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Chern characters for supersymmetric field theories

DANIEL BERWICK-EVANS

We construct a map from d j1–dimensional Euclidean field theories to complexified
K–theory when d D 1 and complex-analytic elliptic cohomology when d D 2. This
provides further evidence for the Stolz–Teichner program, while also identifying
candidate geometric models for Chern characters within their framework. The con-
struction arises as a higher-dimensional and parametrized generalization of Fei Han’s
realization of the Chern character in K–theory as dimensional reduction for 1j1–
dimensional Euclidean field theories. In the elliptic case, the main new feature is a
subtle interplay between the geometry of the super moduli space of 2j1–dimensional
tori and the derived geometry of complex-analytic elliptic cohomology. As a corollary,
we obtain an entirely geometric proof that partition functions of N D .0; 1/ super-
symmetric quantum field theories are weak modular forms, following a suggestion of
Stolz and Teichner.

55N34, 81T60

1 Introduction and statement of results

Given a smooth manifold M , Stolz and Teichner [26] have constructed categories of
d j1–dimensional super Euclidean field theories over M for d D 1; 2,

(1) d j1–EFT.M / WD Fun˝.d j1–EBord.M /;V/:

Its objects are symmetric monoidal functors from a bordism category d j1–EBord.M / to
a category of vector spaces V . The morphisms of d j1–EBord.M / are d j1–dimensional
super Euclidean bordisms with a map to a smooth manifold M . For details we refer
to Stolz and Teichner [26, Section 4]. In [26, Sections 1.5–1.6], they conjectured the
existence of cocycle maps

(2) 1j1–EFT.M / K.M /
cocycle

and 2j1–EFT.M / TMF.M /
cocycle

for K–theory and the cohomology theory of topological modular forms (TMF). In
this paper we construct subcategories Ld j1

0
.M /� d j1–EBord.M / consisting of super
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1948 Daniel Berwick-Evans

circles with maps to M when d D 1, and super tori with maps to M when d D 2, both
viewed as a particular class of closed bordisms over M . A super Lie group Eucd j1 acts
through super Euclidean isometries on super circles and super tori, inducing actions
on Ld j1

0
.M / for d D 1; 2.

Theorem 1.1 The invariant functions C1.Ld j1
0
.M //Eucd j1 determine cocycles in 2–

periodic cohomology with complex coefficients when d D 1, and cohomology with
coefficients in the ring MF of weak modular forms when d D 2. Composing with
restriction along Ld j1

0
.M /� d j1–EBord.M / determines maps from field theories to

these cohomology theories over C:

(3) 1j1–EFT.M /
restr
��! C1.L1j1

0
.M //Euc1j1

cocycle
����� H.M ICŒˇ; ˇ�1�/

with jˇj D �2, and

(4) 2j1–EFT.M /
restr
��! C1.L2j1

0
.M //Euc2j1

cocycle
����� H.M IMF/:

For M D pt, the map (4) specializes to part of an announced result of Stolz and
Teichner [26, Theorem 1.15]; see Remark 3.24. Applied to general manifolds M ,
one can identify H.� ICŒˇ; ˇ�1�/ with complexified K–theory, and H.� IMF/ with a
version of TMF over C; see Section 3.5. Hence, Theorem 1.1 proves a version of the
conjectures (2) over C.

We elaborate on this connection between Theorem 1.1 and the conjectures (2). The
maps (3) and (4) come from sending a field theory to its partition function. This
assignment defines a type of character map for field theories. Similarly, the cohomology
theories in (2) have Chern characters valued in certain cohomology theories defined
over C. Putting these ingredients together, we obtain the diagrams

(5)

1j1–EFT.M / K.M /

C1.L1j1
0
.M //Euc1j1 H.M ICŒˇ; ˇ�1�/

cocycle

restr Ch
cocycle

2j1–EFT.M / TMF.M /

C1.L2j1
0
.M //Euc2j1 H.M IMF/

cocycle

restr Ch
cocycle

One expects the cocycle maps in (2) will make these diagrams commute. This offers
new perspective on the conjectures (2), as we briefly summarize. Extending a partition
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Chern characters for supersymmetric field theories 1949

function to a full field theory requires both additional data and property: a choice of
preimage under the map restr in (3) and (4) need not exist nor be unique. Similarly,
refining a cohomology class over C to a class in the target of (2) is both data and property:
a class is in the image of the Chern character if it satisfies an integrality condition,
and lifts of integral classes need not be unique owing to the presence of torsion. Up
to an equivalence relation called concordance (see below), the conjectures (2) assert
that the data and property determining such refinements — either as field theories or
cohomology classes — precisely match each other.

The concordance relation features in the full conjecture of Stolz and Teichner, which
asserts that the cocycle maps (2) induce bijections between concordance classes of field
theories and cohomology classes. Recall that for a sheaf F WMfldop! Set on the site of
manifolds, sections s0; s1 2 F.M / are concordant if there exists s 2 F.M �R/ such
that s0 D i�

0
s and s1 D i�

1
s, where i0; i1 WM ,!M �R are the inclusions at 0 and 1.

Concordance defines an equivalence relation on the set F.M /, whose equivalence
classes are concordance classes.

