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We construct Hamiltonian Floer complexes associated to continuous, and even lower
semicontinuous, time-dependent exhaustion functions on geometrically bounded
symplectic manifolds. We further construct functorial continuation maps associated to
monotone homotopies between them, and operations which give rise to a product and
unit. The work rests on novel techniques for energy confinement of Floer solutions
as well as on methods of non-Archimedean analysis. The definition for general
Hamiltonians utilizes the notion of reduced cohomology familiar from Riemannian
geometry, and the continuity properties of Floer cohomology. This gives rise, in
particular, to local Floer theory. We discuss various functorial properties as well as
some applications to existence of periodic orbits and to displaceability.
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1274 Yoel Groman

1 Introduction

Floer theory is a machine that associates algebraic structures to objects of symplectic
geometry. Over the years, it has come to play central role in all aspects of the field,
from mirror symmetry to quantitative symplectic topology. In this paper we extend the
range of applicability of Floer theory, focusing on Hamiltonian Floer theory, to open
symplectic manifolds which are geometrically bounded.

There are a number of reasons why one would be interested in studying Floer theory on
open manifolds. First and foremost, many symplectic manifolds which arise naturally
are open. Among these we count the cotangent bundle, the magnetic cotangent bundle,
affine varieties, coadjoint orbits of noncompact groups, Hitchin moduli spaces, and
many more. More specifically related to Floer theory, there are phenomena which only
become apparent on open manifolds. For example, on a closed manifold the Hamiltonian
Floer cohomology reduces as an abelian group to the singular cohomology, and is thus
often too coarse to see much of the symplectic topology. On open manifolds, new
invariants, such as symplectic cohomology, make their appearance and encode purely
symplectic phenomena; see for instance Cieliebak, Floer and Hofer [15], Oancea [41],
Seidel [56] and Viterbo [63].

There is a vast literature studying these invariants and their structural properties. For
example, symplectic cohomology of a Liouville domain has been shown to play a
key role in homological mirror symmetry by encoding the Hochschild homology of
the Fukaya category; see for instance Abouzaid [1], Ganatra [24; 25] and Seidel [55].
In another related direction, there are numerous results relating Floer theory of a
symplectic manifold with the Floer theory of embedded local models; see eg Cieliebak
and Oancea [18], Ganatra, Pardon and Shende [26], Seidel [55] and Varolgunes [61].
But the existing literature focuses mostly on examples which are convex at infinity, a
condition which does not cover, for instance, most of the examples mentioned in the
previous paragraph. As another example, in the study of the Fukaya category by the
method of localization away from a divisor as in [55], one does not necessarily wish
to restrict attention to ample divisors; see eg Auroux [8; 7], Daemi and Fukaya [19]
and Groman [29]. Studying Floer theory in more general settings would contribute to
our understanding of mirror symmetry, the geometric Langlands program, and many
branches of symplectic topology.

The class of geometrically bounded manifolds contains those that are convex at infinity,
but is much larger. Geometric boundedness has appeared as a relevant condition already
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Floer theory and reduced cohomology on open manifolds 1275

in Gromov’s seminal paper [31], and in numerous works since. A couple of early
ones are Audin, Lalonde and Polterovich [6] and Sikorav [57]. Geometrically bounded
symplectic manifolds are the most general setting in which holomorphic curve theory
is known to work without resorting to the methods of symplectic field theory.

The novelty in the present paper is twofold. One is showing how to apply geometric
boundedness of the underlying manifold to carry out Floer-theoretic constructions
beyond J–holomorphic curves. Such constructions are central, for instance, to the
notion of wrapped Floer theory. The other is showing that the invariants constructed by
choosing a geometrically bounded metric at infinity are independent of the choice. The
results here provide a unified and flexible framework which incorporates the various
constructions in the literature (see eg Cieliebak, Floer and Hofer [15], Oancea [42],
Ritter [47] and Viterbo [63]), works in full generality, and has transparent symplectic
invariance properties.

It should be emphasized that while we do not mention the Fukaya category elsewhere
in this paper, the difficulties posed by noncompactness are virtually the same for the
Hamiltonian version of Floer theory as for its Lagrangian intersection version. Thus,
this paper sets the stage for the study of the (wrapped) Fukaya category on open
manifolds such as those mentioned above, insofar as one can overcome the usual
difficulties already present in the closed case.

We shall assume familiarity with the basic machinery of Hamiltonian Floer theory
and symplectic cohomology such as can be acquired from the first three lectures in
Salamon [52] together with Oancea [41]. For the discussion of the product structure we
shall assume also some familiarity with treatments such as Abouzaid [4] or Ritter [48].
The latter is not necessary for most of the novel ideas in this paper.

1.1 The main result

A symplectic manifold .M; !/ is said to be geometrically bounded if there is an !–
compatible almost complex structure J , a constant C > 1, and a complete Riemannian
metric g with sectional curvature bounded from above and injectivity radius bounded
away from 0, such that

1

C
g.v; v/� !.v;Jv/� Cg.v; v/

for all tangent vectors v. Note that the almost complex structure J is not part of the data.
Examples include closed symplectic manifolds, cotangent bundles of arbitrary smooth
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1276 Yoel Groman

manifolds, manifolds whose end is modeled after the convex half of the symplectization
of a compact contact manifold (as in Sikorav [57]), twisted cotangent bundles (as
in Cieliebak, Ginzburg and Kerman [17]), and there are many more. The class of
geometrically bounded symplectic manifolds is closed under products and coverings.

It should be emphasized at the outset that an open symplectic manifold of finite volume,
such as the unit ball in Cn, cannot be endowed with a metric that is at once complete
and satisfies the above bounds on sectional curvature and radius of injectivity and
thus is not geometrically bounded. Floer theory for open finite-volume symplectic
manifolds, such as Liouville domains, will be discussed, in the context of local Floer
theory, when they are embedded in a geometrically bounded symplectic manifold.

Recall that .M; !/ is said to be semimonotone if there exists a constant � � 0 such
that for any A 2 �2.M / we have !.A/ D �c1.A/, where c1 is the first Chern class.
.M; !/ is said to be Calabi–Yau if c1.A/ D 0 for every A 2 �2.M /. Henceforth,
.M; !/ is a geometrically bounded symplectic manifold which is either semimonotone
or Calabi–Yau. In particular, for any class A 2 �2.M / we have

c1.A/ < 0 D) !.A/� 0:

We hasten to emphasize that this assumption is made for definiteness only. The methods
introduced herein are orthogonal to the usual questions of transversality and can be
adapted to any regularization scheme.

Fix a field R and denote by ƒR the universal Novikov field and by ƒR;! the Novikov
field associated with !; see Section 7.3. We shall use the notation K to denote either
ƒR or ƒR;! . Note that K is a graded field. That is, a commutative even graded
field in which every nonzero homogeneous element is invertible. In the entire text,
ƒR coefficients should be assumed by default whenever the coefficient field is not
indicated in the notation.

Denote by J the space of smooth R=Z parametrized families of almost complex
structures which are compatible with !. Denote by Hsm the space of smooth functions
on R=Z�M which are proper and bounded from below. Consider the category F
of Floer data whose objects are elements .H;J / 2 Hsm �J and in which there is a
single morphism .H1;J1/! .H2;J2/ between objects whenever the order relation
defined by

.H1;J1/� .H2;J2/ () H1;t .x/�H2;t .x/ for all .t;x/ 2R=Z�M

is satisfied.
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Floer theory and reduced cohomology on open manifolds 1277

The main contribution of this paper is summarized in the following theorem.

Theorem 1.1 There exists a full subcategory Fd;reg � F , referred to as the regular
dissipative Floer data, for which the Floer cohomology

.H;J / 7! HF�.H;J IK/

is well defined as a functor to Z–graded non-Archimedean (semi )normed K–modules.
Namely, there is a functorial norm-preserving continuation map

HF�.H1;J1IK/! HF�.H2;J2IK/

whenever H1 �H2 2 Fd;reg. The subcategory Fd;reg satisfies the following:

(a) It is invariant under the action of the symplectomorphism group

 � .H;J / 7! .H ı ; �J /:

(b) It is final and cofinal in F .

(c) It contains all pairs .H;J / for which J is geometrically bounded and H has suf-
ficiently small Lipschitz constant and is (nearly) time independent near infinity.

(d) The continuation map HF�.H1;J1IK/! HF�.H2;J2IK/ is an isomorphism
if H2�H1 is bounded on M.

Theorem 1.1 relies on the dissipative method introduced herein for controlling compact-
ness of various Floer moduli spaces. This is done by systematically replacing the more
conventional reliance on maximum principles by a combination of the monotonicity
inequality for J–holomorphic curves and a certain quantitative nondegeneracy condition
to control the ends. A more detailed discussion of this method is given in Section 3.1.
This method should be of independent interest for researchers wishing to apply Floer
theory methods in any way to open symplectic manifolds. We emphasize that the Floer
data which are typically used in the literature on symplectic cohomology mostly fit
into the dissipative framework. For a discussion of the case of Liouville domains, see
Example 6.14 below.

The true power of the dissipative method is revealed when considering the functoriality
statement in Theorem 1.1, which is one of the main contributions of this paper. To
demonstrate this we first remark that a particular consequence of the functoriality is
the independence of Floer cohomology of a dissipative .H;J / on the choice of J .
This is new even for the case H D 0, ie for J–holomorphic curves. We use this in
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1278 Yoel Groman

Theorem 4.15 below to show that in a number of contexts where invariants on open
manifolds are defined using a geometrically bounded almost complex structures J , the
resulting invariants do not depend on the choice of such a J . The difficulty in proving
this is that given two geometrically bounded compatible almost complex structures
which are not metrically equivalent, it is not likely they can be homotoped to one
another through geometrically bounded almost complex structures. Our solution is to
introduce the notion of intermittent boundedness, or, i–boundedness, which requires
boundedness only on an appropriate infinite sequence of hypersurfaces. We then show
that any two such almost complex structures can be homotoped to one another through
intermittently bounded almost complex structures. For the rest of the introduction we
thus drop J from the notation and consider dissipativity as a property of a Hamiltonian
function.

As an illustration of the use of functoriality we indicate an easy proof of the Künneth
formula in symplectic cohomology of Liouville domains; cf [42]. This requires com-
paring the direct limit of Floer cohomologies over a sequence of linear Hamiltonians
on the smoothing of a product of Liouville domains to the direct limit over a sequence
of linear split Hamiltonians on the product itself, all with slope going to infinity. Since
one can squeeze a sequence of linear Hamiltonians between a sequence of split linear
ones, the Künneth formula follows from Theorem 1.1 as soon as one establishes that
both linear and split linear Hamiltonians are dissipative. The latter is immediately
implied by Examples 5.24 and 6.20. The line of argument can be shown to extend to
Liouville domains with arbitrary corners.

1.2 Reduced Floer cohomology for general Hamiltonians

Our next theorem combines the result of Theorem 1.1 with certain continuity properties
of Floer cohomology, to extend the definition of Floer cohomology to more arbitrary
Floer data. Namely, we extend a certain version of Floer cohomology as a functor on
the category .Hd;reg;�/ of regular dissipative Hamiltonians to the category .Hsc;�/ of
all generalized lower semicontinuous functions R=Z�M !R[1 which are proper
and bounded from below.

Before proceeding we introduce the concept of reduced Floer cohomology HF�.H / of a
nondegenerate dissipative Hamiltonian H . The ordinary Floer cohomology HF�.H / is
the homology of a chain complex which is complete with respect to a non-Archimedean
norm. Thus the group HF�.H IK/ is naturally seminormed. However, in general, the
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differential needn’t have closed image. In such a case HF�.H IK/ contains nontrivial
elements of norm 0. The reduced Floer cohomology HF�.H / is the quotient of HF�.H /

by the elements of norm 0. A similar construction is familiar from Riemannian geometry
in the context of L2–cohomology; see Cheeger, Goresky and MacPherson [11], Dai [20]
and Lück [36]. The precise statement of the following result requires some further
preparation. We therefore present first an informal statement. Theorem 3.3 below is a
more precise restatement.

Theorem 1.2 The reduced Floer cohomology functor H 7! HF�.H IK/ extends in
a natural way from a functor on the category Hd of dissipative Hamiltonians to a
functor on the category Hsc of all lower semicontinuous exhaustion functions. More-
over , HF�.H IK/ arises as the reduced cohomology of a certain non-Archimedean
Banach chain complex, which is associated to H up to an appropriate notion of
quasi-isomorphism , and which specializes to the Floer chain complex for dissipative
Hamiltonians.

Theorem 1.2 employs the method of Floer theory by approximation. This is explained in
more detail in section Section 3.2. Among other things, Theorem 1.2 can be interpreted
as saying that, at least if one is concerned with reduced cohomology, one needn’t
worry about the question of whether a given Floer datum is dissipative or not. In a
forthcoming note, joint with U Varolgunes, we show that Theorem 1.2 actually holds
for the unreduced version of Floer cohomology. For a more extensive discussion of
this, see comment (d) right after the statement of Theorem 3.3.

1.3 The product structure

To state the final main theorem we introduce the notion of symplectic cohomology
on an arbitrary geometrically bounded symplectic manifold. Let H�Hsc be a subset
consisting of time-independent Hamiltonians such that for any H1;H2 2H we have
that 2 maxfH1;H2g 2 H. We call H a monoidal indexing set. For each monoidal
indexing set H we define a group

SH�.M IH/ WD lim
��!

H2H
HF�.M /:

The set of monoidal indexing sets is partially ordered by the relation H1 �H2, which
is defined to hold if and only if for any H 2H1 there is a constant C and an H2 2H2
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1280 Yoel Groman

such that H1 �H2CC . Before proceeding to the statement of the following theorem,
we note that there is a decomposition

SH�.M IH/D
M

˛2ŒS1;M �

SH�;˛.M IH/;

where for a free homotopy class ˛, the group SH�;˛.M IH/ arises from the periodic
orbits in the homotopy class ˛. In particular, in the following theorem we refer to
the subgroups SH�;0.M IH/ which arise from considering only contractible periodic
orbits.

Theorem 1.3 The groups SH�;0.M IH/ have the following properties:

(a) For any monoidal indexing set H, there is a product structure

�W SH�;0.M IH/˝ SH�;0.M IH/! SH�;0.M IH/;

which is associative , and supercommutative.

(b) The small quantum product on QH�.M IK/ WDH�.M IK/ is well defined and
for any monoidal indexing set H there is a natural PSS homomorphism

QH�.M IK/! SH�;0.M IH/

such that the image of 1 2 QH�.M IK/ acts as the unit in SH�;0.M IH/.

(c) Given monoidal indexing sets H1 �H2, the natural continuation map

SH�;0.M IH1/! SH�;0.M IH2/

is a unital algebra homomorphism.

The proof of Theorem 1.3 is carried out in Section 9.4. The restriction to contractible
periodic orbits is done for the sake of brevity in the proof. See Remark 9.6 below
for an extended discussion. Theorem 1.3 allows the construction of various flavors of
symplectic cohomology as a unital algebra. Essentially the same proof can be used
to construct operations associated with any family of nodal Riemann surfaces and
parametrized Floer data. Moreover, it is possible to carry out a Lagrangian intersection
variant of the results of this paper. Thus, the TQFT structure presented for the case of
Liouville domains in [48] can be transferred in its entirety to the present setting.
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Organization of the paper

The paper is organized as follows. Section 2 discusses various notions of symplectic
cohomology and gives some applications of the main theorems. Section 3.1 provides
an overview of the techniques going into the proof of Theorem 1.1 while Section 3.2 is
devoted to explaining Theorem 1.2. Sections 4 through 6 are devoted to constructing
the dissipative Floer data featuring in Theorem 1.1. The proof of the latter is carried
out in Section 7. In Section 8 we prove Theorem 1.2 (restated as Theorem 3.3). In
Section 9 we prove Theorem 1.3. In Section 10 we carry out the proofs of the properties
and applications mentioned in Section 2.
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2 Symplectic cohomology

In the following subsections we use Theorems 1.2 and 1.3 to construct symplectic
cohomology rings and discuss some of their functorial properties and applications. One
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of the main lessons is that there are two different notions of symplectic cohomology
associated with two different topologies that one can consider on the colimit of a
sequence of Banach chain complexes. The first of these involves completing at the
chain level so as to obtain a Banach space. The details at the chain level are described
in Section 8.3, or, at the cohomology level, in equation (64). The Banach topology
gives rise to local invariants and corresponds under mirror symmetry to locally defined
analytic polyvector fields. Similar constructions have been carried independently in
[62; 61], but the construction has roots back in [15]. We refer to this as local symplectic
cohomology.

A second topology one may consider is one in which no completion is applied to
the direct limit. As a topological space we consider the direct limit with the final
topology described in Section 9.5. We refer to this as global symplectic cohomology.
Global symplectic cohomology is a generalization of the construction in [63]; see also
[56, Section 3e], which is more explicit in this regard. It gives rise to global invariants
and can be thought to correspond under mirror symmetry to the ring of algebraic
polyvector fields. While this distinction, referred to in [56] as quantitative vs qualitative
symplectic cohomology, has been previously known, its significance appears to have
been masked to a large extent in the literature so far due to the emphasis on Liouville
domains with trivially valued coefficient fields, where various different invariants
coincide. In general, different topologies may give rise to completely different vector
spaces. For an example of this phenomenon see [62].

2.1 Local symplectic cohomology

Let K �M be a compact set. Let

HK .x/ WD

�
0 if x 2K;

1 if x 2M nK:

The local symplectic cohomology at K is defined by

SH�.M jKIK/ WD HF�.HK IK/:

The following theorem lists the basic properties of SH�.M jKIK/, which can be almost
readily read off Theorems 1.2 and 1.3. As before, there is a decomposition

SH�.M IH/D
M

˛2ŒS1;M �

SH�;˛.M IH/;

and we denote by 0 the class of contractible loops.
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Theorem 2.1 (a) The map K 7! SH�.M jKIK/ is contravariantly functorial with
respect to inclusions.

(b) Any symplectomorphism  WM !M induces an isometry

 � W SH�.M jKIK/! SH�.M j .K/IK/:

(c) The group SH�;0.M jKIK/ is a unital K–algebra with respect to the operation �
induced from the identification SH�;0.M jKIK/D SH�;0.M I fHK g/.

(d) We have a commutative triangle of K–algebras

(1)

H�.M IK/

�� ))

SH�;0.M jK2IK/ // SH�;0.M jK1IK/

(e) For any H 2H which is bounded on K we have a continuous and functorial map

HF�.H IK/! SH�.M jKIK/;

which increases the valuation1 by at most c D supK H .

The proof of Theorem 2.1 appears at the end of Section 9.

Remark 2.2 Suppose M is symplectically aspherical and for a pair of compact sets
KDK1;K2, we have that HK can be approximated by Hamiltonians whose nontrivial
periodic orbits have action positive and bounded away from 0. Then the commutative
triangle (1) can be refined to a commutative square

H�.K2IK/

��

// H�.K1IK/

��

SH�.M jK2IK/ // SH�.M jK1IK/

Combined with (3) below, this reproduces Viterbo’s commutative square for Liouville
domains [63].

Remark 2.3 We comment on the name local symplectic cohomology. Assume M

is symplectically aspherical and the boundary of K is stable Hamiltonian. Then it
can be shown that elements of SH�.M jK/ are represented by linear combinations of

1By definition, the valuation is val WD log k � k.
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constant periodic orbits inside K and the Reeb orbits of @K. If the boundary is not
stable Hamiltonian, these can be represented by, in addition to constant orbits inside,
periodic orbits lying arbitrarily close to @K. Thus, at least when M is aspherical,
SH�.M jK/ can be thought of as symplectic cohomology relative to the complement
of K; that is, as localized at K. When M is not aspherical, this type of locality is far
from clear. This question is taken up in forthcoming work. Theorem 2.4 below can be
seen as a particular manifestation of locality in the general case.

Theorem 2.4 Let H be a smooth Hamiltonian such that H�1.0/D @K.

(a) Suppose ˛ is a nontrivial free homotopy class of loops. Suppose also that
SH�;˛.M jKIK/¤ 0. Then there is a sequence an > 0 converging to 0 such that
H�1.an/ has a periodic orbit representing ˛.

(b) If SH�;0.M jKIK/ ¤ H�.KIK/, then there is a sequence an > 0 converging
to 0 such that H�1.an/ has a contractible periodic orbit.

Theorem 2.4 is proven in Section 10.6. Some applications of local Floer cohomology
to embedding and displaceability problems are given in Section 2.3 below.

We conclude with some comments on the relation of these groups with similar work of
others.

(a) When M is symplectically aspherical and K is the closure of an open set U, the
groups SH�

Œa;b/
.M jK/ coincide with the corresponding symplectic cohomology groups

of U as defined in [15] using Hamiltonians which are constant at infinity.

(b) In [62] the notion of completed symplectic cohomology is introduced and studied
for Liouville cobordisms W inside monotone symplectic manifolds. The computations
in [62] show that the local symplectic cohomology groups depend nontrivially on K.
The choice of Floer data in [62] is such that the Floer chain complexes have finite
boundary depth; see Remark 3.2. In particular, ordinary and reduced Floer cohomology
coincide for these Floer data. A consequence of Theorem 3.3 is that the invariant
of [62] is the local Floer cohomology as defined here.

(c) In [61] an invariant which is closely related to local symplectic cohomology as
defined here is studied and is shown to fit into a local-to-global spectral sequence when
the compact sets involved are invariant sets of an involutive system of Hamiltonians.
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2.2 Global symplectic cohomology

Consider the set Huniv �Hsc of smooth time-independent exhaustion functions on M.
Then Huniv is a monoidal indexing set. By Theorem 1.3 we thus obtain for any
geometrically bounded symplectic manifold a k–algebra which is a symplectic invariant.

Definition 2.5 The universal symplectic cohomology is defined by

SH�univ.M / WD SH�.M IHuniv/:

For any choice of H the algebra SH.M IH/ carries a topology, called the final topology,
as a direct limit of topological vector spaces. This topology is not guaranteed a priori
to be Hausdorff, and its Hausdorff completion is not guaranteed to be metrizable.
However, in the few cases where something is known about it, SH�univ turns out to be a
reasonably well-behaved object. Example 9.20 below should give some sense of what
universal symplectic cohomology is like in nice cases.

Note that for a compact set K we have Huniv � HK . Thus there is a natural unital
map SH�univ.M /! SH�.M jK/ for any compact set. One way to utilize it is if one
finds a monoidal indexing set H �Huniv for which SH�.M IH/D 0, it then follows
that SH�.M jK/D 0 for all compact K �M. Observe that since we do not complete
after taking the direct limit, the algebra SH�.M IH/ is not sensitive to behavior on
compact sets. Indeed, if we define an equivalence relation H1 �H2 by H1 �H2 and
H2 � 1, then the associated symplectic cohomologies are canonically isomorphic. On
the other hand, if H consists of continuous functions, the �–equivalence class of H
is unaffected by any alterations on any compact set. Thus, for H�Huniv the algebra
SH�.M IH/ is only sensitive to the growth at infinity. For this reason we refer to this
type of symplectic cohomology as global SH.

Before applying SH�univ.M / we discuss some settings where something can be said
about it.

Let .M; !/ be a compact symplectic manifold and let  WM !M be a symplecto-
morphism. Denote by zM the associated symplectic mapping torus; see Section 10.2
for the definition. Denote by HF�.M;  / the fixed-point Floer homology of  as
introduced in [21]. The following theorem allows us to distinguish mapping tori by
fixed-point Floer homology. zM carries a distinguished closed 1–form dt pulled back
from the natural map zM ! S1. The 1–form dt induces a grading on SH�univ since
continuation maps are homotopies. We denote by SH�;kuniv.

zM / the k th graded piece.
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Theorem 2.6 (cf [22]) There is a mapM
k2Z

HF�.M;  k/! SH�univ.
zM /;

which is injective and dense. Moreover , for each k 2 Z there is a natural isomorphism

HF�.M;  k/D SH�;kuniv.M /:

In particular , let  i WM !M be a symplectomorphism for i D 0; 1. Suppose there
exists a symplectomorphism

� W zM 1
! zM 2

which preserves the class of dt . Then � induces an isomorphism HF�.M;  1/ D

HF�.M;  2/.

Theorem 2.6 is proven in Section 10.2.

Theorem 2.7 (Künneth formula) Let M1 and M2 be geometrically bounded sym-
plectic manifolds. Then there is a natural map

(2) SH�univ.M1/˝ SH�univ.M2/! SH�univ.M1 �M2/;

which is injective with dense image. A similar claim holds if one restricts to SH�;0univ.

Theorem 2.7 is proven in Section 10.4.

The following theorem refers to the additional grading on SH�univ.M / by free homotopy
classes of loops as discussed in the paragraph preceding Theorem 1.3.

Theorem 2.8 (nearby existence)

(a) Suppose SH�;0univ.M / D 0. Then for any Hamiltonian H W M ! R which is
proper and bounded from below, the subset of levels containing a contractible
periodic orbit is dense in H.M /�R. The claim holds also if we merely assume
SH�;0univ.M /D f0g, where f0g is the closure of 0 2 SH�;0univ with respect to the final
topology on SH�;0univ.

(b) Suppose ˛ is a nontrivial free homotopy class of loops. Suppose also that
SH�;˛.M / ¤ f0g. Then there is a compact K �M such that for any smooth
proper and bounded below H W M ! R and any a 2 R for which H.K/ �

.�1; a�, the set of x 2 Œa;1/ for which H�1.x/ has a periodic orbit represent-
ing ˛ is dense in Œa;1/.

Theorem 2.8 is proven in Section 10.6.
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Remark 2.9 Examples satisfying the hypotheses of the first part of Theorem 2.8 are
complete toric varieties M such that c1.M / D 0. This follows from the vanishing
criterion of Theorem 10.9. See Example 10.12. There are manifolds in this class of
examples which, unlike C, contain nondisplaceable sets. Examples are the canonical
bundles over P2 and over P1 �P1. By the Künneth formula, the product of such a
manifold with any geometrically bounded symplectic manifold of vanishing Chern
class will again satisfy the hypothesis.

An example of an M and ˛ satisfying the hypotheses of the second part of Theorem 2.8
is given by the cotangent bundle of the torus and any nontrivial homotopy class ˛. This
can be deduced from Theorems 2.6 and 2.7. From this we obtain many examples by
taking the product with an arbitrary compact manifold or with a geometrically bounded
one for which symplectic cohomology does not vanish, and considering homotopy
classes pulled from the cotangent factor.

We can also use the methods of this paper to produce periodic orbits with prescribed
action. Namely, for a dissipative Hamiltonian H , call a class a 2 HF�.H / essential if
it maps to a nonzero class in SH�univ.M /. Suppose M is symplectically aspherical. If
H1 �H2 are dissipative then for any essential class a in HF�.H1/ there is a periodic
orbit of H2 in the same homotopy class with action bounded by val.a/. Indeed, the
map HF�.H1/! SH�univ.M / factors through HF�.H2/ by the continuation map which
is action decreasing.

Example 2.10 On a Liouville domain, for any function H which is convex at infinity,
all nonzero classes in HF�.H / are essential. This follows from Theorem 2.11 below.
The same holds for the product of a Liouville domain with a compact aspherical
manifold. These claims require working over R instead of over ƒR, but this is not
problematic in this restricted setting since the action spectrum is bounded below and
so the topology is discrete.

2.3 Liouville domains and displaceability

Let M be the completion of a Liouville domain U. Denote by SH�Viterbo.U IK/ the
symplectic cohomology as defined in [63] by taking a direct limit of the Floer coho-
mology groups HF�.H;J / over all .H;J / where H is linear at infinity and J is of
contact type. See Section 10.1 for notation and definitions. Denote by L�H the set of
Hamiltonians which are linear at infinity. Then L is a monoidal indexing set. We have

SH�Viterbo.U IK/D SH�.M IL;K/;
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and therefore a natural map

f W SH�Viterbo.U IK/! SH�univ.M IK/:

We prove in Theorem 10.2 below:

Theorem 2.11 The map f is an isomorphism for KDR coefficients.

Corollary 2.12 For a Liouville manifold M of finite type , SH�Viterbo.M IR/ is inde-
pendent of the choice of primitive of !.

Remark 2.13 Theorem 2.11 can generally not be expected to be true over a nontrivially
valued field. See Remark 10.3 for an explanation on this point.

It is also not hard to show that for any Liouville subdomain V �M we have a natural
isomorphism of vector spaces

(3) SH�.M jV IR/D SH�Viterbo.V IR/:

Note however that the left-hand side of (3) is naturally a normed vector space while
the right-hand side is not. The equation will thus cease to be true over a nontrivially
valued field. The generalization of (3) for the nontrivially valued case is the excision
principle

(4) SH�.M jV IƒR/D SH�. yV jV IƒR/

whenever M is a Liouville manifold and V is a Liouville subdomain with yV its
completion. This follows by the no-escape lemma near the concave boundary of M nV .
See [48]. We now formulate a theorem showing that this independence of the ambient
manifold holds under more general conditions for skeleta of Liouville domains. In the
following, we denote by SH�;0.M jV / the subgroup consisting of periodic orbits that
are contractible in M. The proofs of the following theorems as well as some pertinent
definitions are given in Section 10.1.

