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A sharp lower bound on fixed points of
surface symplectomorphisms in each mapping class

ANDREW COTTON-CLAY

Given a compact, oriented surface †, possibly with boundary, and a mapping class,
we obtain sharp lower bounds on the number of fixed points of a surface symplecto-
morphism (ie area-preserving map) in the given mapping class, both with and without
nondegeneracy assumptions on the fixed points. This generalizes the Poincaré–
Birkhoff fixed point theorem to arbitrary surfaces and mapping classes. These bounds
often exceed those for non-area-preserving maps. We give a fixed point bound on
symplectic mapping classes for monotone symplectic manifolds in terms of the rank
of a twisted-coefficient Floer homology group, with computations in the surface case.
For the case of possibly degenerate fixed points, we use quantum-cup-length-type
arguments for certain cohomology operations we define on summands of the Floer
homology.

37E30, 37J10, 53D40; 37C25

1 Introduction

1.1 Sharp fixed point bounds for surface symplectomorphisms

1.1.1 Overview Let .†; !/ be a compact surface of negative Euler characteristic,1

possibly with boundary, with ! a symplectic form (ie area form). For any mapping class
we give sharp lower bounds on the number of fixed points of an area-preserving map �
in the mapping class, both in the case in which � is assumed to have nondegenerate
fixed points2 and in the general case in which degenerate fixed points are allowed.
This generalizes the Poincaré–Birkhoff fixed point theorem, which states that area-
preserving twist maps of the annulus have at least two fixed points, to arbitrary surfaces
and mapping classes.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
1Our results extend to the nonnegative Euler characteristic case but these exceptional cases would be
cumbersome to carry around. All of these cases are already understood.
2That is, the fixed points of � are cut out transversally in the sense that det.1�d�x/¤ 0 for fixed points x.
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1658 Andrew Cotton-Clay

1.1.2 Traditional lower bound from Nielsen theory A traditional lower bound,
which is sharp for non-area-preserving maps on surfaces, comes from Nielsen theory.
Given a symplectomorphism � W † ! † let M� ! S1 be the mapping torus as a
†–bundle over S1, and let �.M�/ be its space of sections. A Nielsen class � 2
�0.�.M�// of a fixed point x of a map � is its homotopy class when considered
as a constant section of the mapping torus. The index of a Nielsen class �, denoted
by ind.�/, is given by the sum of the topological indices3 of each fixed point in the
class �. This quantity is invariant under deformation. The traditional lower bound
on fixed points when there is a nondegeneracy condition is given by

P
� jind.�/j, as

nondegenerate fixed points have index ˙1. In the general case with no nondegeneracy
condition, the traditional lower bound is given by the number of Nielsen classes with
nonzero index.

1.1.3 Mapping classes and Thurston’s classification Let DiffC.†/ denote the space
of orientation-preserving diffeomorphisms of †. For closed surfaces, mapping classes
are elements of �0.DiffC.†//. For surfaces with boundary, we define DiffC

@
.†/ to

be the space of orientation-preserving diffeomorphisms with no fixed points on the
boundary, and use the term mapping classes to refer to elements of �0.DiffC

@
.†//,

though this is not standard. By Moser’s trick, in dimension two, these are homotopy
equivalent to the versions with Diff replaced by DiffVol D Symp.

We state our results in terms of Thurston’s classification of surface diffeomorphisms
(see Thurston [20] and Fathi, Laudenbach and Poénaru [4]), which states that given a
compact, oriented surface† (with or without boundary) every element of �0.DiffC.†//
is precisely one of the following types:

� Periodic (finite order) For some representative �, we have �` D id for some
` 2 Z>0.

� Pseudo-Anosov Some singular representative � preserves two transverse sin-
gular measured foliations, expanding the measure on one and contracting the
measure on the other. See Cotton-Clay [1] for symplectic smoothings of these
singular representatives.

� Reducible Some representative � fixes setwise a collection of curves C , none
of which are nullhomotopic or boundary parallel (and the mapping class is not
periodic).

3The degree of the induced map on H1 of a deleted neighborhood of the fixed point x.

Geometry & Topology, Volume 27 (2023)



A sharp lower bound on fixed points of surface symplectomorphisms 1659

In the reducible case, we call such a curve C above a reducing curve. Cutting along a
maximal collection of pairwise nonhomotopic reducing curves C gives a map on each
component of † nC , given by the smallest power of � which maps that component
to itself, which is periodic or pseudo-Anosov. We call these components of † n C

reducible components or geometric components when extending this to the case of the
entire surface for nonreducible maps. We say a component abuts the reducing curves
making up its boundary, as well as any curves making up its actual boundary.

1.1.4 Fixed annuli and standard representatives To understand fixed points of
surface symplectomorphisms, we are interested in components which map to themselves.
In addition to the geometric components described above, we must extend the notion
of components to allow for a number of fixed annuli between geometric components
or near a boundary when there is sufficient twisting along the reducing curve or at a
boundary curve. After standard perturbations (see Section 4.1.1), near a reducing curve
or boundary curve C , we choose standard representatives to have twisting regions (à la
Dehn twists) connecting the components. Such a twisting region may have any number
(in Z�0) of circles of fixed points, which we think of as fattened to annuli and consider
as fixed annuli. See Section 4.1.2 for a definition and, for an optional further elucidation
of these, see Section 4.1.3 relating counting the number of these to a variant of fractional
Dehn twist coefficients, related to the concept in Honda, Kazez and Matić [7].

These fixed annuli are important to consider as they can show up in one of two types
of components (see Section 1.1.5 below) which contribute to excess fixed points over
the traditional Nielsen theory lower bound. Indeed, the case of the Poincaré–Birkhoff
fixed point theorem can be thought of as a solitary fixed annulus in this context.

1.1.5 Excess over Nielsen lower bound: components of types A and B In what
follows, these fixed annuli are additionally considered components, on which the
induced map is considered to be the identity. Additionally, we consider mapping
classes on a surface with boundary with fixed annuli reducible in �0.DiffC

@
.†//, even

if they are not reducible in �0.DiffC.†//.

There are two settings, in terms of standard representatives, in which the minimum
for area-preserving maps exceeds the topological minimum from Nielsen theory. Both
involve components on which the induced map is the identity:

� Components of type A We say a component is of type A if

– its induced map is the identity,

Geometry & Topology, Volume 27 (2023)



1660 Andrew Cotton-Clay

– it is genus-zero but nonannular,

– it does not abut with twist 0 2Q any pseudo-Anosov components,

– all its boundaries are nullhomologous or boundary-parallel, and

– all its boundaries have twist in Q with the same sign or 0.

� Components of type B We say a component is of type B if

– it is a fixed annulus (as above), and

– it is nullhomologous or boundary-parallel.

Here twist is in the sense of the fractional Dehn twist coefficient of [7].

1.1.6 Theorems and discussion

Theorem 1.1 Let .†; !/ be a compact , oriented surface , possibly with boundary ,
with area form !. The minimum number of fixed points of an area-preserving map with
nondegenerate fixed points in a mapping class h is given by�P

� jind.�/j if h is periodic or pseudo-Anosov,P
� jind.�/jC 2AC 2B if h is reducible.

Here A is the number of components of type A, and B the number of components of
type B, of a standard representative of the mapping class h.

The upper bound here is given by construction, which comes from perturbing maps
which are nice with respect to the Nielsen–Thurston geometry, which we call standard
form maps, with particular symplectic vector fields. The lower bound comes from Floer
homology computations for these standard form maps with certain twisted coefficients,
based on computations we performed in [1], plus a result discussed below showing
how computations with appropriate twisted coefficients give fixed point bounds over
entire mapping classes.

In this case, counting nondegenerate fixed points, components of types A and B each
contribute an additional two fixed points, analogous to the Poincaré–Birkhoff fixed
point theorem, which can be thought of as the case of a solitary fixed annulus.

Theorem 1.2 The minimum number of fixed points of an area-preserving map in a
mapping class h is given by�

#f� W ind.�/¤ 0g if h is periodic or pseudo-Anosov,
#f� W ind.�/¤ 0gCAC 2B if h is reducible ,

where A and B are as in Theorem 1.1.

