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We prove that the Hitchin parametrization provides geodesic coordinates at the
Fuchsian locus for the pressure metric in the Hitchin component H3.S/ of surface
group representations into PSL.3;R/.

The proof consists of the following elements: We compute first derivatives of the
pressure metric using the thermodynamic formalism. We invoke a gauge-theoretic
formula to compute the first and second variations of the reparametrization functions
by studying flat connections from Hitchin’s equations and their parallel transports.
We then extend these expressions of integrals over closed geodesics to integrals over
the two-dimensional surface. Symmetries of the Liouville measure then provide
cancellations, which show that the first derivatives of the pressure metric tensors
vanish at the Fuchsian locus.
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1 Introduction

The Weil–Petersson metric on Teichmüller space is a central object in classical Teich-
müller theory. Quite a bit is known about it: it is a negatively curved real analytic
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1392 Xian Dai

Kähler metric with isometry group induced from the extended mapping class group
(see Ahlfors [1], Tromba [36] and Masur and Wolf [25]). Although it is not complete
(see Wolpert [38] and Chu [11]), it resembles a complete negative curved metric and
shares many similar nice properties (see Wolpert [38; 39]).

In recent years, considerable attention has focused on higher-rank Teichmüller spaces;
see Goldman [13], Hitchin [15] and Labourie [19]. It is natural to seek metric structures
on these spaces with the hope that such structure will reflect important properties
of the spaces. To that end, Bridgeman, Canary, Labourie and Sambarino [8] have
extended the Weil–Petersson metric from Teichmüller space to an analytic Riemannian
metric by techniques from thermodynamic formalism, called the pressure metric on
Hitchin components. The Hitchin component Hn.S/, defined by Hitchin in [15], is a
special component of the representation space of the fundamental group of a closed
surface S of genus g � 2 into PSL.n;R/. In particular, the Teichmüller space T .S/,
identified as representations into PSL.2;R/, embeds in this component and is called
the Fuchsian locus. To define the pressure metric, we associate a geodesic flow to each
Hitchin representation and describe these reparametrized geodesic flows by some Hölder
functions, called reparametrization functions. Our pressure metric is defined on the
tangent space of a Hitchin component by taking the variance of the first variations of the
reparametrization functions that record the infinitesimal change of the representations.

Bridgeman, Canary, Labourie and Sambarino have proved that the pressure metric in
fact restricts to a multiple of the Weil–Petersson metric on the Fuchsian locus and is
invariant under the action of the mapping class group. Despite this nice coincidence,
very little is presently known about the pressure metric. Some C 0 properties of the
pressure metric have recently been identified by Labourie and Wentworth [20]. In
particular, they show that, when restricted to the Fuchsian locus, the pressure metric is
proportional to a Petersson-type pairing for variation given by holomorphic differentials.
Building upon their work, our goal in this paper is to investigate some variational C 1

properties of the pressure metric using tools from thermodynamic formalism.

One may be curious to what extent the pressure metric in Hitchin components resembles
Weil–Petersson geometry. Inspired by Ahlfors’ work [1] showing the Bers coordinates
are geodesic for Weil–Petersson metric, we will show that, for one particular case of
the Hitchin component, similar coordinates are geodesic for the pressure metric near
the Fuchsian locus. The Hitchin component we consider is H3.S/, which coincides
with the space of convex real projective structures; see Choi and Goldman [10]. It is a
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prototypical example of higher-rank Teichmüller spaces. We expect similar results will
hold for general cases of Hitchin components Hn.S/.

Inspired by the methods of Labourie and Wentworth [20] for the C 0 properties of the
pressure metric, we will find and evaluate expressions for the derivatives of the pressure
metric at the Fuchsian locus for the case of PSL.3;R/ and its Hitchin component H3.S/.

The coordinates we choose are very natural in the setting of Hitchin components from
a Higgs bundle perspective. Picking .q1; : : : ; q6g�6/ to be a basis for H 0.X;K2/

over R and .q6g�5; : : : ; q16g�16/ to be a basis for H 0.X;K3/ over R, every element
of H3.S/ corresponds to some

m.�/D �1q1C � � �C �lql

with � D .�1; : : : ; �l/ 2Rl and l D 16g� 16.

The �i are coordinate functions and the coordinate system is realized by the Hitchin
parametrization H3.S/ŠH 0.X;K2/˚H 0.X;K3/. The Hitchin parametrization is
given by the Hitchin section of the Hitchin fibration, which was defined by Hitchin in
[15] and will be explained in the next section.

We will show:

Theorem 1.1 Let S be a closed oriented surface with genus g � 2. For any point
� 2 T .S/ � H3.S/, let X be the Riemann surface corresponding to � . Then the
Hitchin parametrization H 0.X;K2/˚H 0.X;K3/ provides geodesic coordinates for
the pressure metric at � .

More explicitly, if we denote components of the pressure metric at � by gij .�/ with
respect to the coordinates given by Hitchin parametrization, then @kgij .�/D 0 for all
possible i , j and k ranging from 1 to 16g� 16.

The proof will be a combination of techniques from the theory of thermodynamic
formalism and the theory of Higgs bundles. On the one hand, we will use thermo-
dynamic formalism to study the pressure metric and investigate its C 1 properties. On
the other hand, reparametrization functions and their variations need to be understood
via their Higgs bundle invariants. We now outline some important ingredients of our
computations and proofs.

Since there are two types of tangential directions in H3.S/— directions given by
quadratic differentials and directions given by cubic differentials (corresponding to
directions along the Fuchsian locus and transverse to it, respectively) — the derivatives
of the metric tensor will be divided into different cases according to this distinction:

Geometry & Topology, Volume 27 (2023)
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� The vanishing of a few types of first derivative of the metric tensor follows easily
from the geometric facts that the Fuchsian locus is a totally geodesic embedding into
the Hitchin component and that the Bers coordinates on Teichmüller space are geodesic.

� On the other hand, to compute the bulk of the components, we need to invoke ther-
modynamic formalism to obtain an explicit formula for first derivatives of the pressure
metric. We find a formula for the first variations of the pressure metric by computing
third derivatives of pressure functions using the theory of the Ruelle operator. This
expression involves the first and second variations of the reparametrization functions.

� We start from studying the first and second variations of the reparametrization
functions on closed geodesics. Because vectors tangent to periodic geodesics are dense
in tangent bundles of hyperbolic surfaces, the computation of the first and second
variations of the reparametrization functions on closed geodesics can be extended to the
unit tangent bundle after an argument that the natural extensions are Hölder functions.

� To study the first variations of the reparametrization functions on closed geodesics,
we recall a gauge-theoretic formula from [20]. We then interpret the resulting formula
as defining a system of homogeneous ordinary differential equations, which we proceed
to solve.

� Finding the second variations of the reparametrization functions is equivalent to
understanding the first variations of our gauge-theoretic formula from the previous
paragraph. The difficulty here is in describing how projections onto the eigenvectors
for the holonomy map vary when we have a family of representations in the Hitchin
component. Indeed, it turns out that we need to understand the variations of all of
the eigenvectors of our holonomy map. We interpret this problem in terms of solving
a system of nonhomogeneous ordinary differential equations with suitable boundary
conditions, which we then proceed to solve.

� For some types of metric tensors that involve both the tangential directions and
transverse directions to the Fuchsian locus, analyzing flat connections associated to
these directions require understanding the corresponding harmonic metrics that are
solutions of Hitchin’s equations. The harmonic metrics are no longer diagonalizable
when leaving the Fuchsian locus along these mixed directions. We break up the
infinitesimal version of Hitchin’s equation system and obtain nine scalar equations. We
analyze them by maximum principles and Bochner techniques to compute the second
variations of the reparametrization functions.

Geometry & Topology, Volume 27 (2023)
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� The evaluation of first derivatives of the pressure metric can be lifted to the Poincaré
disk following an idea from [20]. Here is where it becomes important that we are
taking first derivatives of the pressure metric rather than zero derivatives of the pressure
metric. In particular, we find formulas involving iterated integrals of these holomorphic
differentials. Specifying a point on the unit tangent bundle, we can identify the Poincaré
disk as our coordinate chart and write down the analytic expansions of our holomorphic
differentials on this chart. Using geodesic flow invariance and rotational invariance of
the Liouville measure, we find that no nonzero coefficients of our analytic expansions
remain after integration.

There are more cases of tangential directions along Fuchsian locus in Hn.S/ for n� 4,
where the harmonic metrics are not known to be diagonalizable. Despite the fact that
this makes the analysis difficult, the nD 3 case suggests the following conjecture:

Conjecture 1.2 Let S be a closed oriented surface with genus g � 2 and n� 4. For
any point � 2 T .S/ � Hn.S/, let X be the Riemann surface corresponding to � ;
the Hitchin parametrization

LiDn
iD2 H 0.X;Ki/ provides geodesic coordinates for the

pressure metric at � .

Recently, a Riemannian metric in Hn.S/ associated to periods given by the first simple
root length, L˛1

.�. //D log
�
�1.�. //=�2.�. //

�
, has been defined by Bridgeman,

Canary, Labourie and Sambarino [9], where �1.�. // and �2.�. // are the largest and
second largest moduli of eigenvalues of �. /. This Riemannian metric is called the
Liouville pressure quadratic form in [9]. Our methods of computing first derivatives
of metric tensors can be applied to the Liouville pressure quadratic form. We expect
similar geodesic coordinate results to hold in that setting as well.

Structure of the article In Section 2, we recall some fundamental results from the
theory of thermodynamic formalism and reparametrizations of geodesic flows. We
define the pressure metric. We also introduce Higgs bundles and Hitchin deformation
for defining our coordinates in Hitchin components. Section 3 is devoted to preliminary
proofs by thermodynamic formalism machinery. We compute the formula for third
derivatives of the pressure function. In Section 4, we start the proof of the main theorem
and divide the components of first derivatives of metric tensors into several types. We
also include a gauge-theoretic formula given by Labourie and Wentworth [20] here.
Then, in Section 5, we derive the second variations of the reparametrization functions
by studying infinitesimal variation of parallel transport equations. In Section 6, we
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evaluate the first derivatives of the pressure metric and show they are zero following
the steps explained above. We finally generalize the arguments to all types of metric
tensors in Section 7.
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2 Background and notation

In this section, we develop the notation and background material that we will need. We
begin in Section 2.1 with a discussion of reparametrization of geodesic flows. Then,
in Section 2.2, we recall the elements of thermodynamic formalism that we will need,
and finally, in Section 2.3, we conclude with some notation from the theory of Higgs
bundles which arises in our arguments.

Let S be a closed oriented surface with genus g � 2. We will define all the concepts
for introducing the pressure metric in the context of Hitchin components Hn.S/. The
reader can find a more general version in [8]. The Hitchin components Hn.S/ will be
briefly introduced in Section 2.3.

Equip S with a complex structure J such that X D .S;J / is a Riemann surface and
thus a point in Teichmüller space. Let � be the hyperbolic metric in the conformal
class of X. We denote the unit tangent bundle of X with respect to � by UX and the
geodesic flow on .X; �/ by ˆ.

2.1 Reparametrization function

We now introduce how we reparametrize the geodesic flow ˆ by reparametrization
functions. In particular, we introduce Livšic’s theorem and geodesic flows for Hitchin
representations.

Geometry & Topology, Volume 27 (2023)
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Suppose f W UX ! R is a positive Hölder function and a a closed orbit. We will
reparametrize the flow ˆ by the function f so that, for the new flow ˆf , the flow’s
direction remains the same everywhere but the speed of the flow changes. In particular,
for a ˆ–periodic orbit a, denoting its period with respect to ˆ by l.a/, we want the
period of a for the new flow ˆf to be

lf .a/D

Z l.a/

0

f .ˆs.x// ds;

where x is any point on a.

This leads to the following definition of reparametrization:

Definition 2.1 Let f W UX ! R be a positive Hölder continuous function. We
define the reparametrization of ˆ by f to be the flow ˆf on UX such that, for any
.x; t/ 2 UX �R,

ˆ
f
t .x/Dˆ˛f .x;t/.x/;

where �f .x; t/D
R t

0 f .ˆs.x// ds and f̨ W UX �R!R satisfies

f̨ .x; �f .x; t//D t:

Remark 2.2 Suppose O is the set of periodic orbits of ˆ. If a 2O, then its period as
a ˆft –periodic orbit is lf .a/ because

ˆ
f

lf .a/
.x/Dˆ˛f .x;lf .a//.x/Dˆl.a/.x/D x:

We introduce Livšic cohomology classes [22]. Livšic-cohomologous Hölder functions
turn out to reparametrize a flow in “equivalent” ways.

Let C h.UX / denote the set of real-valued Hölder functions on UX.

Definition 2.3 For f;g 2 C h.UX /, we say they are Livšic cohomologous if there
exists a Hölder continuous function V W UX ! R that is differentiable in the flow’s
direction such that

f .x/�g.x/D
@V .ˆT .x//

@t

ˇ̌̌̌
tD0

:

If f is Livšic cohomologous to g, then we will denote it by f � g.

We have the following important properties of Livšic-cohomologous functions:

(1) (Livšic’s theorem [23]) Two Hölder continuous function f and g are Livšic
cohomologous if and only if lf .a/D lg.a/ for every a 2O.

Geometry & Topology, Volume 27 (2023)
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(2) If f and g are Livšic cohomologous, then they have the same integral over
any ˆ–invariant measure. This is because

R
UX V .ˆt .x// dmD const for any

ˆ–invariant measure m and any t 2R.

(3) [17, Proposition.19.2.8] If f and g are positive and Livšic cohomologous, then
the reparametrized flows ˆf and ˆg are Hölder conjugate, ie there exists a
Hölder homeomorphism h W UX ! UX such that, for all x 2 UX and t 2R,

h.ˆ
f
t .x//Dˆ

g
t .h.x//:

The procedure of reparametrizing geodesic flows can be applied to Hitchin components
Hn.S/ and provides reparametrization functions as codings for representations. This
idea was first introduced by Sambarino to study counting problems associated to Anosov
representations [33]. It has also been elaborated later in [34; 31] and other work of
Sambarino. In the setting we are working in, similar ideas lead to a construction of
a geodesic flow ˆ� associated to each (conjugacy class of a) Hitchin representation
� 2Hn.S/. We refer the reader to [8] for the explicit construction. In particular, this
flow relates Hn.S/ to thermodynamic formalism. We will describe here some of the
important properties of ˆ�:

� ˆ� is an Anosov flow.

� There exists a Hölder function f� W UX ! RC, called the reparametrization
function of �, such that the reparametrized flow ˆf� of ˆ is Hölder conjugate
to ˆ� [33].

� The period of the orbit associated to Œ � 2 �1.S/ is logƒ .�/, where ƒ .�/ is
the spectral radius of �. /, ie the largest modulus of the eigenvalues of �. /.

Remark 2.4 One can also reparametrize the geodesic flow by a Hölder function
with periods given by simple root lengths L˛1

.�. // D log
�
�1.�. //=�2.�. //

�
,

where �1.�. // and �2.�. // are the largest and second largest moduli of eigenvalues
of �. /. This will lead to the Liouville pressure quadratic form, which also gives rise to
a Riemannian metric in Hn.S/ (see [9, Theorem 1.6]). However we will mainly focus
on the spectrum radius length ƒ .�/ and its associated pressure metric in this paper.

2.2 Thermodynamic formalism

Next we will introduce some concepts arising from the thermodynamic formalism
needed for our proofs. The introduction of most of the material here can also be found
in [8]. After the introduction, we will define the pressure metric on Hitchin components.

Geometry & Topology, Volume 27 (2023)
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As usual, we let ˆ denote the geodesic flow on a hyperbolic surface .X; �/. We denote
by Mˆ the set of ˆ–invariant probability measures on UX. Recall l.a/ denotes the
period of the periodic point a with respect to ˆ. Let

RT D fa closed orbit of ˆ j l.a/� T g:

Definition 2.5 The topological entropy of ˆ is defined as

h.ˆ/D lim sup
T!1

log #RT

T
:

Recall, for a Hölder function f W UX !R, we write

lf .a/D

Z l.a/

0

f .ˆs.x// ds:

Definition 2.6 The topological pressure (or simply pressure) of a continuous function
f W UX !R with respect to ˆ is defined by

P .ˆ; f /D lim sup
T!1

1

T
log
� X

a2RT

elf .a/

�
:

Remark 2.7 From this definition, we see the pressure of a function f only depends
on the periods of f, ie the collection of numbers flf .a/g for any a 2O. From Livšic’s
theorem, we conclude the pressure of a function only depends on its Livšic cohomology
class.

In statistical mechanics, suppose we are given a physical system with different possible
states i D 1; : : : ; n and the energies of these states are E1;E2; : : : ;En with probability
pi that state i occurs. When energy is fixed, the principle “nature maximizes entropy h”
says that the entropy h.p1; : : : ;pn/ D

Pn
iD1�pi log pi of the distribution will be

maximized with right choices of pi . However, when the physical system is put in
contact with a much larger “heat source” which is at a fixed temperature T and energy
is allowed to pass between the original system and the heat source, “nature minimizes
the free energy” will instead apply by reaching the “Gibbs distribution”. The free
energy is E�kT h, where k is a physical constant and ED

Pn
iD1 piEi is the average

energy. In the thermodynamic formalism, energy potentials Ei of different states are
encoded by continuous functions and “Gibbs distributions” for discrete probability
spaces are generalized to equilibrium states. The principle “nature minimizes free
energy” motivates the following:

Geometry & Topology, Volume 27 (2023)
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Proposition 2.8 (variational principle) Denoting the measure-theoretic entropy of
ˆ with respect to a measure m 2Mˆ as h.ˆ;m/, the (topological ) pressure of a
continuous function f W UX !R satisfies

P .ˆ; f /D sup
m2Mˆ

�
h.ˆ;m/C

Z
UX

f dm

�
:

In particular , the topological entropy is the supremum of all measure-theoretic entropies ,

P .ˆ; 0/D sup
m2Mˆ

.h.ˆ;m//D h.ˆ/:

Remark 2.9 One can also take Proposition 2.8 as definitions of pressure and topologi-
cal entropies.

We shall omit the background geodesic flow ˆ in the notation of pressure and simply
write

P . � /DP .ˆ; � /:

Definition 2.10 A measure m 2Mˆ on UX such that

P .f /D h.ˆ;m/C

Z
UX

f dm

is called an equilibrium state of f.

Proposition 2.11 (Bowen and Ruelle [6]) For any Hölder function f WUX!R, with
respect to the geodesic flow ˆ, there exists a unique equilibrium state for f, denoted
by mf . Moreover , mf is ergodic.

Remark 2.12 By the definition of equilibrium states, if f �g is Livšic cohomologous
to a constant, then f and g have the same equilibrium states.

Definition 2.13 The equilibrium state m0 for f D 0 is called a probability measure of
maximal entropy. It is also called the Bowen–Margulis measure of ˆ. We also denote
it by mˆ. It satisfies

P .0/DP .ˆ; 0/D h.ˆ;mˆ/D h.ˆ/:

Remark 2.14 The Liouville measure mL, the normalized Riemannian measure on UX,
is a probability measure of maximal entropy for geodesic flows of closed hyperbolic
manifolds (see [16, Section 2]). Thus, when considering the geodesic flow ˆ of a
hyperbolic surface .X; �/, we have mL Dmˆ.

Geometry & Topology, Volume 27 (2023)
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Given f a positive Hölder continuous function on UX, denoting h.f /D h.ˆf / to be
the topological entropy of the reparametrized flow ˆf , we have the following lemma,
which allows us to “normalize” a Hölder function to have pressure zero:

Lemma 2.15 (Sambarino [33]; Bowen and Ruelle [6]) The pressure satisfies

P .�hf /D 0

if and only if hD h.f /D h.ˆf /.

Potrie and Sambarino show, in the Hitchin component Hn.S/, the topological entropy
is maximized only along the Fuchsian locus. In particular, it is a constant on the
Fuchsian locus.

Theorem 2.16 (Potrie and Sambarino [31]) If � 2 Hn.S/, then h.�/ � 2=.n� 1/.
Moreover , if h.�/D 2=.n� 1/, then � lies in the Fuchsian locus.

We start to define variance and covariance which will be important. The convergence
of them for mean zero functions is classical.

Definition 2.17 For g a Hölder continuous function on UX with mean zero with
respect to mf (ie

R
UX g dmf D 0), the variance of g with respect to f is defined as

(2-1) Var.g;mf /D lim
T!1

1

T

Z
UX

�Z T

0

g.ˆs.x// ds

�2

dmf .x/:

Definition 2.18 For g1 and g2 Hölder continuous functions on UX with mean zero
with respect to mf (ie

R
UX g1 dmf D

R
UX g2 dmf D 0), the covariance of g1;g2

with respect to f is defined as

(2-2) Cov.g1;g2;mf /

D lim
T!1

1

T

Z
UX

�Z T

0

g1.ˆs.x// ds

��Z T

0

g2.ˆs.x// ds

�
dmf .x/:

Note these expressions are finite:

Proposition 2.19 For g1 and g2 Hölder continuous function on UX with mean zero
with respect to mf , the covariance of g1 and g2 is finite:

Cov.g1;g2;mf / <1:

The convergence is guaranteed by decay of correlations (see [26]).

Geometry & Topology, Volume 27 (2023)
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Definition 2.20 We define an operator Pm W C
h.UX /! C h.UX / associated to a

probability measure m on UX to be

Pm.g/.x/D g.x/�m.g/;

where we use the notation m.g/D
R

UX g dm for a probability measure m.

The following corollary will be useful:

Corollary 2.21 It suffices to have mf .g1/ D 0 and mf .g2/ <1 to guarantee the
convergence of covariance and

(2-3) Cov.g1;g2;mf /D Cov.g1;Pmf .g2/;mf / <1:

The same applies to the case mf .g2/D 0 and mf .g1/ <1.

