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A geometric construction of colored HOMFLYPT homology

BEN WEBSTER

GEORDIE WILLIAMSON

The aim of this paper is twofold. First, we give a fully geometric description of the
HOMFLYPT homology of Khovanov and Rozansky. Our method is to construct
this invariant in terms of the cohomology of various sheaves on certain algebraic
groups, in the same spirit as the authors’ previous work on Soergel bimodules. All the
differentials and gradings which appear in the construction of HOMFLYPT homology
are given a geometric interpretation.

In fact, with only minor modifications, we can extend this construction to give
a categorification of the colored HOMFLYPT polynomial, colored HOMFLYPT
homology. We show that it is in fact a knot invariant categorifying the colored
HOMFLYPT polynomial and that it coincides with the categorification proposed by
Mackaay, Stošić and Vaz.

17B10, 57T10

1 Introduction

The colored HOMFLYPT polynomial is an invariant of links together with a labeling or
“coloring” of each component with a positive integer; in particular, for knots, there is
an invariant for each positive integer. Its most important properties are that

� it reduces to the usual HOMFLYPT polynomial when all labels are 1, and

� colored HOMFLYPT encapsulates all Reshetikhin–Turaev invariants for the link
labeled with wedge powers of the standard representation of sln , just as the
HOMFLYPT polynomial does for the standard representation alone.

In this paper we give a geometric construction of a categorification of this invariant,
colored HOMFLYPT homology. Like the HOMFLYPT homology of Khovanov and
Rozansky [13], this associates a triply graded vector space to each colored link such
that the bigraded Euler characteristic is the colored HOMFLYPT polynomial. In fact,
we produce an infinite sequence of such invariants, one for each page of a spectral
sequence, but only the first and second pages are connected via an Euler characteristic
to a known classical invariant.

Published: 15 August 2017 DOI: 10.2140/gt.2017.21.2557
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2558 Ben Webster and Geordie Williamson

Our construction and proofs of invariance and categorification are algebro-geometric
in nature. As a special case we obtain a new and entirely geometric interpretation of
Khovanov’s Soergel bimodule construction of HOMFLYPT homology [12].

We also show that this invariant has a purely combinatorial description via the Hoch-
schild homology of bimodules analogous to that of Khovanov. In fact, it coincides
with the link homology proposed from an algebraic perspective by Mackaay, Stošić
and Vaz [17]. Thus, the main result of our paper has an entirely algebraic statement:

Theorem 1.1 The colored HOMFLYPT homology defined in [17] is a knot invariant,
and its Euler characteristic is the colored HOMFLYPT polynomial.

Our definition also has the advantage of categorifying essentially all algebraic objects
involved in the definition of colored HOMFLYPT homology. Let us give a schematic
diagram for the pieces here, with actual operations given by solid arrows, and (de)cat-
egorifications given by dashed ones:

n
colored
braids

o n
colored

links

o

n MOY
graphs

o
�ˇHN�ˇ

C.q; t/

DGD
.XD/DPˇ�Pˇ .GL.N //

g3Vect

ˇ 7! y̌

ˆˇ

TrJO

H�
.Pˇ/�

.GL.N /I �/

FD

eval

H�
GD
.XD I �/

HOMFLYPT

A
2 . y̌
/

The top half of the diagram shows two different definitions of the colored HOMFLYPT
polynomial:

� The path through {MOY graphs} is the description of the colored HOMFLYPT
polynomial by Murakami, Ohtsuki and Yamada [19]: one associates to a link diagram
a sum of weighted trivalent graphs, and then defines an evaluation function on such

Geometry & Topology, Volume 21 (2017)



A geometric construction of colored HOMFLYPT homology 2559

graphs, which in turn gives a state sum interpretation of the colored HOMFLYPT poly-
nomial. While the paper [19] only considers certain specializations of the HOMFLYPT
polynomial, their technique is easily extended to the polynomial itself.

� The path through �ˇHN�ˇ is described by Lin and Zheng [16]: to each closable
colored braid ˇ , we have an associated element of the Hecke algebra HN , where N

is the colored braid index of ˇ (the sum of the colorings of the strands). In fact, this
element lies in a certain subalgebra �ˇHN�ˇ , where �ˇ is a projection which depends
on the coloring of ˇ . The colored HOMFLY polynomial is obtained by applying a
certain trace TrJO defined by Ocneanu [11] on HN .

In this paper, we show how to categorify both of these paths, as is schematically
indicated in the bottom half of the diagram, and briefly summarized in Section 1.2. The
final result of this construction is a knot invariant A2. y̌/; we show that this invariant
is well-defined in Theorem 1.2 and that it agrees with HOMFLYPT homology in
Theorem 1.4.

� The leftmost dashed arrow is the isomorphism of �ˇHN�ˇ with the Grothendieck
group of sheaves on GL.N / which are bi-equivariant for the left and right multiplication
of a subgroup of block upper triangular matrices Pˇ .

� The rightmost dashed arrow can be described as follows: to each link diagram D ,
we associate a group GD , a GD –variety XD and a GD –equivariant perverse sheaf
whose the composition factors are in bijection with the MOY graphs arising from this
link diagram.

� The central dashed arrow simply indicates taking bigraded Euler characteristic of a
trigraded vector space with respect to one of its gradings.

We must also show that this diagram, including the dashed arrows, “commutes”. This
follows from a result of the authors giving a similar construction of a Markov trace for
the Hecke algebra of any semisimple Lie group, shown in the paper [27].

As should be clear from the above, the techniques we use are those of algebraic
geometry and geometric representation theory. While these are not familiar to the
average topologist, we have striven to make this paper accessible to the novice, at least
if they are willing to accept a few deep results as black boxes. As a general rule, our
actual calculations are simple and quite geometric in nature; however, we must cite
rather serious machinery to show that these calculations are meaningful.

1.1 The geometric machinery

Let us briefly indicate the geometric setting in which we work. All material covered
here is discussed in greater detail in Section 3.

Geometry & Topology, Volume 21 (2017)



2560 Ben Webster and Geordie Williamson

Let X be an algebraic variety defined by equations with integer coefficients. (In this
paper, our varieties are built from copies of the general linear group, so we can always
describe them in terms of integral equations.) To X one may associate a derived
category Db.X / of sheaves with constructible cohomology. There are numerous
technicalities in the construction of this category, but we postpone discussion of these
until Section 3.

The category Db.X / behaves similarly to the bounded derived category of constructible
sheaves on the complex algebraic variety defined by these equations. However, since
we used integral equations, we have an alternate perspective on these varieties; one
can also reduce modulo a prime p , and work over the finite field Fp . The objects
in Db.X / can also be interpreted as sheaves on these varieties in characteristic p , and
for technical reasons, this is the perspective we will take. In this situation, there is an
extra structure which helps us to understand our complexes of sheaves: an action of
the Frobenius Fr on our variety.

The category Db.X / contains a remarkable abelian subcategory P .X / of “mixed
perverse sheaves”. For us the most important feature of P .X / is that every object
of P .X / has a canonical “weight filtration” with semisimple subquotients, which is
defined using the Frobenius.

As with any filtration, this leads to a spectral sequence

E
p;q
1
DHpCq.grW

�p F/ H) HpCq.F/:

Each term on the left hand side also carries an action of Frobenius induced by that on
the variety. Considering the norms of the eigenvalues of Frobenius may be used to give
an additional grading to each page of the spectral sequence. It follows that each page
of the spectral sequence is triply graded.

We will need to consider a generalization of this category, which is a version of
equivariant sheaves for the action of an affine algebraic group on X . While in principle,
the technical difficulties of understanding such a category could be resolved by working
in the category of stacks, we have found it less burdensome to give a careful definition
of the mixed equivariant derived category from a more elementary perspective. For the
sake of brevity, this has been done in a separate note [25].

1.2 Application to knot theory

In order to apply the above machinery to knot theory, we must define a sheaf associated
to a link. More precisely, as we discuss in Section 2, to any projection D of a colored
link, we associate the natural graph with vertices given by crossings and edges by arcs.

Geometry & Topology, Volume 21 (2017)



A geometric construction of colored HOMFLYPT homology 2561

To this graph, we associate a variety XD together with the action of a reductive
group GD . Remembering the crossings in D allows us to construct a GD –equivariant
mixed shifted perverse sheaf FD 2Db

GD
.XD/. We then show that FD may be used

to construct a series of knot invariants.

Associated to any filtration on FD (as a perverse sheaf), we have a canonical spectral
sequence converging to H�

GD
.XD IFD/. Furthermore, we can endow H�

GD
.XD I �/

of any mixed sheaf with the weight grading. This is a grading which is preserved by all
spectral sequence differentials, so we can think of any page of this spectral sequence
as a triply graded vector space, where two gradings are given by the usual spectral
sequence structure, and the third by weight.

The sheaf FD carries a natural weight filtration. This is easily confused with, but
distinct from, the weight grading discussed above.1 We call the spectral sequence
associated to this weight filtration chromatographic.

Theorem 1.2 If D is the diagram of a closed braid, then every page Ei for i � 2 of
the spectral sequence computing H�

GD
.XD IFD/ associated to the weight filtration is

an invariant of the underlying link L, up to an overall shift in the grading. We let Ai. y̌/

be the i th page of this spectral sequence.

If D is not a closed braid, then this theorem fails, since Ai. y̌/ can be changed by the
Reidemeister IIb move; above we are using the fact that by the Markov theorem, any
two braid closure diagrams for the same knot can be related without using this move.

This description has a similar flavor to that of Khovanov and Rozansky [13] or Bar-
Natan [2]: it begins by assigning a simple object to a single crossing, and then an
algebraic rule for gluing crossings together (this process can be formalized as an object
called a canopolis as introduced by Bar-Natan [2]; we will discuss this perspective
in Section 6.2). However, other papers, such as [12] or [17], have used a description
which depended on the link diagram chosen being a closed braid. In order to show that
our invariants coincide with those of [17], we must find a geometric description of this
form.

Assume that ˇ is a closable colored braid with coloring given by positive integers, y̌ its
closure and let N be the colored braid index (the sum of the colorings over the strands
of the braid). Let Pˇ be the block upper triangular matrices inside GN WD GL.N /

with the sizes of the blocks given by the coloring of the strands of ˇ . Using left and
right multiplication, we obtain a natural Pˇ �Pˇ action on GN . We let .Pˇ/� be

1The weight grading mentioned above comes from the weight filtration of the pushforward of FD to a
point.

Geometry & Topology, Volume 21 (2017)



2562 Ben Webster and Geordie Williamson

the diagonal subgroup, which acts on GN by conjugation. By the classical theory
of characteristic classes, we have a canonical isomorphism of H�.BPˇ/ to partially
symmetric polynomials corresponding to the block sizes of Pˇ , which we will use
freely from now on.

Theorem 1.3 For each ˇ , there is a .Pˇ�Pˇ/–equivariant complex of sheaves ˆˇ
on GN with a natural filtration, such that the associated spectral sequence computing
H�
.Pˇ/�

.GN Iˆˇ/ is canonically isomorphic to the spectral sequence obtained from the
weight filtration for H�

G y̌
.X y̌IF y̌/.

Moreover, we have an isomorphism of the E1 page A1. y̌/ of the spectral sequence for
the hypercohomology H�

Pˇ�Pˇ
.GN Iˆˇ/, as a complex of bimodules over H�.BPˇ/,

to the complex of singular Soergel bimodules considered by Mackaay, Stošić and Vaz
in [17, Section 8].

Singular Soergel bimodules have been defined and classified in the thesis of the second
author [28] and in the context of Harish-Chandra bimodules by Stroppel [23]. Since
previous work of the authors [26] has related Hochschild homology to conjugation
equivariant cohomology, we can identify our geometric knot invariant in terms of such
bimodules.

Theorem 1.4 If D is a closed braid, then the E2 page of our spectral sequence is the
categorification of the colored HOMFLYPT polynomial proposed in [17].

If all the labels on the components of D are 1, then this agrees with the triply graded
link homology as defined by Khovanov and Rozansky in [13].

The higher pages of this spectral sequence are not easy to compute, and it is not known
what their Euler characteristics are. Whether they correspond to any classical link
invariant is unknown.

Acknowledgements We would like to thank: Wolfgang Soergel for his observation
that “Komplexe von Bimoduln sind die Gewichtsfiltrierung des armen Mannes” (“Com-
plexes of bimodules are the poor man’s weight filtration”), which formed a starting
point for this work; Marco Mackaay for suggesting that it could be generalized to
the colored case and explaining the constructions of [17]; Raphaël Rouquier and Olaf
Schnürer for illuminating discussions; and Catharina Stroppel, Noah Snyder and Carl
Mautner for comments on an earlier version of this paper. Part of this research was
conducted whilst Williamson took part in the program “Algebraic Lie Theory” at the
Isaac Newton Institute, Cambridge. Webster was supported by an NSF Postdoctoral
Fellowship.
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2 Description of the varieties

We start by recalling the steps involved in our categorification, beginning with a braidlike
diagram D of an oriented colored link L:

� To D (with its coloring) we associate a reductive group GD together with a
GD –variety XD , which only depends on the graph obtained from the diagram D

by forgetting the distinction between under and overcrossings.
� The crossing data allows us to define a GD –equivariant sheaf FD on XD .
� This sheaf FD has a chromatographic spectral sequence converging to the

GD –equivariant hypercohomology of FD .
� Each page Ei of this spectral sequence for i � 2 is a knot invariant (up to overall

shift) and the E2 page categorifies the colored HOMFLYPT polynomial.

In this section we discuss the first step.

First let us fix some notation. We fix a chain of vector spaces 0� V1 � V2 � V3 � � � �

over Fq such that dim Vi D i for all i . Let

Gi1;:::;in
WD GL.i1/� � � � �GL.in/;

and let Pi1;:::;in
be the block upper triangular matrices with blocks fi1; : : : ; ing. We

may identify Pi1;i2;:::;in
with the stabilizer in Gi1C���Cin

of the standard partial flag

f0� Vi1
� Vi1Ci2

� � � � � Vi1C���Cin
g:

Let D be a diagram of an oriented tangle with marked points, with no marked points
occurring at a crossing. Let � be the oriented graph obtained by the diagram’s
projection, with vertices corresponding to crossings and marked points in D . That
is, we simply forget the over and undercrossings in D . We deal with the exterior
ends of the tangle in a somewhat unconventional manner; we do not think of them as
vertices in the graph, so we think of the arcs connecting to the edge as connecting to 1

or 0 vertices. By adding marked points to D if necessary, we may assume that every
component of � contains at least one vertex.

Recall that to the diagram D we wish to associate a variety XD acted on by an
algebraic group GD . Let us write E.D/ and V.D/ for the edges and vertices of �
respectively. Given an edge e 2 E.D/ write Ge for Gi , where i is the label on e .
Similarly, given v 2 V.D/ write Gv for Gi , where i is the sum of the labels on the
incoming vertices at v (which necessarily equals the sum of the labels on the outgoing
vertices). We define

XD WD

Y
v2V.D/

Gv and GD WD

Y
e2E.D/

Ge:

Geometry & Topology, Volume 21 (2017)



2564 Ben Webster and Geordie Williamson

It remains to describe how GD acts on XD . Locally, near any crossing, � is isotopic
to a graph of the form:

e1
!!

v

e4

!!

e2

==

e3

==

We will call e1 and e2 upper and e3 and e4 lower edges with respect to the vertex v .
Whenever a vertex v lies on an edge e we define an inclusion map ieW Ge ! Gv ,
which is the identity if v corresponds to a marked point, and is the composition of the
canonical inclusions �

Gi ,!Gi;j ,!GiCj if e is upper,
Gi ,!Gj ;i ,!GiCj if e is lower.

That is, Ge is included as the upper left or lower right block matrices in Gv , according
to whether e is upper or lower.

We now describe how GD acts on XD by describing the action componentwise. Let
g 2Ge and x 2Gv . We have

g �x D ie.g/
!xie.g/

�˛;

where ! D 1 if e is incoming at v , and 0 otherwise, and ˛ D 1 if e is outgoing at v
and 0 otherwise. Thus, we have

g �x D

8̂̂̂<̂
ˆ̂:

x if v does not lie on e,
xie.g/

�1 if e is only outgoing at v,
ie.g/x if e is only incoming at v.
ie.g/xie.g/

�1 if e forms a loop at the vertex v.

Example 2.1 Here are two examples of XD and GD .

� Let D be the standard diagram of the unknot labeled i with one marked point:

� ��

i

Then we have XD DGD DGi and GD acts on XD by conjugation.

� If D is an oriented arc with a single marked point, then we have XD DGi �Gi ,
and GD DGi , with the action g � .a; b/D .ag�1;gb/, where a corresponds to the arc
leaving the marked point, and b to the arc entering it.

Geometry & Topology, Volume 21 (2017)



A geometric construction of colored HOMFLYPT homology 2565

� Let D be the diagram of an .i; j /–crossing:

i

��
j

??

Here XD DGiCj and GD DGi �Gj �Gj �Gi and .a; b; c; d/ acts on x 2GiCj by�
a 0

0 b

�
x

�
ccc�1 0

0 d�1

�
:

Note that if we glue two open edges with label i of the tangle diagram D together to
make a new diagram D0 by adding a marked point, then the spaces XD D XD0 are
isomorphic, but GD0 D GD �Gi , with the new factor acting on the factors in XD

corresponding to the glued edges.

The group Gi attached to a marked point acts freely if the two connected edges don’t
close into a loop, and removing this point simply quotients both XD and GD by
this Gi , leaving the equivariant geometry unchanged. Combining these observations
with the examples above is enough to construct XD and GD for any tangle diagram.

This is the variety and group that we shall use in our construction. But before defining
our invariant, we must first cover some generalities on categories of sheaves on these
varieties.

3 Mixed and equivariant sheaves

In the rest of this paper, we will be using the machinery of mixed equivariant sheaves.
In this section we intend to summarize the essential features of the theory that are
necessary for us, and to indicate to the reader where the details can be found.

3.1 Weight grading

An important point underlying what follows is that cohomology of a complex algebraic
variety (as well as most variations, such as equivariant cohomology, or intersection
cohomology) has an additional natural grading, the weight grading. This grading is
difficult to describe explicitly without using methods over characteristic p (as we will
later), but is best understood by two simple properties:
� The weight grading is preserved by cup products, pullback and all maps in long

exact sequences (in fact, by all differentials in any Serre spectral sequence).
� This weight grading is equal to the cohomological grading on smooth projective

varieties.

Geometry & Topology, Volume 21 (2017)



2566 Ben Webster and Geordie Williamson

Example 3.1 (cohomology of C� ) If we write CP1 as the union of C and CP1�f0g,
then in the Mayer–Vietoris sequence we have an isomorphism H 2.CP1/ŠH 1.C�/.
Thus, the cohomological and weight gradings do not agree on H 1.C�/.

We plan to describe homological knot invariants using the equivariant cohomology of
varieties, and the weight grading will be necessary to give all the gradings we expect
on our knot homology.

3.2 Sheaves and perverse sheaves

We must use a generalization of the weight grading, the weight filtration on a mixed
perverse sheaf. References for this section include [1], [9], [5] and [14]. Although
we will not use it below, we should also point out that there is a way to understand
mixed perverse sheaves which only uses characteristic-0 methods (Saito’s mixed Hodge
modules [22]; see the book of Peter and Steenbrink [21]).

Let qDpe be a prime power. We consider throughout a finite field Fq with q elements,
and an algebraic closure F of Fq . Unless we state otherwise all varieties and morphisms
will be defined over Fq . Given a variety X we will write X ˝F for its extension of
scalars to F .

We fix a prime number `¤ p and let k denote the algebraic closure Q` of the field of
`–adic numbers. We should note that the choices of p , q and ` are purely auxiliary;
the resulting knot homology will be independent of all of these choices. Throughout we
fix a square root of q in k and denote it by q1=2 . Given a variety Y defined over Fq

or F we denote by Db.Y / (resp. DC.Y /) the bounded (resp. bounded below) derived
category of constructible k–sheaves on Y ; see [9]. By abuse of language we also
refer to objects in Db.X / or DC.X / as sheaves. Given a sheaf F on X we denote
by F ˝ F its extension of scalars to a sheaf on X ˝ F . Given a sheaf F on X we
abuse notation and write

H�.F/ WDH�.X ˝F ;F ˝F/DH�.F ˝F/:

We never consider hypercohomology before extending scalars.

On the category Db.X /, we have the Verdier duality functor DW Db.X /!Db.X /op ,
and for each map f W X ! Y , we have Verdier dual pushforward functors

f�; f!W D
b.X /!Db.Y /

(often denoted Rf� and Rf! ), and Verdier dual pullback functors

f �; f !
W Db.Y /!Db.X /:

In Db.X / we have the full abelian subcategory P .X / of perverse sheaves; see [5].
We will call a sheaf F shifted perverse if F Œn� is perverse for some n 2 Z.

Geometry & Topology, Volume 21 (2017)
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3.3 The Frobenius and its action on sheaves

Given any variety X defined over Fq we have the Frobenius morphism

FrqW X !X;

which for affine X �Am is given by .x1; : : : ;xm/ 7! .x
q
1
; : : : ;x

q
m/. The fixed points

of Frqn WD .Frq/
n are precisely X.Fqn/, the points of X defined over Fqn .

Given any F 2Db.X / we have an isomorphism (see [5, Chapter 5])

F�q W Fr�qF �!� F ;

and obtain an induced action of F�qn WD .F
�
q /

n on the stalk of F at any point x2X.Fqn/.
By considering the eigenvalues of the action of F�qn on the stalks of F at all points
x 2 X.Fqn/ for all n � 1, one defines the subcategory of mixed sheaves Db

m.X / as
well as the full subcategories of sheaves of weight � w and weight � w for w 2 Z,
which we denote Db

�w.X / and Db
�w.X / respectively; see [5, Chapter 5], [10] or the

first chapter of [14]. An object is called pure of weight i if it lies in both Db
�i.X /

and Db
�i.X /.

Given any mixed sheaf F on X , all eigenvalues ˛ 2 k of Fr�q on H�.F/ are algebraic
integers such that all complex numbers with the same minimal polynomial have the
same complex norm, which by abuse of notation we denote by j˛j. As F is assumed
mixed, all such norms will be qi=2 for some i . Let H�˛.F/�H�.F/ be the generalized
eigenspace of ˛ , and let

(1) H�;i.F/ WD
M
j˛jDqi=2

H�˛.F/:

If X is proper and F pure, then the decomposition (1) will agree with the cohomological
grading of H�.F/ by the Riemann hypothesis for X ; that is, H�;i.F/DHi.F/. Since
we are not assuming that X is proper, this can fail even if F is pure. For example, if
X DA1nf0gŠG1 and F DkX , then as in Example 3.1, we have H�;2.F/DH1.F/.

Definition 3.2 The grading on H�.F/ where the elements of H�;i.F/ are defined to
have degree i is called the weight grading.

Remark 1 The constant sheaf on X has a unique mixed structure for which the
Frobenius acts trivially on all stalks, and its hypercohomology is the étale cohomology
of X . The i th graded component of H�.X Ik/ for the weight grading is H�I i.X Ik/.
So our previous discussion was a reflection of some of the properties of the Frobenius
action on the cohomology of algebraic varieties.
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If X D Spec Fq , then a perverse sheaf on X is the same as a finite-dimensional k–
vector space together with a continuous action of the absolute Galois group of Fq . In
particular we have the Tate sheaf k.1/, which under the above equivalence corresponds
to k, with action of F�q given by q�1 . Recall that we have fixed a square root q1=2

of q in k, allowing us to define the half Tate sheaf k
�

1
2

�
, with F�q acting by q�1=2 .

Given any X with structure morphism X
a
!Spec Fq and any sheaf F on X , we define

F
�

m
2

�
WD F ˝ a�k

�
1
2

�˝m
:

The following notation will prove useful:

Fhdi D F Œd �
�

d

2

�
:

If F is pure of weight w , then F Œd � is pure of weight w C d , and F.d=2/ pure
of weight w � d , so Fhdi is again pure of weight 0. The natural isomorphism
H�.F /ŠH�.F /hdi has degree d for both the weight and cohomological gradings.

The most important fact about mixed sheaves for our purposes is that every mixed
perverse sheaf F on X admits a unique increasing filtration W , called the weight
filtration, such that, for all i ,

grW
i F WDWiF=Wi�1F

is pure of weight i . Any morphism of mixed sheaves preserves this filtration. The de-
composition (1) comes from the weight filtration applied to the pushforward sheaf p�F
to a point.

In fact, after extension of scalars to the algebraic closure, the extensions in this filtration
are the only way that mixed perverse sheaves can fail to be semisimple.

Theorem 3.3 (Gabber; [5, Théorème 5.3.8]) If F is a pure perverse sheaf on X then
F ˝F is semisimple.

3.4 The function–sheaf dictionary

The eigenvalues of the Frobenius on stalks are also valuable for analyzing the structure
of a given perverse sheaf. To any mixed perverse sheaf F (or more generally, any mixed
sheaf) one may associate a function on X.Fqn/ for each n given by the supertrace of
the Frobenius on the stalks of the cohomology sheaves at those points:

ŒF �nW X.Fqn/! k; x 7! Tr.F�qn ;Fx/ WD
X

.�1/j Tr.F�qn ;Hj .Fx//:
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Proposition 3.4 These functions give a map from the Grothendieck group of the
category of mixed perverse sheaves to the abelian group of functions on X.Fqn/ for
each n, and these maps are jointly injective. That is, if F and G are semisimple and
ŒF �n D ŒG�n for all n, then F and G are isomorphic.

Proof The fact that these functions give a map of Grothendieck groups is just that
all maps in the long exact sequence must respect the action of the Frobenius, so the
supertrace is additive under extensions. The proof that this map is injective may be
found in [15, Théorème 1.1.2]; see also [14, Theorem 12.1].

This reduces the calculation of the constituents of a weight filtration to a problem of
computing ŒF �n for simple perverse sheaves, followed by linear algebra. Indeed, sup-
pose that F ;G 2Db

m.X / are such that ŒF �n and ŒG�n agree for all n, with G semisimple.
As ŒF �n D

P
ŒgrW

i F �n for all n, we conclude that grW
i F is isomorphic to the largest

direct summand of G of weight i .

3.5 The chromatographic complex

We want to explain how to move between the weight filtration and a complex, which we
term the chromatographic complex, composed of its pure constituents. For background,
the reader is referred to [8, Section 1.4] and [5, Section 3.1].

Let A be an abelian category with enough injectives and let DC.A/ denote its bounded
below derived category. We may also consider the filtered derived category DFC.A/
whose objects consist of K 2DC.A/ together with a finite increasing filtration

� � � �Wi�1K �WiK �WiC1K � � � � ;

where finite means that WiK D 0 for i � 0 and WiK DWiC1K for i � 0.

For all p we define
grW

p K WDW pK=W p�1K:

More generally, for q � p , let

.W p=W q/.K/ WDW pK=W qK:

For all p we have a distinguished triangle

grW
p K! .W pC1=W p�1/.K/! grW

pC1 K
Œ1�
�!

and in particular a “boundary” morphism grpC1
W
! grp

W
KŒ1�. Shifting, we obtain a

sequence

(2) � � � ! grW
pC1 KŒ�.pC 1/�! grW

p KŒ�p�! grW
p�1 KŒ�.p� 1/�! � � � :
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Lemma 3.5 The morphisms in (2) define a complex.

Proof After completing the (commuting) triangle

.W pC1=W p�1/.K/

++

grW
p K

55

// .W pC2=W p�1/.K/

to an octahedron, one sees that the morphism

grW
pC2 K! grW

pC1 KŒ1�! grW
p KŒ2�

may be factored as

grW
pC2!W pC1=W p�1.K/! grW

pC1 KŒ1�! grW
p KŒ2�:

However, the second two morphisms form part of a distinguished triangle, and so their
composition is zero.

Given any left exact functor T W A! B between abelian categories we can consider
the hypercohomology objects RiT .K/ 2 B , obtained by applying T to an injective
resolution of K . One has a spectral sequence

(3) E
p;q
1
DRpCqT .grW

�p K/)RpCqT .K/

(see [18, Theorem 2.6] or [8, Section 1.4.5]), and a diagram chase shows that the first
differential of this spectral sequence (ie the differential on the E1 page) is the same as
the differential obtained by applying RqT .�/ to the complex (2).

We now apply these ideas to Db
m.X /, where X and Db

m.X / are as in Section 3.3.

Lemma 3.6 Any G 2Db
m.X / admits a “filtration” � � � ! G�i ! G�iC1! � � � such

that:

(1) If we define gri.X / via the distinguished triangle

G�i�1! G�i! gri.G/
Œ1�
�!;

then gri.G/ is pure of weight i .

(2) gri.G/D 0 for ji j � 0.

We will refer to any sequence of maps satisfying the conditions of the lemma as a
weight filtration on G . As the choice of article emphasizes, this is not unique. (For
example, the reader may convince themselves easily that the zero object admits many
nonequivalent weight filtrations.)
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Proof It is enough to show that for any G 2 Db
m.X / there exists a distinguished

triangle

G�0! G! G>0
Œ1�
�!

with G�0 (resp. G>0 ) of weight � 0 (resp. > 0). If G is perverse then the statement
is an immediate consequence of the existence of weight filtrations on perverse sheaves
[5, Théorèm 5.3.5].

By induction on the perverse filtration it is enough to show the following claim: if

F ! G!K
Œ1�
�!

is a distinguished triangle of sheaves, and there exist distinguished triangles

F�0! F ! F>0
Œ1�
�! and K�0!K!K>0

Œ1�
�!

with F�0 and K�0 (resp. F>0 and K>0 ) of weights � 0 (resp. > 0), then there exists
a filtration

G�0! G!G>0
Œ1�
�!

satisfying the same conditions. For the rest of the proof the following notation will be
useful. Given a commutative triangle

A C

B

we denote by O.A;B; C/ the corresponding octahedron (the maps will be clear from
the context).

By considering O.G;K;K>0/ we deduce the existence of distinguished triangles

A! G!K>0
Œ1�
�! and F !A!K�0

Œ1�
�! :

By considering O.F�0;F ;A/ we deduce the existence of distinguished triangles

F�0!A! B Œ1�
�! and F>0! B!K�0

Œ1�
�! :

Because Hom.K�0;F>0Œ1�/ D 0 by [5, Proposition 5.1.15(ii)], we deduce that the
“connecting” map K�0! F>0Œ1� in the second triangle is zero, and hence that B Š
F>0 ˚ K�0 . (This decomposition is not canonical; we fix one.) By considering
O.A;B;F>0/ (the map B D F>0 ˚Z�0 ! F>0 is the projection) we deduce the
existence of distinguished triangles

C!A! F>0
Œ1�
�! and F�0! C!K�0

Œ1�
�! :
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In particular, C has weight � 0. Finally, by considering O.C;A;G/ we deduce the
existence of distinguished triangles

C! G! D Œ1�
�! and F>0! D!K>0

Œ1�
�! :

In particular, D has weight > 0. It follows that we can take G�0 WD C and G>0 WDD .

Applying the above considerations to F together with its weight filtration we obtain:

Definition 3.7 The local chromatographic complex of a mixed sheaf F 2Db
m.X / is

the complex of objects in Db
m.X / given by

� � � ! grW
pC1 F Œ�.pC 1/�! grW

p F Œ�p�! grW
p�1 F Œ�.p� 1/�! � � � :

Applying T DH�.�/ we obtain the global chromatographic complex,

� � � !H�.grW
iC1 F Œ�.i C 1/�/!H�.grW

i F Œ�i �/!H�.grW
i�1 F Œ�.i � 1/�/! � � � :

The spectral sequence (3) with T DH�.�/ is the chromatographic spectral sequence.

Note that the global chromatographic complex sends hdi to simultaneous grading
shift on terms of the complex, and the Tate twist .d=2/ to homological shift of the
complex. Unfortunately, this definition is not entirely an invariant of the object G , but
the dependence on choice of filtration is not very strong.

Proposition 3.8 The chromatographic complexes associated to two different weight
filtrations on a single object G 2 Db.X / are homotopy equivalent, after extending
scalars to F .

In particular, this shows that all pages of the chromatographic spectral sequence after
the first are independent of the choice of filtration.

Proof We note that if G is quasi-isomorphic to a complex � � � ! Fi ! � � � , then we
obtain a natural bicomplex by writing the chromatographic complexes of Fi vertically,
and then the maps induced by the original differentials horizontally. By Gabber’s
theorem, we note that after passing to F every term in this bicomplex is semisimple,
and the horizontal maps go between objects pure of the same degree, and thus split.

Now assume perverse sheaves F 0i form another complex isomorphic in the derived
category to G . For simplicity, we may assume there is a quasi-isomorphism �i W Fi!F 0i
between these complexes. This induces a map �# between our bicomplexes, which
is an isomorphism after taking horizontal cohomology, since this will give us the
chromatographic complexes of the perverse cohomology of G .
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Consider the kernel of �# . This is itself a bicomplex, and each of its rows has trivial
cohomology, and is split. Thus, each row is homotopic to 0. Furthermore, we can
choose these homotopies so that they commute with the vertical differentials, and thus
when applied to the total complex of the kernel, they show that this total complex is
nullhomotopic.

We now use the result that any surjective chain map whose kernel is homotopic to the
zero complex and is a summand of the chain complex with the differentials forgotten
is a homotopy equivalence (this is a consequence of Gaussian elimination). Thus, the
chromatographic complex from the Fi is homotopy equivalent to the total complex of
the image of �# , and the dual result applied to the inclusion of the image shows that
the chromatographic complex for F 0i is also equivalent to this image.

Proposition 3.9 The global chromatographic complex is preserved (up to homotopy)
by proper pushforward.

Proof Proper pushforward preserves purity, and thus sends weight filtrations to weight
filtrations. Furthermore, pushforward always preserves hypercohomology.

Corollary 3.10 If we let E
�;�
� be the chromatographic spectral sequence, then all

differentials preserve the weight grading on hypercohomology. Furthermore, we have:

� E
i;j
1
DHiCj .grW

�j F/ is the global chromatographic complex.

� E2 is the cohomology of the global chromatographic complex.

� The chromatographic spectral sequence converges to the hypercohomology
HiCj .F/.

Remark 2 It seems likely that it is possible to interpret the results of this section
in terms of “weight structures”, introduced by Bondarko [6] and Paukzsello [20]. In
particular, Bondarko shows the existence of a functor from a derived category equipped
with a suitable weight structure, to the homotopy category of pure complexes in a very
general framework.

3.6 The equivariant derived category

We have thus far discussed the theory of perverse sheaves on schemes, but we will
require a generalization of schemes that includes the quotient of a scheme X by the
action of an algebraic group G , which can be understood as G –equivariant geometry
on X .
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This quotient can be understood as a stack, but the theory of perverse sheaves on stacks
is not straightforward, and it proved more suitable to give a treatment of the equivariant
derived category similar to that of Bernstein and Lunts [4], but with an eye to working
over characteristic p with the action of the Frobenius (that is, “in the mixed setting”).
We have done this in a separate note [25].

The result is the bounded below equivariant derived category DC
G
.X / and its subcate-

gory Db
G
.X / of bounded complexes for a variety X acted on by an affine algebraic

group G . The resulting formalism is essentially identical to that of Bernstein and Lunts.
We now summarize the essential points.

We have a forgetful functor

ForW DC
G
.X /!DC.X /

which preserves the subcategories of bounded complexes and, given any F 2DC
G
.X /,

the cohomology sheaves of For.F/ are locally constant along the G –orbits on X .

Given an equivariant map f W X ! Y of G –varieties we have functors

f�; f!W D
C

G
.X /!DC

G
.Y / and f �; f !

W DC
G
.Y /!DC

G
.X /

for equivariant maps f W X ! Y of G–varieties. These functors commute with the
forgetful functor.

If H � G is a closed subgroup and X is a G–space, we have an adjoint pair
.resG

H
; indG

H / of restriction and induction functors

resG
H W D

C

G
.X /!DC

H
.X / and indG

H W D
C

H
.X /!DC

G
.X /:

These functors preserve the subcategories of bounded complexes, and one has an
isomorphism resG

f1g
Š For.

More generally, given a map �W H ! G , a G–variety X , an H –variety Y and a
�–equivariant map mW X ! Y , we have an adjoint pair .G

H
m�;G

H
m�/ of functors

G
H m�W DC

H
.Y /!DC

G
.X / and G

H m�W D
C

G
.X /!DC

H
.Y /:

As a special case, we have G
H

id�Š resG
H

and G
H

id�Š indG
H . The functor G

H
m� preserves

the subcategory of bounded complexes, but this is not true in general for G
H

m� . In fact,
this is the reason that we are forced to consider complexes of sheaves which are not
bounded above.

If G DG1 �G2 and G1 acts freely on X with quotient X=G1 , one has the quotient
equivalence

(4) DC
G
.X /ŠDC

G2
.X=G1/;
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which restricts to an equivalence between the subcategories of bounded complexes. If
we let �W G1 �G2!G2 denote the projection, then the quotient map X !X=G1 is
�–equivariant and the above equivalence is realized by G2

G1�G2
m� and G2

G1�G2
m� .

Using the forgetful functor ForW DC
G
.X /!DC.X / many notions carry over immedi-

ately. For example, we call an object F in DC
G
.X / perverse if and only if ForF is

perverse.

Moreover, if X is defined over Fq , then we can also incorporate the action of the
Frobenius. In particular, perverse objects in DC

G
.X / still have weight filtrations, which

are preserved by the restriction functor and we can extend Proposition 3.4 to the
equivariant setting.

4 Description of the invariant

Equipped with these geometric tools, we continue the construction of our invariant.

4.1 The sheaf associated to a diagram

In this subsection we describe the sheaf FD on XD .

We first discuss the case of a single .i; j /–crossing:

i
!!
v

!!

==

j

==

As we have seen, XD DGiCj . Consider the big Bruhat cell

(5) U WD fg 2GiCj j Vi \gVj D 0g;

and let kW U ,! GiCj denote its inclusion. As U is an orbit under Pi;j �Pj ;i it is
certainly GD –invariant. We now define Fv D FD 2DGD

.XD/ as follows:

i

��

??

j
7�! k�kU hij i;

i

��
j

??

7�! k!kU hij i:

As U is the complement of a divisor in GiCj , both these sheaves are shifted perverse.

We now consider the case of a general diagram D of an oriented colored tangle.
After forgetting equivariance, FD is simply the exterior product of the above sheaves
associated to each crossing. To take care of the equivariant structure we need to proceed
a little more carefully.
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Let D be the diagram of an oriented colored tangle and � its underlying graph. Let D0

be the diagram obtained from D by cutting each strand connecting two vertices in �
(so that D0 is a disjoint union of .i; j /–crossings). Let � 0 be the graph corresponding
to D0 . Obviously we have XD DX 0

D
. Note also that for every e with two vertices in

� , we have two edges, which we denote by e1 and e2 , in � 0 . We have a natural map
GD!G0

D
, which is the identity on factors corresponding to external edges, and is the

diagonal Ge!Ge1
�Ge2

on the remaining factors.

We define

FD WD resG
G0

�
�

v2V.D0/

Fv
�
2Db

GD
.XD/:

Of course, this sheaf depends on the link diagram used; different diagrams correspond
to sheaves on different spaces. Instead, we will studying the hypercohomology of these
sheaves, and the corresponding chromatographic spectral sequence.

Definition 4.1 We let Ai.L/ denote the i th page of the chromatographic spectral
sequence (as given by Definition 3.7) for FD . This is triply graded, where by convention
subquotients of Hj�`Ij�k.grW

`
FD/ lie in A

j IkI`
i .L/.

Remark 3 These grading conventions may seem strange, but they are an attempt to
match those already in use in the field. These conventions are almost those of [17],
though we will not match perfectly since we have different grading shifts in our
definition of the complex for a single crossing. We hope the reader finds these choices
defensible on grounds of geometric naturality. This simply changes the shift we must
apply to our invariant to assure it is a true knot invariant.

It is these spaces for i > 1 which we intend to show are knot invariants (up to shift).

4.2 Braids and sheaves on groups

As we mentioned in Section 1, in the special case of a braid ˇ , there is a different
perspective on this construction.

Let ˇ be the diagram of a colored braid on n strands with labels nD .i1; i2; : : : ; in/

and underlying labeled graph � . Let N D
Pn

jD1 ij denote the colored braid index.
We assume our braid is in generic position, so reading from start to finish, we fix an
order on the vertices v1; v2; : : : ; vp of � . This corresponds to an expression for ˇ in
the standard generators of the braid group.
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In the previous section we described how to associate to ˇ a group Gˇ and a Gˇ–
variety Xˇ . We can decompose Gˇ as

Gˇ DGC
ˇ
�G�

ˇ �G�ˇ ;

where GC
ˇ

, G�
ˇ

and G�
ˇ

denote the factors of Gˇ corresponding to incoming, interior
and outgoing edges of � respectively.

In what follows we will describe an action of GC
ˇ
�G�

ˇ
on GN and a map

mW Xˇ!GN

equivariant with respect to the natural projection �W Gˇ!GC
ˇ
�G�

ˇ
. We will study

our sheaf Fˇ by considering its equivariant pushforward under this map.

First we describe an embedding ˛vW Gv! GN corresponding to each vertex v 2 � .
Let us fix a basis e1; : : : ; eN of VN and let W1;W2; : : : ;Wn be vector spaces (again
with fixed bases) of dimensions i1; i2; : : : ; in respectively.

Definition 4.2 Given any permutation w 2 Sn , we let

hwW W D

nM
jD1

Wj �!
� V

be the isomorphism defined by mapping the basis vectors of Ww�1.1/ to the first w�1.1/

basis vectors of V in their natural order, the basis vectors of Ww�1.2/ to the next w�1.2/

basis vectors, etc.

For any braid ˇ , we have an induced permutation, and by abuse of notation, we let hˇ
be the map corresponding to this permutation.

In the obvious basis, this map is a permutation matrix. The corresponding permutation is
a shortest coset representative for the Young subgroup preserving the partition of Œ1;N �

of sizes i1; : : : ; in , corresponding to the “cabling” of the permutation w .

Now choose a vertex v in � and let e0 and e00 denote the two incoming edges which
are in the strands connected to the incoming vertices labeled j 0 and j 00 respectively,
so ij 0 and ij 00 are the labels on e0 and e00 . Because we have ordered the vertices of � ,
we may factor ˇ into braids ˛v � ˇv � !v , with ˇv consisting of a simple crossing
corresponding to v . The procedure described in the previous paragraph yields an
embedding

Wj 0 ˚Wj 00 ,!W
h˛v
��! VN :

This induces an embedding
�vW Gv ,!GN :
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We let braids on n strands act on sequences of n elements on the right by the usual
association of a permutation to each braid. We may then identify

GC
ˇ
ŠGn; G�ˇ ŠGnˇ;

and therefore obtain an action of GC
ˇ
�G�

ˇ
on GN by left and right multiplication.

We let PC
ˇ
D Pn and P�

ˇ
D Pnˇ . We denote by �W Gˇ! PC

ˇ
�P�

ˇ
the composition

of the natural projection with the inclusion G˙
ˇ
,! P˙

ˇ
.

Consider the map

mW Xˇ!GN ; .gv1
; : : : ;gvp

/ 7! �v1
.gv1

/�v2
.gv2

/ � � � �vp
.gvp

/:

It is easy to see that this map is equivariant with respect to � .

Definition 4.3 Let ˆˇ D P
C

ˇ
�P�

ˇ

Gˇ
m�Fˇ .

This definition is useful, since it is compatible with braid multiplication. We have a
diagram of equivariant maps of spaces:

GN �GN GN

�
//

GN �2
rr

GN �1ll

As usual, this diagram can be used to construct the functor of sheaf convolution:

�?� W Db
Pn�Pnˇ

.GN /�Db
Pnˇ�Pnˇˇ0

.GN /!Db
Pn�Pnˇˇ0

.GN /;

F1 ?F2 Š
Pn�Pnˇˇ0

Pn�Pnˇ�Pnˇˇ0
��

�
res

Pn�P2
nˇ�Pnˇˇ0

Pn�Pnˇ�Pnˇˇ0
.F1 �F2/

�
:

Theorem 4.4 We have a canonical isomorphism ˆˇ ?ˆˇ0 Šˆˇˇ0 .

We should note that here we are simply claiming that this holds for the composition
of diagrams. We will prove in Sections 8 and 9 that the sheaf we associate to a braid
doesn’t depend on the choice of presentation.

Proof Immediate from the definition of ˆ.

As G�
ˇ

acts freely on Xˇ , we may factor m as

Xˇ!Xˇ=G�
ˇ!GN :

One may verify that the second map is the composition of an affine bundle along which
Fˇ is smooth, and a proper map. It follows that

P
C

ˇ
�P�

ˇ

Gˇ
m�
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preserves the weight filtration on Fˇ . Hence the chromatographic spectral sequences
for Fˇ and ˆˇ are isomorphic.

Note that if ˇ is closable, then nˇ D n, and P˙
ˇ

have the same image in the group.
Thus these subgroups are canonically isomorphic. Let .Pˇ/� � PC

ˇ
� P�

ˇ
be the

diagonal and let y̌ be the colored link diagram given by the closure of ˇ .

Theorem 4.5 We have a canonical isomorphism between

� the chromatographic spectral sequence of F y̌ as a G y̌–sheaf, and

� the chromatographic spectral sequence of ˆˇ as a .Pˇ/�–sheaf.

Proof Since P� and G� are homotopy equivalent, the functor resP�
G�

is fully faithful,
so we may work with their restrictions instead. We have already observed that the
weight filtration on ˆˇ and the pushforward of the weight filtration on Fˇ agree. Thus
the equivariant chromatographic spectral sequences of

resGˇ

��1.H /
Fˇ and res

G
C

ˇ
�G�

ˇ

H
ˆˇ

are canonically isomorphic for any subgroup H �GC
ˇ
�G�

ˇ
.

On the other hand, we have a canonical identification G y̌Š�
�1..Gˇ/�/, and XˇDX y̌ ,

with
F y̌D resGˇ

G y̌
Fˇ:

The result follows.

5 Analyzing an .m; n/–crossing

5.1 Preliminary details

In this section we work out all the details for an .m; n/–crossing. This will be of use
in expressing the invariant in terms of bimodules.

We consider an .m; n/–crossing. Its underlying graph is

m ##
�

n

;;

m

##

n ;;

and the variety in question is GmCn acted on by Pm;n � Pn;m by left and right
multiplication: .p; q/ � g D pgq�1 for g 2 GnCm and .p; q/ 2 Pm;n � Pn;m . The
orbits under this action are

Oi D fg 2GmCn j dim Vm\gVn D ig;
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for 0� i �min.n;m/. Clearly Oj �Oi if and only if j > i . For all 0� i �min.n;m/
we denote the inclusion of the orbit Oi by fi W Oi ,!GnCm .

For each orbit Oi we have the corresponding intersection cohomology complex. It will
prove natural to normalize them by requiring

IC.Oi/jOi
Š kOi

hnm� i2
i:

Under this normalization each IC.Oi/ is pure of weight 0.

We first describe resolutions for the closures Oi �GmCn . Consider the variety

zOi D f.W;g/ 2 Grm
i �GmCn jW � Vm\gVng:

We have an action of Pm;n �Pn;m on zOi given by .p; q/ � .W;g/ D .pW;pgq�1/.
The second projection induces an equivariant map:

�i W zOi!Oi :

Proposition 5.1 This is a small resolution of singularities.

Proof The morphism �i is patently an isomorphism over Oi . Since Oi is exactly the
subset of GnCm where the induced map Vn! V =Vm has rank n� i , we have that Oi

has the same codimension in GmCn as the space of rank n� i matrices in Gn , which
is i2 . Hence, for j < i , Oi is of codimension i2� j 2 in Oj . Over any x 2 Oj the
fiber is the Grassmannian Grj

i . Thus

2 dim��1
i .x/D 2i.j � i/ < .j C i/.j � i/D codimOi

Oj :

Corollary 5.2 IC.Oi/Š �i�k zOi
hnm� i2

i:

Proof Proposition 5.1 implies that �i�k zOi
is a shift and twist of IC.Oi/, since

pushforward by a small resolution sends the constant sheaf to a shift of the intersection
cohomology sheaf on the target. The restriction of �i�k zOi

hnm�i2i to Oi is isomorphic
to kOi

hnm� i2i, which is our choice of normalization.

Given sheaves F ;G 2Db
G
.X / let us write

Hom�.F ;G/ WD
M

m

Hom.F ;GŒm�/:

This is a graded vector space.

Proposition 5.3 In Db
Pm;n�Pn;m

.G/ we have an isomorphism

Hom�.IC.Oi/; IC.Oi0//Š
M

j

Hom�.f �j IC.Oi/; f
!

j IC.Oi0//:
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Proof For flag varieties this is [3, Theorem 3.4.1]. One may reduce to this situation
using the quotient equivalence.

The space Hom�.IC.Oi/; IC.Oi0// itself has a weight grading, when thought of as
sections of the sheaf-Hom from Hom�.IC.Oi/; IC.Oi0//, which has a natural mixed
structure. The decomposition of Proposition 5.3 is compatible with the Frobenius
structure, and so the purity of the cohomology of Oi (which is an affine bundle over a
partial flag variety) and the pointwise purity of IC.Oi/ shows that the weight grading
of Hom�.IC.Oi/; IC.Oi0// agrees with the cohomological grading.

This shows that:

Proposition 5.4 In the mixed equivariant derived category Db
m;Pm;n�Pn;m

.G/, there
are no higher Exts between IC.Oi/ and IC.Oi0/hdi.

Proof By the purity discussed above, all of the eigenvalues of Frobenius on the space
Exti.IC.Oi/; IC.Oi0/hdi/ have complex norm pi=2 , so they are not 1. Thus, there are
no invariants of Frobenius in this space.

This shows immediately that:

Corollary 5.5 Any mixed .Pm;n�Pn;m/–equivariant sheaf F on G is the iterated
cone of its local chromatographic complex (in any dg-refinement). In particular, F is
indecomposable if and only if the same is true of its local chromatographic complex.

5.2 Calculating the weight filtration

Our aim in this section is to calculate the weight filtration on the sheaves associated to
positive and negative crossings. We set

Œn�q D 1C qC � � �C qn�1;

Œn�q!D Œn�q Œn� 1�q � � � Œ1�q;h
j
i

i
q
D

Œj �q

Œj � i �q!Œi �q!
:

In order to understand the constituents via the function–sheaf correspondence discussed
in Section 3.4, we must calculate the trace of the Frobenius on the stalks of IC.Oi/.
Base change combined with the Grothendieck–Lefschetz fixed point formula yields:

Corollary 5.6 If j > i and x 2Oj .Fqa/, we have

Tr.F�qa ; .�i�k zOi
/x/D # Grj

i .Fqa/D
h
j
i

i
qa
:
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In the following proposition W denotes the weight filtration.

Proposition 5.7 One has isomorphisms

grW
�i j!kO0

hnmi Š IC.Oi/
�

i
2

�
; grW

i j�kO0
hnmiŠ IC.Oi/

�
�

i
2

�
:

Proof Because taking weight filtrations commutes with forgetting equivariance, it
is enough to handle the nonequivariant case. Note also that IC.Oi/.i=2/ is pure of
weight �i . Thus, by the remarks in Section 3.4, the first statement of the proposition
follows from the equality of the functions

Œj!kO0
hnmi�qa D

X
i

�
IC.Oi/

�
i
2

��
qa

for all a� 1. Evaluating at a point x 2Oj .Fqa/ we need to verify that

.�1/nm=2ı0j q�anm=2
D

X
0�i�j

.�1/nm�i2

qa.i2�nm�i/=2
h
j
i

i
qa
;

or equivalently,

ı0j D

X
0�i�j

.�1/iqi.i�1/=2
h
j
i

i
q
;

which is a standard identity on q–binomial coefficients. The second statement follows
from the first by Verdier duality.

Proposition 5.8 We have equalities

dim Ext1.IC.Oi/; IC.OiC1//D dim Ext1.IC.OiC1/; IC.Oi//D 1:

Proof By the Verdier self-duality of IC sheaves, we have an equality of dimensions

dim Ext1.IC.Oi/; IC.OiC1//D dim Ext1.IC.OiC1/; IC.Oi//;

so we need only give a proof for one.

Using Proposition 5.3, we have that

dim Ext1.IC.Oi/; IC.OiC1//D dim Hom.IC.Oi/; IC.OiC1/Œ1�/

D dim Hom.f �iC1 IC.Oi/; f
!

iC1 IC.OiC1/Œ1�/;

since no other terms that appear in Proposition 5.3 can contribute in this degree (by the
conditions for being an IC sheaf).

Recall our small resolution �i W zOi!Oi from earlier. We have

f �iC1 IC.Oi/D f
�

iC1�i�k zOi
Œnm� i2�DH�.P i/˝k zOi

Œnm� i2�

Geometry & Topology, Volume 21 (2017)



A geometric construction of colored HOMFLYPT homology 2583

by the proper base change theorem and the fact that �i is a fiber bundle with fiber P i

over OiC1 . Thus

Hom.f �iC1 IC.Oi/; f
!

iC1 IC.OiC1/Œ1�/

D Hom.H�.P i/˝kOi
Œnm� i2�;kOi

Œnm� .i C 1/2C 1�/

D Hom.H�.P i/˝kOi
;kOi

Œ�2i �/D k

because Hom.kOi
;kOi

Œa�/D 0 for a< 0, and H 2i.P i/D k.

Corollary 5.9 The local chromatographic complex of j!kO0
hnmi is the unique com-

plex of the form

0! IC.O0/! IC.O1/h1i ! � � � ! IC.Oi/hii ! � � �

where all differentials are nonzero. Similarly, that for j�kO0
hnmi is the unique

complex of the form

� � � ! IC.Oi/h�ii ! � � � ! IC.O1/h�1i ! IC.O0/! 0

also where all differentials are nonzero.

Remark 4 This corollary shows that this chromatographic complex categorifies the
MOY expansion of a crossing in terms of trivalent graphs, with IC.Oi/ corresponding
to the following MOY graph:

**
m

//
i 44

n

33

n

//

nCm�i ++

m

��
m�i

GG n�i

Proof The terms in the complex are determined by Proposition 5.7, and Proposition 5.8
implies that the isomorphism type of the complex is just determined by which maps are
nonzero. Since j!kO0

and j�kO0
are indecomposable, all these maps must be nonzero

by Corollary 5.5.

6 The invariant via bimodules

6.1 The global chromatographic complex of a crossing

The following lemma gives a description of zOi as a “Bott–Samelson” type space.
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Lemma 6.1 We have an isomorphism of .Pm;n�Pn;m/–equivariant varieties

zOi Š Pm;n �Pi;m�i;n
Pi;mCn�i �Pi;n�i;m

Pn;m:

Proof The map sending Œg; h; k� to .gVi ;ghVn;ghk/ defines a closed embedding

Pm;n �Pi;m�i;n
Pi;mCn�i �Pi;n�i;m

Pn;m ,! Grm
i �GrnCm

n �GmCn:

Its image is given by triples .W;V;g/ satisfying W � V and V D gVn , which is
isomorphic to zOi under the map forgetting V .

Definition 6.2 We let Ri1;:::;im
D kŒx1; : : : ;xm�

Si1
�����Sim be the rings of partially

symmetric functions corresponding to Young subgroups. We will use without further
mention the canonical isomorphism Ri1;:::;im

ŠH�.BGi1;:::;im
/ sending Chern classes

of tautological bundles to elementary symmetric functions.

Given a graded module or bimodule M over any ring R, we let M.n/ be the same
module with the grading decreased by n.

Corollary 6.3 As .Rm;n˝Rn;m/–modules, we have natural isomorphisms

H�Pm;n�Pn;m
. zOi/ŠMi

def
D Ri;m�i;n˝Ri;mCn�i

Ri;n�i;m;

H�Pm;n�Pn;m
.IC.Oi//ŠMi.nm� i2/:

Proof The first equality follows immediately from the main theorem of [4] (which we
restated in the most convenient form for our work in our earlier paper [26, Theorem 3.3])
and Lemma 6.1. The second is a consequence of Corollary 5.2.

Now have a global version of Proposition 5.8:

Proposition 6.4 The spaces of bimodule maps

HomRm;n˝Rn;m
.Mi.�2i/;Mi�1/ and HomRm;n˝Rn;m

.Mi.2i/;MiC1/

are trivial in degrees < 1, and one-dimensional in degree 1.

Proof This follows from [28, Theorem 5.4.1]. In fact, combined with Proposition 5.3,
the theorem cited above implies that we have isomorphisms

HomRm;n˝Rn;m
.Mi.�2i/;Mi�1/Š Hom�.IC.Oi/; IC.Oi�1//;

HomRm;n˝Rn;m
.Mi.2i/;MiC1/Š Hom�.IC.Oi/; IC.OiC1//;

with grading degree on module maps matching the homological grading. Thus, this
result is equivalent to Proposition 5.8.
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Corollary 6.5 The global chromatographic complex of j!kO0
hnmi is the unique

complex of the form

(6) M�
D � � �

@�
iC1

���!MiC1.nm� i.i C 1//
@�

i
��!Mi.nm� i.i � 1//

@�
i�1
���! � � �

where all differentials are nonzero. Similarly, that for j�kO0
hnmi is the unique

complex of the form

(7) MC
D � � �

@
C

i�1
�!Mi.nm� i.1C i//

@
C

i
�!MiC1.nm� .i C 1/.i C 2//

@
C

iC1

�! � � �

also where all differentials are nonzero.

We note that these are the complexes defined in [17, Section 8], with slight change in
grading shift, since they have the same modules, and there is only one such complex
up to isomorphism.

We note that these maps have a geometric origin. Consider the correspondence

zOiC1;i D f.U;W;g/ 2 Grn
iC1 �Grn

i �GnCm j gVn\Vm � U �W g:

Obviously, we have natural maps:

zOiC1;i

p1
i

{{

p2
i

""

zOiC1
zOi

Proposition 6.6 Up to scaling, we have equalities

@�i D .p
2
i /�.p

1
i /
�; @Ci D .p

1
i /�.p

2
i /
�:

Proof We note that .p2
i /�.p

1
i /
� has the expected degree and is nonzero. Thus it must

be @�i . Similarly with .p1
i /�.p

2
i /.

6.2 Building the global chromatographic complex, I: via canopolises

Now, we are faced with the question of how to build the global chromatographic complex
of an arbitrary braid fragment (by which we mean a tangle that can be completed to a
closed braid by planar algebra operations).

While the operations we describe are nothing complicated or mysterious, it can be
a bit difficult to both be precise and not pile on unnecessary notation. In an effort
to give an understandable account for all readers, we give two similar, but slightly
different, expositions of how to build the complex for a knot: one quite analogous to
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Khovanov’s exposition in [12] using braids and their closures, and one in the language
of planar algebras and canopolises, in the vein of the work of Bar-Natan [2] and the
first author [24].

This approach is based around planar diagrams in sense of planar algebra: a planar
diagram is a crossingless tangle diagram in a planar disk with holes. A canopolis is a
way of formalizing the process of building up a tangle by gluing smaller tangles into
planar diagrams.

Our definition of our geometric invariant can be phrased in this language. Given a
tangle T written as a union of smaller tangles Ti in a planar diagram D , the space XT

has a product decomposition XT Š
Q

i XTi
, and GT is a subgroup of

Q
i GTi

, given
by taking the diagonal inside the factors corresponding to the edges on Ti and Tj

identified by D .

That is, the sheaf FD can be built from the sheaves corresponding to crossings by
successive applications of exterior product and restriction of groups. It is easy to
understand how each of these affects chromatographic complexes, and our desired
invariant can be built piece by piece.

Formally, to each oriented colored tangle diagram in a disk with boundary points
fp1; : : : ;pmg, we will associate a complex of modules over R… D H�

�Q
i BGpi

�
,

where we use … to denote all the boundary data of the tangle (the points, their coloring,
their orientation).

The association of the category K.R…–mod/ of complexes up to homotopy over R…

to the boundary data … (with their colorings) is a canopolis K, where the functor
associated to a planar diagram is an analogue of that used in the canopolis M0 in [24].
The canopolis functor

z�W K.R…1
–mod/� � � � �K.R…k

–mod/!K.R…0
–mod/;

associated to a planar diagram with outer circle labeled with …0 and k inner circles
labeled with …1; : : : ;…k , will be given by tensoring with a complex of .R…0

;R…�/–
bimodules, where R…� DR…1

˝ � � �˝R…k
.

Let A.�/ be the set of arcs in �, let ˛a; !a be the tail and head of a2A.�/, and let na

be the integer a is colored with. Associated to each arc is the sequence

.e1.!a/� e1.˛a/; : : : ; ena
.!a/� ena

.˛a//;

which identifies the classes ei 2H�.BGn/ corresponding to the elementary symmetric
polynomials (geometrically, these are the Chern classes of the tautological bundle
on BGn ) for the endpoints connected by the arc. To our diagram, we associate the
concatenation of these sequences.
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Let �.�/ be the Koszul complex over R…0
˝� � �˝R…k

of this concatenated sequence
for our diagram �, which we think of as a bimodule with the R…0

action on the left
and the R…� on the right.

Definition 6.7 The canopolis functor z� associated to the diagram � is �.�/˝
R…�
� .

Proposition 6.8 The map sending a tangle T to the global chromatographic complex
of FT is a canopolis map.

Proof We simply need to justify why tensoring with such a Koszul resolution (which is
a free resolution of the diagonal bimodule for H�.BGpi

/) is the same as changing GT

to only include the diagonal subgroup of G!a
�G˛a

. This is one of the basic results
of [4]; as we mentioned earlier, this is rephrased most conveniently for us in [26,
Theorem 3.3].

Remark 5 We note that this construction at no point used the fact that our diagram
should be a braid fragment; unfortunately, it is unclear whether our construction will
be invariant under the oppositely oriented Reidemeister II move, as with Khovanov
and Rozansky’s original construction (see, for example, [24, Section 3]), though we
will note that proving invariance under this move for the labeling with all labels 1 is
sufficient to imply it for every labeling, by the same cabling arguments we will use
later.

6.3 Building the global chromatographic complex, II: via bimodules

A less flexible, but perhaps more familiar, perspective is to associate to each braid
a complex of bimodules, in a manner similar to [12] (though the same complex had
previously appeared in other works on geometric representation theory). In the case
where all labels are 1, our construction will coincide with Khovanov’s.

As in Section 4.2, we let ˇ be a braid with n strands, and nD .i1; : : : ; im/ be the labels
of the top end of the strands (so nˇ is the labeling of the bottom end). In that section,
we showed that our invariant can also be described in terms of the chromatographic
complex of a sheaf ˆˇ on GN .

This sheaf has the advantage that it can be built from the sheaves for smaller braids by
convolution of sheaves. However, convolution of sheaves is a geometric operation which
is not always easy to understand. Thus, we will give a description of it using the tensor
product of bimodules. Let F.ˇ/ be the Pn�Pnˇ –equivariant global chromatographic
complex of ˆˇ , considered as a complex of bimodules over H�.BPn/ and H�.BPnˇ/.
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Proposition 6.9 We have natural isomorphisms

F.ˇˇ0/Š F.ˇ/˝H �.BPnˇ/ F.ˇ0/:

Proof Form the exterior product ˆˇ�ˆˇ0 on GN�GN . The Pn�Pnˇ�Pnˇ�Pnˇˇ0 –
equivariant chromatographic complex of this is F.ˇ/˝C F.ˇ0/. If we restrict to the
diagonal Pnˇ , then this complex is

F.ˇ/
L
˝H �.BPnˇ/ F.ˇ0/:

By the equivariant formality of all simple, Schubert-smooth perverse sheaves on a
partial flag variety, F.ˇ/ is free as a right module, so it is not necessary to take derived
tensor product.

By the convolution description, we have

ˆˇ 0̌ Š
Pn�Pnˇˇ0

Pn�Pnˇ�Pnˇˇ0
��.ˆˇ;ˇ0/;

where �W GN � GN ! GN . Since G=Pnˇ is projective, this map simply has the
effect of forgetting the H�.BPnˇ/ action on each page of the chromatographic spectral
sequence.

Thus, we can construct F.ˇ/ just by knowing the complex F.�˙1
i / for the elementary

twists �˙1
i . However, first we must compute the corresponding sheaves. Given n, we

let Qj D Pi1;:::;ijCijC1;:::;in
and Q̊j DQj �Q0 .

Proposition 6.10 We have isomorphisms

ˆ�i
D j�kQ̊i

hiiiiC1i; ˆ��1
i
D j!kQ̊i

hiiiiC1i;

where j W Q̊i ,!GN is the obvious inclusion.

The global complex of this is very close to the complex MC described in (6), considered
as a complex of .Rii ;iiC1

;RiiC1;ii
/–bimodules. However, we must extend scalars to

get a complex of .Rn;R�i n/–bimodules:

Proposition 6.11 F.�˙1
i /DRi1;:::;ii�1

˝Q M˙
˝Q RiiC2;:::;ik

:

Again, this is precisely the complex given in [17, Section 8] up to grading shift.

If nˇ D n, then we can close this braid to a link. Our definition of the knot invariant
for this link is the equivariant chromatographic complex for the diagonal Pn action.
By the authors’ previous work [26, Theorem 1.2], this coincides with the Hochschild
homology HH�.F.ˇ//, applied termwise, of the complex F.ˇ/.

Geometry & Topology, Volume 21 (2017)



A geometric construction of colored HOMFLYPT homology 2589

Proposition 6.12 The cohomology of the complex HH�Rn
.F.ˇ// coincides with the

invariant A2. y̌/ of the closure of the braid.

In fact, the chromatographic spectral sequence is exactly the natural spectral sequence

Hi.HHj .F.ˇ///)HiCj .K˝Rn˝Rn
F.ˇ//;

where K is a free resolution of Rn as a Rn˝Rn –module.

Proof Let � W GN ! pt, and consider the object ��ˆˇ in the equivariant derived
category DPn�Pn

.pt/. Under the equivalence to Rn –dg-bimodules given in [25,
Theorem 7], this is sent to the complex F.�/. Similarly, the weight filtration is sent to
that induced by thinking of F.ˇ/ as a complex. Thus, the spectral sequences match
under this equivalence.

Since H�.HH�.F.ˇ/// is precisely the invariant proposed by [17], Theorem 1.4 follows
immediately.

7 Decategorification

We also wish to show that our knot invariant is, in fact, a categorification of the
HOMFLYPT polynomial.

7.1 A categorification of the Hecke algebra

This requires a few basic results about the relationship between sheaves on Gn and the
Hecke algebra Hn . As usual, B D P1;:::;1 is the standard Borel.

Definition 7.1 The Hecke algebra Hn is the algebra over ZŒq1=2; q�1=2� given by the
quotient of the group algebra of the braid group Bn by the quadratic relation

.�i C q1=2/.�i � q�1=2/D 0

for each elementary twist �i .

Proposition 7.2 [14] The Grothendieck group K0.Db
B�B

.Gn// of the equivariant
derived category Db

B�B
.Gn/ is isomorphic to the Hecke algebra Hn , with the convolu-

tion product decategorifying to the algebra product in Hn .

This map is fixed by the assignment

Œj�kBsi B � 7! q1=2�i ;

where j W BsiB ,!Gn is the obvious inclusion.
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Let F be a B �B –equivariant sheaf on Gn . Then we have a map

EB.GIF/D
X
i;j ;k

.�1/`qj=2tk dim Hj�`Ij�k
B�

.grW
` F/;

sending the class of F in the Grothendieck group to the bigraded Euler characteristic
of its global chromatographic complex, often called the mixed Hodge polynomial.

This map agrees with a previously known trace on the Hecke algebra, a fact that the
authors have proven in a separate note, due to its independent interest and separate
connection to the question of constructing Markov traces on general Hecke algebras.

Proposition 7.3 [27, Theorem 1] The map EB.GnI �/ is the Jones–Ocneanu trace Tr
.see [11]/ on Hn with appropriate normalization factors.

Remark 6 This geometric definition applies equally well to any simple Lie group, and
defines a canonical trace on the Hecke algebra for any type. In fact, our construction
can be modified in a straightforward way to a “triply graded homology” invariant on all
Artin braid groups. In type B, this can be interpreted as a homological knot invariant
for knots in the complement of a solid torus.

7.2 Decategorification for colored HOMFLYPT

To apply this result, we must relate our construction to the categorification of the
Hecke algebra above. Recall that if � is a braid with all labels 1, then ˆ� is an object
of Db

B�B
.Gn/.

Proposition 7.4 The class Œˆ� � 2 Hn is the image of � under the natural map
Bn! Hn .

This, combined with Proposition 7.3, gives a new proof of the result of Khovanov [12]
that when all components are labeled with 1, the invariant

E.L/D EGD
.XD IFD/D

X
i;j ;k

.�1/`qj tk dimA
j IkI`
2

.L/

is the appropriately normalized HOMFLYPT polynomial of the link L underlying
the diagram D . We wish to extend this to the colored case. For this, we must use a
“cabling/projection” formula.

Consider a closable colored braid � , and let P D Pn and G DGN . We have defined
a P�P –equivariant sheaf ˆ� on G by the multiplication map mW X� !G .

Theorem 7.5 For any colored link L, the Euler characteristic E.D/ is the (suitably
normalized) colored HOMFLYPT polynomial for any diagram D of L.
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In order to prepare for the proof, we show a pair of lemmata. Let �cab denote the
cabling of � in the blackboard framing with multiplicities given by the colorings,
thought of as colored with all labels 1.

Lemma 7.6 We have an isomorphism of P �B –equivariant sheaves,

resP�P
P�B ˆ� Š indP�B

B�B ˆ�cab :

Proof The proof is a straightforward induction on the length of � , left to the reader.

Let �n be the partition given by arranging the parts of n in decreasing order, and let �t
n

be its transpose. Let �n be the projection in the Hecke algebra to the representations
indexed by Young diagrams less than �t

n in dominance order. Alternatively, if we
identify HN with the endomorphisms of V ˝N , where V is the standard representation
of Uq.slm/ for m� n, then this is the projection to

Vi1V ˝ � � �˝
VinV .

Let qP D
P

WP
q`.w/ be the Poincaré polynomial of the flag variety P=B .

Lemma 7.7 For every complex ˆ in Db
B�B

.G/, we have

ŒresB�B
P�B indP�B

B�B ˆ�D qP�P Œˆ�:

Proof First consider the case where P DG . In this case, the sheaf resB�B
G�B

indG�B
B�B ˆ

has a filtration whose successive quotients are of the form Hi.ˆ/˝kG . Thus we have

ŒresB�B
G�B indG�B

B�B ˆ�D dimq H�.ˆ/ � ŒkG �:

It is a classical fact that ŒkG �D qG�G ; here �G is just the projection to
VN

V . This
computation immediately extends to the general case.

Remark 7 This proposition shows why our approach works for colored HOMFLYPT
polynomials, but would need to be modified to approach the HOMFLY polynomials
for more general type A representations; we lack a good categorification of most of the
projections in the Hecke algebra, but �P has a beautiful geometric counterpart. This
may be related to the fact that �P is the projection not just to a subrepresentation, but
in fact to a cellular ideal in Hn .

Proof of Theorem 7.5 Immediately from Lemmata 7.6 and 7.7, we have the equality
of Grothendieck classes ŒresP�P

B�B
ˆ� �D qP�P Œˆ�cab �. Thus

EP .GIˆ� /D q�1
P EB.GI resP�P

B�B ˆ� /

D Tr.q�1
P ŒresP�P

B�B ˆ� �/

D Tr.�P Œˆ�cab �/:
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By the “projection/cabling” formula (see, for example, [16, Lemma 3.3]), this is
precisely the colored HOMFLYPT polynomial.

8 The proof of invariance: the 1–colored case

We first concentrate on the simpler case of GL.2/ before attacking the general case. In
this case, we will obtain an invariant which matches the HOMFLYPT homology of
Khovanov and Rozansky [13; 12], so the section below can be thought of as a geometric
proof of the invariance of this homology theory.

Recall that if � is a braidlike diagram on n strands, we described in Section 4.2 a map

mW X� !Gn

which is equivariant with respect to �W G� ! T �T , where T �T acts on Gn by left
and right multiplication. This map gives rise to a functor

B�B
G�

m�W D
C

GD
.XD/!DC

T�T
.Gn/;

and we denoted the image of F� by ˆ� . We saw that this functor preserves weight
filtrations.

Now suppose that w is an element of the symmetric group on n letters (which we
regard as permutation matrices in Gn ) and that � D �i1

�i2
� � � �ip is a (positive) braid

in the standard generators corresponding to a reduced expression si1
� � � sip for w .

It is straightforward to see that if we restrict m to the open set zU in GD consisting of
tuples .g1; : : : ;gp/ with each gi 2 U , where U denotes the open Bruhat cell in G2 ,
then we may factor m as

(8) zU ! zU = ker�!Gn;

where the first map is a quotient by a free action, and the second map is an isomorphism.

Moreover, if we denote by B the subgroup of upper triangular matrices, then the image
of the restriction of m to zU is contained in Schubert cell BwB . It follows that

(9) ˆ� D jw�kBwBh`.w/i;

where jw denotes the inclusion of the Bruhat cell BwB into Gn .

Proposition 8.1 Theorem 1.2 holds in the case where all strands are labeled by 1.
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Proof As usual with proofs that knot invariants defined in terms of a projection are
really invariants, we check that our description is unchanged by the Reidemeister
moves. Since we only consider closed braids, we only need to check Reidemeister II
and III in the braid-like case, when all strands are coherently oriented. Those who
prefer to use the Markov theorem can consider the proof of Reidemeister I as a proof
of the Markov 1 move, and the Reidemeister II and III calculations as proving the
independence of the presentation of our braid in terms of elementary twists and of the
Markov 2 move (which only uses Reidemeister IIa).

In each case, we will use the fact that while we wish to compare the pushforwards of
sheaves corresponding to diagrams D and D0 from XD=GD and XD0=GD0 to a point,
we can accomplish this by showing that their pushforwards by any pair of maps to any
common space coincide. Being able to use these techniques is one of the principal
advantages of a geometric definition over a purely algebraic one.

In each case, the calculation we need to do is local in terms of diagrams. Proposition 6.8
implies that if we show that we have an isomorphism of global chromatographic
complexes of two diagrams as modules over the polynomial rings attached to external
edges, then “pasting” these into a fixed larger diagram again gives an isomorphism of
global chromatographic complexes.

Reidemeister I Consider the following tangles:

(10) D D D0 D

To simplify notation we denote the associated varieties by X and X 0 and groups by G

and G0 , respectively. We have X D G2 and X 0 D G1 , G D G3
1

and G0 D G2
1

. The
determinant gives a map

d W X !X 0;

which is equivariant with respect to the map �W G! G0 forgetting the factor corre-
sponding to the internal edge. We wish to exhibit an isomorphism

(11) G0

G d�FD Š FD0

compatible with the weight filtrations on both sheaves. Note that the weight filtration
on FD0 is trivial, whereas that on FD is not.
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Let B
a
,!X

b
 - BsB be the decomposition of X DG2 into its two Bruhat cells. We

have a distinguished triangle

a!a
!kX h1i ! kX h1i ! b�b

�kX h1i
Œ1�
�! :

Because a is the inclusion of a smooth divisor, a!kX DkX h�2iDkX Œ�2�.�1/. Hence

a!kX h1i D kX Œ�1�
�
�

1
2

�
:

Turning the triangle gives the weight filtration on b�kBsBh1i:

(12) kX h1i ! b�kBsBh1i ! a�kB

�
�

1
2

� Œ1�
�! :

The left (resp. right) hand term is pure of weight 0 (resp. 1). In the following we
analyze the effect of G0

G
d� on this triangle.

The restriction of d to BsB �X is a trivial G1�A2 –bundle over X 0 . One may easily
check that ker� acts freely on the multiplicative group in the fiber. It follows that

G0

G d�b�kBsB Š kX 0 :

On the other hand, the restriction of d to B �X yields a trivial G1�A1 –bundle, with
ker� only acting on A1 . It follows that

G0

G d�a�kB DH �.P1/˝H �.G1/˝kX 0 :

Applying G0

G
d� to (12) and using the above isomorphisms, we obtain

G0

G d�kX h1i ! kX 0h1i !H �.P1/˝H �.G1/˝kX 0

�
�

1
2

� Œ1�
�! :

As Hom.k
X 0
;k

X 0
Œi �/DH i

G0
.X 0/ is zero for i < 0 we conclude that the second arrow

above is zero. Thus, the induced weight filtration on k
X 0

is trivial. Thus, we have the
desired Equation (11). As discussed before, the general case follows from Section 6.2,
where we think of adding the rest of the diagram as a canopolis operation.

Reidemeister IIa Here we are concerned with the following two tangles:

D D D0 D

We denote the associated varieties and groups X , X 0 , G , G0 . We denote by m the
multiplication map X !G2 considered at the start of this section. We regard X 0 as
the diagonal matrices inside G2 .
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We have seen that G0

G
m� preserves weight filtrations, and hence we may ignore weight

filtrations when comparing G0

G
m�FD and FD0 . The map B ! X 0 forgetting the

off-diagonal entry is acyclic, and therefore it is enough to show that G0

G
m�FD Š k

B
.

We decompose G2 into its Bruhat cells B
a
,! G2

b
 - BsB as before. We claim we

have isomorphisms

G0

G m�.a�kB � b!kBsB/Š b!kBsB;(13)
G0

G m�.kG � a�kB/Š kG ;(14)
G0

G m�.kG � kG/Š kG ˚kGh�2i;(15)
G0

G m�.kG � b!kBsB/Š kGh�2i:(16)

(As always we regard the exterior tensor product of equivariant sheaves on G2 as an
equivariant sheaf on X via restriction.)

Indeed, (13) and (14) follow from the fact that the restriction of m to B �G or G �B

is a trivial B –bundle, with ker� acting freely on the multiplicative groups in the fiber.
The factorization (8) of m as “essentially a P1 –bundle” implies (15). Then (16) follows
from the others by taking the exterior tensor product of k

G
with the distinguished

triangle b!kBsB
! k

G
! a�kB

! and applying G0

G
m� .

Now B is smooth of codimension 1 inside G2 so a!k
G
D k

B
h�2i and we have an

exact triangle

a�kBh�2i ! kG! b�kBsB

Œ1�
�! :

Taking the exterior tensor product with b!kBsB
, applying G0

G
m� and using the above

isomorphisms we obtain a distinguished triangle

(17) b!kBsBh�2i ! kGh�2i ! G0

G m�.b�kBsB � b!kBsB/
Œ1�
�! :

Note that Hom.b!kBsB
;k

G
/ is one-dimensional and contains the adjunction morphism

b!b
!k

G
! k

G
. By considering its dual, one may show that the first arrow in (17) is

nonzero. It follows that this arrow is the adjunction morphism (up to a nonzero scalar)
and we have an isomorphism

G0

G m�.b�kBsB � b!kBsB/Š kBh�2i:

Finally note that by definition FD is b�kBsB
� b!kBsB

h2i and so

G0

G m�FD Š kB;

which finishes the proof of invariance under Reidemeister II.
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Reidemeister III This follows immediately from the considerations at the beginning
of this section. Indeed, if � and � 0 are the diagrams corresponding to the words �1�2�1

and �2�1�2 we have maps

X�
m
!G3

m0

 X� 0

and we have
T�T

G�
m�F� Š jw0

kBw0B Š
T�T

G�
m0�F� 0 ;

where w0 indicates the longest element in S3 .

9 The proof of invariance: arbitrary labels

Now, we expand to the full case of all possible positive integer labels.

Proof of Theorem 1.2 All of the Reidemeister moves can simply be reduced to the
corresponding statement for the cabling with all labels 1. Interestingly, the same trick
was used in [17] to prove invariance in a special case. Almost certainly our proof could
be rephrased in a purely algebraic language like their paper, though at the moment it is
unclear how.

Reidemeister IIa & III Here we need only establish the isomorphisms of P�P –
equivariant sheaves

ˆ�i
?ˆ��1

i
Š kP and ˆ�i

?ˆ�iC1
?ˆ�i

Šˆ�iC1
?ˆ�i

?ˆ�iC1
:

Lemma 7.6 implies that these hold as P�B –equivariant sheaves, applying the invari-
ance for the cabling with all labels 1.

In fact, both are the �–inclusion of a local system on a P�P –orbit: P itself in the
first case, and the P�P orbit of the permutation corresponding to the cabling of
�i�iC1�i in the second. Since the stabilizer of any point under P�P is connected,
any P�B–equivariant local system on an orbit has at most one P�P –equivariant
structure, and this equality holds as P�P –equivariant sheaves.

Reidemeister I We again use the “cabling/projection” philosophy, but this argument
requires a bit more subtlety. We are interested in the chromatographic complex of a
single crossing with its right ends capped off; that is, the tangle projection denoted
by D in (10). To construct the sheaf FD , we take U � G2n , as defined in (5), and
consider j�kU

hn2i or j!kU
hn2i, depending on whether our crossing is positive or

negative. These cases are Verdier dual, and the proofs of invariance are essentially
identical, so we will treat the positive case, and only note where the negative differs.
If we consider this sheaf equivariantly for the action of Gn;n on the left and the right,
then we obtain the sheaf attached to a single crossing with label n on both strands.
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By convention, we let G1 denote the first copy of Gn �Gn;n and G2 the second. As
before, we let Tn be diagonal matrices in Gn , and we use T 1;T 2 for the inclusions
into the two factors. We let G1;1;2 denote G1�G1� .G2/� ; that is, the left and right
action of G1 , and the conjugation action of G2 . This is the group GD for the diagram
labeled D in (10). The sheaf FD for this diagram is thus j!kU

hn2i (or j�kU
hn2i

if D is taken with a positive crossing) considered equivariantly for G1;1;2 .

Thus in order to prove the theorem, what we must do is consider the G1;1;2 –equivariant
global chromatographic complex of FD as a H�.BG1/–bimodule, and show that it
matches that of an untwisted strand (the diagram denoted D0 in (10)).

Note that for any Gn sheaf F on any Gn –space X , the inclusion of the symmetric group
as permutation matrices normalizing Tn gives an action of Sn on H�

Tn
.X I resGn

Tn
F/.

Lemma 9.1 The natural transformation of functors

H�
G1;1;2.G2nI �/!H�

G1;1�T 2.G2nI resG1;1;2

G1;1�T 2 �/

is the inclusion of the Sn –invariants for the permutation action on T 2 .

Proof This is the abelianization theorem for equivariant cohomology; see, for example,
[7, Proposition 1].

Let yU be the Bruhat cell Bw
n;n
2n

B , where wn;n
2n

is the permutation which switches i

and i ˙ n, and let yj be its inclusion to G2n . We note that yj�k yU is ˆ� where � is
the braid given by the n–cabling of a single crossing:

� � � � � �

� � � � � �

„ ƒ‚ …
n strands

„ ƒ‚ …
n strands

Lemma 9.2 The G1;1�T 2 –equivariant global chromatographic complex of j�kU is
isomorphic to the T 1;1�T 2 –equivariant one for yj�k yU , with the bimodule structure
restricted to H�.BG1;1/�H�.BT1;1/.

Proof Let QDG1\B be the upper triangular matrices in Gn . Then

indG1;1�T 2

T 1;1�T 2 j�k yU Š indG1;1�T 2

Q�Q�T 2 indQ�Q�T 2

T 1;1�T 2 j�k yU Š resG1;1;2

T 1;1�T 2 j�kU :

The first induction leaves chromatographic complexes unchanged, since Q and T 1

are homotopy equivalent, and j�k yU is smooth on Q�Q–orbits.
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For the second, we have a projective map

�W Gn �Q
yU �Q Gn!G2n;

which induces an isomorphism

Gn �Q
yU �Q Gn Š U:

By [25, Theorem 5], under taking equivariant cohomology, induction of sheaves
corresponds to the restriction of scalars, and since Gn=Q is projective, pushforward
preserves purity and thus commutes with taking local chromatographic complex. This
means that the result extends to all terms in the chromatographic spectral sequence.

By definition, the T 1;1�T 2 –equivariant chromatographic complex for yj�k yU is just
the complex of bimodules for the tangle diagram Dcab corresponding to closing the
right half of the strands in the braid above. Applying the invariance result for labelings
with all labels 1, this is the same as the complex corresponding to a full twist of
n strands. Since yj�k yU is in fact equivariant for T 1;1�G2 , this has an Sn action,
which is compatible with its module structure over H�.BT2/Š kŒx1; : : : ;xn�. Doing
this straightening one strand at a time, we see that the actions of H�.BT2/ and
H�.BT1/Š kŒy1; : : : ;yn� are intertwined by the map sending xi to ynC1�i . Thus,
the Sn action discussed above is compatible with the standard Sn –module action on
H�.BTn/ acting on the left and right after conjugation by the longest element w0 .

Note that if we consider a negative crossing, we will have to include n times the
usual shift for removing a negative stabilization, but this is easily accounted for in the
normalization.

Restricted to symmetric polynomials (that is, H�.BGn/), every Soergel bimodule is a
number of copies of the regular bimodule, and every map in the complex for a single
crossing splits, so restricted to H�.BGn/, the complex attached to a braid with all
labels 1 is homotopic to a single copy of H�.BTn/ with the regular bimodule action
and standard Sn action (conjugated by the longest element w0 ).

By Lemma 9.1, to obtain the G1;1;2 –equivariant global chromatographic complex we
simply take Sn –invariants and thus we obtain a single copy of the regular bimodule
for H�.BGn/, as desired.
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Categorical cell decomposition of
quantized symplectic algebraic varieties

GWYN BELLAMY

CHRISTOPHER DODD

KEVIN MCGERTY

THOMAS NEVINS

We prove a new symplectic analogue of Kashiwara’s equivalence from D–module
theory. As a consequence, we establish a structure theory for module categories over
deformation-quantizations that mirrors, at a higher categorical level, the Białynicki-
Birula stratification of a variety with an action of the multiplicative group Gm . The
resulting categorical cell decomposition provides an algebrogeometric parallel to the
structure of Fukaya categories of Weinstein manifolds. From it, we derive concrete
consequences for invariants such as K–theory and Hochschild homology of module
categories of interest in geometric representation theory.

53D55; 14F05

1 Introduction

Since the 1970s, categories of (ordinary or twisted) D–modules on algebraic varieties
and stacks have become fundamental tools in geometric representation theory; see
Beı̆linson and Bernstein [3]. More recently, an emerging body of important work
in geometric representation theory relies on sheaves over deformation-quantizations
of symplectic algebraic varieties more general than the cotangent bundles whose
deformation-quantizations give rise to D–modules; see Bellamy and Kuwabara [5],
Bezrukavnikov and Kaledin [8], Bezrukavnikov and Losev [9], Braden, Proudfoot
and Webster [13], Dodd and Kremnitzer [18], Gordon and Losev [26], Kaledin [35],
Kashiwara and Rouquier [40] and McGerty and Nevins [53]. A sophisticated theory of
such quantizations now exists thanks to the efforts of many (see Bezrukavnikov and
Kaledin [7], D’Agnolo and Kashiwara [15], D’Agnolo and Polesello [16], D’Agnolo
and Schapira [17], Kashiwara [39], Kashiwara and Schapira [41; 42] and Nest and
Tsygan [60; 61] among many others).

The present paper establishes a structure theory for deformation-quantizations that
mirrors, at a higher categorical level, the fundamental Białynicki-Birula stratification
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2602 Gwyn Bellamy, Christopher Dodd, Kevin McGerty and Thomas Nevins

of a variety with an action of the multiplicative group Gm and the corresponding
decomposition of its cohomology. In the most prominent examples, the resulting
categorical cell decomposition has many immediate and concrete consequences for
invariants such as K–theory and Hochschild homology; it also makes possible the
extension of powerful tools from D–module theory, such as the Koszul duality relating
D–modules to dg modules over the de Rham complex, to a more general symplectic
setting; see Bellamy, Dodd, McGerty and Nevins [4]. The structures that we identify
parallel those described for Fukaya–type categories in real symplectic geometry by
Nadler [55]. We derive these structures on module categories from a new symplectic
analogue of Kashiwara’s equivalence for D–modules.

In Section 1.1 we describe an enhancement of the Białynicki-Birula decomposition for
symplectic varieties with a nice Gm–action. Section 1.2 explains our categorical cell
decomposition for sheaves on the quantizations of such varieties; in Section 1.3, we lay
out the symplectic Kashiwara equivalence that underlies categorical cell decomposition.
Section 1.4 describes basic categorical consequences. Section 1.5 provides immediate
applications of this structure theory for module categories of deformation-quantizations.
Section 1.6 explores parallels with Fukaya categories.

1.1 Symplectic varieties with elliptic Gm–action

We work throughout the paper over C . Let X be a smooth, connected symplectic
algebraic variety with symplectic form ! .

Definition 1.1 A Gm–action on X is said to be elliptic if the following hold:

(1) Gm acts with positive weight on the symplectic form: m�t !D t
l! for some l >0.

(2) For every x 2 X, the limit limt!1 t � x exists in X.

We remark that if we assume that ! is rescaled by Gm with some weight l 2 Z, then
the existence of limits already implies that l � 0.

Write XGm D
`
Yi , a union of smooth connected components. For each i , let

Ci D
˚
p 2 X j lim

t!1
t �p 2 Yi

	
I

these subsets are the Morse-theoretic attracting loci for the elliptic Gm–action. Note
that XD

`
Ci by Definition 1.1(2).

Recall that if i W C ,! X is a smooth coisotropic subvariety, a coisotropic reduction
of C consists of a smooth symplectic variety .S; !S / and a morphism � W C ! S

for which !jC D ��!S . We establish a basic structural result for the decomposition
XD

`
Ci in Section 2:
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Categorical cell decomposition of quantized symplectic algebraic varieties 2603

Theorem 1.2 (see Theorem 2.1) (1) Each Ci is a smooth, coisotropic subvariety
of X and a Gm–equivariant affine bundle over the fixed point set Yi .

(2) There exist symplectic manifolds .Si ; !i / with elliptic Gm–action and Gm–
equivariant coisotropic reductions �i W Ci ! Si .

Part (1) of the theorem is a symplectic refinement of the Białynicki-Birula stratification
[10] arising from a Gm–action. Our proof of assertion (2) relies on formal local normal
forms for symplectic varieties in the neighborhood of a coisotropic subvariety, which
we develop in Section 2.

We provide a refined description of the symplectic quotients Si and corresponding
Gm–equivariant affine fibrations Si ! Yi of Theorem 1.2. We need two definitions.
First, let Y be a smooth connected variety. A symplectic fibration over Y is a tuple
.E; �; f�;�g/, where �W E! Y is an affine bundle and f�;�g an OY –linear Poisson
bracket on E such that the restriction of f�;�g to each fiber of � is nondegenerate.
The symplectic fibration is said to be elliptic if Gm acts on E such that f�;�g is
homogeneous of negative weight, Y D EGm and all weights of Gm on the fibers of �
are negative.

Second, note that T �Y is naturally a group scheme over Y . Suppose pW B ! Y

is a smooth variety over Y equipped with a symplectic form !B . Suppose that B
is equipped with an action aW T �Y �Y B ! B of the group scheme T �Y over Y .
We say B ! Y is symplectically automorphic if, for any 1–form � on Y , we have
a.�;�/�!B D !B Cp

�d� . In the special case that B is a T �Y –torsor, B is thus a
twisted cotangent bundle in the sense of Beı̆linson and Bernstein [3].

Theorem 1.3 (see Theorem 2.21) Keep the notation of Theorem 1.2(2). Then, for
each i :

(1) The fibration Si ! Yi comes equipped with a free T �Yi –action making Si
symplectically automorphic over Yi .

(2) The quotient Ei WD Si=T �Yi inherits a Poisson structure, making Ei ! Yi into
an elliptic symplectic fibration.

Locally in the Zariski topology on Yi , we have Si ' T �Yi �Yi Ei as smooth varieties
with Gm–actions.

1.2 Categorical cell decomposition

We next turn to deformation-quantizations. Suppose that X is a smooth symplectic
variety with elliptic Gm–action. Let A be a Gm–equivariant deformation-quantization
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2604 Gwyn Bellamy, Christopher Dodd, Kevin McGerty and Thomas Nevins

of OX ; this is a Gm–equivariant sheaf of flat CŒŒ„��–algebras, where Gm acts with
weight l on „, for which A=„A is isomorphic, as a sheaf of Gm–equivariant Poisson
algebras, to OX ; see Section 3.2 for more details. Let W DAŒ„�1�. There is a natural
analogue for W of coherent sheaves on X, the category of Gm–equivariant good
W–modules, denoted by W–good; see Section 3.3 for details.

Definition 1.4 The category of quasicoherent W–modules is

Qcoh.W/ WD Ind.W–good/:

For each subcollection of the coisotropic attracting loci Ci of Section 1.1 whose
union CK , with K � f1; : : : ; kg, is a closed subset of X, we let Qcoh.W/K denote
the full subcategory of Qcoh.W/ whose objects are supported on CK . By Lemma 2.3,
the loci Ci are naturally partially ordered. Refining to a total order, for each i there
are closed subsets CK�i D

S
j�i Cj and CK>i D

S
j>i Cj .

Theorem 1.5 (see Theorem 4.28 and Corollary 5.2)

(1) The category Qcoh.W/ is filtered by localizing subcategories Qcoh.W/K�i .

(2) Each subquotient Qcoh.W/K�i=Qcoh.W/K>i is equivalent to the category of
quasicoherent modules over a deformation-quantization of the symplectic quo-
tient Si .

Mirroring the structure of Si in Theorem 1.3, the category of Gm–equivariant quasi-
coherent modules over a deformation-quantization of Si is equivalent to the category
of modules for a specific type of algebra. We describe this relationship explicitly in
Sections 4.10 and 4.11, and in Theorem 1.8 below. In particular, in the special case
when Yi is an isolated fixed point, we obtain:

Corollary 1.6 Suppose the fixed point set XGm is finite. Then each subquotient

Qcoh.W/K�i=Qcoh.W/K>i

is equivalent to the category of modules over the Weyl algebra D.Ati / for ti D 1
2

dimSi .

The Weyl algebra D.Ati / is a quantization of the algebra of functions on an “alge-
braic cell” A2ti . Moreover, this category, although complicated, looks contractible
from the point of view of certain fundamental invariants, for example algebraic K–
theory and Hochschild/cyclic homology. Thus, we view the category D.Ati /–mod as
a “categorical algebraic cell”, parallel to the way that the category VectC of finite-
dimensional complex vector spaces is a categorical analogue of a topological cell. In
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particular, in the case when the fixed point set XGm is finite, we interpret the filtration
of Qcoh.W/ provided by Theorem 1.5 as providing a categorical cell decomposition
of Qcoh.W/. Building the category Qcoh.W/ from algebraic cells is thus a “bulk
analogue” of the process of building a quasihereditary category from “categorical
topological cells”, ie copies of VectC . In particular, to the extent that categories of
the form Qcoh.W/ undergird many representation-theoretic settings of intense recent
interest, our categorical cell decompositions are a basic structural feature of the “big”
geometric categories that arise in representation theory.

We expect Theorem 1.5 to have many consequences for Qcoh.W/ and related algebraic
categories from representation theory. One such application will appear in Bellamy,
Dodd, McGerty and Nevins [4]: a symplectic analogue of the Koszul duality, sometimes
called “D–�–duality”, between D–modules on a smooth variety X and dg modules
over the de Rham complex �X of X ; see Kapranov [38]. More precisely, the Koszul
duality of [38] generalizes to arbitrary coherent D–modules the Riemann–Hilbert
correspondence between regular holonomic D–modules and their associated de Rham
complexes, which are constructible complexes on X . Since �X sheafifies over X ,
embedded as the zero section of T �X , one can view this correspondence as a categorical
means of sheafifying the category of DX –modules over X . Such a sheafification is
tautologous in the D–module setting, but becomes less so in a general symplectic
setting. Namely, in [4], starting from a bionic symplectic variety — a symplectic variety
X with both an elliptic Gm–action and a commuting Hamiltonian Gm–action defining
a good Lagrangian skeleton ƒ of X — we will use Theorem 1.5 to establish a Koszul
duality between WX–modules and dg modules over an analogue of �X that “lives
on” ƒ. As a result, the bounded derived category Db.W–good/ naturally sheafifies
over ƒ.

We explain in Section 1.3 the main technical result that makes Theorem 1.5 possible,
namely, an analogue of Kashiwara’s equivalence. In Section 1.5 we derive several appli-
cations to the category Qcoh.W/. In Section 1.6 we describe parallels to the structure
of Fukaya categories in more detail, and indicate some future work in that direction.

1.3 Analogue of Kashiwara’s equivalence for deformation-quantizations

Theorem 1.5 is a consequence of a symplectic version of a fundamental phenomenon of
D–module theory, classically encoded in the following topological invariance property:

Kashiwara’s equivalence Suppose that C �X is a smooth closed subset of a smooth
variety X . Then the category Qcoh.DX /C of quasicoherent DX –modules supported
set-theoretically on C is equivalent to the category Qcoh.DC / of quasicoherent DC –
modules.

Geometry & Topology, Volume 21 (2017)
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Assume now that .X; !/ is a smooth, connected symplectic variety with elliptic Gm–
action. Let Y be a connected component of the fixed point set of X under Gm–action
and C the set of points in X limiting to Y under Gm . Assume that C is closed
in X. Let C ! S denote the symplectic quotient whose existence is assured by
Theorem 1.2(2). The subcategory of W–good consisting of objects supported on C is
W–goodC .

To the algebra W and the coisotropic subset C we associate a sheaf of algebras
WS on the symplectic quotient S . We define a natural coisotropic reduction functor
HW WX–goodC ! WS–good. The following provides an analogue of Kashiwara’s
equivalence for W–modules:

Theorem 1.7 (see Theorem 4.28 and Corollary 4.30)

(1) The functor HW WX–goodC !WS–good is an exact equivalence of categories.
It induces an exact equivalence HW Qcoh.WX/C ! Qcoh.WS /.

(2) The functor H preserves both holonomicity and regular holonomicity.

We also analyze the structure of WS more fully. More precisely, we prove that, on Y ,
there exists a sheaf of “generalized twisted differential operators” DS , a filtered OY –
algebra, whose completed Rees algebra sheafifies over S and gives exactly WS . We
obtain:

Theorem 1.8 (see Theorem 4.28 and Proposition 4.33)

(1) The functor H of coisotropic reduction, followed by taking Gm–finite vectors,
defines an equivalence

HW WX–goodC ��! coh.DS /:

Passing to ind-categories defines an equivalence HW Qcoh.W/C ! Qcoh.DS /.
(2) In particular, if Y consists of a single isolated Gm–fixed point, H defines an

equivalence
Qcoh.WX/C Š Qcoh.D.Ati //

for some ti .

We emphasize that the elliptic Gm–action is both essential to relate W–modules
to representation theory and an intrinsic part of the geometry behind Theorems 1.7
and 1.8: it is not simply a technical convenience to make the proofs work. As an
illustration, consider D–modules on A1 with singular support in the zero section,
ie local systems. The zero section is a conical coisotropic subvariety in T �A1 with
symplectic quotient a point. However, the category of all algebraic local systems on
A1 is not equivalent to the category VectC of finite-dimensional vector spaces, ie
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coherent D–modules on a point: such a statement is only true once one passes to
the subcategory of local systems regular at infinity. One can define a good notion of
regularity in the deformation-quantization setting; see D’Agnolo and Polesello [16];
and then a regular W–module supported on a coisotropic subvariety C will be in the
essential image of the corresponding functor quasi-inverse to H . In particular, passing
to regular objects yields a version of Theorem 1.7 as in [16], but at a cost too high for
our intended applications: the subcategory obtained is no longer described in terms of
support conditions, and correspondingly one loses control over what the subquotients
look like.

Theorem 1.7, on the other hand, imposes a natural geometric condition on the coisotropic
subvariety C : it must arise from the (algebrogeometric) Morse theory of the Gm–
action. With that condition satisfied, regularity can be replaced by the more natural
geometric support condition, thus yielding a precise structural result on Qcoh.W/.

1.4 Abelian and derived categories

Our main results and techniques also establish some basic properties of categories
of W–modules that are analogues of familiar assertions for categories of coherent or
quasicoherent sheaves.

1.4.1 Abelian categories As one example, let Z �XGm be a closed, connected and
smooth subvariety. Let C D fx 2 X j limt!1 t � x 2Zg be the attracting locus for Z ;
it is a smooth, locally closed subvariety of X. Assume that C is closed in X. The
complement to C in X is denoted by U and we write j W U ,! X for the embedding.

Theorem 1.9 (Theorem 3.27 and Corollary 3.28)
(1) The inclusion functor i�W Qcoh.W/C ! Qcoh.W/ realizes Qcoh.W/C as a

localizing subcategory of Qcoh.W/. In particular, i� admits a right adjoint i Š

such that the adjunction id! i Š ı i� is an isomorphism.
(2) The restriction functor j �W Qcoh.WX/! Qcoh.WU / induces equivalences

WX–good=WX–goodC 'WU –good and Qcoh.WX/=Qcoh.WX/C ' Qcoh.WU /:

In particular, j � admits a right adjoint j�W Qcoh.WU / ! Qcoh.WX/ with
j � ı j� ' id.

As corollaries of Theorem 1.9, we immediately get corresponding statements for both
the bounded and unbounded derived categories. Unfortunately, it is clear that neither j �

nor i� can admit left adjoints in general (see however Braden, Proudfoot and Webster
[13, Theorem 5.20] in a special case). However, we show in the forthcoming paper [4]
that the inclusions C i

,!X
j
 - U determine a full recollement pattern on the derived

category of holonomic W–modules.

Geometry & Topology, Volume 21 (2017)



2608 Gwyn Bellamy, Christopher Dodd, Kevin McGerty and Thomas Nevins

1.4.2 Derived categories and compact generation The categorical cell decompo-
sition of Qcoh.W/ extends to the derived level: the (unbounded) derived category
D.Qcoh.W// is filtered by DK�i .Qcoh.W//, the full localizing triangulated subcate-
gories of objects with cohomology supported on the closed subvarieties CK�i . The
associated minimal subquotients are given by

DK�i .Qcoh.W//=DK>i .Qcoh.W//'D.Qcoh.DSi //:

Since DSi is a sheaf of OYi –algebras of finite homological dimension, standard
arguments show that the triangulated category D.Qcoh.DSi // enjoys strong generation
properties. Namely, the category is compactly generated and the full subcategory
of compact objects is precisely the category of perfect complexes. Our symplectic
generalization of Kashiwara’s equivalence allows one to inductively show that these
properties lift to the categories DK.Qcoh.W//. In particular, if D.Qcoh.W//c denotes
the full subcategory of compact objects, then taking K to be all of f1; : : : ; kg we have:

Theorem 1.10 (see Corollaries 5.9 and 5.10) The derived category D.Qcoh.W// is
compactly generated and there is an equality

D.Qcoh.W//c D perf.W/DDb.W–good/

of full, triangulated subcategories of D.Qcoh.W//.

An analogous compact generation result was shown by Petit [63], though the category
of cohomologically complete deformation-quantization modules considered in [63] is
(in a precise sense) orthogonal to Qcoh.W/.

1.5 Applications to invariants

Theorem 1.5 yields immediate consequences for the structure of fundamental invariants
associated to the category of sheaves over a deformation-quantization of X. For
example:

Corollary 1.11 (see Section 5.3) Suppose XGm is finite of cardinality k . Choose
a refinement of the partial ordering of coisotropic attracting loci Ci of X to a total
ordering. Then the group K0.perf.W// comes equipped with a canonical k–step
filtration each subquotient of which is isomorphic to Z; in particular, K0.perf.W// is
free abelian of rank k .

In fact, using the fundamental properties of holonomic modules developed in the
sequel [4], one can show that there are natural isomorphisms

�nW Kn.C/˝ZK0.perf.W// ��!Kn.perf.W//

Geometry & Topology, Volume 21 (2017)
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for all n� 0. Similar results hold for the cyclic and Hochschild homology of the dg
enhancement Perf.W/.

Corollary 1.12 (see Section 5.2) Suppose XGm is finite of cardinality k . Let H�.X/
denote the Borel–Moore homology of X, with coefficients in C . There are isomor-
phisms of graded vector spaces

HH�.Perf.W//'H��dimX.X/; HC�.Perf.W//'H��dimX.X/˝CŒ��;

where � is assumed to have degree two.

In most situations, such as those that appear in representation theory, it is also possible
to calculate the Hochschild cohomology of Perf.W/. Namely, in Proposition 5.19 we
show:

Corollary 1.13 (see Section 5.2) Suppose XGm is finite of cardinality k . Then

HH�.Perf.W//DH�.X;C/:

Via derived localization — see McGerty and Nevins [53] — the above results allows one
to easily calculate the additive invariants HH� , HC� and HH� of many quantizations
of singular (affine) symplectic varieties that occur naturally in representation theory.
See Section 5.4 for a discussion and applications. For example, let � be a cyclic
group and Sn o� the wreath product group that acts as a symplectic reflection group
on C2n . The corresponding symplectic reflection algebra at t D 1 and parameter c is
denoted by Hc.Sn o�/. For the definition of the filtration F in the corollary below,
see Example 5.20.

Corollary 1.14 (see Proposition 5.21) Assume that c is spherical. Then

HH�.Hc.Sn o�//D HH2n��.Hc.Sn o�//D grF�.ZSn o�/;

as graded vector spaces.

One can deduce similar results for finite W–algebras associated to nilpotent elements
regular in a Levi, and quantizations of slices to Schubert varieties in affine Grassman-
nians. These examples are explained in more detail at the end of Section 5.3.

1.6 Relation to Fukaya categories of Weinstein manifolds

There are a close conceptual link and, conjecturally, a precise mathematical relationship
between the categories Qcoh.W/ that we study and the Fukaya categories of Weinstein
manifolds in real symplectic geometry. More precisely, a growing body of important
work in real symplectic geometry (by, among others, Abouzaid, Kontsevich, Nadler,
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Seidel, Soibelman, Tamarkin, Tsygan and Zaslow) establishes fundamental links be-
tween structures of microlocal sheaf theory and Fukaya categories. The exposition
of Nadler [55] sets the Fukaya theory of Weinstein manifolds squarely in a Morse-
theoretic context, by showing how to use integral transforms to realize brane categories
as glued from the homotopically simpler categories of branes living on coisotropic
cells. Theorem 1.5 provides an exact parallel to the structure described in [55]. One
difference worth noting is that our categories include objects with arbitrary coisotropic
support, not just Lagrangian support as in standard Fukaya theory: we provide such
gluing structure for an algebrogeometric “bulk” category of all coisotropic branes rather
just than the “thin” category of Lagrangian branes.

Expert opinion supports a direct relationship between the category Qcoh.W/ (or more
precisely the holonomic subcategory) and the structure of Fukaya categories described
in [55]. Namely, many examples of hyperkähler manifolds with S1–action fit our
paradigm and have affine hyperkähler rotations possessing the requirements described
in [55]. In such cases, it is natural to try to prove that the category of [55] is equivalent to
Qcoh.W/ for a particular choice of W by first proving cell-by-cell equivalences; next,
describing a classifying object for categories built from cells as in Theorem 1.5 and [55];
and, finally and most difficult, isolating a collection of properties that distinguish the
Fukaya category of [55] in the universal family and matching it to some Qcoh.W/. We
intend to return to this problem in future work.

1.7 Relation to other work on deformation-quantization

In recent years there has been much interest in the study of quantizations of certain
classes of symplectic algebraic varieties, going back at least as far as the work of
Kashiwara and Rouquier [40] on the Hilbert scheme of points in the plane mentioned
above. The class of varieties which has attracted the most interest is that of conical
symplectic resolutions. These are symplectic varieties Y with a Gm–action such that
the affinization map f W Y !X is birational and the resulting Gm–action on X has a
single attracting fixed point. Braden, Proudfoot and Webster [13] and Braden, Licata,
Proudfoot and Webster [12] give a systematic study of quantizations of these varieties,
and study in detail a class of holonomic modules in the spirit of the classical theory of
category O (see also the subsequent work of Losev [51]).

Clearly any such conic symplectic resolution is an elliptic symplectic variety, but the
class of elliptic symplectic varieties is strictly larger. For example, if † is a smooth
complete curve, then Y D Hilbn.T �†/, the Hilbert scheme of points of the cotangent
bundle of † is naturally a symplectic variety (studied by Nakajima [56], for example)
and it possess a natural elliptic Gm–action induced by the scaling action on the fibers
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of T �†. However, unless † D P1 , the symplectic variety Y is not a symplectic
resolution. Moreover, in this paper we seek to investigate the structure of the full
category of Gm–equivariant modules, rather than focusing on particular classes of
holonomic modules. Our forthcoming work [4] was partly inspired by the question of
which properties of the category of all (suitably equivariant) modules for a quantization
of X can be detected by small subcategories such as the geometric incarnations of
category O studied by Braden, Licata, Proudfoot and Webster [12]. That paper however,
as in the work of Braden, Proudfoot and Webster [13] mentioned above, requires Y to
carry the action of a higher-dimensional torus.

1.8 Outline of the paper

Section 2 describes some of the basic geometric properties of symplectic manifolds
equipped with an elliptic Gm–action. The basic properties of modules over deformation-
quantization algebras are recalled in Section 3. In Section 4 we describe a version
of quantum coisotropic reduction for equivariant DQ algebras and prove a version of
Kashiwara’s equivalence. This equivalence is used in Section 5 to study the derived
category D.Qcoh.W// and also calculate the additive invariants of W–good.

1.9 Conventions

Deformation-quantization algebras A, sheaves of DQ algebras A, W–algebras W
(global section case) and W (sheaf case), and their modules and equivariant modules
are defined in the body of the paper. For a (sheaf of) DQ algebra(s) A (resp. A)
with Gm–action, we always write .A;Gm/–mod for the category of finitely generated
equivariant modules (resp. .A;Gm/–coh for the category of coherent modules).

For a W–algebra W , we write W–good for the category of good W–modules. If T is
a torus acting on X and W is a T–equivariant W–algebra (where T acts on „ via a
character), we write .W;T/–good for the category of good T–equivariant W–modules,
or, if T is clear from context, just W–good. We write Qcoh.W/ and Qcoh.W;T/ for
the ind-categories of W–good and .W;T/–good, respectively.
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2 The geometry of symplectic varieties with
elliptic Gm–action

We assume throughout this section that .X; !/ is a smooth, connected symplectic,
quasiprojective variety with elliptic Gm–action. By symplectic manifold we mean a
smooth quasiprojective variety over C equipped with an algebraic symplectic form. In
this section, we describe some basic geometric consequences of the Gm–action.

2.1 A symplectic Białynicki-Birula decomposition

The connected components of the fixed point set of X under the Gm–action will be
denoted by Y1; : : : ; Yk . Each Yi is a smooth, closed subvariety of X. Recall that

Ci D
˚
x 2 X j lim

t!1
t � x 2 Yi

	
:

Then it follows that XD
Fk
iD1 Ci .

Let C a smooth, connected, locally closed coisotropic subvariety of X. A coisotropic
reduction of C is a smooth symplectic variety .S; !0/ together with a smooth morphism
� W C ! S such that !jC D ��!0 . A classical example of a coisotropic reduction
is given by X D T �X , Y � X a smooth, closed subvariety, C D .T �X/jY and
� W .T �X/jY ! T �Y the natural map.

Theorem 2.1 Suppose .X; !/ is a symplectic manifold with elliptic Gm–action.
Then:

(1) Each Ci is a smooth, coisotropic subvariety of X and an Gm–equivariant affine
bundle over the fixed point set Yi .

(2) There exist symplectic manifolds .Si ; !i / with elliptic Gm–action and Gm–
equivariant coisotropic reductions �i W Ci ! Si .

The proof of the first statement of Theorem 2.1 is given in Section 2.2. The proof of the
second statement of Theorem 2.1 is given in Section 2.3 after some preparatory work.

2.2 Proof of Theorem 2.1(1)

The proof of Theorem 2.1(1) is essentially a direct consequence of the Białynicki-Birula
decomposition together with some elementary weight arguments. However, we provide
details for completeness. The fact that each Ci is an Gm–equivariant affine bundle
over Yi follows directly from [10, Theorem 4.1].

With regard to Gm–representations, the following conventions will be used throughout
the paper. If V is a graded vector space then Vi denotes the subspace of degree i . Let
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V be a prorational Gm–module; that is, V is the limit of its Gm–equivariant rational
quotients. Then V rat D

L
i2Z Vi , the subspace of Gm–finite vectors, is a rational

Gm–module.

To show that each Ci is coisotropic, we first show that TpCi is a coisotropic subspace
of TpX at each point p 2 Yi . Indeed we claim that

(2-1) .TpCi /
?
D rad.!jCi /p D

M
j<�l

.TpCi /j :

To see this, let V D TpX and W D TpCi . Then V and W have weight space
decompositions V D

L
j Vj and W D

L
j Wj , where Wj D Vj for j � 0 and Wj D 0

for j > 0. If v 2 Va and w 2 Vb then

t l!.v;w/D .t �!/.v; w/D !.t�1 � v; t�1 �w/D t�a�b!.v;w/:

This implies that !.v;w/D 0 if l ¤�a�b and ! restricts to a nondegenerate pairing
Vj � V�l�j ! C . Therefore, if v 2 Vj \W ? then the equality !.v;w/D 0 for all
w 2W implies that V�j�l\W D 0, ie �j � l > 0 and hence j <�l . Hence Vj �W .
This implies that W ?DW<�l and (2-1) follows. Then the following lemma completes
the proof of Theorem 2.1(1):

Lemma 2.2 Let C be an attracting set in X and Y � C the set of fixed points. Then
C is coisotropic if and only if .TpC/? � TpC for all p 2 Y .

Proof Fix p 2 Y . There exists a Gm–stable affine open neighborhood U of p on
which the tangent bundle equivariantly trivializes, ie TXjU 'U �TpX. To see this, let
U0 be a Gm–stable affine open neighborhood of p and mCCŒU0� the maximal ideal
defining p . Choose a homogeneous lift x1; : : : ; x2n of a basis of m=m2 in CŒU0�. Then
there exists some affine open Gm–stable subset U � U0 such that fdx1; : : : ; dx2ng
is a basis of �1U as a CŒU �–module. Shrinking U if necessary, we may assume that
UGmDY \U . Under the corresponding identification TxX ��!TpX of tangent spaces,
TxC is mapped to TpC for all x 2 U \C . Write ! D

P
i<j fi;jdxi ^ dxj , thought

of as a family of skew-symmetric bilinear forms on the fixed vector space TpX.

If @i is dual to dxi , then as shown above TpC is spanned by all @i of degree � 0
and .TpC/?p is spanned by all @i of degree less than �l . By definition, U \ C
is the set of all points in U vanishing on all f 2 CŒU � of negative degree. Let
@i 2 .TpC/

?p and @j 2TpC . Then deg dxi >l and deg xj �0. Therefore degfi;j <0.
This implies that fi;j .x/ D 0 for all x 2 U \C and hence !x.@i ; @j / D 0, so that
.TpC/

?p � .TpC/
?x . Since dim.TpC/?p D dimX�dim.TpC/D dim.TpC/?x we

must have .TpC/?x D .TpC/?p and so the lemma follows.
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Define a relation on the coisotropic attracting loci Ci by Ci � Cj if Cj \Ci ¤∅.

Lemma 2.3 The relation Ci � Cj is antisymmetric; in particular, it defines a partial
order on the Białynicki-Birula strata.

Proof Equivariantly compactify X to a smooth projective Gm–variety X; see [14,
Theorem 5.1.25]. Since we assume that every point in X has a Gm–limit in X, a
point in x 2 X has its Gm–limit in the closed set @XD XXX if and only if x 2 @X;
in particular, @X is a union of BB strata of X. The relation on BB strata defined
above on X is a subset of the relation defined using the BB stratification of X (some
stratum closures may intersect at the boundary in x@ but not in X itself). Since the BB
stratification of X is filterable by [11], the conclusion follows.

2.3 Proof of Theorem 2.1(2): from global to local

We fix C to be one of the coisotropic strata (one of the Ci ) in X and let Y D CGm .
Note that if C D Ci then Lemma 2.3 shows that C�i D

S
j�i Cj is open in X and Ci

is closed in C�i . Since an open union of coisotropic cells in X inherits the structure
of an elliptic symplectic variety, we may thus assume without loss of generality that
C is closed in X. We first describe a canonical global construction of a morphism
� W C ! S . To show that this construction yields a coisotropic reduction is a local
computation, which we carry out in the next section, giving a local normal form for
the symplectic form on a formal neighborhood of C .

The global construction can be described as follows: Let �W C ! Y be the projection
map and I denote the sheaf of ideals in OX defining C . The quotient I=I2 is a
locally free OC –module. By Lemma 2.4 below, I is involutive. Therefore the Lie
algebroid L WD ��.I=I2/ acts on ��OC via Hamiltonian vector fields and we can
consider the sheaf H WDH 0.L; ��OC / of sections of ��OC that are invariant under
these Hamiltonian vector fields. The fact that the Poisson bracket has weight �l and
OY is concentrated in degree zero implies that L is actually an OY –Lie algebra and
H a sheaf of OY –algebras.

The embedding of H into ��OC defines a dominant map � W C ! S WD SpecY H of
schemes over Y . The final claim of Theorem 2.1 is that the map � is a coisotropic
reduction and, in particular, S is a symplectic manifold. Since both C and S are
affine over Y and the statement of the claim is local on S , it suffices to assume that
we are in the local situation of Section 2.4 below. Then the claim is a consequence of
Theorem 2.6; see the end of Section 2.4.
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2.4 Proof of Theorem 2.1(2): affine local case

In this section we prove that the construction described in Section 2.3 does indeed
give a coisotropic reduction. The idea is to show that, locally, there is a different
construction of � using the Gm–action on X. This construction clearly gives a
coisotropic reduction. Unfortunately, this construction doesn’t obviously lift to a global
construction. Therefore the main thrust of this section is to show that this second
construction agrees (locally) with the construction given in Section 2.3.

It follows from [10, Theorem 2.5] that, for each point y 2 Y , there is some affine open
neighborhood of y in Y such that the affine bundle �W C ! Y trivializes equivariantly.
Replacing Y by such an affine open subset, we assume that � is equivariantly trivial.
Moreover, we may assume that X is also affine (still equipped with a Gm–action). Set
RDCŒX�, a regular affine C–algebra with nondegenerate Poisson bracket f�;�g and
Gm–action such that f�;�g has weight �l . Let I be the ideal in R defining C .

Let lD I=I 2 . The Poisson bracket on R makes l into a Lie algebra which acts on R=I .
Let

H WDH 0.l; R=I /D .R=I /fI;�g

denote the “coisotropic reduction” of R with respect to I . The bracket f�;�g descends
to a bracket on H and R=I is a Poisson module for H . We set S D SpecH and
let � be the dominant map coming from the inclusion H ,! R=I . This is the local
version of the construction described in Section 2.3.

Lemma 2.4 The ideal I equals the ideal of R generated by all homogeneous elements
of negative degree and is involutive, ie fI; I g � I .

Proof Let J be the ideal of R generated by all homogeneous elements of negative
degree. The fact that f�;�g has degree �l implies that J is involutive. Moreover, the
set of zeros of I and J clearly coincide. Therefore the lemma is really asserting that J
is a radical ideal. If X were not smooth then this need not be true. Let DD SpecR=J .
Since the nonreduced locus is a closed, Gm–stable subscheme of D , it suffices to show
that the local ring OD;y is a domain for all Gm–fixed closed points of D . But in this
case, if m is the maximal ideal in R defining y , then T �yD is precisely the subspace
of m=m2 of nonnegative weights and D is locally cut out by homogeneous lifts of the
elements of m=m2 of negative degree. Since X is smooth at y , these elements form a
regular sequence and hence OD;y is reduced.

Now we give our alternative, local construction of � which we will use to verify the
morphism � is a coisotropic reduction. For the remainder of this section, let S denote
the affine variety such that CŒS��CŒC � is the subalgebra generated by all homogeneous
elements of degree at most l and let � denote the dominant morphism C ! S .

Geometry & Topology, Volume 21 (2017)



2616 Gwyn Bellamy, Christopher Dodd, Kevin McGerty and Thomas Nevins

Lemma 2.5 The variety S is symplectic and � is a coisotropic reduction of C .

Proof Fix some y 2 Y . First we establish that S is a smooth variety of dimension
dim.TyC/��l . By definition, there is an equivariant trivialization �W C ��!Y �V �Z ,
where V �TyC is the sum of all weight spaces with weight �l � i < 0 and Z the sum
of all weight spaces of weight < �l . Since � is equivariant and S defined in terms
of weights, ��.CŒS�/D CŒY � V � and � 0 ı ��1 corresponds to the projection map
onto Y �V . Thus, S is smooth of the stated dimension and � is a smooth morphism.

Since C is only coisotropic, the bracket on X does not restrict to a bracket on R=I .
However, as explained above, it does induce a bracket on H . Since CŒS� is generated by
homogeneous elements of degree at most l , and I is generated by elements of negative
degree, the algebra CŒS� is contained in H . Again, weight considerations imply that
it is Poisson closed. Thus, it inherits a bracket from X making � a Poisson morphism.

Finally we need to show that the Poisson structure on CŒS� is nondegenerate. Since
CŒS� is positively graded and smooth, it suffices to check the induced pairing

f�;�gy W T
�
y S �T

�
y S !C

is nondegenerate. As noted in the proof of Lemma 2.4, T �y C D .T
�
y X/=.T

�
y X/<0 .

Since CŒS� is generated by all elements of degree at most l in CŒC �, the space
.T �y X/�l=.T

�
y X/<0 is contained in T �y S . But these two spaces have the same dimen-

sion. Therefore they are equal. Since f�;�g has degree �l and is nondegenerate
on T �y X, the induced pairing

f�;�gy W .T
�
y X/�l=.T

�
y X/<0 � .T

�
y X/�l=.T

�
y X/<0!C

is nondegenerate.

As shown in the proof of Lemma 2.5, we have Poisson subalgebras CŒS��H of R=I
and the Poisson structure on CŒS� is nondegenerate. Therefore, to show that H is
also a regular affine algebra with nondegenerate Poisson bracket it suffices to show
that CŒS�DH . In order to do this, we shall need to investigate more closely the local
structure of the symplectic form. In particular, we shall need a Darboux–Weinstein-type
theorem to describe the behavior of the form near C �X. Since we are working in the
Zariski topology, we shall take the formal completion along C .

Shrinking Y further if necessary, we may assume that the normal bundle NX=C to
C in X is Gm–equivariantly trivial. Thus, we have a Gm–equivariant trivialization
Tot.NX=C /' C �Z

� . This implies that I=I 2 is a free R=I –module.

In these circumstances, [34, paragraphe III.1.1.10 et théorème III.1.2.3] imply that
we can choose (Gm–equivariantly) an identification of the formal neighborhood C
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of C in X with the formal neighborhood yNX=C of the zero section in NX=C . By
Lemma 2.5, C ' S � Z , where Z ' Am . It follows easily that there is a Gm–
equivariant isomorphism C' S � bT �Z , where bT �Z denotes the completion of T �Z
along the zero section; the corresponding ideal in CŒC�D yR is therefore the completion
of I , denoted by yI . Then � extends to a projection map S� bT �Z!S . The inclusion
S ,! C is denoted by �.

For an arbitrary morphism f W X !X 0 , there is a map �f W f ���X 0 !��X . Assume
X and X 0 are affine. If � is a closed k–form on X and x� its image in f ��kX 0 , then
�f .x�/ is closed in �kX . From X, the space C inherits a symplectic form ! of weight l .
Set !S D��.��.x!//, a closed 2–form on C. Our local normal form result states:

Theorem 2.6 Under the identification C ' S � bT �Z there is a Gm–equivariant
automorphism � of C, with �. yI /D yI , such that

(2-2) ��! D !can WD !S C

mX
iD1

dzi ^ dwi

with respect to some homogeneous bases z D z1; : : : ; zm and w D w1; : : : ; wm of
Z� �CŒZ� and Z �CŒŒZ���, respectively.

The proof of Theorem 2.6 will be given in Section 2.5.

Remark 2.7 We have deg zi > l , degwi < 0 and deg zi C degwi D l for all i .

Theorem 2.6 implies:

Corollary 2.8 We have NX=C ' .��Z�/˝ �l , where � D idW Gm ! Gm is the
fundamental character of Gm .

We can now complete the proof of Theorem 2.1. Recall from Section 2.4 that our goal
is to show that CŒS�DH as subalgebras of R=I .

The ring yR can be identified with functions on C. Under this identification, the ideal
yI D yRI is the ideal of functions vanishing on the zero section C and yR= yI D R=I .
Since I is involutive and yI D yRI , the ideal yI is involutive. By Theorem 2.6, there is an
automorphism �� of yR such that ��.ff; gg/D f��.f /; ��.g/gcan , where f�;�gcan

is the canonical Poisson bracket coming from the symplectic two-form (2-2). By
construction, ��. yI /D yI . Therefore, . yR= yI /f yI ;�g D . yR= yI /f yI ;�gcan . Since

yRD .R=I /ŒŒw1; : : : ; wm��D .CŒS�˝CŒz1; : : : ; zm�/ŒŒw1; : : : ; wm��

and yI is generated by w1; : : : ; wm , the embedding CŒS� ,! yR induces an isomor-
phism CŒS�' . yR= yI /f yI ;�g . Finally, the equality yI D yRI implies that . yR= yI /f yI ;�g D
.R=I /fI;�g DH .
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The following observation will be useful later:

Lemma 2.9 The projection �W C ! Y factors through � W C ! S .

Proof The algebra R=I is N –graded such that the quotient by the ideal generated
by all elements of strictly positive degree equals CŒY �; the proof of this last claim is
identical to the proof of Lemma 2.4, using the fact that C is smooth. On the other hand
we can also identify CŒY � with the degree zero part of R=I . Therefore, it suffices to
show that all sections of R=I of degree zero lie in T . To see this, notice that the Poisson
bracket on R has degree �l . Therefore, given f 2 .R=I /0 and g D

P
i gihi 2 I ,

where deg hi < 0 for all i , the element ff; gg D
P
i giff; hig C hiff; gig lies in I

because degff; hig< 0.

2.5 The proof of Theorem 2.6

The crucial tool in the proof of Theorem 2.6 is an algebraic version of the Darboux–
Weinstein theorem which is due to Knop [45, Theorem 5.1]. In our setup, Knop’s
theorem can be stated as:

Theorem 2.10 Let f�;�g! and f�;�g!can denote the Poisson brackets on yR asso-
ciated to the symplectic forms ! and !can , respectively. Denote their difference by
f�;�g� . If f yR; yRg� � yI , then there exists an automorphism � of C as described in
Theorem 2.6.

Knop’s proof of Theorem 2.10 is based on the proof by Guillemin and Sternberg of the
equivariant Darboux–Weinstein theorem [29], except that Knop works in the formal
algebraic setting.

In our case, it is not necessarily true that f yR; yRg� � yI . Instead, we construct an equi-
variant automorphism  of yR , such that  . yI /D yI and the difference of f�;�g �.!/
and f�;�g!can has the desired properties. In fact we prove the following:

Proposition 2.11 There exist homogeneous elements w1; : : : ; wm and z1; : : : ; zm
in yR and a graded subalgebra T of yR such that:

(1) T \ yI D 0 and the map yR ! R=I induces a graded algebra isomorphism
T !CŒS�.

(2) The elements w1; : : : ; wm generate yI .

(3) There is a Gm–equivariant isomorphism R=I 'CŒS�Œz1; : : : ; zm�

(4) With respect to the Poisson structure f�;�g D f�;�g! , we have fwi ; zj g D
ıij mod yI, fzi ; T g, fwi ; T g � yI and fzi ; zj g 2 yI for all i and j .
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Since the choice of such elements w1; : : : ; wm , z1; : : : ; zm clearly yield a Gm–equi-
variant automorphism of yR (which fixes yI and S ), one sees directly that this proposition
implies the existence of  as described above.

So we turn to the proof of Proposition 2.11. As in the proof of Lemma 2.9, we make
the identification CŒY �D .R=I /0 . We have S D Y �V and C D Y �V �Z , where
V and Z are as in Lemma 2.5. Let V �

l
be the l –weight subspace of V � .

Lemma 2.12 The Poisson bracket on CŒS� defines an isomorphism of CŒY �–modules

CŒY �˝V �l
��!Der.CŒY �/:

Proof That the map is well-defined and CŒY �–linear follows from degree consider-
ations. Lemma 2.5 implies that the Poisson bracket on CŒS� is nondegenerate. This
nondegeneracy implies that the above map is surjective. Since it is a surjective map
between two projective CŒY �–modules of the same rank, it is an isomorphism.

Choose an arbitrary point y 2 Y . Our strategy will be to complete at y and use the
Darboux theorem for a symplectic formal disc to control the behavior of the Poisson
bracket in some neighborhood of y . For the convenience of the reader we recall the
statement of the Darboux theorem in the presence of an elliptic Gm–action:

Theorem 2.13 Let yRy denote the completion of R at y . Then, in yRy , there is a regu-
lar sequence fu1; : : : ; un; v1; : : : ; vng of homogenous elements such that fui ; vj gD ıij
and fui ; uj g D 0D fvi ; vj g for all i and j .

The proof of the equivariant Darboux theorem is a slight modification of standard
arguments and we shall omit it. Since CŒY ��H , R=I is a Poisson CŒY �–module,
where CŒY � is equipped with the trivial Poisson bracket. Let K �R=I denote the set
of all elements k such that fCŒY �; kg D 0; it is a graded subalgebra of R=I .

Lemma 2.14 Multiplication defines an isomorphism CŒV�l �˝K
��!R=I .

Proof By Krull’s intersection theorem, we may consider R=I as a subalgebra of
yRy=I yRy , and hence of . yRy=I yRy/rat too. The ring yRy=I yRy is a Poisson module
over the ring yCŒY �y , where yCŒY �y is the completion of CŒY � at the point y . If
yK � yRy=I yRy and Krat � . yRy=I yRy/

rat are defined analogously to K , then it suffices
to show that CŒV�l �˝K

rat ��! . yRy=I yRy/
rat .

Reordering if necessary, we may suppose that fv1; : : : ; vmg are the elements of
Theorem 2.13 that have negative degree. They generate the ideal I yRy . There exist
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˛1; : : : ; ˛r , ˇ1; : : : ; ˇs such that f˛1; : : : ; ˛r ; ˇ1; : : : ; ˇsg�fu1; : : : ; un; vmC1; : : : ; vng,
CŒŒ˛1; : : : ; ˛r ��DCŒŒV�l �� and CŒŒˇ1; : : : ; ˇs��DCŒŒV>�l�Z��. In this case, it follows
from Theorem 2.13 that

yRy=I yRyD yCŒY �y y̋CŒŒ˛1; : : : ; ˛r ; ˇ1; : : : ; ˇs�� with yKD yCŒY �y y̋CŒŒˇ1; : : : ; ˇs��:

Hence, since deg˛i and deg ǰ > 0 for all i and j ,

(2-3) . yRy=I yRy/
rat
DCŒV�l �˝ yCŒY �y ˝CŒˇ1; : : : ; ˇs�:

Lemma 2.12 implies that we may fix a basis x1; : : : ; xr of V �
l
�CŒV�l � and regular

sequence y1; : : : ; yr in CŒY � such that dy1; : : : ; dyr are a basis of �1Y and fxi ; yj gD
ıij for all i and j . This, together with the identification (2-3), implies that Krat D
yCŒY �y ˝CŒˇ1; : : : ; ˇs� and CŒV�l �˝K

rat ��! . yRy=I yRy/
rat .

Now we begin constructing elements that satisfy the conditions of Proposition 2.11.
Since the statement of Proposition 2.11 is local, it suffices to replace X by some
sufficiently small affine neighborhood of y where the statement holds. We prove:

Lemma 2.15 There exists a Gm–equivariant identification C ' S � Z such that
fCŒY �;CŒZ�g D 0.

Proof Let CŒZ�DCŒz1; : : : ; zm�. We show that the elements zi can be modified so
that the lemma holds. If x1; : : : ; xr is the basis of V �

l
as in the proof of Lemma 2.14,

then that lemma implies that we may uniquely decompose

zi D
X
I2Nr

xI �p
.i/
I

for p.i/I 2 K . Since the xi have degree l > 0 it follows that degp.i/I < deg zi for
all I ¤ 0. Using this fact, it is straightforward to show by induction on degree that

CŒY �V>�l �Œz1; : : : ; zm�DCŒY �V>�l �Œp
.1/
0 ; : : : ; p

.m/
0 �;

which implies the lemma. Indeed if z1; : : : ; zk have the minimal possible degree then
degp.i/I < deg zi for I ¤ 0 implies that p.i/I 2CŒY �V>�l � and hence

CŒY �V>�l �Œz1; : : : ; zk�DCŒY �V>�l �Œp
.1/
0 ; : : : ; p

.k/
0 �:

The inductive step is entirely analogous.

Recall that the Lie algebra l D I=I 2 acts on R=I as well. Next, we consider the
action of l on CŒZ�. Recall that we have assumed that Y is small enough so that
we have a Gm–equivariant trivialization Tot.NX=C /Š C �Z

� . It follows that l is a
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free R=I –module of rank equal to dimZ . We now consider the action of l on CŒZ�
viewed as a subalgebra of R=I via the isomorphism constructed in Lemma 2.15:

Lemma 2.16 There exists a homogeneous subspace W � l such that lDR=I˝W as
an R=I –module and the action of l on R=I restricts to a nondegenerate, equivariant
pairing W �Z�!C .

Proof Let fz1; : : : ; zmg be the generators of CŒZ��R=I as in the proof of Lemma
2.15, viewed as elements of Z� . We must show that there is a homogeneous R=I –basis
of l dual to the zi with respect to the pairing induced by the Poisson bracket. Fix
fw1; : : : ; wmg some homogeneous R=I –basis. We will modify this basis by increasing
induction on degree in order to obtain the required dual basis.

For each integer �m< 0 the Poisson bracket induces a CŒY �–linear pairing between
the l�m , the .�m/th graded piece of l, and CŒZ�lCm . Let Z�

lCm
be C–span of

the zi of degree l Cm and let NlCm be the CŒY �–module it generates. Similarly,
let n�m � l�m be the CŒY �–module generated by the wj of degree �m. Since the
pairing induced by the Poisson bracket on the tangent space TyX at a closed point
y 2 Y is homogeneous and nondegenerate, it follows that the CŒY �–pairing between
NlCm and n�m is also nondegenerate. It follows that we may modify the wj in n�m
to be dual to the zj 2NlCm , that is, so that fwj ; zkg D ıj;k .

Thus we suppose by induction that for all d < �m the wj of degree �d are dual to
the zk of degree l C d and the pairings fwj ; zkg D 0 for wj and zk in degrees less
than �m and greater than l Cm, respectively, which are not paired. Note that for
sufficiently large m this holds vacuously. In degree �m, modify the wi to be dual
to the zk of degree l Cm as above. To complete the inductive step we must ensure
the new wi have trivial Poisson bracket with the zk of higher degree; modify the wi
according to the homogeneous substitution

wi 7! wi �
X

degwj<�m

fwi ; zj gwj :

Since the l–module structure on R=I is left R=I –linear, it follows from the inductive
hypothesis that for these new wi we have fwi ; zkg D 0 whenever deg zk > l Cm.
Moreover, these new wi are still linearly independent, as they remain dual to the zk of
degree l Cm, since fwj ; zkg D 0 for all wj of degree less than �m by consideration
of degree.

With these two lemmas in hand we may now give:

Proof of Proposition 2.11 If we denote by the same letter a homogeneous lift of the
space W of Lemma 2.16 to yI , then yRD .R=I /ŒŒW ��. In this way we regard W and
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Z� as subspaces of yR . Now, by Lemma 2.16 we may choose bases w1; : : : ; wm and
z1; : : : ; zm of W and Z� , respectively, so that conditions (2), (3) and the first condition
of (4) in Proposition 2.11 hold. It remains to ensure the conditions that fzi ; zj g belong
to yI and to find a suitable subalgebra T . For this we repeatedly use the substitution
strategy of Lemma 2.16: inductively define

z0i D zi �

i�1X
jD1

fzi ; z
0
j gwj for all i:

One checks directly that these elements Poisson commute with each other modulo yI
and, since z0i � zi 2 yI , we have that fz0i ;CŒY �g D 0 mod yI and fz0i ; wj g D ıij mod yI .
Finally, if V is as in Lemma 2.5, and we pick a basis x1; : : : ; xt of V � so that
CŒS�DCŒY �Œx1; : : : ; xt �, and set

x0i D xi �

mX
jD1

fz0j ; xigwj for all i

and let T be the algebra generated by CŒY � and the x0i . Then it follows easily
that fz0i ; T g D 0 mod yI and fwi ; T g D 0 mod yI (the latter from elementary degree
considerations) and thus the proposition is proved.

2.6 Special case of Theorem 2.1: isolated fixed points

Assume now that each fixed point component Yi of the elliptic Gm–action is a single
point fpig. In this case each Si is isomorphic to A2ti and there exists globally a splitting
Si ,! Ci

�i
��Si . Let .A2n; !can/ be the 2n–dimensional affine space equipped with

the constant symplectic form. We now check that in this case the symplectic reduction
is isomorphic to a linear symplectic form.

Proposition 2.17 Let .S; !S / be an affine symplectic manifold, isomorphic to A2n ,
equipped with an elliptic Gm–action with unique fixed point o 2 S . Then there exists
an isomorphism �W S !A2n and homogeneous algebraically independent generators
zD z1; : : : ; zn and wD w1; : : : ; wn of CŒS� such that

��! D dz1 ^ dw1C � � �C dzn ^ dwn:

Proof Take the completion at o 2 S . Then by the formal Darboux theorem we
may choose homogeneous generators fu1; : : : ; un; v1; : : : ; vng for which the Poisson
bracket associated to ! has standard form. We may view CŒS�� bCŒS� via the obvious
map, and so we are reduced to showing that the generators ui and vj are actually
elements of CŒS�. But the Gm–action naturally extends to bCŒS� , and since o is the
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unique fixed point, which is therefore the limit of every point in S , it follows that we
may describe CŒS� � bCŒS� as . bCŒS�/rat the elements for which the Gm–action is
locally finite. Clearly any homogeneous element is locally finite and so we are done.

Corollary 2.18 Suppose XGm is finite, of cardinality k . Then, for all i , there is a
coisotropic reduction �i W Ci ! .A2ti ; !can/.

2.7 Symplectic fibrations

In this subsection, we consider those symplectic manifolds equipped with an elliptic
Gm–action for which the set of Gm–fixed points is a connected variety. At one extreme,
we have cotangent bundles of a smooth variety, with Gm acting by rescaling the fibers;
at the other extreme one has symplectic fibrations, which are affine bundles such that
each fiber is a copy of affine symplectic space. We show that generally one gets a mix
of these two extremes.

Let Y be a smooth connected variety.

Definition 2.19 � A symplectic fibration over Y is a tuple .E; �; f�;�g/, where
�W E ! Y is an affine bundle and f�;�g an OY –linear Poisson bracket on
��OE such that the restriction of f�;�g to each fiber of � is nondegenerate.

� The symplectic fibration is said to be elliptic if Gm acts on E such that f�;�g
is homogeneous of negative weight, Y D EGm and all weights of Gm on the
fibers of � are negative.

If .E; �; !/ is an elliptic symplectic fibration then
�
��1.y/; f�;�gj��1.y/

�
is a sym-

plectic manifold for each y 2 Y .

Since T �Y is a vector bundle, it is naturally an abelian group scheme over the base Y .

Definition 2.20 Suppose pW B ! Y is a smooth variety over Y equipped with a
symplectic form !B . Suppose that B is equipped with an action aW T �Y �Y B! B

of the group scheme T �Y over Y . We say B! Y is symplectically automorphic if,
for any 1–form � on Y , we have

a.�;�/�!B D !B Cp
�d�:

As remarked in the introduction, if B is a T �Y –torsor, this reduces to the notion of
twisted cotangent bundle as in [3].

For the remainder of this section we assume that X is equipped with an elliptic Gm–
action such that the fixed point set Y of X is connected and hence every point of X
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has a limit in Y . By [10, Theorem 4.1], there is a smooth map �W X! Y , making
X an affine bundle over Y . We should like to show that such symplectic varieties
are symplectically automorphic varieties built from cotangent bundles and elliptic
symplectic fibrations.

Theorem 2.21 Let X be a smooth symplectic variety equipped with an elliptic Gm–
action such that the fixed point locus Y D XGm is connected. Then:

(1) The group scheme T �Y acts freely on X, making X ! Y symplectically
automorphic.

(2) The cotangent bundle T �Y embeds T �Y –equivariantly in X. Moreover, the
restriction of the symplectic form ! to T �Y � X equals the standard 2–form
on T �Y .

(3) The quotient E WD X=T �Y inherits a Poisson structure making the projection
E! Y an elliptic symplectic fibration.

The proof of Theorem 2.21 is similar to the proof of the local normal form Theorem 2.6;
however, we must also use the powerful Artin approximation theorem of [2]. For brevity,
we write OX for the algebra ��OX . Let K be the ideal in OX generated by .OX/0<i<l .

Lemma 2.22 The symplectic form on X restricts to a symplectic form on SpecYOX=K .
Moreover, SpecY OX=K' T �Y as smooth symplectic varieties.

Proof The OY –submodule .OX/�l of OX is preserved by the Poisson bracket. If
f 2 .OX/�l and g 2OY , then ff; gg 2OY . Thus, ff;�g defines a derivation of OY .
If f 2 .OX/<l then this derivation is zero. Hence, the Poisson bracket defines a
OY –linear map �W E ! ‚Y , where E D .OX/�l=.OX/<l . This is a map of Lie
algebroids:

Œ�.f /; �.g/�.h/D �.f /.�.g/.h//��.g/.�.f /.h//

D ff; fg; hgg� fg; ff; hgg

D �fh; ff; ggg� fg; fh; f gg� fg; ff; hgg

D �.ff; gg/.h/:

Since the Poisson bracket on X is nondegenerate, � is surjective. Locally trivializing
X'Y �V shows that E is locally free of rank dimV�l D dimY and OX=KDSym� E .
Therefore � is an isomorphism.

Lemma 2.23 The algebra OX is a comodule for Sym�‚Y .

Proof Recall that the comultiplication on the Hopf algebra Sym�‚Y is defined by
�.v/ D v˝ 1C 1˝ v for v 2 ‚Y . The algebra OX is generated by .OX/�l . We
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define �XW OX! OX˝OY Sym�‚Y by �X.f /D f ˝ 1C 1˝ xf for f 2 .OX/�l
and extending to OX using the fact that �X should be an algebra homomorphism. Here
xf denotes the image of f in OX=K' Sym�‚Y . Since OX is not freely generated

by .OX/�l , we need to show that this is well-defined.

Choose a local set x1; : : : ; xk , z1; : : : ; zr of homogeneous algebraically independent
generators of OX over OY such that 0 < deg xi < l and deg zj D l for all i and j .
The images xzi in Sym�‚Y of the zi form a basis of ‚Y . Then we define �0X by
�0X.f /D f ˝1C1˝

xf for f 2 fx1; : : : ; xk; z1; : : : ; zrg. This clearly defines a local
comodule structure on OX . We just need to show that it equals �X , ie it is independent
of the choice of local generators. Take f 2 .OX/�l , a homogeneous element. There
exist ai 2OY and some g such that f D

Pr
iD1 aizi Cg.x1; : : : ; xk/. Then

�0X.f /D

rX
iD1

ai�
0
X.zi /Cg.�

0
X.x1/; : : : ; �

0
X.xk//

D

rX
iD1

.aizi ˝ 1C 1˝ aixzi /Cg.x1˝ 1; : : : ; xk˝ 1/

D

� rX
iD1

aizi

�
˝ 1C 1˝

� rX
iD1

aizi

�
Cg.x1; : : : ; xk/˝ 1

D f ˝ 1C 1˝ xf D�X.f /:

Finally, to check that �X is compatible with the comultiplication on Sym�‚Y , it
suffices to do so locally, as above, where it is clear.

We denote by F the graded OY –subalgebra of OX generated by .OX/<l . Set E WD
SpecY F and let X=T �Y denote the spectrum of O�X

X . From the definition of �X

given in the proof of Lemma 2.23, the algebra F is contained in O�X

X . Thus, we have a
dominant map X=T �Y !E . Moreover, the local description of �X given in the proof
of Lemma 2.23 shows that X=T �Y is the space of T �Y –orbits in X and the map
X=T �Y !E is an isomorphism. Thus, parts (1) and (2) of Theorem 2.21, except for
the “symplectically automorphic” assertion of (1), are a consequence of Lemmas 2.22
and 2.23. For part (3) we need to show that the Poisson bracket on OX , restricted to F ,
makes E into a symplectic fibration. For this and the “symplectically automorphic”
assertion, we need a local normal form of the Poisson bracket on OX .

Proposition 2.24 Locally, in the étale topology on Y , there is a Gm–equivariant
isomorphism of Poisson algebras

OX 'OT �Y ˝CŒA2n�;

where the inherited Poisson bracket on CŒA2n� is the standard one.
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Proof Let rD dimY . Since the statement is local we assume that X'Y �V is affine,
where V is a Gm–module with strictly negative weights. The algebra R WDCŒX� is
isomorphic to CŒY �˝CŒV �. If x1; : : : ; x2n is a homogeneous basis of V �

<l
�CŒV � and

x2nC1; : : : ; x2nCr a basis of V �
l
�CŒV �, then CŒX�DCŒY �˝CŒx1; : : : ; x2nCr �. Con-

cretely, we wish to show that there exists an equivariant étale morphism pW U!Y such
that �.U; p�CŒX�/ is isomorphic to CŒU �Œx01; : : : ; x

0
2nCr �, where the fx0ig are graded

elements, with deg xi D deg x0i , and the Poisson bracket satisfies fx0i ; x
0
j gD ıiCj;2nC1 .

Assuming we have done this, weight considerations imply that

�.U; p�CŒX�/'CŒU �Œx02nC1; : : : ; x
0
2nCr �˝CŒA2n�

as Poisson algebras and Lemma 2.12 implies that CŒU �Œx02nC1; : : : ; x
0
2nCr �'CŒT �U �

as Poisson algebras.

Remark 2.25 Since this identification is compatible with the action of T �Y , the
“symplectically automorphic” assertion of Theorem 2.21(1) follows immediately from
the same assertion for T �Y itself.

Choose y 2 Y , and consider the algebra yRrat
y '

yCŒY �y ˝CŒV � of Gm–locally finite
sections of the completion of R at y . Let m denote the maximal ideal of .y; 0/ in yRrat

y .
The formal Darboux theorem, Theorem 2.13, implies that there exist homogeneous
elements u1; : : : ; u2nCr in yRrat

y such that fui ; uj g D ıiCj;2nC1 and their image in
m=m2D T �y Y �V

� is a basis of V � . With respect to our chosen basis, ui D
P
j gijxj

for some gij 2 yCŒY �y . This implies the relations

(2-4) ıiCj;2nC1 D fui ; uj g D
X
k;l

gikgjlfxk; xlg;

where the last equality follows from the fact that fxk; gij g D 0 for all i , j and k for
reasons of degree.

Since these relations are taking place in the finite, free CŒY �–module CŒY �˝CŒV ��l
we may consider (2-4) as defining a system of polynomial equations in the variables gij .
Then the formal Darboux theorem says that these equations have solutions in the
completion of Y at y . The Artin approximation theorem [2, Corollary 2.1] now assures
us of the existence of an étale neighborhood of y (ie an étale map pW U ! Y with a
chosen closed point x living above y ) in which the equations have a solution fg0ij g,
whose difference with the solution in yCŒY �y D yCŒU �x lies in n, the maximal ideal of
this local ring.

Now, we can base change the affine map X! Y to get an affine bundle XU ! U ;
furthermore, the induced map XU!X is étale since U!Y is. Therefore, the pullback

Geometry & Topology, Volume 21 (2017)



Categorical cell decomposition of quantized symplectic algebraic varieties 2627

of the Poisson bracket induces a Poisson bracket on p�CŒX�, which is homogeneous of
weight �l by construction. Thus the given solutions of these equations yield elements

x0i D
X

g0ijxj 2 p
�CŒX�

which satisfy the Poisson relations as in the conclusion of the proposition. Furthermore,
the choice of x0i implies that the determinant of the CŒU �–linear transformation xi 7!x0i
is nonzero at p�1.y/ (because this is true for yCŒY �y –linear transformation xi 7! ui ).
Thus, restricting to smaller neighborhoods if necessary, we may assume that the map
xi 7! x0i is invertible; this implies that the x0i are algebra generators of p�CŒX�
over CŒU �, which proves the proposition

Proposition 2.24 implies that E is a symplectic fibration. This proves Theorem 2.21.

Remark 2.26 It follows from [10, Theorem 2.2] that the equivariant closed embedding
T �Y ,! X of Theorem 2.21 is unique. We also note that Theorem 2.21 implies that if
dimXD 2 dimY then X' T �Y . Moreover, the proof of Theorem 2.21 shows that,
locally in the Zariski topology,

X' T �Y �Y E

as smooth varieties with Gm–actions, though not as Poisson varieties.

2.8 Reductions of coisotropic subvarieties

We can now give a generalization of Theorem 2.1. Fix a coisotropic stratum �W C ! Y

and let � W C!S be the coisotropic reduction of C given by Theorem 2.1. Let Y 0�Y
be a smooth, closed subvariety and set C 0 D ��1.Y 0/. The proof of Theorem 2.1(1)
shows that C 0 � C is coisotropic. Let I be the sheaf of ideals in OS vanishing on C 0 .
Since it is generated by elements in degree zero, it is an involutive ideal. Let �0W S!Y

be the projection map. We perform coisotropic reduction as before and set

(2-5) S 0 WD SpecY 0.�
0
�
OS=I/fI;�g;

a Poisson variety. Just as in the proof of Theorem 2.1, to show that S 0 is a coisotropic
reduction of C 0 , it suffices to do so locally on Y . Instead of considering the for-
mal neighborhood of Y in S , we pass to an étale local neighborhood. Thus, by
Proposition 2.24, we may assume that S ' T �Y �A2n . Then C 0 D .T �Y /jY 0 �A2n

and S 0 becomes the classical coisotropic reduction T �Y 0�A2n . Thus, we have shown:

Corollary 2.27 The space C 0 is coisotropic in X and there is a coisotropic reduction
� 0W C 0! S 0 .

In Section 4.10 the above coisotropic reduction will be quantized.
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3 Deformation-quantization modules

In this section, we recall the basic properties of DQ algebras and their modules. We
also prove an extension result, Theorem 3.27, which will play a key role in Section 5.

3.1 DQ algebras: affine setting

We begin by recalling the definition of a deformation-quantization algebra. Let
.R; f�;�g/ be a regular Poisson C–algebra.

Definition 3.1 A deformation-quantization of R is an „–flat and „–adically complete
CŒŒ„��–algebra A equipped with an isomorphism of Poisson algebras A=„AŠR . Here
A=„A is equipped with a Poisson bracket via

fxa; xbg D
�
1

„
Œa; b�

�
mod „A;

for arbitrary lifts a and b of xa and xb in A. The algebra A is a deformation-quantization
algebra or DQ algebra if it is a deformation-quantization of some regular Poisson
algebra R . An isomorphism of DQ algebras that are quantizations of the same Poisson
algebra R is a CŒŒ„��–algebra isomorphism such that the induced map on R is the
identity.

Lemma 3.2 Let A be a deformation-quantization algebra.

(1) A is a (left and right) Noetherian domain of finite global dimension.

(2) The Rees ring Rees„AD
L
n�0 „

nA is Noetherian.

(3) If M is a finitely generated A–module, then M is „–complete.

Proof Part (1) follows from the fact that the associated graded of A with respect
to the „–adic filtration is RŒ„�, which is a regular domain. Part (2) is shown in [48,
Lemma 2.4.2]. Part (3) is a consequence of the Artin–Rees lemma.

We also have the following well-known complete version of Nakayama’s lemma:

Lemma 3.3 Let M be a complete CŒŒ„��–module. If „M DM then M D 0.

3.2 Sheaves of DQ algebras

Let .X; f�;�g/ be a smooth Poisson variety. A sheaf of CŒŒ„��–modules A on X is
said to be „–flat if each stalk Ap is a flat CŒŒ„��–module. For each positive integer n,
let An DA=„nA. The „–adic completion of A is yAD lim

 ��n
An and A is said to be

„–adically complete if the canonical morphism A! yA is an isomorphism.
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Definition 3.4 A sheaf of CŒŒ„��–algebras A on X is said to be a deformation-
quantization algebra if it is „–flat and „–adically complete, equipped with an isomor-
phism of Poisson algebras A0 ŠOX .

If, moreover, the algebra A is equipped with a Gm–action that acts on „ 2 A with
weight l and the Poisson bracket on X has degree �l , then we replace A by AŒ„1=l �
and „ by „1=l , so that, without loss of generality t � „ D t„ and the Poisson bracket
on OX coming from A is defined by

fxa; xbg WD
1

„l
Œa; b� mod „A:

Remark 3.5 For a symplectic variety X with Gm–action and deformation-quantization
A we always assume that A is equivariant in the above sense.

In the algebraic setting, the existence and classification of sheaves of deformation-
quantization algebras is well understood. See [8; 49] for the equivariant setting. Assume
that X is affine and let RDCŒX�; let A be a deformation-quantization of R . For any
multiplicatively closed subset S of R , there is an associated microlocalization Q�S .A/
of A; the algebra Q�S .A/ is, by definition, a deformation-quantization of RS . Using
Gabriel filters, one can extend the notion of microlocalization to define a presheaf O�A of
algebras on X such that �.D.f /;O�A /DQ

�

f
.A/ for all f 2R . By [68, Theorem 4.2],

the presheaf O�A is a sheaf and the following proposition holds:

Proposition 3.6 Assume that X is affine. Then microlocalization defines an equiva-
lence between the category of DQ algebras quantizing R and sheaves of DQ algebras
on X.

3.3 Sheaves of DQ modules

In this section, we define those A–modules that will be studied in Sections 4 and 5.
First:

Lemma 3.7 If H 1.X;OX /D 0, then �.X;An/D �.X;A/=„n�.X;A/.

Proof Consider the short exact sequence 0!A � „
n

�!A!An! 0: Taking derived
global sections, it suffices to show that H 1.X;A/ D 0. Induction on n using the
exact sequence 0! „An�1! An! OX! 0 shows that H 1.X;OX / D 0 implies
H 1.X;An/D 0. Then [28, Proposition 13.3.1] implies that H 1.X;A/D 0.

Thus, write AD �.X;A/ and An D �.X;An/. If M is an An–module then, thinking
of An and M as constant sheaves on X, we define M� DAn˝AnM .
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Definition 3.8 An An–module Mn is quasicoherent if there exists an affine open
covering fUig of X such that MnjUi ' �.Ui ;Mn/

� . If, moreover, �.Ui ;An/ is a
finitely generated �.Ui ;Mn/–module for all i then Mn is said to be coherent.

As in the commutative case, we have:

Proposition 3.9 An An–module Mn is quasicoherent if and only if

MnjU ' �.U;Mn/
�

for all affine open subsets U of X.

Assume that X is affine and let AD �.X;A/. Let M be an A–module. We define
M� D lim

 ��n
.An ˝An M=„nM/. We remark that if fMng is an inverse system of

sheaves, then lim
 ��n

Mn is defined to be the sheaf U 7! lim
 ��n

�.U;Mn/; there is no
need to sheafify. In particular, �.X; lim

 ��n
Mn/D lim

 ��n
�.X;Mn/.

We may now define the two classes of modules that play a role in this paper:

Definition 3.10 Let M be an A–module.
(1) M is coherent if it is „–complete and each Mn is a coherent An–module.
(2) M is quasicoherent if it the union of its coherent A–submodules.

The category of all coherent (resp. quasicoherent) A–modules is denoted by A–coh
(resp. A–qcoh). The proof of the following is based on [1, Theorem 5.5]:

Proposition 3.11 Assume that X is affine. Then �.X;�/ defines an exact equivalence
between A–coh and the category A–mod of finitely generated A–modules, where
AD �.X;A/. A quasi-inverse is given by M 7!M� . Moreover, M� DA˝AM .

Proof As for any localization theorem, the proof has three parts. First, we show that
� is exact on A–coh. Then we show that �.X;M / is a finitely generated A–module,
for all M 2A–coh. Finally, we show that M is generated by its global sections.

Let Mn D �.X;Mn/ and M D �.X;M /. Since the An–module „n�1M=„nM is a
submodule of the coherent An–module Mn , it is coherent, and hence Proposition 3.9
implies that the cohomology groups H i .X; „n�1M=„nM / are zero for all i ¤ 0.
Therefore, we have surjective maps Mn ! Mn�1 ! � � � . Therefore, the inverse
system fMngn satisfies the Mittag-Leffler condition and hence [28, Proposition 13.3.1],
together with the fact that M is assumed to be complete, implies that H i .X;M /D 0

for all i ¤ 0.

Since Mn=„
nMnŠMn�1 , the fact that H 1.X;Mn/D 0 implies Mn=„

nMnDMn�1 .
Therefore, by [6, Lemma 3.2.2], the fact that each Mn is a finitely generated An–module
implies that M is a finitely generated A–module.
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The fact that � is exact implies that Mn DM=„
nM . Therefore, by Proposition 3.9,

M ' lim
 ��
n

Mn D lim
 ��
n

An˝AnMn D lim
 ��
n

An˝AnM=„
nM DM�:

Finally, to show that this is the same as A˝AM , let An ! Am ! M ! 0 be a
finite presentation of M . Since we have a natural map A˝AM !An˝AnM=„nM
for all n, there is a canonical morphism A˝AM ! M� . Then we get the usual
commutative diagram

A˝AAn //

��

A˝Am //

��

A˝AM //

��

0

.An/� // .Am/� // M� // 0

so the result follows from the five lemma and the fact that .Am/� D .A/m , which in
turn is a consequence of the fact that microlocalization is an additive functor.

Remark 3.12 It is clear that, under the identification of the proposition, if U � X

is an inclusion of affine opens, the restriction functor M 7!M jU is identified with
M 7!H 0.U;A/˝AM .

Corollary 3.13 Let M 2A–coh and U �X an affine open set. Then H i .U;M /D 0

for all i¤0 and M jU '�.U;M /�, where M is a finitely generated �.U;A/–module.

Lemma 3.14 Let M be an A–module. The following are equivalent:

(1) M is coherent.

(2) M is locally finitely presented.

(3) M is locally finitely generated.

Proof (1)D) (2) Let U be an affine open subset of X and M D �.U;M /. Then
M is finitely generated. Since A is Noetherian, it is actually finitely presented and
hence there is sequence An! Am!M ! 0. The functor � is an equivalence on
A–mod, hence we have AnjU !AmjU !M ! 0.

(2)D) (3) This is clear.

(3)D) (1) We have �W AmjU � M jU and hence Amn jU � MnjU . Thus, each
MnjU is coherent. The module ker� is a submodule of the coherent A–module
AmjU . Therefore the Artin–Rees lemma implies that the filtrations f„n ker�g and
f.ker�/ \ .„nAm/g are comparable. Hence lim

 ��

.1/.ker�/=Œ.ker�/ \ „n.Am/� D 0.
This implies that M is complete.
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Proposition 3.15 Suppose X is affine and that j W U ,!X is an open subset. Suppose
that M is a coherent AU –module. Then M is globally generated.

Proof First, let p 2 U be any point. Write Mm DM=„mM , and let M0Œp� denote
the fiber of M0 at p . We have that j�Mm is a quasicoherent A–module; thus, by
Proposition 3.11, j�Mm is the union of its globally generated subsheaves, hence is
itself globally generated. Thus �.Mm/!M0Œp� is surjective. Taking (inverse) limits
and applying [30, Theorem 4.5], we get that �.M /!M0Œp� is surjective. It follows
(by a standard argument) from Nakayama’s lemma that �.M /˝A!M0 is surjective.
Writing evW �.M /˝A!M for the evaluation map, we get that M D Im.ev/C„M ,
ie that M= Im.ev/D„ � .M= Im.ev//, and thus by Lemma 3.3 that ev is surjective.

We remark that, in the proof of Proposition 3.15, we use only quasicoherence of j�Mm

(and not of the naive sheaf-theoretic image j�M , which we expect is not quasicoherent
in general).

Corollary 3.16 Let X be an affine variety and U � X an open subset with comple-
ment C D XXU . Let A–cohC denote the subcategory of sheaves supported on C
(that is, the kernel of the restriction-to-U functor). Suppose that the induced functor
A–coh=A–cohC !AU –coh is full. Then A–coh!AU –coh is essentially surjective.

Proof By Proposition 3.15, objects of A–coh are globally generated; hence, given
M 2 A–coh, we may produce a presentation AIU

�
�!AJU ! M ! 0 with I and

J finite index sets. It suffices to prove that there are objects F1 , F0 2 A–coh, a
morphism z�W F1! F0 , and isomorphisms F1jU ŠAIU and F0jU ŠAJU that identify
z�jU with � : then M Š coker.z�/jU . But since AIU and AJU are in the essential image
of the functor A–coh=A–cohC !AU –coh, this follows immediately from the fullness
hypothesis.

Recall that a CŒŒ„��–module is flat if and only if it is torsion-free. The following is a
consequence of [71, Theorem 5.6]:

Lemma 3.17 Let M be a „–adically complete and „–flat A–module. Let U � X

be an affine open set. Then �.U;M / ' �.U;M0/ y̋ CŒŒ„�� as CŒŒ„��–modules, ie
�.U;M / is „–adically free.

Based on Lemma 3.17, a A–module M is said to be „–adically free if it is „–adically
complete and „–flat. At the other extreme, an A–module M is said to be „–torsion if,
for each p 2 X, there exists an affine open neighborhood U of p and N � 0 such
that „N ��.U;M /D 0. Since X is assumed to be quasicompact, this is equivalent to
requiring that „N �M D 0 for N � 0. We define A–cohtor be the full subcategory of
A–coh consisting of all „–torsion sheaves.
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3.4 Equivariant algebras and modules

Terminology 3.18 Let T be a torus, ie T is isomorphic to Gn
m for some n. We

recall that a representation M of T is prorational if it is the inverse limit of rational
T–modules. Fix a character � of T and let T act on CŒŒ„�� by t � „ D �.t/„.

Let .X; !/ be an affine symplectic variety with Gm–action. Assume that m�t !D�.t/!
for all t 2 T.

Definition 3.19 A complete CŒŒ„��–algebra A is said to be T–equivariant if A is a
prorational T–module such that g �.ab/D .g �a/.g �b/, and g �„D�.g/„. The algebra
A is a T–equivariant deformation-quantization of CŒX� if A comes equipped with a
T–equivariant isomorphism A=„AŠCŒX�.

A finitely generated A–module is said to be T–equivariant (or just equivariant) if it is
a prorational T–module such that the multiplication map A˝M !M is equivariant.

The category of all finitely generated, equivariant A–modules is denoted by .A;T/–mod

and the corresponding ind-category is .A;T/–Mod. The morphisms in these categories
are equivariant.

Proposition 3.20 .A;T/–mod and .A;T/–Mod are abelian categories.

Lemma 3.21 Let M 2 .A;T/–mod. Then there exists a finite-dimensional T–sub-
module V of M such that M D A �V .

Proof Nakayama’s lemma implies that if V is any subspace of M whose image in
M=„M generates M=„M , then V generates M . As noted in [26, Section 5.2.1], each
Mn is a rational T–module and M is the inverse of these T–modules. Since T is
reductive, we may fix T–equivariant splittings Mn DKn˚Mn�1 such that Kn is the
kernel of Mn�Mn�1 . This implies that M D

Q
nKn as a T–module. Hence, if we

choose a finite-dimensional T–submodule V 0 of K0DM=„M that generates M=„M
as an A0–module, then we can choose a T–module lift V of V 0 in M .

3.5 Equivariant DQ algebras and modules

We maintain Terminology 3.18.

Let .X; !/ be any smooth symplectic variety with T–action: assume m�t ! D �.t/!
for all t 2 T.

Definition 3.22 A deformation-quantization A of X is said to be T–equivariant if it
is equipped with the structure of a T–equivariant sheaf of algebras, with T acting on
CŒŒ„�� as in Terminology 3.18, so that the T–action on each An is rational.
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A coherent A–module M is T–equivariant if it comes equipped with a T–equivariant
structure making each Mn a T–rational An–module. The category of T–equivariant
coherent A–modules is .A;T/–coh.

Proposition 3.23 Assume that X is affine. Then �.X;�/ defines an exact equivalence
between .A;T/–coh and the category .A;T/–mod of finitely generated T–equivariant
A–modules, where AD �.X;A/. A quasi-inverse is given by M 7!M� . Moreover,
M� DA˝AM .

Proof This is immediate from Proposition 3.11.

3.6 Support

Let M be an A–module. Then Supp M denotes the sheaf-theoretic support of M , ie
it is the set of all points x 2 X such that Mx ¤ 0.

Lemma 3.24 Let M be a coherent A–module. Then Supp M D Supp M=„M . In
particular, it is a closed subvariety of X.

Proof Since both notions of support are local, we may assume that X is affine and
set M D �.X;M /, AD �.X;A/ and RD A=„A.

Claim 3.25 Let f 2R . Then �.D.f /;M /DQ
�

f
.M/.

Proof As noted in Section 3.2, it follows from [68, Theorem 4.2] that the claim is
true when M DA. Since M is finitely generated we may, by Lemma 3.14, fix a finite
presentation An! Am!M ! 0 of M . Then the claim follows from the fact that
Q
�

f
.�/ is exact on finitely generated A–modules and the five lemma applied to the

diagram:

Q
�

f
.An/ //

o
��

Q
�

f
.Am/ //

o
��

Q
�

f
.M/

��

// 0

�.D.f /;An/ // �.D.f /;Am/ // �.D.f /;M / // 0

This completes the proof of the claim.

For each f 2R , the short exact sequence 0!„M !M !M=„M ! 0 gives

0!Q
�

f
.„M/!Q

�

f
.M/!Q

�

f
.M=„M/! 0:

Therefore, Q�
f
.M=„M/ ¤ 0 implies that Q�

f
.M/ ¤ 0. On the other hand, if

Q
�

f
.M/¤ 0 then

Q
�

f
.„M/DQ

�

f
.A/˝A „M D „Q

�

f
.A/˝AM D „Q

�

f
.M/:
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Since Q�
f
.M/ is a finitely generated Q�f .A/–module and Q�

f
.A/ is „–adically com-

plete, Nakayama’s lemma implies that „Q�
f
.M/ is a proper submodule of Q�

f
.M/.

Thus, �.D.f /;M /¤ 0 if and only if �.D.f /;M=„M /¤ 0. The lemma follows.

3.7 W–algebras and good modules

Let A be a T–equivariant DQ algebra on X. Then W WDAŒ„�1� is a sheaf of C..„//–
algebras on X; it is the W–algebra associated to A. Base change defines a functor
.A;T/–coh! .W;T/–mod, M 7!M Œ„�1�. Let U � X be a T–stable open subset
and M be a WU –module. A lattice for M is a coherent AU –submodule M 0 of M

such that M 0Œ„�1�DM ; it is a T–lattice if it is a T–equivariant coherent module. The
category of all T–equivariant WU –modules that admit a (global) T–lattice is denoted
by .WU ;T/–good, and we refer to a module in this category as a good (T–equivariant)
WU –module. Recall that .AU ;T/–cohtor denotes the full subcategory of .AU ;T/–coh
consisting of all „–torsion sheaves.

Proposition 3.26 The category .AU ;T/–cohtor is a Serre subcategory of .AU ;T/–coh
and we have an equivalence of abelian categories

.AU ;T/–coh=.AU ;T/–cohtor ' .WU ;T/–good:

3.8 Restriction and quotient categories

Let X be a smooth symplectic manifold with Gm–action of positive weight. Let Z �
XGm be a closed, connected and smooth subvariety. Let C Dfx 2X j limt!1 t �x 2Zg

be the attracting locus for Z ; it is a smooth, locally closed subvariety of X.

Assume that C is closed in X. The complement to C in X is denoted by U and we
write j W U ,! X for the embedding. In this section we prove the following:

Theorem 3.27 Suppose that C � X is closed and let U D XXC . The functor j �

induces an equivalence

(3-1) WX–good=WX–goodC ��!WU –good:

Proof The remainder of this section is devoted to the proof of Theorem 3.27. First
we note an immediate corollary. The Ind-category of .W;T/–good is denoted by
Qcoh.W;T/, or Qcoh.W/ if T is understood from context; we call it (abusively) the
quasicoherent category. We say a quasicoherent object has support in a closed subset
K � X if one can write M D lim

��!
Mi where each Mi is good and has support in K .

We write Qcoh.W/K for the full subcategory whose objects have support in K .
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Recall (for example, from [41]) that a full subcategory of a Grothendieck category
is called localizing if it is closed under subobjects, quotients, extensions and small
inductive limits.

Corollary 3.28 Let C � X be a closed subset as above. The functor

j �W Qcoh.WX;T/! Qcoh.WU ;T/

is essentially surjective and induces an equivalence

Qcoh.WX;T/=Qcoh.WX;T/C ' Qcoh.WU /:

Moreover, j � admits a right adjoint.

Definition 3.29 We write

j�W Qcoh.WU /! Qcoh.WX/

to denote the right adjoint of j � , taking care to note that it need not be identified with
the sheaf-theoretic direct image.

Proof of Corollary 3.28 Essential surjectivity and equivalence are immediate from
the theorem. The existence of a right adjoint follows since the kernel of j � , ie the
subcategory of modules supported on U , is a localizing subcategory.

We begin the proof of Theorem 3.27. The main part of the proof will show that the
faithful functor WX–good=WX–goodC !WU –good is full.

We begin with a lemma that will allow us to reduce to affine statements.

Lemma 3.30 Suppose that Z � XGm is connected and closed, and that

C D
˚
x 2 X j lim

t!1
t � x 2Z

	
is closed in X. If U � X is an affine open subset of X for which Z \U ¤∅, then

C \U D
˚
x 2 U j lim

t!1
t � x 2Z \U

	
:

In particular, limt!1 t � x exists in U for every x 2 C \U .

Proof Note that Zı DZ \U is open in Z . Let

C ı D
˚
x 2 U j lim

t!1
t � x 2Zı

	
:

Then C ı is the preimage, under the projection morphism C !Z , of the dense open
set Zı ; hence C ı is dense in C . Suppose that f 2 CŒU � is a Gm–semi-invariant,
say f .t � x/ D t�df .x/ for all t 2 Gm , x 2 U . If x 2 C ı , then limt!0 t

df .x/ D

f .limt!1 t � x/, so if d < 0 then f .x/D 0. Thus any f 2CŒU � of negative weight
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vanishes on C ı and consequently (by density) vanishes on C \U . It follows that
CŒC \U � has nonnegative Gm–weights; since C \U is closed in U , hence affine,
we conclude that the Gm–action on C \U extends to an action of the monoid A1

on C \U , proving the lemma.

Returning to the proof of the theorem, we claim that, if we assume fullness of (3-1),
essential surjectivity follows from Corollary 3.16. Indeed, to prove essential surjec-
tivity, it suffices to replace X by any Gm–stable open subset of X that contains C .
Thus, choose a collection fXig of Gm–stable affine open subsets of X whose union
contains C . Then, by Lemma 3.30, C \Xi � Xi is a closed subset satisfying the
hypotheses of the theorem, and so the fullness assertion holds for restriction from Xi
to Ui DXi XC . Corollary 3.16 thus implies that for every coherent AUi –module Mi ,
there is a coherent AXi –module M i and an isomorphism M i jUi ŠMi . A standard
gluing argument then shows that every coherent AU –module extends to a coherent
A–module, proving essential surjectivity.

Thus, we return to the proof of fullness of (3-1). We note that taking a covering of X
by affine open Gm–stable sets, the sheaf property implies that the fullness statement is
local. Therefore we may assume that X is affine. Shrinking X if necessary, we may
assume that C D Z.f1; : : : ; fk/ is a complete intersection in X of codimension k ,
where each fi is homogeneous with respect to Gm . As in Lemma 3.30, if f 2O.X/ is
homogeneous of negative weight with respect to Gm , then f 2 I.C /. The fact that X
is affine implies that we can (and will) fix an identification ADOXŒŒ„�� of prorational
sheaves of CŒŒ„��–modules. Notice that for any Gm–stable affine open subset V of X,
the identification gives a canonical identification A.V /DO.V /ŒŒ„��. Given f 2O.X/,
let �.f / denote the corresponding section of A.X/ under this identification.