Geometry & Topology, Volume 27 (2023)
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To clarify Theorem 1.2, both components contributing to A and components contributing
to B contribute two to the minimum number of fixed points, but those contributing to
A have nonzero index and thus have already contributed one in the traditional Nielsen
bound. For type A components, degeneracy allow collapsing down to two fixed points,
but (also with type B components) no further.

Though we have restricted to surfaces of negative Euler characteristic, we note that a
twist map on the annulus may be considered to have one component of type B, and the
two fixed points guaranteed by the Poincaré–Birkhoff fixed point theorem appear in
the 2B term here.

Again the upper bound is given by construction. The lower bound comes from “quantum
cup-length” computations for a certain cohomology operation4 on the summand of
Floer homology corresponding to the given Nielsen class, plus a compactness argument
of Taubes. This cohomology operation is morally given by counting intersections of
holomorphic cylinders with cycles in H1.S; @S/ for S a reducible component on which
the map is the identity whose fixed points are in the Nielsen class. The fact that this
is well defined comes from an understanding of the homotopy type of the component
of the space of sections �.M�/ of M� ! S1 corresponding to the given Nielsen
class, plus an algebraic invariance result given in [1] for certain types of cohomology
operations on Floer homology.

1.2 Fixed point bounds for monotone symplectic manifolds.

Let .X; !/ be a symplectic manifold, and consider the problem of finding fixed point
bounds for symplectic mapping classes, which are connected components of Symp.X /.

The symplectic Floer homology of a symplectomorphism � is the homology of a chain
complex generated by the fixed points of �; see Section 2 for more details. Thus the
rank of Floer homology gives a bound on the number of fixed points of �, and results on
the invariance of Floer homology under deformation of � give more general fixed point
bounds. A main challenge in obtaining fixed point bounds for symplectic mapping
classes is that we are interested in fixed point bounds on connected components of
Symp.X / as opposed to on Ham.X /–cosets of Symp.X /. Floer homology is invariant
under Hamiltonian perturbations between maps with nondegenerate fixed points, so as
long as we can define it on a given Ham.X /–coset, the rank of the Floer homology for

4We note that the usual module structure over the quantum cohomology of † vanishes in the situation of
interest.

Geometry & Topology, Volume 27 (2023)



1662 Andrew Cotton-Clay

any map in the coset is a bound on the number of fixed points for all nondegenerate
maps in the coset.

To deal with this, we give a general method for finding fixed point bounds for symplectic
mapping classes on monotone symplectic manifolds .X; !/. We say that .X; !/ is
monotone if Œ!� 2 H 2.X / is a positive multiple of c1.X /.5 The method consists of
performing a single Floer homology computation, for a suitable map � in the symplectic
mapping class, with suitable twisted coefficients. Along the way, we show that Floer
homology computations for one suitable map � with various twisted coefficients give
computations of HF�. ;ƒ /, the Floer homology of  with its natural Novikov
coefficients ƒ , for any  in the symplectic mapping class.

We identify a subset of each mapping class, which we call weakly monotone, such that
Floer homology is defined with any coefficients and is invariant under deformations
through such maps. In [1] we have shown that standard form maps on surfaces are in
this subset. Let !� be the two-form on M� induced by ! on †�R and let c� be the
first Chern class of the vertical tangent bundle of M�! S1.

Definition 1.3 A map � WX !X is weakly monotone6 if Œ!� � vanishes on T0.M�/,
where T0.M�/ � H2.M� IR/ is generated by tori T with c�.T / D 0 such that
�j

T
W T ! S1 is a fibration with fiber S1, where the map � W M� ! S1 is the

projection.

In Section 3.1 we define a flux map. Monotone maps have zero flux, which allows
their Floer homology with untwisted coefficients to be computed. Weakly monotone
maps need not have zero flux, but they still have well-defined Floer homology with
untwisted coefficients. Further, if we apply well-chosen twisted coefficients, the Floer
homology gives a lower bound on fixed points for non-weakly-monotone maps in the
same symplectic mapping class.

Consider a flux map Flux.�/ W Nh! R. Here Nh denotes the image under the map
H2.M�/! ker.��� id/�H1.†/ of ker.c�/�H2.M�/. Let N 0

h
be the image under

the map from the long exact sequence for the mapping torus fibration H2.M�/!

ker.��� id/�H1.†/ of the subset T0.M�/� ker.c�/�H2.M�/.

5If the multiple is negative, everything goes through similarly if there are no spheres with Chern class
above �n�2, where n is half the (real) dimension of X . Even failing this, we should be able to use virtual
moduli space or polyfold methods. These are technical issues, but the statement that Œ!� is some multiple
of c1.X / seems vital to our argument.
6We used “weakly monotone for every Nielsen class” to refer to the same concept in [1].
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Theorem 1.4 Let X be a monotone symplectic manifold , h a symplectic mapping
class on X , and � 2 h.

(i) Flux.�/ WNh=tors!R is well-defined.

(ii) Flux.�/j
N 0

h
=torsD 0 if and only if � is weakly monotone.

(iii) Let � be such that Flux.�/j
Nh
D 0. Then the rank of HF�.�IQ.Z=2ŒN 0h=tors�//

gives a lower bound on the rank HF�. Iƒ / for  any map in the class h,
whereƒ is the Novikov ring over which HF�. / is naturally defined , and thus
gives a lower bound on the number of fixed points of a map in the mapping class
with nondegenerate fixed points.

Here Q.Z=2ŒN 0
h
=tors�/ is the quotient field of the group ring of N 0

h
=tors over Z=2.

The Novikov ring ƒ is a ring over which HF�. / can be defined, with generators
given by fixed points, even if  is not weakly monotone. The main idea is that in some
cases the field Q.Z=2ŒNh�/ injects into ƒ , in which case we have a field extension
and the ranks of the homology are the same. When we do not have an injection, we
can extend ƒ to a larger Novikov ring into which Q.Z=2ŒNh�/ does inject. When
homology is computed over the larger Novikov ring, the rank can only decrease, giving
the lower bound in Theorem 1.4. Yi-Jen Lee’s bifurcation analysis [12; 13] is vital to
this argument, giving a way to compare the Floer homology of maps with proportional
fluxes. We note that Lee and Taubes [14, Corollary 6.6] have a similar Theorem for
periodic Floer homology coming from their isomorphism with Seiberg-Witten Floer
homology. Lee also informed us that she was independently aware of the existence of
results such as Theorem 1.4.

Organization of the paper

In Section 2 we review Floer homology and Nielsen classes; develop general twisted
coefficients for Floer homology; review Novikov rings; and discuss invariance results
due to Yi-Jen Lee [12; 13].

In Section 3 we give a general method for finding fixed point bounds on a monotone
symplectic manifold using a Floer homology computation for any weakly monotone
symplectomorphism with a particular choice of twisted coefficients.

In Section 4 we carry out this method in the case of surface symplectomorphisms to
give a lower bound, using computations from [1]. We obtain an equal upper bound by
explicit constructions.

Geometry & Topology, Volume 27 (2023)



1664 Andrew Cotton-Clay

In Section 5, we give fixed point bounds for surface symplectomorphisms with possibly
degenerate fixed points. We use a certain cohomology operation in place of the quantum
cap product, which vanishes in the situation of interest, to give cup-length-type bounds.
An equal upper bound is again given by explicit constructions.

Acknowledgements This paper is adapted from part of my thesis [2] at UC Berkeley
under Michael Hutchings, who gave invaluable advice and support. I’d also like to
thank MIT for their hospitality during my last year of graduate school, and Denis
Auroux, for his advising and helpful discussions. The reviewers and editors also gave
numerous valuable comments and suggestions.

2 Floer homology, Nielsen classes, twisted coefficients,
Novikov rings and bifurcation analysis

2.1 Review of Floer theory and monotonicity

We provide a brief summary. For a more complete discussion, see [3; 18; 1; 15].

Let † be a compact, connected, oriented surface, possibly with boundary, of negative
Euler characteristic. Let ! be a symplectic form (ie an area form) on †. Let � be
an element of Symp@.†; !/, the space of symplectomorphisms (ie area-preserving
diffeomorphisms) with no fixed points on the boundary. We consider the mapping torus
of �,

M� D
R�†

.t C 1;x/' .t; �.x//
:

Note that this is a †–bundle over S1 with projection � WM�!R=ZD S1.