Theorem 2.14 Let M be symplectically aspherical and let U be a Liouville domain
with Liouville field Z. Let i W U ! M be an embedding with the property that
i� WH1.U IR/!H1.M IR/ is injective. Then , denoting by Skel.U;Z/ the skeleton
of U with respect to Z,

SH�;0.M jSkel.U;Z/IK/D SH�;0.U jSkel.U;Z/IK/:

Remark 2.15 The restriction to contractible periodic orbits in Theorem 2.14 can be
removed by adding the assumption that M is symplectically atoroidal.
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Theorem 2.14 implies:

Theorem 2.16 Let U;Z and M be as in Theorem 2.14 and suppose that

(5) SH�Viterbo.U /¤ 0:

Then Skel.U;Z/ is not displaceable.

Taking U the cotangent disc bundle, this is a well known theorem by Gromov. Namely,
Cn contains no simply connected Lagrangians. The particular case M D yU , the
completion of U, is a theorem of [33]. We remark that Theorem 2.16 follows from
Theorem 2.14 by a general vanishing principle for the localized Floer cohomology
of a displaceable set. We prove this for M aspherical. In [61] this is proven without
the asphericity assumption. Note however that the asphericity assumption in the
last two theorems cannot be removed. Indeed, there are examples of displaceable
Lagrangian spheres [2; 44]. However, there are quantitative counterparts which should
hold assuming essentially only geometric boundedness.

Theorem 2.17 Suppose that M is monotone or Calabi–Yau , and let U ,! M be
a Liouville domain. Then there is a ı > 0 for which SH�;0Viterbo.U IR/ embeds into
SH�;0

Œ0;ı/
.M jSkel.U;Z/IK/ with valuation 0 as an R–subspace.

Theorem 2.18 Let M be aspherical and let U ,!M be a Liouville domain satisfying
SH�Viterbo.U /¤ 0. Then Skel.U;Z/ has positive displacement energy.

Remark 2.19 It should not be hard to remove the asphericity assumption. Once this
is done, and taking U to be the cotangent disk bundle, we recover a classical theorem
by Chekanov [13] stating that Lagrangian submanifolds have positive displacement
energy.

3 Overview

3.1 Diameter control of Floer trajectories

In the next couple of sections we wish to investigate the conditions under which a
Floer datum F 2 F gives rise to Floer homology groups. What it comes down to are
conditions under which Gromov compactness holds. To sketch an outline of what is
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Figure 1: Two types of divergence: type 1, left; type 2, right.

to come, let us first discuss how compactness might fail. Fix the coordinates .s; t/ on
R�R=Z. Let un WR�R=Z be a sequence of solutions to Floer’s equation

(6) @suCJ.@tu�XH /D 0

which satisfies, for some positive number E and some compact set K �M,

E.u/ WD
1

2

Z
k@suk2 �E; u.R�R=Z/\K ¤∅:

In general there are two ways in which such a sequence may diverge. First there might
be (after possibly reparametrizing) a fixed value s and a compact set K0 such that
un.s; � / intersects K0 but the diameter of un.s; � / is not bounded uniformly in n. We
refer to this as a divergence of type 1; see Figure 1, left. Second, there might be a
sequence sn!1 such that un.sn; � / converges to infinity. This is referred to as type 2

divergence; see Figure 1, right.

In the text below we introduce two conditions, one for ruling out each type of divergence.
For the first type of divergence we introduce the condition of intermittent boundedness,
or i–boundedness. It involves bounds on the geometry of an associated metric on the
Hamiltonian mapping torus which are required to hold on a sufficiently large subset
of M. This condition is introduced first for the case where H D 0 in Section 4, where
we show that it provides diameter control for pseudoholomorphic curves. The condition
of i–boundedness is framed so as to allow homotopies between any two elements, as
well as higher homotopies, for which the diameter estimate continues to hold. This is
the content of Theorem 4.7. Note that it is not reasonable to expect that any two almost
complex structures which induce a geometrically bounded metric are connected by a
path of the same kind of almost complex structures. Figure 2 illustrates the kind of
homotopy that intermittent boundedness allows.
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So far, the discussion only pertains to pseudoholomorphic curves. In Section 5 we
discuss a trick which allows us to obtain the same diameter control for H nonzero,
provided we restrict attention to fixed compact sets of the domain. When H is nonzero,
we are considering a geometry which is determined not just by J but also by H . Most
of Section 5 is devoted to studying the geometry of this metric.

To rule out the divergence of type 2 we introduce a condition called loopwise dis-
sipativity. It is a variant of the Palais–Smale condition, which has played a role in
early variational arguments for existence of symplectic capacities [38, Chapter 12].
This condition is not contractible, but this is not a problem since it only needs to be
satisfied on the ends. In this it is similar to the nondegeneracy condition which is
usually required in Floer theory. Note that unlike the property of i–boundedness, the
property of loopwise dissipativity is not readily verifiable on nonexact submanifolds
for Hamiltonians that do not have a small Lipschitz constant. In those cases it requires
some understanding of the Hamiltonian flow.

Floer data satisfying these conditions are called dissipative. Theorem 6.3 states that
dissipative Floer data satisfy a priori C 0 estimates. A variant which works under a
slightly weaker condition on exact symplectic manifolds is given in Theorem 6.12.

We discuss three classes of examples of dissipative .H;J /.

(a) H is Lipschitz with respect to gJ with sufficiently small Lipschitz constant
outside of a compact set. More generally, mainly to allow a cofinal set, we
require the Lipschitz condition only on a sufficiently large subset of M. This
class of examples is sufficient for all the theoretical constructions of this paper.

(b) M is exact and the action functional satisfies the Palais–Smale condition. For the
details see Section 6.4. Strictly speaking, as noted in the beginning of Section 6.4,
the Palais–Smale condition is slightly weaker than the dissipativity condition.
Nevertheless it fits into the general dissipative framework.

(c) The Hamiltonian flow of H is sufficiently close to being invariant with respect
to a radial parameter. See Section 6.5.

3.2 Floer theory by approximation

This subsection is devoted to clarifying the statement of Theorem 1.2 and its underlying
philosophy. We first discuss the notion of reduced Floer cohomology. The Floer
cohomology associated by Theorem 1.1 to a dissipative Floer datum .H;J / is the
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homology of the Floer complex CF�.H;J / constructed in Section 7.3. The complexes
CF�.H;J / can be considered as non-Archimedean Banach spaces over ƒR, as we
explain momentarily. The chain complex CF�.H;J / is generated by an appropriate
Novikov covering of the space of 1–periodic orbits of H . Thus Floer cohomology can
be considered as the Morse cohomology of a single-valued action functional AH . Our
conventions are set up so that action decreases along gradient lines. See Section 5.1
for precise definitions. Thus our chain complexes carry a decreasing filtration by AH .
Moreover, the continuation maps of Theorem 1.2 are induced by certain chain maps
which preserve this filtration.

CF�.H;J / is thus normed with norm given by (54). The fact that the differential
and continuation maps are action decreasing means they are bounded with respect
to this norm, and, in particular, continuous. On an open manifold, CF�.H;J / will
typically not be finitely generated over the Novikov ring. For the differential and
continuation maps to be well defined we need to consider the completed complexcCF�.H;J /. Moreover, the differential can generally not be expected to have a closed
image.

Definition 3.1 Let .C �; d/ be a normed complex. The reduced cohomology of C � is

H�.C �; d/ WD 1ker d�=im d��1;

with the hat denoting completion with respect to the norm, and the bar denoting the
closure inside the completion. For a dissipative H , we denote the reduced Floer
cohomology by HF�.H /.2

Remark 3.2 When the Floer complex is finitely generated over a field, the differential
has closed image. So, in that case, reduced Floer cohomology coincides with ordinary
Floer cohomology. The same is true whenever the Floer complex has finite boundary
depth, meaning that the differential has a bounded right inverse [60]. For Liouville
domains, the Floer differential for a strictly convex Hamiltonian has a closed image if
one is working over R, but not necessarily when working over ƒR.

Denote by HN;�
d;reg the set of sequences fHig of regular dissipative Hamiltonians satisfying

Hi.x/�HiC1.x/ for all i and for all x 2R=Z�M. The set HN;�
d;reg carries a natural

order relation. Namely, fH 1
i g � fH

2
i g is defined to hold if and only if for any i there is

2We suppress J in the notation since the homology is independent of J as a consequence of part (c) of
Theorem 1.1.
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a j such that H 1
i �H 2

j . General nonsense about filtered complexes leads to a certain
extension of the functor HF� to the category HN;�

d;reg as follows. For a dissipative Floer
datum .H;J / and an interval Œa; b/�R we can consider the action-truncated Floer
cohomology HF�

Œa;b/
.H /. See (55) for its definition. Given intervals Œa; b/ and Œa0; b0/

such that a0 � a and b0 � b, there is a natural map HF�
Œa;b/

.H /! HF�
Œa0;b0/

.H / which
behaves functorially with respect to continuation maps. We then define

(7) HF�.fHig/ WD lim
 ��

a

lim
��!
b;i

HF�Œa;b/.Hi/:

The motivation behind this definition will be clarified in Theorem 3.3 and the comments
following it.

On the other hand, by Dini’s theorem from basic calculus, there exists a functor, that is,
an ordered map

sup W .HN;�
d;reg;�/! .Hsc;�/;

which takes fHig to the function x 7! supi Hi.x/.

Theorem 3.3 The map sup is surjective. Moreover , if sup.fH 1
i g/D sup.fH 2

i g/, there
is a natural isomorphism

(8) HF�.fH 1
i g/D HF�.fH 2

i g/:

In particular , there is an induced Floer cohomology functor HF� from the category Hsc

to the category of Z–graded non-Archimedean Banach spaces over K. This definition
of HF� coincides on the subcategory Hd;reg �Hsc with the previous definition which
is implied by Theorem 1.1.

Theorem 3.3 is proved towards the end of Section 8.2 right before Lemma 8.14.

Let us unpack the meaning of Theorem 3.3.

(a) Theorem 3.3 allows one to talk about reduced Floer cohomology of a smooth
proper exhaustion Hamiltonian H without first establishing that H is dissipative. The
further extension to lower semicontinuous functions is of interest since the characteristic
function of an open set is lower semicontinuous. This is used in the discussion of local
Floer cohomology of compact sets (defined as Floer cohomology of the characteristic
function of the complement).
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(b) The heart of the proof of the isomorphism (8) is Theorem 8.9, which can be
interpreted as saying that the truncated Floer cohomology is continuous with respect
to convergence on compact sets. This continuity is a consequence of the quantitative
nature of our main C 0 estimate Theorem 6.3. Namely, Floer trajectories connecting
regions that are far apart must have high energy. Thus, for fixed action truncation,
regions that are sufficiently far apart don’t interact Floer-theoretically.

This continuity statement is not true for the reduced Floer cohomology HF�.H /. Indeed,
it is easy to construct examples of a monotone sequence Hi of regular dissipative Hamil-
tonians converging on compact sets to a regular dissipative Hamiltonian H for which

lim
i

HF�.Hi/¤ HF�.H /D HF.fHig/:

The discrepancy between the leftmost side and rightmost side in the last equation arises
because of the interchange of direct and inverse limits. For example, on a Liouville
domain, H can be taken to be a quadratic Hamiltonian, while the sequence Hi can be
taken to consist of Hamiltonians whose slope near infinity is constant and less than
the smallest period of a Reeb orbit. This can be done so that for each compact set
the sequence still converges uniformly to H . Then it can be shown that for each i

we have HF�.Hi/ D H�.M /. This is the case since, up to isomorphism, the Floer
cohomology HF�.Hi/ D H�.M / depends only on the slope at infinity. Thus the
left-hand side is isomorphic to singular cohomology, whereas the right-hand side is not
generally isomorphic to singular cohomology. The reason for the discrepancy is that
the Hamiltonians Hi will have many periodic orbits whose action is arbitrarily close to
�1. These cancel the contribution to HF�.Hi/ coming from the high-action nontrivial
periodic orbits. However, when truncating below at any fixed value as in the procedure
described by (7), the contribution of the high-action periodic orbits remains uncanceled.

(c) Continuity of truncated Floer cohomology with respect to uniform convergence, and
hence an extension of the definition of truncated Floer homology to C 0 Hamiltonians,
has to the author’s knowledge first been observed in [63].

(d) In the text, a much stronger statement than the isomorphism of (8) is proven.
Namely, it is shown that to each of j D 1; 2 one can associate a complete filtered chain
complex cCF�.H j

i /, after making some additional choices, such that HF�.fH j
i g/ is the

reduced cohomology of cCF�.H j
i /. It is then shown that these complexes are filtered

quasi-isomorphic. See Definition 8.15. Filtered quasi-isomorphism is an equivalence
relation which implies isomorphism of the reduced Floer cohomology. In a forthcom-
ing note, joint with U Varolgunes, we show that filtered quasi-isomorphism in fact

Geometry & Topology, Volume 27 (2023)



Floer theory and reduced cohomology on open manifolds 1295

implies quasi-isomorphism in the usual sense. Thus Theorem 3.3 can be strengthened to
a statement concerning unreduced Floer cohomology. This will be a great advantage as
it will allow the application of tools from homological algebra. The notion of reduced co-
homology is still central however to our construction of the product in symplectic coho-
mology, as it is purely cohomological. Chain level constructions involving colimits are
generally extremely involved, as one needs to keep track of higher homotopical data. The
construction at the chain level is carried out in Theorem 8.16 by taking an appropriate
kind of chain level limit, which takes the Banach topology of the complexes CF�.H j

i /

into account. This builds on a construction from [5] and has also been utilized in [62; 61].

(e) Theorem 3.3 relies on the possibility of approximating any element in Hsc from
below by a sequence of functions which have small Lipschitz constant and are thus
dissipative by Theorem 1.1. Proper functions which are not bounded below would
require considering, in addition, inverse limits. We do not pursue this here.

(f) The comment (a) allows one to adapt Floer-theoretic constructions to the geometry
of the specific setting one is interested in without having to worry about complicated
compactness questions. For an example of this, see the derivation of the Künneth
formula in Hamiltonian Floer cohomology in Section 10.3. Two cautionary remarks
are in order, however:

(i) For there to be a relation between the reduced Floer cohomology and periodic
orbits of the Hamiltonian we are investigating, we must at least rule out divergence
of the second type, described in Section 3.1 below. Namely, we need to establish
loopwise dissipativity, or some related property. In the geometrically interesting
settings that the author is aware of, this is straightforward, but it would be
interesting to have a better understanding of this property.

(ii) It is theoretically possible for there to exist Floer data .H;J / which are not
dissipative, but for which, due to some accident, all the Floer moduli spaces are
compact and, moreover, give rise to reduced Floer homologies differing from
HF�.H;J / as stipulated by Theorem 3.3. This cannot happen for .H;J / which
satisfy the following robustness property enjoyed by dissipative Floer data:

The set of Floer solutions intersecting a given compact set K and having
energy at most E does not change if the Floer datum is changed outside
of a sufficiently large ball around K.

Note that the usually employed maximum principles are global in nature and
so do not imply this property.
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Sections 4 through 6 are devoted to the construction of dissipative Floer data. They are
organized as follows. Sections 4 and 5 are concerned with ruling out type 1 divergence.
In Section 4 we introduce the notion of i–boundedness, establish its contractibility
and derive various versions of diameter estimate it implies. In Section 5 we introduce
the Floer equation and the Gromov metric. We introduce the notions of i–bounded
and geometrically dissipative almost Floer data. Finally, we study the geometry of
the Gromov metric for translation-invariant Floer data. Section 6 is concerned with
ruling out type 2 divergence. In it we introduce and study the property of loopwise
dissipativity, and establish a diameter estimate as well as some effective criteria.

4 I–bounded almost complex structures

For a Riemannian metric g on a manifold M and a point p 2M we denote by injg.p/
the radius of injectivity, and by Secg.p/ the maximal sectional curvature at p. We drop
g from the notation when it is clear from the context.

Definition 4.1 Let .M;g/ be a complete Riemannian manifold. For a>0, the metric g

is said to be a–bounded at a point p 2M if inj.x/ � 1=a and jSec.x/j � a2 for all
x 2 B1=a.p/.

We say that g is intermittently bounded, abbreviated i–bounded, if there is an exhaustion
K1 �K2 � � � � of M by precompact sets and a sequence faigi�1 of positive numbers
such that:

(a) We have d.Ki ; @KiC1/ >
1

ai
C

1

aiC1
.

(b) The metric g is ai–bounded on @Ki .

(c) We have

(9)
1X

iD1

1

ai
2
D1:

The data set fKi ; aigi�1 is called taming data for .M;g/.

More generally we allow a slight weakening in the definition and say that a Riemannian
metric g is i–bounded if there exists a metric g0 that is i–bounded as above, with taming
data .Ki ; ai/ and a sequence of constants Ci such that:
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(a) We have

(10)
1X

iD1

1

.Ciai/
2
D1:

(b) The metric g is Ci–quasi-isometric to g0 on B.@Ki ; 1=ai/. Namely,

1

Ci
kXkg � kXkg0 � CikXkg

on B.@Ki ; 1=ai/.

In this case we will refer to the sequence .Ki ; ai ;Ci/ as the taming data of g.

For a symplectic manifold .M; !/, an !–compatible almost complex structure J is
called i–bounded if gJ is i–bounded. The symplectic form ! is said to be i–bounded
if it admits an i–bounded almost complex structure. For an i–bounded .M; !/, denote
by Jib.M; !/ the space of i–bounded almost complex structures.

A k–parameter family .gt /t2Œ0;1�k of i–bounded Riemannian metrics on M is said to
be uniformly i–bounded, or u.i.b., if there is an � > 0 such that for each t0 2 Œ0; 1�

k the
taming data fKi ; ai ;Cig can be chosen fixed on the � neighborhood of t0. A family fJtg

of almost complex structures is called u.i.b. if the corresponding family fgJt
g of

Riemannian metrics is uniformly i–bounded.

Example 4.2 If J is geometrically bounded, meaning that gJ is a–bounded every-
where for some a, it is i–bounded. In this case, we can take the taming data to be
fKi D B3i=a.p/; ai D ag, for some arbitrary point p 2M.

Example 4.3 Suppose now that f WM !R is the distance from some point p 2M

and that at each point x 2 M the metric gJ is f .p/–bounded. Then gJ is still i–
bounded. For this case consider the sequence of real numbers bi obtained from the
set

S1
nD1fnC k=n j 0 � k < ng � R with its standard order. Then the sequence

.Ki D f
�1.0; b3i/; ai Ddb3ie/ constitutes taming data for gJ . Indeed, by assumption,

the metric is ai bounded on Ki and the series
P

1=a2
i is readily seen to diverge.

Remark 4.4 The condition of uniform i–boundedness is framed so that it simultane-
ously guarantees the conclusions of Theorems 4.7 and 4.11 below. Namely, on the one
hand, the condition is contractible in the sense that any two homotopies satisfying the
condition are connected by a homotopy satisfying the same condition. On the other
hand, it still allows a priori control of the diameters of J–holomorphic curves. If we
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were to require boundedness everywhere, not just near @Ki , it appears unlikely that we
would get a contractible condition as required in invariance proofs.3

Remark 4.5 Theorem 4.7 below will remain true if we impose more stringent require-
ments on the numbers ai , say, that they be bounded by a given constant. The reason we
allow the numbers ai to diverge (subject to (10)) is that in the context of Floer theory,
sometimes there naturally arise almost complex structures with associated metrics that
do not have uniformly bounded sectional curvature. Examples are the Sasaki metric
on the cotangent bundle and the induced metric on the mapping torus of a quadratic
Hamiltonian on the completion of a Liouville domain.

Remark 4.6 If J is i–bounded and J 0 is such that kJ �J 0kgJ
is bounded, then J 0 is

i–bounded.

Theorem 4.7 The space Jib.M; !/ is connected. Moreover , any two elements can
be connected by a u.i.b. family. Similarly, any two u.i.b. k–parameter families can be
connected by a u.i.b. .kC1/–parameter family.

Remark 4.8 The idea of the proof is very similar to the that of [14, Proposition 11.22].

Proof Let J0;J1 2 Jib. Suppose we are given taming data fKi
n; a

i
n;C

i
ngn�1 for Ji ,

i D 0; 1. For the rest of the proof we assume C i
nD 1, the adjustment to the general case

being trivial. Let .ci
n; d

i
n/n�1 be sequences of positive integers constructed inductively

such that:

(a) K0
d0

nCc0
n
�K1

d1
n

and K1
d1

nCc1
n
�K0

d0
nC1

for all n.

(b)

d i
nCcn�1X

kDd i
nC1

�
1

ai
k

�2

�
1

n
for i D 0; 1.

Write
V i

n WDKi
d i

nCci
n
nKi

d i
n

for i D 0; 1:

The sets V i
n are all disjoint by (a). Let fJsg/s2Œ0;1� be a smooth homotopy connecting

J0 and J1 which is fixed and equal to J1 on the subsets V 0
n for all s 2

�
0; 2

3

�
and to J1

3As evidence for this, consider that one can show, using the result of [40], that the space of complete
Riemannian metrics inducing a given volume form and having bounded geometry is disconnected. In fact,
it has infinitely many connected components.
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J

M

Figure 2: A zigzag homotopy from J0 (light) to J1 (dark).

on the subsets V 1
n for all s 2

�
1
3
; 1
�
. We refer to such a homotopy as a zigzag homotopy;

see Figure 2. Set

Ai
WD

[
n
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for i D 0; 1. By (a) and (b), the data

fKi
ni

k
; ai

ni
k
gni

k
2Ai ; i D 0; 1;

constitute taming data for Js on the intervals
�
0; 2

3

�
and

�
1
3
; 1
�
, respectively. Moreover,

for each s 2 Œ0; 1� the metric gJs
is complete. Indeed, the distance of @Ki

nk
from any

fixed point goes to1 for i D 0 and s 2
�
0; 2

3

�
, and for i D 1 and s 2

�
1
3
; 1
�
. We have

thus connected J0 and J1 in a uniformly i–bounded way.

We now generalize to the k–parameter case. Let fJi;tgt2Œ0;1�k for i D 0; 1 be two
smooth k–parameter families. Let C be an open cover of the cube Œ0; 1�k by open cubes
of side length � for � so small that the taming data for both families can be chosen
fixed on each such cube. For each c 2 C and i 2 f0; 1g, we construct precompact open
subsets fV i;c

n g in such a way that:

(a) V
i1;c1

n1
is disjoint from V

i2;c2
n2

whenever .i1; c1; n1/¤ .i2; c2; n2/.

(b) There is taming data supported in
S1

nD1 V
i;c

n for fJi;tgt2c , where we say that
the taming data fKi ; aigi�1 is supported in an open set V �M if V contains
all the balls B1=ai

.@Ki/.

Geometry & Topology, Volume 27 (2023)



1300 Yoel Groman

Such sets can be constructed inductively along the same lines as in the 0–parameter
case. We can then take any smooth homotopy

fJs;tg.s;t/2Œ0;1��Œ0;1�k

which is fixed on all the subsets fV 0;c
n g for s 2

�
0; 2

3

�
, and on all the subsets fV 1;c

n g

for s 2
�

1
3
; 1
�
.

For a J–holomorphic curve u W S !M, denote by E.uIS/ the energyZ
S

u�!

of u on S . We drop S from the notation when it is clear from the context.

The following theorem is taken from [57].

Theorem 4.9 (monotonicity) Let gJ be a–bounded 4 at p 2M. Let † be a compact
Riemann surface with boundary and let u W†!M be J–holomorphic such that p is in
the image of u and such that

u.@†/\B1=a.p/D∅:

Then there is a universal constant c such that

E
�
uIu�1.B1=a.p//

�
�

c

a2
:

If gJ is quasi-isometric to an a–bounded metric with quasi-isometry constant A, the
same inequality holds but with c replaced by c=A2.

Proof This is just a reformulation of the monotonicity inequality in [57]; see Proposi-
tion 4.3.1(ii) and the comment right after Definition 4.1.1 there. For completeness, we
add a statement and proof of that comment in Lemma 4.10, as we didn’t find a proof
of it in the literature.

Lemma 4.10 Let g be Riemannian metric which is a–bounded at p 2M. Then any
loop  W S1! B1=.2a/.p/ bounds a disk of area less than 1

2
`2. /.

Our proof is taken from [37], the only addition being the precise dependence on the
curvature.
4As the proof shows, we only need an estimate from above on the sectional curvature. The stronger
requirement is needed later in Section 5.5.
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Proof Set  .0/Dq. Let z WS1!TqM be the unique path such that expq z .�/D  .�/.
Consider the disk u.t; �/D expq t z .�/. Using the triangle inequality one shows that u

maps into the ball B1=a.p/. Since the geodesics emanating from q minimize distance
within B1=a.q/, we have

(11) k@tuk D kz .�/k D d.q;  .�//� 1
2
`. /:

We need to estimate the Jacobi field J.t; �/ WD @�u.t; �/. More precisely, we need
to estimate the component J? which is perpendicular to z .�/. For this we use the
generalized Rauch estimate [34, 1.8.2], according to which the function

f .t/D
kJ?.t; �/k

sin t

is nondecreasing on the interval .0; �/.5 Observe that  0.�/D J.1; �/. So,

kJ?.t; �/k �
sin t

sin 1
k 0.�/k for t � 1:

Applying the last estimate and equation (11) we get

Area.u/D
Z 1

0

Z 2�

0

k@�ukk@tuk sin.†.@�u; @tu// d� dt

D

Z 1

0

Z 2�

0

k@�u?kk@tuk sin.†.@�u?; @tu// d� dt

�

Z 1

0

Z 2�

0

k 0.�/k1
2
`. / d� dt D 1

2
`2. /:

The following theorem is fundamental for all that follows. It gives a priori control over
the diameter of a J–holomorphic curve u W†!M with free boundary in terms of its
energy.

Theorem 4.11 Let J 2 Jib.

(a) For any compact set K �M and E 2RC there exists an R> 0 such that for any
connected compact Riemann surface † with boundary , and any J–holomorphic
map

u W .†; @†/! .M;K/

satisfying E.uI†/�E, we have u.†/� BR.K/. Moreover , if the geometry is
uniformly bounded , R can be taken to be independent of K. In fact , it can be
taken to be proportional to E.

5Observe the coordinate t is related to the coordinate r of [34, 1.8.2] by r D kzkt , and that kzk � a,
where a2 plays the role of � in [34, 1.8.2].
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(b) Let † be a connected compact Riemann surface with boundary. For any compact
set K �M, any compact subset S of the interior of †, and any E 2RC, there
exists an R such that for any J–holomorphic map

u W†!M

satisfying E.uI†/�E and u.S/\K ¤∅, we have u.S/� BR.K/.

In both cases , besides the dependence on E and on S , R depends only on taming data
of J inside BR.K/. That is , given J 0 which has the same taming data as J on BR.K/,
the claim will hold with the same R for J 0–holomorphic curves with energy at most E.

Remark 4.12 The reader is cautioned that in case (b), where there is no control over
the image of the boundary, to control the diameter of u.S/ we need control of the
energy in the larger surface †.

Remark 4.13 Concerning the dependence of R on the geometry in case (b), in addition
to the dependence on the taming data and on E, we have that R depends on an estimate
from below of the distance d.S; @†/, and from above on the area and curvature of †,
all with respect to an arbitrarily chosen conformal metric.

Proof Let fKi ; ai ;Cig be taming data for J . The argument will be given for the case
Ci D 1 for all i 2 N. Let N 2 Z be such that K � KN . Let i0 > 0 and xi0

2 † be
such that u.xi0

/ 2 @Ki0CN . If no such i0 and xi0
exist, we take R D d.K;KNC1/

and we are done. Otherwise, there is a sequence xi 2 † such that u.xi/ 2 @KNCi

for 0 < i � i0. In case (a) we argue as follows. For each 1 � i � i0, we have
B1=aNCi

.u.xi//\u.@†/D∅. Also,

d.u.xi/;u.xj // >
1

aNCi
C

1

aNCj

whenever i ¤ j . By Theorem 4.9 we obtain

E.uI†/�

i0X
iD1

E
�
uIu�1

�
B1=aNCi

.u.xi//
��
�

i0X
iD1

c

a2
iCN

:

By (10) this implies an a priori upper bound on i0. Let i0 be the largest possible such.
The claim then holds with RD d.K;KNCi0C1/.

In case (b) we argue as follows. Pick an area form !† on † which together with
j† determines a metric whose sectional curvature is bounded in absolute value by 1.
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Let AD
R
† !† and let � WD d.S; @†/. Let

zu WD Id�u W†!†�M

be the graph of u, and let zJ be the product almost complex structure on †�M. Then
zu is J–holomorphic and E.zu/DE.u/CA. For any x 2†, any p 2M and any a� 1

such that .M;gJ / is a–bounded at p, we have that .†�M;g zJ / is a–bounded at .x;p/.
Moreover, defining xi as before for points xi 2 S , the ball of radius minf1=aiCN ; �g

around zu.xi/D .xi ;u.xi// does not meet zu.@†/. Thus, arguing as before, we have

E.uI†/CADE.zuI†/�

i0X
iD1

c min
�

1

a2
iCN

; �2

�
:

The claim follows as before.

The final ingredient we shall need is the following elementary observation, whose proof
we leave for the reader.

Theorem 4.14 The pullback of a u.i.b. family by a uniformly continuous map is u.i.b.

Theorems 4.7 and 4.11 have consequences for symplectic invariants on open manifolds,
which we state as the following theorem.

Theorem 4.15 The following invariants , whose definition requires fixing a geometri-
cally bounded almost complex structure J, are independent of the choice of such J.

(a) The Gromov–Witten theory on geometrically bounded manifolds studied in [35].

(b) Symplectic homology of relatively compact open sets studied in [17].

