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Orbifold bordism and duality for finite orbispectra

JOHN PARDON

We construct the stable (representable) homotopy category of finite orbispectra,
whose objects are formal desuspensions of finite orbi-CW–pairs by vector bundles and
whose morphisms are stable homotopy classes of (representable) relative maps. The
stable representable homotopy category of finite orbispectra admits a contravariant
involution extending Spanier–Whitehead duality. This duality relates homotopical
cobordism theories (cohomology theories on finite orbispectra) represented by global
Thom spectra to geometric (derived) orbifold bordism groups (homology theories
on finite orbispectra). This isomorphism extends the classical Pontryagin–Thom
isomorphism and its known equivariant generalizations.
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1 Introduction

The classical Pontryagin–Thom isomorphism [30; 31; 37] equates manifold bordism
groups ��.X / with corresponding stable homotopy groups ŒS;X ^MO � for spaces X .
When X is a G–space (G a compact Lie group), equivariant versions of this isomor-
phism are well-studied; see for instance Bröcker and Hook [6], Conner and Floyd [10],
Schwede [34], Wasserman [38] and tom Dieck [11].
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1748 John Pardon

A main result of this paper is to construct the Pontryagin–Thom isomorphism in the
homotopy theory of orbispaces, as developed in Haefliger [20]. The basic objects of
this homotopy theory are orbi-CW–complexes, which are built like CW–complexes by
attaching cells of the form .Dk ; @Dk/�BG for finite groups G along representable
maps; see Gepner and Henriques [18]. (The more general setting in which one allows
compact Lie groups in place of finite groups is unfortunately beyond the scope of
this paper, most significantly due to the failure of “enough vector bundles” in this
context.) The most familiar instance of orbispaces in topology is probably orbifolds;
moduli spaces of solutions to elliptic partial differential equations, as they appear in
low-dimensional and symplectic topology, are also best regarded as orbispaces, and
they provide some of the motivation for our present investigation.

The Pontryagin–Thom isomorphism relates “geometric bordism theories” with “homo-
topical cobordism theories” for orbispaces X . In our setting, the relevant geometric
bordism theories ��.X / are given by bordism classes of (possibly “derived”) orbifolds
with a representable map to X (and possibly with some sort of tangential structure).
The homotopical cobordism theories relevant for us are those associated to the global
Thom spectra defined by Schwede [34]. These theories (on both the geometric side and
the homotopical side) come in two flavors; on the geometric side, these correspond to
the adjectives “ordinary” and “derived”. The difference between ordinary and derived
bordism measures the failure of equivariant transversality.

The Pontryagin–Thom isomorphism between geometric bordism and homotopical
cobordism passes through the category of finite representable orbispectra and a con-
travariant “duality” involution on this category. The construction of this category and
of its involution are our remaining main results. They both rely crucially on the fact,
proven in Pardon [29], that compact orbispaces admit “enough vector bundles” — the
assertion that a given compact orbi-CW–complex X admits enough vector bundles is
equivalent to the assertion that X is homotopy equivalent to a compact effective orbifold
with boundary; effective means that in the local models Rn=G or .Rn�1 �R�0/=G,
the homomorphism G! GLn.R/ is injective. Enough vector bundles also underlies
much of the other reasoning in this paper, including the definition of derived orbifold
bordism groups, the extension of geometric bordism theories to orbispectra, and the
relation between orbi-CW–complexes and the global homotopy theory from [34].

Before stating our main results more formally, we give a concrete example to motivate
the more abstract discussion which follows.
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Orbifold bordism and duality for finite orbispectra 1749

Example 1.1 We describe a stable homotopy theoretic realization of the bordism group
of closed orbifolds, which for reasons which will become apparent shortly, we denote
by ��.R.�//. This group has been studied by Druschel [13; 14; 15], Ángel [1; 2] and
Sarkar [33].

The first main point of the Pontryagin–Thom construction for manifolds is to note that
every manifold M admits a homotopically unique embedding into RN as N !1, in
the sense that the space of embeddings M ,!RN becomes highly connected in the
limit N !1. We therefore seek a corresponding sequence of orbifolds XN with the
property that every orbifold M admits a homotopically unique embedding into XN in
the limit N !1. In this pursuit, it is helpful to separate the two key properties of RN

which give rise to the unique embedding property for manifolds: it is contractible (so
everything has a homotopically unique map to it) and high-dimensional (so the locus
of maps which are not embeddings has arbitrarily high codimension as N !1).

Now if we are seeking an embedding of orbifolds M ,! XN , we should first note
that an embedding is necessarily representable, so we should not seek XN which are
contractible, rather we should seek XN with the property that the space of representable
maps to XN is contractible (for every domain orbispace). This universal property defines
a unique homotopy type, which we denote by

(1-1) R.�/ WD
G

G0,!���,!Gp

BG0 ��
p
.
�;

where the right side is modeled on the nerve of the 2–category of finite groups, injective
maps and conjugations. It is straightforward to check that R.�/ has the desired property:
it is enough (by an obstruction theory argument) to show that the space of representable
maps BG!R.�/ is contractible for every finite group G, and this space is

(1-2)
G

G0,!���,!Gp

CRepMaps.BG;BG0/��
p
.
� D

G
G,!G0,!���,!Gp

�p
.
�;

which is contractible as it is the nerve of a category with an initial object (the under-
category of G in the 2–category of finite groups, injective maps and conjugations). Thus,
in particular, every compact orbifold M admits a homotopically unique representable
map M !R.�/.

Next, we should realize R.�/ as a high-dimensional orbifold so as to ensure that the
locus of representable maps M !R.�/ which fail to be an embedding has arbitrarily
large codimension inside the space of all maps (in fact, to guarantee this, we need more
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1750 John Pardon

than just that the dimension of R.�/ is large, rather we need that when its tangent
bundle is decomposed into isotypic pieces with respect to the isotropy group actions,
every isotypic piece has high dimension). Filter R.�/ by finite subcomplexes, and
use enough vector bundles [29] to realize each as a compact effective orbifold with
boundary; moreover, use enough vector bundles again to replace each with the total
space of the unit disk bundle of a vector bundle over it, whose isotypic pieces are all
high-dimensional. We thus get a sequence of compact orbifolds with boundary and
smooth embeddings X0 ,!X1 ,!X2 ,! � � � , such that for every closed orbifold M ,
the direct limit over i !1 of the space of embeddings M ,!Xi is contractible.

There is now an obvious Pontryagin–Thom collapse map giving, for any smooth
suborbifold of Xi of dimension d , an element of mO�d ..Xi ; @Xi/

�TXi /, where mO
is the global spectrum defined by Schwede [34] — we define the category of orbis-
pectra which includes expressions such as .Xi ; @Xi/

�TXi as objects, and we show
that global spectra define cohomology theories on orbispectra. The homotopically
unique embedding property of the sequence X0 ,! X1 ,! X2 ,! � � � thus gives us
a map ��.R.�//! lim

��!i!1
mO��..Xi ; @Xi/

�TXi /. Now Theorem 1.3 defines an
involution D on the category of orbispectra which sends Xi to .Xi ; @Xi/

�TXi , so we
may formulate the Pontryagin–Thom map more intrinsically as

(1-3) ��.R.�//!mO��.D.R.�///;

where to be completely precise we should remark that D is defined only on the category
of finite orbispectra, so D.R.�// is really an inverse system of orbispectra, to which
applying the contravariant functor mO�� yields a directed system of graded abelian
groups, and the right side above refers to its direct limit. Theorem 1.4 states that this
Pontryagin–Thom map is an isomorphism (for any orbispectrum in place of R.�/). We
thus conclude that the group of closed orbifolds modulo bordism is mO��.D.R.�///.

1.1 Categories of orbispaces

We approach the homotopy theory of orbispaces from the point of view of orbi-CW–
complexes; these are built like CW–complexes from cells .Dk ; @Dk/�BG for integers
k � 0 and finite groups G, which are attached along representable maps — this is a
slight adaptation of a definition given by Gepner and Henriques [18]. We denote by
Spc the category of CW–complexes and homotopy classes of maps, and we denote by
OrbSpc (resp. RepOrbSpc) the category of orbi-CW–complexes and homotopy classes
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Orbifold bordism and duality for finite orbispectra 1751

of all (resp. representable) maps. There are thus functors

(1-4) Spc! RepOrbSpc! OrbSpc;

with Spc being a full subcategory of both RepOrbSpc and OrbSpc. It was pointed out
already by Gepner and Henriques [18] that the distinction between representable and
all maps leads to two distinct theories, both of which can legitimately be called “the
homotopy theory of orbispaces”.

The functor Spc! OrbSpc has a left adjoint X 7! jX j (the coarse space of X ) and a
right adjoint X 7! zX (the classifying space of X ). The functor RepOrbSpc!OrbSpc
also has a right adjoint, which we denote by X 7!R.X /. The orbi-CW–complex R.�/

plays a recurring role in our discussion; it is the terminal object of RepOrbSpc, and it
is what Rezk [32] calls the normal subgroup classifier N .

Remark 1.2 We certainly expect, but do not pursue here,1–categorical refinements
of all of our constructions. This expectation is reflected in our notation: although all of
the categories under consideration in this paper are homotopy categories, we do not
include the prefix Ho in their notation.

Of importance are also the categories of relative orbi-CW–complexes RepOrbSpc�
and OrbSpc�, which are analogues of the category Spc� of pointed CW–complexes.
It should be noted, however, that RepOrbSpc� and OrbSpc� are not the homotopy
categories of pointed orbi-CW–complexes; rather, their objects are orbi-CW–pairs
.X;A/— meaning X is an orbi-CW–complex and A� X is a subcomplex — with a
nontrivial notion of morphism. The essential reason this slightly complicated definition
is needed is that for an orbi-CW–pair .X;A/, there is no good way to collapse A to a
point and form a quotient orbi-CW–complex X=A. We have functors

(1-5) Spc�! RepOrbSpc�! OrbSpc�;

again with Spc� being a full subcategory of the latter two, and there is a natural map
from (1-4) to (1-5) given by adjoining a disjoint basepoint.

The categories RepOrbSpc and RepOrbSpc� are a natural setting for homotopy theory.
The category RepOrbSpc� has a natural notion of a cofiber sequence X!Y !Z, and
every morphism X ! Y in RepOrbSpc� extends to a half-infinite “Puppe” sequence
X ! Y !Z!†X !†Y !†Z!†2X ! � � � , in which every consecutive triple
is a cofiber sequence.

Geometry & Topology, Volume 27 (2023)



1752 John Pardon

The natural functor RepOrbSpc! PSh.RepfBGg/ (at the level of 1–categories or
model categories) is an equivalence by Gepner and Henriques [18], where RepfBGg �

RepOrbSpc denotes the full subcategory spanned by the objects BG for finite groups G.
This means that RepOrbSpc is the free cocompletion of its full subcategory RepfBGg.
We conjecture that RepOrbSpc is the category of representable fibrations over R.�/

(here R is the right adjoint to RepOrbSpc! OrbSpc) with “reasonable” fibers — note
that the data of a representable fibration over R.�/ is at least intuitively comparable to
the data of a presheaf on RepfBGg. Let us also remark that both these descriptions
of RepOrbSpc (and the corresponding descriptions of RepOrbSpc�) are manifestly
natural settings for doing homotopy theory, whereas proving this for RepOrbSpc� as
we define it requires a somewhat explicit argument. On the other hand, it is somewhat
less apparent from these descriptions what the full subcategory of finite orbi-CW–
complexes RepOrbSpcf � RepOrbSpc is.

The categories OrbSpc and OrbSpc� do not seem to be a natural setting for homotopy
theory; for example, there are morphisms in OrbSpc� which do not have a cofiber in any
reasonable sense. Rather, OrbSpc (similarly for OrbSpc�) is a full subcategory of the
larger category, say denoted by OrbSpc, obtained by gluing cells .Dk ; @Dk/�BG along
all (not necessarily representable) maps, as constructed by Gepner and Henriques [18];
note that this takes us outside the realm of stacks admitting étale atlases. Gepner
and Henriques [18] further showed that OrbSpc is equivalent, again at the level of
1–categories or model categories, to PSh.fBGg/. This latter category PSh.fBGg/

was shown by Schwede [35] to be equivalent to the global homotopy category GloSpc
defined in [34] (with respect to the “global family” of all finite groups); see also
Körschgen [24] and Juran [21]. We will not explain in detail (nor use) the precise
relationship between OrbSpc and OrbSpcD PSh.fBGg/DGloSpc; rather, we describe
just the little bit that we need.

1.2 Geometric bordism theories

We consider various flavors of geometric bordism groups, all of which are sequences
of functors

(1-6) Zi W RepOrbSpc�! Ab

satisfying Zi.†X / D ZiC1.X / and
L
˛ Zi.X˛/

��! Zi

�F
˛ X˛

�
and which sends

cofiber sequences to exact sequences; such a functor might be called a homology theory
for orbispaces.

Geometry & Topology, Volume 27 (2023)
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The bordism group ��.X / is the set of closed orbifolds with a representable map to X ,
modulo bordism (graded by dimension); this is an abelian group under disjoint union.
To define ��.X;A/ for a pair .X;A/, consider compact orbifolds-with-boundary M

and representable maps of pairs .M; @M /! .X;A/. Our notation is consistent with
the usual meaning of��.X / for spaces X , namely bordism classes of closed manifolds
mapping to X , since an orbifold with a representable map to a space is necessarily a
manifold. Moreover, ��.X=G/ is G–equivariant bordism for G–spaces X , ie bordism
of G–manifolds mapping equivariantly to X .

There is no additional generality to be gained by considering arbitrary (not necessarily
representable) maps here, since a map to X is the same as a representable map to R.X /,
where R W OrbSpc ! RepOrbSpc is the right adjoint to RepOrbSpc ! OrbSpc, so
bordism of orbifolds with an arbitrary map to X is given by ��.R.X //. For example,
the group of bordism classes of closed orbifolds is ��.R.�//. Filtering R.�/ by
subcomplexes gives a spectral sequence converging to ��.R.�//; see Ángel [1] for a
similar spectral sequence.

There are also derived bordism groups �der
� .X /, whose elements are represented

by “derived orbifold charts” .D;E; s/ consisting of an orbifold D, a vector bundle E

over D, and a section s WD!E whose zero set is compact, together with a representable
map D!X (grading by “virtual dimension” dim D� dim E). These are considered
modulo restriction (removing from D a closed subset disjoint from s�1.0/), stabilization
(replacing D with the total space of a vector bundle V over D, replacing E with E˚V

and replacing s with s˚ idV ), and bordism.

The tautological map ��!�der
� is not generally an isomorphism; in fact �der

� is often
nonzero in negative degrees �< 0; see Example 5.4. This can be viewed as a strong
measurement of the fact that a vector bundle over an orbifold need not have any section
which is transverse to zero.

That these derived bordism groups �der
� define a homology theory for orbispaces

requires enough vector bundles. This is related to the fact that the “proper” definition
of a derived orbifold is as something with an atlas of derived orbifold charts (it would
be essentially obvious that bordism of these defines a homology theory for orbispaces),
and enough vector bundles implies everything has a global chart.

For any vector bundle over X , there are so-called “inverse Thom maps”

(1-7) ��.X /!��CjV j.X
V / and �der

� .X /!�der
�CjV j.X

V /;

Geometry & Topology, Volume 27 (2023)



1754 John Pardon

with terminology following Schwede [34, Section 6]. For derived bordism, the inverse
Thom maps are isomorphisms, whereas for ordinary bordism they are isomorphisms for
vector bundles with trivial isotropy representations, but not in general. In fact, similar
to the situation in global homotopy theory [34, Section 6], there is a precise sense in
which derived bordism is the localization of bordism at the inverse Thom maps.

A remarkable result of Wasserman implies that bordism is in fact a particular instance
of derived bordism with tangential structure. Specifically, �� is bordism of derived
orbifolds together with a vector bundle V and a stable isomorphism of vector bundles
TD�EDV �Rk , modulo .V; k/ 7! .V ˚R; kC1/. This fact fundamentally underlies
the Pontryagin–Thom isomorphism for��— homotopical cobordism theories are really
all derived cobordism theories with some sort of tangential structure.

We can also consider bordism of orbifolds with tangential structure. The sort of
tangential structure S permitted (“coarsely stable” or “stable”) depends on whether we
are considering �S

� or �S;der
� . We leave a precise discussion of these theories for the

main body of the paper.

Geometric bordism theories may be extended to the category of orbispectra (to be
discussed shortly) by twisting. Structured derived bordism of .X;A/�� is defined as
bordism of derived orbifolds over .X;A/ with the given structure on their tangent
bundle minus �; so to extend underived bordism to orbispectra, the key is to think
of it as structured derived bordism via Wasserman. For example, �fr

0
..X;A/��/ is

bordism of derived orbifolds representable over .X;A/ with a stable isomorphism
between their tangent bundle and �. Such twistings are the natural home for the
fundamental class: given a compact orbifold with boundary X , it has a fundamental
class ŒX � 2�fr

0
..X; @X /�TX /; orienting TX with respect to some structure allows one

to undo the twist after pushing forward to the corresponding structured bordism group.

1.3 Homotopical cobordism theories

Any global spectrum [34] defines a cohomology theory for orbispaces, namely a
sequence of functors

(1-8) Zi
W OrbSpc�! Ab

satisfying Zi.†X / D ZiC1.X / and Zi
�F

˛ X˛
�
��!

Q
˛ Zi.X˛/ and which sends

cofiber sequences to exact sequences. Namely, given an orthogonal spectrum Z WO!

Top�, the group Z0.X;A/ is the direct limit over vector bundles E=X of sections of
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�EZ.E/! X supported away from A, modulo homotopy. In fact, we may define
Z0..X;A/��/ to be the direct limit of sections of �EZ.E˚ �/, which extends Z�

to the category of orbispectra (which we will meet shortly). The viability of this
definition depends on enough vector bundles (though one could formulate a more
complicated definition, involving patching together choices of local vector bundles,
which would not require an appeal to enough vector bundles). We expect, but do
not prove, that this definition is equivalent to that obtained from the composition
OrbSpc ,! OrbSpcD PSh.fBGg/D GloSpc †1

��! GloSp.

The orthogonal spectra relevant for this paper are the global Thom spectra defined by
Schwede [34, Section 6]. These include the global sphere spectrum S and the two
flavors of the Thom spectrum of the infinite orthogonal group, mO and MO. The
associated cohomology theories are called homotopical cobordism theories.

1.4 Categories of orbispectra

To relate geometric bordism and homotopical cobordism requires introducing the cate-
gory of orbispectra. We will only ever discuss finite orbispectra, namely desuspensions
of finite orbi-CW–pairs by vector bundles. The category of “naive orbispectra” has
objects of the form †�n.X;A/, with morphisms †�n.X;A/!†�m.Y;B/ given by
the direct limit over k of the space of relative morphisms †k�n.X;A/!†k�m.Y;B/.
We are more interested in the category of “genuine orbispectra”, whose objects take the
form .X;A/�V for V a vector bundle (with possibly nontrivial isotropy representations)
and whose morphisms are defined by a direct limit over passing to Thom spaces of
arbitrary vector bundles.

We define two homotopy categories of finite (genuine) orbispectra RepOrbSpf and
OrbSpf, again depending on whether we use representable maps or not. They fit into a
diagram

(1-9) Spf ! RepOrbSpf ! OrbSpf ;

with Spf (the category of finite spectra) being a full subcategory of the latter two. The
definitions of these categories use enough vector bundles (though this could probably
be eliminated if one took a more abstract approach).

The categories Spf and RepOrbSpf are natural settings for stable homotopy theory.
For example, every morphism in RepOrbSpf fits into an “exact triangle” (although we
do not actually prove that RepOrbSpf is triangulated). We conjecture that the category
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RepOrbSp — a category we do not define, but at the level of1–categories it would be
Ind RepOrbSpf — is the category of parametrized spectra over R.�/.

As before, OrbSpf does not seem to be natural setting for stable homotopy theory. It
seems likely there is a functor OrbSpf ! GloSp (the category of global spectra [34]),
though we do not quite construct it, nor is it clear if we should expect it to be fully
faithful.

1.5 Duality

Now a key result is to define a contravariant involution D (“duality”) on the category
RepOrbSpf. The construction of this functor relies crucially on enough vector bundles.

Theorem 1.3 The category RepOrbSpf admits a contravariant involution D preserv-
ing cofiber sequences , defined by declaring that

(1) for any compact orbifold with boundary X and codimension-zero suborbifold
with boundary A� @X , we have

(1-10) D..X;A/��/D .X; @X �Aı/��TX ;

and

(2) for any smooth embedding of such pairs f W .X;A/ ,! .Y;B/ (so X � Y is a
smooth suborbifold of Y meeting @Y transversely precisely in A D X \B),
we have that .Df /T Y W .Y; @Y �Bı/! .X; @X �Aı/T Y=TX is the obvious
collapse map.

It follows from the definition that D stabilizes the full subcategory Spf � RepOrbSpf

and coincides on it with classical Spanier–Whitehead duality of finite spectra [36]; the
definition of D is essentially identical to Atiyah’s formulation [3], just generalized to
orbifolds. However, whereas Spanier–Whitehead duality on Spf is characterized by the
universal property of a map X ^Y !S0 being the same as a map X!DY , we do not
know a universal-property characterization of the involution D on RepOrbSpf. There
is at least a natural map from maps X ! Y to maps X ^DY !R.�/, but it is not an
isomorphism and we do not know any sense in which it characterizes D; the essential
reason for this is that ^ does not play well with representability; see Example 1.8. The
identity map X !X thus corresponds to a canonical pairing X ^DX !R.�/ which,
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upon passing to classifying spaces (note that eR.�/D�), gives a pairing zX ^eDX!S0,
hence a comparison map

(1-11) eDX !D zX ;

where we should understand that the classifying space of an object of RepOrbSpf

is an object of Sp D Ind Spf, not Spf, so D zX is an object of Pro Spf. The results
of Greenlees and Sadofsky [19, Corollary 1.2] and Cheng [9] may be viewed as the
assertion that this comparison map is K.n/–local for all n, where K.n/ denotes Morava
K–theory.

Duality allows us to define, for any global spectrum E, an E–homology functor
RepOrbSpf ! Ab by taking

(1-12) E�.X / WDE��.DX /:

Note that whereas E–cohomology is a functor on OrbSpf, we only define E–homology
as a functor on RepOrbSpf.

Recall that in ordinary stable homotopy theory, the E–homology of a (finite) space X is
defined as ŒS0;X ^E�D ŒDX;E�. Due to D not being the monoidal dual with respect
to ^, this equality no longer holds in our context, so there are a priori two reasonable
notions of E–homology for orbispaces. We consider the latter definition since it is the
one which is relevant for the Pontryagin–Thom isomorphism. The former definition
(implemented in the context of global homotopy theory) is proposed by Schwede [34]
and is presumably quite different.

1.6 Pontryagin–Thom isomorphism

We may now state the Pontryagin–Thom isomorphism relating geometric bordism and
homotopical cobordism on RepOrbSpf.

Theorem 1.4 There are natural isomorphisms of functors on RepOrbSpf

S� D�fr
�;(1-13)

mO� D��;(1-14)

MO� D�der
� :(1-15)

Example 1.5 Under the Pontryagin–Thom isomorphism, the unit 1 2 S0.X / is sent
to the fundamental class ŒX � 2 �fr

0
..X; @X /�TX / for any compact orbifold-with-

boundary X .
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Example 1.6 The orbi-CW–complex R.�/ is not finite, but we may nevertheless
define ��.R.�// and mO�.R.�// by taking the direct limit over finite subcomplexes,
and we conclude they are isomorphic; compare Example 1.1.

The Pontryagin–Thom construction also gives a description of the morphism groups in
RepOrbSpf and in OrbSpf in terms of bordism.

Theorem 1.7 Let .X;A/ and .Y;B/ be compact orbi-CW–pairs carrying stable vector
bundles � and �. The set of morphisms

(1-16) D..X;A/��/! .Y;B/��

in OrbSpf (resp. RepOrbSpf ) is in canonical bijection with bordism classes of derived
orbifolds .C; @C /with a representable map f WC!X , a map (resp. representable map)
g W C ! Y such that @C � f �1.A/[g�1.B/, and a stable isomorphism between T C

and f ��Cg��.

Note that this result gives multiple descriptions of the same stable mapping group,
since a given object of OrbSpf or RepOrbSpf may be expressed as .X;A/�� in many
different ways; in particular, passing from .X;A/�� to ..X;A/V /�V�� via the obvious
isomorphism acts via Theorem 1.7 on bordism classes of derived orbifolds by passing
to the Thom space of the pullback of V (and similarly for .Y;B/��). Also note that,
in the case of RepOrbSpf, the description of morphisms is manifestly symmetric in
.X;A/�� and .Y;B/�� , as it should be given that D is an involution.

Example 1.8 As we remarked earlier, there is a canonical pairing W ^DW !R.�/

in RepOrbSpf, which induces a natural transformation

(1-17) Hom.Z;W /! Hom.Z ^DW;R.�//:

Let us understand it via Theorem 1.7. Set Z D D..X;A/��/ and W D .Y;B/�� .
The domain of (1-17) consists of bordism classes of derived orbifolds .C; @C / with
representable maps f W C ! X and g W C ! Y such that @C � f �1.A/[ g�1.B/,
together with a stable isomorphism between T C and f �� C g��. The codomain
consists of bordism classes of derived orbifolds .C; @C / with a representable map
.C; @C /! .X;A/ � .Y;B/ and an isomorphism between T C and the pullback of
�C �— note that there is a unique up to homotopy representable map C !R.�/, so
we can simply ignore this piece of data. The map from the domain to the codomain is
the evident one: send .f;g/ to f �g. Of course, representability of f �g is a rather
different (and weaker) condition from representability of both f and g.
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A notable omission in Theorem 1.7 is an interpretation of the bordism group where
both f and g are arbitrary (not necessarily representable).
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2 Topology of orbispaces

2.1 Orbispaces as topological stacks

We briefly recall some definitions and basic properties; for further background we refer
the reader to [29, Section 3; 20; 27; 4; 25; 5].

We work in the 2–category Shv.Top;Grpd/, whose objects will simply be called
“stacks”. Morphisms between stacks do not form a set, rather a groupoid, which is the
meaning of the prefix “2–”.

The Yoneda inclusion Top ,! Shv.Top;Grpd/ is continuous, and we systematically
identify objects of Top with their images in Shv.Top;Grpd/. Such stacks are called
representable.

A morphism of stacks X!Y is called representable if and only if for every topological
space Z and every map Z! Y , the fiber product X �Y Z is representable. For any
property P of morphisms of topological spaces which is preserved under pullback, a
representable map of stacks X!Y is said to have P if and only if X �Y Z!Z has P
for every topological space Z and every map Z! Y . Examples of such properties
include being an open inclusion, a closed inclusion, étale, separated, proper (which by
definition implies separated), and admitting local sections.

The inclusion Top� Shv.Top;Grpd/ admits a left adjoint j � j W Shv.Top;Grpd/! Top
known as passing to the coarse space of a stack. For a fixed stack X , open (resp. closed)
inclusions Y ,!X are in bijection with open (resp. closed) subsets jY j � jX j.