Proposition 1.2 The assignment M 7! C1.Ld j1
0
.M //Eucd j1 is a sheaf on the site of

manifolds. Concordance classes of sections map surjectively to H.M ICŒˇ; ˇ�1�/ and
H.M IMF/ when d D 1 and 2, respectively.

There is an analogous definition of concordance for (higher) stacks, where the stack
condition is used to show that the concordance relation is transitive. Assuming that
M 7! d j1–EFT.M / is a d–stack, Proposition 1.2 implies that concordance classes of
d j1–dimensional Euclidean field theories map to H.M ICŒˇ; ˇ�1�/ and H.M IMF/ for
dD1 and 2, respectively. We expect this to implement the Chern character for K–theory
and TMF through the maps on concordance classes induced by the diagrams (5).

This brings us to a technical point: although it is expected that the assignment
M 7! d j1–EFT.M / is a d–stack, when d D 2 this statement is contingent on a
fully extended enhancement of the existing definitions. This fully extended aspect is an
essential ingredient in Stolz and Teichner’s conjecture that concordance classes of 2j1–
dimensional field theories yield TMF; see [26, Conjecture 1.17]. In this paper, the source
of (4) uses the 1–categorical definition from [26]. Fully extended 2j1–dimensional
super Euclidean field theories should map to this 1–categorical version (via a forgetful
functor), and from this one would obtain a Chern character on concordance classes via
postcomposition with (4).

Geometry & Topology, Volume 27 (2023)



1950 Daniel Berwick-Evans

1.1 Cocycles from partition functions

In physics, the best-known topological invariants associated with the field theories (1)
are the Witten index in dimension 1j1 (see eg Witten [27]), and the elliptic genus in
dimension 2j1 (see eg Witten [28] or Alvarez, Killingback, Mangano and Windey [1]).
These are examples of partition functions. For example, when d D 2 the partition
function of the N D .0; 1/ supersymmetric sigma model with target a string manifold
is a modular form called the Witten genus; see Witten [29]. This genus led Segal [23]
to suggest that certain 2–dimensional quantum field theories could provide a geometric
model for elliptic cohomology.

Stolz and Teichner refined these early ideas, leading to the conjectured cocycle maps (2).
In their framework (as in Segal’s [24]), partition functions are defined as the value of a
field theory on closed, connected bordisms [26, Definition 4.13]. The definition of a
super Euclidean field theory implies that this restriction determines a function invariant
under the action by super Euclidean isometries

(6) d j1–EFT.M /! C1.fclosed bordisms over M g/isometries:

Fei Han [18] shows that (6) applied to a class of 1j1–dimensional closed bordisms
over M ,

(7) Map.R0j1;M /'Map.R1j1=Z;M /S
1

�Map.R1j1=Z;M /� 1j1–Bord.M /;

encodes the Chern character in K–theory. To summarize, restriction along (7) evaluates
a 1j1–dimensional Euclidean field theory on length 1 super circles whose map to M

is invariant under the action of loop rotation. This restriction is also a version of
dimensional reduction. When the input 1j1–dimensional Euclidean field theory is
constructed via Dumitrescu’s [14] super parallel transport for a vector bundle with
connection, the resulting element in C1.Map.R0j1;M //'��.M / is a differential
form representative of the Chern character of that vector bundle.

The cocycle map (4) is a more elaborate version of restriction along (7). The goal is to
find an appropriate class of closed 2j1–dimensional bordisms so that the restriction (6)
constructs a map from 2j1–dimensional Euclidean field theories to complex-analytic
elliptic cohomology. There are two main problems to be solved in this 2–dimensional
generalization. First, one cannot specialize to a particular super torus, as in the spe-
cialization to the length 1 super circle in (7). Indeed, elliptic cohomology over C is
parametrized by the moduli of all complex-analytic elliptic curves. This problem is
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easy enough to solve, though its resolution introduces some technicalities: one restricts
to a moduli stack of super tori.

The second obstacle is more serious. Stolz and Teichner’s field theories are neither
chiral nor conformal, and hence restriction only gives a smooth function on the moduli
stack of super Euclidean tori. On the other hand, a class in complex-analytic elliptic
cohomology only depends on the holomorphic part of the conformal modulus of a
torus. Resolving this apparent mismatch comes through a surprising feature of the
super moduli space L2j1

0
.M /: the failure of conformality and holomorphy is measured

by a specified de Rham coboundary; see Proposition 1.5. Loosely, this shows that
functions on L2j1

0
.M / possess a kind of derived holomorphy and conformality.

1.2 Outline of the proof

Theorem 1.1 boils down to somewhat technical computations in supermanifolds, so
we briefly outline the approach and state key intermediate results in terms of ordinary
(nonsuper) geometry. There are three main steps in the construction:

(i) Construct the super moduli spaces Ld j1
0
.M /.

(ii) Compute the algebras of Eucd j1–invariant functions C1.Ld j1
0
.M //Eucd j1 in

terms of differential form data on M .

(iii) Construct the cocycle maps (3) and (4) using the output of step (ii).

The main work is in step (ii), culminating in Propositions 1.4 and 1.5 below.

