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A sharp lower bound on fixed points of
surface symplectomorphisms in each mapping class

ANDREW COTTON-CLAY

Given a compact, oriented surface †, possibly with boundary, and a mapping class,
we obtain sharp lower bounds on the number of fixed points of a surface symplecto-
morphism (ie area-preserving map) in the given mapping class, both with and without
nondegeneracy assumptions on the fixed points. This generalizes the Poincaré–
Birkhoff fixed point theorem to arbitrary surfaces and mapping classes. These bounds
often exceed those for non-area-preserving maps. We give a fixed point bound on
symplectic mapping classes for monotone symplectic manifolds in terms of the rank
of a twisted-coefficient Floer homology group, with computations in the surface case.
For the case of possibly degenerate fixed points, we use quantum-cup-length-type
arguments for certain cohomology operations we define on summands of the Floer
homology.

37E30, 37J10, 53D40; 37C25

1 Introduction

1.1 Sharp fixed point bounds for surface symplectomorphisms

1.1.1 Overview Let .†; !/ be a compact surface of negative Euler characteristic,1

possibly with boundary, with ! a symplectic form (ie area form). For any mapping class
we give sharp lower bounds on the number of fixed points of an area-preserving map �
in the mapping class, both in the case in which � is assumed to have nondegenerate
fixed points2 and in the general case in which degenerate fixed points are allowed.
This generalizes the Poincaré–Birkhoff fixed point theorem, which states that area-
preserving twist maps of the annulus have at least two fixed points, to arbitrary surfaces
and mapping classes.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
1Our results extend to the nonnegative Euler characteristic case but these exceptional cases would be
cumbersome to carry around. All of these cases are already understood.
2That is, the fixed points of � are cut out transversally in the sense that det.1�d�x/¤ 0 for fixed points x.

http://msp.org
http://dx.doi.org/10.2140/gt.2023.27.1657
http://www.ams.org/mathscinet/search/mscdoc.html?code=37E30, 37J10, 53D40, 37C25
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1658 Andrew Cotton-Clay

1.1.2 Traditional lower bound from Nielsen theory A traditional lower bound,
which is sharp for non-area-preserving maps on surfaces, comes from Nielsen theory.
Given a symplectomorphism � W † ! † let M� ! S1 be the mapping torus as a
†–bundle over S1, and let �.M�/ be its space of sections. A Nielsen class � 2
�0.�.M�// of a fixed point x of a map � is its homotopy class when considered
as a constant section of the mapping torus. The index of a Nielsen class �, denoted
by ind.�/, is given by the sum of the topological indices3 of each fixed point in the
class �. This quantity is invariant under deformation. The traditional lower bound
on fixed points when there is a nondegeneracy condition is given by

P
� jind.�/j, as

nondegenerate fixed points have index ˙1. In the general case with no nondegeneracy
condition, the traditional lower bound is given by the number of Nielsen classes with
nonzero index.

1.1.3 Mapping classes and Thurston’s classification Let DiffC.†/ denote the space
of orientation-preserving diffeomorphisms of †. For closed surfaces, mapping classes
are elements of �0.DiffC.†//. For surfaces with boundary, we define DiffC

@
.†/ to

be the space of orientation-preserving diffeomorphisms with no fixed points on the
boundary, and use the term mapping classes to refer to elements of �0.DiffC

@
.†//,

though this is not standard. By Moser’s trick, in dimension two, these are homotopy
equivalent to the versions with Diff replaced by DiffVol D Symp.

We state our results in terms of Thurston’s classification of surface diffeomorphisms
(see Thurston [20] and Fathi, Laudenbach and Poénaru [4]), which states that given a
compact, oriented surface† (with or without boundary) every element of �0.DiffC.†//
is precisely one of the following types:

� Periodic (finite order) For some representative �, we have �` D id for some
` 2 Z>0.

� Pseudo-Anosov Some singular representative � preserves two transverse sin-
gular measured foliations, expanding the measure on one and contracting the
measure on the other. See Cotton-Clay [1] for symplectic smoothings of these
singular representatives.

� Reducible Some representative � fixes setwise a collection of curves C , none
of which are nullhomotopic or boundary parallel (and the mapping class is not
periodic).

3The degree of the induced map on H1 of a deleted neighborhood of the fixed point x.

Geometry & Topology, Volume 27 (2023)



A sharp lower bound on fixed points of surface symplectomorphisms 1659

In the reducible case, we call such a curve C above a reducing curve. Cutting along a
maximal collection of pairwise nonhomotopic reducing curves C gives a map on each
component of † nC , given by the smallest power of � which maps that component
to itself, which is periodic or pseudo-Anosov. We call these components of † n C

reducible components or geometric components when extending this to the case of the
entire surface for nonreducible maps. We say a component abuts the reducing curves
making up its boundary, as well as any curves making up its actual boundary.

1.1.4 Fixed annuli and standard representatives To understand fixed points of
surface symplectomorphisms, we are interested in components which map to themselves.
In addition to the geometric components described above, we must extend the notion
of components to allow for a number of fixed annuli between geometric components
or near a boundary when there is sufficient twisting along the reducing curve or at a
boundary curve. After standard perturbations (see Section 4.1.1), near a reducing curve
or boundary curve C , we choose standard representatives to have twisting regions (à la
Dehn twists) connecting the components. Such a twisting region may have any number
(in Z�0) of circles of fixed points, which we think of as fattened to annuli and consider
as fixed annuli. See Section 4.1.2 for a definition and, for an optional further elucidation
of these, see Section 4.1.3 relating counting the number of these to a variant of fractional
Dehn twist coefficients, related to the concept in Honda, Kazez and Matić [7].

These fixed annuli are important to consider as they can show up in one of two types
of components (see Section 1.1.5 below) which contribute to excess fixed points over
the traditional Nielsen theory lower bound. Indeed, the case of the Poincaré–Birkhoff
fixed point theorem can be thought of as a solitary fixed annulus in this context.

1.1.5 Excess over Nielsen lower bound: components of types A and B In what
follows, these fixed annuli are additionally considered components, on which the
induced map is considered to be the identity. Additionally, we consider mapping
classes on a surface with boundary with fixed annuli reducible in �0.DiffC

@
.†//, even

if they are not reducible in �0.DiffC.†//.

There are two settings, in terms of standard representatives, in which the minimum
for area-preserving maps exceeds the topological minimum from Nielsen theory. Both
involve components on which the induced map is the identity:

� Components of type A We say a component is of type A if

– its induced map is the identity,

Geometry & Topology, Volume 27 (2023)



1660 Andrew Cotton-Clay

– it is genus-zero but nonannular,

– it does not abut with twist 0 2Q any pseudo-Anosov components,

– all its boundaries are nullhomologous or boundary-parallel, and

– all its boundaries have twist in Q with the same sign or 0.

� Components of type B We say a component is of type B if

– it is a fixed annulus (as above), and

– it is nullhomologous or boundary-parallel.

Here twist is in the sense of the fractional Dehn twist coefficient of [7].

1.1.6 Theorems and discussion

Theorem 1.1 Let .†; !/ be a compact , oriented surface , possibly with boundary,
with area form !. The minimum number of fixed points of an area-preserving map with
nondegenerate fixed points in a mapping class h is given by�P

� jind.�/j if h is periodic or pseudo-Anosov,P
� jind.�/jC 2AC 2B if h is reducible.

Here A is the number of components of type A, and B the number of components of
type B, of a standard representative of the mapping class h.

The upper bound here is given by construction, which comes from perturbing maps
which are nice with respect to the Nielsen–Thurston geometry, which we call standard
form maps, with particular symplectic vector fields. The lower bound comes from Floer
homology computations for these standard form maps with certain twisted coefficients,
based on computations we performed in [1], plus a result discussed below showing
how computations with appropriate twisted coefficients give fixed point bounds over
entire mapping classes.

In this case, counting nondegenerate fixed points, components of types A and B each
contribute an additional two fixed points, analogous to the Poincaré–Birkhoff fixed
point theorem, which can be thought of as the case of a solitary fixed annulus.

Theorem 1.2 The minimum number of fixed points of an area-preserving map in a
mapping class h is given by�

#f� W ind.�/¤ 0g if h is periodic or pseudo-Anosov,
#f� W ind.�/¤ 0gCAC 2B if h is reducible ,

where A and B are as in Theorem 1.1.

Geometry & Topology, Volume 27 (2023)
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To clarify Theorem 1.2, both components contributing to A and components contributing
to B contribute two to the minimum number of fixed points, but those contributing to
A have nonzero index and thus have already contributed one in the traditional Nielsen
bound. For type A components, degeneracy allow collapsing down to two fixed points,
but (also with type B components) no further.

Though we have restricted to surfaces of negative Euler characteristic, we note that a
twist map on the annulus may be considered to have one component of type B, and the
two fixed points guaranteed by the Poincaré–Birkhoff fixed point theorem appear in
the 2B term here.

Again the upper bound is given by construction. The lower bound comes from “quantum
cup-length” computations for a certain cohomology operation4 on the summand of
Floer homology corresponding to the given Nielsen class, plus a compactness argument
of Taubes. This cohomology operation is morally given by counting intersections of
holomorphic cylinders with cycles in H1.S; @S/ for S a reducible component on which
the map is the identity whose fixed points are in the Nielsen class. The fact that this
is well defined comes from an understanding of the homotopy type of the component
of the space of sections �.M�/ of M� ! S1 corresponding to the given Nielsen
class, plus an algebraic invariance result given in [1] for certain types of cohomology
operations on Floer homology.

1.2 Fixed point bounds for monotone symplectic manifolds.

Let .X; !/ be a symplectic manifold, and consider the problem of finding fixed point
bounds for symplectic mapping classes, which are connected components of Symp.X /.

The symplectic Floer homology of a symplectomorphism � is the homology of a chain
complex generated by the fixed points of �; see Section 2 for more details. Thus the
rank of Floer homology gives a bound on the number of fixed points of �, and results on
the invariance of Floer homology under deformation of � give more general fixed point
bounds. A main challenge in obtaining fixed point bounds for symplectic mapping
classes is that we are interested in fixed point bounds on connected components of
Symp.X / as opposed to on Ham.X /–cosets of Symp.X /. Floer homology is invariant
under Hamiltonian perturbations between maps with nondegenerate fixed points, so as
long as we can define it on a given Ham.X /–coset, the rank of the Floer homology for

4We note that the usual module structure over the quantum cohomology of † vanishes in the situation of
interest.

Geometry & Topology, Volume 27 (2023)
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any map in the coset is a bound on the number of fixed points for all nondegenerate
maps in the coset.

To deal with this, we give a general method for finding fixed point bounds for symplectic
mapping classes on monotone symplectic manifolds .X; !/. We say that .X; !/ is
monotone if Œ!� 2 H 2.X / is a positive multiple of c1.X /.5 The method consists of
performing a single Floer homology computation, for a suitable map � in the symplectic
mapping class, with suitable twisted coefficients. Along the way, we show that Floer
homology computations for one suitable map � with various twisted coefficients give
computations of HF�. ;ƒ /, the Floer homology of  with its natural Novikov
coefficients ƒ , for any  in the symplectic mapping class.

We identify a subset of each mapping class, which we call weakly monotone, such that
Floer homology is defined with any coefficients and is invariant under deformations
through such maps. In [1] we have shown that standard form maps on surfaces are in
this subset. Let !� be the two-form on M� induced by ! on †�R and let c� be the
first Chern class of the vertical tangent bundle of M�! S1.

Definition 1.3 A map � WX !X is weakly monotone6 if Œ!� � vanishes on T0.M�/,
where T0.M�/ � H2.M� IR/ is generated by tori T with c�.T / D 0 such that
�j

T
W T ! S1 is a fibration with fiber S1, where the map � W M� ! S1 is the

projection.

In Section 3.1 we define a flux map. Monotone maps have zero flux, which allows
their Floer homology with untwisted coefficients to be computed. Weakly monotone
maps need not have zero flux, but they still have well-defined Floer homology with
untwisted coefficients. Further, if we apply well-chosen twisted coefficients, the Floer
homology gives a lower bound on fixed points for non-weakly-monotone maps in the
same symplectic mapping class.

Consider a flux map Flux.�/ W Nh! R. Here Nh denotes the image under the map
H2.M�/! ker.��� id/�H1.†/ of ker.c�/�H2.M�/. Let N 0

h
be the image under

the map from the long exact sequence for the mapping torus fibration H2.M�/!

ker.��� id/�H1.†/ of the subset T0.M�/� ker.c�/�H2.M�/.

5If the multiple is negative, everything goes through similarly if there are no spheres with Chern class
above �n�2, where n is half the (real) dimension of X . Even failing this, we should be able to use virtual
moduli space or polyfold methods. These are technical issues, but the statement that Œ!� is some multiple
of c1.X / seems vital to our argument.
6We used “weakly monotone for every Nielsen class” to refer to the same concept in [1].

Geometry & Topology, Volume 27 (2023)
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Theorem 1.4 Let X be a monotone symplectic manifold , h a symplectic mapping
class on X , and � 2 h.

(i) Flux.�/ WNh=tors!R is well-defined.

(ii) Flux.�/j
N 0

h
=torsD 0 if and only if � is weakly monotone.

(iii) Let � be such that Flux.�/j
Nh
D 0. Then the rank of HF�.�IQ.Z=2ŒN 0h=tors�//

gives a lower bound on the rank HF�. Iƒ / for  any map in the class h,
whereƒ is the Novikov ring over which HF�. / is naturally defined , and thus
gives a lower bound on the number of fixed points of a map in the mapping class
with nondegenerate fixed points.

Here Q.Z=2ŒN 0
h
=tors�/ is the quotient field of the group ring of N 0

h
=tors over Z=2.

The Novikov ring ƒ is a ring over which HF�. / can be defined, with generators
given by fixed points, even if  is not weakly monotone. The main idea is that in some
cases the field Q.Z=2ŒNh�/ injects into ƒ , in which case we have a field extension
and the ranks of the homology are the same. When we do not have an injection, we
can extend ƒ to a larger Novikov ring into which Q.Z=2ŒNh�/ does inject. When
homology is computed over the larger Novikov ring, the rank can only decrease, giving
the lower bound in Theorem 1.4. Yi-Jen Lee’s bifurcation analysis [12; 13] is vital to
this argument, giving a way to compare the Floer homology of maps with proportional
fluxes. We note that Lee and Taubes [14, Corollary 6.6] have a similar Theorem for
periodic Floer homology coming from their isomorphism with Seiberg-Witten Floer
homology. Lee also informed us that she was independently aware of the existence of
results such as Theorem 1.4.

Organization of the paper

In Section 2 we review Floer homology and Nielsen classes; develop general twisted
coefficients for Floer homology; review Novikov rings; and discuss invariance results
due to Yi-Jen Lee [12; 13].

In Section 3 we give a general method for finding fixed point bounds on a monotone
symplectic manifold using a Floer homology computation for any weakly monotone
symplectomorphism with a particular choice of twisted coefficients.

In Section 4 we carry out this method in the case of surface symplectomorphisms to
give a lower bound, using computations from [1]. We obtain an equal upper bound by
explicit constructions.

Geometry & Topology, Volume 27 (2023)



1664 Andrew Cotton-Clay

In Section 5, we give fixed point bounds for surface symplectomorphisms with possibly
degenerate fixed points. We use a certain cohomology operation in place of the quantum
cap product, which vanishes in the situation of interest, to give cup-length-type bounds.
An equal upper bound is again given by explicit constructions.

Acknowledgements This paper is adapted from part of my thesis [2] at UC Berkeley
under Michael Hutchings, who gave invaluable advice and support. I’d also like to
thank MIT for their hospitality during my last year of graduate school, and Denis
Auroux, for his advising and helpful discussions. The reviewers and editors also gave
numerous valuable comments and suggestions.

2 Floer homology, Nielsen classes, twisted coefficients,
Novikov rings and bifurcation analysis

2.1 Review of Floer theory and monotonicity

We provide a brief summary. For a more complete discussion, see [3; 18; 1; 15].

Let † be a compact, connected, oriented surface, possibly with boundary, of negative
Euler characteristic. Let ! be a symplectic form (ie an area form) on †. Let � be
an element of Symp@.†; !/, the space of symplectomorphisms (ie area-preserving
diffeomorphisms) with no fixed points on the boundary. We consider the mapping torus
of �,

M� D
R�†

.t C 1;x/' .t; �.x//
:

Note that this is a †–bundle over S1 with projection � WM�!R=ZD S1.

Let �.M�/ denote the space of smooth sections of � WM� ! S1. Note that a fixed
point x 2† of � can be interpreted as a constant section x . Let J denote the space of
almost complex structures J on R�M� which are R–invariant, preserve the vertical
tangent bundle of � WR�M�!R�S1, and for which � is .J; j /–holomorphic, given
the standard complex structure j on the cylinder R�S1.

Suppose � has nondegenerate fixed points, in the sense that d� does not have 1 as an
eigenvalue at any fixed point. Let Px;y�.M�/ denote the space of paths from x to
y in �.M�/. Let C 2 �0.Px;y�.M�//. Given a generic J 2 J , the moduli space
M.�;x;y;C / of holomorphic sections R�S1!R�M� in the homotopy class C

is smooth and compact, of dimension ind.C /; see [5] or [6].

Geometry & Topology, Volume 27 (2023)
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For a statement of the index formula, see [16], or [1, Section 2.2] for a discussion
tailored to the current setting. Other than computations that we will cite below from [1],
we have need only of the change of homology class formula. In preparation, we define
the cohomology class c� 2H 2.M�/DH 2.R�M�/ to be the first Chern class of the
vertical tangent bundle to the projection � .

Proposition 2.1 [16] Let C;C 0 2 �0.Px;y�.M�//. Then ind.C / � ind.C 0/ D
2hc� ; ŒC �C 0�i.

Let !� denote the cohomology class in H 2.M�/DH 2.R�M�/ of the vertical area
form on M� .

Proposition 2.2 (Gromov compactness [6]) Let I � �0.Px;y�.M�//. The unionS
C2I M.�;x;y;C / is compact if the set of values

f!�.C �C 0/ j C;C 0 2 �0.Px;y�.M�/g

is bounded.

We have the following conditions.

Definition 2.3 A map � 2Symp@.†; !/ is monotone if !� vanishes on the kernel of c� .

Definition 2.4 A map � 2 Symp@.†; !/ is weakly monotone if !� vanishes on
T0.M�/, where T0.M�/ �H2.M� IR/ is generated by tori T with c�.T /D 0 such
that �j

T
W T ! S1 is a fibration with fiber S1, where the map � WM� ! S1 is the

projection.

Under either of these conditions, the moduli space

M1.�;x;y/D
[

C Wind.C /D1

M.�;x;y;C /

is compact. Thus we may define they symplectic Floer homology HF�.�/ of � with
coefficients in Z=2 to be the homology of the Z=2–graded chain complex CF.�/DL

x2Fix.�/Z=2 �x with differential

@x D
X

y

#.M.�;x;y/=R/ �y;

where the R–action is by translation in the R–direction in R�M� , and the Z=2–grading
of a fixed point x is given by the sign of det.1� d�/. The homology of this chain
complex is invariant under deformations through monotone or weakly monotone maps.

Geometry & Topology, Volume 27 (2023)
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We recall:

Proposition 2.5 (monotone [18]; weakly monotone [1]) The space of monotone
(resp. weakly monotone) maps � 2 Symp@.†; !/ is homotopy equivalent to Diff@.†/
under the inclusion map. In particular , the space of those in each mapping class is
connected.

2.2 Nielsen classes and Reidemeister trace

There is a topological separation of fixed points due to Nielsen: given a fixed point x

of �, we obtain an element Œx � 2 �0.�.M�//, the free homotopy class of x in the
space of sections �.M�/. We denote this homotopy class by �.M�/Œx �. The chain
complex CF�.�/ defined above, as well as all the variants to be defined below, split
into direct summands for each Nielsen class � 2 �0.�.M�//:

HF�.�/D
X

�2�0.�.M�//

HF�.�; �/:

We note that in the case of surfaces of negative Euler characteristic, Nielsen classes are
well-defined on entire mapping classes (ie there is no monodromy). Thus the rank of
HF�.�; �/ is a lower bound on the number of fixed points in the Nielsen class � on,
for example, the weakly monotone subset of the mapping class.

A simpler lower bound on the number of nondegenerate fixed points in a Nielsen class
� 2 �0.�.M�// is given by the absolute value of the index of the Nielsen class

ind.�/D
X

xWŒx �D�

ind.x/:

We note that ind.�/ is the Euler characteristic of HF�.�; �/. A lower bound for the
number of fixed points of a map  with nondegenerate fixed points in the same mapping
class as � is thus given by X

�2�0.�.M�//

jind.�/j:

For maps with possibly degenerate fixed points, the bound from Nielsen theory is the
number of essential Nielsen classes; that is, the number of Nielsen classes � for which
ind.�/¤ 0.

2.3 Twisted coefficients

We have a groupoid G� whose objects are sections of the mapping torus M� and
whose morphisms from x to y are given by homotopy classes of paths from x to y
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in �.M�/. Given a ring R, we can take the groupoid algebroid RhG�i, a category
enriched over R–modules with the same objects as G� and with HomRhG�i.x;y/ given
by the free R–module generated by elements of HomG� .x;y/. Note that we have a
homomorphism ind W G�! Z given by the index.

If we have a representation � from RhG�i to an R–module M , we can define Floer
homology with coefficients in � .or M if � is understood/ as the homology of a chain
complex over M with generators the fixed points of � and differential given by

@x D
X

y

X
C2M1.x;y/

�.ŒC �/ �y;

where ŒC � is the homotopy class of the path in �.M�/ associated to the flow line C ,
and we abuse notation by identifying y with the section y 2 �.M�/. This is defined
for weakly monotone � for arbitrary � (because then M1.�;x;y/ is compact). In
Section 2.4 we discuss representations ƒ� suitable for each �.

We will typically suppress the ring R, which throughout this paper may be assumed to
be Z=2.

The standard representation �st into the group ring of H1.�.M�// is defined as follows.
For every pair of sections x;y and every index i , we choose a path C i

x;y in �.M�/

between them, of index i if possible. We require that

C i
x;y �C

j
y;z ' C iCj

x;y ; C i
x;y D�C�i

y;x and C 0
x;x D �:

Here � signifies appending paths, � signifies reversal of a path, and � signifies the
constant path. Then �st.ŒC �/, for C a path from x to y, is defined to be ŒC �C�ind.C /

y;x � 2

H1.�.M�//. Note that in fact this lies in ker.c�/ � H1.�.M�//. We have made
choices, but the resulting Floer homology is well-defined up to a change of basis.

We typically compose this with the map H1.�.M�//!H2.M�/ to get what we call
fully twisted coefficients, over Z=2ŒH2.M�/�. If we desire to have field coefficients,
we may for example take the quotient field of the group ring of H2.M�/=tors.

2.4 Novikov rings

Definition 2.6 For R a ring, G an abelian group and N WG!R a homomorphism,
the Novikov ring NovR.G;N / is defined to be the ring whose elements are formal
sums

P
g2G ag �g, where ag 2R are such that for each r 2R, only finitely many of

the ag with N.g/ < r are nonzero.
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There is also the universal Novikov ring:

Definition 2.7 For R a ring, the universal Novikov ring ƒR is defined to be the ring
whose elements are formal sums

P
r2R ar �T

r , where ar 2R are such that, for each
s 2R, only finitely many of the ar with r < s are nonzero.

Note that this is a field if R is a field. We have maps NovR.G;N /! ƒR given by
g 7! T N.g/. If R is a field and N is injective, this is an extension of fields.

We define a representation, the natural Novikov coefficients for �, denoted by ƒ� ,
as follows. We have a representation into NovZ=2.ker.c�/; !�/, where the maps
c� ; !� WH1.�.M�//!R are defined as in Section 2.1. The representation is defined
in the same manner as the standard representation; we have simply taken a submodule
ker.c�/�H1.�.M�// in which the image must lie, and allowed certain infinite sums.
We further compose this with the map to ƒZ=2. This all is simply to say we take

ƒ�.ŒC �/ D T !�.C �C
�ind.C /
y;x /:

We may define HF�.�;ƒ�/, the Floer homology of � with coefficients inƒ� for any �.
The point is simply that, while we may not have finiteness for M1.x;y/, we do have
that there are only finitely many C 2M1.x;y/ with !�.C / < r for any given r 2R,
by Gromov compactness, and this is precisely what is required.

2.5 Bifurcation analysis of Yi-Jen Lee

Yi-Jen Lee [12; 13] has worked out a general bifurcation argument for what she calls
Floer-type theories. Michael Usher [21] has a nice summary of the invariance result
this gives (which Lee conjectured in an earlier paper [11, equation 3.2] but did not
explicitly state as a theorem in [12; 13]) and its algebraic aspects. We have adapted the
statement to our setting involving representations � of Z=2hG�i.

Theorem 2.8 ([21, Theorem 3.6], due to Lee [12; 13]) Suppose .X; !/ is a symplectic
manifold with �2.X /D 0. Let �r WX!X be a smooth family of symplectomorphisms
with r 2 R and Jr D fJtgr with t 2 R a smooth family (of 1–periodic families)
of almost complex structures on X such that .�0;J0/ and .�1;J1/ are generic. Let
N D ker.c�/ WH1.�.M�r

/�/!R (this is independent of r ).

(i) Suppose !�r
j
N
D f .r/!�0

j
N

, for f .r/ 2 R. Then HF�.�0; �;J0Iƒ�0
/ Š

HF�.�1; �;J1Iƒ�0
/.

(ii) Suppose !�r
j
N
D 0 for all r . Then HF�.�0; �;J0/ Š HF�.�1; �;J1/. In fact ,

HF�.�0; �;J0I �/Š HF�.�1; �;J1I �/ for any representation �.
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We point out that in item (i) we are indeed taking the Floer homology of �1 with
coefficients given by the representation ƒ�0

. What this means is that we use !�0
to

determine the power of T in �.ŒC �/.

3 Bounds on fixed points in symplectic mapping classes

3.1 Representations and flux

Throughout this section consider .X; !/ a monotone symplectic manifold. The goal
of this section is to give a lower bound on fixed points for symplectomorphisms in a
symplectic mapping class h 2 �0.Symp.X; !// in terms of the rank of HF�.�; �/ for
one suitable choice of a pair .�; �/ with � 2 h and � a representation of Z=2.G�/. In
this subsection we define the representations �m for which it will be shown that .�; �m/

is such a pair for any monotone �, and �wm for which it will be shown that .�; �wm/ is
such a pair for any weakly monotone �.

Monotone case We have a representation �m that works for any monotone �. The
representation �m is defined as follows:

We have the representation �st into Z=2ŒH1.�.M�//�. We first compose7 with the map
H1.�.M�//!H2.M�/, noting that the image lies in the kernel of c� WH2.M�/!R.
Now we compose with the map to H1.X / in the long exact sequence for the mapping
torus, a part of which is

(1) H2.X /
i
�!H2.M�/

@
�! ker.��� id/�H1.X /:

We denote the image of ker.c�/ in H1.X / by Nh (this depends only on the mapping
class h). Finally, we mod out by torsion and then take the quotient field, so that our
coefficients lie in the field

Q.Z=2ŒNh=tors�/;

where Q denotes taking the quotient field. Essentially we have taken fully twisted field
coefficients, but we have been careful about where the image lies so that we can define
flux in this context, which both will be useful in specifying which maps � are suitable
to work with and will be a useful tool in what is to come.

7Technically we are composing with the map induced on the group ring by this map on homology. We
continue this abuse of terminology in what follows.
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We have a characterization of monotone maps in terms of Flux, which we define using
the long exact sequence (1) above:

Definition–Lemma 3.1 The flux of any symplectomorphism �, denoted by

Flux.�/ WNh=tors!R

and defined as
Flux.�/. /D !�.C /;

where C 2H2.M�/ is such that @.C /D  and c�.C /D 0, is well-defined. Here @
is the map from the long exact sequence (1).

Proof First, we note that such a C exists because Nh is the image under @ (in the
long exact sequence) of ker.c�/. Next we note that !�.C / is well-defined because if
we take any other C 0 such that @.C 0 /D  and c�.C

0
 /D 0, the difference C �C 0

is in the kernel of c� and, being in the kernel of @, must also come from an element
of H2.X /, which we denote by B. We have that c� ı i W H2.X /! Z agrees with
c1.X / W H2.X /! Z. Thus c1.X /.B/D 0. By monotonicity of X , this implies that
!.B/ D 0. Because !� ı i W H2.X /! R agrees with ! W H2.X /! R as well, we
conclude that !�.C /�!�.C 0 /D 0. Finally, we remark that this is a homomorphism,
and thus any torsion in Nh must map to 0 2R.

Lemma 3.2 For a symplectomorphism �, we have

� is monotone () Flux.�/D 0:

Proof The statement Flux.�/D 0 is equivalent to !� vanishing on the kernel of c� .
This implies that !� is some multiple of c� .

Weakly monotone case With .X; !/ monotone, we also give a representation �wm

that works for any weakly monotone �. The representation �wm is defined as follows:

Let the image of the map H1.�.M�//! H2.M�/ be denoted by T .M�/. This is
generated by 2–tori in M� standardly fibering over S1. When composing the standard
representation into Z=2ŒH1.�.M�/� with the map H1.�.M�//!H2.M�/, the image
thus lies not only in ker.c�/ but in ker.c� jT .M�/

/. In fact it lies moreover in T0.M�/,
generated by 2–tori T in M� standardly fibering over S1 such that c�.T / D 0. We
denote the image of T0.M�/ under @ in the long exact sequence as

N 0h �Nh � ker.��� id/�H1.X /:
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As before, we mod out by torsion and then take the quotient field, so our coefficients
lie in the field

Q.Z=2ŒN 0h=tors�/:

We restrict Flux.�/ to N 0
h
=tors�Nh=tors.

Lemma 3.3 For a symplectomorphism �, we have

� is weakly monotone Nielsen class � () Flux.�/j
N 0

h
=torsD 0:

Proof The statement Flux.�/N 0
h
=tors D 0 is equivalent to !� vanishing on T0.M�/.

Let T0.M�/� be generated by 2–tori T in M� standardly fibering over S1 such that
c�.T /D 0 and which moreover have a section in Nielsen class �. Then the vanishing
of !� on T0.M�/ is equivalent to !� vanishing on T0.M�/� for every �, because every
such torus has a section, which lies in some Nielsen class, ie component of �.M�/.

Corollary 3.4 The space Sympwm
h
.X; !/ of maps in the mapping class h which

are weakly monotone Nielsen class � is homotopy equivalent under the inclusion to
Symph.X; !/.

3.2 Fixed point bounds

Theorem 3.5 Let .X; !/ be a monotone symplectic manifold , h a symplectic mapping
class on X , and � 2 h. Let � be such that Flux.�/j

N 0
h

D 0. Then the rank of

HF�.�IQ.Z=2ŒN 0h=tors�//

gives a lower bound on the rank HF�. Iƒ / for  any map in the class h.

Corollary 3.6 Let X be a monotone symplectic manifold , h a symplectic mapping
class on X , and � 2 h. Let � be such that Flux.�/jN 0

h
D 0. Then the rank of

HF�.�IQ.Z=2ŒN 0h=tors�//

gives a lower bound on the number of fixed points of any map in the mapping class
with nondegenerate fixed points.

Remark 3.7 The corresponding versions with � such that Flux.�/D0 and coefficients
in Q.Z=2ŒNh=tors�/ also hold, either with the same proofs or as a formal consequence.
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Theorem 3.5 follows from the following three lemmas.

Lemma 3.8 Let � 2h be such that Flux.�/jN 0
h
D 0 and let  2h. Then HF. ;ƒ /Š

HF.�;ƒ /.

Proof We use (i) from Theorem 2.8. Consider a smooth family  r of symplecto-
morphisms from  0 D  to  1 D � with Flux. r /jN 0

h
D .1� r/Flux. /jN 0

h
. Note

that such a family exists as we can modify Flux in any direction we desire by flowing
by an S1–valued Hamiltonian representing, as a map to S1, the desired cohomology
class of the modification. Then (for a generic family of almost complex structures) the
conditions of (i) in Theorem 2.8 are met with f .r/D 1� r . Summing over Nielsen
classes gives the result.

Lemma 3.9 With � and  as above , the rank of HF.�;ƒ / equals the rank of

HF
�
�;Q.Z=2ŒN 0h=tors�/=ker

�
Flux. /j

N 0
h

��
:

Proof We have field extensions

Q.Z=2ŒN 0h=tors�/=ker
�
Flux. /j

N 0
h

/
�

,! NovZ=2

�
N 0h=tors=ker

�
Flux. /j

N 0
h

�
;Flux. /j

N 0
h

�
,!ƒ :

The first is by allowing some infinite sums, and the second is the map discussed in
Section 2.4. Field extensions are flat, so the ranks are equal.

Lemma 3.10 (Vân, Ono and Lê [22, Appendix C]) Let k be a field and let C� be a
chain complex over kn WD kŒt1; : : : ; tn�. Consider kn as an augmented km–algebra (for
some 0 <m < n) with augmentation sending ti to ti for i �m and ti to 1 for i >m.
Then

rank H�.C�˝kn
km/� rank H�.C�/:

Proof of Theorem 3.5 Lemma 3.8 implies that, in particular, the rank of HF. ;ƒ /
equals the rank of HF.�;ƒ /. By Lemma 3.9, this rank is equal to the rank of
HF
�
�;Q.Z=2ŒN 0

h
=tors�/=ker

�
Flux. /jN 0

h

��
. We note that

CF
�
�;Q.Z=2ŒN 0h=tors�/=ker

�
Flux. /jN 0

h

��
' CF

�
�;Q.Z=2ŒN 0h=tors�/

�
˝Q.Z=2ŒN 0

h
=tors�/Q.Z=2ŒN 0h=tors�/=ker

�
Flux. /jN 0

h

�
;

with the augmentation map sending elements of the kernel of Flux. /jN 0
h

to one. The
spaces Q.Z=2ŒN 0

h
=tors�/ and Q.Z=2ŒN 0

h
=tors�/=ker

�
Flux. /jN 0

h

�
are vector spaces
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over Q and as such their group rings over Z=2 and the aforementioned augmentation
map are as in Lemma 3.10, where n and m are their respective dimensions, with
k DZ=2. Thus, by Lemma 3.10, the rank of the homology of the displayed complexes
is less than or equal to the rank of HF.�;Z=2ŒN 0

h
=tors�/, which is the same as the rank

of HF.�;Q.Z=2ŒN 0
h
=tors�//, giving the result.

4 Bounds on fixed points for surface symplectomorphisms

4.1 Standard form maps and Nielsen classes

In this section we describe standard form maps and their Nielsen classes. See also
[1, Sections 3–4], which has more background.

4.1.1 Standard form for geometric components

Definition 4.1 For the identity mapping class, a standard form map is a small pertur-
bation of the identity map by the Hamiltonian flow associated to a Morse function for
which the boundary components are locally minima and maxima.

In this case every fixed point is in the same Nielsen class. This Nielsen class has index
given by the Euler characteristic of the surface.

Definition 4.2 For nonidentity periodic mapping classes, a standard form map is an
isometry with respect to a hyperbolic structure on the surface with geodesic boundary.

Every fixed point is in a separate Nielsen class and each of the Nielsen classes for
which there is a fixed point has index one.

Definition 4.3 For a pseudo-Anosov mapping classes, a standard form map is a
(specified) symplectic smoothing of the singularities and boundary components of the
standard singular representative. Each singularity has a number p � 3 of prongs, and
each boundary component has a number p � 1 of prongs. If a singularity or boundary
component is (setwise) fixed, it has some relative fractional twist coefficient in Q=Z

with denominator p.

See [1, Section 3.2] for further details, including an introduction to pseudo-Anosov
maps. For the specified smoothing, see [1, Figure 3 and surrounding]. See also the top
images in Figure 1 for a rendition in an example.

There is a separate Nielsen class for every smooth fixed point, which is of index one
or minus one; for every fixed singularity, which when symplectically smoothed gives
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p� 1 fixed points all of index minus one if the rotation number is zero modulo p, or
one fixed point of index one otherwise [1]; and for every fixed boundary component
with rotation number zero modulo p, which when symplectically smoothed gives p

fixed points all of index minus one.

In the pseudo-Anosov case, note that what we are using as a boundary is a deformation
of a punctured singularity in terms of the standard singular representative.

Remark 4.4 From this discussion, we see that for nonidentity periodic and pseudo-
Anosov mapping classes, the standard form map is such that all fixed points are
nondegenerate and, for every Nielsen class �, the number of fixed points in � is jind.�/j.

4.1.2 Standard form for reducible maps and fixed annuli In addition to the geo-
metric components described above, we extend the notion of components to allow for a
number of fixed annuli between geometric components or near a boundary when there
is sufficient twisting along the reducing curve or at a boundary curve.

To obtain a standard form for reducible mapping classes, the standard forms for
geometric components, described above, are joined by twisting regions (à la Dehn
twists). Each twisting region may have any number (in Z�0) of circles of fixed points,
which we think of as fattened to annuli and consider as fixed annuli. Formally we have
a standard form whose existence follows from Thurston’s classification [20; 4]; see
also [1, Definition 4.6].

Definition 4.5 A reducible map � is in standard form if there is a �– and ��1–invariant
finite union of disjoint noncontractible (closed) annuli N �† such that:

(i) For A a component of N and ` the smallest positive integer such that �` maps
A to itself, the map �`j

A
is either a twist map or a flip-twist map. That is, with

respect to coordinates .q;p/ 2 Œ0; 1��R=Z, we have one of

.q;p/ 7! .q;p�f .q// (twist map),

.q;p/ 7! .1� q;�pCf .q// (flip-twist map),

where f W Œ0; 1�!R is a strictly monotonic smooth map. We call the (flip-) twist
map positive or negative if f is increasing or decreasing, respectively. Note that
these maps are area-preserving.

(ii) Let A and ` be as in (i). If `D 1 and �j
N

is a twist map, then Im.f / � Œ0; 1�.
That is, �jint.A/ has no fixed points. (If we are to twist multiple times, we
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separate the twisting region into the parallel fixed annuli separated by regions on
which the map is the identity.) We further require that parallel twisting regions
twist in the same direction.

(iii) For S a component of †nN and ` the smallest integer such that �` maps A

to itself, the map �`j
S

is area-preserving and is either isotopic to the identity,
periodic, or pseudo-Anosov. In these cases, we require the map to be in standard
form as above.

We are most interested in the fixed annuli defined in item (ii) and which are parallel
and interstitial to the twist regions, as that is where fixed points may occur.

4.1.3 Counting fixed annuli The fixed annuli described above can be counted in
terms of a variant of fractional Dehn twist coefficients, related to those in [7]. This
subsection is optional, as the arguments proceed from the definition of fixed annuli
in the preceding subsection, but may be of interest. We first discuss fractional twist
coefficients, and then how to use that to count the number of fixed annuli.

Relative fractional twist coefficient Consider a mapping class g with a reducing
(setwise-fixed non-nullhomotopic, non-boundary-parallel) curve C or a setwise-fixed
boundary C . Suppose the induced map on the homology of C is the identity (rather
than �1). Then for each component abutting C , a geometric (periodic or pseudo-
Anosov) representative of that component gives a relative fractional twist coefficient in
Q=Z at its boundary. In the periodic case, this is simply the fraction by which it rotates
its circle boundary. In the pseudo-Anosov case, the singular measured foliations have
p prongs arranged around C and these are permuted, which we interpret as a rational
rotation.

Number of fixed annuli: reducing curve case Across such a reducing curve C ,
relative to the geometric representatives on each side, we obtain a total fractional Dehn
twist coefficient x 2Q at C , which is a lift of the sum of the two relative fractional
twist coefficients. Obtain these lifts by isotoping the map to pointwise fix C and using
the fractional Dehn twist coefficient [7] from each side. (Such isotopies are related by
a free Z–action which adjusts the coefficients on each side in complementary fashion.)

We say the mapping class g has a fixed annulus parallel to the reducing curve C for
each (necessary) more-than-full twist. That is, we say g has ceil.jxj � 1/ fixed annuli
parallel to C .
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Number of fixed annuli: boundary curve case In the case of a setwise-fixed boundary
curve C , we are considering the mapping class g, which is an element of �0 of the
space of maps in DiffC

@
.†/, which fix no points on the boundary. There are then two

neighboring mapping classes g1;g2 in �0 of the space of maps DiffC.†; @†/ which fix
pointwise the boundary. Each of these has its own fractional Dehn twist coefficient [7],
which we denote by y1;y2 2Q respectively; these necessarily differ by 1. We may
think of the total twisting for g at C as being allowed to take any value in the open
interval between y1 and y2.

Again, for each (necessary) more-than-full twist at C we say the mapping class g has a
fixed annulus parallel to the boundary curve C . That is the minimum over the possible
total twisting values, ie over the values in the open interval between y1 and y2, of the
number of more-than-full twists. More simply, this is the minimum (over i D 1; 2) of
floor.jyi j/.

4.1.4 Fixed points of standard form maps The fixed points of our standard form
reducible maps are as follows:

� Type Ia The entire component of components S of †nN on which the induced
map is the identity, with �.S/ < 0.

� Type Ib The entire component of components S of †nN on which the induced
map is the identity, with �.S/D 0. These are annuli and only occur when we
have multiple parallel Dehn twists.

� Type IIa Fixed points x of periodic components S of †nN with �.S/ < 0

which are setwise fixed by �. These are each index one.

� Type IIb Fixed points x of flip-twist regions. These are each index one. Note
that each flip-twist region has two fixed points.

� Type III Fixed points x of pseudo-Anosov components S of †nN which are
setwise fixed by �. These come in 4 types (note that there are no fixed points
associated to a rotated puncture):

– Type IIIa Fixed points which are not associated with any singularity or
boundary component of the pre-smoothed map. These are index one or
negative one.

– Type IIIb-p Fixed points which come from an unrotated singular point
with p prongs. There are p� 1 of these for each such singular point, each
of index negative one.
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– Type IIIc Fixed points which come from a rotated singular point. These
are each of index one.

– Type IIId-p Fixed points which come from an unrotated boundary compo-
nent with p prongs. There are p for each such boundary component, each
of index negative one.

4.1.5 Nielsen classes of fixed points of standard form maps We review Nielsen
classes of fixed points of standard form reducible maps, as discussed in [1].

In [1], adapting the work of [10] to the area-preserving case, we showed that we have
a separate Nielsen class for every component of type Ia or type Ib, for every single
fixed point of type IIa, IIb, IIIa, or IIIc, and for every unrotated singular point of the
pre-smoothed map for type IIIb (ie the collection of fixed points associated to a single
unrotated singular point are all in the same Nielsen class).

Type IIId fixed points associated to the same boundary component are in the same
Nielsen class. They may also be in the same Nielsen class as fixed points of the
component they abut if that component has fixed points at that boundary also of type
IIId or of type Ia (they cannot abut regions of with type Ib fixed points). In the former
case this Nielsen class is again separate from all others already specified, and has
combined index �p� q from the pC q index negative one fixed points. In the latter
case, we have already stated that this Nielsen class is separate from all others already
specified. Thus we have:

Lemma 4.6 The combined index of the Nielsen class � associated to a fixed component
of S is

ind.�/D �.S/�
X

C2�0.@S/
component abutting at C is of type IIId-p

p:

Finally, the index of a fixed component of type Ib is zero.

4.2 Floer homology with twisted coefficients

We compute the Floer homology HF�.�;Q.Z=2ŒN 0h=tors�// for � a standard form
reducible map. This splits into a direct sum over Nielsen classes. For Nielsen classes
not associated to a fixed component, � has fixed points all of the same index and thus
there are no flow-lines at all and the differential vanishes.
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Consider first components S on which the induced map is the identity, possibly abutting
components at a boundary with type IIId fixed points of pseudo-Anosovs. We perturb
with the Hamiltonian flow of a small Morse–Smale function that patches together with
the perturbation of the function on a neighborhood of any boundary components with
type IIId fixed points.This is given by a Hamiltonian flow of a Morse–Smale function
with p saddle points; see [1] for details. In [1] we showed that the flow-lines we get
between fixed points in the Nielsen class � corresponding to the fixed points in this
component are only those which correspond to Morse flow-lines.

We are interested in the rank of the summand of HF�.�;Q.Z=2ŒN 0h=tors�// correspond-
ing to such a Nielsen class �. The key is to understand the extrema of the Morse–Smale
function. If the component has boundaries which rotate in opposite directions, we
may choose the Morse–Smale function to have no extrema, and then there are jind.�/j
fixed points in the Nielsen class all of the same index and thus no flow-lines. If the
component has boundaries rotating all in the same direction, we may choose a Morse–
Smale function with one extremum. There are jind.�/jC 2 fixed points in the Nielsen
class �. Finally, if there is no boundary, we may choose a Morse–Smale function with
two extrema. There are jind.�/jC 4 fixed points in the Nielsen class �. In these latter
two cases, we must further understand the flow-lines.

We consider the one-boundary-component case first. For the purposes of computing
rank, we may assume the extremum is a minimum by duality. Suppose first that we
have a type IIId boundary component abutting our fixed component S . In [1] we show
that there is precisely one flow-line from each of the p type IIId fixed points to the
minimum; see Figure 1. In this case we have a cancellation because we are working
with field coefficients and whatever element (even zero) of N 0

h
=tors this flow-line

corresponds to under the representation �wm, it corresponds to a nonzero and thus
invertible element of Q.Z=2ŒN 0

h
=tors�/. Thus the rank of the summand corresponding

to the Nielsen class � is jind.�/j.

Suppose next that S does not abut any type IIId boundary components. Denote the
minimum by y. Then for every saddle point x we have two flow-lines to y.

Lemma 4.7 We have that @x D axy, where ax is nonzero if and only if the class of
the closure of the descending manifold of x in N 0

h
=tors�H1.†/ is nonzero.

Proof See Figure 2. We have two flow-lines C1 and C2. Thus

@x D �.ŒC1 �C
�1
y;x �/yC �.ŒC2 �C

�1
y;x �/y D a �y � b �y:
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Figure 1: Top left: level sets of a Morse–Smale function for a neighborhood
of an unperturbed IIId boundary, viewed as a puncture. Top right: level sets of
the perturbed Morse–Smale function. Note that the central disk, which rotates
under the Hamiltonian flow, is excised to glue with other components. Bottom:
the plane represents part of the pseudo-Anosov with type IIId boundary. The
remainder of the surface represents a component with type Ia fixed points.
The unique flow-line is shown in bold.

Here, considered as elements of the group ring, the values a; b 2N 0
h
=tors are such that

a� b in N 0
h
=tors is the class of the descending manifold of x. This value is zero if and

only if aD b. The result follows.

If ax ¤ 0 for some x, then y is a boundary because our coefficients lie in a field, and
so we have a cancellation and the rank is only jind.�/j. If ax D 0 for all x, this is the
statement that the differential vanishes in the summand corresponding to the Nielsen
class �, and so the rank is jind.�/jC 2.

Lemma 4.8 In the above situation , ax D 0 for every saddle point x if and only if S

has genus zero and every boundary component of S is nullhomologous in H1.†; @†/.

C2 C1

Figure 2: The closure of the descending manifold.
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x1

ax1

ax2

x2

: : :
xn�1

axn�1

y

Figure 3: Left: the nonzero genus case. Right: the genus zero case with all
boundary components rotating the same direction.

Proof In the case in which S has genus, we can find two descending manifolds which
meet algebraically once. It follows that neither of them are nullhomologous. See
Figure 3, left.

If S is genus zero, it appears as in Figure 3, right. The homology class of each of the
boundary components is given by either (plus or minus) the homology class of one
of the descending manifolds (if on either end) or the difference of two such. We see
all the descending manifolds are nullhomologous if and only if all of the boundary
components are.

In the case in which S has no boundary, we see that ax is never zero for saddle points
x and thus we cancel the minimum. Dually, we also cancel the maximum, say with
any saddle point we haven’t used to cancel the minimum. Thus in this case the rank is
jind.�/j. Summing up, we have shown:

Proposition 4.9 Consider a Nielsen class � corresponding to a fixed component S .
If S does not abut any type IIId boundary components , every boundary compo-
nent rotates in the same direction , S has genus zero , and every boundary com-
ponent of S is nullhomologous in H1.†; @†/, then the rank of the summand of
HF�.�;Q.Z=2ŒN 0h=tors�// corresponding to such a Nielsen class � is jind.�/j C 2.
Otherwise it is jind.�/j.

4.3 Construction of maps using symplectic vector fields

We now construct a map  in our mapping class h so that in every Nielsen class �,
the number of fixed points in this Nielsen class equals the rank of the summand of
HF�.�;Q.Z=2ŒN 0h=tors�// corresponding to the Nielsen class �, which we computed
in the previous section.
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We start with a map �st, a standard-form reducible map but which is the identity on any
fixed components as opposed to having been perturbed by Hamiltonian flows. We next
perturb by Hamiltonian flows on any components for which there was no cancellation in
the previous section; that is, components for which the number of fixed points equaled
the rank. These are components which have boundary components rotating in different
directions as well as components which satisfy all of the criteria in Proposition 4.9.

Next we use a modified Hamiltonian on components S which meet a type IIId boundary,
geometrically canceling the extremum with one of the type IIId fixed points. We start
with a Hamiltonian function with at most one extremum on such a component, which
patches together with the Hamiltonian on a neighborhood of the boundary of the
pseudo-Anosov region as in the previous section.

Lemma 4.10 On a component S meeting a type IIId boundary , there exists a modi-
fication of the aforementioned Hamiltonian perturbation whose critical points are all
nondegenerate saddle points.

Proof We geometrically cancel one of the p type IIId fixed points and the fixed point
corresponding to the minimum as in Figure 4. To do this, we consider, as in Figure 5,
the perturbed situation but without the central disk excised. We draw a loop  , excising
the disk it bounds and replacing it with “the rest” of S , ie the portion to the left of  in
Figure 4. This reduces the situation to one standard case. We rescale the Hamiltonian
on S to be small if necessary so there are points on which the Hamiltonian evaluates
to a number less than the evaluation of the Hamiltonian at the (local) minimum.




Figure 4: Geometrically canceling the minimum when meeting a type IIId
boundary. Left: before. Right: after.
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Figure 5: The perturbed type IIId boundary with shaded –bounded disk
to be excised and replaced with the rest of the component S , and unshaded
region in which we are modifying the Hamiltonian. Left: before. Right: after.

Next we consider components S whose boundary components rotate all in the same
direction and which meet no type IIId boundaries, but have nonzero genus. In this case,
we can use an S1–valued Hamiltonian to remove extrema.

Lemma 4.11 There exists an S1–valued Hamiltonian on such a component whose
associated symplectic vector field is parallel to the boundary and whose critical points
are all nondegenerate saddle points.

Proof We modify the Hamiltonian away from the boundary as in Figure 6.

Now we perturb this whole map by the flow of a small symplectic vector field.

Lemma 4.12 There exists a symplectic vector field V transverse to every boundary C

of a reducible component for which ŒC �¤ 0 in H1.†; @†/.

Proof The plan is to choose a totally irrational flux class. In order to see that we
can choose the flow to be transverse to every reducing curve, we choose a handlebody

Figure 6: On a component which has genus, we can locally cancel the min-
imum geometrically with an S1–valued Hamiltonian. Left: before. Right:
after. The top and bottom circles marked with arrows are identified.
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A B C

A B

C

Figure 7: On a genus zero component, if the symplectic vector field is nonzero
on at least one boundary component, then we can geometrically cancel the
minimum with an S1–valued Hamiltonian. Left: before. Right: after.

bounding † such that the reducing curves all bound disks. Next we collapse this to
the underlying graph and put flows on each edge of the graph whose only rational
dependences are given by balancing conditions at the vertices. We then use this as a
guide to build the flow on the surface.

We rescale the symplectic vector field so that it is small enough that its time-1 flow
does not move any of the fixed points too much and does not create any new fixed
points.

For components S whose boundary components rotate all in the same direction, which
meet no type IIId boundaries, and are genus zero but which have a non-nullhomologous
boundary component, we now modify the symplectic vector field V in a neighborhood
of the component, keeping it transverse to each reducing curve.

Lemma 4.13 There exists an S1–valued Hamiltonian on such a component whose
associated symplectic vector field is transverse to the boundary and whose critical points
are all nondegenerate saddle points.

Proof We modify the Hamiltonian away from the boundary as in Figure 7.

We’ve shown:

Proposition 4.14 Given a reducible mapping class h, there exists a map  in the map-
ping class such that in every Nielsen class �, the number of fixed points in this Nielsen
class equals the rank of the summand of HF�.�;Q.Z=2ŒN 0h=tors�// corresponding to
the Nielsen class �.
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Combining this with our observations regarding identity, periodic, pseudo-Anosov
mapping classes and, for reducible mapping classes, with Proposition 4.9, we obtain
(summing over Nielsen classes):

Theorem 4.15 The minimum number of fixed points of an area-preserving map �
with nondegenerate fixed points in a mapping class h is given by�P

� jind.�/j if h is periodic or pseudo-Anosov,P
� jind.�/jC 2A if h is reducible ,

where A is the number of genus zero components of the reducible mapping class on
which the map is the identity , which do not abut any pseudo-Anosov components , and
all of whose boundary components rotate in the same direction and are nullhomologous
or homologically boundary parallel.

5 Degenerate fixed points

If we are allowed degenerate fixed points, each of the Nielsen classes � for which the
bound for nondegenerate fixed points was jind.�/j can be reduced to a single degenerate
fixed point. To see this, note that the only of these situations in which we are not already
reduced to a single fixed point are in cases in which the Nielsen class is associated
with a p–prong pseudo-Anosov singularity or in which the Nielsen class is associated
to a fixed component (possibly meeting type IIId boundaries). In the former case, we
simply modify the singular Hamiltonian Hsing D �r2 cos.p�/D �Re.zp/=jzjp�2 to
a smooth Hamiltonian which agrees with Hsing outside a small ball and inside a yet
smaller ball is C rp cos.p�/D C Re.zp/, which is smooth at the origin, where it has
a (generalized) monkey saddle. In the latter case, all of the fixed points are index
negative one, ie are given by saddles, and we can again combine them all into the
appropriate generalized monkey saddle, using p D jind.�/j C 1 (the index of such a
degenerate fixed point is 1�p).

Similarly, each of the Nielsen classes � for which the bound for nondegenerate fixed
points was jind.�/jC 2 can be reduced to two fixed points: each of these corresponds
to a genus zero component of the standard form map on which the map is the identity
and for which each boundary component rotates in the same direction. Each of these
in the nondegenerate case one index one fixed point, some number k of index negative
one fixed points, where the component has k C 1 boundary components. All of the
index negative one fixed points can be combined in one degenerate fixed point of the
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Figure 8: A three boundary component genus zero component with one
minimum and, instead of two nondegenerate index negative one fixed points,
one 3–prong monkey saddle.

same sort as in the previous paragraph. See Figure 8. Our task is now to show that we
can do no better. That is, we cannot combine these two fixed points into one.

To show this, we use a cohomology operation. The argument has similarities with
arguments that cup lengths give bounds on (even degenerate) fixed points, but even
though we have, by [1, Section 2.5], a deformation-invariant module structure over
the quantum homology of † (which agrees with H�.†/), the module structure is
trivial. Every element of H1.†/ acts as zero because each of the descending manifolds
from Lemma 4.7 is nullhomologous, and thus has zero algebraic intersection with any
element of H1.†/.

All is not lost, however. If we restrict our attention to one Nielsen class �, there is a
sense in which this descending manifold is homologically essential for this Nielsen
class.

Lemma 5.1 Let † be a surface of negative Euler characteristic , h reducible map-
ping class , and � a Nielsen class corresponding to a fixed component S . Then
H1.�.M�/�/ŠH1.S/ for any � 2 h. In fact , �1.�.M�/�/Š �1.S/. Furthermore ,
the image of

H1.�.M�/�/!H2.M�/!H1.†/

in H1.†/ agrees with the image of H1.S/!H1.†/.

Proof We consider  as a map R! † with  .t/ D �. .t C 1//. An element of
�1.�.M�/;  / is of the form s.t/ for s 2 S1 DR=Z with 0.t/D  .t/. We consider
˛0.s/D s.0/ and ˛1.s/D s.1/. These are closed curves on † and �.˛1.s//D ˛0.s/.
Furthermore, ˛0.s/ is homotopic to ˛1.s/ by the homotopy ˛t .s/D s.t/.
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As in [1, Lemma 3.2], we have a fibration �†! �.M�/!† and thus a long exact
sequence on homotopy groups, a piece of which is

�2.†;  .0//! �1.�.M�/;  /! �1.†;  .0//:

The image in �1.†;  .0// of the element of �1.�.M�/;  / represented by the ho-
motopy s.t/ is represented by ˛0.s/. Because † is a surface of negative Euler
characteristic, �2.†/D 0. Thus we have an injection

�1.�.M�/;  / ,! �1.†;  .0//:

We choose our map � (amongst those in the mapping class) to be a standard form one
which is the identity on S and choose our basepoint  to be the constant path at some
point in S . We claim that the image of this map is �1.S;  .0//. We note that the image
consists of elements of �1.†;  .0// represented by loops ˛.s/ based at  .0/ which
are homotopic through loops based at  .0/ (because  is the constant path) to �.˛.s//.
Thus the image contains �1.S;  .0//.

We now claim that any ˛.s/ based at  .0/ homotopic to �.˛.s// through loops
based at  .0/ can be homotoped inside S . This would give the result. This follows
from [10, Lemma 3.4], with its modification to the standard form maps for the area-
preserving case (in which we need to consider multiple parallel Dehn twist regions
with fixed annuli in between) given in [1, Lemma 3.8 and Corollary 3.9]. These state
that any path between two fixed points of a standard form map which is homotopic rel
endpoints to � applied to itself can be homotoped inside the fixed point set of �. The
component of Fix.�/ containing  .0/ is simply S .

Finally, we note that the result continues to hold for any other map in the mapping class.
Nielsen classes are well-defined on the entire mapping class h by [1, Lemma 4.2], so
this statement is sensible.

Now we restrict our attention to fixed genus zero components S which do not meet
type IIId boundaries, and whose boundary components all rotate in the same direction
and are all nullhomologous.

Lemma 5.2 The Floer homology chain complex CF�.�;Z=2ŒH1.�.M�/�/�I �/ of
a map � 2 h, restricted to Nielsen class � summand of such a fixed component S ,
with coefficients in the representation Z=2ŒH1.�.M�/�/�, is well defined on the en-
tire mapping class h and invariant up to quasi-isomorphism. The same holds for
CF�.�;Z=2I �/, where the coefficients are the trivial representation Z=2.
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Proof It is well-defined for any � because !� WH1.�.M�/�/! R is the zero map
for any � (which implies that every � is �–weakly monotone as defined in [1]). This
follows because !� WH1.�.M�/�/!R agrees with the map

H1.�.M�/�/!
�
ker.c�/�H2.M�/

�
!
�
Nh �H1.†/

� Flux
��!R;

and the image of H1.�.M�/�/ under all but the last composition is the image of
H1.S/!H1.†/, by Lemma 5.1. This, however, is zero because S has genus zero so
that H1.@S/ surjects to H1.S/, but we’ve assumed the boundary of S is nullhomolo-
gous in †. The invariance up to quasi-isomorphism follows from Theorem 2.8(ii).

We compute with � a standard form map. We assume without loss of generality that the
Morse–Smale function on the component S has one extremum, a minimum (otherwise
reverse orientation on †). The homology HF�.�;Z=2I �/ has dimension jind.�/jC 2,
generated by a fixed point y corresponding to the minimum and jind.�/j C 1 fixed
points xi of index negative one.

Consider a homomorphism

ˇ 2 Hom.H1.�.M�/�/;Z=2/D Hom.H1.S/;Z=2/

DH 1.S IZ=2/DH1.S; @S IZ=2/:

As in [9, Section 12.1.3] and [1, Section 2.5] we get a degree one map

@ˇ W HF�.�;Z=2I �/! HF�.�;Z=2I �/

defined by
@ˇz D

X
w

X
C2M1.z;w/

ˇ.ŒC �C�1
z;w �/ �w:

Moreover, we show in [1, Proof of Proposition 2.9] that @ˇ is well-defined (purely
algebraically) up to quasi-isomorphism of the pair

CF�.�;Z=2ŒH1.�.M�/�/�I �/ and CF�.�;Z=2I �/:

Thus, by Lemma 5.2, @ˇ is a well-defined operation HF�.h;Z=2I �/ on the � component
of the Floer homology for the mapping class h. This operation is what replaces quantum
cup products such as in [17] in a cup-length argument.

Lemma 5.3 There is a ˇ such that @ˇxi D y. In fact , for any sum
P

i cixi with
c1 2 Z=2 not all zero , there exists a ˇ such that @ˇ

P
i cixi D y.
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Proof We simply take ˇ to be the class in H1.†; @†IZ=2/ of an arc meeting the
closure of the descending manifold of the saddle point corresponding to an xi appearing
with coefficient one once and all others zero times. See Figure 3 for a picture of the
descending manifolds.

Thus the “cup-length” of HF�.h;Z=2I �/ as an H 1.S/–module is two.

We will be taking a limit in which degenerate fixed points are allowed to appear. We
have need of a Gromov compactness result appropriate for such a situation. We use
Taubes’s currents-in-the-target version of Gromov compactness (valid in dimension four)
[19, Proposition 3.3] as applied to compact subsets Œa; b��M� in [8, Lemma 9.9].

Proposition 5.4 [19, Proposition 3.3; 8, Lemma 9.9] Let uk WR� Œ0; 1�!R�M�

be a sequence of holomorphic sections with energies bounded by some E0. Then we
can pass to a subsequence such that

(i) the uk converge weakly as currents in R�M� to a proper pseudoholomorphic
map u WR� Œ0; 1�!R�M� , and

(ii) for any compact K �R�M� ,

limk!1

h
sup

x2Im.uk/\K

dist.x; Im.u//C sup
x2Im.u/\K

dist.x; Im.uk//
i
D 0:

From this we see that we have C 0–convergence to the orbit corresponding to a fixed
point at each end.

Theorem 5.5 There must be at least two fixed points in the Nielsen class � correspond-
ing to such a fixed component S even if we allow degenerate fixed points.

Proof Suppose there is just one, necessarily degenerate, fixed point in Nielsen class �.
Perturb by a small Hamiltonian flow such that all fixed points are nondegenerate.
Because HF�.h;Z=2I �/ has rank one in even degree, we have at least one index-one
fixed point which survives in homology; choose one such and call it y. By Lemma 5.3,
for any index negative one fixed point x which survives in homology, there is a
ˇ 2 H1.S; @S/ such that @ˇ Œx� D Œy�. Thus there are (at least) two flow-lines from
x to y, and there are two such that the difference between their classes, mapped to
H1.S IZ=2/, is nonzero.
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We now take a limit of small perturbations limiting to the degenerate situation. By
Proposition 5.4, after passing to a subsequence, the two flow-lines uk and vk above limit
to holomorphic curves u; v WR� Œ0; 1�!R�M� , which C 0–limit to the degenerate
fixed point at each end. Thus each of these two limits give continuous loops in �.M�/�.
We additionally see that Œu�� Œv�D limk!1Œuk � vk � in H1.�.M�/� ŠH1.S/. This
latter limit is nonzero, and in particular at least one of u; v is nonconstant and thus has
positive energy. However, !� WH1.�.M�/�/!R is the zero map, so we see that each
of u; v has zero energy, a contradiction.

Summing over Nielsen classes, we conclude:

Theorem 5.6 The minimum number of fixed points of an area-preserving map � in a
mapping class h is given by�

#f� W ind.�/¤ 0g if h is periodic or pseudo-Anosov,
#f� W ind.�/¤ 0gCACB if h is reducible ,

where A is as before and B is the number of fixed annuli.
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Let S be a closed surface of genus g � 2 and � a maximal PSL.2;R/� PSL.2;R/
surface group representation. By a result of Schoen, there is a unique �–equivariant
minimal surface z† in H2 �H2. We study the induced metrics on these minimal
surfaces and prove the limits are precisely mixed structures. We prove a similar result
for maximal surfaces in AdS3. In the second half of the paper, we provide a geometric
interpretation: the minimal surfaces z† degenerate to the core of a product of two
R–trees. As a consequence, we obtain a compactification of the space of maximal
representations of �1.S/ into PSL.2;R/�PSL.2;R/.
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1 Introduction and main results

Let S be a closed, orientable, smooth surface of genus g > 1. For any reductive Lie
group G, one can form the character variety R.�1.S/;G/D HomC.�1.S/;G/ ==G,
consisting of conjugacy classes of reductive surface group representations into G. In
the classical setting, where G D PSL.2;R/, one recovers a copy of Teichmüller space.
A goal in the higher Teichmüller theory is to understand geometric aspects of surface
group representations into higher-rank Lie groups.

Following the work of Labourie [23], given a reductive surface group representation �
into a semisimple Lie group G, to each complex structure J on the surface S , one
can record the energy of the unique �–equivariant harmonic map from . zS ;J / to the
Riemannian symmetric space G=K. This defines an energy functional on Teichmüller
space, and Labourie proves that if the original representation � is Anosov, then the
energy functional admits a critical point. Hence, to each such representation �, there is
an associated branched immersed minimal surface in the symmetric space G=K.

The existence and uniqueness of the minimal surface in the associated symmetric
space has been resolved by Labourie [24] for the rank-two real split simple Lie groups:
namely SL.3;R/, PSp.4;R/ and G2. Interestingly enough, the result still holds when
G is merely semisimple, as the case of PSL.2;R/� PSL.2;R/ was proven by Schoen
in [39].

There is also the aim in the program of the higher Teichmüller theory to understand
representations as geometric objects. This is a natural goal, given that in the case of
classical Teichmüller theory, where the group is G D PSL.2;R/ and the representation
is discrete and faithful, the associated geometric objects are given by marked hyperbolic
surfaces. Moreover, it is of interest to obtain a description of boundary points associated
to higher Teichmüller spaces in terms of degenerations of geometric objects. It would
be interesting to have these geometric objects at the boundary be a generalization of
measured laminations (see [43, Section 11]), which are the limiting geometric objects
in the Thurston compactification of Teichmüller space.

In the setting G D PSL.2;R/�PSL.2;R/, this paper does exactly that: we provide a
parametrization of maximal surface group representations into PSL.2;R/�PSL.2;R/,
by studying the induced metrics on the �–equivariant minimal surfaces in the symmetric
space H2�H2. If �D .�1; �2/, and z† is the unique �–equivariant minimal surface in
H2�H2, then its quotient by the action of the fundamental group via the representation
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High-energy harmonic maps and degeneration of minimal surfaces 1693

is the graph of the unique minimal lagrangian isotopic to the identity between .S;g1/D

H2=�1 and .S;g2/DH2=�2.

Let Ind.S/ be the equivalence class of induced metrics on the graph minimal surface
in the product of two hyperbolic surfaces. Two such metrics are identified if one is the
pullback metric of the other by a diffeomorphism homotopic to the identity map.

We study the length spectrum of these induced metrics on the minimal surface and show
that we can degenerate the metrics to obtain singular flat metrics, measured laminations
and mixed structures. A mixed structure �D .S˛; q˛; �/ is the data of a collection of
incompressible subsurfaces

F
S˛ , with a prescribed meromorphic (integrable) quadratic

differential on each subsurface (collapsing the boundary components and viewing them
as punctures), with a measured lamination � supported on the complement Sn

F
S˛.

Observe that a holomorphic quadratic differential on S and a measured lamination
on S are trivial examples of mixed structures, where S˛ D S and S˛ D∅, respectively.
Define then PMix.S/ to be the space of projectivized mixed structures. Our first main
result is the following.

Theorem A The space Ind.S/ of induced metrics embeds into the space PCurr.S/ of
projectivized currents. Its closure is Ind.S/tPMix.S/.

If we keep track of the ambient space, namely H2 �H2, we show that by scaling the
ambient space by a suitable sequence of constants (which generally will be the total
energy of a harmonic map), we can obtain as limits of minimal lagrangians the core
of a pair of R–trees coming from measured foliations. In fact, we show there is an
isometric embedding from a metric space obtained from the data of a mixed structure
to the core of trees.

As a consequence, we have an answer to our original goal of ascribing something
geometric to maximal surface group representations into PSL.2;R/�PSL.2;R/. By
studying degenerations of the minimal lagrangians, we obtain natural boundary objects
which are both geometric and are natural extensions of measured laminations.

Theorem B The space of maximal representations of PSL.2;R/�PSL.2;R/ embeds
into the space of �1S–equivariant minimal lagrangians in H2 � H2. The scaled
Gromov–Hausdorff limits of the minimal lagrangians are given by the core of a product
T1 �T2 of trees , where T1 and T2 are a pair of R–trees coming from a projective pair
of measured foliations.

Geometry & Topology, Volume 27 (2023)
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Minimal lagrangians in H2 �H2 arise as the image of the Gauss map of the unique
embedded spacelike maximal surface in a Globally Hyperbolic Maximal Compact
(GHMC) AdS3–manifold; see [22]. Mess [28] showed that the maximal representations
into PSL.2;R/ � PSL.2;R/ are precisely the holonomy representations of GHMC
AdS3–structures. One could have studied maximal representations into PSL.2;R/�
PSL.2;R/ by looking at the induced metric on the maximal surface instead. We show
an analogue of Theorem A, that the limits one obtains are also mixed structures. If
Max.S/ denotes the space of induced metrics on the maximal surface, then our final
result is the following.

Theorem C The space Max.S/ of induced metrics on the maximal surfaces embeds
into the space PCurr.S/ of projectivized currents. Its closure is Max.S/tPMix.S/.

There has been some recent interest in studying surface group representations to the
Lie group PSL.2;R/�PSL.2;R/ by way of geodesic currents. Work of Glorieux [15]
shows that the average of two Liouville currents, 1

2
.LX1

CLX2
/, yields the length

spectrum of the Globally Hyperbolic Maximal Compact AdS3 manifold with holonomy
.�1; �2/, where Xi DH2 n �i . In another recent paper of Glorieux [16], it is shown
that this map which sends unordered pairs of elements in Teichmüller space to the
space of projectivized currents, given by .X1;X2/D .X2;X1/!

1
2
.LX1

CLX2
/, is

injective. Recent work of Burger, Iozzi, Parreau and Pozzetti [6] show the limits of this
embedding are given by the projectivization of a pair of measured laminations. The
limiting current � thus satisfies

(1-1) i.�; � /D i.�1; � /C i.�2; � /;

where �1 and �2 are specific representatives of the projectivize classes Œ�1� and Œ�2�,
respectively, representing limits on the Thurston boundary.

We remark that our compactification via geodesic currents is distinct. If the limiting
laminations �1 and �2 fill, that is, the sum of their intersection numbers with any third
measured lamination is never zero, then the corresponding limiting object �0 under
our compactification is a singular flat metric coming from a unit-norm holomorphic
quadratic differential ˆ whose horizontal and vertical laminations are �1 and �2. The
corresponding current is thus given by

(1-2) l2
jˆj.˛/D i2.�0; ˛/D i2.�1; ˛/C i2.�2; ˛/

for a suitably short arc ˛ away from the zeros of jˆj. In general, this is different from
the sum of �1 and �2. Notice that for  an arc of the horizontal lamination of ˆ,
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the two intersection numbers i.�; ˛/ and i.�0; ˛/ coincide, so that the two currents �
and �0 are distinct even as projectivized currents. However, using their limiting currents,
Burger, Iozzi, Parreau and Pozzetti are able to construct and interpret their boundary
objects as subbuildings in the product of trees, endowed with the L1–metric.

Finally, since the first version of this paper appeared, related work has been done
on some of the other rank-two Lie groups; see Ouyang and Tamburelli [34; 35; 36].
More recently, together with Martone and Tamburelli [26], we have described our
compactification as a closed ball, upon which the mapping class group acts.
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author would like to express his gratitude to Zeno Huang and Andrea Tamburelli for
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2 Geometric preliminaries

2.1 Harmonic maps between surfaces

Let .M; � jdzj2/ and .N; � jdwj2/ be two closed Riemannian surfaces and

w W .M; � jdzj2/! .N; � jdwj2/

a Lipschitz map. Then the energy of the map w is given by the integral

E.w/ WD
1

2

Z
M

kdwk2 dvol� :

A critical point of the energy functional is a harmonic map. The energy density of the
map w, defined almost everywhere, is given by

e.w/D
�.w.z//

�.z/
.jwzj

2
Cjwxzj

2/;

and so the total energy is also given by the formula

E.w/D

Z
M

e.w/� dz ^ dxz D

Z
M

�.w.z//.jwzj
2
Cjwxzj

2/ dz ^ dxz;
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which shows the total energy depends only upon the conformal structure of the domain
surface but on the metric of the target. Alternatively, a harmonic map w solves the
Euler–Lagrange equation for the energy functional, a second-order nonlinear PDE,

wzxzC .log �/wwzwxz D 0:

To any harmonic map w W .M; � jdzj2/! .N; � jdwj2/, the pullback of the metric
tensor decomposes by type according to

w�.� jdwj2/Dˆ dz2
C �e dz dxzC x̂ dxz2;

where ˆ dz2 is a holomorphic quadratic differential with respect to the complex
structure coming from the conformal class of .M; � jdzj2/, called the Hopf differential
of w. Much of the formulas arising from harmonic maps make use of the auxiliary
functions

HD
�.w.z//

�.z/
jwzj

2 and LD
�.w.z//

�.z/
jwxzj

2:

We list some of these formulas and make liberal use of them without always explicitly
citing the precise one:

� The energy density e DHCL.

� The Jacobian J DH�L.

� The norm of the quadratic differential

jˆj2

�2
DHL:

� The Laplace–Beltrami operator

��
4

�

@2

@z@xz
:

� Gaussian curvature of the source

K.�/D�
2

�

@2 log �
@z@xz

:

� Gaussian curvature of the target

K.�/D�
2

�

@2 log �
@w@ xw

:

� The Beltrami differential

� D
wxz

wz
D

x̂

�H
; with j�j2 D

L
H
:
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The Bochner formula is given by

� logHD�2K.�/HC 2K.�/LC 2K.�/ when H.p/¤ 0;

� logLD�2K.�/LC 2K.�/HC 2K.�/ when L.p/¤ 0:

We shall often be in the setting where both the source and target are hyperbolic surfaces,
that is, K.�/DK.�/��1, and so some of the formulas listed above can be simplified.
In the more general setting where the target has negative curvature, the existence of a
harmonic map in the homotopy class is due to Eells and Sampson [11], its uniqueness
is due to Hartman [19] and Al’ber [1], and the fact that if the homotopy class contains
a diffeomorphism, then the harmonic map itself is a diffeomorphism and H > 0, is due
to Schoen and Yau [40] and Sampson [38].

2.2 Teichmüller space

Recall that Teichmüller space T .S/ is the space of all hyperbolic metrics on S with
the identification g � h if there exists a diffeomorphism � of the surface, homotopic
to the identity map, for which ��g D h. The topology is given by its marked length
spectrum.

Alternatively, one may regard Teichmüller space as the space of marked Riemann
surfaces. For a fixed surface S , two complex structures .S;J1/ and .S;J2/ are iden-
tified if there exists a biholomorphism f W .S;J1/! .S;J2/ which is homotopic to
the identity. The topology is given by the metric which, for two points of Teichmüller
space, assigns the logarithm of the quasiconformal dilatation of the unique Teichmüller
mapping between the marked Riemann surfaces.

Teichmüller space is topologically trivial, being homeomorphic to an open ball of
dimension 6g� 6.

2.3 Measured foliations and measured laminations

For a closed surface S , a measured foliation .S;F/ is a singular foliation (finitely
many k–pronged singularities, with k 2 f3; 4; : : : g) with a transverse measure, that is,
a measure � defined on each arc transverse to the foliation, such that the measure is
invariant under isotopy between two arcs through transverse arcs.

To any isotopy class of measured foliations, there is an associated measured lamination.
A measured geodesic lamination on a hyperbolic surface is a closed disjoint set of
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1698 Charles Ouyang

geodesics with a transverse measure. Likewise, to any measured lamination, there is
an associated measured foliation, so that there is a canonical way to pass from one
to the other; see [7] and [37]. Hence, the space of measured laminations does not
depend upon the choice of hyperbolic metric. Thurston showed that both spaces are
homeomorphic to Euclidean balls of dimension 6g� 6; see [12] and [42].

2.4 Holomorphic quadratic differentials

The space of holomorphic quadratic differentials Qg is a holomorphically trivializable
vector bundle over Teichmüller space, whose fiber over the Riemann surface X is the
vector space of holomorphic quadratic differentials on X . It is the vector space of
holomorphic sections of the square of the canonical bundle KX , and so may be written
H 0.X;K2

X
/. By the Riemann–Roch theorem, the complex dimension of this vector

space is 3g� 3. More concretely, if X is a Riemann surface and q is a holomorphic
quadratic differential on X , then locally q D f .z/ dz2, where f is a holomorphic
function and z is a chart for X .

Holomorphicity of the differential and compactness of the Riemann surface ensures
the quadratic differential has precisely 4g� 4 zeros counted with multiplicity. Hence,
in a neighborhood avoiding a zero of q, one may choose natural coordinates � so that
q D d�2. The metric jqj is well-defined on the complement of the zeros and is locally
Euclidean. At the zeros, the metric has conic singularities of angle .nC 2/� , where n

is the order of the zero of the quadratic differential at that point.

For any point on the complement of the zeros of the quadratic differential, there is a
unique direction for which q.v; v/2RC. Integrating the resulting line field, one obtains
a foliation, called the horizontal foliation of the quadratic differential q. Likewise, one
can define the vertical foliation of q, by integrating the line field of directions for which
q.v; v/ 2R�. The foliations come equipped with a transverse measure. For any arc 
transverse to the horizontal foliation, the measure for the horizontal foliation is given by

�h D

Z


jIm.
p
f /.z/jjdzj;

and likewise, the transverse measure for the vertical foliation is given by integrating
the real part jRe.

p
q/j over an arc  .

If Sg;n is a compact surface of genus g with n punctures such that 3g�3Cn> 0, then
Qg;n will denote the space of integrable holomorphic quadratic differentials on Sg;n.
At each of the punctures, the differential has a pole of order one.
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2.5 Geodesic currents and marked length spectra

Let .S; �/ be a fixed closed hyperbolic surface of genus g� 2. Then its universal cover
zS may be identified isometrically with H2. Let G. zS/ denote the space of geodesics
of zS . Then a geodesic current on S is a �1.S/–equivariant Radon measure on G. zS/.
The space of geodesic currents, denoted by Curr.S/, is given by the weak� topology.

Remark A priori, the definition of a geodesic current may appear to depend upon the
choice of hyperbolic metric, but it turns out G. zS/ depends only upon �1.S/; see [4].
Hence the space of geodesic currents is independent of the hyperbolic metric initially
chosen for S .

The ur-example of a geodesic current is given by a single closed geodesic  on S . Lift
 to a discrete set of geodesics z on zS . These lifted geodesics may be given a Dirac
measure, which is �1.S/–invariant as the lifts themselves are �1.S/–invariant. Hence
for any closed curve, by looking at its geodesic representative, one obtains a geodesic
current on S . In fact, Bonahon [4] shows the space of weighted closed curves is dense
in Curr.S/ and the geometric intersection number between curves has a continuous
bilinear extension to i WCurr.S/�Curr.S/!R�0. Moreover, a geodesic current on S

is determined by its intersection number with all closed curves [33]. The topology then
on the space of geodesic currents is given by its marked length spectrum. For the fixed
surface S , denote by C the set of isotopy classes of closed curves. The marked length
spectrum of a geodesic current � is given by the collection fi.�;  /g2C. A sequence
of geodesic currents �n is said to converge to � if their marked length spectra converge;
that is, for each  2 C and � > 0, there is an N.�;  / such that for n > N.�;  /, one
has ji.�;  /� i.�n;  /j< �. It is important to note that N is allowed to depend on the
curve class chosen. No requirement on uniform convergence is required.

If a current arises from a metric, the following rather useful formula applies.

Proposition 2.1 (Bonahon [4]; Otal [33]) Let � be a current arising from a metric � .
Then

i.�; �/D
�

2
Area.�/:

In the case where � is a geodesic current arising from a measured lamination, it is
not hard to see that i.�; �/D 0, but in fact, this turns out to be a characterization of
measured laminations.
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Proposition 2.2 (Bonahon [4]) Let � be a geodesic current such that i.�; �/D 0.
Then � is a measured lamination.

It is clear that if � is a geodesic current, then so is c� for c 2 RC. The set of
projectivized currents, denoted by PCurr.S/, is given by Curr.S/=�, where � � �
if there exists a positive constant c for which � D c�, and so consists of projective
classes of geodesic currents. The space PCurr.S/ is then given the quotient topology.
We highlight an important property of this space.

Proposition 2.3 (Bonahon [4]) The space PCurr.S/ is compact.

Several geometric structures have been shown to be embedded into Curr.S/. The
first such example was due to Bonahon [4], who showed Teichmüller space could be
embedded inside Curr.S/ via its Liouville current, namely � 7!L� with the property
that for any closed curve  , one has l� .Œ �/ D i.L� ;  /, so that the length of the
geodesic representative of  with respect to the hyperbolic metric � coincides with
the intersection number between the currents L� and  . As the space of measured
laminations can be realized as geodesic currents, Bonahon recovers the Thurston
compactification by way of projectivized geodesic currents.

Otal [33] has shown the space of negatively curved Riemannian metrics on surfaces can
be realized by geodesic currents. For any simple curve class Œ �, the length of the unique
geodesic representative coincides with the intersection number of the corresponding
geodesic current and the curve class Œ �, extending the work of Bonahon.

Duchin, Leininger and Rafi [9] have embedded the space of singular flat metrics arising
from integrable holomorphic quadratic differentials into the space of geodesic currents.
We summarize a few results here, as we shall use them in what follows. Recall that to
any holomorphic quadratic differential q, one can associate a singular flat metric jqj
via canonical coordinates.

The unit sphere Q1
g �Qg consists of the holomorphic quadratic differentials with L1–

norm one. Then the space Flat.S/ of unit-norm singular flat metrics may be identified by

Flat.S/DQ1
g=S

1;

where the action of S1 is given by multiplication by ei� , for 0� � � 2� . We require
this quotient because if q is a holomorphic quadratic differential, then q and ei�q will
have the same singular flat metric jqj. For q 2Q1

g, consider the transverse measure
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for the vertical foliation of q, that is, vq D jRe.
p

q/j. Denote by v�q D jRe.ei�pq/j

the vertical foliation of ei�q. Form the integral

Lq WD
1

2

Z �

0

v�q d�:

Theorem 2.4 (Duchin, Leininger and Rafi [9]) The integral Lq is a geodesic current
such that to any simple closed curve  ,

ljqj. /D i.Lq;  /;

where jqj is the singular flat metric arising from the holomorphic quadratic differential q.
Furthermore , the map which sends jqj 2 Flat.S/ to Lq 2 PCurr.S/ is an embedding.

As a geodesic current is determined by its marked length spectrum, the construction of
the geodesic current Lq depends only upon the U.1/–orbit of q. Hence we will use the
notation Ljqj to denote the geodesic current whose marked length spectrum coincides
with that of the singular flat metric jqj.

As the space of projectivized currents is compact, one may take the closure of the
space Flat.S/, and it is shown in [9] that the limiting structures consist precisely of
projectivized mixed structures. A mixed structure may be defined as follows. Let
S 0 be an incompressible subsurface of S equipped with a Riemann surface structure.
Then consider QS 0 , the space of integrable meromorphic quadratic differentials on S 0

such that with respect to the underlying complex structure on S 0, neighborhoods of
boundary components of @S 0 are conformally punctured disks. To any such quadratic
differential q, the corresponding singular flat metric on S 0 thus assigns length zero to
any peripheral curve. Let � be a measured lamination supported on the complement
S nS 0. The triple .S 0; q; �/ is called a mixed structure on S . For any �D .S 0; q; �/,
one obtains a geodesic current L� given by the property

i.L�;  /D i.�;  /C
1

2

Z �=2

0

i.v�q ;  / d�;

where � is a closed curve on S . We remark that in the case S 0 D ∅, then � is
a measured lamination on S , so that the space Mix.S/ properly contains ML.S/.
The compactification of the singular flat metrics arising from unit-norm quadratic
differentials is then given by the following theorem.

Theorem 2.5 (Duchin, Leininger and Rafi [9]) The closure of Flat.S/ in PCurr.S/
is given by PMix.S/.
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2.6 Anti-de Sitter space

We are primarily concerned with the anti-de Sitter space of signature .2; 1/, which
is given by the quasisphere x2

1
C x2

2
� x2

3
� x2

4
D �1 inside R.2;2/ with the metric

ds2 D dx2
1
C dx2

2
� dx2

3
� dx2

4
. More precisely,

bAdS3
D fx 2R.2;2/ W hx;xi D �1g:

As the manifold is pseudo-Riemannian, tangent vectors v 2 T bAdS3 come in one of the
following three types:

� timelike if hv; vi< 0,

� lightlike if hv; vi D 0,

� spacelike if hv; vi> 0.

The anti-de Sitter space AdS3 is given by the projectivization of bAdS3, its double cover.
The isometry group of AdS3 is PSL.2;R/�PSL.2;R/.

A smooth surface S ,!AdS3 is said to be spacelike if the restriction to S of the metric
on AdS3 is a Riemannian metric. This is equivalent to the condition that every tangent
vector v 2 TS is spacelike.

Consider the Levi-Civita connections on S and AdS3 given by rS and r, respectively.
For a unit normal field N on S , the second fundamental form is given by

rzv zw Dr
S
v wC II.v; w/N;

where v and w are vector fields on S , and zv and zw are vector fields extending v and w.
The shape operator is the .1; 1/ tensor given by B.v/DrvN . It satisfies the property
II.v; w/D hB.v/; wi. The maximal surfaces then are governed by the condition that
tr B D 0.

An AdS3 manifold is a Lorentzian manifold locally isometric to AdS3. Among these
manifolds, we restrict our attention to those which are globally hyperbolic maximal
compact, henceforth written as GHMC. These manifolds are defined by those satisfying
the following three properties:

(1) They contain a closed orientable spacelike surface S .

(2) Each complete timelike geodesic intersects S precisely once.

(3) They are maximal with respect to isometric embeddings.
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It follows that GHMC AdS3 manifolds must be homeomorphic to S �R. Mess [28]
showed that the genus of S must be at least two, and that GHMC structures are
parametrized by two copies of Teichmüller space. Barbot, Béguin and Zeghib [2]
showed that for each such GHMC manifold, there exists a unique embedded spacelike
maximal surface †. In fact, there is a parametrization of all such GHMC manifolds by
the unique embedded maximal surface it contains, along with its second fundamental
form.

Theorem 2.6 (Krasnov and Schlenker [22]) Let M be a GHMC AdS3–manifold and
let† be its unique embedded spacelike maximal surface. The second fundamental form
of † is given by the real part of a holomorphic quadratic differential on the underlying
complex structure of the maximal surface. Furthermore , there is a homeomorphism
between the space of all GHMC AdS3–structures and the cotangent bundle of Teich-
müller space , which assigns to a GHMC AdS3–structure the conformal class of its
unique maximal surface and the holomorphic quadratic differential for which its real
part is the second fundamental form.

The induced metric of the maximal surface is given by e2u� , where � is the hyperbolic
metric and u satisfies the PDE

��uD e2u
� e�2u

jˆj2� 1:

But the solution to this PDE is u D 1
2

logH, for which the PDE becomes the usual
Bochner equation. Here H is the holomorphic energy density arising from harmonic
maps between closed hyperbolic surfaces. Hence, the induced metric of the maximal
surface is given by H� . As a corollary of our main result, we will describe the limiting
length spectrum of any sequence of induced metrics of the maximal surface.

3 Minimal lagrangians

A diffeomorphism � W .S;g1/! .S;g2/ is minimal if its graph †� .S �S;g1˚g2/

with the induced metric is a minimal surface. Recall that † is a minimal surface if
the inclusion i W†! .S �S;g1˚g2/ is critical point of the area functional. Observe
that if � is minimal then so is ��1. If !1 and !2 denote the area forms of g1 and g2,
respectively, and if in addition †� .S �S; !1�!2/ is a lagrangian submanifold, then
we say that � is a minimal lagrangian.
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Theorem 3.1 (Schoen [39]) If g1 and g2 are hyperbolic metrics on S , then there is
a unique minimal lagrangian map � W .S;g1/! .S;g2/ in the homotopy class of the
identity.

Let † denote the graph minimal surface with the induced metric. Then its inclusion
into the product i W†! .S �S;g1˚g2/ is a conformal harmonic map. A conformal
map to a product space is a product of harmonic maps whose Hopf differentials sum
to zero. Hence, for any pair of points in Teichmüller space, one may record the data
of both the conformal structure of the minimal surface along with one of the Hopf
differentials. The harmonic-maps parametrization of Teichmüller space which we
record below ensures the map is bijective. Sampson proved injectivity and continuity
of the map, and Wolf showed the map was surjective and admits a continuous inverse.

Theorem 3.2 (Sampson [38], Wolf [44]) Let .S; �/ be a fixed hyperbolic surface.
For any point in Teichmüller space Œ.S; �/�, select the representative .S; �/ so that the
identity map id W .S; �/! .S; �/ is the unique harmonic map in its homotopy class ,
and denote its Hopf differential by ˆ.�/. Then this map

ˆ W T .S/!H 0.X;K2
X /

is a homeomorphism , where X is the complex structure associated to .S; �/.

Theorem 3.3 There is a homeomorphism

‰ W T .S/� T .S/! Qg; .X1;X2/ 7! .Œ†�;Hopf.u1//;

which assigns to any pair of points X1;X2 in Teichmüller space the conformal structure
of the unique graph minimal surface † � X1 �X2 along with the Hopf differential
Hopf.u1/ of the projection u1 W†!X1.

Proof The discussion above ensures the map ‰ is well-defined. As the construction of
the minimal surface varies continuously with the choice of X1 and X2, it is clear the map
is continuous. To see injectivity of ‰, suppose that ‰.X1;X2/D‰.Y1;Y2/D .†;ˆ/.
Then the harmonic maps u1 W†!X1 and v1 W†!Y1 have the same Hopf differentials,
so by the harmonic-maps parametrization, X1 D Y1. The same argument forces
X2DY2. Surjectivity follows similarly, as to any choice of Riemann surface†D .S;J /
and holomorphic quadratic differential ˆ, there exists a unique hyperbolic metric
X1 D .S;g1/ such that the identity map id W †! X1 is a harmonic map with Hopf
differential ˆ. Similarly, one can find an X2 arising from the Hopf differential �ˆ.
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Hence ‰.X1;X2/D .†;ˆ/, which gives surjectivity. The inverse is clearly continuous
as given the data of a Riemann surface and a holomorphic quadratic differential, the pair
of hyperbolic metrics may be written explicitly and vary continuously, which suffices
for the proof.

4 Embedding of the induced metrics

In this section we study the induced metric on the graph minimal surfaces. Recall that
given a pair .X1;X2/ of hyperbolic surfaces, Theorem 3.1 produces a graph minimal
surface † in the 4–manifold .S �S;g1˚g2/, where Xi D .S;gi/. If m W .S;g1/!

.S;g2/ is the unique minimal map isotopic to the identity, then id W .S;g1/! .S;m�g2/

is the unique minimal map isotopic to the identity, which in this case is the identity map.
The graph †, then, is the diagonal in S �S , and there is a canonical diffeomorphism
from S to the diagonal in S �S . The induced metric on † thus furnishes a metric g

on S by the pullback of this diffeomorphism. Henceforth, when we say induced
metric, we refer to this metric g on S , and will use † to denote .S;g/. We consider
these metrics up to pullback by a diffeomorphism isotopic to the identity, and call
this subspace of metrics Ind.S/ and endowing it with the compact–open topology.
The remainder of the section is devoted towards studying geometric properties of the
minimal surfaces and showing that Ind.S/ can be embedded into PCurr.S/.

Proposition 4.1 Let X1D .S;g1/, X2D .S;g2/ and ‰.X1;X2/D .†;ˆ/. Then the
induced metric on the minimal surface † is given by g1Cm�g2. Consequently , the
induced metric is given by twice the .1; 1/ part of a hyperbolic metric when expressed
in conformal coordinates.

Proof As in the discussion above, we may choose a suitable hyperbolic metric X2 D

.S;g2/ in the equivalence class of ŒX2� to ensure that the unique minimal map isotopic
to the identity is the identity map. Hence, the graph of the minimal map is the diagonal
in S �S , so that (after identifying the diagonal with S) the harmonic map from the
minimal surface † to Xi is given by the identity map. The first result then follows by
definition of the product metric. Notice that the hyperbolic metric g1 may be written in
conformal coordinates on † as ˆ dz2C�e1 dz dxzC x̂ dxz2. As the minimal surface †
is mapped conformally into the product X1 � X2 of hyperbolic surfaces, then one
obtains a pair ui W †! Xi of harmonic maps, whose Hopf differentials, Hopf.u1/

and Hopf.u2/, sum to zero. Hence g2 may be written in conformal coordinates
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on † as �ˆ dz2C �e2 dz dxz� x̂ dxz2, with jˆj D j�ˆj, so by a result of Sampson
(Proposition 4.4) the energy densities e1 and e2 will coincide. As the induced metric is
given by the sum, the induced metric has local expression 2�e dz dxz.

Proposition 4.2 The induced minimal surfaces have sectional curvature that is strictly
negative.

Proof For any point p 2†, it is clear that Kp � 0, since † is a minimal surface in an
NPC space, so we wish to show that Kp¤ 0. The proof is by contradiction. Let fe1; e2g

be an orthonormal basis of Np†. Now consider the 2–plane spanned by eigenvectors
X and Y of the second fundamental form II. One has II.X;Y /D

P2
jD1 IIj .X;Y /ej .

The mean curvatures of the immersion are given by

(4-1)
H1 D II1.X;X /C II1.Y;Y /D 0;

H2 D II2.X;X /C II2.Y;Y /D 0:

The Gauss equation tells us that at p,

(4-2) 0D Rm.X;Y;Y;X /

DeRm.X;Y;Y;X /� hII.X;X /; II.Y;Y /iC hII.X;Y /; II.X;Y /i

DeRm.X;Y;Y;X /C
2X

jD1

IIj .X;X /IIj .Y;Y /�
2X

jD1

IIj .X;Y /2;

and as H2 �H2 is NPC, from (4-1) and (4-2) it follows that II � 0 at p and that
eRm.X;Y;Y;X /D0 at p. As T .H2�H2/ŠT H2˚T H2, we may write X DX1˚X2

and Y D Y1˚Y2. A simple calculation shows

0DeRm.X;Y;Y;X /

D Rm1.X1;Y1;Y1;X1/CRm2.X2;Y2;Y2;X2/

D �.X1;Y1/.jX1j
2
jY1j

2
� hX1;Y1i

2/C �.X2;Y2/.jX2j
2
jY2j

2
� hX2;Y2i

2/

D�1 � .jX1j
2
jY1j

2
� hX1;Y1i

2/� 1 � .jX2j
2
jY2j

2
� hX2;Y2i

2/;

which by Cauchy–Schwarz implies that X1 and Y1 (and also X2 and Y2) are linearly
dependent. So the map u1� drops rank, a contradiction, as our surface was a graph.

For a choice of complex coordinates z D xC iy on the minimal surface †, then @=@x
and @=@y form an orthogonal frame. Denote then

E1 D

ˇ̌̌
@

@x

ˇ̌̌�1

†

@

@x
and E2 D

ˇ̌̌
@

@y

ˇ̌̌�1

†

@

@y
:
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Let J be the almost complex structure on the 4–manifold X1�X2. Then J D J1˚J2,
where Ji is the almost complex structure arising from Xi D .S;gi/.

Proposition 4.3 Let E1, E2 and J be as above. The second fundamental form is
given by

II.E1;E1/D
�Reˆ.�e/y � �e.Imˆ/xC Imˆ.�e/x

�e
p

2�e.�2e2� 4jˆj2/
JE1

C
Imˆ.�e/y � �e.Reˆ/xCReˆ.�e/x

�e
p

2�e.�2e2� 4jˆj2/
JE2;

II.E2;E2/D
Reˆ.�e/y C �e.Imˆ/x � Imˆ.�e/x

�e
p

2�e.�2e2� 4jˆj2/
JE1

C
�Imˆ.�e/y C �e.Reˆ/x �Reˆ.�e/x

�e
p

2�e.�2e2� 4jˆj2/
JE2;

II.E1;E2/D
Imˆ.�e/y � �e.Reˆ/xCReˆ.�e/x

�e
p

2�e.�2e2� 4jˆj2/
JE1

C
��e.Reˆ/y CReˆ.�e/y � Imˆ.�e/x

�e
p

2�e.�2e2� 4jˆj2/
JE2:

Proof As †�X1 �X2 is a lagrangian submanifold, fE1;E2;JE1;JE2g forms an
orthonormal basis of T .X1 �X2/Š TX1˚TX2 in this neighborhood. The second
fundamental form then is given by

II.X;Y /D
2X

jD1

zg.zrX Y;JEj /JEj ;

where zg D g1˚g2 and zr D r1˚r2. We first calculate II.E1;E1/. As the minimal
surface metric is given by 2�e jdzj2 D 2�e .dx2C dy2/, one has

2�e.dx2
C dy2/

�
@

@x
;
@

@x

�
D 2�e D

 @
@x

2

†
;

so that

E1 D
1
p

2�e

@

@x
:

Similarly, E2 is given by

E2 D
1
p

2�e

@

@y
:
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To calculate JE1, we project E1 to each of its factors and apply the almost complex
structure on each of its factors; namely, we find the vector which has the same length
and forms angle �

2
with the projected factor using the hyperbolic metric. This is the

complex structure arising from the conformal class of the metric. To find J1E1 D

a.@=@x/C b.@=@y/, for instance, we observe first that the hyperbolic metric on X1 is
given by

�1 Dˆ dz2
C �e dz dxzC x̂ dxz2

D .2 ReˆC �e/ dx2
� 4 Imˆ dx dyC .�2 ReˆC �e/ dy2:

Hence we want to solve for a¤ 0 and b > 0 which satisfy

g1

�
a
@

@x
C b

@

@y
;E1

�
D 0;(4-3)

g1

�
a
@

@x
C b

@

@y
; a
@

@x
C b

@

@y

�
D g1.E1;E1/D

2 ReˆC �e

2�e
:(4-4)

Some basic algebra yields that

aD
2 Imˆp

.2�e/..�e/2� 4jˆj2/
and b D

2 ReˆC �ep
.2�e/..�e/2� 4jˆj2/

;

so that

J1E1 D
2 Imˆp

.2�e/..�e/2� 4jˆj2/

@

@x
C

2 ReˆC �ep
.2�e/..�e/2� 4jˆj2/

@

@y
:

Now J2E1 is found similarly, and is given by

J2E1 D
�2 Imˆp

2�e..�e/2� 4jˆj2/

@

@x
C

�2 ReˆC �ep
2�e..�e/2� 4jˆj2/

@

@y
:

The tangent vector given by zrE1
E1 splits as r1

E1
E1 ˚ r

2
E1

E1. The Christoffel
symbols for g1 and g2 can be readily calculated:

r
1
E1E1 Dr

1

.1=
p

2�e/@=@x

1
p

2�e

@

@x

D
1
p

2�e

�
1
p

2�e
r

1
@=@x

@

@x
C

�
1
p

2�e

�
x

@

@x

�
D

1
p

2�e

�
1
p

2�e

�
1�1

11
@

@x
C

1�2
11
@

@y

�
C

�
1
p

2�e

�
x

@

@x

�
D

�
1

2�e
1�1

11C
1
p

2�e

�
1
p

2�e

�
x

�
@

@x
C

1

2�e
2�2

11
@

@y
;
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where 1�1
11

and 1�2
11

are the usual Christoffel symbols, with the extra superscript
denoting that these are the ones for the metric g1. They are given explicitly by

1�1
11 D

1

2

�
�2 ReˆC �e

�2e2� 4jˆj2
.2 ReˆC �e/x

C
2 Imˆ

�2e2� 4jˆj2

�
.�4 Imˆx/� .2 ReˆC �e/y

��
;

2�1
11 D

1

2

�
2 Imˆ

�2e2� 4jˆj2
.2 ReˆC �e/x

C
2 ReˆC �e

�2e2� 4jˆj2

�
.�4 Imˆx/� .2 ReˆC �e/y

��
:

Similarly, the same can be done for the metric g2 and using the formula for II, one gets
II(E1;E1/. The same can be done for the rest.