Let �.M�/ denote the space of smooth sections of � WM� ! S1. Note that a fixed
point x 2† of � can be interpreted as a constant section x . Let J denote the space of
almost complex structures J on R�M� which are R–invariant, preserve the vertical
tangent bundle of � WR�M�!R�S1, and for which � is .J; j /–holomorphic, given
the standard complex structure j on the cylinder R�S1.

Suppose � has nondegenerate fixed points, in the sense that d� does not have 1 as an
eigenvalue at any fixed point. Let Px;y�.M�/ denote the space of paths from x to
y in �.M�/. Let C 2 �0.Px;y�.M�//. Given a generic J 2 J , the moduli space
M.�;x;y;C / of holomorphic sections R�S1!R�M� in the homotopy class C

is smooth and compact, of dimension ind.C /; see [5] or [6].

Geometry & Topology, Volume 27 (2023)
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For a statement of the index formula, see [16], or [1, Section 2.2] for a discussion
tailored to the current setting. Other than computations that we will cite below from [1],
we have need only of the change of homology class formula. In preparation, we define
the cohomology class c� 2H 2.M�/DH 2.R�M�/ to be the first Chern class of the
vertical tangent bundle to the projection � .

Proposition 2.1 [16] Let C;C 0 2 �0.Px;y�.M�//. Then ind.C / � ind.C 0/ D
2hc� ; ŒC �C 0�i.

Let !� denote the cohomology class in H 2.M�/DH 2.R�M�/ of the vertical area
form on M� .

Proposition 2.2 (Gromov compactness [6]) Let I � �0.Px;y�.M�//. The unionS
C2I M.�;x;y;C / is compact if the set of values

f!�.C �C 0/ j C;C 0 2 �0.Px;y�.M�/g

is bounded.

We have the following conditions.

Definition 2.3 A map � 2Symp@.†; !/ is monotone if !� vanishes on the kernel of c� .

Definition 2.4 A map � 2 Symp@.†; !/ is weakly monotone if !� vanishes on
T0.M�/, where T0.M�/ �H2.M� IR/ is generated by tori T with c�.T /D 0 such
that �j

T
W T ! S1 is a fibration with fiber S1, where the map � WM� ! S1 is the

projection.

Under either of these conditions, the moduli space

M1.�;x;y/D
[

C Wind.C /D1

M.�;x;y;C /

is compact. Thus we may define they symplectic Floer homology HF�.�/ of � with
coefficients in Z=2 to be the homology of the Z=2–graded chain complex CF.�/DL

x2Fix.�/Z=2 �x with differential

@x D
X

y

#.M.�;x;y/=R/ �y;

where the R–action is by translation in the R–direction in R�M� , and the Z=2–grading
of a fixed point x is given by the sign of det.1� d�/. The homology of this chain
complex is invariant under deformations through monotone or weakly monotone maps.

Geometry & Topology, Volume 27 (2023)



1666 Andrew Cotton-Clay

We recall:

Proposition 2.5 (monotone [18]; weakly monotone [1]) The space of monotone
(resp. weakly monotone) maps � 2 Symp@.†; !/ is homotopy equivalent to Diff@.†/
under the inclusion map. In particular , the space of those in each mapping class is
connected.

2.2 Nielsen classes and Reidemeister trace

There is a topological separation of fixed points due to Nielsen: given a fixed point x

of �, we obtain an element Œx � 2 �0.�.M�//, the free homotopy class of x in the
space of sections �.M�/. We denote this homotopy class by �.M�/Œx �. The chain
complex CF�.�/ defined above, as well as all the variants to be defined below, split
into direct summands for each Nielsen class � 2 �0.�.M�//:

HF�.�/D
X

�2�0.�.M�//

HF�.�; �/:

We note that in the case of surfaces of negative Euler characteristic, Nielsen classes are
well-defined on entire mapping classes (ie there is no monodromy). Thus the rank of
HF�.�; �/ is a lower bound on the number of fixed points in the Nielsen class � on,
for example, the weakly monotone subset of the mapping class.

A simpler lower bound on the number of nondegenerate fixed points in a Nielsen class
� 2 �0.�.M�// is given by the absolute value of the index of the Nielsen class

ind.�/D
X

xWŒx �D�

ind.x/:

We note that ind.�/ is the Euler characteristic of HF�.�; �/. A lower bound for the
number of fixed points of a map  with nondegenerate fixed points in the same mapping
class as � is thus given by X

�2�0.�.M�//

jind.�/j:

For maps with possibly degenerate fixed points, the bound from Nielsen theory is the
number of essential Nielsen classes; that is, the number of Nielsen classes � for which
ind.�/¤ 0.

2.3 Twisted coefficients

We have a groupoid G� whose objects are sections of the mapping torus M� and
whose morphisms from x to y are given by homotopy classes of paths from x to y

Geometry & Topology, Volume 27 (2023)
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in �.M�/. Given a ring R, we can take the groupoid algebroid RhG�i, a category
enriched over R–modules with the same objects as G� and with HomRhG�i.x;y/ given
by the free R–module generated by elements of HomG� .x;y/. Note that we have a
homomorphism ind W G�! Z given by the index.

If we have a representation � from RhG�i to an R–module M , we can define Floer
homology with coefficients in � .or M if � is understood/ as the homology of a chain
complex over M with generators the fixed points of � and differential given by

@x D
X

y

X
C2M1.x;y/

�.ŒC �/ �y;

where ŒC � is the homotopy class of the path in �.M�/ associated to the flow line C ,
and we abuse notation by identifying y with the section y 2 �.M�/. This is defined
for weakly monotone � for arbitrary � (because then M1.�;x;y/ is compact). In
Section 2.4 we discuss representations ƒ� suitable for each �.

We will typically suppress the ring R, which throughout this paper may be assumed to
be Z=2.

The standard representation �st into the group ring of H1.�.M�// is defined as follows.
For every pair of sections x;y and every index i , we choose a path C i

x;y in �.M�/

between them, of index i if possible. We require that

C i
x;y �C

j
y;z ' C iCj

x;y ; C i
x;y D�C�i

y;x and C 0
x;x D �:

Here � signifies appending paths, � signifies reversal of a path, and � signifies the
constant path. Then �st.ŒC �/, for C a path from x to y, is defined to be ŒC �C�ind.C /

y;x � 2

H1.�.M�//. Note that in fact this lies in ker.c�/ � H1.�.M�//. We have made
choices, but the resulting Floer homology is well-defined up to a change of basis.

We typically compose this with the map H1.�.M�//!H2.M�/ to get what we call
fully twisted coefficients, over Z=2ŒH2.M�/�. If we desire to have field coefficients,
we may for example take the quotient field of the group ring of H2.M�/=tors.

2.4 Novikov rings

Definition 2.6 For R a ring, G an abelian group and N WG!R a homomorphism,
the Novikov ring NovR.G;N / is defined to be the ring whose elements are formal
sums

P
g2G ag �g, where ag 2R are such that for each r 2R, only finitely many of

the ag with N.g/ < r are nonzero.
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1668 Andrew Cotton-Clay

There is also the universal Novikov ring:

Definition 2.7 For R a ring, the universal Novikov ring ƒR is defined to be the ring
whose elements are formal sums

P
r2R ar �T

r , where ar 2R are such that, for each
s 2R, only finitely many of the ar with r < s are nonzero.

Note that this is a field if R is a field. We have maps NovR.G;N /! ƒR given by
g 7! T N.g/. If R is a field and N is injective, this is an extension of fields.

We define a representation, the natural Novikov coefficients for �, denoted by ƒ� ,
as follows. We have a representation into NovZ=2.ker.c�/; !�/, where the maps
c� ; !� WH1.�.M�//!R are defined as in Section 2.1. The representation is defined
in the same manner as the standard representation; we have simply taken a submodule
ker.c�/�H1.�.M�// in which the image must lie, and allowed certain infinite sums.
We further compose this with the map to ƒZ=2. This all is simply to say we take

ƒ�.ŒC �/ D T !�.C �C
�ind.C /
y;x /:

We may define HF�.�;ƒ�/, the Floer homology of � with coefficients inƒ� for any �.
The point is simply that, while we may not have finiteness for M1.x;y/, we do have
that there are only finitely many C 2M1.x;y/ with !�.C / < r for any given r 2R,
by Gromov compactness, and this is precisely what is required.