Proof We have

1

T

Z
UX

�Z T

0

g1.ˆs.x// ds

��Z T

0

g2.ˆs.x//�Pmf

�
g2.ˆs.x//

�
ds

�
dmf .x/

D
1

T

Z
UX

�Z T

0

g1.ˆs.x// ds

��Z T

0

mf .g2/ ds

�
dmf .x/

Dmf .g2/

Z
UX

Z T

0

g1.ˆs.x// ds dmf .x/ (as mf .g2/ is a constant)

Dmf .g2/

Z T

0

Z
UX

g1.ˆs.x// dmf .x/ ds (by Fubini’s theorem)

Dmf .g2/

Z T

0

Z
UX

g1.x/ dmf .x/ ds (as mf is ˆ–invariant)

D 0:

Letting T !1, we obtain the desired result.

We will also need the following characterization of covariance for later use:

Proposition 2.22 (Pollicott [29]) For g1 and g2 Hölder continuous functions with
mean zero with respect to mf (ie

R
UX g1 dmf D

R
UX g2 dmf D 0), the covariance of

g1 and g2 may also be written as

Cov.g1;g2;mf /D lim
T!1

Z
UX

g2.x/

�Z T=2

�T=2

g1.ˆs.x// ds

�
dmf .x/:

Geometry & Topology, Volume 27 (2023)
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Proof We have

Cov.g1;g2;mf /

D lim
T!1

1

T

Z
UX

�Z T

0

g1.ˆs.x// ds

��Z T

0

g2.ˆs.x// ds

�
dmf .x/

D lim
T!1

1

T

Z
UX

�Z T=2

�T=2

g1.ˆs.x// ds

��Z T=2

�T=2

g2.ˆs.x// ds

�
dmf .x/

(as mf is ˆ–invariant)

D lim
T!1

Z T=2

�T=2

Z
UX

g1.ˆt .x//
1

T

�Z T=2

�T=2

g2.ˆs.x// ds

�
dmf .x/ dt:

Because m 2Mˆ, the following does not vary with s:

constD lim
T!1

Z T=2

�T=2

Z
UX

g1.ˆt .x//g2.ˆs.x// dmf .x/ dt (for all s 2R)

D lim
T!1

Z T=2

�T=2

Z
UX

g1.ˆt .x//
1

S

�Z S=2

�S=2

g2.ˆs.x// ds

�
dmf .x/ dt�

average over s 2
�
�

1
2
S; 1

2
S
��

D lim
S!1

lim
T!1

Z T=2

�T=2

Z
UX

g1.ˆt .x//
1

S

�Z S=2

�S=2

g2.ˆs.x// ds

�
dmf .x/ dt

D lim
T!1

Z T=2

�T=2

Z
UX

g1.ˆt .x//
1

T

�Z T=2

�T=2

g2.ˆs.x// ds

�
dmf .x/ dt

D Cov.g1;g2;mf /:

In particular, setting s D 0 gives

Cov.g1;g2;mf /D lim
T!1

Z T=2

�T=2

Z
UX

g1.ˆt .x//g2..x// dmf .x/ dt:

Rearranging the integrals gives the desired result.

Higher correlation and higher covariance are introduced for Anosov diffeomorphism
in [18]. For geodesic flows, we define:

Definition 2.23 For g1, g2 and g3 Hölder continuous functions with mean zero with
respect to mf , we define the higher covariance by

Cov.g1;g2;g3;mf /

D lim
T!1

1

T

Z
UX

Z T

0

g1.ˆt .x// dt

Z T

0

g2.ˆt .x// dt

Z T

0

g3.ˆt .x// dt dmf .x/:
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Equivalently,

Cov.g1;g2;g3;mf /

D lim
T!1

Z
UX

g1.x/

�Z T=2

�T=2

g2.ˆs.x// ds

��Z T=2

�T=2

g3.ˆs.x// ds

�
dmf .x/:

This equivalence is clear from the proof of Proposition 2.22. The convergence of
Cov.h1; h2; h3;m/ is guaranteed by “exponential multiple mixing” for geodesic flow
on negatively curved compact surfaces (see Pollicott’s note [30]). These definitions
will be used later when we introduce first derivatives of the pressure metric.

We use the general notation in the sequel

(2-4) @sf .0/D
df .s/

ds

ˇ̌̌̌
sD0

; @2
sf .0/D

d2f .s/

ds2

ˇ̌̌̌
sD0

:

If there is more than one parameter, for example f .s1; s2; : : : ; sk/ and k � 2, then we
specify the indexes that we are taking derivatives of, such as

(2-5) @si1
:::sij

f .0/D
@jf .s1; s2; : : : ; sk/

@si1
� � � @sij

ˇ̌̌̌
s1Ds2D���D0

:

Theorem 2.24 (Parry and Pollicott [27]; McMullen [26]) Let fs be a smooth family
of functions in C h.UX /. Then:

(1) The first derivative of P .fs/ at s D 0 is given by

(2-6)
dP .fs/

ds

ˇ̌̌̌
sD0

D

Z
UX

@sf0 dmf0
:

(2) If the first derivative is zero , then

(2-7)
d2P .fs/

ds2

ˇ̌̌̌
sD0

D Var.@sf0;mf0
/C

Z
UX

@2
sf0 dmf0

:

(3) If the first derivative is zero , then Var.@sf0;mf0
/ D 0 if and only if @sf0 is

Livšic cohomologous to zero.

Remark 2.25 If f .s; t/ is a smooth two-parameter family in C h.UX /, then

(2-8)
@P .f .s; t//

@t @s

ˇ̌̌̌
sDtD0

D Cov
�
Pmf .0/.@sf .0//;Pmf .0/.@tf .0//;mf .0/

�
C

Z
UX

@stf .0/ dmf .0/:
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Define P.UX / to be the set of pressure zero Hölder functions on UX, ie

P.UX /D ff 2 C h.UX / WP .f /D 0g:

The tangent space of P.UX / at f is the set

Tf P.UX /D ker dfP D

�
h 2 C h.UX /

ˇ̌̌ Z
UX

h dmf D 0

�
:

We define a pressure seminorm on the tangent space of P.UX / at f, by letting:

Definition 2.26 The pressure seminorm of g 2 Tf P.UX / is defined as

hg;giP D�
Var.g;mf /R
UX f dmf

:

One notices, for g 2 Tf P.UX /, the variance Var.g;mf /D 0 if and only if g is Livšic
cohomologous to 0, ie g � 0.

2.3 Higgs bundles and Hitchin deformation

We next introduce all the notation from the theory of Higgs bundles that will arise in
our arguments. We also introduce a coordinate system on the Hitchin component at the
end of the section.

Recall S is a closed oriented surface with genus g � 2 and X D .S;J / is a Riemann
surface.

Definition 2.27 A rank n Higgs bundle over X is a pair .E; ˆ/, where E is a holomor-
phic vector bundle of rank n and ˆ 2H 0.X;End.E/˝K/ is called a Higgs field. An
SL.n;C/–Higgs bundle is a Higgs bundle .E; ˆ/ satisfying det E DO and TrˆD 0.

Definition 2.28 (1) A Higgs bundle .E; ˆ/ is semistable if every properˆ–invariant
holomorphic subbundle F of E satisfies

deg.F /
rank.F /

�
deg.E/
rank.E/

and stable if this inequality is strict.

(2) A semistable Higgs bundle .E; ˆ/ is polystable if it decomposes as a direct sum
of stable Higgs bundles.
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Theorem 2.29 It is classical that , for a holomorphic vector bundle E with holomorphic
structure x@E and a Hermitian metric H, there exists a unique connection rx@E ;H

, called
the Chern connection , such that :

(1) r0;1
x@E ;H

D x@E .

(2) rx@E ;H
is unitary.

We will from now on restrict our interest to degree zero Higgs bundles.

Theorem 2.30 (Hitchin [14]; Simpson [35]) Let .E; ˆ/ be a rank n, degree zero
Higgs bundle on X. Then E admits a Hermitian metric H satisfying Hitchin’s equation
if and only if .E; ˆ/ is polystable. Here Hitchin’s equation is

(2-9) Fx@;H C Œˆ;ˆ
�H �D 0;

where Fx@;H is the curvature of the Chern connection rx@E ;H
and ˆ�H is the Hermitian

adjoint of ˆ.

Remark 2.31 Define a connection DH on .E; ˆ;H / as

(2-10) DH Drx@E ;H
CˆCˆ�H :

DH is flat if and only if Hitchin’s equation is satisfied.

We define the Higgs bundles moduli space and de Rham moduli space as:

Definition 2.32 � The space of gauge equivalence classes of polystable SL.n;C/–
Higgs bundles is called the moduli space of SL.n;C/–Higgs bundles and is
denoted by MHiggs.SL.n;C//.

� The space of gauge equivalence classes of reductive flat SL.n;C/ connections
is called the de Rham moduli space and is denoted by Mde Rham.SL.n;C//.

Remark 2.33 The Hitchin–Simpson theorem gives a one-to-one correspondence
between MHiggs.SL.n;C// and Mde Rham.SL.n;C// from the above remark. It is also
called the Hitchin–Kobayashi correspondence.

We will introduce the Hitchin fibration and Hitchin section following Baraglia’s work [2].
We refer the reader to [2, Section 2] for a more comprehensive exposition.

Given a principal 3–dimensional subalgebra sD spanfx; e; Qeg of sl.n;C/ consisting
of a semisimple element x and regular nilpotent elements e and Qe with commutation
relations

Œx; e�D e; Œx; Qe�D�Qe; Œe; Qe�D x;
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the Lie algebra sl.n;C/ decomposes into a direct sum of irreducible subspaces under
the adjoint representation of s,

sl.n;C/D
n�1M
iD1

Vi :

We take e1; : : : ; en�1 as highest-weight elements of V1; : : : ;Vn�1, where e1D e. With
these defined, there exists a basis of SL.n;C/–invariant homogeneous polynomials pi

of degree i on sl.n;C/, where 2 � i � n, such that, for all elements f 2 sl.n;C/ of
the form

f D QeC˛2e1C � � �C˛nen�1;

we have pi.f /D ˛i .

Definition 2.34 The Hitchin fibration is a map from the moduli space of SL.n;C/–
Higgs bundles over X to the direct sum of holomorphic differentials given by

p WMHiggs.SL.n;C//!
iDnM
iD2

H 0.X;Ki/; .E; ˆ/ 7! .p2.ˆ/; : : : ;pn.ˆ//;

where pi are the homogeneous invariant polynomials defined above.

Definition 2.35 A Hitchin section s of the Hitchin fibration is a map back fromLiDn
iD2 H 0.X;Ki/ to MHiggs.SL.n;C//. For qD .q2; q3; : : : ; qn/2

LiDn
iD2 H 0.X;Ki/,

we define s.q/ to be a Higgs bundle E DK.n�1/=2˚K.n�3/=2˚� � �˚K.1�n/=2 with
its Higgs field given by

ˆ.q/D QeC q2e1C q3e2C � � �C qnen�1:

More explicitly, we have

ˆ.q/D

266666666664

0 r1q2 r1r2q3 r1r2r3q4 � � �
Qn�2

iD1 riqn�1

Qn�1
iD1 riqn

1 0 r2q2 r2r3q3 � � � � � �
Qn�1

iD2 riqn�1

0 1 0 r3q2 r3r4q3 � � �
:::

:::
:::

: : :
: : :

: : :
: : :

:::
:::

:::
: : :

: : :
: : :

:::
:::

0 0 � � � 0 1 0 rn�1q2

0 0 � � � � � � 0 1 0

377777777775
WE!E˝K;

where ri D
1
2
i.n� i/ and K1=2 is a holomorphic line bundle with its square to be the

canonical line bundle K. The notation for ei we use here can be found in [2; 21].
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Remark 2.36 There exists an involutive automorphism � on sl.n;C/ such that

�.ei/D�ei ; �. Qe/D�Qe:

Composing with the compact real form � on sl.n;C/ given by �.X /D�X �, we can
obtain the split real involution given by �D � ı � . The fixed-point set of � is the real
split form sl.n;R/. A detailed exposition for this can be found in [2].

From the fact that �.ˆ.q//Dˆ.q/�, one can see the flat connection (2-10) has holo-
nomy in the split real form of sl.n;C/. Hitchin therefore shows that the Higgs bundles
in the image of the Hitchin section have holonomy in SL.n;R/ (see [15]). The repre-
sentation space of these Higgs bundles up to conjugacy equivalence forms a connected
component of the representation variety Rep.�1.S/;SL.n;R//, called the Hitchin com-
ponent Hn.S/. Here we recall that the representation variety Rep.�1.S/;SL.n;R// is
the space of conjugacy classes of reductive representations from �1.S/ to SL.n;R/.

Remark 2.37 The isomorphism between Hn.S/ and
LiDn

iD2 H 0.X;Ki/ yields a
parametrization of the Hitchin component Hn.S/. We call

LiDn
iD2 H 0.X;Ki/ the

Hitchin base. In particular, the tangent space at the Fuchsian point X is identified with
the Hitchin base.

Fixing E DK.n�1/=2˚K.n�3/=2 � � � ˚K.1�n/=2, we consider the following map as
an infinitesimal change of a family of Higgs fields ˆ� associated to q:

� W

iDnM
iD2

H 0.X;Ki/!�1;0.X; sl.n;R//; �.q/D

nX
iD2

qi ˝ ei�1:

In particular, the infinitesimal change of a family of flat connections (2-10) in the space
Mde Rham.SL.n;C// associated to q defines an isomorphism of

LiDn
iD2 H 0.X;Ki/

with the tangent space of the Hitchin component TX Hn.S/. Associated to �.q/, the
deformation of flat connections which is the infinitesimal version of (2-10) is:

Definition 2.38 At the Fuchsian point X, we define our Hitchin deformation associated
to q to be

'.q/ WD �.q/C�.�.q//;

where � is the antilinear involution for the split real form of sl.n;C/ defined above.

This type of deformation will be the tangential objects we consider for the pressure
metric.
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Remark 2.39 The Hitchin parametrization in Remark 2.37 gives a coordinate system
for Hn.S/ based at X. More explicitly, given a basis fqig

iDl
iD1

of
LiDn

iD2 H 0.X;Ki/

with l D 2.n2� 1/.g� 1/, the coordinate system is given by

m.�/D �1q1C � � �C �lql ;

where � D .�1; : : : ; �l/ 2 Rl . Because of the isomorphism between Hn.S/ andLiDn
iD2 H 0.X;Ki/, the vector � D .�1; : : : ; �l/ provides local parameters on Hn.S/

and �i WHn.S/!R is a coordinate function for 1� i � l .

2.4 The pressure metric on Hitchin components

We define the pressure metric for Hitchin components Hn.S/ in this subsection and
state some known results about it.

Recall H.UX / is the space of pressure zero Hölder functions modulo Livšic cobound-
aries. We relate H.UX / to the Hitchin component Hn.S/ by the following thermo-
dynamic mapping:

Definition 2.40 The thermodynamic mapping ‰ WHn.S/!H.UX / from a Hitchin
component Hn.S/ to the space H.UX / of Livšic cohomology classes of pressure zero
Hölder functions on UX is defined as

‰.�/D Œ�h.�/f��;

where h.�/ D h.f�/ D h.ˆf� / is the topological entropy of the reparametrized
flow ˆf� .

The mapping ‰ admits local analytic lifts to the space P.UX / of pressure zero Hölder
functions. In particular, the map z‰ WHn.S/! P.UX / given by z‰.�/D�h.�/f� is
an analytic local lift of ‰. This enables us to pull back the pressure form on P.UX /

to obtain a pressure form on Hn.S/.

We will from now on write f N
� D �h.�/f� for the normalized reparametrization

function.

Given an analytic family f�sgs2.�1;1/ of (conjugacy classes of) representations in the
Hitchin component Hn.S/, we define P�0 D @s�0 D @s�s.0/. Let ff�s

gs2.�1;1/ be
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associated reparametrization functions, we pull back the pressure form on P.UX / to
obtain

h P�0; P�0iP D hd z‰. P�0/; d z‰. P�0/iP

D

�
@.�h.�s/f�s

/

@s

ˇ̌̌̌
sD0

;
@.�h.�s/f�s

/

@s

ˇ̌̌̌
sD0

�
P

D h@s.f
N
�s
/.0/; @s.f

N
�s
/.0/iP

D�

Var.@s.f
N
�s
/.0/;mfN

�0

/R
UX f N

�0
dmfN

�0

:

It is proved in [8] that the pullback pressure form is nondegenerate and thus defines a
Riemannian metric on Hn.S/:

Definition 2.41 If f�sgs2.�1;1/ and f�tgt2.�1;1/ are two analytic families of (conju-
gacy classes of) representations in the Hitchin component Hn.S/ such that �0 D �0,
the pressure metric for P�0; P�0 2 T�0

Hn.S/ is defined as

h P�0; P�0iP D�

Cov
�
@s.f

N
�s
/.0/; @s.f

N
�s
/.0/;mfN

�0

�R
UX f N

�0
dmfN

�0

:

For simplicity, later we will also write @s.f
N
�s
/.0/D @sf

N
�0

and @s.f
N
�s
/.0/D @sf

N
�0

.
The principle is that we always first normalize a family of reparametrization functions
to be pressure zero and then take derivatives.

Because of the identification of
LiDn

iD2 H 0.X;Ki/ with the tangent space of the Hitchin
component TX Hn.S/, our Hitchin deformation '.q/ introduced in Definition 2.38 can
be thought of as tangent vectors in TX Hn.S/. With this understood, we introduce the
following important results of Labourie and Wentworth [20]:

Let qi be a holomorphic differential of degree k on X and let '.qi/ be the associated
Hitchin deformation. Labourie and Wentworth [20] show the pressure metric satisfies

h'.qi/; '.qi/iP D C.n; k/hqi ; qiiX ;

where C.n; k/> 0 is a constant that does not depend on � and hqi ; qiiX is the Petersson
pairing

hqi ; qiiX D

Z
X

qi Nqi�
�k.z/ dA�

with dA� D �.z/ dx ^ dy denoting the area form for the hyperbolic metric � .
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If qi and qj are holomorphic differentials of the same degree, then

h'.qi/; '.qj /iP D
1
4
Œh'.qi C qj /; '.qi C qj /iP � h'.qi � qj /; '.qi � qj /iP �

D
1
4
C.n; k/hqi C qj ; qi C qj iX �

1
4
C.n; k/hqi � qj ; qi � qj iX

D C.n; k/hqi ; qj iX :

If qi and qj are holomorphic differentials of different degrees on X, Labourie and
Wentworth [20] show that

(2-11) h'.qi/; '.qj /iP D 0:

We denote the pressure metric components with respect to the coordinates introduced
in Remark 2.39 by gij . Equivalently, the metric tensor gij .�/ means that the pressure
metric h � ; � iP is evaluated at � with tangential vectors parallel to the qi–axis and
qj –axis. In particular, at the point X, we have gij .0/D gij .�/D h'.qi/; '.qj /iP . It
is always possible to choose an orthonormal basis fqig with respect to our pressure
metric from the vector space

LiDn
iD2 H 0.X;Ki/ so that gij .ı/D ıij .

3 More thermodynamic formalism

Bowen and Ruelle’s work [3; 4; 6] guarantees that many of the results in the thermo-
dynamic formalism proved for subshifts of finite type by the Ruelle operator still hold
for Axiom A diffeomorphisms and Axiom A flows. We adopt this idea of simplifying
the rather complicated object “flow” by discretizing it and studying a relative simple
object “shift” given by symbolic coding. We will compute the formula for the third
derivatives of pressure functions using subshifts of finite type. The reader can find an
introduction for modeling hyperbolic diffeomorphisms by subshifts of finite type and
modeling hyperbolic flows by suspension flows through Markov partition and symbolic
dynamics in [5, Sections 3 and 4; 27, Appendix III].

Section 3.1 is devoted to the Ruelle operator and Ruelle–Perron–Frobenius theorem.
These are important tools for studying subshifts of finite types. Then, in Section 3.2,
we will compute the third derivatives of pressure functions in Lemma 3.8. These will
be important for the proof of the main theorem in the next section.

3.1 Ruelle operator and others

We start with a cursory introduction to the elements of thermodynamic formalism for
subshifts of finite types. A complete description is in [26; 27].
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Definition 3.1 Let A be a k � k matrix of zeros and ones; we define the associated
two-sided shift of finite type .†; �A/, where † is the set of sequences

†D fx D .xn/
1
nD�1 W xn 2 f1; : : : ; kg; n 2 Z; A.xn;xnC1/D 1g

and �A W†!† is defined by �A.x/D y, where yn D xnC1.

If instead we consider x D .xn/
1
nD0

with the same restriction given by the matrix A

and �.x/D y, ie yn D xnC1 for n� 0, then we obtain a one-sided shift of finite type.

The set f1; : : : ; kg is equipped with the discrete topology and the two-sided (or one-
sided) shift space †A is equipped with the associated product topology.

Given ˛ 2 .0; 1/, we can metrize the topology on the two-sided shift space † by
defining a metric d˛.x;y/D ˛

N, where N is the largest nonnegative integer such that
xi D yi for ji j<N. Similarly, we have a metric d˛ defined for one-sided shift space.

We let C.†/ be the space of real-valued continuous functions on † and C ˛.†/ be the
space of real-valued Hölder functions on † with Hölder exponent ˛ with respect to d˛ .

The two-sided (one-sided) shift of finite type .†; �A/ is called a subshift of finite type
if �A is topologically transitive.

We define the pullback operator on C ˛.†/ by .��
A
f /.y/ D f .�A.y//. Similarly to

Definition 2.3, we define:

Definition 3.2 f1 and f2 in C ˛.†/ are (Livšic) cohomologous if

f1�f2 D f3� �
�
Af3

for some f3 2 C ˛.†/.

From now on, we assume our subshift of finite type .†; �A/ to be one-sided unless
otherwise specified.

Definition 3.3 Given w 2 C ˛.†/, the Ruelle operator (or transfer operator) on f 2
C ˛.†/ is defined by

Lw.f /.x/D
X

�A.y/Dx

ew.y/f .y/:

Theorem 3.4 (Ruelle, Perron and Frobenius) Suppose .†; �A/ is topologically mix-
ing (ie AM

i;j > 0 for all i and j for some M > 0, also called irreducible and aperiodic)
and w 2 C ˛.†/. Then:
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(1) There is a simple maximal positive eigenvalue �.Lw/ of Lw W C ˛.†/! C ˛.†/

with a corresponding strictly positive eigenfunction e :

Lw.e /D �.Lw/e :

(2) The remainder of the spectrum of Lw (excluding �.Lw/) is contained in a disk
of radius strictly smaller than �.w/.