It would be curious to see under what conditions different points in Qg would yield
the same induced metric. One might hope that the space of induced metrics would be
homeomorphic to Qg, but the following result of Sampson shows this is not possible.

Proposition 4.4 (Sampson) For a fixed closed hyperbolic surface X D .S; �/, if ˆ1

and ˆ2 are two Hopf differentials on X arising from harmonic maps from X to closed
hyperbolic surfaces of the same genus such that the norms jˆ1j and jˆ2j coincide , then
the energy densities coincide , that is , e1 D e2.

Hence, if we select two elements of Qg, say .X; ˆ1/ and .X; ˆ2/, where jˆ1j D jˆ2j

but ˆ1 ¤ ˆ2, then the corresponding energy densities are the same and hence the
corresponding induced metrics are the same.

The following proposition is a converse to the result of Sampson and shows this is the
only situation for which the corresponding induced metrics coincide.

Lemma 4.5 On a fixed closed hyperbolic surface , we have e1 D e2 if and only if
jˆ1j D jˆ2j.

Proof That jˆ1j D jˆ2j implies e1 D e2 is due to Sampson. Now suppose e1 D e2.
Then H1CL1 D H2CL2, so the Bochner formula △ logHi D 2Hi � 2Li � 2 may
be rewritten as △ logHi D 4Hi � 2ei � 2. Subtracting the two equations for i D 1; 2

yields

△ log
H1

H2

D 4.H1�H2/:
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Now Hi > 0, so that the quotient H1=H2 attains its maximum on the surface; we claim
this is 1, for if the maximum of H1=H2 were greater than 1, then at the maximum
(which is also the maximum of log.H1=H2/) we would have

0�△ log
H1

H2

D 4.H1�H2/D 4H2

�
H1

H2

� 1

�
> 0;

a contradiction, so that H1=H2 � 1 and symmetrically H2=H1 � 1. Hence H1 DH2

and so L1 D L2, by the assumption on the energy densities. From the formula
jˆj2=�2 DHL, the conclusion follows.

Corollary 4.6 The space of induced metrics Ind.S/ may be identified with Qg=�,
where .X; ˆ1/� .Y; ˆ2/ if X D Y and jˆ1j D jˆ2j.

We conclude this section by proving that the space Ind.S/ can be embedded into
the space of currents, and that the embedding remains injective after projectivization,
thereby obtaining an embedding into projectivized currents.

Proposition 4.7 The space Ind.S/ can be realized as geodesic currents.

Proof From Proposition 4.2, the induced metrics have strictly negative curvature, so
by Otal [33], there is a well-defined embedding C W Ind.S/! Curr.S/ from the space
of induced metrics on S to the space of geodesic currents, which sends 2�e 7!L2�e,
so that if  is a closed curve, then l2�e.Œ �/D i.L2�e;  /.

The following lemma is a statement concerning energy densities and their failure to
scale linearly.

Lemma 4.8 On a fixed closed hyperbolic surface , if e1 D ce2, then c D 1, and hence
jˆ1j D jˆ2j.

Proof Without loss of generality, suppose c � 1, else we may re-index so that c � 1.
Then H1=H2 � c, for if H1=H2 > c, we locate the maximum of H1=H2, and the
Bochner formula at that point yields

0�△ log
H1

H2

D 4.H1�H2/� 2.e1� e2/D 4.H1�H2/� 2.ce2� e2/

D 4H2

�
H1

H2

� 1

�
� 2e2 .c � 1/

> 4H2 .c � 1/� 2e2 .c � 1/

D .c � 1/.4H2� 2e2/D .c � 1/.2H2� 2L2/D 2.c � 1/J2 > 0;
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a contradiction. Notice the upper bound is actually attained, for at a zero of jˆ1j, we
have that L1 vanishes and so at such a zero we have the equation

H1 D cH2C cL2;

and as we have H1=H2 � c, it follows that L2 must also vanish whenever L1 does. In
fact, we can say more about the zeros of Li . The condition on the energy densities
yields the equality

0D .cH2�H1/C .cL2�L1/;

and the bound on the quotient H1=H2 implies that the first term is nonnegative so the
second term is nonpositive, that is, cL2 �L1 � 0 or c � L1=L2 or L2=L1 � 1=c, so
that the order of the zeros of L2 is greater than or equal to the order of zeros of L1. As
jˆj2=�2 D HL and H > 0, both L1 and L2 have exactly 8g � 8 zeros counted with
multiplicity, so the order of vanishing of L1 is the same as that of L2 at every point
of the surface. Hence the quadratic differentials ˆ1 and ˆ2 differ by a multiplicative
constant k 2 C, that is, ˆ1 D kˆ2. At the zero of jˆ2j (and so also a zero of jˆ1j),
which is a maximum of the quotient H1=H2, the Bochner equation now reads

0�△ log
H1

H2

D 2H1�
2jˆ1j

2

�2H1

� 2H2C
2jˆ2j

2

�2H2

D 2.H1�H2/D 2H2.c � 1/� 0;

which implies c D 1, and by the previous lemma jkj D 1.

Theorem 4.9 The space of induced metrics Ind.S/ embeds into PCurr.S/.

Proof Let � W Curr.S/! PCurr.S/ be the natural projection map. It suffices to show
that the map � ı C W Ind.S/! PCurr.S/ is injective. If the images of two induced
metrics under the map � ıC coincide, then by Otal’s theorem [33] on the marked length
spectrum rigidity of negatively curved Riemannian metrics, we have

� dz dxz D c� 0e0 dz dxz;

where c 2R>0. Then they will be in the same conformal class, so that � D � 0. Then
e D ce0, and by Lemma 4.8, c D 1.

Remark As the induced metrics are not scalar multiples of each other, we make a
slight modification by dividing the induced metrics by 2 to ensure these metrics are now
precisely the .1; 1/–part of a hyperbolic metric when written in conformal coordinates,
rather than twice that.
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5 Compactification of the induced metrics

In this section we identify the elements in the closure Ind.S/� PCurr.S/. As the space
of projectivized currents is compact, we obtain a compactification Ind.S/tPMix.S/
of the induced metrics from the embedding obtained in the previous section.

5.1 Flat metrics as limits

In a simple scenario where the conformal structure of the minimal surface remains
fixed, we can describe the asymptotic behavior of the induced metric. We consider the
simplest case, where X1;n (and consequently X2;n) lie along a harmonic-maps ray, that
is, the sequence of Hopf differentials of the projection map onto the first factor is given
by tnˆ, where ˆ¤ 0 and tn!1.

Proposition 5.1 Let �nen be the induced metric where �n D � for all n, and the Hopf
differentials of the harmonic maps u1;n W .S; �/!X1;n are given by tnˆ0, where ˆ0

is a unit-norm quadratic differential on .S; �/. Suppose En!1. Then everywhere
away from the zeros of jˆ0j, one has

lim
n!1

�nen

En
D jˆ0j:

Proof By construction, the Hopf differential of the harmonic map from .S; �/ to X1;n

is given by tnˆ0, where ˆ0 is a unit-norm quadratic differential. In a neighborhood
away from any zero of ˆ0, consider then the horizontal foliation of ˆn D tnˆ0. By
the estimates on the geodesic curvature of its image [45], a horizontal arc of the
foliation in this neighborhood will be mapped close to a geodesic in X1;n; we do not
reproduce the techniques here, as we will do so later in a slightly modified setting.
Using normal coordinates .x;y/ for the target adapted to this geodesic and estimates
on stretching [44], we have that

.x;y/ 7! .2t1=2
n x; 0/C o.e�ct /;

where the constant c only depends upon the domain Riemann surface and the distance
from the zero of the quadratic differential. For the harmonic map from .S; �/ to X2;n,
its Hopf differential is given by �tnˆ0, so that an arc of its horizontal foliation, which
is an arc of the vertical foliation of tnˆ0, gets mapped close to a geodesic, yielding

.x;y/ 7! .0; 2t1=2
n y/C o.e�ct /:
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Hence, as a map from † to the 4–manifold X1;n �X2;n with the product metric, we
have that the induced metric �nen in this neighborhood has the form

.4tnC o.e�ct // dx2
C 2o.e�ct / dx dyC .4tnC o.e�ct // dy2:

Dividing by 4tn and observing that for a high-energy harmonic map, the total energy is
comparable to twice the L1–norm of the quadratic differential (Proposition 5.8), and
taking the limit, yields the conclusion.

Proposition 5.2 Suppose �nen is a sequence of induced metrics such that �n! � in
T .S/ and En!1. Then , after passing to a subsequence , there exists a sequence tn

and a unit-norm quadratic differential ˆ0 on Œ� � such that

lim
n!1

�nen

tn
! jˆ0j:

Proof Let tn D En. Then the result follows from the compactness of unit-norm
holomorphic quadratic differentials over a compact set in Teich.S/, and the argument
in the previous proposition.

As the previous results only show C 0 convergence in any neighborhood away from
a zero of the quadratic differential, it is not quite so obvious we have convergence in
the sense of length spectrum. The following technical proposition shows we actually
do have convergence when the metrics are regarded as projectivized geodesic currents.
With the length spectrum embedding (as given in Theorem 4.9), we now have sequences
of points whose limits are the flat structures in the space of geodesic currents.

Proposition 5.3 Let �nen and En be in the same setting as above. Then , as currents ,

L�nen

E1=2
n

!Ljˆ0j
:

Proof As the topology of geodesic currents is determined by the intersection number
against closed curves, it suffices to show that given any closed, nonnull homotopic
curve class Œ � and � > 0, there is an N.Œ �; �/ such that for n > N , one has that
ji.L�nen=En

;  /� i.Ljˆ0j
;  /j< �. We choose a representative  of Œ � to be a jˆ0j–

geodesic with length LD i.Ljˆ0j
;  / with some fixed orientation. As the estimate in

Proposition 5.2 does not hold near a zero zi of jˆ0j, the first step is to construct open
balls Vi of radius � in the jˆ0j–metric about each zero zi of ˆ0 (choosing � sufficiently
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small) so that

(i) balls centered about distinct zeros do not intersect,

(ii) if the curve  enters one of the neighborhoods Vi , then the curve  must intersect
the zero zi before  exits Vi ,

(iii) .1 � �/C � .4g � 2/ � � > 0, where C is the systolic length of the surface
.S; jˆ0j/.

As ˆ0 is holomorphic, the zeros are isolated, so we can easily ensure that (i) is satisfied.
If the curve  does not intersect zi , then as  is a closed curve, the distance from zi to
the curve  in the jˆ0j–metric is bounded away from zero, guaranteeing condition (ii).
Finally, condition (iii) follows as the systolic length C of .S; jˆ0j/ and the genus of
surface are fixed.

As the complement of the union of the Vi forms a compact set, by Proposition 5.2
we can find an N so that for n>N the metrics �nen=En and jˆ0j differ by at most �.
Now each time  enters Vi , say at p, then hits the zero zi and exits Vi for the first time
thereafter, say at q, we may replace that segment of  with a segment running along the
boundary of Vi connecting p and q. Notice that this does not change the homotopy class
of  . We make this alteration for each instance  enters a Vi , and denote the new curve
by  0. Observe that each time we make such an alteration, the length of the curve (in the
jˆ0j–metric) increases by at most Ki�, where Ki is a constant depending only upon the
jˆ0j and the order of the zero zi . In fact Ki � .4g�2/� . Hence the jˆ0j–length of  0

is bounded above by LC
Pj

iD1
niKi�, where ni is the number of times  enters Vi .

But as  0 now lies in the complement of the union of the Vi , by Proposition 5.2, the
length of  0 in the �nen=En–metric is at most .1C �/

�
LC

Pj
iD1

niKi�
�
. But the

length of  0 in the �nen=En–metric must be at least the length of the geodesic in its
homotopy class, which has length L0n D i.L�nen=En

;  /; hence

.1C �/

�
LC

jX
iD1

niKi�

�
�L0n:

Distributing on the left-hand side and subtracting both sides by L yields

jX
iD1

niKi�C �

�
LC

jX
iD1

niKi�

�
�L0n�L WD i.L�nen=En

;  /� i.Ljˆ0j
;  /:

Now if L0n�L� 0, we are done, for Ki is independent of � and ni is constant in �.
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So consider the case where L0n � L < 0, that is, L > L0n. Consider the �nen=En–
geodesic zn in the homotopy class of  , and again we give zn an orientation. Naturally
zn can enter and exit the Vi neighborhoods multiple times, but we remark that as the
distance function on a NPC space from a convex set is itself convex, then each time
the curve leaves Vi , it must pick up some topology before returning, that is, the part
of the curve rel endpoints lying on the boundary of Vi is not homotopic to a segment
along the boundary of Vi .

However, now if z enters and exits Vi say a total of r times, we consider the pairs
of entry and exit points ordered accordingly as p1; q1; : : : ;pr ; qr using the chosen
orientation. Now look at the segment of zn between ps and psC1. If this is homotopic
rel endpoints to a segment of the boundary of Vi , then we look at the segment of zn

between ps and psC2 (using a cyclic ordering, so r C 1 is identified with 1) and see if
that segment is homotopic relative endpoints to a segment along the boundary of Vi . We
repeat this until the segment of zn between ps and ps0 is not homotopic rel endpoints to
the boundary of Vi . Then we repeat this process for ps and ps�1 (again using a cyclic
ordering) until we find the segment of zn between ps and ps00 which is not homotopic
rel endpoints to the boundary of Vi . Then we replace the segment of z between ps00C1

and ps0�1 with a segment along the boundary of Vi connecting these two points. We
repeat this for each i , so that when the curve leaves Vi , it picks up some topology
before reentering Vi . Altering zn in this fashion yields a curve z 0n lying outside of all
the Vi . Switching over to the jˆ0j–metric yields the inequality

.1C �/L0nC

4g�4X
iD1

miKi� �L;

where mi is the number of segments of the altered curve z 0n lying on the boundary
of Vi , and once again Ki is a constant depending solely on the order of the zero zi . By
the assumption that L>L0n, we have actually that

L0nC �LC

4g�4X
iD1

miKi� �L; so �LC

4g�4X
iD1

miKi� �L�L0n:

It suffices to show that mi can be bounded independently of n. This follows from
an estimate on the systolic length of the metric �en=En. Let C 0 denote the systolic
length among all homotopically nontrivial curves which avoid the Vi for the metric jˆj.
Then C 0 � C . Then by Proposition 5.1, the systolic length among all homotopically
nontrivial curves which avoid all the Vi for the metric �en=En is at least .1� �/C 0.
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If K denotes the largest constant among the Ki , then one has that
4g�4X
iD1

mi �
L

.1� �/C �K�
;

for by construction we had mi segments of z 0n each of which is not homotopic rel end-
points to the boundary of Vi , so that if we connect the endpoints of the segment with a
segment along the boundary of Vi , we add at most K� to the length of the segment.
But we now have a closed curve not homotopic to the boundary of any of the Vi , so
the length of this closed curve is bigger than C 0. This suffices for the proof.

The resulting flat metrics arising from unit-norm holomorphic quadratic differentials
are distinct as Riemannian metrics from the induced metrics as the quadratic differential
metrics have zero curvature away from the zeros, whereas the induced metrics have
negative curvature everywhere (Proposition 4.2). In fact, the flat metrics are distinct as
geodesic currents, as work of Frazier [13] shows that the marked length spectrum distin-
guishes nonpositively curved Euclidean metrics from the negatively curved Riemannian
metrics.

5.2 Measured laminations as limits

However, not all limits of induced metrics are given by flat metrics. One can also
obtain measured laminations. This is most readily seen in the setting where one takes a
hyperbolic metric and looks at the minimal lagrangian to itself. The induced metric
of the minimal surface is then twice the hyperbolic metric. We thus have a copy of
Teichmüller space inside the space of induced metrics inside the space of projectivized
currents. From Bonahon [4], we know we must have projectivized measured laminations
in our compactification of the induced metrics. However, there are more ways to obtain
measured laminations than by degenerating only the induced metrics which are scalar
multiples of hyperbolic metrics, as the following proposition shows.

Proposition 5.4 Suppose that L�nen
leaves all compact sets , but that the sequence

En of total energies is bounded. Then , in PCurr.S/, we have ŒL�nen
�! Œ�� 2 PMF.S/.

Furthermore , if ŒL�n
�! Œ�0� in the Thurston compactification , then i.�; �0/D 0, where

� 2 Œ�� and �0 2 Œ�0�.

Proof By the compactness of PCurr.S/, any sequence ŒL�nen
� subconverges to Œ�� 2

PCurr.S/. Hence, there is a sequence of positive real numbers so that tnL�nen
! � 2

Curr.S/. We claim tn! 0.
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Consider a finite set of curves 1; 2; : : : ; k which fill the surface S . Then the current
1C2C� � �Ck is a binding current, that is to say, it has positive intersection number
with any nonzero geodesic current.

As L�nen
leaves all compact sets in Curr.S/,

lim
n!1

i.L�nen
; 1C � � �C k/!1;

so by continuity of the intersection form, one has

lim
n!1

tni.L�nen
; 1C � � �C k/D i.�; 1C � � �C k/:

But the intersection number on the right-hand side is finite, hence tn ! 0. From
Proposition 2.1, one has i.L�nen

;L�nen
/D �

2
Area.S; �nen/, which in this case is �

2
En.

Then
i.�; �/D lim

n!1
i.tnL�nen

; tnL�nen
/D lim

n!1
t2
n

�

2
En D 0;

where the last equality follows from the boundedness of total energy, hence � 2MF(S ).
Now if ŒL�n

�! Œ�0�, then there is a sequence t 0n! 0 such that t 0nL�n
! �0. Then

i.�; �0/D lim
n!1

i.tnL�nen
; t 0nL�n

/� lim
n!1

tnt 0ni.L�nen
;L�nen

/D lim
n!1

tnt 0nEn D 0;

where the inequality follows from �n � �nen as metrics, and the last equality by the
boundedness of the sequence of total energy En along with the sequences tn; t

0
n tending

towards zero.

5.3 Mixed structures as limits

As some of the possible limits are the singular flat metrics arising from a holomorphic
quadratic differential, the closure of the space of induced metrics on the minimal surface
must include mixed structures, as these arise as limits of singular flat metrics. The main
theorem asserts these are precisely all the possible limits of the degenerating minimal
surfaces.

Theorem 5.5 Let �nen be a sequence of induced metrics such that �n leaves all
compact sets in T .S/ or En!1. Then there exists a sequence tn! 0 such that , up to
a subsequence , we have tnL�nen

! �D .S 0; q; �/ 2Mix.S/� Curr.S/. Furthermore ,
given any � 2Mix.S/, there exists a sequence of induced metrics �nen, and a sequence
of constants tn! 0, such that tnL�nen

! �. Hence , the closure of the space of induced
metrics in the space of projectivized currents is Ind.S/D Ind.S/tPMix.S/.
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The proof of the main theorem will follow from a series of intermediate results, and
will be at the end of the section. The strategy is to show that if the sequence of
currents coming from the induced metrics is not converging projectively to a measured
lamination, then scaling the induced metrics to have total area 1 is enough to ensure
convergence in length spectrum. To each normalized induced metric, we produce a
quadratic differential metric in the same conformal class as the induced metric, which
will serve as a lower bound. Convergence of the quadratic differential metric to a mixed
structure will yield a decomposition of the surface into a flat part and a laminar part.
On each flat part, we will prove the conformal factor between the normalized induced
metric and the quadratic differential converges to 1 uniformly (away from finitely many
points). An area argument will show the complement is laminar.

The following proposition allows us to analyze sequences of induced metrics which
are not converging to projectivized measured laminations. If the sequence of induced
metrics is not converging to a projectivized measured lamination, we may scale the
current associated to the induced metric by the square root of its area (which is also the
total energy). We remark that in the case where the limiting geodesic current is not a
measured lamination, scaling the induced metrics by total energy of the associated har-
monic map is strong enough to ensure length-spectrum convergence, yet delicate enough
to ensure the limiting length spectrum is not identically zero. This should be compared
to the situation in [45; 8], where one always scales the metric by the total energy.

Proposition 5.6 Suppose the conformal class of the minimal surface leaves all compact
sets in T .S/, and the sequence of total energy is unbounded , that is , En!1. Then ,
up to a subsequence , there exists a sequence cn ! 0 and a geodesic current � such
that cnL�nen

! �. If � is a measured lamination , then cn D o.E�1=2
n /. If � is not a

measured lamination , then cn � E
�1=2
n .

Proof By Theorem 4.9, one has an embedding of the space of induced metrics into
the space of projectivized geodesic currents, which is compact. Taking the closure
implies the first result. If Œ�� is the limiting projective geodesic current, then one can
choose a fixed representative; call it �.

If � is a measured lamination, then dividing the current L�nen
by E1=2

n normalizes the
current to have self-intersection number 1. Then, as the measured laminations have
self-intersection 0, the second result follows.
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Suppose then that � is not a measured lamination. Then its self-intersection number is
positive and finite. But

i.�; �/D lim
n!1

i.cnL�nen
; cnL�nen

/D lim
n!1

c2
n i.L�nen

;L�nen
/

D lim
n!1

c2
n
�

2
Area.S; �nen/D lim

n!1
c2

n
�

2

Z
S

�nen dzn ^ dxzn

D lim
n!1

c2
n
�

2
En;

so that 0< limn!1 c2
n En <1; that is, cn � E

�1=2
n , as desired.

With this normalization, the self-intersection of the current will be �
2

; that is to say we
have scaled the induced metric to have total area 1.

The following proposition shows the relation of the induced metric to the corresponding
Hopf differential metric.

Proposition 5.7 Away from the zeros of ˆ, one has the identity

�e D jˆj

�
1

j�j
C j�j

�
:

Consequently,
�nen � 2jˆnj:

Proof This result follows immediately by manipulation of the formulae involving H
and L. One has

�2e2
D �2.H2

C 2HLCL2/D �2HL
�
H
L
C 2C

L
H

�
D jˆj2

�
1

j�j2
C 2Cj�j2

�
:

Taking a square root on both sides yields the result.

For a given sequence �nen we consider the associated smooth (away from the zeros
of the quadratic differential) function 1=j�njC j�nj. This function is well-defined for
each n by Lemma 4.5.

The following proposition due to Wolf allows us to pass freely between the L1–norm
of a Hopf differential and the total energy of the corresponding harmonic map. The
original proof was for a fixed Riemann surface as the domain, but the argument holds
when the domain is allowed to change. For the ease of the reader, we have included
the adapted proof.
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Proposition 5.8 [44, Lemma 3.2] For any Riemann surface .S;J / and hyperbolic
surface .S; �/, if id W .S;J /! .S; �/ is a harmonic map with Hopf differential ˆ and
total energy E , then

E C 2��.s/� 2kˆk � E � 2��.S/:

Proof As H�LD J and
R
J � dz dxz D�2��, we haveZ

H � dz dxzC 2��D

Z
L � dz dxz D

Z
ˆ� dz dxz;

as the integrands agree. But, recalling that j�j< 1, we haveZ
ˆ� dz dxz�

Z
jˆj dz dxzD

Z
H j�j � dz dxz�

Z
H � dz dxzD

Z
L � dz dxz�2��:

Summing up the first two and last two integrals respectively yieldsZ
e� dz dxzC 2��� 2

Z
jˆj dz dxz �

Z
e � dz dxz� 2��;

proving the proposition.

Corollary 5.9 If the sequence ˆ0;n of unit-norm quadratic differential metrics con-
verges projectively to a measured lamination , then so does the associated sequence
L�nen

=E1=2
n of geodesic currents.

Proof Suppose that Ljˆ0;nj
! Œ�� in the space of projectivized currents. Since

i.Ljˆ0;nj
;Ljˆ0;nj

/ D �
2

, while i.�; �/ D 0, there exists a sequence tn! 0 such that
the length spectrum of tnjˆ0;nj converges to that of some � 2 Œ��. This is to say, there
is a curve class Œ � for which the length of its geodesic representative against the metric
jˆ0;nj is unbounded, so by Propositions 5.7 and 5.8, the sequence of lengths of the
Œ �–geodesic against the metrics �nen=En is unbounded. Hence there is a sequence
sn! 0 such that snL�nen

=E1=2
n converges to a current �. But as the self-intersection of

L�nen
=En is exactly �

2
, the intersection of � with itself is zero, from which the result

follows.

The previous corollary allows us to exclude the case where the sequence of flat metrics
tends towards a projectivized measured lamination, for in that case, we have that the
sequence of induced metrics also tends towards a projectivized measured lamination.
Hence, we need only consider the case where the sequence of flat metrics converges to
a nontrivial mixed structure, say �. The data of � gives us a subsurface S 0 for which the
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restriction of � is a flat metric arising from a quadratic differential. Here we consider
S 0 up to isotopy.

The remainder of the section is devoted towards showing that if the sequence of unit-
norm quadratic differential metrics converges to a mixed structure that is not entirely
laminar, then so does the sequence of unit-area induced metrics. This will then complete
the proof of Theorem 5.5.

We begin by recording the following useful bound due to Minsky, for the function
G D log.1=j�j/.

Proposition 5.10 [29, Lemma 3.2] Let p 2S be a point with a neighborhood U such
that U contains no zeros of ˆ and in the jˆj–metric is a round disk of radius r centered
at p. Then there is a bound

G.p/� sinh�1

�
j�.S/j

r2

�
:

Proof The PDE �GD 2J > 0 shows that G is subharmonic in U . It suffices therefore
to bound the average of G on U in the jˆj–metric. Some algebra yields

sinhG D 1

2

�

jˆj
J :

Using the concavity of sinh�1 on the positive real axis, we obtain

G.p/� jˆj–AvgU .G/ (by subharmonicity of G)

D jˆj–AvgU

�
sinh�1 1

2

�

jˆj

�
� sinh�1

�
jˆj–AvgU

�
1

2

�

jˆj

��
(by concavity of sinh�1)

D sinh�1

�
1

2�r2

Z
U

�

jˆj
J dA.jˆj/

�
� sinh�1

�
j�.S/j

r2

�
(by Gauss–Bonnet):

As we are in the setting where the sequence Lˆ0;n
of currents coming from unit-area

holomorphic quadratic differential metrics converges to a nontrivial mixed structure
�D .S 0; ˆ1; �/, we have that the restriction of the metric jˆ0;nj to S 0 converges to
the metric jˆ1j. On this systole positive collection S 0 of subsurfaces, we have the
following proposition.
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Proposition 5.11 Given �; �0 > 0, there exists N DN.�; �0/ such that for n>N ,

mjˆ0;nj

��
p 2 S W

�
1

j�nj
C j�nj

�
.p/� 2C �0

��
< �:

Consequently the limiting function 1=j�j C j�j is equal to 2 almost everywhere with
respect to the jˆ1j–metric.

Proof By Proposition 5.7, one has the equality

�nen

En
D
jˆnj

En

�
1

j�nj
C j�nj

�
D
kˆnk

En

jˆnj

kˆnk

�
1

j�nj
C j�nj

�
:

Defining
1� cn

2
WD
kˆnk

En
;

one has cn ! 0 by virtue of Proposition 5.8. Observe that cn � 0, as the function
1=j�njCj�nj � 2, the area of jˆ0;nj D jˆnj=kˆnk is 1 and the area of the scaled metric
�nen=En is also 1. If mn then denotes the jˆ0;nj–measure of the set of points for which
the function 1=j�njC j�nj is at least 2C �0, then one hasZ
fpW.1=j�njCj�nj/.p/�2C�0g

�
1

j�nj
C j�nj

��
1� cn

2

�
dA.jˆ0;nj/

C

Z
fpW.1=j�njCj�nj/.p/<2C�0g

�
1

j�nj
C j�nj

��
1� cn

2

�
dA.jˆ0;nj/

D

Z
dA

�
�nen

En

�
D 1:

The integrand in the first integral is at least .2C �0/.1� cn/=2, whereas the second
integrand is at least 2.1� cn/=2. Multiplying these lower bounds with the measures of
their respective sets yields

.2C �0/

�
1� cn

2

�
mnC 2

�
1� cn

2

�
.1�mn/� 1:

Some basic algebraic manipulation leads from

mn

�
.2C �0/

�
1� cn

2

�
� 2

�
1� cn

2

��
� cn to mn �

2cn

.1� cn/.�0/
;

and as �0 is now fixed, one may find a sufficiently large N to guarantee mn < �. As the
metric jˆ1j has finite total area, convergence in measure of the sequence of functions
1=j�nj C j�nj to the constant function 2 implies that up to a subsequence, one has
convergence to the constant function 2 almost everywhere.
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Sets of measure zero can be rather problematic if we wish to say something about
length of curves. The following proposition shows that we actually have convergence
off the zeros and poles of jˆ1j.

Proposition 5.12 Suppose En!1. Then , up to a subsequence ,

1

j�nj
C j�nj ! 2

everywhere on S 0 except at the zeros and poles of jˆ1j.

Proof Observe that the function 1=j�njCj�nj is not defined at the zeros of jˆnj, but is
well-defined everywhere else. Moreover, the auxiliary function GD log.1=j�j/ satisfies
the partial differential equation

� log
1

j�nj
D 2Jn > 0;

so that the function G and hence 1=j�njC j�nj never attains an interior maximum on
the complement of the zeros. It follows that 1=j�nj C j�nj is only unbounded in a
neighborhood of a zero of a corresponding quadratic differential ˆn. The sequence of
flat metrics jˆ0;nj on S 0 converges geometrically to jˆ1j, and so the zeros of jˆnj

on S 0 will converge to the zeros of jˆ1j. For any � > 0, consider balls of radius 3�

about each zero of jˆ1j, choosing � sufficiently small that balls about distinct zeros
do not intersect. Call this collection B. Then for large n, balls of radius � in the jˆ0;nj–
metric about the zeros of jˆnj will be contained in B. For each boundary component
of S 0, which in the geometric limit is collapsed to a puncture, choose a geodesic curve
with respect to the jˆ1j–metric, homotopic to the puncture and enclosing the puncture,
of length l� > 3�, so that the jˆ1j–distance of each point of the curve to the puncture
is at least 3�, possibly choosing a smaller � until such a configuration is possible. This
gives an annulus for each boundary component of S 0. Call the collection of these
annuli A.

For any point in the complement of both A and B, for large n, the injectivity radius
with respect to the jˆ0;nj–metric is at least � and the distance to any of the zeros is at
least �. Moreover, each point p in the region satisfies the property that any q 2B�=2.p/

has injectivity radius at least �
2

and distance at least �
2

to any zero or the boundary of
the cylindrical region. Hence, by Proposition 5.10, the value of log.1=j�nj/ is at most
M�=2, where the constant no longer depends on n, once n is chosen sufficiently large.
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As the function log.1=j�nj/ is subharmonic, by the mean-value property, one has at
any point p in this set that

log
1

j�nj
.p/�

Z
B�=2.p/

log
1

j�nj
dAjˆ0;nj

�
�
jˆ0;nj–Area.B�=2.p//

�
�0CM�=2�

00

for n large enough, so that log.1=j�nj/ < �
0 outside a set of measure at most �00 by

Proposition 5.11. As the choice of � was arbitrary, the conclusion follows.

This collection of propositions proves the following result:

Theorem 5.13 Suppose Ljˆ0;nj
converges to a nontrivial mixed structure �. Then

the corresponding metrics �nen=En as En !1, restricted to S 0, converge in length
spectrum to jˆ1j.

Proof Defining A and B as in the previous proof, on the region S 0 n .A [ B/

Proposition 5.12 guarantees that we have uniform bounds on the sequence of functions
1=j�njC j�nj whose limit was the constant function 2. Hence, by Arzelá–Ascoli, up
to a subsequence, we have uniform convergence on this region. Hence, by the same
argument as that of Proposition 5.3, the length spectrum of the scaled induced metric
on this domain converges to the limiting length spectrum of the sequence jˆ0;nj, which
is jˆ1j.

Proof of Theorem 5.5 Recall that for any flat metric arising from a holomorphic
quadratic differential, one can find a sequence of induced metrics so that the chosen
flat metric is the limit in the space of geodesic currents (Proposition 5.3). Hence by
Theorem 2.5, any mixed structure � can be obtained by a sequence L�nen

of currents
coming from the induced metrics. On the other hand, to any sequence of induced
metrics leaving all compact sets, then either it converges projectively to a measured
lamination or it does not. If it does not converge to a measured lamination, then the
energy is unbounded and the corresponding sequence of normalized Hopf differential
metrics must converge to a mixed structure � which is not purely laminar. The previous
theorem thus ensures there is a nonempty collection of incompressible subsurfaces, S 0,
on which the limiting current � is a flat metric. But on the complement of S 0, the
current � restricts to a measured lamination (as on this complement the areas of the
metric tend to zero), so the proof of Theorem 5.5 is complete.
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5.4 Dimension of the boundary

We end this section with a remark about the compactification of the induced metrics.
Recall the dimension of the space of induced metrics (being homeomorphic to Qg=S1)
was 12g � 13. The dimension of the singular flat metrics can be readily seen to be
12g � 14. The actual mixed structures are stratified by the subsurfaces for which
the mixed structure is a flat metric. A subsurface of lower complexity yields fewer
free parameters in the choice of a flat structure, and the extra choices one gains for a
measured lamination on the complementary subsurface is strictly less in our loss of
choice for the flat structure. Hence the boundary of the compactification of the induced
metrics via projectivized geodesic currents is of codimension one.

6 Analysis of the limits

In this section, we wish to relate the mixed structures with cores of R–trees arising
from measured laminations. To this end, we elucidate the relation between the mixed
structure and the pair of projective measured laminations obtained from the pair of
degenerating hyperbolic surfaces.

6.1 R–trees

Here we recall some basic facts about R–trees. An R–tree T is a metric space for
which any two points are connected by a unique topological arc, and such that the arc
is a geodesic. Equivalently, if .X; d/ is a metric space, for any pair of points x;y 2X ,
define the segment Œx;y�D fz 2X W d.x;y/D d.x; z/C d.z;y/g. Then an R–tree is
a real nonempty metric space .T; d/ satisfying:

(i) For all x;y 2 T , the segment Œx;y� is isometric to a segment in R.

(ii) The intersection of two segments with an endpoint in common is a segment.

(iii) The union of two segments of T whose intersection is a single point which is an
endpoint of each is itself a segment.

A group � acts on T by isometry if there is a group homomorphism � W �! Isom(T /.
The action is from the left. An action is said to be small if the stabilizer of each arc
does not contain a free group of rank two. An action is said to be minimal if no proper
subtree is invariant under � .
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A particularly important class of R–trees comes from the leaf space of a lift of a
measured foliation on a closed surface to its universal cover. Any measured foliation F

on a closed surface of genus g � 2 may be lifted to a �1S–equivariant measured
foliation on its universal cover. The leaf space can be made into a metric space,
by letting the distance be induced from the transverse measure. This is an R–tree
with a � D �1S action by isometries. Naturally, not all R–trees with a �1S action
arise from this construction. A theorem of Skora [41] shows that an R–tree with a
�1S action comes from a measured foliation if and only if the action is small and
minimal. Alternatively, one may start with a measured lamination .�; �/ on S and
lift it to a measured lamination .z�;�/ on the universal cover. Then an R–tree may be
formed by taking the connected components of zS n z� with edges between two vertices
if the two components were adjacent (separated by a geodesic), and then metrically
completing the distance induced by the transverse measure. The R–tree comes equipped
with a �1S action, and is �1S–equivariantly isometric to the R–tree constructed from
the corresponding measured foliation. In what follows, we will deal exclusively with
R–trees with a �1S action coming from the leaf space of the lift of a measured foliation.
There is a rich theory of convergence of hyperbolic space to R–trees in the literature
from a number of different perspectives; see [3; 30; 31; 41; 46].

6.2 Convergence of metric spaces

In this section, we construct noncompact metric spaces admitting a �1S action by
isometries.

Definition 6.1 Let X and X 0 be two metric spaces and let � > 0. An �–approximation
between X and X 0 is a relation R in X�X 0 that is onto, and such that for every x;y 2X

and every x0;y02X 0, the conditions xRx0 and yRy0 imply jdX .x;y/�dX 0.x
0;y0/j<�.

Definition 6.2 Let Xn be a sequence of metric spaces, each admitting an isometric
action by a group � , and let X1 be a supposed limiting metric space, also admitting
an isometric action by the same group � . We say Xn converges to X1 in the sense of
Gromov–Hausdorff if for every � > 0 and every finite set A�� , and for every compact
subset K � X1, then, for n sufficiently large, there is a compact set Kn � Xn and
an �–approximation Rn which is A–equivariant between Kn and K in the following
sense: for every x 2K, every xn;yn 2Kn, and every ˛ 2A, the conditions ˛x 2K

and xnRnx and ynRn˛x imply d.˛xn;yn/ < �.
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We construct a sequence of noncompact metric spaces Xn with an isometric action
by � D �1S , as follows. Take the induced metric .S; �nen/ and lift the metric to
the universal cover . zS ; e�nen/. We will deal with the case where the induced metric
converges in length spectrum to a mixed structure that is not entirely laminar — this
is to ensure so that we can scale our metric spaces by total energy; for the case of
a mixed structure that is entirely laminar, the same discussion holds after amending
the sequence of constants. The sequence of noncompact metric spaces thus will be
Xn D . zS ; e�nen=En/. The following proposition is clear.

Proposition 6.1 The manifold Xn D . zS ; e�nen=En/ is a noncompact metric space
admitting an isometric action by the group � D �1S .

Proof As Xn itself is a noncompact Riemannian manifold with � D �1S acting on it
by isometries, the result follows immediately.

Up to a subsequence, the metrics .S; �nen=En/ will converge in length spectrum to
a nontrivial mixed structure �D .S 0; q; �/. We construct a noncompact metric space
X1 D X� from the mixed structure �. Regard � as a geodesic current on . zS ;g/. To
any two distinct points x;y 2 zS , one can form the geodesic arc ˛ connecting the
two points. Let c be the set of bi-infinite geodesics which intersect ˛ transversely.
Then the intersection number i.�; ˛/ is given by the �–measure of c. This yields a
pseudometric space coming from the geodesic current �. Notice that it is possible for
the intersection number to be zero, for instance if the geodesic arc is disjoint from the
support of the current, or if it forms no nontransverse intersection with the support of �.
Taking the quotient by identifying points which are distance 0 from each other, and
then taking the metric completion, yields a noncompact metric space X1. As � D�1S

acted on � equivariantly, � acts by isometries on X1. For a more detailed discussion
about the construction of a metric space from the data of a geodesic current, see [5].

Remark In the setting where � is a measured foliation, the metric space X� is a familiar
one. It is an R–tree dual to the foliation. The space is constructed by collapsing the
leaves of the foliation with the distance on the tree inherited by intersection number and
then completing; see [32]. The case where � is a nontrivial mixed structure follows the
same spirit of this construction. The laminar part is treelike, formed on the universal
cover by collapsing leaves of the supported lamination and then completing. On the
flat part, the metric space is formed by the product of the trees dual to the vertical and
horizontal lamination of a quadratic differential whose metric is the given flat metric.
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The preceding discussion is summarized by the following proposition.

Proposition 6.2 To any mixed structure �, the construction above gives a noncompact
metric space X� admitting an isometric action by � D �1S .

Using the Gromov–Hausdorff topology, one has the following.

Theorem 6.3 A subsequence of the metric spaces . zS ; e�nen=En/ converges in the
sense of Gromov–Hausdorff to a noncompact metric space X� coming from a mixed
structure � acted upon by � D �1S .

Before presenting the proof, we record one useful fact regarding convergence of maps.
This follows from work of Korevaar and Schoen.

Theorem 6.4 (Korevaar and Schoen [21]; see also [8]) Let zM be the universal cover
of a compact Riemannian manifold. Let uk W

zM !Xk be a sequence of maps such that

(a) each Xk is an NPC space , and

(b) the uk have uniform modulus of continuity: for each x, there is a monotone
function !.x; � / such that

lim
R!0

!.x;R/D 0 and max
B.x;R/

d.uk.x/;uk.y//� !.x;R/:

Then the pullback metrics duk
converge (possibly after passing to a subsequence)

pointwise , locally uniformly to a pseudometric d1.

Proof of Theorem 6.3 Recall from Theorem 5.13 that on S 0 we have uniform con-
vergence of the induced metric to the flat metric. For the complementary subsurface,
recall that metric spaces were obtained as the induced metric on the minimal surface,
so that the metric came from a pullback of a harmonic map. By Proposition 5.6, the
scaled metric is the pullback metric of a harmonic map with energy at most 1. Hence,
by Theorem 6.4 (see [21, Proposition 3.7] or [8, Theorem 2.2]), the metrics converge
uniformly. As the lifts of the induced metrics admitted an �1S action by isometries, so
does the limit.

6.3 Convergence of harmonic maps

Not only do the metric spaces converge in a suitable topology, the harmonic maps do as
well. As we have shown in the preceding section that the domains converge in the sense
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of Gromov–Hausdorff to a metric space arising from a mixed structure, and as shown
in work of Wolf [46], one has that the lifts of a sequence of degenerating hyperbolic
metrics, when properly scaled, subconverge in the sense of Gromov–Hausdorff to R–
trees dual to a particular measured lamination in the projective class of the associated
point on the Thurston boundary. Hence we have both domain and target converging in
the same topology to noncompact metric spaces with isometric actions by � D �1S .
It is natural to expect some sort of convergence in the harmonic maps. In Wolf [46],
the domain is a fixed Riemann surface, and the target is changing. Here, we have both
domain and target changing (and converging). We begin by reviewing the necessary
definitions.

Definition 6.3 Let Xn and X1 be metric spaces admitting an action of a group �
and let .Yn; dn/ and .Y1; d1/ be metric spaces admitting an isometric action of � .
Suppose fn W Xn! Yn and f1 W X1! Y1 are equivariant maps. Then we say that
fn converges (uniformly) to f if

(i) both Xn and Yn converge (uniformly) to X and Y respectively in the sense of
Gromov, and

(ii) for every � > 0, there is an N.�/ such that for n>N.�/, the �–approximations
Rn;R

0
n satisfy the condition that for every xnRnx, one has fn.xn/R

0
nf .x/.

We will require a notion of harmonic map for maps between singular spaces. The
following can be found in more detail in [10]. While the general theory of harmonic
maps between Riemannian polyhedra is covered there, in what follows, we only deal
with singular flat metrics and metric graphs.

Definition 6.4 Let X be an admissible Riemannian polyhedron and Y a metric space.
Let � 2L2

loc.X;Y /. The approximate energy density is defined for � > 0 by

e�.�/.x/D

Z
BX .x;�/

d2
Y
.�.x/; �.x0//

�mC2
d�g.x

0/:

Definition 6.5 The energy E.�/ of a map � of class L2
loc.X;Y / is

E.�/D sup
f 2Cc.X ;Œ0;1�/

�
lim sup
�!0

Z
X

fe�.�/ d�g

�
:
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Definition 6.6 A harmonic map � WX ! Y is a continuous map of class W
1;2

loc .X;Y /

which is bi-locally E–minimizing in the sense that X can be covered by relatively
compact subdomains U for each of which there is an open set V � �.U / in Y such
that

E.�jU /�E. jU /

for every continuous map  2W
1;2

loc .X;Y / with  .U /� V and  D � in X nU .

We obtain a classification of the flat parts of the mixed structure arising from the data of
the limits of the sequences X1;n and X2;n. Let S 0 be a connected subsurface for which
the limiting mixed structure � is a flat metric. For each n, denote by S 0n the subsurface
isotopic to S 0 such that the boundary components are geodesics with respect to the
induced metric �nen=En. Let X 0

1;n
denote the restriction of the hyperbolic metric X1;n

to the subsurface of S , in the same isotopy class of S 0, but which has geodesic boundary
with respect to the hyperbolic metric. Then let u0i;n denote the restriction to S 0n of the
harmonic map ui;n W .S; �nen/!Xi;n.

Theorem 6.5 Consider a connected component of S 0. The sequence of harmonic
maps u0

1;n
W .S 0n; �nen=En/! X1;n=2En converges to a �1.S

0/–equivariant harmonic
map u0 W .S 0; jˆ1j/! T1, where T1 is the R–tree dual to �1 D limn!1X1;n=2En.
The Hopf differential is given by ˆ1. Likewise , the same holds for �2 and �ˆ1.
Hence , the laminations are the vertical and horizontal foliations of ˆ1.

Proof We begin by showing that �1 is a well-defined measured lamination in the
projective class of Œ�1�, which is the limit on the Thurston boundary of the sequence X1;n.
This will follow from standard estimates on stretching and geodesic curvature of an arc
of the horizontal foliation which avoids the zeros. This will be an adaptation of the
argument employed in [45], for the case where the domain conformal structure is fixed
and the Hopf differentials lie along a ray.

We first show boundedness of the Jacobian. For any neighborhood U of the surface
which avoids a zero of ˆ0;n, one has the usual PDE

(6-1) ��n
log

1

j�nj
2
D 4Jn > 0;

and, consequently,

(6-2) ��n
kˆnk log

1

j�nj
2
D 4kˆnkJn > 0:
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Using the conformal invariance of harmonic maps, we replace the metric �n on the
neighborhood U with a metric � 0n in the same conformal class as �n, but one which is
flat on U . Subharmonicity of the function kˆnk log.1=j�nj

2/ yields

(6-3) kˆnk log
1

j�nj
2
.p/�

1

�R2

Z
BR.p/

kˆnk log
1

j�nj
2

dA.� 0n/

on a ball of � 0n radius R contained in U. Some algebra yields

(6-4) Jn.p/
kˆnk log j�nj

�2.p/

Jn.p/
�

1

�R2

Z
BR.p/

Jn

Jn
kˆnk log

1

j�nj
2

dA.� 0n/;

and hence

(6-5) Jn.p/�

Jn.p/

kˆnk log j�nj
�2.p/

�
sup

q2BR.p/

kˆnk log j�nj
�2.q/

Jn.q/

�
1

�R2

Z
BR.p/

Jn dA.� 0n/:

But one has that

(6-6)
Jn

kˆnk log j�nj
�2
D
jˆ0;nj

�nj�nj

.1� j�nj
2/

log j�nj
�2
;

so that in applying Proposition 5.12 to the expression (6-6), one obtains that (6-5) may
be rewritten as

(6-7) Jn.p/� cn

Z
BR.p/

Jn dA.� 0n/;

where cn will depend on the metric jˆ0;nj, j�nj, R and �n. But, on the neighborhood U,
we know for sufficiently large n that jˆnj! jˆ1j, and j�nj! 1 and �n! �1, where
�1 is the uniformizing metric of ˆ1. Hence cn remains bounded on U . But, finally,

(6-8)
Z

BR.p/

Jn dA.� 0n/D

Z
BR.p/

� 0n
�n

Jn dA.�n/� sup
U

� 0n
�n

Z
M

Jn dA.�n/

� �2��.S/c0n;

where here c0n will only depend upon the injectivity radius of the metric �n on the
neighborhood U, which for large n will be close to the injectivity radius of �1.

From (6-7), (6-8) and the PDE in (6-1), by elliptic regularity (see [14, Problem 4.8a])
one obtains that j�nj ! 1 in C 1;˛.U /, where U does not contain a zero or pole of ˆ1.

In the natural coordinates of the quadratic differential, the hyperbolic metric g1;n is
given by .�nenC 2kˆnk/ d�2

n C .�nen� 2kˆnk/ d�2
n.
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Recall that the geodesic curvature of an arc of the horizontal foliation of ˆ0;n in the
natural coordinates for ˆ0;n D d�2

n D d�2
n C d�2

n is given by the equation

�. /�Dconstant D�
1

2g11;n
p

g22;n

@g11;n

@�n
;(6-9)

so that for  an arc of the horizontal foliation of ˆ0;n avoiding the zeros, one has

�. /�Dconstant D�
1

2.�nenC2kˆnk/.�nen�2kˆnk/1=2

@

@�n
.�nenC2kˆnk/(6-10)

D�
1

2Jn.�nenC2kˆnk/1=2

@

@�n
�nen:

But simple algebra yields that �nenDkˆnkjˆ0;nj.j�nj
�1Cj�nj/, so that in the natural

coordinates as jˆ0;nj � 1, one actually has �nen D kˆnk.j�nj
�1Cj�nj/. Hence

�. /D 1
2
kˆnk.1� j�nj

2/J �1
n j�nj

�2.�nenC 2kˆnk/
�1=2 @

@�n
j�nj(6-11)

D
1
2
kˆnkH�1

n j�nj
�2.�nenC 2kˆnk/

�1=2 @

@�n
j�nj;(6-12)

as Jn DHn.1� j�nj
2/. As kˆnkH�1

n D j�nj=jˆ0;nj, rewriting (6-12) gives

(6-13) �. /D
1

2

1

.jˆ0;nj � j�nj/.�nenC 2kˆnk/1=2
�
@

@�n
j�nj;

and as j�nj ! 1 in C 1;˛.U /, one obtains �g1;n
. /D o.kˆnk

�1=2/D o.E�1=2
n /.

Then to any arc  of the horizontal foliation of ˆn, one has that it is mapped close to
its geodesic in the target hyperbolic surface. The following standard calculation on
the stretching shows that by normalizing the target hyperbolic manifold by the total
energy, the resulting length is given by the intersection number with the measured
lamination �1. One has

lg1;n
. /D

Z


H1=2
n CL1=2

n ds�n
D

Z


H1=2
n .1Cj�nj/ ds�n

D

Z


kˆnk
1=2jˆ0j

1=2

j�nj
1=2

.1Cj�nj/
ds�n

�
1=2
n

D kˆnk
1=2

Z


�
1C

�
1

j�nj
1=2
� 1

��
.2� .1� j�nj// dsjˆ0j

D 2kˆnk
1=2ljˆ0;nj

. /CO
�
kˆnk

1=2.1� j�nj/
�
;
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recalling that in order to obtain the metric �e, one has to divide both hyperbolic
surfaces by twice the energy, which is approximately four times the L1–norm of the
Hopf differential for sufficiently large energy, independent of the Riemann surface
structure; see Proposition 5.8. Meanwhile, a similar calculation shows that an arc of
the vertical foliation of ˆn, say ˛, has length in the target hyperbolic surface given by

lg1;n
.˛/D

Z
˛

H1=2
n �L1=2

n ds�n
D

Z
˛

H1=2
n .1� j�nj/ ds�n

D

Z
˛

kˆnk
1=2jˆ0;nj

1=2

�
1=2
n j�nj

1=2
.1� j�nj/ ds�n

D kˆnk
1=2

Z
˛

1� j�nj

j�nj
1=2

dsjˆ0;nj

D o.E1=2
n /:

Noting that a horizontal arc of ˆn is a vertical arc of �ˆn, one sees the �1 and �2

are the horizontal and vertical foliations of ˆ1 (the geometric limit of ˆn; see [27]),
respectively.

To get our desired harmonic map from the flat subsurface to the two trees, notice that
the above estimates show that a horizontal arc of ˆ0;n gets mapped close to a geodesic
in the target space which is a hyperbolic surface scaled by the reciprocal of total energy.
As the scaled induced metric limits to the flat metric jˆ1j, a horizontal arc of ˆ1
will thus be mapped by an isometry to the tree T1 and any vertical arc collapsed, so
that the limiting map in the universal cover is given by a projection onto the leaf space
of the vertical foliation of ˆ1. The same argument holds for T2.

Proposition 6.6 For any closed curve  on the surface S , one has the inequalities

lg1;n
. /� l�nen

. / and lg2;n
. /� l�nen

. /:

Consequently, if tnL�nen
! � as currents , then the length spectra of limn!1 tnLgi;n

are well-defined. If the limiting currents are denoted by �j , then

i.�j ; � /� i.�; � /:

Proof As the minimal surface has induced metric of the form g1;nCg2;n, where the
gi;n is a hyperbolic metric, both inequalities follow immediately. The final comment
follows from choosing a closed curve  D n to be a �nen–geodesic and using the
inequality lt2

ngi;n
.Œ �/� lt2

ngi;n
. /.
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Combining Proposition 6.6 and Theorem 6.5, we obtain a necessary and sufficient
condition on the pair of measured laminations �1 and �2 to determine a corresponding
flat part on the mixed structure. Recall that a pair of measured laminations �1; �2 fill if
for any measured lamination �3, one has i.�1; �3/C i.�2; �3/ > 0.

Corollary 6.7 Let �0i D limn!1X 0i;n=2En be a pair of nonzero measured laminations
on a subsurface S 0. Then the pair of laminations fill if and only if the restriction of the
mixed structure � to S 0 is flat.

Proof If � is flat on S 0, the preceding theorem shows the pair of laminations are dual
and hence fill. If the pair of laminations do fill, then for any third lamination �0 one
has by Proposition 6.6 that i.�; �0/ > 0, so that it cannot be a lamination, and hence
must be flat by definition of a mixed structure.

Proposition 6.8 On the subsurface S 00 D S nS 0, the laminations �1 and �2 restrict to
a pair of measured laminations which have no transverse intersection. If � denotes the
measured lamination part of the mixed structure , then i.�; �1/D i.�; �2/D 0.

Proof By Proposition 6.6, since i.�; �/ D 0, one has that i.�1; �/ D i.�2; �/ D 0.
Using the inequality again yields i.�1; �2/ � i.�; �2/ D 0, from which the result
follows.

In the setting where both singular spaces are finite metric graphs, the resulting harmonic
maps are affine maps. Each edge of the domain graph is mapped via the constant map,
or mapped linearly to the target graph. The following result of Lebeau characterizes all
such harmonic maps.

Theorem 6.9 (Lebeau [25]) Given two finite metric graphs G and G0, every continu-
ous map between G and G0 is homotopic to an affine map which minimizes the energy
within its homotopy class. Furthermore , the map is unique up to parallel transport.

Proposition 6.10 Suppose L�nen=Cn
converges to �, where � is a Jenkins–Strebel

lamination (measured lamination supported on finitely many closed curves). Then
the sequence of metric spaces .S; �nen=Cn/ converges geometrically to a finite metric
graph.

Proof This follows immediately from Theorem 6.4 (see also [21, Proposition 3.7]), as
the induced metrics are the pullback metrics of a harmonic map from H2 to H2 �H2,
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which is NPC. The assumption on the modulus of continuity follows from the bound
on the total energy of the maps un to the rescaled target, so that total energy is at
most 1. Hence, the limiting metric space is the dual graph of �, which is a finite metric
graph.

Theorem 6.11 Let Cn !1, so that L�nen=Cn
! �, where � is a mixed structure

with laminar part supported on a finite collection of simple closed curves. Suppose
LXi;n=Cn

! �i , where �i are measured laminations also supported on a finite collection
of simple closed curves. Then the sequence of harmonic maps ui;n W .S; �nen=Cn/!

Xi;n=Cn converges to a map ui WX�! Ti , which is a union of harmonic maps.

Proof Recall that X� is the metric completion of the metric space obtained from the
geodesic current � by creating a pseudometric space from the intersection number
with �, and then identifying points with 0 distance.

As the case where � is flat has been previously handled in Theorem 6.5, we first
construct a �1S–equivariant map between the laminar part of X� and T1 (here we will
consider only the case where � is a Jenkins–Strebel lamination). The same construction
will produce a similar map to T2. Let D be a connected fundamental domain of the
laminar region of X�. Then D is a finite metric graph. We embed the graph D into the
laminar region S 00 of the minimal surface as follows: we map each vertex of D to its
corresponding thick region on S 00. The geometric convergence of the minimal surfaces
to D from Proposition 6.10 allows us to determine which region of the minimal surface
will converge to a given vertex. Once we have made our choice of where to send each
vertex of D, if there is an edge e connecting two vertices of D, then we send the edge e

to the geodesic arc connecting the two points on the minimal surface where we have
mapped our two vertices. (The limiting map we will obtain later will not depend on
this choice, as distances will converge uniformly.)

As we have convergence in length spectrum and as there are only finitely many edges,
we can ensure that for large n>N.�/, the length of the image of each edge has changed
by at most �. We require that the embedding is proportional to arclength. Then there is
a collection of continuous maps �n WD!Xn with the property that given � > 0, there
is an N DN.�/ so that �n is a .1C�/–quasi-isometry.

Likewise, as zX1;n=Cn converges geometrically to an R–tree, a fundamental domain of
zX1;n=Cn will converge geometrically to a finite graph G1; see for instance [46]. Hence,
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there is a collection of continuous maps  n WX1;n=Cn!G1 with the same property as
�n.

Form the composition gn D  n ı u1;n ı �n W D! G1, where u1;n W .S; �nen=Cn/!

X1;n=Cn is a harmonic map with total energy at most 1. We claim this sequence of
maps gn is uniformly bounded and equicontinuous. Uniform boundedness is clear
as the target graph G1 is a finite graph. To see it is equicontinuous, we note that,
as �n and  n were .1C�/–quasi-isometries, and since there is a uniform Lipschitz
constant of the maps u1;n, as the total energy of the maps are bounded by 1 (see [20,
Theorem 2.4.6]), equicontinuity follows. Hence, by the Arzelà–Ascoli theorem, we
have a subsequence gk converging uniformly to a map g WD!G1.

We have that g is harmonic as a map between singular spaces, for we have uniform
convergence of distances (see [21]) between the approximate metric spaces coming
from our scaled induced metrics and the limiting R–tree. Hence all the quantities
in the definitions of the approximate energy density, and the energy, converge. As
there is a unique energy minimizer (up to parallel transport, by Theorem 6.9) between
the limiting spaces (which are finite graphs), the map g must be this unique energy
minimizer. (If g were not the energy minimizer, it would have larger energy than
the unique energy minimizer, by say ı. One could then construct a map between the
approximate Riemannian manifolds, which would have energy lower than the harmonic
maps u1;n, contradicting the harmonicity of u1;n.)

From Theorem 6.5, we obtained a limiting harmonic map u0 on the flat part of X� to
the tree T1, and now we have a limiting harmonic map g from the laminar part of X�

to the tree T1. Taking the union yields the desired u WX�! T1. The same argument
holds for T2.

6.4 Cores of trees

Here we review some basics of cores of R–trees. A more detailed overview of this
material may be found in [18; 46].

For any R–tree, a direction at a point x 2 T is a connected component of T n x. A
quadrant in T1 �T2 is the product ı1 � ı2 of two directions ı1 � T1 and ı2 � T2. We
will say that the quadrant is based at .x1;x2/ 2 T1 �T2, where xi is the basepoint for
the direction ıi .

Let T1;T2 be a pair of trees with a common group action by � . Let x D .x1;x2/ 2

T1 �T2 be a basepoint.
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Definition 6.7 Consider a quadrant Q D ı1 � ı2 � T1 � T2. Then Q is said to be
heavy if there exists a sequence k 2 � such that

(i) k �x 2Q,

(ii) di.k �xi ;xi/!1 as k!1 for i D 1; 2.

Otherwise we say Q is light.

We define the core of a product of trees to be the product T1�T2 with all light quadrants
removed.

Definition 6.8 (Guirardel [18]) The core C of T1 �T2 is the subset

C D T1 �T2 n

� [
Q light quadrant

Q

�
:

Take a pair 1; 2 of simple closed geodesics on a hyperbolic surface and let T1 and T2

be the trees dual to the laminations. On the surface S , foliate by parallel curves a small
open tubular neighborhood Ai D i � .��; �/ of each of the curves. Define the map
pi W
zS ! Ti which maps the connected components of zS n zAi to the corresponding

vertex of Ti and each zAi to the corresponding edge of Ti . This construction extends to
measured laminations, as the simple closed curves are dense in the space of measured
laminations. The following proposition characterizes the core in terms of the map
p D .p1;p2/.

Proposition 6.12 [18] Let T1 and T2 be dual to a pair of measured laminations �1

and �2, respectively. Consider the map p D .p1;p2/ W zS ! T1 �T2, as defined above.
Then C.T1 �T2/D p. zS/.

Proof The result will follow from the claim that any quadrant QD ı1� ı2 in T1�T2

is light if and only if p�1
1
.ı1/\p�1

2
.ı2/D∅. It is clear that if p�1

1
.ı1/\p�1

2
.ı2/D∅,

then Q is light, as for each point x 2 zS , the orbit of .p1.x/;p2.x// does not intersect Q.
Conversely, if p�1

1
.ı1/ intersects p�1

2
.ı2/, then take Uıi

to be an open half-plane
in zS with bounded Hausdorff distance from p�1

i .ıi/, where Uıi
is bounded by a

geodesic in z�i . As p�1
1
.ı1/ has nonempty intersection with p�1

2
.ı2/, so do Uı1

and Uı2
. Moreover, there exists an h 2 �1S whose axis  intersects the pair of

geodesics bounding Uı1
and Uı2

. Then h is hyperbolic in both T1 and T2, and h makes
Q heavy.
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Remark This characterization of the core of two trees is particularly useful in our
setting. When the trees come from a pair of dual measured laminations, the map
p D p1 � p2 has the same image as the map which sends H2 to the corresponding
leaf space of each of the measured foliations. However, the map defined above is not
quite projection to the leaf space when the two laminations are not dual. One has
to refine the pair of laminations to �r

1
; �r

2
, so that each now has the same support as

supp.�1/[ supp.�2/. We describe the measure on �r
1

by describing the case where �1

and �2 are a collection of simple closed curves. To �1 we add the weighted curves in �2

not in �1 and vice versa for �r
2
. We now take the image of the projection of H2 onto the

leaf space of the trees dual to �r
i , followed by projection of the tree T r

i to Ti . This map
now has image coinciding with the core. This slight modification is required to ensure
the core is one-dimensional when the laminations have no transverse intersection; see
[18, Theorem 6.1].

We present our next main result concerning the relation between the mixed structures
we obtain as limits of the induced metrics and the limits of the corresponding graphs
of the minimal lagrangians.

Theorem 6.13 Suppose Cn !1, so that L�nen=Cn
! � and X1;n=Cn ! T1 and

X2;n=Cn! T2. Then the metric space X� is isometric to the core of the pair of trees
.T1;T2/. Consequently , the minimal lagrangians z†n=Cn�H2=Cn�H2=Cn converge
geometrically to the core C.T1 �T2/� T1 �T2.

Proof Define the auxiliary map ‰ W P.ML�ML/! PMix.S/ by

‰.Œ�1; �2�/D lim
n!1

ŒL�nen
�;

where †n �X1;n �X2;n is the minimal lagrangian with induced metric 2�nen and the
.X1;n;X2;n/ converge projectively to Œ.�1; �2/�. We claim the map is well-defined.

Choose Œ.�1; �2/� 2 P.ML �ML/ and a representative .�1; �2/ 2 Œ.�1; �2/�. Then
if both .X1;n=kn;X2;n=kn/ and .Y1;n=dn;Y2;n=dn/ converge in length spectrum to
.�1; �2/, then for large enough n, we will have that X1;n=kn will be close to Y1;n=dn

as negatively curved Riemannian surfaces (and likewise for X2;n=kn and Y2;n=dn)
by [33]. Hence the induced metrics on the respective pairs of minimal lagrangians will
have close length spectra, so that ‰ is well-defined.

To see that ‰ is continuous, observe that the induced metric on the minimal surface
varies continuously as a map defined on T .S/�T .S/, and since the length spectrum of
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the induced metric varies continuously as one takes a sequence of hyperbolic surfaces
.X1;n;X2;n/! Œ.�1; �2/�2P.ML�ML/, one finds the space of mixed structures varies
continuously on P.ML�ML/ by a diagonal argument.

But we now have a union of harmonic maps from X� to T1 �T2. From Theorem 6.5,
the harmonic map on the flat part is given by projection to its vertical and horizontal
lamination. By Theorem 6.11, the harmonic map from the laminar part is given by an
affine map, when both trees come from Jenkins–Strebel differentials.

As the homotopy classes of the maps were given by the identity map, one sees that
vertices on the domain graph are mapped to the vertices of the target graph — the thick
regions of the minimal surface are necessarily mapped to the thick regions of the target
scaled hyperbolic surface; for if a vertex were to be mapped away from vertices, the
approximating thick region of the minimal surface would be mapped deep into a thin
region of the target scaled hyperbolic surface, so that the thick region of the minimal
surface would not have diameter going to zero, contradicting the geometric convergence
of the thick region to a vertex. Hence by Theorem 6.9, the map is an affine map which
maps vertices to the corresponding vertices.

But this yields the product metric for the core of the two trees; see Proposition 6.12
and the remark which follows. The equality of the metric space associated to the mixed
structure and the core of the trees then holds for pairs of R–trees dual to a pair of
Jenkins–Strebel foliations, which is a dense set in P.ML�ML/, and both quantities
vary continuous for P.ML�ML/, thus the theorem follows.

7 Applications to maximal surfaces in AdS3

In this section, we prove the required analogues of the minimal lagrangian setting to
show a similar result for limits of maximal surfaces.

Proposition 7.1 On a fixed hyperbolic surface .S; �/ one has H1 DH2 if and only if
e1 D e2.

Proof If e1 D e2, then jˆ1j D jˆ2j by Lemma 4.5. From jˆ1j D jˆ2j, one ha,s by
some basic algebra, L2 DH1L1=H2. From the Bochner formula, one has

� logHD 2H� 2L� 2;

1

2
� log

H1

H2

D .H1�H2/� .L1�L2/D .H1�H2/�L1

�
1�

H1

H2

�
:

Geometry & Topology, Volume 27 (2023)



1740 Charles Ouyang

At a point p 2 S for which the quotient H1=H2 achieves its maximum (which without
loss of generality we may assume to be greater than 1, or else as before we may
re-index), the left-hand side of the preceding calculation must be nonpositive, but the
right-hand side is positive, hence H1 DH2 everywhere.

Proposition 7.2 On a fixed hyperbolic surface .S; �/, if H1 D cH2 then c D 1.

Proof Without loss of generality, take c > 1 or we may re-index to ensure this is the
case. Once again by the Bochner formula,

� log
H1

H2

D 2.H1�H2/� 2.L1�L2/;

0D� log c D 2.cH2�H2/� 2.L1�L2/D 2H2.c � 1/� 2.L1�L2/:

Hence, everywhere one has

L1�L2 DH2.c � 1/ > 0:

But L1 vanishes at the zeros of the quadratic differential ˆ1, a contradiction. Hence
c D 1.

Proposition 7.3 Let H D
R
H dA.�/. Then E D 2H C 4��. Consequently, if

En!1, then limn!1 En=Hn D 2.

Proof As J DH�L and
R
J � dz dxz D�2��, one hasZ

H� dz dxzC 2��D

Z
L� dz dxz:

Adding the terms yields

E D
Z
.HCL/� dz dxz D 2

Z
H� dz dxzC 4��D 2H C 4��:

Recall from Section 2.6 the existence and uniqueness of a spacelike, embedded maximal
surface in any GHMC AdS3 manifold.

Proposition 7.4 [22, Lemma 3.6] The induced metric on the maximal surface is of
the form H� .

Proposition 7.5 The induced metric on the maximal surface has strictly negative
curvature.
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Proof The formula for curvature is given by

KH� D�
1

2H�
� logH� D�

1

2

1

H

�
� logH
�

C
� log �
�

�
D
�J
H
;

where the last step comes from the Bochner equation and the curvature of the hyperbolic
metric.

Theorem 7.6 There exists an embedding of the space of maximal surfaces into the
space of projectivized currents.

Proof As the induced metrics on the maximal surfaces are negatively curved, they
may be realized as geodesic currents. By Proposition 7.2, the projectivization remains
injective.

Theorem 7.7 The closure of the space of induced metrics on the maximal surfaces
is given by the space of flat metrics arising from unit-norm holomorphic quadratic
differentials and projectivized mixed structures.

Proof To any induced metric H� on the maximal surface, there is a unique singular
quadratic differential metric jˆj associated to it. Some algebra shows that

H� D
jˆj

j�j
� jˆj;

which for high energy, Proposition 7.3 tells us H approximates the L1–norm of
the quadratic differential, so that if the sequence of unit-norm quadratic differentials
converges to measured lamination, then so does the projective current associated to the
induced metric on the maximal surface. (If the energy is bounded, an adaptation of the
proof of Proposition 5.4 shows that the limit of induced metrics will be a measured
lamination.) Hence, we assume the sequence of unit-norm quadratic differential metrics
converges to a mixed structure. On the flat part of the mixed structure, from the
proof of Proposition 5.12 we know that up to a subsequence the Beltrami differentials
converge uniformly to 1 outside of a small region about the zeros of the differential
and a cylindrical neighborhood of the boundary curves. But then we know that on this
subsurface the maximal surface metric will converge to jˆ1j in terms of its length
spectrum. As the total area of the mixed structure is 1 and we have normalized the
maximal surface metric by the total holomorphic energy, on the complement, the area
of the metric tends to 0, so that the restriction of the limiting current is a measured
lamination.
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We observe there is a rather interesting trichotomy at play here. For high energy, on the
subsurface S 0, if the quadratic differentials converge to jˆ1j then so do the associated
sequence of minimal surface metrics and the sequence of maximal surface metrics.

8 Compactification of maximal representations to
PSL.2 ; R/ � PSL.2 ; R/

In this final section, we provide an application of our work to compactifying the maximal
component of the character variety �.PSL.2;R/�PSL.2;R//. The theory of maximal
representations is defined for general Hermitian Lie groups G and is considerably
more straightforward to define in our specific setting of G D PSL.2;R/� PSL.2;R/.
Nevertheless, we will define a maximal representation in the general setting before
providing a straightforward characterization in our setting.

Let G be a Hermitian Lie group, that is, a noncompact simple Lie group whose
symmetric space G=K is a Kähler manifold. Equivalently, there is a G–invariant
two-form ! on G=K. Let S be a closed, orientable, smooth surface of genus g � 2.
Then given a representation � W �1S !G, there is a �–equivariant map zf W zS !G=K

defined by taking any smooth section of the flat bundle E� D zS �� G=K! S . Define
the Toledo invariant to be

T .�/ WD
1

2�

Z
S

zf �!:

The Toledo invariant will be well-defined for each such representation as the number
obtained will not depend on the choice of section chosen above; a different section
would yield another map differing by a �–equivariant homotopy, giving the same
number. A well-known Milnor–Wood type inequality holds for the Toledo invariant,

jT .�/j � j�.s/j � rank.G=K/:

Representations whose Toledo invariant attains the upper bound are known as maximal
representations. We now restrict our attention specifically to the group GDPSL.2;R/�
PSL.2;R/, whose associated symmetric space is H2 �H2.

For each representation to the group PSL.2;R/ � PSL.2;R/, one obtains a pair of
representations to the group PSL.2;R/. By work of Goldman [17], the Euler num-
ber of representations to PSL.2;R/ characterizes the connected components of the
representation variety. The maximal representations are precisely those whose pro-
jections live in the Hitchin component of PSL.2;R/ representations, that is, those
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representations that are both discrete and faithful. Hence, such a representation yields
a pair of points in Teichmüller space and an associated minimal surface. We may
parametrize such representations by the equivariant minimal lagrangian in H2 �H2

from Theorem 3.1. As a final consequence of our study of these minimal lagrangians, we
obtain a compactification of the maximal component of surface group representations
to PSL.2;R/�PSL.2;R/.

Theorem 8.1 Let S be a closed surface of genus g > 1. The space of maximal
representations of �1.S/ to PSL.2;R/ � PSL.2;R/ embeds into the space of �1S–
equivariant minimal lagrangians in H2 �H2. The scaled Gromov–Hausdorff limits of
the minimal lagrangians are given by cores in the product T1 �T2 of trees , where T1

and T2 are a pair of R–trees coming from a projective pair of measured foliations.

Proof For any maximal representation �D .�1; �2/, we may look at the two closed
hyperbolic surfaces given by X1 D H2 n �1 and X2 D H2 n �2. This gives a clear
homeomorphism between the maximal component and two copies of Teichmüller space
and thus, by Theorem 3.3, to the bundle of holomorphic quadratic differentials over
Teichmüller space. By Theorem 3.1, we obtain a minimal lagrangian between X1

and X2 which respects the marking. Taking the lift gives a �1S–equivariant minimal
lagrangian in H2 �H2. As distinct representations have distinct minimal lagrangians
(distinguished by both the metric via Corollary 4.6 and the second fundamental form
via Proposition 4.3), we have our desired embedding.

If �nD .�1;n; �2;n/ is a sequence of representations leaving all compact sets, then there
exists a sequence of constants Cn!1 such that passing to a subsequence one has
zX1;n=Cn! T1 and zX2;n=Cn! T2, where T1 and T2 are both R–trees, and at most

one of the trees is just a single vertex. By Theorem 6.13, the Gromov–Hausdorff limit
of the minimal lagrangians scaled by Cn converges to the core of the product T1 �T2,
which suffices for the proof.
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Orbifold bordism and duality for finite orbispectra

JOHN PARDON

We construct the stable (representable) homotopy category of finite orbispectra,
whose objects are formal desuspensions of finite orbi-CW–pairs by vector bundles and
whose morphisms are stable homotopy classes of (representable) relative maps. The
stable representable homotopy category of finite orbispectra admits a contravariant
involution extending Spanier–Whitehead duality. This duality relates homotopical
cobordism theories (cohomology theories on finite orbispectra) represented by global
Thom spectra to geometric (derived) orbifold bordism groups (homology theories
on finite orbispectra). This isomorphism extends the classical Pontryagin–Thom
isomorphism and its known equivariant generalizations.
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1 Introduction

The classical Pontryagin–Thom isomorphism [30; 31; 37] equates manifold bordism
groups ��.X / with corresponding stable homotopy groups ŒS;X ^MO � for spaces X .
When X is a G–space (G a compact Lie group), equivariant versions of this isomor-
phism are well-studied; see for instance Bröcker and Hook [6], Conner and Floyd [10],
Schwede [34], Wasserman [38] and tom Dieck [11].
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1748 John Pardon

A main result of this paper is to construct the Pontryagin–Thom isomorphism in the
homotopy theory of orbispaces, as developed in Haefliger [20]. The basic objects of
this homotopy theory are orbi-CW–complexes, which are built like CW–complexes by
attaching cells of the form .Dk ; @Dk/�BG for finite groups G along representable
maps; see Gepner and Henriques [18]. (The more general setting in which one allows
compact Lie groups in place of finite groups is unfortunately beyond the scope of
this paper, most significantly due to the failure of “enough vector bundles” in this
context.) The most familiar instance of orbispaces in topology is probably orbifolds;
moduli spaces of solutions to elliptic partial differential equations, as they appear in
low-dimensional and symplectic topology, are also best regarded as orbispaces, and
they provide some of the motivation for our present investigation.

The Pontryagin–Thom isomorphism relates “geometric bordism theories” with “homo-
topical cobordism theories” for orbispaces X . In our setting, the relevant geometric
bordism theories ��.X / are given by bordism classes of (possibly “derived”) orbifolds
with a representable map to X (and possibly with some sort of tangential structure).
The homotopical cobordism theories relevant for us are those associated to the global
Thom spectra defined by Schwede [34]. These theories (on both the geometric side and
the homotopical side) come in two flavors; on the geometric side, these correspond to
the adjectives “ordinary” and “derived”. The difference between ordinary and derived
bordism measures the failure of equivariant transversality.

The Pontryagin–Thom isomorphism between geometric bordism and homotopical
cobordism passes through the category of finite representable orbispectra and a con-
travariant “duality” involution on this category. The construction of this category and
of its involution are our remaining main results. They both rely crucially on the fact,
proven in Pardon [29], that compact orbispaces admit “enough vector bundles” — the
assertion that a given compact orbi-CW–complex X admits enough vector bundles is
equivalent to the assertion that X is homotopy equivalent to a compact effective orbifold
with boundary; effective means that in the local models Rn=G or .Rn�1 �R�0/=G,
the homomorphism G! GLn.R/ is injective. Enough vector bundles also underlies
much of the other reasoning in this paper, including the definition of derived orbifold
bordism groups, the extension of geometric bordism theories to orbispectra, and the
relation between orbi-CW–complexes and the global homotopy theory from [34].

Before stating our main results more formally, we give a concrete example to motivate
the more abstract discussion which follows.

Geometry & Topology, Volume 27 (2023)



Orbifold bordism and duality for finite orbispectra 1749

Example 1.1 We describe a stable homotopy theoretic realization of the bordism group
of closed orbifolds, which for reasons which will become apparent shortly, we denote
by ��.R.�//. This group has been studied by Druschel [13; 14; 15], Ángel [1; 2] and
Sarkar [33].

The first main point of the Pontryagin–Thom construction for manifolds is to note that
every manifold M admits a homotopically unique embedding into RN as N !1, in
the sense that the space of embeddings M ,!RN becomes highly connected in the
limit N !1. We therefore seek a corresponding sequence of orbifolds XN with the
property that every orbifold M admits a homotopically unique embedding into XN in
the limit N !1. In this pursuit, it is helpful to separate the two key properties of RN

which give rise to the unique embedding property for manifolds: it is contractible (so
everything has a homotopically unique map to it) and high-dimensional (so the locus
of maps which are not embeddings has arbitrarily high codimension as N !1).

Now if we are seeking an embedding of orbifolds M ,! XN , we should first note
that an embedding is necessarily representable, so we should not seek XN which are
contractible, rather we should seek XN with the property that the space of representable
maps to XN is contractible (for every domain orbispace). This universal property defines
a unique homotopy type, which we denote by

(1-1) R.�/ WD
G

G0,!���,!Gp

BG0 ��
p
.
�;

where the right side is modeled on the nerve of the 2–category of finite groups, injective
maps and conjugations. It is straightforward to check that R.�/ has the desired property:
it is enough (by an obstruction theory argument) to show that the space of representable
maps BG!R.�/ is contractible for every finite group G, and this space is

(1-2)
G

G0,!���,!Gp

CRepMaps.BG;BG0/��
p
.
� D

G
G,!G0,!���,!Gp

�p
.
�;

which is contractible as it is the nerve of a category with an initial object (the under-
category of G in the 2–category of finite groups, injective maps and conjugations). Thus,
in particular, every compact orbifold M admits a homotopically unique representable
map M !R.�/.

Next, we should realize R.�/ as a high-dimensional orbifold so as to ensure that the
locus of representable maps M !R.�/ which fail to be an embedding has arbitrarily
large codimension inside the space of all maps (in fact, to guarantee this, we need more
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1750 John Pardon

than just that the dimension of R.�/ is large, rather we need that when its tangent
bundle is decomposed into isotypic pieces with respect to the isotropy group actions,
every isotypic piece has high dimension). Filter R.�/ by finite subcomplexes, and
use enough vector bundles [29] to realize each as a compact effective orbifold with
boundary; moreover, use enough vector bundles again to replace each with the total
space of the unit disk bundle of a vector bundle over it, whose isotypic pieces are all
high-dimensional. We thus get a sequence of compact orbifolds with boundary and
smooth embeddings X0 ,!X1 ,!X2 ,! � � � , such that for every closed orbifold M ,
the direct limit over i !1 of the space of embeddings M ,!Xi is contractible.

There is now an obvious Pontryagin–Thom collapse map giving, for any smooth
suborbifold of Xi of dimension d , an element of mO�d ..Xi ; @Xi/

�TXi /, where mO
is the global spectrum defined by Schwede [34] — we define the category of orbis-
pectra which includes expressions such as .Xi ; @Xi/

�TXi as objects, and we show
that global spectra define cohomology theories on orbispectra. The homotopically
unique embedding property of the sequence X0 ,! X1 ,! X2 ,! � � � thus gives us
a map ��.R.�//! lim

��!i!1
mO��..Xi ; @Xi/

�TXi /. Now Theorem 1.3 defines an
involution D on the category of orbispectra which sends Xi to .Xi ; @Xi/

�TXi , so we
may formulate the Pontryagin–Thom map more intrinsically as

(1-3) ��.R.�//!mO��.D.R.�///;

where to be completely precise we should remark that D is defined only on the category
of finite orbispectra, so D.R.�// is really an inverse system of orbispectra, to which
applying the contravariant functor mO�� yields a directed system of graded abelian
groups, and the right side above refers to its direct limit. Theorem 1.4 states that this
Pontryagin–Thom map is an isomorphism (for any orbispectrum in place of R.�/). We
thus conclude that the group of closed orbifolds modulo bordism is mO��.D.R.�///.

1.1 Categories of orbispaces

We approach the homotopy theory of orbispaces from the point of view of orbi-CW–
complexes; these are built like CW–complexes from cells .Dk ; @Dk/�BG for integers
k � 0 and finite groups G, which are attached along representable maps — this is a
slight adaptation of a definition given by Gepner and Henriques [18]. We denote by
Spc the category of CW–complexes and homotopy classes of maps, and we denote by
OrbSpc (resp. RepOrbSpc) the category of orbi-CW–complexes and homotopy classes
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of all (resp. representable) maps. There are thus functors

(1-4) Spc! RepOrbSpc! OrbSpc;

with Spc being a full subcategory of both RepOrbSpc and OrbSpc. It was pointed out
already by Gepner and Henriques [18] that the distinction between representable and
all maps leads to two distinct theories, both of which can legitimately be called “the
homotopy theory of orbispaces”.

The functor Spc! OrbSpc has a left adjoint X 7! jX j (the coarse space of X ) and a
right adjoint X 7! zX (the classifying space of X ). The functor RepOrbSpc!OrbSpc
also has a right adjoint, which we denote by X 7!R.X /. The orbi-CW–complex R.�/

plays a recurring role in our discussion; it is the terminal object of RepOrbSpc, and it
is what Rezk [32] calls the normal subgroup classifier N .

Remark 1.2 We certainly expect, but do not pursue here,1–categorical refinements
of all of our constructions. This expectation is reflected in our notation: although all of
the categories under consideration in this paper are homotopy categories, we do not
include the prefix Ho in their notation.

Of importance are also the categories of relative orbi-CW–complexes RepOrbSpc�
and OrbSpc�, which are analogues of the category Spc� of pointed CW–complexes.
It should be noted, however, that RepOrbSpc� and OrbSpc� are not the homotopy
categories of pointed orbi-CW–complexes; rather, their objects are orbi-CW–pairs
.X;A/— meaning X is an orbi-CW–complex and A� X is a subcomplex — with a
nontrivial notion of morphism. The essential reason this slightly complicated definition
is needed is that for an orbi-CW–pair .X;A/, there is no good way to collapse A to a
point and form a quotient orbi-CW–complex X=A. We have functors

(1-5) Spc�! RepOrbSpc�! OrbSpc�;

again with Spc� being a full subcategory of the latter two, and there is a natural map
from (1-4) to (1-5) given by adjoining a disjoint basepoint.

The categories RepOrbSpc and RepOrbSpc� are a natural setting for homotopy theory.
The category RepOrbSpc� has a natural notion of a cofiber sequence X!Y !Z, and
every morphism X ! Y in RepOrbSpc� extends to a half-infinite “Puppe” sequence
X ! Y !Z!†X !†Y !†Z!†2X ! � � � , in which every consecutive triple
is a cofiber sequence.
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The natural functor RepOrbSpc! PSh.RepfBGg/ (at the level of 1–categories or
model categories) is an equivalence by Gepner and Henriques [18], where RepfBGg �

RepOrbSpc denotes the full subcategory spanned by the objects BG for finite groups G.
This means that RepOrbSpc is the free cocompletion of its full subcategory RepfBGg.
We conjecture that RepOrbSpc is the category of representable fibrations over R.�/

(here R is the right adjoint to RepOrbSpc! OrbSpc) with “reasonable” fibers — note
that the data of a representable fibration over R.�/ is at least intuitively comparable to
the data of a presheaf on RepfBGg. Let us also remark that both these descriptions
of RepOrbSpc (and the corresponding descriptions of RepOrbSpc�) are manifestly
natural settings for doing homotopy theory, whereas proving this for RepOrbSpc� as
we define it requires a somewhat explicit argument. On the other hand, it is somewhat
less apparent from these descriptions what the full subcategory of finite orbi-CW–
complexes RepOrbSpcf � RepOrbSpc is.

The categories OrbSpc and OrbSpc� do not seem to be a natural setting for homotopy
theory; for example, there are morphisms in OrbSpc� which do not have a cofiber in any
reasonable sense. Rather, OrbSpc (similarly for OrbSpc�) is a full subcategory of the
larger category, say denoted by OrbSpc, obtained by gluing cells .Dk ; @Dk/�BG along
all (not necessarily representable) maps, as constructed by Gepner and Henriques [18];
note that this takes us outside the realm of stacks admitting étale atlases. Gepner
and Henriques [18] further showed that OrbSpc is equivalent, again at the level of
1–categories or model categories, to PSh.fBGg/. This latter category PSh.fBGg/

was shown by Schwede [35] to be equivalent to the global homotopy category GloSpc
defined in [34] (with respect to the “global family” of all finite groups); see also
Körschgen [24] and Juran [21]. We will not explain in detail (nor use) the precise
relationship between OrbSpc and OrbSpcD PSh.fBGg/DGloSpc; rather, we describe
just the little bit that we need.

1.2 Geometric bordism theories

We consider various flavors of geometric bordism groups, all of which are sequences
of functors

(1-6) Zi W RepOrbSpc�! Ab

satisfying Zi.†X / D ZiC1.X / and
L
˛ Zi.X˛/

��! Zi

�F
˛ X˛

�
and which sends

cofiber sequences to exact sequences; such a functor might be called a homology theory
for orbispaces.
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The bordism group ��.X / is the set of closed orbifolds with a representable map to X ,
modulo bordism (graded by dimension); this is an abelian group under disjoint union.
To define ��.X;A/ for a pair .X;A/, consider compact orbifolds-with-boundary M

and representable maps of pairs .M; @M /! .X;A/. Our notation is consistent with
the usual meaning of��.X / for spaces X , namely bordism classes of closed manifolds
mapping to X , since an orbifold with a representable map to a space is necessarily a
manifold. Moreover, ��.X=G/ is G–equivariant bordism for G–spaces X , ie bordism
of G–manifolds mapping equivariantly to X .

There is no additional generality to be gained by considering arbitrary (not necessarily
representable) maps here, since a map to X is the same as a representable map to R.X /,
where R W OrbSpc ! RepOrbSpc is the right adjoint to RepOrbSpc ! OrbSpc, so
bordism of orbifolds with an arbitrary map to X is given by ��.R.X //. For example,
the group of bordism classes of closed orbifolds is ��.R.�//. Filtering R.�/ by
subcomplexes gives a spectral sequence converging to ��.R.�//; see Ángel [1] for a
similar spectral sequence.

There are also derived bordism groups �der
� .X /, whose elements are represented

by “derived orbifold charts” .D;E; s/ consisting of an orbifold D, a vector bundle E

over D, and a section s WD!E whose zero set is compact, together with a representable
map D!X (grading by “virtual dimension” dim D� dim E). These are considered
modulo restriction (removing from D a closed subset disjoint from s�1.0/), stabilization
(replacing D with the total space of a vector bundle V over D, replacing E with E˚V

and replacing s with s˚ idV ), and bordism.

The tautological map ��!�der
� is not generally an isomorphism; in fact �der

� is often
nonzero in negative degrees �< 0; see Example 5.4. This can be viewed as a strong
measurement of the fact that a vector bundle over an orbifold need not have any section
which is transverse to zero.

That these derived bordism groups �der
� define a homology theory for orbispaces

requires enough vector bundles. This is related to the fact that the “proper” definition
of a derived orbifold is as something with an atlas of derived orbifold charts (it would
be essentially obvious that bordism of these defines a homology theory for orbispaces),
and enough vector bundles implies everything has a global chart.

For any vector bundle over X , there are so-called “inverse Thom maps”

(1-7) ��.X /!��CjV j.X
V / and �der

� .X /!�der
�CjV j.X

V /;
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with terminology following Schwede [34, Section 6]. For derived bordism, the inverse
Thom maps are isomorphisms, whereas for ordinary bordism they are isomorphisms for
vector bundles with trivial isotropy representations, but not in general. In fact, similar
to the situation in global homotopy theory [34, Section 6], there is a precise sense in
which derived bordism is the localization of bordism at the inverse Thom maps.

A remarkable result of Wasserman implies that bordism is in fact a particular instance
of derived bordism with tangential structure. Specifically, �� is bordism of derived
orbifolds together with a vector bundle V and a stable isomorphism of vector bundles
TD�EDV �Rk , modulo .V; k/ 7! .V ˚R; kC1/. This fact fundamentally underlies
the Pontryagin–Thom isomorphism for��— homotopical cobordism theories are really
all derived cobordism theories with some sort of tangential structure.

We can also consider bordism of orbifolds with tangential structure. The sort of
tangential structure S permitted (“coarsely stable” or “stable”) depends on whether we
are considering �S

� or �S;der
� . We leave a precise discussion of these theories for the

main body of the paper.

Geometric bordism theories may be extended to the category of orbispectra (to be
discussed shortly) by twisting. Structured derived bordism of .X;A/�� is defined as
bordism of derived orbifolds over .X;A/ with the given structure on their tangent
bundle minus �; so to extend underived bordism to orbispectra, the key is to think
of it as structured derived bordism via Wasserman. For example, �fr

0
..X;A/��/ is

bordism of derived orbifolds representable over .X;A/ with a stable isomorphism
between their tangent bundle and �. Such twistings are the natural home for the
fundamental class: given a compact orbifold with boundary X , it has a fundamental
class ŒX � 2�fr

0
..X; @X /�TX /; orienting TX with respect to some structure allows one

to undo the twist after pushing forward to the corresponding structured bordism group.

1.3 Homotopical cobordism theories

Any global spectrum [34] defines a cohomology theory for orbispaces, namely a
sequence of functors

(1-8) Zi
W OrbSpc�! Ab

satisfying Zi.†X / D ZiC1.X / and Zi
�F

˛ X˛
�
��!

Q
˛ Zi.X˛/ and which sends

cofiber sequences to exact sequences. Namely, given an orthogonal spectrum Z WO!

Top�, the group Z0.X;A/ is the direct limit over vector bundles E=X of sections of
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�EZ.E/! X supported away from A, modulo homotopy. In fact, we may define
Z0..X;A/��/ to be the direct limit of sections of �EZ.E˚ �/, which extends Z�

to the category of orbispectra (which we will meet shortly). The viability of this
definition depends on enough vector bundles (though one could formulate a more
complicated definition, involving patching together choices of local vector bundles,
which would not require an appeal to enough vector bundles). We expect, but do
not prove, that this definition is equivalent to that obtained from the composition
OrbSpc ,! OrbSpcD PSh.fBGg/D GloSpc †1

��! GloSp.

The orthogonal spectra relevant for this paper are the global Thom spectra defined by
Schwede [34, Section 6]. These include the global sphere spectrum S and the two
flavors of the Thom spectrum of the infinite orthogonal group, mO and MO. The
associated cohomology theories are called homotopical cobordism theories.

1.4 Categories of orbispectra

To relate geometric bordism and homotopical cobordism requires introducing the cate-
gory of orbispectra. We will only ever discuss finite orbispectra, namely desuspensions
of finite orbi-CW–pairs by vector bundles. The category of “naive orbispectra” has
objects of the form †�n.X;A/, with morphisms †�n.X;A/!†�m.Y;B/ given by
the direct limit over k of the space of relative morphisms †k�n.X;A/!†k�m.Y;B/.
We are more interested in the category of “genuine orbispectra”, whose objects take the
form .X;A/�V for V a vector bundle (with possibly nontrivial isotropy representations)
and whose morphisms are defined by a direct limit over passing to Thom spaces of
arbitrary vector bundles.

We define two homotopy categories of finite (genuine) orbispectra RepOrbSpf and
OrbSpf, again depending on whether we use representable maps or not. They fit into a
diagram

(1-9) Spf ! RepOrbSpf ! OrbSpf ;

with Spf (the category of finite spectra) being a full subcategory of the latter two. The
definitions of these categories use enough vector bundles (though this could probably
be eliminated if one took a more abstract approach).

The categories Spf and RepOrbSpf are natural settings for stable homotopy theory.
For example, every morphism in RepOrbSpf fits into an “exact triangle” (although we
do not actually prove that RepOrbSpf is triangulated). We conjecture that the category
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RepOrbSp — a category we do not define, but at the level of1–categories it would be
Ind RepOrbSpf — is the category of parametrized spectra over R.�/.

As before, OrbSpf does not seem to be natural setting for stable homotopy theory. It
seems likely there is a functor OrbSpf ! GloSp (the category of global spectra [34]),
though we do not quite construct it, nor is it clear if we should expect it to be fully
faithful.

1.5 Duality

Now a key result is to define a contravariant involution D (“duality”) on the category
RepOrbSpf. The construction of this functor relies crucially on enough vector bundles.

Theorem 1.3 The category RepOrbSpf admits a contravariant involution D preserv-
ing cofiber sequences , defined by declaring that

(1) for any compact orbifold with boundary X and codimension-zero suborbifold
with boundary A� @X , we have

(1-10) D..X;A/��/D .X; @X �Aı/��TX ;

and

(2) for any smooth embedding of such pairs f W .X;A/ ,! .Y;B/ (so X � Y is a
smooth suborbifold of Y meeting @Y transversely precisely in A D X \B),
we have that .Df /T Y W .Y; @Y �Bı/! .X; @X �Aı/T Y=TX is the obvious
collapse map.

It follows from the definition that D stabilizes the full subcategory Spf � RepOrbSpf

and coincides on it with classical Spanier–Whitehead duality of finite spectra [36]; the
definition of D is essentially identical to Atiyah’s formulation [3], just generalized to
orbifolds. However, whereas Spanier–Whitehead duality on Spf is characterized by the
universal property of a map X ^Y !S0 being the same as a map X!DY , we do not
know a universal-property characterization of the involution D on RepOrbSpf. There
is at least a natural map from maps X ! Y to maps X ^DY !R.�/, but it is not an
isomorphism and we do not know any sense in which it characterizes D; the essential
reason for this is that ^ does not play well with representability; see Example 1.8. The
identity map X !X thus corresponds to a canonical pairing X ^DX !R.�/ which,
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upon passing to classifying spaces (note that eR.�/D�), gives a pairing zX ^eDX!S0,
hence a comparison map

(1-11) eDX !D zX ;

where we should understand that the classifying space of an object of RepOrbSpf

is an object of Sp D Ind Spf, not Spf, so D zX is an object of Pro Spf. The results
of Greenlees and Sadofsky [19, Corollary 1.2] and Cheng [9] may be viewed as the
assertion that this comparison map is K.n/–local for all n, where K.n/ denotes Morava
K–theory.

Duality allows us to define, for any global spectrum E, an E–homology functor
RepOrbSpf ! Ab by taking

(1-12) E�.X / WDE��.DX /:

Note that whereas E–cohomology is a functor on OrbSpf, we only define E–homology
as a functor on RepOrbSpf.

Recall that in ordinary stable homotopy theory, the E–homology of a (finite) space X is
defined as ŒS0;X ^E�D ŒDX;E�. Due to D not being the monoidal dual with respect
to ^, this equality no longer holds in our context, so there are a priori two reasonable
notions of E–homology for orbispaces. We consider the latter definition since it is the
one which is relevant for the Pontryagin–Thom isomorphism. The former definition
(implemented in the context of global homotopy theory) is proposed by Schwede [34]
and is presumably quite different.

1.6 Pontryagin–Thom isomorphism

We may now state the Pontryagin–Thom isomorphism relating geometric bordism and
homotopical cobordism on RepOrbSpf.

Theorem 1.4 There are natural isomorphisms of functors on RepOrbSpf

S� D�fr
�;(1-13)

mO� D��;(1-14)

MO� D�der
� :(1-15)

Example 1.5 Under the Pontryagin–Thom isomorphism, the unit 1 2 S0.X / is sent
to the fundamental class ŒX � 2 �fr

0
..X; @X /�TX / for any compact orbifold-with-

boundary X .
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Example 1.6 The orbi-CW–complex R.�/ is not finite, but we may nevertheless
define ��.R.�// and mO�.R.�// by taking the direct limit over finite subcomplexes,
and we conclude they are isomorphic; compare Example 1.1.

The Pontryagin–Thom construction also gives a description of the morphism groups in
RepOrbSpf and in OrbSpf in terms of bordism.

Theorem 1.7 Let .X;A/ and .Y;B/ be compact orbi-CW–pairs carrying stable vector
bundles � and �. The set of morphisms

(1-16) D..X;A/��/! .Y;B/��

in OrbSpf (resp. RepOrbSpf ) is in canonical bijection with bordism classes of derived
orbifolds .C; @C /with a representable map f WC!X , a map (resp. representable map)
g W C ! Y such that @C � f �1.A/[g�1.B/, and a stable isomorphism between T C

and f ��Cg��.

Note that this result gives multiple descriptions of the same stable mapping group,
since a given object of OrbSpf or RepOrbSpf may be expressed as .X;A/�� in many
different ways; in particular, passing from .X;A/�� to ..X;A/V /�V�� via the obvious
isomorphism acts via Theorem 1.7 on bordism classes of derived orbifolds by passing
to the Thom space of the pullback of V (and similarly for .Y;B/��). Also note that,
in the case of RepOrbSpf, the description of morphisms is manifestly symmetric in
.X;A/�� and .Y;B/�� , as it should be given that D is an involution.

Example 1.8 As we remarked earlier, there is a canonical pairing W ^DW !R.�/

in RepOrbSpf, which induces a natural transformation

(1-17) Hom.Z;W /! Hom.Z ^DW;R.�//:

Let us understand it via Theorem 1.7. Set Z D D..X;A/��/ and W D .Y;B/�� .
The domain of (1-17) consists of bordism classes of derived orbifolds .C; @C / with
representable maps f W C ! X and g W C ! Y such that @C � f �1.A/[ g�1.B/,
together with a stable isomorphism between T C and f �� C g��. The codomain
consists of bordism classes of derived orbifolds .C; @C / with a representable map
.C; @C /! .X;A/ � .Y;B/ and an isomorphism between T C and the pullback of
�C �— note that there is a unique up to homotopy representable map C !R.�/, so
we can simply ignore this piece of data. The map from the domain to the codomain is
the evident one: send .f;g/ to f �g. Of course, representability of f �g is a rather
different (and weaker) condition from representability of both f and g.
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A notable omission in Theorem 1.7 is an interpretation of the bordism group where
both f and g are arbitrary (not necessarily representable).
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2 Topology of orbispaces

2.1 Orbispaces as topological stacks

We briefly recall some definitions and basic properties; for further background we refer
the reader to [29, Section 3; 20; 27; 4; 25; 5].

We work in the 2–category Shv.Top;Grpd/, whose objects will simply be called
“stacks”. Morphisms between stacks do not form a set, rather a groupoid, which is the
meaning of the prefix “2–”.

The Yoneda inclusion Top ,! Shv.Top;Grpd/ is continuous, and we systematically
identify objects of Top with their images in Shv.Top;Grpd/. Such stacks are called
representable.

A morphism of stacks X!Y is called representable if and only if for every topological
space Z and every map Z! Y , the fiber product X �Y Z is representable. For any
property P of morphisms of topological spaces which is preserved under pullback, a
representable map of stacks X!Y is said to have P if and only if X �Y Z!Z has P
for every topological space Z and every map Z! Y . Examples of such properties
include being an open inclusion, a closed inclusion, étale, separated, proper (which by
definition implies separated), and admitting local sections.

The inclusion Top� Shv.Top;Grpd/ admits a left adjoint j � j W Shv.Top;Grpd/! Top
known as passing to the coarse space of a stack. For a fixed stack X , open (resp. closed)
inclusions Y ,!X are in bijection with open (resp. closed) subsets jY j � jX j.

A stack X is called topological if and only if there exists a representable map admitting
local sections U ! X from a topological space U ; such a map is called an atlas.
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A choice of atlas U!X gives rise to a topological groupoid U�X U!!U presenting X .
Conversely, every topological groupoid M !!O is uniquely of this form. The coarse
space of a topological stack X is the quotient of any atlas U by the image of U �X U !