(c) Rabinowitz Floer homology of tame stable Hamiltonian hypersurfaces in geo-
metrically bounded manifolds [16].6

Proof By Theorem 4.7 we can connect any two such almost complex structures J0

and J1 via a uniformly i–bounded path Js of compatible almost complex structures.
We outline how to prove invariance in each case separately.

(a) As a particular consequence of Theorem 4.11, the Js–holomorphic curves repre-
senting a given homology class and nontrivially intersecting a compactly supported
cohomology class are all contained in a fixed compact set K. Thus the moduli space of
such spheres with s varying from 0 to 1 generically gives rise to a cobordism between
the moduli spaces associated with J0 and J1.

6See Remark 3.3 in [17] and likewise the beginning of Section 4.5 in [16], where this question is raised.
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(b) The symplectic homology is defined by considering compactly supported Hamil-
tonians. In that setting, geometric boundedness gives rise to C 0 estimates as follows.
Suppose u is a Floer trajectory connecting periodic orbits inside some open set U

where some Hamiltonian H is supported. Then the intersection of the image of u with
M nU is J–holomorphic. Moreover, the symplectic energy is bounded a priori in
terms of the action difference across u. It is clear by Theorem 4.11 that i–boundedness
is sufficient to obtain the same type of C 0 estimate. We show that the continuation
map associated with the 1–parameter family Js fixing H also satisfies a C 0 estimate.
Note that we cannot directly appeal to Theorem 4.11, since we are now considering a
domain-dependent J . To overcome this difficulty we apply the Gromov trick. Namely,
we consider the graph

zu WR�R=Z!R�R=Z�M

for a continuation map u. Let zJ WD j �J , where j is the standard complex structure
on the cylinder. Then zu is zJ–holomorphic outside of U. Consider the area form on the
cylinder obtained by identifying it with the twice punctured sphere. Then the associated
metric g zJ is i–bounded. Moreover, the energy of the part of zu mapping outside of U

is still bounded a priori in terms of the periodic orbits connected by u.7 Appealing to
Theorem 4.11, the path Js gives rise to a chain homotopy between the Floer homologies
of any fixed Hamiltonian with respect to the two choices of J . In the same way, given
H �K, and a homotopy Hs of Hamiltonians, the concatenations .K;Js/ # .Hs;J0/

and .Hs;J1/#.H;Js/ can be interpolated by a homotopy .Hs;� ;Js;� / such that Hs;� is
compactly supported and Js;� is uniformly i–bounded. A C 0 estimate for the homotopy
is immediate from Theorem 4.11. Thus the continuation maps in the directed system
defining symplectic homology also coincide generically for different choices of J . It
follows that the two invariants coincide.

(c) Rabinowitz Floer homology for a stable Hamiltonian hypersurface † in a geo-
metrically bounded manifold is considered with Hamiltonian vector fields that are
supported on some compact set K containing †. A gradient trajectory in Rabinowitz
Floer homology consists of a pair .v; �/, where v W R �R=Z!M and � W R! R

satisfy a certain equation. The part of V which maps out of K is J–holomorphic with
a priori bounded energy for a gradient connecting critical points. Compactness of the
space of gradient trajectories consists in first establishing a C 0 estimate on V and once

7Later, when considering a nonzero Hamiltonian, we will generally have i–boundedness only if we
consider the cylindrical metric, which has infinite area. For this reason we will need to complement
i–boundedness with the additional requirement of loopwise dissipativity.
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V is confined to a compact region, deriving an estimate on � and appealing to Gromov
compactness. As in the previous part, i–boundedness is sufficient for the C 0 estimates
on V . This holds as well for s dependent J . The argument for invariance now follows
as before.

Remark 4.16 The question of what kind of deformation of the symplectic structure
preserves which of these invariants appears to be more subtle and is not studied here.
In [30], the question is taken up for a particular type of deformation on Liouville
domains.

Remark 4.17 It is not known to the author whether the class of i–bounded symplectic
manifolds is strictly larger than the class of geometrically bounded symplectic manifolds.
It appears likely that it might be easier to characterize the class of i–bounded symplectic
manifolds in terms of the topology of !. It is easy to see that a punctured Riemann
surface cannot be assigned an i–bounded compatible metric, even though there is
a compatible complete metric of bounded curvature. This motivates the following
question. Suppose M is such that for any disconnecting compact hypersurfaces †,
a component of M n† which has finite volume is precompact in M. Are there any
obstructions to finding a compatible i–bounded J?

It is also an interesting question whether finiteness of the total volume is an obstruction
to weak boundedness, as it is to boundedness. In dimension 2 the answer is positive, as
remarked above, but in higher dimension this is not clear to the author. If the answer is
negative, it is possible that there are contact manifolds whose symplectizations admit
i–bounded almost complex structures, allowing one to define Floer-theoretic invariants
on them without recourse to symplectic field theory. This remark is due to A Oancea.

5 Floer solutions and the Gromov metric

5.1 Floer’s equation

Let .M; !/ be a symplectic manifold. Let LM WD C1.R=Z;M / denote the free
loop space. For a smooth function H 2 C1.R=Z �M / and for any t 2 R=Z, de-
note by XHt

its Hamiltonian vector field. This is the unique vector field satisfying
dHt . � /D!.XHt

; � /. For each component LMa of LM pick a base loop a and define
a (multivalued) functional AH W LM !R by

AH . / WD �

Z
! �

Z 2�

0

H. .t// dt;

Geometry & Topology, Volume 27 (2023)
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where the integral of ! is taken over a path in loop space from a to  . Later, in
Section 7.3, we will consider AH as a single-valued functional on an appropriate cover
of the loop space.

Denote by P.H / � LM the set of 1–periodic orbits of XH . This is the same as
the critical point set of AH . Given an R=Z–parametrized family of almost complex
structures Jt on M, the gradient of AH . / at  is the vector field

rAH . /.t/ WD Jt

�
P .t/�XHt

. .t//
�

along  . Note that the gradient field is independent of the choice of base paths and
is single-valued. A gradient trajectory is a path in (a covering of) loop space, whose
tangent vector at each point is the negative gradient at that point. Explicitly a gradient
trajectory is a map

u WR�R=Z!M

satisfying Floer’s equation

(12) @suCJt .@tu�XHt
ıu/D 0:

We refer to such solutions as Floer trajectories. A Floer trajectory is nontrivial if there
is a point such that @tu¤XH .

More generally, let† be a finite type Riemann surface with cylindrical ends. This means
that † is obtained from a compact Riemann surface † by removing a finite number
of punctures. Moreover, near each puncture we fix a conformal coordinate system
.s; t/ W .a; b/�R=Z!† such that either .a; b/D .�1; 0/ or .a; b/D .0;1/. In the first
case we call the puncture negative, and in the second, positive. Let H2�1.†;C1.M //

be a 1–form with values in smooth Hamiltonians such that near each puncture there
is an H 2 C1.R=Z�M / for which H D H dt in the cylindrical coordinates. We
denote by XH the corresponding 1–form with values in Hamiltonian vector fields. Let
J 2C1.†;J .!// and suppose J is independent of the coordinate s on the cylindrical
ends. The datum .H;J / is called a domain-dependent Floer datum.

Let u W†!M be smooth. For a 1–form  on † with values in u�TM, write

 0;1
WD

1
2
. CJ ı  ı j†/:

A Floer solution on † is a map u W†!M satisfying Floer’s equation

(13) .du�XH.u//
0;1
D 0:
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Note that equation (12) is equivalent to a special case of equation (13). We refer to J

and H as the Floer data of u. The geometric energy of u on a subset S �† is defined as

(14) EH;J .uIS/ WD
1

2

Z
S

kdu�XHk
2
J dvol†:

We omit any one of H, J or S from the notation when they are clear from the context.
We define the topological energy Etop.u/ of a Floer solution u as follows. Consider H
as a 1–form on †�M and let zu W†!†�M be the product map zuD Id�u. Then

(15) Etop.u/ WD

Z
u�!C d zu�H:

Floer’s equation reduces to the nonlinear Cauchy–Riemann equation when H.v/ D

 ˝ const for  a 1–form on †. In this case the two definitions of the energy coincide.
Namely, we have the identity

(16) 1

2

Z
S

kdu�XHk
2
D

1

2

Z
S

kduk2 D

Z
S

u�!:

5.2 The Gromov metric

Let u W †!M be a Floer solution for the Floer data F D .H;J /. Define an almost
complex structure JF on †�M by

JF .z;x/ WD

�
j†.z/ 0

XH.z;x/ ı j†.z/�J.z;x/ ıXH.z;x/ J.x/

�
:

Let
zuD .Id;u/ W†!†�M:

Then zu is JF –holomorphic. This construction is known as Gromov’s trick; see for
instance [37, Chapter 8.1].

Henceforth, given a Riemann surface † with cylindrical ends, we shall
assume that it comes equipped with an area form which is compatible with
the complex structure and coincides with the standard one, ds ^ dt , on
the ends.

Note that JF is not generally tamed by the product symplectic structure

! zM D �
�
1!†C�

�
2!M :

However, we have the following lemma.
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Lemma 5.1 Suppose fH;Hg D 0, ie for any z 2† and any pair v1; v2 2 Tz†, we have

(17) fH.v1/;H.v2/g D 0:

Now consider H as a 1–form on †�M which is trivial in the directions tangent to M.
Assume that for each .z;x/ 2†�M we have

(18) dH.z;x/jTz† � 0:

That is , it is positive with respect to the orientation determined by j†, the complex
structure. Then the 2–form

!H WD �
�
1!†C�

�
2!M C dH

is a symplectic form on †�M, which is compatible with JF .

Proof We only show that !H is a symplectic form. Closedness is clear, so we only
need to show nondegeneracy. In local coordinates on † write

HDH dt CG ds:

Then
dHD dH ^ dt C dG ^ dsC .@sH � @tG/ ds ^ dt:

Suppose there is a vector v D .v1; v2/ 2 T .†�M / for which �v!H D 0. Then, in
particular, the restrictions of �v z! to the fibers of �2 vanish, giving

��v2
!M D dt.v1/ dH C ds.v1/ dG:

So, v2 D aXH C bXG for appropriate constants a; b 2R. Since fH;Gg D 0 it follows
that �v2

.dH ^ dt C dG ^ ds/D 0. Thus,

�v1
.!†C .@sH � @tG/ ds ^ dt/D 0:

Our assumption is that the coefficient of ds^dt is nonnegative. It follows that v1 D 0,
which in turn implies v2 D 0.

Remark 5.2 More generally, if we replace the estimate (18) by

(19) dH.z;x/jTz† � �a ds ^ dt

for some constant a, we have that the form !H;a WD !HC a ds ^ dt is symplectic.

The Poisson bracket condition (17) may also be weakened to the requirement that for
any point z 2 � and vectors v1; v2 2 Tz†, we have

(20) jfH.v1/;H.v2/g.x/j< akv1kkv2k for all x 2M:

In that case, the form !H;a will again be a symplectic form.
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Lemma 5.3 Let † be a Riemann surface with cylindrical ends and let .H;J / be
a domain-dependent Floer datum on †. For any .H;J /–Floer solution u W †!M

satisfying (17) and (18), and for any Borel subset A�†, we have

(21) E.uIA/ WD

Z
A

kdu�XHk
2 dvol† �Etop.uIA/:

Proof Write in local coordinates HDH dt CG ds. Then using the Floer equation
and denoting by d 0 the exterior derivative in the M direction,

kdu�XHk
2 ds ^ dt D !.@tu�XH ;XG � @su/ ds ^ dt

D u�!C .d 0H.@su/C d 0G.@tu// ds ^ dt

D u�!C dH� .@sH ıu� @tG ıu/ ds ^ dt

� u�!C dH:

We have used the conformal invariance of energy,

kdu�XHk
2 dvol† D kdu�XHk

2 ds ^ dt:

Henceforth, we shall denote by gJF
the Riemannian metric determined by !H and JF

and refer to it as the Gromov metric. When HDH dt we will also use the notation
JH and gJH

.

Example 5.4 Let H D H dt , where H W M ! R is smooth. Then one finds by a
straightforward computation that

(22) gJH
D ��1 gj C�

�
2 gJ Cgmixed;

where �i are the natural projections and

(23) gmixed D�gJ .XH ; � / dt � dt gJ .XH ; � /CkXH k
2dt2:

In order to define the notion of i–boundedness for Floer data we need a relative notion
of intermittent boundedness.

Definition 5.5 Let† be a Riemann surface with cylindrical ends. A Riemannian metric
on†�M is said to be intermittently bounded relative to the projection � W†�M !M

if there is an exhaustion of †�M by a sequence of open sets Ki such that for any
precompact open U � †, the sets ��1.U \Ki/ are precompact, and such that the
rest of Definition 4.1 holds for these Ki . Let z! be a symplectic form on † �M.
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An z!–compatible almost complex structure J on †�M is said to be intermittently
bounded relative to � if the associated metric gJ is. We denote the set of all these
by Jib.† �M; z!; �/. For an open set U � † we denote by Jib.U �M; z!/ the
set of z!–compatible almost complex structures on U �M that are restrictions of a
J 2 Jib.†�M; z!; �/.

The following lemma is an obvious variant of Theorem 4.11(b), the only difference
being the need to restrict to J–holomorphic sections.

Lemma 5.6 Let U � † be an open precompact subset. Let J 2 Jib.U �M; z!; �/.
Suppose kd�k is uniformly bounded from above with respect to some fixed conformal
metric on†. For any compact set K�M, any compact subset S �U, and any E 2RC,
there exists an R such that for any J–holomorphic section

u W U ! U �M

satisfying E.uIU /�E and u.S/\K ¤∅, we have u.S/� BR.S �K/.

Proof The assumption on kd�k guarantees that for any z 2† we have B�.u.z//�

u.B�.z//. The argument is then word for word that of Theorem 4.11(b) .

Remark 5.7 The dependence of R on U and S is spelled out in Remark 4.13.

Lemma 5.8 For the Gromov metric gJF
associated with F any Floer datum satisfying

(17) and (18), we have kd�k � 1.

Proof For any vector v tangent to†�M we have kvkD��!†.v;JFv/C!F .v;JFv/.
The second term is nonnegative by Lemma 5.1 since Lemma 5.1 holds for any choice
of !†. The first term equals !†.��v; j†��v/ by holomorphicity of � .

Definition 5.9 Let† be a Riemann surface with cylindrical ends. A domain-dependent
Floer datum .H;J / on † is called i–bounded if:

(a) H satisfies (17) and (18) (or, more generally, inequalities (20) and (19)).

(b) There exists a finite open cover C of † such that for each U 2 C we have
JHjU�M 2 Jib.U �M; !H/ (or, more generally, JH 2 Jib.U �M; !H;a//.

Definition 5.10 Let S be a compact manifold with corners. A smooth family †fs2Sg
of (broken) Riemann surfaces with cylindrical ends together with a smooth choice of
domain-dependent i–bounded Floer data .Hs;Js/ is called admissible if the following
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holds. Denote by � W zS! S the tautological bundle. Then we assume there is a smooth
choice �s of area forms on †s and a finite cover of zS by connected opens consisting
of elements of two types: ThickS and ThinS . The elements of ThickS are assumed to
be subsets of zS which are trivializable to the form U D V �W, where W � S and
V is a bordered Riemann surface whose area is uniformly bounded on W. The fibers
of � restricted to elements of ThinS are generically cylinders (of finite, half-infinite
or infinite length), which may degenerate to nodes at the corners. Moreover, for the
thin elements we require that the Floer data be translation invariant on the fibers of �
and that the area forms coincide with ds ^ dt . We say that the family S is uniformly
i–bounded if for any thick element U D V �W there exist taming data on V �M

which are constant on W , and for any thin element U there exist taming data on
Œ�1; 1��R=Z�M which are constant on �.U /.

For the rest of the section we wish to establish criteria for i–boundedness of JF .
This is not strictly necessary for the proof of the main theorems in the introduction.
Lemma 5.11, to be stated presently, is all we shall need for that purpose. The proof is
left to the reader.

Lemma 5.11 Let .H1;J / be a Floer datum , and H2 a time-dependent Hamiltonian
such that kXH2

k � C for some constant C . Then gH1CH2
is C 2–quasi-isometric

to gH1
. In particular , when J is i–bounded and H is such that kXH k is bounded , we

have that JH is i–bounded.

However, for applications in practice we need effective criteria. For example, we
need to show that Floer data that has been hitherto used in the literature fits into the
dissipative framework. To do this we need, first of all, a criterion for completeness of
the metric gJF

. Then we need to discuss how to compute the curvature of gJF
and

control its radius of injectivity in terms of the Floer data J and H. We do this in the
case where HDH dt for a time-independent Hamiltonian H as in Example 5.4. Since
intermittent boundedness is preserved under quasi-isometry, this is quite sufficient for
applications insofar as Floer trajectories are concerned. The consideration of more
general Floer solutions will be reduced to that of Floer trajectories.

5.3 Completeness

Definition 5.12 Let J be an almost complex structure. We say that an exhaustion
function H WM !R is J–proper if H factors as H D f ı h for some proper smooth
function h WM !R satisfying krhk � 1 with respect to the metric gJ on M.
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Lemma 5.13 Let H be a smooth time-independent J–proper Hamiltonian , ie H D

f ıh with krhk � 1. For any function g W Œa; b�!R and any  W Œa; b�!M , we have

(24) jh. .b//� h. .a//j2 � .b� a/

Z b

a

kg.t/XH � 
0.t/k2 dt:

Remark 5.14 More generally, if H is time-dependent, and factors as Ht D f ı ht

where ht is a smooth proper time-dependent function satisfying jrht j � 1, we have

(25) jhb. .b//� ha. .a//j
2

� .b� a/

�Z b

a

kg.t/XH � 
0.t/k2 dt C sup

t2Œa;b�

@tht ı  .t/

�
:

Proof We have

jh. .b//� h. .a//j2 D

ˇ̌̌̌Z b

a

hrh;  0.t/i dt

ˇ̌̌̌2
D

ˇ̌̌̌Z b

a

hrh;  0.t/�g.t/XH i dt

ˇ̌̌̌2
� .b� a/

Z b

a

kg.t/XH � 
0.t/k2 dt :

We used Cauchy–Schwarz, krhk � 1, and the fact that XH ?rh.

Lemma 5.15 Suppose H is smooth time-independent and J–proper. Then the metric
gJH

on zM WDR�R=Z�M is complete.

Proof Let H D f ı h, where h WM !R is proper and satisfies krhk � 1. We show
that the pullback zh of h to zM is Lipschitz with respect to gJH

. It suffices to show that
for any path z W Œa; b�! zM lifting a path  W Œa; b�!M , we have

jzh.z .b//� zh.z .a//j2 � .b� a/

Z
kz 0k2gJH

:

For each x 2 Œa; b� we can gHJ
–orthogonally decompose

z 0.x/D v.x/Cg.x/.XH C @t /C @s;

where v.x/ 2 TM. We have

kz 0.x/k2gHJ
� kv.x/k2 D k 0.x/�g.x/XH k

2
gJ
:

Since zh is independent of s, the claim follows by Lemma 5.13.

Geometry & Topology, Volume 27 (2023)



Floer theory and reduced cohomology on open manifolds 1313

To see that gJH
is complete note first that by translation invariance it suffices to prove

completeness of the restriction of gJH
to the mapping torus s D const. For this, note

that the restriction of zh to the set s D const is still Lipschitz and, moreover, it is proper
since H is. Thus for any x we have that the ball of radius R around x in R=Z�M is
contained in the compact subset

zh�1.Œzh.x/�R; zh.x/CR�/:

Completeness now follows by Hopf–Rinow.

We conclude with a criterion for J–properness. Call a function f WR! Œ1;1/ tame if
the primitive of 1=f is unbounded from above.

Lemma 5.16 Suppose there is a tame function such that

krHkgJ
� f .H /:

Then H is J–proper.

Proof Let g be a primitive of 1=f . We have

kr.g ıH /k D g0 ıHkrHk D
1

f ıH
krHk � 1:

By assumption, h WD g ıH is proper. Moreover, g is monotone (primitive of a positive
function). So H D g�1 ı h.

5.4 Curvature

We introduce some notation and recall some basic formulae in Riemannian geometry.
We refer to [45] for details. Let .M;g/ be a Riemannian manifold and let r WM !R be
a distance function; that is, a function satisfying krrkD 1. Write @r WD rr and denote
by S the tensor r@r . Denote by Ur the level sets of r . Denote by R the curvature
tensor of M, by Rt the tangential component of R restricted to T Ur and by Rr the
curvature tensor of Ur . Also, write R@r

DR. � ; @r /@r .

The following formulae, together with the symmetries of the curvature tensor, show
that the full curvature tensor on M is determined by the curvature of the level sets of r ,
by the tensor S and by its first derivative:

�R@r
D S2

Cr@r
S;(26)

Rt .X;Y /Z DRr .X;Y /Z �S.X /^S.Y /Z;(27)

R.X;Y /@r D .rX S/.Y /� .rY S/.X /:(28)
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The vectors X , Y and Z in the above formulae are all tangent to Ur . In what follows,
given a vector V 2 TM we will use the notation �g;V for the dual to V with respect
to g and will drop g from the notation when there is no ambiguity. We utilize the
following formula for the covariant derivative of a vector field X :

(29) 2�g;rX D d�g;X CLX g:

This formula presents the decomposition of �g;rX into a symmetric and an antisym-
metric bilinear form. For a proof see [45, page 26].

Let HDH dt , where H WM !R is smooth. Since gJH
is translation invariant with

respect to s, we restrict attention to submanifolds of R�R=Z�M with fixed values
of s, or, in other words, to R=Z�M with the metric gJH

as computed in Example 5.4.
The function t (which is locally single-valued) is a distance function on R=Z�M with
respect to this metric. To see this, note that by (22) we have dt D gJH

.XH C @=@t ; � /.
That is, rt DXH C @=@t . One verifies that kXH C @tk

2
gJH
D 1.

Theorem 5.17 We have rrt D 1
2
.rgJ XH Cr

gJ X �
H
/ ı � , where the superscript

denotes conjugation with respect to the metric gJ and � W T .R=Z�M /! TM is the
gJH

orthogonal projection.

Proof Write N Drt . By equation (29) we have

2�rN D d�N CLN gJF
:

Since �N D dt , we have d�N D 0. We claim that LN gJF
D ��LXH

gJ . To see this,
denote by  t the time t flow of XH and let

� W .��; �/�M �R=Z�M !R=Z�M

be the map .t;p/ 7! .t;  t .p//. Then

��jT .ft0g�M / D  t0;� and ��@t D @t CXH DN:

In particular, ��gJF
jR=Z�M D �

� �t gJ C dt2. Thus,

(30) ��LN gJF
D L@t

��gJF

D @t .�
� �t gJ C dt2/

D �� �t LXH
gJ

D ����LXH
gJ :
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By (29) we have
LXH

gJ D Œ�rXH ;gJ
�;

where Œ˛. � ; � /� denotes the symmetrization. Thus,

S D 1
2
.rgJ XH Cr

gJ X �H / ı�:

We say that a Hamiltonian H WM ! R is Killing (with respect to some compatible
almost complex structure J ) if the flow of XH preserves gJ .

Corollary 5.18 Suppose H is Killing. Then rrt � 0.

5.5 Injectivity radius

We turn to discussing the control of the radius of injectivity of gJH
. In the following

lemmas fix a point x0 D .s0; t0;p0/ 2R�R=Z�M.

Lemma 5.19 For any r < 1
2

we have

VolgJH
.Br .x0// >

1
9
r2 VolgJ

.Br=3.p0//:

Proof Denote by  t the Hamiltonian flow of H . Since XH C @t is perpendicular,
with respect to gJH

, to hypersurfaces of constant t , we have that Br .x0/ contains the
cylinder

C D
[

t2Œt0�r=3;t0Cr=3�

�
s0�

1
3
r; s0C

1
3
r
�
� ftg � t .Br=3.p0//:

Since  t preserves the gJ –volume we have

VolgJH
.C /D 1

9
r2 VolgJ

.Br=3.p0//:

Lemma 5.20 Let .M;g/ be an n–dimensional Riemannian manifold. Let a> 0 and
let p 2M be such that

Volg
�
B1=a.p/

�
� v0

�
1

a

�n
;

and such that jSecg.x/j � a2 on B1=a.p/. Then there is a constant f D f .v0; n/,
independent of a, such that injg.p/� f .v0; n/.

Proof For aD 1, this is an immediate consequence of [12, Theorem 4.3]. The claim
follows by scaling.
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Lemma 5.21 Suppose .M;g/ satisfies , for some p 2M , that

injg.p/� a and jSecg.x/j � a2

on B1=a.p/. Then there is a constant C D C.n/ > 0 such that

Volg.B1=a.p//� C
�

1

a

�n
:

Proof By scaling, the claim is equivalent to the claim that there is a constant C.n/ > 0

such that a geodesic ball of radius 1 with sectional curvature bounded by 1 has volume
at least C.n/. By the Jacobi equation, sectional curvature controls the derivatives of
the metric in geodesic coordinates [10, Chapter 5]. In particular there is an a priori
estimate from below on the determinant of the metric in these coordinates for a small
enough ball around the origin. The claim follows.

Theorem 5.22 There is a constant i D i.n/ such that if gJ is a–bounded at p0 2M ,
then injgJH

.x/� i.n/=a.

Proof Combining Lemmas 5.19 and 5.21 we have that there is a constant such that

VolgJH
.B1=a.x//�

1

3nC2
C.n/

�
1

a

�nC2
:

The claim follows by Lemma 5.20.

5.6 Some criteria for boundedness

Lemma 5.23 Suppose gJ is a–bounded at p 2 M and H is a time-independent
Hamiltonian such that

(31) maxfkrXH .p/k
2; kr2XH k; krXH

.rXH CrX T
H /kg< a2:

Then for a constant c D c.n/ independent of a, we have that gJH
is ca–bounded at p.

Proof We need to estimate the sectional curvature and radius of injectivity of gJH
.

Up to multiplication by a constant dependent on n, estimating sectional curvature is
the same as estimating the coefficients of the curvature tensor in an orthonormal basis.
Since J is a–bounded, it remains to estimate only coefficients involving the direction
@t CXH at least once. In light of formulae (26)–(28) we need to estimate rS and S2,
where S Drt . Theorem 5.17 provides us with an estimate on S2 and the tangential
restriction of rS in terms of rXH and r2XH . It remains to estimate the right-hand
side of (26). For this it is preferable to use the formula

�RN D LN S �S2:
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See [45]. Each summand vanishes on N . So it remains to estimate LN S applied to a
tangential vector. Let V be a tangential vector field which commutes with N . Then

LXHC@t
.SV /D LXH

.SV /Dr
gJ

XH
.SV /�r

gJ

SV
.XH /

D .r
gJ

XH
S/V CS.r

gJ

V
XH /�r

gJ

SV
.XH /:

This shows that estimate (31) implies SecgJH
.p/� c2a2 for an appropriate c D c.n/.

Theorem 5.22 provides us with the estimate on injgJH
in terms of injgJ

.p/. The claim
follows.

Example 5.24 Let .†; ˛/ be a contact manifold and let

.M DRC �†;! D er .d˛C dr ^˛//

be the convex end of its symplectization. Let R be the Reeb vector field on†. Fix an !–
compatible translation-invariant almost complex structure J satisfying JRD @r . Then

(32) gJ D er .dr2
Cg†/

for some metric g† on †. Since the metric gJ scales up, the radius of injectivity of gJ

is bounded away from 0, and in fact goes to1 with r . Pick local coordinates on † and
use the function r as the coordinate on the RC factor. Then the Christoffel symbols
of the metric (32) are O.1/ in these coordinates. Therefore

hr@i
@j ; @ki � er :

Since k@ik
2 � er , for some constant C we have kr@ik � C . Similarly,

kr
2
ij@kk

2
� er ;

allowing us to deduce that
kr

2@kk � e�r=2:

Suppose H is a function on the symplectization which is given outside of a compact
set by H D h.er /. Then there are some constants ai such that

XH D h0.er /
X

ai@i :

First suppose h0.er / is constant. Then by the reasoning above, we conclude that the
induced metric gJH

is uniformly bounded for Hamiltonians which are linear at infinity
with a bound that is proportional to the slope h0.er /.

Example 5.25 Continuing with the previous example, assume now that h0.er / is at
most linear in the distance from †. Caution: this means it is at most linear in er=2.
Then there is a bound on the geometry of gJH

, which is also linear in the distance.
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To see this note that for a point p which is a distance d from †, the metric gJH
is

uniformly equivalent on a neighborhood of size 1 to the metric associated with the
slope h0.er.p//. It follows by Example 4.3 that the metric associated to H is i–bounded.
Note that while this allows superlinear Hamiltonians, it does not include quadratic
Hamiltonians h0 � er .

Example 5.26 Consider the cotangent bundle T �M of a compact manifold M, let
g be a Riemannian metric on M and let J be the Sasaki almost complex structure on
T �M. It is defined as follows: the Levi-Civita connection on T �M induces a splitting
T T �M D V ˚H into horizontal and vertical vectors. Moreover, we take J W V 'H

to be the natural isomorphism identifying an element of V with an element of T �M,
then via ! with an element of TM and finally with an element of H via horizontal
lifting. Identifying TM DT �M, in standard local Darboux coordinates fqi ;pi D dqig,
where qi are geodesic coordinates centered at a point q, J is given in the fiber over q by

J
@

@pi
D

@

@qi
:

Then it is easy to show that the metric gJ is kpk–bounded at the point .p; q/. In
particular, J is i–bounded (but not bounded). Consider a Hamiltonian of the form
H D

p
ajpj2CV ı� , where � WT �M!M is the standard projection and V WM!R

is smooth. Then JH is i–bounded. Indeed, denoting by M the maximum of
p
jV j

over M , we have in local coordinates as above,

kXH k D aM
1

2kpk

X
i

pi
@

@qi

� aM:

So, the claim follows from Lemma 5.11. Note that mechanical Hamiltonians of the
form jpj2CV ı� are not i–bounded with respect to the Sasaki metric.