A stack X is called topological if and only if there exists a representable map admitting
local sections U ! X from a topological space U ; such a map is called an atlas.
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A choice of atlas U!X gives rise to a topological groupoid U�X U!!U presenting X .
Conversely, every topological groupoid M !!O is uniquely of this form. The coarse
space of a topological stack X is the quotient of any atlas U by the image of U �X U !

U�U (which is an equivalence relation). For a topological group G acting continuously
on a topological space V , the stack quotient V =G is by definition the topological stack
presented by the action groupoid G �V !! V .

By a “point” p of a stack X , we mean a map p W � !X , ie an object of X.�/, where
� denotes the one point space. The automorphism group of this object of X.�/ is
called the isotropy group of p, denoted by Gp . Given a point �!X , the fiber product
��X � has trivial isotropy, and its points are in bijection with Gp . If X is a topological
stack, then ��X � is a topological space, which thus endows Gp with the structure of
a topological group.

A separated orbispace is a stack X which admits an étale atlas U ! X and whose
diagonal X !X �X is proper. Equivalently, X is a separated orbispace if and only
if jX j is Hausdorff and there exists a cover of X by open substacks of the form Y=�

where � is a finite discrete group acting continuously on a Hausdorff topological
space Y [29, Proposition 3.3]. In particular, a separated orbispace has an étale atlas
U ! X for which U is Hausdorff. Henceforth we will drop the prefix “separated”
from “separated orbispace” and simply write “orbispace”.

The isotropy groups of an orbispace are all finite and discrete. A map of orbispaces
is representable if and only if it is injective on isotropy groups [29, Corollary 3.6]; in
particular, an orbispace is a space if and only if its isotropy groups are all trivial.

The stack quotient V =G is an orbispace provided V is Hausdorff, G is compact
Hausdorff (these imply V =G has proper diagonal), and there exists a map W ! V

such that the resulting map G �W ! V is étale (this implies that W ! V =G is an
étale atlas). In particular, V =G is an orbispace for V Hausdorff and G finite.

An orbispace is called paracompact if and only if its coarse space is paracompact.

For any finite group G (we equip all finite groups with the discrete topology), the
stack BG WD �=G (the stack quotient of a point � by the trivial action of G) is an
orbispace. The quotient map � ! BG is the universal principal G–bundle: for any
stack Y , the functor from maps Y ! BG to principal G–bundles over Y given by
pulling back �!BG is an equivalence of groupoids. The groupoid of maps BG!BH

is (canonically equivalent to) the groupoid Hom.G;H /=H in which an object is a group
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homomorphism ' WG!H and in which an isomorphism ' ��! '0 is an element h2H

satisfying ' D h'0h�1. The full subcategory of stacks of the form BG for some finite
group G is thus equivalent to the 2–category FinGrp of finite groups, homomorphisms,
and conjugations. We will frequently restrict consideration to representable maps, in
which case the category formed by BG is denoted by InjFinGrp, which is the same as
FinGrp except homomorphisms are required to be injective.

Lemma 2.1 For orbispaces X and Y, the product X � Y is an orbispace and the
natural map jX �Y j ! jX j � jY j is a homeomorphism.

Proof For étale atlases UX ! X and UY ! Y , the product UX �UY ! X � Y is
an étale atlas, and the diagonal of X �Y is the product of the diagonals of X and Y ,
hence is proper. Thus X �Y is an orbispace.

The assertion that jX �Y j ! jX j � jY j is a homeomorphism can be checked locally
on jX j and jY j. It thus suffices to show that for actions of finite groups G and H on
Hausdorff spaces X and Y , the natural map j.X �Y /=.G �H /j ! jX=Gj � jY=H j

is a homeomorphism. This map is obviously a bijection. Open subsets of the domain
correspond to .G�H /–invariant open subsets of X �Y . Open subsets of the target are
generated by products of G–invariant open subsets of X with H–invariant open subsets
of Y . Open subsets of the latter form are certainly of the former form (which is the
obvious direction in which jX �Y j ! jX j � jY j is continuous). Conversely, suppose
U �X �Y is a .G�H /–invariant open set and let .x;y/ 2U . Let us show that there
exists a product of a G–invariant open subset of X and an H–invariant open subset
of Y which contains .x;y/ and is contained in U . Since U is open in the product
topology, it contains a neighborhood V �W of .x;y/ where V �X and W � Y are
open. Now since U is .G�H /–invariant, it also contains .G �V /� .H �W /, so we are
done.

Lemma 2.2 If X is an orbispace and U !X is an étale atlas with U Hausdorff , then
U !X is separated.

Proof The map U �X U !U �U is separated since X!X �X is separated, and the
map U �U ! U is separated since U is Hausdorff. The composition U �X U ! U

is thus separated; hence U !X is separated.

Lemma 2.3 A map of orbispaces is an isomorphism if and only if it induces isomor-
phisms on isotropy groups and induces a homeomorphism on coarse spaces.
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Proof Let f WX!Y be a map of orbispaces which induces isomorphisms on isotropy
groups Gx

��!Gf .x/ and induces a homeomorphism on coarse spaces jf jW jX j! jY j,
and let us show that f is an isomorphism. The property of f being an isomorphism is
local on jY j, so we may assume without loss of generality that Y D Y 0=G for some
finite group G acting continuously on a Hausdorff space Y 0. Since f is representable,
X 0 WD Y 0 �Y X is a space, and X D X 0=G. We thus have a G–equivariant map
X 0! Y 0, which induces a homeomorphism jX 0=Gj ��! jY 0=Gj and which induces
isomorphisms on stabilizer groups. This implies that X 0! Y 0 is a bijection. It suffices
to show that the map f 0 WX 0! Y 0 is open, and hence is a homeomorphism. What we
know is that f 0 sends G–invariant open subsets to open subsets. Let x 2 X 0. Since
Y 0 is Hausdorff, there exist open neighborhoods Ug � Y 0 of g � f 0.x/ for all g 2 G

such that g �Uh D Ugh and Ug \Uh D ¿ for g � f 0.x/ ¤ h � f 0.x/ while Ug D Uh

for g � f 0.x/D h � f 0.x/. Now let V � .f 0/�1.U1/ be any open neighborhood of x.
Its image f 0.V /� Y is the intersection of two open sets f 0.G �V /\U1, so f 0.V / is
open. Thus f 0 is open.

A topological orbifold is an orbispace X which is étale locally homeomorphic to Rn,
in the sense that for some (equivalently, every) étale atlas U ! X , the space U is
locally homeomorphic to Rn (it may also be required paracompact if one so desires).
In other words, X is locally isomorphic to U=� for U �Rn open and � Õ U acting
continuously. A topological orbifold is called locally tame if and only if we may take
such actions �ÕU to be restrictions of linear actions on Rn. A smooth structure on a
topological orbifold X is a choice of atlas U ! X together with a smooth structure
on U such that the two smooth structures on U �X U obtained via pullback from the
smooth structure on U coincide (smooth structures relative to U ! X and U 0! X

are equivalent if and only if they give rise to the same pullback smooth structure on
U �X U 0). Smooth orbifolds are locally isomorphic to U=� for U � Rn open and
� Õ U acting smoothly (equivalently, linearly).

2.2 Vector bundles and principal bundles over orbispaces

A (real) vector bundle over a stack X is a representable map V !X along with maps
R � V ! V and V �X V ! V over X such that the pullback to any topological
space Z!X is a vector bundle over Z with its fiberwise scaling and addition maps.
Similarly, for a Lie group G, a principal G–bundle over a stack X is a representable
map P ! X along with a map G � P ! P over X such that the pullback to any
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topological space Z! X is a principal G–bundle with its G–action. We only ever
consider finite-dimensional vector bundles, so we will usually omit the adjective “finite-
dimensional” for the sake of brevity. We will also only ever consider positive definite
inner products, so we will also usually omit the adjective “positive definite”.

For a vector bundle V !X and a point p W � !X , the fiber Vp WD V �X � carries a
linear action of the isotropy group Gp . Similarly, given a principal G–bundle P !X

and a point p W �!X , the fiber Pp carries a Gp–action compatible with the G–action;
so, fixing an identification of G–spaces Pp D G, this becomes a homomorphism
Gp!G.

Lemma 2.4 For any topological space X , the tautological bijection between (setwise)
maps X � Rn ! Rm (resp. X � G ! G) which for every fixed x 2 X are linear
(resp. G–equivariant) and maps X ! Hom.Rn;Rm/ (resp. X ! G) restricts to a
bijection between the subsets of continuous maps.

Proof For one direction, the map Rn �Hom.Rn;Rm/!Rm (resp. G �G!G) is
continuous, so its pullback along a continuous map X!Hom.Rn;Rm/ (resp. X!G)
remains continuous. For the other direction, note that the “matrix entries” of a map
X !Hom.Rn;Rm/ can be recovered from the map X �Rn!X �Rm by appropriate
pre- and post-composition with maps � ! Rn and Rm ! R, and similarly for Lie
groups G.

It follows immediately from Lemma 2.4 that for any topological space X , the func-
tor from the groupoid of maps X !

F
n�0 �=GLn.R/ to vector bundles over X

defined by pulling back the vector bundle
F

n�0 Rn=GLn.R/!
F

n�0 �=GLn.R/

is an equivalence; similarly for X ! �=G and principal G–bundles, and similarly
for X !

F
n�0 �=O.n/ and vector bundles with inner product. These statements

automatically extend to arbitrary stacks X : a vector bundle V !X is the same as the
specification, compatible with pullback, of a vector bundle VZ ! Z for every map
Z!X from a topological space Z, which is, by the above result for topological spaces,
the same as the specification, compatible with pullback, of a map Z!�=GLn.R/ for
every map Z!X from a topological space Z, which is the same as a map of stacks
X !

F
n�0 �=GLn.R/ (and similarly for �=G and �=O.n/).

There is a standard deformation retraction from Inj.Rn;Rm/ to the subspace of isometric
injections given by f 7! f .f �f /�t=2 for t 2 Œ0; 1�. Since this deformation retraction
is O.n/�O.m/–equivariant, by Lemma 2.4 it induces, for any injective map of vector
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bundles with inner products over a topological space X , a canonical homotopy through
injections to an isometric injection; moreover, the same holds for arbitrary stacks X ,
by the reasoning as in the previous paragraph.

We now move on to some foundational results which are specific to orbispaces.

Lemma 2.5 Every principal G–bundle over an orbispace X is locally of the form
.G �Y /=�! Y=� for � Õ Y and �!G.

Proof The case of G D GLn.R/ (ie vector bundles) was proven in [29, Lemma 6.7].
The essential point in generalizing the proof given there to general G is to note that
there is a G–conjugation, G–translation and Sn–invariant “averaging” operation giving
a retraction onto the diagonal G �Gn defined in its neighborhood.

Some important properties of vector bundles and principal bundles require a paracom-
pactness assumption.

Lemma 2.6 [29, Lemma 5.1] Every vector bundle over a paracompact orbispace has
an inner product.

Lemma 2.7 For a paracompact orbispace X , every principal G–bundle over X � Œ0; 1�

is pulled back from X .

Proof The case of G D GLn.R/ (ie vector bundles) was proven in [29, Lemma 6.2].
The same averaging operation as before allows this proof to apply to general G.

2.3 Gluing orbispaces

We now explain how some basic topological gluing constructions are generalized to
the orbispace context. These constructions provide the foundation for doing algebraic
topology with orbispaces.

We begin with a discussion of how to glue together stacks along open substacks. The
first step is to observe the following “descent for morphisms” property:

Lemma 2.8 Let X D
S
˛ U˛ be a cover by open substacks. The functor

(2-1) Hom.X;Y / ��!
˚
f˛ 2 Hom.U˛;Y /;g˛ˇ W f˛jU˛\Uˇ

��! fˇjU˛\Uˇ

ˇ̌
g˛ˇgˇ D g˛ over U˛ \Uˇ \U

	
is an equivalence for any stack Y . (On the right side, an isomorphism .f˛;g˛ˇ/!

.f 0˛;g
0
˛ˇ
/ consists of �˛ W f˛ ��! f 0˛ such that g0

˛ˇ
�ˇ D �˛g˛ˇ over U˛ \Uˇ.)
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Proof We may construct an inverse to (2-1) as follows. Given an element of the
right-hand side, we may associate to any map Z!X (where Z is a topological space)
a map Z! Y , as follows. The map Z!X induces an open cover ZD

S
˛ Z�X U˛ .

Each map Z �X U˛ ! U˛ may be composed with our chosen element on the right
side of (2-1) to a map Z �X U˛! Y . The compatibility data on the right side of (2-1)
provides descent data to glue these maps together (using the stack property for Y )
to a map Z ! Y . We have thus associated to each map Z ! X a map Z ! Y .
This construction is compatible with pullback, hence defines a map of stacks X ! Y .
Tracing through definitions, it can be checked that this map is a two-sided inverse
to (2-1).

Lemma 2.8 may be reformulated as saying that X is the colimit of the diagram
consisting of the open substacks U˛, their pairwise intersections U˛ \Uˇ, and their
triple intersections U˛ \Uˇ \U (and no higher intersections).

Going in the opposite direction, let us argue that pushouts of open inclusions of stacks
always exist. Namely, consider a pair of open inclusions X  - U ,! Y . Given such
data, we may define a stack X [U Y by the following natural mapping property: a map
Z!X [U Y (with Z a topological space) consists of an open cover Z DZX [ZY ,
maps ZX !X and ZY !Y such that in both cases the inverse image of U is ZX \ZY ,
together with an isomorphism between the two resulting maps ZX \ZY ! U . It
is immediate to check that the maps X ! X [U Y  Y are both open inclusions
intersecting along U , so Lemma 2.8 implies that

(2-2)
U X

Y X [U Y

is a pushout. Since X ,!X [U Y  - Y are open inclusions, it follows that if X and
Y both admit étale atlases, then so do U and X [U Y . Also, if X and Y are locally of
the form V =� for a finite group � acting on a Hausdorff space V , then the same holds
for X [U Y . Thus if X and Y are orbispaces, to verify that X [U Y is an orbispace, it
suffices to show that jX [U Y j is Hausdorff. Since the coarse space functor j � j is a left
adjoint, it preserves all colimits, so jX [U Y j D jX j [jU j jY j. This gives an effective
procedure to glue together a pair of orbispaces along a common open subspace and to
show that the result is again an orbispace.

The next construction we wish to discuss is the formation of mapping cylinders for
representable maps of orbispaces. For a map of topological spaces A!X , the mapping
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cylinder cyl.A!X / is defined as the pushout

(2-3)
A X

A� Œ0; 1� cyl.A!X /

�f0g

A basic property of colimits in the category of topological spaces is that the property
of a diagram being a colimit diagram is local on the colimit object. It follows that
colimit diagrams are preserved under étale pullback: if U ! colim p is étale, then
the natural map colim.p�colim p U /! U is an isomorphism. Thus the formation of
mapping cylinders commutes with étale pullback: if U !X is étale, then the natural
map cyl.A�X U ! U /! cyl.A!X /�X U is an isomorphism. This fact allows us
to define the mapping cylinder of any representable map of stacks A!X for which X

(hence also A) admits an étale atlas. Indeed, let A! X be such a map. Choose an
étale atlas U !X , which pulls back to an étale atlas A�X U !A. We thus obtain a
topological groupoid U �X U !!U presenting the stack X , and we obtain a topological
groupoid U �X A�X U !!A�X U presenting A. The map A!X induces a map of
topological groupoids from the latter to the former, which presents the map A!X .
We may consider the “cylinder” of this map of groupoids, namely

(2-4) cyl.U �X A�X U ! U �X U /!! cyl.A�X U ! U /;

and we define cyl.A!X / to be the topological stack presented by this groupoid. Note
that cyl.U �X A�X U !U �X U /D cyl.A�X U !U /�X U since U !X is étale.

Lemma 2.9 The stack cyl.A!X / is independent , up to canonical equivalence , of
the choice of étale atlas U !X .

Proof It suffices to show that for any two atlases U !X  U 0, the inclusions of the
groupoids (2-4) for U and U 0 into the groupoid for U tU 0 induce equivalences of
stacks. To show this, it in turn suffices to show that the map

(2-5) cyl.U 0 �X A�X U ! U 0 �X U /! cyl.A�X U ! U /

admits local sections. This in turn is implied by the assertion that the natural map

(2-6) cyl.U 0 �X A�X U ! U 0 �X U /! U 0 �X cyl.A�X U ! U /

is an isomorphism, which holds as formation of mapping cylinders of topological spaces
commutes with étale pullback (both sides are .U 0 �X U /�U cyl.A�X U ! U /).
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Formation of mapping cylinders commutes with passing to the coarse space: for
any representable map of stacks A ! X admitting étale atlases, the natural map
cyl.jAj!jX j/!j cyl.A!X /j is an isomorphism. This can be checked by inspection,
using the fact that for any topological stack X with atlas U !X , the map U ! jX j is
the topological quotient by the image of U �X U !U �U , and fact that jA� Œ0; 1�j!
jAj � Œ0; 1� is an isomorphism for any topological stack A [29, Lemma 6.15].

It now follows that if A and X are both orbispaces, then so is cyl.A! X /. Indeed,
if Y=� ,! X is an open inclusion for Y Hausdorff and � finite, we obtain an open
inclusion .A�X Y /=� D A�X .Y=�/ ,! A. Since A is an orbispace, its diagonal
is proper, so the action map � � .A�X Y /! .A�X Y /� .A�X Y / is proper, hence
its precomposition with A�X Y

1�
�! � � .A�X Y / is proper; this being the diagonal

of A�X Y , we conclude that A�X Y is Hausdorff. We thus have an open inclusion
cyl.A�X Y ! Y /=� ,! cyl.A! X /, where cyl.A�X Y ! Y / is Hausdorff. The
coarse space jcyl.A!X /j D cyl.jAj ! jX j/ is Hausdorff since jX j and jAj are.

Our next task is to show that the mapping cylinder diagram (2-3) is a pushout. This
gives another proof of the fact that formation of mapping cylinders commutes with
passing to the coarse space. We begin with an example to show that mapping cylinder
diagrams, even of topological spaces, need not be pushouts in the category of all stacks.
Our task is thus, more precisely, to identify a particular full subcategory of stacks in
which mapping cylinder diagrams are pushouts; see Proposition 2.13 below.

Example 2.10 Consider the pushout diagram

(2-7)
f1g Œ1; 2�

Œ0; 1� Œ0; 2�

in the category of topological spaces. Let X denote the stack defined by the property
that a map Z ! X from a topological space Z is a continuous map f W Z ! Œ0; 2�

such that there exists an open cover Z DU [V with f .U /� Œ0; 1� and f .V /� Œ1; 2�.
(Note that X is indeed a stack!) Now there is a tautological diagram

(2-8)
f1g Œ1; 2�

Œ0; 1� X
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which is not induced by a map Œ0; 2�! X ; there is no open covering Œ0; 2�D U [V

with U � Œ0; 1� and V � Œ1; 2�. It follows that the diagram (2-7) is not a pushout in the
category of all stacks.

Lemma 2.11 Let fX˛g˛2A be any diagram of topological spaces and denote its colimit
by X WD colim˛2A X˛. For any topological stack T , the map

(2-9) Hom.X;T /! lim
˛2A

Hom.X˛;T /

is fully faithful.

Proof We just need to recall the description of Hom.X;T / for X a topological
space and T the stack associated to a topological groupoid M !

! O . An object of
Hom.X;T / is an open cover X D

S
i Ui together with a collection of maps ˛i WUi!O

and ˇij W Ui \ Uj ! M projecting to ˛i � j̨ and satisfying ˇij ǰk D ˇik over
Ui\Uj\Uk . An isomorphism between .Ui ; ˛i ; ˇij / and .U 0i0 ; ˛

0
i0 ; ˇ
0
i0j 0/ is a collection

of maps ii0 W Ui \U 0i0 !M projecting to ˛i �˛
0
i0 and satisfying ˇijjj 0 D ij 0 over

Ui \Uj \Uj 0 and ii0ˇi0j 0 D ij 0 over Ui \Ui0 \Uj 0 . Composition of isomorphisms
relies on the fact that Hom.�;M / is a sheaf.

Now fix two objects .Ui ; ˛i ; ˇij / and .U 0i0 ; ˛
0
i0 ; ˇ
0
i0j 0/ of Hom.X;T /. The set of

isomorphisms between them is the set of collections of maps ii0 W Ui \ U 0i0 ! M

satisfying certain compatibility properties. Now we note that for any open subset
U � X , the map colim˛2A U˛

��! U is an isomorphism, where U˛ denotes the
inverse image of U inside X˛ . Thus, since M is a topological space, the data of maps
Ui \U 0i0 !M is equivalent to giving a compatible collection of such maps over the
inverse images of Ui\U 0i0 in each X˛ . Such data is precisely the data of an isomorphism
in lim˛2A Hom.X˛;T / between the images of .Ui ; ˛i ; ˇij / and .U 0i0 ; ˛

0
i0 ; ˇ
0
i0j 0/.

Lemma 2.12 For any topological stack X with atlas U !X , the functor

(2-10) Hom.X;T /
��! Eq

�
Hom.U;T /!! Hom.U �X U;T /

!
!
!

Hom.U �X U �X U;T /
�

is an equivalence for any stack T . (Concretely, an object on the right is a map f WU!T

and an isomorphism i W fp1
��! fp2 in Hom.U �X U;T / such that the composition of

i ıp12 and i ıp23 agrees with i ıp13 in Hom.U �X U �X U;T /, and an isomorphism
.f; i/! .f 0; i 0/ is an isomorphism j W f ��! f 0 such that i 0 ı jp1 D jp2 ı i .)
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Proof This is similar to the proof of Lemma 2.8. Given a map Z ! X from a
topological space Z and an element of the right side of (2-10), we may define a map
Z! T as follows. Our map Z!X may be regarded as an open cover of Z, maps
from the elements of the open cover to U , and maps from pairwise intersections to
U �X U , satisfying a cocycle condition. The element of the right side of (2-10) turns
this into maps from the elements of the open cover to T and isomorphisms between
them on their pairwise overlaps, satisfying a cocycle condition. The stack property
for T means that this data defines a map Z ! T . One now checks that this is a
two-sided inverse to (2-10).

Proposition 2.13 For any representable map of stacks A! X admitting separated
étale atlases , the mapping cylinder diagram (2-3) is a pushout in the 2–category of
stacks which admit a separated étale atlas.

Proof We are supposed to show that for any stack T which admits a separated étale
atlas, the map

(2-11) Hom.cyl.A!X /;T /! Hom.X;T /�Hom.A;T / Hom.A� Œ0; 1�;T /

is an equivalence of groupoids.

We begin with the case that X and A are topological spaces. In this case, Lemma 2.11
says that (2-11) is fully faithful, so it remains to prove essential surjectivity. Thus
suppose we have maps X ! T and A � Œ0; 1� ! T and an isomorphism between
the respective induced maps A ! T . We should glue these together into a map
cyl.A!X /! T . Fix a separated étale atlas O! T , hence a groupoid presentation
M !
! O of T with M D O �T O . The map X ! T thus may be regarded as an

open cover X D
S

i Ui , maps Ui!O , and maps Ui \Uj !M , which we may pull
back under f W A! X to obtain the map A! T . This map is isomorphic to the
restriction to ADA� f0g of the given map A� Œ0; 1�! T , which is a priori defined
by a different open cover. Now the key point is the following. Consider one of the
open sets f �1.Ui/ � A, which is equipped with a map f �1.Ui/! O . This map
may be regarded as a section over f �1.Ui/�ADA� f0g of the separated étale map
O �T .A� Œ0; 1�/!A� Œ0; 1�. Since this map is étale, each point p 2 f �1.Ui/ has a
neighborhood Vp � Œ0; "p/ over which the section extends. Since this map is separated
and Œ0; "p/ is connected, these extensions are unique. They hence glue together to
give an open set Vi � A� Œ0; 1� intersecting A� f0g in f �1.Ui/ such that the map
f �1.Ui/!O admits a unique extension to Vi together with an isomorphism of the
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resulting composition to T with the given map A� Œ0; 1�! T . Now Vi and Ui define
together an open set Wi � cyl.A! X /, and we have defined thus a map Wi ! O .
These Wi , together with A� .0; 1�, cover cyl.A! X /, so this data defines for us a
map cyl.A!X /! T lifting our given data on the right side of (2-11).

Having treated the case that X and A are topological spaces, we deduce the general
case using Lemma 2.12. Fix an étale atlas U !X , so that cyl.X !A/ is presented
by the topological groupoid

(2-12) cyl.A�X U ! U /�X U !! cyl.A�X U ! U /:

By Lemma 2.12, we conclude that cyl.X !A/ coincides with the coequalizer

(2-13) Coeq
�
cyl.A�X U ! U /  cyl.A�X U ! U /�X U

 
 
 

cyl.A�X U ! U /�X U �X U
�
:

Each term in the coequalizer is a cylinder (since �X U is an étale pullback so can
be brought inside cyl) of a map of topological spaces. Hence each of these terms is
a pushout (in the 2–category of stacks which admit a separated étale atlas). Since
coequalizers commute with pushouts, we conclude that cyl.X !A/ is the pushout of

(2-14)

Coeq.U   U �X U
 
 
 

U �X U �X U /

Coeq.A�X U   A�X U �X U
 
 
 

A�X U �X U �X U /

Coeq.A�X U �Œ0; 1�  A�X U �X U �Œ0; 1�
 
 
 

A�X U �X U �X U �Œ0; 1�/

The top two coequalizers are simply X and A by Lemma 2.12. The bottom coequalizer
is A� Œ0; 1�, not by pulling out the �Œ0; 1� on general categorical principles, but rather
by applying Lemma 2.12 to the atlas U � Œ0; 1�!A� Œ0; 1�.

We now combine the results obtained thus far into a general gluing operation:

Proposition 2.14 Let B! C be a representable map of orbispaces , and let B ,!A

be a closed inclusion which is collared in the sense that it factors as

B
�f0g
��! B � Œ0; 1/ ,!A;
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where the second map is an open inclusion. The pushout

(2-15)
B C

A A[B C

exists in the category of stacks admitting a separated étale atlas , and A[B C is an
orbispace.

Proof Define A [B C by gluing A n B (an open substack of A) to cyl.B ! C /

along B � .0; 1/ using a choice of collar B � Œ0; 2/ ,! A. The fact that cyl.B! C /

is the pushout of B � Œ0; 1� B! C (Proposition 2.13) and A[B C is the pushout
of cyl.B ! C /  B � .0; 1/ ,! A (Lemma 2.8) implies that (2-15) is a pushout.
In particular, the gluing A [B C does not depend on the choice of collar used to
construct it.

We are also interested in countable iterations of such attachment operations. Let us call
a map of orbispaces X ! Y a mapping cylinder inclusion if and only if it is a closed
inclusion and admits a factorization of the form X ,! .X [A .A�R�0// ,! Y , where
the second map is an open inclusion and the first map is the natural inclusion of X

into the open substack X [A .A� Œ0; 1//�X [A .A� Œ0; 1�/D cyl.A!X / for some
representable map of orbispaces A!X . Equivalently, X ! Y is a mapping cylinder
inclusion if and only if it is the right vertical map in some pushout diagram (2-15)
(without specifying a choice of such presentation).

Proposition 2.15 Let X0!X1!� � � be a sequence of mapping cylinder inclusions of
orbispaces. The colimit colimi Xi exists in the category of stacks admitting a separated
étale atlas , and this colimit is an orbispace.

