
ERRATUM TO “ALGEBRAIC COBORDISM AND ÉTALE

COHOMOLOGY”

ELDEN ELMANTO, MARC LEVINE, MARKUS SPITZWECK, AND PAUL ARNE ØSTVÆR

Let π : A → B be a finite, étale, degree d morphism of commutative rings and
let E be an MGLA-module. We let p : SpecB → SpecA denote the map induced by
π. In [2, Proposition D.1(ii)], it was claimed that the map p∗p

∗ : E∗∗(A)→ E∗∗(A)
is multiplication by d, which is in general false. As counter-example, we can take
X to be a regular noetherian scheme of finite Krull dimension, with 1/2 ∈ OX(X),
and admitting a non-trivial line bundle L → X that is 2-torsion in Pic(X), i.e.
L⊗2 is the trivial line bundle. Let p : Y → X be the inverse image of the 1-section
of L⊗2 ∼= A1

X via the squaring map sq : L → L⊗2, and take E = KGL ∈ SH(X),
representing Quillen algebraic K-theory.

We claim that p∗(OY ) ∼= OX ⊕L∨, where L is the invertible sheaf of sections of
L and L∨ is the dual; taking determinants then shows that the class of p∗(OY ) in
K0(X) is not 2 = 2[OX ]. Indeed, if we take an open cover {Ui} of X trivializing

L, with local coordinate functions ti : L|Ui

∼−→ A1
Ui

, then L is given by the cocycle

{ξij = ti ◦ t−1
j ∈ O×X(Ui∩Uj)}, and Y ∩L|Ui

is defined by an equation t2i = ui, with

ui ∈ O×X(Ui) and ξ2
ij = ui ·u−1

j on Ui∩Uj . Thus, for U ⊂ X open, each section s of

p∗(OY )(U) has restriction si ∈ p∗(OY )(U ∩Ui) uniquely of form si = s0
i +s1

i · ti, for
s0
i , s

1
i ∈ OX(U∩Ui). Since si = sj on U∩Ui∩Uj , we see that the s0

i define a section
s0 of OX(U) and the s1

i define a section s1 of L−1(U), giving the decomposition
p∗(OY ) ∼= OX ⊕ L∨ as claimed.

For an example with X (and hence Y ) affine, one can consider a smooth projec-
tive curve C over C, of genus g ≥ 1, choose a point p ∈ C and take X to be the
affine curve C \ {p}. Then Pic(X) is the Jacobian of C, so has 2g − 1 non-trivial
2-torsion elements.

As a correction, we will show here that, in case A is noetherian, there is a nilpo-
tent element x ∈ MGL0,0(A) such that p∗p

∗ : E∗∗(A) → E∗∗(A) is multiplication
by d+ x.

In [2], Proposition D.1 was used to show, for a finite, étale, degree d, Galois
extension A → B with group G, that p∗ : E∗∗(A)[1/d] → E∗∗(B)[1/d] identifies
E∗∗(A)[1/d] with the G-invariants in E∗∗(B)[1/d], which in turn allowed us to de-
fine a transfer map E∗∗(B)[1/d] → E∗∗(A)[1/d], by sending x ∈ E∗∗(B)[1/d] to∑

g∈G g
∗(x). As we only used loc. cit. in case A is noetherian, and inverting d

makes d + x a unit, the construction of the transfer map goes through with the
modified version of Proposition D.1(ii) proven here.

The result does not require the schemes in question to be affine, so we replace
SpecB → SpecA with a finite, étale, degree d morphism p : Y → X of noetherian
schemes.
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Lemma 1. Let x ∈ X be a closed point.

(1) Suppose the residue field k(x) is infinite. Then there is an affine open
neighborhood U of x in X, and a closed immersion ix : p−1(U)→ A1

U over
U .

(2) Suppose the residue field k(x) is a finite field. Let ` be a prime. Then
there is an affine open neighborhood U of x in X an integer n ≥ 1, a
finite étale morphism a : U ′ → U of degree `n, and a closed immersion
ix : Y ×X U ′ → A1

U ′ over U ′. In addition, U ′ admits a closed immersion
over U , U ′ ↪→ A1

U .

Proof. For (1), we take V = SpecA ⊂ X to be an affine open neighborhood of
x ∈ X; since p is an affine map, we have p−1(V ) = SpecB for π : A → B a finite,
étale, degree d extension of commutative, noetherian rings.