Let Wrat denote the CŒ„; „�1�–subalgebra of Gm–rational sections in �.X;WX/.
Given a Gm–equivariant W–module M , let Mrat denote the Wrat –submodule of all
rational sections. We say that a Wrat –module M is supported on C if, for each section
m 2M , there exists N � 0 such that �.fi /N �mD 0 for all i .

Lemma 3.31 Suppose X is affine.

(1) The functor M 7! �.X;M /rat is an equivalence of categories RW WX–good ��!
Wrat–mod.

(2) Under the equivalence of (1), M is supported on C (in the usual sense) if and
only if �.X;M /rat is supported on C (in the above sense).

Proof (1) This follows from Propositions 3.23 and 3.26 by a standard argument (see
the proof of Proposition 4.33).
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(2) If M0 is a coherent A–submodule of M such that M DM0Œ„
�1�, then M D

M0Œ„
�1�, where M D �.X;M /rat and M0 D �.X;M0/rat . Certainly, if m 2M0 and

�.fi /
N �mD 0 then f Ni � xmD 0 in M0=„M0 . Hence M is supported on C in the

usual sense.

We need to check the converse. So assume that M is supported on C in the usual
sense. Our assumptions on C imply that O.X/DCŒf1; : : : ; fk; x1; : : : ; xl �=I , where
deg xi � 0 and I is a homogeneous ideal. Hence CŒC �, a quotient of the algebra
CŒx1; : : : ; xl �, is nonnegatively graded. This implies that the finitely generated CŒX�–
module M0=„M0 has its grading bounded from below. Since „ has positive weight,
the same applies to M0 . Let m 2 M0 be a homogeneous section. If f Ni � xm D 0

in M0=„M0 , then �.fi /N �m 2 „M0 and hence �.fi /rN �m 2 „rM0 . On the other
hand, degfi � 0 and hence deg.�.fi /rN �m/D rN deg �.fi /Cdegm� deg.m/. This
implies that �.fi /rN �m D 0 for r , N � 0, since the weights of all homogeneous
elements in „rM0 will be greater than degm for r � 0.

Write U˛DXXZ.f˛/ and U˛0;:::;˛i DU˛0\� � �\U˛i . Given M 2WU –good, define
the complex

LC i .M /D
Y

˛0<���<˛i

�.U˛0;:::;˛i ;M /;

with the usual differential

d i W LC i .M /! LC iC1.M /; d i .f˛0;:::;˛i /˛0;:::;ˇ;:::;˛i D .�1/f˛0;:::;˛i jU˛0;:::;ˇ;:::;˛i
:

For M 2WU –good, we define F.M /D LC �.M /rat . There is a canonical transformation
R! F.�jU /, where we identify Wrat–Mod with complexes concentrated in degree
zero.

Lemma 3.32 Cone.R! F.�jU // defines an exact functor from WU –good to com-
plexes with terms in Wrat–Mod.

Proof The cone Cone.R ! F.�jU // is exact if and only if both R and F.�jU /
are exact. The functor R is exact by Lemma 3.31. Therefore it suffices to show that
the functor F defines an exact functor from WU –good to complexes with terms in
Wrat–Mod. The exactness of M 7! LC �.M / can be checked term by term. But it is
clear that M 7! LC i .M / is exact because the open set U˛0;:::;˛i is affine. Therefore, to
show that F is exact, it suffices to show that the functor WU˛0;:::;˛i

–good!Wrat–Mod,
M 7! �.U˛0;:::;˛i ;M /rat is an exact functor. Since U˛0;:::;˛i is affine, this follows
from Lemma 3.31(1).

Lemma 3.33 The cohomology of the cone D� D Cone.Wrat ! F.WU // is zero
outside degree k . The group Hk.D�/ is supported on C .
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Proof Notice that the differentials are CŒŒ„��–linear and preserve the lattice defined
by A. Therefore D� D D�0Œ„

�1� and flat base change implies that H i .D�/ D

H i .D�0/Œ„
�1�. Thus, it suffices to check that the corresponding statements hold for D�0 .

Write D�com for Cone.O.X/! LC �.OU //. Since we have an identification ADOX ŒŒ„��
of prorational sheaves, we have an identification of complexes D�0 D D

�

comŒŒ„�� and
hence H i .D�0/DH

i .D�com/ŒŒ„��, as prorational CŒŒ„��–modules. Since H i .D�com/D 0

for i ¤ 0, the first claim follows.

Claim 3.34 The space Hk.D�com/ is nonnegatively graded as a Gm–module.

Proof As in the proof of Lemma 3.31, CŒX�D Œf1; : : : ; fk; x1; : : : ; xl �=I for some
homogeneous ideal I . Then

Hk.D�com/DCŒX�f1���fk

.X
i

CŒX�
f1��� Ofi ���fk

is a quotient of CŒf1; : : : ; fk; x1; : : : ; xl �f1���fk=
P
iCŒf1; : : : ; fk; x1; : : : ; xl �f1��� Ofi ���fk

.
The latter clearly has the desired properties. This proves the claim.

We return to the proof of Lemma 3.33. To prove the second assertion of the lemma,
we may assume that m belongs to Hk.D�0/ and is rational. The image of m in
Hk.D�com/DH

k.D�0/=„H
k.D�0/ is torsion with respect to the fi . Therefore there

exists N such that �.fi /N � m 2 „Hk.D�0/ and hence �.fi /rN � m 2 „rHk.D�0/.
Claim 3.34 implies that the weight of every homogeneous element in Hk.D�0/ is
nonnegative. Thus, every homogeneous element in „rHk.D�0/ has degree at least r . On
the other hand degfi � 0 and hence deg.�.fi /N �m/DN deg �.fi /Cdegm� degm.
This implies that �.fi /N �mD 0 for N � 0.

Proposition 3.35 The cohomology of Cone.R.M /! F.M jU // is supported on C
for any M 2WX–good.

Proof Since WX–good has finite homological dimension, we prove the claim by
induction on projective dimension. Certainly Lemma 3.33 implies that the claim
holds for every summand of WN

X (for N finite). By Lemma 3.32, the functor
Cone.R ! F.�jU // is exact. Therefore the long exact sequence in cohomology
implies that if it holds for all modules of projective dimension i , then it also holds for
all modules of projective dimension i C 1.

Finally, we show that the faithful functor WX–good=WX–goodC !WU –good is also
full. This will complete the proof of Theorem 3.27. Thus, suppose M , N 2WX–good
and � 2 HomWU –good.M jU ;N jU /. Applying the functors R and F from above, we
get a diagram:
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R.M /

��

R.N /

��

H 0.F.M jU //
H0.F .�//

// H 0.F.N jU //

By Proposition 3.35, the vertical arrows have kernel and cokernel supported on C .
Letting N 0 be any finitely generated Wrat –submodule of H 0.F.N jU // that contains
the images of R.M / and R.N /, we get a diagram

R.M /
z�0
�!N 0 R.N /;

where R.N /! N 0 has kernel and cokernel supported on C . Applying R�1 , we
get a diagram of good WX–modules M

�0
�!N 0 N , where the support assertion

guarantees that N ! N 0 becomes an isomorphism in the quotient category. Thus,
�0 defines a morphism M !N in the quotient category, whose restriction to U is,
by construction, identified with � . This proves Theorem 3.27.

3.9 Holonomic modules

By Gabber’s theorem, the support of any good W–module has dimension at least
1
2

dimX. A good W–module is said to be holonomic if the dimension of its support is
exactly 1

2
dimX. The category of holonomic W–modules is denoted by W–hol. The

theory of characteristic cycles implies:

Lemma 3.36 Let M be a holonomic W–module. Then M has finite length.

A W–module M is said to be regular holonomic if there exists a lattice M 0 of M

such that the support of M 0=„M 0 is reduced. The category of regular holonomic
W–modules is denoted by W–reghol.

3.10 Equidimensionality of supports

In this subsection we note that the analogue of the Gabber–Kashiwara equidimension-
ality theorem holds for W–algebras. First, given a coherent A–module M , the sheafL
n�0 „

nM=„nC1M is a coherent OXŒ„�–module. Therefore, its support is a closed
subvariety of X�A1 , which we will denote by eSupp M .

Lemma 3.37 Let pW X�A1!X be the projection map. Then Supp M Dp. eSupp M /.

Proof Since M is coherent and support is a local property, we may assume that X
is affine and set M D �.X;M /, an AD �.X;A/–module. Both Supp and eSupp are
additive on short exact sequences, therefore the sequence 0!Mtor!M !Mtf! 0

implies that we may assume that M is either „–torsion or „–torsion-free. First, if
M is „–torsion-free, then M ' .M=„M/ y̋ CŒŒ„�� as a CŒŒ„��–module. This implies
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that eSuppM D SuppM �A1 . On the other hand, if M is „–torsion, then grM WDL
n�0 „

nM=„nC1M equals
LN
nD0 „

nM=„nC1M for some N . If I � .M=„M/D 0

for some I C CŒX�, then I � grM D 0. Since „NC1 grM D 0 too, this implies that
eSupp M D SuppM � f0g.

Let dimXD 2m. The analogue of the Gabber–Kashiwara theorem reads:

Theorem 3.38 Let M be a good W–module. Then there exists a unique filtration

0DDm�1.M /�Dm.M /�DmC1.M /� � � � �D2m.M /DM

such that SuppDi .M /=Di�1.M / is pure i –dimensional.

Proof We fix a lattice M 0 of M , it is a coherent torsion-free A–module. We will show
that the analogue of the above statement holds for M 0 , then set Di .M /DDi .M

0/

and check that Di .M / is independent of the choice of lattice. The uniqueness property
actually implies that the statement will hold globally on X if it holds locally, therefore
we may as well assume that X is affine and set M 0D�.X;M 0/. Since M is „–torsion-
free, the proof of Lemma 3.37 shows that eSuppM D SuppM �C . Then, noting this
fact, the required result is [24, Theorem V8, page 342].

Therefore, it suffices to show that Di .M / is independent of the choice of lattice. Let
M 00 be another choice of lattice and N � 0 such that „NM 00 �M 0 . As explained in
[24, Section 1], Di .M 0/ WDfm2M 0 jdim gr.A�m/� iC1g. Therefore, if m2Di .M 00/
then „Nm 2Di .M 0/, which implies that „NDi .M 00/�Di .M 0/. By symmetry, we
have „N

0

Di .M
0/�Di .M

00/ and hence Di .M 00/Œ„�1�DDi .M 0/Œ„�1�.

As a corollary of the theorem, we can strengthen our extension result. Again, let T be
a torus.

Corollary 3.39 Let U be a T–stable open subset of X whose complement is a union
of coisotropic cells and M a holonomic, T–equivariant WjU –module. Then, there
exists a holonomic, T–equivariant W–module M 0 such that M 0jU 'M . Moreover,
if M is simple then there exists a unique simple extension M 0 .

Proof Let N be a lattice of M . By Theorem 3.27, there exists a coherent T–
equivariant A–module N 0 such that N 0jU D N . Replacing N 0 by its torsion-
free quotient, we may assume that N 0 is torsion-free and set M 00 D N 0Œ„�1�.
Then, let M 0 DDm.M

00/, a holonomic submodule of M 00 . Since M is holonomic,
Dm.M / D M . The uniqueness of Dm.�/ implies that M 0jU D Dm.M

00/jU D

Dm.M
0jU /DM .

If M is assumed to be simple then there is some simple subquotient of M 0 whose
restriction to U is isomorphic to M . In order to show uniqueness of the extension, let
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M 1 and M 2 be two simple extensions of M . Denote by j the open embedding U ,!X

and by j� the right adjoint to j � whose existence is established in Corollary 3.28. Then
for each i D 1; 2 the canonical adjunction M i! j�M is an embedding because it is an
isomorphism over U (and hence nonzero) and M i is assumed to be simple. Therefore
M 1\M 2 is a A–submodule of M i whose restriction to U is M . Thus, M 1DM 2 .

Remark 3.40 Let M be a simple W–module or a primitive quotient of W . Then
Theorem 3.38 implies that the support of M is equidimensional. A proof of the
analogous result in the setting of localization via Z–algebras was recently given by
Gordon and Stafford [27].

4 Quantum coisotropic reduction

In this section we consider the process of quantum coisotropic reduction. Our main
result is that quantum coisotropic reduction can be used to prove an analogue of
Kashiwara’s equivalence for DQ modules supported on a coisotropic stratum. At the
end of the section we consider W–algebras on a symplectic manifold X with an elliptic
Gm–action such that Y DXGm is connected. We show that Qcoh.W/ is equivalent to
the category of quasicoherent sheaves for a sheaf of filtered OY –algebras quantizing X.
These filtered OY –algebras behave much like the sheaf of differential operators on Y .

Notation 4.1 Throughout the remainder of the paper, W–good and Qcoh.W/ will
denote the category of good, Gm–equivariant W–modules and the Ind-category of
good, Gm–equivariant W–modules, respectively. Moreover, all W–modules that we
consider will be assumed to be Gm–equivariant.

4.1 Quantum coisotropic reduction: local case

We maintain the notation and conventions of Sections 2 and 3.

Thus, let R be a regular affine C–algebra equipped with a Poisson structure f�;�g
making X D Spec.R/ into a smooth affine symplectic variety. We assume in addi-
tion that R comes equipped with a Gm–action for which the Poisson structure has
weight �l .

Let A be a deformation-quantization of R , equipped with an action of Gm that
preserves the central subalgebra CŒŒ„���A and has „ as a weight vector. The quotient
map �W A!R is equivariant. The fact that the Poisson bracket f�;�g on R is graded
of degree �l implies that „ has weight l . Let J be the left ideal generated by all
homogeneous elements in A of negative degree.
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As in Section 2.4 we have I D �.J /, the ideal in R generated by all homogeneous
elements of strictly negative degree. We write C D Spec.R=I /, a closed coisotropic
subvariety of X. We write Y DCGm , the Gm–fixed locus of the coisotropic subset C .
As in Section 2.4, we also assume that Y has been shrunk suitably so that the affine
bundle �W C ! Y of [10] splits equivariantly as

�W C ��!Y �V �Z;

where V is isomorphic to a vector space with Gm–weights lying in Œ�l;�1� and Z is
isomorphic to a vector space with Gm–weights less than �l .

Notation 4.2 Let yR denote the completion of R with respect to the ideal I , and yA
the completion of A with respect to the two-sided ideal K WD ��1.I /.

Lemma 4.3 Let yA be as above.

(1) The algebra yA is flat over A and Noetherian.

(2) If M is a finitely generated A–module then lim
 ��
.M=Kn �M/' yA˝AM .

(3) The algebra yA is „–adically free and yA=„ yA' yR .

(4) The algebra yA is an equivariant quantization of yR with the Poisson structure on
yR induced from the Poisson structure on R .

Lemma 4.3(1)–(2) have also been shown by Losev [48] using a different argument.

Proof Take u1 D „ and let u2; : : : be arbitrary lifts in A of a set of generators of I ;
these form a normalizing sequence of generators as defined in [52, Theorem 4.2.7],
and hence by that theorem the ideal K satisfies the Artin–Rees property in A. Then
the proofs of [21, Lemma 7.15 and Theorem 7.2b] apply also in the noncommutative
case to imply that yA is flat over A. The fact that yA is Noetherian follows from (3),
which implies that gr yA' yRŒ„�, a Noetherian ring.

Therefore we need to establish that yA=„ yA' yR and that yA is a complete, flat „–module.
By Lemma 3.2, and using the fact that inverse limits commute, we have

(4-1) yAD lim
1 n

A=Kn D lim
1 n

�
lim
1 s

.A=Kn/=„s.A=Kn/
�

D lim
1 s

�
lim
1 n

.A=Kn/=„s.A=Kn/
�
;

which implies that yA is „–adically complete. By (1), yA is A–flat, hence a fortiori it is
„–flat. Consider the short exact sequence

0!

�
„ACKn

Kn

�
n

! fA=Kngn!

�
A

„ACKn

�
n

! 0
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of inverse systems. Since .„ACKn/=Kn! .„ACKn�1/=Kn�1 is surjective, the
inverse system f.„ACKn/=Kngn satisfies the Mittag-Leffler condition. Therefore,
we have�

lim
1 n

A=Kn
�
=
�

lim
1 n

„.A=Kn/
�
D
�

lim
1 n

A=Kn
�
=
�

lim
1 n

.„ACKn/=Kn
�

D lim
1 n

A=.KnC„A/D lim
1 n

R=In;

where the final equality follows from the fact that „ 2K and hence .KnC„A/=„A
equals In .

The only thing left to show in order to conclude that yA is a quantization of yR is that the
Poisson bracket on yR coming from yA equals the Poisson bracket on yR coming from
the fact that it is a completion of R . To see this, we note the following well-known
properties of algebras:

Sublemma 4.4 (1) Suppose that A! B is a filtered homomorphism of almost-
commutative filtered algebras. Then the induced map gr.A/!gr.B/ is a Poisson
homomorphism.

(2) Suppose that �W R! S is a continuous homomorphism of topological algebras
and �.R/ is dense in S . Suppose R is equipped with a Poisson structure. Then
there is at most one continuous Poisson structure on S making � a Poisson
homomorphism.

Applying Sublemma 4.4(1) to A! yA shows that the Poisson structure on yR induced
from yA makes R! yR a Poisson homomorphism. Sublemma 4.4(2) then implies that
this Poisson structure must agree with the Poisson structure on yR induced from R .
Lemma 4.3(4) follows.

4.2 Quantizations of the formal neighborhood of C

The total space of the normal bundle NX=C has a canonical symplectic structure of
weight l . Choosing homogeneous bases z and w as in Theorem 2.6, the symplectic
form on NX=C is given by !S C

Pm
iD1 dzi ^ dwi . We denote by D the Moyal–Weyl

quantization of T �V , and by yD the Moyal–Weyl quantization of the ring of functions
yF on the formal neighborhood bT �V of V in T �V .

We write C for the formal neighborhood of C in NX=C ; recall that, as in Section 2.4,
this is equivariantly isomorphic (though noncanonically) to the formal neighborhood of
C in X. Let �1;cts

C D lim
 ��

�1Cn denote the sheaf of continuous one-forms on C, where
Cn is the nth infinitesimal neighborhood of C . Similarly, let ‚C and ‚cts

C denote
the sheaf of vector fields and continuous vector fields, respectively, on C. We denote
by … the bivector that defines the Poisson bracket on C. Then d D Œ…;�� defines
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a differential on
V�
‚C , where Œ�;�� is the Schouten bracket on polyvector fields.

The cohomology of
V�
‚C is the Poisson cohomology H�….C/ of C. The algebraic de

Rham complex of C is denoted by ��;cts
C .

Lemma 4.5 Let i W C! NX=C be the canonical morphism.

(1) Every derivation of yR is continuous, ie ‚C D‚
cts
C .

(2) �
1;cts
C '‚�C ' i

��NX=C
.

(3) The Poisson structure defines an isomorphism of complexes
V�
‚C '�

�;cts
C .

Proof Let ı 2 Der. yR/. From the definition of a derivation, yInC1 � ı�1. yIn/. Since
the translates of the powers of yI are a base of the topology, it follows that the preimage
of yIn is open in yR . Hence ı is continuous and ‚C D ‚cts

C . By [28, Proposition
20.7.15], the module �1;cts

C is coherent. This implies that the dual of �1;cts
C is the same

as the continuous dual of �1;cts
C . Hence, the isomorphism �

1;cts
C '‚�C follows from

[28, Equation (20.7.14.4)].

Let I be the ideal defining the zero section in NX=C and inW Cn!NX=C the canonical
morphism. For each n, there is a short exact sequence

(4-2) In=I2n dn
�! i�n�

1
NX=C

!�1Cn ! 0;

where dn. xf /D 1˝df . Let Nn denote the image of dn and notice that I �NnD 0 for
all n. This implies that I �N D 0, where N D lim

 ��n
Nn . But N is a submodule of the

free OC–module i��1NX=C
, implying that N D 0. Similarly, the map NnC1!Nn is

zero for all n because NnC1 is a submodule of annI.i
�
nC1�

1
NX=C

/, which is mapped
to zero under the map i�nC1�

1
NX=C
! i�n�

1
NX=C

. Thus, fNngn2N satisfies the Mittag-
Leffler condition and hence lim

 ��
.1/
n

Nn D 0. Therefore, (4-2) induces an isomorphism
i��1NX=C

! �
1;cts
C . Similarly, we have ‚C D i�‚NX=C

. Thus the nondegenerate
Poisson structure on NX=C defines an isomorphism

�
1;cts
C ' i��1NX=C

��! i�‚NX=C
'‚C:

The differential on the complex ��;cts
C is defined as in [30, Chapter I, Section 7]. Thus,

the fact that we have an isomorphism of complexes
V�
‚C '�

�;cts
C follows from the

corresponding isomorphism
V�
‚NX=C

'��NX=C
for NX=C due to Lichnerowicz (see

[20, Theorem 2.1.4]).

Remark 4.6 Unlike for vector fields, we have �1;cts
C ¤�1C : indeed, the latter is not

coherent over C.

As in Section 2.4 we let C ! S denote the coisotropic reduction of C ; as in loc.
cit. this projection has a section �W S ,! C . Let zW C ,! C be the embedding of the
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zero section and write j D z ı �W S ,! C for the composite embedding. This is a
closed immersion of formal Poisson schemes. Hence, restriction defines a morphism
j�1

�V�
‚C

�
!

V�
‚S . Similarly, functoriality of the de Rham complex implies that

we have a morphism j�1�
�;cts
C !��S . These form a commutative diagram:

(4-3)

j�1�
�;cts
C

��

�
// j�1

V�
‚C

��

��S
�

//
V�
‚S

Lemma 4.7 The morphism of complexes j�1��;cts
C !��S is a quasi-isomorphism.

Hence, the de Rham cohomology groups H 2
DR.C/ and H 2

DR.S/ are isomorphic.

Proof We factor j�1��;cts
C !��S as

��1.z�1�
�;cts
C /! ��1��C !��S :

Thus, it suffices to show that each of z�1��;cts
C !��C and ��1��C !��S is a quasi-

isomorphism. That the first is a quasi-isomorphism is [30, Chapter II, Proposition 1.1].
Since C D S � V and V ' Am is contractible, the second morphism is a quasi-
isomorphism.

Now we would like to use the above results to relate quantizations of C to quantizations
of S . To accomplish this, we shall use some results of Bezrukavnikov and Kaledin [8]
on period maps for quantizations. Their results are stated only for algebraic varieties,
but they apply without essential change to smooth formal schemes as well. Since the
results of this section are by now quite standard, and have also been summarized very
well in [49], where the details of compatibility with Gm–actions are also examined,
we shall content ourselves with a very terse recollection.

To describe the results of [8], we first recall the notion of a Harish-Chandra torsor on X

(see also [49, page 1227] for more details): suppose that G is a (proalgebraic) group
with Lie algebra g and that h is a Lie algebra such that g� h. Suppose further that h
is equipped with an action of G whose differential agrees with the adjoint action of
g on h. Then the pair .G; h/ is known as a Harish-Chandra pair. A Harish-Chandra
torsor for .G; h/ is a pair .M; �/, where M is a G–torsor on X and � is an h–valued
flat connection on M (the notions of torsor and flat connection are defined for (formal)
schemes exactly as they are in usual differential geometry).

A symplectic variety comes equipped with a canonical Harish-Chandra torsor, defined
as follows: Let A denote the algebra of functions on a symplectic formal disc. Then
the group of symplectomorphisms Aut.A/ of A is naturally a proalgebraic group.
Furthermore, the Lie algebra of Hamiltonian derivations of A, denoted by H, is a
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pro-Lie algebra and .Aut.A/;H/ is a Harish-Chandra pair. Then the Harish-Chandra
torsor Msymp.X/ is defined to be the pro-scheme parametrizing all maps Spec.A/!X

which preserve the symplectic form.

Now, let D denote the (unique) quantization of a 2n–dimensional formal disc over C .
Then the group of automorphisms Aut.D/ comes with a natural proalgebraic group
structure; similarly, the Lie algebra of derivations Der.D/ is naturally a pro-Lie algebra
making .Aut.D/;Der.D// a Harish-Chandra pair; we note that the map “reduction
mod „” gives a morphism of Harish-Chandra pairs .Aut.D/;Der.D//! .Aut.A/;H/.

Define
H 1

Msymp
.Aut.D/;Der.D//

to be the set of all isomorphism classes of .Aut.D/;Der.D//–torsors on X which are
liftings of Msymp , ie those torsors equipped with a reduction of structure group to
.Aut.A/;H/ such that the resulting .Aut.A/;H/–torsor is isomorphic to Msymp .

It is shown in [8, Section 3] that there is a natural bijection

LocW H 1
Msymp

.Aut.D/;Der.D// ��!Q.X/;

where the right-hand side denotes the set of all isomorphism classes of quantiza-
tions of X. This bijection respects the Gm–action on both sides, and hence it
can be checked that it induces a bijection between equivariant quantizations and
H 1

Msymp
.Aut.D/;Der.D//Gm .

Now the nonabelian cohomology group admits a natural “period map”

PerW H 1
Msymp

.Aut.D/;Der.D//!H 2
DR.X/ŒŒ„��;

which moreover restricts to give a map PerW H 1
Msymp

.Aut.D/;Der.D//Gm!H 2
DR.X/.

In good situations, such as when H i .X;OX/D 0 for i D 1, 2, this equivariant period
map is an isomorphism. We thus have the following classification:

Theorem 4.8 Let X be a smooth symplectic affine algebraic variety or formal scheme,
with an elliptic action of Gm (assumed to be prorational if X is formal). We let
QGm.X/ denote the set of isomorphism classes of Gm–equivariant quantizations of X.
Then there is a natural bijection

QGm.X/!H 2
DR.X/:

To relate quantizations of C to quantizations of S we may thus relate the corre-
sponding Harish-Chandra torsors: given a Harish-Chandra torsor on S and a Harish-
Chandra torsor on bT �V , the external product defines a new Harish-Chandra torsor
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on S � bT �V ' C. If we suppose that these Harish-Chandra torsors are liftings of
Msymp.S/ and Msymp. bT �V /, then under the map Loc, this external product of torsors
corresponds to taking a quantization B of S and associating to it the quantization
B ˝ yD on C. On the other hand, the map Per is constructed by associating, to a
Harish-Chandra torsor which is a lifting of Msymp , a certain canonical cohomology
class associated to the lifting. From this is follows that the map Q.S/Gm!Q.C/Gm

(given by B!B˝yD ) corresponds, under PerıLoc�1 , to the map H 2
DR.S/!H 2

DR.C/

associated to the inclusion S ! C. Since this has been shown to be an isomorphism
above, we have shown:

Proposition 4.9 Let yA be a Gm–equivariant quantization of C. Then there exist an
equivariant quantization B of S and an equivariant isomorphism  W yA ��!B y̋ yD of
deformation-quantization algebras.

A quantization A of X induces a quantization yA of C. In the following subsections
we use the isomorphism  given by the above proposition to show that the quantum
Hamiltonian reduction of A is isomorphic to B .

4.3 The completion of the ideal J

Recall the ideal J �A from Section 4.1. Let yJ D yA˝AJ . Lemma 4.3 implies that the
natural map yJ ! yA is an embedding. Let u be the m–dimensional subspace of A<0
spanned by a collection of homogeneous lifts of the wi 2 I and let J 0DAu. Since the
isomorphism  of Proposition 4.9 induces the identity on yR , the image  .u/ consists
of lifts of the wi to yD . We denote this space by u as well.

Lemma 4.10 We have J DJ 0 and hence  . yJ /DB y̋ .yDu/. Thus .A=J /=„ ��!R=I .

Proof Clearly we have J 0 � J . In order to get the opposite inclusion, let a 2 J be
any element; since J is generated by homogeneous elements, it suffices to assume a
is homogeneous. Recall that �W A!R is the projection. Since �.J /D I DRu, we
may write

a01 WD a�
X

aiyi 2 „A

for some homogenous elements faig, and we may select these elements so that
deg

P
aiyi D deg a < 0. But since deg „ D l , we have that a01 D „a1 for some

a1 of strictly smaller degree than a ; evidently a1 is again in J X J 0 . We may
repeat this process to find a02 D „a2 , etc. But now if we look at these equations in
the finitely generated left A–module N D J=J 0 , we see that we have a sequence
aD„a1D„

2a2D � � � . But this implies that
T
n�0 „

nN is nonzero, which contradicts
the fact that N is h–complete and hence separated.
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To see the last statement, note that the first statement shows that the image of the natural
map J=„! A=„ DR is precisely I . Then the statement follows from applying the
functor M !M=„ to the short exact sequence J ! A! A=J .

4.4 Identification of the formal quantum coisotropic reduction

We require the following result, which is [42, Lemmas 1.2.6 and 1.2.7]:

Lemma 4.11 Let L be a finitely generated, free A–module and N a submodule. ThenT1
iD1.N C„

iL/DN .

Proposition 4.12 The natural map A=J ! bA=J is an embedding. Hence, A=J is
„–flat.

Proof Note that Lemma 4.3 implies that the sequence 0! yJ ! yA! bA=J ! 0 is
exact, hence it suffices to show that yJ \AD J . Since the image of J in A=Kn equals
.J CKn/=Kn , we have

yJ \AD

1\
nD1

.J CKn/:

Claim 4.13 We have
T1
nD1.J CK

n/� J .

Proof Notice that K D JAC„A D J C„A because K=„A D .J C„A/=„A D I .
Consider the expansion of .J C„A/n . Since „ is central, a term of this expansion
containing i copies of „A equals „iJ n�iA. Multiplying JAC„AD J C„A on the
left by „iJ n�i�1 implies that

„
iJ n�iAC„iC1J n�i�1AD „iJ n�i C„iC1J n�i�1A:

Thus,

.J C„A/n D „nAC

n�1X
iD0

„
iJ n�i � „nACJ:

Since JC
T1
nD1 „

nA�JC„nA for all n, we have JC
T1
nD1 „

nA�
T1
nD1.JC„

nA/.
On the other hand, Lemma 4.11 says that

T1
nD1.J C„

nA/D J . This completes the
proof of Claim 4.13.

Returning to the proof of Proposition 4.12, the second assertion will now follow from
the fact that yA= yJ is „–flat. By Lemma 4.10,

(4-4) yA= yJ D B y̋ .yD=yDu/:

The Poincaré–Birkhoff–Witt property of yD implies that the right-hand side of (4-4) is
„–flat.
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Recall again that we have constructed a coisotropic reduction � W C ! S . Let B be
the quantization of the Poisson algebra T DCŒS� given by Proposition 4.9. We have
an identification T D .R=I /fI;�g such that the embedding .R=I /fI;�g ,!R=I is just
the comorphism �� .

Proposition 4.14 (1) The CŒŒ„��–algebra EndyD.yD=yDu/ is isomorphic to CŒŒ„�� and
Exti
yD
.yD=yDu; yD=yDu/ is a torsion CŒŒ„��–module for i > 0.

(2) We have an isomorphism of CŒŒ„��–algebras

End yA.
yA= yJ /opp ��!B

and Exti
yA
. yA= yJ ; yA= yJ / is „–torsion for all i > 0.

Proof (1) Recall that, as above, yD is the Moyal–Weyl quantization of the algebra
yF of functions on bT �V , the formal neighborhood of the zero section; u is a space

spanned by homogeneous lifts of generators of I=I 2 to yD . Under the identification
of yD with yF ŒŒ„��, we may assume that the elements w1; : : : ; wm of u are coordinate
functions on V � . Write L WD yD=yDu.

It is standard, for a cyclic left module S=P over a ring S , that EndS .S=P / Š
fq 2 S=P j Pq � P g; it is also standard that ff 2 D=Du j u � f D 0g Š CŒŒ„��
(and in any case this can be computed, by hand, inductively using the Moyal–Weyl
product).

Letting zi denote the dual coordinates on V as in Theorem 2.6, we get an identification

(4-5) yDŠCŒz1; : : : ; zm�ŒŒw1; : : : ; wm; „��;

with Moyal–Weyl product � satisfying

wi �wj D wiwj ; wi �f .z; w/D wi �f .z; w/C
„

2

@f

@zi
;

zi � zj D zizj ; f .z; w/�wi D wi �f .z; w/�
„

2

@f

@zi
:

It follows from Lemma 4.10 that the natural composite CŒz1; : : : ; zm�ŒŒ„�� ,! yD! L

is an isomorphism of vector spaces: via the vector space isomorphism of (4-5) and the
formulas above, we can write any element of yD as

P
I;j fI;j .z/ �w

I„j , and then
those terms with nonconstant wI vanish in L. Under this identification, for f .z/ 2L,
we have

(4-6) wi �f .z/D wi �f .z/�f .z/�wi D „
@f

@zi
:
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Let K.u/ Š
�V
�
.u/˝ Sym�.u/; d

�
denote the Koszul complex of C as a Sym.u/–

module, and let K.yD; u/D yD˝Sym�.u/K.u/; so K.yD; u/ is a finite free resolution of
L over yD . By adjunction,

Exti
yD.L;L/ŠH

i
�
HomSym.u/.K.u/; L/

�
ŠH i

�V
�
.u�/˝ yD=yDu

�
:

It is then evident from (4-6) that the identification CŒz1; : : : ; zm�ŒŒ„��! L intertwines
the Koszul differential and „ times the de Rham differential, thus yielding, when „ is
inverted,

H i
�V
�
.u�/˝ yD=yDu

�
Œ„�1�ŠH i

DR.Spec CŒz1; : : : ; zm�/..„//;

which proves the i > 0 part of (1).

(2) Again, we have

Exti
B y̋ yD

.B y̋L;B y̋L/ŠH i
�
HomB y̋ yD.B y̋K. yD; u/;B y̋L/

�
ŠH i

�V
�
.u�/˝B y̋L

�
;

where the last isomorphism follows by adjunction as before. Let dB denote the
Koszul differential on this completed tensor product and d the Koszul differential onV
�
.u�/˝L. The u–action commutes with all elements of B and B ŠCŒS�ŒŒ„�� as a

free CŒŒ„��–module. Thus, letting fsig denote a vector space basis of CŒS�, for any
element

P
si ˝ li of B y̋ L we get dB

�P
si ˝ li

�
D
P
sid.li /, and it follows that

ker.dB/D B y̋ ker.d/; Im.dB/D B y̋ Im.d/:
Thus,

Exti
B y̋ yD

.B y̋ L;B y̋ L/Š B y̋CŒŒ„��H
i
�V
�
.u�/˝L

�
Š B y̋CŒŒ„�� Exti

yD.L;L/;

reducing the assertions of (2) to (1).

4.5 Identification of the quantum coisotropic reduction

For any s > 0, let As D A=„sA and yAJ D lim
 ��n

A=J n . Even though J is only a left
ideal of A, we can form the Rees algebra ReesJ .A/D

L
n�0 J

n , with the obvious
multiplication. We shall abuse notation and denote by J the left ideal generated by the
image of J in As .

Lemma 4.15 (1) The inclusion J n � Kn induces an isomorphism of complete
topological algebras yAJ ��! yA.

(2) The Rees algebra ReesJ .As/ is (both left and right) Noetherian.

(3) Let M be a finitely generated A–module. Then yAJ ˝AM ' lim
 ��n

M=J nM .

Proof (1) Since ŒA;A� � „A, we have Kn � J n C „J n C � � � C „sJ n�s for all
s , n > 0. Therefore the filtrations fKngn and fJ ngn of As are comparable and the
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canonical morphism lim
 ��

As=J
n! lim

 ��
As=K

n is an isomorphism. Thus, commutativity
of limits implies that

lim
 ��
n

A=J n D lim
 ��
s

�
lim
 ��
n

As=J
n
�
! lim
 ��
s

�
lim
 ��
n

As=K
n
�
D lim
 ��
n

A=Kn

is an isomorphism.

(2) Since As is finitely generated and nilpotent, we may choose a finite-dimensional
vector subspace n of As which is bracket closed and generates As as an algebra;
enlarging n if necessary, we may suppose J \ n D n1 is a Lie subalgebra which
generates J as an ideal. Then n is a nilpotent Lie algebra, and we have a surjection
U.n/! As . Further, we have the subalgebra U.n1/; the image of its augmentation
ideal in As is J . Thus the claim is reduced to showing the following: let n1 � n

be nilpotent Lie algebras, and let a be the left ideal of U.n/ generated by n1 ; then
Reesa.U.n// is Noetherian. But this is a standard argument; see for instance [64].

(3) This is a noncommutative analogue of [21, Theorem 7.2]. If M 0 is a submodule
of M , then the argument given in the proof of [21, Lemma 7.15] shows that the claim
reduces to showing that the morphism

lim
 ��
s;n

M 0=.J nM 0C„sM 0/! lim
 ��
s;n

M 0=..J nM/\M 0C„sM 0/

is an isomorphism. This will be an isomorphism if, for each s , n � 1, there exist
N.s; n/, S.s; n/� 0 such that

.JNM/\M 0C„SM 0 � J nM 0C„sM 0:

By Lemma 3.2(2), the Rees algebra Rees„A.A/ is Noetherian. Therefore, there ex-
ists some s0 such that „iCs0M \M 0 � „iM 0 for all i � 1. The AsCs0 –module
M 0=.„sCs0M \M 0/ is a submodule of M=„sCs0M . Since we have shown in (2) that
the Rees algebra ReesJ .AsCs0/ is Noetherian, the usual Artin–Rees argument shows
that there exists some N � 0 such that

(4-7) .JN �M/\M 0C .„sCs0M \M 0/� J n �M 0C .„sCs0M \M 0/:

Since „sCs0M \M 0 � „sM 0 , the inclusion (4-7) implies that

.JN �M/\M 0C„sM 0 � J n �M 0C„sM 0;

as required.

Remark 4.16 One can check that the ring ReesJ .A/ is not in general Noetherian.

Theorem 4.17 (1) The CŒŒ„��–algebras EndA.A=J /opp and B are isomorphic.
Hence EndA.A=J /opp is a deformation-quantization of S .
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(2) The ext groups ExtiA.A=J;A=J / are „–torsion for all i > 0.

(3) A=J is a faithfully flat B –module.

Proof (1)–(2) Since yA= yJ D yA˝A .A=J / and yA is flat over A, adjunction says that
we have

Exti
yA
. yA= yJ ; yA= yJ /' ExtiA.A=J; yA= yJ / for all i � 0:

Since A=J is a finitely generated A–module, Lemmas 4.3 and 4.15 imply that yA= yJ D
yA˝A .A=J / is isomorphic to yAJ ˝A .A=J /. By Lemma 4.15, we have

yAJ ˝A .A=J /D lim
 ��
n

.A=J /

J n � .A=J /
D A=J:

Therefore, (1) and (2) follows from Proposition 4.14.

(3) By Proposition 4.12, A=J is „–flat, or equivalently „–torsion-free. Since it is
finitely generated over A, it is also „–complete. Therefore, [42, Corollary 1.5.7] says
that it is cohomologically complete. By 4.10, .A=J /=„.A=J / ' R=I and hence is
a free T –module. Thus, [42, Theorem 1.6.6] implies that A=J is a faithfully flat
B –module.

Let W D AŒ„�1�, a W–algebra. By base change, Theorem 4.17 implies:

Corollary 4.18 The algebra

EndW .W=J Œ„�1�; W=J Œ„�1�/opp ��!BŒ„�1�DWWS

is a W–algebra, and ExtiW .W=J Œ„
�1�; W=J Œ„�1�/D 0 for all i > 0.

4.6 Equivariant modules

We maintain the notation and assumptions of the prior subsections of Section 4. In
particular, XD Spec.R/ is a smooth affine symplectic variety with Gm–action and
with coisotropic subvariety C DSpec.R=I /, where I is generated by all homogeneous
elements of negative degree. Moreover, A is a deformation-quantization of R , and
W DAŒ„�1�. We have a symplectic quotient C ! S , also assumed affine, and B is a
deformation-quantization of CŒS�.

Definition 4.19 The full abelian subcategory of .A;Gm/–mod consisting of all mod-
ules supported on C is denoted by .A;Gm/–modC . The full abelian subcategory
of .W;Gm/–good consisting of good W–modules supported on C is denoted by
.W;Gm/–goodC .

Geometry & Topology, Volume 21 (2017)



2654 Gwyn Bellamy, Christopher Dodd, Kevin McGerty and Thomas Nevins

We define a filtration HiM on a finitely generated, equivariant A–module by letting
Hi .M=„nM/ be the direct sum

L
j�i .M=„

nM/j and HiM D lim
 ��n

Hi .M=„nM/:

Then „HiM �HiC1M . The filtration HiM need not be exhaustive.

Lemma 4.20 Let M 2 .A;Gm/–mod. Then SuppM �C if and only if HNM DM
for N � 0.

Proof If HNM DM , then HN .M=„M/DM=„M . This means that M=„M is a
graded R–module, with .M=„M/i D 0 for i � 0. This implies that Supp .M=„M/

is contained in C . Therefore, by Lemma 3.24, the support of M is contained in C .
Conversely, if SuppM � C then clearly the support of M=„M is contained in C too.
This implies that HN .M=„M/DM=„M for some N � 0. By induction on n, the
exact sequence

M=„M � „n
�!M=„nC1M !M=„nM ! 0

implies that HN .M=„nM/DM=„nM and hence HN .M/DM .

4.7 Quantum coisotropic reduction: affine case

We maintain the notation of Section 4.6. For a module MŒ„�1� 2 .W;Gm/–goodC ,
we denote by M a choice of lattice in .A;Gm/–modC . Recall that W D AŒ„�1� and
WS D BŒ„

�1�.

By Theorem 4.17, we can define an adjoint pair .H?;H/ of functors

HW .A;Gm/–modC�! �.B;Gm/–mod WH?

by
H.M/D HomA.A=J;M/ and H?.N /D A=J ˝B N:

The functors H and H? clearly preserve the subcategories of „–torsion modules, and
in particular by Proposition 3.26 they thus induce a well-defined adjoint pair of functors

(4-8) HW .W;Gm/–goodC�! �.WS ;Gm/–good WH?

for which

H.MŒ„�1�/D HomA.A=J;M/Œ„�1� and H?.N Œ„�1�/D .A=J ˝B N/Œ„
�1�:

Theorem 4.21 The functors H and H? of (4-8) are exact, mutually quasi-inverse
equivalences of abelian categories.

Proof Suppose M 2 .A;Gm/–modC . Let M rat D
L
i Mi be the subspace of Gm–

locally finite vectors. By Lemma 3.21, this space is nonzero if M is. Lemma 4.20
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implies that there exists N such that MN ¤ 0 but Mi D 0 for all i < N . Now
u �MN D 0 and hence:

H is left-exact on .A;Gm/–modC and .W;Gm/–goodC ,
and conservative on .A;Gm/–modC .

Remark 4.22 By Theorem 4.17(3), A=J is a faithfully flat B –module; thus H?.N /
is „–torsion-free if N is „–torsion-free. Similarly H.N / is „–torsion-free if N is,
by inspection.

Theorem 4.17(3) also implies:

H? is exact and conservative on .B;Gm/–mod and .WS ;Gm/–good.

Next, we show:

Claim 4.23 The adjunction
id!H ıH?

is an isomorphism of functors of .WS ;Gm/–good.

To prove the claim, we observe that the global dimensions of B and WS are finite, and
therefore we prove, by induction on the projective dimension of N 2 .B;Gm/–mod,
that:

(a) NŒ„�1�!H.H?.N Œ„�1�// is an isomorphism.

(b) ExtiA.A=J;H
?.N //Œ„�1�D 0 for all i > 0.

When N is a finitely generated projective B –module, the assertions are immediate from
Corollary 4.18. So we may assume that assertions (a) and (b) hold for all modules F
with projective dimension less than pdB N . Fix a presentation 0!F !Bk!N! 0,
so that the projective dimension of F is less than the projective dimension of N . Since
H? is exact we get an exact sequence

(4-9) 0!HıH?.F /!HıH?.Bk/!HıH?.N /!Ext1A.A=J;H
?.F //!� � � :

Inverting „ and using the inductive hypothesis that assertion (b) holds for F , we get a
short exact sequence

0!H ıH?.F /Œ„�1�!H ıH?.Bk/Œ„�1�!H ıH?.N /Œ„�1�! 0:

Assertion (a) for F and Bk then implies assertion (a) for N . Similarly, it fol-
lows, by continuing the exact sequence (4-9), from assertion (b) for Bk and F that
ExtiA.A=J;H

?.N //Œ„�1� D 0 for i � 1, ie assertion (b) holds for N as well. This
proves the inductive step, hence the claim.
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Finally, we need to show:

Claim 4.24 The adjunction
H? ıH! id

is an isomorphism of functors on .WS ;Gm/–good.

Suppose M �MŒ„�1� is a lattice. Taking kernels and cokernels gives

0!E!H? ıH.M/!M !E 0! 0:

Applying H and localizing gives

0!H.E/Œ„�1�!H ıH? ıH.M/Œ„�1� id
�!H.M/Œ„�1�!H.E 0/Œ„�1�! � � � :

This implies that H.E/Œ„�1�D 0 and hence H.E/ is „–torsion. But by Remark 4.22,
H?.H.M// is „–torsion-free, hence so is E , hence again by the remark so is H.E/;
this implies that H.E/D 0. But H is conservative, so E D 0. Thus, we have

0!H? ıH.M/!M !E 0! 0:

Again, applying H , localizing and using assertion (b) above to obtain that the extension
group Ext1A.A=J;H

? ıH.M//Œ„�1� is zero, we get an exact sequence

0!H.M/Œ„�1� id
�!H.M/Œ„�1�!H.E 0/Œ„�1�! 0:

This implies that H.E 0/D HomA.A=J;M/ is „–torsion. Let E 0tf denote the quotient
of E 0 by its „–torsion submodule. Using the exact sequence

0! HomA.A=J;E 0tor/! HomA.A=J;E 0/! HomA.A=J;E 0tf /! Ext1A.A=J;E
0
tor/

and that the left-hand and right-hand terms are „–torsion, together with Remark 4.22,
we conclude that H.E 0

tf
/�H.E 0

tf
/Œ„�1�DH.E 0/Œ„�1�D0. Since H is conservative,

E 0
tf
D 0, and thus E 0 is a torsion module. The claim follows. This completes the

proof of the theorem.

4.8 Quantum coisotropic reduction: global case

In this section, we fix a connected component Y of the fixed point set of X and let
C � X denote the set of points converging to Y under the elliptic Gm–action. We
assume that C is closed in X. Let WX–goodC denote the category of Gm–equivariant,
good WX–modules supported on C .

Lemma 4.25 There exists an affine Gm–stable open covering fUigi2I of X such that

C \Ui D
˚
x 2 Ui j lim

t!1
t � x 2 Y \Ui

	
for all i .
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Proof First choose a Gm–stable affine open covering fVig of XXC . Replacing X

by XXD , where D D XGm XY , we may assume that if limt!1 t � x exists then it
belongs to Y . Now take any collection of affine Gm–stable open subsets V 0j of X

such that (a) V 0j \ Y ¤ ∅ for all j , and (b)
S
j U
0
j \ Y D Y . Then Lemma 3.30

implies that fVig[ fV 0j g is the desired covering.

Let I �OX denote the ideal of C .

Lemma 4.26 There exists an „–flat quantization J of I .

Proof Let fUigi2I be a Gm–stable open cover of X satisfying the properties of
Lemma 4.25. It suffices to construct a sheaf Ji on each Ui , together with a natural
identification on over-laps Ui\Uj . If Ui\C D∅ then we set Ji DA. If Ui\C ¤∅,
then Ji is defined to be the coherent sheaf associated to the left ideal of �.Ui ;A/
generated by all homogeneous sections of negative degree. In each case, Ji is a subsheaf
of AjUi . Therefore, it suffices to show that Ji jUi\Uj D Jj jUi\Uj as subsheaves
of AjUi\Uj .

If Ui\C DUj\C D∅ there is nothing to prove. Therefore, we assume that Ui\C ¤∅.
If Ui \Uj \C D∅, let D.f /� Ui \Uj be any Gm–stable affine open subset that
is the complement of the vanishing set of f 2 �.Ui ;OUi /. Then C \D.f / D ∅,
ie if I � �.Ui ;OUi / is the ideal of C \ Ui then I Œf �1� D �.Ui ;OUi /Œf

�1�. It
follows that Q�

f
.J /DQ�

f
.A.Ui //D A.D.f //. The argument being symmetric in

i and j and applying to all Gm–stable affines in an open cover of Ui \Uj , we get
Ji jUi\Uj DAjUi\Uj D Jj jUi\Uj .

Finally, assume Ui \Uj \C ¤ ∅. Since Ui \Uj is affine, it suffices to show that
Ji jUi\Uj DJi;j , where Ji;j is the left ideal in Ai;j WDAjUi\Uj generated by negative
sections. Noting that Ji jUi\Uj is clearly contained in Ji;j , we have

0! K!Ai;j =.Ji jUi\Uj /!Ai;j =Ji;j ! 0:

By Proposition 4.12, Ai;j =Ji;j is „–flat, therefore tensoring by CŒŒ„��=.„/, and apply-
ing Lemma 2.4 we get

0! K0!OUi\Uj =.Ii jUi\Uj /!OUi\Uj =Ii;j ! 0:

But this is just the sequence 0!K0!OCi;j !OCi;j ! 0, where Ci;j DUi\Uj \C .
By Nakayama’s lemma, this implies that KD 0.

Let us recall that � W C ! S denotes the morphism of symplectic reduction. Since the
sheaf A=J is supported on C , we shall denote the sheaf restriction i�1.A=J / simply
by A=J . Under this convention, we have:
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Proposition 4.27 B D .��EndA.A=J //opp is a deformation-quantization of S .

Proof This is a local statement. Thus, the proposition follows from Corollary 4.18.

Let WS D BŒ„�1�; by Proposition 4.27, WS is a W–algebra on S . As we did in the
affine setting in Section 4.7, define an adjoint pair .H?;H/ of functors of DQ modules
by

(4-10) H.M 0/D ��HomA.A=J ;M 0/; H?.N 0/D ��1.A=J /˝��1B N 0:

As in the affine setting, these functors preserve „–torsion modules and thus descend to
an adjoint pair on the W–module categories defined by

(4-11)
H.M /D ��HomA.A=J ;M 0/Œ„�1�;

H?.N /D .��1.A=J /˝��1B N 0/Œ„�1�;

where M 0 and N 0 are choices of lattice in M and N , respectively.

Theorem 4.28 The adjoint functors .H?;H/ defined by (4-11) form a pair of exact,
mutually quasi-inverse equivalences of abelian categories:

HW WX–goodC�! �WS–good WH?

Proof It suffices to check locally that the canonical adjunctions id ! H ı H?

and H? ıH ! id are exact isomorphisms. Therefore the theorem follows from
Theorem 4.21.

4.9 Support

The support of modules is well behaved under the functor of quantum coisotropic
reduction.

Proposition 4.29 Let M 2WX–goodC and N 2WS–good. Then

Supp H.M /D �.Supp M /; Supp H?.N /D ��1.Supp N /:

Proof Since support is a local property, we may assume that S ,! C D S �V � S .
Let N be the global sections of a lattice for N . Since H is an equivalence it suffices to
show that Supp H?.N /D ��1.SuppN/ and �.��1.SuppN//D SuppN . As noted
in [42, Proposition 1.4.3],

gr„.A=J ˝B N/D .gr„A=J /˝
L
B0
.gr„N/:

Hence, using the fact that A=J is „–flat and H 0.gr„A=J / is free over B0 ,

Supp H?.N /D Supp gr„.A=J ˝B N/D V �Supp gr„.N /D V �SuppN:

From this, both claims are clear.
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We recall that a holonomic WX–module M is said to be regular if it admits a lattice M 0

such that the support of the OX–module M 0=„M 0 is reduced. Proposition 4.29 implies
that the functors H and H? preserve both holonomicity and regular holonomicity:

Corollary 4.30 The functor H restricts to equivalences

HW WX–holC ��!WS–hol; HW WX–regholC ��!WS–reghol:

Proof The first claim follows directly from Proposition 4.29.

For the second claim, we may assume given a regular lattice. Then it suffices to check
that applying either functor of DQ modules yields again a regular lattice; moreover,
this can be checked locally. We thus revert to the affine setting of Section 4.7. Suppose
first that M is an „–torsion-free A–module for which M=„M has reduced support.
We use the following variant of [53, Lemma 7.13], whose proof is identical:

Lemma 4.31 Let R be a Noetherian, flat CŒt �–algebra (in particular, CŒt � is central
in R). Suppose that M is an R–module of finite type and N � is a complex of CŒt �–flat
R–modules. Then, for any a 2C ,

CŒt �=.t � a/˝CŒt� HomR.M;N
�/Š HomR=.t�a/R.M=.t � a/M;N

�=.t � a/N �/:

By the lemma, HomA.A=J;M/˝CŒŒ„��CŒŒ„��=.„/Š HomR.R=I;M=„M/. The sup-
port of the last module is the scheme-theoretic intersection of C with Supp.M=„M/,
but since the latter is set-theoretically contained in C and is assumed to be reduced, this
intersection is reduced. Since CŒS��R=I , the annihilator of HomR.R=I;M=„M/

in CŒS� is thus also a radical ideal, as required.

Suppose, on the other hand, that N is a B –module with N=„N reduced; we must
show that A=J ˝N is also regular. For this we note the equivalence

.A=J ˝B N/=„
��! .A=J /=„˝B=„ .N=„/

��! .R=I /˝CŒS� .N=„/

which follows from standard base change identities. If we view the right-hand side as
a module over R=I , then it follows that

annR=I ..R=I /˝CŒS� .N=„//DR=I � annCŒS�.N=„/

and since the map T !R=I is (locally) an inclusion of polynomial rings, we have that
annCŒS�.N=„/ is reduced implies annR=I ..R=I /˝CŒS� .N=„// is reduced. Finally,
we have that the annihilator of .R=I /˝CŒS� .N=„/ as an R–module is the preimage
under R! R=I of the annihilator as an R=I –module. The result follows because
I �R is a generated by a regular sequence.
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4.10 Filtered quantizations

Using Theorem 4.28 we can reduce the study of equivariant modules supported on a
smooth, closed, coisotropic subvariety C � X to the situation where the set of fixed
points Y of our symplectic manifold X with elliptic Gm–action is connected. In this
section we study deformation-quantization algebras on such manifolds. Such algebras
are equivalent to filtered quantizations, which we now define.

Suppose X is a smooth symplectic variety with elliptic Gm–action and connected fixed
locus Y D XGm . Let �W X! Y be the projection. Recall that, as in Theorem 2.21,
the group scheme T �Y acts on X so that the quotient E D X=T �Y is an elliptic
symplectic fibration. In this section we write OX for the sheaf ��OX of algebras on Y .

Definition 4.32 A filtered quantization of X is a sheaf of quasicoherent OY –algebras
DX equipped with an algebra filtration DXD

S
i�0 FiDX by coherent OY –submodules

and an isomorphism

˛W grF DX
��!OX of OY –algebras

such that, for D 2 FiDX and D0 2 FjDX , ŒD;D0� 2 FiCj�lDX defines a Poisson
bracket on grF DX , making ˛ an isomorphism of Poisson algebras.

Proposition 4.33 The sheaf DX WD .��W/Gm is a filtered quantization of X. The
functor M 7! .��M /Gm defines an equivalence W–good ��!DX–mod.

Proof Let A be the DQ algebra on X such that W DAŒ„�1�. We note that since Gm

acts on A with positive weights, the sheaf of algebras zDX WD .��A/rat is a polynomial
quantization of X; ie zDX is a flat sheaf of CŒ„�–algebras satisfying zDX=„zDX 'OX ;
see [47] for a proof of this fact. From this it follows easily that zDX=.„ � 1/ '

.zDXŒh
�1�/Gm D DX . Furthermore, via this isomorphism DX inherits a filtration from

the grading on zDX , inducing an isomorphism zDX'Rees.DX/; see [47, Section 3.2] for
a detailed discussion. Summing up, we see that A can be recovered as the „–completion
of the algebra Rees.DX/.

Now, for any finitely generated DX–module N , we may choose a good filtration on N
and obtain the zDX–module Rees.N /. Completing at „ gives a A–module 3Rees.N / ,
and it is easy to see that the WX–module 3Rees.N /Œh�1� doesn’t depend on the choice
of good filtration on N . Now one checks directly that this is a well-defined functor
which is quasi-inverse to the one above.

When Y is a single point, X is isomorphic to A2n and a filtered quantization of X

is isomorphic to the Weyl algebra on An , equipped with a filtration whose pieces
are all finite-dimensional. In the other extreme, when 2 dimY D dimX, one gets a
sheaf of twisted differential operators (we refer the reader to [3] for basics on twisted
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differential operators, Lie and Picard algebroids). If 0! O! P ! ‚Y ! 0 is a
Picard algebroid on Y , then we denote by U.P/ the enveloping algebroid of the Picard
algebroid [3]. Since P is locally free as an OY –module, the algebra U.P/ is equipped
with a canonical filtration such that grU.P/' Sym�‚Y .

Lemma 4.34 When XD T �Y , DX is a sheaf of twisted differential operators on Y .

Proof We construct a Picard algebroid P on Y and show that DX is isomorphic, as a
filtered algebra, to the sheaf of twisted differential operators U.P/. The assumption
XD T �Y implies that FiDY DOY for 0� i < l and we have a short exact sequence

0!OY ! P �
�!‚Y ! 0;

where P D FlDX . Here �.D/.f /D ŒD; f � and P is closed under the commutator
bracket on DX . Therefore we get a filtered morphism U.P/! DX whose associated
graded morphism is just the identity on Sym�‚Y .

In fact, one can show that there is an equivalence of categories between twisted
differential operators on Y and Gm–equivariant deformation-quantizations of T �Y .

4.11 Refining Kashiwara’s equivalence

We continue to assume that X is a smooth symplectic variety with elliptic Gm–action
and that the set of Gm–fixed points Y in X is connected. Let Y 0 � Y be a closed,
smooth subvariety, i W Y 0 ,! Y the embedding and I the sheaf of ideals in OY defin-
ing Y 0. If C 0 D ��1.Y 0/, then Corollary 2.27 says that C 0 is coisotropic and admits a
reduction C 0! S 0 .

Proposition 4.35 The sheaf EndDX.DX=DXI/opp is a filtered quantization of S 0 .

In order to establish the above proposition we first consider the case where XD T �Y .
Let DX be a filtered quantization of X. By Lemma 4.34, DX ' U.P/ is a sheaf of
twisted differential operators on Y . The following is the analogue of Kashiwara’s
equivalence for twisted differential operators:

Lemma 4.36 Let P be a Picard algebroid on Y and DY DU.P/ the associated sheaf
of twisted differential operators.

(1) The sheaf P 0 associated to the presheaf fs 2 P=PI j ŒI; s� D 0g is a Picard
algebroid on Y 0 .

(2) The sheaf of twisted differential operators U.P 0/ associated to the Picard alge-
broid P 0 is isomorphic to EndDY .DY =DY I/opp .
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(3) The functor of Hamiltonian reduction

M 7!HomDY .DY =DY I;M /

defines an equivalence between the categories of quasicoherent DY –modules
supported on Y 0 and quasicoherent U.P 0/–modules.

Proof The proof is analogous to the untwisted case; therefore we only sketch the
proof. The main difference is that one must work in a formal neighborhood of each
point of Y 0 since Picard algebroids do not trivialize in the étale topology; see [3]. One
can check that P 0 is a sheaf of OY 0 –modules, which is coherent since P is a coherent
OY –module. The anchor map � W P ! ‚Y descends to a map � 0W P 0! ‚Y 0 such
that OY 0 is in the kernel of this map. To show that the sequence

0!OY 0 ! P 0 �
�!‚Y 0 ! 0

is exact, it suffices to consider the sequence as a sequence of OY –modules and check
exactness in a formal neighborhood of each point of Y 0 � Y . But then P trivializes
and the claim is clear. The other statements are analogously proved by reducing to the
untwisted case in the formal neighborhood of each point of Y 0 .

Proof of Proposition 4.35 Since each graded piece .OX/i is a locally free, finite-rank
OY –module, it follows by induction on i that each piece FiDX is locally free of finite
rank over OY . Therefore by vanishing of TorOY1 .OY 0 ;�/ the sequence

0! Fi�1=Fi�1I! Fi=FiI! .OX/i=.OX/iI! 0

is exact. Consequently, grF .DX=DXI/'OX=hIi and the fact that DX quantizes the
Poisson bracket on OX implies that we have an embedding

grF EndDX.DX=DXI/opp
D grF

�
fs 2 DX=DXI j ŒI; s�D 0g

�
,! ff 2OX=hIi j fI; f g D 0g DOS 0 ;

where the final identification is (2-5). Therefore it suffices to show that the embedding
is an isomorphism.

We will do this by étale base change. Let �W U ! Y be an étale map and let X0 D
U �Y X. Assume now that U is affine, and replacing Y by the image of U we
will assume that Y is too. Let AX be the sheaf of DQ algebras on X corresponding
to DX via Proposition 4.33. Then we have a CŒŒ„��–module isomorphism AX 'Q
n�0OX„

n . Since the multiplication in AX is given by polydifferential operators,
it uniquely extends to a multiplication structure on

Q
n�0OX0„

n , which by abuse
of notation we write as ��AX . This shows that filtered quantizations behave well
under étale base change. Shrinking U if necessary, Proposition 2.24, together with the

Geometry & Topology, Volume 21 (2017)



Categorical cell decomposition of quantized symplectic algebraic varieties 2663

Bezrukavnikov–Kaledin classification, implies that there is an equivariant isomorphism
��AX'AT �U y�D for some Gm–equivariant quantization AT �U of T �U . Inverting
„ and taking Gm–invariance as in Proposition 4.33, we get an isomorphism of filtered
algebras ��DX ' DT �U � D.A2n/, where D.A2n/ is the usual Weyl algebra (but
equipped with a particular filtration) and DT �U is a filtered quantization of T �U . Let
IU be the ideal in OU defining ��1.Y 0/ in U . Then, since � is flat,

��.DX=DXI/' .DT �U =DT �U IU /�D.An�j /:
Thus,

��EndDX.DX=DXI/opp
' EndDT�U .DT �U =DT �U IU /

opp�D.An�j /:

Lemma 4.34 says that DT �U is a sheaf of twisted differential operators on U . Hence, by
Lemma 4.36, EndDT�U .DT �U =DT �U IU /

opp is a sheaf of twisted differential operators
on ��1.Y 0/. This completes the proof of Proposition 4.35.

Now we may consider the category of coherent DX–modules supported on Y 0 , or
equivalently the category of good, Gm–equivariant WX–modules whose support is
contained in C 0 . Applying Lemma 4.36(3) and the étale local arguments of the proof
of Proposition 4.35, one gets that

HW DX–modY 0 ! DS 0–mod; M 7!HomDX.DX=DXI;M /;

is an equivalence. The arguments involved are analogous to the proof of Theorem 4.28
and are omitted.

4.12 Generalizing Kashiwara’s equivalence

Combining Theorem 4.28 with the above equivalence gives a direct generalization
of Kashiwara’s equivalence. Let X be an arbitrary symplectic manifold with ellip-
tic Gm–action, equipped with a Gm–equivariant DQ algebra AX . Fix a smooth,
closed, coisotropic attracting locus �W C ! Y and let � W C ! S be the coisotropic
reduction of C . Let Y 0 � Y be a smooth, closed subvariety and set C 0 D ��1.Y 0/.
Proposition 4.29 implies that the equivalence H of Theorem 4.28 restricts to an
equivalence between the category WX–goodC 0 of good WX–modules supported on C 0

and the category WS–good�.C 0/ of good WS –modules supported on �.C 0/. By the
Gm–equivariance of � , we have �.C 0/D z��1.Y 0/, where z�W S ! Y is the bundle
map. By Corollary 2.27, there exists a coisotropic reduction � 0W z��1.Y 0/! S 0 . As
we have argued above in terms of filtered quantizations, the category WS–good�.C 0/
is equivalent to the category WS 0–good of good WS 0 –modules. Thus, we have shown:

Theorem 4.37 The category WX–goodC 0 of Gm–equivariant good WX–modules
supported on C 0 is equivalent to the category of Gm–equivariant good WS 0 –modules.
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5 Categorical cell decomposition and applications

We use the generalized Kashiwara equivalence to show that Qcoh.W/ admits a categor-
ical cell decomposition. As a consequence we are able to calculate additive invariants
of this category.

In this section, open subsets U � X are always assumed to be Gm–stable.

5.1 Categorical cell decomposition

Recall from Lemma 2.3 that the closure relation on coisotropic strata is a partial
ordering. This provides a topology on the set S of indices of strata, so that a subset
K � S is closed if and only if i 2K implies that j 2K for all j � i .

Given a subset K � S , we let CK WD
S
i2K Ci . When K is closed, we let Qcoh.W/K

denote the full subcategory of Gm–equivariant objects whose support is contained in
the closed set CK � X. The open inclusion XXCK ,! X is denoted by jK .

The closed embedding CK ,!X is denoted by iK . For K�L�S closed, the inclusion
functor Qcoh.W/K ,! Qcoh.W/L is denoted by iK;L;� . We have:

Proposition 5.1 (1) The functors iK;L;� have right adjoints i ŠK;L D �K;L of
“submodule with support” such that the adjunction id ! i ŠK;L ı iK;L;� is an
isomorphism.

(2) The categories Qcoh.W/K provide a filtration of Qcoh.W/, indexed by the
collection of closed subsets K of S , by localizing subcategories.

(3) The quotient Qcoh.W/L=Qcoh.W/K is equivalent (via the canonical functor) to
Qcoh.WXXCK /LXK .

Proof Each module M in W–goodL has a unique maximal submodule MK supported
on CK . Then i ŠK;L.M /DMK defines a right adjoint to iK;L;� such that the adjunction
id! i ŠK;L ı iK;L;� is an isomorphism. Both functors are continuous and hence the
functors extend to Qcoh.W/.

Let U DXXK . It is clear that the subcategory W–goodK of W–goodL is a localizing
subcategory, from which (2) follows.

Part (3) follows from Corollary 3.28, though this is not immediate since CK is a
union of cells, and not a single cell. The proof is an easy induction on jKj. If
i 2 K is maximal, then let K 0 D K X fig. By induction, Qcoh.W/L=Qcoh.W/K0

is equivalent to Qcoh.WXXCK0 /LXK0 . Under this equivalence, the full subcategory
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Qcoh.W/K=Qcoh.W/K0 is sent to Qcoh.WXXCK0 /Ci . Corollary 3.28 now implies that
the quotient of Qcoh.WXXCK0 /LXK0 by Qcoh.WXXCK0 /Ci is canonically isomorphic
to Qcoh.WXXCK /LXK .

Corollary 5.2 The category Qcoh.W/ has a filtration by full, localizing subcategories
whose subquotients are of the form Qcoh.WSi / for various i 2 S .

Proof Fix i 2 S . Replacing S by fj j j � ig, we may assume that Ci is closed in X.
Then the corollary follows from Proposition 5.1 and Theorem 1.8.

Since the category Qcoh.W/K is a Grothendieck category, it contains enough injectives.
For K � L � S closed subsets, we let DK.Qcoh.W/L/ denote the full subcategory
of the unbounded derived category D.Qcoh.W/L/ consisting of those objects whose
cohomology sheaves lie in Qcoh.W/K . It is a consequence of Proposition 5.1 and [41,
Lemma 4.7] that jK;L defines an equivalence

(5-1) j �K;LW D.Qcoh.W/L/=DK.Qcoh.W/L/'D.Qcoh.W/LXK/:

Since Qcoh.W/L has enough injectives the left exact functor i ŠK;L can be derived to
an exact functor Ri ŠK;LW D.Qcoh.W/L/! D.Qcoh.W/K/ such that the adjunction
id!Ri ŠK;L ı iK;L;� is an isomorphism. We have:

Lemma 5.3 The functor iK;L;�W D.Qcoh.W/K/ ! DK.Qcoh.W/L/ is an equiva-
lence.

Proof The quasi-inverse to this functor is given by Ri ŠK;L . The already-noted isomor-
phism id!Ri ŠK;L ı iK;L;� gives that iK;L;� is fully faithful. For the other direction,
we note:

Claim 5.4 The adjunction iK;L;� ı Ri ŠK;L.M / ! M is an isomorphism for any
M 2DbK.Qcoh.W/L/.

Proof Let F D iK;L;� ıRi ŠK;L . The proof of the claim is essentially identical to the
proof of [32, Corollary 1.6.2], but we provide details for the reader’s convenience.
As usual, let l.M / denote the cohomological length of M 2 DbK.Qcoh.W/L/, ie
it is the difference maxfi j H i .M / ¤ 0g �minfj j H j .M / ¤ 0g. The claim will
follow by induction. If l.M /D 0, then we may assume without loss of generality that
M 2 Qcoh.W/K . In this case the claim follows from Theorem 4.28.

In general, we choose k 2 Z such that l.��kM / and l.�>kM / are strictly less
than l.M /. Applying F to the triangle ��kM !M ! �>kM

Œ1�
�! gives a commuta-

tive diagram:
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��kM //

˛
��

M //

ˇ
��

�>kM
Œ1�

//


��

F.��kM / // F.M / // F.�>kM /
Œ1�
//

Since ˛ and  are isomorphisms by induction, so too is ˇ .

Since iK;L;� is fully faithful and t –exact with respect to the standard t –structure,
it follows that Ri ŠK;L has finite cohomological dimension on DK.Qcoh.W/L/; and
thus that iK;L;�W Db.Qcoh.W/K/!DbK.Qcoh.W/L/ is an equivalence, with quasi-
inverse Ri ŠK;L . Now the unbounded case follows from the bounded by noting that both
functors are continuous.

Let T c be the full subcategory of compact objects in a triangulated or dg category T .

The full subcategory of D.Qcoh.W// consisting of all objects locally isomorphic to a
bounded complex of projective objects inside W–good (ie the perfect objects) is denoted
by perf.W/. To see that this is well behaved, we first note that perf.W/ is contained
in DbW–good.Qcoh.W//; this follows from the fact that any object in Qcoh.W/, being
a limit of good modules, is in W–good if and only if it is locally in W–good. Next,
we recall from [33, Lemma 2.6], that in fact Db.W–good/ ��!DbW–good.Qcoh.W//.
So we in fact have perf.W/�Db.W–good/.

Lemma 5.5 We have
perf.W/DDb.W–good/:

Moreover, when X is affine,

perf.W/DDb.W–good/DD.Qcoh.W//c :

Proof Since both perf.W/ and Db.W–good/ are locally defined full subcategories
of D.Qcoh.W//, the first statement follows from the second. So we suppose X is
affine. In this case, Proposition 3.11 says that the category A–mod is equivalent to
A–mod. Under this equivalence the full subcategory of „–torsion sheaves is sent to the
subcategory of „–torsion A–modules. The quotient of A–mod by this subcategory is
equivalent to W –mod. Hence, since the global section functor commutes with colimits,
Qcoh.W/ is equivalent to .W;Gm/–Mod. Hence D.Qcoh.W//'D..W;Gm/–Mod/.
As usual, the projective good objects in .W;Gm/–Mod are precisely the summands of
a finite graded free W modules. Since the category .W;Gm/–Mod has finite global
dimension and W is Noetherian, the claim is now standard.

Lemma 5.6 Let U be an open subset of X whose complement is a union of coisotropic
cells. Then, any perfect complex on U admits a perfect extension to X.
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Proof Write j W U ,! X. As noted above, perf.W/ D Db.W–good/. Therefore it
suffices to show that any bounded complex M � of good WU -modules can be extended
to a bounded complex of good W -modules. We shall construct this as a subcomplex of
j�M

� , where j� is the right adjoint to j � given by Corollary 3.28. Assume that M 0

is the first nonzero term. By Theorem 3.27, there exists a good extension N 0 , which
by adjunction maps naturally to j�M 0 . Since its image is again a coherent extension
of M 0 we may assume N 0 is a submodule of j�M 0 . Similarly we can find some
good submodule E 1 of j�M 1 that extends M 1 . Let N 1 be the sum inside j�M 1

of E 1 and the image of N 0 under the differential of j�M � . It is a good W -module
extending M 1 . Continuing in this fashion, the lemma is clear.

Lemma 5.7 Let U � X be open. Then the perfect complexes in D.Qcoh.WU // are
compact.

Proof By Lemma 5.5, we already know this when U is affine. In general, the result
follows from the argument given in [59, Example 1.13]. Namely, given a perfect
complex P , we consider the map of sheaves of C..„//–modulesM

i

RHom.P;Mi /!RHom
�

P;
M
i

Mi

�
:

This is an isomorphism since Lemma 5.5 implies that its restriction to every Gm–stable
affine open subset of U is an isomorphism. Then, since U is a Noetherian topological
space, Proposition III.2.9 of [31] impliesM
i

Hom.P;Mi /DH
0

�
X;
M
i

RHom.P;Mi /

�
��!H 0

�
X;RHom

�
P;

M
i

Mi

��
D Hom

�
P;

M
i

Mi

�
:

In the following, we let Si � S be a collection of subsets such that CSi D Ui is open
in X, Si � SiC1 and CSiC1 XCSi is a union of strata of the same dimension. We have
that CS0 D U0 is the open stratum, and that Sn D S for n� 0, so that Un D X.

Proposition 5.8 The triangulated category D.Qcoh.WUi // is compactly generated
for all i .

Proof Since every perfect complex is compact, it suffices to show that D.Qcoh.WUi //

is generated by its perfect complexes. The proof is by induction on i . When i D 0,
U0 is a single stratum and Proposition 4.33 implies that D.Qcoh.W//'D.Qcoh.DX//.
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Then we have the restriction and induction functors

D.Qcoh.DX//�D.Qcoh.XGm//:

We can argue in exactly the same way as in the case of D–modules — see [59, Example
1.14] — to see that this category is compactly (indeed, perfectly) generated.

Next, we assume that the theorem is known for Ui , and we set C D UiC1 X Ui ,
a union of closed strata in X. Then Theorem 4.28 together with Proposition 4.33
implies that D.Qcoh.WUiC1/C / is equivalent to the direct sum of the D.Qcoh.DSk //,
where the Sk are the coisotropic reductions of the strata in C . As above, these
categories are generated by their subcategories of perfect objects. Since the natural
functors D.Qcoh.DSk //!D.Qcoh.WUiC1/C / take good modules to good modules,
we see that D.Qcoh.WUiC1/C / is generated by perfect (and hence compact) objects
in D.Qcoh.WUiC1//.

Now we wish to show that D.Qcoh.W/UiC1/ is perfectly generated, given that both of
the categories D.Qcoh.WUiC1//C and D.Qcoh.WUi // are generated by their perfect
objects. Assume that M 2 D.Qcoh.WUiC1// is such that Hom.P;M / D 0 for all
perfect objects P in D.Qcoh.WUiC1//. In particular, Hom.P;M /D 0 for all perfect
objects P in D.Qcoh.WUiC1/C /. Thus, Lemma 1.7 of [58] says that M ' ji;�j

�
i M .

Since D.Qcoh.WUi // is perfectly generated, j �i M ¤ 0 implies that there is some
perfect object Q in D.Qcoh.WUi // such that Hom.Q; j �i M / ¤ 0. Take � ¤ 0 in
Hom.Q; j �i M /. By Lemma 5.6, there exists some perfect complex Q0 on UiC1
whose restriction to Ui equals Q . Then the composite Q0 ! ji;�Q ! ji;�j

�
i M

is nonzero since its restriction to U equals � , and we have a contradiction. Thus,
D.Qcoh.W/UiC1/ is perfectly, and hence compactly, generated, as claimed.

Corollary 5.9 Let K � L� S be closed subsets.
(1) The subcategory DK.Qcoh.W// of D.Qcoh.W// is generated by

DK.Qcoh.W//\D.Qcoh.W//c :

(2) Let U D XXCK . Then the exact functor

j �K;LW DL.Qcoh.W//!DLXK.Qcoh.WU //

admits a right adjoint

jK;L;�W DLXK.Qcoh.WU //!DL.Qcoh.W//:

Proof We first prove (1), by induction on jKj. We assume that S is totally ordered with
KDfi � kg. The case jKj D 1 has been done in Proposition 5.8. We define perfK.W/

to be the full subcategory of perf.W/ consisting of all complexes whose cohomology
is supported on CK . Since DK.Qcoh.W// is a full subcategory of D.Qcoh.W//, the
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objects in perfK.W/ are compact in DK.Qcoh.W//. Let K 0Dfi � k�1g, so that, by
induction, DK0.Qcoh.W// is generated by perfK0.W/. Since the objects in perfK0.W/

are compact in D.Qcoh.W//, Construction 1.6 of [58] says that there exist a right
adjoint jK0;� to j �K0 . Let M 2 DK.Qcoh.W// such that Hom.P;M / D 0 for all
P 2 perfK.W/. In particular, Hom.P;M / D 0 for all P 2 perfK0.W/ and hence
M D jK;�j

�
KM . Assume that there exists some Q 2 perfKXK0.WU / and nonzero

morphism �W Q! j �K0M . Just as in the proof of Proposition 5.8, this implies that
there is some Q0 2 perf.W/ and nonzero �0W Q0!M extending � . However, the
fact that X D U t CK0 and the cohomology of Q was assumed to be contained in
CK XCK0 �U implies that the cohomology of Q0 is supported on CK , ie Q0 belongs
to perfK.W/. Thus, we conclude that Hom.Q; j �K0M /D0 for all Q2perfKXK0.WU /.
Since CKXCK0 is a single closed stratum in U , Proposition 5.8 implies that j �K0M D 0
and hence perfK.W/ generates DK.Qcoh.W//.

Now we deduce part (2). By [58, Construction 1.6], a right adjoint jK;� to j �K exists.
The image of DLXK.Qcoh.WU // under jK;� is contained in DL.Qcoh.W// since
XDU tCK . Thus, jK;� restricted to DLXK.Qcoh.WU // is a right adjoint to j �K;L .

The proof of Proposition 5.8 shows that perf.W/ generates D.Qcoh.W//. Since
perf.W/ equals Db.W–good/ by Lemma 5.5, it is clear that perf.W/ is closed under
summands; the same is true of perfK.W/. Therefore [59, Theorem 2.1] implies:

Corollary 5.10 For any closed K � S , the compact objects in DK.Qcoh.W// are
precisely the perfect complexes, ie DK.Qcoh.W//c D perfK.W/.

5.2 Consequences: K –theory and Hochschild and cyclic cohomology

In this section we consider the case where X has only finitely many Gm–fixed
points. The fact that W–good admits an algebraic cell decomposition in this case
(see Definition 5.11) allows us to inductively calculate K0 , and the additive invariants
Hochschild and cyclic homology of perf.W/.

When X has isolated fixed points, the coisotropic strata Ci are affine spaces and their
coisotropic reductions Si are isomorphic as symplectic manifolds to T �Ati for some ti .
Moreover, Qcoh.WSi /' D.Ati /–Mod. For each i 2 S we can form the open subsets
�i D fj j j � ig and >i D fj j j > ig.

Definition 5.11 Let C be an abelian category with a collection of Serre subcategories
CK indexed by closed subsets K in a finite poset. We say that the CK form an algebraic
cell decomposition of C if each subquotient C�i=C<i is equivalent to the category of
modules over some Weyl algebra.
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By Corollary 5.2, W–good admits an algebraic cell decomposition. Let DG–catC
denote the category of all small C–linear dg categories and DG–vectC the dg derived
category of C–vector spaces. Let L denote a C–linear functor from DG–catC to
DG–vectC . We are interested in the case when L admits a localization formula. This
means that any short exact sequence of dg categories gives rise, in a natural way via L,
to an exact triangle in DG–vectC .

For any quantization W , we denote by Perf.W/ the dg category of perfect complexes
for W ; see [43, Section 4].

Moreover, we say that L is even if

H i
�
L.Perf.D.An///

�
D 0

for all n and all odd i .

Proposition 5.12 Suppose LW DG–cat! DG–vect is an even C–linear functor that
admits a localization formula. Then there is a (noncanonical) splitting

L.Perf.W//Š
M
i

L.Perf.D.Ati ///:

Proof By induction on k WD jSj, we may assume that the result is true for U DXXCK ,
where K D fkg. Lemma 5.3 together with (5-1) implies that we have a short exact
sequence

0!D.Qcoh.W/K/!D.Qcoh.W//!D.Qcoh.WU //! 0:

By Theorem 4.28, we may identify D.Qcoh.W/K/ with D.Qcoh.WS //, where S is
the coisotropic reduction of CK . This in turn can be identified with D.D.Atk /–Mod/.
By Lemma 5.6, the sequence

0! perf.D.Ank //! perf.W/! perf.WU /! 0

is exact. Since all functors involved lift to the dg level, we obtain an exact sequence

(5-2) 0! Perf.D.Ank //! Perf.W/! Perf.WU /! 0:

Applying L, we get a triangle

(5-3) L.Perf.D.Atk ///! L.Perf.W//! L.Perf.WU //! L.Perf.D.Atk ///Œ1�

and hence a long exact sequence in cohomology. Therefore, the fact that L is even
implies by induction that H i .L.Perf.W///D 0 for all odd i , and we have short exact
sequences of vector spaces

0!H 2i
�
L.Perf.D.Atk ///

�
!H 2i .L.Perf.W///!H 2i .L.Perf.WU ///! 0

for all i . The claim of the proposition follows.
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Next we prove Corollary 1.12. By [44, Theorem 1.5(c)], both Hochschild and cyclic
homology are localizing functors. Let � be a variable, given degree two. We recall
that the main theorem of [70] implies HH�.D.An//DC�2n . Furthermore, we have
HC�.D.An// D �2nCŒ��. In particular, HH� and HC� are even localizing functors.
Proposition 5.12 implies that the Hochschild and cyclic homology of Perf.W/ are
given by

HH�.Perf.W//D

kM
iD1

C�ti and HC�.Perf.W//D

kM
iD1

�tiCŒ��;

respectively. Therefore, in order to identify HH�.Perf.W// with H��dimX.X/ as
graded vector spaces, it suffices to show that

H�.X/D �
1
2

dimX
kM
iD1

C�ti :

This follows from the BB decomposition of X, noting that dimCi D
1
2

dimXC 2ti .

5.3 The Grothendieck group of Perf.W/

Finally, we turn to the proof of Corollary 1.11, which states that the Grothendieck
group K0.Perf.W// is a free Z–module of rank jSj. Again, the proof is by induction
on k D jSj. Using the Bernstein filtration on D.Ati /, Theorem 6.7 of [65] says that
we have identifications

Kj .D.Ati //DKj .PerfD.Ati //'Kj .C/ for all j;

where Kj .D.Ati // is the j th K–group of the exact category of finitely generated
projective D.Ati /–modules. The higher K–groups Kj .C/ for j � 1 of C have been
calculated by Suslin and are known to be divisible; see [62, Corollary 1.5]. Quillen’s
localization theorem [65, Theorem 5.5] says that the short exact sequence (5-2) induces
long exact sequences

(5-4) � � �!K1.Perf.WU //!K0.Perf.D.Atk //!K0.Perf.W//!K0.Perf.WU //!0:

Since a divisible group is an injective Z–module and the quotient of a divisible group
is divisible, the subsequence

0!K0.Perf.D.Atk //!K0.Perf.W//!K0.Perf.WU //! 0

is exact, and it follows by induction that K0.Perf.W// is free of rank k .

5.4 Hochschild cohomology

In many instances one can apply Van den Bergh’s duality theorem to calculate the
Hochschild cohomology of the category W–good. In this subsection, we assume that
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X is a symplectic resolution f W X!X , where X is an affine cone, ie X has a Gm–
action with a single attracting fixed point. Moreover, we assume that X arises as the
GIT quotient of a G–representation W , where G is a reductive algebraic group. Thus,
X D ��1.0/==�G for an appropriate character � of G , and X D Spec

�
CŒ��1.0/�

�
.

Note that in this case, Lemma 3.7 of [53] shows that Assumptions 3.2 of that paper
apply once we assume (as we shall) that the moment map is flat. Let U denote the
algebra of Gm–invariant global sections of WX .

Assumption 5.13 Suppose that f W X! X is a symplectic resolution obtained via
Hamiltonian reduction as above. Then, if gD Lie.G/ and zD .g=Œg; g�/� , we have a
natural “Duistermaat–Heckman” map z!H 2.X/. We assume this map is surjective.

Lemma 5.14 If X is a Nakajima quiver variety of type ADE, then Assumption 5.13
holds. Moreover, in general, for any Nakajima quiver variety, whenever the assump-
tion holds, the natural map z! H 2.X/ is an isomorphism and hence the family of
Hamiltonian reductions over z realizes the universal deformation of X.1

Proof In the ADE case, the Poincaré polynomial of the cohomology H�.X/ is known
by the work of Kodera and Naoi [46]. It follows readily that dimH 2.X/ D dim z,
and hence it suffices to check that the Duistermaat–Heckman map is injective. While
this can be checked directly in these cases, since the Duistermaat–Heckman map can
be realized as (a graded component of) a natural map from the center of a quiver
Hecke algebra to the cohomology of the quiver variety, it follows from a recent result
of Webster [69] that this map is always injective. This completes the proof of the
lemma.

Recall that for any c 2 z we may define the quantum Hamiltonian reduction of the
Weyl algebra associated to W . We denote this algebra by Uc .

Lemma 5.15 Let X be a conic symplectic resolution as above with a Gm–equivariant
quantization WX . Suppose that Assumption 5.13 holds for X. Then the filtered
quantization U of X associated to W is of the form Uc for some c 2 z.

Proof In [49] it is shown that, via the Bezrukavnikov–Kaledin noncommutative period
map, graded quantizations of X are parametrized by H 2.X;C/. Moreover, one can
show that, provided Assumption 5.13 holds, this period map for quantum Hamiltonian
reductions Uc for c 2 z is realized by the Duistermaat–Heckman map, up to a shift
corresponding to the canonical quantization. Since the Rees construction gives an
equivalence between filtered and graded quantizations, it follows from this that any

1Added in proof: If X is a Nakajima quiver variety, then the main theorem of the recent preprint [54]
implies that the canonical map z!H2.X/ is surjective.
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filtered quantization is of the form Uc for some c 2 z. As the Gm–invariant global
sections U of our quantization of X gives such a filtered quantization, it is thus of the
form Uc for some c 2 z.

For the rest of this section we fix c 2 z such that U Š Uc .

Lemma 5.16 Let W be a G–representation as above, and �W G!Gm . Then W ˚W
is a G �G–representation, and the .�; �/–unstable locus contains W �–un �W �–un .

Proof Let W �C� be the G–representation given by g.w; z/D .g.w/; �.g/ �z/. By
the Hilbert–Mumford criterion, a point x 2W is unstable if there is a one-parameter
subgroup �W Gm!G such that limt!0 �.t/.x; 1/D .0; 0/ for .x; 1/ 2W �C� , and
similarly for .x; y/ 2 W ˚W . Thus, if x and y are both in W �–un , destabilized
by one-parameter subgroups �1 and �2 , respectively, it is clear that .�1; �2/ gives a
one-parameter subgroup of G �G which destabilizes .x; y/, and we are done.

Lemma 5.17 Let cW g! C be a character of g for which the algebra U D Uc has
finite cohomological dimension. Then Uc is smooth; that is, U e has finite global
dimension.

Proof First note that since Uc is (left or right) Noetherian, its global dimension is its
Tor dimension, and hence it has finite global dimension if and only if U op

c has finite
global dimension. Moreover, it follows from the construction of the noncommutative
period map in [8] and the Duistermaat–Heckman theorem (see for example [49]) that
the algebra U op

c is isomorphic to U��c , where 1
2
� is the character corresponding to

the canonical quantum moment map, ie the quantum moment map which yields the
canonical quantization of X.

To see that U e D Uc ˝U
op
c Š Uc ˝U��c has finite global dimension, first note that

Uc ˝U��c Š �.X�X; EX;c � EX;��c/

or, in the notation of [53], .Mc �M��c/
G�G . Now, since X is smooth, Corollary 7.6

of [53] shows that Uc ˝ Uc�� has finite global dimension if and only if the pull-
back functor Lf � is cohomologically bounded. Explicitly, Lf � is the functor from
D.Uc˝Uc��–mod/ to DG;.c;��c/.A˝A–mod/ given by

N 7! �..Mc �M��c/˝
L
Uc˝U��c

N/; N 2D.Uc�U��c–mod/;

where � is the quotient functor given by the .�; �/–unstable locus.

Choose free Uc and U��c resolutions P � of Mc and Q� of M��c , respectively. By
[53, Corollary 7.6], each of �.P �/ and �.Q�/ has only finitely many cohomologies,
ie for each of P � and Q� , all but finitely many cohomologies have associated graded
supported in W �–un . Hence the resolution Tot.P � �Q�/ of Mc �M��c has all
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but finitely many cohomologies with associated graded supported in W �–un �W �–un .
Thus, using Lemma 5.16 it follows the cohomologies are .�; �/–unstably supported
after finitely many terms also. Thus Lf � is bounded and hence U e has finite global
dimension, as required.

Remark 5.18 In a number of examples, such as the Hilbert scheme of points in C2 or
the minimal resolution of C2=�l the cyclic quotient singularity, it is known explicitly
when the algebra Uc has finite global dimension; moreover it is shown in [13], building
on work of Kaledin, that the algebra Uc has finite global dimension for sufficiently
generic c .

Recall that an algebra U is said to have finite Hochschild dimension (or is smooth) if
U has a finite resolution when considered as a U e D U˝U opp –module.

Proposition 5.19 Assume that Uc has finite global dimension. Then

HH�.Perf.W//D HH�.Uc/DH�.X;C/:

Proof By [53, Lemma 3.14], the algebra Uc is Auslander Gorenstein with rigid
Auslander dualizing complex D� D Uc . By Lemma 5.17, the enveloping algebra U e

of Uc has finite global dimension, and hence Uc has finite Hochschild dimension,
thus we are able to apply Van den Bergh’s duality result [67, Theorem 1] to conclude
that HH�.Uc/D HHdimX��.Uc/. Since Uc has finite global dimension, Theorem 1.1
of [53] and Corollary 1.12 show that

HH�.Perf.W//D HH�.Uc/D HHdimX��.Uc/DHdimX��.X/;

where in the last equality we use the fact that the degrees in Borel–Moore homology
are twice those in Hochschild homology. On the other hand, Poincaré duality [14,
Equation (2.6.2)] says that HdimX��.X/DH

�.X/, and so the result follows.

Presumably one can also apply the results of [19] and [42, Section 2.5] to the category
Perf.W/ in order to express directly the Hochschild cohomology of that category in
terms of its Hochschild homology.

More generally, the proof of Proposition 5.19 shows that if X is a symplectic res-
olution f W X! X of an affine cone X , the number of Gm–fixed points on X is
finite, and Uc is a quantization of CŒX� such that derived localization holds and the
enveloping algebra U e has finite global dimension, then HH�.Uc/DH�.X;C/. We
conclude with a number of standard examples, arising from representation theory,
where Proposition 5.19, or the above more general statement, is applicable.
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Example 5.20 Let � be a cyclic group and Sn o � the wreath product group that
acts as a symplectic reflection group on C2n . The corresponding symplectic reflection
algebra at t D 1 and parameter c is denoted by Hc.Sn o �/. Define an increasing
filtration F�.CŒSn o��/ on the group algebra of Sn o� by letting Fi .CŒSn o��/ for
i � 0 be the subspace spanned by all elements g 2 Sn o� such that rk.1� g/ � k ,
where 1�g is thought of as an endomorphism of C2n . This is an algebra filtration and
restricts to a filtration F�.ZSn o�/ on the center of the group algebra. The following
result, which was proved for generic c in [22, Theorem 1.8] for generic c , follows
easily from the results of this paper.

Proposition 5.21 Assume that c is spherical. Then

HH�.Hc.Sn o�//D HH2n��.Hc.Sn o�//D grF� .ZSn o�/;

as graded vector spaces.

In [22], it is shown that the identification HH�.Hc.Sn o �// D grF� .ZSn o �/ is as
graded algebras.

Example 5.22 Let G be a connected, semisimple, complex Lie group and g its Lie
algebra. Fix a Cartan subalgebra h of g and let W be the Weyl group of G . Let N
denote the nilpotent cone in g. The Springer resolution of N is � W T �B!N , where
B is the flag variety. We fix e 2N . Associated to e is a Slodowy slice e 2 S � g. The
intersection S0 WD S \N is a conic symplectic singularity, and the restriction of �
defines a symplectic resolution zS0 WD ��1.S0/! S0 . Quantizations of S0 are given
by finite W–algebras, which we denote by A�.e/ to avoid confusion with our notation
for DQ algebras. Here � 2 h� . Notice that B\ zS0 is the Springer fiber Be of e .

Let l� g be a minimal Levi subalgebra containing e . Recall that the element e is said
to be of standard Levi type if it is regular in l (this is independent of the choice of l).
In type A, every nilpotent element is of standard Levi type.

Proposition 5.23 Let e be of standard Levi type and � 2 h� regular. Then

HH�.A�.e//'H
�.Be/:

Proof If e is of standard Levi type then it follows from [23, Proposition 1] that there
is a one-parameter subgroup H �G acting on zS0 such that zSH0 is finite. Since this
action is Hamiltonian, we may assume by twisting that the elliptic action of Gm on zS0
has only finitely many fixed points.

Therefore it suffices to check that, when � is dominant regular, localization holds
(ie there is a DQ algebra W� on zS0 such that A�.e/–mod ' W�–good) and the
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enveloping algebra of A�.e/ has finite global dimension. This is well known so we
give the appropriate references. The statement about localization follows from [18,
Theorem 6.5] or [25, Theorem 6.3.2], and the fact that the enveloping algebra of A�.e/
has finite global dimension is a consequence of [25, Proposition 6.5.1] and the fact
that the abelian category W–good has finite global dimension for any DQ algebra W
on zS0 � zS0 .

In particular, when e D 0, we have S D g and hence S \N DN and zS0 D T �B . In
this case A�.e/ is a primitive central quotient of the enveloping algebra U.g/ and our
result recovers a result of Soergel [66], who also used localization (but coupled with
the Riemann–Hilbert correspondence).

Example 5.24 Let M.r; n/ be a framed moduli space of torsion-free sheaves on P2

with rank r and second Chern character c2 D n. Specifically, M.r; n/ parametrizes
isomorphism classes of pairs .E; �/ such that:

(1) The sheaf E is torsion-free of rank r and hc2.E/; ŒP2�i D n.

(2) The sheaf E is locally free in a neighborhood of `1 , with fixed isomorphism
�W Ej`1

��!O˚r
`1

.

Here `1DfŒ0 W z1 W z2�2P2g is the line at infinity. The space M.r; n/ is isomorphic to
the quiver variety associated to the framed Jordan quiver, with dimension vector .r; n/;
see [57]. Let M reg

0 .r; n/ be the open subset of locally free sheaves. The space M.r; n/
is a symplectic resolution of M0.r; n/, where the latter is the Uhlenbeck partial com-
pactification of M reg

0 .r; n/. Quantizations Ac.r; n/, for c 2C , of M0.r; n/ have been
studied in [50].

Proposition 5.25 Assume that c is not of the form s=m, where 1 < m < n and
�rm < s < 0. Then

HH�.Ac.r; n//DH�.M.n; r/;C/:

Proof This follows from Proposition 5.19 and [50, Theorem 1.1], once one knows
that M.r; n/ has finitely many fixed points under Gm . But this follows from [57,
Theorem 3.7], which shows that there is a natural torus T acting by Hamiltonian
automorphisms on M.r; n/ such that the set M.r; n/T is finite.

The above proposition implies that the graded dimension of HH�.Ac.r; n// has a
concise expression in terms of r –multipartitions of n; see [57, Theorem 3.8].
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Example 5.26 Our final example is slices in affine Grassmannians. We follow [36; 37].
Let G be a complex semisimple Lie group and GrD G..t�1//=GŒt � its thick affine
Grassmannian. For any given pair of dominant coweights � � �, we have Schubert
subvarieties Gr� and Gr� of Gr such that Gr� � Gr� . The intersection Gr�� WD
Gr�\Gr� , with Gr� an orbit for the first congruence subgroup G1ŒŒt�1�� of GŒŒt�1��,
is called the Lusztig slice. It is a finite-dimensional affine conic symplectic singularity.
If � is a sum of miniscule coweights, then it is shown in [37, Theorem 2.9] that
Gr�� admits a symplectic resolution �Gr�� , given by closed convolution of Schubert
varieties associated to miniscule weights. If T � G is a maximal torus, then T acts
Hamiltonian on both �Gr�� and Gr�� such that the resolution morphism is equivariant.
It has been shown in [36, Lemma 4.4] that . �Gr��/T is finite. Therefore, one can twist
the elliptic action of Gm on �Gr�� so that it has only finitely many fixed points. Thus,
Proposition 5.19 implies that if U is a quantization of CŒGr��� such that U e has finite
global dimension and derived localization hold, then

HH�.U /'H�. �Gr
�

�;C/:

Conjecturally, any such quantization is given by a quotient Y �
�
.c/ of a shifted Yan-

gian Y � ; see [37, Conjecture 4.11].
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The nonuniqueness of the tangent cones at infinity
of Ricci-flat manifolds

KOTA HATTORI

Colding and Minicozzi established the uniqueness of the tangent cones at infinity of
Ricci-flat manifolds with Euclidean volume growth where at least one tangent cone at
infinity has a smooth cross section. In this paper, we raise an example of a Ricci-flat
manifold implying that the assumption for the volume growth in the above result is
essential. More precisely, we construct a complete Ricci-flat manifold of dimension 4

with non-Euclidean volume growth that has infinitely many tangent cones at infinity
where one of them has a smooth cross section.

53C23

1 Introduction

For a complete Riemannian manifold .X;g/ with nonnegative Ricci curvature, it is
shown by Gromov’s compactness theorem that if one takes a sequence

a1 > a2 > � � �> ai > � � �> 0

such that limi!1 ai D 0, then there is a subsequence fai.j/gj such that .X; ai.j/g;p/

converges to a pointed metric space .Y; d; q/ as j !1 in the sense of the pointed
Gromov–Hausdorff topology; see Gromov [9; 10]. The limit .Y; d; q/ is called the
tangent cone at infinity of .X;g/. In general, the pointed Gromov–Hausdorff limit
might depend on the choice of faigi or its subsequences.

The tangent cone at infinity is said to be unique if the isometry classes of the limits are
independent of the choice of faig and its subsequences, and Colding and Minicozzi
showed the next uniqueness theorem under the given assumptions.

Theorem 1.1 [6] Let .X;g/ be a Ricci-flat manifold with Euclidean volume growth,
and suppose that one of the tangent cones at infinity has a smooth cross section. Then
the tangent cone at infinity of .X;g/ is unique.

Among the assumptions in Theorem 1.1, the Ricci-flat condition is essential since
there are several examples of complete Riemannian manifolds with nonnegative Ricci
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curvature and Euclidean volume growth where one of the tangent cones at infinity has
smooth cross section, but the tangent cone at infinity is not unique; see Perelman [12]
and Colding and Naber [7].

Here, let T .X;g/ be the set of all of the isometry classes of the tangent cones at infinity
of .X;g/. In this paper, an isometry between pointed metric spaces means a bijective
map preserving the metrics and the base points. It is known that T .X;g/ is closed
with respect to the pointed Gromov–Hausdorff topology, and has the natural continuous
RC–action defined by the rescaling of metrics. The uniqueness of the tangent cone at
infinity means that T .X;g/ consists of only one point.

In this paper, we show that the assumption for the volume growth in Theorem 1.1 is
essential. More precisely, we obtain the next main result.

Theorem 1.2 There is a complete Ricci-flat manifold .X;g/ of dimension 4 such
that T .X;g/ is homeomorphic to S1 . Moreover, the RC–action on T .X;g/ fixes
.R3; d1

0
; 0/, .R3; h0; 0/ and .R3; h1; 0/, where h0 D

P3
iD1.d�i/

2 is the Euclidean
metric, d1

0
is the completion of the Riemannian metricZ 1

0

dx

j� � .x˛; 0; 0/j
� h0;

h1 D .1=j�j/h0 , and RC acts freely on

T .X;g/nf.R3; d10 ; 0/; .R
3; h0; 0/; .R

3; h1; 0/g:

Here, � D .�1; �2; �3/ is the Cartesian coordinate on R3 .

Here, we mention more about the metric spaces appearing in Theorem 1.2. For
0� S < T �1, denote by dT

S
the metric on R3 induced by the Riemannian metricZ T

S

dx

j� � .x˛; 0; 0/j
� h0:

For .X;g/ in Theorem 1.2, we show that T .X;g/ contains f.R3; dT
0
; 0/ W T 2RCg,

f.R3; d1
S
; 0/ W S 2RCg and f.R3; h0C �h1; 0/ W � 2RCg. Here, we can check easily

that dT
0

and d1
S

are homothetic to d1
0

and d1
1

, respectively. We can show that

.R3; dT
0 ; 0/

GH
����!
T!1

.R3; d10 ; 0/; .R3; dT
0 ; 0/

GH
���!
T!0

.R3; h1; 0/;

.R3; d1S ; 0/
GH
����!
S!1

.R3; h0; 0/; .R3; d1S ; 0/
GH
���!
S!0

.R3; d10 ; 0/;

.R3; h0C �h1; 0/
GH
����!
�!1

.R3; h1; 0/; .R3; h0C �h1; 0/
GH
���!
�!0

.R3; h0; 0/:
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Both .R3; h0/ and .R3; h1/ can be regarded as the Riemannian cones with respect to the
dilation � 7! �� on R3 . Although the dilation also pulls back d1

0
to �.˛C1/=.2˛/d1

0
,

.R3; d1
0
/ does not become the metric cone with respect to this dilation since l D

f.t; 0; 0/ 2 R3 W t � 0g is not a ray. In fact, any open intervals contained in l have
infinite length with respect to d1

0
.

In general, tangent cones at infinity of complete Riemannian manifolds with nonnegative
Ricci curvature and Euclidean volume growth are metric cones; see Cheeger and
Colding [4]. In our case, it is shown in Section 9 that .R3; d1

0
; 0/ never becomes the

metric cone of any metric space.

The Ricci-flat manifold .X;g/ appearing in Theorem 1.2 is one of the hyper-Kähler
manifolds of type A1 , constructed by Anderson, Kronheimer and LeBrun in [1]
applying Gibbons–Hawking ansatz, and by Goto in [8] as hyper-Kähler quotients.
Combining Theorems 1.1 and 1.2, we can see that the volume growth of .X;g/ should
not be Euclidean. In fact, the author [11] has computed the volume growth of the
hyper-Kähler manifolds of type A1 and showed that they are always greater than
cubic growth and less than Euclidean growth. To construct .X;g/, we “mix” the
hyper-Kähler manifold of type A1 whose volume growth is ra for some 3< a< 4,
and R4 equipped with the standard hyper-Kähler structure. Unfortunately, the author
could not compute the volume growth of .X;g/ in Theorem 1.2 explicitly.

In this paper, we can show that many metric spaces may arise as the Gromov–Hausdorff
limit of hyper-Kähler manifolds of type A1 . Let

I 2 BC.RC/ WD fJ �RC W J is a Borel set of nonzero Lebesgue measureg;

and denote by dI the metric on R3 induced by the Riemannian metricZ
I

dx

j� � .x˛; 0; 0/j
� h0:

Then we have the following result.

Theorem 1.3 There is a complete Ricci-flat manifold .X;g/ of dimension 4 such that
T .X;g/ contains

f.R3; dI ; 0/ W I 2 BC.RC/g=isometry:

Since d1
S

and dT
0

are contained in T .X;g/ in the above theorem, their limits h0 and
.1=j�j/h0 are also contained in T .X;g/. The author does not know whether any other
metric spaces are contained in T .X;g/.

Theorems 1.2 and 1.3 are shown along the following process. The aforementioned
hyper-Kähler manifolds are constructed from infinitely countable subsets ƒ in R3

Geometry & Topology, Volume 21 (2017)
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such that
P
�2ƒ 1=.1C j�j/ <1. We denote such a manifold by .X;gƒ/ and fix

the base point p 2 X . From the construction, .X;gƒ/ has a natural S1 –action
preserving gƒ and the hyper-Kähler structure; then we obtain a hyper-Kähler moment
map �ƒW X ! R3 such that �ƒ.p/ D 0, which is a surjective map whose generic
fibers are S1 . There is a unique distance function dƒ on R3 such that �ƒ is a
submetry. Here, submetries are the generalizations of Riemannian submersions to the
category of metric spaces. For a> 0, we can see agƒ D gaƒ ; hence by taking ai > 0

such that limi!1 ai D 0, we obtain a sequence of submetries �aiƒW X !R3 . Now,
assume that f.R3; daiƒ; 0/gi converges to a metric space .R3; d1; 0/ for some d1 in
the pointed Gromov–Hausdorff topology, and the diameters of fibers of �aiƒ converge
to 0 in some sense. Then we can show that .R3; d1; 0/ is the Gromov–Hausdorff
limit of f.X;gaiƒ;p/gi . We raise a concrete example of ƒ and sequences faigi , then
obtain several limit spaces. Among them, it is shown in Section 9 that .R3; d1

0
/ is

not a polar space in the sense of Cheeger and Colding [5].

This paper is organized as follows. We review the construction of hyper-Kähler mani-
folds of type A1 and the hyper-Kähler moment map �ƒ in Section 2. Then we review
the notion of submetry in Section 3, and the notion of Gromov–Hausdorff topology
in Section 4. In Section 5, we construct a submetry �a from .X;gaƒ/ to .R3; da/

by using �ƒ and dilation, where da is the metric induced by the Riemannian metric
ˆa.�/h0 . Here, ˆa is a positive valued harmonic function determined by ƒ and
some constants. Then we see that the convergence of f.X;gaiƒ/gi can be reduced
to the convergence of f.R3; dai

/gi . In Sections 6 and 7, we raise concrete examples
of ƒ and fix a > 0, and then we estimate the difference of ˆa and another positive
valued harmonic function ˆ1 , which induces the metric d1 on R3 . In Section 8, we
observe some examples by applying the results in Sections 6 and 7, and then we show
Theorems 1.2 and 1.3. In Section 9, we prove that .R3; d1

0
/ is not a polar space.

Acknowledgments The author would like to thank Professor Shouhei Honda who in-
vited the author to this attractive topic, and also for advice on this paper. The author also
would like to thank the referee for careful reading and several useful comments. Thanks
to these, the author could make the main results much stronger. The author was sup-
ported by Grant-in-Aid for Young Scientists (B) Grant Number 16K17598. The author
was partially supported by JSPS Core-to-Core Program, “Foundation of a Global Re-
search Cooperative Center in Mathematics focused on Number Theory and Geometry”.

2 Hyper-Kähler manifolds of type A1

Here we review briefly the construction of hyper-Kähler manifolds of type A1 ,
along [1].

Geometry & Topology, Volume 21 (2017)
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Let ƒ�R3 be a countably infinite subset satisfying the convergence conditionX
�2ƒ

1

1Cj�j
<1;

and take a positive valued harmonic function ˆƒ over R3nƒ defined by

ˆƒ.�/ WD
X
�2ƒ

1

j� ��j
:

Then �dˆƒ 2 �2.R3nƒ/ is a closed 2–form, where � is the Hodge star operator
of the Euclidean metric. We have an integrable cohomology class Œ1=.4�/� dˆƒ� 2

H 2.R3nƒ;Z/, which is equal to the 1st Chern class of a principal S1 –bundle �D
�ƒW X

�!R3nƒ. For every �2ƒ, we can take a sufficiently small open ball B�R3

centered at � which does not contain any other elements in ƒ. Then �W ��1.Bnf�g/!

Bnf�g is isomorphic to the Hopf fibration �0W R
4nf0g ! R3nf0g as principal S1 –

bundles; hence there exists a C1 4–manifold X and an open embedding X � �X ,
and � can be extended to an S1 –fibration

�D .�1; �2; �3/W X !R3:

Moreover, we may write XnX � D fp� W � 2 ƒg and �.p�/ D �. Next we take an
S1 –connection � 2 �1.X �/ on X � ! R3nƒ, whose curvature form is given by
�dˆƒ . Then � is uniquely determined up to an exact 1–form on R3nƒ. Now, we
obtain a Riemannian metric

gƒ WD .�
�ˆƒ/

�1�2
C��ˆƒ

3X
iD1

.d�i/
2

on X � , which can be extended to a smooth Riemannian metric gƒ over X by taking �
appropriately.

Theorem 2.1 [1] Let .X;gƒ/ be as above. Then it is a complete hyper-Kähler
(hence Ricci-flat) metric of dimension 4.

Since S1 acts on .X;gƒ/ isometrically, it is easy to check that

�W .X �;gƒ/! .R3
nƒ;ˆƒ � h0/

is a Riemannian submersion, where h0 is the Euclidean metric on R3 .

Geometry & Topology, Volume 21 (2017)
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Next we consider the rescaling of .X;gƒ/. For a> 0, put aƒ WD fa� 2R3 W � 2ƒg.
Then it is easy to see

ˆaƒ.�/D
X
�2ƒ

1

j� � a�j
D a�1

X
�2ƒ

1

ja�1� ��j
D a�1ˆƒ.a

�1�/;

and �aƒ D a�ƒ ; hence ��
aƒ
ˆaƒ D a�1��

ƒ
ˆƒ holds. Thus we have

gaƒ D .�
�
aƒˆaƒ/

�1�2
C��aƒˆaƒ

3X
iD1

.d�aƒ;i/
2

D a.��ƒˆƒ/
�1�2

C a��ƒˆƒ

3X
iD1

.d�ƒ;i/
2
D agƒ:

3 Submetry

Throughout this paper, the distance between x and y in a metric space .X; d/ is
denoted by d.x;y/. If it is clear which metric is used, we often write jxyj D d.x;y/

The map �W X!R3 appearing in the previous section is not a Riemannian submersion
since d� degenerates on XnX � and ˆƒ � h0 is not defined on the whole of R3 .
However, we can regard � as a submetry, which is a notion introduced in [3].

Definition 3.1 [3] Let X;Y be metric spaces and �W X ! Y a map which is not
necessarily continuous. Then � is said to be a submetry if �.D.p; r//DD.�.p/; r/

for every p 2X and r > 0, where D.p; r/ is the closed ball of radius r centered at p .

Any proper Riemannian submersions between smooth Riemannian manifolds are known
to be submetries. Conversely, a submetry between smooth complete Riemannian
manifolds becomes a C 1;1 Riemannian submersion [2].

Now we go back to the setting in Section 2. Denote by dƒ the metric on R3 defined as
the completion of the Riemannian distance induced from ˆƒ�h0 . Since �W .X �;gƒ/!
.R3nƒ;ˆƒ � h0/ is a Riemannian submersion, we have the following proposition.

Proposition 3.2 Let .X;gƒ/ be a hyper-Kähler manifold of type A1 . The map
�W .X; dgƒ/! .R3; dƒ/ is a submetry, where dgƒ is the Riemannian distance induced
from gƒ . Moreover, for any p0 2 �

�1.q0/, we have

dƒ.q0; q1/D inf
p12��1.q1/

dgƒ.p0;p1/:
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4 The Gromov–Hausdorff convergence

In this section, we discuss the pointed Gromov–Hausdorff convergence of a sequence
of pointed metric spaces equipped with submetries. First we review the definition
of pointed Gromov–Hausdorff convergence of pointed metric spaces. Denote by
B.p; r/D BX .p; r/ the open ball of radius r centered at p in a metric space X .

Definition 4.1 Let .X;p/ and .X 0;p0/ be pointed metric spaces, and let r and " be
positive real numbers. Then f W B.p; r/! X 0 is said to be an .r; "/–isometry from
.X;p/ to .X 0;p0/ if

(1) f .p/D p0 ,

(2)
ˇ̌
jxyj � jf .x/f .y/j

ˇ̌
< " holds for any x;y 2 B.p; r/, and

(3) B.f .B.p; r//; "/ contains B.p0; r � "/.

Definition 4.2 Let f.Xi ;pi/gi be a sequence of pointed metric spaces. Then we
say f.Xi ;pi/gi converges to a metric space .X;p/ in the pointed Gromov–Hausdorff
topology, or f.Xi ;pi/gi

GH
��!.X;p/, if for any r; " > 0 there exists a positive integer

N.r;"/ such that an .r; "/–isometry from .Xi ;pi/ to .X;p/ exists for every l �N.r;"/ .

For metric spaces X , Y , a map �W X!Y and q 2Y , define ıq;�.r/2R�0[f1g by

ıq;�.r/ WD sup
y2B.q;r/

diam.��1.y//D sup
y2B.q;r/

x;x02��1.y/

jxx0j:

Proposition 4.3 Let .X;p/ and .Y; q/ be pointed metric spaces equipped with sub-
metries �W X ! Y satisfying �.p/D q , and let .Y1; q1/ be another pointed metric
space. Assume that ıq;�.r/ < 1 and we have an .r; ı/–isometry from .Y; q/ to
.Y1; q1/. Then there exists an .r; ıCıq;�/–isometry from .X;p/ to .Y1; q1/.

Proof There is an .r; ı/–isometry f from .Y; q/ to .Y1; q1/. It is easy to check that
the composition yf WD f ı� is an .r; ıCıq;�/–isometry from .X;p/ to .Y1; q1/.

5 Tangent cones at infinity

Let .X; d/ be a metric space and faigi a decreasing sequence of positive numbers
converging to 0. If .Y; q/ is the pointed Gromov–Hausdorff limit of f.X; aid;p/gi ,
then it is called an tangent cone at infinity of X . It is clear that the limit does not
depend on p 2X , but may depend on the choice of the sequence faigi .

In this paper, we are considering the tangent cones at infinity of .X; dgƒ/. In Section 2,
we have seen that

p
adgƒ D dgaƒ

for a> 0; hence �aƒW .X;
p

adgƒ/! .R3; daƒ/
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is a submetry. By taking N 2RC and the dilation IN W R
3!R3 defined by IN .�/ WD

.1=N /� , we have another submetry

�a WD I�1
N ı�aƒW .X;

p
adgƒ/! .R3; da WD IN

�daƒ/:

Here, IN
�daƒ is the completion of the Riemannian distance of

IN
�.ˆaƒ � h0/D IN

�ˆaƒ �
1

N 2
h0 DNˆNaƒ �

1

N 2
h0 D

1

N
ˆNaƒ � h0:

Thus we obtain da , which is the completion of the Riemannian metric ˆa � h0 , where

ˆa WD
1

N
ˆNaƒ:

In other words, da is given by

(1) da.x;y/D inf
2Path.x;y/

la. /;

where Path.x;y/ is the set of smooth paths in R3 joining x;y 2R3 , and

(2) la. /D

Z t1

t0

p
ˆa. .t// j

0.t/j dt:

By the definition of gƒ , one can see that the diameter of the fiber ��1
ƒ
.�/ is given by

�=
p
ˆƒ.�/. Accordingly, the diameter of ��1

a .�/ is given by �=.N
p
ˆa.�//.

For a metric d1 on R3 and constants r; ı; ı0 > 0, we introduce the next assumptions.

(A1) The identity map idR3 W .R3; da; 0/! .R3; d1; 0/ is an .r; ı/–isometry.

(A2) sup
�2Bda .0;r/

�

N
p
ˆa.�/

< ı0:

Then we obtain the next proposition by Proposition 4.3.

Proposition 5.1 Let .X;gƒ/ and �a be as above, p 2X satisfy �ƒ.p/D 0 and d1
be a metric on R3 . If (A1) and (A2) are satisfied for given constants r; ı; ı0 > 0, then
�a is an .r; ıCı0/–isometry from .X; agƒ;p/ to .R3; d1; 0/.

6 Construction

Fix ˛ > 1, and let
ƒ˛ WD f.k˛; 0; 0/ W k 2 Z�0g:

Take an increasing sequence of integers 0<K0 <K1 <K2 < � � � .
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In this paper, many constants will appear, and they may depend on ˛ or fKng. However,
we do not mind the dependence on these parameters. Put

ƒ2n WD f.k
˛; 0; 0/ 2ƒ˛ WK2n � k <K2nC1g; ƒ WD

1[
nD0

ƒ2n:

Since ƒ � ƒ˛ , we can see that
P
�2ƒ 1=.1C j�j/ <1; accordingly, we obtain a

hyper-Kähler manifold .X;gƒ/.

From now on, we fix a> 0, n2N and P > 0, then put N WD a�1=.1C˛/P1=.1C˛/ and

ˆa.�/ WD
1

N
ˆNaƒ.�/D

X
�2ƒ

1

N j��PN�˛�j
:

Let l WD f.t; 0; 0/ 2R3 W t � 0g, and put

K.R;D/ WD
n
� 2R3

W j�j �R; inf
y2l
j� �yj �D

o
:

Here, infy2l j� �yj is given by

inf
y2l
j� �yj D

(p
j�Cj2 if �R � 0;

j�j if �1 < 0

for �D .�R; �C/2R3DR˚C . For 0�S <T �1, define a positive valued function
ˆT

S;P
WR3nl !R by

ˆT
S;P .�/ WD

Z T

S

dx

j� �P .x˛; 0; 0/j
:

Throughout this section, we put

Sn WD
K2n

N
D a

1
1C˛P

�1
1C˛K2n; Tn WD

K2nC1

N
D a

1
1C˛P

�1
1C˛K2nC1:

Proposition 6.1 For any � 2K.R;D/, we haveˇ̌̌̌
ˆa.�/�

1X
nD0

ˆ
Tn

Sn;P
.�/

ˇ̌̌̌
�

2

ND
D

2

D

�
a

P

� 1
1C˛

:

Proof Since
ƒ2n D f.k

˛; 0; 0/ WK2n � k <K2nC1g;

we have X
�2ƒ2n

1

N j��PN�˛�j
D

K2nC1�1X
kDK2n

1

N j��PN�˛.k˛; 0; 0/j
:

Geometry & Topology, Volume 21 (2017)



2692 Kota Hattori

Then we obtain

(3)
ˇ̌̌̌ 1X
nD0

� X
�2ƒ2n

1

N j��PN�˛�j
�

Z K2nC1=N

K2n=N

dx

j� �P .x˛; 0; 0/j

�ˇ̌̌̌
�

2

ND
:

The above inequality holds since the function x 7! 1=j� �P .x˛; 0; 0/j has at most one
critical point, and for all � 2K.R;D/,

sup
x2R

1

j��P .x˛; 0; 0/j
� inf

x2R

1

j��P .x˛; 0; 0/j
�

1

D
:

Next we obtain the lower estimate of ˆa as follows.

Proposition 6.2 We have

ˆ
Tn

Sn;P
.�/�

�Z Tn

Sn

dx

1CPx˛

�
min

n
1

j�j
; 1
o
;(4)

ˆa.�/�

� 1X
nD0

Z Tn

Sn

dx

1CPx˛
� 2.aP�1/

1
1C˛

�
min

n
1

j�j
; 1
o
;(5)

1X
nD0

ˆ
Tn

Sn;P
.�/� P�

1
˛
˛2

1
˛

˛� 1

j�j
1
˛

j�Cj
;(6)

1X
nDn0

ˆ
Tn

Sn;P
.�/�

2S�˛C1
n0

P .˛� 1/
if Sn0

�

�
2j�j

P

� 1
˛

;(7)

n0X
nD0

ˆ
Tn

Sn;P
.�/�

Tn0

D
if � 2K.R;D/:(8)

Proof First of all, one can see

ˆ
Tn

Sn;P
.�/�

Z Tn

Sn

dx

j�jCPx˛
�

1

j�j

Z Tn

Sn

dx

1CPx˛

if j�j � 1, and

ˆ
Tn

Sn;P
.�/�

Z Tn

Sn

dx

j�jCPx˛
�

Z Tn

Sn

dx

1CPx˛

if j�j � 1. Next we have

ˆa.�/�

1X
nD0

K2nC1�1X
kDK2n

1

N.j�jCPN�˛k˛/
;
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and a similar argument to the proof of Proposition 6.1 givesˇ̌̌̌ 1X
nD0

�K2nC1�1X
kDK2n

1

N.j�jCPN�˛k˛/
�

Z Tn

Sn

dx

j�jCPx˛

�ˇ̌̌̌
�

2

N j�j
:

Combining these inequalities, one has the second assertion if j�j � 1. If j�j � 1, then

ˆa.�/�

1X
nD0

K2nC1�1X
kDK2n

1

N.1CPN�˛k˛/
;

and by a similar argument, we obtain the assertion.

Next we consider (6). If t � .2j�j=P /1=˛ , then

(9)
Z 1

t

dx

j� �P .x˛; 0; 0/j
�

Z 1
t

2dx

Px˛
D

2

P .˛�1/
t�˛C1

holds. Hence one can see
1X

nD0

ˆ
Tn

Sn;P
.�R; �C/�

Z 1
0

dx

j� �P .x˛; 0; 0/j

D

Z � 2j�j
P

� 1
˛

0

dx

j� �P .x˛; 0; 0/j
C

Z 1�
2j�j
P

� 1
˛

dx

j� �P .x˛; 0; 0/j

�
.2j�j=P /

1
˛

j�Cj
C

2

P .˛�1/

�
2j�j

P

�1
˛
.�˛C1/

D P�
1
˛

�
.2j�j/

1
˛

j�Cj
C
.2j�j/

1
˛

˛� 1

1

j�Cj

�
:

The statement (7) follows from (9), and (8) is obvious.

Put

AT
S;P WD

Z T

S

dx

1CPx˛
:

By Proposition 6.2, we have the following.

Proposition 6.3 Let ˆa be as above. Then for every R� 1,

sup
j�j�R

1

N
p
ˆa.�/

�

�
a

P

� 1
1C˛

� 1X
nD0

A
Tn

Sn;P
� 2

�
a

P

� 1
1C˛

�� 1
2p

R:
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7 Distance

In the previous section, we estimated
ˇ̌
ˆa�

P
nˆ

Tn

Sn;P

ˇ̌
on K.R;D/.

In this section, we introduce more general positive functions ˆ and ˆ1 , and induced
metrics d and d1 on R3 , respectively. What we hope to show in this section is that
if we fix a very large R� 1 and assume that supK.R;D/jˆ�ˆ1j � "=D holds for a
very small " and every D� 1, then the identity map of R3 becomes an .r; ı/–isometry
from .R3; d; 0/ to .R3; d1; 0/ for a large r and a small ı . Here, we explain the
difficulty in showing it.

We hope to show that supK.R;D/ jd�d1j is small for every R� 1 and 0<D� 1. By
the estimate of supK.R;D/ jˆ�ˆ1j, it is easy to see that supK.R;D/ jdR;D�d1;R;D j

is small, where dR;D (resp. d1;R;D ) is the Riemannian distance of the Riemannian
metric ˆh0jK.R;D/ (resp. ˆ1h0jK.R;D/ ). However, dR;D may not equal d in general
since the geodesic of ˆh0 joining two points in K.R;D/ might leave K.R;D/. To
see that supK.R;D/ jdR;D � d j is sufficiently small, we have to observe that a path
joining two points in K.R;D/ which leaves K.R;D/ can be replaced by a shorter
path included in K.R;D/.

In this section, we consider positive valued functions ˆ;ˆ1 2 C1.R3nl/ satisfying
the following conditions for given constants R� 1, m; ";C0;C1 > 0 and � � 0:

(A3) jˆ.�/�ˆ1.�/j �
"

Dm
and jˆ.�/�ˆ1.�/j �

C1

D

hold for any D � 1 and � 2K.R;D/.

(A4) Along the decomposition R3 DR˚C , put � D .�R; �C/ 2R˚C . Then

ˆ.�R; e
i��C/Dˆ.�R; �C/; ˆ.�R; �C/�ˆ.�R; �

0
C/;

ˆ1.�R; e
i��C/Dˆ1.�R; �C/; ˆ1.�R; �C/�ˆ1.�R; �

0
C/

hold for any ei� 2 S1 , if j�Cj � j�0Cj.

(A5) minfˆ.�/;ˆ1.�/g �
�

C0=j�j if j�j � 1;

C0 if j�j � 1:

(A6) For any u� 1 and � 2R3nl with j�j � u,

ˆ1.�/�
C1u�

j�Cj
:

Remark 7.1 Let ˆ D ˆa and ˆ1 D ˆT
S;P

be as in Section 6. Then they satisfy
(A4), and also satisfy (A3), (A5) and (A6) for appropriate constants ", C0 and C1

given by Propositions 6.1 and 6.2.
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From now on, let ˆ;ˆ1 satisfy (A3)–(A6) for constants R; ";C0;C1; � . Denote by
d , d1 the metrics on R3 induced by ˆ �h, ˆ1 �h, and by l , l1 the lengths of paths
with respect to d , d1 , respectively.

7.1 Estimates (1)

Let B.u/ WD f� 2R3 W j�j< ug and Path.u;x;y/ be the set of smooth paths in B.u/

joining x;y 2B.u/; then put

du.x;y/D inf
2Path.u;x;y/

l. /; d1;u.x;y/D inf
2Path.u;x;y/

l1. /

By the definition, d.x;y/� du.x;y/ and d1.x;y/� d1;u.x;y/ always hold. How-
ever, the opposite inequality may not hold since the minimizing geodesic  joining
x;y 2 B.u/ may leave B.u/. The goal of this subsection is to show d�.u/.x;y/ �

d.x;y/ and d1;�.u/.x;y/� d1.x;y/ for a sufficiently large �.u/.

Proposition 7.2 Suppose ˆ and ˆ1 satisfy (A3)–(A6). Let Du and Du;u0 be the
diameters of B.t/ with respect to d and du0 , respectively, where 0 < u � u0 . De-
fine D1;u and D1;u;u0 in the same way. Then the inequality

2
p

C0.
p
j�j � 1/�minfd.0; �/; d1.0; �/g

holds for all � 2R3 , and

d.0; �/�Du �Du;u � C2u�
0

; d1.0; �/�D1;u �D1;u;u � C2u�
0

hold for all � 2R3 and u� 1 with j�j � u�R, where C2 is the constant depending
only on C1 and �0 D 1

2
.1C �/.

Proof First we show the first inequality. Let  W Œa; b�!R3 be a smooth path such
that  .a/D 0 and  .b/D � . We may suppose j�j � 1 since it is obviously satisfied
when j�j < 1. Then there is s 2 Œa; b� such that j .s/j D 1 and j .t/j � 1 for any
t 2 Œs; b�. Then by the assumption (A5), one can see

l. /D

Z b

a

p
ˆ. .t// j 0.t/j dt �

Z b

s

p
ˆ. / j 0j dt �

Z b

s

s
C0

j j
j 0j dt:

Since we have j 0j � j j0 , we obtain, for all � 2R3 with j�j � 1,

l. /�

Z b

s

s
C0

j j
j j0 dt � 2

p
C0

Z b

s

d

dt

p
j j dt � 2

p
C0.

p
j�j � 1/:
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By the definition, d.0; �/�Du �Du;R1
�Du;R0

always hold for any u�R0 �R1

and � 2R3 with j�j � u. Next we estimate Du;u from the above. For every � , we will
prepare the piecewise smooth paths � in B.u/ joining 0 and � as described below.
Then we will have an upper bound

Du;u � 2 sup
�2B.u/

l.�/:

Here we define � as follows. We have the isometric S1 –action on R3 with respect
to d and d1 by (A4). By supposing ei�� D ei�� , it suffices to consider � in the
case of � D r.sin s;� cos s; 0/, where r > 0 and �� < s � � . Let

� jŒ0;1�.t/ WD .0;�r t; 0/;

� jŒ1;2�.t/ WD r
�
sin.s.t � 1//;� cos.s.t � 1//; 0

�
:

Since � 2K.R; j�Cj/ holds, (A3) gives jˆ.�/�ˆ1.�/j � C1=j�Cj, and (A6) gives
ˆ1.�/� C1u�=j�Cj. Then we can see

l.� jŒ0;1�/D

Z 1

0

p
ˆ.�/ j

0
� j dt

�

Z 1

0

r
p
jˆ.�/�ˆ1.�/j dt C

Z 1

0

r
p
jˆ1.�/j dt

�

Z 1

0

r

r
C1

r t
dt C

Z 1

0

r

r
C1u�

r t
dt

� 2
p

C1uC 2
p

C1 u
�C1

2 :

Simultaneously, we also have

l.� jŒ1;2�/�

Z 2

1

j 0� j
p
jˆ.�/�ˆ1.�/j dt C

Z 2

1

j 0� j
p
jˆ1.�/j dt

�

Z 1

0

r jsj

r
C1

r jcos st j
dt C

Z 1

0

r jsj

r
C1u�

r jcos st j
dt

�
p

C1uC
p

C1u1C�

Z jsj
0

r
1

cos t
dt:

Here,
R �

0

p
1=cos t dt is finite. Since u � 1 and � � 0, we may suppose that

maxf
p

u;
p

u1C�g D u1C� . By combining these estimates and putting

C2 D

�
2C

Z �

0

r
1

cos t
dt

�p
C1;

we have the assertion. We also obtain the estimate of D1;u;u by the above argument.
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Proposition 7.3 Suppose ˆ;ˆ1 satisfy (A3)–(A6), and for t > 0, let

�.t/ WDmaxft � 1; .1CC3t�
0

/2g;

where C3D3C2=.2
p

C0/ and C2 is the constant in Proposition 7.2. Then d�.u/.x;y/D

d.x;y/ and d1;�.u/.x;y/D d1.x;y/ for any x;y 2B.u/ and 1� u�R.

Proof By the definition, d.x;y/� d�.u/.x;y/ always holds. We assume d.x;y/ <

d�.u/.x;y/ for some x;y 2B.u/. Then there is a smooth  W Œa; b�!R3 joining x

and y such that d.x;y/� l. / < d�.u/.x;y/, which implies the existence of c 2 Œa; b�

satisfying j .c/j D �.u/. Then one can see

l. /� l. jŒa;c�/� d.0;  .c//� d.0;  .a//

� 2
p

C0.
p
�.u/� 1/�Du;u

� 2
p

C0

�p
.1CC3u�

0

/2� 1
�
�C2u�

0

� 2C2u�
0

by Proposition 7.2. On the other hand, we have

d�.u/.x;y/�Du;�.u/ �Du;u � C2u�
0

by Proposition 7.2. Therefore, we obtain

2C2u�
0

� l. / < d�.u/.x;y/� C2u�
0

;

a contradiction. We can show d1.x;y/D d1;�.u/.x;y/ in the same way.

7.2 Estimates (2)

In this subsection, let  W Œa; b�! B.u/ be a smooth path joining x;y 2 R3nL.D/,
where

L.D/ WD f� 2R3
W j�Cj<Dg:

Now, we are going to show that if  is a minimizing geodesic joining x and y , then
it never approaches the axis f.t; 0; 0/ 2 R3 W t 2 Rg. To show this, if the given 
invades L.D/, then we modify  and construct the new path c to not invade L.D/.

Lemma 7.4 Suppose ˆ;ˆ1 satisfy (A4). Let  D .R; C/W Œa; b�!R3 DR˚C
be a smooth path satisfying jC.a/j D jC.b/j DD and jC.t/j �D for any t 2 Œa; b�.
Define P W Œa; b�!R3 by

P .t/ WD .R.t/; C.a//:

Then l.P /� l. / and l1.P /� l1. / hold.
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Proof Since ˆ. .t//�ˆ.P .t// holds by the second inequality of (A4), and

j 0j2 D j 0Rj
2
Cj 0Cj

2
� j 0Rj

2
D jP 0 j

2

holds, we can deduce

l. /D

Z b

a

p
ˆ. .t// j 0.t/j dt �

Z b

a

p
ˆ.P .t// jP

0
 .t/j dt � l.P /:

Let  W Œa; b� ! R3 be a smooth path joining x;y 2 R3nL.D/, and assume that
jC.a

0/j D jC.b
0/j DD and that  ..a0; b0// is contained in L.D/ for some a� a0 <

b0 � b . Then define a new path �.; Œa0; b0�/W Œa; b�!R3 by connecting

 jŒa;a0�; P jŒa0;b0� ; ei� jŒb0;b�:

Here, by choosing ei� appropriately, �.; Œa0; b0�/ is continuous and piecewise smooth.
By Lemma 7.4, the length of �.; Œa0; b0�/ is not longer than that of  since S1–rotation
preserves d and d1 .

Put J WD �1.L.D//\.a; b/. Since J is open in .a; b/, it is decomposed into disjoint
open intervals

J D
G
q2Q

.aq; bq/

for some aq; bq 2 Œa; b� and countable set Q. If q 2Q, then jC.aq/j D jC.bq/j DD

holds. Then we have 1 WD �.; Œaq; bq �/ for a fixed q 2 Q; moreover, we obtain
2 WD �.1; Œaq0 ; bq �/ for another q0 2 Q, and repeating this process for all q 2 Q
we finally obtain the piecewise smooth path cW Œa; b�! R3 such that c.a/ D  .a/,
c.b/D ei� .b/ for some ei�0 and

l.c/� l. /; l1.c/� l1. /:

Here, we have to modify c so that the terminal points of both paths coincide. Put
xb WD supft 2 Œa; b� W jC.t/jDDg. Then define a path y by connecting cjŒa;xb� and  jŒxb;b� .
Here, to connect c.xb/ and  .xb/, we add the path c�0

W Œ0; �0�! @L.D/ defined by
c�0
.t/D eit .xb/. Then by (A6), we obtain

l.c�0
/�

p
C1.1Cu�/

p
D and l1.c�0

/�
p

C1u�
p

D

if j .xb/j � u�R. Hence we have the following proposition.

Proposition 7.5 Let D � 1 and 1 � u � R, and let x;y; ; y be as above. If the
image of  is contained in B.u/, then we have

l.y /� l. /�
p

C1.1Cu�/
p

D; l1.y /� l1. /�
p

C1u�
p

D:
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Proposition 7.6 Let x;y; ; y be as above. If the image of  is contained in B.u/,
then the image of y is contained in B.uCD/nL.D/.

Proof It is obvious by the construction that the image of y is contained in R3nL.D/.
Since S1 –action preserves B.u/, and

jP j
2
� j j2CD2;

ˇ̌̌̌�
R.t/;

DC.t/

jC.t/j

�ˇ̌̌̌2
� j j2CD2

hold, we have the assertion.

7.3 Estimates (3)

Let
Path.u;D;x;y/ WD f 2 Path.x;y/ W Im. /�K.u;D/g;

du;D.x;y/ WD inf
2Path.u;D;x;y/

l. /;

d1;u;D.x;y/ WD inf
2Path.u;D;x;y/

l1. /:

for x;y 2 K.u;D/. By the definition, d.x;y/ � du;D.x;y/ always holds. In this
subsection, we consider the opposite estimate.

Lemma 7.7 Let y� WD .�R;D�C=j�Cj/ if �C¤0, and y� WD .�R;D/ if �CD0. Suppose
ˆ;ˆ1 satisfy (A3)–(A6), and 1� u�R.

(1) If � 2L.D/\B.u� 1/ and 0<D � 1, then

du.�; y�/� 2
p

C1.1Cu�/D; d1;u.�; y�/� 2
p

C1u�D:

(2) If � 2L.D/\K.u� 1;D/ and 0<D � 1, then

du;D.�; y�/� 2
p

C1.1Cu�/D; d1;u;D.�; y�/� 2
p

C1u�D:

Proof Let  .t/D .�R; ty�C/ for t 2 Œj�Cj=D; 1�. Then  is joining � and y� , and the
image of  is contained in B.u� 1CD/�B.u/. Then by (A3) and (A6), we have
ˆ. .t//� C1.1Cu�/=.tD/. Then we have

du.�; y�/� l. /� 2
p

C1.1Cu�/D:

Moreover, if � 2K.u�1;D/, then the image of  is contained in K.u;D/; therefore,

du;D.�; y�/� l. /� 2
p

C1.1Cu�/D:

The estimates for d1;u.�; y�/ and d1;u;D.�; y�/ follow in the same way.
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Proposition 7.8 Suppose ˆ;ˆ1 satisfy (A3)–(A6) and let � be as in Proposition 7.3.
If �.uC 1/C 1�R, then

jd�.uC1/C1;D.x;y/� d.x;y/j � �.u/
p

D;

jd1;�.uC1/C1;D.x;y/� d1.x;y/j � �1.u/
p

D

hold for any x;y 2K.u;D/ and 0<D � 1, where

�.u/ WD
p

C1.1C .�.uC 1/C 1/�/C 8
p

C1.1C .uC 1/�/C 2;

�1.u/ WD
p

C1.�.uC 1/C 1/� C 8
p

C1.uC 1/� C 2:

Proof Since d.x;y/ � d�.uC1/C1;D.x;y/ always holds, it suffices to show that
d�.uC1/C1;D.x;y/� d.x;y/ � �.u/

p
D . Let x;y 2 K.u;D/ and 0 < D � 1. By

the assumption �.uC 1/C 1 � R and the definition of � , we have that uC 1 � R.
Define yx 2 R3 as in Lemma 7.7 if x 2 L.D/, and yx WD x if x 62 L.D/. Define yy
in the same way. Then we can see yx; yy 2 B.u C 1/nL.D/ and duC1;D.x; yx/ �

2
p

C1.1C .uC 1/�/D by Lemma 7.7; consequently, we obtain

(10) duC1;D.x; yx/C duC1;D.y; yy/� 4
p

C1.1C .uC 1/�/D:

For any  2 Path.yx; yy/, we construct F. / 2 Path.�.uC 1/C 1;D; yx; yy/ as follows.
By Proposition 7.3, we can see

l. /� d.yx; yy/D d�.uC1/.yx; yy/D inf
c2Path.�.uC1/;x;y/

l.c/:

Accordingly, we can take c 2 Path.�.u C 1/;x;y/ such that l.c/ � l. / C
p

D .
Then we can apply the argument in Section 7.2 to yx; yy and c so that we obtain a
piecewise smooth path yc whose image is contained in B.�.uC 1/C 1/nL.D/, hence
in K.�.uC 1/C 1;D/. Then we have

lim inf
k!1

l.yc/� l.c/�
p

C1.1C .�.uC 1/C 1/�/D

by Proposition 7.5. Therefore, there is a sufficiently large k , which may depend on n

and D , such that l.yc/� l.c/ �
p

C1.1C .�.uC 1/C 1/�/DC
p

D . Put F. / D yc .
Then we can see

l.F. //� l. /� l.F. //� l.c/C l.c/� l. /

�
p

C1.1C .�.uC 1/C 1/�/DC
p

DC
p

D

D
�p

C1.1C .�.uC 1/C 1/�/C 2
�p

D:

Thus we obtain F. /2 Path.�.uC1/C1;D; yx; yy/ for every  2 Path.yx; yy/ such that

(11) l.F. //� l. /�
�p

C1.1C .�.uC 1/C 1/�/C 2
�p

D:
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By taking the infimum of (11) for all  2 Path.yx; yy/, we obtain

(12) d�.uC1/C1;D.yx; yy/� d.yx; yy/C
�p

C1.1C .�.uC 1/C 1/�/C 2
�p

D:

Since �.uC 1/� uC 1, we have

jd�.uC1/C1;D.yx; yy/� d�.uC1/C1;D.x;y/j � d�.uC1/C1;D.yx;x/C d�.uC1/C1;D.yy;y/

� duC1;D.yx;x/C duC1;D.yy;y/

� 4
p

C1.1C .uC 1/�/D;

jd.yx; yy/� d.x;y/j � d.yx;x/C d.yy;y/

� duC1;D.yx;x/C duC1;D.yy;y/

� 4
p

C1.1C .uC 1/�/D

by (10); hence

d�.uC1/C1;D.x;y/� d�.uC1/C1;D.yx; yy/C 4
p

C1.1C .uC 1/�/D;

d.yx; yy/� d.x;y/C 4
p

C1.1C .uC 1/�/D

hold. By combining these inequalities with (12), we obtain

d�.uC1/C1;D.x;y/� d.x;y/C �.u/
p

D:

The second inequality can be shown in the same way.

7.4 From (A3)–(A6) to (A1) and (A2)

Proposition 7.9 Suppose that ˆ;ˆ1 satisfy (A3)–(A6), and let  W Œa; b�!K.u;D/

and 1� u�R. Then

jl. /� l1. /j �

r
"u

C0Dm
l1. /:

Proof Since l. /D
R b

a

p
ˆ. .t// j 0.t/j dt , one can see

jl. /� l1. /j �

Z b

a

p
jˆ. /�ˆ1. /j j

0
j dt

�

Z b

a

s
jˆ. /�ˆ1. /j

ˆ1. /

p
ˆ1. / j

0
j dt

�

Z b

a

s
"maxfj j; 1g

C0Dm

p
ˆ1. .t// j

0.t/j dt
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by (A3) and (A5). Since we have assumed j j � u and u� 1, we have

jl. /� l1. /j �

r
"u

C0Dm
l1. /:

Proposition 7.10 Suppose that ˆ and ˆ1 satisfy (A3), (A5) and (A6). Then

jdu;D.x;y/� d1;u;D.x;y/j �

r
"u

C0Dm
d1;u;D.x;y/

holds for all 1� u�R.

Proof Put ı D
p
"u=.C0Dm/. Then Proposition 7.9 gives

(13) .1� ı/l1. /� l. /� .1C ı/l1. /:

Then by taking the infimum of (13) for all  2 Path.u;D;x;y/, we can see

.1� ı/d1;u;D.x;y/� dn;u;D.x;y/� .1C ı/d1;u;D.x;y/

for all u� 0.

Proposition 7.11 Suppose that ˆ;ˆ1 satisfy (A3)–(A6) and u � 1. Let u.2/ WD

�.uC 2/C 1�R. Then for all x;y 2B.u/, we have

jd.x;y/� d1.x;y/j

� 26
p

C1.1CR�/DC 4
p

DC

r
"R

C0Dm

�
C2R�0

C .9
p

C1R� C 2/
p

D
�
:

Proof Put u.1/D�.uC1/C1 and let x;y 2K.u;D/. Then u.1/�R. By combining
Propositions 7.8 and 7.10, we have

jd.x;y/�d1.x;y/j � jd.x;y/�du.1/;D.x;y/jCjdu.1/;D.x;y/�d1;u.1/;D.x;y/j

Cjd1.x;y/�d1;u.1/;D.x;y/j

� �.u/
p

DC�1.u/
p

DC

r
"u.1/

C0Dm
d1;u.1/;D.x;y/

� 2�.u/
p

DC

r
"u.1/

C0Dm
.d1.x;y/C�1.u/

p
D/:

By Proposition 7.2, D1;u < C2u�
0

holds if u � 1; consequently, d1.x;y/ is not
more than C2u�

0

. Therefore, for all x;y 2K.u;D/, we obtain

jd.x;y/� d1.x;y/j � 2�.u/
p

DC

r
"u.1/

C0Dm
.C2u�

0

C �1.u/
p

D/:
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Next we consider the case of x2B.u/, but x 62K.u;D/. In this case, x2B.u/\L.D/

holds, hence we can apply Lemma 7.7. Let yx be as in Lemma 7.7. Then we can see

d.x; yx/� 2
p

C1.1C .uC 1/�/D;

and yx is contained in K.uC 1;D/. Here we suppose that y is also contained in
B.u/\L.D/ and follow the same procedure. If y is in K.u;D/, then suppose y D yy

in the following discussion. Now we have

jd.x;y/� d.yx; yy/j � d.x; yx/C d.y; yy/� 4
p

C1.1C .uC 1/�/D:

Hence we can see

jd.x;y/�d1.x;y/j

� 8
p

C1.1C.uC1/�/DCjd.yx;yy/�d1.yx;yy/j

� 8
p

C1.1C.uC1/�/DC2�.uC1/
p

DC

r
"u.2/

C0Dm

�
C2.uC1/�

0

C�1.uC1/
p

D
�
:

Since �.u/ is monotonically increasing and uC 2� u.2/ �R holds, we have

�.uC 1/� 9
p

C1.1CR�/C 2; �1.uC 1/� 9
p

C1R� C 2:

Corollary 7.12 Suppose that ˆ and ˆ1 satisfy (A3)–(A6) and that " � 1, and let
u.2/ WD �.uC 2/C 1 � R. Then there exists a constant C independent of any other
constants such that, for all x;y 2B.u/,

jd.x;y/� d1.x;y/j< C.1C
p

C1/.1CC
� 1

2

0
/R1C�

2 "
1

2.1Cm/ :

Proof In Proposition 7.11, let D D "1=.1Cm/ � 1. As described in the proof of
Proposition 7.2, C2 is linearly dependent on

p
C1 . Then assertion follows by using

R� 1, "� 1 and unifying constants.

Proposition 7.13 Suppose that ˆ.�/ � A=j�j holds for some A > 0 and all � with
j�j � 1, and let u.r/ WD

�
1C 1

2
A�1=2r

�2. Then B.0; r/�B.u.r// holds for all r > 0,
where B.0; r/ is the metric ball with respect to d .

Proof Let � 2B.0; r/. Then by the same argument as in the proof of the first inequality
of Proposition 7.2, we have

2
p

A.
p
j�j � 1/� d.0; �/ < r;

which gives j�j<
�
1C 1

2
A�1=2r

�2
D u.r/.
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Proposition 7.14 Suppose that ˆ;ˆ1 satisfy (A3)–(A6), and suppose "� 1. Then
the identity map of R3 is an .r; ı/–isometry from .R3; d; 0/ to .R3; d1; 0/, where
r; ı > 0 are defined by

�.u.r/C 2/C 1DR; ı D C.1C
p

C1/.1CC
� 1

2

0
/R1C�

2 "
1

2.1Cm/ :

Proof Let x;y 2 B.0; r/. Then x;y 2B.u.r//; hence

(14) jd.x;y/� d1.x;y/j< C.1C
p

C1/.1CC
� 1

2

0
/R1C�

2 "
1

2.1Cm/

holds. Next we show B1.0; r � ı/ � B.B.0; r/; ı/. If x 2 B1.0; r � ı/, then
x 2B.u.r// holds; therefore, (14) gives

d.0;x/ < d1.0;x/CC.1C
p

C1/.1CC
� 1

2

0
/R1C�

2 "
1

2.1Cm/

< r � ıCC.1C
p

C1/.1CC
� 1

2

0
/R1C�

2 "
1

2.1Cm/ D r;

which implies B1.0; r � ı/� B.0; r/.

By Propositions 7.13 and 6.3, the following estimate is obtained.

Proposition 7.15 Let ˆa be as in Section 6 and assume
P1

nD0 A
Tn

Sn;P
�2a1=.1C˛/>0.

Then sup�2B.0;r/ 1=.N
p
ˆa.�// is not more than

.a=P /
1

1C˛qP1
nD0 A

Tn

Sn;P
� 2.a=P /

1
1C˛

 
1C

r

2

qP1
nD0 A

Tn

Sn;P
� 2.a=P /

1
1C˛

!
:

Combining Propositions 7.14 and 7.15, we obtain the following theorem.

Theorem 7.16 Let ai ;Pi ; ni > 0, limi!1 ai D 0 and limi!1 ni !1. Put Si;ni

and Ti;ni
as in Section 6. Suppose that there are constants "D "i.R/, C0 , C1 , � , m

for all R� 1 such that ˆDˆai
and ˆ1 satisfy (A3)–(A6). If

lim
i!1

"i.R/D lim
i!1

ai

Pi
D 0; lim inf

i!1

1X
lD0

A
Ti;ni

Si;ni
;Pi
> 0

and C0;C1; �;m are independent of i;R, then

f.X; aigƒ;p/gi
GH
����!
i!1

.R3; d1; 0/:
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Proof Fix r > 0 and ı > 0 arbitrarily. Put R.r/D �.u.r/C 2/C 1, and let C > 0

be the constant in Corollary 7.12. By the assumption, there exists i.r; ı/ > 0 such that

C.1C
p

C1/.1CC
� 1

2

0
/R.r/1C

�
2 "i.R.r//

1
2.1Cm/ < 1

2
ı

holds for all i � i.r; ı/. Then by Proposition 7.14, idR3 is an
�
r; 1

2
ı
�
–isometry from

.R3; dai
; 0/ to .R3; da1 ; 0/. By Proposition 7.15, we can take i 0.r; ı/� i.r; ı/ such

that sup�2B.0;r/ 1=.N
p
ˆa.�// <

1
2
ı for all i � i 0.r; ı/. Then Proposition 5.1 gives

the assertion.

8 Convergence

In this section, we consider the convergence of f.X; aigƒ/gi , where ƒ is as defined in
Section 6, and faigi is a sequence with ai > 0 and limi!1 ai , applying Theorem 7.16.
To apply them, we have to estimate constants ";C0;C1 in (A3)–(A6) uniformly with
respect to i 2 N , and show that "! 0 as i !1. In Section 8.1, we consider the
uniform estimate for the case of P D 1, which is the simplest case. In Sections 8.2
and 8.3, we suppose P is depending on some parameters. Then we apply them to show
Theorems 1.2 and 1.3 in Sections 8.4 and 8.5.

Put Sa;n WD a1=.1C˛/K2n and Ta;n WD a1=.1C˛/K2nC1 . We take a subsequence

fKn0
<Kn1

<Kn2
< � � � g � fK0 <K1 <K2 < � � � g:

We are now going to consider the convergence (in several cases according to the rate
of the convergence of faigi ) or the divergence of fKngn .

From now on, we put

ˆT
S .�/ WDˆ

T
S;1.�/D

Z T

S

dx

j� � .x˛; 0; 0/j
; AT

S WDAT
S;1 D

Z T

S

dx

1Cx˛
:

8.1 Convergence (1)

Fix a> 0, n and 0� S < T �1, and put P D 1.

Proposition 8.1 Let R � 1 and D � 1. There exists a constant C˛ > 0 depending
only on ˛ such that

jˆa.�/�ˆ
T
S .�/j �

C˛"n

D

holds for any � 2K.R;D/, where

"a;n D a
1

1C˛ C
K2n�1

K2n

Sa;nC

�
K2nC2

K2nC1

Ta;n

��˛C1

CjSa;n�S jC jT �˛C1
a;n �T �˛C1

j:
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Proof By combining Proposition 6.1, (7) and (8), we have

ˇ̌
ˆa.�/�ˆ

Ta;n

Sa;n
.�/
ˇ̌
�

2a
1

1C˛

D
C

Ta;n�1

D
C

2S�˛C1
a;nC1

˛� 1

if Sa;nC1 � .2j�j/
1=˛ . Here j�j �R, and

Sa;nC1 D a
1

1C˛K2nC2 D
K2nC2

K2nC1

Ta;n;

Ta;n�1 D a
1

1C˛K2n�1 D
K2n�1

K2n

Sa;n:

On the other hand, we can seeˇ̌
ˆ

Ta;n

Sa;n
.�/�ˆT

S .�/
ˇ̌
�
jSa;n�S j

D
C

2jT �˛C1
a;n �T �˛C1j

˛� 1
:

Thus we obtain the assertion.

Now, we put ˆDˆa; ˆ1 Dˆ
T
S

, and suppose a, jSa;n�S j and jT �˛C1
a;n �T �˛C1j

are sufficiently small. Then the constants in (A3)–(A6) can be taken uniformly as

C0 D
1

2
AT

S ; C1 D
˛2

1
˛

˛�1
; mD 1; � D

1

˛
:

Then by Proposition 8.1, if limn!1K2nC1=.2n/ D1, then we have "a;n ! 0 as
a! 0, n!1, jSa;n�S j! 0 and jT �˛C1

a;n �T �˛C1j! 0. Hence by Theorem 7.16,
we have the next results.

Theorem 8.2 Let .X;gƒ/ be as in Section 6 and suppose limn!1K2nC1=K2nD1.
Assume that faigi �RC and

fKn0
<Kn1

<Kn2
< � � � g � fK0 <K1 <K2 < � � � g

satisfy

lim
i!1

a
1

1C˛

i K2ni
D S � 0; lim

i!1
a

1
1C˛

i K2niC1 D T �1; S < T:

Then f.X; angƒ;p/gn
GH
��! .R3; dT

S
; 0/, where dT

S
is the metric induced by ˆT

S
� h0 .

8.2 Convergence (2)

Let .X; dX ;p/, .Y; dY ; q/ be pointed metric spaces and suppose limn!1 an D 0.
Assume that f.X; andX ;p/gn

GH
��! .Y; dY ; q/. It is easy to check that we have
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f.X; sandX ;p/gn
GH
��! .Y; sdY ; q/ for any s > 0. Moreover, if fan;mgn;m2N satisfies

limn!1 an;m D 0 for every m, and

f.X; an;mdX ;p/gn
GH
��! .Ym; dYm

; qm/; f.Ym; dYm
; qm/gm

GH
��! .Y; dY ; q/

hold for every m, then by the diagonal argument one can show there exists a subset
fan;m.n/gn � fan;mgn;m such that limn!1 an;m.n/ D 0 and

f.X; an;m.n/dX ;p/gn
GH
��! .Y; dY ; q/:

Now, let T .X; d/ be the set of isometry classes of tangent cones at infinity of .X; d/.
From the above argument, one can see that T .X; d/ is closed with respect to the pointed
Gromov–Hausdorff topology, and if .Y; d 0/ 2 T .X; d/, then its rescaling .Y; ad 0/ is
also contained in T .X; d/.

From Section 8.1, .R3; dT
S
; 0/ may appear as the tangent cone at infinity of some

.X;gƒ/, where ƒ is as in Section 6.

Let � > 0, 0� S < T �1 and I� W � 7! ��1� be the dilation. Then we have

I�
P

1
1C˛

.ˆT
S h0/D P

�1
˛ ˆT 00

S 00 .�/h0 Dˆ
T 0

S 0;P .�/h0;

where

(15) S 0 D P
�1

1C˛S; T 0 D P
�1

1C˛T; S 00 D P
1

˛.1C˛/S; T 00 D P
1

˛.1C˛/T:

Hence if .R3; dT
S
; 0/ 2 T .X;gƒ/, then f.R3; d�T

�S
; 0/g�2RC is also contained in

T .X;gƒ/.

Fix a constant � > 0, put P1=.1C˛/ D �
p

S�˛C1�T �˛C1 > 0, and let S 0;T 0 be
defined by (15).

Proposition 8.3 Let R� 1. There is a constant C > 0 depending only on ˛ such thatˇ̌̌
ˆT 0

S 0;P .�/�
1

�2.˛�1/

ˇ̌̌
�

CR

�3S˛
p

S�˛C1�T �˛C1

holds for any � 2K.R;D/ if �S˛
p

S�˛C1�T �˛C1 � 2R.

Proof Let S 00 and T 00 be defined by (15). Note that

ˆT 0

S 0;P .�/D P
�1
˛

Z T 00

S 00

dx

j� � .x˛; 0; 0/j
:
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By the assumption, we have P1=.1C˛/S˛D�S˛
p

S�˛C1�T �˛C1�2R; then we seeˇ̌̌̌Z T 00

S 00

dx

j� � .x˛; 0; 0/j
�

Z T 00

S 00

dx

x˛

ˇ̌̌̌
�

Z T 00

S 00

ˇ̌̌
1

j��.x˛; 0; 0/j
�

1

x˛

ˇ̌̌
dx

�

Z T 00

S 00

2x˛j�jC j�j2

j� � .x˛; 0; 0/jx˛.j� � .x˛; 0; 0/jCx˛/
dx

�

Z T 00

S 00

8R

x2˛
dxC

Z T 00

S 00

4R2

x3˛
dx

�
8RP

�2˛C1
˛.1C˛/

2˛� 1
.S�2˛C1

�T �2˛C1/C
4R2P

�3˛C1
˛.1C˛/

3˛� 1
.S�3˛C1

�T �3˛C1/:

Since we have Z T 00

S 00

dx

x˛
D

P
�˛C1
˛.1C˛/

˛� 1
.S�˛C1

�T �˛C1/D
P

1
˛

�2.˛� 1/
;

we obtainˇ̌̌
ˆT 0

S 0;P .�/�
1

�2.˛�1/

ˇ̌̌
�

8RP
�3

1C˛

2˛� 1
.S�2˛C1

�T �2˛C1/C
4R2P

�4
1C˛

3˛� 1
.S�3˛C1

�T �3˛C1/:

Using the assumption 2R� P1=.1C˛/S˛ once more, we haveˇ̌̌
ˆT 0

S 0;P .�/�
1

�2.˛�1/

ˇ̌̌
�

8RP
�3

1C˛

2˛� 1
.S�2˛C1

�T �2˛C1/C
2RP

�3
1C˛

3˛� 1
.S�2˛C1

�S˛T �3˛C1/

� ��3C˛RS�
1C˛

2
1� .S=T /3˛�1

.1� .S=T /˛�1/
3
2

:

Now, put f .x/ WD .1� x3˛�1/=..1� x˛�1/3=2/ for 0 � x < 1. Then there exists
a constant C 0˛ > 0 such that f .x/ � C 0˛.1 � x˛�1/�1=2 holds for all 0 � x < 1.
Consequently, by replacing C˛ larger if necessary, we can seeˇ̌̌

ˆT 0

S 0;P .�/�
1

�2.˛�1/

ˇ̌̌
�

C˛R

�3S˛
p

S�˛C1�T �˛C1
:
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Proposition 8.4 Suppose �S˛
p

S�˛C1�T �˛C1 � 2R for R� 1. Then

AT 0

S 0;P �
1

2�2.˛�1/
; ˆT 0

S 0;P .�R; �C/�
2j�j

�2.˛� 1/j�Cj

holds for any � D .�R; �C/ 2R3 DR˚C with j�j �R.

Proof We have 1� S�˛x˛ for all x � S , then we can see

AT 0

S 0;P � P�
1

1C˛

Z T

S

dx

S�˛x˛CP
1

1C˛ x˛

D
1

P
1

1C˛ .S�˛CP
1

1C˛ /

Z T

S

dx

x˛

D
1

P
1

1C˛S�˛.1CS˛P
1

1C˛ /

S�˛C1�T �˛C1

˛� 1
:

Since we have
S˛P

1
1C˛ D �

p
S�˛C1�T �˛C1 � 2R� 1;

we obtain

AT 0

S 0;P �
S�˛C1�T �˛C1

2.˛� 1/P
1

1C˛S�˛ �S˛P
1

1C˛

D
1

2�2.˛�1/
:

Next we consider the upper estimate of ˆT 0

S 0;P
.�/. Take � such that j�j �R; then we

have 2j�j � P1=.1C˛/S˛ by the assumption. Then one can see

ˆT 0

S 0;P .�/� P�
1

1C˛

Z T

S

2dx

P
1

1C˛ x˛
D P

�2
1C˛

2.S�˛C1�T �˛C1/

˛� 1

�
2

�2.˛� 1/
�

2j�j

�2.˛� 1/j�Cj
:

Proposition 8.5 Let ˆDˆT 0

S 0;P
and ˆ1 � 1=.�2.˛� 1//. Then there exists C > 0

such that ˆ;ˆ1 satisfy (A3)–(A6) for R� 1, and

"D
CR

�3S˛
p

S�˛C1�T �˛C1
; C0 D

1

2�2.˛�1/
;

C1 D
1

�2
max

n
1

˛�1
;
C

2

o
; mD 1; � D 1

if �S˛
p

S�˛C1�T �˛C1 � 2R.
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Proof It is obvious that (A4) holds. Proposition 8.4 gives (A5) for C0D1=.2�2.˛�1//

if we take �S˛
p

S�˛C1�T �˛C1 � 2R. (A6) holds for C1 D 1=.�2.˛� 1// since

1

˛�1
D

1

˛�1

j�j

j�j
�

1

˛�1

j�j

j�Cj
:

Combining �S˛
p

S�˛C1�T �˛C1 � 2R and Proposition 8.3, we can see that " �
C=.2�2/.

Now, Propositions 7.14 and 8.5 with � D 1 give the following theorem.

Theorem 8.6 Let fSigi and fTigi be sequences such that 0 � Si < Ti � 1 and
limi!1 S˛i

p
S�˛C1

i �T �˛C1
i D1. Then f.R3; d

Ti

Si
; 0/gi converges to .R3; h0; 0/

in the pointed Gromov–Hausdorff topology.

Next put P1=.1C˛/D � jT �S j for 0� S < T and � > 0, and let S 0;T 0 be as in (15).
Then we can show the following similarly to Proposition 8.9.

Proposition 8.7 Let D � 1. For all � 2K.R;D/, we haveˇ̌̌
ˆT 0

S 0;P .�/�
1

� j�j

ˇ̌̌
�

2

�D
;

ˇ̌̌
ˆT 0

S 0;P .�/�
1

� j�j

ˇ̌̌
�

1C �T ˛.T �S/

D3
T ˛.T �S/:

Proof Let S 00 and T 00 be defined by (15). The first inequality is obviously shown by
ˆT 0

S 0;P
.�/� 1=.�D/ and 1=j�j � 1=D . The second inequality follows fromˇ̌̌̌Z T 00

S 00

dx

j� � .x˛; 0; 0/j
�

Z T 00

S 00

dx

j�j

ˇ̌̌̌
�

Z T 00

S 00

2x˛j�jCx2˛

j� � .x˛; 0; 0/j j�j .j� � .x˛; 0; 0/jC j�j/
dx

�

Z T 00

S 00

2x˛

D2
dxC

Z T 00

S 00

x2˛

D3
dx

� C˛
P

1
˛ .T ˛C1�S˛C1/CP

2˛C1
˛.1C˛/ .T 2˛C1�S2˛C1/

D3

D C˛�
1C 1

˛T ˛C1.T �S/1C
1
˛

1� .S=T /˛C1C �.T �S/T ˛.1� .S=T /2˛C1/

D3
:

By the similar argument to Proposition 8.3, we can replace either 1� .S=T /˛C1 or
1� .S=T /2˛C1 by 1�S=T ; hence we obtain the assertion.
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Proposition 8.8 For any � D .�R; �C/ 2R3 DR˚C ,

AT 0

S 0;P �
1

�.1C�T ˛.T �S//
; ˆT 0

S 0;P .�R; �C/�
1

� j�Cj
:

Proof One can see

AT 0

S 0;P D P�
1

1C˛

Z T

S

dx

1CP
1

1C˛ x˛
� P�

1
1C˛

Z T

S

dx

1CP
1

1C˛T ˛

�
T �S

P
1

1C˛ .1CP
1

1C˛T ˛/

D
1

�.1C �T ˛.T �S//
:

We can also obtain
ˆT 0

S 0;P .�/�
T �S

P
1

1C˛ j�Cj
D

1

� j�Cj
:

Combining Propositions 8.7 and 8.8, the next proposition is obtained.

Proposition 8.9 Let ˆDˆT 0

S 0;P
and ˆ1.�/D 1=.� j�j/. Then ˆ;ˆ1 satisfy (A3)–

(A6) for R� 1, and

"D .1C �T ˛.T �S//T ˛.T �S/; C0 D
1

�.1C�T ˛.T �S//
;

C1 D
2

�
; mD 3; � D 0

for any 0� S < T .

By Propositions 7.14 and 8.9 for � D 1, we have the next result.

Theorem 8.10 Let fSigi and fTigi be a sequence such that 0 � Si < Ti and
limi!1 T ˛

i jTi � Si j D 0. Then f.R3; d
Ti

Si
; 0/gi converges to .R3; .1=j�j/h0; 0/ in

the pointed Gromov–Hausdorff topology.

8.3 Convergence (3)

Here, we fix a > 0 and n, and suppose that Ta;n D a1=.1C˛/K2nC1 is sufficiently
small and that Sa;nC1 D a1=.1C˛/K2nC2 is sufficiently large. Fix P and � such that

P
1

1C˛ D �.Ta;n�Sa;n/D

q
S�˛C1

a;nC1
�T �˛C1

a;nC1
:

Put S 0
l
D P�1=.1C˛/Sa;l and T 0

l
D P�1=.1C˛/Ta;l .
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Proposition 8.11 Let R � 1 and D � 1, and let P be as above. Assume that
P1=.˛.1C˛//Sa;nC2 � .2R/1=˛ . Then there exists a constant C˛ > 0 depending only
on ˛ such that ˇ̌

ˆa.�/�ˆ
T 0n
S 0n;P

.�/�ˆ
T 0

nC1

S 0
nC1

;P
.�/
ˇ̌
�

C˛"a;n

D
;

for any � 2K.R;D/, where "a;n is the constant defined by

"a;n D
1CK2n�1

�.K2nC1�K2n/
C

K�˛C1
2nC4

K�˛C1
2nC2

�K�˛C1
2nC3

:

Proof By Proposition 6.1, (7) and (8), we have

jˆa�ˆ
T 0n
S 0n;P
�ˆ

T 0
nC1

S 0
nC1

;P
j �

2.a=P /
1

1C˛ CP
�1

1C˛Ta;n�1

D
C

2S�˛C1
a;nC2

P
2

1C˛ .˛� 1/

if P1=.˛.1C˛//Sa;nC2 � .2R/1=˛ . Since we have�
a

P

� 1
1C˛
D

1

�.K2nC1�K2n/
;

P
�1

1C˛Ta;n�1 D
K2n�1

�.K2nC1�K2n/
;

S�˛C1
a;nC2

P
2

1C˛

D
K�˛C1

2nC4

K�˛C1
2nC2

�K�˛C1
2nC3

;

we have the assertion.

Here, the assumption P1=.˛.1C˛//Sa;nC2 � .2R/1=˛ can be replaced by�
K2nC4

K2nC2

�̨
S˛a;nC1

q
S�˛C1

a;nC1
�T �˛C1

a;nC1
� 2R:

We can apply Propositions 8.3 and 8.7 to ˆT 0n
S 0n;P

and ˆ
T 0

nC1

S 0
nC1

;P
. If we put

S D Sa;nC1; T D Ta;nC1; � D 1; P
1

1C˛ D

q
S�˛C1

a;nC1
�T �˛C1

a;nC1

in Proposition 8.3, then we haveˇ̌̌
ˆ

T 0
nC1

S 0
nC1

;P
�

1

˛�1

ˇ̌̌
�

CR

S˛
a;nC1

q
S�˛C1

a;nC1
�T �˛C1

a;nC1
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for any � 2K.R;D/ if S˛
a;nC1

q
S�˛C1

a;nC1
�T �˛C1

a;nC1
� 2R. If we put

S D Sa;n; T D Ta;n; P
1

1C˛ D �.Ta;n�Sa;n/

in Proposition 8.7, then we haveˇ̌̌
ˆ

T 0n
S 0n;P
�

1

� j�j

ˇ̌̌
�

2

�D
;ˇ̌̌

ˆ
T 0n
S 0n;P
�

1

� j�j

ˇ̌̌
�

1C �T ˛
a;n.Ta;n�Sa;n/

D3
T ˛

a;n.Ta;n�Sa;n/:

Now, we put ˆDˆa , ˆ1 D 1=.˛� 1/C 1=.� j�j/. Combining the above arguments
and Proposition 8.11, we can describe ";C1 in (A3) explicitly with mD 3. Moreover,
by Propositions 8.3, 8.7, 8.4 and 8.8, we obtain C0;C1 in (A5) and (A6), and � D 1.
Fix a constant A> 0, suppose that

A�1
� � �A; S˛a;nC1

q
S�˛C1

a;nC1
�T �˛C1

a;nC1
� 2R;

and take P as above. Then we can take these constants in (A3)–(A6) being only de-
pending on ˛ , A and R, if "a;n , S�˛

a;nC1
.S�˛C1

a;nC1
�T �˛C1

a;nC1
/�1=2 and T ˛

a;n.Ta;n�Sa;n/

are sufficiently small. Therefore, we obtain the following result.

Theorem 8.12 Let .X;gƒ/ be as in Section 6, take a subsequence

fKn0
<Kn1

<Kn2
< � � � g � fK0 <K1 <K2 < � � � g;

and suppose

(16) lim
i!1

�
K2ni�1

K2niC1�K2ni

C
K�˛C1

2niC4

K�˛C1
2niC2

�K�˛C1
2niC3

�
D 0:

If a sequence faigi �RC satisfies

lim
i!1

q
S�˛C1

ai ;niC1
�T �˛C1

ai ;niC1

Tai ;ni
�Sai ;ni

D � > 0;

lim
i!1

S�˛ai ;niC1.S
�˛C1
ai ;niC1

�T �˛C1
ai ;niC1

/
�1
2 D lim

i!1
T ˛

ai ;ni
.Tai ;ni

�Sai ;ni
/D 0;

then f.X; aigƒ;p/gn
GH
��!

�
R3;

�
1=.˛�1/C 1=.� j�j/

�
h0; 0

�
.
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Next we estimate ˆa� 1=.˛� 1/ in the same situation, as � !1. We haveˇ̌̌
ˆa�ˆ

T 0
nC1

S 0
nC1

;P

ˇ̌̌
�

2.a=P /
1

1C˛ CP
�1

1C˛Ta;n�1CP
�1

1C˛ .Ta;n�Sa;n/

D
C

2S�˛C1
a;nC2

P
2

1C˛ .˛�1/

�
C˛

D

�
1CK2n�1

�.K2nC1�K2n/
C

1

�
C

K�˛C1
2nC4

K�˛C1
2nC2

�K�˛C1
2nC3

�
:

Applying Propositions 8.3 and 8.4 with � D 1 and (5), we haveˇ̌̌
ˆa�

1

˛�1

ˇ̌̌
�

C˛

D

�
1CK2n�1

�.K2nC1�K2n/
C

1

�
C

K�˛C1
2nC4

K�˛C1
2nC2

�K�˛C1
2nC3

C
R

S˛
a;nC1

q
S�˛C1

a;nC1
�T �˛C1

a;nC1

�
;

ˆa �

�
A

T 0
nC1

S 0
nC1

;P
�

2

�.K2nC1�K2n/

�
min

n
1

j�j
;1
o

�

�
1

2.˛�1/
�

2

�.K2nC1�K2n/

�
min

n
1

j�j
;1
o

if D � 1, R� 1 and j�j �R. Therefore, we can take C0 , C1 , � and m in (A3)–(A6)
depending only on ˛ and R if "! 0, where ˆDˆa and ˆ1 D 1=.˛� 1/. Hence
we have the following theorem.

Theorem 8.13 Let .X;gƒ/ be as in Section 6 and suppose fKni
gi satisfies (16). If a

sequence faigi �RC satisfies

lim
i!1

q
S�˛C1

ai ;niC1
�T �˛C1

ai ;niC1

Tai ;ni
�Sai ;ni

D1; lim
i!1

S�˛ai ;niC1.S
�˛C1
ai ;niC1

�T �˛C1
ai ;niC1

/
�1
2 D 0;

then f.X; aigƒ;p/gn
GH
��! .R3; h0; 0/.

By the similar argument, we have the following.

Theorem 8.14 Let .X;gƒ/ be as in Section 6 and suppose fKni
gi satisfies (16). If a

sequence faigi �RC satisfies

lim
i!1

q
S�˛C1

ai ;niC1
�T �˛C1

ai ;niC1

Tai ;ni
�Sai ;ni

D 0;

lim
i!1

S�˛ai ;niC1.S
�˛C1
ai ;niC1

�T �˛C1
ai ;niC1

/
�1
2 D lim

i!1
T ˛

ai ;ni
.Tai ;ni

�Sai ;ni
/D 0;

then f.X; aigƒ;p/gn
GH
��! .R3; .1=j�j/h0; 0/.
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Proof Put

P
1

1C˛ WD .Ta;n�Sa;n/D �

q
S�˛C1

a;nC1
�T �˛C1

a;nC1
;

S 0l D P
�1

1C˛Sa;l ; T 0l D P
�1

1C˛Ta;l :

An argument similar to (7) gives

ˆ
T 0

nC1

S 0
nC1

;P
.�/�

2..S 0
nC1

/�˛C1� .T 0
nC1

/�˛C1/

P .˛� 1/

if P .S 0
nC1

/˛ � 2R, which is equivalent to �S˛
a;nC1

q
S�˛C1

a;nC1
�T �˛C1

a;nC1
� 2R. Then

an argument similar to Proposition 8.11 givesˇ̌
ˆa.�/�ˆ

T 0n
S 0n;P

.�/
ˇ̌
�

C˛"a;n

D
C

2

.˛�1/�

for any � 2K.R;D/, where "a;n is the constant defined by

"a;n D
1CK2n�1

K2nC1�K2n

C
K�˛C1

2nC4

�2.K�˛C1
2nC2

�K�˛C1
2nC3

/
:

Moreover, Proposition 8.7 with � D 1 givesˇ̌̌
ˆ

T 0n
S 0n;P

.�/�
1

j�j

ˇ̌̌
�

2

D
;ˇ̌̌

ˆ
T 0n
S 0n;P

.�/�
1

j�j

ˇ̌̌
�

1CT ˛
a;n.Ta;n�Sa;n/

D3
T ˛

a;n.Ta;n�Sa;n/:

Then we can see jˆa � 1=j�jj � "=D3 for some " > 0 if D � 1 and � 2 K.R;D/.
Here, " goes to 0 as

"a;n!0; �!1; S˛a;nC1

q
S�˛C1

a;nC1
�T �˛C1

a;nC1
!1 and T ˛

a;n.Ta;n�Sa;n/!0:

Since one can take C0;C1;m; � in (A3)–(A6) depending only on ˛ if " is sufficiently
small, by Proposition 8.8 with � D 1 and (5), we obtain the result.