Proof We begin with the case that all Xi are Hausdorff topological spaces, where
we show that the colimit in the category of topological spaces X WD colimi Xi is the
desired colimit. Let us first note that X is itself Hausdorff. Indeed, let p; q be distinct
points of X , and choose i large so that they both lie in Xi . Since Xi is Hausdorff,
choose disjoint open subsets U i

p and U i
q of it containing p and q, respectively. A

factorization of Xi ! XiC1 witnessing that it is a mapping cylinder inclusion gives
disjoint open subsets U iC1

p and U iC1
q of XiC1 whose intersections with Xi are U i

p

and U i
q , respectively. Iterating in this way, we produce disjoint open subsets Up and

Uq of X containing p and q, respectively.
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Now let us show that for any stack T admitting a separated étale atlas, the map
Hom.X;T /! limi Hom.Xi ;T / is an equivalence (still in the case Xi are topological
spaces and X D colimi Xi is the colimit in the category of topological spaces). It is
fully faithful by Lemma 2.11, so it remains to show essential surjectivity. Choose
a separated étale atlas U ! T . Fix an object of limi Hom.Xi ;T /; this consists, in
particular, of open covers Xi D

S
j Uij and maps Uij ! U , with certain descent data

on intersections. Now the key step is to note that, as was proven already during the
proof of Proposition 2.13, the open sets Uij covering Xi extend to XiC1 along with
their maps to U . We may thus construct new open covers of the Xi by induction as
follows: the new open cover of X0 is simply the one we are given to start with, and the
new open cover of Xi is obtained by taking the new open cover of Xi�1, extending it to
a neighborhood of Xi�1 inside Xi as in the proof of Proposition 2.13, and then adding
Xi nXi�1 (which is open since Xi�1 �Xi is closed) intersected with all the open sets
in the given open cover of Xi . We thus obtain an open cover of X and continuous
maps from the elements of this open cover to U , along with the relevant descent data to
define a map X ! T . This completes the proof in the case that the Xi are topological
spaces.

We now move on to the general case. Note that if X!Y is a mapping cylinder inclusion,
then so is jX j ! jY j, since passing to the coarse space preserves open inclusions and
mapping cylinders. Hence jXi j ! jXiC1j is a mapping cylinder inclusion. Thus
the colimit colimi jXi j— which must be the coarse space of colimi Xi if it exists — is
Hausdorff as above. Now every Xi maps to colimi jXi j, and since the latter is Hausdorff,
it suffices to prove the statement after restricting to an open cover of colimi jXi j. Thus
fix a point p 2 colimi jXi j and let us prove the statement in a neighborhood of p. We
have p 2 jXi j for some i , and let us construct an open neighborhood of p as in the
paragraph above, ie we begin with an open neighborhood U i � jXi j of p, we consider
U iC1 � jXiC1j the inverse image of Ui in the mapping cylinder Xi[A .A�R�0/, and
iterating gives the desired open neighborhood in the colimit. The effect of restricting
to such an open subset is that we have reduced ourselves to the situation of a chain of
closed inclusions X0 ,!X1 ,! � � � , where XiC1 DXi [Ai

.Ai �R�0/.

We may now treat this special case as follows. By restricting further to an open subset
of X0 (and its inverse image in every Xi), we may assume without loss of generality
that X0 D Y0=G for some Hausdorff space Y0 acted on by a finite group G. Pulling
back under each projection, we obtain a sequence of inclusions of Hausdorff topological
spaces Y0 ,! Y1 ,! � � � , each with an action of G, where YiC1 D Yi [Bi

.Bi �R�0/,

Geometry & Topology, Volume 27 (2023)



Orbifold bordism and duality for finite orbispectra 1773

G–equivariantly, and Xi D Yi=G. Now it suffices to show that colimi.Yi=G/ D

.colimi Yi/=G; note that colimi Yi is Hausdorff, as shown above. Express each Yi=G

via the topological groupoid G �Yi
!
! Yi , and appeal to Lemma 2.12 to see that for

any stack T , we have

(2-16) lim
i

Hom.Xi ;T /

��! lim
i

Eq
�

Hom.Yi ;T /!! Hom.G�Yi ;T /
!
!
!

Hom.G�G�Yi ;T /
�

D Eq
�

lim
i

Hom.Yi ;T /!! lim
i

Hom.G�Yi ;T /
!
!
!

lim
i

Hom.G�G�Yi ;T /
�
:

Now for T admitting a separated étale atlas, we have an equivalence limi Hom.Yi ;T /D

Hom.colimi Yi ;T / since Yi ,! YiC1 are mapping cylinder inclusions, and the same
holds for G �Yi and G �G �Yi for the same reason. We also have colimi.G �Yi/D

G � colimi Yi since G is finite (the functor �G on topological spaces is cocontinuous
whenever G is locally compact since it then has a right adjoint Maps.G;�/). We
therefore have, for T admitting a separated étale atlas,

(2-17) lim
i

Hom.Xi ;T /D

Eq
�

Hom.colim
i

Yi ;T /!!Hom.G�colim
i

Yi ;T /
!
!
!

Hom.G�G�colim
i

Yi ;T /
�
:

Applying Lemma 2.12 once more, we see that the right side is Hom..colimi Yi/=G;T /,
as was to be shown.

2.4 Orbi-CW–complexes (topology)

We now define orbi-CW–complexes. The definition we give realizes in some form a
proposal of Gepner and Henriques [18], but differs on some key details. An orbi-CW–
complex X is specified as follows. We begin with the “.�1/–skeleton” X�1 WD¿. The
k–skeleton Xk is defined in terms of Xk�1 by attaching cells of the form Dk �BG

for finite groups G along representable attaching maps @Dk �BG!Xk�1. In other
words, Xk is defined as the pushout

(2-18)

G
˛

@Dk
�BG˛ Xk�1

G
˛

Dk
�BG˛ Xk

F
˛f˛
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in the category of topological stacks admitting an étale atlas, which exists by Proposition
2.14, which also guarantees that Xk is an orbispace. The orbispace X is now defined
as the ascending union

(2-19) X WD colim
k

Xk ;

which exists and is an orbispace by Proposition 2.15. Since the coarse space functor
j � j preserves colimits (since it is a left adjoint), it follows that the coarse space of an
orbi-CW–complex is a CW–complex, with exactly the same attaching maps.

An orbi-CW–complex is equivalently a pair .X;uk;˛/ where X is an orbispace and
fuk;˛ W D

k �BG˛ ! X gk;˛ is a collection of representable maps which satisfy the
following inductive condition: the restriction uk;˛j@Dk�BG˛

has image contained in
the closed substack Xk�1 � X (begin with X�1 WD ¿), the resulting map Xk WD

Xk�1 [uk;˛

F
˛ Dk � BG˛ ! X is a closed inclusion, and X is the colimit of the

closed substacks Xk .

Lemma 2.16 A pair .X;uk;˛/ consisting of an orbispace X and a collection of
representable maps uk;˛ WD

k �BG˛! X is an orbi-CW–complex if and only if the
pair .jX j; juk;˛j/ is a CW–complex and all uk;˛j.Dk/ı�BG˛

induce isomorphisms on
isotropy groups.

Proof We show by induction that Xk �X is the closed substack corresponding to the
closed subset jX jk � jX j induced by the CW–structure .jX j; juk;˛j/. The image of
uk;˛j@Dk�BG˛

is contained in the closed substack Xk�1 �X since this can be checked
at the level of coarse spaces. By assumption jX jk�1[juk;˛ j

F
˛ Dk ! jX j is a closed

inclusion, and we would like to show that Xk�1[uk;˛

F
˛ Dk �BG˛!X is a closed

inclusion, with the same image. The coarse space of the domain of the second map
coincides with the domain of the first map since coarse space commutes with colimits
and jX jk�1 D jXk�1j by the induction hypothesis. The second map therefore factors
through the closed substack of jX j corresponding to jX jk � jX j (the image of the first
map, by definition). To check that the first map of this factorization is an isomorphism,
it suffices by Lemma 2.3 to note that it induces a homeomorphism on coarse spaces
and isomorphisms on isotropy groups (by the hypothesis on uk;˛j.Dk/ı�BG˛

).

Next, we should show that the map colimk Xk ! X is an isomorphism. Again
by Lemma 2.3, it suffices to note that it induces isomorphisms on isotropy groups
(immediate since Xk � X are closed substacks) and induces a homeomorphism on
coarse spaces (since .jX j; juk;˛j/ is a CW–complex).
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Definition 2.17 A subcomplex A of an orbi-CW–complex X consists of a subset
of the set of cells of X such that the attaching map of any k–cell in A lands inside
Ak�1 � Xk�1, which is a closed substack by induction on k. By Lemma 2.16,
subcomplexes of X are in bijection with subcomplexes of jX j.

Given two orbi-CW–complexes .X;uk;˛/ and .Y; v`;ˇ/, we may ask whether their
product .X � Y;uk;˛ � v`;ˇ/ is an orbi-CW–complex; note that a product of cells
Dk�BG˛�D`�BGˇ is indeed a cell DkC`�B.G˛�Gˇ/. In view of Lemma 2.16 and
Lemma 2.1, this reduces to the corresponding question for the ordinary CW–complexes
obtained by passing to coarse spaces. It is known that a product of CW–complexes is a
CW–complex if at least one of the factors is locally finite [40] or if both factors are
locally countable [26]. (In fact, the question of when a product of two CW–complexes
is a CW–complex is completely solved in [7].)

3 Homotopy theory of orbispaces

3.1 Homotopies

Two maps of orbispaces f;g W X ! Y are called homotopic if and only if there
exists a map h W X � Œ0; 1� ! Y such that h.0; � / and h.1; � / are isomorphic to f
and g, respectively. In particular, if f and g are isomorphic, then they are homotopic.
Homotopy classes of maps form a set. A map with a two-sided inverse up to homotopy
is called a homotopy equivalence.

Example 3.1 Homotopy classes of maps BG! BH are in bijection with conjugacy
classes of group homomorphisms G!H . The “space” (properly defined) of maps
BG! BH would be the homotopy quotient Hom.G;H /==H .

Lemma 3.2 If f and g are homotopic , then f is representable if and only if g is
representable.

Proof Since for maps of orbispaces, representability is equivalent to injectivity on
isotropy groups, it suffices to consider the case of maps from BG. Thus, consider a
map BG � Œ0; 1�! Y . Locally Y D U=� for � finite acting on U Hausdorff. So, a
map BG � Œ0; 1�! Y is (locally) a map G! � and a map Œ0; 1�! U landing in the
G–fixed locus. This is injective on isotropy groups if and only if G! � is injective,
which is obviously an open and closed condition on Œ0; 1�.
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Corollary 3.3 A homotopy equivalence of orbispaces is representable.

Proof Let f and g be homotopy inverses of each other. Since f ı g and g ı f are
homotopic to identity maps, they are representable by Lemma 3.2. Thus f ı g and
g ı f are both injective on isotropy groups, from which it follows that f and g are
injective on isotropy groups.

Lemma 3.4 Let f W Y �BG!X be a map where Y is a topological space and X is
an orbispace. There exists a partition of Y into open subsets YN indexed by the normal
subgroups N E G, representable maps YN �B.G=N /! X , and an isomorphism
between f and the composition

(3-1) Y �BG!
G

N EG

YN �B.G=N /!X:

Moreover , this data is unique up to unique isomorphism.

Proof Applying Lemma 2.12 to the atlas Y ! Y � BG, we find that the data of
a map Y � BG ! X is the same as the data of a map f W Y ! X together with
a homomorphism G ! Aut.f /. Moreover, for a point y 2 Y , the homomorphism
G ! Gf .y/ induced by restricting G ! Aut.f / coincides with the action of the
corresponding map Y �BG! X on isotropy groups. Now we recall that for maps
of orbispaces, representability is equivalent to injectivity on isotropy groups. It thus
suffices to show that for any map f W Y !X and any a homomorphism G! Aut.f /,
the map y 7! ker.G!Gf .y// is locally constant.

Thus, fix f W Y !X and g 2 Aut.f /, and let us show that the set of y 2 Y for which
gjy 2 Gf .y/ is the identity is open and closed. The set of such y is the fiber product
of Y and X over X �X�X X . Thus it suffices to show that X !X �X�X X is an open
and closed inclusion. We can check this locally, so we can assume that X DZ=H for
Z Hausdorff and H finite. Then X �X�X X D

�F
h2H X h

�
=H (the action of H is

by conjugation) and the map from X is the inclusion of the component hD 1.

3.2 Orbi-CW–complexes (homotopy)

The basic objects with which we shall do homotopy theory are orbi-CW–complexes.
Many basic facts about CW–complexes generalize immediately to orbi-CW–complexes,
with identical proofs. For example, for X an orbi-CW–complex and A � X a sub-
complex, the pair .X;A/ has the homotopy extension property — by the universal
property of colimits, we may proceed by induction on cells, for which the statement
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is obvious since cells have boundary collars. Every map of orbi-CW–complexes is
homotopic to one which sends the k–skeleton of the domain to the k–skeleton of the
target. Also a homotopy equivalence between orbispaces X ��!X 0 and homotopies
between attaching maps ff˛ W@Dk�BG˛!X g˛ and ff 0˛ W@D

k�BG˛!X 0g˛ induces
a homotopy equivalence

(3-2) X [ff˛g˛

G
˛

@Dk
�BG˛

��!X 0[ff 0˛g˛

G
˛

@Dk
�BG˛:

Proposition 3.5 A compact orbifold is homotopy equivalent to a finite orbi-CW–
complex.

Proof sketch Let X be a compact orbifold, and choose a Morse function f WX !R

as follows. We define f by induction on the stratification of X by the order of the
stabilizer group. A given stratum is a purely ineffective smooth suborbifold, so we
just choose any Morse function on it (generic ones are Morse), and we extend it in
the normal directions by a positive definite quadratic form. Note that in this way, at
any critical point, the isotropy group acts trivially on the negative eigenspace of the
Hessian. Thus the change in the homotopy type of sublevel sets when passing a critical
point of index k is precisely to attach a cell .Dk ; @Dk/�BG.

We now discuss homotopy groups of orbi-CW–complexes. For an orbispace X , we
have a set �G

0
.X / of homotopy classes of maps BG!X . These are functorial in X

and (contravariantly) in G. More generally, we define �G
k
.X;p/ for a “basepoint”

p W BG ! X as the set of maps f W Sk � BG ! X together with an isomorphism
between f j��BG and p (where � 2 Sk is a fixed basepoint), modulo homotopy. A
homotopy here means a map h W Œ0; 1��Sk �BG!X together with an isomorphism
between hjŒ0;1����BG and p ı ���BG . The sets �G

k
.X;p/ are functorial in .X;p/

and G. As with ordinary homotopy groups, �G
k
.X;p/ is a pointed set for k D 0, a

group for k D 1, and an abelian group for k D 2.

Example 3.6 We have �G
0
.BH / D Hom.G;H /=H (quotient by the conjugation

action). For a map ' W G ! H (inducing a basepoint B' W BG ! BH ), we have
�G

1
.BH;B'/DZH .im.'// (the centralizer of '.G/�H ) and �G

k
.BH;B'/D 0 for

k � 2.

In view of Lemma 3.2, there is a distinguished subset �G;rep
0

.X /��G
0
.X / of homotopy

classes of representable maps BG ! X . Evidently �G;rep
0

.X / is functorial under
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representable maps of X and injective maps of G. The sets �G
0
.X / and �G;rep

0
.X /

contain the same information, in the sense that

�
G;rep
0

.X /D �G
0 .X / n

[
1¤N EG

im
�
�

G=N
0

.X /! �G
0 .X /

�
;(3-3)

�G
0 .X /D

G
N EG

�
G=N;rep
0

.X /:(3-4)

A basepoint p W BG!X factors uniquely as BG! B.G= ker p/
prep
��!X , where the

second map is representable, and by Lemma 3.4 we have �G
k
.X;p/D�

G= ker p

k
.X;prep/

for k � 1; so in this sense the information in the homotopy groups of an orbispace X

is already contained in the case of representable basepoints.

We will also make use of relative homotopy groups �G
k
.X;Y;p/ for a map Y ! X

and a basepoint p W BG! Y . For k � 1, an element of �k.X;Y;p/ is represented by
a diagram

(3-5)
@Dk �BG Y

Dk �BG X

together with an isomorphism between the restriction of @Dk �BG! Y to ��BG

and the basepoint p. These are considered up to homotopy, ie diagrams in which the
orbispaces on the left are replaced with their product with Œ0; 1�, and we specify an
isomorphism with p ı���BG over Œ0; 1����BG. Now �G

k
.X;Y;p/ is a pointed set

for k D 1, a group for k D 2, and an abelian group for k � 3.

It is essentially immediate from the definitions that for a map Y !X and a basepoint
p W BG! Y , there is a long exact sequence (of pointed sets)

(3-6) � � � ! �G
2 .X;Y;p/! �G

1 .Y;p/! �G
1 .X;p/! �G

1 .X;Y;p/! �G
0 .Y;p/

! �G
0 .X;p/:

It is thus natural to define �G
0
.X;Y / as the pointed set �G

0
.X /=�G

0
.Y /. We now have

the following version of Whitehead’s theorem.

Proposition 3.7 A map of orbi-CW–complexes is a homotopy equivalence if and only
if it induces isomorphisms on �G

k
for all basepoints and on �G

0
.
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Proof Let Y !X be a map of orbi-CW–complexes which induces an isomorphism
on all �G

k
. In view of (3-3), the map Y ! X respects the subsets �G;rep

0
� �G

0
. It

follows that Y !X is representable.

Since Y ! X is representable, we may form its mapping cylinder cyl.Y ! X /;
moreover, by first applying cellular approximation to Y ! X to homotope it to be
cellular, we may ensure that cyl.Y !X / is again an orbi-CW–complex.

It now suffices to construct a dotted lift in the diagram

(3-7)
Y Y

cyl.Y !X / X

after possibly homotoping the bottom map rel Y . Since Y � cyl.Y;X / is a subcomplex,
it is equivalent to solving the homotopy lifting problem

(3-8)
@Dk �BG Y

Dk �BG X

which is equivalent to the vanishing of all relative homotopy groups of Y !X . We
are thus done by the long exact sequence (3-6).

Conjecture 3.8 Any metrizable locally tame topological orbifold is homotopy equiva-
lent to an orbi-CW–complex.

A first step towards proving this was taken in [29, Proposition 4.6], which shows
that there always exists a representable map f from any paracompact orbispace to
the geometric realization of a simplicial complex of groups (which is a particular
case of an orbi-CW–complex). The next step would be to argue that, choosing the
cover in the proof of this result to be sufficiently fine, it is possible to construct a
map g in the reverse direction (using equivariant contractibility of Rn with respect to
a linear G–action) and, moreover, that g ı f is homotopic to the identity. One can
then add cells to the target of f , extending g appropriately, until f and g both induce
isomorphisms on all �G

k
, and then apply Proposition 3.7 to f ı g. This is how the

standard proof of the corresponding assertion for topological manifolds goes. That
result also extends to absolute neighborhood retracts, so it is natural to ask whether
this extension has a generalization to the orbispace setting. One could also reasonably
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conjecture that a compact locally tame topological orbifold is homotopy equivalent
to a finite orbi-CW–complex. This is true for manifolds by the work of Kirby and
Siebenmann [22; 23], and other proofs were given later by West [39] and Chapman [8];
see Ferry and Ranicki [16] for further discussion.

3.3 Homotopy categories of orbispaces

We denote by OrbSpc (resp. RepOrbSpc) the category whose objects are orbi-CW–
complexes and whose morphisms are (resp. representable) homotopy classes of maps.
By Lemma 3.2, representability is preserved by homotopies, and a homotopy between
representable maps is itself representable. The tautological functor RepOrbSpc!
OrbSpc is thus faithful and conservative. The homotopy category of CW–complexes is
denoted by Spc, which is a full subcategory of both RepOrbSpc and OrbSpc.

The functor Spc ,! OrbSpc has a left adjoint, namely the coarse space functor
j � j W OrbSpc! Spc, which sends orbi-CW–complexes to CW–complexes, as noted
earlier.

We use Spcf � Spc, RepOrbSpcf � RepOrbSpc and OrbSpcf � OrbSpc to denote
the full subcategories spanned by finite (orbi-)CW–complexes. Note that the adjectives
“finite” or “compact”, and the resulting notation for full subcategories, sometimes are
used to indicate instead those objects which are compact objects in the categorical
sense; finite orbi-CW–complexes are compact objects categorically, but the converse is
not true.

3.4 Classifying space

The inclusion Spc ,! OrbSpc has a right adjoint denoted by X 7! zX , where zX is
known as the classifying space of X . This right adjoint may be constructed as follows.
It suffices to show that for any orbi-CW–complex X , there exists a CW–complex zX
and a map zX !X such that the homotopy lifting problem

(3-9)
@Dk zX

Dk X

always has a solution. Indeed, this implies that the map zX ! X induces a bijection
between homotopy classes of maps Y ! zX and homotopy classes of maps Y ! X
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for any CW–complex Y . We may construct zX as follows. We begin with zX�1 D¿.
We define zXk from zXk�1 by attaching a k–cell for every element of �k.X; zXk�1/

(for every basepoint when k > 0). By cellular approximation and induction, we have
�i.X; zXk/ D 0 for all i � k. It follows that �i.X; zX / D 0 for every i , which is
equivalent to solvability of the above lifting problem.

Example 3.9 For a CW–complex X , the set of homotopy classes of maps X !BG is
in natural bijection with the set of isomorphism classes of principal G–bundles over X ,
which is in turn in bijection with the set of homotopy classes of maps X ! BG. It
follows that eBG D BG.

The natural map .X �Y /�! zX � zY is an isomorphism since X 7! zX is a right adjoint.

Lemma 3.10 Let X be an orbi-CW–complex covered by subcomplexes P;Q � X

intersecting in A WD P \Q, so X D P [A Q. Fix classifying spaces zP ! P , zQ!Q

and zA!A, with subcomplex inclusions zA! zP and zA! zQ such that the diagram

(3-10)

zP zA zQ

P A Q

strictly commutes; this may be achieved by replacing zP and zQ by the mapping cylinders
of zA! zP and zA! zQ. Then zX D zP [ zA

zQ with the obvious map to P [A QDX .

Proof Given a CW–complex Z and a map Z ! X D P [A Q, let us lift it (up to
homotopy) to zP [ zA

zQ. By subdividing Z and homotoping the map Z!X , we may
assume that each cell of Z maps either entirely to P or entirely to Q. Now we first lift
the cells which map to AD P \Q to zA. A cell which maps to P (resp. Q) but not
entirely to A is now lifted to zP (resp. zQ). This shows that the map from homotopy
classes of maps Z ! zP [ zA

zQ to homotopy classes of maps Z ! X D P [A Q is
surjective. To show injectivity, apply the same argument rel boundary to a homotopy
between the compositions of two maps Z! zP [ zA

zQ with zP [ zA
zQ! P [A Q. Note

that in this proof we used the lifting property (3-9), which is a priori stronger than
(albeit a posteriori equivalent to) the adjointness property of the classifying space at the
level of homotopy categories; the lifting property instead corresponds to a universal
property at the1–category level.
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One can similarly argue by induction on cells that one can construct zX by taking each
cell .Dk ; @Dk/�BG of X and replacing it with .Dk ; @Dk/�BG and attaching as
appropriate.

Remark 3.11 There are other, more point set topological, definitions of the classifying
space of more general topological stacks. These include taking zX to be the nerve of
the simplicial space Œp� 7! U �X � � � �X U (pC 1 times), where U !X is a suitable
atlas. It is also possible to define zX !X by the universal property that zX �X Z!Z

should be “fiberwise contractible” for any topological space Z mapping to X ; compare
Noohi [28]. We will not make either of these definitions precise, nor prove that they
give the right adjoint of Spc ,! OrbSpc, though this is also possible.

3.5 Right adjoint

Here is another adjoint.

Proposition 3.12 The functor RepOrbSpc! OrbSpc has a right adjoint R.

Proof It suffices to show that for every orbi-CW–complex X , there exists an orbi-
CW–complex R.X / and a map R.X /! X such that for every commuting diagram
of solid arrows

(3-11)
@Dk �BG R.X /

Dk �BG X

rep

rep

there exists, after possibly homotoping the bottom map rel boundary, a dotted lift.
Indeed, given such a map R.X / ! X , it follows (by induction on cells) that the
induced map RepOrbSpc.Z;R.X //! OrbSpc.Z;X / is a bijection, which implies
that the adjoint R exists as a functor.

We may now construct the orbi-CW–complex R.X / inductively, just as we constructed
zX above. We begin with R.X /�1 D¿, and we define R.X /k by attaching copies of

Dk �BG to R.X /k�1 along the upper horizontal maps in some set of diagrams (3-11)
with R.X /k�1 in place of R.X / representing every homotopy class of such; note that
the attaching maps are by definition representable. Using cellular approximation and
induction, it follows that R.X /r satisfies the desired lifting property (3-11) for all
k � r ; hence R.X / is as desired.
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The proof of Proposition 3.12 given above shows existence, but is not so amenable
to computation. So, let us sketch what we expect is a more concrete definition of the
functor R W OrbSpc! RepOrbSpc, without claiming to give a complete proof. We
define a functor R W OrbSpc! RepOrbSpc as

(3-12) R.X / WD
G

G0,!���,!Gp

�p
�BG0 �

AMaps.BGp;X /
.
�:

The reader may recognize this formula as a “homotopy coend”. Here AMaps.BG;X /

denotes the classifying space of the mapping orbispace Maps.BG;X /, which is de-
fined by the universal property that a map Y !Maps.BG;X / is the same as a map
Y �BG!X . When X is an orbi-CW–complex, one can instead be much more
concrete: AMaps.BG;X / may be defined by replacing each cell Dk �BH in X with
Dk �Hom.G;H /==H , where H Õ Hom.G;H / by conjugation and == denotes the
homotopy quotient. Now (3-12) is meant to be modeled on the nerve of the 2–category
InjFinGrp of finite groups, injective homomorphisms and conjugations; the quotient �
indicates the colimit over the natural face and degeneracy identifications.

Conjecture 3.13 The expression (3-12) defines a functor R W OrbSpc! RepOrbSpc,
which is right adjoint to RepOrbSpc! OrbSpc.