U�U (which is an equivalence relation). For a topological group G acting continuously
on a topological space V , the stack quotient V =G is by definition the topological stack
presented by the action groupoid G �V !! V .

By a “point” p of a stack X , we mean a map p W � !X , ie an object of X.�/, where
� denotes the one point space. The automorphism group of this object of X.�/ is
called the isotropy group of p, denoted by Gp . Given a point �!X , the fiber product
��X � has trivial isotropy, and its points are in bijection with Gp . If X is a topological
stack, then ��X � is a topological space, which thus endows Gp with the structure of
a topological group.

A separated orbispace is a stack X which admits an étale atlas U ! X and whose
diagonal X !X �X is proper. Equivalently, X is a separated orbispace if and only
if jX j is Hausdorff and there exists a cover of X by open substacks of the form Y=�

where � is a finite discrete group acting continuously on a Hausdorff topological
space Y [29, Proposition 3.3]. In particular, a separated orbispace has an étale atlas
U ! X for which U is Hausdorff. Henceforth we will drop the prefix “separated”
from “separated orbispace” and simply write “orbispace”.

The isotropy groups of an orbispace are all finite and discrete. A map of orbispaces
is representable if and only if it is injective on isotropy groups [29, Corollary 3.6]; in
particular, an orbispace is a space if and only if its isotropy groups are all trivial.

The stack quotient V =G is an orbispace provided V is Hausdorff, G is compact
Hausdorff (these imply V =G has proper diagonal), and there exists a map W ! V

such that the resulting map G �W ! V is étale (this implies that W ! V =G is an
étale atlas). In particular, V =G is an orbispace for V Hausdorff and G finite.

An orbispace is called paracompact if and only if its coarse space is paracompact.

For any finite group G (we equip all finite groups with the discrete topology), the
stack BG WD �=G (the stack quotient of a point � by the trivial action of G) is an
orbispace. The quotient map � ! BG is the universal principal G–bundle: for any
stack Y , the functor from maps Y ! BG to principal G–bundles over Y given by
pulling back �!BG is an equivalence of groupoids. The groupoid of maps BG!BH

is (canonically equivalent to) the groupoid Hom.G;H /=H in which an object is a group
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homomorphism ' WG!H and in which an isomorphism ' ��! '0 is an element h2H

satisfying ' D h'0h�1. The full subcategory of stacks of the form BG for some finite
group G is thus equivalent to the 2–category FinGrp of finite groups, homomorphisms,
and conjugations. We will frequently restrict consideration to representable maps, in
which case the category formed by BG is denoted by InjFinGrp, which is the same as
FinGrp except homomorphisms are required to be injective.

Lemma 2.1 For orbispaces X and Y, the product X � Y is an orbispace and the
natural map jX �Y j ! jX j � jY j is a homeomorphism.

Proof For étale atlases UX ! X and UY ! Y , the product UX �UY ! X � Y is
an étale atlas, and the diagonal of X �Y is the product of the diagonals of X and Y ,
hence is proper. Thus X �Y is an orbispace.

The assertion that jX �Y j ! jX j � jY j is a homeomorphism can be checked locally
on jX j and jY j. It thus suffices to show that for actions of finite groups G and H on
Hausdorff spaces X and Y , the natural map j.X �Y /=.G �H /j ! jX=Gj � jY=H j

is a homeomorphism. This map is obviously a bijection. Open subsets of the domain
correspond to .G�H /–invariant open subsets of X �Y . Open subsets of the target are
generated by products of G–invariant open subsets of X with H–invariant open subsets
of Y . Open subsets of the latter form are certainly of the former form (which is the
obvious direction in which jX �Y j ! jX j � jY j is continuous). Conversely, suppose
U �X �Y is a .G�H /–invariant open set and let .x;y/ 2U . Let us show that there
exists a product of a G–invariant open subset of X and an H–invariant open subset
of Y which contains .x;y/ and is contained in U . Since U is open in the product
topology, it contains a neighborhood V �W of .x;y/ where V �X and W � Y are
open. Now since U is .G�H /–invariant, it also contains .G �V /� .H �W /, so we are
done.

Lemma 2.2 If X is an orbispace and U !X is an étale atlas with U Hausdorff , then
U !X is separated.

Proof The map U �X U !U �U is separated since X!X �X is separated, and the
map U �U ! U is separated since U is Hausdorff. The composition U �X U ! U

is thus separated; hence U !X is separated.

Lemma 2.3 A map of orbispaces is an isomorphism if and only if it induces isomor-
phisms on isotropy groups and induces a homeomorphism on coarse spaces.
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Proof Let f WX!Y be a map of orbispaces which induces isomorphisms on isotropy
groups Gx

��!Gf .x/ and induces a homeomorphism on coarse spaces jf jW jX j! jY j,
and let us show that f is an isomorphism. The property of f being an isomorphism is
local on jY j, so we may assume without loss of generality that Y D Y 0=G for some
finite group G acting continuously on a Hausdorff space Y 0. Since f is representable,
X 0 WD Y 0 �Y X is a space, and X D X 0=G. We thus have a G–equivariant map
X 0! Y 0, which induces a homeomorphism jX 0=Gj ��! jY 0=Gj and which induces
isomorphisms on stabilizer groups. This implies that X 0! Y 0 is a bijection. It suffices
to show that the map f 0 WX 0! Y 0 is open, and hence is a homeomorphism. What we
know is that f 0 sends G–invariant open subsets to open subsets. Let x 2 X 0. Since
Y 0 is Hausdorff, there exist open neighborhoods Ug � Y 0 of g � f 0.x/ for all g 2 G

such that g �Uh D Ugh and Ug \Uh D ¿ for g � f 0.x/ ¤ h � f 0.x/ while Ug D Uh

for g � f 0.x/D h � f 0.x/. Now let V � .f 0/�1.U1/ be any open neighborhood of x.
Its image f 0.V /� Y is the intersection of two open sets f 0.G �V /\U1, so f 0.V / is
open. Thus f 0 is open.

A topological orbifold is an orbispace X which is étale locally homeomorphic to Rn,
in the sense that for some (equivalently, every) étale atlas U ! X , the space U is
locally homeomorphic to Rn (it may also be required paracompact if one so desires).
In other words, X is locally isomorphic to U=� for U �Rn open and � Õ U acting
continuously. A topological orbifold is called locally tame if and only if we may take
such actions �ÕU to be restrictions of linear actions on Rn. A smooth structure on a
topological orbifold X is a choice of atlas U ! X together with a smooth structure
on U such that the two smooth structures on U �X U obtained via pullback from the
smooth structure on U coincide (smooth structures relative to U ! X and U 0! X

are equivalent if and only if they give rise to the same pullback smooth structure on
U �X U 0). Smooth orbifolds are locally isomorphic to U=� for U � Rn open and
� Õ U acting smoothly (equivalently, linearly).

2.2 Vector bundles and principal bundles over orbispaces

A (real) vector bundle over a stack X is a representable map V !X along with maps
R � V ! V and V �X V ! V over X such that the pullback to any topological
space Z!X is a vector bundle over Z with its fiberwise scaling and addition maps.
Similarly, for a Lie group G, a principal G–bundle over a stack X is a representable
map P ! X along with a map G � P ! P over X such that the pullback to any
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topological space Z! X is a principal G–bundle with its G–action. We only ever
consider finite-dimensional vector bundles, so we will usually omit the adjective “finite-
dimensional” for the sake of brevity. We will also only ever consider positive definite
inner products, so we will also usually omit the adjective “positive definite”.

For a vector bundle V !X and a point p W � !X , the fiber Vp WD V �X � carries a
linear action of the isotropy group Gp . Similarly, given a principal G–bundle P !X

and a point p W �!X , the fiber Pp carries a Gp–action compatible with the G–action;
so, fixing an identification of G–spaces Pp D G, this becomes a homomorphism
Gp!G.

Lemma 2.4 For any topological space X , the tautological bijection between (setwise)
maps X � Rn ! Rm (resp. X � G ! G) which for every fixed x 2 X are linear
(resp. G–equivariant) and maps X ! Hom.Rn;Rm/ (resp. X ! G) restricts to a
bijection between the subsets of continuous maps.

Proof For one direction, the map Rn �Hom.Rn;Rm/!Rm (resp. G �G!G) is
continuous, so its pullback along a continuous map X!Hom.Rn;Rm/ (resp. X!G)
remains continuous. For the other direction, note that the “matrix entries” of a map
X !Hom.Rn;Rm/ can be recovered from the map X �Rn!X �Rm by appropriate
pre- and post-composition with maps � ! Rn and Rm ! R, and similarly for Lie
groups G.

It follows immediately from Lemma 2.4 that for any topological space X , the func-
tor from the groupoid of maps X !

F
n�0 �=GLn.R/ to vector bundles over X

defined by pulling back the vector bundle
F

n�0 Rn=GLn.R/!
F

n�0 �=GLn.R/

is an equivalence; similarly for X ! �=G and principal G–bundles, and similarly
for X !

F
n�0 �=O.n/ and vector bundles with inner product. These statements

automatically extend to arbitrary stacks X : a vector bundle V !X is the same as the
specification, compatible with pullback, of a vector bundle VZ ! Z for every map
Z!X from a topological space Z, which is, by the above result for topological spaces,
the same as the specification, compatible with pullback, of a map Z!�=GLn.R/ for
every map Z!X from a topological space Z, which is the same as a map of stacks
X !

F
n�0 �=GLn.R/ (and similarly for �=G and �=O.n/).

There is a standard deformation retraction from Inj.Rn;Rm/ to the subspace of isometric
injections given by f 7! f .f �f /�t=2 for t 2 Œ0; 1�. Since this deformation retraction
is O.n/�O.m/–equivariant, by Lemma 2.4 it induces, for any injective map of vector
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bundles with inner products over a topological space X , a canonical homotopy through
injections to an isometric injection; moreover, the same holds for arbitrary stacks X ,
by the reasoning as in the previous paragraph.

We now move on to some foundational results which are specific to orbispaces.

Lemma 2.5 Every principal G–bundle over an orbispace X is locally of the form
.G �Y /=�! Y=� for � Õ Y and �!G.

Proof The case of G D GLn.R/ (ie vector bundles) was proven in [29, Lemma 6.7].
The essential point in generalizing the proof given there to general G is to note that
there is a G–conjugation, G–translation and Sn–invariant “averaging” operation giving
a retraction onto the diagonal G �Gn defined in its neighborhood.

Some important properties of vector bundles and principal bundles require a paracom-
pactness assumption.

Lemma 2.6 [29, Lemma 5.1] Every vector bundle over a paracompact orbispace has
an inner product.

Lemma 2.7 For a paracompact orbispace X , every principal G–bundle over X � Œ0; 1�

is pulled back from X .

Proof The case of G D GLn.R/ (ie vector bundles) was proven in [29, Lemma 6.2].
The same averaging operation as before allows this proof to apply to general G.

2.3 Gluing orbispaces

We now explain how some basic topological gluing constructions are generalized to
the orbispace context. These constructions provide the foundation for doing algebraic
topology with orbispaces.

We begin with a discussion of how to glue together stacks along open substacks. The
first step is to observe the following “descent for morphisms” property:

Lemma 2.8 Let X D
S
˛ U˛ be a cover by open substacks. The functor

(2-1) Hom.X;Y / ��!
˚
f˛ 2 Hom.U˛;Y /;g˛ˇ W f˛jU˛\Uˇ

��! fˇjU˛\Uˇ

ˇ̌
g˛ˇgˇ D g˛ over U˛ \Uˇ \U

	
is an equivalence for any stack Y . (On the right side, an isomorphism .f˛;g˛ˇ/!

.f 0˛;g
0
˛ˇ
/ consists of �˛ W f˛ ��! f 0˛ such that g0

˛ˇ
�ˇ D �˛g˛ˇ over U˛ \Uˇ.)
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Proof We may construct an inverse to (2-1) as follows. Given an element of the
right-hand side, we may associate to any map Z!X (where Z is a topological space)
a map Z! Y , as follows. The map Z!X induces an open cover ZD

S
˛ Z�X U˛ .

Each map Z �X U˛ ! U˛ may be composed with our chosen element on the right
side of (2-1) to a map Z �X U˛! Y . The compatibility data on the right side of (2-1)
provides descent data to glue these maps together (using the stack property for Y )
to a map Z ! Y . We have thus associated to each map Z ! X a map Z ! Y .
This construction is compatible with pullback, hence defines a map of stacks X ! Y .
Tracing through definitions, it can be checked that this map is a two-sided inverse
to (2-1).

Lemma 2.8 may be reformulated as saying that X is the colimit of the diagram
consisting of the open substacks U˛, their pairwise intersections U˛ \Uˇ, and their
triple intersections U˛ \Uˇ \U (and no higher intersections).

Going in the opposite direction, let us argue that pushouts of open inclusions of stacks
always exist. Namely, consider a pair of open inclusions X  - U ,! Y . Given such
data, we may define a stack X [U Y by the following natural mapping property: a map
Z!X [U Y (with Z a topological space) consists of an open cover Z DZX [ZY ,
maps ZX !X and ZY !Y such that in both cases the inverse image of U is ZX \ZY ,
together with an isomorphism between the two resulting maps ZX \ZY ! U . It
is immediate to check that the maps X ! X [U Y  Y are both open inclusions
intersecting along U , so Lemma 2.8 implies that

(2-2)
U X

Y X [U Y

is a pushout. Since X ,!X [U Y  - Y are open inclusions, it follows that if X and
Y both admit étale atlases, then so do U and X [U Y . Also, if X and Y are locally of
the form V =� for a finite group � acting on a Hausdorff space V , then the same holds
for X [U Y . Thus if X and Y are orbispaces, to verify that X [U Y is an orbispace, it
suffices to show that jX [U Y j is Hausdorff. Since the coarse space functor j � j is a left
adjoint, it preserves all colimits, so jX [U Y j D jX j [jU j jY j. This gives an effective
procedure to glue together a pair of orbispaces along a common open subspace and to
show that the result is again an orbispace.

The next construction we wish to discuss is the formation of mapping cylinders for
representable maps of orbispaces. For a map of topological spaces A!X , the mapping
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cylinder cyl.A!X / is defined as the pushout

(2-3)
A X

A� Œ0; 1� cyl.A!X /

�f0g

A basic property of colimits in the category of topological spaces is that the property
of a diagram being a colimit diagram is local on the colimit object. It follows that
colimit diagrams are preserved under étale pullback: if U ! colim p is étale, then
the natural map colim.p�colim p U /! U is an isomorphism. Thus the formation of
mapping cylinders commutes with étale pullback: if U !X is étale, then the natural
map cyl.A�X U ! U /! cyl.A!X /�X U is an isomorphism. This fact allows us
to define the mapping cylinder of any representable map of stacks A!X for which X

(hence also A) admits an étale atlas. Indeed, let A! X be such a map. Choose an
étale atlas U !X , which pulls back to an étale atlas A�X U !A. We thus obtain a
topological groupoid U �X U !!U presenting the stack X , and we obtain a topological
groupoid U �X A�X U !!A�X U presenting A. The map A!X induces a map of
topological groupoids from the latter to the former, which presents the map A!X .
We may consider the “cylinder” of this map of groupoids, namely

(2-4) cyl.U �X A�X U ! U �X U /!! cyl.A�X U ! U /;

and we define cyl.A!X / to be the topological stack presented by this groupoid. Note
that cyl.U �X A�X U !U �X U /D cyl.A�X U !U /�X U since U !X is étale.

Lemma 2.9 The stack cyl.A!X / is independent , up to canonical equivalence , of
the choice of étale atlas U !X .

Proof It suffices to show that for any two atlases U !X  U 0, the inclusions of the
groupoids (2-4) for U and U 0 into the groupoid for U tU 0 induce equivalences of
stacks. To show this, it in turn suffices to show that the map

(2-5) cyl.U 0 �X A�X U ! U 0 �X U /! cyl.A�X U ! U /

admits local sections. This in turn is implied by the assertion that the natural map

(2-6) cyl.U 0 �X A�X U ! U 0 �X U /! U 0 �X cyl.A�X U ! U /

is an isomorphism, which holds as formation of mapping cylinders of topological spaces
commutes with étale pullback (both sides are .U 0 �X U /�U cyl.A�X U ! U /).
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Formation of mapping cylinders commutes with passing to the coarse space: for
any representable map of stacks A ! X admitting étale atlases, the natural map
cyl.jAj!jX j/!j cyl.A!X /j is an isomorphism. This can be checked by inspection,
using the fact that for any topological stack X with atlas U !X , the map U ! jX j is
the topological quotient by the image of U �X U !U �U , and fact that jA� Œ0; 1�j!
jAj � Œ0; 1� is an isomorphism for any topological stack A [29, Lemma 6.15].

It now follows that if A and X are both orbispaces, then so is cyl.A! X /. Indeed,
if Y=� ,! X is an open inclusion for Y Hausdorff and � finite, we obtain an open
inclusion .A�X Y /=� D A�X .Y=�/ ,! A. Since A is an orbispace, its diagonal
is proper, so the action map � � .A�X Y /! .A�X Y /� .A�X Y / is proper, hence
its precomposition with A�X Y

1�
�! � � .A�X Y / is proper; this being the diagonal

of A�X Y , we conclude that A�X Y is Hausdorff. We thus have an open inclusion
cyl.A�X Y ! Y /=� ,! cyl.A! X /, where cyl.A�X Y ! Y / is Hausdorff. The
coarse space jcyl.A!X /j D cyl.jAj ! jX j/ is Hausdorff since jX j and jAj are.

Our next task is to show that the mapping cylinder diagram (2-3) is a pushout. This
gives another proof of the fact that formation of mapping cylinders commutes with
passing to the coarse space. We begin with an example to show that mapping cylinder
diagrams, even of topological spaces, need not be pushouts in the category of all stacks.
Our task is thus, more precisely, to identify a particular full subcategory of stacks in
which mapping cylinder diagrams are pushouts; see Proposition 2.13 below.

Example 2.10 Consider the pushout diagram

(2-7)
f1g Œ1; 2�

Œ0; 1� Œ0; 2�

in the category of topological spaces. Let X denote the stack defined by the property
that a map Z ! X from a topological space Z is a continuous map f W Z ! Œ0; 2�

such that there exists an open cover Z DU [V with f .U /� Œ0; 1� and f .V /� Œ1; 2�.
(Note that X is indeed a stack!) Now there is a tautological diagram

(2-8)
f1g Œ1; 2�

Œ0; 1� X
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which is not induced by a map Œ0; 2�! X ; there is no open covering Œ0; 2�D U [V

with U � Œ0; 1� and V � Œ1; 2�. It follows that the diagram (2-7) is not a pushout in the
category of all stacks.

Lemma 2.11 Let fX˛g˛2A be any diagram of topological spaces and denote its colimit
by X WD colim˛2A X˛. For any topological stack T , the map

(2-9) Hom.X;T /! lim
˛2A

Hom.X˛;T /

is fully faithful.

Proof We just need to recall the description of Hom.X;T / for X a topological
space and T the stack associated to a topological groupoid M !

! O . An object of
Hom.X;T / is an open cover X D

S
i Ui together with a collection of maps ˛i WUi!O

and ˇij W Ui \ Uj ! M projecting to ˛i � j̨ and satisfying ˇij ǰk D ˇik over
Ui\Uj\Uk . An isomorphism between .Ui ; ˛i ; ˇij / and .U 0i0 ; ˛

0
i0 ; ˇ
0
i0j 0/ is a collection

of maps ii0 W Ui \U 0i0 !M projecting to ˛i �˛
0
i0 and satisfying ˇijjj 0 D ij 0 over

Ui \Uj \Uj 0 and ii0ˇi0j 0 D ij 0 over Ui \Ui0 \Uj 0 . Composition of isomorphisms
relies on the fact that Hom.�;M / is a sheaf.

Now fix two objects .Ui ; ˛i ; ˇij / and .U 0i0 ; ˛
0
i0 ; ˇ
0
i0j 0/ of Hom.X;T /. The set of

isomorphisms between them is the set of collections of maps ii0 W Ui \ U 0i0 ! M

satisfying certain compatibility properties. Now we note that for any open subset
U � X , the map colim˛2A U˛

��! U is an isomorphism, where U˛ denotes the
inverse image of U inside X˛ . Thus, since M is a topological space, the data of maps
Ui \U 0i0 !M is equivalent to giving a compatible collection of such maps over the
inverse images of Ui\U 0i0 in each X˛ . Such data is precisely the data of an isomorphism
in lim˛2A Hom.X˛;T / between the images of .Ui ; ˛i ; ˇij / and .U 0i0 ; ˛

0
i0 ; ˇ
0
i0j 0/.

Lemma 2.12 For any topological stack X with atlas U !X , the functor

(2-10) Hom.X;T /
��! Eq

�
Hom.U;T /!! Hom.U �X U;T /

!
!
!

Hom.U �X U �X U;T /
�

is an equivalence for any stack T . (Concretely, an object on the right is a map f WU!T

and an isomorphism i W fp1
��! fp2 in Hom.U �X U;T / such that the composition of

i ıp12 and i ıp23 agrees with i ıp13 in Hom.U �X U �X U;T /, and an isomorphism
.f; i/! .f 0; i 0/ is an isomorphism j W f ��! f 0 such that i 0 ı jp1 D jp2 ı i .)
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Proof This is similar to the proof of Lemma 2.8. Given a map Z ! X from a
topological space Z and an element of the right side of (2-10), we may define a map
Z! T as follows. Our map Z!X may be regarded as an open cover of Z, maps
from the elements of the open cover to U , and maps from pairwise intersections to
U �X U , satisfying a cocycle condition. The element of the right side of (2-10) turns
this into maps from the elements of the open cover to T and isomorphisms between
them on their pairwise overlaps, satisfying a cocycle condition. The stack property
for T means that this data defines a map Z ! T . One now checks that this is a
two-sided inverse to (2-10).

Proposition 2.13 For any representable map of stacks A! X admitting separated
étale atlases , the mapping cylinder diagram (2-3) is a pushout in the 2–category of
stacks which admit a separated étale atlas.

Proof We are supposed to show that for any stack T which admits a separated étale
atlas, the map

(2-11) Hom.cyl.A!X /;T /! Hom.X;T /�Hom.A;T / Hom.A� Œ0; 1�;T /

is an equivalence of groupoids.

We begin with the case that X and A are topological spaces. In this case, Lemma 2.11
says that (2-11) is fully faithful, so it remains to prove essential surjectivity. Thus
suppose we have maps X ! T and A � Œ0; 1� ! T and an isomorphism between
the respective induced maps A ! T . We should glue these together into a map
cyl.A!X /! T . Fix a separated étale atlas O! T , hence a groupoid presentation
M !
! O of T with M D O �T O . The map X ! T thus may be regarded as an

open cover X D
S

i Ui , maps Ui!O , and maps Ui \Uj !M , which we may pull
back under f W A! X to obtain the map A! T . This map is isomorphic to the
restriction to ADA� f0g of the given map A� Œ0; 1�! T , which is a priori defined
by a different open cover. Now the key point is the following. Consider one of the
open sets f �1.Ui/ � A, which is equipped with a map f �1.Ui/! O . This map
may be regarded as a section over f �1.Ui/�ADA� f0g of the separated étale map
O �T .A� Œ0; 1�/!A� Œ0; 1�. Since this map is étale, each point p 2 f �1.Ui/ has a
neighborhood Vp � Œ0; "p/ over which the section extends. Since this map is separated
and Œ0; "p/ is connected, these extensions are unique. They hence glue together to
give an open set Vi � A� Œ0; 1� intersecting A� f0g in f �1.Ui/ such that the map
f �1.Ui/!O admits a unique extension to Vi together with an isomorphism of the
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resulting composition to T with the given map A� Œ0; 1�! T . Now Vi and Ui define
together an open set Wi � cyl.A! X /, and we have defined thus a map Wi ! O .
These Wi , together with A� .0; 1�, cover cyl.A! X /, so this data defines for us a
map cyl.A!X /! T lifting our given data on the right side of (2-11).

Having treated the case that X and A are topological spaces, we deduce the general
case using Lemma 2.12. Fix an étale atlas U !X , so that cyl.X !A/ is presented
by the topological groupoid

(2-12) cyl.A�X U ! U /�X U !! cyl.A�X U ! U /:

By Lemma 2.12, we conclude that cyl.X !A/ coincides with the coequalizer

(2-13) Coeq
�
cyl.A�X U ! U /  cyl.A�X U ! U /�X U

 
 
 

cyl.A�X U ! U /�X U �X U
�
:

Each term in the coequalizer is a cylinder (since �X U is an étale pullback so can
be brought inside cyl) of a map of topological spaces. Hence each of these terms is
a pushout (in the 2–category of stacks which admit a separated étale atlas). Since
coequalizers commute with pushouts, we conclude that cyl.X !A/ is the pushout of

(2-14)

Coeq.U   U �X U
 
 
 

U �X U �X U /

Coeq.A�X U   A�X U �X U
 
 
 

A�X U �X U �X U /

Coeq.A�X U �Œ0; 1�  A�X U �X U �Œ0; 1�
 
 
 

A�X U �X U �X U �Œ0; 1�/

The top two coequalizers are simply X and A by Lemma 2.12. The bottom coequalizer
is A� Œ0; 1�, not by pulling out the �Œ0; 1� on general categorical principles, but rather
by applying Lemma 2.12 to the atlas U � Œ0; 1�!A� Œ0; 1�.

We now combine the results obtained thus far into a general gluing operation:

Proposition 2.14 Let B! C be a representable map of orbispaces , and let B ,!A

be a closed inclusion which is collared in the sense that it factors as

B
�f0g
��! B � Œ0; 1/ ,!A;
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where the second map is an open inclusion. The pushout

(2-15)
B C

A A[B C

exists in the category of stacks admitting a separated étale atlas , and A[B C is an
orbispace.

Proof Define A [B C by gluing A n B (an open substack of A) to cyl.B ! C /

along B � .0; 1/ using a choice of collar B � Œ0; 2/ ,! A. The fact that cyl.B! C /

is the pushout of B � Œ0; 1� B! C (Proposition 2.13) and A[B C is the pushout
of cyl.B ! C /  B � .0; 1/ ,! A (Lemma 2.8) implies that (2-15) is a pushout.
In particular, the gluing A [B C does not depend on the choice of collar used to
construct it.

We are also interested in countable iterations of such attachment operations. Let us call
a map of orbispaces X ! Y a mapping cylinder inclusion if and only if it is a closed
inclusion and admits a factorization of the form X ,! .X [A .A�R�0// ,! Y , where
the second map is an open inclusion and the first map is the natural inclusion of X

into the open substack X [A .A� Œ0; 1//�X [A .A� Œ0; 1�/D cyl.A!X / for some
representable map of orbispaces A!X . Equivalently, X ! Y is a mapping cylinder
inclusion if and only if it is the right vertical map in some pushout diagram (2-15)
(without specifying a choice of such presentation).

Proposition 2.15 Let X0!X1!� � � be a sequence of mapping cylinder inclusions of
orbispaces. The colimit colimi Xi exists in the category of stacks admitting a separated
étale atlas , and this colimit is an orbispace.

Proof We begin with the case that all Xi are Hausdorff topological spaces, where
we show that the colimit in the category of topological spaces X WD colimi Xi is the
desired colimit. Let us first note that X is itself Hausdorff. Indeed, let p; q be distinct
points of X , and choose i large so that they both lie in Xi . Since Xi is Hausdorff,
choose disjoint open subsets U i

p and U i
q of it containing p and q, respectively. A

factorization of Xi ! XiC1 witnessing that it is a mapping cylinder inclusion gives
disjoint open subsets U iC1

p and U iC1
q of XiC1 whose intersections with Xi are U i

p

and U i
q , respectively. Iterating in this way, we produce disjoint open subsets Up and

Uq of X containing p and q, respectively.
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Now let us show that for any stack T admitting a separated étale atlas, the map
Hom.X;T /! limi Hom.Xi ;T / is an equivalence (still in the case Xi are topological
spaces and X D colimi Xi is the colimit in the category of topological spaces). It is
fully faithful by Lemma 2.11, so it remains to show essential surjectivity. Choose
a separated étale atlas U ! T . Fix an object of limi Hom.Xi ;T /; this consists, in
particular, of open covers Xi D

S
j Uij and maps Uij ! U , with certain descent data

on intersections. Now the key step is to note that, as was proven already during the
proof of Proposition 2.13, the open sets Uij covering Xi extend to XiC1 along with
their maps to U . We may thus construct new open covers of the Xi by induction as
follows: the new open cover of X0 is simply the one we are given to start with, and the
new open cover of Xi is obtained by taking the new open cover of Xi�1, extending it to
a neighborhood of Xi�1 inside Xi as in the proof of Proposition 2.13, and then adding
Xi nXi�1 (which is open since Xi�1 �Xi is closed) intersected with all the open sets
in the given open cover of Xi . We thus obtain an open cover of X and continuous
maps from the elements of this open cover to U , along with the relevant descent data to
define a map X ! T . This completes the proof in the case that the Xi are topological
spaces.

We now move on to the general case. Note that if X!Y is a mapping cylinder inclusion,
then so is jX j ! jY j, since passing to the coarse space preserves open inclusions and
mapping cylinders. Hence jXi j ! jXiC1j is a mapping cylinder inclusion. Thus
the colimit colimi jXi j— which must be the coarse space of colimi Xi if it exists — is
Hausdorff as above. Now every Xi maps to colimi jXi j, and since the latter is Hausdorff,
it suffices to prove the statement after restricting to an open cover of colimi jXi j. Thus
fix a point p 2 colimi jXi j and let us prove the statement in a neighborhood of p. We
have p 2 jXi j for some i , and let us construct an open neighborhood of p as in the
paragraph above, ie we begin with an open neighborhood U i � jXi j of p, we consider
U iC1 � jXiC1j the inverse image of Ui in the mapping cylinder Xi[A .A�R�0/, and
iterating gives the desired open neighborhood in the colimit. The effect of restricting
to such an open subset is that we have reduced ourselves to the situation of a chain of
closed inclusions X0 ,!X1 ,! � � � , where XiC1 DXi [Ai

.Ai �R�0/.

We may now treat this special case as follows. By restricting further to an open subset
of X0 (and its inverse image in every Xi), we may assume without loss of generality
that X0 D Y0=G for some Hausdorff space Y0 acted on by a finite group G. Pulling
back under each projection, we obtain a sequence of inclusions of Hausdorff topological
spaces Y0 ,! Y1 ,! � � � , each with an action of G, where YiC1 D Yi [Bi

.Bi �R�0/,
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G–equivariantly, and Xi D Yi=G. Now it suffices to show that colimi.Yi=G/ D

.colimi Yi/=G; note that colimi Yi is Hausdorff, as shown above. Express each Yi=G

via the topological groupoid G �Yi
!
! Yi , and appeal to Lemma 2.12 to see that for

any stack T , we have

(2-16) lim
i

Hom.Xi ;T /

��! lim
i

Eq
�

Hom.Yi ;T /!! Hom.G�Yi ;T /
!
!
!

Hom.G�G�Yi ;T /
�

D Eq
�

lim
i

Hom.Yi ;T /!! lim
i

Hom.G�Yi ;T /
!
!
!

lim
i

Hom.G�G�Yi ;T /
�
:

Now for T admitting a separated étale atlas, we have an equivalence limi Hom.Yi ;T /D

Hom.colimi Yi ;T / since Yi ,! YiC1 are mapping cylinder inclusions, and the same
holds for G �Yi and G �G �Yi for the same reason. We also have colimi.G �Yi/D

G � colimi Yi since G is finite (the functor �G on topological spaces is cocontinuous
whenever G is locally compact since it then has a right adjoint Maps.G;�/). We
therefore have, for T admitting a separated étale atlas,

(2-17) lim
i

Hom.Xi ;T /D

Eq
�

Hom.colim
i

Yi ;T /!!Hom.G�colim
i

Yi ;T /
!
!
!

Hom.G�G�colim
i

Yi ;T /
�
:

Applying Lemma 2.12 once more, we see that the right side is Hom..colimi Yi/=G;T /,
as was to be shown.

2.4 Orbi-CW–complexes (topology)

We now define orbi-CW–complexes. The definition we give realizes in some form a
proposal of Gepner and Henriques [18], but differs on some key details. An orbi-CW–
complex X is specified as follows. We begin with the “.�1/–skeleton” X�1 WD¿. The
k–skeleton Xk is defined in terms of Xk�1 by attaching cells of the form Dk �BG

for finite groups G along representable attaching maps @Dk �BG!Xk�1. In other
words, Xk is defined as the pushout

(2-18)

G
˛

@Dk
�BG˛ Xk�1

G
˛

Dk
�BG˛ Xk

F
˛f˛
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in the category of topological stacks admitting an étale atlas, which exists by Proposition
2.14, which also guarantees that Xk is an orbispace. The orbispace X is now defined
as the ascending union

(2-19) X WD colim
k

Xk ;

which exists and is an orbispace by Proposition 2.15. Since the coarse space functor
j � j preserves colimits (since it is a left adjoint), it follows that the coarse space of an
orbi-CW–complex is a CW–complex, with exactly the same attaching maps.

An orbi-CW–complex is equivalently a pair .X;uk;˛/ where X is an orbispace and
fuk;˛ W D

k �BG˛ ! X gk;˛ is a collection of representable maps which satisfy the
following inductive condition: the restriction uk;˛j@Dk�BG˛

has image contained in
the closed substack Xk�1 � X (begin with X�1 WD ¿), the resulting map Xk WD

Xk�1 [uk;˛

F
˛ Dk � BG˛ ! X is a closed inclusion, and X is the colimit of the

closed substacks Xk .

Lemma 2.16 A pair .X;uk;˛/ consisting of an orbispace X and a collection of
representable maps uk;˛ WD

k �BG˛! X is an orbi-CW–complex if and only if the
pair .jX j; juk;˛j/ is a CW–complex and all uk;˛j.Dk/ı�BG˛

induce isomorphisms on
isotropy groups.

Proof We show by induction that Xk �X is the closed substack corresponding to the
closed subset jX jk � jX j induced by the CW–structure .jX j; juk;˛j/. The image of
uk;˛j@Dk�BG˛

is contained in the closed substack Xk�1 �X since this can be checked
at the level of coarse spaces. By assumption jX jk�1[juk;˛ j

F
˛ Dk ! jX j is a closed

inclusion, and we would like to show that Xk�1[uk;˛

F
˛ Dk �BG˛!X is a closed

inclusion, with the same image. The coarse space of the domain of the second map
coincides with the domain of the first map since coarse space commutes with colimits
and jX jk�1 D jXk�1j by the induction hypothesis. The second map therefore factors
through the closed substack of jX j corresponding to jX jk � jX j (the image of the first
map, by definition). To check that the first map of this factorization is an isomorphism,
it suffices by Lemma 2.3 to note that it induces a homeomorphism on coarse spaces
and isomorphisms on isotropy groups (by the hypothesis on uk;˛j.Dk/ı�BG˛

).

Next, we should show that the map colimk Xk ! X is an isomorphism. Again
by Lemma 2.3, it suffices to note that it induces isomorphisms on isotropy groups
(immediate since Xk � X are closed substacks) and induces a homeomorphism on
coarse spaces (since .jX j; juk;˛j/ is a CW–complex).
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Definition 2.17 A subcomplex A of an orbi-CW–complex X consists of a subset
of the set of cells of X such that the attaching map of any k–cell in A lands inside
Ak�1 � Xk�1, which is a closed substack by induction on k. By Lemma 2.16,
subcomplexes of X are in bijection with subcomplexes of jX j.

Given two orbi-CW–complexes .X;uk;˛/ and .Y; v`;ˇ/, we may ask whether their
product .X � Y;uk;˛ � v`;ˇ/ is an orbi-CW–complex; note that a product of cells
Dk�BG˛�D`�BGˇ is indeed a cell DkC`�B.G˛�Gˇ/. In view of Lemma 2.16 and
Lemma 2.1, this reduces to the corresponding question for the ordinary CW–complexes
obtained by passing to coarse spaces. It is known that a product of CW–complexes is a
CW–complex if at least one of the factors is locally finite [40] or if both factors are
locally countable [26]. (In fact, the question of when a product of two CW–complexes
is a CW–complex is completely solved in [7].)

3 Homotopy theory of orbispaces

3.1 Homotopies

Two maps of orbispaces f;g W X ! Y are called homotopic if and only if there
exists a map h W X � Œ0; 1� ! Y such that h.0; � / and h.1; � / are isomorphic to f
and g, respectively. In particular, if f and g are isomorphic, then they are homotopic.
Homotopy classes of maps form a set. A map with a two-sided inverse up to homotopy
is called a homotopy equivalence.

Example 3.1 Homotopy classes of maps BG! BH are in bijection with conjugacy
classes of group homomorphisms G!H . The “space” (properly defined) of maps
BG! BH would be the homotopy quotient Hom.G;H /==H .

Lemma 3.2 If f and g are homotopic , then f is representable if and only if g is
representable.

Proof Since for maps of orbispaces, representability is equivalent to injectivity on
isotropy groups, it suffices to consider the case of maps from BG. Thus, consider a
map BG � Œ0; 1�! Y . Locally Y D U=� for � finite acting on U Hausdorff. So, a
map BG � Œ0; 1�! Y is (locally) a map G! � and a map Œ0; 1�! U landing in the
G–fixed locus. This is injective on isotropy groups if and only if G! � is injective,
which is obviously an open and closed condition on Œ0; 1�.
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Corollary 3.3 A homotopy equivalence of orbispaces is representable.

Proof Let f and g be homotopy inverses of each other. Since f ı g and g ı f are
homotopic to identity maps, they are representable by Lemma 3.2. Thus f ı g and
g ı f are both injective on isotropy groups, from which it follows that f and g are
injective on isotropy groups.

Lemma 3.4 Let f W Y �BG!X be a map where Y is a topological space and X is
an orbispace. There exists a partition of Y into open subsets YN indexed by the normal
subgroups N E G, representable maps YN �B.G=N /! X , and an isomorphism
between f and the composition

(3-1) Y �BG!
G

N EG

YN �B.G=N /!X:

Moreover , this data is unique up to unique isomorphism.

Proof Applying Lemma 2.12 to the atlas Y ! Y � BG, we find that the data of
a map Y � BG ! X is the same as the data of a map f W Y ! X together with
a homomorphism G ! Aut.f /. Moreover, for a point y 2 Y , the homomorphism
G ! Gf .y/ induced by restricting G ! Aut.f / coincides with the action of the
corresponding map Y �BG! X on isotropy groups. Now we recall that for maps
of orbispaces, representability is equivalent to injectivity on isotropy groups. It thus
suffices to show that for any map f W Y !X and any a homomorphism G! Aut.f /,
the map y 7! ker.G!Gf .y// is locally constant.

Thus, fix f W Y !X and g 2 Aut.f /, and let us show that the set of y 2 Y for which
gjy 2 Gf .y/ is the identity is open and closed. The set of such y is the fiber product
of Y and X over X �X�X X . Thus it suffices to show that X !X �X�X X is an open
and closed inclusion. We can check this locally, so we can assume that X DZ=H for
Z Hausdorff and H finite. Then X �X�X X D

�F
h2H X h

�
=H (the action of H is

by conjugation) and the map from X is the inclusion of the component hD 1.

3.2 Orbi-CW–complexes (homotopy)

The basic objects with which we shall do homotopy theory are orbi-CW–complexes.
Many basic facts about CW–complexes generalize immediately to orbi-CW–complexes,
with identical proofs. For example, for X an orbi-CW–complex and A � X a sub-
complex, the pair .X;A/ has the homotopy extension property — by the universal
property of colimits, we may proceed by induction on cells, for which the statement
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is obvious since cells have boundary collars. Every map of orbi-CW–complexes is
homotopic to one which sends the k–skeleton of the domain to the k–skeleton of the
target. Also a homotopy equivalence between orbispaces X ��!X 0 and homotopies
between attaching maps ff˛ W@Dk�BG˛!X g˛ and ff 0˛ W@D

k�BG˛!X 0g˛ induces
a homotopy equivalence

(3-2) X [ff˛g˛

G
˛

@Dk
�BG˛

��!X 0[ff 0˛g˛

G
˛

@Dk
�BG˛:

Proposition 3.5 A compact orbifold is homotopy equivalent to a finite orbi-CW–
complex.

Proof sketch Let X be a compact orbifold, and choose a Morse function f WX !R

as follows. We define f by induction on the stratification of X by the order of the
stabilizer group. A given stratum is a purely ineffective smooth suborbifold, so we
just choose any Morse function on it (generic ones are Morse), and we extend it in
the normal directions by a positive definite quadratic form. Note that in this way, at
any critical point, the isotropy group acts trivially on the negative eigenspace of the
Hessian. Thus the change in the homotopy type of sublevel sets when passing a critical
point of index k is precisely to attach a cell .Dk ; @Dk/�BG.

We now discuss homotopy groups of orbi-CW–complexes. For an orbispace X , we
have a set �G

0
.X / of homotopy classes of maps BG!X . These are functorial in X

and (contravariantly) in G. More generally, we define �G
k
.X;p/ for a “basepoint”

p W BG ! X as the set of maps f W Sk � BG ! X together with an isomorphism
between f j��BG and p (where � 2 Sk is a fixed basepoint), modulo homotopy. A
homotopy here means a map h W Œ0; 1��Sk �BG!X together with an isomorphism
between hjŒ0;1����BG and p ı ���BG . The sets �G

k
.X;p/ are functorial in .X;p/

and G. As with ordinary homotopy groups, �G
k
.X;p/ is a pointed set for k D 0, a

group for k D 1, and an abelian group for k D 2.

Example 3.6 We have �G
0
.BH / D Hom.G;H /=H (quotient by the conjugation

action). For a map ' W G ! H (inducing a basepoint B' W BG ! BH ), we have
�G

1
.BH;B'/DZH .im.'// (the centralizer of '.G/�H ) and �G

k
.BH;B'/D 0 for

k � 2.

In view of Lemma 3.2, there is a distinguished subset �G;rep
0

.X /��G
0
.X / of homotopy

classes of representable maps BG ! X . Evidently �G;rep
0

.X / is functorial under
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representable maps of X and injective maps of G. The sets �G
0
.X / and �G;rep

0
.X /

contain the same information, in the sense that

�
G;rep
0

.X /D �G
0 .X / n

[
1¤N EG

im
�
�

G=N
0

.X /! �G
0 .X /

�
;(3-3)

�G
0 .X /D

G
N EG

�
G=N;rep
0

.X /:(3-4)

A basepoint p W BG!X factors uniquely as BG! B.G= ker p/
prep
��!X , where the

second map is representable, and by Lemma 3.4 we have �G
k
.X;p/D�

G= ker p

k
.X;prep/

for k � 1; so in this sense the information in the homotopy groups of an orbispace X

is already contained in the case of representable basepoints.

We will also make use of relative homotopy groups �G
k
.X;Y;p/ for a map Y ! X

and a basepoint p W BG! Y . For k � 1, an element of �k.X;Y;p/ is represented by
a diagram

(3-5)
@Dk �BG Y

Dk �BG X

together with an isomorphism between the restriction of @Dk �BG! Y to ��BG

and the basepoint p. These are considered up to homotopy, ie diagrams in which the
orbispaces on the left are replaced with their product with Œ0; 1�, and we specify an
isomorphism with p ı���BG over Œ0; 1����BG. Now �G

k
.X;Y;p/ is a pointed set

for k D 1, a group for k D 2, and an abelian group for k � 3.

It is essentially immediate from the definitions that for a map Y !X and a basepoint
p W BG! Y , there is a long exact sequence (of pointed sets)

(3-6) � � � ! �G
2 .X;Y;p/! �G

1 .Y;p/! �G
1 .X;p/! �G

1 .X;Y;p/! �G
0 .Y;p/

! �G
0 .X;p/:

It is thus natural to define �G
0
.X;Y / as the pointed set �G

0
.X /=�G

0
.Y /. We now have

the following version of Whitehead’s theorem.

Proposition 3.7 A map of orbi-CW–complexes is a homotopy equivalence if and only
if it induces isomorphisms on �G

k
for all basepoints and on �G

0
.
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Proof Let Y !X be a map of orbi-CW–complexes which induces an isomorphism
on all �G

k
. In view of (3-3), the map Y ! X respects the subsets �G;rep

0
� �G

0
. It

follows that Y !X is representable.

Since Y ! X is representable, we may form its mapping cylinder cyl.Y ! X /;
moreover, by first applying cellular approximation to Y ! X to homotope it to be
cellular, we may ensure that cyl.Y !X / is again an orbi-CW–complex.

It now suffices to construct a dotted lift in the diagram

(3-7)
Y Y

cyl.Y !X / X

after possibly homotoping the bottom map rel Y . Since Y � cyl.Y;X / is a subcomplex,
it is equivalent to solving the homotopy lifting problem

(3-8)
@Dk �BG Y

Dk �BG X

which is equivalent to the vanishing of all relative homotopy groups of Y !X . We
are thus done by the long exact sequence (3-6).

Conjecture 3.8 Any metrizable locally tame topological orbifold is homotopy equiva-
lent to an orbi-CW–complex.

A first step towards proving this was taken in [29, Proposition 4.6], which shows
that there always exists a representable map f from any paracompact orbispace to
the geometric realization of a simplicial complex of groups (which is a particular
case of an orbi-CW–complex). The next step would be to argue that, choosing the
cover in the proof of this result to be sufficiently fine, it is possible to construct a
map g in the reverse direction (using equivariant contractibility of Rn with respect to
a linear G–action) and, moreover, that g ı f is homotopic to the identity. One can
then add cells to the target of f , extending g appropriately, until f and g both induce
isomorphisms on all �G

k
, and then apply Proposition 3.7 to f ı g. This is how the

standard proof of the corresponding assertion for topological manifolds goes. That
result also extends to absolute neighborhood retracts, so it is natural to ask whether
this extension has a generalization to the orbispace setting. One could also reasonably

Geometry & Topology, Volume 27 (2023)



1780 John Pardon

conjecture that a compact locally tame topological orbifold is homotopy equivalent
to a finite orbi-CW–complex. This is true for manifolds by the work of Kirby and
Siebenmann [22; 23], and other proofs were given later by West [39] and Chapman [8];
see Ferry and Ranicki [16] for further discussion.

3.3 Homotopy categories of orbispaces

We denote by OrbSpc (resp. RepOrbSpc) the category whose objects are orbi-CW–
complexes and whose morphisms are (resp. representable) homotopy classes of maps.
By Lemma 3.2, representability is preserved by homotopies, and a homotopy between
representable maps is itself representable. The tautological functor RepOrbSpc!
OrbSpc is thus faithful and conservative. The homotopy category of CW–complexes is
denoted by Spc, which is a full subcategory of both RepOrbSpc and OrbSpc.

The functor Spc ,! OrbSpc has a left adjoint, namely the coarse space functor
j � j W OrbSpc! Spc, which sends orbi-CW–complexes to CW–complexes, as noted
earlier.

We use Spcf � Spc, RepOrbSpcf � RepOrbSpc and OrbSpcf � OrbSpc to denote
the full subcategories spanned by finite (orbi-)CW–complexes. Note that the adjectives
“finite” or “compact”, and the resulting notation for full subcategories, sometimes are
used to indicate instead those objects which are compact objects in the categorical
sense; finite orbi-CW–complexes are compact objects categorically, but the converse is
not true.

3.4 Classifying space

The inclusion Spc ,! OrbSpc has a right adjoint denoted by X 7! zX , where zX is
known as the classifying space of X . This right adjoint may be constructed as follows.
It suffices to show that for any orbi-CW–complex X , there exists a CW–complex zX
and a map zX !X such that the homotopy lifting problem

(3-9)
@Dk zX

Dk X

always has a solution. Indeed, this implies that the map zX ! X induces a bijection
between homotopy classes of maps Y ! zX and homotopy classes of maps Y ! X
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for any CW–complex Y . We may construct zX as follows. We begin with zX�1 D¿.
We define zXk from zXk�1 by attaching a k–cell for every element of �k.X; zXk�1/

(for every basepoint when k > 0). By cellular approximation and induction, we have
�i.X; zXk/ D 0 for all i � k. It follows that �i.X; zX / D 0 for every i , which is
equivalent to solvability of the above lifting problem.

Example 3.9 For a CW–complex X , the set of homotopy classes of maps X !BG is
in natural bijection with the set of isomorphism classes of principal G–bundles over X ,
which is in turn in bijection with the set of homotopy classes of maps X ! BG. It
follows that eBG D BG.

The natural map .X �Y /�! zX � zY is an isomorphism since X 7! zX is a right adjoint.

Lemma 3.10 Let X be an orbi-CW–complex covered by subcomplexes P;Q � X

intersecting in A WD P \Q, so X D P [A Q. Fix classifying spaces zP ! P , zQ!Q

and zA!A, with subcomplex inclusions zA! zP and zA! zQ such that the diagram

(3-10)

zP zA zQ

P A Q

strictly commutes; this may be achieved by replacing zP and zQ by the mapping cylinders
of zA! zP and zA! zQ. Then zX D zP [ zA

zQ with the obvious map to P [A QDX .

Proof Given a CW–complex Z and a map Z ! X D P [A Q, let us lift it (up to
homotopy) to zP [ zA

zQ. By subdividing Z and homotoping the map Z!X , we may
assume that each cell of Z maps either entirely to P or entirely to Q. Now we first lift
the cells which map to AD P \Q to zA. A cell which maps to P (resp. Q) but not
entirely to A is now lifted to zP (resp. zQ). This shows that the map from homotopy
classes of maps Z ! zP [ zA

zQ to homotopy classes of maps Z ! X D P [A Q is
surjective. To show injectivity, apply the same argument rel boundary to a homotopy
between the compositions of two maps Z! zP [ zA

zQ with zP [ zA
zQ! P [A Q. Note

that in this proof we used the lifting property (3-9), which is a priori stronger than
(albeit a posteriori equivalent to) the adjointness property of the classifying space at the
level of homotopy categories; the lifting property instead corresponds to a universal
property at the1–category level.
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One can similarly argue by induction on cells that one can construct zX by taking each
cell .Dk ; @Dk/�BG of X and replacing it with .Dk ; @Dk/�BG and attaching as
appropriate.

Remark 3.11 There are other, more point set topological, definitions of the classifying
space of more general topological stacks. These include taking zX to be the nerve of
the simplicial space Œp� 7! U �X � � � �X U (pC 1 times), where U !X is a suitable
atlas. It is also possible to define zX !X by the universal property that zX �X Z!Z

should be “fiberwise contractible” for any topological space Z mapping to X ; compare
Noohi [28]. We will not make either of these definitions precise, nor prove that they
give the right adjoint of Spc ,! OrbSpc, though this is also possible.

3.5 Right adjoint

Here is another adjoint.

Proposition 3.12 The functor RepOrbSpc! OrbSpc has a right adjoint R.

Proof It suffices to show that for every orbi-CW–complex X , there exists an orbi-
CW–complex R.X / and a map R.X /! X such that for every commuting diagram
of solid arrows

(3-11)
@Dk �BG R.X /

Dk �BG X

rep

rep

there exists, after possibly homotoping the bottom map rel boundary, a dotted lift.
Indeed, given such a map R.X / ! X , it follows (by induction on cells) that the
induced map RepOrbSpc.Z;R.X //! OrbSpc.Z;X / is a bijection, which implies
that the adjoint R exists as a functor.

We may now construct the orbi-CW–complex R.X / inductively, just as we constructed
zX above. We begin with R.X /�1 D¿, and we define R.X /k by attaching copies of

Dk �BG to R.X /k�1 along the upper horizontal maps in some set of diagrams (3-11)
with R.X /k�1 in place of R.X / representing every homotopy class of such; note that
the attaching maps are by definition representable. Using cellular approximation and
induction, it follows that R.X /r satisfies the desired lifting property (3-11) for all
k � r ; hence R.X / is as desired.
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The proof of Proposition 3.12 given above shows existence, but is not so amenable
to computation. So, let us sketch what we expect is a more concrete definition of the
functor R W OrbSpc! RepOrbSpc, without claiming to give a complete proof. We
define a functor R W OrbSpc! RepOrbSpc as

(3-12) R.X / WD
G

G0,!���,!Gp

�p
�BG0 �

AMaps.BGp;X /
.
�:

The reader may recognize this formula as a “homotopy coend”. Here AMaps.BG;X /

denotes the classifying space of the mapping orbispace Maps.BG;X /, which is de-
fined by the universal property that a map Y !Maps.BG;X / is the same as a map
Y �BG!X . When X is an orbi-CW–complex, one can instead be much more
concrete: AMaps.BG;X / may be defined by replacing each cell Dk �BH in X with
Dk �Hom.G;H /==H , where H Õ Hom.G;H / by conjugation and == denotes the
homotopy quotient. Now (3-12) is meant to be modeled on the nerve of the 2–category
InjFinGrp of finite groups, injective homomorphisms and conjugations; the quotient �
indicates the colimit over the natural face and degeneracy identifications.

Conjecture 3.13 The expression (3-12) defines a functor R W OrbSpc! RepOrbSpc,
which is right adjoint to RepOrbSpc! OrbSpc.

Proof sketch There is a tautological map R.X /!X , and it suffices to show that the
induced map

(3-13) CRepMaps.BG;R.X //!AMaps.BG;X /

is a homotopy equivalence. Now CRepMaps.BG;R.X // is given by

(3-14)
G

G0,!���,!Gp

�p
�CRepMaps.BG;BG0/�AMaps.BGp;X /

.
�:

Now CRepMaps.BG;BG0/ is just the classifying space of the groupoid of morphisms
G!G0 in InjFinGrp, so we can equivalently write this as

(3-15)
G

G,!G0,!���,!Gp

�p
�AMaps.BGp;X /

.
�:

This being a homotopy colimit over a category with an initial object simply reduces to
AMaps.BG;X /, as desired.
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The space R.�/ 2 RepOrbSpc is the terminal object, and so may be expected to play
a role in the homotopy theory of orbispaces; see eg Conjectures 3.14 and 3.34. It is
characterized by the universal property that the space of representable maps to it is
contractible, in the precise sense that �G;rep

0
.R.�//D� for all G, and �G

k
.R.�/;p/D0

for representable, hence all, basepoints p. Combining this with Lemma 3.4 implies that
the space of all (not necessarily representable) maps from BG to R.�/ is homotopy
equivalent to the (discrete) set of normal subgroups of G. It follows that R.�/ is, in
Rezk’s language [32], the normal subgroup classifier N ; more precisely, the tautological
functor RepOrbSpc! OrbSpc sends R.�/ 2 RepOrbSpc to N 2 OrbSpc — from our
perspective, the categories RepOrbSpc and OrbSpc have the “same” objects, namely
orbi-CW–complexes, so it makes sense to simply say that R.�/ is N , however in
Rezk’s setup the functor R W OrbSpc! RepOrbSpc is the more natural one, being
given by a restriction of presheaves, so the use of its left adjoint RepOrbSpc!OrbSpc
becomes more significant.

Specializing (3-12) gives

(3-16) R.�/D
G

G0,!���,!Gp

�p
�BG0

.
�;

which is an orbi-CW–complex, and one can follow the proof sketch above to see that
it is indeed R.�/. Since every object of RepOrbSpc admits a unique up to homotopy
representable map to R.�/, we may think of objects of RepOrbSpc informally as being
“representable over R.�/”. More precisely, we make the following conjecture, a form
of which is proven by Rezk [32, Proposition 4.6.1]:

Conjecture 3.14 The category RepOrbSpc is equivalent to the category of repre-
sentable fibrations over R.�/ (with reasonable fibers).

We can specify this further: the equivalence should send a representable fibration
over R.�/ to its total space, and the fiber over a generic point of R.�/ should be the
classifying space zX of the orbispace X . There are also interesting functors to G–spaces
given by pulling back under the unique up to contractible choice representable map
BG ! R.�/. In fact, it seems that fibrations over R.�/ should be the same (in the
1–categorical context) as PSh.RepfBGg/, where RepfBGg � RepOrbSpc denotes
the full subcategory spanned by the objects BG, and PSh denotes presheaves. The
proposed formula (3-12) and the sketch of proof of Conjecture 3.13 in fact would apply
to define an inverse of the restricted Yoneda functor RepOrbSpc! PSh.RepfBGg/.
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3.6 Homotopy categories of relative orbispaces

We now introduce categories OrbSpc� and RepOrbSpc� of “relative orbispaces”. These
categories should be thought of as analogues of the category Spc� of pointed CW–
complexes and homotopy classes of pointed maps. They are, however, not the (repre-
sentable) homotopy categories of pointed orbi-CW–complexes and homotopy classes of
pointed maps. The reason that pointed orbi-CW–complexes and pointed maps are not
what we want to consider may be traced back to the fact that there is no well-defined
quotient orbi-CW–complex X=A of a given orbi-CW–pair .X;A/.

We begin with the categories of orbi-CW–pairs OrbSpcPair and RepOrbSpcPair, whose
objects are orbi-CW–pairs .X;A/ (meaning X is an orbi-CW–complex and A�X is a
subcomplex), and whose morphisms .X;A/! .Y;B/ are (representable) commutative
squares. Product of pairs is defined as usual,

.X;A/� .Y;B/ WD .X �Y; .A�Y /[ .X �B//;

as is the notion of homotopies between maps of pairs.

Now the categories OrbSpc� and RepOrbSpc� of “relative orbispaces” are defined as
follows. The objects are again orbi-CW–pairs .X;A/. A “relative map” of orbi-CW–
pairs .X;A/Ü .Y;B/ consists of a closed set A�AC �X , an open set U �X with
X D U [ .AC/ı and a map of pairs .U;U \AC/! .Y;B/. The composition of two
relative maps

(3-17) .X;A/ .Y;B/ .Z;C /
.AC;U;f / .BC;V;g/

is the triple

.AC[f �1.BC/; f �1.V /;g ıf /;

and composition is associative. A homotopy between relative maps is a relative
map .X;A/ � Œ0; 1� ! .Y;B/. The morphisms in OrbSpc� and RepOrbSpc� are
(representable) relative maps modulo (representable) homotopy. Note that it is not
true that representability is preserved under homotopy, nor that a homotopy between
representable maps is necessarily representable. There is a tautological functor

(3-18) RepOrbSpc�! OrbSpc�;

which is not faithful. The homotopy category of pointed CW–complexes Spc� is a full
subcategory of both RepOrbSpc� and OrbSpc�.
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Proposition 3.15 (excision) The functors

OrbSpcPair! OrbSpc�;(3-19)

RepOrbSpcPair! RepOrbSpc�;(3-20)

are localizations at the collection W of morphisms of the form .P;P \Q/! .X;Q/,
where X D P [Q is a cover by subcomplexes.

The same holds if we restrict both sides to the full subcategories spanned by finite
orbi-CW–pairs.

Proof First note that the morphisms W in RepOrbSpcPair do indeed become isomor-
phisms in RepOrbSpc� (hence also in OrbSpc�). Indeed, such morphisms are, up to
isomorphism in RepOrbSpcPair, of the form

(3-21) .X;A/!
�
X [B�f0g .B � Œ0; 1�/[B�f1g Y;A[B�f0g .B � Œ0; 1�/[B�f1g Y

�
;

and these have an evident inverse up to homotopy in RepOrbSpc�.

We now show that OrbSpcPair!OrbSpc� satisfies the universal property of localization
at W , namely that for any functor OrbSpcPair! C which sends all morphisms in W

to isomorphisms factors uniquely up to unique isomorphism through OrbSpc� (and
the same for RepOrbSpcPair! RepOrbSpc�). Let F WOrbSpcPair! C be given. The
action of zF on objects is fixed since OrbSpcPair! OrbSpc� is essentially surjective.
We are thus reduced to showing that there exists a unique collection of maps

zF W OrbSpc�
�
.X;A/; .Y;B/

�
! C

�
F.X;A/;F.Y;B/

�
factoring F , which are compatible with composition.

Given a map .AC;U; f / W .X;A/! .Y;B/ in OrbSpc�, it factors as

(3-22) .X;A/! .X;AC/
W
 � .U;U \AC/

f
�! .Y;B/:

By subdividing X , we may shrink U �X and AC�X to be subcomplexes covering X ;
so U is, in particular, likely no longer open. Since F sends W to isomorphisms it
follows that zF applied to this map is determined uniquely by F . It is a tautology that
zF .AC;U; f / defined in this way is invariant under homotopy of .AC;U; f /, simply

because the two maps .X;A/! .X � Œ0; 1�;A� Œ0; 1�/ coincide in RepOrbSpcPair.
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Finally, we should check that zF respects composition; this follows from the commuting
diagram

(3-23)

.X;A/

.X;AC[f �1.BC// .X;AC/

.U;U \ .AC[f �1.BC/// .U;U \AC/

.f �1.V /; f �1.V /\ .AC[f �1.BC/// .Y;BC/

.V;V \BC/

.Z;C /

W

f

W

fW

f
W

g

The point here is that once the maps W are declared to be isomorphisms, commutativity
of the diagram implies (being careful about the directions of the maps) that the rightmost
vertical composition coincides with the leftmost vertical composition.

To see that the same holds after restricting to finite orbi-CW–pairs, we just need to
observe that if the input orbi-CW–pairs in the above proof are all finite, then the
additional orbi-CW–pairs appearing in the intermediate constructions can also be taken
to be finite.

The functor Spc�! OrbSpc� has both adjoints. The existence of the left adjoint (the
coarse space) is immediate — send an orbi-CW–pair .X;A/ to the CW–pair .jX j; jAj/.
For the existence of the right adjoint (the classifying space), we argue as in Lemma 3.10.
Given an orbi-CW–complex .X;A/, we may find classifying spaces zX!X and zA!A

so that zA� zX is a subcomplex and the classifying maps together define a map of pairs
. zX ; zA/! .X;A/. The argument of the proof of Lemma 3.10 then shows that this map
exhibits . zX ; zA/ as the classifying space of .X;A/.

There is a symmetric monoidal “smash product” ^ on RepOrbSpcf� and OrbSpcf� ,
defined as follows. Product of finite orbi-CW–pairs

.X;A/� .Y;B/ WD
�
X �Y; .A�Y /[ .X �B/

�
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is a symmetric monoidal structure on RepOrbSpcPairf and OrbSpcPairf. To see that
it descends to RepOrbSpcf� and OrbSpcf�, it suffices by Proposition 3.15 to note that
.P;P \Q/�.Y;B/! .X;Q/�.Y;B/ is again of the form .P 0;P 0\Q0/! .X 0;Q0/,
namely

X 0 DX �Y; P 0 D P �Y and Q0 D .Q�Y /[ .X �B/:

Let us argue that there is a natural isomorphism .Z ^W /� D zZ ^ zW . If Z D .X;A/

and W D .Y;B/, then, recalling that the classifying space of .X;A/ is . zX ; zA/, this is
the assertion that

(3-24)
�
.X �Y /�; ..A�Y /[A�B .X �B//�

�
D
�
zX � zY ; . zA� zY /[ zA� zB .

zX � zB/
�
;

which follows from Lemma 3.10 and the fact that classifying space commutes with
products.

Given any1–category such as (the1–categorical refinement of) RepOrbSpc, there is
an1–category of “pointed objects of RepOrbSpc”, namely the under-category of the
terminal object, in this case R.�/. It is reasonable to expect this yields the same result
as our explicit geometric definition of the category of relative orbispaces:

Conjecture 3.16 There is an equivalence

RepOrbSpc� D RepOrbSpcR.�/=

as1–categories.

Conjecture 3.17 The category RepOrbSpc� is equivalent to the category of pointed
representable fibrations over R.�/ and to the category of presheaves of pointed spaces
on RepfBGg.

3.7 Cofiber sequences

A cofiber sequence in RepOrbSpc� is a three-term sequence isomorphic to

(3-25) .Y;B/! .X;A/! .X;A[B Y /

for an orbi-CW–complex X with two subcomplexes A;Y �X and B WDA\Y .

Proposition 3.18 Every morphism X ! Y in RepOrbSpc� extends to a cofiber
sequence X ! Y !Z.
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Proof Equivalently, we are to show that every morphism in RepOrbSpc� is isomorphic
to an inclusion .Y;B/ ,! .X;A/, where X is an orbi-CW–complex, A;Y � X are
subcomplexes and B D Y \A.

First, note that any map of orbi-CW–pairs .X;A/! .Y;B/ may be replaced by a
map of the desired form by first homotoping it to be cellular and then considering
.X;A/!

�
cyl.X ! Y /; cyl.A! B/

�
. Thus it suffices to show that every morphism

in RepOrbSpc� is isomorphic to the image of a morphism in RepOrbSpcPair.

A general morphism in RepOrbSpc� may be expressed in terms of morphisms of
orbi-CW–pairs as

(3-26) .X;A/! .X;AC/ � � .V;V \AC/! .Y;B/;

where X is an orbi-CW–complex, AC;V � X are subcomplexes, and X D V [AC.
We now consider the gluing

(3-27) .X;AC/[
�
.V;V \AC/� I

�
[ .Y;B/:

The inclusion of cyl
�
.V;V \AC/! .Y;B/

�
— hence also of .Y;B/— into this orbi-

CW–pair is an isomorphism in RepOrbSpc� by Proposition 3.15. Thus the natural map
from .X;A/ to (3-27) is a map of orbi-CW–pairs, which becomes isomorphic to our
given morphism in RepOrbSpc�.

In fact, a quadruple .X;A;Y;B/ as above determines not only a three-term sequence
(3-25), but a half-infinite sequence, each of whose consecutive pairs of morphisms
form cofiber sequences. This so-called “Puppe sequence” takes the form

(3-28) � � �Ü .Y;B/� .Ik ; @Ik/! .X;A/� .Ik ; @Ik/

! .X;A[Y /� .Ik ; @Ik/Ü � � � ;

where the “connecting maps”

(3-29) .X;A[Y /� .Ik ; @Ik/Ü .Y;B/� .IkC1; @IkC1/

are defined as .r; idI k ; '/, where r W .X;A[Y /! .Y;B/ is a retraction defined in a
neighborhood of .Y;B/, and ' WX ! Œ0; 1� is a map which equals 1 on Y and equals 0

outside a small neighborhood of Y .

Proposition 3.19 Every consecutive triple in the Puppe sequence is a cofiber sequence.
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Proof The three consecutive terms appearing in (3-28) certainly form a cofiber se-
quence. Shifting forward by one, we have a cofiber sequence

(3-30) .X;A/�.Ik ; @Ik/
�f0g
��!

�
X �I; .A�I/[.Y �f1g/

�
�.Ik ; @Ik/

!
�
X �I; .X �f0g/[.A�I/[.Y �f1g/

�
�.Ik ; @Ik/;

into whose third term .Y;B/� .I; @I/� .Ik ; @Ik/ includes isomorphically. Shifting
forward by one again, we have a cofiber sequence

(3-31)
�
X �

�
1
2
; 1
�
;
�
A�

�
1
2
; 1
��
[ .Y � f1g/

�
� .Ik ; @Ik/

! .X � I; .X � f0g/[ .A� I/[ .Y � f1g//� .Ik ; @Ik/

Ü
�
X �

�
0; 1

2

�
; .X � f0g/[

�
A�

�
0; 1

2

��
[
�
X �

˚
1
2

	��
� .Ik ; @Ik/:

This concludes the proof.

Example 3.20 Here is an example to show that there is no similar notion of cofiber
sequences in OrbSpc�. Consider the map BG!�; this is a map in OrbSpc, and we
consider its image in OrbSpc� under the natural map OrbSpc! OrbSpc� given by
“disjoint union with a basepoint”. Suppose it has a cofiber BG ! � ! X , where
X 2OrbSpc�. Now the defining property of the cofiber is that for any Y 2OrbSpc�, a
map X ! Y is the same thing as a map �! Y and a nullhomotopy of the composition
BG ! � ! Y . On the other hand, a nullhomotopy of this composition induces a
nullhomotopy of the original map � ! Y , by Lemma 3.4. Thus there is a unique
map X ! Y , namely the zero map (sending everything to the basepoint). It follows
that X D ¿ is the terminal object of OrbSpc�. Now if we additionally suppose
that our cofiber sequence extends as the Puppe sequence to give BG ! �! X !

BG � .I; @I/! .I; @I/, we obtain a contradiction, since X D ¿, so the cofiber of
X ! Z is Z for any Z 2 OrbSpc�. The key point in this argument was the use of
Lemma 3.4.

3.8 Enough vector bundles

We now recall the “enough vector bundles property” proved in [29], which underlies
most of our subsequent work in this paper. We also derive some corollaries which we
will also need.

We begin with some definitions. By “vector bundle” we will always mean a finite-
dimensional vector bundle. Recall that for any vector bundle V over an orbispace X ,
the fiber over a point p W � ! X is a vector space Vp which carries a linear action
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of the isotropy group Gp of p. A vector bundle is called coarse if and only if these
isotropy representations GpÕ Vp are all trivial — this is equivalent to V being pulled
back from the coarse space jX j, hence the terminology. A vector bundle is called
faithful if and only if the isotropy representations are all faithful. A vector bundle is
called module faithful if and only if each Vp is faithful RŒGp �–module (equivalently,
every irreducible representation of Gp occurs inside Vp). The pullback of a coarse
vector bundle is coarse, and the pullback of a (module) faithful vector bundle under a
representable map is (module) faithful.

Lemma 3.21 If V is a faithful representation of a finite group G, then the open set
V free � V on which G acts freely is open and dense.

Proof The complement of V free � V is the locus
S

1¤H�G V H , which is a finite
union of proper subspaces.

Lemma 3.22 If V is a faithful representation of a finite group G, then every irreducible
representation of G is a direct summand of a tensor power of V .

Proof This is a classical fact with many known proofs, whose correct attribution is
not known to me. By Lemma 3.21, there exists a point x 2 V � all of whose translates
by G are distinct. By Weierstrass, there exists a polynomial function on V � (that is, an
element of

L1
iD0 Symi V ) which is approximately a bump function supported around x.

The translates of this element under G are thus linearly independent, so their span
is a copy of the regular representation of G inside

L1
iD0 Symi V , which is in turn

contained in
L1

iD0 V ˝i .

It follows from Lemma 3.22 that given a faithful vector bundle E over a compact
orbispace (or, more generally, an orbispace with isotropy groups of bounded order),
there exists an N < 1 such that

LN
iD1 E˝i is module faithful. If E is a module

faithful vector bundle over a compact X and F is arbitrary (more generally, X could be
paracompact and F bounded dimensional), there exists an N <1 and an embedding
F ,!E˚N .

It was shown in [29] that every orbispace satisfying certain mild hypotheses admits
a faithful vector bundle. In particular, all compact orbispaces admit faithful vector
bundles. In fact, the construction gives somewhat more precise control on these faithful
vector bundles, however for us, all we need is the following:

Theorem 3.23 [29] Every finite orbi-CW–complex admits a faithful vector bundle.
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Note that the same thus holds for any space homotopy equivalent to a finite orbi-CW–
complex (such as a compact orbifold-with-boundary), since homotopy equivalences of
orbispaces are representable.

Corollary 3.24 Let f W X ! Y be a representable smooth map of smooth compact
orbifolds. There exists a vector bundle E=Y such that f lifts to a smooth embedding
of X into the total space of E.

(Recall that a smooth embedding of orbifolds is locally modeled on V =G �W =G for
an inclusion V �W of G–representations.)

Proof Let E be any module faithful vector bundle over Y . Choose arbitrarily a
connection on E, and equip f �E with the pullback connection. We claim that there
exists a section s of f �EN whose derivative ds W TX ! f �EN is injective. Indeed,
in local coordinates X DRn=G and E D .Rn �V /=G, for some actions of G on Rn

and V , consider the map s given by a G–equivariant linear map Rn! V N . Since V

contains all irreducible representations of G, by taking N large enough we can choose
Rn!V N to be injective. Thus ds is injective at zero, hence in a neighborhood; cutting
it off we can make it compactly supported. By compactness, we can take the direct
sum of finitely many such s to obtain a section s W X ! f �EN whose derivative is
injective everywhere. Such an s is a smooth immersion. A smooth immersion may be
“separated” by a map from X — necessarily factoring through jX j! — to RM , so our
desired vector bundle is EN ˚RM .

Recall that an orbifold (resp. orbifold-with-boundary) is locally modeled on Rn=G

(resp. .Rn�1 � R�0/=G), and that it is called effective when the homomorphisms
G! GLn.R/ are injective.

Corollary 3.25 Every finite orbi-CW–complex is homotopy equivalent to a compact
effective orbifold-with-boundary.

In fact, Corollary 3.25 is equivalent to Theorem 3.23 since every effective orbifold-
with-boundary admits a faithful vector bundle, namely its tangent bundle.

Proof We proceed by induction on the number of cells. Thus, suppose that X is a
compact effective orbifold-with-boundary and that Z DX [@Dk�BG .D

k �BG/ for
some representable map @Dk �BG!X . Let us show that Z is homotopy equivalent
to a compact effective orbifold-with-boundary. The strategy is to realize the cell
attachment to X as a handle attachment.
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By Corollary 3.24, after replacing X with the total space of (the unit disk bundle of)
a vector bundle over it (and smoothing its corners), we may assume that our map
@Dk�BG!X is a smooth embedding into @X . By the tubular neighborhood theorem,
this smooth embedding is locally modeled on the inclusion of the zero section into the
total space of a vector bundle � over @Dk�BG. Now we have �˚T .@Dk�BG/DT @X

over @Dk �BG, and identifying the outward normal along @X with the inward normal
along @Dk �BG, we obtain an identification �˚T .Dk �BG/D TX over @Dk �BG.
By Theorem 3.23, there exists a vector bundle � on Z and an embedding TX ,! �jX .
By replacing X with the total space of �jX =TX , we may assume that TX D �jX .
We thus have an embedding T .Dk �BG/ ,! � defined over @Dk �BG. By further
enlarging � (and modifying X as this requires), we may ensure that this embedding
T .Dk �BG/ ,! � extends to all of Dk �BG. The cokernel of this embedding is thus
an extension of � to Dk �BG, so we can perform a handle attachment to construct our
desired compact effective orbifold-with-boundary. Finally, we should note that in the
case k D 0, we should not take BG as this is not effective; rather, we can take the unit
ball in any faithful G–representation modulo G.

We will need an analogue of the previous corollary for orbi-CW–pairs. Let us define an
orbifold pair .X;A/ to consist of an orbifold-with-boundary X and a codimension-zero
suborbifold-with-boundary A � @X . In this paper, we only ever deal with compact
orbifold pairs.

Corollary 3.26 Every finite orbi-CW–pair is homotopy equivalent to a compact effec-
tive orbifold pair.

Proof Corollary 3.25 implies the result for finite orbi-CW–pairs of the form .X;X /;
namely, realize X as a compact orbifold-with-boundary Z and take .Z � Œ0; 1�;Z/.
Now given a finite orbi-CW–pair .X;A/, we begin with an orbifold pair homotopy
equivalent to .A;A/, and we successively attach handles (away from the marked part
of the boundary) as in the proof of Corollary 3.25 to make it homotopy equivalent
to .X;A/.

3.9 Stable homotopy categories of orbispaces

We now describe how to “‘stabilize”’ the categories OrbSpcf� and RepOrbSpcf� to
obtain categories of finite orbispectra. The categories of finite “naive orbispectra”
are defined by taking the direct limit of OrbSpcf� and RepOrbSpcf� under successive
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applications of the suspension operation† (namely �.I; @I/). The formal desuspension
.X;A/�V for any coarse vector bundle V makes sense as a naive orbispectrum, since
any such V embeds into a trivial vector bundle. We are more interested in the categories
OrbSpf and RepOrbSpf of finite “genuine orbispectra”, whose objects take the form
.X;A/�V for any vector bundles V , with morphisms being a suitable direct limit over
passing to Thom spaces of arbitrary vector bundles.

We first discuss naive orbispectra. The suspension operation � .I; @I/ defines an
endofunctor † of both RepOrbSpc� and OrbSpc�. The direct limit of successive
applications of this endofunctor defines stable homotopy categories

RepOrbSpc�Œ†
�1� WD lim

��!

�
RepOrbSpc�

†
�! RepOrbSpc�

†
�! � � �

�
;(3-32)

OrbSpc�Œ†
�1� WD lim

��!

�
OrbSpc�

†
�! OrbSpc�

†
�! � � �

�
:(3-33)

Concretely, the objects of both these categories are formal symbols †�n.X;A/ for
orbi-CW–pairs .X;A/ and integers n � 0, and the set of morphisms †�n.X;A/!

†�m.Y;B/ is the direct limit over k!1 of morphisms in RepOrbSpc� and OrbSpc�,
respectively, from†k�n.X;A/ to†k�m.Y;B/, which makes sense for k �max.m; n/.
It follows that † defines autoequivalences of RepOrbSpc�Œ†

�1� and OrbSpc�Œ†
�1�,

and that there is a natural isomorphism †�1..X;A/� .I; @I//D .X;A/ in both these
categories. There is a functor RepOrbSpc�Œ†

�1�!OrbSpc�Œ†
�1�. We can make sense

out of symbols .X;A/�V (here .X;A/ is a compact orbi-CW–pair and V a coarse
vector bundle over X ) as objects of RepOrbSpc�Œ†

�1� and OrbSpc�Œ†
�1�, namely by

embedding V ,!Rn and taking .X;A/�V WD†�n..X;A/R
n=V /, which is independent

of the choice of embedding V ,!Rn up to canonical isomorphism.

The category
Spc�Œ†

�1� WD lim
��!
.Spc�

†
�! Spc�

†
�! � � � /

lies as a full subcategory inside both RepOrbSpc�Œ†
�1� and OrbSpc�Œ†

�1�.

Lemma 3.27 The categories OrbSpc�Œ†
�1� and RepOrbSpc�Œ†

�1� are additive.

Proof There is a natural abelian group structure on the morphism space in OrbSpc�
and RepOrbSpc� from .X;A/ � .I2; @I2/ to .Y;B/. This gives an enrichment of
OrbSpc�Œ†

�1� and RepOrbSpc�Œ†
�1� over abelian groups. It is immediate that finite

disjoint unions are finite coproducts. A category enriched over abelian groups and
which has finite coproducts is additive.
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The categories OrbSpc�Œ†
�1� and RepOrbSpc�Œ†

�1� may be described alternatively
as localizations as follows. We consider the “Grothendieck construction”

(3-34) Groth
�
OrbSpc�

†
�! OrbSpc�

†
�! � � �

�
;

namely the category whose objects are formal symbols †�n.X;A/ and whose mor-
phisms †�n.X;A/!†�m.Y;B/ are morphisms .X;A/!†n�m.Y;B/ in OrbSpc�
for n�m (and there are no morphisms otherwise). There is a class A of morphisms
†�n.†n�m.X;A//!†�m.X;A/ corresponding to the identity map of †n�m.X;A/

for n�m. It is immediate that this class A forms a right multiplicative system, a notion
whose definition we now recall.

Definition 3.28 (right multiplicative system) A class of morphisms W in a category C
is called a right multiplicative system if and only if it satisfies the following three axioms:

� W contains all identities and is closed under composition.

� Right Ore condition For every pair of solid arrows

(3-35)
A B

C D

2W 2W

there exist an object A and dotted arrows such that the diagram commutes.

� Right cancellability For every commuting diagram of solid arrows

(3-36)
A B

C D

2W 2W

there exist an object A and dotted arrows such that the diagram commutes.

Note that W is not required to contain all isomorphisms. This is rather antithetical to
the philosophy of category theory, however this generality is significant for us.

For any right multiplicative system W in a category C, the localization C! CŒW �1�

exists provided a certain smallness condition is satisfied. Furthermore, for X;Y 2 C,
the set of morphisms X ! Y in CŒW �1� admits the following concrete description.
Given X 2 C, consider the category fZ W

�! X g whose objects are arrows Z W
�! X

and whose morphisms are morphisms over X , ie fZ W
�!X g is a full subcategory of
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the over-category C=X . The fact that W is a right multiplicative system implies that
fZ W
�! X g is filtered. Provided each category fZ W

�! X g is essentially small, the
localization CŒW �1� exists and the set of morphisms X ! Y in CŒW �1� is the direct
limit over fZ W

�!X g of the set of morphisms Z! Y .

The functor from the Grothendieck construction (3-34) to OrbSpc�Œ†
�1� sends A to

isomorphisms, hence factors uniquely through the localization. Using the explicit
description of morphisms in the localization by a right multiplicative system, it is
immediate that this functor is an equivalence.

We now define the categories of finite genuine orbispectra OrbSpf and RepOrbSpf.
Let us begin with the categories OrbSpcPairf;�Vect and RepOrbSpcPairf;�Vect, whose
objects are .X;A/�� , where .X;A/ is a finite orbi-CW–pair and � is a vector bun-
dle over X . A morphism in these categories .X;A/�� ! .Y;B/�� consists of a
(representable) map f W X ! Y , an embedding i W f �� ,! �, and a section s W X !

�= i.f ��/ such that A � f �1.B/ [ s�1.fj � j � "g/ for some " > 0 — these triples
.f; i; s/ W .X;A/��! .Y;B/�� are considered up to homotopy, namely the equivalence
relation of there being such a morphism .X � Œ0; 1�;A � Œ0; 1�/�� ! .Y;B/�� . To
compose

.X;A/��
.f;i;s/
����! .Y;B/��

.g;j ;t/
����! .Z;C /��

we take g ıf and j ı i ; now there is an extension

(3-37) 0! �= i.�/
j
! �=j .i.�//! �=j .�/! 0;

and choosing a splitting (which is unique up to homotopy) allows us to take tf ˚ j s

as our section for the composition. Composition is associative.

We now define categories OrbSpcf;�Vect
� and RepOrbSpcf;�Vect

� by modifying the
definition above by declaring that a morphism .X;A/�� Ü .Y;B/�� consists of
A � AC � X closed and U � X open with X D U [ .AC/ı and a morphism
.U;U \AC/�� ! .Y;B/�� in OrbSpcPairf;�Vect or RepOrbSpcPairf;�Vect; these are
considered modulo homotopy as usual. Composition of

(3-38) .X;A/�� .Y;B/�� .Z;C /��
.AC;U;f;i;s/ .BC;V;g;j ;t/

is given by .AC [ f �1.BC/; f �1.V /;g ı f; j ı i; tf ˚ j s/ as before. The proof of
Proposition 3.15 applies without modification to show that:
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Proposition 3.29 (excision) The functors

OrbSpcPairf;�Vect
! OrbSpcf;�Vect

� ;(3-39)

RepOrbSpcPairf;�Vect
! RepOrbSpcf;�Vect

� ;(3-40)

are localizations at the collection W of morphisms of the form .P;P \Q/�� !

.X;Q/�� , where X D P [Q is a cover by subcomplexes and � is a vector bundle
over X .

We now localize RepOrbSpcf;�Vect
� and OrbSpcf;�Vect

� at the class of morphisms S

given by the images of the isomorphism classes in RepOrbSpcPairf;�Vect of the tau-
tological morphisms ..X;A/�/�.�˚�/ ! .X;A/�� . The following deserves empha-
sis: the objects of RepOrbSpcf;�Vect

� and OrbSpcf;�Vect
� remain symbols .X;A/�� ,

and while two different symbols .X;A/�� and .X 0;A0/��
0

may be isomorphic in
the localizations RepOrbSpcf;�Vect

� or OrbSpcf;�Vect
� , they need not be isomorphic in

RepOrbSpcPairf;�Vect, and hence are regarded as completely different when it comes
to the question of whether a morphism is or is not in S .

Lemma 3.30 The morphisms S form a right multiplicative system in the categories
RepOrbSpcf;�Vect

� and OrbSpcf;�Vect
� .

Proof Closedness under composition holds because any vector bundle on the total
space of a vector bundle is pulled back from the base, so a Thom space of a Thom space
is a Thom space. (Note that isomorphisms in RepOrbSpcf;�Vect

� and OrbSpcf;�Vect
�

need not be in S , and that we have not shown that S is not closed under composing
with such isomorphisms!)

We verify the right Ore condition. When the morphism C!D in OrbSpcf;�Vect
� comes

from OrbSpcPairf;�Vect (and similarly with “Rep” prefixes), we can simply pull back
the bundle involved in B!D:

(3-41)
..X;A/f

��/�.�˚f
��/ ..Y;B/�/�.�˚�/

.X;A/�� .Y;B/��

2S 2S

In the general case, the bottom row becomes

.X;A/�� ! .X;AC/��  .U;U \AC/�� ! .Y;B/�� :

Geometry & Topology, Volume 27 (2023)



1798 John Pardon

Now we may pull back � to U , but not to X . Instead, we appeal to Theorem 3.23
(enough vector bundles) to embed the pullback of � to U into the restriction of a vector
bundle � on X . We thus obtain the following diagram:

(3-42)

..X;A/� /�.�˚�/ ..X;AC/� /�.�˚�/ ..U;U\AC/� /�.�˚�/

..U;U\AC/f
��/�.�˚f

��/ ..Y;B/�/�.�˚�/

.X;A/�� .X;AC/�� .U;U\AC/�� .Y;B/��

2S 2S

2W

2S

2S 2S

2W

The desired result follows.

We verify right cancellability. It suffices to show that given maps C ! B
2S
�! D,

applying the pullback procedure above to C !D
2S
 � B results in C

2S
 �A! B for

which A! B and A! C ! B coincide (in this way, the dotted arrows in (3-36) that
we produce depend only on the maps C ! D

2S
 � B). As above, we first consider

the situation of a morphism C ! D coming from OrbSpcPairf;�Vect (or similarly,
from RepOrbSpcPairf;�Vect), ie we consider (3-41). Even in this setting, the desired
commutativity is not obvious and requires the following calculation. We reproduce the
relevant diagram, rewriting it in a more convenient way:

(3-43)
..X;A/f

��/�.f
��˚f ��˚�˚f ��/ ..Y;B/�/�.�˚�/

.X;A/�.f
��˚f ��˚�/ .Y;B/��

Let the diagonal map .X;A/�� ! ..Y;B/�/�.�˚�/ be given by the maps f WX ! Y ,
g WX ! f ��, the obvious inclusion f �.�˚�/ ,! f ��˚f ��˚� , and s WX ! � . Now
we have two maps ..X;A/f

��/�.f
��˚f ��˚�˚f ��/! ..Y;B/�/�.�˚�/ which we wish

to show are homotopic. The top horizontal arrow is given by f � WX f ��! Y �, the
inclusion f ��˚f �� ,! f ��˚f ��˚�˚f ��, where f �� goes to the last copy, and
the section X f ��!X

s˚g
��! �˚f ��. The composition of the left vertical arrow and

the diagonal arrow is given by .f ı�X ;g/ WX
f ��! Y �, the inclusion f ��˚f �� ,!

f ��˚f ��˚�˚f ��, where f �� goes to the first copy, and s˚�f �� WX
f ��!�˚f ��.

These maps are evidently not the same, but they are homotopic as follows. We first apply
the obvious linear homotopy from one inclusion f ��˚f �� ,! f ��˚f ��˚�˚f ��

to the other, noting that the induced action on the cokernel, naturally identified in both
cases with f ��, is multiplication by �1. Now our two maps coincide except that we
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need to transform .g; idf ��/ into .idf ��;�g/ (note the sign picked up from the first
homotopy), which we can do using rotation matrices for � 2 Œ0; �=2�.

Finally, we should show right cancellability in the case of general maps C !D; we
use the same strategy as above. Note that a pullback along C !D involves a choice of
vector bundle � over C (let us call this a �–pullback), and that a choice of embedding
� ,! � determines a map from �–pullbacks to �–pullbacks (“stabilization”). Now it
is evident from the definition that given a �–pullback and a � 0–pullback, there exist
embeddings � ,! � and � 0 ,! � such that the induced �–pullbacks coincide. Note that
this includes the assertion that pullbacks induced by homotopic maps are equivalent,
which is shown by considering the pullback along the homotopy itself. It now suffices
to show the same commutativity as before, namely that A!C !B and A!B agree.
To see this, note that the present situation is that of the solid arrows in (3-42) plus
a single additional diagonal arrow .U;U \AC/�� ! ..Y;B/�/�.�˚�/ in the lower
rightmost square. The resulting dotted arrows in that square commute by the reasoning
in the previous paragraph, which combined with the commutativity of the rest of the
diagram imply that everything commutes.

The right multiplicative system S also satisfies the smallness condition needed to
localize: the category of S–morphisms over .X;A/�� has as its objects all vector
bundles over X , and the isomorphism classes of these form a set.

By Lemma 3.30 and the smallness condition, the localizations of RepOrbSpcf;�Vect
�

and OrbSpcf;�Vect
� at S exist, and we denote these localizations by RepOrbSpf and

OrbSpf, respectively. Morphisms .X;A/�� ! .Y;B/�� in RepOrbSpf and OrbSpf

are thus described as the direct limit over vector bundles � over X of morphisms
..X;A/�/�.�˚�/ ! .Y;B/�� in RepOrbSpcf;�Vect

� and OrbSpcf;�Vect
� , respectively.

Now it makes sense to write .X;A/V for an object of RepOrbSpf for any finite orbi-
CW–pair .X;A/ and any stable vector bundle V over X , since a stable isomorphism E�

F DE0�F 0 induces an isomorphism ..X;A/E/�F D ..X;A/E
0

/�F 0 in RepOrbSpf.

There are functors RepOrbSpcf� Œ†�1�! RepOrbSpf and OrbSpcf� Œ†�1�! OrbSpf.
To construct them, note that †�n.X;A/ 7! .X;A/�Rn

defines functors out of the
relevant Grothendieck constructions, which send A to isomorphisms.

Lemma 3.31 The categories RepOrbSpf and OrbSpf are additive.

Proof Same as Lemma 3.27.
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For any covering space .X 0;A0/! .X;A/ (meaning X 0 ! X is a covering space
and A0 DA�X X 0), there is an induced map .X;A/! .X 0;A0/ in RepOrbSpf. It is
defined by embedding X 0 into the total space of a vector bundle over X — which exists
by enough vector bundles Theorem 3.23 — and taking the usual collapse map.

There is a functor RepOrbSpf ! OrbSpf, and the category of finite spectra Spf is a
full subcategory of both.

There is a classifying space functor OrbSpf ! Sp, defined as follows. We first
define the corresponding functor OrbSpcPairf;�Vect

! Sp, which sends .X;A/�V to
. zX ; zA/�V 2 Sp; concretely, . zX ; zA/�V is the direct limit over finite subcomplexes
. zX0; zA0/ and embeddings V j zX0

,! RN of †�N .. zX0; zA0/
RN =V /). Given a map

.X;A/�V ! .Y;B/�W in OrbSpcPairf;�Vect consisting of a map f W X ! Y , an
inclusion f �W ,! V and a section s WX ! V =f �W , we define a map . zX ; zA/�V !

. zY ; zB/�W in Sp as follows. Choose classifying spaces zA � zX and zB � zY and
the map zf W zX ! zY fitting into a strictly commutative diagram with f such that
zf .f �1.B// � zB; this can be done by induction on the cells of .X;A/ and .Y;B/.

Now the map zf W zX ! zY , the pullback inclusion zf �W ,! V and the pullback of s

define a map . zX ; zA/�V ! . zY ; zB/�W in SpcPair�Vect, hence in Sp; concretely, the
induced map in Sp is given, over a given finite subcomplex of . zX ; zA/, by taking N large
enough that the map f �W ,! V ,!RN is homotopic to the pullback of W ,!RN ,
so f �.RN =W /D .RN =V /˚V =f �W . So we may use the identity on the first factor
and the section s on the second factor to define a map . zX ; zA/R

N =V ! . zY ; zB/R
N =W

(strictly speaking, only on arbitrary finite subcomplexes thereof), which we desuspend
by N . It is immediate to check that morphisms W are sent to isomorphisms, and
morphisms S are also by inspection. We therefore have a classifying space functor
OrbSpf ! Sp.

There is a symmetric monoidal “smash product” ^ on RepOrbSpf and OrbSpf defined
as follows. The product .X;A/�� � .Y;B/�� WD .X �Y; .A�Y /[ .X �B//���� is
a symmetric monoidal structure on RepOrbSpcPairf;�Vect and OrbSpcPairf;�Vect. To
see that it descends to RepOrbSpf and OrbSpf, it suffices to show that a morphism in
W or S times a fixed .Y;B/�� again lies in W or S . For S this is obvious, and for
W this follows by inspection exactly as in the construction of the smash product on
RepOrbSpcf� and OrbSpcf�.

There is a natural isomorphism .Z ^W /� D zZ ^ zW for Z;W 2 OrbSpf ; to de-
fine this, it suffices to define it on the corresponding functors out of the product
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OrbSpcPairf;�Vect
� OrbSpcPairf;�Vect, where it is defined in the same way as the

corresponding isomorphisms for Z;W 2 OrbSpc�.

3.10 Exact triangles

A triple of morphisms in RepOrbSpf is called a cofiber sequence if and only if it is
isomorphic to

(3-44) .Y;B/�� ! .X;A/�� ! .X;A[B Y /��

for an orbi-CW–complex X with two subcomplexes A;Y � X and B WDA\Y and
a vector bundle � over X ; compare (3-25). We now show that every morphism in
RepOrbSpf has a cofiber, from which it follows that every morphism can be extended
to a bi-infinite cofiber sequence by desuspending the Puppe sequence.

Proposition 3.32 Every morphism in RepOrbSpf is isomorphic to one of the form
.Y;B/�� ! .X;A/�� for X an orbi-CW–complex carrying a vector bundle � and
A;Y �X subcomplexes with B DA\Y .

Proof Since the localization RepOrbSpcf;�Vect
�

S�1

��! RepOrbSpf is by a right mul-
tiplicative system, every morphism in the target is isomorphic to one coming from
the source. In other words, every morphism in RepOrbSpf is (up to isomorphism)
a formal composition .X;A/�� ! .X;AC/��  .U;U \AC/��

f
�! .Y;B/�� . As

in the proof of Proposition 3.18, we may assume that U;AC �X are subcomplexes
covering X . Form the gluing X [U .U � Œ0; 1�/[U Y , and find, using enough vector
bundles (Theorem 3.23), a vector bundle � over it together with embeddings � ,! � jX

and � ,! � jY . By replacing � with � ˚ � , we may ensure that the composition
f �� ,! �jU ,! � jU is homotopic to the pullback under f of the embedding � ,! � jY .
We thus obtain a commutative diagram

(3-45)

..X;A/� jX =�/�� jX ..X;AC/� jX =�/�� jX ..U;U\AC/� jU =�jU /�� jU ..Y;B/� jY =�/�� jY

.X;A/�� .X;AC/�� .U;U\AC/�� .Y;B/��

2S 2S 2S 2S

Now the top row is just the desuspension by � of maps .X;A/� jX=�! .X;AC/� jX=� 

.U;U \AC/� jU =�jU ! .Y;B/� jY =� , all of which respect the vector bundle � being
desuspended by. Now take this as (3-26) and apply the construction of that proof to it,
and then desuspend by � (which we crucially must note does indeed make sense on the
result).
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3.11 Stabilizing over R.�/

Let us now give an alternative definition of RepOrbSpf (but not of OrbSpf ). Morally,
we would like to simply say that

(3-46) RepOrbSpf D lim
��!

Vect.R.�//
RepOrbSpc;

in the sense that every orbi-CW–complex X admits a unique up to contractible
choice representable map to R.�/, so vector bundles on R.�/ act by endofunctors on
RepOrbSpc by pulling back and passing to Thom spaces. There is a problem with
taking (3-46) literally: there are not enough vector bundles on R.�/, so instead we will
filter R.�/ by subcomplexes. Here are the details.

For N � 1, let R.�/N denote the image of � 2 OrbSpcN under the right adjoint to
RepOrbSpcN !OrbSpcN (which exists by the same argument as in Proposition 3.12),
where the subscript N indicates restricting to orbi-CW–complexes with isotropy groups
of order �N . There are representable maps R.�/N !R.�/M for N �M by abstract
nonsense (the functor RepOrbSpcN ! RepOrbSpcM induces a map between their
terminal objects), and the infinite mapping cylinder of R.�/1!R.�/2!R.�/3!� � �

is R.�/. Concretely, R.�/N is given by (3-16) restricted to groups of order �N .

Fix orbi-CW–complexes R.�/N and cellular maps R.�/N !R.�/NC1, and let R.�/

denote their infinite mapping cylinder. Let R.�/N;k denote the k–skeleton of R.�/N .
Note that, whereas R.�/N has an intrinsic functorial description, R.�/N;k does not: it
depends on the chosen orbi-CW–complex realization of R.�/N . Concretely, we may
(but are not obliged to) take R.�/N;k to be the subcomplex of (3-16) spanned by groups
of order �N and simplices of dimension � k. Now every map @Dr �BG!R.�/N;k

extends to Dr �BG provided r � k and jGj �N .

Now suppose X is an orbi-CW–complex of dimension � k with isotropy groups
of order � N . Then there exists a representable map X ! R.�/N;kC2, any two
such maps are homotopic, and any two homotopies are homotopic rel endpoints. In
particular, for every vector bundle � over R.�/N;kC2, we obtain a vector bundle �X
which is well-defined up to unique homotopy class of isomorphism. Moreover, for any
representable map X ! Y , the pullback of �Y is isomorphic to �X by an isomorphism
which is well-defined up to homotopy, and this rule is compatible with composition
X ! Y !Z.

Now let RepOrbSpcPairN;k � RepOrbSpcPair denote the full subcategory spanned
by those orbi-CW–pairs .X;A/ for which X (though not necessarily A) is homotopy
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equivalent to an orbi-CW–complex of dimension � k with isotropy groups of size �N .
Given any vector bundle � over R.�/N;kC2, suspension by the pullback of � defines a
functor from RepOrbSpcPairN;k to itself. Let Vect2.R.�/N;k/ denote the 2–category
whose objects are vector bundles over R.�/N;k , whose morphisms are inclusions
V ,! V 0, and whose 2–morphisms are homotopy classes of paths in Emb.V;V 0/. We
may consider the direct limit

(3-47) lim
��!

Vect2.R.�/N;kC2/

RepOrbSpcPairN;k ;

where to an inclusion of vector bundles � ,! � 0 on R.�/N;kC2 we associate the endo-
functor of RepOrbSpcPairN;k given by suspending by the pullback of � 0=� . We may also
define (3-47) more concretely (without discussing direct limits of categories over filtered
2–categories): its objects are triples .X;A; �/, where .X;A/ 2 RepOrbSpcPairN;k and
� is a vector bundle on R.�/N;kC2, and the set of morphisms .X;A; �/! .Y;B; �/ is
the direct limit over �2Vect.R.�/N;kC2/ of the set of pairs of embeddings � ,! � - �

and maps .X;A/.�=�/X ! .Y;B/.�=�/Y, modulo simultaneous homotopy of the embed-
dings and the map.

Now note that increasing N and k induces a full faithful inclusion of categories (3-47),
since restriction of vector bundles between these subcomplexes of R.�/ is cofinal by
enough vector bundles Theorem 3.23 (or, rather, the stronger version [29, Theorem 1.1],
which applies since R.�/N;kC2 has bounded dimension and bounded isotropy groups).
We therefore obtain a category

(3-48) lim
��!
N;k

lim
��!

Vect2.R.�/N;kC2/

RepOrbSpcPairN;k :

Restricting to the full subcategory spanned by finite orbi-CW–pairs, ie replacing
RepOrbSpcPairN;k with RepOrbSpcPairf

N;k
, we obtain a natural functor to RepOrbSpf,

namely the map given by sending the object .X;A/ in the �–term of the direct limit to
.X;A/��X (with the obvious action on morphisms); this is a map out of each copy of
RepOrbSpcPairf

N;k
, and descends by the natural coherences.

Proposition 3.33 The functor

(3-49) lim
��!
N;k

lim
��!

Vect2.R.�/N;kC2/

RepOrbSpcPairf
N;k
! RepOrbSpf

is the localization at the morphisms .P;P \Q/��P ! .X;Q/��X for X DP [Q and
� a vector bundle on R.�/N;kC2.
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Proof The morphisms .P;P \Q/��! .X;Q/�� for � any vector bundle on X (not
necessarily pulled back from R.�/N;kC2) are sent to isomorphisms by Proposition 3.29.

