphisms defines the cup-product pairing

^W Œ†mX; Y �� Œ†nX;Z� �! Œ†nCmX; Y ^Z�:

The following result, which is identical in form to [12, Lemma 1.4] summarizes the
properties of cup products we use.

Lemma 4.3.2 Suppose X , Y and Z are pointed simplicial presheaves on C.

(1) The cup-product pairing is bilinear and associative.

(2) If X is itself a suspension, the cup-product pairing is trivial.

Proof For point (1), note that the smash product is bilinear and associative, and the
pullback is a homomorphism. Thus, the bilinearity and associativity of the cup product
follow immediately. As regards point (2), if there exists a pointed simplicial presheaf W
such that X D†W , then the reduced diagonal map †W !†W ^†W is simplicially
null-homotopic, which means the cup-product pairing is trivial.

Hopf invariants after Boardman and Steer Now, fix a pointed space Z and consider
the James–Hopf invariant HW J.Z/! J.Z^2/ from Definition 3.1.3. Applying ŒX;��
to this morphism, the identification of J.�/ with �†.�/ of Proposition 2.1.6 and the
loops suspension adjunction, H determines a map

HW Œ†X;†Z� �! Œ†X;†Z ^Z�I

in an abuse of notation, we denote this map also by H, but the context should make
clear which version we mean.

Following Boardman and Steer [12, Definition 2.1], define

�2W Œ†X;†Z�! Œ†2X;†2.Z ^Z/�

by �2 D † ı H. Note that �2 vanishes on suspensions. The classical interaction
between �2 and the group operation � induced by the h–cogroup structure of a sus-
pension generalizes to the context under consideration; this is a special case of the
Cartan formula [12, Definition 2.1(c) and Theorem 3.15], which uses the notion of
cup products just introduced. To state the result, let }W †Z ^†Z ��!†2Z ^Z be
the map which does not change the order of the suspensions or the order of the copies
of Z . The next result provides a direct analog of [12, Formula 3.14], but we include
the proof for the convenience of the reader.
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Lemma 4.3.3 Suppose that X and Z are pointed simplicial presheaves on C. Given
˛1; : : : ; ˛n in ŒX;Z�, consider †˛i 2 Œ†X;†Z�. The following formula holds
in Œ†2X;†2Z ^Z�:

�2.†˛1 � � �†˛n/D
Y

1�i<j�n

}.†˛i^† j̨ /;

where the product†˛1 � � �†˛n is taken with respect to the group structure on Œ†X;†Z�
and

Q
denotes the group operation � ordered lexicographically from left to right.

Proof We abuse notation slightly and write ˛i for a specified representative of the
homotopy class of maps ˛i 2 ŒX;Z�. In that case, †˛1 � � �†˛n is adjoint to the element
of ŒX; J.Z/� determined by x 7! ˛1.x/˛2.x/ � � �˛n.x/ for x 2X.U /.

Then H.†˛1 � � �†˛n/ is adjoint to the element of ŒX; J.Z ^Z/� represented by

x 7!
Y

1�i<j�n

˛i .x/^ j̨ .x/D
Y

1�i<j�n

.˛i ^ j̨ /.x ^ x/;

where
Q

denotes the group operation on J.Z ^Z/ ordered lexicographically from
left to right. Thus, �2.†˛1 � � �†˛n/D

Q
1�i<j�n }.†˛i^† j̨ /, as claimed.

Let

sW †.X �Y / �!†.X ^Y / and SW †2.X �Y / �!†2.X ^Y /

be the suspension and 2–fold suspension of the usual map from the product to the
smash. The group operation on Œ†2.X � Y /;†2Z ^ Z� is abelian, so we use the
symbol C instead of � when writing this operation.

Proposition 4.3.4 Let X and Y be pointed simplicial presheaves on C and assume
both are suspensions. If ˛ 2 Œ†X;†Z� and ˇ 2 Œ†Y;†Z� are suspensions, then

S��2Œ˛; ˇ�D�}.�
�
Y ˇ^��X˛/C}.�

�
X˛^��Y ˇ/:

We remind the reader that Œ˛; ˇ� denotes the Whitehead product of ˛ and ˇ . Here
��X W Œ†X;†Z�! Œ†.X �Y /;†Z� is the map induced by projection.

Proof All cup products will be followed by } , so we suppress } from the notation.
By definition, s�Œ˛; ˇ� D ��X˛

�1 � ��Y ˇ
�1 � ��X˛ � �

�
Y ˇ . By the naturality of �2 and

Lemma 4.3.3,

S��2Œ˛; ˇ�D�
�
X˛
�1^��Y ˇ

�1
C��X˛

�1^��X˛C�
�
X˛
�1^��Y ˇ

C��Y ˇ
�1^��X˛C�

�
Y ˇ
�1^��Y ˇC�

�
X˛^��Y ˇ:
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Since X is a suspension, the cup product ˛�1^ ˛ vanishes by Lemma 4.3.2(2),
whence ��X˛

�1^��X˛ D 0. The same reasoning shows that ��Y ˇ
�1^��Y ˇ D 0.

By Lemma 4.3.2(1), the cup product is bilinear and associative, and so we obtain the
following formula:

S��2Œ˛; ˇ�D �
�
X˛^��Y ˇ��

�
X˛^��Y ˇ��

�
Y ˇ^��X˛C�

�
X˛^��Y ˇ

D���Y ˇ^��X˛C�
�
X˛^��Y ˇ:

Hopf invariants of Whitehead products Let Z be a pointed simplicial presheaf
on C. Consider the maps

Œ�†Z ; �†Z �W †Z ^Z �!†Z and †HŒ�†Z ; �†Z �W †2Z ^Z �!†2Z ^Z:

Let eW Z ^Z!Z ^Z denote the exchange map, ie the map that permutes the two
factors.

Proposition 4.3.5 Let Z be a pointed simplicial presheaf on C that is a suspension.
In the homotopy category, there is an equality

†HŒ�†Z ; �†Z �D�†2eC†2�Z^Z :

Proof Let �i W †.Z�Z/!†Z denote the suspension of the i th projection for iD1; 2.
Let �W †Z ! †Z denote the identity. Let }W †Z ^ †Z ! †2.Z ^ Z/ be the
permutation that does not change the order of suspensions, and let }�1W †2.Z^Z/!
†Z ^†Z be its inverse.

Consider the map SW †2.Z �Z/! †2.Z ^Z/ as introduced above. In that case,
Proposition 4.3.4 allows us to conclude the following equality holds:

S�†HŒ�; ��D�}.��2 �^��1 �/C}.�
�
1 �^��2 �/:

Write �W Z �Z! .Z �Z/^ .Z �Z/ for the reduced diagonal map. Let

}0W †2.Z �Z/^ .Z �Z/ �!†.Z �Z/^†.Z �Z/

denote the permutation which does not swap the order of the two suspensions in
†2.Z �Z/^ .Z �Z/. Note that

.��1 �^�
�
2 �/ ı}

0†2�W †2.Z �Z/ �!†.Z �Z/^†.Z �Z/ �!†.Z/^†.Z/

is homotopic to S followed by the permutation }�1. Therefore, up to homotopy,
.��1 �^�

�
2 �/ ı}

0†2�D }�1S.