6 Loopwise dissipativity

6.1 Diameter control of Floer trajectories

Suppose .H;J / is i–bounded, let u be a Floer trajectory, and let zu be its graph. Suppose
that for some precompact U �R�R=Z, we have control over u.@U /. Theorem 4.11
above then provides control over u.U / in terms of

E.zuIU /DE.uIU /CArea.U /:
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This indicates that the only source of noncompactness in the moduli space of finite-
energy Floer trajectories comes from the potential existence of finite-energy solutions
with one end converging to infinity. This motivates the following definition.

We refer henceforth to a Floer solution on a possibly finite cylinder Œa; b��R=Z as a
partial Floer trajectory. For H WR=Z�M !R proper and an !–compatible almost
complex structure, define a function �H ;J .r1; r2/ as the infimum over all E for which
there is a partial Floer trajectory u of energy E with one end of u� t contained in
H�1.Œ�r1; r1�/ and the other end in H�1.R n .�r2; r2//. Note that �H ;J .r1; r2/ may
take the value of infinity.

Definition 6.1 We say that .H;J / is loopwise dissipative (LD) if for any fixed r1 we
have �H ;J .r1; r/!1 as r !1. If this holds for some function � W RC �RC!

RC[f1g satisfying �H ;J � � , we say that .H;J / is �–LD. We say that .H;J / is
robustly loopwise dissipative (RLD) if there is a function � WR�R!R and an open
neighborhood8 of .H;J / in C 1 �C 0, all elements of which are �–LD.

Definition 6.2 Denote by F .0/
d
.M / the set of i–bounded Floer data .H;J / which are

RLD. Elements of F .0/
d
.M / are referred to as dissipative Floer data.

Our next theorem shows that dissipativity is all we need for diameter control. In
the ensuing sections we show both that on a geometrically bounded manifold there
is always a sufficient supply of dissipative Floer data, and that this property can be
verified directly in various settings.

In the following theorem, recall Definitions 5.9 and 5.10 of an i–bounded Floer datum
and family of Floer data.

Theorem 6.3 Let .S;Fs2S D .Hs;Js// be a uniformly i–bounded family of connected
(broken) Riemann surfaces decorated with Floer data and equipped with a thick–thin
decomposition as in Definition 5.10. Let .Hi ;Ji/ 2 F .0/d

be Floer data such that on the
i th component of ThinS , we have that Fs coincides with .Hi ;Ji/ for all s 2 S. Then
for any compact K �M and any real number E, there is an RDR.E;K/ such that
for any s 2 S, any Fs–Floer solution .†s;u/ with E.u/ � E and intersecting @K is
contained in BR.K/. Moreover , if K is a level set of H with no degenerate periodic
orbits in a neighborhood of @K, we can take R.E;K/! 0 as E! 0.
8Here and hereafter the topology can be taken to be the uniform topology with respect to gJ . However
what is truly necessary is that open sets are sufficiently thick to allow perturbations for achieving regularity.
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Definition 6.4 We refer to families .Fs2S D .Hs;Js// satisfying the hypotheses of
Theorem 6.3 as dissipative families. When S consists of a single element, we refer to
it as a dissipative Floer datum.

Proof of Theorem 6.3 By assumption, we can decompose †s into a thick part
consisting of components Ai with area bounded by a constant CS , independently of
s2S, and a thin part consisting of components Bi on which the Floer data are translation
invariant and given by .Hi ;Ji/. Moreover, there is a number NS which bounds the
number of components independently of s 2S. For each Ai , the graph zuD Id�u WAi!

Ai �M is JF –holomorphic and satisfies E.zu/�ECArea.Ai/. Furthermore we may
assume for some � > 0 that we have JF jB�.Ai /�M 2 Jib.B�.Ai/�M; !H/.

We construct an R0 DR0.E;K/ such that if u.Ai/\K ¤∅ for some component Ai ,
then u.Ai/� BR0

.K/ and moreover for all components Bj which share a boundary
with Ai , we have u.Bj / � BR0

.K/. A similar R0 can be constructed starting with
a component Bi . Since the total number of components is bounded by NS this will
inductively give rise to an R as in the statement of the present theorem.

To construct R0, suppose u.Ai/ intersects some compact set K. Then, since zu extends
to a neighborhood of Ai , by Lemma 5.6 we have that zu.Ai/ is contained in a ball
B zR.K �Ai/ for some zR D zR.K;E C 2CS/ depending additionally on the taming
data associated with Fs and thus on S. From this we deduce the same for u.Ai/,
with perhaps a different radius R. It follows that each of the components Bj whose
closure intersects Ai has a boundary component contained in BR.K/. Let aj be such
that BR.K/�H�1

j .Œ�aj ; aj �/. By loopwise dissipativity there is a bj > aj such that
�Hj ;Jj .aj ; bj / >E. Writing Bj D I �R=Z for some interval I , we have, by definition
of �Hj ;Jj , that u.fsg�R=Z/ intersects H�1.�bj ; bj / for each s 2 I . Restricting u to
.s�1; sC1/�R=Z and invoking Lemma 5.6 again, we obtain an R0 such that for any
s 2 I , we have u..s�1; sC1/�R=Z/�BR0.H

�1.�bj ; bj //. It follows that the same
holds for u.Bj /. Now take R0 such that BR0.H

�1.�bj ; bj //� BR0
.K/ for each j .

For the last statement of the theorem we rely on the following property of Floer
trajectories, which is stated in [52]. There are constants c and „ such thatZ

Br .s;t/

k@suk2 < „ D) k@suk2.s; t/ <
8

�r2

Z
Br .s;t/

k@suk2C cr2:

Once we know that a solution is contained in an a priori compact set, we can take all
the constants to be fixed by that compact set. By taking r DE.u/1=4 we deduce that
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for an appropriate constant,

k@tu�XH k
2
D k@suk2 < CE.u/1=2

once E.u/ is small enough. It follows that making E.u/ arbitrarily small, u will be
contained in an arbitrarily small neighborhood of some periodic orbit.

We conclude this subsection with a counterexample showing that geometric bounded-
ness alone does not guarantee loopwise dissipativity.

Example 6.5 Consider .M; !/D .R�R=Z; ds ^ dt/. Let H be a smoothing of the
function

.s; t/ 7! s� ln.jsjC 1/;

and let J be multiplication by i . Then kXH k is bounded, so .H;J / is i–bounded
by Lemma 5.11. But it is not LD. Indeed, the map u W RC �R=Z!M defined by
u.s; t/D .ln.sC1/; t/ is an .H;J /–partial Floer trajectory of finite energy and infinite
diameter.

6.2 Hamiltonians with small Lipschitz constant

Theorem 6.6 Let J be a geometrically bounded almost complex structure compatible
with !. There is an � > 0 such that for any Hamiltonian H W M ! R which is
proper and satisfies , with respect to gJ , that kXH k< � outside of some compact set ,
the datum .H;J / is dissipative. The claim remains true when H is C 0–close to a
time-independent Hamiltonian.

The proof of Theorem 6.6 is carried out at the end of this section.

Lemma 6.7 Let u W Œa; b��R=Z!M be a differentiable map. Then we have

.b� a/�

Z
t2R=Z

d2.u.a; t/;u.b; t//Z
Œa;b��R=Z

k@suk2
:

Proof By the Cauchy–Schwarz inequality we have

.b� a/

Z
Œa;b��R=Z

k@suk2 �

Z
t2R=Z

`2.u.t � Œa; b�// dt

�

Z
t2R=Z

d2.u.a; t/;u.b; t//:
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Lemma 6.8 Let H W R=Z �M ! R be a proper smooth function. Suppose J is
a compatible almost complex structure. Suppose H factors as H D f ı k, where
k WR=Z�M !R is proper and has uniformly bounded gradient with respect to gJ ,
and f WR!R is monotone. Then .H;J / is LD if and only if there exists a sequence
hi!1 and a constant ı > 0 such that

(33) �H ;J .h2i ; h2iC1/ > ı:

If hi and ı can be fixed for an open neighborhood of .H;J /, it is RLD.

Proof The forward implication is obvious from the definition. For the other direction
we use the following characterization of loopwise dissipativity:

Let Ki WDH�1Œ�h2i ; h2i ��R=Z�M. For any E � 0 and for any natural i there is
an i 0.i;E/ such that if u is a partial solution with one end of t �u contained in Ki and
satisfying E.u/ <E, then the other end intersects KiCi0 .

For ease of exposition we assume for the rest of the proof that H is time-independent,
the general case being similar. We prove loopwise dissipativity by induction on the
smallest integer n bounding E.u/=ı.

When nD 1, this is just reformulating the assumption. Suppose we have proven the
statement for all solutions u satisfying E.u/ � nı. Let u be a solution with one end
in Ki and E.u/� .nC 1/ı. Without loss of generality we assume ua �Ki . Here and
henceforth ua WD u.a; � /. Let

s1 D inffs 2 Œa; b� W us �M nKiC1g:

If this set is empty there is nothing to prove. Otherwise, let

s2 D inf .fs 2 Œs1; b� W k@suk< 1g[ fbg/ :

Finally, take
s0 D sup .fs 2 Œa; s1� W k@suk< 1g[ fag/ :

We have
E.u/�

Z s2

s0

k@suk2 ds >

Z s2

s0

ds D s2� s0:

So, by Lemma 6.7, there is a t 2R=Z such that

(34) d.us0
.t/;us2

.t// <E:

We find an i0.i/ such that us0
� Ki0

. Indeed, if a D s0 there is nothing to prove.
Otherwise, we have krAH .us0

/k� 1. Since s0< s1, we have that us0
intersects KiC1.
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Factor H as H D f ı k, as in the formulation of the present lemma. Since f is
monotone,

(35) min
t

kt .us0
.t// < f �1.h2.iC1// and max

t
kt .us0

.t// > f �1.�h2.iC1//:

From Lemma 5.13 we get an a priori estimate c on the oscillation of k on us0
for

the time-independent case. Here c depends only on the bound on jrkj. In the time-
dependent case we appeal to (25) for this a priori estimate. Let i0 satisfy

hi0
�
˙

maxff .f �1.h2.iC1//C c/;�f .f �1.�h2.iC1//� c/g
�
:

Combined with (35), this gives the a priori estimate

us0
�Ki0

:

By (34) we get from this an i1 D i1.i;E/ such that us2
meets Ki1

. If s2 D b,
this concludes the proof. Otherwise, as for s1, we find an i2 such that us2

� Ki2
.

We have E.ujŒs2;b��R=Z/ � nı since s2 > s1 and by the hypothesis of the lemma
E.ujŒa;s1�R=Z�/ > ı. So, by the inductive hypothesis, there is an i3 depending on i

and n such that ub meets Ki3
. The first part of the claim now follows. The second part

is clear since i 0.i;E/ is constructed using only the data of fKig and ı.

Lemma 6.9 Let J be a geometrically bounded almost complex structure compatible
with !. There are constants R, � and ı, depending on the bounds on the geometry
of gJ , such that the following holds. Let H W M ! R be a proper Hamiltonian
satisfying , for some h 2R,

(36) kXH k< � for all x 2H�1.Œh; hCR�/:

Then �H ;J .h; hCR/ > ı. This remains true if H is merely assumed to be C 0–close to
a time-independent Hamiltonian. Moreover , the estimate is unaffected if H is arbitrarily
time-dependent away from H�1.Œh; hCR�/.

Proof We first prove the claim when the left-hand side of (36) is taken to hold for
all x 2M. We consider the strictly time-independent case, leaving adjustments for
the slightly more general case to the reader. For some R> 0 let u W Œa; b��R=Z!M

be a solution to Floer’s equation with one end in H�1.�h; h/ and the other end in
H�1.R n Œ�h�R; hCR�/. Write AD Œa; b��R=Z. Then by positivity of energy,

(37) E.uIA/D

Z
A

u�!C

Z
@A

u�H dt �

ˇ̌̌̌
ˇ
ˇ̌̌̌Z

A

u�!

ˇ̌̌̌
�

ˇ̌̌̌Z
@A

u�H dt

ˇ̌̌̌ˇ̌̌̌
ˇ:
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We will show that if we take � small enough, there are constants ı1 and ı2 such that

(38) E.uIA/ < ı1 D)

ˇ̌̌̌Z
u�!

ˇ̌̌̌
< ı2:

Since ˇ̌̌̌Z
@A

u�H dt

ˇ̌̌̌
�R;

it will then follow from (37) that if R > 2ı2, then E.uIA/ > minfı1; ı2g. This will
prove the claim.

Let ı > 0 be so small that any loop of length 2ı has diameter less than a tenth of
the radius of injectivity of M with respect to gJ . The isoperimetric inequality of
Lemma 4.10 guarantees that any loop of length < 2ı is fillable by a disk v WD!M

such that
Area.v/ < 2ı2:

We take � D ı. Given u as above, and denoting by `.u.s; � // the length of the loop
t 7! u.s; t/, let

I D fs 2 Œa; b� j `.u.s; � // > 2ıg:

For any interval .c; d/� I we have the estimate

(39)
ˇ̌̌̌Z
.c;d/�R=Z

u�!

ˇ̌̌̌
� Area.uj.c;d/�R=Z/� 3E.uI .c; d/�R=Z/:

The first of these is Wirtinger’s inequality, which says that for a compatible metric the
symplectic area is dominated by the Riemannian area. Note that the Riemannian area
is not sensitive to orientation, while the symplectic area is. For the second, note that

Area.u/�
Z
.c;d/�R=Z

k@sukk@tuk �
1

2

Z
.c;d/�R=Z

.k@suk2Ck@tuk
2/:

But

(40) 4ı2
�

Z
R=Z
k@tuk

2
�

Z
R=Z
k@tu�XH k

2
C

Z
R=Z
kXH k

2

�

Z
R=Z
k@suk2C �2

D

Z
R=Z
k@suk2C ı2

�

Z
R=Z
k@suk2C

1

4

Z
R=Z
k@tuk

2;

so Z
R=Z
k@tuk

2
� 2

Z
R=Z
k@suk2;

which implies the desired inequality.
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Suppose now that ˇ̌̌̌Z
.a;b/�R=Z

u�!

ˇ̌̌̌
> 20E.uI .a; b/�R=Z/;

and that for some constant c2 to be determined shortly, E.u/ < c2�
2. Denote by � the

Lebesgue measure on R. Then by these hypotheses and by equations (39) and (40) we
have �.I/ <min

˚
1
4
.a� b/; c2

	
. Let

a0 D inf Œa; b� n I and b0 D sup Œa; b� n I:

We will show that if c2 is assumed small enough, then

(41)
ˇ̌̌̌Z
.a0;b0/�R=Z

u�!

ˇ̌̌̌
< 4ı2:

We then haveˇ̌̌̌Z
.a;b/�R=Z

u�!

ˇ̌̌̌
< 4ı2

C

ˇ̌̌̌Z
I

u�!

ˇ̌̌̌
< 4ı2

C
1
3
E.u/

< 4ı2
C

1

60

ˇ̌̌̌Z
.a;b/�R=Z

u�!

ˇ̌̌̌
:

By picking ı1 D c2�
2 and ı2 D minf5ı2; 20ı1g, we get that with these values (38)

holds in any case.

It remains to prove (41). Let Œs0; s1� � Œa; b� be any interval such that s0; s1 62 fa; bg

and s1�s0� 2�.I/. Call such an interval admissible. Denote by uŒs0;s1� the restriction
ujŒs0;s1��R=Z. Each component of the boundary of uŒs0;s1� is contained in a geodesic
ball Bı.xi/�M. We claim that if c2 is taken small enough, then

(42) uŒs0;s1� � B2ı.x0/[B2ı.x1/:

Indeed, otherwise there is a point .s; t/ 2 Œs0; s1��R=Z such that writing x2 D u.s; t/

we have d.x2; fx0;x1g/ > 2ı, that is, the ball Bı.x2/�M does not meet the boundary
of uŒs0;s1�. As in Lemma 5.11, the metric gJH

is quasi-isometric to the product metric
of gJ on M with the flat metric on the cylinder, where we can take the quasi-isometry
constant to equal 2 if � < 2. Thus we can apply the monotonicity inequality of
Theorem 4.9 to obtain, for an appropriate constant c0 which is independent of �,

E.zuI Œs0; s1��R=Z/D s1� s0CE.uI Œs0; s1��R=Z/� c0ı2;

where zu is the graph of u. This implies

E.u/� c0ı2� c2:

Thus, if we take c2 �
1
4
c0ı2, equation (42) follows.
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Denote by u� a filling of uŒs0;s1� by discs contained in Bı.xi/. Then u� � B5ı.x0/

and so is contractible. In particular, the integral of ! over uŒs0;s1� can be replaced
by the integral of ! over these filling discs. Since Œa0; b0� can be subdivided into
admissible intervals, and the integrals over the filling discs cancel in pairs for all but
two, (41) follows.

This proves the theorem for the case when the left-hand side of (36) is taken to hold
for all x 2M.

For the more general case we argue as follows. Write Kx WDH�1.Œ�x;x�/. For some
R> 0 let u W Œa; b��R=Z!M be a solution to Floer’s equation with one end in Kh and
the other in M nKhCR . Let Œa0; b0�� Œa; b� be such that u.Œa0; b0��R=Z/ has one end
in KhCR=4 and the other in M nKhC3R=4. In each case assume the relevant boundary
of u.Œa0; b0��R=Z/ meets the boundary of the region Kx . We separate into two cases.
If u.Œa0; b0��R=Z/�KR, we have the estimate kXH k< � for ujŒa0;b0��R=Z, and the
entire argument goes through with no change. By taking R big enough, the claim
follows since �.h; hCR/� �.hCR=4; hC 3R=4/. Otherwise, for some c 2 fa0; b0g

we have that the oscillation of H along uc is at least R=4. Moreover, by the bound
on rH inside KR, a similar estimate applies to the diameter of uc with respect to
the metric gJH

. By the argument of Theorem 4.11 this implies a lower bound on the
energy E.uI Œa; b��R=Z/. We spell out the details, since the present case doesn’t fit
precisely into the stipulations of Theorem 4.11.

As above, denote by

zu W Œa; b��R=Z!R�R=Z�M

the graph of u. Since H has Lipschitz constant � on K, Lemma 5.16 implies the
metric gJH

is equivalent on K to the product metric with quasi-isometry constant
depending only on �. Thus, by Theorem 4.9 there are constants ı0 and r0, depending
only on J and �, such that for any point x in the domain of u for which

(�) Ax WD zu
�1.Br0

.x;u.x//� .a; b/�R=Z;

we have

E.uIAx/CArea.Ax/� ı0:

Here we consider the ball Br0
.x;u.x/ � zM with respect to the metric gJH

. Call a
point for which the hypothesis (�) holds a good point. Since the ends of the u map
entirely outside of KhCR it follows that for any x for which u.x/ 2KhCR�.1C�/r0

,
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we have that Ax is a good point and moreover, Ax � Br0
.x/. Indeed, for any x;x0 in

the domain we have

dgJH

�
.x;u.x//; .x0;u.x0//

�
� .1� �/dgJ

.u.x/;u.x0//:

For any N , by assuming R is large enough, we can find N good points xi 2 fcg�R=Z

such that dgH
.zu.xi/; zu.xj / > 2r0; that is, Axi

\Axj D∅ whenever i ¤ j . We then
have

E.u/C 2r0 �E.uI [Axi
/CArea.[Axi

/�N ı0:

By taking N large enough so that N ı0 � 2r0 > ı for some chosen ı > 0, the claim
follows.

Proof of Theorem 6.6 Lemmas 6.9 and 6.8 imply that .H;J / is RLD if kXH k<� for
� small enough. To establish dissipativity, we need to prove, in addition, i–boundedness.
This follows immediately from Lemma 5.11.

6.3 Bidirectedness

Theorem 6.10 For any smooth exhaustion function H WM � =R=Z! R and any
geometrically bounded !–compatible almost complex structure J , there are exhaustion
functions HC;H� such that .H˙;J / are dissipative Floer data and H� � H � HC

pointwise. In other words , the set of Hamiltonians which taken together with J are
dissipative Floer data is both final and cofinal in the set of all exhaustion functions.

Proof According to [27] there exists an exhaustion function f WM ! R such that
krf kDkXf k<�0 with respect to the metric gJ . Moreover, we may find a constant R0

such that d.f �1.x/; f �1.xCR0// is bounded away from 0 for x 2R. Indeed, f can
be taken to be C 0–close to a multiple of the distance function to some point. So,
.f;J / is dissipative by Theorem 6.6. Let h WR!R be any monotone function such
that h0.x/ D 1 on any of the intervals Œ2nR; .2nC 1/R/ and is arbitrary otherwise.
Here R is a constant as in Lemma 6.9, and without loss of generality R>R0. Then
the set of functions of the form h ıf is cofinal in the set of all exhaustion functions.
On the other hand, .h ı f;J / is dissipative. Indeed, h ı f is clearly J–proper, since
f is. The metric gXhıf

is uniformly bounded on each of the regions f �1.h; hCR/

by Lemma 5.11. So this metric is i–bounded. Lemmas 6.9 and 6.8 imply that h ı f

is RLD. This completes the proof of cofinality.
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By Theorem 6.6, to prove finality it suffices to exhibit an exhaustion function H� �H

which has sufficiently small gradient. Fix a point p 2M and let Ri be a monotone
increasing sequence such that BRi

contains H�1..�1; i �/. Denote by h WM !R the
distance function h.x/D d.x;p/. Define ai inductively by a0 D 0 and

ai Dminfi � 1; ai�1CRi �Ri�1g for i � 1:

Let f WRC!R be the piecewise linear function which is smooth at noninteger points
and satisfies fi D ai for i � 1. Note that f is monotone increasing, proper and has
slope at most 1 wherever the slope is defined. So the function g D f ıh is Lipschitz
with Lipschitz constant 1. Moreover, g � H everywhere. The function g can be
C 0–approximated by a smooth function k with krkk � 2; see [27]. Then k is an
exhaustion function, so taking H� WD k=C for C sufficiently large gives a function as
required.

6.4 Dissipativity on exact symplectic manifolds

Let .M; ! D d˛/ be an exact symplectic manifold. In this subsection we prove
Theorem 6.12, which is variant of Theorem 6.3 that works on exact symplectic manifolds
under slightly weaker hypotheses. Fix an !–compatible almost complex structure and
let H WR=Z�M !R. The pair .H;J / is said to be Palais–Smale if any sequence of
loops n with AH .n/< c<1 and krAH .n/kL2! 0 has a subsequence converging
to a periodic orbit of H . If J0;J1 are almost complex structures which are quasi-
isometric, and H0;H1 are Hamiltonians such that kr.H0�H1/k converges to 0 with
respect to either, then .H0;J0/ is Palais–Smale if and only if .H1;J1/ is.

Lemma 6.11 Suppose .H;J / is i–bounded and Palais–Smale. Then for any c and d

there is a real number ` and a compact set K with the following significance. For
any segment Œa; b� of length at least `, and any solution u W Œa� 1; bC 1��R=Z!M

to Floer’s equation such that AH .u.s; � // 2 Œc; d � for s 2 Œa � 1; b C 1�, we have
u.Œa; b��R=Z/�K.

Proof First, by the Palais–Smale condition, there are an � > 0 and a compact K0 �M

such that any loop ˛ with krAH .˛/kL2 < � and AH .˛/ < d is contained in K0.
Indeed the negation of this statement would allow us to produce a sequence of loops n

satisfying the hypotheses of the Palais–Smale condition which nevertheless has no
convergent subsequence. Suppose b�a> .d�c/=�. Then for all but a subset I � Œa; b�
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of total measure .d � c/=� we have that u.s; � / is contained in K0. This follows by the
energy estimate

d � c �AH .u.bC 1//�AH .u.a� 1//D

Z bC1

a�1

krAH .˛/kL2 :

Indeed, taking I to be the set of s for which u.s; � / is not contained in K0, the right-hand
side of the last equation dominates:Z

I

krAH .˛/kL2 � �

Z
I

dt:

It remains to control u.s; � / for s 2 I . Each connected component I 0 of I has at least
one boundary point s for which u.s; � /�K. Moreover, I 0 � I has a priori bounded
measure. Thus applying part (b) of Theorem 4.11 to the graph zujI 0�R=Z, we deduce
the image of I 0\ Œa; b��R=Z is contained in some larger compact set K depending
only on K0 and d � c.

Note that the Palais–Smale condition produces, by Lemma 6.11, an estimate which
is slightly weaker than loopwise dissipativity because it depends not only on energy
but also on action. Nevertheless, this is sufficient for proving the following variant of
Theorem 6.3.

Theorem 6.12 Suppose that .M; ! D d˛/ is an exact symplectic manifold and that
.S;Fs2S D .Hs;Js// is a uniformly i–bounded family of connected (broken) Riemann
surfaces with a thick–thin decomposition as in Definition 5.10. Let .Hi ;Ji/ be Palais–
Smale Floer data such that on the i th component of ThinS , we have that Fs coincides
with .Hi ;Ji/ for all s 2 S. Then for any interval Œc; d �, there is a compact set K �M

such that for any s 2 S and any solution .†;u/ associated with Fs for which the actions
of the periodic orbits on the ends all occur in the interval Œc; d �, the image of u is
contained in K.

Proof First observe that without loss of generality we may assume the all the compo-
nents of ThinS are of the form I �R=Z for I an interval of length at least `, where
` is as in Lemma 6.11. Namely, with this assumption, the areas of the elements of
ThickS are bounded a priori in terms of c and d . Under such identification it is a
consequence of Lemma 5.3 that for any s 2 I we have AHi

.us/ 2 Œc; d �. It thus follows
from Lemma 6.11 that there is a compact set K, depending only on c and d , such that
the images of the components of ThinS are all contained in K. As a consequence, the
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image of each component A of ThickS meets K. Since the energy of A is at most
d � c, we can as in the proof of Theorem 6.3 apply Theorem 4.11(b) to the graph of
ujA to obtain an RDR.d � c/ such that u.A/� BR.K/.

Example 6.13 Let ˛ be a primitive of ! and let Z be the !–dual of ˛. For any
time-independent Hamiltonian H , define the function f WM !R by

(43) f .x/D !.Z.x/;XH .x//�H.x/:

Suppose f is proper and bounded below and J is such that for some constant C ,

kZ.x/k2 < Cf .x/

outside a compact set. Then H is Palais–Smale.

Proof We have

(44) AH . /D

Z
R=Z

f . .t// dt C

Z
R=Z

!
�
Z. .t//;  0.t/�XH .t/

�
dt

�

Z
R=Z

f . .t// dt �krAH . /k

s
C

Z
R=Z

f . .t// dt :

Suppose AH . / � c and krAH . /k � 1. Since f is proper, estimate (44) implies
that there is a compact set K depending only on c such that  intersects K. Given a
sequence n of loops intersecting K such that

krAH . /kL2 �

Z
R=Z
kXH .t/� 

0
n.t/k! 0;

it is a standard fact that the sequence converges to an integral loop of XH .

In particular, consider the convex end of a symplectization RC�† as in Example 5.24.
Denote by r the coordinate on RC and by � the coordinate on †. If H satisfies

lim
r!1

er .@r H /.er ; �/�H.er ; �/!1;

and J is any almost complex structure satisfying

er˛.J@r/� C.er@r H.er ; �/�H.er ; �//

for some C , then H is Palais–Smale. This holds in particular for contact-type J ,
ie satisfying J@r D R, where R is the Reeb flow of ˛ on †. After a C 2–small
perturbation, .H;J / will satisfy the same estimates, so it will remain Palais–Smale. In
addition, it will be nondegenerate.
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Example 6.14 Continuing with the convex end of a symplectization, any function
which is of the form h.er / such that er h0.er /� h.er / � Cer for some constant C

is Palais–Smale. This holds, for instance, for h.x/ D x˛ with ˛ > 1. If we have
h0.er /� er=2 then by Example 5.25 H is dissipative. The cutoff appears to be ˛ D 3

2
,

which unfortunately excludes quadratic Hamiltonians, which are central in classical
mechanics. See also the discussion in Example 5.26. Nevertheless, as we shall see below,
Floer cohomology can be defined by approximation by slow Hamiltonians. Moreover,
similarly to the proof of Remark 10.3, it can be shown that for an arbitrary convex
Hamiltonian the resulting Floer cohomology coincides with the Floer cohomology
defined using contact-type J and relying on maximum principles.

When er h0.er /�h.er /! c <1 for some c which is not in the period spectrum, H is
still Palais–Smale even though this is not covered by the previous example, and in
particular, it is dissipative. A proof of this fact is given below in Example 6.20.

6.5 Some not necessarily exact examples

Let .M;g/ be a Riemannian manifold and V a time-dependent vector field on M. For
p in M define

f .p;V;g/ WD inf
f W Œ0;1�!M j.0/D.1/Dpg

�Z 1

0

k 0.t/�Vt ı  .t/k
2 dt

�
:

Clearly, f is continuous with respect to all variables in the C 0 norm. We drop g from
the notation when there is no ambiguity.