First, we note that in the definition of RepOrbSpf as the double localization

(3-50) RepOrbSpcPairf;�Vect W �1

���! RepOrbSpcf;�Vect
�

S�1

���! RepOrbSpf;

ie first localizing at the class W of morphisms .P;P \Q/�� ! .X;Q/�� and then
at the class S of morphisms ..X;A/V /�V�� ! .X;A/�� , we could instead localize
in the reverse order. Indeed, given that the localization of RepOrbSpcPairf;�Vect at
W tS exists, it suffices to argue that its localization at S exists. In fact, S forms a right
multiplicative system in RepOrbSpcPairf;�Vect — this “easier” variant of Lemma 3.30
was the first step in its proof, in fact. Thus the localization RepOrbSpcPairf;�VectŒS�1�

exists, and morphisms .X;A/�� ! .Y;B/�� in it are the direct limit over �=X of
morphisms ..X;A/�/���� ! .Y;B/�� in RepOrbSpcPairf;�Vect.

Now it suffices to show that there is a natural equivalence

(3-51) lim
��!
N;k

lim
��!

Vect2.R.�/N;kC2/

RepOrbSpcPairf
N;k
! RepOrbSpcPairf;�VectŒS�1�:

First, let us describe the functor: the copy of RepOrbSpcPairf
N;k

over the object � 2
Vect2.R.�//N;kC2 maps to RepOrbSpcPairf;�VectŒS�1� as .X;A/ 7! .X;A/��X . This
functor is obviously essentially surjective, since .X;A/�� in the target is isomorphic
to ..X;A/�X=�/��X for any embedding � ,! �X . It thus remains to show that (3-51)
is fully faithful.

In both the source and target of (3-51), the morphisms sets are expressed as direct
limits. The set of morphisms .X;A/��X ! .Y;B/��Y in the domain of (3-51) (where
.X;A/; .Y;B/2RepOrbSpcPairf

N;k
and �2Vect2.R.�/N;kC2/) is the direct limit over

� 2 Vect.R.�/N;kC2/ of the set of representable morphisms .X;A/�X ! .Y;B/�Y .
The set of morphisms between their images under (3-51) is the direct limit over vector
bundles E over X of tuples consisting of a representable map f from the total space
of E to Y , an embedding f ��Y ,! �X ˚E and a section of .�X ˚E/= i.f ��Y / such
that the “relative part” of .X;A/E is contained in f �1.B/[ s�1.fj � j � "g/. Since f
is representable, there is a natural identification f ��Y D �X , which gives a canonical
choice of embedding f ��Y ,! �X ˚E, which need not coincide with the embedding
which is chosen as part of the data. However, for the purposes of calculating the
direct limit over E, we may assume that the chosen embedding f ��Y ,! �X ˚E

is the canonical one: indeed, given any such embedding, passing to an appropriate
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E0 �E makes it homotopic to the canonical one, and similarly any homotopy from the
canonical embedding to itself can be made nullhomotopic rel endpoints by enlarging E.
Hence the set of morphisms in the target of (3-51) is the direct limit over vector
bundles E over X of tuples consisting of a representable map f from the total space
of E to Y and a section of E such that the relative part of .X;A/E is contained in
f �1.B/[ s�1.fj � j � "g/. By cofinality, we may instead declare that E D �X and take
the direct limit over � 2 Vect.R.�/N;kC2/ of the set of maps .X;A/�X ! .Y;B/�Y in
RepOrbSpcPairf

N;k
, since �X D f ��Y canonically for any representable map f .

Given the description of RepOrbSpf as a direct limit over suspension by vector bundles
pulled back from R.�/, it is natural to make the following conjecture, parallel to
Conjecture 3.14.

Conjecture 3.34 The category RepOrbSpf is a generating full subcategory of the
category of parametrized spectra over R.�/.

If Conjecture 3.34 is valid, it is natural then to ask whether fiberwise Spanier–Whitehead
duality makes sense and, if it does, how it is related to the duality involution from
Theorem 1.3, which we prove immediately below.

3.12 Duality

We now define the contravariant involution D WRepOrbSpf ! .RepOrbSpf /op as stated
in Theorem 1.3.

Proof of Theorem 1.3 To begin, we define D W RepOrbSpcPairf ! .RepOrbSpf /op.
By Corollary 3.26, we may regard RepOrbSpcPairf as the category of compact orbifold
pairs (and morphisms thereof). For any compact orbifold pair .X;A/, we set

(3-52) D.X;A/ WD .X; @X �Aı/�TX :

The functoriality of D under maps of orbifold pairs .X;A/! .Y;B/ is defined as
follows. First, for any vector bundle E over Y , denote by .Y E ;BE/ the pair consisting
of the total spaces of the unit disk bundles of E over Y and B. Obviously .Y E ;BE/!

.Y;B/ is an isomorphism in RepOrbSpcPairf, and there is also a natural identification
D.Y E ;BE/DD.Y;B/— the effect on duals of passing from .Y;B/ to .Y E ;BE/ is to
suspend and desuspend by E. Now, choose E so that our map X ! Y lifts to a smooth
embedding X!Y E , meeting the boundary of Y E transversely precisely in A. There is
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now an obvious collapse map .Y E ; @Y E � .BE/ı/Ü .X; @X �Aı/T Y E=TX , which
is independent up to homotopy of the choice of lift of X ! Y to X ! Y E , and this
collapse map is our desired map D.Y;B/DD.Y E ;BE/!D.X;A/. By embedding
any two choices of E into a third, we see that the map D.Y;B/!D.X;A/ thus defined
is independent of the choice of E. Making the same construction in a family over Œ0; 1�
shows that it is invariant under homotopy. One also checks that this recipe is compatible
with composition, and hence defines a functor D WRepOrbSpcPairf ! .RepOrbSpf /op.

To descend this functor to D W RepOrbSpcf� ! .RepOrbSpf /op, by Proposition 3.15 it
suffices to check that D sends certain maps to isomorphisms. Specifically, let .X;A/
be a compact orbifold pair, P a compact orbifold-with-boundary and @A -Q ,! @P

an identification between compact codimension-zero suborbifolds-with-boundary of @A
and @P . We may form .X;A/ #Q .P � Œ0; 1�;P / and consider the inclusion .X;A/ ,!
.X;A/ #Q .P � Œ0; 1�;P /. These inclusions are precisely the morphisms inverted by
the localization RepOrbSpcPairf ! RepOrbSpcf� from Proposition 3.15. Now, it is
evident that the dual of the inclusion .X;A/ ,! .X;A/ #Q .P � Œ0; 1�;P / is a map
.X; @X �Aı/�T  ..X; @X �Aı/ #Q .P � Œ0; 1�;P //

�T (the superscript �T denotes
desuspension by the tangent bundle), which is also an isomorphism in RepOrbSpf, so
we are done.

We now define

(3-53) D W lim
��!
N;k

lim
��!

Vect2.R.�/N;kC2/

RepOrbSpcPairf
N;k
! .RepOrbSpf /op:

As above, we define D..X;A/��X / WD .X; @X �Aı/�X�TX for .X;A/ a compact
orbifold pair. The functoriality under maps in RepOrbSpcPairf

N;k
is the same as before:

the space of stable maps .Y; @Y �Bı/�Y �T Y ! .X; @X �Aı/�X�TX is the same as
the space of stable maps .Y; @Y �Bı/�T Y ! .X; @X�Aı/�TX , so we simply take the
same map D.Y;B/!D.X;A/ associated to our original map .X;A/! .Y;B/. This
recipe is compatible with the morphisms in the direct limit over Vect2.R.�/N;kC2/ by
inspection (and then obviously with the direct limit over N and k), so we obtain the
functor (3-53).

By Proposition 3.33, to descend D from (3-53) to RepOrbSpf, it suffices to verify that
it sends certain maps to isomorphisms, but these are exactly the same as we already
saw above. We therefore obtain the desired functor D.

By inspection, D sends cofiber sequences to cofiber sequences.
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There is an obvious identification DDX D X for every X 2 RepOrbSpf, directly
from the definition. To check that this defines a natural isomorphism of functors
D2 D 1, we just need to show that it is compatible with morphisms. Any morphism
in RepOrbSpf can be expressed as .X;A/��X ! .Y;B/��Y for compact orbifold
pairs .X;A/; .Y;B/ 2 RepOrbSpcPairN;k�2 and � 2 Vect2.R.�/N;k/ and some map
f � W .X;A/! .Y;B/ which is a smooth embedding of orbifold pairs (ie ADX\B and
X meets the boundary of Y transversely). We then have a collapse map .Y; @Y �Bı/!

.Y;Y �N"X /, whose target is relatively homotopy equivalent to .X; @X �Aı/T Y=TX ;
this collapse map is .Df /T Y�� . Now we may realize this collapse map as an embedding

(3-54) .Y; @Y �Bı/
�f 1

2g
,���!

�
Y � Œ0; 1�; ..@Y �Bı/� Œ0; 1�/[ ..Y �N "X /�f1g/

�
:

We may now dualize it again to obtain

†.X;A/D
�
N"X � Œ0; 1�; .N"X � @Œ0; 1�/[ .A� Œ0; 1�/

�
(3-55)

D
�
Y � Œ0; 1�; .B � Œ0; 1�/[ .Y � f0g/[ .N"X � f1g/

�
!†.Y;B/;(3-56)

which is indeed (the suspension of) the map we started with.

Duality commutes with smash product: there are natural isomorphisms D.Z ^W /D

DZ ^ DW for Z;W 2 RepOrbSpf. Indeed, it suffices to define such a natural
isomorphism of functors of Z and W in the left side of (3-49) (where we may assume all
objects are compact orbifold pairs), and such an isomorphism is evident by inspection.

There is a natural pairing Z ^DZ!R.�/, defined as follows. Let Z D .X;A/�� be
an orbifold pair desuspended by a vector bundle. The diagonal gives a map

(3-57) .X; @X /! .X;A/�� ^ .X; @X �Aı/� :

We desuspend to obtain .X; @X /�TX ! .X;A/�� ^ .X; @X � Aı/��TX and then
dualize to obtain a map Z^DZ!X . Composing with the canonical map X !R.�/

defines the desired map Z ^DZ!R.�/.

4 Vector bundles

4.1 Classifying spaces

For any compact Lie group G, let us argue that there is an object BG 2 OrbSpc
which classifies principal G–bundles, in the sense that it carries a principal G–bundle
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EG! BG such that the induced map from homotopy classes of maps X ! BG to
isomorphism classes of principal G–bundles over X is a bijection for any orbi-CW–
complex X . (By Lemma 2.7, for any orbi-CW–complex X , necessarily paracompact,
every principal G–bundle over X � Œ0; 1� is pulled back from X , so there is indeed
such a map.) Note that �=G has this representing property for all stacks, not just
orbi-CW–complexes, however it is not itself an orbi-CW–complex unless G is finite,
so it is not (in the present context) BG.

Lemma 4.1 The classifying space BG 2 OrbSpc exists.

Proof We argue as in Proposition 3.12. Construct, by induction, an orbi-CW–complex
BG carrying a faithful principal G–bundle EG ! BG. Begin with .BG/�1 D ¿.
Consider triples consisting of a map @Dk �B� ! .BG/k�1, a faithful principal G–
bundle P over Dk �B� , and an isomorphism over @Dk �B� between the restriction
of P and the pullback of .EG/k�1. Note that since P ! Dk � B� is faithful, the
map @Dk �B�! .BG/k�1 must necessarily be representable. To define .BG/k , we
attach a cell to .BG/k�1 for each homotopy class of such triple (we may omit trivial
homotopy classes, ie those which are induced by maps Dk �B� ! .BG/k�1); the
data of each triple tells us how to extend .EG/k�1! .BG/k�1 to .EG/k ! .BG/k .

Now we claim that EG ! BG is the desired universal principal G–bundle over
an orbi-CW–complex. It suffices to show that for every triple consisting of a map
@Dk �B�! BG, a principal G–bundle P over Dk �B� , and an isomorphism over
@Dk �B� between the restriction of P and the pullback of EG, we can extend the map
and the isomorphism to Dk �B� . By cellular approximation, we may assume the map
@Dk �B�! BG lands inside .BG/k�1. Now our principal G–bundle over Dk �B�
is necessarily pulled back from B� (since Dk is contractible) hence is classified by
a conjugacy class of homomorphisms � ! G. In particular, it is pulled back from
Dk�B.�=N / for N E� the kernel. Since the principal G–bundle over BG is faithful,
this map also factors, uniquely, through Dk �B.�=N / by Lemma 3.4. Now that we
have a representable map to .BG/k�1, we can appeal to the definition of .BG/k to see
that the triple involving Dk �B.�=N / extends as desired, hence by precomposition
the original triple as well.

Remark 4.2 Another construction of BG is given in [29]. There, the G–CW–complex
EG is defined by the property of carrying a G–action with finite stabilizers such that
.EG/H is contractible for every finite subgroup H � G. The orbispace BG is then
defined as the quotient .EG/=G.
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Note that since EG! BG is faithful, a principal G–bundle P !X is faithful if and
only if the corresponding map X ! BG is representable.

It is important to note that the extension property shown above in the proof that
BG represents the functor of isomorphism classes of principal G–bundles is strictly
stronger than the representing property (though of course a posteriori it is equivalent).
The extension property corresponds to a more homotopical (1–categorical or model
categorical) universal property of BG, and it will be used implicitly at later points,
eg to know that every isomorphism of principal G–bundles is induced by a homotopy
of maps to BG.

Remark 4.3 The object classifying principal G–bundles depends strongly on the
category we are working in. For example, the CW–complex BG 2 Spc classifying
principal G–bundles over CW–complexes evidently does not coincide with the orbi-
CW–complex BG 2OrbSpc classifying principal G–bundles over orbi-CW–complexes.
Rather, it is immediate that the right adjoint to the inclusion Spc ,!OrbSpc, namely the
classifying space functor, sends BG to BG (and R.BG/ classifies principal G–bundles
in the category RepOrbSpc). Similarly, if we were to define a larger category of “Lie
orbispaces” allowing objects such as �=G, then the right adjoint (if it exists) to the
inclusion of OrbSpc into this larger category would send �=G to (what we have decided
to call) BG 2 OrbSpc. As a more explicit warning to the reader: the most natural
meaning of the symbol BG thus differs from context to context, and it should probably
default to BG WD �=G unless the contrary is explicitly stated, as we have done here.

4.2 Stable vector bundles

We discuss stable vector bundles on orbi-CW–complexes. The principal new feature
in this discussion compared with the corresponding discussion for CW–complexes is
that there are many different ways to “stabilize”. We will consider only two extreme
notions: “coarse stabilization”, involving a direct limit over ˚R, or, equivalently, over
˚V for arbitrary coarse vector bundles, and “stabilization”, involving a direct limit
over ˚V for arbitrary vector bundles V .

For an orbi-CW–complex X , let Vect.X / denote the category whose objects are vector
bundles over X and whose morphisms are homotopy classes of injective maps. As a
set, Vect.X / is the set of homotopy classes of maps X !

F
n�0 BO.n/.

Lemma 4.4 The category Vect.X / is filtered.
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Example 4.5 A vector bundle over BG is a G–representation. Thus objects of
Vect.BG/ are in bijection with elements of Z

yG
�0

, where yG denotes the set of iso-
morphism classes of real irreducible representations of G. An automorphism of an
object of Vect.BG/ also splits as a direct sum of isotypic pieces. The component group
of the space of automorphisms of �˚n for n > 0 is Z=2 if End.�/D R and is trivial
otherwise (ie if End.�/DC or H).

For two vector bundles V and W on X , let �0 Iso.V;W / denote homotopy classes
of isomorphisms V !W . Vector bundles and isomorphisms up to homotopy form a
groupoid Vect.X /iso. A stable isomorphism V ÜW up to homotopy is an element of

(4-1) �0 Isost.V;W / WD lim
��!

E2Vect.X /
�0 Iso.V ˚E;W ˚E/:

Vector bundles and stable isomorphisms also form a groupoid Vect.X /st
iso. If we

restrict (4-1) to coarse vector bundles E, we obtain the notion of a coarsely stable
isomorphism and a resulting groupoid Vect.X /cst

iso. If X is compact, then the sequence
0 ,! R ,! R2 ,! � � � is cofinal in coarse vector bundles on X , so it is equivalent to
stabilize just by these. When stabilizing with respect to all vector bundles, there seems
to be no such nice canonical sequence (though see [29, Remark 1.4]). The notion of
stable isomorphism is most reasonable when X is compact (or at least has enough
vector bundles).

The groupoid of vector bundles and stable isomorphisms may be extended to a larger
groupoid of stable vector bundles (similarly, the groupoid of vector bundles and coarsely
stable isomorphisms extends to a groupoid of coarsely stable vector bundles). A
(coarsely) stable vector bundle is a formal difference E �F (where F is coarse); if
X is compact a coarse vector bundle is equivalently a formal difference E �Rn. An
isomorphism of (coarsely) stable vector bundles .E �F /! .E0�F 0/ is a (coarsely)
stable isomorphism E ˚ F 0Ü E0 ˚ F ; note that we can indeed compose these.
Provided X is compact, the groupoid of coarsely stable vector bundles is the direct
limit of Vect.X / ˚R

��! Vect.X / ˚R
��! � � � . The groupoid of stable vector bundles is

the direct limit of Vect.X / over the 2–categorical refinement Vect2.X / of Vect.X / in
which a morphism is an inclusion of vector bundles and a 2–morphism is a homotopy
class of paths of inclusions.

Example 4.6 Isomorphism classes of stable vector bundles on BG are in bijection
with Z

yG . The automorphism group of every one is the product of Z=2 over all � 2 yG
with End.�/DR. Coarsely stable vector bundles on BG are in bijection with Z˚Z

yG�1
�0

,
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and the automorphism group of a coarsely stable vector bundle is Z=2 (corresponding
to �D 1) times the product of Z=2 over all �¤ 1 for which End.�/DR and whose
isotypic piece is nontrivial.

There is an orbi-CW–complex bO WD lim
��!n

BO.n/ defined as the infinite mapping
cylinder of the maps BO.n/

˚R
��! BO.nC 1/. This orbispace bO classifies coarsely

stable vector bundles: a map X ! bO up to homotopy is the same as a coarsely stable
vector bundles of dimension zero over X up to isomorphism. The notation bO is chosen
to coincide with the notation for a corresponding global space defined by Schwede
[34, Section 2.4], which has the same classifying property; see Section 6.2 below.

One might desire an orbispace BO classifying stable vector bundles; intuitively, it
should be the group completion of

F
n BO.n/. There is indeed a global space BO

[34, Section 2.4] which is the group completion [34, Theorem 2.5.33] and which has
this desired classifying property, as we will see in Section 6.2. Note that if we were
to naively apply the usual definition of group completion to the monoid

F
n BO.n/,

we would need to apply B to it, and this would involve gluing along nonrepresentable
maps. In fact:

Lemma 4.7 There does not exist an orbi-CW–complex BO and a functorial bijection
between isomorphism classes of stable vector bundles over orbi-CW–complexes X and
homotopy classes of maps X ! BO.

Proof Consider a vector bundle V over a CW–complex X which is not stably trivial,
eg one with nontrivial Pontryagin classes. Now fix a nontrivial irreducible representa-
tion Q of a finite group G, and consider the stable vector bundle .V �RjV j/˝Q over
X �BG. The restriction of this stable vector bundle to any ��BG is evidently zero.
Hence if it were pulled back from a classifying map X �BG! BO, each restriction
��BG! BO would factor through � ! BO, hence by Lemma 3.4 the entire map
X �BG! BO would factor through X ! BO, implying that our given stable vector
bundle is pulled back from X . On the other hand, stable vector bundles on X �BG

are simply the direct sum over yG of stable vector bundles on X , so our given stable
vector bundle is definitely not pulled back from X . As in Example 3.20, the key point
in this argument was the use of Lemma 3.4.

4.3 Stable structures on vector bundles

A structure on vector bundles S is a sequence of orbi-CW–complexes BS.n/ for
n� 0 each carrying a vector bundle �n of rank n (equivalently, we could specify the
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maps BS.n/! BO.n/); we write � for
F

n�0 �n over
F

n�0 BS.n/. An S–structure
on a vector bundle V over an orbi-CW–complex X is a map f W X !

F
n BS.n/

together with an isomorphism V D f �� . The set of S–structures up to homotopy on a
vector bundle V is denoted StrS.V /. An isomorphism V ��!W induces a bijection
StrS.V / ��! StrS.W /.

The notion of an S–structure provides a common language for many structures of
interest on vector bundles. In particular: for BS.n/ D BSO.n/, an S–structure is
an orientation; for BS.n/ D BU.n=2/, an S–structure is a complex structure; for
BS.n/D �, an S–structure is a trivialization (or framing).

A shift on a structure on vector bundles S is a collection of maps sn W BS.n/ !
BS.nC 1/ and isomorphisms s�n�nC1 D �n˚R; equivalently, we could specify for
each diagram

(4-2)
BS.n/ BS.nC 1/

BO.n/ BO.nC 1/

sn

�n �nC1

˚R

a homotopy between the two compositions. A shift on S gives rise to natural maps
StrS.V /! StrS.V ˚R/, and a homotopy class of coarsely stable S–structure on V

is an element of

(4-3) Strcst
S .V / WD lim

��!
n

StrS.V ˚Rn/:

We have Strcst
S .V /D StrS.V / if (4-2) is a homotopy pullback square (in the sense that

the relevant lifting property holds for every .Dk ; @Dk/�BG). It also makes sense to
put a coarsely stable S–structure on a coarsely stable vector bundle: Strcst

S .F �Rk/ WD

lim
��!n

StrS.V ˚Rn�k/, and coarsely stable isomorphisms between coarsely stable vector
bundles induce maps between their sets of homotopy classes of coarsely stable S–
structures. The orbi-CW–complex bS WD lim

��!n!1
BS.n/ (infinite mapping cylinder)

classifies coarsely stable vector bundles with S–structure, in the sense that homotopy
classes of maps X ! bS are in bijection with isomorphism classes of coarsely stable
vector bundles with S–structure.

The set Strcst
S .V / has a canonical involution defined by noting the canonical isomorphism

Strcst
S .V /DStrcst

S .V˚R/ and acting via idV ˚.�1/ on V˚R. Note that, having defined
the involution on every Strcst

S in this way, the isomorphism Strcst
S .V /D Strcst

S .V ˚R/

respects involutions since
�
�1 0

0 1

�
and

�
1 0
0 �1

�
lie in the same component of O.2/.
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A coarsely stable orientation is simply an orientation, due to the aforementioned
condition that (4-2) be a homotopy pullback being satisfied. To define coarsely stable
complex structures, we should take Sn WD BU.bn=2c/ and �n to be the tautological
bundle plus R for n odd, and the map s to be addition of R (choosing a convention for
which homotopy class of complex structure on R2 to use). A coarsely stable complex
structure is weaker than a complex structure (even in even dimensions). A coarsely
stable framing exists only on coarse vector bundles.

A stable structure on vector bundles is a structure on vector bundles S together with a
map i W � ! BS.1/ with an isomorphism i�� DR and maps

sn;m W BS.n/�BS.m/! BS.nCm/

with isomorphisms �n˚ �m D s�n;m�nCm which are associate and graded symmetric
in the sense that we now explain. Associativity means that the two resulting maps
BS.n/�BS.m/�BS.k/!BS.nCmCk/ covered by isomorphisms �n˚�m˚�k D
�nCmCk are homotopic. Note that s WD sn;1 ı .id�i/ defines a shift on S, so we can
already make sense of coarse stabilization. Graded symmetry is the statement that the
maps StrS.V /�StrS.W /! Strcst

S .V ˚W / given by adding in either order differ by
.�1/jV jjW j, where �1 denotes the canonical involution on Strcst

S defined above. We
thus obtain graded symmetric maps

(4-4) Strcst
S .V /�Strcst

S .W /! Strcst
S .V ˚W /

defined as the direct limit over n and m of .�1/njW j times the map StrS.V ˚Rn/�

StrS.W ˚Rm/! StrS.V ˚W ˚RnCm/.

A homotopy class of stable S–structure on V is an element of the direct limit

(4-5) Strst
S.V / WD lim

��!
W

Strcst
S .V ˚W /

over the category whose objects are vector bundles W equipped with a homotopy class
of coarsely stable S–structure and whose morphisms are injections of vector bundles
V ,!W together with a homotopy class of coarsely stable S–structure on W =V such
that the resulting homotopy class of coarsely stable S–structure on W D V ˚W =V is
the given one, modulo homotopy. (We warn the reader that the forgetful functor from
this category to Vect.X / need not be cofinal.)

Lemma 4.8 The indexing category above is filtered.
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Proof It is nonempty since there is the zero vector bundle. Given objects V and V 0,
they both admit morphisms to the same object V ˚V 0, namely ˚V 0 in the former case
and ˚V in the latter case twisted by .�1/jV jjV

0j. Finally, suppose we are given two
morphisms V ! V ˚W and V ! V ˚W 0 where V ˚W D V ˚W 0. Then compose
further with ˚V , so that the two compositions become ˚ .W ˚V / and ˚ .W 0˚V /,
which we assumed were the same — notice that jW j D jW 0j, so the sign twist in each
case is the same.

There are associative graded symmetric maps

(4-6) Strst
S.V /�Strst

S.W /! Strst
S.V ˚W /:

In particular, Strst
S.0/ is an abelian group (to see that it has inverses, note that an

element of Strst
S.0/ is given by a vector bundle V with two coarsely stable S–structures,

and exchange them with a sign twist), each Strst
S.V / is either empty or a principal

homogeneous space for Strst
S.0/, and the addition maps (4-6) are maps of Strst

S.0/–sets.
Each StrS.V / also carries a canonical involution given by adding R and acting on it
by �1.

It also makes sense to discuss stable structures on stable vector bundles, and the above
continues to apply.

A stable orientation is the same as an orientation. A stable almost complex structure is
strictly weaker than a coarsely stable almost complex structure. A stable framing is the
same as a coarsely stable framing.

5 Orbifold bordism

5.1 Definitions

We define orbifold bordism ��.X;A/ and derived orbifold bordism �der
� .X;A/ for

any orbispace pair .X;A/ as follows.

Consider compact orbifolds with boundary Z together with a representable map
f W .Z; @Z/ ! .X;A/. A bordism between such pairs .Z1; f1/ and .Z2; f2/ con-
sists of a compact orbifold with boundary W with a codimension-zero embedding
Z1tZ2 ,! @W and a representable map f W .W; @W � .Zı

1
[Zı

2
//! .X;A/ whose

restrictions to Z1 and Z2 are f1 and f2, respectively. (Alternatively, one could
regard W as a compact orbifold with corners, where the corner locus is precisely
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@Z1[ @Z2 � @W .) Bordism is an equivalence relation (by a collaring result, which
allows one to glue together bordisms). Now��.X;A/ is the set of pairs .Z; f /modulo
compact bordism, graded by dimension.

We now consider a “derived” version of this construction. A derived orbifold chart
(with boundary) Z is a tuple .D;E; s/, where D (the “domain”) is an orbifold (with
boundary), E (the “obstruction bundle”) is a vector bundle, and s (“the obstruction
section”) is a smooth section. A derived orbifold chart with boundary is called compact
if and only if the zero set of s is compact. A restriction of a derived orbifold chart with
boundary replaces D with an open subset of D which contains the zero set of s (we may
always restrict to a precompact subset of D, hence the noncompactness of D is never
an issue). A stabilization of a derived orbifold chart with boundary Z D .D;E; s/

replaces D with the total space of a vector bundle F over D, replaces E with its direct
sum with F , and replaces s with its direct sum with the identity map on F . Bordism
of derived orbifold charts is defined as before. Now �der

� .X;A/ is the set of compact
derived orbifold charts with boundary Z D .D;E; s/ together with a representable
map .D; @D/! .X;A/, modulo compact bordism, restriction and stabilization. It is
graded by virtual dimension dim D� dim E. There is an obvious map ��!�der

� .

While bordism of orbifolds is obviously an equivalence relation (since boundaries of
orbifolds with boundary have collars), the analogous assertion for bordisms of derived
orbifold charts relies on enough vector bundles.

Proposition 5.1 Two compact derived orbifold charts with boundary representable
over .X;A/ represent the same element of �der

� .X;A/ if and only if they are compactly
bordant after restricting and stabilizing.

Proof It suffices to check that the stated relation is transitive. Suppose that Z1 �

Z2 � Z3, and let us show that Z1 � Z3. The key obstacle to overcome is that the
vector bundles by which one stabilizes Z2 to become bordant to (stabilizations of) Z1

and Z3 may not coincide.

We begin by introducing a new perspective on stabilization. Let .D;E; s/ be a derived
orbifold chart, and let Q be a vector bundle over D together with a surjection f WQ�E.
We obtain a new derived orbifold chart

(5-1)
�
fd 2D; q 2Q W s.d/D f .q/g;Q; �Q

�
:

Geometry & Topology, Volume 27 (2023)



1816 John Pardon

In fact, this new derived orbifold chart is a stabilization of .D;E; s/: indeed a choice
of splitting QD E˚ kerf identifies the new derived orbifold chart above with the
stabilization of .D;E; s/ by kerf .

Let us now observe that stabilization is transitive: a stabilization of a stabilization is
a stabilization. The point is just that if .D;E; s/ .D0;E0; s0/ .D00;E00; s00/ are
stabilizations, then the vector bundle W by which the second stabilization stabilizes
is pulled back from D � D0 (the first stabilization says that D0 is the total space of
a vector bundle over, hence has a projection map down to, D). Choosing such an
identification of W with the pullback of its restriction to D identifies .D00;E00; s00/
with a stabilization of .D;E; s/.

We now return to the problem at hand. We have bordisms C12 and C23 between
stabilizations of Z1, Z2, Z3. By making a small deformation, we may assume that
these bordisms are collared, ie near the boundary are the product of the boundary
times Œ0; "/. Consider the orbispace C12[Z2

C23, ie the gluing of the “domains” of the
corresponding derived orbifolds, possibly after restricting to precompact open subsets
thereof. By enough vector bundles Theorem 3.23, there is a module faithful vector
bundle Q over this space. There thus exists an N <1 and surjections ˆ12 and ˆ23

from Q˚N jC12
and Q˚N jC23

to the obstruction spaces E12 of C12 and E23 of C23,
respectively (say, independent of the radial coordinate of the collar near the boundary),
thus determining stabilizations of C12 and C23, respectively. The resulting composite
stabilizations of Z2 on the boundary are thus determined by surjections ‰12 ıˆ12 and
‰23 ıˆ23 from Q˚N to the obstruction space E2 of Z2, where ‰12 WE12!E2 and
‰23 WE23!E2 are the surjections inducing the stabilizations of Z2 on the boundaries
of C12 and C23, respectively. If these surjections ‰12 ıˆ12 and ‰23 ıˆ23 from Q˚N

to E2 are homotopic through surjections, we may insert such a homotopy in the collar
coordinate and glue the stabilizations of C12 by ˆ12 and C23 by ˆ23 together to obtain
the desired glued bordism between (stabilizations of) Z1 and Z3. By replacing N with
2N and replacing ˆ12 and ˆ23 with ˆ12˚ 0 and 0˚ˆ23, respectively, the desired
homotopy through surjections is simply the obvious linear interpolation.

Remark 5.2 A derived orbifold is an object with an atlas of derived orbifold charts.
It is a consequence of enough vector bundles that every derived orbifold has in fact a
global chart. Thus we may (and do) define derived orbifold bordism groups purely in
terms of derived orbifold charts, without delving into the details of the definition of
derived orbifolds. The cost of this approach is that enough vector bundles becomes a
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crucial ingredient in the proofs of most properties of derived orbifold bordism as we
have defined it here.

5.2 Basic properties

The sets �d and �der
d

are both abelian groups under disjoint union; each element is its
own inverse.

These groups �d and �der
d

are functorial under representable maps of pairs, namely
they define functors RepOrbSpcPair! Ab. In fact, they descend to functors

(5-2) RepOrbSpc�! Ab;

which can be seen either directly from the definition or by appealing to Proposition 3.15.
(The proof is exactly as for classical bordism, so we omit it.)

There is a natural map�d!�der
d

(take ED 0). Since a section of a vector bundle over
a manifold can be perturbed to be transverse to zero, the map �d .X;A/!�der

d
.X;A/

is an isomorphism for .X;A/ 2 Spc�.

There are natural product maps

��.X;A/˝��.Y;B/!��..X;A/� .Y;B//;(5-3)

�der
� .X;A/˝�

der
� .Y;B/!�der

� ..X;A/� .Y;B//;(5-4)

given simply by taking product of (derived) orbifolds.

(Derived) orbifold bordism groups also satisfy exactness:

Proposition 5.3 The functors �d and �der
d

send any cofiber sequence (3-25) to an
exact sequence of abelian groups.

Proof We treat both cases (�d and �der
d

) simultaneously, writing �.der/
� for either

one.

It is immediate that any element of �.der/
� .X;A/ represented by something mapped

entirely to A is zero (multiply by I to obtain a bordism to the empty set). It follows
that the composition �.der/

� .Y;B/!�
.der/
� .X;A/!�

.der/
� .X;A[B Y / vanishes.

Now suppose an element .Z; @Z/ of �.der/
� .X;A/ is sent to zero in �.der/

� .X;A[B Y /.
There is thus a nullbordism C of .Z; @Z/ over .X;A[B Y /— in the case of �der

� , this
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uses Proposition 5.1. The boundary of this bordism consists of Z (mapped to .X;A/)
and its complement, which is mapped to A [B Y . Replace the map f W C ! X

with its composition with a small perturbation of the identity ˆ W X ! X satisfying
ˆ.A/ � A, ˆ.Y / � Y and ˆ.Nbd B/ � B; such a map ˆ may be constructed by
induction on cells. Since the closure of ˆ�1.Y �B/ is disjoint from B, it follows that
the closure of the set .f j@C /

�1.Y �B/ is disjoint from Z � @C . Now take Z0 � @C

a compact codimension-zero submanifold with boundary, disjoint from Z, containing
.f j@C /

�1.Y �B/. Thus .Z0; @Z0/! .Y;B/ represents an element of �.der/
� .Y;B/

which is sent to Z in �.der/
� .X;A/.

Applying Proposition 5.3 to the Puppe sequence gives a long exact sequence, which
acquires the usual form once we observe that ��.X;A/ D ��C1..X;A/� .I; @I//

(and likewise for �der
� ), as we will see next. Namely, for any cofiber sequence (3-25),

we obtain a (bi-infinite) long exact sequence

(5-5) � � � !��.Y;B/!��.X;A/!��.X;A[B Y /!���1.Y;B/! � � � ;

and the same for �der
� .

Example 5.4 Here is a way to detect nontrivial negative-degree classes in derived
bordism. Let G be any finite group. There is an ungraded map

��.BG/!��.�/;(5-6)

M=G 7!M G
I(5-7)

every representable map N ! BG is of the form M=G ! BG for M D N �BG �.
Similarly, there is an ungraded map

�der
� .BG/!�der

� .�/D��.�/;(5-8)

.M;E; s/=G 7! .M G ;EG ; sjM G /:(5-9)

One should be careful to note that this map does indeed respect bordism (in particular,
stabilization). For any G–representation V , this map sends

(5-10) .BG;V =G; 0/ 2�der
� dim V .BG/

to .�;V G ; 0/ 2�der
� dim V G .�/, which is nonzero if and only if V G D 0. We conclude

that if V G D 0 then �der
� dim V

.BG/¤ 0.
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5.3 (Inverse) Thom maps

For any vector bundle V over X , there are natural inverse Thom maps (terminology
following Schwede [34, Section 6])

�d .X;A/!�dCjV j..X;A/
V /;(5-11)

�der
d .X;A/!�der

dCjV j..X;A/
V /;(5-12)

given by replacing a given (derived) orbifold with the Thom space of the pullback of V .
We also have Thom maps in the opposite direction

�dCjV j..X;A/
V /!�d .X;A/;(5-13)

�der
dCjV j..X;A/

V /!�der
d .X;A/;(5-14)

given by intersecting with the zero section of V . More precisely, the Thom map on ��
is only defined for coarse vector bundles V, and it requires an appeal to Sard’s theorem
to conclude that intersecting with a generic perturbation of the zero section of V is
transverse. The Thom map on �der

� is defined for all vector bundles V and consists
simply of adding V to the obstruction bundle and the identity section to the obstruction
section.

Proposition 5.5 The Thom map and the inverse Thom map are inverses.

Proof We have four compositions to show are the identity map:

�
.der/
d

.X;A/!�
.der/
dCjV j

..X;A/V /!�
.der/
d

.X;A/;(5-15)

�
.der/
dCjV j

..X;A/V /!�
.der/
d

.X;A/!�
.der/
dCjV j

..X;A/V /:(5-16)

The map (5-15) for �� is the identity by inspection. The map (5-15) for �der
� is the

identity since its action on a given derived orbifold chart is to stabilize by V . The map
(5-16) for �� is also the identity by inspection — given a transverse perturbation " of
the zero section which is transverse to a given orbifold, consider replacing .X;A/V

with a small tubular neighborhood of the image of " relative its boundary.

The map (5-16) for �der
� may be expressed alternatively as

(5-17) �der
dCjV j..X;A/

V /!�der
dC2jV j..X;A/

V˚V /!�der
dCjV j..X;A/

V /;

which looks very much like (5-15), except it is not quite the same since here the first
map “inflates” along the second copy of V whereas the second map intersects along
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the zero section of the first copy of V . However, we may note that .X;A/V˚V has
an automorphism, homotopic to the identity map, given by the matrix

�
0 1
�1 0

�
� idV ,

conjugation by which turns the second map into intersection with the second copy
of V , putting our composition into the form (5-15) for �der

� , which we already saw is
the identity map.

Given the Thom isomorphism, we may extend �� and �der
� to orbispectra as follows.

Bordism �� extends to naive orbispectra RepOrbSpcŒ†�1� by taking

��.†
�n.X;A// WD��Cn.X;A/;

which is consistent since ��.X;A/ D ��C1.†.X;A// by the Thom isomorphism.
Derived bordism �der

� extends to genuine orbispectra RepOrbSpf by taking

��..X;A/
�V / WD��CjV j.X;A/;

which is again consistent by the Thom isomorphism.

When V is not coarse, the inverse Thom map ��.X;A/! ��CjV j..X;A/
V / is in

general not an isomorphism. It is thus natural to ask whether ��..X;A/V / may be
expressed as bordism classes of some class of (derived) orbifolds mapping to .X;A/
(rather than .X;A/V ). We will see how to do this below, based on Wasserman’s
theorem, which we will meet shortly. This is the key to extending �� to genuine
orbispectra.

For the moment, we will observe that �� ! �der
� is the localization at the inverse

Thom maps, in the following sense:

Lemma 5.6 For finite orbi-CW–pairs .X;A/, the natural map

(5-18) ��

h
1

�

i
.X;A/ WD

lim
��!
V =X

��CjV j..X;A/
V / ��! lim

��!
V =X

�der
�CjV j..X;A/

V /D�der
� .X;A/

is an isomorphism.

Proof We prove surjectivity. Let .D;E; s/ be a derived orbifold chart which is
representable over .X;A/. To obtain the corresponding derived orbifold chart over
.X;A/V , we simply replace D with the total space of the pullback of V to it. By
enough vector bundles (Theorem 3.23), we may take V so that its pullback to D
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surjects onto E. Now we may perturb s by adding to it (epsilon times) this surjection,
thus making it transverse. Hence our derived orbifold chart lies in the image of
��CjV j..X;A/

V /!�der
�CjV j

..X;A/V /.

Injectivity follows from the same argument applied to a derived orbifold bordism
between two orbifolds.

5.4 Wasserman’s theorem

A remarkable observation of Wasserman [38] provides a sufficient condition under
which a section of a vector bundle over an orbifold may be perturbed to become
transverse to zero. In particular, it gives a condition under which a derived orbifold is
bordant to an orbifold.

To state this condition, let us fix some notation. For a vector bundle V over an orbispace
and a point p, we may decompose the fiber Vp into a direct sum of isotypic pieces,
indexed by the set yGp of isomorphism classes of real irreducible representations of
the isotropy group Gp of p. In particular, we may split Vp as the direct sum of the
isotropy invariant part .Vp/

Gp D .Vp/1 and the direct sum .Vp/ yGp�1 of isotypic pieces
of nontrivial representations. We denote by V�iso�1 � V the sum of the isotypic pieces
associated to nontrivial representations (note that V�iso�1 is not itself a vector bundle),
and for a map of vector bundles f , we denote by f�iso�1 its action on these subspaces.
Given a vector bundle V over an orbifold X together with a map ˛ W TX ! V for
which ˛�iso�1 is surjective, a section s WX ! V is called ˛–consistently transverse (to
zero) if and only if over its zero set ds is surjective with .ds/�iso�1 D ˛�iso�1.

Theorem 5.7 (Wasserman [38]) Let X be an orbifold , let E be a vector bundle
over X and fix a map ˛ W TX ! E for which ˛�iso�1 is surjective. Every section of
E has a C 0–small perturbation which is ˛–consistently transverse. This perturbation
may be taken relative to a neighborhood of any closed set over which it is already
˛–consistently transverse.

(We credit this result to Wasserman [38], although Wasserman only stated the special
case that X D Rn=G and E is the descent of the trivial bundle Rn with the same
G–action, and ˛ is the identity.)

Proof We proceed by induction over the stratification of X by order of stabilizer. By
triangulating a given stratum, it suffices to perturb on any given disk rel boundary
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inside X , which all have a standard local model. In other words, it suffices to consider
the case of X DDk �D` �W =G, where G ÕW has zero invariant part W G D 0,
the section s is ˛–consistently transverse over a neighborhood of @Dk � 0� 0, and we
would like to make it ˛–consistently transverse over a neighborhood of Dk�0�0. Now
over Dk � 0� 0, the derivative ds is G–equivariant, hence respects the decomposition
into isotypic pieces:

(5-19) .ds/1˚ .ds/ yG�1 W .TDk
˚TD`/˚W !EG

˚E yG�1:

By perturbing (rel a neighborhood of the boundary) the restriction of s to Dk�0�0, we
may make .ds/1 surjective; note that s is constrained to land inside EG over Dk�0�0.
We may then extend s to a neighborhood of Dk � 0� 0 so that .ds/ yG�1 D ˛ yG�1 over
Dk � 0� 0.

We are not quite done, however, since the above construction ensures that our perturbed
section s will be ˛–consistently transverse over Dk � 0 � 0 and a neighborhood
of @Dk � 0� 0, but not over a neighborhood of Dk � 0� 0. To fix this, choose an
isomorphism ED��E, where � denotes the projection � WDk�D`�W =G!Dk�D`

forgetting the last coordinate. Now given the section s defined above, set

(5-20) xs.a; b; c/ WD s.a; b; 0/C˛ yG�1.c/;

where we use the isomorphism E D ��E to make sense of the right-hand side as
an element of the fiber of E over .a; b; c/ 2 Dk �D` �W =G. Now this section xs
is certainly ˛–consistently transverse over a neighborhood of Dk � 0� 0, however
it does not agree with s over a neighborhood of @Dk � 0 � 0. Instead, let us use
' � xsC .1�'/ � s for a smooth function ' WDk ! Œ0; 1� vanishing near @Dk and which
equals 1 over a large compact set. This interpolation is now ˛–consistently transverse
over a neighborhood of Dk �0�0, noting that the restriction of d' to the . � /�iso�1 part
of the tangent bundle is zero.

Remark 5.8 A stable homotopy theoretic analogue of this argument appears in
tom Dieck [12, Satz 5] and Schwede [34, Theorem 6.2.33]. It would be interesting to
explore whether a stable homotopy theoretic analogue of Fukaya and Ono’s “integer
part” construction [17] exists as well; that construction follows a strategy similar to
Wasserman’s strategy above, though rather than using ˛ in the normal directions, one
requires complex polynomial behavior in the normal directions.

Corollary 5.9 A derived orbifold chart whose tangent bundle is stably isomorphic to a
coarsely stable vector bundle is bordant to an orbifold.
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Proof Let ZD .D;E; s/ be a derived orbifold chart. By assumption, the stable vector
bundle TD�E is stably isomorphic to a coarsely stable vector bundle F�RN — in fact,
we will not use anything special about RN other than that it is coarse. In other words,
there exists a vector bundle V and an isomorphism TD˚ V ˚RN D E ˚ V ˚F .
By stabilizing our derived orbifold chart .D;E; s/ by V , we may reduce this to
TD˚RN D E˚F . Now the composition ˛ W TD! TD˚RN D E˚F ! E is
evidently surjective on . � /�iso�1 pieces. We can thus apply Wasserman (Theorem 5.7)
to perturb s to a section s0 which is transverse to zero (and agrees with s outside a
compact set). The desired bordism is thus .D � Œ0; 1�;E � Œ0; 1�; tsC .1� t/s0/.

The literal converse to Corollary 5.9 is false for trivial reasons — @Œ0; 1� times anything
is nullbordant yet need not have coarsely stable tangent bundle. The next subsection
formulates an “up to bordism” version of Corollary 5.9 which is an “if and only if” (or
rather isomorphism) statement.

5.5 Orbifold bordism as oriented derived orbifold bordism

Let us now explain how Wasserman’s theorem implies, as one might expect after seeing
Corollary 5.9, that orbifold bordism may be expressed as derived orbifold bordism with
a sort of tangential structure, namely what we will call a coarsely stable structure on
its stable tangent bundle. We may thus think of �� as an “oriented” version of �der

� , in
the sense that modifying the definition of �der

� by imposing a marking on the stable
tangent bundle yields ��.

A coarsely stable structure on a stable vector bundle V is a coarsely stable vector
bundle W and a stable isomorphism V DW . A given stable vector bundle may admit
multiple nonisomorphic coarsely stable structures (nonisomorphic coarsely stable vector
bundles may be stably isomorphic).

Derived orbifold bordism with coarsely stable tangential structure �cst;der
� is defined

as follows. Consider derived orbifold charts Z D .D;E; s/ representable over .X;A/
together with a vector bundle A and a stable isomorphism A�RjEj�jTDj�jAjDTD�E,
modulo restriction, stabilization, A 7!A˚R and bordism. Let us argue that bordism
after restriction, stabilization and A 7!A˚R is transitive, and hence is an equivalence
relation. As argued in the proof of Proposition 5.1, given two bordisms C12 and C23,
we may stabilize so that the requisite stabilizations of Z2 coincide. The bordisms may
thus be glued, so it suffices to argue that the coarsely stable structures can also be glued.
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We have vector bundles A12 on C12 and A23 on C23 and a coarsely stable isomorphism
between their restrictions to Z2. Thus, stabilizing A12 and A23 by adding Rk , we
get a genuine isomorphism on Z2, which allows us to glue them together. Now we
have stable isomorphisms between this glued coarsely stable vector bundle and the
tangent space to our glued derived bordism, separately on C12 and C23, and their
restrictions to Z2 are homotopic. They may thus be glued (nonuniquely). We conclude
that bordism after restriction, stabilization and A 7!A˚R is an equivalence relation,
as desired.

Remark 5.10 One can similarly define a theory ��cst;der
� of bordism of derived

orbifolds with coarsely stable structure on minus their tangent bundle.

Given that bordism after restriction, stabilization and A 7! A˚R is an equivalence
relation, the proof of Proposition 5.3 now applies to show that �cst;der

� WOrbSpc�!Ab
sends cofiber sequences to exact sequences.

Proposition 5.11 The natural map �� ��!�
cst;der
� is an isomorphism.

Proof Surjectivity is the statement that every derived orbifold chart .D;E; s/ with
coarsely stable vector bundle � and stable isomorphism � D TD � E is bordant
to an orbifold, ie a derived orbifold chart whose obstruction section is transverse.
Corollary 5.9 provides a transverse perturbation of s which, executed over Œ0; 1�, defines
the desired bordism.

Injectivity is (given the nontrivial result, proved just above, that derived bordism with
coarsely stable tangential structure is an equivalence relation) the statement that every
derived orbifold bordism between stabilizations of orbifolds, with coarsely stable
structure on its tangent bundle, agreeing with the tautological such on the boundary,
can be perturbed rel boundary to be transverse. Concretely, such a structure is (after
stabilizing as in the proof of Corollary 5.9) a vector bundle F and an isomorphism
F ˚E D TD ˚Rk , which on the boundary must coincide with the isomorphism
ED TD given by ds and F DRk (some isomorphism); thus s is already ˛–transverse
over the boundary, so the relative form of Wasserman’s Theorem 5.7 gives us what we
want.

The theory �cst;der
� may be twisted: for any stable vector bundle � on X , we may define

a group ��˚cst;der
� .X;A/ of bordism classes of derived orbifolds carrying a coarsely

Geometry & Topology, Volume 27 (2023)



Orbifold bordism and duality for finite orbispectra 1825

stable vector bundle W and an isomorphism TD�ED �˚W . These twisted theories
are the natural setting for inverse Thom maps

(5-21) �
�˚cst;der
� .X;A/!�

�˚V˚cst;der
�CjV j

..X;A/V /:

Now there is an obvious Thom map in the reverse direction — add V to the obstruction
space and the identity map to the obstruction section — which is an inverse to the
inverse Thom map exactly as in Proposition 5.5. There are also forgetful maps

(5-22) �
�˚V˚cst;der
� .X;A/!�

�˚cst;der
� .X;A/

for vector bundles V , which need not be isomorphisms. This refines the discussion of
inverse Thom maps for �� given above.

The Thom isomorphism for these twisted theories allows us to extend �� D�
cst;der
� to

genuine orbispectra by defining

��..X;A/
�V /D�

cst;der
� ..X;A/�V / WD�

V˚cst;der
�CjV j

.X;A/:

To check that this indeed defines a functor RepOrbSpf ! Ab, use the localization
result Proposition 3.33 and the twisted Thom isomorphism. Indeed, the definition above
gives a functor out of the direct limit of RepOrbSpcN;k (by the Thom isomorphism),
and it satisfies excision (by inspection), thus descending to RepOrbSpf. This functor
sends cofiber sequences to exact sequences; the proof for twisted �cst;der

� is the same
as for untwisted, which was already mentioned above.

5.6 Tangential structure

We define orbifold and derived orbifold bordism groups with tangential structure, and
we show how to generalize the basic properties proven above to this setting. In a
word, a structure on vector bundles S with a shift allows us to define orbifold bordism
groups �S

� , and a stable structure on vector bundles S allows us to define derived
orbifold bordism groups �S;der

� .

For S a structure on vector bundles with a shift, we define bordism groups �S
� as

follows. We consider orbifolds with coarsely stable S–structure on their tangent bundle.
Using the isomorphism Strcst

S .V /D Strcst
S .V ˚R/, we can define a notion of bordism of

orbifolds with coarsely stable S–structure: given a boundary marking Z0tZ1 � @W ,
we use the isomorphisms Strcst

S .T Zi/D Strcst
S .T Zi ˚R/D Strcst

S .T W jZi
/— where,

crucially, we identify R with the inward normal along Z0 and the outward normal
along Z1 — to require compatibility between the coarsely stable S–structure on W with
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those on Z0 and Z1. Bordism is a symmetric relation, as can be seen by inverting the
coarsely stable structure on the bordism, ie applying the canonical involution of Strcst

S .
It is transitive since coarsely stable S–structures glue: by applying ˚Rk enough times,
we reduce to gluing for S–structures; an S–structure over C12 and one over C23 which
are homotopic over Z2 glue, nonuniquely, to an S–structure over C12[Z2

C23. The
resulting S–bordism groups�S

� satisfy functoriality (including excision) and exactness
by the same reasoning as before. They have inverse Thom maps

(5-23) �S
� .X;A/!�S

�C1..X;A/� .I; @I//;

and Thom maps in the reverse direction which are inverse to the inverse Thom maps;
this extends �S

� to a functor on naive orbispectra. As before, we may extend �S
� to

genuine orbispectra by viewing it as a structured version of derived orbifold bordism.
Namely, �S

� coincides with the group �Scst;der
� of bordism classes of derived orbifold

charts carrying a coarsely stable vector bundle A with isomorphism ADTD�E and a
coarsely stable S–structure on A. These groups �Scst;der

� satisfy the same properties as
above, and the map �S

� !�
Scst;der
� is an isomorphism. There are also twisted versions

�
�˚Scst;der
� .X;A/ for any stable vector bundle � on X , and there are inverse Thom

maps

�
�˚Scst;der
� .X;A/!�

�˚V˚Scst;der
�CjV j

..X;A/V /

and forgetful maps

�
�˚V˚Scst;der
� !�

�˚Scst;der
�

for any vector bundle V with coarsely stable structure. We may thus extend �S
� to

genuine orbispectra by taking �S
� ..X;A/

��/ WD�
�˚Scst;der
�Cj�j

.X;A/.

Now suppose S is a stable structure on vector bundles, and let us define derived
S–orbifold bordism. We consider derived orbifold charts .D;E; s/ together with a
stable S–structure on TD�E, modulo restriction, stabilization and bordism as before.
The equivalence relation proof of Proposition 5.1 applies; for this, we need to know that
stable structures on vector bundles glue, and the main point to see that is to use enough
vector bundles to know that we can stabilize by vector bundles on C12[Z2

C23 to reduce
to gluing (again, nonuniquely) S–structures on C12 and C23 which agree over Z2.
The resulting theory thus satisfies exactness. These theories can be twisted: we may
define �V˚S;der

� .X;A/ to be bordism classes of derived orbifold charts with a stable
S–structure on TD�E�V , where V is any stable vector bundle on X ; an S–structure
on V gives an isomorphism �

V˚S;der
� .X;A/ D �

S;der
� .X;A/. Inverse Thom maps
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for �S;der
� now take the form

�
�˚S;der
� .X;A/!�

�˚V˚S;der
�CjV j

..X;A/V /;(5-24)

and there are also Thom maps which are inverse to these. We may thus extend �S;der
�

to orbispectra as �S;der
� ..X;A/��/ WD�

�CS;der
�Cj�j

.X;A/. The natural map

(5-25) lim
��!
W

�S
�CjW j..X;A/

W /! lim
��!
W

�
S;der
�CjW j

..X;A/W /D�
S;der
� .X;A/

is an isomorphism, where the direct limit is over all vector bundles with S–structure
as in (4-5). There are also graded symmetric product maps on �S

� and �S;der
� .

5.7 Fundamental classes

We make a few remarks about fundamental classes of orbifolds and derived orbifolds.

A closed orbifold M has a tautological fundamental class ŒM �2�dim M .M /. This class
is best viewed as arising from the more refined fundamental class ŒM � 2�fr

0
.M�TM /

lying in the bordism group of derived orbifolds representable over M with a stable
isomorphism between their tangent bundle and TM . This class may be pushed forward
under the map �fr

0
.M�TM / ! �0.M

�TM / forgetting the framing and under the
inverse Thom map �0.M

�TM /!�dim M .M /, to obtain the naive fundamental class
ŒM �2�dim M .M /. If TM is equipped with an S–structure, then we may push forward
to �S

dim M
.M / using the S–structured inverse Thom map to obtain the S–structured

fundamental class. The same applies when M is a compact orbifold with boundary,
just replacing M with the pair .M; @M /.

Let us now work towards the fundamental class of a derived orbifold. Consider an
inclusion of subcomplexes .Y;B/! .X;A/ (so B D Y \A) and a vector bundle E

over X with a section s WX !E whose zero set is (contained in) Y . There is then an
induced map .X;A/! .Y;B/E , obtained by appealing to the fact that .Y;B/� .X;A/
is a retract of any sufficiently small neighborhood, and any two such retracts are
homotopic. Thus if .D;E; s/ is a derived orbifold chart and Z WD s�1.0/ has the same
neighborhood retract property, we obtain a map

(5-26) .D; @D/�TD
! .Z; @Z/�T Z ;

where T Z WDTD�E, @Z WDZ\@D and dim Z WD dim D�dim E; note that whereas
the left side is the dual of D, the right side is very much not the dual of Z unless s is
transverse to zero. We may now define ŒZ� 2�fr

0
..Z; @Z/�T Z / as the image of ŒD�

under the above map. Since T Z is not a vector bundle, but only a stable vector bundle,
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we are no longer able to map this fundamental class to �dim Z .Z; @Z/, rather only to
�der

dim Z
.Z; @Z/; the map now involves the inverse of an inverse Thom map, which only

exists for �der
� . If T Z is equipped with a stable S–structure, then we can also push

forward the fundamental class to �S;der
dim Z

.Z; @Z/.

If our derived orbifold Z �D does not have the neighborhood retract property, the
above reasoning produces only a class in the inverse limit lim

 ��">0
�fr

0
..Z"; @Z"/

�T Z /,
where Z"�D denotes the "–neighborhood of Z. This is not really the correct bordism
group to associate to .Z; @Z/�T Z , rather differing from it by a lim

 ��

1 term. In the
correct bordism group to attach to it, a cycle would be a collection of (derived, with
structure) orbifolds .M"i

; @M"i
/! .Z"i

; @Z"i
/ together with bordisms between M"i

and M"iC1
over Z"i

(fixing some sequence "1 > "2 > � � � converging to zero).

6 Global homotopy theory

This section shows one way to connect the homotopy theory of orbispaces developed
thus far and global homotopy theory. We prove only what we need for the Pontryagin–
Thom isomorphism; there is yet much to be worked out. We refer to the treatment by
Schwede [34] for the foundations of global homotopy theory. Global homotopy theory
depends on a choice of set F of isomorphism classes of compact Lie groups; we will
always take this set be the class of finite groups, and it will not be mentioned further.

6.1 Global spaces

Here we relate the category OrbSpc with the global homotopy category GloSpc, whose
objects we call global spaces.

Let L denote the topological category of finite-dimensional real vector spaces with a
positive definite inner product and linear isometric (in particular, injective) maps. An
orthogonal space is a continuous functor F W L! kTop, where kTop is the category of
k–spaces1 [34, Definition 1.1.1]. In other words, it is the assignment to each V 2L of a
k–space F.V / and to each pair V;W 2L a continuous map F.V /�L.V;W /!F.W /,
such that this rule is compatible with composition for triples V;W;U 2L. The category
of orthogonal spaces is denoted by OrthSpc.

1A k–space is a topological space which is compactly generated and weakly Hausdorff.
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A map of orthogonal spaces F ! F 0 is called a global equivalence if and only if for
every finite group G, every orthogonal G–representation V and every diagram of solid
arrows

(6-1)
@Dk F.V /G F.W /G

Dk F 0.V /G F 0.W /G

there exists an orthogonal G–representation W and an inclusion V ,!W such that after
pushing forward under it, the bottom map Dk ! F 0.W /G above may be homotoped
rel boundary so as to lift to F.W /G ; see [34, Definition 1.1.2]. The category of global
spaces GloSpc is the localization of the category of orthogonal spaces OrthSpc at the
global equivalences. (There is a model structure on OrthSpc whose weak equivalences
are the global equivalences, giving an effective way to understand the localization
GloSpc; see [34, Section 1.2].)

An orthogonal space gives rise, in particular, to a representable mapG
n�0

F.Rn/=O.n/!
G
n�0

�=O.n/:

Thus for any vector bundle V with inner product over a stack X , we may pull back
under the classifying map to obtain a representable map F.V /! X . Moreover, for
any isometric inclusion V ,!W of vector bundles with inner product, we get a map
F.V /! F.W / over X . Denote by VectO.X / the category of vector bundles with
inner product on X and homotopy classes of injective isometric maps; this category
is filtered. There is thus a directed system over VectO.X / assigning to a vector
bundle V the set of homotopy classes of sections of F.V /!X . Note that the forgetful
functor VectO.X /!Vect.X / is an equivalence, due to Lemma 2.6 and the deformation
retraction from injections to isometric injections given by f 7!f .f �f /�t=2. Therefore
in the event that the orthogonal space F is pulled back from the category of finite-
dimensional vector spaces and injective maps, we may simply take the direct limit over
Vect.X / and forget about inner products.

Given a finite orbi-CW–complex X and an orthogonal space F , let Hom.X;F / denote
the direct limit over V 2 VectO.X / of homotopy classes of sections of F.V /! X .
This set Hom.X;F / is functorial in X (pull back vector bundles) and in F . This is
only a reasonable definition because of enough vector bundles; in particular, enough
vector bundles is used crucially in the following proof that maps from a finite orbi-CW–
complex to an orthogonal space descend to a functor .OrbSpcf /op �GloSpc! Set.
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Lemma 6.1 For a finite orbi-CW–complex and a global equivalence of orthogonal
spaces F ! F 0, the induced map Hom.X;F /! Hom.X;F 0/ is a bijection.

Proof Let V be a vector bundle with inner product over X , let a section of F 0.V /!X

be given, and let us lift it (up to homotopy) to .F /, after possibly enlarging V . Since X

is finite, it suffices to do this lifting cell by cell. So, fix a cell .Dk ; @Dk/�BG of X . The
pullback of V to this cell is classified by a map Dk�BG!

F
n�0 �=O.n/, which up to

homotopy (hence isomorphism by Lemma 2.7) factors through BG!
F

n�0 �=O.n/,
which is an orthogonal G–representation V0. Now the section of F 0.V /!X pulled
back from Dk�BG is a map Dk!F 0.V0/

G , which over @Dk we have lifted to F.V0/
G.

We are thus in exactly the situation of the solid arrows in (6-1), so we conclude that
there exists another orthogonal G–representation W0 and an embedding V0 ,! W0

such that the desired lift exists over Dk �BG after pushing forward to W0. Now by
enough vector bundles (Theorem 3.23), there exists a W 0 on X and an embedding
V ,!W 0 which over Dk �BG factors through V0 ,!W0 ,!W 0

0
.

There is much more to this story; however, further precise discussion would take us
too far afield. There is a functor

OrbSpcf ! GloSpc;(6-2)

X 7! EmbX .E;�/ with E=X faithful,(6-3)

where EmbX .E;V / denotes the total space of the fibration over X whose fiber over
x2X is the space of embeddings Emb.Ex;V /— this is a space since E is faithful. The
spaces EmbX .E;�/ form an inverse system on the category of vector bundles on X , and
for an inclusion of faithful vector bundles E ,!E0, the induced map EmbX .E

0;�/!

EmbX .E;�/ is a global equivalence [34, Proposition 1.1.26(ii) and Definition 1.1.27].
A map of orbispaces f WX!Y induces maps EmbX .f

�EY ;�/!EmbY .EY ;�/ for
any vector bundle EY over Y . Taking EY to be faithful and choosing an embedding
of f �EY into a faithful EX , we obtain a map

EmbX .EX ;�/! EmbX .f
�EY ;�/! EmbY .EY ;�/:

Conjecture 6.2 For X 2 OrbSpcf and F 2 GloSpc, the set Hom.X;F / coincides
with the morphisms from the image of X under (6-2) to F .

Conjecture 6.3 The functor (6-2) is fully faithful.

Geometry & Topology, Volume 27 (2023)



Orbifold bordism and duality for finite orbispectra 1831

Schwede [35] has shown that GloSpc is equivalent to PSh.fBGg/, where fBGg �

OrbSpc is the full subcategory spanned by the objects fBGg,2 and in [18] Gepner and
Henriques have defined via stacks a natural enlargement OrbSpc of OrbSpc, resulting
from gluing together cells .Dk ; @Dk/ � BG under arbitrary maps, and shown that
the natural map OrbSpc! PSh.fBGg/ is an equivalence. Together this defines an
equivalence OrbSpcD GloSpc.

Conjecture 6.4 The restriction of the equivalence OrbSpcDGloSpc from [18; 35] to
the full subcategory OrbSpc� OrbSpc coincides with the functor (6-2).

6.2 Global classifying spaces

We now recall various “global classifying spaces” from [34].

For any compact Lie group G, there is a “global classifying space” BG 2 GloSpc; see
[34, Definition 1.1.27], note that there it is denoted by BglG. It is represented by the
orthogonal space

(6-4) .BG/.V / WD Emb.E;V /=G

for any faithful G–representation E. In particular, when G DO.n/, it is natural to take
the defining representation O.n/ÕRn, so we get

(6-5) .BO.n//.V / WD Grn.V /:

Also, when G is finite, BG 2 GloSpc is the image of BG 2 OrbSpc under (6-2).

Let us see that the global space BG represents the functor of G–bundles on finite
orbi-CW–complexes. Maps from a finite orbi-CW–complex X to BG is the direct
limit over V =X of the space of embeddings of E into V modulo G, where G Õ E

is a faithful representation. Denoting by EmbX .E;V / the total space over X , we
note that EmbX .E;V /! EmbX .E;V /=G is a principal G–bundle, so any section of
EmbX .E;V /=G!X gives via pullback a principal G–bundle over X . Conversely,
given a principal G–bundle P ! X , a section of EmbX .E;V /=G together with an
isomorphism between the resulting pullback bundle and P ! X is the same as an
embedding E �G P ,! V , and the space of such embeddings becomes contractible in
the direct limit over V .

Conjecture 6.5 The functor (6-2) sends BG 2 OrbSpc to BG 2 GloSpc.

2This result requires a homotopical categorical context such as model categories or1–categories.
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There are two natural global spaces bO and BO which generalize the classifying
space BO WD lim

��!n
BO.n/. The global space bO [34, Example 2.4.18] is given by the

orthogonal space

(6-6) bO.V / WD GrjV j.V ˚R1/;

in which to a map V ,!W we associate the map

(6-7) GrjV j.V ˚R1/
˚.W =V /
�����! GrjW j.W ˚R1/:

The global space bO is the direct limit of BO.n/ 2 GloSpc [34, Proposition 2.4.24].

Let us argue that bO classifies coarsely stable vector bundles of rank zero. Maps from
a finite orbi-CW–complex X to bO are given by the direct limit over all vector bundles
E over X of global sections of GrjEj.E˚R1/. We may express this as the direct
limit over both n and E of subbundles of rank jEj of E˚Rn. Equivalently, this is
quotient bundles of E˚Rn of rank n. Now taking the direct limit over E, we realize
every vector bundle has a homotopically unique surjection from E˚Rn in the direct
limit over E. Thus what remains is the direct limit over n of vector bundles over X ,
with passage from n to nC1 acting as ˚R. This is precisely rank-zero coarsely stable
vector bundles over X .

Conjecture 6.6 The functor (6-2) sends bO 2 OrbSpc to bO 2 GloSpc.

The global space BO [34, Example 2.4.1] is defined as the orthogonal space

(6-8) BO.V / WD GrjV j.V ˚V /;

in which to a map V ,!W we associate the map

(6-9) GrjV j.V ˚V /! GrjV j.W ˚V /
˚.W =V /
�����! GrjW j.W ˚W /:

We argue that BO 2 GloSpc classifies stable vector bundles of rank zero; recall from
Lemma 4.7 that there is no BO 2 OrbSpc with this property. Maps from a finite
orbi-CW–complex X to BO are the direct limit over E=X of subbundles of rank jEj
of E˚E. Let us choose to view this as the direct limit over pairs of vector bundles
E and E0 of subbundles of rank jEj of E˚E0. Taking the direct limit over E0, we
see that this is just vector bundles of rank jEj on X , and that in the remaining directed
system over E, when going from E1 to E2, we add E2=E1. Thus we get precisely
rank-zero stable vector bundles over X .
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6.3 Global spectra

Here we relate the category OrbSpf with the global stable homotopy category GloSp,
whose objects we call global spectra.

Let O denote the based topological category with the same objects as L and with mor-
phism space from V to W given by the Thom space of (ie the one-point compactification
of the total space of) the tautological vector bundle “W =V ” over L.V;W /. An orthogo-
nal spectrum is a based continuous functor F WO! kTop�, where kTop� is the category
of pointed k–spaces. In other words, it is the assignment to each V 2O of a based
k–space F.V /, and to each pair V;W 2O a based map F.V /^O.V;W /! F.W /,
such that this rule is compatible with composition for triples V;W;U 2L. The category
of orthogonal spectra is denoted by OrthSp.

A map of orthogonal spectra F ! F 0 is called a global equivalence if and only if for
every finite group G, every orthogonal G–representation V , every k; `� 0 and every
diagram of based G–equivariant maps on the left

(6-10)
@Dk ^SV F.V ˚R`/

Dk ^SV F 0.V ˚R`/

D)

@Dk ^SW F.W ˚R`/

Dk ^SW F 0.W ˚R`/

there exists an orthogonal G–representation W and an inclusion V ,!W such that after
pushing forward under it, the square obtained on the right has a lift after homotoping
the bottom map rel boundary (everything G–equivariantly); see [34, Equation (3.1.11)
and Definition 4.1.3]. The category of global spectra GloSp is the localization of the
category of orthogonal spectra OrthSp at the global equivalences. (There is a model
structure on OrthSp whose weak equivalences are the global equivalences, giving an
effective way to understand the localization GloSp; see [34, Section 4.3].)

Given an orthogonal spectrum F and a vector bundle V !X with inner product (over
any stack X ), we may define a representable map F.V /! X by applying F to the
fibers of V , just as we did for an orthogonal space. This map F.V /!X is moreover
equipped with a “basepoint” section. A vector bundle V ! X (where X is still any
stack) has an associated sphere bundle SV (fiberwise one-point compactification of V )
again by defining it over

F
n�0 �=GLn.R/ and pulling back under the classifying map;

this is also equipped with a “basepoint” section. We may thus consider, for any vector
bundle V !X with inner product, based maps SV ! F.V / over X , where “based”
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means that the composition of the basepoint section of SV with the map SV ! F.V /

is the basepoint section of F.V /.

Let us now argue that given an isometric inclusion of vector bundles with inner product
V ,! W , we may push forward a based map SV ! F.V / to obtain a based map
SW ! F.W /. The structure of F as an orthogonal spectrum gives a based map
F.V /! F.W / over the total space of SW =V , which over the basepoint section of
SW =V (ie when pulled back under it) is the constant map to the basepoint section
of F.W /. Precomposing this map SW =V �X F.V / ! F.W / over X with a map
SV !F.V / over X defines a map SV �X SW =V !F.W /, which we claim descends
uniquely to a map SW ! F.W /. To prove this claim, it suffices to show that the
obvious3 map SV �X SW =V ! SW pulls back under any map Z!X , where Z is a
topological space, to a topological quotient map. Since vector bundles (inner product
is now irrelevant) are locally trivial, this amounts to showing that Sn � Sm �Z !

SnCm �Z is a topological quotient map for any topological space Z, which holds
since the locus .f�g�Sm/[ .Sn�f�g/� Sn�Sm contracted by Sn�Sm! SnCm

is compact.

We now show that global spectra give rise to cohomology theories on orbispectra.
Namely, we construct a functor

.OrbSpf /op
�GloSp! Ab;(6-11)

W �Z 7!Z0.W /;(6-12)

sending cofiber sequences to exact sequences.

We begin by defining .W;Z/ 7!Z0.W / as a functor

.OrbSpcPairf;�Vect/op
�OrthSp! Ab:

For a finite orbi-CW–pair .X;A/ with vector bundle � and an orthogonal spectrum F ,
we consider homotopy classes of based maps SV ! F.V ˚ �/ over X , which over
a neighborhood of A are the constant map to the basepoint. By the discussion in
the paragraph just above, such homotopy classes of maps form a directed system
over V 2 VectO.X /, and we define F0..X;A/��/ to be its direct limit; this set is
naturally an abelian group by the usual argument involving R2 �E. As before, this
is only a reasonable definition because of enough vector bundles. Note that, for the
purposes of computing the set of homotopy classes of based maps SV ! F.V ˚ �/,

3Obvious since its existence over the universal classifying space is clear, so we can just pull back to X .
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we may consider just those which are properly supported over X in the sense that they
send a neighborhood of the fiberwise basepoint of SV to the fiberwise basepoint of
F.V ˚ �/— to see this, apply a map SV ! SV which sends a neighborhood of the
basepoint to the basepoint, which we may construct universally over

F
n�0 �=O.n/.

That F0..X;A/��/ is a functor of F 2 OrthSp is evident. The following implies
descent to a functor of F 2 GloSp.

Lemma 6.7 A global equivalence of orthogonal spectra Z!Z0 induces an isomor-
phism Z0..X;A/��/!Z00..X;A/��/.

Proof Same as Lemma 6.1.

We now argue that Z0..X;A/��/ is functorial in .X;A/�� 2 OrbSpcPairf;�Vect. Sup-
pose given a map f WX ! Y , an inclusion f �� ,! � and a section s WX ! �=f �� such
that A is covered by f �1.B/ and the locus where jsj � " for some " > 0. Now given a
map SV ! F.V ˚ �/ over Y supported away from B, we may pull it back to obtain a
map Sf

�V !F.f �V ˚f ��/ over X supported away from f �1.B/. We then further
pair with s, viewed as a section of S�=f

�� , to obtain a map Sf
�V ! F.f �V ˚ �/

supported away from A. To finish the construction of (6-11), it suffices to show
that morphisms W and S are sent to isomorphisms. That morphisms W are sent to
isomorphisms follows from enough vector bundles (Theorem 3.23) — restriction of
vector bundles is cofinal. That morphisms S are sent to isomorphisms is immediate
from the definition.

Proposition 6.8 For any global spectrum Z, the functor Z0 sends cofiber sequences
in RepOrbSpf to exact sequences.

Proof We are to show that Z0.Y;B/ Z0.X;A/ Z0.X;A[B Y / is exact. The
composition is evidently zero. Now suppose we have a section over .X;A/ whose
restriction to .Y;B/ is nullhomotopic after stabilizing by a vector bundle on Y . The
restriction map on vector bundles is cofinal by enough vector bundles, so without loss
of generality we are in the situation of a section on .X;A/ whose restriction to .Y;B/
is nullhomotopic rel B. Now .Y;B/ has a nice neighborhood inside .X;A/, so we can
extend this nullhomotopy to a homotopy of sections over .X;A/ to become supported
away from A[B Y .

Define Zi.W / WD Z0.†�iW /, so the Puppe sequence now gives a bi-infinite long
exact sequence of the expected form for any cofiber triple in RepOrbSpf.
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6.4 Global Thom spectra

We now recall the so-called global Thom spectra [34, Section 6], whose associated
cohomology theories are called homotopical cobordism theories. They are given by
the orthogonal spectra

S.V / WD SV ;(6-13)

mO.V / WD GrjV j.V ˚R1/� ;(6-14)

MO.V / WD GrjV j.V ˚V /� ;(6-15)

where � denotes the tautological vector bundle. The structure maps are induced by
those of the corresponding bO and BO defined above, just passing to Thom spaces as
appropriate. In the present context of orthogonal spectra, Thom space always means
the one-point compactification of the total space. These are ring spectra in various
senses, however we will not discuss this precisely, instead referring to Section 6 of
Schwede [34].

There is a canonical “unit element” 1 2 S0.X / for any orbispace X , namely that given
in the definition of S0.X / by taking ED 0 and taking the unit section of�ES.E/DS0

over X .

Remark 6.9 It is natural to conjecture that S0 2 OrbSpc� is sent to S and that
lim
��!n

BO.n/R
n��n 2OrbSp is sent to mO, under natural functors to GloSp. As we have

not defined an orbispace BO, we cannot define an orbispectrum corresponding to MO.

6.5 Pontryagin–Thom isomorphism

Theorem 1.4 is the combination of Propositions 6.10 and 6.11 below.

Proposition 6.10 There is a bijection S0.DW / ��! �fr
0
.W /, which is natural in

W 2 RepOrbSpf.

For a compact orbifold-with-boundary X, this bijection sends the unit element 12 S0.X /

to the fundamental class ŒX � 2�fr
0
..X; @X /�TX /.

Proof Given a compact orbifold pair .X;A/ and a vector bundle � over X , we define
a map

(6-16) S0..X; @X �Aı/��TX /!�fr
0..X;A/

��/
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as follows. The value of S0..X; @X �Aı/��TX / is the direct limit over vector bundles
E=X of (homotopy classes of) sections of �E˚�SE˚TX over X supported away
from @X �Aı. Equivalently, this is sections s of SE˚TX (the fiberwise one-point
compactification) over the total space of E˚ � over X whose zero set s�1.0/ is proper
over X and disjoint from the inverse image of @X �Aı. Such data defines a compact
derived orbifold chart with boundary .D;E˚TX; s/ (here D is an open subset of the
total space of E˚ �), representable over .X;A/, with a stable isomorphism between
its tangent bundle and �; this defines an element of �fr

0
..X;A/��/. This construction

is compatible with enlarging E, and sends homotopies of sections to bordisms, hence
defines the desired map (6-16).

Let us argue that (6-16) defines a natural transformation of functors S0.DW /!�fr
0
.W /

of W 2 RepOrbSpf. By Proposition 3.33 and the universal property of localization
(and of direct limit), it suffices to show that this defines a natural transformation of
functors out of RepOrbSpcPairf;��

N;k
for every � 2 Vect.R.�/N;kC2/, compatible with

the functors modifying � and N; k. Compatibility with the functors modifying � and
N; k is immediate; the real content is to check that the diagram

(6-17)

S0.DW / �fr
0
.W /

S0.DZ/ �fr
0
.Z/

commutes for any map W !Z in RepOrbSpcPairf;��
N;k

. We may assume that this map
W !Z is a smooth embedding of compact orbifold pairs .X;A/! .Y;B/, namely
X ,! Y is a smooth embedding and A D X \ @Y meeting transversally (so X has
corners at the boundary of A), desuspended by a vector bundle � on R.�/N;kC2, where
the isotropy groups of X and Y have order �N and X;Y have dimension � k. In this
case, the map on duals is simply the evident map .Y; @Y �Bı/Ü .X; @X�Aı/T Y=TX

desuspended by T Y and suspended by � . Now commutativity of the above diagram is
clear.

It remains to show that the natural transformation S0.DW /!�fr
0
.W / is a bijection for

every W 2 RepOrbSpf , which we may take to be of the form .X;A/�� for a compact
orbifold pair .X;A/ with a vector bundle � over X . To show surjectivity, let .D;E; s/
be a derived orbifold-with-boundary chart with a representable map .D; @D/! .X;A/

and a stable isomorphism TD �E D �. By Corollary 3.24, the map from D to X

can be replaced by a smooth embedding by replacing X with the unit disk bundle of

Geometry & Topology, Volume 27 (2023)



1838 John Pardon

a vector bundle over X (and A is replaced with its inverse image in this total space).
Thus we may assume D is a suborbifold of X ; choosing a nice collar near @X , we
may further assume that it meets @X transversely, precisely along @D. Now we may
stabilize our derived orbifold chart by TX=TD so that D is in fact an open subset
of X . Now we have a stable isomorphism TX �E D �, namely an isomorphism
E˚ � ˚F D TX ˚F for some vector bundle F . By further replacing X with the
total space of F and stabilizing our derived orbifold chart by F , this becomes a true
isomorphism of vector bundles TX DE˚ � over D, which remains an open subset
of X . Further stabilizing by � (thus adding � to both E and TX ) ensures that E extends
to all of X , together with the isomorphism TX DE˚� . Now the section s cutting out
our derived orbifold is, after extension as “infinity” to the rest of X , a section of SE .
This gives, by definition, an element of S0..X; @X�Aı/�E/DS0..X; @X�Aı/��TX /

which maps to our given element of �fr
0
..X;A/��/.

Finally, injectivity is just a relative version of surjectivity. We are given two elements
of S0..X; @X � Aı/��TX / with the same image in �fr

0
..X;A/��/. Applying “rel

boundary” the same procedure used to prove surjectivity to the derived bordism relating
the images of our two given elements of S0..X; @X �Aı/��TX / produces a homotopy
between them.

Proposition 6.11 For W 2 RepOrbSpf, there are natural bijections

mO0.DW / ��!�0.W /;(6-18)

MO0.DW / ��!�der
0 .W /:(6-19)

Proof We follow the proof of Proposition 6.10.

Given a compact orbifold pair .X;A/ and a vector bundle � over X , we define maps

mO0..X; @X �Aı/��TX /!�0..X;A/
��/D�

�Ccst;der
j�j

.X;A/;(6-20)

MO0..X; @X �Aı/��TX /!�der
0 ..X;A/��/D�der

j�j .X;A/;(6-21)

as follows. The values of mO0..X; @X �Aı/��TX / and MO0..X; @X �Aı/��TX /

are, respectively, the direct limits over vector bundles E=X of (homotopy classes of)
sections of

�E˚� GrjEjCjTX j.E˚TX ˚RjEjCjTX j/� ;(6-22)

�E˚� GrjEjCjTX j.E˚TX ˚E˚TX /� ;(6-23)
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over X supported away from @X � Aı. Equivalently, this is open subsets U of
the total space of E ˚ � over X carrying a rank jEj C jTX j vector bundle V �

E˚TX˚RjEjCjTX j (resp. V �E˚TX˚E˚TX ), and a section s WU !V whose
zero set s�1.0/ is proper over X and disjoint from the inverse image of @X �Aı. Such
data defines a compact derived orbifold chart with boundary .U;V; s/, representable
over .X;A/, with a stable isomorphism between its tangent bundle and TXCEC��V

(which in the case of mO is identified with �C.E˚TX˚RjEjCjTX j/=V �RjEjCjTX j).
We thus obtain an element of ��Ccst;der

j�j
.X;A/D�

cst;der
0

..X;A/��/D�0..X;A/
��/

(resp. �der
0
..X;A/��/). This construction is compatible with enlarging E and sends

homotopies of sections to bordisms, hence defines the desired maps (6-20)–(6-21).

The proof that (6-20)–(6-21) define natural transformations of functors (6-18)–(6-19)
of W 2 RepOrbSpf is exactly as in the proof of Proposition 6.10.

It remains to show that the natural transformations (6-18)–(6-19) are bijections for
W D .X;A/�� for a compact orbifold pair .X;A/ with a vector bundle � over X .
As before, the argument for injectivity is a relative version of that for surjectivity,
so we will just explain surjectivity. To show surjectivity, let .D;V; s/ be a derived
orbifold-with-boundary chart with a representable map .D; @D/! .X;A/ and, in the
case of mO, a vector bundle B and a stable isomorphism TD � V D � CB �RjBj

(in the case of MO, with dim TD � jEj D j�j). As in the proof of Proposition 6.10,
we may homotope and stabilize to reduce to the case that D is an open subset of X .
Now further stabilize both X and D by the vector bundle �, so that we now have an
isomorphism TX D �˚E where E is the tangent bundle before stabilizing. We seek
an element of mO0..X; @X �Aı/�E/ (resp. MO0); more specifically, we will produce
a section of GrjEj.E˚E/� (resp. GrjEj.E˚E/� ). We have a stable isomorphism
E˚RjBj D V ˚B (resp. an equality jV j D jEj); in the former case we may stabilize
X and D to get a true isomorphism. For mO0, we want to embed V ,! E˚RjEj,
which we get from the isomorphism E˚RjBj D V ˚B once jEj � jBj which we
can achieve by stabilizing. For MO0, we want V ,!E˚E. Stabilizing to V 0 and E0

allows us to embed V ,!E0˚E hence V 0 ,!E0˚E0.

7 Bordism and stable maps

In this final section, we apply the Pontryagin–Thom principle to describe morphism
spaces in RepOrbSpf and OrbSpf in terms of derived orbifold bordism.
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Proof of Theorem 1.7 Fix a compact orbifold pair .X;A/ with a vector bundle �
and a finite orbi-CW–pair .Y;B/ with vector bundle �. Given a map in RepOrbSpf

(resp. OrbSpf )

(7-1) D..X;A/��/D .X; @X �Aı/��TX
! .Y;B/�� ;

we associate as follows a bordism class of derived orbifold chart with boundary .C; @C /
with a map .C; @C /! .X;A/� .Y;B/ whose projections to X and Y (resp. to X ) are
representable, and with a stable isomorphism between its tangent bundle and � C �.
The data of a map (7-1) consists of a vector bundle E over X , an open subset U of the
total space of E˚ � , a (representable) map h W U ! Y , an embedding h�� ,! TX ˚ �

and a section s of the quotient whose zero set is proper over X such that @X �Aı is
contained in the union of f �1.B/ and the locus where jsj � " for some " > 0. This
data defines for us a compact derived orbifold chart .U; .TX ˚E/=h��; s/, which has
the desired form by inspection. Homotopies of maps evidently induce bordisms.

Let us argue that this association (of a bordism class to a stable map) is natural in
.Y;B/�� . To make sense of this statement, we should note that bordism of derived
orbifolds of the requisite form is indeed a functor of .Y;B/�� 2 RepOrbSpcPairf;�Vect

(resp. OrbSpcPairf;�Vect), where a map .Y;B/��! .Y 0;B0/��
0

given by q W Y ! Y 0,
q��0 ,! � and s W Y ! �=q��0 pushes forward a derived orbifold mapping .Y;B/
under q and adds �=q��0 to the obstruction space and s to the obstruction section. This
evidently descends to RepOrbSpf (resp. OrbSpf ) due to sending to isomorphisms
the morphisms W (obvious) and S (same as Proposition 5.5). Now to see that the
association of a bordism class to a stable map is natural, due to the universal property of
localization it suffices to show it is a natural transformation of functors of .Y;B/�� 2
RepOrbSpcPairf;�Vect (resp. 2 OrbSpcPairf;�Vect). This is evident by inspection.

Next, to see naturality in .X;A/�� 2 RepOrbSpf, we may argue as in the proof of
Proposition 6.10: it suffices to check naturality as a functor out of RepOrbSpcPairf;��

N;k

for � 2 Vect.R.�//N;kC2, and this can be seen by inspection upon arranging maps to
be smooth embeddings of orbifolds.

It remains to show that this association of a bordism class to a map (7-1) is bijective. As
in the proof of Proposition 6.10, injectivity is simply a relative version of surjectivity,
so we will just prove surjectivity. Thus, suppose given a compact derived orbifold
chart with boundary .D;V; s/ with a representable map f to X , a (representable)
map g to Y with @D � f �1.A/ [ g�1.B/, and a stable isomorphism between its
tangent bundle TD�V and f ��Cg��. By replacing .X;A/ with the total space of
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a vector bundle over it, we may assume the map D!X is a smooth embedding. By
stabilizing .D;V; s/, we may assume D!X is an open inclusion, so we have a stable
isomorphism TX D V ˚ �˚g�� over D. Now further stabilize by � so that we have
an everywhere-defined isomorphism TX D �˚E (so E is the tangent bundle of X

before stabilizing). The resulting stable isomorphism ED V ˚g�� may be turned into
a genuine isomorphism by further stabilization. We want a map .X; @X �Aı/�E!

.Y;B/�� , and this is precisely what we have: our open subset of X is D, which has
a (representable) map g WD! Y , we have an embedding g�� ,! g��˚V DE, and
we have a section of the quotient V , namely the obstruction section.

Example 7.1 We describe the set of stable (representable) maps BG ! BH for
finite groups G and H . Such maps (ie morphisms in RepOrbSpf and OrbSpf ) are,
according to Theorem 1.7, in bijection with bordism classes of derived orbifolds C with
a representable map to BG, a (representable) map to BH and a stable isomorphism
T C D 0. By Wasserman’s theorem (Theorem 5.7), this is the same as bordism classes
of orbifolds C with the requisite (representable) maps and stable framing. Now C has
dimension zero, so it must be a disjoint union of BK for some finite groups K; the only
bordisms between these have the form BK � Œ0; 1�, so bordism is just homotopy. A
homotopy class of (representable) map BK!BG is a G–conjugacy class of (injective)
homomorphism K! G. A stable framing of BK is, according to Example 4.6, an
element of the product of Z=2 over all irreducible real representations of K with
End.�/ D R. We thus obtain a group-theoretic description of the morphism space
BG! BH in RepOrbSpf and in OrbSpf.

Stated slightly differently, Theorem 1.7 says that the category RepOrbSpf may be
described as follows. The objects of RepOrbSpf are denoted by .X;A/�� , where
.X;A/ is a compact orbifold pair and � is a stable vector bundle over X . The mor-
phisms .X;A/�� ! .Y;B/�� are bordism classes of derived orbifolds .C; @C /!
.X; @X �Aı/� .Y;B/ whose projections to X and to Y are representable, equipped
with a stable isomorphism T C D TX � f ��Cg��. Composition is given by derived
fiber product. In this description, the action of duality D is obvious: it trades .X;A/��

for .X; @X �Aı/��TX with the evident action on morphisms.

There is a notable omission in Theorem 1.7: we have no idea what category one gets
if one allows both maps to .X;A/ and to .Y;B/ to be arbitrary (not required to be
representable). The resulting category has an apparent involution D, but that’s all this
author knows.
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Using Theorem 1.7, we may associate to any map X ! Y in RepOrbSpf a map
X ^DY ! R.�/ in RepOrbSpf as follows. Given a derived orbifold of the shape
prescribed by Theorem 1.7 to specify a map X ! Y , we simply note that the same
derived orbifold also defines a map X ^DY !R.�/ by taking the product of the two
maps and appealing to the canonical map to R.�/.

In particular, there is a canonical pairing X ^DX !R.�/ induced by the identity map
X ! X (equivalently DX ! DX ). It may be described concretely as follows. Let
.X;A/ be a compact orbifold pair carrying a vector bundle � . The diagonal map is a map

(7-2) .X; @X /! .X;A/� .X; @X �Aı/:

Now suspend/desuspend to define a map .X; @X /�TX! .X;A/���.X; @X�Aı/��TX

and then dualize to obtain

(7-3) .X; @X �Aı/��TX
� .X;A/�� !X;

which we may compose with the map X!R.�/. This defines a map DZ^Z!R.�/

for Z D .X;A/�� . Tracing through the definition of the bijection in Theorem 1.7, it is
immediate that this is indeed the canonical pairing Z^DZ!R.�/ as described above.
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Higher genus FJRW invariants of a Fermat cubic
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We reconstruct all-genus Fan–Jarvis–Ruan–Witten invariants of a Fermat cubic
Landau–Ginzburg space .x3

1
C x3

2
C x3

3
W ŒC3=�3�! C/ from genus-one primary

invariants, using tautological relations and axioms of cohomological field theories.
The genus-one primary invariants satisfy a Chazy equation by the Belorousski–
Pandharipande relation. They are completely determined by a single genus-one
invariant, which can be obtained from cosection localization and intersection theory
on moduli of three-spin curves.

We solve an all-genus Landau–Ginzburg/Calabi–Yau correspondence conjecture for
the Fermat cubic Landau–Ginzburg space using Cayley transformation on quasi-
modular forms. This transformation relates two nonsemisimple CohFT theories: the
Fan–Jarvis–Ruan–Witten theory of the Fermat cubic polynomial and the Gromov–
Witten theory of the Fermat cubic curve. As a consequence, Fan–Jarvis–Ruan–Witten
invariants at any genus can be computed using Gromov–Witten invariants of the
elliptic curve. They also satisfy nice structures, including holomorphic anomaly
equations and Virasoro constraints.
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1 Introduction

Let .d I ı/ be a weight system such that ı D .ı1; : : : ; ıN / 2 ZN
C is a primitive N –tuple

with wi WD d=ıi 2 ZC. We say the system is of Calabi–Yau (CY) type if

(1-1) d D ı1C � � �C ıN ; ie
NX

iD1

1

wi
D 1:

The dimension of the CY-type weight system .d I ı/ is defined to be

Oc D

NX
iD1

�
1�

2ıi

d

�
DN � 2:

Let �d be the multiplicative group consisting of d th roots of unity and

Jı D .�
ı1

d
; : : : ; �

ıN

d
/ 2 �d for �d WD exp

�
2�
p
�1

d

�
:

We call the data .ŒCN =hJıi�;W / a Landau–Ginzburg (LG) space, where W is a
nondegenerate quasihomogeneous polynomial on CN satisfying

W .�ı1x1; : : : ; �
ıN xN /D �

dW .x1; : : : ;xN / for all � 2C�:

The polynomial W is assumed to have only an isolated critical point at the origin
and not involve quadratic terms xixj for i ¤ j . In general, we can consider Landau–
Ginzburg spaces .ŒCN =G�;W / for a group G which is a subgroup of the group of
diagonal symmetries with Jı 2G; see Chang, J Li and W-P Li [6] and Fan, Jarvis and
Ruan [20]. Two enumerative theories can be associated to such an LG space:

� The first is the Gromov–Witten (GW) theory of the G=hJıi–quotient of the
hypersurface defined by the vanishing of W in the corresponding weighted
projective space PN�1.ı1; : : : ; ıN /. The quotient space is a CY .N�2/–orbifold
by the CY condition in (1-1).

� The second is the Fan–Jarvis–Ruan–Witten (FJRW) theory of the pair .W;G/

as introduced by Fan, Jarvis and Ruan [19; 20].

Both the GW theory and the FJRW theory associated to a CY-type weight system
are cohomological field theories (CohFT, for short) in the sense of Kontsevich and
Manin [32].
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We shall focus on the theories arising from one-dimensional CY-type weight systems.
These systems are classified by

(1-2) .d I ı/D .3I 1; 1; 1/; .4I 1; 1; 2/; .6I 1; 2; 3/:

The LG space we consider is .ŒC3=hJıi�;W /, with W the Fermat polynomials

(1-3) W D x
d=ı1

1
Cx

d=ı2

2
Cx

d=ı3

3
:

On the CY side, the hypersurface W D0 in the weighted projective space P2.ı1; ı2; ı3/

is an elliptic curve, denoted by Ed or E (when the degree d is implicit or unimportant
in the discussion) for simplicity. We focus on the GW theory of E . The GW state
space is then defined to be HE WDH�.E ;C/. Let Mg;n.E ; ˇ/ be the moduli stack of
degree-ˇ stable maps from a connected genus-g curve with n markings to the target E .
Let evk for k D 1; 2; : : : ; n be the evaluation morphisms, � be the forgetful morphism,
and ŒMg;n.E ; ˇ/�vir be the virtual fundamental cycle of Mg;n.E ; ˇ/. The ancestor GW
invariants are given by

h˛1 
`1

1
; : : : ; ˛n 

`n
n i

E
g;n;ˇ D

Z
ŒMg;n.E;ˇ/�vir

nY
kD1

ev�k.˛k/�
� 

`k

k
:

The ancestor GW correlation function is the formal q–series

(1-4) hh˛1 
`1

1
; : : : ; ˛n 

`n
n ii

E
g;n.q/D

X
d�0

qˇh˛1 
`1

1
; : : : ; ˛n 

`n
n i

E
g;n;ˇ:

By the virtual degree counting of ŒMg;n.E ; ˇ/�vir, if the series

hh˛1 
`1

1
; : : : ; ˛n 

`n
n ii

E
g;n.q/

in (1-4) is nontrivial, then

(1-5)
nX

kD1

�
1
2

deg˛k C `k

�
D .3� dimC E/.g� 1/C nD 2g� 2C n:

On the LG side, we consider the FJRW theory of the pair .W; hJıi/ as originally
constructed in [19; 20]. The main ingredients consist of a CohFT

.H.W ;hJıi/; h ; i; 1; ƒ
.W ;hJıi//

and FJRW invariants (see Section 2.1 for details)

h˛1 
`1

1
; : : : ; ˛n 

`n
n i

.W ;hJıi/
g;n ;
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with ˛i elements in the vector space H.W ;hJı/i. The space H.W ;hJıi/ contains a canonical
degree-2 element, denoted by � below. We assemble the FJRW invariants into an
ancestor FJRW correlation function (as a formal series in s)

(1-6) hh˛1 
`1

1
; : : : ; ˛n 

`n
n ii

.W ;hJıi/
g;n .s/

WD

1X
mD0

1

m!
h˛1 

`1

1
; : : : ; ˛n 

`n
n ; s�; : : : ; s�„ ƒ‚ …

m

i
.W ;hJıi/
g;nCm :

1.1 LG/CY correspondence via modularity

One of the motivations for constructing the FJRW invariants [19; 20] is to under-
stand mathematically the so-called Landau–Ginzburg/Calabi–Yau correspondence
proposed by physicists; see Greene, Vafa and Warner [24; 54], Martinec [39] and
Witten [56]. The Landau–Ginzburg/Calabi–Yau correspondence conjecture (see Chiodo
and Ruan [12; 48] and Fan, Jarvis and Ruan [20]) predicts that for a CY-type weight
system the corresponding GW and FJRW theories are related. In the past decade, a lot
of effort has been made to formulate and solve this conjecture:

� An LG/CY correspondence between the vector spaces was solved by Chiodo
and Ruan [13].

� Genus-zero LG/CY correspondence for various pairs .W;G/ has been studied
using Givental’s I–functions; see Basalaev and Priddis [1], Chiodo, Iritani and
Ruan [10; 11], Clader [14] and Lee, Priddis and Shoemaker [36; 37].

� For the quintic 3–fold, the correspondence has been pushed to genus one; see
Guo and Ross [25].

� For higher genera, the only known examples in the literature (see Iritani, Milanov,
Ruan and Shen [29; 40; 41], Krawitz and Shen [34] and Shen and Zhou [50])
are all generically semisimple, and therefore the correspondence at higher genus
is a consequence of the genus-zero correspondence, based on Givental [23] and
Teleman’s [52] classification of semisimple CohFTs.

One of our main results is to solve this conjecture at all genera for the Fermat cubic
pair .W D x3

1
Cx3

2
Cx3

3
;Jı/, using the properties of moduli spaces and quasimodular

forms. We remark that the GW CohFT and the FJRW CohFT for such a pair are not
generically semisimple, and therefore this case is beyond the scope of Givental and
Teleman’s results.
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1.1.1 Quasimodular forms and the Chazy equation Specializing to the cases of
one-dimensional CY-type weight systems, it is known (see Bloch and Okounkov [3] and
Okounkov and Pandharipande [43]) that the GW correlation functions for an elliptic
curve are quasimodular forms; see Kaneko and Zagier [30]. The key of this work is to
relate the generating series in (1-4) and (1-6) using transformations on quasimodular
forms.

Consider the Eisenstein series

(1-7) E2k.�/ WD
1

2�.2k/

X
c;d2Z
.c;d/D1

1

.c� C d/2k
for � 2H;

where � is the Riemann zeta function. These are holomorphic functions on the upper half-
plane H, of which E2k for k � 2 are modular under the group � WD SL.2;Z/=f˙1g,
while E2 is quasimodular [30]. To be more precise, E2 is not modular, but its
nonholomorphic modification yE2.�; N�/ is modular, where

yE2.�; N�/ WDE2.�/�
3

� Im.�/
:

The set of quasimodular forms (we regard modular forms as special cases of quasi-
modular forms) for � form a ring [30]:

(1-8) zM�.�/ WDCŒE2.�/;E4.�/;E6.�/�:

The set of almost-holomorphic modular forms as introduced in [30] also gives rise to a
ring that is isomorphic to zM�.�/:

(1-9) yM�.�/ WDCŒ yE2.�; N�/;E4.�/;E6.�/�:

Let q D exp.2�
p
�1�/. The GW invariants of elliptic curves are (see [43]) Fourier

coefficients expanded around the infinity cusp � D
p
�11 of certain quasimodular

forms. For example,1 let ! 2H 2.E/ be the Poincaré dual of the point class. Then

(1-10) �24hh!iiE1;1.q/DE2.q/D 1� 24

1X
nD1

n
qn

1� qn
:

For any f 2 zM�.�/, we define

f 0.�/ WD
1

2�
p
�1

df

d�
:

1We are sometimes sloppy about the argument for a quasimodular form when no confusion should arise.
For instance, we shall occasionally write Ek.q/ for Ek.�/.
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The Eisenstein series E2, E4 and E6 satisfy the so-called Ramanujan identities

(1-11) E02 D
1

12
.E2

2 �E4/; E04 D
1
3
.E2E4�E6/; E06 D

1
2
.E2E6�E2

4/:

Eliminating E4 and E6, we see that E2 is a solution to the so-called Chazy equation,

(1-12) 2f 000� 2ff 00C 3.f 0/2 D 0:

Our key observation is that the Chazy equation (1-12) appears in both GW and
FJRW theory for one-dimensional CY weight systems, thanks to the Belorousski–
Pandharipande relation discovered in [2].

Proposition 1 Consider the LG space .ŒC3=hJıi�;W / given by (1-2) and (1-3). Then
both the genus-one GW correlation function �24hh!iiE

1;1
.q/ and the genus-one FJRW

correlation function �24hh�ii
.W ;hJıi/
1;1

.s/ are solutions to the Chazy equation (1-12).