For step (i), we start by defining

(8) Ld j1.M / WDMd j1
�Map.Rd j1=Zd ;M /; Ld j1.M /� d j1–Bord.M /;

where Md j1 is the moduli space of super Euclidean structures on Rd j1=Zd , and
Map.Rd j1=Zd ;M / is the generalized supermanifold of maps from Rd j1=Zd to M .
Hence, an S–point of L1j1.M / determines a family of super Euclidean circles with a
map to M , and an S–point of L2j1.M / determines a family of super Euclidean tori
with a map to M . There is a canonical functor Ld j1.M /! d j1–Bord.M /, regarding
these supermanifolds as bordisms from the empty set to the empty set. Next we consider
the subobject of (8) gotten by taking maps invariant under the Rd –action on Rd j1=Zd

by precomposition. Equivalently, this is the S1 DR=Z–fixed subspace when d D 1

and the T 2 D R2=Z2–fixed subspace when d D 2. This yields finite-dimensional
subobjects

(9) Md j1
�Map.R0j1;M /' Ld j1

0
.M / WD Ld j1.M /R

d =Zd

� Ld j1.M /

Geometry & Topology, Volume 27 (2023)
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that, roughly speaking, are the subspaces of maps that are constant up to nilpotents.
Restricting a field theory along the composition Ld j1

0
.M /�Ld j1.M /!d j1–Bord.M /

extracts a function, providing the first arrow in (3) and (4),

(10) restr W d j1–EFT.M /! C1.Ld j1
0
.M //Eucd j1 :

See Lemmas 2.12 and 3.15.

Remark 1.3 The restriction (10) is dimensional reduction in the sense of [10, Glossary],
though it differs from dimensional reduction in the sense of [26, Section 1.3].

Step (ii) is a technical computation. The d D 1 case is characterized as follows.

Proposition 1.4 The elements of C1.L1j1
0
.M //Euc1j1 are in bijection with pairs

.Z;Z`/, where

(11) Z 2 .��cl.M IC
1.R>0/Œˇ; ˇ

�1�//0; Z` 2 .�
�.M IC1.R>0/Œˇ; ˇ

�1�//�1;

with jˇj D �2. Here Z is closed of total degree zero , Z` is of total degree �1, and
they satisfy

(12) @`Z D dZ`;

where d is the de Rham differential on M, and @` is the vector field on R>0 associated
to the standard coordinate ` 2 C1.R>0/.

For the d D 2 case, let H � C denote the upper half-plane with standard complex
coordinates �; x� 2 C1.H/, and let v 2 C1.R>0/ be the standard coordinate.

Proposition 1.5 The elements of C1.L2j1
0
.M //Euc2j1 are in bijection with triples

.Z;Zx� ;Zv/, where

(13)
Z 2 .��cl.M IC

1.H�R>0/Œˇ; ˇ
�1�/SL2.Z//0;

Zx� ;Zv 2 .�
�.M IC1.H�R>0/Œˇ; ˇ

�1�//�1;

with jˇj D�2. Here Z is closed of total degree zero , Zx� and Zv are of total degree �1,
they satisfy an SL2.Z/–invariance property stated in Lemma 3.23, and

(14) @vZ D dZv and @x�Z D dZx� ;

where d is the de Rham differential on M, and @x� and @v are vector fields on H

and R>0.

Geometry & Topology, Volume 27 (2023)
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In Propositions 1.4 and 1.5, the closed differential form Z arises by restriction to a
subspace

R>0 �Map.R0j1;M / ,! L1j1
0
.M /;(15)

Lat�Map.R0j1;M / ,! L2j1
0
.M /;(16)

where Lat is the space of based, oriented lattices in C. Indeed, (11) and (13) come
from

(17)
C1.R>0�Map.R0j1;M //Euc1j1 ' .�cl.M IC

1.R>0/Œˇ; ˇ
�1�//0;

C1.Lat�Map.R0j1;M //Euc2j1 ' .��.M IC1.H�R>0/Œˇ; ˇ
�1�/SL2.Z//0:

When d D 1, ` 2R>0 corresponds to (super) circles of length `, and (12) shows that
the failure of Z 2 C1.R>0�Map.R0j1;M //Euc1j1 to be independent of this length is
d–exact. When d D 2, a point .�; x�; v/ 2H�R>0 corresponds to (super) Euclidean
tori with conformal modulus .�; x�/ and total volume v. Then Zv and (14) show that
the failure of Z 2 C1.Lat�Map.R0j1;M //Euc2j1 to be independent of the volume is
d–exact. Similarly, Zx� and (14) show that the failure of Z to depend holomorphically
on the conformal modulus is d–exact. This is the precise sense in which functions
on L2j1

0
.M / exhibit a derived version of holomorphy and conformality.

Finally for step (iii), we consider the maps, with notation from Propositions 1.4 and 1.5,

C1.L1j1
0
.M //!H.M IC1.R>0/Œˇ; ˇ

�1�/; .Z;Z`/ 7! ŒZ�;(18)

C1.L2j1
0
.M //!H.M IC1.H�R>0/Œˇ; ˇ

�1�/SL2.Z/; .Z;Zx� ;Z`/ 7! ŒZ�;(19)

where jˇj D �2 and has weight 1 for SL2.Z/, meaning ˇ 7! .c� C d/ˇ.