By definition, ��1 �^��2 �D .�
�
1 �^�

�
2 �/ ı}

0†2�. Thus ��1 �^��2 �D }
�1S in the

homotopy category. Applying } to both sides, we conclude that

}.��1 �^��2 �/DS:
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Note that

.��2 �^�
�
1 �/ ı}

0†2�W †2.Z �Z/ �!†.Z �Z/^†.Z �Z/ �!†.Z/^†.Z/

is homotopic to }�1 ı†2e ıS, whence

}.��2 �^��1 �/DS�†2e:

It follows that
S�†HŒ�†Z ; �†Z �DS�.�†2eC†2�Z^Z/:

To conclude, we simply observe that S� is injective. Indeed, this follows from the
standard fact that for simplicial presheaves X and Y , after a single suspension, the
cofiber sequence X _Y !X �Y !X ^Y is split by the sum of the projections †pX
and †pY . In that case, the long exact sequence in homotopy obtained by mapping any
suspension of the above cofiber sequence into the space Z splits into a collection of
short exact sequences.

4.4 The composite HP for a sphere as an element of KMW
0
.k/

In this section, we analyze the composite map HP for a sphere. Up to this point in the
paper, we have worked either in the context of simplicial presheaves on a site having
enough points or in the unstable A1–homotopy theory over a base for which the unstable
A1–connectivity property holds. The results in this section differ from those earlier in
the paper because they will use finer structure of the A1–homotopy category over a
base field k assumed to be perfect (and infinite for those being especially careful). We
will try to be clear about exactly which ingredients do not follow from the “axiomatic”
point of view.

Morel shows the sheaf �A1
p .S

pCq˛/ (see Notation 2.2.4) is isomorphic to the Milnor–
Witt K-theory sheaf KMW

q for p� 2 (or, somewhat exceptionally, for pD 1 and qD 2)
[44, Theorem 1.23]. Stringing the EHP exact sequences of Theorem 3.2.1 for different
spheres together, one obtains the following diagram:

�A1
iC3.S

2pC3C2q˛/

P
��

�A1
i .S

pCq˛/
E
// �A1
iC1.S

pC1Cq˛/
H
//

E
��

�A1
iC1.S

2pC1C2q˛/
P
// �A1
i�1.S

pCq˛/

�A1
iC2.S

pC2Cq˛/
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The composite map HP becomes the E1–differential in the EHP spectral sequence.

When iD2p , the composite map HP is, by means of Morel’s computations, a morphism

HPW KMW
2q �!KMW

2q :

Note that by definition of Milnor–Witt K-theory sheaves, there is a ring homomorphism
KMW
0 .k/! Hom.KMW

2q ; K
MW
2q / induced on sections by multiplication; moreover this

homomorphism is necessarily injective. Lemma 5.1.3, combined with the computation
of contractions of Milnor–Witt K-theory sheaves (see the discussion after Lemma 5.1.1),
implies this morphism is an isomorphism if k has characteristic unequal to 2; that
this map is an isomorphism is also true if k has characteristic 2 but a different proof
is required; see the discussion after Lemma 5.1.1 for more details. In any case, the
map HP corresponds to an element of Hom.KMW

2q ; K
MW
2q /; we will see below that it

always lies in the subring KMW
0 .k/.

In order to state the result, we need some more precise information about the structure
of the Milnor–Witt K-theory ring. Recall that KMW

� .k/ is generated by elements
Œa� 2 k� of degree C1 and an element � of degree �1 subject to various relations [44,
Definition 3.1]. For a unit a 2 k�, set hai WD 1C �Œa�; the identification KMW

0 .k/Š

GW.k/ sends the element hai to the class of the 1–dimensional symmetric bilinear
form of the same name [44, Lemma 3.10]. Following Morel [44, page 51] or [40, Section
6.1], we set � WD �h�1i. The class � is related to the map Gm ^Gm! Gm ^Gm

that exchanges the two factors: see [40, Lemma 6.1.1(2)] for a “stable” statement or
[44, Lemma 3.43] for an “unstable” statement. Note that 1� � is the hyperbolic form
h, which intercedes in the definition of Milnor–Witt K-theory.

Theorem 4.4.1 Assume k is a perfect field and suppose p and q are integers
with p > 1 and q � 1. The map

HPW KMW
2q D �

A1
2pC2J..S

pC1Cq˛/^2/ �! �2pJ..S
pCq˛/^2/DKMW

2q

is given by 1� .�1/p�q 2KMW
0 .k/. Equivalently,

HPD

8̂̂̂<̂
ˆ̂:

0 if p and q are even;
2 if p is odd and q is even;
h if p is even and q is odd,

1C � if p and q are odd.

Remark 4.4.2 See Remark 5.1.2 for more details on the situation when k has charac-
teristic 2. There is a corresponding statement if q D 0 as well, but in that case, the
composite in question gets identified with an element of Z, not KMW

0 .k/ and the result
is the classical computation of HP.
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Proof Under the hypothesis on k , the unstable A1–connectivity property holds by
Theorem 2.2.7. The hypotheses on p and q are simply those that need to be imposed
to appeal to Morel’s computations of homotopy sheaves.

We begin by applying Theorem 4.2.1 with X D SpC1Cq˛, Z D SpCq˛, nD pC 1
and i D 2pC 1 to interpret P as a Whitehead product. More precisely, since 1� p , it
follows that i D .2pC 1/ � 3.pC 1/� 3, and so we know that P is induced by the
map Œ�†Z ; �†Z �� in degree 2pC 1. It follows that the composite HP is isomorphic to
the map obtained by applying �A1

2pC1 to HŒ�†Z ; �†Z �.

Next, we appeal to our results about James–Hopf invariants of Whitehead products
(Proposition 4.3.5) to produce an explicit formula for HP in terms of the exchange
map eW Z ^Z !Z ^Z . Indeed, Proposition 4.3.5 yields an equality of the form

†HŒ�†Z ; �†Z �D�†
2eC†2�Z^Z :

However, recall that by Theorem 3.2.1 (combined with Remark 3.2.3), the suspension
map

†W Œ†.Z ^Z /; †.Z ^Z /� �! Œ†2.Z ^Z /; †2.Z ^Z /�

is an isomorphism and we conclude that the following equality holds:

HŒ�†Z ; �†Z �D�†eC†�Z^Z :

Therefore, we see that HP is isomorphic to the map induced by applying �A1
2pC1

to �†eC†�Z^Z .

Now we identify the homotopy class of the exchange map, e . Since e can be effected
by pairwise exchanging copies of S1, and Gm , it suffices to understand the effect of
each such exchange on a homotopy class. By [44, Lemma 3.43], in the presence of a
single suspension, the exchange of copies of Gm contributes a factor of � . It is well
known that the permutation map on S1 ^ S1 has degree �1. Combining these two
observations, a straightforward induction argument allows us to conclude that e has
degree .�1/p�q. Thus, the map induced by applying �A1

2pC1.�/ to �†eC†�Z^Z is
multiplication by 1� .�1/p�q. Since �2 D 1 in KMW

0 .k/ by [44, Lemma 3.5], the
statement of the theorem follows by simply listing the possible cases.