Here for a function f .q/ in q, we use the convention f 0.q/D q@qf ; for a function
f .s/ in s, f 0.s/D @sf .

Further, using more tautological relations discovered by Faber and Pandharipande [17]
and Ionel [28], we can show that both the GW and FJRW correlation functions in (1-4)
and (1-6) are determined by the genus-one correlation functions in Proposition 1.

Proposition 2 Consider the LG space .ŒC3=hJıi�;W / given by (1-2) and (1-3). Let

f D�24hh!iiE1;1 or f D�24hh�ii
.W ;hJıi/
1;1

:

Then the GW correlation functions in (1-4) (or the FJRW correlation functions in (1-6))
are determined from f by tautological relations and are elements in the ring CŒf;f 0;f 00�.

1.1.2 LG/CY correspondence via Cayley transformation By direct calculation,
we can show hh!iiE

1;1
.q/ and hh�ii.W ;hJıi/

1;1
.s/ are expansions of the same quasimodular

form � 1
24

E2.�/ at two different points on the upper half-plane. In particular, the GW
functions are Fourier expansions around the cusp � D

p
�11. This viewpoint allows

us to relate the GW functions in (1-4) and the FJRW functions in (1-6) by a variant of
the Cayley transformation which we now briefly review, following Shen and Zhou [50].

For any point �� 2H, there exists a Cayley transform that maps a point � on the upper
half-plane H to a point s.�/ in the unit disk D, namely

s.�/D .��� N��/
� � ��

� � N��
:
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This transform is biholomorphic, and we denote its inverse by �.s/. Following
Zagier [57] and [50], there exists a Cayley transformation that maps a weight-k almost-
holomorphic modular form

Of 2 yM�.�/DCŒ yE2.�; N�/;E4.�/;E6.�/�

to

(1-13)
�
�.s/� N��

��� N��

�k

Of .�.s/; �.s//:

The Taylor expansion of the image gives a natural way to expand the almost-holomorphic
modular form Of near � D ��, where the local complex coordinate is s.�/.

Using the fact that zM�.�/ and yM�.�/ are isomorphic differential rings, a holomorphic
Cayley transformation Chol

��
(see Section 4) can then be defined [50]. This turns out to

be the correct transformation to relate the GW correlation functions in (1-4) and the
FJRW correlation functions in (1-6), both of which are holomorphic, and it allows us
to solve the LG/CY correspondence conjecture for the Fermat cubic pair.

Theorem 3 Consider the Fermat cubic polynomial W D x3
1
C x3

2
C x3

3
and the

LG space .ŒC3=�3�;W /. There exists a degree- and grading-preserving vector space
isomorphism

‰ WHE DH�.E/!H.W ;�3/

and a holomorphic Cayley transformation Chol
��

with

�� D�

p
�1
p

3
exp

�
2�
p
�1

3

�
2H;

such that

Chol
��
.hh˛1 

`1

1
; : : : ; ˛n 

`n
n ii

E
g;n.q//D hh‰.˛1/ 

`1

1
; : : : ; ‰.˛n/ 

`n
n ii

.W ;�3/
g;n .s/:

The explicit construction of ‰ and Chol
��

will be given in Section 4.

It is straightforward to generalize Theorem 3 to the rest of the one-dimensional CY-type
weight systems in (1-2); the only difference lies in the technical computations on
the initial genus-one FJRW invariants. This approach of using modular forms was
previously introduced in [50] for elliptic orbifold curves.

It is worthwhile to mention that for one-dimensional CY-type weight systems, our
approach of the LG/CY correspondence is compatible with the I–function approach
introduced by Chiodo and Ruan [11] and Milanov and Ruan [40]. In fact, the automor-
phy factor in the Cayley transformation (1-13) provides equivalent information to the
symplectic transformation that appears in [11, Corollary 4.2.4].
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1.2 Applications: higher-genus FJRW invariants and their structures

The higher-genus FJRW invariants are very difficult to compute in general. In our exam-
ple, with the identification of the correlation functions with quasimodular forms, various
results from the GW side can be transformed into the LG side via the holomorphic
Cayley transformation, which respects the differential ring structure of quasimodular
forms. In particular, higher-genus FJRW invariants can be computed easily, and nice
structures of the FJRW correlation functions can be obtained for free.

Indeed, higher-genus FJRW invariants are determined from the results on descendent
GW invariants of elliptic curves, given by Bloch and Okounkov [3], whose generating
series admit very concrete and beautiful formulae. The following gives a sample of the
computations.

Corollary 4 For the ancestor FJRW correlation functions , when d D 3,

hh� 
2g�2
1
ii
.W ;�3/
g;1

D

X
`;m;n�0

`C2mC3nDg

bm;n

`!

�
�

Chol
��
.E2/

24

�̀ �
Chol
��
.E4/

24

�m�
�

Chol
��
.E6/

108

�n

;

where Chol
��
.E2i/ for i D 1; 2; 3 are holomorphic Cayley transformations of the Eisen-

stein series E2, E4, E6 whose expansions can be computed explicitly , while fbm;ngm;n

are rational numbers that can be obtained recursively.

The holomorphic anomaly equations (HAEs) discovered by Oberdieck and Pixton [42]
and the Virasoro constraints discovered by Okounkov and Pandharipande [44] for the
GW theory of elliptic curves also carry over to the corresponding FJRW theory. See
Corollaries 23 and 24 for the explicit statements.

Outline In Section 2 we review the basic construction of CohFTs and use tautological
relations, in particular the Belorousski–Pandharipande relation, to prove Propositions 1
and 2. In Section 3 we calculate a genus-one FJRW invariant for the d D 3 case
using cosection localization. In Section 4 we prove Theorem 3 using properties of
quasimodular forms. In Section 5 we review some results on GW invariants for the
elliptic curve and discuss the ancestor/descendent correspondence. In Section 6 we
give some applications of the quasimodularity of the GW and FJRW theory for the
d D 3 case, such as the explicit computations of higher-genus FJRW invariants based
on the results on the GW invariants of the elliptic curve, the derivation of holomorphic
anomaly equations and Virasoro constraints they satisfy.
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2 The Belorousski–Pandharipande relation and the Chazy
equation

We study the two cohomological field theories (GW and FJRW) for the one-dimensional
CY-type weight systems using tautological relations and axioms of CohFTs. The key
is the identification between the Belorousski–Pandharipande relation and the Chazy
equation.

2.1 Cohomological field theories

Both the GW theory and the FJRW theory of the LG space .ŒCN =G�;W / satisfy axioms
of cohomological field theories (CohFT) in the sense of [32], which we briefly recall.

Let Mg;n be the Deligne–Mumford moduli stack of genus-g stable (ie 2g�2Cn> 0)
curves with n markings. A cohomological field theory with a flat identity is a quadruple

.H; �; 1; ƒ/;

where the state space
H WDHeven

˚Hodd

is a Z2–graded finite-dimensional C–vector space (called a superspace in [32]), � is a
nondegenerate pairing on H, 1 2H is the flat identity, and

ƒ WD fƒg;n 2 Hom.H˝n;H�.Mg;n;C//g

is a set of multilinear maps satisfying the CohFT axioms below:

Geometry & Topology, Volume 27 (2023)



1854 Jun Li, Yefeng Shen and Jie Zhou

(i) Let j � j be the grading. The maps ƒg;n satisfy

(2-1) ƒg;n.: : : ; ˛1; ˛2; : : : /D .�1/j˛1jj˛2jƒg;n.: : : ; ˛2; ˛1; : : : /:

(ii) The maps in ƒ are compatible with the gluing and the forgetful morphisms

� Mg1;n1C1 �Mg2;n2C1!Mg;n and Mg�1;nC2!Mg;n,

� � WMg;nC1!Mg;n forgetting one of the markings.

For example, the compatibility with the forgetful morphism is

(2-2) ƒg;nC1.˛1; : : : ; ˛n; 1/D �
�ƒg;n.˛1; : : : ; ˛n/:

(iii) The pairing � is compatible with ƒ0;3:Z
M0;3

ƒ0;3.˛1; ˛2; 1/D �.˛1; ˛2/:

Let  k 2H 2.Mg;n/ be the cotangent line class at the k th marking. For each CohFT
.H; �; 1; ƒ/, one defines the quantum invariants from ƒ by

(2-3) h˛1 
`1

1
; : : : ; ˛n 

`n
n i

ƒ
g;n WD

Z
Mg;n

ƒg;n.˛1; : : : ; ˛n/

nY
kD1

 
`k

k
for ˛k 2H:

Such invariants are called the ancestor GW invariants for the GW CohFT, and FJRW
invariants for the LG CohFT. Our focus is the relation between these two types of
invariants arising from the same CY-type LG space .ŒCN =G�;W /.

Fix a basis B for H. It is convenient to choose the elements ˛k from B and parametrize
˛k by sk . We introduce the genus-zero primary potential of the CohFT as a formal
power series

(2-4) Fƒ0 WD
X
n�0

X
˛k2B

1

n!
h˛1; : : : ; ˛ni

ƒ
0;n

nY
kD1

sk :

Here primary means all `k D 0 in (2-3).

2.1.1 FJRW invariants The CohFTs arising from GW theories have become a
familiar topic since [32]. Here we only recall some basics on the LG CohFT constructed
from the FJRW invariants defined in [19; 20]. See also [4; 6; 31; 46] for various CohFT
constructions for LG models.

Geometry & Topology, Volume 27 (2023)



Higher genus FJRW invariants of a Fermat cubic 1855

As G acts on CN , for any  2 G, the fixed-point set Fix. / is an N–dimensional
subspace of CN . Let W be the restriction of W on Fix. /. Following [20], one
considers the graded vector space (called the FJRW state space)

(2-5) H.W ;G/ D

M
2G

H ;

where each H is the space of G-invariants of the middle-dimensional relative cohomol-
ogy in Fix. /. There is a natural pairing h ; i and an isomorphism (see [20, Section 5.1])

(2-6) .H.W ;G/; h ; i/Š

�M
2G

.Jac.W /�Fix. //
G ;Res

�
:

Here Jac.W / is the Jacobi algebra of W ,�Fix. / is the standard holomorphic volume
form on Fix. /, and Res is the residue pairing.

In [19; 20], Fan, Jarvis and Ruan constructed the virtual fundamental cycle over the
moduli space of W –spin structures, and a corresponding CohFT

.H.W ;G/; h ; i; 1; ƒ
.W ;G//;

which defines the so-called FJRW invariants h˛1 
`1

1
; : : : ; ˛n 

`n
n i

.W ;G/
g;n through (2-3).

We now specialize to a pair .W;G/ given in (1-3) with G D hJıi. For a set of
homogeneous elements ˛k 2 Hk

for k D 1; 2; : : : ; n, the dimension formula in
[20, Theorem 4.1.8] shows that, if h˛1 

`1

1
; : : : ; ˛n 

`n
n i

.W ;hJıi/
g;n is nontrivial, then

(2-7) 2g� 2C nD

nX
kD1

1
2

deg˛k C

nX
kD1

`k :

We remark that both HJı and HJ�1
ı

are one-dimensional: HJı is spanned by the flat
identity 1 2HJı and HJ�1

ı
by a canonical degree-2 element � 2HJ�1

ı
. We let s be

the corresponding linear coordinate of the space HJ�1
ı

. The constraint (2-7) allows us
to define the ancestor FJRW correlation function (as a formal series in s)

(2-8) hh˛1 
`1

1
; : : : ; ˛n 

`n
n ii

.W ;hJıi/
g;n .s/

WD

1X
mD0

1

m!
h˛1 

`1

1
; : : : ; ˛n 

`n
n ; s�; : : : ; s�„ ƒ‚ …

m

i
.W ;hJıi/
g;nCm :

In the following, we will use the subscript d to label the CY-type weight systems
in (1-2). Let �D dx1^dx2^dx3. For each polynomial Wd , when d D 3 (resp. 4, 6),
we consider the element

(2-9) h.Wd /D
1

27
x1x2x3

�
resp. 1

32
x2

1x2
2 ;

1
36

x4
1x2

�
:
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According to (2-6), the FJRW state space is

(2-10) H.Wd ;Gd / DHJı ˚HJ�1
ı
˚H12Gd

DCf1; �; b1; b2g:

Here the even part is spanned by 1 2HJı and � 2HJ�1
ı

, while the odd part is spanned
by

b1 D h.Wd /� and b2 D� 2 .Jac.Wd /�/
G
�H12Gd

:

The degrees are

(2-11) deg 1D 0; deg b1 D deg b2 D 1; deg� D 2:

2.1.2 Genus-zero comparison We begin with a comparison between the genus-zero
parts of the two theories. On the GW side, recall the state space for the elliptic curve
Ed is H�.Ed ;C/. Let 1 2H 0 be the identity of the cup product, and ! 2H 2 be the
Poincaré dual of the point class. We choose a symplectic basis fe1; e2g of H 1 such that

e1[ e2 D�e2[ e1 D !:

We define a linear map ‰ WH�.Ed /!H.Wd ;hJıi/ by

(2-12) ‰.1/D 1; ‰.!/D �; ‰.ei/D bi for i D 1; 2:

Let .t0; t1; t2; t/ be the coordinates with respect to the basis f1; e1; e2; !g. Similarly
we let .u0;u1;u2;u/ be the coordinates with respect to the basis f1; b1; b2; �g.

The moduli stack Mg;n.Ed ; ˇ/ is empty when g D 0 and ˇ > 0. Then according
to (2-4), the genus-zero primary GW potential is

FEd

0
D

1
2
t2
0 t C t0t1t2:

A calculation on residue shows that

(2-13) h1; 1; �i
Wd

0;3
D h1; b1; b2i

Wd

0;3
D 1 and h1; b2; b1i

Wd

0;3
D�1:

Thus the genus-zero primary FJRW potential is

FWd

0
D

1
2
u2

0uCu0u1u2C quantum corrections:

These quantum corrections vanish as shown below. This was first observed by Francis
[21, Section 4.2] using WDVV equations.

Proposition 5 The map ‰ in (2-12) is a degree- and grading-preserving ring isomor-
phism , and

(2-14) FWd

0
D

1
2
u2

0uCu0u1u2:
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Proof It is easy to see that ‰ preserves the degree and grading. To show ‰ is a ring
isomorphism, it is enough to prove (2-14). The compatibility condition (2-2) implies the
string equation in FJRW theory. Combining the degree constraints (2-11) and (2-7), we
find that the quantum corrections are encoded in Ci.s/, where Ci.s/ is the correlation
function with i copies of b1–insertions and 4� i copies of b2–insertions. For example,

C0.s/D hhb1; b1; b1; b1ii
Wd

0;4
and C3.s/D hhb1; b2; b2; b2ii

Wd

0;4
:

The Z2–grading (2-1) shows Ci.s/D 0, because for ˛ D b1 or b2,

hh˛; ˛; : : :iiWd
g;n D .�1/j˛jj˛jhh˛; ˛; : : :iiWd

g;n D�hh˛; ˛; : : :ii
Wd
g;n:

2.2 The Belorousski–Pandharipande relation and g–reduction

The tautological rings RH.Mg;n/ of Mg;n are defined (see [17] for example) as the
smallest system of subrings of H�.Mg;n/ stable under pushforward and pullback by
the gluing and forgetful morphisms. Thus pulling back the tautological relations in
RH.Mg;n/ via the CohFT maps ƒg;n gives relations among quantum invariants. We
use this technique to prove Propositions 1 and 2.

2.2.1 The Belorousski–Pandharipande relation for a genus-one correlation func-
tion The degree constraints (2-11) and (2-7) show that the nonvanishing genus-one
primary FJRW invariants could only come from the coefficients in hh�iiWd

1;1
.s/. We

determine this series and the GW correlation function hh!iiEd

1;1
.q/, up to some initial

values, by using the tautological relation found by Belorousski and Pandharipande
[2, Theorem 1]. The relation is a nontrivial rational equivalence among codimension-2
descendent stratum classes in M2;3, shown in Figure 1.

Each stratum in the relation is represented by the topological type of the stable curve
corresponding to the generic moduli point in the stratum. The markings on the stratum
are unassigned. The geometric genera of the components are underlined. The cotangent
line class  always appears on the genus-two component.

Proof of Proposition 1 On the FJRW side, we integrate

ƒ
Wd

2;3
.�; �; �/ 2H 4.M2;3/

over the Belorousski–Pandharipande relation. We read off one term from each stratum.
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Figure 1: The Belorousski–Pandharipande relation.

Strata in the first row of Figure 1 Let us consider the first stratum in the first row.
Integration over this stratum gives the term

�2
X

˛;˛0;ˇ;ˇ02HWd

hh˛ii
Wd

2;1
.s/�˛;˛

0

hh˛0; �; ˇii
Wd

0;3
.s/�ˇ;ˇ

0

hhˇ0; �; �ii
Wd

0;3
.s/:

Here the notation �˛;˛
0

stands for the .˛; ˛0/ component of the inverse of the paring �,
etc. For any homogeneous element ˛ 2HWd

, the degree constraint (2-7) implies that if
hh˛ii

Wd

2;1
.s/ is nonzero, then

2.2� 1/C 1D 1
2

deg˛:

This contradicts (2-11), where we have deg˛D 0; 1; 2. Thus hh˛iiWd

2;1
.s/D 0, and hence

the contribution from this stratum is zero. Similar arguments imply that the contribution
from all the strata in the first row of Figure 1 vanish, since the contribution from each
stratum must contain one of the following terms as a factor:

hh˛ii
Wd

2;1
.s/D hh˛ 1ii

Wd

2;1
.s/D hh� 1; ˛ii

Wd

2;2
.s/D hh�; ˛ 2ii

Wd

2;2
.s/D 0:

Other vanishing strata Now we look at the first, second and fifth strata in the second
row, the third, fourth and fifth strata in the third row, and the second, third, fifth and
sixth strata in the last row. Each stratum has a genus-zero component with at least four
markings (including the nodes). According to Proposition 5, for the primary invariants,

hh � � � ii
Wd

0;n
D 0 for all n� 4:

Thus the integral of ƒWd

2;3
.�; �; �/ 2H 4.M2;3/ over each of these strata vanishes.
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For the first and second strata in the third row, the genus-zero component only contains
three markings, but at least two of the markings are labeled with the class �. Again by
Proposition 5, we have

hh�; �; ˛ii
Wd

0;3
D 0 for all ˛ 2HWd

:

So the contribution from these two strata also vanishes.

Finally, the integral on the first stratum in the fourth row also vanishes. This is a
consequence of the Z2–grading. In fact, we apply the degree constraint (2-7) to the
genus-one component and find that the nonvanishing contribution from this stratum, if
it exists, should be of the form

�
1

60

X
˛;˛0

hh�; �; �; �ii
Wd

1;4
.s/��;1hh1; ˛; ˛0ii

Wd

0;3
�˛
0;˛:

The vanishing of this term is a direct consequence of the formula (2-13), where

��;1 D �b1;b2 D 1 and �b2;b1 D�1:

Nonvanishing terms Now we see that all the possibly nonvanishing terms are from
the third and fourth strata in the second row, and the fourth stratum in the last row. Let
us calculate them term by term. The third stratum of the second row gives a possibly
nonvanishing term

12
5
hh�ii

Wd

1;1
.s/��;1hh1; �; 1ii

Wd

0;3
.s/�1;�

hh�; �; �ii
Wd

1;3
.s/D 12

5
gg00:

The fourth stratum of the second row gives a possibly nonvanishing term

�
18
5
hh�; �ii

Wd

1;2
.s/��;1hh1; �; 1ii

Wd

0;3
.s/�1;�

hh�; �ii
Wd

1;2
.s/D�18

5
g0g0:

The fourth stratum of the last row gives a possibly nonvanishing term

1
5
�

1
2
hh1; �; 1ii

Wd

0;3
.s/�1;�

hh�; �; �; �ii
Wd

1;4
.s/��;1 D 1

5
�

1
2
g000:

Here the denominator 2 in the term above comes from the automorphism of the graph.

Putting all these together, the Belorousski–Pandharipande relation in Figure 1 allows
us to verify by brute-force computation that the correlation function g WD hh�ii

Wd

1;1
.s/ is

a solution to

(2-15) 12
5

gg00� 18
5

g0g0C 1
5
�

1
2
g000 D 0:

Thus �24hh�ii
Wd

1;1
.s/ is a solution of the Chazy equation (1-12).
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By integrating the GW cycle ƒEd

2;3
.!; !; !/ over the Belorousski–Pandharipande

relation in Figure 1, we similarly see that �24hh�ii
Ed

1;1
.q/ is a solution of the Chazy

equation (1-12).

The identity (2-15) is independent of the specific form Ed , as should be the case since
the GW invariants are independent of the choice of complex structures put on the
elliptic curve.

Remark 6 For the elliptic orbifold curve XN WD E.N /=�N for some particular elliptic
curve E.N / that admits �N as its automorphism group, the first stratum in the fourth
line does not vanish. Let � be the rank of the Chen–Ruan cohomology H�CR.XN /,
which satisfies

1�
�

12
D

1

N
:

Similarly, define g D hhPiiXN

1;1
, where P is the point class on XN . The Belorousski–

Pandharipande relation now gives
12
5

gg00� 18
5
.g0/2C

�
�

1
60
�C 1

5

�
�

1
2
g000 D 0;

where 0DQ@Q is now the derivative with respect to the parameter for the point class P .
Then f D�24g satisfies

2ff 00� 3.f 0/2� 2
�
1� 1

12
�
�
f 000 D 0:

Its solutions coincide with those of (2-15) via the relation QD qN ; see [49] for more
details.

2.2.2 g–reduction for higher-genus correlation functions We prove Proposition 2
using the g–reduction technique introduced in [18], first recalling:

Lemma 7 [17; 28] Let M. ; �/ be a monomial of  –classes and �–classes Mg;n.
Assume deg M � g when g � 1, and deg M � 1 when gD 0,. Then M. ; �/ is equal
to a linear combination of dual graphs on the boundary of Mg;n.

Proof of Proposition 2 Consider the GW or FJRW correlation function of the form

hh˛1 
`1

1
; : : : ; ˛n 

`n
n ii
|
g;n; where |D Ed or Wd :

Using that the cohomology classes have 0� deg˛k � 2, and using (1-5) and (2-7), we
deduce that the correlation function is trivial if

nX
kD1

`k < 2g� 2:
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Assuming it is nontrivial and
Pn

kD1 `k � 1, we must have

(2-16) deg
� nY

kD1

 
`k

k

�
D

nX
kD1

`k �

�
2g� 2� g if g � 2;

1 if g D 0; 1:

Then,
Qn

kD1  
`k

k
is a monomial satisfying the condition in Lemma 7, thus we can

apply this technique and use the splitting axiom in GW/FJRW theory to rewrite the
function as a linear combination of products of other correlation functions, with smaller
genera.

We then repeat the process for nontrivial correlation functions with smaller genera
and eventually rewrite the correlation function as a linear combination of products of
primary (all `k D 0) correlation functions in genus zero (which are just constants) and
in genus one, which must be f .n�1/

d
Dhh!; : : : ; !ii

Ed

1;n
or hh�; : : : ; �iiWd

1;n
. Thus we have

hh˛1 
`1

1
; : : : ; ˛k 

`n
n ii
|
g;n 2CŒfd ; f

0
d ; f

00
d ; : : : �DCŒfd ; f

0
d ; f

00
d �:

The last equality follows from (2-15).

3 A genus-one FJRW invariant

Throughout this section, we consider the d D 3 case, with W3 D x3
1
C x3

2
C x3

3
and

G D �3. We focus on the following genus-one FJRW invariant (see (1-6)) with nD 3:

‚1;n WD h�; : : : ; �„ ƒ‚ …
n

i
.W3;�3/
1;n

:

Combining the computations in [38], we will prove:

Proposition 8 [38, Theorem 1.1] For the .W3; �3/ case , one has the FJRW invariant

(3-1) ‚1;3 D h�; �; �i
.W3;�3/
1;3

D
1

108
:

We first obtain a formula that expresses the Witten top Chern class for ‚1;3 in terms of
a Witten top Chern class of three-spin curves in Lemma 9. Then in Proposition 15 and
Corollary 17, we analyze the latter virtual class explicitly by cosection localization.
Finally, we deduce Proposition 8 from these results and explicit computations in [38].

3.1 Witten top Chern class

We begin with a formula for a Witten top Chern class of the moduli of three-spin curves.
The relevant moduli MgD1;23.W3; �3/ (defined in [6]) is the moduli of families

(3-2) � D Œ†� C; .Li ; �i/
3
iD1�
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such that †�C is a family of genus-one 3–pointed twisted nodal curves, each marking
is a stacky point of automorphism group �3, �i WL

˝3
i Š!

log
C are isomorphisms together

with isomorphisms Li Š L1 for i D 2 and 3 understood, and the monodromy of L1

along †i �† is 3�1
3

.2 Because of the isomorphisms Li Š L1, we have the canonical
isomorphism

W3 WDM1=3

1;23 ŠM1;23.W3; �3/;

where we recall that W3 parametrizes families of � D Œ†� C;L; �� with objects †, C,
L and � as before.

Let
ŒM1;23.W3; �3/

p �vir
2A�M1;23.W3; �3/

be the FJRW invariant of the pair .W3; �3/, which is defined in [6] as the cosection
localized virtual cycles of the moduli stack M1;23.W3; �3/

p, parametrizing

� D f.C; †;L1; : : : ; '1; '2; '3/ j .C; †;L1; : : : / 2M1;23.W3; �3/ and 'i 2 �.Li/g:

We let
ŒM1=3;p

1;23 �vir
2A�M

1=3

1;23

be the similarly defined cosection localized virtual cycle.

Lemma 9 We have the identity

(3-3) ŒM1;23.W3; �3/
p �vir
D .ŒM1=3;p

1;23 �vir/3 2A3W3 �A0W3:

Proof First, we have the Cartesian product

M1;23.x3; �3/
p �M1;23.x3; �3/

p

��

M1;23.x3Cy3; .�3/
2/poo

��

M1;23.x3; �3/�M1;23.x3; �3/ M1;23.x3Cy3; .�3/
2/

f
oo

where the morphism f sends .C; †;L1;L2/ to

..C; †;L1/; .C; †;L2//:

Applying [6, Theorem 4.11], we get that

(3-4) ŒM1;23.x3
Cy3; .�3/

2/p �vir
Df �

�
ŒM1;23.x3; �3/

p �vir
�ŒM1;23.x3; �3/

p �vir�:
2Our convention is that for C D ŒA1=�r � and an invertible sheaf of OC–modules having monodromy
a=r 2 Œ0; 1/ at Œ0�, locally the sheaf takes the form OA1.aŒ0�/=�r .
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Now let

g WM1;23.x3
Cy3; �3/DM1;23.x3; �3/!M1;23.x3

Cy3; .�3/
2/

be the diagonal morphism. Then

f ıg WM1;23.x3; �3/!M1;23.x3; �3/�M1;23.x3; �3/

is the diagonal morphism. As g is étale and proper, we conclude

(3-5) ŒM1;23.x3
Cy3; �3/

p �vir
D g�ŒM1;23.x3

Cy3; .�3/
2/p �vir:

Combined with (3-4) and (3-5), we obtain

ŒM1;23.x3
Cy3; �3/

p �vir
D .f ıg/�

�
ŒM1;23.x3; �3/

p �vir
� ŒM1;23.x3; �3/

p �vir�;
which is

�
ŒM1;23.x3; �3/

p �vir
�2. Here we have used that M1;23.x3; �3/ is smooth.

Repeating the same argument to go from x3Cy3 to W3 proves the lemma.

3.1.1 Cosection localized virtual cycles Let W be a smooth DM stack, with a
complex of locally free sheaves of OW–modules

(3-6) E� WD ŒOW.E0/
s
�! OW.E1/�

of rank a0 and a1 D a0 C 1, respectively. Let � W E0 ! W be the projection; the
section s induces a section Qs 2 �. zE1/ of the pullback bundle zE1 WD �

�E1. We define

(3-7) M WD .Qs D 0/�E0:

Assumption 10 We assume DD .ker s¤ 0/�W is a smooth Cartier divisor; Im.sjD/
is a rank-.a0�1/ subbundle of E1jD.

Because D is a smooth Cartier divisor, we can find a vector bundle F on W fitting into

(3-8) OW.E0/
�1
�! OW.F /

�2
�! OW.E1/

so that �1jW�D D sjW�D is an isomorphism, F ! E1 is a subvector bundle, and
s D �2 ı �1.

We let ADH 1.E�/. By Assumption 10, it fits into the exact sequence

(3-9) 0! OW.E0/
�
�! OW.F /!A! 0:

Further, there is a line bundle A on D such that A D OD.A/. In the following, we
will view c1.A/ as an element of A1D. Then for the inclusion � W D!W , we have
��c1.A/ 2A2W . Since A is a line bundle on D, we have c1.A/D ŒD�, thus:
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Lemma 11 c1.E1�F /D c1.E1�E0/� ŒD�:

We let J �E0jD be the kernel of sjD; by our assumption it is a line bundle on D. We
relate A to J :

Lemma 12 Let the situation be as stated and assume Assumption 10. Then AŠ J.D/.

Proof Let J D OD.J / and let � D kerfOD.F / ! Ag. Then � fits into the exact
sequences

0! OD.J /! OD.E0/! �! 0 and 0! �! OD.F /! OD.A/! 0:

Let � 2 OD.J / be any (local) section. Let Q� 2 OW.E0/ be a lift of the image of �
in OD.E0/. Then �. Q�/ 2 OW.F /, where � is as in (3-9). Clearly, �. Q�/jD D 0. Let
t 2 OW.D/ be the defining equation of D. Then t�1�. Q�/ 2 OW.F /.�D/. We define
'.�/ to be the image of t�1�. Q�/ in OD.A.�D// under the composition

OW.F /.�D/! OD.F.�D//! OD.A.�D//:

It is direct to check that ' W OD.J /! OD.A.�D// is a well-defined homomorphism of
sheaves, and is an isomorphism.

This way, M (see (3-7)) is a union of W � E0 (the 0–section) and the subbundle
J �E0jD �E0. As M�E0 is defined by the vanishing of Qs, it comes with a normal
cone

(3-10) C WD lim
t!0

�t�1Qs �
zE1jM:

Lemma 13 With Assumption 10, the cone C � zE1jM is a union of two subvector
bundles �2.F /�E1 and ���2.F /jJ � zE1jJ .

Proof This is local, thus without loss of generality we can assume a0 D 1. Since
D D .s D 0/ is a smooth divisor in W , near a point at D we can give W an analytic
neighborhood U with chart .u;x/, where u is a multivariable, so that DD .x D 0/ and
sjU WE0jU !E1jU takes the form

sjU D .x; 0/ W OU ! OU ˚O
˚.a1�1/
U

Š OU .E1/:

We let y be the fiber-direction coordinate of E0jU . Then ��1.U /�E0 has the chart
.u;x;y/, with Qsj��1.U / D .xy; 0/. Therefore, the cone C �E0 over ��1.U / is the
line bundle

O��1.U /\M � O��1.U /\M˚O
˚.a1�1/

��1.U /\M Š O��1.U /\M.
zE1/:
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Assumption 14 We assume that there is a homomorphism (cosection)

� W zE1jM! OM

such that � jW D 0, and ���2.F /jJ lies in the kernel of � .

Let
ŒM�vir

� WD 0!
� ŒC � 2Aa1�a0W

be the image of ŒC � under the cosection localized Gysin map.

Proposition 15 Let the situation be as mentioned , and suppose the cosection � is
fiberwise homogeneous of degree e. Then

ŒM�vir
� D�c1.E0�E1/� .eC 1/ŒD� 2A1W when a1� a0 D 1:

Proof Following the discussion leading to [5, Lemma 6.4], we compactify M by
compactifying J by P WD PD.J ˚ 1/. Let D1 D PD.J ˚ 0/ � PD.J ˚ 1/. Then
P D J [ D1, and M D P [W . Let N� W P ! D be the tautological projection.
Then ��F jJ � zE1jJ extends to N��F � N��E1, a subbundle. Because � is fiberwise
homogeneous of degree e, we see that � jJ W zE1jJ D N�

�E1jJ ! OJ extends to a
homomorphism

N� W N��E1.�eD1/! OP ;

which is surjective along D1 DM�M.

We let N��F.�eD1/ � N��E1.�eD1/ be the associated twisting of the subbundle
N��F � N��E1. Applying [5, Lemma 6.4], we conclude that

(3-11) 0!
� ŒC �D 0!

E1
ŒF �C N��

�
0!
N��E1.�eD1/Œ N�

�F.�eD1/�
�
:

When a1� a0 D 1,

0!
N��E1.�eD1/Œ N�

�F.�eD1/�D c1. N�
�.E1=F /.�eD1//D N��c1.E1=F /� eŒD1�:

Thus N��
�
0!
N��E1.�2D1/

Œ N��F.�eD1/�
�
D �eŒD�. Combined with Lemma 11, the

proposition follows.

3.2 Applying to the FJRW invariant

We let MDM1=3;p

1;23 . We claim that there is a complex of vector bundle as in (3-6) so
that M is defined as in (3-7), and there is a cosection � satisfying Assumption 14.
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Indeed, let M1;23 be the moduli of 3–pointed genus-one twisted curves where all
markings are �3 stacky. Then the forgetful morphism q WM1=3

1;23 !M1;23 is finite and
smooth. Furthermore, let .†� C;L/ be the universal family of M1=3

1;23 . Then .†� C/

is the pullback of the universal family of M1;23 , and a standard method shows that
we can find a complex E� D Œs W OC.E0/! OC.E1/� of locally free sheaves such that
E� DR���L, in the derived category. Here � W C!M1=3

1;23 is the projection. Then a
standard argument shows that this complex E� is the desired one, giving a canonical
embedding of MDM1=3;p

1;23 into the total space of E0, as the vanishing locus of Qs.

The choice of cosection � is induced by OW.E1/!H 1.E�/, following that in [6], and
satisfies Assumption 14. Finally, following the construction of ŒM1=3;p

1;23 �vir, we see that

ŒM�vir
� D ŒM

1=3;p

1;23 �vir:

We skip the details here.

We next check that Assumption 10 holds in this case.

Lemma 16 Let D �W (DM1=3

1;23) be the locus where R0��L is nontrivial. Then it
is a smooth divisor of W .

Proof Let .C; †;L/ 2 W be a closed point such that H 0.L/ ¤ 0. Then a direct
calculation shows that C has a node q 2 C that separates C into two irreducible
components E and R, so that q � E is a 1–pointed (twisted) elliptic curve with
h0.LjE/ D 1, and q [ † � R is a 4–pointed (twisted) rational curve. The same
argument shows that the converse is also true. Therefore, letting D �M1=3

1;23 be the
closed locus (see Figure 2) where R0��L is nontrivial, R0��L is a locally free sheaf
of OD–modules. Equivalently, letting

�D W CD D C�M1=3

1;23

D! D

be the projection, this says that �D�.LjCD/ is a rank-one locally free sheaf of OD–
modules. Let t be a local section of this sheaf. Then .t D 0/� CD becomes a family
of rational curves, the family that contains all those q[†�R mentioned. This shows
that CD!D is exactly the subfamily in M1=3

1;23 that can be decomposed into 1–pointed
twisted elliptic curves q � E with h0.LjE/D 1, and 4–pointed twisted rational curves
q[†�R. This implies that D is a smooth divisor of W DM1=3

1;23 .

We illustrate the divisor D by a decorated graph in Figure 2. A generic point in D
consists a nodal curve with a genus-one component (gD1) and a genus-zero component
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g D 1

h0 D 1

g D 0

1 2
2

2

2

Figure 2: The divisor D on the moduli stack W DM1=3

1;23 .

(g D 0). The monodromy along the node is 1
3

on the genus-one component and 2
3

on the genus-zero component. Here h0 D 1 is the rank of R0��L restricted to the
genus-one component.

Finally, to apply Proposition 15 we need to show that the cosection is fiberwise
homogeneous of degree e D 2. This follows from the definition of the cosection in [6],
and the degree e is 3� 1, where 3 is the denominator of 1

3
. Applying Proposition 15,

we obtain:3

Corollary 17 The Witten top Chern class of the moduli of three-spin curves M1=3

1;23 is

(3-12)
�
M1=3;p

1;23

�vir
D�c1.R

���L/� 3ŒD�:

Applying Lemma 9, we get

(3-13) ‚1;3 D degŒM1;23.W3; �3/
p �vir
D deg.ŒM1=3;p

1;23 �vir/3:

Thus the FJRW invariant ‚1;3 in Proposition 8 can be calculated explicitly from the
triple self-intersection of the cycle (3-12). Note that the first term in (3-12) can be
calculated by Chiodo’s formula [9]. The calculation is subtle and lengthy, and the
details are given in [38]. An alternative approach to computing this invariant using the
mixed-spin-P fields method developed in [7; 8] is also presented in [38].

4 LG/CY correspondence for the Fermat cubic

This section is devoted to proving Theorem 3. We shall show that the GW/FJRW
correlation functions as Fourier/Taylor expansions of the same quasimodular form

3This formula is a special case of a sequence of formulae for moduli of r–spin curves, conjectured by
Janda (personal communication, 2019).
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around different points (the infinity cusp and an interior point on the upper half-plane)
which are related by the so-called holomorphic Cayley transformation that we shall
introduce.

4.1 Cayley transformation and elliptic expansions of quasimodular forms

It is well known that the Eisenstein series E2.�/ is not modular; however, its non-
holomorphic modification

(4-1) yE2.�; N�/ WDE2.�/�
3

� Im.�/

is modular. The map (called modular completion) sending E2 to yE2, and E4 and E6 to
themselves, is an isomorphism from zM�.�/ to the ring of almost-holomorphic modular
forms

(4-2) yM�.�/ WDCŒ yE2;E4;E6�:

More precisely, for any quasimodular form f .�/ 2 zM�.�/ of weight k, we denote
by Of .�; N�/ 2 yM�.�/ its modular completion. The function Of can be regarded as a
polynomial in the formal variable 1=Im.�/,

(4-3) Of D f C

kX
jD1

fj

�
1

Im.�/

�j

;

with coefficients some holomorphic functions fj for j D 1; 2; : : : ; k in � . We call
the inverse of the modular completion the holomorphic limit. It maps the almost-
holomorphic modular form Of in (4-3) to its degree-zero term f in the formal variable
1=Im.�/.

For any point �� 2H, we form the Cayley transform from H to a disk D (of appropriate
radius determined by �� and c ¤ 0),

(4-4) � 7! s.�/ WD c2�
p
�1.��� N��/

� � ��

� � N��
2D:

It is biholomorphic and we denote its inverse by �.s/.

Following [57], in [50] we defined a Cayley transformation C�� based on the action (4-4)
on the space of almost-holomorphic modular forms; it maps the almost-holomorphic
modular form Of 2 yM�.�/ to

(4-5) C��.
Of /.s; Ns/ WD .2�

p
�1c/�k=2

�
�.s/� N��

��� N��

�k

Of .�.s/; N�.s//:

This gives a natural way to expand an almost-holomorphic modular form near � D ��.
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zM .�/

modular completion
--

Chol
��

��

yM .�/
constant term map
mm

C��

��

Chol
��
. zM .�//

modular completion
--
C��. yM .�//

holomorphic limit
mm

Figure 3: Cayley transformation on quasimodular and almost-holomorphic
modular forms.

A similar notion of holomorphic limit can be defined near the interior point ��. Compu-
tationally, this amounts to taking the degree-zero term in the Ns–expansion of (4-5) (now
regarded as a real-analytic function in s and Ns) using the structure (4-3). This procedure
induces a transformation Chol

��
on quasimodular forms. We will call the transformation

Chol
��

the holomorphic Cayley transformation. This transformation can be shown to
respect the differential ring isomorphism between the differential ring of quasimodular
forms and the differential ring of almost-holomorphic modular forms. We illustrate the
construction by the commutative diagram in Figure 3. See [50] for details.

We are mainly concerned with the expansions of the quasimodular form E2 around the
infinity cusp

p
�11 and the elliptic points

(4-6) �� D�
1

2�
p
�1
�
�

1

d

�
�
�
1�

1

d

�
e��
p
�1=d for d 2 f3; 4; 6g:

For the Fermat cubic polynomial case d D 3, in (4-4) we take

(4-7) c D
1

2�
p
�1

�.1=d/

�.1� 1=d/2
e��
p
�1=d :

The choices in (4-6) and (4-7) then lead to the rational expansion of E2 around ��:

(4-8) Chol
��
.E2/D�

1
9
s2
�

1
1215

s5
�

1
459 270

s8
C � � � :

The other cases, d D 4; 6, are similar. All of these computations are easy following
those in [50].

4.2 LG/CY correspondence

We consider the elliptic points (4-6) and the value (4-7) for c in (4-4). Theorem 3 then
follows from:
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Theorem 18 Consider the LG space .ŒC3=hJıi�;W / given by (1-2) and (1-3), with
d D 3.

(i) The genus-one GW correlation function is

(4-9) �24hh!ii
Ed

1;1
.q/DE2.q/:

(ii) The GW correlation functions hh � � � iiEd
g;n are quasimodular forms in the ring

CŒE2;E
0
2
;E00

2
�.

(iii) The genus-one FJRW correlation function hh�iiWd

1;1
.s/ is the Taylor expansion of

�
1

24
E2 around the elliptic point

�� D�

p
�1
p

3
exp

�
2�
p
�1

3

�
2HI

that is ,

(4-10) hh�ii
Wd

1;1
.s/D Chol

��
.hh!ii

Ed

1;1
.q//:

(iv) The FJRW correlation functions hh � � � iiWd
g;n are holomorphic Cayley transforma-

tions of quasimodular forms in the ring

CŒChol
��
.E2/;C

hol
��
.E02/;C

hol
��
.E002/�

such that

Chol
��
.hh˛1 

`1

1
; : : : ; ˛n 

`n
n ii

Ed
g;n.q//D hh‰.˛1/ 

`1

1
; : : : ; ‰.˛n/ 

`n
n ii

Wd
g;n.s/:

Proof Part (i) is a well-known result in the literature; see eg [43]. We give a new
proof based on the Chazy equation. In order to get (4-9), it suffices to check4

h!i
Ed

1;1;0
D�

1
24

and h!i
Ed

1;1;1
D 1:

Both invariants can be obtained by analyzing the virtual fundamental classes explicitly.

Part (ii) is a consequence of (i), the Ramanujan identities (1-11), and Proposition 2.

For (iii), the selection rule [20, Proposition 2.2.8] implies ‚1;1 D ‚1;2 D 0, as the
corresponding moduli spaces are empty. On the other hand, according to Proposition 8,

‚1;3 D
1

108
:

Now we see that as a formal power series in s, the first three terms of hh�iiWd

1;1
.s/ match

those obtained from Chol
��
.E2/ in (4-8). Since both hh�iiWd

1;1
.s/ and Chol

��
.E2/ satisfy the

4Note that only two initial conditions are needed to determine a solution from the space of formal power
series in q D e2�i� .
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Chazy equation (1-12), we conclude that

hh�ii
Wd

1;1
.s/D� 1

24
Chol
��
.E2/:

For (iv), we recall that, by g–reduction, in either theory all nontrivial correlation
functions are differential polynomials in the building block hh!iiEd

1;1
.q/ or hh�iiWd

1;1
.s/.

Since the holomorphic Cayley transformation respects the differential ring structure and
the g–reduction is independent of the CohFT in consideration, (iv) is a consequence
of (iii), the Ramanujan identities (1-11), and Proposition 2.

Remark 19 Propositions 1 and 2 hold for all of the one-dimensional CY weight
systems in (1-2) and (1-3). Provided the analogue of Proposition 8 for the d D 4

or 6 case is obtained, the same argument as in the proof of Theorem 18 generalizes
straightforwardly.

5 Ancestor GW invariants for elliptic curves

The tautological relations used in establishing Proposition 2 are not constructive, and
hence not so useful for actual calculation of higher-genus invariants. For this reason,
we make use of the beautiful formulae for the descendent GW invariants of elliptic
curves given by Bloch and Okounkov [3] and reviewed below. For later use we also
discuss the ancestor/descendent correspondence.

5.1 Higher-genus descendent GW invariants of elliptic curves

In [43], Okounkov and Pandharipande proved a correspondence between the stationary
GW invariants and Hurwitz covers, called Gromov–Witten/Hurwitz correspondence.
To be more precise, let

˝QN
iD1 !

z 
`i

i

˛�E
g;d

be the disconnected, stationary, descendent
GW invariant of genus g and degree d (the number N of markings is self-explanatory
in the notation). Here z i is the descendent cotangent line class attached to the i th

marking, and the symbol � stands for disconnected counting. The invariant is called
stationary as the insertions only involve the descendents of !.

Following [43], we define the N –point generating function by

(5-1) FN .z1; : : : ; zN ; q/ WD
X

`1;:::;`N��2

�� NY
iD1

! z 
`i

i

���E
g

NY
iD1

z
`iC1
i ;

with the convention
hh! z �2

ii
�E
0 .q/D 1:
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The GW/Hurwitz correspondence [43, Theorem 5] allows one to rewrite the N –point
generating function FN .z1; : : : ; zN ; q/ by a beautiful character formula from [3]:

(5-2) FN .z1; z2; : : : ; zN ;q/D .q/
�1
1

X
all permutations of z1;:::;zN

det MN .z1; z2; : : : ; zN /

‚.z1C z2C � � �C zN /
:

Here MN .z1; z2; : : : ; zN / is the matrix where the .i; j / entry is zero if j ¤ N and
i > j C 1 and otherwise is given by

‚.j�iC1/.z1C � � �C zN�j /

.j � i C 1/!‚.z1C � � �C zN�j /
if j ¤N and

‚.N�iC1/.0/

.N � i C 1/!
if j DN:

Recall that ‚ is defined to be the prime form

(5-3) ‚.z/D
#.1=2;1=2/.z; q/

@z#.1=2;1=2/.z; q/jzD0

D 2�
p
�1
#.1=2;1=2/.z; q/

�2��3

D 2�
p
�1eE2z2=24�.z/;

with:

(i) The Euler function

.q/1 WD

1Y
nD1

.1� qn/

is related to the Dedekind eta function by �D q1=24.q/1.

(ii) The Jacobi theta function

#.1=2;1=2/.z; q/ WD
X
n2Z

q.1=2/.nC1=2/2e.nC1=2/z

has characteristic
�

1
2
; 1

2

�
.

(iii) The Weierstrass �–function �.z/ satisfies the well-known formula5 (see [51])

(5-4) �.z/D
z

2�
p
�1

exp
� 1X

kD2

B2k

2k.2k/!
z2kE2k

�
;

where B2k for k � 1 are Bernoulli numbers determined from

x

ex � 1
D 1� 1

2
xC

1X
kD1

B2k

.2k/!
x2k :

5Note that the z–variable here differs from the usual one by a 2�
p
�1 factor.

Geometry & Topology, Volume 27 (2023)



Higher genus FJRW invariants of a Fermat cubic 1873

Note that we often omit the subscript g in the correlation function�� NY
iD1

! z 
`i

i

���E
g

;

which can be read off from the degree of the insertion according to the dimension
axiom. We shall also omit the argument q in the functions for ease of notation.

The formula (5-2) provides an effective algorithm for computing the stationary descen-
dent GW invariants. For example, as already computed in [3], one has

(5-5)

F1.z1/D
1

.q/1‚.z1/
;

F2.z1; z2/D
1

.q/1‚.z1C z2/
.@z1

ln‚.z1/C @z2
log‚.z2//;

:::

Remark 20 Let hh!iiıE be the generating series of stable maps with connected domains
with neither descendent nor ancestor classes. Then one has the well-known formula

(5-6) hh!iiıE D� 1
24

E2:

It is easy to see that

(5-7) hh!ii�E D hh!iiıE exp.G.q// and G D
X
d�1

hh ii
ıE
gD1;dqd :

In this case, by enumerating stable maps with connected domains, one can show that

(5-8) q
d

dq
G D

X
d�1

hh!iiıEgD1;dqd
D�q

d

dq
log.q/1:

Solving this equation and using the initial terms of G, which can be easily computed,
one obtains

(5-9) G D�log.q/1:

This then gives

(5-10) hh!ii�E D .q/�1
1 hh!ii

ıE
D .q/�1

1

�
�

1
24

�
E2:

More generally, for the one-point GW correlation function, the same reasoning implies
that

hh! z k
ii
�E
D .q/�1

1 hh!
z k
ii
ıE :
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The result (5-9) indicates that one can add an extra contribution from the degree-zero
part to G, whose corresponding moduli is an Artin stack. This contribution can be
defined to be log q�

1
24 . In this way, after applying the divisor equation, it yields

the contribution � 1
24

for the degree-zero part in hh!iiıE . This definition of the extra
contribution for the Artin stack changes .q/1 to �. What one gains from the inclusion
of this is the quasimodularity of the GW generating functions. The discrepancy will be
further discussed from the viewpoint of ancestor/descendent correspondence below.

It is shown in [3] by manipulating the series expansions that the descendent GW correla-
tion functions are essentially (modulo the issue discussed in Remark 20) quasimodular
forms. By induction, the weight of .q/1

˝̋QN
iD1 !

z 
ki

i

˛̨ �E is
P
.ki C 2/. This can also

be seen easily by using (5-3) and (5-4).

5.2 Ancestor/descendent correspondence

Since explicit formulae in [3] are available only for descendent GW invariants, while
we are mainly concerned with ancestor GW invariants, we shall first exhibit the relation
between these two types of GW invariants. The relation between the descendent
GW invariants and the ancestor GW invariants are described for general targets in
[33, Theorem 1.1]. This is the so-called ancestor/descendent correspondence. This
correspondence is written down elegantly using a quantization formula of quadratic
Hamiltonians in [22, Theorem 5.1].

We summarize some basics of quantization of quadratic Hamiltonians from [22]. Let
H be a vector space of finite rank, equipped with a nondegenerating pairing h � ;� i.
Let H..z// be the loop space of the vector space H , equipped with a symplectic form
� defined by

�.f .z/;g.z// WD ReszD0hf .�z/;g.z/i:

Let tk be the collection of variables tk D ft
˛
k
g˛ where ˛ runs over a basis of H , and t

be the collection
t D ft0; t1; : : : g:

We organize the collection tk into a formal series tk :

tk.z/D
X

i

t i
k˛iz

k :

Similar notation is used for sk and s below. Introduce the dilaton shift

(5-11) q.z/D t.z/� z1:
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We consider an upper-triangular symplectic operator on H..z//, defined by

S.z�1/ WD 1C

1X
iD1

z�iSi for Si 2 End.H /:

Given an element G.q/ in a certain Fock space, the quantization operator yS of a
symplectic operator S gives another Fock space element

(5-12) . yS�1G/.q/D eW .q;q/=2„G.ŒSq�C/;

where ŒSq�C is the power series truncation of the function S.z�1/q.z/, and the qua-
dratic form W D

P
.Wk`qk ; q`/ is defined byX

k;`�0

Wk;`

wkz`
WD

S�.w�1/S.z�1/� Id
w�1C z�1

:

Here Id is the identity operator on H..z// and S� is the adjoint operator of S .

Following Givental [22, Section 5], for the descendent theory we define a particular
symplectic operator St by

(5-13) .a;Stb/ WD
D
a;

b

z� 

E
DW .a; b/C

1X
kD0

hha; b z k
ii
ıE
0;2z�1�k :

Now we specialize to the elliptic curve case and write down the quantization formula for
the ancestor/descendent correspondence explicitly. Henceforward, we use the following
convention:

� Recall f1; b1; b2; �g is a basis of the FJRW state space H.Wd ;Gd / given in (2-10).
We parametrize the ancestor classes 1 `, b1 

`, b2 
` and � ` by

(5-14) s0
` ; s1

` ; s2
` and s3

` :

� Recall f1; e1; e2; !g is a basis of the cohomology space H�.E/. We parametrize
the ancestor classes 1 `, e1 

`, e2 
` and ! `, and descendent classes 1 z `,

e1
z `, e2

z ` and ! z ` by

(5-15) t0
` ; t1

` ; t2
` ; t

3
` ; and Qt0

` ; Qt
1
` ; Qt

2
` ; Qt

3
` ;

respectively.

The total descendent potential of the GW theory of E is defined by

(5-16) DE.Qt/ WD exp
�X

g�0

„
g�1FıEg .Qt/

�
WD exp

�X
g�0

„
g�1

X
n�0

hQt; : : : ; QtiıEg;n

�
:
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The total ancestor potential of the GW theory of E is defined by

AE.t/ WD exp
�X

g�0

„
g�1FıEg .t/

�
WD exp

�X
g�0

„
g�1

X
n�0

2g�2Cn>0

ht; : : : ; tiıEg;n

�
:

The total ancestor FJRW potential is defined similarly.

The quantity FıE
1
.t/ is the genus-one primary potential of the GW theory of E appearing

in AE , with the parameter q D et keeping track of the degree. By [22, Theorem 5.1],
the ancestor/descendent correspondence of the elliptic curve is given by

(5-17) DE
D eF

ıE
1
.t/ yS�1

t AE ;

under the identification Qt i
`
D t i

`
.

According to (5-9), the genus-one potential is

FıE1 .t/DG.q/D
X
d�1

h i
ıE
1;0;dqd

D�log.q/1 for q D et :

Thus we obtain

yS�1
t AE

D e�F
ıE
1
.t/DE

D .q/1DE
D .q/1

X
g;n2Z

„
g�1
hhQt; : : : ; Qtii�Eg;n:

A direct calculation of (5-13) shows the restriction of St to the odd cohomology is the
identity operator, and the restriction to even cohomology is given by

St

�
1

!

�
D

�
1 t=z

1

��
1

!

�
:

Now, we write down an explicit formula for the quantization operator (5-12). The
symplectic operator St is given in terms of infinitesimal symplectic operator h.t/=z:

St D exp
�

h.t/

z

�
:

Here h.t/ 2 End.H / is such that h.t/.1/ D t! if h.t/.!/ D 0, and h.t/.ei/ D 0

otherwise. In terms of the Darboux coordinates Qqi
k

and Qpi
k

, the corresponding quadratic
Hamiltonian has the form (see [35, Section 3], for example)

P

�
h.t/

z

�
D�t � 1

2
. Qq0

0/
2
� t

X
k�0

Qq0
kC1 Qp

0
k :

Applying the quantization formula, we get

(5-18) ySt D exp
� 3

P

�
h.t/

z

��
D exp

�
�t � 1

2
. Qq0

0/
2
� t

X
k�0

Qq0
kC1

@

@ Qq0
k

�
:
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As a consequence, we observe that this operator has no influence on the parameter Qq3
k

for the descendent ! Q k . Thus we obtain:

Proposition 21 The relation between the stationary descendent invariants and the
corresponding ancestor invariants is given by

(5-19) .q/1

�� NY
iD1

! z 
`i

i

���E
g

D

�� NY
iD1

! 
`i

i

���E
g

:

Quasimodularity for the correlation functions in the disconnected theory is equivalent to
quasimodularity for the connected theory, as one can see by examining the generating
series. Hence our Theorem 18(ii) is consistent with the results in [3; 43] about the
quasimodularity via the above proposition.

6 Higher-genus FJRW invariants for the Fermat cubic

In this section we give several applications of Theorem 3. With the help of the Bloch–
Okounkov formula [3], Cayley transformation allows us to compute the FJRW invariants
of the Fermat elliptic polynomials at all genera. It also transforms various structures for
the GW theory of elliptic curves, such as the holomorphic anomaly equations [42; 43]
and Virasoro constraints [44], to those in the corresponding FJRW theory.

6.1 Higher-genus ancestor FJRW invariants for the cubic

Consider the Laurent expansion of the N –point generating function

FN .z1; z2; : : : ; zN ; q/:

The Laurent expansion of @m ln‚ is clear from (5-4), while that of 1=‚ or 1=� can be
obtained by applying the Faá di Bruno formula to the exponential term in 1=� , which
in the current case is determined by the Bell polynomials in �B2kE2k=2k for k � 2.
However, this only gives the Laurent coefficients in terms of the generators E2k for
k � 2, for the ring of modular forms. The expansions obtained are not particularly
useful for our later purpose, which prefers a finite set of generators only.

We proceed as follows. First, the Taylor expansion of the Weierstrass �–function is
given by the classical result [55]

(6-1) � D
X

m;n�0

am;n

.4mC 6nC 1/!

�
2�4

3
E4

�m�
16�6

27
E6

�n�
z

2�
p
�1

�4mC6nC1

;
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where the coefficients am;n are complex numbers determined from the Weierstrass
recursion

am;nD3.mC1/amC1;n�1C
16
3
.nC1/am�2;nC1�

1
6
.4mC6n�1/.4mC6n�2/am�1;n;

with the initial values a0;0 D 1 and am;n D 0 if either of m or n is strictly negative.
The Laurent expansion of 1=� is then obtained from the above. It takes the form

(6-2) 1

�
D

X
m;n�0

bm;n

�
2�4

3
E4

�m�
16�6

27
E6

�n�
z

2�
p
�1

�4mC6n�1

for some bm;n that can also be obtained recursively. The formula in (6-1) also gives rise
to the Laurent expansion of @ ln � , and hence of @ ln‚, in terms of the generators E2,
E4 and E6. Together with that of @ ln‚ it can be used to compute the Laurent expansion
of FN .z1; z2; : : : ; zN ; q/.

Consider the N D 1 case first. According to (5-5), the Laurent expansion of F1 is
given by

F1.z; q/D
1

2�
p
�1.q/1

e�E2=24z2

��1

D
1

z.q/1

X
`;m;n�0

bm;n

`!

�
�

1
24

E2

�`� 1
24

E4

�m�
�

1
108

E6

�n
z2`C4mC6n:

We therefore arrive at the following relation for the descendent GW correlation functions
when k � �2:

(6-3) .q/1hh! z 
k
ii
�E
D

X
`;m;n�0

2`C4mC6nDkC2

bm;n

`!

�
�

1
24

E2

�`� 1
24

E4

�m�
�

1
108

E6

�n
:

As explained in Proposition 21, this is the corresponding ancestor GW correlation
function and is indeed a quasimodular form of weight k C 2. The first few Laurent
coefficients are

(6-4) 1; � 1
24

E2;
1

2632

�
1
5
E4C

1
2
E2

2

�
; : : : .

The other cases are similar. For example, for the N D 2 case from (5-5) we write

.q/1F2.z1; z2/D
z1C z2

‚.z1C z2/

@z1
ln‚.z1/C @z2

log‚.z2/

z1C z2

:

The first term on the right-hand side is expanded as in the N D 1 case, while the second
term is expanded using (5-3) and (5-4).

Geometry & Topology, Volume 27 (2023)



Higher genus FJRW invariants of a Fermat cubic 1879

Recall that the derivative on the level of generating series corresponds to the divisor
equation in GW theory, and that taking derivatives commutes with Cayley transforma-
tions, as shown in [50]. The generators of the differential ring of quasimodular forms
are E2, E4 and E6. To deal with the differential structure, it is in fact more convenient
to use the generators E2, E0

2
and E00

2
for the ring of quasimodular forms as opposed

to E2, E4 and E6. By Theorem 18, the ancestor GW correlation functions satisfy

(6-5)
�� NY

iD1

! 
ki

i

��ıE
2CŒE2;E

0
2;E

00
2 �:

Theorem 3 applies to the disconnected invariants (by examining the relation between
the generating series), and we have

(6-6) hh� 
k1

1
; : : : ; � 

kN

N
ii
�Wd
g D Chol

��
.hh! 

k1

1
; : : : ; ! 

kN

N
ii
�Ed
g /:

Now we can apply Cayley the transformation directly to the disconnected, ancestor GW
correlation functions and obtain the disconnected, ancestor FJRW correlation functions.
As computed in (4-8), for the d D 3 case we have

(6-7) Chol
��
.E2/D�

1
9
s2
�

1
1215

s5
�

1
459270

s8
C � � � :

Since Chol
��

respects the product and the differential structure [50], the differential
equations (1-11) imply

(6-8)
�

Chol
��
.E4/D Chol

��
.E2

2
� 12E0

2
/D 8

3
sC 5

81
s4C

2
5103

s7C � � � ;

Chol
��
.E6/D Chol

��
.E2E4� 3E0

4
/D�8� 28

27
s3�

7
405

s6C � � � :

From (6-3), Proposition 21, Theorem 3 and the degree formula (1-5), we immediately
obtain

hh� 
2g�2
1
ii
�W3

g;1
D

X
`;m;n�0

`C2mC3nDg

bm;n

`!

�
�

1
24

Chol
��
.E2/

�`� 1
24

Chol
��
.E4/

�m�
�

1
108

Chol
��
.E6/

�n
:

Now Corollary 4 follows from the fact that the disconnected and connected one-point
ancestor functions are the same.

6.2 Holomorphic anomaly equations

We now describe holomorphic anomaly equations for the FJRW correlation functions.
In the rest of the paper we shall only discuss connected invariants, and hence omit the
superscript ı from the notation.
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6.2.1 HAEs for ancestor GW correlation functions In [42], Oberdieck and Pixton
use the polynomiality of double ramification cycles to prove that the GW cycles
ƒE

g;n.˛1; : : : ; ˛n/ of the elliptic curves are cycle-valued quasimodular forms. Taking
the derivative of those cycles with respect to the second Eisenstein series E2.q/, they
obtain a holomorphic anomaly equation [42, Theorem 3]. As a consequence, intersecting
the corresponding GW cycles with

Q
k  

`k

k
on Mg;n leads to a holomorphic anomaly

equation for the ancestor GW functions

hh˛1 
`1

1
; : : : ; ˛n 

`n
n ii

E
g;n.q/ 2CŒE2;E4;E6�:

For each subset I � f1; : : : ; ng, we use the convention

˛I WD f˛i 
`i

i j i 2 Ig:

For convenience, we introduce the normalized Eisenstein series

C2.q/D�
1

24
E2.q/:

It is a classical fact that the Eisenstein series E2, E4 and E6 are algebraically indepen-
dent. We have [42], for the ancestor GW correlation functions,

(6-9) @

@C2
hh˛1 

`1

1
; : : : ; ˛n 

`n
n ii

E
g;n.q/

D hh˛1 
`1

1
; : : : ; ˛n 

`n
n ; 1; 1iiEg�1;nC2.q/

C

X
g1Cg2Dg

f1;:::;ngDI1qI2

hh˛I1
; 1iiEg1

.q/hh1; ˛I2
ii
E
g2
.q/

� 2

nX
iD1

�Z
E
˛i

�
hh˛1 

`1

1
; : : : ; 1 

`iC1
i ; : : : ; ˛n 

`n
n ii

E
g;n.q/:

Remark 22 This equation can also be proved using only the combinatorial results
reviewed in Section 5.1; see Pixton [45].

6.2.2 HAEs for ancestor FJRW correlation functions Recall that the holomorphic
Cayley transformation Chol

��
respects the differential ring structure of the set of quasimod-

ular forms. Applying the holomorphic Cayley transformation to (6-9), using Theorem 18
we immediately obtain the following HAE for the ancestor FJRW correlation functions:

Corollary 23 Let the notation be as in Theorem 3. For the d D 3 case , the ancestor
FJRW correlation function

hh˛1 
`1

1
; : : : ; ˛n 

`n
n ii

Wd
g;n 2CŒChol

��
.C2/;C

hol
��
.E4/;C

hol
��
.E6/� for C2 D�

1
24

E2
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satisfies

(6-10)
@

@Chol
��
.C2/
hh˛1 

`1

1
; : : : ; ˛n 

`n
n ii

Wd
g;n

Dhh˛1 
`1

1
; : : : ; ˛n 

`n
n ; 1; 1ii

Wd

g�1;nC2
C

X
g1Cg2Dg

f1;:::;ngDI1qI2

hh˛I1
; 1iiWd

g1
hh1; ˛I2

ii
Wd
g2

� 2

nX
iD1

hh˛1 
`1

1
; : : : ; ı�˛i

1 
`iC1
i ; : : : ; ˛n 

`n
n ii

Wd
g;n;

where ı�˛i
is the Kronecker symbol.

6.3 Virasoro constraints

Virasoro operators in Gromov–Witten theory were proposed by Eguchi, Hori and
Xiong [16] for Fano manifolds, and later extended to more general targets [15; 22]. The
famous Virasoro conjecture predicts that the total descendent potentials in GW theory
are annihilated by the Virasoro operators. It is one of the most fascinating conjectures
in GW theory. Despite significant developments in the literature, it remains open for a
large category of targets.

The Virasoro conjecture for nonsingular target curves is solved by Okounkov and
Pandharipande [44]. In particular, when the target is an elliptic curve, the formulae are
particularly simple. To be more explicit, using the coordinates induced by (5-15) and
letting

.`/n WD `.`C 1/ � � � .`C n� 1/

be the Pochhammer symbol with the convention .`/0 WD 1, the Virasoro operators
fLE

k
j k 2 Z and k � �1g are given by

LE
k D�.kC 1/!

@

@Qt 0
kC1

C

X
`�0

�
.`/kC1 Qt

0
`

@

Qt 0
kC`

C .`C 1/kC1 Qt
3
`

@

@Qt 3
kC`

�

C

X
`�0

�
.`C 1/kC1 Qt

1
`

@

Qt1
kC`

C .`/kC1 Qt
2
`

@

@Qt 2
kC`

�
:

According to [44, Theorem 1], the total descendent GW potential defined in (5-16) is
annihilated by these Virasoro operators:

LE
kD

E.Qt/D 0:
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Recently in [27], using Givental’s quantization formula of quadratic Hamiltonians [22],
the second author and his collaborator study Virasoro operators in FJRW theory and
conjecture that the total ancestor FJRW potential of any admissible LG pair .W;G/

is annihilated by the defining Virasoro operators. Besides various generically semi-
simple cases, they also verified the conjecture for the nonsemisimple Fermat cubic
pair .W3; �3/, using Theorem 3. More explicitly, using the coordinates induced
in (5-14), the Virasoro operators fLW3;�3

k
j k 2 Z and k � �1g for the Fermat cubic

pair .W3; �3/ are

L
W3;�3

k
WD �.kC 1/!

@

@t0
k

C

1X
`�0

�
.`/kC1s0

`

@

@s0
kC`

C .`C 1/kC1s3
`

@

@s3
kC`

�

C

1X
`�0

�
.`C 1/kC1s1

`

@

@s1
kC`

C .`/kC1s2
`

@

@s2
kC`

�
:

It is not hard to see that these operators commute with the quantization operator yS�1
t

in the ancestor/descendent correspondence formula (5-17) and the holomorphic Cayley
transformation Chol

��
in Theorem 3. Therefore, Virasoro constraints for the FJRW theory

are a consequence of Theorem 3.

Corollary 24 [27] The total ancestor FJRW potential of the pair .W3; �3/ is annihi-
lated by the Virasoro operators fLW3;�3

k
g:

L
W ;�3

k
AW3;�3.s/D 0:

Appendix

A.1 A genus-one formula for the Fermat cubic polynomial

For the examples we study, the connection between modular forms and periods of
families of elliptic curve gives rise to nice formulae for the holomorphic Cayley
transformation of quasimodular forms in terms of hypergeometric series and Givental’s
I–functions. In the following, we shall only consider the d D 3 case, as an example,
the other cases are similar.

Let us first recall some facts of quasimodular forms following the exposition in [49].
Let �.3/ be the level-3 principal congruence subgroup of � D SL.2;Z/=f˙1g. It is
well known that the ring of quasimodular forms (with a certain Dirichlet character) for
�.3/ is generated by

AD �A2
.2�/
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and

(A-1) E D 1
4
.3E2.3�/CE2.�//;

where �A2
is the theta function for the A2–lattice. Further, define the quantities (where

� is the Dedekind eta function)

(A-2) C D 3
�.3�/3

�.�/
and ˛ D

C 3

A3
:

These quantities satisfy

(A-3) AD2F1

�
1
3
; 2

3
I 1I˛

�
;

and furthermore

(A-4)
A2
D

1
2
.3E2.3�/�E2.�//D

1

2�
p
�1

1

˛.1�˛/

@

@�
˛;

E D
6

2�
p
�1

@

@�
log A�

2C 3�A3

A
:

Using (A-1), (A-2) and (A-4), we can rewrite the quasimodular form E2 as

E2.�/D
12

2�
p
�1

@

@�
log A� .4˛� 1/A2(A-5)

D
1

2�
p
�1

@

@�

�
12 log AC log.˛.1�˛/3/

�
:

In [50] the following was obtained from period calculation. Taking �� D 1=.1� �3/ as
given in (4-6) and c as in (4-7), one has

s.�/D 2�
p
�1c.��� N��/

� � ��

� � N��

D�2�
p
�1c.��� N��/

�
�
�

1
3

�
�
�

2
3

�2
�
�

1
3

�3 .�˛/�1=3 2F1

�
2
3
; 2

3
I

4
3
I˛�1

�
2F1

�
1
3
; 1

3
I

2
3
I˛�1

� :
Also,

C��.A/D .2�
p
�1c/�1=2

�
�

1
3

�
�
�

2
3

�2 .�˛/�1=3
2

F1

�
1
3
; 1

3
I

2
3
I˛�1

�
and

C��.C /D .2�
p
�1c/�1=2

�
�

1
3

�
�
�

2
3

�2 .�1/
�1=3
2

F1

�
1
3
; 1

3
I

2
3
I˛�1

�
:

Combining the properties of the holomorphic Cayley transformation, Theorem 18
and (A-5), we immediately get

hh�ii
W3

1;1
D Chol

��
.hh!iiE1;1/D c�1 @

@s

�
�

1
2

log2 F1

�
1
3
; 1

3
I

2
3
I˛�1

�
�

1
8

log.1�˛�1/
�
:
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In the above GW generating series, the divisor class ! which corresponds to the first
Chern class of a degree-one line bundle on E is used as the insertion. According to the
divisor axiom,

hh ii
E
1;0 D�log �.�/;

up to an additive constant. Results derived for a plane cubic curve E3, such as those in
Givental’s formalism, use the pullback of the hyperplane class on the ambient space P2

as the insertion. The corresponding class H is related to the one ! above by H D 3!.
Hence we have, up to an additive constant,

hh ii
E3

1;0
D�log �.3�/;

and thus
hhH ii

E3

1;0
D�

1
24
� 3E2.3�/:

Using (A-1), (A-2) and (A-4), one can rewrite it as

hhH ii
E3

1;0
D

1

2�
p
�1

@

@�

�
�

1
2

log2 F1

�
1
3
; 2

3
I 1I˛

�
�

1
24

log.˛3.1�˛//
�
:

This matches the results in [47; 58] obtained using virtual localization. Its holomorphic
Cayley transformation is

Chol
��
.hhH ii

E3

1;0
/D c�1 @

@s

�
�

1
2

log2 F1

�
1
3
; 1

3
I

2
3
I˛�1

�
�

1
24

log.1�˛�1/
�
:

This agrees with the result derived using the wall-crossing method in Guo and Ross [26].

A.2 Cayley transformation and I–functions

Now we discussion the connection between our formulation of LG/CY correspondence
and the original formulation in [11, Conjecture 3.2.1] using I–functions.

A.2.1 I–functions and analytic continuation Following [11, Section 4.2], the
cohomology-valued Givental I–function for the GW theory of the cubic hypersurface

fW3 D x3
1 Cx3

2 Cx3
3 D 0g � P2

is given by6

(A-6) IGW.q; z/ WD
X
d�0

zqH=zCd

Q3d
kD1.3H C kz/Qd
kD1.H C kz/3

D IGW
0 .q/z1C IGW

1 .q/H;

6Here the variable q should not be confused with the variable q D e2�i� in modular forms.
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where H is the hyperplane class of P2. The I–function for the FJRW theory of the
pair .W3; �3/ is given by

(A-7) IFJRW.t; z/ WD z

2X
kD1

1

�.k/

X
`�0

��
k
3

�
`

�3
tkC3`

.k/3`z
k�1

�k�1DIFJRW
0 .t/z1CIFJRW

1 .t/�;

where �0 D 1 and �1 D � are nontrivial degree-zero and degree-two elements in the
state space, respectively. The genus-zero LG/CY correspondence [11] relates these
two I–functions by analytic continuation via qD t�3. To be more explicit, one has the
analytic continuation

(A-8)

 
1
3
IFJRW

1
.t/

1
3
IFJRW

0
.t/

!

D

0BBB@
.�1/

�3
�

2
3

� 2�
p
�1�3

1��3
�
.�1/

�3
�

2
3

� .2�p�1/2�3
.1��3/2

�
.�1/2

�3
�

1
3

� 2�
p
�1�2

3

1��2
3

.�1/2

�3
�

1
3

� .2�p�1/2�2
3

.1��2
3
/2

1CCCA
 

IGW
1
.t.q//

IGW
0
.t.q//

!
;

where the normalization factor 1
3

on the basis fIFJRW
0

; IFJRW
1
g is introduced so that the

connection matrix lies in SL2.C/. In particular, define

(A-9) tGW WD
IGW

1
.q/

IGW
0
.q/

and tFJRW WD
IFJRW

1
.t/

IFJRW
0

.t/
:

Then one has

(A-10) tFJRW D�e�i=3
�
�

1
3

�3
�
�
�

1
3

�
�
�

2
3

�2 tGW� 2� i��

tGW� 2� i N��
:

A.2.2 Cayley transformation Following the computations in [50] as in Section A.1,
we can relate the above I–functions to modular forms. In particular, we see that

(A-11) tGW WD
IGW

1
.q/

IGW
0
.q/
D 2� i�; tFJRW WD

IFJRW
1

.t/

IFJRW
0

.t/
D e2�i=3

�
�

p
3

i

�
�
�

1
3

�2
�
�
�

1
3

�s:
Here s is the coordinate given in (4-4), again with ��D 1=.1��3/ as given in (4-6) and
c as in (4-7). Analytical continuations on the I–functions, induced by (A-10), coincide
with Cayley transformations on them induced by (4-4), by construction [50].

Through the connection to modular forms, LG/CY correspondence on I–functions
can be restated as follows. Let M D �.3/nH� be the modular curve as the global
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moduli space, where H� DH[P1.Q/. Denote its canonical bundle by KM. Then
IGW and IFJRW correspond to descriptions of the same holomorphic section of the line
bundle that is isomorphic to K

˝1=2
M , but on different patches of the moduli space. Their

coordinate expressions IGW
0

and IFJRW
0

, with respect to the trivializations .d�/1=2 and
.ds/1=2, respectively, are modular forms related by Cayley transformation.

A.2.3 Stationary correlation functions At higher genera, consider the stationary
correlation function

hh˛1 
`1

1
; : : : ; ˛n 

`n
n ii
|
g;n;

with ˛i D ! when |D E3 and ˛i D � when |DW3. By applying the g–reduction
technique in Lemma 7 inductively, we see that under the map (A-11) this correlation
function on the GW side is the Fourier expansion of a quasimodular form of weight
2g� 2C 2n near the cusp, and on the FJRW side is the Taylor expansion (in terms of
the parameter s) of the same quasimodular form near the point ��.

According to standard facts in the theory of modular forms (see eg [53; 57]) on the
transition between quasimodular forms and almost-holomorphic modular forms, we
see that on the level of GW correlation functions the modular completion is induced by
the transformation mapping of the frame of H even.E3;C/ from f1C2� i�H; 2� iH g to
f1C2� i�H; .1=. N� � �//.1�2� i N�H /g. This transformation also induces the modular
completion on the FJRW correlation functions by composing with the aforementioned
transformation that relates IGW with IFJRW.

Then we have a succinct way to reformulate our higher-genus LG/CY correspondence
result on hh˛1 

`1

1
; : : : ; ˛n 

`n
n ii
|
g;n. Denote its modular completion by

hh˛1 
`1

1
; : : : ; ˛n 

`n
n ii
|;O
g;n:

Let I|
0
D IGW

0
and d�|D d� for |D E3, and I|

0
D IFJRW

0
and d�|D ds for |DW3.

Then the quantity

.I|
0
/2�2g

hh˛1 
`1

1
; : : : ; ˛n 

`n
n ii
|;O
g;n.d�

|/˝n

is a global (smooth with holomorphic pole) section of the holomorphic line bundle
K˝n

M on the modular curve MD �.3/nH�.
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Compact moduli of elliptic K3 surfaces

KENNETH ASCHER

DORI BEJLERI

We construct various modular compactifications of the space of elliptic K3 surfaces
using tools from the minimal model program, and explicitly describe the surfaces
parametrized by their boundaries. The coarse spaces of our constructed compactifi-
cations admit morphisms to the Satake–Baily–Borel compactification and the GIT
compactification of Miranda.

14J10, 14J27, 14J28; 14D20
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2. Elliptic K3 surfaces and their moduli 1897

3. Moduli of A–broken elliptic surfaces and wall-crossing 1901
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6. Surfaces in W� .�/, the 24–marked space at aD � 1925

7. Explicit description of the boundary of W� .�/ 1934

8. Spaces with one marked fiber 1938

References 1944

1 Introduction

Ever since the compactification of the moduli space of smooth curves by Deligne and
Mumford was accomplished, the search for analogous compactifications in higher
dimensions became an actively studied problem in algebraic geometry. While moduli
in higher dimensions is highly intricate, the pioneering work of Kollár and Shepherd-
Barron [31] and Alexeev [3] (see also Hacon, McKernan and Xu [19], Hacon and
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Xu [20] Kollár [28] and Kovács and Patakfalvi [32]) has established much of the
underlying framework for modular compactifications in the (log) general type case via
KSBA stable pairs, where semi-log canonical singularities serve as the generalization
of nodal curves; see the survey by Kollár [27].

One of the most sought-after compactifications is for the space of K3 surfaces. K3
surfaces do not immediately fit into the above framework as they are not of general
type, but rather Calabi–Yau varieties. On the other hand, like for abelian varieties,
since the space of (polarized) K3 surfaces is a locally symmetric variety it has several
natural compactifications, eg the Satake–Baily–Borel (SBB), toroidal, and semitoric
compactifications of Looijenga. Unlike the KSBA approach, these compactifications
do not necessarily carry a universal family or modular meaning over the boundary.

As such, one of the central questions in moduli theory is to give the aforementioned
naturally arising compactifications a stronger geometric meaning by connecting them
with a KSBA compactification. With this in mind, our goal is to construct modular
compactifications for elliptic K3 surfaces — compactifications where the degenerate ob-
jects are K3 surfaces with controlled singularities — and understand how they compare
to the Satake–Baily–Borel compactification.

By the Torelli theorem, the moduli space of polarized K3 surfaces is a 19–dimensional
locally symmetric variety. Similarly, it is well known that the moduli space of elliptic
K3 surfaces with a section, which we denote by W with coarse space W , is an 18–
dimensional locally symmetric variety, corresponding to U –polarized K3 surfaces; see
Dolgachev [14] and Nikulin [38]. Recall that a generic elliptic K3 surface f WX ! P1

with section S has 24 I1 singular fibers. Let FA D
P

aiFi denote the sum of these
24 fibers weighted by ai 2Q\ Œ0; 1�24. We consider the closure of the locus of pairs
.f WX ! C;S CFA/ inside the KSBA moduli space. For the moment we assume all
ai D a, so that we can quotient by S24. Denote the closure of the resulting locus by
W� .a/, and let 0< �� 1.

Theorem 1.1 (Theorems 6.13, 6.15 and 6.14, and Figure 1) The proper Deligne–
Mumford stacks W� .a/ for a2Q\Œ0; 1� give modular compactifications of W . There is
an explicit classification of the broken elliptic K3 surfaces parametrized by W� .�/, and
an explicit morphism from the coarse space W� .�/ to W�, the SBB compactification
of W . Furthermore , the surfaces parametrized by W� .�/ satisfy H1.X;OX /D 0 and
!X ŠOX .

Geometry & Topology, Volume 27 (2023)
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Theorem 1.1 shows that the boundary of W� .�/ parametrizes K3 surfaces with slc
singularities. Although W� .�/ compactifies a moduli space of pairs, it gives a natural
compactification of the space of elliptic K3s as the singular fibers are an intrinsic choice
of divisor. Moreover, without choosing a divisor, the moduli space is a nonseparated
Artin stack. In Section 7, we present an alternative explicit description of the surfaces
parametrized on the boundary of the moduli space more akin to Kulikov models. In
particular, we show that we can decompose the boundary of W� .a/ into combinatorially
described parameter spaces.

As mentioned above, viewing the moduli space of elliptic K3 surfaces as a locally
symmetric variety, one naturally obtains the SBB compactification W�. While a priori
the SBB compactification does not have a modular meaning, it turns out that in the
case of elliptic K3 surfaces, this compactification can be identified with the GIT
compactification of Weierstrass models of Miranda WG (see Section 2.6 and Odaka and
Oshima [39, Theorem 7.9]), which provides some geometric meaning. In particular,
in the theorem above as well as the remainder of this section, all of our spaces admit
morphisms to WG .

One benefit of the SBB compactification is that all of the parametrized surfaces are
irreducible. The next theorem discusses a modular compactification coming from
the KSBA approach, where the boundary parametrizes irreducible surfaces. Indeed,
consider pairs .f WX ! P1;SC�F / for 0< �� 1, ie only one singular fiber carries a
nonzero weight, and this weight is very small. We denote the closure of this locus by K� .

Theorem 1.2 (Theorems 8.1 and 8.2, and Figure 1) The compact moduli space K�
parametrizes irreducible semi-log canonical Weierstrass elliptic K3 surfaces satisfying
H1.X;OX / D 0 and !X Š OX . Moreover , there is an explicit generically finite
morphism from the coarse space K� to W�.

In light of the above theorem, it is natural to ask how the compactifications W� .�/ and
K� are related. In previous work (see Ascher and Bejleri [8]) we showed the existence
of wall-crossing morphisms on moduli spaces of elliptic surfaces. In particular, our
previous work implies that (up to a 24-to-1 base change corresponding to choosing a
singular fiber) the universal families of W� .�/ and K� are related by an explicit series
of flips and divisorial contractions as the weights of 23 of the marked fibers are reduced
from � to 0. This aspect is crucial to our work (see eg Section 8.1) — these explicit
morphisms allow us to understand how our compactifications are related to each other,
and how they compare to others lacking a modular meaning.

Geometry & Topology, Volume 27 (2023)
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W.A/

W� .a/ K� F�

B� W� ŠWG eWG

Š

Figure 1: This diagram shows the various compactifications we introduce as
well as how they are related; see also Remark 4.10.

Finally, we introduce one more KSBA compactification. While in K� we mark one
singular fiber with weight �, it is natural to ask what happens if we mark any fiber,
not necessarily singular, with weight �. We denote this compactification by F�. See
Figure 1 for the relations between the spaces we introduce, which are:

B� The normalization of Brunyate’s compactification with small weights on both
section and singular fibers; see Section 1.1.

W.A/ The KSBA compactification with A–weighted singular fibers.

W� .a/ The quotient by S24 when AD .a; : : : ; a/.

K� The KSBA compactification with a single �–marked singular fiber (where
�� 1).

F� The KSBA compactification with any fiber marked by � (where �� 1).

W� The SBB compactification of the period domain moduli space W .

WG Miranda’s GIT compactification of Weierstrass models; see Section 2.6.eWG The GIT compactification of Weierstrass models with a chosen fiber; see the
discussion after Theorem 1.3.

Theorem 1.3 (Theorem 8.8 and Figure 1) There exists a smooth proper Deligne–
Mumford stack F� parametrizing semi-log canonical elliptic K3 surfaces with a single
marked fiber. Its coarse space is isomorphic to an explicit GIT quotient eWG of Weier-
strass K3 surfaces and a chosen fiber. Furthermore , the surfaces parametrized by F�
satisfy H1.X;OX /D 0 and !X ŠOX .

On the interior, F� is a P1 bundle over W . In this sense F� is similar in spirit to the
KSBA compactification of Laza of degree-two K3 surfaces [34]. The GIT problem

Geometry & Topology, Volume 27 (2023)
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of Miranda can be modified to parametrize Weierstrass fibrations with a chosen fiber
(see Section 8.3), denoted above by eWG . It turns out that eWG is precisely the coarse
moduli space of F�; in particular, the morphism F�! eWG realizes F� as a smooth
Deligne–Mumford stack.

Our approach combines explicit use of the theory of twisted stable maps (see eg Ascher
and Bejleri [7]) with the minimal model program (MMP). The various compactifications
are then related by an explicit series of wall-crossing morphisms. In particular, we wish
to emphasize that the power of our approach lies in understanding the compactifications
for various coefficients and how they are related via wall crossing morphisms. Often
the spaces with very small coefficients are the smallest compactifications which are still
modular, but having access to the spaces for all coefficients is helpful in understanding
the geometry of compactifications obtained via different methods.

1.1 Previous results

Using Kulikov models, Brunyate’s thesis [12] constructs a stable pairs compactification
of the space of elliptic K3 surfaces B which parametrizes pairs .X; �S C ıF /, where
� and ı are both small. In particular, Brunyate gives a classification of the surfaces
appearing on the boundary, and conjectures that the normalization of B is a toroidal
compactification. Recently Alexeev, Brunyate and Engel [4] confirmed Brunyate’s
conjecture, and showed that this space is isomorphic to a particular toroidal compactifi-
cation using the theory of integral affine geometry and continuing the program started
by Alexeev, Engel and Thompson [5].

One difference between our approach and the work of Brunyate is in our descriptions of
the compactifications at various weights and choice of markings. Instead of using Ku-
likov models, we describe the steps of MMP and the induced wall-crossing morphisms
that relate the stable limits of elliptic K3 surfaces for different weights to highlight
the underlying geometry of the various compactifications. Brunyate’s space B admits
a morphism W� .�/! B which identifies W� .�/ with the normalization of B; see
Proposition 4.4 and Remark 4.7. In particular, the boundary components of B and
W� .�/ are in bijection (see Remark 4.5) and the moduli spaces parametrize essentially
the same surfaces. Indeed there is a sequence of flips relating the universal family of B

and the universal family over W� .�/ which induces this morphism.

Finally, we note that in a slightly different direction, Inchiostro constructs a KSBA
compactification of the space of Weierstrass fibrations (of not necessarily K3 surfaces)
with both section and fibers marked by 0< �; ı� 1 [25],
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1.2 Other lattice polarizations

It is natural to consider fibrations with specified singular fibers. In this case, one obtains
a moduli space which is a locally symmetric variety, corresponding to a M –lattice
polarization, encoding the singular fiber type. Our methods work in that case as well.
Here we quickly discuss an example of this point of view.

Example 1.4 Consider the lattice M D U ˚D˚4
4

. Then M –polarized K3 surfaces
correspond to 4I�

0
isotrivial elliptic K3 surfaces. Equivalently, these are Kummer K3

surfaces obtained from abelian surfaces of the form E �E0 with the elliptic fibration
induced by the projection E �E0!E. Marking the four minimal Weierstrass cusps
by a single weight a gives us a moduli space whose coarse space is two copies of the
j –line, one parametrizing the j –invariant of the fibration, and the other the j –invariant
of the configuration of singular fibers. The stable pairs compactification has coarse
space given by P1�P1DM 0;4�M 0;4. The universal family consists of 4N1 isotrivial
j –invariant1 fibrations over the locus f1g�P1, a union X [I0 X of two copies of
the 2I�

0
rational elliptic surface glued along a smooth fiber over the locus P1 � f1g,

and a union X [N0
X of two copies of the 2N1 isotrivial j –invariant1 fibration glued

along an N0 fiber over the point .1;1/.

Structure of the paper

In Section 2 we discuss the background on elliptic K3 surfaces and their moduli (as a
period domain, the Satake–Baily–Borel compactification, and a geometric invariant
theory compactification). In Section 3 we review the results from our previous works
[6; 7; 8; 9] on KSBA compactifications of moduli spaces of elliptic fibrations and
the connection with twisted stable maps. In Section 4 we restrict to the case of
elliptic K3 surfaces and collect the definitions of and preliminary observations on
the compactifications we consider, including a discussion on isotrivial j –invariant1
fibrations of K3 type.

The main body of the paper begins with Section 5, where we discuss the wall-crossings
that occur for the compactification W� .a/ as the coefficient a is lowered from 1 down
to 1

12
C � for 0 < � � 1. In Section 6 we continue the wall-crossing analysis as a

is decreased down to 0 < � � 1, and we prove Theorem 1.1, which describes the
surfaces appearing on the boundary of the moduli space W� .�/. In Section 7 we
use Theorem 1.1 and twisted stable maps (see Section 3.2) to explicitly describe the
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boundary components of W� .�/. Finally, in Section 8 we describe the moduli spaces
with one marked fiber .K� and F�) and prove Theorems 1.2 and 1.3; the latter theorem
is proven by introducing a modified version of Miranda’s GIT compactification; see
Section 8.3.
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2 Elliptic K3 surfaces and their moduli

2.1 Elliptic surfaces

We begin with the basic definitions surrounding elliptic surfaces following [8]; see
also [37].

Definition 2.1 An irreducible elliptic surface with section (f W X ! C;S/ is an
irreducible surface X together with a surjective proper flat morphism f WX ! C to a
smooth curve C and a section S such that

(i) the generic fiber of f is a stable elliptic curve, and

(ii) the generic point of the section is contained in the smooth locus of f .

We call the pair .f WX ! C;S/ standard if all of S is contained in the smooth locus
of f .

Definition 2.2 A Weierstrass fibration is an elliptic surface obtained from a standard
elliptic surface by contracting all fiber components not meeting the section. We call the
output of this process a Weierstrass model. If starting with a smooth relatively minimal
elliptic surface, we call the result a minimal Weierstrass model.

The geometry of an elliptic surface is largely influenced by the fundamental line
bundle L.
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Definition 2.3 The fundamental line bundle of a standard elliptic surface is

(1) L WD .f�NS=X /
�1;

where NS=X denotes the normal bundle of S in X . For an arbitrary elliptic surface we
define L as the line bundle associated to its minimal semiresolution.1

For X a standard elliptic surface, the line bundle L is invariant under taking a semires-
olution or Weierstrass model, is independent of choice of section S , has nonnegative
degree, and determines the canonical bundle of X if X is either relatively minimal or
Weierstrass; see [37, III.1.1].

2.2 Singular fibers

If .f WX ! C;S/ is a smooth relatively minimal elliptic surface, then f has finitely
many singular fibers, which are each unions of rational curves with possibly nonreduced
components whose dual graphs are ADE Dynkin diagrams. The singular fibers were
classified by Kodaira and Néron (see [11, Section V.7]).

An elliptic surface in Weierstrass form can be described locally by an equation of the
form y2D x3CAxCB, where A and B are functions of the base curve. Furthermore,
the possible singular fiber types can be characterized in terms of vanishing orders of
A and B by Tate’s algorithm; see [43, Table 1]. Moreover, if the smooth relatively
minimal model .f WX ! C;S/ has a singular fiber with a given Dynkin diagram, the
minimal Weierstrass model will have an ADE singularity of the same type.

2.3 Elliptic K3 surfaces

By the canonical bundle formula and the observation that deg LD 0 if and only if the
surface is a product, a smooth elliptic surface with section .f W X ! C;S/ is a K3
surface if and only if C Š P1 and deg.L/D 2; see [37, III.4.6].

Definition 2.4 A standard (possibly singular) elliptic surface is of K3 type if C Š P1

and deg.L/D 2.

For an elliptic surface of K3 type, the Weierstrass model is given by y2Dx3CAxCB,
where A and B are sections of O.8/ and O.12/, respectively, and the discriminant
DD 4A3C 27B2 is a section of L˝12 ŠO.24/.

1The seminormal version of resolution of singularities; see eg [26, Section 1.13].
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Remark 2.5 The number of singular fibers of a Weierstrass elliptic K3 counted with
multiplicity is 24, and a generic elliptic K3 has exactly 24 nodal .I1/ singular fibers.

2.4 Moduli of lattice polarized K3 surfaces

We now discuss lattice polarized K3 surfaces and their moduli; see [21; 15; 16]. An
elliptic K3 with section .f W X ! P1;S/ is characterized by the fact that NS.X /
contains a lattice U which is spanned by the classes of the fiber f and section S . The
moduli of K3 surfaces with specified NS.X / were studied by Dolgachev [14]; see
also [38]. By the Torelli theorem for polarized K3 surfaces, the moduli space of minimal
Weierstrass elliptic K3 surfaces with at worst ADE singularities is an 18–dimensional
locally symmetric variety W D �nD associated to the lattice U?K3

Š U 2˚E2
8

.

2.5 The Satake–Baily–Borel compactification

One can use the techniques of Baily and Borel [10] to obtain a compactification W�

by adding some curves and points. We briefly review this compactification following
[35, Section 3.1]. The boundary components of W� are determined by rational maximal
parabolic subgroups of the identity component of the orthogonal group O.2; 18/ of the
lattice U?K3

. Every boundary component of W� has the structure of a locally symmetric
variety of lower dimension. We recall the following properties:

(i) The compactification is canonical.

(ii) The boundary components have high codimension (as they are points and curves).

(iii) The compactification is minimal: if S is a smooth variety with S a smooth
simple normal crossing compactification, then any locally liftable map S !W

extends to a regular map S !W�.

Theorem 2.6 [21, Section 2.3; 42] The boundary of W� is a union of 0– and 1–
dimensional strata. The 0–dimensional strata correspond to K3s of type III , and the
1–dimensional strata to degenerate K3s of type II. Moreover , the 1–dimensional strata
are all rational curves , each parametrizing the j –invariant of the elliptic double curves
appearing in the corresponding type II degenerate K3.

2.6 Geometric invariant theory

Miranda [36] used geometric invariant theory (GIT) to construct a compactification of
the moduli space of Weierstrass fibrations, and completed an explicit classification in
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the case of rational elliptic surfaces. More recently, Odaka and Oshima [39] explicitly
calculated Miranda’s compactification for the case of elliptic K3 surfaces. Moreover,
they showed that the GIT compactification of Miranda, WG , is isomorphic to W�, the
SBB compactification. In particular, using this identification, one is able to give a
geometric meaning to W� by relating the boundary of W� with the GIT polystable
orbits in WG . We review these results now.

Let �n D �.P1;OP1.n//. The surface X has a Weierstrass equation, and as such X

can be realized as a divisor in a P2–bundle over the base curve. For the Weierstrass
model of an elliptic K3 surface, we think of X as being the closed subscheme of
P .OP1.4/˚OP1.6/˚OP1/ defined by the equation y2zD x3CAxz2CBz3, where
A 2 �8, B 2 �12, and

(i) 4A.q/3C 27B.q/2 D 0 precisely at the (finitely many) singular fibers Xq , and

(ii) for each q 2 P1 we have vq.A/� 3 or vq.B/� 5.

We note that any Weierstrass elliptic K3 surface with section and ADE singularities sat-
isfies the above conditions, and conversely, the surface defined as above is a Weierstrass
elliptic K3 surface with section and ADE singularities; see [39, Theorem 7.1].

We write V24 D �8˚ �12 and define the GIT moduli space for Weierstrass elliptic
K3 surfaces by WG D V ss

24
==SL2. By the above discussion the open locus WG �WG

parametrizes the ADE Weierstrass elliptic K3 surfaces. The following theorem describes
the boundary WG nWG :

Theorem 2.7 [39, Proposition 7.4] The boundary WG nWG consists of

(i) a 1–dimensional component WG
slc parametrizing isotrivial j –invariant 1 slc

surfaces ,

(ii) a 1–dimensional component WG
L

whose open locus WG
L;o

parametrizes normal
surfaces with two type L type cusps.

Furthermore , the intersection of the two components is the infinity point of both P1s
parametrizing the unique j –invariant 1 slc surface with two L type cusps. This point
is polystable , and the strictly semistable locus is WG

L
, ie WG

slc is part of the GIT-stable
locus of WG .

It is natural to compare the GIT compactification WG to the SBB compactification W�.
This is the content of [39, Theorem 7.9], where we define WG

slc;o WDWG
slc nWG

L
.
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Theorem 2.8 [39, Theorem 7.9] The period map WG !W extends to an isomor-
phism WG ŠW�, which identifies WG

slc;o [WG
L;o

with the 1–dimensional cusps and
identifies WG

slc\WG
L

with the 0–dimensional cusp.

3 Moduli of A–broken elliptic surfaces and wall-crossing

In this section we review and supplement the results from our previous work on
compactifications of the moduli spaces of elliptic surfaces via KSBA stable pairs.

Definition 3.1 A KSBA stable pair .X;D/ is a pair consisting of a variety X and a
Weil divisor D such that

(i) .X;D/ has semi-log canonical (slc) singularities, and

(ii) KX CD is an ample Q–Cartier divisor.

Stable pairs are the natural higher-dimensional generalization of stable curves, and
their moduli space compactifies the moduli space of log canonical models of pairs of
log general type.

In [8], we defined KSBA compactifications EA of the moduli space of log canonical (lc)
models .f WX!C;SCFA/ of A–weighted Weierstrass elliptic surface pairs. For each
admissible weight vector A, we obtained a compactification EA, which is representable
by a proper Deligne–Mumford stack of finite type [8, Theorems 1.1 and 1.2]. These
spaces parametrize slc pairs .f W X ! C;S CFA/, where .f W X ! C;S/ is an slc
elliptic surface with section, FA D

P
aiFi is a weighted sum of marked fibers with

AD .a1; : : : ; an/, and 0< ai � 1, and .X;S CFA/ is a stable pair.

Before stating the main result, Theorem 3.6, we must first discuss the different (singular)
fiber types that appear in semi-log canonical models of elliptic fibrations as studied
in [6].

Definition 3.2 Let .g W Y ! C;S 0C aF 0/ be a Weierstrass elliptic surface pair over
the spectrum of a DVR and let .f WX !C;SCFa/ be its relative log canonical model.
We say that X has

(i) a twisted fiber if the special fiber f �.s/ is irreducible and .X;S C E/ has
(semi-)log canonical singularities where E D f �.s/red;
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(ii) an intermediate fiber if f �.s/ is a nodal union of an arithmetic genus-zero
component A, and a possibly nonreduced arithmetic genus-one component
supported on a curve E such that the section meets A along the smooth locus of
f �.s/ and the pair .X;S CACE/ has (semi-)log canonical singularities.

Given an elliptic surface f WX ! C over the spectrum of a DVR such that X has an
intermediate fiber we obtain the Weierstrass model of X by contracting the compo-
nent E, and we obtain the twisted model by contracting the component A. As such,
the intermediate fiber can be seen to interpolate between the Weierstrass and twisted
models.

One can consider a Weierstrass elliptic surface .g WY !C;S 0CaF 0/ over the spectrum
of a DVR, where either F 0 is a Kodaira singular fiber type, or g is isotrivial with constant
j –invariant1 with F 0 being an Nk fiber type. Then the relative log canonical model
.f W X ! C;S CFa/ depends on the value of a. When aD 1 the fiber is in twisted
form, when a D 0 the fiber is in Weierstrass form, and for some 0 < a0 < 1 the
fiber enters intermediate form. The values a0 were calculated for all fiber types in
[8, Theorem 3.10]:

(2)
fiber type II III IV N1 II� III� IV� I�n

a0
5
6

3
4

2
3

1
2

1
6

1
4

1
3

1
2

We now state the definition of pseudoelliptic surfaces, which appear as components of
surfaces in our moduli spaces, a phenomenon first observed by La Nave [33].

Definition 3.3 A pseudoelliptic pair is a surface pair .Z;F / obtained by contracting
the section of an irreducible elliptic surface pair .f WX ! C;S CF 0/. We call F the
marked pseudofibers of Z. We call .f WX ! C;S/ the associated elliptic surface to
.Z;F /.

The MMP will contract the section of an elliptic surface if it has nonpositive intersection
with the log canonical divisor of the surface. There are two types of pseudoelliptic
surfaces which appear, and we refer the reader to [8, Definitions 4.6 and 4.7] for the
precise definitions.

Definition 3.4 A pseudoelliptic surface of type II is formed by the log canonical
contraction of a section of an elliptic component attached along twisted or stable fibers.
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Figure 2: An A–broken elliptic surface. Two types of pseudoelliptic surfaces
(see Definitions 3.4 and 3.5) are circled: type II (left) and type I (right).