2.5 Bifurcation analysis of Yi-Jen Lee

Yi-Jen Lee [12; 13] has worked out a general bifurcation argument for what she calls
Floer-type theories. Michael Usher [21] has a nice summary of the invariance result
this gives (which Lee conjectured in an earlier paper [11, equation 3.2] but did not
explicitly state as a theorem in [12; 13]) and its algebraic aspects. We have adapted the
statement to our setting involving representations � of Z=2hG�i.

Theorem 2.8 ([21, Theorem 3.6], due to Lee [12; 13]) Suppose .X; !/ is a symplectic
manifold with �2.X /D 0. Let �r WX!X be a smooth family of symplectomorphisms
with r 2 R and Jr D fJtgr with t 2 R a smooth family (of 1–periodic families)
of almost complex structures on X such that .�0;J0/ and .�1;J1/ are generic. Let
N D ker.c�/ WH1.�.M�r

/�/!R (this is independent of r ).

(i) Suppose !�r
j
N
D f .r/!�0

j
N

, for f .r/ 2 R. Then HF�.�0; �;J0Iƒ�0
/ Š

HF�.�1; �;J1Iƒ�0
/.

(ii) Suppose !�r
j
N
D 0 for all r . Then HF�.�0; �;J0/ Š HF�.�1; �;J1/. In fact ,

HF�.�0; �;J0I �/Š HF�.�1; �;J1I �/ for any representation �.
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We point out that in item (i) we are indeed taking the Floer homology of �1 with
coefficients given by the representation ƒ�0

. What this means is that we use !�0
to

determine the power of T in �.ŒC �/.

3 Bounds on fixed points in symplectic mapping classes

3.1 Representations and flux

Throughout this section consider .X; !/ a monotone symplectic manifold. The goal
of this section is to give a lower bound on fixed points for symplectomorphisms in a
symplectic mapping class h 2 �0.Symp.X; !// in terms of the rank of HF�.�; �/ for
one suitable choice of a pair .�; �/ with � 2 h and � a representation of Z=2.G�/. In
this subsection we define the representations �m for which it will be shown that .�; �m/

is such a pair for any monotone �, and �wm for which it will be shown that .�; �wm/ is
such a pair for any weakly monotone �.

Monotone case We have a representation �m that works for any monotone �. The
representation �m is defined as follows:

We have the representation �st into Z=2ŒH1.�.M�//�. We first compose7 with the map
H1.�.M�//!H2.M�/, noting that the image lies in the kernel of c� WH2.M�/!R.
Now we compose with the map to H1.X / in the long exact sequence for the mapping
torus, a part of which is

(1) H2.X /
i
�!H2.M�/

@
�! ker.��� id/�H1.X /:

We denote the image of ker.c�/ in H1.X / by Nh (this depends only on the mapping
class h). Finally, we mod out by torsion and then take the quotient field, so that our
coefficients lie in the field

Q.Z=2ŒNh=tors�/;

where Q denotes taking the quotient field. Essentially we have taken fully twisted field
coefficients, but we have been careful about where the image lies so that we can define
flux in this context, which both will be useful in specifying which maps � are suitable
to work with and will be a useful tool in what is to come.

7Technically we are composing with the map induced on the group ring by this map on homology. We
continue this abuse of terminology in what follows.

Geometry & Topology, Volume 27 (2023)



1670 Andrew Cotton-Clay

We have a characterization of monotone maps in terms of Flux, which we define using
the long exact sequence (1) above:

Definition–Lemma 3.1 The flux of any symplectomorphism �, denoted by

Flux.�/ WNh=tors!R

and defined as
Flux.�/. /D !�.C /;

where C 2H2.M�/ is such that @.C /D  and c�.C /D 0, is well-defined. Here @
is the map from the long exact sequence (1).

Proof First, we note that such a C exists because Nh is the image under @ (in the
long exact sequence) of ker.c�/. Next we note that !�.C / is well-defined because if
we take any other C 0 such that @.C 0 /D  and c�.C

0
 /D 0, the difference C �C 0

is in the kernel of c� and, being in the kernel of @, must also come from an element
of H2.X /, which we denote by B. We have that c� ı i W H2.X /! Z agrees with
c1.X / W H2.X /! Z. Thus c1.X /.B/D 0. By monotonicity of X , this implies that
!.B/ D 0. Because !� ı i W H2.X /! R agrees with ! W H2.X /! R as well, we
conclude that !�.C /�!�.C 0 /D 0. Finally, we remark that this is a homomorphism,
and thus any torsion in Nh must map to 0 2R.

Lemma 3.2 For a symplectomorphism �, we have

� is monotone () Flux.�/D 0:

Proof The statement Flux.�/D 0 is equivalent to !� vanishing on the kernel of c� .
This implies that !� is some multiple of c� .

Weakly monotone case With .X; !/ monotone, we also give a representation �wm

that works for any weakly monotone �. The representation �wm is defined as follows:

Let the image of the map H1.�.M�//! H2.M�/ be denoted by T .M�/. This is
generated by 2–tori in M� standardly fibering over S1. When composing the standard
representation into Z=2ŒH1.�.M�/� with the map H1.�.M�//!H2.M�/, the image
thus lies not only in ker.c�/ but in ker.c� jT .M�/

/. In fact it lies moreover in T0.M�/,
generated by 2–tori T in M� standardly fibering over S1 such that c�.T / D 0. We
denote the image of T0.M�/ under @ in the long exact sequence as

N 0h �Nh � ker.��� id/�H1.X /:
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As before, we mod out by torsion and then take the quotient field, so our coefficients
lie in the field

Q.Z=2ŒN 0h=tors�/:

We restrict Flux.�/ to N 0
h
=tors�Nh=tors.

Lemma 3.3 For a symplectomorphism �, we have

� is weakly monotone Nielsen class � () Flux.�/j
N 0

h
=torsD 0:

Proof The statement Flux.�/N 0
h
=tors D 0 is equivalent to !� vanishing on T0.M�/.

Let T0.M�/� be generated by 2–tori T in M� standardly fibering over S1 such that
c�.T /D 0 and which moreover have a section in Nielsen class �. Then the vanishing
of !� on T0.M�/ is equivalent to !� vanishing on T0.M�/� for every �, because every
such torus has a section, which lies in some Nielsen class, ie component of �.M�/.

Corollary 3.4 The space Sympwm
h
.X; !/ of maps in the mapping class h which

are weakly monotone Nielsen class � is homotopy equivalent under the inclusion to
Symph.X; !/.

3.2 Fixed point bounds

Theorem 3.5 Let .X; !/ be a monotone symplectic manifold , h a symplectic mapping
class on X , and � 2 h. Let � be such that Flux.�/j

N 0
h

D 0. Then the rank of

HF�.�IQ.Z=2ŒN 0h=tors�//

gives a lower bound on the rank HF�. Iƒ / for  any map in the class h.

Corollary 3.6 Let X be a monotone symplectic manifold , h a symplectic mapping
class on X , and � 2 h. Let � be such that Flux.�/jN 0

h
D 0. Then the rank of

HF�.�IQ.Z=2ŒN 0h=tors�//

gives a lower bound on the number of fixed points of any map in the mapping class
with nondegenerate fixed points.

Remark 3.7 The corresponding versions with � such that Flux.�/D0 and coefficients
in Q.Z=2ŒNh=tors�/ also hold, either with the same proofs or as a formal consequence.
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Theorem 3.5 follows from the following three lemmas.

Lemma 3.8 Let � 2h be such that Flux.�/jN 0
h
D 0 and let  2h. Then HF. ;ƒ /Š

HF.�;ƒ /.

Proof We use (i) from Theorem 2.8. Consider a smooth family  r of symplecto-
morphisms from  0 D  to  1 D � with Flux. r /jN 0

h
D .1� r/Flux. /jN 0

h
. Note

that such a family exists as we can modify Flux in any direction we desire by flowing
by an S1–valued Hamiltonian representing, as a map to S1, the desired cohomology
class of the modification. Then (for a generic family of almost complex structures) the
conditions of (i) in Theorem 2.8 are met with f .r/D 1� r . Summing over Nielsen
classes gives the result.