Remark 4.4.3 Classically, the composite HP computed above is either 2 or 0 de-
pending on the parity of the dimension of the sphere in question (this follows im-
mediately from the definition of the James–Hopf invariant and symmetry properties
of the Whitehead square of the identity). If one invokes real realization [45, page
121], Theorem 4.4.1 can be viewed as a direct analog of this classical result. First,
observe that KMW

0 .R/ Š GW.R/ Š Z˚ Z; this identification sends a symmetric
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bilinear form over the real numbers to its rank and signature. Under real realization, the
sphere SpCq˛ is sent to the Z=2–equivariant sphere of the same name. In particular,
the Z=2–fixed-point locus of SpCq˛ is simply Sp, while the fixed-point locus under
the trivial group is the sphere SpCq. From this point of view, the formula for HP from
Theorem 4.4.1 simply reflects the relative parities of p and pC q : the signature keeps
track of the degree on fixed-point loci for Z=2, while the rank keeps track of the degree
on fixed-point loci for the trivial subgroup. For example, when p is even and q is odd,
HP is multiplication by h, which has rank 2 and signature 0.

5 Applications

Here we collect some computational applications of Theorems 3.2.1 and 3.3.13.
Section 5.1 is of a preliminary nature and contains a number of results about Milnor–
Witt K-theory sheaves that are used elsewhere in the text; some of these facts are
certainly well known, but we could not find good references. Section 5.2 contains
new computations of a family of unstable A1–homotopy sheaves of motivic spheres: it
contains the first computation since Morel’s of an S1–stable A1–homotopy sheaf (see
Theorems 5.2.5 and 5.2.9). Finally, Section 5.3 contains results regarding unstable ra-
tionalized motivic homotopy sheaves, and S1–stable homotopy sheaves of Voevodsky’s
mod m motivic Eilenberg–MacLane spaces (see Theorems 5.3.1 and 5.3.3). While
it should be clear from the referencing, essentially all of the results of this section
require finer properties of the unstable A1–homotopy category than merely the unstable
A1–connectivity property.

5.1 On Milnor–Witt K-theory sheaves

In this section we study some properties of the Milnor–Witt K-theory sheaves KMW
n [44,

Section 3]. By [44, Theorem 3.37], the sheaves KMW
n are strictly A1–invariant sheaves

for any integer n. In fact, for any integer n � 1, the sheaf KMW
n is the free strictly

A1–invariant sheaf on the sheaf of pointed sets G^nm , and KMW
0 is the free strictly

A1–invariant sheaf on Gm=G
�2
m by [44, Theorem 3.46] (not pointed in this case).

Basic properties of Milnor–Witt K-theory sheaves If M is a presheaf of groups
(actually, pointed sets suffices), then its contraction M�1 is the presheaf of groups
on Smk defined by

M�1.U / WD ker
�
M .Gm �U/

.1�id/�
���!M .U /

�
;

where 1W Spec k!Gm is the unit map. The next result summarizes the properties of
contractions we will use.
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Lemma 5.1.1 [44, Lemmas 2.32 and 7.33] The assignment M 7! M�1 defines
an endofunctor of the category of strictly (or strongly) A1–invariant sheaves which
preserves exact sequences.

We will freely use the fact [3, Lemma 2.9]4 that .KMW
n /�j DK

MW
n�j for any pair of

integers n; j . We write W for the sheaf of unramified Witt groups, and In � W
for the subsheaves of unramified powers of the fundamental ideal in the Witt ring
[42, Section 2.1]. For any integer m, we write KM

n =m for the mod m Milnor K-
theory sheaf. The contractions of KM

m are summarized in [3, Lemma 2.7]. There is a
canonical morphism KM

n =2! In=InC1 ; the Milnor conjecture on quadratic forms,
now a theorem, asserts that this morphism is an isomorphism [46; 42].

Suppose k is a base field of characteristic unequal to 2. Morel established [41,
Théorème 5.3] under this hypothesis that there is a fiber product presentation of KMW

n

relating the various sheaves described in the previous paragraph. For any integer n,
there is a fiber product diagram of the following form:5

KMW
n

//

��

In

��

KM
n

// KM
n =2

By convention KM
n DK

M
n =2D 0 for n < 0, whereas In ŠW for n < 0.

This fiber product presentation yields two fundamental exact sequences

(5.1.1)
0 �! InC1�!KMW

n �!KM
n �! 0;

0 �! 2KM
n �!KMW

n �! In �! 0:

We use these sequences repeatedly in the sequel.

Remark 5.1.2 The assumption that k has characteristic unequal to 2 is inessential
above: the fiber product presentation exists without this condition as one can see by
inspecting the proofs, and appealing to the results of Kato [35] on the characteristic 2
version of Milnor’s conjecture involving symmetric bilinear forms instead of [46].
However, a detailed proof of this generalization does not appear in the literature, and

4This identification is due to Morel and appears in several places in [44] but without a proof. The proof
given in [3] requires k to have characteristic unequal to 2 since it depends on the Gersten conjecture for
the sheaves Ij . The result can also be demonstrated when k has characteristic 2 if one appeals to Morel’s
Gersten–Schmid resolution of KMW

n . Nevertheless, since we will momentarily restrict to the case where k
has characteristic different from 2 for other reasons, the result from [3] is sufficient for our purposes.

5See [22] for some corrections to [41].
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since in later applications we will be restricted to the characteristic unequal to 2 case
anyway, we have not pursued this generalization.

On the structure of contracted sheaves

Lemma 5.1.3 Suppose M is a strictly A1–invariant sheaf.
(1) For any integer n� 1, there are isomorphisms

Hom.KMW
n ;M /ŠM�n.k/:

(2) If n � 2, the evident map Hom.KMW
n ;M /! Hom.KMW

n�1;M�1/ induced by
contraction is an isomorphism compatible with the identification of point (1).

Proof Write Hom� for the internal Hom in the category of presheaves of pointed
sets on Smk . In that case, unwinding the definitions, there is an identification M�1 D
Hom�.Gm;M/. A straightforward induction argument combined with the adjunction
between ^ and Hom� then shows M�n D Hom�.G

^n
m ; M/.

For n� 1, [44, Theorem 3.37] shows that KMW
n is the free strictly A1–invariant sheaf

of groups on the sheaf of pointed sets G^nm . As a consequence, there are functorial
identifications

Hom�.G
^n
m ; M/ ��!Hom.KMW

n ;M /;

where Hom on the right-hand side is the internal Hom in the category of presheaves of
abelian groups. To complete the verification of point (1), simply take sections over k .