8.4 Example (1)

Let ƒ be as in Section 6. Moreover, we take an increasing sequence fKngn such that

lim
n!1

Kn

Kn�1

D1:

In this situation, we observe which pointed metric spaces can be contained in T .X;gƒ/
and prove Theorem 1.2.
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Take S > 0 and put ai WD K�1�˛
2i

S1C˛ . Then we have a
1=.1C˛/
i K2i D S and

limi a
1=.1C˛/
i K2iC1D1. Hence Theorem 8.2 implies .X; aigƒ;p/

GH
��! .R3; d1

S
; 0/.

Similarly, if we take ai WDK�1�˛
2iC1

T 1C˛ for T > 0, then we obtain .R3; dT
0
; 0/ as the

pointed Gromov–Hausdorff limit.

Next we fix � >0 and put aiD�
�1K�2

2iC1
K�˛C1

2iC2
. Then one can check that the assump-

tions of Theorem 8.12 are satisfied; hence one obtains
�
R3;

�
1=.˛�1/C1=.� j�j/

�
h0; 0

�
as the pointed Gromov–Hausdorff limit. By taking the limit � ! 0 or � !1, we
obtain .R3; h0; 0/ or .R3; .1=j�j/h0; 0/ as the pointed Gromov–Hausdorff limit. In
fact, we obtain the next result.

Theorem 8.15 Let ƒ; fKngn satisfy limn!1Kn=Kn�1 D 1. Then T .X;gƒ/ is
equal to the closure of

f.R3; sd11 ; 0/ W s > 0g [ f.R3; sd1
0 ; 0/ W s > 0g [

n�
R3; s

�
1C

1

j�j

�
h0; 0

�
W s > 0

o
with respect to the Gromov–Hausdorff topology. Moreover, we have

lim
s!1

.R3; sd11 ; 0/D lim
s!0

�
R3; s

�
1C

1

j�j

�
h0; 0

�
D .R3; h0; 0/;

lim
s!0

.R3; sd1
0 ; 0/D lim

s!1

�
R3; s

�
1C

1

j�j

�
; 0
�
D

�
R3;

1

j�j
h0; 0

�
;

lim
s!0

.R3; sd11 ; 0/D lim
s!1

.R3; sd1
0 ; 0/D .R

3; d10 ; 0/:

Proof We have already shown that the pointed metric spaces in the above list are
contained in T .X;gƒ/. Accordingly, what we have to show is that any other pointed
metric spaces may not arise as the tangent cone at infinity of .X;gƒ/.

Suppose that a sequence faigi �RC is given such that .X; aigƒ;p/
GH
��! .Y; d; q/ as

i !1. It suffices to show that .Y; d; q/ is one of the metric spaces in the list.

First of all, we may assume that for any large M > 0, there exists i.M / such that

˚
a

1
1C˛

i Kn 2RC W n 2N
	
\ ŒM�1;M �

is empty for any i � i.M /. If not, there is an M > 0 and a map i 7! ni such that
M�1 � a1=.1C˛/

i Kni
�M holds for infinitely many i . Then by taking a subsequence

faij g � faigi , we may suppose that M�1 � a1=.1C˛/
ij

K2nij
�M holds for any j or

that M�1 � a1=.1C˛/
ij

K2nij
C1 �M holds for any j . If the former case holds, then
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by replacing with a subsequence, we may suppose

lim
i!1

a
1

1C˛

i K2ni
D S 2 ŒM�1;M �;

lim
i!1

a
1

1C˛

i K2niC1 D S lim
i!1

K2niC1

K2ni

D1;

and we can apply Theorem 8.2; hence we obtain .Y; d; q/D .R3; d1
S
; 0/. If the latter

case holds, then we have .Y; d; q/D .R3; dT
0
; 0/ for some T > 0.

We may suppose that there exists li 2N for each i such that limi!1 a1=.1C˛/
i Kli

D 0

and limi!1 a1=.1C˛/
i KliC1D1 hold. If fi 2N W li is eveng is an infinite set, then we

can apply Theorem 8.2 again and obtain .Y; d; q/D .R3; d1
0
; 0/. Therefore, replacing

with a subsequence, we may suppose

lim
i!1

a
1

1C˛

i K2niC1 D 0; lim
i!1

a
1

1C˛

i K2niC2 D1:

Now, we have q
S�˛C1

a;nC1
�T �˛C1

a;nC1
�

1
2
S
�˛C1

2

a;nC1
; Ta;n�Sa;n �

1
2
Ta;n

holds for sufficiently large n. Hence if

0< lim inf
i!1

S
1�˛

2

ai ;niC1

Tai ;ni

� lim sup
i!1

S
1�˛

2

ai ;niC1

Tai ;ni

<1;

then Theorem 8.12 can be applied to this situation by taking a subsequence. Then we
obtain .Y; d; q/D .R3; .1C�=j�j/h0; 0/ for some � >0. Hence the remaining cases are

lim
i!1

S
1�˛

2

ai ;niC1

Tai ;ni

D 0 or lim
i!1

S
1�˛

2

ai ;niC1

Tai ;ni

D1:

In both of the cases, we can apply Theorems 8.13 or 8.14, and then obtain .Y; d; q/D
.R3; h0; 0/ or .R3; .1=j�j/h0; 0/.

One can also see that there are no nontrivial isometries between two pointed metric
spaces appearing in the list of Theorem 8.15. Here, an isometry of pointed metric
spaces means a bijective morphism preserving the metrics and the base points.

Obviously, there is no isometry between .R3; h0; 0/ and .R3; .1=j�j/h0; 0/. In the
next section, we will show that .R3; d1

0
; 0/ is isometric to neither .R3; h0; 0/ nor

.R3; .1=j�j/h0; 0/.
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metric tangent cone at 0 tangent cone at1

dT
S
.S < T / h0

1
j�j

h0

d1
S

h0 d1
0

dT
0

d1
0

1
j�j

h0

d1
0

d1
0

d1
0

h0 h0 h0

1
j�j

h0
1
j�j

h0
1
j�j

h0�
1C �

j�j

�
h0

1
j�j

h0 h0

Table 1: Tangent cones (0< S;T; � <1)

Then Table 1 implies that nontrivial isometries may exist between

.R3; d1S ; 0/ and .R3; d1S 0 ; 0/ for S ¤ S 0;

.R3; dT
0 ; 0/ and .R3; dT 0

0 ; 0/ for T ¤ T 0;�
R3;

�
1C

�

j�j

�
h0; 0

�
and

�
R3;

�
1C

� 0

j�j

�
h0; 0

�
for � ¤ � 0:

Suppose .R3; d1
S
; 0/ is isometric to .R3; d1

S 0
; 0/ for some S ¤ S 0 . Then the topolog-

ical space
f.R3; d1S ; 0/ W S 2RCg

with respect to pointed Gromov–Hausdorff topology is homeomorphic to S1 or 1–point;
hence it is compact. Then its closure is itself; therefore .R3; h0; 0/ is isometric to some
.R3; d1

S
; 0/, which is a contradiction by Table 1. Similarly, we can show that there are

no isometries between .R3; dT
0
; 0/ and .R3; dT 0

0
; 0/, or between .R3; .1C�=j�j/h0; 0/

and .R3; .1C � 0=j�j/h0; 0/.

8.5 Example (2)

Next we suppose that fKngn satisfies

lim
n!1

K2n

K2n�1

D1;
K2nC1

K2n

D ˇ > 1:

Take S > 0 and put an WD K�1�˛
2n S1C˛ . Then we have a1=.1C˛/

n K2n D S and
a1=.1C˛/

n K2nC1DˇS . Hence Theorem 8.2 implies that .X; angƒ;p/
GH
��! .R3; d

ˇS
S
/.

By arguing similarly to the proof of Theorem 8.15, we obtain the following.
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Theorem 8.16 Let ƒ; fKngn satisfy

lim
n!1

K2n

K2n�1

D1; lim
n!1

K2nC1

K2n

D ˇ > 1:

Then T .X;gƒ/ is equal to the closure of

f.R3; sd
ˇ
1
; 0/ W s > 0g [

n�
R3; s

�
1C

1

j�j

�
h0; 0

�
W s > 0

o
with respect to the Gromov–Hausdorff topology. Moreover, we have

lim
s!1

.R3; sd
ˇ
1
; 0/D lim

s!0

�
R3; s

�
1C

1

j�j

�
h0; 0

�
D .R3; h0; 0/;

lim
s!0

.R3; sd
ˇ
1
; 0/D lim

s!1

�
R3; s

�
1C

1

j�j

�
; 0
�
D

�
R3;

1

j�j
h0; 0

�
:

By a similar argument to Section 8.4, we can see that .R3; d
ˇS
S
; 0/ is isometric to

neither .R3; h0; 0/, .R3; .1=j�j/h0; 0/ nor .R3; d
ˇS 0

S 0
; 0/ for S 0 ¤ S .

8.6 Example (3)

For I �RC , denote by dI the metric on R3 induced byZ
x2I

dx

j� � .x˛; 0; 0/j
� h0:

Denote by BC.RC/ the set consisting of all Borel subsets of RC of nonzero Lebesgue
measure. In this subsection, we show the next theorem.

Theorem 8.17 There is a sequence fKngn such that T .X;gƒ/ contains

f.R3; dI ; 0/ W I 2 BC.RC/g=isometry:

Proof Put

O0 WD fI �RC W I is nonempty and openg;

O1 WD

� k[
iD1

.Sl ;Tl/�RC W
Sl ;Tl 2Q; 1� k <1;

0< Sl < Tl < SlC1 <1

�
:

Then one can see O1 �O0 � BC.RC/. Since O1 is countable, we can label the open
sets in O1 as follows:

O1 D fI1; I2; I3; : : :g; Im D

km[
lD1

.Sm;l ;Tm;l/:
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Now we fix a bijection F W N!N�N and write F.q/D .i.q/;m.q//. Define Lq > 0

inductively by

LqC1 WD 2i.q/Ci.qC1/Lq �
Tm.q/;km.q/

Sm.q/;1

; L0 WD 1:

Then we can define 0<K0 <K1 < � � � such that

fK0 <K1 < � � � g D

�
Lq

Sm.q/;l

Sm.q/;1

;Lq

Tm.q/;l

Sm.q/;1

W 1� l � km.q/; q D 0; 1; : : :

�
:

First we show that .R3; dIm
; 0/2 T .X;gƒ/ for every Im 2O1 . Fix m. For any i 2N ,

we can take a unique q such that i.q/D i and m.q/Dm. Put a1=.1C˛/
i WDL�1

q Sm;1 ;
then we have

a
1

1C˛

i Lq

Sm;l

Sm;1

D Sm;l ; a
1

1C˛

i Lq

Tm;l

Sm;1

D Tm;l :

Note that LqC1 � 2i.q/Ci.qC1/Lq implies Lq !1 as i !1, hence ai ! 0 as
i !1. Here, we put ˆDˆai

and ˆ1D
Pkm

lD1
ˆTm;l

Sm;l
. By applying Proposition 6.1

and (4)–(8) with P D 1, the constants appearing in (A3)–(A6) are given by

"D 2a
1

1C˛

i C 2�iSm;1C
21�.˛�1/iT �˛C1

m;km

˛� 1
; C0 D

1

2

kmX
lD1

A
Tm;l

Sm;l
;

C1 D
˛2

1
˛

˛� 1
; mD 1; � D

1

˛

if we suppose " is sufficiently small. One can see "! 0 as i !1, so we obtain
f.X; aigƒ;p/gi

GH
��!.R3; dIm

; 0/.

Next we show that .R3; dI ; 0/ 2 T .X;gƒ/ for any I 2 O0 . To show it, we apply
Vitali’s covering theorem. Fix I 2O0 and put I WD f.a; b/ 2O0 W Œa; b�� Ig. Then I
is a Vitali cover of I ; hence there exists fJngn2N � I such that

Jn ¤ Jn0 if n¤ n0; m

�
I n

G
n2N

Jn

�
D 0;

where m is the Lebesgue measure. Put yJn WD
Fn

kD1 Jk . Since yJn 2 O1 holds, we
have .R3; d yJn

; 0/ 2 T .X;gƒ/. If we put

ˆJ .�/ WD

Z
x2J

dx

j� � .x˛; 0; 0/j
;

then we can see

jˆ yJn
.�/�ˆI .�/j �

m.In yJn/

D
! 0 as n!1;
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and we can take the constants in (A3)–(A6) independent of n by using Proposition 6.2.
Therefore, we obtain f.R3; d yJn

; 0/gn
GH
��!.R3; dI ; 0/.

Finally, let I 2 BC.RC/. Since the Lebesgue measure is the Radon measure, there
exists Un �O1 for any n such that I � U and m.U /�m.I/C 1=n. Then we have
jˆI .�/ �ˆUn

.�/j � 1=.nD/, and thus f.R3; dUn
; 0/gn

GH
��!.R3; dI ; 0/ by a similar

argument. Here, the positivity of m.I/ is necessary since, by (4), C0 in (A5) is given byZ
I

dx

1Cx˛
> 0:

By Theorem 8.17, we can see that .R3; h0; 0/ and .R3; .1=j�j/h0; 0/ are also contained
in BC.RC/. The author does not know whether any other metric spaces may appear
as the tangent cone at infinity of .X;gƒ/ or not.

9 On the geometry of the limit spaces

In this section, we study the geometry of .R3; d1
0
/ and conclude that there is no isom-

etry between .R3; d1
0
/ and .R3; h0/, nor between .R3; d1

0
/ and .R3; .1=j�j/h0/.

Proposition 9.1 .R3; .1=j�j/h0/ is the Riemannian cone S2 �RC , where the Rie-
mannian metric on S2 is the homogeneous one whose area is equal to � .

Proof Put � D .�1; �2; �3/¤ 0 and r D
p
�2

1
C �2

2
C �2

3
, and let gS2 be the standard

Riemannian metric on S2 with constant curvature and volume 4� . Then by putting
R WD 2

p
r , we have

1

j�j
h0 D

1

r

�
.dr/2C r2gS2

�
D .dR/2CR2

�
gS2

4
:

Next we review the notion of polar spaces, introduced by Cheeger and Colding in [5],
and then we show that the metric space .R3; d1

0
/ is never a polar space.

Let Y be a metric space, and suppose that there is a tangent cone Yy at y 2Y . Then we
can consider tangent cones at any points in Yy . The tangent cones obtained by repeating
this process are called iterated tangent cones of Y . A point x in a length-space X

is called a pole if there is a ray  W Œ0;1/! X and t � 0 for any x ¤ x such that
 .0/D x and  .t/D x . Here, the ray  W Œ0;1/!X is a continuous curve such that
the length of  jŒt0;t1� is equal to j .t0/ .t1/j.

Definition 9.2 [5] The metric space Y is called a polar space if all of the base points
of the iterated tangent cones of Y are poles.
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For example, let C.X / be a metric cone of a metric space X . Then every  defined by
 .t/ WD .x; t/ 2X �RC D C.X / is a ray; hence the base points of any metric cones
are poles. Now, since .R3; .1=j�j/h0/ is a Riemannian cone of a smooth compact
Riemannian manifold, then all of the iterated tangent cones are .R3; .1=j�j/h0/ itself
or .R3; h0/. Consequently, we can conclude that .R3; .1=j�j/h0/ is polar. Obviously,
.R3; h0/ is also polar. We can also see in the similar way that .R3; .1C �=j�j/h0/ is
polar. On the other hand, we can show the next proposition.

Proposition 9.3 The origin 0 2 R3 is not a pole of the metric space .R3; d1
0
/. In

particular, .R3; d1
0
/ is neither a polar space nor a metric cone of any metric spaces.

Proof First of all we show that 0 2 R3 is not a pole with respect to d1
0

. Put
p WD .1; 0; 0/2R3 , and suppose that there is a ray  W Œ0;1/!R3 such that  .0/D 0

and  .t0/D p for some t0 > 0. Then we have

d10 . .s0/;  .s1//D

Z s1

s0

p
ˆ10 . .t// j

0.t/j dt

for any 0� s0 < s1 . For ı > 0, let

Aı WD ft 2R W jC.t/j � ıg:

Then there is a sufficiently small ı such that Aı \ .0; t0/¤∅ and Aı \ .t0;1/¤∅.
This is because the length of  jI becomes infinity for any small interval I � R if
not. Since Aı is closed and does not contain t0 , we can take a connected component
.a0; a1/ of RnAı containing t0 . Then we can see that jC.a0/j D jC.a1/j D ı and
jC.t/j< ı for any t 2 .a0; a1/. Now define z W Œ0; a1�!X by

z .t/ WD

�
.R.t/; e

i�C.t//; 0� t � a0;

ei�P jŒa0;a1�
.t/; a0 � t � a1;

where � is defined by ei�C.a0/D C.a1/. Recall that P jŒa0;a1�
is already defined

in Lemma 7.4. Then by applying Lemma 7.4, we can see that the length of z is strictly
less than the length of  jŒ0;a1� ; therefore,  is not a ray, which is a contradiction.
Hence 0 2R3 is not a pole.

Now we can check that the RC–action on R3 defined by scalar multiplication is
homothetic with respect to d1

0
; thus the tangent cone of .R3; d1

0
/ at 0 is itself.

Consequently, .R3; d1
0
/ is not a polar space.

Suppose that .R3; d1
0
/ is the metric cone of some metric space X ; then the origin 0

is nothing but the base point of the metric cone. Since the base point of the metric cone
is always a pole, we have a contradiction.
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Corollary 9.4 There is no isometry between .R3; d1
0
/ and .R3; h0/, nor between

.R3; d1
0
/ and .R3; .1=j�j/h0/.
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Smooth Kuranishi atlases with isotropy

DUSA MCDUFF

KATRIN WEHRHEIM

Kuranishi structures were introduced in the 1990s by Fukaya and Ono for the purpose
of assigning a virtual cycle to moduli spaces of pseudoholomorphic curves that
cannot be regularized by geometric methods. Their core idea was to build such a
cycle by patching local finite-dimensional reductions, given by smooth sections that
are equivariant under a finite isotropy group.

Building on our notions of topological Kuranishi atlases and perturbation construc-
tions in the case of trivial isotropy, we develop a theory of Kuranishi atlases and
cobordisms that transparently resolves the challenges posed by nontrivial isotropy.
We assign to a cobordism class of weak Kuranishi atlases both a virtual moduli cycle
(a cobordism class of weighted branched manifolds) and a virtual fundamental class
(a Čech homology class).

53D35, 53D45, 54B15, 57R17, 57R95

1 Introduction

1.1 Overview

This is the third in a series [13; 14] of papers that construct a fundamental class
for compact spaces X that are modeled locally by the zero sets of smooth sections
si W Ui ! Ei in finite rank bundles over finite-dimensional manifolds. While these
obstruction bundles have fixed index, they may have varying rank, and thus an ambient
space

S
Ui=� naively constructed from the ambient manifolds of the local zero

sets s�1i .0/ modulo transition data is lacking all topological controls (Hausdorffness,
local compactness, in fact existence) that are needed for a perturbative construction
ŒX� WD

S
.siC�i /

�1.0/=� of the fundamental class. Moreover, most interesting cases
involve nontrivial isotropy groups that are captured in the local charts as finite symmetry
groups �i of the sections si , so that X is locally modeled by the quotients s�1i .0/=�i .

Pioneered by Fukaya et al [6; 3], this problem has been considered by symplectic
topologists since the 1990s as a tool for “counting curves”, ie assigning homological
information to moduli spaces of pseudoholomorphic curves, such as the Gromov–Witten
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moduli spaces (in which isotropy arises from components that are multiply covered).
In the case of trivial isotropy, a comprehensive solution was developed in [13; 14] by
introducing notions of Kuranishi atlases, which on the one hand can in practice be
constructed from moduli spaces, and on the other hand have sufficient compatibility
between the local models for the construction of a virtual fundamental class. This paper
extends these techniques to the case of nontrivial isotropy, proving the following result.

Theorem A Let K be an oriented, d–dimensional, additive, smooth weak Kuranishi
atlas on a compact metrizable space X . Then K determines

� a virtual moduli cycle (VMC) as cobordism class of weighted branched mani-
folds,

� a virtual fundamental class (VFC) ŒX�vir
K 2

LHd .X IQ/ in Čech homology,

both of which depend only on the cobordism class of K .

A more precise statement that also applies when K is a cobordism from an atlas
K0 on X0 to an atlas K1 on X1 is given in Theorem 3.3.5. Notice further that the
VMC contains more information than the VFC since cobordism classes of weighted
branched manifolds contain more information than just their fundamental class; for
example, Pontryagin numbers are invariants of weighted branched cobordism by [11,
Remark 4.7].

The guiding idea of a Kuranishi atlas K is to start with a family of basic charts
.Ki /iD1;:::;N , where each basic chart

Ki D .Ui ; Ei ; �i ; si ;  i /

is a tuple consisting of a domain Ui , an obstruction space Ei , a group �i , a section
si W Ui ! Ei , and a footprint map  i W s

�1
i .0/ ! X inducing a homeomorphism

from s�1i .0/=�i onto the “footprint”, an open subset Fi �X such that .Fi /iD1;:::;N
covers X . The compatibility of these charts then involves transition charts KI D

.UI ; EI ; �I ; sI ;  I / of the same type as the basic charts, but with I � f1; : : : ; N g
such that FI WD

T
i2I Fi ¤ ∅. Finally, the basic and transition charts are related

by coordinate changes from KI to KJ whenever I � J . This gives rise to an
“étale-like” category BK whose space of objects is

F
I UI , and whose morphisms are

determined by the local group actions and the coordinate changes. The category BK
is not a groupoid since some morphisms (those relating the different charts) are not
invertible. On the other hand, its spaces of objects and morphisms are very closely
controlled, which enables us to carry out various geometric constructions, in particular
the construction of perturbations, very explicitly. The realization jKj of BK (the space
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of objects modulo the equivalence relation generated by the morphisms) is much larger
than X , though it does contain a homeomorphic image of X formed from the zero
sets of the local sections sI . As in [14], the class ŒX�vir

K is constructed from the zero
sets of suitable perturbations sKC � of the basic section sK D .sI / of K .

Even if X is an orbifold so that no obstruction spaces are needed, our formulations
are new.1 Rather than being given by inclusions UI � UIJ ,! UJ as in the case with
trivial isotropy, our notion of coordinate changes in the presence of isotropy involves
equivariant covering maps z�IJ W . zUIJ ; �J /! .UIJ ; �I /� .UI ; �I /, where zUIJ is a
suitable subset of the domain UJ and zUIJ ! UIJ is a principal �J =�I -bundle. As
the following result from [11, Proposition 3.3] shows, every orbifold has a structure of
this kind.

Proposition Every compact orbifold Y has an orbifold atlas K with trivial obstruction
spaces whose associated groupoid GK is an orbifold structure on Y . Moreover, there is
a bijective correspondence between commensurability classes of such Kuranishi atlases
and Morita equivalence classes of ep groupoids.

To apply the above theory to moduli spaces X that arise in geometric examples, one
needs to develop methods for constructing Kuranishi atlases on such X . Some parts
of this construction were detailed in the 2012 preprint [12], and now appear in [14].
They will be extended in [10] to include multiply covered curves (and hence nontrivial
isotropy) as well as nodal curves. Both McDuff [10] and Pardon [16] outline the
needed construction for moduli spaces of closed stable maps, though neither approach
is sufficient to give the smooth charts whose existence is assumed in the current paper.
In [10] we will combine the same setup with an implicit function theorem from polyfold
theory (see Hofer, Wysocki and Zehnder [7]) to obtain compatible choices of smooth
structures near nodal curves. An alternative approach is to extend the VMC/VFC
construction to less smooth sections. In fact, Castellano [2] proves a gluing theorem
for Gromov–Witten moduli spaces that allows the construction of stratified smooth
Kuranishi atlases with C1–differentiability across strata, to which our construction
applies with minor modifications. He moreover shows that the resulting genus zero
Gromov–Witten invariants satisfy the standard axioms.

1.2 Outline of the construction

This paper contains all relevant definitions and a fair amount of review so that it can
be read independently of the previous papers in this series. This outline will also be

1Our construction was outlined in [9]. In [16], Pardon independently takes a similar approach to
handling the isotropy groups.
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rather brief since the earlier papers give extensive explanation and justification for our
approach:

- The first part of [14] is a general discussion of different approaches to regularizing
moduli spaces — eg as VMC/VFC — and explains important analytic background.

- The paper [13] starts with an overview of the topological challenges that need
to be addressed in constructing a VMC/VFC, and then proves the basic topological
results needed to show that a filtered weak Kuranishi atlas determines a tame Kuranishi
atlas K , well-defined up to cobordism, whose realization jKj is Hausdorff, contains a
homeomorphic copy of the moduli space X , and can be equipped with a metric that is
compatible with local charts (but generally induces a different topology on jKj).

- The second part of [14] carries out the full construction of the VMC as the zero set
of a suitable perturbation of the canonical section sK in the case of trivial isotropy.

We now discuss the main steps in the construction below in more detail, highlighting
the new features needed to deal with nontrivial isotropy.

� In order to simplify the abstract discussion, we decided to give a rather narrow
definition of a Kuranishi atlas K . Thus the domains of both the basic and transition
charts are group quotients .UI ; �I /, and the coordinate changes are determined by
rather special equivariant covering maps . zUIJ ; �J /! .UIJ ; �I /. The basic theory
is set up in Section 2.1; see in particular Definition 2.1.4 and Lemma 2.1.5. If there
were a need, one could no doubt replace these group quotients by more general étale
groupoids and use more general covering maps and obstruction bundles, at the expense
of revisiting the construction of perturbations.

� Smooth atlases and coordinate changes are defined in Sections 2.2 and 2.3. Though
in general the definitions are similar to those in the case with trivial isotropy, there is
an important difference in the notion of coordinate change: when I � J this is now
given by a covering map from an appropriate submanifold zUIJ of the domain of the
higher dimensional domain UJ onto an open subset UIJ of the lower dimensional
domain UI . If the isotropy groups are trivial, this map is a diffeomorphism with inverse
equal to the coordinate changes �IJ W UIJ !UJ considered in [13; 14]. Another small
difference is that we build in the notion of additivity since at least some version of this
is needed for the taming construction discussed below. (In some situations, for example
when considering products, this formulation is too rigid; for appropriate generalizations
see [10].)

� An important feature of our definitions is that the quotients U I WD UI=�I fit
together to form an intermediate atlas, which Lemma 2.3.4 shows to be a filtered
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topological atlas in the sense of [13]. In particular it has an associated category BK
with space of objects the orbifold ObjBK

WD
F
I U I , and identical realization jKjD jKj.

� One difficulty in constructing a VFC for a given moduli space X is that in practice
one cannot usually construct an atlas on X . Instead one constructs a weak atlas,
which is like an atlas except that one has less control of the domains of the charts and
coordinate changes; cf the various cocycle conditions discussed in Definition 2.2.12 and
Lemma 2.2.13. But a weak atlas does not even define a category, let alone one whose
realization jBKj DW jKj has good topological properties. For example, we would like
jKj to be Hausdorff and (in order to make local constructions possible) for the projection
�KW UI ! jKj to be a homeomorphism to its image. Theorem 2.5.3 summarizes the
main topological facts about K that are needed for subsequent constructions. We
achieve these via shrinking and taming. Our definitions were designed so that all
the topological constructions of [13], such as the taming, cobordism and reduction
constructions, apply to the intermediate atlas K and then lift to K because the quotient
maps UI ! U I are proper. However, we do need to take some care with the proof of
the linearity properties of the projection prW jEKj ! jBKj.

� Another important part of Theorem 2.5.3 is the claim that any two tame shrinkings
of a weak atlas K are concordant, ie cobordant over Œ0; 1��X , which is required to
show independence of the VMC/VFC from the choice of shrinking. In Section 2.4 we
give the precise definition of a cobordism atlas. This is an immediate generalization of
the notion of cobordism in [13; 14], and the relevant proofs generalize easily.

� Given a weak atlas, the taming procedure gives us two categories BK and EK with
a projection functor prW EK!BK and section functor sKW BK!EK . However, even
when the isotropy is trivial, the category has too many morphisms (ie the chart domains
overlap too much) for us to be able to construct a perturbation �W BK! EK that is
transverse to 0 (written sKC�t0). We therefore pass to a full subcategory BKjV of BK
with objects V WD

F
VI that does support suitable perturbations �W BKjV! EKjV .

This subcategory BKjV is called a reduction of K ; cf Definition 3.2.1. Constructing it
is akin to passing from the covering of a triangulated space by the stars of its vertices
to the covering by the stars of its first barycentric subdivision. Again this construction
can be done at the level of the intermediate category, so that the methods of [13]
immediately give us the required reductions.

� In the presence of nontrivial isotropy, we may still not be able to construct a
transverse perturbation �W BKjV!EKjV as a functor, since local perturbations �I are
required to be �I –equivariant. In general, this can be resolved by using multivalued
perturbations. Our setup allows for a simplified approach: we define perturbations
� D .�I /I2IK to be families of maps that are compatible with the covering maps �IJ
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but need not be �I –equivariant. We show in Section 3.2 that this construction inherits
enough equivariance to yield an étale category that represents the zero set of the
perturbed section sKjV C � , assuming that this is transverse to 0. The remaining
morphisms are then added back in at the expense of weighting functions, which give the
perturbed zero set the structure of a weighted branched manifold. More precisely, we
construct the perturbed zero set in Theorem 3.2.8 as the Hausdorff realization jZ � jH
of an étale (but nonproper) category Z � whose space of objects has one component
ZI D .sI jVIC�/

�1.0/ for each I 2 IK , and whose branching locus and weighting
function are explicitly determined by the reduction V and the isotropy groups.

� For the convenience of the reader we prove the needed results about weighted
branched manifolds and cobordisms in the appendix. Moreover, the short paper [11]
explains the construction of Z � in the orbifold case. This is much simpler, since the
obstruction spaces, and hence also the sections sK , � are zero.

� Moreover, we must ensure that the perturbed zero sets are compact and unique up
to cobordism. As we show in Proposition 3.3.3 the rather intricate construction in [14]
carries through in the current situation without essential change.

� In Section 3.1 we extend the notion of orientation to atlases with nontrivial isotropy.
As in [14], we define the orientation line bundle of K in two equivalent ways, showing
in Proposition 3.1.13 that the bundle det sK (with local bundles .det sI /I2IK ) is iso-
morphic to ƒK (with local bundles .ƒmaxUI ˝ .ƒ

maxEI /
�/I2IK ). Most of the needed

proofs can again be quoted directly from [14]. Lemma 3.1.14 explains how these
bundles are used to orient local zero sets of sections.

� The final step is to build the homology class ŒX�vir
K 2

LHd .X IQ/ from the zero set
.sKjV C �/

�1.0/. Many of the details here are again the same as in [14]. In particular,
we build a geometric representative jZ � jH for this class that maps to the precompact
“neighborhood”2 jVj D

S
I �K.VI /� jKj of �K.X/D js�1K .0/j, and then define ŒX�vir

K
by taking an appropriate inverse limit in rational Čech homology.
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2 Smooth Kuranishi atlases with isotropy

In this section we extend the notions of smooth Kuranishi charts and transition data
introduced in [14] to nontrivial isotropy and then discuss cobordisms and taming. The
main result is Theorem 2.5.3.

Throughout this section we fix X to be a compact metrizable space. The main change
from [14] is that the domains of the charts are no longer smooth manifolds, but rather
group quotients. We begin by setting up notation for the latter. As in [14, Remark 5.1.2]
we assume all manifolds are smooth and second countable.

2.1 Group quotients

Definition 2.1.1 A group quotient is a pair .U; �/ consisting of a smooth manifold U
and a finite group � together with a smooth action � �U ! U . We will denote the
quotient space by

U WD U=�;

giving it the quotient topology, and write � W U ! U for the associated projection.
Moreover, we denote the stabilizer of each x 2 U by

�x WD f 2 � j x D xg � �:

We could consider a group quotient as a topological category with space of objects U
and morphisms U �� , but in the interest of simplicity will often avoid doing this.

Both the basic and transition charts of Kuranishi atlases will be group quotients, related
by coordinate changes that are composites of the following kinds of maps.

Definition 2.1.2 Let .U; �/, .U 0; � 0/ be group quotients. A group embedding

.�; ��/W .U; �/! .U 0; � 0/

is a smooth embedding �W U !U 0 that is equivariant with respect to an injective group
homomorphism �� W � ! � 0 and induces an injection �W U ! U 0 on the quotient
spaces. We call a group embedding equidimensional if dimU D dimU 0 .

In a Kuranishi atlas we often consider embeddings .�; ��/W .U; �/! .U 0; �/ where
dimU < dimU 0 and �� W �! � 0 WD � is the identity map. On the other hand, group
quotients of the same dimension are usually related either by restriction or by coverings
as follows.
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Definition 2.1.3 Let .U; �/ be a group quotient and V � U an open subset. Then
the restriction of .U; �/ to V is the group quotient .��1.V /; �/.

Note that the inclusion ��1.V /! U induces an equidimensional group embedding
.��1.V /; �/! .U; �/ that covers the inclusion V ! U . The third kind of map that
occurs in a coordinate change is a group covering. This notion is less routine; notice in
particular the requirement in (ii) that ker �� act freely. Further, the two domains zU ;U
will necessarily have the same dimension since they are related by a regular covering � .

Definition 2.1.4 Let .U; �/ be a group quotient. A group covering of .U; �/ is a
tuple . zU ; z�; �; ��/ consisting of

(i) a surjective group homomorphism �� W z�! � ,

(ii) a group quotient . zU ; z�/, where ker �� acts freely,

(iii) a regular covering �W zU!U that is the quotient map zU! zU= ker �� composed
with a diffeomorphism zU= ker �� Š U that is equivariant with respect to the
induced � D im.��/ action on both spaces.

Thus �W zU ! U is equivariant with respect to �� W z�! � and �� acts transitively on
the fibers of � . We denote by �W zU ! U the induced map on quotients.

Next, we establish some basic properties of group quotients, in particular the fact that
coverings induce homeomorphisms between the quotients. Here and subsequently we
denote a precompact inclusion by V @ U .

Lemma 2.1.5 Let .U; �/ be a group quotient.

(i) The projection � W U ! U is open, closed and proper. In particular, any pre-
compact set P @ U has precompact preimage ��1.P /@ U , Moreover, U is a
separable, locally compact metric space.

(ii) Every point x 2U has a neighborhood Ux that is invariant under �x and is such
that inclusion Ux ,! U induces a homeomorphism from Ux=�

x to �.Ux/. In
particular, the inclusion .Ux; �x/! .��1.�.Ux//; �/ is a group embedding.

(iii) If . zU ; z�; �; ��/ is a group covering of .U; �/, then �W zU ! U is a homeomor-
phism and �� induces isomorphisms between the stabilizers z�y! ��.y/ for all
y 2 zU .

Proof Let W � U be open. Then ��1.�.W //D
S
2� W is open since each W

is the preimage, under the continuous action of �1 , of the open set W . Hence, by
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definition of the quotient topology, �.W / is open. This shows that � is open. The
same argument applied to the complement of a closed set shows that � is closed.

To see that � is proper, consider a compact set V �U . Given any open cover .U˛/˛2A
of ��1.V /, choose for each x 2 ��1.V / an element ˛x 2A such that x 2U˛x . Then
for each x 2 V define

W x WD

\
x2��1.x/

�.U˛x / � U :

These are open sets since ��1.x/ is finite and the map � is open, and they cover
the compact set V . So we may choose a finite subcover .W xi

/iD1;:::;n of V . Then
.U˛x /x2��1fx1;:::;xng is a finite subcover of ��1.V /. This shows that preimages of
compact sets are compact, ie � is proper.

To see that preimages of precompact sets P @U are precompact, it suffices to note that
the continuity of � gives ��1.P /���1.P /, so that ��1.P / is compact because it is
a closed subset of ��1.P /, which is compact as preimage of the compact set P � U .

To finish the proof of (i) we must show that U is a separable, locally compact metric
space. But U inherits these properties from U by [15, Exercise 31.7] which applies
to closed continuous surjective maps � W X ! Y such that ��1.y/ is compact for all
y 2 Y .

To prove (ii), first choose any open neighborhood Vx �U of x that is disjoint from its
images under the elements of � n�x , and then set

Ux WD
\
2�x

Vx :

Then Ux is open since �x is finite and each Vx is open. Moreover, Ux is invariant
under �x , and has the property that its intersection with each � –orbit is either empty or
is a �x –orbit. Thus the restriction of � to Ux is simply the quotient by the �x action,
so that Ux=�x! �.Ux/ is the identity.

To prove the first claim in (iii), note that � acts on the partial quotient zU= ker ��

via its identification with im �� D z�= ker �� to induce a homeomorphism zU=z� Š

. zU= ker ��/=� . Now � is this identification composed with the homeomorphism

. zU= ker ��/=�!U=� induced by the � –equivariant diffeomorphism zU= ker ��Š U.

As for the statement about stabilizers, notice that we have z�y \ .ker ��/D id, because
ker �� acts freely. Thus �� jz�y is injective. It takes values in �x for x WD �.y/ by the
equivariance of � with respect to �� . To see that �� jz�y W z�

y! �x is surjective, fix
an element ı 2 �x . By surjectivity of �� W z�! � we can choose a lift zı 2 .��/�1.ı/.
Since �.zıy/D ��.zı/�.y/D ıxD �.y/ and the fibers of � are ker �� orbits, there is a
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unique  2 ker �� such that zıyD y , and hence zı 2 z�y . Since ��.zı/D ��.zı/D ı ,
this shows that the induced map on stabilizers z�y ! �x is surjective and hence an
isomorphism.

Remark 2.1.6 In order to make our presentation more accessible we have chosen to
require that the domains of our Kuranishi charts are explicit group quotients .U; �/.
Instead we could have worked with étale proper groupoids G with the additional
property that the realization map ObjG! ObjG =�, that identifies two objects if and
only if there is a morphism between them, is proper. This extra properness assumption
is proved for group quotients in Lemma 2.1.5(i). We will see below that this properness
allows us to deduce results about a Kuranishi atlas K from results of [13] applied to
the intermediate atlas K in which the charts have domains U D U=� . Þ

2.2 Kuranishi charts and coordinate changes

We begin by generalizing the notion of smooth Kuranishi chart (with trivial isotropy)
from [14] to the case of nontrivial finite isotropy.

Remark 2.2.1 To simplify language, we will not add the specifications “smooth” ,
“nontrivial isotropy” or “additive” to Kuranishi charts, coordinate changes, and atlases
in this paper. Hence a Kuranishi atlas in this paper is a generalization (allowing
nontrivial isotropy) of the notion of smooth additive Kuranishi atlas in [14]. We will
see that it induces a filtered topological Kuranishi atlas in the sense of [13], given
by the “intermediate charts and coordinate changes” introduced in Definition 2.2.3
and Remark 2.2.11 below. So in this paper we will take “intermediate” to include the
specification “topological”. Þ

Definition 2.2.2 A Kuranishi chart for X is a tuple K D .U;E; �; s;  / consisting of

� the domain U , which is a smooth finite-dimensional manifold;

� a finite-dimensional vector space E called the obstruction space;

� a finite isotropy group � with a smooth action on U and a linear action on E ;

� a smooth � –equivariant function sW U !E , called the section;

� a continuous map  W s�1.0/!X that induces a homeomorphism

 W s�1.0/ WD s�1.0/=� ! F

with open image F �X , called the footprint of the chart.

The dimension of K is dim.K / WD dimU � dimE .
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In order to extend topological constructions from [13] to the case of nontrivial isotropy,
we will also consider the following notion of intermediate Kuranishi charts which have
trivial isotropy but less smooth structure.

Definition 2.2.3 We associate to each Kuranishi chart K D .U;E; �; s;  / the inter-
mediate chart K WD .U ;E; s;  / consisting of
� the intermediate domain U WD U=� ;
� the intermediate obstruction “bundle”, whose total space E WD U �E is the

quotient by the diagonal action of � , with the projection map prW E ! U ,
�.u; e/ 7! �u, and zero section 0W U ! E, �u 7! �.u; 0/;

� the intermediate section sW U ! E induced by sD idU �sW U ! U �E ;
� the intermediate footprint map  W s�1.im 0/!X induced by  W s�1.0/!X .

We write � W U ! U for the projection from the Kuranishi domain. Moreover if a
chart KI D .UI ; EI ; �I ; sI ;  I / has the label I , then KI D .U I ;EI ; sI ;  I / and
�I W UI ! U I denote the corresponding intermediate chart and projection.

The intermediate charts and coordinate changes of a Kuranishi atlas (with isotropy)
will form a topological Kuranishi atlas (without isotropy). For the charts, the following
is a direct consequence of Lemma 2.1.5.

Lemma 2.2.4 The intermediate chart K is a topological chart in the sense of [13,
Definition 2.1.3]. In other words,
� the intermediate domain U is a separable, locally compact metric space;
� the intermediate obstruction “bundle” prW E! U is a continuous map between

separable, locally compact metric spaces, so that the zero section 0W U ! E is a
continuous map with pr ı0D idU ;

� the intermediate section sW U ! E is a continuous map with pr ısD idU ;
� the intermediate footprint map  W s�1.0/! X is a homeomorphism onto the

footprint  .s�1.0//D F , which is an open subset of X .

Remark 2.2.5 (i) The intermediate bundle prW E! U is an orbibundle and hence
has more structure than a general topological chart. In particular, it has a natural zero
section 0W U ! E. Hence, when working with labeled charts KI , we will usually
simply denote the projection and zero section by pr and 0 rather than prI ; 0I .

(ii) We will find that many results from [13], in particular the taming constructions,
carry over to nontrivial isotropy via the intermediate charts, since precompact subsets
of U lift to precompact subsets of U by Lemma 2.1.5(i). An important exception is
the construction of perturbations which must be done on the smooth spaces U . Þ
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Next, as in [13; 14], compatibility of Kuranishi charts will require restrictions and
embeddings to common transition charts.

Definition 2.2.6 Let K D .U;E; �; s;  / be a Kuranishi chart and F 0 � F an open
subset of its footprint. A restriction of K to F 0 is a Kuranishi chart of the form

K 0 DK jU 0 WD .U
0; E; �; s0DsjU 0 ;  

0
D js0�1.0// with U 0 WD ��1.U 0 /

given by a choice of open subset U 0 � U such that U 0\ �1.F /D  �1.F 0 /.

We call U 0 the domain of the restriction.

Note that the restriction K 0 in the above definition has footprint  0.s0�1.0// D F 0 ,
and its domain group quotient .U 0; �/ is the restriction of .U; �/ to U 0 in the sense of
Definition 2.1.3. Moreover, because the restriction of a chart is determined by a subset
of the intermediate domain U , we can in the following use the existence result in [13]
for restrictions of topological charts to obtain restrictions of charts with isotropy. Here
we use the notation @ to denote a precompact inclusion and we write clV .V 0/ for the
closure of a subset V 0 � V in the relative topology of V .

Lemma 2.2.7 Let K be a Kuranishi chart. Then for any open subset F 0 � F

there is a restriction K 0 to F 0 with domain U 0 such that U 0 WD ��1.U 0/ satisfies
clU .U 0/\ s�1.0/D �1.clX .F 0//. Moreover, if F 0@F is precompact, then U 0@U

can be chosen precompact so that U 0 @ U .

Proof By [13, Lemma 2.1.6] applied to the intermediate chart K , there is a sub-
set U 0 � U that defines a restriction of this topological chart, and in particular
satisfies U 0\ s�1.0/ D  �1.F 0/, with the additional property clU .U 0/\ s�1.0/ D

 �1.clX .F 0//. Further, we may assume that U 0 is precompact in U if F 0 @ F . Then
U 0 D ��1.U 0/ is the required domain. It inherits precompactness by Lemma 2.1.5(i).
Further, the same lemma shows that ��1.clU .U 0//D clU .U 0/. Hence applying ��1

to the identity clU .U 0/\ s�1.0/ D  �1.clX .F 0// implies that clU .U 0/\ s�1.0/ D
 �1.clX .F 0//.

Most definitions in [14] extend, as the previous ones, with only minor changes to the
case of nontrivial isotropy. However, the notion of smooth coordinate change [14,
Definition 5.2.2] needs to be generalized significantly to include a covering map. For
simplicity we will formulate the definition in the situation that is relevant to additive
Kuranishi atlases.3 That is, we suppose that a finite set of basic Kuranishi charts
.Ki /i2f1;:::;N g is given so that for each I � f1; : : : ; N g with FI WD

T
i2I Fi ¤∅ we

have another Kuranishi chart KI with
3 While additivity was introduced as separate property in [12], it is both so crucial and natural that

below in Section 2.3 we will define the notion of Kuranishi atlas to be automatically additive.
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- isotropy group �I WD
Q
i2I �i ,

- obstruction space EI WD
Q
i2I Ei on which �I acts with the product action,

- footprint FI WD
T
i2I Fi .

Then for I � J we have the natural splitting �J Š �I ��JnI with induced inclusion
�I ,!�I�fidg��J and projection ��IJ W �J!�I with kernel �JnI . (Here we include
the case IDJ , interpreting �∅ WD fidg.) Moreover, we have the natural inclusion
y�IJ W EI !EJ , which is equivariant with respect to the inclusion �I ,! �J and such
that the complement of this inclusion �JnI acts trivially on the image y�IJ .EI /�EJ .

Definition 2.2.8 Given I � J � f1; : : : ; N g let KI and KJ be Kuranishi charts as
above with FI � FJ . A smooth coordinate change ŷIJ from KI to KJ consists of

� a choice of domain U IJ � U I such that KI jUIJ is a restriction of KI to FJ ,

� the splitting �J Š �I ��JnI as above, and the induced inclusion �I ,! �J
and projection ��IJ W �J ! �I ,

� a �J –invariant submanifold zUIJ � UJ on which �JnI acts freely, and the
induced �J –equivariant inclusion z�IJ W zUIJ ,! UJ ,

� a group covering . zUIJ ; �J ; �IJ ; ��IJ / of the group quotient .UIJ ; �I /, where
UIJ WD �

�1
I .U IJ /� UI ,

� the linear equivariant injection y�IJ W EI !EJ as above,

such that the inclusions z�IJ ; y�IJ and covering �IJ intertwine the sections and footprint
maps,

(2.2.1) sJ ı z�IJ D y�IJ ı sI ı �IJ on zUIJ ;

 J ı z�IJ D  I ı �IJ on s�1J .0/\ zUIJ D �
�1
IJ .s

�1
I .0//:

Moreover, we denote sIJ WD sI ı �IJ W zUIJ !EI and require the index condition:

(i) The embedding z�IJ W zUIJ ,! UJ identifies the kernels:

du z�IJ .ker dusIJ /D ker dz�IJ .u/sJ 8u 2 zUIJ :

(ii) The linear embedding y�IJ W EI !EJ identifies the cokernels:

EI D im.dusIJ /˚Cu;I H) EJ D im.dz�IJ .u/sJ /˚
y�IJ .Cu;I / 8u 2 zUIJ :

The subset U IJ �U I is called the domain of the coordinate change, while zUIJ �UJ
is its lifted domain.
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Recall that we have dim zUIJ D dimUI since �IJ W zUIJ ! UIJ is a regular covering.
Moreover, �IJ identifies the kernels and images of dsIJ and dsI , in other words

(2.2.2) du�IJ .ker dusIJ /D ker d�IJ .u/sI ; im.dusIJ /D im.d�IJ .u/sI /�EI :

Hence the index condition is equivalent to kernels and cokernels of d�IJ .u/sI and dusJ
being identified by the coordinate change. As in [14, Lemma 5.2.5] it is also equivalent
to the tangent bundle condition

(2.2.3) dz�IJ .u/sJ W Tz�IJ .u/UJ
ı

du z�IJ .Tu zUIJ / �!
Š

EJ
ı
y�IJ .EI / 8u 2 zUIJ :

This also shows that any two charts that are related by a coordinate change have the
same dimension. To keep our language similar to that in [14], we denote a coordinate
change by ŷIJ D .z�IJ ; y�IJ ; �IJ /W KI jUIJ!KJ . However, since the linear map y�IJ
is fixed by our conventions, the coordinate change ŷIJ is in fact determined by a group
covering . zUIJ ; �J ; �IJ ; ��IJ / of .��1I .U IJ /; �I /, where U IJ � U I is a choice of
domain for which U IJ \ �1I .FI /D  

�1
I
.FJ /.

Remark 2.2.9 (i) In the case of trivial isotropy and with trivial covering �IJ DW��1IJ ,
this definition is the notion of coordinate change in [14] with zUIJ D �IJ .UIJ /.
Because UIJ � UI is open, the index condition together with the condition that zUIJ
is a submanifold of UJ implies that zUIJ is an open subset of s�1J .EI /.

(ii) The following diagram of group embeddings and group coverings is associated to
each coordinate change:

(2.2.4)

. zUIJ ; �J /
� �
.z�IJ ;id/

//

.�IJ ;�
�
IJ /

��

.UJ ; �J /

.UI ; �I / .UIJ ; �I /? _oo

(iii) Since �
IJ
W zU IJ !U IJ is a homeomorphism by Lemma 2.1.5(iii), each coordi-

nate change .�IJ ; y�IJ ; �IJ /W KI jUIJ!KJ induces an injective map

�
IJ
WD z�

IJ
ı ��1

IJ
W U IJ ! U J

on the domain of the intermediate chart. In fact there is an induced coordinate
change ŷIJ W KI jUIJ!KJ between the intermediate charts, given by the bundle map
ŷ
IJ W UIJ �EI!UJ �EJ which is induced by the multivalued map .z�IJ ı��1IJ /�y�IJ

and thus covers z�
IJ
ı��1
IJ
DW �

IJ
. This is a topological coordinate change in the sense

of [13, Definition 2.2.1]. This means in particular that the map

ŷ
IJ W UIJ �EI DW EI jUIJ WD pr�1I .U IJ /! EJ
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is a topological embedding (ie homeomorphism to its image) that satisfies the following:

� It is a bundle map, ie we have prJ ı ŷIJ D �IJ ıprI jpr�1I .UIJ /
for a topological

embedding �
IJ
W U IJ ! U J , and it is linear in the sense that 0J ı �IJ D

ŷ
IJ ı0I jUIJ , where 0I denotes the zero section 0I W U I !EI in the chart KI .

� It intertwines the sections and footprints maps, ie

sJ ı�IJ D
ŷ
IJ ı sI jUIJ ; �

IJ
j �1
I
.FI\FJ /

D  �1
J
ı 

I
:

However, ŷIJ has more smooth structure than a general topological coordinate change
since �

IJ
W U IJ ! U J preserves the orbifold structure and ŷIJ is a map of orbibun-

dles.

(iv) Conversely, suppose we are given a topological coordinate change ŷIJ W KI!KJ

with domain U IJ . Then any coordinate change from KI to KJ that induces ŷIJ
is determined by the �J –invariant set zUIJ WD ��1J .�

IJ
.U IJ // and a choice of �I –

equivariant homeomorphism between zUIJ =�JnI and UIJ WD ��1I .U IJ /. If we can
choose this homeomorphism to be smooth, then we obtain a smooth coordinate change
KI !KJ with domain U IJ provided that the index condition is satisfied, which is a
condition on the relation between the set zUIJ and the section sJ . When constructing
coordinate changes in the Gromov–Witten setting in [10], we will see that there is
a natural choice of this diffeomorphism since the covering maps �IJ are given by
forgetting certain added marked points. Further, the index condition is automatically
satisfied in this setting.

(v) Because zUIJ is defined to be a subset of UJ , it is sometimes convenient to think
of an element zx 2 zUIJ as an element in UJ , omitting the notation for the inclusion
map z�IJ W zUIJ ! UJ . Þ

The next step is to consider restrictions and composites of coordinate changes. Re-
strictions exist analogously to [14, Lemma 5.2.6]: for I � J , given a coordinate
change ŷIJ W KI jUIJ!KJ and restrictions K 0I WDKI jU 0I

and K 0J WDKJ jU 0J
whose

footprints F 0I\F
0
J have nonempty intersection, there is an induced restricted coordinate

change ŷIJ jU 0IJ W K
0
I jU

0
IJ
! K 0J for any open subset U 0IJ � U IJ satisfying the

conditions

(2.2.5) U 0IJ � U
0
I \�

�1

IJ
.U 0J /; U 0IJ \ s�1I .0/D  �1

I
.F 0I \F

0
J /:

However, coordinate changes now do not directly compose due to the coverings involved.
The induced coordinate changes on the intermediate charts still compose directly, but
the analog of [14, Lemma 5.2.7] is the following.
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Lemma 2.2.10 Let I � J �K (so that automatically FI � FJ � FK ) and suppose
that ŷIJ W KI !KJ and ŷJK W KJ !KK are coordinate changes with domains U IJ
and U JK respectively. Then:

(i) The domain U IJK WD U IJ \��1IJ .U JK/� U I defines a restriction KI jUIJK
of KI to FK .

(ii) The composite �IJK WD �IJ ı �JK W zUIJK ! UIJK WD ��1I .U IJK/ is de-
fined on zUIJK WD ��1K ..�

JK
ı �

IJ
/.U IJK// via the natural identification of

�JK. zUIJK/ � UJ with a subset of zUIJ . Together with the natural projection
��IK W �K ! �I with kernel �KnI , which factors ��IK D �

�
IJ ı �

�
JK , this forms

a group covering . zUIJK ; �K ; �IJK ; ��IK/ of .UIJK ; �I /.

(iii) The inclusion z�IJK W zUIJK ,! UK , taken together with the natural inclusion
y�IK W EI ! EK (which factors y�IK D y�JK ı y�IJ ) and �IJK , satisfies (2.2.1)
and the index condition with respect to the indices I;K .

Hence this defines a composite coordinate change

ŷ
JK ı

ŷ
IJ WD

ŷ
IJK D .z�IJK ; y�IK ; �IJK/

from KI to KK with domain U IJK .

Proof The corresponding statement for the induced coordinate changes for the inter-
mediate charts is proved in [13, Lemma 2.2.5]. Thus claim (i) follows from part (i) of
[13, Lemma 2.2.5].

To see that �IJK in (ii) is well defined, we need to verify that �JK. zUIJK/ � zUIJ ,
or (due to equivariance) equivalently �

JK
. zU IJK/� zU IJ . For that purpose we drop

the natural identifications z�
IJ
W zU IJ ! U J from the notation so that the intermediate

coordinate changes are �
IJ
D ��1

IJ
W U IJ ! zU IJ � U J and the inclusion follows

from
�
JK
. zU IJK/D �JK

..�
JK
ı�

IJ
/.U IJ \�

�1

IJ
.U JK///

D .�
JK
ı�

JK
/. zU IJ \U JK/

D zU IJ \U JK :

Next, observe that composites of group covering maps are also group covering maps.
In particular, since �KnJ acts freely on zUIJK � zUJK and �JnI acts freely on the
quotient zUIJK=�KnJ (because it is identified �J –equivariantly with a subset of zUIJ ),
the group �KnI Š �KnJ ��JnI acts freely on zUIJK .
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To prove (iii), first observe that (2.2.1) holds for the index pair IK because it holds for
IJ and JK :

sK ı z�IJK D y�JK ı sJ ı �JK j zUIJK

D y�JK ı .y�IJ ı sI ı �IJ / ı �JK j zUIJK

D y�IK ı sI ı �IJK on zUIJK ;

 K ı z�IJK D  J ı �JK

D  I ı �IJ ı �JK

D  I ı �IJK on s�1K .0/\ zUIJK :

Finally, it is easiest to check the index condition in the form given in (2.2.3), ie we
need to establish isomorphisms for all u 2 zUIJK ,

(2.2.6) dz�IJK.u/sK W Tz�IJK.u/UK=du z�IJK.Tu zUIJK/ �!
Š

EK=y�IK.EI /:

Here and below we will suppress the natural embedding z�IJK W zUIJK ! UK from
the notation, hence identifying eg u 2 zUIJK with z�IJK.u/ 2 UK . With that, the
quotient on the left is naturally identified with the normal fiber TuUK=Tu zUIJK to the
submanifold zUIJK of UK . Next, zUIJK is by construction a submanifold of zUJK ,
which in turn is a submanifold of UK , hence this normal fiber is isomorphic to the
direct sum of the normal fiber of zUIJK in zUJK together with that of zUJK in UK ,

TuUK=Tu zUIJK Š TuUK=Tu zUJK ˚Tu zUJK=Tu zUIJK :

By the index condition for ŷJK , the map dusK restricted to the first summand in-
duces an isomorphism TuUK=Tu zUJK �!

Š
EK= ŷJK.EJ /. Considering the second

summand, recall that on zUJK we have sK D sJ ı �JK , where �JK W zUJK ! UJK is
a local diffeomorphism onto an open subset of UJ . It maps zUIJK to �JK. zUIJK/D
zUIJ \ UJK so that, with v WD �JK.u/, the map du�JK induces an isomorphism
Tu zUJK=Tu zUIJK �!

Š TvUJ =Tv zUIJ . Thus the restriction of dusK to the second
summand induces the isomorphism

dvsJ ı du�JK W Tu zUJK=Tu zUIJK �!
Š TvUJ =Tv zUIJ �!

Š
EJ = ŷIJ .EI /;

where the second isomorphism results from the index condition for ŷIJ . Putting this
all together, dusK induces an isomorphism from TuUK=Tu zUIJK to

EK= ŷJK.EJ /˚EJ = ŷIJ .EI /ŠEK= ŷIK.EI /;

where in the last step we used the fact that ŷJK W EJ !EK is the natural inclusion.
This establishes the isomorphism (2.2.6) and thus completes the proof.
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Remark 2.2.11 The composition ŷIJK W KI ! KK induces a coordinate change
ŷ
IJK W KI !KK on the intermediate charts. This agrees with the composition of the

intermediate coordinate changes ŷIJ ; ŷJK as defined for topological charts in [13,
Lemma 2.2.5]. Þ

Next, the cocycle conditions from [13, Definition 2.3.2] have direct generalizations.

Definition 2.2.12 Let K˛ for ˛ D I; J;K be Kuranishi charts with I � J �K , and
let ŷ˛ˇ W K˛jU˛ˇ! Kˇ for .˛; ˇ/ 2 f.I; J /; .J;K/; .I;K/g be coordinate changes.
We say that this triple ŷIJ ; ŷJK ; ŷIK satisfies the

� weak cocycle condition if ŷJK ı ŷIJ � ŷIK are equal on the overlap, in the
sense that

(2.2.7) �IK D �IJ ı �JK on zUIK \ ��1JK. zUIJ \UJK/I

� cocycle condition if ŷJKı ŷIJ � ŷIK , ie ŷIK extends the composed coordinate
change in the sense that (2.2.7) holds and

(2.2.8) U IJ \�
�1

IJ
.U JK/� U IK I

� strong cocycle condition if ŷJK ı ŷIJ D ŷIK are equal as coordinate changes,
that is if (2.2.7) holds and

(2.2.9) U IJ \�
�1

IJ
.U JK/D U IK :

We stated these last two conditions on the level of the intermediate category because, as
we now show, they imply corresponding identities on the level of the Kuranishi atlas.

Lemma 2.2.13 (i) Condition (2.2.7) implies

�
IK
D �

JK
ı�

IJ
on U IK \ .U IJ \�

�1

IJ
.U JK//I

(ii) The cocycle condition (2.2.8) implies that

�IK D �IJ ı �JK on ��1JK.
zUIJ \UJK/� zUIK :

(iii) The strong cocycle condition (2.2.9) implies that

�IK D �IJ ı �JK on ��1JK.
zUIJ \UJK/D zUIK :

Proof By definition, �
˛ˇ
ı�ˇ D �˛ ı �˛ˇ when ˛ � ˇ , so condition (2.2.7) implies

�
IK
D �

IJ
ı �

JK
on �K. zUIK \ ��1JK. zUIJ \UJK//:
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The identity �
˛ˇ
D ��1

˛ˇ
from Remark 2.2.9(iii) then implies �

IK
D �

JK
ı�

IJ
on

�
IK
.�K. zUIK\�

�1
JK.
zUIJ\UJK/// D �I .�IK. zUIK \ �

�1
JK.
zUIJ \UJK///

D �I .�IK. zUIK/\ �IJ ı �JK.�
�1
JK.
zUIJ \UJK///

D �I .UIK \ �IJ . zUIJ \UJK//

D U IK \ .U IJ \ �IJ
.U JK//

D U IK \ .U IJ \�
�1

IJ
.U JK//;

where the second equality uses �IK D �IJ ı �JK on zUIK \ ��1JK. zUIJ \UJK/, and
the last uses �

IJ
D ��1

IJ
. This proves (i).

Using in addition the identities U˛ˇ D ��1˛ .U ˛ˇ / and zU˛ˇ D ��1ˇ .�
˛ˇ
.U ˛ˇ //, the

cocycle condition (2.2.8) implies the inclusion claimed in (ii),

��1JK.
zUIJ \UJK/D .�J ı �JK/

�1.�
IJ
.U IJ /\U JK/

D .�
IJ
ı �

IK
ı�K/

�1.�
IJ
.U IJ /\U JK/

D .�
IK
ı�K/

�1.U IJ \�
�1

IJ
.U JK// � ��1K .��1

IK
.U IK//

D zUIK :

The proof of (iii) is the same, with the strong cocycle condition implying equality in
the second to last step.

2.3 Kuranishi atlases

With the notions of Kuranishi charts and coordinate changes with nontrivial isotropy
in place, we can now directly extend the notion of smooth Kuranishi atlas from [14,
Definition 6.1.3]. For comparison with the notions of smooth and topological Kuranishi
atlas from [13; 14], see Remark 2.2.1.

Definition 2.3.1 A (weak) Kuranishi atlas of dimension d on a compact metrizable
space X is a tuple

KD .KI ; ŷIJ /I;J2IK;I¨J

consisting of a covering family of basic charts .Ki /iD1;:::;N of dimension d and
transition data .KJ /jJ j�2 , . ŷIJ /I¨J for .Ki /iD1;:::;N , where:

� A covering family of basic charts for X is a finite collection .Ki /iD1;:::;N of
Kuranishi charts for X whose footprints cover X D

SN
iD1 Fi .

� Transition data for a covering family .Ki /iD1;:::;N is a collection of Kuranishi
charts .KJ /J2IK;jJ j�2 and coordinate changes . ŷIJ /I;J2IK;I¨J as follows:
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(i) IK denotes the set of subsets I � f1; : : : ; N g for which the intersection of
footprints is nonempty,

FI WD
\
i2I

Fi ¤∅:

(ii) For each J 2 IK with jJ j � 2, KJ is a Kuranishi chart for X with
footprint FJ D

T
i2J Fi , group �J D

Q
j2J �j , and obstruction space

EJ D
Q
j2JEj . Further, for one element sets J Dfig we denote Kfig WDKi .

(iii) ŷIJ D .�IJ ; ��IJ ; y�IJ / is a coordinate change KI!KJ for every I; J 2IK
with I ¨ J , where ��IJ W �J ! �I is the natural projection

Q
j2J �j !Q

i2I �i and y�IJ W EI!EJ is the natural inclusion
Q
i2I Ej !

Q
j2J Ej .

For a weak atlas we require that the weak cocycle condition in Definition 2.2.12 hold
for every triple I; J;K 2 IK with I ¨ J ¨K , while for an atlas the cocycle condition
must hold for all such triples.

Remark 2.3.2 Note that we have built additivity in the sense of [14, Definition 6.1.5]
into the above definitions. Namely, the natural embeddings y�iI W Ei !EI D

Q
`2IE`

for each I 2 IK induce the identity isomorphism

(2.3.1)
Y
i2I

y�iI W
Y
i2I

Ei �!
Š

EI D
Y
`2I

E`;

and for I � J the linear map y�IJ W EI ! EJ is the induced inclusion
Q
i2I Ei !Q

i2J Ei . Further, each group �I is the product
Q
i2I �i and we use the natural

projections ��IJ W �J ! �I in the group covering maps of the coordinate changes.
Hence, when I �J �K the projections ��

��
and linear inclusions y��� are automatically

compatible:
��IK D �

�
IJ ı �

�
JK ;

y�IK D y�JK ı y�IJ :

So when I �J we will almost always write EI �EJ for the subspace y�IJ .EI /�EJ ,
and similarly we have a natural identification of �J with �I ��JnI . Þ

Remark 2.3.3 Although it seems that many interdependent choices are needed in
order to construct a Kuranishi atlas, this is somewhat deceptive. For example, in
the Gromov–Witten case considered in [10] (see also [10]), the geometric choices
involved in the construction of a family of basic charts .Ki /iD1;:::;N essentially induce
the transition data as well. Namely, each basic chart Ki is constructed by adding
a certain tuple Ewi of marked points to the domains of the stable maps .f; z/, given
by the preimages of a fixed hypersurface of M in a fixed set of disjoint disks. The
group �i acts by permuting these disks, which has a rather nontrivial effect when
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viewing the chart in a local slice, in which the first three marked points are fixed.
However, the transition charts KJ are constructed very similarly: Elements of the
domain UJ consist of stable maps .f; z/ together with jJ j sets of added tuples of
marked points . Ewj /j2J , each lying in an appropriate set of disks and mapping to certain
hypersurfaces. Each factor �j of the group �J acts by permuting the components of
the j th set of disks, leaving the others alone. Moreover, the covering map zUIJ ! UI
simply forgets the extra tuples . Ewj /j2JnI . Thus it is immediate from the construction
that the group �JnI acts freely on the subset zUIJ of UJ , and that the covering map
is equivariant in the appropriate sense. Further, when I � J � K the compatibility
condition �IK D �IJ ı �JK holds whenever both sides are defined.

Furthermore, the stabilization process explained in [10] (see also [13, Remark 6.1.6])
allows us to directly work with products of obstruction spaces EI WD

Q
i2I Ei ; there is

no need for a transversality requirement such as Sum Condition II 0 in [13, Section 4.3].
In fact, already each Ei is a product of the form Ei D

Q
2�i

.E0i / , on which �i
acts by permutation of the j�i j copies of a vector space E0i . Therefore, just as in the
case with no isotropy, once given the geometric choices that determine the basic charts,
we naturally obtain an additive weak Kuranishi atlas in which the only new choices
are those of the domains U I D U II and U IJ of the transition charts and coordinate
changes which are required to intersect the zero set s�1I .0/ in  �1

I
.FJ /. Note that

there is no simple hierarchy by which one could organize these choices to automatically
fulfill the cocycle condition. Hence concrete constructions will usually only satisfy
a weak cocycle condition. However, we show below that any weak (automatically
additive) atlas can be “tamed” so that it satisfies the strong cocycle condition, and hence
in particular gives a Kuranishi atlas. Þ

Given a (weak) atlas KD .KI ; ŷIJ /I;J2IK; I¨J , we define the associated intermediate
atlas K WD .KI ; ŷIJ /I;J2IK; I¨J to consist of the intermediate charts and coordinate
changes. The next lemma shows that the intermediate atlas is a (weak) topological atlas
in the sense of [13, Definition 3.1.1], and that it is filtered in the sense that there are
closed sets EIJ �EJ WDUJ �EJ for each I �J that satisfy the following conditions
(cf [13, Definition 3.1.3]):

(i) EJJ D EJ and E∅J D im 0J for all J 2 IK ;

(ii) ŷJK.pr�1J .U JK/ \ EIJ / D EIK \ pr�1K .im�
JK
/ for all I; J;K 2 IK with

I � J ¨K ;

(iii) EIJ \EHJ D E.I\H/J for all I;H; J 2 IK with I;H � J ;

(iv) im�
IJ

is an open subset of s�1J .EIJ / for all I; J 2 IK with I ¨ J .
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Lemma 2.3.4 Let K be a weak Kuranishi atlas. Then the intermediate atlas K is a
filtered weak topological Kuranishi atlas, with filtration EIJ WD UJ � y�IJ .EI /, using
the conventions E∅ WD f0g and y�JJ WD idEJ .

Proof Lemma 2.2.4 and Remark 2.2.9(iii) assert that K consists of topological Ku-
ranishi charts and coordinate changes. The intermediate basic charts cover X since
they have the same footprints as the basic charts of K , and this also implies that
the intermediate transition charts have the prescribed footprints. Moreover, the weak
cocycle condition for K transfers to K by Lemma 2.2.13(i), and the same holds for the
cocycle condition since its definition (2.2.8) is in terms of the intermediate domains.

Next, to see that EIJ defines a filtration on K , we need a mild generalization of
[14, Lemma 6.3.1]. First note that UJ�y�IJ .EI / � UJ�EJ is closed since UJ�
y�IJ .EI / � UJ�EJ is closed and the projection UJ �EJ ! UJ �EJ is a closed
map by Lemma 2.1.5(i). The filtration property (i) above holds by definition, and
property (iii) holds because additivity implies

y�IJ .EI / \ y�HJ .EH / D y�.I\H/J .EI\H /:

Moreover, because ŷJK D �JK � y�JK , property (ii) follows by quotienting the next
identity by the group �K ,

ŷ
JK.UJK � y�IJ .EI //D im�JK � y�JK.y�IJ .EI //

D im�JK � y�IK.EI /

D .UK � y�IK.EI //\ .im�JK �EK/:

Finally, to check property (iv) we first apply [14, Lemma 5.2.5] to the embedding
z�IJ W zUIJ ! UJ , which satisfies the index condition, ie identifies kernel and cokernel
of dsJ and dsI (the latter being pulled back with the covering �IJ ). It implies that
im z�IJ is an open subset of s�1J .EI /. This openness is preserved in the �J quotient,
since Lemma 2.1.5 applies to the projection

s�1J .EI /! s�1J .EI /=�J D s�1J .UJ �EI /D s�1J .EIJ /;

which maps im�IJ to im�
IJ

.

If K is a Kuranishi atlas, then the topological atlas K also satisfies the cocycle conditions,
and hence by [13, Lemma 2.3.7] there is an intermediate domain category BK with
objects ObjBK

WD
F
I2IKU I equal to the disjoint union of the intermediate domains,

and morphisms
MorBK WD

G
I�J

U IJ
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given by the intermediate coordinate changes �
IJ
W U IJ ! U J , where the identity

maps �
II

on U II D U I are included. Thus the source and target maps are

s � t W U IJ ! U I �U J � ObjBK
�ObjBK

; .I; x/ 7! ..I; x/; .J; �
IJ
.x///:

The following gives the analogous categorical interpretation for the Kuranishi atlas
itself.

Definition 2.3.5 Given a Kuranishi atlas K we define its domain category BK to
consist of the space of objects

ObjBK
WD

G
I2IK

UI D f.I; x/ j I 2 IK; x 2 UI g

and the space of morphisms

MorBK WD

G
I;J2IK; I�J

zUIJ ��I D f.I; J; y; / j I � J; y 2 zUIJ ;  2 �I g:

Here we denote zUII WDUI for I DJ , and for I ¨J use the lifted domain zUIJ �UJ of
the restriction KI jUIJ to FJ that is part of the coordinate change ŷIJ W KI jUIJ!KJ .
Source and target of these morphisms are given by

(2.3.2) .I; J; y; / 2MorBK

�
.I; �1�IJ .y//; .J; z�IJ .y//

�
;

where we denote z�II D id. Composition4 is defined by

.I; J; y; / ı .J;K; z; ı/ WD .I;K; zDz��1IK.
z�JK.z//; �

�
IJ .ı//

whenever ı�1�JK.z/D z�IJ .y/.

The obstruction category EK is defined in complete analogy to BK to consist of the
spaces of objects ObjEK

WD
F
I2IK UI �EI and morphisms

MorEK WD

G
I�J; I;J2IK

zUIJ �EI ��I ;

with source and target maps

.I; J; y; e; / 7! .I; �1�IJ .y/; 
�1e/; .I; J; y; e; / 7! .J; z�IJ .y/; y�IJ .e//;

4Note that we write compositions in the categorical ordering here. Recall that z�JK W zUJK!UK is the
canonical inclusion of the subset zUJK � UK . We then identify z D z��1

IK
.z�JK.z// , since composability

of the morphisms implies z 2 ��1
JK
. zUIJ \UJK/ and the cocycle condition ensures that ��1

JK
. zUIJ \UJK/

is contained in zUIK , where both are considered as subsets of UK .
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and composition defined by

.I; J; y; e; / ı .J;K; z; f; ı/ WD
�
I;K; z��1IK.

z�JK.z//; f; �
�
IJ .ı/

�
for any I � J �K and .y; e; / 2 zUIJ �EI ��I ; .z; f; ı/ 2 zUJK �EJ ��J such
that ��IJ .ı

�1/�JK.z/D z�IJ .y/ and ı�1f D e .

Lemma 2.3.6 If K is a Kuranishi atlas, then the categories BK;EK are well defined.

Proof We must check that the composition of morphisms in BK is well defined, has
identities, and is associative; the proof for EK is analogous. We begin by checking
that z D z��1IK.z�JK.z// lies in the lifted domain zUIK of ŷIK . For that purpose
we drop the natural inclusions z��� from the notation and note that the composition
.I; J; y; /ı.J;K; z; ı/ is defined only when the target of .I; J; y; / equals the source
of .J;K; z; ı/; ie when yD ı�1�JK.z/. So the cocycle condition in Lemma 2.2.13(ii)
implies that z 2 ��1JK.ıy/ is contained in ��1JK. zUIJ \UJK/� zUIK , as claimed. This
means that .I;K; z; ��IJ .ı// is a well-defined morphism of BK . Its source is

.��IJ .ı//
�1�IK.z/D 

�1��IJ .ı/
�1�IJ .ıy/D 

�1�IJ .y/;

which coincides with the source of .I; J; y; / as required. Finally, the target of the
composed morphism, z D z�IK.z��1IK.z�JK.z// coincides with the target z�JK.z/ of
.J;K; z; ı/. This shows that composition is well defined. The identity morphisms
are given by .I; I; x; id/ for all x 2 UII WD UI . To check associativity we consider
I � J � K � L and suppose that the three morphisms .I; J; y; /, .J;K; z; ı/,
.K;L;w; �/ are composable. Then we have

.I; J; y; / ı
�
.J;K; z; ı/ ı .K;L;w; �/

�
D .I; J; y; / ı .J; L;w; ��JK.�/ı/

D .I; L;w; ��IJ .�
�
JK.�/ı//;

and associativity follows from comparing this expression with�
.I; J; y; / ı .J;K; z; ı/

�
ı .K;L;w; �/D .I;K; z; ��IJ .ı// ı .K;L;w; �/

D .I; L;w; ��IK.�/�
�
IJ .ı//:

This completes the proof.

For the rest of this subsection we will make the standing assumption that K is a
Kuranishi atlas, ie satisfies the cocycle condition (not just the weak cocycle condition).
Given the categorical interpretation of domains and obstruction spaces of Kuranishi
charts, we can now express the bundles, sections and footprint maps as functors:

Geometry & Topology, Volume 21 (2017)



Smooth Kuranishi atlases with isotropy 2749

� The obstruction category EK is a bundle over BK in the sense that there is a
functor prKW EK!BK that is given on objects and morphisms by projection
.I; x; e/ 7! .I; x/ and .I; J; y; e; / 7! .I; J; y; /.

� The sections sI induce a smooth section of this bundle, ie a functor sKW BK!EK
which acts smoothly on the spaces of objects and morphisms, and whose compos-
ite with the projection prKW EK!BK is the identity. More precisely, sK is given
by .I; x/ 7! .I; x; sI .x// on objects and by .I; J; y; / 7! .I; J; y; sI .y/; /

on morphisms.
� The zero sections also fit together to give a functor 0KW BK ! EK given by
.I; x/ 7! .I; x; 0/ on objects and by .I; J; y; / 7! .I; J; y; 0; / on morphisms.

� The footprint maps  I induce a surjective functor

 KW s
�1
K .0/ WD

G
I2IK

s�1I .0/!X

to the category X with object space X and trivial morphism spaces. It is given by
.I; x/ 7! I .x/ on objects and by .I; J; y; / 7! id

 J .z�IJ .y//
D id I .�1�IJ .y//

on morphisms.

As in [13] we denote by jKj (resp. jKj) the realization of the category BK (resp. BK ).
This is the topological space obtained as the quotient of the object space by the
equivalence relation generated by the morphisms. The next lemma fits the quotient
maps �KW ObjBK

! jKj, .I; x/ 7! ŒI; x� and �KW ObjBK
! jKj, .I; x/ 7! ŒI; x� into

a commutative diagram that will allow us to identify the realizations jKj Š jKj as
topological spaces.

Lemma 2.3.7 If K is a Kuranishi atlas, then there is a functor �KW BK!BK that is
given on objects by the quotient maps UI ! U I , x 7! x , and on morphisms by the
group coverings �IJ together with a quotient,

zUIJ ��I ! U IJ ; .I; J; y; / 7! .I; J; �IJ .y//:

It induces a homeomorphism j�KjW jKj ! jKj between the realizations that fits into a
commutative diagram:

ObjBK

�K

��

�K // ObjBK

�K

��
jKj

j�Kj // jKj

Proof To see that �K is a functor, recall that .y; /2 zUIJ ��I represents a morphism
from �1�IJ .y/ to y 2UJ . On the other hand, �IJ .y/D �IJ .y/ 2U IJ represents a
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morphism from �IJ .y/D
�1�IJ .y/ to �

IJ
.�IJ .y//Dy , which shows compatibility

of �K with source and target maps. Compatibility with composition as in (2.3.2) follows
from �

IK
.z/D �

IJ
.y/ when y D �

JK
.z/.

Next, any functor such as �K induces a map j�Kj between the realizations that is defined
exactly by the above commutative diagram. The map j�Kj is surjective because the
functor �K is surjective on the level of objects. It is injective because �K is surjective
on the level of morphisms.

To check that j�Kj is open and continuous note that j�Kj.U / D V is equivalent to
��1K .��1K .U //D ��1K .V /. Since �K is continuous and open by Lemma 2.1.5(i), and
jKj, jKj are equipped with the quotient topologies, the openness of U � jKj, ��1K .U /,
��1K .V / and V � jKj are all equivalent. This proves that j�Kj is a homeomorphism.

Remark 2.3.8 (i) If K is a Kuranishi atlas with trivial isotropy groups �I Dfidg, then
the intermediate atlas K has the exact same object space and naturally diffeomorphic
morphism spaces, only the direction of the maps in the coordinate changes are reversed
from �IJ W zUIJ ! UIJ � UI to �

IJ
D ��1IJ W UIJ !

zUIJ � UJ . In this special case,
K is a Kuranishi atlas in the sense of [14], and Lemma 2.3.7 identifies the atlases and
their realizations.

(ii) In general, the spaces of objects and morphisms of the intermediate category are
orbifolds, and there is at most one morphism between any pair of objects. However, just
as in the case of trivial isotropy, we do not attempt to make this category into a groupoid
by formally inverting the morphisms and then adding all resulting composites, since
doing so would in general give components of the morphism space without orbifold
structure; cf [14, Remark 6.1.8]. This objection does not apply if all the obstruction
spaces are trivial. It is shown in [10; 11] that every such atlas can be completed to a
groupoid without changing its realization. Þ

In complete analogy to Lemma 2.3.7, the obstruction categories EK and EK of the
Kuranishi atlas K and the intermediate atlas K also fit into a commutative diagram that
identifies their realizations jEKj Š jEKj. Moreover, these two diagrams also intertwine
the section functors sK , sK and their realizations:

(2.3.3)

ObjBK

�Koo

�K

��

sK // ObjEK

�EK
��

// ObjEK

�EK

��

oo
sK

ObjBK

�K

��

oo�K

jKj
j�Kjoo jsKj // jEKj // jEKj jKj

jsKjoo oo j�Kj

There are analogous diagrams for the projection functors prK , prK and zero sections 0K
and 0K , which identify the induced maps between the realizations as stated below.
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Lemma 2.3.9 Let K be a Kuranishi atlas.

(i) The functors prKW EK!BK , prKW EK!BK induce the same continuous map

jprKjW jEKj ! jKj;

which we call the obstruction bundle of K , although its fibers generally do not
have the structure of a vector space.

(ii) The zero sections 0KW BK!EK , 0KW BK!EK as well as the section functors
sKW BK!EK , sKW BK!EK induce the same continuous maps

j0Kj Š j0KjW jKj ! jEKj; jsKj Š jsKjW jKj ! jEKj;

which are sections in the sense that jprKj ı j0Kj D idjKj D jprKj ı jsKj.

(iii) There is a natural homeomorphism from the realization of the subcategory s�1K .0/

to the zero set of jsKj, with the relative topology induced from jKj,

js�1K .0/j D s�1K .0/=� �!
Š
jsKj
�1.j0Kj/ WD

˚
ŒI; x�

ˇ̌
jsKj.ŒI; x�/Dj0Kj.ŒI; x�/

	
� jKj:

Proof The induced maps on the realizations are identified by commutative diagrams
such as (2.3.3). The continuity and other identities are proven exactly as in [14,
Lemma 6.1.10] for the case of trivial isotropy.

Next, we extend the notion of metrizability to Kuranishi atlases with nontrivial isotropy.
In the case of trivial isotropy, recall from [14, Definition 6.1.14] that an admissible
metric is a bounded metric d on the set jKj such that for each I 2 IK the pullback
metric dI WD .�KjUI /

�d on UI induces the given topology on the manifold UI .
However, in the presence of isotropy, it makes no sense to try to pull this metric back
to UI since the pullback of a metric by a noninjective map is no longer a metric.
Instead, we use the fact that the realizations jKj Š jKj of the Kuranishi atlas and its
intermediate atlas are canonically identified, which allows us to work with admissible
metrics on jKj, which is the realization of a topological Kuranishi atlas K with trivial
isotropy and given metrizable topologies on the domains U I D UI=�I .

Definition 2.3.10 Let K be a Kuranishi atlas. Then an admissible metric on jKj Š jKj
is a bounded metric on this set (not necessarily compatible with the topology of the
realization) such that for each I 2 IK the pullback metric dI WD .�KjUI /

�d on U I
induces the given quotient topology on U I D UI=�I .

A metric Kuranishi atlas is a pair .K; d / consisting of a Kuranishi atlas K together
with a choice of admissible metric d on jKj.
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We finish this subsection with two comparisons of our notion of Kuranishi atlas: on the
one hand with orbifolds, and on the other hand with Kuranishi structures.

Example 2.3.11 If the obstruction spaces are trivial, ie EI D f0g for all I , then the
two categories BK , EK are equal, and their realization is an orbifold. A first nontrivial
example is a “football” X D S2 with two basic Kuranishi charts

.U1; �1 D Z2;  1/; .U2; �2 D Z3;  2/;

covering neighborhoods  
i
.U i / � S

2 of the northern (resp. southern) hemisphere
with isotropy of order 2 (resp. 3) at the north (resp. south) pole. We may moreover
assume that the overlap  

1
.U 1/ \  2

.U 2/ D A is an annulus around the equator.
The restrictions of the basic charts to A�X are .A1;Z2/ and .A2;Z3/, where both
Ai D  

�1
i .A/ are annuli, but the freely acting isotropy groups are different. There is

no functor between these restrictions because the coverings A1! A and A2! A are
incompatible. However, they both have functors (ie coordinate changes) to a common
free covering, namely the pullback defined by the diagram

U12

��

// A1

�1
��

A2
�2
// A�X

ie U12 WD f.x; y/ 2A1�A2 j �1.x/D�2.y/g with group �12 WD �1��2 DZ2�Z3 .
The corresponding footprint map  12W U12!A is the 6–fold covering of the annulus,
and the coordinate changes from .Ui ; �i ;  i /jA to .U12; �12;  12/ are the coverings
zUi;12 WDU12!Ai DWUi;12 in the diagram. Therefore the category BK in this example
has index set IK D f1; 2; 12g, objects the disjoint union

F
I2IK UI , and morphisms� G

I2IK

UI ��I

�
[

� G
iD1;2

U12 ��i

�
;

where for i D 1; 2 the elements in U12��i represent the morphisms from Ui to U12 .

This simple construction does not work for arbitrary orbifolds since the (set-theoretic)
pullback U12 considered above will not be a smooth manifold if any point in  1.U1/\
 2.U2/ has nontrivial stabilizer. However, we show in [11, Proposition 3.3] that the
construction can be generalized to show that every orbifold has a Kuranishi atlas with
trivial obstruction spaces. Þ

Remark 2.3.12 (relation to Kuranishi structures) A Kuranishi structure in the sense
of [3, Appendix A] and [4] consists of a Kuranishi chart Kp at every point p 2 X
and coordinate changes KqjUqp!Kp whenever q 2 Fp , that satisfy a suitable weak
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cocycle condition. Much as in the case of Kuranishi atlases with trivial isotropy (see [14,
Remark 6.1.16]), a weak Kuranishi atlas in the sense of Definition 2.3.1 induces a
Kuranishi structure. Indeed, given a covering family of basic charts .Ki /iD1;:::;N with
footprints Fi , we may choose a family of compact subsets Ci � Fi that also cover X .
Then we use the transition data .KI ; ŷIJ / and weak cocycle conditions to obtain a
Kuranishi structure as follows:

� For any p 2 X , we define Kp WD KIp jUp to be a restriction of KIp , where
Ip WD fi j p 2 Cig and Up � UIp is an open subset such that the footprint

Fp WD  Ip .s
�1
Ip
.0/\Up/

is a neighborhood of p and contained in
T
i2Ip

Fi n
S
i…Ip

Ci . Here we use a more gen-
eral notion of restriction than Definition 2.2.6, in that we allow for a domain Up that is in-
variant only under a subgroup �p ��Ip such that the induced map Up=�p!UIp=�Ip
is a homeomorphism to its image. More precisely, to satisfy the minimality requirements
of [3, Appendix A1.1], we choose a lift xp 2 ��1.p/\UIp , set �p WD �

xp
Ip

to be its
stabilizer in �Ip , and take the domain Up � UIp to be a �xpIp –invariant neighborhood
of xp , which exists with the required topological properties by Lemma 2.1.5(ii).

� For q 2 Fp we have Iq � Ip , since by construction Fp \ Ci D ∅ for i 62 Ip .
So we obtain a coordinate change5 ŷ qpW Kq ! Kp from a suitable restriction of
ŷ
IqIp to a �xqq –invariant neighborhood Uqp � Uq of xq . More precisely, we choose

Uqp � Uq small enough so that the projection �IqIp W Up \ zUIqIp ! UIqIp has a
continuous section over Uqp . Writing zUqp for its image we thus obtain an embedding
�qp WD ��1IqIp W Uqp !

zUqp � Up \ zUIqIp . Since the projection �IqIp induces an
isomorphism on stabilizer subgroups by Lemma 2.1.5(iii), this is equivariant with
respect to a suitable injective homomorphism hqpW �q! �p and induces an injection

�qpW U qp WD Uqp=�q ! Up WD Up=�p:

By construction of U q! U Iq above, the map U qp D Uqp=�q ! U Iq D UIq=�Iq
is a homeomorphism to its image, and similarly for p . Thus we can identify �qp with
a suitable restriction of the map �IqIp underlying the coordinate change ŷIqIp in the
given Kuranishi atlas. The coordinate change ŷ qp D .Uqp; �qp/ is then given by the
domain Uqp and the restriction of �IqIp to U qp � U q .

Further, the weak cocycle condition for K implies the compatibility condition required
by [3], namely for all triples p; q; r 2X with q 2 Fp and

r 2  q.Uqp \ s
�1
q .0//� Fq \Fp;

5 While [3] denotes this coordinate change by �pq , we will write ŷqp for consistency with our
notation ˆIJ W KI !KJ .
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the equality �
qp
ı�

rq
D �

rp
holds on the common domain ��1

rq
.U qp/\U rp of the

maps in this equation.

� This atlas satisfies the effectivity condition required by [3] only if the action of �p
on Up is locally effective in the sense that s�1p .0/ has a �p –invariant open neighborhood
that is disjoint from the interior of the fixed point set Fix./�Up for each  2�pnfidg.

With this construction, we lose the distinction between basic charts and transition charts,
and also in general can no longer recover the original transition charts with their group
actions from the Kuranishi structure. Indeed, [4] works with a “good coordinate system”
(an analog of our notion of reduction in Definition 3.2.1) that is defined on the orbifold
level, ie on the level of the intermediate category. Notice also that the construction of
a Kuranishi structure given for example in [4] essentially follows the above outline,
and in particular starts with a finite covering family of basic charts and uses transition
charts much like ours, though they are more localized and are not required to cover
the full footprint FI . However, the properties of these charts are never explicitly
formulated. Indeed our work started by trying to understand precisely this point in
their construction. Though it is not clear how relevant the extra information contained
in a Kuranishi atlas is to the question of how to define Gromov–Witten invariants for
closed curves, it might prove useful in other situations, for example in the case of
orbifold Gromov–Witten invariants, or in the recent work of Fukaya et al [5], where the
authors consider a process that rebuilds a Kuranishi structure from a coordinate system.
Further, our categorical formulation makes it very easy to give an explicit description
and construction for sections as in Definition 3.2.4. Þ

2.4 Kuranishi cobordisms and concordance

This section extends the notions of cobordism and concordance developed in [13,
Section 4] and [14, Section 6.2] to the case of smooth Kuranishi atlases with nontrivial
isotropy. It is a straightforward generalization that can be skipped until precise concor-
dance notions are needed in the proof of Theorem 2.5.3. We begin by summarizing the
topological cobordism notions from [13, Section 4.1].

A collared cobordism .Y; �0Y ; �
1
Y / is a separable, locally compact, metrizable space Y

together with disjoint (possibly empty) closed subsets @0Y , @1Y � Y and equipped
with collared neighborhoods

�0Y W Œ0; "/� @Y
0
! Y; �1Y W .1� "; 1�� @Y

1
! Y;

for some " > 0. The latter are homeomorphisms onto disjoint open neighborhoods of
@˛Y � Y , extending the inclusions �˛Y .˛; � /W @

˛Y ,! Y for ˛ D 0; 1. We call @0Y
and @1Y the boundary components of .Y; �0Y ; �

1
Y /. The main example is the trivial
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cobordism Y D Œ0; 1��X with the natural inclusions �˛Y W A
˛
" �X! Œ0; 1��X , where

we denote
A0" WD Œ0; "/ and A1" WD .1� "; 1�; for 0 < " < 1

2
:

Next, a subset F � Y is collared if there is 0 < ı � " such that for ˛ D 0; 1 we have

(2.4.1) F \ im.�˛Y /¤∅ ” F \ �˛Y .A
˛
ı � @

˛Y /D �˛Y .A
˛
ı � @

˛F /;

where the intersections with the boundary components @˛F WDF \@˛Y may be empty.

In the notion of Kuranishi cobordism, we will require all charts and coordinate changes
to be of product form in sufficiently small collars, as follows.

Definition 2.4.1 Let .Y; �0Y ; �
1
Y / be a compact collared cobordism.

� Given a Kuranishi chart K˛ D .U ˛; E˛; �˛; s˛;  ˛/ for @˛Y and an open subset
A� Œ0; 1�, the product chart for Œ0; 1�� @˛Y with footprint A�F ˛ is

A�K˛
WD .A�U ˛; E˛; �˛; s˛ ı prU˛ ; idA � ˛/;

where �˛ acts trivially on the first factor of A�U ˛ and prU˛ W A�U
˛! U ˛ is the

evident projection.

� Given a coordinate change ŷ˛IJ D .z�
˛
IJ ;
y�˛IJ ; �

˛
IJ /W K

˛
I !K˛

J between Kuranishi
charts for @˛Y with lifted domain zU ˛IJ , and open subsets AI ; AJ � Œ0; 1�, the product
coordinate change .AI \AJ /�K˛

I ! AJ �K˛
J is

idAI\AJ �ŷ
˛
IJ W .idAI\AJ �z�

˛
IJ ;
y�IJ WD y�

˛
IJ ; idAI\AJ ��

˛
IJ /

with the lifted domain .AI \AJ /� zU ˛IJ .

� A Kuranishi chart with collared boundary for .Y; �0Y ; �
1
Y / is given by a tuple

K D .U;E; �; s;  / as in Definition 2.2.2, with the following collar form requirements:

(i) The footprint F � Y is collared with at least one nonempty boundary @˛F .

(ii) The domain is a collared cobordism .U; �0U ; �
1
U / whose boundary components

@˛U are nonempty if and only if @˛F ¤∅. It is smooth in the sense that U is a
manifold with boundary @U D @0U t@1U and the �˛U are tubular neighborhood
diffeomorphisms.

(iii) If @˛F ¤ ∅ then there is a restriction of K to the boundary @˛Y ; that is,
a Kuranishi chart @˛K D .@˛U ˛; E; �; s˛;  ˛/ for @˛Y , with the isotropy
group � and obstruction space E of K and footprint @˛F , and an embedding
of the product chart A˛" � @

˛K into K for some " > 0, in the sense that the
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boundary embedding �˛U is � –equivariant and the following diagrams commute:

A˛" � @
˛U

�˛U //

s˛ıpr@˛U
��

U

S
��

E
idE // E

.idA˛" �s
˛/�1.0/

�˛U //

idA˛" � 
˛

��

s�1.0/

 

��
A˛" � @

˛Y
�˛Y // Y

� Let KI ;KJ be Kuranishi charts for .Y; �0Y ; �
1
Y / such that only KI or both KI ;KJ

have collared boundary. A coordinate change with collared boundary ŷIJ W KI !KJ

with domain U IJ satisfies the conditions in Definition 2.2.8, with the following collar
form requirements:

(i) The lifted domain zUIJ � UJ , as well as UIJ � UI , are collared subsets.

(ii) If FJ \ @˛Y ¤∅ then FI \ @˛Y ¤∅ and there is a restriction of ŷIJ to the
boundary @˛Y ; that is, a coordinate change @˛ ŷIJ W @˛KI ! @˛KJ such that
the restriction of ŷIJ to

UIJ \ �
˛
UI
.A˛" � @

˛UI /

pulls back via the collar inclusions �˛UI , �˛UJ to the product coordinate change
idA˛" � @

˛ ŷ
IJ for some " > 0. In particular we have

.�˛UJ /
�1. zUIJ /\ .A

˛
" � @

˛UJ /D A
˛
" � @

˛ zUIJ ;

.�˛UI /
�1.UIJ /\ .A

˛
" � @

˛UI /D A
˛
" � @

˛UIJ :

(iii) If FJ\@˛Y D∅ but FI\@˛Y ¤∅, then UIJ �UI is collared with @˛UIJ D∅.
As a consequence we have UIJ \ �˛UI .A

˛
" � @

˛ zUI /D∅ for some " > 0.

Definition 2.4.2 A (weak) Kuranishi cobordism on a compact collared cobordism
.Y; �0Y ; �

1
Y / is a tuple K D .KI ; ŷIJ /I;J2IK of basic charts and transition data as in

Definition 2.3.1, with the following collar form requirements:

� The charts of K are either Kuranishi charts with collared boundary or standard
Kuranishi charts whose footprints are precompactly contained in Y n.@0Y [@1Y /.

� The coordinate changes ŷIJ W KI !KJ are either standard coordinate changes
on Y n .@0Y [ @1Y / between pairs of standard charts, or coordinate changes
with collared boundary between pairs of charts, of which at least the first has
collared boundary.

We say that K has uniform collar width ı > 0 if all domains and coordinate changes
have the required collar form over intervals A˛" of length " > ı .
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Remark 2.4.3 Let K be a (weak) Kuranishi cobordism on .Y; �0Y ; �
1
Y /.

(i) K induces by restriction (weak) Kuranishi atlases @˛K on the boundary compo-
nents @˛Y for ˛ D 0; 1 with

� basic charts @˛Ki given by restriction of basic charts of K with Fi \@˛Y ¤∅;

� index set I@˛K D fI 2 IK j FI \ @˛Y ¤∅g;
� transition charts @˛KI given by restriction of transition charts of K ;

� coordinate changes @˛ ŷIJ given by restriction of coordinate changes of K .

(ii) The charts and coordinate changes of K induce intermediate charts and coordinate
changes as in Definition 2.2.3 and Remark 2.2.9(iii). These fit together to form a filtered
(weak) topological cobordism K in the sense of [13, Definitions 4.1.12] by a direct
generalization of Lemma 2.3.4. Its boundary restrictions are the intermediate Kuranishi
atlases @˛KD @˛K induced by the boundary restrictions @˛K .

(iii) As in [13, Remark 4.1.11] we can think of the virtual neighborhood jKj as a
collared cobordism with boundary components @0jKjŠ j@0Kj and @1jKjŠ j@1Kj, with
the exception that jKj is usually not locally compact or metrizable. More precisely, if
K has collar width " > 0, then the inclusions �˛UI W A

˛
" �U

˛
I ,! UI induce topological

embeddings

�0
jKjW Œ0; "/� j@

0Kj ,! jKj; �1
jKjW .1� "; 1�� j@

1Kj ,! jKj

to open neighborhoods of the closed subsets

@˛jKj WD
G

I2I@˛K

�˛UI .f˛g �U
˛
I /=� � jKj: Þ

With this language in hand, one obtains cobordism relations between (weak) Kuranishi
atlases in complete analogy with [13, Definition 4.1.8] and [14, Definition 6.2.10]. For
the uniqueness results in this paper, the more important notion is the following. Here
we use the notion of tameness, a refinement of the strong cocycle condition that is
formalized in Definition 2.5.1 below.

Definition 2.4.4 Two (weak/tame) Kuranishi atlases K0 , K1 on the same com-
pact metrizable space X are said to be (weakly/tamely) concordant if there exists
a (weak/tame) Kuranishi cobordism K on the trivial cobordism Y D Œ0; 1��X whose
boundary restrictions are @0KDK0 and @1KDK1 . More precisely, there are injections
�˛W IK˛ ,! IK for ˛ D 0; 1 such that im �˛ D I@˛K and we have

K˛
I D @

˛K�˛.I /; ŷ˛
IJ D @

˛ ŷ
�˛.I /�˛.J / 8I; J 2 IK˛ :
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Moreover, two metric Kuranishi atlases .K0; d0/, .K1; d1/ are called metric concordant
if they are concordant as above with K a Kuranishi cobordism whose realization
jKj Š jKj supports an admissible, "–collared metric d in the sense of [13, Defini-
tion 4.2.1] for the intermediate cobordism atlas K such that d j@˛ jKjD d˛ for ˛ D 0; 1.

2.5 Tameness and shrinkings

As in the case of trivial isotropy, we must adjust the Kuranishi atlas in order for its
realization jKj to have good topological properties; for example, so that it is Hausdorff
and has “enough” compact subsets. We essentially already dealt with these problems
in [13] by

� introducing notions of tameness and preshrunk shrinking for topological Kuran-
ishi atlases, which ensure the desired topological properties of the realization;

� constructing tame shrinkings of filtered weak topological Kuranishi atlases;
� proving that tame shrinkings are unique up to tame concordance.

In order to apply these results to smooth Kuranishi atlases with nontrivial isotropy,
recall first that we built additivity into the notion of Kuranishi atlas, and showed in
Lemma 2.3.4 that the resulting intermediate atlases are naturally filtered by

.EIJ WD UJ � y�IJ .EI //I�J :

The same holds for Kuranishi cobordisms by Remark 2.4.3(ii). We can thus extend the
notions of tameness to the case of nontrivial isotropy by working at the level of the
intermediate category.

Definition 2.5.1 A weak Kuranishi atlas or cobordism is tame if its intermediate atlas
is tame in the sense of [13, Definition 3.1.10]; that is, for all I; J;K 2 IK we have

U IJ \U IK D U I.J[K/ 8I � J;K;(2.5.1)

�
IJ
.U IK/D U JK \ s�1J .EIK/ 8I � J �K:(2.5.2)

Here we allow equalities between I , J and K using the notation U II WD UI and
�
II
WD IdUI .

Similarly, a shrinking of a Kuranishi atlas or cobordism will arise exactly from a
shrinking .U 0I @U I /I2IK of the intermediate atlas in the sense of [13, Definition 3.3.2].
Recall that shrinkings of cobordisms are necessarily given by collared subsets U 0I @U I .

Definition 2.5.2 Let KD .KI ; ŷIJ /I;J2IK;I¨J be a weak Kuranishi atlas or cobor-
dism. Then a weak Kuranishi atlas or cobordism K0 D .K 0I ; ŷ

0
IJ /I;J2IK0 ;I¨J is a

shrinking of K if:
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(i) The footprint cover .F 0i /iD1;:::;N is a shrinking of the cover .Fi /iD1;:::;N ; that is,
F 0i @ Fi are precompact open subsets such that X D

S
iD1;:::;N F

0
i and F 0I WDT

i2I F
0
i is nonempty whenever FI is, so that the index sets IK0 D IK agree.

(ii) For each I 2 IK the chart K 0I is the restriction of KI to a precompact domain
U 0I @ U I as in Definition 2.2.6.

(iii) For each I; J 2 IK with I ¨ J the coordinate change ŷ 0IJ is the restriction of
ŷ
IJ to the open subset U 0IJ WD �

�1
IJ
.U 0J /\U

0
I as in Equation (2.2.5).

A tame shrinking of K is a shrinking that is tame in the sense of Definition 2.5.1.
Finally, a preshrunk tame shrinking of K is a tame shrinking K00 that is obtained as a
shrinking of a tame shrinking K0 of K .

With this language in place, we can directly generalize [14, Theorem 6.3.9]. Recall here
that by [13, Example 2.4.5] the quotient topology on jKj is never metrizable except in
the most trivial cases. In fact, for any point x 2 UIJ nUIJ where dimUI < dimUJ ,
the projection �K.x/ does not have a countable neighborhood basis in jKj with respect
to the quotient topology. So an admissible metric will almost always induce a different
topology on jKj, which we will make no use of in the following statement.

Theorem 2.5.3 (i) Any weak Kuranishi atlas or cobordism K has a preshrunk
tame shrinking K0 .

(ii) For any tame Kuranishi atlas or cobordism K0 , the realizations jK0j and jEK0 j

are Hausdorff in the quotient topology, and for each I 2 IK0 the projection maps
�K0 W U

0
I ! jK

0j and �EK0 W U
0
I �EI ! jEK0 j are homeomorphisms onto their

images.

(iii) For any preshrunk tame shrinking K0 as in (i), there exists an admissible metric
on the set jK0j. If K is a cobordism, then the metric can also be taken to be
collared.

(iv) Any two metric preshrunk tame shrinkings of a weak Kuranishi atlas are metric
tame concordant.

Proof Since tameness, shrinking and admissible metrics are all defined on the level
of intermediate atlases, and we are only concerned with homeomorphism properties of
the intermediate projections, in the case of Kuranishi atlases we can simply quote [13,
Proposition 3.3.5] for (i), [13, Proposition 3.1.13] for (ii), and [13, Proposition 3.3.8]
for (iii). Moreover, [13, Proposition 4.2.3] proves (iv), as well as (i) and (iii) for
Kuranishi cobordisms, and (ii) for cobordisms is established in [13, Lemma 4.1.15].
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3 From Kuranishi atlases to the virtual fundamental class

In this section, Section 3.1 discusses orientations, Section 3.2 establishes the notions
of reductions and perturbations. The main result here is Theorem 3.2.8, which shows
that the zero set of a suitable perturbation sK C � of the canonical section sK has
the structure of a compact weighted branched manifold. The construction of such
perturbations is deferred to Proposition 3.3.3, and is followed by the construction of
the VMC and VFC in Theorem 3.3.5.

3.1 Orientations

This section extends the theory of orientations of weak Kuranishi atlases from [14,
Section 8.1] to the case with nontrivial isotropy. Since we use the method of determinant
bundles, we first need to generalize the notions of vector bundles and isomorphisms.

Definition 3.1.1 A vector bundle ƒD .ƒI ; z�ƒIJ /I;J2IK over a weak Kuranishi atlas K
consists of local bundles and compatible transition maps as follows:
� For each I 2 IK , a vector bundle ƒI ! UI with an action of �I on ƒI that

covers the given action on UI .
� For each I ¨ J , a �J –equivariant map z�ƒIJ W �

�
IJ .ƒI jUIJ / ! ƒJ that is a

linear isomorphism on each fiber and covers the embedding z�IJ W zUIJ ! UJ .
Here �J Š �I � �JnI acts on ��IJ .ƒI jUIJ /! zUIJ by the pullback action
of �I together with the natural identification of the fibers of ��IJ .ƒI jUIJ / along
�JnI –orbits in zUIJ .

� For each I ¨ J ¨K , we have the weak cocycle condition

z�ƒIK D
z�ƒJK ı �

�
JK.
z�ƒIJ / on ��1JK.z�IJ . zUIJ //\ zUIK :

A section of a vector bundle ƒ over K is a collection of smooth �I –equivariant
sections � D .�I W UI ! ƒI /I2IK that are compatible with the pullbacks ��IJ and
bundle maps z�ƒIJ in the sense that there are commutative diagrams for each I ¨ J :

ƒI jUIJ ��IJ .ƒI jUIJ /
�IJoo

z�ƒIJ // ƒJ

UIJ

�I

OO

zUIJ
�IJoo

��IJ .�I /

OO

z�IJ // UJ :

�J

OO

Definition 3.1.2 If ƒD .ƒI ; z�ƒIJ /I;J2IK is a bundle over K and A� Œ0; 1� an interval,
then the product bundle A�ƒ over A�K is the tuple .A�ƒI ; idA �z�ƒIJ /I;J2IK .
Here and in the following we denote by A�ƒI ! A�UI the pullback bundle of
ƒI ! UI under the projection prUI W A�UI ! UI .
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Definition 3.1.3 A vector bundle over a weak Kuranishi cobordism K is a collection
ƒD .ƒI ; z�

ƒ
IJ /I;J2IK of vector bundles and bundle maps as in Definition 3.1.1, together

with a choice of isomorphism from its collar restriction to a product bundle. More
precisely, this requires for ˛ D 0; 1 the choice of a restricted vector bundle

ƒj@˛KD .ƒ
˛
I ! @˛UI ; z�

ƒ;˛
IJ /I;J2I@˛K

over @˛K , and, for some " > 0 less than the collar width of K , a choice of lifts of the
embeddings �˛I for I 2 I@˛K to �I –equivariant bundle isomorphisms

z�
ƒ;˛
I W A˛" �ƒ

˛
I !ƒI jim �˛I

such that, with A WD A˛" and ��z�ƒ;˛I WD ��IJ ız�
ƒ;˛
I ı .idA �.�˛IJ /�/, the following

diagrams commute:

A�ƒ˛I

��

z�
ƒ;˛
I // ƒI jim �˛I

��
A� @˛UI

�˛I // im �˛I � UI

A� .�˛IJ /
�.ƒ˛I j@˛UIJ /

��z�
ƒ;˛
I //

idA �z�
ƒ;˛
IJ

��

��IJ .ƒI j�˛I .A�@˛UIJ //

z�ƒIJ
��

A�ƒ˛J

z�
ƒ;˛
J // ƒJ jim �˛J

A section of a vector bundle ƒ over a Kuranishi cobordism as above is a compatible
collection .�I W UI ! ƒI /I2IK of equivariant sections as in Definition 3.1.1 that in
addition are of product form in the collar. That is, we require that for each ˛ D 0; 1
there is a restricted section � j@˛KD .�˛I W @˛UI !ƒ˛I /I2I@˛K of ƒj@˛K such that for
" > 0 sufficiently small, .z�ƒ;˛I /��I D idA˛" ��

˛
I .

In the above definition we implicitly work with an isomorphism .z�
ƒ;˛
I /I2I@˛K that sat-

isfies all but the product structure requirements of the following notion of isomorphism
on Kuranishi cobordisms.

Definition 3.1.4 An isomorphism ‰W ƒ! ƒ0 between vector bundles over K is a
collection .‰I W ƒI !ƒ0I /I2IK of �I –equivariant bundle isomorphisms covering the
identity on UI that intertwine the transition maps, ie z�ƒ

0

IJ ı �
�
IJ .‰I /D‰J ı

z�ƒIJ j zUIJ
for all I ¨ J .

If K is a Kuranishi cobordism then we additionally require ‰ to be of product form in
the collar. That is, we require that for each ˛ D 0; 1 there is a restricted isomorphism
‰j@˛KD .‰

˛
I W ƒ

˛
I!ƒ0

˛
I /I2I@˛K from ƒj@˛K to ƒ0j@˛K such that for ">0 sufficiently

small we have .z� 0I /
ƒ;˛ ı .idA �‰˛I /D‰I ız�

ƒ;˛
I on A˛" � @

˛UI .

Note that although the compatibility conditions are the same, the canonical section
sK D .sI W UI ! EI /I2IK of a Kuranishi atlas does not form a section of a vector

Geometry & Topology, Volume 21 (2017)



2762 Dusa McDuff and Katrin Wehrheim

bundle since the obstruction spaces EI are in general not of the same dimension, hence
no bundle isomorphisms z�ƒIJ as above exist. Nevertheless, we will see that there is a
natural bundle associated with the section sK , namely its determinant line bundle, and
that this line bundle is isomorphic to a bundle constructed by combining the determinant
lines of the obstruction spaces EI and the domains UI .

Remark 3.1.5 If ƒ is a bundle over a Kuranishi atlas K (rather than a weak atlas),
then it is straightforward to verify that the union

F
I ƒI of the local bundles form

the objects of a category with projection to the Kuranishi category BK . We did not
formulate the above definitions in this language since orientations in applications to
moduli spaces (eg Gromov–Witten as in [10]) will usually be constructed on a weak
Kuranishi atlas, which does not form a category. Þ

Here and in the following we will exclusively work with finite-dimensional vector
spaces. First recall that the determinant line of a vector space V is its maximal exterior
power ƒmaxV WD

VdimV
V , with

V0
f0g WDR. More generally, the determinant line of

a linear map DW V !W is defined to be

(3.1.1) det.D/ WDƒmax kerD˝ .ƒmax.W= imD//�:

In order to construct isomorphisms between determinant lines, we will need to fix
various conventions, in particular pertaining to the ordering of factors in their domains
and targets. We begin by noting that every isomorphism F W Y ! Z between finite-
dimensional vector spaces induces an isomorphism

(3.1.2) ƒF W ƒ
maxY �!

Š
ƒmaxZ; y1 ^ � � � ^yk 7! F.y1/^ � � � ^F.yk/:

For example, the fact that  ı sI WD sI ı  W UI !EI for all  2 �I , implies that

(3.1.3) ƒ WDƒdx ˝ .ƒŒ��1/
�
W det.dxsI /! det.dxsI /

is an isomorphism, where Œ�W EI= im dxsI ! EI= im dxsI is the induced map.
Further, if I ¨ J and zx 2 zUIJ is such that �IJ .zx/D x , then because

sI ı �IJ DW sIJ W zUIJ !EI ;

the derivative dzx�IJ W ker dsIJ ! ker dsI induces an isomorphism

ƒdzx�IJ ˝ƒIdW det.dzxsIJ /! det.dxsI /

and composition with pullback by �IJ defines an isomorphism

(3.1.4) PIJ .zx/W det.dzxsIJ /! ��IJ .det dxsI /:
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Further, it follows from the index condition in Definition 2.2.8 that with y WD z�IJ .zx/,
the map

(3.1.5) zƒIJ .zx/ WDƒdzx z�IJ
˝ .ƒ

Œy�IJ ��1
/�W det.dzxsIJ /! det.dysJ /

is an isomorphism, induced by the isomorphisms dz�IJ W ker dsIJ ! ker dsJ and
Œy�IJ �W EI= im dsI ! EJ = im dsJ . We can therefore define the determinant bundle
det.sK/ of a Kuranishi atlas. A second, isomorphic, determinant line bundle det.K/
with fibers ƒmaxTxUI ˝ .ƒmaxEI /

� will be constructed in Proposition 3.1.13.

Definition 3.1.6 The determinant line bundle of a weak Kuranishi atlas (or cobordism)
K is the vector bundle det.sK/ given by the line bundles

det.dsI / WD
[
x2UI

det.dxsI /! UI for all I 2 IK;

with �I actions given by the isomorphisms ƒ of (3.1.3), and the isomorphisms
z�ƒIJ .zx/ WDƒIJ .zx/ ıPIJ .zx/

�1 in (3.1.4) and (3.1.5) for I ¨ J and zx 2 UIJ .

To show that det.sK/ is well defined, in particular that zx 7! ƒIJ .zx/ is smooth, we
introduce some further natural6 isomorphisms and fix various ordering conventions.

� For any subspace V 0 � V the splitting isomorphism

(3.1.6) ƒmaxV ŠƒmaxV 0˝ƒmax.V=V 0/

is given by completing a basis v1; : : : ; vk of V 0 to a basis v1; : : : ; vn of V and mapping
v1 ^ � � � ^ vn 7! .v1 ^ � � � ^ vk/˝ .ŒvkC1�^ � � � ^ Œvn�/.

� For each isomorphism F W Y �!
Š

Z the contraction isomorphism

(3.1.7) cF W ƒ
maxY ˝ .ƒmaxZ/� �!

Š R;

is given by the map .y1 ^ � � � ^yk/˝ � 7! �.F.y1/^ � � � ^F.yk//.

� For any space V we use the duality isomorphism

(3.1.8) ƒmaxV � �!
Š

.ƒmaxV /�; v�1 ^ � � � ^ v
�
n 7! .v1 ^ � � � ^ vn/

�;

which corresponds to the natural pairing

ƒmaxV ˝ƒmaxV � �!
Š R; .v1 ^ � � � ^ vn/˝ .�1 ^ � � � ^ �n/ 7!

nY
iD1

�i .vi /

6 Here a “natural” isomorphism is one that is functorial, ie it commutes with the action on both sides
induced by a vector space isomorphism.
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via the general identification

(3.1.9) Hom.A˝B;R/ �!Š Hom.B;A�/; H 7! .b 7!H. � ˝ b//;

which in the case of line bundles A;B maps �¤ 0 to a nonzero homomorphism, ie an
isomorphism. Next, we combine the above isomorphisms to obtain a more elaborate
contraction isomorphism.

Lemma 3.1.7 [14, Lemma 8.1.7] Every linear map F W V ! W together with an
isomorphism �W K! kerF induces an isomorphism

(3.1.10) C
�
F W ƒ

maxV ˝ .ƒmaxW /� �!
Š

ƒmaxK˝ .ƒmax.W=F.V ///�

given by

.v1^� � �^vn/˝.w1^� � �^wm/
�
7! .��1.v1/^� � �^�

�1.vk//˝.Œw1�^� � �^Œwm�nCk�/
�;

where v1; : : : ; vn is a basis for V with span.v1; : : : ; vk/D kerF , and w1; : : : ; wm is
a basis for W whose last n� k vectors are wm�nCi D F.vi / for i D kC 1; : : : ; n.

In particular, for every linear map DW V ! W we may pick � as the inclusion
K D kerD ,! V to obtain an isomorphism

CDW ƒ
maxV ˝ .ƒmaxW /� �!

Š det.D/:

Remark 3.1.8 If F is equivariant with respect to actions of the group � on V and W ,
and we equip K with the induced � action so that � is also equivariant, then the above
isomorphism C

�
F is equivariant with respect to the action of � on ƒmaxV ˝ .ƒmaxW /�

given by the maps ƒ ˝ .ƒ�1/
� on ƒmaxV ˝ .ƒmaxW /� and by the corresponding

maps ƒ ˝ .ƒŒ��1/
� on ƒmaxK˝ .ƒmax.W=F.V ///� , with ƒŒ� as in (3.1.3). Þ

With this notation in hand, we can now prove one of the main results of this section.

Proposition 3.1.9 For any weak Kuranishi atlas, det.sK/ is a well-defined line bundle
over K . Further, if K is a weak Kuranishi cobordism, then det.sK/ can be given product
form on the collar of K with restrictions det.sK/j@˛KD det.s@˛K/ for ˛ D 0; 1. The
required bundle isomorphisms from the product A˛" �det.s@˛K/ to the collar restriction
.�˛" /
� det.sK/ are given in (3.1.12).

Proof We use the same local trivializations of det.dsI / as in the proof of the analo-
gous result [14, Proposition 8.1.8] for trivial isotropy, and must check that these are
compatible with the isotropy group actions and coordinate changes. We will begin by
defining these trivializations, referring to [14] for many details of proofs.
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Let x0 2 UI , and denote its stabilizer subgroup in �I by �x0I . Take a subspace of EI
that covers the cokernel of dx0sI , sweep it out to obtain a �x0I –invariant subspace
E 0�EI , then choose an isomorphism RN ŠE 0 and equip RN with the pullback action
of �x0I denoted .; v/ 7!  �x0 v . The resulting equivariant map RI W .RN ; �

x0
I /!

.EI ; �
x0
I / covers the cokernel of dxsI for all x in some neighborhood O of x0 .

Thus dxsI ˚RI is surjective for x 2O , and as in [14, Equation 8.1.9] we may define
a trivialization of det.dsI /jO by

(3.1.11) yTI;x W ƒ
max ker.dxsI ˚RI / �!

Š det.dxsI /;

v1 ^ � � � ^ vn 7! .v1 ^ � � � ^ vk/˝ .ŒRI .e1/�^ � � � ^ ŒRI .eN�nCk/�/
�;

where vi D .vi ; ri / is a basis of ker.dxsI ˚RI /� TxUI �RN such that v1; : : : ; vk
span ker dxsI (and hence r1 D � � � D rk D 0), and e1; : : : ; eN is a positively ordered
normalized basis of RN (that is, e1 ^ � � � ^ eN D 1 2 R Š ƒmaxRN ) such that
RI .eN�nCi /D dxsI .vi / for i D kC1; : : : ; n. In particular, the last n�k vectors span
im dxsI\imRI �EI , and thus the first N�nCk vectors ŒRI .e1/�; : : : ; ŒRI .eN�nCk/�
span the cokernel EI= im dxsI Š imRI= im dxsI\imRI . In [14, Proposition 8.1.8] we
prove that these trivializations do not depend on the choice of injection RI W RN !EI .
In other words, if R0I W R

N 0 !EI is another �I –equivariant injection that also maps
onto the cokernel of dx0sI , then there is a bundle isomorphism

‰W ƒmax ker.dsI ˚RI /jO!ƒmax ker.dsI ˚R0I /jO

which is necessarily �I –equivariant and such that yTI D yT 0I ı‰ . Thus det.dsI / is a
smooth line bundle over UI for each I 2 IK .

It remains to check that the action  2 �I on

det.dsI /Dƒmax.ker dsI /˝ƒmax.EI= im dsI /�

is smooth. We prove this by choosing suitable trivializations near x0 and x0 and
then lifting the action of  to a smooth action on the domains ker.dsI ˚RI / of the
trivializations. To this end, first consider the trivialization TI;x defined near x0 2 UI
by a �x0I –equivariant injection RI W .RN ; �

x0
I / ! .EI ; �

x0
I /, and for  2 �I the

associated trivialization T 0I;x defined near x0 2 UI by

R0I WD  ıRI W .R
N ; �

x0
I /! .EI ; �

x0
I /;

where .RN ; �x0I / denotes RN with the �x0I –action ıW v 7! ı �x0 v , and .RN ; �x0I /

denotes RN with the �x0I –action

ı0W v 7! ı0 �x0 v WD 
�1ı0 �x0 v;
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which is well defined since conjugation by  defines an isomorphism c W �
x0
I !�

x0
I ,

ı0 7! �1ı0: Then R0I D  ıRI is �x0I –equivariant because when ı0 2 �x0I ,

R0I .ı
0
�x0 v/DR

0
I .
�1ı0 �x0 v/D RI .

�1ı0 �x0 v/

D .�1ı0/RI .v/

D �1ı0RI .v/D ı
0RI .v/D ı

0
ıR0I .v/;

where the fourth equality holds because the full group �I acts on EI . Thus the diagram

.RN; �x0I /

.id;c�1 /

��

.RI;id/ // .EI ; �
x0
I /

.;c�1 /

��
.RN; �x0I /

.R0I ;id/// .EI ; �
x0
I /

commutes; in other words, the action of the element  2 �I on EI lifts to the identity
map of RN. Hence the definition (3.1.11) of the maps yTI;x implies that the following
diagram commutes:

ƒmax.ker.dxsI ˚RI //

ƒdx˚id
RN

��

yTI;x // det dxsI

ƒdx˝.ƒŒ�1�/
�

��
ƒmax.ker.dxsI ˚R0I //

yTI;x // det dxsI

Since the map ƒdx˚idRN
is smooth, so is ƒ WDƒdx ˝ .ƒŒ�1�/

� . Thus det.dsI /
is a �I –equivariant smooth line bundle over UI for each I 2 IK .

Next note that because �JnI acts freely on zUIJ , the stabilizer subgroup � zx0J of a
point zx0 2 ��1IJ .x0/ is taken isomorphically to �x0I by the projection ��IJ W �J ! �I .
For simplicity we will identify these groups. Since sIJ W zUIJ !EI is the composite
sI ı �IJ , we may therefore trivialize the bundle det.dzxsIJ / near zx0 2 ��1IJ .x0/ by
using the same injection RI W RN !EI , now considered as a � zx0J –equivariant map.
Since the diagram

ƒmax.ker.dzxsIJ ˚RI //

ƒ�IJ˚id
RN

��

yTI;zx
// det dzxsIJ

ƒ�IJ˝.ƒid/
�

��
ƒmax.ker.dxsI ˚RI //

yTI;x
// det dxsI

commutes, the isomorphism PIJ .zx/W det dzxsIJ ! det dxsI of (3.1.4) is smooth. More-
over the equivariance of the covering map �IJ W . zUIJ ; �J /! .UIJ ; �I / and the identity
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sI ı �IJ D sIJ W zUIJ ! EI imply that it is equivariant. Therefore, to complete the
proof that the transition maps z�ƒIJ are smooth, we must check that the map

zƒIJ .zx/ WDƒdzx z�IJ
˝ .ƒ

Œy�IJ ��1
/�W det.dzxsIJ /! det.dysJ /

in (3.1.5) is equivariant and smooth. Its equivariance follows from the equivariance of
its constituent maps z�IJ and y�IJ . To see that it is smooth, it suffices to show that the
composite ƒIJ .x/ WD zƒIJ .��1IJ .x// is smooth in some neighborhood O of x0 2UIJ ,
where ��1IJ W O! zUIJ is a local inverse for the covering map �IJ . But if we define
�IJ .x/ WD z�IJ .�

�1
IJ .x//W O!UJ , then ƒIJ .x/Dƒdx�IJ ˝.ƒŒy�IJ ��1

/� is identical
to the map of the same name in [14, Equation 8.1.11], so that smoothness follows
by the Claim proved as part of [14, Proposition 5.1.8]. This completes the proof that
det.sK/ is a vector bundle over K .

In the case of a weak Kuranishi cobordism K , Proposition 8.1.8 in [14] also con-
structs smooth bundle isomorphisms from the collar restrictions to the product bundles
A˛" � det.s@˛K/ of the form

(3.1.12) z�ƒ;˛I .t; x/ WD .ƒd.t;x/�˛I
ı^1/˝.ƒidEI /

�
W A˛" �det.dxs˛I /! det.d�˛I .x;t/sI /;

where ^1W ƒmax ker dxs˛I ! ƒmax.R� ker dxs˛I / is given by � 7! 1^ �. These are
equivariant because they are induced by the equivariant map �˛I , and are compatible
with the coordinate changes because the collar embeddings �˛I are.

We next use the determinant bundle det.sK/ to define the notion of an orientation of a
Kuranishi atlas.

Definition 3.1.10 A weak Kuranishi atlas or Kuranishi cobordism K is orientable
if there exists a nonvanishing section � of the bundle det.sK/, ie with ��1I .0/D ∅
for all I 2 IK . An orientation of K is a choice of nonvanishing section � of det.sK/.
An oriented Kuranishi atlas or cobordism is a pair .K; �/ consisting of a Kuranishi
atlas or cobordism and an orientation � of K .

For an oriented Kuranishi cobordism .K; �/ the induced orientation of the bound-
ary @˛K for ˛ D 0; 1 is the orientation of @˛K

@˛� WD
��
.z�
ƒ;˛
I /�1 ı �I ı �

˛
I

�ˇ̌
f˛g�@˛UI

�
I2I@˛K

given by the isomorphism .z�
ƒ;˛
I /I2I@˛K in (3.1.12) between a collar neighborhood of

the boundary in K and the product Kuranishi atlas A˛" � @
˛K , followed by restriction

to the boundary @˛KD @˛.A˛" � @˛K/, where we identify f˛g � @˛UI Š @˛UI .
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With that, we say that two oriented weak Kuranishi atlases .K0; �0/ and .K1; �1/ are
oriented cobordant if there exists a weak Kuranishi cobordism K from K0 to K1 and
a section � of det.sK/ such that @˛� D �˛ for ˛ D 0; 1.

Remark 3.1.11 Here we have defined the induced orientation on the boundary @˛K of
a cobordism so that it is completed to an orientation of the collar by adding the positive
unit vector 1 along A˛" � R rather than the more usual outward normal vector. In
particular, by [14, Equation (8.1.12)], �1; : : : ; �n is a positively ordered basis for TxU ˛I
exactly if 1; �1; : : : ; �n is a positively ordered basis for Tx.A˛" �U

˛
I /. Þ

Lemma 3.1.12 Let .K; �/ be an oriented weak Kuranishi atlas or cobordism.

(i) The orientation � induces a canonical orientation � jK0 WD .�I jU 0I /I2IK0 on each
shrinking K0 of K with domains .U 0I � UI /I2IK0 .

(ii) In the case of a Kuranishi cobordism K , the restrictions to boundary and shrinking
commute; that is, .� jK0/j@˛K0D .� j@˛K/j@˛K0 .

(iii) In the case of a weak Kuranishi atlas K , the orientation � on K induces an
orientation � Œ0;1� on Œ0; 1��K , which induces the given orientation @˛� Œ0;1�D�
of the boundaries @˛.Œ0; 1��K/D K for ˛ D 0; 1.

Proof See the proof of [14, Lemma 8.1.11].

As in [14], in order to orient the zero sets of a perturbed section sKC � we will work
with a “more universal” determinant bundle det.K/ over K that is constructed from
the determinant bundles of the zero sections in each chart. Since the zero section 0K
does not satisfy the index condition, we need to construct different transition maps
for det.K/, which will now depend on the section sK . For this purpose, we again use
contraction isomorphisms from Lemma 3.1.7.

On the one hand, this provides families of isomorphisms

(3.1.13) CdxsI W ƒ
maxTxUI ˝ .ƒmaxEI /

�
�!
Š det.dxsI / for x 2 UI ;

which, by Remark 3.1.8, are equivariant with the respect to the action of  2 �I on
ƒmaxTUI ˝ .ƒmaxEI /

� given by

(3.1.14) yƒ WDƒdx ˝ .ƒ�1/
�
W ƒmaxTxUI ˝ .ƒmaxEI /

�

!ƒmaxTxUI ˝ .ƒmaxEI /
�

and the corresponding action on det.dxsI / in Equation (3.1.3).
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On the other hand, recall that the tangent bundle condition (2.2.3) implies that dsJ
restricts to an isomorphism

TyUJ =dzx z�IJ .Tzx zUIJ / �!
Š

EJ =y�IJ .EI /

for y D z�IJ .zx/.7 Therefore, if we choose a �J –equivariant smooth normal bundle

NIJ D
[

y2im z�IJ

NIJ;y � TyUJ

to the submanifold im z�IJ � UJ , then the subspaces dysJ .NIJ;y/ form a smooth
family of subspaces of EJ that are complements to y�IJ .EI /. Hence, if we write
prNIJ .y/W EJ ! dysJ .NIJ;y/�EJ for the smooth family of projections with kernel
y�IJ .EI /, we obtain a smooth family of linear maps

Fzx WD prNIJ .y/ ı dysJ W TyUJ �!EJ for y D z�IJ .zx/;

with images imFzx D dysJ .NIJ;y/, and also isomorphisms to their kernel

�zx WD dzx z�IJ W Tzx zUIJ �!
Š kerFzx D Ty.im z�IJ /� TyUJ :

By Lemma 3.1.7 these induce isomorphisms

C
�zx
Fzx
W ƒmaxTz�IJ .zx/UJ ˝ .ƒ

maxEJ /
�
�!
Š

ƒmaxTzx zUIJ ˝ .ƒ
max.EJ = imFzx//

�:

We may combine this with the isomorphism ƒmaxTzx zUIJ ! ��IJ .ƒ
maxTxUI / induced

by dzx�IJ , where x WD �IJ .zx/, and the dual of the isomorphism

ƒmax.EJ =dysJ .NIJ;y//ŠƒmaxEI

induced via (3.1.2) by pr?NIJ .y/ ı
y�IJ W EI ! EJ =dysJ .NIJ;y/, to obtain for each

zx 2 zUIJ an isomorphism

(3.1.15) zCIJ .zx/W ƒ
maxTyUJ ˝ .ƒmaxEJ /

�
�!
Š

��IJ .ƒ
maxTxUI /˝ .ƒmaxEI /

�

with
y WD z�IJ .zx/; x WD �IJ .zx/;

given by the composite of C�zxFzx with the map

.ƒdzx�IJ /˝
�
ƒ
.pr?NIJ .y/ı

y�IJ /�1

��
W ƒmaxTzx zUIJ ˝ .ƒ

max.EJ = imFzx//
�

! ��IJ .ƒ
maxTxUI /˝ .ƒmaxEI /

�:

7 Here and subsequently, we will distinguish between the manifold zUIJ and its image im z�IJ in UJ ,
denoting points of zUIJ by zx , with y D z�IJ .x/ 2 UJ and x D �IJ .zx/ 2 UIJ .
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Proposition 3.1.13 (i) Let K be a weak Kuranishi atlas. Then there is a well-
defined line bundle det.K/ over K given by the line bundles

ƒK
I WDƒ

maxTUI ˝ .ƒmaxEI /
�
! UI for I 2 IK;

with group actions as in (3.1.14) and the transition maps

zC�1IJ W �
�
IJ .ƒ

K
I jUIJ /!ƒK

J jim z�IJ

from (3.1.15) for I ¨ J . In particular, the latter isomorphisms are independent
of the choice of normal bundle NIJ .
Furthermore, the contractions CdsI W ƒ

K
I ! det.dsI / from (3.1.13) define an

isomorphism ‰sK WD .CdsI /I2IK from det.K/ to det.sK/.

(ii) If K is a weak Kuranishi cobordism, then the determinant bundle det.K/ defined
as in (i) can be given a product structure on the collar so that its boundary
restrictions are det.K/j@˛K D det.@˛K/ for ˛ D 0; 1.
Further, the isomorphism ‰sK W det.K/! det.sK/ defined as in (i) has product
structure on the collar with restrictions ‰sK j@˛KD‰s@˛K for ˛ D 0; 1.

Proof To begin, note that each ƒK
I Dƒ

maxTUI ˝ .ƒmaxEI /
� is a smooth line bundle

over UI , since it inherits local trivializations from the tangent bundle TUI ! UI .
Moreover the action of �I on UI � EI induces a smooth action on ƒK

I given by
(3.1.14) that covers its action on UI . Thus ƒK

I ! UI is a smooth �I –equivariant
bundle. We showed in [14, Proposition 8.1.12] that the isomorphisms CdxsI from
(3.1.13) are smooth in this trivialization, where det.dsI / is trivialized via the maps yTI;x
as in Proposition 3.1.9. Since CdsI is equivariant, we can define preliminary transition
maps

(3.1.16) z�ƒIJ WD C�1dsJ ı
zƒIJ ı �

�
IJ .CdsI /W �

�
IJ .ƒ

K
I jUIJ /!ƒK

J for I ¨ J 2 IK

by the transition maps (3.1.5) of det.sK/, the isomorphisms (3.1.13) and the pullback
by �IJ . These define a line bundle

ƒK
WD .ƒK

I ;
z�ƒIJ /I;J2IK

since the weak cocycle condition follows directly from that for the zƒIJ . Moreover,
this automatically makes the family of bundle isomorphisms ‰K WD .zCdsI /I2IK an
isomorphism from ƒK to det.sK/. It remains to see that ƒKD det.K/ and ‰KD‰sK ,
ie we claim equality of transition maps z�ƒIJ D zC

�1
IJ . This also shows that zC�1IJ and thus

det.K/ is independent of the choice of normal bundle NIJ in (3.1.15).
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So to finish the proof of (i), it suffices to establish the following commuting diagram at
a fixed zx 2 UIJ with x D �IJ .zx/, y D z�IJ .zx/:

(3.1.17)

ƒmaxTxUI ˝ .ƒmaxEI /
�

CdxsI
// det.dxsI /

��IJ .ƒ
maxTxUI /˝ .ƒmaxEI /

�
��IJ .CdxsI /

//

�IJ

OO

��IJ .det.dxsI //

�IJ

OO

zƒIJ .zx/
��

ƒmaxTyUJ ˝ .ƒmaxEJ /
�

CdysJ
//

zCIJ .zx/

OO

det.dysJ /

However, the composition y 7! �IJ ı zCIJ .z�
�1
IJ .zx// of the left-hand vertical maps

is precisely the map denoted by y 7! CIJ .x/ in [14, Equation (8.1.15)], while, as
in the proof of Proposition 3.1.9 above, the right-hand vertical maps combine to
ƒIJ .x/D zƒ.�

�1
IJ .x//W det.dxsI /! det.dysJ /, where ��1IJ is a local inverse to �IJ .

Therefore the desired result follows from the commutativity of the diagram

ƒmaxTxUI ˝ .ƒmaxEI /
�

CdxsI
// det.dxsI /

ƒIJ .x/
��

ƒmaxTyUJ ˝ .ƒmaxEJ /
�

CdysJ
//

CIJ .x/

OO

det.dysJ /

which is established in [14, Proposition 8.1.12].

For part (ii) the same arguments apply to define a bundle det.K/ and isomorphism ‰sK .
The required product structure on a collar follows as in [14].

We end this section by explaining how orientations of a Kuranishi atlas induce compat-
ible orientations on local zero sets of transverse sections.

Lemma 3.1.14 Let .K; �/ be a d–dimensional oriented, tame Kuranishi atlas or
cobordism, and for some I 2 IK let f W W ! EI be a smooth section over an open
subset W � UI that is transverse to 0.

(i) The zero set Zf WD f �1.0/ � UI inherits the structure of a smooth oriented
d–dimensional submanifold.

(ii) The action of any  2 �I on UI induces an orientation-preserving diffeomor-
phism Zf !Z�f to the zero set of �f W .W /!EI , x 7! f .�1.x//.

(iii) Suppose further that f .W /� y�HI .EH /, zWHI WDW \ zUHI ¤∅ and �HI j zWHI
is injective for some H � I . Then �HI induces an orientation-preserving
diffeomorphism Zf ! Z�HI�f to the zero set of �HI�f W �HI .W /! EH ,
x 7! y��1HI .f .�

�1
HI .x///.
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(iv) If K is a cobordism, suppose in addition that KI is a chart that intersects
the boundary @˛K , with W D �˛I .A

˛
" � W

˛/ for some W ˛ � @˛W , and
f .�˛I .t; x//D f

˛.x/ for some transverse section f ˛W W ˛ ! EI . Then the
atlas .@˛K; @˛�/ induces an oriented smooth structure on Zf ˛ � W ˛ by (i),
Zf �UI is a submanifold with boundary and j ˛I WD �I .˛; � / is a diffeomorphism
Zf ˛!@Zf that preserves (resp. reverses) orientations when ˛D1 (resp. ˛D0).

Proof Except for (ii) these local claims follow directly from the corresponding parts
of the proof of [14, Proposition 8.1.13]. For (iii) note that the injectivity assumption
allows us to write �HI�f D ��HIf for an embedding �HI W �HI . zWHI /!W . Before
we can prove (ii), recall that the orientation on Zf is induced from the orientation of
the Kuranishi atlas/cobordism �I W UI ! det.dsI / via the isomorphisms for z 2Zf ,

ƒmaxTzZf Dƒ
max ker dzf Šƒmax ker dzf ˝RD det.dzf /;

Cdzf W det.dzf /!ƒmaxTzUI ˝ .ƒmaxEI /
�;

CdzsI W det.dzsI /!ƒmaxTzUI ˝ .ƒmaxEI /
�:

Now to prove that  2 �I acts by an orientation-preserving diffeomorphism, note
that a smooth group action always acts by diffeomorphisms. Restriction to Zf of
the action by  2 �I thus yields a diffeomorphism to its image, which is easily
seen to be the zero set of �f . To show that this diffeomorphism is compati-
ble with the induced orientations at z 2 Zf and z 2 Z�f , we begin by noting
that the action of  is ƒdz W ƒ

maxTzZf ! ƒmaxTzZ�f . On the other hand,
the orientations �I .z/ and �I .z/ are by assumption intertwined by the isomor-
phism ƒdz ˝ .ƒŒ�1�/

�W det dzsI ! det dzsI , and by Proposition 3.1.13(i) this
implies that their pullbacks to ƒmaxTxUI ˝ .ƒmaxEI /

� for x D z; z are intertwined
by ƒdz ˝ .ƒ�1/

� . Thus it remains to prove that the following diagram commutes:

ƒmaxTzUI ˝ .ƒmaxEI /
�

Cdzf //

ƒdz˝.ƒ�1 /
�

��

ƒmax ker.dzf /˝RŠƒmaxTzZf

ƒdz˝idR

��
ƒmaxTzUI ˝ .ƒmaxEI /

�
Cdz.�f / // ƒmax ker.dz. �f //˝RŠƒmaxTzZ�f

By Lemma 3.1.7, Cdzf is given by .v1^� � �^vn/˝.w1^� � �^wm/� 7! v1^� � �^vk ,
where v1; : : : ; vn is any basis for TzUI whose first k elements span ker dzf , and
w1; : : : ; wm is a basis for EI , and similarly for Cdz.�f / . Therefore, if we denote
v0i WDdz.vi / and w0j WDwj , we find that .ƒ�1/

�.w1^� � �^wm/
�D .w01^� � �^w

0
m/
�
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and thus the diagram commutes as required:

Cdz.�f /
�
ƒdz ˝ .ƒ�1/

�..v1 ^ � � � ^ vn/˝ .w1 ^ � � � ^wm/
�/
�

D Cdz.�f /..v
0
1 ^ � � � ^ v

0
n/˝ .w

0
1 ^ � � � ^w

0
m/
�/

D v01 ^ � � � ^ v
0
k

Dƒdz .v1 ^ � � � ^ vk/

Dƒdz
�
Cdzf ..v1 ^ � � � ^ vn/˝ .w1 ^ � � � ^wm/

�/
�
:

3.2 Perturbed zero sets

With Theorem 2.5.3 providing existence and uniqueness of tame shrinkings, the second
part of the proof of Theorem A is the construction of the VMC/VFC from the zero sets
of suitable perturbations sKC � of the canonical section sK of a tame Kuranishi atlas
or cobordism. In this section, we describe a suitable class of perturbations � , and prove
that the corresponding perturbed zero sets are compact weighted branched manifolds, a
notion from [8] that we review in the appendix. The existence and uniqueness of such
perturbations will be established in Section 3.3, as part of the perturbative construction
of VMC and VFC. The main work is done by the setup in this section, which will put us
into a situation in which the construction of perturbations and the resulting VMC/VFC
can essentially be copied from [14]. Since the construction of perturbations requires
tameness and the notion of weighted branched manifolds requires an orientation in [8],
we will — unless otherwise stated — work with an oriented tame Kuranishi atlas or
cobordism K .

As in the case of trivial isotropy, one cannot in general find transverse perturbations
sIC�I t 0 that are also compatible with the coordinate changes ŷIJ . Instead, we will
construct perturbations over the following notion of a reduced atlas that still covers X
but generally does not form a Kuranishi atlas.

Definition 3.2.1 [13, Definition 5.1.2] A (cobordism) reduction of a tame Kuranishi
atlas or cobordism K is an open subset VD

F
I2IK VI �ObjBK

, ie a tuple of (possibly
empty) open subsets VI � UI satisfying the following conditions:

(i) VI D �
�1
I .V I / for each I 2 IK , ie VI is pulled back from the intermediate

category and so is �I –invariant.

(ii) VI @ UI for all I 2 IK , and if VI ¤∅ then VI \ s�1I .0/¤∅.

(iii) If �K.VI /\�K.VJ /¤∅ then I � J or J � I .

(iv) The zero set �K.X/D jsKj�1.0/ is contained in �K.V/D
S
I2IK�K.VI /:

If K is a cobordism, we require in addition that V is collared in the following sense:
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(v) For each ˛ 2 f0; 1g and I 2 I@˛K � IK , there exists an " > 0 and a subset
@˛VI � @

˛UI such that @˛VI ¤∅ if and only if VI \ �1I .@˛FI /¤∅, and

.�˛I /
�1.VI /\ .A

˛
" � @

˛UI /D A
˛
" � @

˛VI :

We call @˛V WD
F
I2I

@0K
@˛VI � ObjB@˛K

the boundary restriction of V to @˛K .

Remark 3.2.2 (i) The notion of (cobordism) reduction is equivalent to saying
that V WD

F
I2IK VI � ObjBK

is the lift VI WD ��1I .V I / of a (cobordism) reduction
VD

F
I2IK V I �ObjBK

of the intermediate Kuranishi atlas/cobordism. Thus existence
and uniqueness of reductions is proven in [13, Theorem 5.1.6].

(ii) The restrictions @˛V of a cobordism reduction V of a Kuranishi cobordism K
are reductions of the restricted Kuranishi atlases @˛K for ˛ D 0; 1. In particular,
condition (ii) holds because part (v) of Definition 3.2.1 implies that if @˛VI ¤ ∅
then @˛VI \ �1I .@˛FI /¤∅. Note that condition (v) also implies that VI � UI is a
collared subset in the sense of (2.4.1). Þ

Given a reduction V , we define the reduced domain category BKjV and the reduced
obstruction category EKjV to be the full subcategories of BK and EK with objectsF
I2IK VI and

F
I2IK VI �EI respectively, and denote by sKjV W BKjV!EKjV the

section given by restriction of sK . Now one might hope to find transverse perturbation
functors sKjV C �W BKjV!EKjV by iteratively constructing �I W VI !EI as in [14],
where compatibility with the morphisms can be ensured by working along the partial
order ¨ on IK , using the separation property (iii) of a reduction. However, we also have
to ensure compatibility with the morphisms given by the action of nontrivial isotropy
groups �I . Depending on their action, we might not even be able to even find a �I –
equivariant perturbation �I in a single chart such that sIC�I t0. In general, this can be
resolved by using multivalued perturbations such as in the perturbative construction of
the Euler class of an orbibundle, explained for example in [6] as motivation for perturba-
tions in Kuranishi structures. We could also formulate our perturbation scheme in these
terms, but due to the particularly simple setup — notably additivity �ID

Q
i2I �i of the

isotropy groups — we can construct the “multivalued perturbations” as single-valued
section functors �W BKj

n�
V ! EKj

n�
V over a pruned domain category BKj

n�
V , which

is obtained in Lemma 3.2.3 from the reduced domain category BKjV by forgetting
sufficiently many morphisms to obtain trivial isotropy. It is to this category that the
iterative perturbation scheme of [14] will be applied in Section 3.3 to obtain a suitable
class of transverse perturbations � . Once a zero set is cut out transversely from BKj

n�
V ,

we will then show in Theorem 3.2.8 that adding some of the isotropy morphisms
back in — at the expense of adding weights to corresponding branches of the solution
set — yields the structure of a weighted branched manifold on the Hausdorff quotient
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of the perturbed solution set
ˇ̌
.sKj

n�
V C�/

�1.0/
ˇ̌
�
ˇ̌
BKj

n�
V
ˇ̌
. This perturbed solution set

is not a subset of the virtual neighborhood jKj, but its Hausdorff quotient supports a
fundamental class by Proposition A.7, and the inclusion �� W .sKjn�V C�/

�1.0/!ObjBK

induces a continuous map j�� jHW
ˇ̌
.sKj

n�
V C�/

�1.0/
ˇ̌
H ! jKj that will represent the

virtual fundamental cycle of K .

We will describe the pruned categories in terms of the sets

zVIJ WD VJ \ �
�1
IJ .VI /D VJ \�

�1
K .�K.VI //� zUIJ :

Note that zVIJ is invariant under the action of �J , and is an open subset of the closed
submanifold zUIJ D s�1J .EI / of VJ , where the last equality holds by the tameness
condition (2.5.2). Further if F � I � J ,

(3.2.1) VJ \ �
�1
IJ .
zVFI /D zVIJ \ zVFJ D VJ \�

�1
K .�K.VI /\�K.VF //� zUFJ :

In fact, the second equality above holds for any pair of subsets F; I � J . However,
because V is a reduction, the intersection is empty unless F and I are nested, ie either
F � I or I �F . Finally, the group �InF acts freely on zUFI (by Definition 2.2.8 for a
coordinate change), and hence also on zVFI . If I D F we define �InF WD �∅ WD fidg.

Lemma 3.2.3 Let V be a (cobordism) reduction of a tame Kuranishi atlas or cobor-
dism K . Then there are well-defined categories — the pruned domain category BKj

n�
V

and the pruned obstruction category EKj
n�
V — obtained from BK and EK as follows:

� Object spaces are given by restriction to the reduction V D
F
I2IK VI � ObjBK

:

Obj
BKj
n�
V
WD

G
I2IK

VI � ObjBK
; Obj

EKj
n�
V
WD

G
I2IK

VI �EI � ObjEK
:

� Morphism spaces are open subsets of MorBK and MorEK respectively, with
components

Mor
BKj
n�
V
WD

G
I;J2IK

Mor
BKj
n�
V
.VI ; VJ /; Mor

EKj
n�
V
WD

G
I;J2IK

Mor
EKj
n�
V
.VI ; VJ /;

given by Mor:::.VI ; VJ /D ∅ unless I � J , in which case the morphisms are
given in terms of the open subsets zVIJ WD VJ \ ��1IJ .VI /� zUIJ as

MorBKj
n�
V .VI ; VJ / WD

zVIJ � fidg � zUIJ ��I DMorBK.UI ; UJ /;

MorEKj
n�
V .VI ; VJ / WD

zVIJ �EI � fidg � zUIJ �EI ��I DMorEK.UI ; UJ /:

� All structure maps (source, target, identity, and composition) are given by restric-
tion of the respective structure maps of BK and EK in Definition 2.3.5.
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These pruned categories are nonsingular in the sense that there is at most one morphism
between any two objects. Moreover, the projection and section functors prKW EK!BK
and sKW BK ! EK restrict to well-defined functors prK j

n�
V W BKj

n�
V ! EKj

n�
V and

sKj
n�
V W BKj

n�
V !EKj

n�
V with prK j

n�
V ı sKj

n�
V D id

BKj
n�
V

.

Proof Recall that .I; J; y; id/ 2MorBKj
n�
V has source .I; �IJ .y// and target .J; y/

(where, as in Lemma 2.3.6, we suppress mention of the inclusion z�IJ ). Now morphisms
are closed under composition because the strong cocycle condition guarantees that
�IJ ı �JK D �IK , with identical domains whenever I � J � K . Moreover, the
category is nonsingular because source and target determine the morphism uniquely.
Similar arguments apply to EKj

n�
V . Finally, the projection and section functors of K

act trivially on the isotropy groups �I , and thus restrict to well-defined functors when
we drop these.

The following combines Definitions 7.2.1, 7.2.5, 7.2.6 and 7.2.9 from [14].

Definition 3.2.4 A (cobordism) perturbation of K is a smooth functor

�W BKj
n�
V !EKj

n�
V

between the pruned domain and obstruction categories of some (cobordism) reduction V
of K , such that prK j

n�
V ı � D idBKj

n�
V .

That is, � D .�I /I2IK is given by a family of smooth maps �I W VI ! EI that are
compatible with coordinate changes in the sense that for all I ¨ J we have

(3.2.2) �J j zVIJ
D y�IJ ı �I ı �IJ j zVIJ

on zVIJ D VJ \ �
�1
IJ .VI /:

If K is a Kuranishi cobordism we require in addition that � has product form in a
collar neighborhood of the boundary. That is, for ˛ D 0; 1 and I 2 IK˛ � IK there is
an " > 0 and a map �˛I W @

˛VI !EI such that

�I .�
˛
I .t; x//D �

˛
I .x/ 8x 2 @

˛VI ; t 2 A
˛
" :

We say that a (cobordism) perturbation � is

� admissible if we have dy�J .TyVJ /� im y�IJ for all I ¨ J and y 2 zVIJ ;

� transverse if sI jVIC�I W VI !EI is transverse to 0 for each I 2 IK ;

� precompact if there is a precompact open subset C @ V which itself is a (cobor-
dism) reduction, such that

(3.2.3) �K

� [
I2IK

.sI jVIC�I /
�1.0/

�
� �K.C/:
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Remark 3.2.5 Although �KW ObjBK
!jKj is not induced by a functor on BKj

n�
V , we

will work with �KW
F
I2IK UI ! jKj as continuous map, in particular for the notion

of precompactness. As in the case of trivial isotropy, we do not have a nicely controlled
cover of sets UJ \��1K .�K.C// for C �

F
UI . However, because C D

F
CI � V DF

VI �
F
UI are lifts of reductions of jKj as in Remark 3.2.2, the morphisms between

VJ and C are better understood, yielding

(3.2.4) VJ \�
�1
K .�K.C//D VJ \

� [
H�J

�JH .CH /[
[
H¨J

��1HJ .CH /

�
:

Indeed, by the reduction property, �K.VJ / only intersects �K.CH / for H � J or
H � J . The morphisms between VJ and CH are then given by �JH and �J in the
first case, or �HJ and �H in the second, and the isotropy groups are absorbed by the
equivariance �J �JH .CH /D �JH .�HCH / and fact that �HCH D CH D ��1H .CH /.
As a result, we can write (3.2.3) in terms of the covering maps .�IJ /I;J2IK , without
explicit reference to the isotropy groups �I , as

(3.2.5) .sJ jVJC�J /
�1.0/ �

[
H�J

�JH .CH /[
[
H¨J

��1HJ .CH / 8J 2 IK: Þ

Definition 3.2.6 Given a (cobordism) perturbation � , the perturbed zero set jZ � j is
defined to be the realization of the full subcategory Z � of BKj

n�
V with object space�

sKj
n�
V C �

��1
.0/ WD

G
I2IK

.sI jVIC�I /
�1.0/ � Obj

BKj
n�
V

given by the local zero sets ZI WD .sI jVIC�I /
�1.0/. That is, we equip

jZ �
j WD

ˇ̌
.sKj

n�
V C �/

�1.0/
ˇ̌
D

� G
I2IK

ZI

�ı
�

with the quotient topology generated by the morphisms of BKj
n�
V . Moreover, we denote

by �� W Z �!BK the functor induced by the inclusion .sKjn�V C�/
�1.0/!ObjBK

and
corresponding inclusion of morphism spaces (to a generally not full subcategory), with
resulting continuous map

(3.2.6) j�� jW jZ �
j ! jKj:

Remark 3.2.7 If �W BKj
n�
V !EKj

n�
V is a cobordism perturbation of a tame Kuranishi

cobordism K , then each restriction �j@˛V WD .�˛I /I2IK˛ for ˛ D 0; 1 forms a pertur-
bation of the Kuranishi atlas @˛K with respect to the boundary restriction @˛V of the
reduction.
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If in addition � is admissible/transverse/precompact, then so are the restrictions �j@˛V .
Moreover, in the case of transversality each perturbed section sI jVIC�I W VI !EI for
I 2 I@0K [ I@1K � IK is transverse to 0 as a map on a domain with boundary; ie the
kernel of its differential is transverse to the boundary

@VI D
G
˛D0;1

�˛I .f˛g � @
˛VI /: Þ

Theorem 3.2.8 Let .K; �/ be an oriented tame Kuranishi atlas/cobordism of dimen-
sion d and let � be an admissible, transverse, precompact (cobordism) perturbation
of K with respect to nested (cobordism) reductions C @ V @ ObjBK

. Then Z � can be
completed to a compact, d–dimensional wnb (cobordism) groupoid yZ � , in the sense
of Definition A.4, with the same realization j yZ � j D jZ � j. In addition,

ƒ�.p/ WD j�I j
�1#fz 2ZI j �H .jzj/D pg; for p 2 jZI jH;

defines a weighting function ƒ� W jZ � jH ! QC on the Hausdorff quotient of the
perturbed zero set jZ � jH . Together, these give .j yZ � jH; ƒ

�/ the structure of a compact,
d–dimensional weighted branched manifold/cobordism, in the sense of Definition A.5.
It defines a cycle in jCj in the sense that the map j�� jHW j yZ � jH!jKj induced by (3.2.6)
has image in jCj.

Moreover, if K is a Kuranishi cobordism and the boundary restrictions of � are denoted
�˛ WD �j@˛V , then . yZ �; ƒ�/ has oriented boundaries . yZ �0; ƒ�

0

/ and . yZ �1; ƒ�
1

/, and
the cycle j�� jHW j yZ � jH! jCj restricts on the boundaries to j��

˛

jHW j yZ
�˛ jH! j@

˛Cj.

We begin the proof of Theorem 3.2.8 by explaining the structure of the groupoid com-
pletion yZ � . Note that the compatibility condition (3.2.2) implies partial equivariance
of the perturbation: �J .˛y/D �J .y/ for y 2 zVIJ ; ˛ 2 �JnI . This fact is reflected in
the structure of the morphisms in the groupoid yZ � , which contain this action of �JnI
on zVIJ \ZJ as part of the morphism space Mor yZ� .ZJ ; ZJ /.

Lemma 3.2.9 Let � be any (cobordism) perturbation of a tame d–dimensional Kuran-
ishi atlas/cobordism K .

(i) There is a unique nonsingular groupoid yZ � with the same objects and realization
as Z �. Its morphism space for I � J is given by

Mor yZ�.ZI ; ZJ / WD
[

∅¤F�I

.ZJ\ zVIJ\ zVFJ /��InF � zUIJ��I D MorBK.UI ; UJ /:

(ii) If � is admissible and transverse, then the subsets ZJ \ zVIJ �ZJ are open for
all I � J and the groupoid yZ � is étale and has dimension d . Further, yZ � is
oriented if in addition K is oriented.
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(iii) If K is an oriented tame Kuranishi cobordism and � is admissible and transverse,
then yZ � satisfies all conditions given in the appendix for being an étale, oriented,
cobordism groupoid, except possibly that of compactness.

Proof First note that there is at most one nonsingular groupoid with the same objects
and realization as Z � , since any such groupoid has a unique morphism .I; x/ 7! .J; y/

whenever .I; x/� .J; y/, where � is the equivalence relation on ObjZ� generated by
MorZ� . To prove existence of such a groupoid, we show below that when I � J ,

(a) each element in Mor yZ� .ZI ; ZJ / is uniquely determined by its source and target;

(b) if there is a morphism .I; J; y; ˛/ 2 Mor yZ� .ZI ; ZJ / with source .I; x/ and
target .J; y/, then .I; x/� .J; y/;

(c) the set of morphisms
S
I�J Mor yZ� .ZI ; ZJ / together with their inverses (which

are uniquely defined by (a)) is closed under composition.

Parts (a) and (c) show that there is a nonsingular groupoid yZ � with the given mor-
phisms. Moreover, since the equivalence relation � is generated by the morphisms
.I; J; y; id/ 2MorZ� .ZI ; ZJ /�Mor yZ� .ZI ; ZJ /, (c) shows that if .I; x/� .J; y/,
where I � J , then Mor yZ� ..I; x/; .J; y//¤∅. Together with (b) this implies that yZ �

has realization jZ � j.

To prove (a) we must check that given x 2 UI ; y 2ZJ \ zVIJ , where I � J , there is
at most one element ˛ 2 �I such that

� x D ˛�1�IJ .y/;

� there is F � I such that ˛ 2 �InF and y 2 zVFJ \ zVIJ .

But if ˛1 and ˛2 are two such elements, corresponding to F1 and F2 , then ˛�11 ˛2
fixes the point �IJ .y/. On the other hand, because the set of F such that y 2 zVFJ
is nested, we can suppose that F1 � F2 . Then �IJ .y/ 2 zVF1I and ˛�11 ˛2 2 �InF1 .
Since �InF1 acts freely on zVF1I , this implies that ˛1 D ˛2 as required.

To prove (b), observe that if I � J and Mor yZ� ..I; x/; .J; y//¤∅ then there is F � I
and ˛ 2 �InF such that x D ˛�1�IJ .y/, which implies that

�FI .x/D �FI .˛
�1�IJ .y//D �FI .�IJ .y//D �FJ .y/:

Hence, the composite .F; I; x; id/ı.I; J; y; ˛/ is well defined and equal to .F; J; y; id/.
Therefore .F; �FI .x//� .I; x/ and .F; �FI .x//D .F; �FJ .y//� .J; y/, which gives
.I; x/� .J; y/ since � is an equivalence relation.

Finally, to prove (c), it is convenient to consider two special kinds of morphisms:
morphisms denoted �A with I DJ , and morphisms denoted �B with I ¨J and ˛D id
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that therefore belong to MorZ� . We first observe that every morphism .I; J; y; ˛/ in
Mor yZ� .ZI ; ZJ / can be written in two ways as a composite of morphisms of types (A)
and (B). More precisely, the identity �A1 ı�

B
1 D �

B
2 ı�

A
2 holds, where �Ai ; �

B
j are

the morphisms in the following diagram:

(3.2.7)

.I; ˛�1�IJ .y//

�A1
��

�B2 // .J; ˛�1y/

�A2
��

.I; �IJ .y//
�B1 // .J; y/

Therefore these morphisms �A , �B and their inverses generate Mor yZ� . The commu-
tativity of the above diagram also shows that we can interchange their order: ie every
morphism of the form �A1 ı�

B
1 can also be written as �B2 ı�

A
2 , which we abbreviate

below as the identity �A1 ı�
B
1 D �

B
2 ı�

A
2 .

Next let us consider the other composites. Morphisms of type (A) with fixed F � I are
closed under composition since they are given by the action of �InF . Moreover, two
morphisms of this type corresponding to different subgroups F1; F2 can be composed
only if the sets �K.VI /; �K.VF1/; �K.VF2/ intersect. Hence the sets F1; F2 are nested,
either F1 � F2 or F2 � F1 , and in either case the composite is another morphism
of this type. The situation for morphisms of type (B) is more complicated (which is
precisely why we needed to add the morphisms of type (A) to obtain a groupoid). We
have:
� �B1 ı�

B
2 D �

B
3 : ie if I � J � K and y D �JK.z/ then the following identity

holds (this statement includes the claim that the left-hand composite is well defined):

.I; J; y; id/ ı .J;K; z; id/D .I;K; z; id/ 2Mor yZ� ..I; �IK.z//; .K; z//:

� .�B1 /
�1 ı�B2 D �

A ı�B3 or D �A ı .�B3 /
�1 :

- If I � J �K and �IJ .y0/D �IK.y/D �IJ ı�JK.y/, then �JK.y/ and y0 lie
in the same �JnI –orbit so that y0 D ˛�1�JK.y/ for some ˛ 2 �JnI , and

.I; J; y0; id/�1 ı .I;K; y; id/D .J; J; �JK.y/; ˛/ ı .J;K; y; id/

2Mor yZ� ..J; ˛
�1�JK.y//; .K; y//:

- If I �K � J and there are y0 2 zVIJ \ZJ ; y 2 zVIK \ZK with

�IJ .y
0/D �IK.�KJ .y

0//D �IK.y/ 2ZI ;

then there is ˇ 2 �KnI such that y D ˇ �KJ .y0/D �KJ .ˇy0/ 2ZK , and

.I; J; y0; id/�1 ı .I;K; y; id/D .J; J; ˇ y0; ˇ/ ı .K; J; ˇ y0; id/�1

2Mor yZ� ..J; y
0/; .K; y//:
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� One can check similarly that if �B1 D .I; J; y; id/ and �B2 D .K; J; y; id/ then

�B1 ı .�
B
2 /
�1
D

�
�A ı�B3 if I �K;
�A ı .�B3 /

�1 if K � I:

Combining these identities with �A1 ı �
B
1 D �B2 ı �

A
2 and its inverse, we see that

if I � J , every composite morphism ZI ! ZJ ! ZK can be written in the form
�B ı�A if I � K , and in the form �A1 ı .�

B
1 /
�1 D .�B2 /

�1 ı�A2 if K � I . This
completes the proof of (c) and hence of part (i) of the lemma.

The claims in (ii) are proved by applying Lemma 3.1.14 with f W W ! EI given
by sI C �I W VI ! EI . Since sI C �I t 0, Lemma 3.1.14(i) shows that ZI is a
manifold, while the admissibility of � implies that the hypothesis of Lemma 3.1.14(iii)
holds on zVHI so that the subset ZI \ zVHI of ZI is open and �HI induces a local
diffeomorphism from ZI \ zVHI to ZH \ �HI . zVHI /. Further, by the compatibility
condition (3.2.2) we can identify with the zero set of �HI �.sIC�I /D sHC�HI �.sI /.
Since the maps �IJ together with their inverses generate the structure maps in yZ � , this
shows that this groupoid is étale. Moreover, if K is oriented, then Lemma 3.1.14(ii)–(iii)
also implies that the structure maps in yZ � are orientation-preserving.

Finally, (iii) holds by Lemma 3.1.14(iv).

In order to show that yZ � represents a weighted branched manifold, we must understand
its maximal Hausdorff quotient j yZ � jH as defined in Lemma A.2. The morphisms in a
nonsingular groupoid G correspond bijectively to the equivalence relation �G on ObjG
where x �G y if and only if MorG .x; y/¤∅. A necessary condition for the quotient
jG j WDObjG =�G to be Hausdorff is that this equivalence relation be given by a closed
subset of ObjG �ObjG ; in other words, we need the map s�t W MorG!ObjG �ObjG
that takes a morphism to its source and target to have closed image. The following
lemma shows that in the special case of the groupoid yZ � this necessary condition is
also sufficient.

Lemma 3.2.10 Let � be an admissible, transverse, (cobordism) perturbation of a tame
Kuranishi atlas/cobordism K . Then:

(i) Let yZ �
H be the groupoid obtained from yZ � by closing the relation � on Obj yZ� .

Then we have that yZ �
H is nonsingular and j yZ �

Hj is Hausdorff. Further, we can
identify j yZ �

Hj with the maximal Hausdorff quotient j yZ � jH in such a way that
the canonical quotient map j yZ � j ! j yZ � jH D j yZ

�
Hj is induced by the functor

�H W yZ
�! yZ �

H .
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(ii) For each I 2 IK , the projection

� yZ�
H
W Obj yZ�

H
! j yZ �

Hj

takes ZI onto a subset of j yZ �
Hj that is open with respect to the quotient topology.

This topology on j yZ �
Hj is metrizable.

(iii) If x 2 ZI and p D � yZ�
H
.x/ 2 j yZ �

Hj, then fx0 2 ZI j � yZ�
H
.I; x0/Dpg is the

.�InFx /–orbit of x , so

#fx 2ZI j � yZ�
H
.I; x/Dpg D j�InFxj;

where Fx DminfF WZI \cl. zVFI /\��1yZ�
H
.p/¤∅g DminfF W p 2 � yZ�

H
.ZF /g.

Proof We use the notation in Lemma 3.2.9. The components of Mor yZ� .ZI ; ZJ /

consisting of morphisms of type (B) are taken by s� t W Mor yZ� .ZI ; ZJ /!ZI �ZJ �

Obj yZ� �Obj yZ� to the set of pairs˚
.�IJ .y/; y/ j y 2ZJ \ zVIJ \�

�1
K .VI /

	
�ZI �ZJ ;

where we simplify notation by writing y instead of .J; y/, and similarly for the source.
If .�IJ .yn/; yn/! .x1; y1/ 2 ZI �ZJ is a convergent sequence of such points
with limit .x1; y1/ 2ZI �ZJ , then y1 2ZJ \ zUIJ since yn 2ZJ \ zVIJ � zUIJ
and zUIJ is closed in UJ , which implies that �IJ .y1/ is defined. We then must have
x1 D �IJ .y1/ by the continuity of �IJ . Thus

y1 2 �
�1
IJ .ZI /\ZJ � �

�1
IJ .VI /\VJ D

zVIJ :

Hence y1 2ZJ \ zVIJ , so that .I; J; y1; id/2Mor yZ� .ZI ; ZJ /. Therefore the graph
of this set of morphisms is closed in ZI �ZJ .

However the set of morphisms of type (A) from ZI ! ZI is not closed in general;
instead it has closure8

Mor yZ� .ZI ; ZI / WD
[
F¨I

˚
.I; I; y; ˛/ j y 2 cl. zVFI /\ZI ; ˛ 2 �InF

	
:

Notice that, as in the proof of Lemma 3.2.9(i), this set Mor yZ� .ZI ; ZI / is invariant
under compositions (and inverses) because the intersection properties of the sets in a
reduction apply to their closures: �K.VF1/\�K.VF2/¤∅ H) F1 � F2 or F2 � F1 .
Next, observe that because �IJ W zUIJ ! UIJ is a local diffeomorphism, the map �IJ
induces a local diffeomorphism from zVIJ \ cl. zVFJ /\ZJ into UIJ \ cl. zVFI /\ZI .

8While we usually denote the closure of a set A by A , for sets such as zVIJ that involve a tilde we will
write cl. zVIJ / .
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Similarly, because cl. zVFJ / � zUFJ whenever F � J , the group �InF acts freely
on cl. zVFJ /, and, if F � I , commutes with the action of �IJ as in diagram (3.2.7).
Therefore the closure of Mor yZ� .ZI ; ZJ / when I � J is given as follows:

(3.2.8) Mor yZ�
H
.ZI ; ZJ /D

[
F�I

�
ZJ \ zVIJ \ cl. zVFJ /

�
��InF

D
˚
.I; J; y; ˛/

ˇ̌
9F � I; ˛ 2 �InF

such that y 2 cl. zVFJ /\ zVIJ \ZJ
	
:

The arguments in Lemma 3.2.10 apply to show that this set of morphisms, together with
inverses, are closed under composition and are uniquely determined by their source and
target. Thus yZ �

H is a nonsingular groupoid. Its realization j yZ �
Hj is Hausdorff as it is the

quotient of the separable, locally compact metric space Obj yZ�
H

by a relation with closed
graph; see [1, Chapter I, Section 10, Example 19] or [13, Lemma 3.2.4]. Moreover, the
space j yZ �

Hj can be identified with the maximal Hausdorff quotient of j yZ � j because
any continuous map from Obj yZ� =� to a Hausdorff space Y must factor through
the closure of the relation � induced by the morphisms in yZ � , and hence descends
to j yZ �

Hj. This proves (i).

To see that � yZ�
H
.ZI / is open in j yZ �

Hj we must show that each intersection

ZJ \�
�1
yZ�
H
.� yZ�

H
.ZI //

is open. Since � yZ�
H
.ZI / \ � yZ�

H
.ZJ / ¤ ∅ only if I � J or J � I , it suffices to

consider these two cases. Now

ZJ \�
�1
yZ�
H
.� yZ�

H
.ZI //

consists of all elements in ZJ that are targets of morphisms with source in ZI .
Therefore if I ¨ J , then

ZJ \�
�1
yZ�
H
.� yZ�

H
.ZI //DZJ \ zVIJ ;

which is open by Lemma 3.2.9(i). On the other hand, if J � I then because the set
�JI . zVJI / is �J –invariant, we have

ZJ \�
�1
yZ�
H
.� yZ�

H
.ZI //DZJ \ �JI . zVJI /;

which is open by Lemma 3.2.9(ii). Thus � yZ�
H
.ZI / is open. It follows that the quotient

topology on j yZ �
Hj has a countable basis because each ZI does. We also have that

j yZ �
Hj is regular. Indeed, by [15, Lemma 31.1], we only need to check that each point

p 2 j yZ �
Hj with neighborhood W �j yZ �

Hj has a smaller neighborhood W1�W such that
W1�W , and this is an immediate consequence of the regularity and local compactness
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of the sets ZI and the openness of the sets � yZ�
H
.ZI /. Therefore j yZ �

Hj is metrizable
by the Urysohn metrization theorem. This proves (ii).

To prove (iii), note first that for each x 2ZI the subsets F 2 IK such that x 2 cl. zVFI /
are nested and hence have a minimal element Fx . The precompactness of VI in UI
implies that x 2 cl. zVFI / � zUFxI so that its orbit under �InFx is free. Moreover,
because Fx � F for every F for which x 2 cl. zVFI /, this orbit �InFx .x/ contains the
targets of all the morphisms in Mor yZ�

H with source .I; x/. This proves the formula
j�InFx j D #fx 2ZI j � yZ�

H
.I; x/Dpg.

It remains to check that Fx , which we defined as

minfF WZI \ cl. zVFI /\��1yZ�
H
.p/¤∅g;

also equals F 0x WDminfF W p 2 � yZ�
H
.ZF /g. But if

ZI \ cl. zVFI /\��1yZ�
H
.p/¤∅

there is a sequence of elements xk 2ZI \ zVFI with limit x1 2 ��1yZ�
H
.p/, implying by

the continuity of � yZ�
H

that, with x0
k
WD �FI .xk/, the sequence

� yZ�
H
.x0k/D � yZ�

H
.xk/

converges to p . Hence p 2 � yZ�
H
.ZF /, which implies F 0x � Fx . Conversely, if

p 2 � yZ�
H
.ZI /\� yZ�

H
.ZF /;

then since � yZ�
H
.ZI / is open in j yZ �

Hj there is a sequence pk of elements in

� yZ�
H
.ZI /\� yZ�

H
.ZF /

that converges to p 2 � yZ�
H
.ZI /. By (3.2.1), this lifts to a sequence xk 2 zVFI �ZI ,

and the sequence of images �K.� yZ�
H
.xk// in jVj � jKj converges to j� yZ�

H
j.p/, where

� yZ�
H

is as in (ii). But the composite

�K ı � yZ�
H
W VI ! �K.VI /Š VI=�I

simply quotients out by the action of �I on VI . Since the projection V ! VI=�I is
proper by Lemma 2.1.5(i), the sequence .xk/ must have a convergent subsequence
with limit x1 2 VI . But then by uniqueness of limits in the Hausdorff space j yZ �

Hj,
� yZ�

H
.x1/D limk!1 � yZ�

H
.xk/D p . Therefore

x1 2 cl. zVFI /\��1yZ�
H
.p/:

Hence by the minimality of Fx we must have Fx � F 0x . This completes the proof.
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Proof of Theorem 3.2.8 Let us first consider the case when � is an admissible,
transverse, precompact perturbation of an oriented tame Kuranishi atlas K with respect
to nested reductions C @ V @ ObjBK

. Then Lemma 3.2.9 shows that Z � can be
completed to an oriented, nonsingular étale groupoid yZ � . Moreover, by Lemma 3.2.10
the maximal Hausdorff quotient j yZ � jH can be identified with the realization j yZ �

Hj of
the groupoid yZ �

H . To complete the proof of the first part of the theorem it remains to
show that j yZ �

Hj is compact, and that . yZ � ; ƒ�/ has the structure of a wnb groupoid as
in Definition A.4.

Because j yZ �
Hj is metrizable by Lemma 3.2.9(ii), it suffices to prove that j yZ �

Hj is
sequentially compact. Further, we saw in (3.2.5) that the precompactness condition
for � can be written without explicit mention of the isotropy groups �I . Hence the
proof of the sequential compactness of the zero set given in [13, Theorem 5.2.2] carries
through, without change, to the current situation.