Proof sketch There is a tautological map R.X /!X , and it suffices to show that the
induced map

(3-13) CRepMaps.BG;R.X //!AMaps.BG;X /

is a homotopy equivalence. Now CRepMaps.BG;R.X // is given by

(3-14)
G

G0,!���,!Gp

�p
�CRepMaps.BG;BG0/�AMaps.BGp;X /

.
�:

Now CRepMaps.BG;BG0/ is just the classifying space of the groupoid of morphisms
G!G0 in InjFinGrp, so we can equivalently write this as

(3-15)
G

G,!G0,!���,!Gp

�p
�AMaps.BGp;X /

.
�:

This being a homotopy colimit over a category with an initial object simply reduces to
AMaps.BG;X /, as desired.
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The space R.�/ 2 RepOrbSpc is the terminal object, and so may be expected to play
a role in the homotopy theory of orbispaces; see eg Conjectures 3.14 and 3.34. It is
characterized by the universal property that the space of representable maps to it is
contractible, in the precise sense that �G;rep

0
.R.�//D� for all G, and �G

k
.R.�/;p/D0

for representable, hence all, basepoints p. Combining this with Lemma 3.4 implies that
the space of all (not necessarily representable) maps from BG to R.�/ is homotopy
equivalent to the (discrete) set of normal subgroups of G. It follows that R.�/ is, in
Rezk’s language [32], the normal subgroup classifier N ; more precisely, the tautological
functor RepOrbSpc! OrbSpc sends R.�/ 2 RepOrbSpc to N 2 OrbSpc — from our
perspective, the categories RepOrbSpc and OrbSpc have the “same” objects, namely
orbi-CW–complexes, so it makes sense to simply say that R.�/ is N , however in
Rezk’s setup the functor R W OrbSpc! RepOrbSpc is the more natural one, being
given by a restriction of presheaves, so the use of its left adjoint RepOrbSpc!OrbSpc
becomes more significant.

Specializing (3-12) gives

(3-16) R.�/D
G

G0,!���,!Gp

�p
�BG0

.
�;

which is an orbi-CW–complex, and one can follow the proof sketch above to see that
it is indeed R.�/. Since every object of RepOrbSpc admits a unique up to homotopy
representable map to R.�/, we may think of objects of RepOrbSpc informally as being
“representable over R.�/”. More precisely, we make the following conjecture, a form
of which is proven by Rezk [32, Proposition 4.6.1]:

Conjecture 3.14 The category RepOrbSpc is equivalent to the category of repre-
sentable fibrations over R.�/ (with reasonable fibers).

We can specify this further: the equivalence should send a representable fibration
over R.�/ to its total space, and the fiber over a generic point of R.�/ should be the
classifying space zX of the orbispace X . There are also interesting functors to G–spaces
given by pulling back under the unique up to contractible choice representable map
BG ! R.�/. In fact, it seems that fibrations over R.�/ should be the same (in the
1–categorical context) as PSh.RepfBGg/, where RepfBGg � RepOrbSpc denotes
the full subcategory spanned by the objects BG, and PSh denotes presheaves. The
proposed formula (3-12) and the sketch of proof of Conjecture 3.13 in fact would apply
to define an inverse of the restricted Yoneda functor RepOrbSpc! PSh.RepfBGg/.
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3.6 Homotopy categories of relative orbispaces

We now introduce categories OrbSpc� and RepOrbSpc� of “relative orbispaces”. These
categories should be thought of as analogues of the category Spc� of pointed CW–
complexes and homotopy classes of pointed maps. They are, however, not the (repre-
sentable) homotopy categories of pointed orbi-CW–complexes and homotopy classes of
pointed maps. The reason that pointed orbi-CW–complexes and pointed maps are not
what we want to consider may be traced back to the fact that there is no well-defined
quotient orbi-CW–complex X=A of a given orbi-CW–pair .X;A/.

We begin with the categories of orbi-CW–pairs OrbSpcPair and RepOrbSpcPair, whose
objects are orbi-CW–pairs .X;A/ (meaning X is an orbi-CW–complex and A�X is a
subcomplex), and whose morphisms .X;A/! .Y;B/ are (representable) commutative
squares. Product of pairs is defined as usual,

.X;A/� .Y;B/ WD .X �Y; .A�Y /[ .X �B//;

as is the notion of homotopies between maps of pairs.

Now the categories OrbSpc� and RepOrbSpc� of “relative orbispaces” are defined as
follows. The objects are again orbi-CW–pairs .X;A/. A “relative map” of orbi-CW–
pairs .X;A/Ü .Y;B/ consists of a closed set A�AC �X , an open set U �X with
X D U [ .AC/ı and a map of pairs .U;U \AC/! .Y;B/. The composition of two
relative maps

(3-17) .X;A/ .Y;B/ .Z;C /
.AC;U;f / .BC;V;g/

is the triple

.AC[f �1.BC/; f �1.V /;g ıf /;

and composition is associative. A homotopy between relative maps is a relative
map .X;A/ � Œ0; 1� ! .Y;B/. The morphisms in OrbSpc� and RepOrbSpc� are
(representable) relative maps modulo (representable) homotopy. Note that it is not
true that representability is preserved under homotopy, nor that a homotopy between
representable maps is necessarily representable. There is a tautological functor

(3-18) RepOrbSpc�! OrbSpc�;

which is not faithful. The homotopy category of pointed CW–complexes Spc� is a full
subcategory of both RepOrbSpc� and OrbSpc�.
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Proposition 3.15 (excision) The functors

OrbSpcPair! OrbSpc�;(3-19)

RepOrbSpcPair! RepOrbSpc�;(3-20)

are localizations at the collection W of morphisms of the form .P;P \Q/! .X;Q/,
where X D P [Q is a cover by subcomplexes.

The same holds if we restrict both sides to the full subcategories spanned by finite
orbi-CW–pairs.

Proof First note that the morphisms W in RepOrbSpcPair do indeed become isomor-
phisms in RepOrbSpc� (hence also in OrbSpc�). Indeed, such morphisms are, up to
isomorphism in RepOrbSpcPair, of the form

(3-21) .X;A/!
�
X [B�f0g .B � Œ0; 1�/[B�f1g Y;A[B�f0g .B � Œ0; 1�/[B�f1g Y

�
;

and these have an evident inverse up to homotopy in RepOrbSpc�.

We now show that OrbSpcPair!OrbSpc� satisfies the universal property of localization
at W , namely that for any functor OrbSpcPair! C which sends all morphisms in W

to isomorphisms factors uniquely up to unique isomorphism through OrbSpc� (and
the same for RepOrbSpcPair! RepOrbSpc�). Let F WOrbSpcPair! C be given. The
action of zF on objects is fixed since OrbSpcPair! OrbSpc� is essentially surjective.
We are thus reduced to showing that there exists a unique collection of maps

zF W OrbSpc�
�
.X;A/; .Y;B/

�
! C

�
F.X;A/;F.Y;B/

�
factoring F , which are compatible with composition.

Given a map .AC;U; f / W .X;A/! .Y;B/ in OrbSpc�, it factors as

(3-22) .X;A/! .X;AC/
W
 � .U;U \AC/

f
�! .Y;B/:

By subdividing X , we may shrink U �X and AC�X to be subcomplexes covering X ;
so U is, in particular, likely no longer open. Since F sends W to isomorphisms it
follows that zF applied to this map is determined uniquely by F . It is a tautology that
zF .AC;U; f / defined in this way is invariant under homotopy of .AC;U; f /, simply

because the two maps .X;A/! .X � Œ0; 1�;A� Œ0; 1�/ coincide in RepOrbSpcPair.
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Finally, we should check that zF respects composition; this follows from the commuting
diagram

(3-23)

.X;A/

.X;AC[f �1.BC// .X;AC/

.U;U \ .AC[f �1.BC/// .U;U \AC/

.f �1.V /; f �1.V /\ .AC[f �1.BC/// .Y;BC/

.V;V \BC/

.Z;C /

W

f

W

fW

f
W

g

The point here is that once the maps W are declared to be isomorphisms, commutativity
of the diagram implies (being careful about the directions of the maps) that the rightmost
vertical composition coincides with the leftmost vertical composition.

To see that the same holds after restricting to finite orbi-CW–pairs, we just need to
observe that if the input orbi-CW–pairs in the above proof are all finite, then the
additional orbi-CW–pairs appearing in the intermediate constructions can also be taken
to be finite.

The functor Spc�! OrbSpc� has both adjoints. The existence of the left adjoint (the
coarse space) is immediate — send an orbi-CW–pair .X;A/ to the CW–pair .jX j; jAj/.
For the existence of the right adjoint (the classifying space), we argue as in Lemma 3.10.
Given an orbi-CW–complex .X;A/, we may find classifying spaces zX!X and zA!A

so that zA� zX is a subcomplex and the classifying maps together define a map of pairs
. zX ; zA/! .X;A/. The argument of the proof of Lemma 3.10 then shows that this map
exhibits . zX ; zA/ as the classifying space of .X;A/.

There is a symmetric monoidal “smash product” ^ on RepOrbSpcf� and OrbSpcf� ,
defined as follows. Product of finite orbi-CW–pairs

.X;A/� .Y;B/ WD
�
X �Y; .A�Y /[ .X �B/

�
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is a symmetric monoidal structure on RepOrbSpcPairf and OrbSpcPairf. To see that
it descends to RepOrbSpcf� and OrbSpcf�, it suffices by Proposition 3.15 to note that
.P;P \Q/�.Y;B/! .X;Q/�.Y;B/ is again of the form .P 0;P 0\Q0/! .X 0;Q0/,
namely

X 0 DX �Y; P 0 D P �Y and Q0 D .Q�Y /[ .X �B/:

Let us argue that there is a natural isomorphism .Z ^W /� D zZ ^ zW . If Z D .X;A/

and W D .Y;B/, then, recalling that the classifying space of .X;A/ is . zX ; zA/, this is
the assertion that

(3-24)
�
.X �Y /�; ..A�Y /[A�B .X �B//�

�
D
�
zX � zY ; . zA� zY /[ zA� zB .

zX � zB/
�
;

which follows from Lemma 3.10 and the fact that classifying space commutes with
products.

Given any1–category such as (the1–categorical refinement of) RepOrbSpc, there is
an1–category of “pointed objects of RepOrbSpc”, namely the under-category of the
terminal object, in this case R.�/. It is reasonable to expect this yields the same result
as our explicit geometric definition of the category of relative orbispaces:

Conjecture 3.16 There is an equivalence

RepOrbSpc� D RepOrbSpcR.�/=

as1–categories.

Conjecture 3.17 The category RepOrbSpc� is equivalent to the category of pointed
representable fibrations over R.�/ and to the category of presheaves of pointed spaces
on RepfBGg.

3.7 Cofiber sequences

A cofiber sequence in RepOrbSpc� is a three-term sequence isomorphic to

(3-25) .Y;B/! .X;A/! .X;A[B Y /

for an orbi-CW–complex X with two subcomplexes A;Y �X and B WDA\Y .

Proposition 3.18 Every morphism X ! Y in RepOrbSpc� extends to a cofiber
sequence X ! Y !Z.
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Proof Equivalently, we are to show that every morphism in RepOrbSpc� is isomorphic
to an inclusion .Y;B/ ,! .X;A/, where X is an orbi-CW–complex, A;Y � X are
subcomplexes and B D Y \A.

First, note that any map of orbi-CW–pairs .X;A/! .Y;B/ may be replaced by a
map of the desired form by first homotoping it to be cellular and then considering
.X;A/!

�
cyl.X ! Y /; cyl.A! B/

�
. Thus it suffices to show that every morphism

in RepOrbSpc� is isomorphic to the image of a morphism in RepOrbSpcPair.

A general morphism in RepOrbSpc� may be expressed in terms of morphisms of
orbi-CW–pairs as

(3-26) .X;A/! .X;AC/ � � .V;V \AC/! .Y;B/;

where X is an orbi-CW–complex, AC;V � X are subcomplexes, and X D V [AC.
We now consider the gluing

(3-27) .X;AC/[
�
.V;V \AC/� I

�
[ .Y;B/:

The inclusion of cyl
�
.V;V \AC/! .Y;B/

�
— hence also of .Y;B/— into this orbi-

CW–pair is an isomorphism in RepOrbSpc� by Proposition 3.15. Thus the natural map
from .X;A/ to (3-27) is a map of orbi-CW–pairs, which becomes isomorphic to our
given morphism in RepOrbSpc�.

In fact, a quadruple .X;A;Y;B/ as above determines not only a three-term sequence
(3-25), but a half-infinite sequence, each of whose consecutive pairs of morphisms
form cofiber sequences. This so-called “Puppe sequence” takes the form

(3-28) � � �Ü .Y;B/� .Ik ; @Ik/! .X;A/� .Ik ; @Ik/

! .X;A[Y /� .Ik ; @Ik/Ü � � � ;

where the “connecting maps”

(3-29) .X;A[Y /� .Ik ; @Ik/Ü .Y;B/� .IkC1; @IkC1/

are defined as .r; idI k ; '/, where r W .X;A[Y /! .Y;B/ is a retraction defined in a
neighborhood of .Y;B/, and ' WX ! Œ0; 1� is a map which equals 1 on Y and equals 0

outside a small neighborhood of Y .

Proposition 3.19 Every consecutive triple in the Puppe sequence is a cofiber sequence.
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Proof The three consecutive terms appearing in (3-28) certainly form a cofiber se-
quence. Shifting forward by one, we have a cofiber sequence

(3-30) .X;A/�.Ik ; @Ik/
�f0g
��!

�
X �I; .A�I/[.Y �f1g/

�
�.Ik ; @Ik/

!
�
X �I; .X �f0g/[.A�I/[.Y �f1g/

�
�.Ik ; @Ik/;

into whose third term .Y;B/� .I; @I/� .Ik ; @Ik/ includes isomorphically. Shifting
forward by one again, we have a cofiber sequence

(3-31)
�
X �

�
1
2
; 1
�
;
�
A�

�
1
2
; 1
��
[ .Y � f1g/

�
� .Ik ; @Ik/

! .X � I; .X � f0g/[ .A� I/[ .Y � f1g//� .Ik ; @Ik/

Ü
�
X �

�
0; 1

2

�
; .X � f0g/[

�
A�

�
0; 1

2

��
[
�
X �

˚
1
2

	��
� .Ik ; @Ik/:

This concludes the proof.

Example 3.20 Here is an example to show that there is no similar notion of cofiber
sequences in OrbSpc�. Consider the map BG!�; this is a map in OrbSpc, and we
consider its image in OrbSpc� under the natural map OrbSpc! OrbSpc� given by
“disjoint union with a basepoint”. Suppose it has a cofiber BG ! � ! X , where
X 2OrbSpc�. Now the defining property of the cofiber is that for any Y 2OrbSpc�, a
map X ! Y is the same thing as a map �! Y and a nullhomotopy of the composition
BG ! � ! Y . On the other hand, a nullhomotopy of this composition induces a
nullhomotopy of the original map � ! Y , by Lemma 3.4. Thus there is a unique
map X ! Y , namely the zero map (sending everything to the basepoint). It follows
that X D ¿ is the terminal object of OrbSpc�. Now if we additionally suppose
that our cofiber sequence extends as the Puppe sequence to give BG ! �! X !

BG � .I; @I/! .I; @I/, we obtain a contradiction, since X D ¿, so the cofiber of
X ! Z is Z for any Z 2 OrbSpc�. The key point in this argument was the use of
Lemma 3.4.

3.8 Enough vector bundles

We now recall the “enough vector bundles property” proved in [29], which underlies
most of our subsequent work in this paper. We also derive some corollaries which we
will also need.

We begin with some definitions. By “vector bundle” we will always mean a finite-
dimensional vector bundle. Recall that for any vector bundle V over an orbispace X ,
the fiber over a point p W � ! X is a vector space Vp which carries a linear action
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of the isotropy group Gp of p. A vector bundle is called coarse if and only if these
isotropy representations GpÕ Vp are all trivial — this is equivalent to V being pulled
back from the coarse space jX j, hence the terminology. A vector bundle is called
faithful if and only if the isotropy representations are all faithful. A vector bundle is
called module faithful if and only if each Vp is faithful RŒGp �–module (equivalently,
every irreducible representation of Gp occurs inside Vp). The pullback of a coarse
vector bundle is coarse, and the pullback of a (module) faithful vector bundle under a
representable map is (module) faithful.

Lemma 3.21 If V is a faithful representation of a finite group G, then the open set
V free � V on which G acts freely is open and dense.

Proof The complement of V free � V is the locus
S

1¤H�G V H , which is a finite
union of proper subspaces.

Lemma 3.22 If V is a faithful representation of a finite group G, then every irreducible
representation of G is a direct summand of a tensor power of V .

Proof This is a classical fact with many known proofs, whose correct attribution is
not known to me. By Lemma 3.21, there exists a point x 2 V � all of whose translates
by G are distinct. By Weierstrass, there exists a polynomial function on V � (that is, an
element of

L1
iD0 Symi V ) which is approximately a bump function supported around x.

The translates of this element under G are thus linearly independent, so their span
is a copy of the regular representation of G inside

L1
iD0 Symi V , which is in turn

contained in
L1

iD0 V ˝i .

It follows from Lemma 3.22 that given a faithful vector bundle E over a compact
orbispace (or, more generally, an orbispace with isotropy groups of bounded order),
there exists an N < 1 such that

LN
iD1 E˝i is module faithful. If E is a module

faithful vector bundle over a compact X and F is arbitrary (more generally, X could be
paracompact and F bounded dimensional), there exists an N <1 and an embedding
F ,!E˚N .

It was shown in [29] that every orbispace satisfying certain mild hypotheses admits
a faithful vector bundle. In particular, all compact orbispaces admit faithful vector
bundles. In fact, the construction gives somewhat more precise control on these faithful
vector bundles, however for us, all we need is the following:

Theorem 3.23 [29] Every finite orbi-CW–complex admits a faithful vector bundle.
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Note that the same thus holds for any space homotopy equivalent to a finite orbi-CW–
complex (such as a compact orbifold-with-boundary), since homotopy equivalences of
orbispaces are representable.

Corollary 3.24 Let f W X ! Y be a representable smooth map of smooth compact
orbifolds. There exists a vector bundle E=Y such that f lifts to a smooth embedding
of X into the total space of E.

(Recall that a smooth embedding of orbifolds is locally modeled on V =G �W =G for
an inclusion V �W of G–representations.)

Proof Let E be any module faithful vector bundle over Y . Choose arbitrarily a
connection on E, and equip f �E with the pullback connection. We claim that there
exists a section s of f �EN whose derivative ds W TX ! f �EN is injective. Indeed,
in local coordinates X DRn=G and E D .Rn �V /=G, for some actions of G on Rn

and V , consider the map s given by a G–equivariant linear map Rn! V N . Since V

contains all irreducible representations of G, by taking N large enough we can choose
Rn!V N to be injective. Thus ds is injective at zero, hence in a neighborhood; cutting
it off we can make it compactly supported. By compactness, we can take the direct
sum of finitely many such s to obtain a section s W X ! f �EN whose derivative is
injective everywhere. Such an s is a smooth immersion. A smooth immersion may be
“separated” by a map from X — necessarily factoring through jX j! — to RM , so our
desired vector bundle is EN ˚RM .

Recall that an orbifold (resp. orbifold-with-boundary) is locally modeled on Rn=G

(resp. .Rn�1 � R�0/=G), and that it is called effective when the homomorphisms
G! GLn.R/ are injective.

Corollary 3.25 Every finite orbi-CW–complex is homotopy equivalent to a compact
effective orbifold-with-boundary.

In fact, Corollary 3.25 is equivalent to Theorem 3.23 since every effective orbifold-
with-boundary admits a faithful vector bundle, namely its tangent bundle.

Proof We proceed by induction on the number of cells. Thus, suppose that X is a
compact effective orbifold-with-boundary and that Z DX [@Dk�BG .D

k �BG/ for
some representable map @Dk �BG!X . Let us show that Z is homotopy equivalent
to a compact effective orbifold-with-boundary. The strategy is to realize the cell
attachment to X as a handle attachment.
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By Corollary 3.24, after replacing X with the total space of (the unit disk bundle of)
a vector bundle over it (and smoothing its corners), we may assume that our map
@Dk�BG!X is a smooth embedding into @X . By the tubular neighborhood theorem,
this smooth embedding is locally modeled on the inclusion of the zero section into the
total space of a vector bundle � over @Dk�BG. Now we have �˚T .@Dk�BG/DT @X

over @Dk �BG, and identifying the outward normal along @X with the inward normal
along @Dk �BG, we obtain an identification �˚T .Dk �BG/D TX over @Dk �BG.
By Theorem 3.23, there exists a vector bundle � on Z and an embedding TX ,! �jX .
By replacing X with the total space of �jX =TX , we may assume that TX D �jX .
We thus have an embedding T .Dk �BG/ ,! � defined over @Dk �BG. By further
enlarging � (and modifying X as this requires), we may ensure that this embedding
T .Dk �BG/ ,! � extends to all of Dk �BG. The cokernel of this embedding is thus
an extension of � to Dk �BG, so we can perform a handle attachment to construct our
desired compact effective orbifold-with-boundary. Finally, we should note that in the
case k D 0, we should not take BG as this is not effective; rather, we can take the unit
ball in any faithful G–representation modulo G.

We will need an analogue of the previous corollary for orbi-CW–pairs. Let us define an
orbifold pair .X;A/ to consist of an orbifold-with-boundary X and a codimension-zero
suborbifold-with-boundary A � @X . In this paper, we only ever deal with compact
orbifold pairs.

Corollary 3.26 Every finite orbi-CW–pair is homotopy equivalent to a compact effec-
tive orbifold pair.

Proof Corollary 3.25 implies the result for finite orbi-CW–pairs of the form .X;X /;
namely, realize X as a compact orbifold-with-boundary Z and take .Z � Œ0; 1�;Z/.
Now given a finite orbi-CW–pair .X;A/, we begin with an orbifold pair homotopy
equivalent to .A;A/, and we successively attach handles (away from the marked part
of the boundary) as in the proof of Corollary 3.25 to make it homotopy equivalent
to .X;A/.

3.9 Stable homotopy categories of orbispaces

We now describe how to “‘stabilize”’ the categories OrbSpcf� and RepOrbSpcf� to
obtain categories of finite orbispectra. The categories of finite “naive orbispectra”
are defined by taking the direct limit of OrbSpcf� and RepOrbSpcf� under successive
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applications of the suspension operation† (namely �.I; @I/). The formal desuspension
.X;A/�V for any coarse vector bundle V makes sense as a naive orbispectrum, since
any such V embeds into a trivial vector bundle. We are more interested in the categories
OrbSpf and RepOrbSpf of finite “genuine orbispectra”, whose objects take the form
.X;A/�V for any vector bundles V , with morphisms being a suitable direct limit over
passing to Thom spaces of arbitrary vector bundles.

We first discuss naive orbispectra. The suspension operation � .I; @I/ defines an
endofunctor † of both RepOrbSpc� and OrbSpc�. The direct limit of successive
applications of this endofunctor defines stable homotopy categories

RepOrbSpc�Œ†
�1� WD lim

��!

�
RepOrbSpc�

†
�! RepOrbSpc�

†
�! � � �

�
;(3-32)

OrbSpc�Œ†
�1� WD lim

��!

�
OrbSpc�

†
�! OrbSpc�

†
�! � � �

�
:(3-33)

Concretely, the objects of both these categories are formal symbols †�n.X;A/ for
orbi-CW–pairs .X;A/ and integers n � 0, and the set of morphisms †�n.X;A/!

†�m.Y;B/ is the direct limit over k!1 of morphisms in RepOrbSpc� and OrbSpc�,
respectively, from†k�n.X;A/ to†k�m.Y;B/, which makes sense for k �max.m; n/.
It follows that † defines autoequivalences of RepOrbSpc�Œ†

�1� and OrbSpc�Œ†
�1�,

and that there is a natural isomorphism †�1..X;A/� .I; @I//D .X;A/ in both these
categories. There is a functor RepOrbSpc�Œ†

�1�!OrbSpc�Œ†
�1�. We can make sense

out of symbols .X;A/�V (here .X;A/ is a compact orbi-CW–pair and V a coarse
vector bundle over X ) as objects of RepOrbSpc�Œ†

�1� and OrbSpc�Œ†
�1�, namely by

embedding V ,!Rn and taking .X;A/�V WD†�n..X;A/R
n=V /, which is independent

of the choice of embedding V ,!Rn up to canonical isomorphism.

The category
Spc�Œ†

�1� WD lim
��!
.Spc�

†
�! Spc�

†
�! � � � /

lies as a full subcategory inside both RepOrbSpc�Œ†
�1� and OrbSpc�Œ†

�1�.

Lemma 3.27 The categories OrbSpc�Œ†
�1� and RepOrbSpc�Œ†

�1� are additive.

Proof There is a natural abelian group structure on the morphism space in OrbSpc�
and RepOrbSpc� from .X;A/ � .I2; @I2/ to .Y;B/. This gives an enrichment of
OrbSpc�Œ†

�1� and RepOrbSpc�Œ†
�1� over abelian groups. It is immediate that finite

disjoint unions are finite coproducts. A category enriched over abelian groups and
which has finite coproducts is additive.
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The categories OrbSpc�Œ†
�1� and RepOrbSpc�Œ†

�1� may be described alternatively
as localizations as follows. We consider the “Grothendieck construction”

(3-34) Groth
�
OrbSpc�

†
�! OrbSpc�

†
�! � � �

�
;

namely the category whose objects are formal symbols †�n.X;A/ and whose mor-
phisms †�n.X;A/!†�m.Y;B/ are morphisms .X;A/!†n�m.Y;B/ in OrbSpc�
for n�m (and there are no morphisms otherwise). There is a class A of morphisms
†�n.†n�m.X;A//!†�m.X;A/ corresponding to the identity map of †n�m.X;A/

for n�m. It is immediate that this class A forms a right multiplicative system, a notion
whose definition we now recall.

Definition 3.28 (right multiplicative system) A class of morphisms W in a category C
is called a right multiplicative system if and only if it satisfies the following three axioms:

� W contains all identities and is closed under composition.

� Right Ore condition For every pair of solid arrows

(3-35)
A B

C D

2W 2W

there exist an object A and dotted arrows such that the diagram commutes.

� Right cancellability For every commuting diagram of solid arrows

(3-36)
A B

C D

2W 2W

there exist an object A and dotted arrows such that the diagram commutes.

Note that W is not required to contain all isomorphisms. This is rather antithetical to
the philosophy of category theory, however this generality is significant for us.

For any right multiplicative system W in a category C, the localization C! CŒW �1�

exists provided a certain smallness condition is satisfied. Furthermore, for X;Y 2 C,
the set of morphisms X ! Y in CŒW �1� admits the following concrete description.
Given X 2 C, consider the category fZ W

�! X g whose objects are arrows Z W
�! X

and whose morphisms are morphisms over X , ie fZ W
�!X g is a full subcategory of
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the over-category C=X . The fact that W is a right multiplicative system implies that
fZ W
�! X g is filtered. Provided each category fZ W

�! X g is essentially small, the
localization CŒW �1� exists and the set of morphisms X ! Y in CŒW �1� is the direct
limit over fZ W

�!X g of the set of morphisms Z! Y .

The functor from the Grothendieck construction (3-34) to OrbSpc�Œ†
�1� sends A to

isomorphisms, hence factors uniquely through the localization. Using the explicit
description of morphisms in the localization by a right multiplicative system, it is
immediate that this functor is an equivalence.

We now define the categories of finite genuine orbispectra OrbSpf and RepOrbSpf.
Let us begin with the categories OrbSpcPairf;�Vect and RepOrbSpcPairf;�Vect, whose
objects are .X;A/�� , where .X;A/ is a finite orbi-CW–pair and � is a vector bun-
dle over X . A morphism in these categories .X;A/�� ! .Y;B/�� consists of a
(representable) map f W X ! Y , an embedding i W f �� ,! �, and a section s W X !