Lemma 3.9 With � and  as above , the rank of HF.�;ƒ / equals the rank of

HF
�
�;Q.Z=2ŒN 0h=tors�/=ker

�
Flux. /j

N 0
h

��
:

Proof We have field extensions

Q.Z=2ŒN 0h=tors�/=ker
�
Flux. /j

N 0
h

/
�

,! NovZ=2

�
N 0h=tors=ker

�
Flux. /j

N 0
h

�
;Flux. /j

N 0
h

�
,!ƒ :

The first is by allowing some infinite sums, and the second is the map discussed in
Section 2.4. Field extensions are flat, so the ranks are equal.

Lemma 3.10 (Vân, Ono and Lê [22, Appendix C]) Let k be a field and let C� be a
chain complex over kn WD kŒt1; : : : ; tn�. Consider kn as an augmented km–algebra (for
some 0 <m < n) with augmentation sending ti to ti for i �m and ti to 1 for i >m.
Then

rank H�.C�˝kn
km/� rank H�.C�/:

Proof of Theorem 3.5 Lemma 3.8 implies that, in particular, the rank of HF. ;ƒ /
equals the rank of HF.�;ƒ /. By Lemma 3.9, this rank is equal to the rank of
HF
�
�;Q.Z=2ŒN 0

h
=tors�/=ker

�
Flux. /jN 0

h

��
. We note that

CF
�
�;Q.Z=2ŒN 0h=tors�/=ker

�
Flux. /jN 0

h

��
' CF

�
�;Q.Z=2ŒN 0h=tors�/

�
˝Q.Z=2ŒN 0

h
=tors�/Q.Z=2ŒN 0h=tors�/=ker

�
Flux. /jN 0

h

�
;

with the augmentation map sending elements of the kernel of Flux. /jN 0
h

to one. The
spaces Q.Z=2ŒN 0

h
=tors�/ and Q.Z=2ŒN 0

h
=tors�/=ker

�
Flux. /jN 0

h

�
are vector spaces
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over Q and as such their group rings over Z=2 and the aforementioned augmentation
map are as in Lemma 3.10, where n and m are their respective dimensions, with
k DZ=2. Thus, by Lemma 3.10, the rank of the homology of the displayed complexes
is less than or equal to the rank of HF.�;Z=2ŒN 0

h
=tors�/, which is the same as the rank

of HF.�;Q.Z=2ŒN 0
h
=tors�//, giving the result.

4 Bounds on fixed points for surface symplectomorphisms

4.1 Standard form maps and Nielsen classes

In this section we describe standard form maps and their Nielsen classes. See also
[1, Sections 3–4], which has more background.

4.1.1 Standard form for geometric components

Definition 4.1 For the identity mapping class, a standard form map is a small pertur-
bation of the identity map by the Hamiltonian flow associated to a Morse function for
which the boundary components are locally minima and maxima.

In this case every fixed point is in the same Nielsen class. This Nielsen class has index
given by the Euler characteristic of the surface.

Definition 4.2 For nonidentity periodic mapping classes, a standard form map is an
isometry with respect to a hyperbolic structure on the surface with geodesic boundary.

Every fixed point is in a separate Nielsen class and each of the Nielsen classes for
which there is a fixed point has index one.

Definition 4.3 For a pseudo-Anosov mapping classes, a standard form map is a
(specified) symplectic smoothing of the singularities and boundary components of the
standard singular representative. Each singularity has a number p � 3 of prongs, and
each boundary component has a number p � 1 of prongs. If a singularity or boundary
component is (setwise) fixed, it has some relative fractional twist coefficient in Q=Z

with denominator p.

See [1, Section 3.2] for further details, including an introduction to pseudo-Anosov
maps. For the specified smoothing, see [1, Figure 3 and surrounding]. See also the top
images in Figure 1 for a rendition in an example.

There is a separate Nielsen class for every smooth fixed point, which is of index one
or minus one; for every fixed singularity, which when symplectically smoothed gives

Geometry & Topology, Volume 27 (2023)



1674 Andrew Cotton-Clay

p� 1 fixed points all of index minus one if the rotation number is zero modulo p, or
one fixed point of index one otherwise [1]; and for every fixed boundary component
with rotation number zero modulo p, which when symplectically smoothed gives p

fixed points all of index minus one.

In the pseudo-Anosov case, note that what we are using as a boundary is a deformation
of a punctured singularity in terms of the standard singular representative.

Remark 4.4 From this discussion, we see that for nonidentity periodic and pseudo-
Anosov mapping classes, the standard form map is such that all fixed points are
nondegenerate and, for every Nielsen class �, the number of fixed points in � is jind.�/j.

4.1.2 Standard form for reducible maps and fixed annuli In addition to the geo-
metric components described above, we extend the notion of components to allow for a
number of fixed annuli between geometric components or near a boundary when there
is sufficient twisting along the reducing curve or at a boundary curve.

To obtain a standard form for reducible mapping classes, the standard forms for
geometric components, described above, are joined by twisting regions (à la Dehn
twists). Each twisting region may have any number (in Z�0) of circles of fixed points,
which we think of as fattened to annuli and consider as fixed annuli. Formally we have
a standard form whose existence follows from Thurston’s classification [20; 4]; see
also [1, Definition 4.6].

Definition 4.5 A reducible map � is in standard form if there is a �– and ��1–invariant
finite union of disjoint noncontractible (closed) annuli N �† such that:

(i) For A a component of N and ` the smallest positive integer such that �` maps
A to itself, the map �`j

A
is either a twist map or a flip-twist map. That is, with

respect to coordinates .q;p/ 2 Œ0; 1��R=Z, we have one of

.q;p/ 7! .q;p�f .q// (twist map),

.q;p/ 7! .1� q;�pCf .q// (flip-twist map),

where f W Œ0; 1�!R is a strictly monotonic smooth map. We call the (flip-) twist
map positive or negative if f is increasing or decreasing, respectively. Note that
these maps are area-preserving.

(ii) Let A and ` be as in (i). If `D 1 and �j
N

is a twist map, then Im.f / � Œ0; 1�.
That is, �jint.A/ has no fixed points. (If we are to twist multiple times, we
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separate the twisting region into the parallel fixed annuli separated by regions on
which the map is the identity.) We further require that parallel twisting regions
twist in the same direction.

(iii) For S a component of †nN and ` the smallest integer such that �` maps A

to itself, the map �`j
S

is area-preserving and is either isotopic to the identity,
periodic, or pseudo-Anosov. In these cases, we require the map to be in standard
form as above.

We are most interested in the fixed annuli defined in item (ii) and which are parallel
and interstitial to the twist regions, as that is where fixed points may occur.

4.1.3 Counting fixed annuli The fixed annuli described above can be counted in
terms of a variant of fractional Dehn twist coefficients, related to those in [7]. This
subsection is optional, as the arguments proceed from the definition of fixed annuli
in the preceding subsection, but may be of interest. We first discuss fractional twist
coefficients, and then how to use that to count the number of fixed annuli.

Relative fractional twist coefficient Consider a mapping class g with a reducing
(setwise-fixed non-nullhomotopic, non-boundary-parallel) curve C or a setwise-fixed
boundary C . Suppose the induced map on the homology of C is the identity (rather
than �1). Then for each component abutting C , a geometric (periodic or pseudo-
Anosov) representative of that component gives a relative fractional twist coefficient in
Q=Z at its boundary. In the periodic case, this is simply the fraction by which it rotates
its circle boundary. In the pseudo-Anosov case, the singular measured foliations have
p prongs arranged around C and these are permuted, which we interpret as a rational
rotation.

Number of fixed annuli: reducing curve case Across such a reducing curve C ,
relative to the geometric representatives on each side, we obtain a total fractional Dehn
twist coefficient x 2Q at C , which is a lift of the sum of the two relative fractional
twist coefficients. Obtain these lifts by isotoping the map to pointwise fix C and using
the fractional Dehn twist coefficient [7] from each side. (Such isotopies are related by
a free Z–action which adjusts the coefficients on each side in complementary fashion.)