We next check that the weighting function ƒ� is well defined, and compatible with a
local branching structure as required by Definition A.4. To see that it is well defined,
suppose that p 2 � yZ�

H
.ZI /\� yZ�

H
.ZJ /. As usual we may suppose that I � J , so that

pD � yZ�
H
.y/ for some y 2 zVIJ �ZJ . Let the minimal set F such that p 2 � yZ�

H
.ZF /

be denoted by Fp . Then there are j�JnFp j distinct elements in ZJ that map to p .
Hence ƒ.p/D j�JnFp j=j�J j, and we must check that this agrees with the calculation
provided by replacing J by I . But if x D �IJ .y/, then because Fp � I does not
depend on I; J we have �JnFpD�InFp��JnI . Hence j�JnFp j=j�J jD j�InFp j=j�I j.
Thus ƒ� is well defined.

Finally we describe the local branches at p 2 j yZ �
Hj. Given p 2 j yZ �

Hj, choose a minimal
I such that p 2 � yZ�

H
.ZI /, and a minimal Fp � I such that p 2 � yZ�

H
.ZFp /. Then

Fp � I , and there is x 2ZI \ cl. zVFpI / such that pD � yZ�
H
.x/. As � yZ�

H
.ZI / is open

in j yZ �
Hj, we may choose an open neighborhood N � � yZ�

H
.ZI / of p whose closure N

is disjoint from all sets � yZ�
H
.ZF / with F ¨ Fp . We saw in Lemma 3.2.10(iii) that

ZI \ .� yZ�
H
/�1.p/D �InFp .x/. Hence, by shrinking N further if necessary, we may

suppose that there is an precompact open neighborhood Bx of x in ZI such that

�
S
2�InFp

� yZ�
H
.Bx/DN ;

� the closure Bx in ZJ is disjoint from its images under the action of �InFp .

Then choose the local branches to be the disjoint subsets .Bx/2�InFp of ZI , each
with weight 1=j�I j. Notice that

(3.2.9)
[

2�InFp

Bx DZI \�
�1
yZ�
H
.N / and

[
2�I nFp

Bx DZI \�
�1
yZ�
.N /:
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Here, the first claim holds because, by the minimality of Fp and the choice of Bx ,

Bx \ cl. zVFI /¤∅ H) Fp � F;

so that the only morphisms in yZ �
H with source in

S
2�InFp

Bx and target in ZI are
given by the action of an element in �InFp and hence also have target in this set. The
second claim holds similarly.

We must check that the three conditions in Definition A.4 hold.

� The covering property states that�
�H
j yZ� j

��1
.N / D

[
2�InFp

jBxj � jZ j:

If this were false there would be a point y 2 ZJ for some J such that there is a
morphism in yZ �

H from .J; y/ to a point .I; x0/ 2 Bx for some  2 �InFp , but there
is no such morphism in yZ � . By construction, the morphisms in yZ �

H from ZJ to ZI
are composites of morphisms of type (B) from ZJ to ZI (which lie in yZ � ) with
morphisms in the closure of Mor yZ� .ZI ; ZI /. Therefore it suffices to consider the
case J D I , and y …

S
2�InFp

Bx . But (3.2.9) implies that the only elements of
Mor yZ� .ZI ; ZI / with target in Bx must have source in some set ˛Bx . Therefore
such y does not exist.

� For local regularity, we must check that for each  the projection � yZ�
H
W Bx!j yZ

�
Hj

is a homeomorphism onto a relatively closed subset of N . But (3.2.9) implies that this
map extends to an injective, continuous map f with compact domain Bx . Hence
f is a homeomorphism onto its image because compact subsets of the Hausdorff
space j yZ �

Hj are closed. Further, � yZ�
H
.Bx/DN \� yZ�

H
.Bx/ is closed in N because

it is the intersection of a compact set with N .

� Finally, note that ƒ� equals the branching function specified in Definition A.4;
indeed, the number of branches through q 2 N is just the number of preimages of
q 2N in

S
2�I nFp

Bx , and we saw in Lemma 3.2.10(iii) that this is j�InFq j, where
Fq � Fp is the minimal set F such that q 2 � yZ�

H
.ZF /.

This completes the proof that . yZ � ; ƒ�/ is a compact wnb groupoid. It has a fundamental
class by Proposition A.7, and hence defines a cycle in C as claimed.

The same arguments apply when K is a Kuranishi cobordism. In particular, j yZ �
Hj is

compact so that, by Lemma 3.2.9(iii), . yZ � ; ƒ�/ is a wnb cobordism groupoid, and the
boundary restrictions have the required properties by Lemma 3.1.14(iv).

We end this section by some elementary examples of this construction: the fundamental
class and the Euler class of an orbifold represented by Kuranishi atlases.
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Example 3.2.11 Consider the orbifold case, ie a Kuranishi atlas K on X with trivial
obstruction spaces so that sK and � are identically zero and �KW X ! jKj is a homeo-
morphism. In this case the zero set Z should represent the fundamental class of the
oriented orbifold. We suppose that X DM=� is the quotient of a compact oriented
smooth manifold M by the action of a finite group � , and that K is the atlas with a
single chart with domain M and E D f0g. Then Z D jBKj

n� is the category with
objects M and only identity morphisms, because there are no pairs I; J 2 IK such that
∅¤ I ¨ J . Therefore Z DZH has realization jZHj DM and the weighting function
ƒW M !Q is given by ƒ.x/D 1=j�j. If the action of � is effective on every open
subset of M , then the pushforward of ƒ by �ZH W M !X , which is defined by

.�ZH/�ƒ.p/ WD
X

x2.�ZH /
�1.p/

ƒ.x/;

takes the value 1 at every smooth point (ie point with trivial stabilizer) of the orb-
ifold M=� . On the other hand, if � acts by the identity so that the action is totally
noneffective, then �ZH W M �!

Š
X is the identity map and the weighting function

X !QC takes the constant value 1=j�j.

Note that if we construct a fundamental class on jZ jH by the method of Proposition A.7
then our choice of weights gives a class that is consistent with standard conventions. For
example, in dimension d D 0 the branched manifold Z D jZ jH is a finite collection
of points fp1; : : : ; pkg, one for each equivalence class in ObjZ , where the point
pi corresponding to an equivalence class with stabilizer � i has weight 1=j� i j. If
each point is positively oriented, then the “number of elements” in jZ jH is the sumPk
iD1 1=j�

i j, which gives the Euler characteristic of the groupoid; cf [17]. Other more
substantive examples such as that of the football of Example 2.3.11 are discussed in
[11, Example 4.6].

Example 3.2.12 Examples of Kuranishi atlases with nontrivial obstruction spaces can
be seen in the calculation of the Euler class of the tangent bundle of S2 and of the
football orbifold using Kuranishi atlases.

(i) To build a Kuranishi atlas that models TS2 , cover S2 by two discs D1;D2
whose intersection D1 \D2 DW D12 DW A is an annulus, and for i D 1; 2 define
Ki WD .Ui WDDi ; Ei WD C; si WD 0;  i WD id/. For i D 1; 2 choose trivializations
�i W Di �C! TS2jDi , .x; e/ 7! �i;x.e/ and then define the transition chart

K12 WD .U12 �E1 �E2 �A; E1 �E2; s12 D prE1�E2 ;  12 D prAj0�0�A/;

where
U12 WD f.e1; e2; x/ j x 2 A; �1;x.e1/C �2;x.e2/D 0g:
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The coordinate changes y‰i;12 are given by taking Ui;12 DA and  i;12.x/D .0; 0; x/.
To justify this choice of Kuranishi atlas note that one can construct a commutative
diagram

jEKj

��

// TS2

��
jBKj // S2

that restricts over U12 �E12 to the map

..e1; e2; x/; e
0
1; e
0
2/ 7! �1;x.e1C e

0
1/C �2;x.e2C e

0
2/ 2 TS2jA:

This construction is generalized to other (orbi)bundles in [10].

Next, in order to calculate the Euler class we identify A with Œ0; 1��S1 and consider
the corresponding trivialization TS2jADA�Rt �R� , where t 2 Œ0; 1� and � 2 S1 are
coordinates. Then for i D 1; 2 there is a section �i W Ui !Ei with one transverse zero
such that �i;x.�i .x//D .x; 1; 0/ 2 TS2jA for x 2 A. (Take suitably modified versions
of the sections �1.z/D z and �2.z/D�z , where Di �C .)

Choose a reduction of the footprint covering with V12 D ."; 1� "/�S1 for some " 2�
0; 1
4

�
and so that zV1;12D .0; 0/�

�
"; 1
4

�
�S1�U12 and zV2;12D .0; 0/�

�
3
4
; 1�"

�
�S1 ,

and choose a cutoff function ˇW Œ0; 1�! Œ0; 1� that equals 1 in
�
0; 1
4

�
and 0 in

�
3
4
; 1
�
.

Then the map �12W V12!E1 �E2 given by

�12.e1; e2; x/ D
�
ˇ.x/�1.x/; .1�ˇ.x//�2.x/

�
2 E1 �E2

defines an admissible perturbation section that restricts to �i on Vi;12 � .0; 0/�A for
i D 1; 2. Moreover s12C �12 does not vanish at any point .e1; e2; x/ 2 V12 because
the equation �1;x.e1/C �2;x.e2/D 0 together with

0D �1;x.e1/Cˇ.x/.1; 0/D �2;x.e2/C .1�ˇ.x//.1; 0/ 2 x �Rt �R� 2 TS2jA

imply that the vector .1; 0/ is zero, a contradiction. Hence the perturbed zero set Z �

consists of two points, each with weight one.

(ii) It is easy to adjust this example to the tangent bundle of the “football” discussed
in Example 2.3.11. In this case, the zero of the section si C �i would count with
weight 1=j�i j so that the Euler class is 1

2
C
1
3

. For further details of this and other
related examples see [10, Section 5].
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3.3 Construction of the virtual moduli cycle and fundamental class

The next step in the Kuranishi regularization Theorem A is to construct admissible,
transverse, precompact perturbations � that are unique up to interpolation by admis-
sible, transverse, precompact cobordism perturbations. This — quite complicated —
construction is developed in complete detail in [14] in such a way that it applies directly
to our present setting, in which the Kuranishi atlas K has nontrivial isotropy groups,
but the reduced and pruned category BKj

n�
V is nonsingular, ie the remaining isotropy

groups act freely. While we defer most of the proofs to [14], we will give full technical
statements of the existence and uniqueness of perturbations, so that our constructions
of VMC/VFC can be compared directly to other approaches, without reference to [14].
Based on this, Definition 3.3.4 and Theorem 3.3.5 then define the virtual moduli cycle
(VMC) as a cobordism class of closed oriented weighted branched manifolds and
construct the virtual fundamental class (VFC) as Čech homology class.

For the construction of (cobordism) perturbations we will consider a metric tame
Kuranishi atlas (or cobordism) .K; d /. That is, we fix the following data:
� K is a tame Kuranishi atlas on a compact metrizable space X in the sense of

Definitions 2.3.1 and 2.5.1, or it is a tame Kuranishi cobordism on a compact
collared cobordism Y in the sense of Definitions 2.4.2 and 2.5.1.

� d is an admissible metric on jKj in the sense of Definition 2.3.10.
� If .K; d / is a metric, tame Kuranishi cobordism on Y , then the boundary

restrictions .K˛; d˛/ WD .@˛K; d jj@˛Kj/ are metric, tame Kuranishi atlases on
@˛Y for ˛ D 0; 1.

For easy reference we list some consequences of this setting and notation conventions.
� The associated intermediate Kuranishi atlas K is a tame topological Kuranishi

atlas (resp. cobordism) by Lemma 2.3.4 (resp. Remark 2.4.3(ii)), which has the
same realization jKj D jKj, equipped with the quotient topology.

� d is a bounded metric on the set jKj such that for each I 2 IK the pullback
metric dI WD .�KjUI /

�d on U I induces the quotient topology on the interme-
diate domain U I D UI=�I . By construction, these also induce �I –invariant
pseudometrics dI WD .�KjUI /

�d D ��I dI on the Kuranishi domains UI of K .
Moreover, [13, Lemma 3.1.8] shows that these (pseudo)metrics are compatible
with coordinate changes. We denote the ı–balls around subsets Q�jKj, R�U I
and S � UI for ı > 0 by, respectively,

Bı.Q/ WD fw 2 jKj j 9q 2Q such that d.w; q/ < ıg;

BIı .R/ WD fx 2 U I j 9r 2R such that dI .x; r/ < ıg;

yBIı .S/ WD fy 2 UI j 9s 2 S such that dI .y; s/ < ıg;
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and note that balls in the pseudometric are �I –invariant preimages of balls
in U I ,

(3.3.1) yBIı .S/D �
�1
I .BIı .S// and Bı.�K.S//D Bı.�K.S//:

� While the metric topology on jKj is generally not compatible with the quotient
topology, we know from [13, Lemma 3.1.8] that the identity map jKj! .jKj; d /
is continuous, and thus jKj is a Hausdorff topology in which the metric ı–balls
are open, and thus neighborhoods.

Given this setting, our goal is to construct admissible, precompact, transverse (cobor-
dism) perturbations of the section sKj

n�
V over a pruned domain category BKj

n�
V ; see

Definition 3.2.4 and Lemma 3.2.3. For that purpose we will also need to fix nested
(cobordism) reductions C @ V of K . These induce the following crucial data, on
which the iterative construction of perturbations depends. The claims here are all
consequences of [13, Theorem 5.1.6(iii)] and [14, Lemma 7.3.4, Proposition 7.3.10]
applied to K together with (3.3.1) and properness of the projections �I W UI ! U I
established in Lemma 2.1.5(i).

� Given a reduction V of K , there exists ıV 2
�
0; 1
4

�
such that for any ı < ıV ,

yBI2ı.VI /@ UI 8I 2 IK;

B2ı.�K.VI //\B2ı.�K.VJ //¤∅ H) I � J or J � I:

This gives rise to a continuum of nested reductions VI @ � � �V k00I @V k0I � � �@V
0
I

for k00 > k0 > 0, which for k � 0 are given by

V kI WD
yBI
2�kı

.VI /D �
�1
I .V kI /@ UI with V kI WD B

I
2�kı

.V I /:

� For suitable k � 0, the iteration will construct �J by extension of the pull-
backs ��IJ �I , which are defined for I ¨ J on N k

JI WD V
k
J \ �

�1
K .�K.V

k
I //,

also given as

N k
JI D V

k
J \ �

�1
IJ .V

k
I /D �

�1
J .N k

JI / with N k
JI WD V

k
J \�IJ

.V kI \U IJ /:

� We need to make a choice of equivariant norms on the obstruction spaces as
follows. For each basic chart i 2 f1; : : : ; N g we choose a �i –invariant norm
k � k on Ei . Then the �J –invariant norm on EJ for each J 2 IK is given by

kek WD

X
i2J

y�iJ .ei /

 WDmax
i2J
keik 8e D

X
i2J

y�iJ .ei / 2EJ :

Geometry & Topology, Volume 21 (2017)



Smooth Kuranishi atlases with isotropy 2791

� While the sections sI W UI!EI only induce continuous maps sI W U I!EI=�I
to the quotient of obstruction spaces, equivariance of the norms guarantees that
the norm of sections descends to a continuous function ksIkW U I ! Œ0;1/

given by x 7! ksI .y/k for any y 2 ��1I .x/. These functions provide (rather
nontransverse) topological Kuranishi charts over the intermediate domain with
the same footprint:  

I
maps ksIk

�1.0/D s�1I .0/=�I homeomorphically to FI .

� Given equivariant norms k �k, nested reductions C @ V and 0 < ı < ıV , we have

�.V; C; k � k; ı/ WD min
J2IK

inf
�
ksJ .x/k

ˇ̌̌
x 2 V

jJ j
J n

�
zCJ [

[
I¨J

yBJ�
jJ j� 1

2

�
N
jJ j� 1

4

JI

���

D min
J2IK

inf
�
ksJ k.y/

ˇ̌̌
y 2 V

jJ j
J n

�
zC J [

[
I¨J

BJ�
jJ j� 1

2

�
N
jJ j� 1

4

JI

���
> 0;

where �k� 1
2
WD 2�kC

1
2

�
1� 2�

1
4

�
ı and

zCJ WD
[
K�J

�JK.CK/ D ��1J . zC J /; with zC J WD
[
K�J

��1
JK
.CK/;

is a set containing s�1J .0/D ��1J .ksJ k
�1.0//.

� In the case of a metric tame Kuranishi cobordism .K; d / with equivariant norms
k � k and nested cobordism reductions C @ V , let " > 0 be the smallest of the
collar widths of K , d , C and V . Then for 0< ı <minf"; ıVg, we obtain positive
numbers

� 0.V; C; k � k; ı/ WD min
J2IK

inf
�
ksJ .x/k

ˇ̌̌
x 2 V

jJ jC1
J n

�
zCJ [

[
I¨J

yBJ�
jJ jC 1

2

�
N
jJ jC 3

4

JI

���
;

�rel.V; C; k � k; ı/ WDmin
�
f� 0.V; C; k � k; ı/g[ f�.@˛V; @˛C; @˛k � k; ı/ j ˛ D 0; 1g

�
:

Here @˛k�k denotes the collection of equivariant norms on EI for I 2I@˛K�IK .

The constants ıV and �.V; C; k � k; ı/ defined here will control the permitted support
and norm of the perturbation � for a Kuranishi atlas. In particular, ıV measures the
separation between the components VI ¤ VJ of the reduction V , while �.V; C; k �k; ı/
measures the minimal norm of sKjn�V on the complement of an open neighborhood of
the set ��1K .�K.C//, in which all perturbed zero sets will need to be contained. We
will construct perturbations � D .�I W VI !EI /I2IK by an iteration which constructs
and controls each �I over the larger set V jI jI . Here the domains are determined by
a choice of 0 < ı < ıV , and we ensure that the perturbed zero sets are contained in
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��1K .�K.C// by bounding the perturbations k�Ik<� by some 0<� <�.V; C; k�k; ı/.
In order to prove uniqueness of the VMC, we moreover have to interpolate between
any two such perturbations. This requires the adjusted bound �rel.V; C; k � k; ı/ on
the norm of cobordism perturbations for the following reason. The construction of a
cobordism perturbation with prescribed boundary values is achieved by an iteration
on the domains V jI jC1I instead of V jI jI , which guarantees that the boundary values —
which got constructed in iterations over @˛V jI jI — are given on sufficiently large
boundary collars. In view of this, it is also necessary to keep track of the refined
properties arising from the iterative construction of a perturbation by the following
notion of .V; C; k � k; ı; �/–adapted, as well as a stronger notion which guarantees
extensions to Kuranishi concordances.

Definition 3.3.1 Given nested reductions C @ V of a metric tame Kuranishi atlas
.K; d /, a choice of equivariant norms k � k on the obstruction spaces, and constants
0 < ı < ıV and 0 < � � �.V; C; k � k; ı/, we say that a perturbation � of sKj

n�
V is

.V; C; k � k; ı; �/–adapted if the sections �I W VI ! EI extend to sections over V jI jI

(also denoted �I ) so that the following conditions hold for every k D 1; : : : ;MK WD

maxI2IK jI j:

(a) The perturbations are compatible in the sense that for H ¨ I with jI j � k ,

�I j��1HI .V
k
H /\V

k
I
D y�HI ı �H ı �HI j��1HI .V

k
H /\V

k
I
:

(b) The perturbed sections are transverse; that is, .sI jV kI C�I /t 0 for each jI j � k .

(c) The perturbations are strongly admissible; that is, for all H ¨ I and jI j � k we
have �I . yBI�k .N

k
IH //�

y�HI .EH /.

(d) The perturbed zero sets are controlled by �K
�
.sI jV kI

C�I /
�1.0/

�
� �K.C/ for

jI j � k .

e) The perturbations are small; that is, supx2V kI k�I .x/k< � for jI j � k .

Also, we say that a perturbation � is strongly .V; C/–adapted if it is a .V; C; k � k; ı; �/–
adapted perturbation of sKj

n�
V for some choice of equivariant norms k � k and constants

0 < ı < ıV , and using the product metric on Œ0; 1�� jKj we have

0 < � � �rel.Œ0; 1��V; Œ0; 1�� C; k � k; ı/

Dmin
˚
�.V; C; k � k; ı/; � 0.Œ0; 1��V; Œ0; 1�� C; k � k; ı/

	
;

Remark 3.3.2 (i) Adapted perturbations are automatically admissible, precompact
and transverse in the sense of Definition 3.2.4. Indeed, these properties are guaranteed
by the inclusions VI � V kI and the fact that strong admissibility �I .x/ 2 im y�HI for
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x 2 yBI�k .N
k
IH / for H ¨ I implies admissibility im dy�I � im y�HI for y 2 zVHI D

VI \ �
�1
HI .VH /� V

k
I \ �

�1
IJ .V

k
I /DN

k
IH .

(ii) The admissibility condition is crucial for the transfer of transversality as follows.
Let � be an admissible perturbation, and let z 2 VI and w 2 VJ so that �K.z/ D

�K.w/ 2 jKj. Then z is a transverse zero of sI jVIC�I if and only if w is a transverse
zero of sJ jVJC�J .

Indeed, by the reduction property we can assume without loss of generality that I � J
and thus zD �IJ .w/. Since �IJ is a regular covering, we can pick a local inverse �IJ
so that w D �IJ .z/. Then the proof of [14, Lemma 7.2.4] directly applies, using the
index condition in terms of �IJ .

(iii) Any .V; C; k�k; ı; �/–adapted perturbation for fixed V , C , k�k, ı and sufficiently
small � >0 is in fact strongly adapted. Indeed, given the product structure of all sets and
maps involved in the definition of � 0 , we can rewrite the condition on � >0 in the defini-
tion of strong adaptivity as � < ksJ .x/k for all x 2V kJ n

�
zCJ [

S
I¨J
yBJ�k� 1

2

�
N k� 1

4
JI

��
,

J 2 IK and k 2 fjJ j; jJ jC 1g. Þ

By the above remark, the following in particular proves the existence of admissible,
precompact, transverse perturbations as well as strongly adapted perturbations.

Proposition 3.3.3 (i) Let .K; d / be a metric tame Kuranishi atlas with nested
reductions C @ V and equivariant norms k � k on the obstruction spaces. Then
for any 0 < ı < ıV and 0 < � � �.V; C; k � k; ı/, there exists a .V; C; k � k; ı; �/–
adapted perturbation � of sKjn�V .

(ii) Let .K; d / be a metric tame Kuranishi cobordism with nested cobordism reduc-
tions C @V , equivariant norms k � k on the obstruction spaces, and minimal collar
width " > 0 of .K; d / and the reductions C;V . Then, given 0 < ı <minf"; ıVg,
0 < � � �rel.ı;V; C/, and perturbations �˛ of s@˛Kj

n�
@˛V for ˛ D 0; 1 that are

.@˛V; @˛C; ı; �/–adapted, there exists an admissible, precompact, transverse
cobordism perturbation � of sKj

n�
V with �K

�
.sKj

n�
V C �/

�1.0/
�
� �K.C/ and

�j@˛VD �
˛ for ˛ D 0; 1.

(iii) In the case of a product cobordism Œ0; 1��K with product metric and nested
product reductions Œ0; 1�� C @ Œ0; 1��V , (ii) holds for 0 < ı < ıŒ0;1��V without
restriction from the collar width.

Proof As explained in [14, Remark 7.3.2], the iterative constructions in [14, Proposi-
tions 7.3.7 and 7.3.10] generalize directly to our setup based on the pruned domain
category BKj

n�
V . We indicated the necessary adjustments in a series of footnotes in the
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proofs of [14]. Beyond the above setting and notations, this requires the following two
systematic changes.

Firstly, all relationships between (or definitions/constructions of) subsets of ObjBK
DS

I2IK UI in [14] should be replaced by two statements: one for subsets of ObjBK
DS

I2IK U I in the intermediate atlas K , and one for subsets in the pruned domain
category BKj

n�
V with Bı replaced by yBı . These two statements will always be

equivalent via the projection �I . Statements can then be checked by working in
the intermediate category, but they will be applied on the level of the pruned domain
category. Here it is crucial to know that the projections �I W UI ! U I are continuous
(by definition of the quotient topology) and proper by Lemma 2.1.5(i).

Secondly, our goal of constructing a precompact, transverse, admissible (cobordism)
perturbation �W BKjV!EKjV is essentially the same as that of Definitions 7.2.1, 7.2.5
and 7.2.6 in [14]. Writing it in terms of the maps � D .�I W VI ! EI /I2IK , the only
difference is that the compatibility conditions in [14, Equation (7.2.1)],

�J
ˇ̌
NJI
D y�IJ ı �I ı�

�1
IJ

ˇ̌
NJI

on NJI WD VJ \�IJ .VI \UIJ /

for all I ¨ J , are replaced by

�J
ˇ̌
zVIJ
D y�IJ ı �I ı �IJ

ˇ̌
zVIJ

on zVIJ WD VJ \ �
�1
IJ .VI /;

and the precompactness conditions in [14, Equation (7.2.5)],

.sJ jVJC�J /
�1.0/ �

[
H�J

��1JH .CH /[
[
H¨J

�HJ .CH /

for all J 2 IK , are replaced by (3.2.5) above,

.sJ jVJC�J /
�1.0/ �

[
H�J

�JH .CH / [
[
H¨J

��1HJ .CH /:

Here our setup guarantees that �IJ W zVIJ ! VI \�IJ .VJ /�UIJ is a regular covering
(ie local diffeomorphism with fibers given by the free action of a finite group �JnI Š
�J =�I ) analogous to ��1IJ W NIJ ! VI \�

�1
IJ .VJ /� UIJ in [14], which is a regular

covering with trivial fibers. Thus to adapt the proofs of [14] one should replace �IJ
with ��1IJ and identify NIJ D zVIJ .

Finally, we make the additional choice of an orientation of the Kuranishi atlases or
cobordisms in the sense of Definition 3.1.10 to prove Theorem A from the introduction.

Definition 3.3.4 Let .K; �/ be an oriented weak Kuranishi atlas of dimension D on a
compact, metrizable space X . Then its virtual moduli cycle ZK WD Œ.jZ �jH; ƒ

�/� is the
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cobordism class of weighted branched manifolds (without boundary) of dimension D
given by the choices of a preshrunk tame shrinking Ksh of K , an admissible metric
on jKshj, nested reductions C @V of Ksh and a strongly .V; C/–adapted perturbation � .

Moreover, the virtual fundamental class

ŒX�vir
K WD j Ksh j�.lim ��Œ�

�k �/ 2 LHD.X IQ/

is constructed as follows:

� Choose a preshrunk tame shrinking Ksh of K , an admissible metric on jKshj and a
nested sequence of open sets WkC1 �Wk � .jKshj; d / with

T
k2N Wk D js

�1
Ksh
.0/j.

(These exist by Theorem 2.5.3, and taking for instance Wk D B 1
k
.js�1Ksh

.0/j.) Then
equip Ksh with the orientation induced from K by Lemma 3.1.12.

� For each k 2N choose a .Vk; Ck/–adapted perturbation �k of sKsh j
n�
Vk for some

nested reductions Ck @ Vk with �Ksh.Ck/ �Wk . (These exist by Remark 3.2.2 and
Proposition 3.3.3.)

� Denote by Œj��k jH� 2 LHD.WkIQ/ the Čech homology classes induced by the maps

j��k jHW .jZ
�k jH; ƒ

�k / ,!Wk � .jKshj; d /;

take their inverse limit under pushforward with the inclusions WkC1 ,! Wk , and
finally take the pushforward under the homeomorphism j Ksh j D �

�1
Ksh
W js�1Ksh

.0/j !X

from Lemma 2.3.9(iii).

Note here that every weighted branched manifold .Y;ƒY / has a fundamental class
ŒY � 2Hd .Y /IQ/ by Proposition A.7. This was constructed in [8] as an element of
rational singular homology, and by the discussion after [13, Remark 8.2.4] gives a well-
defined element in rational Čech homology. Thus the above construction makes sense.
Further, Lemma 2.3.9(iii) identifies the quotient topology on js�1Ksh

.0/j with the relative
topology induced by the embedding js�1Ksh

.0/j ,! jKshj. The latter is also identified
with the metric topology given by restriction of d , due to the nesting uniqueness of
Hausdorff topologies and the fact that the identity map jKj ! .jKj; d / is continuous;
see [13, Lemma 3.1.8, Remark 3.1.15]. Hence there is no ambiguity of topologies in
the isomorphism explained in [14, Remark 8.2.4] and used in the definition of ŒX�vir

K ,

LHD.js
�1
K .0/jIQ/ �!Š lim

 ��
LHD.WkIQ/:

Finally, we can prove our main theorem: the VMC/VFC are well defined and are
invariants of the oriented weak Kuranishi cobordism class. The proof uses the same
line of argument as [14, Theorems 8.2.2 and 8.2.5], just replacing manifolds with
weighted branched manifolds. We summarize and unify these arguments here for ease
of reference.
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Theorem 3.3.5 (i) The virtual moduli cycle ZK and the virtual fundamental
class ŒX�vir

K are well defined and independent of the cobordism class of oriented
weak Kuranishi atlases on a fixed compact, metrizable space X .

(ii) Let K be an oriented weak Kuranishi cobordism, and choose strongly adapted
perturbations �˛ in the definition of Z@˛K D Œ.jZ �˛jH; ƒ

�˛ /� for ˛ D 0; 1.
Then the perturbed zero sets .jZ �0 jH; ƒ

�0/� .jZ �1jH; ƒ
�1/ are cobordant as

weighted branched manifolds, and thus Z@0K D Z@1K .

(iii) Let K be an oriented weak Kuranishi cobordism of dimension DC 1 on a com-
pact, metrizable collared cobordism .Y; �0Y ; �

1
Y /. Then the virtual fundamental

classes Œ@˛Y �vir
@˛K ' Œ@

1Y �vir
@1K of the boundary restrictions are homologous in Y ,

.�0Y /�
�
Œ@0Y �vir

@0K

�
D .�1Y /�

�
Œ@1Y �vir

@1K

�
2 LHD.Y IQ/:

Proof First note that all the necessary choices of data exist, as noted in Definition 3.3.4.
Given such choices, Step 1 below constructs a representative of the virtual moduli
cycle, and Step 5 constructs the virtual fundamental class. To prove independence of
those choices in (i), we use transitivity of the cobordism relation for compact weighted
branched manifolds to prove increasing independence of choices in Steps 1–5. Parts (ii)
and (iii) are then proven in Step 6. In the following, all Kuranishi atlases will be of
dimension D , and all cobordisms of dimension DC 1.

Step 1 Fix an oriented, metric, tame Kuranishi atlas .K; d /, nested reductions C @ V ,
equivariant norms k � k, and constants ı; � such that 0 < ı < ıV and 0 < � �

�rel.Œ0; 1��V; Œ0; 1�� C; k � k; ı/. Then each .V; C; k � k; ı; �/–adapted perturbation �
induces a D–dimensional weighted branched manifold Z� WD .jZ � jH; ƒ

�/ and a
cycle j�� jHW Z� ! jCj, whose respective cobordism class and Čech homology class
Œj�� jH� 2 LHD.jCjIQ/ are independent of the choice of � .

The regularity of the perturbed zero sets is proven in Theorem 3.2.8. To prove in-
dependence of the choice of � , we consider two .V; C; k � k; ı; �/–adapted perturba-
tions �0 and �1 . Then Proposition 3.3.3(iii) provides an admissible, precompact,
transverse cobordism perturbation �01 of sŒ0;1��Kjn�

Œ0;1��V
with boundary restrictions

�01jf˛g�VD �
˛ for ˛ D 0; 1. Moreover, by Lemma 3.1.12(iii) the orientation of K in-

duces an orientation of Œ0; 1��K , whose restriction to the boundaries @˛.Œ0; 1��K/DK
equals the given orientation on K . Now Theorem 3.2.8 implies that Z WD .jZ �01 j; ƒ�

01

/

is a cobordism from @0Z D .jZ �0 j; ƒ�
0

/ to @1Z D .jZ �1 j; ƒ�
1

/ and induces a cycle
j��
01

jHW Z ! Œ0; 1� � jCj. Finally, the boundary restrictions of this cycle prove the
equality Œj��

0

jH�D Œj�
�1jH� in LHD.jCjIQ/; see [14, Equation (8.2.6)] for the detailed

homological argument.
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Step 2 Fix an oriented, metric, tame Kuranishi atlas .K; d / and nested reductions
C @ V . Then the cobordism class of Z� , as well as Œj�� jH� 2 LHD.jCjIQ/, are indepen-
dent of the choice of strongly .V; C/–adapted perturbation � .

To prove this we consider two strongly .V; C/–adapted perturbations �˛ for ˛ D 0; 1.
Thus �˛ is .V; C; k � k˛; ı˛; �˛/–adapted for some choices of equivariant norms k � k˛

and constants 0 < ı˛ < ıV and 0 < �˛ � �rel.Œ0; 1��V; Œ0; 1�� C; k � k˛; ı˛/. We note
that ı WD max.ı0; ı1/ < ıV D ıŒ0;1��V , pick equivariant norms k � k on K such that
k � k˛ � k � k for ˛ D 0; 1, and choose

� �minf�0; �1; �rel.Œ0; 1��V; Œ0; 1�� C; k � k; ı/g:

Then Proposition 3.3.3(iii) provides an admissible, precompact, transverse cobordism
perturbation �01 of sŒ0;1��Kjn�

Œ0;1��V
, whose restrictions z�˛ WD �01jf˛g�V for ˛ D 0; 1

are .V; C; k � k; ı; �/–adapted perturbations of sKj
n�
V . Since we have that ı˛ � ı ,

k�01jf˛g�Vk
˛ � k�01jf˛g�Vk < � and � � �˛ � �rel.Œ0; 1� � V; Œ0; 1� � C; k � k; ı˛/,

they are also .V; C; k � k; ı˛; �˛/–adapted. Then, as in Step 1, the perturbed zero set
of �01 is a cobordism from Zz�0 to Zz�1, and the induced cycle in Œ0; 1�� jCj shows
Œj�z�

0

jH�D Œj�
z�1jH� in LHD.jCjIQ/.

Moreover, for fixed ˛ 2 f0; 1g both the restriction z�˛ D �01jf˛g�V and the given
perturbation �˛ are .V; C; k � k; ı˛; �˛/–adapted, so that Step 1 provides cobordisms
Z�˛� Zz�˛ and identities Œj��

˛

jH� D Œj�
z�˛ jH� in LHD.jCjIQ/. By transitivity of the

cobordism relation this proves Z�0� Z�1 as claimed, and also Œj��
0

jH�D Œj�
�1 jH� 2

LHD.jCjIQ/.

Step 3 For a fixed oriented, metric, tame Kuranishi atlas .K; d /, the oriented cobor-
dism class A.K;d/ of weighted branched manifolds Z� is independent of the choice of
strongly adapted perturbation � . Moreover, given any open neighborhood W � .jKj; d /
of js�1K .0/j, the class A.K;d/W WD Œj�� jHW Z�!W� 2 LHD.WIQ/ is independent of the
choice of strongly .V; C/–adapted perturbation � for nested reductions C @ V with
�K.C/�W .

To prove this we consider two strongly .V˛; C˛/–adapted perturbations �˛ with re-
spect to nested reductions C˛ @ V˛ with �K.C/ �W , equivariant norms k � k˛ and
admissible metrics d˛ for ˛ D 0; 1. Remark 3.2.2 provides a nested cobordism
reduction C @ V of Œ0; 1��K with @˛C D C˛ , @˛V D V˛ and �Œ0;1��C � Œ0; 1��W .
Now pick equivariant norms k � k on K such that k � k˛ � k � k for ˛ D 0; 1, and
choose 0 < ı < ıV smaller than the collar width of d , V , and C . Then, for any
0 < � � �rel.V; C; k � k; ı/, Proposition 3.3.3(ii) provides an admissible, precompact,
transverse cobordism perturbation �01 of sŒ0;1��Kjn�V whose boundary restrictions
z�˛ WD �01j@˛V for ˛ D 0; 1 are .V˛; C˛; k � k; ı; �/–adapted perturbations of sKj

n�
V˛ .
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As before, Z�01 is an oriented cobordism from Zz�0 to Zz�1 and induces a cycle
in Œ0; 1��W that shows Œj�z�

0

jH� D Œj�
z�1 jH� in LHD.WIQ/. Moreover, we can pick

� � �rel.Œ0; 1� � V˛; Œ0; 1� � C˛; k � k˛; ı/ for ˛ D 0; 1, so that each �01j@˛V is also
strongly .V˛; C˛/–adapted. Then the claim follows by transitivity as in Step 2.

Step 4 Let .K; d / be an oriented, metric, tame Kuranishi atlas, and let Wk � .jKj; d /
be a nested sequence of open sets with

T
k2N Wk D js

�1
K .0/j as in Definition 3.3.4.

Then the Čech homology class

A.K;d/ WD lim
 ��

A
.K;d/
Wk

2 LHD.js
�1
K .0/jIQ/

is well defined and independent of the choice of nested sequence .Wk/k2N .

The pushforward LHD.WkC1IQ/! LHD.WkIQ/ by the inclusion IkC1W WkC1!Wk

maps A.K;d/WkC1
D Œj��kC1 jH� to A.K;d/Wk

since any strongly adapted perturbation �kC1
with respect to nested reductions CkC1 @ VkC1 with �K.CkC1/�WkC1 can also be
used as strongly adapted perturbation for A.K;d/Wk

. This shows that the homology classes
A.K;d/Wk

form an inverse system and thus have a well-defined inverse limit. To see that
this limit is independent of the choice of nested sequence, note that the intersection
Wk WDW0

k
\W1

k
of any two such sequences .W˛

k
/k2N is another nested sequence

of open sets with
T
k2N Wk D js

�1
K .0/j. Now choose a sequence of strongly adapted

perturbations �k with respect to nested reductions Ck @ Vk with �K.Ck/�Wk , then
these also fit the requirements for the larger open sets W˛

k
and hence the inclusions

Wk ,!W˛
k

push Œj��k jH� 2HD.WkIQ/ forward to Œj��k jH� 2HD.W˛
k
IQ/. Hence,

by the definition of the inverse limit, we have equality

lim
 ��

A
.K;d/
W0
k

D lim
 ��

A
.K;d/
Wk

D lim
 ��

A
.K;d/
W0
k

2 LHD.js
�1
K .0/jIQ/:

Step 5 Given an oriented weak Kuranishi atlas K , the cobordism class ZK WDA.Ksh;d/

of weighted branched manifolds in Step 3 and the pullback ŒX�vir
K WD j Ksh j�A

.K;d/ 2
LHD
�
X IQ

�
of the Čech homology classes in Step 4 are independent of the choice of

tame shrinking Ksh of K and admissible metric d on jKshj.

Here the pushforward under j Ksh j is well defined since this is a homeomorphism by
Lemma 2.3.9(iii). Given different choices .K˛sh; d

˛/ of metric tame shrinkings of K
and strongly adapted perturbations �˛ and .�˛

k
/k2N ) that define A.K

˛
sh;d

˛/ � Z�˛ and

A.K
˛
sh;d

˛/
D lim
 ��
Œj��

˛
k jH� 2 LHD.js

�1
K˛sh
.0/jIQ/

respectively, we can apply Step 6 below to the cobordism Œ0; 1��K to obtain a weighted
branched cobordism from Z�0 to Z�1 and the identity

I 0� .ŒX�
vir
K0sh
/D I 1� .ŒX�

vir
K1sh
/ 2 LHD.Œ0; 1��X IQ/
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with the natural boundary embeddings I˛W X ! f˛g �X � Œ0; 1��X D Y . Further,
I 0� D I

1
� W
LHD.X IQ/! LHD.Œ0; 1��X IQ/ are the same isomorphisms, because the

two maps I 0; I 1 are both homotopy equivalences and homotopic to each other. Hence
we obtain the identity ŒX�vir

K0sh
D ŒX�vir

K1sh
in LHD.X IQ/, which proves Step 5.

Step 6 Let K be an oriented weak Kuranishi cobordism over a compact collared
cobordism Y . For ˛ D 0; 1 fix choices of preshrunk tame shrinkings K˛sh of @˛K ,
and admissible metrics d˛ on j@˛Kj. Then, for any choice of strongly adapted pertur-
bations �˛ on K˛sh , there is a weighted branched cobordism Z�01 from Z�0 to Z�1.
Moreover, the VFCs of the boundary components push forward by the embeddings
�˛Y W f˛g � @

˛Y ! Y to the same Čech homology class in Y ,

.�0Y /�.Œ@
0Y �vir

@0K/D .�
1
Y /�.Œ@

1Y �vir
@1K/ 2

LHD.Y IQ/:

First, use Theorem 2.5.3 to find a preshrunk tame shrinking Ksh of K with @˛Ksh D K˛sh ,
and an admissible metric d on jKshj with boundary restrictions d jj@˛KshjD d

˛ . If
we equip Ksh with the orientation induced by K , then by Lemma 3.1.12 the induced
boundary orientation on @˛KshDK˛sh agrees with that induced by shrinking from @˛K .
Next, Remark 3.2.2 provides nested cobordism reductions C @ V of Ksh and we may
choose equivariant norms k � k on Ksh . Then Proposition 3.3.3 with

� Dmin
˚
�rel.V; C; k � k; ı/; min

˛D0;1
�rel.Œ0; 1�� @

˛V; Œ0; 1�� @˛C; @˛k � k; ı/
	

yields an admissible, precompact, transverse cobordism perturbation �01 of sKsh j
n�
V ,

whose restrictions z�˛ WD �01j@˛V for ˛ D 0; 1 are .@˛V; @˛C; @˛k � k; ı; �/–adapted
perturbations of sK˛sh

jn�
@˛V . In particular, these are strongly adapted by the choice of � ,

and Z�01 is a cobordism from Zz�0 to Zz�1 . Invariance of the VMC under oriented weak
Kuranishi cobordism then follows from Step 3 by transitivity of weighted branched
cobordism.

To prove the identity between VFCs, we first construct a sequence of nested cobordism
reductions Ck @ V of Ksh by

Ck WD C \��1Ksh
.Wk/@ V with Wk WD B 1

k
.�Ksh.Y //� jKshj;

in addition discarding components Ck \VI that have empty intersection with s�1I .0/.
With that, Proposition 3.3.3 provides admissible, precompact, transverse cobordism
perturbations �k with j.sKsh j

n�
V C �k/

�1.0/j �Wk , and with boundary restrictions
�˛
k
WD �kj@˛V that are strongly adapted perturbations of .K˛sh; d

˛/ for ˛ D 0; 1. Since
these boundary restrictions satisfy the requirements of Step 4, they define the Čech
homology classes A.K

˛
sh;d

˛/ D lim
 ��

Œj��
˛
k jH� 2 LHD.js

�1
K˛sh
.0/jIQ/.

On the other hand, pushforward with the topological embeddings J ˛W .jK˛shj; d
˛/!

.jKshj; d / also yields Čech homology classes J ˛� Œj�
�˛
k jH� that form two inverse systems
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in HD.jKshjIQ/. Now the cycles ��k W jZ�k j ! Wk given by Theorem 3.2.8 give
rise to identities J 0� Œj�

�0
k jH�D J

1
� Œj�

�1
k jH� in LHD.WkIQ/, and taking the inverse limit,

which commutes with pushforward, we obtain J 0� .lim �� Œj�
�0
k jH�/ D J 1� .lim �� Œj�

�1
k jH�/

in LHD.js�1Ksh
.0/jIQ/. Further pushforward with j Ksh j turns this into an equality in

LHD.Y IQ/. Finally, we use the identities

j Ksh j ıJ
˛
ˇ̌
�K˛sh

.@˛Y /
D �˛Y ı j K˛sh

j

to obtain, in LHD.Y IQ/,

.j Ksh j ıJ
˛/�.lim

 ��
Œi�

˛
k �/D .�˛Y /�

�
j K˛sh

j�.lim
 ��

Œi�
˛
k �/
�
D .�˛Y /�Œ@

˛Y �vir
K˛sh
:

This proves Step 6 since the left-hand side was shown to be independent of ˛D 0; 1.

Appendix: Groupoids and weighted branched manifolds

The purpose of this appendix is to review the definition and properties of weighted
branched manifolds from [8], and slightly generalize these notions to a cobordism
theory. This will be based on the following language of groupoids.

An étale groupoid G is a small category whose sets of objects ObjG and morphisms
MorG are equipped with the structure of a smooth manifold of a fixed finite dimension
such that

� all morphisms are invertible;

� all structural maps9 are local diffeomorphisms.

All groupoids considered in this appendix are étale. Moreover, a groupoid is called

� proper if the source and target map s � t W MorG ! ObjG �ObjG is proper
(ie preimages of compact sets are compact);

� nonsingular if there is at most one morphism between any two of its objects;

� oriented if its spaces of objects and morphisms are oriented manifolds and if all
structural maps preserve these orientations;

� d–dimensional if ObjG and MorG are d–dimensional manifolds;

� compact if its realization jG j is compact.

9 The structure maps of a category are source and target maps s; t W MorG ! ObjG , identity map
idW ObjG !MorG , and composition map compW MorG t�s MorG !MorG . If source and target are
local diffeomorphisms, then the fiber product in the domain of composition is transverse and hence inherits
a smooth structure. A groupoid has the additional structure map invW MorG !MorG given by the unique
inverses.
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Étale proper groupoids are often called ep groupoids. It is well known that in the
current finite-dimensional context the properness assumption is equivalent to the con-
dition that the realization jG j is Hausdorff.10 Here the realization jG j of G is the
quotient of the space of objects by the equivalence relation given by the morphisms,
ie x � y ” MorG .x; y/¤∅. It is equipped with the quotient topology, and the
natural projection is denoted �G W ObjG ! jG j. In general, the realization jG j of
an ep groupoid is an orbifold. It is a manifold if the groupoid is nonsingular, and an
orientation of the groupoid induces an orientation of jG j.

Two kinds of groupoids appear in this paper: Theorem 3.2.8 shows that the zero set of a
transverse section defines a wnb groupoid (which is étale but generally not proper, and
equipped with an additional weighting function; see Definition A.4). On the other hand,
each Kuranishi chart KI comprises two ep groupoids G.UI ;�I / and G.UI�EI ;�I / ,
which arise from group quotients as follows.

Example A.1 (i) A group quotient .U; �/ in the sense of Definition 2.1.1 defines
an ep groupoid G.U;�/ with ObjG D U , MorG D U � � , .s � t /.u; / D .u; u/,
id.u/D .u; id/, comp..u; /; .u; ı//D .u; ı/, inv.u; /D .u; �1/, and realization
jG j DU=� DU . In particular, properness is proven in Lemma 2.1.5(i). This groupoid
is nonsingular if and only if the action of � is free. It is oriented if U is oriented and
the action of each  2 � preserves the orientation.

(ii) The category BK defined by a Kuranishi atlas with trivial obstruction spaces on
a compact space X is not a groupoid, because when I ¨ J the morphisms from UI
to UJ are not invertible. However, it is shown in [10] that BK may be completed to
an ep groupoid with the same realization (namely, X itself) by adding appropriate
inverses and composites to its set of morphisms. Þ

When we take restrictions of Kuranishi charts in the sense of Definition 2.2.6, this is
reflected in the associated groupoids by an analogous notion:
� If G is an étale groupoid and V � jG j is open, we define the restriction G jV

to be the full subcategory of G with objects ��1
G
.V /.

To discuss the theory of Kuranishi cobordisms in terms of groupoids, we need the
following notions. Here we use the notation A0" WD Œ0; "/ and A1" WD .1� "; 1� for
neighborhoods of 0; 1 2 Œ0; 1� of size " > 0 as in [13].
� If G is a groupoid and A � R is an interval we define the product groupoid
A�G to be the groupoid with objects A�ObjG and morphisms A�MorG ,
and with all structural maps given by products with idA .

10To see that proper groupoids have Hausdorff realization one can argue that the equivalence relation
has closed graph and then use [1, Chapter I, Section 10, Exercise 19] or [13, Lemma 3.2.4].
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� A cobordism groupoid is a triple .G ; �0
G
; �1

G
/ consisting of a compact proper

groupoid G and collaring functors �˛
G
W A˛" � @

˛G ! G for ˛ D 0; 1. Here
G is required to be “étale with boundary” in the sense that its object and
morphism spaces are manifolds with boundary. Moreover, these boundaries form
a strictly full11 subcategory @G of G that splits, @.ObjG /DObj@0G tObj@1G ,
@.MorG /DMor@0G tMor@1G , into the disjoint union of two ep groupoids @0G
and @1G . Finally, the functors �˛

G
W A˛" � @

˛G !G are defined for some " > 0
and required to be tubular neighborhood diffeomorphisms on both the sets of
objects and morphisms. In particular, �˛

G
.˛; � / is the identification between @˛G

and the full subcategories formed by the boundary components of G .

� An oriented cobordism groupoid is a cobordism groupoid .G ; �0
G
; �1

G
/ such

that both G and its boundary groupoids @0G ; @1G are oriented. Moreover
the collaring functors are required to consist of orientation-preserving maps
�˛
G
W A˛" �Obj@˛G!ObjG and �˛

G
W A˛" �Mor@˛G!MorG for ˛D 0; 1, where

products are oriented as in Remark 3.1.11.

Lemma A.2 Any topological space Y has a unique maximal Hausdorff quotient YH ,
that is, a quotient of Y which is Hausdorff and satisfies the universal property:
any continuous map from Y to a Hausdorff space factors through the quotient map
�HW Y!YH .

Proof To construct the maximal Hausdorff quotient let A be the set of all equivalence
relations � on Y for which the quotient topology on Y=� is Hausdorff. This is
a set since every relation � on Y is represented by a subset of Y � Y . Then the
space YA WD

Q
�2A Y=� is a product of Hausdorff spaces, hence Hausdorff. The map

� W Y ! YA , y 7!
Q
�2AŒy�� is continuous by the definition of quotient topologies.

Now the image YH WD �.Y / � YA with the relative topology is Hausdorff, and �
induces a continuous surjection �HW Y ! YH .

To check that �HW Y ! YH satisfies the universal property, consider a continuous map
f W Y !Z to a Hausdorff space Z . This induces an equivalence relation �f on Y
given by x �f y() f .x/D f .y/, whose quotient space Y=�f we equip with the
quotient topology. Then f W Y !Z factors as

Y
�f
��! Y=�f

�f
�!Z;

where �f W Œy� 7! f .y/ is continuous by definition of the quotient topology. Since �f is
also injective, this implies that Y=�f is Hausdorff. Therefore, Y=�f is one of the

11A subcategory is strictly full if it contains all morphisms that have source or target in its objects.
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factors of YA , so that f W Y !Z factors as the following sequence of continuous maps

Y
�H
��! YH

prf
��! Y=�f

�f
�!Z;

where prf denotes the restriction to YH of the projection from YA to its factor Y=�f .

To see that YH is in fact a quotient of Y , we will identify YHD�.Y / with the quotient
Y=�� that is induced by the surjection �HW Y ! YH . In this case the injection
�� W Y=��! YH is in fact a continuous bijection by continuity and surjectivity of �H .
In particular, this implies that Y=�� is Hausdorff, so that we have a continuous map
pr� W YH! Y=�� by restriction of the projection YA! Y=�� as above. It is inverse
to �� because for Œy� 2 Y=�� , we have

pr�.��.Œy�//D pr�.�H.y//D pr�. � � � � Œy�� � � � /D Œy�:

This identifies YH Š Y=�� as topological spaces and thus finishes the proof that a
topological space YH with the above properties exists.

To prove uniqueness, consider another Hausdorff quotient prW Y ! Y=� that satisfies
the universal property. Then pr factors,

Y
�H
��! YH

a
�! Y=�;

and by the universal property �HW Y ! YH factors,

Y
pr
�! Y=�

b
!YH:

Then a is surjective since pr is. Moreover, a is injective, because otherwise there
would be two points y1; y2 2 Y with �H.y1/¤ �H.y2/ but pr.y1/ D a.�.y1// D
a.�.y2//D pr.y2/, so that �.y1/D b.pr.y1//D b.pr.y2//D �.y2/, a contradiction.
A similar argument shows that b is bijective. Moreover, the composite b�1aW YH! YH
has the property that b�1a ı�H D �H . Since �H is surjective this implies b�1aD id,
and similarly a�1bD id. Finally, note that because both YH and Y=� have the quotient
topology, a and b are continuous, and hence homeomorphisms.

In the following we write jG j for the realization ObjG =� of an étale groupoid G ,
and jG jH for its maximal Hausdorff quotient. We denote the natural maps by

�G W ObjG ! jG j; �H
jG jW jG j �! jG jH; �H

G WD �
H
jG j ı�G W ObjG ! jG jH:

Moreover, for U �ObjG we write jU j WD�G .U /� jG j and jU jH WD�H.U /� jG jH .
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Lemma A.3 Let G be an étale groupoid.

(i) Any smooth functor F W G!G 0 induces a continuous map jF jHW jG jH!jG 0jH .

(ii) If A�R is any interval, we may identify jA�G j with A� jG j, and jA�G jH
with A� jG jH . More precisely, there are commutative diagrams

ObjA�G

�A�G

��

prA � prG // A�ObjG

idA ��G

��
jA�G j

jprAj�jprG j // A� jG j

jA�G j

�H
jA�G j

��

jprAj�jprG j // A� jG j

idA ��H
jG j

��
jA�G jH

jprAjH�jprG jH // A� jG jH

where the horizontal maps are homeomorphisms. Here prAW A�G !A and
prG W A�G !G are the two projection functors from the product groupoid to
its factors and A is the groupoid with objects A and only identity morphisms so
that AD jAj D jAjH .

Proof Any smooth functor F W G!G 0 induces a continuous map jG j
jF j
�!jG 0j. Then

by Lemma A.2 applied to jG j, the composite

jG j
jF j
�! jG 0j

�H
jG 0j

�! jG 0jH

factors uniquely through the quotient map jG j
�H
jG j

�! jG jH . The resulting continuous
map jF jHW jG jH! jG 0jH is uniquely determined by �H

jG 0j
ı jF j D jF jH ı�

H
jG j

. This
proves (i).

To prove (ii), first consider the diagram on the left. The bottom horizontal map is
bijective because MorA�G D A�MorG , and continuous by definition of the product
topology. Finally, it is a homeomorphism because A is locally compact; cf [15,
Exercise 29.11]. In the diagram on the right we define the bottom horizontal arrow
using the product of the maps induced as in (i) by the two functors prA and prG . Hence
it is continuous. Since the diagram commutes and we have already seen that the top
horizontal map is a homeomorphism, it remains to check this for the bottom map. But
this holds because the uniqueness property of the maximal Hausdorff quotient implies
that for any homeomorphism �W Y ! Y 0 , the unique continuous map �HW YH! Y 0H
such that Y

�
�! Y 0

�Y 0
��! Y 0H equals Y

�H
��!YH

�H
��! Y 0H must be a homeomorphism.

The smooth structure on a weighted branched manifold will be given by a homeomor-
phism to the realization of an étale groupoid with the following weighting structure.

Definition A.4 [8, Definition 3.2] A weighted nonsingular branched groupoid (or
wnb groupoid for short) of dimension d is a pair .G ; ƒ/ consisting of an oriented,
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nonsingular, étale groupoid G of dimension d , together with a rational weighting
function ƒW jG jH ! QC WD Q \ .0;1/ that satisfies the following compatibility
conditions. For each p 2 jG jH there is an open neighborhood N � jG jH of p , a
collection U1; : : : ; U` of disjoint open subsets of .�H

G
/�1.N / � ObjG (called local

branches), and a set of positive rational weights m1; : : : ; m` such that the following
properties hold:

Covering .�H
jG j
/�1.N /D jU1j [ � � � [ jU`j � jG j.

Local regularity For each i D 1; : : : ; ` the projection �H
G
jUi W Ui ! jG jH is a

homeomorphism onto a relatively closed subset of N .

Weighting For all q 2 N , the number ƒ.q/ is the sum of the weights of the local
branches whose image contains q :

ƒ.q/D
X

i Wq2jUi jH

mi :

A wnb cobordism groupoid is a tuple .G ; �0
G
; �1

G
; ƒ/ in which .G ; �0

G
; �1

G
/ is an ori-

ented, nonsingular, étale cobordism groupoid of dimension d , and ƒW jG jH!QC

is a weighting function as above with the additional property that ƒ and the local
branches U1; : : : ; U` are of product form in the collars.

In particular, this means that each boundary groupoid @˛G is equipped with a weighting
function ƒ˛ as above such that the following diagram commutes:

A˛" � j@
˛G jH

idA˛" �ƒ
˛

��

j�˛G jH // jG jH

ƒ
��

QC
id // QC

where j�˛
G
jH is induced by the collaring functor �˛

G
W A˛" � @

˛G !G and we identify
jA˛" � @

˛G jH with A˛" � j@
˛G jH as in Lemma A.3 with orientation as specified in

Definition 3.1.10.

Now we can formulate the notions of weighted branched manifold and cobordism.

Definition A.5 A weighted branched manifold/cobordism of dimension d is a pair
.Z;ƒZ/ consisting of a topological space Z together with a function ƒZ W Z!QC

and an equivalence class12 of wnb (cobordism) d–dimensional groupoids .G ; ƒG /

and homeomorphisms f W jG jH!Z that induce the function ƒZ DƒG ıf
�1 .

12 The precise notion of equivalence is given in [8, Definition 3.12]. In particular it ensures that the
induced function ƒZ WD ƒG ı f

�1 and the dimension of ObjG is the same for equivalent structures
.G ; ƒG ; f / . Moreover, if .G ; �0

G
; �1

G
/ is a cobordism groupoid, then the images f .j@˛G jH/ WD@

˛Z�Z

of the two boundary components are well defined.
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For a weighted branched cobordism .Z;ƒZ ; ŒG ; �
0
G
; �1

G
; ƒG ; f �/, the induced bound-

ary components @˛Z WD f
�
j�˛

G
jH.j@

˛G jH/
�
�Z for ˛ D 0; 1 are equipped with the

weighted branched manifold structures Œ.@˛G ; ƒ˛
G
/; f jj@˛G jH �.

The underlying space Z of a weighted branched manifold or cobordism is always
Hausdorff due to the homeomorphism Z Š jG jH to a Hausdorff quotient. Moreover,
since cobordism groupoids are compact by definition, the underlying space Z of a
weighted branched cobordism is always compact.

It is shown in [8, Proposition 3.5] that the weighting function ƒW jG jH! .0;1/ is
locally constant on the complement of the branch locus Br.G /�jG jH . (This is defined
to be the set of points in jG jH over which j�jH

jG j
W jG j ! jG jH is not injective, and is

closed and nowhere dense.) Further, every point in jG jH nBr.G / has a neighborhood
that is homeomorphic via �H

jG j
to an open subset in a local branch and so has the

structure of a smooth oriented manifold.

Example A.6 (i) Any compact oriented smooth manifold/cobordism may be consid-
ered as a weighted branched manifold/cobordism with weighting function ƒZ � 1 and
empty branch locus.

(ii) A compact weighted branched manifold of dimension 0 also necessarily has
empty branch locus and consists of a finite set of points fp1; : : : ; pkg, each with a
positive rational weight m.pi / 2QC and orientation o.pi / 2 f˙g. Any representing
groupoid G has as object space ObjG a set with the discrete topology, which is equipped
with an orientation function oW ObjG ! f˙g. The morphism space MorG is also a
discrete set and, because we assume that G is oriented, defines an equivalence relation
on ObjG such that x � y D) o.x/D o.y/. Moreover, because jG j is Hausdorff, we
can identify jG j D jG jH and hence conclude that ObjG consists of precisely k classes
of points that are equivalent under MorG and project to p1; : : : ; pk in Z Š jG jH .

(iii) For the prototypical example of a 1–dimensional weighted branched cobordism
.jG jH; ƒ/, take Obj.G /D I t I 0 equal to two copies of the interval I D I 0 D Œ0; 1�,
with nonidentity morphisms from x 2 I to x 2 I 0 for x 2

�
0; 1
2

�
and their inverses,

where we suppose that I is oriented in the standard way. Then the realization and its
Hausdorff quotient are

jG j D I t I 0=
˚
.I; x/� .I 0; x/ if and only if x 2

�
0; 1
2

�	
;

jG jH D I t I
0=
˚
.I; x/� .I 0; x/ if and only if x 2

�
0; 1
2

�	
;

and the branch locus is a single point Br.G /D
˚�
I; 1
2

�
D
�
I 0; 1

2

�	
� jG jH . The choice

of weights m;m0 > 0 on the two local branches I and I 0 determines the weighting
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function ƒW jG jH! .0;1/ as

ƒ.ŒI; x�/D

�
mCm0 if x 2

�
0; 1
2

�
;

m if x 2
�
1
2
; 1
�
;

ƒ.ŒI 0; x�/D

�
mCm0 if x 2

�
0; 1
2

�
;

m0 if x 2
�
1
2
; 1
�
:

For example, giving each branch I; I 0 the weight m D m0 D 1
2

, together with an
appropriate choice of collar functors �˛

G
, yields a weighted branched cobordism

.jG jH; �
0
G
; �1

G
; ƒ/ with j@0G jH D fŒI; 0� D ŒI 0; 0�g, which is a single point with

weight 1, and j@1G jHDfŒI; 1�; ŒI 0; 1�g, which consists of two points with weight 1
2

, all
with positive orientation because as explained in Remark 3.1.11, the induced orientation
on the boundary @˛G of a cobordism is completed to an orientation of the collar by
adding as the first component the positive unit vector along A˛" .

Another choice of collar functors for the same weighted groupoid .G ; ƒ/ might give
rise to a different partition of the boundary into incoming @0G and outgoing @1G , for
example yielding a weighted branched cobordism with j@0G jHDfŒI; 0�DŒI 0; 0�; ŒI; 1�g
consisting of two points with weights and orientations .1;C/ and

�
1
2
;�
�
, and with

j@1G jH D fŒI
0; 1�g consisting of one point with weight

�
1
2
;C
�
.

(iv) In the situation of Theorem 3.2.8, the nonsingular étale groupoid yZ � with
Obj yZ� D .sKjVC�/

�1.0/ has a maximal Hausdorff quotient j yZ � jH D j yZ
�
Hj that,

as we show in Lemma 3.2.10, is given by the realization of the groupoid yZ �
H obtained

as in (iii) above by closing the set of morphisms Mor yZ� �Obj yZ� �Obj yZ� . Therefore,
in this case we can give a completely explicit description of jZ jH and its weighting
function ƒZ ; see the proof of Theorem 3.2.8. Þ

The following is a version of some parts of [8, Proposition 3.25], which more generally
defines a notion of integration over weighted branched manifolds and cobordisms.

Proposition A.7 Any compact d–dimensional weighted branched manifold .Y;ƒY /
induces a fundamental class ŒY � 2 Hd .Y IQ/, and any d–dimensional weighted
branched cobordism .Z;ƒZ/ with boundary @Z WD@0Z[@1Z induces a fundamental
class ŒZ� 2Hd .Z; @ZIQ/, whose image under the boundary map

@W Hd .Z; @ZIQ/!Hd�1.@ZIQ/ŠHd�1.@
0ZIQ/CHd�1.@

1ZIQ/

is @ŒZ�D Œ@1Z�� Œ@0Z�.

Proof If .Y;ƒY / has a weighted branched manifold structure .G ; ƒG / with well-
behaved (eg piecewise smooth) branch locus, then one can triangulate jG jH Š Y
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so that the branch locus lies in the codimension 1 skeleton. We may then define a
singular cycle on Y by using the local weights mi to assign a rational weight to each
top-dimensional simplex. As explained in Remark 3.1.11, in the case of a cobordism Z

the induced orientation on the boundary component @˛Z is completed to the orientation
of the collar by adding the unit positive vector along the collar as the first component.
In the case of @0Z this yields an orientation of @0Z that is the opposite of the standard
way of orienting a boundary component by adding the outward pointing normal, a fact
that is reflected in the minus sign in the formula @ŒZ� D Œ@1Z�� Œ@0Z�. For more
details and the general case, see [8].
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Brown’s moduli spaces of curves and the gravity operad

CLÉMENT DUPONT

BRUNO VALLETTE

This paper is built on the following observation: the purity of the mixed Hodge
structure on the cohomology of Brown’s moduli spaces is essentially equivalent to
the freeness of the dihedral operad underlying the gravity operad. We prove these two
facts by relying on both the geometric and the algebraic aspects of the problem: the
complete geometric description of the cohomology of Brown’s moduli spaces and the
coradical filtration of cofree cooperads. This gives a conceptual proof of an identity of
Bergström and Brown which expresses the Betti numbers of Brown’s moduli spaces
via the inversion of a generating series. This also generalizes the Salvatore–Tauraso
theorem on the nonsymmetric Lie operad.

14H10; 14C30, 18D50

Introduction

The moduli space of genus zero smooth curves with n marked points, denoted by M0;n ,
is a classical object in algebraic geometry, as well as its Deligne–Mumford–Knudsen
compactification SM0;n , which parametrizes stable genus zero curves with n marked
points. In [5], Brown introduced a “partial compactification”

M0;n �Mı
0;n �

SM0;n

in order to prove a conjecture of Goncharov and Manin [17] on the relation between
certain period integrals on SM0;n and multiple zeta values.

The homology groups of the moduli spaces M0;n , as well as those of the compactified
moduli spaces SM0;n , assemble to form two operads, respectively called the gravity and
hypercommutative operads by Getzler. These two operads are Koszul dual in the sense
of the Koszul duality of operads; see Getzler [14] and Ginzburg and Kapranov [16].
As pointed out by Getzler, this is very much related to the purity of the mixed Hodge
structures on the cohomology groups under consideration. This implies that the expo-
nential generating series encoding the Betti numbers of M0;n and SM0;n are inverse to
one another.

A similar identity was conjectured by Bergström and Brown in [4]: the ordinary
generating series encoding the Betti numbers of the moduli spaces M0;n and Mı

0;n

Published: 15 August 2017 DOI: 10.2140/gt.2017.21.2811
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2812 Clément Dupont and Bruno Vallette

should be inverse to one another. More precisely, it is showed how such a relation
can be derived from a more conceptual fact: the purity of the mixed Hodge structure
on the cohomology groups of Brown’s moduli spaces. This is the first result of the
present paper.

Theorem A For every integers k and n, the mixed Hodge structure on the cohomology
group H k.Mı

0;n/ is pure Tate of weight 2k .

This theorem has the following straightforward consequences:

� the cohomology algebra of Brown’s moduli space Mı
0;n embeds into that of the

moduli space M0;n (Corollary 4.18);

� there is a recursive formula for the Betti numbers of Mı
0;n , conjectured in

Bergström and Brown [4] (Corollary 4.19);
� Brown’s moduli spaces Mı

0;n are formal topological spaces in the sense of
rational homotopy theory (Corollary 4.20).

It turns out that the purity of the mixed Hodge structure of Theorem A can be equiva-
lently interpreted in the following operadic terms.

Theorem B The dihedral gravity operad is free. Its space of generators in arity n and
degree k is (noncanonically) isomorphic to the homology group HkCn�3.Mı

0;n/.

We introduce here the new notion of a dihedral operad, which faithfully takes into
account the dihedral symmetry of Brown’s moduli spaces. Such a notion forgets
almost all the symmetry properties of a cyclic operad, except for the dihedral structure.
Theorem B can also be viewed as a kind of nonsymmetric analog of the Koszul duality
between the gravity and the hypercommutative operad, since a free operad is Koszul,
its dual being a nilpotent operad. We prove it by introducing a combinatorial filtration
on the cohomology groups of the spaces M0;n , and identifying it with the coradical
filtration of the dihedral gravity cooperad.

The problem of studying whether the nonsymmetric operad underlying a given operad is
free is not new. In [26], Salvatore and Tauraso proved that the nonsymmetric operad un-
derlying the operad of Lie algebras is free. This result is actually the top dimensional part
of Theorem B. Thus, the geometric methods developed throughout this paper provide us
with a new proof of (a dihedral enhancement of) the theorem of Salvatore and Tauraso.

Note that in the preprint [2] (which appeared on the arXiv one day after the present
article), Alm and Petersen give independent proofs of Theorem A and Theorem B. Their
proofs rely on an explicit basis for the gravity cooperad, and a construction of Brown’s
moduli spaces in terms of blow-ups and deletions. The freeness of the (nonsymmetric)
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gravity operad has been used by Alm in [1] to study an exotic A1–structure on
Batalin–Vilkovisky algebras.

Layout The first section deals with the various combinatorial objects and notions of
operads used in this text. In the second section, we introduce the moduli spaces of
curves M0;n and SM0;n , as well as the notion of mixed Hodge structure. The study of
Brown’s moduli spaces Mı

0;n and the dihedral gravity cooperad fills the third section.
The fourth section contains the proofs of Theorems A and B and their corollaries.

Conventions Throughout the paper, the field of coefficients is the field Q of rational
numbers. For a topological space X , we simply denote by H�.X / and H �.X / the
(co)homology groups of X with rational coefficients. We work with graded vector
spaces and switch between the homological convention (with degrees as subscripts)
and the cohomological convention (with degrees as superscripts), the two conventions
being linear dual to one another.

Acknowledgements We would like to express our sincere appreciation to Johan Alm,
Francis Brown and Dan Petersen for useful discussions, and to the anonymous referee
for their suggestions, which helped improve the clarity of this article. We would like to
thank the Max-Planck-Institut für Mathematik (where Dupont was holding a position
and where Vallette came during several visits) and the University Nice Sophia Antipolis
(vice versa) for the excellent working conditions. Vallette was supported by the ANR
SAT grant.

1 Freeness criteria for dihedral cooperads

The purpose of this first section is to recall the various notions of operads (classical,
cyclic, nonsymmetric, cyclic nonsymmetric) and to introduce a new one (dihedral
operad) which suits the geometry of Brown’s moduli spaces. We first describe the
combinatorial objects (trees and polygon dissections) involved in the proof of the
results of the paper. In the end of this section, we prove two freeness criteria for
dihedral cooperads: one based on their cobar construction and the other based on their
coradical filtration.

1.1 Dissections of polygons and trees

Definition 1.1 (structured sets) Let S be a finite set of cardinality n.
� A basepoint � on S is a map �W f�g! S . A pair .S; �/ is called a pointed set.
� A total order ! on S is a bijection between S and the set f1; : : : ; ng. There

are n! total orders on S . A pair .S; !/ is called a totally ordered set. By
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convention, we view a totally ordered set as a pointed set, the basepoint being
the maximal element.

� A cyclic structure  on S is an identification of S with the edges of an oriented
n–gon, modulo rotations. There are n!=n D .n� 1/! cyclic structures on S .
A pair .S;  / is called a cyclic set.

� A dihedral structure ı on S is an identification of S with the edges of an
unoriented n–gon, modulo dihedral symmetries. There are n!=.2n/D 1

2
.n� 1/!

dihedral structures on S . A pair .S; ı/ is called a dihedral set.

In the sequel, we will identify a dihedral set .S; ı/ with an unoriented polygon with
its edges decorated by S in the dihedral order prescribed by ı .

Definition 1.2 (chords and dissections) Let .S; ı/ be a dihedral set.
� A chord of .S; ı/ is an unordered pair of nonconsecutive vertices of the under-

lying unoriented polygon.
� A dissection d of .S; ı/ is a (possibly empty) set of noncrossing chords. The

refinement of dissections endows them with a poset structure:

d6 d0 if d� d0;

in which the smallest element is the empty dissection. We denote by Diss.S; ı/

the poset of dissections of .S; ı/, and by Dissk.S; ı/ the subset consisting of
dissections with k chords.

For a dissection d2Diss.S; ı/, we denote by P .d/ the set of subpolygons that it defines;
see Figure 1. If d is in Dissk.S; ı/, then P .d/ has cardinality kC 1. A subpolygon
p 2 P .d/ corresponds to a dihedral set that we denote by .E.p/; ı.p//, where E.p/

consists of edges and chords of the polygon .S; ı/.

Definition 1.3 (trees) A tree is a finite graph with no cycle. The contraction of
internal edges endows trees with a poset structure: we set t 6 t0 if the tree t can be
obtained from the tree t0 by contracting some internal edges. If the number of external
vertices is fixed, the minimal element of this poset is the only tree with zero internal
edge, called a corolla. By looking at the possible structures on the set of external
vertices of a tree, we get different posets:
� the poset Tree.S/ of trees with external vertices labeled by S ;
� the poset RTree.S; �/ of rooted trees with external vertices labeled by S , the

root being labeled by the basepoint � ;
� the poset PRTree.S; !/ of planar rooted trees with external vertices labeled by

S in the total order ! , the root being labeled by the maximal element;
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c3c2
c1

p3p2

p1

p0

Figure 1: A dissection dD fc1; c2; c3g , with the set of subpolygons P .d/D fp0;p1;p2;p3g

� the poset PTree.S;  / of planar trees with external vertices labeled by S in the
cyclic order  ;

� the poset DTree.S; ı/ of dihedral trees (trees embedded in an unoriented plane)
with external vertices labeled by S in the dihedral order ı .

All these posets are graded by the number of internal edges of the trees.

For a tree t, we denote its set of vertices by V .t/. For each vertex v 2 V .t/, we
denote its set of adjacent edges by E.v/. Notice that if t is a rooted tree then we get
a pointed set .E.v/; �.v//; if t is a planar rooted tree then we get a totally ordered
set .E.v/; !.v//; if t is a planar tree then we get a cyclic set .E.v/;  .v//; if t is
a dihedral tree then we get a dihedral set .E.v/; ı.v//. We refer the reader to [22,
Section C.4] for more details on the notions related to trees.

Lemma 1.4 The graded poset Diss.S; ı/ of dissections of a polygon .S; ı/ and
the graded poset DTree.S; ı/ of dihedral trees labeled by the dihedral set .S; ı/ are
isomorphic.

Proof Let us describe the isomorphism Diss.S; ı/!DTree.S; ı/. Given a dissection
d2Diss.S; ı/, one considers its “dual graph” t: each subpolygon p2P .d/ gives rise to
a vertex v 2V .t/ of the tree t and each edge of this polygon gives rise to an edge of the
tree; see Figure 2. The tree t is naturally a dihedral tree, and it is straightforward to check
that this defines a bijection between Diss.S; ı/ and DTree.S; ı/. Under this bijection,
removing a chord from the dissection corresponds to contracting internal edges of trees;
hence we get an isomorphism of posets, which respects the grading by construction.

1.2 Dihedral operads

In this section, we recall the classical notions of operads, and we introduce a new one,
the notion of dihedral operad, which suits the geometrical problem studied here. We
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��
�

�

Figure 2: The isomorphism between polygon dissections and dihedral trees

work in the general setting of an abelian symmetric monoidal category .A;˝/ such
that the monoidal product preserves coproducts. In the next section and later on, we
will specify the category A to be the category of graded mixed Hodge structures.

Definition 1.5 (categories of structured sets) We consider the following categories
of structured sets:

� The category Bij of finite sets S and bijections.

� The category Bij� of pointed sets .S; �/ and bijections respecting the basepoint.

� The category Ord� of totally ordered sets .S; !/ and bijections respecting the
total order.

� The category Cyc of cyclic sets .S;  / and bijections respecting the cyclic order.

� The category Dih of dihedral sets .S; ı/ and bijections respecting the dihedral
structure.

The forgetful functors between the various categories of structured sets assemble as a
commutative diagram

Dih

��

Cycoo Ord�oo

��

Bij Bij�oo

where the functor Ord�! Bij� picks the maximal element as basepoint.

In each case, we consider the category of functors from these categories to the cate-
gory A, for instance MW Bij!A, that we respectively call the category of Bij–modules,
Bij�–modules, Ord�–modules, Cyc–modules and Dih–modules. We denote them
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respectively by Bij-Mod, Bij�-Mod, Ord�-Mod, Cyc-Mod and Dih-Mod. We then get
a commutative diagram of forgetful functors:

Dih-Mod // Cyc-Mod // Ord�-Mod

Bij-Mod //

OO

Bij�-Mod

OO

In the next definition we are using tensor products labeled by sets; see [22, Sec-
tion 5.1.14] for more details on this notion.

Definition 1.6 (monads of trees) We consider the following monads of trees.

� The monad T W Bij-Mod! Bij-Mod is defined via trees:

TM.S/ WD
M

t2Tree.S/

� O
v2V .t/

M.E.v//

�
:

� The monad RT W Bij�-Mod! Bij�-Mod is defined via rooted trees:

RTM.S; �/ WD
M

t2RTree.S;�/

� O
v2V .t/

M.E.v/; �.v//

�
:

� The monad PRT W Ord�-Mod! Ord�-Mod is defined via planar rooted trees:

PRTM.S; !/ WD
M

t2PRTree.S;!/

� O
v2V .t/

M.E.v/; !.v//

�
:

� The monad PT W Cyc-Mod! Cyc-Mod is defined via planar trees:

PTM.S;  / WD
M

t2PTree.S; /

� O
v2V .t/

M.E.v/;  .v//

�
:

� The monad DT W Dih-Mod! Dih-Mod is defined via dihedral trees:

DTM.S; ı/ WD
M

t2DTree.S;ı/

� O
v2V .t/

M.E.v/; ı.v//

�
:

The composition law of these monads, eg T ıT !T , is given by substitution of trees,
and the unit, eg 1! T , is given by the inclusion into the direct summand indexed by
corollas. See [22, Section 5.6.1] for more details.

Remark 1.7 In the above commutative diagram, the horizontal forgetful functors
commute with the respective monads: the forgetful functor Dih-Mod ! Cyc-Mod

commutes with DT and PT ; the forgetful functor Cyc-Mod! Ord�-Mod commutes
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with PT and PRT ; the forgetful functor Bij-Mod! Bij�-Mod commutes with T
and RT . There is no corresponding statement for the vertical forgetful functors.

Definition 1.8 (types of operads) An operad (resp. a cyclic operad, a nonsymmetric
operad, a nonsymmetric cyclic operad and a dihedral operad) is an algebra over the
monad RT of rooted trees (resp. the monad T of trees, the monad PRT of planar
rooted trees, the monad PT of planar trees and the monad DT of dihedral trees).

Remark 1.9 In the rest of this article, we will always assume that all finite sets S have
cardinality n> 3. This is more convenient for our geometric purposes, since the moduli
spaces M0;S and SM0;S are only defined for those sets, and also to avoid speaking of
polygons with two sides. The operads that we manipulate are then nonunital operads.

The aforementioned diagram of categories gives rise to the following forgetful functors
between the categories of operads:

Dih-Op // ns-Cyc-Op // ns-Op

Cyc-Op //

OO

Op

OO

Remark 1.10 In view of Remark 1.7, the free dihedral operad, the free nonsymmetric
cyclic operad and the free nonsymmetric operad on a given Dih–module have the same
underlying nonsymmetric operad.

1.3 Dihedral cooperads

By dualizing Definitions 1.6 and 1.8, one defines comonads of trees and the correspond-
ing notions of cooperads. For more details, we refer the reader to [22, Section 5.8.8]. For
instance, the comonad of trees is defined by the endofunctor T c W Bij-Mod! Bij-Mod

defined by
T cM.S/ WD

M
t2Tree.S/

M.t/;

where we have set
M.t/ WD

O
v2V .t/

M.E.v//:

A cyclic cooperad consists of a Bij–module C along with decomposition morphisms

�tW C.S/! C.t/;
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for any tree t2Tree.S/, satisfying some coassociativity conditions. For the convenience
of the reader, we make the definition explicit in the case of dihedral cooperads, switching
from dihedral trees to polygon dissections; see Lemma 1.4.

A Dih–module M assigns to every dihedral set .S; ı/ an object M.S; ı/, and to
every dihedral bijection .S; ı/' .S 0; ı0/ an isomorphism M.S; ı/'M.S 0; ı0/. We
introduce the notation, for a dissection d 2 Diss.S; ı/,

M.d/ WD
O

p2P.d/

M.E.p/; ı.p//:

Definition 1.11 (comonad of dissections) The comonad of dissections, denoted
by DT c, consists of the endofunctor DT c

W Dih-Mod! Dih-Mod defined by

DT cM.S; ı/ WD
M

d2Diss.S;ı/

M.d/:

Its law DT c
! DT c

ıDT c sends the direct summand indexed by a dissection d to
the direct summands indexed by all subdissections of d. The counit DT c

! 1 is the
projection on the direct summand indexed by empty dissections.

Definition 1.12 (dihedral cooperad) A dihedral cooperad is a coalgebra over the
comonad of dissections.

The data of a dihedral cooperad is equivalent to a collection of decomposition morphisms

�dW C.S; ı/! C.d/;

for any dihedral tree d 2 Diss.S; ı/, satisfying some coassociativity conditions. The
first nontrivial decomposition morphisms correspond to dissections with one chord;
such decomposition morphisms are called infinitesimal and their iterations can generate
any decomposition morphism.

1.4 Cobar construction and cofree dihedral cooperads

In this subsection and in the next one, we assume that the underlying symmetric
monoidal category A consists of graded objects, like chain complexes for instance. We
use the cohomological convention for cooperads. In this case, one can consider the
desuspension s�1C of any dihedral module C defined by the formula s�1C.S; ı/� WD
C.S; ı/�C1 . (Alternatively, one can view the element s�1 as a dimension-one element of
the category A concentrated in cohomological degree �1. In this case, the desuspension
coincide with the tensor product with the element s�1 .)

Definition 1.13 (cobar construction) The cobar construction �C WD .DT .s�1C/; d/
of a dihedral cooperad C is the free dihedral operad generated by s�1C equipped with
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the unique derivation d which extends the infinitesimal decomposition morphisms of C .
The signs induced by the desuspension force the derivation d to square to zero, which
makes the cobar construction into a differential graded dihedral operad.

Remark 1.14 As usual [22, Section 6.5.2], if the underlying dihedral module C
carries an internal differential, one takes it into account in the definition of the cobar
construction. This will not be the case in the sequel.

The underlying cochain complex of the cobar construction looks like

0! s�1C.S; ı/!
M

d2Diss1.S;ı/

s�1C.d/!
M

d2Diss2.S;ı/

s�1C.d/! � � � :

One can read whether a dihedral cooperad is cofree on its cobar construction as follows.

Proposition 1.15 Let C be a dihedral cooperad. The following are equivalent:

(i) the dihedral cooperad C is cofree;

(ii) for every dihedral set .S; ı/, the cobar construction of C induces a long exact
sequence

(1) s�1C.S; ı/!
M

d2Diss1.S;ı/

s�1C.d/!
M

d2Diss2.S;ı/

s�1C.d/! � � � :

In such a situation, the space of cogenerators of C is (noncanonically) isomorphic to
the space of indecomposables

X .S; ı/D ker
�
C.S; ı/!

M
d2Diss1.S;ı/

C.d/
�
:

More precisely, any choice of splitting for the inclusion of Dih–modules X ,! C leads
to an isomorphism

C
Š
�!DT c.X /:

Proof The long sequence (1) is exact if and only if the long sequence

(2) 0! s�1X .S; ı/! s�1C.S; ı/!
M

d2Diss1.S;ı/

s�1C.d/!
M

d2Diss2.S;ı/

s�1C.d/!� � �

is exact.

(i) D) (ii) Suppose that the dihedral cooperad C ŠDT c.X / is cofree on a dihedral
module X . Since the sequence (2) is the analog of the bar-cobar resolution [22,
Theorem 6.6.5] for the nilpotent dihedral operad s�1X , one proves that this sequence
is exact by the same kind of arguments.
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(ii) D) (i) Let us assume that the long sequence (2) is exact. We choose a splitting
C� X for the inclusions X ,! C in the category of Dih–modules. This defines a
morphism of dihedral cooperads C ! DT c.X /. Let us prove, by induction on the
arity n> 3 of a dihedral set .S; ı/, that the morphism C.S; ı/!DT c.X /.S; ı/ is an
isomorphism. The case nD 3 is obvious and initiates the induction. Suppose that the
property holds up to n� 1. We prove that it holds for n as follows. The preceding
point shows that the long sequence (2) associated to the dihedral cooperad DT c.X / is
exact. The induction hypothesis provides us with the commutative diagram

0

��

0

��

s�1X .S; ı/

��

Š
// s�1X .S; ı/

��

s�1C.S; ı/

��

// s�1DT c.X /.S; ı/

��L
d2Diss1.S;ı/

s�1C.d/

��

Š
//

L
d2Diss1.S;ı/

s�1DT c.X /.d/

��L
d2Diss2.S;ı/

s�1C.d/

��

Š
//

L
d2Diss2.S;ı/

s�1DT c.X /.d/

��

:::
:::

where the columns are exact and nearly all the horizontal maps are isomorphisms.
A diagram chase (the 5–lemma) completes the proof.

Proposition 1.16 Let C be a dihedral cooperad. Then the following statements are
equivalent:

(i) The dihedral cooperad C is cofree.

(ii) The nonsymmetric cyclic cooperad underlying C is cofree.

(iii) The nonsymmetric cooperad underlying C is cofree.

Proof The same proof shows that Proposition 1.15 is valid in the category of nonsym-
metric cyclic cooperads (resp. nonsymmetric cooperads), replacing the dihedral cobar
construction by the nonsymmetric cyclic cobar construction (resp. the nonsymmetric
cobar construction). By Remark 1.10, these three cobar constructions have the same
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underlying nonsymmetric operad, which is the nonsymmetric cobar construction of the
nonsymmetric cooperad underlying C . In particular, they have the same underlying
chain complex, and the claim follows.

1.5 The coradical filtration and a freeness criterion

To understand the behavior of a dihedral cooperad with respect to the freeness property,
one can consider its coradical filtration. This is the direct generalization of the same
notion on the level of coalgebras [24, Appendix B] and on the level of cooperads [22,
Section 5.8.4].

Definition 1.17 (coradical filtration) Let C be a dihedral cooperad. The coradical
filtration, defined by

FkC.S; ı/ WD
\

d2DisskC1.S;ı/

ker.�d/;

for k > 0, is an increasing filtration of the Dih–module C :

0D F�1C � F0C � F1C � � � � � C:

The next proposition gives a way to recognize coradical filtrations of cofree dihedral
cooperads. Let us make the following convention: if we are given an increasing filtration
� � � �Rk�1C �RkC � � � � of a Dih–module C , then we extend this filtration, in the
natural way, to all objects C.d/ for a dissection d as follows. If the dissection d dissects
.S; ı/ into polygons p0;p1; : : : ;pk , then we set

RrC.d/ WD
X

i0C���CikDr

Ri0
C.p0/˝ � � �˝Rik

C.pk/:

Proposition 1.18 Let C be a dihedral cooperad. Assume that the underlying Dih–
module is equipped with an increasing filtration

0DR�1C �R0C �R1C � � � � � C

which is finite in every arity n and such that the following properties are satisfied:

(a) for every dissection d 2 Dissk.S; ı/ of cardinality k and every integer r , the
decomposition map �d sends RrC.S; ı/ to Rr�kC.S; ı/;

(b) for every integer r , the iterated decomposition map

(3) grR
r C.S; ı/

L
�d

����!

M
d2Dissr .S;ı/

R0C.d/

is an isomorphism.
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Then the dihedral cooperad C is cofree and the filtration R is its coradical filtra-
tion. More precisely, any choice of splitting of the inclusion R0C ,! C induces an
isomorphism

C
Š
�!DT c.R0C/:

Proof Let us choose a splitting � W C� R0C for the inclusions R0C ,! C in the
category of Dih–modules. By the universal property of the cofree dihedral cooperads,
this induces a morphism of dihedral cooperads ‚W C ! DT c.R0C/. The coradical
filtration on the cofree dihedral cooperad DT c.R0C/ is given by

FkDT c.R0C/.S; ı/D
M
r6k

d2Dissr .S;ı/

R0C.d/:

For any dissection d2Dissk.S; ı/ and k > r , the first assumption implies that we have
�d.RrC.S; ı//D 0. Therefore, the morphism ‚ is compatible with the filtrations R

and it induces a morphism of graded dihedral modules

grR
r ‚W grR

r C.S; ı/! grR
r DT c.R0C/D

M
d2Dissr .S;ı/

R0C.d/;

which is nothing but the iterated decomposition map (3). So it is an isomorphism by the
second assumption. Finally, the morphism of dihedral cooperads ‚ is an isomorphism
and the proposition is proved.

2 Moduli spaces of genus zero curves and
the cyclic gravity operad

In this section, we begin by recalling the definitions of the moduli space of genus zero
curves with marked points and its Deligne–Mumford–Knudsen compactification. We
recall the definition of residues along normal crossing divisors in the context of mixed
Hodge theory. This produces the cyclic gravity operad structure on the cohomology of
the moduli spaces of curves.

2.1 Normal crossing divisors and stratifications

We introduce some vocabulary and notations on normal crossing divisors and the
stratifications that they induce on complex algebraic varieties.

2.1.1 The local setting Let xX be a small neighborhood of 0 in Cn and let us define a
divisor @ xX Dfz1 � � � zr D 0g in xX for some fixed integer r . Its irreducible components
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are the (intersections with xX of the) coordinate hyperplanes fzi D 0g for i D 1; : : : ; r .
This induces a stratification

(4) xX D
G

I�f1;:::;rg

X.I/;

where X.I/ is the locally closed subset of xX defined by the conditions: zi D 0 for
i 2 I and zi ¤ 0 for i 2 f1; : : : ; rg n I . Notice that

I � I 0 () xX .I/� xX .I 0/:

The codimension of X.I/ is equal to the cardinality of I , and its closure xX .I/ is
defined by the vanishing of the coordinates zi , i 2 I . In other words, the closure xX .I/
is the union of the strata X.I 0/ for I 0 � I :

xX .I/D
G

I 0�I

X.I 0/:

For a given set I � f1; : : : ; rg, the complement @ xX .I/ WD xX .I/ nX.I/ is defined by
the equation

Q
i2f1;:::;rgnI zi D 0.

2.1.2 The global setting Let xX be a smooth (not necessarily compact) complex
algebraic variety and let @ xX be a normal crossing divisor inside xX . This means that
around every point of xX , there is a system of coordinates .z1; : : : ; zn/, where n is
the complex dimension of xX , such that @ xX is defined by an equation of the form
z1 � � � zr D 0 for some integer r that depends on the point.

This induces a global stratification

(5) xX D
G

s2Strat

X.s/

that is constructed as (4) in every local chart. For every s in the indexing set Strat, the
stratum X.s/ is a connected locally closed subset of xX . Let xX .s/ denote its closure.
The indexing set Strat for the strata is actually endowed with a poset structure defined by

s6 s0 () xX .s/� xX .s0/:

In other words, the closure xX .s/ of X.s/ is the union of the strata X.s0/ for s0 > s:

xX .s/D
G
s0>s

X.s0/:

For an integer k , we write Stratk for the indexing set of strata of codimension k ,
making Strat into a graded poset. The set Strat0 only has one element corresponding
to the open stratum X D xX n@ xX . The closures xX .s/, for s2 Strat1 , are the irreducible
components of the normal crossing divisor @ xX .
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For a given stratum X.s/, the complement @ xX .s/ WD xX .s/nX.s/ is a normal crossing
divisor inside xX .s/.

2.2 The moduli spaces M0;S and SM0;S

We introduce the moduli spaces of genus zero curves M0;S and SM0;S . We refer the
reader to [20; 18; 14; 17] for more details.

2.2.1 The open moduli spaces M0;S Let S be a finite set of cardinality n > 3.
The moduli space of genus zero curves with S –marked points is the quotient of the
configuration space of points labeled by S on the Riemann sphere P1.C/ by the
automorphisms of P1.C/. It is denoted by

M0;S WD
˚
.zs/s2S 2 P1.C/S j zs ¤ zs0 for all s ¤ s0

	
=PGL2.C/;

where an element g 2 PGL2.C/ acts diagonally by g:.zs/s2S D .g:zs/s2S .

Every bijection S ' S 0 induces an isomorphism M0;S 'M0;S 0 . If S D f1; : : : ; ng

then M0;S is simply denoted by M0;n .

The action of PGL2.C/ on P1.C/ is strictly tritransitive: for every triple .a; b; c/ of
pairwise distinct points on P1.C/, there exists a unique element g 2 PGL2.C/ such
that .g:a;g:b;g:c/D .1; 0; 1/. By fixing an identification

.z1; : : : ; zn/D .1; 0; t1; : : : ; tn�3; 1/;

we can thus get rid of the quotient by PGL2.C/ and obtain an isomorphism

(6) M0;n '
˚
.t1; : : : ; tn�3/ 2Cn�3

j ti ¤ 0; 1 for all i; and ti ¤ tj for all i ¤ j
	
:

This description makes it clear that M0;S is a smooth and affine complex algebraic
variety of dimension n� 3.

2.2.2 The compactified moduli spaces SM0;S Let S be a finite set of cardinality
n> 3, and let

M0;S � SM0;S

be the Deligne–Mumford–Knudsen compactification of M0;S . Every bijection S 'S 0

induces an isomorphism SM0;S ' SM0;S 0 . If S D f1; : : : ; ng, then SM0;S is simply
denoted by SM0;n .

The compactified moduli space SM0;S is a smooth projective complex algebraic variety,
and the complement @ SM0;S WD SM0;S nM0;S is a simple normal crossing divisor. The
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corresponding stratification (5) is indexed by the graded poset of S –trees:

(7) SM0;S D

G
t2Tree.S/

M.t/:

The codimension of a stratum M.t/ is equal to the number of internal edges of the
tree t. If we denote by SM.t/ the closure of a stratum M.t/ in SM0;S , then we have

SM.t/� SM.t0/ () t6 t0;

where the order 6 on trees is the one defined in Definition 1.3. The closure SM.t/ is
thus the union of the strata M.t0/ for t0 > t.

For a tree t 2 Tree.S/, we have compatible product decompositions

(8) M.t/Š
Y
v2V .t/

M0;E.v/ and SM.t/Š
Y
v2V .t/

SM0;E.v/:

The stratum corresponding to the corolla is the open stratum M0;S . For t 2 Tree1.S/

a tree with only one internal edge, we get a divisor

SM.t/Š SM0;E0
� SM0;E1

inside SM0;S . These divisors are the irreducible components of @ SM0;S .

Example 2.1 (1) We have M0;3 D SM0;3 D f�g.

(2) If we write M0;4DP1.C/nf1; 0; 1g as in (6), then we have SM0;4DP1.C/. The
divisor at infinity @ SM0;4D f1; 0; 1g has three irreducible components, all isomorphic
to a product SM0;3 � SM0;3 , indexed by the three 4–trees with one internal edge.

(3) If we write M0;5 D .P
1.C/ n f1; 0; 1g/2 n ft1 D t2g as in (6), then SM0;5 can be

realized as the blow-up of P1.C/2 along the three points .0; 0/, .1; 1/ and .1;1/;
see Figure 3. The divisor at infinity @ SM0;5 has ten irreducible components: the three
exceptional divisors and the strict transforms of the lines t1 D 0; 1;1, t2 D 0; 1;1

and t1 D t2 . They are all isomorphic to a product SM0;3 � SM0;4 and are indexed by
the ten 5–trees with one internal edge. The fifteen different intersection points of these
components are indexed by the fifteen 5–trees with two internal edges.

2.3 The category of mixed Hodge structures

We recall some useful facts on the category of mixed Hodge structures. The main
references are the original articles by Deligne [6; 7; 8] and the book [23].
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Figure 3: The combinatorial structure of SM0;5

Definition 2.2 (pure Hodge structures) A pure Hodge structure of weight w is the
data of
� a finite-dimensional Q–vector space H ;
� a finite decreasing filtration, the Hodge filtration, F �HC of the complexification

HC WDH ˝Q C ,

such that for every integer p , we have

HC D FpHC˚Fw�pC1HC:

A morphism of pure Hodge structures is a morphism of Q–vector spaces that is
compatible with the Hodge filtration.

Definition 2.3 (mixed Hodge structures) A mixed Hodge structure is the data of
� a finite-dimensional Q–vector space H ;
� a finite increasing filtration, the weight filtration, W�H of H ;
� a finite decreasing filtration, the Hodge filtration, F �HC of the complexifica-

tion HC ,

such that for every integer w , the Hodge filtration induces a pure Hodge structure of
weight w on grW

w H WDWwH=Ww�1H . A morphism of mixed Hodge structures is a
morphism of Q–vector spaces that is compatible with the weight and Hodge filtrations.

A pure Hodge structure of weight w is thus nothing but a mixed Hodge structure whose
weight filtration is concentrated in weight w .

A very important remark is that morphisms of mixed Hodge structures are strictly
compatible with the weight and Hodge filtrations. This implies that mixed Hodge
structures form an abelian category. One easily defines on it a compatible structure of
a symmetric monoidal category.
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Another consequence of this strictness property is the following lemma, used in practice
to prove degeneration of spectral sequences, like in Proposition 3.10.

Lemma 2.4 Let f W H !H 0 be a morphism of mixed Hodge structures. If H is pure
of weight w and H 0 is pure of weight w0 with w ¤ w0 , then f D 0.

The pure Tate structure of weight 2k , denoted by Q.�k/, is the only pure Hodge
structure of weight 2k and dimension 1; its Hodge filtration is concentrated in degree k .
They satisfy Q.�k/˝Q.�l/ŠQ.�k � l/ and Q.�k/_ ŠQ.k/. A mixed Hodge
structure is said to be pure Tate of weight 2k if it is isomorphic to a direct sum
Q.�k/˚d for a certain integer d .

If H is a mixed Hodge structure and k is an integer, we denote by H.�k/ the Tate
twist of H consisting in shifting the weight filtration by 2k and the Hodge filtration
by k . It is equal to the tensor product of H by Q.�k/.

The importance of mixed Hodge structures in the study of the topology of complex
algebraic varieties is explained by the following fundamental theorem of Deligne.

Theorem 2.5 [8, Proposition 8.2.2] Let X be a complex algebraic variety. For every
integer k , the cohomology group H k.X / is endowed with a functorial mixed Hodge
structure.

2.4 Logarithmic forms and residues

We recall the notion of logarithmic form along a normal crossing divisor and that of a
residue. We refer the reader to [7, 3.1] for more details.

2.4.1 The local setting We work in the local setting of Section 2.1.1. We say that a
meromorphic differential form on xX has logarithmic poles along @ xX , or that it is a
logarithmic form on . xX ; @ xX /, if it can be written as a linear combination of forms of
the type

dzi1

zi1

^ � � � ^
dzis

zis

^ �;

with 16 i1 < � � �< is 6 r and where � a holomorphic form on xX . Logarithmic forms
are closed under the exterior derivative on forms.

Any logarithmic form on . xX ; @ xX / can be written as

! D
dz1

z1

^˛Cˇ;
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where ˛ and ˇ are forms with logarithmic poles along fz2 � � � zr D 0g. We define the
residue of ! on xX .1/D fz1 D 0g to be the restriction

(9) Res.!/ WD 2� i ˛
j xX .1/:

It is a well-defined logarithmic form on . xX .1/; @ xX .1//. The residue operation lowers
the degree of the forms by 1 and anticommutes with the exterior derivative: d ıResC
Res ı d D 0.

More generally, for sets I � I 0 � f1; : : : ; rg with jI 0j D jI j C 1, we get residue
operations ResI

I 0 from logarithmic forms on . xX .I/; @ xX .I// to logarithmic forms on
. xX .I 0/; @ xX .I 0//.

2.4.2 The global setting We work in the global setting of Section 2.1.2. By gluing
together the local definitions of the previous paragraph, one defines on each closure xX .s/
a complex of sheaves of logarithmic forms on . xX .s/; @ xX .s//:

��xX .s/
.log @ xX .s//:

If jsW X.s/ ,! xX .s/ denotes the natural open immersion, we have a quasi-isomorphism
.js/�CX .s/ ' ��xX .s/.log @ xX .s//, which induces isomorphisms between cohomol-
ogy groups:

(10) H k.X.s/;C/ŠHk
�
xX .s/;��xX .s/.log @ xX .s//

�
:

For elements s6 s0 in Strat with js0j D jsjC 1, we denote the corresponding closed
immersion by i ss0 W

xX .s0/ ,! xX .s/. By applying the local construction of the previous
paragraph in every local chart, we get a residue morphism

(11) Resss0 W �
�

xX .s/
.log @ xX .s//! .i ss0/��

��1
xX .s0/

.log @ xX .s0//;

which anticommutes with the exterior derivative on forms. In view of (10), this induces
a residue morphism between cohomology groups:

Resss0 W H
�.X.s/;C/!H ��1.X.s0/;C/:

This residue morphism is actually defined over Q and it is compatible with the mixed
Hodge structures if we add the right Tate twist, giving rise to residue morphisms

(12) Resss0 W H
�.X.s//!H ��1.X.s0//.�1/:

2.5 The cyclic gravity cooperad

Following Getzler, we use the residue morphisms of the previous paragraph to define
the cyclic gravity cooperad in the category of graded mixed Hodge structures. Let S
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be a finite set of cardinality n> 3, and let us choose an S –tree t 2 Tree1.S/ with one
internal edge. Let us denote by v0 and v1 its two vertices, and by E0 WDE.v0/ and
E1 WDE.v1/ the corresponding sets of adjacent edges. The stratum indexed by t in
the moduli space M0;S is

M.t/ŠM0;E0
�M0;E1

:

For integers a and b , we thus get residue morphisms

(13) �tW H
aCb�1.M0;S /.�1/!H a�1.M0;E0

/.�1/˝H b�1.M0;E1
/.�1/:

They are obtained from (12) by using the Künneth formula, adding a Tate twist .�1/ and
multiplying by the Koszul sign .�1/a�1 , which reflects the cohomological degree shift.
Let us define the Bij–module C in the category of graded mixed Hodge structures by

C.S/ WDH ��1.M0;S /.�1/:

Associated to any set V , one considers the one-dimensional vector space det.V / WDV
v2V Qv . The signed residue morphisms (13) are not quite the decomposition mor-

phisms of a cyclic cooperad. Instead, they give rise to decomposition morphisms

(14) �tW C.S/! det.V .t//˝ C.t/

for any S –tree t 2 Tree.S/, that satisfy analogs of the axioms a cyclic cooperad, but
with different signs. Such an algebraic structure on C is actually called an anticyclic
cooperad; see [15, 2.10]. Note that in (13) the choice of an ordering V .t/D fv0; v1g

gives a trivialization det.V .t//'Q of the determinant. The following definition was
introduced by Getzler [13; 14].

Definition 2.6 (cyclic gravity cooperad) The cyclic gravity cooperad is the cyclic
suspension [15, 2.10] of the anticyclic cooperad C :

Grav.S/ WD det.S/˝H �Cn�3.M0;S /.�1/

for any finite set S of cardinality n> 3. It forms a cyclic cooperad in the category of
graded mixed Hodge structures, which is concentrated in nonpositive cohomological
degree �.n� 3/6 � 6 0. The decomposition morphisms

�tW Grav.S/! Grav.t/

for the cyclic gravity cooperad are given by signed residues.

Getzler showed [13, Theorem 4.5] that the cyclic gravity operad, linear dual to the
cyclic gravity cooperad, is generated by one element in each cyclic arity n> 3, and
he also gave a presentation for the operadic ideal of relations. More specifically, the
generator in cyclic arity n is the natural generator of the space H0.M0;n/.1/, which
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lies in homological degree �.n�3/, and the relations are generalizations of the Jacobi
identity for Lie algebras. In particular, the generator of cyclic arity 3 satisfies the Jacobi
identity, and one gets the following theorem.

Theorem 2.7 [14, 3.8] The degree-zero suboperad of the cyclic gravity operad is iso-
morphic to the cyclic Lie operad. In particular, we get an isomorphism of Bij–modules

Lie.S/Š det.S/˝Hn�3.M0;S /.1/:

3 Brown’s moduli spaces and the dihedral gravity cooperad

In this section, we introduce Brown’s moduli spaces as a partial compactification of the
moduli spaces of genus zero curves. Forgetting many of the symmetries of the gravity
operad, one obtains the dihedral gravity operad. We conclude with the proof of the
equivalence between the purity of the mixed Hodge structure on the cohomology of
Brown’s moduli spaces and the cofreeness of the dihedral gravity cooperad.

3.1 Brown’s moduli spaces Mı
0;S

Let S be a finite set of cardinality n> 3 and let ı be a dihedral structure on S . Brown
defined [5, Section 2] a space Mı

0;S that fits between the moduli space M0;S and its
compactification SM0;S with open immersions:

M0;S �Mı
0;S �

SM0;S :

Recall that DTree.S; ı/ � Tree.S/ denotes the set of S –trees that have a dihedral
embedding compatible with ı .

Definition 3.1 (Brown’s moduli space Mı
0;S ) Brown’s moduli space Mı

0;S is the
subspace of SM0;S defined as the union of strata indexed by the trees underlying
dihedral trees:

Mı
0;S WD

G
t2DTree.S;ı/

M.t/:

For t and t0 two S –trees such that t6 t0 , we have t0 2DTree.S; ı/D) t2DTree.S; ı/;
thus, Brown’s moduli space Mı

0;S is an open subvariety of SM0;S . In other words,
it is the complement in SM0;S of the union of the closed subvarieties SM.t/ for t 2

Tree.S/ nDTree.S; ı/; in this description, it is actually enough to delete the divisors
SM.t/ for trees t with one internal edge.

Every dihedral bijection .S; ı/ ' .S 0; ı0/ induces an isomorphism Mı
0;S 'Mı0

0;S 0 .
If we consider S D f1; : : : ; ng with its standard dihedral structure ı , then Mı

0;S is
simply denoted by Mı

0;n .
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Theorem 3.2 [5, Theorem 2.21] Brown’s moduli space Mı
0;S is a smooth and affine

complex algebraic variety, and the complement @Mı
0;S WDMı

0;S nM0;S is a normal
crossing divisor.

With our definition of Brown’s moduli spaces, the only nontrivial statement in the
above theorem is the fact that Mı

0;S is affine. Brown’s original definition is via an
explicit presentation of the ring of functions of Mı

0;S . The equivalence of the two
definitions can be found in [5, Section 2.6].

3.2 The dihedral gravity cooperad

Definition 3.3 (the dihedral gravity operad) The dihedral gravity cooperad, still
denoted by Grav , is the dihedral cooperad in the category of graded mixed Hodge
structures underlying the cyclic gravity cooperad. In other words, it is obtained by
applying the forgetful functor Cyc-Op! Dih-Op of Section 1.2 to the cyclic gravity
operad. Recall that its underling dihedral module is given by

Grav.S; ı/ WD det.S/˝H �Cn�3.M0;S /.�1/:

For the convenience of the reader and for future use, we restate its definition in the
dihedral setting by using the bijection between graded posets of Lemma 1.4:

DTree.S; ı/Š Diss.S; ı/; t$ d:

We may then write

(15) Mı
0;S D

G
d2Diss.S;ı/

M.d/:

The codimension of a stratum M.d/ is the number of chords in the dissection d. If we
denote by Mı.d/ the closure of a stratum M.d/ in Mı

0;S , then we have

Mı.d/�Mı.d0/ () d6 d0;

where the order 6 on dissections is the one defined in Section 1.1. The closure Mı.d/

is thus the union of the strata M.d0/ for d0 > d.

For a dissection d 2 Diss.S; ı/, we have the product decompositions

M.d/Š
Y

p2P.d/

M0;E.p/ and Mı.d/Š
Y

p2P.d/

Mı.p/
0;E.p/

;

which are compatible with the product decompositions (8).
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Figure 4: The combinatorial structure of Mı
0;5

The stratum corresponding to the corolla is the open stratum M0;S . For d D fcg 2

Diss1.S; ı/ a dissection consisting of only one chord, we get a divisor

Mı.fcg/ŠMı0
0;E0
�Mı1

0;E1

inside Mı
0;S . These divisors are the irreducible components of @Mı

0;S .

Example 3.4 (1) We have Mı
0;3 D f�g.

(2) If we write M0;4DP1.C/nf1; 0; 1g and SM0;4DP1.C/, then we have Mı
0;4D

P1.C/ n f1g. The divisor at infinity @Mı
0;4 D f0; 1g has two irreducible components,

all isomorphic to a product Mı
0;3 �Mı

0;3 , indexed by the two dissection of a 4–gon
with one chord.

(3) Figure 4 shows the combinatorial structure of Mı
0;5 inside SM0;5 . The curves

in dashed lines are the complement SM0;5 nMı
0;5 . The five curves in straight lines

are the five irreducible components of the divisor at infinity @Mı
0;5 , indexed by the

five dissection of a 5–gon with one chord. They bound a pentagon (shaded). The five
different intersection points of these components are indexed by the five dissections of
a 5–gon with two chords.

Remark 3.5 The stratification of Mı
0;n has the same combinatorial structure as the

natural stratification of an associahedron Kn of dimension n � 3. More precisely,
there is a natural smooth embedding of Kn inside Mı

0;n which is compatible with
these stratifications (the shaded pentagon in Figure 4). This is the same as Devadoss’s
realization of the associahedron [9, Definition 3.2.1]. In that sense, Brown’s moduli
spaces Mı

0;n are algebro-geometric analogs of associahedra.

The dihedral decomposition morphisms

�dW Grav.S; ı/! Grav.d/
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may be computed as (signed) residues of logarithmic forms on .Mı
0;S ; @Mı

0;S /. This is
particularly interesting since Mı

0;S is affine (Theorem 3.2) and we can thus use global
logarithmic forms. We will give explicit formulas for these dihedral decomposition
morphisms in Proposition 4.4.

3.3 The residue spectral sequence

In the global setting of Section 2.1.2, we prove the existence of a residue spectral
sequence which computes the cohomology of the ambient space xX in terms of the
cohomology of the strata X.s/ and the residue morphisms. In the next paragraph, we
will apply this spectral sequence to the dihedral gravity cooperad.

Proposition 3.6 Let xX be a smooth (not necessarily compact) complex algebraic
variety and let @ xX be a normal crossing divisor inside xX , inducing a stratification

xX D
G

s2Strat

X.s/:

There exists a first quadrant spectral sequence in the category of mixed Hodge structures:

E
p;q
1
D

M
s2Stratp

H q�p.X.s//.�p/ H) H pCq. xX /;

where the differential d1W E
p;q
1
!E

pC1;q
1

is the sum of the residue morphisms (12)

Resss0 W H
q�p.X.s//.�p/!H q�p�1.X.s0//.�p� 1/

for s 2 Stratp and s0 2 StratpC1 such that s6 s0 .

Proof We first forget about mixed Hodge structures and prove the existence of the
spectral sequence for the cohomology over C . Let us denote by isW xX .s/ ,! xX the
natural closed immersions. Let us write

Kp;q
D

M
s2Stratp

.is/��
q�p
xX .s/

.log @ xX .s//:

We give the collection of the Kp;q the structure of a double complex of sheaves on xX .
The horizontal differential d 0W Kp;q! KpC1;q is induced by the residues

.is/��
q�p
xX .s/

.log @ xX .s//! .is0/��
q�p�1
xX .s0/

.log @ xX .s0//

for s2 Stratp and s0 2 StratpC1 such that s6 s0 . The vertical differential d 00W Kp;q!

Kp;qC1 is induced by the exterior derivative on differential forms. One checks that we
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have d 0 ıd 0D 0, d 00 ıd 00D 0 and d 0 ıd 00Cd 00 ıd 0D 0. We denote the corresponding
total complex by

Kn
D

M
pCqDn

Kp;q:

Using local coordinates on xX , it is easy to check that we have a long exact sequence

(16) 0!��xX
! K0;�

! K1;�
! K2;�

! � � � ;

which induces a quasi-isomorphism ��xX ' K� . The holomorphic Poincaré lemma
implies that we have a quasi-isomorphism C xX '�

�
xX ; hence we get an isomorphism

H q. xX ;C/ŠHq. xX ;K�/:

Now, the hypercohomology spectral sequence for the double complex K�;� filtered by
the columns is exactly

E
p;q
1
D

M
s2Stratp

Hq
�
xX .s/;�

��p
xX .s/

.log @ xX .s//
�
H) H pCq. xX ;C/:

Taking into account the isomorphisms Hq
�
xX .s/;���p

xX .s/.log @ xX .s//
�
'H q�p.X.s/;C/,

one gets the desired spectral sequence.

In order to prove that this spectral sequence is defined over Q, it is convenient to
work in the category of perverse sheaves. We let usW X.s/ ,! xX denote the natural
locally closed immersions. We replace (16) by the following long exact sequence in the
category of perverse sheaves on xX , where d denotes the complex dimension of xX :

0!Q xX Œd �!u�QX Œd �!
M

s2Strat1

.us/�QX .s/Œd�1�!
M

s2Strat2

.us/�QX .s/Œd�2�!� � � :

Taking the hypercohomology spectral sequence and shifting all the degrees by d gives
the result.

The proof via perverse sheaves can be copied in the category of mixed Hodge mod-
ules [25] (see [23, Section 14]), which proves the compatibility with mixed Hodge
structures.

3.4 Purity and freeness

We start with a classical theorem on the cohomology of the moduli spaces M0;S .

Theorem 3.7 For every integer k and every set S , the cohomology group H k.M0;S /

is pure Tate of weight 2k .
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Proof Since the moduli space M0;S is a complement of a union of hyperplanes in
the affine space Cn�3 by (6), this is a consequence of a general result on complements
of hyperplane arrangements [21; 27; 19]. See also Getzler’s proof [14, Lemma 3.12]
which only uses Arnol’d’s result [3].

The residue spectral sequence of the previous paragraph now allows us to compute
the cohomology of Brown’s moduli spaces Mı

0;S in term of the cohomology of the
spaces M0;S .

Proposition 3.8 There exists a first quadrant spectral sequence in the category of
mixed Hodge structures:

(17) E
p;q
1
D

M
d2Dissp.S;ı/

H q�p.M.d//.�p/ H) H pCq.Mı
0;S /;

where the differential d1W E
p;q
1
!E

pC1;q
1

is the sum of the residue morphisms

Resdd0 W H
q�p.M.d//.�p/!H q�p�1.M.d0//.�p� 1/

for d 2 Dissp.S; ı/ and d0 2 DisspC1.S; ı/ such that d6 d0 .

Proof This is a direct application of Proposition 3.6 to the case xX DMı
0;S with the

stratification (15).

The qth row of the first page E1 of the spectral sequence (17) looks like

(18) 0!H q.M0;S /!
M

d2Diss1.S;ı/

H q�1.M.d//.�1/

!

M
d2Diss2.S;ı/

H q�2.M.d//.�2/! � � � :

Proposition 3.9 The direct sum of the rows E
�;q
1

of the first page of the spectral
sequence (17) is, up to a Tate twist .�1/, the dihedral cobar construction of the
(desuspension of the) dihedral gravity cooperad.

Proof After twisting by .�1/, the direct sum of the complexes (18) can be written as

0! s�1C.S; ı/!
M

d2Diss1.S;ı/

s�1C.d/!
M

d2Diss2.S;ı/

s�1C.d/! � � � ;

where the arrows are (signed) infinitesimal decomposition morphisms. We leave it to
the reader to check that the sign conventions are consistent.

We now turn to the degeneration of this spectral sequence.
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Proposition 3.10 The spectral sequence (17) degenerates at the second page E2 ; that
is, E1 DE2 .

Proof As a consequence of Theorem 3.7 and the Künneth formula, H q�p.M.d//

is pure Tate of weight 2.q � p/ for every dissection d 2 Dissp.S; ı/, and hence
H q�p.M.d//.�p/ is pure Tate of weight 2.q � p/C 2p D 2q . The differential
dr W E

p;q
r ! E

pCr;q�rC1
r thus maps a pure Hodge structure of weight 2q to a pure

Hodge structure of weight 2.q� r C 1/, and is zero for r > 2 by Lemma 2.4.

In the next proposition, we prove the equivalence between two statements: a geometric
statement (i), namely the purity of the Hodge structure on the cohomology of Brown’s
moduli spaces, and an algebraic statement (ii), namely the freeness of the dihedral grav-
ity cooperad. In the next section, we will prove the algebraic statement (ii) and derive
the geometric statement (i). We nevertheless state this proposition as an equivalence to
convince the reader that the mathematical content of the two statements is essentially
the same.

Theorem 3.11 The following statements are equivalent:

(i) for every integer k and every dihedral set .S; ı/, the cohomology group
H k.Mı

0;S / is pure Tate of weight 2k ;

(ii) the dihedral gravity cooperad is cofree.

When they are true, there is a (noncanonical ) isomorphism between the dihedral gravity
cooperad and the cofree dihedral cooperad on the dihedral module:

.S; ı/ 7! det.S/˝H �Cn�3.Mı
0;S /.�1/:

Proof Let us denote by A the filtration on the cohomology of Mı
0;S that is induced

by the spectral sequence (17). It is a filtration by mixed Hodge substructures. By
Proposition 3.10, we get at the second page:

E
p;q
2
D grp

A
H pCq.Mı

0;S /:

By the proof of Proposition 3.10, the space E
p;q
2

is pure Tate of weight 2q . Thus,
(i) is equivalent to the fact that for every .S; ı/, the spectral sequence (17) satisfies
E

p;q
2
D 0 for p > 0. This is the same as requesting that each row E

�;q
1

is exact except
possibly at � D 0. According to Proposition 3.9 and Proposition 1.15, this is equivalent
to (ii), and we have proved the equivalence between statements (i) and (ii). Assuming
them, we see that H k.Mı

0;S /DE
0;k
2

is the kernel of the map

H k.M0;S /

L
�d

����!

M
d2Diss1.S;ı/

H k�1.M.d//.�1/;
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hence the result about the cogenerators of the dihedral gravity cooperad, after a degree
shift and an operadic suspension.

Remark 3.12 We can also apply the residue spectral sequence to the case xX D SM0;S ,
with the stratification (7). We then get a spectral sequence in the category of mixed
Hodge structures:

E
p;q
1
D

M
t2Treep.S/

H q�p.M.t//.�p/ H) H pCq. SM0;S /;

which degenerates at the second page E2 . It is a classical fact that the odd cohomology
groups of SM0;S are zero, and that for every k , H 2k. SM0;S / is pure Tate of weight 2k .
Thus, the degeneration of the spectral sequence gives rise to a long exact sequence

0!H k.M0;S /!
M

t2Tree1.S/

H k�1.M.t//.�1/! � � �

!

M
t2Treek.S/

H 0.M.t//.�k/!H 2k. SM0;S /! 0:

After dualizing and performing an operadic suspension, this long exact sequence gives
a quasi-isomorphism from the cyclic hypercommutative operad S 7!H�. SM0;S / to the
cyclic bar construction of the cyclic gravity operad. Under the bar-cobar adjunction, this
corresponds to Getzler’s quasi-isomorphism [14, Theorem 4.6], which proves the Koszul
duality between the cyclic hypercommutative operad and the cyclic gravity operad.

4 The dihedral gravity cooperad is cofree

We prove that the dihedral gravity cooperad is cofree by using explicit formulas
describing the cohomology of the moduli spaces M0;S . The main point consist in
showing that the filtration given by residual chords is the coradical filtration of the
dihedral gravity cooperad. We then derive geometric consequences for Brown’s moduli
spaces Mı

0;S and a new proof of a theorem of Salvatore–Tauraso.

4.1 Conventions

In this section, we will work with explicit formulas for the decomposition morphisms
in the dihedral gravity cooperad. For reasons of signs, it is easier to work with its
desuspension C , whose underlying Dih–module is given by

C.S; ı/DH ��1.M0;S /.�1/:

We use the notation C.S; ı/ instead of C.S/ because we will use a spanning set and a
filtration for this space that depend on the choice of a dihedral structure.
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For d 2 Dissk.S; ı/ a dissection of cardinality r , we will always choose an ordering
P .d/Dfp0; : : : ;pkg and write Ei WDE.pi/ for the set of edges of the subpolygons pi ,
ıi WD ı.pi/ for the induced dihedral orders. The ordering of P .d/ gives a trivialization
det.P .d//'Q and hence we can simply write

�dW C.S; ı/! C.d/D C.E0; ı0/˝ � � �˝ C.Ek ; ık/

for the dihedral decompositions (14).

4.2 Cohomology of the moduli spaces M0;S

Let S be a finite set of cardinality n> 3 and let ı be a dihedral structure on S . We
first recall Brown’s presentation of the cohomology algebra of the moduli space M0;S ,
which is well suited for computing residues on Mı

0;S . For any chord c of .S; ı/, there
exists a global holomorphic function uc 2O.Mı

0;S / such that the divisor Mı.fcg/ is
defined by the vanishing of uc :

Mı.fcg/D fuc D 0g:

We then define the following closed logarithmic differential 1–form on M0;S :

!c WD
1

2� i

duc

uc
:

We denote by the same symbol !c its class in H 1.M0;S /.

Proposition 4.1 [5, Proposition 6.2] The cohomology algebra H �.M0;S / is gener-
ated by the classes !c . In other words, C.S; ı/ is spanned by monomials !c1

^� � �^!ck

for some chords c1; : : : ; ck of .S; ı/.

Note that every differential form !c1
^� � �^!ck

is a logarithmic form on .Mı
0;S ;@Mı

0;S /.

Remark 4.2 It is convenient to represent a monomial !c1
^ � � � ^!ck

, up to a sign,
by the picture of the set of chords fc1; : : : ; ckg, as in Figure 5, where the chords are
pictured in dashed lines.

Remark 4.3 The ideal of relations between the classes !c in H �.M0;S / can be
described in pure combinatorial terms with sets of chords that cross completely; see [5,
Proposition 6.2]. Surprisingly enough, this will not play any role in the sequel.

The decomposition morphisms of the dihedral gravity cooperad are easily computed in
terms of the symbols !c . They are completely determined by the infinitesimal ones
which correspond to dissections made up of one chord.
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Figure 5: A monomial (up to a sign) in H 6.M0;10/

Proposition 4.4 Let c be a chord which dissects .S; ı/ into two polygons p0 and p1 .
The corresponding dihedral decomposition morphism

�fcgW C.S; ı/! C.E0; ı0/˝ C.E1; ı1/

is given by

(1) �fcg.!c1
^ � � � ^!ck

/D 0 if c 62 fc1; : : : ; ckg;

(2) �fcg.!c ^!c1
^ � � � ^!ck

/D 0 if c crosses some chord ci for i D 1; : : : ; k ;

(3) �fcg.X0^!c ^X1/DX0˝X1 if Xi is a monomial formed with chords in pi ,
i D 0; 1.

Proof (1) This is because the differential form !c1
^ � � � ^!ck

has no pole along
Mı.fcg/ if c 62 fc1; : : : ; ckg.

(2) By definition of the residue morphisms, �fcg.!c ^!c1
^ � � � ^!ck

/ is, up to a
sign, the restriction of the differential form !c1

^ � � � ^!ck
on Mı.fcg/. If c crosses

some chord ci for i D 1; : : : ; k , then the proof of [5, Lemma 2.6] implies that !ci
is

zero when restricted to Mı.fcg/, hence the result.

(3) Let us denote by a � 1 and b � 1 the respective degrees of X0 and X1 , so
that they respectively live in degree a and b in C . Then we get X0 ^ !c ^X1 D

.�1/a�1!c^X0^X1 , whose residue on Mı.fcg/ is the restriction of .�1/a�1X0^X1

on Mı.fcg/. Note that the sign .�1/a�1 is canceled by the Koszul sign in the definition
(13) of �fcg . By the proof of [5, Lemma 2.6], the pullback morphism O.Mı

0;S /!

O.Mı0
0;E0

/˝O.Mı1
0;E1

/ is given by uc0
7! uc0

˝1 and uc1
7! 1˝uc1

for ci a chord
in pi for i D 0; 1. The result follows.

Remark 4.5 The formula of Proposition 4.4 (3), is easy to represent pictorially: if c

is a chord that is not crossed by any other, applying �fcg has the effect of cutting the
polygon along c into two parts; see Figure 6.
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c
� �fcg // ˝

Figure 6: The dihedral decomposition �fcgW C.10; ı/ ! C.6; ı/˝ C.6; ı/
applied to a monomial

4.3 The residual filtration

Definition 4.6 (residual chord) Let fc1; : : : ; ckg be a set of chords of a polygon
.S; ı/. We say that ci is a residual chord in fc1; : : : ; ckg if ci is not crossed by any cj

for j ¤ i .

Definition 4.7 (residual filtration) For every integer r , we denote by

RrC.S; ı/� C.S; ı/

the subspace spanned by monomials !c1
^ � � � ^!ck

with at most r residual chords in
fc1; : : : ; ckg. This gives a finite filtration

0DR�1C.S; ı/�R0C.S; ı/�R1C.S; ı/� � � � � C.S; ı/

called the residual filtration.

Lemma 4.8 For a dissection d 2 Dissk.S; ı/ of .S; ı/ of cardinality k , the dihedral
decomposition

�dW C.S; ı/! C.d/D C.E0; ı0/˝ � � �˝ C.Ek ; ık/

sends RrC.S; ı/ to Rr�kC.d/.

Proof Since any decomposition map can be obtained by iterating infinitesimal decom-
position maps, it is enough to do the case k D 1, which follows from Proposition 4.4:
applying �fcg to a monomial either gives zero or erases a residual chord from the
monomial.

Example 4.9 In Figure 6, the left-hand side lives in R2C.10; ı/ and the right-hand
side lives in R0C.6; ı/˝R1C.6; ı/.
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Theorem 4.10 For every integer r and every dihedral set .S; ı/, the morphism

ˆW grR
r C.S; ı/

L
�d

����!

M
d2Dissr .S;ı/

R0C.d/

is an isomorphism.

We postpone the proof of this theorem to Section 4.6, after we have introduced a
technical tool.

4.4 The forgetful maps

Let S be a finite set and S 0 � S be a subset. This inclusion gives rises to a forgetful
morphism

f WM0;S !M0;S 0

and hence a pullback in cohomology

(19) f �W H �.M0;S 0/!H �.M0;S /;

which is a map of graded algebras. Now suppose that we are given a dihedral structure ı
on S and let ı0 be the induced dihedral structure on S 0 . We view .S 0; ı0/ as the
decorated polygon obtained by contracting the sides of .S; ı/ that are not in S 0 . For
a chord c of .S; ı/ and a chord c0 of .S 0; ı0/, we write c  c0 if this contraction
transforms c into c0 .

Lemma 4.11 (1) The pullback morphism f � is given, for c0 a chord of .S 0; ı0/, by

f �.!c0/D
X

c c0

!c :

(2) The pullback morphism f � is compatible with the residual filtration R.

Proof (1) At the level of global functions, the pullback O.M0;S 0/!O.M0;S / is
computed in [5, Lemma 2.9], and is given by

uc0 7!

Y
c c0

uc :

The result then follows from taking the logarithmic derivative.

(2) According to .1/, the pullback of a monomial is given by

f �.!c0
1
^ � � � ^!c0

k
/D

X
fci c0

i
g

!c1
^ � � � ^!ck

:

By construction, every set fc1; : : : ; ckg contains at most as many residual chords as
fc0

1
; : : : ; c0

k
g, hence the result.
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c1

c2

c3

sc2

sc1

sc3

Figure 7: An inscribed polygon and a possible choice of matching sides

4.5 A technical lemma

Let us fix a polygon .S; ı/. Let .E; ıE/ be an inscribed polygon inside .S; ı/, that is, a
polygon whose sides are either sides of .S; ı/ or chords of .S; ı/; see Figure 7. We let
Esides �E and Echords �E denote the set of sides of .E; ıE/ which are respectively
sides of .S; ı/ and chords of .S; ı/. In such a situation, we have a partition

S nEsides D
G

c2Echords

Sc

into components Sc delimited by c , that are outside of the inscribed polygon .E; ıE/,
and connected with respect to the dihedral order ı .

For every chord c 2Echords , let us choose a matching side sc 2 Sc , and write

S 0 WDEsides t fsc ; c 2Echordsg � S:

We let ı0 be the dihedral structure on S 0 induced by ı . Identifying a chord c and the
matching side sc gives rise to natural dihedral isomorphism .E; ıE/Š .S

0; ı0/.

Example 4.12 In Figure 7, the inscribed polygon is shaded with EchordsDfc1; c2; c3g

and a possible choice of matching sides sc1
, sc2

, sc3
.

The construction of the previous paragraph gives rise to a pullback morphism (19) that
we denote by

(20)  W C.E; ıE/Š C.S 0; ı0/! C.S; ı/:

Lemma 4.13 Let X 2 C.E; ıE/ be a monomial formed with chords of .E; ıE/, and
let us denote by the same letter X the corresponding monomial viewed in C.S; ı/.
Then  .X /�X can be written as a sum of monomials !c1

^� � �^!ck
for which some

chord ci crosses a chord in Echords .
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c1
sc1

�
v1

c�v2

�v3 � w

Figure 8: Illustration of the proof of Lemma 4.13

Proof It is enough to do the proof for a monomial X D!c . We do the proof in the case
where Echords only contains one element c1 corresponding to a side sc1

2S , the general
case being similar. The formula for  .!c/ is given in Lemma 4.11. If c and c1 do not
have a vertex in common, then  .!c/D !c . Else, let us denote by v1 the common
vertex of c and w the other vertex. We use the notation c D v1w . We then have

 .!c/D
X
v

!vw;

where the sum ranges over the vertices v 2 Sc1
that are between v1 and the first vertex

of sc1
. For such vertices v , the chord vw crosses c1 except if v D v1 . The claim

follows.

Example 4.14 Figure 8 illustrates the proof of Lemma 4.13: the inscribed polygon
.E; ıE/ is shaded. We have  .!v1w/D !v1wC!v2wC!v3w .

4.6 Proof of the main result

We now have all the tools to prove Theorem 4.10.

Proof of Theorem 4.10 To prove this theorem, we will construct the inverse mor-
phism ‰ . To this aim, let us make some ordering conventions to make the signs explicit.
For a dissection d 2 Dissr .S; ı/, we will choose compatible orderings

(21) dD fc1; : : : ; cr g and P .d/D fp0; : : : ;pr g

that obey the following constraint. Let zt be the tree obtained by removing the leaves
(external vertices) of the tree t corresponding to d. The chords ci label the edges of zt,
and the polygons pi label the vertices of zt. We choose the orderings (21) such that
for every j D 1; : : : ; r � 1, deleting the edges labeled by ci for i D 1; : : : ; j only
disconnects the vertices pi for i D 0; : : : ; j � 1.
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An element of grR
r C.S; ı/ can be represented as a sum of elements

X0 ^!c1
^X1 ^!c2

^ � � � ^!cr
^Xr ;

for some dissection dDfc1; : : : ; cr g 2Dissr .S; ı/, with Xi 2R0C.Ei ; ıi/. According
to the constraint we put on the orderings (21), the image of such an element by ˆ is

(22) �d.X0 ^!c1
^X1 ^!c2

^ � � � ^!cr
^Xr /DX0˝ � � �˝Xr

by repeated applications of Proposition 4.4.

For every i D 0; : : : ; r , we let

 i W C.Ei ; ıi/! C.S; ı/

denote the pullback map (20) defined in the previous paragraph, corresponding to the
inscribed polygon pi D .Ei ; ıi/ and any choice of matching sides sc for c 2 .Ei/chords .

Let us recall that we have

R0C.d/DR0C.E0; ı0/˝ � � �˝R0C.Er ; ır /:

We then define
‰dW R0C.d/! grR

r C.S; ı/

by the formula

‰d.X0˝ � � �˝Xr / WD  0.X0/^!c1
^ 1.X1/^!c2

^ � � � ^!cr
^ r .Xr /:

Let us first prove that ‰d is well defined. According to Lemma 4.11, each map  i sends
R0C.Ei ; ıi/ to R0C.S; ı/; hence the term  0.X0/^ � � � ^ r .Xr / is in R0C.S; ı/.
Since the cardinality of d is r , multiplying by !c1

^ � � � ^ !cr
gives an element of

RrC.S; ı/.

With the same abuse of notation as in Lemma 4.13, we claim that we have

(23) ‰d.X0˝� � �˝Xr /DX0^!c1
^X1^!c2

^� � �^!cr
^Xr mod Rr�1C.S; ı/:

We do the proof of this equality in the case r D 1 and dD fcg a chord, the general
case being similar and left to the reader. Let us choose monomials X0 2R0C.E0; ı0/

and X1 2R0C.E1; ı1/ with zero residual chord. We want to prove the equality

‰fcg.X0˝X1/DX0 ^!c ^X1 mod R0C.S; ı/:

According to Lemma 4.13, we may write

 1.X0/DX0C

X
i0

X
.i0/
0

and  1.X1/DX1C

X
i1

X
.i1/
1

;

Geometry & Topology, Volume 21 (2017)



2846 Clément Dupont and Bruno Vallette

where each monomial X
.i0/
0

and X
.i1/
1

has zero residual chord and contains a symbol !c0

with c0 crossing c . We can then write the difference ‰fcg.X0˝X1/�X0^!c^X1 asX
i0

X
.i0/
0
^!c ^X1C

X
i1

X0 ^!c ^X
.i1/
1
C

X
i0;i1

X
.i0/
0
^!c ^X

.i1/
1

:

All the monomials appearing in the above expression have zero residual chord, hence
the result. Equations (22) and (23) imply that ‰ is the inverse for ˆ.

Theorem 4.15 The dihedral gravity cooperad is cofree. More precisely, it is (non-
canonically) isomorphic to the cofree dihedral cooperad on the dihedral module:

.S; ı/ 7! det.S/˝H �Cn�3.Mı
0;S /.�1/:

Proof It is a consequence of Proposition 1.18, using Lemma 4.8 and Theorem 4.10,
which imply, after operadic suspension, the corresponding statements for the dihedral
gravity cooperad. The last statement follows from the last statement of Theorem 3.11.

Remark 4.16 In [10], Dotsenko built a general a criterion to prove the freeness of the
nonsymmetric operad underlying an operad in terms of Gröbner bases [11]. It would be
interesting to know whether this criterion can give an alternate proof of Theorem 4.15.

4.7 Consequences for Brown’s moduli spaces

We gather here some consequences of Theorem 4.15 on the geometry of the moduli
spaces Mı

0;S .

Corollary 4.17 For every integer k and every dihedral set .S; ı/, the cohomology
group H k.Mı

0;S / is pure Tate of weight 2k .

Proof This follows from Theorem 4.15 and Theorem 3.11.

Corollary 4.18 For every integer k and every dihedral set .S; ı/, the natural map
H k.Mı

0;S /!H k.M0;S / is injective and fits into a long exact sequence

(24) 0!H k.Mı
0;S /!H k.M0;S /

!

M
d2Diss1.S;ı/

H k�1.M.d//.�1/!
M

d2Diss2.S;ı/

H k�2.M.d//.�1/! � � � :

Proof By Theorem 4.15 and the proof of Theorem 3.11, we get an injective map
H k.Mı

0;S / ! E
0;k
1
D H k.M0;S /. By the construction of the residue spectral

sequence, this map is indeed the one induced in cohomology by the inclusion
M0;S ,!Mı

0;S .
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We note that the image of the natural map H ��1.Mı
0;S /.�1/ ,! C.S; ı/ is exactly the

subspace R0C.S; ı/.
Let us recall that the Betti numbers of the spaces M0;n are given by the Poincaré
polynomials

n�3X
kD0

bk.M0;n/x
k
D

n�2Y
jD2

.x� j /:

By taking the Euler characteristic of the exact sequence (24), one may thus derive a
formula for the Betti numbers of the spaces Mı

0;n as follows.

Corollary 4.19 [4] The generating series

f .x; t/D x�
X
n>3

� n�3X
kD0

.�1/k bk.M0;n/ t
n�3�k

�
xn�1;

f ı.x; t/D xC
X
n>3

� n�3X
kD0

.�1/k bk.Mı
0;n/ t

n�3�k

�
xn�1

are inverse one to another: f .f ı.x; t/; t/D f ı.f .x; t/; t/D x .

We note that in [4, Section 3], the injectivity statement of Corollary 4.18 is used but
not proved.

Corollary 4.20 For every dihedral set .S; ı/, Brown’s moduli space Mı
0;S is a formal

topological space.

Proof It is a consequence of Corollary 4.17 and [12, Theorem 2.5]. A more di-
rect proof goes as follows. Recall that Mı

0;S is a smooth affine complex vari-
ety. We denote by ��.Mı

0;S / the complex of global holomorphic differential forms
on Mı

0;S , and by ��.Mı
0;S ; log @Mı

0;S / the complex of global holomorphic loga-
rithmic differential forms on Mı

0;S along @Mı
0;S . Let us recall that the morphism

H �.M0;S /!�
�.Mı

0;S ; log @Mı
0;S / which maps the class of !c to !c is well defined

and is a quasi-isomorphism. We consider the commutative diagram

0 // H �.Mı
0;S /

// H �.M0;S / //

��

L
d2Diss.S;ı/

H ��1.M.d//.�1/

��

0 // ��.Mı
0;S /

// ��.Mı
0;S ; log @Mı

0;S /
//

L
d2Diss.S;ı/

���1.Mı.d/; log @Mı.d//

where all arrows are morphisms of cochain complexes and where the vertical arrows
are quasi-isomorphisms. The first row is exact by Corollary 4.18; the exactness of
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the second row follows from the fact that a logarithmic differential form on Mı
0;S

along @Mı
0;S is regular on Mı

0;S if and only if its residue along each Mı.d/ is zero.
Completing the diagram gives the following quasi-isomorphism, hence the result:

H �.Mı
0;S /!��.Mı

0;S /:

4.8 The dihedral Lie operad is free

As a corollary of Theorem 4.15 and in view of Theorem 2.7, we get a geometric
proof of a dihedral enhancement of the theorem of Salvatore and Tauraso about the
nonsymmetric Lie operad [26].

Corollary 4.21 The dihedral Lie operad is free. More precisely, it is (noncanonically)
isomorphic to the free dihedral operad on the dihedral module:

.S; ı/ 7! det.S/˝Hn�3.Mı
0;S /.1/:

Remark 4.22 The equality between the top Betti number of Mı
0;n and the number of

generators of the nonsymmetric Lie operad in arity n in [26] was already noticed in [4].
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On the second homology group of the
Torelli subgroup of Aut.Fn/

MATTHEW DAY

ANDREW PUTMAN

Let IAn be the Torelli subgroup of Aut.Fn/ . We give an explicit finite set of genera-
tors for H2.IAn/ as a GLn.Z/–module. Corollaries include a version of surjective
representation stability for H2.IAn/ , the vanishing of the GLn.Z/–coinvariants of
H2.IAn/ , and the vanishing of the second rational homology group of the level `
congruence subgroup of Aut.Fn/ . Our generating set is derived from a new group
presentation for IAn which is infinite but which has a simple recursive form.

20E05, 20E36, 20F05, 20J06

1 Introduction

The Torelli subgroup of the automorphism group of a free group Fn on n letters,
denoted by IAn , is the kernel of the action of Aut.Fn/ on F ab

n Š Zn . The group of
automorphisms of Zn is GLn.Z/ and the resulting map Aut.Fn/! GLn.Z/ is easily
seen to be surjective, so we have a short exact sequence

1! IAn! Aut.Fn/! GLn.Z/! 1:

Though it has a large literature, the cohomology and combinatorial group theory of
IAn remain quite mysterious. Magnus [26] proved that IAn is finitely generated, and
thus that H1.IAn/ has finite rank. Krstić and McCool [24] later showed that IA3 is
not finitely presentable. This was improved by Bestvina, Bux and Margalit [4], who
showed that H2.IA3/ has infinite rank. However, for n� 4 it is not known whether or
not IAn is finitely presentable, or whether or not H2.IAn/ has finite rank.

Representation-theoretic finiteness It seems to be very difficult to determine whether
or not H2.IAn/ has finite rank, so it is natural to investigate weaker finiteness properties.
Since inner automorphisms act trivially on homology, the conjugation action of Aut.Fn/
on IAn induces an action of GLn.Z/ on Hk.IAn/. Church and Farb [12, Conjec-
ture 6.7] conjectured that Hk.IAn/ is finitely generated as a GLn.Z/–module. In other
words, they conjectured that there exists a finite subset of Hk.IAn/ whose GLn.Z/–
orbit spans Hk.IAn/. Our first main theorem verifies their conjecture for k D 2.
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Theorem A (generators for H2.IAn/) For all n � 2, there exists a finite subset of
H2.IAn/ whose GLn.Z/–orbit spans H2.IAn/.

Each element of our finite subset corresponds to a map of a surface into a classifying
space for IAn ; the genera of these surfaces range from 1 to 3. Table 1 below lists our
finite set of GLn.Z/–generators for H2.IAn/. This table expresses these generators
using specific “commutator relators” in IAn ; see below for how to translate these into
elements of H2.IAn/.

Remark 1.1 The special case nD 3 of Theorem A was proven in the unpublished
thesis of Owen Baker [2]. His proof uses a “Jacobian” map on outer space and is quite
different from our proof. It seems difficult to generalize his proof to higher n.

Surjective representation stability The generators for H2.IAn/ given in Theorem A
are explicit enough that they can be used to perform a number of interesting calculations.
The first verifies part of a conjecture of Church and Farb, which asserts that the
homology groups of IAn are “representation stable”. We begin with some background.
An increasing sequence

G1 �G2 �G3 � � � �

of groups is homologically stable if for all k � 1, the kth homology group of Gn is
independent of n for n� 0. Many sequences of groups are homologically stable; see
Hatcher and Wahl [21] for a bibliography. In particular, Hatcher and Vogtmann [20]
proved this for Aut.Fn/. However, it is known that IAn is not homologically stable;
indeed, even H1.IAn/ does not stabilize (see below).

Church and Farb [12] introduced a new form of homological stability for groups like
IAn whose homology groups possess natural group actions. For IAn , they conjectured
that for all k � 1, there exists some nk � 1 such that the following two properties hold
for all n� nk :

� Injective stability The map Hk.IAn/! Hk.IAnC1/ is injective.
� Surjective representation stability The map Hk.IAn/! Hk.IAnC1/ is sur-

jective “up to the action of GLnC1.Z/”; more precisely, the GLnC1.Z/–orbit
of its image spans Hk.IAnC1/.

Remark 1.2 In fact, they made this conjecture in [11] for the Torelli subgroup of
the mapping class group; however, they have informed us that they also conjecture it
for IAn .

Our generators for H2.IAn/ are “the same in each dimension” starting at nD 6, so we
are able to derive the following special case of Church and Farb’s conjecture:
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Theorem B (surjective representation stability for H2.IAn/) The GLnC1.Z/–orbit
of the image of the natural map H2.IAn/! H2.IAnC1/ spans H2.IAnC1/ for n� 6.

Remark 1.3 Boldsen and Hauge Dollerup [5] proved a theorem similar to Theorem B
for the rational second homology group of the Torelli subgroup of the mapping class
group. Their proof is different from ours; in particular, they were not able to prove an
analogue of Theorem A. It seems hard to use their techniques to prove Theorem B.
Similarly, our proof uses special properties of IAn and does not work for the Torelli
subgroup of the mapping class group.

Coinvariants Our tools do not allow us to easily distinguish different homology
classes; indeed, for all we know our generators for H2.IAn/ might be redundant. This
prevents us from proving injective stability for H2.IAn/. However, we still can prove
some interesting vanishing results. If G is a group and M is a G–module, then the
coinvariants of G acting on M , denoted by MG , are the largest quotient of M on which
G acts trivially. More precisely, MG DM=K with K D hm�g �m jg 2G; m 2M i.
We then have the following.

Theorem C (vanishing coinvariants) For n� 6, we have .H2.IAn//GLn.Z/ D 0.

Remark 1.4 Church and Farb [12, Conjecture 6.5] conjectured that the GLn.Z/–
invariants in Hk.IAnIQ/ are 0. For k D 1, this follows from the known computation
of H1.IAnIQ/; see below. Theorem C implies that this also holds for k D 2.

Linear congruence subgroups For ` � 2, the level ` congruence subgroup of
Aut.Fn/, denoted by Aut.Fn;`/, is the kernel of the natural map Aut.Fn/!GLn.Z=`/;
one should think of it as a “mod-`” version of IAn . It is natural to conjecture that for
all k � 1, there exists some nk � 1 such that Hk.Aut.Fn; `/IQ/Š Hk.Aut.Fn/IQ/
for n � nk ; an analogous theorem for congruence subgroups of GLn.Z/ is due to
Borel [7]. Galatius [19] proved that Hk.Aut.Fn/IQ/D 0 for n� 0, so this conjecture
really asserts that Hk.Aut.Fn; `/IQ/D 0 for n� 0. The case k D 1 of this is known.
Indeed, Satoh [31] calculated the abelianization of Aut.Fn; `/ for n� 3 and the answer
consisted entirely of torsion, so H1.Aut.Fn; `/IQ/D 0 for n� 3. Using Theorem A,
we will prove the case k D 2.

Theorem D (second homology of congruence subgroups) For `� 2 and n� 6, we
have H2.Aut.Fn; `/IQ/D 0.

The key to our proof is that Theorem A allows us to show that the image of H2.IAnIQ/
in H2.Aut.Fn; `/IQ/ vanishes; this allows us to derive Theorem D using standard
techniques.
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Remark 1.5 The second author proved an analogue of Theorem D for congruence
subgroups of the mapping class group in [30]. The techniques in [30] are different
from those in the present paper and it seems difficult to prove Theorem D via those
techniques.

Basic elements of Torelli We now wish to describe our generating set for H2.IAn/.
This requires introducing some basic elements of IAn . Let fx1; : : : ; xng be a free basis
for Fn . We then make the following definitions:

� For distinct 1� i; j � n, let Cxi ; xj 2 IAn be defined via the formulas

Cxi ; xj .xi /D xjxix
�1
j and Cxi ; xj .x`/D x` if `¤ i :

� For ˛; ˇ;  2f˙1g and distinct 1� i; j; k�n, let M
x˛
i
; Œx

ˇ

j
;x


k
�
2 IAn be defined

via the formulas

M
x˛
i
; Œx

ˇ

j
;x


k
�
.x˛i /D Œx

ˇ
j ; x



k
�x˛i and M

x˛
i
; Œx

ˇ

j
;x


k
�
.x`/D x` if `¤ i :

Observe that by definition

M
x�1
i
; Œx

ˇ

j
;x


k
�
.x�1i /D Œx

ˇ
j ; x



k
�x�1i and M

x�1
i
; Œx

ˇ

j
;x


k
�
.xi /D xi Œx

ˇ
j ; x



k
��1:

We call Cxi ; xj a conjugation move and M
x˛
i
; Œx

ˇ

j
;x


k
�

a commutator transvection.

Surfaces in a classifying space: our generators A commutator relator in IAn is a
formula of the form Œa1; b1� � � � Œag ; bg �D1 with ai ; bi 2 IAn . Given such a commutator
relator r , let †g be a genus g surface. There is a continuous map �W †g!K.IAn; 1/
that takes the standard basis for �1.†g/ to a1; b1; : : : ; ag ; bg 2 IAn . We obtain an
element hr D ��.Œ†g �/ 2 H2.IAn/. With this notation, the generators for H2.IAn/
given by Theorem A are the elements hr where r is one of the relators in Table 1.

The Johnson homomorphism To motivate our proof of Theorem A, we first recall
the computation of H1.IAn/, which is due independently to Farb [18], Kawazumi [23]
and Cohen and Pakianathan [14]. The basic tool is the Johnson homomorphism [22],
which was introduced in the context of the Torelli subgroup of the mapping class group
(though it also appears in earlier work of Andreadakis [1]). See Satoh [32] for a survey
of the IAn version of it. The Johnson homomorphism is a homomorphism

� W IAn! Hom
�
Zn;

V2Zn�
that arises from studying the action of IAn on the second nilpotent truncation of Fn .
It can be defined as follows. For z 2 Fn , let Œz� 2 Zn be the associated element of the
abelianization of Fn . Consider f 2 IAn . For x 2 Fn , we have f .x/ � x�1 2 ŒFn; Fn�.

Geometry & Topology, Volume 21 (2017)



On the second homology group of the Torelli subgroup of Aut.Fn/ 2855

(H1) ŒCxa; xb ; Cxc ; xd �D 1, possibly with b D d .
(H2) ŒMx˛a ; Œx

ˇ

b
;x

c �;Mxı

d
; Œx�e ;x

�

f
�� D 1, possibly with fb; cg \ fe; f g ¤ ¿, or with

x˛a D x
�ı
d

as long as x˛a ¤ xıd , a … fe; f g and d … fb; cg.
(H3) ŒCxa; xb ;Mx


c ; Œx

ı
d
;x�e ��D 1,

possibly with b 2 fd; eg if c … fa; bg and a … fc; d; eg.

(H4) ŒC
ˇ
xc ; xbC

ˇ
xa; xb ; C

˛
xc ; xa

�D 1.

(H5) ŒC
�
xa; xc ; C

�ı
xa; xd

�ŒC
�ˇ
xa; xb ;Mx

ˇ

b
; Œx


c ;x

ı
d
�
�D 1.

(H6) ŒMx˛a ; Œx
ˇ

b
;x

c �;Mxı

d
; Œx˛a ;x

�
e ��ŒMxı

d
; Œx˛a ;x

�
e �;Mxı

d
; Œx


c ;x

ˇ

b
���

ŒMxı
d
; Œx


c ;x

ˇ

b
�; C
��
xd ; xe

�D 1, possibly with b D e or c D e .

(H7) ŒMx

c ; Œx

˛
a ;x

ı
d
�; C

ˇ
xa; xb �ŒC

�ı
xc ; xd

;M
x

c ; Œx

˛
a ;x

ˇ

b
�
�ŒM

x

c ; Œx

˛
a ;x

ˇ

b
�
;Mx


c ; Œx

˛
a ;x

ı
d
��D 1,

possibly with b D d .
(H8) ŒM

x˛a ; Œx
ˇ

b
;x

c �
; C ıxa; xdC

ı
xb; xd

C ıxc ; xd �D 1.

(H9) ŒC

xa; xcC


xb; xc ; C

ˇ
xa; xbC

ˇ
xc ; xb �ŒMx˛a ; Œx

ˇ

b
;x

c �
; C ˛xb; xaC

˛
xc ; xa

�D 1.

Table 1: The set of commutator relators whose associated elements of
H2.IAn/ generate it as a GLn.Z/–module. Distinct letters represent distinct
indices unless stated otherwise.

There is a natural surjection �W ŒFn; Fn�!
V2Zn satisfying �.Œa; b�/D Œa�^ Œb�; the

kernel of � is ŒFn; ŒFn; Fn��. We can then define a map z�f W Fn!
V2Zn via the formula

z�f .x/D �.f .x/ �x
�1/. One can check that z�f is a homomorphism. It factors through

a homomorphism �f W Z
n!

V2Zn . We can then define � W IAn! Hom
�
Zn;

V2Zn�
via the formula �.f /D �f . One can check that � is a homomorphism.

Generators and their images Define

SMA.n/DfCxi ; xj j1� i; j �n distinctg[fMxi ; Œxj ;xk� j1� i; j; k�n distinct; j <kg:

Magnus [26] proved that IAn is generated by SMA.n/; see Day and Putman [16] and
Bestvina, Bux and Margalit [4] for modern proofs. For distinct 1� i; j � n, the image
�.Cxi ; xj / 2 Hom.Zn;

V2Zn/ is the homomorphism defined via the formulas

Œxi � 7! Œxj �^ Œxi � and Œx`� 7! 0 if `¤ i :

Similarly, for distinct 1 � i; j; k � n with j < k , the image �.Mxi ; Œxj ;xk�/ in
Hom

�
Zn;

V2Zn� is the homomorphism defined via the formulas

Œxi � 7! Œxj �^ Œxk� and Œx`� 7! 0 if `¤ i :

The key observation is that these form a basis for Hom
�
Zn;

V2Zn�.
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The abelianization Let F.SMA.n// be the free group on SMA.n/ and let RMA.n/�

F.SMA.n// be a set of relations for IAn , so IAnD hSMA.n/ jRMA.n/i. Since � takes
SMA.n/ bijectively to a basis for the free abelian group Hom

�
Zn;

V2Zn�, we must
have RMA.n/� ŒF .SMA.n//; F.SMA.n//�. This immediately implies that H1.IAn/Š
Hom

�
Zn;

V2Zn�.
Hopf’s formula But even more is true. Recall that Hopf’s formula (see Brown [10])
says that if G is a group with a presentation G D hS jRi, then

H2.G/Š
hhRii \ ŒF .S/; F.S/�

ŒF .S/; hhRii�
I

here hhRii is the normal closure of R . The intersection in the numerator of this is usually
hard to calculate, so Hopf’s formula is not often useful for computation. However, by
what we have said it simplifies for IAn to

(1) H2.IAn/Š
hhRMA.n/ii

ŒF .SMA.n//; hhRMA.n/ii�
:

This isomorphism is very concrete: an element r 2 hhRMA.n/ii is a commutator relator,
and the associated element of H2.IAn/ is the homology class hr discussed above.

Summary and trouble For r2hhRMA.n/ii and z2F.SMA.n// , the element zrz�1r�1

lies in the denominator of (1), ŒF .SMA.n//; hhRMA.n/ii�. Hence hzrz�1Dhr . It follows
that H2.IAn/ is generated by the set fhr j r 2RMA.n/g. In other words, to calculate
generators for H2.IAn/, it is enough to find a presentation for IAn with SMA.n/ as
its generating set. However, this seems like a difficult problem (especially if, as we
suspect, IAn is not finitely presentable). Moreover, the GLn.Z/–action on H2.IAn/
has not yet appeared.

L–presentations To incorporate the GLn.Z/–action on H2.IAn/ into our presen-
tation for IAn , we use the notion of an L–presentation, which was introduced by
Bartholdi [3] (we use a slight simplification of his definition). An L–presentation for a
group G is a triple hS jR0 jEi, where S and R0 and E are as follows:

� S is a generating set for G .
� R0 � F.S/ is a set consisting of relations for G (not necessarily complete).
� E is a subset of End.F.S//.

This data must satisfy the following condition: Let M � End.F.S// be the monoid
generated by E . Define RD ff .r/ j f 2M; r 2R0g. Then we require G D hS jRi.
Each element of E descends to an element of End.G/; we call the resulting subset
zE � End.G/ the induced endomorphisms of our L–presentation. We say that our

L–presentation is finite if the sets S and R0 and E are all finite.
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In our examples, the induced endomorphisms of our L–presentations will actually be
automorphisms. Thus in our context one should think of an L–presentation as a group
presentation incorporating certain symmetries of a group. Here is an easy example:

Example Let S D fzi j i 2 Z=pg and R0 D fz20g. Let  W F.S/! F.S/ be the
homomorphism defined via the formula  .zi / D ziC1 . Then hS jR0 j f gi is an
L–presentation for the free product of p copies of Z=2.

A finite L–presentation for Torelli The conjugation action of Aut.Fn/ on IAn
gives an injection Aut.Fn/ ,! Aut.IAn/. If we could somehow construct a finite
L–presentation hSMA.n/ jR

0
MA.n/ jEMA.n/i for IAn whose set of induced endomor-

phisms generated
Aut.Fn/� Aut.IAn/� End.IAn/;

then Theorem A would immediately follow. Indeed, since the GLn.Z/–action on
H2.IAn/ is induced by the conjugation action of Aut.Fn/ on IAn , it would follow that
the GLn.Z/–orbit of the set fhr j r 2R0MA.n/g � H2.IAn/ spanned H2.IAn/.

Although we find the idea in the previous paragraph illuminating, we do not follow it
strictly. To make our L–presentation for IAn easier to comprehend, we will use the
following generating set, which is larger than SMA :

SIA.n/D fCxi ; xj j 1� i; j � n distinctg

[ fM
x˛
i
; Œx

ˇ

j
;x


k
�
j 1� i; j; k � n distinct; ˛; ˇ;  2 f˙1gg:

This has the advantage of making our relations and rewriting rules shorter, and making
their meaning easier to understand. It has the disadvantage of making the proof of
Theorem A less direct. Our theorem giving an L–presentation for IAn is as follows:

Theorem E (finite L–presentation for Torelli) For all n � 2, there exists a finite
L–presentation IAnDhSIA.n/ jR

0
IA.n/ jEIA.n/i whose set of induced endomorphisms

generates Aut.Fn/� Aut.IAn/� End.IAn/.

We note that our presentation is not a presentation in which all relators are commutators.
The formulas for the R0IA.n/ and EIA.n/ in our finite L–presentation are a little
complicated, so we postpone them until Section 2. The formulas in that section make it
clear that RIA.n/ does not lie in ŒF .SIA.n//; F.SIA.n//�. Therefore we cannot prove
Theorem A simply by interpreting the relators as homology classes. We must do
something more complicated to deduce that theorem from our presentation.

Remark 1.6 The relations in Table 1 are not sufficient for our L–presentation. Indeed,
they all lie in the commutator subgroup, but the generators SIA.n/ do not map to
linearly independent elements of the abelianization.
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Sketch of proof We close this introduction by briefly discussing how we prove
Theorem E. In particular, we explain why it is easier to verify an L–presentation
than a standard presentation. We remark that our proof is inspired by a recent paper [9]
of the second author together with Brendle and Margalit, which constructed generators
for the kernel of the Burau representation evaluated at �1.

Assume that we have guessed a finite L–presentation hSIA.n/ jR
0
IA.n/ jEIA.n/i for

IAn as in Theorem E (we found the one that we use by first throwing in all the relations
we could think of and then attempting the proof below; each time it failed it revealed
a relation that we had missed). Let Qn be the group presented by the purported L–
presentation. There is thus a surjection � W Qn! IAn , and the goal of our proof will
be to construct an inverse map �W IAn!Qn satisfying � ı� D id. This will involve
several steps.

Step 1 We decompose IAn in terms of stabilizers of conjugacy classes of primitive
elements of Fn .

For z 2 Fn , let ŒŒz�� denote the union of the conjugacy classes of z and z�1 . A
primitive element of Fn is an element that forms part of a free basis. Let C D
fŒŒz�� j z 2 Fn primitiveg. The set C forms the set of vertices of a simplicial complex
called the complex of partial bases, which is analogous to the complex of curves for
the mapping class group. Applying a theorem of the second author [29] to the action
of IAn on the complex of partial bases, we will obtain a decomposition

(2) IAn D �
c2C
.IAn/c=.some relations/I

here .IAn/c denotes the stabilizer in IAn of c . The unlisted relations play only a small
role in our proof and can be ignored at this point.

Step 2 We use induction to construct a partial inverse.

Fix some c02C . The stabilizer .IAn/c0 is very similar to IAn�1 ; in fact, it is connected
to IAn�1 by an exact sequence that is analogous to the Birman exact sequence for the
mapping class group. We construct this exact sequence in the companion paper [17],
which builds on our previous paper [15]. By analyzing this exact sequence and using
induction, we will construct a “partial inverse” �c0 W .IAn/c0 !Qn . We remark that
this step is where most of our relations arise — they actually are relations in the kernel
of the Birman exact sequence we construct in [15].

Step 3 We use the L–presentation to lift the conjugation action of Aut.Fn/ on IAn
to Qn .

Let zE be the induced endomorphisms of our L–presentation. We directly prove that
these endomorphisms actually give an action of Aut.Fn/ on Qn such that the projection
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map � W Qn! IAn is equivariant. This is the key place where we use properties of
L–presentations; in general, it is difficult to construct group actions on groups given by
generators and relations.

Step 4 We use our group action to construct the inverse.

The conjugation action of Aut.Fn/ on IAn transitively permutes the terms of (2). Using
our lifted action of Aut.Fn/ on Qn as a “guide”, we then “move” the partially defined
inverse �c0 around and construct � on the rest of IAn , completing the proof.

Remark 1.7 In [28], the second author constructed an infinite presentation of the
Torelli subgroup of the mapping class group. Though this used the same result [29]
that we quoted above, the details are quite different. One source of this difference is
that instead of an L–presentation with a finite generating set, the paper [28] constructed
an ordinary presentation with an infinite generating set.

Computer calculations At several places in this paper, we will need to verify large
numbers of equations in group presentations. Rather than displaying these equations
in the paper or leaving them as exercises, we use the GAP System to store and check
our equations mechanically. The code to verify these equations is in the file h2ia.g,
which is in an online supplement. We found the equations in this file by hand, and our
proof does not rely on a computer search. We will say more about this in Section 5,
where said calculations begin.

This is a good place to note that our results rely strongly on the authors’ earlier paper [17]
and the computer calculations from that paper. There we use a similar approach to
automatically verify identities and prove the existence of certain homomorphisms
between groups given by presentations. This is used in more than one place in the
present paper, but most crucially in Proposition 3.14. The computations from our earlier
paper are in a file iabes.g, which is available on the authors’ websites and on arXiv.

Outline We begin in Section 2 by giving a precise statement of the L–presentation
whose existence is asserted in Theorem E. Next, in Section 3 we discuss several tools
that are needed for the proof of Theorem E. The proof of Theorem E is in Section 4.
This proof depends on some combinatorial group theory calculations that are stated
in Sections 2 and 3 but whose proofs are postponed until Section 5. In Section 6, we
prove Theorem A. That section also shows how to derive Theorem B from Theorem A.
Finally, Theorems C and D are proven in Section 7.
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(R0) M�1x˛a ; Œx
ˇ

b
;x

c �
DMx˛a ; Œx


c ;x

ˇ

b
� .

(R1) ŒCxa; xb ; Cxc ; xd �D 1, possibly with b D d .
(R2) ŒMx˛a ; Œx

ˇ

b
;x

c �;Mxı

d
; Œx�e ;x

�

f
�� D 1, possibly with fb; cg \ fe; f g ¤ ¿, or with

x˛a D x
�ı
d

as long as x˛a ¤ xıd , a … fe; f g and d … fb; cg.
(R3) ŒCxa; xb ;Mx


c ; Œx

ı
d
;x�e ��D 1,

possibly with b 2 fd; eg if c … fa; bg and a … fc; d; eg.
(R4) ŒCxa; xbCxc ; xb ; Cxc ; xa �D 1.

(R5) C
ˇ
xa; xbMx˛a ; Œx

ˇ

b
;x

c �C
�ˇ
xa; xb DMx˛a ; Œx


c ;x
�ˇ

b
� .

(R6) Mx˛a ; Œx
ˇ

b
;x

c �Mx�˛a ; Œx

ˇ

b
;x

c � D ŒC

�
xa; xc ; C

�ˇ
xa; xb �.

(R7) ŒC
�ˇ
xa; xb ;Mx

ˇ

b
; Œx


c ;x

ı
d
��D ŒC

�ı
xa; xd

; C
�
xa; xc �.

(R8) Mx˛a ; Œx
ˇ

b
;x

c �Mxı

d
; Œx˛a ;x

�
e �Mx˛a ; Œx


c ;x

ˇ

b
� D

C��xd ; xeMxı
d
; Œx


c ;x

ˇ

b
�C
�

xı
d
; xe
Mxı

d
; Œx˛a ;x

�
e �Mxı

d
; Œx

ˇ

b
;x

c �; possibly with e 2 fb; cg.

(R9) C
ˇ
xa; xbMx


c ; Œx

˛
a ;x

ı
d
�C
�ˇ

xa; xb
D

C�ıxc ; xdMx

c ; Œx

˛
a ;x

ˇ

b
�C
ı
xc ; xd

Mx

c ; Œx

˛
a ;x

ı
d
�Mx


c ; Œx

ˇ

b
;x˛a �; possibly with b D d .

Table 2: Basic relations for the L–presentation of IAn . Distinct letters are
assumed to represent distinct indices unless stated otherwise. Let RIA.n/

denote the finite set of all relations from the above ten classes.

2 Our finite L–presentation

We now discuss the relations R0IA.n/ and endomorphisms EIA.n/ of our L–presentation.
Two calculations (Propositions 2.1 and 2.3) are postponed until Section 5.

Relations Our set R0IA.n/ of relations consists of the relations in Table 2. It is easy
to verify that these are all indeed relations:

Proposition 2.1 The relations R0IA.n/ all hold when interpreted in IAn .

The proof is computational and is postponed until Section 5. We remark that unlike
many of our computer calculations, it is not particularly difficult to verify by hand.

Since the relations are rather complicated we suggest to the reader that they not pay
too close attention to them on their first pass through the paper. The overall structure
of our proof (and, in fact, the majority of its details) can be understood without much
knowledge of our relations.

Remark 2.2 The relations in R0IA.n/ have reasonable intuitive interpretations. Re-
lations (R1)–(R3) state that generators acting only in different places commute with
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each other. Relation (R4) is a generalization of the fact that for nD 3, the conjugation
move Cx3; x1 conjugates the inner automorphism Cx1; x2Cx3; x2 back to itself (since
it fixes the conjugating element x2 ). Relation (R5) makes sense by looking at either
side of xa : on the right of x˛a , instances of x˙ˇ

b
cancel, but on the left side of x˛a ,

we get a conjugate of a basic commutator that is itself a basic commutator. Relation
(R6) states that conjugation by a commutator is the same as acting by a commutator of
conjugation moves. Relations (R7)–(R9) allow us to rewrite a conjugate of a generator
acting on a given element as a product of generators acting only on that same element
(xa , xd or xc as stated here, respectively). In this sense, these relations are like the
Steinberg relations from the presentation of GLn.Z/ in algebraic K–theory.

Generators for the automorphism group of a free group Before discussing our
endomorphisms EIA.n/, we first introduce a generating set for Aut.Fn/ that goes back
to work of Nielsen. For ˛ D˙1 and distinct 1� i; j � n, let Mx˛

i
; xj 2 Aut.Fn/ be

the transvection that takes x˛i to xjx˛i and fixes x` for ` ¤ i . Just like before, we
have

Mx�1
i
; xj
.x�1i /D xjx

�1
i and Mx�1

i
; xj
.xi /D xix

�1
j :

Next, for distinct 1 � i; j � n let Pi;j 2 Aut.Fn/ be the swap automorphism that
exchanges xi and xj while fixing x` for `¤ i; j . Finally, for 1� i�n let Ii 2Aut.Fn/
be the inversion automorphism that takes xi to x�1i and fixes x` for `¤ i . Define

SAut.n/D fM
ˇ

x˛
i
; xj
j 1� i; j � n distinct; ˛; ˇ 2 f˙1gg

[ fPi;j j 1� i; j � n distinctg[ fIi j 1� i � ng:

Observe that the set SAut.n/� Aut.Fn/ is closed under inversion.

Endomorphisms Below we will define a function � W SAut.n/ ! End.F.SIA.n///

with this key property: Let � W F.SIA.n//! IAn and �W F.SAut.n//! Aut.Fn/ be
the projections. Then for s 2 SAut.n/ and w 2 F.SIA.n//, we have

(3) �.�.s/.w//D �.s/�.w/�.s/�1 2 IAn :

Our set of endomorphisms will then be

EIA.n/D f�.s/ j s 2 SAut.n/g:

The relevance of the formula (3) is that we want the induced endomorphisms of our
IA–presentation of IAn to generate the image of Aut.Fn/ in Aut.IAn/ � End.IAn/
arising from the conjugation action of Aut.Fn/ on IAn .

Defining � To define an endomorphism �.s/W F.SIA.n//!F.SIA.n// for s2SAut.n/,
it is enough to say what �.s/ does to each element of SIA.n/. There are two cases:
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s 2 SI �.M
ˇ

x˛a ; xb
/.s/

Cxc ; xa .C ˛xc ; xaC
ˇ
xc ; xb

/˛

Cxa; xc Cxa; xcMx˛a ; Œx
�ˇ
b

;xc �

Cxb ; xc Cxb ; xcMx˛a ; Œx
�ˇ
b

;x�1c �

Cxb ; xa .C
ˇ
xa; xb

C ˛xb ; xa /
˛

M
x˛a ; Œx


c ;x

ı
d
�

C
ˇ
xa; xb

M
x˛a ; Œx


c ;x

ı
d
�
C
�ˇ
xa; xb

M
x

c ; Œx

˛
a ;x

ı
d
�

M
x

c ; Œx

ˇ
b
;xı
d
�
C
�ˇ
xc ; xb

M
x

c ; Œx

˛
a ;x

ı
d
�
C
ˇ
xc ; xb

M
x

c ; Œx
�˛
a ;xı

d
�

M
x

c ; Œx
�˛
a ;xı

d
�
C ˛xc ; xaMx


c ; Œx
�ˇ
b

;xı
d
�
C�˛xc ; xa

M
x
ˇ
b
; Œx

c ;x

ı
d
�

C
ˇ
xa; xb

M
x�˛a ; Œx


c ;x

ı
d
�
M
x
ˇ
b
; Œx

c ;x

ı
d
�
C
�ˇ
xa; xb

M
x
�ˇ
b

; Œx

c ;x

ı
d
�

M
x˛a ; Œx


c ;x

ı
d
�
M
x
�ˇ
b

; Œx

c ;x

ı
d
�

M
x˛a ; Œx

ˇ
b
;x

c �

C
ˇ
xa; xb

M
x˛a ; Œx

ˇ
b
;x

c �
C
�ˇ
xa; xb

M
x˛a ; Œx

�ˇ
b

;x

c �

C
ˇ
xa; xb

M
x˛a ; Œx

�ˇ
b

;x

c �
C
�ˇ
xa; xb

M
x
ˇ
b
; Œx˛a ;x


c �

C

xa; xcMx˛a ; Œx

�ˇ
b

;x

c �
C
�
xb ; xc

M
x
�ˇ
b

; Œx˛a ;x
�
c �

M
x
ˇ
b
; Œx�˛a ;x


c �

C
�ˇ
xc ; xb

C�˛xc ; xaMx
�ˇ
b

; Œx
�
c ;x˛a �

C

xb ; xc

M
x˛a ; Œx


c ;x
�ˇ
b

�
C
�
xa; xcC

˛
xc ; xa

C
ˇ
xc ; xb

M
x
�ˇ
b

; Œx˛a ;x

c �

C
�
xa; xcC

˛
xc ; xa

M
x
�ˇ
b

; Œx

c ;x
�˛
a �

C
ˇ

x

c ; xb

M
x˛a ; Œx


c ;x
�ˇ
b

�
C

xb ; xc

C
�ˇ
xc ; xb

C�˛xc ; xa

M
x
�ˇ
b

; Œx�˛a ;x

c �

C
�
xb ; xc

M
x˛a ; Œx

�ˇ
b

;x

c �
C
�ˇ
xc ; xb

M
x
�ˇ
b

; Œx�˛a ;x

c �
C�˛xc ; xaC


xa; xcC

˛
xc ; xa

C
ˇ
xc ; xb

M
x

c ; Œx

˛
a ;x

ˇ
b
�

C
ˇ
xa; xb

M
x

c ; Œx

˛
a ;x

ˇ
b
�
C
�ˇ
xa; xb

M
x

c ; Œx

˛
a ;x
�ˇ
b

�
M
x

c ; Œx

ˇ
b
;x˛a �

Table 3: Definition of �.M ˇ

x˛a ; xb
/ on the generators SIA.n/ . All indices in

each entry are assumed to be distinct. If no entry is listed for t 2 SIA.n/ or for
the generator representing t�1 (as in relation (R0)) then �.M ˇ

x˛a ; xb
/.t/D t .

� sDPi;j or sD Ii We then define �.s/ using the action of s on Fn via

�.s/.Cxa; xb /DCs.xa/; s.xb/ and �.s/.M
x˛a ; Œx

ˇ

b
;x

c �
/DM

s.x˛a /; Œs.x
ˇ

b
/;s.x


c /�
:

Here one should interpret Cx�1e ; xf
as Cxe; xf , Cxe; x�1f as C�1xe; xf and Cx�1e ; x�1

f

as C�1xe; xf .

� sDMx˛a ; xb In this case, we define �.s/ via the formulas in Table 3. These list
the cases where �.s/ does not fix a generator, except that, to avoid redundancy,
we do not always list both a commutator transvection and its inverse. Specifically,
if t DMx


c ; Œx

ı
d
;x�e �

, possibly with fc; d; eg\fa; bg ¤¿, and a formula is listed
for t 0 DMx


c ; Œx

�
e ;x

ı
d
� but not for t , then we define

�.s/.t/D �.s/.t 0/�1:
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If Table 3 lists no entry for t or t 0 , or the table lists no entry for t and t is a
conjugation move, then we define �.s/.t/D t .

These formulas were chosen to be as simple as possible, among formulas realizing (3).
Just like for the relations, we recommend not dwelling on these formulas during one’s
first read through this paper.

Proposition 2.3 The definition of � satisfies (3).