Proof of Theorem 1.1 from Propositions 1.4 and 1.5 Starting with the d D 1 case,
we claim that the map (18) factors through cohomology with coefficients in the subring
CŒˇ; ˇ�1� ,! C1.R>0/Œˇ; ˇ

�1�, including as the constant functions on R>0. Indeed,
observe that

(20) @`ŒZ�D Œ@`Z�D ŒdZ`�D 0;

using (12). Hence, ŒZ� 2 H.M ICŒˇ; ˇ�1�/ � H.M IC1.R>0/Œˇ; ˇ
�1�/, and (18)

determines the cocycle map in (3).

Similarly, the map (19) factors through cohomology with coefficients in the subring

(21) MF' .O.H/Œˇ; ˇ�1�/SL2.Z/ ,! .C1.H�R>0/Œˇ; ˇ
�1�/SL2.Z/;

Geometry & Topology, Volume 27 (2023)
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where MF is the ring of weak modular forms; see Definition 3.26. The map (21) is the
pullback of smooth functions along the projection H�R>0!H composed with the
inclusion O.H/� C1.H/. Indeed, we have

@v ŒZ�D Œ@vZ�D ŒdZv �D 0 and @x� ŒZ�D Œ@x�Z�D ŒdZx� �D 0

using (14), where the first set of equalities demonstrate independence from R>0, while
the second demonstrate holomorphic dependence on H. Finally, the SL2.Z/–invariance
property for Z (see Lemma 3.23) shows that ŒZ� is indeed a cohomology class valued
in modular forms,

ŒZ� 2 H.M IMF/� H.M IC1.H�R>0/Œˇ; ˇ
�1�/SL2.Z/;

and hence (19) determines the cocycle map in (4).

Surjectivity of the cocycle maps (3) and (4) follows from the inclusions

��cl.M ICŒˇ; ˇ
�1�/ ,! C1.L1j1

0
.M //; ! 7! .!; 0/D .Z;Z`/;

��cl.M IMF/ ,! C1.L2j1
0
.M //; ! 7! .!; 0; 0/D .Z;Zx� ;Zv/;

using the description of functions from Propositions 1.4 and 1.5 and the maps on
coefficients described in the previous two paragraphs. The definition of the maps (18)
and (19) together with the de Rham theorem then implies that every cohomology class
admits a refinement to a function on Ld j1

0
.M /.

The following remarks relate our results to other work.

Remark 1.6 The above analysis of the moduli space of super Euclidean tori is related
to previous investigations of moduli spaces of super Riemann surfaces in the string
theory literature; see eg Donagi and Witten [13] and Witten [30]. However, the vast
majority of prior constructions in string theory and in the Stolz–Teichner program only
study the reduced moduli spaces. In particular, the cocycle models for (equivariant)
elliptic cohomology in Berwick-Evans [7; 6], Barthel, Berwick-Evans and Stapleton [3]
and Berwick-Evans and Tripathy [8] arise as functions on the reduced moduli space. In
this prior work, the correct mathematical object comes only after imposing holomorphy
by hand. However, as Theorem 1.1 shows, this property emerges naturally from the
geometry of 2j1–dimensional super tori.

Remark 1.7 When M D pt, Proposition 1.5 shows that partition functions of N D
.0; 1/ supersymmetric quantum field theories are weak modular forms: �odd.pt/D f0g,

Geometry & Topology, Volume 27 (2023)
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so Zv D Zx� D 0 are no additional data. In contrast to the arguments in the physics
literature that analyze a particular action functional (eg [9, Sections 4.3–4.4]), the proof
here emerges entirely from the geometry of the moduli space of super Euclidean tori.
This recovers Stolz and Teichner’s claim from [26, page 10] that “holomorphicity is a
consequence of the more intricate structure of the moduli stack of supertori”.

Remark 1.8 The data Zx� in Proposition 1.5 is closely related to anomaly cancellation
in physics and choices of string structures in geometry. An illustrative example is the
elliptic Euler class: an oriented vector bundle V !M determines a class ŒEu.V /� 2
H.M IMF/ if the Pontryagin class Œp1.V /� 2 H4.M IR/ vanishes. In Section 3.7 we
show that the set of differential forms H 2�3.M IR/ with p1.V /D dH parametrizes
cocycle refinements of ŒEu.V /� to a function on L2j1

0
.M /. Geometrically, H is part

of the data of a string structure on V . In physics, H is part of the data for anomaly
cancellation in a theory of V –valued free fermions. Under the conjectured cocycle
maps (2), V –valued free fermions are expected to furnish representatives of elliptic
Euler classes in TMF.M /; see Stolz and Teichner [25, Section 4.4]. Perturbative
quantization of fermions rigorously constructs elliptic Euler cocycles over C (see
Berwick-Evans [6, Section 6]), and Theorem 1.1 shows that lifting a cohomology class
to a 2j1–dimensional Euclidean field theory must depend on a choice of string structure,
at least rationally.