In light of the discussion of the previous paragraphs, to establish point (2) one simply
observes that, as long as n� 2, the map in question arises via the following sequence
of identifications:

Hom.KMW
n ;M /Š Hom�.G

^n
m ;M /

Š Hom�.G
^.n�1/
m ; Hom�.Gm;M //

Š Hom.KMW
n�1;M�1/:

Lemma 5.1.4 Suppose M is a strictly A1–invariant sheaf.
(1) There is an isomorphism

Hom.KMW
0 ;M /ŠM .k/� hM�1.k/;

where hM�1.k/ is the h–torsion subgroup. The first map is induced by the
projection KMW

0 ! Z, while the second is induced by a splitting of the map
I!KMW

0 .

(2) For any integer n� 1, the map Hom.KMW
n ;M /! Hom.KMW

0 ;M�n/ induced
by contraction has image the factor M�n.k/ of the product described in point (1).
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Proof Note that KMW
0 DHA1

0 .Gm=G
�2
m /D zHA1

0 .Gm=G
�2
m C/ by [44, Theorem 3.46]

and what follows amounts to unwinding the proof of this result. Note that there is a
split cofiber sequence S0

k
!Gm=G

�2
m C!Gm=G

�2
m .

By adjunction, one then obtains identifications of the form

Hom.KMW
0 ;M /Š Hom�.Gm=G

�2
m C;M /

Š Hom�.S
0
k ;M /�Hom�.Gm=G

�2
m ;M /

Š Hom.Z;M /�Hom. zHA1
0 .Gm=G

�2
m /;M /

ŠM �Hom. zHA1
0 .Gm=G

�2
m /;M /:

Under this decomposition, the projection map KMW
0 !Z is precisely the rank map. On

the other hand, the splitting Gm=G
�2
m C Š S

0
k
_Gm=G

�2
m corresponds to the splitting

I!KMW
0 as described before [44, Corollary 3.47].

Next, there is an exact sequence of Nisnevich sheaves of abelian groups of the form

Gm
x 7!x2
���!Gm �!Gm=G

�2
m �! 0:

Taking reduced A1–homology (as the composite of taking the (based) free abelian
group functor and the exact functor Lab

A1
) yields an exact sequence of the form

zHA1
0 .Gm/ �!

zHA1
0 .Gm/ �!

zHA1
0 .Gm=G

�2
m / �! 0:

The map zHA1
0 .Gm/DK

MW
1 !KMW

1 induced by the squaring map on Gm is multi-
plication by hD h1iC h�1i by [44, Lemma 3.14]. Thus, we conclude that

Hom. zHA1
0 .Gm=G

�2
m /;M /Š hM�1.k/;

which is what we wanted to show.

For point (2), we appeal to Lemma 5.1.3. Indeed, it suffices by Lemma 5.1.3(2) and
induction to treat the case where nD 1. As in the proof of Lemma 5.1.3, adjunction
yields identifications of the form

Hom.KMW
1 ;M /Š Hom�.Gm;M /Š Hom�.S

0
k ;Hom�.Gm;M //Š Hom.Z;M�1/:

In particular, the map

Hom.KMW
1 ;M / �! Hom.KMW

0 ;M�1/

induced by contraction factors through the isomorphism

Hom.KMW
1 ;M /Š Hom.Z;M�1/:
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We treat the universal case: taking M D KMW
1 , we see that the map induced by

contraction factors through Hom.Z;KMW
0 /. Such homomorphisms correspond to

elements of KMW
0 .k/ via the image of 1 2 Z and under the identification, the identity

map KMW
1 !KMW

1 is sent to the class of h1i.

The identification .KMW
1 /�1ŠK

MW
0 can be seen in terms of the fiber product presenta-

tions KMW
1

��!KM
1 �KM1 =2

I and KMW
0

��!Z�Z=2W . The symbol map Gm!K
MW
1

can be thought of as a set-theoretic splitting of the projection map KMW
1 !KM

1 . After
contraction, this projection is sent to the rank map KMW

0 ! Z. The factorization
produced in the previous paragraph thus corresponds to a splitting of the rank map
KMW
0 ! Z. On the other hand, the decomposition in point (1) corresponded with a

decomposition KMW
0 ŠZ˚I and under this identification the unit h1i is sent to .1; 0/,

thus we conclude that the projection onto the other factor is the zero map.

Lemma 5.1.5 Fix a base field k . If �W KMW
n !M is a morphism of sheaves such

that ��j D 0, then

(1) if n� j � 0, the morphism � is trivial;

(2) if 0� n < j , the morphism � factors through a morphism KMW
n =Ij !M .

Proof Factor �W KMW
n � Im.�/ ,!M . Since the inclusion of the abelian category

of strictly A1–invariant sheaves into the abelian category of abelian sheaves is exact
(see Lemma 3.3.8) we can assume without loss of generality that Im.�/ is strictly
A1–invariant. Thus, it suffices to consider the case where �W KMW

n � M is an
epimorphism and M is strictly A1–invariant.

If M�0 D 0, then M D 0, and there is nothing to check. Therefore, we can assume
without loss of generality that j � 1. By Lemma 5.1.3, for any integer r � 1,
M�r.k/ Š Hom.KMW

r ;M /. For (1) we simply observe that if n � j , then the
morphism KMW

n !M is the trivial map since M�n.k/D 0 as well.

For (2), begin by observing that, since 0 � n < j , we can consider the following
diagram:

KMW
j � Ij ,! InC1 ,!KMW

n �M

Reading from the left, the first and third maps are those in the exact sequences in (5.1.1),
the map Ij ,! InC1 is the standard inclusion (since j � nC 1, this makes sense),
and the final epimorphism is the one given by the assumptions. Since M�j D 0 (and
j � 1 by assumption), this composite is trivial, which means the map KMW

n !M

factors through the quotient KMW
n =Ij.

Remark 5.1.6 This result will be applied below with KMW
n !M a map to a strictly

A1–invariant sheaf with strictly A1–invariant cokernel.
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Some result on A1–tensor products

Proposition 5.1.7 There is an isomorphism KMW
m ˝A1KMW

n
��! KMW

mCn , for any
integers m; n� 1.

Proof Morel computed zHA1
n�1.A

i n 0/ŠKMW
n [44, Theorem 6.40] (strictly speaking,

this result is stated for n� 2, but the result is true for nD 1 as well by unwinding the
definitions and appealing to [44, Theorem 3.37]). There are identifications

†Am n 0^An n 0 ' Am n 0�An n 0 ' AmCn n 0

(here � means join), for any m; n� 1. Proposition 3.3.9 then yields

KMW
m ˝

A1KMW
n Š zHA1

nCm�2.A
m
n 0^An n 0/;

which when combined with the suspension isomorphism zHA1
nCm�2.A

mn0 ^ Ann0/Š
zHA1
nCm�1.A

m n 0�An n 0/ŠKMW
nCm yields the result.

Lemma 5.1.8 For any integers m; n� 1, and any integer r � 0, there are canonical
isomorphisms KMW

m ˝A1KM
n =r ŠK

M
mCn=r . There are also canonical isomorphisms

KM
m =r ˝

A1KM
n =r ŠK

M
mCn=r .