This proof uses a computer verification and is postponed until Section 5. Propositions 2.1
and 2.3 together imply that all of the extended relations from our L–presentation are
trivial in IAn . This means that the obvious map on generators (sending each generator
to the automorphism it names) extends to a well-defined homomorphism

hSIA.n/ jR
0
IA.n/ jEIA.n/i ! IAn :

3 Tools for the proof

In this section, we assemble the tools we will need to prove Theorem E. In Section 3.1,
we discuss a theorem of the second author that gives a sort of infinite presentation for
a group acting on a simplicial complex. In Section 3.2, we introduce the complex of
partial bases. In Section 3.3, we give generators for the IAn–stabilizers of simplices
in the complex of partial bases. In Section 3.4, we introduce an action of Aut.Fn/ on
the group given by our purported L–presentation for IAn . Finally, in Section 3.5 we
introduce a certain morphism between groups given by L–presentations.

Two results in this sections have computer-aided proofs which are postponed until
Section 5: Proposition 3.13 from Section 3.4 and Proposition 3.14 from Section 3.5.

3.1 Presentations from group actions

Consider a group G acting on a simplicial complex X . We say that G acts without
rotations if for all simplices � of X , the setwise and pointwise stabilizers of � coincide.
For a simplex � , denote by G� the stabilizer of � . Letting X .0/ denote the vertex set
of X , there is a homomorphism from the free product of vertex stabilizers

 W �
v2X.0/

Gv!G:

As notation, if g 2 G stabilizes a vertex v of X , then denote by gv the associated
element of

Gv < �
v2X.0/

Gv:

The map  is rarely injective. Two families of elements in its kernel are as follows:
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� If e is an edge of X joining vertices v and v0 and if g2Ge , then gvg�1v0 2ker. /.
We call these the edge relators.

� If v;w 2X .0/ and g 2Gv and h 2Gw , then hwgvh�1w .hgh�1/�1
h.v/
2 ker. /.

We call these the conjugation relators.

The second author gave hypotheses under which these generate ker. /:

Theorem 3.1 [29] Consider a group G acting without rotations on a 1–connected
simplicial complex X . Assume that X=G is 2–connected. Then the kernel of the map
 described above is normally generated by the edge and conjugation relators.

3.2 The complex of partial bases

We now introduce the simplicial complex to which we will apply Theorem 3.1.
For z 2 Fn , let ŒŒz�� denote the union of the conjugacy classes of z and z�1 .

Definition 3.2 A partial basis for Fn is a set fz1; : : : ; zkg � Fn such that there exist
zkC1; : : : ; zn 2Fn with fz1; : : : ; zng a free basis for Fn . The complex of partial bases
for Fn , denoted by Bn , is the simplicial complex whose .k�1/–simplices are sets
fŒŒz1��; : : : ; ŒŒzk��g, where fz1; : : : ; zkg is a partial basis for Fn .

The group Aut.Fn/ acts on Bn , and we wish to apply Theorem 3.1 to the restriction of
this action to IAn . It is clear that IAn acts on Bn without rotations, so we must check
that Bn is 1–connected and that Bn= IAn is 2–connected.

We start by verifying that Bn is 1–connected.

Proposition 3.3 The simplicial complex Bn is 1–connected for n� 3.

Proof For z 2Fn , let ŒŒz��0 be the conjugacy class of z . Define B0n to be the simplicial
complex whose .k�1/–simplices are sets fŒŒz1��0; : : : ; ŒŒzk��0g, where fz1; : : : ; zkg is
a partial basis for Fn . In [16], the authors proved that B0n is 1–connected for n� 3.
There is a natural simplicial map �W B0n! Bn . Letting  0W .Bn/.0/! .B0n/.0/ be an
arbitrary map satisfying � ı 0 D id, it is clear that  0 extends to a simplicial map
 W Bn ! B0n satisfying � ı D id. This implies that � induces a surjection on all
homotopy groups, so Bn is 1–connected for n� 3.

It also follows from [16] that Bn= IAn is .n�2/–connected. In particular, it is 2–
connected for n � 4, and thus satisfies the conditions of Theorem 3.1 for n � 4.
However, we will need a complex that satisfies the conditions of Theorem 3.1 for nD 3
as well. We therefore attach cells to increase the connectivity.
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Definition 3.4 The augmented complex of partial bases for Fn , denoted by yBn , is the
simplicial complex whose .k�1/–simplices are as follows:

� Sets of the form fŒŒz1��; : : : ; ŒŒzk��g, where fz1; : : : ; zkg is a partial basis for Fn .
These will be called the standard simplices.

� Sets of the form fŒŒz1z2��; ŒŒz1��; ŒŒz2��; : : : ; ŒŒzk�1��g, where fz1; : : : ; zk�1g is a
partial basis for Fn . These will be called the additive simplices.

Remark 3.5 Since z1z2 and z2z1 are conjugate, the two additive simplices

fŒŒz1z2��; ŒŒz1��; ŒŒz2��; : : : ; ŒŒzk�1��g and fŒŒz2z1��; ŒŒz1��; ŒŒz2��; : : : ; ŒŒzk�1��g

of yBn are the same.

The group Aut.Fn/ (and hence IAn ) still acts on yBn . Since yBn is obtained from Bn
by adding simplices of dimension at least 2, it inherits the 1–connectivity of Bn for
n� 3 asserted in Proposition 3.3.

Proposition 3.6 The complex yBn is 1–connected for n� 3.

To help us understand the connectivity of yBn= IAn , we introduce the following complex.
For Ev 2 Zn , let .Ev/˙ denote the set fEv;�Evg.

Definition 3.7 A partial basis for Zn is a set fEv1; : : : ; Evkg � Zn such that there
exist EvkC1; : : : ; Evn 2 Zn with fEv1; : : : ; Evng a basis for Zn . The augmented complex
of lax partial bases for Zn , denoted by yBn.Z/, is the simplicial complex whose
.k�1/–simplices are as follows:

� Sets of the form f.Ev1/˙; : : : ; .Evk/˙g, where fEv1; : : : ; Evkg is a partial basis for
Zn . These will be called the standard simplices.

� Sets of the form f.Ev1CEv2/˙; .Ev1/˙; .Ev2/˙; : : : ; .Evk�1/˙g, where fEv1; : : : ; Evk�1g
is a partial basis for Zn . These will be called the additive simplices.

We then have the following lemma:

Lemma 3.8 We have yBn= IAn Š yBn.Z/ for n� 1.

For the proof of Lemma 3.8, we will need the following result of the authors. For
z 2 Fn , let Œz� 2 Zn be the associated element of the abelianization of Fn .

Lemma 3.9 [16, Lemma 5.3] Let fEv1; : : : ; Evng be a basis for Zn and let fz1; : : : ; zkg
be a partial basis for Fn such that Œzi � D Evi for 1 � i � k . Then there exist
zkC1; : : : ; zn 2 Fn with Œzi � D Evi for k C 1 � i � n such that fz1; : : : ; zng is a
basis for Fn .
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Proof of Lemma 3.8 The map .yBn/.0/! .yBn.Z//.0/ that takes ŒŒz�� to Œz� extends to
a simplicial map �W yBn! yBn.Z/. Since IAn acts without rotations on yBn , the quotient
yBn= IAn has a natural CW–complex structure whose k–cells are the IAn–orbits of the
k–cells of yBn (warning: though it will turn out that in this case it is, this CW–complex
structure need not be a simplicial complex structure; consider, for example, the action
of Z by translations on the standard triangulation of R whose vertices are Z). Since
� is IAn–invariant, it factors through a map x�W yBn= IAn! yBn.Z/. We will prove that
x� is an isomorphism of CW–complexes.

This requires checking two things. The first is that every simplex of yBn.Z/ is in the
image of � , which is an immediate consequence of Lemma 3.9. The second is that if
� and � 0 are simplices of yBn such that �.�/D �.� 0/, then there exists some f 2 IAn
such that f .�/D � 0 . It is clear that � and � 0 are either both standard simplices or
both additive simplices. Assume first that they are both standard simplices. We can
then write

� D fŒŒz1��; : : : ; ŒŒzk��g and � 0 D fŒŒz01��; : : : ; ŒŒz
0
k��g

as in the definition of standard simplices, with Œzi �D Œz0i � for 1� i � k . Set Evi D Œzi �D
Œz0i � for 1� i � k . The set fEv1; : : : ; Evkg is a partial basis for Zn , so we can extend it
to a basis fEv1; : : : ; Evng. Applying Lemma 3.9 twice, we can find zkC1; : : : ; zn 2 Fn
and z0

kC1
; : : : ; z0n 2 Fn such that Œzi �D Œz0i �D Evi for kC1� i � n and such that both

fz1; : : : ; zng and fz01; : : : ; z
0
ng are free bases for Fn . There then exists f 2 Aut.Fn/

such that f .zi /D z0i for 1� i � n. By construction, we have f 2 IAn and f .�/D � 0 .

It remains to deal with the case where � and � 0 are both simplices of additive type.
Write

� D fŒŒz1z2��; ŒŒz1��; ŒŒz2��; : : : ; ŒŒzk�1��g and � 0 D fŒŒz01z
0
2��; ŒŒz

0
1��; : : : ; ŒŒz

0
k�1��g

as in the definition of additive simplices. The unordered sets˚
.Œz1�C Œz2�/˙; .Œz1�/˙; .Œz2�/˙

	
and

˚
.Œz01�C Œz

0
2�/˙; .Œz

0
1�/˙; .Œz

0
2�/˙

	
are minimal nonempty subsets of �.�/D �.� 0/ such that the defining elements of Zn

are not linearly independent. It follows that as unordered sets we have

�
�
fŒŒz1z2��; ŒŒz1��; ŒŒz2��g

�
D �

�
fŒŒz01z

0
2��; ŒŒz

0
1��; ŒŒz

0
2��g
�
;

�
�
fŒŒz3��; : : : ; ŒŒzk�1��g

�
D �

�
fŒŒz03��; : : : ; ŒŒz

0
k�1��g

�
:

Reordering the zi and possibly replacing some of the zi by z�1i (which does not
change ŒŒzi ��), we can assume that Œzi �D Œz0i � for 3� i � k� 1.
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The next observation is that all of the following sets define the same additive simplex
(but with the vertices in a different order; all six possible orderings occur):

fŒŒz1z2��; ŒŒz1��; ŒŒz2��g; fŒŒz2z1��; ŒŒz2��; ŒŒz1��g; fŒŒz1��; ŒŒz1z2��; ŒŒz
�1
2 ��g;

fŒŒz�11 ��; ŒŒz2��; ŒŒz
�1
2 z�11 ��g; fŒŒz2��; ŒŒz2z1��; ŒŒz

�1
1 ��g; fŒŒz�12 ��; ŒŒz1��; ŒŒz

�1
1 z�12 ��g:

By reordering � and possibly changing some of our expressions for the elements in it
again, we can assume that

.Œz1�C Œz2�/˙ D .Œz
0
1�C Œz

0
2�/˙; .Œz1�/˙ D .Œz

0
1�/˙; .Œz2�/˙ D .Œz

0
2�/˙

and that Œzi �D Œz0i � for 3� i � k� 1.

The final observation is that either

.Œz1�; Œz2�/D .Œz
0
1�; Œz

0
2�/ or .Œz1�; Œz2�/D .�Œz

0
1�;�Œz

0
2�/I

the key point here is that changing the sign of one of fŒz1�; Œz2�g but not the other
changes .Œz1�C Œz2�/˙ . If the second possibility occurs, then replace z1 and z2 with
z�11 and z�12 , respectively; this does not change � . The upshot is that we now have
arranged for Œzi � D Œz0i � for all 1 � i � k � 1. By the same argument we used to
deal with standard simplices, there exists some f 2 IAn such that f .zi / D z0i for
1� i � k� 1. Since f .z1z2/D z01z

0
2 , we see that f .�/D � 0 , as desired.

The second author together with Church proved in [13] that yBn.Z/ is .n�1/–connected
for n� 1. We therefore deduce the following:

Proposition 3.10 The complex yBn= IAn is .n�1/–connected for n� 1.

3.3 Generators for simplex stabilizers

This section is devoted to the following proposition, which gives generators for the
stabilizers in IAn of simplices of Bn . Recall that SMA.n/ is Magnus’s generating set
for IAn discussed in the introduction.

Proposition 3.11 Fix 1 � k � n and define � D .IAn/ŒŒxn�kC1��;ŒŒxn�kC2��;:::;ŒŒxn�� .
Then � is generated by

SMA.n/\� D fCxa; xb j 1� a; b � n distinctg

[ fMxa; Œxb;xc� j 1� a � n� k; 1� b; c � n distinctg:

Proof The map Fn!Fn�k that quotients by the normal closure of fxn�kC1; : : : ; xng
induces a split surjection �W � ! IAn�k . Define Kn�k;k D ker.�/, so we have
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� DKn�k;k Ì IAn�k . As we said in the introduction, Magnus [26] proved that IAn�k
is generated by

(4) fCxa; xb j 1� a; b � n�k distinctg[fMxa; Œxb;xc� j 1� a; b; c � n�k distinctg:

The authors proved in [17, Theorem A] that Kn�k;k is generated by

(5) fCxa; xb j n� kC 1� a � n; 1� b � n distinctg

[ fCxa; xb j 1� a � n; n� kC 1� b � n distinctg

[ fMxa; Œxb;xc� j 1� a � n� k; n� k� 1� b � n; 1� c � n distinctg:

The union of (4) and (5) is the claimed generating set for � .

Remark 3.12 For z 2 Fn , define ŒŒz��0 to be the conjugacy class of z . In [17] we deal
with .IAn/ŒŒxn�kC1��0; ŒŒxn�kC2��0; ::: ; ŒŒxn��0 instead of .IAn/ŒŒxn�kC1��; ŒŒxn�kC2��; ::: ; ŒŒxn�� ;
however, since xi and x�1i have different images in F ab

n , these two stabilizer subgroups
are actually equal. There are also notational differences: the group denoted by Kn�k;k
here is denoted by KIA

n�k;k
in that paper.

3.4 The action of Aut.Fn/

Let Qn be the group with the L–presentation hSIA.n/ jR
0
IA.n/ jEIA.n/i discussed in

Section 2. By Propositions 2.1 and 2.3, there is a map � W Qn ! IAn . The group
Aut.Fn/ acts on IAn by conjugation. The goal of this section is to state Proposition 3.13
below, which asserts that this action can be lifted to Qn .

To state some important properties of this lifted action, we must introduce some notation.
First, let SAut.n/� Aut.Fn/ be the generating set discussed in Section 2. Recall that
EIA.n/�End.F.SIA.n/// is the image of a map � W SAut.n/!End.F.SIA.n///. There
is thus a map eW SAut.n/!End.Qn/ whose image is the set of induced endomorphisms
of our L–presentation. It will turn out that the image of e consists of automorphisms,
and these automorphisms generate the action of Aut.Fn/ on Qn .

Second, recall that fx1; : : : ; xng is a fixed free basis for Fn . Let

.SIA.n//ŒŒxn�� D fCxa; xb j 1� a; b � n distinctg

[ fM
x˛a ; Œx

ˇ

b
;x

c �
j 1� a; b; c � n distinct; ˛; ˇ;  2 f˙1g; a¤ ng:

This is exactly the subset of SIA.n/� IAn consisting of automorphisms that fix ŒŒxn��;
Proposition 3.11 (with kD1) implies that it generates the stabilizer subgroup .IAn/ŒŒxn�� .
Define .Qn/ŒŒxn�� be the subgroup of Qn generated by .SIA.n//ŒŒxn�� . We will then
require the stabilizer subgroup .Aut.Fn//ŒŒx�� to preserve the subgroup .Qn/ŒŒxn�� .

Our proposition is as follows:
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Proposition 3.13 For all n� 2, there is an action of Aut.Fn/ on Qn that satisfies the
following three properties:

(1) The action comes from the induced endomorphisms in the sense that, for
s 2 SIA.n/� Aut.Fn/ and q 2Qn , we have s � q D e.s/ � q .

(2) The restriction of the action to IAn induces the conjugation action of Qn on
itself in the sense that, for q; r 2Qn , we have �.r/ � q D rqr�1 .

(3) For � 2 .Aut.Fn//ŒŒxn�� and q 2 .Qn/ŒŒxn�� , we have � � q 2 .Qn/ŒŒxn�� .

The proof of Proposition 3.13 is a computation with generators and relations (mostly
done by computer), so we have postponed it until Section 5.

3.5 A homomorphism between L–presentations

There is a natural split surjection �W .IAn/ŒŒxn�� ! IAn�1 arising from the quotient
map Fn ! Fn�1 whoe kernel is the normal closure of xn . Let Kn�1;1 D ker.�/;
so we have a decomposition .IAn/ŒŒxn�� D Kn�1;1 Ì IAn�1 . Building on the Birman
exact sequence for Aut.Fn/ we constructed in [15], we constructed an L–presentation
for Kn�1;1 in [17, Theorem D] (Kn�1;1 is denoted by KIA

n�1;1 in that paper). This
L–presentation plays a crucial role in the inductive step of our proof, because it allows
us to obtain the following proposition:

Proposition 3.14 There is a homomorphism Kn�1;1 ! hSIA.n/ jR
0
IA.n/ jEIA.n/i

fitting into the following commuting triangle:

Kn�1;1 //
v�

))

hSIA.n/ jR
0
IA.n/ jEIA.n/i

����

IAn

Usually finding a homomorphism between groups given by presentations is simple:
one checks that the relations map to products of conjugates of relations. This is the
spirit of the proof of Proposition 3.14, but the substitution rules and extended relations
complicate the picture. Our proof of Proposition 3.14 is computer-assisted and is
postponed until Section 5.

4 Verification of our L–presentation

In this section, we prove Theorem E, which says that IAn has the finite L–presentation
hSIA.n/ jR

0
IA.n/ jEIA.n/i discussed in Section 2. Our proof is inspired by the proof

of the main theorem of [9]. We will make use of Propositions 2.1, 2.3, 3.13 and 3.14,
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which were all stated in previous sections and which will be proved (with the aid of a
computer) in Section 5.

Proof of Theorem E Let Qn be the group given by hSIA.n/ jR
0
IA.n/ jEIA.n/i. Ele-

ments of SIA.n/ play dual roles as elements of Qn and as elements of IAn , and during
our proof it will be important to distinguish them. Therefore, throughout this proof
elements Cxa; xb and Mx˛a ; Œx

ˇ

b
;x

c � will always lie in IAn ; the associated elements of

Qn will be denoted by Cxa; xb and M
x˛a ; Œx

ˇ

b
;x

c �

.

There is a natural projection map � W Qn! IAn . We will prove that � is an isomorphism
by induction on n. The base cases are nD 1 and nD 2. For nD 1, both IAn and
Qn are the trivial group, so there is nothing to prove. For n D 2, it is a classical
theorem of Nielsen [27] (see also [25, Proposition 4.5]) that IA2 is the group of inner
automorphisms of F2 , so IA2 is a free group on the generators Cx1; x2 and Cx2; x1 .
Our generating set for Q2 is fCx1; x2 ;Cx2; x1g, and for nD 2 the set of basic relations
R0IA.2/ is empty. Even though our set of substitution rules EIA.2/ is nonempty, it
follows that our full set of relations for Q2 is empty. So our presentation for Q2 is
hCx1; x2 ;Cx2; x1 j∅i, and the result is also true in this case.

Assume now that n� 3 and that the projection map Qn0! IAn0 is an isomorphism for
all 1� n0 < n. Since � is a surjection, to prove that � is an isomorphism it is enough
to construct a homomorphism �W IAn! Qn such that � ı� D id. Propositions 3.6
and 3.10 show that the action of IAn on yBn satisfies the conditions of Theorem 3.1, so

IAn Š
�
�

ŒŒz��2.yBn/.0/
.IAn/ŒŒz��

�
=R;

where R is the normal closure of the edge and conjugation relators. The construction
of � will have two steps. First, we will use the action of Aut.Fn/ on Qn provided by
Proposition 3.13 to construct a map

z�W �
ŒŒz��2.yBn/.0/

.IAn/ŒŒz��!Qn:

Second, we will show that z� takes the edge and conjugation relators to 1, and thus
induces a map �W IAn!Qn . We will close by verifying that � ı� D id.

Construction of z� To construct z� , we must construct a map

z�ŒŒz��W .IAn/ŒŒz��!Qn

for each vertex ŒŒz�� of yBn . Recalling that fx1; : : : ; xng is our fixed free basis for Fn ,
we begin with the vertex ŒŒxn��. In the following claim, we will use the notation
.SIA.n//ŒŒxn�� and .Qn/ŒŒxn�� introduced in Section 3.4.

Claim 1 The restriction of � to .Qn/ŒŒxn�� is an isomorphism onto .IAn/ŒŒxn�� .
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Proof Proposition 3.11 implies that natural map �j.Qn/ŒŒxn�� W .Qn/ŒŒxn��! .IAn/ŒŒxn��
is surjective, since the generators from that proposition (with k D 1) are in the image.

Our inductive hypothesis says that the map �jQn�1 W Qn�1! IAn�1 is an isomorphism.
Recall from Section 3.5 that .IAn/ŒŒxn�� D Kn�1;1 Ì IAn�1 , where the projection
.IAn/ŒŒxn��! IAn�1 is the one induced by the map Fn! Fn�1 that quotients out by
the normal closure of xn , and Kn�1;1 is the kernel of this projection. The composition

.Qn/ŒŒxn��! .IAn/ŒŒxn��! IAn�1
Š

�j�1Qn�1
���!Qn�1

is a well-defined homomorphism. It is a composition of surjective maps, and is therefore
surjective. We define Kn�1;1 to be the kernel of this composition of maps.

The restriction of � to Kn�1;1 has image in Kn�1;1 since the map .Qn/ŒŒxn��!Qn�1
factors through .IAn/ŒŒxn��! IAn�1 . Proposition 3.11 says that Kn�1;1 is generated
by the set

SK.n/ WD fCxn; xa ; Cxa; xn j 1� a < bg

[ fM
x˛a ; Œx

ˇ

b
;x

n �
;M

x˛a ; Œx

n ;x

ˇ

b
�
j 1� a; b < n distinct; ˛; ˇ;  2 f˙1gg:

Since these generators are contained in Kn�1;1 , the map Kn�1;1!Kn�1;1 is surjective.
Further, Proposition 3.14 gives us a left inverse to �jKn�1;1 . We conclude that �jKn�1;1
is an isomorphism Kn�1;1 Š Kn�1;1 . We note that existence of this isomorphism is
a deceptively difficult part of the proof, and it is the main consequence that we draw
from [17].

Summing up, we have a commutative diagram of short exact sequences as follows:

1 // Kn�1;1 //

Š

��

.Qn/ŒŒxn�� //

��

Qn�1 //

Š

��

1

1 // Kn�1;1 // .IAn/ŒŒxn�� // IAn�1 // 1

The five lemma therefore says that the projection map .Qn/ŒŒxn��! .IAn/ŒŒxn�� is an
isomorphism, as desired.

Claim 1 implies that we can define a map z�ŒŒxn��W .IAn/ŒŒxn��! Qn via the formula
z�ŒŒxn�� D .�j.Qn/ŒŒxn��/

�1 .

Now consider a general vertex ŒŒz�� of yBn . Here we will use the action of Aut.Fn/ on
Qn provided by Proposition 3.13. The group Aut.Fn/ acts transitively on the set of
primitive elements of Fn , so there exists some � 2 Aut.Fn/ such that �.xn/D z . We
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then define a map z�ŒŒz��W .IAn/ŒŒz��!Qn via the formula

z�ŒŒz��.�/D � � z�ŒŒxn��.�
�1��/ .� 2 .IAn/ŒŒz��/:

This appears to depend on the choice of � , but the following claim says that this choice
does not matter.

Claim 2 The map z�ŒŒz��.�/ does not depend on the choice of � .

Proof Assume that �1; �2 2 Aut.Fn/ both satisfy �i .xn/ D z , and consider some
� 2 .IAn/ŒŒz�� . Our goal is to prove that

(6) �1 � z�ŒŒxn��.�
�1
1 ��1/D �2 � z�ŒŒxn��.�

�1
2 ��2/:

Define �D ��11 �2 and ! D ��12 ��2 , so � 2 .Aut.Fn//ŒŒxn�� and ! 2 .IAn/ŒŒxn�� . We
will first prove that

(7) z�ŒŒxn��.�!�
�1/D � � z�ŒŒxn��.!/:

To see this, observe first that by construction both z�ŒŒxn��.�!�
�1/ and z�ŒŒxn��.!/ lie

in .Qn/ŒŒxn�� . The third part of Proposition 3.13 implies that � � z�ŒŒxn��.!/ also lies
in .Qn/ŒŒxn�� . Claim 1 says that �j.Qn/ŒŒxn�� is injective, so to prove (7), it is thus enough
to prove that z�ŒŒxn��.�!�

�1/ and � � z�ŒŒxn��.!/ have the same image under � . This
follows from the calculation

�.z�ŒŒxn��.�!�
�1//D �!��1 D ��.z�ŒŒxn��.!//�

�1
D �.� � z�ŒŒxn��.!//;

where the first two equalities follow from the fact that � ı z�ŒŒxn�� D id and the third
follows from the first conclusion of Proposition 3.13.

We now verify (6) as follows:

�1 � z�ŒŒxn��.�
�1
1 ��1/D �1 � z�ŒŒxn��.�!�

�1/D �1� � z�ŒŒxn��.!/D �2 � z�ŒŒxn��.�
�1
2 ��2/:

This completes the construction of z� .

Some naturality properties Before we study the edge and conjugation relators, we
first need to verify the following two naturality properties of z� . Starting now we will
use the notation which was introduced in Section 2: for a vertex ŒŒz�� of yBn and �2 IAn
satisfying �.ŒŒz��/D ŒŒz��, we will denote �, considered as an element of

.IAn/ŒŒz�� < �
ŒŒz��2.yBn/.0/

.IAn/ŒŒz��;

by �ŒŒz�� .

Claim 3 The following two identities hold:
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� Let 1� a; b� n be distinct and 1� i � n be arbitrary. Then z�..Cxa; xb /ŒŒxi ��/D
Cxa; xb .

� Let 1� a; b; c � n be distinct, let ˛; ˇ;  2 f˙1g be arbitrary, and let 1� i � n
be such that i ¤ a . Then z�..M

x˛a ; Œx
ˇ

b
;x

c �
/ŒŒxi ��/DM

x˛a ; Œx
ˇ

b
;x

c �

.

Proof The proofs of the two identities are similar; we will deal with the first and leave
the second to the reader. It is clear from the construction that z�..Cxa; xb /ŒŒxn��/DCxa; xb .
For 1� i < n, we have Pi;n.xn/D xi , and thus by definition we have

z�..Cxa; xb /ŒŒxi ��/D Pi;n � z�ŒŒxn��.P
�1
i;n Cxa; xbPi;n/D Pi;n � z�ŒŒxn��.CP�1

i;n
.xa/;P

�1
i;n
.xb/

/

D Pi;n �CP�1
i;n
.xa/;P

�1
i;n
.xb/
D Cxa; xb I

here the last equality follows from the first part of Proposition 3.13 and the definition
of the endomorphisms in Section 2.

Claim 4 Let ŒŒz�� be a vertex of yBn . Then for � 2 .IAn/ŒŒz�� we have �.z�ŒŒz��.�//D �.

Proof Pick � 2 Aut.Fn/ such that �.xn/D z . Then

�.z�ŒŒz��.�//D �.� � z�ŒŒxn��.�
�1��//D ��.z�ŒŒxn��.�

�1��//��1 D ���1����1 D �I

here the second equality uses the first part of Proposition 3.13.

The edge and conjugation relators We now check that z� takes the edge and conju-
gation relators to 1.

Claim 5 (edge relators) If e is an edge of yBn with endpoints ŒŒz�� and ŒŒz0�� and
� 2 .IAn/e , then z�.�ŒŒz����1ŒŒz0��/D 1.

Proof We first consider the special case where zDxn and z0Dxn�1 . Proposition 3.11,
with k D 2, states that .IAn/ŒŒxn�1��;ŒŒxn�� is generated by

(8) fCxa; xb j 1� a; b � n distinctg

[ fMxa; Œxb;xc� j 1� a; b; c � n distinct; a¤ n� 1; ng:

Claim 3 implies that for all elements ! in (8), we have z�.!ŒŒxn�1��/D z�.!ŒŒxn��/. It
follows that for all � 2 .IAn/ŒŒxn�1��;ŒŒxn�� we have z�.�ŒŒxn�1��/D z�.�ŒŒxn��/, as desired.

We now turn to general edges e with endpoints ŒŒz�� and ŒŒz0�� and � 2 .IAn/e .
There exists some � 2 Aut.Fn/ such that �.xn/ D z and �.xn�1/ D z0 , and hence
�Pn�1;n.xn/D z

0 . Setting �0 D ��1�� 2 .IAn/ŒŒxn�1��;ŒŒxn�� , we have

z�.�ŒŒz��/D � � z�ŒŒxn��.�
�1��/D � � z�ŒŒxn��.�

0/;

z�.�ŒŒz0��/D �Pn�1;n z�ŒŒxn��.P
�1
n�1;n�

�1��Pn�1;n/D � � z�ŒŒxn�1��.�
0/:
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By the previous paragraph, we have z�ŒŒxn��.�
0/ D z�ŒŒxn�1��.�

0/, so we conclude that
z�.�ŒŒz��/D z�.�ŒŒz0��/, as desired.

Claim 6 (conjugation relators) If ŒŒz�� and ŒŒz0�� are vertices of yBn and � 2 .IAn/ŒŒz��
and ! 2 .IAn/ŒŒz0�� , then z�.!ŒŒz0���ŒŒz��!�1ŒŒz0��.!�!

�1/ŒŒ!.z/��/D 1.

Proof Choose � 2 Aut.Fn/ such that �.xn/D z . We then have

z�.!ŒŒz0���ŒŒz��!
�1
ŒŒz0��/D

z�ŒŒz0��.!/z�ŒŒz��.�/z�ŒŒz0��.!/
�1
D �.z�ŒŒz0��.!// � z�ŒŒz��.�/

D ! � z�ŒŒz��.�/D !� � z�ŒŒxn��.�
�1��/

D !� � z�ŒŒxn��..!�/
�1!�!�1.!�//D z�..!�!�1/ŒŒ!.z/��/;

as desired. The second equality follows from the third part of Proposition 3.13, the third
equality follows from Claim 4, and the remainder of the equalities are straightforward
applications of the definitions.

Claims 5 and 6 imply that z� descends to a homomorphism �W IAn!Qn .

We have an inverse To complete the proof, it remains to prove the following:

Claim 7 We have � ı� D id.

Proof Claim 3 implies that this holds for the generators of Qn .

This completes the proof of Theorem E.

5 Computations for the L–presentation

This section contains the postponed proofs of Propositions 2.1, 2.3, 3.13 and 3.14.
These proofs are done with the aid of a computer. We will discuss our computational
framework in Section 5.1 and then prove the propositions in Sections 5.2–5.4.

We will use the following notation throughout the rest of the paper. Let SAut.n/
�

denote the free monoid on the set SAut.n/. In Section 2, we defined a function
� W SAut.n/! End.F.SIA.n///. This naturally extends to a function

� W SAut.n/
�
! End.F.SIA.n///:

5.1 Computational framework

As we discussed in the introduction, we use the GAP system to mechanically verify the
large number of equations we have to check. These verifications are in the file h2ia.g,
available as an online supplement.
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We use GAP’s built-in functionality to model Fn as a free group on the eight generators
xa, xb, xc, xd, xe, xf, xg and y. Since our computations never involve more than 8
variables, computations in this group suffice to show that our computations hold in
general.

Elements of the sets SAut.n/ and SIA.n/ are parametrized over basis elements from
Fn and their inverses, so we model these sets using lists. For example, we model the
generator Mxa; xb as the list ["M",xa,xb], Cy; xa as ["C",y,xa], and Mx�1a ; Œy;xc�

as ["Mc",xa^-1,y,xc]. We model Pa;b as ["P",xa,xb] and Ia as ["I",xa]. The
examples should make clear: the first entry in the list is a string key "M", "C", "Mc",
"P" or "I", indicating whether the list represents a transvection, conjugation move,
commutator transvection, swap or inversion. The parameters given as subscripts in the
generator are then the remaining elements of the list, in the same order.

GAP’s built-in free group functionality expects the basis elements to be variables,
not lists, so we do not use it to model SAut.n/

� and F.SIA.n//. We model inverses
of generators as follows: the inverse of ["M",xa,xb] is ["M",xa,xb^-1] and the
inverse of ["C",xa,xb] is ["C",xa,xb^-1], but the inverse of ["Mc",xa,xb,xc]
is ["Mc",xa,xc,xb]. Swaps and inversions are their own inverses. Technically, this
means that we are not really modeling SAut.n/

� and F.SIA.n//; instead we model
structures where the order relations for swaps and inversions and the relation (R0) for
inverting commutator transvections are built in. This is not a problem because our
verifications always show that certain formulas are trivial modulo our relations, and we
can always apply the (R0) and order relations as needed.

We model words in SAut.n/
� and F.SIA.n// as lists of generators and inverse genera-

tors. The empty word [] represents the trivial element. We wrote several functions in
h2ia.g that perform common tasks on words. The function pw takes any number of
words (reduced or not) as arguments and returns the freely reduced product of those
words in the given order, as a single word. The function iw inverts its input word and
the function cyw cyclically permutes its input word.

The function iarel outputs the relations R0IA.n/. We introduce some extra relations
for convenience. The function exiarel outputs these extra relations and the code
generating the list exiarelchecklist derives the extra relations from the basic
relations. The function theta takes in a word w in SAut.n/ and a word v in SIA.n/,
and returns �.w/.v/. In addition to the functions described here, we often define
simple macros for carrying out the verifications.

The function applyrels is particularly useful, because it inserts multiple relations
into a word. It takes two inputs: a starting word and a list of words with placement
indicators. The function recursively inserts the first word from the list in the starting
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word at the given position, reduces the word, and then calls itself with the new word as
the starting word and with the same list of insertions, with the first dropped.

For example, the following command appears in the justification of Proposition 3.13:

applyrels(
pw(

theta([["M",xa,xb],["M",xa,xb^-1]], [["Mc",xb,xa,xe]]),
[["Mc",xb,xe,xa]]

),
[

[6,iarel(5,[xa,xb,xe])],
[6,iw(exiarel(1,[xb^-1,xe,xa]))],
[2,iw(iarel(4,[xe,xa,xb]))],
[2,iarel(6,[xb^-1,xe^-1,xa])],
[2,iw(iarel(5,[xb,xe,xa]))]

]
)

This tells the GAP system to compute the effect of �.Mxa; xbM
�1
xa; xb

/ on Mxb; Œxa;xe� .
Then it multiplies this by Mxb; Œxe;xa� , the inverse of Mxb; Œxa;xe� . It then freely reduces
this word. The system inserts a version of (R5) after the sixth letter in this word, and
reduces the result to a new word. Then it inserts the inverse of one of the extra relations
after the sixth letter in the new word and reduces it. It continues with inserting relations
and reducing the resulting expressions, inserting instances of (R4), (R5) and (R6).
Since the entire expression evaluates to [], we have expressed

�.Mxa; xbM
�1
xa; xb

/.Mxb; Œxa;xe�/ �Mxb; Œxe;xa�

as a product of relations in Qn . In any example like this, an interested reader can
reproduce our reduction process by removing all the list entries from the second input
of the applyrels call, and then adding them back in one at a time, evaluating after
each one.

5.2 Verifying the map to IAn

First we prove Proposition 2.1, which states that our relations R0IA.n/ hold in IAn .

Proof of Proposition 2.1 The code generating the list verifyiarel generates exam-
ples of all the relations in R0IA.n/, with all allowable configurations of coincidences
between the subscripts on the generators. It converts each of these relations into
automorphisms of Fn and evaluates them on a basis for Fn , returning true if all basis
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elements are unchanged. We evaluate on a fixed finite-rank free group, but since the
basic relations involve at most six generators, those evaluations suffice to show the
result in general. Since verifyiarel evaluates to a list of true, this means that all
these relations are true.

Next we prove Proposition 2.3, which states that � acts by conjugation when evaluated
on generators (see (3)).

Proof of Proposition 2.3 The code generating the list thetavsconjaut goes through
all possible configurations for a pair of generators s from SAut.n/ and t from SIA.n/,
evaluates �.s/.t/ as a product of generators, and then evaluates both �.s/.t/ and sts�1

on a basis for Fn . It returns true when both have the same effect on all basis elements.
Since thetavsconjaut evaluates to a list of true, the proposition holds.

5.3 Verifying Proposition 3.13

Proof of Proposition 3.13 The action of Aut.Fn/ on Qn is given by our substitution
rule endomorphism map

� W SAut.n/! End.F.SIA.n///:

First of all, it is clear that for each s 2 SAut.n/, the element �.s/ defines an endomor-
phism of Qn . This is because the subgroup of F.SIA.n// normally generated by the
relations of Qn is invariant under �.s/ by the definition of Qn .

Next, we verify that �.s/ is an automorphism of Qn . If s is a swap or an inversion,
then it is clear from the definition of � that this is the case. In the code generating the
list thetainverselist, we compute �.s/.�.s�1/.t//t�1 for sDMxa; xb and for all
possible configurations of t relative to s . In each case, we reduce it to the trivial word
using relations for Qn . It is not hard to deduce that �.s/.�.s�1/.t// D t in Qn for
the remaining choices of s DM�1xa; xb , Mx�1a ; xb

and M�1
x�1a ; xb

, using the fact that it is
true for s DMxa; xb .

So this shows that � defines an action

F.SAut.n//! Aut.Qn/:

Now we need to verify that this action descends to an action of Aut.Fn/. To show this,
it is enough to show that for every relation r in a presentation for Aut.Fn/, we have

(9) �.r/.t/D t in Qn ;

for t taken from a generating set for Qn . To check this, we use the same version of
Nielsen’s presentation for Aut.Fn/ that we used in [17, Theorem 5.5]. The generators
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are the same set SAut.n/ we use here, and the relations fall into five classes (N1)–(N5).
Relations (N1) are sufficient for the subgroup generated by swaps and inversions, and
(N2) are relations indicating how to conjugate transvections by swaps and inversions.
It is an exercise to see that (9) holds for relations of class (N1) and (N2). Relations
(N3)–(N5) are more complicated relations. For each of these, we compute �.r/.t/t�1

on generators t (for t with enough configurations of subscripts to include a generating
set) and reduce the resulting expressions to 1 using relations from Qn . These com-
putations are given in the code generating the lists thetaN3list, thetaN4list and
thetaN5list. Since these evaluate to lists of the trivial word, this verifies (9). We
have shown that the action of an element of Aut.Fn/ on Qn does not depend on the
word in F.SAut.n// we use to represent it.

Since we have shown that � defines an action, now we can check the three properties
asserted in Proposition 3.13. We have already verified the first point (we took the
definition of the action to agree with it). To verify the second point, we need to check
that for w; s 2 SIA.n/, there is zw 2 F.SAut.n// representing w with

(10) �. zw/.s/D wsw�1 in Qn:

In fact, it is enough to verify this for w and s in a smaller generating set, and
the generating set that s is taken from may depend on w . In the code generating
thetaconjrellist, for each choice of w from SMA.n/, we lift w to zw2F.SAut.n//,
and for several configurations of subscripts in the generator s , we reduce the element
�. zw/.s/ws�1w�1 to the identity using relations from Qn . We use enough configu-
rations of subscripts in s to cover all cases for s in a generating set (a conjugate of
SMA.n/).

To check the third point, we use the generating set .SAut.n//ŒŒxn�� for .Aut.Fn//ŒŒxn��
mentioned in the proof of Proposition 3.11 above, namely

fMx˛a ; xb j 1� a � n� 1; 1� b � n; ˛ D˙1; a¤ bg

[ fPa;b j 1� a; b � n; a¤ b; a¤ ng

[ fIa j 1� a � ng[ fCxn; xa j 1� a � n� 1g:

We need to check that for each of these generators, there is w2F.SAut.n// representing
it with �.w/.s/ in .Qn/ŒŒxn�� (really, that �.w/.s/ is equal in Qn to an element of
.Qn/ŒŒxn�� ). This is clear from the definition of � for w a swap or inversion. It can
be verified for w DMx˛a ; xb by inspecting Table 3. For w representing Cxn; xa , the
fact that �.w/.s/ 2 .Qn/ŒŒxn�� follows from the second point in this proposition, since
Cxn; xa 2 IAn .
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5.4 Verifying Proposition 3.14

Here we prove Proposition 3.14. We recall the statement: Kn�1;1 is the kernel of
the natural map .IAn/ŒŒxn�� ! IAn�1 , and the proposition asserts that the inclusion
Kn�1;1 ,! IAn factors as the composition of a map Kn�1;1!Qn with the projection
Qn! IAn .

The proof uses the finite L–presentation for Kn�1;1 from [17]. We note that [17,
Theorem D] asserts the existence of such a presentation, and [17, Theorem 6.2] gives
the precise statement that we use in the computations. Since this L–presentation is in
fact a presentation for Kn�1;1 , we use the same notation for Kn�1;1 as a subset of IAn
and Kn�1;1 as the group given by this presentation.

We do not reproduce the L–presentation here, but instead we describe some of its
features. Its finite generating set is

SK.n/D fMx˛a ; Œx
�
n;x

ˇ

b
�
j 1� a; b � n� 1; a¤ b; ˛; ˇ; � 2 f1;�1gg

[ fCxn; xa j 1� a � n� 1g[ fCxa; xn j 1� a � n� 1g:

The substitution endomorphisms of the L–presentation for Kn�1;1 are indexed by a
finite generating set .SAut.n//ŒŒxn�� for .Aut.Fn//ŒŒxn�� . The endomorphisms themselves
are the image of a map

�W .SAut.n//ŒŒxn��! End.F.SK.n///:

Proof of Proposition 3.14 Since SK.n/ is a subset of SIA.n/, we map Kn�1;1 to
Qn by sending each generator to the generator of the same name. To verify that this
map on generators extends to a well-defined map of groups, we need to check that
each defining relation from Kn�1;1 maps to the trivial element of Qn . Since Kn�1;1
is given by a L–presentation, we proceed as follows:

(1) We check that each of the basic relations from Kn�1;1 maps to the trivial element
of Qn .

(2) We check that for s 2 .SAut.n//ŒŒxn�� and t 2 SK.n/, we have

�.s/.t/D �.s/.t/ in Qn;

where we use .SAut.n//ŒŒxn�� � SAut.n/ to plug s into � , and we interpret both
expressions in Qn using F.SK.n//� F.SIA.n//.

The first point is verified in the code generating the list kfromialist. The function
krel produces the basic relations from Kn�1;1 , and we reduce each relation to the
identity by applying relations from Qn . The second point is verified in the code
generating the list thetavsphlist. For each choice of pairs of generators, we reduce
the difference of � and � using relations from Qn .

Geometry & Topology, Volume 21 (2017)



2880 Matthew Day and Andrew Putman

With these two points verified, one can easily check by induction that every extended
relation (starting with a basic relation, and applying any sequence of rewriting rules)
maps to the identity element in Qn .

6 Generators for H2.IAn/

In this section, we prove Theorem A, which asserts that there exists a finite subset
of H2.IAn/ whose GLn.Z/–orbit spans H2.IAn/. In fact, we gave an explicit list of
generators in Table 1; each generator is of the form hr for a commutator relation r . This
list is reproduced in Table 4, which also introduces the notation hi . � / 2 H2.IAn/ for
the associated elements of homology (this notation will be used during the calculations
in Section 7, though we will not use it in this section). The following theorem asserts
that this list is complete; it is a more precise form of Theorem A and will be the main
result of this section.

Theorem 6.1 Fix n � 2. Let SH .n/ be the set of commutator relators in Table 4.
Then the GLn.Z/–orbit of the set fhr j r 2 SH .n/g spans H2.IAn/.

Before proving Theorem 6.1, we will use it to derive Theorem B.

Proof of Theorem B Recall that this theorem asserts that for n� 6, the GLnC1.Z/–
orbit of the image of the natural map H2.IAn/! H2.IAnC1/ spans H2.IAnC1/. Let
SnC1 �GLnC1.Z/ be the subgroup consisting of permutation matrices. By inspecting
Table 4, it is clear that the SnC1–orbit of the image of fhr j r 2 SH .n/g �H2.IAn/ in
H2.IAnC1/ is fhr j r 2SH .nC1/g. This uses the fact that n� 6, since the commutator
relations in SH .n/ use generators involving at most six basis elements.

We now turn to the proof of Theorem 6.1. We start by introducing some notation. Let
F D F.SIA.n// and let R� F denote the full set of relations of IAn , so IAn D F=R .
Define CH2.IAn/ DR=ŒF;R�, and for r 2R denote by krk the associated element of
CH2.IAn/ . There is a natural map CH2.IAn/! F ab , and the starting point for our proof
is the following lemma. In it, recall from the beginning of Section 5 that SAut.n/

� is
the free monoid on the set SAut.n/.

Lemma 6.2 The group CH2.IAn/ is an abelian group which is generated by

fk�.w/.r/k j w 2 SAut.n/
� and r is one of the relations (R0)–(R9) from Table 2g:

Also, we have H2.IAn/D ker.CH2.IAn/! F ab/.

Proof The group CH2.IAn/ is abelian since ŒR;R�� ŒF;R�. For v 2 F and r 2 R ,
we have Œv; r� 2 ŒF;R�, so kvrv�1kD krk. The indicated generating set for CH2.IAn/
thus follows from Theorem E. As for the final statement of the lemma, we follow one
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of the standard proofs of Hopf’s formula [10]. The 5–term exact sequence in group
homology associated to the short exact sequence

0!R! F ! IAn! 0

is
H2.F /! H2.IAn/!R=ŒF;R�! H1.F /! H1.IAn/! 0:

Since F is free, we have H2.F /D 0, and the claim follows.

Our goal will be to take an element of CH2.IAn/ that happens to lie in H2.IAn/ and
rewrite it as a sum of elements of the form

(11) fk�.w/.r/k jw2SAut.n/
� and r is one of the relations (H1)–(H9) of Table 4g:

The relations (H1)–(H4) are the same as (R1)–(R4), and the relations (H5)–(H7) are the
same as (R6)–(R9). The troublesome relations are (R0), (R5) and (R6), none of which
lie in H2.IAn/. For r 2R , we have krk 2H2.IAn/ if and only if the exponent-sum of
each generator in SIA.n/ appearing in it is 0. For our problematic relations (R0), (R5)
and (R6), the exponent-sum of all the conjugations moves is already 0, so we will only
need to study the exponent-sums of the commutator transvections.

We begin with the following lemma, which will allow us to mostly ignore our rewriting
rules �. � /.

Lemma 6.3 Consider w 2 SAut.n/
� , and let r be a relation of the form (R0), (R5)

or (R6). Then k�.w/.r/k D hC h0 , where h and h0 are as follows:

� h 2 H2.IAn/ is a sum of elements from (11).

� h0 is a sum of elements of the form

fkrk j r is one of the relations (R0), (R5) and (R6) from Table 2g:

Proof We can use induction to reduce to the case where w D s 2 SAut.n/. The
proof now is a combinatorial group-theoretic calculation: we will show how to rewrite
�.s/.r/ as a product of relations of the desired form.

We start by dealing with the case where r is of the form (R0). Observe that

�.s/.M
x˛a ; Œx

ˇ

b
;x

c �
/ and �.s/.M

x˛a ; Œx

c ;x

ˇ

b
�
/�1

agree up to (R0), except in two cases. These are

�.M
ˇ

x˛a ; xb
/.M

x
�ˇ

b
; Œx


c ;x

ı
d
�
/DMx˛a ; Œx


c ;x

ı
d
�Mx

�ˇ

b
; Œx


c ;x

ı
d
�

�.M
ˇ

x˛a ; xb
/.M

x
ˇ

b
; Œx


c ;x

ı
d
�
/D C ˇxa; xbMx�˛a ; Œx


c ;x

ı
d
�Mx

ˇ

b
; Œx


c ;x

ı
d
�
C�ˇxa; xb :
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(H1) ŒC
ˇ
xa; xb ; C

ı
xc ; xd

�D 1; possibly with b D d .

(H2) ŒMx˛a ; Œx
ˇ

b
;x

c �;Mxı

d
; Œx�e ;x

�

f
��D1; possibly with fb; cg\fe; f g¤¿ or x˛a Dx

�ı
d

as long as x˛a ¤ xıd , a … fe; f g and d … fb; cg.

(H3) ŒC
ˇ
xa; xb ;Mx


c ; Œx

ı
d
;x�e ��D 1,

possibly with b 2 fd; eg if c … fa; bg and a … fc; d; eg.

(H4) ŒC
ˇ
xc ; xbC

ˇ
xa; xb ; C

˛
xc ; xa

�D 1:

(H5) ŒC
�
xa; xc ; C

�ı
xa; xd

�ŒC
�ˇ
xa; xb ;Mx

ˇ

b
; Œx


c ;x

ı
d
��D 1:

(H6) ŒMx˛a ; Œx
ˇ

b
;x

c �;Mxı

d
; Œx˛a ;x

�
e ��ŒMxı

d
; Œx˛a ;x

�
e �;Mxı

d
; Œx


c ;x

ˇ

b
���

ŒMxı
d
; Œx


c ;x

ˇ

b
�; C
��
xd ; xe

�D 1, possibly with b D e or c D e .

(H7) ŒMx

c ; Œx

˛
a ;x

ı
d
�; C

ˇ
xa; xb �ŒC

�ı
xc ; xd

;Mx

c ; Œx

˛
a ;x

ˇ

b
��ŒMx


c ; Œx

˛
a ;x

ˇ

b
�;Mx


c ; Œx

˛
a ;x

ı
d
��D 1,

possibly with b D d .
(H8) ŒMx˛a ; Œx

ˇ

b
;x

c �; C

ı
xa; xd

C ıxb; xdC
ı
xc ; xd

�D 1.

(H9) ŒC

xa; xcC


xb; xc ; C

ˇ
xa; xbC

ˇ
xc ; xb �ŒMx˛a ; Œx

ˇ

b
;x

c �; C

˛
xb; xa

C ˛xc ; xa �D 1.

Table 4: The set SH .n/ of basic commutator relators such that the GLn.Z/–
orbit of fhr j r 2 SH .n/g spans H2.IAn/ . Distinct letters are assumed to
represent distinct indices unless stated otherwise. We use the notation hi . � / ,
with inputs the appropriate x˛a , xˇ

b
, xc , xı

d
, x�e , x�

f
, for the elements in

H2.IAn/ , which we use later.

In the first case,

�.M
ˇ

x˛a ; xb
/.M

x
�ˇ

b
; Œxı

d
;x

c �
/�1 DM

x
�ˇ

b
; Œx


c ;x

ı
d
�
Mx˛a ; Œx


c ;x

ı
d
�:

In the second case,

�.M
ˇ

x˛a ; xb
/.M

x
ˇ

b
; Œxı

d
;x

c �
/�1 D C ˇxa; xbMx

ˇ

b
; Œx


c ;x

ı
d
�
Mx�˛a ; Œx


c ;x

ı
d
�C
�ˇ
xa; xb

:

In both cases, the two expressions differ by an application of (R2). This means that
�.s/ of an (R0) relation can always be written using (R0) and (R2) relations.

Next we explain the computations that prove the lemma for (R5) and (R6) relations.
These are in the list rewritetheta(R5)(R6). In these computations we reduce
�.s/.r/ to the trivial word where s 2 S˙1A and r is an (R5) or (R6) relation. These
reductions may use any of the basic relations for IAn , including (R5) and (R6) them-
selves, but notably may not use the images of (R5) and (R6) relations under � . We
may use the images of (R1)–(R4), (R7)–(R9), (H8) and (H9) under � .

Despite these restrictions, we may use the extra relations from exiarel in these
computations. Our relation exiarel(3,[xa,xb,xc,xd]) is (H8), and the relation
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exiarel(4,[xa,xb,xc,xd]) is equivalent to (H8) modulo the basic relations. Rela-
tion exiarel(7,[xa,xb,xc]) is (H9), and relation exiarel(6,[xa,xb,xc]) and
relation exiarel(8,[xa,xb,xc,xd]) are equivalent to (H9) modulo the basic rela-
tions. All the other exiarel relations can be derived without using images of (R5) or
(R6) under � . These facts can be verified by inspecting exiarelchecklist.

If s is a swap or an inversion move, then acting by �.s/ is always the same as
acting on the parameters of the relation by s in the obvious way. Therefore the list
rewritetheta(R5)(R6) only contains cases where s is a transvection.

We use several redundancies between different forms of the relations (R5) and (R6) to
reduce the number of computations. Inverting the parameter xˇ

b
in (R5) (as it appears

in Table 2) is the same as cyclically permuting the relation. Inverting the parameter
x˛a in (R6) is the same as applying a relation from (R2) to the original (R6) relation.
Swapping the roles of xˇ

b
and x


c in (R6) is the same as inverting and cyclically

permuting the original (R6) relation and applying a relation from (R2).

We use the identity

C�ˇxa; xb�.M
ˇ

x˛a ; xb
/.t/C ˇxa; xb D �.M

�ˇ

x�˛a ; xb
/.t/;

which holds in IAn for any t 2 IAn . This is a consequence of Proposition 3.13.
In particular, this means that we only need to consider one of �.M

x˛a ; x
ˇ

b

/.r/ and
�.M

x�˛a ; x
�ˇ

b

/.r/; if one is trivial then so is the other.

Since the computations in rewritetheta(R5)(R6) rewrite all configurations of
�.s/.r/ for r an (R5) or (R6) relation, up to these reductions, this proves the lemma.

The next lemma allows us to deal with certain combinations of (R5) and (R6) rela-
tions. The ordered triple of generators of Fn involved in a commutator transvection
Mx˛

i
; Œx

ˇ

j
;x


k
� is .xi ; xj ; xj /. There are eight commutator transvections involving a

given triple of generators.

Lemma 6.4 Fix distinct 1� a; b; c � n, and let w 2R\ ŒF; F � be a product of (R5)
and (R6) relations whose commutator transvections involve only .xa; xb; xc/, in order.
Then kwk can be written as a sum of elements of the form kvk with v an (H2) relation.

Proof Let F 0 be the subgroup of F generated by the eight commutator transvec-
tions involving .xa; xb; xc/ and the two conjugation moves fCxa; xb ; Cxa; xcg, and
let R0 � F 0 be the normal closure in F 0 of the (R5) and (R6) relations that can be
written as products of elements of F 0 . We thus have w 2R0\ ŒF 0; F 0�. Our first goal
is to better understand .R0 \ ŒF 0; F 0�/=ŒF 0; R0� and R0=ŒF 0; R0�. Consider the exact
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sequence of abelian groups

0!
R0\ ŒF 0; F 0�

ŒF 0; R0�
!

R0

ŒF 0; R0�
!

R0

R0\ ŒF 0; F 0�
! 0:

We find generators for the first group in the sequence by considering a related exact
sequence of free abelian groups.

Let v1; : : : ; v8 be the eight commutator transvections in SIA.n/ that only involve
.xa; xb; xc/, enumerated as in Table 5. Similarly, let r1; : : : ; r8 be the eight (R5) rela-
tions in F 0 and let r9; : : : ; r16 denote the eight (R6) relations lying in F 0 , enumerated
as in Table 5. Let A be the free abelian group freely generated by r1; : : : ; r16 , and
let B be the free abelian group freely generated by v1; : : : ; v8 . We consider the map
A! B that counts the exponent-sum of each commutator transvection generator. Let
C denote the kernel of this map and let B 0 denote the image.

name generator

v1 Mxa; Œxb;xc�

v2 Mx�1a ; Œxb;xc�

v3 Mxa; Œx
�1
b
;xc�

v4 Mx�1a ; Œx�1
b
;xc�

v5 Mxa; Œxb;x
�1
c �

v6 Mx�1a ; Œxb;x
�1
c �

v7 Mxa; Œx
�1
b
;x�1c �

v8 Mx�1a ; Œx�1
b
;x�1c �

name relation

r1 Cxa; xbMxa; Œxb;xc�C
�1
xa; xb

Mxa; Œx
�1
b
;xc�

r2 Cxa; xbMx�1a ; Œxb;xc�
C�1xa; xbMx�1a ; Œx�1

b
;xc�

r3 C�1xa; xcMxa; Œxb;xc�Cxa; xcMxa; Œxb;x
�1
c �

r4 C�1xa; xcMx�1a ; Œxb;xc�
Cxa; xcMx�1a ; Œxb;x

�1
c �

r5 C�1xa; xcMxa; Œx
�1
b
;xc�

Cxa; xcMxa; Œx
�1
b
;x�1c �

r6 C�1xa; xcMx�1a ; Œx�1
b
;xc�

Cxa; xcMx�1a ; Œx�1
b
;x�1c �

r7 Cxa; xbMxa; Œxb;x
�1
c �C

�1
xa; xb

Mxa; Œx
�1
b
;x�1c �

r8 Cxa; xbMx�1a ; Œxb;x
�1
c �C

�1
xa; xb

Mx�1a ; Œx�1
b
;x�1c �

r9 Mxa; Œxb;xc�Mx�1a ; Œxb;xc�
ŒC�1xa; xb ; C

�1
xa; xc

�

r10 Mxa; Œx
�1
b
;xc�

Mx�1a ; Œx�1
b
;xc�

ŒCxa; xb ; C
�1
xa; xc

�

r11 Mxa; Œxb;x
�1
c �Mx�1a ; Œxb;x

�1
c �ŒC

�1
xa; xb

; Cxa; xc �

r12 Mxa; Œx
�1
b
;x�1c �Mx�1a ; Œx�1

b
;x�1c �ŒCxa; xb ; Cxa; xc �

r13 Mx�1a ; Œxb;xc�
Mxa; Œxb;xc�ŒC

�1
xa; xb

; C�1xa; xc �

r14 Mx�1a ; Œx�1
b
;xc�

Mxa; Œx
�1
b
;xc�

ŒCxa; xb ; C
�1
xa; xc

�

r15 Mx�1a ; Œxb;x
�1
c �Mxa; Œxb;x

�1
c �ŒC

�1
xa; xb

; Cxa; xc �

r16 Mx�1a ; Œx�1
b
;x�1c �Mxa; Œx

�1
b
;x�1c �ŒCxa; xb ; Cxa; xc �

Table 5: Labels for the eight commutator transvections using xa , xb and xc
in order, and for the sixteen (R5) and (R6) relations using these commutator
transvections.
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Since R0 is normally generated by relations r1; : : : ; r16 , we know that R0=ŒF 0; R0� is
generated by the images of these relations. Thus there is a surjection A!R0=ŒF 0; R0�

that sends each basis element to the image of the relation with the same name. The group
B is a subgroup of F 0=ŒF 0; F 0�. The natural map R0=ŒF 0; R0�! F 0=ŒF 0; F 0� counts
exponent-sums of generators. Since the generators r1; : : : ; r16 all have zero exponent-
sum for conjugation move generators, we do not lose any information by counting only
commutator transvection generators in B . This means we have a commuting square

A //

��

B

��

R0=ŒF 0; R0� // F 0=ŒF 0; F 0�

The subgroup B 0 thus maps surjectively onto .R0ŒF 0; F 0�/=ŒF 0; F 0�, which is iso-
morphic to R0=.R0\ ŒF 0; F 0�/. Therefore we have a commuting diagram with exact
rows

0 // C //

��

A //

��

B 0 //

��

0

0 // .R0\ ŒF 0; F 0�/=ŒF 0; R0� // R0=ŒF 0; R0� // R0=.R0\ ŒF 0; F 0�/ // 0

The map B 0! F 0=ŒF 0; F 0� is injective, so B 0!R0=.R0\ ŒF 0; F 0�/ is also injective.
By construction, A!R0=ŒF 0; R0� is surjective. It follows from a simple diagram chase
that C ! .R0\ ŒF 0; F 0�/=ŒF 0; R0� is surjective.

The map A! B is given by the 8� 16 matrix0BBBBBBBBBBBB@

1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0

1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0

0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1

1CCCCCCCCCCCCA
A straightforward linear algebra computation shows that C , the kernel of this map, is
generated by the nine vectors

r1� r3� r5C r7; r2� r4� r6C r8; �r1� r2C r13C r14;

�r3� r4C r13C r15; r1C r2� r5� r6� r13C r12;

r9� r13; r10� r14; r11� r15; r12� r16:
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Since C surjects on .R0\ ŒF 0; F 0�/=ŒF 0; R0�, we know that .R0\ ŒF 0; F 0�/=ŒF 0; R0�
is generated by the images of these nine elements.

We will now describe calculations that show that each of the generators above is
equivalent modulo ŒF 0; R0� to an (H2) relation. In each case, we find representatives in
R0\ ŒF 0; F 0� of the image of the given element of C . Since we are working modulo
ŒF 0; R0� we may conjugate any ri in computing the representative. In reducing to an
(H2) relation, we may also apply any relation at all, as long as we apply its inverse
somewhere else.

The last four generators are easily equivalent to (H2) relations. We skip the second
kernel generator because its image is equal to the first after inverting xa , and we skip
the fourth because its image is equal to the third after swapping xb and xc . The three
computations in the list kernellist finish the lemma by showing that the first, third
and fifth generators are equivalent to (H2) relations.

Proof of Theorem 6.1 We must show that every element of CH2.IAn/ that happens
to lie in H2.IAn/ can be written as a sum of elements of

fk�.w/.r/k j w 2 SAut.n/
� and r is one of the relations (H1)–(H9) from Table 4g:

Combining Lemmas 6.2 and 6.3 with the fact that (R0) and (R5) and (R6) are the only
relations in our L–presentation for IAn that do not appear as one of the commutator
relations in Table 4, we see that it enough to deal with sums of elements of the set

fkrk j r is one of the relations (R0), (R5) and (R6)g:

So consider kwk 2 H2.IAn/ that can be written as

kwk D

mX
iD1

krik

with each ri either an (R0), (R5) or (R6) relation.

For any choice of distinct 1� a; b; c � n, we consider the commutator transvection
generators involving .xa; xb; xc/ or .xa; xc ; xb/, and the (R5), (R6) and (R0) relations
involving only these commutator transvections. We write

kwk D

nC.n�12 /X
iD1

kwik;

where each kwik is a sum of (R5), (R6) and (R0) relations involving only a single
choice of .xa; fxb; xcg/. To prove the theorem, it is enough to show that we can write
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each of the kwik as a sum of our generators for H2.IAn/. So we assume kwkD kwik
for some i ; this amounts to fixing a choice of .xa; fxb; xcg/ and assuming kwk is a
sum of (R0), (R5) and (R6) generators using only commutator transvections involving
this triple.

We call a commutator transvection Mx˛
i
; Œx

ˇ

j
;x


k
� positive if j < k , and negative other-

wise. Each (R5) or (R6) relation contains two positive commutator transvections (and no
negative ones), or two negative ones (and no positive ones). Suppose krik is an (R5) or
(R6) relation with negative generators, appearing in the sum defining kwk. By inserting
an (R0) relation and its inverse into ri , we replace both of the negative generators with
positive ones. Let r 0i denote the word we get by doing this to ri . Since we have added
and subtracted the same element in CH2.IAn/ , we have kr 0ikDkrik. Modifying an (R5)
or (R6) relation in this way gives us the inverse of an (R5) or (R6) relation involving
the same .xa; fxb; xcg/, up to cyclic permutation of the relation. So we interpret
this move as rewriting the sum defining kwk: we replace the relation krik with the
new relation kr 0ik, which is an (R5) or (R6) relation without negative commutator
transvections. We proceed to eliminate all the negative commutator transvections in
(R5) and (R6) relations in kwk this way.

Having done this, the only negative commutator transvections the sum defining kwk
appear in (R0) relations. Since kwk 2 H2.IAn/, the negative generators appear with
exponent-sum zero; so the (R0) relations appear in inverse pairs. This means that
we can simply rewrite the sum without any (R0) relations. So kwk is a sum of (R5)
and (R6) relations whose only commutator transvections are positive ones involving
.xa; fxb; xcg/. Then kwk satisfies the hypotheses of Lemma 6.4 and therefore is a
sum of (H2) generators.

7 Coinvariants and congruence subgroups

This section contains the proofs of Theorems C and D, which can be found in Section 7.2
and 7.3, respectively. Both of these proofs depend on calculations that are contained in
Section 7.1.

7.1 The action of GLn.Z/ on H2.IAn/

This section is devoted to understanding the action of GLn.Z/ on our generators
for H2.IAn/. The results in this section consist of long lists of equations that are
verified by a computer, so on their first pass a reader might want to skip to the
next two sections to see how they are used. For i D 1; : : : ; 9, we use the notation
hi .x

˛1
a1 ; : : : ; x

˛ki
aki
/2H2.IAn/ for the image in H2.IAn/ of the i th relation from SH .n/,
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with the given parameters, as specified in Table 4. Since the action of GLn.Z/ is induced
from the action of Aut.Fn/, we record the action of various Aut.Fn/ generators on
these generators.

The computations justifying Lemmas 7.2–7.6 are in the file h2ia.g. We use the Hopf
isomorphism H2.IAn/Š .R\ ŒF; F �/=ŒF;R�, where F D F.SIA.n// and R < F is
the group of relations of IAn . We justify these equations by performing computations
in R\ ŒF; F �� F . In each computation, we start with a word representing one side
of the equation and reduce to the trivial word using words representing the other side.
Since ŒF;R� is trivial, we may use any relations in inverse pairs, we may apply relations
from in any order, and we may cyclically permute relations.

We note some identities, which we leave as an exercise.

Lemma 7.1 The following identities hold in H2.IAn/. The letters in subscripts are
assumed distinct unless otherwise noted.

(a) h1.x˛a ; x
ˇ

b
; x

c ; x

ı
b
/D�h1.x

˛
a ; x

ˇ

b
; x

c ; x
�ı
b
/, even if b D d .

(b) h3.x˛a ; x
ˇ

b
; x

c ; x

ı
b
; x�e/D�h3.x

˛
a ; x

ˇ

b
; x

c ; x

ı
b
; x��e /, even if b D e or c D e .

(c) h3.x˛a ; x
ˇ

b
; x

c ; x

ı
b
; x�e/D�h3.x

˛
a ; x


c ; x

ˇ

b
; xı
b
; x�e/, even if b D e or c D e .

We also need the following, which is not obvious.

Lemma 7.2 The following identities hold in H2.IAn/. The letters in subscripts are
assumed distinct unless otherwise noted.

(a) h6.x˛a ; x
�
e ; x


c ; x

ı
d
; x�e/D

h6.x
˛
a ; x


c ; x
��
e ; xı

d
; x�e/� h7.x

˛
a ; x

�
e ; x

ı
d
; x�e/� h7.x

˛
a ; x
��
e ; xı

d
; x�e/.

(b) h6.x˛a ; x
ˇ

b
; x

c ; x

ı
d
; x�e/D�h6.x

˛
a ; x


c ; x

ˇ

b
; xı
d
; x�e/, even if b D e or c D e .

Proof Computations justifying these equations appear in the list lemma7pt2.

We proceed by expressing the action of many elementary matrices from GLn.Z/ on
our generators.

Lemma 7.3 The following identities hold in H2.IAn/. The letters in subscripts are
assumed distinct unless otherwise noted.

(a) M �

x
ˇ

b
; xe
� h1.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/D h1.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/C h1.x

˛
a ; x

�
e ; x


c ; x

ı
d
/.

(b) M �

x
ˇ

b
; xe
� h1.x

˛
a ; x

�
e ; x


c ; x

ı
d
/D h1.x

˛
a ; x

�
e ; x


c ; x

ı
d
/.
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(c) M ı

x
ˇ

b
; xd
� h1.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/D h1.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/C h1.x

˛
a ; x

ı
d
; x

c ; x

ı
d
/.

(d) M��
x˛a ; xe

� h1.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
/D h1.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/� h3.x

˛
a ; x

�
e ; x

ˇ

b
; x

c ; x

ı
d
/,

even if x�e D x
ı
d

.

(e) M��
xı
d
; xe
� h3.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x
�

f
/D

h3.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x
�

f
/�h2.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x�e ; x

�

f
/, even if fb; cg\fe; f g¤¿.

(f) M ı
x�˛a ; xd

� h2.x
˛
a ; x

ˇ

b
; x

c ; x
�ı
d
; x
�

f
; x�e/D

h2.x
˛
a ; x

ˇ

b
; x

c ; x
�ı
d
; x
�

f
; x�e/� h2.x

˛
a ; x

ˇ

b
; x

c ; x
�˛
a ; x�e ; x

�

f
/,

even if fb; cg\ fe; f g ¤¿.

Proof These computations appear in lemma7pt3. The equations where coincidences
are allowed are justified in several different computations.

Lemma 7.4 The following identities hold in H2.IAn/. The letters in subscripts are
assumed distinct.

(a) M ˇ

xı
d
; xb
� h4.x

˛
a ; x

ı
d
; x

c /D h4.x

˛
a ; x

ı
d
; x

c /C h4.x

˛
a ; x

ˇ

b
; x

c /.

(b) M ˇ

xı
d
; xb
� h4.x

˛
a ; x

ˇ

b
; x

c /D h4.x

˛
a ; x

ˇ

b
; x

c /.

(c) M�
x
ˇ

b
; xc
� h1.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/D

h1.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
/� h3.x

ˇ

b
; xı
d
; x

c ; x

˛
a ; x


c /C

h5.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
/C h4.x


c ; x

ı
d
; x˛a /.

(d) M �

xı
d
; xe
� h8.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/D

h8.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
/C h8.x

˛
a ; x

ˇ

b
; x

c ; x

�
e/C .(H1) generators/.

(e) M �

xı
d
; xe
� h8.x

˛
a ; x

ˇ

b
; x

c ; x

�
e/D h8.x

˛
a ; x

ˇ

b
; x

c ; x

�
e/.

Proof These computations appear in lemma7pt4.

Lemma 7.5 The following identities hold in H2.IAn/. The letters in subscripts are
assumed distinct.

(a) M �

x
�

f
; xe
� h6.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x
�

f
/D

h6.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x
�

f
/C h6.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x�e/.

(b) M �

x
�

f
; xe
� h6.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x�e/D h6.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
; x�e/.
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(c) M��
x

c ; xe
� h7.x

˛
a ; x

ˇ

b
; x�e ; x

ı
d
/D

h7.x
˛
a ; x

ˇ

b
; x�e ; x

ı
d
/C h7.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/C h6.x

�
e ; x

ˇ

b
; x˛a ; x


c ; x

ı
d
/C

.(H1)–(H3) generators/.

(d) M��
x

c ; xe
� h7.x

˛
a ; x

ˇ

b
; x

c ; x

ı
d
/D

h7.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
/C h2.x

�
c ; x��e ; x�ı

d
; x

c ; x

ˇ

b
; x˛a /.

(e) M ˇ

xı
d
; xb
� h7.x

˛
a ; x

ı
d
; x

c ; x

ı
d
/D

h7.x
˛
a ; x

ı
d
; x

c ; x

ı
d
/C h7.x

˛
a ; x

ˇ

b
; x

c ; x

ˇ

b
C

h7.x
˛
a ; x

ˇ

b
; x

c ; x

ı
d
/C h7.x

˛
a ; x

ı
d
; x

c ; x

ˇ

b
/C .(H1) generators/.

(f) M ˇ

xı
d
; xb
� h7.x

˛
a ; x

ˇ

b
; x

c ; x

ˇ

b
/D h7.x

˛
a ; x

ˇ

b
; x

c ; x

ˇ

b
/.

(g) M ˇ

xı
d
; xb
� h7.x

˛
a ; x
�ı
d
; x

c ; x

ı
d
/D

h7.x
˛
a ; x
�ı
d
; x

c ; x

ı
d
/C h7.x

˛
a ; x
�ˇ

b
; x

c ; x

ˇ

b
/C

h7.x
˛
a ; x
�ı
d
; x

c ; x

ˇ

b
/� h7.x

˛
a ; x
�ˇ

b
; x

c ; x
�ı
d
/.

(h) M ˇ

xı
d
; xb
� h7.x

˛
a ; x
�ˇ

b
; x

c ; x

ˇ

b
/D h7.x

˛
a ; x
�ˇ

b
; x

c ; x

ˇ

b
/.

(i) M �

x
�

f
; xe
� h6.x

˛
a ; x

�

f
; x

c ; x

ı
d
; x
�

f
/D

h6.x
˛
a ; x

�

f
; x

c ; x

ı
d
; x
�

f
/� h7.x

˛
a ; x

�
e ; x

ı
d
; x
�

f
/� h7.x

˛
a ; x

�
e ; x

ı
d
; x�e/C

h6.x
˛
a ; x

�

f
; x

c ; x

ı
d
; x�e/� h7.x

˛
a ; x
��
e ; xı

d
; x
�

f
/� h7.x

˛
a ; x
��
e ; xı

d
; x�e/C

h6.x
˛
a ; x

�
e ; x


c ; x

ı
d
; x
�

f
/C h6.x

˛
a ; x

�
e ; x


c ; x

ı
d
; x�e/.

(j) M �

x
�

f
; xe
� h6.x

˛
a ; x

�
e ; x


c ; x

ı
d
; x�e/D h6.x

˛
a ; x

�
e ; x


c ; x

ı
d
; x�e/.

Proof These computations appear in lemma7pt5.

Lemma 7.6 The following identities hold in H2.IAn/. The letters in subscripts are
assumed distinct.

(a) M ı

x
ˇ

b
; xd
� h9.x

˛
a ; x

ˇ

b
; x

c /D

h9.x
˛
a ; x

ˇ

b
; x

c /C h9.x

˛
a ; x

ı
d
; x

c /C .(H1)–(H5) generators/.

(b) M ı

x
ˇ

b
; xd
� h9.x

˛
a ; x

ı
d
; x

c /D h9.x

˛
a ; x

ı
d
; x

c /C .(H1)–(H6) generators/.

Proof These computations are contained in the list lemma7pt6, but they take some
explanation. We use the relations exiarel(5,[...]) frequently in these compu-
tations; these relations are always combinations of (H1) and (H4) relations. We
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use exiarel(7,[xa,xb,xc]) to represent h9.x˛a ; x
ˇ

b
; x

c /, but we also use other

relations in this computation. The relation exiarel(8,[xa,xb,xc,xd]) is an ex-
panded version of this relation that behaves better under this action. Its derivation in
exiarelchecklist shows that it differs from �h9.x˛a ; x

ˇ

b
; x

c / only by (H1), (H4)

and (H5) relations. We also use exiarel(6,[xa,xb,xc,xd]); this differs from
h9.x

˛
a ; x

ˇ

b
; x

c / by (H1) and (H4) relations, and an (R6) relation. This is apparent in

the derivation of exiarel(7,[xa,xb,xc]) in exiarelchecklist.

The computation justifying Lemma 7.6(a) shows directly that the image of the relation
exiarel(8,[xa,xb,xc,xd]) under [["M",xb,xd]] can be reduced to the trivial
word by applying

� exiarel(6,[xa,xd,xc]),
� iw(exiarel(7,[xa,xb,xc])),
� (H1)–(H5) relations (some in exiarel(5,[...]) relations),
� (R5) and (R6) relations, and
� elements from ŒF;R�, including inverse pairs of instances of exiarel(1,[...])

and exiarel(3,[...]).

Since we start and end with elements of R\ ŒF; F � in this computation, the use of
(R5) and (R6) (in one case inside exiarel(6,[xa,xb,xc,xd])) is inconsequential;
by Lemma 6.4 this can only change the outcome by (H2) relations. So this proves
Lemma 7.6(a).

The computation justifying Lemma 7.6(b) is similar, but uses an instance of the relation
exiarel(2,[...]). The derivation in exiarelchecklist shows that this relation
is a combination of (H2), (H5) and (H6) relations, and elements of ŒF;R�.

7.2 Coinvariants of H2.IAn/

In this section, we prove Theorem C, which asserts that for the GLn.Z/–coinvariants
of H2.IAn/ vanish for n� 6.

Proof of Theorem C We use the generators (H1)–(H9) from Table 4. To show that
the coinvariants H2.IAn/GLn.Z/ are trivial, we show that the coinvariance class of each
of these generators is trivial. The coinvariants are defined to be the largest quotient of
H2.IAn/ with a trivial induced action of GL.n;Z/. Since the action of GL.n;Z/ on
H�.IAn/ is induced by the action of Aut.Fn/ on IAn , this means that H2.IAn/GLn.Z/
is the quotient of H2.IAn/ by the subgroup generated by classes of the form f � r � r ,
where f 2 Aut.Fn/ and r 2 H2.IAn/. Elements of the form f � r � r are called
coboundaries.
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In fact, we have already shown in Lemmas 7.1–7.6 that the subgroup of H2.IAn/
generated by coboundaries contains our generators from Theorem 6.1. We show this
for each generator in the equations above as follows:

� (H1) in equations (a) and (c) of Lemma 7.3, also using an observation from
Lemma 7.1,

� (H2) in equations (e) and (f) of Lemma 7.3,
� (H3) in Lemma 7.3(d), also using an observation from Lemma 7.1,
� (H4) in Lemma 7.4(a),
� (H5) in Lemma 7.4(c),
� generic (H6) in Lemma 7.5(a),
� (H7) in equations (c), (e) and (g) of Lemma 7.5,
� the special cases of (H6) in Lemma 7.5(i), also using equations (a) and (b) of

Lemma 7.2,
� (H8) in Lemma 7.4(d) and
� (H9) in Lemma 7.6(a).

Each equation shows how to express the given generator as a sum of coboundaries and
generators previously expressed in terms of coboundaries:

Remark 7.7 The equations above assume that distinct subscripts label distinct ele-
ments. This means that Lemma 7.5(a) requires six basis elements. We do not know if
the generic (H6) generator (a five-parameter generator) can be expressed as a sum of
coboundaries without using a sixth basis element. Therefore we require n� 6 in the
statement and we do not know if the theorem holds for smaller n.

7.3 Second homology of congruence subgroups

In this section, we prove Theorem D, which asserts that H2.Aut.Fn; `/IQ/ D 0

for n � 6 and ` � 2. The key to this is the following lemma. Let GLn.Z; `/ be
the level-` congruence subgroup of GLn.Z/, that is, the kernel of the natural map
GLn.Z/! GLn.Z=`/.

Like in Theorem C, we require n� 6 because of Lemma 7.5(a). We do not know if
the result holds for smaller n.

Lemma 7.8 For n� 6 and `� 2 we have .H2.IAnIQ//GLn.Z;`/ D 0.

Proof Again we use our generators from Theorem 6.1. The universal coefficient theo-
rem implies that H2.IAnIQ/ is generated by the images of our generators from H2.IAn/.
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We have two approaches for showing that a generator has trivial image. The first is
the following: if f 2 Aut.Fn/ and r; s 2 H2.IAn/ with f � r � r D s and f � s D s in
.H2.IAnIQ//GLn.Z;`/ , then

f ` � r � r D `s in .H2.IAnIQ//GLn.Z;`/:

If further f ` lies in Aut.Fn; `/ then this shows that s is trivial in .H2.IAnIQ//GLn.Z;`/.

The second approach is simpler: if f 2Aut.Fn/ and r; s 2H2.IAn/ with f �r�r D s
and r D 0 in .H2.IAnIQ//GLn.Z;`/ , then of course, s D 0 in .H2.IAnIQ//GLn.Z;`/ .

We show the generators have trivial images as follows:

� generic (H1) using equations (a) and (b) of Lemma 7.3 by the first approach,

� special cases of (H1) using Lemma 7.3(c) by the second approach, and using
Lemma 7.1,

� (H3) by Lemma 7.3(d) using the second approach, and using Lemma 7.1,

� (H2) by equations (e) and (f) of Lemma 7.3, using the second approach,

� (H4) by equations (a) and (b) of Lemma 7.4, using the first approach,

� (H5) by Lemma 7.4(c), by the second approach,

� generic (H6) by equations (a) and (b) of Lemma 7.5, using the first approach,

� generic (H7) by equations (c) and (d) of Lemma 7.5, by the first approach,

� special cases of (H7) by equations (e) and (f), and by equations (g) and (h), of
Lemma 7.5, both by the first approach,

� one special case of (H6) by equations (i) and (j) of Lemma 7.5, by the first
approach,

� other special cases of (H6) using the first case and equations (a) and (b) of
Lemma 7.2,

� (H8) by equations (d) and (e) of Lemma 7.4 by the first approach and

� (H9) by equations (a) and (b) of Lemma 7.6 by the first approach.

Proof of Theorem D We examine the Hochschild–Serre spectral sequence associated
to the short exact sequence

(12) 1! IAn! Aut.Fn; `/! GLn.Z; `/! 1:

First, the Borel stability theorem [7] implies that H2.GLn.Z; `/IQ/D 0. Next, recall
from the introduction that H1.IAnIQ/Š Hom

�
Qn;

V2Qn
�
; the group GLn.Z/ acts

on this in the obvious way. Since Hom
�
Rn;

V2Rn� is an irreducible representation of
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the algebraic group SLn.R/, it follows from work of Borel [6, Proposition 3.2] that
H1.IAnIQ/ is an irreducible representation of GLn.Z; `/ (we remark that the above
reference is one of the steps in the original proof of the Borel density theorem; the
result can also be derived directly from the Borel density theorem). It thus follows from
the extension of the Borel stability theorem to nontrivial coefficient systems [8] that

H1.GLn.Z; `/IH1.IAnIQ//D 0:

Lemma 7.8 says that

H0.GLn.Z; `/IH2.IAnIQ//Š .H2.IAnIQ//GLn.Z;`/ D 0:

The pCqD 2 terms of the Hochschild–Serre spectral sequence associated to (12) thus
all vanish, so H2.Aut.Fn; `/IQ/D 0, as desired.
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Tautological integrals on curvilinear Hilbert schemes

GERGELY BÉRCZI

We take a new look at the curvilinear Hilbert scheme of points on a smooth projective
variety X as a projective completion of the nonreductive quotient of holomorphic
map germs from the complex line into X by polynomial reparametrisations. Using
an algebraic model of this quotient coming from global singularity theory we develop
an iterated residue formula for tautological integrals over curvilinear Hilbert schemes.

14C05, 14N10, 55N91

1 Introduction

Let X be a smooth projective variety of dimension n and let F be a rank-r algebraic
vector bundle on X . Let X Œk� denote the Hilbert scheme of length-k subschemes
of X and let F Œk� be the corresponding tautological rank-rk bundle on X Œk� whose
fibre at � 2X Œk� is H 0.�;F j�/.

Let Hilbk
0.C

n/ be the punctual Hilbert scheme defined as the closed subset of .Cn/Œk�D

Hilbk.Cn/ parametrising subschemes supported at the origin. Following Rennemo [33]
we define punctual geometric subsets as constructible subsets Q� Hilbk

0.C
n/ which

are unions of isomorphism classes of schemes, that is, if � 2Q and � 0 2 Hilbk
0.C

n/

are isomorphic (ie they have isomorphic coordinate rings), then � 0 2Q. Geometric
subsets of X Œk� are those generated by finite unions, intersections and complements
from sets of the form

P .Q1; : : : ;Qs/D f� 2X Œk�
W � D �1 t � � � t �s for some �i 2Qig:

For a geometric subset Z let Z denote its Zariski closure in X Œk� . Let M.c1; : : : ; crk/

be a monomial in the Chern classes ci D ci.F
Œk�/ of weighted degree equal to dimZ ,

where the weight of ci is i . Let ��.Z/ denote the algebra of differential forms
supported on the smooth part of Z (see eg Remark 2.3). If ˛M 2�

�.Z/ is a closed
differential form representing the cohomology class of M.c1; : : : ; crk/ then the Chern
numbers

ŒZ �\M.c1; : : : ; crk/D

Z
Z
˛M

are called tautological integrals of F Œk� . Rennemo [33] shows that these integrals can
be expressed in terms of the Chern numbers of X and F .
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2898 Gergely Bérczi

Theorem 1.1 (Rennemo [33]) Let Mr;n denote the set of weighted-degree-n mono-
mials in the Chern classes c1.F /; : : : ; cr .F / and c1.X /; : : : ; cn.X /. For S 2Mr;n

let ˛S 2�
top.X / be a closed differential form representing the cohomology class of S

and let yS D
R
X ˛S denote the corresponding intersection number. Let Z �X Œk� be a

geometric subset. Then for any Chern monomial M DM.c1; : : : ; crk/ of weighted
degree dimZ there is a polynomial RM in jMr;nj variables depending only on M

such that
ŒZ �\M.c1; : : : ; crk/DRM .yS W S 2Mr;n/:

The proof in [33] is nonconstructive and based on constructing homology classes
supported on certain diagonals of X n (see also Li [27]) and the fact that an element in
the cohomology ring of a Grassmannian is a polynomial in the Chern classes of the
universal bundle. Lacking a method of obtaining information about this polynomial,
there is no apparent way of turning this proof into an algorithm. Explicit expressions for
tautological integrals are not known in general. On surfaces the method of Ellingsrud,
Göttsche and Lehn [15] yields a recursion which in principle computes the universal
polynomial explicitly. The top Segre classes of tautological bundles over surfaces
provides an example of this problem and the conjecture of Lehn [26] has been recently
proved by Marian, Oprea and Pandharipande [29] for K3 surfaces using virtual locali-
sation. However, [15] and [29] deal only with surfaces and their authors integrate over
the whole Hilbert scheme rather than over geometric subsets. Our method works in any
dimension for integration over a geometric subset called the curvilinear component.

Let X be a smooth projective variety of dimension n. This paper provides a closed iter-
ated residue formula for tautological integrals over the simplest geometric subsets P .Q/

where s D 1 and the punctual geometric subset Q is defined as

QD f� 2 Hilbk
0.C

n/ WO� 'CŒz�=zk
g:

We will see that Q is an irreducible component of the punctual Hilbert scheme. Points
of P .Q/ correspond to curvilinear subschemes on X , ie subschemes contained in the
germ of some smooth curve on X . In other words, these are the limit points on X Œk�

where k distinct points come together along a smooth curve. We denote this curvilinear
locus by CX k and its closure by CX Œk� , which we call the curvilinear Hilbert scheme.

The main result of the present paper is the following explicit formula for tautological
integrals over curvilinear Hilbert schemes.

Theorem 1.2 Let k�1 and P .x/DP .x1; : : : ;xr.kC1// be a polynomial of weighted
degree dim CX ŒkC1�

DnC.n�1/k in the variables xl of weight l for 1� l � r.kC1/.
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Tautological integrals on curvilinear Hilbert schemes 2899

Let cl D cl.F
ŒkC1�/ denote the l th Chern class of the tautological rank-r.kC1/ bundle

on X ŒkC1� . ThenZ
CX ŒkC1�

P .c/

D

Z
X

Res
zD1

.�1/k
Q

1�i<j�k.zi � zj /Qk.z/P .c.� � z; �//dzQ
iCj�l�k.zi C zj � zl/.z1 � � � zk/

n

kY
iD1

sX

�
1

zi

�
;

where �1; : : : ; �r are the Chern roots of F and cl.� � z; �/ denotes the l th symmetric
polynomial in the formal Chern roots f�j � zi ; �j W 1� i � k; 1� j � rg. The iterated
residue is .�1/k times the coefficient of .z1 � � � zk/

�1 in the expansion of the rational
expression in the domain z1� � � � � zk and

sX

�
1

zi

�
D 1C

s1.X /

zi
C

s2.X /

z2
i

C � � �C
sn.X /

zn
i

is the total Segre class of X at 1=zi . Finally Qk.z/ is a homogeneous polynomial
invariant of Morin singularities given as the equivariant Poincaré dual of a Borel orbit
defined in the following Remark.

Remark (explanation and features of the residue formula) � The iterated residue
gives a degree-n symmetric polynomial in Chern roots of F and Segre classes of X

reproving Theorem 1.1 This shows that the dependence on Chern classes of X in fact
can be expressed via the Segre classes of X . In particular, in Example 7.2 we give
a formula for the top Segre classes of tautological bundles over curvilinear Hilbert
schemes.

� For fixed k the rational expression

Rk D

Q
1�i<j�k.zi � zj /Qk.z/P .cl.� � z; �//dzQ

iCj�l�k.zi C zj � zl/

in the formula is independent of the dimension n and the iterated residue depends on n

only through the total Segre class sX of X . The iterated residue is then some linear
combination of the coefficients of (the expansion of) Rk multiplied by Segre classes
of X . By increasing the dimension, the iterated residue involves new terms of the
expansion of Rk , and we can think of Rk as a universal rational expression encoding
the integrals for fixed k but varying n.

� The Chern class cl.� � z; �/ is the coefficient of t l in

rY
jD1

.1C �j t/

kY
iD1

rY
jD1

.1� zi t C �j t/;

that is, the l th Chern class of the bundle with formal Chern roots �j , �j � zi .
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� The quick description of Qk is the following; see Remark 6.2 for details. The
GL.k/–module of 3–tensors Hom.Ck; Sym2Ck/ has a diagonal decomposition

Hom.Ck; Sym2Ck/D
M

1�m;r;l�k

Cqmr
l ;

where the Tk –weight of qmr
l

is .zmC zr � zl/. Define � D
Pk

mD1

Pk�m
rD1 qmr

mCr as a
point in the Bk –invariant subspace

Wk D

M
1�mCr�l�k

Cqmr
l � Hom.Ck; Sym2Ck/:

Then Qk.z/D ePŒBk�;Wk � is the equivariant Poincaré dual of the Borel orbit Bk�

in Wk . The list of these polynomials begins as follows: Q1 D Q2 D Q3 D 1,
Q4 D 2z1C z2� z4 . In principle, Qk may be calculated for each concrete k using a
computer algebra program, but at the moment, we do not have an efficient algorithm
for performing such calculations for large k and Qk is only known for k � 6.

The main motivation for studying tautological integrals is their immediate applications in
enumerative geometry and in particular in counting hypersurfaces in sufficiently ample
linear systems on X with a prescribed set of singularities. Let X be a smooth, projective,
connected variety, L a sufficiently ample line bundle on X and let T1; : : : ;Ts be
analytic singularity types. There are expected codimensions di associated with each Ti ,
and we let d D

P
di . Rennemo [33] shows (see also Göttsche [20] and Kleiman

and Piene [24]) that there is an m and a geometric set W DW .T1; : : : ;Ts/� X Œm�

such that a generic hypersurface containing a Z 2W has the specified singularities.
Therefore in a general Pd � jLj the number of hypersurfaces containing a subscheme
Z 2W is equal to

R
W cdim.W /.L

Œm�/; hence this tautological integral gives the number
of hypersurfaces in Pd with singularities T1; : : : ;Ts .

In the forthcoming paper Bérczi and Szenes [6], we extend the methods of the present
paper to study tautological integrals over more general geometric subsets supported at
more than one point on X and develop residue formulae for counts of hypersurfaces
with given sets of singularities. As a special case we present a new formula for the
number of ı–nodal curves on surfaces (and more generally ı–nodal hypersurfaces on
projective varieties) different from the well-known Göttsche conjecture [20], which by
now has several proofs; see Kazarian [23], Kool, Shende and Thomas [25], Liu [28]
and Tzeng [36].

The intersection theory of the Hilbert scheme of points on surfaces has been extensively
studied and it can be approached from different directions. One is the inductive
recursions set up by Ellingsrud, Göttsche and Lehn [15], an other possibility is using

Geometry & Topology, Volume 21 (2017)



Tautological integrals on curvilinear Hilbert schemes 2901

Nakajima calculus (see Lehn [26] and Nakajima [32]). By these methods, the integration
of tautological classes is reduced to a combinatorial problem. Another strategy is to
prove an equivariant version of Lehn’s conjecture for the Hilbert scheme of points
of C2 via appropriately weighted sums over partitions. More recently Marian, Oprea
and Pandharipande [29] proved a conjecture of Lehn [26] on integrals of top Segre
classes of tautological bundles over the Hilbert schemes of points over surfaces in the
K3 case via virtual localisation on the Quot schemes of the surface.

In this paper we suggest a new approach by taking a look at Hilbert schemes of points
from a different perspective. We work in arbitrary dimension, not just over surfaces.
For n� 3 not much is known about the irreducible components and singularities of the
punctual Hilbert scheme Hilbk

0.C
n/ so we only focus on the curvilinear component.

The crucial observation is that for k � 1 the punctual curvilinear locus CX ŒkC1�
p

at p 2X can be described as the nonreductive quotient of k–jets of holomorphic map
germs .C; 0/! .X;p/ by polynomial reparametrisations of C at the origin.

Let J
reg
k

X denote the regular k–jet bundle over X whose elements are equivalence
classes of germs of holomorphic maps f W .C; 0/ ! .X;p/ with the equivalence
relation f � g if and only if the derivatives satisfy f .j/.0/D g.j/.0/ for 0� j � k

when computed in some local coordinate system of X near p 2 X and f 0.0/ ¤ 0.
The reparametrisation group Diffk.1/ formed by k–jets of regular reparametrisations
of C at the origin acts fibrewise on J

reg
k

X and the curvilinear locus (as a set) can be
identified with the quasiprojective quotient

CX ŒkC1�
' J

reg
k

X=Diffk.1/:

Using an algebraic model coming from global singularity theory (we call this the
test-curve model) we reinterpret the natural embedding of the punctual curvilinear
locus CX ŒkC1�

p into the Grassmannian of codimension-k subspaces in the maximal
ideal m D .x1; : : : ;xn/ as a parametrised map CX ŒkC1�

p ,! Grassk.Dk
X ;p

/, where
Dk

X
D D�k

X
=OX is the bundle of order-k differential operators over X . The punc-

tual curvilinear Hilbert scheme CX
ŒkC1�
p is the closure of the image of this map

in Grassk.Dk
X ;p

/, and moving the point p on X , this gives an embedding of the
curvilinear component

�Grass
W CX ŒkC1� ,! Grassk.Dk

X /:

Integration on CX ŒkC1� can be reduced to integration along the fibre CX
ŒkC1�
p ;

see Section 7. We use equivariant localisation on CX
ŒkC1�
p following the strategy of

Bérczi and Szenes [7]. However, for tautological integrals we need to modify the proof
in [7] in two crucial points:

Geometry & Topology, Volume 21 (2017)
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� First, the main obstacle to applying localisation directly is that we don’t know
which fixed points of the ambient Grassmannian sit in the image CX

ŒkC1�
p . However,

for k C 1 � n we prove in [7] a residue vanishing theorem which tells that after
transforming the localisation formula into an iterated residue only one distinguished
fixed point of the torus action contributes to the sum. This mysterious property remains
valid for tautological integrals but its proof needs a more detailed study of the rational
differential form.

� Second, we need to extend the formula to the domain where kC 1> n, that is, the
number of points is not smaller than the dimension of X . The trick here is to increase the
dimension of the variety and study HilbkC1

0
.Cn/ as a subvariety of HilbkC1

0
.CkC1/.

The developed method reflects a surprising feature of curvilinear Hilbert schemes: in
order to evaluate tautological integrals and make the residue vanishing principle work
we need to increase the dimension of the variety first and work in the range where the
number of points does not exceed the dimension.

Acknowledgements I warmly thank Frances Kirwan and Jørgen Vold Rennemo for
the valuable discussions. I also thank the referee for the insightful comments and sug-
gestions. This paper has outgrown from [7] and my special thanks go to András Szenes.

2 Tautological integrals

Let X be a smooth projective variety of dimension n and let F be a rank-r bundle
(locally free sheaf) on X . Let

X Œk�
D f� �X W dim.�/D 0 and length.�/D dim H 0.�;O�/D kg

denote the Hilbert scheme of k points on X parametrising length-k subschemes of X

and F Œk� the corresponding rank-rk bundle on X Œk� whose fibre over � 2 X Œk� is
F ˝O� DH 0.�;F j�/.

Equivalently, F Œk�Dq�p
�.F /, where p and q denote the projections from the universal

family of subschemes U to X and X Œk� respectively:

X Œk� �X � U
q
//

p

��

X Œk�

X

For simplicity let Hilbk
0.C

n/ denote the punctual Hilbert scheme of k points on Cn

defined as the closed subset of Hilbk.Cn/ parametrising subschemes supported at
the origin. Following Rennemo [33] we define punctual geometric subsets to be the
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constructible subsets of the punctual Hilbert scheme containing all 0–dimensional
schemes of given isomorphism types.

Definition 2.1 A punctual geometric set is a constructible subset Q � Hilbk
0.C

n/

which is the union of isomorphism classes of subschemes, that is, if � 2 Q and
� 0 2 Hilbk

0.C
n/ are isomorphic schemes then � 0 2Q.

Definition 2.2 For an s–tuple Q D .Q1; : : : ;Qs/ of punctual geometric sets such
that Qi � Hilbki

0
.Cn/ and k D

P
ki define

P .Q/Df�2X Œk�
W�D�1t� � �t�s where �i2X Œki �

pi
\Qi for distinct p1; : : : ;psg�X Œk�:

A subset Z �X Œk� is geometric if it can be expressed as finite union, intersection and
complement of sets of the form P .Q/.

A straightforward way to produce punctual geometric subsets is by taking a complex
algebra A of complex dimension k and making the corresponding definition

QA D f� 2X Œk�
WO� 'Ag:

When ADCŒz�=zk then QA D CX Œk�
p is the punctual curvilinear locus defined in the

next section and
CX Œk�

D

[
p2X

CX
Œk�
p

is the curvilinear Hilbert scheme, the central object of this paper.

In this paper we work with singular homology and cohomology with rational coefficients.
For a smooth manifold X the degree of a class � 2H�.X / means its push-forward to
H�.pt/DQ. By choosing ˛� 2�top.X /, a closed compactly supported differential
form representing the cohomology class �, this degree is equal to the integral

�\ ŒX �D

Z
X

˛�:

Let Z�X Œk� be a geometric subset with closure Z and M.c1; : : : ; crk/ be a monomial
in the Chern classes ciD ci.F

Œk�/ of weighted degree equal to dimZ , where the weight
of ci is i . By choosing ˛M 2 �

�.X Œk�/, a closed compactly supported differential
form representing the cohomology class of M.c1; : : : ; crk/, the degree

(1) ŒZ �\M.c1; : : : ; crk/D

Z
Z
˛M

is called a tautological integral of F Œk� .

Remark 2.3 (1) In (1) the integral of ˛M on the smooth part of Z is absolutely
convergent and by definition we denote this by

R
Z ˛M .
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(2) Recall (see eg Bott and Tu [10]) that if f W X ! Y is a smooth proper map
between connected oriented manifolds such that f restricted to some open subset
of X is a diffeomorphism, then for a compactly supported form � on Y , we haveR
X f ��D

R
Y �. The analogous statement for singular varieties is the following. Let

f W M ! N be a smooth proper map between smooth quasiprojective varieties and
assume that X �M and Y �N are possibly singular closed subvarieties, such that
f restricted to X is a birational map from X to Y . If � is a closed differential form
on N then the integral of � on the smooth part of Y is absolutely convergent; we
denote this by

R
Y �. With this convention we again have

R
X f ��D

R
Y �.

In particular this means that the integral
R

Y � of the compactly supported form �

on N is the same as the integral
R
zY
f �� of the pull-back form f �� over any (partial)

resolution f W . zY ; zM /! .Y;M /.

3 Curvilinear Hilbert schemes

In this section we describe a geometric model for curvilinear Hilbert schemes. Let X

be a smooth projective variety of dimension n and let

X Œk�
D f� �X W dim.�/D 0 and length.�/D dim H 0.�;O�/D kg

denote the Hilbert scheme of k points on X parametrising all length-k subschemes
of X . For p 2X let

X Œk�
p D f� 2X Œk�

W supp.�/D pg

denote the punctual Hilbert scheme consisting of subschemes supported at p . If
�W X Œk� ! SkX given by � 7!

P
p2X length.O�;p/p denotes the Hilbert–Chow

morphism then X Œk�
p D ��1.kp/.

Definition 3.1 A subscheme � 2X Œk�
p is called curvilinear if � is contained in some

smooth curve C � X . Equivalently, � is curvilinear if O� is isomorphic to the C–
algebra CŒz�=zk . The punctual curvilinear locus at p 2 X is the set of curvilinear
subschemes supported at p :

CX Œk�
p D f� 2X Œk�

p W � � Cp for some smooth curve C �X g

D f� 2X Œk�
p WO� 'CŒz�=zk

g:

If X is a surface (ie dim X D 2), CX Œk�
p is an irreducible quasiprojective variety of

dimension k � 1 which is an open dense subset in X Œk�
p and therefore its closure is the

full punctual Hilbert scheme at p , that is, CX
Œk�
p DX Œk�

p . When n� 3 the punctual
Hilbert scheme X Œk�

p is not necessarily irreducible or reduced, but the closure of the
curvilinear locus is one of its irreducible components:
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Lemma 3.2 CX
Œk�
p is an irreducible component of the punctual Hilbert scheme X Œk�

p

of dimension .n� 1/.k � 1/.

Proof Note that � 2 HilbŒk�
0
.Cn/ is not curvilinear if and only if O� does not contain

elements of degree k�1, that is, after fixing some local coordinates x1; : : : ;xn of Cn

at the origin we have

O� 'CŒx1; : : : ;xn�=I for some I � .x1; : : : ;xn/
k�1:

This is a closed condition and hence curvilinear subschemes can’t be approximated by
noncurvilinear subschemes in HilbŒk�

0
.Cn/. The dimension of CX

Œk�
p will come from

the description of it as a nonreductive quotient in the next subsection.

Note that any curvilinear subscheme contains only one subscheme for any given smaller
length and any small deformation of a curvilinear subscheme is again locally curvilinear.

Remark 3.3 Fix coordinates x1; : : : ;xn on Cn . Recall that the defining ideal I� of
any subscheme � 2 HilbkC1

0
.Cn/ is a codimension-k subspace in the maximal ideal

mD .x1; : : : ;xn/. The dual of this is a k–dimensional subspace S� in m�'Sym�kCn

giving us a natural embedding 'W X ŒkC1�
p ,!Grassk.Sym�kCn/. In what follows, we

give an explicit parametrisation of this embedding using an algebraic model coming
from global singularity theory.

3.1 Test-curve model for CX
Œk�

3.1.1 Jets of holomorphic maps If u and v are positive integers let Jk.u; v/ denote
the vector space of k–jets of holomorphic maps .Cu; 0/! .Cv; 0/ at the origin, that is,
the set of equivalence classes of maps f W .Cu; 0/! .Cv; 0/, where f � g if and only
if f .j/.0/D g.j/.0/ for all j D 1; : : : ; k . This is a finite-dimensional complex vector
space, which one can identify with Jk.u; 1/˝Cv ; hence dim Jk.u; v/D v

�
uCk

k

�
� v .

We will call the elements of Jk.u; v/ map-jets of order k , or simply map-jets.

Eliminating the terms of degree kC1 results in an algebra homomorphism Jk.u; 1/�
Jk�1.u; 1/, and the chain Jk.u; 1/� Jk�1.u; 1/� � � �� J1.u; 1/ induces the
following increasing filtration on Jk.u; 1/

� :

(2) J1.u; 1/
�
� J2.u; 1/

�
� � � � � Jk.u; 1/

�:

Remark 3.4 The space Ji.u; 1/
� may be interpreted as set of differential operators

on Cu of degree at most i , and in particular, by taking symbols, we have

(3) Jk.u; 1/
�
' Sym�kCu def

D

kM
lD1

SymlCu;
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where Syml stands for the symmetric tensor product and the isomorphism is that of
filtered GL.n/–modules. Given a regular k–jet f W .C; 0/! .Cn; 0/ in J

reg
k
.1; n/ we

may push forward the differential operators of order k on C (with constant coefficients)
to Cn along f which gives us a map

zf W Jk.1; 1/
�
! Grass.k;Jk.n; 1/

�/:

In Section 3.1.3 we describe a parametrisation of this map, and identify the image
in the Grassmannian with the punctual curvilinear locus CX

ŒkC1�
p using local coordi-

nates on X near p .

Choosing coordinates on Cu and Cv a k–jet f 2 Jk.u; v/ can be identified with the
set of derivatives at the origin, that is, the vector .f 0.0/; f 00.0/; : : : ; f .k/.0//, where
f .j/.0/ 2 Hom.Symj Cu; Cv/. This way we get the identification

(4) Jk.u; v/' Jk.u; 1/˝Cv
'

kM
jD1

Hom.Symj Cu;Cv/:

One can compose map-jets via substitution and elimination of terms of degree greater
than k ; this leads to the composition map

(5)
Jk.u; v/�Jk.v; w/! Jk.u; w/;

.‰1; ‰2/ 7!‰2 ı‰1 modulo terms of degree > k:

When k D 1, the map-jets in J1.u; v/ may be identified with u-by-v matrices, and (5)
reduces to multiplication of matrices.

The k–jet of a curve .C; 0/! .Cn; 0/ is simply an element of Jk.1; n/. We call such
a curve  regular if  0.0/¤ 0; introduce the notation J

reg
k
.1; n/ for the set of regular

curves:
J

reg
k
.1; n/D f 2 Jk.1; n/ W 

0.0/¤ 0g:

Note that J
reg
k
.u;u/ with the composition map (5) has a natural group structure and

we will often use the notation

Diffk.u/D J
reg
k
.u;u/

and refer to this set as the k–jet diffeomorphism group to underline this property.

3.1.2 Jet bundles and differential operators Let X be a smooth projective variety.
Following Green and Griffiths [21] we let JkX !X be the bundle of k–jets of germs
of parametrised curves in X ; that is, JkX is the of equivalence classes of germs of
holomorphic maps f W .C; 0/! .X;p/, with the equivalence relation f � g if and
only if the derivatives satisfy f .j/.0/ D g.j/.0/ for 0 � j � k when computed in
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some local coordinate system of X near p 2 X . The projection map JkX !X is
simply f 7! f .0/. If we choose local holomorphic coordinates on an open neighbour-
hood ��X around p , the elements of the fibre JkXp can be represented by Taylor
expansions

f .t/D pC tf 0.0/C
t2

2!
f 00.0/C � � �C

tk

k!
f .k/.0/CO.tkC1/

up to order k at t D 0 of Cn–valued maps f D .f1; f2; : : : ; fn/ on open neighbour-
hoods of 0 in C . Locally in these coordinates the fibre JkXp can be identified with
the set of k–tuples of vectors .f 0.0/; : : : ; f .k/.0/=k!/D .Cn/k which further can be
identified with Jk.1; n/. These jet bundles and the corresponding jet differential bundles
play central role in the study of hyperbolic varieties and the Green–Griffiths–Lang
conjecture; see Demailly [11] and Green and Griffiths [21].

Remark 3.5 Note that JkX is not a vector bundle over X since the transition functions
are polynomial but not linear; see Section 5 of Demailly [11]. In fact, let DiffX denote
the principal Diffk.n/–bundle over X formed by all local polynomial coordinate
systems on X . Then

JkX D DiffX �Diffk.n/ Jk.1; n/

is the associated bundle whose structure group is Diffk.n/.

Let J
reg
k

X denote the bundle of k–jets of germs of parametrised regular curves in X ,
that is, where the first derivative satisfies f 0 ¤ 0. After fixing local coordinates
near p 2X the fibre J

reg
k

Xp can be identified with J
reg
k
.1; n/ and

J
reg
k

X D DiffX �Diffk.n/ J
reg
k
.1; n/:

Let D�k
X

denote the bundle of k th–order differential operators over X . Then we have
D�0

X
DOX , and we let Dk

X
D D�k

X
=D�0

X
. We have a filtration

(6) OX D D�0
X
� D�1

X
� � � � � D�k

X
;

where the graded component D�i
X
=D�i�1

X
' Symi TX but this filtration is not split in

general, so Dk
X
¤ Sym�k TX ; see Section 4.1 for details. Recall from Remark 3.4 that

after choosing local coordinates on X near p the fibre Dk
X ;p

can be identified with
the space Jk.n; 1/

� ' Sym�kCn of k th–order differential operators on Cn and the
filtration (6) restricted to this fibre is the one given in (2).

Remark 3.6 We have a description of Dk
X

as an associated bundle similar to that
of JkX in Remark 3.5 , namely

Dk
X D DiffX �Diffk.n/ Sym�kCn:
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Remark 3.7 Given a regular k–jet .C; 0/! .X;p/ we may push forward the differ-
ential operators of order k on C to X and obtain a k–dimensional subspace of D�k

X ;p
.

This gives the bundle map

(7) J
reg
k

X ! Grassk.Dk
X /;

which is the fibred version of the map in Remark 3.4. Note that Diffk.1/D J
reg
k
.1; 1/

acts fibrewise on the jet bundle J
reg
k

X via the composition map (5) and the map (7) is
Diffk.1/–invariant, resulting in an embedding

(8) J
reg
k

X=Diffk.1/ ,! Grassk.Dk
X /:

In Section 3.1.3 we show that the set CX ŒkC1� of curvilinear subschemes on X can
be identified with the nonreductive fibrewise quotient of J

reg
k

X by Diffk.1/:

CX ŒkC1�
D J

reg
k

X=Diffk.1/:

This, together with (8) gives an embedding

CX ŒkC1� ,! Grassk.Dk
X /:

In the next subsection we describe a parametrisation of this embedding which turns out
to be crucial to control equivariant localisation on CX

ŒkC1�
p .

3.1.3 The test-curve model of CX
Œk� Let � 2CX ŒkC1�

p be a curvilinear subscheme
supported at p 2 X . Then � is (scheme-theoretically) contained in a smooth curve
germ Cp in X :

� � Cp �X:

Let f� W .C; 0/! .X;p/ be a k–jet of a germ parametrising Cp . Then f� 2 J
reg
k

Xp

is determined only up to polynomial reparametrisation germs �W .C; 0/! .C; 0/ and
therefore we get the following lemma.

Lemma 3.8 The punctual curvilinear locus CX ŒkC1�
p is equal (as a set) to the set of

k–jets of regular germs at p 2X modulo polynomial reparametrisations:

CX ŒkC1�
p D fregular k–jets .C; 0/! .X;p/g=fregular k–jets .C; 0/! .C; 0/g

D J
reg
k

Xp=Diffk.1/:

Therefore the curvilinear locus CX ŒkC1� is the fibrewise quotient

CX ŒkC1�
D J

reg
k

X=Diffk.1/:

Recall that after choosing local coordinates on X near p we can identify J
reg
k

Xp

with J
reg
k
.1; n/. We can explicitly write out the reparametrisation action (defined in (5))

of Diffk.1/ on J
reg
k
.1; n/ as follows:
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Let
f�.z/D zf 0.0/C

z2

2!
f 00.0/C � � �C

zk

k!
f .k/.0/ 2 J

reg
k
.1; n/

be the k–jet of a germ at the origin (ie it has no constant term) in Cn with f .i/ 2Cn

such that f 0 ¤ 0 and let '.z/D ˛1zC ˛2z2C � � � C ˛kzk 2 J
reg
k
.1; 1/ with ˛i 2 C

and ˛1 ¤ 0. Then

f ı'.z/

D .f 0.0/˛1/zC

�
f 0.0/˛2C

f 00.0/

2!
˛2

1

�
z2
C� � �C

� X
i1C���CilDk

f .l/.0/

l !
˛i1
� � �˛il

�
zk ;

which equals

(9) .f 0.0/; : : : ; f .k/.0/=k!/ �

0BBBBBBBB@

˛1 ˛2 ˛3 � � � ˛k

0 ˛2
1

2˛1˛2 � � � 2˛1˛k�1C � � �

0 0 ˛3
1
� � � 3˛2

1
˛k�2C � � �

0 0 0 � � � �
:::

:::
::: � � �

:::

0 0 0 � � � ˛k
1

1CCCCCCCCA
;

where the .i; j / entry is pi;j .x̨/D
P

a1Ca2C���CaiDj ˛a1
˛a2
� � �˛ai

.

Remark 3.9 The linearisation of the action of Diffk.1/ on J
reg
k
.1; n/ given as the

matrix multiplication in (9) represents Diffk.1/ as a group of upper triangular matrices
in GL.n/. This is a nonreductive group so Mumford’s reductive GIT is not applicable
to study the geometry of the quotient J

reg
k
.1; n/=Diffk.1/; see Bérczi, Doran, Hawes

and Kirwan [3; 4] for details. Note that our matrix group is parametrised along its first
row with the free parameters ˛1; : : : ; ˛k and the other entries are certain (weighted
homogeneous) polynomials in these free parameters. It is a C� extension of its maximal
unipotent radical

Diffk.1/D U ÌC�;

where U is the subgroup we get via substituting ˛1 D 1 and the diagonal C� acts
with weights 0; 1; : : : ; n� 1 on the Lie algebra Lie.U /. In Bérczi and Kirwan [5] and
Bérczi, Doran, Hawes and Kirwan [3; 4] we study actions of groups of this type in a
more general context.

Fix an integer N � 1 and define

‚k D f‰ 2 Jk.n;N / W 9 2 J
reg
k
.1; n/ such that ‰ ı  D 0g;

that is, ‚k is the set of those k–jets of germs on Cn at the origin which vanish
on some regular curve. By definition, ‚k is the image of the closed subvariety
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of Jk.n;N / � J
reg
k
.1; n/ defined by the algebraic equations ‰ ı  D 0, under the

projection to the first factor. If ‰ ı  D 0, we call  a test curve of ‚.

Remark 3.10 The subset ‚k is the closure of an important singularity class in the jet
space Jk.n;N /. These are called Morin singularities and the equivariant dual of ‚k

in Jk.n;N / is called the Thom polynomial of Morin singularities; see Bérczi and
Szenes [7] and Fehér and Rimányi [16] for details.

Test curves of germs are generally not unique. A basic but crucial observation is
the following. If  is a test curve of ‰ 2 ‚k , and ' 2 Diffk.1/ is a holomorphic
reparametrisation of C , then  ı' is, again, a test curve of ‰ :

C '
�!C 

�!Cn ‰
�!CN with ‰ ı  D 0 D) ‰ ı . ı'/D 0:

In fact, we get all test curves of ‰ in this way if the following property, open and
dense in ‚k , holds: the linear part of ‰ has 1–dimensional kernel. Before stating this
in Theorem 3.12, let us write down the equation ‰ı D0 in coordinates in an illustrative
case. Let  D . 0;  00; : : : ;  .k//2 J

reg
k
.1; n/ and ‰D .‰0; ‰00; : : : ; ‰.k//2 Jk.n;N /

be the k–jets of the test curve  and the map ‰ respectively. Using the chain rule and
the notation vi D 

.i/= i !, the equation ‰ ı  D 0 reads as follows for k D 4:

(10)

‰0.v1/D 0;

‰0.v2/C‰
00.v1; v1/D 0;

‰0.v3/C 2‰00.v1; v2/C‰
000.v1; v1; v1/D 0;

‰0.v4/C2‰00.v1; v3/C‰
00.v2; v2/C3‰000.v1; v1; v2/C‰

0000.v1; v1; v1; v1/D0:

Lemma 3.11 (Gaffney [19]; Bérczi and Szenes [7]) Let  D . 0;  00; : : : ;  .k// 2
J

reg
k
.1; n/ and ‰ D .‰0; ‰00; : : : ; ‰.k// 2 Jk.n;N / be k–jets. Then substituting

vi D 
.i/= i !, the equation ‰ ı  D 0 is equivalent to the following system of k linear

equations with values in CN :

(11)
X

�2P.m/

‰.v� /D 0 for mD 1; 2; : : : ; k:

Here P.m/ denotes the set of partitions � D 1�1 : : :m�m of m into nonnegative integers
and v� D v

�1

1
� � � v

�m
m .

For a given  2 J
reg
k
.1; n/ and 1 � i � k let Si;N

 denote the set of solutions of the
first i equations in (11), that is,

(12) Si;N
 D f‰ 2 Jk.n;N / W‰ ı  D 0 up to order ig:

Geometry & Topology, Volume 21 (2017)



Tautological integrals on curvilinear Hilbert schemes 2911

The equations (11) are linear in ‰ , and hence

Si;N
 � Jk.n;N /

is a linear subspace of codimension iN , ie a point of GrasscodimDiN .Jk.n;N //, whose
orthogonal, .Si;N

 /? , is an iN –dimensional subspace of Jk.n;N /� . These subspaces
are invariant under the reparametrisation of  . In fact, ‰ ı  has N vanishing
coordinates and therefore

.Si;N
 /? D .Si;1

 /?˝CN :

For ‰ 2 Jk.n;N / let ‰1 2 Hom.Cn; CN / denote the linear part. When N � n then
the subset

zSi;N
 D f‰ 2 Si;N

 W dim ker‰1
D 1g

is an open dense subset of the subspace Si;N
 . In fact it is not hard to see that the

complement zSi;N
 nSi;N

 where the kernel of ‰1 has dimension at least two is a closed
subvariety of codimension N � nC 2.

Theorem 3.12 (1) The map

�W J
reg
k
.1; n/! Grassk.Jk.n; 1/

�/

defined as  7! .Sk;1
 /? is Diffk.1/–invariant and induces an injective map on

the Diffk.1/–orbits into the Grassmannian

�Grass
W J

reg
k
.1; n/=Diffk.1/ ,! Grassk.Jk.n; 1/

�/:

Moreover, � and �Grass are GL.n/–equivariant with respect to the standard
action of GL.n/ on J

reg
k
.1; n/ � Hom.Ck; Cn/ and the induced action on

Grassk.Jk.n; 1/
�/.

(2) Recall form Remark 3.4 that Jk.n; 1/
� D Sym�kCn . The image of � and the

image of ' defined in Remark 3.3 coincide in Grassk.Sym�kCn/:

Im.�/D Im.'/� Grassk.Sym�kCn/:

Proof For the first part it is enough to prove that for ‰ 2 ‚k with dim ker‰1 D 1

and ; ı 2 J
reg
k
.1; n/,

‰ ı  D‰ ı ı D 0 ” 9� 2 J
reg
k
.1; 1/ such that  D ı ı�:

We prove this statement by induction. Let  Dv1tC� � �Cvk tk and ıDw1tC� � �Cwk tk .
Since dim ker‰1D 1, we have v1D�w1 , for some �¤ 0. This proves the kD 1 case.

Suppose the statement is true for k � 1. Then, using the appropriate order-(k�1)
diffeomorphism, we can assume that vm D wm for mD 1; : : : ; k � 1. It is clear then
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from the explicit form (11) (see (10)) of the equation ‰ı D0, that ‰1.vk/D‰
1.wk/,

and hence wk D vk ��v1 for some � 2C . Then  D� ı ı for �D t C�tk , and the
proof is complete.

The second part immediately follows from the definition of ' and � .

Remark 3.13 (1) For a point  2J
reg
k
.1; n/ let vi D 

.i/=i !2Cn denote the normed
i th derivative. Then from Lemma 3.11 it immediately follows that for 1� i �k (see [7]),

(13) .Si;1
 /? D SpanC

�
v1; v2C v

2
1 ; : : : ;

P
�2P.i/

v�

�
� Sym�kCn:

This explicit parametrisation of the curvilinear component is crucial in building our
localisation process in the next section.

(2) Let fe1; : : : ; eng be a basis of Cn . Since � is GL.n/–equivariant, for k � n the
GL.n/–orbit of pk;n satisfies

pk;n D �.e1; : : : ; ek/D SpanC

�
e1; e2C e2

1 ; : : : ;
P

�2P.k/
e�

�
and forms a dense subset of the image J

reg
k
.1; n/ and therefore

�.J
reg
k
.1; n//D GL.n/ �pk;n:

Recall that after choosing local coordinates on X near p we can identify the fi-
bre J

reg
k

Xp with J
reg
k
.1; n/ and the fibre Dk

X ;p
with Jk.n; 1/

� . Lemma 3.8 and
Theorem 3.12 therefore give us the following.

Corollary 3.14 We have an embedding of the punctual curvilinear locus CX ŒkC1�
p ,

�Grass
p W CX ŒkC1�

p D J
reg
k

Xp=Diffk.1/ ,! Grassk.Dk
X ;p/;

into the Grassmannian bundle of k–dimensional subspaces of the fibre Dk
X ;p

. The
quotient J

reg
k

X=Diffk.1/ has the structure of a locally trivial bundle over X which has
a holomorphic embedding

�Grass
W CX ŒkC1�

D J
reg
k

X=Diffk.1/ ,! Grassk.Dk
X /

into the Grassmannian bundle of k–dimensional subspaces of Dk
X

over X . The closure
of the image

CX ŒkC1�
D �Grass.J

reg
k

X /

is the curvilinear component of the Hilbert scheme of kC 1 points on X .
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3.2 Tautological bundles over CX
Œk�

Let F be a rank-r vector bundle over X . The fibre of the corresponding rank-rk

tautological bundle F Œk� on CX Œk� at the point � is

F
Œk�

�
DH 0.�;F j�/DH 0.O� ˝F /:

On the level of bundles we have the following.

Lemma 3.15 There is an isomorphism of topological vector bundles F Œk�j
CX Œk� '

OŒk�
CX Œk�

˝��F where � W CX Œk�
!X is the projection.

Proof This comes from Rennemo [33, Lemma 5.2] as follows. Let us adopt the
notations of [33] and denote by X ŒŒk�� the Hilbert scheme of k ordered points on X and
let X

ŒŒk��
0
�X ŒŒk�� be the set of pairs .�; .xi// such that � is supported at a single point,

that is, x1 D � � � D xk . Let TX D P .OX ˚TX / denote the natural fibrewise compact-
ification of the tangent bundle. Let TX ŒŒk��

0 � TX ŒŒk�� denote the set of pairs .�; .xi//

such that � is supported at the 0–section of TX . Let qW X ŒŒk�� ! X be defined by
q.�; .xi//D x1 and let r W TX ŒŒk��

! X be defined by r..�; .xi///D �.x1/. Let W

be the set of pairs .�; .xi// 2 TX ŒŒk�� such that x1 lies in the 0–section of TX .

Rennemo [33] shows that there is an open neighbourhood U of X
ŒŒk��
0

in X ŒŒk�� , an
open neighbourhood U of TX ŒŒk��

0 in W , and a homeomorphism f W U ! U such
that q D r ı f and f jq�1.x/ is holomorphic for all x 2 X . Furthermore, there is an
isomorphism of topological vector bundles f �.F ŒŒk��/' F Œk� .

In particular, f is constructed using a similar but simpler statement about the neigh-
bourhood of the diagonal in X �X . Let p1;p2W X �X ! X be the projections to
the first and second factors, and let � W TX ! X be the tangent bundle. There is an
open neighbourhood U1 of the diagonal ı � X �X , an open neighbourhood U1 of
the 0–section X �TX and a homeomorphism f1W U1!U1 , such that �ıf1Dp1 and
such that f1j� is the identification between � and the 0–section of TX . Furthermore,
the restriction of f1 to each fibre p�1.x/ is holomorphic. There is an isomorphism
of topological vector bundles p�

1
.E/jU ! p�

2
.E/jU , which is an isomorphism of

holomorphic bundles on the restriction to each fibre p�1.x/.

Then f is given by

f
�
.�; .xi///D

�
.f1/�.fq.x/g � �/; f1.q.x/;xi/

�
on a small neighbourhood U of X

ŒŒk��
0

and over a point .�; .xi// 2X ŒŒk�� we have

f �.F ŒŒk��/.�;.xi // DH 0.fx1g � �;p
�
1 .F /jfx1g��/

'H 0.fx1g � �;p
�
2 .F /jfx1g��/D F

ŒŒk��

.�;.xi //
:
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For .�; .xi// 2 CX
Œk�
p �X

ŒŒk��
p we have p D x1 D � � � D xk and therefore

F
ŒŒk��

�
DH 0.fx1g � �;p

�
1 .F /jfx1g��/D Fp˝H 0.O�/;

which gives the isomorphism of the lemma.

Our embedding �GrassW CX ŒkC1� ,!Grassk.Dk/ then identifies the fibres of OŒkC1�

CX ŒkC1�

over � 2 CX ŒkC1�
p with

H 0.O�/'Op˝ E�Grass.�/;

where E is the tautological rank-k bundle over Grassk.Dk/. Hence the total Chern
class of F ŒkC1� can be written as

(14) c.F ŒkC1�/D

rY
jD1

.1C �j /

kY
iD1

rY
jD1

.1C �i C �j /;

where c.F /D
Qr

jD1.1C �j / and c.E/D
Qk

iD1.1C �i/ are the Chern classes for the
corresponding bundles. In particular the Chern class

(15) ci.F
ŒkC1�/D Ci.c1.E/; : : : ck.E/; c1.F /; : : : ; cr .F //

can be expressed as a polynomial function Ci in Chern classes of E and F .

4 Partial resolutions of CX
ŒkC1�

The structure group of the bundles CX ŒkC1� and Grassk.Dk
X
/ is the polynomial

reparametrisation group Diffk.n/. The subgroup GL.n/ of linear coordinate changes
sit in Diffk.n/ and using this in Section 4.1 we define the corresponding linearised
bundles CX ŒkC1�

GL �Grassk.Sym�kTX /. In Section 4.2 we construct a fibrewise partial
resolution of the (highly singular) curvilinear component CX ŒkC1�

�Grassk.Dk
X
/ and

also its linearised bundle CX ŒkC1�
GL . This resolution is defined for any choice of

parameters n; k and it uses nested Hilbert schemes. In Section 4.3 we construct a
second partial resolution of CX ŒkC1�

GL under the very restrictive condition k � n, that
is, the number of points can’t exceed the dimension of the variety plus one. We will
see how to dispose this condition in Section 6.2.

4.1 Linearisation of CX
ŒkC1�

Recall from Section 3.1.1 the notation Diffk.n/DJ
reg
k
.n; n/ for the group of k th–order

diffeomorphism germs of Cn at the origin. Then Diffk.n/ is the set of local (poly-
nomial) coordinate changes on Cn at the origin. The set GL.n/ of linear coordinate
changes forms a subgroup of Diffk.n/.
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We have seen that after choosing local coordinates on X near p we can identify the
fibre Dk

X ;p
of the bundle Dk

X
with Jk.n; 1/

�D Sym�kCn . Then Diffk (and therefore
its subgroup GL.n/) acts on Dk

X ;p
' Sym�kCn . Let DiffX denote the principal

Diffk.n/–bundle over X formed by all local polynomial coordinate systems on X .
Then Dk

X
can be described as the associated bundle (see also Remark 3.4)

Dk
X D DiffX �Diffk.n/ Sym�kCn:

On the other hand, if GLX denotes the principal GL.n/–bundle over X formed
by all local linear coordinate systems on X then the vector bundle Sym�kTX DLk

iD1 SymiTX is associated to the same Sym�kCn considered as a GL.n/–module:

Sym�kTX D GLX �GL.n/ Sym�kCn:

Therefore Dk
X

and Sym�kTX are not isomorphic bundles and in particular the filtration
defined in (6) does not split. Hence there is no projection map Dk

X
! TX but there is

a natural projection Sym�kTX ! TX .

There is an induced Diffk.n/–action on Grassk.Sym�kCn/ and the image Im.�Grass/

in Theorem 3.12 is Diffk.n/–invariant subvariety of Grassk.Sym�kCn/. The curvi-
linear locus CX ŒkC1� is the associated bundle

CX ŒkC1�
D DiffX �Diffk.n/ Im.�Grass/

� DiffX �Diffk.n/ Grassk.Sym�kCn/D Grassk.Dk
X /:

We can form the corresponding linearised bundle

CX
ŒkC1�
GL D GLX �GL.n/ Im.�Grass/

� GLX �GL.n/ Grassk.Sym�kCn/D Grassk.Sym�kTX /;

which is the linearised version of CX ŒkC1� remembering the linear action on the
fibres. We will explain in Section 7 that for torus localisation purposes we can replace
CX ŒkC1� with its linearised version CX ŒkC1�

GL .

4.2 Completion in nested Hilbert schemes

Let

X Œk1;:::;kt � D f.�1 � �2 � � � � � �t / W �i 2X Œki �g �X Œk1� � � � � �X Œkt �

denote the nested Hilbert scheme defining flags of subschemes of length vector
.k1; : : : ; kt /.
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Curvilinear subschemes contain only one subscheme for any given smaller length.
Therefore � 2 CX ŒkC1�

p defines a unique flag

F.�/D .�1 � �2 � � � � � �k/ 2 CX Œ2�
p � � � � �CX ŒkC1�

p �X Œ2;:::;kC1�;

where �i is the unique subscheme of � satisfying

O�i
DO�=OiC1

X ;p
'CŒz�=ziC1;

and therefore �i 2 CX ŒiC1�
p . This defines an embedding

z�W CX ŒkC1�
p ,!X Œ2;:::;kC1�; � 7! .�1 � � � � � �k/:

Fix local coordinates on X near p such that JkXp is identified with Jk.1; n/ and
Dk

X ;p
is identified with Jk.n; 1/

� . Let f� 2 J
reg
k
.1; n/ denote the k–jet corresponding

to � 2 CX ŒkC1�
p and let Si

�
D Si;1

f�
� Jk.n; 1/ be the solution space defined in (12)

where N D 1. Then z� can be equivalently written as

f� 7! ..S1
� /
?
� .S2

� /
?
� � � � � .Sk

� /
?/ 2 Flagk.Sym�kCn/

or, using coordinates, as

f� 7!
�

Span.f 0/� Span.f 0; f 00C.f 0/2/�

� � � � Span
�
f 0; f 00C.f 0/2; : : : ;

PP
aiDk

.f Œi�/ai

��
:

Theorem 3.12 has the following immediate corollary:

Corollary 4.1 The map

z�W J
reg
k
.1; n/! Flagk.Sym�kCn/;  7! F D ..S1

 /
?
� � � � � .Sk

 /
?/

is Diffk.1/–invariant and induces an injective map on the Diffk.1/–orbits into the flag
manifold

�Flag
W J

reg
k
.1; n/=Diffk.1/ ,! Flagk.Sym�kCn/:

Moreover, all these maps are GL.n/–equivariant with respect to the standard action
of GL.n/ on J

reg
k
.1; n/�Hom.Ck; Cn/ and the induced action on Flagk.Sym�kCn/.

This implies that similarly to Remark 3.13, for any basis fe1; : : : ; eng of Cn and k � n

the GL.n/–orbit of pk;n D
z�.e1; : : : ; ek/, that is, in coordinates,

pk;n D

�
Span.e1/� Span.e1; e2C e2

1/� � � � � Span
�
e1; e2C e2

1 ; : : : ;
P

�2P.k/
e�

��
;

forms a dense subset of the image J
reg
k
.1; n/ and therefore

z�.J
reg
k
.1; n//D GL.n/ � pk;n:
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Definition 4.2 We define the bundle

bCX
ŒkC1�

D DiffX �Diffk.n/
z�.J

reg
k
.1; n//

� DiffX �Diffk.n/ Flagk.Sym�kCn/D Flagk.D
k
X /;

which is a fibrewise partial resolution of CX ŒkC1� . The corresponding linearised
bundle is defined as

bCX
ŒkC1�
GL D GLX �GL.n/

z�.J
reg
k
.1; n//

� GLX �GL.n/ Flagk.Sym�kCn/D Flagk.Sym�kTX /:

4.3 Blowing up along the linear part

Assume k � n. Let J
nondeg
k

.1; n/ � J
reg
k
.1; n/ denote the Zariski open set of jets

. 0;  00; : : : ;  Œk�/ with  0; : : : ;  .k/ linearly independent. These correspond to the
regular n� k matrices in Hom.Ck; Cn/, and they fibre over the set of complete flags
in Cn :

J
nondeg
k

.1; n/! Hom.Ck; Cn/=Bk D Flagk.C
n/;

where Bk �GL.k/ is the upper Borel subgroup. Since J
reg
k
.1; 1/�Bk this induces a

surjective fibration

(16) � W J
nondeg
k

.1; n/=Diffk.1/! Flagk.C
n/

which factors through �Grass :

(17)

J
nondeg
k

.1; n/=Diffk.1/
�Flag

//

�

))

Flagk.Sym�kCn/

��

Flagk.C
n/

Here the vertical rational map is induced by the projection Sym�kCn!Cn and the
image of �Flag sits in its domain.

Since J
nondeg
k

.1; n/� Jk.1; n/ is GL.n/–invariant, we can form the associated bundle

J
nondeg
k

X D GLX �GL.n/ J
nondeg
k

.1; n/:

Note, however, that J
nondeg
k

X is not a subbundle of JkX D DiffX �Diffk.n/ Jk.1; n/.
Similarly, we can form the bundle

CX ŒkC1�
nondeg D GLX �GL.n/ .z�.J

nondeg
k

.1; n///� GLX �GL.n/ Flagk.Sym�kCn/

D Flagk.Sym�kTX /;
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which is a dense subbundle of bCX
ŒkC1�
GL but not a subbundle of bCX

ŒkC1� . The
projection Sym�kTX ! TX then induces the following diagram whose restriction to
the fibres over X was given in (17):

(18)

J
nondeg
k

X=Diffk.1/
�Flag

//

�

((

Flagk.Sym�kTX /

��

Flagk.TX /

The image of �Flag sits in the domain of the vertical rational map and therefore we
have a fibration

�W CX ŒkC1�
nondeg! Flagk.TX /

of the bundles.

Definition 4.3 Let eCX ŒkC1�! Flagk.TX / denote the fibrewise compactification of
the bundle � W CX ŒkC1�

nondeg ! Flagk.TX /. In other words, if Pk;n � GL.n/ denotes the
parabolic subgroup which preserves the flag

f D .Span.e1/� Span.e1; e2/� � � � � Span.e1; : : : ; ek/�Cn/:

and pk;n D
z�.e1; : : : ; ek/ denotes the base point in Flagk.Sym�kCn/, then

eCX ŒkC1�
D GLX �GL.n/ .GL.n/�Pk;n

Pk;n � pk;n/;

and we have a partial resolution map

�WeCX ŒkC1�
D GLX �GL.n/ .GL.n/�Pk;n

Pk;n � pk;n/

! GLX �GL.n/ .GL.n/ � pk;n/DbCX
ŒkC1�
GL :

Remark 4.4 Equivalently, let � W Jk.n; 1/
� ' Sym�kCn D

kL
iD1

Symi Cn!Cn de-
note the projection to the first (linear) factor. Then

GL.n/�Pk;n
Pk;n � pk;n

D
˚�
..S1

 /
?
� � � � � .Sk

 /
?/; .V1 � � � � � Vk/

�
W �.Si

 /
?
� Vi

	
� Im.z�/�Flagk.C

n/:

5 Equivariant localisation on ACX
ŒkC1�
p

In this section we fix a point p 2X and a holomorphic coordinate system on X near p .
We identify the fibre JkXp with Jk.1; n/ and Dk

X ;p
with Jk.n; 1/

� D Sym�kCn .
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With these identifications we can use Theorem 3.12, Remark 3.13, Definition 4.2,
Definition 4.3 and the maps

�Grass
W J

reg
k
.1; n/=Diffk.1/ ,! Grassk.Sym�kCn/

and
�Flag
W J

reg
k
.1; n/=Diffk.1/ ,! Flagk.Sym�kCn/

to describe the punctual curvilinear Hilbert scheme and its partial resolutions at p2X as

CX
ŒkC1�
p D Im.�Grass/D GL.n/ � pk;n � Grassk.Sym�kCn/;

bCX
ŒkC1�
p D Im.�Flag/D GL.n/ � pk;n � Flagk.Sym�kCn/;

eCX ŒkC1�
p D GL.n/�Pk;n

Pk;n � pk;n! Flagk.C
n/:

Let F be a rank-r vector bundle over X and let F ŒkC1� denote the corresponding
rank-.kC1/r tautological bundle over X ŒkC1� . We use the same notation F ŒkC1�

for its pull-back along the partial resolution map �W eCX
ŒkC1�
p ! CX

ŒkC1�
p . Then

eCX
ŒkC1�
p �Flagk.Sym�kCn/ is endowed with a natural GL.n/–action. In this section

we start developing an iterated residue formula for
RfCX

Œk�
p
˛ for closed torus equivariant

forms ˛ . This formula is attained via equivariant localisation process using the fibration
� W eCX

ŒkC1�
p ! Flagk.C

n/ and it is crucially based on a vanishing theorem of residues.

5.1 Equivariant de Rham model and the Atiyah–Bott formula

This section is a short introduction to equivariant cohomology and localisation. For
more details, we refer the reader to Section 2 of Bérczi and Szenes [7] and Berline,
Getzler and Vergne [8].

Let G be a compact Lie group with Lie algebra g and let M be a C1 manifold
endowed with the action of G . The G–equivariant differential forms are defined as
differential-form-valued polynomial functions on g:

��G.M /Df˛W g!��.M / W˛.gX /Dg˛.X / for g2G; X 2ggD .S�g�˝��.M //G ;

where .g �˛/.X /D g � .˛.g�1 �X //. One can define equivariant the exterior differen-
tial dG on .S�g�˝��.M //G by the formula

.dG˛/.X /D .d � �.XM //˛.X /;

where �.XM / denotes the contraction by the vector field XM . This increases the
degree of an equivariant form by one if the Z–grading is given on .S�g�˝��.M //G

by deg.P ˝ ˛/ D 2 deg.P /C deg.˛/ for P 2 S�g� and ˛ 2 ��.M /. The homo-
topy formula �.X /d C d �.X / D L.X / implies that d2

G
.˛/.X / D �L.X /˛.X / D 0
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for any ˛ 2 .S�g� ˝ ��.M //G , and therefore .dG ; �
�

G
.M // is a complex. The

equivariant cohomology H�
G
.M / of the G–manifold M is the cohomology of the

complex .dG ; �
�

G
.M //. Note that ˛ 2��

G
.M / is equivariantly closed if and only if

˛.X /D ˛.X /Œ0�C � � �C˛.X /Œn� such that �.XM /˛.X /Œi� D d˛.X /Œi�2�:

Here ˛.X /Œi� 2�i.M / is the degree-i part of ˛.X / 2��.M / and ˛Œi�W g!�i.M /

is a polynomial function.

The equivariant push-forward map
R

M W �G.M /! .S�g�/G is defined by the formula

(19)
�Z

M

˛

�
.X /D

Z
M

˛.X /D

Z
M

˛Œn�.X /:

When the n–dimensional complex torus T D .C�/n acts on M let K D U.1/n be
its maximal unipotent subgroup and t D Lie.K/ its Lie algebra. We define the T –
equivariant cohomology H �

T
.M / to be H �

K
.M /, the equivariant de Rham cohomology

defined by the action of K . If M0.X / is the zero locus of the vector field XM , then the
form ˛.X /Œn� is exact outside M0.X / (see Proposition 7.10 in [8]), and this suggests
that the integral

R
M ˛.X / depends only on the restriction ˛.X /jM0.X / .

Theorem 5.1 (Atiyah and Bott [1]; Berline and Vergne [9]) Suppose that M is a
compact manifold and T is a complex torus acting smoothly on M , and the fixed-point
set M T of the T –action on M is finite. Then for any cohomology class ˛ 2H �

T
.M /,Z

M

˛ D
X

f 2M T

˛Œ0�.f /

EulerT .TfM /
:

Here EulerT .TfM / is the T –equivariant Euler class of the tangent space TfM , and
˛Œ0� is the differential-form-degree-0 part of ˛ .

The right-hand side in the localisation formula sits in the fraction field of the polynomial
ring H �

T
.point/ D H �.BT / D S�t� . Part of the statement is that the denominators

cancel when the sum is simplified.

5.2 Equivariant Poincaré duals and multidegrees

The Atiyah–Bott formula works for holomorphic actions of tori on nonsingular pro-
jective varieties. In our case, however, the punctual curvilinear component CX

ŒkC1�
p

is highly singular at the fixed points so the AB localisation does not apply directly as
the equivariant Euler class of the tangent space at a singular fixed point is not well
defined. But CX

ŒkC1�
p sits in the nonsingular ambient space Grassk.Sym�kCn/ and
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an intuitive idea would be to put EulerT .TfGrassk.Sym�kCn// into the denominator
on the right-hand side of the equation in Theorem 5.1 which we then compensate in
the numerator with some sort of dual of the tangent cone of CX

ŒkC1�
p at f sitting in

the tangent space of Grassk.Sym�kCn/ at f . This idea indeed works and it becomes
incarnate in the Rossmann formula in Section 5.3.

Let T D .C�/n be a complex torus with K D U.1/n its maximal compact subgroup
and t D Lie.K/ its Lie algebra. Let M be a manifold endowed with a T –action.
The compactly supported equivariant cohomology groups H �

K ;cpt.M / are obtained
by restricting the equivariant de Rham complex to compactly supported (or quickly
decreasing at infinity) differential forms. Clearly H �

K ;cpt.M / is a module over H �
K
.M /.

When M DW is an r–dimensional complex vector space, and the action is linear,
one has H �

K
.W /D S�t� and H �

K ;cpt.W / is a free module over H �
K
.W / generated by

a single element of degree 2r called the Thom class of W :

(20) H �K ;cpt.W /DH �K .W / �ThomK .W /:

A T –invariant algebraic subvariety † of dimension d in W represents a T –equivariant
2d–cycle in the sense that

� a compactly supported equivariant form � is absolutely integrable over the
components of maximal dimension of †, and

R
† � 2 S�t� ,

� if dK�D 0, then
R
† � depends only on the class of � in H �

K ;cpt.W /, and

�
R
† �D 0 if �D dK� for a compactly supported equivariant form � .

Definition 5.2 Let † be an T –invariant algebraic subvariety of dimension d in the
vector space W . Then the equivariant Poincaré dual of † is the polynomial on t of
degree 2r � 2d defined by the integral

(21) ePŒ†;W �D
1

.2�/d

Z
†

ThomK .W /:

An immediate consequence of this definition is that for an equivariantly closed differ-
ential form � with compact support, we haveZ

†

�D

Z
W

ePŒ†;W � ��:

This formula serves as the motivation for the term equivariant Poincaré dual. This
definition naturally extends to the case of an analytic subvariety of Cn defined in
the neighbourhood of the origin, or more generally, to any T –invariant cycle in Cn .
Note that we do not require for † to be smooth, and for singular † integration on the
right-hand side means integration over the smooth part.
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The fibred version of Thom classes of vector spaces are the so-called equivariant Thom
classes of vector bundles. We recall the definition and basic properties from Section 2.3
of Duflo and Vergne [12] (see also Mathai and Quillen [30]). Let � W E ! M be
a K–equivariant rank-r complex vector bundle and assume M is compact. Then
according to [12, Proposition 16], H �

K ;cpt.E/ is a free module over H �
K
.M / generated

by a single element of degree 2r called the equivariant Thom class of E :

(22) H �K ;cpt.E/DH �K .M / �ThomK .E/:

The multiplication map ˛ 7! ��.˛/ � ThomK .E/ establishes an H �
K
.M /–module

isomorphism from H �
K
.M / to H �

K ;cpt.E/. In particularZ
E=M

ThomK .E/D 1

holds for the equivariant push-forward map
R

E=M W H
�

K
.E/!H ��r

K
.M /. In fact, there

is an equivariantly closed form with compact support on E representing ThomK .E/.
By an abuse of notation let ThomK .E/ 2�K ;cpt.E/� .S

�t�˝��
K ;cpt.E//

K denote
this compactly supported form.

Note that for nonsingular † the definition (21) can be rewritten using the equivariant
normal bundle N† of † in W as

ePŒ†;W �D ThomK .N†/ 2 S�t�:

More generally, let Z �M be a T –invariant complex submanifold of codimension r

in the complex manifold M . Let NZ denote the normal bundle of Z in M . By
the equivariant tubular neighbourhood theorem there exists a K–invariant tubular
neighbourhood U of Z in M and a K–invariant diffeomorphism  W Z! U such
that  ıi0D i , where i0W Z ,!NZ is the embedding of Z into NZ as the zero section.
Let ThomK .NZ / 2�

�

K ;cpt.M / denote the extension by zero of the equivariant Thom
form of NZ to M .

Definition 5.3 Let Z �M be a T –invariant complex submanifold of codimension r

in the (not necessary compact) complex manifold M . Let NZ denote the normal
bundle of Z in M . The equivariant Poincaré dual of Z is defined as

ePŒZ;M �D ThomK .NZ / 2�
2r
K ;cpt.M /:

Then for any closed (not necessarily compactly supported) form � 2��
K ;cpt.M / we

have Z
Z

�D

Z
M

ePŒZ;M � ��:
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More generally, for a vector bundle � W E ! M over the compact variety M and
� 2��

K
.E/ we have

(23)
Z

M

�D

Z
E

ThomK .E/ ��:

The following lemma is a special case of Proposition 2.8 in [7].

Lemma 5.4 Let � W E!M be a complex vector bundle and sW M ! E a smooth
section generically transversal to the zero section �W M ,! E . Then the zero locus
s�1.M /�M of s defines a cycle and it is Poincaré dual to the K–equivariant Euler
class EulerK .E/D �� ThomK .E/ of E .

Let W be again a complex N –dimensional vector space. Note that ePŒ†;W � is deter-
mined by the maximal dimensional components of † and in fact it can be characterised
and axiomatised by some of its basic properties. These are carefully stated in Bérczi
and Szenes [7, Proposition 2.3] and proofs can be found in Rossmann [34], Vergne [37]
and Miller and Sturmfels [31]. The list of these properties is the following: positivity,
additivity on maximal dimensional component, deformation invariance, symmetry
and finally a formula for complete intersections of hypersurfaces. These properties
provide an algorithm for computing ePŒ†;W � as follows (see Miller and Sturmfels [31,
Chapter 8.5], Bérczi and Szenes [7] and Bérczi [2] for details). We pick any monomial
order on the coordinates of W and apply Gröbner deformation on the ideal of † to
deform it onto its initial monomial ideal (see Eisenbud [14]). The spectrum of this
monomial ideal is the union of some coordinate subspaces in W with multiplicities
whose equivariant dual is then given as the sum of the duals of the maximal dimensional
subspaces by the additivity property. For these linear subspaces the formula for complete
intersections has the following special form. Let W D Spec.CŒy1; : : : ;yN �/ acted on
by the n–dimensional torus T diagonally where the weight of yi is �i . Then for every
subset i � f1; : : : ;N g we have

(24) ePŒfyi D 0; i 2 i g;W �D
Y
i2i

�i :

The weights �1; : : : ; �N are linear forms of the basis elements �1; : : : ; �n of t� . Let
coeff.�i ; j / denote the coefficient of �j in �i (for 1 � i � N and 1 � j � n) and
introduce the notation

deg.�1; : : : ; �N Im/D #fi W coeff.�i ;m/¤ 0g:

Let † � W be a T –invariant subvariety. It is clear from the formula (24) that for
any 1�m� n, the �m–degree of ePŒ†;W � satisfies

(25) deg�m
ePŒ†;W �� deg.�1; : : : ; �N Im/:
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Example 5.5 Let W be C4 endowed with a TD.C�/3–action, whose weights
�1; �2; �3 and �4 span t� , and satisfy �1C�3D �2C�4 . Choose pD .1; 1; 1; 1/2W ;
then the affine toric variety

T �p D f.y1;y2;y3;y4/ 2C4
W y1y3 D y2y4g

is a hypersurface and its equivariant dual is given by the weight of the equation

ePŒT �p;W �D �1C �3 D �2C �4:

Another way to see this is to fix the monomial order > induced by y1 > y2 > y3 > y4 ;
then the ideal I D .y1y3 � y2y4/ has initial ideal inI D .y1y3/ whose spectrum is
the union of the hyperplanes fy1 D 0g and fy3 D 0g with duals �1 , �3 respectively.

Remark 5.6 An alternative and slightly more general topological definition of the
equivariant dual is the following; see the notes of Fulton [18], Kazarian [22] and Edidin
and Graham [13] for details. For a Lie group G let EG! BG be a right principal
G–bundle with EG contractible. Such a bundle is universal in the topological setting:
if E ! B is any principal G–bundle, then there is a map B ! BG , unique up to
homotopy, such that E is isomorphic to the pull-back of EG . If X is a smooth algebraic
G–variety then the topological definition of the G–equivariant cohomology of X is

H�G.X /DH�.EG �G X /:

If Y is a G–invariant subvariety then Y represents a G–equivariant cohomology class
in the equivariant cohomology of X , namely the ordinary Poincaré dual of EG �G Y

in EG �G X . This is the equivariant dual of Y in X :

ePŒY;X �D PD.EG �G Y;EG �G X /:

5.3 The Rossmann formula

Let Z be a complex manifold with a holomorphic T –action, and let M � Z be
a T –invariant analytic subvariety with an isolated fixed point p 2M T . Then one
can find local analytic coordinates near p , in which the action is linear and diagonal.
Using these coordinates, one can identify a neighbourhood of the origin in TpZ with
a neighbourhood of p in Z . We denote by yTpM the part of TpZ which corresponds
to M under this identification; informally, we will call yTpM the T –invariant tangent
cone of M at p . This tangent cone is not quite canonical: it depends on the choice
of coordinates; the equivariant dual of †D yTpM in W D TpZ , however, does not.
Rossmann named this the equivariant multiplicity of M in Z at p :

(26) emultp ŒM;Z�
def
D ePŒyTpM;TpZ�:
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Remark 5.7 In the algebraic framework one might need to pass to the tangent scheme
of M at p (see Fulton [17]). This is canonically defined, but we will not use this
notion.

The analogue of the Atiyah–Bott formula for singular subvarieties of smooth ambient
manifolds is the following statement.

Proposition 5.8 (Rossmann’s localisation formula [34]) Let � 2 H�
T
.Z/ be an

equivariant class represented by a holomorphic equivariant map t!��.Z/. Then

(27)
Z

M

�D
X

p2M T

emultp ŒM;Z�

EulerT .TpZ/
��Œ0�.p/;

where �Œ0�.p/ is the differential-form-degree-0 component of � evaluated at p .

5.4 Equivariant localisation on eCX
ŒkC1�
p for k� n.

In this subsection we start to develop a two step equivariant localisation method
on eCX

ŒkC1�
p using the Rossmann formula. As the partial resolution eCX

ŒkC1�
p described

in Section 4.3 is defined only for k � n we impose this condition in this section.

Recall from the introduction to Section 5 that we fix a holomorphic coordinate system
on X near p and using this we identify the fibre JkXp with Jk.1; n/ and Dk

X ;p
with

Jk.n; 1/
� D Sym�kCn . With these identifications the partial resolution map

�W eCX ŒkC1�
p D GL.n/�Pk;n

Pk;n � pk;n! GL.n/ � pk;n D
bCX

ŒkC1�
p

fits into the following diagram:

eCX
ŒkC1�
p

�
//

�

��

bCX
ŒkC1�
p � Flagk.Sym�kCn/

Flagk.C
n/

The fibres of � are isomorphic to Pk;n � pk;n � Flagk.Sym�kCn/ and � is GL.n/–
equivariant.

Let e1; : : : ; en 2 Cn be elements of an eigenbasis for the T�GL.n/–action with
weights �1; : : : ; �n 2 t

� and let

f D .he1i � he1; e2i � � � � � he1; : : : ; eki �Cn/

denote the standard flag in Cn fixed by the parabolic subgroup Pk;n � GL.n/. Since
the torus action on eCX ŒkC1�

p is obtained by the restriction of a GL.n/–action to its
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subgroup of diagonal matrices Tn , the Weyl group of permutation matrices Sn acts
transitively on the fixed-point set Flagk.C

n/Tn taking the standard flag f to �.f /
and for any closed equivariant form ˛ 2��

T
.eCX ŒkC1�

p / Theorem 5.1 gives us

(28)
Z
fCX

ŒkC1�
p

˛ D
X

�2Sn=Sn�k

˛�.f /Q
1�m�k

Qn
iDmC1.�� �i ��� �m/

;

where:

� � runs over the ordered k–element subsets of f1; : : : ; ng labelling the fixed flags
�.f /D .he�.1/i � � � � � he�.1/; : : : ; e�.k/i �Cn/ in Cn .

�
Q

1�m�k

Qn
iDmC1.��.i/���.m// is the equivariant Euler class of the tangent

space of Flagk.C
n/ at �.f /. Note that ��.1/; : : : ; ��.k/2S�t� can be identified

with the Chern roots of the tautological rank-k bundle E at �.f /.

� If eCX
ŒkC1�

�.f /
D ��1.�.f // denotes the fibre then

˛�.f / D

�Z
fCX

ŒkC1�

�.f /

˛

�Œ0�
.�.f // 2 S�t�˝H�.X /

is the differential-form-degree-0 part with coefficients in H�.X / evaluated
at �.f / and ˛�.f / D � � ˛f with respect to the natural Weyl group action
on S�t� .

In particular, when P D P .c1; : : : ; cr.kC1// is a polynomial in the Chern classes
ci D ci.F

ŒkC1�/ of the tautological rank-r.kC1/ bundle on the curvilinear Hilbert
scheme then, according to Section 3.2, P is represented by a closed form ˛ D

˛.�1; : : : ; �r ; �1; : : : ; �k/ which is a bisymmetric polynomial in the Chern roots �i

of the pull-back of F over eCX ŒkC1�
p � Flagk.C

n/ and the Chern roots �j of the
tautological rank-k bundle E . Then ˛f is a polynomial in two sets of variables: the
basic weights � D .�1; : : : ; �n/ of T on Cn and � D .�1; : : : ; �r /. More precisely,
the Chern roots of the tautological rank-k bundle E over ˛f correspond to the weights
�1; : : : ; �k and therefore

˛f D ˛f .�1; : : : ; �r ; �1; : : : ; �k/ 2 S�t�˝H�.X /

is a bisymmetric polynomial of these r C k variables. Then

(29) ˛�.f / D � �˛f D ˛f .�1; : : : ; �r ; ��.1/; : : : ; ��.k/ 2 S�t�˝H�.X /

is the � –shift of the polynomial ˛f corresponding to the distinguished fixed flag f .
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5.5 Transforming the localisation formula into iterated residue

In this section we transform the right-hand side of (28) into an iterated residue. This
step turns out to be crucial in handling the combinatorial complexity of the Atiyah–Bott
localisation formula and captures the symmetry of the fixed-point data in an efficient
way which enables us to prove the vanishing of the contribution of all but one of the
fixed points.

To describe this formula, we will need the notion of an iterated residue (see Szenes [35])
at infinity. Let !1; : : : ; !N be affine linear forms on Ck ; denoting the coordinates
by z1; : : : ; zk , this means that we can write !i D a0

i Ca1
i z1C� � �Cak

i zk . We will use
the shorthand h.z/ for a function h.z1; : : : ; zk/, and dz for the holomorphic n–form
dz1 ^ � � � ^ dzk . Now, let h.z/ be an entire function, and define the iterated residue at
infinity as follows:

(30) Res
z1D1

Res
z2D1

� � � Res
zkD1

h.z/ dzQN
iD1 !i

def
D

�
1

2� i

�k
Z
jz1jDR1

� � �

Z
jzk jDRk

h.z/ dzQN
iD1 !i

;

where 1� R1� � � � � Rk . The torus fjzmj D Rm W m D 1; : : : ; kg is oriented in
such a way that Resz1D1 � � �ReszkD1 dz=.z1 � � � zk/D .�1/k . We will also use the
simplified notation ReszD1

def
D Resz1D1 Resz2D1 � � �ReszkD1 .

In practice, one way to compute the iterated residue (30) is the following algorithm:
for each i , use the expansion

(31) 1

!i
D

1X
jD0

.�1/j
.a0

i C a1
i z1C � � �C a

q.i/�1
i zq.i/�1/

j

.a
q.i/
i zq.i//

jC1
;

where q.i/ is the largest value of m for which am
i ¤ 0, then multiply the product of

these expressions with .�1/kh.z1; : : : ; zk/, and then take the coefficient of z�1
1
� � � z�1

k

in the resulting Laurent series.

Proposition 5.9 [7, Proposition 5.4] For any homogeneous polynomial Q.z/ on Ck

we have

(32)
X

�2Sn=Sn�k

Q.��.1/;:::;��.k//Q
1�m�k

Qn
iDmC1.�� �i��� �m/

D Res
zD1

Q
1�m<l�k.zm�zl/Q.z/dzQk

lD1

Qn
iD1.�i�zl/

:

Remark 5.10 Changing the order of the variables in iterated residues, usually, changes
the result. In this case, however, because all the poles are normal crossing, formula
(32) remains true no matter in what order we take the iterated residues.

Proposition 5.9 together with (28) and (29) give us the following proposition.
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Proposition 5.11 Let k�n and ˛D˛.�1; : : : ; �r ; �1; : : : ; �k/ be a bisymmetric poly-
nomial in the Chern roots �i of the pull-back of F over eCX ŒkC1�

p � Flagk.Sym�kCn/

and the Chern roots �j of the tautological rank-k bundle E . ThenZ
fCX

ŒkC1�
p

˛ D Res
zD1

Q
1�m<l�k.zm� zl/ ˛f .�1; : : : ; �r ; z1; : : : ; zk/ dzQk

lD1

Qn
iD1.�i � zl/

:

Next, we fix the T –eigenbasis fe1; : : : ; eng of Cn and proceed a second localisation
on the fibre

eCX
ŒkC1�
f

D ��1.f /' Pk;n � pk;n � Flagk.Sym�kCn/

to compute ˛f .�; z/. Recall from Corollary 4.1 that for k � n

pk;n D

�
Span.e1/� Span.e1; e2C e2

1/� � � � � Span
�
e1; e2C e2

1 ; : : : ;
P

�2P.k/
e�

��
and Pk;n � GL.n/ is the parabolic subgroup which preserves the flag

f D .Span.e1/� Span.e1; e2/� � � � � Span.e1; : : : ; ek/� TpX /:

Here for the partition � D f�1 � �2 � � � � � �sg 2 P.k/ we use the notation

(1) k for sum.�/D �1C � � �C �s ,

(2) s for the length j� j,

(3) e� for e�1
e�2
� � � e�s

2 Syms.Cn/.

We define the subspaces

Wi D SpanC.e� W sum.�/� i/� Sym�kCn for 1� i � k:

These are invariant under the parabolic subgroup Pk;n�GL.n/ which fixes the flag f .
Note that the fibre eCX

ŒkC1�
f

D Pk;n � pk;n sits in the submanifold

Flag�k.Sym�kCn/D fV1 � � � � � Vk � Sym�kCn
W dim.Vi/D i; Vi �Wig

of Flagk.Sym�kCn/. Moreover, Flag�k.Sym�kCn/ � Flagk.Sym�kCn/ is a Pk;n –
invariant subvariety.

As eCX
ŒkC1�
f

is invariant under the T –action on Flagk.Sym�kCn/, we can apply
Rossmann’s integration formula; see Proposition 5.8. More precisely, we apply the
Rossmann formula for M D Xf , Z D Flag�k.Sym�kCn/ and � D ˛f . The fixed
points on

Z D Flag�k.Sym�kCn/�

kM
iD1

W1 ^ � � � ^Wi
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are parametrised by admissible sequences of partitions � D .�1; : : : ; �k/. We call a
sequence of partitions � D .�1; : : : ; �k/ admissible if

(1) sum.�l/� l for 1� l � k , and

(2) �l ¤ �m for 1� l ¤m� k .

We will denote the set of admissible sequences of length k by …k . The corresponding
fixed point is then

kM
iD1

e�1
^ � � � ^ e�i

2

kM
iD1

W1 ^ � � � ^Wi ;

where e� D
Q

j2� e 2 Symj�jCn .

Then the Rossmann formula (27) and Proposition 5.11 give us the following proposition.

Proposition 5.12 Let k�n. Let ˛D˛.�1; : : : ; �r ; �1; : : : ; �k/ be a bisymmetric poly-
nomial in the Chern roots �i of the pull-back of F over eCX ŒkC1�

p � Flagk.Sym�kCn/

and the Chern roots �j of the tautological rank-k bundle E . Then

(33)
Z
fCX

ŒkC1�
p

˛

D

X
�2…k\Pk;n�pk;n

Res
zD1

Q�.z/
Q

m<l.zm� zl/˛.�; z�1
; : : : ; z�k

/Qk
lD1

Q�¤�1;:::;�l

sum.�/�l
.z� � z�l

/
Qk

lD1

Qn
iD1.�i � zl/

dz;

where
Q�.z/D emult� ŒXf ;Flag�k � and z� D

X
i2�

zi :

This formula reduces the computation of the tautological integrals
RfCX

ŒkC1�
p

˛ to deter-
mining the fixed-point set …k \

eCX
ŒkC1�
f

and determining the multidegree Q�.z/D

emult� ŒXf ;Flag�k � of the tangent cone of eCX
ŒkC1�
f

in Flag�k.Sym�kCn/.

6 The residue vanishing theorem

The first immediate problem arising with our formula (33) is our not having a complete
description of the fixed-point set …k \

eCX
ŒkC1�
f

, and in fact deciding which torus
fixed points on Flag�k.Sym�kCn/ sit in the orbit closure eCX

ŒkC1�
f

DPk;n � pk;n seems
to be a hard question. The second problem we face is how to compute the multidegrees
Q�.z/D emult� ŒXf ;Flag�k � for those admissible sequences representing fixed points
in Pk;n � pk;n . We postpone this second problem to the next section and here we focus
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on the first question which has a particularly nice and surprising answer. Namely, we do
not need to know which fixed points sit in Pk;n � pk;n because our limited knowledge
on the equations of the Pk;n–orbit is enough to show that all but one term on the
right-hand side of (33) vanish. This key feature of the iterated residue has already
appeared in Bérczi and Szenes [7] but here we need to prove a stronger version where
the total degree of the rational forms are zero. We devote the rest of this section to the
proof of the following theorem.

Theorem 6.1 (residue vanishing theorem) Let kC 1� n and let

˛ D ˛.�1; : : : ; �r ; �1; : : : ; �k/

be a bisymmetric polynomial in the Chern roots �i of the pull-back of F over
eCX ŒkC1�

p � Flagk.Sym�kCn/ and the Chern roots �j of the tautological rank-k
bundle E . Then:

(1) All terms but the one corresponding to �dst D .Œ1�; Œ2�; : : : ; Œk�/ vanish in (33)
leaving us with

(34)
Z
fCX

ŒkC1�
p

˛ D Res
zD1

Q.Œ1�;:::;Œk�/.z/
Q

m<l.zm� zl/˛.�; z/Q
sum.�/�l�k.z� � zl/

Qk
lD1

Qn
iD1.�i � zl/

dz:

(2) If j� j � 3 then Q.Œ1�;:::;Œk�/.z/ is divisible by z� � zl for all l � sum.�/. Let

Qk.z/D
Q.Œ1�;:::;Œk�/.z/Q

j� j�3;sum.�/�l�k.z� � zl/

denote the quotient polynomial, and then we get the simplified formula

(35)
Z
fCX

ŒkC1�
p

˛ D Res
zD1

Qk.z/
Q

m<l.zm� zl/˛.�; z/Q
mCr�l�k.zmC zr � zl/

Qk
lD1

Qn
iD1.�i � zl/

dz:

Remark 6.2 (1) Here we describe the geometric meaning of Qk.z/ in (35); see
also [7, Theorem 6.16]. Let Tk � Bk � GL.k/ be the subgroups of invertible
diagonal and upper triangular matrices, respectively; denote the diagonal weights
of Tk by z1; : : : ; zk . Consider the GL.k/–module of 3–tensors Hom.Ck; Sym2Ck/;
identifying the weight-.zmCzr�zl/ symbols qmr

l
and qrm

l
, we can write this space

in terms of a basis as follows:

Hom.Ck; Sym2Ck/D
M

1�m;r;l�k

Cqmr
l :
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Consider the point � D
Pk

mD1

Pk�m
rD1 qmCr

mr in the Bk –invariant subspace

Wk D

M
1�mCr�l�k

Cqmr
l � Hom.Ck; Sym2Ck/:

Set the notation Ok for the orbit closure Bk��Wk ; then Qk.z/ is the Tk –equivariant
Poincaré dual Qk.z/D ePŒOk ;Wk �Tk

, which is a homogeneous polynomial of degree
dim.Wk/� dim.Ok/. For small k these polynomials are (see [7, Section 7])

Q2 DQ3 D 1; Q4 D 2z1C z2� z4;

Q5 D .2z1C z2� z5/.2z2
1 C 3z1z2� 2z1z5C 2z2z3� z2z4� z2z5� z3z4C z4z5/:

(2) To understand the significance of this vanishing theorem we note that while the
fixed-point set …k on Flag�k.Sym�kCn/ is well understood, it is not clear which of
these fixed points sit in Xf . But we have enough information to prove that none of
those fixed points in Xf contribute to the iterated residue except for the distinguished
fixed point �dst D .Œ1�; Œ2�; : : : ; Œk�/. This simplification is dramatic: the number of
terms in (34) grows exponentially with k , and of this sum now a single term survives.

(3) The residue vanishing theorem is valid under the condition kC 1 � n which is
slightly stronger than the condition k � n we worked with so far and which guaranteed
the existence of eCX ŒkC1�

p . We will remedy this condition in Section 6.2.

Remark 6.3 Remark 2.3 for singular varieties and ordinary compactly supported
differential forms holds for compactly supported equivariant forms as follows. Let T

be a complex torus and f W M !N be a smooth proper T –equivariant map between
smooth quasiprojective varieties. Now assume that X �M and Y �N are possibly
singular T –invariant closed subvarieties, such that f restricted to X is a birational
map from X to Y . Next, let � be an equivariantly closed differential form on N

with values in polynomials on t. Then the integral of � on the smooth part of Y is
absolutely convergent; we denote this by

R
Y �. With this convention we again have

(36)
Z

X

f ��D

Z
Y

�;

and we can define integrals of equivariant forms on singular quasiprojective varieties
simply by passing to any partial equivariant resolution or equivalently to integra-
tion over the smooth locus. In particular, applying this for the partial resolution
�W eCX ŒkC1�

p ! CX ŒkC1�
p we getZ

CX
ŒkC1�
p

˛ D

Z
fCX

ŒkC1�
p

��˛

for any closed compactly supported differential form ˛ 2��.CX
ŒkC1�
p /.
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6.1 The vanishing of residues

In this subsection, following Bérczi and Szenes [7, Section 6.2], we describe the
conditions under which iterated residues of the type appearing in the sum in (33) vanish
and we prove Theorem 6.1.

We start with the 1–dimensional case, where the residue at infinity is defined by (30)
with d D 1. By bounding the integral representation along a contour jzj DR with R

large, one can easily prove the following lemma.

Lemma 6.4 Let p.z/ and q.z/ be polynomials of one variable. Then

Res
zD1

p.z/ dz

q.z/
D 0 if deg.p.z//C 1< deg.q/:

Consider now the multidimensional situation. Let p.z/ and q.z/ be polynomials
in the k variables z1; : : : ; zk , and assume that q.z/ is the product of linear factors
q D

QN
iD1 Li , as in (33). We continue to use the notation dzD dz1 � � � dzk . We would

like to formulate conditions under which the iterated residue

(37) Res
z1D1

Res
z2D1

� � � Res
zkD1

p.z/ dz

q.z/

vanishes. Introduce the following notation:

� When p.z/ is the product of linear forms and 1 � m � k let deg.p.z/Im/
denote the number of terms in p.z/ with nonzero coefficients in front of zm .

� For a nonzero linear form LDa0Ca1z1C� � �Cakzk , denote by coeff.L; zl/Dai

the coefficient in front of zi .

� Finally, for 1�m� k , set

lead.q.z/Im/D #fi Wmaxfl W coeff.Li ; zl/¤ 0g Dmg;

which is the number of those factors Li in which the coefficient of zm does not
vanish, but the coefficients of zmC1; : : : ; zk are 0.

We can group the N linear factors of q.z/ according to the nonvanishing coefficient
with the largest index; in particular, for 1�m� k we have

deg.q.z/Im/� lead.q.z/Im/ and
kX

mD1

lead.q.z/Im/DN:
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Proposition 6.5 [7, Proposition 6.3] Let p.z/ and q.z/ be polynomials in the vari-
ables z1; : : : ; zk , and assume that q.z/ is a product of linear factors: q.z/D

QN
iD1 Li ;

set dzD dz1 � � � dzk . Then

Res
z1D1

Res
z2D1

� � � Res
zkD1

p.z/ dz

q.z/
D 0

if for some l � k , the following holds:

deg.p.z/I l/C 1< deg.q.z/I l/D lead.q.z/I l/:

Note that the equality deg.q.z/I l/D lead.q.z/I l/ means that

(38) for each iD1; : : : ;N and m> l; coeff.Li ; zl/¤0 implies coeff.Li ; zm/D0:

We are ready to prove the residue vanishing theorem. Recall that our goal is to
show that all the terms of the sum in (33) vanish except for the one corresponding
to �dst D .Œ1�; : : : ; Œk�/. The plan is to apply Proposition 6.5 in stages to show that
the iterated residue vanishes unless zi D Œi � holds, starting with i D k and going
backwards.

Fix a sequence �D .�1; : : : ; �k/2…k , and consider the iterated residue corresponding
to it on the right-hand side of (33). The expression under the residue is the product of
two fractions:

p.z/

q.z/
D

p1.z/

q1.z/
�
p2.z/

q2.z/
;

where

(39)
p1.z/

q1.z/
D

Q�.z/
Q

m<l.zm�zl/Qk
lD1

Q�¤�1;:::;�l

sum.�/�l
.z��z�l

/
and

p2.z/

q2.z/
D
˛.�1;:::;�r ;z�1

;:::;z�k
/Qk

lD1

Qn
iD1.�i�zl/

:

Note that p.z/ is a polynomial, while q.z/ is a product of linear forms. As a first
step we show that if �k ¤ Œk�, then already the first residue in the corresponding
term on the right-hand side of (33) — the one with respect to zk — vanishes. Indeed,
if �k ¤ Œk�, then deg.q2.z/I k/ D n, while zk does not appear in p2.z/. On the
other hand, deg.q1.z/I k/ D 1, because the only term which contains zk is the one
corresponding to l D k and � D Œk�¤ �k . This also means that the only coordinate
on T�Flag�k which contains the zk coordinate of the torus is zk � z�k

, and since
Q�.z/D emult� ŒXf ;Flag�k �, (25) tells us that deg.Q�.z/I k/� 1 holds. Collecting
this data gives

(40) deg.p1.z/p2.z/I k/D k and deg.q1.z/q2.z/I k/D nC 1;

and k � n� 1, so deg.p.z//� deg.q.z//� 2 holds and we can apply Lemma 6.4.
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We can thus assume that �k D Œk�, and proceed to the next step and take the residue
with respect to zk�1 . If �k�1 ¤ Œk � 1� then

(41) deg.q2.z/I k � 1/D lead.q2.z/I k � 1/D n and deg.p2.z/I k � 1/D 0:

In q1.z/ the linear terms containing zk�1 are

(42) zk�1� zk ; z1C zk�1� zk and zk�1� z�k�1
:

The first term here cancels with the identical term in the Vandermonde in p1 . The
second term divides Q� , according to the following proposition from [7] applied
for l D k � 1.

Proposition 6.6 [7, Proposition 6.4] Let l � 1, and let � be an admissible sequence
of partitions of the form � D .�1; : : : ; �l ; Œl C 1�; : : : ; Œk�/, where �l ¤ Œl �. Then
for m> l , and every partition � such that l 2 � , sum.�/�m, and j� j> 1, we have

(43) .z� � zm/ jQ� :

Therefore, after cancellation, all linear factors from q1.z/ which have nonzero coeffi-
cients in front of both zk�1 and zk vanish, and for the new fraction p0

1
.z/=q0

1
.z/,

deg.q01.z/I k � 1/D lead.q01.z/I k � 1/D 1:

By (42) and (25), deg.Q� I k � 1/� 3 and therefore after cancellation we have

deg.p01.z/I k � 1/� k � 2C 2D k:

Using (41) we get
deg.p01.z/p2.z/I k � 1/� k

and
deg.q01.z/q2.z/I k � 1/D lead.q01.z/q2.z/I k � 1/D nC 1;

so we can apply Proposition 6.5 with l D k � 1 to deduce the vanishing of the residue
with respect to k � 1.