Remark 1.9 If the input field theory in (4) is super conformal, then dZv D 0, whereas
if the input theory is holomorphic then dZx� D 0. For a general field theory (not
necessarily conformal or holomorphic) the differential form @x�Z` � @`Zx� is closed.
These closed forms have the potential to encode secondary cohomological invariants
of field theories. Although we do not know explicit field theories for which this
cohomology class is nonzero, the structure appears to be related to mock modular
phenomena and the TMF–valued torsion invariants studied in Gaiotto, Johnson-Freyd
and Witten [17] and Gaiotto and Johnson-Freyd[16].

Remark 1.10 In light of Fei Han’s work [18] on the Bismut–Chern character, it
is tempting to think of the restriction 2j1–EFT.M /! C1.L2j1.M //Euc2j1 (without
taking T 2–invariant maps) as a candidate construction of the elliptic Bismut–Chern
character. Indeed, functions on C1.L2j1.M //Euc2j1 can be identified with cocycles
analogous to (14), where Z is a differential form on the double loop space and the

Geometry & Topology, Volume 27 (2023)
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de Rham differential d is replaced with the T 2–equivariant differential investigated in
Berwick-Evans [5].

1.3 Conventions for supermanifolds

This paper works in the category of supermanifolds with structure sheaves defined
over C; this is called the category of cs–supermanifolds in Deligne and Morgan [12].
The majority of what we require is covered in the concise introduction [26, Section 4.1],
but we establish a little notation presently. First, all functions and differential forms
are C–valued. The supermanifolds Rnjm are characterized by their super algebra of
functions C1.Rnjm/'C1.RnIC/˝Cƒ

�Cm. The representable presheaf associated
with Rnjm assigns to a supermanifold S the set

Rnjm.S/ WD ft1; t2; : : : ; tn 2 C1.S/ev; �1; �2; : : : ; �m 2 C1.S/odd
j .ti/red D .ti/redg;

where .ti/red denotes the restriction of a function to the reduced manifold Sred ,! S ,
and .ti/red is the conjugate of the complex-valued function .ti/red on the smooth mani-
fold Sred. We use this functor of points description throughout the paper, typically with
Roman letters denoting even functions and Greek letters denoting odd functions.

We follow Stolz and Teichner’s terminology, wherein a presheaf on supermanifolds
is called a generalized supermanifold. An example of a generalized supermanifold
is Map.X;Y / for supermanifolds X and Y , which assigns to a supermanifold S

the set of maps S �X ! Y . For a manifold M regarded as a supermanifold, the
generalized supermanifold Map.R0j1;M / is isomorphic to the representable presheaf
associated to the odd tangent bundle …TM , as we recall briefly. We use the notation
.x;  /2…TM.S/ for an S–point, where x WS!M is a map and 2�.S Ix�TM /odd

is an odd section. This gives an S–point .xC � / 2Map.R0j1;M / by identifying x

with an algebra map x W C1.M /! C1.S/ and  W C1.M /! C1.S/ with an odd
derivation relative to x. These fit together to define an algebra map

(22) C1.M /
.x; /
���! C1.S/˚ � �C1.S/' C1.S �R0j1/;

with the isomorphism coming from Taylor expansion in a choice of odd coordinate
� 2 C1.R0j1/. The map (22) is equivalent to S � R0j1 ! M , ie an S–point of
Map.R0j1;M /. The functions C1.Map.R0j1;M //'C1.…TM /'��.M / recover
differential forms on M as a Z=2–graded C–algebra. The action of automorphisms
of R0j1 on this algebra encode the de Rham differential and the grading operator on
forms; see eg [19, Section 3].
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2 A map from 1j1–Euclidean field theories to complexified
K–theory

The main goal of this section is to prove Proposition 1.4. From the discussion
in Section 1.2, this proves the d D 1 case of Theorem 1.1. We also prove Proposition 1.2
when d D 1, and connect this result with Chern characters of super connections.

2.1 The moduli space of super Euclidean circles

Definition 2.1 Let E1j1 denote the super Lie group with underlying supermanifold
R1j1 and multiplication

(23) .t; �/ � .t 0; � 0/D .t C t 0C i�� 0; � C � 0/ for .t; �/; .t 0; � 0/ 2R1j1.S/:

Define the super Euclidean group as Euc1j1 WD E1j1 Ì Z=2, where the semidirect
product is defined using the Z=2D f˙1g–action by reflection, .t; �/ 7! .t;˙�/, for
.t; �/ 2 E1j1.S/.

The super Lie algebra of E1j1 is generated by a single odd element, namely the left-
invariant vector field D D @� � i�@t . The right-invariant generator is QD @� C i�@t .
The super commutators are

(24) 1
2
ŒD;D�DD2

D�i@t and 1
2
ŒQ;Q�DQ2

D i@t :

Remark 2.2 The factors of i D
p
�1 in (23) and (24) come from Wick rotation;

see eg [12, page 95, Example 4.9.3]. This differs from the convention for the 1j1–
dimensional Euclidean group in [20, Definition 33], but is more closely aligned with
the Wick rotated 2j1–dimensional Euclidean geometry defined in [26, Section 4.2] and
studied below.