Definition 3.5 A pseudoelliptic surface of type I appears in pseudoelliptic trees,
attached by gluing an irreducible pseudofiber G0 on the root component to an arithmetic
genus-one component E of an intermediate (pseudo)fiber of an elliptic or pseudoelliptic
component.

Figure 2 has a tree of pseudoelliptic surfaces of type I circled on the right, with a
pseudoelliptic of type II circled on the left.

Theorem 3.6 [8, Theorem 1.6] The boundary of the proper moduli space Ev;A
parametrizes A–broken stable elliptic surfaces , which are pairs .f WX ! C;S CFA/

consisting of a stable pair .X;S CFA/ with a map to a nodal curve C such that X

consists of

� an slc union of elliptic surfaces with section S and marked fibers , as well as

� chains of pseudoelliptic surfaces of types I and II (see Definition 3.3) contracted
by f with marked pseudofibers.

Contracting the section of a component to form a pseudoelliptic component corre-
sponds to stabilizing the base curve as an A–stable curve in the sense of Hassett; see
[6, Corollaries 6.7 and 6.8]. In particular:

Theorem 3.7 [8, Theorem 1.4] There are forgetful morphisms Ev;A!Mg;A.

Remark 3.8 For an irreducible component with base curve P1 and deg L> 0, con-
tracting the section of an elliptic component may not be the final step in the MMP —
we may need to contract the entire pseudoelliptic component to a curve or a point; see
[6, Proposition 7.4].
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3.0.1 Wall and chamber structure We are now ready to discuss how the moduli
spaces EA change as we vary A. There are three types of walls in our wall and chamber
decomposition.

Definition 3.9 (I) A wall of type WI is a wall arising from the log canonical
transformations, ie the walls where the fibers of the relative log canonical model
transition between fiber types.

(II) A wall of type WII is a wall at which the morphism induced by the log canonical
transformation contracts the section of some components.

(III) A wall of type WIII is a wall at which the morphism induced by the log
canonical transformation contracts an entire rational pseudoelliptic component;
see Remark 3.8.

Remark 3.10 (i) The walls of type WII are precisely the walls of Hassett’s wall
and chamber decomposition [23]; see discussion preceding Theorem 3.7.

(ii) There are finitely many walls; see [8, Theorem 6.3].

Theorem 3.11 [8, Theorem 1.5] Let A;B2Qr be weight vectors with 0<A�B�1.
Then:

(i) If A and B are in the same chamber , then the moduli spaces and universal
families are isomorphic.

(ii) If A � B then there are reduction morphisms Ev;B ! Ev;A on moduli spaces
which are compatible with the reduction morphisms on the Hassett spaces.

(iii) The universal families are related by a sequence of explicit divisorial contrac-
tions and flips. More precisely , across WI and WIII walls there is a divisorial
contraction of the universal family, and across a WII wall the universal family
undergoes a log flip.

Remark 3.12 For more on Theorem 3.11(iii), we refer the reader to [8, Section 8].
La Nave (see [33, Section 4.3 and Theorem 7.1.2]) noticed that the contraction of the
section of a component is a log flipping contraction inside the total space of a one-
parameter degeneration. In particular, the type I pseudoelliptic surfaces are thus attached
along the reduced component of an intermediate (pseudo)fiber; see [8, Figure 13].
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3.1 Strictly (semi-)log canonical Weierstrass models

In order to understand the stable pair degenerations of log canonical models of Weier-
strass elliptic surfaces, we need to understand strictly log canonical and semi-log
canonical Weierstrass fibrations. We collect some results in this direction here, begin-
ning with the definition of a type L singular fiber.

Definition 3.13 [33, Section 3.3] Let f W X ! C be a Weierstrass fibration with
smooth generic fiber and Weierstrass data .A;B/. If 12Dmin.3vq.A/; 2vq.B//, where
vq denotes the order of vanishing at a point q 2P1, we say that f has a type L fiber at q.

Lemma 3.14 If F is a type L cusp of X , then X has strictly log canonical singularities
in a neighborhood of F and the log canonical threshold lct.X; 0;F / equals 0.

Proof After performing a weighted blowup � W Y ! X at the cuspidal point of F ,
we get an exceptional divisor E (a possibly nodal elliptic curve) and strict transform
A WD ��1

� .F / (a rational curve meeting E transversely). Writing ��KX DKY C aE,
it follows from the projection formula that KY :E C aE2 D 0. On the other hand,
KY :ECE2 DKE D 0 by the adjunction formula and E2 ¤ 0, since it is exceptional.
Therefore aD 1, so X has a strictly log canonical singularity at the cuspidal point of
F , and the discrepancy of .X; �F / for any � > 0 will be strictly greater than 1.

Remark 3.15 The type L cusp decreases the self intersection S2 by 1, and thus
increases deg L by 1; see [33, Remark 5.3.8].

We now discuss some facts on nonnormal Weierstrass fibrations with generic fiber
a nodal elliptic curve. These appear as semi-log canonical degenerations of normal
elliptic surfaces and as isotrivial j –invariant1 components of broken elliptic surfaces.

We first recall the definition of the fiber types Nk of these fibrations; see [6, Section 5]
and [33, Lemma 3.2.2].

Definition 3.16 Fibers of type Nk have Weierstrass equation y2 D x2.x� tk/.

Lemma 3.17 [33, Lemma 3.2.2] Fibers of type Nk are slc if and only if k 2 f0; 1; 2g.

Remark 3.18 (i) The general fiber of an isotrivial j –invariant 1 fibration is
type N0.

(ii) N2 is the j –invariant1 version of the L cusp; see Remark 3.19.
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Remark 3.19 The N2 fiber behaves analogously to the type L fiber. Indeed by the
proof of [6, Lemma 5.1], on the normalization .X � ;D/ of a surface X with an N2

fiber, the double locus D consists of a nodal curve with node lying over the cuspidal
point of the N2 fiber, and X � is smooth in a neighborhood of this point. In particular,
.X � ;D/ has log canonical singularities in a neighborhood of the nodal point of D

and lct.X � ;D;A/D 0 for any curve A passing through this point. Therefore by the
definition of semi-log canonical, X has strictly semi-log canonical singularities in a
neighborhood of the N2 fiber F and slct.X; 0;F /D 0.

The local equation given above for a type Nk fiber is not a standard Weierstrass equation.
One can check that the standard equation of an Nk fiber is given by

(3) y2
D x3

�
1
3
t2kxC 2

27
t3k :

Proposition 3.20 If .f W X ! C;S/ is an isotrivial j –invariant 1 slc Weierstrass
fibration with ak type Nk fibers , then �S2 D deg.L/D

P
k ak

1
2
k.

Proof Let A and B the Weierstrass data of .f W X ! C;S/. If q 2 C lies under an
Nk fiber, then A vanishes to order 2k and B to order 3k at q. Then A and B have
degree

P
2kak and

P
3kak , respectively. The result follows since the degrees of A

and B are 4 deg L and 6 deg L, respectively.

Note that for k even the Nk fiber has trivial monodromy, and for k odd it has �2

monodromy. This determines the twisted models of these fibers.

Corollary 3.21 Let F be an Nk fiber. Then the twisted model of F is an N0

(respectively twisted N1) fiber if k is even (respectively odd ).

Proof By the local analysis of [7, Section 6.2], in the even case the twisted model
must be stable since there is no base change required, and the odd case there is a �2

base change so the twisted model is a nodal cubic curve modulo the �2 action, ie a
twisted N2 fiber.

Thus, given an Nk fiber, we can cut it out and glue in an NkC2 fiber since the families
are isomorphic to N0 (respectively N1) families over a punctured neighborhood. We
can ask how this surgery affects �S2 D deg L.

Corollary 3.22 Let .f WX ! C;S/ be an isotrivial j –invariant1Weierstrass fibra-
tion and let .f WX 0! C;S 0/ be the result of replacing an Nk fiber by an NkC2 fiber.
Then �.S 0/2 D�S2C 1.
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3.2 Elliptic fibrations via twisted stable maps

In [7] we used the theory of twisted stable maps, originally developed by Abramovich
and Vistoli [1; 2], to understand limits of families of elliptic fibrations. The basic
idea is that an elliptic surface f WX ! C gives an a priori rational map C Ü M1;1

which extends to a morphism C Ü M1;1 from an orbifold curve C with coarse moduli
space C . Now we understand limits of a family of elliptic surfaces by computing limits
of the corresponding family of such maps. The twisted stable limits serve the same
purpose for elliptic fibrations that Kulikov models serve for K3 surfaces, ie they form
the starting point from which applying the MMP yields the stable limit.

3.2.1 Twisted stable maps limits We now recall structure of the limiting surfaces
obtained using the twisted stable maps construction. As we will be studying slc degen-
erations of surfaces, the surfaces themselves will degenerate into possibly reducible
surfaces. The degenerate surfaces will carry a fibration over a nodal curve whose j –map
is the limit of the j –map of the degenerating family. Furthermore, there is a balancing
condition on the stabilizers of the orbicurve C over nodes, which implies the action on
the tangent spaces of the two branches at a node must be dual; see [1, Definition 3.2.4]
and [40]. Finally, the stabilizers of a twisted stable map are concentrated either over
nodes or at marked gerbes contained in the smooth locus. In particular, the limit of a
map from a smooth schematic curve C can only have stabilizers over the nodes.

These observations motivate the following necessary conditions for a twisted surface
to appear as a limit of a family of degenerating elliptic surfaces. We consider the case
where the degenerating family of elliptic surfaces has 12dI1 marked singular fibers
where d D deg L, as this is the generic situation and the relevant one for the present
paper. This corresponds to the moduli map C !M1;1 extending to a morphism on all
of C such that the j –map C !M 1;1Š P1 has degree 12d , and is unramified over1.

Proposition 3.23 Suppose .f WX ! C;S CF / is a twisted elliptic surface [7] over a
rational curve which is the limit of a degenerating family of smooth elliptic surfaces
with 12d I1 and arbitrary marked fibers. Then:

(i) If X is reducible , its irreducible components are either attached along nodal
fibers , or in the pairs of twisted fibers I�a=I�

b
=N1, II=II�; III=III� or IV=IV�.

(ii) The total degree of the j –map C !M 1;1 is 12d .

(iii) Away from the singular locus of C , the fibers of f are at worst nodal. In
particular , every marked fiber in F D

Pn
iD1 Fi is an Ia fiber for some a� 0.
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The surfaces of Proposition 3.23 correspond to genus-zero balanced twisted stable
maps to M1;1 of degree 12d which are parametrized by the space K0;n.M1;1; 12d/.0/.
Here 0 is the tuple of n zeroes, denoting the fact that the marked points have trivial
stabilizer.

Theorem 3.24 [9, Theorem 5.5] Each point

Œ.f W C!M1;1;p1; : : : ;pn/� 2 K0;n.M1;1; 12d/.0/

admits a smoothing to a map from a nonsingular n–pointed schematic rational curve.

Corollary 3.25 A twisted elliptic surface admits a smoothing to a generic 12dI1

elliptic surface if and only if it satisfies the conditions of Proposition 3.23.

3.2.2 Relative twisted stable maps One of the primary moduli spaces of interest
from the perspective of stable pairs is the closure of the locus where the marked fibers
are exactly the 12dI1 fibers. These fibers lie above the preimages of 1 2 M1;1

under the j –invariant map C !M1;1, and thus we are concerned with the closure
K1 � K0;24.M1;1; 24/ of the locus parametrizing maps from a smooth rational curve
which are unramified over1 and such that all marked fibers map to1. Equivalently,
this locus is the space of maps relative to the divisor Œ1� with multiplicities .1; : : : ; 1/.
The closure of such loci has been studied in the Gromov–Witten literature under the
name of relative stable maps; see eg [13; 17; 45]. In [9], we considered the question
of determining the points of this locus for twisted stable maps to stacky curves. The
conditions characterizing this locus [9, Conditions .�/] can be phrased in the context
of elliptic fibrations:

Proposition 3.26 Suppose .f W X ! C;S CF / is a twisted elliptic surface over a
rational curve which is the limit of a degenerating family of 12dI1 elliptic surfaces
with marked singular fibers. Then the following hold in addition to the conditions of
Proposition 3.23:

(i) F consists of 12d nodal singular fibers.

(ii) Every fiber with j D1 which is not on an isotrivial component is marked.

(iii) For each maximal connected tree T of isotrivial j D 1 components X , the
number of marked fibers contained on T is equal to the sum of the multiplicities
of the twisted fibers of the nonisotrivial components along which T is attached.
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Remark 3.27 The last condition says that if an isotrivial j –invariant1 component is
attached to an In fiber, there must be n markings on that component, since an In fiber
is produced when n marked I1 fibers collide.

Theorem 3.28 [9, Theorems 1.7 and 1.8] The conditions of Proposition 3.26 charac-
terize the boundary of K1. In particular , any twisted surface satisfying these conditions
is the limit of a family of smooth 12d I1 elliptically fibered surface with marked singular
fibers.

Remark 3.29 After determining the shape of a twisted stable maps limit, we will use
wall-crossing to compute the limits as one reduces weights.

4 Moduli of weighted stable elliptic K3 surfaces

In this section we specialize the discussion of Section 3 to the case of elliptic K3
surfaces and define the various compactifications of the stack W of elliptic K3 surfaces
and its coarse space W which we need. The goal is to obtain an explicit description of
the compactifications for various choices of weights A. In particular, we will explicitly
describe the surfaces parametrized by the boundary of EA in this case, as well as
understand the wall-crossing morphisms.

From now on we assume that g.C /D 0 and deg LD 2 so that C ŠP1 and LDOP1.2/,
and .f WX ! C;S/ is an elliptic K3 surface with section.

Definition 4.1 Let W.A/ be the closure in EA of the locus of pairs .f WX!C;SCFA/

where X is an elliptic K3 surface and Supp.FA/ consists of 24 I1 singular fibers.

Definition 4.2 If AD .a; : : : ; a/ is the constant weight vector, then S24 acts on W.A/
by permuting the marked fibers, and we denote the quotient by W� .a/.

Proposition 4.3 W.A/ and W� .a/ are proper Deligne–Mumford stacks. Moreover ,
the coarse space W � .a/ of W� .a/ is a modular compactifications of W for each
0< a� 1.

Proof The fact that they are proper Deligne–Mumford stacks follows from [8]. By
construction, W� .a/ has an open set parametrizing elliptic K3s with 24I1 fibers. Recall
that W parametrizes lattice polarized K3 surfaces, and such a lattice polarization is
equivalent to the structure of an elliptic fibration with chosen section. The result follows
by the observation that a generic elliptically fibered K3 surface has 24I1 fibers.
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Brunyate constructs a compactification B of the space of elliptic K3 surfaces by studying
degenerations of pairs .X; �1S C FB/ where B D .�; : : : ; �/, ie with small weights
on both the section and the fibers (in particular, Brunyate requires �1 � �), so that
Supp.FB/ is the closure of the rational curves on X [12]; see also [4, Section 7]. In fact
there is a morphism B�!W� .�/, given by increasing the weight on the section to 1.

Proposition 4.4 There is a morphism B�!W� .�/ for �� 1.

Proof Consider a 1–parameter degeneration of pairs .X; �SCFB/ inside B. We may
generically choose smooth fibers GD

S
i2I Gi to mark so that the pair .X;SCFBCG/

is stable, where the section has coefficient 1. By the results of [8], there is a sequence
of flips and contractions as one reduces the coefficients of G from 1 to 0. The resulting
stable limit in W� .�/ only depends on the point .X0; �S0C .FB/0/ in B and not on
the family or choice of auxiliary markings. Therefore we obtain the desired morphism
by [18, Theorem 7.3].

Remark 4.5 Comparing Theorem 6.13 with [12, Theorem 9.1.4] (see also [4, Sec-
tion 7]), we see that there is a bijection between the boundary strata of B and
W� .�/ D W.B/=S24. For example, the third case in [12, Theorem 9.1.4] maps to
case (E) of Theorem 6.13 if there are no F0 components, and to either case (D) or (F)
depending on the parity of the number of components if there are F0 components.

Corollary 4.6 The morphism from Proposition 4.4 is an isomorphism.

Proof It is a proper birational set-theoretic bijection between normal spaces.

Remark 4.7 It follows from Corollary 4.6 that there is in fact a morphism W� .�/!B

which can be thought of as induced by decreasing weights on the section.

Definition 4.8 Let K� denote stable pairs compactification of the space parametrizing
pairs with only one singular fiber marked with weight 0 < �� 1, and let K� be its
coarse moduli space.

Next we define the moduli space F�, which is like K�, only we allow any fiber to be
marked.

Definition 4.9 Let F� be the closure in EA of the locus of pairs .f WX !C;SC�F /,
where f has precisely 24 I1 fibers, 0< �� 1, and F is any fiber.
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Remark 4.10 At this point we have introduced many compactifications (see Figure 1
and the list on page 1894):

W.A/ The stable pair compactification with A–weighted singular fibers.

W� .a/ The quotient by S24 when AD .a; : : : ; a/.
K� The stable pairs compactification with a single �–marked singular fiber.

F� The stable pairs compactification with any fiber marked by �.

W� The SBB compactification of the period domain moduli space W .

We now give a brief overview of how they are related (again, see Figure 1).

(i) There are 24 generically finite morphisms W.A/! K� of degree 23!, corre-
sponding to forgetting all but one marked singular fiber.

(ii) There is a degree 24 generically finite rational map K� Ü W� .�/, corresponding
to choosing a singular fiber.

(iii) There are morphisms W� .�/!W� and K�!W�; see Theorems 6.15 and 8.2,
respectively.

(iv) We will see in Section 8.3 that the moduli space F� is a smooth Deligne–Mumford
stack whose coarse space is an (explicit) GIT quotient. Furthermore, there is a
morphism F�!W� (see Theorem 8.8) which is generically a P1 bundle.

We end this section with an important proposition.

Proposition 4.11 For any surface X parametrized by W.A/ (for any A) or F� (in
particular K�), we have H1.X;OX /D 0.

Proof Since slc singularities are Du Bois [26, Corollary 6.32; 29], X has Du Bois
singularities. Then H1.X;OX /D 0 since Hi.Xb;OXb

/ is constant in any flat family of
varieties with Du Bois singularities [29, Corollary 1.2], and any X arises as the special
fiber of a flat family whose general fiber is a surface X� with H1.X�;OX�

/D 0.

Remark 4.12 We will see in Theorem 8.1 that the surfaces on the boundary of F� (and
thus also K�) satisfy !X ŠOX . Moreover, if F is the marked fiber, then 2F is an ample
Cartier divisor such that .2F /2 D 2. Then following [5, Definition 3.4, Proposition 3.8,
and Theorem 3.11], we see that F� and K� are proper Deligne–Mumford stacks repre-
senting a functor over arbitrary base schemes. Due to subtleties with defining moduli
spaces in higher dimensions, the remaining spaces follow the formalism developed
in [8] and thus correspond to Deligne–Mumford stacks representing functors only over
normal base schemes; see [8, Section 2.2.2] for more details.
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4.1 Isotrivial j –invariant 1 fibrations

Here we prove some preliminary results on isotrivial j –invariant1 elliptic fibrations
of K3 type which appear in the boundary of the various moduli spaces described above.
We begin by bounding the number of Ni fibers (see Definition 3.16) which can appear
on an slc elliptic K3.

Proposition 4.13 Let .f WX!P1;S/ be an isotrivial j D1 slc Weierstrass fibration
of K3 type. Then X has one of the following configurations of cuspidal fibers:

(i) 4N1,

(ii) 2N1N2, or

(iii) 2N2.

Proof We must have only N0, N1 and N2 by the slc assumption, so, by Proposition 3.20,
2D 1

2
a1C a2, which only admits the nonnegative integer solutions .4; 0/, .2; 1/ and

.0; 2/ for .a1; a2/.

Remark 4.14 Up to automorphisms of P1, the global Weierstrass equation for the
surfaces in Proposition 4.13 can be written as follows:

(i) y2Dx3�
1
3
t2s2.t�s/2.t��s/2xC 2

27
t3s3.t�s/3.t��s/3 for �2P1nf0; 1;1g.

(ii) y2 D x3�
1
3
t2s2.t � s/4xC 2

27
t3s3.t � s/6.

(iii) y2 D x3�
1
3
t4s4xC 2

27
t6s6.

In particular, up to isomorphism there are unique surfaces with configurations (ii)
and (iii).

Finally, we need the following key proposition.

Proposition 4.15 Suppose .f0 W X ! P1;S/ is an isotrivial j D1 slc Weierstrass
fibration of K3 type and F �X is an Nk fiber. If f0 is the central fiber of a 1–parameter
family of Weierstrass models .f WX!C;S/!B with generic fiber .f� WX�!C�;S�/

a 24I1 elliptic fibration , then there are at least kC 1 type I1 fibers of f� that limit to
the Nk fiber F for k D 1; 2; 3; 4.

Proof Consider the twisted stable maps limit of f�. By Proposition 3.23(i), the
Weierstrass N1 fiber F must be replaced by a surface component Y attached along
the twisted model of F by a twisted fiber of type I� (resp. I) if k is odd (resp. even).
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By Proposition 4.13, the possibilities for X are 4N1, 2N1N2 and 2N2, as well as
the non-slc cases N1N3 and N4. Since the degree of the j –map is constant for a
family of twisted stable maps, the sum of degrees of the j –map of the components
of the twisted model is 24. This means that Y is rational when k D 1; 2 and K3
when k D 3; 4. The number of I1 fibers of f� limiting to the N1 fiber F of f0 is the
same as the number of I1 fibers limiting to the component Y in the twisted model.
By Proposition 3.23(ii)–(iii), the component Y cannot be isotrivial and deg.L/ � 1.
By Persson’s classification [41], a rational elliptic surface Y with an I� fiber has at
least 2I1 fibers, and one with an In fiber has at least three other I1 fibers counted with
multiplicity. Similarly, by [44, Theorems 1.1 and 1.2], an elliptic K3 surface with an
I� fiber has at least 4I1 fibers, and one with an In fiber has at least five other I1 fibers
counted with multiplicity.

5 Wall crossings inside W� .a/ for a > 1
12

Recall that W� .a/ denotes the space where all singular fibers are marked with weight
a and we have taken the S24 quotient. The main goal of this section is to describe
the surfaces parametrized by W�

�
1

12
C �

�
for 0< �� 1. In particular, we explicitly

describe the wall crossings that happen as we vary the weight vector from aD 1 to
aD 1

12
C �.

By Corollary 5.6 we see that surfaces parametrized by W� .a/ have at most two
elliptically fibered components, but possibly with trees of pseudoelliptic surfaces
attached to them. In Proposition 5.15 we classify the possible surfaces parametrized by
W� .a/with a single normal elliptically fibered component. In Theorem 5.16 we classify
the possible surfaces parametrized by W� .a/with a single nonnormal elliptically fibered
component. In Theorem 5.19, we classify the possible surfaces parametrized by W� .a/

with two elliptically fibered components. Finally, in Propositions 5.18 and 5.20, we
show that surfaces of each type appearing in the aforementioned results do exist on the
boundary of W� .a/.

Lemma 5.1 There are type WII walls where type I pseudoelliptic surfaces form at
aD 1=k for k D 1; : : : ; 11.

Proof Recall that type I pseudoelliptic surfaces form when a component of the
underlying weighted curve is contracted — this occurs when kaD 1. Finally, note that
24a> 2 for each of these values of k, so the moduli space is nontrivial.
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Lemma 5.2 There are type WIII walls at aD 5
12

, 3
12

and 2
12

where rational pseudo-
elliptic surfaces attached along intermediate type II, III and IV fibers , respectively,
contract to a point.

Proof This follows from [8, Theorem 6.3] as well as the observation that a rational
elliptic surface attached to a type II; III or IV fiber must have a II�; III� or IV� fiber,
respectively, and so it has 2, 3 or 4 other marked fibers counted with multiplicity.

Since these walls are all above 1
12

, we obtain:

Corollary 5.3 Any type II; III or IV fiber on a surface parametrized by W�

�
1

12
C �

�
is a Weierstrass fiber. In particular , there are no pseudoelliptic trees sprouting off of it.

In a similar vein we have the following two lemmas:

Lemma 5.4 There are type WIII walls at aD 1
4

, 1
6

, 1
8

and 1
10

, where:

(i) Rational pseudoelliptic surfaces attached along intermediate type N1 fibers con-
tract onto a point.

(ii) Isotrivial j –invariant 1 surfaces with deg LD 1 attached along intermediate
type N1 fibers contract onto a point.

Proof A rational elliptic surface attached along an N1 fiber must have an I�
k

fiber in
the double locus. Since an I�

k
has discriminant 6Ck, there are 6�k markings counted

with multiplicity on the rational pseudoelliptic. By the classification in [41], there
exist rational elliptic surfaces with I�

k
for 0� k � 4. Since the log canonical threshold

of an intermediate N1 fiber is 1
2

, the surfaces with an N1=I�
k

double locus contract at
1=.2.6�k//. These give walls above 1

12
for 1� k � 4. Similarly, isotrivial j –invariant

1 surfaces with an N1 fiber and deg LD 1 must be attached along another N1 fiber
and so contract at 1=.2k/, where they support k fibers.

Next we consider the base curve at 1
12
C �:

Lemma 5.5 Let A D .a; : : : ; a/ for a D 1
12
C �. Then curves C parametrized by

M0;A are either

(i) a smooth P1 with 24 marked points , with at most 11 markings coinciding , or

(ii) the union of two rational curves , each with 12 marked points and at most 11

markings coinciding.
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Proof If C is a smooth P1, since the total weight for any marking is at most 1, we
see that at most 11 points can coincide. If C is the union of two rational curves, since
each point is weighted by 1

12
C� and since each curve needs total weight greater than 2

(including the node), each curve must have (exactly) 12 points, and again at most 11

can coincide. Finally, suppose C is the union of three components C D
S3

iD1 Ci with
C1 and C3 the end components. Since the C2 component needs at least one marking to
be stable, at least one of C1 and C3 will not have enough marked points to be stable.

Corollary 5.6 Let .f WX!C;SCFa/ be a surface pair parametrized by W�

�
1

12
C�
�
.

Then f WX ! C has at most two elliptically fibered components.

Remark 5.7 X can have many type I pseudoelliptic components mapping by f onto
marked points of C .

Definition 5.8 If .f WX !C;SCFa/ is a surface pair parametrized by W�

�
1

12
C �

�
,

the main component of X , denoted by Xm, is the union of all elliptically fibered
components of f WX ! C .

Remark 5.9 By Corollary 5.6, for all surfaces pairs parametrized by W�

�
1

12
C �

�
,

either Xm and C are irreducible or Xm DX1[X2 and C D C1[C2, where Xi and
Ci are irreducible and f jXi

WXi! Ci is an elliptic fibration.

5.1 Explicit classification of surfaces inside W�

�
1

12
C �

�
We conclude that every surface parametrized by W�

�
1

12
C �

�
consists of a main

component (see Definition 5.8) possibly with trees of pseudoelliptics sprouting off. In
order to do understand the possible main components Xm parametrized by W�

�
1

12
C�

�
,

we will use the following construction of a Weierstrass model for Xm.

5.1.1 Construction of a family of Weierstrass models Let

.f0 WX0! C0;S0C .Fa/0/

be an elliptic surface pair parametrized by W�

�
1

12
C �

�
, which by Corollary 5.6 has at

most two elliptic components. Consider a 1–parameter family .f WX!C;SCFa/!T

with generic fiber .f WX�! C�;S�C .Fa/�/, a 24I1 elliptic K3 surface, and special
fiber X0. Let G� be a generic smooth fiber of the elliptic fibration f W X! C such that
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the closure G is a generic smooth fiber of f0 WX0! C0. In particular, G0 D G0 avoids
any pseudoelliptic trees of X0.

Let Y0 denote the irreducible component of X0 on which G0 lies. The component Y0

is necessarily elliptically fibered, and so either Y0 D Xm is the main component or
Xm D Y0[H0

Y1 glued along a twisted fiber H0. To classify the possible elliptically
fibered components of X0, we will take the relative log canonical model of the pair
.X;SCG/! T using the main results of [8].

First, if Xm D Y0[Y1, there is a type WII crossing causing a flip of the section of Y1

such that Y1 becomes a type I pseudoelliptic. Then in either case we have a new family
where Y0 is the unique elliptically fibered component with trees of type I pseudoelliptic
surfaces sprouting off of it. We make the following assumption, and revisit it when we
see it holds in Lemmas 5.13 and 5.14:

Assumption 5.10 Suppose every type I pseudoelliptic tree attached to Y0 is attached
along the intermediate model of a log canonical Weierstrass cusp.

There exists a sequence of type WIII extremal contractions followed by a type WIII

relative log canonical morphism of the family that contract the trees of type I pseudo-
elliptic components to a point, resulting in a Weierstrass model Y 0 of Y0. Denote the
resulting family of surfaces by X0! T .

Since type WIII contractions preserve the generic fiber of the family X! T , we must
only check type WII contractions of the section S . By [25, Proposition 5.9], we may
blow up the point to which the section has contracted to preserve the generic fiber of the
family, and so we have that X0� D X. The resulting family of fibrations .X0! C/! T

is a family of slc Weierstrass models over P1 with deg.L/D 2, generic fiber a 24I1

elliptic K3, and special fiber Y 0. By Remark 3.15, we can conclude that Y 0 is one of
the following Weierstrass limits:

(i) a minimal Weierstrass elliptic K3 surface (deg LD 2),

(ii) a rational elliptic surface with a single type L cusp, or

(iii) an isotrivial elliptic surface with two type L cusps and all other fibers stable.

By considering the discriminant of X0! C as a flat family of divisors on C, we have
the following key observation:
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Remark 5.11 Suppose Y 0! C0 is normal. The number of I1 fibers of the generic
fibration X�! C� that collide onto a singular fiber F of Y 0! C0 is the multiplicity
of F in the discriminant of the Weierstrass model Y 0! C0.

We can use this observation to constrain the possible components of the twisted stable
maps limit of .f W X�! C�;S�CF/. In this limit, the singular fibers .f W X�! C�/

cannot collide since they are marked with coefficient one. Let Y 00 be the unique
component of a twisted model that maps birationally to the component Y 0 in the above
family of Weierstrass models. Then each connected component of the complement of
Y 00 is a tree of twisted surfaces that gets collapsed onto a fiber of Y 00 by the sequence
of flips and contractions that produce the Weierstrass model above. In particular the
number of marked fibers on each tree of elliptic components sprouting off a fiber of
Y 00 is exactly the multiplicity of the discriminant of the resulting singular fiber on the
Weierstrass model Y 0.

Remark 5.12 The type L cusps are the Weierstrass model of an intermediate fiber
of type Im for m � 0. Such fibers are not contracted until they have coefficient 0,
and so any pseudoelliptic tree glued along a type Im fiber will remain when lowering
coefficients to any � > 0.

Finally we revisit Assumption 5.10. We first need the following characterization of
intermediate models of non-log canonical Weierstrass cusps:

Lemma 5.13 Suppose X D X0 [G X1 is a smoothable broken elliptic surface that
is the union of broken elliptic surfaces Xi ! Ci , where Ci Š P1 and each Xi has a
unique main component. Let X 0 be the result of the type II pseudoelliptic flip of the
section of X0, so that the strict transform X 0

0
is attached to X 0

1
by an intermediate fiber

A[G. Then A[G is the intermediate fiber of an slc cusp if and only if �S2
0
� 1,

where S0 is the section of X0! C0.

Proof The question is local around a neighborhood of the flip. Therefore, we may
assume that X0 and X1 are irreducible, so that there are no pseudoelliptic trees sprouting
off either of them. On the component X 0

1
we have the divisor S1C aACG. Note that

G has coefficient 1 since it is in the double locus, and the coefficient a is given by
the sum of coefficients of marked fibers on X 0

1
. Then the Weierstrass model of A[G

inside X 0
1

has log canonical singularities if and only if G contracts onto the Weierstrass
model in the log canonical model of the pair .X1;S CG/, ie when all the coefficients
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on X 0
0

are 0. Since the pair is smoothable, this occurs if and only if X 0
0

contracts to a
point in the log canonical model of X , where all the coefficients on X 0

0
are set to 0.

Since G is marked with coefficient 1 on X 0
0
, this occurs if only if X 0

0
is a minimal

rational elliptic surface by [6, Proposition 7.4], which holds if and only if �S2
0
� 1

(where the strictly less than 1 case happens if G is a twisted fiber rather than a stable
fiber of X0).

Lemma 5.14 Let X be a surface parametrized by W�

�
1

12
C �

�
and suppose Y �Xm

is a normal main component. Then Assumption 5.10 is satisfied for every pseudoelliptic
tree attached to Y . Moreover , the fibers these pseudoelliptic trees are attached to are
minimal intermediate fibers.

Proof Let X 0! C 0 denote the twisted stable maps model of X ! C , and let X 0m and
Y 0 denote the strict transform of Xm and Y in X 0. Let Z be a pseudoelliptic glued to
an intermediate fiber F of Y , and let Z0 be the components of X 0 that map to Z. By
Remark 5.11, the number of markings on Z is equal to the contribution of F to the
discriminant of the Weierstrass model of Y . Since Xm is the main component, there
are less than 12 markings on Z, and so the order of vanishing of the discriminant of
F in Y is less than 12. It follows that the order of vanishing of the Weierstrass data
in a neighborhood of this fiber satisfies minf3v.a/; 2v.b/g< 12, so these are minimal
Kodaira types by the standard classification.

5.1.2 Xm is irreducible We first deal with the case where the main component Xm

of a surface parametrized by W�

�
1

12
C �

�
is irreducible.

Proposition 5.15 Let X be a surface parametrized by W�

�
1

12
C �

�
such that the main

component Xm is irreducible and normal. Then Xm is a minimal elliptic K3 surface
with trees of pseudoelliptic surfaces of type I attached along intermediate models of
I�n; II

�; III� and IV� fibers.

Proof By Lemma 5.14, Assumption 5.10 is satisfied. Following Section 5.1.1, we
saw that there are three possibilities for the Weierstrass stable replacement of the
main component Xm of a surface in W�

�
1

12
C �

�
. In case (i) we have a minimal

Weierstrass elliptic K3 surface. Then since all fibers are minimal Weierstrass fibers,
any pseudoelliptic surface has to be attached by the intermediate model of a minimal
Weierstrass fiber. These are exactly the intermediate models of type I�n, II, III, IV, II�,

Geometry & Topology, Volume 27 (2023)



Compact moduli of elliptic K3 surfaces 1919

III� and IV�, since type In Weierstrass fibers do not have intermediate models. By
Corollary 5.3, pseudoelliptics sprouting off of II, III and IV fibers have contracted onto
the Weierstrass model. We now rule out cases (ii) and (iii) of Section 5.1.1.

In case (ii), the Weierstrass model of the main component is a rational elliptic surface
with exactly one type L cusp. In this case, there must be a type I pseudoelliptic tree Z

in X attached to Xm along an intermediate model of an L cusp, and by Remark 5.11,
there are 12 marked pseudofibers on Z. Let X1! C1 be a twisted stable maps model
that maps to X in W�

�
1

12
C �

�
. We may write X1 D Y1 tIn

Z1, where

(i) Z1 is a broken elliptic fibration that dominates the pseudoelliptic tree Z,

(ii) Y1 is a broken elliptic fibration that dominates X nZ,

(iii) the component of Y1 supporting the fiber Y1\Z1 D In is birational to Xm, and

(iv) the Y1\Z1D In fiber becomes the intermediate fiber on Xm after Z1 undergoes
a type II transformation into the pseudoelliptic tree Z.

Then 12 of the marked fibers of X1 ! C1 must lie on Z1 and the other 12 on Y1.
In particular there is a node of C1, such that if we separate C1 along that node we
obtain two trees of rational curves each with 12 marked points. However, this means
the stable replacement of C1 inside the Hassett space M0;A, for AD .a; : : : ; a/ with
aD 1

12
C �, is a nodal union of two components, contradicting that X has only one

main component.

In case (iii), the Weierstrass model of Xm is a trivial surface with exactly two type L
cusps and all other fibers stable. There must be type I pseudoelliptic trees attached
along each of these L cusp fibers in Xm, and no other pseudoelliptic trees attached
to Xm, as every other fiber of its Weierstrass model is stable. As in the previous analysis,
let X1! C1 be a twisted stable maps surface whose image in W�

�
1

12
C �

�
is X , and

let X 0 be the component of X1 that dominates Xm. Then X 0 is attached to exactly
two other components of X1, so by stability it must have at least one marked point
on it. Since X1 ! C1 is the twisted stable maps model, all the marked fibers have
j –invariant1, and so since X 0 is isotrivial, it must be nonnormal, a contradiction.

Next we consider the irreducible, but nonnormal main component case:

Theorem 5.16 Let X be a surface parametrized by W�

�
1

12
C �

�
with an irreducible

nonnormal main component Xm. Then one of the following holds:

(a) Xm is an isotrivial j D1 fibration with 4N1 minimal Weierstrass fibers.
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(b) Xm is an isotrivial j D1 fibration with 2N1 minimal Weierstrass fibers , as well
as an intermediate N2 fiber which must have a tree of pseudoelliptic surfaces
attached to it along a type In pseudofiber.

(c) Xm is an isotrivial j D1 fibration with 2N2 intermediate fibers , each of which
has a tree of pseudoelliptic surfaces attached to it by an In fiber.

(d) Xm is an isotrivial j D1 fibration with a minimal Weierstrass N1 fiber , as well
as an intermediate N3 fiber which has a tree of pseudoelliptic surfaces attached
to it by an I�n fiber.

(e) Xm is an isotrivial j D1 fibration with a single intermediate N4 fiber which
has a tree of pseudoelliptic surfaces attached to it by an In fiber.

Moreover , if we denote by l the number of marked N0 fibers on Xm, then

(a) (b) (c) (d) (e)

4� l � 16 3� l � 17 2� l � 18 8� l � 18 13� l � 19

Proof Suppose that Assumption 5.10 is satisfied. By Section 5.1.1, the Weierstrass
model of the main component must be an slc isotrivial j D1Weierstrass fibration
with deg LD 2, which are classified by Proposition 4.13. The lct of a type N2 fiber
is 0, so these do not contract to Weierstrass models, and any attached pseudoelliptic
trees do not contract for nonzero weight.

In case (c), the stability condition on the twisted stable maps limit implies that there
must be at least one marked N0 fiber to give that rational component of the base curve
at least three special points.

The types of pseudofibers that are attached to intermediate N1 and N2 fibers must
have j –invariant1, so they are either type In or I�n, respectively. The twisted model
of an N1 fiber is a nonreduced rational curve, and so must have a stabilizer at the
corresponding point of the twisted stable map. Therefore, it must be attached to an I�n
fiber, which also has a nontrivial stabilizer at the corresponding point of the twisted
stable map. Similarly, the twisted model of an N2 fiber is a nodal curve so it has no
stabilizer, and therefore must be attached to an In fiber.

If Assumption 5.10 is not satisfied, then by Lemma 5.13 we must have a K3 component
Y attached to Xm along a fiber F such that Y is not the main component. This only
happens if Y has less than 12 singular fibers counted with multiplicity away from the
fiber along which Y is attached to Xm. In that case F is a fiber of Y with discriminant
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at least 13, so F is either an In fiber for n� 13 or an I�n for n� 7. Consider a generic
family of 24I1 surfaces degenerating to this surface as in Section 5.1.1.

In the first case, we have that n type I1 fibers collide to sprout out a trivial component
with n markings, which becomes the main component when Y flips into a pseudoelliptic.
Since Xm has only N0 fibers away from where Y is attached and the degree of L must
be 2, the attaching fiber is N4 by Proposition 3.20. This gives us (e). In the second
case, let us denote by Y 0 and X 0m the strict transforms of Y and Xm in the twisted
stable maps replacement of the limit of the family. Then Y 0 and X 0m are glued along
twisted I�n=N1 fibers since the order of the stabilizer is 2. Then the base curve of the
X 0m component must have at least one more point with a stabilizer since any finite
cover of P1 is ramified in at least two points. On the other hand, the stabilizer of any
j –invariant1–curve is �2 so these other points have to have stabilizers of order 2.
Now when the component Y 0 flips into the pseudoelliptic surface Y , the twisted fiber
on X 0m to which it is attached must flip into a non-semi-log canonical intermediate
fiber since Assumption 5.10 fails. Thus it must be an Nk fiber for k � 3. The other
twisted fibers on X 0m must flip into intermediate models of Nk fibers for k � 1 since
the N0 fiber has no stabilizers. Since the degree of L for the main component Xm must
be 2, by Proposition 3.20, the fiber along which Y is attached must be N3, and the only
other nonstable fiber is a single N1. This gives us case (d).

To obtain the number of markings, we may apply Proposition 4.15 to see that each Nk

fiber is marked with multiplicity at least kC 1. This gives an upper bound on n. For
the lower bound, we look at the largest number of marked I1 fibers that can appear on
a component attached to the Nk fiber. For an N1 fiber this is five markings on a 5I1I�

1

rational, for N2 this is 11 markings on a 12I1 (attached along one of the I1 fibers), for
N3 this is 11 markings on an 11I1I�

7
elliptic K3, and for N4 this is 11 markings on a

12I1I13 elliptic K3. Here we have used that Xm is the main component so all the other
components must have undergone pseudoelliptic flips at a wall above 1

12
C �. Finally,

each N1 fiber is Weierstrass since there are at most five markings on the component
attached to it, and so by Lemma 5.4, these components contract to a point at a WIII

wall above 1
12
C �.

Remark 5.17 Each of the main components in Theorem 5.16 that have only interme-
diate models of semi-log canonical cusps (cases (a), (b) and (c)) are j D1 limits of
normal isotrivial elliptic surfaces. The 4N1 surfaces are limits of 4I�

0
isotrivial fibrations.

Indeed, the locus in the moduli space of such surfaces is birational to P1�P1, where the
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first coordinate parametrizes the j –invariant of the fibration and the second coordinate
parametrizes the configuration of the 4I�

0
(or 4N1) singular fibers. Similarly the 2N1N2

surface is the limit of the isotrivial 2I�
0

L, surface and there is a rational curve of these
in the moduli space. Finally the 2N2 surface is the limit of isotrivial 2L Weierstrass
fibrations, but this family of 2L surfaces does not actually appear on this component of
the moduli space as we describe below.

Note that in each of these cases, when the surface is isotrivial with j ¤1, all the
markings must be concentrated on the special fibers. Indeed by Remark 5.11, there
must be six markings concentrated at an I�

0
fiber and 12 concentrated at a type L fiber.

Therefore the isotrivial j D1 surface pairs that are limits of Weierstrass models as
in the above paragraph must have six markings concentrated at each N1 fiber and 12

markings concentrated at each N2 fiber. In particular, they cannot have any marked
N0 fibers. Therefore, not all surface pairs with isotrivial j D1 main components are
in the limit of the above locus of normal Weierstrass fibrations. In particular, since
the type 2N2 fibrations must have at least one marked N0 fiber by stability for twisted
stable maps, we see that the 2L family limiting to 2N2 does not appear.

Finally we address the question of existence of each of the limits described above.

Proposition 5.18 Each of the cases described by Proposition 5.15 and Theorem 5.16
occurs in W�

�
1

12
C �

�
.

Proof We may take the Weierstrass model of the described main component. In
each case it has a Weierstrass equation with A and B of degree 8 and 12, respectively.
Since the space of Weierstrass equations is irreducible, there exists a family of 24I1

elliptic K3 surfaces with this Weierstrass limit. By taking the stable replacement in
W�

�
1

12
C �

�
we must obtain stable limits as described.

5.1.3 Xm is reducible Now we classify the broken elliptic surfaces in W�

�
1

12
C �

�
where Xm is the union of two irreducible surfaces.

Theorem 5.19 Let X be a surface parametrized by W�

�
1

12
C �

�
with reducible main

component Xm D Y0[Y1. Then one of the following holds:

(i) The Yi are rational elliptic surfaces glued along an I0 fiber. They are minimal
Weierstrass surfaces away from possible intermediate type II�; III� and IV�

fibers along which type I pseudoelliptic trees are attached.
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(ii) Y0 is an elliptic K3 surface , Y1 is a trivial j –invariant 1 surface , and they are
glued along I12=N0 fibers. There are 12 marked N0 fibers on Y1, and Y0 has
minimal Weierstrass fibers or minimal intermediate type II�, III� or IV� fibers
where type I pseudoelliptic trees are attached.

(iii) Y0 is an elliptic K3 with an I�
6

fiber , Y1 is a 2N1 isotrivial j –invariant1 surface ,
and they are glued along twisted I�

6
=N1 fibers. Away from the I�

6
fiber , Y0 has

minimal Weierstrass fibers or minimal intermediate type II�; III� and IV� fibers
where type I pseudoelliptic trees are attached. There are 7� l � 10 marked N0

fibers on Y1.

(iv) The Yi are isotrivial j –invariant 1 surfaces glued along N0 fibers. Each surface
has a single intermediate N2 fiber with a type I pseudoelliptic tree attached.
There are 1� li � 9 marked N0 fibers on Yi .

(v) The Yi are isotrivial j –invariant 1 surfaces glued along N0 fibers. Each surface
has two minimal Weierstrass N1 fibers. There are 2� li � 8 marked N0 fibers
on Yi .

(vi) The Yi are isotrivial j –invariant 1 surfaces glued along N0 fibers. Y0 has two
minimal Weierstrass N1 fibers and Y1 has one intermediate N2 fiber with a type
I pseudoelliptic tree attached. There are 2� l0 � 8 marked N0 fibers on Y0 and
1� l1 � 9 marked N0 fibers on Y1.

Proof We will proceed by taking the Weierstrass limit of the main component and
using the classification in Section 5.1.1 to determine what can be attached as the other
main component.

First suppose that Assumption 5.10 does not hold for the fiber along which the Yi are
glued, so that after performing a pseudoelliptic flip of Y0, the fiber on Y1 is not the
intermediate model of a semi-log canonical Weierstrass cusp. Then as in the proof of
Theorem 5.16, Y0 is a K3 component and Y1 is an isotrivial j –invariant1 surface.
Furthermore, they are either glued along twisted In=N0 or I�n=N1 fibers. Since they
are the two main components, they must each have 12 markings, so we conclude that
nD 12 in the first case and nD 6 in the second case. Furthermore, as in the proof of
Theorem 5.16, in the I�n=N1 case Y1 must have another N1 fiber. This gives us cases
(ii) and (iii), respectively.

From now on we can suppose that Assumption 5.10 holds. Let us fix some notation.
Denote the Weierstrass limit of the Yi by Y 0

i , which must be one of the surfaces listed
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Y 0
0 Y 0

1

X 0

Z0 Z1

X 2W�

�
1

12
C �

�
Y0 G Y1

Figure 3: The circled component Zi represents the union of Y 0i along with
the pseudoelliptic trees emanating from Y 0i . The entire Zi component domi-
nates Yi , and the Y 0i component contains the pseudoelliptics.

in Section 5.1.1 if it is normal, or Proposition 4.13 if it is isotrivial j –invariant 1.
We will denote by X 1! C 1 a twisted stable maps model of the surface X ! C in
W�

�
1

12
C �

�
and we will denote by Y 1

i the unique component of X 1 dominating Yi .
Let Z1

i �X 1 be the maximal connected union of connected components of X 1 that
contains Y 1

i . Finally we will denote by G the fiber along which Y0 and Y1 are glued,
and by Gi its model in the Weierstrass limit, which is obtained by flipping one of the
Yi and contracting the transform on G on the other; see Figure 3.

Now, since Y0 and Y1 satisfy Assumption 5.10 for the fiber along which they are glued,
by Lemma 5.13 we must have 0< �S2

i � 1, where Si is the section of Yi . Note that
S2

0
¤0, otherwise Y0 would be trivial and so the degree of the j –map on Z0 would be 0

and the degree of the j –map on Z1 would be 24, which would put us in situation (ii).

Suppose that Y0 is normal. Then, by Section 5.1.1, Y0 is a rational elliptic surface and
G0 is a type L cusp. Since the twisted model of a type L cusp is a stable curve, G is
an In fiber. On the other hand, there must be 12 markings on Y0 away from G, and
so nD 0 and G is in fact a smooth fiber. Since G is smooth, Y1 cannot be isotrivial
j –invariant1 so it is normal, and the same analysis applies to Y1. Thus we obtain (i).

Next, if Y0 is not normal, then as above Y1 is also nonnormal. Now the Yi satisfy
Assumption 5.10 for the fiber G. We claim that they must also satisfy it for any
pseudoelliptic trees away from G. Indeed suppose that Y0 has an intermediate fiber
F not satisfying Assumption 5.10. Then by Lemma 5.13, there must be an elliptic K3
attached to it. Every fiber of Yi is Nk for k � 2, and we get cases (iv), (v) and (vi) by
considering the various possible Nk fibers on a surface with �S2 � 1.

Geometry & Topology, Volume 27 (2023)



Compact moduli of elliptic K3 surfaces 1925

Since N2 fibers have 0 lct, they must be intermediate with pseudoelliptic trees attached,
while pseudoelliptic trees attached to an N1 fiber undergo type WIII contractions at
walls above 1

12
C � by Lemma 5.4 so N1 fibers are minimal Weierstrass. Finally, the

number of markings is constrained by Proposition 4.15, stability, and the fact that there
are two main components so there must be 12 total markings on each.

Proposition 5.20 Each of the cases described in Theorem 5.19 occurs in the boundary
of W�

�
1

12
C �

�
.

Proof Case (i) is the stable replacement in W�

�
1

12
C �

�
of a Kulikov degeneration of

type II. Case (ii) occurs when 12I1 fibers collide to give an I12 fiber. Similarly, case
(iii) occurs when 12I1 fibers collide to form an I�

6
fiber. Case (iv) occurs when one

starts with a degeneration of type (i) and takes the limit as the I1 fibers approach the
double locus G. Since marked I1 fibers from both Y0 and Y1 must fall into G as the
j –invariant of G must match on both sides, two isotrivial components appear such
that each rational surface is attached to one of them along an N0 fiber which leads to
N2 fibers when the rational surfaces undergo a flip. Similarly, case (v) occurs when
you start with a surface of type (i) and degenerate the two rational components into
2N1 isotrivial j –invariant1 surfaces. Finally, for case (vi), take a degeneration as in
case (i) and then further degenerate Y0 so that it is an isotrivial 2I�

0
surface. Then the

stable replacement of the limit as the j –invariant of the 2I�
0

surface approaches1 is
case (vi).

6 Surfaces in W� .�/, the 24–marked space at a D �

In the previous section, we studied the wall crossings that occur in W� .a/ as we let the
weight vary from 1 to 1

12
C �, and we used this to classify the surfaces parametrized

by the boundary of W� .a/ for a D 1
12
C �. The goal of this section is to explicitly

study the wall crossings that occur as we reduce the weight further, from aD 1
12
C �

to aD � for 0 < �� 1. As a result, we determine the surfaces parametrized by the
boundary of W� .�/. The main results in this direction are Theorems 6.13 and 6.14. In
Theorem 6.13 we describe the possible surfaces on the boundary, and in Theorem 6.14
we use the theory of twisted stable maps (see Section 3.2) to show that all such surfaces
appear on the boundary. Finally, in Theorem 6.15, we describe a morphism from the
coarse space of W� .�/ to the GIT quotient WG . These three theorems together give a
proof of Theorem 1.1.
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We begin with the wall at 1
12

:

Lemma 6.1 At a D 1
12

, there are type III contractions of rational pseudoelliptic
components attached by an I�

0
fiber.

Proof An I�
0

must be attached along another I�
0

by the stabilizer condition. Furthermore,
an I�

0
rational surface has six other markings with multiplicity. Putting this together

with the description of the walls, we get a wall at 1=.2k/D 1
12

since 1
2

is the lct of I�
0

;
see (2) in Section 3.

Lemma 6.2 At aD 1
12

the trivial component Y1 in case (ii) of Theorem 5.19 contracts
onto the I12 fiber it is attached to.

Proof The component of the base curve lying under Y1 contracts to a point, but since
Y1 is trivial, it contracts onto a fiber.

Lemma 6.3 Let X be a surface parametrized by W�

�
1

12
C �

�
from Theorem 5.19(iii).

Then the stable replacement for coefficients 1
12
� � is an irreducible pseudoelliptic K3

surface with an I�
6

fiber.

Proof X has main component Xm D Y0 [ Y1 consisting of an elliptic K3 with a
twisted I�

6
fiber glued to an isotrivial j –invariant1 surface along a twisted N1 fiber.

Each surface has 12 markings. At coefficient 1
12
� �, both section components are

contracted by an extremal contraction. We first perform the extremal contraction of
the section of Y1 which results in a flip of Y1 to a pseudoelliptic surface. Then the
section of Y0 contracts to form a pseudoelliptic with the pseudoelliptic model of Y1

glued along an I�
6

pseudofiber. Finally, Y1 contracts onto a point as in Lemma 6.1.

Putting the above together with the observation that the Hassett space becomes a point
at 1

12
so the base curves all contract to a point, we get:

Theorem 6.4 Let X be a surface parametrized by W�

�
1

12
� �
�
.

(i) If X has a single main component , then Xm is the pseudoelliptic surface asso-
ciated to an elliptic surface , as in Proposition 5.15 and Theorem 5.16, with an
A1 singularity where the section contracted. Any type II, III, IV, N1 and I�

k
for

k � 5 pseudofibers of Xm are Weierstrass and any In fibers satisfy n� 12. There
are pseudoelliptic trees sprouting off of intermediate type II�, III�, IV� and Nk

for k � 2 fibers as before.
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Y 0
0 In=N0 Y 0

1 aD
1

24�n

S0

n> 12

S1

Y a
0 Y a

1

S1

n> 12

aD
1

n

aD 1
12 A

A
S1

aD
1

24�n
� �

Figure 4: Illustration of Example 6.6.

(ii) If X has two main components , then Xm is a union along a twisted pseudofiber
of the surfaces appearing in Theorem 5.19, parts (i), (iv), (v) and (vi). Any type II,
III, IV, N1 and I�

k
for k�5 pseudofibers are Weierstrass. There are pseudoelliptic

trees sprouting off of intermediate II�; III�; IV� and N2 fibers as before.

Lemma 6.5 There are type III walls at aD 1
60

, 1
36

and 1
24

where rational pseudoelliptic
surfaces attached along intermediate type II�, III� and IV� fibers , respectively , contract
to a point.

Proof This follows from [8, Theorem 6.3] as well as the observation that a rational
elliptic surface attached to a type II�, III� or IV� fiber must have a II, III or IV fiber,
respectively, and so it has 10, 9 or 8 other marked fibers counted with multiplicity.

Next we study some examples of the transformations that occur for small coefficients.

Example 6.6 (Figure 4) Suppose X� is a smooth elliptic K3 surface with 24 .I1/

fibers, and suppose it appears as the general fiber of a family .f WX!B;SCFa/ with
limit as in Theorem 5.16, case (d). In particular, this is a stable limit for aD 1

12
C �

and F consisting of the 24I1 fibers on the generic surface X�. We will compute the
stable limit of this family for a< 1

12
. We will denote by X a the a–stable special fiber

of X! B.
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We begin with the twisted stable maps limit X 1! C 1. It consists of a union Y 1
0
[Y 1

1

where Y 1
0

is an elliptic K3 and Y 1
1

is a trivial j –invariant1 surface with n marked
fibers glued along an In fiber of Y 1

0
where n> 12. At aD 1=.24� n/, the component

Y 1
0

undergoes a pseudoelliptic flip to obtain the model in Theorem 5.16(d), ie Y a
0

is
a pseudoelliptic K3 glued along an intermediate N4 fiber Aa [Ga of Y a

1
. Next, for

a � 1
12

, the section of Y a
1

contracts onto an A1 singularity so that X a consists of a
pseudoelliptic isotrivial j –invariant1 surface with an intermediate N4 pseudofiber and
a pseudoelliptic K3 sprouting off it. To continue the MMP on this 1–parameter family
and compute the stable limit for smaller a, we need to compute .KXa CFa/:Aa and
.KXaCFa/:Ga. We can restrict the log canonical divisor to the component Y a

1
to obtain

KY a
1
CGC .24� n/aAa

C naf;

where f is a pseudofiber class. Pulling back to the blowup of the section � W Y b
1
! Y a

1

where b D 1
12
C �,

��.KY a
1
CGC .24�n/aAa

Cnaf a/DKY b
1
CGb

C .24�n/aAb
Cnaf b

C12aSb
1 :

Here Sb
1

is the section which is a .�2/–curve and f b is a fiber class. Now Ab is
the curve obtained by flipping the section S0 of Y 1

0
. Using the local structure of

the flip (see eg [33, Section 7.1]), we compute that .Ab/2 D �1
2

, Ab:Gb D
1
2

and
.Gb/2 D �1

2
. Similarly, using push–pull for the contraction � W Y b

1
! Y 1

1
onto the

twisted model of Y 1
1

, we get that KY b
1
D�2f bC 2Ab . Putting all these together and

using push–pull for �,
.KY a

1
CGC.24�n/aAa

Cnaf /:Aa
D .KY b

1
CGb

C.24�n/aAb
Cnaf b

C12aSb
1 /:A

b

D
1
2
na�1

2
;

.KY a
1
CGC.24�n/aAa

Cnaf /:Ba
D .KY b

1
CGb

C.24�n/aAb
Cnaf b

C12aSb
1 /:G

b

D
1
2
C.24�n/�1

2
a:

In particular, for a< 1=n, there is an extremal contraction of the curve class of Aa in Xa.
On the other hand, since .Ab/2 D�1

2
and � is the contraction of a .�2/–curve which

intersects Ab transversely, we have .Aa/2 D 0, so this curve class rules Y b
1

over Gb

and the extremal contraction for a< 1=n contracts X a onto Y a
0

, the pseudoelliptic K3.

Remark 6.7 In the above example, n� 19, by eg [44].

Example 6.8 (Figure 5) Suppose X� as above is a smooth elliptic K3 surface with
24 .I1/ fibers, which appears as the general fiber of a family .f WX!B;SCFa/ with
limit as in Theorem 5.16(e). We compute the stable limit for small a as above and we
keep the same notation.
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1
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0
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� �
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Figure 5: Illustration of Example 6.8.

The twisted stable maps limit X 1! C 1 consists of a union Y 1
0
[Y 1

1
where Y 1

0
is an

elliptic K3 and Y 1
1

is a 2N1 isotrivial j –invariant1 surface. They are glued along
twisted I�n=N1 fibers with n > 6. At aD 1=.18� n/, the component Y 1

0
undergoes a

pseudoelliptic flip to obtain the model in Theorem 5.16, case (e), ie Y a
0

is a pseudoelliptic
K3 with a twisted I�n pseudofiber glued along an intermediate N3 fiber Aa[Ga of Y a

1
.

As above, the section of Y a
1

contracts onto an A1 singularity for a � 1
12

so that X a

consists of a pseudoelliptic isotrivial j –invariant1 surface with an intermediate N3

pseudofiber and a pseudoelliptic K3 sprouting off it. The N1 pseudofiber of Y a
1

may
have a pseudoelliptic tree sprouting off of it, but it exhibits a type WIII contraction onto
the Weierstrass model of the N1 fiber by Lemma 5.4.

Restricting the log canonical divisor to the component Y a
1

, we obtain

KY a
1
CGC .18� n/aAa

C .6C n/af

where f is a pseudofiber class. Pulling back to the blowup of the section � W Y b
1
! Y a

1

where b D 1
12
C �,

��.KY a
1
CGC .18� n/aAa

C .6C n/af a/

DKY b
1
CGb

C .18� n/aAb
C .6C n/af b

C 12aSb
1 :
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As above, Ab is the curve obtained by flipping the section S0 of Y 1
0

which is a rational
curve with self intersection �3

2
since Y 1

0
has a twisted I�n fiber. Thus we can compute

that .Ab/2 D�2
3

, Ab:Gb D
1
3

and .Gb/2 D�1
6

. Using push–pull for the contraction
� W Y b

1
! Y 1

1
onto the model of Y 1

1
with a twisted N1 fiber for the double locus and a

Weierstrass N1 fiber for the other N1, we get that KY b
1
D�f bCAb . Putting all these

together and using push–pull for �,

.KY a
1
CGC .18� n/aAa

C .6C n/af /:Aa

D .KY b
1
CGb

C .18� n/aAb
C .6C n/af b

C 12aSb
1 /:A

b

D
2
3
an� 1

3
;

.KY a
1
CGC .18� n/aAa

C .6C n/af /:Ba

D .KY b
1
CGb

C .18� n/aAb
C .6C n/af b

C 12aSb
1 /:G

b

D
1
6
C .18� n/ � 1

3
a:

For a < 1=.2n/, there is an extremal contraction of the curve class of Aa in Xa. On
the other hand, since .Ab/2 D �2

3
and � is the contraction of a .�2/–curve which

intersects Ab transversely, we have .Aa/2 D �1
6

so this curve class is rigid and
therefore undergoes a flip. After the flip, the strict transform Y a

1
for a< 1=.2n/ is now

a pseudoelliptic attached along an intermediate pseudofiber of Y a
0

. By Lemma 5.13, the
flipped pseudoelliptic contracts and goes through a type WIII pseudoelliptic flip for some
small aD � > 0, giving the stable limit as the minimal Weierstrass pseudoelliptic of Y a

0
.

Remark 6.9 By eg [44], the maximum n such that there exists an elliptic K3 with an
I�n is 14 and so the above phenomena occur for 6< n� 14.

Combining the above examples gives:

Proposition 6.10 (i) There are type III walls at 1=k for 13 � k � 19 where the
isotrivial j –invariant 1 main component of the surfaces from Theorem 5.16,
case (d), contract as a ruled surface onto the In fiber of the pseudoelliptic K3
sprouting off of it.

(ii) There are type III walls at 1=.2n/ for 6< n� 14, where the isotrivial j –invariant
1main component as in Theorem 5.16, case (e), goes through a flip to become a
pseudoelliptic attached to an intermediate model of the I�n on the K3 component.
At some smaller a D � > 0, this pseudoelliptic contracts onto the Weierstrass
model of the I�n fiber.
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Corollary 6.11 The stable replacements in W� .�/ of the two main component surfaces
of W�

�
1

12
C �

�
from Theorem 5.19(d)–(e) are pseudoelliptic K3s with Weierstrass In

and I�n fibers , respectively.

Proposition 6.12 If X is a surface parametrized by W� .�/ then !X ŠOX .

Proof If X is irreducible then the result is clear, since X is the contraction of the
section, a .�2/–curve, on a K3 type Weierstrass fibration.

Therefore, suppose X consists of multiple components. Let p WX!D be a 1–parameter
family over the spectrum of a DVR with generic fiber a 24I1 elliptic K3 and central
fiber X . Now there is a sequence of pseudoelliptic flips producing a model p0 WX0!D,
where the sections of X are blown back up so that the components of central fiber X 0

of p0 are all elliptically fibered and glued along twisted fibers (for example, these flips
occur as part of the MMP when decreasing the coefficient on the section of the twisted
model, or equivalently, X 0 is the model parametrized by the Brunyate/Inchiostro moduli
space). Then X 0 DX0[F0

X1[F1
� � � [Fn�1

Xn[Fn
XnC1, where X0 and XnC1 are

rational elliptic surfaces and X1; : : : ;Xn are trivial j –invariant1 fibrations.

Then KX 0 jX0
DKX0

CF0, KX 0 jXnC1
DKXnC1

CFn and KX jXi
DKXi

CFi�1CFi

for i D 1; : : : ; n, which are all 0 by the canonical bundle formula since X0 and XnC1

(resp. X1; : : : ;Xn) satisfy deg LD 1 (resp. deg LD 0). Thus KX 0 is numerically trivial,
that is, KX 0 � 0.

We proceed in two steps. First we show that X 0 is Gorenstein and then we show that
the pullback

(4) Pic.X 0/!
nC1M
iD0

Pic.Xi/

is injective. For the first claim, note that away from the gluing fibers Fi , the surface X 0 is
a minimal Weierstrass fibration. From the classification of surfaces (see Corollary 6.11),
the components Xi are glued along In type fibers, and so in a neighborhood of Fi the
surface corresponds to a map from a nonstacky nodal curve into M1;1. In particular,
in a neighborhood of Fi , the elliptic fibration X 0! C is a flat family of nodal curves
over a nodal curve. In either case, X 0 is Gorenstein.

Next, denote by � W
F

Xi ! X 0 the natural morphism. By [22, Proposition 2.6 and
Remark 2.7] there is a diagram of short exact sequences of sheaves of abelian groups
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on X 0

1 // O�
X 0

˛
//

��

QnC1
iD0 ��O

�
Xi

//

��

N // 0

1 // O�
F 0

ˇ
// ��O�F // N // 0

where F 0 is the double locus on X 0 and F is the double locus on Xi . As an abstract
variety, F is the disjoint union of two copies of F 0. By [22, Proposition 4.2], (4) is
injective if and only if  WPic.F 0/!Pic.F / is injective and cokerH 0.˛/DcokerH 0.ˇ/.
The map  is simply the diagonal, so it is injective. Moreover, since X 0, Xi and Fi are
all connected projective varieties, applying H 0 to the above diagram gives

1 // k�
H 0.˛/

//

f1

��

//
QnC1

iD0 k�

f2

��

1 //
Qn

iD0 k�
H 0.ˇ/

//
Qn

iD0 k� � k�

Here f1 and H 0.˛/ are the diagonal maps, H 0.ˇ/ is the product of diagonal maps
for each i , and f2 is given by .x0; : : : ;xnC1/ 7! .x0;x1;x1;x2; : : : ;xn;xnC1/: The
cokernel of H 0.˛/ can be identified with

QnC1
iD1 k� by the map

.x0; : : : ;xnC1/ 7!

�
x1

x0

; : : : ;
xnC1

x0

�
:

Similarly, the cokernel of H 0.ˇ/ can be identified with
Qn

iD0 k� by the map

.a0; b0; a1; b1; : : : ; an; bn/ 7!

�
b0

a0

;
b1

a1

; : : : ;
bn

an

�
:

Therefore the induced map on cokernels is given by

.x1; : : : ;xnC1/ 7!

�
x1;

x2

x1

; : : : ;
xnC1

xn

�
;

which is an isomorphism. Thus we conclude that (4) is an injection.

This means that X 0 is Gorenstein and !X 0 pulls back to the trivial line bundle under (4),
so !X 0 Š OX 0 . It follows that !X0=D Š OX0 . Now X0 is related to X by a sequence
of log flips. Since these flips always contract K–trivial curves, we conclude from the
cone theorem (see eg [30, Theorem 3.7(4)]) that the canonical line bundle is preserved,
so !X ŠOX and so !X ŠOX .

Putting all of this together, we have a classification of the boundary components of
W� .�/; see Section 7 for an alternative description.
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Theorem 6.13 The surfaces in W� .�/ are

(A) an irreducible pseudoelliptic K3 with the section contracted to an A1 singularity
and minimal Weierstrass pseudofibers ,

(B) an irreducible isotrivial j D1 pseudoelliptic with 4N1 Weierstrass fibers ,

(C) an isotrivial j D1 fibration with 2N1 Weierstrass fibers and an N2 intermediate
fiber with a tree of pseudoelliptics sprouting off of it ,

(D) an isotrivial j D1 fibration with 2N2 intermediate fibers each sprouting a tree
of pseudoelliptics ,

(E) a union of irreducible pseudoelliptic rational surfaces along an I0 fiber ,

(F) a union of isotrivial j D1 pseudoelliptic surfaces with a single intermediate
N2 fiber sprouting a pseudoelliptic tree on each , glued along an N0 fiber ,

(G) a union of irreducible isotrivial j D1 surfaces each with 2N1 Weierstrass fibers
glued along an N0 fiber ,

(H) a union of an irreducible isotrivial j D1 surface with 2N1 Weierstrass fibers
and an isotrivial j D1 surface with a single N2 fiber sprouting a pseudoelliptic
tree , glued along an N0 fiber.

Furthermore , every surface X satisfies !X Š OX and H1.X;OX/ D 0. Finally , the
number of marked N0 fibers are as in Theorems 5.16 and 5.19.

Now we show that each surface actually appears on the boundary, using the full
smoothability results of Section 3.2.

Theorem 6.14 Every slc surface pair in Theorem 6.13 appears in the boundary of
W� .�/.

Proof Given any surface satisfying the conditions of Theorem 6.13, we can construct
a twisted surface whose stable replacement is the surface obtained by flipping the
pseudoelliptic components into elliptically fibered ones as in the previous section,
replacing each cuspidal fiber by a twisted fiber, and attaching a component with dual
monodromy satisfying the conditions of Propositions 3.23 and 3.26 to each of these
twisted fibers. By full smoothability (Theorems 3.24 and 3.28), this twisted model
is the limit of a family of 24I1 elliptic K3 surfaces with singular fibers marked, and
its stable replacement must be the initial surface as computed in the previous two
sections.
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We conclude this section by discussing the connection between W� .�/ and the GIT
quotient WG .

Theorem 6.15 (connection with GIT/SBB) If W� .�/ denotes the coarse space of
W� .�/ then there is a morphism W� .�/!WG ŠW� with the following structure:

(i) The locus of surfaces of type (A) maps isomorphically onto WG
s .

(ii) The locus of surfaces of type (B) maps as a generic P12–bundle onto WG
slc;o by

forgetting the marked fibers. The closure of this locus in W� .�/ parametrizes the
unique surface of type (G) along with a choice of marked fibers , and this locus
all maps onto WG

slc\WG
L

.

(iii) The locus of surfaces of type (E) maps onto WG
L

by taking the j –invariant of the
I0 fiber along which the two components are glued.

(iv) The surfaces of type (C), (D), (F) and (H) all get mapped onto the point
WG

slc\WG
L

.

Proof By Theorem 6.13, we have a classification of surfaces in W� .�/. Each of the
irreducible surfaces mentioned in the theorem is also parametrized by W�, yielding
a rational map W� .�/!WG defined on a dense open subset. Now one can easily
check that the limit in WG of a Weierstrass family limiting to a surface of type (B)
(resp. type (C), (D), (G), (F) or (H)) is the j –invariant of the L (resp. N2) fiber in WG

L
.

This depends only the central fiber of the family, not the family itself, so the morphism
extends uniquely by normality after applying [18, Theorem 7.3].

7 Explicit description of the boundary of W� .�/

In the previous section, specifically Theorems 6.13 and 6.14, we gave an explicit
description of the surfaces parametrized by the boundary of W� .�/. The goal of this
section is to enumerate the resulting boundary strata of W� .�/ in a combinatorial way,
akin to Kulikov models; see Proposition 7.2 for the analogue of type II degenerations,
and Theorems 7.5, 7.7 and 7.9 for the analogues of the type III degenerations.

Before starting, we define Rn to be the space parametrizing pairs .X;S CF /, where
X is a minimal Weierstrass rational elliptic surface, S is a section, and F is a fiber of
type In. Note that n� 9. The following is well known:
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Lemma 7.1 [24, Section 3.3] Rn is a .9�n/–dimensional affine variety which is
irreducible for n¤ 8, while R8 has two components.

Using these spaces, we will explicitly describe the boundary of W� .�/. To do so, we
use the notation of Kulikov models (models of type II and III).

7.1 Type II degenerations

Proposition 7.2 There are two type II strata:

(i) The first is a dimension-17 stratum WII isomorphic to a quotient of the fiber
product R0 �j R0, namely the self fiber product of the j –map j WR0!A1. A
point parametrizes two rational elliptic surfaces with a marked I0 fiber of the
same j –invariant glued along this fiber , and the quotient comes from swapping
the two surfaces; see Theorem 6.13(E).

(ii) The second is a dimension-17 stratum W1II Š Sym16.P 1/�A1 where A1 is the
j –line. The j –line parametrizes the 4N1 isotrivial j –invariant 1 component ,
and Sym16.P1/ parametrizes the m markings on this surface other than the N1

fibers counted with multiplicity; see Theorem 6.13(B).

7.2 Type III degenerations

The first step is to “unflip” the pseudoelliptic components in Theorem 6.13. After, we
can describe each surface as a chain X0 [ � � � [XnC1, where both X0 and XnC1 are
Weierstrass fibrations of rational type (deg LD 1), and X1; : : : ;Xn are all isomorphic
to trivial j –invariant1 fibrations C �P1, with C being a nodal cubic. These surfaces
are all glued along nodal cubic fibers (ie either In or N0 fibers). Further, each Xi for
i D 1; : : : ; n must have at least one marked fiber by stability. We call the surfaces X0

and XnC1 the end components and X1; : : : ;Xn the intermediate components.

Lemma 7.3 An end component must have at least three marked fibers if it is normal ,
or at least four marked fibers if it is isotrivial j –invariant 1, counted with multiplicity.

Proof If an end component is an isotrivial j –invariant 1 surface, then it must be
a 2N1 fibration glued along an N0 fiber. Each N1 must carry at least two markings
counted with multiplicity so the surface carries at least four. If it is a normal rational
elliptic surface, then the number of markings is given by 12� n, where the surface is
glued along an In fiber. Since n � 9 for In fibers on a rational elliptic surface, then
there are at most three markings on such a component.
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Corollary 7.4 For the chains X0[ � � � [XnC1 in the type III locus , n is at most 18.

Proof As there is at least one marking on each of the intermediate components, the
number of components is bounded by the number of markings not on X0 and XnC1.
By Lemma 7.3, there are at least six combined on these components so there are at
least 18 markings to be distributed among the intermediate components.

Now we will describe an explicit parametrization of each of the type III strata. There
are three cases, depending on whether none, one or both of the end components X0

and XnC1 are isotrivial j –invariant 1. We call these strata type III0, III1 and III2,
respectively. The type III0 strata are further indexed by the fiber types Ir and Is along
which X0 and XnC1 are glued. In this case, there are 12� r and 12� s fibers marked
on X0 and XnC1, respectively, which gives us rCs markings remaining for the middle
components X1; : : : ;Xn. Thus, n must satisfy 1� n� r C s:

Finally, for each n, we can fix a single marking on each component X1; : : : ;Xn and fix
coordinates so that the components are glued along fibers at 0 and1, and the chosen
marking is at 1. That gives us freedom to parametrize r C s� n additional markings
among X1; : : : ;Xn. For each choice of partition

Pn
iD1 ai D r C s�n we can consider

the stratum where there are ai markings on Xi .

Theorem 7.5 (type III0 locus) Fix data

1� r; s � 9; 1� n� r C s;

nX
iD1

ai D r C s� n:

There is a type III0 stratum IIIr;s;n
0;a1;:::;an

of dimension dim.IIIr;s;n
0;a1;:::;an

/D 18�n with a
finite parametrization by Rs �Ga1

m �� � ��Gan
m �Rr : Here a point of the above product

determines the surface pairs X0;XnC1 as well as the configuration of ai marked fibers
on X1; : : : ;Xn avoiding the double locus.

Remark 7.6 Just to reiterate, Rs and Rr parametrize the surfaces X0 and XnC1,
respectively, and the Gai

m parametrize the marked fibers on the Xi avoiding the double
locus.

Next, we consider type III1 strata where exactly one of the end surfaces, without loss of
generality X0, is an isotrivial j –invariant1 surface of rational type. Then X0 must be
the 2N1 surface glued along an N0 fiber. There are two markings each on the N1 fibers
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for a total of four. Then for each 0� s � 17, there is a stratum with 17� s marked N0

fibers on X0; see Theorem 5.16. After picking coordinates so that the N1 fibers are
at 0 and 1 and the double locus is at1, these 17� s markings must avoid1 and so
give a factor of A17�s parametrizing X0. The other end component XnC1 is a rational
elliptic surface glued along an Ir fiber for some r and with 12� r marked fibers.

This gives 33� s� r total markings on X0 and XnC1. On the other hand, there are at
most 24 markings, so 33� s� r � 24: In the case of equality, there are no intermediate
components and we have a stratum parametrized by A17�s �Rr . Otherwise, we have
1 � n � sC r � 9 intermediate components with sC r � 9 markings distributed on
them. After fixing one marking on each intermediate component at coordinate 1, there
are r C s� 9�n marked fibers partitioned into

Pn
iD1 ai D r C s� 9�n: This gives a

finite parametrization by A17�s �Ga1
m � � � � �Gan

m �Rr .

Theorem 7.7 (type III1 locus) (i) Fix the data

1� r � 9; 0� s � 17; sC r D 9:

There is a type III1 stratum IIIr;s
1

of dimension dim.IIIr;s
1
/ D 17 with a finite

parametrization by A17�s �Rr .

(ii) Fix the data

1� r � 9; 1� s � 17; 1� n� sC r � 9;

nX
iD1

ai D r C s� 9� n:

There is a type III1 stratum IIIr;s;n
1;a1;:::;an

of dimension dim.IIIr;s;n
1;a1;:::;an

/D 17�n

with a finite parametrization by A17�s �Ga1
m � � � � �Gan

m �Rr .

Remark 7.8 Again, here A8�s parametrizes the 8�s marked N0 fibers on X0, the Gai
m

parametrize the marked N0 fibers on the Xi , and Rr parametrizes the surface XnC1.

Finally, we have the type III2 stratum where both X0 and XnC1 are isotrivial j –
invariant1. In this case, X0 and XnC1 are described by affine spaces of dimension
17� s and 17� r , respectively, where there are 17� s and 17� r marked N0 fibers on
X0 and XnC1 in addition to the 2N1 which each appear with multiplicity two. This
gives 42� r �s total marked fibers among the end components, so 42� r �s � 24, and
we again have two cases: this is an equality and there are no intermediate components,
or this inequality is strict and there are intermediate components with rCs�18 marked
fibers. Thus, as before:
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Theorem 7.9 (type III2 locus) (i) Fix the data

0� s; r � 17; sC r D 18:

There is a type III2 stratum IIIr;s
2

of dimension dim.IIIr;s
2
/ D 16 with a finite

parametrization by A17�s �A17�s DA16.

(ii) Fix the data

1� s; r � 17; 1� n� sC r � 18;

nX
iD1

ai D r C s� n� 18:

There is a type III2 stratum IIIr;s;n
2;a1;:::;an

of dimension dim.IIIr;s;n
2;a1;:::;an

/D 16�n

with a finite parametrization by A17�s �Ga1
m � � � � �Gan

m �A17�r .

Remark 7.10 In the above theorem, the A17�s (resp. A17�r ) parametrize the markings
on X0 (resp. XnC1), and the Gai

m parametrize the markings on the Xi .

8 Spaces with one marked fiber

The goal of this section is to describe the surfaces parametrized by the boundary of the
moduli spaces K� (resp. F�), ie the moduli spaces parametrizing one �–marked singular
fiber (resp. any fiber). In Section 8.1 we describe the boundary of the two moduli
spaces; see Theorem 8.1. In Section 8.2 we prove Theorem 8.2, which describes a
morphism from K� to WG . Finally, in Section 8.3 we extend Miranda’s GIT construction
to produce a moduli space of Weierstrass surfaces with a choice of marked fiber.
The main result in this direction is Theorem 8.8, which shows that F� is a smooth
Deligne–Mumford stack with coarse space map F�! eWG given by the extended GIT
compactification we discuss in Section 8.3.

8.1 Spaces with one marked fiber

In this section we first consider the moduli space F� (see Definition 4.9), which
corresponds to marking only one (possibly singular) fiber with � weight. In particular,
we give a description of the surfaces parametrized by the boundary. Note that since K�
is a slice of F�, this description also applies to the surfaces parametrized by K�.

Theorem 8.1 (characterization of the boundary) The surfaces parametrized by F�
are single-component pseudoelliptic K3 surfaces whose corresponding elliptic surfaces
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are semi-log canonical Weierstrass elliptic K3s , and the marked fiber F can be any
fiber other than an L type cusp. Moreover , all surfaces parametrized by F� satisfy
H1.X;OX /D 0 and !X ŠOX .

Proof We follow the explicit stable reduction process explained in eg [8, Section 6]. Let

.f W X! C;SCF/! T

be a 1–parameter family whose generic fiber .f WX�! C�;S�CF�/ is a Weierstrass
elliptic K3 surface with 24 I1 fibers, and a single (possibly singular) marked fiber F�.
Denote by .f0 WX0! C0;S0CF0/ the special fiber, and consider the limit obtained
via twisted stable maps; see eg [7]. The limit .f0 WX

0
0
! C 0

0
;S 0

0
CF 0

0
/ will be a tree

of elliptic fibrations glued along twisted fibers, and the closure of the fiber F will be
contained in precisely one such surface component. While this surface will be stable as
a map to M1;1, it will not necessarily be stable as a surface pair. To resolve this, choose
some generic markings G D

S
i2I Gi to make the above limit stable as a surface pair.

In this case, G will consist of generic smooth fibers.

As we (uniformly) lower the coefficients marking G towards 0, there will be some
choice of coefficients such that the weighted stable base curve is an irreducible rational
curve. Indeed, the components of the base curve will contract precisely when there
is not enough weight being supported on the marked fibers. As we only lowered
the coefficients marking G, and the fiber F 0

0
remained marked with coefficient 1, the

(unique) main component, call it Y0, fibered over the rational curve will contain the
original marked fiber.

Now we have a single main component with marked fiber F 0
0

with type I pseudoelliptic
trees attached to it. When the coefficients of G are set to 0, the type I trees will undergo
type WIII contractions to a point to produce the Weierstrass model of Y0, away from
the fiber F 0

0
. When the coefficient of F 0

0
is reduced to 0< �� 1, it will cross WI walls

to become a Weierstrass fiber.

We saw in Proposition 4.11 that H1.X;OX/D 0, so it suffices to show that !X ŠOX .
This holds on any Weierstrass elliptic K3 surface (see [37, Proposition III.1.1]), and
since X is obtained from a Weierstrass elliptic K3 by contracting a .�2/–curve (the
section), we have !X ŠOX .

8.2 Stable pairs to GIT/SBB

The goal of this section is to describe the morphism from W� .�/ to WG (and thus
to W�).
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Theorem 8.2 (connection with GIT/SBB) Let K� be the coarse moduli space of K�
and let ��K� be the boundary locus parametrizing surfaces with an L type cusp , with
U D K� n�. There is a morphism K�!WG ŠW� such that the diagram

� K� U

P1 WG WG
s

j

commutes , where j W �! P1 sends a surface with an L cusp to its j –invariant , the
morphism U !WG

s is proper and finite of degree 24, and P1 !WG
L
�WG maps

bijectively onto the strictly GIT semistable locus.

Proof By Theorem 8.1 every surface parametrized by K� is a single-component
pseudoelliptic K3 surface. In particular, if we blow up the point to where the section
contracted, we obtain an (unstable) slc Weierstrass elliptic K3 surface. Consider the
PGL2–torsor P D f.X; s; t/ j .s; t/ 2 C Š P1g= �, where X is an slc Weierstrass
elliptic K3 surface obtained by blowing up the section of a surface parametrized by K� ,
s and t are coordinates on the base C Š P1 (or equivalently a basis for the linear
series jF j of a fiber F on X ), and we quotient by scaling. Note that the Weierstrass
coefficients .A.s; t/;B.s; t// defining X are unique up to the scaling of the Gm action
.A;B/ 7! .�4A; �6B/.

Since the semi-log canonical Weierstrass elliptic K3 surfaces are GIT semistable (see
[36, Proposition 5.1]), we obtain a PGL2–equivariant morphism P! V which induces
a morphism � W K�!WG .

Remark 8.3 (i) The morphism K�!WG is generically a 24-to-1 cover, as it requires
the choice of some marked fiber and generically there are 24 choices. The morphism is
not finite — eg families with one L type cusp of fixed j –invariant are all collapsed to
the same polystable point.

(ii) All the underlying surfaces of pairs parametrized by K� are in fact GIT semistable,
even though all pairs with an L type cusp of fixed j –invariant map to the same GIT
polystable point. One might wonder if the locus inside the GIT stack ŒV ss

24
== PGL2�

consisting of those surfaces that appear in K� is an open Deligne–Mumford substack
with proper coarse moduli space factoring the morphism K�!WG . Furthermore, it is
natural to compare this to a Kirwan desingularization of WG . We will pursue these
questions in the future.
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(iii) In the morphism from stable pairs to GIT, all surfaces with an L type cusp
get collapsed to the polystable orbit corresponding to the KSBA-unstable but GIT
semistable (unique) surface with 2L cusps of the same j –invariant.

(iv) The locus of surfaces with an L type cusp is 9–dimensional. Indeed, such surfaces
are birational to a rational elliptic surface (which has an 8–dimensional moduli space)
with a choice of a fiber to replace by an L type cusp. There is a P1 worth of choices.

8.3 GIT for Weierstrass surfaces with a marked fiber

We extend Miranda’s GIT construction to produce a moduli space of Weierstrass surfaces
with a choice of marked fiber. Such data can be represented by triples .A;B; l/, where
.A;B/ 2 V4N ˚V6N are Weierstrass data as above and l 2 V1 is a linear form. Then
Gm � Gm � SL2 acts naturally on V4N ˚ V6N ˚ V1, where the first Gm acts on
V4N ˚V6N with weights 4N and 6N and the second acts on V1 with weight one.

To study GIT (semi)stability, we follow Miranda’s strategy. Consider the natural
morphism

f W V4N ˚V6N ! S3V4N ˚S2V6N ;

let ZN be the image of f , and let MN � P .S3V4N ˚S2V6N / be its projectivization.
By [36, Propositions 3.1 and 3.2]:

Proposition 8.4 The morphism f � id W V4N ˚V6N ˚V1! S3V4N ˚S2V6N ˚V1

is finite and SL2–equivariant with fibers contained in Gm �Gm orbits. In particular ,
two triples .A;B; l/ and .A0;B0; l 0/ are in the same Gm �Gm �SL2 orbit if and only
if the corresponding points in MN �P .V1/ are in the same SL2 orbit.

This lets us compute a GIT compactification of the moduli space of minimal Weierstrass
fibrations with a chosen marked fiber as a GIT quotient .MN �P1/ == SL2. We will
linearize the moduli problem using the Segre embedding of P .S3V4N ˚S2V6N /�P1.

Proposition 8.5 A triple .A;B; l/ is stable if and only if it is semistable. Further , it is
not stable if and only if there exists a point q 2 P1 with vq.A/ > 2N and vq.B/ > 3N ,
or with vq.A/� 2N , vq.B/� 3N (with at least one equality) and vq.l/D 1.

Proof Let .A;B; l/ 2MN , let � WGm! SL2 be a 1–parameter subgroup, and pick
coordinates ŒT0;T1� so that � acts by T0 7! �eT0 and T1 7! ��eT1. Then it acts on
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1942 Kenneth Ascher and Dori Bejleri

.A;B; l/ by

AD

4NX
iD0

aiT
i
0 t4N�i

1 7!

4NX
iD0

ai�
2ei�4eN T i

0 t4N�i
1 ;

B D

6NX
iD0

biT
i
0 t6N�i

1 7!

4NX
iD0

bi�
2ei�6eN T i

0 t4N�i
1 ;

l D l0T1C l1T 0
7! l0�

�eT1C l1�
eT0:

The coordinates of P .S3V4N ˚ S2V6N / � P .V1/ are given by l0aiaj ak ; l0blbm,
l1aiaj ak , and l0blbm which respectively have weights

2e.i C j C k/� 12eN � e; 2e.l Cm/� 12eN � e;

2e.i C j C k/� 12eN C e; 2e.l Cm/� 12eN C e:

By the Hilbert–Mumford criterion, a point is not stable (resp. semistable) if and only if
there exists a 1–parameter subgroup such that all the weights are nonnegative (resp.
positive).

Suppose .A;B; l/ is not (semi)stable and pick a 1–parameter subgroup and coordinates
as above. Then we have, after dividing by e ¤ 0,

2e.i C j C k/� 12eN � e < .�/ 0 D) l0aiaj ak D 0;

2e.l Cm/� 12eN � e < .�/ 0 D) l0blbm D 0;

2e.i C j C k/� 12eN C e < .�/ 0 D) l1aiaj ak D 0;

2e.l Cm/� 12eN C e < .�/ 0 D) l1blbm D 0:

Note that the left-hand side is always odd and so equality is never achieved. From
this we can conclude that stability coincides with semistability. Now consider the
cases where i D j D k and l D m. We see that l0a3

i D 0 for i � 2N , l1a3
i D 0 for

i � 2N � 1, l0b2
l
D 0 for l � 3N and l1b2

l
D 0 for l � 3N � 1. Let q D Œ0; 1� be

the point given by T0 D 0. If l0 ¤ 0, then we must have that ai D 0 for i � 2N and
bl D 0 for i � 3N . Thus the order of vanishing satisfies vq.A/ > 2N and vq.B/ > 3N .
Otherwise, if l0D 0 then l1¤ 0 so we must have that ai D 0 for i � 2N �1 and bl D 0

for i � 3N � 1. In this case, vq.l/D 1, vq.A/� 2N and vq.B/� 3N .

Conversely, given a triple .A;B; l/ satisfying such order of vanishing conditions, we
may pick coordinates such that q D Œ0; 1�. Then clearly the 1–parameter subgroup
acting by .T0;T1/ 7! .�T0; �

�1T1/ demonstrates that .A;B; l/ is not stable.

In the case of K3 surfaces where N D 2, we obtain an especially pleasant result:
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Corollary 8.6 A point of M2 is stable if and only if it represents a 1–marked Weier-
strass fibration .f WX ! P1;S C �F / with at worst semi-log canonical singularities.

Proof First note that the generic fiber of the fibration f WX ! P1 represented by a
stable point in MN is at worst nodal, since the Weierstrass data of a stable point cannot
be identically 0. Then combining Proposition 8.5 with [33, Lemmas 3.2.1 and 3.2.2
and Corollary 3.2.4], and noting that the log canonical threshold of a type L=N2 fiber
is 0 (see Lemma 3.14), a point is unstable if and only if there exists a point q 2 P1

such that the pair .X;S C �F / is not semi-log canonical around the singular point of
f �1.q/. The result then follows since a Weierstrass fibration .X;SC�F / has semi-log
canonical singularities away from the singular points of the fibers.

Definition 8.7 If Ms
2

denotes the stable/semistable locus, we define eWG
DMs

2
==SL2.

Theorem 8.8 F� is a smooth Deligne–Mumford stack with a coarse space map
F� ! eWG given by the GIT compactification. Furthermore , there is a morphism
F�!WG given by forgetting the marked fiber. A Weierstrass fibration .f WX!P1;S/

is represented by a point in WG if and only if there exists a fiber F such that .X;SC�F /
is a stable pair.

Proof By the proof of Theorem 8.2 we obtain a birational morphism F�! ŒMs
2
=PGL2�.

On the other hand, by Corollary 8.6, there is a family of KSBA-stable one �–marked
Weierstrass fibrations .f WX!P1;SC�F / over Ms

2
. This induces a PGL2 equivariant

map Ms
2
! F� which gives an inverse map ŒMs

2
=PGL2�! F� exhibiting these as

isomorphisms. Then note that ŒMs
2
=PGL2� is a smooth stack, as Ms

2
is an open subset

of a smooth variety, so F� is smooth.

The composition F� ! ŒMs
2
=PGL2�!M2 == SL2 is the coarse moduli space map.

Indeed, ŒMs
2
=SL2� and ŒMs

2
=PGL2� have the same coarse moduli space; note that

ŒMs
2
=SL2� ! ŒMs

2
=PGL2� is a �2–gerbe since it is the base change of the map

BSL2 ! BPGL2, so ŒMs
2
=SL2� ! ŒMs

2
=PGL2� is a relative coarse space and the

coarse map ŒMs
2
=SL2�!Ms

2
==SL2 factors through it.

If .A;B; l/ is in Ms
2

then .A;B/ is a semistable point for Miranda’s space, and con-
versely if .A;B/ is semistable in Miranda’s space, then for a generic choice of fiber F ,
the corresponding fibration .X ! P1;S C eF / is a stable pair and the corresponding
GIT data .A;B; l/ is GIT stable.
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Chern characters for supersymmetric field theories

DANIEL BERWICK-EVANS

We construct a map from d j1–dimensional Euclidean field theories to complexified
K–theory when d D 1 and complex-analytic elliptic cohomology when d D 2. This
provides further evidence for the Stolz–Teichner program, while also identifying
candidate geometric models for Chern characters within their framework. The con-
struction arises as a higher-dimensional and parametrized generalization of Fei Han’s
realization of the Chern character in K–theory as dimensional reduction for 1j1–
dimensional Euclidean field theories. In the elliptic case, the main new feature is a
subtle interplay between the geometry of the super moduli space of 2j1–dimensional
tori and the derived geometry of complex-analytic elliptic cohomology. As a corollary,
we obtain an entirely geometric proof that partition functions of N D .0; 1/ super-
symmetric quantum field theories are weak modular forms, following a suggestion of
Stolz and Teichner.

55N34, 81T60

1 Introduction and statement of results

Given a smooth manifold M , Stolz and Teichner [26] have constructed categories of
d j1–dimensional super Euclidean field theories over M for d D 1; 2,

(1) d j1–EFT.M / WD Fun˝.d j1–EBord.M /;V/:

Its objects are symmetric monoidal functors from a bordism category d j1–EBord.M / to
a category of vector spaces V . The morphisms of d j1–EBord.M / are d j1–dimensional
super Euclidean bordisms with a map to a smooth manifold M . For details we refer
to Stolz and Teichner [26, Section 4]. In [26, Sections 1.5–1.6], they conjectured the
existence of cocycle maps

(2) 1j1–EFT.M / K.M /
cocycle

and 2j1–EFT.M / TMF.M /
cocycle

for K–theory and the cohomology theory of topological modular forms (TMF). In
this paper we construct subcategories Ld j1

0
.M /� d j1–EBord.M / consisting of super

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
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circles with maps to M when d D 1, and super tori with maps to M when d D 2, both
viewed as a particular class of closed bordisms over M . A super Lie group Eucd j1 acts
through super Euclidean isometries on super circles and super tori, inducing actions
on Ld j1

0
.M / for d D 1; 2.

Theorem 1.1 The invariant functions C1.Ld j1
0
.M //Eucd j1 determine cocycles in 2–

periodic cohomology with complex coefficients when d D 1, and cohomology with
coefficients in the ring MF of weak modular forms when d D 2. Composing with
restriction along Ld j1

0
.M /� d j1–EBord.M / determines maps from field theories to

these cohomology theories over C:

(3) 1j1–EFT.M /
restr
��! C1.L1j1

0
.M //Euc1j1

cocycle
����� H.M ICŒˇ; ˇ�1�/

with jˇj D �2, and

(4) 2j1–EFT.M /
restr
��! C1.L2j1

0
.M //Euc2j1

cocycle
����� H.M IMF/:

For M D pt, the map (4) specializes to part of an announced result of Stolz and
Teichner [26, Theorem 1.15]; see Remark 3.24. Applied to general manifolds M ,
one can identify H.� ICŒˇ; ˇ�1�/ with complexified K–theory, and H.� IMF/ with a
version of TMF over C; see Section 3.5. Hence, Theorem 1.1 proves a version of the
conjectures (2) over C.

We elaborate on this connection between Theorem 1.1 and the conjectures (2). The
maps (3) and (4) come from sending a field theory to its partition function. This
assignment defines a type of character map for field theories. Similarly, the cohomology
theories in (2) have Chern characters valued in certain cohomology theories defined
over C. Putting these ingredients together, we obtain the diagrams

(5)

1j1–EFT.M / K.M /

C1.L1j1
0
.M //Euc1j1 H.M ICŒˇ; ˇ�1�/

cocycle

restr Ch
cocycle

2j1–EFT.M / TMF.M /

C1.L2j1
0
.M //Euc2j1 H.M IMF/

cocycle

restr Ch
cocycle

One expects the cocycle maps in (2) will make these diagrams commute. This offers
new perspective on the conjectures (2), as we briefly summarize. Extending a partition
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function to a full field theory requires both additional data and property: a choice of
preimage under the map restr in (3) and (4) need not exist nor be unique. Similarly,
refining a cohomology class over C to a class in the target of (2) is both data and property:
a class is in the image of the Chern character if it satisfies an integrality condition,
and lifts of integral classes need not be unique owing to the presence of torsion. Up
to an equivalence relation called concordance (see below), the conjectures (2) assert
that the data and property determining such refinements — either as field theories or
cohomology classes — precisely match each other.

The concordance relation features in the full conjecture of Stolz and Teichner, which
asserts that the cocycle maps (2) induce bijections between concordance classes of field
theories and cohomology classes. Recall that for a sheaf F WMfldop! Set on the site of
manifolds, sections s0; s1 2 F.M / are concordant if there exists s 2 F.M �R/ such
that s0 D i�

0
s and s1 D i�

1
s, where i0; i1 WM ,!M �R are the inclusions at 0 and 1.

Concordance defines an equivalence relation on the set F.M /, whose equivalence
classes are concordance classes.

Proposition 1.2 The assignment M 7! C1.Ld j1
0
.M //Eucd j1 is a sheaf on the site of

manifolds. Concordance classes of sections map surjectively to H.M ICŒˇ; ˇ�1�/ and
H.M IMF/ when d D 1 and 2, respectively.

There is an analogous definition of concordance for (higher) stacks, where the stack
condition is used to show that the concordance relation is transitive. Assuming that
M 7! d j1–EFT.M / is a d–stack, Proposition 1.2 implies that concordance classes of
d j1–dimensional Euclidean field theories map to H.M ICŒˇ; ˇ�1�/ and H.M IMF/ for
dD1 and 2, respectively. We expect this to implement the Chern character for K–theory
and TMF through the maps on concordance classes induced by the diagrams (5).

This brings us to a technical point: although it is expected that the assignment
M 7! d j1–EFT.M / is a d–stack, when d D 2 this statement is contingent on a
fully extended enhancement of the existing definitions. This fully extended aspect is an
essential ingredient in Stolz and Teichner’s conjecture that concordance classes of 2j1–
dimensional field theories yield TMF; see [26, Conjecture 1.17]. In this paper, the source
of (4) uses the 1–categorical definition from [26]. Fully extended 2j1–dimensional
super Euclidean field theories should map to this 1–categorical version (via a forgetful
functor), and from this one would obtain a Chern character on concordance classes via
postcomposition with (4).
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1.1 Cocycles from partition functions

In physics, the best-known topological invariants associated with the field theories (1)
are the Witten index in dimension 1j1 (see eg Witten [27]), and the elliptic genus in
dimension 2j1 (see eg Witten [28] or Alvarez, Killingback, Mangano and Windey [1]).
These are examples of partition functions. For example, when d D 2 the partition
function of the N D .0; 1/ supersymmetric sigma model with target a string manifold
is a modular form called the Witten genus; see Witten [29]. This genus led Segal [23]
to suggest that certain 2–dimensional quantum field theories could provide a geometric
model for elliptic cohomology.

Stolz and Teichner refined these early ideas, leading to the conjectured cocycle maps (2).
In their framework (as in Segal’s [24]), partition functions are defined as the value of a
field theory on closed, connected bordisms [26, Definition 4.13]. The definition of a
super Euclidean field theory implies that this restriction determines a function invariant
under the action by super Euclidean isometries

(6) d j1–EFT.M /! C1.fclosed bordisms over M g/isometries:

Fei Han [18] shows that (6) applied to a class of 1j1–dimensional closed bordisms
over M ,

(7) Map.R0j1;M /'Map.R1j1=Z;M /S
1

�Map.R1j1=Z;M /� 1j1–Bord.M /;

encodes the Chern character in K–theory. To summarize, restriction along (7) evaluates
a 1j1–dimensional Euclidean field theory on length 1 super circles whose map to M

is invariant under the action of loop rotation. This restriction is also a version of
dimensional reduction. When the input 1j1–dimensional Euclidean field theory is
constructed via Dumitrescu’s [14] super parallel transport for a vector bundle with
connection, the resulting element in C1.Map.R0j1;M //'��.M / is a differential
form representative of the Chern character of that vector bundle.

The cocycle map (4) is a more elaborate version of restriction along (7). The goal is to
find an appropriate class of closed 2j1–dimensional bordisms so that the restriction (6)
constructs a map from 2j1–dimensional Euclidean field theories to complex-analytic
elliptic cohomology. There are two main problems to be solved in this 2–dimensional
generalization. First, one cannot specialize to a particular super torus, as in the spe-
cialization to the length 1 super circle in (7). Indeed, elliptic cohomology over C is
parametrized by the moduli of all complex-analytic elliptic curves. This problem is
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easy enough to solve, though its resolution introduces some technicalities: one restricts
to a moduli stack of super tori.