In general, assume that

� D .�1; �2; : : : ; �l ; Œl C 1�; : : : ; Œk�/ where �l ¤ Œl �

and proceed to the study of the residue with respect to zl . For the second fraction we
have again

(44) deg.q2.z/I l/D lead.q2.z/I l/D n and deg.p2.z/I l/D 0:
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The linear terms containing zl in q1.z/ are

zl � zk ; zl � zk�1; : : : ; zl � zlC1;(45)

z� � zs with l 2 �; � ¤ l; l C 1� s � k and sum.�/� s;(46)

zl � z�l
:(47)

The weights in (45) cancel out with the identical terms of the Vandermonde in p1.z/,
and by Proposition 6.6, Q�.z/ is divisible by the weights in (46). Hence all linear
factors with nonzero coefficient in front of zl and at least one of zlC1; : : : ; zk vanish
from q1.z/. Let again p0

1
.z/=q0

1
.z/ denote the new fraction arising from p1.z/=q1.z/

after these cancellations. Then in q0
1
.z/ only the term (47) contains zl , and

(48) deg.q01.z/; l/D lead.q01.z/; l/D 1:

In p0
1
.z/ the linear terms which are left from the Vandermonde after cancellation

and contain zl are zl�1 � zl ; : : : ; z1 � zl . The reduced Q0�.z/ which we get after
dividing by the terms in (46) is then a polynomial of the remaining weights, and the
only remaining weights which contain zl are

zl � z�l
and zl � zk ; zl � zk�1; : : : ; zl � zlC1:

This is because Q� is the sum of monomials of the form …!2I! where

I � fz� � z�l
W sum.�/� l; � ¤ �1; : : : ; �l ; 1� l � kg

is a subset of the weights in q1.z/ and therefore Q� does not contain repeated weights.
Then (25) tells us that deg.Q�.z/I l/� k � l C 1. Therefore

(49) deg.p01.z/I l/� .l � 1/C .k � l C 1/D k:

Putting (48) and (49) together we get

deg.p01.z/p2.z/; l/� k and deg.q01.z/q2.z/; l/D lead.q01.z/q2.z/; l/D nC 1:

Since k � n� 1, by applying Proposition 6.5 we arrive at the vanishing of the residue,
forcing �l to be Œl �. This proves (1) of Theorem 6.1

The second part of the residue vanishing theorem is proved in Section 6.5 of [7] where
we show that for j� j> 1,

.z��zl/ jQ.Œ1�;:::;Œk�/ if .Œ1�; Œ2�; : : : ; Œl�1�; �; ŒlC1�; : : : ; Œk�1�; Œk�/ is not complete:

We call an admissible sequence of partitions � D .�1; : : : ; �k/ complete if for every
l 2 f1; : : : ; kg and every nontrivial subpartition � � �l , there is an m 2 f1; : : : ; kg

such that �m D � . Clearly, a sequence .Œ1�; Œ2�; : : : ; Œl � 1�; �; Œl C 1�; : : : ; Œk � 1�; Œk�/

is complete if and only if j� j D 2.
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6.2 Increasing the number of points

The residue vanishing theorem provides a closed iterated residue formula for tautological
integrals on eCX ŒkC1�

p in the case when kC 1� n, that is, the number of points does
not exceed the dimension of X . In this section we show how one can drop this very
restrictive condition.

Recall that after fixing local coordinates on X near p , the test-curve model in
Section 3.1 establishes a GL.n/–equivariant isomorphism of quasiprojective varieties

J
reg
k
.1; n/=J

reg
k
.1; 1/' CX ŒkC1�

p � Grassk.Sym�k Cn/

between the moduli of k–jets of regular germs and the curvilinear locus of the punctual
Hilbert scheme sitting in the Grassmannian of k–dimensional subspaces in Sym�k Cn .

Assume that kC 1> dim.X /D n. Fix a basis fe1; : : : ; ekC1g of CkC1 and let

CŒn�DSpan.e1; : : : ; en/ ,!CkC1 and CŒkC1�n�DSpan.enC1; : : : ; ekC1/ ,!CkC1

denote the subspaces spanned by the first n and last kC1�n basis vectors respectively.
These are TkC1–equivariant embeddings under the diagonal action of the maximal
torus TkC1 � GL.kC 1/.

We can write J
reg
k
.1; n/ � J

reg
k
.1; kC 1/ as a zero locus of a smooth section of a

vector bundle over J
reg
k
.1; kC 1/. Indeed, consider the projection

J
reg
k
.1; kC 1/! Jk.1; kC 1� n/' Hom.Ck; CŒkC1�n�/

which sends a regular k–jet f W C ! CkC1 to the composition C ! CkC1 !

CkC1�n=CŒn� DCŒkC1�n� . This map is TkC1 �J
reg
k
.1; 1/–equivariant and therefore

it defines a TkC1–equivariant section � of the bundle

E D J
reg
k
.1; kC 1/�J

reg
k
.1;1/ Jk.1; kC 1� n/:

This is a bundle over the quasiprojective base space J
reg
k
.1; kC 1/=J

reg
k
.1; 1/ with

fibres isomorphic to Jk.1; kC 1� n/ and the zero locus of the section � is

��1.0/D J
reg
k
.1; n/=J

reg
k
.1; 1/� J

reg
k
.1; kC 1/=J

reg
k
.1; 1/:

Lemma 5.4 then suggests that for any TkC1–equivariantly closed form on the quasipro-
jective quotient � on J

reg
k
.1; kC 1/=J

reg
k
.1; 1/ we haveZ

J
reg
k
.1;n/=J

reg
k
.1;1/

�D

Z
J

reg
k
.1;kC1/=J

reg
k
.1;1/

� �EulerTkC1.E/;

but our base space J
reg
k
.1; kC 1/=J

reg
k
.1; 1/ is quasiprojective and not compact so
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Lemma 5.4 does not apply directly. Note, however, that E extends TkC1–equivariantly
over the closure

J
reg
k
.1; kC 1/=J

reg
k
.1; 1/� Grassk.Sym�kCkC1/

in the Grassmannian, namely E is the restriction of the bundle

zE D Homreg.Ck; Sym�kCkC1/�GL.k/ Hom.Ck; CŒkC1�n�/

over the Grassmannian Homreg.Ck; Sym�kCkC1/=GL.k/ D Grassk.Sym�kCkC1/.
That is, we have a TkC1–equivariant embedding

E
� � //

�

��

zE

��

J
reg
k
.1; kC 1/=J

reg
k
.1; 1/

� ��
Grass
// Grassk.Sym�kCkC1/

of E into zE and Lemma 5.4 gives us the following:

Proposition 6.7 Let E D .�Grass/� zE denote the restriction of zE to the closure
J

reg
k
.1; kC 1/=J

reg
k
.1; 1/. Then for any TkC1–equivariantly closed form � on this

closure we haveZ
J

reg
k
.1;n/=J

reg
k
.1;1/

�D

Z
J

reg
k
.1;kC1/=J

reg
k
.1;1/

� �EulerTkC1.E/:

We are ready to prove the iterated residue formula on the domain n� kC 1.

Theorem 6.8 (extended residue vanishing theorem) Formula (35) remains valid for
any 2� n< kC 1.

Proof The embedding �FlagW J
reg
k
.1; kC 1/=J

reg
k
.1; 1/ ,! Flagk.Sym�kCkC1/ is

TkC1–equivariant, and over the flag f� the weight of f Œi�j is �j ���.i/ . In the iterated
residue formula of Proposition 5.11 we substitute ��.i/ for zi over f� and therefore
�j � zi for this weight and therefore the TkC1–equivariant Euler class transforms into

EulerTkC1
z .E/D

kY
iD1

kY
jDnC1

.�j � zi/

over the flag f� corresponding to an iterated pole zD .z1; : : : zk/. If

˛ D ˛.�1; : : : ; �r ; �1; : : : ; �k/

is a bisymmetric polynomial in the Chern roots �i of the pull-back of F over eCX ŒkC1�
p �

Flagk.Sym�kCn/ and the Chern roots �j of the tautological rank-k bundle E , then the
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trivial extension of ˛ to Flagk.Sym�kCkC1/ is closed and therefore Remark 6.3,
Proposition 6.7 and Theorem 6.1 tell usZ

CX
Œn�
p

˛ D Res
zD1

Qk.z/
Q

m<l.zm�zl/˛.�; z/ dzQ
mCr�l�k.zmCzr �zl/

Qk
lD1

Qk
iD1.�i�zl/

�

kY
lD1

kY
iDnC1

.�i�zl/

D Res
zD1

Qk.z/
Q

m<l.zm�zl/˛.�; z/Q
mCr�l�k.zmCzr �zl/

Qk
lD1

Qn
iD1.�i�zl/

dz:

7 Proof of Theorem 1.2 and examples

Let P D P .c1; : : : ; cr.kC1// be a Chern polynomial of degree dim CX ŒkC1� , which
equals nC .n� 1/k , where the ci D ci.F

ŒkC1�/ are the Chern classes of the tautologi-
cal rank-r.kC1/ bundle on the curvilinear Hilbert scheme. To evaluate the integralR

CX ŒkC1� P we can first integrate (push forward) along the fibres of � W CX ŒkC1�
!X

followed by integration over X . By fixing local holomorphic coordinates on X near p

these fibres are canonically isomorphic to CX ŒkC1�
p � Grassk.Sym�k.Cn/ endowed

with a natural GL.n/–action induced by the standard GL.n/–action on Cn . We can
use this action to perform torus equivariant localisation on CX ŒkC1�

p to integrate
along the fibres. According to Remark 6.3,

R
CX

ŒkC1�
p

P D
RfCX

ŒkC1�
p

��P holds, where
�W eCX ŒkC1�

p ! CX ŒkC1�
p is the partial resolution constructed in Section 4.3. Applying

Theorem 6.1 and its extension Theorem 6.8 and the expression in (14) for the Chern
classes of F ŒkC1� we get

(50)
Z

CX
ŒkC1�
p

P D Res
zD1

Qk.z/
Q

m<l.zm� zl/P .cl.zC �; �//Q
mCr�l�k.zmC zr � zl/

Qk
lD1

Qn
iD1.�i � zl/

dz;

where �1; : : : ; �r are the Chern roots of F and cl.zC �; �/ denotes the l th symmetric
polynomial in the formal Chern roots fzi C �j ; �j W 1� i � k; 1� j � rg.

According to Corollary 3.14 CX
ŒkC1�
p DJ

reg
k

Xp=Diffk.1/, which sits in Grassk.Dk
X ;p

/.
By choosing local coordinates on X near p we identify Dk

X ;p
with Sym�kCn and the

weights �1; : : : ; �n of the GL.n/–action on Cn intuitively correspond to the Chern
roots of D�1

X ;p
=D�0

X ;p
D TpX . To finish the proof of Theorem 1.2 we simply substitute

the �i with the Chern roots of TX . Indeed, this is what we have to do, but this intuitive
step needs further explanation.

The crucial observation is that GL.n/ is a (strong) deformation retract of Diffk via the
homotopy

Diffk � Œ0; 1�! Diffk
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which sends .�; t/ to the �t whose linear part is identical to the linear part of � but
whose quadratic and higher order terms are those of � multiplied by t . This homotopy
contracts the quadratic and higher order terms of � to zero. This induces a retraction
of the classifying spaces

� W BDiffk ! BGL.n/

which is a homotopy equivalence.

Given a Diffk –module V the embedding GL.n/ ,!Diffk also defines a GL.n/–module
structure on V and the corresponding universal bundles

EDiff V DEDiffk �Diffk
V and EGL.n/V DEGL.n/�GL.n/ V

are homotopy equivalent. In particular,

EDiff CX
ŒkC1�
p DEDiffk �Diffk

CX
ŒkC1�
p

and
EGL CX

ŒkC1�
p DEGL.n/�GL.n/ CX

ŒkC1�
p

are homotopy equivalent and therefore their pull-backs along the classifying map
�W X ! BDiffk ,

CX ŒkC1�
D ��EDiff CX

ŒkC1�
p and CX

ŒkC1�
GL D .� ı �/�EGL CX

ŒkC1�
p ;

are also homotopy equivalent. They sit in the corresponding Grassmannian bundles:

CX ŒkC1�
� ��EDiff Grassk.Sym�kCn/D Grassk.Dk

X /;

CX
ŒkC1�
GL � .� ı �/�EGL Grassk.Sym�kCn/D Grassk.Sym�kTX /:

If ˛ is a polynomial in the Chern classes of the tautological rank-k bundle E over
EGL Grassk.Sym�kCn/ thenZ

CX
ŒkC1�
GL

.� ı �/�˛ D

Z
CX ŒkC1�

��˛

holds, and therefore we can replace integration over CX ŒkC1� with integration over
CX

ŒkC1�
GL . The commutative diagram

CX
ŒkC1�
GL

//

��

EGL CX
ŒkC1�
p

��

X
�ı�

// BGL.n/
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induces a diagram of cohomology maps

H�.CX
ŒkC1�
GL /R
p

��

H�.EGL CX
ŒkC1�
p /oo

Res
��

H�.X / H�.BGL.n//
Sub

oo

where:
� Res is the residue operator sending a polynomial P in the Chern classes of E to

Res
zD1

Qk.z/
Q

m<l.zm� zl/P .cl.z//Q
mCr�l�k.zmC zr � zl/

Qk
lD1

Qn
iD1.�i � zl/

dz:

� Sub is the substitution of the Chern roots of X into the weights �1; : : : ; �n .
�
R
p is integration along the fibre.

Commutativity tells us that integration along the fibre CX ŒkC1�
p of a class pulled

back from the universal bundle E over EGL CX ŒkC1�
p is given by applying the residue

operation followed by the substitution of the Chern roots of X into the weights �i of
the torus action.

To get the final version of the iterated residue formula we replace the variables zi

by �zi for i D 1; : : : ; k . This changes the sign of the iterate residue (50) with .�1/k

as this substitution corresponds to changing the orientation of the contour circles. Then
the terms involving the �i in (50) can be rewritten as

1Qn
iD1.�i C zj /

D
1

zn
j c.1=zj /

D
sX .1=zj /

zn
j

;

where sX .1=zi/D 1C s1.X /=ziC s2.X /=z
2
i C� � �C sn.X /=z

n
i is the total Segre class

of X . Next observe that the denominator and the numerator of the fractionQ
i<j .zi � zj /Qk.z/Q

iCj�l�k.zi C zj � zl/

are homogeneous polynomials of the same degree; hence this substitution will leave
this rational expression unchanged and only replaces zi by �zi in P .cl.zC�; �//. So
(50) can be rewritten asZ

CX ŒkC1�
P

D

Z
X

Res
zD1

.�1/k
Q

1�i<j�k.zi � zj /Qk.z/P .cl.� � z; �//dzQ
iCj�l�k.zi C zj � zl/.z1 � � � zk/

n

kY
iD1

sX

�
1

zi

�
;

and Theorem 1.2 is proved.
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Remark 7.1 (1) Note that if we give the zi and �j degree 1 then the total degree of
the rational expression

.�1/k
Q

i<j .zi � zj /Qk.z/P .cl.� � z; �//Q
iCj�l�k.zi C zj � zl/.z1 � � � zk/

n

in the formula is n� k , so taking the iterated residue indeed gives us a bisymmetric
homogeneous polynomial of degree n in the �j and si .

(2) The Chern class cl.� � z; �/ is the coefficient of t l in

c.F ŒkC1�/.t/D

rY
jD1

.1C �j t/

kY
iD1

rY
jD1

.1� zi t C �j t/;

that is, the i th Chern class of the bundle with formal Chern roots �j , �j � zi . For
example,

c1.� � z; �/D .kC 1/

rX
jD1

�j � r

kX
iD1

zi ;

and in general cl.� � z; �/ is a degree-l polynomial of the form

cl.� � z; �/DAlcl.z/CAl�1cl�1.z/C � � �CA0;

where cj .z/ is the j th elementary symmetric polynomial in z1; : : : ; zk and Aj is a
degree-.n�j / symmetric polynomial in �1; : : : ; �r .

In certain special cases, however, we do not need this expansions of the Chern classes.
We finish this paper with showing a particularly nice example of this, the Segre classes
of tautological bundles over the curvilinear Hilbert schemes.

Example 7.2 (top Segre classes of tautological bundles) Top Segre classes

stop.F
ŒkC1�/D

Z
CX ŒkC1�

s.F ŒkC1�/

of tautological bundles have been long studied and they are of special interest because
of their role in Donaldson–Thomas theory of counting sheaves on surfaces; see Marian,
Oprea and Pandharipande [29] for details. Here s.F ŒkC1�/D 1=c.F ŒkC1�/ is the total
Segre class of F ŒkC1� , that is,

s.F ŒkC1�/Ds.��z; �/D

rY
jD1

1

1C�j
�

kY
iD1

rY
jD1

1

1C�j�zi
DsF �.z1 � � � zk/

�r
kY

iD1

S
�

1

zi

�
;
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where sF is the total Segre class of F and

S
�

1

zi

�
D�

rY
jD1

�
1C

1C �j

zi
C
.1C �j /

2

z2
i

C � � �C
.1C �j /

n

zn
i

�
is a polynomial in 1=zi with coefficients polynomials in the Chern classes of F , that
is, S.x/ 2CŒc1.F /; : : : ; cr .F /�Œx�.

Substituting into Theorem 1.2 we arrive at the following expression:

stop.F
ŒkC1�/D

Z
X

Res
zD1

.�1/k
Q

1�i<j�k.zi � zj /Qk.z/sF dzQ
iCj�l�k.zi C zj � zl/.z1 � � � zk/

rCn

kY
iD1

S
�

1

zi

�
sX

�
1

zi

�
:
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Convexity of the extended K-energy and
the large time behavior of the weak Calabi flow

ROBERT J BERMAN

TAMÁS DARVAS

CHINH H LU

Let .X; !/ be a compact connected Kähler manifold and denote by .Ep; dp/ the
metric completion of the space of Kähler potentials H! with respect to the Lp –
type path length metric dp . First, we show that the natural analytic extension of
the (twisted) Mabuchi K-energy to Ep is a dp –lsc functional that is convex along
finite-energy geodesics. Second, following the program of J Streets, we use this to
study the asymptotics of the weak (twisted) Calabi flow inside the CAT(0) metric
space .E2; d2/ . This flow exists for all times and coincides with the usual smooth
(twisted) Calabi flow whenever the latter exists. We show that the weak (twisted)
Calabi flow either diverges with respect to the d2 –metric or it d1 –converges to some
minimizer of the K-energy inside E2 . This gives the first concrete result about the
long-time convergence of this flow on general Kähler manifolds, partially confirming
a conjecture of Donaldson. We investigate the possibility of constructing destabilizing
geodesic rays asymptotic to diverging weak (twisted) Calabi trajectories, and give a
result in the case when the twisting form is Kähler. Finally, when a cscK metric exists
in H! , our results imply that the weak Calabi flow d1 –converges to such a metric.

53C55; 32W20, 32U05

1 Introduction

Given a compact connected Kähler manifold .X; !/, we denote by H the space of
smooth Kähler metrics in the cohomology class Œ!�. As follows from the @x@–lemma
of Hodge theory, up to a constant, this space is in one-to-one correspondence with the
space of Kähler potentials

H! D fu 2 C1.X / W !u WD !C i@x@u> 0g:

As H! is an open subset of C1.X /, it is a Fréchet manifold and it is possible to
endow it with different Lp–type Finsler metrics for p � 1, via

(1) k�kp;u WD

�
V �1

Z
X

j�jp!n
u

�1=p

; � 2 TuH! D C1.X /:
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For p D 2 one recovers the Riemannian structure of Mabuchi which turns H into
a Riemannian symmetric space of constant negative curvature (see Donaldson [38],
Mabuchi [55] and Semmes [59]), but as will be explained below, the Finsler case pD 1

will also play a key role in the present paper.

One of the central questions of Kähler geometry, going back to Calabi, is to understand
under what conditions H contains a constant scalar curvature Kähler (csc-K) metric.
From a variational point of view this amounts to looking for critical points (minimizers)
of Mabuchi’s K-energy functional KW H!!R [38; 55], whose first variation is defined
by the formula

hDK.u/; ıui D V �1

Z
X

ıu. xS �S!u
/!n

u ;

where V D
R
X !n is the total volume and xS DnV �1

R
X Ric!^!n�1DV �1

R
X S!!

n

is the mean scalar curvature. According to a formula of Chen and Tian, the K-energy
can be expressed explicitly in terms of the Kähler potential as

(2) K.u/ WD Ent.!n; !n
u/C

xS AM.u/� n AMRic!.u/;

where Ent.!n; !n
u/D V �1

R
X log.!n

u=!
n/!n

u is the entropy of the measure !n
u with

respect to !n and AM;AM W H! ! R are the Aubin–Mabuchi (also Aubin–Yau)
energy and its “–contracted” version:

AM.u/D
1

.nC 1/V

nX
jD0

Z
X

u!j
u^!

n�j ; AM .u/D
1

nV

n�1X
jD0

Z
X

u^!j
u^!

n�1�j :

As shown by Mabuchi, the K-energy is convex along geodesics in H! when the
geodesics are defined in terms of the corresponding L2–Riemannian structure. How-
ever, a major technical stumbling block in this infinite-dimensional setting is that the
Riemannian structure on H! is not geodesically complete, and this is one of the reasons
that we will be forced to work with various completions of H! , as discussed below.

In the finite-dimensional Riemannian setting, a time-honored approach to finding
minimizers of convex functions is to follow their negative (downward) gradient flow.
In the present infinite-dimensional Riemannian setting the negative gradient flow of
the K-energy is precisely the Calabi flow t ! ct :

d

dt
ct D S!ct

� xS :

Given arbitrary initial potential c0 2H! , short-time existence of the flow, assuming
the initial potential is C 3;˛ , is due to Chen and He [24], but long-time existence
is still an open conjecture due to Calabi and Chen. In the case where dim X D 1,
long-time existence and convergence of the flow was first explored by Chruściel [28].
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Fine [42] used finite-dimensional flows to approximate the Calabi flow. Under various
restrictive conditions, convergence and existence theorems for the Calabi flow have been
extensively studied. We refer the reader to Chen and He [25], Feng and Huang [40],
He [48], Huang [49], Huang and Zheng [50], Li, Wang and Zheng [54], Székelyhidi [63]
and Tosatti and Weinkove [65], to cite a few works from a very fast-growing literature.

The main motivation of our paper is the following conjecture of Donaldson on the
long-time asymptotics and convergence of the Calabi flow, which, roughly stated, says:

Conjecture 1.1 [39] Let Œ0;1/ 3 t ! ct 2H be a Calabi flow trajectory. Exactly
one of the following alternatives holds:

(i) The curve t ! ct converges smoothly to some csc-K potential c1 2 H! as
t !1.

(ii) The curve t ! ct diverges as t !1 and encodes destabilizing information
about the Kähler structure.

We refer to Donaldson [39] for a precise statement and further details about this
conjecture. To avoid the difficulties arising in PDE theory related to long-time existence,
we recast the Calabi flow in the metric completion of .H! ; d2/ following Streets
[61; 62], who applied the work of Mayer [56] and Bačák [3] concerning gradient flows
of convex functionals on Hadamard spaces (ie CAT.0/spaces) to the setting of the
“minimizing movement” Calabi flow. Before we can do this, however, we need to
understand how the K-energy extends to certain spaces of singular potentials. The key
new feature of our approach is that we take advantage of the fact that the corresponding
abstract metric space (defined in terms of Cauchy sequences in [61]) can be realized
concretely in terms of certain singular Kähler potentials, ie using pluripotential theory,
which in particular allows us to improve on the abstract convergence result in [62].

Finite-energy spaces and extensions of the twisted K-energy In order to briefly
introduce our setting, we denote by Ep the space of !–psh functions on X which
have finite energy with respect to the standard p–homogenous weight, as introduced
by Guedj and Zeriahi [45]. As shown in Darvas and He [30], the abstract metric
completion of the Lp–type Finsler metric (1) on H! may be identified with the finite-
energy space Ep equipped with a natural distance function that we will denote by dp ,
which is comparable to an explicit energy-type expression (8). When p D 2, this
identification was conjectured by Guedj in [44]. Furthermore, in the case p D 1,
it yields a Finsler realization .E1; d1/ of the strong topology on E1 introduced in
Berman, Boucksom, Eyssidieux, Guedj and Zeriahi [9] (which can be seen as a higher-
dimensional “nonlinear” generalization of the classical strong topology defined by the
Dirichlet norm on a Riemann surface).

Geometry & Topology, Volume 21 (2017)
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Moreover, as shown in Darvas [29] and Darvas and He [30], for any pair of potentials
u0;u1 2 Ep one can construct a dp–geodesic segment (in the metric sense) explicitly,
as a decreasing pointwise limit of C 1;x1–weak geodesics (in the sense of Chen [20], ie
as C 1;x1–solutions to certain complex Monge–Ampère equations). These dp–geodesic
segments will be referred to as finite-energy geodesics in the future and we direct the
reader to Theorem 2.3 for more details. A recurrent theme in the present work is
the interaction between the cases p D 2 and p D 1, which in particular will allow
us to exploit the energy/entropy compactness theorem from [9] to get a convergence
result for the Calabi flow with respect to the d1–topology. This strengthens the general
convergence result of [62], concerning the weak d2–topology, which does not imply
any convergence in the sense of pluripotential theory (Remark 5.4).

Our starting point is the observation that the K-energy functional K originally defined
on H! admits a natural “analytic extension” to the finite-energy space E1 (and hence by
restriction to all spaces Ep ). This is simply the extension obtained by interpreting the
entropy part (the first term) and the energy part (the second two terms) in formula (2) in
the general sense of probability theory and pluripotential theory, respectively, essentially
as in the Fano setting previously considered in Berman [7] and in [9]. As we will see,
the energy part is d1–continuous, whereas the entropy part is only d1–lsc, and in the
particular case of C 1;x1–potentials, this extension coincides with the one introduced by
Chen [19]. We then go on to show that the restriction to Ep of the analytic extension
coincides with the canonical “topological extension” of the K-energy, ie the greatest
dp–lsc extension from H! . In particular, applied to the case p D 2, which is the one
relevant to the Calabi flow, this yields an analytic formula for Streets’ extension of the
K-energy.

The analytic extension formula allows us to establish the convexity of the extended
K-energy along finite-energy geodesics, using an approximation argument and the
C 1;x1–case recently settled in Berman and Berndtsson [8, Theorem 1.1] (originally
conjectured by Chen).

Before we state our first theorem, recall that in various applications of Kähler geometry
it is necessary to deal with the more general concept of twisted csc-K metrics and
the corresponding twisted-K energy (see eg Chen [23], Chen, Paun and Zeng [26],
Dervan [36], Fine [41] and Stoppa [60]). As it takes little extra effort, throughout
this paper we work at this level of generality, with � denoting a very general twisting
form (3) and K� the corresponding twisted K-energy (5). The relevant terminology
will be recalled in Section 2.1.

Theorem 1.2 (Theorem 4.7) Suppose .X; !/ is a compact connected Kähler man-
ifold. The K-energy can be extended to a functional KW E1! .�1;1� using (2). The

Geometry & Topology, Volume 21 (2017)
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restricted functional KjEp is the greatest dp–lsc extension of KjH! for any p � 1.
Additionally, KjEp is convex along the finite-energy geodesics of Ep . If �D ˇC i@x@f

satisfies (3), the corresponding result also holds for the twisted K-energy K� .

An important ingredient in the proof of Theorem 1.2 is understanding approximation
of potentials of Ep while also approximating entropy. In this direction, we note the
following theorem. More precise results can be obtained using the flow techniques of
Guedj and Zeriahi [46] and Nezza and Lu [57], and will be discussed elsewhere.

Theorem 1.3 (Theorem 3.2) Suppose u 2 Ep and f is a usc function on X sat-
isfying e�f 2 L1.X; !n/. Then one can find uk 2 H! with dp.uk ;u/ ! 0 and
Ent.e�f !n; !n

uk
/! Ent.e�f !n; !n

u/.

Finally, as a consequence of Theorem 1.2 we obtain that the space of finite �–entropy
potentials Ent�.X; !/ is geodesically closed, and if Ric! �ˇ then the twisted entropy
is convex along finite-energy geodesics, giving the Kähler analog of a central result
of Lott, Sturm and Villani in optimal transport theory; see Villani [66]. For details
on notation and a detailed discussion on relationship with the literature, we refer to
Section 4.4.

Theorem 1.4 (Theorem 4.10) If �D ˇC i@x@f satisfies (3), then .Ent�.X; !/; d1/

is a geodesic sub-metric space of .E1.X; !/; d1/. Additionally, if Ric! � ˇ then the
map Ent�.X; !/ 3 u! Ent.e�f !n; !n

u/ 2R is convex along finite-energy geodesics.

Convergence and large-time behavior of the weak twisted Calabi flow As adver-
tised above, using Theorem 1.2, we can run the weak twisted Calabi flow Œ0;1/ 3 t!

ct 2 E2 for any starting point c0 2 E2 . Indeed, .E2; d2/ is a CAT.0/-space and the
extended functional K� is convex along d2–geodesics, hence we are in the setting
of Mayer [56], as detailed in Section 2.5. This yields a flow of (possibly singular)
Kähler potentials which is uniquely determined by the corresponding normalized
Monge–Ampère measures, which in turn yields a flow of probability measures which is
regularizing in the sense that the entropy immediately becomes finite and in particular
the measures have an L1–density for positive times.

When � is smooth and X is a Riemann surface, the smooth twisted Calabi flow
was recently explored by Pook [58]. To provide consistency, we will show that the
weak twisted Calabi flow agrees with the smooth version whenever the latter exists
(Proposition 6.1), generalizing a result of Streets [62] in the case where �D0. Providing
additional consistency, as an application of Theorem 1.2, in Section 6 we show that
Streets’ (a priori different) minimizing movement Calabi flow coincides with our weak
Calabi flow.

Geometry & Topology, Volume 21 (2017)
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Generalizing twisted csc-K metrics, by Mp
� we denote the minimizers of the extended

K-energy on Ep :
Mp
� D

˚
u 2 Ep

W K�.u/D inf
v2Ep

K�.v/
	
:

In the case �D 0 we will simply use Mp WDMp
0

. Concerning the convergence and
blow-up behavior of the weak twisted Calabi flow, we prove the following concrete
result:

Theorem 1.5 (Theorem 6.3) Suppose .X; !/ is a compact connected Kähler mani-
fold and �D ˇC i@x@f satisfies (3). The following statements are equivalent:

(i) M2
� is nonempty.

(ii) For any weak twisted Calabi flow trajectory t ! ct , there exists c1 2M2
� such

that d1.ct ; c1/! 0 and Ent.e�f !n; !n
ct
/! Ent.e�f !n; !n

c1
/.

(iii) Any weak twisted Calabi flow trajectory t ! ct is d2–bounded.

(iv) There exists a weak twisted Calabi flow trajectory t! ct and tj !1 for which
the sequence fctj gj is d2–bounded.

� By the consistency result discussed above, the previous theorem in particular applies
to the smooth Calabi flow (when it exists) and it should be stressed that the result
and its elaborations discussed below are new also in this smooth case. In particular,
it generalizes results of the first author on the smooth Calabi flow on Fano manifolds
without nontrivial holomorphic vector fields; see Berman [7]. One new feature of our
result is that the latter assumption, which guarantees the uniqueness of csc-K metrics,
is not needed. This means that the limit c1 is not uniquely determined by X and will,
in general, depend on the initial data c0 .

� By Darvas and He [30, Theorem 5] and part (ii) of the above theorem, if a csc-K
potential exists in H! then the weak Calabi flow t ! ct converges pointwise ae to
some potential c1 2M2 , and the measures !n

ct
converge weakly and in entropy

to !n
c1

. In the Fano case it additionally follows that c1 is csc-K. However, due to
progress on the regularity Conjecture 1.8 discussed in the companion paper Berman,
Darvas and Lu [11], this result also holds on general Kähler manifolds as well, making
further progress on Donaldson’s conjecture (see Theorem 1.10 and Theorem 1.11).

� Finally, in light of Theorem 1.6, we mention that Proposition 2.11(ii) strengthens
the corresponding convergence result of Streets in [62]. Given a CAT.0/metric space
.M; d/, it is possible to introduce a notion of weak d–convergence, generalizing the
concept of weak convergence on Hilbert spaces (Section 2.4). In general, little concrete
is known about this type of convergence; see Kirk and Panyanak [51]. Streets, however,
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observed that one can adapt the result of Bačák [3] to our setting, ie whenever M2

is nonempty, each weak Calabi flow trajectory converges d2–weakly to an element
of M2 [62]. Though weak d2 convergence does not even imply weak L1 convergence
of the potentials (Remark 5.4), we use this idea in the proof of the above theorem
together with the following result, which sheds light on the relationship between all
the different topologies involved:

Theorem 1.6 (Theorem 5.3) Suppose fukgk � E2 is d2–bounded and u 2 E2 . Then
d1.uk ;u/! 0 if and only if kuj �ukL1.X /! 0 and uk converges to u d2–weakly.

The conjectural picture of Donaldson Before we proceed, let us note a last corollary
of Theorem 1.5, a consequence of the equivalence between (i) and (iv):

Corollary 1.7 Suppose that .X; !/ is a compact connected Kähler manifold and that
Œ0;1/ 3 t ! ct 2 E2 is a weak twisted Calabi flow trajectory. Exactly one of the
following holds:

(i) The curve t ! ct d1–converges to some c1 2M2
� .

(ii) d2.c0; ct /!1 as t !1.

Though this corollary is in line with Donaldson’s conjectural picture, one would
like to understand how a diverging Calabi flow trajectory “destabilizes” the Kähler
structure, as proposed in Conjecture 1.1. In this direction we recall the following
concept from Darvas and He [31]: suppose .M; d/ is a geodesic metric space and
Œ0;1/ 3 t ! t 2M is a continuous curve. We say that the unit speed d –geodesic
ray Œ0;1/ 3 t ! gt 2M is d–weakly asymptotic to the curve t ! t if there exists
tj!1 and unit speed d –geodesic segments Œ0; d.0; tj /�3 t! g

j
t 2M connecting

0 and tj such that limj!1 d.g
j
t ;gt /D 0 for t 2 Œ0;1/.

Clearly, to have a geodesic ray weakly asymptotic to t ! t , we need t ! d.0; t /

to be unbounded. By the above corollary, this condition makes diverging weak Calabi
flow trajectories t ! ct perfect candidates for this construction. However, more needs
to be known about t ! ct before we can proceed. In Darvas and Rubinstein [32,
Conjecture 2.8] it was pointed out that an important roadblock in resolving Tian’s
properness conjecture for csc-K metrics is a conjecture about regularity of minimizers
of K . The twisted version of this conjecture should also hold:

Conjecture 1.8 (Darvas and Rubinstein [32]) Suppose .X; !/ is a compact con-
nected Kähler manifold and � is smooth. Then M1

� � H! , ie M1
� contains only

smooth twisted csc-K potentials.
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We note that this conjecture generalizes an earlier conjecture of Chen [22, Conjec-
ture 6.3] about C 1;1 minimizers of K . When .X; !/ is Fano, Conjecture 1.8 was
proved in Berman [7] and Berman, Boucksom, Eyssidieux, Guedj and Zeriahi [9]. The
next result partially confirms Donaldson’s conjecture in the Fano case and also in the
case when � is a Kähler form.

Theorem 1.9 (Theorem 6.5) Suppose .X; !/ is a compact connected Kähler mani-
fold, �� 0 is smooth and Conjecture 1.8 holds. Let Œ0;1/ 3 t ! ct 2 E2 be a weak
twisted Calabi flow trajectory. Exactly one of the following holds:

(i) The curve t ! ct d1–converges to a smooth twisted csc-K potential c1 .

(ii) d1.c0; ct /!1 as t !1 and the curve t ! ct is d1–weakly asymptotic to a
finite-energy geodesic Œ0;1/ 3 t ! ut 2 E1 along which K� decreases.

If � > 0, then, independently of Conjecture 1.8, exactly one of the following holds:

(i0) The curve t ! ct d1–converges to a unique minimizer in E1 of K� .

(ii0) d1.c0; ct /!1 as t !1 and the curve t ! ct is d1–weakly asymptotic to a
finite-energy geodesic Œ0;1/ 3 t ! ut 2 E1 along which K� strictly decreases.

Though stated differently, when .X; !/ is Fano and �D 0 the analog of this result for
the Kähler–Ricci flow has been obtained in [31, Theorem 2]. There we have smooth
convergence in (i) and along the geodesic ray of (ii) the potentials are bounded, all
thanks to the Perelman estimates available for the Kähler–Ricci flow. It would be
interesting to compare the above theorem to the results in Chen and Sun [27], where
the authors construct in a specific situation a geodesic ray asymptotic to the Calabi
flow and are able to draw geometric conclusions based on this.

Concluding remarks and additional results Based on geometric considerations, and
the analogous picture in case of the Kähler–Ricci flow (see Guedj and Zeriahi [46]), it
is natural to speculate that for any starting point c0 2 E2 , the weak Calabi flow t ! ct

is instantly smooth, ie ct 2H! for t > 0 (see also Chen [23, Conjecture 3.5]). Such
a result would instantly give the E2 version of Conjecture 1.8, that E2–minimizers
of K are smooth csc-K metrics. Indeed, by the general result of Mayer [56], the weak
Calabi flow t ! ct starting at a minimizer c0 2 E2 has to be stationary. If t ! ct was
instantly smooth, then we could conclude that c0 2H! .

In the companion paper [11] we make progress on Conjecture 1.8 using different
techniques from the ones presented in this paper:

Theorem 1.10 Suppose .X; !/ is a Kähler manifold and H! contains a csc-K poten-
tial. Then M1 contains only smooth csc-K potentials.
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The consequences of this theorem related to K-stability and energy properness will be
discussed in [11]. As M2 �M1 , here we just mention the following consequence of
this result and Theorem 1.5(ii), making further progress on Conjecture 1.1 (see also
Streets [62, Remark 1.10]):

Theorem 1.11 Suppose .X; !/ is a Kähler manifold and H! contains a csc-K poten-
tial u. Then any weak Calabi flow trajectory t ! ct d1–converges to a smooth csc-K
potential c1 2H! . In addition, the densities !n

ct
=!n converge in L1 to the density

!n
c1
=!n .

Organization of the paper In the first part of Section 2 we recall recent results on
complex Monge–Ampère theory which we will use in this paper. In the second part we
briefly recall Mayer’s theory of gradient flows on nonpositively curved metric spaces.
The approximation of finite-energy !–plurisubharmonic functions with convergent
entropy is presented in Section 3. The twisted Mabuchi energy is studied in Section 4.
The weak d2 topology is explored in Section 5, while the last section is devoted to the
weak twisted Calabi flow.
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2 Preliminaries

2.1 The twisted K-energy

Suppose � is a closed positive .1; 1/–current and ˇ is a smooth closed .1; 1/–form in
the same cohomology class as �. In most applications of Kähler geometry, the twisting
current � can be smooth, but in order to treat the case of smooth and singular canonical
metrics (eg conical csc-K metrics) together, it is natural to ask for the following more
general restriction on �:

(3) �D ˇC i@x@f; where f 2 PSH.X; ˇ/ with e�f 2L1.X; !n/:

We observe that the integrability condition e�f 2 L1.X; !n/ implies that e�f 2

Lp.X; !n/ for some p > 1, as follows from the openness conjecture, recently proved
by Berndtsson [13] (see also [43]). We note that some of our results, in particular
Theorem 1.2 above, hold for more general �. However, it is unlikely that greater
generality will have applications, and we leave it to the reader to find optimal conditions
for � in our theorems.
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The twisted K-energy K�W H!!R can now be defined as

(4) K�.u/D Ent.e�f !n; !n
u/C

xS� AM.u/� n AMRic!�ˇ.u/�

Z
X

f!n;

where xS� D nV �1
R
X .Ric! ��/^!n�1 . Notice that for ˇ D 0, f D 0 we get back

the usual K-energy (2). Using the identity n AM�.u/D n AMˇ.u/C
R
f!n

u �
R
f!n

one can give an alternative formula for K� , perhaps more familiar from the literature:

(5) K�.u/D Ent.!n; !n
u/C

xS� AM.u/� n AMRic!��.u/:

The virtue of this formula is that it shows that K� is independent of the choice of ˇ
and f . As will be made clear shortly, when trying to extend K� , our original definition
is more advantageous, however. Note that when � is smooth, the first-order variation
of K� is given by the formula

hDK�.u/; ıvi D V �1

Z
X

ıv. xS� �S!u
CTr!u �/!n

u :

Hence, the critical points of this functional are the twisted csc-K potentials, as these
satisfy xS��S!u

CTr!u �D 0. The smooth twisted Calabi flow is defined analogously.

2.2 The complete geodesic metric spaces .Ep;dp/

In this section we summarize results from [29; 30; 17; 9] needed the most in this paper.
Formula (1) introduces Lp–type weak Finsler metrics on the Fréchet manifold H! .
A curve Œ0; 1� 3 t ! ˛t 2H! is called smooth if ˛.t; z/D ˛t .z/ 2 C1.Œ0; 1��M /.
The Lp–length of a smooth curve t ! ˛t is given by

lp.˛/ WD

Z 1

0

k P̨ tkp;˛t
dt:

Definition 2.1 The path length pseudo-distance of .H! ; dp/ is defined by

dp.u0;u1/ WD inf
˚
lp.˛/ W Œ0;1�3 t!˛t 2H! is a smooth curve with˛0Du0; ˛1Du1

	
:

It turns out that dp is an honest metric [30, Theorem 3.5]. To state the result, consider
Œ0; 1��R�X as a complex manifold of dimension nC1, and let �2W Œ0; 1��R�X!X

be the natural projection.

Theorem 2.2 .H! ; dp/ is a metric space. Moreover, for any t 2 Œ0; 1�,

dp.u0;u1/D kPutkp;ut
� 0;
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where Put D dut=dt is the “tangent” at time t of t ! ut , the R–invariant solution of
the Monge–Ampère equation

(6)

8̂̂<̂
:̂
' 2 PSH.�?2!; Œ0; 1��R�X /;

.�?2!C
p
�1@x@'/nC1

D 0;

'jfig�R D ui ; i D 0; 1:

Some comments are in order. By the main result of [20] (see also [14]), the equation (6)
has a unique R–invariant solution for which u.t;x/D ut .x/ has bounded Laplacian
in Œ0; 1��R�X . We can look at this solution as a curve

Œ0; 1� 3 t ! ut 2H�! D fu 2 PSH.X; !/ W�!u 2L1.X /g:

We call this curve the weak geodesic connecting u0;u1 2H! . Recall that

PSH.X; !/D f' 2L1.X; !n/ W ' is usc and !' � 0g:

Given 'k 2 PSH.X; !/, k D 1; : : : ; n, one can introduce the following nonpluripolar
product [17], generalizing the Bedford–Taylor product [6] concerning the case with
bounded potentials:

(7) !'1
^!'2

^� � �^!'n
WD lim

j!�1
1T

kf'k>jg!max.'1;j/^!max.'2;j/^� � �^!max.'n;j/:

The measures !max.'1;j/ ^ � � � ^!max.'n;j/ are defined by the work of Bedford and
Taylor [6] since maxf'; j g is bounded. Restricted to

T
kf'k > j g, these measures are

increasing, hence the above limit is well defined [45; 17] and
R
X !'1

^� � �^!'n
�
R
X !n .

Following Guedj and Zeriahi [45, Definition 1.1] we introduce the class of poten-
tials with “full volume”, E.X; !/ WD

˚
' 2 PSH.X; !/ W

R
X !n

' D
R
X !n

	
, and the

corresponding finite-energy classes

Ep
WD

�
' 2 E.X; !/ W

Z
X

j'jp!n
' <1

�
:

The next result characterizes the dp–metric completion of H! :

Theorem 2.3 [30, Theorem 2] The metric completion of .H! ; dp/ equals .Ep; dp/,
where

dp.u0;u1/ WD lim
k!1

dp.u
k
0 ;u

k
1/;

for any smooth decreasing sequences fuk
i gk2N �H! converging pointwise to ui 2 Ep ,

i D 0; 1. Moreover, for each t 2 .0; 1/, define

ut WD lim
k!1

uk
t ;
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where uk
t is the weak geodesic connecting uk

0
and uk

1
. Then ut 2 Ep , the curve

Œ0; 1� 3 t ! ut 2 Ep is well-defined independently of the choices of approximating
sequences, and this curve is a dp–geodesic.

In the rest of the paper we will call the dp–geodesics constructed in this theorem finite-
energy geodesics. As mentioned in [30], for arbitrary p and u0;u1 , the finite-energy
geodesic joining these potentials may not be unique as a dp–geodesic.

By [34; 15] it is always possible to find approximating sequences fuk
0
gk ; fu

k
1
gk as in

the above theorem. We now recall [30, Theorem 3], giving a concrete characterization
of the growth of all dp metrics:

Theorem 2.4 There exists C > 1 such that, for all u; v 2 Ep ,

(8) C�1dp.u; v/�

�Z
X

ju� vjp!n
u

�1=p

C

�Z
X

ju� vjp!n
v

�1=p

� Cdp.u; v/:

The inequalities in (8) have an important consequence: jsupX uj � Cdp.u; 0/ for all
u 2 Ep . Also, when p D 1, d1–convergence is equivalent to convergence with respect
to the quasidistance I.u; v/D

R
X .u� v/.!

n
v �!

n
u/ introduced in [9], as shown in [30,

Theorem 5.5].

Monotonic sequences behave well with respect to all dp–metrics [30, Proposition 4.9]:

Proposition 2.5 Suppose uk ;u 2 Ep . If fukgk is monotone decreasing/increasing
and converges to u ae then dp.uk ;u/! 0.

Given u0;u1; : : : ;uk 2 PSH.X; !/, by P .u0;u1; : : : ;uk/2 PSH.X; !/ we define the
upper envelope

P .u0;u1; : : : ;uk/D supfv 2 PSH.X; !/ such that v � u0; : : : ; v � ukg:

According to the next proposition it is possible to sandwich a subsequence of any
dp–convergent sequence between two monotone sequences converging to the same
limit.

Proposition 2.6 Suppose uk ;u 2 Ep . If dp.uk ;u/ ! 0 then there exists a sub-
sequence kj ! 1 and fwkj gj � Ep decreasing, fvkj gj � Ep increasing with
vkj � ukj � wkj and dp.wkj ;u/; dp.vkj ;u/! 0.

Proof By (8) there exists C > 0 such that jsupX uj j � C for j � 1. We introduce
the sequence

wk D usc.supj�k uj /:
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As uk � wk � C , by [45] it follows that wk 2 Ep . As dp.uk ;u/ ! 0, we have
that uk ! u pointwise ae, hence wk decreases to u. Proposition 2.5 then gives
dp.wk ;u/! 0.

Now we construct the increasing sequence vkj . To do this, first take a subsequence ukj

of uk satisfying dp.ukj ;u/� 2�j . As follows from the proof of [30, Theorem 4.17]
and [29, Theorem 9.2], the following limit exists:

vkj D P .ukj ;ukjC1
;ukjC2

; : : :/ WD lim
h!1

P .ukj ;ukjC1
; : : : ;ukjCh

/:

Additionally, fvkj gj � Ep and vkj increases ae to u. The previous proposition now
gives dp.u; vkj /! 0.

Though stated differently, the next proposition is essentially contained in [17]:

Proposition 2.7 Suppose p � 1, fuj gj � Ep is a dp –bounded sequence and u 2

PSH.X; !/ with kuj �ukL1.X ;!n/! 0. Then u 2 Ep .

Proof Boundedness with respect to dp implies that jsupX uj j�B for some B 2R (8).
For simplicity assume that B D 0. The following sequence converges ae to u:

wk D usc.supj�k uj /� 0:

This sequence is additionally decreasing, and because uk � wk � 0, we have that
wk 2 Ep . If we could argue that fwkgk is uniformly dp–bounded then we would be
finished by [30, Lemma 4.16]. But dp–boundedness follows from (8). Indeed,Z

X

jwk j
p!n
�

Z
X

juk j
p!n and

Z
X

jwk j
p!n

wk
� C.p/

Z
X

juk j
p!n

uk

by [45, Lemma 3.5], hence by (8) the quantity dp.0; wk/ is uniformly bounded.

Given two Borel measures �; � on X , if � is not subordinate to �, then by defini-
tion Ent.�; �/ D1. On the other hand, if � is subordinate to � then Ent.�; �/ DR
X log.f /� , where f is the Radon–Nikodym density of � with respect to �. The

entropy functional �! Ent.�; �/ is lsc with respect to weak convergence of mea-
sures [35]. Related to entropy, we recall the following crucial compactness result [9,
Theorem 2.17]:

Theorem 2.8 Let p > 1 and suppose � D f!n is a probability measure with f 2
Lp.X; !n/. Suppose there exists C > 0 such that fukgk � E1 satisfies

jsupX uk j< C; Ent.�; !n
uk
/ < C:

Then fukgk contains a d1–convergent subsequence.
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2.3 The complex Monge–Ampère equation in Ep

We summarize in this section basic results concerning solutions of degenerate complex
Monge–Ampère equations that are needed in this paper.

A subset E �X is called pluripolar if it is contained in the singular set of a function
' 2 PSH.X; !/, ie E � f' D �1g. Let � be a positive measure on X with total
mass �.X /D

R
X !n . We consider the equation

(9) !n
' D �:

It was proved in [45, Theorem A] that when � does not charge pluripolar sets the
equation (9) has a solution ' 2 E.X; !/. The solution turns out to be unique up to an
additive constant [37]. For each " > 0, the same variational approach as in the proof of
Theorem C on page 222 of [10] (see also [47, Corollary 11.9]) applied to the functional

F".u/ WD AM.u/� 1

"
log

Z
X

e"u d�; u 2 E1;

shows that there exists a solution '" 2 E1 to the equation

(10) !n
'"
D e"'"�:

The solution is uniquely determined as follows from the comparison principle (see [12,
Proposition 4.1]). The following version of the comparison principle will be useful later.

Lemma 2.9 Let " > 0. Assume that ' 2 E.X; !/ is a solution of (10), while  2
E.X; !/ is a subsolution, ie !n

 
� e" �. Then ' �  on X .

This result might be well known to experts in Monge–Ampère theory. As a courtesy to
the reader we give a proof below.

Proof By the comparison principle for the class E.X; !/ (see [45, Theorem 1.5]) we
have Z

f'< g

!n
 �

Z
f'< g

!n
' :

As ' is a solution and  is a subsolution to (10) we also haveZ
f'< g

e" d��

Z
f'< g

!n
 �

Z
f'< g

!n
' D

Z
f'< g

e"' d��

Z
f'< g

e" d�:

It follows that all inequalities above are equalities, hence ' �  �–almost everywhere
on X . By Dinew’s domination principle [16, Proposition 5.9] we get '� everywhere
on X .

One might wonder whether the solution of (9) arises as a limit of solutions of (10) as
"! 0. The following result answers this affirmatively.

Geometry & Topology, Volume 21 (2017)



Convexity of the extended K-energy and the large time behavior of the weak Calabi flow 2959

Lemma 2.10 Let p � 1. Assume that �D !n
' with ' 2 Ep and

R
X ' d�D 0. For

each " > 0, let '" 2 E1 be the unique solution to (10). Then in fact '" 2 Ep and
dp.'"; '/! 0 as "! 0.

Proof As ' � supX ' is a subsolution of (10), it follows from Lemma 2.9 that
'" � '� supX ' for all " > 0, hence '" 2 Ep . We claim that '" is uniformly bounded
from above for " 2 Œ0; 1�. Assume on the contrary that we can extract a subsequence
denoted by 'j D '"j such that supX 'j!1. The sequence  j WD 'j �supX 'j stays
in a compact set in L1.X; !n/, hence a subsequence (still denoted by 'j ) converges
to some  2 PSH.X; !/. It then follows that 'j D j C supX 'j converges uniformly
to 1. In the other hand, by Jensen’s inequality (for simplicity we may assume that
�.X /D 1) we have Z

X

'j d�� 0:

Since 'j is bounded from below by '�supX ' , which is integrable with respect to d�,
the above inequality contradicts the fact that 'j converges uniformly to 1. Hence the
claim follows.

Now the family '" stays in a compact set of L1.X; !n/. As "! 0 each cluster point
'0 satisfies

!n
'0
�

�
lim inf
"!0

e"'"
�
�D �;

as follows from [17, Corollary 2.21]. As the two measures have the same total mass,
one obtains equality. That '0D' follows from uniqueness of complex Monge–Ampère
measures [37] and the identity

0D lim
"!0

1

"
log

Z
X

e"'" d�D

Z
X

'0 d�:

Finally, the last statement can be addressed using the identityZ
X

j'"�'j
p.!n

'"
C!n

'/D

Z
X

j'"�'j
p.e"'" C 1/!n

' :

Using this, (8) and the fact that supX '" is bounded from above, by the dominated
convergence theorem we conclude that dp.'"; '/! 0.

2.4 Weak convergence in a CAT.0/space

Let us recall that a geodesic metric space .M; d/ is a metric space for which any
two points can be connected with a geodesic. By a geodesic connecting two points
a; b 2M we understand a curve ˛W Œ0; 1�!M such that ˛.0/D a, ˛.1/D b and

d.˛.t1/; ˛.t2//D jt1� t2jd.a; b/
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for any t1; t2 2 Œ0; 1�. Furthermore, a geodesic metric space .M; d/ is nonpositively
curved (in the sense of Alexandrov) or CAT.0/if for any distinct points q; r 2M there
exists a geodesic  W Œ0; 1�!M joining q and r such that for any s 2 f g and p 2M

the inequality

d.p; s/2 � �d.p; r/2C .1��/d.p; q/2��.1��/d.q; r/2

is satisfied, where � D d.q; s/=d.q; r/. A basic property of CAT.0/spaces is that
geodesic segments joining different points are unique. For more about these spaces we
refer to [18].

Let fxngn be a bounded sequence in a CAT.0/metric space .M; d/. For x 2M, we set

r.x; fxngn/D lim sup d.x;xn/:

The asymptotic radius of fxngn is given by r.fxngn/D inffr.x; fxngn/ W x 2M g, and
the asymptotic center A.fxngn/ of fxngn is the set

A.fxngn/D fx 2M W r.x; fxngn/D r.fxngn/g:

It is well known (see eg [62, Lemma 4.3]) that, in a CAT.0/space, A.fxngn/ consists
of exactly one point. A sequence fxngn converges d–weakly to x 2M if x is the
asymptotic center of all subsequences of fxngn .

For a more detailed account of weak d–convergence we refer to [51], and for results
related to the Calabi flow to [62, Section 4]. If .M; d/ is a Hilbert space then weak
d–convergence is the same as weak convergence in the sense of Hilbert spaces. With
this in mind, the contents of the next result may seem less surprising:

Proposition 2.11 Suppose .M; d/ is a CAT.0/space. The following hold:

(i) [51, Proposition 3.5] If fxngn is a d–bounded sequence then it has a weak
d–convergent subsequence.

(ii) [51, Proposition 3.2] Suppose C �M is a geodesically convex closed set and
fxngn � C converges d–weakly to x 2M . Then x 2 C .

2.5 General weak gradient flows

Let G be a d–lsc function on a complete metric space .M; d/. In this generality there
are, as explained in [1], various notions of weak gradient flows ct for G , emanating from
an initial point c0 in M . A natural approximation scheme (the so-called minimizing
movement) for obtaining such a candidate t ! ct was introduced by De Giorgi [33].
It can be seen as a variational formulation of the (backward) Euler scheme: given
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t 2 Œ0;1/ and a positive integer m, one first defines a discrete version cm
t of ct as the

mth step in the following (m–dependent) iteration with initial data c
m;0
t D c0 : given

c
m;j
t 2M , the next step c

m;jC1
t is obtained by minimizing on M the functional

(11) v!
1

2
d.v; c

m;j
t /2C

t

m
G.v/:

If such a minimizer always exists then the corresponding minimizing movement ct is
defined as the large m limit of cm

t D c
m;m
t , if the limit exists in .M; d/. As shown

by Mayer [56], if .M; d/ is a CAT.0/metric space and G is convex this procedure
indeed produces a unique limit ct with a number of useful properties.

Theorem 2.12 [56, Theorem 1.13] If .M; d/ is CAT.0/, G is a d–lsc convex
function on .M; d/, then for any initial point c0 with G.c0/ <1 the corresponding
minimizing movement t ! ct exists and defines a contractive continuous semigroup
(which is locally Lipschitz continuous on Œ0;1/).

Moreover, as shown in [56], the curve t! ct can be thought of as the curve of steepest
descent with respect to G in the sense that

(12) �
d

dt
.G.ct //D j.@G/.ct /j

ˇ̌̌̌
dct

dt

ˇ̌̌̌
;

ˇ̌̌̌
dct

dt

ˇ̌̌̌
D j.@G/.ct /j

for almost every t , where j.@G/.y/j is the local upper gradient of G at y and jdct=dt j

is the metric derivative of t ! ct at t (in the sense of [1]):

j.@G/.y/j WD lim sup
z!y

.G.y/�G.z//C

d.y; z/
;

ˇ̌̌̌
dct

dt

ˇ̌̌̌
D lim

s!t

ˇ̌̌̌
d.cs; ct /

s� t

ˇ̌̌̌
:

In the case when .M; d/ is a finite-dimensional Riemannian manifold and G is smooth,
the relations (12) are equivalent to the usual gradient flow formulation for G . In the
terminology of [1] the relations (12) imply that the minimizing movement t ! ct

provided by Mayer’s theorem is a curve of maximal slope with respect to the upper
gradient j.@G/j (see [1, Definition 1.3.2]). Moreover, by [1, Theorem 4.0.4] the curve
t ! ct is the unique solution of the evolution variational inequality

(13) 1

2

d

dt
d2.ct ; v/�G.v/�G.ct / for ae t > 0 and all v such that G.v/ <1

among all locally absolutely continuous curves in .M; d/ such that limt!0 ct D c0 .
Among other things, this inequality shows that

lim
t!1

G.ct /D inf
y2M

G.y/:
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Remark 2.13 A necessary condition for the solvability of the minimization steps
(11) is to have G.c0/ <1. An approximation argument using contractivity of the
minimizing movement yields that it is possible to uniquely define t! ct for any c0 in
the d–closure of the set fG <1g. This slightly more general movement satisfies all
the above-mentioned properties and additionally G.ct / <1 for any t > 0 (for more
details see [1]).

Lastly, we recall a theorem of Bačák, central in our later developments:

Theorem 2.14 [3, Theorem 1.5] Given a CAT.0/space .M; d/ and a d–lsc convex
function GW M ! .�1;1�, assume that G attains its minimum on M . Then any
minimizing movement trajectory t ! ct weakly d–converges to some minimizer of G

as t !1.

3 Approximation in dp with convergent entropy

The approximation results in this section will be used in the proof of Theorem 1.2. Our
main tools will come from Sections 2.1–2.3. We begin with the simplified situation of
approximation in E1 :

Lemma 3.1 Suppose f is usc on X with e�f 2 L1.X; !n/. Given u 2 E1 , there
exists uk 2H! such that d1.uk ;u/! 0 and Ent.e�f !n; !n

uk
/! Ent.e�f !n; !n

u/.

Proof If Ent.e�f !n; !n
u/D1 then any sequence uk 2H! with d1.uk ;u/! 0 sat-

isfies the requirements, as the entropy is d1–lsc. Indeed, this follows from the classical
fact that the entropy is lsc with respect to weak convergence of measures [35], and d1–
convergence implies weak convergence of the complex Monge–Ampère measures [30].

We can suppose that Ent.e�f !n; !n
u/ < 1. Let g D !n

u=!
n � 0 be the density

function of !n
u . We will show that there exist positive functions gk 2 C1.X / such

that jg�gk jL1 ! 0 andZ
M

gk log
gk

e�f
!n
!

Z
M

g log
g

e�f
!n
D Ent.e�f !n; !n

u/:

First introduce hk D minfk;gg, k 2 N . As �.t/ D t log t , t > 0, is bounded from
below by �e�1 and increasing for t > 1, we get

�e�1e�f � hk log
hk

e�f
�max

�
0;g log

g

e�f

�
:

Clearly jhk � gjL1 ! 0, and as e�f 2 L1.X; !n/ and g log.g=e�f / 2 L1.X; !n/,

Geometry & Topology, Volume 21 (2017)



Convexity of the extended K-energy and the large time behavior of the weak Calabi flow 2963

the Lebesgue dominated convergence theorem gives thatZ
M

hk log
hk

e�f
!n
!

Z
M

g log
g

e�f
!n
D Ent.e�f !n; !n

u/:

Using the density of C1.M / in L1.M /, by another application of the dominated
convergence theorem, we find a positive sequence gk 2C1.X / such that jgk�hk jL1�

1=k and ˇ̌̌̌Z
M

hk log
hk

e�f
!n
�

Z
M

gk log
gk

e�f
!n

ˇ̌̌̌
�

1

k
:

Using the Calabi–Yau theorem we find potentials vk 2 H! with supM vk D 0 and
!n
vk
D gk!

n=
R

M gk!
n . Theorem 2.8 now guarantees that (after possibly passing to a

subsequence) d1.vk ; h/! 0 for some h 2 E1.X /. But [30, Theorem 5(i)] implies the
equality of measures !n

h
D !n

u . Finally, by the uniqueness theorem [45, Theorem B]
we get that h and u can differ by at most a constant. Hence, after possibly adding a
constant, we can suppose that d1.vk ;u/! 0.

The key point in this proof is that a bound on the entropy implies compactness in
.E1; d1/. There are examples showing that the d2 version of this compactness result
does not hold in general. Therefore, to approximate functions in .Ep; dp/, p > 1 with
convergent entropy, a new approach is necessary:

Theorem 3.2 Suppose ' 2 Ep; p � 1 and f is usc on X with e�f 2 L1.X; !n/.
Then there exists 'j 2H! such that dp.'j ; '/! 0 and

Ent.e�f !n; !n
'j
/! Ent.e�f !n; !n

'/:

Proof We divide the approximation procedure into three steps.

Step 1 Assume that u 2 Ep has finite twisted entropy Ent.e�f !n; !n
u/ <1 and

!n
u D eg!n

for some measurable function g . We also normalize u so that
R
X u!n

u D 0. For each
" > 0 let u" 2 Ep.X; !/ be the unique solution to

!n
u"
D e"u"Cg!n:

Then we claim that dp.u";u/! 0 and Ent.e�f !n; !n
u"
/!Ent.e�f !n; !n

u/ as "! 0.

Indeed, from Lemma 2.10, u" is uniformly bounded from above for " 2 Œ0; 1�, and
converges in dp to u as " ! 0. Also, by the comparison principle (Lemma 2.9),
u" � u� supX u. As in the proof of Lemma 3.1 we can show using the dominated
convergence theorem that Ent.e�f !n; !n

u"
/ converges to Ent.e�f !n; !n

u/ as "! 0.
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Step 2 Let g be a measurable function such that
R
X eg!n <1. Assume that u 2 Ep

has finite twisted entropy Ent.e�f !n; !n
u/ <1 and

!n
u D e"uCg!n

for some " > 0. Consider gk WDmin.g; k/, k 2N . Let uk 2 PSH.X; !/\ C0.X / be
the unique solution to

!n
uk
D e"ukCgk!n:

The fact that uk is continuous follows from Kołodziej’s C0 estimate [52]. By the
comparison principle uk is decreasing and converges to u as k!1. It follows from
Proposition 2.5 that dp.uk ;u/! 0 as k!1. Again, the proof of Lemma 3.1 shows
that Ent.e�f !n; !n

uk
/ converges to Ent.e�f !n; !n

u/ as k!1.

Step 3 Assume that g is bounded from above, u 2 Ep has finite twisted entropy
Ent.e�f !n; !n

u/ <1 and

(14) !n
u D e"uCg!n

for some " > 0. Let fgkgk2N be a sequence of smooth functions, uniformly bounded
above, such that egk converges to eg in L2.X; !n/ and

R
X egk!n D

R
X eg!n . Let

uk 2H! be the unique smooth solution to

(15) !n
uk
D e"ukCgk!n:

The fact that uk is smooth on X is well known (see [2] or [64; 47, Chapter 14] for
other proofs).

We claim that supX uk is bounded above. Indeed, by an argument similar to that
of Lemma 2.10, suppose that for some subsequence (again denoted by uk ) we have
that supX uk ! 1. Then a subsequence of vk WD uk � supX uk (again denoted
by vk ) L1–converges to some v 2 PSH.X; !/. As all Lp topologies are equivalent
on PSH.X; !/, we actually have vk !Lp v for any p � 1. However, using Jensen’s
inequality and (15), we obtain thatZ

X

ukegk!n
D

Z
X

vkegk!n
C sup

X

uk

Z
X

eg!n

is uniformly bounded above. We have that vk !L2 v and egk !L2 eg , hence using
Hölder’s inequality we obtain

R
X vkegk!n!

R
X veg!n ¤1. As supX uk !1 we

arrive at a contradiction with the upper bound on
R
X ukegk!n , finishing the proof of

the claim.

As supX uk is bounded above, using Kołodziej’s estimates [53] for (15), we obtain
a uniform upper bound on kukkC 0;˛ for some ˛ > 0. After perhaps choosing a
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subsequence, fukgk will converge uniformly to some v2C 0;˛\PSH.X; !/, ultimately
giving dp.uk ; v/! 0. As both the left- and right-hand sides of (15) converge, we get
that !n

v D e"vCg!n , hence by uniqueness of solutions to (14) (Lemma 2.9) we get
v D u. By a repeated use of the dominated convergence theorem, the corresponding
twisted entropies also converge.

Now, we come back to the proof of Theorem 3.2. If Ent.e�f !n; !n
'/D1 then any

decreasing sequence 'j 2H! which converges pointwise to ' satisfies our requirement
since the entropy is lsc with respect to weak convergence of measures. We can thus
assume that Ent.e�f !n; !n

'/ <1. Then we can write !n
' D eg!n . We can also

assume that
R
X '!n

' D 0. Fix ı > 0 arbitrarily small. Denoting '0 D ' , by the three
steps above we can find '1; '2; '3 2 Ep , with '3 2H! , such that

dp.'j ; 'jC1/� ı and
ˇ̌
Ent.e�f !n; !n

'j
/�Ent.e�f !n; !n

'jC1
/
ˇ̌
� ı; j D 0; 1; 2:

From this the result follows.

4 Extension of the twisted K-energy

The main goal of this section is to prove Theorem 1.2. Before we can attempt a proof,
we need to understand the d1–continuity properties of each functional appearing in the
right-hand side of (4). Some of the preliminary results below are well known, but as a
courtesy to the reader we give a detailed account.

4.1 The AM functional

The Aubin–Mabuchi functional is given by the formula (see [55, Theorem 2.3])

(16) AM.u/ WD
V �1

nC 1

nX
jD0

Z
X

u!j
^!n�j

u ; u 2H! :

A series of integrations by parts gives

(17) AM.v/�AM.u/D
V �1

nC 1

Z
X

.v�u/

nX
kD0

!n�k
u ^!k

v ; u; v 2H! :

Among other things, this formula shows that

u� v D) AM.u/� AM.v/;

and by computing limt!0.AM.vt /�AM.v//=t we arrive at the first-order variation
of AM:

(18) hD AM.v/; ıvi D V �1

Z
X

ıv!n
v ; v 2H! ; ıv 2 C1.X /:
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Suppose u 2 E1 and let uj 2H! be pointwise decreasing to u. Using Proposition 2.5
we have d1.u;uj /! 0. We hope to extend AM to E1 via

(19) AM.u/D lim
j

AM.uj /:

As it turns out, this choice of extension is justified by the following precise result:

Proposition 4.1 The map AMW H!!R is d1–Lipschitz continuous. Thus, (19) gives
d1–Lipschitz extension of AM to E1 .

Proof First we argue that jAM.u0/�AM.u1/j � d1.u0;u1/ for u0;u1 2 H! . Let
Œ0; 1� 3 t ! t 2H! be a smooth curve connecting u0 and u1 . By (18) we can write

jAM.u1/�AM.u0/j D

ˇ̌̌̌
V �1

Z 1

0

Z
X

Pt!
n
t

dt

ˇ̌̌̌
� V �1

Z 1

0

Z
X

j Pt j!
n
t

dt D l. /:

Taking the infimum over all smooth curves connecting u0 and u1 , we obtain that

jAM.u1/�AM.u0/j � d1.u0;u1/:

The density of H! in E1 implies that AM extends to E1 using the formula (19). The
extension has to be d1–Lipschitz continuous.

Before we proceed, we note that the “abstract” d1–continuous extension AMW E1!R
given by the above result is the same as the “concrete” one given by the expression of
(16) after replacing the smooth products !j ^!

n�j
u with the nonpluripolar products

from (7), as done in [17]. Moving on, we give a kind of “domination principle” for the
extended Aubin–Mabuchi energy on E1 :

Proposition 4.2 Suppose �; 2 E1 with � �  . If AM.�/DAM. /, then � D  .

Proof Suppose �k ;  k 2H! are sequences pointwise decreasing to � and  , respec-
tively, with �k �  k . Then (17) gives that

0�
1

.nC 1/V

Z
X

.�k � k/!
n
 k
� AM.�k/�AM. k/:

Using the previous proposition and [30, Lemma 5.2] with �.t/Djt j, vkD�k , ukD k ,
wk D  k , we may take the limit in this estimate to obtain

0�
1

.nC 1/V

Z
X

.� � /!n
 � AM.�/�AM. /D 0;

hence  � � ae with respect to !n
 

. The domination principle of the class E [16,
Proposition 5.9] gives now that  � � globally on X , hence  D � .

Geometry & Topology, Volume 21 (2017)



Convexity of the extended K-energy and the large time behavior of the weak Calabi flow 2967

The last result of this subsection points out that the family of finite-energy geodesics
inside Ep is in fact “endpoint-stable”. We note that in the case p D 2 this follows
from the fact that .E2; d2/ is CAT.0/ [18].

Proposition 4.3 Suppose Œ0; 1� 3 t! u
j
t 2 Ep is a sequence of finite-energy geodesic

segments such that dp.u
j
0
;u0/; dp.u

j
1
;u1/! 0. Then dp.u

j
t ;ut /! 0 for all t 2 Œ0; 1�,

where Œ0; 1�3 t! ut 2 Ep is the finite-energy geodesic segment connecting u0 and u1 .

Proof Let t 2 Œ0; 1�. Notice that we only have to show that any subsequence of fuj
t gj

contains a subsubsequence dp–converging to ut .

Let fujk

t gk be an arbitrary subsequence of fuj
t gj . Let jkl

be a subsequence of jk with
the following property: for i D 0; 1, there exist a monotone increasing sequence fvjkl

i gl
and a monotone decreasing sequence fwjkl

i gl
such that

v
jkl
i � u

jkl
i � w

jkl
i for all jkl

and v
jkl
i ; w

jkl
i !dp

ui :

This is possible to arrange according to Proposition 2.6.

By Œ0; 1�3 t! v
jkl
t 2 Ep and Œ0; 1�3 t!w

jkl
t 2 Ep we denote finite-energy geodesics

connecting vjkl
0

to vjkl
1

and wjkl
0

to wjkl
1

, respectively. By the maximum principle
of finite-energy geodesics we can write

vt WD usc
�

lim
l
v

jkl
t

�
� ut � wt WD lim

l
w

jkl
t :

As AM is dp–continuous it follows that

lim
l

AM.vjkl
i /D AM.ui/D lim

l
AM.wjkl

i / for i D 0; 1:

As AM is also linear along finite-energy geodesics we get

AM.vt /D AM.ut /D AM.wt / for any t 2 Œ0; 1�:

Proposition 4.2 gives that vt D ut D wt , hence

dp.v
jkl
t ;ut /! 0 and dp.w

jkl
t ;ut /! 0:

Using vjkl
t � u

jkl
t � w

jkl
t , [30, Lemma 4.2] gives that

dp.v
jkl
t ;u

jkl
t /� dp.v

jkl
t ; w

jkl
t /! 0;

hence dp.u
jkl
t ;ut /! 0, as desired.
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4.2 The AM functional

For the moment we fix a closed .1; 1/–current  on X , not necessarily positive. Recall
from the introduction that the functional AM is defined as follows:

(20) AM .u/ WD
1

nV

n�1X
jD0

Z
X

u  ^!j
^!n�1�j

u ; u 2H! :

Similarly to AM, integrating by parts gives

(21) AM .v/�AM .u/D
1

nV

Z
X

.v�u/

n�1X
kD0

 ^!n�k�1
u ^!k

v :

When  � 0 this last formula gives

u� v D) AM .u/� AM .v/:

By computing limt!0.AM .vt /�AM .v//=t we arrive at the first-order variation of
AM :

(22) hD AM .v/; ıvi D V �1

Z
X

ıv ^!n�1
v ; v 2H! ; ıv 2 C1.X /:

Extension of AM to E1 when  is smooth For this paragraph suppose  is smooth.
Suppose u 2 E1 and let uj 2H! be pointwise decreasing to u. Using Proposition 2.5
we have d1.u;uj /! 0. We hope to extend AM to E1 via

(23) AM .u/D lim
j

AM .uj /:

As it turns out, this extension is rigorous as we have the following precise result:

Proposition 4.4 Formula (23) gives a d1–continuous functional AM W E1!R. Ad-
ditionally, AM thus extended is bounded on d1–bounded subsets of E1 .

Proof We argue that for any R>0 there exists fRW R!R continuous with fR.0/D0

such that

(24) jAM .u0/�AM .u1/j � fR.d1.u0;u1//

for any u0;u1 2H! \fv W d1.0; v/�Rg. We have �C! �  � C! for some C > 1.
Using (21) and the observation !.u0Cu1/=4 D

1
2
!C 1

4
!u0
C

1
4
!u1

it follows that

jAM .u0/�AM .u1/j � C

Z
X

ju0�u1j!
n
.u0Cu1/=4

:
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By [30, Corollary 5.7] and its proof, for each R> 0 there exists a continuous function
fRW R!R with fR.0/D 0 such thatZ

X

jv�wj!n
h � fR.d1.v; w//

for any v;w; h 2 E1\fv W d1.0; v/�Rg. Using this last fact, to argue that (24) holds,
it is enough to show that d1

�
0; 1

4
.u0 C u1/

�
is bounded in terms of d1.0;u0/ and

d1.0;u1/. We recall [30, Lemma 5.3], which says that there exists D > 1 such that
d1

�
a; 1

2
.aC b/

�
�Dd1.a; b/ for any a; b 2 E1 . Using this several times along with

the triangle inequality, we can write

d1

�
0; 1

4
.u0Cu1/

�
� Cd1

�
0; 1

2
.u0Cu1/

�
� C

�
d1.0;u0/C d1

�
u0;

1
2
.u0Cu1/

��
� C 2.d1.0;u0/C d1.u0;u1//� 2C 2.d1.0;u0/C d1.0;u1//;

finishing the proof.

As in the case of AM, the “abstract” d1–continuous extension AM W E1!R given
by the above result is identical to the one given by the “concrete” expression of (20)
after replacing the smooth products  ^ !j ^ !

n�j�1
u with nonpluripolar products

similar to (7).

Convexity and extension of AM� to H�
! when � satisfies (3) Suppose that � D

ˇC i@x@f is a .1; 1/–current satisfying (3). Observe that it is not possible to extend
AM� to H�! using the techniques of the previous paragraph directly. Instead, using
integration by parts, we notice that, given u 2H! , we have an alternative formula for
AM�.u/:

(25) AM�.u/D
1

nV

n�1X
jD0

Z
X

uˇ^!j
^!n�1�j

u C
1

nV

Z
X

f .!n
u �!

n/

D AMˇ.u/C
1

nV

Z
X

f .!n
u �!

n/:

As ˇ is smooth, AMˇ extends d1–continuously to H�! by the previous paragraph. The
map u!

R
X f!n

u clearly makes sense and is finite for all u 2H�! , hence using (25) it
is possible to extend AM� to H�! . Though not needed, it can be further shown that
this extension is independent of the choice of ˇ and f .

Given u0;u1 2H! , for the weak geodesic Œ0; 1�3 t! ut 2H�! connecting u0 and u1

we would like to show that t ! AM�.t/ is convex. When � is smooth this follows
from the result of [21]. It turns out that for more general � the same proof gives an
analogous result:
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Proposition 4.5 Suppose � D ˇC i@x@f � 0 satisfies (3). Equation (25) gives an
extension AM�W H�! !R for which t ! AM�.ut / is convex for any weak geodesic
segment Œ0; 1� 3 t ! ut 2H�! .

Proof Suppose t1� t0 . When � is smooth, it is well known that for Œ0; 1�3 t!vt 2H!
smooth subgeodesic (ie ��!C i@x@v � 0) we actually have

d

dt

ˇ̌̌
tDt1

AM�.vt /�
d

dt

ˇ̌̌
tDt0

AM�.vt /D

Z
St0;t1

�X

���^ .��!C i@x@v/n;

where St0;t1
� C is the strip ft0 � Re z � t1g. Hence, t ! AM�.vt / is convex. We

claim that the same proof goes through for any positive closed current �D ˇC i@x@f

as well.

When dealing with a weak geodesic Œ0; 1� 3 t! ut 2H�! , it is possible to approximate
it uniformly with a decreasing sequence of smooth subgeodesics t ! u"t called "–
geodesics (see [20]). All measures !n

u"t
D g"t!

n have uniformly bounded density g"t ,
and converge weakly to !n

ut
. Hence, by the dominated convergence theorem we can

write
lim
"!0

Z
X

f!n
u"t
D

Z
X

f!n
ut

and lim
"!0

AMˇ.u
"
t /D AMˇ.ut /;

where in the last limit we have used the continuity property of the mixed Monge–
Ampère operator (see [4; 5] for the original statement and [45] for the corresponding
theory on compact Kähler manifolds). Hence, after repeatedly taking limit in (25), it
follows that t ! lim"!0 AM�.u

"
t /D AM�.ut / is convex.

Finally, we note the following useful inequality for AM .

Lemma 4.6 Let  2 E1 and set � D ! . For any u; v 2 E1 we have

1

V

Z
X

.u� v/!n�1
u ^ � � AM� .u/�AM� .v/�

1

V

Z
X

.u� v/!n�1
v ^ �:

For AM we have similar inequalities

1

V

Z
X

.u� v/!n
u � AM.u/�AM.v/�

1

V

Z
X

.u� v/!n
v :

Proof Using (17) and (21) the desired inequalities simply follow from the fact thatZ
X

.u� v/i@x@.u� v/^T � 0

for any T D !'1
^ � � � ^!'n�1

with 'j 2 E1 for all j .
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4.3 The twisted K-energy

For the remainder of the paper suppose �D ˇC i@x@f satisfies (3) unless specified
otherwise. Recall that the twisted K-energy K�W H!!R is defined as

K� D Ent.e�f !n; !n
u/C

xS� AM.u/� n AMRic!�ˇ.u/�

Z
X

f!n:

When f is smooth, recall the following formula for the variation of the entropy:

hD Ent.e�f !n; !n
v /; ıvi D nV �1

Z
X

ıv.Ric! �Ric!vC i@x@f /^!n�1
v :

When � is smooth, putting the above formula, (18) and (22) together we obtain

hDK�.v/; ıvi D
n

V

Z
X

ıv. xS�!v �Ric!vC�/^!n�1
v

D V �1

Z
X

ıv. xS� �S!v CTr!u �/!n
v :

We arrive at the main theorem of this section:

Theorem 4.7 Suppose .X; !/ is a compact connected Kähler manifold and � D

ˇCi@x@f satisfies (3). The twisted K-energy can be extended to a functional K�W E1!

R[f1g using the formula

(26) K�.u/D Ent.e�f !n; !n
u/C

xS� AM.u/� n AMRic!�ˇ.u/�

Z
X

f!n:

Thus extended, K�jEp is the greatest dp–lsc extension of K�jH! for any p � 1.
Additionally, K�jEp is convex along the finite-energy geodesics of Ep .

Proof First we argue that the expression given by (26) does give a d1–lsc function
on E1 . Indeed, by Propositions 4.1 and 4.4 the functionals AM and AMRic!�ˇ admit
a d1–continuous extension to E1 . Lastly, as d1–convergence of potentials implies
weak convergence of the corresponding complex Monge–Ampère measures, it follows
that the correspondence u! Ent.e�f !n; !n

u/ is d1–lsc. When restricted to Ep , (26)
is additionally dp–lsc, because dp–convergence dominates d1–convergence for any
p > 1.

We now show that, thus extended, K�jEp is indeed the greatest dp–lsc extension of
K�jH! . For this we only have to argue that for any u 2 Ep there exists fuj g � H!
such that dp.uj ;u/! 0 and

K�.u/D lim
j

K�.uj /:

As AM. � /, AMRic�ˇ. � / are dp–continuous, this is exactly the content of Theorem 3.2.
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Since finite-energy geodesics of Ep are also finite-energy geodesics in E1 , it remains
to show that for any finite-energy geodesic Œ0; 1� 3 t ! ut 2 E1 the curve t ! K�.ut /

is convex and continuous.

Suppose t0; t1 2 Œ0; 1� with t0 � t1 . As K� was extended in the greatest d1–lsc manner,
we can find uk

t0
;uk

t0
2H! with d1.u

k
t0
;ut0

/! 0, d1.u
k
t1
;ut1

/! 0 and

K�.ut0
/D lim

k
K�.uk

t0
/; K�.ut1

/D lim
k

K�.uk
t1
/:

Let Œt0; t1� 3 t ! uk
t 2 H�! be the weak geodesics connecting uk

t0
and uk

t1
. By

Proposition 4.3 we get that d1.u
k
t ;ut /! 0 for any t 2 Œt0; t1�. Note that for u 2H�!

we can write

K�.u/D Ent.!n; !n
u/C

xS� AM.u/� n AMRic!.u/C

�
n AMˇ.u/C

1

V

Z
X

f!n
u

�
:

Using this, Proposition 4.5, [8, Theorem 1.1] and the linearity of AM along finite-energy
geodesics, it follows that t ! K�.uk

t / is convex on Œ0; 1�. As K�W E1!R[f1g is
d1–lsc, it follows that

K�.ut /� lim inf
k

K�.uk
t /�

t � t0

t1� t0
lim

k
K�.uk

t0
/C

t1� t

t1� t0
lim

k
K�.uk

t1
/

�
t � t0

t1� t0
K�.ut0

/C
t1� t

t1� t0
K�.ut1

/;

hence Œ0; 1�3 t!K�.ut /2 .�1;1� is convex. As K� is d1–lsc it follows additionally
that t ! K�.ut / is continuous up to the boundary of Œ0; 1�.

Finally, we bring Theorem 2.8 into a form that will be most convenient to use in our
later developments:

Corollary 4.8 Suppose �D ˇC i@x@f satisfies (3) and fukgk � E1 is a sequence for
which

d1.0;uk/ < C; K�.uk/ < C:

Then fukgk contains a d1–convergent subsequence.

Proof By (8) it follows that jsupX uk j<C . From (26) and Propositions 4.1 and 4.4 we
get that Ent.e�f !n; !n

uk
/ is also uniformly bounded. Now we can invoke Theorem 2.8

to finish the argument.

4.4 Convexity in the finite entropy space.

Suppose �D ˇC i@x@f satisfies (3). Denote by Ent�.X; !/ the space of finite-entropy
potentials:

Ent�.X; !/D fu 2 E.X; !/ W Ent.e�f !n; !n
u/ <1g:
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Observe that Ent�.X; !/ is independent of the choice of ˇ and f . Also, we show that
Ent�.X; !/ is contained in the finite-energy space E1 :

Lemma 4.9 Suppose �D ˇC i@x@f satisfies (3). Then Ent� .X; !/� E1 .

Proof Suppose u 2 Ent� .X; !/ with !n
u D h!n . The functions �; W Œ0;1/ !

Œ0;1/ given by �.t/ D .t C 1/ log.t C 1/ � t and  .t/ D et � t � 1 are convex
conjugates of each other, implying that ab � �.a/C .b/. Using this, we can writeZ

X

juj!n
u D

Z
X

juj.hef /e�f !n

�

Z
X

.ejuj� juj � 1/e�f !n
C

Z
X

..hef C 1/ log.hef C 1/� h/e�f !n:

To finish the proof it is enough to argue that both terms in this last expression are
bounded. For the first term, suppose 1=pC 1=q D 1. Using Young’s inequality, we
arrive atZ

X

.ejuj� juj � 1/e�f !n
�

1

q

Z
X

.ejuj� juj � 1/q!n
C

1

p

Z
X

e�pf !n:

As u has zero Lelong numbers [45, Corollary 1.8], the first integral is finite by Skoda’s
theorem. For an appropriate p the second integral is bounded, as e�f 2Lp.X; !n/

for some p > 1.

For the second term, observe that �.t/� 2t log t for t big enough, hence we can writeZ
X

..hef C 1/ log.hef C 1/� h/e�f !n
� 2

Z
X

h log.hef /!n
CC

D 2V Ent.e�f !n; !n
u/CC:

As a consequence of Theorem 4.7 we obtain that Ent�.X; !/� E1 is to some extent
“geodesically convex”:

Theorem 4.10 Suppose � D ˇ C i@x@f satisfies (3). Then .Ent�.X; !/; d1/ is a
geodesic sub-metric space of .E1.X; !/; d1/. Additionally, if Ric! � ˇ then the map
Ent�.X; !/ 3 u! Ent.e�f !n; !n

u/ 2R is convex along finite-energy geodesics.

Proof Suppose u0;u1 2 Ent�.X; !/. Let Œ0; 1� 3 t ! ut 2 E1 be the finite-energy
geodesic connecting u0 and u1 . By Theorem 4.7 it follows that t!K�.ut / is convex
on Œ0; 1�, hence K�.ut / is finite for all t 2 Œ0; 1�. Using the finiteness of AM and
AMRic!�ˇ , this necessarily gives that Ent.e�f !n; !n

ut
/ is also finite for all t 2 Œ0; 1�.

For the last statement, notice that t ! n AMRic!�ˇ.ut /� xS� AM.ut / is convex, as
follows from Proposition 4.5. As t ! K�.ut / is also convex, from (26) it follows that
t ! Ent.e�f !n; !n

ut
/ is also convex.
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In the case ˇ D 0, this convexity result can be seen as the complex version of one
of the central results of the theory of optimal transport of measure, which says that,
if g0 is a given Riemannian metric on a compact real manifold X with nonnegative
Ricci curvature and whose normalized volume form is denoted by �0 , then the relative
entropy function �!Ent.�0; �/ is convex along curves t!�t defined by McCann’s
displacement interpolation (which may be formulated in terms of optimal transport
maps). The latter curves can be seen as weak geodesics for Otto’s Riemannian metric on
the space of all normalized volume forms on X . More precisely, the curves t!�t are
the geodesics in the metric space .P.M /; dW2

/ defined by the space P.M / of all prob-
ability measures on X equipped with the Wasserstein 2–metric, which can be viewed as
a completion of Otto’s Riemannian structure [66]. Hence, the role of Otto’s Riemannian
metric is in the present complex setting played by Mabuchi’s Riemannian metric.

4.5 Uniqueness of twisted K-energy minimizers

In this subsection we suppose � is a Kähler form. We are going to prove that there
is at most one minimizer in E1 of the twisted K-energy K� . We need the following
result, which may be of independent interest.

Lemma 4.11 Let '0; '1 2 E1 and let Œ0; 1� 3 t ! 't be the finite-energy geodesic
connecting '0 and '1 . Suppose that !n

't
is absolutely continuous with respect to !n

for every t 2 Œ0; 1�. Then for almost every t 2 .0; 1/ we have

(27) AM.'1/�AM.'0/D
1

V

Z
X

P'Ct !
n
't
D

1

V

Z
X

P'�t !
n
't
;

where, for fixed x 2X , P'Ct .x/ and P'�t .x/ are the right and left derivatives of '. � ;x/,
respectively.

Proof For simplicity we assume that V D 1. Fix two real numbers a; b such that
0< a< b< 1. We first observe that for t 2 .a; b/ and h> 0 small enough, by convexity
we have

't �'0

t
�
'tCh�'t

h
�
'1�'t

1� t
:

It thus follows that both P'Ct and P'�t are integrable with respect to !n
't

. From Lemma 4.6
we obtain

AM.'tCh/�AM.'t /�

Z
X

.'tCh�'t /!
n
't
:

Since AM is linear along the weak geodesic 't , by dividing the above inequality by h

and letting h! 0 we obtain

(28)
Z

X

P'�t !
n
't
� AM.'1/�AM.'0/�

Z
X

P'Ct !
n
't
:
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For each x 2X the function t ! 't .x/ is convex, hence differentiable almost every-
where in Œ0; 1�. It follows that the set

f.x; t/ 2X � Œa; b� W P'�t .x/ < P'
C
t .x/g

has zero measure (where the measure here is the product of !n and dt ). Let f .t;x/
be the density of the Monge–Ampère measure .!C i@x@'t /

n . We then have

(29)
Z

X�Œa;b�

P'�t f .t;x/!
n dt D

Z
X�Œa;b�

P'Ct f .t;x/!
n dt:

Now, by Fubini’s theorem, (28) and (29) we see that the inequalities in (28) become
equalities for almost every t in Œa; b�, completing the proof.

Theorem 4.12 Let ˛ be a Kähler form. Let '0; '1 2 E1 and let 't be the finite-
energy geodesic connecting '0 and '1 . Suppose that !n

't
is subordinate to !n for any

t 2 Œ0; 1�. If AM˛ is linear along t ! 't then '1�'0 is constant.

Proof We can assume that AM.'0/D AM.'1/ and we normalize ! so that V D 1.
We claim that AMˇ is also linear along 't , where ˇ is any Kähler form. Indeed,
multiplying ˇ by some small positive constant, we can assume that  WD ˛�ˇ > 0. It
follows from Proposition 4.5 that both t ! AM .'t / and t ! AMˇ.'t / are convex.
Because AM˛ DAMˇCAM is linear along 't , it follows that in fact t!AMˇ.'t /

is linear as well. By approximation it follows that AM! is linear along 't for any
 2 E1 .

Fix s 2 .0; 1/ such that (27) holds in Lemma 4.11. For h> 0 small enough we haveZ
X

'sCh�'s

h
!n
's
�

AM!'s
.'sCh/�AM!'s

.'s/

h

D�
1

n

Z
X

'sCh�'s

h
!n
'sCh

� �
1

n

Z
X

'sCh�'s

h
!n
's
:

In the first line we have used Lemma 4.6. In the second line we have used the assumption
that AM is constant along s!'s . In the last line we have used again Lemma 4.6. Now,
letting h! 0 and using Lemma 4.11 we see that the right derivative of l!AM!'s

.'l/

at s is zero. Thus l!AM!'s
.'l/ is in fact constant. This combined with l!AM.'l/

being constant imply that

(30) 0D .nC 1/
�
AM.'1/�AM.'s/

�
� n

�
AM!'s

.'1/�AM!'s
.'s/

�
D

Z
X

.'1�'s/!
n
'1
:
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A computation similar to the one in Lemma 4.6 gives that all terms in the expression of
AM.'1/�AM.'s/ from (17) are greater than

R
X .'1�'s/!

n
'1

. Using this, (30) and
AM.'1/�AM.'s/D 0 we obtain

R
X .'1�'s/!

n
's
D 0. Together with (30) this gives

I.'1; 's/D

Z
X

.'1�'s/.!
n
's
�!n

'1
/D 0:

Hence, by the results in [9, Section 2.1], the difference 's � '1 is constant. In fact
's D '1 , as we have assumed that the Aubin–Mabuchi energy is constant along the
geodesic l! 'l . Now, '1 can be replaced by '0 in (30), and the same arguments as
above show that '0 D 's , ultimately giving '0 D '1 .

We are now ready to prove the uniqueness result.

Theorem 4.13 Assume that � is a Kähler form. If '0 and '1 are minimizers in E1

of the twisted Mabuchi energy K� then '1�'0 is constant.

Proof Let t ! 't be the finite-energy geodesic connecting '0 and '1 . By the
convexity of K� it follows that K� is linear along t! 't . Since t!AM.'t /;K�.'t /

are linear and t ! AM�.'t /;K.'t / are convex, the decomposition

K� D KC . xS� � xS/AMCn AM�

then reveals that AM� is also linear along t ! 't and !n
't

is subordinate to !n . The
result now follows from Theorem 4.12.

Remark 4.14 When � is a Kähler form, using this last theorem, it can be seen that
the conditions (A1)–(A4) and (P1)–(P7) are verified in [32, Theorem 3.4] for the data
.E1; d1;K�; fIdg/ to give that a minimizer of K� exists in E1 if and only if there exist
C;D > 0 such that

K�.u/� Cd1.0;u/�D; u 2H! :

This verifies a weak version of [23, Conjecture 1.21] going back to [22, Conjecture 6.1].
For related partial results, see also [36].

5 Relating d1–convergence to weak d2–convergence

Before we get into the details of our particular situation, we start with a pedagogical
example: suppose .M; �/ is a measure space with finite volume. By .Lp.M; �/; k � kp/

we denote the usual Lp spaces on M . From Hölder’s inequality it follows that on
L2.M; �/ the k � k2 norm dominates the k � k1 norm. Our focus however is on the
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weak-L2–topology. As it turns out, the L1–topology dominates the weak-L2–topology.
The simple explanation for this is that L1–balls inside L2.M; �/ are closed convex
sets, and it is a classical fact that weak L2–limits do not exit closed convex sets.
Though much simplified, as it turns out, this idea generalizes to the setting of the metric
spaces .Ep; dp/. As we show below, the d1–metric balls have a certain convexity
property that will make these sets d2–convex and closed inside E2 . This will imply
that d1–convergence dominates weak d2–convergence. In the next section, coupled
with Theorem 2.14, this fact will have implications for the convergence of the weak
twisted Calabi flow.

As advocated in [29; 30], a proper understanding of the “rooftop” envelopes P .u0;u1/

gives insight into the geometry of the spaces .Ep; dp/. Furthering this relationship, we
state the following proposition:

Proposition 5.1 Suppose Œ0; 1� 3 t ! ut ; vt 2 E1 are finite-energy geodesics. Then
the map t ! AM.P .ut ; vt // is concave. Consequently, the map t ! d1.ut ; vt / is
convex.

The significance of this result comes from the fact that the d1 metric, unlike the d2

metric, is not CAT.0/. Indeed, by the results of [30], the geodesic segments with
fixed endpoints inside .E1; d1/ are not even unique. On the other hand, by the above
proposition, the d1 metric structure has some geometric convexity that can be exploited.

Proof Let a; b 2 Œ0; 1�. As shown in [29, Theorem 3], we have P .ua; va/;P .ub; vb/2

E1.X; !/. Let Œ0; 1�3 t!wt 2 E1.X; !/ be a finite-energy geodesic connecting w0D

P .ua; va/ and w1 D P .ub; vb/. By the maximum principle of finite-energy geodesics
we have wt � utaC.1�t/b; vtaC.1�t/b , hence also wt � P .utaC.1�t/b; vtaC.1�t/b/.
By the monotonicity of the Aubin–Mabuchi energy and since t ! AM.wt / is linear
we obtain

t AM.P .ua; va//C .1� t/AM.P .ub; vb//D AM.wt /

� AM.P .utaC.1�t/b; vtaC.1�t/b//:

The last statement of the proposition follows from the linearity of AM along finite-
energy geodesics, the concavity we just established and the explicit formula for d1

given in [30, Corollary 4.14], according to which

d1.ut ; vt /D AM.ut /CAM.vt /� 2 AM.P .ut ; vt //:

The geodesic convexity and closedness of d1–balls inside E2 is an immediate conse-
quence:
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Corollary 5.2 For any � > 0 and u 2 E2.X; !/, the set

B�.u/D fv 2 E2.X; !/ W d1.v;u/� �g

is d2–closed and d2–convex, ie for any v0; v1 2 B�.u/ the finite-energy geodesic
Œ0; 1� 3 t ! vt 2 E2 connecting v0 and v1 is contained in B�.u/.

Proof Closedness with respect to d2 follows from the fact that d2 dominates d1 . Let
Œ0; 1� 3 t ! vt 2 E2 be a finite-energy geodesic with v0; v1 2 B�.u/. By definition,
since E2 � E1 , the curve t ! vt is a finite-energy geodesic inside E1 as well. By the
previous proposition t ! d1.u; vt / is convex, hence d1.u; vt /� � .

The main result of this subsection is the following:

Theorem 5.3 Suppose fukgk � E2 is d2–bounded and u 2 E2 . Then d1.uk ;u/! 0

if and only if kuj �ukL1.X /! 0 and uk converges to u d2–weakly.

Proof Assume first that d1.uk ;u/! 0. From [30, Theorem 5(ii)] it follows that
kuj � ukL1.X / ! 0. As recalled in Proposition 2.11, any subsequence of fukgk

contains a d2 –weakly convergent subsubsequence ukl
, converging d2–weakly to some

v 2 E2 . We show that vD u. Indeed, for any j 2N the set B1=j .u/ is d2 –closed and
d2 –convex by the previous corollary, and for large enough kl we have ukl

2 B1=j .u/.
As recalled in Proposition 2.11, it follows now that v 2B1=j .u/ for all j , hence vD u.

For the reverse direction, as d2–boundedness gives that AM.uj / is uniformly bounded,
by [30, Proposition 5.9] it suffices to show that any convergent subsequence of
AM.uj / converges to AM.u/. Assume that ujk

is such a subsequence and set
c D limk AM.ujk

/. By definition, ujk
still converges d2–weakly to u. For each

" > 0, consider the set

E" WD f� 2 E2
W c � "� AM.�/� cC "g:

Since d2 dominates d1 and AM is d1–continuous and linear along finite-energy
geodesics, it follows that E" is d2–closed and d2–convex. By Proposition 2.11, it
follows that u 2E" . Letting "! 0 we get AM.u/D c , finishing the proof.

Remark 5.4 Using (the proof of) this last result, it is possible to construct a d2–
bounded sequence uj 2 E2 converging d2–weakly to some u 2 E2 , but for which
kuj �ukL1.X / 6! 0. Indeed, one can construct a d2–bounded sequence uj 2 E2 such
that kuj � vkL1.X /! 0 for some v 2 E2 but !n

uj
does not converge weakly to !n

v , in
particular AM.uj / cannot converge to AM.v/. By Proposition 2.11 we can extract a
subsequence, again denoted by uj , such that uj converges d2–weakly to some u 2 E2 .
By the last step in the proof of the previous theorem AM is weak d2–continuous, hence
AM.uj /! AM.u/, but we cannot have uD v as AM.u/¤ AM.v/.
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6 The weak twisted Calabi flow

As shown in [29], the metric completion .E2; d2/D .H; d2/ is a CAT.0/space. Suppose
� satisfies (3). By Theorem 4.7, the extended K� is d2–lsc and convex on E2 . By
Theorem 2.12 and Remark 2.13, the weak gradient flow t ! ct of K� emanating
from any c0 2 E2 is well defined and uniquely determined by the evolution variational
inequality (13).

When � is smooth, the smooth twisted Calabi flow is just a simple generalization of
the usual smooth Calabi flow:

d

dt
ct D S!ct

� xS� �Tr!ct �:

Comparison with Streets’ setting In [61] another (a priori different) extension K of
the Mabuchi functional M on H to the completion .H; d2/D .E2; d2/ was considered,
defined by

K.xu/ WD lim inf
d.uj ;xu/!0

K.uj /;

where the infimum is taken over all sequences uj in H converging to xu in .H; d2/.
It is shown in [61] that the functional K thus defined is d2–lsc on .H; d2/, and then
the author proceeds to study the gradient flow of K , dubbed the minimizing movement
Calabi flow. By Theorem 4.7 we actually have KD K , thus our finite-energy Calabi
flow coincides with the minimizing movement Calabi flow considered in [61]. One of
the advantages of our consideration is that computations in E2 are explicit and avoid
the difficulties of using Cauchy sequences.

We show that the weak version of the twisted Calabi flow agrees with the smooth
version as long as the latter exists. The following result was proved by Streets in the
case �D 0 using different methods.

Proposition 6.1 Suppose � � 0 is a smooth closed .1; 1/–form. Given any initial
point c0 2H! , the corresponding weak twisted Calabi flow t ! ct coincides with the
smooth twisted Calabi flow, as long as the latter exists.

Proof By the uniqueness property in [1, Theorem 4.0.4] for curves t ! ct satisfying
the evolution variational inequality (13) (which is shown by differentiating d.c1

t ; c
2
t /

for two different solutions t ! c1
t and t ! c2

t / it is enough to show that a solution
t ! ht to the ordinary twisted Calabi flow with starting point h0 D c0 satisfies the
inequality (13).

Suppose v 2 H! is arbitrary, fix a time t D t0 and let Œ0; 1� 3 s! us 2 H�! be the
weak geodesic connecting u0 D ht0

and u1 D v . From [8, Lemma 3.5] we get the
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following “slope inequality”:

K�.v/�K�.ht0
/�

Z
X

. xS �S!ht0
CTr!ht0 �/

dus

ds

ˇ̌̌
sD0

!n
ht0
:

Now, by the definition of the twisted Calabi flow the right-hand side above may
be written as minus the scalar product

R
X .dht=dt/jtDt0

.dus=ds/jsD0!
n
ht0

. Since
v 2H! , the latter scalar product coincides with the derivative at t D t0 of the function
t ! 1

2
d2

2
.ht ; v/ (by [20, Theorem 6], or rather by a formula appearing in the proof of

the latter theorem). This concludes the proof in the case when v 2H! .

We handle the general case: suppose v 2 E2 and K�.v/ <1. Notice that it is enough
to show the following “integral” version of (13) (with G D K� ):

(31) 1
2
.d2

2 .ct1
; v/� d2

2 .ct0
; v//� .t1� t0/K�.v/�

Z t1

t0

K�.ct / dt

for any t0; t1 2 Œ0;1/, t0 � t1 . Indeed, the left-hand side is locally Lipschitz, whereas
t ! K�.ct / is smooth, hence we may divide both sides by t1� t0 and take the limit
t1 ! t0 to obtain (13). By Theorem 3.2 there exists a sequence vj 2 H! that d2–
converges to v such that K�.vj / converges to K�.v/. After integrating, by the first
part of the proof estimate (31) holds for vj in place of v . Letting j !1, we obtain
(31) for v as well.

Lemma 6.2 The functional AM is constant along any weak twisted Calabi flow
trajectory t ! ct .

Proof For a smooth Calabi flow this follows directly from differentiating along the flow,
but here we have to proceed in a different manner. We can assume that AM.c0/D 0,
as K� is invariant under adding constants. On the other hand, for any u; v 2 E2 ,
d2.u�AM.u/; v�AM.v//� d2.u; v/. Thus the variational construction of the weak
Calabi flow (see Section 2.5) gives “minimizing movement” cm

t with AM.cm
t /D 0

for all m. Since AM is continuous with respect to d2 it follows that AM.ct /D 0 for
all t .

Now we arrive at the main result of this section:

Theorem 6.3 Suppose .X; !/ is a compact connected Kähler manifold and � D

ˇC i@x@f satisfies (3). The following statements are equivalent:

(i) M2
� ¤∅.

(ii) For any weak twisted Calabi flow trajectory t ! ct there exists c1 2M2
� such

that d1.ct ; c1/! 0 and Ent.e�f !n; !n
ct
/! Ent.e�f !n; !n

c1
/.
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(iii) Any weak twisted Calabi flow trajectory t ! ct is d2–bounded.

(iv) There exists a weak twisted Calabi flow trajectory t! ct and tj !1 for which
the sequence fctj gj is d2–bounded.

Proof We start with the implication (i) D) (ii). Let t ! ct be a weak twisted Calabi
flow trajectory. Let v 2M2

� . From (13) it follows that d2.v; ct / � d2.v; c0/, hence
t ! ct is a d2–bounded curve.

As observed in [62], Theorem 2.14 guarantees the existence of c1 2M2
� such that

ct ! c1 d2–weakly. But fctgt is bounded in the d2 metric and also K�.ct / is
bounded. By Corollary 4.8 it follows that fctgt is d1 –relatively compact, ie each
subsequence has a d1 –convergent subsubsequence. By Theorem 5.3 we must have
d1.ct ; c1/! 0.

In the definition of K� all terms are d1–continuous except for the entropy term. Since
c1 is a minimizer, lower semicontinuity gives limt!1K�.ct /D K�.c1/. All this
additionally implies Ent.e�f !n; !n

ct
/! Ent.e�f !n; !n

c1
/.

The implications (ii) D) (iii) D) (iv) are trivial. We finish the proof by arguing that
(iv) D) (i). Let t ! ct be a weak twisted Calabi flow trajectory and fctj gj be a
d2–bounded sequence with tj !1. From Proposition 2.7 and Corollary 4.8 it follows
that there exists c1 2 E2 such that d1.ctj ; c1/! 0, and by the lower semicontinuity
of K� , we get that in fact c1 2M2

� .

In Theorem 6.3(ii) one would like to have convergence with respect to d2 . The next
result confirms this in the case when the flow is bounded from below by some potential:

Proposition 6.4 Suppose .X; !/ is a compact connected Kähler manifold and that �
satisfies (3). Let t! ct be a weak twisted Calabi flow trajectory. If there exists  2 E2

such that ct �  for all t , then ct converges in d2 to a minimizer of K� .

Proof Without loss of generality we can assume that  � 0. By hypothesis we have
in particular that  2 E1 and AM. / is finite.

We first claim that d2.ct ; 0/ is uniformly bounded in t . Indeed, by [30, Corollary 4.14]
the d1–distance d1.ct ; 0/ can be expressed as

d1.ct ; 0/D AM.ct /CAM.0/� 2 AM.P .ct ; 0//:

Since  � P .ct ; 0/ � 0 it follows from monotonicity of AM that AM.P .ct ; 0// is
uniformly bounded in t . As AM.ct / is constant, it follows that d1.ct ; 0/ is uniformly
bounded. This together with [30, Corollary 4] implies that supX ct is bounded. Finally,
applying [30, Theorem 3] finishes the proof of the claim.
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By Theorem 6.3 we know that t ! ct converges in d1 to some u 2 E2 , a minimizer
of K� . As ct �  , by the dominated convergence theorem and Theorem 2.4 we only
have to prove that

R
X .ct � c/2!n

ct
! 0. For a fixed s > 0 we haveZ

fjct�cj�sg

.ct � c/2!n
ct
� s

Z
X

jct � cj!n
ct
! 0 as t !1;

since d1.ct ; c/! 0. Thus it suffices to show that

(32) sup
t>0

Z
fjct�cj>sg

.ct � c/2!n
ct
! 0

as s!1. Since d2.c; ct / is bounded, by Theorem 2.4 one can find a positive constant
C1 such that supX ct � C1 for all t > 0. By the comparison principle in E (see [45])
one has Z

fct�c>sg

!n
ct
�

Z
fct�c>sg

!n
c �

Z
fc<C1�sg

!n
c ;

which yields Z 1
s

!n
ct
.ct � c > r/r dr �

Z 1
s

!n
c .c < C1� r/r dr:

The right-hand side converges to 0 as s!1 because c 2 E2 . Therefore, to prove
(32) it remains to show that

(33) sup
t>0

Z 1
s

!n
ct
.ct � c < �r/r dr ! 0:

Since supX ct is bounded from above and ct �  , we can find C2 > 0 such that

fct � c < �rg �
˚
 � C2C

1
2
.ct � r/

	
:

Using !n
ct
� 2n!n

ct=2
and the comparison principle, we arrive atZ 1

s

!n
ct
.ct � c < �r/r dr �

Z 1
s

!n
ct

�
 < C2C

1
2
.ct � r/

�
r dr

�

Z 1
s

!n
 

�
 < C3�

1
2
r
�
r dr;

where C3DC2C
1
2
C1 . The last term converges to 0 as s!1 because  2 E2 . This

proves (33) and completes the proof.

Finally, we prove a result about geodesic rays weakly asymptotic to diverging weak
Calabi flow trajectories.
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Theorem 6.5 Suppose .X; !/ is a compact connected Kähler manifold, � � 0 is
smooth and Conjecture 1.8 holds. Let Œ0;1/ 3 t ! ct 2 E2 be a weak twisted Calabi
flow trajectory. Exactly one of the following holds:

(i) The curve t ! ct d1–converges to a smooth twisted csc-K potential c1 .

(ii) d1.c0; ct /!1 as t !1 and the curve t ! ct is d1–weakly asymptotic to a
finite-energy geodesic Œ0;1/ 3 t ! ut 2 E1 along which K� decreases.

If � > 0, then, independently of Conjecture 1.8, exactly one of the following holds:

(i0) The curve t ! ct d1–converges to a unique minimizer in E1 of K� .

(ii0) d1.c0; ct /!1 as t !1 and the curve t ! ct is d1–weakly asymptotic to a
finite-energy geodesic Œ0;1/ 3 t ! ut 2 E1 along which K� strictly decreases.

Proof Suppose (i) holds. Then t ! ct is d2–bounded hence also d1–bounded, hence
it is impossible for (ii) to hold.

Now suppose (i) does not hold. By Corollary 4.8 we must have dt WD d1.c0; ct /!1,
otherwise there would exist c1 2M1

� smooth twisted csc-K; in particular, c1 2M2
� .

By Theorem 1.5 this would imply that (i) holds, a contradiction.

Let Œ0; dt � 3 l ! ut
l
2 E1 be the d1 –unit finite-energy geodesic connecting c0 and ct .

By convexity of l! K�.ut
l
/ it follows that

K�.ut
l
/�K�.c0/

l
D

K�.ut
l
/�K�.ut

0
/

l
�

K�.ut
dt
/�K�.ut

0
/

d1.c0; ct /
D

K�.ct /�K�.c0/

d1.c0; ct /
�0;

hence fK�.ut
l
/gt2Œ0;1/ is uniformly bounded. As d1.u

t
l
;ut

0
/ D l , we can apply

Corollary 4.8 to find a subsequence d1 –converging to some ul 2 E1 . Using a Cantor
process, we can arrange for a subsequence tk such that for all l 2Q there exists ul 2 E1

such that d1.u
tk

l
;ul/! 0 as k!1 for each l . As we are dealing with the limit of

d1 –unit speed geodesic segments, we will clearly have

d1.ul1
;ul2

/D jl1� l2j; l1; l2 2QC:

Using equicontinuity, in the complete metric space E1 we can extend the curve
QC3 l!ul 2E1 to a d1–geodesic ray Œ0;1/3 l!ul 2E1 , satisfying d1.u

tk

l
;ul/!0

for all l 2 Œ0;1/.

Using Proposition 4.3 we additionally obtain that l ! ul is in fact a finite-energy
geodesic. Because all functions l! K�.utk

l
/ are uniformly bounded above and K� is

d1–lsc, it necessarily follows that l! K�.ul/ is also bounded above. Convexity and
boundedness now give that l! K�.ul/ is actually decreasing.
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Lastly, we focus on the case when � > 0 is Kähler. In Theorem 4.13 we have proved
that a minimizer of the twisted Mabuchi functional is unique if exists. Also, when (i0)
holds then by Remark 4.14 the curve t ! ct is d1–bounded, hence it is impossible for
(ii0) to hold.

We assume that (i0) does not hold. Let t ! ct be a weak twisted Calabi flow trajectory.
We can assume that ct is d1–divergent, otherwise Theorem 2.8 would imply existence
of a minimizer in E1 . By the same argument as above, we can construct a weakly
asymptotic finite-energy geodesic ray t! ut along which K� is decreasing. We claim
that in fact K� is strictly decreasing along t ! ut . Indeed, if it were not the case, by
convexity of t ! K�.ut / we would obtain that t ! K�.ut / is constant for t greater
than some t0 > 0. By Lemma 6.2 AM is constant along t ! ct , hence also along
t ! ut . As both t !K.ut /;AM�.ut / are convex, we obtain that t !AM�.ut / is in
fact linear and Theorem 4.12 then reveals that ut is stationary after t0 , contradicting
the d1–divergence of the ray t ! ut .
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On 5–manifolds with free fundamental group
and simple boundary links in S 5

MATTHIAS KRECK

YANG SU

We classify compact oriented 5–manifolds with free fundamental group and �2 a
torsion-free abelian group in terms of the second homotopy group considered as a
�1 –module, the cup product on the second cohomology of the universal covering,
and the second Stiefel–Whitney class of the universal covering. We apply this to the
classification of simple boundary links of 3–spheres in S5 . Using this we give a
complete algebraic picture of closed 5–manifolds with free fundamental group and
trivial second homology group.

57R65; 57R40

1 Introduction

There is a close relationship between classical links and closed 3–manifolds since all
3–manifolds are obtained by surgeries on links and Kirby calculus determines when
two links give the same 3–manifold. We consider a special case of such a relation
in dimension 5. The special condition on the side of links is that we only consider
simple boundary links L of a disjoint union of 3–spheres in S5 , which means that
the fundamental group of the complement is freely generated by the meridians of the
link components. As in dimension 3 we can perform surgery on the link L to obtain a
closed smooth manifold M.L/. It is easy to see that the fundamental group of M.L/

is a free group and H2.M.L/IZ/D 0. In addition, the second homotopy group is that
of the complement X of the link and this is torsion-free as an abelian group. One can
ask which 5–manifolds are obtained this way and for the classification of the links and
the determination of the fibers of the map from links to 5–manifolds given by surgery.

We answer this question by giving a classification of a more general class of closed
5–manifolds, namely we classify all 5–manifolds M with �1.M / a free group and
�2.M / torsion-free as an abelian group, in terms of an invariant we call generalized
Milnor pairing, since it is a generalization of the Milnor pairing for knots. We also
consider compact manifolds with boundary the disjoint union of copies of S1�S3 and
free fundamental group that is freely generated by the circles in the boundary, and, as
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2990 Matthias Kreck and Yang Su

before, �2.M / is torsion-free as an abelian group. We also define a topological version
of the generalized Milnor pairing, called topological generalized Milnor pairing, and
prove a corresponding result for topological manifolds.

A second well-known class of examples are fibered 5–manifolds M over the circle
with simply connected fiber. These are in the image of the surgery construction above
if and only if we have a fibered knot and H2.M IZ/ D 0. But in general fibered
5–manifolds over the circle have nontrivial second homology. Thus our more general
class of manifolds also occurs naturally. See Remark 1.4 and the appendix for more on
this class of manifolds.

To give a feeling for the generalized Milnor pairing, we define it in a special case,
where M is spin. Then it is represented by the triple�

�1.M /; �2.M /; bM W �2.M /� ��2.M /�!
�
H 1.B�1M IQŒ�1M �/

���
;

where bM is given by the cup product. For details we refer to Section 2. Now we
formulate our main result.

Theorem 1.1 Let M0 and M1 be two smooth (or topological), compact, oriented
5–manifolds with free fundamental group of rank n and torsion-free �2 , with empty
boundary or boundary consisting of n copies of S1 �S3 such that the circles in the
boundary generate �1.Mi/. Then there is an orientation-preserving diffeomorphism
(homeomorphism) between M0 and M1 if and only if there is an isomorphism between
their (topological) generalized Milnor pairings.

We actually prove a stronger result (Theorem 2.4) about the realization of isomorphisms
between the generalized Milnor pairings.

Levine [11] has classified 3–dimensional simple knots in S5 in terms of S –equivalence
classes of Seifert matrices and Liang [12] has extended this to higher-dimensional simple
boundary links in terms of l –equivalence classes of Seifert matrices. The general case
of 3–dimensional simple boundary links in S5 seems to be open. Our classification
result implies that Liang’s result extends to dimension 3. Also, by extending Liang’s
argument to higher dimension we can characterize the Seifert matrices occurring from
links. We call the corresponding conditions unimodularity conditions. Thus we obtain
a complete algebraic picture of simple boundary links in S5 .

Theorem 1.2 The l –equivalence classes of Seifert matrices of simple boundary links
of 3–spheres in S5 determine the isotopy type of the link. Moreover, the l –equivalence
classes of Seifert matrices give a bijection from the set of isotopy classes of simple
boundary links of 3–spheres in S5 to the set of l –equivalence classes of square integral
matrices D satisfying the unimodularity conditions.
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We would also like to give an algebraic picture of our closed 5–manifolds. In general
we don’t know which values the generalized Milnor pairing takes. But if we require
that H2.M IZ/D 0, these manifolds are all results of surgeries on links and we can
use the realization of the link invariants to give a complete answer.

Let D be an m�m integral matrix satisfying the unimodularity conditions; then there
is associated to D a ZŒFn�–module map 'D W .ZŒFn�/

m! .ZŒFn�/
m and a generalized

Milnor pairing�
Fn; coker'D ; bD W .coker'D/

�
� .coker'D/

�
!
�
H 1.BFnIQŒFn�/

���
We will give a detailed description of this in Section 4.

Theorem 1.3 There is a bijection between the diffeomorphism classes of closed
oriented 5–manifolds M with �1.M / a free group of rank n and H2.M IZ/ D 0,
and the isomorphism classes of generalized Milnor pairings .Fn; coker'D ; bD/ for all
matrices D (with various sizes m) fulfilling the unimodularity conditions.

We will give more details of the generalized Milnor paring in Section 2, and prove the
main classification theorem in Section 3. The discussion of 3–links and their relation
with 5–manifolds will be the contents of Section 4.

Remark 1.4 A special case of Theorem 2.4 is when �1.M / Š Z and �2.M / is a
finitely generated abelian group. In this case we can show that �2.M / is torsion-free
and the bilinear form on �2.M / is unimodular, w2. zM / is determined by the bilinear
form on �2.M /, and the realization problem of the invariants can be solved. This
gives a complete classification of closed 5–manifolds with �1 D Z and �2 a finitely
generated abelian group. As an application, this reproves the fibration theorems in
dimension 5 in the topological and smooth category given by Hsu [7], Weinberger [20]
and Shaneson [17], respectively. See more details in the appendix.

Remark 1.5 The notions of Borel manifolds and strongly Borel manifolds were coined
by Kreck and Lück [10, Definition 0.2]. A manifold M is called a Borel manifold if for
any homotopy equivalence f W N!M there exists a homeomorphism hW N!M such
that f and h induce the same map on the fundamental groups up to conjugation. It is
called strongly Borel if all homotopy equivalences are homotopic to a homeomorphism.
If M 5 is a closed oriented spin topological 5–manifold with free fundamental group and
torsion-free �2 , then it is Borel. Since for any homotopy equivalence f W N 5 '�!M 5 ,
f induces an isomorphism between the topological generalized Milnor pairings (in
this case the Kirby–Siebenmann invariant is determined by the bilinear form bM ; see
the proof of Theorem 2.4), the statement follows from Theorem 1.1. On the other
hand, for a closed oriented topological 5–manifold M 5 with free fundamental group,
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2992 Matthias Kreck and Yang Su

a computation of the topological structure set of M using the surgery exact sequence
gives S TOP.M 5/DH 2.M IZ=2/. Therefore, by [10, Theorem 1.1], M is strongly
Borel if and only if H2.M IZ=2/D 0.

One often hears the statement that the classification of high-dimensional manifolds is
completely understood. What people mean is that with the s–cobordism theorem one
has a criterion of when two manifolds are diffeomorphic and with surgery theory one
has a reduction of the problem of finding an s–cobordism to problems in homotopy
theory (unstable and stable) and algebra (surgery obstruction groups), and the analysis
of certain maps relating the homotopy theory and the algebra. But this doesn’t mean
that even for some very explicit manifolds, like for example complete intersections, the
procedure can be carried out successfully. Given the complications of the homotopy
groups of spheres, in higher dimensions the problems get harder and harder. But in
comparatively low dimensions (say up to 8) one has a chance, which doesn’t mean
that it is routine. Most results in that dimension range concern simply connected
manifolds. In this paper we make a first step towards a classification of 5–manifolds
with fundamental group the free group Fn . This class is particular interesting, since
such manifolds occur on the one hand as total spaces of bundles over the circle and
on the other hand as fundamental groups of links of 3–spheres in S5 . We classify
both in the smooth and topological category. It might be interesting to note that the
topological classification of 4–manifolds with fundamental group the free group Fn

is completely open for n > 1. The question of whether the group Fn is good in the
sense of Freedman and Quinn [6] is the key question for topological 4–manifolds. If
this is the case then one can use similar methods as in the present paper to attack the
classification of 4–manifolds with fundamental group Fn .

Acknowledgement Kreck would like to thank the Mathematical Institute of the Chi-
nese Academy of Sciences in Beijing and the Max-Planck-Institute for Mathematics
in Bonn for their support while this research was carried out. Su would like to thank
the Max-Planck Institute for Mathematics in Bonn for a research visit in August and
September, 2015. Both authors would like to thank the referee and the editor for their
suggestions to improve the paper.

Su was partially supported by NSFC11571343.

2 The generalized Milnor pairing and the statement of the
main theorem

Now we describe the generalized Milnor pairing which we use to classify our manifolds.
First we give the general algebraic definition. A generalized Milnor pairing is a
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quadruple .�1; �2; b; w2/ consisting of the following:

(1) �1 a free group of rank n; let ƒ D ZŒ�1� be the integral group ring and
ƒQ DQŒ�1� be the rational group ring.

(2) �2 a finitely generated ƒ–module, which is torsion-free as an abelian group.
(3) bW ��

2
���

2
! .H 1.B�1IƒQ//

� a symmetric ƒ–equivariant pairing, where �
stands for the Q–dual HomZ.�;Q/, and by ƒ–equivariant we mean that b is
a ƒ–module map under the diagonal action of ƒ on ��

2
���

2
and the natural

ƒ–module structure on .H 1.B�1IƒQ//
� .

(4) w2 2 Hom.�2;Z=2/.

An isomorphism .˛; ˇ/W .�1; �2; b; w2/! .� 0
1
; � 0

2
; b0; w0

2
/ between generalized Mil-

nor pairings consists of

(1) an isomorphism ˛W �1! � 0
1

;
(2) an isomorphism ˇW �2! � 0

2
, which is compatible with the ƒ– and ƒ0–module

structure and the pairings b and b0 , and maps w0
2

to w2 .

Let M 5 be a smooth closed oriented 5–manifold with �1.M / Š Fn and �2.M /

a torsion-free abelian group; we associate a generalized Milnor pairing '.M / D

.�1.M /; �2.M /; bM ; w2. zM // to M as follows. Let zM be the universal cover
of M . By Poincaré duality we have an isomorphism H4. zM IQ/DH4.M Iƒ/˝QŠ
H 1.M IƒQ/ and the latter group is isomorphic to H 1.B�1.M /IƒQ/, because M

has a CW–structure M '
W

n S1 _
W

S2 [ e3 [ � � � [19, Proposition 3.3]. Next we
use the Kronecker isomorphism to identify H 4. zM IQ/ with H4. zM IQ/

� , where
� stands for the Q–dual, and the isomorphism above to obtain an isomorphism
H 4. zM IQ/Š .H 1.B�1.M /IƒQ//

� . The cup product and this identification together
define a symmetric ƒ–equivariant form

H 2. zM IQ/�H 2. zM IQ/! .H 1.B�1M IƒQ//
�:

Using the Kronecker isomorphism and the Hurewicz isomorphism we obtain a sym-
metric ƒ–equivariant form

bM W �2.M /� ��2.M /�! .H 1.B�1M IƒQ//
�;

where � is again the vector space of homomorphisms to Q, We will discuss more
about this bilinear form in the beginning of Section 3.

To this we add the second Stiefel Whitney class

w2. zM / 2 Hom.H2. zM IZ/;Z=2/D Hom.�2.M /;Z=2/

to obtain our invariant and get the quadruple

'.M /D .�1.M /; �2.M /; bM ; w2. zM //I
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we call this the generalized Milnor pairing of M . The group of self-isomorphisms of
'.M / is denoted by Aut.'.M //.

Remark 2.1 In the case where only spin manifolds are concerned, w2. zM / is always 0,
and the generalized Milnor pairing is actually a triple '.M /D .�1.M /; �2.M /; bM /.
This is the case in Theorem 1.3.

Remark 2.2 It’s easy to see from the Leray–Serre spectral sequence of the fibration
zM

p
�!M !

W
n S1 that p�W H 2.M IZ=2/!H 2. zM IZ=2/ is injective. Therefore

w2.M / and w2. zM / determine each other.

We also classify a special case of compact oriented manifolds M with boundary which
is relevant for classifying links in S5 . The boundary has to be a disjoint union of
n copies of S1�S3 and we require that the circles in the boundary components generate
the fundamental group Fn of M . Here we replace H4. zM IQ/ by H4. zM ; @ zM IQ/
and we note that H 2. zM IQ/ŠH 2. zM ; @ zM IQ/, so that the definition of bM makes
sense. With this modification we can consider the quadruple defining '.M / as before.
But we have to observe that the identification of the fundamental groups of M and
M 0 is now given by an identification of the boundary components.

Remark 2.3 When X is the complement of a simple 3–knot, we have a bilinear
paring bW H 2. zX IQ/�H 2. zX IQ/!Q, which is the Milnor paring [15]; see also [13].

We also classify the corresponding topological manifolds. Here we add a fifth term to
our invariant, the Kirby–Siebenmann invariant

KS.M / 2H 4.M IZ=2/Š �1.M /=Œ�1.M /; �1.M /�˝Z=2:

We call the quintuple .�1.M /; �2.M /; bM ; w2. zM /;KS.M // the topological gener-
alized Milnor pairing of the topological manifold M . Of course in the definition of an
isomorphism .˛; ˇ/ between two topological generalized Milnor pairings we require
that the isomorphism ˛W �1.M /! �1.M

0/ respects the Kirby–Siebenmann invariant,
too.

Now we restate the classification theorem of the manifolds under consideration and
add the realization statement for induced maps.

Theorem 2.4 Let M0 and M1 be two smooth (or topological), closed, oriented
5–manifolds with free fundamental group of rank n and torsion-free �2 . Then M0

and M1 are oriented-diffeomorphic (-homeomorphic) if and only if their (topological)
generalized Milnor pairings are isomorphic. Any isomorphism between the (topological)
generalized Milnor parings can be realized by an orientation-preserving diffeomorphism
(homeomorphism) from M0 to M1 .
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If M0 and M1 are compact with boundary consisting of n copies of S1 � S3 such
that the circles in the boundary generate �1.Mi/, then M0 and M1 are oriented-
diffeomorphic (-homeomorphic) if and only if there exists an isomorphism .˛; ˇ/ be-
tween their (topological) generalized Milnor pairings, where ˛ is induced by identifying
the boundary components. Any such isomorphism can be realized by an orientation-
preserving diffeomorphism (homeomorphism).

The isomorphism ˛ above actually sends free generators xi of �1.M0/ to conjugates
of free generators x0i of �1.M1/, which are represented by different arcs in the interior
to a basepoint.

Remark 2.5 In the definition of the invariant '.M / we use the cup product on the
cohomology with rational coefficients. Usually one loses information when passing
from integral coefficients to rational coefficients. But in our situation the rational
cohomology contains essentially more information than the integral cohomology. This
can be illuminated by the following example.

Example Let

AD

�
2 0

3 1

�
I

then ACA0 (where A0 is the transpose of A) is unimodular and has signature 0.
Therefore by [11, Theorem 2] there is a simple 3–knot K � S5 with Seifert matrix
S –equivalent to A. The Alexander polynomial of K is �K .t/ D det.A � tA0/ D

2t2C 5t C 2. Let X be the complement of K ; then, by [4, Theorem 1.5], H2. zX /Š

Z
�

1
2

�
˚ Z

�
1
2

�
. Let M 5 be the result of surgery on K ; then �1.M / Š Z and

�2.M / Š H2. zM / Š H2. zX / Š ZŒ1=2�˚ Z
�

1
2

�
. We see that H 2. zM IZ/ D 0 but

H 2. zM IQ/ŠQ2 .

3 Proof of Theorem 2.4

Before giving the proof of the main theorem we first rephrase the bilinear form bM in
a more explicit form. Fix an identification �1.M /

Š
�!Fn and consider the classifying

map of the fundamental group f W M ! BFn D
Wn

iD1 S1
i . From the Leray–Serre

spectral sequence (with twisted coefficients, which we denote by an underline) of the fi-
bration zM!M!

Wn
iD1 S1

i , we get an isomorphism H5.M /!H1

�W
n S1IH4. zM /

�
.

Note that

H1

�_
n

S1
IH4. zM /

�
D Ker

�M
n

H4. zM /
d
�!H4. zM /

�
;

where d.x1; : : : ;xn/D
P

i.gi � 1/xi with g1; : : : ;gn the corresponding generators
of Fn . This leads to an injection H5.M / !

L
n H4. zM /. Denote the image of
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the fundamental class ŒM � by .�1; : : : ; �n/. Now denote by Ii.M / the symmetric
bilinear form H 2. zM IQ/�H 2. zM IQ/!Q given by Ii.˛; ˇ/D h˛[ˇ; �ii. From
the relation

P
i.gi � 1/�i D 0 we see that the bilinear forms satisfy the relationP

i Ii.˛; ˇ/D
P

i Ii.g
�
i ˛;g

�
i ˇ/.

Geometrically, we choose regular values qi 2 S1
i and let Fi D f

�1.qi/. Let E be
the complement of an open tubular neighborhood of

S
i Fi ; then E has boundary

@E D
S

i F˙i , where F˙i are the positive and negative boundary components of the
tubular neighborhood of Fi . We obtain zM by gluing infinitely many copies of E under
the deck transformation, ie zM D

S
g2Fn

Eg . Let M i !M be the Z–covering of
M corresponding to M !

Wn
iD1 S1

i ! S1
i ; then it’s easy to see that the Leray–Serre

spectral sequence of this covering gives an isomorphism H5.M /
Š
�!H4.M i/, with

ŒM � 7! ŒF�i �. Furthermore the commutative diagram

zM

!!

// M i

||

M

induces L
n H4. zM /

projection to the ith component
��

H5.M /

88

&&

H4. zM /i

��

H4.M i/

From this we see that each �i is represented by F�i in E � zM .

By [19, Proposition 3.3] we know that M has a CW–structure of the form M 'Wn
iD1 S1

i _
W

S2[ e3[ � � � . Therefore we have isomorphisms H4. zM /ŠH 1
c .
zM /Š

H 1
�W

n S1; ƒ
�
, where ƒ denotes the group ring ZŒFn�. Thus we have a surjec-

tion ƒn ! H4. zM /. Let ei be the standard basis of ƒn ; then ei is mapped to �i .
Therefore �1; : : : ; �n form a set of generators of the ƒ–module H4. zM /. For any
˛; ˇ 2 H 2. zM IQ/ and x 2 H4. zM /, we may assume that x D

P
i �i�i , with �i DP

g a
.i/
g �g 2ƒ. Then h˛[ˇ;xi D

˝
˛[ˇ;

P
i �i�i

˛
D
P

i;g a
.i/
g hg

�1˛[g�1ˇ; �ii DP
i;g a

.i/
g Ii.g

�1˛;g�1ˇ/. Thus we have shown:

Lemma 3.1 The sequence of bilinear forms .I1; : : : ; In/ contains the same informa-
tion as the bilinear pairing bM together with an identification of �1.M / with the free
group Fn .
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Next we relate the signature of forms Ii to the signatures of the fiber F4
i .

Lemma 3.2 The bilinear form Ii W H
2. zM IQ/�H 2. zM IQ/!Q has the same sig-

nature as the intersection form of F4
i .

Proof We use homology and cohomology with Q–coefficients.

Let E be the exterior of an open tubular neighborhood of
S

i Fi . Then the universal
cover zM is zM D

S
g2Fn

Eg , where each Eg is a copy of E . Since H2.Fi/ is finite-
dimensional, there exists a connected compact submanifold M0 �

zM which is a union
of finitely many of the Eg and Fi �M0 such that any x 2 Ker.H2.Fi/!H2. zM //

is in Ker.H2.Fi/!H2.M0//. Therefore

Ker.H2.Fi/!H2. zM //D Ker.H2.Fi/!H2.M0//:

Dually on cohomology, we have

Im.H 2. zM /!H 2.Fi//D Im.H 2.M0/!H 2.Fi//:

The boundary @M0 has a component F0 which is the image of Fi under a deck
transformation by g 2 �1.M /. There is a commutative diagram

H 2.M0/ //

%%

H 2.Fi/

g�

��

H 2.F0/

where g� is an isometry. So we have

H 2. zM /=rad.Ii/D Im.H 2. zM /!H 2.Fi//=rad

D Im.H 2.M0/!H 2.Fi//=rad

Š Im.H 2.M0/!H 2.F0//=rad:

Note that Ker.H2.@M0/!H2.M0// is a Lagrangian in H2.@M0/. Therefore

Ker.H2.F0/!H2.M0//D Ker.H2.@M0/!H2.M0//\H2.F0/

is isotropic. A standard argument in linear algebra shows that dually on cohomology,
Im.H 2.M0/!H 2.F0// has a complement which is isotropic. Let’s denote it by K ;
it generates a hyperbolic form H.K/ in H 2.F0/ and we have

Im.H 2.M0/!H 2.F0//=rad˚H.K/DH 2.F0/:

Therefore sign.Ii/D sign.H 2.F0//.
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The proof of Theorem 2.4 is based on modified surgery theory. We refer to [9] for
the details of this machinery for classifying manifolds. For the convenience of the
reader we summarize the basic concepts and the main theorem we apply. The basic
idea is to weaken the normal homotopy type, which is the first basic invariant of a
manifold M in classical surgery, to the normal k –type. This is roughly given by
the k –skeleton of M together with the restriction of the normal bundle. Since the
k –skeleton is not well-defined we pass to Postnikov towers instead or, better, Moore–
Postnikov decompositions. The normal bundle is equivalent to the normal Gauss map
�W M ! BO . The normal k –type is the k th stage of the Moore–Postnikov tower
of x� , which is a fibration pW Bk.M /! BO which is completely characterized by
the property that there is a lift x�W M ! Bk.M / of � which induces an isomorphism
on homotopy groups up to degree k and is surjective in degree k C 1. Note that if
k is larger than the dimension of M the normal k –type is equivalent to the normal
homotopy type, thus modified surgery generalizes classical surgery. Such a lift is called
a normal k –smoothing.

Given two normal k –smoothings .M; x�M / and .M 0; x�M 0/ in the same fibration Bk ,
the first step is to decide whether these normal k –smoothings are bordant. This means
that there is a coboundary W together with a lift of the normal Gauss map x�W (but this is
not highly connected). The main theorem of modified surgery is that if k� 1

2
dim M�1,

then there is a surgery obstruction in a monoid ldim MC1.�1.M /; w1.M //, from which
one can decide whether W is Bk –bordant to an s–cobordism.

Now we return to our situation of 5–manifolds. We will work with the normal 2–type
of M . Then the obstruction is actually in the classical Wall group L5.�1.M /; w1.M //.
We prepare the proof with a construction of the normal 2–type (cf [9, Proposition 2])
of a smooth manifold M (of arbitrary dimension), which might be of separate interest
elsewhere. Let uW M ! P be the second-stage Postnikov tower of M ; there are
unique cohomology classes wi 2H i.P IZ=2/ for i D 1; 2 such that u�.wi/Dwi.M /.
Let w1 �w2W P !K.Z=2; 1/�K.Z=2; 2/ be the classifying map of these classes,
and w1.EO/�w2.EO/W BO ! K.Z=2; 1/�K.Z=2; 2/ be the classifying map of
the universal Stiefel–Whitney classes. Consider the following pullback square:

B.�1.M /; �2.M /; k1; w1.M /; w2.M //
h

//

p

��

P

w1�w2

��

BO
w1.EO/�w2.EO/

// K.Z=2; 1/�K.Z=2; 2/

There is a lift x�W M ! B.�1.M /; �2.M /; k1; w1.M /; w2.M // of the normal Gauss
map �W M ! BO of M , which a 3–equivalence, and p is 3–coconnected. Thus we
have shown:

Geometry & Topology, Volume 21 (2017)



On 5–manifolds with free fundamental group and simple boundary links in S5 2999

Lemma 3.3 The fibration

pW B.�1.M /; �2.M /; k1; w1.M /; w2.M //! BO

is the normal 2–type of M . There is a corresponding construction in the topological
category, if one replaces BO by BTop.

Now we are ready to prove Theorem 2.4.

Proof of Theorem 2.4 We begin with the smooth category. In our situation, the
second-stage Postnikov tower P of M is a fibration over

Wn
iD1 S1

i with fiber K D

K.�2.M /; 2/ and monodromy given by the �1.M /–module structure of �2.M /. We
denote the normal 2–type by pW B ! BO and recall that by the lemma above it is
determined by �1.M /, �2.M / as a ZŒ�1.M /�–module, and w2.M /.

Now we compute the bordism group �5.B;p/. Note that �5.B;p/D �
S
5
.M.p//.

We consider the fibration zB! B!
Wn

iD1 S1
i ; the Wang sequence of the generalized

homology theory �S
� is

� � � !�5. zB; zp/!�5.B;p/!
M

n

�4. zB; zp/! � � � ;

where zB is the pullback

zB //

zp

��

K

const�w2

��

BO // K.Z=2; 1/�K.Z=2; 2/

where w2 2 H 2.KIZ=2/ is the image of w2 2 H 2.P IZ=2/ under the injection
H 2.P IZ=2/! H 2.KIZ=2/. From this we have �n. zB; zp/ D �

spin
n .KI �/, where

the latter group is the bordism group of f W M ! K together with a spin struc-
ture on f ��˚ �M , where � is a complex line bundle over K such that w2.�/ D

w2 2H 2.KIZ=2/.

Now �2.M / is the direct limit of its finitely generated subgroups, and by assump-
tion �2.M / is a torsion-free abelian group, hence it is a direct limit of finitely gen-
erated free abelian groups lim

��!
G˛ . Therefore K is a direct limit of spaces K D

lim
��!

K.G˛; 2/. In general there is an Atiyah–Hirzebruch spectral sequence comput-
ing �

spin
n .X I �/ with E2 –terms Hp.X I�

spin
q /, and the differential d2 is dual to

Sq2
Cw2.�/ � ; see [18]. An easy computation with this spectral sequence shows that

�
spin
5
.K.G˛; 2/I �/D 0 for a finitely generated free abelian group G˛ , and henceforth

�
spin
5
.KI �/D lim

��!
�

spin
5
.K.G˛; 2/I �/D 0.
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Therefore we have an injection �5.B;p/!
L

n�
spin
4
.KI �/. There is a commutative

diagram

�5.B;p/ //

��

L
n�

spin
4
.KI �/

��

H5.P / //
L

n H4.K/

with the horizontal arrows injective and the vertical arrows the edge homomorphisms.
Following the definition of the boundary map in the Mayer–Vietoris sequence of the
bordism theory, we see that a bordism class Œf W M ! B� is mapped to

.Œh ıf W F1!K�; : : : ; Œh ıf W Fn!K�/ 2
M

n

�
spin
4
.KI �/;

where hW B! P is the map in the pullback square, � W P !
W

n S1 is the projection
map, and Fi D .� ı h ıf /�1.qi/ is the preimage of a regular value qi 2 S1

i . A direct
calculation with the Atiyah–Hirzebruch spectral sequence shows that a bordism class

Œ'W N 4
!K� 2�

spin
4
.K.G˛; 2/I �/

is determined by sign.N / and '�ŒN � 2 H4.K.G˛; 2//. Passing to the limit we see
that a bordism class Œ'W N 4 ! K� 2 �

spin
4
.KI �/ is determined by sign.N / and

'�ŒN � 2 H4.K/. Now H4.K/ D lim
��!

H4.K.G˛; 2// is a direct limit of free abelian
groups, hence is torsion-free, therefore '�ŒN � is determined by its image in H4.KIQ/,
which is further determined by the evaluation with elements in H 4.KIQ/. Note that
H 4.KIQ/ D H 4.K.�2.M /˝Q; 2/IQ/, where �2.M /˝Q is a Q–vector space.
From this it’s easy to see that the cup product map

H 2.KIQ/˝H 2.KIQ/
[
�!H 4.KIQ/

is surjective, therefore '�ŒN � 2 H4.KIQ/ is determined by h'�˛ [ '�ˇ; ŒN �i for
˛; ˇ 2H 2.KIQ/.

For a normal 2–smoothing x�W M ! B , let f W M x�
�!B

h
�!P be the composition;

we have a commutative diagram

zM

��

Qf
// K

��

M
f
// P

and f D Qf ı i W Fi !K for Fi �
zM . Notice that Qf �W H 2.KIQ/!H 2. zM IQ/ is

an isomorphism, therefore the evaluation hf �˛[f �ˇ; ŒFi �i D h Qf
�˛[ Qf �ˇ; i�ŒFi �i D

h Qf �˛[ Qf �ˇ; �ii is exactly the bilinear form Ii W H
2. zM IQ/˝H 2. zM IQ/!Q.
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By Lemma 3.2, sign.Fi/ equals the signature of the bilinear form Ii . This shows that
the bordism class ŒM; x�� is determined by the bilinear forms Ii for i D 1; : : : ; n.

Now, given two manifolds M and M 0 with isomorphic algebraic invariants and —
depending on an ordering of the boundary components in the bounded case — equal
boundary as in Theorem 2.4, they have the same normal 2–type .B;p/. We identify
the boundaries (one of the manifolds with opposite orientation) to obtain a closed
manifold and use the normal 2–smoothings x�W M !B and x�0W M 0!B to obtain an
element in �5.B;p/. We note here that we controlled the restriction of the normal
2–smoothings to the boundary by requiring that the identification of the boundary
components be compatible with the identification of the fundamental groups. By the
consideration above this is the zero element if our invariant ' agrees for M0 and M1

with the normal 2–smoothings chosen so that the invariants agree.

Let W be a B–null-bordism of the glued manifold, then there is an obstruction
�.W / 2 l6.Fn/. If this is elementary, then W is B–bordant rel boundary to an s–
cobordism [9, Theorem 3]. In our situation with �1.M /Š Fn , the Whitehead group
Wh.Fn/ D

L
Wh.Z/ D 0, and so we won’t have to consider the preferred bases.

Furthermore by the remark on [9, page 730] the obstruction sits in the ordinary L–
group L6.Fn/. This group is isomorphic to Z=2 and the obstruction is detected by the
Arf-invariant [2, Theorem 16]. Since there is a simply connected closed 6–manifold
with Arf-invariant 1 we can change W by disjoint sum with this, if necessary, to show
that �.W /D 0 2L6.Fn/. This implies that �.W / is elementary and finishes the proof
in the smooth case.

The proof of the topological case is similar, since the modified surgery method
also applies to topological manifolds (cf [9]). The only difference is that an ele-
ment Œ'W F4!K� 2�

TopSpin
4

.KI �/ is determined by the image of the fundamental
class '�ŒF � 2 H4.K/, the signature sign.F / and the Kirby–Siebenmann invariant
KS.F /. Each Fi has trivial normal bundle in M , therefore under the isomorphism
H 4.M IZ=2/

Š
�!

Ln
iD1 H 4.Fi IZ=2/, KS.M / is mapped to

.KS.F1/; : : : ;KS.Fn//:

The rest is the same as in the smooth case.

4 Proofs of Theorems 1.2 and 1.3

The Seifert matrix of a boundary link is defined as follows (cf [12]): choose Seifert
manifolds Fi of the link L; then there are linking forms

�ij W Hq.Fi/˝Hq.Fj /! Z; .˛; ˇ/ 7!L.z1; z2/;
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defined by linking numbers between z1 , representing ˛ , and z2 , representing iCˇ .
With respect to a basis of the torsion-free part of Hq.Fi/ the linking forms �ij are
represented by a matrix Aij ; then the Seifert matrix D D .Aij / of L is an integral
square matrix formed by the blocks Aij , and D is .�1/q –symmetric. Different choices
of Seifert manifolds will lead to different Seifert matrices, but they are related by a
sequence of “algebraic moves” and are l –equivalent. The l –equivalence class of the
Seifert matrix D is a well-defined invariant of L [12, Theorem 1].

Given a square integral matrix D D .Aij /, consisting of matrices blocks Aij , the
unimodularity condition of D requires that Aii CA0ii for i D 1; : : : ; n and DCD0

are unimodular. It’s shown in [12] that there is a boundary simple .2q�1/–link L

whose Seifert matrix is D D .Aij / when q � 3 [12, Theorem 1].

Given a link f W
Sn

iD1 S3 ,! S5 we note that up to isotopy there is a unique tubular
neighborhood U of Image.f /. We denote the complement of the interior of this
tubular neighborhood by Xf and use the tubular neighborhood to identify @Xf withS

n.S
1 �S3/.

If two links f W
Sn

iD1 S3 ,! S5 and f 0W
Sn

iD1 S3 ,! S5 are isotopic, the isotopy
extension theorem implies that the identification @Xf ! @Xf 0 extends to a diffeo-
morphism Xf ! Xf 0 . In turn, if there is an orientation-preserving diffeomorphism
gW Xf ! Xf 0 extending the identification on the boundary, then we can extend this
by the identification on the tubular neighborhoods to an orientation-preserving diffeo-
morphism ygW S5 ! S5 mapping the first link to the second. Now we use the fact
that �0.DiffC.S5// is isomorphic to the group of homotopy 6–spheres (using the
h–cobordism theorem and Cerf’s theorem [3] that pseudoisotopy implies isotopy) and
that the group of 6–dimensional homotopy spheres is trivial [8]. Thus the two links
are isotopic.

Now note that the link complement X has free fundamental group of rank n, generated
by the circles in the boundary components. Furthermore, from Farber [5, Theorem 5.7]
we know that �2 of the complement of a simple boundary link is torsion-free. Thus
Theorem 2.4 applies to complements of simple boundary 3–links in S5 .

The meridians give rise to an identification �1.Xf /
Š
�!Fn ; under this identification, by

the reinterpretation of the invariants in the beginning of Section 3, we have an invariant

 .Xf /D .�2.Xf /; bi W �2.Xf /
�
��2.Xf /

�
!Q; i D 1; : : : ; n/:

Here we consider �2.Xf / as an Fn –module and � stands for the Q–dual. The link
complementXf is a Spin–manifold, thus Theorem 2.4 implies that this invariant deter-
mines the oriented diffeomorphism type mod boundary, meaning that the identification
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on the boundary extends to an orientation-preserving diffeomorphism between the
whole manifolds. Thus we have proved the following:

Lemma 4.1 Two simple boundary 3–links f W
S

n S3 ,! S5 and f 0W
S

n S3 ,! S5

are isotopic if and only if under certain identifications of �1.Xf / and �1.Xf 0/ with Fn

coming from enumerating the link components,  .Xf / and  .Xf 0/ are isomorphic.

Proof of Theorem 1.2 By Lemma 4.1, to prove that the l –equivalence class of the
Seifert matrices determines the isotopy type of the link, we need to show that the
l –equivalence class of the Seifert matrices determines  .Xf /. Let Fi be Seifert
manifolds of a link given by an embedding f . Let Xf be the complement of the
tubular neighborhood of the link; then the universal cover zXf is obtained by gluing
infinitely many copies of Y via the deck transformation, where Y is obtained from Xf
by cutting up along the Seifert manifolds. We identify �1.Xf / with Fn by sending the
meridian (with the induced orientation from that of S5 and S3 ) of the i th component of
the link to the i th standard generator ti of Fn . The Mayer–Vietoris sequence computing
H2. zXf / is

nM
iD1

H2.Fi/˝Z ZŒFn�
'
�!H2.Y /˝Z ZŒFn�!H2. zXf /! 0;

where, under the basis of H2.Fi/ and the Alexander dual basis of H2.Y /, ' is given
by .Aij � tiA

0
ij /. Therefore the ZŒFn�–module H2. zXf / is determined by D D .Aij /.

Also we see that the map H2.Fi/! H2. zXf / is determined by D D .Aij /, hence
the dual map H 2. zXf IQ/!H 2.Fi IQ/. And the intersection form of Fi is given by
AiiCA0ii . It’s easy to see from the definition that the bilinear pairing bi is given by the
composition of H 2. zXf IQ/!H 2.Fi IQ/ with the intersection form on H 2.Fi IQ/.
Therefore the bilinear form bi is determined by the Seifert matrix D D .Aij /.

Given two simple boundary 3–links L0 and L1 , with l –equivalent Seifert matrices
D0 D .A

.0/
ij / and D1 D .A

.1/
ij /, then by [12, Lemma 1] we may choose Seifert

manifolds fF0
i g and fF1

i g of L0 and L1 , respectively, such that the corresponding
Seifert matrices are equal. Then, by the above discussion, L0 and L1 are equivalent.

Using a stabilization trick introduced by Levine in the case of knots, we can extend
the construction of links with given Seifert matrix in [12] to the case q D 2. The
construction goes as follows.

Firstly, by [11, Lemma 16] we may find embeddings F4
i �B5

i � S5 with @Fi D S3 a
simple 3–knot whose Seifert matrix Ai is S –equivalent to Aii . After stabilization by
connected sum with copies of S2�S2 , these Seifert manifolds F4

i are diffeomorphic to
connected sums of S2�S2 and the Kummer surface with a 4–ball B4 deleted. These
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smooth 4–manifolds all have a handle decomposition of the form FiDD4[h1[� � �[hk

where the hi are 2–handles (see eg [14]). Then by the same argument in the proof of
[12, Theorem 1] we can show that the new Seifert matrix D0 , which is l –equivalent
to D , is the Seifert matrix of a boundary simple 3–link L.

Now we describe the Milnor pairing associated to an m�m integral matrix DD .Aij /

satisfying the unimodularity conditions. Let 'D W .ZŒFn�/
m! .ZŒFn�/

m be the ZŒFn�–
module map given by the matrix .Aij � tiA

0
ij /. Assume the square matrix Aii has

dimension mi ; then Aii CA0ii defines a symmetric bilinear form Ii on Zmi . Let �i
be the composition

�i W Z
mi

L
jAij
���!

M
j

Zmj !

M
j

Zmj ˝Z ZŒFn�D .ZŒFn�/
m
! coker'D

The Q–dual of �i is ��i W .coker'D/
�!Qmi . Let C1D .ZŒFn�/

n d1
�!C0DZŒFn� be the

standard chain complex computing H�.BFnIZŒFn�/, fei j iD1; : : : ; ng be the standard
basis of .ZŒFn�/

n , fe�i j i D 1; : : : ; ng be the dual basis, and Œe�i � 2H 1.BFnIZŒFn�/

be the corresponding cohomology class. Then the bilinear form

bD W .coker'D/
�
� .coker'D/

�
! .H 1.BFnIQŒFn�//

�

is given by hbD.u; v/; Œe
�
i �i D Ii.�

�
i .u/; �

�
i .v//. (See Lemma 3.1.)

Proof of Theorem 1.3 There is a surjective map from the set of isotopy classes of
simple boundary n–components links L� S5 to the set of diffeomorphism classes of
smooth oriented closed 5–manifolds M 5 with free fundamental group of rank n and
H2.M IZ/D 0. This is given by surgery: given a link L, we may do surgery on L and
obtain a 5–manifold M with H2.M IZ/D 0. If L is simple boundary, then it’s easy
to see that �1.M / is isomorphic to Fn . The meridians of the link components form an
embedding

S
n S1 �M , and these circles generate �1.M /. On the other hand, given

such an M 5 we may choose an embedding
S

n S1 �M 5 such that the circle gener-
ate �1.M /. Then we do surgery on this embedding and obtain S5 ; the complementary
spheres

S
n S3 � S5 form a link L. Clearly this is a simple boundary link.

By comparing the definitions, we see that the generalized Milnor pairing '.M / of M

is the same as the generalized Milnor pairing  .Xf / of the link complement defined
before Lemma 4.1. In the proof of Theorem 1.2 we have shown how the generalized
Milnor pairing  .Xf / is determined by the Seifert matrix D D .Aij /. This is ex-
actly .Fn; coker'D ; bD/, which was described before the proof of Theorem 1.3. By
Theorem 1.2, all such matrices satisfying the unimodular conditions are realized by
simple boundary links. This finishes the proof.
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Appendix

In this appendix we show some basic properties of the class of manifolds mentioned
in Remark 1.4, ie oriented closed 5–manifolds M with �1.M /Š Z and �2.M / a
finitely generated abelian group.

Lemma A.1 Let M 5 be a 5–manifold with �1.M / D Z and �2.M / a finitely
generated abelian group; then all higher homotopy groups �i.M / for i � 2 are finitely
generated abelian groups.

Proof By Serre’s mod C theory [16], we only need to show that Hi. zM / for i � 3 are
finitely generated abelian groups. The only problem is H3. zM /. We have H3. zM /D

H3.M Iƒ/ Š H 2.M Iƒ/, where ƒ D ZŒZ� D ZŒt; t�1� is the group ring. By [19,
Proposition 3.3], the CW–structure of M has the form

M D S1
_

�_
S2
�
[ � � � :

Therefore the cellular chain complex C�.M Iƒ/ has the form

� � � ! C3
d
�!C2

0
�!C1! C0:

From the exact sequence C3
d
�!C2! coker d ! 0 we have the dual exact sequence

0 ! .coker d/� ! C �
2

d�
�! C �

3
, hence H 2.M Iƒ/ D ker d� D .coker d/� . Now

coker d DH2.M Iƒ/D�2.M / is a finitely generated abelian group; the proof is done
given the following lemma.

Lemma A.2 If a ƒ–module G is a finitely generated abelian group, then

Homƒ.G; ƒ/D 0:

Proof The torsion subgroup T is a sub-ƒ–module and the exact sequence

0! T !G!G=T ! 0

induces an exact sequence

0! Homƒ.G=T; ƒ/! Homƒ.G; ƒ/! Homƒ.T; ƒ/;

therefore Homƒ.G=T; ƒ/ Š Homƒ.G; ƒ/ since Homƒ.T; ƒ/ D 0. Therefore we
may assume that G is a finitely generated free abelian group.

Let x1; : : : ;xn be a basis of G ; a ƒ–module structure on G is given by A 2GLn.Z/,
which specifies the action of the generator t on the basis. A ƒ–homomorphism G!ƒ

is given by the images v1; : : : ; vn 2ƒ of x1; : : : ;xn . The n–tuple v D .v1; : : : ; vn/

should satisfy the equation .tI �A/v D 0. Clearly det.tI �A/¤ 0, thus the equation

Geometry & Topology, Volume 21 (2017)



3006 Matthias Kreck and Yang Su

has no nonzero solution in the quotient field (ƒ is an integral domain), hence also has
no nonzero solution in ƒ. Therefore Homƒ.G; ƒ/D 0.

Now let M 5 be a closed orientable 5–manifold with �1.M / D Z and �2.M / a
finitely generated abelian group. Fix an orientation of M and a generator t of
�1.M /; these choices determine a generator (a fundamental class) �M 2H4. zM /DZ.
Then, on the finitely generated free abelian group H 2. zM /, a symmetric bilinear
form H 2. zM / � H 2. zM / ! Z is defined by .˛; ˇ/ 7! h˛ [ ˇ; �M i. By the fol-
lowing proposition, we see that this bilinear form is unimodular and �2.M / is a
free abelian group. Thus this bilinear form induces a symmetric bilinear form on
�2.M /D �2. zM /DH2. zM /DH 2. zM /� , denoted by I.M /.

Proposition A.3 Let M 5 be an orientable 5–manifold with �1.M /DZ and �2.M /

a finitely generated abelian group. Then we have the following:

(1) �2.M / is torsion-free.
(2) The symmetric bilinear form I.M / is unimodular; I.M / is even if and only if

w2.M /D 0.
(3) hp1.M /; �M i D 3 � sign.I.M //, where �M 2 H4. zM / is the generator deter-

mined by the orientation of M and the generator t of �1.M /.

Proof Consider M � CP2 . By Lemma A.1 and Browder and Levine’s fibration
theorem [1], we know that this manifold is a fiber bundle over S1 with simply connected
fiber F8 . Therefore zM �CP2 is homotopy equivalent to F .

(1) By the Künneth formula and Poincaré duality, we have

H 3. zM /ŠH 7. zM �CP2/ŠH 7.F /ŠH1.F /D 0:

This proves that tors�2.M /D tors H2. zM /D tors H 3. zM /D 0.

(2) On H 4. zM �CP2/ there is defined a symmetric bilinear form I.M �CP2/, which
is isometric to the tensor product of I.M / and the intersection form of CP2 plus a
hyperbolic form. On the other hand, the bilinear form I.M �CP2/ is isometric to
the intersection form of F , which is unimodular by Poincaré duality. Therefore the
bilinear form I.M / is unimodular.

From the discussion above we see that I.M / is even if and only if the Wu class v4.F /

is zero. The Wu classes and Stiefel–Whitney classes of M and F are related as follows.
Let i W F !M �CP2 be the inclusion of the fiber; then TF˚RD i�T .M �CP2/.
We have

w2.M /D v2.M /; w3.M /D Sq1w2.M /; w4.M /D w2.M /2;

v2.F /D w2.F /D i�.w2.M /Cw2.CP2//; w3.F /D Sq1w2.F /C v3.F /I
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on the other hand, w3.F /D i�w3.M /, from which we have

v3.F /D i�.Sq1w2.M /Cw3.M //:

By the Wu formula

w4.F /D v2.F /
2
CSq1v3.F /C v4.F /I

on the other hand,

w4.F /D i�.w4.M /Cw2.M /w2.CP2/Cw4.CP2//:

Comparing these two equations we have

v4.F /D i�.w2.M /w2.CP2//:

But H 3.F IZ2/ Š H 3. zM � CP2IZ2/ Š H 3. zM IZ2/ D 0 (the last identity is a
consequence of the fact that H2. zM / is free and H3. zM /D 0; see Lemma A.1). From
the Wang sequence we see that i�W H 4.M � CP2IZ2/ ! H 4.F IZ2/ is injective.
Thus v4.F /D 0 if and only if w2.M /D 0.

(3) Since I.M / and I.M �CP2/ differ by a hyperbolic form, we have

sign.I.M //D sign.I.M �CP2//D sign.F /D 1
45
h7p2.F /�p1.F /

2; ŒF �i;

where the last identity is the Hirzebruch index formula. Since F has trivial normal
bundle in M �CP2 , we have

p1.F /D i�p1.M �CP2/D i�.p1.M /Cp1.CP2//;

p2.F /D i�p2.M �CP2/D i�.p1.M /p1.CP2//:

A straightforward calculation shows that 3 sign.I.M //D hp1.M /; �M i.
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On the Fano variety of linear spaces contained in
two odd-dimensional quadrics

CAROLINA ARAUJO

CINZIA CASAGRANDE

We describe the geometry of the 2m–dimensional Fano manifold G parametrizing
.m�1/–planes in a smooth complete intersection Z of two quadric hypersurfaces
in the complex projective space P2mC2 for m� 1 . We show that there are exactly
22mC2 distinct isomorphisms in codimension one between G and the blow-up of P2m

at 2mC 3 general points, parametrized by the 22mC2 distinct m–planes contained
in Z , and describe these rational maps explicitly. We also describe the cones of nef,
movable and effective divisors of G , as well as their dual cones of curves. Finally,
we determine the automorphism group of G .

These results generalize to arbitrary even dimension the classical description of
quartic del Pezzo surfaces (mD 1).

14E30, 14J45; 14M15, 14N20, 14E05

1 Introduction

In this paper we describe the geometry of the 2m–dimensional Fano manifold G.2m/

parametrizing .m�1/–planes in a smooth complete intersection of two quadric hyper-
surfaces in the complex projective space P2mC2 for m�1. The case mD1 is classical:

1.1 The surface SDG.2/ is itself a smooth complete intersection of two quadric hyper-
surfaces in P4 , and hence a quartic del Pezzo surface. It is well-known that �.S/D 6,
and that the cone of effective curves of S is generated by the classes of its 16 lines.
These 16 lines have a very special incidence relation: each line intersects properly
exactly 5 lines. The del Pezzo surface S can also be described as the blow-up of P2 at
5 points in general linear position. In fact, there are 16 different ways to realize S as
this blow-up: For every line `�S , there is a birational morphism �`W S!P2 , unique
up to projective transformation of P2 , contracting the 5 lines incident to ` to points
p`1; : : : ; p

`
5 2 P2 in general linear position. The image of ` under �` is the unique

conic through the pi , and the image of the other 10 lines are the 10 lines through 2
of the pi . Moreover, for any two lines `; `0 � S , the sets of points fp`1; : : : ; p

`
5g and

fp`
0

1 ; : : : ; p
`0

5 g are related by a projective transformation of P2 .
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The automorphism group Aut.S/ of S is also well understood (see for instance
Dolgachev [12, Section 8.6.4]). In order to describe it, we view Pic.S/ with the
intersection product as a unimodular lattice. Its primitive sublattice K?S is a D5–
lattice. We denote by W.D5/ the Weyl group of automorphisms of this lattice. For any
� 2 Aut.S/, the induced isomorphism ��W Pic.S/! Pic.S/ preserves the intersection
product and fixes KS . This yields an inclusion of groups Aut.S/ ,! W.D5/ Š

.Z=2Z/4 ÌS5 , whose image contains the normal subgroup .Z=2Z/4 . Moreover, if S
is general, then Aut.S/Š .Z=2Z/4 .

We will show that the picture described in Section 1.1 above generalizes to arbitrary
even dimension. We start by fixing some notation. Let m be a positive integer, set
nD 2m and fix nC 3 distinct points in P1 , up to order and projective equivalence,

.�1 W 1/; : : : ; .�nC3 W 1/ 2 P1:

With this fixed data, we introduce the two main characters of this paper, G.n/ and X .n/ :

1.2 (G.n/ ) Let Z.n/ be a smooth complete intersection of the two quadric hypersur-
faces in PnC2

Q1 W

nC3X
iD1

x2i D 0 and Q2 W

nC3X
iD1

�ix
2
i D 0:

(Up to projective transformation of PnC2 , any smooth complete intersection of two
quadric hypersurfaces can be written in this way; see Section 2.) Then consider the
subvariety G.n/ of the Grassmannian Gr.m� 1;PnC2/ parametrizing .m�1/–planes
contained in Z.n/ . It is well known that G.n/ is a smooth n–dimensional Fano variety
with Picard number �.G.n//D nC 4 (see Section 3 and references therein).

1.3 (X .n/ ) Fix a Veronese embedding �nW P1 ,!Pn , and set pi D �n..�i W 1//2Pn .
The points p1; : : : ; pnC3 are in general linear position. (In fact, this gives a natural
correspondence between sets of nC3 distinct points in P1 , up to projective equivalence,
and nC 3 points in general linear position in Pn , up to projective equivalence.) Let
X .n/ be the blow-up of Pn at the points p1; : : : ; pnC3 .

Our starting point is the following:

1.4 Theorem (Bauer [3], Casagrande [8]) The varieties G.n/ and X .n/ are isomor-
phic in codimension 1.

The proof of Theorem 1.4 makes use of moduli spaces of parabolic vector bundles.
By [8], G.n/ is isomorphic to the moduli space M.n/ of stable rank 2 parabolic vector
bundles on .P1; .�1 W 1/; : : : ; .�nC3 W 1// of degree zero and weights

�
1
2
; : : : ; 1

2

�
. On

the other hand, by [3] (see also Mukai [22, Theorem 12.56]), X .n/ is isomorphic to the
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moduli space of stable rank 2 parabolic vector bundles on .P1; .�1 W 1/; : : : ; .�nC3 W 1//
of degree zero and weights

�
1
n
; : : : ; 1

n

�
, which is isomorphic to M.n/ in codimension 1.

This proof, however, does not give much information about the possible isomorphisms
in codimension 1 between G.n/ and X .n/ . We call an isomorphism in codimen-
sion 1 a pseudoisomorphism. In this paper we describe explicitly the birational maps
G.n/ Ü Pn inducing a pseudoisomorphism G.n/ Ü X .n/ . As we shall see, up to
automorphism of Pn , there are exactly 2nC2 distinct such birational maps, parametrized
by the 2nC2 linear copies of Pm contained in Z.n/ . In order to state this precisely,
we need to recall some facts about Z.n/ (see Section 2 and references therein).

The set Fm.Z.n// of m–planes in Z.n/ has cardinality 2nC2 . For each iD1; : : : ; nC3,
consider the involution �i W Z

.n/ ! Z.n/ switching the sign of the coordinate xi .
The group generated by these involutions is isomorphic to .Z=2Z/nC2 , and acts
on Fm.Z.n// freely and transitively. For every subset I � f1; : : : ; nC 3g, we set
�I WD

Q
i2I �i D

Q
j2Ic �j . For every M 2 Fm.Z.n// and I � f1; : : : ; nC 3g with

jI j � mC 1, we have dim.M \ �I .M// D m� jI j. Consider the incidence variety
I WD f.ŒL�; p/ 2G.n/ �Z.n/ j p 2 Lg and the associated diagram:

I
�

}}

e

!!

G.n/ Z.n/

We show that for every m–plane M 2 Fm.Z.n//, EM WD ��.e�.M// is the class
of a unique prime divisor on G.n/ , which we denote by the same symbol (see
Proposition 5.5).

Now we can state our main result. See Theorem 5.7 for more details, including explicit
descriptions of the linear systems on G.n/ defining the birational maps G.n/ Ü Pn .

1.5 Theorem (Theorem 5.7 and Corollary 5.8) Let M 2 Fm.Z.n//, in the nota-
tion above. Up to a unique permutation of the pi , there is a unique birational map
�M W G

.n/ Ü Pn , inducing a pseudoisomorphism G.n/ ÜX .n/ , with the following
properties:

� The image of EM under �M is Secm�1.C /, the .m�1/st secant variety of the
unique rational normal curve C through p1; : : : ; pnC3 in Pn .

� The map �M contracts E�i .M/ to the point pi 2 Pn .
� For each I � f1; : : : ; nC 3g of even cardinality jI j � n, the image of E�I .M/

under �M is the join of hpi ii2I and Secs�1.C /, where s D 1
2
.n� jI j/.

Moreover, any pseudoisomorphism between G.n/ and any blow-up zX of Pn at nC 3
points is of this form. In particular, zX ŠX .n/ .
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As immediate corollaries of Theorem 1.5, we obtain the following:

1.6 Corollary Let P1;P2 � Pn be subsets of nC 3 distinct points and let XPi
be

the blow-up of Pn along Pi for i D 1; 2. Assume that the points in P1 are in general
linear position. Then the following are equivalent:

(i) XP1
ŠXP2

.

(ii) XP1
and XP2

are pseudoisomorphic.

(iii) P1 and P2 are projectively equivalent (as unordered sets).

1.7 Corollary Let Si D f.�i1 W 1/; : : : ; .�
i
nC3 W 1/g � P1 for i D 1; 2 be subsets of

nC 3 distinct points. For each i 2 f1; 2g, let ZSi
� PnC2 be the smooth complete

intersection of the two quadrics

Q1 W

nC3X
jD1

x2j D 0 and Qi2 W

nC3X
jD1

�ijx
2
j D 0;

and let GSi
be the variety of .m�1/–planes contained in ZSi

. Then the following are
equivalent:

(i) GS1
ŠGS2

.

(ii) GS1
and GS2

are pseudoisomorphic.

(iii) S1 and S2 are projectively equivalent (as unordered sets).

Notice that Corollary 1.6 is a classical result, originally due to Coble (see Dolgachev and
Ortland [14]). See also Biswas, Holla and Kumar [4] for a result related to Corollary 1.7,
in terms of moduli spaces of rank 2 parabolic vector bundles on P1 .

To prove Theorem 1.5, we determine the nef cone of G.n/ explicitly, and then compare
it with the Mori chamber decomposition of the effective cone of X .n/ described by
Mukai [23]. This decomposition encodes the nef cones of all varieties pseudoisomorphic
to X .n/ . In order to determine the cone of effective curves and the nef cone of G.n/ ,
we generalize to arbitrary dimension a construction of Borcea [6] in dimension nD 4.
We define isomorphisms

H 2n�2.G.n/;Z/
˛
�!Hn.Z.n/;Z/

ˇ
�!H 2.G.n/;Z/

such that ˇ.M/ D EM and ˛�1.M/ is the class of a line on the dual m–plane
M � �G.n/ for every M 2 Fm.Z.n//. These isomorphisms are dual with respect to
the intersection products, ie x � ˇ.y/ D ˛.x/ � y for every x 2H 2n�2.G.n/;Z/ and
y 2 Hn.Z.n/;Z/. They allow us to describe explicitly special cones of curves and
divisors on G.n/ :
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1.8 Theorem (Theorem 5.1 and Proposition 5.5) Let E �Hn.Z;R/ be the polyhe-
dral cone generated by the classes fM gM2Fm.Z/ , and denote by E_ �Hn.Z;R/ its
dual cone. Then E_ � E , and the cones of nef and effective divisors of G.n/ and their
dual cones of effective and moving curves satisfy

Nef.G.n//D ˇ.E_/� ˇ.E/D Eff.G.n//;

Mov1.G.n//D ˛�1.E_/� ˛�1.E/D NE.G.n//:

We give a geometric description of the extremal rays and facets of these cones, and the
associated contractions in Section 6. In Proposition 6.6 and its following subsection, we
also describe the cone Mov1.G.n// of movable divisors of G.n/ , and give a geometric
description of the curves corresponding to its facets.

We end this paper by determining the automorphism group of the Fano variety G.n/ ,
generalizing the description of the automorphism group of a quartic del Pezzo surface in
Section 1.1. In what follows, we write W.DnC3/ for the Weyl group of automorphisms
of a DnC3–lattice, and we denote by the same symbol the involution of G.n/ induced
by the involution �i of Z.n/ .

1.9 Proposition (Proposition 7.1) There is an inclusion of groups

Aut.G.n// ,!W.DnC3/Š .Z=2Z/
nC2 ÌSnC3;

whose image contains the normal subgroup .Z=2Z/nC2 generated by the involutions
�i of G.n/ .

Moreover, if the points .�1 W 1/; : : : ; .�nC3 W 1/ 2 P1 are general, then Aut.G.n//Š
.Z=2Z/nC2 .

This paper is organized as follows. Section 2 is dedicated to smooth complete intersec-
tions Z � PnC2 for nD 2m of two quadric hypersurfaces in even-dimensional projec-
tive spaces. In particular, we investigate the set Fm.Z/ of m–planes in Z , and the cone
it spans in Hn.Z;R/. In Section 3, we address the Fano variety G of .m�1/–planes
in Z . We construct the isomorphisms H 2n�2.G;Z/ ˛

�!Hn.Z;Z/
ˇ
�!H 2.G;Z/,

and determine some extremal rays of the cone of effective curves of G . In Section 4, we
consider the blow-up X of Pn at nC 3 points in general linear position. We describe
the Mori chamber decomposition of Eff.X/, following Mukai [23] and Bauer [3].
From this we can write the nef cone of G in terms of a natural basis for N 1.X/. In
Section 5, we put together the results from the previous sections to prove Theorem 1.5.
In Section 6, we study cones of curves and divisors in G , giving a geometric description
of their facets and extremal rays. In Section 7, we describe the automorphism group of
the Fano variety G .
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Notation and conventions We always work over the field C of complex numbers.

Given a subvariety Z � Pn and a nonnegative integer d < n, we denote by Fd .Z/
the closed subset of the Grassmannian Gr.d;Pn/ parametrizing d –planes contained
in Z .

Acknowledgements We thank Ana-Maria Castravet, Alex Massarenti, Elisa Post-
inghel and the referee for useful comments and discussions.

Araujo was partially supported by CNPq and Faperj Research Fellowships and an ICTP
Simons Associateship. This work started during Araujo’s visit to Università di Torino;
the authors are grateful to INdAM (Istituto Nazionale di Alta Matematica) for the
support for this visit.

2 Smooth complete intersections of two quadrics

In this section we describe the geometry of smooth complete intersections of two
quadric hypersurfaces in even dimensional complex projective spaces. Many of the
results are well known and can be found in Reid [25, Chapter 3] or Borcea [6, Section 1],
to which we refer for details and proofs. See also the recent paper by Dolgachev and
Duncan [13] for a study of these complete intersections over a field of characteristic 2.

Let n D 2m � 2 be an even integer, and let Z D Q1 \Q2 � PnC2 be a smooth
complete intersection of two quadric hypersurfaces. Up to a projective transformation
of PnC2 , we can assume that the quadrics have equations

(2.1) Q1 W

nC3X
iD1

x2i D 0; Q2 W

nC3X
iD1

�ix
2
i D 0;

with �i ¤ �j if i ¤ j . Thus Z is determined by nC 3 distinct points

.�1 W 1/; : : : ; .�nC3 W 1/ 2 P1:

Acting on these points by permutations and projective automorphisms of P1 yields
projectively isomorphic varieties Z � PnC2 .

2.2 (involutions and double covers) For each i D 1; : : : ; nC3, let �i W Z!Z be the
involution switching the sign of the coordinate xi . Then �1; : : : ; �nC3 commute and
have the unique relation �1 � � � �nC3D IdZ , so they generate a subgroup W 0 of Aut.Z/
isomorphic to .Z=2Z/nC2 . For every subset I �f1; : : : ; nC3g, we set �I WD

Q
i2I �i .