Let mx ⊂ A be the maximal ideal corresponding to x and let B̄ = B/mxB. Then
B̄ is a finite étale k(x)-algebra, and we can thus write B̄ =

∏r
i=1 Fi, where each Fi

is a finite separable field extension of k(x). In particular, each Fi can be written
as Fi = k(x)[T ]/gi(T ), for some irreducible polynomial gi(T ) ∈ k(x)[T ], and as
such, we have for each i a closed immersion αi : SpecFi → A1

k(x). Clearly the set

of elements λ ∈ k(x) such that translation by λ maps αi(SpecFi) to αj(SpecFj)
is finite for each pair i, j, and since k(x) is infinite, translating αi by a suitable
λi ∈ k(x) and changing notation, we may assume that αi(SpecFi) and αj(SpecFj)
are disjoint for each i 6= j. This gives us the closed immersion α : Spec B̄ → A1

k(x).

In other words, we have an isomorphism B̄ ∼= k(x)[T ]/g(T ) for some g(T ) ∈ k(x)[T ].
Since B̄ is finite and étale over k(x), we may choose g to be monic, and the ideal
(g(T ), g′(T )) is the unit ideal in k(x)[T ].

In particular, if b̄ ∈ B̄ maps to the residue of T under this isomorphism, it follows
that B̄ is the free k(x)-module on elements 1, b̄, . . . , b̄d−1, where d is the degree of
f . Now lift b̄ to an element b ∈ B. By Nakayama’s lemma, there is an f ∈ A,
f(x) 6= 0, such that B[1/f ] is generated by 1, b, . . . , bd−1 as A[1/f ]-module. Thus,
we can write bd = g̃(b), for some g̃(T ) ∈ A[1/f ][T ] lifting g(T ). This gives us the
finite A[1/f ]-algebra A[1/f ][T ]/(g̃(T )), with its canonical embedding in A1

A[1/f ], as

well as a surjective A[1/f ]-algebra homomorphism φ : A[1/f ][T ]/(g̃(T ))→ B[1/f ].
Since B[1/f ] is flat and finite over A[1/f ], we may assume, after localizing further,
that B[1/f ] is the free A[1/f ]-module on 1, b, . . . , bd−1, from which it follows that φ
is an isomorphism. Since (g(T ), g′(T )) = k(x)[T ] and A[1/f ][T ]/(g̃(T )) is finite over
A[1/f ], we may localize A[1/f ] further to achieve that (g̃(T ), g̃′(T )) = A[1/f ][T ],
so A[1/f ]→ B[1/f ] is étale. This proves (1).

For (2), let A, B and B̄ be as in (1); by assumption k(x) = Fq for some prime
power q. The argument in (1) shows that, if we pass to Fq`∞ := ∪n≥0Fq`n , we

have a closed immersion Spec B̄ ⊗k(x) Fq`∞ ↪→ A1
F
q`
∞ , in other words, there is a

g(T ) ∈ Fq`∞ [T ] and an isomorphism ψ : B̄ ⊗k(x) Fq`∞
∼−→ Fq`∞ [T ]/(g(T )). Thus

there is an integer n such that g is an element of Fq`n [T ] and that ψ is the base-

extension of an isomorphism B̄⊗k(x)Fq`n
∼= Fq`n [T ]/(g(T )). Writing Fq`n = k(x)[ζ]

for some ζ ∈ Fq`n , let e(X) ∈ Fq[X] be the monic irreducible polynomial of ζ, and
lift e(X) to a ẽ(X) ∈ A[X]. After inverting some f ∈ A, f(x) 6= 0, we have
that A′ := A[1/f ][X]/(ẽ(X)) is a finite étale A[1/f ]-algebra of degree `n over
A[1/f ], giving a closed immersion SpecA′ ↪→ A1

A[1/f ] over A[1/f ]. Let x′ ∈ SpecA′

be the closed point lying over x, so k(x′) = Fq`n . Using the closed immersion

ī : Spec (B̄ ⊗k(x) k(x′)) ↪→ A1
k(x′) defined by g(T ), and arguing as in the proof of

(1), we may extend ī to a closed embedding ix : Spec (B ⊗A A′) ↪→ A1
A′ over A′,

after a further localization on A if needed. �
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Lemma 2. Let E ∈ SH(X) be an MGLX-module, and let x ∈ X be a closed point.
Then there is an open neighborhood U ⊂ X of x such that, letting pU : V → U
be the map induced by p, V := p−1(U), we have pU∗ ◦ p∗U : E∗∗(U) → E∗∗(U) is
multiplication by d := deg p.