Proof By Lemma 5.1.3, we can identify Hom.KMW
nC1;K

MW
n / Š KMW

�1 .k/ Š W .k/

for n� 2 (the final identification by [44, Lemma 3.10]). The group KMW
�1 .k/ contains

the element � and we refer to the corresponding map KMW
nC1!KMW

n using the same
notation. Unwinding the definitions, this map corresponds to the composite of the
KMW
nC1 ! InC1 defined on sections by multiplication by � and the inclusion map

InC1 ,!KMW
n .

By the discussion of the previous paragraph, the first exact sequence of (5.1.1) yields
the exact sequence

KMW
nC1

�
�!KMW

n �!KM
n �! 0:

Tensoring this exact sequence with KMW
m and applying Proposition 5.1.7 we conclude

that there is an exact sequence

KMW
mCnC1

�
�!KMW

mCn �!KMW
m ˝

A1KM
n �! 0:

However, this sequence identifies KMW
m ˝A1KM

n ŠK
M
mCn . Repeating this discussion

using the exact sequence KM
n ! KM

n ! KM
n =r we obtain the isomorphism of the

statement. Repeating this discussion in the other factor allows us to obtain the final
statement.
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Rationalized Milnor–Witt K-theory sheaves Now, we turn our attention to rational-
ized Milnor–Witt sheaves KMW

n ˝Q, which will reappear in Section 5.3.

Lemma 5.1.9 Fix a base field k , assumed to have characteristic unequal to 2.

(1) There is a canonical isomorphism KMW
n ˝Q ��!KM

n ˝Q� In˝Q for every
integer n.

(2) If k is not formally real, then In˝Q is trivial, ie KMW
n ˝Q ��!KM

n ˝Q.

Proof The first statement follows from the fiber product presentation of KMW
n together

with the fact that KM
n =2˝QD 0. For the second statement, since In is an unramified

sheaf, it suffices to show that In.L/˝QD 0 for L a finitely generated extension of k .
If k is not formally real, then any extension field has the same property, and the result
follows immediately from the fact that In.L/ is a 2–torsion sheaf if L is not formally
real [18, Proposition 31.4].

Corollary 5.1.10 Fix a base field k , assumed to have characteristic unequal to 2.

(1) KMW
n ˝Q is nontrivial for any integer n� 0.

(2) If k is formally real, then KMW
n ˝Q is nontrivial for any integer n.

Proof Both tensoring with Q and contraction are exact endofunctors of the category
of strictly A1–invariant sheaves (see Lemma 5.1.1) and it follows immediately from the
definitions that the two constructions commute, ie if M is strictly A1–invariant, then
.M ˝Q/�1 ŠM�1˝Q. Thus, to show KMW

n ˝Q is nontrivial, it suffices to show
that .KMW

n ˝Q/�mD .KMW
n /�m˝QŠKMW

n�m˝Q is nontrivial for some m>0. There
is a canonical identification KMW

n�m˝QŠKM
n�m˝Q˚In�m˝Q, by Lemma 5.1.9(1).

For (1), take mD n, and observe that KM
0 Š Z. For (2) observe that if m> n, then

KMW
n�m˝QŠW ˝Q. Since k is assumed formally real, we can choose an ordering

of k [18, Proposition 31.20], and thus find a real closed field k0 containing k . In
that case, observe that W.k0/Š Z by Sylvester’s law of inertia [18, Proposition 31.5].
Thus, W .k0/˝Q is nonzero, so the sheaf W ˝Q is nontrivial.

Remark 5.1.11 Once again, the assumption that k has characteristic unequal to 2 is
inessential. This assumption only appears by way of our appeal to Morel’s fiber square
presentation of KMW

n (see Remark 5.1.2).

Remark 5.1.12 Rationalized Milnor K-theory sheaves can be quite large. If L is an
infinite field, write Lalg for an algebraic closure. The Bloch–Kato conjecture [54; 55]
implies that for n� 2, the groups KMn .L

alg/ are (nontrivial) uniquely divisible (these
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groups are evidently divisible for n D 1). By using transfers in Milnor K-theory
[11, Section I.5] it is easy to see that the restriction map KMn .L/! KMn .L

alg/ is
injective modulo torsion. Any element ˛ 2 KMn .L/ that goes to zero in KMn .L

alg/

necessarily goes to zero in a finite extension L0=L. In that case, the composite
KMn .L/! KMn .L

0/! KMn .L/ of restriction with transfer is multiplication by the
degree. Thus, ŒL0 WL�˛D 0, ie ˛ is torsion. Equivalently, one can use the identification
of Milnor K-theory with motivic cohomology [38, Theorem 5.1] and transfers there.

5.2 On A1–homotopy sheaves of spheres

The goal of this section is to establish Conjecture 5 of [2]. The results below depends
rather heavily on the results of [5] and thus we assume throughout this section that k
is an infinite perfect field of characteristic unequal to 2.

On the computation of �A1

3Cj˛
.S 2C3˛/ To begin, we recall some results from [5]

where we used the notation �3;j .A3 n 0/ for the sheaf in the title. One begins by
considering the fiber sequence

(5.2.1) SL4 =Sp4 �! SL6 =Sp6 �!A5 n 0:

A stable range was described for the homotopy sheaves of SL2n =Sp2n in [5, Proposi-
tion 4.2.2] in terms of Grothendieck–Witt sheaves (see [5, Sections 3.1 and 3.3] and
the references there for explication of the notation). Also obtained there was a short
exact sequence of sheaves of the form

(5.2.2) GW 3
5 �!KMW

5 �! �A1
3 .S

2C3˛/ �!GW 3
4 �! 0:

The cokernel of morphism GW 3
5 ! KMW

5 was called F5 and a description of F5
was given in [5, Theorem 4.4.1]. Before discussing the structure of this morphism, we
introduce a further convention to simplify the notation.

Convention 5.2.1 Write �.�/ for the A1–derived loop functor, ie �LA1.�/.

The map KMW
5 !�A1

3 .S
2C3˛/ is by construction induced by a morphism �S4C5˛!

S2C3˛. The composite map

ıW S3C5˛ �!�S4C5˛ �! S2C3˛

was shown to be a generator of �3C5˛.S2C3˛/ in [5, Proposition 5.2.1]. We deduce a
few simple consequences of these results now.
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Lemma 5.2.2 Suppose j � 6 is an integer.
(1) There is a canonical isomorphism �A1

3Cj˛.S
2C3˛/ŠW .

(2) Any A1–homotopy class of maps S3Cj˛! S2C3˛ lifts uniquely along ı to a
map S3Cj˛! S3C5˛.

Proof For point (1), begin by applying [44, Theorem 6.13] to the exact sequence
of (5.2.2). By [5, Proposition 3.4.3], we observe that .GW 3

4/�j D 0 for j � 5.
By [5, Lemma 3.4.1], if j D 5, we conclude that .GW 3

5/�5 DGW
2
0 Š Z. Therefore,

.GW 3
5/�j D 0 for j � 6. Thus, we conclude that there is a sequence of isomorphisms

�A1
3Cj˛.S

2C3˛/Š �A1
3Cj˛.�S

4C5˛/Š �A1
4Cj˛.S

4C5˛/Š .KMW
5 /�j ŠW

if j � 6.