Notice that �I D �Ic .
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For each i D 1; : : : ; nC3, the projection from the i th coordinate point in PnC2 yields
a double cover �i W Z!Qn , where Qn�PnC1 is the smooth quadric having equationP
j¤i .�j � �i /x

2
j D 0 for projective coordinates .x1 W � � � W Oxi W � � � W xnC3/ in PnC1 .

The involution associated to this double cover is �i .

2.3 (the set of m–planes in Z ) Consider the set Fm.Z/ of m–planes in Z . It is a
finite set with cardinality 2nC2 . The group W 0 generated by the involutions �i acts
on Fm.Z/ freely and transitively.

For every M 2 Fm.Z/ and I � f1; : : : ; nC 3g with jI j �mC 1, we have

(2.4) dim.M \ �I .M//Dm� jI j:

2.5 For each i D 1; : : : ; nC 3, the double cover �i W Z!Qn induces a map

Fm.Z/! Fm.Qn/:

Recall that Fm.Qn/ has two connected components T ' and T  , and that two
m–planes ƒ;ƒ0 � Qn belong to the same connected component if and only if
dim.ƒ\ƒ0/ � m mod 2 (see for instance Reid [25, Theorem 1.2(b)] or Harris [17,
Theorem 22.14]).

Let M 2 Fm.Z/. We have �i .�i .M// D �i .M/. On the other hand, if j is in
f1; : : : ; nC 3g X fig, then M and �j .M/ intersect in codimension one, by (2.4), and
the same holds for �i .M/ and �i .�j .M//. Therefore �i .M/ and �i .�j .M// belong
to different connected components of Fm.Qn/. In general, if I � f1; : : : ; nC 3g does
not contain i , then �i .M/ and �i .�I .M// belong to the same connected component
of Fm.Qn/ if and only if jI j is even. This shows that the image of Fm.Z/ in Fm.Qn/
consists of 2nC1 points, half in each connected component.

2.6 (the cohomology group Hn.Z;Z/) The cohomology group Hn.Z;Z/ is iso-
morphic to ZnC4 , and is generated over Z by the classes of the m–planes in Z .
Moreover Hn.Z;Z/ is a unimodular lattice with respect to the intersection form.

For every M 2 Fm.Z/ we denote by the same symbol M the corresponding funda-
mental class in Hn.Z;Z/. We denote by � 2Hn.Z;Z/ the class of a codimension-m
linear section of Z � PnC2 , so that

�2 D 4 and � �M D 1 for every M 2 Fm.Z/:

The sublattice �? (namely the primitive part Hn.Z;Z/0 ) is a DnC3–lattice. We
denote by W.DnC3/ its Weyl group of automorphisms, which is generated by the
reflections in the roots of �? . It is the full group of automorphisms of the triple
.Hn.Z;Z/; � ; �/, and it is isomorphic to .Z=2Z/nC2 ÌSnC3 .
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The group W 0 Š .Z=2Z/nC2 generated by the involutions �i acts naturally and
faithfully on Hn.Z;Z/. We still denote by �I the involution of Hn.Z;Z/ induced
by �I W Z!Z . So we view W 0 as a subgroup of W.DnC3/. It is a normal subgroup
with quotient W.DnC3/=W 0 isomorphic to the symmetric group SnC3 .

For every M 2 Fm.Z/ and i; j 2 f1; : : : ; nC 3g with i ¤ j , we have

(2.7) �DM C �i .M/C �j .M/C �ij .M/:

2.8 Notation Fix M0 2 Fm.Z/. For every i D 1; : : : ; nC 3, we set Mi WD �i .M0/.
More generally, for every subset I � f1; : : : ; nC 3g, we set MI WD �I .M0/. Notice
again that MI DMIc . We also set

(2.9) "i WDM0CMi �
1
2
� 2Hn.Z;R/ for every i D 1; : : : ; nC 3:

Then f�; "1; : : : ; "nC3g is an orthogonal basis for Hn.Z;R/, which is useful for
computations. We have

(2.10) �2 D 4 and "2i D .�1/
m for every i D 1; : : : ; nC 3:

In particular, the intersection form on Hn.Z;R/ is positive definite when n� 0mod 4,
and has signature .1; nC 3/ when n� 2 mod 4. Notice that this basis depends on the
choice of M0 .

Let G0 � W.DnC3/ be the stabilizer of M0 . Then G0 Š SnC3 and G0 acts by
(the same) permutations both on fM1; : : : ;MnC3g and on f"1; : : : ; "nC3g. We have
W.DnC3/DW

0ÌG0 . Moreover, for every I � f1; : : : ; nC3g of even cardinality, we
have

(2.11) �I ."i /D

�
"i if i … I;
�"i if i 2 I:

Thus we see the usual action of W.DnC3/ on the linear span of "1; : : : ; "nC3 by
permutation and even sign changes of "1; : : : ; "nC3 (see for instance Humphreys [19,
Section 12.1]).

We collect some identities in Hn.Z;R/ that we will use in later computations.

MI D
1

4
�C

.�1/jI j

2

�X
j…I

"j �
X
i2I

"i

�
for every I � f1; : : : ; nC 3g;(2.12)

MI D
1

nC1

�
.nC 2� jI j/

�
1

2
��

X
i2I

Mi

�
C .jI j � 1/

X
j2I

c

Mj

�
(2.13)

for every I � f1; : : : ; nC 3g with even cardinality,
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"i D
1

2.nC1/
��

1

nC1

nC3X
jD1

Mj CMi for every i D 1; : : : ; nC 3:(2.14)

Our next goal is to describe the polyhedral cone E in Hn.Z;R/ generated by the classes
of m–planes in Z . As we shall see below, this is a cone over a .nC3/–dimensional
demihypercube. Before we start discussing the cone E , we gather some results about
demihypercubes.

2.15 (the demihypercube) Let N � 4 be an integer. Write .˛1; : : : ; ˛N / for co-
ordinates in RN . The vertices of the hypercube

�
�
1
2
; 1
2

�N
� RN are the points of

the form vI D ..vI /1; : : : ; .vI /N /, where I � f1; : : : ; N g, .vI /i D 1
2

if i 2 I , and
.vI /i D�

1
2

otherwise. The parity of the vertex vI is the parity of jI j. For each subset
I � f1; : : : ; N g, define the degree 1 polynomial in the ˛i

(2.16) HI WD
X
j…I

�
1
2
C j̨

�
C

X
i2I

�
1
2
�˛i

�
:

Notice that, for any two subsets I; J � f1; : : : ; N g,

(2.17) HI .vJ /D #.I XJ /C #.J X I /

is the graph distance of vI and vJ in the skeleton of the hypercube
�
�
1
2
; 1
2

�N .

The demihypercube is the polytope ��
�
�
1
2
; 1
2

�N generated by the odd vertices of
the hypercube. The polytope � has 2N�1C 2N facets (see for instance Green [15,
Lemma 2.3]). More precisely, the polytope � is defined in a minimal way by the set
of inequalities

(2.18) �D

�
�
1
2
� ˛i �

1
2
; i 2 f1; : : : ; N g;

HI � 1; jI j even.

Notice that the facets of � supported on the hyperplanes
�
˛i D˙

1
2

�
are isomorphic to

the .N�1/–dimensional demihypercube. In particular, they are not simplicial. On the
other hand, the facet supported on the hyperplane .HI D 1/ for jI j even is the .N�1/–
dimensional simplex generated by the N vertices of

�
�
1
2
; 1
2

�
N at graph distance 1

to vI .

The demihypercube can also be described as a weight polytope of the root system of
type DN ; see Green [16, Example 8.5.13].

Now we go back to Hn.Z;R/ and consider the convex rational polyhedral cone

E WD Cone.M/M2Fm.Z/ �H
n.Z;R/:

Geometry & Topology, Volume 21 (2017)



3018 Carolina Araujo and Cinzia Casagrande

It is the cone over the .nC3/–dimensional polytope

E0 D Conv.M/M2Fm.Z/

obtained by intersecting E with the affine hyperplane H WD f j  � �D 1g. Note that
the Weyl group W.DnC3/ preserves E , H and E0 .

We fix M02Fm.Z/ and consider the orthogonal basis f�; "1; : : : ; "nC3g for Hn.Z;R/
introduced in (2.9). Then 1

4
� 2 H and f"1; : : : ; "nC3g is a basis for �? , so that�

1
4
�; f"1; : : : ; "nC3g

�
induces affine coordinates

(2.19) .˛1; : : : ; ˛nC3/

on the hyperplane HŠRnC3 . With these coordinates, 1
4
� is identified with the origin

and, by (2.12), for every I � f1; : : : ; nC 3g with jI j even, MI is identified with vIc .
Thus the polytope E0 is identified with the demihypercube � described in Section 2.15,
and E with the cone over �.

2.20 Example (the surface case) When n D 2, Z � P4 is a smooth quartic del
Pezzo surface (see Section 1.1). The cone E �H 2.Z;R/, generated by the classes of
the 16 lines in Z , is the cone of effective curves of Z . In this case the polytope E0 is a
5–dimensional demihypercube, and coincides with the 5–dimensional Gosset polytope
(see Dolgachev [12, Sections 8.2.5 and 8.2.6]). In higher dimensions, demihypercubes
and Gosset polytopes are different polytopes.

Let us explicitly describe the facets of E , or equivalently the generators of the dual cone
E_ � Hn.Z;R/. Let .y; x1; : : : ; xnC3/ be the coordinates on Hn.Z;R/ Š RnC4

induced by the basis f�; "1; : : : ; "nC3g. It follows from (2.18) that the cone E is defined
in a minimal way by the set of inequalities

(2.21) E D

8<:
2yC xi � 0; i 2 f1; : : : ; nC 3g;

2y � xi � 0; i 2 f1; : : : ; nC 3g;

2.nC 1/yC
P
j…I

xj �
P
i2I

xi � 0; I � f1; : : : ; nC 3g even.

This is equivalent to saying that the dual cone E_�Hn.Z;R/ is the convex polyhedral
cone generated by the classes

(2.22)
�1
2
�C "i and 1

2
�� "i ; i 2 f1; : : : ; nC 3g;

1
2
.nC 1/�C .�1/m

P
j…I

"j � .�1/
m
P
i2I

"i ; I � f1; : : : ; nC 3g; jI j even.

2.23 Remark Using (2.7), (2.9) and (2.12), we can write the generators (2.22) of E_

in terms of � and the MI :
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8̂<̂
:
1
2
�C "i DM0CMi ;

1
2
�� "i DMj CMij for any j ¤ i;
1
2
.nC 1/�C .�1/m

P
j…I

"j � .�1/
m
P
i2I

"i D 2
��
1
2
.mC 1/

˘
�C .�1/mMI

�
:

Note in particular that E_ � E .

For I � f1; : : : ; nC 3g X fig, it follows from (2.10) and (2.12) that

(2.24)

�
1
2
�C "i

�
�MI D

�
1 if jI j �m mod 2;
0 otherwise,�

1
2
�� "i

�
�MI D

�
0 if jI j �m mod 2;
1 otherwise.

This describes the generators of the (nonsimplicial) facets of E , corresponding to the
extremal rays of E_ generated by 1

2
�˙ "i .

For each M 2 Fm.Z/, set

ıM WD
�
1
2
.mC 1/

˘
�C .�1/mM:

The facet of the cone E corresponding to the extremal ray of E_ generated by ıM is
simplicial, and given by

Cone.�i .M//i2f1;:::;nC3g:

Indeed, for I � f1; : : : ; nC 3g with jI j odd, one computes, using (2.12),

ıM � �I .M/D 1
2
.jI j � 1/:

Let .z; t1; : : : ; tnC3/ be the coordinates induced by the basis f�;M1; : : : ;MnC3g

on Hn.Z;R/. In the sequel we need equations for E_ in these coordinates. Let
I � f1; : : : ; nC 3g be such that jI j �m mod 2. Using (2.12), one computes�

z�C

nC3X
iD1

tiMi

�
�MI D 2zC .jI j �m/

nC3X
iD1

ti � 2
X
i2I

ti :

So we get the following:

2.25 Lemma An element z�C
PnC3
iD1 tiMi is in E_ if and only if

(2.26) 2zC .jI j �m/

nC3X
iD1

ti � 2
X
i2I

ti � 0

for every I � f1; : : : ; nC 3g such that jI j �m mod 2.
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We conclude this section with the following elementary description of the symmetry
group of the cone E :

2.27 Lemma Let f W Hn.Z;R/! Hn.Z;R/ be a linear map. The following are
equivalent:

(i) f .E/D E and f .x/ � �D x � � for every x 2Hn.Z;R/.

(ii) f .E_/D E_ and f .�/D �.

(iii) f 2W.DnC3/.

Proof The implications (iii)D) (i) and (iii)D) (ii) are clear.

We prove (i)D) (iii). Let f be an endomorphism of Hn.Z;R/ satisfying .i/. Then
f permutes the vertices of E0 , and hence f .Fm.Z//D Fm.Z/.

Recall Notation 2.8; let M02Fm.Z/. By Remark 2.23, ıM0
D
�
1
2
.mC1/

˘
�C.�1/mM0

generates an extremal ray of E_ , and the corresponding facet of E is simplicial, given
by

Cone.M1; : : : ;MnC3/:

Then f .Cone.M1; : : : ;MnC3// must be another simplicial facet of E , of the form

Cone.�1.MI /; : : : ; �nC3.MI //D �I .Cone.M1; : : : ;MnC3//

for some I �f1; : : : ; nC3g. By composing f with the involution �I 2W.DnC3/, we
may assume that f fixes the facet Cone.M1; : : : ;MnC3/ of E . In particular, f induces
a permutation on the set fM1; : : : ;MnC3g. Let ! 2W.DnC3/ be the element in the
stabilizer of M0 inducing the same permutation as f on the set fM1; : : : ;MnC3g.
Then, by composing f with !�1 , we may assume that f fixes each of M1; : : : ;MnC3 .

We also have f .Fm.Z/X fM1; : : : ;MnC3g/D Fm.Z/X fM1; : : : ;MnC3g, therefore
f must fix the point

v WD
X

M2Fm.Z/XfM1;:::;MnC3g

M:

Since ıM0
� v > 0, v is not contained in the linear span of M1; : : : ;MnC3 (see

Remark 2.23). This implies that f D IdHn.Z;R/ 2W.DnC3/.

Finally we prove (ii)D) (iii). Let f be an endomorphism of Hn.Z;R/ satisfying (ii).
Then the dual map g WD f t W Hn.Z;R/! Hn.Z;R/ satisfies (i), hence, by what
precedes, g2W.DnC3/. In particular g is orthogonal, and f DgtDg�12W.DnC3/.
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3 The Fano variety G of .m�1/–planes in Q1\Q2� P 2mC2

Let n D 2m � 2 be an even integer, and let Z D Q1 \Q2 � PnC2 be a smooth
complete intersection of two quadric hypersurfaces as in (2.1). In this section we
consider the variety G of .m�1/–planes in Z :

G WD Fm�1.Z/D fŒL� 2 Gr.m� 1;PnC2/ j L�Zg:

This is a smooth n–dimensional Fano variety that has been much studied. In particular,
it is known that Pic.G/ Š H 2.G;Z/ Š ZnC4 , N 1.G/ Š H 2.G;R/ and �KG is
the restriction of O.1/ on Gr.m � 1;PnC2/ (see Reid [25, Theorem 2.6], Borcea
[5, Theorem 4.1 and Remark 4.3] and Jiang [20, Proposition 3.2]). Moreover G is
rational, hence H 2n�2.G;Z/ is torsion-free (Artin and Mumford [2, Proposition 1])
and generated by fundamental classes of one-cycles (Soulé and Voisin [26, Lemma 1]).
Thus we also have H 2n�2.G;Z/Š ZnC4 and N1.G/ŠH 2n�2.G;R/.

For each M 2 Fm.Z/ we set

(3.1) M � WD fŒL� 2G j L�M g:

It is an m–plane in G (under the Plücker embedding). Let `M 2H 2n�2.G;Z/ be the
class of a line in M � . By (2.4), for every M; M 0 2 Fm.Z/ we have

M �\ .M 0/� ¤∅ () M 0 D �i .M/ for some i D 1; : : : ; nC 3;

and M �\ �i .M/� is the point ŒM \ �i .M/� 2G .

3.2 (the fibrations 'i and  i on G ) We define 2.nC3/ fibrations on G , generalizing
a construction by Borcea in the case nD 4 [6, Section 3]. For each i D 1; : : : ; nC 3,
the double cover �i W Z!Qn introduced in Section 2.2 induces a map

…i W G! Fm�1.Qn/:

Each .m�1/–plane in Qn is contained in exactly one m–plane of each of the two
families T ' and T  of m–planes in Qn (see for instance Harris [17, Theorem 22.14]).
This yields two morphisms

Fm�1.Qn/! T ' � Gr.m;PnC1/ and Fm�1.Qn/! T  � Gr.m;PnC1/:

By composing them with …i W G! Fm�1.Qn/, we get two distinct morphisms

x'i ; x i W G! Gr.m;PnC1/

such that x'i .G/� T ' and x i .G/� T  . Let

G
'i
�!Y'i

! x'i .G/ and G
 i
�!Y i

! x i .G/

be the Stein factorizations of x'i and x i , respectively.
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3.3 Lemma The morphism 'i W G! Y'i
has general fiber P1 , and has exactly 2n

singular fibers, each isomorphic to a union of two copies of Pm meeting transversally
at one point. More precisely, the singular fibers of 'i are of the form M �[ �i .M/� ,
with M 2 Fm.Z/ such that Œ�i .M/� 2 T ' . An analogous statement holds for  i .

As a consequence, the cone NE.'i / is the convex cone generated by the classes `M for
M 2 Fm.Z/ such that Œ�i .M/� 2 T ' , and similarly for NE. i /.

Proof For simplicity we assume in the proof that m� 2 and n� 4, the case nD 2
being classical.

Let Œƒ� 2 T ' � Gr.m;PnC1/, and let ƒ0 � PnC2 be the .mC1/–plane through the
i th coordinate point that projects onto ƒ� PnC1 . Then ƒ0 is contained in a singular
quadric of the pencil of quadrics through Z , so that ƒ0 \Z D ƒ0 \Q1 is an m–
dimensional quadric in ƒ0 . Hence Œƒ� 2 x'i .G/ if and only if ƒ0 \Z contains an
.m�1/–plane. This happens if and only if the quadric ƒ0\Z has rank at most 4.

If the m–dimensional quadric ƒ0\Z has rank 4, then it is the join of an .m�3/–plane
with a smooth quadric surface Š P1 �P1 . So it contains two distinct 1–dimensional
families of .m�1/–planes, each parametrized by P1 . Therefore x'�1i .Œƒ�/ is the
disjoint union of two copies of P1 , and this yields two smooth fibers of 'i , each
isomorphic to P1 .

If ƒ0\Z has rank 3, then it is the join of an .m�2/–plane with a plane conic. So it
contains a one-dimensional family of .m�1/–planes, parametrized by the conic. Thus
in this case x'�1i .Œƒ�/red Š P1 , and this yields a fiber of 'i with reduced structure
isomorphic to P1 .

If ƒ0\Z has rank 2, then it is the union of two m–planes intersecting in codimension
one, both projecting onto ƒ. Thus there exists M 2 Fm.Z/ such that ƒD �i .M/,
ƒ0\Z DM [�i .M/ and x'�1i .Œƒ�/DM �[�i .M/� . It follows from (2.4) that M �

and �i .M/� intersect in one point.

Finally, if ƒ0\Z has rank 1, then set-theoretically we should have ƒ0\Z DM for
some M 2 Fm.Z/, and hence x'�1i .Œ�i .M/�/DM � , which is impossible because we
have already seen that x'�1i .Œ�i .M/�/DM �[ �i .M/� .

Now set

U WD Y'i
X
˚
'i .M

�
[ �i .M/�/ jM 2 Fm.Z/ and Œ�i .M/� 2 T '

	
:

We have shown that 'i has one-dimensional fibers over U , and since G is Fano, 'i is
a conic bundle over U . A general singular fiber should be reduced with two irreducible
components. Since there are no such fibers, 'i is smooth over U .
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In Section 6.5 we will characterize the varieties Y'i
and Y i

.

Fix M0 2 Fm.Z/ such that Œ�i .M0/� 2 T
 , and follow Notation 2.8. It follows from

Section 2.5 that, for every I � f1; : : : ; nC 3g such that i … I ,

Œ�i .MI /� 2

�
T ' if jI j is odd,
T  if jI j is even.

So we get the following corollary of Lemma 3.3:

3.4 Corollary We have

NE.'i /D Cone.`MI
/jI jodd; i…I and NE. i /D Cone.`MI

/jI jeven; i…I :

The general fiber of 'i has class `Mj
C`Mij

for j ¤ i , and the general fiber of  i has
class `M0

C `Mi
.

3.5 (the isomorphisms between H 2n�2.G;Z/, Hn.Z;Z/ and H 2.G;Z/) Recall
that, by Poincaré duality, the intersection product gives a perfect pairing

H 2.G;Z/�H 2n�2.G;Z/! Z:

We will define natural isomorphisms H 2n�2.G;Z/ Š Hn.Z;Z/ and H 2.G;Z/ Š
Hn.Z;Z/, which behave well with respect to the intersection products. This construc-
tion is due to Borcea in the case nD 4 [6, Section 2]. Throughout this section, we use
the same notation as in Section 2.

Consider the incidence variety

I WD f.ŒL�; p/ 2G �Z j p 2 Lg

and the associated diagram:
I

�

��

e

��

G Z

The morphism � is a Pm�1–bundle, hence I is smooth, irreducible, of dimension 3m�
1D 3

2
n� 1. Consider the morphisms given by pull-backs and Gysin homomorphisms

˛ WDe� ı�
�
W H 2n�2.G;Z/

��
�!H 2n�2.I;Z/ e��!Hn.Z;Z/;

ˇ WD�� ı e
�
W Hn.Z;Z/

e�
�!Hn.I;Z/ ���!H 2.G;Z/;

so that we have

(3.6) H 2n�2.G;Z/ ˛
�!Hn.Z;Z/

ˇ
�!H 2.G;Z/:
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Note that ˛.`M /DM for every M 2 Fm.Z/. We set EM WD ˇ.M/ 2H 2.G;Z/ for
every M 2 Fm.Z/.

3.7 Proposition [6, Proposition 2.2] Both ˛ and ˇ are isomorphisms, and they are
dual to each other with respect to the intersection products. Namely,

x �ˇ.y/D ˛.x/ �y for every x 2H 2n�2.G;Z/ and y 2Hn.Z;Z/:

Proof Since ˛.`M /DM and the classes fM gM2Fm.Z/ generate Hn.Z;Z/, the ho-
momorphism ˛ is surjective. Then ˛ must be an isomorphism, because H 2n�2.G;Z/
and Hn.Z;Z/ are free of the same rank.

It follows from properties of Poincaré duality that ˛t D .e� ı��/t D .��/t ı .e�/t D
�� ı e

� D ˇ , so ˛ is the transpose homomorphism of ˇ . It follows that ˇ must be an
isomorphism too.

3.8 Corollary We have ˇ.�/D�KG .

Proof Using Proposition 3.7, for every M 2 Fm.Z/ we have

1D � �M D � �˛.`M /D ˇ.�/ � `M D�KG � `M :

Since ˛ is an isomorphism, and the classes fM gM2Fm.Z/ generate Hn.Z;Z/, the
classes f`M gM2Fm.Z/ generate H 2n�2.G;Z/. This yields the statement.

Consider the involution �I W Z!Z for I � f1; : : : ; nC 3g defined in Section 2.2. It
induces an involution of G , which we denote by the same symbol,

�I W G!G; ŒL� 7! Œ�I .L/�:

Therefore the group W 0 Š .Z=2Z/nC2 generated by the involutions �i acts on G ,
H 2.G;Z/ and H 2n�2.G;Z/. It also acts on the incidence variety I in such a way
that both morphisms � and e are W 0–equivariant. It follows that the isomorphisms ˛
and ˇ are W 0–equivariant.

3.9 Proposition For every M 2 Fm.Z/, `M generates an extremal ray of NE.G/.

Proof Fix M0 2Fm.Z/ and i 2 f1; : : : ; nC3g such that Œ�i .M0/� 2 T
 , and follow

Notation 2.8. By Corollary 3.4, we have

˛.NE.'i //D Cone.MI /jI jodd; i…I and ˛.NE. i //D Cone.MI /jI jeven; i…I :

By (2.24), these are facets of the cone E � Hn.Z;R/, whose extremal rays are
generated by the classes M D ˛.`M / contained in these facets. Thus, for every
M 2Fm.Z/ the class `M generates an extremal ray of either NE.'i / or NE. i /, and
hence of NE.G/.
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4 The blow-up X of P n at nC 3 points

Let n � 3 be an integer. Unless otherwise stated, in this section we do not assume
that n is even. Let P D fp1; : : : ; pnC3g � Pn be a set of distinct points in general
linear position, and denote by C the unique rational normal curve in Pn through
these points. Let X DXP be the blow-up of Pn at p1; : : : ; pnC3 . Notice that acting
on P D fp1; : : : ; pnC3g by permutations and projective automorphisms of Pn yields
isomorphic varieties XP . The variety X and its birational geometry have been widely
studied. We refer the reader to Dolgachev [10], Bauer [3], Mukai [21; 23], Castravet and
Tevelev [9], Araujo and Massarenti [1] and Brambilla, Dumitrescu and Postinghel [7].

We have Pic.X/ŠH 2.X;Z/ and N 1.X/ŠH 2.X;R/. We denote by H the pullback
to X of the hyperplane class in Pn , and by Ei the exceptional divisor over the point pi
(as well as its class in H 2.X;Z/).

4.1 (special subvarieties of X ) Given a subset I � f1; : : : ; nC3g, with jI j D d � n,
and an integer 0� s � 1

2
.n� d/, we consider the join

Join.hpi ii2I ;Secs�1.C //� Pn:

(Here we write Seck.C / for the subvariety of Pn obtained as the closure of the
union of all k–planes spanned by kC 1 general points of C for k � 0; in particular
Sec0.C /D C . We also set Sec�1.C /D∅.)

This join has dimension equal to dC2s�1. We denote by JI;s�X the strict transform
of Join.hpi ii2I ;Secs�1.C //. When d C 2s D n (so that jI cj D nC 3� 3D 2sC 3
is odd) we denote the divisor JI;s and its class in H 2.X;Z/ by EI ; in particular, for
nD 2m even, E∅D J∅;m is the strict transform of Secm�1.C /. For I D figc , we set
EI D Ei . For every I � f1; : : : ; nC 3g with jI cj D 2sC 3 odd and s � 0, we have
the following identity in H 2.X;Z/:

(4.2) EI D .sC 1/H � .sC 1/
X
i2I

Ei � s
X
j…I

Ej :

By Castravet and Tevelev [9, Theorem 1.2], each EI generates an extremal ray of
Eff.X/, and all extremal rays are of this form. Moreover, by [9, Theorem 1.3] and
Mukai [23], X is a Mori dream space (MDS for short). We refer to Hu and Keel [18]
for the definition and basic properties of MDSs. Here we only recall an important
feature of a MDS, the Mori chamber decomposition of its effective cone.

4.3 (the Mori chamber decomposition) Let Y be a projective, normal and Q–factorial
MDS. The effective cone Eff.Y / admits a fan structure, called Mori chamber decom-
position and denoted by MCD.Y /, which can be described as follows (see Hu and
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Keel [18, Proposition 1.11(2)] and Okawa [24, Section 2.2]). There are finitely many
birational contractions (ie birational maps whose inverses do not contract any divisor)
from Y to projective, normal and Q–factorial MDSs, denoted by gi W Y Ü Yi . The
set Exc.gi / of classes of exceptional prime divisors of gi has cardinality �.Y /��.Yi /.
The maximal cones Ci of the fan MCD.Y / are of the form:

Ci D Cone
�
g�i .Nef.Yi //;Exc.gi /

�
:

By abuse of notation, we often write Nef.Yi /� Eff.Y / for g�i .Nef.Yi //� Eff.Y /. If
Exc.gi /D∅, then we say that gi W Y Ü Yi is a small Q–factorial modification of Y .
The movable cone Mov.Y / of Y is the union

Mov.Y /D
[

Exc.gi /D∅

Ci :

An arbitrary cone � 2MCD.Y / is of the form

� D Cone
�
f �.Nef.W //; E

�
;

where f W Y ÜW is a dominant rational map to a normal projective variety, which
factors as Y giÜ Yi

fi
�!W for some i , where fi W Yi ! W is the contraction of an

extremal face of Nef.Yi /, and E � Exc.gi /.

Given an effective divisor D on Y , its class in N 1.Y / lies in the relative interior of
some cone in MCD.Y /, say Cone

�
f �.Nef.W //; E

�
. The map f W Y ÜW coincides

with the map 'jmDj for m� 1 divisible enough. In this case, we write YD for the
variety W .

Now we go back to X . Our next goal is to describe the Mori chamber decomposition
of Eff.X/, following Mukai [23] and Bauer [3] (see also Araujo and Massarenti [1,
Section 3]).

Let us consider the coordinates .y; x1; : : : ; xnC3/ in H 2.X;R/ induced by the basis
.H;E1; : : : ; EnC3/, and consider the affine hyperplane

HD
�
.nC 1/yC

X
xi D 1

�
�H 2.X;R/:

It contains all the generators EI of Eff.X/ described above, as well as 1
4
.�KX /.

We now observe that the convex hull of the EI in H is a demihypercube. To see this,
we need suitable coordinates in H . For i D 1; : : : ; nC 3, set

(4.4) z"i WD
1

2

�
H �

X
j¤i

Ej CEi

�
:
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Then fz"1; : : : ; z"nC3g is a basis for the linear subspace ..nC 1/yC
P
xi D 0/, so that�

1
4
.�KX /; fz"1; : : : ; z"nC3g

�
induces affine coordinates .˛1; : : : ; ˛nC3/ in HŠRnC3 .

The radial projection

H 2.X;R/X
�
.nC 1/yC

X
xi D 0

�
!H

is given in coordinates by

(4.5) ˛i D
yC xi

.nC 1/yC
P
xi
�
1

2
for i D 1; : : : ; nC 3:

In the coordinates ˛i , 14.�KX / is identified with the origin, and EI with vIc , with
the notation introduced in Section 2.15. Thus Eff.X/ \ H is identified with the
demihypercube ��RnC3 described in Section 2.15,

�D

�
�
1
2
� ˛i �

1
2
; i 2 f1; : : : ; N g;

HI � 1; jI j even.

Recall the degree 1 polynomials HI introduced in (2.16), and consider the hyperplane
arrangement

(4.6) .HI D k/I�f1;:::;nC3g; k2N; 2�k�.nC3/=2; jI j6�k mod2 :

It defines a subdivision of � in polytopes, and a fan structure on Eff.X/, given by
the cones over these polytopes. By Mukai [23] and Bauer [3], this fan coincides with
MCD.X/. Moreover, one has the following description of the wall crossings (see [23,
Propositions 2 and 3] and also [3, Section 2]):

(1) The intersection of Mov.X/ with the hyperplane H is given by

�Mov DMov.X/\HD
�
�
1
2
� ˛i �

1
2
; i 2 f1; : : : ; nC 3g;

HI � 2; jI j odd.

(2) All small Q–factorial modifications of X are smooth.

(3) Let C be a maximal cone of MCD.X/, contained in Mov.X/, corresponding to a
small Q–factorial modification zX of X. Let � � @C be a wall such that � � @Mov.X/,
and let f W zX ! Y be the corresponding elementary contraction. Then � \H��Mov

is supported on a hyperplane of one of the following forms:

(a)
�
˛i D�

1
2

�
or
�
˛i D

1
2

�
.

(b) .HI D 2/, with jI j odd.

In case (a), f W zX ! Y is a P1–bundle. In case (b), f W zX ! Y is the blow-up of
a smooth point, and the exceptional divisor of f is the strict transform in zX of the
divisor EIc �X .
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(4) Let C and C0 be two maximal cones of MCD.X/, contained in Mov.X/ and
having a common facet. Let f W X Ü zX and f 0W X Ü zX 0 be the corresponding
small Q–factorial modifications of X . The intersections of these cones with H are
separated in � by a hyperplane of the form .HI D k/, with 3 � k � 1

2
.nC 3/ and

jI j 6� k mod 2. Suppose that C \H � .HI � k/ and C0 \H � .HI � k/. Then the
birational map f 0 ıf �1W zX Ü zX 0 flips a Pk�2 into a PnC1�k .

4.7 Remark It is possible to give a more precise description of the flipping locus
Pk�2 � zX (or PnC1�k � zX 0 ) in the situation described under (4) above (see [3,
Proposition 2.6(iv) and Theorem 2.9]): Consider the nef cone of X and its section
with H ,

�Nef D Nef.X/\HD
�
Hfig � 2; i 2 f1; : : : ; nC 3g;

Hfi;j g � 3; i; j 2 f1; : : : ; nC 3g; i ¤ j:

Suppose that �Nef � .HI � k/. Then the Pk�2 � zX flipped by f 0 ıf �1 is the strict
transform in zX of the special variety JI;s �X , where s D 1

2
.k� jI j � 1/� 0.

Suppose that �Nef � .HI � k/. Then the PnC1�k � zX 0 flipped by f ı .f 0/�1 is the
strict transform in zX 0 of the special variety JIc ;s0 �X , where s0D 1

2
.jI j�k�1/� 0.

4.8 Remark Recall from Section 2.15 the description of the facets of �. Each of
the 2.nC 3/ facets of � supported on the hyperplanes

�
˛i D˙

1
2

�
intersects �Mov

along a facet, while the other facets of �, supported on the hyperplanes .HI D 1/ for
jI j even, are disjoint from �Mov . Let us describe the rational maps associated to the
facets of �Mov supported on the hyperplanes

�
˛i D˙

1
2

�
.

Fix i 2 f1; : : : ; nC 3g and let Pi � Pn�1 be the image of the set P X fpig under the
projection �pi

W Pn Ü Pn�1 from pi . Let Y D .XPi
/n�1 be the blow-up of Pn�1

at the nC 2 points in Pi .

There is a small Q–factorial modification X Ü Xi and a P1–bundle Xi ! Y

extending �pi
(see [23, Example 1]). Let �i W X Ü Y be the composite map. The

general fiber of �i is the strict transform in X of a general line in Pn through pi .
The hyperplane .�i /�H 2.Y;R/ has equation y C xi D 0. Using (4.5), we see that
.�i /

�H 2.Y;R/\H is the hyperplane
�
˛i D�

1
2

�
. Thus the cone .�i /� Eff.Y / is the

cone over the polytope �\
�
˛iD�

1
2

�
, which is an .nC2/–dimensional demihypercube.

Similarly, there is a map � 0i W X Ü Y whose general fiber is the strict transform in
X of a general rational normal curve through the points p� for � ¤ i . Indeed, fix
j ¤ i and let 'W Pn Ü Pn be the standard Cremona transformation centered at the
points p� for � ¤ i; j . This map sends rational normal curves through the points
p� for � ¤ i to lines through '.pj /. There is an automorphism of Pn fixing p�
for � ¤ i; j , sending pj to '.pi / and sending pi to '.pj / (see Remark 7.2). By
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composing ' with the projection from '.pj /, we obtain a rational map � 0pi
W Pn Ü Y

whose general fiber is a general rational normal curve through the points p� for �¤ i .
This yields a P1–bundle X 0i ! Y on a small Q–factorial modification of X , and the
desired map � 0i W X Ü Y . As before, one checks that .�i /� Eff.Y / is the cone over
the demihypercube �\

�
˛i D

1
2

�
.

The center of the polytopes �Mov and � is the origin x0 2RnC3 , which corresponds
to 1

4
.�KX /. In particular, the divisor �KX is movable. We want to describe the Fano

model XnFano WDX�KX
.

If n is odd, then x0 is a vertex in the subdivision of � and is contained in the intersection
of the hyperplanes �

HI D
1
2
.nC 3/

�
jI j6�.nC3/=2 mod2 :

Thus �KX lies in a one-dimensional cone of the fan MCD.X/, contained in the interior
of Mov.X/. Therefore XnFano is non-Q–factorial and has Picard number 1.

For the remainder of this section, we assume that nD 2m� 2 is even. Then x0 lies in
the interior of a maximal polytope in the subdivision of �Mov , namely the polytope
defined by

(4.9) �Fano D .HI �mC 1/jI j�m mod2 :

Then XnFano is a small Q–factorial modification of X , it is a smooth Fano manifold,
and Nef.XnFano/� Eff.X/ is the cone over the polytope �Fano .

4.10 Remark By Theorem 1.4, when P is the image of f.�1 W1/; : : : ; .�nC3 W1/g�P1

under a Veronese embedding P1 ,! Pn , X is pseudoisomorphic to the Fano variety
G addressed in Section 3. This implies that XnFano is isomorphic to G .

4.11 Using the properties of MDSs, and the description of MCD.X/ above, we can
deduce many properties of XnFano :

� The Mori cone NE.XnFano/ admits exactly 2nC2 extremal rays, whose corre-
sponding contractions all contract a Pm to a point.

� The variety XnFano admits 2.nC3/ distinct (nontrivial) contractions of fiber type.
Indeed, the points in @�Mov\�Fano are those of the form ˛ D .˛1; : : : ; ˛nC3/,
where ˛i D�12 or 1

2
for some fixed i , and j̨ D 0 for j ¤ i . These points all

lie in @�. We denote the corresponding contractions by �i and �0i , respectively.

4.12 Lemma The morphisms �i and �0i are generic P1–bundles over .XPi
/n�1Fano ,

where Pi � Pn�1 is as in Remark 4.8. The general fiber of �i is the strict transform in
XnFano of a general line in Pn through pi . The general fiber of �0i is the strict transform
in XnFano of a general rational normal curve in Pn through P X fpig.
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Proof Let ˛ D .˛1; : : : ; ˛nC3/, where ˛i D�12 and j̨ D 0 for j ¤ i , and consider
the corresponding fibration �i W XnFano!XD , where D is an effective divisor such that
R�0ŒD�\HD ˛ .

Consider the map �i W X Ü Y WD .XPi
/n�1 introduced in Remark 4.8, and recall that

.�i /
� Eff.Y / is the cone over the .nC2/–dimensional demihypercube �\

�
˛i D�

1
2

�
.

The center of this demihypercube is ˛ , hence D is a positive multiple of .�i /�.�KY /.
So the image XD of �i is precisely the Fano model .XPi

/n�1Fano of Y .

A similar argument shows the statement for �0i .

4.13 Let .z; t1; : : : ; tnC3/ be new coordinates in H 2.X;R/, induced by the basis
f�KX ; E1; : : : ; EnC3g. These are related to .y; x1; : : : ; xnC3/ by y D z.nC 1/ and
xi D ti�.n�1/z . Using the defining inequalities for �Fano in (4.9), and the expression
for the radial projection onto H in (4.5), we conclude that Nef.XnFano/�H

2.X;R/ is
defined by the inequalities

(4.14) 2zC .jI j �m/

nC3X
iD1

ti � 2
X
i2I

ti � 0

for every I � f1; : : : ; nC 3g such that jI j �m mod 2.

4.15 We end this section by describing the birational map X ÜXnFano . First notice
that to go from the interior of the polytope �Nef D Nef.X/ \H to the interior of
the polytope �Fano D Nef.XnFano/\H , we must cross the wall .HI D k/ for every
I � f1; : : : ; nC 3g and 3� k �mC 1 such that jI j 6� k mod 2 and jI j � k� 1. By
Remark 4.7 and [3, Theorem 2.9], we conclude that the rational map X Ü XnFano
factors as

X DX0
'1
// X1

'2
// X2 // � � �

'm�1
// Xm�1 DX

n
Fano;

where each 'i W Xi�1ÜXi flips the strict transforms in Xi�1 of all special subvarieties
JI;s � X of dimension i . These strict transforms are disjoint in Xi�1 and each
isomorphic to P i . The flipped locus on Xi is a disjoint union of copies of Pn�1�i ,
one for each JI;s of dimension i . Notice that in general the map 'i is not the flip of a
small contraction: it is a pseudoisomorphism that can be factored as a sequence of flips.

In particular, we can describe the 2nC2 copies of Pm in XnFano corresponding to
the 2nC2 extremal rays of NE.XnFano/. These are the strict transforms of the special
subvarieties JI;s �X of dimension m, and the flipped locus of the flips of the strict
transforms of the special subvarieties JI;s � X of dimension m � 1. These are,
respectively,
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mC1X
dD0

d 6�m mod 2

�nC3
d

�
for m–dimensional JI;s ,

mX
dD0

d�m mod 2

�nC3
d

�
for .m�1/–dimensional JI;s .

We can also describe the strict transforms in XnFano of the divisors Pn�1 Š Ei � X
under the rational map X ÜXnFano . There are nC3 special points q1; : : : ; qnC3�Ei :
qj is the intersection of Ei with the strict transform of the line through pi and pj
when j ¤ i , and qi is the intersection of Ei with the strict transform of C . The points
qi all lie in a rational normal curve C 0 of degree n� 1 in Ei Š Pn�1 . Given a subset
I � f1; : : : ; nC3g, with jI j � n�1, and an integer 0� s � 1

2
.n�1�jI j/, we denote

by J iI;s the join Join.hqj ij2I ;Secs�1.C 0//�Ei . One can check that

Ei \JI;s D

8̂<̂
:
J i
IXfig;s

if i 2 I;
∅ if i … I and s D 0;
J i
I[fig;s�1

if i … I and s � 1:

Therefore, the strict transform of Ei under '1 is the blow-up of Pn�1 at the points
q1; : : : ; qnC3 . For 2� j �m�1, the restriction of 'j to the strict transform of Ei in
Xj�1 flips the strict transforms of every J iI;s of dimension j � 1.

4.16 When n D 4, the birational map '1W X D X0 Ü X1 D X4Fano flips Jfij g;0
(strict transform of the line pipj � P4 ) for 1� i; j � 7, and J∅;1 (strict transform of
C � P4 ); this yields 22 among the 64 special copies of P2 in X4Fano , corresponding
to the 64 extremal rays of NE.X4Fano/. The remaining ones are the strict transforms of
the 7 surfaces Join.hpi i; C / and of the 35 planes hpi ; pj ; phi in P4 .

Notice in particular that Ei �X does not contain any special subvariety JI;s , while
the strict transform of Ei in X4Fano contains 7 special copies of P2 , namely the flipped
loci of the flips of Jfij g;0 for j ¤ i and of J∅;1 .

5 Pseudoisomorphisms between G and X

Let m be a positive integer, and set nD 2m. Fix nC 3 distinct points

.�1 W 1/; : : : ; .�nC3 W 1/ 2 P1;

and let p1; : : : ; pnC3 2 Pn be their images under a Veronese embedding P1 ,! Pn .
Let Z , G and X be the varieties introduced in Sections 2, 3 and 4. We follow the
notation introduced in those sections. In this section we determine the nef cone of G ,
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and then we prove Theorem 1.5, which follows from Theorem 5.7 and Corollary 5.8.
Our aim is to identify the line bundles on G whose linear systems define rational maps
G Ü Pn inducing a pseudoisomorphism G ÜX . This is achieved by combining
the description of Nef.G/�H 2.G;R/ given by Theorem 5.1 and the description of
Nef.XnFano/�H

2.X;R/ in terms of the basis f�KX ; E1; : : : ; EnC3g for H 2.X;R/,
which was obtained from the Mori chamber decomposition of Eff.X/ in Section 4.

We first describe the cones Nef.G/ and NE.G/. For nD 4, this was proved by Borcea
[6, Theorem 4.3].

5.1 Theorem Let the notation be as above. Then

NE.G/D Cone.`M /M2Fm.G/ D ˛
�1.E/ and Nef.G/D ˇ.E_/:

Proof By Proposition 3.9, the class `M generates an extremal ray of NE.G/ for
every M 2 Fm.G/. This yields 2nC2 distinct extremal rays of NE.G/. On the other
hand, G ŠXFano by Remark 4.10, and NE.XFano/ has precisely 2nC2 extremal rays,
as explained in Section 4.11. So we have

NE.G/D Cone.`M /M2Fm.G/ D ˛
�1.E/:

The equality Nef.G/D ˇ.E_/ follows from the duality between Nef.G/ and NE.G/
and from Proposition 3.7.

Similarly, we will show in Proposition 5.5 that Eff.G/ D ˇ.E/ and Mov1.G/ D
˛�1.E_/. So the cones NE.G/ and Eff.G/ are isomorphic under ˇ ı˛ , and the same
holds for Mov1.G/ and Nef.G/.

Recall from Section 3 that EM D ˇ.M/ 2H 2.G;Z/ for every M 2Fm.Z/. For each
M 2 Fm.Z/, consider the linear map

hM W H
2.X;R/!H 2.G;R/

defined by

hM .�KX /D�KG and hM .Ei /DE�i .M/ for every i D 1; : : : ; nC 3:

One can check that hM respects the integral points, namely that it is induced by
an isomorphism H 2.X;Z/ ! H 2.G;Z/, and that h�I .M/ D �I ı hM for every
I � f1; : : : ; nC 3g.

We also set

(5.2) QhM WD ˇ
�1
ı hM W H

2.X;R/!Hn.Z;R/;

so that QhM .�KX /D � and QhM .Ei /D �i .M/ for every i D 1; : : : ; nC 3.
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5.3 Lemma For every M 2 Fm.Z/ and I � f1; : : : ; nC 3g of even cardinality, we
have

hM .EI /DE�I .M/; hM .Eff.X//D ˇ.E/; hM .Nef.XFano//D Nef.G/:

Proof Let I � f1; : : : ; nC 3g be such that jI j D n� 2s is even with s � 0. We can
rewrite (4.2) as

EI D
1

nC1

�
.sC 1/.�KX /� 2.sC 1/

X
i2I

Ei C .n� 1� 2s/
X
j2I

c

Ej

�
:

It follows from (2.13) that QhM .EI /D �I .M/, and hence hM .EI /D E�I .M/ . This
implies that hM .Eff.X//D ˇ.E/.

By comparing (4.14) and (2.26), we see that QhM .Nef.XnFano// D E_ . Therefore
hM .Nef.XnFano//D ˇ.E

_/D Nef.G/ by Theorem 5.1.

5.4 Proposition Let �W G ÜX be a pseudoisomorphism, and consider the induced
linear map

��W H 2.X;R/!H 2.G;R/:

Then, up to a unique permutation of E1; : : : ; EnC3�X , there is a unique M 2Fm.Z/
such that �� D hM .

Proof We have ��.�KX /D�KG , and hence ��.Nef.XnFano//D Nef.G/.

Recall Notation 2.8; fix M02Fm.Z/. Consider ��ı.hM0
/�1W H 2.G;R/!H 2.G;R/.

By Lemma 5.3, this map fixes �KG and sends Nef.G/ to itself. Using the iso-
morphism ˇW Hn.Z;R/ ! H 2.G;R/ and Theorem 5.1, we obtain a linear map
f W Hn.Z;R/!Hn.Z;R/ such that f .�/D � and f .E_/D E_ :

H 2.X;R/
hM0

xx

��

&&

H 2.G;R/
��ı.hM0

/�1

// H 2.G;R/

Hn.Z;R/

ˇ

OO

f
// Hn.Z;R/

ˇ

OO

By Lemma 2.27, we have f 2W.DnC3/.

Consider the stabilizer G0 �W.DnC3/ of M0 , and recall that W.DnC3/DW 0 ÌG0
and G0 Š SnC3 . Thus there are uniquely defined ! 2 G0 , �I 2 W 0 and � 2 SnC3
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such that f D �I ı ! and !.Mi / DM�.i/ for every i D 1; : : : ; nC 3. Since ˇ is
W 0–equivariant, this means that

��.Ei /D ˇ.f .Mi //D ˇ.��.i/.MI //D ��.i/.ˇ.MI //D ��.i/.EMI
/

for every i D 1; : : : ; nC 3. Apply the permutation ��1 to E1; : : : ; EnC3 �X . After
this reordering, we get f D �I 2W 0 and �� D �I ı hM0

D hMI
.

From now on we order the divisors E1; : : : ; EnC3�X , and correspondingly the points
p1; : : : ; pnC3 2 Pn , as in Proposition 5.4. At this point we can determine the cone of
effective divisors and the cone of moving curves of G .

5.5 Proposition For every M 2 Fm.Z/, there is a unique effective divisor in G with
class EM 2H 2.G;Z/. This is a fixed prime divisor, which we still denote by EM �G .
We have

Eff.G/D ˇ.E/D Cone.EM /M2Fm.Z/ and Mov1.G/D ˛�1.E_/:

Proof By Theorem 1.4, there exists a pseudoisomorphism �W GÜX . By Proposition
5.4 there exists M 2 Fm.Z/ such that �� D hM . In particular, for every I �

f1; : : : ; n C 3g with jI j even, we have ��.EI / D E�I .M/ by Lemma 5.3. Thus
the strict transform in G of EI � X is a fixed prime divisor, and it is the unique
effective divisor with class E�I .M/ . It also follows from Lemma 5.3 that

Eff.G/D �� Eff.X/D ˇ.E/D Cone.EM /M2Fm.Z/:

The equality Mov1.G/D ˛�1.E_/ follows from the duality Mov1.G/D Eff.G/_ and
from Proposition 3.7.

For each M 2 Fm.Z/, we set

(5.6) HM WD hM .H/D
1

nC1

�
�KG C .n� 1/

nC3X
iD1

E�i .M/

�
Dm.�KG/� .n� 1/EM 2H

2.G;Z/;

where the last equality follows from (2.13) (taking M DM0 and I D∅), using the
isomorphism ˇW Hn.Z;R/!H 2.G;R/.

5.7 Theorem For every M 2 Fm.Z/, the divisor class HM is movable, and its
complete linear system defines a birational map

�M W G Ü Pn;

Geometry & Topology, Volume 21 (2017)



On the Fano variety of linear spaces contained in two odd-dimensional quadrics 3035

with exceptional divisors E�1.M/; : : : ; E�nC3.M/ , inducing a pseudoisomorphism

�M W G ÜX

whose induced map ��M W H
2.X;R/!H 2.G;R/ coincides with hM .

For every I � f1; : : : ; nC 3g, ��I .M/ D �M ı �I and ��I .M/ D �M ı �I .

Proof By Theorem 1.4, there exists a pseudoisomorphism �W G ÜX. Let the map
�W G Ü Pn be the composition of � with the blow-up morphism X ! Pn .

By Proposition 5.4, there exists M0 2 Fm.Z/ such that �� D hM0
. This implies

that ��.OPn.1// D HM0
. Hence the class HM0

is movable, and H 0.G;HM0
/ Š

H 0.Pn;OPn.1//. This proves the first statement for M DM0 , with �M0
D � and

�M0
D � .

Let I � f1; : : : ; nC 3g. We use Notation 2.8. The automorphism �I W G! G fixes
�KG and maps EM0

to EMI
, hence it maps HM0

to HMI
. This yields the first

statement for M DMI , with �MI
D � ı �I and �MI

D � ı �I .

The last statement is clear.

5.8 Corollary Let zX be any blow-up of Pn at nC3 points. If zX is pseudoisomorphic
to G , then zX is isomorphic to X .

Proof Let z�W G Ü zX be a pseudoisomorphism, and let z�W G Ü Pn be the compo-
sition of z� with the blow-up morphism zX! Pn . Then z� has nC3 exceptional prime
divisors, whose classes must generate a simplicial facet of Eff.G/. By Proposition 5.5
and the description of the facets of E in Remark 2.23, every simplicial facet of Eff.G/
is generated by E�1.M/; : : : ; E�nC3.M/ for some M 2 Fm.Z/. Since each E�i .M/ is
unique in its linear system, z�W GÜ Pn and �M W GÜ Pn have the same exceptional
divisors. This means that z� and �M coincide up to a projective transformation of Pn ,
and therefore zX ŠX .

5.9 Remark (comparing the intersection product in Hn.Z;Z/ with Dolgachev’s
pairing on H 2.X;Z/) In [10], Dolgachev defined a nondegenerate symmetric bilinear
form . ; / on H 2.X;Z/, by imposing that the basis H;E1; : : : ; EnC3 is orthogonal,

.H;H/D n� 1 and .Ei ; Ei /D�1 for all i D 1; : : : ; nC 3:

This pairing has signature .1; n C 3/, and .�KX ;�KX / D 4.n � 1/. Consider
z"i 2H

2.X;R/, defined in (4.4),

z"i WD
1

2

�
H �

X
j¤i

Ej CEi

�
for i D 1; : : : ; nC 3:
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Then we have

.�KX ; z"i /D 0 and .z"i ; z"j /D�ıij for every i; j D 1; : : : ; nC 3;

thus �KX ; z"1; : : : ; z"nC3 is another orthogonal basis for H 2.X;R/.

Fix M0 2 Fm.Z/, and consider the orthogonal basis �; "1; : : : ; "nC3 for Hn.Z;R/
introduced in (2.9). Recall that �2 D 4 and "2i D .�1/

m for every i D 1; : : : ; nC 3.
Consider the isomorphism introduced in (5.2),

QhM0
W H 2.X;R/!Hn.Z;R/:

From (5.6) and (2.14) we have QhM0
.z"i /D "i for every i D 1; : : : ; nC3. Therefore QhM0

maps an orthogonal basis for Dolgachev’s pairing in H 2.X;R/ to an orthogonal basis
for the intersection product in Hn.Z;R/. In particular, QhM0

sends the DnC3–lattice
.�KX /

?�H 2.X;Z/ to the DnC3–lattice �?�Hn.Z;Z/, and the restriction of QhM0

to these lattices is an isometry up to the sign .�1/m�1 . (Notice that QhM0
is globally

an isometry if and only if nD 2.) This also shows that QhM0
is W.DnC3/–equivariant.

6 Cones of curves and divisors in G

Let the setup be as in Section 5. Recall that in Section 4 we considered the cones

Nef.XnFano/�Mov1.X/� Eff.X/�H 2.X;R/;

the affine hyperplane H�H 2.X;R/ containing all the EI , and the polytopes given
by the intersections of these cones with H ,

�Fano ��Mov ���HŠRnC3:

From the linear inequalities defining these polytopes in RnC3 and the expression
(4.5) of the radial projection onto H , one can write explicitly the linear inequalities
defining the cones Nef.XnFano/ Š Nef.G/, Mov1.X/ Š Mov1.G/ and Eff.X/ Š
Eff.G/ with respect to the basis H;E1; : : : ; EnC3 of H 2.X;R/. Inequalities defining
Mov1.X/ and Eff.X/ were obtained in a different way by Brambilla, Dumitrescu and
Postinghel [7]. In this section, we reinterpret the facets and extremal rays of these
cones in terms of special divisors and curves in G .

Recall from Section 2 that E �Hn.Z;R/ is the cone over the demihypercube � with
vertices fM gM2Fm.Z/ . Its dual cone E_ � E has 2.nC 3/C 2nC2 extremal rays,
generated by the classes˚
M C �i .M/ jM 2 Fm.Z/; i 2 f1; : : : ; nC 3g

	
[
˚
ıM D

�
1
2
.mC 1/

˘
�C .�1/mM

	
M2Fm.Z/

:
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For a fixed i 2 f1; : : : ; nC 3g, there are two distinct classes M C �i .M/ as M varies
in Fm.Z/, and they form an orbit for the action of W 0 on Hn.Z;Z/. The stabilizer
of this orbit is the subgroup Gi WD f�I j i … I and jI j is eveng. The group W 0 acts
transitively and freely on the set fıM gM2Fm.Z/ . The facet of E corresponding to each
extremal ray of E_ was described in Remark 2.23:

– .M C �i .M//? \ E is the cone over the .nC2/–dimensional demihypercube
with vertices

˚
�I .M/ j I � f1; : : : ; nC 3g X fig; jI j 6�m mod 2

	
.

– .ıM /
?\E is a simplicial cone generated by the classes �i .M/, i 2f1; : : : ; nC3g.

Now we turn to cones of curves and divisors in G . We showed in Theorem 5.1 and
Proposition 5.5 that

Nef.G/D ˇ.E_/� ˇ.E/D Eff.G/;

Mov1.G/D ˛�1.E_/� ˛�1.E/D NE.G/:

We give a geometric description of the facets and extremal rays of these cones in terms
of special divisors and curves in G .

6.1 (Eff.G/) The cone Eff.G/ has 2nC2 extremal rays, generated by the classes
fEM gM2Fm.Z/ . Each EM is a fixed prime divisor. The group W 0 � Aut.G/ acts
transitively and freely on the set fEM gM2Fm.Z/ . In particular, all these divisors are
isomorphic, and they can be described as a small modification of the blow-up of Pn�1

at nC 3 points contained in a rational normal curve (see Section 4.15 for a precise
description).

6.2 (the divisor EM when n D 4) Set n D 4; in this case EM is isomorphic to
the blow-up of P3 at 7 points contained in a rational normal curve. To describe
geometrically EM inside G , consider the closed subset

fŒL� 2G j L\M ¤∅g:

Then this locus is not equidimensional, and EM is its unique divisorial component.

Indeed, let us consider again the incidence diagram

I
�

��

e

��

G Z

as in 3.5, so that dim ID5, � is a P1–bundle and fŒL�2G jL\M ¤∅gD�.e�1.M//.
For the purposes of this subsection only, it is better to denote by ŒM � 2H 4.Z;Z/ the
fundamental class of the plane M �Z .
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It is not difficult to see that e is flat, so that e�1.M/ is equidimensional of dimension 3,
and e�.ŒM �/D Œe�1.M/� 2H 4.I;Z/. Then ˇ.ŒM�/D ��e

�.ŒM �/D Œ��.e
�1.M//�.

By Proposition 5.5, we have EM D ��.e�1.M//, so that EM is the unique divisorial
component of �.e�1.M//.

Now let us consider the planes M �; �1.M/�; : : : ; �7.M/� �G (see (3.1)); they are
all contained in �.e�1.M//.

Let i 2 f1; : : : ; 7g. Recall that `�i .M/� �i .M/� is a line and that `�i .M/D˛.�i .M//.
By Proposition 3.7, using for instance (2.12), we have

EM � `�i .M/ DM � �i .M/D�1;

so that �i .M/� � EM . On the other hand EM contains only 7 planes .M 0/� (see
Section 4.16), therefore M � cannot be contained in EM . This shows that M � is a
2–dimensional irreducible component of �.e�1.M//.

6.3 (NE.G/) The cone NE.G/ has 2nC2 extremal rays, generated by the classes
f`M gM2Fm.Z/ , on which W 0 � Aut.G/ acts transitively. The contraction of the
extremal ray generated by `M contracts M � Š Pm to a point.

Fix M 2Fm.Z/ and consider the pseudoisomorphism �M W GÜX from Theorem 5.7.
This fixes an identification of G with XnFano , which identifies each divisor E�I .M/�G

with the strict transform of the divisor EI �X . Let I � f1; : : : ; nC 3g be such that
jI j �mC 1. It follows from the discussion in Section 4.15 that

– If jI j 6� m mod 2, then .�I .M//� � G is the strict transform of JI;s � X ,
where s D 1

2
.mC 1� jI j/.

– If jI j � m mod 2, then .�I .M//� � G is the flipped locus of the flip of the
strict transform of JI;s �X , where s D 1

2
.m� jI j/.

In particular, we see that .M 0/� � EM if and only if M 0 D �I .M/ for some
I � f1; : : : ; nC 3g with jI j �m� 1 and jI j 6�m mod 2.

6.4 (Nef.G/) The cone Nef.G/ has 2nC2C 2.nC 3/ extremal rays, generated by
the classes

fDM D ˇ.ıM /gM2Fm.Z/[
˚
EM CE�i .M/ jM 2 Fm.Z/; i D 1; : : : ; nC 3

	
:

For fixed i , the morphisms associated to the extremal rays generated by EM CE�i .M/

and E�j .M/ C E�ij .M/ for j ¤ i are the generic P1–bundles 'i W G ! Y'i
and

 i W G! Y i
described in Lemma 3.3. The morphism associated to the extremal ray

generated by DM is the composition of the (disjoint) small contractions of �i .M/��G

to a point for i D 1; : : : ; nC 3.
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6.5 (Mov1.G/) The cone Mov1.G/ has 2.nC 3/C 2nC2 extremal rays, generated
by the curve classes

f`M C `�i .M/ jM 2 Fm.Z/; i D 1; : : : ; nC 3g[ fdM jM 2 Fm.Z/g;

where
dM WD ˛

�1.ıM /D
�
1
2
.mC 1/

˘
˛�1.�/C .�1/m`M 2N1.G/:

For a fixed i 2f1; : : : ; nC3g, there are two distinct classes `MC`�i .M/ as M varies in
Fm.Z/, and they form an orbit for the action of W 0 on N1.G/. By Corollary 3.4, these
are the classes of the fibers of the generic P1–bundles 'i W G! Y'i

and  i W G! Y i
.

Under the identification G Š XnFano induced by a pseudoisomorphism G Ü X ,
these correspond to the generic P1–bundles �i ; �0i W X

n
Fano! .XPi

/n�1Fano described in
Lemma 4.12. In particular, we see that Y'i

Š Y i
Š .XPi

/n�1Fano .

As for the class dM , using Proposition 3.7 and Remark 2.23, one computes

�KG � dM D � � ıM D nC 1;

E�i .M/ � dM D �i .M/ � ıM D 0 for every i D 1; : : : ; nC 3:

Therefore dM is the class of the strict transform in G of a general line in Pn under
the map �M W G Ü Pn .

In order to complete the picture, next we describe equations for the movable cone
Mov1.G/ �H 2.G;R/ and give a geometric description of the extremal rays of the
dual cone Mov1.G/_ � N1.G/. We do this for n � 4, since when n D 2 we have
Mov1.G/D Nef.G/ and Mov1.G/_ D NE.G/.

6.6 Proposition Suppose n� 4. The cone Mov1.G/_�N1.G/ has 2nC2C2.nC3/
extremal rays, generated by the classes

feM jM 2 Fm.Z/g[ f`M C `�i .M/ jM 2 Fm.Z/; i D 1; : : : ; nC 3g;

where eM WD
�
1
2
.m/

˘
˛�1.�/C .�1/m�1`M .

Proof Recall from Section 4 that the intersection of Mov1.X/ with the affine hyper-
plane H�H 2.X;R/ is given by

�Mov D

�
�
1
2
� ˛i �

1
2
; i 2 f1; : : : ; nC 3g;

HI � 2; jI j odd.

So Mov1.G/D ˇ.M/, where M is the cone over �Mov , now viewed as a polytope
in the hyperplane f j  � �D 1g �Hn.Z;R/.
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Notice that the facet .HI D 2/\�Mov of �Mov is the convex hull of the vertices vJ
such that #.I XJ /C#.J XI /D 2. This follows from (2.17). In the same way as done
in Section 2 for E , one can use the linear inequalities defining �Mov to compute the
linear inequalities defining M, or equivalently the generators of the dual cone M_ .
These are˚

M C �i .M/ jM 2 Fm.Z/; i 2 f1; : : : ; nC 3g
	
[f�M gM2Fm.Z/;

where �M D
�
m
2

˘
�C .�1/m�1M (notice that eM D ˛.�M /). Indeed, one can check

using (2.12) that

(6.7) �M � �ij .M/D 0 for all i ¤ j:

By the duality properties of ˛ and ˇ , we have Mov1.G/_D ˛�1.M_/, and the result
follows.

6.8 The classes `M C `�i .M/ were described in Section 6.5 above. Now we want to
describe the classes eM .

Given M 2Fm.Z/ and i 2 f1; : : : ; nC3g, set M0D �i .M/, and follow Notation 2.8,
so that M DMi . Consider the pseudoisomorphism �M0

W G ÜX from Theorem 5.7,
and note that the divisor EM � G is the strict transform of the divisor Ei � X
under �M0

. By (6.7) above, we have that

EMj
� eM D 0 for all j ¤ i:

Similarly one computes that EM � eM D�1. We conclude that eM is the class of the
strict transform under ��1M0

of a general line in Ei Š Pn�1 .

6.9 Remark Set c WD ˛�1.�/ 2N1.G/. We have

�KG � c D 4 and EM � c D 1 for every M 2 Fm.Z/:

The class c is fixed by the action of W.DnC3/ and sits in the interior of the cone
Mov1.G/� NE.G/. Let M 2 Fm.Z/ and consider the rational map �M W G Ü Pn

from Theorem 5.7. Then c is the class of the strict transform via ��1M of an elliptic
curve of degree nC 1 in Pn through p1; : : : ; pnC3 . There is a 4–dimensional family
of such curves (see Dolgachev [11]).

6.10 Remark Brambilla, Dumitrescu and Postinghel [7] describe the effective cone
Eff1.X/�H 2.X;R/ by 3 sets of linear inequalities .An/, .Bn/ and .Cn;t /. Similarly,
the movable cone Mov1.X/�H 2.X;R/ is described by 3 sets of linear inequalities
.An/, .Bn/ and .Dn;t / (see [7, Theorems 5.1 and 5.3]). These are related to the
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extremal rays of Mov1.G/ and Mov1.G/_ described in Section 6.5 and 6.8 as follows.
A divisor class D 2H 2.G;R/ satisfies the inequalities .An/ and .Bn/ if and only if

D � .`M C `�i .M//� 0 for every M 2 Fm.Z/ and i D 1; : : : ; nC 3:

It satisfies the inequalities .Cn;t / if and only if

D � dM � 0 for every M 2 Fm.Z/:

Finally, it satisfies the inequalities .Dn;t / if and only if

D � eM � 0 for every M 2 Fm.Z/:

6.11 (MCD.G/) Consider the subdivision in polytopes of the demihypercube ��
H � Hn.Z;R/ given by the hyperplane arrangement (4.6). By taking the cones
over these polytopes and using the isomorphism ˇW Hn.Z;R/ ! H 2.G;R/, this
subdivision yields the fan MCD.G/.

Fix M0 2 Fm.Z/ and consider the orthogonal basis "1; : : : ; "nC3 of �? �Hn.Z;R/
introduced in (2.9) and the affine coordinates ˛1; : : : ; ˛nC3 in the hyperplane H WD
f j  � �D 1g described in (2.19). The group W 0 fixes H and �, thus it acts linearly
in the coordinates ˛i . More precisely it follows from (2.11) that, if I � f1; : : : ; nC3g
has even cardinality, then �I .˛1; : : : ; ˛nC3/D .˛01; : : : ; ˛

0
nC3/ with

˛0i D

�
˛i if i … I;
�˛i if i 2 I:

The group W 0 fixes both � and �Mov , while the 2nC2 polytopes �I .�Nef/ are all
distinct. The corresponding cones in MCD.G/ are ��MI

.Nef.X//D ��I .�
�
M0
.Nef.X//.

7 The automorphism group of G

Let the setup be as in Section 5. In this section we describe the automorphism group
of the Fano variety G , generalizing the description of the automorphism group of a
quartic del Pezzo surface in Section 1.1.

7.1 Proposition There are inclusion of groups

.Z=2Z/nC2 ŠW 0 � Aut.G/�W.DnC3/Š .Z=2Z/nC2 ÌSnC3:

Moreover, if the points .�1 W 1/; : : : ; .�nC3 W 1/2P1 are general, then Aut.G/DW 0Š
.Z=2Z/nC2 .

Notice that in the general case we also have Aut.Z/DW 0 (see Reid [25, Lemma 3.1]),
so that Z and G have the same automorphism group.
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Proof Clearly we have W 0 � Aut.G/.

For any � 2Aut.G/, the induced isomorphism ��W H 2.G;R/!H 2.G;R/ preserves
�KG and Eff.G/. As in the proof of Proposition 5.4, one shows that �� 2W.DnC3/.
This yields a group homomorphism

Aut.G/!W.DnC3/:

Fix M0 2 Fm.Z/. Consider the stabilizer G0 of M0 in W.DnC3/, and recall that
W.DnC3/DW

0ÌG0 Š .Z=2Z/nC2ÌSnC3 . So, given � 2Aut.G/, there are unique
elements ! 2G0 and �I 2W 0 such that ��D! ı�I . Set Q� WD �I ı� 2Aut.G/. Then
Q�� D �� ı �I D ! , so Q�� fixes EM0

, and hence it also fixes HM0
.

Consider the rational map �M0
W G Ü Pn induced by HM0

, which contracts the
divisors EM1

; : : : ; EMnC3
to the points p1; : : : ; pnC3 (see Theorem 5.7). Then

Q��.��M0
.OPn.1///D ��M0

.OPn.1//DHM0
, so �M0

and �M0
ı Q� differ by a projective

transformation f 2 Aut.Pn/ preserving the set of points fp1; : : : ; pnC3g:

G
Q�
//

�M0

��

G

�M0

��

Pn
f
// Pn

In particular, if the points p1; : : : ; pnC3 are general, then f D IdPn , and so � D �I .

Suppose that ��D IdH2.G;R/ . Then Q�D� and f must fix each pi . Since p1; : : : ; pnC3
are in general linear position, this implies that f D IdPn , and hence � D Q� D IdG .
This shows that the homomorphism Aut.G/! W.DnC3/ is injective, yielding the
statement.

Every automorphism of X is induced by a projective transformation of Pn preserving
the set fp1; : : : ; pnC3g. This in turns corresponds to a projective transformation of
P1 preserving the set of points f.�1 W 1/; : : : ; .�nC3 W 1/g � P1 . In particular, if
�1; : : : ; �nC3 are general, then Aut.X/D fIdXg.

For any projective variety Y , we denote by Bir0.Y / the group of pseudoautomorphisms
of Y . These are birational maps Y Ü Y which are isomorphisms in codimension
one.

Since X and G are pseudoisomorphic, we have Bir0.X/ Š Bir0.G/. On the other
hand, since G is a Fano manifold, we have Bir0.G/DAut.G/. Indeed if � 2Bir0.G/,
then ��.�KG/D�KG . Since � is an isomorphism in codimension one and �KG is
ample, � must be regular, and similarly for ��1 .
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7.2 Remark (explicit description of pseudoautomorphisms of X ) The action of W 0

on X by pseudoautomorphisms is described by Dolgachev in [11, Sections 4.4–4.6].
Up to a projective transformation, we may assume that p1; : : : ; pnC1 are the coordinate
points, pnC2 D .1 W � � � W 1/ and pnC3 D .a0 W � � � W anC3/. Since no nC1 of the points
lie on a hyperplane, all the aj are nonzero.

Consider the standard Cremona map centered at p1; : : : ; pnC1 ,

sW .z0 W � � � W zn/ 7!
�
1

z0
W � � � W

1

zn

�
:

It is regular at pnC2 and pnC3 , which map to itself and .1=a0 W � � � W 1=an/, respectively.
The projective transformation

r W .z0 W � � � W zn/ 7! .a0z0 W � � � W anzn/

fixes p1; : : : ; pnC1 , maps pnC2 to pnC3 , and maps .1=a0 W � � � W 1=an/ to pnC2 . So
the composition

fnC2;nC3 D r ı sW P
n Ü Pn

induces a pseudoautomorphism !nC2;nC3W X ÜX .

Similarly, for every i; j 2 f1; : : : ; n C 3g with i < j , we can define a birational
involution fij W Pn Ü Pn , which is not regular only at fp1; : : : ; pnC3g X fpi ; pj g
and exchanges pi and pj . This induces a pseudoautomorphism !ij W X ÜX .

One can check that !�ij acts on H 2.X;Z/ as follows:

!�ij .�KX /D�KX ; !�ij .Ei /DEj ; !�ij .Ej /DEi

!�ij .H/D nH � .n� 1/

� nC1X
hD1

Eh�Ei �Ej

�

!�ij .Er/DH �

nC3X
hD1

EhCEi CEj CEr

D
1

nC1
.�KX /�

2

nC1

nC3X
hD1

EhCEi CEj CEr for r ¤ i; j:

Consider the isomorphism QhM0
W H 2.X;R/! Hn.Z;R/ defined in (5.2), and the

corresponding action of !�ij on Hn.Z;R/. We have

!�ij .�/D � and !�ij ."r/D

�
�"r if r D i; j;
"r if r ¤ i; j:
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(The latter can be checked using (2.14).) Hence !�ij D �ij and !ij is the pseudoauto-
morphism of X induced by �ij 2W 0 . In particular, the pseudoautomorphism of X
induced by �1 2W 0 is !23!45 � � �!nC2;nC3 , and so on.
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Stable homology of surface diffeomorphism groups
made discrete

SAM NARIMAN

We answer affirmatively a question posed by Morita on homological stability of surface
diffeomorphisms made discrete. In particular, we prove that C1–diffeomorphisms
of surfaces as family of discrete groups exhibit homological stability. We show that
the stable homology of C1–diffeomorphisms of surfaces as discrete groups is the
same as homology of certain infinite loop space related to Haefliger’s classifying space
of foliations of codimension 2 . We use this infinite loop space to obtain new results
about (non)triviality of characteristic classes of flat surface bundles and codimension-2
foliations.

58D05, 57R32, 55P35, 55R40, 57R19, 57R32, 57R50; 57R20

0 Statements of the main results

This paper is a continuation of the project initiated in Nariman [33] on the homological
stability and the stable homology of discrete surface diffeomorphisms.

0.1 Homological stability for surface diffeomorphisms made discrete

To fix some notations, let †g;n denote a surface of genus g with n boundary com-
ponents and let Diffı.†g;n; @/ denote the discrete group of orientation-preserving
diffeomorphisms of †g;n that are supported away from the boundary.

The starting point of this paper is a question posed by Morita [32, Problem 12.2] about
an analogue of Harer stability for surface diffeomorphisms made discrete. In light of
the fact that all known cohomology classes of BDiffı.†g/ are stable with respect to g ,
Morita [32] asked:

Question Do the homology groups of BDiffı.†g/ stabilize with respect to g?

In order to prove homological stability for a family of groups, it is more convenient
to have a map between them. To define a map inducing homological stability, let
j W †g;1 ,!†gC1;1n@†gC1;1 be an embedding such that the complement of j .†g;1/

in †gC1;1n@†gC1;1 is diffeomorphic to the interior of †1;2 . By extending diffeo-
morphisms via the identity, this embedding induces a group homomorphism between
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diffeomorphism groups, sW Diffı.†g;1; @/! Diffı.†gC1;1; @/. Although the stabiliza-
tion map s depends on the embedding j , it is not hard to see that different choices
of embeddings induce the same map on the group homology (see [33, Theorem 2.5]
for more details); hence, by abuse of notation, we denote the induced map between
classifying spaces sW BDiffı.†g;1; @/! BDiffı.†gC1;1; @/ by the same letter. Our
first theorem affirmatively answers Morita’s question.

Theorem 0.1 The stabilization map

s�W Hk.BDiffı.†g;1; @/IZ/!Hk.BDiffı.†gC1;1; @/IZ/

induces an isomorphism as long as k � 1
3
.2g� 2/.

Remark 0.2 Bowden [3] proved stability for k � 3 if g � 8. Here, we give a proof
with the same stability range as that of the mapping class groups.

These homological stability results hold for surface diffeomorphisms with any or-
der of regularity, ie the stabilization map induces a homology isomorphism for C r –
diffeomorphisms of surfaces as r > 0. However, the remarkable theorem of Tsuboi
[45] implies that the classifying space of C 1 –diffeomorphisms with discrete topology,
BDiffı;1.†g;n; @/, is homology equivalent to the classifying space of the mapping
class group of †g;n . Hence, for regularity r D 1, the homological stability is already
implied by Harer stability [12] for mapping class groups.

It should be further noted that the proof of [33, Theorem 1.1], which is a similar
theorem for high-dimensional analogue of surfaces, does not carry over verbatim
to prove homological stability of surface diffeomorphisms. In proving homological
stability for a family of groups, one key step is to build a highly connected simplicial
complex on which the family acts. To prove the highly connectedness of the simplicial
complex used in [33, Theorem 1.1], it is essential to work in dimension higher than 5

so that certain surgery arguments work.

However, Randal-Williams [37] proved a homological stability theorem for moduli
spaces of surfaces equipped with a “tangential structure”. We use Thurston’s general-
ization [43] of Mather’s theorem in foliation theory and Randal-Williams’s theorem
[37, Theorem 7.1] to establish homological stability of Diffı.†g;1; @/. The advantage
of this high-powered approach is that it describes the limiting homology in terms of an
infinite loop space related to codimension-2 foliations.

0.2 Stable homology of Diffı.†g;n; @/

Analogously to [33, Theorem 1.2], we describe the stable homology of BDiffı.†g;n; @/

in terms of an infinite loop space related to the Haefliger category. Let us recall the
definition of the Haefliger classifying space of foliations.

Geometry & Topology, Volume 21 (2017)
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Definition 0.3 The Haefliger category �r
n is a topological category whose objects

are points in Rn with its usual topology and morphisms between two points, say x

and y , are germs of C r diffeomorphisms that send x to y . The space of morphisms
is equipped with the sheaf topology (see Section 1.2.1 for more details). If we do not
decorate the Haefliger category with r , we usually mean the space of morphisms has
the C1–regularity. By S�r

n , we mean the subcategory of �r
n with the same objects,

but the morphisms are germs of orientation-preserving diffeomorphisms (see Haefliger
[10] for more details).

The classifying space of the Haefliger category classifies Haefliger structures up to
concordance. The normal bundle to the Haefliger structure induces a map

�W BS�n! BGLCn .R/;

where GLCn .R/ is the group of real matrices with positive determinants.

Let 2 denote the tautological bundle over GLC
2
.R/. Recall that the Madsen–Tillmann

spectrum MTSO(2) is the Thom spectrum of the virtual bundle �2 over BGLC
2
.R/.

Let MT� denote the Thom spectrum of the virtual bundle ��.�2/ over BS�2 (see
Definition 2.2 for a more detailed description). We denote the basepoint component of
the infinite loop space associated to this spectrum by �1

0
MT� . As we shall explain in

Section 2.2, there exists a parametrized Pontryagin–Thom construction, which induces
a continuous map

˛W BDiffı.†g;n; @/!�10 MT�:

Our second theorem is an analogue of the Madsen–Weiss theorem [20] for discrete
surface diffeomorphisms.

Theorem 0.4 The map ˛ induces a homology isomorphism in the stable range of
Theorem 0.1.

For any topological group G , let Gı denote the same group with the discrete topol-
ogy. The identity map defines a continuous homomorphism Gı! G . Thus, for the
topological group Diff.†g;n; @/ with C1 topology, the identity induces a map

�W BDiffı.†g;n; @/! BDiff.†g;n; @/:

To study the effect of this map on cohomology in the stable range, we study the
following natural map between infinite loop spaces that is induced by � :

�1�W �10 MT�!�10 MTSO(2):

Geometry & Topology, Volume 21 (2017)
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Remark 0.5 In foliation theory, Mather and Thurston studied the homotopy fiber of �
(see Theorem 1.3), and they already translated understanding the homotopy fiber of � to
a homotopy-theoretic question about BS�2 . However, we pursue a different approach
by replacing BDiffı.†g;n; @/ and BDiff.†g;n; @/ with appropriate infinite loop spaces
to study � in the stable range. As we shall see in Sections 0.3 and 0.4, this approach is
much more amenable to actual calculations in the stable range instead of understanding
the homotopy fiber of �.

Theorem 0.6 The map �1� induces an injection on Fp –cohomology, ie

H k.�10 MTSO.2/IFp/ ,!H k.�10 MT�IFp/

for any k .

Corollary 0.7 The map � induces an injection

H k.BDiff.†g;n; @/IFp/ ,!H k.BDiffı.†g;n; @/IFp/

as long as k � 1
3
.2g� 2/.

Remark 0.8 Theorems 0.1, 0.4 and 0.6 in fact hold for C r –diffeomorphisms for
any r > 0. For applications in Section 0.3 and 0.4, we formulated the theorems for
C1–diffeomorphisms but in fact all of them hold for C r –diffeomorphisms while r > 1

and r ¤ 3. As we mentioned earlier, the case of Diffı;1.†g;n; @/ is an exception that
thanks to Tsuboi’s theorem [45] this group has the same homology of the mapping class
group of †g;n . The reason we also exclude r D3 is that for most of the applications, we
need the perfectness of the identity component Diffı;r

0
.†g;n; @/, which in the smooth

case is a consequence of Thurston’s work [43] and for r ¤ 3 is a consequence of
Mather’s work [21].

0.3 Applications to characteristic classes of flat surface bundles

The theory of characteristic classes of fiber bundles and foliated fiber bundles (ie fiber
bundle with a foliation transverse to the fibers) whose fibers are diffeomorphic to a C1–
manifold M is equivalent to understanding the cohomology groups H�.BDiff.M //

and H�.BDiffı.M //, respectively. The theory of characteristic classes of manifold
bundles and surface bundles in particular have been studied extensively (see Galatius
and Randal-Williams [8] and Morita [30]). Therefore, we have some understanding
of H�.BDiff.M // for certain classes of manifolds. For foliated (flat) manifold bun-
dles, however, there seems to be very little known about the existence of nontrivial
characteristic classes in H�.BDiffı.M //.

Geometry & Topology, Volume 21 (2017)
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The abstract results in Section 0.2 shed new light on the (non)triviality of characteristic
classes of flat surface bundles. They also provide a unified approach to previous
results of Kotschick and Morita [17] and Bowden [3]. We pursue the study of
H�.BSympı.†g// in light of these theorems elsewhere.

Morita [30] showed that finite index subgroups of mapping class group of surfaces
cannot be realized as subgroups of diffeomorphisms by showing that the Mumford–
Miller–Morita classes �i 2 H 2i.BDiff.†g/IQ/ for i > 2 get sent to zero via the
induced map

H�.BDiff.†g/IQ/!H�.BDiffı.†g/IQ/:

Unlike the cohomology with rational coefficients, Corollary 0.7 implies that all mono-
mials of the �i are nontorsion classes in H�.BDiffı.†g/IZ/.

Theorem 0.9 There is an injection

ZŒ�1; �2; : : : � ,!H k.BDiffı.†g/IZ/

as long as k � 1
3
.2g� 2/.

Remark 0.10 Not all nontorsion classes in H�.BDiffı.†g/IZ/ can be realized by an
element in Hom.H�.BDiffı.†g/IZ/IZ/. As BDiffı.†g/ is not a finite type space, the
universal coefficient theorem implies that the Ext term in H�.BDiffı.†g/IZ/ might
have nontorsion classes too. In particular, nontriviality of �i in H�.BDiffı.†g/IZ/
does not imply that there exists a flat surface bundle whose �i is nonzero. But in fact
one can use the method of Akita, Kawazumi and Uemura [1] to prove such flat surface
bundles exist.

Corollary 0.11 The group H2k�1.BDiffı.†g/IZ/ is not finitely generated as long as
k > 2 and k � 2

3
g .

Kotschick and Morita [16] constructed a flat surface bundle over a surface whose
signature is nonzero. Hence, they conclude that �1 , which is 3 times the signature of
the total space, is nonzero in H 2.BDiffı.†g/IQ/. We can use Theorem 0.4 to give a
homotopy-theoretic proof of their result in the stable range.

Theorem 0.12 (Morita and Kotschick) The image of �n
1

in H 2n.BDiffı.†g/IQ/ is
nonzero for all positive integer n provided that g � 3n.

To summarize the (non)vanishing results of MMM classes for flat surface bundles,
recall that the Bott vanishing theorem implies that �i vanishes in H 2i.BDiffı.†g/IQ/
for i > 2 and Theorem 0.12 implies that the first MMM class �1 does not vanish

Geometry & Topology, Volume 21 (2017)
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in H 2.BDiffı.†g/IQ/. Moreover, Theorem 0.9 implies that all �i are nontorsion
classes in H 2i.BDiffı.†g/IZ/. By Theorem 0.9 we know that �2 is nonzero in
H 4.BDiffı.†g/IZ/; however, we still do not know the answer to the following problem,
posed by Kotschick and Morita [16]:

Problem Determine whether the second MMM class �2 is nontrivial in the space
H 4.BDiffı.†g/IQ/.

We prove that this problem is equivalent to an open problem in foliation theory related
to the cube of the Euler class of the normal bundle of codimension-2 foliations; see
Hurder [14, Problem 15.4].

Theorem 0.13 The MMM class �2 in H 4.BDiffı.†g/IQ/ is nonzero for g > 6 if
and only if a C 2 –foliation F of codimension 2 on a 6–manifold exists such that
e.�.F//3 ¤ 0, where �.F/ is the normal bundle of the foliation F and e.�.F// is its
Euler class.

Remark 0.14 Using the universal coefficient theorem, Thom’s result on representing
cycles by manifolds and Thurston’s h–principle for foliations of codimension greater
than 2, one can show that proving the existence of a codimension-2 foliation F
with e.�.F//3 ¤ 0 is in fact equivalent to proving ��.e3/ 2H 6.BS�2IQ/ does not
vanish, where e 2H 2.BGLC

2
.R/IQ/ is the universal Euler class. We then show that

nonvanishing of �2 and ��.e3/ are equivalent.

Theorem 0.4 and well-known results about the continuous variation of foliations of
codimension 2 can be used to construct more nontrivial classes on flat surface bundles.
For example, Rasmussen [38] showed that the two Godbillon–Vey classes h1:c2 and
h1:c

2
1

in H 5.BS�2IR/ (see Bott [2, Section 10] for the definition of Godbillon–Vey
classes) continuously vary for families of foliations of codimension 2, ie the map

.h1c2
1 ; h1c2/W H5.BS�2IQ/� R2

induced by the evaluation of h1:c2 and h1:c
2
1

is surjective. We use this theorem of
Rasmussen to simplify the proof of Bowden’s theorem [3], which says, for all g , the
fiber integration of the two Godbillon–Vey classes h1:c2 and h1:c

2
1

induce a surjective
homomorphism

(0-15) H3.BDiffı.†g/IQ/� R2:

In the stable range though, we use Theorem 0.4 to prove a stronger result, that essentially
all secondary classes in H 3.BDiffı.†g/IR/ come from secondary classes of flat disk
bundles; more precisely:
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Theorem 0.16 Let R2 ,! †g be an embedding of an open disk in the surface †g .
For g � 6, the induced map

H3.BDiffıc.R
2/IQ/ �!H3.BDiffı.†g/IQ/

is surjective.

Using the surjectivity of (0-15) and the Hopf algebra structure on H�.�
1
0

MT�IQ/,
we construct discontinuous classes (see Morita [29] for applications of discontinuous
invariants) in H3k.BDiffı.†g/IQ/.

Theorem 0.17 There exists a surjective map

H3k.BDiffı.†g/IQ/�
Vk

QR2

provided k � 1
9
.2g � 2/, where

Vk
QR2 is the k th exterior power of R2 as a vector

space over Q.

0.4 Applications to the foliated cobordism of codimension 2

Let F�n;k be the cobordism group of n–manifolds with a foliation of codimension k

and MSOn.X / be the oriented cobordism group of n–manifolds equipped with a map
to X . Using Theorem 0.4, we compare codimension-2 foliations with foliated surface
bundles. By the Atiyah–Hirzebruch spectral sequence, the homology equivalence in
Theorem 0.4 implies the equivalence in bordism theory

MSOn.BDiffı.†g//!MSOn.�
1
0 MT�/;

which is an isomorphism in the stable range. Let en be the map that associates to every
flat surface bundle the foliated cobordism class of the codimension-2 foliation on the
total space of the surface bundle

enW MSOn.BDiffı.†g//! F�nC2;2:

Using Theorem 0.4, we will determine the image of e2 and e3 up to torsions. More
precisely:

Theorem 0.18 For g � 4, the map

e3W MSO3.BDiffı.†g//! F�5;2;

is rationally surjective and, for g � 6, it is rationally an isomorphism.

Remark 0.19 To geometrically interpret the theorem, let F be any codimension-2
foliation on a manifold of dimension 5 and let kF denote a disjoint union of k copies
of F . Then kF , for some integer k , is foliated cobordant to a flat surface bundle of
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genus at most 4. And the injection for g � 6 means that if F is a flat surface bundle
over a 3–manifold which bounds a codimension-2 foliation on a 6–manifold, then kF
for some integer k bounds a flat surface bundle over a 4–manifold where the genus of
the fibers is at least 6.

Remark 0.20 This theorem might be compared to the result of Mizutani, Morita and
Tsuboi [28], in which they proved that any codimension-one foliation almost without
holonomy is homologous to a disjoint union of flat circle bundles over tori.

Theorem 0.21 Let � be the map

�W F�4;2˝Q!Q

that sends a foliation F on a 4–manifold M to the difference of the Pontryagin numbersR
M p1.M /�p1.�.F//. For g � 3, we have the short exact sequence

0!MSO2.BDiffı.†g//˝Q
e2
�!F�4;2˝Q

�
�!Q! 0:

Remark 0.22 Roughly speaking, up to torsion the only obstruction for a codimension-
2 foliation F on a 4–manifold M to be foliated cobordant to a flat surface bundle isR

M p1.M /�p1.�.F//.

We also prove that in low dimensions, we can change surface bundles up to cobordism
to obtain a flat surface bundle; more precisely we prove:

Theorem 0.23 For g > 5, every surface bundle of genus g over a 3–manifold is
cobordant to a flat surface bundle.

Remark 0.24 Using the perfectness of the identity component of C1–diffeomor-
phisms, Kotschick and Morita [16] proved that every surface bundle over a surface is
foliated cobordant to a flat surface bundle.

0.5 Outline

This paper is organized as follows: In Section 1, we obtain a short proof of the homo-
logical stability of discrete surface diffeomorphisms using a deep theorem of Mather
and Thurston and a version of twisted stability of mapping class group due to Randal-
Williams. In Section 2, we derive a Madsen–Weiss-type theorem for discrete surface
diffeomorphisms. In Section 3, we explore the consequences of having a Madsen–
Weiss-type theorem for discrete surface diffeomorphisms in flat surface bundles and
their characteristic classes.
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1 Homological stability from foliation theory

Our goal in this section is to show that the homological stability of discrete surface
diffeomorphisms is implied by a “twisted” homological stability of mapping class
groups developed in [37]. We use foliation theory to show that BDiffı.†g;k ; @/ is
homology equivalent to a moduli space of a certain tangential structure in the sense of
[37, Definition 1.1].

1.1 Stabilization maps

In the introduction, we formulated the homological stability for discrete diffeomor-
phisms of †g;1 . Let us describe the stabilization maps for surfaces with any positive
number of boundary components.

For a surface † with boundary, we shall write Diffı.†; @/ to denote the discrete
group of compactly supported orientation-preserving diffeomorphisms of †n@† and if
† is a closed compact surface, Diffı.†; @/ will just mean all orientation-preserving
diffeomorphisms of † equipped with discrete topology. Let † ,!†0 be a subsurface
in a collared surface †0 (ie with a choice of a collar neighborhood of the boundary)
such that each of the boundary components of the subsurface either coincides with
one of the boundary components of the bigger surface or entirely lies in its interior. If
we extend diffeomorphisms of † via the identity over the cobordism K D†0n†, we
obtain a map

t W Diffı.†; @/! Diffı.†0; @/:

Let †g;k be a fixed model for an orientable surface of genus g and k boundary
components with a chosen collar neighborhood of the boundary. If we choose a
diffeomorphism f from † to †g;k and a diffeomorphism h from †0 to †g0;k0 , we
obtain a stabilization map

sf;h.t/W Diffı.†g;k ; @/! Diffı.†g0;k0 ; @/:
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Different choices of f and h induce different stabilization maps, but one can show,
similar to [33, Theorem 2.5], that if for some choices of f and h the map sf;h.t/

induces a homology isomorphism in some homological degrees, then the stabilization
map induces a homology isomorphism in the same homological degrees for all choices
of f and h. Therefore, we shall not write the dependence of the stabilization maps on
choices of f and h.

1.2 Homological stability of the moduli space of �2–structures

Because we are interested in homological stability of Diffı.†g;k ; @/, we may replace
BDiffı.†g;k ; @/ by a homology equivalent space which is more convenient from the
point of view of homotopy theory. To do so, we recall what we need from foliation
theory.

1.2.1 Mather–Thurston theory Recall from Definition 0.3 that S�n is the groupoid
of germs of orientation-preserving diffeomorphisms of Rn . Let MorS�n

denote the
space of morphisms in the topological groupoid S�n . To recall the topology on the
space of morphisms, let g 2MorS�n

be a germ sending x to y . One can represent g as
a local diffeomorphism zgW U ! V , where U and V are open sets containing x and y ,
respectively. The set of germs of zg at all points in U gives an open neighborhood of
the germ g .

Definition 1.1 Let X be a topological space. A 1–cocycle on X with values in S�n

consists of an open cover fU˛gI of X , and for any two indices ˛ and ˇ in I , a
continuous map ˛ˇW U˛ \Uˇ!MorS�n

satisfying the cocycle condition, for any ˛ ,
ˇ and ı ,

˛ˇˇı D ˛ı on U˛ \Uˇ \Uı:

In particular, the left-hand side is defined, ie the source of the map ˛ˇ is the same as
the target of ˇı .

Two cocycles c D fU˛; ˛ˇgI and c0 D fU˛0 ; ˛0ˇ0gJ are said to be equivalent if there
exists a cocycle c00 D fU˛00 ; ˛00ˇ00gK such that K D I [ J and c00 restricts to c on
fU˛gI and to c0 on fU˛0gJ .

Definition 1.2 An S�n –structure on X is an equivalence class of 1–cocycles with
values in MorS�n

on X .

Note that a cooriented foliation of codimension n can be specified by a covering of X

by open sets U˛ , together with a submersion f˛ from each open set U˛ to Rn , such
that for each ˛ and ˇ there is a map g˛ˇ from U˛ \Uˇ to local diffeomorphisms
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satisfying
f˛.v/D g˛ˇ.u/.fˇ.v//

whenever v is close enough to u 2 U˛ \Uˇ . Then the covering U˛ and the germs of
g˛ˇ defines a S�n –structure on X . An advantage of Haefliger structures over foliations
is that they are closed under pullbacks.

Two S�n –structures c0 and c1 on X are concordant if there exists a S�n –structure
on X � Œ0; 1� such that the restriction of c to X � fig is ci for i D 0; 1. Homotopy
classes of maps to the classifying space of the groupoid S�n classify S�n –structures
on X up to concordance (for further details consult [10]).

One can associate a foliated space to every S�n –structure c D fU˛; ˛ˇgI as follows.
Note that for all ˛ , the cocycle condition implies that ˛˛ is the germ of the identity
at some point in Rn , hence ˛˛ induces a map from U˛ to Rn . Consider the spacea

˛

U˛ �Rn=�;

where the identification is given by .x 2 U˛;y˛/� .x 2 Uˇ;yˇ/ if y˛ D ˛ˇyˇ . We
now consider .x; ˛˛.x// 2 U˛ �Rn , the graph of ˛˛ . Let E be the space obtained
by the union of the neighborhoods of these graphs by the identification. The space E

is germinally well-defined and the horizontal foliation on U˛ �Rn induces a foliation
on E . Hence, we obtain the data of a microbundle X s

�!E
p
�!X , where s is the

section given by the graphs and p is the projection to the first factor. The foliation
on E is transverse to the fibers and its pullback to X via the section s is the Haefliger
structure c . We call this microbundle the foliated microbundle associated to c (see [46,
Section 4] for more details on foliated microbundles).

To state the Mather–Thurston theorem, we let BS�n be the homotopy fiber of the
natural map

�W BS�n! BGLCn .R/;

which is induced by the map between groupoids that sends every germ to its derivative.
By replacing spaces with homotopy equivalent spaces, we may assume that � is a Serre
fibration. For any orientable manifold M , we let BDiff.M; @/ be the homotopy fiber
of the map

BDiffı.M; @/! BDiff.M; @/:

Let �M W M ! BGLCn .R/ be the map that classifies the tangent bundle of M . Thus,
we obtain a Serre fibration ��

M
.�/ with the base M . The manifold structure on M or

the foliation by points on M induces a homotopy class of maps M ! BS�n . Let s0

be one such map that is induced by the point foliation. Let also Sectc.��M .�// denote
the compactly supported sections which differ only on a compact set from s0 .
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Theorem 1.3 (Mather and Thurston [22]) There exists a map

fM W BDiff.M; @/! Sectc.��M .�//

which induces an isomorphism in homology with integer coefficients.

Remark 1.4 Roughly, the map fM is given by thinking of a diffeomorphism as a
collection of germs at each point of M . Since the elements of BDiff.M; @/ can be
thought of as integrable sections of the fiber bundle ��

M
.�/, this theorem is very similar

in spirit to Gromov h–principle-type theorems.

Remark 1.5 Haefliger [10] proved that BS�n is n–connected and he conjectured
that it is 2n–connected. Thurston could improve the connectivity of BS�n by one.
To explain his idea, note that Theorem 1.3 for an n–disk Dn implies that the space
BDiff.Dn; @/ is homology isomorphic to the n–fold loop space �nBS�n . Given
that Thurston [43] also proved that the identity component of diffeomorphisms of
manifolds is a perfect group (in fact he showed it is even simple), one can deduce that
H1.BDiff.Dn; @/IZ/D 0. Therefore, using Theorem 1.3 and the Hurewicz theorem,
we obtain

H1.�
nBS�nIZ/DHnC1.BS�nIZ/D �nC1.BS�n/D 0:

As we shall see, the topological group Diff.M; @/ acts on suitable models for

BDiff.M; @/ and Sectc.��M .�//:

Our goal is to show that the homotopy quotients of these actions are also homology
equivalent. In order to achieve this goal, it is convenient to work with simplicial sets
instead of topological spaces, and we will explain how to define a map of simplicial
sets modeling fM , which is equivariant for an action of a simplicial group modeling
Diff(M) (see [33, Section 5.1] for a different model of the map fM which is equivariant).
Henceforth, we substitute spaces with their singular simplicial complex.

1.2.2 Construction of the map fM Since BDiff.M; @/ and Sectc.��M .�// classify
certain geometric structures, it is more convenient to describe their singular simplicial
complex geometrically. To do so, we need to recall a few notions from [40; 22].

Definition 1.6 We say a S�n –structure c on the total space of the fiber bundle E!B

is transverse to the fibers if its restriction to the fibers is a foliation. If the fiber bundle
E ! B is a smooth bundle, this is equivalent to the condition that c is a smooth
foliation and its leaves are transverse to the fibers.
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Definition 1.7 Let M be a smooth n–manifold, X a topological space and c a S�n

on X �M . We say c is horizontal if c is the inverse image of the differentiable
structure of M via the projection X �M !M . If t 2 X and x 2M , we will say
c is locally horizontal at .t;x/ if there is an open neighborhood U �N of .t;x/ in
X �M such that cjU�N is horizontal. The support of c , denoted by supp.c/, will
mean the closure in M of the set of x 2M for which there is at least one t 2X such
that c is not locally horizontal at .t;x/.

Since BDiff.M; @/ is the homotopy fiber of the map

BDiffı.M; @/! BDiff.M; @/;

the p–simplices of the singular simplicial complex S�.BDiff.M; @// are uniquely given
by S�n –structures on �p �M transverse to the fiber of the projection �p �M !�p

and have support in the interior of M .

The p–simplices of the simplicial group S�.Diff.M; @//, namely the singular complex
of Diff.M; @/, can be described as the commutative diagrams

�p �M �p �M

�p

pr1pr1

�

where � is a diffeomorphism which is the identity on �p �U , where U is a neigh-
borhood of the boundary @M . We can pull back S�n –structures on �p �M via � .
Hence, we have an action of S�.Diff.M; @// on S�.BDiff.M; @//. Using the theorem
of Milnor [25], we know that jS�.BDiff.M; @//j is a model for BDiff.M; @/, hence
we obtain an action of the group jS�.Diff.M; @//j which is weakly equivalent to
Diff.M; @/ on BDiff.M; @/. Therefore, the homotopy quotient1

(1-8) jS�.BDiff.M; @//j==jS�.Diff.M; @//j

is weakly equivalent to BDiffı.M; @/.

To describe the simplicial set S�.Sectc.��M .�/// geometrically, we consider the tangent
bundle as the tangent microbundle (see [26] for the definition of microbundles). Recall
that the tangent microbundle of the manifold M is the data

M �
�!M �M

pr1
�!M;

1For a topological group G acting on a topological space X , the homotopy quotient is denoted by
X==G and is given by X �G EG , where EG is a contractible space on which G acts freely.
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which we denote by tM . Milnor [26, Theorem 2.2] showed that the underlying mi-
crobundle of the tangent bundle TM is isomorphic to tM . For an element f 2Diff.M; @/

we have an action of f on TM so that it acts by f on M and by the differential df

on the fiber of TM ; the corresponding action on tM acts by f on the base M and by
f �f on M �M .

Recall that every section in Sectc.��M .�// is a lift of the tangent bundle in

M BGLCn .R/

BS�n

�

�
s

to BS�n , which gives a map sW M ! BS�n and an isomorphism between tM and
the underlying microbundle of s� ı ��.n/, where n is the tautological bundle on
BGLCn .R/. This means that the graph of the S�n –structure induced by s is a foliated
microbundle in the neighborhood of the diagonal �.M /�M �M that is transverse
to the fibers of pr1W M �M !M .

Definition 1.9 A germ of S�n –structure c on �p�M �M at �p�diag M which is
transverse to the fiber of the projection id�pr1W �

p�M �M !�p�M is said to be
horizontal at x 2M if there exists a neighborhood U around x such that the restriction
of the S�n –structure to �p �U �U is induced by the projection �p �U �U ! U

on the last factor. By the support of c , we mean the set of x 2M where c is not
horizontal. Note that supp.c/ is a closed subset.

Hence, p–simplices in the simplicial set S�.Sectc.��M .�/// can be described as the
germ of S�n –structures on �p �M �M at �p � diag M which are transverse to
the fiber of the projection id � pr1W �

p �M �M ! �p �M and have compact
support. This gives a model for the compactly supported sections Sectc.��M .�// [22,
Section 16]. Similar to the previous case, there is an obvious action of S�.Diff.M; @//

on S�.Sectc.��M .�///.

Construction 1.10 Let fM;�W S�.BDiff.M; @//! S�.Sectc.��M .�/// be the simpli-
cial map that sends a p–simplex c in S�.BDiff.M; @// to the germ of the S�n –structure
induced by .id� pr2/

�.c/ at �p � diag M , where pr2 is the projection to the second
factor. This map is obviously S�.Diff.M; @//–equivariant. Hence, using the Mather–
Thurston theorem, the map fM;� also induces a homology isomorphism between
homotopy quotients,

jS�.BDiff.M; @//j==jS�.Diff.M; @//j ! jS�.Sectc.��M .�///j==jS�.Diff.M; @//j:
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Therefore, Mather and Thurston’s theorem imply that BDiffı.M; @/ is homology
equivalent to jS�.Sectc.��M .�///j==jS�.Diff.M; @//j.

1.2.3 Homological stability for tangential structures Recall from [37] that a tan-
gential structure is a map � W B ! BGL2.R/ from a path-connected space B to
BGL2.R/. A � –structure on a surface † is a bundle map T†! ��2 , where 2

is the universal bundle over BGL2.R/. We denote the space of � –structures on a
surface † by Bun.T†; ��2/ and equip it with the compact–open topology. For a
collared surface † with a choice of collar cW @† � Œ0; 1/! †, we fix a boundary
condition `@†W �1˚T.@†/! ��2 . And we define Bun@.T†; ��2I `@†/ to be the
space of bundle maps `W T†! ��2 such that `@† D Dcjf0g�@† ı `j@† . Note that
the group Diff.†; @/ naturally acts on Bun@.T†; ��2I `@†/. The moduli space of
� –structures on surfaces of topological type † with boundary condition `@† is the
homotopy quotient of the action Diff.†; @/ on Bun@.T†; ��2I `@†/ and we denote
it by

(1-11) M� .†I `@†/ WD Bun@.T†; �
�2I `@†/==Diff.†; @/:

If we do not mention the boundary condition `@† , we mean the standard boundary
condition on @† in the sense of [37, Definition 4.1]. Henceforth, we consider �–
structures, where �W BS�2! BGLC

2
.R/.

Recall that a foliated microbundle in the neighborhood of the diagonal of †�† which
is transverse to the fibers of the projection pr1 is a section in Sectc.��†.�//. This then
gives a bundle map from T† to ��.2/. Therefore, there is a canonical map

�W jS�.Sectc.��†.�///j
'
�!Bun@.T†; �

�2I l@†/:

Using the fact that Bun@.T†; 2/ is contractible [9, Lemma 5.1], one can show that
there exists a homotopy inverse to the map � , hence it is a weak equivalence. There is an
action of jS�.Diff.†; @//j on the left-hand side and there is an action of Diff.†; @/ on
the right-hand side, and also there is a canonical map �0W jS�.Diff.†; @//j!Diff.†; @/
which is weakly equivalent. The augmentation map � is readily seen to be equivariant
with respect to the map �0 . Hence, using the Serre spectral sequence we deduce that
the induced map

(1-12) jS�.Sectc.��†.�///j==jS�.Diff.†; @//j !M�.†/

is a homology isomorphism. As we saw in Construction 1.10, we have a map from
BDiffı.†; @/ to jS�.Sectc.��†.�///j==jS�.Diff.†; @//j which is homology equivalent.
For the future reference, we record this fact as a lemma.

Lemma 1.13 There is a map from BDiffı.†; @/ to M�.†/ that induces an isomor-
phism on homology.
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Hence Lemma 1.13 reduces the proof of Theorem 0.1 to the homological stability of
the moduli space of �–structures, which then follows from a general theorem due to
Randal-Williams [37, Theorem 7.1] about homological stability of moduli spaces of
� –structures satisfying certain properties. Qualitatively, he proved that if the connected
components of M�.†/ stabilizes with respect to the genus of the surface †, the moduli
space M�.†/ exhibits homological stability in a certain range.

To show the stability of connected components, consider the exact sequence of homotopy
groups

�1.BDiff.†; @//! �0.Sectc.��†.�///! �0.M�.†//! �0.BDiff.†; @//:

The classifying space BDiff.†; @/ is path-connected and since by Remark 1.5 the space
BS�2 is at least 3–connected, the section space Sectc.��†.�// is also path-connected.
Hence, �0.M�.†// is trivial.

To find a stability range, Randal-Williams [37, Definition 6.2] defined a notion of
k –triviality and proved that if a � –structure stabilizes at genus h, then it would be
.2hC1/–trivial. Since �–structure stabilizes at genus 0, by [37, Theorem 7.1] the
stability range for stabilization maps is the same as the stability range for the orientation
structure BSO.2/! BO.2/. Thus, we have:

Theorem 1.14 Let † be a collared surface and let �W † ,!†0 be an embedding of †
into a surface †0 which may not have boundary. As we explained in Section 1.1, this
embedding induces a map

H�.BDiffı.†; @/IZ/!H�.BDiffı.†0; @/IZ/

which is an isomorphism as long as � � 1
3
.2g.†/� 2/ and an epimorphism provided

that � � 2
3
g.†/.

Remark 1.15 Using the same idea and the theorem of McDuff [24] about volume-
preserving diffeomorphisms, we could show that the discrete group of symplecto-
morphisms Sympı.†; @/ that are supported away from the boundary also exhibit
homological stability. We pursue the study of the group of symplectomorphisms in a
different paper [34].

2 Stable homology of surface diffeomorphisms made discrete

Given that we established the relation between BDiffı.†; @/ for a collared surface
† and the moduli space of S�2 –structures on surfaces of the topological type † in
Lemma 1.13, we can use the machinery developed in [9; 7] to study the stable homology
of the moduli space of tangential structures.
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2.1 Cobordism category with S�2–structure

Recall the definition of the cobordism category equipped with � –structures from [9,
Definition 5.2];

Definition 2.1 Let C� be the topological category whose space of objects is given
by the pairs of real numbers a and 1–dimensional closed submanifolds M such
that .a;M /�R�R1 and whose space of morphisms from .a;M / to .a0;M 0/ for
a < a0 is given by a cobordism † so that † � Œa; a0� �R1 is a surface equipped
with a � –structure and is collared near the boundary, which means that it coincides
with Œa; a0��M near fag �R1 and with Œa; a0��M 0 near fa0g �R1 . For a careful
treatment of how this category is enriched over topological spaces consult [7, Section 2].
We shall write CC for the cobordism category with the orientation structure.

Definition 2.2 For the map �W BS�2! BGLC
2
.R/D eGr2.R

1/, where eGr2.R
1/ is

the oriented Grassmannian of two planes in R1 , we can associate a Thom spectrum
MT� as follows: First let BS�2.R

n/ WD ��1. eGr2.R
n//, where it sits in the pullback

diagram

eGr2.R
n/ BGLC

2
.R/

BS�2.R
n/ BS�2

�n �

Let Un be the orthogonal complement of the tautological 2–plane bundle over eGr2.R
n/.

Then the nth space of the spectrum MT� is the Thom space of the pullback bundle
��n .Un/.

The main theorem of [9] implies that there exists a weak equivalence

BC� '�!�1�1MT�;

which is induced by a functor from the category C� to the category Path.�1�1MT�/,
whose objects are points in �1�1MT� and whose morphisms are continuous paths.
We shall briefly recall below how this functor is constructed and refer the reader to [19,
Section 2] for further details.

2.2 The map ˛ in Theorem 0.4

A morphism † in the category C� is a surface with a collared boundary that is embedded
in Œa; a0� �Rn�1 for some n. We say that this morphism is fatly embedded if the
canonical map from the normal bundle N† to Rn restricts to an embedding of the
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unit disk bundle into Œa; a0��Rn�1 . In the definition of the cobordism category, one
can consider only fatly embedded morphisms without changing the homotopy type of
the realization of the category. Thus the Pontryagin–Thom construction gives a map
from Œa; a0�C^Sn�1 to the Thom space of N†. Since the surface † is equipped with
a �–structure, the Gauss map †! eGr2.R

n/ that classifies the tangent bundle can be
lifted to BS�2.R

n/. Therefore, we have the pullback diagram

† BS�2.R
n/

N† ��n .Un/

Hence, one obtains the map

Œa; a0�C ^Sn�1
! Th.N†/! Th.��n .Un//:

By the adjointness, we obtain a path

Œa; a0�!�n�1Th.��n .Un//��
1�1MT�:

This construction gives rise to a functor from the modification of C� to the path category
Path.�1�1MT�/. Since the modification of C� does not change its homotopy type
and the geometric realization of Path.�1�1MT�/ has the same homotopy type as
�1�1MT� , the functor induces a well-defined map up to homotopy between geometric
realizations,

BC�!�1�1MT�:

One can choose a certain model for the homotopy quotient in (1-11) (see [9, Section 5])
so that the space M�.†/ becomes a subspace of the morphism space in C� . Therefore,
we obtain a natural map

(2-3) M�.†/!�BC�!�1MT�:

Note that the map �W BS�2! BGLC
2
.R/ induces a functor C� ! CC , hence by the

naturality of the above constructions, we have the homotopy commutative diagram

MC.†/ �BCC

M�.†/ �1MT�

�1MTSO.2/

�BC�

Recall that the space MC.†/ is a model for BDiff.†; @/ and the space

jS�.BDiff.M; @//j==jS�.Diff.M; @//j
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is a model for BDiffı.†; @/. Hence, we have the homotopy commutative diagram

(2-4)

BjS�.Diff.M; @//j MC.†/

jS�.BDiff.M; @//j==jS�.Diff.M; @//j M�.†/

'

g

where the bottom horizontal map is a weak equivalence by Milnor’s theorem [25] and the
top horizontal map g is given by the composition of the map in Construction 1.10 and
(1-12). The map ˛ now is given by the composition of the map gW BDiffı.†/!M�.†/

in (2-4) and the maps in (2-3). Hence, we obtain a homotopy commutative diagram

(2-5)

BDiff.†; @/ �1MTSO.2/

BDiffı.†; @/ �1MT�
˛

Theorem 2.6 In diagram (2-5) the horizontal maps, in the stable range of Theorem 1.14,
induce homology isomorphisms onto the connected components that they hit.

Remark 2.7 The volume-preserving case reproduces [17, Theorem 4] and more,
which we will pursue elsewhere [34].

Sketch of the proof of Theorem 2.6 The fact that the bottom horizontal map in
the stable range induces an isomorphism on homology is the celebrated Madsen–
Weiss theorem [20; 9, Theorem 7.2]. Hence, we only sketch the proof for the similar
statement for the map ˛ . We replace BDiffı.†g;k ; @/ by the homology equivalent
space M�.†g;k/. Recall that the main theorem of [9] implies that the geometric
realization of C� is weakly homotopy equivalent to �1�1MT� . Therefore, from the
above discussion, we only need to prove that the map

(2-8) M�.†g;k/!�BC�

in the stable range induces an isomorphism on homology. As we shall briefly explain,
this follows from applying the argument in [9, Section 7] to the category C� . Following
Tillmann [44], we need to consider a smaller category, which is called the positive
boundary subcategory C�;@ � C� , whose space of objects is the same as C� and
whose space of morphisms from M0 to M1 consists of those pairs .†; t/ 2 C� where
�0.M1/ ! �0.†/ is surjective. By [9, Theorem 6.1] the inclusion of C�;@ in C�
induces a map between geometric realizations

(2-9) BC�;@
'
�!BC� ;
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which is a weak equivalence. There is nothing special about the tangential structure �
in (2-9). Now given the homological stability in Theorem 1.14, the standard group
completion argument (see [9, Proposition 7.1]) implies that the first map in

Z�M�.†1;k/
H��iso
�����!�BC�;@

'
�!�1MT�;

induces an isomorphism on homology, and hence the map in (2-8) induces a homology
isomorphism in the stable range.

Remark 2.10 There is a more direct description of the diagram (2-5) without invoking
the cobordism category. To briefly explain this alternative description, let †!E

�
�!M

be a surface bundle and let T� denote the vertical tangent bundle. For paracompact
base M , one can find a fiberwise embedding f W E ,! M � RN with a tubular
neighborhood. Collapsing the complement of the tubular neighborhood to the basepoint
and identifying the tubular neighborhood with the open disk bundle of the fiberwise
normal bundle Nf , gives the map †N .MC/! Th.Nf /. Stably it gives a pretransfer
map, well-defined up to homotopy,

pretrf� W †
1.MC/! Th.�T�/;

where Th.�T�/ is the Thom spectrum of the virtual bundle �T� . Let

� W B! BGLC
2
.R/

be a tangential structure. Recall that 2 is the tautological bundle over BGLC
2
.R/. If

the vertical tangent bundle is equipped with a � –structure, ie the map E! BGLC
2
.R/

classifying T� has a choice of lift to B , then we obtain a well-defined map up to
homotopy

(2-11) †1.MC/
pretrf�
����! Th.�T�/! Th.���.2//:

Now consider the pullback diagram

BDiffı.†; @/ BDiff.†; @/

†==Diffı.†; @/ †==Diff.†; @/

� 0 �

Note that T� 0 is the pullback of T� and it has a �–structure, therefore, by the
naturality of the pretransfer map, we have a commutative diagram of spectra
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†1.BDiff.†; @/C/ Th.�2/

†1.BDiffı.†; @/C/ Th.���.2//

which gives a homotopy commutative diagram of spaces:

BDiff.†; @/ �1MTSO.2/

BDiffı.†; @/ �1MT�

The fact this diagram is the same as diagram (2-5) follows from the standard fact that
the construction using pretransfer and the construction via the cobordism category are
homotopic (see [19, Section 2] for more details).

2.3 Comparison of BDiffı.†g;k; @/ and BDiff.†g;k; @/ in the
stable range

Let Diffı.†1;k ; @/ denote the colimit of the groups Diffı.†g;k ; @/ as g varies using
the stabilization map between them. Thus by taking the colimit of the diagram (2-5),
we have a homotopy commutative diagram

�1
0

MT� �1
0

MTSO(2)

BDiffı.†1;k ; @/ BDiff.†1;k ; @/

�1�

�

where the right vertical map is a homology isomorphism by the Madsen–Weiss theorem
and the left vertical map is also a homology isomorphism by Theorem 2.6. For a
prime p , let

�
p
� W H�.BDiffı.†1;k ; @/IFp/!H�.BDiff.†1;k ; @/IFp/

be the map induced by �. To study the map �p� , instead we study the map

�1�W �10 MT�!�10 MTSO.2/

between infinite loop spaces after p–completion (see [23] for a definition of p–
completion).

Our third main theorem is the following splitting theorem after p–completion.

Theorem 2.12 For all primes p , after p–completion the map �1� admits a section,
ie it is split surjection after p–adic completion.
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Corollary 2.13 The map �p� is a split surjection for all primes p .

Proof of Theorem 2.12 To show that �1� has a section after p–completion, it is
sufficient to prove this on the spectrum level, ie, as we shall see, it is enough to prove
that the map

(2-14) �W MT�!MTSO.2/

is a split surjection after p–completion of spectra. The reason is, in general, if A is a
spectrum and A^p is its p–completion, then �1

0
.A^p / is a p–completed space and it

receives a map from .�1
0

A/^p which is weakly equivalent. The map is induced by

�10 A!�10 .A
^
p /;

which factors through .�1
0

A/^p by the universal property of p–completion. Suppose
the map �^p which is induced by � between p–completions of the Thom spectra has a
section denoted by s . Consider the diagram

�1
0
.MTSO.2//^p

.�1
0

MTSO.2//^p

�1
0
.MT�/^p

.�1
0

MT�/^p

�1s

' '

where the vertical maps are induced by the universal property of the p–completion.
Hence, �1s induces a section for �1� after p–completion. We are left to prove the
map of spectra (2-14) is a split surjection after p–completion.

Recall that the map
�W BS�2! BGLC2 .R/' BSO.2/

that classifies the normal bundle of the codimension-2 Haefliger structures is induced by
a map between groupoids x�W S�2! GLC2 .R/, where x� sends a germ to its derivative.

The key point is that there is an obvious map between groupoids

x̨W SO.2/ı! S�2

that sends every rotation to its germ as a diffeomorphism at the origin and makes the
diagram

(2-15)

SO.2/ı S�2

GL2.R/
x̌

x̨

x�
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commute, where x̌ is the composition SO.2/ı ! SO.2/ ,! GL2.R/. The map x̨
induces a map between classifying spaces of the groupoids, which we denote by ˛ .
The commutativity of (2-15) implies that the composition � ı ˛ is homotopic to the
identity.

The map �ı˛ gives a tangential structure and let MT.�ı˛/ denote the Thom spectrum
of the virtual bundle .� ı˛/�.�2/ over BSO.2/ı . Consider the maps between Thom
spectra

MT.� ı˛/ ˛
�!MT� �

�!MTSO.2/:

If we show that the map of spectra � ı˛ is a split surjection after p–completion, we
are done. We prove that .� ı ˛/� is an isomorphism on mod-p cohomology, hence
� ı˛ actually induces a weak equivalence after p–completion. Let BS1 denote the
homotopy fiber of the map

B.S1/
ı
! BS1:

It is a special case of [27, Lemma 3] that the space BS1 has a mod-p homology of
a point. Thus, we deduce that H�.B.S1/

ı
IFp/DH�.BS1

IFp/. Hence, using Thom
isomorphism, it follows that

.� ı˛/�W H�.MTSO.2/IFp/!H�.MT.� ı˛/IFp/

is an isomorphism.

3 Applications to flat surface bundles

In this section, we explore the consequences of Theorem 2.6 and Theorem 2.12 for flat
surface bundles.

3.1 The spectrum MT� and a fiber sequence of infinite loop spaces

By studying the homotopy groups of �1
0

MT� , we prove Theorem 0.18 and also we
find a new description for H2.BDiffı.†g/IZ/.

Let MTSO.n/ denote the Madsen–Tillmann spectrum for the orientation structure
SO.n/! O.n/. There exists a cofiber sequence of spectra and a fiber sequence of
infinite loop space (see [9, Proposition 3.1])

MTSO.n/!†1.BSO.n/C/!MTSO.n� 1/;(3-1)

�1MTSO.n/!�1†1.BSO.n/C/!�1MTSO.n� 1/;(3-2)

where here C means a disjoint basepoint. For nD 2, the fiber sequence of the infinite
loop space plays an important role in computing mod p homology of the mapping
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class group [5]. In dimension 2, we prove that there exists a similar fiber sequence
for �1MT� .

Theorem 3.3 There is a homotopy fibration sequence

(3-4) �1MT�!�1†1..BS�2/C/!�1†1�1.BS�2C/:

Proof Let � and � be two vector bundles over a topological space X ; we have the
general cofiber sequence of Thom spaces (see [42, Lemma 4.3.1])

(3-5) Th.p�.�//! Th.�/! Th.�˚ �/;

where pW S.�/!X is the sphere bundle of �.

Let X be BS�2 and � and � be the virtual bundles ��.�2/ and ��.2/, respectively.
Note that

S1
! BS�2

p
�!BS�2

is the sphere bundle of ��.2/, hence p�.��.�2// is a trivial bundle over BS�2 .
Using (3-5), we obtain the following cofiber sequence of the spectra:

†1�2.BS�2C/!MT�!†1..BS�2/C/!†1�1.BS�2C/:

Applying �1 , we obtain the associated homotopy fibration sequence of infinite loop
spaces.

Lemma 3.6 We have
�1.�

1
0 MT�/D 0;

0! �4.BS�2/! �2.�
1
0 MT�/! �2.�

1
0 MTSO.2//! 0;

�3.�
1
0 MT�/� �3.�

1
0 MTSO.2//:

Proof Recall that for g � 3, the group Diffı.†g/ is a perfect group because the
identity component Diffı0.†g/ is a simple group [43] and the mapping class group
�0.Diff.†g// is perfect for g� 3 [36]. Hence H1.BDiffı.†g/IZ/D 0 for g� 3. On
the other hand, Theorem 2.6 implies that H1.BDiffı.†g/IZ/DH1.�

1
0

MT�IZ/D
�1.�

1
0

MT�/, where the second equality holds because �1
0

MT� is an H–space.
Therefore we have

�1.�
1
0 MT�/D 0:

Also recall that, for stable homotopy groups, we have �s
i .XC/ D �s

i .X / ˚ �
s
i ,

�s
4
D �s

5
D 0, �s

3
D Z=24 and �s

2
D Z=2. Given these facts, the long exact sequence

of the homotopy groups of the fibration (3-4) is as follows:
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� � � �s
5
.BS�2/ �3.�

1
0

MT�/ �s
3
.BS�2/˚Z=24

�s
4
.BS�2/ �2.�

1
0

MT�/ �s
2
.BS�2/˚Z=2 �s

3
.BS�2C/

By Remark 1.5, we know that the map �W BS�2! BSO.2/ is at least 4–connected.
Hence, the long exact sequence of the homotopy groups of the fibrations (3-4) becomes

(3-7)

� � � �s
5
.BS�2/ �3.�

1
0

MT�/ Z=24

�s
4
.BS�2/ �2.�

1
0

MT�/ �s
2
.CP1/˚Z=2 Z=24

d
e

and the long exact sequence of homotopy groups of the fibration in (3-2) is as follows:

(3-8)

� � � 0 �3.�
1
0

MTSO.2// Z=24

0 �2.�
1
0

MTSO.2// �s
2
.CP1/˚Z=2 Z=24

d 0

e0

There are natural maps from corresponding terms in (3-7) to that of (3-8). In Lemma 3.11
below, we will prove that the map d has to be zero. Given Lemma 3.11, we obtain

(3-9) �3.�
1
0 MT�/� �3.�

1
0 MTSO.2//D Z=24:

The homology of �1
0

MTSO.2/ is the same as the stable homology of the mapping
class group. Since the second stable homology of the mapping class group is Z [11], by
the Hurewicz theorem we obtain that �2.�

1
0

MTSO.2//D Z. Hence, by comparing
the maps e and e0 , we deduce that ker.e/ D Z. Therefore, we have the short exact
sequence

(3-10) 0! �s
4.BS�2/! �2.�

1
0 MT�/! Z! 0;

where the last map is induced by the map �1
0

MT�!�1
0

MTSO.2/ on the second
homotopy groups. Since BS�2 is 3–connected, by the Hurewicz theorem, the fourth
stable homotopy group of BS�2 is the same as its fourth homotopy group, hence we
obtain the second equality of the lemma.

Lemma 3.11 The map d in the long exact sequence (3-7) is zero.

Proof Let Q denote the functor �1†1 . One can associate to the circle bundle

BS�2! BS�2

Geometry & Topology, Volume 21 (2017)



3072 Sam Nariman

the circle transfer (ie the pretransfer for a circle bundle; see Remark 2.10), which is a
map

� W Q..BS�2/C/!QS�1..BS�2/C/;

where QS�1 denotes the functor �1†1�1 . Recall the fiber sequence (3-4)

(3-12) �1MT�!Q..BS�2/C/
�
�!QS�1.BS�2C/

where the second map is the circle transfer � by the construction of the fiber sequence.
Hence the map d is the map induced by the circle transfer � on the third homotopy
groups. In order to show that d is zero, we consider the pullback diagram

S1 BS�2

� BS�2

where the bottom horizontal map is a basepoint of BS�2 . By naturality of the circle
transfer, we have the commutative diagram

QS�1.S1
C/ QS�1.BS�2C/

QS0 Q..BS�2/C/

g

f �

where f is the circle transfer for the trivial circle bundle over a point and g is the
induced by naturality of the transfer map. Given that the map �W BS�2!BGLC

2
.R/'

CP1 is 4–connected (Remark 1.5), we obtain that

�s
3.BS�2/D �

s
3.CP1/D 0:

Therefore, the bottom map in the above diagram induces an isomorphism on �3 . Hence,
to show that d is zero, it is enough to show that g induces zero on �3 . Note that
the disjoint basepoint splits off naturally, ie QS�1.S1

C/'QS�1.S1/�QS�1 and
similarly we have QS�1.BS�2C/'QS�1.BS�2/�QS�1 . Recall that �3.QS�1/D

�s
4
D 0, so we need to show that the induced map

�3.QS�1.S1//! �3.QS�1.BS�2//

is zero. Given that BS�2 is 3–connected (Remark 1.5) and in particular simply
connected, the map S1! BS�2 is null-homotopic. Therefore, the map

QS�1.S1/!QS�1.BS�2/

is also nullhomotopic, which implies that the map g induces zero on �3 .
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Theorem 3.13 Fix an embedding of R2 ,!†g;k . This embedding induces a map

BDiffıc.R
2/! BDiffı.†g;k ; @/;

which for g � 4 gives the short exact sequence

0!H2.BDiffıc.R
2/IZ/!H2.BDiffı.†g;k ; @/IZ/!H2.BDiff.†g;k ; @/IZ/! 0:

Remark 3.14 Using Theorem 1.3 for M Š R2 and the connectivity of BS�2 , one
can in fact show that there is a natural map

H2.BDiffı.†g;k ; @/IZ.p//!H4.BS�2IZ.p//;

which induces an isomorphism for g � 4 and primes p > 3 (see [34]).

Proof By Theorem 2.6, we know that, for g � 4,

H2.BDiffı.†g;k ; @/IZ/
Š
�!H2.�

1
0 MT�IZ/:

Recall by Thurston’s theorem on the perfectness of the identity component of diffeo-
morphism groups and Powell’s theorem on the perfectness of the mapping class group,
the group Diff.†g;k I @/ is a perfect group for g > 2, which implies that �1

0
MT� is

simply connected. Hence, by the Hurewicz theorem and (3-10), we have the short exact
sequence

(3-15) 0! �4.BS�2/!H2.�
1
0 MT�/!H2.�

1
0 MTSO.2//! 0:

By Theorem 1.3 or Remark 1.5, we know that BDiffc.R2/ is homology equivalent to
�2BS�2 . Since Diffc.R2/ is contractible [41], we have BDiffc.R2/ ' BDiffıc.R

2/.
Given that BS�2 is 3–connected, by the Hurewicz theorem we have �4.BS�2/ D

H2.�
2BS�2IZ/. Therefore, the exact sequence (3-15) is the same as the exact sequence

in the theorem.

Remark 3.16 It is easy to see that the Serre spectral sequence for the fibration

BDiff.†g/! BDiffı.†g/! BDiff.†g/

and the perfectness of the identity component, Diffı0.†g/, implies that the map

H2.BDiffı.†g//� H2.BDiff.†g//

is surjective for all g , which means every surface bundle over a surface is cobordant to
a flat surface bundle (see [16] for a more explicit construction of such cobordisms).

We derive a geometric consequence of (3-10) and (3-9) for flat surface bundles.
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Theorem 3.17 Let MSOk.X / denote the oriented cobordism group of k dimensional
manifolds equipped with a map to X . Then the map

MSO3.BDiffı.†g//� MSO3.BDiff.†g//

is surjective for g � 6. In other words, every surface bundle of genus at least 6 over a
3–manifold is cobordant to a flat surface bundle.

Proof Note that MSOi.X /DHi.X IZ/ for i D 3. Thus, we only need to prove it
for homology. In order to prove that the map

H3.BDiffı.†g;k ; @/IZ/!H3.BDiff.†g;k ; @/IZ/

is surjective in the stable range, we need a little lemma:

Lemma 3.18 Let X be a simply connected space; then we have the exact sequence

�3.X /!H3.X /!H3.K.�2.X /; 2/IZ/;

where K.�2.X /; 2/ is the Eilenberg–Mac Lane space whose second homotopy group
is �2.X /.

The proof of the lemma is an easy Serre spectral sequence argument for the map, turned
into a fibration,

X ! K.�2.X /; 2/:

Recall that since �2.�
1
0

MTSO.2//D Z (see [11]), we can deduce that

H3.K.�2.�
1
0 MTSO.2//; 2/IZ/D 0:

If we apply Lemma 3.18 for X D �1
0

MTSO.2/, we obtain that every degree 3

homology class of �1
0

MTSO.2/ is spherical, ie

�3.�
1
0 MTSO.2//� H3.�

1
0 MTSO.2/IZ/:

We have the following commutative diagram by naturality of Hurewicz maps:

�3.�
1
0

MT�/ H3.�
1
0

MT�IZ/

�3.�
1
0

MTSO.2// H3.�
1
0

MTSO.2/IZ/

The left vertical map is surjective by comparing exact sequences of (3-8) and (3-7), so
the right vertical map has to be surjective.
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3.2 Applications to characteristic classes of flat surface bundles

In this section, we study two types of characteristic classes for flat surface bundles.
The first type is constructed by forgetting the flat structure on the total space of the
bundle and considering it just as a surface bundle. The second type of class is secondary
characteristic classes, or the so-called Godbillon–Vey classes of the codimension-2
foliation induced by a flat structure on the total space.

3.2.1 The MMM classes of the flat surface bundles Consider the following natural
map again:

�W BDiffı.†g/! BDiff.†g/:

The first type of characteristic classes of the flat surface bundles is the pullback of
MMM classes via the map �. Recall the definition of MMM classes is as follows. Let
� W E!B be a surface bundle whose fibers are diffeomorphic to †g . Let T� denote
the vertical tangent bundle and let e.T�/ denote its Euler class. Then the i th MMM
class is defined to be

�i.E! B/W D �!.e.T�/
iC1/ 2H 2i.BIZ/;

where �! is the push-forward map or the integration along the fiber, which is defined
since the fibers are compact closed manifolds. We denote the i th MMM class of the
universal surface bundle over BDiff.†g/ by �i . Let �ıi denote the pullback of �i via
the map �. One of the consequences of the Madsen–Weiss theorem and Harer stability
is that the natural map

QŒ�1; �2; : : : �!H�.BDiff.†g/IQ/

is injective in the stable range. However, Morita [30] observed that �ıi vanishes in
rational cohomology for i > 2, ie the map

QŒ�ı1; �
ı
2; : : : �!H�.BDiffı.†g/IQ/

sends �ıi to zero if i > 2. For the above observation, it is essential to work with
diffeomorphisms that are at least twice differentiable. It follows from Tsuboi’s theorem
[45], mentioned in the introduction, and the Madsen–Weiss theorem that the similar
map for C 1 –diffeomorphisms is in fact an isomorphism.

Morita and Kotschick [16] proved there exists a flat surface bundle over a surface with
nonzero signature, hence they conclude that �ı

1
does not vanish in H 2.BDiffı.†g/IQ/

for g � 3. First, let us give a homotopy-theoretic proof of their theorem using
Theorem 2.6,

Proposition 3.19 The class �ı
1

does not vanish in H 2.BDiffı.†g/IQ/ for g > 3.
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Proof By Theorems 2.6 and 1.14, we know

H 2.�10 MT�IQ/!H 2.BDiffı.†g/IQ/

is surjective for g � 3 and an isomorphism for g > 3. Thus, we need to show that the
corresponding class in H 2.�1

0
MT�IQ/ is nonzero. Consider the sequence

H 2iC2.BS�2IQ/
Š
�!H 2i.MT�IQ/ �

�

�!H 2i.�10 MT�IQ/;

where the first map is the Thom isomorphism and the second map is induced by the
suspension map. Let e denote the generator of H 2.BSO.2/IQ/. It is easy to see
that the image of ��.eiC1/ 2 H 2iC2.BS�2IQ/ in H 2i.�1

0
MT�IQ/ is �ıi (see [6,

Theorem 3.1]). Since the map � is at least 4–connected, ��.e2/ is not zero. Thus, to
prove that �ı

1
is nonzero, it is enough to show that the map

H2.�
1
0 MT�IQ/ ��

�!H2.MT�IQ/
�ı

1
�!Q

is nontrivial. To prove that the suspension map is surjective on rational homology, let
us consider the commutative diagram

��.�
1MT�/˝Q ��.MT�/˝Q

H�.�
1MT�IQ/ H�.MT�IQ/

The horizontal maps are induced by the suspension map and the vertical maps are
induced by the Hurewicz map. The top horizontal map is an isomorphism by the
definition of the homotopy groups of spectra and the right vertical map is also an
isomorphism because of the rational Hurewicz theorem (see [39, Theorem 7.11]).
Therefore, �� , the bottom horizontal map, is surjective, which implies �ı

1
ı �� is

nontrivial.

Remark 3.20 Morita and Kotschick [16], by a formal argument, showed that non-
triviality of �ı

1
implies that all its powers are nontrivial in the stable range. This can

also be deduced from the fact that H�.�
1MT�IQ/ is a Hopf algebra over Q.

Regarding �ı
2

, Morita and Kotschick asked the following problem:

Problem Does �ı
2

vanish in H 4.BDiffı.†g/IQ/?

Toward answering this problem, we prove that it is equivalent to an open problem in
foliation theory.
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Theorem 3.21 The MMM class �2 in H 4.BDiffı.†g/IQ/ is nonzero for g � 6 if
and only if a C 2 –foliation F of codimension 2 on a 6–manifold exists such that
e.�.F//3 ¤ 0, where �.F/ is the normal bundle of the foliation F .

Proof Let F�n;k denote the group of foliated cobordism group of codimension-k
foliations on n–dimensional manifolds. Every oriented codimension-k foliation on a
manifold M gives a well-defined homotopy class of maps from M to BS�k (see [10,
Theorem 7]). Hence, we have the well-defined map

F�n;k !MSOn.BS�k/:

By a result of [15, Theorem 10 ], the map F�6;2!MSO6.BS�2/ is rationally bijective.
By the Atiyah–Hirzebruch spectral sequence, MSO4.BDiffı.†g//!H4.BDiffı.†g//

is surjective. Hence, in order to prove (non)triviality of �ı
2

, we need to study (non)trivial-
ity of the map

�ı2W MSO4.BDiffı.†g//!Q:

By Theorem 2.6, we know

MSO4.BDiffı.†g//!MSO4.�
1
0 MT�/

is an isomorphism for g > 6 and surjective for g � 6. We have the commutative
diagram

MSO4.�
1
0

MT�/˝Q Q

MSO4.MT�/˝Q MSO6.BS�2/˝Q

�ı
2

��

Š

e3

where � is the suspension map, the bottom map is the Thom isomorphism and the
right vertical map is the map given by the cube of the Euler class of the codimension-2
Haefliger structures. Hence, if we show that the map �� is rationally surjective, the
(non)triviality of �ı

2
and e3 become equivalent. We know that

H4.�
1
0 MT�IQ/!H4.MT�IQ/

is surjective by the same argument as in Proposition 3.19 and, since the Atiyah–
Hirzebruch spectral sequence implies that MSO4.X /DH4.X /˚Z, we have

��W MSO4.�
1
0 MT�/˝Q � MSO4.MT�/˝Q:

Remark 3.22 One possible way to show that e3 is nonzero in H 6.BS�2IQ/, which
implies that a flat surface bundle with a nontrivial �ı

2
exists, is to look at the Gysin

Geometry & Topology, Volume 21 (2017)



3078 Sam Nariman

sequence for the circle bundle

S1
! BS�2! BS�2:

Part of the Gysin sequence that is relevant to us is

H6.BS�2IQ/
\e
�!H4.BS�2IQ/

�
�!H5.BS�2IQ/;

where � is the transgression map for the circle bundle. If we show that a class
c 2H4.BS�2IQ/ that satisfies e2.c/¤ 0 maps to zero via the transgression � , then
the Gysin sequence implies that e3 has to be nonzero in H 6.BS�2IQ/. To construct
a class c for which e2.c/ ¤ 0, we consider a map f W CP2 ! BGLC

2
.R/ that is

nontrivial on the fourth homology with rational coefficients. Since BS�2! BGLC
2
.R/

is 4–connected (Remark 1.5), we can lift f to a map gW CP2! BS�2 . If we take the
pullback of the circle bundle BS�2!BS�2 via the map g , we obtain the commutative
diagram

S5 BS�2

CP2 BS�2

g

yg

The transgression maps the class g.ŒCP2�/ 2 H4.BS�2IQ/ to the class yg.ŒS5�/ 2

H5.BS�2IQ/Š �5.BS�2/˝Q. Since �5.BS�2/D �5.BS�2/, we conclude that e3

is nontrivial in H 6.BS�2IQ/ if

g�W �5.CP2/˝Q! �5.BS�2/˝Q

is trivial. Note that since the image of g maps to zero in H5.BS�2IQ/, the Godbillon–
Vey classes vanish on the image of g , so it cannot be detected by the GV classes.

3.3 MMM classes as integral cohomology classes

The situation, however, is surprisingly different with integer coefficients. To study
integral MMM classes, we first reduce them to classes with finite field coefficients.
Consider the commutative diagram

H�.�1
0

MTSO.2/IFp/ H�.�1
0

MT�IFp/

H�.BDiff.†g/IFp/ H�.BDiffı.†g/IFp/

�1��

��

where the vertical maps are isomorphisms in the stable range. Thus, to study ��, we need
to study �1��. In Theorem 2.12, we proved that �1�� is injective on cohomology
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with Fp coefficients. Given the injectivity on Fp –cohomology for all primes p , we
shall see the map

H�.�10 MTSO.2/IZ/!H�.�10 MT�IZ/

is injective. Hence, we summarize the situation with finite coefficients and with integer
coefficients as follows:

Theorem 3.23 For every prime p , the map

H�.BDiff.†g/IFp/
��
�!H�.BDiffı.†g/IFp/

is injective in the stable range.

Theorem 3.24 The induced map

ZŒ�ı1; �
ı
2; : : : � ,!H�.BDiffı.†1;1; @/IZ/

is injective.

Proof We even prove a stronger result, that the induced map

��W H�.BDiff.†1;1; @/IZ/!H�.BDiffı.†1;1; @/IZ/

is injective. It follows from Theorem 2.12 that the map

��pW H
�.BDiff.†1;1; @/IFp/!H�.BDiffı.†1;1; @/IFp/;

is injective for all primes p . To prove that �� is injective, consider the induced map
between the Bockstein exact sequences

H�.BDiff.†1;1; @/IFp/ H�.BDiff.†1;1; @/IZ/ H�.BDiff.†1;1; @/IZ/

H�.BDiffı.†1;1; @/IZ/H�.BDiffı.†1;1; @/IFp/ H�.BDiffı.†1;1; @/IZ/

��p �� ��

�p

�p

Let a 2 Ker.��/; since ��p is injective for all p , it follows from the above diagram
that a 2 pH�.BDiff.†1;1; @/IZ/ for all p . Since H�.BDiff.†1;1; @/IZ/ is finitely
generated by the Madsen–Weiss theorem [20], we deduce aD 0.

Remark 3.25 Akita, Kawazumi and Uemura [1] proved the algebraic independence
of MMM classes by using finite cyclic subgroups of the mapping class groups. Their
method can be also applied to prove the above theorem.
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Remark 3.26 Recall that, as Morita [30] observed, the classes �ıi for i > 2 in
cohomology with R coefficients or even with Q coefficients vanish. This observation
implies that there is a class in H 2i�1.BDiffı.†g/IR=Z/ for i > 2 which maps to �ıi
in the Bockstein exact sequence

H 2i�1.BDiffı.†g/IR=Z/!H 2i.BDiffı.†g/IZ/!H 2i.BDiffı.†g/IR/:

Cheeger–Simons character theory helps us to find a canonical lift of �ı
2iC1

for i > 0 in
H 4iC1.BDiffı.†g/IR=Z/. In [4, Proposition 7.3], Cheeger and Simons showed that
there are canonical classes, known as Pontryagin characters, ypi 2H 4i�1.BS�nIR=Z/
for 2i > n such that the image of ypi under the Bockstein map

H 4i�1.BS�nIR=Z/
ˇ
�!H 4i.BS�nIZ/

is �pi of the normal bundle of the universal Haefliger structure. Let y�2iC1 denote the
image of the class ypiC1

1
2H 4iC3.BS�2IR=Z/ under the maps

H 4iC3.BS�2IR=Z/!H 4iC1.MT�IR=Z/!H 4iC1.�10 MT�IR=Z/:

Hence, the class y�2iC1 gives a canonical lift of �ı
2iC1

if its degree lies in the stable
range and ˇ.y�2iC1/D��

ı
2iC1

, where ˇ is the Bockstein map in the sequence

H 4iC1.BDiffı.†g/IR=Z/
ˇ
�!H 4iC2.BDiffı.†g/IZ/:

We showed that �ı
2iC1

is a nontorsion class, so ˇ is a nontrivial map. Therefore, for
i > 0 we obtain a regulator-type map for discrete surface diffeomorphisms,

regulator mapW H4iC1.BDiffı.†g/IZ/
y�2iC1
���!R=Z:

Question What is the cocycle formula for y�2iC1 ?

Nontriviality of this regulator map implies that H4iC1.BDiffı.†g/IZ/ in the stable
range is not a trivial group, but in fact it follows easily from Theorem 3.24 that
H2iC1.BDiffı.†g/IZ/ in the stable range with i > 1 is in fact uncountable (see [33,
Theorem 6.4]).

3.3.1 Secondary classes of flat surface bundles In this section, we prove Theorem
0.18 from the introduction. Let us first recall a preliminary result about continuous
variation of secondary characteristic classes of foliations of codimension 2. The
cohomology of BS�n is not yet very well understood but it has been extensively studied
via secondary characteristic classes of foliations, known as the Godbillon–Vey classes.
For codimension-2 foliations there are two GV classes, h1c2; h1c2

1
2H 5.BS�2IR/
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(for the definition of these classes look at [35; 18]). Rasmussen [38] proved that these
two classes vary continuously and independently, ie

.h1c2; h1c2
1/W H5.BS�2IZ/� R2:

If we take the universal flat surface bundle over BDiffı.†g/, we can integrate h1c2

and h1c2
1

along the compact fibers, and we write their integration along the fiber asZ
fiber

h1c2;

Z
fiber

h1c2
1 2H 3.BDiffı.†g/IR/:

Morita [32, Problem 44] posed the question of whether the map induced by the above
two cohomology classes from H3.BDiffı.†g/IZ/ to R2 is surjective. Bowden [3] used
a curious spectral sequence that only converges in low homological degrees to answer
Morita’s question affirmatively. Here, we simplify his proof using the Mather–Thurston
theorem.

Theorem 3.27 (Bowden) For any g , the induced map

k D

�Z
fiber

h1c2;

Z
fiber

h1c2
1

�
W H3.BDiffı.†g/IQ/� R2

is surjective.

Proof Embed R2 as the interior of a small disk in †g . The restriction of the map k

to the embedded disk gives the commutative diagram

H3.BDiffı.†g/IQ/ R2

H3.BDiffıc.R
2/IQ/

k 0

k

where the map k 0 is also induced by the fiber integration of the GV classes along the
embedded disk. If we show k 0 is surjective then it implies that k is also surjective. Let
BDiffc.R2/ be the homotopy fiber of the map

BDiffıc.R
2/! BDiffc.R

2/:

But the topological group Diffc.R2/ is contractible [41], so BDiffc.R2/'BDiffıc.R
2/.

By Thurston’s theorem [43], we know that there is a map

BDiffc.R2/!�2BS�2
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that induces a homology isomorphism. By Remark 1.5, we know BS�2 is at least
3–connected. Therefore, we have

(3-28) H3.BDiffıc.R
2/IQ/ Š�!H3.�

2BS�2IQ/� H5.BS�2IQ/� R2:

The first map is an isomorphism by Thurston’s theorem. The second map is the
suspension map and, because BS�2 is at least 3–connected, the rational Hurewicz
theorem implies that in the diagram

�3.�
2BS�2/˝Q H3.�

2BS�2IQ/

�5.BS�2/˝Q H5.BS�2IQ/

Š

the bottom map is surjective, hence so is the right vertical map. The third map in (3-28)
is given by the Godbillon–Vey classes�Z

h1c2;

Z
h1c2

1

�
W H5.BS�2IQ/!R2;

which is surjective as a corollary of the theorem of Rasmussen [38].

Corollary 3.29 There exists a surjective map

H3k.BDiffı.†g/IQ/�
Vk

QR2

provided k � 1
9
.2g � 2/, where

Vk
QR2 is the k th exterior power of R2 as a vector

space over Q.

Proof For k � 1
9
.2g� 2/, using Theorem 2.6 we know that

H3k.BDiffı.†g/IQ/'H3k.�
1
0 MT�IQ/:

By Theorem 3.27, we obtain a surjective map

H3.�
1
0 MT�IQ/� R2:

Note that H�.�
1
0

MT�IQ/ is a simply connected Hopf algebra over Q. Hence,
elements in H3.�

1
0

MT�IQ/ are primitive in the Hopf algebra. If we choose a basis
for the vector space H3.�

1
0

MT�IQ/, their exterior powers are nontrivial and provide
us with a map

H3k.�
1
0 MT�IQ/�

Vk
QR2;

which is surjective.
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Recall from [13] that H3.BDiff.†g/IQ/ D 0, but, as we showed in the proof of
Theorem 3.27, secondary characteristic classes in H3.BDiffı.†g/IQ/ vary contin-
uously and independently on diffeomorphisms of †g that are only supported in a
disk. Bowden asked the author if there is a nontrivial class in H3.BDiffı.†g/IQ/ that
cannot be detected by an embedding of a disk. To give an answer to his question, we
prove that, at least in the stable range, all classes in H3.BDiffı.†g/IQ/ are essentially
supported in a disk; more precisely:

Theorem 3.30 Let R2 ,!†g be an embedding of an open disk into the surface †g .
For g � 6, the induced map

H3.BDiffıc.R
2/IQ/ �!H3.BDiffı.†g/IQ/

is surjective.

Proof Recall that since the topological group Diffc.R2/ is contractible (see [41]), we
have BDiffc.R2/' BDiffıc.R

2/. Hence, all the R2 –bundles trivialized at the infinity
over BDiffıc.R

2/ are topologically trivial bundle, therefore Pontryagin–Thom theory for
the trivial bundle BDiffıc.R

2/�R2!BDiffıc.R
2/, as we shall explain in Lemma 3.35,

provides a map
ˇW BDiffıc.R

2/!�2BS�2;

which is a homology isomorphism by the theorem of Thurston [43]. We showed that
there exists a Madsen–Weiss-type map

˛†g
W BDiffı.†g/!�10 MT�

for the universal flat †g –bundle over BDiffı.†g/, which induces a homology isomor-
phism in the stable range. In Lemma 3.35 below, we shall prove that there exists a
homotopy commutative diagram

(3-31)

BDiffıc.R
2/ BDiffı.†g/

Q0S�2.BS�2C/�2BS�2
�1

0
MT�

ˇ

�

˛†g
˛R2

where QD�1†1 and the subscript 0 means the basepoint component. The maps
˛R2 and ˛†g

are defined as in Remark 2.10 and the map � is the natural composition

�2BS�2!Q.�2BS�2/!QS�2.BS�2C/:

Thus, to prove the theorem, we need to show that the induced map

H3.�
2BS�2IQ/!H3.�

1
0 MT�IQ/
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is surjective. Consider the commutative diagram

(3-32)

�3.�
2BS�2/˝Q �3.�

1
0

MT�/˝Q

H3.�
2BS�2IQ/ H3.�

1
0

MT�IQ/

g

f

Because we have H1.�
1
0

MT�IQ/DH3.BS�2IQ/D 0, the rational Hurewicz theo-
rem implies that the right vertical map is surjective. Therefore, to prove that the map
f in (3-32) is surjective, it is sufficient to prove that the map g is surjective.

Recall from Theorem 3.3 that we have the fibration sequence

QS�2.BS�2C/
h
�!�1MT�!Q.BS�2C/;

and its long exact sequence of homotopy groups in (3-7) implies that the map h induces
a surjection between third rational homotopy groups

(3-33) �s
5.BS�2/˝Q

h�
���3.�

1
0 MT�/˝Q:

As for the surjectivity of the map g , we observed in the diagram (3-31) that the map g

is induced by the composition

(3-34) �3.�
2BS�2/˝QD �5.BS�2/˝Q

��
�!�3.QS�2.BS�2C//˝Q

h�
���3.�

1
0 MT�/˝Q:

Note that �3.QS�2.BS�2C//D �
s
5
.BS�2/˚�

s
5

and, since �s
5
D 0, the map g is sur-

jective if in (3-34) the map �� is surjective. Recall BS�2 is 3–connected (Remark 1.5);
therefore the rational Hurewicz theorem implies that the Hurewicz map

�5.BS�2/˝Q Š
�!�s

5.BS�2/˝Q;

is an isomorphism. Hence g D h� ı�� is surjective.

Lemma 3.35 The diagram (3-31) is homotopy commutative.

Proof Since the group Diffıc.R
2/ acts on the surface †g via the embedding R2 ,!†g ,

we obtain a map between Borel constructions

R2==Diffıc.R
2/!†g==Diffıc.R

2/:

On the other hand, †g==Diffıc.R
2/ is a flat surface bundle induced by the pullback of the

universal flat surface bundle over BDiffı.†g/ via the map BDiffıc.R
2/!BDiffı.†g/.
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Therefore, we have the homotopy commutative diagram

BDiffıc.R
2/ BDiffı.†g/

†g==Diffıc.R
2/ †g==Diffı.†g/R2==Diffıc.R

2/

�
� 0

By the naturality of the pretransfer construction in Remark 2.10, we have a commutative
diagram of spectra

(3-36)

†1.BDiffı.†g/C/ Th.�T�/

†1.BDiffıc.R
2/C/ Th.�T� 0/

Note that, by the flatness of the bundles, the classifying maps for T� and T� 0 lift
to BS�2 . But, since BDiffc.R2/ is contractible, topologically the bundle R2==Diffıc.R

2/

is trivial, which implies that the bundle T� 0 is trivial, hence the classifying map for
T� 0 further lifts to BS�2 . Thus, we have a commutative diagram

(3-37)

Th.�T�/ Th.���. //

Th.�T� 0/ Th.�R2! BS�2/

where R2 denotes the trivial 2–dimensional vector bundle over BS�2 . From the
diagrams (3-36) and (3-37), we obtain a homotopy commutative diagram

(3-38)

BDiffıc.R
2/ Q0S�2.BS�2C/

BDiffı.†g/ �1
0

MT�
˛†g

˛R2

We are left to show that the map ˛R2 equals � ı ˇ up to homotopy. Recall that
R2==Diffıc.R

2/ ' R2 � BDiffıc.R
2/ is topologically trivial bundle and the flatness

(transverse foliation on the total space) of the bundle gives rise to a map

f W R2
�BDiffıc.R

2/! BS�2;

which classifies the vertical tangent bundle T� 0 . Since the foliation on R2�BDiffıc.R
2/

is trivial outside of a compact set of the fiber, the map f factors through the map
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R2 �BDiffıc.R
2/!†2.BDiffıc.R

2/C/. Therefore, the spectrum map

†1.BDiffıc.R
2/C/! Th.�R2

!R2
�BDiffıc.R

2//! Th.�R2
! BS�2/;

whose adjoint is ˛R2 , factors as

†1.BDiffıc.R
2/C/

id
�!†1�2†2.BDiffıc.R

2/C/! Th.�R2
! BS�2/:

Using �1–†1–adjointness, the map

˛R2 W BDiffıc.R
2/!Q.BDiffıc.R

2/C/!QS�2.BS�2C/;

can be factored as

(3-39)

�2BS�2 QS�2.BS�2C/

BDiffıc.R
2/ Q.BDiffıc.R

2/C/

�

ˇ

Hence, ˛R2 ' � ıˇ .

Using the same idea, we will show that, up to torsion, every codimension-2 foliation
on a manifold of dimension 5 is foliated cobordant to a flat surface bundle of genus
higher than 5.

Any flat †g –bundle Œ†g!EnC2 �
�!Bn� over an n–manifold Bn gives a codimension-

2 foliation on EnC2 . We let en be the map that assigns to a flat surface the foliated
cobordism class of the codimension-2 foliation on the total space. Hence, en induces
a well-defined map

enW MSOn.BDiffı.†g//! F�nC2;2:

Let E5 �
�!B3 be a flat †g –bundle over a 3–dimensional manifold B3 ; then charac-

teristic classes h1:c2; h1:c
2
1

of the codimension 2 foliation on E5 live in H 5.E5IR/,
hence

x D

�Z
fiber

h1:c
2
1 ; ŒB�

�
; y D

�Z
fiber

h1:c2; ŒB�

�
are real characteristic numbers associated to E5 �

�!B3 . Consider the diagram

MSO3

�`
g BDiffı.†g;1; @/

�
F�5;2

R2
.x;y/

�R
h1c2;

R
h1c2

1

�
e3
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Since the classes x and y are invariants of the foliated cobordism class, it is easy to
see that the map induced by .x;y/ factors through F�5;2 . The surjectivity of the map
induced by the integration of h1c2 and h1c2

1
is the statement of Rasmussen’s theorem.

In Theorem 3.27, we showed that the map induced by .x;y/ is rationally surjective.
Now we prove that in fact e3 is also rationally surjective.

Theorem 3.40 The map

e3W MSO3.BDiffı.†g//! F�5;2

is rationally surjective if g � 5, and is a rational isomorphism if g � 6.

Proof Recall that, by a result of [15, Theorem 10 ], the map

F�k;2!MSOk.BS�2/

is rationally bijective for k > 2. Furthermore, by Theorems 2.6 and 1.14, we know
that, for n� 1

3
.2g� 2/, the map

MSOn.BDiffı.†g//!MSOn.�
1
0 MT�/

is bijective and, for n� 2
3
g , it is surjective. Consider the commutative diagram

(3-41)

MSO3.BDiffı.†g// F�5;2

MSO3.�
1
0

MT�/ MSO4.BS�2/

e3

Therefore, the statement of the theorem is equivalent to proving that the bottom map in
(3-41) is rationally an isomorphism. Note that the bottom map is given by composing
the suspension map and the Thom isomorphism

MSO3.�
1
0 MT�/ �

�!MSO3.MT�/
Thom iso
�����!MSO5.BS�2/:

Recall that MSO�.X /˝QŠH�.X IQ/˝MSO�.pt/ for any topological space X .
Since both BS�2 and �1

0
MT� are simply connected, one can easily see that

MSO3.�
1
0 MT�/˝Q Š

�!H3.�
1
0 MT�IQ/;

MSO5.BS�2/˝Q Š
�!H5.BS�2IQ/:

Therefore, we need to show that the natural map

H3.�
1
0 MT�IQ/!H3.MT�IQ/;
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is an isomorphism. We know from the proof of Proposition 3.19 that the above is
surjective. To prove that it is also injective consider the commutative diagram

�3.�
1
0

MT�/˝Q �3.MT�/˝Q

H3.�
1
0

MT�IQ/ H3.MT�IQ/

As we observed in the proof of Proposition 3.19, the composition of the top horizontal
map and the right vertical map is an isomorphism. Given that the left vertical map is
surjective by the rational Hurewicz theorem, the bottom horizontal map must be an
isomorphism.

Unlike e3 , the map
e2W MSO2.BDiffı.†g//! F�4;2

is not rationally surjective. To every codimension-2 foliation F on a 4–manifold M ,
we can assign the difference of the Pontryagin classes p1.M /�p1.�.F//, where �.F/
is the normal bundle of F . It is easy to see that the number

R
M p1.M /�p1.�.F// is

an invariant of the foliated cobordism class of F , hence it induces a map

�W F�4;2˝Q!Q:

Suppose we have a flat surface bundle †g!M
�
�!†h ; then the normal bundle of

the codimension-2 foliation on M is the vertical tangent bundle T� . It is easy to see
that p1.M /D p1.T�/D p1.�.F// (see [31, Proposition 4.11]). Hence � vanishes
on flat surface bundles. We prove below that the vanishing of � is essentially the
only obstruction for a codimension-2 foliation F on a 4–manifold M to be foliated
cobordant to a flat surface bundle.

Theorem 3.42 For g � 4, there is a short exact sequence

(3-43) 0!MSO2.BDiffı.†g//˝Q
e2
�!F�4;2˝Q

�
�!Q! 0:

Proof By [15, Theorem 10 ], we know that

F�4;2˝Q Š
�!MSO4.BS�2/˝Q:

To show that � is surjective, we just need to find a 4–manifold M and a map
f W M!BS�2 such that � does not vanish on ŒM; f �2MSO4.BS�2/. Let M be CP2 ,
which is a 4–manifold whose signature is not zero, and let f be a nullhomotopic map.
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Since f is trivial the normal bundle of the Haefliger structure H induced by f is
trivial. Thus, p1.�.H//D 0. Hence, we have

�.ŒCP2; f �/D p1.CP2/�p1.�.H//D 3¤ 0:

To prove the injectivity of e2 , note that we have

MSO2.�
1
0 MT�/˝Q Š

�!H2.�
1
0 MT�IQ/ Š�!H2.MT�IQ/ Š�!H4.BS�2IQ/;

where the second isomorphism is given by the Hurewicz theorem, as �1.�
1
0

MT�/D 0.
Hence, using Theorems 2.6 and 1.14, for g � 4, the map

MSO2.BDiffı.†g//˝Q!H4.BS�2IQ/

is an isomorphism. On the other hand, by the Atiyah–Hirzebruch spectral sequence,
we have a short exact sequence

0!Q!MSO4.BS�2/˝Q!H4.BS�2IQ/! 0:

Therefore, we have a commutative diagram

MSO2.BDiffı.†g//˝Q F�4;2˝Q

H4.BS�2IQ/ MSO4.BS�2/˝Q

e2

Š Š

Hence, the map e2 is injective with cokernel Q. Since � vanishes on the image of e2 ,
the exactness in the middle term of (3-43) is also readily implied.

Remark 3.44 Jonathan Bowden pointed out to the author that in fact there is an
example of a codimension-2 foliation (not just S�2 –structure) which is not in the
image of e2 . To include his example, let F be the foliation by fibers of a surface
bundle over a surface whose signature is nonzero. It is easy to see that �.F/ ¤ 0,
hence F is not in the image of e2 .
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Kato–Nakayama spaces, infinite root stacks and
the profinite homotopy type of log schemes
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For a log scheme locally of finite type over C , a natural candidate for its profinite
homotopy type is the profinite completion of its Kato–Nakayama space. Alternatively,
one may consider the profinite homotopy type of the underlying topological stack of
its infinite root stack. Finally, for a log scheme not necessarily over C , another natural
candidate is the profinite étale homotopy type of its infinite root stack. We prove that,
for a fine saturated log scheme locally of finite type over C , these three notions agree.
In particular, we construct a comparison map from the Kato–Nakayama space to the
underlying topological stack of the infinite root stack, and prove that it induces an
equivalence on profinite completions. In light of these results, we define the profinite
homotopy type of a general fine saturated log scheme as the profinite étale homotopy
type of its infinite root stack.

14F35, 55U35; 55P60

1 Introduction

Log schemes are an enlargement of the category of schemes due to Fontaine, Illusie
and Kato; see Kato [27]. The resulting variant of algebraic geometry, “logarithmic
geometry”, has applications in a variety of contexts ranging from moduli theory to
arithmetic and enumerative geometry (see Abramovich, Chen, Gillam, Huang, Olsson,
Satriano and Sun [1] for a recent survey).

In the past years there have been several attempts to capture the “log” aspect of these
objects and translate it into a more familiar terrain. In the complex analytic case, Kato
and Nakayama [28] introduced a topological space Xlog (where X is a log analytic
space), which may be interpreted as the “underlying topological space” of X , and
over which, in some cases, one can write a comparison between logarithmic de Rham
cohomology and ordinary singular cohomology. In a different direction, for a log
scheme X , Kato introduced two sites, the Kummer-flat site XKfl and the Kummer-étale
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site XKet , that are analogous to the small fppf and étale site of a scheme, and were
used later by Hagihara [19] and Nizioł [35] to study the K–theory of log schemes.

Recently, the fourth author together with Vistoli [48] introduced and studied a third
incarnation of the “log” aspect of a log structure, namely the infinite root stack 1

p
X ,

and used it to reinterpret Kato’s Kummer sites and link them to parabolic sheaves
on X . This stack is defined as the limit of an inverse system of algebraic stacks,
1
p
X D lim

 ��n

n
p
X , parametrizing nth roots of the log structure of X .

The infinite root stack can be thought of as an “algebraic incarnation” of the Kato–
Nakayama space: if X is a log scheme locally of finite type over C , both Xlog and
1
p
X have a map to X . The fiber of Xlog!Xan over a point x 2Xan is homeomorphic

to .S1/r , where r is the rank of the log structure at x . For all n, the reduced fiber of
n
p
X ! X over the corresponding closed point of X is equivalent to the classifying

stack B.Z=nZ/r (for the same r ). Regarding the infinite root stack not as the limit
lim
 ��n

n
p
X , but instead as the diagram of stacks

n 7!
n
p
X;

ie as a pro-object or “formal limit”, yields then that the reduced fiber of 1
p
X !X is

the diagram of stacks
n 7! B.Z=nZ/r ;

which regarded as a pro-object is simply B yZr' bBZr , the profinite completion of .S1/r.

In this paper we formalize this analogy and prove a comparison result between the
profinite completions of Xlog and 1

p
X for a fine saturated log scheme X locally of

finite type over C . Furthermore, we put this result in a wider circle of ideas, centered
around the concept of the profinite homotopy type of a log scheme.

Our approach relies in a crucial way on a careful reworking of the foundations of the
theory of topological stacks and profinite completions within the framework of 1–
categories; see Lurie [31]. This allows us to have greater technical control than earlier
and more limited treatments, and plays an important role in the proof of our main result.
In the second half of the paper we construct a comparison map between Xlog and 1

p
X

and show that it is induces an equivalence between their profinite completions. The
proof involves an analysis of the local geometry of log schemes, and a local-to-global
argument which reduces the statement to a local computation. Next, we review the
main ideas in the paper in greater detail.

1.1 Topological stacks and profinite completions of homotopy types

The first ingredient that we need in order to compare Xlog and 1
p
X is the notion of

a topological stack (see Noohi [36]) associated with an algebraic stack. This is an

Geometry & Topology, Volume 21 (2017)
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extension of the analytification functor defined on schemes and algebraic spaces, which
equips algebraic stacks with a topological counterpart, and allows one, for example,
to talk about their homotopy type. Given an algebraic stack X locally of finite type
over C , let us denote by Xtop its “underlying topological stack”. This formalism allows
us to carry (infinite root stack) over 1

p
X to the topological world, where Xlog lives.

The second ingredient we need is a functorial way of associating to a topological stack
its homotopy type. Although this is in principle accomplished by Noohi [37] and Coyne
and Noohi [14], the construction is a bit complicated and it is difficult to notice the nice
formal properties this functor has from the construction. We instead construct a functor
…1 associating to a topological stack X its fundamental 1–groupoid. The source
of this functor is a suitable 1–category of higher stacks on topological spaces, and
the target is the 1–category S of spaces. Using the language and machinery of 1–
categories makes the construction and functoriality of …1 entirely transparent; it is the
unique colimit-preserving functor which sends each space T to its weak homotopy type.

The third ingredient we need is a way of associating to a space its profinite completion.
Combining this with the functor …1 gives a way of associating to a topological
stack a profinite homotopy type. The notion of profinite completion of homotopy
types is originally due to Artin and Mazur [5]. Profinite homotopy types have since
played many important roles in mathematics, perhaps most famously in relation to
the Adams conjecture from algebraic topology; see Friedlander [16], Quillen [42]
and Sullivan [47]. A more modern exposition using model categories is given by
Isaksen [25] and Quick [40; 41]; however, the notion of profinite completion is a bit
complicated in this framework. Finally, Lurie [32] briefly introduces an 1–categorical
model for profinite homotopy types, which has recently been shown to be equivalent to
Quick’s model by Barnea, Harpaz and Horel [6] (and also to a special case of Isaksen’s).
The advantage of Lurie’s framework is that the definition of profinite spaces and the
notion of profinite completion become very simple. A � –finite space is a space X
with finitely many connected components, and finitely many homotopy groups, all of
whom are finite, and a profinite space is simply a pro-object in the 1–category of
� –finite spaces. The profinite completion functor

�. � /W S! Prof.S/

from the 1–category of spaces to the 1–category of profinite spaces preserves
colimits, and composing this functor with …1 gives a colimit-preserving functor �…1
which assigns to a topological stack its profinite homotopy type. This property is used
in an essential way in the proof of our main theorem. Using this machinery, we are
able to derive some nontrivial properties of profinite spaces that are used in a crucial
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way to prove our main result; in particular we show that profinite spaces can be glued
along hypercovers (Lemma 6.1).

1.2 The comparison map and the equivalence of profinite completions

Our main result states:

Theorem (see Theorem 6.4) Let X be a fine saturated log scheme locally of finite
type over C . Then there is a canonical map of pro-topological stacks

ˆX W Xlog!
1
p
X top

that induces an equivalence upon profinite completion,�…1.Xlog/
�
�! �…1.1pX top/:

This theorem makes precise the idea that the infinite root stack is an algebraic incarnation
of the Kato–Nakayama space, and that it completely captures the “profinite homotopy
type” (à la Artin–Mazur) of the corresponding log scheme.

The construction of the comparison map ˆX is first performed étale locally on X ,
where there is a global chart for the log structure, and then globalized by descent. The
local construction uses the quotient stack description of the root stacks, that reduces
the problem of finding a map to constructing a (topological) torsor on Xlog with an
equivariant map to a certain space.

This permits the construction of ˆX as a canonical morphism of pro-topological stacks
over Xan :

Xlog
ˆX

//

�log
!!

1
p
X top

�1
{{

Xan

The jump patterns of the fibers of �log and �1 reflect the way in which the rank of
the log structure varies over Xan . More formally, the log structure defines a canonical
stratification on Xan called the rank stratification, which makes Xlog and 1

p
X top

into stratified fibrations. After profinite completion, the fibers of �log and �1 on
each stratum become equivalent; indeed they are equivalent respectively to real tori of
dimension n and to the (pro-)classifying stacks B yZn . The fact that the fibers of �log and
�1 are profinite homotopy equivalent was in fact our initial intuition as to why the main
result should be true. Extracting from this fiberwise statement a proof that ˆX induces
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an equivalence of profinite homotopy types requires a local-to-global argument that
makes full use of the 1–categorical framework developed in the first half of the paper.

The Kato–Nakayama space models the topology of log schemes, but its applicability is
limited to schemes over the complex numbers. Our results suggest that the infinite root
stack encodes all the topological information of log schemes (or at least its profinite
completion) in a way that is exempt from this limitation. More precisely, if X is a
log scheme locally of finite type over C , there are three natural candidates for its
“profinite homotopy type”: the profinite completion of the Kato–Nakayama space Xlog ,
the profinite étale homotopy type of 1

p
X and the profinite completion of the (pro-

)topological stack 1
p
X top . Theorems 6.4 and 7.2 (the latter proven by Carchedi [11])

imply that these three constructions give the same result. This justifies the definition of
the profinite homotopy type for a log scheme X , even outside of the complex case, as
the profinite étale homotopy type of its infinite root stack 1

p
X .

Another possible approach to this would be to define the homotopy type of a log scheme
via Kato’s Kummer-étale topos. As proved by Talpo and Vistoli [48, Section 6.2], this
topos is equivalent to an appropriately defined small étale topos of the infinite root
stack. It is not immediate, however, to link the resulting profinite homotopy type and
the one that we define in the present paper. We plan to address this point in future work.

We believe that our results hold in the framework of log analytic spaces as well. Even
though root stacks of those have not been considered anywhere yet, the construction
and results about them that we use in the present paper should carry through without
difficulty, using some notion of “analytic stacks” instead of algebraic ones.

In recent unpublished work, Howell and Vologodsky give a definition of the motive
of a log scheme inside Voevodsky’s triangulated category of motives. Based on our
results we expect that infinite root stacks should provide an alternative encoding of the
motive of log schemes, or a profinite approximation of it. It is an interesting question
to explore possible connections between these two viewpoints.

Description of content

The paper is structured as follows.

In the first two sections we develop the framework necessary to associate profinite
homotopy types to (pro-)algebraic and topological stacks. Along the way, in Section 3.4
we prove an interesting result (Theorem 3.25) which expresses the homotopy type of the
Kato–Nakayama space of a log scheme as the classifying space of a natural category.
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As a first step towards the main theorem, we construct in Section 4 (Proposition 4.1) a
canonical map of pro-topological stacks

(1) ˆX W Xlog!
1
p
X top

by exploiting the local quotient stack presentations of the root stacks n
p
X , and gluing

the resulting maps.

Section 5 contains results about the topology of the Kato–Nakayama space and the
topological infinite root stack that we use in an essential way in the proof of our main
result.

In Section 6, we give the proof of Theorem 6.4: we show that the canonical map (1)
induces an equivalence after profinite completion. The proof is based on a local-to-
global analysis: we use a suitable hypercover U � of Xan constructed in Section 5 to
reduce the question to the restriction of the map ˆX to each element of this hypercover.
We then use the results about the topology of the Kato–Nakayama space and the
topological infinite root stack proven in the same section to reduce to showing that the
map induces a profinite homotopy equivalence along fibers. This concludes the proof.

Finally, in Section 7 we make some remarks about the definition of the profinite
homotopy type of a general log scheme.

In the appendix, we gather definitions and facts that we use throughout the paper about
log schemes, the analytification functor, the Kato–Nakayama space, root stacks, and
topological stacks. In particular, in Appendix A.6, we carefully construct the “rank
stratification” of X (and Xan ), over which the characteristic monoid M of the log
structure is locally constant.

Notations and conventions We will always work over a field k , which will almost
always be the complex numbers C . In particular all our log schemes will be fine and
saturated, and locally of finite type over C , unless otherwise stated.

If P is a monoid we denote by P gp the associated group. Our monoids will typically
be integral, finitely generated, saturated and sharp (hence torsion-free). A monoid P
with these properties has a distinguished “generating set”, consisting of all its indecom-
posable elements. This gives a presentation of any such monoid P through generators
and relations.

If F is a sheaf of sets on the small étale site of a scheme, its “stalks” will always be
stalks on geometric points.

By an 1–category, we mean a quasicategory or inner-Kan complex. These are a
model for .1; 1/–categories. We will follow very closely the notational conventions
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and terminology from Lurie [31], and refer the reader to the index and notational
index in [31]. One slight deviation from the notational conventions just mentioned
that will be made is that, for C and D objects of an 1–category C , we will denote
by HomC .C;D/ the space of morphisms from C to D in C , rather than using the
notation MapC .C;D/, in order to highlight the analogy with classical category theory.
A very brief heuristic introduction to 1–categories can be found in Appendix A of
Carchedi [12]. See also Groth [18].

Acknowledgements All of the authors would like to thank their respective home
institutions for their support.

We are also happy to thank Kai Behrend, Thomas Goodwillie, Marc Hoyois, Jacob
Lurie, Thomas Nikolaus, Behrang Noohi, Gereon Quick, Angelo Vistoli and Kirsten
Wickelgren for useful conversations.

We are grateful to the anonymous referee for a careful reading and useful comments,
in particular for pointing out the short proof of Proposition 4.4.