(3) There is a unique probability measure �w on † such that

Lw��w D e �w:

The pressure P .w/ of w, which can be defined in an analogous way as the pressure of
functions on UX by the variational principle Proposition 2.8, turns out to be related to
the spectral radius of the Ruelle operator: P .w/D log �.Lw/ (see [5, Theorem 1.22]).

Associated to �w is another measure mw D e �w . It is called the equilibrium measure
of w. It is a �A–invariant and ergodic probability measure and satisfies Lw�mw Dmw .

We will from now on assume P .w/ D 0. As pressure functions and equilibrium
measures depend only on cohomology class, we can modify w by a coboundary so that
Lw.1/D 1 and �w Dmw. One notices this implies Lw.��Af /D f.

Fixing mw, we define an inner product hf1; f2i WD
R
† f1f2 dmw on the Banach

space C ˛.†/.

For convenience, we also write Sn.f;x/D
Pn�1

iD0 f .�
i
A

x/.

The following two lemmas are applications of Ruelle operators and will be useful in
the next subsection:

Lemma 3.5 (McMullen [26, Theorems 3.2 and 3.3]) For any g 2 C.†/ and f 2
C ˛.†/ with

R
† f dmw D 0,

lim
n!1

�
g;

Sn.f /
2

n

�
D Var.f;mw/

Z
†

g dmw D 0;

where Var.f;mw/D limn!1.1=n/hSn.f /;Sn.f /i.

Lemma 3.6 For any f 2 C ˛.†/ with
R
† f dmw D 0,

lim
n!1

1

n

Z
†

.Sn.f //
3 dmw <1:

Proof This proof is similar to Theorem.3.3 of [26]. We have

1

n

Z
†

.Sn.f //
3 dmD

1

n

n�1X
iD0

n�1X
jD0

n�1X
kD0

hf ı � i
A �f ı �

j
A
; f ı �k

Ai:
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When k > j > i ,

hf ı � i
A �f ı �

j
A
; f ı �k

Ai D h�
�i
A .f �f ı �

j�i
A

/; ��iA .f ı �k�i
A /i

D hf �f ı �
j�i
A

; f ı �k�i
A i (by �A–invariance of mw)

D hf; f ı �
j�i
A
�f ı �k�i

A i

D hf; �
�.j�i/
A

.f �f ı �
k�j
A

/i

D hLj�i
w .f /; f �f ı �A

k�j
i

(as Lw.��Af /D f and Lw�mw Dmw)

D hf �Lj�i
w .f /; f ı �A

k�j
i:

We define a projection operator on C ˛.†/ by Pmw .h/.x/Dh.x/�
R
† h dmw . Because

Pmw .h/ has mean zero with respect to mw , the spectrum of the operator TwDLwıPmw

lies in a disk of radius r < 1 by the Ruelle–Perron–Frobenius theorem.

One has

(3-1) hh1; h2 ı �i D hTw.h1/; h2i

whenever h1 or h2 has mean zero.

Because f is mean zero with respect to mw, Tw.f /D Lw.f /. Moreover,

hf �Lj�i
w .f /; f ı �A

k�j
i D hf �T j�i

w .f /; f ı �A
k�j
i

D hT k�j
w .f �T j�i

w .f //; f i (by (3-1))

� kT k�j
kkT j�i

kkf k3

� C rk�i (for some C > 0);

where the norm for T is the operator norm.

Thus,

1

n

X
0�i<j<k�n�1

hf ı � i
A �f ı �

j
A
; f ı �k

Ai

�
C

n

n�1X
kD0

kX
iD0

.k � i/rk�i (by the estimate above)

D
C

n

n�1X
kD0

kX
sD0

sr s
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D
C r

1�r

�
1�

1

n

nX
kD1

rk

�
<1 (when n!1).

This shows limn!1.1=n/
R
†.Sn.f //

3 dmw <1.

3.2 Third derivatives of pressure functions

Our goal in this subsection is to compute the third derivatives of pressure functions in
Lemma 3.8. For this, we first need to compute the third derivatives of pressure functions
for subshifts of finite type by the method of the Ruelle operator and generalize it to our
setting of suspension flows.

We start from introducing suspension flows. We will also recall Bowen’s celebrated
results, applied to our setting, that suspension flows efficiently model the geodesic flow
on UX.

Definition 3.7 Suppose .†; �A/ is a two-sided shift of finite type. Given a roof
function r W†!RC, the suspension flow of .†; �A/ under r is the quotient space

†r D f.x; t/ 2†�R W 0� t � r.x/; x 2†g=.x; r.x//� .�A.x/; 0/

equipped with the natural flow �r
A;s
.x; t/D .x; t C s/

Any �A–invariant probability measure m on † induces a natural �r
A;s

–invariant proba-
bility measure on †r

(3-2) dmr D
dm dtR
† r dm

:

This correspondence gives a bijection between �A–invariant probability measures and
�r

A;s
–invariant probability measures.

Bowen [3] shows the construction of Markov partitions for Axiom A diffeomorphisms.
He then shows how to model Axiom A flows via the Markov partition and symbolic
dynamics in [4]. We illustrate the version of this celebrated result in our context (see
also [32]): the geodesic flow ˆ admits a Markov coding .†A; �; r/, where .†A; �A/ is
a topologically mixing two-sided shift of finite type, the roof function r W†A!RC

is Hölder continuous, and the map � W †A ! UX is also Hölder continuous. The
suspension flow �r

A;t
models ˆt effectively in the following sense:
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� � is surjective.

� � is one-to-one on a set of full measure (for any ergodic measure of full support)
and on a residual set.

� � is finite-to-one.

� ��r
A;t
Dˆt� for all t 2R.

Now we are able to state and prove the major result in this subsection:

Lemma 3.8 Let Fs be a smooth family in C h.UX / such that P .F0/ D 0 and
@sP .Fs/.0/. Then

(3-3)
d3P .Fs/

ds3

ˇ̌̌̌
sD0

DZ
UX

@3
s F0.x/ dmF0

.x/

C lim
r!1

1

r

�
3

Z
UX

Z r

0

@sF0.ˆt .x// dt

Z r

0

@2
s F0.ˆt .x// dt dmF0

.x/

C

Z
UX

�Z r

0

@sF0.ˆt .x// dt

�3

dmF0
.x/

�
:

In particular , if F.u; v; w/ is a smooth three-parameter family of Hölder functions
on UX such that P .F.0; 0; 0//D 0 and all of the first variations of P .F.u; v; w// are
zero , then

(3-4)
@3P .F.u; v; w//

@u @v @w

ˇ̌̌̌
uDvDwD0

DZ
UX

@u@v@wF.0/.x/ dmF.0/.x/

C lim
r!1

1

r

 Z
UX

�Z r

0

@uF.0/.ˆt .x// dt

��Z r

0

@vF.0/.ˆt .x// dt

�

�

�Z r

0

@wF.0/.ˆt .x// dt

�
dmF.0/.x/

C

Z
UX

�Z r

0

@uF.0/.ˆt .x// dt

��Z r

0

@vwF.0/.ˆt .x// dt

�
dmF.0/.x/

C

Z
UX

�Z r

0

@vF.0/.ˆt .x// dt

��Z r

0

@uwF.0/.ˆt .x// dt

�
dmF.0/.x/

C

Z
UX

�Z r

0

@wF.0/.ˆt .x// dt

��Z r

0

@uvF.0/.ˆt .x// dt

�
dmF.0/.x/

!
:
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Proof The proof proceeds in two steps. In the first step, we find a formula for the third
derivatives of pressure functions for topologically mixing shifts of finite type. In the
second step, we show how the computation can be carried to geodesic flows through
symbolic coding and suspension flows.

Step 1 The computation of the first and second derivatives of pressure functions for
aperiodic shifts of finite type is shown by Parry and Pollicott [27] using the Ruelle
operator. We will give a computation of the third derivative by the same method and
then generalize it to our flow case.

Let .†A; �A/ be a (one-sided or two-sided) shift of finite type that is topologically
mixing. We assume fs is a smooth family of functions on C ˛.†A/ such that P .f0/D 0

and @sP .fs/.0/. We will prove

(3-5) @3
s P .fs/.0/D lim

n!1

1

n

Z
X

.Sn.@sf0//
3 dmf0

C lim
n!1

3

n

Z
X

Sn.@sf0/Sn.@
2
sf0/ dmf0

C

Z
X

@3
sf0 dmf0

:

Any Hölder function on a two-sided shift space is cohomologous to a Hölder function
depending only on the corresponding one-sided shift space (see [27, Proposition 1.2]).
It suffices to prove (3-5) for one-sided shifts of finite type. We assume .†A; �A/ is
one-sided and fs is a smooth family of Hölder functions (with possibly a different
Hölder exponent from ˛) on †A.

We change f0 in its cohomology class so that Lf0
.1/D 1.

Following the method in [27], let Q.s/ be a projection-valued function which is analytic
in s and satisfies

Lfs
Q.s/DQ.s/Lfs

:

Let w.s/ W†A!R be w.s/.x/ WDQ.s/ � 1. So

(3-6) Lfs
w.s/D eP.fs/w.s/

and w.0/.x/DQ.0/ � 1D 1.

Iterate (3-6) n times and take third s–derivatives of both sides at s D 0:

(3-7) @3
s

� X
�AyDx

eSn.fs/.y/w.s/.y/

�
.0/D @3

s .e
nP.fs/w.s//.0/:
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Notice P .f0/D 0, @sP .fs/.0/D 0 and
R

UX @sf0 dmf0
D 0. Integrating both sides

of (3-7) with respect to mf0
yields

3n@2
s P .fs/.0/

Z
X

@sw.0/ dmf0
C n@3

s P .fs/.0/

D

Z
X

Sn.@
3
sf0/ dmf0

C 3

Z
X

.Sn.@sf0/
2
CSn.@

2
sf0//@sw.0/ dmf0

C 3

Z
X

Sn.@sf0/@
2
sw.0/ dmf0

C 3

Z
X

Sn.@sf0/Sn.@
2
sf0/ dmf0

C

Z
X

Sn.@sf0/
3 dmf0

:

Divide by n and take n!1. From ergodicity of mf0
, we may evaluate two of the

resulting terms:

lim
n!1

1

n

Z
X

Sn.@sf0/@
2
sw.0/ dmf0

D

Z
X

@sf0 dmf0

Z
X

@2
sw.0/ dmf0

D 0;

lim
n!1

1

n

Z
X

Sn.@
2
sf0/@sw.0/ dmf0

D

Z
X

@2
sf0 dmf0

Z
X

@sw.0/ dmf0
:

We also notice that, by applying Lemma 3.5 and the formula for second derivatives of
pressure functions,

@2
s P .fs/.0/

Z
X

@sw.0/ dmf0

D lim
n!1

1

n

Z
X

Sn.@sf0/
2@sw.0/ dmf0

C lim
n!1

1

n

Z
X

Sn.@
2
sf0/@sw.0/ dmf0

:

Therefore, we obtain a formal expression

@3
s P .fs/.0/D lim

n!1

1

n

Z
X

.Sn.@sf0//
3 dmf0

C lim
n!1

3

n

Z
X

Sn.@sf0/Sn.@
2
sf0/ dmf0

C

Z
X

@3
sf0 dmf0

:

We observe each term of the right-hand side converges: finiteness of the first limit has
been shown in Lemma 3.6 and that of the second is guaranteed by Corollary 2.21.

Step 2 We now explain how we obtain the flow version of the above formula.

Suppose Fs is a smooth family of functions in C h.UX / such that P .Fs/D 0. We have
a topologically mixing Markov coding .†A; �; r/ for UX. Because of the conjugacy
��r

A;t
Dˆt� between geodesic flow and the suspension flow of .†A; �; r/, it suffices

to prove (3-3) for Fs ı � W †A;r ! R on suspension space with pullback measure
��mF0

. For simplicity, we still write Fs ı� as Fs and ��mF0
as mF0

.
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We then want to reduce the problem of proving (3-3) for suspension flows to proving it
for subshifts of finite type. We construct a function yFs W†A!R from the function Fs

on the suspension space as

(3-8) yFs.x/D

Z r.x/

0

Fs.x; t/ dt:

As Fs and r are Hölder on †A;r and †A, respectively, the function yFs is clearly
Hölder. Denoting the set of �r

A
–invariant probability measures by M�r

A and the set of
�A–invariant probability measures by M�A , we have

P .�r
A;t ;Fs/D sup

mr2M
�r

A

�
h.�r

A;1;mr /C

Z
†A;r

Fs dmr

�

D sup
m2M�A

h.�A;m/C
R
†A

Fs dmR
†A

r dm
:

Let cs D P .�r
A;t
;Fs/, we have the relation between the pressure function of Fs and

the pressure function of yFs (also see [6])

(3-9) P .�A; yFs � csr/D 0:

Let @sc0 D @s.cs/.0/ and @ssc0 D @
2
s .cs/.0/.

We have the assumption @sc0 D 0. Without loss of generality, we can also assume
@2

s c0D 0. Otherwise, we consider the family of functions zFs WDFs�
1
2
s2@2

s c0. Clearly
@sP . zFs/.0/D @

2
s P . zFs/.0/D 0 and @3

s P . zFs/.0/D @
3
s P .Fs/.0/.

Now let’s take the third s–derivative of (3-9) with the assumptions @sc0 D @
2
s c0 D 0.

By (3-5),

0D @3
s P . yFs � csr/.0/

D lim
n!1

1

n

Z
†A

.Sn.@s
yF0//

3 dm yF0
C lim

n!1

3

n

Z
†A

Sn.@s
yF0/Sn.@

2
s
yF0/ dm yF0

C

Z
†A

.@3
s
yF0� @

3
s c0r/ dm yF0

:

This yields

@3
s c0 D @

3
s P .�r

A;t ;Fs/.0/D

�Z
†A

r dm yF0

��1

@3
s P .�A; yFs/.0/:
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Therefore, proving (3-3) for Fs is equivalent to proving

lim
r!1

1

r

Z
†A;r

�Z r

0

@sF0 dt

�3

dmF0
C lim

r!1

3

r

Z
†A;r

Z r

0

@sF0 dt

Z r

0

@ssF0 dt dmF0

C

Z
†A;r

@3
s F0 dmF0

D

�Z
†A

r dm yF0

��1

�

�
lim

n!1

1

n

Z
†A

.Sn.@s
yF0//

3 dm yF0
C lim

n!1

3

n

Z
†A

Sn.@s
yF0/Sn.@

2
s
yF0/ dm yF0

�
C

�Z
†A

r dm yF0

��1 Z
†A

@3
s
yF0 dm yF0

:

Each term on the left is actually equal to the corresponding term on the right. We show
here how to obtain

(3-10) lim
r!1

1

r

Z
†A;r

�Z r

0

@sF0.�
r
t .y// dt

�3

dmF0
.y/

D

�Z
†A

r dm yF0

��1

lim
n!1

1

n

Z
†A

.Sn.@s
yF0/.x//

3 dm yF0
.x/:

The other two terms follow a similar analysis.

To see (3-10), we begin by noting the identity [28], where y D .x;u/,

@sF0.�
r
A;t .x;u//D

X
n2Z

�Z r.�n
A

x/

0

@sF0.�
n
Ax; v/ı.uC t � v� rn.x// dv

�
;

where rn.x/D r.x/Cr.�Ax/C� � �Cr.�n�1
A

x/ for n> 0 and r0.x/D 0 and r�n.x/D

�.r.�A
�1x/C � � �C r.��n

A
x// for n� 1.

One has from Proposition 2.22, the measure correspondence (3-2) and (3-8) that

lim
r!1

1

r

Z
†A;r

�Z r

0

@sF0.�
r
A;t .y// dt

�3

dmF0
.y/

D

Z 1
�1

Z 1
�1

Z
†A;r

@sF0.y/@sF0.�
r
A;t .y//@sF0.�

r
A;v.y// dmF0

.y/ dt dv

D

�Z
†A

r dm yF0

��1Z 1
�1

Z 1
�1

Z
†A

Z r.x/

0

@sF0.x;u/@sF0.�
r
A;t .x;u//

� @sF0.�
r
A;v.x;u// du dm yF0

.x/ dt dv
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D

�Z
†A

r dm yF0

��1 X
m;n2Z

Z
†A

dm yF0
.x/

Z r.x/

0

@sF0.x;u/ du

�

Z r.�n
A

x/

0

@sF0.�
n
Ax; v/ dv

Z r.�m
A

x/

0

@sF0.�
m
A x; v/ dv

D

�Z
†A

r dm yF0

��1 X
m;n2Z

Z
†A

@s
yF0.x/@s

yF0.�
n
Ax/@s

yF0.�
m
A x/ dm yF0

.x/

D

�Z
†A

r dm yF0

��1

lim
n!1

1

n

Z
†A

.Sn.@s
yF0/.x//

3 dm yF0
.x/:

We therefore obtain a suspension flow version of (3-5) for Fs .

The arguments for three-parameter families are the same as the one-parameter case.
In fact, since the operator @u@v@w is a symmetric multilinear map in u, v and w that
is completely characterized by its values on the diagonal, one can deduce (3-4) for
multivariable cases directly from (3-3) for one-parameter families.

Next we introduce a formula for taking derivatives of integrals over varying measures
by tools of thermodynamic formalism. This formula will be very useful in later proofs.

Lemma 3.9 Suppose ffsgs2.�1;1/ is a smooth family of pressure zero Hölder functions
over UX and suppose fmfs

gs2.�1;1/ is the associated family of equilibrium states.
Suppose furthermore that fwsgs2.�1;1/ is another smooth family of Hölder functions
over UX. Then

(3-11) @s

�Z
UX

ws dmfs

�
.0/D Cov.w0; @sf0;mf0

/C

Z
UX

@sw0 dmf0
:

Proof We have

@s

�Z
UX

ws dmfs

�
.0/

D @s

�
@P .fsC tws/

@t

ˇ̌̌̌
tD0

�
.0/ (by (2-6))

D
@2P .fsC tws/

@s @t

ˇ̌̌̌
sDtD0

D Cov.Pmf0
.w0/;Pmf0

.@sf0/;mf0
/C

Z
UX

@sw0 dmf0
(by (2-8))

D Cov.Pmf0
.w0/; @sf0;mf0

/C

Z
UX

@sw0 dmf0

D Cov.w0; @sf0;mf0
/C

Z
UX

@sw0 dmf0
(by Corollary 2.21).
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4 Proof of the main theorem: initial steps

We first restate our main theorem:

Theorem 1.1 Let S be a closed oriented surface with genus g � 2. For any point
� 2 T .S/ � H3.S/, let X be the Riemann surface corresponding to � . Then the
Hitchin parametrization H 0.X;K2/˚H 0.X;K3/ provides geodesic coordinates for
the pressure metric at � .

We want to show @kgij .�/D 0 for the pressure metric components gij with respect to
the coordinates introduced in Remark 2.39 for all possible i , j and k.

4.1 Some geometrical observation

In this subsection, we conclude some derivatives of metric tensors vanish by a geometric
observation. Starting from the next section, we will develop a general method to
compute first derivatives of the pressure metric via the thermodynamic formalism.

From now on, we restrict ourselves to the Hitchin component H3.S/. Suppose fqig is a
basis of holomorphic differentials in H 0.X;K2/˚H 0.X;K3/ and suppose f'.qi/g is
the associated Hitchin deformation given in Definition 2.38. Recall we use the notation
gij .�/D h'.qi/; '.qj /iP to emphasize the metric tensor is evaluated at � 2 T .S/. We
also assume gij .ı/D ıij .

Furthermore, instead of using the Latin letters i , j and k to denote arbitrary holomorphic
differentials of degree 2 and 3, we let the Latin letters i , j and k only refer to quadratic
differentials qi ; qj ; qk 2 H 0.X;K2/ from now on. Therefore, the corresponding
Hitchin deformations '.qi/, '.qj / and '.qk/ are tangential directions to the Fuchsian
locus in TX H3.S/. We use the Greek letters ˛, ˇ and  to refer to cubic differentials
q˛; qˇ; q 2H 0.X;K3/. Then the corresponding Hitchin deformations '.q˛/, '.qˇ/
and '.q / are normal directions to the Fuchsian locus in TX H3.S/ with respect to the
pressure metric.

With the above notation understood, we have in total six types of first derivative of metric
tensors that need to be considered: @kgij , @j gi˛ , @˛gij , @ig˛ˇ , @ˇgi˛ and @g˛ˇ . Our
goal is to prove they all vanish.

We first notice the following facts:

(1) @kgij .�/D 0.
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To see this, note that the pressure metric is a constant multiple of the Weil–Petersson
metric on Teichmüller space T .S/. Because the coordinates system in terms of quadratic
differentials from the Hitchin reparametrization agrees with Bers coordinates through
second order in the case of T .S/ [37, Corollaries 5.2 and 5.4]. That the Bers coordinates
are geodesic [1] for the Weil–Petersson metric implies that, for the pressure metric,
@kgij .�/D 0.

(2) @j g˛i.�/D 0 implies @˛gij .�/D 0.

The contragredient involution � W PSL.3;R/ ! PSL.3;R/ given by �.g/ D .g�1/t

induces an involution O� on H3.S/ by O�.�/. /D �.�. //. Because O� is an isometry
of H3.S/ with respect to the pressure metric and the fixed-point set of O� is T .S/, the
Fuchsian locus is in fact totally geodesic in H3.S/ (see [7]). So, for zr the Levi-Civita
connection of the pressure metric and any X;Y 2 T�T .S/, we have

(4-1) ….X;Y /D .zrX Y /? D 0:

Thus, the Christoffel symbols for the connection zr satisfy �˛ij .�/D 0 and, because

�˛ij D
1
2
gˇ˛.@j giˇC @igjˇ � @ˇgji/ (since gk˛.�/D 0 and gk˛.�/D 0)

D
1
2
g˛˛.@j gi˛C @igj˛ � @˛gji/ (since g˛ˇ D �˛ˇ/;

it suffices to know @j gi˛.�/D 0 and @igj˛.�/D 0 to conclude @˛gij .�/D 0.