For point (2), take a map �W S3Cj˛ ! S2C3˛ as in the statement. Mapping S3Cj˛

into the fiber sequence of (5.2.2), the argument of point (1) shows that, for j � 6, such
a map lifts uniquely to a map S3Cj˛!�S4C5˛. Since S3C5˛ is A1–2–connected,
the unit of the loop-suspension adjunction S3C5˛!�S4C5˛ induces an isomorphism
on A1–homotopy sheaves in degrees � 4 by, eg, Theorem 3.2.1 and Remark 3.2.3.
Therefore, � lifts uniquely along ı .

On the computation of �A1

jC1
.S jC3˛/ for j � 3

Proposition 5.2.3 If k is a field of characteristic 0 and containing a quadratically
closed subfield, then �A1

4C6˛.S
3C3˛/D 0.

Proof With X equal to S2C3˛, which is A1–1–connected, Theorem 3.3.13, the
exactness of contraction and [44, Theorem 6.13] yield the following exact sequence:

(5.2.3) �A1
5C6˛.S

3C3˛/!�A1
5C6˛.S

5C6˛/ P
!�A1

3C6˛.S
2C3˛/!�A1

4C6˛.S
3C3˛/!0:

We have �A1
5C6˛.S

5C6˛/ŠKMW
0 again by Morel’s computations [44, Theorem 1.23].

By Theorem 4.2.1, the morphism P is induced by composition with

Œ�S2C3˛ ; �S2C3˛ �W S
3C6˛

�! S2C3˛I

we will refer to this map as composition with the Whitehead square of the identity. By
Lemma 5.2.2(2), this map lifts uniquely through ı to a map

Œ�S2C3˛ ; �S2C3˛ �W S
3C6˛

�! S3C5˛;

which (by [44, Corollary 6.43]) can be viewed as an element of W .k/. The exact
sequence (5.2.3) becomes, by Lemma 5.2.2(1),

KMW
0

P
�!W �! �A1

4C6˛.S
3C3˛/ �! 0:
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We claim each of the sheaves in the above exact sequence are sheaves of KMW
0 –modules

in a natural way, and that the morphisms are morphisms of sheaves of KMW
0 –modules.

To see this, it suffices to observe that the portion of the A1–EHP sequence under con-
sideration takes the form �3C6˛.�

2S5C6˛/! �A1
3C6˛.S

2C3˛/! �A1
3C6˛.�S

3C3˛/,
and the KMW

0 –module structure is induced by precomposition with �3C6˛.S3C6˛/.
From these observations it follows that the map P is determined by an element of
HomKMW

0
.KMW

0 ;W /DW .k/.

Assume first that k is a quadratically closed field of characteristic 0. In that case
W .k/ D Z=2, and, to establish the claim, it suffices to prove that our morphism is
nontrivial. To see this, fix an embedding k ,!C . Using complex realization (see [45,
Section 3, Lemma 3.4] or [16]), and the fact that complex realization takes spheres to
spheres, it suffices to prove that composition with the Whitehead square of the identity
is nontrivial after taking C–points. Serre showed that �9.S5/ D Z=2 and that the
Whitehead square of the identity on S5 is a generator, [50, Section 41]. Consequently,
we conclude that the our morphism P also corresponds to the nontrivial element
of W .k/ and is therefore an epimorphism.

If L=k is an extension field, then the morphism P in our sequence viewed over the base
field L is pulled back from the morphism P over k . Thus, by appeal to the conclusion of
the previous paragraph, we conclude in this case as well that the morphism KMW

0 !W

is necessarily the standard epimorphism, and therefore that �A1
4C6˛.S

3C3˛/D 0.

Remark 5.2.4 In the preceding proof, the assumption that k has characteristic 0 can
likely be weakened to the assumption that k has characteristic unequal to 2 via appeal
to étale realization [28]. As a consequence, the same remark applies to all statements
below appealing to Proposition 5.2.3. Removing the assumption that k contains a
quadratically closed subfield will probably require different techniques. Nevertheless,
it seems likely that the “lifted” map Œ�S2C3˛ ; �S2C3˛ �W S

3C6˛ ! S3C5˛ is simply a
suspension of � and the above result can be established without reference to realization
of any sort.

The above vanishing statement has a number of useful consequences.

Theorem 5.2.5 If k is a field of characteristic 0 and containing a quadratically closed
subfield, then for every integer j � 3, there is an exact sequence of the form

(5.2.4) 0 �! F 05 �! �A1
jC1.S

jC3˛/ �!GW 3
4 �! 0;

together with an epimorphism KM
5 =24 ! F 05 that becomes an isomorphism after

4–fold contraction. Moreover, the composite map KM
5 =24! �A1

4 .S
3C3˛/ determines

an isomorphism Z=24Š �A1
4C5˛.S

3C3˛/.
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Proof We treat the case where j D 3, building upon the analysis in the proof of
Proposition 5.2.3. Since S3C3˛ is A1–2–connected, the case j � 4 will follow
immediately from this case and the A1–simplicial suspension theorem (Theorem 3.2.1
and Remark 3.2.3).

Take X DS2C3˛ in Theorem 3.3.13 and consider the map PW KMW
6 D�A1

5 .S
5C6˛/!

�A1
3 .S

2C3˛/. Recall the exact sequence of (5.2.2), which appears as the horizontal line
of (5.2.5):

(5.2.5)

�A1
5 .S5C6˛/DKMW

6

P
�� ''

GW 3
5

// KMW
5

// �A1
3 .S

2C3˛/ //

E
��

GW 3
4

// 0

�A1
4 .S

3C3˛/

��

77

0

The vertical sequence is the EHP sequence applied to S2C3˛. The dotted diagonal map is
an element of Hom.KMW

6 ; GW 3
4/Š .GW

3
4/�6.k/ by Lemma 5.1.3. On the other hand,

[5, Proposition 3.4.3] allows us to conclude that .GW 3
4/�6 D 0 so this diagonal map

vanishes, and therefore there is an induced epimorphism, denoted by the dashed diagonal
arrow in (5.2.5), �A1

4 .S
3C3˛/!GW 3

4 , as required by the theorem. By combining a
portion of diagram (5.2.5) with the exact sequence 0! I6!KMW

5 !KM
5 ! 0 we

obtain diagram (5.2.6), ignoring the dotted arrow for the moment:

(5.2.6)

0

��

I6

��

GW 3
5

// KMW
5

��

// �A1
3 .S

2C3˛/ //

E
��

GW 3
4

// 0

KM
5

//

��

�A1
4 .S

3C3˛/

��

// GW 3
4

// 0

0 0
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As we know that �A1
4 .S

3C3˛/�6 D 0, it follows from Lemma 5.1.5 that the composite
map KMW

5 ! �A1
4 .S

3C3˛/ factors through KMW
5 =I6 DKM

5 , giving the dotted arrow
in diagram (5.2.6).