Let R1j1
>0

denote the supermanifold gotten by restricting the structure sheaf of R1j1 to
the positive reals, R>0 �R.

Geometry & Topology, Volume 27 (2023)



1958 Daniel Berwick-Evans

Definition 2.3 Given an S–point .`; �/ 2 R1j1
>0
.S/, the family of 1j1–dimensional

super Euclidean circles is defined as the quotient

(25) S
1j1

`;�
WD .S �R1j1/=Z

for the left Z–action over S determined by the formula

(26) n � .t; �/D .t C n`C i n��; n�C �/ for n 2 Z.S/; .t; �/ 2R1j1.S/:

Equivalently this is the restriction of the left E1j1–action on S �R1j1 to the S–family
of subgroups Z�S � E1j1 �S with generator

f1g �S ' S
.`;�/
,��!R1j1

>0
�S � E1j1

�S:

Define the standard super Euclidean circle, denoted by S1j1 D S
1j1
1;0
DR1j1=Z, as the

quotient by the action for the standard inclusion Z�R� E1j1.

Remark 2.4 The S–family of subgroups S �Z ,! S �E1j1 generated by .`; �/ 2
R1j1
>0
.S/ is normal if and only if �D 0. Hence, the standard super circle S1j1 inherits

a group structure from E1j1, but a generic S–family of super Euclidean circles S
1j1

`;�

does not.

Remark 2.5 There is a more general notion of a family of super circles where (26)
incorporates the action by Z=2 < Euc1j1. This moduli space has two connected
components corresponding to choices of spin structure on the underlying ordinary circle,
with the component from Definition 2.3 corresponding to the odd (or nonbounding)
spin structure. This turns out to be the relevant component to recover complexified
K–theory.

We recall [26, Definitions 2.26, 2.33 and 4.4]: for a supermanifold M with an action by
a super Lie group G, an .M;G/–structure on a family of supermanifolds T ! S is an
open cover fUig of T with isomorphisms to open sub-supermanifolds ' W Ui

��! Vi �

S �M and transition data gij W Vi \ Vj ! G compatible with the 'i and satisfying
a cocycle condition. An isometry between supermanifolds with .M;G/–structure is
defined as a map T ! T 0 over S that is locally given by the G–action on M, relative
to the open covers fUig of T and fU 0i g of T 0. Supermanifolds with .M;G/–structure
and isometries form a category fibered over supermanifolds.

Definition 2.6 [26, Section 4.2] A super Euclidean structure on a 1j1–dimensional
family T ! S is an .M;G/–structure for the left action of G D Euc1j1 on MDR1j1.
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Lemma 2.7 An S–family of super circles (25) has a canonical super Euclidean
structure.

Proof We endow a family of super circles with a 1j1–dimensional Euclidean structure
as follows. Take the open cover S �R1j1! S

1j1

`;�
supplied by the quotient map, and

take transition data from the Z–action on S �R1j1. By definition this Z–action is
through super Euclidean isometries, and so the quotient inherits a super Euclidean
structure.

We observe that every family of super circles pulls back from the universal family
.R1j1
>0
�R1j1/=Z!R1j1

>0
along a map S !R1j1

>0
. Hence,

M1j1
WDR1j1

>0
and S1j1

WD .R1j1
>0
�R1j1/=Z!R1j1

>0

are the moduli space of super Euclidean circles and the universal family of super
Euclidean circles, respectively. The following shows that M1j1DR1j1

>0
can equivalently

be viewed as the moduli space of super Euclidean structures on the standard super
circle.

Lemma 2.8 There exists an isomorphism of supermanifolds over R1j1
>0

,

(27) R1j1
>0
�S1j1 ��! S1j1;

from the constant R1j1
>0

–family with fiber the standard super circle , to the universal
family of super circles. This isomorphism does not preserve the super Euclidean
structure on S1j1.

Proof Define the map

(28) R1j1
>0
�R1j1

!R1j1
>0
�R1j1; .`; �; t; �/ 7! .`; �; t.`C i��/; � C t�/;

for .`; �/ 2R1j1
>0
.S/ and .t; �/ 2R1j1.S/. Observe that (28) is Z–equivariant for the

action on the source and target given by

n � .`; �; t; �/D .`; �; tCn; �/ and n � .`; �; t; �/D .`; �; tCn.`C i��/; �Cn�/;

respectively. Hence (28) determines a map between the respective Z–quotients, defining
a map (27). This is easily seen to be an isomorphism of supermanifolds. Since (27)
is not locally determined by the action of Euc1j1 on R1j1, it is not a super Euclidean
isometry.