2 Profinite homotopy types

In this section we will introduce the 1–categorical model for profinite spaces that we
will use in this article. This 1–category is introduced in [32, Section 3.6]; a profinite
space will succinctly be a pro-object in the 1–category of � –finite spaces. This
notion is equivalent to the notion of profinite space introduced by Quick [40; 41] (see
[6]), but the machinery and language of 1–categories is much more convenient to
work with. Most importantly, the notion of profinite completion becomes completely
transparent in this set up, and it is left adjoint to the canonical inclusion of profinite
spaces into pro-spaces, and hence in particular preserves all colimits. We use this fact
in an essential way in the proof of our main result, and we do not know how to prove
the analogous fact about profinite completion in any other formalism.

We start first by reviewing the notion of ind-objects and pro-objects.

We will interchangeably use the notation S and Gpd1 for the 1–category of spaces,
and the 1–category of 1–groupoids. These two 1–categories are one and the same,
and we will use the different notations solely to emphasize in what way we are viewing
the objects.

Recall that for D a small category, the category of ind-objects is essentially the category
obtained from D by freely adjoining formal filtered colimits. This construction carries
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over for 1–categories. Moreover, if D is an essentially small 1–category, the
1–category of ind-objects in D , Ind.D/, admits a canonical functor

j W D! Ind.D/

satisfying the following universal property:

For every 1–category E which admits small filtered colimits, composition with j
induces an equivalence of 1–categories

Funfilt.Ind.D/; E /! Fun.D ; E /;

where Funfilt.Ind.D/; E / denotes the 1–category of all functors Ind.D/! E which
preserve filtered colimits.

A more concrete description of the 1–category Ind.D/ is as follows. First, recall the
following proposition:

Proposition 2.1 [31, Corollary 5.3.5.4] Denote by Psh1.D/ the 1–category of
1–presheaves on D , that is, the functor category

Fun.Dop;Gpd1/:

Let D be an essentially small1–category and let F W Dop!Gpd1 be an1–presheaf.
Then the following conditions are equivalent:

(i) In the right fibration Z
D

F ! D

classified by F ,
R

D F is a filtered 1–category.

(ii) There exists a small filtered 1–category J and a functor

f W J! D

such that F is the colimit of the composite

J
f
�!D

y
,�! Psh1.D/

(where y denotes the Yoneda embedding),

and, if D has finite colimits, (i) and (ii) are equivalent to

(iii) F is left exact (ie preserves finite limits).
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The1–category Ind.D/ may be described as the full subcategory of Psh1.D/ satisfy-
ing the equivalent conditions (i) and (ii) (or (iii) if D has finite colimits). In particular,
this implies that j is full and faithful, since it is a restriction of the Yoneda embedding.
In a nutshell Psh1.D/ is the 1–category obtained from D by freely adjoining formal
colimits, and (ii) above states that Ind.D/ is the full subcategory thereof on those
formal colimits of objects in D which are filtered colimits.

The notion of a pro-object is dual to that of an ind-object; it is a formal cofiltered limit.
By definition, the 1–category of pro-objects of an essentially small 1–category D is

Pro.D/ ..D Ind.Dop/op:

If D has small limits, we see that Pro.D/ can be described as the full subcategory of
Fun.D ;Gpd1/

op on those functors

F W D! Gpd1

such that F preserves finite limits. Since this definition makes sense even when D is
not essentially small, we make the following definition, due to Lurie:

Definition 2.2 If E is any accessible1–category with finite limits, then we define the
1–category of pro-objects of E , Pro.E /, to be the full subcategory of Fun.E ;Gpd1/

op

on those functors F W E ! Gpd1 which are accessible and preserve finite limits.

Remark 2.3 If E is any accessible 1–category and E is an object of E , then the
functor

Hom.E; � /W E ! Gpd1

corepresented by E is accessible and preserves all limits. This induces a fully faithful
functor

E
j
,�! Pro.E /:

The functor j satisfies the following universal property:

If D is any 1–category admitting small cofiltered limits, then composition with j
induces an equivalence of 1–categories

(2) Funcofilt.Pro.E /;D/! Fun.E ;D/;

where Funcofilt.Pro.E /;D/ is the full subcategory of Fun.Pro.E /;D/ spanned by those
functors which preserve small cofiltered limits; see [32, Proposition 3.1.6].

Remark 2.4 If C is any (not necessarily accessible) 1–category, there always exists
an 1–category Pro.C / satisfying the universal property (2). This is a special case of
[31, Proposition 5.3.6.2].
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Remark 2.5 Let E be any accessible 1–category which is not necessarily essentially
small. Let U be the Grothendieck universe of small sets and let V be a Grothendieck
universe such that U2V, so that we may regard V as the Grothendieck universe of large
sets. Let bGpd1 denote the 1–category of 1–groupoids in the universe V. By the
proof of [32, Proposition 3.1.6], it follows that the essential image of the composition

Pro.E / ,! Fun.E ;Gpd1/
op ,! Fun.E ; bGpd1/op

consists of those functors F W E ! bGpd1 for which there exists a small filtered
1–category J and a functor

f W J! E op

such that F is the colimit of the composite

J
f
�! E op ,! Fun.E ; bGpd1/:

Remark 2.6 In light of Remark 2.5, any object X of Pro.E /, for E an accessible
1–category, can be written as a cofiltered limit of a diagram of the form

F W I! E
j
,�! Pro.E /;

or, in more informal notation,
X D lim

i2I

Xi :

Unwinding the definitions, we see that if Y D limj2J Yj is another such object of
Pro.E /, then the usual formula for the morphism space holds:

HomPro.E /.X; Y /' lim
j2J

colim
i2I

HomE .Xi ; Yj /:

Now suppose that E has a terminal object 1. Then

HomPro.E /.X; j.1//' colim
i2I

HomE .Xi ; 1/:

Notice that each space HomE .Xi ; 1/ is contractible since 1 is terminal, and, since
.�2/–truncated objects (ie terminal objects) are closed under filtered colimits in S by
[31, Corollary 5.5.7.4], it follows that HomPro.E /.X; j.1// itself is a contractible space,
and hence we conclude that j.1/ is a terminal object.

Example 2.7 Let E D S be the 1–category of spaces. Then the 1–category of
pro-spaces, Pro.S/, can be identified with the opposite category of functors F W S! S

such that F is accessible and left exact. Notice that any space X gives rise to a
pro-space

Hom.X; � /W S! S
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which moreover preserves all limits. Moreover if F W S! S is any functor which pre-
serves all limits, then by the Adjoint Functor theorem for 1–categories [31, Corollary
5.5.2.9], F must have a right adjoint G , and is moreover accessible by [31, Proposition
5.4.7.7]. This then implies that

Hom.G.�/; X/' Hom.�; F .X//' F.X/:

Hence F ' j.G.�//. We conclude that the essential image of

j W S ,! Pro.S/

is precisely those 1–functors S! S which preserve all small limits.

Proposition 2.8 The functor

T W Pro.S/
Hom.j.�/; � /
������! S

is right adjoint to the canonical inclusion j W S! Pro.S/.

Proof By Remark 2.5, we may identify Pro.S/op with a subcategory of the 1–
category Fun.S; bGpd1/ of large 1–copresheaves, and since limits commute with
limits, this subcategory is stable under small limits. Note that this implies that Pro.S/
is cocomplete. Since the Yoneda embedding into large 1–presheaves

Sop y
,�!bPsh1.S/

preserves small limits, it follows that

j W S ,! Pro.S/

preserves small colimits. Since S' Psh1.1/, where 1 is the terminal 1–category,
and since Pro.S/ is cocomplete, one has by [31, Theorem 5.1.5.6] that j ' Lany1

.t/,
where y1 is the Yoneda embedding 1! S and t W 1! Pro.S/ is the functor picking
out the object j.�/. It follows immediately from the Yoneda lemma that Hom.j.�/; � /
is right adjoint to Lany1

.t/.

Remark 2.9 Let P W S! S be a pro-space. By [31, Proposition 5.4.6.6], since P is
accessible it follows that the associated left fibrationZ

S

P

is accessible, and hence has a small cofinal subcategory

r W CP ,!

Z
S

P;
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and P may be identified with the limit of the composite

CP
r
,�!

Z
S

P
�P
�! S

j
,�! Pro.S/:

We claim that
T .P /' lim�P ı r:

Indeed,
T .P /D Hom.j.�/; P /

' Hom.j.�/; lim j ı�P ı r/

' lim Hom.j.�/; j ı�P ı r/

' lim Hom.�; �P ı r/

' lim�P ı r:

By the same proof, if one has P presented as a cofiltered limit P D lim j.X˛/ of
spaces, then T .P /' limX˛ . In fact, this holds more generally, by the next proposition.

Proposition 2.10 Let C be an accessible 1–category which admits small filtered
limits. Then the canonical inclusion

j W C ,! Pro.C /

has a right adjoint T and if F W I! C is a cofiltered diagram corresponding to an
object in Pro.C /, then T .F /D limF .

Proof By Remark 2.5, composition with

j W C ,! Pro.C /

induces an equivalence of 1–categories

Funcofilt.Pro.C /;C /! Fun.C ;C /;

so we can find a functor T W Pro.C /! C and an equivalence

�W idC
�
�!T ı j:

Let Z be an arbitrary object of Pro.C /; then we can write Z D limi2I j.Xi /. First
note that since � is an equivalence and T preserves cofiltered limits (by definition),
we have that for such a Z ,

T .Z/' lim
i2I

Xi :
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This shows that T has the desired properties on pro-objects. Let us now show that T
is a right adjoint to j . Let C be an object of C ; then we have

HomC .D; T .Z//' HomC .D; lim
i2I

Xi /' lim
i2I

HomC .D;Xi /;

and since j is fully faithful, we have for each i

HomC .D;Xi /' HomProf.C /.j.D/; j.Xi //:

It follows then that

HomC .D; T .Z//' lim
i2I

HomProf.C /.j.D/; j.Xi //

' HomProf.C /.j.D/; lim
i2I

j.Xi //

D HomProf.C /.j.D/;Z/:

Definition 2.11 A space X in S is � –finite if all of its homotopy groups are finite,
it has only finitely many nontrivial homotopy groups, and finitely many connected
components.

Definition 2.12 Let Sfc denote the full subcategory of the 1–category S on the � –
finite spaces. Sfc is essentially small and idempotent complete (and hence accessible).
The 1–category of profinite spaces is defined to be the 1–category

Prof.S/ ..D Pro.Sfc/:

Proposition 2.13 Let V be a � –finite space. Note that V is n–truncated for some n,
since it has only finitely many homotopy groups. The associated profinite space j.V /
is also n–truncated.

Proof Let X D limi2IXi be a profinite space. Then, by Remark 2.6, we have that

HomProf.S/.X; j.V //' colim
i2I

HomSfc.Xi ; V /:

Each space HomSfc.Xi ; V / is n–truncated since V is, and n–truncated spaces are stable
under filtered colimits by [31, Corollary 5.5.7.4], so it follows that HomProf.S/.X; j.V //

is also n–truncated.

Remark 2.14 The assignment C 7! Pro.C / is functorial among accessible 1–
categories with finite limits. Given a functor f W C ! D , the composite

C
f
�!D

j
,�! Pro.D/
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corresponds to an object of the 1–category Fun.C ;Pro.D//, which by Remark 2.3 is
equivalent to the 1–category Funcofilt.Pro.C /;Pro.D//. Hence, one gets an induced
functor

Pro.f /W Pro.C /! Pro.D/

which preserves cofiltered limits. Moreover, Pro.f / is fully faithful if f is. If f
happens to be accessible and left exact, then there is an induced functor in the opposite
direction, given by

f �W Pro.D/! Pro.C /; .D
F
�!Gpd1/ 7! .C

f
�!D

F
�!Gpd1/;

and f � is left adjoint to Pro.f /. See [32, Remark 3.1.7] (but note there is a typo,
since f � is in fact a left adjoint, not a right adjoint).

Example 2.15 The canonical inclusion i W Sfc ,! S induces a fully faithful embedding

Pro.i/W Prof.S/ ,! Pro.S/

of profinite spaces into pro-spaces. Moreover, i is accessible and preserves finite limits,
hence the above functor has a left adjoint

i�W Pro.S/! Prof.S/:

This functor sends a pro-space P to its profinite completion.

Definition 2.16 We denote by �. � / the composite

S
j
,�! Pro.S/ i�

�! Prof.S/

and call it the profinite completion functor. Concretely, if X is a space in S, then yX
corresponds to the composite

Sfc i
,�! S

Hom.X; � /
�����! S:

This functor has a right adjoint given by the composite

Prof.S/
Pro.i/
,��!Pro.S/ T

�! S:

We will denote this right adjoint simply by U .

Remark 2.17 We will sometimes abuse notation and denote the profinite completion
of a pro-space Y also by yY rather than i�Y , when no confusion will arise.
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2.1 The relationship with profinite groups

In this subsection, we will touch briefly upon the relationship between profinite groups
and profinite spaces. Recall the notion of profinite completion of a group. A profinite
group is a pro-object in the category of finite groups. Equivalently, a profinite group is
a group object in profinite sets; see [32, Proposition 3.2.12].

Denote by i W FinGp ,! Gp the fully faithful inclusion of the category of finite groups
into the category of groups. The composite

Gp ,! Pro.Gp/ i�
�! Pro.FinGp/' Gp.Pro.FinSet//

is the functor assigning to a group its profinite completion. We also denote this functor
by �. � / when no confusion will arise. Recall that the profinite completion of a group
has a classical concrete description as follows: Let G be a group, then its profinite
completion is the limit limN j.G=N/, where N ranges over all the finite index normal
subgroups of G . Similarly, denote by iabW FinAbGp ,!AbGp the fully faithful inclusion
of the category of finite abelian groups into the category of abelian groups. By the
analogous construction to the above, there is an induced profinite completion functor

�. � /abW AbGp! Pro.FinAbGp/:

It can be described classically by the same formula as in the nonabelian case. If

�W AbGp ,! Gp

is the canonical inclusion of abelian groups into groups, it follows that the following
diagram commutes up to canonical natural equivalence:

AbGp
�. � /ab

//

�

��

Pro.FinAbGp/

Pro.�/
��

Gp
�. � /

// Pro.FinGp/

By [32, Proposition 3.2.14], there is a canonical equivalence of categories

Pro.FinAbGp/' AbGp.Pro.FinSet//

between the category of pro-objects in finite abelian groups and the category of abelian
group objects in profinite sets. Thus, in particular, finite coproducts (direct sums) in
Pro.FinAbGp/ coincide with finite products. Since �. � /ab is a left adjoint, it preserves
direct sums, and by Remark 2.14, Pro.�/ is a right adjoint (since � preserves finite
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limits), so Pro.�/ preserves products. It follows that the composite�. � / ı�W AbGp! Pro.FinGp/

preserves finite products.

Corollary 2.18 Let k be a nonnegative integer. Then there is a canonical isomorphism
of profinite groups cZk Š yZk :
We now note a recent result which compares the 1–categorical model for profinite
spaces just presented with the model categorical approach developed by Quick [40; 41]:

Theorem 2.19 [6, Corollary 7.4.6] The1–category associated to the model category
presented in [40; 41] is equivalent to Prof.S/.

The details of Quick’s model category need not concern us here, but we cite the above
theorem in order to freely use results of [40; 41] about profinite spaces.

Proposition 2.20 Let k be a nonnegative integer. There is a canonical equivalence of
profinite spaces

1
B.Zk/ ' B.yZk/:

Proof Since Zk is a finitely generated free abelian group, it is good in the sense of
Serre [45]. It follows from [41, Proposition 3.6] and Theorem 2.19 that the canonical
map

1
B.Zk/! B.

cZk /
is an equivalence of profinite spaces. The result now follows from Corollary 2.18.

The following lemma will be used in an essential way several times in this paper:

Lemma 2.21 Let f W �! C be a cosimplicial diagram and suppose that C is an
.nC1; 1/–category, ie an1–category whose mapping spaces are all n–truncated. Then,
provided both limits exist, the canonical map

limf ! lim.f j��n/

is an equivalence.
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Proof Let C be an arbitrary .1; nC1/–category. Notice that for any diagram
f W �! C and any object C of C , we have

Hom
�
C; lim

k2�

f .k/
�
' lim
k2�

Hom.C; f .k//;

and since C is an .1; nC1/–category, each Hom.C; f .k// is an n–truncated space.
Therefore the general case follows from the case when C is the full subcategory S�n

of S on the n–truncated spaces. By [31, Theorem 4.2.4.1], to prove the lemma for the
special case C D S�n , it suffices to prove the corresponding statement about homotopy
limits in the Quillen model structure on the category of compactly generated spaces CG,
since the associated 1–category is S.

Suppose that
X�W �! CG

is a cosimplicial space which is fibrant with respect to the projective model structure on
Fun.�;CG/ (with respect to the Quillen model structure on CG), ie the diagram X�

consists entirely of Serre fibrations. Then the homotopy limit of X� may be computed
as Tot.X/, and moreover, Tot.X/ can be written as the (homotopy) limit of a tower of
fibrations

� � � ! Tot.X/k! Tot.X/k�1! � � � ! Tot.X/1! Tot.X/0 DX;

where each Tot.X/k is a model for the homotopy limit of X j��k
. Moreover, the

(homotopy) fiber of each map

Tot.X/k! Tot.X/k�1

is homotopy equivalent to the k–fold loop space �k.M kX�/, where

M kX� D lim
ŒkC1��Œj �

j�k

Xj

is the kth matching object of X� (see eg the introduction of [33]).

Now let us assume that each Xk is n–truncated. Then, as X� is fibrant, the diagram
involved in the limit above consists entirely of fibrations, so the limit is a homotopy
limit, hence each matching object is also n–truncated (since n–truncated objects are
stable under limits in S by [31, Proposition 5.5.6.5]). It follows then that each homotopy
fiber

Tot.X/k! Tot.X/k�1

is weakly contractible for k > n, and hence the natural map

holimX� D Tot.X/! Tot.X/n D holimX�j��n

is a weak homotopy equivalence.
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Proposition 2.22 Let limi2IGi be a pro-object in the category of finite groups, or,
equivalently, a group object in Pro.FinSet/. Consider the profinite space

B
�
lim
i

Gi
�

..D colim
�
: : : lim

i

Gi � lim
i

Gi
!
!
! lim

i

Gi � �
�
;

where the colimit is computed in Prof.S/ and � denotes the terminal profinite space. In
more detail, the diagram whose colimit is being taken is the simplicial diagram which
is the Čech nerve of the unique map limi Gi !� in Prof.S/. Consider for each i the
object in S

B.Gi /
..D colim

�
: : : Gi �Gi

!
!
! Gi � �

�
;

ie the colimit in S of the Čech nerve of Gi . Then these spaces assemble into a profinite
space limi B.Gi /, and we have a canonical equivalence

B
�
lim
i

Gi
�
' lim

i

B.Gi /

in Prof.S/.

Proof It suffices to prove that for each � –finite space V we have an equivalence

HomProf.S/
�
B
�
lim
i

Gi
�
; j.V /

�
' HomProf.S/

�
lim
i

B.Gi /; j.V /
�
:

Recall that, by Proposition 2.13, j.V / is n–truncated for some n. As such, we have

HomProf.S/
�
B
�
lim
i

Gi
�
; j.V /

�
' HomProf.S/

�
colim
�op

N
�
lim
i

Gi
�
; j.V /

�
' lim

�

HomProf.S/
�
N
�
lim
i

Gi
�
; j.V /

�
' lim
��n

HomProf.S/
�
N
�
lim
i

Gi
�
; j.V /

�
;

that last equivalence following from Lemma 2.21. Expanding this out we get

lim
��n

�
HomProf.S/.1; j.V //� HomProf.S/

�
lim
i

Gi ; j.V /
�

!
!
! HomProf.S/

��
lim
i

Gi
�2
; j.V /

�
: : :HomProf.S/

��
lim
i

Gi
�n
; j.V /

��
which is equivalent to

lim
��n

�
HomS.�; V /� colim

i

HomS.Gi ; j.V //

!
!
! colim

i

HomS.G
2
i ; j.V // : : : colim

i

HomS.G
n
i ; j.V //

�
and since by [31, Proposition 5.3.3.3] finite limits commute with filtered colimits in S,
we get

colim
i

lim
��n

ŒHomS.�; V /� HomS.Gi ; V /
!
!
! HomS.G

2
i ; j.V // : : :HomS.G

n
i ; V /�:
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Now, since j.V / is n–truncated by Proposition 2.13, it follows from Lemma 2.21 that
we can rewrite this as

colim
i

lim
�

�
HomS.�; V /� HomS.Gi ; V /

!
!
! HomS.G

2
i ; j.V // : : :HomS.G

n
i ; V / : : :

�
;

which is equivalent to

colim
i

HomS

�
colim
�op

N.Gi /; V
�
' colim

i

HomS.B.Gi /; V /

' HomProf.S/
�
lim
i

B.Gi /; j.V /
�
:

3 The homotopy type of topological stacks

In this section we use the formalism of 1–categories to produce two important con-
structions necessary for our paper. Firstly, we extend the construction of analytification,
which sends a complex variety to its set of closed points, equipped with the analytic
topology, to a colimit-preserving functor

. � /topW Sh1.AffLFT
C ; Ket/!HypSh1.TopC/

from the 1–category of 1–sheaves over the étale site of affine schemes of finite type
over C to the 1–category of hypersheaves over an appropriate topological site. This
functor, in particular, sends an Artin stack locally of finite type over C to its underlying
topological stack in the sense of Noohi [36]. Using this functor, one associates to the
infinite root stack 1

p
X of a log scheme a pro-topological stack 1

p
X top . In Section 4,

we produce a map

(3) Xlog!
1
p
X top

from the Kato–Nakayama space to the underlying (pro-)topological stack of the infinite
root stack. The main result of the paper is that this map is a profinite homotopy
equivalence, but to make sense of such a statement, one first needs to associate to each
of these objects a (pro-)homotopy type, in a functorial way. To achieve this, the second
construction we produce is a colimit-preserving functor

…1W HypSh1.TopC/! S

which sends every topological space X to its underlying homotopy type, and sends
every topological stack to its homotopy type in the sense of Noohi [37]. Using this
construction and the map (3), one has an induced map in Pro.S/,

…1.Xlog/!…1.
1
p
X top/;
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which we prove in Section 6 becomes an equivalence after applying the profinite
completion functor, ie the map (3) is a profinite homotopy equivalence.

3.1 The underlying topological stack of an algebraic stack

Let Top be the category of topological spaces and let TopsC denote the full subcategory
of Top of all contractible and locally contractible spaces which are homeomorphic to
a subspace of Rn for some n. Note that TopsC is essentially small. Denote by TopC

the following subcategory of topological spaces:

� A topological space T is in TopC if T has an open cover .U˛ ,! T /˛ such
that each U˛ is an object of TopsC .

We use the subscript C to highlight the fact that TopC will serve as the target of the
analytification functor from the category of algebraic spaces over C . Note that the
objects of TopC are closed under taking open subspaces. As such, it makes sense to
equip TopC with the Grothendieck topology generated by open covers. Denote by
HypSh1.TopC/ the 1–topos of hypersheaves on TopC , ie the hypercompletion of
the 1–topos of 1–sheaves. There is also a natural structure of a Grothendieck site
on TopsC as follows:

� Let T be a space in TopsC . A covering family of T consists of an open cover
.U˛ ,! T / such that each U˛ is in TopsC .

Note that every open cover of T can be refined by such a cover. We denote the
associated 1–topos of hypersheaves by HypSh1.TopsC/. By the comparison lemma
of [3, Exposé III], we have that restriction along the canonical inclusion

TopsC ,! TopC

induces an equivalence between their respective categories of sheaves of sets. It then
follows from [26, Theorem 5; 31, Proposition 6.5.2.14 ] that this lifts to an equivalence

HypSh1.TopC/
�
�!HypSh1.TopsC/;

and in particular, HypSh1.TopC/ is an 1–topos (which is not a priori clear for sites
which are not essentially small).

Denote by AffLFT
C the category of affine schemes of finite type over C . Note that it is

a small category with finite limits. Denote by

. � /anW AffLFT
C ! Top

the functor associating to such an affine scheme its space of C–points, equipped with
the analytic topology. The above functor preserves finite limits, and is the restriction
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of a functor defined for all algebraic spaces locally of finite type over C ; see [49,
page 12]. Note also that if V is a scheme which is separated and locally of finite type,
then Van is locally (over any affine) a triangulated space by [30], so in particular Van is
locally contractible. Also observe that Van is locally cut-out of Cn by polynomials, so
it follows that Van is in TopC . Consequently . � /an restricts to a functor

. � /anW AffLFT
C ! TopC;

which preserves finite limits.

Note that the category AffLFT
C can be equipped with the Grothendieck topology gener-

ated by étale covering families. Denote the associated 1–topos of 1–sheaves on this
site by Sh1.AffLFT

C ; Ket/.

The following theorem is an extension of [36, Proposition 20.2]:

Theorem 3.1 The functor

. � /anW AffLFT
C ! TopC

lifts to a left exact colimit-preserving functor

. � /topW Sh1.AffLFT
C ; Ket/!HypSh1.TopC/:

Proof Note that the image under . � /an of an étale map is a local homeomorphism.
Also note that if

S ! T

is a local homeomorphism and T is in TopC , so is S . Furthermore, since the inclusion
of any open subspace of a topological space is a local homeomorphism, and since any
cover by local homeomorphisms can be refined by a cover by open subspaces, it follows
that open covers and local homeomorphisms generate the same Grothendieck topology
on TopC . It follows that any 1–sheaf on TopC , so in particular any hypersheaf,
satisfies descent with respect to covers by local homeomorphisms. The result now
follows from [31, Proposition 6.2.3.20].

Remark 3.2 Denote by Y the Yoneda embedding

Y W TopC ,!HypSh1.TopC/

and denote by y the Yoneda embedding

yW AffLFT
C ,! Sh1.AffLFT

C ; Ket/:

Explicitly, . � /top is the left Kan extension of Y ı . � /an along y ,

Lany ŒY ı . � /an�W Sh1.AffLFT
C ; Ket/!HypSh1.TopC/;
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or more concretely, it is the unique colimit-preserving functor such that for a repre-
sentable y.X/, ie an affine scheme,

y.X/top Š Y.Xan/:

By the proof of Theorem 3.1, we see that given any hypersheaf F on TopC , the functor

F ı . � /an

is an 1–sheaf on .AffLFT
C ; Ket/, ie we have a well-defined functor

. � /�anW HypSh1.TopC/! Sh1.AffLFT
C ; Ket/:

Proposition 3.3 The functor . � /top is left adjoint to . � /�an .

Proof Since . � /top is colimit-preserving, it follows from [31, Corollary 5.5.2.9] that
it has a right adjoint. Let us denote the right adjoint by R . By the Yoneda lemma, we
have that if F is a hypersheaf F on TopC , then R.F / is the 1–sheaf on .AffLFT

C ; Ket/
such that, if X is an affine scheme,

R.F /.X/'Hom.y.X/;R.F //'Hom..y.X//top; F /'Hom.Y.Xan/; F /'F.Xan/:

Remark 3.4 The adjoint pair . � /top a . � /
�
an assembles into a geometric morphism of

1–topoi
f W HypSh1.TopC/! Sh1.AffLFT

C ; Ket/;

with direct image functor
f� D . � /

�
an

and inverse image functor
f � D . � /top:

Lemma 3.5 Let AlgSpLFT
C denote the category of algebraic spaces locally of finite

type over C . Equip AlgSpLFT
C with the étale topology. Then restriction along the

canonical inclusion
AffLFT

C ,! AlgSpLFT
C

induces an equivalence of 1–categories

Sh1.AlgSpLFT
C ; Ket/ ��! Sh1.AffLFT

C ; Ket/:

Proof The inclusion satisfies the conditions of the comparison lemma of [3, Exposé III],
so we have an induced equivalence

Sh.AlgSpLFT
C ; Ket/ ��! Sh.AffLFT

C ; Ket/
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between sheaves of sets. Since both sites have finite limits, the result now follows from
[31, Proposition 6.4.5.4].

Proposition 3.6 Let X be any algebraic space locally of finite type over C . Then
Xtop ŠXan .

Proof Let U be the Grothendieck universe of small sets and let V be the Grothendieck
universe of large sets with U 2 V. Denote by bGpd1 the 1–category of large 1–
groupoids, and denote by 2HypSh1.TopC/ the 1–category of hypersheaves on TopC

with values in bGpd1 , and similarly let bSh1.AlgSpLFT
C ; Ket/ denote the 1–category

of sheaves on the étale site of algebraic spaces with values in bGpd1 . Then by the same
proof as Theorem 3.1, by left Kan extension there is a V–small colimit-preserving
functor

LW bSh1.AlgSpLFT
C ; Ket/!2HypSh1.TopC/

such that, for all representable sheaves y.P / on .AlgSpLFT
C ; Ket/,

L.y.P //Š Y.Pan/:

By [31, Remark 6.3.5.17], both inclusions

HypSh1.TopC/ ,!
2HypSh1.TopC/

and
Sh1.AffLFT

C ; Ket/ ,! bSh1.AffLFT
C ; Ket/

preserve U–small colimits. Hence both composites

Sh1.AffLFT
C ; Ket/ ,! bSh1.AffLFT

C ; Ket/' bSh1.AlgSpLFT
C ; Ket/ L

�!2HypSh1.TopC/

and
Sh1.AffLFT

C ; Ket/ . � /top
���!HypSh1.TopC/ ,!

2HypSh1.TopC/

are U–small colimit-preserving, and agree up to equivalence on every representable
y.X/, for X an affine scheme. It follows from [31, Theorem 5.1.5.6] that both
compositions must in fact be equivalent. However, the inclusion

Sh1.AffLFT
C ; Ket/ ,! bSh1.AffLFT

C ; Ket/' bSh1.AlgSpLFT
C ; Ket/

carries an algebraic space P to its representable sheaf y.P /. The result follows.

The next lemma follows immediately from the fact that . � /top preserves finite limits.

Lemma 3.7 Let G be a groupoid object in sheaves of sets on the étale site .AffLFT
C ; Ket/.

Then applying . � /top levelwise produces a groupoid object in sheaves of sets on TopC ,
denoted by Gtop . Moreover, if the original groupoid G is a groupoid object in algebraic
spaces, then Gtop is degreewise representable, ie a topological groupoid.
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Proposition 3.8 Let G be a groupoid object in sheaves of sets on the étale site
.AffLFT

C ; Ket/. Denote by ŒG� its associated stack of torsors, and denote by ŒGtop� the
stack of groupoids on TopC associated to Gtop , ie the stack on TopC of principal
Gtop –bundles. Then ŒG�top ' ŒGtop�.

Proof The stack ŒG� is the stackification of the presheaf of groupoids zy.G/ which
sends an affine scheme X to the groupoid G.X/. Denote by N.G/ the simplicial
presheaf which is the nerve of this presheaf of groupoids. Consider the diagram

�op N.G/
���!Psh.AffLFT

C ; Set/ ,! Psh.AffLFT
C ;Gpd1/:

We claim that the colimit of the above functor is zy.G/. Since colimits are computed
objectwise, it suffices to show that if H is any discrete groupoid, then N.H/ is the
homotopy colimit of the diagram

�op N.H/
���! Set ,! Set�

op
;

which follows easily from the well-known fact that the homotopy colimit of a simplicial
diagram of simplicial sets can be computed by taking the diagonal. It follows then that
ŒG� is the colimit of the diagram

�op N.G/
���!Sh.AffLFT

C ; Ket/ ,! Sh1.AffLFT
C ; Ket/;

since 1–sheafification preserves colimits, as it is a left adjoint. By the same argument,
we have that ŒGtop� is the colimit of the diagram

�op N.Gtop/
���!Sh.TopC/ ,! Sh1.TopC/:

Notice that for all n we have

N.Gtop/n D .N.G/n/top:

The result now follows from the fact that . � /top preserves colimits.

Definition 3.9 A topological stack is a stack on TopC of the form ŒG� for G a groupoid
object in TopC . Denote the associated .2; 1/–category of topological stacks by TopSt.

Remark 3.10 In the literature, typically there is no restriction on a topological stack
to come from a topological groupoid which is locally contractible, and such a stack is
represented by its functor of points on the Grothendieck site of all topological spaces.
However, the .2; 1/–category of topological stacks in the sense we defined above
embeds fully faithfully into the larger .2; 1/–category of all topological stacks in the
classical sense.
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Corollary 3.11 The functor

. � /topW Sh1.AffLFT
C ; Ket/!HypSh1.TopC/

restricts to a left exact functor

. � /top W AlgStLFT
C ! TopSt

from Artin stacks locally of finite type over C to topological stacks.

Up to the identification mentioned in Remark 3.10, the construction in the above
corollary agrees with that of Noohi in [36, Section 20].

3.2 The fundamental infinity-groupoid of a stack

The following proposition will allow us to talk about homotopy types of topological
stacks:

Proposition 3.12 There is a colimit-preserving functor

xLW HypSh1.TopsC/! S

sending every representable sheaf y.T / for T in TopsC to its weak homotopy type.

Proof The proof is essentially the same as [12, Proposition 3.1]. By Lemma 3.1
in [12], there is a functor

TopsC ,! Top h
�! S

assigning to each space T its associated weak homotopy type. Denote this functor by � .
Since TopsC is essentially small, by left Kan extension there is a colimit-preserving
functor

LanY � W Psh1.TopsC/! S

sending every representable presheaf Y.T / to the underlying weak homotopy type
of T . It follows from the Yoneda lemma that this functor has a right adjoint R� which
sends an 1–groupoid Z to the 1–presheaf

R�.Z/W T 7! Hom.�.T /;Z/:

We claim that R�.Z/ is a hypersheaf. To see this, it suffices to observe that if

U �W �op
! TopsC=T
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is a hypercover of T with respect to the coverage of contractible open coverings, then
the colimit of the composite

�op U �
�!TopsC=T ! TopsC

�
�! S

is �.T /, which follows from [15, Theorem 1.3]. We thus have that Lany � and R�
restrict to an adjunction

xL a�

between HypSh1.TopsC/ and S, so in particular, xL preserves colimits.

Corollary 3.13 Let G be an 1–groupoid. Denote by �.G/ the constant presheaf
on TopsC . Then �.G/ is a hypersheaf.

Proof Following the proof of the above theorem, we have that R�.G/ is a hypersheaf.
Moreover, for each space T in TopsC , we have that

R�.G/.T /' Hom.Y.T /; R�.G//' Hom.xL.Y.T //;G/' Hom.�;G/' G;

since each such T is in fact contractible.

Remark 3.14 The 1–category S of spaces is the terminal 1–topos. In particular,
if C is any 1–category equipped with a Grothendieck topology, then the unique
geometric morphism

Sh1.C /! S

has as direct image functor the global sections functor

�W Sh1.C /! S

defined by �.F /DHom.1; F /, which is the same as F.1/ if C has a terminal object.
The inverse image functor is given by

�W S! Sh1.C /

and it sends an 1–groupoid G to the sheafification of the constant presheaf with
value G. Similarly, the unique geometric morphism

HypSh1.C /! S

has its direct image functor � given by the same construction as for 1–sheaves, and
the inverse image functor � assigns an 1–groupoid G the hypersheafification of
the constant presheaf with values G. In either case we have � a � . In particular,
Corollary 3.13 implies that for the 1–topos HypSh1.TopsC/ we have a triple of
adjunctions

xL a� a �:
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Although we will not prove it here, there is in fact a further right adjoint to �, coDisc`�,
and moreover the quadruple

xL a� a � a coDisc

exhibits HypSh1.TopsC/ as a cohesive 1–topos in the sense of [44].

Proposition 3.15 The composite

HypSh1.TopC/
�
�!HypSh1.TopsC/

xL
�! S

is colimit-preserving and sends a representable sheaf Y.X/ for X in TopC to its
underlying weak homotopy type.

Proof By [12, Lemma 3.1], there is a functor

TopC ,! Top h
�! S

assigning to each space X its associated weak homotopy type. Denote this functor
by …. By exactly the same proof as Proposition 3.12, by using that TopC is V–small,
with V the Grothendieck universe of large sets, we construct a colimit-preserving
functor

LW 2HypSh1.TopC/!
yS;

where yS is the 1–category of large spaces (or large 1–groupoids), which sends every
representable sheaf Y.X/ to its underlying weak homotopy type. The rest of the proof
is analogous to that of Proposition 3.6.

Definition 3.16 We denote the composite from Proposition 3.15 by

…1W HypSh1.TopC/! S:

For F a hypersheaf on TopC , we call …1.F / its fundamental 1–groupoid.

Remark 3.17 In light of Remark 3.14, we have that …1 a�a � , where � is global
sections, and � assigns an 1–groupoid G the hypersheafification of the constant
presheaf with value G. In particular, we have a formula for �.G/, namely, if X is a
space in TopC ,

�.G/.X/' Hom.…1.X/;G/;

that is, the space of maps from the homotopy type of X to G.

The following proposition may be seen as an extension of the results of [37]:
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Proposition 3.18 Let G be a groupoid object in TopC and denote by ŒG� denote the
associated stack of groupoids on TopC , ie the stack of principal G–bundles. Then
…1.ŒG�/ has the same weak homotopy type as

BGD kN.G/k;

the fat geometric realization of the simplicial space arising as the topologically enriched
nerve of G.

Proof We know that ŒG� is the colimit in HypSh1.TopC/ of the diagram

�op N.G/
���!TopC

Y
,�!HypSh1.TopC/

(as in the proof of Proposition 3.8). The result now follows from Proposition 3.15 and
[12, Lemma 3.3]

Lemma 3.19 Let F be a hypersheaf on TopsC . Then xL.F / is the colimit of F , ie the
colimit of the diagram

F W .TopsC/
op
! S:

Proof By the proof of Proposition 3.12, xL factors as the composition

HypSh1.TopsC/ ,! Psh1.TopsC/
LanY �
����! SD Gpd1 :

Note however that every space in TopsC is contractible, so the canonical morphism
�! t to the terminal functor

t W TopsC! Gpd1

(ie the functor with constant value the one-point set) is an equivalence, and hence
LanY � is left adjoint to the constant functor t� which sends an 1–groupoid G to
the constant presheaf with value G. Since Psh1.TopsC/D Fun..TopsC/

op;Gpd1/, the
result now follows from the universal property of colim. � /.

Corollary 3.20 Let F be a hypersheaf on TopC . Then …1.F / is the colimit
of F jTops

C
.

3.3 The profinite homotopy type of a (pro-)stack

Let us define the profinite version of the homotopy type of a stack.

Definition 3.21 We denote the composite

HypSh1.TopC/
…1
���! S

�. � /
�! Prof.S/

by �…1 . For F a hypersheaf on TopC , we call �…1.F / its profinite fundamental
1–groupoid or simply its profinite homotopy type.

Geometry & Topology, Volume 21 (2017)



Kato–Nakayama spaces, infinite root stacks and profinite homotopy type of log schemes 3121

Let us extend the constructions of this section to pro-objects. Note that the functor

. � /topW Sh1.AffLFT
C ; Ket/!HypSh1.TopC/

extends to a functor on pro-objects, which by abuse of notation we will denote by the
same symbol,

. � /topW Pro.Sh1.AffLFT
C ; Ket//! Pro.HypSh1.TopC//:

We will now describe how to define the profinite homotopy type of a pro-object in
HypSh1.TopC/. First, we may extend the profinite fundamental 1–groupoid functor
on HypSh1.TopC/ to pro-objects. This can be achieved easily by the universal
property of Pro.HypSh1.TopC//. Indeed, consider the functor

�…1W HypSh1.TopC/! Prof.S/

and denote its unique cofiltered limit-preserving extension, by abuse of notation, again
by �…1W Pro.HypSh1.TopC//! Prof.S/:

Unwinding the definitions, we see that if limi2I Yi is a pro-object in hypersheaves
on TopC , then its profinite homotopy type is

�…1�lim
i2I

Yi
�
D lim
i2I

�…1.Yi /:
3.4 The homotopy type of Kato–Nakayama spaces

In this subsection, we will give a formula expressing the homotopy type of the Kato–
Nakayama space of a log scheme in terms of algebro-geometric data. We first start by
reviewing a functorial approach to Kato–Nakayama spaces which is due to Kato, Illusie
and Nakayama. Let .X;M; ˛/ be a log scheme, and let Xan be the analytification
of X , which is an object of TopC .

Consider the slice category TopC=Xan . If .T p
�!Xan/ is an object in TopC=Xan , one

can pullback M to T and take the sectionwise group completion. In this way we
obtain a sheaf of abelian groups on T , which we denote by p�M gp . Note that p�M gp

contains p�O�X as a subsheaf of abelian groups.

Let G be any abelian topological group. If T is a topological space, we denote GT
the sheaf on T of continuous maps to G equipped with the group structure coming
from addition in G . Note that we have f �.GS /DGT .
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Definition 3.22 We denote by Flog the presheaf of sets on TopC=Xan that is defined
on objects by the following assignment:

.T
p
�!Xan/

7!

�
morphisms of sheaves sW p�M gp

! S1T such that s.f /D
f

jf j
for f 2 O�X

�
:

Theorem 3.23 [23, Section 1.2] The presheaf Flog is represented by Xlog .

Since Xlog is an object of TopC , the functor Flog completely determines Xlog . More-
over, we can use this functorial description to give an expression for the homotopy type
of Xlog , as we will now show.

Definition 3.24 Denote by CKN.X/ the following category: the objects consist of
triples .T; p; s/ where

� T is a topological space in TopsC ,
� pW T !Xan is a continuous map,
� and s is a morphism of sheaves of abelian groups

sW p�M gp
! S1T

such that s.f /D f=jf j for f 2 O�X .

The morphisms .T; p; s/ ! .S; q; r/ are continuous maps f W T ! S such that
f �.r/D s .

Theorem 3.25 Let X be a log scheme. The weak homotopy type of the Kato–
Nakayama space is that of BCKN.X/.

Proof The reader may notice that CKN.X/ is simply the Grothendieck constructionZ
Tops

C

.FlogjTops
C=Xan/:

Notice also that
TopsC=Xan! TopsC

is the Grothendieck construction of Y.Xan/jTops
C

(where Y denotes the Yoneda em-
bedding) ie the corresponding fibered category. Now, there is a canonical equivalence
of categories

Sh.TopsC=Xan/' Sh.TopsC/=Y.Xan/jTops
C
;

and it follows that
R

Tops
C
.FlogjTops

C=Xan/ is equivalent to the Grothendieck construction
of Y.Xlog/. We have from Proposition 3.15 that …1.Y.Xlog// is the weak homotopy
type of Xlog . The result now follows from Corollary 3.20 and [12, Corollary 3.2].
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Corollary 3.26 Let X be a log scheme. The profinite homotopy type of its Kato–
Nakayama space Xlog is that of the profinite completion of BCKN.X/.

4 Construction of the map

In all that follows X will be a fine and saturated log scheme over C that is locally of
finite type. See the appendix for a condensed introduction to the main concepts and
notations that we will use in this section. Our goal is to prove the following proposition:

Proposition 4.1 There is a canonical morphism of pro-topological stacks

ˆX W Xlog! .
1
p
X/top:

Later (Section 6) we will show that this map induces a weak equivalence of profinite
homotopy types. The proof of Proposition 4.1 will take up the rest of this section.

Our strategy will be to construct the morphism ˆX étale locally on X , where the log
structure has a Kato chart, and then to show that the locally defined morphisms glue
together to give a global one.

Step 1 (local case) First let us assume that X ! Spec CŒP � is a Kato chart for X ,
where P is a fine saturated sharp monoid. In this case everything is very explicit:
as explained in Appendix A.4, there is an isomorphism n

p
X ' ŒXn=�n.P /�, where

Xn DX �Spec CŒP � Spec C
�
1
n
P
�
, the group �n.P / is the Cartier dual of the cokernel

of P gp! 1
n
P gp , and the action on Xn is induced by the natural one on Spec C

�
1
n
P
�
.

By following Noohi’s construction (see Proposition A.19) we see that n
p
X top is

canonically isomorphic to the quotient Œ.Xn/an=�n.P /an�, where �n.P /an Š .Z=n/r .
Note that the finite morphism Spec C

�
1
n
P
�
! Spec CŒP � is étale on the open torus

Spec CŒP gp�� Spec CŒP �, and ramified exactly on the complement.

Now let us construct a morphism of topological stacks Xlog!
n
p
X top . By the quotient

stack description of the target, this is equivalent to giving a �n.P /an –torsor (ie principal
bundle) on Xlog , together with a �n.P /an –equivariant map to .Xn/an .

Let us look at a couple of examples first.

Example 4.2 Let X be the standard log point Spec C with log structure given by
N˚C�! C sending .n; a/ to 0n � a . Then Xlog Š S

1 , and n
p
X top ' B.Z=n/. In

this case the morphism S1 ! B.Z=n/ corresponds to the .Z=n/–torsor S1 ! S1

defined by z 7! zn .

Example 4.3 Let X be A1 with the divisorial log structure at the origin. Then XlogŠ

R�0 �S1 and n
p
X top ' ŒC=.Z=n/�, where the morphism ŒC=.Z=n/�! .A1/an DC

is induced by z 7! zn , and Z=n acts by roots of unity.
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In this case the map R�0 � S1 ! ŒC=.Z=n/� corresponds to the .Z=n/–torsor
R�0 � S1 ! R�0 � S1 defined by .a; b/ 7! .an; bn/ and the equivariant map
R�0 �S1!C given by .a; b/ 7! a � b .

Note that the map R�0�S1!R�0�S1 coincides with z 7! zn outside of the “origin”
f0g �S1 , and this is étale even on the algebraic side. Over the “origin”, it is precisely
the presence of the S1 introduced by the Kato–Nakayama construction that allows the
map to be a .Z=n/–torsor. This is what happens in general (see also [28, Lemma 2.2]).

Proposition 4.4 Consider the map �logW .Xn/log ! Xlog induced by the morphism
of log schemes �W Xn! X . The map �log is a �n.P /an –torsor, and the projection
.Xn/log! .Xn/an is a �n.P /an –equivariant map.

Note (see Definition A.9) that if P is a monoid, C.P / will denote the log analytic
space .Spec CŒP �/an with the induced natural log structure.

Proof The action of �n.P / on Spec C
�
1
n
P
�

induces an action on Xn , and the map
Xn!X is invariant. Consequently we have an induced action of �n.P /an on .Xn/log ,
and the map �logW .Xn/log!Xlog is invariant.

Moreover, since taking . � /log commutes with strict base change (see Proposition A.12),
we have a cartesian diagram

.Xn/log //

�log

��

C
�
1
n
P
�

log

�P;log

��

Xlog // C.P /log

and because the action of �n.P /an on .Xn/log comes from the one on C
�
1
n
P
�

log , it
suffices to prove the statement for the right-hand column.

Similarly, in order to verify that .Xn/log ! .Xn/an is �n.P /an –equivariant we are
reduced to checking that C

�
1
n
P
�

log!C
�
1
n
P
�

is �n.P /an –equivariant.

Now note that �n.P /an is precisely the kernel of Hom
�
1
n
P; S1

�
! Hom.P; S1/, so

the action of �n.P /an on Hom
�
1
n
P; S1

�
is free and transitive. It is also not hard to

check that there are local sections (note that Hom.P; S1/D Hom.P gp; S1/Š .S1/k

non-canonically), so the map is a �n.P /an –torsor.

Furthermore, �P;logW C
�
1
n
P
�

log!C.P /log is the restriction map

Hom
�
1

n
P;R�0 �S

1
�
! Hom.P;R�0 �S1/;
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and this is the product of the two maps Hom
�
1
n
P;R�0

�
! Hom.P;R�0/ (which is a

homeomorphism) and Hom
�
1
n
P; S1

�
!Hom.P; S1/. The action of �n.P /an is trivial

on the factor Hom
�
1
n
P;R�0

�
and the one given by the aforementioned inclusion as a

subgroup on the factor Hom
�
1
n
P; S1

�
. Consequently, �P;log is a �n.P /an –torsor for

the natural action, as required.

The map C
�
1
n
P
�

log!C
�
1
n
P
�

coincides with the map

Hom
�
1

n
P;R�0 �S

1
�
! Hom

�
1

n
P;C

�
induced by the natural map R�0 �S1!C , and thus it is manifestly Hom

�
1
n
P; S1

�
–

equivariant, and in particular �n.P /an –equivariant.

This proposition gives a morphism of pro-topological stacks ˆn;P W Xlog!
n
p
X top . It

is clear from the construction that if njm, then the diagram

Xlog
ˆm;P

//

ˆn;P ""

m
p
X top

��
n
p
X top

is 2–commutative, so we obtain a morphism .ˆX /P W Xlog! .
1
p
X/top of pro-topo-

logical stacks.

Step 2 (compatibility of the local constructions) Let us extend this local construction
to a global one. The idea is of course to use descent and glue the local constructions,
and intuitively, one would expect that these local maps patch together to define a
global one without incident. However, writing down all the necessary 2–categorical
coherences gets pretty technical quickly, and it is much cleaner to use the machinery
of 1–categories.

We will need some preliminary lemmas and constructions.

Lemma 4.5 Let X be a fine saturated log scheme over a field k with two Kato charts
X ! Spec kŒP � and X ! Spec kŒQ� for the log structure. Then for every geometric
point x of X , after passing to an étale neighborhood of x , there is a third chart
X ! Spec kŒR� with maps of monoids P !R and Q!R inducing a commutative
diagram

Spec kŒP �

X //

..

00

Spec kŒR�

33

++

Spec kŒQ�

Geometry & Topology, Volume 21 (2017)



3126 David Carchedi, Sarah Scherotzke, Nicolò Sibilla and Mattia Talpo

Proof We can take RDM x . There is a chart with monoid R in an étale neighborhood
of x by Proposition A.6, and we have maps P ! R and Q ! R that induce a
commutative diagram as in the statement, possibly after further localization.

Now let us define a category I of étale open subsets of X with a global chart: objects are
triples .�W U!X;P; f / where �W U!X is étale, P is a fine saturated sharp monoid
and f W U ! Spec CŒP � is a chart for the log structure on U (pulled back via � ).

A morphism .�W U !X;P; f /! . W V !X;Q; g/ is given by a (necessarily étale)
map U ! V over X and a morphism Q! P such that the diagram

U
f
//

��

Spec CŒP �

��

V
g
// Spec CŒQ�

is commutative.

We have two (lax) functors . � /log and .n
p
� /topW I! TopSt=Xan , as follows: for each

A D .�W U ! X;P; f / 2 I we get, via strict pullback through the chart morphism,
a local model for the Kato–Nakayama space XAlog (over U ) and one for the nth root
stack n

p
XAtop . We set Alog D X

A
log and n

p
Atop D

n
p
XAtop . The maps to Xan are given

by the composites of the projections to Uan and the local homeomorphism Uan!Xan .
The action of these two functors on morphisms is clear.

The construction in the local case (ie Step 1 above) gives an assignment, for each A2 I,
of a morphism of topological stacks ˛nAW Alog!

n
p
Atop .

Lemma 4.6 The family .˛nA/ gives a lax natural transformation

˛nW . � /log) .n
p
� /top;

in the sense of [20, Appendix A].

Proof By translating the definition, in the present case this means the following: if
aW A D .�W U ! X;P; f /! . W V ! X;Q; g/ D B is a morphism in I, then the
diagram

Alog
˛n

A
//

��

n
p
Atop

��

˛n.a/

v~

Blog
˛n

B

// n
p
B top

2–commutes, and the 2–cells ˛n.a/ satisfy a compatibility condition.
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This follows from the fact that the morphism aD .U!V;Q!P / gives a commutative
diagram

.Un/log //

yy

��

.Un/an

zz

.Vn/log //

��

.Vn/an

XAlog

zz

XBlog

between the two objects corresponding to the functors ˛nA and ˛nB . This gives a
canonical natural transformation that makes the diagram

XAlog

��

˛n
A

// Œ.Un/an=�n.P /an�D
n
p
X
A

top

��

˛n.a/
px

XBlog

˛n
B

// Œ.Vn/an=�n.Q/an�D
n
p
X
B

top

2–commutative, and this is the required diagram.

Now if C D .�W W !X;R; h/ is a third object of I with a morphism bW B!C in I,
then the fact that the diagram

.Un/log .Un/an

.Vn/log .Vn/an

.Wn/log .Wn/an

XAlog

XBlog

XClog

commutes implies that the composite of the two 2–cells ˛n.b/ and ˛n.a/ is equal
to ˛n.b ı a/.
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By composition with the natural functor

TopSt=Xan ,!HypSh1.TopC/=Xan

to hypersheaves on TopC (see Section 3) and by abuse of notation we get a natural
transformation of functors of 1–categories:

I HypSh1.TopC/=Xan

. � /log

**

n
p
� top

44
˛n

��

Step 3 (the global case) We will now use the natural transformation ˛n above to
construct a global map

ˆX W Xlog!
n
p
X:

We will first need a crucial lemma:

Lemma 4.7 Let �W I!HypSh1.TopC/ be the functor .�W U ! X;P; f / 7! Uan .
Then the canonical map colim �!Xan is an equivalence.

Before proving the above lemma, we will show how we may use this lemma to produce
the global morphism we seek. The key idea is the following basic fact about 1–topoi:

Proposition 4.8 (colimits are universal) Let colimi2I Ai ! B be a morphism in an
1–topos E, and let C ! B be another morphism. Then the canonical map

colim
i2I

.C �B Ai /! C �B colim
i2I

Ai

is an equivalence.

The above fact is standard and is an immediate consequence of the fact that any
1–topos is locally cartesian closed.

Let us now see how we may complete the construction. Suppose we know that the
canonical map colim �!Xan is an equivalence. We can write this informally as

colim
.�WU!X;P;f /

Uan
�
�!Xan:

Consider the morphism Xlog!Xan . Then since colimits are universal we have that
the following is a pullback diagram:
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colim.�WU!X;P;f / Uan �Xan Xlog //

��

Xlog

��

colim.�WU!X;P;f / Uan
�

// Xan

It follows that the top map
colim

.�WU!X;P;f /

Uan �Xan Xlog!Xlog

is also an equivalence. However, notice that we have a canonical identification

Uan �Xan Xlog Š Ulog;

hence
Xlog ' colim

.�WU!X;P;f /

Ulog D colim. � /log:

By a completely analogous argument, one sees that
n
p
X top ' colim

.�WU!X;P;f /

n
p
U top D colim n

p
� top:

For each n, the global map is then defined to be

colim˛nW colim. � /log! colim n
p
� top:

Just as in the local case, one easily sees that the maps

colim˛nW Xlog!
n
p
X top

assemble into a morphism of pro-objects

ˆX W Xlog!
1
p
X top:

It is immediate from the construction that this map agrees locally with the map con-
structed in Step 1. In the next sections we will prove that ˆX induces an equivalence
of profinite spaces.

To finish the proof of the existence of the above map, it suffices to prove Lemma 4.7.
Without further ado, we present the proof below.

Proof of Lemma 4.7 Equip I with the following Grothendieck topology: a collection
of morphisms

..�i W Ui !X;Pi ; fi /! .�W U !X;P; f //i

will be a covering family if the induced family

.Ui ! U/i
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is an étale covering family. Note that there is a canonical morphism of sites

F W I!XKet

from I to the small étale site of X . Moreover, by Lemma 4.5, one easily checks that
F satisfies the conditions of the comparison lemma of [29, page 151], so the induced
geometric morphism of topoi

Sh.I/! Sh.XKet/

is an equivalence. It then follows from [26, Theorem 5; 31, Proposition 6.5.2.14] that
the induced geometric morphism between the respective 1–topoi of hypersheaves

HypSh1.I/!HypSh1.XKet/

is an equivalence. By Remark 3.4, the analytification functor is the inverse image part
of a geometric morphism

f W HypSh1.TopC/! Sh1.AffLFT
C ; Ket/:

By [31, Proposition 6.5.2.13], there is an induced geometric morphism

zf W HypSh1.TopC/!HypSh1.AffLFT
C ; Ket/:

By left Kan extension of the canonical functor

XKet!HypSh1.AffLFT
C ; Ket/=X

which sends each étale open U !X to itself, one produces a colimit-preserving functor

!W HypSh1.XKet/!HypSh1.AffLFT
C ; Ket/=X:

Consider the composite

HypSh1.I/'HypSh1.XKet/
!
�!HypSh1.AffLFT

C ; Ket/=X !HypSh1.AffLFT
C ; Ket/

zf �
�!HypSh1.TopC/;

where HypSh1.AffLFT
C ; Ket/=X ! HypSh1.AffLFT

C ; Ket/ is the canonical projection.
Denote the composite by ‚. The functor ‚ is colimit-preserving as it is the composite
of colimit-preserving functors, and, unwinding definitions, one sees that the composite

I
y
�!HypSh1.I/

‚
�!HypSh1.TopC/

is canonically equivalent to �. It follows that there is a canonical equivalence

colim �'‚.colimy/:
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But y is strongly generating, so by the proof of [10, Lemma 5.3.5] the colimit of y is
the terminal object. Unwinding the definitions, one sees that the terminal object gets
sent to Xan by ‚. This completes the proof.

5 The topology of log schemes

This section contains preliminaries about some topological properties of fine saturated
log schemes locally of finite type over C , the Kato–Nakayama space and the root stacks.

5.1 Stratified fibrations

The following proposition is a consequence of the material in Appendix A.6.

Recall that if X is a fine saturated log scheme locally of finite type over C , there is a
stratification RD fRngn2N of X , the rank stratification (Definition A.25), given by
Rn D fx 2X j rankZM

gp
xx � ng.

Proposition 5.1 The Kato–Nakayama space Xlog , the topological root stacks m
p
X top

and the topological infinite root stack 1
p
X top are stratified fibrations over Xan with re-

spect to the stratification R, ie they are fibrations over the strata .Sn/anD .RnnRnC1/an

of the stratification Ran .

Proof All constructions are compatible with arbitrary base change along strict mor-
phisms, so

Xlogj.Sn/an Š .Sn/log;

m
p
X jSn

'
m
p
Sn;

where m can be 1 and Sn has the log structure pulled back from X . It suffices then
to show that the two maps .Sn/log ! .Sn/an and .m

p
Sn/top ! .Sn/an are fibrations

over Sn .

Let us cover .Sn/an with open subsets over which the sheaf M is constant, and recall
that by definition of Sn it will have rank n. We can choose such opens so that we have
a cartesian diagram

.Sn/log //

��

.Spec kŒP �/log

��

.Sn/an // .Spec kŒP �/an

over each of them, where the bottom horizontal arrow sends everything to the vertex vP
(as in the proof of Proposition A.27). It follows that .Sn/log Š .S

1/n � .Sn/an , and
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that the map .Sn/log! .Sn/an is identified with the projection. The factor .S1/n is
the fiber of the map .Spec kŒP �/log! .Spec kŒP �/an over the point vP .

The analogous diagram

.m
p
Sn/top //

��

m
p

Spec kŒP �top

��

.Sn/an // .Spec kŒP �/an

shows the same conclusion for root stacks. In this case we get an isomorphism

.
m
p
Sn/top ' X� .Sn/an;

where X is the fiber of the map m
p

Spec kŒP �top!.Spec kŒP �/an over the vertex vP .

We need a similar (local) statement for groupoid presentations of the root stacks.

Take x 2X , and an open étale neighborhood U !X of x where there is a global chart
U ! Spec CŒP � for the log structure, where P is fine, saturated and sharp. Then we
have a quotient stack presentation for the topological nth root stack n

p
U top' .

n
p
X jU /top

for every n (see the discussion preceding Proposition A.18). Let us denote by G.n/
the simplicial topological space associated with this quotient presentation. There
are compatible maps G.m/! G.n/ whenever njm, and the whole system gives a
(simplicial) presentation for the topological infinite root stack 1

p
U top .

Explicitly, the simplicial space G.n/ is obtained from the action of �n.P / on the
scheme Un D U �Spec CŒP � Spec C

�
1
n
P
�

(see the local description of the root stacks
in Appendix A.4), so that

G.n/k Š .Un ��n.P /� � � � ��n.P //an;

where there are k copies of �n.P / and the map G.n/k!Uan is the composite of the
projection to .Un/an followed by the map .Un/an! Uan .

Proposition 5.2 Every x 2 Uan has arbitrarily small neighborhoods over which, for
every n and k , the map G.n/k!Uan is a product over Uan\.Sr/an , where x 2 .Sr/an .

In particular, for every n and k the topological space G.n/k is a stratified fibration
over Uan .

Proof Note first of all that since the map U ! Spec CŒP � is strict, the rank stratifica-
tion of Spec CŒP � with its natural log structure is pulled back to the rank stratification
of U , in the obvious sense.
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Moreover, from the cartesian diagram

.Un/an //

��

C
�
1
n
P
�

��

Uan // C.P /

and from the fact that G.n/k! Uan is the projection

G.n/k Š .Un ��n.P /� � � � ��n.P //an! .Un/an

followed by .Un/an! Uan , we see that it suffices to prove that the map

� W C
�
1

n
P
�
D

�
Spec C

h
1

n
P
i�

an
!C.P /D .Spec CŒP �/an

is a stratified fibration. The proof will show that for a stratum S we can find an open
subset V �C.P / such that the map � is a product over V \S for every n.

Let us pick � 2C.P /DHom.P;C/, and call p1; : : : ; pl the (finitely many) indecom-
posable elements of P (see [38, Proposition 2.1.2]). Assume (by reordering) that the
first h of those get sent to 0 by � , and the last ones are sent to nonzero complex numbers.
Call r the rank of the group associated to the quotient P=hpi j i D hC 1; : : : ; li (ie
the rank of the log structure of C.P / at � ).

The stratum of the rank stratification of C.P / to which � belongs will then be Sr ,
the set of points of C.P / where the log structure has rank exactly equal to r . It is
clear that � actually belongs to the open subset S� of Sr consisting of the morphisms
 2 Hom.P;C/ such that  .pi /D 0 for 1� i � h and  .pi /¤ 0 for h < i � l .

Note also that the same condition on images of indecomposables of 1
n
P will determine

a subset S 0� � C
�
1
n
P
�
D Hom

�
1
n
P;C

�
(of those morphisms such that the image of

pi=n is zero exactly when 1 � i � h) that a moment’s reflection will show to be
exactly the preimage ��1.S�/. Let us check that we can choose a neighborhood of �
in C.P / over which the restriction of � W ��1.S�/! S� is a product.

For each i D hC 1; : : : ; l let us choose a small open disk Di around �.pi / in C that
does not contain the origin, and for i D 1; : : : ; h let Di be a small open disk around
the origin. These define an open neighborhood W of � in C.P /, made up of those
functions  such that  .pi / 2Di for every i .

Let us also choose an nth root n
p
�.pi / of the nonzero complex number �.pi / for

i D hC 1; : : : ; l . There are a finite number of such choices, and there is a subset of
those choices for which the homomorphism 1

n
P ! C given by pi=n 7! n

p
�.pi / is

well-defined (note that this assignment might not give a well-defined homomorphism
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due to the relations among the indecomposable elements of the monoid P ). Let us call
A this set of “good” choices.

Any element of A determines for each iDhC1; : : : ; l an nth root function n
p
�i defined

on the small disk Di . Let us define a map W \S�! ��1.W \S�/� Hom
�
1
n
P;C

�
by sending  to the morphism defined by pi=n 7!

n
p
 .pi /i . This is a section

of the projection ��1.W \ S�/! W \ S� , and one can check that this induces a
homeomorphism W \S� �AŠ �

�1.W \S�/, where A is viewed as a discrete set.
We leave the details to the reader.

These arguments are uniform in n 2N , so the open subset W that we identified will
work for any n.

5.2 A system of open neighborhoods for Xan

In this subsection we will prove the following crucial lemma:

Lemma 5.3 For all x 2Xan there exists a fundamental system of contractible analytic
open neighborhoods Ux of x with global charts f W U ! .Spec CŒP �/an for U 2 Ux
such that

(1) the map f sends x into the vertex of .Spec CŒP �/an (ie the maximal ideal
generated by all nonzero elements of P ), and

(2) the maps
.Xlog/x!XlogjU

and
.G.n/i /x! .G.n/i /jU

are weak homotopy equivalences, where fG.n/gn2N is the family of topological
groupoid presentations for the topological nth root stack coming from the chart f ,
as in Proposition 5.2.

First of all we review some standard facts on triangulations and open covers. Let M be
a topological space equipped with a triangulation T . Denote by VT the set of vertices
of T . If f is a simplex of T , we denote by s.f / the union of the relative interiors of
the simplices of T that contain f . We call s.f / the star of f . Note that s.f / is a
contractible open subset of M . If v is a vertex of T , we set Uv ..D s.v/. The star of
a simplex f is naturally stratified by the simplices containing f : the strata are the
relative interiors of the simplices containing f .

We say that a subspace of Rn is a cone if it is invariant under the action of R>0 by
rescaling. We say that a cone is linear if it can be expressed as an intersection of finitely
many linear spaces and linear half-spaces.
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Lemma 5.4 Let v be in VT . Then there exists an N 2 N such that Uv can be
embedded as a linear cone in RN . Further we can choose this embedding in such a
way that s.f /� Uv is mapped to a linear subcone for all simplices f containing v .

Proof Let v1; : : : ; vN be the one-dimensional simplices that contain v and let
e1; : : : ; eN be the standard basis of RN . If I is a subset of f1; : : : ; N g we write

OI
..D

n P
i2I

˛iei j ˛i � 0
o
�RN :

Every simplex � containing v determines a subset I� of f1; : : : ; N g in the following
way: i belongs to I� if and only if � contains vi . We obtain an embedding of Uv
into RN by considering a piecewise linear homeomorphism

Uv '
[
v2�

OI�
:

This embedding has all the properties claimed by the lemma.

Lemma 5.5 Let x be in M , and let f be the lowest dimensional simplex such that x
belongs to f . Then there exists a system of open neighborhoods Ux of x such that all
U in Ux have the following properties:

(1) U is contractible.

(2) U does not intersect simplices of T that do not contain f .

Proof Let v be a vertex incident to f . By Lemma 5.4 the open neighborhood Uv can
be embedded as a linear cone in Rn in such a way that s.f /� Uv is a linear subcone.
Equip Rn with a Euclidean metric. Then Ux can be obtained by intersecting s.f /
with a system of open neighborhoods given by open balls in Rn centered at x .

Next we turn to the log scheme X . Let x be in Xan . Since we are interested in
constructing a system of open neighborhoods for x we can assume, by étale localizing
around x , that

� X is affine, and
� we have a global chart f WX!Spec CŒP �, where P DM x (see Proposition A.6),

which sends x to the vertex of Spec CŒP �.

The fact that X is affine is key in order to produce triangulations, which we do in
Lemma 5.6.

By Lemma A.23 the log structure determines a stratification RX of X .

Lemma 5.6 There exists a triangulation TX of X that refines RX .
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Proof The existence of triangulations refining stratifications of affine schemes goes
back to Lojasiewicz [30]. See also Shiota’s work [46] for a more recent reference.

By Lemma 5.5, the triangulation TX gives us a system of open neighborhoods Ux of x
in Xan satisfying the two properties stated there. We claim that Ux has all the properties
required by Lemma 5.3. Note that, since we assumed without loss of generality that X
is affine and has a global chart to Spec CŒP � sending x to the vertex of Spec CŒP �,
we only need to prove that property .2/ holds. We do this next.

The following lemma was proved in [43]:

Lemma 5.7 [43, Lemma 3.25] Let W1 and W2 be locally compact and locally
contractible Hausdorff spaces. Let pW W1!W2 be a continuous map, and let K2�W2
be a closed deformation retract. Suppose that the restriction p�1.W2 nK2/!W2 nK2
is homeomorphic to the projection from a product F � .W2 nK2/!W2 nK2 . Then
K1

..D p�1.K2/ is a deformation retract of W1 .

We will actually need a slight variant of Lemma 5.7. Assume that W2nK2 decomposes
as a finite disjoint union of m components, which we denote by .W2 nK2/i ,

W2 nK2 D

m[
iD1

.W2 nK2/i :

Then the claim still holds if the restriction p�1.W2nK2/!W2nK2 is homeomorphic
to the projection from a disjoint union of products

m[
iD1

Fi � .W2 nK2/i !

m[
iD1

.W2 nK2/i :

This stronger statement is proved exactly as Lemma 5.7, and, in fact, follows from it
through an induction on the number of connected components of W2 nK2 .

We conclude the proof of Lemma 5.3 by showing that the following proposition holds:

Proposition 5.8 For all U in Ux , each of the maps

.Xlog/x!XlogjU ; .G.n/i /x! .G.n/i /jU

is a weak homotopy equivalence, where fG.n/gn2N is the family of topological
groupoid presentations for the topological nth root stack coming from the chart f .

Proof The proof is the same for both Xlog and G.n/i . The argument relies exclusively
on the fact that Xlog and G.n/i give stratified fibrations on Xan with respect to the
stratification RX . To avoid repetition, we prove the statement only for Xlog but the
argument remains valid if we substitute G.n/i in all occurrences of Xlog .
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Let f be the lowest-dimensional simplex of TX such that x lies on f . Recall from the
proof of Lemma 5.5 that, in order to define Ux , we pick a vertex v of the triangulation
TX that is incident to f . By construction, U is an open subset of Uv . Thus U carries
a stratification which is obtained by restricting to it the stratification on Uv by the
simplices containing v .

For all k 2N , denote by Uk �U the k–skeleton of U : that is, Uk is the union of the
strata of dimension less than or equal to k . Note that Uk is empty if k < dim.f / and
is contractible if dim.f / � k . Further, Uk is a strong deformation retract of Uk0 if
dim.f /� k � k0 . Indeed both Uk and Uk0 are CW complexes (up to compactifying),
and any contractible subcomplex of a contractible CW complex is a strong deformation
retract, see eg [34, Lemma 1.6].

We prove next that if dim.f /� k� 1, the map

XlogjUk�1
!XlogjUk

is a deformation retract. Note that Uk n Uk�1 is equal to the disjoint union of k–
dimensional strata. That is, Uk n Uk�1 can be written as a disjoint union of m
components,

Uk nUk�1 D

m[
iD1

.Uk nUk�1/i :

The restriction of the map XlogjU !XanjU to each stratum of U is a principal bundle.
Indeed, the stratification on U is finer that the restriction to U of RX . Further, it
is a trivializable principal bundle, since the strata are paracompact Hausdorff and
contractible.

Thus the restriction
XlogjUknUk�1

! Uk nUk�1

is homeomorphic to a projection from a disjoint union of products

XlogjUknUk�1
'

m[
iD1

Fi � .Uk nUk�1/i !

m[
iD1

.Uk nUk�1/i :

We have showed that the map Uk�1 ! Uk is a deformation retract. We apply
Lemma 5.7, or rather the variant that was discussed immediately after the statement of
Lemma 5.7, (note that Xlog is locally compact Hausdorff and locally contractible by
Proposition A.13), and deduce that the map

XlogjUk�1
!XlogjUk

is also a deformation retract, as we claimed.
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There exists an N 2 N such that UN D U . By applying recursively the retractions
that we have constructed in the previous paragraph, we obtain a deformation retract

XlogjUdim.f /
!XlogjU :

By property .2/ of Lemma 5.5, Udim.f / is connected. Further, it is contractible and
paracompact, and thus XlogjUdim.f /

is homeomorphic to a product F �Udim.f / . This
implies that there are homotopy equivalences

.Xlog/jx ' F � fxg
�,�!F �Udim.f / 'XlogjUdim.f /

;

and this concludes the proof.

6 The equivalence

At last, in this section we will prove the main result of this paper, namely that there is
an equivalence �…1.ˆX /W �…1.Xlog/! �…1.1pX top/

of profinite spaces, where �…1 is the “profinite homotopy type” functor defined in
Section 3.3 and ˆX is the morphism of pro-topological stacks constructed in Section 4.

The main idea is to use the basis of open subsets constructed in Lemma 5.3 to produce a
suitable hypercover of Xan and to use this to reduce to checking that one has a profinite
homotopy equivalence along fibers. First, we will need a few more technical lemmas.

The following lemma makes precise in what way one can glue profinite spaces together
using hypercovers:

Lemma 6.1 Let X be a hypersheaf in HypSh1.TopC/. Let I be a cofiltered 1–
category and let

f�W I!HypSh1.TopC/=X

be an I–indexed pro-system with associated pro-object limi2I.fi W Yi ! X/. Let

U �W �op
!HypSh1.TopC/=X

be a hypercover of X. For each i , denote by f �i U
� the pullback of the hyper-

cover U � to a hypercover of Yi . Consider the underlying pro-object limi2I Yi in
HypSh1.TopC/. Then there is a canonical equivalence of profinite spaces�…1�lim

i2I

Yi
�
' colim
n2�op

��…1�lim
i2I

f �i U
n
��
;

where �…1W Pro.HypSh1.TopC//! Prof.S/

is the functor constructed in Section 3.3.
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Proof It suffices to show that for every � –finite space V there is a canonical equiva-
lence

HomProf.S/
�
colim
n2�op

��…1�lim
i2I

f �i U
n
��
; j.V /

�
' HomProf.S/

��…1�lim
i2I

Yi
�
; j.V /

�
which is natural in V . We have that

HomProf.S/
�
colim
n2�op

��…1�lim
i2I

f �i U
n
��
; j.V /

�
' lim
n2�

�
colim
i2Iop

HomS.…1f
�
i U

n; V /
�
:

Notice that V is k–truncated for some k , and hence so is j.V / by Proposition 2.13.
Since filtered colimits of k–truncated spaces are k–truncated, it follows that, for all n,

colim
i2Iop

HomS.…1f
�
i U

n; V /

is k–truncated. By Lemma 2.21, it then follows that

HomProf.S/
�
colim
n2�op

��…1�lim
i2I

f �i U
n
��
; j.V /

�
' lim
n2��k

�
colim
i2Iop

HomS.…1f
�
i U

n; V /
�
:

By using that filtered colimits commute with finite limits, we then have that this is in
turn equivalent to

colim
i2Iop

�
lim

n2��k

HomS.…1f
�
i U

n; V /
�
:

Again by Lemma 2.21 this is equivalent to

colim
i2Iop

�
lim
n2�

HomS.…1f
�
i U

n; V /
�
:

Finally, we have the following string of natural equivalences:

colim
i2Iop

�
lim
n2�

HomS.…1f
�
i U

n; V /
�
' colim

i2Iop
HomS

�
colim
n2�op

…1f
�
i U

n; V
�

' colim
i2Iop

HomS

�
…1 colim

n2�op
f �i U

n; V
�

' colim
i2Iop

HomS.…1Yi ; V /

' HomProf.S/
��…1�lim

i2I

Yi
�
; j.V /

�
:

Let X be a log scheme. Denote by U the basis of contractible open subsets of Xan

given by Lemma 5.3.

Lemma 6.2 There is a hypercover

U �W �op
! TopC=Xan
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such that, for all n, the map U n! Xan is isomorphic to the coproduct of inclusions
of open neighborhoods in the basis U and all the structure maps are local homeomor-
phisms.

Proof Using standard techniques, since U is a basis for the topology of Xan we can
construct a split hypercover satisfying the above by induction (see [13]).

Remark 6.3 The image under the Yoneda embedding of the hypercover of topological
spaces U � just constructed is a hypercover of Y.Xan/ in the1–topos HypSh1.TopC/.
We will abuse notation by identifying the two.

We now prove our main result:

Theorem 6.4 Let X be a fine saturated log scheme locally of finite type over C . The
induced map �…1.ˆX /W �…1.Xlog/

�
�! �…1.1pX top/

is an equivalence of profinite spaces.

Proof Consider now the hypercover U � of Xan just constructed. Then each U n D`
˛ V˛ , where each V˛ is in U. Let us restrict to one such V D V˛ . Since V is in U,

there exists an x 2 V such that .Xlog/x ! XlogjV is a weak homotopy equivalence,
and such that there is a Kato chart U ! Spec CŒP �, with U ! X étale, such that
Uan!Xan admits a section � over V and with the property that the composite

V
�
�!Uan! .Spec CŒP �/an

carries x to the vertex point of the toric variety Spec CŒP �. Let us fix this x , and call
it the center of V . Suppose that the monoid P has rank k ; then the log structure at x
also has rank k . Moreover, the fiber of the map

Vn
..D V �.Spec CŒP �/an

�
Spec C

h
1

n
P
i�

an
! V

over x consists of a single point (see [24, Lemma 1.2]).

Let us fix an n; then we have that
n
p
X topjV ' Œ.Z=nZ/k ËVn�D ŒVn=.Z=nZ/k�:

Hence our groupoid presentation G.n/ for n
p
X topjV guaranteed by Proposition 5.2 is

the topological action groupoid .Z=nZ/k Ë Vn . This groupoid admits a continuous
functor to V (viewing V as a topological groupoid with only identity arrows) which
on objects is simply the canonical map Vn! V . Similarly, regard the one-point space
� also as a topological groupoid, and consider the canonical map

�! V
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picking out x . Since V and � have no nonidentity arrows, the lax fibered product of
topological groupoids

��
.2;1/
V ..Z=nZ/k ËVn/

is equivalent to the strict fibered product

��V ..Z=nZ/k ËVn/;

which is canonically equivalent to the action groupoid

.Z=nZ/k Ë .Vn/x;

where .Vn/x is the fiber over Vn! V . Since this fiber consists of a single point, we
conclude that the lax fibered product may be identified with .Z=nZ/k , where we are
identifying the group .Z=nZ/k with its associated 1–object groupoid.

Consider the continuous functor of topological groupoids

.Z=nZ/k ' ��.2;1/V ..Z=nZ/k ËVn/! .Z=nZ/k ËVn:

This induces a map of simplicial topological spaces between their simplicially enriched
nerves

N..Z=nZ/k/!N..Z=nZ/k ËVn/:

By Lemma 5.3, this map is degreewise a weak homotopy equivalence. It follows from
Proposition 3.18 and [12, Lemma 3.2] that the induced map

B..Z=nZ/k/'…1..Z=nZ/k Ë�/!…1
�
Œ.Z=nZ/k ËV �

�
'…1.

n
p
X topjV /

is an equivalence in S. Since the topological groupoid presentations for n
p
X top

constructed in Section 5.1 are compatible with the natural maps m
p
X top !

n
p
X top

when njm, it follows that we have a natural identification�…1.1pX topjV /' lim
n

B..Z=nZ/k/

in Prof.S/. Consider the pro-system of finite groups

n 7! .Z=nZ/k :

This is the kth cartesian power of the pro-system

n 7! .Z=nZ/;

which is simply yZ. By Proposition 2.22, it follows that�…1.1pX topjV /' B.yZ
k/;
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and hence, by Proposition 2.20, we have that�…1.1pX topjV /' B.
cZk /:

We also have that
.Xlog/x Š .S

1/k :

It follows that
…1.XlogjV /'…1.S

1/k ' B.Zk/;

and so �…1.XlogjV /'
1
B.Zk/:

Since Zk is a finitely generated free abelian group, it is good in the sense of Serre [45].
It follows from [41, Proposition 3.6] and Theorem 2.19 that the canonical map

1
B.Zk/! B.

cZk /
is an equivalence of profinite spaces, hence

�…1.XlogjV /' B.
cZk /:

It now follows that �…1.1pX topjV /' �…1.XlogjV /;

which is a local version of our statement.

Now let us globalize using the hypercover U � . For each n, denote by qn the natural
map

qnW
n
p
X top!Xan:

Since �…1 preserves colimits, it follows that the induced map

colim
l2�op

�…1 ı ��U l ! colim
l2�op

��…1 ı lim
n

q�nU
l
�

is an equivalence of profinite spaces, where � is the canonical map � W Xlog ! Xan .
However,

colim
l2�op

�…1 ı ��U l ' �…1�colim
l2�op

��U l
�
' �…1.Xlog/;

since ��U � is a hypercover of Xlog . Finally, by Lemma 6.1,

colim
l2�op

��…1 ı lim
n

q�nU
l
�
' �…1�lim

n

n
p
X top

�
D �…1.1pX top/:

7 The profinite homotopy type of a log scheme

We conclude this paper by defining the profinite homotopy type of an arbitrary log
scheme over a ground ring k , by using the notion of étale homotopy type.
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Étale homotopy theory, as originally introduced by Artin and Mazur [5], is a way of
associating to a suitably nice scheme a pro-homotopy type. In this seminal work they
proved a generalized Riemann existence theorem:

Theorem 7.1 [5, Theorem 12.9] Let X be scheme of finite type over C ; then
the profinite completion of the étale homotopy type of X agrees with the profinite
completion of Xan .

In light of the above theorem, the étale homotopy type of a complex scheme of finite
type gives a way of accessing homotopical information about its analytic topology by
using only algebro-geometric information, and for a setting where the analytic topology
is not available, such as a scheme over an arbitrary base, the profinite completion of its
étale homotopy type serves as a suitable replacement.

In the original work of Artin and Mazur, for X a locally Noetherian scheme, one
associates a pro-object in the homotopy category of spaces Ho.S/. This definition
was later refined by Friedlander [17] to produce a pro-object in the category Set�

op
of

simplicial sets, and a generalized Riemann existence theorem is also proven in this
context. In recent work of Lurie [32], the étale homotopy type of an arbitrary higher
Deligne–Mumford stack is defined by using shape theory to produce an object in the
1–category Pro.S/ (in fact the definition in [32] is for spectral Deligne–Mumford
stacks — analogues of Deligne–Mumford stacks for algebraic geometry over E1–
rings), and Hoyois has recently proven that, up to profinite completion, this definition
agrees with that of Friedlander for a classical locally Noetherian scheme in [22]. See
also recent work of Barnea, Harpaz and Horel [6].

In recent work of the first author [11], the étale homotopy type of an arbitrary higher
stack on the étale site of affine k–schemes is defined, and is shown to agree with the
definition of Lurie when restricted to higher Deligne–Mumford stacks. In particular,
there is shown to be a functor�…Ket

1W Sh1.AffLFT
k ; Ket/! Prof.S/

associating to a higher stack X on the étale site of affine k–schemes of finite type a
profinite space �…Ket

1.X/ called its profinite homotopy type, and an even more generalized
Riemann existence theorem is proven:

Theorem 7.2 [11, Theorem 4.13] Let X be higher stack on affine schemes of finite
type over C ; then there is a canonical equivalence of profinite spaces�…Ket

1.X/'
�…1.Xtop/

between its profinite étale homotopy type and the profinite homotopy type of its under-
lying topological stack Xtop in the sense of Theorem 3.1.
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Now let X be a log scheme locally of finite type over C . Its infinite root stack 1
p
X

is a pro-object in Sh1.AffLFT
C ; Ket/. Notice that the functor �…Ket

1 canonically extends
to a functor �…Ket

1W Pro.Sh1.AffLFT
k ; Ket//! Prof.S/:

In light of the above theorem, we conclude that there is a canonical equivalence of
profinite spaces �…Ket

1.
1
p
X/' �…1.1pX top/

between the profinite étale homotopy type of the infinite root stack 1
p
X and the profinite

homotopy type of the underlying topological stack of the infinite root stack 1
p
X top .

Combining this with Theorem 6.4 yields the following theorem:

Theorem 7.3 Let X be a log scheme locally of finite type over C . Then the following
three profinite spaces are canonically equivalent:

(i) The profinite completion bXlog of its Kato–Nakayama space.

(ii) The profinite homotopy type �…1.1pX top/ of the underlying topological stack
of its infinite root stack 1

p
X .

(iii) The profinite étale homotopy type �…Ket
1.
1
p
X/ of its infinite root stack 1

p
X .

In light of the above theorem, we make the following definition:

Definition 7.4 Let X be a log scheme over a ground ring k . Then the profinite
homotopy type of X is the profinite étale homotopy type of its infinite root stack 1

p
X .

Appendix

In this appendix we gather some definitions and results about log schemes, analytifica-
tion, the Kato–Nakayama space, root stacks and topological stacks.

A.1 Log schemes

Log (short for “logarithmic”) schemes were first defined and studied systematically
in [27]. A modern introduction (with a view towards moduli theory) can be found in [1].

Remark A.1 We will give definitions and facts in the algebraic category, but we will
apply them to the complex-analytic context as well. The only difference is that instead
of the étale topology we will be using the analytic topology.

Definition A.2 A log scheme is a scheme X with a sheaf of monoids M on the small
étale site XKet and a homomorphism ˛W M ! OX of sheaves of monoids, where OX
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is seen as a monoid with respect to multiplication of regular functions, such that ˛
induces an isomorphism

˛j˛�1.O�X /
W ˛�1.O�X /! O�X :

Note that the last condition gives us a canonical embedding O�X ,!M as a subsheaf
of groups.

We denote a log scheme by .X;M; ˛/ or sometimes simply by X .

Example A.3 � Any scheme X is a log scheme with M DO�X and ˛ the inclusion.
This is the trivial log structure on X .

� Any effective Cartier divisor D �X induces a log structure, by taking M to be
the subsheaf of OX given by functions that are invertible outside of D .

� If P is a monoid, the spectrum of the monoid algebra XP ..D Spec kŒP � has a
natural log structure. The sheaf M is obtained by considering the natural map
P ! kŒP �D �.OXP

/ and taking the “associated log structure” (see below for a
few more details).

Log structures can be pulled back and pushed forward along morphisms of schemes.
In particular:

� Any open subscheme of a log scheme can be equipped with the restriction of
the log structure.

� If we have a morphism of schemes f W X ! Spec kŒP � we get an induced log
structure on X . This happens in the following way: f gives a morphism of
monoids P ! OX .X/, which induces x̨W P ! OX , where P is the constant
sheaf. It is typically not true that x̨ induces an isomorphism between x̨�1O�X
and O�X , but there is a procedure to fix the behavior of the units, and this produces
a log structure ˛W M ! OX . See [27, Example 1.5] for details.

Remark A.4 In the situation of the last bullet, the quotient M=O�X is obtained from P

by locally “killing the sections of P that become invertible in OX ”, so in particular all
the stalks of M=O�X are quotients of the monoid P .

We consider only coherent log structures, which are those that, étale locally, come by
pullback from the spectrum of the monoid algebra of a monoid.

Definition A.5 A log scheme X is quasicoherent if there is an étale cover Ui of X ,
monoids Pi and morphisms of log schemes fi W Ui ! Spec kŒPi � that are strict, ie the
log structure on Ui is pulled back from Spec kŒPi � via fi . The monoid Pi and the
map fi are a chart for the log structure over Ui .
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A log scheme X is coherent (resp. fine, resp. fine and saturated) if the monoids Pi
above can be taken to be finitely generated (resp. finitely generated and integral, resp.
finitely generated, integral and saturated).

A morphism such as fi in the definition above that identifies the pullback of the log
structure on the target with the one of the source will be called strict.

We are interested only in fine and saturated log schemes.

Proposition A.6 [39, Proposition 2.1] Let X be a fine saturated log scheme and x a
geometric point. Then there exists an étale neighborhood U of x over which there is a
chart for the log structure with monoid P D .M=O�X /x .

This says in particular that, if X is fine and saturated, we can locally find charts with
P fine, saturated and sharp.

The quotient sheaf M DM=O�X is called the characteristic sheaf of the log structure.
Taking the quotient (in an appropriate sense) by O�X of the map ˛ , we get an alternative
definition of a (quasi-integral) log scheme, introduced in [9].

Let us denote by DivX the fibered category over XKet whose objects over U !X are
pairs .L; s/ where L is an invertible sheaf of OU –modules on U and s is a global
section. This is a symmetric monoidal fibered category, where the monoidal operation
is given by tensor product.

Definition A.7 A log scheme is a scheme X together with a sheaf of monoids A and
a symmetric monoidal functor LW A! DivX with trivial kernel.

The phrasing “trivial kernel” in the definition means that if a section a is such that
L.a/ is isomorphic to .OX ; 1/ in DivX , then aD 0.

Given a (quasi-integral) log scheme .X;M; ˛/, by taking the “stacky quotient” of
˛W M ! OX by O�X we get the functor LW ADM D ŒM=O�X �! ŒOX=O

�
X �D DivX .

Quasi-integrality ensures that the quotient ŒM=O�X � is actually a sheaf. Of course
integral log structures are quasi-integral. See [9, Theorem 3.6] for details.

One can give a notion of charts in this context as well. For many purposes these two
notions of chart can be used indifferently. We mostly use charts as in the first definition
above. These are called “Kato charts” in [9].

Remark A.8 A first approximation of how one should “visualize” a log scheme is by
thinking about the stalks of the sheaf M . This sheaf is locally constant on a stratification
of X (see Proposition A.27) and the stalks are fine saturated sharp monoids. Of course
this disregards the particular extension M of M by O�X and the map ˛ (or equivalently
the functor L), so it is indeed just a crude approximation.
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A.2 Analytification

We are mainly concerned with log schemes locally of finite type over C , and with their
analytifications.

Recall that if X is a scheme locally of finite typer over C , the associated analytic
space Xan is defined as a set as the C points X.C/ D X.Spec C/ of X . This has
an “analytic” topology coming from the local embeddings into Cn . Moreover this
construction extends also to algebraic spaces locally of finite type over C (see [2; 49]).

If X is a log scheme locally of finite type over C , the analytification Xan inherits a
log structure, because of the relationship between the étale topos of X and the analytic
topos of Xan . An étale morphism X! Y induces a local homeomorphism Xan! Yan ,
which consequently has local sections in the analytic topology. This gives a functor
from the étale site of X to the analytic site of Xan , and induces a morphism of topoi.
The log structure on Xan is obtained via this functor. Thus, in what follows, every time
something holds étale locally for the log scheme X , it will hold analytically locally for
the log analytic space Xan .

We will use this without further mention, and will use the same letter to denote the sheaf
of monoids M on X and the induced one on Xan . This should cause no real confusion.

Definition A.9 For a monoid P we denote by C.P / the analytification of the spectrum
of the monoid algebra Spec CŒP �.

As sets we have C.P /D Hom.P;C/, the set of homomorphisms of monoids, where
C is given the multiplicative structure.

A basis of opens of C.P / (where P is fine, saturated and sharp) can be described
as follows: call p1; : : : ; pk the indecomposable elements of P (see [38, Proposition
2.1.2]), and choose open disks Di in the complex plane C . Then the set of homomor-
phisms � 2 Hom.P;C/ such that �.pi / 2Di is open in C.P /. Letting the disks Di
vary we get a basis for the open subsets of C.P /.

Lemma A.10 [49, page 12] Analytification commutes with finite limits.

We will need the following result on the topological properties of analytifications of
schemes locally of finite type over C . As a reference, we point out [30].

Proposition A.11 Let X be an affine scheme of finite type over C and Y �X be a
closed subscheme. Then there exist compatible triangulations of Xan and Yan , realizing
Yan as a subcomplex.

We can apply this iteratively to a stratification, to get compatible triangulations of the
ambient affine scheme and of all the (closed) strata.

Geometry & Topology, Volume 21 (2017)



3148 David Carchedi, Sarah Scherotzke, Nicolò Sibilla and Mattia Talpo

A.3 Kato–Nakayama space

From now on all log schemes will be fine and saturated unless we specify otherwise.
Just for this subsection, X will denote an analytic space rather than a scheme.

The Kato–Nakayama space Xlog of a log analytic space X (for example of the form Yan

for some log scheme Y locally of finite type over C ) is a topological space introduced
in [28]. The idea is to define a topological space that “embodies” the log structure of
X in a topological way (ie without using the sheaf of monoids, but only “points”).

What comes out is a topological space Xlog (that also comes with a natural sheaf of
rings, but we do not use this in the present work) with a continuous map � W Xlog!X

that is proper and surjective. Moreover if U � X is the trivial locus of the log
structure (the largest open subset over which O�X ,!M is an isomorphism), the open
embedding i W U !X factors through � , so that Xlog can be considered as a “ relative
compactification” of the open immersion i .

Let us denote by p� the log analytic space given by the point ptD .Spec C/an with
monoid M DR�0 �S1 , and map ˛W M !C described by .r; a/ 7! r � a . Note that
this log structure is not integral.

As a set we have Xlog D Hom.p�; X/, the set of morphisms of log analytic spaces
from the log point p� to X . By unraveling this one can also write

Xlog D
˚
.x; c/ j cW M

gp
x ! S1 is a group homomorphism

such that c.f /D f=jf j for all f 2 O�X;x
	
:

In particular one can see that C.P /log D Hom.p�;C.P //D Hom.P;R�0�S1/, and
the projection � W C.P /log!C.P / is given by postcomposition with R�0�S1!C .

Note that from the above description C.P /log has a natural topology, which by means
of local charts for the log structure gives a topology on Xlog in general [28, Section 1.2].

From the description one sees easily that, for x2Xan , the fiber ��1.x/ is homeomorphic
to .S1/r , where r is the rank of the stalk M x , defined to be the rank of the free abelian
group M gp

x .

The construction of the Kato–Nakayama space is clearly functorial, and is also compat-
ible with strict base change.

Proposition A.12 [28, Lemma 1.3] Let f W X ! Y be a strict morphism of fine
saturated log analytic spaces. Then the diagram of topological spaces
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Xlog //

��

Ylog

��

X // Y

is cartesian.

The description of Xlog as a set can actually be enhanced to a description of its functor
of points (see Section 3.4).

We now prove the following proposition:

Proposition A.13 For any log scheme X , the Kato–Nakayama space Xlog is locally
Hausdorff, locally contractible and locally compact.

We will start by assuming that X is affine and has a global chart X! Spec CŒP � for a
fine saturated sharp monoid P , and will prove that Xlog is locally compact, Hausdorff
and locally contractible. This implies the conclusion for arbitrary X .

Note that since f W X! Spec CŒP � is strict, there is a cartesian diagram of topological
spaces

Xlog //

��

C.P /log

�

��

Xan
fan
// C.P /

Our proof will be as follows: We note that Xan and C.P / are semialgebraic, and
the map Xan ! C.P / is a semialgebraic function (this part of the diagram is even
algebraic). We will check that C.P /log is semialgebraic, and that the projection to
C.P / is a semialgebraic function.

After we do that, it will follow that Xlog is semialgebraic as well (being the inverse image
of the diagonal C.P /�C.P /�C.P /, a semialgebraic set, through the semialgebraic
map .fan; �/W Xan � C.P /log ! C.P / � C.P /, see [8, Proposition 2.2.7]), hence
triangulable (by the results of [30]), and any triangulable locally semialgebraic set is
locally compact, Hausdorff and locally contractible [21].

Lemma A.14 The topological space C.P /log is semialgebraic, and the projection
C.P /log!C.P / is a semialgebraic map.

Proof We will check this by writing out these spaces explicitly. Let pi be a finite set
of generators for P (for example the indecomposable elements), and assume we have a
finite number of relations that present the monoid P , of the form

P
j rijpj D

P
j sijpj .

Say there are k generators and h relations.
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Then we have a map C.P / D Hom.P;C/ ! Ck given by � 7! .�.pi //. This
is an embedding, and the closed image is the Zariski closed subset with equationsQ
j .zj /

rij D
Q
j .zj /

sij obtained from the h relations of the chosen presentation of P ,
where .zj / are the coordinates of Ck .

In the exact same way we have a map C.P /logDHom.P;R�0�S1/! .R�0�S1/k

given by  7! . .pi //. To describe the image, let us note that we have R�0�S1�R3

in a natural way, as a semialgebraic subset. If we denote by .�j / the “coordinates”
of .R�0 � S1/k , then the (isomorphic) image of C.P /log is again described by the
equations

Q
j .�j /

rij D
Q
j .�j /

sij , so it is semialgebraic (the equations translate into
algebraic equations on .R3/k ).

Of course the diagram

C.P /log //

��

.R�0 �S1/k

��

C.P / // Ck

commutes.

From this, it suffices to check that the map .R�0 �S1/k!Ck is semialgebraic, and
this is easy: in coordinates (where we see .R�0 �S1/k � .R3/k and Ck Š .R2/k ) it
is given by .ai ; bi ; ci / 7! .ai � bi ; ai � ci /.

A.4 Root stacks

Root stacks of log schemes were introduced in [9]. The infinite root stack, an inverse
limit of the ones with finitely generated weight system, is the subject of [48]. We briefly
recall the functorial definition and the groupoid presentations coming from local charts.

Let us fix a natural number n and a log scheme X with log structure LW A! DivX .
We can consider a sheaf 1

n
A of “fractions” of sections of A: the sections of 1

n
A are

formal fractions a
n

where a is a section of A. There is a natural inclusion inW A! 1
n
A.

Note that 1
n
A is isomorphic to A via a 7! a

n
. Through this isomorphism, the inclusion

in corresponds to multiplication by nW A! A. The fact that this map is injective
follows from torsion-freeness of stalks of A, which are fine saturated sharp monoids.

Definition A.15 The nth root stack n
p
X of the log scheme X is the stack over Sch,

the category of schemes (with the étale topology), whose functor of points sends a
scheme T to the groupoid whose objects are pairs .�;N; a/ where �W T ! X is a
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morphism of schemes, N W 1
n
��A!DivX is a symmetric monoidal functor with trivial

kernel and a is a natural isomorphism between ��L and the composite N ı in :

��A //

��

a��

DivX

1
n
��A

::

Morphisms are defined in the obvious way.

In other words the nth root stack parametrizes extensions of the symmetric monoidal
functor LW A! DivX to the sheaf 1

n
A. The pair .N; a/ in the definition above could

be called an “nth root” of the log structure LW A! DivX .

Every time njm there is a morphism m
p
X!

n
p
X , and by letting n and m vary, these

maps give an inverse system of stacks over Sch.

Definition A.16 The infinite root stack 1
p
X of the log scheme X is the pro-algebraic

stack .n
p
X/n2N .

Remark A.17 In [48] the infinite root stack is defined as the actual limit of the inverse
system in the 2–category of fibered categories, but in the present paper it will always
be the pro-object. The two contain the same information, since by the results of [48,
Section 5] the limit of the system of nth root stacks recovers the log scheme completely,
and hence recovers the pro-object as well.

The nth root stack n
p
X is a tame Artin stack with coarse moduli space X . Moreover

there are presentations of n
p
X for each n that assemble into a pro-object in groupoids

in schemes, and can be regarded as a presentation of the pro-object 1
p
X . This follows

from the following local descriptions as quotient stacks [48, Corollary 3.12].

Let us fix a monoid P , and let us denote by Cn the cokernel of the injective map
P gp! 1

n
P gp . Furthermore, denote by �n.P / the Cartier dual of Cn . This acts on the

monoid algebra Spec k
�
1
n
P
�

(k here is some base field, but this works the same way
over Z).

If X is a log scheme with a global chart X ! Spec kŒP �, then there is a cartesian
diagram

n
p
X //

��

�
Spec k

�
1
n
P
�
=�n.P /

�
��

X // Spec kŒP �

presenting n
p
X as a quotient stack ŒXn=�n.P /�, where XnDX�SpeckŒP �Spec k

�
1
n
P
�
.
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As we mentioned, these quotient stack presentations are all compatible, in the sense
that they give a pro-object in groupoids in schemes .Xn ��n.P /�Xn/n2N , which
can be seen as a groupoid presentation of 1

p
X .

If X does not have a global chart we cover it with étale opens Ui where there is a chart
with monoid Pi and assemble together the corresponding groupoid presentations.

Proposition A.18 [9, Proposition 4.19] The nth root stack n
p
X is a tame Artin stack,

and is Deligne–Mumford when we are over a field of characteristic 0.

A.5 Topological stacks

The main reference for this section is [36].

The two preceding subsections were about the objects that we would like to compare,
namely the Kato–Nakayama space and the infinite root stack of a log scheme locally
of finite type over C . Note that the former is of topological nature, and the latter is
algebraic. In order to find a map between them, we carry over the root stacks to the
topological side.

One can talk about stacks over any Grothendieck site. Algebraic stacks (also known as
Artin stacks) are stacks on the category of schemes over a base with the étale topology1

that admit a representable smooth epimorphism from a scheme and whose diagonal
is representable by algebraic spaces (and often one imposes some conditions on this
diagonal morphism, like being quasicompact or locally of finite type). Equivalently,
one can describe algebraic stacks as stacks of (étale) torsors for certain groupoid objects
in algebraic spaces, whose structure maps are smooth.

If instead of schemes over a base with the étale topology we start from topological
spaces with the étale topology (where covers are local homeomorphisms), and we
require a representable epimorphism from a topological space, we obtain the theory
of topological stacks.2 Such a stack will always have diagonal representable by a
topological space. As on the algebraic side, a topological stack can be defined through
a groupoid presentation: a topological stack is a stack of principal G–bundles for G a
topological groupoid, and much of the basic yoga that one learns when working with
algebraic stacks carries over in close analogy in this context.

In particular if G is a topological group acting on a space X , the functor of points of the
quotient stack ŒX=G� is described as principal G–bundles (the topological analogue

1Sometimes, rather than working with the étale topology, one defines algebraic stacks with the fppf
topology. However, the resulting 2–category of stacks is the same; see [7, Tag 076U].

2Noohi [36] demands further conditions for such a stack to be called a topological stack; however, in
subsequent papers (eg [37]), he relaxes these conditions to the ones just described.
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of G–torsors) with an equivariant map to X . In the same fashion, if R� U is a
topological groupoid, one can characterize the associated stack ŒU=R� as the stack of
principal bundles for this groupoid.

There is a procedure to produce a topological stack starting from an algebraic one, that
extends the analytification functor. We apply this in particular to the nth root stacks of
a log scheme.

Denote by AlgStLFT
C the 2–category of algebraic stack locally of finite type over C

and by TopSt the 2–category of topological stacks.

Proposition A.19 [36, Section 20] There is a functor of 2–categories

. � /topW AlgStLFT
C ! TopSt

that associates a topological stack to an algebraic stack locally of finite type over C .

In Section 3, we extend Noohi’s results to produce a left exact colimit-preserving
functor from 1–sheaves (also known as stacks of 1–groupoids) on the algebraic étale
site to hypersheaves on a suitable topological site. See Theorem 3.1 and Corollary 3.11.

This functor has several nice properties. We point out the ones that we use:

1. If X is a scheme (or algebraic space) locally of finite type over C , then
Xtop 'Xan is the analytification

2. The functor . � /top preserves all finite limits (ie is left exact).
3. The preceding properties give us a procedure for calculating Xtop for an algebraic

stack X. If R�U is a groupoid presentation of X, where R and U are locally
of finite type and the maps are smooth, then by the first property we can apply
the analytification functor to the diagram, and, by the second one, this will result
in another groupoid, namely the groupoid in topological spaces Ran�Uan . The
topological stack Xtop is then the associated stack ŒUan=Ran�.

In particular, if XD ŒU=G� for an action of an algebraic group locally of finite type G
on a scheme locally of finite type X , we have Xtop D ŒUan=Gan�.

Definition A.20 Let X be a log scheme locally of finite type over C . The topological
nth root stack of X is the topological stack n

p
X top . As for the algebraic ones, the

topological root stacks form an inverse system. The pro-topological stack 1
p
X top

..D

.
n
p
X top/n2N is the topological infinite root stack of X .

A.6 The rank stratification

In this section we will prove that the characteristic sheaf M is locally constant on a
stratification over the log scheme X . This is used in the main body of this article to
prove that the Kato–Nakayama space and the infinite root stack are “stratified fibrations”
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over X , and that the map that we construct between them induces an equivalence of
profinite completions.

The results of this part are probably known to experts, and we are including them
because of the lack of a suitable reference.

Definition A.21 By a stratification of a topological space T we mean a collection of
closed subsets SD fSi � T gi2I where I is partially ordered and

� if i � j then Si � Sj , and
� the stratification is locally finite: every point t 2 T has an open neighborhood
U such that only finitely many of the intersections U \Si are nonempty.

The locally closed subsets Sj nSi will be called the strata of the stratification.

If in the above definition T is the underlying topological space of a scheme X and
each Si is Zariski closed, we will say that S is an algebraic stratification of the
scheme X . Note that an algebraic stratification on X will induce a stratification on the
analytification Xan .

Definition A.22 Let T be a topological space equipped with a stratification S, and let
f W T 0! T be a morphism, where T 0 is a topological space or stack. We will say that
f is a stratified fibration with respect to S if the restrictions of f to the strata of S are
fibrations (in our case, this will always mean “locally the projection from a product”).

Now let X be a log scheme locally of finite type over a field k . We will describe an
algebraic stratification of X over which the sheaf M is locally constant.

The basic idea is that we are stratifying by the rank of the stalks M gp
x of the sheaf of

abelian groups M gp .

Lemma A.23 [39, Lemma 3.5] The sheaf M gp is a constructible sheaf of Z–modules
[4, Exposé IX, Definition 2.3]. This means that (Zariski locally) there is a decomposition
of X into locally closed subsets over which M gp is a locally constant sheaf.

Lemma A.24 [38, Theorem 2.3.2] If � is a generalization of � in X , meaning that
� 2 f�g, then there is a natural morphism of the stalks M x�!M x� , and this is surjective
(more specifically, it is a quotient by a face).

This last lemma follows from Proposition A.6 and from the explicit description of the
stalks of the monoid M of the log structure obtained from a chart; see Remark A.4.

In particular the rank “only jumps up in closed subsets”, ie for every n 2N the subset
Rn of points of X where the rank of the group M gp

xx is at least n is closed: it is
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constructible by Lemma A.23, and stable under specialization by Lemma A.24, so it is
closed. Note also that RnC1 �Rn .

Definition A.25 The rank stratification of a log scheme X is the algebraic stratification
RD fRngn2N , where

Rn D fx 2X j rankZM
gp
xx � ng:

We will denote the strata by Sn ..DRn nRnC1 .

For example, R0 D X and the complement X nR1 is the open subset of X where
the log structure is trivial (which might be empty). In general Sn is the locally closed
subset of X over which the rank of M gp

xx is equal to n.

We claim that both sheaves M and M gp are locally constant on the strata Sn .

To check this, let us describe the canonical log structure MP ! DivXP
on XP D

Spec kŒP � in more detail: the log structure is induced by the morphism of monoids
P ! kŒP �, which gives a morphism of sheaves of monoids P !OXP

(here P denotes
the constant sheaf), from which we get the sheaf MP by killing the preimage of the units
in OXP

. More precisely, denote by fpigi2I the finitely many indecomposable elements
of the fine saturated monoid P ; these are generators of P . For a geometric point
x!XP call S � I the subset of indices such that the image of tpi 2 kŒP � is invertible
in the residue field k.x/. Then the stalk .MP /x is the quotient P=hpi j i 2 Si.

In particular we note the following:

Lemma A.26 The only point x of XP where the stalk .MP /xx has rank nD rankZP
gp

is the “vertex” vP , the point given by the maximal ideal htpi j i 2 I i generated by the
variables corresponding to the indecomposable elements of P .

The point vP is also sometimes referred to as the “torus-fixed point”.

Proof Since P gp Š Zn for some n, as soon as at least one of the indecomposable
elements pi is killed, the rank will drop at least by 1. The only point in which no
indecomposable is killed is exactly the maximal ideal generated by all the tpi .

Proposition A.27 For every n and every point x of SnDRn nRn�1 , there is an étale
neighborhood U ! Sn of x such that the sheaves M jSn

and M gpjSn
are constant

sheaves.

Proof If we equip Rn with the reduced subscheme structure, it is a (fine saturated)
log scheme with the log structure pulled back from X , and the same is true for the open
subset Sn�Rn . Consequently there is an étale neighborhood U !Sn of x and a chart
U ! Spec kŒP � for the induced log structure on U , where P DM xx (Proposition A.6).
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If MP is the sheaf of monoids for the canonical log structure on Spec kŒP �, there is
exactly one point where the stalk has rank nD rankP (D rankZP

gp ), corresponding
to the vertex vP (Lemma A.26).

This implies (since over U the rank of the stalks of M is always n) that the morphism
U ! Spec kŒP � sends everything to vP , and in turn that the sheaf M jU , being a
pullback from Spec kŒP �, is constant. This implies that M gpjU is constant as well,
and concludes the proof.

Note that if k D C , the algebraic stratification of X we just constructed induces a
stratification of the analytification Xan , and the sheaves M and M gp of the log analytic
space are locally constant over the strata.
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Positive simplicial volume implies
virtually positive Seifert volume

for 3–manifolds

PIERRE DERBEZ

YI LIU

HONGBIN SUN

SHICHENG WANG

We show that for any closed orientable 3–manifold with positive simplicial volume,
the growth of the Seifert volume of its finite covers is faster than the linear rate. In
particular, each closed orientable 3–manifold with positive simplicial volume has
virtually positive Seifert volume. The result reveals certain fundamental differences
between the representation volumes of hyperbolic type and Seifert type. The proof is
based on developments and interactions of recent results on virtual domination and
on virtual representation volumes of 3–manifolds.

57M50; 51H20

1 Introduction

The representation volume of 3–manifolds is a beautiful theory, exhibiting rich con-
nections with many branches of mathematics. The behavior of those volume functions
appears to be quite mysterious; for example, their values are hard to predict except in a
very few nice cases. On the other hand, for most motivating applications, it suffices to
estimate the growth of such volumes for finite covers of the considered 3–manifold. In
this paper, we intend to investigate the possibility of the latter, which is interesting as a
topic on its own right.

To be more specific, let us introduce some basic notations and mention some known
properties of the representation volume. Let G be either

IsoCH3
Š PSL.2IC/;

the orientation-preserving isometry group of the 3–dimensional hyperbolic geometry,
or

Isoe
fSL2.R/ŠR�Z fSL2.R/;
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the identity component of the isometry group of the Seifert geometry (see Brooks
and Goldman [4]). For any closed orientable 3–manifold N and any representation
�W �1N !G , denote by volG.N; �/ the (unsigned) volume of � . We denote the set
of G –representation volumes of N by

vol.N;G/D fvolG.N; �/ W � any representation �1N !Gg;

which is a subset of the interval Œ0;C1/.

The following theorem contains a collection of fundamental facts in the theory of
representation volumes; see Brooks and Goldman [3] and Reznikov [23].

Theorem 1.1 Let N be a closed orientable 3–manifold.

(1) The sets of values vol.N; IsoCH3/ and vol.N; Isoe
fSL2.R// are both finite.

Hence the values

HV.N /Dmax vol.N; IsoCH3/ and SV.N /Dmax vol.N; Isoe
fSL2.R//

exist in Œ0;C1/, depending only on N .

(2) If N admits a hyperbolic geometric structure, then HV.N / equals the usual
hyperbolic volume of N , reached by any discrete and faithful representation. A
similar statement holds for SV.N / when N admits a Seifert geometric structure.

(3) If P1; : : : ;Ps are the prime factors of N in the Kneser–Milnor decomposition,
then

HV.N /D HV.P1/C � � �CHV.Ps/:

A similar formula holds for SV.N /.

(4) For any map f W M !N between closed orientable 3–manifolds,

HV.M /� jdegf j �HV.N /:

The same comparison holds for SV.M / and SV.N /.

The values HV.N / and SV.N / in the conclusion of Theorem 1.1(1) are called the
hyperbolic volume and the Seifert volume of N , respectively. In light of Theorem 1.1(3),
we assume from now on that all the closed orientable 3–manifolds considered are
prime, unless specified otherwise. This is especially convenient when we speak of the
geometric decomposition of the 3–manifold.

Remark Representation volumes were introduced and studied by R Brooks and
W Goldman [3; 4] as a generalization of the simplicial volume originally due to
M Gromov [10]. Among the eight 3–dimensional geometries of W P Thurston, H3 and
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fSL2.R/ are the only two that yield nontrivial invariants, the hyperbolic volume and the
Seifert volume, respectively. Recall that the simplicial volume of a closed orientable
3–manifold N roughly counts the minimal real number of singular tetrahedra to realize
the fundamental class of N, and it is denoted by kN k. It is known that the sum
of the classical hyperbolic volume of the hyperbolic pieces is equal to v3kN k (see
Soma [26]), where v3 is the volume of the ideal regular hyperbolic tetrahedron.

Like the simplicial volume, the volumes of Brooks–Goldman satisfy the domination
property, as stated by Theorem 1.1(4). It follows that if either of the volumes HV.N /

or SV.N / is positive, then the set of mapping degrees D.M;N / of N by any given
3–manifold M must be finite. Unlike the simplicial volume, neither the hyperbolic
volume nor the Seifert volume satisfies the covering property; see Derbez, Liu and
Wang [5, Corollary 1.8], and Section 6 for some further discussion.

It can be inferred from Theorem 1.1 and the following remark that nonvanishing HV.N /

or SV.N / contains interesting information about the topology of the 3–manifold N .
However, such information seems difficult to characterize. For example, the vanishing
or nonvanishing of SV.N / implies nothing about the behavior of HV.N / (see Brooks
and Goldman [3, Sections 4 and 5]), and except for the geometric case (Theorem 1.1(2)),
the geometry of pieces fails to detect the vanishing or nonvanishing of HV.N / or
SV.N / either; see Derbez, Liu and Wang [5, Theorem 1.7]. On the other hand, the
existence of some finite cover of N with nonvanishing representation volume turns out
to be a more accessible question. An affirmative answer would be practically useful:
it implies the finiteness of the set of mapping degrees as before. Motivated by that
application, it has been discovered that any nongeometric graph manifold admits a
finite cover of positive Seifert volume (see Derbez and Wang [7; 8]); a much more
general construction that invokes Chern–Simons-theoretic calculations, and virtual
properties of 3–manifolds shows that a right geometric piece implies virtually positive
volume of the right geometry [5, Theorems 1.6]:

Theorem 1.2 Suppose that N is a closed orientable nongeometric prime 3–manifold.

(1) If N contains at least one hyperbolic geometric piece, then the hyperbolic
volume of some finite cover of N is positive.

(2) If N contains at least one Seifert geometric piece, then the Seifert volume of
some finite cover of N is positive.

Despite the seeming parallelism so far, the hyperbolic volume and the Seifert volume
behave drastically differently with respect to finite covers. In this paper, we support
this point by investigating two problems proposed in [5, Section 8]:
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Problem 1.3 Estimate the growth of virtual hyperbolic volume and virtual Seifert
volume.

Problem 1.4 Is the Seifert volume of a closed prime 3–manifold virtually positive if
it has positive simplicial volume?

The main results of this paper address Problem 1.4 affirmatively (Theorem 1.5) and
Problem 1.3 partially for 3–manifolds of positive simplicial volume (Theorem 1.7 and
the following remark), showing that the growth of virtual Seifert volume is superlinear
while the growth of virtual hyperbolic volume is linear. On Problem 1.4, the case
of closed hyperbolic 3–manifolds is already known as a direct consequence of the
much stronger virtual domination theorem of Sun [27] (quoted as Theorem 1.8 below);
so essentially it remains to treat the case of nongeometric 3–manifolds (with only
hyperbolic pieces). On Problem 1.3, it is easy to observe that the growth of virtual
Seifert volume for a closed Seifert geometric 3–manifold is linear, indeed in a constant
rate equal to its Seifert volume. Comparing with our result, we are left with the
impression that the growth of virtual hyperbolic volume might be largely governed by
the product of the simplicial volume with v3 , and the growth of virtual Seifert volume
appears to be more sensitive to the geometric decomposition.

The main results of this paper are stated as Theorems 1.5 and 1.7:

Theorem 1.5 If M is a closed orientable 3–manifold with positive simplicial volume,
then there is a finite cover zM of M with positive Seifert volume.

Combining with results of Derbez, Liu, Sun and Wang [8; 5; 6], we infer immediately
the following characterization:

Corollary 1.6 Suppose that N is a closed orientable 3–manifold. Then the following
three statements are equivalent:

(1) The set of mapping degrees D.M;N / is finite for every closed orientable 3–
manifold M.

(2) The Seifert volume of some finite cover of N is positive.
(3) At least one prime factor of N is Seifert geometric, or hyperbolic, or nongeo-

metric.

Theorem 1.7 For any closed oriented 3–manifold M with nonvanishing simplicial
volume, the set of values�

SV.M 0/

ŒM 0 WM �

ˇ̌̌
M 0 any finite cover of M

�
has no upper bound in Œ0;C1/.
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Remark By contrast, it is evident by Reznikov [23, Theorem B] and Theorem 1.1
that the set of values �

HV.M 0/

ŒM 0 WM �

ˇ̌̌
M 0 any finite cover of M

�
is contained in the interval Œ0; v3kM k�.

Theorem 1.7 is significantly stronger than Theorem 1.5. Let us take a closer look at the
geometric case to illustrate their difference in the proof. As mentioned, when M is
assumed to be geometric, hence hyperbolic, Theorem 1.5 is implied by the following
result of Sun [27], by taking N to be a target with positive Seifert volume:

Theorem 1.8 For any closed oriented hyperbolic 3–manifold M and any closed
oriented 3–manifold N , there is a finite cover zM of M with a �1 –surjective degree-2
map f W zM !N .

Even though Theorem 1.8 is a powerful construction, employing deep theories including
Kahn and Markovic [14], Liu and Markovic [17], Agol [1] and Wise [31] on building
and separating certain quasiconvex subgroups in closed hyperbolic 3–manifold groups,
the construction provides no control on the degree Œ zM WM �. So Theorem 1.7 stays
beyond the reach of Theorem 1.8. Armed with a more recent result of A Gaifullin [9],
we prove the following Theorem 1.9 based on Theorem 1.8. The improved construction
is supplied with a desired efficient control of the mapping degree:

Theorem 1.9 For any closed oriented hyperbolic 3–manifold M, there exists a posi-
tive constant c.M / such that the following statement holds. For any closed oriented
3–manifold N and any � > 0, there exists a finite cover M 0 of M which admits a
nonzero degree map f W M 0!N such that

kM 0
k � c.M / � jdegf j � .kN kC �/:

To prove Theorems 1.5 and 1.7 in the nongeometric case, it is tempting to extend
Theorems 1.8 and 1.9 to mixed 3–manifolds, but we do not have available tools for
that project. Instead, we follow the framework of Derbez, Liu and Wang [5] and
integrate the virtual domination theorems. The interaction between Theorem 1.8 and
the fundamental construction for Theorem 1.2 is fairly direct and illustrating, so we
present it and prove Theorem 1.5 as a warm-up. The proof of Theorem 1.7 is relatively
more sophisticated, not only because of Theorem 1.9, but it requires some details of [5].
In particular, we introduce an auxiliary notion called CI completion to formalize a
useful idea underlying the construction of [5] (see Section 5.2).
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All the arguments are based on explicitly stated results, and the exposition is kept
otherwise self-contained. The organization of this paper is as follows: The proofs of
Theorems 1.5, 1.9 and 1.7 occupy Sections 3, 4 and 5, respectively. Section 2 includes
preliminaries on 3–manifold topology and representation volume. Section 6 contains
some further questions and observations.

Acknowledgement We are grateful to Ian Agol for valuable conversations. We also
thank the anonymous referee for helpful comments. Liu is supported by the Recruitment
Program of Global Youth Experts of China. Sun is partially supported by Grant No DMS-
1510383 of the National Science Foundation of the United States. Wang is partially
supported by Grant No 11371034 of the National Natural Science Foundation of China.

2 Preliminaries

In this section, we review the geometric decomposition of 3–manifolds and the theory
of representation volumes.

2.1 Geometry and topology of 3–manifolds after Thurston

Let N be a connected compact prime orientable 3–manifold with toral or empty
boundary. As a consequence of the geometrization of 3–manifolds [28; 29] achieved
by G Perelman and Thurston, exactly one of the following cases holds:

� N is geometric, supporting one of the following eight geometries: H3 , fSL2.R/,
H2 �R, Sol, Nil, R3 , S 3 and S 2 �R (where Hn , Rn and S n are the n–
dimensional hyperbolic space, Euclidean space and spherical space, respectively).

� N has a canonical nontrivial geometric decomposition. In other words, there is
a nonempty minimal union TN �N of disjoint essential tori and Klein bottles
in N , unique up to isotopy, such that each component of N nTN is either Seifert
fibered or atoroidal. In the Seifert fibered case, the piece supports both the
H2 �R geometry and the fSL2.R/ geometry. In the atoroidal case, the piece
supports the H3 geometry.

When N has nontrivial geometric decomposition, we call the components of N n TN

the geometric pieces of N or, more specifically, Seifert pieces or hyperbolic pieces
according to their geometry.

Traditionally, there is another decomposition introduced by Jaco and Shalen [12] and
Johannson [13], known as the JSJ decomposition. When N contains no essential Klein
bottles and has a nontrivial geometric decomposition, the JSJ decomposition of N
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coincides with its geometric decomposition, so the cutting tori and the geometric pieces
are also the JSJ tori and the JSJ pieces, respectively. Possibly after passing to a double
cover of N , we may assume that N contains no essential Klein bottle.

A hyperbolic piece J can be realized as a complete hyperbolic 3–manifold of finite
volume, unique up to isometry (by Mostow rigidity). Let J be a compact, orientable
3–manifold whose boundary consists of tori T1; : : : ;Tp and whose interior admits a
complete hyperbolic metric. Identify J with the complement of p disjoint cusps in
the corresponding hyperbolic manifold; then @J has a Euclidean metric induced from
the hyperbolic structure, and each closed Euclidean geodesic in @J has the induced
length. The hyperbolic Dehn filling theorem of Thurston [28, Theorem 5.8.2] can be
stated in the following form:

Theorem 2.1 There is a constant C >0 such that the closed 3–manifold J.�1; : : : ; �n/

obtained by Dehn filling each Ti along a slope �i � Ti admits a complete hyperbolic
structure if each �i has length greater than C . Moreover, with suitably chosen base-
points, J.�1; : : : ; �n/ converges to the corresponding cusped hyperbolic 3–manifold in
the Gromov–Hausdorff sense as the minimal length of �i tends to infinity.

A Seifert piece J of a nongeometric prime closed 3–manifold N supports both the
H2 �R geometry and the fSL2.R/ geometry. In this paper, we are more interested
in the latter case, so we describe the structure of fSL2.R/ geometric manifolds in the
following. All the material can be found in [25].

We consider the group PSL.2IR/ as the orientation-preserving isometries of the hyper-
bolic 2–space H2 D fz 2C j =.z/ > 0g with i as a basepoint. In this way PSL.2IR/
is identified with the unit tangent bundle of H2 , which has a natural Riemannian
metric induced from T H2 . Note that PSL.2IR/ is a (topologically trivial) circle
bundle over H2 , but not isometric to H2 �S 1 . Let pW fSL2.R/! PSL.2IR/ be the
universal covering of PSL.2IR/ with the induced metric, then fSL2.R/ is a line bundle
over H2 . For any ˛ 2R, denote by sh.˛/ the element of fSL2.R/ whose projection
into PSL.2IR/ is given by �

cos.2�˛/ � sin.2�˛/
sin.2�˛/ cos.2�˛/

�
:

Then the set fsh.n/ j n 2Zg is the kernel of p , as well as the center of fSL2.R/, acting
by integral translation along the fibers of fSL2.R/. By extending this Z–action on the
fibers by the R–action, we get the whole identity component of the isometry group
of fSL2.R/. To summarize, we have the following diagram of central extensions:
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f0g //

��

Z //

��

fSL2.R/ //

��

PSL.2IR/ //

��

f1g

��
f0g // R // Isoe

fSL2.R/ // PSL.2IR/ // f1g

In particular, the group Isoe
fSL2.R/ is generated by fSL2.R/ and the image of R,

which intersect with each other in the image of Z. More precisely, we state the
following useful lemma, which is easy to check.

Lemma 2.2 We have the identification Isoe
fSL2.R/DR�Z fSL2.R/, where .x; h/�

.x0; h0/ if and only if there exists an integer n 2 Z such that x0 � x D n and h0 D

sh.�n/ ı h.

From [4] we know that a closed orientable 3–manifold J supports the fSL2.R/ ge-
ometry — ie there is a discrete and faithful representation  W �1J ! Iso fSL2.R/ — if
and only if J is a Seifert fibered space with nonzero Euler number e.J / and the base
orbifold �O.J / has negative Euler characteristic.

2.2 Representation volumes of closed manifolds

In this subsection, we recall the definition of volume of representations. There are a
few equivalent definitions, and we will only state one of them.

Given a semisimple, connected Lie group G and a closed oriented manifold M n of
the same dimension as the contractible space X n D G=K , where K is a maximal
compact subgroup of G . We can associate to each representation �W �1M ! G a
volume volG.M; �/ in the following way.

First fix a G–invariant Riemannian metric gX on X , and denote by !X the corre-
sponding G –invariant volume form. Let zM denote the universal covering of M. We
think of the elements zx of zM as the homotopy classes of paths  W Œ0; 1�!M with
 .0/D x0 , which are acted on by �1.M;x0/ by setting Œ� �:zx D Œ�: �, where the dot
denotes the composition of paths.

A developing map D�W
zM !X associated to � is a �1M –equivariant map such that

for any x 2 zM and ˛ 2 �1M, we have

D�.˛:x/D �.˛/D�.x/;

where �.˛/ acts on X as an isometry. Such a map does exist and can be constructed
explicitly as in [2]: Fix a triangulation �M of M; then it lifts to a triangulation � zM
of zM, which is �1M –invariant. Then fix a fundamental domain � of M in zM such
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that the zero skeleton �0
zM

misses the frontier of �. Let fx1; : : : ;xlg be the vertices
of �0

zM
in �, and let fy1; : : : ;ylg be any l points in X . We first set

D�.xi/D yi ; i D 1; : : : ; l:

Then extend D� in a �1M –equivariant way to �0
zM

: for any vertex x in �0
zM

, there is
a unique vertex xi in � and ˛x 2 �1M such that ˛x :xi D x , and we set D�.x/D

�.˛x/
�1D�.xi/. Finally we extend D� to edges, faces, etc, and n–simplices of � zM

by straightening their images to totally geodesics objects using the homogeneous metric
on the contractible space X . This map is unique up to equivariant homotopy. Then
D�� .!X / is a �1M –invariant closed n–form on zM, which therefore can be thought of
as a closed n–form on M. Then we define

volG.M; �/D

Z
M

D�� .!X /D

sX
iD1

�i volX .D�.z�i//

Here f�1; : : : ; �sg are the n–simplices of �M , z�i is a lift of �i and �i D ˙1

depends on whether D�jz�i
preserves the orientation or not.

3 Positive simplicial volume implies virtually positive
Seifert volume

In this section, we adapt Theorem 1.8 to the framework of [5] to prove Theorem 1.5.

3.1 Virtual representation through geometric decomposition

We recall some results from [5]. The following additivity principle allows us to compute
the representation volume by information on the JSJ pieces. It is proved by using the
relation between the representation volume and the Chern–Simons theory.

Theorem 3.1 (additivity principle [5, Theorem 3.5]; see also [8]) Let M be an
oriented closed 3–manifold with JSJ tori T1; : : : ;Tr and JSJ pieces J1; : : : ;Jk , and
let �1; : : : ; �r be slopes on T1; : : : ;Tr , respectively.

Suppose that G is either Isoe
fSL2.R/ or PSL.2IC/, that

�W �1.M /!G

is a representation vanishing on the slopes �i , and that y�i W �1. yJi/!G are the induced
representations, where yJi is the Dehn filling of Ji along slopes adjacent to its boundary,
with the induced orientations. Then

volG.M; �/D volG. yJ1; y�1/C volG. yJ2; y�2/C � � �C volG. yJk ; y�k/:
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The following simple lemma suggests that we should focus on those JSJ pieces whose
groups have nonelementary images under � .

Lemma 3.2 [5, Lemma 3.6] Suppose that G is either Isoe
fSL2.R/ or PSL.2IC/

and that M is a closed oriented 3–manifold. If �W �1M !G has image either infinite
cyclic or finite, then volG.M; �/D 0.

The existence of a class inversion for the target group played an important role in [5]
for constructing virtual representation of mixed 3–manifold groups. Here we quote the
following definition. An intimately related notion called CI completion is introduced
and studied in this paper when we prove Theorem 1.7 (see Section 5.2).

Definition 3.3 [5, Definition 5.1] Let G be an arbitrary group and fŒAi �gi2I be
a collection of conjugacy classes of abelian subgroups. By a class inversion with
respect to fŒAi �gi2I , we mean an outer automorphism Œ�� 2 Out.G / such that for any
representative abelian subgroup Ai of each ŒAi �, there is a representative automorphism
�Ai
W G ! G of Œ�� that preserves Ai , taking every a 2 Ai to its inverse. We say G

is class invertible with respect to fŒAi �gi2I if there exists a class inversion. We often
ambiguously call any collection of representative abelian subgroups fAigi2I a class
invertible collection, and call any representative automorphism � a class inversion.

Now we state the following fundamental construction about virtual representation
extensions. It uses works of Przytycki and Wise [20; 21; 22] (and [31; 11]) and
Rubinstein and Wang [24] (see also [16]) to understand virtual properties of 3–manifolds
with nontrivial geometric decomposition.

Theorem 3.4 [5, Theorem 5.2] Let G be a group and M be an irreducible orientable
closed 3–manifold with nontrivial JSJ decomposition. For a fixed JSJ piece J0 �M,
suppose a representation

�0W �1.J0/! G

satisfies the following:

� �0 has nontrivial kernel restricted to �1.T / for every boundary torus T � @J0 ;
and

� �0.�1.T // forms a class invertible collection of abelian subgroups of G for
every boundary torus T � @J0 .

Then there exist a finite regular cover

�W zM !M

and a representation
z�W �1. zM /! G
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satisfying the following:

� for one or more elevations zJ0 of J0 , the restriction of z� to �1. zJ0/ is, up to a
class inversion, conjugate to the pullback ��.�0/; and

� for any elevation zJ other than the above, of any geometric piece J , the restriction
of z� to �1. zJ / is cyclic, possibly trivial.

3.2 Proof of Theorem 1.5

Now we are ready to prove Theorem 1.5, and here is a sketch of the strategy. Since
we can suppose that the manifold has a hyperbolic JSJ piece, Theorem 1.8 gives a
virtual representation of the hyperbolic piece with positive Seifert volume. Then, with
Lemma 3.6, Theorem 3.4 extends the virtual representation to the whole manifold,
and the volume of the virtual representation can be calculated by Theorem 3.1 and
Lemma 3.2.

By Theorems 1.2 and 1.8, we may assume that M has nontrivial JSJ decomposition
and contains a hyperbolic JSJ piece J in M. Suppose @J is a union of tori T1; : : : ;Tk .
Let ˛i be a slope on Ti ; then call ˛ D f˛1; : : : ; ˛kg a slope on @M. Denote by J.˛/

the closed orientable 3–manifold obtained by Dehn filling of k solid tori S1; : : : ;Sk to
J along ˛ . We can choose ˛ so that J.˛/ is a hyperbolic 3–manifold (Theorem 2.1).

Take a closed orientable manifold N of nonvanishing Seifert volume. For example, a
circle bundle N with Euler class e ¤ 0 over a closed surface of Euler characteristic
� < 0 works: in fact, for such N ,

SV.N /D
4�2j�j2

jej
> 0:

By Theorem 1.8 there is a finite cover qW Q ! J.˛/ such that Q dominates N,
therefore SV.Q/ > 0. Let S D

S
Si ; then S 0 D q�1.S/�Q is a union of solid tori

and J 0DQnS 0 is a connected 3–manifold which covers J . Moreover, Q is obtained
by Dehn filling S 0 to J 0 along ˛0 , where ˛0 is a slope of @J 0 which covers ˛ (ie each
component of ˛0 is an elevation of a component of ˛ and QD J 0.˛0/).

Fix J 0 and ˛0 for the moment. Let zJ be a finite covering of J 0 and z̨ be the slope
of @ zJ which covers ˛0 ; then SV. zJ .z̨// > 0. This is because the covering zJ ! J 0

extends to a branched covering (which is a nonzero degree map) zJ .z̨/! J 0.˛0/ and
SV.J 0.˛0//D SV .Q/ > 0.

According to [5, Proposition 4.2], there is a finite cover pW zM !M such that each
JSJ piece zJ of zM that covers J factors through J 0 . In particular, in the notations we
have just used, SV. zJ .z̨// > 0. To simplify the notations, we rewrite zM, zJ and z̨ as
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M, J and ˛ . Since Theorem 1.5 concludes with a virtual property, we need only to
prove the following statement:

Theorem 3.5 Suppose M is a closed orientable 3–manifold with nontrivial JSJ
decomposition and there is a JSJ piece J and a slope ˛ of @J such that SV.J.˛// > 0.
Then there is a finite cover zM of M such that SV. zM / > 0.

We are going to apply Theorem 3.4 to prove Theorem 3.5. So we first need to check
that the 3–manifold M and the local representation �W �1.J / ! G (which gives
positive representation volume for J.˛/) in Theorem 3.5 meet the two conditions of
Theorem 3.4.

We first write a presentation of �1.J.˛// from �1.J / by attaching k relations from
Dehn fillings. Let G D Isoe

fSL2.R/ be the identity component of Iso fSL2.R/, the
isometry group of the Seifert space fSL2.R/. Then the condition SV.J.˛//> 0 implies
that there is a representation �W �1.J /!G such that, for each component Ti of @J ,
�.�1.Ti// is a (possibly trivial) cyclic group. Moreover, � extends to y�W �1.J.˛//!G

such that VG.J.˛/; y�/ > 0. So the first condition of Theorem 5.2 of [5] is satisfied.
The following lemma, which strengthens [5, Lemma 6.1(2)], implies that the second
condition of Theorem 3.4 is also satisfied.

Lemma 3.6 Isoe
fSL2.R/ is class invertible with respect to all its cyclic subgroups, and

a class inversion can be realized by the conjugation of any �2 Iso fSL2.R/nIsoe
fSL2.R/.

The corresponding action on fSL2.R/ preserves the orientation.

Proof There are short exact sequences of groups

0!R! Iso fSL2.R/
p
�! Iso H2

! 1

and
0!R! Isoe

fSL2.R/
p
�! IsoCH2

! 1:

Recall that there are no orientation-reversing isometries in the fSL2.R/ geometry.

For each element � in the component of Iso fSL2.R/ not containing the identity,
� reverses the orientation of R (the center of Isoe

fSL2.R/). So �r��1 D r�1 for
any r 2 R, and Isoe

fSL2.R/ is class invertible with respect to its center R. A class
inversion can be realized by the conjugation of any � 2 Iso fSL2.R/n Isoe

fSL2.R/, and
the corresponding action on fSL2.R/ preserves the orientation. Actually, this part of
the proof is the same as the proof of [5, Lemma 6.1(ii)].

In the following, we suppose that h˛i is a cyclic subgroup of Isoe
fSL2.R/ generated

by a noncentral element ˛ .
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For each nontrivial element a in IsoCH2 , it is straightforward to see that there exists
a reflection about a geodesic la in H2 that conjugates a to its inverse. The la can be
chosen as (i) passing through the rotation center when a is elliptic; (ii) perpendicular
with the axis of a when a is hyperbolic; (iii) passing through the fixed point when a

is parabolic.

By the discussion in the last paragraph and the exact sequences, there exists an element
� 2 Iso fSL2.R/ n Isoe

fSL2.R/ such that p.�/ is a reflection of H2 conjugating p.˛/

to its inverse, namely p.��1˛�/D p.˛�1/. We claim that

��1˛� D ˛�1:

In fact, by the short exact sequences above, we have that ��1˛� D ˛�1r for some r

in the center R. Since p.�/ is a reflection, �2 is central, so

˛ D ��2˛�2
D ��1.˛�1r/� D .��1r�/.��1˛�/�1

D r�1.˛�1r/�1
D ˛r�2:

Here we used the fact that � is a class inversion for hri. So r�2 is trivial, and r is
trivial as the center is torsion-free. This verifies the claim. We conclude that � realizes
a class inversion of the cyclic subgroup h˛i of Isoe

fSL2.R/.

For two elements ˛1; ˛2 2 Isoe
fSL2.R/, there exist �1; �2 2 Iso fSL2.R/n Isoe

fSL2.R/
such that ��1

i ˛i�i D ˛
�1
i , and there also exists ˇ 2 Isoe

fSL2.R/ such that �1 D ˇ�2 .
Then the conjugation of �1 on Isoe

fSL2.R/ equals the composition of the conjugation
of �2 with the conjugation of ˇ . Since ˇ 2 Isoe

fSL2.R/, the conjugations of �1 and
�2 represent the same element in Out.Isoe

fSL2.R//

So Isoe
fSL2.R/ is class invertible with respect to all its cyclic subgroups, and a class

inversion can be realized by the conjugation of any element in Iso fSL2.R/nIsoe
fSL2.R/,

and the corresponding action on fSL2.R/ preserves the orientation.

Proof of Theorem 3.5 Fix J , ˛ and �W �1.J /! G as in our previous discussion,
and denote them by J0 , ˛0 , and �0 to match the notations of Theorem 3.4. Since
�0W �1.J0/!G meets the two conditions of Theorem 3.4, we can virtually extend �0

to some z�W �1. zM /!G which satisfies the conclusion of Theorem 3.4.

By the additivity principle (Theorem 3.1), we need only to compute the representation
volume for each JSJ piece of zM, then add the volumes together to compute VG. zM ; z�/.
By Theorem 3.4 and Lemma 3.2, only those elevations zJ0 of J0 such that the restriction
of z� to �1. zJ0/ is conjugate to the pullback ��.�0/, up to a class inversion, could
contribute to the Seifert representation volume of zM.
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By Lemma 3.6, the class inversions can be realized by conjugations of orientation-
preserving isomorphisms of fSL2.R/, therefore the volumes of all these elevations are
positive multiples of VG.J0.˛0/; y�0/ > 0. So the Seifert representation volume of zM
with respect to z� is positive, which implies SV. zM / > 0.

The completion of the proof of Theorem 3.5 also completes the proof of Theorem 1.5.
We can reformulate what we have done in this section with the following proposition:

Proposition 3.7 Let M be an orientable closed mixed 3–manifold and J0 be a
distinguished hyperbolic JSJ piece of M. Suppose that yJ0 is a closed hyperbolic Dehn
filling of J0 by sufficiently long boundary slopes.

(1) For any finite cover yJ 0
0

of yJ0 and any representation

�W �1. yJ
0
0/! Isoe

fSL2.R/;

there exist a finite cover
zM 0
!M

and a representation
�W �1. zM

0/! Isoe
fSL2.R/

with the following properties:

� For one or more elevations zJ 0 of J0 contained in zM 0, the covering zJ 0! J0 fac-
tors through a covering zJ 0! J 0

0
, where J 0

0
� yJ 0

0
denotes the unique elevation of

J0�
yJ0 . The restriction of � to �1. zJ

0/ is conjugate to either the pullback ˇ�.�/
or the pullback ˇ�.��/, where � is a class inversion and ˇ is the composition
of the maps

zJ 0
cov
�!J 00

fill
�! yJ 00:

� For any elevation zJ 0 other than the above, of any JSJ piece J of M, the
restriction of � to �1. zJ / has cyclic image, possibly trivial.

(2) VolIsoeeSL2.R/
. zM 0; �/ is a positive multiple of VolIsoeeSL2.R/

. yJ 0
0
; �/.

Remark The first part of Proposition 3.7 is a specialized refined statement of Theorem
3.4; the second part supplies a slot to connect with Theorem 1.8. Therefore, Theorem 1.5
is a consequence of Proposition 3.7 and Theorem 1.8. The stronger result, Theorem 1.7,
will follow from an efficient version of this proposition (Theorem 5.1) plus the efficient
virtual domination (Theorem 1.9).
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4 Efficient virtual domination by hyperbolic 3–manifolds

In this section, we employ the work of Gaifullin [9] to derive Theorem 1.9 from
Theorem 1.8. We quote the statement below for convenience.

Theorem 1.9 For any closed oriented hyperbolic 3–manifold M, there exists a posi-
tive constant c.M / such that the following statement holds. For any closed oriented
3–manifold N and any � > 0, there exists a finite cover M 0 of M which admits a
nonzero degree map f W M 0!N such that

kM 0
k � c.M / � jdegf j � .kN kC �/:

Remark In fact, the same statement holds for any closed orientable manifold which
virtually dominates all closed orientable manifolds of the same dimension. For dimen-
sion 3, all hyperbolic manifolds have such property [27]. For any arbitrary dimension,
manifolds with this property have been discovered by Gaifullin [9]. The 3–dimensional
example M…3 of Gaifullin is not a hyperbolic manifold, but we point out that a constant
c0 D 24v8=v3 � 86:64 is sufficient for this case, where v8 is the volume of the ideal
regular hyperbolic octahedron and v3 is the volume of the ideal regular hyperbolic
tetrahedron.

4.1 URC manifolds

As introduced by Gaifullin [9], a closed orientable (topological) n–manifold M is
said to have the property of universal realization of cycles (URC) if every homology
class of Hn.X IZ/ of an arbitrary topological space X has a positive integral multiple
which can be realized by the fundamental class of a finite cover M 0 of M, via a map
f W M 0!X .

For any arbitrary dimension n, Gaifullin shows that examples of URC n–manifolds
can be obtained by taking some 2n –sheeted cover

M…n

of some n–dimensional orbifold …n . More precisely, the underlying topology space
of …n is the permutahedron, namely, the polyhedron combinatorially isomorphic
to the convex hull of the points .�.1/; : : : ; �.nC 1// of RnC1 , where � runs over
all permutations of f1; : : : ; nC 1g. The orbifold structure of …n is given so that
each codimension-1 face is a reflection wall, so each codimension-k face is the local
fixed point set of a Zk

2
–action. The abelian characteristic cover of …n on which

H1.…
nIZ2/ Š Zn

2
acts is the orientable closed n–manifold M…n . In particular,

M…n can be obtained by facet pairing of 2n permutahedra.
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The following quantitative version of Gaifullin’s proof [9, Section 5] is important
for our application. Recall that a (compact) pseudo-n–manifold is a finite simplicial
complex in which each simplex is contained in an n–simplex and each .n�1/–simplex
is contained in exactly two n–simplices. Topologically, a pseudo-n–manifold is just
a manifold away from its codimension-2 skeleton. A strongly connected orientable
pseudo-n–manifold means that, away from the codimension-2 skeleton, the manifold
is connected and orientable, or equivalently that the n–dimensional integral homology
is isomorphic to Z. In particular, the concept of (unsigned) mapping degree can be
extended similarly to maps between strongly connected orientable pseudo-n–manifolds.

Theorem 4.1 (see [9, Proposition 5.3]) For any strongly connected orientable pseudo-
n–manifold Z , there exists a finite cover M 0

…n of M…n and a nonzero degree map
f1W M

0
…n !Z such that

#fn–permutahedra of M 0
…ng D .nC 1/! � jdegf1j � #fn–simplices of Zg:

Remark The map f1 is as asserted by [9, Proposition 5.3]. The cover yM…n D

U…n=�H there is rewritten as M 0
…n in our notation. To compare with the statement

of [9, Proposition 5.3], the index jW W �H j there equals the number of permutahedra
in M 0

…n here; the notation jAj there stands for the number of n–simplices in the
barycentric subdivision of Z , which equals .nC 1/! times the number of n–simplices
of Z here. For dimension 3, all orientable closed hyperbolic manifold are known to
be URC [27].

4.2 Virtual domination through URC 3–manifolds

We combine the results of [9; 27] to prove Theorem 1.9. The following lemma allows
us to create an efficient virtual realization of the fundamental class of N .

Lemma 4.2 For any closed oriented n–manifold N and any � > 0, there exists a
connected oriented pseudo-n–manifold Z and a nonzero degree map f W Z!N such
that

#fn–simplices of Zg � jdegf j � .kN kC �/:

Proof By the definition of the simplicial volume, for any � > 0 there exists a singular
cycle

˛ D

kX
iD1

si�i 2Zn.N;R/
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such that Œ˛�D ŒN � 2Hn.N;R/ and

kX
iD1

jsi j< kN kC �:

Here the si are real numbers and the �i are maps from the standard oriented n–simplex
to N .

Since
kX

iD1

xi�i 2Zn.N;R/ and
� kX

iD1

xi�i

�
D ŒN � 2Hn.N;R/

can be expressed as linear equations with integer coefficients, they have a rational
solution .r1; : : : ; rk/ close to .s1; : : : ; sk/ such that ri 2Q and

kX
iD1

jri j< kN kC �:

In particular,
�Pk

iD1 ri�i

�
D ŒN � 2Hn.N;R/ holds. Here we can suppose that each

ri is nonnegative, by reversing the orientation of �i if necessary.

Let the least common multiple of the denominators of ri be denoted by m; then

ˇ Dm

� kX
iD1

ri�i

�
D

kX
iD1

.mri/�i 2Zn.N IZ/

is an integer linear combination of �i and Œˇ�DmŒN � 2Hn.N;R/.

Here we take mri copies of the standard oriented n–simplex that is mapped as �i for
i D 1; 2; : : : ; k . The condition that

Pk
iD1.mri/�i be an n–cycle implies that we can

find a pairing of all the .n�1/–dimensional faces of the collection of copies of the �i

such that each such pair is mapped to the same singular .n�1/–simplex in N, with
opposite orientation.

This pairing allows us to build an oriented pseudomanifold Z0 (possibly disconnected).
It is given by taking

Pk
iD1 mri copies of the standard oriented n–simplex and pasting

them together by the pairing given above. Then the singular n–simplices f�ig
k
iD1

induces a map f0W Z
0!N .

Let ŒZ0� be the homology class in Hn.Z
0/ which is represented by the n–cycle which

takes each oriented n–simplex in Z0 exactly once. It is easy to see that f0.ŒZ
0�/D
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Œˇ� D mŒN �, so f0 has mapping degree degf0 D m. Moreover, the number of n–
simplices in Z0 is just

kX
iD1

.mri/Dm

� kX
iD1

ri

�
<m.kN kC �/D degf0 � .kN kC �/:

If Z0 is connected, we are done with the proof. If Z0 is disconnected, take the
component Z of Z0 such that

deg.f0jZ /

#fn–simplices of Zg

is not smaller than the corresponding number for all the other components of Z0 . Then
f D f0jZ satisfies the desired condition in this lemma.

4.2.1 Construction of .M 0; f / Let M be a closed orientable hyperbolic 3–mani-
fold and N be any closed orientable 3–manifold. Given any constant � > 0, denote
by

pW Z!N

a virtual realization of the fundamental class of N by a strongly connected orientable
pseudo-3–manifold, as guaranteed by Lemma 4.2. Take a finite cover M 0

…3 of Gai-
fullin’s URC 3–manifold M…3 and an efficient domination map

f1W M
0
…n !Z;

which come from Theorem 4.1. Take a finite cover zM of M and a �1 –surjectively
2–domination map

f2W
zM !M…3 ;

which comes from Theorem 1.8. Then there exists a unique finite cover M 0 of M, up
to isomorphism of covering spaces, and a unique �1 –surjective 2–domination map
f 0

2
W M 0! zM…3 that fits into the following commutative diagram of maps:

M 0
f 0

2 //

��

M 0

…3

��
zM

f2 // M…3

Indeed, M 0 is the cover of zM that corresponds to the subgroup .f2]/
�1.�1.M

0

…3//

of �1. zM / (after choosing some auxiliary basepoints). The finite cover M 0 of M and
the composed map

f W M 0 f
0

2
�! zM…3

f1
�!Z

p
�!N

are the claimed objects of Theorem 1.9.
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4.2.2 Verification With the notations above, the commutative diagram above implies

kM 0k

k zM k
D ŒM 0

W zM �D ŒM 0

…3 WM…3 �D
#fpermutahedra of M 0

…3g

#fpermutahedra of M…3g
:

Observe that there are 23 D 8 permutahedra in Gaifullin’s URC 3–manifold M…3 .
On the other hand, by Theorem 4.1 and Lemma 4.2, the construction of M 0

…3 and Z

yields

#fpermutahedra of M 0

…3g D 4! � jdegf1j � #ftetrahetra of Zg

< 24 � jdegf1j � jdeg pj � .kN kC �/

D
24
2
� jdegf 02j � jdegf1j � jdeg pj � .kN kC �/

D 12 � jdegf j � .kN kC �/:
Therefore,

kM 0
k< 1

8
.12 � jdegf j � .kN kC �/ � k zM k/D c0 � jdegf j � .kN kC �/;

where the constant c0 is taken to be

c0 D
3
2
k zM k:

Note that the constant c0 > 0 depends only on the hyperbolic 3–manifold M, because
zM is constructed by Theorem 1.8 without referring to N or � . In this proof, we only

applied Theorem 1.8 for the domain M…3 , not for a general 3–manifold.

This completes the proof of Theorem 1.9.

4.3 Virtual Seifert volume of closed hyperbolic 3–manifolds

We have mentioned in the introduction that Theorem 1.5 for closed hyperbolic 3–
manifolds follows directly from Theorem 1.8. Similarly, Theorem 1.7 for hyperbolic
closed 3–manifolds is a corollary of Theorem 1.9.

Corollary 4.3 For any closed oriented hyperbolic 3–manifold M, the set of values�
SV.M 0/

ŒM 0 WM �

ˇ̌̌
M 0 any finite cover of M

�
is not bounded.

Proof Take a closed orientable manifold N of nonvanishing Seifert volume and
vanishing simplicial volume. For example, a circle bundle N with Euler class e ¤ 0

over a closed surface of Euler characteristic � < 0 works.
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For every positive integer n, apply Theorem 1.9 with � D 1=n. There exists a finite
cover Mn!M and a nonzero degree map fnW Mn!N such that

kM k � ŒMn WM �D kMnk � c.M / � jdegfnj �

�
kN kC

1

n

�
D c.M / � jdegfnj �

1

n
:

So we have

ŒMn WM ��
c.M / � jdegfnj=n

kM k
:

Since SV.Mn/� jdegfnj �SV.N /, we have

SV.Mn/

ŒMn WM �
�

jdegfnj �SV.N /

.c.M / � jdegfnj=n/=kM k
D n �

kM k �SV.N /

c.M /
:

Since K D kM k �SV.N /=c.M / is a positive constant, fSV.Mn/=ŒMn WM �g is not a
bounded sequence, so we are done.

5 Positive simplicial volume implies unbounded virtual
Seifert volume

In this section, we prove Theorem 1.7 following the strategy of the proof of Theorem 1.5
summarized in the remark following Proposition 3.7. The main body of the proof is
the following theorem which produces virtual Seifert representations with controlled
volume, (compare Proposition 3.7).

Theorem 5.1 Let M be an orientable closed mixed 3–manifold and J0 be a distin-
guished hyperbolic JSJ piece of M. Suppose that yJ0 is a closed hyperbolic Dehn filling
of J0 by sufficiently long boundary slopes.

(1) For any finite cover yJ 0
0

of yJ0 and any representation

�W �1. yJ
0
0/! Isoe

fSL2.R/;

there exist a finite cover
zM 0
!M

and a representation
�W �1. zM

0/! Isoe
fSL2.R/

with the following properties:

� For one or more elevations zJ 0 of J0 contained in zM 0 , the covering zJ 0! J0

factors through a covering zJ 0!J 0
0

, where J 0
0
� yJ 0

0
denotes the unique elevation

of J0 �
yJ0 . The restriction of � to �1. zJ

0/ is conjugate to either the pullback
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ˇ�.�/ or the pullback ˇ�.��/, where � is a class inversion in Lemma 3.6 and ˇ
is the composition of the maps

zJ 0
cov
�!J 00

fill
�! yJ 00:

� For any elevation zJ 0 other than the above, of any JSJ piece J of M, the restric-
tion of � to �1. zJ / has cyclic image, possibly trivial.

(2) Furthermore, there exists a positive constant ˛0 depending only on M and the
Dehn filling J0!

yJ0 such that for any yJ 0
0

and � as above, the asserted zM 0 and � can
be constructed so that the sum of the covering degrees Œ zJ 0 W J0� over all the elevations
zJ 0 of the ˇ–pullback type equals ˛0 � Œ zM

0 WM �. Therefore,

VolIsoeeSL2.R/
. zM 0; �/

Œ zM 0 WM �
D ˛0 �

VolIsoeeSL2.R/
. yJ 0

0
; �/

Œ yJ 0
0
W yJ0�

:

The rest of this section is devoted to the proof of Theorem 5.1, before which we derive
Theorem 1.7 from Theorem 5.1 and Corollary 4.3.

5.1 Proof of Theorem 1.7

Since we have proved Theorem 1.7 for hyperbolic 3–manifolds (Corollary 4.3), we
may assume that M is nongeometric with at least one hyperbolic piece, or in other
words, mixed. The mixed case is derived from the hyperbolic case and Theorem 5.1.

Take a hyperbolic piece J of M and let yJ be a closed hyperbolic Dehn filling of J .
By Corollary 4.3, there are finite covers f yJ 0ng of yJ such that

SV. yJ 0n/

Œ yJ 0n W
yJ �
� nK

for some constant K > 0. Let

�nW �1. yJ
0
n/! Isoe

fSL2.R/

be a representation realizing SV. yJ 0n/.

Granted Theorem 5.1, there exist finite covers zM 0
n of M and representations

�nW �1. zM
0
n/! Isoe

fSL2.R/

such that

jVolIsoeeSL2.R/
. zM 0

nI �n/j

Œ zM 0
n WM �

D ˛0 �
jVolIsoeeSL2.R/

. yJ 0nI �n/j

Œ yJ 0n W
yJ �

D ˛0 �
SV. yJ 0n/

Œ yJ 0n W
yJ �
;
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where the positive constant ˛0 is determined by M and J0!
yJ0 . Therefore,

SV. zM 0
n/

Œ zM 0
n WM �

�
jVolIsoeeSL2.R/

. zM 0
nI �n/j

Œ zM 0
n WM �

D ˛0 �
SV. yJ 0n/

Œ yJ 0n W
yJ �
� n˛0K;

so the sequence fSV. zM 0
n/=Œ
zM 0

n WM �g is unbounded. This completes the proof of
Theorem 1.7.

5.2 CI completions of hyperbolic 3–manifolds

The statement of Theorem 5.1(2) suggests a relation between the asserted representation
�W �1. zM

0/! Isoe
fSL2.R/ and the given representation �W �. yJ0/! Isoe

fSL2.R/. It
would certainly hold if � factored through the restriction of � to some finite covers
of yJ0 . However, the latter is a much stronger requirement that exceeds our ability. To
overcome this difficulty, we examine the machinery of Theorem 3.4 and observe that �
does factor through a finite cover of certain CW complex associated with yJ0 , which
looks like yJ0 attached with a number of Klein bottles. In the following, we formalize
the idea and introduce CI completions, where CI is an abbreviation for class inversion.

In general, given an arbitrary group with a collection of conjugacy classes of abelian
subgroups, it is possible to embed the group into a larger group which possesses a class
inversion with respect to the induced collection. For concreteness, we only consider
the special case of CI completions for orientable closed hyperbolic 3–manifolds, with
respect to a collection of mutually distinct embedded closed geodesics.

5.2.1 Construction of the CI completion Let V be an orientable closed hyperbolic
3–manifold, and let 1; : : : ; s be a collection of mutually distinct embedded closed
geodesics of V .

The CI completion of V with respect to 1; : : : ; s is a pair

.W; �W /;

where W is a specific CW space equipped with a distinguished embedding V !W

and �W W W !W is a free involution. The construction is as follows.

Take the product space V �Z, where Z is endowed with the discrete topology, and
for each i , take a cylinder Li parametrized as S1 �R, where S1 is identified with
the unit circle of the complex plane C . We regard each closed geodesic i as a map
S1! V . Identify the circles S1�Z of Li with closed geodesics of V �Z by taking
any point .z; n/ 2 S1 �Z to either .i.z/; n/ or .i.xz/; n/, depending on the parity
of n. We agree to use i.z/ for even n and i.xz/ for odd n. The resulting space
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�WZ is equipped with a covering transformation � W �WZ!
�WZ , which takes any point

.x; n/ 2 V �Z to .x; nC 1/ and any point .z; t/ 2Li to .xz; t C 1/. The quotient of�WZ by the action of h�2i is a space W with a covering transformation �W induced
by � .

One may visualize the further quotient space W =h�W i as a 3–manifold V with Klein
bottles hanging on the closed geodesics i , one on each. Then W is a double cover of
that space into which V lifts, and on which the deck transformation �W acts. As a
CW space with a free involution, the isomorphism type of .W; �W / is independent of
the auxiliary parametrizations in the construction, and the isomorphism may further be
required to fix the distinguished inclusion of V .

5.2.2 Properties of CI completions We study the relation of CI completions with
class inversions and their behavior under finite covers.

Proposition 5.2 Let V be an orientable closed hyperbolic 3–manifold, and let
1; : : : ; s be a collection of mutually distinct embedded closed geodesics of V . Denote
by .W; �W / the CI completion of V with respect to 1; : : : ; s .

(1) The outer automorphism of �1.W / induced by �W is a class inversion of
�1.W / with respect to the collection of conjugacy classes of the maximal cyclic
subgroups �1.1/; : : : ; �1.s/ of �1.W / corresponding to the canonically in-
cluded free loops.

(2) Suppose that G is a group which possesses a class inversion Œ�� 2 Out.G /
with respect to the conjugacy classes of all the cyclic subgroups. Then for any
homomorphism �W �1.V /! G then there exists an extension of � to �1.W /,

�W �1.W /! G :

Moreover, for any representative automorphisms �W ] and � of the outer auto-
morphisms Œ�W � and Œ��, respectively, the image ��W ].�1.V // is conjugate to
��.�1.V // in G .

(3) Suppose that �W V 0 ! V is a covering map of finite degree. Denote by
.W 0; �W 0/ the CI completion of V 0 with respect to all the elevations in V 0

of 1; : : : ; s . Then there exists an extension of � ,

�W W 0!W;

which is a covering map equivariant under the action of �W 0 and �W . In
particular, the covering degree is preserved under the extension.
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Proof Recall that W is topologically the union of V , �W .V /. and annuli Ai

and �W .Ai/. Each annulus Ai has its boundary attached to V t�W .V / in such a way
that i � V can be freely homotoped to the orientation-reversal of �W .i/� �W .V /

through Ai , and the annuli �W .Ai/ make the homotopy as well.

Statement (1) is now obvious from the above description.

Statement (2) can also be seen topologically. To this end, let X be a CW model for
the Eilenberg–Mac Lane CW space K.G ; 1/. Uniquely, up to free homotopy, the outer
automorphism Œ�� can be realized by a map RW X ! X , and the homomorphism �

can be realized as a map f W V !X . With respect to the inclusion V !W , we define
a map F W W ! X , which extends f , as follows. First define the restriction of F

to V and �W .V / to be f and Rf , respectively. Since � is a class inversion, each
f i is freely homotopic to the orientation-reversal of Rf i , as a map S1! X , so
the homotopy defines maps F jW Ai!X and F jW �W .Ai/!X . The resulting map
F W W !X extends f W V !X , so on the level of fundamental groups it gives rise to
the claimed extension of �W �1.V /! G over �1.W /.

Statement (3) follows from a construction on further quotient spaces. Observe that
the quotient space W =h�W i, rewritten as W , is topologically the union of V and
Klein bottles Bi , where the Bi are projected from Ai . Then any finite covering map
V 0! V gives rise to a covering map of the same degree W 0!W . The covering of
Klein bottles are induced by the coverings of i �W by their elevations. In fact, the
covering W 0!W is unique up to homotopy. The covering W 0!W induces two
equivariant covering maps W 0!W , differing by deck transformation. The one that
respects the distinguished inclusions is as claimed.

5.3 Virtual representations through CI completions

With our gadgets of CI completions, we invoke Theorem 3.4 to derive the asserted
virtual representations of Theorem 5.1.

5.3.1 Construction for the basic level Let M be an orientable closed mixed 3–
manifold and J0 be a distinguished hyperbolic JSJ piece of M. Suppose that yJ0 is a
closed hyperbolic Dehn filling of J0 by sufficiently long boundary slopes, which are
denoted by 1; : : : ; s . Let

.W; �W /

be the CI completion of yJ0 with respect to 1; : : : ; s , (see Section 5.2.1). Since
�1.W / is class invertible with respect to the conjugacy classes of subgroups �1.i/

(Proposition 5.2(1)), Theorem 3.4 can be applied with the target group �1.W / and the
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initial homomorphism
�1.J0/! �1.W /

induced by the composition of the Dehn filling inclusion J0 �
yJ0 and the canonical

inclusion yJ0�W . The output is a finite cover zM of M together with a homomorphism

�W �1. zM /! �1.W /;

with described restrictions to its JSJ pieces. Since the CI completion W is an Eilenberg–
Mac Lane space K.�1.W /; 1/, it is convenient to realize � as a map

f W zM !W;

which is unique up to homotopy.

Suppose for the moment that we are provided with a representation

�0W �1. yJ0/! Isoe
fSL2.R/;

rather than a virtual representation. By Proposition 5.2(2) and Lemma 3.6, there is
an extension over �1.W / (which is still denoted by �0 , regarding the original one as
restriction), so that the composition

z�W �1. zM /
�
�!�1.W /

�0
�! Isoe

fSL2.R/

gives rise to a virtual extension of the representation

�0W �1.J0/! �1. yJ0/
�0j
�! Isoe

fSL2.R/:

At this basic level, the virtual extension is nothing but a finer version of Theorem 3.4
for the special case of Seifert representations of mixed 3–manifolds. It exhibits a fac-
torization of z� through the CI completion �1.W /. However, Proposition 5.2(3) allows
us to promote the above construction to deal with virtual representations of �1. zJ0/.

5.3.2 Construction of . zM 0; �/ Now suppose as in Theorem 5.1 that yJ 0
0

is a finite
cover of yJ0 , and

�W �1. yJ
0
0/! Isoe

fSL2.R/

is a Seifert representation of �1. yJ
0
0
/. Denote by

.W 0; �W 0/

the CI completion of yJ 0
0

with respect to all the elevations of 1; : : : ; s . By Proposition
5.2(3) there exists a finite covering map

�W W 0!W

which respects the free involutions and the distinguished inclusions. In particular,
� extends the covering yJ 0

0
! yJ0 preserving the degree.
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Remember that we have obtained a finite cover zM and a map f W zM !W for the
basic level. Take any elevation of f with respect to � , denoted by

f 0W zM 0
!W 0:

This means that the following diagram is commutative up to homotopy:

zM 0
f 0

//

��

W 0

�
��

zM
f // W

and zM 0! zM is the covering of zM which is minimal in the sense that it admits no
intermediate covering with this property. (More concretely, one may replace W with
the mapping cylinder Yf 'W , and turn the map f into an inclusion zM ! Yf , then
any elevation zM 0! Y 0

f
of zM in the corresponding finite cover Y 0

f
'W 0 gives rise

to some f 0W zM 0 ! Y 0
f
! W 0 up to homotopy.) Since W 0 is a finite cover of W ,

there are only finitely many such elevations . zM 0; f 0/ up to isomorphism between
covering spaces and homotopy. Moreover, the covering degree Œ zM 0 W zM � is bounded
by ŒW 0 WW �. Denote by

�0W �1. zM
0/! �1.W

0/

the homomorphism (up to conjugation) induced by f 0 .

Provided with � and �0 above, we extend � to be

�W �1.W
0/! Isoe

fSL2.R/

by Proposition 5.2(1) and (3) and Lemma 3.6. The finite cover

zM 0
!M

and the representation

�W �1. zM
0/

�0

�!�1.W
0/

�
�! Isoe

fSL2.R/

are the claimed objects in the conclusion of Theorem 5.1.

Homomorphisms which have been presented can be summarized in the following
commutative diagram:

�1. yJ
0
0
/

�j //

incl]
��

Isoe
fSL2.R/

Id
��

�1. zM
0/

cov]

��

�0

// �1.W
0/

� //

�]

��

Isoe
fSL2.R/

�1. zM /
� // �1.W /
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The homomorphisms � and �0 are realized by maps f and f 0 , respectively. The
representation � that we have constructed is the composition along the middle row.

We are going to verify Theorem 5.1(2) in the next three subsections.

5.3.3 Restriction to JSJ pieces For any elevation zJ 0 � zM 0 of a JSJ piece J �M,
zJ 0 covers a JSJ piece zJ of zM. Since we have constructed � using Theorem 3.4, either
the restriction of � to �1. zJ / has cyclic image, or J is the distinguished hyperbolic
piece J0 and the restriction of � to �1. zJ / is one of the following compositions up to
conjugation of �1.W /:

�1. zJ /! �1. yJ0/! �1.W /

or
�1. zJ /! �1. yJ0/! �1.W /

�W
�!�1.W /:

In the cyclic case, the restriction of �0 to �1. zJ
0/ must also have cyclic image as �] is

injective. Then the restriction of � to �1. zJ
0/ has cyclic image as well. In the other

case, the first homomorphism of either composition factors through �1.J0/ via the
Dehn filling, so possibly after homotopy of f , we may assume that zJ covers either
J0 or �W .J0/ under the map f . As f 0 is an elevation of f with respect to � , the
elevation zJ 0 of zJ covers either the unique elevation J 0

0
of J0 or the unique elevation

�W 0.J 0
0
/ of �W .J0/ in W 0 . Note that � is equivariant up to conjugacy with respect to

the class inversions �W 0 and � (Proposition 5.2 and Lemma 3.6). It follows that by
taking

ˇW zJ 0! J 00!
yJ 00;

the composition of the covering and the inclusion, the restriction of � to �1. zJ
0/ is

either ˇ�.�/ or ˇ�.��/. This verifies Theorem 5.1(1).

5.3.4 Count of degree By the consideration about the restriction of � to JSJ pieces
of zM 0 above, we have seen that a JSJ piece zJ 0 gives rise to the ˇ–pullback-type
restriction of � if and only if zJ 0 covers a JSJ piece zJ of zM such that �.�1. zJ // is
noncyclic. The union of all such zJ in zM form a (disconnected) finite cover zJ of
the distinguished piece J0 �M, and the union of all ˇ–pullback-types zJ 0 in zM 0 is
nothing but the preimage zJ 0 of zJ in zM 0 . Therefore, suppose ˛0 is the ratio between
the total degree of ˇ–pullback-type JSJ pieces of zM 0 over J0 and the degree of zM 0 ,

Œ zJ 0 W J0�D ˛0 � Œ zM
0
WM �;

then we observe

˛0 D
Œ zJ 0 W J0�

Œ zM 0 WM �
D

Œ zJ 0 W zJ � � Œ zJ W J0�

Œ zM 0 W zM � � Œ zM WM �
D
Œ zJ W J0�

Œ zM WM �
:
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Note that ˛0 depends only on M and J0 !
yJ0 , since zM and � are constructed

according to them, and ˛0 is positive because zJ is nonempty by Theorem 3.4.

5.3.5 Count of volume In a very similar situation as in the proof of Theorem 1.5, to
compute the volume of the representation

�W �1. zM
0/! Isoe

fSL2.R/;

it suffices to understand the contribution to the representation volume of � from the
ˇ–pullback-type JSJ pieces zJ 0 of zM 0 . Note that the map

ˇW zJ 0
cov
�!J 00

fill
�! yJ 00

factors through a unique hyperbolic Dehn filling zK0 of zJ 0 , which covers yJ 0
0

branching
over elevations of the core curves i via a map y̌:

ˇW zJ 0
fill
�! zK0

y̌
�! yJ 00

The restriction of � to �1. zJ
0/ thus factors as

�1. zJ
0/

fill]
�!�1. zK

0/
y�
�! Isoe

fSL2.R/;

where y� equals the y̌–pullback of � or ��. Note that the class inversion � of
Isoe

fSL2.R/ is realized by the conjugation of an orientation-preserving isomorphism
of fSL2.R/, so

VolIsoeeSL2.R/
. yJ 00I �/D VolIsoeeSL2.R/

. yJ 00I ��/:

It follows from the additivity principle (Theorem 3.1) that the contribution to the
representation volume of � from the piece zJ 0 equals VolIsoeeSL2.R/

. zK0I y�/ and

VolIsoeeSL2.R/
. zK0I y�/D jdeg y̌j �VolIsoeeSL2.R/

. yJ 00I �/D
Œ zJ 0 W J0�

Œ yJ 0
0
W yJ0�
�VolIsoeeSL2.R/

. yJ 00I �/:

On the other hand, the contribution from any cyclic-type JSJ piece zJ 0 of zM 0 is always
zero by Lemma 3.2. Take the summation of the contribution from all JSJ pieces, using
the formula of ˛0 in the degree count:

VolIsoeeSL2.R/
. zM I �/D

X
zJ 02 zJ 0

VolIsoeeSL2.R/
. zK0I y�/

D

X
zJ 02 zJ 0

Œ zJ 0 W J0�

Œ yJ 0
0
W yJ0�
�VolIsoeeSL2.R/

. yJ 00I �/

D
Œ zJ 0 W J0�

Œ yJ 0
0
W yJ0�
�VolIsoeeSL2.R/

. yJ 00I �/

D ˛0 �
Œ zM 0 WM �

Œ yJ 0
0
W yJ0�

�VolIsoeeSL2.R/
. yJ 00I �/;
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or equivalently,

VolIsoeeSL2.R/
. zM 0I �/

Œ zM 0 WM �
D ˛0 �

VolIsoeeSL2.R/
. yJ 0

0
I �/

Œ yJ 0
0
W yJ0�

:

This completes the proof of Theorem 5.1(2), and therefore the proof of Theorem 5.1.

6 On covering invariants

Although the covering property does not hold for the representation volumes [5, Corol-
lary 1.8], we can stabilize them to obtain covering invariants in the following way.

Definition 6.1 For any closed orientable 3–manifold N , define the covering Seifert
volume of N to be

CSV.N /D lim
 ��
zN

SV. zN /

Œ zN WN �
;

valued in Œ0;C1�, where zN runs over all the finite covers of N. Note that the
limit exists because SV. zN /=Œ zN WN � is nondecreasing under passage to finite covers.
Similarly one can define the covering hyperbolic volume CHV.M /.

Proposition 6.2 If CSV, or CHV, is valued on Œ0;C1/ for a class C of closed
orientable 3–manifolds, then it satisfies both domination property and covering property
for C .

Proof We verify the statement for CSV; the argument for CHV is completely similar.

To verify the domination property, let f W M ! N be any map of nonzero degree
between M;N 2 C . By definition, for any � > 0, there is a finite cover zN of N such
that

SV. zN /

Œ zN WN �
> CSV.N /� �:

We have the commutative diagram

zM
Qf //

��

zN

��
M

f // N

for the pullback cover zM of M via f , which has degree at most Œ zN WN �. Then we
have Œ zM WM � � jdegf j D Œ zN W N � � jdeg Qf j, and jdegf j � jdeg Qf j, and SV. zM / �
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jdeg Qf j �SV. zN /. It follows that

SV. zM /

Œ zM WM �
D

SV. zM / � jdegf j

Œ zN WN � � jdeg Qf j
�
jdegf j �SV. zN /

Œ zN WN �
� jdegf j � .CSV.N /� �/:

Taking the limit over all zM and �! 0C, we have

CSV.M /� jdegf j �CSV.N /:

To verify the covering property, suppose that f W M !N is a covering map, so degf
equals ŒM W N �. Then any finite cover zM of M is also a finite cover of N. By
definition we have

SV. zM /

Œ zM WM �
D ŒM WN � �

SV. zM /

Œ zM WN �
� ŒM WN � �CSV.N /D jdegf j �CSV.N /:

Taking the limit over all zM, we have CSV.M / � jdegf j �CSV.N /. So indeed we
have

CSV.M /D jdegf j �CSV.N /;

where the other direction follows from the domination property.

We post some further problems, updating those of [5, Section 8].

Problem 6.3 Does CSV.M / exist in .0;C1/ for every closed orientable nongeo-
metric graph manifold M ?

A positive answer would provide a nowhere-vanishing invariant with the covering
property in the class of closed orientable nongeometric graph manifolds. Finding
such an invariant was suggested by Thurston [15, Problem 3.16]. See [18; 19; 30]
for some attempts motivated by showing the uniqueness of covering degree between
graph manifolds. The uniqueness is confirmed by [32] using combinatorial methods
and matrix theory.

Problem 6.4 Determine the possible growth types and asymptotics of the virtual
Seifert volume for closed orientable 3–manifolds with positive simplicial volume.

We speak of the growth with respect to towers of finite covers, as the covering degree
increases. Theorem 1.7 shows that there are towers with superlinear growth. The
estimates of [3] imply that the growth must be at most exponential.

Problem 6.5 Is CHV.M / equal to v3kM k for every closed orientable 3–mani-
fold M ?

This quantity is at most v3kM k (see the remark following Theorem 1.7) and we suspect
that the equality might be achieved.
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