We define F5 , as in [5], to be the cokernel of the map GW 3
5!KMW

5 , and define F 05
to be the image of F5 in �A1

4 .S
3C3˛/. The exact sequence

0 �! F 05 �! �A1
4 .S

3C3˛/ �!GW 3
4 �! 0

is an immediate consequence of this definition. Furthermore, there is a diagram of
exact sequences:

(5.2.7)

0 // I6 // KMW
5

����

// KM
5

����

// 0

I6 // F5 // F 05
// 0

To determine the behavior of F 05 , we need finer information regarding the sheaf F5 as
described in [5, Theorems 4.3.1 and 4.4.1]. We provide a brief recapitulation of that
description here. The sheaf F5 is identified there as a quotient of a fibered product as
follows. One defines a sheaf S5 , the cokernel of a “Chern class” map KQ

5 !KM
5 [3,

Definition 3.6]. The sheaf S5 is equipped with a canonical surjection onto KM
5 =2 (see

[3, Lemma 3.13] and the subsequent discussion). One then defines a sheaf T5 to be
the fiber product of S5 and I5 over KM

5 =2 [3, page 911]; the maps I5!KM
5 =2 and

KM
5 ! S5!KM

5 =2 coincide with the defining maps in the fiber product presentation
in KMW

5 . By [5, Theorem 4.3.1] (see [5, Theorem 4.4.1]), there is an epimorphism
T5 ! F5 and this epimorphism becomes an isomorphism after 4–fold contraction
by [5, Lemma 5.1.1]. Assembling all the above, there is a diagram of short exact
sequences, enlarging (5.2.7),

(5.2.8)

0 // I6 // KMW
5

����

// KM
5

����

// 0

0 // I6 // T5 //

�
����

S5 //

�0

����

0

I6 // F5 // F 05
// 0

where � , and therefore �0, becomes an isomorphism after 4–fold contraction.
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There is an epimorphism KM
5 =24� S5 that becomes an isomorphism after 4–fold

contraction, [3, Corollary 3.11]. It follows there is such an epimorphism KM
5 =24�F 05

as well.

Since .KM
5 /�5ŠZ, and .GW 3

4/�5D 0, the latter by [5, Proposition 3.4.3], the 5–fold
contraction of the sequence

0 �! F 05 �! �A1
4 .S

3C3˛/ �!GW 3
4 �! 0

reduces to an isomorphism Z=24Š �A1
4C5˛.S

3C3˛/.

Remark 5.2.6 Because of the observation of [5, Remark 5.1.2], we do not know
whether the map KM

5 =24! F 05 of Theorem 5.2.5 is an isomorphism after 3–fold
contraction. Nevertheless, it seems likely that this is the case.

Consider the motivic Hopf map �W S3C4˛ ! S2C2˛. The standard construction
of this map is via the Hopf construction [44, page 190] on the multiplication map
SL2 �SL2! SL2 .

Corollary 5.2.7 If k is a field having characteristic 0 and containing a quadratically
closed subfield, then for every integer j � 3, the group �A1

jC1C5˛.S
jC3˛/Š Z=24 is

generated by †j�2C˛� .

Proof This follows by combining Theorem 5.2.5 and [5, Corollary 5.3.1].

Remark 5.2.8 Since �W S1C2˛ ! S1C˛ we can consider � ^ �W S4C6˛ ! S3C3˛.
Proposition 5.2.3 then guarantees that � ^ � and �^ � are null-homotopic. Since they
remain null-homotopic after suspension, we obtain a purely unstable proof of one of
the motivic null-Hopf relations [17, Proposition 5.4].

Similarly, if �sW S3s ! S2s is the simplicial Hopf map, then we can consider the
composite map

†2C2˛� ı†2C3˛� ı†2C4˛� ı†1C6˛�sW S
4C6˛

�! S3C3˛:

Once again, Proposition 5.2.3 implies this composition is null-homotopic. Stabilizing
with respect to P1–suspension, this implies the relation �3�s D 0 in the motivic stable
homotopy ring. This relation is an incarnation of the fact that the topological Hopf
map �top satisfies �4top D 0.

The existence of such null-homotopies allows us to construct new elements in unstable
homotopy sheaves of motivic spheres using Toda brackets [52]. It would be interesting
to study such constructions more systematically.
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On the structure of �A1

nC1
.Sn�1Cn˛/ for n� 4 Finally, we are able to establish [2,

Conjecture 5] under the additional hypothesis that our base field contains a quadratically
closed field having characteristic 0.

Theorem 5.2.9 Suppose k is a field that contains a quadratically closed field having
characteristic 0. For every integer n � 4, the map �n WD †.n�2/C.n�2/˛� induces a
nontrivial morphism

.�n/�W K
M
nC2=24 �! �A1

nC1.S
nCn˛/:

Proof This follows essentially from Corollary 5.2.7. In more detail, the map .�n/�
determines a morphismKMW

nC2!�
A1
nC1.S

nCn˛/, but by construction, this morphism fac-
tors through P1–suspension. In particular, since the map KMW

5 ! �A1
4 .S

3C3˛/ factors
through a morphism KM

5 =24! �A1
4 .S

3C3˛/, we conclude that for any integer n� 4,
the morphism KMW

nC2! �A1
nC1.S

nCn˛/ factors through a map KMW
n�3˝

A1KM
5 =24!

�A1
nC1.S

nCn˛/. Lemma 5.1.8 allows us to conclude KMW
n�3˝

A1KM
5 =24Š K

M
nC2=24,

which is precisely what we wanted to show.

Recall that in [7, Theorem 5], a morphism

�A1
nC1.S

nCn˛/ �!GW n
nC1

is constructed using “Suslin matrices”. The composite map

KMW
nC2 �! �A1

nC1.S
nCn˛/ �!GW n

nC1

is, by means of Lemma 5.1.3, determined by an element of .GW n
nC1/�n�2.k/; since

the latter group is trivial by [5, Proposition 3.4.3], we conclude that this composite is
trivial. Combining these observations with Theorem 5.2.9 and the connectivity estimate
from the A1–simplicial suspension theorem (see Theorem 3.2.1 and Remark 3.2.3), we
now refine [2, Conjecture 7].

Conjecture 5.2.10 For any pair of integers n� 4 and i � 0, there is an exact sequence
of the form

KM
nC2=24 �! �A1

n .S
.n�1Ci/Cn˛/ �!GW n

nC1I

the right-hand map becomes an epimorphism after .n�3/–fold contraction, and the
sequence becomes a short exact sequence after n–fold contraction.

Remark 5.2.11 In private communication from 2005, Morel stated a conjecture about
the stable �1 sheaf of the motivic sphere spectrum. Conjecture 5.2.10 can be thought of
as an unstable refinement of Morel’s conjecture. Morel’s conjecture has been verified in
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various situations. K Ormsby and P-A Østvær verified Morel’s conjecture after taking
sections over fields of small cohomological dimension [47]. Much more generally,
work of Østvær, O Röndigs and M Spitzweck has verified Morel’s conjecture over
fields having characteristic 0 [49] (or, more generally, after inverting the characteristic
exponent of the base field). While these results provide evidence for Conjecture 5.2.10,
without a version of the suspension theorem for P1–suspension these stable results do
not imply our conjecture.

5.3 Other computations

In this section, we establish nontriviality of unstable rationalized A1–homotopy sheaves
of motivic spheres. We then go on to compute the first S1–stable A1–homotopy sheaf
of a mod m motivic Eilenberg–MacLane space.