The second obstacle is more serious. Stolz and Teichner’s field theories are neither
chiral nor conformal, and hence restriction only gives a smooth function on the moduli
stack of super Euclidean tori. On the other hand, a class in complex-analytic elliptic
cohomology only depends on the holomorphic part of the conformal modulus of a
torus. Resolving this apparent mismatch comes through a surprising feature of the
super moduli space L2j1

0
.M /: the failure of conformality and holomorphy is measured

by a specified de Rham coboundary; see Proposition 1.5. Loosely, this shows that
functions on L2j1

0
.M / possess a kind of derived holomorphy and conformality.

1.2 Outline of the proof

Theorem 1.1 boils down to somewhat technical computations in supermanifolds, so
we briefly outline the approach and state key intermediate results in terms of ordinary
(nonsuper) geometry. There are three main steps in the construction:

(i) Construct the super moduli spaces Ld j1
0
.M /.

(ii) Compute the algebras of Eucd j1–invariant functions C1.Ld j1
0
.M //Eucd j1 in

terms of differential form data on M .

(iii) Construct the cocycle maps (3) and (4) using the output of step (ii).

The main work is in step (ii), culminating in Propositions 1.4 and 1.5 below.

For step (i), we start by defining

(8) Ld j1.M / WDMd j1
�Map.Rd j1=Zd ;M /; Ld j1.M /� d j1–Bord.M /;

where Md j1 is the moduli space of super Euclidean structures on Rd j1=Zd , and
Map.Rd j1=Zd ;M / is the generalized supermanifold of maps from Rd j1=Zd to M .
Hence, an S–point of L1j1.M / determines a family of super Euclidean circles with a
map to M , and an S–point of L2j1.M / determines a family of super Euclidean tori
with a map to M . There is a canonical functor Ld j1.M /! d j1–Bord.M /, regarding
these supermanifolds as bordisms from the empty set to the empty set. Next we consider
the subobject of (8) gotten by taking maps invariant under the Rd –action on Rd j1=Zd

by precomposition. Equivalently, this is the S1 DR=Z–fixed subspace when d D 1

and the T 2 D R2=Z2–fixed subspace when d D 2. This yields finite-dimensional
subobjects

(9) Md j1
�Map.R0j1;M /' Ld j1

0
.M / WD Ld j1.M /R

d =Zd

� Ld j1.M /
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that, roughly speaking, are the subspaces of maps that are constant up to nilpotents.
Restricting a field theory along the composition Ld j1

0
.M /�Ld j1.M /!d j1–Bord.M /

extracts a function, providing the first arrow in (3) and (4),

(10) restr W d j1–EFT.M /! C1.Ld j1
0
.M //Eucd j1 :

See Lemmas 2.12 and 3.15.

Remark 1.3 The restriction (10) is dimensional reduction in the sense of [10, Glossary],
though it differs from dimensional reduction in the sense of [26, Section 1.3].

Step (ii) is a technical computation. The d D 1 case is characterized as follows.

Proposition 1.4 The elements of C1.L1j1
0
.M //Euc1j1 are in bijection with pairs

.Z;Z`/, where

(11) Z 2 .��cl.M IC
1.R>0/Œˇ; ˇ

�1�//0; Z` 2 .�
�.M IC1.R>0/Œˇ; ˇ

�1�//�1;

with jˇj D �2. Here Z is closed of total degree zero , Z` is of total degree �1, and
they satisfy

(12) @`Z D dZ`;

where d is the de Rham differential on M, and @` is the vector field on R>0 associated
to the standard coordinate ` 2 C1.R>0/.

For the d D 2 case, let H � C denote the upper half-plane with standard complex
coordinates �; x� 2 C1.H/, and let v 2 C1.R>0/ be the standard coordinate.

Proposition 1.5 The elements of C1.L2j1
0
.M //Euc2j1 are in bijection with triples

.Z;Zx� ;Zv/, where

(13)
Z 2 .��cl.M IC

1.H�R>0/Œˇ; ˇ
�1�/SL2.Z//0;

Zx� ;Zv 2 .�
�.M IC1.H�R>0/Œˇ; ˇ

�1�//�1;

with jˇj D�2. Here Z is closed of total degree zero , Zx� and Zv are of total degree �1,
they satisfy an SL2.Z/–invariance property stated in Lemma 3.23, and

(14) @vZ D dZv and @x�Z D dZx� ;

where d is the de Rham differential on M, and @x� and @v are vector fields on H

and R>0.
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In Propositions 1.4 and 1.5, the closed differential form Z arises by restriction to a
subspace

R>0 �Map.R0j1;M / ,! L1j1
0
.M /;(15)

Lat�Map.R0j1;M / ,! L2j1
0
.M /;(16)

where Lat is the space of based, oriented lattices in C. Indeed, (11) and (13) come
from

(17)
C1.R>0�Map.R0j1;M //Euc1j1 ' .�cl.M IC

1.R>0/Œˇ; ˇ
�1�//0;

C1.Lat�Map.R0j1;M //Euc2j1 ' .��.M IC1.H�R>0/Œˇ; ˇ
�1�/SL2.Z//0:

When d D 1, ` 2R>0 corresponds to (super) circles of length `, and (12) shows that
the failure of Z 2 C1.R>0�Map.R0j1;M //Euc1j1 to be independent of this length is
d–exact. When d D 2, a point .�; x�; v/ 2H�R>0 corresponds to (super) Euclidean
tori with conformal modulus .�; x�/ and total volume v. Then Zv and (14) show that
the failure of Z 2 C1.Lat�Map.R0j1;M //Euc2j1 to be independent of the volume is
d–exact. Similarly, Zx� and (14) show that the failure of Z to depend holomorphically
on the conformal modulus is d–exact. This is the precise sense in which functions
on L2j1

0
.M / exhibit a derived version of holomorphy and conformality.

Finally for step (iii), we consider the maps, with notation from Propositions 1.4 and 1.5,

C1.L1j1
0
.M //!H.M IC1.R>0/Œˇ; ˇ

�1�/; .Z;Z`/ 7! ŒZ�;(18)

C1.L2j1
0
.M //!H.M IC1.H�R>0/Œˇ; ˇ

�1�/SL2.Z/; .Z;Zx� ;Z`/ 7! ŒZ�;(19)

where jˇj D �2 and has weight 1 for SL2.Z/, meaning ˇ 7! .c� C d/ˇ.

Proof of Theorem 1.1 from Propositions 1.4 and 1.5 Starting with the d D 1 case,
we claim that the map (18) factors through cohomology with coefficients in the subring
CŒˇ; ˇ�1� ,! C1.R>0/Œˇ; ˇ

�1�, including as the constant functions on R>0. Indeed,
observe that

(20) @`ŒZ�D Œ@`Z�D ŒdZ`�D 0;

using (12). Hence, ŒZ� 2 H.M ICŒˇ; ˇ�1�/ � H.M IC1.R>0/Œˇ; ˇ
�1�/, and (18)

determines the cocycle map in (3).

Similarly, the map (19) factors through cohomology with coefficients in the subring

(21) MF' .O.H/Œˇ; ˇ�1�/SL2.Z/ ,! .C1.H�R>0/Œˇ; ˇ
�1�/SL2.Z/;
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where MF is the ring of weak modular forms; see Definition 3.26. The map (21) is the
pullback of smooth functions along the projection H�R>0!H composed with the
inclusion O.H/� C1.H/. Indeed, we have

@v ŒZ�D Œ@vZ�D ŒdZv �D 0 and @x� ŒZ�D Œ@x�Z�D ŒdZx� �D 0

using (14), where the first set of equalities demonstrate independence from R>0, while
the second demonstrate holomorphic dependence on H. Finally, the SL2.Z/–invariance
property for Z (see Lemma 3.23) shows that ŒZ� is indeed a cohomology class valued
in modular forms,

ŒZ� 2 H.M IMF/� H.M IC1.H�R>0/Œˇ; ˇ
�1�/SL2.Z/;

and hence (19) determines the cocycle map in (4).

Surjectivity of the cocycle maps (3) and (4) follows from the inclusions

��cl.M ICŒˇ; ˇ
�1�/ ,! C1.L1j1

0
.M //; ! 7! .!; 0/D .Z;Z`/;

��cl.M IMF/ ,! C1.L2j1
0
.M //; ! 7! .!; 0; 0/D .Z;Zx� ;Zv/;

using the description of functions from Propositions 1.4 and 1.5 and the maps on
coefficients described in the previous two paragraphs. The definition of the maps (18)
and (19) together with the de Rham theorem then implies that every cohomology class
admits a refinement to a function on Ld j1

0
.M /.

The following remarks relate our results to other work.

Remark 1.6 The above analysis of the moduli space of super Euclidean tori is related
to previous investigations of moduli spaces of super Riemann surfaces in the string
theory literature; see eg Donagi and Witten [13] and Witten [30]. However, the vast
majority of prior constructions in string theory and in the Stolz–Teichner program only
study the reduced moduli spaces. In particular, the cocycle models for (equivariant)
elliptic cohomology in Berwick-Evans [7; 6], Barthel, Berwick-Evans and Stapleton [3]
and Berwick-Evans and Tripathy [8] arise as functions on the reduced moduli space. In
this prior work, the correct mathematical object comes only after imposing holomorphy
by hand. However, as Theorem 1.1 shows, this property emerges naturally from the
geometry of 2j1–dimensional super tori.

Remark 1.7 When M D pt, Proposition 1.5 shows that partition functions of N D
.0; 1/ supersymmetric quantum field theories are weak modular forms: �odd.pt/D f0g,
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so Zv D Zx� D 0 are no additional data. In contrast to the arguments in the physics
literature that analyze a particular action functional (eg [9, Sections 4.3–4.4]), the proof
here emerges entirely from the geometry of the moduli space of super Euclidean tori.
This recovers Stolz and Teichner’s claim from [26, page 10] that “holomorphicity is a
consequence of the more intricate structure of the moduli stack of supertori”.

Remark 1.8 The data Zx� in Proposition 1.5 is closely related to anomaly cancellation
in physics and choices of string structures in geometry. An illustrative example is the
elliptic Euler class: an oriented vector bundle V !M determines a class ŒEu.V /� 2
H.M IMF/ if the Pontryagin class Œp1.V /� 2 H4.M IR/ vanishes. In Section 3.7 we
show that the set of differential forms H 2�3.M IR/ with p1.V /D dH parametrizes
cocycle refinements of ŒEu.V /� to a function on L2j1

0
.M /. Geometrically, H is part

of the data of a string structure on V . In physics, H is part of the data for anomaly
cancellation in a theory of V –valued free fermions. Under the conjectured cocycle
maps (2), V –valued free fermions are expected to furnish representatives of elliptic
Euler classes in TMF.M /; see Stolz and Teichner [25, Section 4.4]. Perturbative
quantization of fermions rigorously constructs elliptic Euler cocycles over C (see
Berwick-Evans [6, Section 6]), and Theorem 1.1 shows that lifting a cohomology class
to a 2j1–dimensional Euclidean field theory must depend on a choice of string structure,
at least rationally.

Remark 1.9 If the input field theory in (4) is super conformal, then dZv D 0, whereas
if the input theory is holomorphic then dZx� D 0. For a general field theory (not
necessarily conformal or holomorphic) the differential form @x�Z` � @`Zx� is closed.
These closed forms have the potential to encode secondary cohomological invariants
of field theories. Although we do not know explicit field theories for which this
cohomology class is nonzero, the structure appears to be related to mock modular
phenomena and the TMF–valued torsion invariants studied in Gaiotto, Johnson-Freyd
and Witten [17] and Gaiotto and Johnson-Freyd[16].

Remark 1.10 In light of Fei Han’s work [18] on the Bismut–Chern character, it
is tempting to think of the restriction 2j1–EFT.M /! C1.L2j1.M //Euc2j1 (without
taking T 2–invariant maps) as a candidate construction of the elliptic Bismut–Chern
character. Indeed, functions on C1.L2j1.M //Euc2j1 can be identified with cocycles
analogous to (14), where Z is a differential form on the double loop space and the
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de Rham differential d is replaced with the T 2–equivariant differential investigated in
Berwick-Evans [5].

1.3 Conventions for supermanifolds

This paper works in the category of supermanifolds with structure sheaves defined
over C; this is called the category of cs–supermanifolds in Deligne and Morgan [12].
The majority of what we require is covered in the concise introduction [26, Section 4.1],
but we establish a little notation presently. First, all functions and differential forms
are C–valued. The supermanifolds Rnjm are characterized by their super algebra of
functions C1.Rnjm/'C1.RnIC/˝Cƒ

�Cm. The representable presheaf associated
with Rnjm assigns to a supermanifold S the set

Rnjm.S/ WD ft1; t2; : : : ; tn 2 C1.S/ev; �1; �2; : : : ; �m 2 C1.S/odd
j .ti/red D .ti/redg;

where .ti/red denotes the restriction of a function to the reduced manifold Sred ,! S ,
and .ti/red is the conjugate of the complex-valued function .ti/red on the smooth mani-
fold Sred. We use this functor of points description throughout the paper, typically with
Roman letters denoting even functions and Greek letters denoting odd functions.

We follow Stolz and Teichner’s terminology, wherein a presheaf on supermanifolds
is called a generalized supermanifold. An example of a generalized supermanifold
is Map.X;Y / for supermanifolds X and Y , which assigns to a supermanifold S

the set of maps S �X ! Y . For a manifold M regarded as a supermanifold, the
generalized supermanifold Map.R0j1;M / is isomorphic to the representable presheaf
associated to the odd tangent bundle …TM , as we recall briefly. We use the notation
.x;  /2…TM.S/ for an S–point, where x WS!M is a map and 2�.S Ix�TM /odd

is an odd section. This gives an S–point .xC � / 2Map.R0j1;M / by identifying x

with an algebra map x W C1.M /! C1.S/ and  W C1.M /! C1.S/ with an odd
derivation relative to x. These fit together to define an algebra map

(22) C1.M /
.x; /
���! C1.S/˚ � �C1.S/' C1.S �R0j1/;

with the isomorphism coming from Taylor expansion in a choice of odd coordinate
� 2 C1.R0j1/. The map (22) is equivalent to S � R0j1 ! M , ie an S–point of
Map.R0j1;M /. The functions C1.Map.R0j1;M //'C1.…TM /'��.M / recover
differential forms on M as a Z=2–graded C–algebra. The action of automorphisms
of R0j1 on this algebra encode the de Rham differential and the grading operator on
forms; see eg [19, Section 3].
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2 A map from 1j1–Euclidean field theories to complexified
K–theory

The main goal of this section is to prove Proposition 1.4. From the discussion
in Section 1.2, this proves the d D 1 case of Theorem 1.1. We also prove Proposition 1.2
when d D 1, and connect this result with Chern characters of super connections.

2.1 The moduli space of super Euclidean circles

Definition 2.1 Let E1j1 denote the super Lie group with underlying supermanifold
R1j1 and multiplication

(23) .t; �/ � .t 0; � 0/D .t C t 0C i�� 0; � C � 0/ for .t; �/; .t 0; � 0/ 2R1j1.S/:

Define the super Euclidean group as Euc1j1 WD E1j1 Ì Z=2, where the semidirect
product is defined using the Z=2D f˙1g–action by reflection, .t; �/ 7! .t;˙�/, for
.t; �/ 2 E1j1.S/.

The super Lie algebra of E1j1 is generated by a single odd element, namely the left-
invariant vector field D D @� � i�@t . The right-invariant generator is QD @� C i�@t .
The super commutators are

(24) 1
2
ŒD;D�DD2

D�i@t and 1
2
ŒQ;Q�DQ2

D i@t :

Remark 2.2 The factors of i D
p
�1 in (23) and (24) come from Wick rotation;

see eg [12, page 95, Example 4.9.3]. This differs from the convention for the 1j1–
dimensional Euclidean group in [20, Definition 33], but is more closely aligned with
the Wick rotated 2j1–dimensional Euclidean geometry defined in [26, Section 4.2] and
studied below.

Let R1j1
>0

denote the supermanifold gotten by restricting the structure sheaf of R1j1 to
the positive reals, R>0 �R.
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Definition 2.3 Given an S–point .`; �/ 2 R1j1
>0
.S/, the family of 1j1–dimensional

super Euclidean circles is defined as the quotient

(25) S
1j1

`;�
WD .S �R1j1/=Z

for the left Z–action over S determined by the formula

(26) n � .t; �/D .t C n`C i n��; n�C �/ for n 2 Z.S/; .t; �/ 2R1j1.S/:

Equivalently this is the restriction of the left E1j1–action on S �R1j1 to the S–family
of subgroups Z�S � E1j1 �S with generator

f1g �S ' S
.`;�/
,��!R1j1

>0
�S � E1j1

�S:

Define the standard super Euclidean circle, denoted by S1j1 D S
1j1
1;0
DR1j1=Z, as the

quotient by the action for the standard inclusion Z�R� E1j1.

Remark 2.4 The S–family of subgroups S �Z ,! S �E1j1 generated by .`; �/ 2
R1j1
>0
.S/ is normal if and only if �D 0. Hence, the standard super circle S1j1 inherits

a group structure from E1j1, but a generic S–family of super Euclidean circles S
1j1

`;�

does not.

Remark 2.5 There is a more general notion of a family of super circles where (26)
incorporates the action by Z=2 < Euc1j1. This moduli space has two connected
components corresponding to choices of spin structure on the underlying ordinary circle,
with the component from Definition 2.3 corresponding to the odd (or nonbounding)
spin structure. This turns out to be the relevant component to recover complexified
K–theory.

We recall [26, Definitions 2.26, 2.33 and 4.4]: for a supermanifold M with an action by
a super Lie group G, an .M;G/–structure on a family of supermanifolds T ! S is an
open cover fUig of T with isomorphisms to open sub-supermanifolds ' W Ui

��! Vi �

S �M and transition data gij W Vi \ Vj ! G compatible with the 'i and satisfying
a cocycle condition. An isometry between supermanifolds with .M;G/–structure is
defined as a map T ! T 0 over S that is locally given by the G–action on M, relative
to the open covers fUig of T and fU 0i g of T 0. Supermanifolds with .M;G/–structure
and isometries form a category fibered over supermanifolds.

Definition 2.6 [26, Section 4.2] A super Euclidean structure on a 1j1–dimensional
family T ! S is an .M;G/–structure for the left action of G D Euc1j1 on MDR1j1.
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Lemma 2.7 An S–family of super circles (25) has a canonical super Euclidean
structure.

Proof We endow a family of super circles with a 1j1–dimensional Euclidean structure
as follows. Take the open cover S �R1j1! S

1j1

`;�
supplied by the quotient map, and

take transition data from the Z–action on S �R1j1. By definition this Z–action is
through super Euclidean isometries, and so the quotient inherits a super Euclidean
structure.

We observe that every family of super circles pulls back from the universal family
.R1j1
>0
�R1j1/=Z!R1j1

>0
along a map S !R1j1

>0
. Hence,

M1j1
WDR1j1

>0
and S1j1

WD .R1j1
>0
�R1j1/=Z!R1j1

>0

are the moduli space of super Euclidean circles and the universal family of super
Euclidean circles, respectively. The following shows that M1j1DR1j1

>0
can equivalently

be viewed as the moduli space of super Euclidean structures on the standard super
circle.

Lemma 2.8 There exists an isomorphism of supermanifolds over R1j1
>0

,

(27) R1j1
>0
�S1j1 ��! S1j1;

from the constant R1j1
>0

–family with fiber the standard super circle , to the universal
family of super circles. This isomorphism does not preserve the super Euclidean
structure on S1j1.

Proof Define the map

(28) R1j1
>0
�R1j1

!R1j1
>0
�R1j1; .`; �; t; �/ 7! .`; �; t.`C i��/; � C t�/;

for .`; �/ 2R1j1
>0
.S/ and .t; �/ 2R1j1.S/. Observe that (28) is Z–equivariant for the

action on the source and target given by

n � .`; �; t; �/D .`; �; tCn; �/ and n � .`; �; t; �/D .`; �; tCn.`C i��/; �Cn�/;

respectively. Hence (28) determines a map between the respective Z–quotients, defining
a map (27). This is easily seen to be an isomorphism of supermanifolds. Since (27)
is not locally determined by the action of Euc1j1 on R1j1, it is not a super Euclidean
isometry.

The following result gives an S–point formula for the action of Euc1j1 on S1j1 and
M1j1 DR1j1

>0
coming from isometries between super Euclidean circles.
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Lemma 2.9 Given .`; �/ 2R1j1
>0
.S/DM1j1.S/ and .s; �;˙1/ 2 .E1j1ÌZ=2/.S/D

Euc1j1.S/, there is an isometry f.s;�;˙1/ W S
1j1

`;�
! S

1j1

`0;�0
of super Euclidean circles

over S sitting in the diagram

S �R1j1 S �R1j1

S
1j1

`;�
S

1j1

`0;�0

.s;�;˙1/ �

f.s;�;˙1/

where the upper horizontal arrow is determined by the left Euc1j1–action on R1j1, the
left vertical arrow is the quotient map (51) for .`; �/, and the right vertical arrow is the
quotient map for

(29) .`0; �0/ WD .`˙ 2i��;˙�/:

Proof Consider the diagram

(30)
Z�S �R1j1 Z�S �R1j1

S �R1j1 S �R1j1

.s;�;˙1/ �

.`;�/ �

.s;�;˙1/ �

.`0;�0/ �

where the horizontal arrows denote the left action of .s; �;˙1/2Euc1j1.S/ on S�R1j1

while the vertical arrows denote the left Z–action generated by .`; �/; .`0; �0/2R1j1
>0
.S/.

The square (30) commutes if and only if .`0; �0/D .s; �;˙1/ � .`; �/ � .s; �;˙1/�1 2

R1j1
>0
.S/� E1j1.S/, ie (29) holds. Commutativity of the diagram (30) gives a map on

the Z–quotients, which is precisely a map S
1j1

`;�
!S

1j1

`0;�0
. This map is locally determined

by the action of E1j1 ÌZ=2, and hence respects the super Euclidean structures.

2.2 Super Euclidean loop spaces

Definition 2.10 The super Euclidean loop space is the generalized supermanifold

L1j1.M / WDR1j1
>0
�Map.S1j1;M /:

We identify an S–point of L1j1.M / with a map S
1j1

`;�
!M given by the composition

(31) S
1j1

`;�
' S �S1j1

!M;

by pulling back the isomorphism from Lemma 2.8 along the map .`; �/ W S !R1j1
>0

.
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We will define a left action of Euc1j1 on L1j1.M / determined by the diagram

(32)
S

1j1

`;� S �S1j1

S
1j1

`0;�0 S �S1j1

M

'

f

'

�

�0

where the horizontal arrows are the pullback of the isomorphism in Lemma 2.8, and
the super Euclidean isometry f is from Lemma 2.9 with .`0; �0/ D .`˙ 2��;˙�/.
The arrow �0 is uniquely determined by these isomorphisms and the input map �.
Hence, given .`; �; �/ 2R1j1

>0
.S/�Map.S1j1;M /.S/ and an S–point of Euc1j1, the

Euc1j1–action on L1j1.M / outputs .`0; �0; �0/ as in (32).

Remark 2.11 Precomposition actions (such as the action of Euc1j1 on Map.S1j1;M /

above) are most naturally right actions. Turning this into a left action involves inversion
on the group: the formula for �0 in (32) involves � and the inverse of f . This inversion
introduces signs in the formulas for the left Euc1j1–action on L1j1

0
.M / below. Our

choice to work with left actions is consistent with Freed’s conventions for classical
supersymmetric field theories [15, pages 44–45]; see also [11, page 357].

There is an evident S1–action on L1j1.M / coming from the precomposition action of
S1DE=Z<E1j1=Z on Map.S1j1;M /. Since the quotient is given by S1j1=S1'R0j1,
the S1–fixed points are

(33) L1j1
0
.M / WDR1j1

>0
�Map.R0j1;M /�R1j1

>0
�Map.S1j1;M /D L1j1.M /:

We identify an S–point of L1j1
0
.M / with a map S

1j1

`;�
!M that factors as

(34) S
1j1

`;�
' S �S1j1

D S �R1j1=Z
p
�! S �R0j1

!M;

where the map p is induced by the projection R1j1!R0j1. The action (32) preserves
this factorization condition; we give an explicit formula in Lemma 2.13 below. Hence,
the inclusion (33) is Euc1j1–equivariant.

Lemma 2.12 There is a functor L1j1
0
.M /! 1j1–EBord.M / that induces a restriction

map

(35) restr W 1j1–EFT.M /! C1.L1j1
0
.M //Euc1j1 :
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Proof The 1j1–dimensional Euclidean bordism category over M is constructed
by inputting the 1j1–dimensional Euclidean geometry from Definition 2.6 into the
definition of a geometric bordism category [26, Definition 4.12]. The result is a
category 1j1–EBord.M / internal to stacks on the site of supermanifolds; in partic-
ular, 1j1–EBord.M / has a stack of morphisms consisting of proper families of 1j1–
dimensional Euclidean manifolds with a map to M , with additional decorations related
to the source and target of a bordism.

By Lemma 2.7, super Euclidean circles give examples of S–families of 1j1–dimensional
Euclidean manifolds. An S–point of L1j1

0
.M / therefore defines a proper S–family

of 1j1–Euclidean manifolds with a map to M via (34). We can identify this with
an S–family of morphisms in 1j1–EBord.M / whose source and target are the empty
supermanifold equipped with the unique map to M . This defines a functor L1j1

0
.M /!

1j1–EBord.M / and a restriction map 1j1–EFT.M /! C1.L1j1
0
.M //. We refer to

the discussion preceding [26, Definition 4.13] for an explanation why the restriction to
closed bordisms extracts a function from a field theory.

Finally we argue that this restriction has image in Euc1j1–invariant functions. By
definition, an isometry between 1j1–dimensional Euclidean manifolds comes from
the action of the super Euclidean group Euc1j1 D E1j1 Ì Z=2 on the open cover
defining the super Euclidean manifold. By Lemma 2.9, the action (32) on L1j1

0
.M / is

therefore through super Euclidean isometries of super circles compatible with the maps
to M . By definition, these isometries define isomorphisms between the bordisms (34)
in 1j1–EBord.M /. Functions on a stack are functions on objects invariant under
the action of isomorphisms. Hence, the restriction 1j1–EFT.M /! C1.L1j1

0
.M //

necessarily takes values in functions invariant under Euc1j1, yielding the claimed
map (35).

2.3 Computing the action of Euclidean isometries

Lemma 2.13 The left Euc1j1–action on R1j1
>0
�Map.R0j1;M / is given by

(36) .s; �;˙1/ � .`; �;x;  /D

�
`˙ 2i��;˙�;x˙

�
�s

`
� �

�
 ;˙e�i��=` 

�
;

using notation for the functor of points ,

(s; �;˙1/ 2 .E1j1 ÌZ=2/.S/' Euc1j1.S/;

(`; �/ 2R1j1
>0
.S/;

(x;  / 2…TM.S/'Map.R0j1;M /.S/:
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Proof Let p`;� W S
1j1

`;�
! S � R0j1 denote the composition of the left three maps

in (34). Given .s; �;˙1/ 2 Euc1j1.S/, .`; �/ 2 R1j1
>0
.S/ and .x;  / 2 …TM.S/ '

Map.R0j1;M /.S/, the goal of the lemma is to compute formulas for .`0; �0/2R1j1
>0
.S/

and .x0;  0/ 2…TM.S/ in the diagram

(37)

S
1j1

`;� S �R0j1

S
1j1

`0;�0 S �R0j1

M

p`;�

fs;�;˙1

p`0;�0

.x; /

.x0; 0/

where the arrow labeled by fs;�;˙1 denotes the isometry between super Euclidean
circles from Lemma 2.9 for .s; �;˙1/ 2 Euc1j1.S/. Hence, we see that .`0; �0/ is given
by (29). To compute .x0;  0/, we find a formula for the dashed arrow in (37). To start,
consider the map

zp`;� WR
1j1
�S !R0j1

�S; zp`;�.t; �/D � ��
t

`
;

which is part of the inverse to the isomorphism (28). Indeed, we check the Z–invariance
condition for the action (26),

zp`;�.n � .t; �//D zp`;�.n`C t C i n��; n�C �/D n�C � ��
n`CtCi n��

`
D � ��

t

`
:

Hence zp`;� determines a map p`;� W S
1j1

`;�
! S �R0j1, which is the map in (37). From

this we see that the dashed arrow in (37) is unique and determined by

� 7! ˙

�
� C ���

sC i��

`

�
; with .s; �;˙1/ 2 Euc1j1.S/; � 2R0j1.S/:

The left action (32) is given by (see Remark 2.11 for an explanation of the signs)

.xC � / 7! x˙

�
� � ���

�s� i��

`

�
 D x˙

�
�s

`
� �

�
 ˙ �

�
1� i

��

`

�
 ;

which is the claimed formula for .x0;  0/.

Just as R–actions on ordinary manifolds are determined by flows of vector fields,
E1j1–actions on supermanifolds are determined by the flow of an odd vector field.
This comes from differentiating a left E1j1–action at zero and considering the action
by the element Q of the super Lie algebra, using the notation from (24). Odd vector
fields on supermanifolds are precisely odd derivations on their functions. We note the
isomorphism

(38) C1.L1j1
0
.M //' C1.R1j1

>0
�Map.R0j1;M //' C1.R1j1

>0
/˝��.M /

' C1.R>0/Œ��˝�
�.M /;
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where (in an abuse of notation) we let `; �2C1.R1j1
>0
/ denote the coordinate functions

associated with the universal family of super circles S DR1j1
>0
!R1j1

>0
�R1j1. In the

above, we used that

C1.Map.R0j1;M //'��.M / and C1.S �T /' C1.S/˝C1.T /

for supermanifolds S and T using the projective tensor product of Fréchet algebras; see
for instance [20, Example 49]. Let deg W��.M /!��.M / denote the (even) degree
derivation determined by deg.!/D k! for ! 2�k.M /.

Lemma 2.14 The left E1j1–action (36) on L1j1
0
.M / is generated by the odd derivation

(39) yQ WD 2i�
d

d`
˝ id� id˝ d� i

�

`
˝ deg

using the identification of functions (38), where d is the de Rham differential and deg is
the degree derivation on differential forms.

Proof We recall that right-invariant vector fields generate left actions, so that the
infinitesimal action of E1j1 on L1j1

0
.M / is determined by the action of Q. Furthermore,

minus the de Rham operator generates the left E0j1–action .x;  / 7! .x � � ; /

on …TM , and minus the degree derivation generates the left R�–action .x;  / 7!
.x;u�1 /; see eg [19, Section 3.4]. Applying the derivation QD @�C i�@s to (36)
and evaluating at .s; �/D 0 recovers (39).

2.4 The proof of Proposition 1.4

The Euc1j1–equivariant inclusion

R>0 �Map.R0j1;M / ,!R1j1
>0
�Map.R0j1;M /D L1j1

0
.M /

is along S–families of super circles with �D 0. So by Lemmas 2.13 and 2.14 we have

C1.R>0 �Map.R0j1;M //Euc1j1 '��.M IC1.R>0//
E1j1ÌZ=2

'�ev
cl .M IC

1.R>0//

using (36) to see that Z=2 acts through the parity involution (so invariant functions are
even forms) and (39) to see that the E1j1–action is generated by minus the de Rham d
(so invariant functions are closed forms). This verifies the equality (17) when d D 1

and extracts the data Z from an element of C1.L1j1
0
.M //Euc1j1 .
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Next, observe that

C1.L1j1
0
.M //' C1.R1j1

>0
�Map.R0j1;M //'��.M IC1.R1j1

>0
//

'��.M IC1.R>0/Œ��/;

where the final isomorphism comes from Taylor expansion of functions on R1j1
>0

in the
odd coordinate function �. For convenience we choose the parametrization of functions

(40) C1.L1j1
0
.M //' f`deg =2.ZC 2i�`1=2Z`/ jZ;Z` 2�

�.M IC1.R>0//g;

where `deg =2!D `k=2! for ! 2�k.M IC1.R>0//. We again have that Z=2<Euc1j1

acts by the parity involution, so since � is odd and ` is even we find

C1.L1j1
0
.M //Z=2

D f`deg =2.ZC 2i�`1=2Z`/ jZ 2�
ev.M IC1.R>0//;Z` 2�

odd.M IC1.R>0//g:

Next we compute

yQ.`deg =2ZC 2i�`1=2`deg =2Z`/

D 2i�
d

d`
.`deg =2Z/� `�1=2`deg =2dZ � 2i�`deg =2dZ` � i

�

`
`deg =2 deg.Z/

D�`�1=2`deg =2dZC 2i�`deg =2
�

dZ

d`
� dZ`

�
;

where in the first equality we use that d.`deg =2!/D `�1=2`deg =2.d!/, and in the second
equality we expand

2i�
d

d`
.`deg =2Z/

using the product rule and then simplify. Hence

(41) yQ.`deg =2.ZC 2i�`1=2Z`//D 0 () dZ D 0 and dZ` D
dZ

d`
:

By Lemma 2.14, yQ generates the E1j1–action and, since E1j1 is connected, yQ–invariant
functions are equivalent to E1j1–invariant functions. Finally, we identify even differ-
ential forms with elements of ��.M IC1.R>0/Œˇ; ˇ

�1�/ of total degree zero and
odd differential forms with elements of ��.M IC1.R>0/Œˇ; ˇ

�1�/ of total degree �1

(essentially replacing ` in (40) by ˇ). This completes the proof of Proposition 1.4.

2.5 Concordance classes of functions

For Proposition 1.2 we require a refinement of the cocycle map.
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Definition 2.15 Using the notation from Proposition 1.4, for each � 2R>0 define a
map

2cocycle� W C
1.L1j1

0
.M //Euc1j1 ! .��cl.M ICŒˇ; ˇ

�1�//0;

2cocycle�.Z;Z`/DZ.�/;

where Z.�/ denotes evaluation at � 2R>0 and .��cl.M ICŒˇ; ˇ
�1�//0 is the space of

closed differential forms of total degree zero.

Lemma 2.16 The composition

C1.L1j1
0
.M //Euc1j1

1cocycle�
����! .��cl.M ICŒˇ; ˇ

�1�//0
de Rham
����! H.M ICŒˇ; ˇ�1�/

agrees with (3) and hence is independent of �.

Proof The calculation (20) shows

Œ2cocycle�.Z;Z`/�D ŒZ.�/�D ŒZ�Dcocycle.Z;Z`/2H.M ICŒˇ; ˇ�1�/

�H.M IC1.R>0/Œˇ; ˇ
�1�/:

In particular, the class underlying 2cocycle�.Z;Z`/ is independent of �.

Proof of Proposition 1.2 for d D1 Proposition 1.4 implies M 7!C1.L1j1
0
.M //Euc1j1

is a sheaf on the site of smooth manifolds. The map in Definition 2.15 is a morphism
of sheaves

(42) 2cocycle� W C
1.L1j1

0
.�//Euc1j1 !�ev

cl .�ICŒˇ; ˇ
�1�/

taking values in closed forms of even degree. By Stokes’ theorem, concordance classes
of closed forms on a manifold M are cohomology classes. Hence, taking concordance
classes of the map (42) applied to a manifold M proves the proposition when d D 1.

2.6 The Chern character of a super connection

A super connection A on a Z=2–graded vector bundle V !M is an odd C–linear
map satisfying the Leibniz rule [22]

A W��.M IV /!��.M IV /; A.f s/D df � sC .�1/jf jfAs;

for f 2��.M / and s 2��.M IV /. One can express a super connection as a finite sum
A D

P
j Aj , where Aj W �

�.M IV /! ��Cj .M IV / raises differential form degree
by j . Note that A1 is an ordinary connection on V , and Aj is a differential form valued
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in End.V /odd if j is even and End.V /ev if j is odd. Super parallel transport provides a
functor, denoted by sPar, from the groupoid of Z=2–graded vector bundles with super
connection on M to the groupoid of 1j1–dimensional Euclidean field theories over M :

(43)
VectA.M /

sPar
�! 1j1–EFT.M /

res
�! C1.R>0 �Map.R0j1;M //Euc1j1 ;

.V;A/ 7�! sPar.V;A/ 7�! sTr.e`A
2

/:

Part of this construction is given in [14], reviewed in [26, Section 1.3]. A different
approach (satisfying stronger naturality properties required to construct the functor sPar)
is work in progress by Arnold [2]. Evaluating the field theory sPar.V;A/ on closed
bordisms determines the function sTr.e`A

2

/ 2 C1.R>0 � Map.R0j1;M //. The
parametrization (40) extracts the function Z determined by

`deg =2Z D sTr.exp.`A2//:

Hence we find that Z D sTr.exp.A2
`
// for

(44) A` D `
1=2A0CA1C `

�1=2A2C `
�1A3C � � � :

The R>0–family of super connections (44) appears frequently in index theory, eg [22]
and [4, Section 9.1]. By [4, Proposition 1.41], the failure for Z to be independent of `
is measured by the exact form

(45)
d

d`
sTr.eA2

`/D d
�

sTr
�

dA`
dt

eA2
`

��
:

By Proposition 1.4, the data ZD sTr.eA2
`/ and Z` D sTr..dA`=dt/eA2

`/ determine an
element of C1.L1j1

0
.M //Euc1j1 refining the Chern character of the Z=2–graded vector

bundle V .

Remark 2.17 If ADr is an ordinary connection, the family (44) is independent of `
and Z`D 0. This recovers Fei Han’s identification [18] of the Chern form Tr.exp.r2//

with dimensional reduction of the 1j1–dimensional Euclidean field theory sPar.V;r/.

3 A map from 2j1–Euclidean field theories to complexified
elliptic cohomology

The main goal of this section is to prove Proposition 1.5. From the discussion
in Section 1.2, this proves Theorem 1.1 when d D 2. We also prove Proposition 1.2
when d D 2 and comment on connections with a de Rham model for complex-analytic
elliptic cohomology, complexified TMF, and elliptic Euler classes.
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3.1 The moduli space of super Euclidean tori

We will use the two equivalent descriptions of S–points of R2j1:

R2j1.S/' fx;y 2 C1.S/ev; � 2 C1.S/odd
j .x/red D .x/red; .y/red D .y/redg(46)

' fz; w 2 C1.S/ev; � 2 C1.S/odd
j .z/red D .w/redg;(47)

where reality conditions are imposed on restriction of functions to the reduced manifold
Sred ,! S . The isomorphism between (46) and (47) is .x;y/ 7! .xC iy;x � iy/ D

.z; w/. Below we shall adopt the standard (though potentially misleading) notation
xz WD w. We take similar notation for S–points of Spin.2/, using the identification
Spin.2/' U.1/�C with the unit complex numbers. This gives the description

(48) Spin.2/.S/' U.1/.S/D fu; xu 2 C1.S/ev
j .u/red D .xu/red; uxuD 1g:

Definition 3.1 Let E2j1 denote the super Lie group with underlying supermanifold
R2j1 and multiplication

(49) .z;xz; �/ � .z0;xz0; � 0/D .zC z0;xzCxz0C �� 0; � C � 0/

for .z;xz; �/; .z0;xz0; � 0/2R2j1.S/. Define the super Euclidean group as E2j1ÌSpin.2/,
where the semidirect product is defined by the action (using the notation (48))

.u; xu/ � .z;xz; �/D .u2z; xu2
xz; xu�/ for .u; xu/ 2 Spin.2/.S/:

The Lie algebra of E2j1 has one even generator and one odd generator. In terms
of left-invariant vector fields, these are @z and D D @� � �@xz , whereas in terms of
right-invariant vector fields they are @z and QD @�C�@xz . The super commutators are

(50) Œ@z;D�D 0; ŒD;D�D�@xz and Œ@z;Q�D 0; ŒQ;Q�D @xz :

Let Lat � C �C denote the manifold of based lattices in C parametrizing pairs of
nonzero complex numbers `1; `2 2C� such that `1=`2 2H�C is in the upper half-
plane. Equivalently, the pair .`1; `2/ generate a based oriented lattice in C. We observe
that .`1; `2/ 7! .`1; `1=`2/ defines a diffeomorphism Lat ' C� �H, so that Lat is
indeed a manifold. When regarding Lat as a supermanifold, an S–point is specified by
.`1; x̀1; `2; x̀2/ 2 Lat.S/� .C �C/.S/, following the notation from (47).

Definition 3.2 Define the generalized supermanifold of based (super) lattices in R2j1

as the subfunctor sLat�R2j1�R2j1 (viewing R2j1�R2j1 as a representable presheaf)
whose S–points are .`1; x̀1; �1/; .`2; x̀2; �2/ 2R2j1.S/ such that:
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(i) The pair commute for the multiplication (49) on E2j1.S/'R2j1.S/,

.`1; x̀1; �1/ � .`2; x̀2; �2/D .`2; x̀2; �2/ � .`1; x̀1; �1/ 2 E2j1.S/:

(ii) The reduced map Sred! .R2j1 �R2j1/red ' R2 �R2 ' C �C determines a
family of based oriented lattices in C, ie the image lies in Lat�C �C.

Remark 3.3 Condition (i) is equivalent to requiring that .`1; x̀1; �1/; .`2; x̀2; �2/ 2

E2j1.S/ generate a Z2–subgroup, ie a homomorphism S �Z2! S �E2j1 over S .

Definition 3.4 Given an S–point ƒ D ..`1; x̀1; �1/; .`2; x̀2; �2// 2 sLat.S/, define
the family of 2j1–dimensional super tori as the quotient

(51) T
2j1
ƒ
WD .S �R2j1/=Z2

for the free left Z2–action over S determined by the formula

(52) .n;m/ � .z;xz; �/

D .zC n`1Cm`2;xzC n.x̀1C�1�/Cm.x̀2C�2�/; n�1Cm�2C �/

for .n;m/ 2 Z2.S/ and .z;xz; �/ 2 R2j1.S/. Equivalently, this is the restriction of
the left E2j1–action on S �R2j1 to the S–family of subgroups S �Z2 � S �E2j1

with generators over S specified by .`1; x̀1; �1/ and .`2; x̀2; �2/. Define the standard
super torus as T 2j1DR2j1=Z2 for the quotient by the action for the standard inclusion
Z2 �R2 � E2j1, ie for the square lattice.

Remark 3.5 The S–family of subgroups S �Z2 ,! S �E2j1 determined by ƒ (as in
Remark 3.3) is normal if and only if �1 D �2 D 0. Hence, although the standard super
torus T 2j1 inherits a group structure from E2j1, generic super tori T

2j1
ƒ

do not.

Remark 3.6 There is a more general notion of a family of super tori where the
action (52) also incorporates pairs of elements in Spin.2/. This moduli space has
connected components corresponding to choices of spin structure on an ordinary torus,
with the component from Definition 3.4 corresponding to the odd (or periodic–periodic)
spin structure. This turns out to be the relevant component of the moduli space to
recover complex-analytic elliptic cohomology.

Stolz and Teichner’s .M;G/–structures are discussed before Definition 2.6.

Definition 3.7 [26, Section 4.2] A super Euclidean structure on a 2j1–dimensional
family T ! S is an .M;G/–structure for the left action of G D E2j1 Ì Spin.2/
on MDR2j1.
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Lemma 3.8 An S–family of super tori (51) has a canonical super Euclidean structure.

Proof The proof is the same as for Lemma 2.7, using the open cover S�R2j1!T
2j1
ƒ

and transition data from the Z2–action (52).

Every family of super tori pulls back from the universal family .sLat�R2j1/=Z2! sLat

along a map S ! sLat. Hence, we regard

M2j1
WD sLat and T 2j1

WD .sLat�R2j1/=Z2
! sLat

as the moduli space of super Euclidean tori and the universal family of super Euclidean
tori, respectively. The following identifies sLat with the moduli space of super Euclidean
structures on the standard super torus.

Lemma 3.9 There exists an isomorphism of supermanifolds over sLat,

(53) sLat�T 2j1 ��! T 2j1;

from the constant sLat–family with fiber the standard super torus to the universal family
of super Euclidean tori. This isomorphism does not preserve the super Euclidean
structure on T 2j1.

Proof Define the map sLat�R2j1! sLat�R2j1 by

(54) .`1; x̀1; �1; `2; x̀2; �2;x;y; �/

7!
�
`1; x̀1; �1; `2; x̀2; �2; `1xC`2y;x.x̀1C�1�/Cy.x̀2C�2�/; �Cx�1Cy�2

�
for .`1; x̀1; �1; `2; x̀2; �2/2sLat.S/ and .x;y; �/2R2j1.S/, where the source uses (46)
to specify an S–point .x;y; �/2R2j1.S/whereas the target uses (47). Observe that (54)
is Z2–equivariant for the actions on the source and target,

.n;m/ � .`1; x̀1; �1; `2; x̀2; �2;x;y; �/D .`1; x̀1; �1; `2; x̀2; �2;xC n;yCm; �/

and

.n;m/ � .`1; x̀1; �1; `2; x̀2; �2; z;xz; �/

D
�
`1; x̀1; �1; `2; x̀2; �2; zCn`1Cm`2;xzCn.x̀1C�1�/Cm.x̀C�2�/; �Cn�Cm�2

�
;

respectively. Hence (54) determines a map between the respective Z2–quotients,
defining a map (53). This map is easily seen to be an isomorphism of supermanifolds.
Since the map (53) is not locally determined by the action of E2j1 Ì Spin.2/ on R2j1,
it is not a super Euclidean isometry.

Definition 3.10 Define the super Lie group Euc2j1 WD E2j1 ÌSpin.2/�SL2.Z/.
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The following gives an S–point formula for the action of Euc2j1 on T 2j1 and M2j1 D

sLat coming from isometries between super Euclidean tori.

Lemma 3.11 Given ƒD ..`1; x̀1; �1/; .`2; x̀2; �2// 2 sLat.S/DM2j1.S/ together
with .w; xw; �;u; xu/2 .E2j1ÌSpin.2//.S/ and  2SL2.Z/.S/, there is an isomorphism
f.w; xw;�;u;xu/ W T

2j1
ƒ
! T

2j1
ƒ0

of super Euclidean tori over S sitting in the diagram

S �R2j1 S �R2j1

T
2j1
ƒ

T
2j1
ƒ0

.w; xw;�;u;xu/ �

f.w; xw;�;u;xu/

where the upper horizontal arrow is determined by the left E2j1 Ì Spin.2/–action
on R2j1, the left vertical arrow is the quotient map (25) for ƒ, and the right vertical
arrow is the quotient map for

(55) ƒ0 WD
��

u2.a`1C b`2/; xu
2.a.x̀1C 2��1/C b.x̀2C 2��2//; xu.a�1C b�2/

��
u2.c`1C d`2/; xu

2.c.x̀1C 2��1/C d.x̀2C 2��2//; xu.c�1C d�2/
�� ;

where  D
�

a
c

b
d

�
2 SL2.Z/.S/.

Proof Consider the diagram

(56)
Z2 �S �R2j1 Z2 �S �R2j1

S �R2j1 S �R2j1

�.w; xw;�;u;xu/

ƒ

.w; xw;�;u;xu/

ƒ0

The horizontal arrows are determined by the left action of .w; xw; �/2E2j1.S/, .u; xu/2
Spin.2/.S/ on S �R2j1 and a map S �Z2! S �Z2 specified by  2 SL2.Z/.S/.
The vertical arrows are the Z2–action on S � R2j1 generated by ƒ;ƒ0 2 sLat.S/.
Using (49), this square commutes if and only if (55) holds. Commutativity of (56)
gives a map on the Z2–quotients, which is precisely a map T

2j1
ƒ
! T

2j1
ƒ0

. This map is
locally given by the action of E2j1 Ì Spin.2/ on R2j1, so by construction it respects
the super Euclidean structures.

We will require an explicit description of functions on sLat, ie the morphisms of
presheaves sLat! C1. Regarding Lat as a representable presheaf on supermanifolds,
there is an evident monomorphism Lat ,! sLat from the canonical inclusion C �C '

R2�R2 ,!R2j1�R2j1. In the following, let �1; �22C1.sLat/ denote the restriction of
the odd coordinate functions C1.R2j1�R2j1/'C1.R4/Œ�1; �2� under the inclusion
sLat�R2j1 �R2j1.

Geometry & Topology, Volume 27 (2023)



1972 Daniel Berwick-Evans

Lemma 3.12 There is an isomorphism of algebras

C1.sLat/' C1.Lat/Œ�1; �2�=.�1�2/:

Proof Consider the composition

S ! sLat�R2j1
�R2j1 p1;p2

���!R2j1;

where, as usual, we write the associated pair of maps S ! R2j1 as .`1; x̀1; �1/ and
.`2; x̀2; �2/. We therefore have 4 even and 2 odd functions on sLat that, as maps of
sheaves sLat! C1, assign to an S–point the functions `1; x̀1; `2; x̀2 2 C1.S/ev or
�1; �2 2 C1.S/odd. It is easy to see that arbitrary smooth functions in the variables
`1; x̀1; `2; x̀2 continue to define maps of sheaves and hence smooth functions on sLat.
Furthermore, since these are the restriction of functions on R2�R2 �R2j1�R2j1, we
can identify them with functions on Lat. This specifies the even subalgebra C1.Lat/�

C1.sLat/. On the other hand, the odd functions �1 and �2 are subject to a relation
coming from condition (i) in Definition 3.2, namely that �1�2D �2�1 2C1.S/odd for
all S . Since these are odd functions, this is equivalent to the condition that �1�2 D 0.
Hence the functions on sLat are as claimed.

Remark 3.13 The relation �1�2 D 0 implies that C1.sLat/ is not the algebra of
functions on any supermanifold, and hence the generalized supermanifold sLat fails to
be representable.

3.2 Super Euclidean double loop spaces

Definition 3.14 Define the super Euclidean double loop space as the generalized
supermanifold

L2j1.M / WD sLat�Map.T 2j1;M /:

We identify an S–point of L2j1.M / with a map T
2j1
ƒ
!M given by the composition

(57) T
2j1
ƒ
' S �T 2j1

!M;

using the isomorphism from Lemma 3.9.

We shall define a left action of Euc2j1 on L2j1.M / determined by the diagram

(58)
T

2j1
ƒ S �T 2j1

T
2j1
ƒ0

S �T 2j1

M

'

f

'

�

�0
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where the horizontal arrows are the inverses of the isomorphisms of supermanifolds
pulled back from Lemma 3.9, and f is the super Euclidean isometry associated to an
S–point of Euc2j1 in Lemma 3.11. These isomorphisms together with the arrow �

uniquely determine �0 in (58). Hence, for .ƒ; �/ 2 sLat.S/�Map.T 2j1;M /.S/ and
an S–point of Euc2j1, we define the Euc2j1–action on L2j1.M / as outputting .ƒ0; �0/
in (58). We caution that this is a left Euc2j1–action on sLat�Map.T 2j1;M /, and refer
to Remark 2.11 for a discussion of left actions on mapping spaces.

There is a T 2–action on L2j1.M / coming from the T 2–action on Map.T 2j1;M / by
the precomposition action of T 2 on T 2j1. The T 2–fixed points comprise the subspace

(59) L2j1
0
.M / WD sLat�Map.R0j1;M /� sLat�Map.T 2j1;M /D L2j1.M /:

We identify an S–point of this subspace as a map T
2j1
ƒ
!M that factors as

(60) T
2j1
ƒ
' S �T 2j1

' S �R2j1=Z2 p
! S �R0j1

!M;

where the map p is induced by the projection R2j1!R0j1. The action (58) preserves
this factorization condition; we give explicit formulae in Lemma 3.17 below. Hence,
the inclusion (59) is Euc2j1–equivariant.

Lemma 3.15 There is a functor L2j1
0
.M /! 2j1–EBord.M / that induces a restriction

map

(61) restr W 2j1–EFT.M /! C1.L2j1
0
.M //Euc2j1 :

Proof The proof is completely analogous to that of Lemma 2.12. Namely, Lemma 3.8
gives a functor L2j1

0
.M /! 2j1–Bord.M /, and Lemma 3.11 shows that the action of

Euc2j1 on L2j1
0
.M / is through isomorphisms between S–families of 2j1–dimensional

Euclidean bordisms. Hence, the restriction map lands in Euc2j1–invariant functions.

3.3 Computing the action of super Euclidean isometries

Definition 3.16 Using the notation from Lemma 3.12, define the function

(62) vol WD
`1
x̀
2�
x̀
1`2

2i
2 C1.sLat/:

The restriction of vol along Lat ,! sLat is the function that reads off the volume of
an ordinary torus C=`1Z˚ `2Z using the flat metric. In particular, this function is
real-valued, positive and invertible. By Lemma 3.12, the function vol on sLat is also
invertible.
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Lemma 3.17 The left E2j1 ÌSpin.2/–action on sLat�Map.R0j1;M / is given by

(63) .w; xw; �;u; xu/ � .`1; x̀1; �1; `2; x̀2; �2;x;  /

D

�
u2`1; xu

2.x̀1C 2��1/; xu�1;u
2`2; xu

2.x̀2C 2��2/; xu�2;

x� xu�1

�
�C

�1`2��2`1

2i vol
xwC

�1
x̀
2��2

x̀
1

2i vol
w

�
 ;

xu�1 exp
�
�
�1`2��2`1

2i vol

�
 

�
;

where

(w; xw; �/ 2 E2j1.S/; .u; xu/ 2 Spin.2/.S/;

(x;  / 2…TM.S/'Map.R0j1;M /.S/:

The SL2.Z/–action on sLat�Map.R0j1;M / is diagonal for the action on sLat from (55)
and the trivial action on Map.R0j1;M /.

Proof Let pƒ W T
2j1
ƒ
!S �R0j1 denote the composition of the left three maps in (60).

Given .w; xw; �/2E2j1.S/, .u; xu/2 Spin.2/.S/, ƒ2 sLat.S/ and .x;  /2…TM.S/,
the goal of the lemma is to compute formulas forƒ02 sLat.S/ and .x0;  0/2…TM.S/

in the diagram

(64)

T
2j1
ƒ S �R0j1

T
2j1
ƒ0 S �R0j1

M

pƒ

f.w; xw;�;u;xu/

pƒ0

.x; /

.x0; 0/

where the arrow labeled by f.w; xw;�;u;xu/ denotes the associated map between super
Euclidean tori from Lemma 3.11. For the first statement in the present lemma we take
 D id 2 SL2.Z/.S/. We see that ƒ0 is given by (55). To compute .x0;  0/, we find a
formula for the dashed arrow in (64) that makes the triangle commute. To start, part of
the data of the inverse to the isomorphism (54) is

(65)
zpƒ W S �R2j1

! S �R0j1;

zpƒ.z;xz; �/D � C�1

xz`2� z x̀2

2i vol
C�2

z x̀1�xz`1

2i vol
:

We verify that zpƒ is Z2–invariant for the action (52),

zp`;�..n;m/ � .z;xz; �//

D zp`;�.zC n`1Cm`2;xzC n.x̀1C�1�/Cm.x̀2C�2�/; n�1Cm�2C �/
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D n�1Cm�2C � C�1

.xzC n.x̀1C�1�/Cm.x̀2C�2�//`2� .zC n`1Cm`2/x̀2

2i vol

C�2

.zC n`1Cm`2/x̀1� .xzC n.x̀1C�1�/Cm.x̀2C�2�//`1

2i vol

D � C�1

xz`2� z x̀2

2i vol
C�2

z x̀1�xz`1

2i vol
;

where we used (62). Hence zpƒ determines a map pƒ W T
2j1
ƒ
! S �R0j1, which is the

map in (64). From this we see that the dashed arrow in (37) is unique and determined by

(66) � 7! xu

�
� C �C

.�1`2��2`1/. xwC ��/� .�1
x̀
2��2

x̀
1/w

2i vol

�
:

As in Remark 2.11, the left action of E2j1ÌSpin.2/ on .xC� / 2Map.R0j1;M /.S/

is given by

.xC � / 7! xC xu�1

�
� � �C

.�1`2��2`1/.�xw� ��/C .�1
x̀
2��2

x̀
1/w

2i vol

�
 

D x� xu�1

�
�C

.�1`2��2`1/ xw� .�1
x̀
2��2

x̀
1/w

2i vol

�
 

C xu�1�

�
1� �

�1`2��2`1

2i vol

�
 ;

which gives the claimed formula for .x0;  0/. Finally, a short computation shows that
pƒDpƒ0ı , where  WT 2j1

ƒ
!T

2j1
ƒ0

is the isometry associated to  2SL2.Z/.S/ from
Lemma 3.11. Hence, the SL2.Z/–action on sLat�Map.R0j1;M / is indeed through
the action on sLat.

From the Lie algebra description (50), a left E2j1–action determines an even and an odd
vector field gotten by considering the infinitesimal action by the elements QD @�C�@xz

and @z of the Lie algebra of E2j1. We note the isomorphisms

(67) C1.L1j1
0
.M //' C1.sLat�Map.R0j1;M //

' C1.Lat�Map.R0j1;M //Œ�1; �2�=.�1�2/

'
�
C1.Lat/˝��.M /

�
Œ�1; �2�=.�1�2/;

where in (67) we used that the projective tensor product of Fréchet spaces satisfies

C1.S �T /' C1.S/˝C1.T /

for supermanifolds S and T ; see eg [20, Example 49].
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Lemma 3.18 The derivative at 0 of the left E2j1–action on L2j1
0
.M / from (63) is

determined by the derivations on C1.L2j1
0
.M //,

(68)
y@w D

�1
x̀
2��2

x̀
1

2i vol
˝ d;

yQD 2�1@x̀
1
˝ idC 2�2@x̀

2
˝ id� id˝ d�

�2`1��1`2

2i vol
˝ deg;

where d is the de Rham differential and deg is the degree endomorphism on forms.

Proof The proof follows the same reasoning as the proof of Lemma 2.14, using that
right-invariant vector fields generate left actions and that the E0j1 ÌC�–action on
Map.R0j1;M / is generated by minus the de Rham operator and the degree derivation.
In this case we apply the derivation QD @�C�@ xw and @w to (63) (with .u; xu/D .1; 1/)
and evaluate at .w; xw; �/D .0; 0; 0/ to obtain (68).

3.4 The proof of Proposition 1.5

Functions on L2j1
0
.M / can be described as

(69) C1.L2j1
0
.M //

D C1.sLat�Map.R0j1;M //

'��.M IC1.sLat//'��.M IC1.Lat/Œ�1; �2�=.�1�2//

'��.M IC1.Lat//˚�1 ��
�.M IC1.Lat//˚�2 ��

�.M IC1.Lat//;

using Lemma 3.12 in the second-to-last line, and where the isomorphism in the final
line is additive. We start by proving a version of Proposition 1.5 for invariants by

E2j1 ÌZ=2< E2j1 ÌSpin.2/�SL2.Z/D Euc2j1:

Analogously to the notation in Section 2.4, let voldeg ! D volk ! for ! 2�k.M /.

Lemma 3.19 Any element ! 2 C1.L2j1
0
.M //Z=2 can be written as

(70) ! D voldeg =2.!0C 2�1 vol1=2 !1C 2�2 vol1=2 !2/;

where !0 2 �
ev.M IC1.Lat// and !1; !2 2 �

odd.M IC1.Lat//. A Z=2–invariant
function ! expressed as (70) is E2j1–invariant if and only if

(71) d!0 D 0; @x̀
1
!0 D d!1 and @x̀

2
!0 D d!2;

where d is the de Rham differential on M .
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Proof The element �1 2U.1/' Spin.2/ acts through the parity involution, which on
C1.sLat/ is determined by �i 7! ��i . Using (69) and the fact that vol is an invertible
function on Lat, we see that any Z=2–invariant function can be written in the form (70).
Next we compute for !0 2�

k.M IC1.Lat//,

2.�1@x̀
1
C�2@x̀

2
/.volk=2 !0/

D 2.�1@x̀
1
C�2@x̀

2
/

��
`1
x̀
2�
x̀
1`2

2i

�k=2

!0

�
D
�2`1��1`2

2i vol
deg.volk=2 !0/C 2 volk=2.�1@x̀

1
C�2@x̀

2
/!0:

So, by Lemma 3.18,

yQ.voldeg =2 !0/D voldeg =2�2.�1@x̀
1
C�2@x̀

2
/!0� vol�1=2 d!0

�
:

Using that �2
1
D �2

2
D �1�2 D 0, we compute

yQ.voldeg =2 !0C 2�1 vol.degC1/=2 !1C 2�2 vol.degC1/=2 !2/

D voldeg =2�2.�1@x̀
1
C�2@x̀

2
/!0� vol�1=2 d!0� 2�1d!1� 2�2d!2

�
:

Matching coefficients of �1 and �2, the condition yQ! D 0 is therefore equivalent
to (71). Finally, invariance under the operator y@w from Lemma 3.18 follows from
being yQ–closed, specifically from d!0 D 0. Since E2j1 is connected with Lie alge-
bra generated by yQ and y@w, we find that (71) completely specifies the subalgebra
C1.L2j1

0
.M //E

2j1ÌZ=2 � C1.L2j1
0
.M //Z=2.

Next we compute the Spin.2/–invariant functions. Consider the surjective map

(72) ' W Lat!H�R>0; .`1; x̀1; `2; x̀2/ 7! .`1=`2; x̀1=x̀2; vol/ 2 .H�R>0/.S/;

and use the pullback on functions to get an injection

(73) C1.H�R>0/Œˇ; ˇ
�1� ,! C1.Lat/; fˇk

7! .'�f /`�k
2 :

We observe that the image of this map is precisely
L

k2Z C1
k
.Lat/ for

C1k .Lat/ WD ff 2 C1.Lat/ j f .u2`1; xu
2`1;u

2`2xu
2`2/D u�kf .`1; x̀1; `2; x̀2/g;

the vector space of smooth functions of weight k=2, where .u; xu/ are the standard
coordinates on U.1/ ' Spin.2/. Indeed, C1.H � R>0/ includes as C1

0
.Lat/ '

C1.Lat/Spin.2/, C1
k
.Lat/ D f0g for k odd, and there are isomorphisms of vector

spaces C1
2k
.Lat/ ��! C1

0
.Lat/' C1.Lat/Spin.2/ gotten by multiplication with `k

2
.
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Lemma 3.20 An element ! 2 C1.L2j1
0
.M //Spin.2/ � C1.L2j1

0
.M //Z=2 expressed

in the form (70) has !0; !1; !2 in the image of the inclusion

(74) ��.M IC1.H�R>0/Œˇ; ˇ
�1�/ ,!��.M IC1.Lat//; with jˇj D �2;

determined by the map (73) on coefficients , where !0 is in the image of an element of
total degree zero and !1; !2 are in the image of elements of total degree �1.

Proof From the description of the Spin.2/–action in (63), if

! 2 C1.L2j1
0
.M //Spin.2/

� C1.L2j1
0
.M //Z=2;

we obtain the refinement of the conditions from (70),

!0 2

M
k2Z

�2k.M IC12k .Lat// '
M
k2Z

�2k.M I `�k
2 C10 .Lat//

��ev.M IC10 .Lat/Œ`�1
2 �/;

!1; !2 2

M
k2Z

�2k�1.M IC12k .Lat//'
M
k2Z

�2k�1.M I `�k
2 C10 .Lat//

��odd.M IC10 .Lat/Œ`�1
2 �/:

This gives the description

(75) ! D .vol=`2/
deg =2!00C 2�1.vol=`2/

.degC1/=2!01C 2�2.vol=`2/
.degC1/=2!02;

where!0
0
; !0

1
; !0

2
2��.M IC1.Lat/Spin.2//'��.M IC1

0
.Lat// are Spin.2/–invariant.

After identifying `2 with ˇ�1 as per (73), we obtain the claimed description.

The following allows us to recast the invariance condition as a failure of ZD!0 to have
holomorphic dependence on the conformal modulus and be independent of volume.

Lemma 3.21 An E2j1 Ì Spin.2/–invariant function on L2j1
0
.M / is equivalent to a

triple .Z;Zx� ;Zv/ where Z 2 ��.M IC1.H�R>0/Œˇ; ˇ
�1�/ has total degree zero

and Zv;Zx� 2�
�.M IC1.H�R>0/Œˇ; ˇ

�1�/ have total degree �1 and satisfy

(76) dZ D 0; @vZ D dZv and @x�Z D dZx�

for coordinates .�; x�/ on H and v on R>0.
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Proof For the image of Z under (74), we differentiate

(77)

@x̀
1
Z.`1=`2; x̀1=x̀2; vol/D

1

x̀
2

@x�Z �
`2

2i
@vZ;

@x̀
2
Z.`1=`2; x̀1=x̀2; vol/D�

x̀
1

x̀2
2

@x�ZC
`1

2i
@vZ:

The result then follows from comparing with (71): writing @x̀
1
Z and @x̀

2
Z as d–exact

forms is equivalent to writing @x�Z and @vZ as d–exact forms.

Definition 3.22 A function f 2 C1.H�R>0/ has weight .k; xk/ 2 Z�Z if

f

�
a� C b

c� C d
; v

�
D .c� C d/k.cx� C d/

xkf .�; v/:

Let MF
k;xk
� C1.H � R>0/ denote the C–vector space of functions with weight

.k; xk/.

Consider the inclusion

(78)
M
k2Z

MF
k;xk

,! C1.H�R>0/Œˇ; ˇ
�1�; f 7! ˇkf for f 2MF

k;xk
:

Lemma 3.23 In the notation of Lemma 3.21, a triple .Z;Zv;Zx� / determines an
SL2.Z/–invariant function on L2j1

0
.M / when

Z 2
M
k2Z

�2k.M IMFk;0/;

Zv 2

M
k2Z

�2k�1.M IMFk;0/; Zx� 2
M
k2Z

�2k�1.M IMFk;2/;

using (78) to identify the above with elements of ��.M IC1.H�R>0/Œˇ; ˇ
�1�/.

Proof We observe that

`2 7! c`1C d`2 D `2.c� C d/ for � D `1=`2;

�
a b

c d

�
2 SL2.Z/;

for the SL2.Z/–action on Lat, so that (73) is an SL2.Z/–invariant inclusion for the
action on H by fractional linear transformations and ˇ 7! ˇ=.c� C d/. The SL2.Z/–
invariant property for Z then follows directly. The properties for Zv and Zx� can either
be deduced from the fact that (76) are SL2.Z/–invariant equations, or by (a direct but
tedious computation) using (77) to write Zv and Zx� in terms of !0 and !1, and then
applying the SL2.Z/–actions on !0; !1; !2 computed in Lemma 3.17.

Proof of Proposition 1.5 The result follows from Lemmas 3.21 and 3.23.
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Remark 3.24 As announced in [26, Theorem 1.15], a 2j1–Euclidean field theory
over M D pt has a partition function valued in integral modular forms. Theorem 1.1
when d D 2 specializes to the holomorphy and modularity statements in this result
when M D pt; generalizing the integrality statement would require one to consider the
values of field theories on super annuli with maps to M .

Remark 3.25 The Lie groupoid Lat==Spin.2/� SL2.Z/ gives a presentation of the
moduli stack of Euclidean tori with periodic–periodic spin structure and choice of base-
point, where SL2.Z/� Spin.2/ acts via the restriction of the action from Lemma 3.17.
The involution generated by �1 2U.1/' Spin.2/ is the spin flip automorphism, which
acts trivially on the underlying Euclidean torus and by the parity involution on the spinor
bundle. Consider the subspace H�R>0� Lat of based lattices whose second generator
`22R>0�C� is positive and real. Since every based lattice can be rotated to one of this
form (using the action of Spin.2/ on Lat) the full subgroupoid of Lat==Spin.2/�SL2.Z/

with the objects H � R>0 � Lat is equivalent to Lat==Spin.2/ � SL2.Z/. Since
f˙1g�Spin.2/ acts trivially on the subspace H�R>0�Lat, the manifold of morphisms
in this full subgroupoid is H �R>0 � f˙1g � SL2.Z/. Composition of morphisms
gives the set f˙1g � SL2.Z/ the structure of a group, which turns out to be the
metaplectic double cover MP2.Z/ of SL2.Z/. There is a functor between Lie groupoids
u WH�R>0==MP2.Z/!H==MP2.Z/, where the target is a standard presentation for
the stack of complex-analytic elliptic curves endowed with a periodic–periodic spin
structure. Geometrically, the functor u extracts the underlying complex-analytic elliptic
curve with spin structure.

Finally, observe there is a functor Lat==Spin.2/�SL2.Z/!M2j1==Euc2j1, so a family
of Euclidean tori with spin structure and choice of basepoint determines a family of
super tori. Our arguments involving super tori do not encounter the metaplectic double
cover because at the outset (in Lemma 3.19) we restrict to functions invariant under the
spin flip automorphism. Hence only the quotient MP2.Z/=f˙1g ' SL2.Z/ features in
our arguments.

3.5 Weak modular forms and complexified TMF

Definition 3.26 Weak modular forms of weight k are holomorphic functions f 2O.H/
satisfying

f

�
a� C b

c� C d

�
D .c� C d/kf .�/ for � 2H;

�
a b

c d

�
2 SL2.Z/:
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Let MFk denote the C–vector space of weak modular forms of weight k. Define the
graded ring of weak modular forms MF as the graded vector space

MFD
M
k2Z

MFk ; where MFk
WD

�
MFk=2 if k is even,
0 if k is odd,

with ring structure from multiplication of functions on H.

Cohomology with coefficients in weak modular forms is the object that naturally
appears when studying derived global sections of the elliptic cohomology sheaf in the
complex-analytic context. Indeed, complex-analytic elliptic cohomology assigns to a
smooth manifold M a sheaf E``.M / of differential graded algebras on the orbifold
H==SL2.Z/ with values

(79) E``.M /.U / WD .O.U I��.M /Œˇ; ˇ�1�/; d/ for U �H:

The SL2.Z/–equivariance data for this sheaf comes from pulling back functions along
fractional linear transformations and sending ˇ 7! .c� C d/ˇ. This connects with
standard definitions of elliptic cohomology in homotopy theory (eg [21, Definition 1.2])
by identifying H==SL2.Z/ with the moduli stack of complex-analytic elliptic curves,
and values (79) with the de Rham complex for 2–periodic cohomology with coefficients
in O.U /. Using the Dolbeault resolution of holomorphic functions on H, the complex
.��.M I�0;�.H/Œˇ; ˇ�1�/SL2.Z/; dCx@/ computes the derived global sections (ie the
hypercohomology) of the elliptic cohomology sheaf E``.M /. Since H is Stein, the
inclusion

O.H/ ,! .�0;�.H/; x@/

is a quasi-isomorphism. Hence, derived global sections of the elliptic cohomology
sheaf are cohomology with values in weak modular forms,

H.M IO.H/Œˇ; ˇ�1�/SL2.Z/ ' H.M IMF/:

We refer to [5, Section 3] for details.

A weak modular form is a weakly holomorphic modular form if it is meromorphic as
� ! i1. For M compact, cohomology with values in weakly holomorphic modular
forms is isomorphic to the complexification of topological modular forms,

(80)
TMF.M /˝C ' H.M ITMF.pt/˝C/� H.M IMF/;

TMF.pt/˝C ' fweakly holomorphic modular formsg �MF;
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and the inclusion on the right regards a weakly holomorphic modular form as a weak
modular form. We expect the image of 2j1–Euclidean field theories along (4) to
satisfy this meromorphicity property at i1, and hence have image in the subring
TMF.M /˝C. This follows from an “energy bounded below” condition discussed for
M D pt in [26, Section 3]. However, proving that the image of field theories satisfies
this condition requires that one analyze the values of field theories on super tori and
super annuli.

3.6 Concordance classes of functions

The cocycle map (4) can be factored through a complex that computes the derived
global sections of the elliptic cohomology sheaf, namely the complex

.��.M I�0;�.H/Œˇ; ˇ�1�/SL2.Z/; dCx@/

described above.

Definition 3.27 Using the notation from Proposition 1.5, for each�2R>0 define a map

2cocycle� W C
1.L2j1

0
.M //Euc2j1 ! Z0.��.M I�0;�.H/Œˇ; ˇ�1�/; dCx@/SL2.Z/;

.Z;Zx� ;Zv/ 7!Z.�/C dx�Zx� .�/;

where the evaluation is at tori with volume v D � 2R>0.

Lemma 3.28 The composition

C1.L2j1
0
.M //Euc2j1

1cocycle�
����! Z0.��.M I�0;�.H/Œˇ; ˇ�1�/; dCx@/SL2.Z/

de Rham
����! H.M IMF/

is independent of � and agrees with (4).

Proof Let us verify that the map in Definition 3.27 is well-defined. By Proposition 1.5,
the image is contained in the subspace of degree zero cocycles:

.dCx@/.Z.�/C dx�Zx� .�//D dx�@x�Z.�/� dx�dZx� .�/D 0:

The image is SL2.Z/–invariant by Lemma 3.23. The remainder of the proof is com-
pletely analogous to that of Lemma 2.16.
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Proof of Proposition 1.2 for d D 2 By Proposition 1.5, M 7! C1.L2j1
0
.M //Euc2j1

is a sheaf on the site of smooth manifolds. The map in Definition 3.27 is a morphism
of sheaves

2cocycle� W C
1.L2j1

0
.�//Euc2j1 ! Z0.��.�I�0;�.H/Œˇ; ˇ�1�/; dCx@/SL2.Z/:

When evaluated on a manifold M , concordance classes of sections of the target are
cohomology classes. This completes the proof.

3.7 The elliptic Euler class as a cocycle

For a real oriented vector bundle V !M , consider the characteristic class

ŒEu.V /� WD
�

Pf.�ˇF / exp
�X

k�1

ˇkE2k

2k.2� i/2k
Tr.F2k/

��
in Hdim V.M IC1.H/Œˇ; ˇ�1�/SL2.Z/, where F D r ı r 2 �2.M IEnd.V // is the
curvature for a choice of a metric-compatible connection r on V and Pf.�ˇR/ is the
Pfaffian. The functions E2k 2 C1.H/ are the 2k th Eisenstein series, where we take
E2 to be the modular, nonholomorphic version of the second Eisenstein series,

E2.�; x�/D lim
�!0C

X
.n;m/2Z2

�

1

.n� Cm/2jn� Cmj2�
; E2.�; x�/DEhol

2 .�/�
2� i

� �x�
;

whose relationship with the holomorphic (but not modular) second Eisenstein series
Ehol

2
.�/ is as indicated. For k > 1, the Eisenstein series E2k 2O.H/ are holomorphic.

Thus, if
Œp1.V /�D ŒTr.F2/=.2.2� i/2/� 2 H4.M IR/

vanishes, then ŒEu.V /� 2 Hdim V .M IO.H/Œˇ; ˇ�1�/SL2.Z/ is a holomorphic class.

When dim V D 24k, we may ask for a preimage of �k ŒEu.V /� 2 H0.M IMF/ under
the cocycle map (4), where� is the modular discriminant. We start with the differential
form refinement of Eu.V /, evident from its definition above,

Eu.V / 2��.M IC1.H/Œˇ; ˇ�1�/; @x� Eu.V /D
ˇ2Tr.F2/

4� i.� �x�/2
Eu.V /;

and whose failure to be holomorphic is as indicated. Since @v Eu.V / D 0, we may
choose Z D �k Eu.V / and Zv D 0. The remaining data to promote �k Eu.V / to
a function on L2j1

0
.M / is a choice of coboundary @x� .�k Eu.V // D dZx� , which in

turn is determined by H 2 �3.M / with dH D p1.V /, ie a rational string structure.
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This identifies the set of rational string structures on .V;r/ with choices of lift of
�k ŒEu.V /� to a function on L2j1

0
.M /. We expect a similar story without the dimension

restriction on V and the factors of � though an enhancement of (4) that incorporates a
degree n twist [26, Section 5].
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Isotopy of the Dehn twist on K3 # K3

after a single stabilization

JIANFENG LIN

Kronheimer and Mrowka recently proved that the Dehn twist along a 3–sphere in
the neck of K3 # K3 is not smoothly isotopic to the identity. This provides a new
example of self-diffeomorphisms on 4–manifolds that are isotopic to the identity in
the topological category but not smoothly so. (The first such examples were given by
Ruberman.) We use the Pin.2/–equivariant Bauer–Furuta invariant to show that this
Dehn twist is not smoothly isotopic to the identity even after a single stabilization
(connected summing with the identity map on S2 �S2). This gives the first example
of exotic phenomena on simply connected smooth 4–manifolds that do not disappear
after a single stabilization.

57R50, 57R52, 57R57; 55P91

1 Introduction

Understanding smooth structures on 4–manifolds remains one of the most difficult
topics in low-dimensional topology. In this dimension, many results that hold in the
topological category do not hold in the smooth category. Such phenomena are called
“exotic phenomena.” To motivate our discussion, we list three major instances of exotic
phenomena:

� By the groundbreaking work of Donaldson [16; 18] and Freedman [20] (and many
subsequent works), there exist many pairs of simply connected closed smooth 4–
manifolds that are homeomorphic but not diffeomorphic.

� Ruberman [33] gave the first example of self-diffeomorphisms on 4–manifolds that
are isotopic to the identity in the topological category, but not smoothly so. Further
examples are given by Auckly, Kim, Melvin and Ruberman[5], Akbulut [3], Baraglia
and Konno [8] and Kronheimer and Mrowka [26].
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� By the combined work of Wall [36], Perron [31], Quinn [32] and Donaldson [16],
there exist pairs of embedded 2–spheres in 4–manifolds with simply connected com-
plement that are topologically isotopic to each other, but not smoothly so; see [3; 5]
for explicit families of such examples.

Exotic phenomena appear in each of these three problems, which we call the “diffeo-
morphism existence problem”, the “diffeomorphism isotopy problem” and the “surface
isotopy problem”. A fundamental principle, discovered by Wall [36; 37] in the 1960s,
states that these exotic phenomena will eventually disappear after sufficient many
stabilizations on the 4–manifolds. (Here stabilization means taking the connected sum
with S2 �S2.) More precisely:

� Wall [37] proved that any pair of homotopy equivalent simply connected smooth
4–manifolds are stably diffeomorphic. Namely, they become diffeomorphic after
sufficiently many stabilizations.

� Gompf [22] and Kreck [25] further proved that any pair of homeomorphic orientable
smooth 4–manifolds (not necessarily simply connected) are stable diffeomorphic. They
also proved that nonorientable pairs can be made stably diffeomorphic by first doing a
twisted stabilization (ie connected summing a twisted bundle S2 z�S2). In fact, for
any G with H 1.GIZ=2/ ¤ 0, Kreck [24] constructed examples of homeomorphic
nonorientable smooth 4–manifold pairs with fundamental group G which are not stably
diffeomorphic. (Different constructions of such examples were given by Cappell and
Shaneson [13] for G D Z=2 and Akbulut [2] for G D Z.) This implies that a twisted
stabilization is indeed necessary in the nonorientable case.

� By combining the results of Kreck [23] and Quinn [32], we know that homotopic
diffeomorphisms of any simply connected smooth 4–manifold are smoothly isotopic
after sufficient many stabilizations. Here stabilization means first isotoping the diffeo-
morphisms so that they all pointwise fix a small ball B, and then taking the connected
sum with the identity map on S2 �S2 along B.

� The work of Wall [36], Perron [31] and Quinn [32] shows that any two homologous
closed surfaces of the same genus embedded in a 4–manifold with simply connected
complement become smoothly isotopic after sufficiently many external stabilizations.
Here external means that the connected sums with S2 �S2 are taken away from the
surfaces.

These results motivate the following natural question:
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Question 1.1 How many stabilizations are necessary in each of these three problems?

There has been speculation that one stabilization is actually enough in all three problems.
This is based on several known results:

� It is shown by Baykur and Sunukjian [12] that exotic pairs of nonspin 4–manifolds
produced by “standard methods” (logarithmic transforms, knot surgeries, and rational
blow-downs) all become diffeomorphic after a single stabilization.

� In the large families of examples (of embedded surfaces and self-diffeomorphisms)
established in Akbulut [3] and Auckly, Kim, Melvin and Ruberman [5], exactly one
stabilization is needed.

� Auckly, Kim, Ruberman, Melvin and Schwartz [6] proved that any two homologous
surfaces F1 and F2 of the same genus embedded in a smooth 4–manifold X with
simply connected complements are smoothly isotopic after a single stabilization if
they are not characteristic (ie ŒFi � is not dual to the Stiefel–Whitney class w2.X /).
This shows that in the noncharacteristic case, one stabilization is indeed enough in the
surface isotopy problem. (When the surfaces are characteristic, they proved a similar
result involving a single twisted stabilization.)

We prove the following theorem.

Theorem 1.2 (main theorem) Let ı be the Dehn twist along a separating 3–sphere in
the neck of the connected sum K3 # K3. Then ı is not smoothly isotopic to the identity
map even after a single stabilization.

To the author’s knowledge, Theorem 1.2 provides the first example that exotic phe-
nomena on simply connected smooth 4–manifolds do not disappear after a single
stabilization with respect to S2 �S2. In particular, it implies that one stabilization is
in general not enough in the diffeomorphism isotopy problem.

Note that Kronheimer and Mrowka [26] proved that ı itself is not smoothly isotopic to
the identity, using the nonequivariant Bauer–Furuta invariant for spin families. Our
result is based on the Kronheimer–Mrowka theorem and makes use of the Pin.2/–
equivariant version of the Bauer–Furuta invariant. This invariant was defined in Bauer
and Furuta [11] (for a single manifold) and in Szymik [35] and Xu [38] (for families).
It has been extensively studied in many papers, including Baraglia [7] and Baraglia
and Konno [9], and it is the central tool in Furuta’s proof of the 10

8
–theorem [21]. The

idea of using gauge-theoretic invariants for families to study the isotopy problem first
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appears in Ruberman [33]. The idea of using the Pin.2/–equivariant Bauer–Furuta
invariant to further study Dehn twists on 4–manifolds was suggested by Kronheimer
and Mrowka in [26].

We outline the proof of Theorem 1.2: By taking the mapping torus of ı, we form a
smooth bundle N with fiber K3 # K3 and base S1. Then it suffices to show that the
bundle zN , formed by fiberwise connected sum between N and .S2 �S2/�S1, is not
a product bundle. This is proved by showing that the Pin.2/–equivariant Bauer–Furuta
invariant BFPin.2/. zN / is nonvanishing for both spin structures. Note that BFPin.2/. zN /

equals the product of BFPin.2/.N / with the Euler class ezR (a stable homotopy class
represented by the inclusion from S0 D f0;1g to the 1–dimensional representation
sphere S

zR). We prove this by contradiction, assuming

(1) BFPin.2/.N / � ezR D 0:

This gives information on BFPin.2/.N / and its S1–reduction

BFS1

.N / 2 fSRC2H;S6zR
g
S1

:

We can explicitly compute the homotopy group fSRC2H;S6zRgS
1

as Z˚Z=2. Based
on this computation, information from (1) and the fact that BFS1

.N / gives a vanishing
family Seiberg–Witten invariant, we can prove that BFS1

.N /D 0. This further implies
that the nonequivariant Bauer–Furuta invariant BFfeg.N / vanishes, which contradicts
Kronheimer and Mrowka’s result that BFfeg.N / equals the nonzero element �3 2 �3.
Note that ezR becomes trivial when reducing to the subgroup S1 � Pin.2/. As a
consequence, the S1–equivariant Bauer–Furuta invariant vanishes after a single stabi-
lization (just like the classical Seiberg–Witten invariants and Donaldson’s polynomial
invariants). This explains why the Pin.2/–equivariance is essential in our proof.

We end this introductory section by remarking that it is still open whether one stabi-
lization is enough to make any pairs of simply connected homeomorphic 4–manifolds
diffeomorphic. (See Akbulut, Mrowka and Ruan [4], Donaldson [17] and Fintushel
and Stern [19] for a possible approach using the 2–torsion instanton invariants.) It’s
also unknown whether two homotopic characteristic surfaces with simply connected
complements become smoothly isotopic after a single stabilization. The proof of
Theorem 1.2 suggests that the Bauer–Furuta invariant could be useful in attacking these
problems. As a first step, one needs to establish new examples of spin 4–manifolds with
sufficiently interesting higher-dimensional Pin.2/–equivariant Bauer–Furuta invariants.
Note that in a recent paper by the author and Mukherjee [29], we use Theorem 1.2 to
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establish the first pair of orientable exotic surfaces (in a punctured K3 surface) which
are not smoothly isotopic even after one stabilization.

The paper is organized as follows: In Section 2, we give a brief review of some basic
Pin.2/–equivariant stable homotopy theory and recall the definition of the equivariant
Bauer–Furuta invariant. We also use this section to set up notation and to adapt some
standard results to our setting. The actual proof of Theorem 1.2 is given in Section 3.
Experts may directly skip to Section 3 and occasionally refer back to Section 2 for
notation and results.

Acknowledgements The author is partially supported by NSF grant DMS-1949209.
The author would like to thank Tye Lidman and Danny Ruberman for very enlightening
conversations, Mark Powell for pointing out Kreck’s work [24], and Selman Akbulut
for explaining his work in [2; 3].

2 Background

2.1 Pin(2)-equivariant homotopy theory

In this section, we collect some standard results (mostly from [1; 28; 30; 34]) on
G–equivariant stable homotopy theory in the case

G D Pin.2/D fei�
g[ fj � ei�

g �H:

Instead of stating the most general form of these results, we will only focus on the
special cases that are actually needed in our argument. We refer to [1; 34] for an
introduction to equivariant stable homotopy theory (in the case of finite groups) and to
[28; 30] for a more general treatment.

Since all objects we study here are finite G–CW complexes, for simplicity, we will
work with the G–equivariant Spanier–Whitehead category [1] (instead of the homotopy
category of G–spectra). Of course, there are a lot of drawbacks (eg one cannot always
take limits/colimits), but it is enough for our purpose.

2.1.1 Basic facts and definitions Let U be a countably infinite-dimensional G–
representation space equipped with a G–invariant inner product, which we call a
“universe”. We assume that U contains the concrete representation�M

1

R

�
˚

�M
1

zR

�
˚

�M
1

H

�
:
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Here R is the trivial representation, zR is the 1–dimensional representation on which
S1 acts trivially and j acts as �1, and H is acted upon by G via left multiplication in
the quaternions.

To apply the results in [30] directly without checking additional conditions, we further
assume that U is “complete”. This means that U contains infinitely many copies of all
isomorphism classes of irreducible G–representations.1

We will use H to denote either the group G or its subgroups S1 or feg. By restricting
the G–action on U , we can also use U as a complete H–universe. We use RH to
denote the set of all finite-dimensional H–representations contained in U . We will
treat RG as a subset of RS1 and Rfeg by restricting the G–action.

For any V 2 RH , we use SV to denote the 1–point compactification of V (called
the representation sphere) and use S.V / to denote the unit sphere. We set1 as the
basepoint of SV and we use S.V /C to denote the union of S.V / with a disjoint
basepoint.

Let X , Y and Z be based finite H–CW complexes; see for example [15, Chapter I]
for a definition. We use the notation ŒX;Y �H to denote the set of homotopy classes of
based H–maps from X to Y (ie maps that preserve the basepoint and are equivariant
under H ).

Given any V;W 2RH with V �W , let V ? be the orthogonal complement of V in W .
Then smashing with the identity map on SV? provides a map

ŒSV
^X;SV

^Y �H ! ŒSW
^X;SW

^Y �H :

One can check that these maps make the collection

fŒSV
^X;SV

^Y �H gV 2RH

into a direct system. We define fX;Y gH as the direct limit of this system. As in the
nonequivariant case, the set fX;Y gH is actually an abelian group. A based H–map

SV
^X ! SV

^Y for V 2RH

will be called a stable H–map from X to Y . An element in the group fX;Y gH will
be called a stable homotopy class of H–maps.

1Since all G–CW complexes we consider can have only G, S1 or feg as their isotropy group, all arguments
we make actually will still hold for the incomplete universe

�L
1R

�
˚
�L
1
zR
�
˚
�L
1H

�
, which is

more relevant to the geometric setting.
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Fact 2.1 Given any based H–map f W X ! Y , we form the mapping cone Cf and
let i W Y ! Cf be the natural inclusion. Then for any Z, the functor f�;ZgH is a
generalized cohomology theory [30, page 157]. As a result , there is a long exact
sequence

(2) � � � ! fSR
^X;ZgH

@
�! fCf;ZgH

i�
�! fY;ZgH

f �
��! fX;ZgH

@
�! fCf;SR

^ZgH ! � � �

associated to the cofiber sequence X
f
�! Y

i
�! Cf .

Fact 2.2 Suppose the H–action on X is free away from the basepoint. Then there is a
natural map

(3) qH W fX;Y g
H
! fX=H;Y=H gfeg

from the equivariant homotopy group to the nonequivariant homotopy group of the
quotient space. This map is constructed as follows: Since the H–action on X is
free away from the basepoint , any Œf � 2 fX;Y gH can be represented by an H–map
f W SV ^X ! SV ^Y such that the H–action on V is trivial ; see [1, Proposition 5.5;
28, Theorem 2.8, page 65]. The map f induces a nonequivariant map between the
quotient space ,

f=H W SV
^ .X=H /D .SV

^X /=H ! .SV
^Y /=H D SV

^ .Y=H /:

Then we define qH .Œf �/ as Œf=H �. One can check that this does not depend on the
choice of f and V .

Fact 2.3 [1, Theorem 5.3; 28, Theorem 4.5, page 78] Suppose the H–action on X is
free away from the basepoint and the H–action on Y is trivial. Then the map qH is an
isomorphism.

For the rest of the section, we assume X and Y are based finite G–CW complexes. The
next few facts concern various relations between the G–equivariant homotopy groups
and the S1–equivariant homotopy groups.

Fact 2.4 [1, Theorem 5.1; 28, Theorem 4.7, page 79] There is a natural isomorphism

(4) � W fX;Y gS
1
Š�! fX ^ .S.zR/C/;Y g

G

constructed as follows: Take any Œf � 2 fX;Y gS
1

represented by an S1–map

f W SV
^X ! SV

^Y:
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By enlarging V if necessary, we may assume V 2RG . Then we consider the G–map

f 0 W SV
^X ^ .S.zR/C/D ..S

V
^X /� f1g/_ ..SV

^X /� f�1g/! Y

defined by setting

f 0.x � f1g/D f .x/ and f 0.x � f�1g/D jf .j�1x/

for any x 2 SV ^X . We let �.Œf �/D Œf 0�. This map � turns out to be an isomorphism.

Next, we recall the two operations about changing groups, namely the restriction map

(5) ResG
S1 W fX;Y g

G
! fX;Y gS

1

and the transfer map

(6) TrG
S1 W fX;Y g

S1

! fX;Y gG :

The restriction map is defined by simply ignoring the j –action. To define the transfer
map, we consider the Pontryagin–Thom map

p W S
zR
! S

zR
^S.zR/C

that crushes all points outside a normal neighborhood of S.zR/ in S
zR. (Here we identify

the Thom space of the normal bundle of S.zR/ as S
zR ^ .S.zR/C/.) Then the transfer

map is defined as the composition

(7) fX;Y gS
1 �
�! f.S.zR/C/^X;Y gG D fS

zR
^ .S.zR/C/^X;S

zR
^Y gG

p�
��! fS

zR
^X;S

zR
^Y gG D fX;Y gG :

To describe the composition of transfer and restriction, we define the conjugation map

(8) cj W fX;Y g
S1

! fX;Y gS
1

as follows: Take any element Œf �2 fX;Y gS
1

represented by an S1–map f WSV ^X!

SV ^ Y . By enlarging V if necessary, we may assume V 2 RG . Then cj .Œf �/ is
represented by the composition

SV
^X

j�1

��! SV
^X

f
�! SV

^Y
j
�! SV

^Y:

Note that when the S1–action on X is free away from the basepoint, the maps cj and
the map qS1 defined in (3) are compatible. That means

(9) qS1.cj .˛//D j ı qS1.˛/ ı j�1 for all ˛ 2 fX;Y gS
1

:
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Here j and j�1 are treated as elements in fY=S1;Y=S1gfeg and fX=S1;X=S1gfeg,
respectively.

Next is a special case of the double coset formula [30, Chapter XVIII, Theorem 4.3].
It can be verified directly by unwinding the definitions.

Fact 2.5 For any ˛ 2 fX;Y gS
1

,

(10) ResG
S1 TrG

S1.˛/D ˛C cj .˛/:

We end this subsection with an alternative description of the image of TrG
S1 :

Lemma 2.6 Let ezR 2 fS
0;S

zRgG be the element represented by the inclusion map

(11) S0
D f0;1g ,! S

zR:

(This element is called the Euler class of zR.) Then the kernel of the map

(12) fX;Y gG
ezR���! fX;S

zR
^Y gG

equals the image of the transfer map (6).

Proof There is a cofiber sequence S0 ,!S
zR p
�!S

zR^S.zR/C. Smashing this sequence
with X and applying the functor f�;S zR ^Y gG , we get the exact sequence

f.S
zR
^S.zR/C/^X;S

zR
^Y g

p�
��! fS

zR
^X;S

zR
^Y gG

ezR���! fX;S
zR
^Y gG :

So we see that the image of p� equals the kernel of the map (12). The lemma follows
from the definition of TrG

S1 ; see (7).

2.1.2 The characteristic homomorphism We now define the characteristic homo-
morphism

t W fSaRCbH;Sd zR
g
S1

! Z;

following [11], where a, b and c are nonnegative integers with d � a C 2. This
homomorphism is of interest to us because the (family) Seiberg–Witten invariant can
be obtained by applying t on the Bauer–Furuta invariant. Note that although zR is trivial
as an S1–representation, we still distinguish it with R in order to keep track of the
j –action.

To define t , we take the smash product of the cofiber sequence

S0
! SbH

! SR
^S.bH/C

with the sphere SaR and get the cofiber sequence

(13) SaR
! SaRCbH

! S .aC1/R
^S.bH/C:
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This induces the long exact sequence

(14) � � � ! fS .aC1/R;Sd zR
g
S1

! fS .aC1/R
^S.bH/C;S

d zR
g
S1

! fSaRCbH;Sd zR
g
S1

! fSaR;Sd zR
g
S1

! � � � :

Since d � aC 2, the equivariant Hopf theorem [14, Section 8.4] states that the stable
homotopy class of an S1–equivariant stable map from SaR or S .aC1/R to Sd zR is
determined by its mapping degree on the S1–fixed point sets. Since this mapping
degree is always 0 for dimension reasons,

fSaR;Sd zR
g
S1

D fS .aC1/R;Sd zR
g
S1

D 0:

Therefore, we get an isomorphism

(15) � W fS .aC1/R
^S.bH/C;S

d zR
g
S1
Š�! fSaRCbH;Sd zR

g
S1

:

Note that the S1–action on S .aC1/R ^S.bH/C is free away from the basepoint, with
quotient space S .aC1/R ^CP2b�1

C . By composing ��1 with the isomorphism qS1

given in (3), we get the isomorphism

(16)  D qS1 ı ��1
W fSaRCbH;Sd zR

g
S1
Š�! fS .aC1/R

^CP2b�1
C ;Sd zR

g
feg:

Definition 2.7 Suppose d �a is an odd number less than or equal to 4b� 1. Then we
define the characteristic homomorphism

t W fSaRCbH;Sd zR
g
S1

! Z

by setting t.˛/ as the image of 1 under the induced map on the reduced cohomology

. .˛//� W ZD zH d .Sd zR/! zH d .S .aC1/R
^CP2b�1

C /Š Z:

Here we use the standard orientations on Sd zR, S .aC1/R and CP
1
2
.d�a�1/ to identify

the homology groups as Z. If either d �a is even or d �a> 4b� 1, we simply define
t as the zero map.

To discuss the behavior of t under the conjugation map cj defined in (8), we prove:

Lemma 2.8 For any ˛ 2 fSaRCbH;Sd zRgS
1

,

 .cj .˛//D .�1/dm ı .˛/;

where m 2 fCP2b�1
C ;CP2b�1

C gfeg is the “mirror reflection map” defined as

m.Œz1;z2;z3;z4; : : : ;z2b�1;z2b �/D .Œ�Nz2; Nz1;�Nz4; Nz3; : : : ;�Nz2b; Nz2b�1�/ for zi 2C:
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Proof By formula (9),  .cj .˛// equals the composition of  .˛/ with the elements

j 2 fSd zR;Sd zR
g
feg

and
j�1
2 fS .aC1/R

^CP2b�1
C ;S .aC1/R

^CP2b�1
C g

feg;

which are just .�1/d and a suspension of m, respectively.

Corollary 2.9 When d � a is odd , t.cj .˛//D .�1/
1
2
.3d�a�1/t.˛/ for any ˛.

Proof When restricted to CP1, the map m is just the antipodal map, and so has
degree �1. Using the ring structure on H�.CP2b�1/, we see that m has degree
.�1/

1
2
.d�a�1/ on zH d .S .aC1/R ^CP2b�1

C /. The result follows from Lemma 2.8.

We end this section with the following result, which is essentially the algebraic version
of the vanishing result for the Seiberg–Witten invariant of connected sums.

Lemma 2.10 Given any ˛1 2 fS
a1RCb1H;Sd1

zRgS
1

and ˛2 2 fS
a2RCb2H;Sd2

zRgS
1

,
we have t.˛1˛2/D 0 if d1 > a1 and d2 > a2.

Proof The product ˛1˛2 belongs to the group

fS .a1Ca2/RC.b1Cb2/H;S .d1Cd2/zRg
S1

:

Therefore, t.˛1˛2/ can be nonzero only if d1 C d2 � a1 � a2 is odd. Without loss
of generality, we may assume d1 � a1 is odd and d2 � a2 is even. Since di > ai for
i D 1; 2, the group fSai R;Sdi

zRgS
1

vanishes. By the long exact sequence (14), we see
that ˛i equals the image of some element

ˇi 2 fS
.aiC1/R

^S.biH/C;S
di
zR
g
S1

D fSai R
^ .Sbi H=S0/;Sdi

zR
g
S1

:

Here we identify Sbi H=S0 with SR ^ S.biH/C by treating SR as the one-point
compactification of .0;C1/ and sending v2Hbi nf0g to .jvj; v=jvj/2 .0;1/�S.biH/.

Next, we consider the commutative diagram

(17)

S .b1Cb2/H
q

//

Š

��

S .b1Cb2/H=S0



��

Sb1H ^Sb2H q1^q2
// .Sb1H=S0/^ .Sb2H=S0/
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where q, q1, q2 and

 W S .b1Cb2/H=S0

! S .b1Cb2/H=..S0
^Sb2H/[ .Sb1H

^S0//D .Sb1H=S0/^ .Sb2H=S0/

are all quotient maps. From (17), we see that

˛1 ^˛2 D .ˇ1 ^ˇ2/ ı .q1 ^ q2/D .ˇ1 ^ˇ2/ ı  ı q:

Therefore, �.˛1˛2/D .ˇ1ˇ2/ ı  .

Moreover, checking the explicit construction of the map qS1 given in Fact 2.2, we see
that qS1 is also natural under the smash product and composition. Therefore,

 .˛1˛2/D qS1.�.˛1˛2//D qS1.ˇ1ˇ2/ ı qS1. /;

and qS1.ˇ1ˇ2/ equals the composition

S .a1Ca2C2/R
^
�
.S.b1H/C ^S.b2H/C/=S

1
�

! .S .a1C1/R
^ .S.b1H/C/=S

1//^ .S .a2C1/R
^ .S.b2H/C/=S

1//

q
S1 .ˇ1/^q

S1 .ˇ2/
������������! Sd1

zR
^Sd2

zR:

Because d2�a2 is even, the cohomology zH d2.S .a2C1/R^.S.b2H/C/=S1// equals 0.
So qS1.ˇ2/ induces the trivial map on the reduced cohomology. This implies that
 .˛2˛2/ induces the trivial map on zH d1Cd2.�/. Hence, t.˛1˛2/D 0.