(3) @ˇg˛˛.�/D 0 implies @g˛ˇ.�/D 0, and @ig˛˛.�/D 0 implies @ig˛ˇ.�/D 0.

This is because

@g˛ˇ D
1
2
.@g˛Cˇ;˛Cˇ � @g˛˛ � @gˇˇ/;

@ig˛ˇ D
1
2
.@ig˛Cˇ;˛Cˇ � @ig˛˛ � @igˇˇ/:

The remaining four cases left to prove are as follows:

(i) @ˇg˛˛.�/D 0.

(ii) @ig˛˛.�/D 0.

(iii) @j g˛i.�/D 0.

(iv) @ˇg˛i.�/D 0.

We will have a general method to prove them. We first give a general formula for
first derivatives of the pressure metric in the next subsection. The computation for the
model case @ˇg˛˛.�/ will be shown in Sections 5 and 6. The other three cases will be
discussed in Section 7.
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4.2 First derivatives of the pressure metric

This subsection is devoted to a formula for first derivatives of the pressure metric. We
also prove we have some freedom to choose representatives for the variations of the
reparametrization functions from the Livšic cohomology classes.

Suppose f�.u; v; w/g.u;v;w/2f.�1;1/g3 is an analytic three-parameter family of represen-
tations in the Hitchin component Hn.S/with basepoint �.0; 0; 0/2T .S/ corresponding
to X. Suppose ff�.u;v;w/g.u;v;w/2f.�1;1/g3 are associated reparametrization functions.
For simplicity of notation, we denote the renormalized reparametrization functions by

F.u; v; w/D f N
�.u;v;w/ D�h.�.u; v; w//f�.u;v;w/:

We also write F.0/D F.0; 0; 0/ and �.0/D �.0; 0; 0/.

In the case of the Fuchsian representation, the topological entropy and the reparametriza-
tion function are simple. We have h.�.0//D 1 (see Theorem 2.16). Since ˆ�.0/ Dˆ,
the reparametrization function f�.0/ can be chosen to be 1 in the Livšic cohomology
class. Therefore, one can choose F.0/D�1.

The following characterization of the equilibrium measure for F.0/ is important:

Lemma 4.1 The equilibrium state mF.0/ for F.0/ is the Liouville measure mL.

Proof Since the Liouville measure mL coincides with the Bowen–Margulis measure
(Remark 2.14), this follows easily from the variational principle (Proposition 2.8).

The Liouville measure mL is both ˆt –invariant and rotationally invariant on UX, ie
.ei� /�mL DmL, where ei� acts on UX by usual multiplication. We will repeatedly
use these important properties of the Liouville measure for our proofs later.

Proposition 4.2 The first derivatives of the pressure metric at �.0/ satisfy

@w
�
h@u�.0; 0; w/; @v�.0; 0; w/iP

�
.0/

D lim
r!1

1

r

�Z
UX

Z r

0

@uF.0/ dt

Z r

0

@vF.0/ dt

Z r

0

@wF.0/ dt dm0

C

Z
UX

Z r

0

@uF.0/ dt

Z r

0

@wvF.0/ dt dm0

C

Z
UX

Z r

0

@vF.0/ dt

Z r

0

@wuF.0/ dt dm0

�
;

where the flow ˆt .x/ is omitted for simplicity.
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Proof Starting from the Fuchsian point �.0/, along the ray with parametrization
f.0; 0; w/gw2.�1;1/, the pressure metric h � ; � iP W T.0;0;w/Hn.S/�T.0;0;w/Hn.S/!R

satisfies

h@u�.0; 0; w/; @v�.0; 0; w/iP

D�
Cov.@uF.0; 0; w/; @vF.0; 0; w/;mF.0;0;w//R

UX F.0; 0; w/ dmF.0;0;w/

D�
@v@uP .F.0; 0; w//�

R
UX @uvF.0; 0; w/ dmF.0;0;w/R

UX F.0; 0; w/ dmF.0;0;w/

(by (2-8)):

We first notice
R

UX F.0/ dm0 D�1 and, from (3-11),

@w

�Z
UX

F.0; 0; w/ dmF.0;0;w/

�
.0/D Cov.F.0/; @wF.0/;m0/C

Z
UX

@wF.0/ dm0

D 0:

Therefore,

@w
�
h@u�.0; 0; w/; @v�.0; 0; w/iP

�
.0/

D @w@v@uP .F.0//� @w

�Z
UX

@uvF.0/ dmF.0;0;w/

�
.0/

D @w@v@uP .F.0//�Cov.@uvF.0/; @wF.0/;m0/�

Z
UX

@uvwF.0/ dm0 (by (3-11))

D lim
r!1

1

r

�Z
UX

Z r

0

@uF.0/ dt

Z r

0

@vF.0/ dt

Z r

0

@wF.0/ dt dm0

C

Z
UX

Z r

0

@uF.0/ dt

Z r

0

@vwF.0/ dt dm0

C

Z
UX

Z r

0

@vF.0/ dt

Z r

0

@wuF.0/ dt dm0

�
(by (3-4)).

Proposition 4.3 The formula in Proposition 4.2 for the first derivatives of the pressure
metric only depends on the Livšic class of each component function @uF.0/, @vF.0/,
@wF.0/, @wvF.0/ and @wuF.0/.

Proof We know from the proof of Proposition 4.2 that

@w
�
h@u�.0; 0; w/; @v�.0; 0; w/iP

�
.0/

D @w@v@uP .F.0//�

Z
UX

@uvwF.0/ dm0�Cov.@uvF.0/; @wF.0/;m0/:
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By (2-8), in general, if we take two mean-zero Hölder functions h1 and h2 with respect
to m0, then

Cov.h1; h2;m0/D @u@vP .F.0/Cuh1C vh2/.0/:

As the value of the pressure function P only depends on the Livšic class, we see
changing h1 and h2 in its cohomology class does not change Cov.h1; h2;m0/. In
particular, this holds for Cov.@uvF.0/; @wF.0/;m0/.

Similarly, from (3-3), it is clear that

@w@v@uP .F.0//�

Z
UX

@uvwF.0/ dm0

D @w@v@uP
�
F.0/Cu@uF.0/C v@vF.0/Cw@wF.0/

Cuv@uvF.0/Cuw@uwF.0/C vw@vwF.0/
�
.0/:

Again the above pressure function P does not change value if we change each com-
ponent function. So, altogether, we know the first derivatives of the pressure metric
only depend on the Livšic class of each component function @uF.0/, @vF.0/, @wF.0/,
@wvF.0/ and @wuF.0/.

4.3 A gauge-theoretical formula

In [20], Labourie and Wentworth show the variations of the reparametrization functions
can be expressed by a gauge-theoretical formula. This formula will be crucial for
our computation in the next section. We include the formula and its proof here for
completeness. We add some assumptions which are natural for our case of Hitchin
components Hn.S/.

We consider .E;H / a rank n Hermitian bundle over the surface S equipped with a
Riemannian metric g. We let  be a closed curve on S with arc-length parametriza-
tion  .t/. Suppose DA0 is a flat connection on E whose holonomy has distinct
eigenvalues along  . Suppose � is one eigenvalue with a corresponding eigenline L
and H is the complementary hyperplane stabilized by the holonomy. We denote by
L .t/ the line generated by the parallel transports of L along  at time t , by H .t/
the hyperplane generated by complementary eigenvectors, and by �.t/ the projection
on L .t/ along H .t/. Then we have:

Proposition 4.4 (Labourie and Wentworth [20]) For DAs a smooth one-parameter
family of flat connections , we have a unique smooth function � .s/ such that , for
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s small enough , � .s/ is the eigenvalue of the holonomy of DAs with � .0/ D � .
Moreover ,

(4-2)
d log� .s/

ds

ˇ̌̌̌
sD0

D�

Z l

0

Tr.@sDA0.t/ ��.t// dt:

Here the notation is @sDA0.t/ WD @sDAs . P .t/ @=@t/.0/, where @sDA0 is an End.E/–
valued 1–form and P .t/ @=@t is the tangent vector field along  .t/.

Proof We prove (4-2) here.

Let fgsg be a family of gauge transformations acting on fDAsg with g0 D id. Define
the new connection 1–forms zAs WD g�s As . We first proveZ l

0

Tr.@sDA0.t/ ��.t// dt D

Z l

0

Tr.@sD zA0.t/ ��.t// dt:

Note here @sDA0.t/ is a 0–form since we have contracted the 1–form @sDAs .0/ with
the tangential vector field. Therefore, Tr.@sDA0.t/ ��.t// is a function in t or in P .t/.

Taking the derivative of zAs WD g�s As at s D 0 yields

@sD zA0 D @sDA0 CDA0 Pg;

where Pg, denoting @gs=@sjsD0, is a section of End.E/ and the connection DA0 acts
on Pg as DA0 Pg D d PgC ŒA0; Pg�.

We want to show Z l

0

Tr..DA0 Pg/�/ dt D 0:

To simplify the notation, we will always omit the variable t when writing our formulas.
For example, here .DA0 Pg/� WD .DA0.t/ Pg.t//�.t/.

We start by proving that � is a DA0–parallel section in End.E/. Given any section
v 2 �.E/, we can write it as a linear combination of eigenvectors of holonomy. Set
v.t/D

Pn
iD1 ai.t/ei.t/, where ei.t/ satisfies the parallel transport equation DA0

ei D 0

with boundary conditions ei.l /D �
i
 ei.0/ and kei.0/k D 1. In particular, we assume

�1
 D � and L .t/ is generated by e1.t/. Then

.DA0�/.v/D ŒDA0 ; ��v DDA0.�v/��.DA0v/

DDA0.a1.t/e1.t//��

� nX
iD1

.dai.t/ei.t/C ai.t/DA0ei.t//

�
D da1.t/e1.t/� da1.t/e1.t/

D 0:
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Thus,Z l

0

d

dt
.Tr. Pg ��// dt

D

Z l

0

Tr
�
@

@t
. Pg�/

�
dt

D

Z l

0

Tr.DA0. Pg�// dt (since Tr.ŒA0; Pg��/D 0)

D

Z l

0

Tr.ŒDA0 ; Pg��/ dt (notice Pg� 2 �.End.E//)

D

Z l

0

Tr.ŒDA0 ; Pg�� C PgŒDA0 ; ��/ dt

D

Z l

0

Tr..DA0 Pg/� C Pg.DA0�// dt (action of a connection on �.End.E//)

D

Z l

0

Tr..DA0 Pg/�/ dt (since DA0� D 0).

So Z l

0

Tr..DA0 Pg/�/ dt D

Z l

0

d

dt
.Tr. Pg ��// dt

D Tr. Pg.l /�.l //�Tr. Pg.0/�.0//

D 0:

As s varies, the eigenline Ls
 .t/ corresponding to � .s/ varies according to s and so

does the complementary hyperplane Hs
 .t/. By picking suitable gauges fgsg, we can

assume, for zAs WD g�s As , the eigenlines zLs
 .t/ and complementary hyperplanes zHs

 .t/

satisfy zLs
 .t/D L .t/ and zHs

 .t/DH .t/.

Without loss of generality, we assume DAs is itself the connection for a suitable gauge
and fes

i g are eigenvectors for As with es
1

corresponding to Ls
 . Thus,

DAs es
i .t/D 0; es

i .l /D �
i
 .s/e

s
i .0/:

In particular, we can assume

DAs es
1.t/D 0; es

1.t/D cs.t/e
0
1.t/; es

1.l /D �
1
 .s/e

s
1.0/; es

1.0/D e0
1.0/:

So

es
1.l /D cs.l /e

0
1.l /D cs.l /�

1
 .0/e

0
1.0/D �

1
 .s/e

s
1.0/D �

1
 .s/e

0
1.0/
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and thus cs.l /D �
1
 .s/=�

1
 .0/ and c0.l /D 1. Notice

H.e0
1
.t/;DAs e0

1
.t//

H.e0
1
.t/; e0

1
.t//

D
H
�
e0

1
.t/;DAs .es

1
.t/=cs.t//

�
H.e0

1
.t/; es

1
.t/=cs.t//

D
@t .1=cs.t//

1=cs.t/
D�

@.log cs.t//

@t
:

So Z l

0

Tr.@sDA0�/ dt D

Z l

0

H.e0
1
.t/; @sDA0e0

1
.t//

H.e0
1
.t/; e0

1
.t//

dt

D�

Z l

0

@

@s

�
@.log cs.t//

@t

�ˇ̌̌̌
sD0

dt

D�
d log�1

 .s/

ds

ˇ̌̌̌
sD0

:

5 Computation of the variations of the reparametrization
functions for a model case

In this section and the next, we consider the model case @ˇg˛˛.�/. Note the treatment
of this case will involve all the steps needed for the other cases. This justifies the
expositional decision that we consider it here first and in isolation.

In this case, we are given parameters .u; v/ 2 f.�1; 1/g2 with (conjugacies classes of)
representations {�.u; v/g in H3.S/ corresponding to

f.0;uq˛C vqˇ/g �H 0.X;K2/˚H 0.X;K3/

by Hitchin parametrization (see Remark 2.37). In particular, at the Fuchsian point
�.0/DX, we identify @u�.0; 0/ with '.q˛/ and @v�.0; 0/ with '.qˇ/, where ' is the
Hitchin deformation given in Definition 2.38. We suppose ff�.u;v/g is an associated
two-parameter family of reparametrization functions. By Proposition 4.2, the formula
for @ˇg˛˛.�/ is

@ˇg˛˛.�/D @v
�
h@u�.0; v/; @u�.0; v/iP

�
.0/

D lim
r!1

1

r

�Z
UX

�Z r

0

@uf
N
�.0/ dt

�2 Z r

0

@vf
N
�.0/ dt dm0

C 2

Z
UX

Z r

0

@uf
N
�.0/ dt

Z r

0

@uvf
N
�.0/ dt dm0

�
:

Because @uh.�.u; 0//D @vh.�.0; v//D 0 on Fuchsian locus T .S/. By Theorem 2.16,
the variations of the reparametrization functions that need to be computed are the
following:
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(i) @uf
N
�.0/
D�@uf�.0/.

(ii) @vf
N
�.0/
D�@vf�.0/.

(iii) @uvf
N
�.0/
D�@uvh.�.0//� @uvf�.0/.

Before proceeding to compute (i), (ii) and (iii), we explain our general strategy to
compute the variations of the reparametrization functions. Our computation will be
based on Proposition 4.4 and tools from Higgs bundles theory. Let us first set up our
Higgs bundles.

In the component H3.S/ we are considering, the rank-3 holomorphic vector bundle
is fixed as E D K ˚ O ˚ K�1. Associated to a representation � in H3.S/ is a
Hermitian metric H on E that solves Hitchin’s equation (2-9) and a flat connection
DH Drx@E ;H

CˆCˆ�H, where rx@E ;H
is the Chern connection (see Theorem 2.29).

Given a parameter s 2 .�1; 1/, suppose we are considering a family of conjugacy
classes of representations f�sg in H3.S/. On the one hand, there is a family of flat
connections fDH .s/g given by (2-10) associated to f�sg. On the other hand, there
is a family of reparametrization functions ff�s

gs2.�1;1/ associated to f�sg from the
thermodynamical point of view. Recall our notation (2-4)–(2-5). For a family of flat
connections fDH .s/g, we write

@sDH .0/ D
@DH .s/

@s

ˇ̌̌̌
sD0

and, for a family of reparametrization functions ff�s
g,

@sf�0
D
@f�s

@s

ˇ̌̌̌
sD0

:

By Proposition 4.4 and Livšic’s theorem, the Hölder function �Tr.@sDH .0/�/.x/

and @sf�0
.x/ are in the same Livšic cohomology class. Recalling our notation in

Definition 2.3,

(5-1) @sf�0
.x/��Tr.@sDH .0/�/.x/:

Here we define Tr.@sDH .0/�/.ˆt .x// WD Tr.@sDH .0/.t/�.t//, following Proposition
4.4. The curve  .t/ in Proposition 4.4 from now on will be a unit-speed geodesic
starting from x. Therefore, x D P .0/ @=@t and ˆt .x/D P .t/ @=@t .

Proposition 4.3 allows us to consider the first and second variations of the reparametriza-
tion functions in terms of Livšic cohomology classes instead of individual functions.
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From now on, for the first and second variations of the reparametrization functions, we
will no longer distinguish cohomologous elements.

Because X is a hyperbolic surface and the geodesic flow is Anosov, the vectors tangent
to periodic geodesics are dense in TX. To recover the information of @sf�0

, it suffices
to compute Tr.@sDH .0/�/ on each closed geodesic. Similarly, to compute the second
variations of the reparametrization functions, it suffices to compute them on each closed
geodesic.

Now we start to give a complete computation of the first and second variations of the
reparametrization functions for the case @ˇg˛˛.�/. The steps of our argument are
divided into different subsections:

(1) We set up coordinates adapted to the closed geodesics we study and conclude
special properties of affine metrics with respect to chosen coordinates on these
geodesics.

(2) We first construct a homogeneous ODE arising from the parallel transport equa-
tion for the base flat connection at �.0/D � 2 T .S/. This leads to formulas for
the first variations of the reparametrization functions proved in [20].

(3) We consider a family of parallel transport equations associated to a family of
flat connections by solving Hitchin’s equations based at �.0/D � 2 T .S/. The
variation of this family of parallel transport equations at � gives rise to some
nonhomogeneous ODEs and yields solutions for the second variations of the
reparametrization functions on the closed geodesics we consider.

(4) We extend our computation from the closed geodesics to the surface.

5.1 Setting up coordinates on surfaces

In this subsection, we set up coordinates adapted to the closed geodesics we study.
We will obtain some important properties for the affine metric after setting up the
coordinates. They can be used in the computation of the first and second variations
of the reparametrization functions in the following sections. The first variations have
been computed in [20] by advanced Lie-theoretic methods.

The convention we use for a Hermitian metric H on E is it is C–linear in the second
variable and conjugate-linear in the first variable. Suppose on a coordinate chart .U; z/,
the bundle E D K˚O˚K�1 is trivialized as EjU Š U �C3. Locally we have a
holomorphic frame .s1; s2; s3/ on U. With respect to the local holomorphic frame and
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our convention of the Hermitian metric, the .1; 0/–part of the Chern connection rx@E ;H

is H�1 @H. The Hermitian conjugate is ˆ�H DH�1 x̂ tH. The connection 1–form A

of the flat connection DH is thus

ADH�1 @H CˆCˆ�H :

Associated to representations f�.u; v/g are a two-parameter family of flat connections
fDH .u;v/g. We will study their connection 1–forms in holomorphic frames with respect
to some carefully chosen coordinates on the surface X.

When the Higgs field is

ˆ.u; v/D

240 0 uq˛C vqˇ
1 0 0

0 1 0

35 ;
Baraglia proves the Hermitian metric H.u; v/ that solves Hitchin’s equation (2-9) is
diagonal (see [2]). Following Baraglia’s notation [2], we denote the Hermitian metric
by H.u; v/D e2�.u;v/. We have

H.u; v/D

24h.u; v/�1 0 0

0 1 0

0 0 h.u; v/

35 ;
where hD h.u; v/ is a section of K˝K and

�.u; v/D

24�!.u; v/ 0 0

0 0 0

0 0 !.u; v/

35
with !.u; v/D 1

2
log h.u; v/.

We denote the corresponding flat connection by

DH .u;v/ Drx@E ;H .u;v/
Cˆ.u; v/Cˆ.u; v/�H .u;v/:

The connection 1–form A.u; v/ 2 �.T �X ˝End E/ is thus

(5-2) A.u; v/D

24 �2 @!.u; v/ h.u; v/ uq˛C vqˇ
1 0 h.u; v/

h�2.u Nq˛C v Nqˇ/ 1 2 @!.u; v/

35 :
In fact, 2h.u; v/ is an affine metric for some hyperbolic affine sphere in the conformal
class of � (see [2]).

We let � D log.2h=�/. Note � D �.u; v; z/ is actually a globally well-defined function
on X that does not depend on coordinate systems. Hitchin’s equation (2-9), using the
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integrability condition for affine sphere (see [24]), can be written as an equation of �
as

(5-3) ���C 16kuq˛C vqˇk
2
�e�2�

� 2e� C 2D 0;

where k � k� is the induced norm on cubic differentials. It satisfies kqk2� D jqj
2=�3.

The notation we adopt for Laplacian is �� D 4@Nz@z=� .

For simplicity of notation, we sometimes omit variables and write � as �.u; v/ or �.z/
depending on our needs.

We have the following observation from (5-3):

� When .u; v/D .0; 0/, the only solution of (5-3) is � D �.0; 0/D 0. The affine
metric 2hD � is indeed the hyperbolic metric of constant curvature �1.

� Taking the u–derivative or v–derivative of (5-3) at .u; v/D .0; 0/ yields

���u� 2e��u D 0;(5-4)

���v � 2e��v D 0:(5-5)

Therefore, the fact that � D �.0; 0/ D 0 implies �u D �u.0; 0/ D 0 and �v D
�v.0; 0/D 0.

We now choose a special coordinate system that facilitates the study of holonomy
problems on a closed geodesic. Let z be a local holomorphic coordinate on X. Suppose
the affine metric in this coordinate is e .u;v;z/jdzj2 and the hyperbolic metric in this
coordinate is � D eı.z/jdzj2. Suppose  .t/ is any closed geodesic with respect to the
hyperbolic metric � on the Riemann surface X. Then, written in the z–coordinate, it is

 .t/D z.t/D Re  .t/C i Im  .t/

and
P .t/

@

@t
D .Re P .t/C i Im P .t// @

@z
C .Re P .t/� i Im P .t// @

@Nz
:

In particular, we can model  .t/ on a strip S D
˚
xC iy W jyj< �

2

	
with the hyperbolic

metric ds D jdzj=cos y and  .t/D .t; 0/. This coordinate around  is called a Fermi
coordinate and satisfies Re P .t/ D 1 and Im P .t/ D 0. Thus, it’s easy to check that,
on  , one has  � ds D jdzj and ı.z/D 0.