Proof. Suppose we have an open neighborhood U ⊂ X of x, and a closed immersion
i0 : V := p−1(U) ↪→ A1

U over U . Since Y is finite and étale over X, it follows
that i0 extends to a regular codimension one embedding i : V ↪→ P1

U . Thus i(V )
is an effective Cartier divisor D on P1

U , so its ideal sheaf is the invertible sheaf
L := OP1

U
(−D). After shrinking U if necessary, we may assume that L ∼= OP1

U
(−d).

By [1, Proposition 3.3.10], it follows that pU∗ ◦ p∗U is multiplication by d.
If the residue field k(x) is infinite, we apply Lemma 1(1) to give an affine

open neighborhood U of x, and a closed immersion V ↪→ A1
U over U , where

V := p−1(U), which finishes the proof. If k(x) is a finite field, we choose a prime
`. By Lemma 1(2), we have an affine open neighborhood U of x, a degree `n finite
étale morphism q : U ′ → U , giving the Cartesian diagram

V ′
q′
//

p′U
��

V

pU

��

U ′
q
// U

where V := p−1(U), and we have closed immersions U ′ ↪→ A1
U , V ′ ↪→ A1

U ′ , over U
and U ′, respectively. Applying the argument above to p′U and q, we have

p′U∗p
′∗
U = ×d, q∗q∗ = ×`n,

shrinking U if necessary. Thus the map q∗ : E∗∗(U)[1/`]→ E∗∗(U ′)[1/`] is injective.
Since

q∗(pU∗p
∗
U (x)) = p′U∗q

′∗p∗U (x) = p′U∗p
′∗
U (q∗(x)) = d · q∗(x) = q∗(d · x),

it follows that pU∗ ◦ p∗U : E∗∗(U)[1/`]→ E∗∗(U)[1/`] is multiplication by d.
Taking a second prime `′ 6= ` and repeating the above argument, we find that

pU∗ ◦ p∗U : E∗∗(U)[1/`′]→ E∗∗(U)[1/`′] is again multiplication by d (after shrinking
U again, if necessary). As the diagonal map

E∗∗(U)→ E∗∗(U)[1/`]× E∗∗(U)[1/`′]

is injective, it follows that pU∗ ◦ p∗U : E∗∗(U)→ E∗∗(U) is multiplication by d. �

Proposition 3. Let p : Y → X be a finite, étale, degree d map of noetherian
schemes, and let E ∈ SH(X) be an MGLX-module. Then there is a nilpotent
element x ∈ MGL0,0(X) such that p∗ ◦ p∗ : E∗∗(X) → E∗∗(X) is multiplication by
d+ x.

Proof. It suffices to handle the case E = MGLA. Define x ∈ MGL0,0(X) by

x = p∗p
∗(1MGL(X))− d;

by the projection formula, p∗p
∗ is multiplication by d + x, so we need only show

that x is nilpotent.
By Lemma 2, X admits a finite open cover U = {Ui | i = 1, . . .m} such that,

letting Vi := p−1(Ui), and letting pi : Vi → Ui be the map induced by p, we have
pi∗ ◦ p∗i (1MGL0,0(Ui)) = d. Thus, we see that x restricts to zero in MGL0,0(Ui).

Let Wr = ∪ri=1Ui, and let jr : Wr → X be the inclusion. We show by induction
on r that j∗r (x)r = 0, the case r = 1 having just been settled and the case r = m
the result we wish to prove.
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So fix r, 1 ≤ r < m, and suppose that j∗r (x)r = 0. Let j : Wr → Wr+1 be the
open immersion, and let i : Z := Wr+1 \Wr → Wr+1 be the closed complement.
We have the long exact sequence in E-cohomology

. . .→ E0,0
Z (Wr+1)

i∗−→ E0,0(Wr+1)
j∗−→ E0,0(Wr)→ . . .

which is a sequence of E0,0(Wr+1)-modules.

By assumption j∗(j∗r+1(x)r) = 0, so there is an α ∈ E0,0
Z (Wr+1) with j∗r+1(x)r =

i∗(α). On the other hand, letting j′ : Ur+1 → X be the inclusion, we have already
seen that j′∗(x) = 0. As i : Z → Wr+1 factors through i′ : Z → Ur+1, we see that
j∗r+1(x) · α = 0. Thus

j∗r+1(x)r+1 = j∗r+1(x) · i∗(α) = i∗(j
∗
r+1(x) · α) = 0,

and the induction continues.
�
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