The following result gives an S–point formula for the action of Euc1j1 on S1j1 and
M1j1 DR1j1

>0
coming from isometries between super Euclidean circles.
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Lemma 2.9 Given .`; �/ 2R1j1
>0
.S/DM1j1.S/ and .s; �;˙1/ 2 .E1j1ÌZ=2/.S/D

Euc1j1.S/, there is an isometry f.s;�;˙1/ W S
1j1

`;�
! S

1j1

`0;�0
of super Euclidean circles

over S sitting in the diagram

S �R1j1 S �R1j1

S
1j1

`;�
S

1j1

`0;�0

.s;�;˙1/ �

f.s;�;˙1/

where the upper horizontal arrow is determined by the left Euc1j1–action on R1j1, the
left vertical arrow is the quotient map (51) for .`; �/, and the right vertical arrow is the
quotient map for

(29) .`0; �0/ WD .`˙ 2i��;˙�/:

Proof Consider the diagram

(30)
Z�S �R1j1 Z�S �R1j1

S �R1j1 S �R1j1

.s;�;˙1/ �

.`;�/ �

.s;�;˙1/ �

.`0;�0/ �

where the horizontal arrows denote the left action of .s; �;˙1/2Euc1j1.S/ on S�R1j1

while the vertical arrows denote the left Z–action generated by .`; �/; .`0; �0/2R1j1
>0
.S/.

The square (30) commutes if and only if .`0; �0/D .s; �;˙1/ � .`; �/ � .s; �;˙1/�1 2

R1j1
>0
.S/� E1j1.S/, ie (29) holds. Commutativity of the diagram (30) gives a map on

the Z–quotients, which is precisely a map S
1j1

`;�
!S

1j1

`0;�0
. This map is locally determined

by the action of E1j1 ÌZ=2, and hence respects the super Euclidean structures.

2.2 Super Euclidean loop spaces

Definition 2.10 The super Euclidean loop space is the generalized supermanifold

L1j1.M / WDR1j1
>0
�Map.S1j1;M /:

We identify an S–point of L1j1.M / with a map S
1j1

`;�
!M given by the composition

(31) S
1j1

`;�
' S �S1j1

!M;

by pulling back the isomorphism from Lemma 2.8 along the map .`; �/ W S !R1j1
>0

.
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We will define a left action of Euc1j1 on L1j1.M / determined by the diagram

(32)
S

1j1

`;� S �S1j1

S
1j1

`0;�0 S �S1j1

M

'

f

'

�

�0

where the horizontal arrows are the pullback of the isomorphism in Lemma 2.8, and
the super Euclidean isometry f is from Lemma 2.9 with .`0; �0/ D .`˙ 2��;˙�/.
The arrow �0 is uniquely determined by these isomorphisms and the input map �.
Hence, given .`; �; �/ 2R1j1

>0
.S/�Map.S1j1;M /.S/ and an S–point of Euc1j1, the

Euc1j1–action on L1j1.M / outputs .`0; �0; �0/ as in (32).

Remark 2.11 Precomposition actions (such as the action of Euc1j1 on Map.S1j1;M /

above) are most naturally right actions. Turning this into a left action involves inversion
on the group: the formula for �0 in (32) involves � and the inverse of f . This inversion
introduces signs in the formulas for the left Euc1j1–action on L1j1

0
.M / below. Our

choice to work with left actions is consistent with Freed’s conventions for classical
supersymmetric field theories [15, pages 44–45]; see also [11, page 357].

There is an evident S1–action on L1j1.M / coming from the precomposition action of
S1DE=Z<E1j1=Z on Map.S1j1;M /. Since the quotient is given by S1j1=S1'R0j1,
the S1–fixed points are

(33) L1j1
0
.M / WDR1j1

>0
�Map.R0j1;M /�R1j1

>0
�Map.S1j1;M /D L1j1.M /:

We identify an S–point of L1j1
0
.M / with a map S

1j1

`;�
!M that factors as

(34) S
1j1

`;�
' S �S1j1

D S �R1j1=Z
p
�! S �R0j1

!M;

where the map p is induced by the projection R1j1!R0j1. The action (32) preserves
this factorization condition; we give an explicit formula in Lemma 2.13 below. Hence,
the inclusion (33) is Euc1j1–equivariant.

Lemma 2.12 There is a functor L1j1
0
.M /! 1j1–EBord.M / that induces a restriction

map

(35) restr W 1j1–EFT.M /! C1.L1j1
0
.M //Euc1j1 :
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Proof The 1j1–dimensional Euclidean bordism category over M is constructed
by inputting the 1j1–dimensional Euclidean geometry from Definition 2.6 into the
definition of a geometric bordism category [26, Definition 4.12]. The result is a
category 1j1–EBord.M / internal to stacks on the site of supermanifolds; in partic-
ular, 1j1–EBord.M / has a stack of morphisms consisting of proper families of 1j1–
dimensional Euclidean manifolds with a map to M , with additional decorations related
to the source and target of a bordism.

By Lemma 2.7, super Euclidean circles give examples of S–families of 1j1–dimensional
Euclidean manifolds. An S–point of L1j1

0
.M / therefore defines a proper S–family

of 1j1–Euclidean manifolds with a map to M via (34). We can identify this with
an S–family of morphisms in 1j1–EBord.M / whose source and target are the empty
supermanifold equipped with the unique map to M . This defines a functor L1j1

0
.M /!

1j1–EBord.M / and a restriction map 1j1–EFT.M /! C1.L1j1
0
.M //. We refer to

the discussion preceding [26, Definition 4.13] for an explanation why the restriction to
closed bordisms extracts a function from a field theory.