The variable t is then the arc-length parameter for our choice of coordinates. Therefore,
if one writes P .0/ @=@t D x 2 UX, then P .t/ @=@t D ˆt .x/. We will always assume
P .0/ @=@t D x in our discussion.
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With the Fermi coordinate understood, from the fact that the only solution of (5-3) is
� D 0, we conclude

 .z/D �.z/C ı.z/D ı.z/D 0:

From (5-4) together with (5-5) and their solutions �u D �v D 0, we obtain

 u.z/D �u.z/D 0;  v.z/D �v.z/D 0:

Also  .z/D 0 implies
 z.z/D ız.z/D 0:

All this information about the affine metric  with respect to the Fermi coordinate will
be important in computation in later sections.

5.2 Homogeneous ODEs for holonomy and first variations of the
reparametrization functions

In this subsection, we show a formula for the first variations of the reparametrization
functions from [20]. We also construct homogeneous ODEs arising from the parallel
transport equations for the base flat connection at � 2 T .S/. These serve as the first
step for the computation of the second variations in later subsections.

We first explain our notation. For qi D qi.z/ dz2 any quadratic differential and q˛ D

q˛.z/ dz3 any cubic differential, we also use qi and q˛ to denote Hölder functions on
the unit tangent bundle UX as follows. We let qi W UX !C and q˛ W UX !C be

qi.x/ WD qi.z/ dz2.x;x/D qi.z/.dz.x//2;(5-6)

q˛.x/ WD q˛.z/ dz3.x;x;x/D q˛.z/.dz.x//3:(5-7)

The first variations of the reparametrization functions for our cases have been computed
in [20] as follows:

Proposition 5.1 [20, Theorem 4.0.2] The first variations of the reparametrization
functions @uf�.0/ W UX ! R and @vf�.0/ W UX ! R for our model case @ˇg˛˛.�/

satisfy
�@uf�.0/.x/� Re q˛.x/; �@vf�.0/.x/� Re qˇ.x/;

where the notation � is Livšic equivalence (Definition 2.3).

Proposition 5.1 is proved in [20] as a consequence of (5-1).

We then study parallel transport equations for the connection DH .0/ arising from
holonomy problems based at �.0/ 2 T .S/. With the coordinates introduced in the
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last section, they become homogenous ODE systems that are easy to solve. We list
some important computations involved here. These will be important for the second
variations of the reparametrization functions.

The parallel transport equation for the connection DH .0/ on the closed geodesic  is

(5-8) DH .0/; PV D 0;

where V 2 �.E/ is a parallel section with boundary conditions

V .l /D �i.; �.0//V .0/:

Here �i.; �.0// is one of the eigenvalues for holonomy of DH .0/ on  for i D 1; 2; 3.
We want to write (5-8) on a specific holomorphic frame, which can be constructed as
follows.

We cover  by m charts f.Ui ; zi/g
m
iD1

such that zi WUi!zi.Ui/�C is a diffeomorphism
for 1 � i � m. We assume our holomorphic bundle E is trivialized on each Ui .
Furthermore, we assume the transition map on every overlap is either the identity
or a hyperbolic translation viewed on the universal cover D. Since dzi is a local
holomorphic section of K on Ui and @=@zi is a local holomorphic section of K�1

on Ui , we can define a local holomorphic frame si D .si
1
; si

2
; si

3
/ for EDK˚O˚K�1

on Ui , where si
1
D dzi and si

2
D 1 and si

3
D @=@zi . Setting .UmC1; zmC1/D .U1; z1/

and smC1
j D s1

j , this yields a well-defined holomorphic frame for  because, on each
overlap and for j D 1; 2; 3, we have si

j D siC1
j on  jUi

\  jUiC1 with 1� i �m.

We will simply write the holomorphic frame on  as sj for j D 1; 2; 3. With respect to
this frame, the parallel transport equation for V .t/D

P3
iD1 Vi.t/si.t/ becomes

@t

24V 1.t/

V 2.t/

V 3.t/

35C
240 1

2
0

1 0 1
2

0 1 0

3524V 1.t/

V 2.t/

V 3.t/

35D 0:

There are three eigenvalues for this ODE system: �1.; �.0//D el , �2.; �.0//D 1

and �3.; �.0//D e�l . The solutions for V (assuming norm 1 at the starting point
with respect to the Hermitian metric H.0/), denoted by ei corresponding to �i. / for
i D 1; 2; 3, are

e1 D

p
2

2
et

24 1
2

�1

1

35 ; e2 D
1
2

24�1

0

2

35 ; e3 D

p
2

2
e�t

241
2

1

1

35 :
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We note at the Fuchsian point �.0/2T .S/, the eigenvectors e1, e2 and e3 are orthogonal.
In our holomorphic frame, the projection �.0/D �.�.0// can be computed as

�.0/D 1
2

264
1
2
�

1
2

1
4

�1 1 �1
2

1 �1 1
2

375 :
The eigenvectors ei and projection � will play important roles in later sections.

5.3 Inhomogeneous ODEs and the second variations of the
reparametrization functions

We will compute the second variation of the reparametrization functions @uvf�.0/ in
this and the next subsection. With our formula (5-1), we have

(5-9) @uvf�.0/ ��@v
�
Tr.@uDH .0;v/�.0; v//

�
.0/

D�Tr
�
@2DH .0/

@u @v
�.0/

�
�Tr.@uDH .0/@v�.0//

DW �I� II:

In this subsection, we compute @uvf�.0/ along a closed geodesic by computing I
and II. We study variation of holonomy problems along a closed geodesic and construct
associated inhomogeneous ODEs. In the next subsection, we extend the computation
of @uvf�.0/ to the whole surface.

Compute I With the holomorphic frames and Fermi coordinates setup as before, one
obtains, on  ,

@uvDH .0/.x/D

24�. z/uv.z/
1
2
 uv.z/ 0

0 0 1
2
 uv.z/

0 0 . z/uv.z/

35 :
Thus,

Tr
�
@2DH .0/

@u @v
.x/�.0/

�
D�

1
2
 uv.z/:

More explicitly, Tr..@2DH .0/=@u @v/�.0// W UX !R satisfies

Tr
�
@2DH .0/

@u @v
�.0/

�
.x/D�1

2
 uv

�
z.p.x//

�
D�

1
2
�uv.p.x//;

where p W UX !X is the projection from the unit tangent bundle to our surface and z

is the Fermi coordinate we choose evaluating at the point p.x/2X. Note that the affine
metric  is always real and � D  � � does not depend on the coordinates we choose.
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Compute II To study @v�.0/ takes some effort. We set uD 0 and take a family of
flat connections fDH .v/g with connection 1–forms A.0; v/ (recall (5-2)). Associated
to each of them is a parallel transport equation along the closed geodesic  on .S; �/,

(5-10) DH .v/; PV .v; t/D 0;

with the assumption kV .v; 0/kH .0/ D 1.

In [19], Labourie proves the images of every Hitchin representation are purely loxo-
dromic. For �.0; v/ in H3.S/, we know �.0; v/. / has distinct eigenvalues �1.; v/ >

�2.; v/ > �3.; v/. The holonomy problem for �.0; v/ has three distinct eigenvectors
which are parallel sections fei.v; t/g

3
iD1

along  .t/. Each section V .v; t/D ei.v; t/ sat-
isfies (5-10). In addition to the norm 1 condition at the starting point, kV .v; 0/kH .0/D1,
we also impose another boundary condition in order to guarantee these are eigenvectors.
The boundary conditions are, for i D 1; 2; 3,

(i) kei.v; 0/kH .0/ D 1;

(ii) ei.v; l /D �i.; v/ei.v; 0/.

The reader may notice that, up to now, there are two frames for E along  mentioned,
the holomorphic frame .s1; s2; s3/ and the frame spanned by eigenvectors .e1; e2; e3/.
On the one hand, we can write our holomorphic frames as linear combinations of
eigenvectors si.t/D

P3
jD1 aij .v; t/ej .v; t/ for i D 1; 2; 3. On the other hand, we can

write the eigenvectors as linear combinations of our holomorphic frames ej .v; t/ DP3
kD1 ejk.v; t/sk.t/ for j D 1; 2; 3. We have the following observation:

With respect to the holomorphic frame .s1; s2; s3/, the projection onto e1 along the
hyperplane spanned by .e2; e3/ in matrix form is

�.v; t/D
�
�.v; t/s1.t/ �.v; t/s2.t/ �.v; t/s3.t/

�
D
�
a11.v; t/e1.v; t/ a21.v; t/e1.v; t/ a31.v; t/e1.v; t/

�
D

24a11.v; t/e11.v; t/ a21.v; t/e11.v; t/ a31.v; t/e11.v; t/

a11.v; t/e12.v; t/ a21.v; t/e12.v; t/ a31.v; t/e12.v; t/

a11.v; t/e13.v; t/ a21.v; t/e13.v; t/ a31.v; t/e13.v; t/

35 :
To understand @v�.0/, we need to know @ve1.0/ and @v˛i1.0/ for i D 1; 2; 3. One can
check, in the holomorphic frame,

(5-11) Tr.@uDA.0/@v�.0//D q˛.@va11.0/e13.0/C a11.0/@ve13.0//

C 4 Nq˛.@va31.0/e11.0/C a31.0/@ve11.0//;
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where e11.0/ and e13.0/ are known. Thus, we need to compute @ve1.0/ and @va11.0/

and @va31.0/.

We first show how to obtain @ve1.0; t/ as the solution of an inhomogeneous ODE
system arising from taking the v–derivative for a family of parallel transport equations
(5-10) at v D 0,

@t

24@ve11.0; t/

@ve12.0; t/

@ve13.0; t/

35C
240 1

2
0

1 0 1
2

0 1 0

3524@ve11.0; t/

@ve12.0; t/

@ve13.0; t/

35D�p2
2

et

24 qˇ.ˆt .x//

0

2 Nqˇ.ˆt .x//

35 ;
with boundary conditions

H.@ve1.0; 0/; e1.0; 0//D 0;

@ve1.0; l /D�el

�Z l

0

Re qˇ.ˆs.x// ds

�
e1.0; 0/C el @ve1.0; 0/:

The boundary conditions arise from taking the v–derivative for boundary conditions
(i) and (ii) of the parallel transport equation (5-10) that the maximum eigenvector e1

satisfies.

With these boundary conditions, we solve264@ve11.t/

@ve12.t/

@ve13.t/

375D
264�
p

2
2

R t

0
es.cosh.t�s/Re qˇCi Im qˇ/ ds
p

2
R t

0
es sinh.t�s/Re qˇ ds

�
p

2
R t

0
es.cosh.t�s/Re qˇ�i Im qˇ/ ds

375

C

2664
�

p
2

4
.e2l �1/�1

R l
0

e2s�t Re qˇ ds�
p

2
2

i.el �1/�1
R l

0
es Im qˇ ds

�

p
2

2
.e2l �1/�1

R l
0

e2s�t Re qˇ ds

�

p
2

2
.e2l �1/�1

R l
0 e2s�t Re qˇ dsC

p
2i.el �1/�1

R l
0 es Im qˇ ds

3775 :
Here qˇ refers to qˇ.ˆs.x// defined in (5-7).

We continue to compute @v˛11.0/ and @v˛31.0/. Combining

ej .v; t/D

3X
kD1

ejk.v; t/sk.t/ and si.t/D

3X
jD1

aij .v; t/ej .v; t/

gives

(5-12)
jD3X
jD1

aij .v; t/ejk.v; t/D �ik :
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Recall the ejk.0; t/ are known:

e1.0; t/D

24e11.0; t/

e12.0; t/

e13.0; t/

35D p2
2

et

24 1
2

�1

1

35 ;
e2.0; t/D

24e21.0; t/

e22.0; t/

e23.0; t/

35D 1
2

24�1

0

2

35 ;
e3.0; t/D

24e31.0; t/

e32.0; t/

e33.0; t/

35D p2
2

e�t

241
2

1

1

35 :
Then one obtains

a.0; t/D

24a11 a12 a13

a21 a22 a23

a31 a32 a33

35D
2664
p

2
2

e�t �1
p

2
2

et

�

p
2

2
e�t 0

p
2

2
et

p
2

4
e�t 1

2

p
2

4
et

3775 :
Taking the v–derivative of (5-12) at v D 0,

jD3X
jD1

@vaij .0; t/ejk.0; t/C

jD3X
jD1

aij .0; t/@vejk.0; t/D 0:

Solutions of @vaij .0; t/ can be expressed in terms of @ve1.0; t/, @ve2.0; t/ and @ve3.0; t/.
We have just solved @ve1. Similarly,@ve2.0/ and @ve3.0/ are solutions of another two
systems of nonhomogeneous ODEs deduced from (5-10). We now proceed to solve
@ve2.0; t/ and @ve3.0; t/.

(1) For @ve2.0; t/, we have

@t

24@ve21.0; t/

@ve22.0; t/

@ve23.0; t/

35C
240 1

2
0

1 0 1
2

0 1 0

3524@ve21.0; t/

@ve32.0; t/

@ve23.0; t/

35D
24 �qˇ.ˆt .x//

0

2 Nqˇ.ˆt .x//

35
with boundary conditions

H.@ve2.0; 0/; e2.0; 0//D 0;

@ve2.0; l /D 2

�Z l

0

Re qˇ.ˆs.x// ds

�
e2.0; 0/C @ve2.0; 0/:

(2) For @ve3.0; t/, we get

@t

24@ve31.0; t/

@ve32.0; t/

@ve33.0; t/

35C
240 1

2
0

1 0 1
2

0 1 0

3524@ve31.0; t/

@ve32.0; t/

@ve33.0; t/

35D�p2
2

e�t

24 qˇ.ˆt .x//

0

2 Nqˇ.ˆt .x//

35
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with boundary conditions

H.@ve3.0; 0/; e3.0; 0//D 0;

@ve3.0; l /D�e�l

�Z l

0

Re qˇ.ˆs.x// ds

�
e3.0; 0/C e�l @ve3.0; 0/:

We obtain respective solutions from24@ve21.t/

@ve22.t/

@ve23.t/

35D
264�

R t
0 Re qˇC i cosh.t � s/ Im qˇ ds

2
R t

0 i sinh.t � s/ Im qˇ ds

2
R t

0 Re qˇ � i cosh.t � s/ Im qˇ ds

375

C

2664
�

i
2

R l
0

Im qˇ..1� el /�1elCt�sC .1� e�l /�1e�l�tCs/ ds

i
R l

0
Im qˇ..1� el /�1elCt�s � .1� e�l /�1e�l�tCs/ ds

�i
R l

0
Im qˇ..1� el /�1elCt�sC .1� e�l /�1e�l�tCs/ ds

3775
and264@ve31.t/

@ve32.t/

@ve33.t/

375D
2664
�

p
2

2

R t

0
e�s.cosh.t�s/Re qˇCi Im qˇ/ ds
p

2
R t

0
e�s sinh.t�s/Re qˇ ds

�
p

2
R t

0
e�s.cosh.t�s/Re qˇ�i Im qˇ/ ds

3775

C

2664
�

p
2

4
.e�2l�1/�1

R l
0 et�2s Re qˇ ds�

p
2

2
i.e�l�1/�1

R l
0 e�s Im qˇ ds

p
2

2
.e�2l�1/�1

R l
0

et�2s Re qˇ ds

�

p
2

2
.e�2l�1/�1

R l
0

et�2s Re qˇ dsC
p

2i.e�l�1/�1
R l

0
e�s Im qˇ ds

3775;
where qˇ in the solutions again refers to qˇ.ˆs.x// defined in (5-7).

We are therefore able to solve @vaij .0; t/ from @ve1.0; t/, @ve2.0; t/ and @ve3.0; t/.
For a closed geodesic  of length l starting from P .0/D x, we compute, from (5-11),

(5-13) Tr.@uDA.0/@v�.0//.ˆt .x//

D Re q˛.ˆt .x//

Z t

0

.e2.t�s/
� e2.s�t//Re qˇ.ˆs.x// ds

C 2 Im q˛.ˆt .x//

Z t

0

.et�s
� es�t / Im qˇ.ˆs.x// ds

CRe q˛.ˆt .x//

Z l

0

�
e2.t�s/

e�2l � 1
�

e2.s�t/

e2l � 1

�
Re qˇ.ˆs.x// ds

C 2 Im q˛.ˆt .x//

Z l

0

�
et�s

e�l � 1
�

es�t

el � 1

�
Im qˇ.ˆs.x// ds:
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In particular, at t D 0,

(5-14) Tr.@uDA.0/@v�.0//.x/

D Re q˛.x/

Z l

0

�
e�2s

e�2l � 1
�

e2s

e2l � 1

�
Re qˇ.ˆs.x// ds

C 2 Im q˛.x/

Z l

0

�
e�s

e�l � 1
�

es

el � 1

�
Im qˇ.ˆs.x// ds:

Remark 5.2 Every point on the closed geodesic  plays an equivalent role. We can
always let y Dˆt .x/ be the initial point of our  and set up boundary conditions for
our ODEs based at y instead of x. The solution of this new ODE system is (5-14),
treating y D ˆt .x/ as the initial point. It is in fact the same as starting from x and
obtaining Tr.@uDA.0/@v�.0//.ˆt .x// from (5-13).

5.4 Hölder extension to the surface

The holonomy problems only yield solutions on closed geodesics as they can be
simplified as linear ODEs with boundary conditions. However, it is still possible to
extend the computation for the second variations of the reparametrization functions
from closed geodesics to the Riemann surface X. This will be our goal in this subsection.
In particular, We will prove in the end of this subsection the main proposition about
second variations of the reparametrization functions.

Proposition 5.3 The second variation of the reparametrization functions

@uvf�.0/ W UX !R

for our model case @ˇg˛˛.�/ satisfies

@uvf�.0/.x/�
1
2
�uv.p.x//� �.x/;

where we recall that � is defined in (5-3) and p W UX !X is the projection from the
unit tangent bundle UX to our Riemann surface X, and � W UX !R is given by

�.x/D�Re q˛.x/

Z 1
0

e�2s Re qˇ.ˆs.x// ds�Re q˛.x/

Z 0

�1

e2s Re qˇ.ˆs.x// ds

�2 Im q˛.x/

Z 1
0

e�s Im qˇ.ˆs.x// ds�2 Im q˛.x/

Z 0

�1

es Im qˇ.ˆs.x// ds:
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We will prove that �.x/ coincides with Tr.@uDA.0/@v�.0//.x/ on periodic orbits and
that �.x/ is a Hölder function. Denoting the subset of UX that consists of all unit
tangent vectors to closed geodesics by W, we first show:

Proposition 5.4 For any x 2W, �.x/D Tr.@uDA.0/@v�.0//.x/.

To prove Proposition 5.4, from the computation of Tr.@uDA.0/@v�.0//.x/ in (5-14),
we introduce an intermediate function  WW �RC!R, given by

 .x; r/D Re q˛.x/

Z r

0

�
e�2s

e�2r � 1
�

e2s

e2r � 1

�
Re qˇ.ˆs.x// ds

C 2 Im q˛.x/

Z r

0

�
e�s

e�r � 1
�

es

er � 1

�
Im qˇ.ˆs.x// ds:

Given x 2 W, if we denote the closed geodesic that x is tangential to by x , with
length lx

, then clearly Tr.@uDA.0/@v�.0//.x/D  .x; lx
/. To prove Proposition 5.4

for the set W, we need the following lemma, which states that  .x; r/ attains the same
value when r is any positive integer multiple of lx

:

Lemma 5.5  .x; klx
/D  .x; lx

/ for all x 2W and k 2 ZC.

Proof For any k 2 ZC, we haveZ klx

0

�
e�2s

e�2klx � 1
�

e2s

e2klx � 1

�
Re qˇ.ˆs.x// ds

D

kX
iD1

Z ilx

.i�1/lx

�
e�2s

e�2klx � 1
�

e2s

e2klx � 1

�
Re qˇ.ˆs.x// ds

D
1

e�2klx � 1

kX
iD1

Z ilx

.i�1/lx

e�2s Re qˇ.ˆs.x// ds

�
1

e2klx � 1

kX
iD1

Z ilx

.i�1/lx

e2s Re qˇ.ˆs.x// ds

D

Z lx

0

�
e�2s

e�2lx � 1
�

e2s

e2lx � 1

�
Re qˇ.ˆs.x// ds:

Similar arguments hold for
R lx

0
.e�s=.e�lx � 1/� es=.elx � 1// Im qˇ.ˆs.x// ds.

Thus, we obtain  .x; klx
/D  .x; lx

/.

Remark 5.6 This equality is clear if one understands that  .x; kl / is the solution of
the holonomy problem that goes around our closed geodesic  k times with the same
boundary conditions.
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Proof of Proposition 5.4 Instead of flowing from x to ˆlx
.x/, we view x as our

midpoint and consider our flow from ˆ�lx =2
.x/ to x and then from x to ˆlx =2

.x/.
From this point of view, we can write  .x; lx

/ as

 .x; lx
/D Re q˛.x/

Z lx =2

0

�
e�2s

e�2lx � 1
�

e2s

e2lx � 1

�
Re qˇ.ˆs.x// ds

CRe q˛.x/

Z 0

�lx =2

�
e2s

e�2lx � 1
�

e�2s

e2lx � 1

�
Re qˇ.ˆs.x// ds

C 2 Im q˛.x/

Z lx =2

0

�
e�s

e�lx � 1
�

es

elx � 1

�
Im qˇ.ˆs.x// ds

C 2 Im q˛.x/

Z 0

�lx =2

�
es

e�lx � 1
�

e�s

elx � 1

�
Im qˇ.ˆs.x// ds:

The above also holds if we replace lx
by klx

. We will now conclude by taking
k!1 in the above formula.

Suppose maxx2UX fjRe q˛.x/j; jIm q˛.x/j; jRe qˇ.x/j; jIm qˇ.x/jg DM. Then notice

j .x; klx
/� �.x/j � 2M 2

Z 1
klx =2

e�2s dsC 4M 2

Z 1
klx =2

e�s ds

C 2M 2

Z klx =2

0

ˇ̌̌̌
e�2s

e�2klx � 1
�

e2s

e2klx � 1
C e�2s

ˇ̌̌̌
ds

C 4M 2

Z klx =2

0

ˇ̌̌̌
e�s

e�klx � 1
�

es

eklx � 1
C e�s

ˇ̌̌̌
s

! 0 when k!1:

Thus, by Lemma 5.5, we obtain, for any x 2W,

Tr.@uDA.0/@v�.0//.x/D  .x; lx
/D lim

k!1
 .x; klx

/D �.x/:

We also need the following proposition about regularity of the function �:

Proposition 5.7 �.x/ W UX !R is a Hölder function.