�= i.f ��/ such that A � f �1.B/ [ s�1.fj � j � "g/ for some " > 0 — these triples
.f; i; s/ W .X;A/��! .Y;B/�� are considered up to homotopy, namely the equivalence
relation of there being such a morphism .X � Œ0; 1�;A � Œ0; 1�/�� ! .Y;B/�� . To
compose

.X;A/��
.f;i;s/
����! .Y;B/��

.g;j ;t/
����! .Z;C /��

we take g ıf and j ı i ; now there is an extension

(3-37) 0! �= i.�/
j
! �=j .i.�//! �=j .�/! 0;

and choosing a splitting (which is unique up to homotopy) allows us to take tf ˚ j s

as our section for the composition. Composition is associative.

We now define categories OrbSpcf;�Vect
� and RepOrbSpcf;�Vect

� by modifying the
definition above by declaring that a morphism .X;A/�� Ü .Y;B/�� consists of
A � AC � X closed and U � X open with X D U [ .AC/ı and a morphism
.U;U \AC/�� ! .Y;B/�� in OrbSpcPairf;�Vect or RepOrbSpcPairf;�Vect; these are
considered modulo homotopy as usual. Composition of

(3-38) .X;A/�� .Y;B/�� .Z;C /��
.AC;U;f;i;s/ .BC;V;g;j ;t/

is given by .AC [ f �1.BC/; f �1.V /;g ı f; j ı i; tf ˚ j s/ as before. The proof of
Proposition 3.15 applies without modification to show that:
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Proposition 3.29 (excision) The functors

OrbSpcPairf;�Vect
! OrbSpcf;�Vect

� ;(3-39)

RepOrbSpcPairf;�Vect
! RepOrbSpcf;�Vect

� ;(3-40)

are localizations at the collection W of morphisms of the form .P;P \Q/�� !

.X;Q/�� , where X D P [Q is a cover by subcomplexes and � is a vector bundle
over X .

We now localize RepOrbSpcf;�Vect
� and OrbSpcf;�Vect

� at the class of morphisms S

given by the images of the isomorphism classes in RepOrbSpcPairf;�Vect of the tau-
tological morphisms ..X;A/�/�.�˚�/ ! .X;A/�� . The following deserves empha-
sis: the objects of RepOrbSpcf;�Vect

� and OrbSpcf;�Vect
� remain symbols .X;A/�� ,

and while two different symbols .X;A/�� and .X 0;A0/��
0

may be isomorphic in
the localizations RepOrbSpcf;�Vect

� or OrbSpcf;�Vect
� , they need not be isomorphic in

RepOrbSpcPairf;�Vect, and hence are regarded as completely different when it comes
to the question of whether a morphism is or is not in S .

Lemma 3.30 The morphisms S form a right multiplicative system in the categories
RepOrbSpcf;�Vect

� and OrbSpcf;�Vect
� .

Proof Closedness under composition holds because any vector bundle on the total
space of a vector bundle is pulled back from the base, so a Thom space of a Thom space
is a Thom space. (Note that isomorphisms in RepOrbSpcf;�Vect

� and OrbSpcf;�Vect
�

need not be in S , and that we have not shown that S is not closed under composing
with such isomorphisms!)

We verify the right Ore condition. When the morphism C!D in OrbSpcf;�Vect
� comes

from OrbSpcPairf;�Vect (and similarly with “Rep” prefixes), we can simply pull back
the bundle involved in B!D:

(3-41)
..X;A/f

��/�.�˚f
��/ ..Y;B/�/�.�˚�/

.X;A/�� .Y;B/��

2S 2S

In the general case, the bottom row becomes

.X;A/�� ! .X;AC/��  .U;U \AC/�� ! .Y;B/�� :
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Now we may pull back � to U , but not to X . Instead, we appeal to Theorem 3.23
(enough vector bundles) to embed the pullback of � to U into the restriction of a vector
bundle � on X . We thus obtain the following diagram:

(3-42)

..X;A/� /�.�˚�/ ..X;AC/� /�.�˚�/ ..U;U\AC/� /�.�˚�/

..U;U\AC/f
��/�.�˚f

��/ ..Y;B/�/�.�˚�/

.X;A/�� .X;AC/�� .U;U\AC/�� .Y;B/��

2S 2S

2W

2S

2S 2S

2W

The desired result follows.

We verify right cancellability. It suffices to show that given maps C ! B
2S
�! D,

applying the pullback procedure above to C !D
2S
 � B results in C

2S
 �A! B for

which A! B and A! C ! B coincide (in this way, the dotted arrows in (3-36) that
we produce depend only on the maps C ! D

2S
 � B). As above, we first consider

the situation of a morphism C ! D coming from OrbSpcPairf;�Vect (or similarly,
from RepOrbSpcPairf;�Vect), ie we consider (3-41). Even in this setting, the desired
commutativity is not obvious and requires the following calculation. We reproduce the
relevant diagram, rewriting it in a more convenient way:

(3-43)
..X;A/f

��/�.f
��˚f ��˚�˚f ��/ ..Y;B/�/�.�˚�/

.X;A/�.f
��˚f ��˚�/ .Y;B/��

Let the diagonal map .X;A/�� ! ..Y;B/�/�.�˚�/ be given by the maps f WX ! Y ,
g WX ! f ��, the obvious inclusion f �.�˚�/ ,! f ��˚f ��˚� , and s WX ! � . Now
we have two maps ..X;A/f

��/�.f
��˚f ��˚�˚f ��/! ..Y;B/�/�.�˚�/ which we wish

to show are homotopic. The top horizontal arrow is given by f � WX f ��! Y �, the
inclusion f ��˚f �� ,! f ��˚f ��˚�˚f ��, where f �� goes to the last copy, and
the section X f ��!X

s˚g
��! �˚f ��. The composition of the left vertical arrow and

the diagonal arrow is given by .f ı�X ;g/ WX
f ��! Y �, the inclusion f ��˚f �� ,!

f ��˚f ��˚�˚f ��, where f �� goes to the first copy, and s˚�f �� WX
f ��!�˚f ��.

These maps are evidently not the same, but they are homotopic as follows. We first apply
the obvious linear homotopy from one inclusion f ��˚f �� ,! f ��˚f ��˚�˚f ��

to the other, noting that the induced action on the cokernel, naturally identified in both
cases with f ��, is multiplication by �1. Now our two maps coincide except that we
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need to transform .g; idf ��/ into .idf ��;�g/ (note the sign picked up from the first
homotopy), which we can do using rotation matrices for � 2 Œ0; �=2�.

Finally, we should show right cancellability in the case of general maps C !D; we
use the same strategy as above. Note that a pullback along C !D involves a choice of
vector bundle � over C (let us call this a �–pullback), and that a choice of embedding
� ,! � determines a map from �–pullbacks to �–pullbacks (“stabilization”). Now it
is evident from the definition that given a �–pullback and a � 0–pullback, there exist
embeddings � ,! � and � 0 ,! � such that the induced �–pullbacks coincide. Note that
this includes the assertion that pullbacks induced by homotopic maps are equivalent,
which is shown by considering the pullback along the homotopy itself. It now suffices
to show the same commutativity as before, namely that A!C !B and A!B agree.
To see this, note that the present situation is that of the solid arrows in (3-42) plus
a single additional diagonal arrow .U;U \AC/�� ! ..Y;B/�/�.�˚�/ in the lower
rightmost square. The resulting dotted arrows in that square commute by the reasoning
in the previous paragraph, which combined with the commutativity of the rest of the
diagram imply that everything commutes.

The right multiplicative system S also satisfies the smallness condition needed to
localize: the category of S–morphisms over .X;A/�� has as its objects all vector
bundles over X , and the isomorphism classes of these form a set.

By Lemma 3.30 and the smallness condition, the localizations of RepOrbSpcf;�Vect
�

and OrbSpcf;�Vect
� at S exist, and we denote these localizations by RepOrbSpf and

OrbSpf, respectively. Morphisms .X;A/�� ! .Y;B/�� in RepOrbSpf and OrbSpf

are thus described as the direct limit over vector bundles � over X of morphisms
..X;A/�/�.�˚�/ ! .Y;B/�� in RepOrbSpcf;�Vect

� and OrbSpcf;�Vect
� , respectively.

Now it makes sense to write .X;A/V for an object of RepOrbSpf for any finite orbi-
CW–pair .X;A/ and any stable vector bundle V over X , since a stable isomorphism E�

F DE0�F 0 induces an isomorphism ..X;A/E/�F D ..X;A/E
0

/�F 0 in RepOrbSpf.

There are functors RepOrbSpcf� Œ†�1�! RepOrbSpf and OrbSpcf� Œ†�1�! OrbSpf.
To construct them, note that †�n.X;A/ 7! .X;A/�Rn

defines functors out of the
relevant Grothendieck constructions, which send A to isomorphisms.

Lemma 3.31 The categories RepOrbSpf and OrbSpf are additive.

Proof Same as Lemma 3.27.
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For any covering space .X 0;A0/! .X;A/ (meaning X 0 ! X is a covering space
and A0 DA�X X 0), there is an induced map .X;A/! .X 0;A0/ in RepOrbSpf. It is
defined by embedding X 0 into the total space of a vector bundle over X — which exists
by enough vector bundles Theorem 3.23 — and taking the usual collapse map.

There is a functor RepOrbSpf ! OrbSpf, and the category of finite spectra Spf is a
full subcategory of both.

There is a classifying space functor OrbSpf ! Sp, defined as follows. We first
define the corresponding functor OrbSpcPairf;�Vect

! Sp, which sends .X;A/�V to
. zX ; zA/�V 2 Sp; concretely, . zX ; zA/�V is the direct limit over finite subcomplexes
. zX0; zA0/ and embeddings V j zX0

,! RN of †�N .. zX0; zA0/
RN =V /). Given a map

.X;A/�V ! .Y;B/�W in OrbSpcPairf;�Vect consisting of a map f W X ! Y , an
inclusion f �W ,! V and a section s WX ! V =f �W , we define a map . zX ; zA/�V !

. zY ; zB/�W in Sp as follows. Choose classifying spaces zA � zX and zB � zY and
the map zf W zX ! zY fitting into a strictly commutative diagram with f such that
zf .f �1.B// � zB; this can be done by induction on the cells of .X;A/ and .Y;B/.

Now the map zf W zX ! zY , the pullback inclusion zf �W ,! V and the pullback of s

define a map . zX ; zA/�V ! . zY ; zB/�W in SpcPair�Vect, hence in Sp; concretely, the
induced map in Sp is given, over a given finite subcomplex of . zX ; zA/, by taking N large
enough that the map f �W ,! V ,!RN is homotopic to the pullback of W ,!RN ,
so f �.RN =W /D .RN =V /˚V =f �W . So we may use the identity on the first factor
and the section s on the second factor to define a map . zX ; zA/R

N =V ! . zY ; zB/R
N =W

(strictly speaking, only on arbitrary finite subcomplexes thereof), which we desuspend
by N . It is immediate to check that morphisms W are sent to isomorphisms, and
morphisms S are also by inspection. We therefore have a classifying space functor
OrbSpf ! Sp.

There is a symmetric monoidal “smash product” ^ on RepOrbSpf and OrbSpf defined
as follows. The product .X;A/�� � .Y;B/�� WD .X �Y; .A�Y /[ .X �B//���� is
a symmetric monoidal structure on RepOrbSpcPairf;�Vect and OrbSpcPairf;�Vect. To
see that it descends to RepOrbSpf and OrbSpf, it suffices to show that a morphism in
W or S times a fixed .Y;B/�� again lies in W or S . For S this is obvious, and for
W this follows by inspection exactly as in the construction of the smash product on
RepOrbSpcf� and OrbSpcf�.

There is a natural isomorphism .Z ^W /� D zZ ^ zW for Z;W 2 OrbSpf ; to de-
fine this, it suffices to define it on the corresponding functors out of the product
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OrbSpcPairf;�Vect
� OrbSpcPairf;�Vect, where it is defined in the same way as the

corresponding isomorphisms for Z;W 2 OrbSpc�.

3.10 Exact triangles

A triple of morphisms in RepOrbSpf is called a cofiber sequence if and only if it is
isomorphic to

(3-44) .Y;B/�� ! .X;A/�� ! .X;A[B Y /��

for an orbi-CW–complex X with two subcomplexes A;Y � X and B WDA\Y and
a vector bundle � over X ; compare (3-25). We now show that every morphism in
RepOrbSpf has a cofiber, from which it follows that every morphism can be extended
to a bi-infinite cofiber sequence by desuspending the Puppe sequence.

Proposition 3.32 Every morphism in RepOrbSpf is isomorphic to one of the form
.Y;B/�� ! .X;A/�� for X an orbi-CW–complex carrying a vector bundle � and
A;Y �X subcomplexes with B DA\Y .

Proof Since the localization RepOrbSpcf;�Vect
�

S�1

��! RepOrbSpf is by a right mul-
tiplicative system, every morphism in the target is isomorphic to one coming from
the source. In other words, every morphism in RepOrbSpf is (up to isomorphism)
a formal composition .X;A/�� ! .X;AC/��  .U;U \AC/��

f
�! .Y;B/�� . As

in the proof of Proposition 3.18, we may assume that U;AC �X are subcomplexes
covering X . Form the gluing X [U .U � Œ0; 1�/[U Y , and find, using enough vector
bundles (Theorem 3.23), a vector bundle � over it together with embeddings � ,! � jX

and � ,! � jY . By replacing � with � ˚ � , we may ensure that the composition
f �� ,! �jU ,! � jU is homotopic to the pullback under f of the embedding � ,! � jY .
We thus obtain a commutative diagram

(3-45)

..X;A/� jX =�/�� jX ..X;AC/� jX =�/�� jX ..U;U\AC/� jU =�jU /�� jU ..Y;B/� jY =�/�� jY

.X;A/�� .X;AC/�� .U;U\AC/�� .Y;B/��

2S 2S 2S 2S

Now the top row is just the desuspension by � of maps .X;A/� jX=�! .X;AC/� jX=� 

.U;U \AC/� jU =�jU ! .Y;B/� jY =� , all of which respect the vector bundle � being
desuspended by. Now take this as (3-26) and apply the construction of that proof to it,
and then desuspend by � (which we crucially must note does indeed make sense on the
result).
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3.11 Stabilizing over R.�/

Let us now give an alternative definition of RepOrbSpf (but not of OrbSpf ). Morally,
we would like to simply say that

(3-46) RepOrbSpf D lim
��!

Vect.R.�//
RepOrbSpc;

in the sense that every orbi-CW–complex X admits a unique up to contractible
choice representable map to R.�/, so vector bundles on R.�/ act by endofunctors on
RepOrbSpc by pulling back and passing to Thom spaces. There is a problem with
taking (3-46) literally: there are not enough vector bundles on R.�/, so instead we will
filter R.�/ by subcomplexes. Here are the details.

For N � 1, let R.�/N denote the image of � 2 OrbSpcN under the right adjoint to
RepOrbSpcN !OrbSpcN (which exists by the same argument as in Proposition 3.12),
where the subscript N indicates restricting to orbi-CW–complexes with isotropy groups
of order �N . There are representable maps R.�/N !R.�/M for N �M by abstract
nonsense (the functor RepOrbSpcN ! RepOrbSpcM induces a map between their
terminal objects), and the infinite mapping cylinder of R.�/1!R.�/2!R.�/3!� � �

is R.�/. Concretely, R.�/N is given by (3-16) restricted to groups of order �N .

Fix orbi-CW–complexes R.�/N and cellular maps R.�/N !R.�/NC1, and let R.�/

denote their infinite mapping cylinder. Let R.�/N;k denote the k–skeleton of R.�/N .
Note that, whereas R.�/N has an intrinsic functorial description, R.�/N;k does not: it
depends on the chosen orbi-CW–complex realization of R.�/N . Concretely, we may
(but are not obliged to) take R.�/N;k to be the subcomplex of (3-16) spanned by groups
of order �N and simplices of dimension � k. Now every map @Dr �BG!R.�/N;k

extends to Dr �BG provided r � k and jGj �N .

Now suppose X is an orbi-CW–complex of dimension � k with isotropy groups
of order � N . Then there exists a representable map X ! R.�/N;kC2, any two
such maps are homotopic, and any two homotopies are homotopic rel endpoints. In
particular, for every vector bundle � over R.�/N;kC2, we obtain a vector bundle �X
which is well-defined up to unique homotopy class of isomorphism. Moreover, for any
representable map X ! Y , the pullback of �Y is isomorphic to �X by an isomorphism
which is well-defined up to homotopy, and this rule is compatible with composition
X ! Y !Z.

Now let RepOrbSpcPairN;k � RepOrbSpcPair denote the full subcategory spanned
by those orbi-CW–pairs .X;A/ for which X (though not necessarily A) is homotopy
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equivalent to an orbi-CW–complex of dimension � k with isotropy groups of size �N .
Given any vector bundle � over R.�/N;kC2, suspension by the pullback of � defines a
functor from RepOrbSpcPairN;k to itself. Let Vect2.R.�/N;k/ denote the 2–category
whose objects are vector bundles over R.�/N;k , whose morphisms are inclusions
V ,! V 0, and whose 2–morphisms are homotopy classes of paths in Emb.V;V 0/. We
may consider the direct limit

(3-47) lim
��!

Vect2.R.�/N;kC2/

RepOrbSpcPairN;k ;

where to an inclusion of vector bundles � ,! � 0 on R.�/N;kC2 we associate the endo-
functor of RepOrbSpcPairN;k given by suspending by the pullback of � 0=� . We may also
define (3-47) more concretely (without discussing direct limits of categories over filtered
2–categories): its objects are triples .X;A; �/, where .X;A/ 2 RepOrbSpcPairN;k and
� is a vector bundle on R.�/N;kC2, and the set of morphisms .X;A; �/! .Y;B; �/ is
the direct limit over �2Vect.R.�/N;kC2/ of the set of pairs of embeddings � ,! � - �

and maps .X;A/.�=�/X ! .Y;B/.�=�/Y, modulo simultaneous homotopy of the embed-
dings and the map.

Now note that increasing N and k induces a full faithful inclusion of categories (3-47),
since restriction of vector bundles between these subcomplexes of R.�/ is cofinal by
enough vector bundles Theorem 3.23 (or, rather, the stronger version [29, Theorem 1.1],
which applies since R.�/N;kC2 has bounded dimension and bounded isotropy groups).
We therefore obtain a category

(3-48) lim
��!
N;k

lim
��!

Vect2.R.�/N;kC2/

RepOrbSpcPairN;k :

Restricting to the full subcategory spanned by finite orbi-CW–pairs, ie replacing
RepOrbSpcPairN;k with RepOrbSpcPairf

N;k
, we obtain a natural functor to RepOrbSpf,

namely the map given by sending the object .X;A/ in the �–term of the direct limit to
.X;A/��X (with the obvious action on morphisms); this is a map out of each copy of
RepOrbSpcPairf

N;k
, and descends by the natural coherences.

Proposition 3.33 The functor

(3-49) lim
��!
N;k

lim
��!

Vect2.R.�/N;kC2/

RepOrbSpcPairf
N;k
! RepOrbSpf

is the localization at the morphisms .P;P \Q/��P ! .X;Q/��X for X DP [Q and
� a vector bundle on R.�/N;kC2.
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Proof The morphisms .P;P \Q/��! .X;Q/�� for � any vector bundle on X (not
necessarily pulled back from R.�/N;kC2) are sent to isomorphisms by Proposition 3.29.

First, we note that in the definition of RepOrbSpf as the double localization

(3-50) RepOrbSpcPairf;�Vect W �1

���! RepOrbSpcf;�Vect
�

S�1

���! RepOrbSpf;

ie first localizing at the class W of morphisms .P;P \Q/�� ! .X;Q/�� and then
at the class S of morphisms ..X;A/V /�V�� ! .X;A/�� , we could instead localize
in the reverse order. Indeed, given that the localization of RepOrbSpcPairf;�Vect at
W tS exists, it suffices to argue that its localization at S exists. In fact, S forms a right
multiplicative system in RepOrbSpcPairf;�Vect — this “easier” variant of Lemma 3.30
was the first step in its proof, in fact. Thus the localization RepOrbSpcPairf;�VectŒS�1�

exists, and morphisms .X;A/�� ! .Y;B/�� in it are the direct limit over �=X of
morphisms ..X;A/�/���� ! .Y;B/�� in RepOrbSpcPairf;�Vect.

Now it suffices to show that there is a natural equivalence

(3-51) lim
��!
N;k

lim
��!

Vect2.R.�/N;kC2/

RepOrbSpcPairf
N;k
! RepOrbSpcPairf;�VectŒS�1�:

First, let us describe the functor: the copy of RepOrbSpcPairf
N;k

over the object � 2
Vect2.R.�//N;kC2 maps to RepOrbSpcPairf;�VectŒS�1� as .X;A/ 7! .X;A/��X . This
functor is obviously essentially surjective, since .X;A/�� in the target is isomorphic
to ..X;A/�X=�/��X for any embedding � ,! �X . It thus remains to show that (3-51)
is fully faithful.

In both the source and target of (3-51), the morphisms sets are expressed as direct
limits. The set of morphisms .X;A/��X ! .Y;B/��Y in the domain of (3-51) (where
.X;A/; .Y;B/2RepOrbSpcPairf

N;k
and �2Vect2.R.�/N;kC2/) is the direct limit over

� 2 Vect.R.�/N;kC2/ of the set of representable morphisms .X;A/�X ! .Y;B/�Y .
The set of morphisms between their images under (3-51) is the direct limit over vector
bundles E over X of tuples consisting of a representable map f from the total space
of E to Y , an embedding f ��Y ,! �X ˚E and a section of .�X ˚E/= i.f ��Y / such
that the “relative part” of .X;A/E is contained in f �1.B/[ s�1.fj � j � "g/. Since f
is representable, there is a natural identification f ��Y D �X , which gives a canonical
choice of embedding f ��Y ,! �X ˚E, which need not coincide with the embedding
which is chosen as part of the data. However, for the purposes of calculating the
direct limit over E, we may assume that the chosen embedding f ��Y ,! �X ˚E

is the canonical one: indeed, given any such embedding, passing to an appropriate
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E0 �E makes it homotopic to the canonical one, and similarly any homotopy from the
canonical embedding to itself can be made nullhomotopic rel endpoints by enlarging E.
Hence the set of morphisms in the target of (3-51) is the direct limit over vector
bundles E over X of tuples consisting of a representable map f from the total space
of E to Y and a section of E such that the relative part of .X;A/E is contained in
f �1.B/[ s�1.fj � j � "g/. By cofinality, we may instead declare that E D �X and take
the direct limit over � 2 Vect.R.�/N;kC2/ of the set of maps .X;A/�X ! .Y;B/�Y in
RepOrbSpcPairf

N;k
, since �X D f ��Y canonically for any representable map f .

Given the description of RepOrbSpf as a direct limit over suspension by vector bundles
pulled back from R.�/, it is natural to make the following conjecture, parallel to
Conjecture 3.14.

Conjecture 3.34 The category RepOrbSpf is a generating full subcategory of the
category of parametrized spectra over R.�/.

If Conjecture 3.34 is valid, it is natural then to ask whether fiberwise Spanier–Whitehead
duality makes sense and, if it does, how it is related to the duality involution from
Theorem 1.3, which we prove immediately below.

3.12 Duality

We now define the contravariant involution D WRepOrbSpf ! .RepOrbSpf /op as stated
in Theorem 1.3.

Proof of Theorem 1.3 To begin, we define D W RepOrbSpcPairf ! .RepOrbSpf /op.
By Corollary 3.26, we may regard RepOrbSpcPairf as the category of compact orbifold
pairs (and morphisms thereof). For any compact orbifold pair .X;A/, we set

(3-52) D.X;A/ WD .X; @X �Aı/�TX :

The functoriality of D under maps of orbifold pairs .X;A/! .Y;B/ is defined as
follows. First, for any vector bundle E over Y , denote by .Y E ;BE/ the pair consisting
of the total spaces of the unit disk bundles of E over Y and B. Obviously .Y E ;BE/!

.Y;B/ is an isomorphism in RepOrbSpcPairf, and there is also a natural identification
D.Y E ;BE/DD.Y;B/— the effect on duals of passing from .Y;B/ to .Y E ;BE/ is to
suspend and desuspend by E. Now, choose E so that our map X ! Y lifts to a smooth
embedding X!Y E , meeting the boundary of Y E transversely precisely in A. There is
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now an obvious collapse map .Y E ; @Y E � .BE/ı/Ü .X; @X �Aı/T Y E=TX , which
is independent up to homotopy of the choice of lift of X ! Y to X ! Y E , and this
collapse map is our desired map D.Y;B/DD.Y E ;BE/!D.X;A/. By embedding
any two choices of E into a third, we see that the map D.Y;B/!D.X;A/ thus defined
is independent of the choice of E. Making the same construction in a family over Œ0; 1�
shows that it is invariant under homotopy. One also checks that this recipe is compatible
with composition, and hence defines a functor D WRepOrbSpcPairf ! .RepOrbSpf /op.

To descend this functor to D W RepOrbSpcf� ! .RepOrbSpf /op, by Proposition 3.15 it
suffices to check that D sends certain maps to isomorphisms. Specifically, let .X;A/
be a compact orbifold pair, P a compact orbifold-with-boundary and @A -Q ,! @P

an identification between compact codimension-zero suborbifolds-with-boundary of @A
and @P . We may form .X;A/ #Q .P � Œ0; 1�;P / and consider the inclusion .X;A/ ,!
.X;A/ #Q .P � Œ0; 1�;P /. These inclusions are precisely the morphisms inverted by
the localization RepOrbSpcPairf ! RepOrbSpcf� from Proposition 3.15. Now, it is
evident that the dual of the inclusion .X;A/ ,! .X;A/ #Q .P � Œ0; 1�;P / is a map
.X; @X �Aı/�T  ..X; @X �Aı/ #Q .P � Œ0; 1�;P //

�T (the superscript �T denotes
desuspension by the tangent bundle), which is also an isomorphism in RepOrbSpf, so
we are done.

We now define

(3-53) D W lim
��!
N;k

lim
��!

Vect2.R.�/N;kC2/

RepOrbSpcPairf
N;k
! .RepOrbSpf /op:

As above, we define D..X;A/��X / WD .X; @X �Aı/�X�TX for .X;A/ a compact
orbifold pair. The functoriality under maps in RepOrbSpcPairf

N;k
is the same as before:

the space of stable maps .Y; @Y �Bı/�Y �T Y ! .X; @X �Aı/�X�TX is the same as
the space of stable maps .Y; @Y �Bı/�T Y ! .X; @X�Aı/�TX , so we simply take the
same map D.Y;B/!D.X;A/ associated to our original map .X;A/! .Y;B/. This
recipe is compatible with the morphisms in the direct limit over Vect2.R.�/N;kC2/ by
inspection (and then obviously with the direct limit over N and k), so we obtain the
functor (3-53).

By Proposition 3.33, to descend D from (3-53) to RepOrbSpf, it suffices to verify that
it sends certain maps to isomorphisms, but these are exactly the same as we already
saw above. We therefore obtain the desired functor D.

By inspection, D sends cofiber sequences to cofiber sequences.
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There is an obvious identification DDX D X for every X 2 RepOrbSpf, directly
from the definition. To check that this defines a natural isomorphism of functors
D2 D 1, we just need to show that it is compatible with morphisms. Any morphism
in RepOrbSpf can be expressed as .X;A/��X ! .Y;B/��Y for compact orbifold
pairs .X;A/; .Y;B/ 2 RepOrbSpcPairN;k�2 and � 2 Vect2.R.�/N;k/ and some map
f � W .X;A/! .Y;B/ which is a smooth embedding of orbifold pairs (ie ADX\B and
X meets the boundary of Y transversely). We then have a collapse map .Y; @Y �Bı/!