Rationalized A1–homotopy sheaves of spheres The computations of Morel of A1–
homotopy sheaves of spheres yield isomorphisms �A1

2n�1S
2n�1C2q˛ Š KMW

2q for
2n� 1� 2 [44, Theorem 6.40]. By [44, Theorem 6.13] (see also [44, Corollary 6.43]),
for any integer j there are induced isomorphisms �A1

2n�1Cj˛S
2n�1C2q˛ Š .KMW

2q /�j .
In these degrees, the James–Hopf invariant map H of Section 3.2 yields a morphism

HW �A1
2n�1Cj˛S

nCq˛
�! �A1

2n�1Cj˛S
2n�1C2q˛

ŠKMW
2q�j :

We now study the rationalized version of this map. The next result provides an analog
of the fact, due to Hopf, that there is a surjection �4n�1.S2n/! Z.

Theorem 5.3.1 Fix a base field k , assumed to be perfect and to have characteristic
unequal to 2. Let n > 2 and q � 2 be even integers.

(1) For any integer j � 0, the sequence of sheaves

�A1
2n�2Cj˛S

n�1Cq˛
˝Q

E˝Q
���!�A1

2n�1Cj˛S
nCq˛

˝Q
H˝Q
���!KMW

2q�j˝Q�! 0

is exact.

(2) If k is not formally real, then for any integer j satisfying 0� j � 2q , the sheaf
�A1
2n�1Cj˛S

nCq˛˝Q is nontrivial.

(3) If k is formally real, then for any integer j � 0, the sheaf �A1
2n�1Cj˛S

nCq˛˝Q
is nontrivial.

Proof Tensoring with Q and contraction are exact functors on the category of
strictly A1–invariant sheaves of abelian groups (see Lemma 5.1.1). Combining [44,
Theorem 6.13] with the exact sequence of Theorem 3.2.1 (which applies since n� 3 by
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assumption) and then tensoring with Q, we obtain exactness of the above sequence at
�A1
2n�1S

nCq˛˝Q. Since n and q are even by assumption, the class 1C.�1/nCqh�1iq

equals 2. Surjectivity of H˝Q follows from Theorem 4.4.1.

Points (2) and (3) follow immediately from Corollary 5.1.10.

Remark 5.3.2 A corresponding statement holds for q D 0 as well, but that result
follows immediately from the classical computation of nonzero rational homotopy
groups of spheres.

Some S 1–stable A1–homotopy sheaves of motivic Eilenberg–MacLane spaces
Set Kn WDK.Z.n/; 2n/ and Kn=m WDK.Z=m.n/; 2n/ where for an abelian group A,
the spaceK.A.n/; 2n/ is a motivic Eilenberg–MacLane space in the sense of Voevodsky;
see, for example, [53, Section 2]. We write H i

ét.�
˝n
m / for the Nisnevich sheafification

of the presheaf U 7!H i
ét.U; �

˝m
m /. In the next result, which is an analog of a result

appearing in [9, Example 5.11], we adhere to Convention 5.2.1.

Theorem 5.3.3 Assume k is a field having characteristic exponent p . Fix integers
i � 1 and m; n� 2 and assume m is coprime to p .

(1) The space †iKn=m is A1–.nCi�1/–connected.

(2) If j is an integer satisfying 0� j � n� 1, then there are isomorphisms of the
form

�A1
nCjCi .†

iKn=m/ ��!H
n�j
ét .�˝nm /:

(3) There is an exact sequence of the form

H 0
ét .�

˝n
m / �! �A1

2nCi .†
iKn=m/ �!KM

2n=m �! 0;

and H 0
ét .�

˝n
m / is killed by a single contraction.

Proof The space Kn=m is A1–.n�1/–connected and it is possible to describe all its
higher A1–homotopy sheaves. If m is prime to p by the Bloch–Kato conjecture (in
Beilinson–Lichtenbaum form) together with A1–representability of mod m motivic co-
homology [54; 55], there are isomorphisms of the form �A1

nCr.Kn=m/ŠH
n�r
ét .�˝nm /.

In particular, H n�r
ét .�˝nm / is isomorphic to KM

n =m for r D 0 and vanishes for r > n.

We begin by investigating what occurs after a single suspension. By the A1–Freudenthal
suspension theorem, the map �A1

r .Kn=m/!�
A1
rC1.†Kn=m/ is an isomorphism for r�

2n� 2. We now show that this map is an isomorphism for r D 2n� 1 as well.

Theorem 3.3.13 applied with X DKn=m yields an exact sequence of the form

�A1
n .Kn=m/˝

A1�A1
n .Kn=m/ �! �A1

2n�1.Kn=m/ �! �A1
2n .†Kn=m/ �! 0:
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By the discussion of the previous paragraph combined with Lemma 5.1.8, we conclude
�A1
n .Kn=m/˝

A1�A1
n .Kn=m/ Š K

M
n =m˝

A1KM
n =m Š K

M
2n=m. Thus, in the above

exact sequence the left-hand map is a map KM
2n=mŠ �

A1
n .Kn=m/˝

A1�A1
n .Kn=m/!

�A1
2n�1.Kn=m/.

One knows .H i
ét.�
˝n
m //�sŠH

i�s
ét .�˝n�sm / (appeal to [38, Example 23.3] and sheafify).

Since étale cohomology vanishes in negative degrees, we conclude that H 1
ét .�

˝n
m /

is killed by 2–contractions. Since there is an epimorphism KMW
2n ! KM

2n=m, and
.KM

1 =m/�2n D 0, by appealing to Lemma 5.1.3, we may conclude that the left-hand
morphism in the exact sequence displayed in the previous paragraph is the trivial map.
Therefore, H 1

ét .�
˝n
m /Š �A1

2n�1.Kn=m/! �A1
2n .†Kn=m/ is an isomorphism.

In light of the discussion above, by reading the exact sequence of Theorem 3.3.13
farther to the left, we conclude that there is a short exact sequence of the form

�A1
2n .Kn=m/ �! �A1

2nC1.†Kn=m/ �!KM
2n=m �! 0:

Then �A1
2n .Kn=m/ Š H

0
ét .�

˝n
m / and this sheaf is killed by a single contraction as

discussed in the previous paragraph.

For i � 1 and 0 � j � n, the map �nCjCi .†iKn=m/! �A1
nCjCiC1.†

iC1Kn=m/

is an isomorphism by the A1–Freudenthal suspension theorem. Combining these
observations establishes the points listed above.

Remark 5.3.4 It is possible to treat the case where m is a power of p as well, but
the answer is simpler. If m is a power of p , then Geisser and Levine computed the
homotopy sheaves of Kn=m: by [21, Theorem 8.3], �A1

i .Kn=m/ is nonvanishing if
and only if i D n, in which case �A1

n .Kn=m/ may be described as the unramified
Milnor K-theory sheaf KM

n =m (see [21, Theorem 8.1]). In this case, we conclude that
�A1
nCjCi .†

iKn=m/ simply vanishes for 1 < i � n� 1.
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