2.2 The Pin(2)-equivariant Bauer–Furuta invariant for spin families

In this section, we briefly summarize the definition and some important properties
of the Bauer–Furuta invariant for spin families. This invariant was originally defined
in [11] for a single 4–manifold. The family version was first defined in [35; 38] and
later extensively studied in [7; 9]. Because we want to construct the Bauer–Furuta
invariant as a concrete element in the G–equivariant stable homotopy group of spheres,
some care must be taken in the construction.

2.2.1 Spin structures on the circle family of 4–manifolds Let N be a smooth fiber
bundle whose fiber is a closed spin 4–manifold M and whose base is another closed
manifold B. For simplicity, we will make the following assumption throughout the
paper:

Assumption 2.11 The bundle N satisfies:

(i) M is simply connected.
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(ii) The signature �.M / is at most 0.

(iii) Let Mx be the fiber over the point x 2 B. Then the action of �1.B;x/ on
H 2.MxIZ/ (given by the holonomy of the bundle) is trivial.

We equip N with a Riemannian metric and let Frv.N / be the frame bundle of the
vertical tangent bundle of N . This is an SO.4/–bundle over N .

Definition 2.12 A spin structure s on N is a double covering map � W P ! Frv.N /

that restricts to a nontrivial covering map Spin.4/! SO.4/ on each fiber. Two spin
structures .�;P / and .� 0;P 0/ are called isomorphic if there exists a homeomorphism
P ! P 0 that covers the identity map on Frv.N /.

Definition 2.13 The pair .N; s/ is called a spin family. Two spin families .N1; s1/

and .N2; s2/ over the same base B are called “isomorphic” if there exists a bundle
isomorphism f WN1!N2 such that f �.s2/ is isomorphic to s1.

We are mainly interested in the case that B is a circle or a point. By Assumption 2.11,
N has a unique spin structure when B is a point and has two spin structures when B is
a circle. We give an explicit description of these two spin structures as follows: Let
�M WPM!Fr.M / be the covering map given by the unique spin structure on M . Then
the bundle N is obtained by gluing the two boundary components of M � Œ0; 1� via a
diffeomorphism f WM!M . The diffeomorphism induces a map f� WFr.M /!Fr.M /,
which has two lifts f ˙� W PM ! PM . These lifts differ from each other by the deck
transformation � W PM ! PM . We use f ˙� to glue the two boundary components of
PM � I and form two spin structures on N .

Definition 2.14 When N DM �S1, the maps f ˙� are just the identity map and the
deck transformation � . We call the associated spin structures over N the product spin
structure and the twisted spin structure, respectively. Let s be the unique spin structure
on M . Then we use Qs to denote the former and use Qs� to denote the latter.

For general M , the product family and the twisted family are not isomorphic. For
example, Kronheimer and Mrowka [26] established:

Example 2.15 The product family .K3�S1; Qs/ and the twisted family .K3�S1; Qs� /

are not isomorphic, as can be proved by the nonequivariant Bauer–Furuta invariant.

However, for the special case of S2 �S2, these two families are indeed isomorphic:
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Lemma 2.16 ..S2 �S2/�S1; Qs/ and ..S2 �S2/�S1; Qs� / are isomorphic.

Proof There is an S1–action on S2 with fixed points f0;1g. We use � WS1�S2!S2

to denote this action. As x varies from 0 to 2� , the induced map

.idS2 � �.x; � //� W T.0;0/.S
2
�S2/! T.0;0/.S

2
�S2/

gives an essential loop in SO.4/. Using this fact, one can verify that the bundle
automorphism

f W .S2
�S2/�S1

! .S2
�S2/�S1

defined by f .y1;y2;x/D .y1; �.x;y2/;x/ satisfies f �.Qs/D Qs� .

2.2.2 Definition of the Bauer–Furuta invariant As in the case of a single 4–
manifold, a spin structure s gives rise to two quaternion bundles S˙ over N . Denote
by S˙x the restriction of S˙ to the fiber Mx . Then the spin Dirac operator

D.Mx/ W �.S
C
x /! �.S�x /

is a quaternionic linear operator. We form the operator D over N by putting D.Mx/

together.

Now we consider four Hilbert bundles VC, V�, UC and U� over B. The fibers of
V˙ are suitable Sobolev completions of �.S˙x /, and the fibers of UC and U� are
completions of �1.Mx/ and �2

C.Mx/˚�
0.Mx/=R, respectively. We let GD Pin.2/

act on V˙ by left multiplication in the quaternions, and we let G act on U˙ by setting
the S1–action to be trivial and setting the j –action as multiplication by �1.

The family Seiberg–Witten equations give a fiber-preserving G–equivariant map

SW W UC˚VC! U�˚V�:

This Seiberg–Witten map can be written as l C c, where l is the fiberwise Fredholm
operator

l WDD˚ .dC; d�/

and c is a certain 0th order operator. Furthermore, by the boundedness property of the
Seiberg–Witten equations [11, Proposition 3.1], SW extends to a map

SWC W .UC˚VC/1! .U�˚V�/1

between the one-point completions

.U˙˚V˙/1 WD .U˙˚V˙/[f1g:
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To apply the finite-dimensional approximation technique on the map SW , we carefully
choose finite-dimensional subspaces of V˙ and U˙ as follows: First, we apply Kuiper’s
theorem [27] to get canonical trivialization of the bundles

(18) V� Š B �L2.H1/ and UC Š B �L2.zR1/:

Here L2.�/ denotes the completion with respect to the L2–norm. Choose m; n� 0 and
let UC � UC and V � � V� be the subbundles corresponding to the bundles B �Hn

and B � zRm under the isomorphism (18). Let HC
2

be the subbundle of U� consisting
of all self-dual harmonic 2–forms on Mx . We set

U� WDHC
2
˚ ..dC; d�/UC/� U�:

(Note that .dC; d�/ is injective by our assumption that b1.M /D 0.) We choose m large
enough so that V � is fiberwise transverse to D and we set V C WDD�1.V �/� VC.

Set W C WD UC˚V C and W � WD U�˚V �. As explained in [11], when m and n

are large enough,
SWC.W C1/\S.W �;?/D∅;

where S.W �;?/ denotes the unit sphere in the orthogonal complement of W � in
U�˚V�. Therefore, by composing SWC with a specific G–equivariant deformation
retraction

� W .U�˚V�/1 nS.W �;?/!W �1;

one obtains a G–equivariant map

sw WW C1 !W �1:

Restriction of (18) gives canonical trivializations of the bundles V � and UC. By
Assumption 2.11, �1.B/ acts trivially on H 2.Mx/. Therefore, as explained in [26], a
homology orientation of M determines a canonical trivialization of HC

2
. At this point,

we have obtained canonical trivializations of U˙ and V �. Using these trivializations,
we get the composition map

(19) .SmzR
^V C1/ŠW C1

sw
�!W �1 Š

�
S .mCbC.M //zRCnH

^BC
�

pj
��! S .mCbC.M //zRCnH;

where pj denotes projection to the first factor.

From now on, we specialize to the case that B is a circle or point. Note that V C is a
quaternionic bundle of dimension n� 1

16
�.M / and the group Sp

�
n� 1

16
�.M /

�
has
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trivial �i for i � 2. So the bundle V C has a trivialization (canonical up to homotopy).
This trivialization allows us to fix an identification

V C1 Š .S
.n��.M /=16/H

^BC/

and rewrite the map (19) as a G–map

(20) �sw W SmzRC.n��.M /=16/H
^BC! S .mCbC.M //zRCnH;

which represents an element in Œ�sw�2fS�.�.M /=16/H^BC;S
bC.M /zRgG . By checking

the concrete construction of �sw in [11], one establishes:

Fact 2.17 Consider the map SmzR ^BC! S .mCbC.M //zR given by restricting �sw to
the S1–fixed point sets. This map can be explicitly described as the composition

SmzR
^BC

projection
������! SmzR inclusion

�����! S .mCbC.M //zR:

Definition 2.18 Suppose B is a point. Then M D N and S�.�.M /=16/H ^BC D

S�.�.M /=16/H. In this case, we define the G–equivariant Bauer–Furuta invariant as

BFG.M; s/ WD Œ�sw� 2 fS�.�.M /=16/H;SbC.M /zR
g
G :

We will neglect the spin structure s in our notation when it is obvious from the context.

Example 2.19 BFG.S4/ is an element in fS0;S0gG represented by a G–map from
the SmzRCnH to itself. By the equivariant Hopf theorem [15, Chapter II.4], such a
stable homotopy class is determined by its restriction to the S1–fixed points. Hence,
by Fact 2.17, we see that BFG.S4/D 1.

Example 2.20 BFG.S2�S2/2fS0;S
zRgG is represented by a G–map from SmzRCnH

to S .mC1/zRCnH. Such a map is also determined by its restriction on the S1–fixed
points. By Fact 2.17 again, we see that BFG.S2 � S2/ D ezR. Here ezR is the Euler
class defined in (11).

When B is a circle, we identify it with the unit sphere S.2R/ in S2R. Consider the
cofiber sequence

(21) S.2R/[f1g! S0
! S2R p

�! SR
^ .S.2R/[f1g/:

The map p, which is just the Pontryagin–Thom map for the inclusion S.2R/ ,! S2R,
can be treated as a stable map from SR to BC. This stable map induces the map

p� W fS�.�.M /=16/H
^BC;S

bC.M /zR
g
G
! fSR�.�.M /=16/H;SbC.M /zR

g
G

that sends ˛ to ˛ ı .idS�.�.M /=16/H ^p/.
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Definition 2.21 When BDS.2R/we define the G–equivariant Bauer–Furuta invariant

BFG.N; s/ WD p�Œ�sw� 2 fSR�.�.M /=16/H;SbC.M /zR
g
G :

In either case, we define both the S1–equivariant and nonequivariant Bauer–Furuta
invariants as the restriction of the G–equivariant Bauer–Furuta invariant:

BFS1

.N; s/ WD ResG
S1.BFG.N; s//;

BFfeg.N; s/ WD ResG
feg.BFG.N; s//:

In [26], Kronheimer and Mrowka gave an alternative definition of BFfeg.N; s/: Take a
generic section r of the bundle W � that is transverse to the map sw. Then the preimage
sw�1.r/ is a manifold. When B is a point, the canonical trivializations of the bundles
W ˙ determine a stable framing on sw�1.r/. When B is S.2R/, we fix a stable framing
on B that bounds a framed disk. Then together with the trivializations of W ˙, this
determines a stable framing on sw�1.r/. In [26], the family Bauer–Furuta invariant is
defined as the framed cobordism class of sw�1.r/.

Recall that the framed cobordism classes of smooth n–manifolds are classified by
elements in the nth stable homotopy group of spheres. The following lemma states that
our definition of BFfeg is essentially identical to Kronheimer and Mrowka’s definition.

Lemma 2.22 The framed cobordism class of sw�1.r/ is classified by the nonequivari-
ant Bauer–Furuta invariant BFfeg.N; s/.

Proof By Sard’s theorem, we can take r to be a constant section that sends the whole
B to a generic point r0 2 S .mCbC.M //zRCnH. Then sw�1.r/D �sw�1

.r0/ and it is also
the preimage of the point

f0g � r0 2 SRC.mCbC.M //zRCnH

under the composition

(22) .id
S zR
^ �sw/ ı .id

S.n��.M /=16/HCmzR ^p/ W S2RCmzRC.n��.M /=16/H

! SRC.mCbC.M //zRCnH:

Because r0 is a regular value of �sw and any point in f0g �BC is a regular value of p,
we see that f0g� r0 is indeed a regular value of the map (22). Recall that an element in
the stable group of spheres defines a stably framed manifold by taking the preimage of
a regular value and taking the induced framing. The proof is finished by observing that
the stable framing on B that bounds a framed disk (the one we used to fix the framing
on sw�1.r/) is exactly the framing induced by the inclusion B ,! S2R.
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2.2.3 Some properties of the Bauer–Furuta invariant In this subsection, we sum-
marize some important properties of the Bauer–Furuta invariant. We start with a
vanishing result. Recall from Definition 2.14 that on the trivial bundle N DM�S1 there
are two spin structures: the product spin structure Qs and the twisted spin structure Qs� .

Lemma 2.23 The Bauer–Furuta invariants BFG , BFS1

and BFfeg of the product spin
structure Qs are all vanishing.

Proof The cofiber sequence (21) induces a long exact sequence

� � � ! fS�.�.M /=16/H;SbC.M /zR
g
G q�
�! fS�.�.M /=16/H

^BC;S
bC.M /zR

g
G

p�
��! fSR�.�.M /=16/H;SbC.M /zR

g
G
! � � � ;

where q� is induced by the map q WBC! S0 that preserves the basepoint and sends B

to the other point. By its definition, the map �sw for .M �S1; Qs/ is just a pullback of
the corresponding map for .M; s/ via the map q. So Œ�sw� 2 Image.q�/, which implies

BFG..M �S1; Qs//D p�.Œ�sw�/D 0:

The invariants BFS1

and BFfeg vanish because BFG vanishes.

Regarding the Bauer–Furuta invariant of the twisted spin structure, Kronheimer and
Mrowka [26] proved the following result by studying the stable framing on the moduli
space:

Proposition 2.24 We have

(23) BFfeg.M �S1; Qs� /D

�
� �BFfeg.M; s/ when �.M /� 16 mod 32;

0 when 32 j �.M /:

Here � 2 fSR;S0gfeg denotes the Hopf map.

Remark It would be interesting to prove a generalization of Proposition 2.24 for
BFG.M �S1; Qs� / and BFS1

.M �S1; Qs� /.

Next, we give a connected sum formula for the family Bauer–Furuta invariants. This
formula was originally proved by Bauer [10] for a single 4–manifold.

To set up the theorem we let .Ni ; si/ for i D 1; 2 be two spin families over B D S.2R/

with fiber Mi , both satisfying Assumption 2.11. To form the connected sum, we
pick sections i W B ! Ni . By Assumption 2.11(i), the section i is unique up to
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homotopy. We remove small standard 4–balls around these sections to form the family
Ni�D4�S1 of 4–manifolds with boundary. Then we can form the fiberwise connected
sum by identifying the collars of their boundaries. To fix such an identification, we
need to choose a smooth family of orientation reversing isomorphisms

Q� WD f�x W T1.x/.M1/x
Š�! T2.x/.M2/xgx2B:

We use N1 # Q� N2 to denote the resulting bundle over B, with fiber M1 # M2. In
general, the result N1 # Q� N2 will depend on the choice of Q� up to homotopy. Because
�1.SO.4//D Z=2, there are essentially two choices.

Lemma 2.25 There exists exactly one choice of Q� such that the spin structures s1 and
s2 can be glued together to form a spin structure on N1 # Q� N2. We denote this choice
by Q�.s1; s2/ and denote the resulting spin structure by s1 # s2.

Proof Denote by Q�˙ the two choices of Q�. Then they provide gluing maps

f ˙ W @.N1�D4
�S1/! @.N2�D4

�S1/;

which differ from each other by a Dehn twist on @.N2�D4�S1/. Under any boundary
parametrization @.N2�D4 �S1/Š S3 �S1, this Dehn twist can be written as

�.v;x/D .˛.x/v;x/ for .v;x/ 2 S3
�S1;

where ˛ W S1! SO.4/ is an essential loop. Note that S3�S1, regarded as the product
S3–bundle over S1, has two family spin structures (the product spin structure and the
twisted spin structure), which are related to each other by �. We see that exactly one of
the two maps f ˙ sends s1j@.N1�D4�S1/ to s2j@.N2�D4�S1/. This finishes the proof.
We also note that when Q� D Q�.s1; s2/, the gluing map on the boundary has two lifts
to the gluing map on the spin bundle, but they give isomorphic spin structures on the
connected sum.

From the discussion above, there is a unique way to take the connected sum of two
spin families .Ni ; si/. The resulting spin family .N1 # Q�.s1;s2/

N2; s1 # s2/ will also be
written as .N1; s1/ # .N2; s2/.

To talk about the Bauer–Furuta invariant of a connected sum, we also need to specify
a rule for homology orientation. Given homology orientations on M1 and M2, we
let the homology orientation on M1 # M2 be defined by putting the oriented basis for
H 2
C.M1/ in front of the oriented basis for H 2

C.M2/. The following theorem is a family
version of Bauer’s connected sum formula [10]:
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Proposition 2.26 Let .M �S1; Qs/ be the product family for some spin 4–manifold
.M; s/. Then

BFH..N1; s1/ # .M �S1; Qs//D BFH .N1; s1/^BFH .M; s/

for H DG, S1 or feg.

Proof The proof is essentially identical to the single 4–manifold case in [10]; see [26]
for a sketch of the proof for the family version (in the nonequivariant setting). A
central step is an excision argument that builds a homotopy between the approximated
Seiberg–Witten maps �sw (20) for the bundle

N1[ .M �S1/[ .S4
�S1/

viewed as a family over S1 with fiber M1[M [S4, and the bundle

.N # .M �S1/[ .S4
�S1//[ .S4

�S1/;

viewed as a family over S1 with fiber .M1#M /[S4[S4. This homotopy is constructed
by multiplying various sections by scalar-valued real cutoff functions and applying
various terms in the Seiberg–Witten map, which are all G–equivariant. Therefore, this
homotopy is G–equivariant.

As a corollary, we get the following result, which computes the Bauer–Furuta invariant
under family stabilization:

Corollary 2.27 Consider the product spin structure Qs0 and the twisted spin structure
Qs�
0

over the product bundle ..S2 � S2/� S1/. Then , for any spin family .N; s/ that
satisfies Assumption 2.11,

(24) BFG
�
.N; s/ #

�
..S2

�S2/�S1/; Qs0

��
D BFG.N; s/ � ezR

and

(25) BFG
�
.N; s/ #

�
..S2

�S2/�S1/; Qs�0
��
D BFG.N; s/ � ezR:

Here ezR 2 fS
0;S

zRgG is the Euler class defined in (11).

Proof The formula (24) follows from Proposition 2.26 and Example 2.20. The formula
(25) follows from (24) and Lemma 2.16.
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3 Proof of the main theorem

3.1 The key proposition

In this subsection, we prove the homotopy theoretic Proposition 3.2, which will be the
key ingredient in the proof of our main theorem.

Recall that the group fSRC2H;S6zRgS
1

admits a conjugation action cj ; see (8). The
following lemma computes this group and this action:

Lemma 3.1 The characteristic homomorphism t W fSRC2H;S6zRgS
1

!Z is surjective
and has ker t D Z=2. The conjugation action cj acts trivially on ker t .

Proof Smashing the cofiber sequence S0! S2H! SR ^ .S.2H/C/ with SR, we
get a cofiber sequence SR! SRC2H! S2R ^ .S.2H/C/, which induces the long
exact sequence

� � � ! fS2R;S6zR
g
S1

! fS2R
^ .S.2H/C/;S

6zR
g
S1

! fSRC2H;S6zR
g
S1

! fSR;S6zR
g
S1

! � � �

By the equivariant Hopf theorem [15, Chapter II.4 ], fSR;S6zRgS
1

DfS2R;S6zRgS
1

D0.
Hence, we get the isomorphism

fSRC2H;S6zR
g
S1

Š fS2R
^ .S.2H/C/;S

6zR
g
S1

:

Note that the S1–action on S2R ^ .S.2H/C/ is free away from the basepoint. By
Fact 2.3,

fS2R
^ .S.2H/C/;S

6zR
g
S1

D fS2R
^ .CP3

C/;S
6zR
g
feg:

The cofiber sequence CP1
C!CP3

C!CP3=CP1 induces the exact sequence

fS3R
^ .CP1

C/;S
6zR
g
feg
! fS2R

^ .CP3
C/;S

6zR
g
feg

! fS2R
^ .CP3=CP1/;S6zR

g
feg
! fS2R

^ .CP1
C/;S

6zR
g
feg:

By the cellular approximation theorem,

fS3R
^ .CP1

C/;S
6zR
g
feg
D fS2R

^ .CP1
C/;S

6zR
g
feg
D 0:

So we obtain the isomorphism

fS2R
^ .CP3

C/;S
6zR
g
feg
Š fS2R

^ .CP3=CP1/;S6zR
g
feg:
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To understand the stable homotopy type of CP3=CP1 as a nonequivariant space, we
let x be the generator of H 2.CP3IZ=2/. Then the total Steenrod square is given by

Sq.x/D Sq0.x/CSq2.x/D xCx2:

By the Cartan formula,

Sq.x2/D .xCx2/2 D x2
2H�.CP3

IZ=2/:

In particular, Sq2.x2/D 0, which implies that the attaching map between the 6–cell
and the 4–cell in CP3, regarded as an element in the stable homotopy group �1DZ=2,
is trivial. Therefore, we conclude that CP3=CP1 is stably homotopy equivalent to
S6R _S4R. This implies

fS2R
^ .CP3=CP1/;S6zR

g
feg
D �2˚�0 D Z=2˚Z:

The projection to the �0–summand can be alternatively defined as the mapping degree
on H 6.�IZ/, so it is exactly the characteristic homomorphism t . We have shown that
t is surjective with kernel Z=2. By Corollary 2.9, we have t.cj .˛// D t.˛/ for any
˛ 2 fSRC2H;S6zRgS

1

. So cj must send ker t to ker t . Since ker t Š Z=2, cj must act
trivially on it.

Proposition 3.2 Let ˛ be an element in fSRC2H;S6zRgG that satisfies the conditions

t.ResG
S1.˛//D 0 and ˛ � ezR D 0:

Then ResG
S1.˛/D 0.

Proof By Lemma 2.6, we see that ˛ D TrG
S1.ˇ/ for some ˇ 2 fSRC2H;S6zRgS

1

.
Therefore, by the double coset formula (10), ResG

S1.˛/D ˇC cj .ˇ/. By Corollary 2.9,

0D t.ˇC cj .ˇ//D 2t.ˇ/:

So ˇ is in the kernel of t , which is Z=2 by Lemma 3.1. By Lemma 3.1 again, cj .ˇ/Dˇ.
So ResG

S1.˛/D 2ˇ D 0.

3.2 Proof of Theorem 1.2

Let X1 be the K3 surface and X0 D S2 �S2. Let si be the unique spin structure on
Xi for i D 0; 1. We consider the Dehn twist

ı WX1 # X1!X1 # X1
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along the separating S3 in the neck. We want to show that ı is not smoothly isotopic
to the identity map even after a single stabilization. Without loss of generality, we may
assume that the stabilization is done in the first copy of X1. Then we need to show that
the map

ıs
WD idX0

# ı WX0 # X1 # X1!X0 # X1 # X1

is not smoothly isotopic to the identity map. As in [26], we will prove this by forming
the mapping torus

Nıs WD ..X0 # X1 # X1/� Œ0; 1�/=.x; 0/� .ı
s.x/; 1/

and showing that it is a nontrivial smooth bundle over S1.

By Lemma 2.23, the product spin structure over the trivial bundle has vanishing BFG .
So, it suffices to show that both spin families associated to Nıs have nontrivial BFG .

To prove this, we consider the product family .Xi � S1; Qsi/ and the twisted family
.Xi �S1; Qs�i /. By the discussion in [26, begining of Section 5], the mapping torus Nı

can be formed as the fiberwise connected sum

.X1 �S1/ #'.Qs1;Qs
�
1
/ .X1 �S1/:

Therefore, the bundle Nıs can formed as the fiberwise connected sum

.X0 �S1/ #'.Qs0;Qs1/ .X1 �S1/ #'.Qs1;Qs
�
1
/ .X1 �S1/

as well as the fiberwise connected sum

.X0 �S1/ #'.Qs�
0
;Qs�

1
/ .X1 �S1/ #'.Qs�

1
;Qs1/ .X1 �S1/:

The two spin families associated to Nıs are

.X0 �S1; Qs0/ # .X1 �S1; Qs1/ # .X1 �S1; Qs�1/

and
.X0 �S1; Qs�0/ # .X1 �S1; Qs�1/ # .X1 �S1; Qs1/:

We will show that

BFG..X0 �S1; Qs0/ # .X1 �S1; Qs1/ # .X1 �S1; Qs�1//¤ 0;

and the other family is similar. We use ˛ to denote the element

BFG..X1 �S1; Qs1/ # .X1 �S1; Qs�1// 2 fS
RC2H;S6zR

g
G :
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By Proposition 2.26, ResG
S1.˛/ can be decomposed as the product of the elements

BFS1

.X1; s1/ 2 fS
H;S3zR

g
S1

and BFS1

..X1 �S1; Qs�1// 2 fS
RCH;S3zR

g
S1

:

By Lemma 2.10, the Seiberg–Witten invariant t.ResG
S1.˛// equals 0. (This can also be

proved by checking the explicit description of the Seiberg–Witten moduli space given
in [26].)

By Corollary 2.27,

BFG..X0 �S1; Qs0/ # .X1 �S1; Qs1/ # .X1 �S1; Qs�1//D ˛ � ezR:

For the sake of contradiction, suppose ˛ �ezRD 0. Then, by Proposition 3.2, ResG
S1.˛/D

0, which implies

BFfeg..X1 �S1; Qs1/ # .X1 �S1; Qs�1//D ResG
feg.˛/D ResS1

feg ıResG
S1.˛/D 0:

However, Kronheimer and Mrowka [26, Proposition 5.1] computed this nonequivariant
Bauer–Furuta invariant as �3 ¤ 0 2 �3. (The Kronheimer–Mrowka definition of BFfeg

coincides with ours because of Lemma 2.22.) This is a contradiction and our proof is
finished.
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Cellular objects in isotropic motivic categories

FABIO TANANIA

Our main purpose is to describe the category of isotropic cellular spectra over flexible
fields. Guided by Gheorghe, Wang and Xu (Acta Math. 226 (2021) 319–407), we
show that it is equivalent, as a stable1–category equipped with a t–structure, to
the derived category of left comodules over the dual of the classical topological
Steenrod algebra. In order to obtain this result, the category of isotropic cellular
modules over the motivic Brown–Peterson spectrum is also studied, and isotropic
Adams and Adams–Novikov spectral sequences are developed. As a consequence,
we also compute hom sets in the category of isotropic Tate motives between motives
of isotropic cellular spectra.

14F42

A list of symbols can be found on page 2046.

1 Introduction

Isotropic categories are local versions of motivic categories, obtained by, roughly
speaking, killing all anisotropic varieties. Although they often have a handier structure
than their global versions, they exhibit some key characteristics of both motivic and
classical topological phenomena. In [21], Vishik introduced the isotropic triangulated
category of motives and computed the isotropic motivic cohomology of the point,
which is strongly related to the Milnor subalgebra. By following this lead, we studied
in [19] the isotropic stable motivic homotopy category. In particular, we identified the
isotropic motivic homotopy groups of the sphere spectrum with the cohomology of the
topological Steenrod algebra, ie the E2–page of the classical Adams spectral sequence.
These results are quite surprising since they show that topological objects naturally
arise from isotropic environments, which could lead to a fruitful exchange between
topology and isotropic motivic theory.

Motivic categories, constructed by Morel and Voevodsky (see [16; 23]) in order to
study algebraic varieties by topological means, are extremely rich categories. Even
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over an algebraically closed field they are more complex than the respective topological
counterparts. For example, while every object in the classical stable homotopy category
is cellular (built up by attaching spheres), not every motivic spectrum is cellular, since
many algebrogeometric phenomena come into the picture. In spite of this, it is still
interesting to understand the structure of the category of cellular objects in motivic
stable homotopy theory. This project was initiated by Dugger and Isaksen in [3] and
much attention has been dedicated to it since then. Our work, in particular, is concerned
with understanding the structure of the subcategories of cellular objects in isotropic
categories, which we believe could shed light on the deep interconnection with topology.

We have already highlighted that motivic categories are particularly challenging to
study. For example, one of the difficulties that one does not encounter in classical
topology is the presence of an object � that appears in various incarnations throughout
motivic homotopy theory, sometimes as an element of the motivic cohomology of
the ground field and sometimes as a map in the 2–complete motivic stable homotopy
groups of spheres. Hence, the principal task is to first find some substitutes for the
original motivic categories and tools which could help in the process of analyzing them.
In the case of algebraically closed fields, for example, topological realization is a very
helpful tool since it allows us to study the initial motivic category by looking at its
deformation � D 1, which happens to be just the classical stable homotopy theory; see
Dugger and Isaksen [4]. However, in this process part of the information is lost, so one
can try to recover it by studying other deformations, for example � D 0. This was done
by Isaksen in [9], Gheorghe in [5] and Gheorghe, Wang and Xu in [6]. More precisely,
in [9] the stable motivic homotopy groups of C� , the cofiber of � , are identified with the
E2–page of the classical Adams–Novikov spectral sequence, while in [5] the motivic
spectrum C� is provided with an E1–ring structure inducing an isomorphism of rings
with higher products between ���.C�/ and the classical Adams–Novikov E2–page. A
parallel result for isotropic categories was obtained in [19], where the isotropic sphere
spectrum X was equipped with an E1–ring structure inducing an isomorphism of rings
with higher products between ���.X/ and the classical Adams E2–page. Moreover,
in [6] the category of C�–cellular spectra is described, and is proved to be equivalent
as a stable 1–category equipped with a t–structure (see Lurie [13]) to the derived
category of left BP�BP–comodules concentrated in even degrees, where BP is the
Brown–Peterson spectrum and BP�BP its BP–homology.

We intend to follow a similar path for isotropic categories. Recall that a field k is
called flexible if it is a purely transcendental extension of countable infinite degree over

Geometry & Topology, Volume 27 (2023)
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some other field. In our situation it is really essential to work over flexible fields since,
as highlighted in [21], these are the ground fields over which the isotropic categories
behave particularly well. For example, over algebraically closed fields, due to the lack
of anisotropic varieties, the isotropic category would be just the same as the original
motivic category, so in this case the isotropic localization produces nothing new. We are
encouraged by the evident parallel between the computations of ���.C�/ over complex
numbers (see [5; 9]) on the one hand, and of ���.X/ over flexible fields (see [19]) on
the other. More precisely, we have been guided by the idea that studying the isotropic
stable motivic homotopy category over a flexible field is similar in some sense to
studying the stable1–category of C�–cellular spectra in the motivic stable homotopy
category over complex numbers. Indeed, they obviously share some common features
which is highlighted by our main theorem:

Theorem 1.1 Let k be a flexible field of characteristic different from 2. Then there
exists a t–exact equivalence of stable1–categories

Db.A�– Comod�/
Š
�! X–Modb

cell;HZ=2;

where A� is the classical dual Steenrod algebra and X–Modb
cell;HZ=2 is the stable1–

category of HZ=2–complete X–cellular modules having MBP–homology nontrivial in
only finitely many Chow–Novikov degrees (the superscript “b” stands for “bounded” ;
see Definition 8.4).

As a consequence, we obtain that the category of isotropic cellular spectra is completely
algebraic, which makes it easier to study. Moreover, it is deeply related to classical
topology, as foreseeable from results in [19; 21].

In order to achieve our main results, we need several tools. In particular, it is necessary
to develop and study isotropic versions of both the Adams spectral sequence and
the Adams–Novikov spectral sequence. This requires a focus on the motivic Brown–
Peterson spectrum MBP (see Vezzosi [20]) from an isotropic point of view. In particular,
we note that the isotropic Brown–Peterson spectrum is an E1–ring spectrum, in contrast
to the topological picture where BP has been shown not to admit an E1–ring structure
by Lawson in [11]. Then we use techniques developed by Gheorghe, Wang and Xu
in [6], based on Lurie’s results (see [13]), to first describe in algebraic terms the
category of isotropic MBP–cellular modules, and then the category of all isotropic
cellular spectra. Finally, we are also able to provide some results about the cellular
subcategory of the isotropic triangulated category of motives, ie the category of isotropic
Tate motives.

Geometry & Topology, Volume 27 (2023)
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Outline We now briefly present the contents of each section. In Section 2, we provide
our main notation. Then we move on to Section 3 by recalling isotropic categories
and their main properties, mostly referring to results in [19; 21]. Since we are mainly
interested in cellular objects, we recall in Section 4 definitions and some of the main
results from [3], which are useful in the rest of the paper. Section 5 is devoted to a deep
analysis of the isotropic motivic Adams spectral sequence, which was already initiated
in [19]. These results are used in Section 6 to study the motivic Brown–Peterson
spectrum from an isotropic perspective. In particular, we compute its isotropic stable
homotopy groups. Sections 7 and 8 are modeled on Sections 3, 4 and 5 of [6]. More
precisely, in Section 7 we endow the isotropic motivic Brown–Peterson spectrum with
an E1–ring structure, and then identify, as a triangulated category, the category of
isotropic MBP–cellular spectra with the category of bigraded F2–vector spaces. In
Section 8, after developing an isotropic Adams–Novikov spectral sequence, we describe
the category of isotropic cellular spectra in algebraic terms as the derived category of
comodules over the dual of the Steenrod algebra equipped with a t–structure. Finally,
in Section 9, we provide an algebraic description of the hom sets in the category of
isotropic motives between motives of isotropic cellular spectra, which is a step forward
in understanding the category of isotropic Tate motives.

Acknowledgements I would like to thank Alexander Vishik for very helpful comments
and Dan Isaksen for having pointed out to me the work by Gheorghe, Wang and Xu on
which this paper is modeled. I am extremely grateful to Tom Bachmann for very useful
remarks. I also wish to thank the referees for very useful comments which helped to
improve the exposition and to simplify Section 7.

2 Notation

We denote hom sets in SH.k/ by Œ � ; � � and the suspension Sp;q ^ X of a motivic
spectrum X by †p;qX . Moreover, if E is a motivic E1–ring spectrum, the stable
1–category of E–modules (see [13]) is denoted by E–Mod, its smash product by
� ^E � and hom sets in its homotopy category by Œ � ; � �E .

If R is an algebra and C a coalgebra, then we denote by R–Mod and C – Comod
the categories of left R–modules and left C –comodules, respectively. Hom sets in
these categories are both denoted by HomR. � ; � / and HomC . � ; � /, and it will be clear
from context if they are meant to be hom of modules or comodules. For a bigraded
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object M�� (resp. M ��) we denote by †p;qM�� (resp. †p;qM ��) its suspension, the
bigraded object defined by †p;qMa;b DMa�p;b�q (resp. †p;qM a;b DM aCp;bCq).
The convention for bigraded homomorphisms between bigraded objects is

Homp;q.M��;N��/D Hom0;0.†p;qM��;N��/

and
Homp;q.M ��;N ��/D Hom0;0.†p;qM ��;N ��/;

where Hom0;0. � ; � / denotes the bidegree-preserving homomorphisms. Moreover, the
bounded derived categories of R–Mod and C – Comod are denoted by Db.R–Mod/
and Db.C – Comod/, respectively.

3 Isotropic motivic categories

In this section we want to introduce the main categories we consider, namely isotropic
motivic categories. These categories are built from the respective motivic ones by
killing all anisotropic varieties. We refer to [19, Section 2; 21, Section 2] for more
details on the construction and properties of isotropic categories.

Let us recall first the definition of flexible field from [21]:

Definition 3.1 A field k is called flexible if it is a purely transcendental extension of
countable infinite degree: k D k0.t1; t2; : : : / for some other field k0.

Henceforth we assume k is a flexible base field of characteristic different from 2. We
proceed by recalling the definition of a fundamental object in SH.k/ for the construction
of the isotropic stable motivic homotopy category SH.k=k/.

Definition 3.2 Denote by Q the disjoint union of all connected anisotropic (mod 2)
varieties over k, ie varieties which do not have closed points of odd degree, and by
{C .Q/ its Čech simplicial scheme {C .Q/n D QnC1 with face and degeneracy maps
given by partial projections and partial diagonals, respectively. We define the isotropic
sphere spectrum X as Cone.†1C {C .Q/! S/ in SH.k/.

We recall from [19, Section 2] that X is an idempotent monoid, that is, there is an
equivalence X^XŠX induced by the map S!X, and so it is an E1–ring spectrum;
see [19, Proposition 6.1].
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Definition 3.3 The full triangulated subcategory X^SH.k/ of SH.k/ will be called
the isotropic stable motivic homotopy category and denoted by SH.k=k/.

This triangulated category has very nice properties. In particular it is both localizing
and colocalizing; see [19, Section 2]. The very same construction was done first for
DM.k/ by Vishik in [21] by tensoring the triangulated category of motives with the
idempotent M.X/, where M W SH.k/! DM.k/ is the motivic functor.

Definition 3.4 The full triangulated subcategory M.X/˝DM.k/ of DM.k/ will be
called the isotropic category of motives and denoted by DM.k=k/.

The following result tells us that the isotropic stable motivic homotopy category is
nothing but the stable1–category of X–modules:

Proposition 3.5 There is an equivalence between the isotropic stable motivic homotopy
category SH.k=k/ and the stable1–category X–Mod of modules over the motivic
E1–ring spectrum X.

Proof This follows immediately from [13, Proposition 4.8.2.10].

Remark 3.6 Since by construction X kills all anisotropic varieties, it kills in particular
nontrivial quadratic extensions. Consider an element x in k such that neither x nor �x

is a square. Then X^†1C Spec.k.
p

x// and X^†1C Spec.k.
p
�x// are both zero.

This implies that the Euler characteristics of Spec.k.
p

x// and Spec.k.
p
�x//, which

are equal to h2i.1Chxi/ and h2i.1Ch�xi/, respectively, in �0;0.S/Š GW.k/ (see
[12, Corollary 11.2; 15, Theorem 6.2.2]), vanish in �0;0.X/. It follows that 1Chxi

and 1Ch�xi vanish in �0;0.X/ and so does their sum

2ChxiC h�xi D 2Ch1iC h�1i D 3Ch�1i:

Hence, �3D h�1i, and so 9D 1 (so 8D 0) in �0;0.X/. From all this one deduces that
X is 2–power torsion.1

We are now ready to define isotropic motivic homotopy groups and isotropic motivic
homology and cohomology.

Definition 3.7 Let X be a motivic spectrum in SH.k/. Then the isotropic stable
motivic homotopy groups of X are defined by

� iso
��.X /D ŒS

��;X^X �D ���.X^X /:

1I am grateful to Tom Bachmann for this argument.

Geometry & Topology, Volume 27 (2023)



Cellular objects in isotropic motivic categories 2019

Recall that motivic cohomology with Z=2–coefficients is represented by the motivic
Eilenberg–Mac Lane spectrum HZ=2. Then we define isotropic motivic cohomology
as the cohomology theory represented by the motivic E1–ring spectrum X^HZ=2.

Definition 3.8 For any X in SH.k/, we define the isotropic motivic cohomology of X

as
H��iso .X /D ŒX; †

��.X^HZ=2/�

and the isotropic motivic homology of X as

H iso
��.X /D ŒS

��;X^HZ=2^X �DH��.X^X /:

The isotropic motivic cohomology of the point was computed by Vishik:

Theorem 3.9 [21, Theorem 3.7] Let k be a flexible field. Then for any i � 0 there
exists a unique cohomology class ri of bidegree .�2i C 1/Œ�2iC1C 1� such that

H��.k=k/ŠƒF2
.ri/i�0

and Qj ri D ıij , where the Qj are the Milnor operations.

At this point, we want to introduce the isotropic motivic Steenrod algebra A��.k=k/

and its dual A��.k=k/. They are defined as the isotropic motivic cohomology and
homology, respectively, of the motivic Eilenberg–Mac Lane spectrum.

Definition 3.10 The isotropic motivic Steenrod algebra is defined by

A��.k=k/DH��iso .HZ=2/D ŒHZ=2; †��.X^HZ=2/�Š ŒX^HZ=2; †��.X^HZ=2/�

and its dual by

A��.k=k/DH iso
��.HZ=2/D ŒS��;X^HZ=2^HZ=2�:

The structure of A��.k=k/ was studied in [19, Section 3]. We summarize the main
results:

Proposition 3.11 [19, Propositions 3.5, 3.6 and 3.7] Let k be a flexible field. Then
there exists an isomorphism of H��.k=k/�M��–bimodules

A��.k=k/ŠH��.k=k/˝F2
G��˝F2

M��;

where M�� is the Milnor subalgebra ƒF2
.Qi/i�0 and G�� is the bigraded topological

Steenrod algebra , ie G2n;n DAn.

Geometry & Topology, Volume 27 (2023)



2020 Fabio Tanania

By projecting the motivic Cartan formulas (see [24, Propositions 9.7 and 13.4]) to the
isotropic category, one gets a coproduct on A��.k=k/ given by

�.Sq2n/D
X

iCjDn

Sq2i
˝Sq2j ; �.Qi/DQi ˝ 1C 1˝Qi :

This coproduct structures A��.k=k/ as a coalgebra whose dual is described as an
H��.k=k/–algebra by

A��.k=k/Š
H��.k=k/Œ�i ; �j �i�0;j�1

.�2
i /

;

where �i is the dual of the Milnor operation Qi and �j is the dual of the motivic
cohomology operation Sq2j

� � � Sq2. The coproduct in A��.k=k/ is given by (see
[24, Lemma 12.11])

 .�k/D

kX
iD0

�2i

k�i ˝ �i ;  .�k/D

kX
iD0

�2i

k�i ˝ �i C �k ˝ 1:

Remark 3.12 By Proposition 3.11, the projection from A��.k=k/ to its quotient by
the left ideal generated by Milnor operations provides a homomorphism

A��.k=k/!H��.k=k/˝F2
G��:

This map induces a left A��.k=k/–action on H��.k=k/˝F2
G�� and, dually, a left

A��.k=k/–coaction on H��.k=k/˝F2
G��, where G�� is the subalgebra F2Œ�1; �2; : : : �.

4 Cellular motivic spectra

We are mostly interested in cellular objects of isotropic motivic categories. We recall
from [3, Remark 7.4] that the category of cellular motivic spectra, which we denote
by SH.k/cell, is the localizing subcategory of SH.k/ generated by the spheres †p;qS.
Similarly, the category of Tate motives, which we denote by DM.k/Tate, is the localizing
subcategory of DM.k/ generated by the Tate motives T .q/Œp�. If E is a motivic E1–
ring spectrum, then we denote by E–Modcell the stable 1–category of E–cellular
modules, meaning the localizing subcategory of E–Mod generated by †p;qE.

Definition 4.1 The category of X–cellular modules will be called the category of
isotropic cellular motivic spectra, and is denoted by SH.k=k/cell. In the same way, the
full localizing subcategory of DM.k=k/ generated by the objects M.X/.q/Œp� will be
called the category of isotropic Tate motives, and is denoted by DM.k=k/Tate.
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A fundamental property of the category of cellular objects is that isomorphisms can be
detected by motivic homotopy groups:

Proposition 4.2 [3, Corollary 7.2 and Section 7.9] Let E be a motivic E1–ring
spectrum and X!Y be a map of E–cellular motivic spectra that induces isomorphisms
on �p;q for all p and q in Z. Then the map is a weak equivalence.

Another essential advantage of dealing with cellular objects is that they allow the
construction of very useful convergent spectral sequences.

Proposition 4.3 [3, Propositions 7.7 and 7.10] Let E be a motivic E1–ring spectrum
and N a left E–module. If M is a right E–cellular spectrum then there is a strongly
convergent spectral sequence

E2
s;t;u Š Tor���.E/s;t;u .���.M /; ���.N //) �sCt;u.M ^E N /:

If M is a left E–cellular motivic spectrum then there is a conditionally convergent
spectral sequence

E
s;t;u
2
Š Exts;t;u

���.E/
.���.M /; ���.N //) Œ†t�s;uM;N �E :

5 The isotropic motivic Adams spectral sequence

In this section we recall the construction of the isotropic motivic Adams spectral
sequence; see [19, Section 4]. Moreover, we study the circumstances under which the
E2–page is expressible in terms of Ext–groups over the isotropic motivic Steenrod
algebra.

Definition 5.1 Let Y be an isotropic motivic spectrum (an object in X–Mod). Then
the standard isotropic motivic Adams resolution of Y consists of the Postnikov system

� � � // .X^HZ=2/^s^Y //

��

� � � // X^HZ=2^Y //

��

Y

��

X^HZ=2^.X^HZ=2/^s^Y

Œ1�

ff

X^HZ=2^X^HZ=2^Y

Œ1�

ee

X^HZ=2^Y

Œ1�

hh

where X^HZ=2 is defined by the exact triangle in SH.k/

X^HZ=2! S! X^HZ=2!†1;0X^HZ=2:
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By applying motivic homotopy groups functors ��� to the previous Postnikov system
we get an unrolled exact couple, which induces in turn a spectral sequence with E1–page
described by

E
s;t;u
1
Š �t�s;u.X^HZ=2^ .X^HZ=2/^s

^Y /

and first differential

d
s;t;u
1
W �t�s;u.X^HZ=2^ .X^HZ=2/^s

^Y /

! �t�s�1;u.X^HZ=2^ .X^HZ=2/^sC1
^Y /:

In general, differentials on the Er –page have tridegrees given by

d s;t;u
r WEs;t;u

r !EsCr;tCr�1;u
r :

We call this spectral sequence the isotropic motivic Adams spectral sequence.

The isotropic Adams spectral sequence converges to the homotopy groups of a motivic
spectrum closely related to Y , namely its X ^ HZ=2–nilpotent completion, which
we denote by Y ^

X^HZ=2. Before proceeding, let us recall from [2, Section 5] how to
construct the E–nilpotent completion of a spectrum Y for a homotopy ring spectrum E.

Definition 5.2 Let E be a homotopy ring spectrum and Y a motivic spectrum in
SH.k/. First, define E by the distinguished triangle in SH.k/

E! S!E!†1;0E:

Then define En as Cone.E^nC1! S/ in SH.k/. This way one gets an inverse system

� � � !En ^Y ! � � � !E1 ^Y !E0 ^Y;

and the E–nilpotent completion of Y is the motivic spectrum Y ^
E
D holim.En ^Y /.

Note that, by [19, Proposition 2.3], if Y is an isotropic motivic spectrum so is Y ^
E

.

Proposition 5.3 Let Y be an isotropic motivic spectrum. If lim
 ��

1
r

E
s;t;u
r D 0 for any s,

t and u, then the isotropic motivic Adams spectral sequence for Y is strongly convergent
to the stable motivic homotopy groups of the HZ=2–nilpotent completion of Y .

Proof By [2, Proposition 6.3; 4, Remark 6.11], under the vanishing hypothesis
on lim
 ��

1
r

E
s;t;u
r , the isotropic motivic Adams spectral sequence strongly converges to

���.Y
^
X^HZ=2/. It only remains to notice that, since Y is an X–module, its HZ=2–

nilpotent and X^HZ=2–nilpotent completions coincide. In fact, after smashing the
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morphism of distinguished triangles

HZ=2 //

��

S // HZ=2 //

��

†1;0HZ=2

��

X^HZ=2 // S // X^HZ=2 // †1;0X^HZ=2

with X, one gets

X^HZ=2 //

��

X // X^HZ=2 //

Š

��

†1;0X^HZ=2

��

X^X^HZ=2 // X // X^X^HZ=2 // †1;0X^X^HZ=2

since X is an idempotent in SH.k/. It follows that X^HZ=2Š X^X^HZ=2, and
so X^HZ=2n Š X^ .X^HZ=2/n for any n. Therefore, since Y Š X^Y ,

Y ^X^HZ=2 D holim..X^HZ=2/n ^Y /Š holim.X^ .X^HZ=2/n ^Y /

Š holim.X^HZ=2n ^Y /Š holim.HZ=2n ^Y /D Y ^HZ=2:

Remark 5.4 By [14, Section 5.2 and Theorem 1.0.3], the HZ=2–completion of a
connective motivic spectrum coincides with its .2; �/–completion. Since all isotropic
motivic spectra are 2–power torsion (see Remark 3.6) and so 2–complete, the previous
result establishes the convergence of the isotropic Adams spectral sequence for a con-
nective isotropic spectrum to the motivic stable homotopy groups of its �–completion.

Definition 5.5 A spectral sequence fEs;t;u
r g is called Mittag-Leffler if for each s, t

and u there exists r0 such that E
s;t;u
r ŠE

s;t;u
1 whenever r > r0.

Note that every Mittag-Leffler spectral sequence satisfies the condition lim
 ��

1
r

E
s;t;u
r D 0

for any s, t and u; see [2, after Proposition 6.3]. We will see that in many important
cases the isotropic Adams spectral sequence is Mittag-Leffler, which guarantees strong
convergence.

Now, we would like to understand what conditions we need to impose on Y in order to
be able to express the E2–page of the isotropic Adams spectral sequence in terms of
Ext–groups over the isotropic motivic Steenrod algebra. In order to do so, we need the
following lemmas.

Lemma 5.6 Let k be a flexible field and Y an object in X–Mod. Then there exists an
isomorphism of left H��.k=k/–modules

H iso
��.X^HZ=2^Y /ŠA��.k=k/˝H��.k=k/H iso

��.Y /:

Geometry & Topology, Volume 27 (2023)



2024 Fabio Tanania

Proof Since by [8, Theorem 5.10] HZ=2^HZ=2 is a split HZ=2–module, ie it is
equivalent to a wedge sum of the form

W
˛2A†

p˛;q˛HZ=2,

A��.k=k/Š ���.X^HZ=2^HZ=2/Š ���

� _
˛2A

†p˛;q˛ .X^HZ=2/

�
Š

M
˛2A

†p˛;q˛���.X^HZ=2/Š
M
˛2A

†p˛;q˛H��.k=k/:

Now, let Y be any object in X–Mod. Then

H iso
��.X^HZ=2^Y /Š ���.X^HZ=2^HZ=2^Y /

Š ���

� _
˛2A

†p˛;q˛ .X^HZ=2^Y /

�
Š

M
˛2A

†p˛;q˛���.X^HZ=2^Y /

Š

M
˛2A

†p˛;q˛H iso
��.Y /ŠA��.k=k/˝H��.k=k/H iso

��.Y /:

Remark 5.7 By the previous lemma, the map Y ! X ^ HZ=2 ^ Y induces in
isotropic motivic homology a coaction H iso

��.Y / ! A��.k=k/˝H��.k=k/ H iso
��.Y /,

which structures H iso
��.Y / as a left A��.k=k/–comodule.

Next we show that, if the homology of an isotropic cellular spectrum Y is free over
H��.k=k/, then the motivic spectrum X^HZ=2^Y is a split X^HZ=2–module.

Lemma 5.8 Let k be a flexible field and Y an object in X–Modcell such that H iso
��.Y /

is a free left H��.k=k/–module generated by a set of elements fx˛g˛2A, where x˛

has bidegree .q˛/Œp˛ �. Then there exists an isomorphism of spectra_
˛2A

†p˛;q˛ .X^HZ=2/ Š�! X^HZ=2^Y:

Proof Since H iso
��.Y /Š ���.X^HZ=2^Y /, we can represent each generator x˛ as

a map †p˛;q˛S!X^HZ=2^Y , where .q˛/Œp˛ � is the bidegree of x˛ . For all ˛ 2A,
this map corresponds bijectively to a map †p˛;q˛ .X^HZ=2/! X^HZ=2^ Y of
X^HZ=2–cellular modules. Hence, we get a map_

˛2A

†p˛;q˛ .X^HZ=2/! X^HZ=2^Y

of X^HZ=2–cellular modules. In order to check that it is an isomorphism, by
Proposition 4.2 it is enough to look at the induced morphisms on homotopy groups.
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Indeed, we have, on the one hand,

���

� _
˛2A

†p˛;q˛ .X^HZ=2/

�
Š

M
˛2A

†p˛;q˛���.X^HZ=2/Š
M
˛2A

†p˛;q˛H��.k=k/

and, on the other,

���.X^HZ=2^Y /Š
M
˛2A

H��.k=k/ �x˛;

by hypothesis. By construction, the map we are considering induces in homotopy
groups the homomorphism of H��.k=k/–modules

���

� _
˛2A

†p˛;q˛ .X^HZ=2/

�
! ���.X^HZ=2^Y /

which sends 1 2†p˛;q˛H��.k=k/ to x˛ for any ˛ 2A, so it is an isomorphism.

The next lemma provides us with a condition under which the isotropic cohomology of
a spectrum is dual to its isotropic homology.

Lemma 5.9 Let k be a flexible field and Y an object in X–Mod such that there is an
isomorphism X^HZ=2^ Y Š

W
˛2A†

p˛;q˛ .X^HZ=2/ for some set A. Then for
any bidegree .q/Œp� there is an isomorphism

H
p;q
iso .Y /Š Hom�p;�q

H��.k=k/
.H iso
��.Y /;H��.k=k//:

Proof Since X^HZ=2^Y Š
W
˛2A†

p˛;q˛ .X^HZ=2/ by hypothesis,

H iso
��.Y /D ŒS

��;X^HZ=2^Y �Š

�
S��;

_
˛2A

†p˛;q˛ .X^HZ=2/

�
Š

M
˛2A

†p˛;q˛H��.k=k/;

from which it follows that

Hom�p;�q

H��.k=k/
.H iso
��.Y /;H��.k=k//Š

Y
˛2A

Hp˛�p;q˛�q.k=k/:

On the other hand, we have the chain of isomorphisms

H
p;q
iso .Y /D ŒY; †

p;q.X^HZ=2/�Š ŒX^HZ=2^Y; †p;q.X^HZ=2/�X^HZ=2

Š

� _
˛2A

†p˛;q˛ .X^HZ=2/; †p;q.X^HZ=2/

�
X^HZ=2

Š

� _
˛2A

Sp˛;q˛ ; †p;q.X^HZ=2/

�
Š

Y
˛2A

Hp˛�p;q˛�q.k=k/:
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We now define a certain concept of finiteness which suits the isotropic environment:

Definition 5.10 A set of bidegrees f.q˛/Œp˛ �g˛2A is isotropically finite type if, for any
bidegree .q/Œp�, there are only finitely many ˛ 2A such that p�p˛ � 2.q� q˛/� 0.
Moreover, we say that a set of bigraded elements fx˛g˛2A is isotropically finite type if
the corresponding set of bidegrees is so.

Lemma 5.11 Let k be a flexible field and f.q˛/Œp˛ �g˛2A an isotropically finite type
set of bidegrees. Then for any bidegree .q/Œp�, the obvious map

�p;q

�
X^

_
˛2A

†p˛;q˛HZ=2

�
! Homp;q

A��.k=k/

�
H��iso

� _
˛2A

†p˛;q˛HZ=2

�
;H��.k=k/

�
is an isomorphism.

Proof First note that, for any bidegree .q/Œp�, one has the commutative diagram

�p;q

�
X^

W
˛2A†

p˛ ;q˛HZ=2
�

,,

��

Homp;q

A��.k=k/

�
H��iso

�W
˛2A†

p˛ ;q˛HZ=2
�
;H��.k=k/

�

��

Homp;q
F2

�L
˛2A†

�p˛ ;�q˛F2;H
��.k=k/

�
,,

Homp;q

A��.k=k/

�L
˛2A†

�p˛ ;�q˛A��.k=k/;H��.k=k/
�

The left vertical arrow is the isomorphism described by the chain of equivalences

�p;q

�
X^

_
˛2A

†p˛;q˛HZ=2

�
Š

M
˛2A

�p;q.X^†
p˛;q˛HZ=2/

Š

M
˛2A

H p˛�p;q˛�q.k=k/Š
Y
˛2A

H p˛�p;q˛�q.k=k/

Š

Y
˛2A

Homp;q
F2
.†�p˛;�q˛F2;H

��.k=k//

Š Homp;q
F2

�M
˛2A

†�p˛;�q˛F2;H
��.k=k/

�
;

where the identificationM
˛2A

H p˛�p;q˛�q.k=k/Š
Y
˛2A

H p˛�p;q˛�q.k=k/
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is due to the fact that the set f.q˛/Œp˛ �g˛2A is isotropically finite type, so for any
bidegree .q/Œp� the group H p˛�p;q˛�q.k=k/ is nonzero only for a finite number of
˛ 2A by Theorem 3.9. The bottom horizontal map is obviously an isomorphism since
A��.k=k/ is an F2–vector space. The right vertical map is an isomorphism since

Homp;q

A��.k=k/

�
H��iso

�_
˛

†p˛;q˛HZ=2

�
;H��.k=k/

�
Š Homp;q

A��.k=k/

�Y
˛

H��iso .†
p˛;q˛HZ=2/;H��.k=k/

�
D Homp;q

A��.k=k/

�Y
˛

†�p˛;�q˛A��.k=k/;H��.k=k/

�
Š Homp;q

A��.k=k/

�M
˛

†�p˛;�q˛A��.k=k/;H��.k=k/

�
;

where the last isomorphism comes from the fact that the set of bidegrees f.q˛/Œp˛ �g˛2A

is isotropically finite type, so for any bidegree .q/Œp� the group

Homp;q

A��.k=k/
.†�p˛;�q˛A��.k=k/;H��.k=k//ŠH p˛�p;q˛�q.k=k/

is nontrivial only for finitely many ˛ 2A by Theorem 3.9.

At this point, we are ready to present the structure of the E2–page of the isotropic
Adams spectral sequence, which behaves as in the classical case.

Theorem 5.12 Let k be a flexible field and Y an object in X–Modcell such that
H iso
��.Y / is a free left H��.k=k/–module generated by an isotropically finite type set

of elements fx˛g˛2A. Then the E2–page of the isotropic motivic Adams spectral
sequence is described by

E
s;t;u
2
Š Exts;t;uA��.k=k/

.H��iso .Y /;H
��.k=k//:

Proof First, we want to prove by induction that H iso
��..X^HZ=2/^s^Y / is a free left

H��.k=k/–module generated by an isotropically finite type set of elements fx˛g˛2As

for any s � 0. The induction basis is guaranteed by hypothesis after setting A0 DA.
Suppose the statement is true at the s� 1 stage, ie

H iso
��..X^HZ=2/^s�1

^Y /Š
M

˛2As�1

†1�s;0H��.k=k/ �x˛:
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Then by Lemma 5.6, the map .X^HZ=2/^s�1^Y !X^HZ=2^.X^HZ=2/^s�1^Y

induces in isotropic motivic homology the monomorphismM
˛2As�1

†1�s;0H��.k=k/ �x˛!
M

˛2As�1

†1�s;0A��.k=k/ �x˛:

Hence, the standard Adams resolution induces, for any p and q, a short exact sequence

0!H iso
p;q..X^HZ=2/^s�1

^Y /!H iso
p;q.X^HZ=2^ .X^HZ=2/^s�1

^Y /

!H iso
p�1;q..X^HZ=2/^s

^Y /! 0:

Now note that, by the very structure of the dual of the isotropic motivic Steenrod algebra,
A��.k=k/ is freely generated over H��.k=k/ by a set of generators f1;yˇgˇ2B which
is finite in each bidegree and such that pˇ � 2qˇ � 0 for any ˇ 2B, where .qˇ/Œpˇ � is
the bidegree of yˇ. Hence, the set fyˇx˛gˇ2B;˛2As�1

is isotropically finite type and
freely generates H iso

��..X^HZ=2/^s ^Y / over H��.k=k/:

H iso
��..X^HZ=2/^s

^Y /Š
M

ˇ2B;˛2As�1

†�s;0H��.k=k/ �yˇx˛:

Therefore, Lemma 5.8 implies that all X^HZ=2^ .X^HZ=2/^s ^ Y are wedges
of appropriately shifted X ^ HZ=2. More precisely, for any s � 0, there exists an
isomorphism

X^
_
˛2As

†p˛�s;q˛HZ=2 Š�! X^HZ=2^ .X^HZ=2/^s
^Y;

where As D B �As�1, from which we deduce, using Lemma 5.11, that the E1–page
of the isotropic Adams spectral sequence can be described by

E
s;t;u
1
Š �t�s;u.X^HZ=2^ .X^HZ=2/^s

^Y /

Š Homt;u
A��.k=k/

� M
˛2As

†�p˛;�q˛A��.k=k/;H��.k=k/

�
:

Moreover, note that

0 H��iso .Y / 
M
˛2A0

†�p˛;�q˛A��.k=k/ 
M
˛2A1

†�p˛;�q˛A��.k=k/ � � �

is a free A��.k=k/–resolution of H��iso .Y /. Thus, for any s, t and u, we have an
isomorphism

E
s;t;u
2
Š Exts;t;uA��.k=k/

.H��iso .Y /;H
��.k=k//:
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By using the isotropic motivic Adams spectral sequence, in [19] we computed the
isotropic motivic homotopy groups of the sphere spectrum, which can be identified
with the E2–page of the classical Adams spectral sequence.

Theorem 5.13 [19, Theorem 5.7] Let k be a flexible field. Then the stable motivic
homotopy groups of the HZ=2–completed isotropic sphere spectrum are completely
described by

��;�0.X
^
HZ=2/Š Ext2�

0��;2�0;�0

G�� .F2;F2/Š Ext2�
0��;�0

A� .F2;F2/:

6 The motivic Brown–Peterson spectrum

In this section, we recall from [20] the construction of the motivic Brown–Peterson
spectrum. Moreover, we compute its isotropic homology and homotopy, which will be
useful later on for the construction of the isotropic motivic Adams–Novikov spectral
sequence, and so for the proofs of our main results.

Definition 6.1 Suppose MGL.2/ is the motivic algebraic cobordism spectrum (see
[22, Section 6.3]) localized at 2. Then following [20, Section 5] one defines the motivic
Brown–Peterson spectrum at the prime 2 as the colimit of the diagram in SH.k/

� � � !MGL.2/
e.2/
��!MGL.2/

e.2/
��!MGL.2/! � � � ;

where e.2/ is the motivic Quillen idempotent.

Note, in particular, that MBP is a homotopy commutative ring spectrum and a direct
summand of MGL.2/.

Proposition 6.2 Let k be a flexible field. Then there is an isomorphism of H��.k=k/–
modules

H��iso .MGL/ŠH��iso .BGL/ŠH��.k=k/Œc1; c2; : : : �

and an isomorphism of H��.k=k/–algebras

H iso
��.MGL/ŠH iso

��.BGL/ŠH��.k=k/Œb1; b2; : : : �;

where ci is the i th Chern class in H
2i;i
iso .BGL/ and bi 2H iso

2i;i
.BGL/ is the dual of ci

1

with respect to the monomial basis for any i .
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Proof First, note that the maps P1! P1 and HZ=2!X^HZ=2 induce a commu-
tative square

H��.P1/ //

��

H��iso .P
1/

��

H��.P1/ // H��iso .P
1/

where the left vertical morphism is the projection H��.k/Œc�!H��.k/Œc�=.c2/ and c

is the only nonzero class in H 2;1.P1/ŠH 2;1.P1/Š Z=2. If we also denote by c

the images of c under the horizontal maps in isotropic motivic cohomology, then the
right vertical homomorphism is given by the projection

H��.k=k/Œc�!H��.k=k/Œc�=.c2/:

Hence, X^HZ=2 is an oriented motivic spectrum (see [20, Definition 3.1]) and the
statement follows immediately from [17, Proposition 6.2].

Following [8, Section 6], let h W L! F2Œb1; b2; : : : � be the homomorphism from the
Lazard ring L classifying the formal group law on F2Œb1; b2; : : : � which is isomorphic
to the additive one via the exponential

P
n�0 bnxnC1. Lazard’s theorem implies that

h.L/ is a polynomial subring F2Œb
0
n jn¤2r�1�, where b0n�bn modulo decomposables.

Denote by � W F2Œb1; b2; : : : �! h.L/ a retraction of the inclusion.

In the next proposition, we give a description of isotropic homology and cohomology
of the algebraic cobordism spectrum MGL.

Proposition 6.3 Let k be a flexible field. Then the coaction

� WH iso
��.MGL/!A��.k=k/˝H��.k=k/H iso

��.MGL/

factors through H��.k=k/˝F2
G��˝F2

F2Œb1; b2; : : : � and the composition

H iso
��.MGL/ ��!H��.k=k/˝F2

G��˝F2
F2Œb1; b2; : : : �

id˝�
���!H��.k=k/˝F2

G��˝F2
h.L/

is an isomorphism of left A��.k=k/–comodule algebras. Dually, the map

H��.k=k/˝F2
G��˝F2

h.L/_!H��iso .MGL/

is an isomorphism of left A��.k=k/–module coalgebras.
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Proof From [8, Lemma 5.2], since HZ=2^MGL is a split HZ=2–module (see the
remark after [8, Definition 5.4]), we deduce that

H iso
��.MGL/Š ���.X^HZ=2/˝���.HZ=2/ ���.HZ=2^MGL/

ŠH��.k=k/˝H��.k/H��.MGL/

as an H��.k=k/–algebra. From [8, Theorem 6.5] we know that the coaction

� WH��.MGL/!A��.k/˝H��.k/H��.MGL/

factors through P��˝F2
F2Œb1; b2; : : : � and the composition

H��.MGL/ ��! P��˝F2
F2Œb1; b2; : : : �

id˝�
���! P��˝F2

h.L/

is an isomorphism of left A��.k/–comodule algebras, where P�� is the subalgebra of
A��.k/ defined by H��.k/Œ�1; �2; : : : �. By tensoring the previous composition with
H��.k=k/ over H��.k/ we get the desired isomorphism, which completes the first
part. The second part follows easily, since G��˝F2

h.L/ is isotropically finite type,
from Lemmas 5.8 and 5.9 by dualizing the homology isomorphism.

The next result provides us with the structure of isotropic homology and cohomology
of the motivic Brown–Peterson spectrum MBP.

Proposition 6.4 Let k be a flexible field. Then the isotropic motivic homology of
MBP is described as a left A��.k=k/–comodule by

H iso
��.MBP/ŠH��.k=k/˝F2

G��:

Dually, the isotropic motivic cohomology of MBP is described as a left A��.k=k/–
module by

H��iso .MBP/ŠH��.k=k/˝F2
G��:

Proof From [8, Remark 6.20], one knows that MBP is equivalent to MGL.2/=x, where
x is any maximal h–regular sequence (a sequence of homogeneous elements in L such
that h.x/ is a regular sequence in h.L/ which generates the maximal ideal). Therefore,
Theorem 6.11 of [8] implies that there exists an isomorphism of A��.k/–comodules

H��.MBP/Š P��:

Since HZ=2^MBP is a split HZ=2–module, we deduce from [8, Lemma 5.2] that

H iso
��.MBP/ŠH��.k=k/˝H��.k/H��.MBP/ŠH��.k=k/˝H��.k/ P��

ŠH��.k=k/˝F2
G��;

which proves the first part. The second part follows again from dualization, since G��
is isotropically finite type, by Lemmas 5.8 and 5.9.
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Later on, we will also need the isotropic homology and cohomology of MBP^MBP:

Proposition 6.5 Let k be a flexible field. Then the isotropic motivic homology of
MBP^MBP is described as a left A��.k=k/–comodule by

H iso
��.MBP^MBP/ŠH��.k=k/˝F2

G��˝F2
G��:

Dually, the isotropic motivic cohomology of MBP ^ MBP is described as a left
A��.k=k/–module by

H��iso .MBP^MBP/ŠH��.k=k/˝F2
G��˝F2

G��:

Proof Since HZ=2^MBP is a split HZ=2–module,

H iso
��.MBP^MBP/Š .H��.k=k/˝F2

G��/˝H��.k=k/ .H��.k=k/˝F2
G��/

ŠH��.k=k/˝F2
G��˝F2

G��
by [8, Lemma 5.2] and Proposition 6.4. The description of the isotropic cohomology
follows again by dualizing the homology isomorphism.

Now, we compute the isotropic stable homotopy groups of MBP by using the isotropic
Adams spectral sequence developed in the previous section.

Theorem 6.6 Let k be a flexible field. Then the isotropic motivic homotopy groups of
MBP are described by

� iso
��.MBP/Š F2:

Proof Note that, by Proposition 6.4, H iso
��.MBP/ is freely generated over H��.k=k/

by G��, which is isotropically finite type. Hence, Theorem 5.12 implies that the
E2–page of the isotropic motivic Adams spectral sequence for X^MBP is given by

E
s;t;u
2
Š Exts;t;uA��.k=k/

.H��iso .MBP/;H��.k=k//:

Now, we deduce from Proposition 6.4 and [19, Theorem 5.4] that

Exts;t;uA��.k=k/
.H��iso .MBP/;H��.k=k//ŠExts;t;uA��.k=k/

.H��.k=k/˝F2
G��;H��.k=k//

ŠExts;t;uG�� .G
��;F2/ŠExts;t;uF2

.F2;F2/

Š

�
F2 if sD tDuD0;

0 otherwise:

Therefore, the E2–page of the isotropic Adams spectral sequence for X ^MBP is
concentrated just in the tridegree .0; 0; 0/, from which it follows that all differentials
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from the second on are trivial. Thus, the Mittag-Leffler condition is clearly satisfied,
and so strong convergence holds by Proposition 5.3. Then it immediately follows from
Remark 5.4 and the fact that MBP is �–complete that

� iso
��.MBP/Š ���.X^MBP/Š F2:

In the following sections it will be also useful to know the isotropic homotopy groups
of MBP^MBP, which we compute in the next result.

Theorem 6.7 Let k be a flexible field. Then the isotropic motivic homotopy groups of
MBP^MBP are described by

� iso
��.MBP^MBP/Š G��:

Proof The proof of this theorem goes along the lines of the previous one. Since
H iso
��.MBP^MBP/ŠH��.k=k/˝F2

G��˝F2
G�� by Proposition 6.5 and G��˝F2

G��
is isotropically finite type, by Theorem 5.12 the E2–page of the isotropic Adams spectral
sequence for X^MBP^MBP is provided by

E
s;t;u
2
Š Exts;t;uA��.k=k/

.H��iso .MBP^MBP/;H��.k=k//:

Again, we note that by [19, Theorem 5.4],

Exts;t;uA��.k=k/
.H��iso .MBP^MBP/;H��.k=k//

Š Exts;t;uA��.k=k/
.H��.k=k/˝F2

G��˝F2
G��;H��.k=k//

Š Exts;t;uG�� .G
��
˝F2

G��;F2/Š Exts;t;uF2
.G��;F2/

Š

�
Gt;u if s D 0;

0 if s ¤ 0:

In particular, since G�� is concentrated on the slope 2 line, all differentials from the
second on are trivial by degree reasons. Hence, the Mittag-Leffler condition is met,
which implies that the spectral sequence is strongly convergent. From all this, it follows
as above that

� iso
��.MBP^MBP/Š ���.X^MBP^MBP/Š G��:

7 The category of isotropic cellular MBP–modules

In this section we start by providing X^MBP with an E1–ring structure. This allows
us to talk about the stable 1–category of X^MBP–modules X^MBP–Mod and its
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cellular part X^MBP–Modcell. Our aim is to focus on the category of isotropic cellular
MBP–modules, which is the same as that of cellular X^MBP–modules. In particular,
we completely describe the category X^MBP–Modcell in algebraic terms. This section
is structured along the lines of [6, Section 3]. Therefore, before each result we indicate
the one from [6] it corresponds to. We hope this will clearly shed light on the deep
parallelism between [6] and this work.

Proposition 7.1 The homotopy commutative ring structure on X^MBP extends to an
E1–ring structure.

Proof It follows from [13, Proposition 1.4.4.11] that there exists a t–structure on
X–Mod with nonnegative part generated by X2n;n for any n 2Z. By [1, Theorem A.1],
X^MGL belongs to the nonnegative part of this t–structure, and so X^MBP does also.
On the other hand, one deduces from Theorem 6.6 and [1, Lemma 2.4] that X^MBP
belongs to the nonpositive part too. Hence, X^MBP is a homotopy commutative ring
spectrum in the heart of the abovementioned t–structure, which means that it is an
E1–ring spectrum.2

Once we know that X^MBP is a motivic E1–ring spectrum, we can consider the
stable1–category of X^MBP–modules and its homotopy category which is tensor
triangulated. In particular, we focus on its cellular part.

Proposition 7.2 Let k be a flexible field and Y an object in X^MBP–Modcell such
that ���.Y / is isomorphic to the F2–vector space

L
˛2A†

p˛;q˛F2. Then there exists
an isomorphism of spectra _

˛2A

†p˛;q˛ .X^MBP/ Š�! Y:

Proof We follow the lines of the proof of Lemma 5.8. Each generator of ���.Y /
represents a map †p˛;q˛S! Y . For all ˛ 2A, this map corresponds bijectively to a
map †p˛;q˛ .X^MBP/! Y of X^MBP–cellular modules. Hence, we get a map_

˛2A

†p˛;q˛ .X^MBP/! Y

of X^MBP–cellular modules that induces an isomorphism on homotopy groups since
���.X^MBP/Š F2 by Theorem 6.6. Therefore, it follows from Proposition 4.2 that
the above map is an isomorphism of spectra.

2I am grateful to Tom Bachmann for this argument.
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This result implies the following corollary, which corresponds to [6, Corollary 3.3]:

Corollary 7.3 Let k be a flexible field and X and Y be objects in X^MBP–Modcell.
Then

ŒX;Y �X^MBP Š Hom0;0
F2
.���.X /; ���.Y //:

Proof It follows from Proposition 7.2 that

X Š
_
˛2A

†p˛;q˛ .X^MBP/ and Y Š
_
ˇ2B

†pˇ;qˇ .X^MBP/

for some sets A and B. Then

ŒX;Y �X^MBP Š

� _
˛2A

†p˛;q˛S;
_
ˇ2B

†pˇ;qˇ .X^MBP/
�

Š

Y
˛2A

M
ˇ2B

�p˛�pˇ;q˛�qˇ .X^MBP/Š
Y
˛2A

M
ˇ2B

†p˛�pˇ;q˛�qˇF2

Š Hom0;0
F2

�M
˛2A

†p˛;q˛F2;
M
ˇ2B

†pˇ;qˇF2

�
Š Hom0;0

F2
.���.X /; ���.Y //:

The next theorem, which corresponds to [6, Theorem 3.8], identifies X^MBP–Modcell

with the category of bigraded F2–vector spaces, which we denote by F2–Mod��.

Theorem 7.4 Let k be a flexible field. Then the functor

��� W X^MBP–Modcell
Š
�! F2–Mod��

is an equivalence of categories.

Proof This follows immediately from Proposition 7.2 and Corollary 7.3.

Remark 7.5 The equivalence provided by Theorem 7.4 is actually an equivalence of
triangulated categories, where F2–Mod�� is structured as a triangulated category in
the obvious way. More precisely, the translation functor is the suspension †1;0 and
distinguished triangles are of the form

V
f
�!W ! coker.f /˚†1;0 ker.f /!†1;0V;

where f is a morphism of bigraded F2–vector spaces.
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8 The category of isotropic cellular spectra

This section is devoted to the understanding of the structure of the category X–Modcell,
that is, as we have already noticed, the category of cellular isotropic spectra SH.k=k/cell.
We give a nice algebraic description of this category based on the dual of the topological
Steenrod algebra. The results here are the isotropic versions of the ones in [6, Sections 4
and 5], therefore the proofs we provide are isotropic adaptations of the respective ones
in [6].

In the next lemma, which corresponds to [6, Lemma 5.1], we compute the MBP–
homology of isotropic MBP–cellular spectra.

Lemma 8.1 Let k be a flexible field. Then for any I 2 X^MBP–Modcell there is an
isomorphism of left G��–comodules

MBP��.I/Š G��˝F2
���.I/:

Proof Since the motivic spectrum I is by hypothesis in X^MBP–Modcell, we deduce
from Theorem 7.4 that I Š

W
˛2A†

p˛;q˛ .X^MBP/ for some set A. Therefore, by
Theorem 6.7,

MBP��.I/D ���.MBP^ I/Š ���

� _
˛2A

†p˛;q˛ .X^MBP^MBP/
�

Š

M
˛2A

†p˛;q˛���.X^MBP^MBP/

Š

M
˛2A

†p˛;q˛G�� Š G��˝F2
V;

where V Š
L
˛2A†

p˛;q˛F2. Now, note that by Theorem 6.6,

���.I/Š
M
˛2A

†p˛;q˛���.X^MBP/Š V:

It follows that
MBP��.I/Š G��˝F2

���.I/:

The following lemma, which corresponds to [6, Lemma 5.3], describes algebraically
the hom sets from isotropic cellular spectra to isotropic MBP–cellular spectra.

Lemma 8.2 Suppose that k is a flexible field. Then for any X 2 X–Modcell and
I 2 X^MBP–Modcell there is an isomorphism

ŒX; I �Š Hom0;0
G��.MBP��.X /;MBP��.I//:
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Proof By Theorem 7.4 and Lemma 8.1, we have the sequence of isomorphisms

ŒX; I �Š ŒX^MBP^X; I �X^MBP Š Hom0;0
F2
.���.X^MBP^X /; ���.I//

Š Hom0;0
G��.���.X^MBP^X /;G��˝F2

���.I//

Š Hom0;0
G��.MBP��.X /;MBP��.I//;

Before constructing the isotropic version of the Adams–Novikov spectral sequence we
need:

Lemma 8.3 Let k be a flexible field and Y an object in X–Mod. Then , for any s � 0,
there exist isomorphisms

MBP��..X^MBP/^s
^Y /Š†�s;0G��˝s

˝F2
MBP��.Y /

and

MBP��.X^MBP^ .X^MBP/^s
^Y /Š†�s;0G��˝F2

G��˝s
˝F2

MBP��.Y /:

Proof First note that, by arguments similar to the ones in Lemma 5.6, we have an
isomorphism

MBP��.X^MBP^ .X^MBP/^s
^Y /Š G��˝F2

MBP��..X^MBP/^s
^Y /

for any isotropic spectrum Y and any s � 0, so we only need to prove the first part of
the statement. We achieve this by an induction argument, after noting that obviously
the statement holds for s D 0.

Now, suppose the statement holds for s� 1, ie

MBP��..X^MBP/^s�1
^Y /Š†1�s;0G��˝s�1

˝F2
MBP��.Y /

and

MBP��.X^MBP^.X^MBP/^s�1
^Y /Š†1�s;0G��˝F2

G��˝s�1
˝F2

MBP��.Y /:

Then the distinguished triangle in SH.k/

.X^MBP/^s
^Y ! .X^MBP/^s�1

^Y ! X^MBP^ .X^MBP/^s�1
^Y

!†1;0.X^MBP/^s
^Y

induces in MBP–homology the short exact sequence

0!†1�s;0G��˝s�1
˝F2

MBP��.Y /!†1�s;0G��˝F2
G��˝s�1

˝F2
MBP��.Y /

!†1;0MBP��..X^MBP/^s
^Y /! 0:
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It follows that

MBP��..X^MBP/^s
^Y /Š†�s;0G��˝s

˝F2
MBP��.Y /

and

MBP��.X^MBP^ .X^MBP/^s
^Y /Š†�s;0G��˝F2

G��˝s
˝F2

MBP��.Y /:

We are now ready to construct the isotropic Adams–Novikov spectral sequence, which
corresponds to [6, Theorem 5.6]. Before proceeding, we would like to fix some notation.

Definition 8.4 Let X be an isotropic spectrum. The Chow–Novikov degree of
MBPp;q.X / is the integer p� 2q. We denote by X–Modb

cell the category of bounded
isotropic cellular spectra, that is, isotropic cellular spectra whose MBP–homology is
nontrivial only for a finite number of Chow–Novikov degrees.

Theorem 8.5 Let k be a flexible field and X and Y objects in X–Modb
cell. Then there

is a strongly convergent spectral sequence

E
s;t;u
2
Š Exts;t;uG�� .MBP��.X /;MBP��.Y //) Œ†t�s;uX;Y ^HZ=2�:

Proof Consider the Postnikov system in X–Modcell

� � � // .X^MBP/^s^Y //

��

� � � // X^MBP^Y //

��

Y

��

X^MBP^.X^MBP/^s^Y

Œ1�

ff

X^MBP^X^MBP^Y

Œ1�

ee

X^MBP^Y

Œ1�

hh

where X^MBP is defined by the distinguished triangle in SH.k/

X^MBP! S! X^MBP!†1;0X^MBP:

If we apply the functor Œ†��X;� � we get an unrolled exact couple

� � � // Œ†��X;X^MBP^Y � //

��

Œ†��X;Y �

��

Œ†��X;X^MBP^X^MBP^Y �

Œ1�

ii

Œ†��X;X^MBP^Y �

Œ1�

kk

that induces a spectral sequence with E1–page given by

E
s;t;u
1
Š Œ†t�s;uX;X^MBP^ .X^MBP/^s

^Y �

and first differential
d

s;t;u
1
WE

s;t;u
1
!E

sC1;t;u
1

:
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This is what we call the isotropic Adams–Novikov spectral sequence. Note that by
Lemmas 8.2 and 8.3 the E1–page has a nice description:

E
s;t;u
1
Š Homt;u

G��.MBP��.X /;G��˝F2
G��˝s

˝F2
MBP��.Y //:

Hence, the E2–page has the usual description given in terms of Ext–groups of left
G��–comodules:

E
s;t;u
2
Š Exts;t;uG�� .MBP��.X /;MBP��.Y //:

By standard formal reasons, this spectral sequence actually converges to the groups
Œ†t�s;uX;Y ^X^MBP�. We only have to notice that

Y ^X^MBP Š Y ^X^HZ=2 Š Y ^HZ=2:

The second isomorphism comes from the same argument as the proof of Proposition 5.3.
Regarding the first isomorphism, we may consider, following [4, Section 7.3], the
bicompletion Y ^

fX^MBP;X^HZ=2g. This spectrum may be obtained by computing the
homotopy limit of the cosimplicial spectrum

.X^HZ=2^Y /^X^MBP � ..X^HZ=2/^2
^Y /^X^MBP

!
!
!
..X^HZ=2/^3

^Y /^X^MBP!
!
!

!
� � �

or, equivalently, by computing the homotopy limit of the cosimplicial spectrum

.X^MBP^Y /^X^HZ=2 � ..X^MBP/^2
^Y /^X^HZ=2

!
!
!
..X^MBP/^3

^Y /^X^HZ=2!
!
!

!
� � � :

Since HZ=2 is a motivic MBP–module, for any n,

..X^HZ=2/^n
^Y /^X^MBP Š .X^HZ=2/^n

^Y;

from which it follows that the first homotopy limit is just Y ^
X^HZ=2. On the other hand,

we know that X^MBP is HZ=2–complete; thus, for any n,

..X^MBP/^n
^Y /^X^HZ=2 Š .X^MBP/^n

^Y;

and the second homotopy limit gives back Y ^X^MBP. This implies Y ^X^MBP Š Y ^
X^HZ=2.

It only remains to prove the strong convergence. The arguments are the same as
in [6, Theorem 3.2] and we report them here only for completeness. First, suppose
that MBP��.X / is concentrated in Chow–Novikov degrees Œa; b� and MBP��.Y / is
concentrated in Chow–Novikov degrees Œc; d �. Then the E1–page, and so all the
following pages, are trivial outside the range c � bC 2u� t � d � aC 2u. Now, note
that the differential on the Er –page has, as usual, the tridegree .r; r � 1; 0/, which
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means in particular that it is trivial when r �1> d �a� cCb. This amounts to saying
that the spectral sequence collapses at the Ed�a�cCbC2–page, and so it is strongly
convergent.

Definition 8.6 Let X–Modcell;HZ=2 be the full triangulated subcategory of X–Modcell

consisting of HZ=2–complete cellular isotropic spectra. Denote by X–Modb;�0
cell;HZ=2 the

full subcategory of X–Modb
cell;HZ=2 whose objects have MBP–homology concentrated

in nonnegative Chow–Novikov degrees, and by X–Modb;�0
cell;HZ=2 the full subcategory

of X–Modb
cell;HZ=2 whose objects have MBP–homology concentrated in nonpositive

Chow–Novikov degrees. Finally, let X–Mod~cell;HZ=2 be the full subcategory whose
objects are in X–Modb;�0

cell;HZ=2 and X–Modb;�0
cell;HZ=2, ie the objects have MBP–homology

concentrated in Chow–Novikov degree 0.

We want to point out that, since X ^ HZ=2 is a X ^MBP–module and X ^MBP
is X^HZ=2–complete, the subcategories of HZ=2–complete and MBP–complete
isotropic spectra coincide.

The next corollary, which corresponds to [6, Corollary 4.7], computes hom sets from
X–Modb;�0

cell;HZ=2 to X–Modb;�0
cell;HZ=2 in algebraic terms.

Corollary 8.7 Let k be a flexible field , X an object in X–Modb;�0
cell;HZ=2 and Y in

X–Modb;�0
cell;HZ=2. Then the functor MBP�� provides an isomorphism

ŒX;Y �Š Hom0;0
G��.MBP��.X /;MBP��.Y //:

Proof As we have already pointed out, the E1–page of the isotropic Adams–Novikov
spectral sequence is given by

E
s;t;u
1
Š Homt;u

G��.MBP��.X /;G��˝F2
G��˝s

˝F2
MBP��.Y //:

Since we are interested in the group ŒX;Y �, the part of the E1–page that is involved
consists of the groups in tridegrees .t; t; 0/. By hypothesis, X is in X–Modb;�0

cell;HZ=2

while Y is in X–Modb;�0
cell;HZ=2, so, among these groups, only E

0;0;0
1

is nontrivial. Since
in this tridegree all differentials from the second on are trivial by degree reasons,

ŒX;Y �ŠE
0;0;0
2
Š Ext0;0;0G�� .MBP��.X /;MBP��.Y //

Š Hom0;0
G��.MBP��.X /;MBP��.Y //;

By using the isotropic Adams–Novikov spectral sequence we also get a corollary, which
corresponds to [6, Corollary 4.8] and is a generalization of [19, Theorem 5.7]:
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Corollary 8.8 Let k be a flexible field and X and Y objects in X–Mod~cell;HZ=2. Then
there is an isomorphism

Œ†t;uX;Y �Š Ext2u�t;2u;u
G�� .MBP��.X /;MBP��.Y //:

Proof This follows because the differentials d
s;t;u
r W E

s;t;u
r ! E

sCr;tCr�1;u
r of the

isotropic Adams–Novikov spectral sequence are trivial for r � 2 since E
s;t;u
2

is trivial
for t ¤ 2u. Hence, the spectral sequence is strongly convergent and collapses at the
second page, from which we get that

Œ†t;uX;Y �ŠE
2u�t;2u;u
2

Š Ext2u�t;2u;u
G�� .MBP��.X /;MBP��.Y //:

Before proceeding, we also need the following lemma which essentially corresponds
to [6, Lemma 4.10].

Lemma 8.9 Let k be a flexible field and M a G��–comodule concentrated in Chow–
Novikov degree 0 which is finitely generated as an F2–vector space. Then there exists
an object X in X–Mod~cell;HZ=2 such that M ŠMBP��.X /.

Proof Since by hypothesis M is a finite-dimensional F2–vector space, according to
[10, Theorem 3.3] one has a finite filtration of subcomodules

0ŠM0 �M1 � � � � �Mn ŠM

such that, for any i , Mi=Mi�1 is stably isomorphic to F2, ie Mi=Mi�1 Š†
2qi ;qi F2

for some integer qi . We want to prove the statement by induction on i . First, note
that by Theorem 6.6 the comodule †2qi ;qi F2 is the MBP–homology of the isotropic
spectrum †2qi ;qiX^HZ=2 for any i . Now, suppose that there exists an object Xi�1 in

X–Mod~cell;HZ=2 such that Mi�1 ŠMBP��.Xi�1/. Then the short exact sequence

0!Mi�1!Mi!†2qi ;qi F2! 0

represents an element of Ext1;0;0G�� .†
2qi ;qi F2;Mi�1/, namely, by Corollary 8.8, a

morphism fi in Œ†2qi�1;qiX^HZ=2;Xi�1�. Let us define Xi as Cone.fi/. Then we
have a long exact sequence in MBP–homology

� � � !†2qi�1;qi F2
0
�!Mi�1!MBP��.Xi/!†2qi ;qi F2

0
�!†1;0Mi�1! � � � :

Note that the connecting homomorphism

gi� W Ext0;0;0.†2qi ;qi F2; †
2qi ;qi F2/! Ext1;0;0.†2qi ;qi F2;Mi�1/;
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described as the Yoneda product with the element gi of Ext1;0;0G�� .†
2qi ;qi F2;Mi�1/

corresponding to the short exact sequence

0!Mi�1!MBP��.Xi/!†2qi ;qi F2! 0;

converges to the map

fi� W Œ†
2qi�1;qiX^HZ=2; †

2qi�1;qiX^HZ=2�! Œ†2qi�1;qiX^HZ=2;Xi�1�

induced by fi in isotropic homotopy groups; see [18, Theorem 2.3.4]. By Corollary 8.8
the isotropic Adams–Novikov spectral sequence collapses at the second page, so
gi� D fi�. It follows that the extensions gi and fi coincide, which implies that
MBP��.Xi/ŠMi .

The next result is the isotropic equivalent of [6, Lemma 4.2].

Lemma 8.10 Let k be a flexible field and X˛ be a filtered system in X–Mod~cell;HZ=2.
Then the colimit colim X˛ in X–Modcell also belongs to X–Mod~cell;HZ=2.

Proof First note that, since MBP��.colim X˛/ Š colim MBP��.X˛/, colim X˛ has
MBP–homology concentrated in Chow–Novikov degree 0. Moreover, recall from [18,
Corollary A1.2.12] that ExtG��.F2;�/ may be computed as the homology of the cobar
complex for the second variable. Since the cobar complex preserves filtered colimits,
so does ExtG��.F2;�/. Then Corollary 8.8 implies that

�t;u.colim X˛/Š colim�t;u.X˛/Š colim Ext2u�t;2u;u
G�� .F2;MBP��.X˛//

Š Ext2u�t;2u;u
G�� .F2; colim MBP��.X˛//

Š Ext2u�t;2u;u
G�� .F2;MBP��.colim X˛//Š �t;u..colim X˛/

^
HZ=2/

from which it follows that colim X˛ is HZ=2–complete.

We are now ready to identify X–Mod~cell;HZ=2 with the abelian category of left G��–
comodules concentrated in Chow–Novikov degree 0 that we denote by G��– Comod0

��.
The following proposition is an isotropic version of [6, Proposition 4.11]:

Proposition 8.11 Let k be a flexible field. Then the functor

MBP�� W X–Mod~cell;HZ=2
Š
�! G��– Comod0

��

is an equivalence of categories.
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Proof First, note that Corollary 8.7 guarantees that the functor MBP�� is fully faithful.
We just need to show that it is essentially surjective. Recall from [7, Propositions 1.4.10,
1.4.4 and 1.4.1] that any left G��–comodule M is a filtered colimit of comodules M˛

which are finitely generated as F2–vector spaces. By Lemma 8.9 all M˛ are expressible
as MBP��.X˛/ for some X˛ in X–Mod~cell;HZ=2. Therefore, M ŠMBP��.X /, where
X D colim X˛.

Remark 8.12 G��– Comod0
�� is equivalent to the category of left A�–comodules,

where A� is the dual of the topological Steenrod algebra. Hence, the previous result
can be rephrased by saying that X–Mod~cell;HZ=2 is equivalent to the abelian category
of left A�–comodules.

The next proposition, corresponding to [6, Proposition 4.12], provides X–Modb
cell;HZ=2

with a t–structure.

Proposition 8.13 Let k be a flexible field. Then .X–Modb;�0
cell;HZ=2;X–Modb;�0

cell;HZ=2/

defines a bounded t–structure on X–Modb
cell;HZ=2.

Proof Just by the definition of X–Modb;�0
cell;HZ=2 and X–Modb;�0

cell;HZ=2 the first is closed
under suspensions, the second under desuspensions and both under extensions. Clearly

X–Modb
cell;HZ=2 D

[
n2Z

X–Modb;�n
cell;HZ=2;

where X–Modb;�n
cell;HZ=2 is the nth suspension of X–Modb;�0

cell;HZ=2. Next, we consider
objects X and Y in X–Modb;�0

cell;HZ=2 and X–Modb;��1
cell;HZ=2 (the first desuspension of

X–Modb;�0
cell;HZ=2), respectively. Then by Corollary 8.7

ŒX;Y �Š Hom0;0
G��.MBP��.X /;MBP��.Y //Š 0;

since MBP��.Y / is concentrated in negative Chow–Novikov degrees while MBP��.X /
is concentrated in nonnegative Chow–Novikov degrees. Finally, let X be an object in
X–Modb;�0

cell;HZ=2, then MBP.X / is concentrated in nonnegative Chow–Novikov degrees.
Consider the projection MBP.X /!MBP.X /0 that kills all the elements in positive
Chow–Novikov degrees, and note that there exists an object X0 in X–Mod~cell;HZ=2

such that MBP.X0/ŠMBP.X /0. Now, by Corollary 8.7, this morphism comes from
a map f W X ! X0 such that †�1;0 Cone.f / belongs to X–Modb;�1

cell;HZ=2. Therefore,
by [6, Proposition 3.6], the pair .X–Modb;�0

cell;HZ=2;X–Modb;�0
cell;HZ=2/ defines a bounded

t–structure on X–Modb
cell;HZ=2.
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We are now ready to prove the main result of this section, which corresponds to
[6, Theorem 4.13]. In this theorem we identify X–Modb

cell;HZ=2 with the derived cate-
gory of left G��–comodules concentrated in Chow–Novikov degree 0.

Theorem 8.14 Let k be a flexible field. Then there exists a t–exact equivalence of
stable1–categories

Db.G��– Comod0
��/

Š
�! X–Modb

cell;HZ=2:

Proof First, by Propositions 8.11 and 8.13, .X–Modb;�0
cell;HZ=2;X–Modb;�0

cell;HZ=2/ defines
a bounded t–structure on X–Modb

cell;HZ=2 whose heart is equivalent to the category of
left G��–comodules concentrated in Chow–Novikov degree 0, so has enough injectives.
Now, let X and Y be objects in X–Mod~cell;HZ=2 such that MBP��.Y / is an injective
G��–comodule. In this case the isotropic Adams–Novikov spectral sequence

E
s;t;u
2
Š Exts;t;uG�� .MBP��.X /;MBP��.Y //) Œ†t�s;uX;Y �

collapses at the second page since the E2–page is trivial for s ¤ 0. Hence,

Œ†�iX;Y �Š Ext0;�i;0
G�� .MBP��.X /;MBP��.Y //

Š Hom�i;0
G�� .MBP��.X /;MBP��.Y //Š 0

for any i >0 since both MBP��.X / and MBP��.Y / are concentrated in Chow–Novikov
degree 0. It follows by [6, Proposition 2.12], which is based on Lurie’s recognition
criterion [13, Proposition 1.3.3.7], that there exists a t–exact equivalence of stable
1–categories

Db.G��– Comod0
��/

Š
�! X–Modb

cell;HZ=2

extending the equivalence on the hearts.

Remark 8.15 Given the identification G�� Š A�, Theorem 8.14 identifies as trian-
gulated categories the category of bounded isotropic HZ=2–complete cellular spectra
with the derived category of left A�–comodules, namely Db.A�– Comod�/.

By using the same argument as in [6, Corollary 1.2] one is able to obtain an un-
bounded version of the previous theorem, identifying the whole X^HZ=2–Modcell with

Hovey’s unbounded derived category Stable.G��– Comod0
��/, which is the same as

Stable.A�– Comod�/; see [7, Section 6].

Corollary 8.16 Let k be a flexible field. Then there exists an equivalence of stable
1–categories

X^HZ=2–Modcell Š Stable.G��– Comod0
��/:
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9 The category of isotropic Tate motives

We finish in this section by applying previous results in order to obtain information
on the category of isotropic Tate motives DM.k=k/Tate. In particular, we get an easy
algebraic description for the hom sets in DM.k=k/Tate between motives of isotropic
cellular spectra.

First, we prove the following lemma, which tells us that the isotropic motivic homology
of an isotropic spectrum is always a free H��.k=k/–module.

Lemma 9.1 Let k be a flexible field and X an object in X–Mod. Then there exists an
isomorphism of left H��.k=k/–modules

H iso
��.X /ŠH��.k=k/˝F2

MBP��.X /:

Proof The Hopkins–Morel equivalence (see [8, Theorem 7.12]) implies in particular
that HZ=2 is a quotient spectrum of MBP. It follows that HZ=2 can be obtained from
MBP by applying cones and homotopy colimits, and so it is an MBP–cellular module,
from which we get by Theorem 7.4 that

X^HZ=2Š
_
˛2A

†p˛;q˛ .X^MBP/

for some set A. Now note that, by Theorem 6.6,

H��.k=k/Š ���.X^HZ=2/Š ���

� _
˛2A

†p˛;q˛ .X^MBP/
�

Š

M
˛2A

†p˛;q˛���.X^MBP/Š
M
˛2A

†p˛;q˛F2:

At this point, let X be an object in X–Mod. Then

H iso
��.X /Š ���.X^HZ=2^X /Š ���

� _
˛2A

†p˛;q˛ .X^MBP^X /

�
Š

M
˛2A

†p˛;q˛���.X^MBP^X /Š
M
˛2A

†p˛;q˛MBP��.X /

ŠH��.k=k/˝F2
MBP��.X /:

In the next proposition we compute hom sets in the isotropic triangulated category of
motives between motives of isotropic cellular spectra. They happen to be isomorphic
to hom sets of left H��.k=k/–modules between the respective isotropic homology.
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Proposition 9.2 Let k be a flexible field and X and Y objects in X–Modcell. Then
there exists an isomorphism

HomDM.k=k/Tate.M.X /;M.Y //Š HomH��.k=k/.H
iso
��.X /;H

iso
��.Y //:

Proof Consider the functor

H iso
�� W DM.k=k/Tate!H��.k=k/–Mod��

which sends each isotropic Tate motive to the respective isotropic motivic homology,
and let X and Y be motivic spectra in X–Modcell. Then, by Theorem 7.4, Lemma 9.1
and [19, Proposition 2.4],

HomDM.k=k/Tate.M.X /;M.Y //

Š ŒX;X^HZ=2^Y �Š ŒX^MBP^X;X^HZ=2^Y �X^MBP

Š HomF2
.���.X^MBP^X /; ���.X^HZ=2^Y //

Š HomF2
.MBP��.X /;H iso

��.Y //

Š HomH��.k=k/.H��.k=k/˝F2
MBP��.X /;H iso

��.Y //

Š HomH��.k=k/.H
iso
��.X /;H

iso
��.Y //:

Remark 9.3 The last result suggests that isotropic Tate motives that come from
SH.k=k/cell are very special in the sense that hom sets in DM.k=k/Tate between
them are described simply in terms of hom sets of free H��.k=k/–modules. This
property does not hold in general, so the next task should be to understand hom sets
in DM.k=k/Tate between general isotropic Tate motives and try to describe them in
algebraic terms. Unfortunately, since H��.k=k/ is not concentrated in Chow–Novikov
degree 0, the strategy used in [6] and adapted in Sections 7 and 8 does not immediately
apply. Hence, some new ideas are needed and the hope is to develop them in future work.

List of symbols

k flexible field with char.k/¤ 2

SH.k/ stable motivic homotopy category over k

SH.k=k/ isotropic stable motivic homotopy category over k

DM.k/ triangulated category of motives with Z=2–coefficients over k

DM.k=k/ isotropic triangulated category of motives with Z=2–coefficients
over k

���. � / stable motivic homotopy groups
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� iso
��. � / isotropic stable motivic homotopy groups

H��. � /;H
��. � / motivic homology and cohomology with Z=2–coefficients

H iso
�� . � /;H

��
iso . � / isotropic motivic homology and cohomology with Z=2–coefficients

H��.k/;H
��.k/ motivic homology and cohomology with Z=2–coefficients

of Spec.k/
H��.k=k/;H��.k=k/ isotropic motivic homology and cohomology with Z=2–

coefficients of Spec.k/
A��.k/;A��.k/ mod 2 motivic Steenrod algebra and its dual
A��.k=k/;A��.k=k/ mod 2 isotropic motivic Steenrod algebra and its dual
A�;A� mod 2 topological Steenrod algebra and its dual
G��;G�� bigraded mod 2 topological Steenrod algebra and its dual, ie

G2q;q DAq and Gp;q D 0 for p ¤ 2q, similar for the dual
M�� Milnor subalgebra ƒF2

.Qi/i�0 of A��.k=k/ where the Qi are the
Milnor operations in bidegrees .2i � 1/Œ2iC1� 1�

S motivic sphere spectrum
HZ=2 motivic Eilenberg–Mac Lane spectrum with Z=2–coefficients
MGL motivic algebraic cobordism spectrum
MBP motivic Brown–Peterson spectrum at the prime 2

X isotropic sphere spectrum
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