.Y;Y �N"X /, whose target is relatively homotopy equivalent to .X; @X �Aı/T Y=TX ;
this collapse map is .Df /T Y�� . Now we may realize this collapse map as an embedding

(3-54) .Y; @Y �Bı/
�f 1

2g
,���!

�
Y � Œ0; 1�; ..@Y �Bı/� Œ0; 1�/[ ..Y �N "X /�f1g/

�
:

We may now dualize it again to obtain

†.X;A/D
�
N"X � Œ0; 1�; .N"X � @Œ0; 1�/[ .A� Œ0; 1�/

�
(3-55)

D
�
Y � Œ0; 1�; .B � Œ0; 1�/[ .Y � f0g/[ .N"X � f1g/

�
!†.Y;B/;(3-56)

which is indeed (the suspension of) the map we started with.

Duality commutes with smash product: there are natural isomorphisms D.Z ^W /D

DZ ^ DW for Z;W 2 RepOrbSpf. Indeed, it suffices to define such a natural
isomorphism of functors of Z and W in the left side of (3-49) (where we may assume all
objects are compact orbifold pairs), and such an isomorphism is evident by inspection.

There is a natural pairing Z ^DZ!R.�/, defined as follows. Let Z D .X;A/�� be
an orbifold pair desuspended by a vector bundle. The diagonal gives a map

(3-57) .X; @X /! .X;A/�� ^ .X; @X �Aı/� :

We desuspend to obtain .X; @X /�TX ! .X;A/�� ^ .X; @X � Aı/��TX and then
dualize to obtain a map Z^DZ!X . Composing with the canonical map X !R.�/

defines the desired map Z ^DZ!R.�/.

4 Vector bundles

4.1 Classifying spaces

For any compact Lie group G, let us argue that there is an object BG 2 OrbSpc
which classifies principal G–bundles, in the sense that it carries a principal G–bundle

Geometry & Topology, Volume 27 (2023)



1808 John Pardon

EG! BG such that the induced map from homotopy classes of maps X ! BG to
isomorphism classes of principal G–bundles over X is a bijection for any orbi-CW–
complex X . (By Lemma 2.7, for any orbi-CW–complex X , necessarily paracompact,
every principal G–bundle over X � Œ0; 1� is pulled back from X , so there is indeed
such a map.) Note that �=G has this representing property for all stacks, not just
orbi-CW–complexes, however it is not itself an orbi-CW–complex unless G is finite,
so it is not (in the present context) BG.

Lemma 4.1 The classifying space BG 2 OrbSpc exists.

Proof We argue as in Proposition 3.12. Construct, by induction, an orbi-CW–complex
BG carrying a faithful principal G–bundle EG ! BG. Begin with .BG/�1 D ¿.
Consider triples consisting of a map @Dk �B� ! .BG/k�1, a faithful principal G–
bundle P over Dk �B� , and an isomorphism over @Dk �B� between the restriction
of P and the pullback of .EG/k�1. Note that since P ! Dk � B� is faithful, the
map @Dk �B�! .BG/k�1 must necessarily be representable. To define .BG/k , we
attach a cell to .BG/k�1 for each homotopy class of such triple (we may omit trivial
homotopy classes, ie those which are induced by maps Dk �B� ! .BG/k�1); the
data of each triple tells us how to extend .EG/k�1! .BG/k�1 to .EG/k ! .BG/k .

Now we claim that EG ! BG is the desired universal principal G–bundle over
an orbi-CW–complex. It suffices to show that for every triple consisting of a map
@Dk �B�! BG, a principal G–bundle P over Dk �B� , and an isomorphism over
@Dk �B� between the restriction of P and the pullback of EG, we can extend the map
and the isomorphism to Dk �B� . By cellular approximation, we may assume the map
@Dk �B�! BG lands inside .BG/k�1. Now our principal G–bundle over Dk �B�
is necessarily pulled back from B� (since Dk is contractible) hence is classified by
a conjugacy class of homomorphisms � ! G. In particular, it is pulled back from
Dk�B.�=N / for N E� the kernel. Since the principal G–bundle over BG is faithful,
this map also factors, uniquely, through Dk �B.�=N / by Lemma 3.4. Now that we
have a representable map to .BG/k�1, we can appeal to the definition of .BG/k to see
that the triple involving Dk �B.�=N / extends as desired, hence by precomposition
the original triple as well.

Remark 4.2 Another construction of BG is given in [29]. There, the G–CW–complex
EG is defined by the property of carrying a G–action with finite stabilizers such that
.EG/H is contractible for every finite subgroup H � G. The orbispace BG is then
defined as the quotient .EG/=G.
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Note that since EG! BG is faithful, a principal G–bundle P !X is faithful if and
only if the corresponding map X ! BG is representable.

It is important to note that the extension property shown above in the proof that
BG represents the functor of isomorphism classes of principal G–bundles is strictly
stronger than the representing property (though of course a posteriori it is equivalent).
The extension property corresponds to a more homotopical (1–categorical or model
categorical) universal property of BG, and it will be used implicitly at later points,
eg to know that every isomorphism of principal G–bundles is induced by a homotopy
of maps to BG.

Remark 4.3 The object classifying principal G–bundles depends strongly on the
category we are working in. For example, the CW–complex BG 2 Spc classifying
principal G–bundles over CW–complexes evidently does not coincide with the orbi-
CW–complex BG 2OrbSpc classifying principal G–bundles over orbi-CW–complexes.
Rather, it is immediate that the right adjoint to the inclusion Spc ,!OrbSpc, namely the
classifying space functor, sends BG to BG (and R.BG/ classifies principal G–bundles
in the category RepOrbSpc). Similarly, if we were to define a larger category of “Lie
orbispaces” allowing objects such as �=G, then the right adjoint (if it exists) to the
inclusion of OrbSpc into this larger category would send �=G to (what we have decided
to call) BG 2 OrbSpc. As a more explicit warning to the reader: the most natural
meaning of the symbol BG thus differs from context to context, and it should probably
default to BG WD �=G unless the contrary is explicitly stated, as we have done here.

4.2 Stable vector bundles

We discuss stable vector bundles on orbi-CW–complexes. The principal new feature
in this discussion compared with the corresponding discussion for CW–complexes is
that there are many different ways to “stabilize”. We will consider only two extreme
notions: “coarse stabilization”, involving a direct limit over ˚R, or, equivalently, over
˚V for arbitrary coarse vector bundles, and “stabilization”, involving a direct limit
over ˚V for arbitrary vector bundles V .

For an orbi-CW–complex X , let Vect.X / denote the category whose objects are vector
bundles over X and whose morphisms are homotopy classes of injective maps. As a
set, Vect.X / is the set of homotopy classes of maps X !

F
n�0 BO.n/.

Lemma 4.4 The category Vect.X / is filtered.
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Example 4.5 A vector bundle over BG is a G–representation. Thus objects of
Vect.BG/ are in bijection with elements of Z

yG
�0

, where yG denotes the set of iso-
morphism classes of real irreducible representations of G. An automorphism of an
object of Vect.BG/ also splits as a direct sum of isotypic pieces. The component group
of the space of automorphisms of �˚n for n > 0 is Z=2 if End.�/D R and is trivial
otherwise (ie if End.�/DC or H).

For two vector bundles V and W on X , let �0 Iso.V;W / denote homotopy classes
of isomorphisms V !W . Vector bundles and isomorphisms up to homotopy form a
groupoid Vect.X /iso. A stable isomorphism V ÜW up to homotopy is an element of

(4-1) �0 Isost.V;W / WD lim
��!

E2Vect.X /
�0 Iso.V ˚E;W ˚E/:

Vector bundles and stable isomorphisms also form a groupoid Vect.X /st
iso. If we

restrict (4-1) to coarse vector bundles E, we obtain the notion of a coarsely stable
isomorphism and a resulting groupoid Vect.X /cst

iso. If X is compact, then the sequence
0 ,! R ,! R2 ,! � � � is cofinal in coarse vector bundles on X , so it is equivalent to
stabilize just by these. When stabilizing with respect to all vector bundles, there seems
to be no such nice canonical sequence (though see [29, Remark 1.4]). The notion of
stable isomorphism is most reasonable when X is compact (or at least has enough
vector bundles).

The groupoid of vector bundles and stable isomorphisms may be extended to a larger
groupoid of stable vector bundles (similarly, the groupoid of vector bundles and coarsely
stable isomorphisms extends to a groupoid of coarsely stable vector bundles). A
(coarsely) stable vector bundle is a formal difference E �F (where F is coarse); if
X is compact a coarse vector bundle is equivalently a formal difference E �Rn. An
isomorphism of (coarsely) stable vector bundles .E �F /! .E0�F 0/ is a (coarsely)
stable isomorphism E ˚ F 0Ü E0 ˚ F ; note that we can indeed compose these.
Provided X is compact, the groupoid of coarsely stable vector bundles is the direct
limit of Vect.X / ˚R

��! Vect.X / ˚R
��! � � � . The groupoid of stable vector bundles is

the direct limit of Vect.X / over the 2–categorical refinement Vect2.X / of Vect.X / in
which a morphism is an inclusion of vector bundles and a 2–morphism is a homotopy
class of paths of inclusions.

Example 4.6 Isomorphism classes of stable vector bundles on BG are in bijection
with Z

yG . The automorphism group of every one is the product of Z=2 over all � 2 yG
with End.�/DR. Coarsely stable vector bundles on BG are in bijection with Z˚Z

yG�1
�0

,
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and the automorphism group of a coarsely stable vector bundle is Z=2 (corresponding
to �D 1) times the product of Z=2 over all �¤ 1 for which End.�/DR and whose
isotypic piece is nontrivial.

There is an orbi-CW–complex bO WD lim
��!n

BO.n/ defined as the infinite mapping
cylinder of the maps BO.n/

˚R
��! BO.nC 1/. This orbispace bO classifies coarsely

stable vector bundles: a map X ! bO up to homotopy is the same as a coarsely stable
vector bundles of dimension zero over X up to isomorphism. The notation bO is chosen
to coincide with the notation for a corresponding global space defined by Schwede
[34, Section 2.4], which has the same classifying property; see Section 6.2 below.

One might desire an orbispace BO classifying stable vector bundles; intuitively, it
should be the group completion of

F
n BO.n/. There is indeed a global space BO

[34, Section 2.4] which is the group completion [34, Theorem 2.5.33] and which has
this desired classifying property, as we will see in Section 6.2. Note that if we were
to naively apply the usual definition of group completion to the monoid

F
n BO.n/,

we would need to apply B to it, and this would involve gluing along nonrepresentable
maps. In fact:

Lemma 4.7 There does not exist an orbi-CW–complex BO and a functorial bijection
between isomorphism classes of stable vector bundles over orbi-CW–complexes X and
homotopy classes of maps X ! BO.

Proof Consider a vector bundle V over a CW–complex X which is not stably trivial,
eg one with nontrivial Pontryagin classes. Now fix a nontrivial irreducible representa-
tion Q of a finite group G, and consider the stable vector bundle .V �RjV j/˝Q over
X �BG. The restriction of this stable vector bundle to any ��BG is evidently zero.
Hence if it were pulled back from a classifying map X �BG! BO, each restriction
��BG! BO would factor through � ! BO, hence by Lemma 3.4 the entire map
X �BG! BO would factor through X ! BO, implying that our given stable vector
bundle is pulled back from X . On the other hand, stable vector bundles on X �BG

are simply the direct sum over yG of stable vector bundles on X , so our given stable
vector bundle is definitely not pulled back from X . As in Example 3.20, the key point
in this argument was the use of Lemma 3.4.

4.3 Stable structures on vector bundles

A structure on vector bundles S is a sequence of orbi-CW–complexes BS.n/ for
n� 0 each carrying a vector bundle �n of rank n (equivalently, we could specify the
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maps BS.n/! BO.n/); we write � for
F

n�0 �n over
F

n�0 BS.n/. An S–structure
on a vector bundle V over an orbi-CW–complex X is a map f W X !

F
n BS.n/

together with an isomorphism V D f �� . The set of S–structures up to homotopy on a
vector bundle V is denoted StrS.V /. An isomorphism V ��!W induces a bijection
StrS.V / ��! StrS.W /.

The notion of an S–structure provides a common language for many structures of
interest on vector bundles. In particular: for BS.n/ D BSO.n/, an S–structure is
an orientation; for BS.n/ D BU.n=2/, an S–structure is a complex structure; for
BS.n/D �, an S–structure is a trivialization (or framing).

A shift on a structure on vector bundles S is a collection of maps sn W BS.n/ !
BS.nC 1/ and isomorphisms s�n�nC1 D �n˚R; equivalently, we could specify for
each diagram

(4-2)
BS.n/ BS.nC 1/

BO.n/ BO.nC 1/

sn

�n �nC1

˚R

a homotopy between the two compositions. A shift on S gives rise to natural maps
StrS.V /! StrS.V ˚R/, and a homotopy class of coarsely stable S–structure on V

is an element of

(4-3) Strcst
S .V / WD lim

��!
n

StrS.V ˚Rn/:

We have Strcst
S .V /D StrS.V / if (4-2) is a homotopy pullback square (in the sense that

the relevant lifting property holds for every .Dk ; @Dk/�BG). It also makes sense to
put a coarsely stable S–structure on a coarsely stable vector bundle: Strcst

S .F �Rk/ WD

lim
��!n

StrS.V ˚Rn�k/, and coarsely stable isomorphisms between coarsely stable vector
bundles induce maps between their sets of homotopy classes of coarsely stable S–
structures. The orbi-CW–complex bS WD lim

��!n!1
BS.n/ (infinite mapping cylinder)

classifies coarsely stable vector bundles with S–structure, in the sense that homotopy
classes of maps X ! bS are in bijection with isomorphism classes of coarsely stable
vector bundles with S–structure.

The set Strcst
S .V / has a canonical involution defined by noting the canonical isomorphism

Strcst
S .V /DStrcst

S .V˚R/ and acting via idV ˚.�1/ on V˚R. Note that, having defined
the involution on every Strcst

S in this way, the isomorphism Strcst
S .V /D Strcst

S .V ˚R/

respects involutions since
�
�1 0

0 1

�
and

�
1 0
0 �1

�
lie in the same component of O.2/.
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A coarsely stable orientation is simply an orientation, due to the aforementioned
condition that (4-2) be a homotopy pullback being satisfied. To define coarsely stable
complex structures, we should take Sn WD BU.bn=2c/ and �n to be the tautological
bundle plus R for n odd, and the map s to be addition of R (choosing a convention for
which homotopy class of complex structure on R2 to use). A coarsely stable complex
structure is weaker than a complex structure (even in even dimensions). A coarsely
stable framing exists only on coarse vector bundles.

A stable structure on vector bundles is a structure on vector bundles S together with a
map i W � ! BS.1/ with an isomorphism i�� DR and maps

sn;m W BS.n/�BS.m/! BS.nCm/

with isomorphisms �n˚ �m D s�n;m�nCm which are associate and graded symmetric
in the sense that we now explain. Associativity means that the two resulting maps
BS.n/�BS.m/�BS.k/!BS.nCmCk/ covered by isomorphisms �n˚�m˚�k D
�nCmCk are homotopic. Note that s WD sn;1 ı .id�i/ defines a shift on S, so we can
already make sense of coarse stabilization. Graded symmetry is the statement that the
maps StrS.V /�StrS.W /! Strcst

S .V ˚W / given by adding in either order differ by
.�1/jV jjW j, where �1 denotes the canonical involution on Strcst

S defined above. We
thus obtain graded symmetric maps

(4-4) Strcst
S .V /�Strcst

S .W /! Strcst
S .V ˚W /

defined as the direct limit over n and m of .�1/njW j times the map StrS.V ˚Rn/�

StrS.W ˚Rm/! StrS.V ˚W ˚RnCm/.

A homotopy class of stable S–structure on V is an element of the direct limit

(4-5) Strst
S.V / WD lim

��!
W

Strcst
S .V ˚W /

over the category whose objects are vector bundles W equipped with a homotopy class
of coarsely stable S–structure and whose morphisms are injections of vector bundles
V ,!W together with a homotopy class of coarsely stable S–structure on W =V such
that the resulting homotopy class of coarsely stable S–structure on W D V ˚W =V is
the given one, modulo homotopy. (We warn the reader that the forgetful functor from
this category to Vect.X / need not be cofinal.)

Lemma 4.8 The indexing category above is filtered.
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Proof It is nonempty since there is the zero vector bundle. Given objects V and V 0,
they both admit morphisms to the same object V ˚V 0, namely ˚V 0 in the former case
and ˚V in the latter case twisted by .�1/jV jjV

0j. Finally, suppose we are given two
morphisms V ! V ˚W and V ! V ˚W 0 where V ˚W D V ˚W 0. Then compose
further with ˚V , so that the two compositions become ˚ .W ˚V / and ˚ .W 0˚V /,
which we assumed were the same — notice that jW j D jW 0j, so the sign twist in each
case is the same.

There are associative graded symmetric maps

(4-6) Strst
S.V /�Strst

S.W /! Strst
S.V ˚W /:

In particular, Strst
S.0/ is an abelian group (to see that it has inverses, note that an

element of Strst
S.0/ is given by a vector bundle V with two coarsely stable S–structures,

and exchange them with a sign twist), each Strst
S.V / is either empty or a principal

homogeneous space for Strst
S.0/, and the addition maps (4-6) are maps of Strst

S.0/–sets.
Each StrS.V / also carries a canonical involution given by adding R and acting on it
by �1.

It also makes sense to discuss stable structures on stable vector bundles, and the above
continues to apply.

A stable orientation is the same as an orientation. A stable almost complex structure is
strictly weaker than a coarsely stable almost complex structure. A stable framing is the
same as a coarsely stable framing.

5 Orbifold bordism

5.1 Definitions

We define orbifold bordism ��.X;A/ and derived orbifold bordism �der
� .X;A/ for

any orbispace pair .X;A/ as follows.

Consider compact orbifolds with boundary Z together with a representable map
f W .Z; @Z/ ! .X;A/. A bordism between such pairs .Z1; f1/ and .Z2; f2/ con-
sists of a compact orbifold with boundary W with a codimension-zero embedding
Z1tZ2 ,! @W and a representable map f W .W; @W � .Zı

1
[Zı

2
//! .X;A/ whose

restrictions to Z1 and Z2 are f1 and f2, respectively. (Alternatively, one could
regard W as a compact orbifold with corners, where the corner locus is precisely
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@Z1[ @Z2 � @W .) Bordism is an equivalence relation (by a collaring result, which
allows one to glue together bordisms). Now��.X;A/ is the set of pairs .Z; f /modulo
compact bordism, graded by dimension.

We now consider a “derived” version of this construction. A derived orbifold chart
(with boundary) Z is a tuple .D;E; s/, where D (the “domain”) is an orbifold (with
boundary), E (the “obstruction bundle”) is a vector bundle, and s (“the obstruction
section”) is a smooth section. A derived orbifold chart with boundary is called compact
if and only if the zero set of s is compact. A restriction of a derived orbifold chart with
boundary replaces D with an open subset of D which contains the zero set of s (we may
always restrict to a precompact subset of D, hence the noncompactness of D is never
an issue). A stabilization of a derived orbifold chart with boundary Z D .D;E; s/

replaces D with the total space of a vector bundle F over D, replaces E with its direct
sum with F , and replaces s with its direct sum with the identity map on F . Bordism
of derived orbifold charts is defined as before. Now �der

� .X;A/ is the set of compact
derived orbifold charts with boundary Z D .D;E; s/ together with a representable
map .D; @D/! .X;A/, modulo compact bordism, restriction and stabilization. It is
graded by virtual dimension dim D� dim E. There is an obvious map ��!�der

� .

While bordism of orbifolds is obviously an equivalence relation (since boundaries of
orbifolds with boundary have collars), the analogous assertion for bordisms of derived
orbifold charts relies on enough vector bundles.

Proposition 5.1 Two compact derived orbifold charts with boundary representable
over .X;A/ represent the same element of �der

� .X;A/ if and only if they are compactly
bordant after restricting and stabilizing.

Proof It suffices to check that the stated relation is transitive. Suppose that Z1 �

Z2 � Z3, and let us show that Z1 � Z3. The key obstacle to overcome is that the
vector bundles by which one stabilizes Z2 to become bordant to (stabilizations of) Z1

and Z3 may not coincide.

We begin by introducing a new perspective on stabilization. Let .D;E; s/ be a derived
orbifold chart, and let Q be a vector bundle over D together with a surjection f WQ�E.
We obtain a new derived orbifold chart

(5-1)
�
fd 2D; q 2Q W s.d/D f .q/g;Q; �Q

�
:
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In fact, this new derived orbifold chart is a stabilization of .D;E; s/: indeed a choice
of splitting QD E˚ kerf identifies the new derived orbifold chart above with the
stabilization of .D;E; s/ by kerf .

Let us now observe that stabilization is transitive: a stabilization of a stabilization is
a stabilization. The point is just that if .D;E; s/ .D0;E0; s0/ .D00;E00; s00/ are
stabilizations, then the vector bundle W by which the second stabilization stabilizes
is pulled back from D � D0 (the first stabilization says that D0 is the total space of
a vector bundle over, hence has a projection map down to, D). Choosing such an
identification of W with the pullback of its restriction to D identifies .D00;E00; s00/
with a stabilization of .D;E; s/.

We now return to the problem at hand. We have bordisms C12 and C23 between
stabilizations of Z1, Z2, Z3. By making a small deformation, we may assume that
these bordisms are collared, ie near the boundary are the product of the boundary
times Œ0; "/. Consider the orbispace C12[Z2

C23, ie the gluing of the “domains” of the
corresponding derived orbifolds, possibly after restricting to precompact open subsets
thereof. By enough vector bundles Theorem 3.23, there is a module faithful vector
bundle Q over this space. There thus exists an N <1 and surjections ˆ12 and ˆ23

from Q˚N jC12
and Q˚N jC23

to the obstruction spaces E12 of C12 and E23 of C23,
respectively (say, independent of the radial coordinate of the collar near the boundary),
thus determining stabilizations of C12 and C23, respectively. The resulting composite
stabilizations of Z2 on the boundary are thus determined by surjections ‰12 ıˆ12 and
‰23 ıˆ23 from Q˚N to the obstruction space E2 of Z2, where ‰12 WE12!E2 and
‰23 WE23!E2 are the surjections inducing the stabilizations of Z2 on the boundaries
of C12 and C23, respectively. If these surjections ‰12 ıˆ12 and ‰23 ıˆ23 from Q˚N

to E2 are homotopic through surjections, we may insert such a homotopy in the collar
coordinate and glue the stabilizations of C12 by ˆ12 and C23 by ˆ23 together to obtain
the desired glued bordism between (stabilizations of) Z1 and Z3. By replacing N with
2N and replacing ˆ12 and ˆ23 with ˆ12˚ 0 and 0˚ˆ23, respectively, the desired
homotopy through surjections is simply the obvious linear interpolation.

Remark 5.2 A derived orbifold is an object with an atlas of derived orbifold charts.
It is a consequence of enough vector bundles that every derived orbifold has in fact a
global chart. Thus we may (and do) define derived orbifold bordism groups purely in
terms of derived orbifold charts, without delving into the details of the definition of
derived orbifolds. The cost of this approach is that enough vector bundles becomes a
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crucial ingredient in the proofs of most properties of derived orbifold bordism as we
have defined it here.

5.2 Basic properties

The sets �d and �der
d

are both abelian groups under disjoint union; each element is its
own inverse.

These groups �d and �der
d

are functorial under representable maps of pairs, namely
they define functors RepOrbSpcPair! Ab. In fact, they descend to functors

(5-2) RepOrbSpc�! Ab;

which can be seen either directly from the definition or by appealing to Proposition 3.15.
(The proof is exactly as for classical bordism, so we omit it.)

There is a natural map�d!�der
d

(take ED 0). Since a section of a vector bundle over
a manifold can be perturbed to be transverse to zero, the map �d .X;A/!�der

d
.X;A/

is an isomorphism for .X;A/ 2 Spc�.

There are natural product maps

��.X;A/˝��.Y;B/!��..X;A/� .Y;B//;(5-3)

�der
� .X;A/˝�

der
� .Y;B/!�der

� ..X;A/� .Y;B//;(5-4)

given simply by taking product of (derived) orbifolds.

(Derived) orbifold bordism groups also satisfy exactness:

Proposition 5.3 The functors �d and �der
d

send any cofiber sequence (3-25) to an
exact sequence of abelian groups.

Proof We treat both cases (�d and �der
d

) simultaneously, writing �.der/
� for either

one.

It is immediate that any element of �.der/
� .X;A/ represented by something mapped

entirely to A is zero (multiply by I to obtain a bordism to the empty set). It follows
that the composition �.der/

� .Y;B/!�
.der/
� .X;A/!�

.der/
� .X;A[B Y / vanishes.

Now suppose an element .Z; @Z/ of �.der/
� .X;A/ is sent to zero in �.der/

� .X;A[B Y /.
There is thus a nullbordism C of .Z; @Z/ over .X;A[B Y /— in the case of �der

� , this
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uses Proposition 5.1. The boundary of this bordism consists of Z (mapped to .X;A/)
and its complement, which is mapped to A [B Y . Replace the map f W C ! X

with its composition with a small perturbation of the identity ˆ W X ! X satisfying
ˆ.A/ � A, ˆ.Y / � Y and ˆ.Nbd B/ � B; such a map ˆ may be constructed by
induction on cells. Since the closure of ˆ�1.Y �B/ is disjoint from B, it follows that
the closure of the set .f j@C /

�1.Y �B/ is disjoint from Z � @C . Now take Z0 � @C

a compact codimension-zero submanifold with boundary, disjoint from Z, containing
.f j@C /

�1.Y �B/. Thus .Z0; @Z0/! .Y;B/ represents an element of �.der/
� .Y;B/

which is sent to Z in �.der/
� .X;A/.

Applying Proposition 5.3 to the Puppe sequence gives a long exact sequence, which
acquires the usual form once we observe that ��.X;A/ D ��C1..X;A/� .I; @I//

(and likewise for �der
� ), as we will see next. Namely, for any cofiber sequence (3-25),

we obtain a (bi-infinite) long exact sequence

(5-5) � � � !��.Y;B/!��.X;A/!��.X;A[B Y /!���1.Y;B/! � � � ;

and the same for �der
� .