Proof We start by showing
R1

0 e�s Im qˇ.ˆs.x// ds is Hölder. Let x and y be close,
with d.x;y/ D � � 1. It is classical for a hyperbolic surface .S; �/ that we have
standard ODE estimates on the geodesic flow

d.ˆs.x/; ˆs.y//�Nesd.x;y/D �Nes;
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where N > 0 is some constant and the distance function d on UX is induced from the
canonical (Sasaki) metric h � ; � i on UX.

Consider T D �log.�/. Then, dividing the integral into two parts, from 0 to T and
from T to1, yieldsˇ̌̌̌Z 1

0

e�s Im qˇ.ˆs.x// ds�

Z 1
0

e�s Im qˇ.ˆs.y// ds

ˇ̌̌̌
D

ˇ̌̌̌Z T

0

e�s
�
Im qˇ.ˆs.x//� Im qˇ.ˆs.y//

�
ds

ˇ̌̌̌
C

ˇ̌̌̌Z 1
T

e�s
�
Im qˇ.ˆs.x//� Im qˇ.ˆs.y//

�
ds

ˇ̌̌̌
�

Z T

0

e�sN1N�es dsC 2N2e�T

� �N1N� log.�/C 2N2�

� .N1N C 2N2/d.x;y/
1=2:

Here we use the fact that Im qˇ is smooth, so we can assume its Lipschitz constant to
be N1. We also use that UX is compact and we assume supx2UX Im qˇ.x/DN2.

It then follows easily that Im q˛.x/
R1

0 e�2s Im qˇ.ˆs.x// ds is also a Hölder function.
The arguments to show that the other three terms in �.x/ are Hölder are the same. We
therefore conclude that �.x/ is a Hölder function.

Finally, with Propositions 5.4 and 5.7, we are able to prove Proposition 5.3 about the
second variations of the reparametrization functions on the Riemann surface X.

Proof of Proposition 5.3 We have most of the necessary elements for this proof in
previous estimates. We assemble everything here. Because Tr.@uDA.0/@v�.0//.ˆt .x//

is a Hölder function and it equals the Hölder function �.x/ on a dense subset of UX,
we conclude it coincides with �.x/ everywhere on UX. We obtain

@uvf�.0/ ��@u

�
Tr.@vDH .0/�.0//

�
D�Tr

�
@2DH .0/

@u @v
�.0/

�
�Tr.@vDH .0/@u�.0//

D
1
2
�uv.p.x//� �.x/;

where we recall here �D log.2h=�/ is a globally well-defined function defined in (5-3)
evaluating at the point p.x/ 2 X and p W UX ! X is the projection from the unit
tangent bundle to our surface.
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6 Evaluation on the Poincaré disk for the model case

After the computation of the first and second variations of the reparametrization func-
tions on UX in the last two sections, we are able to evaluate @ˇg˛˛.�/. Our goal in
this section is to show the following:

Proposition 6.1 For � 2 T .S/, @ˇg˛˛.�/D 0.

Let’s first write down the expression for @ˇg˛˛.�/,

@ˇg˛˛.�/

D @v
�
h@u�.0; v/; @u�.0; v/iP

�
.0/

D lim
r!1

1

r

�Z
UX

�Z r

0

@uf
N
�.0/ dt

�2 Z r

0

@vf
N
�.0/ dt dm0

C2

Z
UX

Z r

0

@uf
N
�.0/ dt

Z r

0

@uvf
N
�.0/ dt dm0

�
D lim

r!1

1

r

Z
UX

�Z r

0

Re q˛.ˆt .x// dt

�2 Z r

0

Re qˇ.ˆt .x// dt dm0

C lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

�@uvh.�.0//�@uvf�.0/.ˆt .x// dt dm0

DW IC II:

The formula for @uvf�.0/ is given in Proposition 5.3.

We aim to prove both I and II are zero. The following lemma will be crucial:

Lemma 6.2 For any t; s 2R, we haveZ
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆs.x// dm0.x/D 0;(6-1) Z
UX

Re q˛.x/ Im q˛.ˆt .x// Im qˇ.ˆs.x// dm0.x/D 0:(6-2)

We use the methods in [20] to show the integrals are zero. Similarly to the proof
of Theorem 6.3.1 in [20], the key is to use the symmetry properties of the Liouville
measure m0 DmL and homogeneity of holomorphic differentials viewed as functions
on UX. We transfer the problem of evaluating the integrals in (6-1) and (6-2) to
analyzing the Fourier coefficients of holomorphic differentials.
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Before we start our proof, we first explain the coordinates we will use to do the
computation following [20]. We take the Poincaré disk as our charts. Pick a point
x 2 UX. We identify the universal cover of .X; �/ with D by the unique isometry that
takes �.x/ 2X to 0 2D and identify the vector x 2 UX with the vector .1; 0/ 2 T0D.

We express our holomorphic differentials in these coordinates. The holomorphic cubic
differential q˛ has the analytic expansion in the coordinate based on x,

q˛;x.z/D

1X
nD1

an.x/z
n dz3:

Recall the hyperbolic distance dH in the Poincaré disk model satisfies

dH .0;Rei� /D r.R/D 1
2

log
�

1CR

1�R

�
:

Thus, @=@r D .1�R2/ @=@R and

dz
�
@

@r

�ˇ̌̌
Rei�
D .1�R2/ei� :

Denoting Qq˛;x.z/ WD Re.q˛;x.z/.@=@r ; @=@r ; @=@r//, one has

(6-3) Re q˛.ˆr .e
i�x//D Qq˛;x.Rei� /D Re

� 1X
nD0

an.x/R
n.1�R2/3ei.nC3/�

�
:

In particular, when r D 0,

lim
R!0

dz
�
@

@r

�ˇ̌̌
Rei�
D ei� :

Therefore,

(6-4) Re q˛.e
i�x/D Qq˛;x.0 � e

i� /

D lim
R!0

Re
�
q˛;x.Rei� /

�
@

@r
;
@

@r
;
@

@r

��
D Re.a0.x/e

i3� /:

Suppose the coefficients of the analytic expansion for qˇ are bn; then

(6-5) Re qˇ.ˆr .e
i�x//D Qqˇ;x.Rei� /D Re

� 1X
nD0

bn.x/R
n.1�R2/3ei.nC3/�

�
:

For the convenience of computation later for other cases, we also write down here two
analytic expansions for holomorphic quadratic differentials qi and qj , with coefficients
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cn and dn, respectively,

Re qi.ˆr .e
i�x//D Qqi;x.Rei� /D Re

� 1X
nD0

cn.x/R
n.1�R2/2ei.nC2/�

�
:(6-6)

Re qj .ˆr .e
i�x//D Qqj ;x.Rei� /D Re

� 1X
nD0

dn.x/R
n.1�R2/2ei.nC2/�

�
:(6-7)

Proof of Lemma 6.2 We begin with showing (6-1).

The proof of it will be divided into two cases:

(1) t � 0 and s � 0.

(2) t < 0 or s < 0.

In the first case, we work with the analytic expansions (6-3) and (6-5). We choose
two special situations: s D t and s D 1

2
t . We observe some symmetries in these two

situations and argue from these symmetries that (6-1) holds for the first case. We then
apply the results for the first case to the second case by flow-invariance properties
of mL. Equation (6-2) then follows easily from (6-1) once we find the relation between
them.

Since m0 DmL is rotationally invariant, ie .ei� /�mL DmL, we haveZ
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆs.x// dm0.x/

D
1

2�

Z 2�

0

Z
UX

Re q˛.e
i�x/Re q˛.ˆt .e

i�x//Re qˇ.ˆs.e
i�x// dm0.x/ d�:

(1) We restrict ourselves to the case t; s � 0 of (6-1) so that we can work with the
analytic expansions (6-3) and (6-5).

We let t.T /D 1
2

log..1CT /=.1�T // and s.S/D 1
2

log..1CS/=.1�S//. We first
consider t > 0 and s > 0. Then, if we first integrate over the �–variable, in terms of
the analytic expansion, we get

(6-8)
Z

UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆs.x// dm0.x/

D
1

4

1X
nD0

�Z
UX

Re.a0an
NbnC3/ dm0 T n.1�T 2/3SnC3.1�S2/3

C

Z
UX

Re.a0 NanC3bn/ dm0 T nC3.1�T 2/3Sn.1�S2/3
�
:
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We let An D
R

UX Re.a0an
NbnC3/ dm0 and Bn D

R
UX Re.a0 NanC3bn/ dm. To show

(6-1) holds for t; s � 0, it suffices to prove, for n� 0,

(6-9) An D Bn D 0:

If t D 0 or s D 0, equation (6-1) is equivalent to

A0 D B0 D 0;

which are included in (6-9). To prove (6-9), we consider two special cases of (6-1):
flow times s D t and s D 1

2
t .

By the ˆt –invariance of m0, flow time s D t satisfiesZ
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆt .x// dm0.x/

D

Z
UX

Re q˛.ˆ�t .x//Re q˛.x/Re qˇ.x/ dm0.x/:

A convenient observation is that flowing from x backwards for time t is the opposite of
flowing forwards for time t from �x, ie ˆ�t .x/D�ˆt .�x/. Let y D�x and notice
.ei�/�m0 Dm0, so we haveZ

UX

Re q˛.ˆ�t .x//Re q˛.x/Re qˇ.x/ dm0.x/

D�

Z
UX

Re q˛.ˆt .y//Re q˛.y/Re qˇ.y/ dm0.y/:

Therefore,Z
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆt .x// dm0.x/

D�

Z
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.x/ dm0.x/:

This implies

1X
nD0

.AnCBn/T
2nC3.1�T 2/6 D�B0T 3.1�T 2/3:

The coefficient of T 0 yields

(6-10) A0C 2B0 D 0:

Similarly, for flow time s D 1
2
t , we let y D�x and again use the fact .ei�/�m0 Dm0:
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Z
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆt=2.x// dm0.x/

D

Z
UX

Re q˛.ˆ�t .x//Re q˛.x/Re qˇ.ˆ�t=2.x// dm0.x/

D�

Z
UX

Re q˛.ˆt .�x//Re q˛.�x/Re qˇ.ˆt=2.�x// dm0.x/

D�

Z
UX

Re q˛.ˆt .y//Re q˛.y/Re qˇ.ˆt=2.y// dm0.y/:

Thus,
R

UX Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆt=2.x// dm0.x/D 0.

Recall t.T /D 1
2

log..1CT /=.1�T // and s D 1
2

log..1CS/=.1�S//. In the case
s D 1

2
t , we have T D 2S=.S2C 1/. The analytic expansion forZ

UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆt=2.x// dm0.x/D 0

with condition T D 2S=.S2C 1/ simplifies to
1X

nD0

.An.S
2
C 1/3C 8Bn/

�
2S2

S2C 1

�n

D 0:

Let W D S2=.S2C 1/ with 0<W < 1
2

. Then the above is equivalent to
1X

nD0

�
An

1X
kD0

1
2
.kC 1/.kC 2/W k

C 8Bn

�
2nW n

D 0:

This give relations

2nC3BnC

nX
kD0

.n� kC 1/.n� kC 2/2k�1Ak D 0; n� 0.

When n D 0, combining with (6-10), we obtain A0 D B0 D 0. Then (6-10) yields
An C Bn D 0 for all n 2 N. This fact, combined with the above formula, gives
An D Bn D 0 and (6-1) holds for t; s � 0.

(2) For t < 0 or s < 0, there are three cases we need to discuss.

� If t � s and t < 0, then, as m0 is ˆt –invariant,Z
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆs.x// dm0.x/

D

Z
UX

Re q˛.ˆ�t .x//Re q˛.x/Re qˇ.ˆs�t .x// dm0.x/:

This is the same as the s; t � 0 case.
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� If s < t � 0, thenZ
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆs.x// dm0.x/

D

Z
UX

Re q˛.ˆ�t .x//Re q˛.x/Re qˇ.ˆs�t .x// dm0.x/

D�

Z
UX

Re q˛.ˆ�t .x//Re q˛.x/Re qˇ.ˆt�s.�x// dm0.x/

D 0:

This is from the observation that the analytic expansion of Re qˇ.ˆr .�ei�x// based
at x for r > 0 is

Re qˇ.ˆr .�ei�x//D Re qˇ.ˆr .e
i.�C�/x//D Qqˇ;x.Rei.�C�//

D Re
� 1X

nD0

bn.x/R
n.1�R2/3ei.nC3/.�C�/

�
and that, for n� 0,

e�i.nC6/�

Z
UX

Re.a0an
NbnC3/ dm0 D 0; ei.nC3/�

Z
UX

Re.a0 NanC3bn/ dm0 D 0:

� If s < 0� t , then we considerZ
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆs.x// dm0.x/

D

Z
UX

Re q˛.ˆt .�x//Re q˛.x/Re qˇ.ˆt�s.�x// dm0.x/

D 0:

The argument is essentially the same as the other cases. This finishes the proof of (6-1).

Equation (6-2) follows easily from (6-1) since, for all t; s 2R,

Re
�Z

UX

Re q˛.x/q˛.ˆt .x//qˇ.ˆs.x// dm0.x/

�
D

Z
UX

Re q˛.x/Re q˛.ˆt .x//Re qˇ.ˆs.x// dm0.x/

�

Z
UX

Re q˛.x/ Im q˛.ˆt .x// Im qˇ.ˆs.x// dm0.x/

and

(6-11)
Z

UX

Re q˛.x/q˛.ˆt .x//qˇ.ˆs.x// dm0.x/D 0:
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This is easy to see from the fact that
R 2�

0 Re.a0.x/e
i3� /ei.nC3/�ei.mC3/� d� D 0 for

all n;m� 0 and thus, for t; s > 0,Z
UX

Re q˛.x/q˛.ˆt .x//qˇ.ˆs.x// dm0.x/

D
1

2�

Z 2�

0

Z
UX

Re q˛.e
i�x/q˛.ˆt .e

i�x//qˇ.ˆs.e
i�x// dm0.x/ d�

D
1

2�

X
m;n�0

Z
UX

Z 2�

0

Re.a0.x/e
i3� /.an.x/T

n.1�T 2/3ei.nC3/� /

� .bm.x/S
mC3.1�S2/3ei.mC3/� / d� dm0.x/

D 0:

The argument for t � 0 or s� 0 can be transferred back to the t > 0 and s> 0 cases. One
needs the observation that �ˆ�t .�x/Dˆt .x/ and �ei�x D ei.�C�/x. We conclude
(6-11) holds for all t; s 2R and thus (6-2) holds.

Proof of Proposition 6.1 We start to show ID IID 0.

ID 0 reduces to (6-1) of Lemma 6.2 if we take r !1 in

1

r

Z
UX

�Z r

0

Re q˛.ˆt .x// dt

�2 Z r

0

Re qˇ.ˆt .x// dt dm0

D
1

r

Z r

0

Z r

0

Z r

0

Z
UX

Re q˛.ˆt .x//Re q˛.ˆs.x//Re qˇ.ˆ�.x// dm0 d� dt ds

(by Fubini’s theorem)

D
1

r

Z r

0

Z r

0

Z r

0

Z
UX

Re q˛.ˆt�s.x//Re q˛.x/Re qˇ.ˆ��s.x// dm0 d� dt ds

(since m0 is ˆt –invariant)

D 0:

We next look into II:

IID lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

�@uvh.�.0//� @uvf�.0/.ˆt .x// dt dm0

D� lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

@uvh.�.0// dt dm0

� lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

Tr
�
@2DA.0/

@u @v
�.0/

�
.ˆt .x// dt dm0

C lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x//Tr.@vDA.0/@u�.0//.ˆt .x// dt dm0:
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There are three terms here. Since @uvh.�.0// is a constant, the first term is

lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

@uvh.�.0// dt dm0

D lim
r!1

2@uvh.�.0//

Z
UX

Z r

0

Re q˛.ˆt .x// dt dm0:

Recall our expressions given by (6-3) and (6-6). ThenZ
UX

Z r

0

Re q˛.ˆt .x// dt dm0

D

Z r

0

Z
UX

Re q˛.ˆt .x// dm0 dt

D

Z r

0

Z
UX

Re q˛.x/ dm0 dt (since m0 is ˆt –invariant)

D
1

2�

Z r

0

Z
UX

Z 2�

0

Re q˛.e
i�x/ d� dm0 dt (since m0 is rotationally invariant)

D
r

2�

Z
UX

Z 2�

0

Re.a0.x/e
i3� / d� dm0

D 0:

The second term in II is

� lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

Tr
�
@2DA.0/

@u @v
�.0/

�
.ˆt .x// dt dm0

D lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

1
2
�uv.ˆt .x// dt dm0;

recalling that � is a globally well-defined function on X (see formula (5-3)), and

1
2
�uv

�
p.ˆt .x//

�
D

1
2
�uv

�
p.ˆt .e

i�x//
�
:

So

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

1
2
�uv.ˆt .x// dt dm0

D
1

r

Z
UX

Z 2�

0

2

Z r

0

Re q˛.ˆt .e
i�x// dt

Z r

0

1
2
�uv

�
p.ˆt .e

i�x//
�

dt d� dm0

D
1

r

Z
UX

Z 2�

0

2

Z r

0

Re q˛.ˆt .e
i�x// dt

Z r

0

1
2
�uv

�
p.ˆt .x//

�
dt d� dm0

D
1

r

Z r

0

Z r

0

Z
UX

�uv

�
p.ˆt�s.x//

� Z 2�

0

Re q˛.e
i�x/ d� dm0 ds dt:
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Again by the fact
R 2�

0 Re q˛.e
i�x/ d� D

R 2�
0 Re.a0.x/e

i3� / d� D 0, we conclude

lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛ dt

Z r

0

Tr
�
@2DA.0/

@u @v
�.0/

�
dt dm0 D 0:

It remains to show

lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛ dt

Z r

0

Tr.@vDA.0/@u�.0// dt dm0 D 0:

This is

lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

�.ˆt .x// dt dm0

D� lim
r!1

1

r

�Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

Re q˛.ˆ�.x//

Z 1
0

e�2s Re qˇ.ˆ�Cs.x// ds d� dm0

C

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

Re q˛.ˆ�.x//

Z 0

�1

e2s Re qˇ.ˆ�Cs.x// ds d� dm0

C

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

2 Im q˛.ˆ�.x//

Z 1
0

e�s Im qˇ.ˆ�Cs.x// ds d� dm0

C

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

2 Im q˛.ˆ�.x//

Z 0

�1

es Im qˇ.ˆ�Cs.x// ds d� dm0

�
:

We have estimates for these tail terms

1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

Re q˛.ˆ�.x//

Z 1
r

e�2s Re qˇ.ˆ�Cs.x// ds d� dm0

C
1

r

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

Z r

0

Re q˛.ˆ�.x//

Z �r

�1

e2s Re qˇ.ˆ�Cs.x// ds d� dm0

�
4M 3

r
r2

Z 1
r

e�2s ds

D 2M 3re�2r r!1
����! 0:
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The other two tail terms with integrals involving Im q˛ and Im qˇ also go to zero for
the same reason. So, in fact,

lim
r!1

1

r

Z
UX

2

Z r

0

Re q˛ dt

Z r

0

Tr.@vDA.0/@u�.0// dt dm0

D� lim
r!1

1

r

�Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

Re q˛.ˆ�.x//

Z r

0

e�2s Re qˇ.ˆ�Cs.x// ds d� dm0

C

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

Re q˛.ˆ�.x//

Z 0

�r

e2s Re qˇ.ˆ�Cs.x// ds d� dm0

C

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

2 Im q˛.ˆ�.x//

Z r

0

e�s Im qˇ.ˆ�Cs.x// ds d� dm0

C

Z
UX

2

Z r

0

Re q˛.ˆt .x// dt

�

Z r

0

2 Im q˛.ˆ�.x//

Z 0

�r

es Im qˇ.ˆ�Cs.x// ds d� dm0

�
:

Similar to I, the above equaling 0 reduces to (6-2). This finishes our proof of Proposition
6.1 and so concludes the discussion of the model case @ˇg˛˛.�/.

7 The remaining cases

We will show in this section the proofs of the remaining three cases, ie @ig˛˛.�/D 0,
@j g˛i.�/D 0 and @ˇg˛i.�/D 0. They provide a complete proof of Theorem 1.1.

7.1 The case of @i g˛˛.� /

In this case, given parameters .u; v/ 2 f.�1; 1/g2, we obtain a family of (conju-
gacy classes of) representations f�.u; v/g in H3.S/ corresponding to f.vqi ;uq˛/g �

H 0.X;K2/˚H 0.X;K3/ by the Hitchin parametrization. In particular, @u�.0; 0/ is
identified with '.q˛/ and @v�.0; 0/ is identified with '.qi/. The formula for @ig˛˛.�/
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is

@ig˛˛.�/D @v
�
h@u�.0; v/; @u�.0; v/iP

�
.0/

D lim
r!1

1

r

�Z
UX

�Z r

0

@uf
N
�.0/ dt

�2 Z r

0

@vf
N
�.0/ dt dm0

C 2

Z
UX

Z r

0

@uf
N
�.0/ dt

Z r

0

@uvf
N
�.0/ dt dm0

�
;

where the first and second variations are

(i) @uf
N
�.0/
D�@uf�.0/;

(ii) @vf
N
�.0/
D�@vf�.0/;

(iii) @uvf
N
�.0/
D�@uvh.�.0//� @vuf�.0/.

7.1.1 First and second variations of the reparametrization functions We compute
the first and second variations for the case of @ig˛˛.�/ in this subsection.

We have Higgs field

ˆ.u; v/D

240 vqi uq˛
1 0 vqi

0 1 0

35 :
Following the steps and methods for our model case @ˇg˛˛.�/ in Section 5, we show
in this subsection:

Proposition 7.1 The first variations of the reparametrization functions @uf�.0/ WUX!