Lemma 6.15 Let .H;J / be such that gJH
has uniformly bounded geometry. Suppose

that there is a compact K � M and a ı > 0 such that for all p 2 M nK we have
f .p;XH ;gJ /� ı. Then .H;J / is RLD.

Proof Let u W Œa; b��R=Z be a partial solution with one boundary in a compact set
K0 �K and with energy E.u/�E for some E. Without loss of generality ua �K0.
Suppose ub �M nBR0

.K0/ for some R0. Then considering the graph of u as a JH –
holomorphic map, it has energy EC .b� a/. Theorem 4.11(a) applied to the compact
set @.BR0

.K0/ nK0/ then implies that for some constant C depending on the bound
on the geometry, we have R0 � C.EC .b � a//. The assumption on f .p;XH ;gJ /

implies b� a�E=ı. Taken together we obtain the estimate R0 � CE.1C 1=ı/.
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The quantity f .p;V;g/ can sometimes be estimated from below by the following
procedure. We say that the pair .V;g/ is of Lyapunov type if there exists a constant
�� 0 such that for any x;y 2M and any t � 0 we have

(45) dg.�t .x/; �t .y//� e�tdg.x;y/;

where �t denotes the time t flow of V . We refer to � as a Lyapunov constant for V .

Lemma 6.16 If V is time-independent and krV k � �, then � is a Lyapunov constant
for V .

Proof For x ¤ y close enough and for sufficiently short times, the function h.t/D

d.�t .x/; �t .y// is differentiable. Moreover, for each t there is a unique geodesic
s 7! ˛t .s/ realizing the distance between d.�t .x/; �t .y//. Denote by V �t .x/ the
parallel transport of V�t .x/ along ˛t . Considering that the gradient of the distance
function d.x;y/ for, say, x fixed is the tangent vector to the unit-speed geodesic from
x to y, it follows that

(46)
dh

dt
D h˛0t .1/;V�t .y/i � h˛

0
t .0/;V�t .x/i:

From this we obtain the differential inequality

(47)
dh

dt
� jV�t .y/�V �t .x/j � �h:

The claim for x;y sufficiently close and for sufficiently short times now follows by
Grönwall’s inequality. The claim for arbitrary x;y and sufficiently short times follows
by the triangle inequality. The claim for arbitrary long time follows since the flow �t

is autonomous.

Lemma 6.17 Suppose that V is a time-independent vector field of Lyapunov type with
Lyapunov constant �� 0. Then9

(48) dg.p; �1.p//
2
�

e2�� 1

2�
f .p;V;g/:

Remark 6.18 For V D XH with H time-independent and uniformly Lipschitz we
can replace the global requirement that (45) hold everywhere with the requirement that
it hold for points x;y 2U WDH�1.ŒH.p/��;H.p/C�� for some � > 0. We then get
an estimate from below on f .p;V;g/ by combining the present lemma, to estimate

9When �D 0 the coefficient on the right-hand side tends to 1.
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the energy of loops which map into U, with Lemma 5.13, to estimate the energy of
the loops at p which do not remain within U. Moreover, this estimate depends only
on the Lipschitz constant of the restriction H jU and remains valid if H is arbitrarily
time-dependent outside of U.

Proof of Lemma 6.17 Fix some � > 0, which will be later taken to be arbitrarily small.
Let  W Œ0; 1�!M be a loop based at p. Let r 2R be small enough so that for each point
q 2  .Œ0; 1�/ there is a chart .Uq �M;  q W B2r .0/! Uq/ with coordinate map  q

which is bi-Lipschitz with Lipschitz constant 1C �. By compactness of  .Œ0; 1�/, there
is a constant K such that for any q the vector field d �1

q V , considered as a map
B2r .0/!R2n, is Lipschitz with constant K.

Write
g.t/ WD k 0.t/�V.t/k and f .t/D

Z t

0

g.s/ ds:

Let
�t � r min

�
1

K
;

1

sup k .t/k
;

1

sup kV.t/k
;

1

max g.t/

�
:

Without loss of generality suppose N WD 1=�t is an integer. Suppose �t is made
smaller still so that f .t/ has an approximation by a piecewise linear function h.t/ such
that

(49) .1� �/h0.t/ < g.t/� h0.t/

and such that h is linear of slope �i on the intervals Œi=N; .iC1/=N �. Let ti D i=N . Let
i.t/ WD �t�ti

. .ti// and let xi D i.1/. Writing �xi WD d.xi ;xi�1/ for i D 1; : : :N

we have, by the Lyapunov condition,

�xi � e�.1�ti /dg.i.ti/; i�1.ti//:

On the other hand we have an estimate

(50) dg.i.ti/; i�1.ti//� .1C �/
�i

K
.eK�t

� 1/:

To see this note that both the path  and the path i�1 map the interval Œti�1; ti � into
the coordinate chart U.ti�1/. Let

(51) k.t/D d0. .t/; i�1.t//; t 2 Œti�1; ti �;

be the Euclidean distance. Then k.t/ satisfies the differential inequality

dk

dt
� j 0.t/�V.t/jC jV.t/�Vi�1.t/j � g.t/CKk.t/;
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with initial condition k.ti�1/D 0. By Grönwall’s inequality we get, for t 2 Œti�1; ti �,

dg. .t/; i�1.t//� .1C �/k.t/� .1C �/e
K.t�ti�1/

Z t

ti�1

e�Ksg.s/ ds

� .1C �/
�i

K
.eK.t�ti�1/� 1/;

implying (50). The right-hand side of (50) is � .1C �/2�i�t since �t � 1=K.

We have �1. .0//D x0 and  .1/D  .0/D xN . Thus,

d.x0;xN /�
X

�xi �

NX
iD1

.1C �/2�ie
�.1�ti /�t:

The last expression approximates the integral

.1C �/2
Z 1

0

h0.t/e�.1�t/ dt �

sZ 1

0

.h0.t//2 dt

s
e2�� 1

2�
:

Combining the last two inequalities gives the estimate

dg.p; �1.p//
2
D dg.x0;xN /

2
�
.1C �/2

.1� �/2
e2�� 1

2�
k 0�Vk

2
L2 :

Since � is arbitrary this proves the claim.

We say that a Floer datum .H;J / is of Lyapunov type if .XH ;gJ / is of Lyapunov
type.

Corollary 6.19 Suppose J is geometrically bounded , .H;J / is of Lyapunov type ,
and that outside of a compact set the quantity d.p;  1.p// is bounded away from 0.
Then .H;J / is RLD.

Proof This is an immediate consequence of Lemmas 6.17 and 6.15.

Example 6.20 Using the notation of Example 5.24, let M have an end modeled on
†�RC and let H0 be a function which is linear at infinity, with slope a not in the
period spectrum. Then H is of Lyapunov type. Indeed the flow on any level set of H

is of Lyapunov type by Lemma 6.16 and compactness. Since the flows on different
level sets are conjugate, the existence of a Lyapunov estimate follows also for x and y

not on the same level set. Let X DXH0
j†�f1g. Let J be a translation-invariant almost
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complex structure. Then from (48) it follows that f .p;XH0
/ is bounded away from 0,

and so H0 is LD.

Let ı be the distance of c to the period spectrum of †˛ and let H1 be any Hamiltonian
such that

kXH1
�XH0

k

kXH0
k

�
1
2
ı:

For example, this inequality will hold for our choice of J whenever kXH1�H0
k is

bounded. Then f .p;XH1
/ is bounded away from 0 at infinity. So, H1 is also LD.

Example 6.21 Let M1 be as in the previous example and let M2 be a compact
symplectic manifold. Let a be a real number not in the period spectrum of M1 and
let f WR=Z�M1 �M2 be any function which tends to 1 at infinity with derivatives
dominated by o.e�r=2/. Then, reasoning as in the previous example, the function
H WD afer is LD.

Lemma 6.22 Let the end of M be diffeomorphic to † � RC, with † a compact
hypersurface. Suppose the projection � W†�RC!† satisfies k��vk � kvk for any
tangent vector v 2 T .†�RC/. Let X be vector field on † with no 1–periodic orbits
and let H be such that ��XH converges uniformly to X. Then for some ı > 0 we have
f .p;XH / > ı > 0 and , in particular , XH is LD.

Proof Let � be such that f .p;X />�. For r large enough, the convergence assumption
implies

f .p; ��XH / >
1
2
�:

The nonincreasing assumption implies f .p;XH / > f .p; ��XH /.

Example 6.23 Let M , †, ˛, H0 and H1 be as in Example 6.20. Let � be a closed
two-form on †. Suppose � extends to a closed form on M which is invariant under
the Liouville flow near †. Then � can be extended in a translation-invariant way to
a closed two-form on the completion of M, still denoted by � . For t small enough,
the form !t� D �d˛C t� defines a symplectic form on the completion of M. By
rescaling � , assume this holds for t D 1. Then H0 and H1 are LD for the symplectic
form !� . Indeed, write X 0

H0
for the Hamiltonian vector field with respect to !� . Let X

be as in Example 6.20. Then all the requirements of Lemma 6.22 are satisfied for the
pair X 0

H0
;X . The claim for H1 now follows by comparison to H0.
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Example 6.24 In Example 6.20 assume the pair †; ˛ is not necessarily contact, but
stable Hamiltonian for the restriction !1 WD!j†�1, with stabilizing form ˛. Namely, ˛
satisfies ker! � ker d˛ and ˛^!n�1 > 0. Assume ! is of the form !˛ WD!Cd.er˛/

on † � R�0 and is symplectic for all r � 1. Assume further that there exists a
translation-invariant !˛–compatible almost complex structure J on †�R�0. Then the
forms !. � ;J / and d˛. � ;J / are separately nonnegative. So the projection �� is norm
nonincreasing. So if H0 is linear at infinity with slope not in the period spectrum, then
f .p;XH0

/ is bounded away from 0 and H0 is dissipative. The same will hold under a
sufficiently small deformation of ! or a sufficiently small Hamiltonian perturbation
of XH0

.

In all the examples of this section we have considered Hamiltonians which are roughly
linear at infinity. It is easy to use these examples to construct superlinear Hamiltonians
which are LD. It is an interesting question as to what Hamiltonians can be perturbed
to become LD. The property of being LD is clearly related to the behavior of the
function f .p;XH ;gJ /. Namely, if one can find an exhaustion for which this function
is appropriately bounded away from 0 near the boundaries, the Floer datum will be LD.

7 Proof of Theorem 1.1

7.1 Floer systems

For a symplectic manifold .M; !/, denote by J .M; !/ the set of !–compatible almost
complex structures on M. Let

F � C1.R=Z�M /�C1.R=Z;J .M; !//

denote the set of Floer data .H;J / such that H is proper and bounded from below,
the Hamiltonian flow of H is defined for all time, and the metric gJt

WD !. � ;Jt � / is
complete for any t 2R=Z. Denoting by �i the standard simplex, let

F i
� C1.�i ;F/

be the subset consisting of elements which are constant in a neighborhood of the
vertices. Furthermore, we require that for any F 2 F .1/, @sF � 0. Denote by �i;ı the
interior of the simplex. Fix once and for all diffeomorphisms

� WR!�1;ı;  WR� .0; 1/!�2;ı;
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t D const

s� �.t/D const

sC �.t/D const

Figure 3: The source and target of the map  .

and an increasing diffeomorphism

� W .0; 1/! .0;1/

for which
lim
t!1

 .sC �.t/; t/D f 0
ı �.s/;

lim
t!1

 .s� �.t/; t/D f 2
ı �.s/;

lim
t!0

 .s˙ �.t/; t/D f 1
ı �.s/;

uniformly on compact subsets of R. Here f i W�1! @�2 is the standard embedding
of the face missing the i th vertex. We extend the maps  ˙ WD  . � ˙ �. � /; � / to the
closure R� Œ�1; 1� in the obvious way. See Figure 3.

Definition 7.1 A Floer datum .H;J / 2 F .0/ is called well-behaved if for any E > 0

and any compact K �M there is an RD R.E;K/ > 0 such that any solution u to
Floer’s equation

@suCJ.@tu�XH /D 0

satisfying
E.u/ WD

1

2

Z
k@suk2 �E; u.R�S1/\K ¤∅

is contained in the ball BR.K/.

A homotopy F D .Hs;Js/2F .1/ is called well-behaved if the corresponding condition
holds for the solutions to

@suCJ�.s/.t/
�
@tu�XH�.s/

.t;u.s; t//
�
D 0:
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Finally, an element fFpgp2�2 2 F .2/ is called well-behaved if the corresponding
condition holds for the set of solutions to

@suCJ ˙.s;�/.t/
�
@tu�XH ˙.s;�/

.t;u.s; t//
�
D 0; � 2 Œ0; 1�;

with R.E;K/ independent of � . Denote by F .i/wb � F the subset consisting of well-
behaved elements.

Definition 7.2 A Floer system D on M consists of the data of subsets D.i/ � F .i/wb for
i D 0; 1; 2 such that the following hold:

(a) For any element F 2 D.i/ there is an open neighborhood F 2 V � C 1 �C 0

such that V � D.i/.
(b) A face of an element of D.i/ is an element of D.i�1/.

(c) For any pair Fi D .Hi ;Ji/ 2 D.0/, i D 0; 1, such that H1 � H0, there is a
homotopy fFsgs2Œ0;1� 2 D.1/ with endpoints F0 and F1.

(d) Given a pair F 0;F 00 2 D.1/ such that F 0
1
D F 00

0
, there is a G 2 D.2/ whose

restriction to the f0; 1g and f1; 2g faces coincides with F 0 and F 00, respectively.

(e) Given homotopies F01;F12;F02 2 D.1/ such that the endpoints of Fij are Fi

and Fj , there is a G 2 D2 whose face ij coincides with Fij .

A Floer system D is said to be invariant if it is invariant under the action of the
symplectomorphism group given by

� � .H;J /D .H ı�; ��J /:

Elements of D0 will be referred to as D–admissible. A function H 2 C1.M / is said
to be D–admissible if there is an almost complex structure J such that .H;J / 2 D.
A bi-directed Floer system is one in which for any admissible H1 and H2 there are
admissible H3 and H0 such that

H3 �maxfH1;H2g and H0 �minfH1;H2g:

In Theorem 7.5 below we show that on any geometrically bounded manifold there is a
canonically defined invariant bidirected Floer system.

Definition 7.3 Define the dissipative Floer system Fd to consist of the following data.
Let F .0/

d
.M / be the set of i–bounded Floer data .H;J / which are RLD. Let F .1/

d
be

the set of monotone paths .Hs;Js/s2Œ0;1� in F .0/ with endpoints in F .0/
d

such that the
domain-dependent Floer datum .s; t/ 7! .H.t; � /�.s/ dt;J.t; � /�.s// is i–bounded as in
Definition 5.9. Finally, F .2/

d
is defined as follows. Let Fp2�2 D .Hp;Jp/p2�2 2 F .2/
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with edges in D.1/. Associate to �2 and the map  W R � .0; 1/ ! �2 a family
C�2Œ0;1� of cylinders over the unit interval degenerating to a broken cylinder in the
obvious way. Let the domain-dependent Floer datum on C� be defined by F� .s; t/D

.H .s;�/.t; � / dt;J .s;�/.t; � //. Then F 2 F .2/
d

if and only if the family C with this
choice of domain-dependent Floer data is uniformly i–bounded as in Definition 5.10.

Remark 7.4 The set of all well-behaved Floer data is not necessarily connected. Thus
it is possible that there exist other Floer systems perhaps giving rise to inequivalent
theories. However, any Floer system for which the well-behavedness property of
Definition 7.1 holds in a sufficiently domain-local manner is equivalent to the dissipative
system by an argument similar to the proof of Theorem 4.7.

Theorem 7.5 Let .M; !/ be a monotone or Calabi–Yau geometrically bounded sym-
plectic manifold. Then Fd .M / is an invariant bi-directed Floer system on M.

Before proving Theorem 7.5 we need the following lemma.

Lemma 7.6 Let .Hi ;Ji/2F .0/d
.M / be such that H0�H1. There exists an i–bounded

monotone Floer datum on R�S1 which coincides with .H0;J0/ on fs� 0g and with
.H1;J1/ on fs� 0g. Moreover , the set of such Floer data is contractible in the same
sense as in Theorem 4.7.

Proof To conform with Definition 5.9, it suffices to produce an almost complex
structure on Œ0; 1� � R=Z �M of the form JHs

for some .Hs;Js/, such that the
following are satisfied:

� @sJHs
vanishes identically near the boundary of Œ0; 1� �R=Z �M , and thus

extends to an almost complex structure on R�R=Z�M interpolating between
JH0

and JH1
. We continue to denote this extended almost complex structure

by JHs
.

� Denoting by � W R �R=Z �M the projection to R �R=Z, we have that the
restriction of JHs

to each of ��1
��

1
3
;1

�
�R=Z

�
and to ��1

��
�1; 2

3

�
�R=Z

�
is intermittently bounded relative to � .

� @sHs � 0.

Other than the last condition, the construction would be the same as in the proof of
Theorem 4.7. We show that the monotonicity requirement does not affect the proof
of Theorem 4.7. For simplicity, assume Hi is time-independent. As in the proof of
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Theorem 4.7 fix two disjoint open sets V1;V2 �M such that there is taming data for
JHi

supported in Œ0; 1��R=Z�Vi for i D 0; 1. We may assume that each of the Vi is
a disjoint union of precompact sets. Let � WM ! Œ0; 1� be a function which equals 0 on
V0 and 1 on V1. Let f W Œ0; 1�! Œ0; 1� be a monotone function which is identically 0

near 0 and identically 1 on
�

1
3
; 1
�
. Let g WM � Œ0; 1�! Œ0; 1� be defined by

g.x; s/D f .1� s/f .s/�.x/C 1�f .1� s/:

Then g is monotone increasing in s, identically 0 for all x when s is near 0, and
identically 1 for all x when s is near 1. Take Hs D g.x; s/H1 C .1 � g.x; s//H0.
Then Hs is also monotone increasing in s. Moreover, H is fixed and equal to H0 on�
0; 2

3

�
�V0 and to H1 on

�
1
3
; 1
�
�V1. Let Js be any homotopy which is fixed and equal

to J0 on
�
0; 2

3

�
and to J1 on

�
1
3
; 1
�
. Then JHs

is i–bounded since it coincides with
JH0

on
�
0; 2

3

�
�V0 and with JH1

on
�

1
3
; 1
�
�V1. Contractibility of the set of all such

homotopies is similar.

Proof of Theorem 7.5 Let Fd .M / be as in Definition 7.3. We verify that Fd .M /

has all the required properties. Namely, that it is a Floer system and that it satisfies the
properties guaranteed in Theorem 7.5.

Well-behavedness This follows from the definition and Theorem 6.3.

Condition (a) We need to show that if .H;J / is dissipative, so is a nearby .H 0;J 0/.
The most involved case is when i D 2 which we treat. Near each vertex, we have
fixed Floer data so by definition we can pick an open neighborhood which maintains
RLD-ness for all three of these. The property of being u.i.b. depends on the metric
only up to quasi-isometry which is preserved for any uniform open neighborhood.

Condition (b) This follows by definition.

Condition (c) This is just Lemma 7.6.

Condition (d) Pick an R0 > 0 for which ��1.supp @sF 0/� Œ�R0;R0�, and similarly
for F 00. For any R> 0 define the homotopy IR D F 0 #R F 00 by

IR;s WD

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

F 0
�.0/

if s � �R�R0;

F 0
�.sCR/

if s 2 Œ�R�R0;�R�;

F 0
�.1/
D F 00

�.0/
if s 2 Œ�R;R�;

F 00
�.s�R/

if s 2 ŒR;RCR0�;

F 00
�.1/

if s �RCR0:

Define G by G .s;�/ WD I�.�/;s . It is immediate that G 2 F .2/
d

.
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Condition (e) First merge F01 with F12 as in the previous part. Then homotope to
F02 relying on contractibility in Lemma 7.6.

Invariance Evident from the definition.

Bi-directedness This follows by Theorem 6.10.

7.2 Transversality and control of bubbling

Definition 7.7 Denote by Jreg the set of almost complex structures for which all
moduli spaces

M�.AIJ /

of non-multiply-covered J–holomorphic spheres representing any class A2H 2.M IZ/

are smooth manifolds of expected dimension. For J 2 Jreg, let Hreg.J / denote that set
of all nondegenerate Hamiltonians satisfying the following conditions:

(a) The linearization Du of Floer’s equation at a Floer trajectory u is surjective for
all .H;J /–Floer trajectories.

(b) No Floer trajectory with index difference � 2 intersects a J–holomorphic sphere
of Chern number 0.

(c) No periodic orbit of H intersects a J–holomorphic sphere of Chern number � 1.

Write
F .0/reg WD

[
J2Jreg

Hreg.J /� fJ g:

Recall that M is said to be semipositive if for any class A 2 �2.M / we have

3� n� c1.A/ < 0 D) !.A/� 0:

Observe that if M is monotone or Calabi–Yau, then it is semipositive.

Theorem 7.8 Suppose M is semipositive. Let .H;J / 2 D.0/ and let V � F .0/wb be an
open neighborhood of .H;J / in C1\Fwb. Shrinking V, write V D V1�V2 �H�J .
The set Jreg is of second category in V2 and for each J 2 Jreg\V2, the set Hreg.J / is
of second category in V1.

Remark 7.9 Theorem 7.8 is formulated for time-independent almost complex struc-
tures following [32]. The same claim holds for time-dependent Hamiltonians after
appropriately modifying the regularity requirement. However, if we wish to construct
homotopies of such, we need to restrict to the case where M is monotone or Calabi–Yau.
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See Remark 7.12 below. One reason why one would wish to work with time-dependent
J is that once H has nondegenerate periodic orbits, for generic Floer data of the
form .H;J / with J time-dependent the moduli space of smooth Floer trajectories is a
smooth manifold of the expected dimension. See Theorem 5.1 in [23]. It then follows
easily that generic such .H;J / are regular.

Proof Since all the moduli spaces for all the Floer data in V intersecting a compact set
K and possessing energy E are contained, for some R<1, in BR.K/, this follows
from the compact case. For the compact case see eg [32].

Suppose that for i D 0; 1, we have well-behaved elements Fi 2 F .0/reg , and let

F01 WD fFs D .Hs;Js/gs2�1

be a well-behaved homotopy between them.

Definition 7.10 Call such a homotopy regular if the following hold:

(a) For any A 2H 2.M IZ/ write

M�.AI fJsg/ WD f.s;u/ j u 2M�.AIJs;t /g:

Then M�.AI fJsg/ is smooth and of the expected dimension.

(b) For any z1 and z2 the moduli spaces

M.z1; z2;F D fHs;Jsg/

of nontrivial continuation trajectories are smooth and of the expected dimension.

(c) There is no continuation trajectory u of index 0 or 1 for which there is a point
.s; t/ such that u.s; t/ is in the image of a Js–holomorphic sphere of Chern
number 0.

Similarly, let F 2F .2/, with edges corresponding to regular homotopies. For such an F ,
�.2/ parametrizes a family of time-dependent Floer data .H;J /. Write .Hs;�;Js;�/ WD

F .s;�/.

We say that F is regular if:

(a) The moduli space M�.AI fJs;�g/ is smooth of the expected dimension.

(b) The corresponding family fu�g of Floer solutions is smooth of the expected
dimension.
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(c) There is no � for which there is a point .s; t/ and a continuation trajectory u� of
index �1 or 0 such that u�.s; t/ intersects a Js;�–holomorphic sphere of Chern
number 0.

Denote by F .i/reg for i D 1; 2, respectively, the regular 1– and 2–simplices of Floer data.

For i D 1; 2 let F i 2 F .i/wb and let V .F i/ � F .i/wb be an open neighborhood. Let
V2.F

i/� V .F i/ be the set of elements whose H component coincides with that of F i .

To achieve transversality in the definition of continuation maps, we wish to avoid
perturbing H01 since it is required to satisfy a monotonicity condition. Thus we will
perturb J01 in an s–dependent manner.

Theorem 7.11 Suppose M is monotone or Calabi–Yau. Then F .i/reg \ V2.F
i/ is of

second category in V2.F
i/ for i D 1; 2.

Remark 7.12 The strengthening of the assumption relative to Theorem 7.8 is required
in the case i D 2. Indeed, in this case, the assumption of semipositivity does not rule
out the possibility that for an isolated .s; �/ there is a Js;�–holomorphic sphere with
negative Chern number. Once such a sphere is present, its multiple covers interact
with Floer trajectories in a nontransverse way. Invariance of Floer cohomology under
homotopies of J can still be established for the semipositive case by constructing chain
homotopies for truncated Floer homologies, since regularity for that case is easily seen
to be an open condition. We do not pursue this here.

Proof We need to verify that we can achieve regularity even though we avoid perturb-
ing H . For the generic smoothness of the moduli spaces see Section 16 in [48]. The
nonintersection property is a variation of the corresponding claim in [32]. Namely, for
i D 1, to show this is to show that the universal moduli space

N WD f.s; z;F D .Hs;Js/;u1;u2 j F 2 V2;u1.z/D u2.s; t/g

is a smooth separable Banach space of the expected codimension. Here u1 2M�.Js;t /

and u2 is an F continuation trajectory. For this it suffices that the evaluation map

R�S1
�S2

� fu 2M�.Js/ j Js 2 V2g !R�S1
�M

defined as
.s; t; z;u/ 7! .s; t;u.z//

is a submersion. For this, apply Lemma 3.4.3 from [37]. For i D 2 the argument is
similar.
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7.3 Floer’s theorem

In this section we assume throughout that M is monotone or Calabi–Yau. Moreover,
we assume M is connected.

Denote by LM the free loop space C1.R=Z;M /. Let I! ; Ic W�1.LM /!R be given
by integrating ! and the Chern class, respectively. Denote by eLM the Floer–Novikov
covering of LM; that is, the abelian covering space of LM for which i��1.eLM /D

ker I! \ ker Ic , where i� W �1.eLM / ,! �1.LM / is the natural inclusion. Explicitly,
the space eLM is constructed as follows. For each component LMa of LM choose
a base loop a. Then ALMa consists of equivalence classes of pairs .;A/ such that
 2 LMa, A is a homotopy class of paths in LMa starting at a and ending at  ,
and the equivalence relation is .;A1/� .;A2/ if and only if !.A1/D !.A2/ and
c1.A1/D c1.A2/.

For a smooth function H 2 C1.R=Z�M / and for any t 2R=Z, denote by XHt
its

Hamiltonian vector field. This is the unique vector field satisfying dHt . � /D!.XHt
; � /.

Define a functional AH W
eLM !R by

AH .Œ;A�/ WD �!.A/�

Z 2�

0

H. .t// dt:

Note that this functional depends on the choice of base loop a for the connected
component a 2 �0.LM /.

Denote by P.H /� LM the set of 1–periodic orbits of XH . Denoting by

� W eLM ! LM

the covering map, set
AP.H /D ��1.P.H //:

This is the same as the critical point set of AH .

We define an index
iRS W AP.H /! Z

as follows. For each homotopy class a2�0.LM / fix a trivialization of  �a TM. Then if
z D .;A/; trivialize  �TM along A by extending the existing trivialization from a.
With respect to this trivialization, the linearization t 7!D t; .t/ of the flow along  is
a path of symplectic matrices, to which is associated its Robbin–Salamon index [51].
We take iRS.z / to be the Robbin–Salamon index in this trivialization. Note that iRS is
independent of choices up to an integer shift na for each a 2 �0.LM /.
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For each homotopy class a 2 �1.M / let �a �R�2Z be the image of �1.LMa/ under
I! � Ic . We identify elements of �a with equivalence classes in �1.LMa/ modulo
ker I! \ ker Ic . For any ring R, define the Novikov ring ƒR;�a

by the set of formal
sums X

A2�a

�AT I!.A/e2Ic.A/; with �A 2R;

which satisfy for each constant c that

#fA 2 �a j �A ¤ 0; !.A/ < cg<1:

We have an action of �a on eLM a by

A � Œx;B� WD Œx;A # B�:

This is a covering action, so it restricts to an action on ePH .

Fix a Floer system D. Write Dreg WD Freg\D and let F D .H;J / 2 D.0/reg . We define
the Floer chain complex CF�.H;J IR/ as the set of formal sumsX

zx2eP.H /

�zxhzxi; with �zx 2R;

satisfying for each constant c that

(52) #fzx 2 AP.H / j �zx ¤ 0; AH .zx/ > cg<1:

CF�.H;J IR/ is a graded vector space over R with grading given by

(53) i.zx/ WD iRS.zx/C n:

Here nD 1
2

dim M. CF�.H;J IR/ can be considered as a non-Archimedean Banach
space over R with its trivial valuation. The norm on CF�.H;J IR/ for a linear
combination of generators is given by

(54)
X

i

ai zi

 WD max
fi jai¤0g

eAH .zi /:

For each homotopy class a, the vector space CF�;a.H;J IR/ generated by BPa.H / is a
graded Banach module over the Novikov ring ƒR;�a

via the action of �a on BPa.H /.
The set Pa.H / noncanonically defines a basis of CF�;a.H;J / overƒR;�a

by choosing
a lift to BPa.H /.
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Let � �R�Z be a subgroup. Denote by ƒR;� the ring

ƒR;� WD

�X
i

aiT
�i e2ni

ˇ̌̌
.�i ; ni/ 2 �; ai 2R; lim

i!1
�i D1

�
:

Let �! �R�Z be the subgroup generated by
S

a2�1.M / �a. Write ƒR;! WDƒR;�!

and ƒR WDƒR;R�Z. Assume R is a field. ƒR is referred to as the universal Novikov
field over R. Strictly speakingƒR;R�Z is only a graded field; that is, only homogeneous
elements with respect to the grading induced by projection R�Z! Z are invertible.
Henceforth let K be either ƒR or ƒR;! . Note that K carries a non-Archimedean norm
induced from kT �k WD e��. That is,10 val.T �/D��.