Example 5.4 Here is a way to detect nontrivial negative-degree classes in derived
bordism. Let G be any finite group. There is an ungraded map

��.BG/!��.�/;(5-6)

M=G 7!M G
I(5-7)

every representable map N ! BG is of the form M=G ! BG for M D N �BG �.
Similarly, there is an ungraded map

�der
� .BG/!�der

� .�/D��.�/;(5-8)

.M;E; s/=G 7! .M G ;EG ; sjM G /:(5-9)

One should be careful to note that this map does indeed respect bordism (in particular,
stabilization). For any G–representation V , this map sends

(5-10) .BG;V =G; 0/ 2�der
� dim V .BG/

to .�;V G ; 0/ 2�der
� dim V G .�/, which is nonzero if and only if V G D 0. We conclude

that if V G D 0 then �der
� dim V

.BG/¤ 0.
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5.3 (Inverse) Thom maps

For any vector bundle V over X , there are natural inverse Thom maps (terminology
following Schwede [34, Section 6])

�d .X;A/!�dCjV j..X;A/
V /;(5-11)

�der
d .X;A/!�der

dCjV j..X;A/
V /;(5-12)

given by replacing a given (derived) orbifold with the Thom space of the pullback of V .
We also have Thom maps in the opposite direction

�dCjV j..X;A/
V /!�d .X;A/;(5-13)

�der
dCjV j..X;A/

V /!�der
d .X;A/;(5-14)

given by intersecting with the zero section of V . More precisely, the Thom map on ��
is only defined for coarse vector bundles V, and it requires an appeal to Sard’s theorem
to conclude that intersecting with a generic perturbation of the zero section of V is
transverse. The Thom map on �der

� is defined for all vector bundles V and consists
simply of adding V to the obstruction bundle and the identity section to the obstruction
section.

Proposition 5.5 The Thom map and the inverse Thom map are inverses.

Proof We have four compositions to show are the identity map:

�
.der/
d

.X;A/!�
.der/
dCjV j

..X;A/V /!�
.der/
d

.X;A/;(5-15)

�
.der/
dCjV j

..X;A/V /!�
.der/
d

.X;A/!�
.der/
dCjV j

..X;A/V /:(5-16)

The map (5-15) for �� is the identity by inspection. The map (5-15) for �der
� is the

identity since its action on a given derived orbifold chart is to stabilize by V . The map
(5-16) for �� is also the identity by inspection — given a transverse perturbation " of
the zero section which is transverse to a given orbifold, consider replacing .X;A/V

with a small tubular neighborhood of the image of " relative its boundary.

The map (5-16) for �der
� may be expressed alternatively as

(5-17) �der
dCjV j..X;A/

V /!�der
dC2jV j..X;A/

V˚V /!�der
dCjV j..X;A/

V /;

which looks very much like (5-15), except it is not quite the same since here the first
map “inflates” along the second copy of V whereas the second map intersects along
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the zero section of the first copy of V . However, we may note that .X;A/V˚V has
an automorphism, homotopic to the identity map, given by the matrix

�
0 1
�1 0

�
� idV ,

conjugation by which turns the second map into intersection with the second copy
of V , putting our composition into the form (5-15) for �der

� , which we already saw is
the identity map.

Given the Thom isomorphism, we may extend �� and �der
� to orbispectra as follows.

Bordism �� extends to naive orbispectra RepOrbSpcŒ†�1� by taking

��.†
�n.X;A// WD��Cn.X;A/;

which is consistent since ��.X;A/ D ��C1.†.X;A// by the Thom isomorphism.
Derived bordism �der

� extends to genuine orbispectra RepOrbSpf by taking

��..X;A/
�V / WD��CjV j.X;A/;

which is again consistent by the Thom isomorphism.

When V is not coarse, the inverse Thom map ��.X;A/! ��CjV j..X;A/
V / is in

general not an isomorphism. It is thus natural to ask whether ��..X;A/V / may be
expressed as bordism classes of some class of (derived) orbifolds mapping to .X;A/
(rather than .X;A/V ). We will see how to do this below, based on Wasserman’s
theorem, which we will meet shortly. This is the key to extending �� to genuine
orbispectra.

For the moment, we will observe that �� ! �der
� is the localization at the inverse

Thom maps, in the following sense:

Lemma 5.6 For finite orbi-CW–pairs .X;A/, the natural map

(5-18) ��

h
1

�

i
.X;A/ WD

lim
��!
V =X

��CjV j..X;A/
V / ��! lim

��!
V =X

�der
�CjV j..X;A/

V /D�der
� .X;A/

is an isomorphism.

Proof We prove surjectivity. Let .D;E; s/ be a derived orbifold chart which is
representable over .X;A/. To obtain the corresponding derived orbifold chart over
.X;A/V , we simply replace D with the total space of the pullback of V to it. By
enough vector bundles (Theorem 3.23), we may take V so that its pullback to D
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surjects onto E. Now we may perturb s by adding to it (epsilon times) this surjection,
thus making it transverse. Hence our derived orbifold chart lies in the image of
��CjV j..X;A/

V /!�der
�CjV j

..X;A/V /.

Injectivity follows from the same argument applied to a derived orbifold bordism
between two orbifolds.

5.4 Wasserman’s theorem

A remarkable observation of Wasserman [38] provides a sufficient condition under
which a section of a vector bundle over an orbifold may be perturbed to become
transverse to zero. In particular, it gives a condition under which a derived orbifold is
bordant to an orbifold.

To state this condition, let us fix some notation. For a vector bundle V over an orbispace
and a point p, we may decompose the fiber Vp into a direct sum of isotypic pieces,
indexed by the set yGp of isomorphism classes of real irreducible representations of
the isotropy group Gp of p. In particular, we may split Vp as the direct sum of the
isotropy invariant part .Vp/

Gp D .Vp/1 and the direct sum .Vp/ yGp�1 of isotypic pieces
of nontrivial representations. We denote by V�iso�1 � V the sum of the isotypic pieces
associated to nontrivial representations (note that V�iso�1 is not itself a vector bundle),
and for a map of vector bundles f , we denote by f�iso�1 its action on these subspaces.
Given a vector bundle V over an orbifold X together with a map ˛ W TX ! V for
which ˛�iso�1 is surjective, a section s WX ! V is called ˛–consistently transverse (to
zero) if and only if over its zero set ds is surjective with .ds/�iso�1 D ˛�iso�1.

Theorem 5.7 (Wasserman [38]) Let X be an orbifold , let E be a vector bundle
over X and fix a map ˛ W TX ! E for which ˛�iso�1 is surjective. Every section of
E has a C 0–small perturbation which is ˛–consistently transverse. This perturbation
may be taken relative to a neighborhood of any closed set over which it is already
˛–consistently transverse.

(We credit this result to Wasserman [38], although Wasserman only stated the special
case that X D Rn=G and E is the descent of the trivial bundle Rn with the same
G–action, and ˛ is the identity.)

Proof We proceed by induction over the stratification of X by order of stabilizer. By
triangulating a given stratum, it suffices to perturb on any given disk rel boundary
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inside X , which all have a standard local model. In other words, it suffices to consider
the case of X DDk �D` �W =G, where G ÕW has zero invariant part W G D 0,
the section s is ˛–consistently transverse over a neighborhood of @Dk � 0� 0, and we
would like to make it ˛–consistently transverse over a neighborhood of Dk�0�0. Now
over Dk � 0� 0, the derivative ds is G–equivariant, hence respects the decomposition
into isotypic pieces:

(5-19) .ds/1˚ .ds/ yG�1 W .TDk
˚TD`/˚W !EG

˚E yG�1:

By perturbing (rel a neighborhood of the boundary) the restriction of s to Dk�0�0, we
may make .ds/1 surjective; note that s is constrained to land inside EG over Dk�0�0.
We may then extend s to a neighborhood of Dk � 0� 0 so that .ds/ yG�1 D ˛ yG�1 over
Dk � 0� 0.

We are not quite done, however, since the above construction ensures that our perturbed
section s will be ˛–consistently transverse over Dk � 0 � 0 and a neighborhood
of @Dk � 0� 0, but not over a neighborhood of Dk � 0� 0. To fix this, choose an
isomorphism ED��E, where � denotes the projection � WDk�D`�W =G!Dk�D`

forgetting the last coordinate. Now given the section s defined above, set

(5-20) xs.a; b; c/ WD s.a; b; 0/C˛ yG�1.c/;

where we use the isomorphism E D ��E to make sense of the right-hand side as
an element of the fiber of E over .a; b; c/ 2 Dk �D` �W =G. Now this section xs
is certainly ˛–consistently transverse over a neighborhood of Dk � 0� 0, however
it does not agree with s over a neighborhood of @Dk � 0 � 0. Instead, let us use
' � xsC .1�'/ � s for a smooth function ' WDk ! Œ0; 1� vanishing near @Dk and which
equals 1 over a large compact set. This interpolation is now ˛–consistently transverse
over a neighborhood of Dk �0�0, noting that the restriction of d' to the . � /�iso�1 part
of the tangent bundle is zero.

Remark 5.8 A stable homotopy theoretic analogue of this argument appears in
tom Dieck [12, Satz 5] and Schwede [34, Theorem 6.2.33]. It would be interesting to
explore whether a stable homotopy theoretic analogue of Fukaya and Ono’s “integer
part” construction [17] exists as well; that construction follows a strategy similar to
Wasserman’s strategy above, though rather than using ˛ in the normal directions, one
requires complex polynomial behavior in the normal directions.

Corollary 5.9 A derived orbifold chart whose tangent bundle is stably isomorphic to a
coarsely stable vector bundle is bordant to an orbifold.
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Proof Let ZD .D;E; s/ be a derived orbifold chart. By assumption, the stable vector
bundle TD�E is stably isomorphic to a coarsely stable vector bundle F�RN — in fact,
we will not use anything special about RN other than that it is coarse. In other words,
there exists a vector bundle V and an isomorphism TD˚ V ˚RN D E ˚ V ˚F .
By stabilizing our derived orbifold chart .D;E; s/ by V , we may reduce this to
TD˚RN D E˚F . Now the composition ˛ W TD! TD˚RN D E˚F ! E is
evidently surjective on . � /�iso�1 pieces. We can thus apply Wasserman (Theorem 5.7)
to perturb s to a section s0 which is transverse to zero (and agrees with s outside a
compact set). The desired bordism is thus .D � Œ0; 1�;E � Œ0; 1�; tsC .1� t/s0/.

The literal converse to Corollary 5.9 is false for trivial reasons — @Œ0; 1� times anything
is nullbordant yet need not have coarsely stable tangent bundle. The next subsection
formulates an “up to bordism” version of Corollary 5.9 which is an “if and only if” (or
rather isomorphism) statement.

5.5 Orbifold bordism as oriented derived orbifold bordism

Let us now explain how Wasserman’s theorem implies, as one might expect after seeing
Corollary 5.9, that orbifold bordism may be expressed as derived orbifold bordism with
a sort of tangential structure, namely what we will call a coarsely stable structure on
its stable tangent bundle. We may thus think of �� as an “oriented” version of �der

� , in
the sense that modifying the definition of �der

� by imposing a marking on the stable
tangent bundle yields ��.

A coarsely stable structure on a stable vector bundle V is a coarsely stable vector
bundle W and a stable isomorphism V DW . A given stable vector bundle may admit
multiple nonisomorphic coarsely stable structures (nonisomorphic coarsely stable vector
bundles may be stably isomorphic).

Derived orbifold bordism with coarsely stable tangential structure �cst;der
� is defined

as follows. Consider derived orbifold charts Z D .D;E; s/ representable over .X;A/
together with a vector bundle A and a stable isomorphism A�RjEj�jTDj�jAjDTD�E,
modulo restriction, stabilization, A 7!A˚R and bordism. Let us argue that bordism
after restriction, stabilization and A 7!A˚R is transitive, and hence is an equivalence
relation. As argued in the proof of Proposition 5.1, given two bordisms C12 and C23,
we may stabilize so that the requisite stabilizations of Z2 coincide. The bordisms may
thus be glued, so it suffices to argue that the coarsely stable structures can also be glued.
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We have vector bundles A12 on C12 and A23 on C23 and a coarsely stable isomorphism
between their restrictions to Z2. Thus, stabilizing A12 and A23 by adding Rk , we
get a genuine isomorphism on Z2, which allows us to glue them together. Now we
have stable isomorphisms between this glued coarsely stable vector bundle and the
tangent space to our glued derived bordism, separately on C12 and C23, and their
restrictions to Z2 are homotopic. They may thus be glued (nonuniquely). We conclude
that bordism after restriction, stabilization and A 7!A˚R is an equivalence relation,
as desired.

Remark 5.10 One can similarly define a theory ��cst;der
� of bordism of derived

orbifolds with coarsely stable structure on minus their tangent bundle.

Given that bordism after restriction, stabilization and A 7! A˚R is an equivalence
relation, the proof of Proposition 5.3 now applies to show that �cst;der

� WOrbSpc�!Ab
sends cofiber sequences to exact sequences.

Proposition 5.11 The natural map �� ��!�
cst;der
� is an isomorphism.

Proof Surjectivity is the statement that every derived orbifold chart .D;E; s/ with
coarsely stable vector bundle � and stable isomorphism � D TD � E is bordant
to an orbifold, ie a derived orbifold chart whose obstruction section is transverse.
Corollary 5.9 provides a transverse perturbation of s which, executed over Œ0; 1�, defines
the desired bordism.

Injectivity is (given the nontrivial result, proved just above, that derived bordism with
coarsely stable tangential structure is an equivalence relation) the statement that every
derived orbifold bordism between stabilizations of orbifolds, with coarsely stable
structure on its tangent bundle, agreeing with the tautological such on the boundary,
can be perturbed rel boundary to be transverse. Concretely, such a structure is (after
stabilizing as in the proof of Corollary 5.9) a vector bundle F and an isomorphism
F ˚E D TD ˚Rk , which on the boundary must coincide with the isomorphism
ED TD given by ds and F DRk (some isomorphism); thus s is already ˛–transverse
over the boundary, so the relative form of Wasserman’s Theorem 5.7 gives us what we
want.

The theory �cst;der
� may be twisted: for any stable vector bundle � on X , we may define

a group ��˚cst;der
� .X;A/ of bordism classes of derived orbifolds carrying a coarsely
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stable vector bundle W and an isomorphism TD�ED �˚W . These twisted theories
are the natural setting for inverse Thom maps

(5-21) �
�˚cst;der
� .X;A/!�

�˚V˚cst;der
�CjV j

..X;A/V /:

Now there is an obvious Thom map in the reverse direction — add V to the obstruction
space and the identity map to the obstruction section — which is an inverse to the
inverse Thom map exactly as in Proposition 5.5. There are also forgetful maps

(5-22) �
�˚V˚cst;der
� .X;A/!�

�˚cst;der
� .X;A/

for vector bundles V , which need not be isomorphisms. This refines the discussion of
inverse Thom maps for �� given above.

The Thom isomorphism for these twisted theories allows us to extend �� D�
cst;der
� to

genuine orbispectra by defining

��..X;A/
�V /D�

cst;der
� ..X;A/�V / WD�

V˚cst;der
�CjV j

.X;A/:

To check that this indeed defines a functor RepOrbSpf ! Ab, use the localization
result Proposition 3.33 and the twisted Thom isomorphism. Indeed, the definition above
gives a functor out of the direct limit of RepOrbSpcN;k (by the Thom isomorphism),
and it satisfies excision (by inspection), thus descending to RepOrbSpf. This functor
sends cofiber sequences to exact sequences; the proof for twisted �cst;der

� is the same
as for untwisted, which was already mentioned above.

5.6 Tangential structure

We define orbifold and derived orbifold bordism groups with tangential structure, and
we show how to generalize the basic properties proven above to this setting. In a
word, a structure on vector bundles S with a shift allows us to define orbifold bordism
groups �S

� , and a stable structure on vector bundles S allows us to define derived
orbifold bordism groups �S;der

� .

For S a structure on vector bundles with a shift, we define bordism groups �S
� as

follows. We consider orbifolds with coarsely stable S–structure on their tangent bundle.
Using the isomorphism Strcst

S .V /D Strcst
S .V ˚R/, we can define a notion of bordism of

orbifolds with coarsely stable S–structure: given a boundary marking Z0tZ1 � @W ,
we use the isomorphisms Strcst

S .T Zi/D Strcst
S .T Zi ˚R/D Strcst

S .T W jZi
/— where,

crucially, we identify R with the inward normal along Z0 and the outward normal
along Z1 — to require compatibility between the coarsely stable S–structure on W with
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those on Z0 and Z1. Bordism is a symmetric relation, as can be seen by inverting the
coarsely stable structure on the bordism, ie applying the canonical involution of Strcst

S .
It is transitive since coarsely stable S–structures glue: by applying ˚Rk enough times,
we reduce to gluing for S–structures; an S–structure over C12 and one over C23 which
are homotopic over Z2 glue, nonuniquely, to an S–structure over C12[Z2

C23. The
resulting S–bordism groups�S

� satisfy functoriality (including excision) and exactness
by the same reasoning as before. They have inverse Thom maps

(5-23) �S
� .X;A/!�S

�C1..X;A/� .I; @I//;

and Thom maps in the reverse direction which are inverse to the inverse Thom maps;
this extends �S

� to a functor on naive orbispectra. As before, we may extend �S
� to

genuine orbispectra by viewing it as a structured version of derived orbifold bordism.
Namely, �S

� coincides with the group �Scst;der
� of bordism classes of derived orbifold

charts carrying a coarsely stable vector bundle A with isomorphism ADTD�E and a
coarsely stable S–structure on A. These groups �Scst;der

� satisfy the same properties as
above, and the map �S

� !�
Scst;der
� is an isomorphism. There are also twisted versions

�
�˚Scst;der
� .X;A/ for any stable vector bundle � on X , and there are inverse Thom

maps

�
�˚Scst;der
� .X;A/!�

�˚V˚Scst;der
�CjV j

..X;A/V /

and forgetful maps

�
�˚V˚Scst;der
� !�

�˚Scst;der
�

for any vector bundle V with coarsely stable structure. We may thus extend �S
� to

genuine orbispectra by taking �S
� ..X;A/

��/ WD�
�˚Scst;der
�Cj�j

.X;A/.

Now suppose S is a stable structure on vector bundles, and let us define derived
S–orbifold bordism. We consider derived orbifold charts .D;E; s/ together with a
stable S–structure on TD�E, modulo restriction, stabilization and bordism as before.
The equivalence relation proof of Proposition 5.1 applies; for this, we need to know that
stable structures on vector bundles glue, and the main point to see that is to use enough
vector bundles to know that we can stabilize by vector bundles on C12[Z2

C23 to reduce
to gluing (again, nonuniquely) S–structures on C12 and C23 which agree over Z2.
The resulting theory thus satisfies exactness. These theories can be twisted: we may
define �V˚S;der

� .X;A/ to be bordism classes of derived orbifold charts with a stable
S–structure on TD�E�V , where V is any stable vector bundle on X ; an S–structure
on V gives an isomorphism �

V˚S;der
� .X;A/ D �

S;der
� .X;A/. Inverse Thom maps
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for �S;der
� now take the form

�
�˚S;der
� .X;A/!�

�˚V˚S;der
�CjV j

..X;A/V /;(5-24)

and there are also Thom maps which are inverse to these. We may thus extend �S;der
�

to orbispectra as �S;der
� ..X;A/��/ WD�

�CS;der
�Cj�j

.X;A/. The natural map

(5-25) lim
��!
W

�S
�CjW j..X;A/

W /! lim
��!
W

�
S;der
�CjW j

..X;A/W /D�
S;der
� .X;A/

is an isomorphism, where the direct limit is over all vector bundles with S–structure
as in (4-5). There are also graded symmetric product maps on �S

� and �S;der
� .

5.7 Fundamental classes

We make a few remarks about fundamental classes of orbifolds and derived orbifolds.

A closed orbifold M has a tautological fundamental class ŒM �2�dim M .M /. This class
is best viewed as arising from the more refined fundamental class ŒM � 2�fr

0
.M�TM /

lying in the bordism group of derived orbifolds representable over M with a stable
isomorphism between their tangent bundle and TM . This class may be pushed forward
under the map �fr

0
.M�TM / ! �0.M

�TM / forgetting the framing and under the
inverse Thom map �0.M

�TM /!�dim M .M /, to obtain the naive fundamental class
ŒM �2�dim M .M /. If TM is equipped with an S–structure, then we may push forward
to �S

dim M
.M / using the S–structured inverse Thom map to obtain the S–structured

fundamental class. The same applies when M is a compact orbifold with boundary,
just replacing M with the pair .M; @M /.

Let us now work towards the fundamental class of a derived orbifold. Consider an
inclusion of subcomplexes .Y;B/! .X;A/ (so B D Y \A) and a vector bundle E

over X with a section s WX !E whose zero set is (contained in) Y . There is then an
induced map .X;A/! .Y;B/E , obtained by appealing to the fact that .Y;B/� .X;A/
is a retract of any sufficiently small neighborhood, and any two such retracts are
homotopic. Thus if .D;E; s/ is a derived orbifold chart and Z WD s�1.0/ has the same
neighborhood retract property, we obtain a map

(5-26) .D; @D/�TD
! .Z; @Z/�T Z ;

where T Z WDTD�E, @Z WDZ\@D and dim Z WD dim D�dim E; note that whereas
the left side is the dual of D, the right side is very much not the dual of Z unless s is
transverse to zero. We may now define ŒZ� 2�fr

0
..Z; @Z/�T Z / as the image of ŒD�

under the above map. Since T Z is not a vector bundle, but only a stable vector bundle,
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we are no longer able to map this fundamental class to �dim Z .Z; @Z/, rather only to
�der

dim Z
.Z; @Z/; the map now involves the inverse of an inverse Thom map, which only

exists for �der
� . If T Z is equipped with a stable S–structure, then we can also push

forward the fundamental class to �S;der
dim Z

.Z; @Z/.

If our derived orbifold Z �D does not have the neighborhood retract property, the
above reasoning produces only a class in the inverse limit lim

 ��">0
�fr

0
..Z"; @Z"/

�T Z /,
where Z"�D denotes the "–neighborhood of Z. This is not really the correct bordism
group to associate to .Z; @Z/�T Z , rather differing from it by a lim

 ��

1 term. In the
correct bordism group to attach to it, a cycle would be a collection of (derived, with
structure) orbifolds .M"i

; @M"i
/! .Z"i

; @Z"i
/ together with bordisms between M"i

and M"iC1
over Z"i

(fixing some sequence "1 > "2 > � � � converging to zero).

6 Global homotopy theory

This section shows one way to connect the homotopy theory of orbispaces developed
thus far and global homotopy theory. We prove only what we need for the Pontryagin–
Thom isomorphism; there is yet much to be worked out. We refer to the treatment by
Schwede [34] for the foundations of global homotopy theory. Global homotopy theory
depends on a choice of set F of isomorphism classes of compact Lie groups; we will
always take this set be the class of finite groups, and it will not be mentioned further.

6.1 Global spaces

Here we relate the category OrbSpc with the global homotopy category GloSpc, whose
objects we call global spaces.

Let L denote the topological category of finite-dimensional real vector spaces with a
positive definite inner product and linear isometric (in particular, injective) maps. An
orthogonal space is a continuous functor F W L! kTop, where kTop is the category of
k–spaces1 [34, Definition 1.1.1]. In other words, it is the assignment to each V 2L of a
k–space F.V / and to each pair V;W 2L a continuous map F.V /�L.V;W /!F.W /,
such that this rule is compatible with composition for triples V;W;U 2L. The category
of orthogonal spaces is denoted by OrthSpc.

1A k–space is a topological space which is compactly generated and weakly Hausdorff.
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A map of orthogonal spaces F ! F 0 is called a global equivalence if and only if for
every finite group G, every orthogonal G–representation V and every diagram of solid
arrows

(6-1)
@Dk F.V /G F.W /G

Dk F 0.V /G F 0.W /G

there exists an orthogonal G–representation W and an inclusion V ,!W such that after
pushing forward under it, the bottom map Dk ! F 0.W /G above may be homotoped
rel boundary so as to lift to F.W /G ; see [34, Definition 1.1.2]. The category of global
spaces GloSpc is the localization of the category of orthogonal spaces OrthSpc at the
global equivalences. (There is a model structure on OrthSpc whose weak equivalences
are the global equivalences, giving an effective way to understand the localization
GloSpc; see [34, Section 1.2].)

An orthogonal space gives rise, in particular, to a representable mapG
n�0

F.Rn/=O.n/!
G
n�0

�=O.n/:

Thus for any vector bundle V with inner product over a stack X , we may pull back
under the classifying map to obtain a representable map F.V /! X . Moreover, for
any isometric inclusion V ,!W of vector bundles with inner product, we get a map
F.V /! F.W / over X . Denote by VectO.X / the category of vector bundles with
inner product on X and homotopy classes of injective isometric maps; this category
is filtered. There is thus a directed system over VectO.X / assigning to a vector
bundle V the set of homotopy classes of sections of F.V /!X . Note that the forgetful
functor VectO.X /!Vect.X / is an equivalence, due to Lemma 2.6 and the deformation
retraction from injections to isometric injections given by f 7!f .f �f /�t=2. Therefore
in the event that the orthogonal space F is pulled back from the category of finite-
dimensional vector spaces and injective maps, we may simply take the direct limit over
Vect.X / and forget about inner products.

Given a finite orbi-CW–complex X and an orthogonal space F , let Hom.X;F / denote
the direct limit over V 2 VectO.X / of homotopy classes of sections of F.V /! X .
This set Hom.X;F / is functorial in X (pull back vector bundles) and in F . This is
only a reasonable definition because of enough vector bundles; in particular, enough
vector bundles is used crucially in the following proof that maps from a finite orbi-CW–
complex to an orthogonal space descend to a functor .OrbSpcf /op �GloSpc! Set.
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Lemma 6.1 For a finite orbi-CW–complex and a global equivalence of orthogonal
spaces F ! F 0, the induced map Hom.X;F /! Hom.X;F 0/ is a bijection.

Proof Let V be a vector bundle with inner product over X , let a section of F 0.V /!X

be given, and let us lift it (up to homotopy) to .F /, after possibly enlarging V . Since X

is finite, it suffices to do this lifting cell by cell. So, fix a cell .Dk ; @Dk/�BG of X . The
pullback of V to this cell is classified by a map Dk�BG!

F
n�0 �=O.n/, which up to

homotopy (hence isomorphism by Lemma 2.7) factors through BG!
F

n�0 �=O.n/,
which is an orthogonal G–representation V0. Now the section of F 0.V /!X pulled
back from Dk�BG is a map Dk!F 0.V0/

G , which over @Dk we have lifted to F.V0/
G.

We are thus in exactly the situation of the solid arrows in (6-1), so we conclude that
there exists another orthogonal G–representation W0 and an embedding V0 ,! W0

such that the desired lift exists over Dk �BG after pushing forward to W0. Now by
enough vector bundles (Theorem 3.23), there exists a W 0 on X and an embedding
V ,!W 0 which over Dk �BG factors through V0 ,!W0 ,!W 0

0
.

There is much more to this story; however, further precise discussion would take us
too far afield. There is a functor

OrbSpcf ! GloSpc;(6-2)

X 7! EmbX .E;�/ with E=X faithful,(6-3)

where EmbX .E;V / denotes the total space of the fibration over X whose fiber over
x2X is the space of embeddings Emb.Ex;V /— this is a space since E is faithful. The
spaces EmbX .E;�/ form an inverse system on the category of vector bundles on X , and
for an inclusion of faithful vector bundles E ,!E0, the induced map EmbX .E

0;�/!