R and @vf�.0/ W UX !R for the case @ig˛˛.�/ satisfy

@uf�.0/.x/��Re q˛.x/; @vf�.0/.x/� 2 Re qi.x/

and the second variation of the reparametrization functions @vuf�.0/ W UX !R for the
case @ig˛˛.�/ satisfies

@uvf�.0/.x/�
1
2

Re y21.x/

� 2 Im q˛.x/

�Z 1
0

Im qi.ˆs.x//e
�s dsC

Z 0

�1

Im qi.ˆs.x//e
s ds

�
;

where p W UX !X is the projection from the unit tangent bundle UX to our Riemann
surface X. Understanding a section of End.E/ as a linear map on each fiber of
E D K ˚ O ˚ K�1 over a point of X, the element y21 is the component of the
section Y D H�1@uvH that takes K to O. As a function on UX, y21 transforms as
y21.e

i�x/D e�i�y21.x/.
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Proof The first variations are found in [20]. The computation of the second variation
of the reparametrization functions @uvf�.0/ of (5-9) is again divided into computations
of I and II.

Compute I The major difference between the case @ig˛˛.�/ and @ˇg˛˛.�/ is the
computation of this term. As before, our flat connection is

DH .u;v/ Drx@E ;H .u;v/
Cˆ.u; v/Cˆ.u; v/�H .u;v/:

For the computation of @uf�.0/ and @vf�.0/, when uD 0 or vD 0, the harmonic metric
H.u; v/ is diagonal and one obtains

@uDH .0/ D

24 0 0 q˛
0 0 0

4 Nq˛ 0 0

35 ; @vDH .0/ D

24 0 qi 0

2 Nqi 0 qi

0 2 Nqi 0

35 :
However, when u¤ 0 and v¤ 0 both hold, the harmonic metric H.u; v/ corresponding
to our Higgs fieldˆ.u; v/ is not diagonal. The computation of @2DH .0/=@u @v requires
an analysis of Hitchin’s equations.

We start from the family of Hitchin’s equations

(7-1) FDH .u;v/
C Œˆ.u; v/; ˆ.u; v/�H .u;v/�D 0:

We take u– and v–derivatives of Hitchin’s equations (7-1) at u; v D 0:

(7-2) @u@v
�
FDH .u;v/

C Œˆ.u; v/; ˆ.u; v/�H .u;v/�
�
.0; 0/.0/D 0:

We consider taking H�1@vuH as a variable. We define

Y DH�1@vuH D

24y11 y12 y13

y21 y22 y23

y31 y32 y33

35 :
Y DH�1@uvH is a section of End.E/.

We now work with local coordinates and local trivialization. When varying the real
parameters u and v, the holomorphic structure of our bundle E does not change. Thus,
fixing a local holomorphic frame for all u and v, the Chern connection 1–form under this
frame compatible with the Hermitian metric H.u; v/ is A.u; v/DH.u; v/�1 @H.u; v/.
The curvature term in our holomorphic frame is

FDH .u;v/
D dA.u; v/CA.u; v/^A.u; v/D x@.H.u; v/�1 @H.u; v//:

The section Y 2 �.End.E// in a local holomorphic frame has the following properties:
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(i) Tr.Y /D 0.

(ii) H.u; v/� D H.u; v/. Also, because u and v are real parameters, we have
@uvH D @uv.H

�/D .@uvH /� and Y � DH YH�1.

We can express @2DH .0/=@u @v in terms of Y on  . With respect to the local holo-
morphic frame introduced in the model case adapted to the Fermi coordinate, we have
@H D 0 on  . So

(7-3) @uv.DH .0//j

D @uv.H.u; v/
�1 @H.u; v/Cˆ.u; v/Cˆ.u; v/�H .u;v//.0; 0/.0/

D�YH�1 @H CH�1 @H Y C @Y Cˆ�H Y �Yˆ�H

D @Y Cˆ�H Y �Yˆ�H :

We want to simplify (7-2) as an equation about Y and then solve Y from (7-2).

Before we continue, we first fix some notation. We will write

H DH.0; 0/;

ˆDˆ.0; 0/;

@uH D
@H.u; v/

@u

ˇ̌̌̌
u;vD0

;

@vH D
@H.u; v/

@v

ˇ̌̌̌
u;vD0

;

@uvH D
@H.u; v/

@u @v

ˇ̌̌̌
u;vD0

:

As a generalization of the classic result of Ahlfors, the first variations of the harmonic
metric vanish at the Fuchsian point (see [20, Theorem 3.5.1]). In particular,

@uH D @vH D 0:

Taking H�1@uvH as a variable, one can verify from (7-2) that

(7-4) 0D x@@.H�1@uvH /�H�1@H ^x@.H�1@uvH /�x@.H�1@uvH /^H�1 @H

Cx@.H�1 @H /H�1@uvH �H�1@uvH x@.H
�1 @H /

C Œ@uˆ; .@vˆ/
�H �C Œ@vˆ; .@uˆ/

�H �C Œˆ; Œ�H�1@uvH; ˆ
�H ��:

Equation (7-4) can be simplified by the observation

x@.H�1 @H /H�1@uvH �H�1@uvH x@.H
�1 @H /C Œˆ; Œ�H�1@uvH; ˆ

�H ��

D ŒH�1@uvH; Œˆ;ˆ
�H ��� Œˆ; ŒH�1@uvH; ˆ

�H �� (Hitchin’s equation)

D ŒŒH�1@uvH; ˆ�; ˆ
�H � (Jacobi identity):

As Y DH�1@uvH, this yields

(7-5) x@@Y C Œˆ�H ; ŒY; ˆ���H�1 @H ^x@Y �x@Y ^H�1 @H

D�Œ@uˆ; .@vˆ/
�H �� Œ@vˆ; .@uˆ/

�H �:
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The PDE system (7-5) in local holomorphic frames is equivalent to the following nine
scalar equations about yij :

(1) x@@y11C h.y22�y11/D 0.

(2) x@@y22C h.y33� 2y22Cy11/D 0.

(3) x@@y33C h.y22�y33/D 0.

(4) x@@y21C h.y32�y21/C h�1 @h x@y21 D h�2qi Nq˛.

(5) x@@y32C h.y21�y32/C h�1 @h x@y32 D�h�2qi Nq˛.

(6) x@@y12C h.y23� 2y12/� h�1 @h x@y12 D h�1q˛ Nqi .

(7) x@@y23C h.y12� 2y23/� h�1 @h x@y23 D�h�1q˛ Nqi .

(8) x@@y31C 2h�1 @h x@y31 D 0.

(9) x@@y13C 2hy13� 2h�1 @h x@y13 D 0.

From property (ii) of Y, one can thus verify (4) is equivalent to (6), (5) is equivalent to
(7), and (8) is equivalent to (9). Thus, it suffices to consider the following six equations:

� x@@y11C h.y22�y11/D 0.

� x@@y22C h.y33� 2y22Cy11/D 0.

� x@@y33C h.y22�y33/D 0.

� x@@y21C h.y32�y21/C h�1 @h x@y21 D h�2qi Nq˛.

� x@@y32C h.y21�y32/C h�1 @h x@y32 D�h�2qi Nq˛.

� x@@y31C 2h�1 @h x@y31 D 0.

We first take a look at the first three equations. We deduce from them
x@@.y11Cy22Cy33/D 0;

x@@.y11�y33/� h.y11�y33/D 0;

x@@.y11Cy33/C h.2y22� .y11Cy33//D 0:

As Y DH�1@uvH is a section of End.E/, the components yii 2 �.O/ are actually
just functions on the surface X for i D 1; 2; 3. Recall our notation �� D 4@z@Nz=�

and the fact hD h.0; 0/D 1
2
� , so the above equations can be written independent of

coordinate charts on our surface as
�� .y11Cy22Cy33/D 0;

�� .y11�y33/� 2.y11�y33/D 0;

�� .y11Cy33/C 2.2y22� .y11Cy33//D 0:

We have the following observations:
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� From the first equation, we obtain y11Cy22Cy33 D C, where C is a constant.

� Since all eigenvalues of �� should be nonpositive, the second equation can hold
only when y11�y33 D 0.

� The third equation is �� .y11C y33/� 6.y11C y33/D �4C. By a maximum
principle argument, one gets y11Cy33 D

2
3
C.

Thus, property (i) of Y gives y11 D y22 D y33 D 0.

We then continue on the other three equations. From them, we deduce

x@@.y21Cy32/C h�1 @h x@.y21Cy32/D 0;

x@@.y21�y32/� 2h.y21�y32/C h�1 @h x@.y21�y32/D 2h�2qi Nq˛;

x@@y31C 2h�1 @h x@y31 D 0:

Let w D y21Cy32. We want to compute �hkwk
2
h

, where the h–norm k � kh is defined
as

ksk2h D h�is Ns

for a section s 2 �.Ki/ and i 2 Z.

Because hD h.0; 0/D 1
2
� and � D eı.z/jdzj2 is a hyperbolic metric with curvature

K.�/D��� .log �/D�1, we have that h satisfies

(7-6) x@@hD
@h x@h

h
C

1
2
h2:

Note w 2 �.K�1/. The metric h induces a Chern connection rh on K�1 and, in our
local holomorphic frames, one has

r
h;.1;0/w D @wC h�1 @hw:

One recognizes rh;.1;0/w is a section of �.1;0/.K�1/D �.O/. Therefore,

(7-7) kr
h;.1;0/wk2h D .@wC h�1 @hw/.@wC h�1 @hw/:

Combining (7-6) and (7-7) gives

�hkwk
2
h D

4x@@.hw xw/

h
D 2kwk2hC 4k@ xwkhC 4krh;.1;0/wk2h � 0:

This is an inequality independent of coordinates valid on the Riemann surface. By
a maximum principle argument, kwk2

h
must be a constant M. If M ¤ 0, then 0 D

�h.M /� 2M > 0, leading to a contradiction. Thus, M D 0 and y21Cy32 D 0.
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We have similar arguments for x@@y31C 2h�1 @h x@y31 D 0. We begin with computing
�hky31k

2
h
.

Since y31 is a section of�.K�2/, in local holomorphic frames, the Chern connectionrh

induced from h in this case acts as rh;.1;0/y31 D @y31C h�2 @.h2/y31.

We obtain

�hky31k
2
h D

4x@@.h2y31 Ny31/

h
D ky31k

2
hC 4kx@y31khC 4krh;.1;0/y31k

2
h � 0:

Similar to the argument for w, this leads to y31 D 0.

We conclude up to this point that Y DH�1@vuH 2 �.End.E// in our local frame is
of the form

Y DH�1@uvH D

24 0 h Ny21 0

y21 0 �h Ny21

0 �y21 0

35
with x@@y21� 2hy21C h�1 @h x@y21 D h�2qi Nq˛.

With respect to the Fermi coordinate, we have h.z/D 1
2

and @zhD 0 on  . Also, we
know Y � DH YH�1, so we finally obtain on  , from (7-3),

Tr
�
@2DH .0/

@u @v
�.0/

�
.x/D Tr

�
@2DH .0/

@u @v
.x/�.0/

�
D�

1
2

Re y21.x/:

Remark 7.2 We have y21.x/ D y21.z/, where x D P .0/ is the starting point of  .
Recall y21 is the component of Y 2 �.End.E// taking K to O and y21.z/ is y21

evaluating at p.x/ in the trivialization given by the holomorphic frame adapted to the
Fermi coordinate z for  .

In particular, if we consider another closed geodesic 2 starting from  0
2
.0/ D ei�x

with its Fermi coordinate around 2 to be w, then y21.e
i�x/ D y21.w/. We have

y21.w/D y21.z/ dw=dz D y21.z/e
i� .

Because the vectors tangent to periodic orbits are dense in TX, we can extend y21 to
be everywhere defined on UX. We conclude that, as a function on UX, y21 transfers as

y21.e
i�x/D e�i�y21.x/:

This finishes the computation of I on UX. We now move to II; together, these provide
an expression for the second variations of the reparametrization functions.
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Compute II We have

Tr.@uDH .0/@v�.0//

D q˛.@va11.0/e13.0/C a11.0/@ve13.0//C 4 Nq˛.@va31.0/e11.0/C a31.0/@ve11.0//:

Similar to the model case @ˇg˛˛ , here @ve1.0/Dy is the solution of a nonhomogeneous
ODE system which arises from taking a v–derivative on the system of the parallel
transport equation (5-10) at v D 0,

@t

24y1.t/

y2.t/

y3.t/

35C
240 1

2
0

1 0 1
2

0 1 0

3524y1.t/

y2.t/

y3.t/

35D p2
2

et

24 qi.ˆt .x//

�2 Re qi.ˆt .x//

2 Nqi.ˆt .x//

35 ;
with boundary conditions

H.y.0/; e1.0; 0//D 0; y.l /D el

�Z l

0

2 Re qi.ˆs.x// ds

�
e1.0; 0/C ely.0/:

The boundary conditions are set up based on the same consideration as the case of
@ˇg˛˛.�/. The solution is24@ve11.t/

@ve12.t/

@ve13.t/

35

D

264
p

2
2

R t
0 .e

t Re qi C ies Im qi/ ds

�
p

2
R t

0 et Re qi ds
p

2
R t

0 .e
t Re qi � ies Im qi/ ds

375C
264
p

2
2
.el � 1/�1

R l
0

ies Im qi ds

0

�
p

2.el � 1/�1
R l

0
ies Im qi ds

375 :
Similarly, one can compute @ve2.0/ and @ve3.0/ by this method. It turns out that

Tr.@uDH .0/@v�.0//.ˆt .x//

D 2 Im q˛.ˆt .x//

Z t

0

.es�t
� et�s/ Im qi.ˆs.x// ds

C 2 Im q˛.ˆt .x//

Z l

0

�
es�t

el � 1
�

et�s

e�l � 1

�
Im qi.ˆs.x// ds:

We therefore obtain, for a closed geodesic  of length l starting from P .0/D x,

Tr.@uDH .0/@v�.0//.x/D 2 Im q˛.x/

Z l

0

�
es

el � 1
�

e�s

e�l � 1

�
Im qi.ˆs.x// ds:

Similar to our model case of g˛˛;ˇ.�/, one can define a function � WW !R,

�.x/D 2 Im q˛.x/

�Z 1
0

e�s Im qi.ˆs.x// dsC

Z 0

�1

es Im qi.ˆs.x// ds

�
;

and we verify that �.x/ is Hölder, so that Tr.@uDH .0/@v�.0//.x/� �.x/ on UX.
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We conclude

@uvf�.0/.x/

��@v
�
Tr.@uDH .0/�.0//

�
.x/

D
1
2

Re y21.x/�2 Im q˛.x/

�Z 1
0

e�s Im qi.ˆs.x// dsC

Z 0

�1

es Im qi.ˆs.x// ds

�
:

This finishes the proof of Proposition 7.1.

Remark 7.3 Instead of starting from the first variation of the reparametrization
functions @uf�.0/.x/��Tr.@uDH .0/�.0//.x/, we can take the first variation of the
reparametrization functions to be @vf�.0/.x/ � �Tr.@vDH .0/�.0//.x/ by (5-1) and
consider

@vuf�.0/.x/��@u

�
Tr.@vDH .0/�.0//

�
.x/

D�Tr
�
@2DH .0/

@v @u
�.0/

�
.x/�Tr.@vDH .0/@u�.0//.x/:

By the same method, we get

Tr.@vDH .0/@u�.0//.ˆt .x//

D 2 Im qi.ˆt .x//

Z t

0

.es�t
� et�s/ Im q˛.ˆs.x// ds

C 2 Im qi.ˆt .x//

Z l

0

�
es�t

el � 1
�

et�s

e�l � 1

�
Im q˛.ˆs.x// ds:

One can verify, by Fubini’s theorem,Z l

0

Tr.@uDH .0/@v�.0//.ˆt .x// dt D

Z l

0

Tr.@vDH .0/@u�.0//.ˆt .x// dt:

This agrees with the fact that @v
�
Tr.@uDH .0/�.0//

�
.x/ and @u

�
Tr.@vDH .0/�.0//

�
.x/

should be in the same Livšic class by Livšic’s theorem.

7.1.2 Evaluation on the Poincaré disk With the computation in the last section, we
have

@ig˛˛.�/D @v
�
h@u�.0; v/; @u�.0; v/iP

�
.0/

D lim
r!1

1

r

�Z
UX

�Z r

0

Re q˛ dt

�2 Z r

0

�2 Re qi dt dm0

� 2

Z
UX

Z r

0

Re q˛ dt

Z r

0

@uvf
N
�.0/ dt dm0

�
;
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where @uvf
N
�.0/
D�@uvh.�.0//� @vuf�.0/ and

@uvf�.0/.x/

�
1
2

Re y21.x/� 2 Im q˛.x/

�Z 1
0

Im qi.ˆs.x//e
�s dsC

Z 0

�1

Im qi.ˆs.x//e
s ds

�
:

We show in this subsection:

Proposition 7.4 For � 2 T .S/; @ig˛˛.�/D 0.

The argument for this proposition boils down to the following lemma:

Lemma 7.5 For any t; s 2R,Z
UX

Re qi.x/Re q˛.ˆt .x//Re q˛.ˆs.x// dm0.x/D 0;(7-8) Z
UX

Re q˛.x/Re q˛.ˆt .x//Re qi.ˆs.x// dm0.x/D 0;(7-9) Z
UX

Re q˛.x/ Im q˛.ˆt .x// Im qi.ˆs.x// dm0.x/D 0:(7-10)

Proof The proof of this lemma is basically the same as the proof of Lemma 6.2 except
that flow time s D 1

2
t tells us nothing in this case. We instead choose the flow times to

be the three special cases s D t , s D 2t and s D 3t . We recall our analytic expansions
for qi and q˛ are

qi.ˆr .e
i�x//D

� 1X
nD0

cn.x/R
n.1�R2/2ei.nC2/�

�
;

q˛.ˆr .e
i�x//D

� 1X
nD0

an.x/R
n.1�R2/3ei.nC3/�

�
:

We have, when t; s > 0,Z
UX

Re qi.x/Re q˛.ˆt .x//Re q˛.ˆs.x// dm0.x/

D
1

2�

Z 2�

0

Z
UX

Re qi.e
i�x/Re q˛.ˆt .e

i�x//Re q˛.ˆs.e
i�x// dm0.x/ d�

D
1

4

1X
nD0

Z
UX

Re.c0an NanC2/ dm0T nSn.1�T 2/3.1�S2/3.S2
CT 2/:

Geometry & Topology, Volume 27 (2023)



1464 Xian Dai

Consider t D s > 0. ThenZ
UX

Re qi.x/Re q˛.ˆt .x//Re q˛.ˆt .x// dm0.x/

D

Z
UX

Re qi.ˆ�t .x//Re q˛.x/Re q˛.x/ dm0.x/

D

Z
UX

Re qi.�ˆt .�x//Re q˛.�x/Re q˛.�x/ dm0.x/

D

Z
UX

Re qi.ˆt .y//Re q˛.y/Re q˛.y/ dm0.y/ (with y D�x).

The analytic expansions of the left- and right-hand sides of the above equation give

(7-11) 1

2

1X
nD0

Z
UX

Re.c0an NanC2/ dm0T 2n.1�T 2/6T 2

D
1

4

Z
UX

Re.a0a0 Nc4/ dm0.1�T 2/2T 4:

We let Cn D
R

UX Re.c0an NanC2/ dm0 and Dn D
R

UX Re.a0an NcnC4/ dm0 for n � 0.
We proceed to prove Cn D 0 for n� 0.

The coefficients of T 0 and T 2 yield

C0 D 0; 2C1� 8C0 DD0:

On the other hand, if we consider s D 2t and s D 3t , they lead toZ
UX

Re qi.x/Re q˛.ˆt .x//Re q˛.ˆ2t .x// dm0.x/

D�

Z
UX

Re qi.ˆt .x//Re q˛.x/Re q˛.ˆt .�x// dm0.y/

andZ
UX

Re qi.x/Re q˛.ˆt .x//Re q˛.ˆ3t .x// dm0.x/

D�

Z
UX

Re qi.ˆt .x//Re q˛.x/Re q˛.ˆ2t .�x// dm0.y/:

When s D 2t , we have S D 2T=.T 2C 1/ and S D 2T CO.T 3/. When s D 3t , we
have S D .3T CT 3/=.3T 2C 1/ and S D 3T CO.T 3/.

Compare coefficients of T 4 of the analytic expansions of the above two equations and
use the relations S D 2T CO.T 3/ and S D 3T CO.T 3/ to obtain D0D 0. Therefore,
from (7-11), we conclude Cn D 0 for n� 0 and (7-8) holds for t; s > 0. For s � 0 or
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t � 0, the argument for (7-8) to hold is an analogy of the @ˇg˛˛.�/ case. We omit it
here.

Equation (7-9) then follows from (7-8) by a ˆt –invariance argument for m0. To prove
(7-10), we just needZ

UX

Re q˛.x/qi.ˆt .x//qi.ˆs.x// dm0.x/D 0 for all t; s 2R:

The argument is the same as the argument for Lemma 6.2. This finishes the proof of
Lemma 7.5.

Proof of Proposition 7.4 We begin by showing

lim
r!1

1

r

Z
UX

2

Z r

0

@uf
N
�.0/ dt

Z r

0

Tr
�
@2DH .0/

@u @v
�.0/

�
dt dm0 D 0

by evaluating the integral on the Poincaré disk.

Recall from the last subsection that y21 is the solution of x@@y21�2hy21Ch�1 @h x@y21D

h�2qi Nq˛. Because qi and Nq˛ are real analytic and because hD h.0; 0/D 1
2
� is also

real analytic, we know y21 is real analytic by analytic elliptic regularity theory [12].

As discussed before, the function y21 on UX transfers as y21.e
i�x/ D e�i�y21.x/.