Let
CF�.H;J IK/ WD

M
a2�1.M /

CF�;a.H;J IƒR;�a
/ y̋ƒR;�a

K;

where the hat denotes completion with respect to the induced valuation.

Remark 7.13 The approach we follow here to Floer theory over the Novikov ring is
the one originally introduced by [32]. In the literature (compare [47; 50; 61]) there is
a slightly different construction of the Floer chain complexes over the Novikov ring,
where one tensors the space generated by P.H / with ƒR, instead of passing to a
covering space. In that version, the chain complexes do not have an action filtration
nor a grading, but they do have a Novikov filtration over ƒR. We do not pursue the
latter approach here.

We define a linear operator d on CF�.H;J IR/ by counting Floer trajectories in the
usual way. Namely, for any two elements

zx1; zx2 2
AP.H /

of index difference 1, denote by M.zx1; zx2IJ / the moduli space of Floer trajectories
which at �1 are asymptotic to zx1 and at C1 to zx2, divided by the action of R. By
the inclusion D0 � F .0/wb and Gromov–Floer compactness, M.zx1; zx2IJ / is compact.
Since F 2 F .0/reg we get that when the virtual dimension is 0,

#M.zx1; zx2IJ / <1:

We thus define

d zx1 D

X
zx2 j iRS.zx2/DiRS.zx1/C1

#M.zx1; zx2IJ /hzx2i:

10Caution: in many texts the convention is k � k D e�val. � /.

Geometry & Topology, Volume 27 (2023)



Floer theory and reduced cohomology on open manifolds 1347

Theorem 7.14 The Floer boundary map d is well defined and satisfies d2 D 0.

Proof We need to show that for any zx12
AP.H /we have that d zx2 satisfies the finiteness

condition (52). For any c, let

Ac WD fzx2 2
AP.H / jM.zx1; zx2IJ /¤∅; AH .zx2/ > cg:

For any zx 2 Ac there is a Floer trajectory of energy at most AH .zx1/� c connecting
zx1 and zx2. Well-behavedness of F thus implies that there is a compact set K �M

such that any zx 2 Ac is contained in K. The claim now follows by Gromov–Floer
compactness. Thus d is well defined. That d2 D 0 follows from the compact case
[52; 37] since all Floer trajectories under a given energy level are contained in an
a priori compact set.

By its definition, d commutes with the action of ƒR;�a
and thus induces a well-defined

operator on CF�.H;J IK/.

Theorem 7.15 (Floer’s theorem) Let M be a monotone or Calabi–Yau symplectic
manifold. Let D be a Floer system. Then there exists a dense subsystem Dreg such that :

(a) For any F D .H;J / 2 D.0/reg , the graded filtered complex

.CF�.H;J IK/; d/

is well defined.

(b) For any pair of elements F1 � F2 2 D.0/reg we have that

D.1/reg .F1;F2/¤∅:

Associated with any homotopy F12 2 D.1/reg .F1;F2/ is a chain map

fF 12 W CF�.F1/! CF�.F2/;

defined by counting the corresponding rigid Floer solutions. If F1�F2 D c and
F12 is of the form F12

s D .H Cf .s/;J /, then fF 12 is the identity.

(c) For any triple F0 � F1 � F2 2 D.0/reg and elements Fij 2 D.1/reg .Fi ;Fj /, the set
D.2/reg .F01;F12;F02/ is nonempty. Any element

F 2 D.2/reg .F01;F12;F02/

defines a chain homotopy between the map fF02
and the composition fF12

ıfF01

by counting the corresponding rigid Floer solutions.
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Proof We take as above Dreg WDD\Freg. By the theorems in the previous subsection,
Dreg is dense in D.

(a) This is just Theorem 7.14.

(b) Given zxi 2
AP.Hi/ for i D 1; 2, let M.zx1; zx2I fHs;Jsg/ be the moduli space of

Floer solutions for the Floer data fHs;Jsg with zx1 and zx2 as asymptotes. For any
element

u 2M.zx1; zx2I fHs;Jsg/;

we have the a priori estimate

E.u/�AH .zx1/�AH .zx2/

by Lemma 5.3 with F DHs dt . By the assumption that D consists of Floer data that
are well-behaved as in Definition 7.1, it follows that

M.zx1; zx2I fHs;Jsg/

is compact. We define the continuation map by counting the 0–dimensional moduli
space. Since action decreases along continuation maps, the finiteness condition is the
same as the case of the differential. The fact that fI 12 is a chain map is the same as in
the compact case [52; 37].

(c) It follows again from well-behavedness that all Floer solutions under a given energy
level for all the elements of the family are contained in an a priori compact set. The
claim thus follows again from the compact case.

Proof of Theorem 1.1 This follows by Definition 7.3 from Theorems 7.5, 6.6 and 7.15,
by passing to homology.

8 Hamiltonian Floer cohomology by approximation

8.1 Reduced cohomology

Definition 8.1 We refer to a chain complex which is a topological vector space with
continuous differential as a topological complex. For a topological complex .C; d/, the
differential is in general not closed. To stay within the realm of complete Hausdorff
topological vector spaces we define the reduced cohomology of complete Hausdorff
topological complexes .C; d/ by

H .C; d/ WD
ker d

im d
;
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where the bar denotes the closure. For general C � we first take the Hausdorff completion
and then take its reduced cohomology. Note that if C � is a Banach space then H .C; d/

is itself a Banach space with the induced quotient norm, which is defined by

kŒa�k WD inf
b2Œa�
kbk:

For the ensuing discussion, we consider the vector space CF�.H;J IK/ as a vector
space over R, forgetting the action of the Novikov parameter. For a > 0 define
CF�

.�1;a/
.H;J IK/ to be the R–subcomplex of CF�.H;J IK/ generated by periodic

orbits of action less than a. Define by CF�
Œa;b/

.H IK/ the quotient complex

(55) CF�Œa;b/.H;J IK/ WD CF�.�1;b/.H;J IK/=CF�.�1;a/.H;J IK/:

Denote by HF�
Œa;b/

.H;J IK/ the corresponding cohomology groups. These are vector
spaces over R.

Theorem 8.2 We have that :

(a) A continuous chain map between topological complexes induces a well-defined
map on the reduced cohomologies.

(b) A nullhomotopic map induces the zero map on reduced cohomology.

Proof For the first assertion, continuity implies that im d is mapped into im d . For
the second assertion, note that f maps all cycles into im d � im d .

Remark 8.3 A short exact sequence of topological complexes with continuous maps
induces a long sequence of reduced cohomologies. However, exactness of this sequence
only holds under special assumptions. A reference in the case of Hilbert complexes
is [36].

Let C � be a topological complex whose topology is induced by a filtration by sub-
complexes fC �t gt2R such that C �t � C �t 0 whenever t < t 0. For any element a 2 C � let
val.a/ WD infft j a2C �t g. Then val naturally induces a filtration on H�.C �/ defined by
val.Œa�/D infc2Œa� val c. Define a filtration on the vector space lim

 ��t
H�.C �=C �t / by

val.x/D inf
˚
t0 j x 2 ker

�
lim
 ��

t

H�.C �=C �t /!H�.C �=C �t0
/
�	

for x2 lim
 ��t

H�.C �=C �t /. Observe that the spaces lim
 ��t

H�.C �=C �t / and H�.C �=C �t0
/

are both complete with respect to the norm kak WD eval.a/, and are thus Banach spaces.
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Theorem 8.4 As Banach spaces ,

H�.C �/D lim
 ��

t

H�.C �=C �t /:

Proof Any two cycles in the Hausdorff completion of C � representing the same
element in H�.C �/ represent the same element of H�.C �=C �t / for each t . We thus
get a well-defined morphism

f WH�.C �/! lim
 ��

t

H�.C �=C �t /:

If c 2C � is a cycle and f .c/D 0, then c is a boundary mod C �t for each t . In particular
it is in the closure of the space of boundaries of C �, so Œc�D 0 in the reduced homology.
Thus f is injective. We now show that f is surjective. Let a 2 lim

 ��t
H�.C �=C �t /.

We can compute the inverse limit by taking a subset ftig of the index set R which is
discrete, bounded above and unbounded below. In this presentation, a is a sequence

.: : : ; Œai �; ŒaiC1�; : : : ; Œa0�/; with Œai � 2H�.C �=C �ti
/;

where Œai � maps to ŒaiC1� under the natural map induced on homology. We consider
the representatives ai as living in C � and claim that they can be chosen so that, already
at the chain level, ai maps to aiC1 mod C �tiC1

. Inductively, suppose this holds for all
i0 < i � 0. We have that there is a bi0

2 C � such that ai0C1� ai0
D dbi0

mod C �ti0C1
.

Replace ai0
by ai0

C dbi0
to get the claim for i0. The sequence faig converges as

i ! �1 to an element ya in the completion of yC �. By construction, dya D 0 and
f .Œya�/D a. Unwinding definitions one verifies that f preserves the valuations and is
thus a Banach space isometry.

Example 8.5 In this example we illustrate how reduced and unreduced cohomology
may differ from one another. Fix a field R and consider the vector space

C � D

1M
iD1

Rhxi ;yi
iŒq�=q2;

where the xi and yi are formal symbols of degree 0 and 1, respectively, for all i , and
q is a formal symbol of degree �1. Define a non-Archimedean valuation on C � by
taking val.xi/D 0D val.q/ and val.yi/D�i . Define a differential by

dxi
WD yi ; dyi

WD 0; d.qxi/D qyi
CxiC1

�xi ; d.qyi/D yi
�yiC1:

Suppose  2 C � is a finite sum of generators satisfying d D 0. Then  is a linear
combination of the yi and elements of the form qyi � xi C xiC1; that is, a linear
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combination of dxi and d.qxi/. Thus the homology of C � vanishes. Consider now
the complex yC � obtained by completing C � with respect to the valuation, and let

 WD x1
C

1X
iD1

.�1/iqyi :

Then  is well defined in yC �, and d D 0. We show that  is not a coboundary and
is not even approximated by a sequence of coboundaries. For this, consider its image
in C �=C �t . It is straightforward to verify that the class of  is equivalent mod C �t to
the class of xi for any i > �t , and that val.Œxi �/ D 0. In this case one verifies that
the image of the differential is closed. It follows that the reduced homology of the
completion yC � (which in this case equals the ordinary homology) is nonzero.

Consider now the subcomplex 3Rhxi ;yii of yC �. Let

 D
X

yi :

Then  is again a convergent sum. Moreover, for any t we have that  is a boundary
mod C �t . Indeed, for any N > t we have

 D d

NX
iD1

xi mod C �t :

But the sum on the right-hand side does not converge as i !1. One verifies in this
case that the reduced cohomology H�.3Rhxi ;yii/ vanishes while the unreduced one
does not.

8.2 Floer cohomology of lower semicontinuous exhaustion functions

Theorem 8.6 Let .H0;J0/ and .H1;J1/ be dissipative. Suppose

(56) H1� c �H0 �H1:

Then the canonical continuation map HF�.H0;J0/!HF�.H1;J1/ is an isomorphism
which decreases norms by a factor of at most e�c . In particular , when H0 DH1, the
continuation map is an isometry.

Proof Recall that for a monotone homotopy, the induced continuation map is valuation
decreasing. Consider the composition of continuation maps

HF�.H0;J0/! HF�.H1;J1/! HF�.H0C c;J0/:
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It coincides with the continuation map

HF�.H0;J0/! HF�.H0C c;J0/:

The latter stems from a naive identification of the underlying complexes with the
norm scaled by e�c . This shows that the map HF�.H0;J0/! HF�.H1;J1/ is right-
invertible and decreases norm by at most e�c . Left-invertibility is shown similarly.

Henceforth we drop J from the notation and talk about HF�.H /. Abusing notation we
will also drop J from the chain level notation. Accordingly, we refer to a Hamiltonian H

as dissipative if there exists a compatible almost complex structure J such that .H;J /
is dissipative.

As a consequence of Theorem 8.6 we may extend the definition of Floer cohomology
to some Hamiltonians which are degenerate or even nonsmooth.

Lemma 8.7 Suppose that Hi and Fi are pointwise monotone increasing sequences of
nondegenerate dissipative Hamiltonians , both converging uniformly in C 0 to the same
continuous function H. Then there is an isomorphism

lim
��!

i

HF�.Hi/! lim
��!

i

HF�.Fi/;

which is natural in that it commutes with all continuation maps involving dissipative
and nondegenerate Hamiltonians. We may thus define

(57) HF�.H / WD lim
��!

n

HF�.Hn/:

Define a seminorm on HF�.H / by

(58) kak WD inf
i
kaik;

where ai 2HF�.Hi/ maps to a under the natural map. Then k �k is a non-Archimedean
seminorm on HF�.H / which is independent of the choice of Hi . Moreover , when
H is smooth , dissipative and nondegenerate , the two definitions of HF�.H / as a
seminormed space coincide.

Proof Call a sequence Hn as in the hypothesis admissible if for each n there is a
constant cn > 0 for which H �Hn � cn. Given any two admissible sequences we
can squeeze a subsequence of one into a subsequence of the other. The first part
of the statement then follows by the universal property of the direct limit. Given a
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not necessarily admissible monotone sequence Hn converging to H , the sequence
Hnk WDHn� 1=k is admissible, monotone and converges uniformly to Hn. We thus
have a natural isomorphism

lim
��!

n

HF�.Hn/D lim
��!

n

lim
��!

k

HF�.Hnk/:

But the sequence Hnn is admissible and cofinal in the doubly indexed sequence Hnk ,
and so we have a natural isomorphism

lim
��!

n

lim
��!

k

HF�.Hnk/D lim
��!

n

HF�.Hnn/:

We have a similar relation for Fnk WD Fn � 1=k and Fnn. The sequences Hnn and
Fnn are admissible, monotone and converge uniformly to H . Combined with the
isomorphisms we just deduced, we obtain the isomorphism

lim
��!

n

HF�.Hn/D lim
��!

n

HF�.Hnn/D lim
��!

n

HF�.Fnn/D lim
��!

HF�.Fn/;

where all the isomorphisms are natural.

To see that k � k defines a non-Archimedean seminorm, note that by Theorem 8.6, the
sequence kaik is bounded below. Since it is monotone decreasing, it is convergent. So

kaC bk D lim
i
kai C bik � lim

i
max fkaik; kbikg Dmaxfkak; kbkg:

The homogeneity of k � k is obvious. In light of Theorem 8.6, the argument for the
independence of val on the choice of sequence is similar to the claim concerning the
natural isomorphism. Finally, for the last part of the claim, take Fn to be the constant
sequence Fn DH .

The definition of action-truncated Floer homology groups also extends.

Lemma 8.8 Let H and Hn be smooth nondegenerate and dissipative , and suppose the
sequence Hn is monotone and converges uniformly to H . Then the natural map

(59) lim
��!

n

HF�Œa;b/.Hn/! HF�Œa;b/.H /

is an isomorphism. If we drop the assumption that H is dissipative and define
HF�

Œa;b/
.H / by (59), the right-hand side is independent of the choice of Hn.

Caution: the claim does not necessarily hold if we consider other segments such as
.a; b�.

Geometry & Topology, Volume 27 (2023)



1354 Yoel Groman

Proof As in the proof of Lemma 8.7, the first part is proven by squeezing a sequence
of the form Hn� cnk into a sequence H � cn. The second part is proven by a similar
squeezing. The argument is spelled out in the proof of Lemma 8.7.

The next theorem is key for what follows. It shows that truncated Floer homology is
continuous with respect to convergence on compact sets.

Theorem 8.9 Let fHng be a monotone increasing sequence of dissipative Hamiltonians
converging pointwise to a dissipative Hamiltonian H . Then for any real a< b, we have
that the natural map

f W lim
��!

i

HF�Œa;b/.Hn/! HF�Œa;b/.H /

is an isomorphism.

Proof Fix an almost complex structure J for which .H;J / and .Hi ;J / are dissipative.
Without loss of generality we may assume that all the involved Floer data are regular
and nondegenerate. As in Lemma 8.8 we reduce to the case where H �Hn � cn > 0

for some cn > 0. By Dini’s theorem, the Hi converge to H uniformly on compact sets.
By squeezing in an appropriate sequence we may assume that there is an exhaustion
of M by compact sets Kn such that Hn D H � cn on Kn. For such a sequence we
have that for a fixed real number E > 0 and compact set K, the numbers R.E;K/

of Theorem 6.3, defined for each of the Hn, stabilize as n ! 1. So, given an i

and a cocycle  2 CF�
Œa;b/

.Hi/, there is a compact set K and an i0 > i such that
any continuation trajectory fi;i0. / or fi. / is contained mod CF�

.�1;a/
in K. Here

fi W CF�
Œa;b/

.Hi ;J /! CF�
Œa;b/

.H;J / and fi;i0 W CF�
Œa;b/

.Hi ;J /! CF�
Œa;b/

.Hi0 ;J / are
the natural continuation maps. Indeed, since we are considering only trajectories of
energy less than b� a, Theorem 6.3 provides an estimate on the diameter as required.
The same claim holds for composite trajectories of the form d ıfi;i0 and d ıfi , etc.

Since Hi jKi
DH jKi

�ci , we may identify those periodic orbits of Hi which are inside
Ki with the periodic orbits of H in the same region. For each periodic orbit  of H ,
the corresponding periodic orbit of Hi is mapped mod a by the continuation map to  .
Indeed, for i large enough, any continuation trajectory emanating from  and having
energy at most b�a is contained in Ki and so satisfies a translation-invariant equation.
To be rigid it must be trivial. Moreover, taking i still larger, the same claim is true
for the periodic orbits appearing in the expansion of d mod i . This shows that f is
surjective. Injectivity follows in the same way. Namely, suppose there is an i and a
ı 2CF�

Œa;b�
.H / such that fi. /D dı mod a in CF�.H /. For i large enough, the same

relation will hold in CF�.Hi/.
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We use the notation HF�.H / for the reduced cohomology of CF�.H;J /.

Corollary 8.10 For any dissipative Hamiltonian H and any sequence Hi of dissipative
Hamiltonians converging to H uniformly on compact sets , the natural map

(60) lim
 ��

a

lim
��!
b;i

HF�Œa;b/.Hi/! HF�.H /

is an isomorphism. Moreover , we have for any ˛ 2 HF�.H / that

(61) val.˛/D inf
a

˚
˛ 2 ker

�
HF�.H /! lim

��!
b;i

HF�Œa;b/.Hi/
�	
;

upgrading the isomorphism (60) to an isometry of Banach spaces.

Proof We have by Theorem 8.9 and by exactness of the direct limit,

(62) lim
��!
b;i

HF�Œa;b/.Hi/D lim
��!

b

HF�Œa;b/.H /D HF�Œa;1/.H /:

So by Theorem 8.4 we obtain the isomorphism of Banach spaces.

The last corollary will allow us to extend the definition of reduced Floer homology to
arbitrary lower semicontinuous exhaustion functions; that is, a lower semicontinuous
function H W R=Z�M ! R which is proper and bounded from below. But first we
need to formulate an approximation lemma for such functions.

Lemma 8.11 Let H WR=Z�M !R[f1g be a lower semicontinuous function which
is proper and bounded below. Let F WR=Z�M !R be a smooth proper exhaustion
function such that F < H � � pointwise for some � > 0. Then there is a pointwise
monotone sequence of smooth exhaustion functions Hn W R=Z �M ! R such that
Hn converges pointwise to H everywhere and such that for each n there is a compact
set Kn such that HnjMnKn

D F jMnKn
.

Proof It is a standard fact that H is the supremum of a monotone increasing sequence
H 0n of smooth functions. For each n take Hn to coincide with H 0n on H�1..�1; n//,
to equal n on the set

f.t;x/ WHt .x/� n� Ft .x/g;

and to equal F on F�1.n;1/. Then Hn is well defined and continuous. After a slight
perturbation it is smooth and satisfies all the requirements.

By Theorem 6.6 we can take F in the previous lemma to be a function with sufficiently
small Lipschitz constant outside of a compact set so as to be dissipative. Then all the
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functions in the sequence Hn are also dissipative, as they coincide with F outside of a
compact set. Thus, any lower semicontinuous exhaustion function is the pointwise limit
of a monotone sequence of dissipative Hamiltonians.

Lemma 8.12 Let H be a lower semicontinuous exhaustion function. Let Hn�Fn�H

be a pair of monotone sequences of dissipative Hamiltonians each converging pointwise
to H . Then for any a< b 2R, the natural continuation map

(63) lim
��!

i

HF�Œa;b/.Hi/! lim
��!

i

HF�Œa;b/.Fi/

is an isomorphism.

Proof For each n choose monotone sequences Hkn and Fkn such that the following
properties hold. First, for fixed n, they converge on compact sets to Hn and Fn,
respectively, as k!1. Secondly, there is an exhaustion of M by precompact sets
Uk such that Hkn and Fkn coincide with H1� 1=k on the complement of Uk . Such
sequences exist by Lemma 8.11. By Theorem 8.9 we have natural isomorphisms

lim
k!1

HF�Œa;b/.Hkn/D HF�Œa;b/.Hn/;

and a similar isomorphism relating the Floer cohomologies of Fkn and Fn. The map
appearing in equation (63) corresponds under this isomorphism to the natural map

lim
k;n!1

HF�Œa;b/.Hkn/! lim
k;n!1

HF�Œa;b/.Fkn/:

For each k we have that H �Hkn and H �Fkn are bounded away from 0. Moreover,
for each compact set K we can make Hkn and Fkn arbitrarily close to H on K by
adjusting k and n. It follows that for each k and n, we can find numbers k 0, n0, k 00

and n00 such that Fk00n00 >Hk0n0 > Fkn. Thus we can squeeze a cofinal subsequence
of Hkn into a cofinal subsequence of Fkn. The claim follows by the same argument as
in Lemma 8.7.

Lemma 8.13 Let H be a lower semicontinuous exhaustion function. Let Fn and Gn

be a pair of monotone sequences of dissipative Hamiltonians each converging pointwise
to H . Then there exists a monotone sequence of dissipative Hamiltonian Hn such that
Hn �minfFn;Gng and Hn converges pointwise to H .

Proof The function H 0n DminfFn;Gng is continuous. As in Lemma 8.11, let H 00n be
a continuous function which coincides with H 0n on H

0�1
n .�1; n/, and with some fixed

smooth dissipative function F � H1 everywhere else. Then H 00n is continuous, the
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sequence H 00n is monotone, and it still converges to H . Finally, replace H 00n by a smooth
Hn satisfying H 00n � 1=n�Hn �H 00n and which equals F outside some compact set.
Then all the requirements are satisfied.

Proof of Theorem 3.3 The surjectivity statement follows from Lemma 8.11 as stated
in the paragraph right after the proof of Lemma 8.11.

For a pointwise monotone sequence fHig of regular dissipative Hamiltonians, define

(64) HF�.fHig/ WD lim
 ��

a

lim
��!
b;i

HF�Œa;b/.Hi/;

with the norm given by the right-hand side of (61).

Let sup.fH 1
i g/D sup.fH 2

i g/DH for some H 2Hsc. By Lemma 8.13 we can find a
third sequence fHig of regular dissipative Hamiltonians such that Hi �minfH 1

i ;H
2
i g.

By Lemma 8.12 and equation (64) it follows that we have natural isomorphisms

HF�.H 1
i /D HF�.Hi/D HF�.H 2

i /:

For an arbitrary H 2 Hsc we define HF�.H / as the pushout over all approximating
sequences fHig of HF�.fHig/ under the natural isomorphisms just described. By
naturality we get an induced functorial continuation map for H1 �H2. This defines
the functor HF� on .Hsc;�/. To see that the restriction to .Hd;reg;�/ agrees with the
previous definition, note that any element H 2Hd;reg can be considered as a constant
sequence fHig with Hi DH .

In fact we have proven the following stronger lemma, which is used below.

Lemma 8.14 Let H be a lower semicontinuous exhaustion function. Let Hn and Fn

be a pair of monotone sequences of dissipative Hamiltonians each converging pointwise
to H . Such sequences are guaranteed to exist by Lemma 8.11. Then for any segment
Œa; b/ there exists an isomorphism

lim
��!

i

HF�Œa;b/.Hi/! lim
��!

i

HF�Œa;b/.Fi/:

This isomorphism is natural in the sense that it commutes with all induced continuation
maps. We thus define

(65) HF�Œa;b/.H / WD lim
��!

i

HF�Œa;b/.Hi/:

In other words , we have

(66) HF�.H /D lim
 ��

a

lim
��!

b

HF�Œa;b/.H /:
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In the next section we will see that it is actually possible to define HF� as the reduced
cohomology of an appropriate chain complex which is well defined up to filtered
quasi-isomorphism.

8.3 The chain level construction

We apply the telescope construction appearing in [5] to define HF�.H /, for general
lower semicontinuous H , as the cohomology of a certain complex. Namely, let .Hi ;Ji/

be a sequence of dissipative Floer data. Let q be a formal variable of degree�1 satisfying
q2 D 0. Write11

SC�.fHig/ WD

1M
iD1

CF�.Hi/Œq�;

and equip it with the differential

ı.aC qb/ WD .�1/deg adaC .�1/deg b.qdbC �.b/� b/;

where � denotes the continuation map CF�.Hi/ ! CF�.HiC1/ for each i . LetcSC�.fHig/ denote the completion with respect to the action filtration. It is shown
in [5] that, ignoring topology, there is a natural isomorphism

(67) lim
��!

i

HF�.Hi/DH�.SC�.fHig/; ı/:

This isomorphism arises as follows. Consider the underlying complexes CF�.Hi/

with differential ı.a/ WD .�1/deg ad.a/. This change does not affect anything at the
cohomology level, and continuation maps remain chain maps. The obvious embeddings
.CF�.Hi/; ı/ ,! SC�.fHig/ commute up to homotopy with the continuation maps,
thus giving rise to the map in (67). For more details see [5].

Definition 8.15 Let .C �i ; d/ for i D 1; 2 be complexes filtered by a valuation. We say
that a valuation-decreasing chain map f W C �

1
! C �

2
is a filtered quasi-isomorphism

if it induces an isomorphism on filtered homologies H�
Œa;b/

for a > �1. We say
that .C �

1
; d/ is filtered quasi-isomorphic to .C �

2
; d/ if there is a zigzag of filtered

quasi-isomorphisms starting at one and ending at the other.

Theorem 8.16 Let H be a lower semicontinuous exhaustion function and let .H 1
i ;J

1
i /

and .H 2
i ;J

2
i / be monotone increasing sequences of dissipative Floer data such that H

j
i

converges to H pointwise for j D 1; 2. Then cSC�.fH 1
i g/ is filtered quasi-isomorphic

11As usual we abuse notation, omitting mention of the almost complex structures.
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to cSC�.fH 2
i g/. If H is itself dissipative , they are both filtered quasi-isomorphic tocCF�.H /.

The proof of Theorem 8.16 is carried out after establishing the following few lemmas,
which are of interest in their own right.

Lemma 8.17 We have for any interval �1< a< b �1,

H�Œa;b/.
cSC�.fHig/; ı/D lim

��!
i

HF�Œa;b/.Hi/:

Further , we have an isometry of Banach spaces

H�.cSC�.fHig/; ı/D lim
 ��

a

lim
��!

i

HF�Œa;1/.Hi/;

where on the right-hand side we define the norm by equation (61), and on the left-hand
side we take the norm induced from the CF�.Hi/.

Proof The first half of the claim is what is shown in [5], since no topology is involved.
For the second half, the isomorphism of topological vector spaces follows from the
first half and Theorem 8.4. The fact that this is an isometry also follows from the first
half by unwinding definitions.

Lemma 8.18 Let F0Df.H 0
i ;J

0
i /g and F1Df.H 1

i ;J
1
i /g be two monotone sequences

of dissipative Floer data such that H 0
i � H 1

i . Let Hi;s be a monotone dissipative
interpolating family. Then there is a filtration-decreasing continuation map

�H WcSC�.fH 0
i g/!

cSC�.fH 1
i g/;

inducing , for each interval Œa; b/, the canonical continuation map

lim
��!

i

HF�Œa;b/.H
0
i /! lim

��!
i

HF�Œa;b/.H
1
i /:

If H1 and H2 are two homotopies interpolating between F0 and F1, there exists a
filtration-decreasing chain homotopy operator

K WcSC�.fH 0
i g/!

cSC�C1.fH 1
i g/

such that
�H1 ��H2 D ı ıKCK ı ı:

Proof Let ji W CF�.H 0
i /! CF�C1.H 1

iC1
/ be the chain homotopy operator satisfying

fHiC1
ı � � � ıfHi

D d ı ji C ji ı d:
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Define

� WcSC�.F0/!cSC�.F1/

by �.aC qb/ WD f .a/C qf .b/C j .b/. One verifies that this is indeed a chain map.
Inspecting isomorphism (67) one finds that the homology-level square

lim
��!

HF�
Œa;b/

.H 0
i /

��

// lim
��!