We say the mapping class g has a fixed annulus parallel to the reducing curve C for
each (necessary) more-than-full twist. That is, we say g has ceil.jxj � 1/ fixed annuli
parallel to C .
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Number of fixed annuli: boundary curve case In the case of a setwise-fixed boundary
curve C , we are considering the mapping class g, which is an element of �0 of the
space of maps in DiffC

@
.†/, which fix no points on the boundary. There are then two

neighboring mapping classes g1;g2 in �0 of the space of maps DiffC.†; @†/ which fix
pointwise the boundary. Each of these has its own fractional Dehn twist coefficient [7],
which we denote by y1;y2 2Q respectively; these necessarily differ by 1. We may
think of the total twisting for g at C as being allowed to take any value in the open
interval between y1 and y2.

Again, for each (necessary) more-than-full twist at C we say the mapping class g has a
fixed annulus parallel to the boundary curve C . That is the minimum over the possible
total twisting values, ie over the values in the open interval between y1 and y2, of the
number of more-than-full twists. More simply, this is the minimum (over i D 1; 2) of
floor.jyi j/.

4.1.4 Fixed points of standard form maps The fixed points of our standard form
reducible maps are as follows:

� Type Ia The entire component of components S of †nN on which the induced
map is the identity, with �.S/ < 0.

� Type Ib The entire component of components S of †nN on which the induced
map is the identity, with �.S/D 0. These are annuli and only occur when we
have multiple parallel Dehn twists.

� Type IIa Fixed points x of periodic components S of †nN with �.S/ < 0

which are setwise fixed by �. These are each index one.

� Type IIb Fixed points x of flip-twist regions. These are each index one. Note
that each flip-twist region has two fixed points.

� Type III Fixed points x of pseudo-Anosov components S of †nN which are
setwise fixed by �. These come in 4 types (note that there are no fixed points
associated to a rotated puncture):

– Type IIIa Fixed points which are not associated with any singularity or
boundary component of the pre-smoothed map. These are index one or
negative one.

– Type IIIb-p Fixed points which come from an unrotated singular point
with p prongs. There are p� 1 of these for each such singular point, each
of index negative one.
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– Type IIIc Fixed points which come from a rotated singular point. These
are each of index one.

– Type IIId-p Fixed points which come from an unrotated boundary compo-
nent with p prongs. There are p for each such boundary component, each
of index negative one.

4.1.5 Nielsen classes of fixed points of standard form maps We review Nielsen
classes of fixed points of standard form reducible maps, as discussed in [1].

In [1], adapting the work of [10] to the area-preserving case, we showed that we have
a separate Nielsen class for every component of type Ia or type Ib, for every single
fixed point of type IIa, IIb, IIIa, or IIIc, and for every unrotated singular point of the
pre-smoothed map for type IIIb (ie the collection of fixed points associated to a single
unrotated singular point are all in the same Nielsen class).

Type IIId fixed points associated to the same boundary component are in the same
Nielsen class. They may also be in the same Nielsen class as fixed points of the
component they abut if that component has fixed points at that boundary also of type
IIId or of type Ia (they cannot abut regions of with type Ib fixed points). In the former
case this Nielsen class is again separate from all others already specified, and has
combined index �p� q from the pC q index negative one fixed points. In the latter
case, we have already stated that this Nielsen class is separate from all others already
specified. Thus we have:

Lemma 4.6 The combined index of the Nielsen class � associated to a fixed component
of S is

ind.�/D �.S/�
X

C2�0.@S/
component abutting at C is of type IIId-p

p:

Finally, the index of a fixed component of type Ib is zero.

4.2 Floer homology with twisted coefficients

We compute the Floer homology HF�.�;Q.Z=2ŒN 0h=tors�// for � a standard form
reducible map. This splits into a direct sum over Nielsen classes. For Nielsen classes
not associated to a fixed component, � has fixed points all of the same index and thus
there are no flow-lines at all and the differential vanishes.
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Consider first components S on which the induced map is the identity, possibly abutting
components at a boundary with type IIId fixed points of pseudo-Anosovs. We perturb
with the Hamiltonian flow of a small Morse–Smale function that patches together with
the perturbation of the function on a neighborhood of any boundary components with
type IIId fixed points.This is given by a Hamiltonian flow of a Morse–Smale function
with p saddle points; see [1] for details. In [1] we showed that the flow-lines we get
between fixed points in the Nielsen class � corresponding to the fixed points in this
component are only those which correspond to Morse flow-lines.

We are interested in the rank of the summand of HF�.�;Q.Z=2ŒN 0h=tors�// correspond-
ing to such a Nielsen class �. The key is to understand the extrema of the Morse–Smale
function. If the component has boundaries which rotate in opposite directions, we
may choose the Morse–Smale function to have no extrema, and then there are jind.�/j
fixed points in the Nielsen class all of the same index and thus no flow-lines. If the
component has boundaries rotating all in the same direction, we may choose a Morse–
Smale function with one extremum. There are jind.�/jC 2 fixed points in the Nielsen
class �. Finally, if there is no boundary, we may choose a Morse–Smale function with
two extrema. There are jind.�/jC 4 fixed points in the Nielsen class �. In these latter
two cases, we must further understand the flow-lines.

We consider the one-boundary-component case first. For the purposes of computing
rank, we may assume the extremum is a minimum by duality. Suppose first that we
have a type IIId boundary component abutting our fixed component S . In [1] we show
that there is precisely one flow-line from each of the p type IIId fixed points to the
minimum; see Figure 1. In this case we have a cancellation because we are working
with field coefficients and whatever element (even zero) of N 0

h
=tors this flow-line

corresponds to under the representation �wm, it corresponds to a nonzero and thus
invertible element of Q.Z=2ŒN 0

h
=tors�/. Thus the rank of the summand corresponding

to the Nielsen class � is jind.�/j.

Suppose next that S does not abut any type IIId boundary components. Denote the
minimum by y. Then for every saddle point x we have two flow-lines to y.

Lemma 4.7 We have that @x D axy, where ax is nonzero if and only if the class of
the closure of the descending manifold of x in N 0

h
=tors�H1.†/ is nonzero.

Proof See Figure 2. We have two flow-lines C1 and C2. Thus

@x D �.ŒC1 �C
�1
y;x �/yC �.ŒC2 �C

�1
y;x �/y D a �y � b �y:
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Figure 1: Top left: level sets of a Morse–Smale function for a neighborhood
of an unperturbed IIId boundary, viewed as a puncture. Top right: level sets of
the perturbed Morse–Smale function. Note that the central disk, which rotates
under the Hamiltonian flow, is excised to glue with other components. Bottom:
the plane represents part of the pseudo-Anosov with type IIId boundary. The
remainder of the surface represents a component with type Ia fixed points.
The unique flow-line is shown in bold.

Here, considered as elements of the group ring, the values a; b 2N 0
h
=tors are such that

a� b in N 0
h
=tors is the class of the descending manifold of x. This value is zero if and

only if aD b. The result follows.

If ax ¤ 0 for some x, then y is a boundary because our coefficients lie in a field, and
so we have a cancellation and the rank is only jind.�/j. If ax D 0 for all x, this is the
statement that the differential vanishes in the summand corresponding to the Nielsen
class �, and so the rank is jind.�/jC 2.

Lemma 4.8 In the above situation , ax D 0 for every saddle point x if and only if S

has genus zero and every boundary component of S is nullhomologous in H1.†; @†/.

C2 C1

Figure 2: The closure of the descending manifold.
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x1

ax1

ax2

x2

: : :
xn�1

axn�1

y

Figure 3: Left: the nonzero genus case. Right: the genus zero case with all
boundary components rotating the same direction.

Proof In the case in which S has genus, we can find two descending manifolds which
meet algebraically once. It follows that neither of them are nullhomologous. See
Figure 3, left.

If S is genus zero, it appears as in Figure 3, right. The homology class of each of the
boundary components is given by either (plus or minus) the homology class of one
of the descending manifolds (if on either end) or the difference of two such. We see
all the descending manifolds are nullhomologous if and only if all of the boundary
components are.