Similarly to the model case of g˛˛;ˇ, we write the real analytic expansion for y21 in
the coordinates given by the Poincaré disk model based on x,

y21;x.z/D
X

n;m�0

bn;m.x/z
n
Nzm @

@z
:

Define Qy21;x.z/ WD Re.y21;x.z/.dr//. Recall r.R/ D 1
2

log..1�R/=.1CR//. One
has

y21.ˆr .e
i�x//D Qy21;x.Rei� /D Re

� X
n;m�0

bn;m.x/R
nCm.1�R2/�1ei.n�m�1/�

�
:

Thus,

lim
r!1

1

r

Z
UX

2

Z r

0

@uf
N
�.0/ dt

Z r

0

Tr
�
@2DH .0/

@u @v
�.0/

�
dt dm0

D lim
r!1

1

r

Z
UX

Z r

0

Re q˛.ˆt .x// dt

Z r

0

Re y21.ˆt .x// dt dm0

D lim
r!1

1

r

Z r

0

Z r

0

Z
UX

Re q˛.ˆt .x//Re y21.ˆs.x// dm0 dt ds

D lim
r!1

1

r

Z r

0

Z r

0

Z
UX

Re q˛.ˆt�s.x//Re y21.x/ dm0 dt ds:
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When �D t � s � 0,Z
UX

Re q˛.ˆ�.x//Re y21.x/ dm0

D
1

2�

Z
UX

Z 2�

0

Re q˛.ˆ�.e
i�x//Re y21.e

i�x/ d� dm0:

However,
R 2�

0 Re.e�i�b0;0/Re.anei.nC3/� / d� D 0 for all n � 0, which implies the
above is zero.

It also holds for �� 0 by simply observing that Re q˛.ˆ��.�x//D�Re q˛.ˆ�.x//.
Therefore, we conclude

lim
r!1

1

r

Z
UX

2

Z r

0

@uf
N
�.0/ dt

Z r

0

Tr
�
@2DH .0/

@u @v
�.0/

�
dt dm0 D 0:

Arguments for the other terms in @ig˛˛.�/ to be equal to zero are analogous to the
model case of @ˇg˛˛.�/. They all reduce to Lemma 7.5. We thus finish the proof of
Proposition 7.4.

7.2 The case of @j g˛i .� /

The proofs for the case of @j g˛i.�/ in this subsection and the case of @ˇg˛i.�/ in
the next subsection are basically the same as the cases for @ˇg˛˛.�/ and @ig˛˛.�/.
Although there are no new ingredients in the proofs, we include them here for com-
pleteness.

For @j g˛i.�/, we have three parameters f.u; v; w/g 2 f.�1; 1/g3. The representations
f�.u; v; w/g in H3.S/ correspond to f.vqiCwqj ;uq˛/g �H 0.X;K2/˚H 0.X;K3/

by Hitchin parametrization. In particular, we have @u�.0; 0; 0/ is identified with '.q˛/
and @v�.0; 0; 0/ is identified with '.qi/. Also @w�.0; 0; 0/ is identified with '.qj /.
The formula for @j g˛i.�/ is

@j g˛i.�/D @w
�
h@u�.0; 0; w/; @v�.0; 0; w/iP

�
.0/

D lim
r!1

1

r

�Z
UX

Z r

0

@uf
N
�.0/ dt

Z r

0

@vf
N
�.0/ dt

Z r

0

@wf
N
�.0/ dt dm0

C

Z
UX

Z r

0

@uf
N
�.0/ dt

Z r

0

@vwf
N
�.0/ dt dm0

C

Z
UX

Z r

0

@vf
N
�.0/ dt

Z r

0

@uwf
N
�.0/ dt dm0

�
;

where the first and second variations are:
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(i) @uf
N
�.0/
D�@uf�.0/.

(ii) @vf
N
�.0/
D�@vf�.0/.

(iii) @uwf
N
�.0/
D�@uwh.�.0//� @uwf�.0/.

(iv) @vwf
N
�.0/
D�@vwh.�.0//� @vwf�.0/.

7.2.1 First and second variations of the reparametrization functions Our Higgs
field in this case is

ˆ.u; v; w/D

240 vqi Cwqj uq˛
1 0 vqi Cwqj

0 1 0

35 :
Following the steps and methods from the cases @ˇg˛˛.�/ and @ˇg˛˛.�/, we have:

Proposition 7.6 The first variations of the reparametrization functions @uf�.0/ WUX!

R, @vf�.0/ W UX !R and @wf�.0/ W UX !R for the case @j g˛i.�/ satisfy

@uf�.0/.x/��Re q˛.x/; @vf�.0/.x/� 2 Re qi.x/; @wf�.0/.x/� 2 Re qj .x/;

and the second variations of the reparametrization functions @uwf�.0/ W UX !R and
@vwf�.0/ W UX !R satisfy

@uwf�.0/ �
1
2

Re y21.x/

�2 Im q˛.x/

�Z 1
0

Im qi.ˆs.x//e
�s dsC

Z 0

�1

Im qi.ˆs.x//e
s ds

�
;

@vwf�.0/.x/�
1
2
�vw.p.x//

C2 Im qi.x/

�Z 1
0

Im qj .ˆs.x//e
�s dsC

Z 0

�1

Im qj .ˆs.x//e
s ds

�
;

where p W UX !X and y21 are defined as before.

Proof For the second variations of the reparametrization functions, we have computed
@uwf�.0/ in the @ig˛˛.�/ case:

@uwf�.0/ �
1
2

Re y21.x/

� 2 Im q˛.x/

�Z 1
0

Im qi.ˆs.x//e
�s dsC

Z 0

�1

Im qi.ˆs.x//e
s ds

�
:

The computation of

@vwf�.0/ ��Tr
�
@2DA.0/

@w @v
�.0/

�
�Tr.@vDH .0/@w�.0//DW �I� II

is divided into computations of I and II.
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Compute I We set uD 0; the Higgs field is

ˆ.v;w/D

240 vqi Cwqj 0

1 0 vqi Cwqj

0 1 0

35 :
The harmonic metric H.v; w/ is diagonalizable and the computation of @vwDH .0/ is
the same as in the model case of @ˇg˛˛.�/.

With respect to the notation defined in the model case of @ˇg˛˛.�/, one obtains

Tr
�
@2DH .0/

@v @w
�.0/

�
.x/D�1

2
 vw

�
z.p.x//

�
D�

1
2
�vw.p.x//;

where p W UX !X is the projection from the unit tangent bundle to our surface and z

is the Fermi coordinate we choose evaluating at the point p.x/ 2X.

Compute II Both @vDH .0/ and @w�.0/ have been computed in the @ig˛˛.�/ case.
One can check

Tr.@vDH .0/@w�.0//.ˆt .x//

D qi.@wa11.0/e12.0/C a11.0/@we12.0/C @wa21.0/e13.0/C a21.0/@we13.0//

C 2 Nqi.@wa21.0/e11.0/C a21.0/@we11.0/C @wa31.0/e12.0/C a31.0/@we12.0//

D 2 Im qi.ˆt .x//

Z t

0

Im qj .ˆs.x//.e
t�s
� es�t / ds

C 2 Im qi.ˆt .x//

Z l

0

Im qj .ˆs.x//

�
et�s

e�l � 1
�

es�t

el � 1

�
ds:

In particular,

Tr.@vDH .0/@w�.0//.x/D 2 Im qi.x/

Z l

0

Im qj .ˆs.x//

�
e�s

e�l � 1
�

es

el � 1

�
ds:

Similarly to the cases of @ˇg˛˛.�/ and @ig˛˛.�/, one can then define a function
� W UX !R,

�.x/D�2 Im qi.x/

�Z 1
0

Im qj .ˆs.x//e
�s dsC

Z 0

�1

Im qj .ˆs.x//e
s ds

�
;

and verify that �.x/ is Hölder and such that Tr.@vDH .0/@w�.0//.x/� �.x/ on UX.

We finally obtain

@vwf�.0/.x/

��Tr
�
@2DH .0/

@v @w
�.0/

�
.x/�Tr.@vDH .0/@w�.0//.x/
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D
1
2
�vw.p.x//

C 2 Im qi.x/

�Z 1
0

Im qj .ˆs.x//e
�s dsC

Z 0

�1

Im qj .ˆs.x//e
s ds

�
:

7.2.2 Evaluation on the Poincaré disk We show in this subsection:

Proposition 7.7 For � 2 T .S/; @j g˛i.�/D 0.

For the same reasoning as before, the proof of the above proposition reduces to the
following lemma:

Lemma 7.8 For any t; s 2R,Z
UX

Re qi.x/Re qj .ˆt .x//Re q˛.ˆs.x// dm0.x/D 0;(7-12) Z
UX

Re qi.x/ Im qj .ˆt .x// Im q˛.ˆs.x// dm0.x/D 0;(7-13) Z
UX

Re q˛.x/Re qi.ˆt .x//Re qj .ˆs.x// dm0.x/D 0;(7-14) Z
UX

Re q˛.x/ Im qi.ˆt .x// Im qj .ˆs.x// dm0.x/D 0:(7-15)

Proof We just need to show (7-12). Equations (7-13), (7-14) and (7-15) follow easily
using the methods we developed in the former cases.

We start from a special case of (7-12), with qi D qj :

(7-16)
Z

UX

Re qi.x/Re qi.ˆt .x//Re q˛.ˆs.x// dm0.x/D 0 for all t; s 2R:

The proof of this case is an analogy of the case @ˇg˛˛.�/ since, for flow times s D t

and s D 1
2
t ,Z

UX

Re qi.x/Re qi.ˆt .x//Re q˛.ˆt .x// dm0.x/

D�

Z
UX

Re qi.x/Re qi.ˆt .x//Re q˛.x/ dm0.x/

and Z
UX

Re qi.x/Re qi.ˆt .x//Re q˛.ˆt=2.x// dm0.x/D 0:
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For t; s > 0, recall our analytic expansions given in (6-3) and (6-6) lead toZ
UX

Re qi.x/Re qi.ˆt .x//Re q˛.ˆs.x// dm0.x/

D
1

2�

Z 2�

0

Z
UX

Re qi.e
i�x/Re qi.ˆt .e

i�x//Re q˛.ˆs.e
i�x// dm0.x/ d�

D
1

4

1X
nD0

�Z
UX

Re.c0cn NanC1/ dm0T n.1�T 2/2SnC1.1�S2/3

C

Z
UX

Re.c0 NcnC3an/ dm0T nC3.1�T 2/2Sn.1�S2/3
�
:

Let En D
R

UX Re.c0cn NanC1/ dm0 and Fn D
R

UX Re.c0 NcnC3an/ dm0. We argue, for
n� 0,

(7-17) En D Fn D 0:

The case t D 0 or s D 0 of (7-16) is included in the nD 0 case of (7-17).

For flow time s D t , we have

(7-18)
1X

nD0

.EnT 2nC1.1�T 2/5CFnT 2nC3.1�T 2/5/D�F0T 3.1�T 2/2:

This implies

E0 D 0; E1 D�2F0:

For flow time s D 1
2
t , we obtain

1X
nD0

.EnT n.1�T 2/2SnC1.1�S2/3CFnT nC3.1�T 2/2Sn.1�S2/3/D 0;

where T D 2S=.1CS2/.

It simplifies to
1X

nD0

�
EnC 8Fn

S2

.S2C 1/3

��
2S2

S2C 1

�n

D 0:

Let W D S2=.1CS2/; we have

1X
nD0

�
En

1X
kD0

.kC 1/W k
C 8FnW

�
.2W /n D 0:
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This gives relations

(7-19) E0 D 0;

nX
kD0

2k.n� kC 1/Ek C 2nC2Fn�1 D 0; n� 1:

Combining with (7-18), we get E1 D F0 D 0. Therefore, the right-hand side of (7-18)
is zero and we obtain from it EnC1CFn D 0 for n� 0. Combining this with (7-19)
and by an induction argument, one concludes En D Fn D 0. This proves (7-17) for
s; t � 0. The case s; t < 0 is similar to before.

Now we proceed to prove (7-12). The above case implies, for qi ¤ qj ,Z
UX

Re qi.x/Re qi.ˆt .x//Re q˛.ˆs.x// dm0 D 0;Z
UX

Re qj .x/Re qj .ˆt .x//Re q˛.ˆs.x// dm0 D 0;Z
UX

Re.qi C qj /.x/Re.qi C qj /.ˆt .x//Re q˛.ˆs.x// dm0 D 0:

Therefore, for all t; s 2R,

(7-20)
Z

UX

Re qi.x/Re qj .ˆt .x//Re q˛.ˆs.x// dm0

C

Z
UX

Re qj .x/Re qi.ˆt .x//Re q˛.ˆs.x// dm0 D 0:

Recall the analytic expansion for qj is given in (6-7). Consider t; s > 0:Z
UX

Re qi.x/Re qj .ˆt .x//Re q˛.ˆs.x// dm0.x/

D
1

2�

Z 2�

0

Z
UX

Re qi.e
i�x/Re qj .ˆt .e

i�x//Re q˛.ˆs.e
i�x// dm0.x/ d�

D
1

4

1X
nD0

�Z
UX

Re.c0dn NanC1/ dm0T n.1�T 2/2SnC1.1�S2/3

C

Z
UX

Re.c0
NdnC3an/ dm0T nC3.1�T 2/2Sn.1�S2/3

�
:

Let Gn D
R

UX Re.c0dn NanC1/ dm0 and Hn D
R

UX Re.c0
NdnC3an/ dm0. We want to

show Gn DHn D 0 for n� 0.

Let m be an integer and m� 2. Consider the flow time s Dmt . ObserveZ
UX

Re qi.x/Re qj .ˆt .x//Re q˛.ˆmt .x// dm0.x/

D

Z
UX

Re qi.ˆ�t .x//Re qj .x/Re q˛.ˆ.m�1/t .x// dm0.x/
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D�

Z
UX

Re qj .y/Re qi.ˆt .y//Re q˛.ˆ�.m�1/t .y// dm0.y/

(let y D�x and ˆt .�y/D�ˆ�t .y/)

D

Z
UX

Re qi.y/Re qj .ˆt .y//Re q˛.ˆ�.m�1/t .y// dm0.y/ (by (7-20))

D�

Z
UX

Re qj .x/Re qi.ˆt .x//Re q˛.ˆmt .x// dm0.x/

(exchange the roles of qi and qj )

D�

Z
UX

Re qi.x/Re qj .ˆt .x//Re q˛.ˆ.m�1/t .�x// dm0.x/

When sDmt , we have S DS.m/D ..1CT /m�.1�T /m/=..1CT /mC.1�T /m/D

mT CO.T 3/. From the analytic expansion

1X
nD0

�
GnT nS.m/nC1.1�S.m/2/3CGnein�T nS.m� 1/nC1.1�S.m� 1/2/3

�
D�

1X
nD0

�
�Hnein�T nC3S.m�1/n.1�S.m�1/2/3CHnT nC3S.m/n.1�S.m/2/3

�
;

the coefficients of T 1 and T 3 and T 5 yield, respectively,

G0 D 0;

.m2
� .m� 1/2/G1 D 0;

.m3
C .m� 1/3/G2 D�.2m� 1/H1C .6m� 3/H0:

The cases mD 2, mD 3 and mD 4 together give H0 DH1 DG2 D 0. By induction,
assuming Gk DHk�1 D 0 for 1� k < n, the coefficient of T 2nC1 gives

.mnC1
C ein�.m� 1/nC1/Gn D .e

i.n�1/�.m� 1/n�1
�mn�1/Hn�1:

We conclude Gn DHn D 0 for n� 0 by choosing two different m. This finishes the
proof of (7-12) for t; s > 0. Equation (7-12) for t � 0 and s � 0 can be proved similarly
to the former cases.

7.3 The case of @ˇg˛i .� /

This is the last case. In this case, the representations f�.u; v; w/g in H3.S/ correspond
to f.vqi ;uq˛Cwqˇ/g �H 0.X;K2/˚H 0.X;K3/ by Hitchin parametrization. Our
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metric tensor is

@ˇg˛i.�/

D @w
�
h@u�.0; 0; w/; @v�.0; 0; w/iP

�
.0/

D lim
r!1

1

r

�Z
UX

Z r

0

@uf
N
�.0/ dt

Z r

0

@vf
N
�.0/ dt

Z r

0

@wf
N
�.0/ dt dm0

C

Z
UX

Z r

0

@uf
N
�.0/ dt

Z r

0

@vwf
N
�.0/ dt dm0

C

Z
UX

Z r

0

@vf
N
�.0/ dt

Z r

0

@uwf
N
�.0/ dt dm0

�
;

where the first and second variations are

(i) @uf
N
�.0/
D�@uf�.0/;

(ii) @vf
N
�.0/
D�@vf�.0/;

(iii) @uwf
N
�.0/
D�@uwh.�.0//� @uwf�.0/;

(iv) @vwf
N
�.0/
D�@vwh.�.0//� @vwf�.0/.

7.3.1 First and second variations of the reparametrization functions Our Higgs
field in this case is

ˆ.u; v; w/D

240 vqi uq˛Cwqˇ
1 0 vqi

0 1 0

35 :
Proposition 7.9 The first variations of the reparametrization functions @uf�.0/ WUX!

R and @vf�.0/ W UX !R for the case @ˇg˛i.�/ satisfy

@uf�.0/.x/��Re q˛.x/; @vf�.0/.x/� 2 Re qi.x/; @wf�.0/.x/��Re qˇ.x/;

and the second variations of the reparametrization functions @uwf�.0/ W UX !R and
@vwf�.0/ W UX !R satisfy

@uwf�.0/.x/

�
1
2
�uw.p.x//CRe q˛.x/

Z 1
0

e�2s Re qˇ.ˆs.x// ds

CRe q˛.x/

Z 0

�1

e2s Re qˇ.ˆs.x// dsC 2 Im q˛.x/

Z 1
0

e�s Im qˇ.ˆs.x// ds

C2 Im q˛.x/

Z 0

�1

es Im qˇ.ˆs.x// ds
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and

@vwf�.0/.x/

D @wvf�.0/.x/

�
1
2

Re y21.x/� 2 Im qˇ.x/

�Z 1
0

Im qi.ˆs.x//e
�s dsC

Z 0

�1

Im qi.ˆs.x//e
s ds

�
;

where p W UX !X and y21 are defined as before.

Proof All of the computations have been done in the former cases.

7.3.2 Evaluation on the Poincaré disk We show in this subsection:

Proposition 7.10 For � 2 T .S/; @ˇg˛i.�/D 0.

For the same reasoning as before, the proof of the above proposition reduces to the
following lemma:

Lemma 7.11 For any t; s 2R,Z
UX

Re q˛.x/Re qˇ.ˆt .x//Re qi.ˆs.x// dm0.x/D 0;(7-21) Z
UX

Im q˛.x/ Im qˇ.ˆt .x//Re qi.ˆs.x// dm0.x/D 0;(7-22) Z
UX

Re q˛.x/ Im qˇ.ˆt .x// Im qi.ˆs.x// dm0.x/D 0:(7-23)

Proof We just need to show (7-21). Equations (7-22) and (7-23) follow easily, similar
to the former cases.

From the computation of @ig˛˛.�/, we knowZ
UX

Re q˛.x/Re q˛.ˆt .x//Re qi.ˆs.x// dm0 D 0;Z
UX

Re qˇ.x/Re qˇ.ˆt .x//Re qi.ˆs.x// dm0 D 0;Z
UX

Re.q˛C qˇ/.x/Re.q˛C qˇ/.ˆt .x//Re qi.ˆs.x// dm0 D 0:
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We deduceZ
UX

Re q˛.x/Re qˇ.ˆt .x//Re qi.ˆs.x// dm0

C

Z
UX

Re qˇ.x/Re q˛.ˆt .x//Re qi.ˆs.x// dm0 D 0:

Similar to @j g˛i.�/, we consider s Dmt for m 2N and m� 2. We observeZ
UX

Re q˛.x/Re qˇ.ˆt .x//Re qi.ˆmt .x// dm0

D

Z
UX

Re q˛.x/Re qˇ.ˆt .x//Re qi.ˆ.m�1/t .�x// dm0:

We recall the Poincaré disk model and our analytic expansion for q˛ , qˇ and qi in (6-3),
(6-5) and (6-7). For t; s � 0, the analytic expansionZ

UX

Re q˛.x/Re qˇ.ˆt .x//Re qi.ˆs.x// dm0.x/

D
1

2�

Z 2�

0

Z
UX

Re q˛.e
i�x/Re qˇ.ˆt .e

i�x//Re qi.ˆs.e
i�x// dm0.x/ d�

D
1

4

1X
nD0

�Z
UX

Re.a0bn NcnC4/ dm0T n.1�T 2/3SnC4.1�S2/2

C

Z
UX

Re.a0
NbnC2cn/ dm0Sn.1�S2/2T nC2.1�T 2/3

�
:

Denoting In D
R

UX Re.a0bn NcnC4/ dm0 and Jn D
R

UX Re.a0
NbnC2cn/ dm0 for n� 0,

we argue
In D Jn D 0:

When sDmt , we have S DS.m/D ..1CT /m�.1�T /m/=..1CT /mC.1�T /m/D

mT CO.T 3/. The analytic expansions give

1X
nD0

�
InT nS.m/nC4.1�S.m/2/2� Inein�T nS.m� 1/nC4.1�S.m� 1/2/2

�
D

1X
nD0

�
�JnT nC2S.m/n.1�S.m/2/2CJnein�T nC2S.m� 1/n.1�S.m� 1/2/2

�
:

The coefficients of T 4 yield

.m4
� .m� 1/4/I0 D�.2m� 1/J1C .4m� 2/J0:
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The cases mD 2, mD 3 and mD 4 give I0 D J0 D J1 D 0. By induction, assuming
Ik D JkC1 D 0 for 1� k < n, the coefficient of T 2nC4 gives

.mnC4
� ein�.m� 1/nC4/In D .e

i.nC1/�.m� 1/nC1
�mnC1/JnC1:

We conclude In D Jn D 0 for n � 0 by choosing two different m. This finishes the
proof of (7-21) for t; s > 0. Equation (7-21) for t � 0 and s � 0 can be proved similarly
to the former cases. Lemma 7.11 and also Proposition 7.6 therefore hold.

We have shown

(i) @ˇg˛˛.�/D 0,

(ii) @ig˛˛.�/D 0,

(iii) @j g˛i.�/D 0, and

(iv) @ˇg˛i.�/D 0.

This finishes the proof of our Theorem 1.1.
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