HF�
Œa;b/

.H 1
i /

��

H�
Œa;b/

.SC�.fH 0
i g//

// H�
Œa;b/

.SC�.fH 1
i g//

commutes. This proves the first half of the claim. To define the chain homotopy operator
K, let li W CF�.H 1

i /! CF�C1.H 2
i / be the chain homotopy operator associated to a

family of homotopies interpolating between H1 and H2. Let j n
i be the homotopies

between f n
iC1
ı � and � ıf n

i for nD 1; 2. Let

mi W CF�.H 1
i /! CF�C2.H 2

iC1/

be a degree 2 operator satisfying

d ımCm ı d D j 1
C � ı l � .l ı �C j 2/:

We show that such an m exists before proceeding. To see this note that each term on the
right-hand side is a chain homotopy operator from �ıf1 to f2ı� coming from appropri-
ate one-dimensional families of interpolating homotopies. By standard Floer theoretic
machinery, a generic two-dimensional family interpolating these one-dimensional
homotopies gives rise to an operator m as required. By energy considerations, m is
action decreasing.

Having established the existence of m, we define the chain homotopy

K.aC qb/ WD .�/deg.aC1/l.a/C .�1/deg.bC1/.ql.b/Cm.b//:

A straightforward but somewhat tedious calculation shows that K is indeed a chain
homotopy operator, as required.

Proof of Theorem 8.16 Use Lemma 8.13 to find a monotone sequence of dissipative
Hamiltonians fH 0

i g dominated by fH j
i g for j D 1; 2 and still converging pointwise

to H . By Lemmas 8.12 and 8.18, the continuation map induces a quasi-isomorphism
for each finite truncation.
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9 The product structure

9.1 Floer data for the pair-of-pants product

For time-dependent Hamiltonians H1;H2, let H1 �H2 WR=Z�M !R be the time-
dependent function

.H1 �H2/t D

�
2H1.t/ if t 2

�
0; 1

2

�
;

2H2.2t � 1/ if t 2
�

1
2
; 1
�
:

Note that H1�H2 depends discontinuously on t with jump discontinuities at tD 1
2
; 0�1.

The operation is introduced for notational convenience. A triple .H0;H1;H2/ is called
a (strict) product triple if H2 �H1 �H0 (H2 >H1 �H0).

Denote by † the pair of pants S2 n f0; 1;1g. For our convenience we pick cylindrical
ends which extend globally as follows. Consider the holomorphic map W†!R�R=Z

given by

z 7!
1

2�
Log z.z� 1/:

This defines cylindrical coordinates

s D
1

2�
log jz.z� 1/j; t D

1

2�
arg.z.z� 1//

in punctured neighborhoods of 0 and 1, coordinatized as inputs. For the cylindrical
end at1 we take

s D
1

2�
log jz.z� 1/j; t D

1

4�
arg.z.z� 1//:

Thus1 is coordinatized as an output. Henceforth we write

˛† WD
1

2�
darg z.z� 1/

and take h† W†!R to be the function

z 7! s D
1

2�
log jz.z� 1/j:

Then dh† ^˛† � 0, and h† has a single critical point at z D 1
2

. Note also that at the
output we have ˛† D 2 dt , while at each input we have ˛† D dt . We consider the
coordinate t to be well- defined on the complement of s D h† D

1
2

.

Definition 9.1 A Floer datum .H;J / is called superdissipative if for any f WR=Z!R

we have that .fH;J / is dissipative.
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Lemma 9.2 If H is a Lipschitz exhaustion function and h W R! R is a monotone
function satisfying limt!1 h0.t/! 0, then h ıH is superdissipative.

Proof The Lipschitz constant of f � h ıH is arbitrarily small outside of a sufficiently
large compact set. The claim follows by Theorem 6.6.

For a superdissipative .H;J /, let F.H;J / be the set of all pairs in C1.R=Z�M /�J
which coincide outside of some compact set with .fH;J / for some f WR=Z!RC.
Drop J from the notation when there is no ambiguity. A 1–form H 2�1.†;C1.M //

is called H–admissible if there is a function G W†�M !R such that HDG˝˛†

and such that for each x 2 M we have dH.x/ � 0, and for each z 2 † we have
G.z; � / 2 F.H /. A Floer datum .H;J 0/ is called H–admissible if, in addition, J 0 is
quasi-isometric to J . For an H–admissible product triple we denote by P.H0;H1;H2/

the set of H–admissible data on the pair of pants which for iD0; 1; 2 equals Hi dt at the
i th end. We refer to the set P.H0;H1;H2/ as product data for the triple .H0;H1;H2/.
Included in the set P.H0;H1;H2/ are broken Floer data, which are concatenations of
monotone continuation data in F.H / with H–admissible pairs of pants.

Lemma 9.3 (a) H–admissible one-forms satisfy the hypotheses of Lemma 5.3.

(b) H–admissible product data are dissipative.

(c) If .H 0;H 1;H 2/ 2 F.H /3 is a strict product triple , then

P.H 0;H 1;H 2/¤∅:

(d) P.H 0;H 1;H 2/ is connected , and the path connecting any two elements is
dissipative.

Proof (a) Equations (17) and (18) hold by construction.

(b) Loopwise dissipativity follows by the assumption of superdissipativity of H . As for
i–boundedness, observe that the metric gJH

is uniformly equivalent to the metric gJH
.

In fact, if H is Lipschitz, gJH
is uniformly equivalent to the product metric on †�M.

(c) Let F 2 F.H / be a time-independent Hamiltonian satisfying for all x 2M

2 maxfH 0
0 .x/;H

1
0 .x/g< F.x/ <minfH 2

0 .x/;H
2
1=2.x/g:

Such a Hamiltonian exists by assumption. Let

G0t .x/ WD

�
maxf2H 0

2t
.x/;F.x/g if t 2

�
0; 1

2

�
;

maxf2H 1
2t
.x/;F.x/g if t 2

�
1
2
; 1
�
:
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Then G0 satisfies

(i) .H 0;H 1;G0/ is a product triple,

(ii) for each x 2M there is a neighborhood U �M and I �R=Z of
˚
0; 1

2

	
such

that G0t .y/D F.x/ for .t;y/ 2 I �U, and

(iii) G0 <H2.

The function G0 has nonsmooth points away from t 2
˚
0; 1

2

	
but it can be smoothed

to a function G so that the properties (i), (ii) and (iii) still hold. Let Gs
t be a family

such that for s� 1
2

we have Gs DH2 and for s � 1
2

we have Gs DG, and such that
@sGs � 0. This can again be pieced together by an appropriate Urysohn function.

We define H 0z to equal Gh†.z/;t for z such that h†.z/�
1
2

. By property (ii), H 0z extends
smoothly beyond the branchpoint at z D 1

2
. On each input end we can smoothly

interpolate between the input Hi and 1
2
Gs in a monotone way by employing an Urysohn

function. The result H WDH 0˝˛† is an H–admissible product datum.

(d) If H 1˛ and H 2˛ are two (unbroken) H–admissible product data with the same
inputs and output, so is any convex combination. If H 1˛ is a broken product datum,
it can connected by a path to an unbroken one by gluing. Thus P.H0;H1;H2/ is
connected. Dissipativity is immediate as in part (b).

9.2 Construction of the pair-of-pants product

Lemma 9.4 Fix a superdissipative H . Suppose that .H0;H1;H2/ 2 F.H /3 consists
of nondegenerate Hamiltonians. Then for generic choice of element in P.H0;H1;H2/

and for a generic path in P.H0;H1;H2/, the associated 0– and 1–dimensional moduli
spaces of Floer solutions are compact , smooth and of the expected dimension.

Proof By construction, an admissible product datum satisfies the hypotheses of
Lemma 5.3. Therefore, given generators zi 2 CF�.Hi/, the pairs of pants of a fixed
dissipative Floer datum with i th end asymptotic to zi have energy estimated, according to
Lemma 5.3, by Etop.U /, equal to the action difference AH3

.z3/�AH1
.z1/�AH2

.z2/.
The first part of Lemma 9.3 and Theorem 6.3 thus imply that they are all contained
in an a priori compact set K depending on the differences bi � ai . The story is now
the same as the closed case, which is dealt with in the aspherical case in [54]. Sphere
bubbling is treated in the exact same way as for the differential, continuation maps
and chain homotopy operators, which was done in detail in Section 7.2. The upshot is
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that in the monotone or Calabi–Yau case, whether one is working with a single Floer
datum or with a family of parametrized ones, spheres occur in codimension 4. All
the arguments involve at most 1–dimensional families of Floer solutions. Generically,
there is no sphere bubbling for such families.

Theorem 9.5 Fix a superdissipative H . For any Floer datum .H;J /, denote by
CF�;0.H;J / the subcomplex generated by contractible periodic orbits. A generic
choice of admissible product datum for a generic product triple .H0;H1;H2/2F.H /3

determines a bilinear map

�W CF�;0.H0;J0/˝CF�;0.H1;J1/! CF�;0.H2;J2/

satisfying

(68) val.x1 �x2/� val.x1/C val.x2/:

Moreover , we have d.x1 � x2/D dx1 � x2C .�1/deg.x1/x1 � dx2. The induced map
on homology satisfies the following properties:

(a) It is independent of the choice of admissible product datum.

(b) If , in addition , H2 �H1 �H0, it is supercommutative.

(c) It commutes with all continuation maps in F.H /.

For the remainder of this section, unless indicated otherwise, all the Floer
cohomology groups are those arising from contractible orbits. We do not
indicate this further in the notation.

Remark 9.6 The reason we restrict our discussion of the pair-of-pants product to
contractible periodic orbits is in the formulation of the Floer complex we chose in
Section 7.3. In that formulation the Floer complex is generated over R by appropriate
equivalence classes Œ;A�, where  is a periodic orbit and A a path from a base loop
in the component of  . Concatenating two such data .0;A0/; .1;A1/ with a pair
of pants having output on some periodic orbit 2 does not give rise to an appropriate
path A2 unless all the involved periodic orbits i are contractible. To obtain a well-
defined product involving noncontractible orbits, additional choices need to be made.
This should not be hard, but we do not pursue the details. An alternative approach
which avoids this issue altogether is indicated in Remark 7.13. Note also that if the
symplectic form is exact or even merely aspherical and atoroidal, there is no issue.
Moreover, if one of the inputs is contractible, the pair-of-pants product is well defined
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without additional choices. Thus, as a result of the present subsection, we do get the
module structure of the full symplectic cohomology over the contractible part without
any additional work.

Proof of Theorem 9.5 Fix a regular pair-of-pants datum P 2 P.H0;H1;H2/. Let
zi 2 CF�.Hi/ for i D 0; 1; 2 be such that

iRS. z2/D iRS. z0/C iRS. z1/:

The product � is defined by counting the Floer solutions associated with p. The Leibnitz
rule is obtained by analyzing the boundary of the 1–dimensional moduli spaces. For
details see [4, Section 2.3.5]. Note that while [4] concerns the cotangent bundle, once
we fix a regular product datum, the analysis of the moduli spaces is exactly the same.

Behavior of the valuation under � follows by Lemma 5.3. Namely, by monotonicity of
the product data, any solution must have nonnegative energy.

Given two choices of admissible product data, Lemma 9.3 allows us to construct a
dissipative homotopy. We can perturb while maintaining dissipativity to get a sufficiently
generic homotopy inducing a chain homotopy between the appropriate complexes.
Commutation with continuation maps follows in the same way from Lemma 9.3 and a
standard gluing argument.

The claim about supercommutativity follows by pulling back the product datum P

by a biholomorphism of S2 which fixes 1 and commutes 0 and 1. For details see
[4, Lemma 2.3.24].

Lemma 9.7 The pair-of-pants product induces a map

�W HF�Œa1;b1/
.H1/˝HF�Œa2;b2/

.H2/! HF�Œmaxfa1Cb2;a2Cb1g;b1Cb2/
.H3/

for all F.H / admissible triples. Moreover , the product � fits into a commutative
diagram

(69)

HF�
Œa1;b1/

.H1/˝HF�
Œa2;b2/

.H2/

��

// HF�
Œmaxfa1Cb2;a2Cb1g;b1Cb2/

.H3/

��

HF�
Œa0

1
;b0

1
/
.H1/ y̋ HF�

Œa0
2
;b0

2
/
.H2/ // HF�

Œmaxfa0
1
Cb0

2
;a0

2
Cb0

1
g;b0

1
Cb0

2
/
.H3/

whenever a0i > ai and b0i > bi .
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Proof Recall the identity for any R–modules A;B;C;D,

A=B˝C=D DA˝C=.B˝C CA˝D/:

The first part of the claim follows by definition of CF�
Œa;b/

and the estimate (68). The
second part is clear if one works with representatives.

Lemma 9.8 Suppose H1;H2;H3 are a triple of lower semicontinuous exhaustion
functions satisfying

(70) H3 �H1 �H2

and Hi �H . Then there is a monotone sequence of admissible product triples Hik 2

F.H /; i D 1; 2; 3 such that Hik converges pointwise as k!1 to Hi .

Proof Pick constants a1; a2; a3< 1 such that a1Ca2< a3. According to Lemma 8.11,
we can find sequences Hik ; i D 1; 2; 3, which are monotone in k converging pointwise
to Hi and coinciding with aiH outside of a compact set. From (70) it follows that
for each k there exists an index ik such that H3;ik

> H1;k �H2;k . The sequence
H1;k ;H2;k ;H3;ik

is as required.

Lemma 9.9 The pair-of-pants product for Hamiltonians in F.H / induces a map

�H W HF�Œa1;b1/
.H1/˝HF�Œa2;b2/

.H2/! HF�Œmaxfa1Cb2;a2Cb1g;b1Cb2/
.H3/

for all triples .H1;H2;H3/ 2H3
sc that satisfy Hi �H . Moreover , the product �H fits

into a commutative diagram as in (69).

Proof Pick a monotone sequence .H0k ;H1k ;H2k/ of H–admissible triples converg-
ing to .H0;H1;H2/. As in (65),

HF�Œa;b/.Hi/ WD lim
��!

k

HF�Œa;b/.Hik/:

Since tensor product commutes with direct limits, we get an induced product as in
the statement of the lemma. Moreover, since the pair-of-pants product commutes
with all continuation maps in F.H /, the product �H is independent of the choice of
approximating sequence.

Lemma 9.10 Fix a superdissipative H. The pair-of-pants product on F.H / induces a
canonical product

�H W HF�.H0/ y̋ HF�.H1/! HF�.H2/

for all product triples .H0;H1;H2/ 2 H3
sc. The operation �H commutes with all

continuation maps and is supercommutative.
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Proof For i D 0; 1, let i 2 HF�.Hi/. By Lemma 8.17, HF�.Hi/ is the reduced
cohomology of an appropriate chain complex cCF�.Hi/ well defined up to filtered quasi-
isomorphism. Pick such chain complexes for H0 and H1. Let z0; z1 be representatives
of 0; 1 respectively. We construct an element 2D Œz1��H Œ z2�2HF�.H2/ as follows.
By (66), to give an element in HF�.H2/ it suffices to fix some c and give for each
a< c < b an element  ab

2
2HF�

Œa;b/
.H2/ so that the  ab

2
agree under the natural maps

(71) HF�Œa;b/.H2/! HF�Œa0;b0/.H2/;

defined whenever a< a0 and b < b0. For some � > 0 write bi D val.zi/C� for i D 0; 1.
Fix some b > b0 C b1 and for any a < b let a0 D a � b1 and a1 D a � b0. Then
by applying the operation �H of Lemma 9.9 to the classes of zi in HF�

Œai ;bi /
.Hi/ we

obtain an element  ab
2
2 HF�

Œa;b/
. Moreover,  ab

2
agrees with  a0b0

2
under the natural

maps (71). We thus obtain an element 2 2 HF�.H2/ which is well defined after
fixing representatives zi . We need to verify that 2 is independent of the choice of
representatives. For this it suffices to show that if zi is in the closure of the image of
the boundary for either i D 0 or i D 1, then 2 D 0. This amounts to showing that for
each a there exists a b such that  ab

2
D 0. For definiteness assume Œz0�D 02HF�.H0/.

By (66) we need to show that for each a there is a b such that

 ab
2 D 0 2 HFŒa;b/.H2/:

For this it suffices to show that there is a b such that we can find numbers ai ; bi for
i D 0; 1 such that

maxfa0C b1; a1C b0g � a< b0C b1 � b; bi > val.zi/;

and such that Œz0�D 0 2HF�
Œa0;b0/

.H0/. We choose b1 D val.z1/C � and a0 D a� b1.
Since z0 vanishes in reduced cohomology, there exists a b0 D b0.a0/ > val.z1/ such
that it vanishes in HF�

Œa0;b0/
.H0/. Pick a1 D a� b0. Then all the requirements are

satisfied. It is clear that changing the underlying complexes for HF�.Hi/ up to filtered
quasi-isomorphism does not affect the definition of �.

9.2.1 Independence of the choice of H at infinity

Lemma 9.11 Let F0�F1 be superdissipative. For i D 0; 1 let .H i
0
;H i

1
;H i

2
/2F.Fi/,

and suppose H 0
j � H 1

j for j D 0; 1; 2. Then the operation � commutes with the
continuation maps H 0

j ! H 1
j . In particular , the definition of the pair of products is

independent at the homology level of the choice of H in the approximating scheme.
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Proof Fix dissipative homotopies H 0
j !H 1

j . Gluing either the first two homotopies to
the input of the pair of pants in F.F0/ or the last one to the pair of pants in F.F1/ gives
rise to two pairs of pants from H 0

0
;H 0

1
to H 1

2
with 1–forms of the form Hi DGi˛†

such that dHi ^dh† � 0. We need a family .Gs;Js/ such that .Hs WDGs˛†;Js/ form
a dissipative interpolating family still satisfying

dHs ^ dh† � 0:

The proof of existence of such a .Gs;Hs/ is exactly as in Lemma 7.6.

9.2.2 Associativity

Lemma 9.12 Let H i for i D 1; 2; 3 and H 1;2;H 2;3 be elements of Hsc. Suppose
.H 1;H 2;H 1;2/ and .H 2;H 3;H 2;3/ are product triples. Let H 4 be such that

H 4
� 2 max

t2R=Z
fH

1;2
t ;H

2;3
t g:

Then the maps

HF�.H 1/˝HF�.H 2/˝HF�.H 3/! HF�.H 4/

coming from the two compositions in Figure 4 coincide.

Proof It suffices to prove the claim under the assumption that H i ;H i;j 2 F.H /

for some superdissipative H, since we can replace all the involved Hamiltonians by
approximating sequences in F.H /. Moreover, we may assume all inequalities are
strict. The assumption implies there is a time-independent H such that H 4 > H >

2 maxfH 1;2;H 2;3g. Thus if we prove associativity for the case where all the functions
are positive multiples of a single function, the general claim will follow by naturality
of the pair-of-pants product with respect to continuation maps. For this case the proof
is standard in the literature (see eg [5; 4]) but we spell out the details.

Consider H 1 D H 2 D H 3 D H , H 1;2 D H 2;3 D 2H and H 4 D 4H . Now let
f 1;2; f 2;1 W†!R be functions such that d.f i;j˛†/�0, df i;j is compactly supported,
and f i;j is equal to i at the input z0, to j at the input z1, and to 4 at the output.
We consider the 1–forms H1;1;2 WD H˛† and Hi;j ;4 WD f i;j H˛. The two possible
compositions correspond to the gluing of H1;1;2 to either H2;1;4 at the first input, or to
H1;2;4 at the second input. We must show that there exists a homotopy between the two
compositions. We write these glued 1–forms as H˛0 and H˛1; here ˛i are 1–forms
on S2 nf0; 1; z0;1g, where z0 is a point z0 near 0 for the first composition and z1 near
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H 1;2

H 3

H 1 H 2

H 1
H 2;3

H 2 H 3

Figure 4: Homotopy for associativity.

1 for the second composition. Note that d˛i � 0. We pick a smooth path z�2Œ0;1� in
the Riemann sphere. We show that we can lift this to a path ˛� of 1–forms satisfying
d˛� � 0 and connecting ˛0 to ˛1. Smooth four-punctured spheres are diffeomorphic
by a diffeomorphism which preserves the cylindrical ends. Thus the claim reduces
to finding such a homotopy on a fixed surface. But the condition d˛ � 0 is convex.
Thus we can find a path ˛� as required. The family H� WD H˛� gives the required
homotopy.

9.3 The PSS map

Theorem 9.13 Let M be geometrically bounded. Then the small quantum product on
H�.M IK/ is well defined.

Proof We take as our model of H�.M / the homology of the Morse complex CM�

arising from considering the positive gradient flow of some proper exhaustion function
f WM!R with nondegenerate critical points, together with a geometrically bounded J

such that the pair .f;gJ / is Morse–Smale. For this to compute cohomology (and,
indeed, for the Morse differential to be well defined) we take CM� WDKcrit.f /. Indeed,
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CM� thus defined is the dual of CM�, which consists of finite formal sums of critical
points with the differential defined by counting negative gradient lines. Since g is proper
and bounded below, the subcomplexes CM�a � CM� generated by critical points in the
sublevel set Ma WD f

�1.�1; a/ compute the singular homology of Ma by standard
Morse theory [39]. By taking colimits it follows that CM� computes singular homology
of M, and therefore, CM� computes singular cohomology. The small quantum product
is defined by counting the J–holomorphic spheres with three marked points intersecting
the unstable manifolds of some input critical points p; q and the stable manifold of an
output critical point r . Since f is proper and bounded below, the stable manifold of
any critical point is precompact. Thus by Theorem 4.11 all the spheres are contained in
a priori compact sets. The fact that the operation thus defined is indeed an associative
product is now standard; see eg [37, Section 12.2] and [46].

Remark 9.14 An alternative way to think of the construction of the small quantum
product is to observe that cohomology of a noncompact manifold is Poincaré dual to
Borel–Moore homology. That is, a homology where one allows locally finite sums
of singular chains. Given a triple 1; 2; 3 of Borel–Moore homology classes, the
coefficient of 3 in the quantum product 1�QH 2 is the three-pointed Gromov–Witten
associated with the triple 1; 2; 

�
3

, where  �
3
2H�.M / is the Poincaré dual of 3.

Now  �
3

is a cycle in ordinary homology and thus a finite chain. Therefore, by geometric
boundedness, the number of J–holomorphic spheres intersecting  �

3
and representing

a given homology class is finite.

Theorem 9.15 For any H 2Hsc there is a natural map

f PSS
H WH�.M IK/! HF�.H /:

Denote by � the product in Floer cohomology and by �QH the small quantum product.
Then f PSS satisfies for any product triple H0;H1;H2 and for any pair of classes
a; b 2H�.M IK/,

f PSS
H0

.a/�f PSS
H1

.b/D f PSS
H2

.a�QH b/:

In addition , for any x 2 HF.H1/,

f PSS
H0

.1/�x D fH1;H2
.x/;

where
fH1;H2

W HF�.H1/! HF�.H2/

is the natural continuation map.
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Proof In the compact case for smooth nondegenerate Hamiltonians this is [46]. In
the noncompact case, we achieve C 0 estimates for smooth dissipative nondegenerate
Hamiltonians by considering appropriate dissipative data on the plane. Namely, we
pick a geometrically bounded J and monotone homotopy Hz going from 0 for z in a
neighborhood of the origin and to H for z near1, and such that the associated Gromov
metric gJH

is i–bounded. This is done as in Lemma 7.6. Alternatively, we can restrict
the direct definition to the superdissipative case, and just take Hz D f .jzj/H for some
monotone increasing function. The definition for arbitrary H is by an approximation
scheme as in the definition of the pair-of-pants product. Write dt WD darg z. Then the
Floer datum .J;Hz dt/ on the complex plane is dissipative. Moreover, it is monotone,
so by Lemma 5.3 and Theorem 6.3 the solutions emanating from any critical point
of f to any critical point of AH are confined to an a priori compact set. This reduces
the claims to the compact case.

9.4 Proof of Theorems 1.3 and 2.1

Let H � Hsc be a subset consisting of time-independent Hamiltonians such that for
any H1;H2 2H we have that 2 maxfH1;H2g 2H. We call H a monoidal indexing set.
For each monoidal indexing set H, we define a group

SH�.M IH/ WD lim
��!

H2H
HF�.M /:

We denote by Hsm the monoidal indexing set consisting of all smooth functions which
are proper and bounded from below, and define

SH�univ.M / WD SH�.M IHsm/:

We now prove Theorem 1.3 from the introduction, which states that SH�.M IH/ is a
unital algebra over QH�.M IK/.

Proof of Theorem 1.3 (a) Given 0; 1 2 SH�.M IH/, we can find H0;H1 2 H
such that i lifts to an element still denoted by i 2 HF�.Hi/ for i D 0; 1. Since
H is a monoidal indexing set we can find an H2 2 H such that .H0;H1;H2/ form
a product triple. Pick a superdissipative Hamiltonian H � Hi , i D 0; 1; 2, and let
2 WD 0 �H 1 2 HF�.H2/, using the induced product �H from Lemma 9.10. By
Lemma 9.11, 2 is independent of the choice of H . We define 0 � 1 2 SH�.M IH/
to be the image of 2 under the natural map HF�.H2/ ! SH�.M IH/. Since �H

commutes with all continuation maps, 1 � 2 is independent of the choice of product
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triple .H0;H1;H2/ 2H3. Associativity and supercommutativity hold up to contin-
uation maps in H by Lemmas 9.12 and 9.10. Indeed, if H1;H2;H3 2 H, then so is
4 maxfH1;H2;H3g.

(b) This is an immediate consequence of Theorem 9.15.

(c) This is an immediate consequence of the naturality of the pair-of-pants product
with respect to the continuation maps.

We next turn to the proof of Theorem 2.1 concerning local symplectic cohomology,
but first we recall some definitions. Let K �M be a compact set. Let

HK .x/ WD

�
0 if x 2K;

1 if x 2M nK:

The local symplectic cohomology at K is defined by

SH�.M jKIK/ WD HF�.HK IK/:

Proof of Theorem 2.1 (a) We have

K1 �K2 () HK2
�HK1

:

Thus there is a continuation map

SH�.M jK2/D HF�.HK2
/! SH�.M jK1/D HF�.HK1

/:

(b) This is the symplectic invariance of the construction of HF�.

(c) We have that HK WD fHK g forms a monoidal indexing set. So SH�.HK / D

HF�.HK /, and the claim follows from Theorem 1.3.

(d) This is an immediate consequence of Theorem 1.3 and the functoriality of the
continuation maps.

(e) We have H � supK H � HK . On the other hand the map corresponding to
H !H C c is a conformal isomorphism decreasing valuation by c.

9.5 Symplectic cohomology as a topological vector space

There is more than one natural way to put a topology on SH�.H/ depending on the
purpose one has in mind. In the rest of the paper we shall consider the final topology
on SH�.M IH/. That is, the strongest topology for which all the continuation maps
HF�.H /! SH�.M IH/ for H 2 H are continuous. Note that this topology is not
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necessarily Hausdorff. We also do not address the continuity of the pair-of-pants
product. For applications later in this paper we will only need the following lemma.

Lemma 9.16 Let H be a monoidal indexing set consisting of continuous Hamiltonians.
Let K �M be a compact set. Then the natural map

SH�.H/! SH�.M jK/

is continuous.

Proof By Theorem 2.1(e), for any continuous Hamiltonian H , the continuation map
HF�.H /! SH�.M jK/D HF�.HK / is continuous. Continuity of the induced map
follows by definition of the final topology.

Remark 9.17 Since the spaces SH�.M jK/ are all Banach spaces, Lemma 9.16 will
still hold if one considers topologies on SH�.H/ which are weaker than the final
topology. We do not pursue this further, however.

We illustrate the various notions of symplectic cohomology by considering the case
M DR�R=Z. We will compare symplectic cohomologies for three different monoidal
indexing systems. Since M is a Liouville domain we no longer restrict the discussion
of the pair-of-pants product to contractible orbits.

Example 9.18 Consider the monoidal indexing set L consisting of Hamiltonians
which, outside of a compact set, are of the form

H.s; t/D ajsjC b:

According to a theorem by Viterbo [64] equating symplectic cohomology of a cotangent
with loopspace homology of the underlying manifold, for any coefficient field R we
have that

(72) SH�.M IL/DRŒx;x�1; @x �=@
2
x :

Thus, SH�.M IL/ is the exterior algebra of polyvector fields on Rnf0g. By the Künneth
formula [42], or by Viterbo’s theorem again, the same holds for M D T �Tn.

Example 9.19 Now let K �M D Œ�a; a��R=Z. To keep track of actions choose
the primitive s dt of the standard symplectic form. With this choice, one shows that
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SH�.M jK/ is obtained from SH�.M IL/ by completing with respect to the valuation
val.xi/ WD ji ja and val.@x/ WD 0. When the underlying ring R is trivially valued, this
completion is of no effect. However, when working over the universal Novikov ring
we obtain for example that SH0.M jK/ consists of all infinite Laurent series

1X
iD�1

bix
i with bi 2ƒ0;nov

satisfying
lim val.bi/Cji ja!�1:

This is the same as the set of analytic functions on the rigid analytic torus ƒ� which
converge on the subtorus fz 2 ƒ� j val.z/ 2 Œ�a; a�g. A reference for rigid analytic
geometry is [9]. Closer to home, [58] and [3] provide a closely related point of view
from the vantage point of Lagrangian Floer homology of the R=Z fibers.

Example 9.20 Finally we study SH�univ.R� S1/. We claim that over the universal
Novikov ring , SH0

univ.R�S1/ consists of formal Laurent series
P

bix
i that are rapidly

decreasing in the sense that there exists a superlinear convex function g such that
val.bn/D�g.n/.