EmbX .E;�/ is a global equivalence [34, Proposition 1.1.26(ii) and Definition 1.1.27].
A map of orbispaces f WX!Y induces maps EmbX .f

�EY ;�/!EmbY .EY ;�/ for
any vector bundle EY over Y . Taking EY to be faithful and choosing an embedding
of f �EY into a faithful EX , we obtain a map

EmbX .EX ;�/! EmbX .f
�EY ;�/! EmbY .EY ;�/:

Conjecture 6.2 For X 2 OrbSpcf and F 2 GloSpc, the set Hom.X;F / coincides
with the morphisms from the image of X under (6-2) to F .

Conjecture 6.3 The functor (6-2) is fully faithful.
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Schwede [35] has shown that GloSpc is equivalent to PSh.fBGg/, where fBGg �

OrbSpc is the full subcategory spanned by the objects fBGg,2 and in [18] Gepner and
Henriques have defined via stacks a natural enlargement OrbSpc of OrbSpc, resulting
from gluing together cells .Dk ; @Dk/ � BG under arbitrary maps, and shown that
the natural map OrbSpc! PSh.fBGg/ is an equivalence. Together this defines an
equivalence OrbSpcD GloSpc.

Conjecture 6.4 The restriction of the equivalence OrbSpcDGloSpc from [18; 35] to
the full subcategory OrbSpc� OrbSpc coincides with the functor (6-2).

6.2 Global classifying spaces

We now recall various “global classifying spaces” from [34].

For any compact Lie group G, there is a “global classifying space” BG 2 GloSpc; see
[34, Definition 1.1.27], note that there it is denoted by BglG. It is represented by the
orthogonal space

(6-4) .BG/.V / WD Emb.E;V /=G

for any faithful G–representation E. In particular, when G DO.n/, it is natural to take
the defining representation O.n/ÕRn, so we get

(6-5) .BO.n//.V / WD Grn.V /:

Also, when G is finite, BG 2 GloSpc is the image of BG 2 OrbSpc under (6-2).

Let us see that the global space BG represents the functor of G–bundles on finite
orbi-CW–complexes. Maps from a finite orbi-CW–complex X to BG is the direct
limit over V =X of the space of embeddings of E into V modulo G, where G Õ E

is a faithful representation. Denoting by EmbX .E;V / the total space over X , we
note that EmbX .E;V /! EmbX .E;V /=G is a principal G–bundle, so any section of
EmbX .E;V /=G!X gives via pullback a principal G–bundle over X . Conversely,
given a principal G–bundle P ! X , a section of EmbX .E;V /=G together with an
isomorphism between the resulting pullback bundle and P ! X is the same as an
embedding E �G P ,! V , and the space of such embeddings becomes contractible in
the direct limit over V .

Conjecture 6.5 The functor (6-2) sends BG 2 OrbSpc to BG 2 GloSpc.

2This result requires a homotopical categorical context such as model categories or1–categories.
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There are two natural global spaces bO and BO which generalize the classifying
space BO WD lim

��!n
BO.n/. The global space bO [34, Example 2.4.18] is given by the

orthogonal space

(6-6) bO.V / WD GrjV j.V ˚R1/;

in which to a map V ,!W we associate the map

(6-7) GrjV j.V ˚R1/
˚.W =V /
�����! GrjW j.W ˚R1/:

The global space bO is the direct limit of BO.n/ 2 GloSpc [34, Proposition 2.4.24].

Let us argue that bO classifies coarsely stable vector bundles of rank zero. Maps from
a finite orbi-CW–complex X to bO are given by the direct limit over all vector bundles
E over X of global sections of GrjEj.E˚R1/. We may express this as the direct
limit over both n and E of subbundles of rank jEj of E˚Rn. Equivalently, this is
quotient bundles of E˚Rn of rank n. Now taking the direct limit over E, we realize
every vector bundle has a homotopically unique surjection from E˚Rn in the direct
limit over E. Thus what remains is the direct limit over n of vector bundles over X ,
with passage from n to nC1 acting as ˚R. This is precisely rank-zero coarsely stable
vector bundles over X .

Conjecture 6.6 The functor (6-2) sends bO 2 OrbSpc to bO 2 GloSpc.

The global space BO [34, Example 2.4.1] is defined as the orthogonal space

(6-8) BO.V / WD GrjV j.V ˚V /;

in which to a map V ,!W we associate the map

(6-9) GrjV j.V ˚V /! GrjV j.W ˚V /
˚.W =V /
�����! GrjW j.W ˚W /:

We argue that BO 2 GloSpc classifies stable vector bundles of rank zero; recall from
Lemma 4.7 that there is no BO 2 OrbSpc with this property. Maps from a finite
orbi-CW–complex X to BO are the direct limit over E=X of subbundles of rank jEj
of E˚E. Let us choose to view this as the direct limit over pairs of vector bundles
E and E0 of subbundles of rank jEj of E˚E0. Taking the direct limit over E0, we
see that this is just vector bundles of rank jEj on X , and that in the remaining directed
system over E, when going from E1 to E2, we add E2=E1. Thus we get precisely
rank-zero stable vector bundles over X .
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6.3 Global spectra

Here we relate the category OrbSpf with the global stable homotopy category GloSp,
whose objects we call global spectra.

Let O denote the based topological category with the same objects as L and with mor-
phism space from V to W given by the Thom space of (ie the one-point compactification
of the total space of) the tautological vector bundle “W =V ” over L.V;W /. An orthogo-
nal spectrum is a based continuous functor F WO! kTop�, where kTop� is the category
of pointed k–spaces. In other words, it is the assignment to each V 2O of a based
k–space F.V /, and to each pair V;W 2O a based map F.V /^O.V;W /! F.W /,
such that this rule is compatible with composition for triples V;W;U 2L. The category
of orthogonal spectra is denoted by OrthSp.

A map of orthogonal spectra F ! F 0 is called a global equivalence if and only if for
every finite group G, every orthogonal G–representation V , every k; `� 0 and every
diagram of based G–equivariant maps on the left

(6-10)
@Dk ^SV F.V ˚R`/

Dk ^SV F 0.V ˚R`/

D)

@Dk ^SW F.W ˚R`/

Dk ^SW F 0.W ˚R`/

there exists an orthogonal G–representation W and an inclusion V ,!W such that after
pushing forward under it, the square obtained on the right has a lift after homotoping
the bottom map rel boundary (everything G–equivariantly); see [34, Equation (3.1.11)
and Definition 4.1.3]. The category of global spectra GloSp is the localization of the
category of orthogonal spectra OrthSp at the global equivalences. (There is a model
structure on OrthSp whose weak equivalences are the global equivalences, giving an
effective way to understand the localization GloSp; see [34, Section 4.3].)

Given an orthogonal spectrum F and a vector bundle V !X with inner product (over
any stack X ), we may define a representable map F.V /! X by applying F to the
fibers of V , just as we did for an orthogonal space. This map F.V /!X is moreover
equipped with a “basepoint” section. A vector bundle V ! X (where X is still any
stack) has an associated sphere bundle SV (fiberwise one-point compactification of V )
again by defining it over

F
n�0 �=GLn.R/ and pulling back under the classifying map;

this is also equipped with a “basepoint” section. We may thus consider, for any vector
bundle V !X with inner product, based maps SV ! F.V / over X , where “based”
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means that the composition of the basepoint section of SV with the map SV ! F.V /

is the basepoint section of F.V /.

Let us now argue that given an isometric inclusion of vector bundles with inner product
V ,! W , we may push forward a based map SV ! F.V / to obtain a based map
SW ! F.W /. The structure of F as an orthogonal spectrum gives a based map
F.V /! F.W / over the total space of SW =V , which over the basepoint section of
SW =V (ie when pulled back under it) is the constant map to the basepoint section
of F.W /. Precomposing this map SW =V �X F.V / ! F.W / over X with a map
SV !F.V / over X defines a map SV �X SW =V !F.W /, which we claim descends
uniquely to a map SW ! F.W /. To prove this claim, it suffices to show that the
obvious3 map SV �X SW =V ! SW pulls back under any map Z!X , where Z is a
topological space, to a topological quotient map. Since vector bundles (inner product
is now irrelevant) are locally trivial, this amounts to showing that Sn � Sm �Z !

SnCm �Z is a topological quotient map for any topological space Z, which holds
since the locus .f�g�Sm/[ .Sn�f�g/� Sn�Sm contracted by Sn�Sm! SnCm

is compact.

We now show that global spectra give rise to cohomology theories on orbispectra.
Namely, we construct a functor

.OrbSpf /op
�GloSp! Ab;(6-11)

W �Z 7!Z0.W /;(6-12)

sending cofiber sequences to exact sequences.

We begin by defining .W;Z/ 7!Z0.W / as a functor

.OrbSpcPairf;�Vect/op
�OrthSp! Ab:

For a finite orbi-CW–pair .X;A/ with vector bundle � and an orthogonal spectrum F ,
we consider homotopy classes of based maps SV ! F.V ˚ �/ over X , which over
a neighborhood of A are the constant map to the basepoint. By the discussion in
the paragraph just above, such homotopy classes of maps form a directed system
over V 2 VectO.X /, and we define F0..X;A/��/ to be its direct limit; this set is
naturally an abelian group by the usual argument involving R2 �E. As before, this
is only a reasonable definition because of enough vector bundles. Note that, for the
purposes of computing the set of homotopy classes of based maps SV ! F.V ˚ �/,

3Obvious since its existence over the universal classifying space is clear, so we can just pull back to X .
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we may consider just those which are properly supported over X in the sense that they
send a neighborhood of the fiberwise basepoint of SV to the fiberwise basepoint of
F.V ˚ �/— to see this, apply a map SV ! SV which sends a neighborhood of the
basepoint to the basepoint, which we may construct universally over

F
n�0 �=O.n/.

That F0..X;A/��/ is a functor of F 2 OrthSp is evident. The following implies
descent to a functor of F 2 GloSp.

Lemma 6.7 A global equivalence of orthogonal spectra Z!Z0 induces an isomor-
phism Z0..X;A/��/!Z00..X;A/��/.

Proof Same as Lemma 6.1.

We now argue that Z0..X;A/��/ is functorial in .X;A/�� 2 OrbSpcPairf;�Vect. Sup-
pose given a map f WX ! Y , an inclusion f �� ,! � and a section s WX ! �=f �� such
that A is covered by f �1.B/ and the locus where jsj � " for some " > 0. Now given a
map SV ! F.V ˚ �/ over Y supported away from B, we may pull it back to obtain a
map Sf

�V !F.f �V ˚f ��/ over X supported away from f �1.B/. We then further
pair with s, viewed as a section of S�=f

�� , to obtain a map Sf
�V ! F.f �V ˚ �/

supported away from A. To finish the construction of (6-11), it suffices to show
that morphisms W and S are sent to isomorphisms. That morphisms W are sent to
isomorphisms follows from enough vector bundles (Theorem 3.23) — restriction of
vector bundles is cofinal. That morphisms S are sent to isomorphisms is immediate
from the definition.

Proposition 6.8 For any global spectrum Z, the functor Z0 sends cofiber sequences
in RepOrbSpf to exact sequences.

Proof We are to show that Z0.Y;B/ Z0.X;A/ Z0.X;A[B Y / is exact. The
composition is evidently zero. Now suppose we have a section over .X;A/ whose
restriction to .Y;B/ is nullhomotopic after stabilizing by a vector bundle on Y . The
restriction map on vector bundles is cofinal by enough vector bundles, so without loss
of generality we are in the situation of a section on .X;A/ whose restriction to .Y;B/
is nullhomotopic rel B. Now .Y;B/ has a nice neighborhood inside .X;A/, so we can
extend this nullhomotopy to a homotopy of sections over .X;A/ to become supported
away from A[B Y .

Define Zi.W / WD Z0.†�iW /, so the Puppe sequence now gives a bi-infinite long
exact sequence of the expected form for any cofiber triple in RepOrbSpf.
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6.4 Global Thom spectra

We now recall the so-called global Thom spectra [34, Section 6], whose associated
cohomology theories are called homotopical cobordism theories. They are given by
the orthogonal spectra

S.V / WD SV ;(6-13)

mO.V / WD GrjV j.V ˚R1/� ;(6-14)

MO.V / WD GrjV j.V ˚V /� ;(6-15)

where � denotes the tautological vector bundle. The structure maps are induced by
those of the corresponding bO and BO defined above, just passing to Thom spaces as
appropriate. In the present context of orthogonal spectra, Thom space always means
the one-point compactification of the total space. These are ring spectra in various
senses, however we will not discuss this precisely, instead referring to Section 6 of
Schwede [34].

There is a canonical “unit element” 1 2 S0.X / for any orbispace X , namely that given
in the definition of S0.X / by taking ED 0 and taking the unit section of�ES.E/DS0

over X .

Remark 6.9 It is natural to conjecture that S0 2 OrbSpc� is sent to S and that
lim
��!n

BO.n/R
n��n 2OrbSp is sent to mO, under natural functors to GloSp. As we have

not defined an orbispace BO, we cannot define an orbispectrum corresponding to MO.

6.5 Pontryagin–Thom isomorphism

Theorem 1.4 is the combination of Propositions 6.10 and 6.11 below.

Proposition 6.10 There is a bijection S0.DW / ��! �fr
0
.W /, which is natural in

W 2 RepOrbSpf.

For a compact orbifold-with-boundary X, this bijection sends the unit element 12 S0.X /

to the fundamental class ŒX � 2�fr
0
..X; @X /�TX /.

Proof Given a compact orbifold pair .X;A/ and a vector bundle � over X , we define
a map

(6-16) S0..X; @X �Aı/��TX /!�fr
0..X;A/

��/
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as follows. The value of S0..X; @X �Aı/��TX / is the direct limit over vector bundles
E=X of (homotopy classes of) sections of �E˚�SE˚TX over X supported away
from @X �Aı. Equivalently, this is sections s of SE˚TX (the fiberwise one-point
compactification) over the total space of E˚ � over X whose zero set s�1.0/ is proper
over X and disjoint from the inverse image of @X �Aı. Such data defines a compact
derived orbifold chart with boundary .D;E˚TX; s/ (here D is an open subset of the
total space of E˚ �), representable over .X;A/, with a stable isomorphism between
its tangent bundle and �; this defines an element of �fr

0
..X;A/��/. This construction

is compatible with enlarging E, and sends homotopies of sections to bordisms, hence
defines the desired map (6-16).

Let us argue that (6-16) defines a natural transformation of functors S0.DW /!�fr
0
.W /

of W 2 RepOrbSpf. By Proposition 3.33 and the universal property of localization
(and of direct limit), it suffices to show that this defines a natural transformation of
functors out of RepOrbSpcPairf;��

N;k
for every � 2 Vect.R.�/N;kC2/, compatible with

the functors modifying � and N; k. Compatibility with the functors modifying � and
N; k is immediate; the real content is to check that the diagram

(6-17)

S0.DW / �fr
0
.W /

S0.DZ/ �fr
0
.Z/

commutes for any map W !Z in RepOrbSpcPairf;��
N;k

. We may assume that this map
W !Z is a smooth embedding of compact orbifold pairs .X;A/! .Y;B/, namely
X ,! Y is a smooth embedding and A D X \ @Y meeting transversally (so X has
corners at the boundary of A), desuspended by a vector bundle � on R.�/N;kC2, where
the isotropy groups of X and Y have order �N and X;Y have dimension � k. In this
case, the map on duals is simply the evident map .Y; @Y �Bı/Ü .X; @X�Aı/T Y=TX

desuspended by T Y and suspended by � . Now commutativity of the above diagram is
clear.

It remains to show that the natural transformation S0.DW /!�fr
0
.W / is a bijection for

every W 2 RepOrbSpf , which we may take to be of the form .X;A/�� for a compact
orbifold pair .X;A/ with a vector bundle � over X . To show surjectivity, let .D;E; s/
be a derived orbifold-with-boundary chart with a representable map .D; @D/! .X;A/

and a stable isomorphism TD �E D �. By Corollary 3.24, the map from D to X

can be replaced by a smooth embedding by replacing X with the unit disk bundle of
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a vector bundle over X (and A is replaced with its inverse image in this total space).
Thus we may assume D is a suborbifold of X ; choosing a nice collar near @X , we
may further assume that it meets @X transversely, precisely along @D. Now we may
stabilize our derived orbifold chart by TX=TD so that D is in fact an open subset
of X . Now we have a stable isomorphism TX �E D �, namely an isomorphism
E˚ � ˚F D TX ˚F for some vector bundle F . By further replacing X with the
total space of F and stabilizing our derived orbifold chart by F , this becomes a true
isomorphism of vector bundles TX DE˚ � over D, which remains an open subset
of X . Further stabilizing by � (thus adding � to both E and TX ) ensures that E extends
to all of X , together with the isomorphism TX DE˚� . Now the section s cutting out
our derived orbifold is, after extension as “infinity” to the rest of X , a section of SE .
This gives, by definition, an element of S0..X; @X�Aı/�E/DS0..X; @X�Aı/��TX /

which maps to our given element of �fr
0
..X;A/��/.

Finally, injectivity is just a relative version of surjectivity. We are given two elements
of S0..X; @X � Aı/��TX / with the same image in �fr

0
..X;A/��/. Applying “rel

boundary” the same procedure used to prove surjectivity to the derived bordism relating
the images of our two given elements of S0..X; @X �Aı/��TX / produces a homotopy
between them.

Proposition 6.11 For W 2 RepOrbSpf, there are natural bijections

mO0.DW / ��!�0.W /;(6-18)

MO0.DW / ��!�der
0 .W /:(6-19)

Proof We follow the proof of Proposition 6.10.

Given a compact orbifold pair .X;A/ and a vector bundle � over X , we define maps

mO0..X; @X �Aı/��TX /!�0..X;A/
��/D�

�Ccst;der
j�j

.X;A/;(6-20)

MO0..X; @X �Aı/��TX /!�der
0 ..X;A/��/D�der

j�j .X;A/;(6-21)

as follows. The values of mO0..X; @X �Aı/��TX / and MO0..X; @X �Aı/��TX /

are, respectively, the direct limits over vector bundles E=X of (homotopy classes of)
sections of

�E˚� GrjEjCjTX j.E˚TX ˚RjEjCjTX j/� ;(6-22)

�E˚� GrjEjCjTX j.E˚TX ˚E˚TX /� ;(6-23)
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over X supported away from @X � Aı. Equivalently, this is open subsets U of
the total space of E ˚ � over X carrying a rank jEj C jTX j vector bundle V �

E˚TX˚RjEjCjTX j (resp. V �E˚TX˚E˚TX ), and a section s WU !V whose
zero set s�1.0/ is proper over X and disjoint from the inverse image of @X �Aı. Such
data defines a compact derived orbifold chart with boundary .U;V; s/, representable
over .X;A/, with a stable isomorphism between its tangent bundle and TXCEC��V

(which in the case of mO is identified with �C.E˚TX˚RjEjCjTX j/=V �RjEjCjTX j).
We thus obtain an element of ��Ccst;der

j�j
.X;A/D�

cst;der
0

..X;A/��/D�0..X;A/
��/

(resp. �der
0
..X;A/��/). This construction is compatible with enlarging E and sends

homotopies of sections to bordisms, hence defines the desired maps (6-20)–(6-21).

The proof that (6-20)–(6-21) define natural transformations of functors (6-18)–(6-19)
of W 2 RepOrbSpf is exactly as in the proof of Proposition 6.10.

It remains to show that the natural transformations (6-18)–(6-19) are bijections for
W D .X;A/�� for a compact orbifold pair .X;A/ with a vector bundle � over X .
As before, the argument for injectivity is a relative version of that for surjectivity,
so we will just explain surjectivity. To show surjectivity, let .D;V; s/ be a derived
orbifold-with-boundary chart with a representable map .D; @D/! .X;A/ and, in the
case of mO, a vector bundle B and a stable isomorphism TD � V D � CB �RjBj

(in the case of MO, with dim TD � jEj D j�j). As in the proof of Proposition 6.10,
we may homotope and stabilize to reduce to the case that D is an open subset of X .
Now further stabilize both X and D by the vector bundle �, so that we now have an
isomorphism TX D �˚E where E is the tangent bundle before stabilizing. We seek
an element of mO0..X; @X �Aı/�E/ (resp. MO0); more specifically, we will produce
a section of GrjEj.E˚E/� (resp. GrjEj.E˚E/� ). We have a stable isomorphism
E˚RjBj D V ˚B (resp. an equality jV j D jEj); in the former case we may stabilize
X and D to get a true isomorphism. For mO0, we want to embed V ,! E˚RjEj,
which we get from the isomorphism E˚RjBj D V ˚B once jEj � jBj which we
can achieve by stabilizing. For MO0, we want V ,!E˚E. Stabilizing to V 0 and E0

allows us to embed V ,!E0˚E hence V 0 ,!E0˚E0.

7 Bordism and stable maps

In this final section, we apply the Pontryagin–Thom principle to describe morphism
spaces in RepOrbSpf and OrbSpf in terms of derived orbifold bordism.
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Proof of Theorem 1.7 Fix a compact orbifold pair .X;A/ with a vector bundle �
and a finite orbi-CW–pair .Y;B/ with vector bundle �. Given a map in RepOrbSpf

(resp. OrbSpf )

(7-1) D..X;A/��/D .X; @X �Aı/��TX
! .Y;B/�� ;

we associate as follows a bordism class of derived orbifold chart with boundary .C; @C /
with a map .C; @C /! .X;A/� .Y;B/ whose projections to X and Y (resp. to X ) are
representable, and with a stable isomorphism between its tangent bundle and � C �.
The data of a map (7-1) consists of a vector bundle E over X , an open subset U of the
total space of E˚ � , a (representable) map h W U ! Y , an embedding h�� ,! TX ˚ �

and a section s of the quotient whose zero set is proper over X such that @X �Aı is
contained in the union of f �1.B/ and the locus where jsj � " for some " > 0. This
data defines for us a compact derived orbifold chart .U; .TX ˚E/=h��; s/, which has
the desired form by inspection. Homotopies of maps evidently induce bordisms.

Let us argue that this association (of a bordism class to a stable map) is natural in
.Y;B/�� . To make sense of this statement, we should note that bordism of derived
orbifolds of the requisite form is indeed a functor of .Y;B/�� 2 RepOrbSpcPairf;�Vect

(resp. OrbSpcPairf;�Vect), where a map .Y;B/��! .Y 0;B0/��
0

given by q W Y ! Y 0,
q��0 ,! � and s W Y ! �=q��0 pushes forward a derived orbifold mapping .Y;B/
under q and adds �=q��0 to the obstruction space and s to the obstruction section. This
evidently descends to RepOrbSpf (resp. OrbSpf ) due to sending to isomorphisms
the morphisms W (obvious) and S (same as Proposition 5.5). Now to see that the
association of a bordism class to a stable map is natural, due to the universal property of
localization it suffices to show it is a natural transformation of functors of .Y;B/�� 2
RepOrbSpcPairf;�Vect (resp. 2 OrbSpcPairf;�Vect). This is evident by inspection.

Next, to see naturality in .X;A/�� 2 RepOrbSpf, we may argue as in the proof of
Proposition 6.10: it suffices to check naturality as a functor out of RepOrbSpcPairf;��

N;k

for � 2 Vect.R.�//N;kC2, and this can be seen by inspection upon arranging maps to
be smooth embeddings of orbifolds.

It remains to show that this association of a bordism class to a map (7-1) is bijective. As
in the proof of Proposition 6.10, injectivity is simply a relative version of surjectivity,
so we will just prove surjectivity. Thus, suppose given a compact derived orbifold
chart with boundary .D;V; s/ with a representable map f to X , a (representable)
map g to Y with @D � f �1.A/ [ g�1.B/, and a stable isomorphism between its
tangent bundle TD�V and f ��Cg��. By replacing .X;A/ with the total space of
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a vector bundle over it, we may assume the map D!X is a smooth embedding. By
stabilizing .D;V; s/, we may assume D!X is an open inclusion, so we have a stable
isomorphism TX D V ˚ �˚g�� over D. Now further stabilize by � so that we have
an everywhere-defined isomorphism TX D �˚E (so E is the tangent bundle of X

before stabilizing). The resulting stable isomorphism ED V ˚g�� may be turned into
a genuine isomorphism by further stabilization. We want a map .X; @X �Aı/�E!

.Y;B/�� , and this is precisely what we have: our open subset of X is D, which has
a (representable) map g WD! Y , we have an embedding g�� ,! g��˚V DE, and
we have a section of the quotient V , namely the obstruction section.

Example 7.1 We describe the set of stable (representable) maps BG ! BH for
finite groups G and H . Such maps (ie morphisms in RepOrbSpf and OrbSpf ) are,
according to Theorem 1.7, in bijection with bordism classes of derived orbifolds C with
a representable map to BG, a (representable) map to BH and a stable isomorphism
T C D 0. By Wasserman’s theorem (Theorem 5.7), this is the same as bordism classes
of orbifolds C with the requisite (representable) maps and stable framing. Now C has
dimension zero, so it must be a disjoint union of BK for some finite groups K; the only
bordisms between these have the form BK � Œ0; 1�, so bordism is just homotopy. A
homotopy class of (representable) map BK!BG is a G–conjugacy class of (injective)
homomorphism K! G. A stable framing of BK is, according to Example 4.6, an
element of the product of Z=2 over all irreducible real representations of K with
End.�/ D R. We thus obtain a group-theoretic description of the morphism space
BG! BH in RepOrbSpf and in OrbSpf.

Stated slightly differently, Theorem 1.7 says that the category RepOrbSpf may be
described as follows. The objects of RepOrbSpf are denoted by .X;A/�� , where
.X;A/ is a compact orbifold pair and � is a stable vector bundle over X . The mor-
phisms .X;A/�� ! .Y;B/�� are bordism classes of derived orbifolds .C; @C /!
.X; @X �Aı/� .Y;B/ whose projections to X and to Y are representable, equipped
with a stable isomorphism T C D TX � f ��Cg��. Composition is given by derived
fiber product. In this description, the action of duality D is obvious: it trades .X;A/��

for .X; @X �Aı/��TX with the evident action on morphisms.

There is a notable omission in Theorem 1.7: we have no idea what category one gets
if one allows both maps to .X;A/ and to .Y;B/ to be arbitrary (not required to be
representable). The resulting category has an apparent involution D, but that’s all this
author knows.
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Using Theorem 1.7, we may associate to any map X ! Y in RepOrbSpf a map
X ^DY ! R.�/ in RepOrbSpf as follows. Given a derived orbifold of the shape
prescribed by Theorem 1.7 to specify a map X ! Y , we simply note that the same
derived orbifold also defines a map X ^DY !R.�/ by taking the product of the two
maps and appealing to the canonical map to R.�/.

In particular, there is a canonical pairing X ^DX !R.�/ induced by the identity map
X ! X (equivalently DX ! DX ). It may be described concretely as follows. Let
.X;A/ be a compact orbifold pair carrying a vector bundle � . The diagonal map is a map

(7-2) .X; @X /! .X;A/� .X; @X �Aı/:

Now suspend/desuspend to define a map .X; @X /�TX! .X;A/���.X; @X�Aı/��TX

and then dualize to obtain

(7-3) .X; @X �Aı/��TX
� .X;A/�� !X;

which we may compose with the map X!R.�/. This defines a map DZ^Z!R.�/

for Z D .X;A/�� . Tracing through the definition of the bijection in Theorem 1.7, it is
immediate that this is indeed the canonical pairing Z^DZ!R.�/ as described above.

References
[1] A Ángel, A spectral sequence for orbifold cobordism, from “Algebraic topology—old
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