In the case in which S has no boundary, we see that ax is never zero for saddle points
x and thus we cancel the minimum. Dually, we also cancel the maximum, say with
any saddle point we haven’t used to cancel the minimum. Thus in this case the rank is
jind.�/j. Summing up, we have shown:

Proposition 4.9 Consider a Nielsen class � corresponding to a fixed component S .
If S does not abut any type IIId boundary components , every boundary compo-
nent rotates in the same direction , S has genus zero , and every boundary com-
ponent of S is nullhomologous in H1.†; @†/, then the rank of the summand of
HF�.�;Q.Z=2ŒN 0h=tors�// corresponding to such a Nielsen class � is jind.�/j C 2.
Otherwise it is jind.�/j.

4.3 Construction of maps using symplectic vector fields

We now construct a map  in our mapping class h so that in every Nielsen class �,
the number of fixed points in this Nielsen class equals the rank of the summand of
HF�.�;Q.Z=2ŒN 0h=tors�// corresponding to the Nielsen class �, which we computed
in the previous section.
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We start with a map �st, a standard-form reducible map but which is the identity on any
fixed components as opposed to having been perturbed by Hamiltonian flows. We next
perturb by Hamiltonian flows on any components for which there was no cancellation in
the previous section; that is, components for which the number of fixed points equaled
the rank. These are components which have boundary components rotating in different
directions as well as components which satisfy all of the criteria in Proposition 4.9.

Next we use a modified Hamiltonian on components S which meet a type IIId boundary,
geometrically canceling the extremum with one of the type IIId fixed points. We start
with a Hamiltonian function with at most one extremum on such a component, which
patches together with the Hamiltonian on a neighborhood of the boundary of the
pseudo-Anosov region as in the previous section.

Lemma 4.10 On a component S meeting a type IIId boundary , there exists a modi-
fication of the aforementioned Hamiltonian perturbation whose critical points are all
nondegenerate saddle points.

Proof We geometrically cancel one of the p type IIId fixed points and the fixed point
corresponding to the minimum as in Figure 4. To do this, we consider, as in Figure 5,
the perturbed situation but without the central disk excised. We draw a loop  , excising
the disk it bounds and replacing it with “the rest” of S , ie the portion to the left of  in
Figure 4. This reduces the situation to one standard case. We rescale the Hamiltonian
on S to be small if necessary so there are points on which the Hamiltonian evaluates
to a number less than the evaluation of the Hamiltonian at the (local) minimum.




Figure 4: Geometrically canceling the minimum when meeting a type IIId
boundary. Left: before. Right: after.
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Figure 5: The perturbed type IIId boundary with shaded –bounded disk
to be excised and replaced with the rest of the component S , and unshaded
region in which we are modifying the Hamiltonian. Left: before. Right: after.

Next we consider components S whose boundary components rotate all in the same
direction and which meet no type IIId boundaries, but have nonzero genus. In this case,
we can use an S1–valued Hamiltonian to remove extrema.

Lemma 4.11 There exists an S1–valued Hamiltonian on such a component whose
associated symplectic vector field is parallel to the boundary and whose critical points
are all nondegenerate saddle points.

Proof We modify the Hamiltonian away from the boundary as in Figure 6.

Now we perturb this whole map by the flow of a small symplectic vector field.

Lemma 4.12 There exists a symplectic vector field V transverse to every boundary C

of a reducible component for which ŒC �¤ 0 in H1.†; @†/.

Proof The plan is to choose a totally irrational flux class. In order to see that we
can choose the flow to be transverse to every reducing curve, we choose a handlebody

Figure 6: On a component which has genus, we can locally cancel the min-
imum geometrically with an S1–valued Hamiltonian. Left: before. Right:
after. The top and bottom circles marked with arrows are identified.
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A B C

A B

C

Figure 7: On a genus zero component, if the symplectic vector field is nonzero
on at least one boundary component, then we can geometrically cancel the
minimum with an S1–valued Hamiltonian. Left: before. Right: after.

bounding † such that the reducing curves all bound disks. Next we collapse this to
the underlying graph and put flows on each edge of the graph whose only rational
dependences are given by balancing conditions at the vertices. We then use this as a
guide to build the flow on the surface.

We rescale the symplectic vector field so that it is small enough that its time-1 flow
does not move any of the fixed points too much and does not create any new fixed
points.

For components S whose boundary components rotate all in the same direction, which
meet no type IIId boundaries, and are genus zero but which have a non-nullhomologous
boundary component, we now modify the symplectic vector field V in a neighborhood
of the component, keeping it transverse to each reducing curve.

Lemma 4.13 There exists an S1–valued Hamiltonian on such a component whose
associated symplectic vector field is transverse to the boundary and whose critical points
are all nondegenerate saddle points.

Proof We modify the Hamiltonian away from the boundary as in Figure 7.

We’ve shown:

Proposition 4.14 Given a reducible mapping class h, there exists a map  in the map-
ping class such that in every Nielsen class �, the number of fixed points in this Nielsen
class equals the rank of the summand of HF�.�;Q.Z=2ŒN 0h=tors�// corresponding to
the Nielsen class �.
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Combining this with our observations regarding identity, periodic, pseudo-Anosov
mapping classes and, for reducible mapping classes, with Proposition 4.9, we obtain
(summing over Nielsen classes):

Theorem 4.15 The minimum number of fixed points of an area-preserving map �
with nondegenerate fixed points in a mapping class h is given by�P

� jind.�/j if h is periodic or pseudo-Anosov,P
� jind.�/jC 2A if h is reducible ,

where A is the number of genus zero components of the reducible mapping class on
which the map is the identity , which do not abut any pseudo-Anosov components , and
all of whose boundary components rotate in the same direction and are nullhomologous
or homologically boundary parallel.

5 Degenerate fixed points

If we are allowed degenerate fixed points, each of the Nielsen classes � for which the
bound for nondegenerate fixed points was jind.�/j can be reduced to a single degenerate
fixed point. To see this, note that the only of these situations in which we are not already
reduced to a single fixed point are in cases in which the Nielsen class is associated
with a p–prong pseudo-Anosov singularity or in which the Nielsen class is associated
to a fixed component (possibly meeting type IIId boundaries). In the former case, we
simply modify the singular Hamiltonian Hsing D �r2 cos.p�/D �Re.zp/=jzjp�2 to
a smooth Hamiltonian which agrees with Hsing outside a small ball and inside a yet
smaller ball is C rp cos.p�/D C Re.zp/, which is smooth at the origin, where it has
a (generalized) monkey saddle. In the latter case, all of the fixed points are index
negative one, ie are given by saddles, and we can again combine them all into the
appropriate generalized monkey saddle, using p D jind.�/j C 1 (the index of such a
degenerate fixed point is 1�p).

Similarly, each of the Nielsen classes � for which the bound for nondegenerate fixed
points was jind.�/jC 2 can be reduced to two fixed points: each of these corresponds
to a genus zero component of the standard form map on which the map is the identity
and for which each boundary component rotates in the same direction. Each of these
in the nondegenerate case one index one fixed point, some number k of index negative
one fixed points, where the component has k C 1 boundary components. All of the
index negative one fixed points can be combined in one degenerate fixed point of the
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Figure 8: A three boundary component genus zero component with one
minimum and, instead of two nondegenerate index negative one fixed points,
one 3–prong monkey saddle.

same sort as in the previous paragraph. See Figure 8. Our task is now to show that we
can do no better. That is, we cannot combine these two fixed points into one.

To show this, we use a cohomology operation. The argument has similarities with
arguments that cup lengths give bounds on (even degenerate) fixed points, but even
though we have, by [1, Section 2.5], a deformation-invariant module structure over
the quantum homology of † (which agrees with H�.†/), the module structure is
trivial. Every element of H1.†/ acts as zero because each of the descending manifolds
from Lemma 4.7 is nullhomologous, and thus has zero algebraic intersection with any
element of H1.†/.

All is not lost, however. If we restrict our attention to one Nielsen class �, there is a
sense in which this descending manifold is homologically essential for this Nielsen
class.

Lemma 5.1 Let † be a surface of negative Euler characteristic , h reducible map-
ping class , and � a Nielsen class corresponding to a fixed component S . Then
H1.�.M�/�/ŠH1.S/ for any � 2 h. In fact , �1.�.M�/�/Š �1.S/. Furthermore ,
the image of

H1.�.M�/�/!H2.M�/!H1.†/

in H1.†/ agrees with the image of H1.S/!H1.†/.