To see this, observe that SH�univ.M / is computable by direct limit of HF�.H / over
functions H which outside of a compact set are of the form H.s; t/ D h.jsj/ for
h W RC! RC a convex function such that h0.t/ is unbounded as t !1.12 For any
such H there is a natural map

SH�.M IL/! HF�.H /;

by the universal property of the direct limit and the fact that for any H 0 2 L we have
H 0 � H outside of a compact set. Each monomial xi maps to a class associated
with a unique periodic orbit  i of H . It is not hard to show that HF�.H / is in fact
the completion of the algebra SH�.M IL/DRŒx;x�1; @x � with respect to the norm
val.xi/DAH .i/. This is computed as follows. Let si 2R be the unique real number
such that @sH.s; t/D i . Then

val.xi/D sih
0.si/� h.jsi j/D isi � h.jsi j/:

Writing f D h0 we have si D f
�1.i/ and the right-hand side of the last equation is

exactly g.i/ WD
R i

0 f
�1.t/ dt . Since f �1 is monotone and unbounded this means gi

is convex and superlinear. From this it is not hard to deduce the claim.
12Such a function is not necessarily dissipative. However, we may still talk about its Floer cohomology by
approximating by linear Hamiltonians.
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10 Computations and applications

10.1 Liouville domains

Let .†; ˛/ be a contact manifold with contact form ˛. Let .U; ! D d�/ be a compact
exact symplectic manifold with † as boundary such that ˛D �j@UD† and such that the
Liouville field Z, which is defined by �Z! D �, points outward at the boundary. Let
yU be the completion of U by attaching the cone †�R�0 with the symplectic form
!˛ D er .d˛C dr ^˛/. The vector field Z extends to yU and is given by Z D @=@r .

Denoting by �t the time t flow of Z, the skeleton of U relative to � is defined by

Skel.U;Z/D
\
t>0

�t .U /:

The map †�R! yU defined by .x; r/ 7! �r .x/ is a symplectic embedding of the
symplectization of †, whose image is yU n Skel.U; �/. A reference for these basic
definitions and claims is [14]. In particular, the function �r .x/ 7! er is defined and
smooth on yU n Skel.U;Z/. Moreover, it extends to a continuous function of yU, still
denoted by er, by defining er .p/ D 0 for p 2 Skel.U;Z/. Denote by L the set of
Hamiltonians that outside of a compact set containing the skeleton are of the form
aer Cb for a> 0 and b 2R. We refer to these Hamiltonians as being linear at infinity.
Similarly, Hamiltonians which outside of a compact set are of the form h.er / for
h convex are referred to as convex at infinity. Let J be of contact type; that is, J is an
!–compatible translation-invariant almost complex structure J satisfying JRD @r for
R the Reeb flow. As in [63], define SH�Viterbo.U /D lim

��!H2L HF�.H;J /.

Lemma 10.1 SH�Viterbo.U /D SH�. yU IL/.

Proof By Example 5.25, when paired with a contact type J , the elements of L are
i–bounded. Any H 2 L with slope at infinity not in the period spectrum of † is
dissipative by Example 6.14. It follows that HF�.H / D HF�.H /. So the directed
systems computing each side coincide.

In particular, we have a natural map

f W SH�Viterbo.U IR/D SH�. yU IL;R/! SH�univ.
yU IR/:

Theorem 10.2 The map f is an isomorphism.
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Remark 10.3 The proof below of Theorem 10.2 relies crucially on the fact that for
Hamiltonians which are convex at infinity, the action spectrum is bounded from below,
rendering the topology of HF�.H / discrete. This fails when working over a nontrivially
valued field. To see what sets trivially valued fields apart, consider the following. Given
two Hamiltonians H1 �H2 such that Hi D hi.e

r /, the continuation map

f12 W HF�.H1IR/! HF�.H2IR/

can be shown two be an isomorphism of vector spaces, and thus, since the topology
is discrete, of topological vector spaces. However the inverse of f12 will generally
not be bounded. Thus when working over ƒR, the map f12 will no longer be a
homeomorphism.

Proof of Theorem 10.2 We consider the set C of smooth Hamiltonians H for which
there is a compact K D fer < �g for some � > 0 such that H is C 2–small and negative
on K, and of the form H D h.er / outside of K. The action of any 1–periodic orbit
of such a Hamiltonian is positive. The set of Hamiltonians C is cofinal in the set of
all smooth Hamiltonians with respect to the order relation �, defined by

(73) H1 �H2 () H2.x/�H1.x/� C > �1 for all x 2M:

Pick a sequence Fi 2 C given outside of a compact set by Fi D hi.e
r / so that the

sequence Fi converges to H on compact subsets of M and such that near infinity hi is
linear of slope not in the period spectrum of ˛. The action of a periodic orbit is given
by the right-hand side of (43), which in this case specializes, for a nontrivial periodic
orbit  of Fi occurring at some level set er D t , to

AFi
. /D th0i.t/� hi.t/;

which is positive for hi convex. Positivity also holds for the trivial periodic orbits,
since they occur inside U where Fi < 0. We thus have that HF�

Œk;1/
.Fi/D HF�.Fi/

for all k � 0. A similar statement holds for H. From this we deduce, first, that
HF�.H /D HF�.H /, and, second, that HF�.H /D lim

��!i
HF�.Fi/.

The set Fi is cofinal in L with respect the order relation �. Therefore, we obtain an
isomorphism of R–modules

HF�.H /D lim
��!

i

HF�.Fi/! SH�.LregIR/:

Moreover, given two convex functions H1�H2, the continuation maps from H1 to H2

will commute with the above isomorphisms since they are all defined via continuation
maps between functions which are linear near infinity. The claim follows.
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We similarly prove:

Theorem 10.4 SH�. yU jSkel.U;Z/IR/D SH�. yU jU IR/

D SH�Viterbo.U IR/

D SH�univ.
yU IR/:

Proof Consider a monotone sequence Hi belonging to the set of convex Hamiltonians C
defined in the proof of Theorem 10.2, so that

lim
x!1

Hi.x/D

�
0 if x 2 U;

1 if x 2 yU nU:

Then, by positivity of the action spectrum,

SH�. yU jU IR/D lim
 ��

k

lim
��!

i

HF�Œk;1/.Hi/D lim
��!

i

HF�.Hi/:

The right-hand side equals SH�Viterbo.U IR/ by the same argument as Theorem 10.2. In
a similar way, SH�. yU jSkel.U;Z/IR/D SH�Viterbo.U IR/ by considering a sequence
Hi 2 C such that

lim
x!1

Hi.x/D

�
0 if x 2 Skel.U;Z/;
1 if x 2 yU nSkel.U;Z/:

Finally, the equality SH�Viterbo.U IR/D SH�univ.
yU IR/ is Theorem 10.2.

Proof of Theorem 2.14 We consider the radial coordinate t D er on U , which we may
assume surjects onto .0; 1/, with Skel.U / corresponding to t D 0. We use the notation
U.t0/ WD fp 2 U j t.p/ � t0g. We will consider a family of dissipative S–shaped
Hamiltonians Hc;�, which are defined as follows. H is equal to 0 on U.�/, to ct � c�

on U
�

1
2

�
nU.�/, and has small gradient and Hessian outside U

�
1
2

�
. Here it is understood

that we perturb slightly to get a smooth Hamiltonian which is transversely nondegenerate
on U

�
1
2

�
. By Theorem 1.1(c), the Hamiltonians Hc;� are dissipative. We construct a

monotone increasing sequence ci going to1 and a monotone decreasing sequence �i

going to 0, so that the distance of ci to the period spectrum of @U is more than 2�i . We
take �i even smaller so that the energy required according to Theorem 6.3 for a Floer
trajectory to meet both sides of U.1/nU

�
1
2

�
is more than �ici . Observe now that by our

assumption, the action functional on M restricted to loops in U which are contractible
in M coincides up to a constant with the action functional defined using the Liouville
form. Moreover, the periodic orbits outside of U

�
1
2

�
are constants with large value of H .

Thus, the set of periodic orbits of Hci ;�i
having nonnegative action are the constants
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inside U.�i/ as well as the periodic orbits appearing as the slope goes from 0 to ci . Their
actions are all at most ciıi . Thus, the Floer trajectories connecting orbits of nonnegative
action all remain inside U.1/. So SH�;0

Œ0;1/
.M jSkel.U /IR/D SH�;0Viterbo.U IR/.

It remains to show that the negative-action periodic orbits form an acyclic complex.
Consider an increasing 1–parameter family of Hamiltonians Ht D Hc.t/;�.t/ with
c.t/!1 as t !1, and fix an action window Œa; 0/. We cannot show that for an
arbitrary a there is a fixed t such that HF�

Œa;0/
.Ht /D 0 since as we increase the slope,

new negative periodic orbits keep appearing with action not far from 0. However, we
claim that for each t0 there is a t1 > t0 such that, denoting by ft0;t1

the continuation
map from t0 to t1, we have

ft0;t1
.HF�Œa;0/.Ht //D f0g:

Indeed, let  be a periodic orbit of @U with period T � c.0/. It will appear as a
periodic orbit of Hc.t/;�.t/ of action 1

2
.T �c.t//��.t/. Consider the cohomology class

˛.t/ D f0;t .˛/. By functoriality of the continuation maps, its action is a monotone
decreasing function of t . Moreover, since for any t the complex CF�

Œa;0/
.Ht / is finitely

generated, there is a discrete set of points fti 2 Œ0;1/g such that on the interval .ti ; tiC1/,
the cocycle ˛ is represented by the action minimizing cycle

P
 i

j . Let T i
j be the period

of  i
j as a Reeb orbit of @U and let T i be the maximal of these. Along the interval

.ti ; tiC1/, the action of ˛.t/ will be given by 1
2
.T i � c.t//� �.t/. Since the action

of ˛.t/ is nonincreasing, we must have that T i is nonincreasing. Since c.t/!1

it follows that the negative periodic orbits in U.1/ eventually fall out of any action
window under the continuation maps. The periodic orbits outside of U.1/ are constants
with action going to negative infinity. This means all the periodic orbits which lie
outside U.1/ are in the closure of the boundary operator in SC�.fHig/. Upon tensoring
SC�.fHig/ with ƒR, the same remains true.

Proof of Theorem 2.16 Let K be a compactly supported displacing Hamiltonian for
Skel.U /. Then K displaces an open neighborhood of Skel.U /, which we may take to
be U itself. Let F be a Hamiltonian which vanishes on a neighborhood of U [ supp K

and has small enough gradient and Hessian to be dissipative and have only critical
points as periodic orbits. Let Hi be a sequence of Hamiltonians which vanishes on
Skel.U /, increases on U.�i/ for some �i ! 0, and becomes a constant Ci outside
the u.�i/, with Ci!1. The sequence HiCF is monotone and converges to HSkel.U /,
and so computes SH�.M jSkel.U /IK/.
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Recall the notation H1 # H2 WDH1CH2 ı H1
, where  H is the time 1 Hamiltonian

flow of H . We have  H1#H2
D  H2

ı H1
. Observe that the sequence .Hi CF / # K

computes SH�.M jSkel.U /IK/ as a topological vector space. To see this, note that
there is a constant C such that jHi # K�Hi j< C , so we can factor

SC�.fHi CF �C g/! SC�.f.Hi CF / # Kg ! SC�.fHi CF CC g/;

and vice versa.

F CK D F # K is also a displacing Hamiltonian which, after slightly perturbing, we
can take to be nondegenerate. Moreover, all the fixed points of .Hi CF / # K coincide
with those of F # K. By a standard argument [59], adding Hi has the effect of shifting
the action spectrum by �Ci . The action spectrum of F #K is bounded from above since
all the positive action orbits lie in the compact set defined by F D 0. Thus the whole
action spectrum of .HiCF /#K moves to negative infinity. So SH�.M jSkel.U //D 0.
By Theorem 2.14, this implies SH�Viterbo.U /D 0.

Proof of Theorem 2.17 We consider the family of Hamiltonians Hc;� as in the proof
of Theorem 2.14. The periodic orbits of U that are contractible in U embed in an
action-preserving manner in LM. We take ı > 0 such that any Floer trajectory of
energy at most ı which meets U

�
1
2

�
is contained in U.1/. The classes Œx;A� with x a

contractible periodic orbit in U
�

1
2

�
and A a path in LU.1/� L.M / thus form a direct

summand of SC�
Œ0;ı/

.fHci ;�o
g/. Moreover, the proof of Theorem 2.14 shows that the

differential applied to contractible periodic orbits in U
�

1
2

�
coincides mod ı with the

differential computing SH�. yU jU /. This proves the claim.

Proof of Theorem 2.18 Consider Hamiltonians as in the proof of Theorem 2.16, and
denote by

f W SC�.fHi CFg/! SC�.f.Hi CF / # Kg/

a continuation map induced by an appropriate homotopy, by g the continuation map
in the other direction, and let H be the chain homotopy operator between the identity
and g ı f . Fix an action value a. By taking i0 large enough we have, as in the
proof of Theorem 2.16, that fi vanishes mod a for all i � i0. Therefore, starting our
sequences at i0, we have IdD H ı d C d ıH mod c for all c � a. But H can increase
the valuation by at most the Hofer norm of K. It follows that if val˛ D c > a and
d˛ D 0 mod c, the largest possible window Œc; d/ for which ˛ ¤ 0 2 HF�

Œc;d/
.HU /

has d � c < d.U / � kHkHofer. So taking a < 0 and ı as in Theorem 2.17, we get
d.e/ > ı.
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10.2 Mapping tori

Let .M; !/ be a compact symplectic manifold and let  WM !M be a symplecto-
morphism. Denote by M the mapping torus

M WD Œ0; 1��M=.0;p/' .1;  .p//:

Let z! be the 2–form on M i
obtained by pulling back ! via projection to M, and let

zM WDR�M ;

with the symplectic structure z!Cds^dt . Denote by HF�.M;  / the fixed-point Floer
homology of  as introduced in [21]. The closed 1–form dt induces a grading of the
Floer homologies by integrating over periodic orbits.

Denote by S W zM !R the natural coordinate .s; t;p/ 7! s. Let f WR!R be a proper
convex function which is linear at infinity of slope at greater than k for some integer k.
Let J be an almost complex structure for which the map � W zM !R�S1 defined by
.s; t;p/ 7! .s; t/ is J–holomorphic. Let H D f ıS . The following theorem is due to
M Abouzaid.

Theorem 10.5 Denoting conformal isomorphism by', we have

(74) HF�;k.H IƒR/D HF�;k.H IƒR/' HF�.M;  k
IƒR/:

Proof The Hamiltonian vector field of S is @t . So the periodic orbits of H D f ıS are
contained in fibers of H for which f 0 is an integer. The periodic orbits corresponding
to an integer k are the fixed points of  k . The periodic orbits corresponding to different
values of k have different homotopy classes. Thus the Floer differential only connects
orbits within a fiber. The .H;J /–Floer trajectories in zM project under � to maps
satisfying the inhomogeneous Cauchy–Riemann equation

@sS D @tT � 1; @sT D @tS:

Thus the function sC i t 7! S C i.T � t/ is holomorphic. By the maximum principle,
S must be constant. In particular, Floer trajectories connecting orbits within a fiber
of H must stay within that fiber. Also, we have T D t .

Recall the definition of the differential in fixed-point Floer homology. Namely, for
fixed points x and y of  k , it counts J–holomorphic strips asymptotic to x and y

satisfying the boundary condition u.s; 1/D  .u.s; 0//. Given such a u we obtain a
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Floer cylinder zu in the mapping torus by zu.s; t/ WD .t;u.s; t//. This sets up a bijection
between the Floer trajectories connecting periodic orbits in a fiber and fixed-point
holomorphic strips. The rightmost equality in (74) follows. For the other equality note
that since  k has a finite number of fixed points, CF�;k.H IƒR/ is finite-dimensional
and thus the differential has closed image.

Proof of Theorem 2.6 Let f be any proper convex function and let H D f ı S .
Consider a monotone sequence of convex functions fn which are linear of slope larger
than k near infinity, and which converge to f . Write Hn WD fn ıS .

Since Floer trajectories remain in fibers of S , we have by the isomorphism (74) that

HF�;k.H /D HF�;k.Hn/D HF�.M;  k/:

By the same reasoning, given convex functions f1 � f2 and writing Hi D fi ıS for
i D 1; 2, we get that the natural map HF�;k.H1/! HF�;k.H2/ is just the identity
under the above identification.

It follows that
SH�;kuniv.

zM /D HF�;k.M;  k/:

Observe that SH�univ amounts to completing the direct sumM
k2Z

SH�;kuniv.
zM /

by allowing certain infinite sums. The claim follows.

10.3 The Künneth formula for split Hamiltonians

For i D 1; 2, let Mi be symplectic manifolds and let .Hi ;Ji/ be dissipative Floer data
on Mi . Unless .Hi ;Ji/ are strictly bounded, the data .H1ı�1CH2ı�2; �

�
1

J1C�
�
2

J2/

will not be i–bounded. In that case we replace CF�.H / via the telescope construction
by a sequence of Hamiltonians which are strictly bounded, and continue to denote this
by CF�.H /. We have

(75) cCF�.H1 ı�1CH2 ı�2; �
�
1 J1C�

�
2 J2/D CF�.H1;J1/ y̋ CF�.H2;J2/;

where the hat denotes here and later the complete tensor product. This is defined by
taking the Banach norm k � k on the tensor product X ˝Y to be defined by

kzk WD inf
˚
max

i
fkxikkyikg W z D

X
xi ˝yi

	
for z 2X ˝Y:

It is straightforward to verify using (54) that this is indeed the norm induced by (75).
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Theorem 10.6 We have a natural isometry of Banach spaces over ƒR,

HF�.H1CH2IƒR/D HF�.H1IƒR/ y̋ HF�.H2IƒR/:

Proof We follow the proof of the finite-dimensional case from [28]. Isomorphism (75)
induces a norm-preserving map

HF�.H1/ y̋ HF�.H2/!H�.CF�.H1/ y̋ CF�.H2//D HF�.H1CH2/:

We show that this map is surjective. All spaces considered here are countably generated.
In particular, every closed subspace has a closed complement [53, Proposition 10.5].
We thus decompose the chain complexes CF�.Mi IHi/ into a direct sum Ci ˚Zi of
chains and cycles, and then further decompose Zi DKi ˚Bi , where Bi D @Ci .

Any cycle  2CF�.H1/ y̋ CF�.H2/ is, up to the closure of the boundary, an element of

B1 y̋ C2˚K1 y̋ C2˚C1 y̋ K2˚K1 y̋ K2˚C1 y̋ C2:

Now note that the images of the spaces under @ are contained, respectively, in

B1 y̋ B2; K1 y̋ B2; B1 y̋ K2; 0; B1 y̋ C2˚B2 y̋ C1;

which are pairwise disjoint. So each component of the boundary must vanish separately.
Thus if  is a cycle it must actually be an element of K1 y̋ K2, up to the closure of the
boundary. In particular, the map is indeed surjective.

10.4 The Künneth formula for universal symplectic cohomology

We shall need the following lemma. The author is grateful to Lev Buhovski for its
proof.

Lemma 10.7 Let M and N be smooth manifolds , and let P DM �N . The set of
functions of the form f ı�1Cg ı�2 is cofinal in C1.P /.

Proof Take an exhaustion K1 �K2 � � � � �M of M and an exhaustion L1 �L2 �

� � ��N of N by compact sets, and define positive locally bounded functions g1 WM!R

and g2 W N ! R by g1.x/D maxKi�Li
f and g2.y/D maxKr�Lr

f , where i is the
minimal positive integer such that x 2Ki , and r is the minimal positive integer such
that y 2Lr . Then we have f .x;y/6 g1.x/Cg2.y/ for any .x;y/ 2M �N . Now,
since g1 and g2 are locally bounded, one can find smooth functions f1 WM !R and
f2 WN !R such that g1.x/6f1.x/ for any x 2M , and g2.y/6f2.y/ for any y 2N ,
so then we have f .x;y/6 f1.x/f2.y/ for any .x;y/ 2M �N .

Geometry & Topology, Volume 27 (2023)



Floer theory and reduced cohomology on open manifolds 1383

Proof of Theorem 2.7 By the discussion preceding Theorem 10.6, we have a natural
map

lim
��!

.H1;H2/2H.M1/�H.M2/

HF�.H1IƒR/˝HF�.H2IƒR/! SH�univ.M1 �M2IƒR/:

By Lemma 10.7 we can consider the right-hand side as a direct limit over the same
indexing set of split Hamiltonians. So an element of the right-hand side lifts, for some
pair .H1;H2/, to an element of  2 HF�.H1 ı�1CH2 ı�2/. By Theorem 10.6 the
image of the natural map

HF�.H1/˝HF�.H2/! HF�.H1 ı�1CH2 ı�2/

is sequentially dense. The density part of the claim follows. Now suppose some
element x of the left-hand side maps to 0 in the right-hand side. Then there is an
.H1;H2/ such that the lift zx of x to HF�.H1/˝HF�.H2/maps to 0 in HF�.H1CH2/.
It follows from Theorem 10.6 that zx D 0.

Corollary 10.8 Suppose that SH�univ.M1/D f0g. Then SH�univ.M1 �M2/D f0g.

10.5 Vanishing results

Theorem 10.9 Let M be a geometrically bounded manifold such that c1.M / D 0.
Suppose there exists a proper dissipative nondegenerate Hamiltonian on M carrying no
periodic orbits of index 0. Then SH�univ.M IK/D 0.

Proof By definition, the natural map H�.M IK/ ! SH�.M IK/ factors through
HF�.M IK/. Since HF�.H IK/D 0, we get from Theorem 1.3 that SH�univ.M IK/ is
a unital algebra in which 1D 0.

Lemma 10.10 Let M be a geometrically bounded manifold such that c1.M / D 0.
The hypotheses of Theorem 10.9 are satisfied if M carries a circle action  �2S1 with
the following properties:

(a) It is generated by a Hamiltonian H which is proper and bounded from below.

(b) There is an equivariant compatible geometrically bounded almost complex
structure J such that the distance d.p;  1=2.p// under gJ is bounded away
from 0 outside of a compact set , and krHkgJ

� f .H / for some function
f WR! Œ1;1/ for which the primitive of 1=f is unbounded from above.
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Proof Assume that the flow of H has minimal period 1. Our assumptions imply that
for any integer k, the function

�
kC 1

2

�
H is dissipative. Indeed, invariance of J under

the flow implies the flow of H is Killing. Thus, by Corollary 5.18 and Lemma 5.16
the metric gJH

is geometrically bounded. The estimate on d.p;  1=2.p// implies
loopwise dissipativity by Lemma 6.17 and Corollary 6.19. Indeed, in this case, the
Lyapunov constant vanishes. Let P � M be a connected component of the set of
critical points of H . Then P is compact and Morse–Bott. Since the flow of H is
1–periodic, the Robbin–Salamon index iRS.p/ for any p 2 P is related to the Morse
index of H by 2iMorse.p/C dim P D iRS.p/C 2n. Suppose first that iRS.p/ ¤ 0.
The Robbin–Salamon index is additive with respect to concatenation, and invariant
under reparametrization. Thus, the absolute value of the Robbin–Salamon index of
the critical points p 2 P can be made arbitrarily large by multiplying H by a large
enough constant. Suppose now that iRS.p/D 0. Then 0� iMorse.p/D n� 1

2
dim P . We

have dim P < 2n since the action is nontrivial. So we can perturb P and obtain fixed
points with Robbin–Salamon indices lying in

�
�

1
2

dim P; 1
2

dim P
�
� .�n; n/. Since

the grading defined in equation (53) (for which the unit has degree 0) is by iRS.p/Cn,
we get that in either case, for k large enough, there are no periodic orbits of index 0.

Remark 10.11 Lemma 10.10 has the curious implication that on a closed symplectic
manifold M with c1.M /D 0 there are no Hamiltonian circle actions. This is in fact
proven in [43].

Example 10.12 Let M be a toric Calabi–Yau manifold obtained as the symplectic
reduction of CN by a torus preserving the holomorphic volume. Then M has an
induced almost complex structure which preserves the action of the residual torus. With
the induced Kahler metric, M can be shown to have bounded geometry, and the circle
action given by the diagonal action

� � Œz1; : : : ; zN �D Œe
i�z1; : : : ; e

i�zN �

can be shown to satisfy the conditions of Lemma 10.10. Thus SH�univ.M /D 0. This
generalizes the vanishing of the symplectic cohomology of Cn as well as the more
general result of [49] concerning the case where M is total space of a negative line
bundle over projective space and c1.M /D 0.

10.6 Existence of periodic orbits

Proof of Theorem 2.4 Let H W M ! R be a proper smooth function such that
H�1.�1; 0/DK. Suppose there is a ı > 0 such that the flow of H on H�1.0; ı/ has
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no periodic orbits representing ˛ in the first part or contractible in the second. We may
assume without loss of generality that H has sufficiently small Hessian everywhere so
that the only periodic orbits are critical points. Let hn WR!R be a monotone function
constructed inductively so that �1=n < hn.x/ < 0 for x 2 .�1; a�, hn.x/ D xC n

on .aC ı=n;1/ and hn.x/ � hn�1.x/ everywhere. Let Hn D hn ıH . Note that by
our assumption the only periodic orbits of Hn are critical points, or, in the first part,
periodic orbits not representing ˛. We have that Hn converges in a monotone way
to HK . So, by Lemma 8.17,

SH�.M jKIK/DcSC�.fHng/D lim
 ��

a

lim
��!

n

HF�Œa;1/.HnIK/:

The first part of the theorem now follows, since the complex cSC�;˛.fHng/ computing
SH�;˛.M jK/ is the zero complex. We prove the second part. We claim that for any n,
any �1 < a < b, and any x 2 HF�

Œa;b/
.HnIK/ supported on critical points lying

outside of K, there is an n0 such that x 7! 0 in HF�
Œa;b/

.Hn0 IK/. Indeed, if we choose
sufficiently generic time-independent almost complex structures we may assume that
for any triple of integers m; n1; n2, any simple Floer trajectory in the differential of
CF�..1=m/Hni

/ or in the continuation map CF�..1=m/Hn1
/ ! CF�..1=m/Hn2

/

is of the expected dimension. By a standard argument in Floer theory [32], all the
solutions are time-independent. Namely, since the Floer data and the asymptotic data
are all time-independent, a solution zu is either time-independent as well, or part of a
nontrivial S1 family of solutions. In the latter case, zu is an m–fold cover of a simple
time-dependent solution u associated to Hamiltonians 1

m
Hni

, which also appears in
an S1 family and is thus not of the expected dimension, contradicting the assumption.
Any time-independent trajectory is gradient-like for H . So if it emanates from a critical
point outside of K, it remains outside of K. Moreover, the action difference for a
continuation trajectory going from a critical point x1 of Hn1

to a critical point x2

of Hn2
, both lying outside of K, is just

�Hn2
.x2/CHn1

.x1/ < �.n2� n1/:

Thus, if n2 � n1 > val.x/C a, then x will map to 0 in HF�
Œa;b/

.Hn2
IK/. By similar

reasoning, if x is supported in K, it will map to itself under the obvious identification
of critical points of Hni

with those of H . The claim follows.

Proof of Theorem 2.8(a) For any compact set K, the map SH�univ ! SH�.M jK/
is unital. Moreover, the map SH�univ ! SH�.M jK/ is continuous by Lemma 9.16.
Therefore, f0g maps to 0 under this map. So the hypothesis implies SH�.M jK/D 0

for all K �M. The claim follows from Theorem 2.4.
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The proof of part (b) of Theorem 2.8 relies on the following lemma.

Lemma 10.13 Under the assumptions of Theorem 2.8(b), we have that for any smooth
J–proper Hamiltonian H WM !RC, there is an a2RC such that the set of x 2 Œa;1/

for which H�1.x/ has a periodic orbit representing ˛ is dense in Œa;1/.

Proof Suppose otherwise. Then there is a monotone increasing unbounded sequence
faig such that for x 2 .a2i ; a2iC1/ the flow of H has no periodic orbits representing ˛.
Fix a geometrically bounded almost complex structure J . For any R > 0 we may
assume without loss of generality that BR.H

�1.a2i�1//�H�1.a2i/. Fix a constant �
and consider the set E of functions h W RC ! RC such that krh ıHk < � outside
of the segments .a2i ; a2iC1/. Then the set fh ıH j h 2 Eg is �–cofinal in H, where
� is as defined in (73). Taking R large enough and epsilon small enough, the Floer
data .h ıH;J / will be dissipative by the proof of Theorem 6.10. Moreover, these
compositions have no periodic orbits representing ˛. Thus SH�;˛.M /D0, contradicting
the assumption.

Proof of Theorem 2.8(b) Suppose otherwise. Then for any K there is a proper
Hamiltonian H and real numbers 0< a< b such that K �H�1.Œ0; a�/ and there are
no periodic orbits in the interval .a; b/. Inductively choose an exhaustion by compact
sets Ki , and exhaustion Hamiltonians Hi with gaps .ai ; bi/ so that for all i we have

Ki �H�1.Œ0; ai �/�H�1.Œ0; bi �/�KiC1 and ai < bi < aiC1:

Let H be any proper Hamiltonian coinciding with Hi on H�1
i .Œai ; bi �/ and satisfying

bi <H.x/ < aiC1

on the region
fHi.x/ > big\ fHiC1 < aiC1g:

By taking a subsequence, we can assume further that H is J–proper. There is no a> 0

for which H satisfies nearby existence on Œa;1/, in contradiction to Lemma 10.13.
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