Proof We consider  as a map R! † with  .t/ D �. .t C 1//. An element of
�1.�.M�/;  / is of the form s.t/ for s 2 S1 DR=Z with 0.t/D  .t/. We consider
˛0.s/D s.0/ and ˛1.s/D s.1/. These are closed curves on † and �.˛1.s//D ˛0.s/.
Furthermore, ˛0.s/ is homotopic to ˛1.s/ by the homotopy ˛t .s/D s.t/.
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As in [1, Lemma 3.2], we have a fibration �†! �.M�/!† and thus a long exact
sequence on homotopy groups, a piece of which is

�2.†;  .0//! �1.�.M�/;  /! �1.†;  .0//:

The image in �1.†;  .0// of the element of �1.�.M�/;  / represented by the ho-
motopy s.t/ is represented by ˛0.s/. Because † is a surface of negative Euler
characteristic, �2.†/D 0. Thus we have an injection

�1.�.M�/;  / ,! �1.†;  .0//:

We choose our map � (amongst those in the mapping class) to be a standard form one
which is the identity on S and choose our basepoint  to be the constant path at some
point in S . We claim that the image of this map is �1.S;  .0//. We note that the image
consists of elements of �1.†;  .0// represented by loops ˛.s/ based at  .0/ which
are homotopic through loops based at  .0/ (because  is the constant path) to �.˛.s//.
Thus the image contains �1.S;  .0//.

We now claim that any ˛.s/ based at  .0/ homotopic to �.˛.s// through loops
based at  .0/ can be homotoped inside S . This would give the result. This follows
from [10, Lemma 3.4], with its modification to the standard form maps for the area-
preserving case (in which we need to consider multiple parallel Dehn twist regions
with fixed annuli in between) given in [1, Lemma 3.8 and Corollary 3.9]. These state
that any path between two fixed points of a standard form map which is homotopic rel
endpoints to � applied to itself can be homotoped inside the fixed point set of �. The
component of Fix.�/ containing  .0/ is simply S .

Finally, we note that the result continues to hold for any other map in the mapping class.
Nielsen classes are well-defined on the entire mapping class h by [1, Lemma 4.2], so
this statement is sensible.

Now we restrict our attention to fixed genus zero components S which do not meet
type IIId boundaries, and whose boundary components all rotate in the same direction
and are all nullhomologous.

Lemma 5.2 The Floer homology chain complex CF�.�;Z=2ŒH1.�.M�/�/�I �/ of
a map � 2 h, restricted to Nielsen class � summand of such a fixed component S ,
with coefficients in the representation Z=2ŒH1.�.M�/�/�, is well defined on the en-
tire mapping class h and invariant up to quasi-isomorphism. The same holds for
CF�.�;Z=2I �/, where the coefficients are the trivial representation Z=2.
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Proof It is well-defined for any � because !� WH1.�.M�/�/! R is the zero map
for any � (which implies that every � is �–weakly monotone as defined in [1]). This
follows because !� WH1.�.M�/�/!R agrees with the map

H1.�.M�/�/!
�
ker.c�/�H2.M�/

�
!
�
Nh �H1.†/

� Flux
��!R;

and the image of H1.�.M�/�/ under all but the last composition is the image of
H1.S/!H1.†/, by Lemma 5.1. This, however, is zero because S has genus zero so
that H1.@S/ surjects to H1.S/, but we’ve assumed the boundary of S is nullhomolo-
gous in †. The invariance up to quasi-isomorphism follows from Theorem 2.8(ii).

We compute with � a standard form map. We assume without loss of generality that the
Morse–Smale function on the component S has one extremum, a minimum (otherwise
reverse orientation on †). The homology HF�.�;Z=2I �/ has dimension jind.�/jC 2,
generated by a fixed point y corresponding to the minimum and jind.�/j C 1 fixed
points xi of index negative one.

Consider a homomorphism

ˇ 2 Hom.H1.�.M�/�/;Z=2/D Hom.H1.S/;Z=2/

DH 1.S IZ=2/DH1.S; @S IZ=2/:

As in [9, Section 12.1.3] and [1, Section 2.5] we get a degree one map

@ˇ W HF�.�;Z=2I �/! HF�.�;Z=2I �/

defined by
@ˇz D

X
w

X
C2M1.z;w/

ˇ.ŒC �C�1
z;w �/ �w:

Moreover, we show in [1, Proof of Proposition 2.9] that @ˇ is well-defined (purely
algebraically) up to quasi-isomorphism of the pair

CF�.�;Z=2ŒH1.�.M�/�/�I �/ and CF�.�;Z=2I �/:

Thus, by Lemma 5.2, @ˇ is a well-defined operation HF�.h;Z=2I �/ on the � component
of the Floer homology for the mapping class h. This operation is what replaces quantum
cup products such as in [17] in a cup-length argument.

Lemma 5.3 There is a ˇ such that @ˇxi D y. In fact , for any sum
P

i cixi with
c1 2 Z=2 not all zero , there exists a ˇ such that @ˇ

P
i cixi D y.
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Proof We simply take ˇ to be the class in H1.†; @†IZ=2/ of an arc meeting the
closure of the descending manifold of the saddle point corresponding to an xi appearing
with coefficient one once and all others zero times. See Figure 3 for a picture of the
descending manifolds.

Thus the “cup-length” of HF�.h;Z=2I �/ as an H 1.S/–module is two.

We will be taking a limit in which degenerate fixed points are allowed to appear. We
have need of a Gromov compactness result appropriate for such a situation. We use
Taubes’s currents-in-the-target version of Gromov compactness (valid in dimension four)
[19, Proposition 3.3] as applied to compact subsets Œa; b��M� in [8, Lemma 9.9].

Proposition 5.4 [19, Proposition 3.3; 8, Lemma 9.9] Let uk WR� Œ0; 1�!R�M�

be a sequence of holomorphic sections with energies bounded by some E0. Then we
can pass to a subsequence such that

(i) the uk converge weakly as currents in R�M� to a proper pseudoholomorphic
map u WR� Œ0; 1�!R�M� , and

(ii) for any compact K �R�M� ,

limk!1

h
sup

x2Im.uk/\K

dist.x; Im.u//C sup
x2Im.u/\K

dist.x; Im.uk//
i
D 0:

From this we see that we have C 0–convergence to the orbit corresponding to a fixed
point at each end.

Theorem 5.5 There must be at least two fixed points in the Nielsen class � correspond-
ing to such a fixed component S even if we allow degenerate fixed points.

Proof Suppose there is just one, necessarily degenerate, fixed point in Nielsen class �.
Perturb by a small Hamiltonian flow such that all fixed points are nondegenerate.
Because HF�.h;Z=2I �/ has rank one in even degree, we have at least one index-one
fixed point which survives in homology; choose one such and call it y. By Lemma 5.3,
for any index negative one fixed point x which survives in homology, there is a
ˇ 2 H1.S; @S/ such that @ˇ Œx� D Œy�. Thus there are (at least) two flow-lines from
x to y, and there are two such that the difference between their classes, mapped to
H1.S IZ=2/, is nonzero.
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We now take a limit of small perturbations limiting to the degenerate situation. By
Proposition 5.4, after passing to a subsequence, the two flow-lines uk and vk above limit
to holomorphic curves u; v WR� Œ0; 1�!R�M� , which C 0–limit to the degenerate
fixed point at each end. Thus each of these two limits give continuous loops in �.M�/�.
We additionally see that Œu�� Œv�D limk!1Œuk � vk � in H1.�.M�/� ŠH1.S/. This
latter limit is nonzero, and in particular at least one of u; v is nonconstant and thus has
positive energy. However, !� WH1.�.M�/�/!R is the zero map, so we see that each
of u; v has zero energy, a contradiction.

Summing over Nielsen classes, we conclude:

Theorem 5.6 The minimum number of fixed points of an area-preserving map � in a
mapping class h is given by�

#f� W ind.�/¤ 0g if h is periodic or pseudo-Anosov,
#f� W ind.�/¤ 0gCACB if h is reducible ,

where A is as before and B is the number of fixed annuli.
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