Finally we argue that this restriction has image in Euc1j1–invariant functions. By
definition, an isometry between 1j1–dimensional Euclidean manifolds comes from
the action of the super Euclidean group Euc1j1 D E1j1 Ì Z=2 on the open cover
defining the super Euclidean manifold. By Lemma 2.9, the action (32) on L1j1

0
.M / is

therefore through super Euclidean isometries of super circles compatible with the maps
to M . By definition, these isometries define isomorphisms between the bordisms (34)
in 1j1–EBord.M /. Functions on a stack are functions on objects invariant under
the action of isomorphisms. Hence, the restriction 1j1–EFT.M /! C1.L1j1

0
.M //

necessarily takes values in functions invariant under Euc1j1, yielding the claimed
map (35).

2.3 Computing the action of Euclidean isometries

Lemma 2.13 The left Euc1j1–action on R1j1
>0
�Map.R0j1;M / is given by

(36) .s; �;˙1/ � .`; �;x;  /D

�
`˙ 2i��;˙�;x˙

�
�s

`
� �

�
 ;˙e�i��=` 

�
;

using notation for the functor of points ,

(s; �;˙1/ 2 .E1j1 ÌZ=2/.S/' Euc1j1.S/;

(`; �/ 2R1j1
>0
.S/;

(x;  / 2…TM.S/'Map.R0j1;M /.S/:
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Proof Let p`;� W S
1j1

`;�
! S � R0j1 denote the composition of the left three maps

in (34). Given .s; �;˙1/ 2 Euc1j1.S/, .`; �/ 2 R1j1
>0
.S/ and .x;  / 2 …TM.S/ '

Map.R0j1;M /.S/, the goal of the lemma is to compute formulas for .`0; �0/2R1j1
>0
.S/

and .x0;  0/ 2…TM.S/ in the diagram

(37)

S
1j1

`;� S �R0j1

S
1j1

`0;�0 S �R0j1

M

p`;�

fs;�;˙1

p`0;�0

.x; /

.x0; 0/

where the arrow labeled by fs;�;˙1 denotes the isometry between super Euclidean
circles from Lemma 2.9 for .s; �;˙1/ 2 Euc1j1.S/. Hence, we see that .`0; �0/ is given
by (29). To compute .x0;  0/, we find a formula for the dashed arrow in (37). To start,
consider the map

zp`;� WR
1j1
�S !R0j1

�S; zp`;�.t; �/D � ��
t

`
;

which is part of the inverse to the isomorphism (28). Indeed, we check the Z–invariance
condition for the action (26),

zp`;�.n � .t; �//D zp`;�.n`C t C i n��; n�C �/D n�C � ��
n`CtCi n��

`
D � ��

t

`
:

Hence zp`;� determines a map p`;� W S
1j1

`;�
! S �R0j1, which is the map in (37). From

this we see that the dashed arrow in (37) is unique and determined by

� 7! ˙

�
� C ���

sC i��

`

�
; with .s; �;˙1/ 2 Euc1j1.S/; � 2R0j1.S/:

The left action (32) is given by (see Remark 2.11 for an explanation of the signs)

.xC � / 7! x˙

�
� � ���

�s� i��

`

�
 D x˙

�
�s

`
� �

�
 ˙ �

�
1� i

��

`

�
 ;

which is the claimed formula for .x0;  0/.

Just as R–actions on ordinary manifolds are determined by flows of vector fields,
E1j1–actions on supermanifolds are determined by the flow of an odd vector field.
This comes from differentiating a left E1j1–action at zero and considering the action
by the element Q of the super Lie algebra, using the notation from (24). Odd vector
fields on supermanifolds are precisely odd derivations on their functions. We note the
isomorphism

(38) C1.L1j1
0
.M //' C1.R1j1

>0
�Map.R0j1;M //' C1.R1j1

>0
/˝��.M /

' C1.R>0/Œ��˝�
�.M /;
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where (in an abuse of notation) we let `; �2C1.R1j1
>0
/ denote the coordinate functions

associated with the universal family of super circles S DR1j1
>0
!R1j1

>0
�R1j1. In the

above, we used that

C1.Map.R0j1;M //'��.M / and C1.S �T /' C1.S/˝C1.T /

for supermanifolds S and T using the projective tensor product of Fréchet algebras; see
for instance [20, Example 49]. Let deg W��.M /!��.M / denote the (even) degree
derivation determined by deg.!/D k! for ! 2�k.M /.

Lemma 2.14 The left E1j1–action (36) on L1j1
0
.M / is generated by the odd derivation

(39) yQ WD 2i�
d

d`
˝ id� id˝ d� i

�

`
˝ deg

using the identification of functions (38), where d is the de Rham differential and deg is
the degree derivation on differential forms.

Proof We recall that right-invariant vector fields generate left actions, so that the
infinitesimal action of E1j1 on L1j1

0
.M / is determined by the action of Q. Furthermore,

minus the de Rham operator generates the left E0j1–action .x;  / 7! .x � � ; /

on …TM , and minus the degree derivation generates the left R�–action .x;  / 7!
.x;u�1 /; see eg [19, Section 3.4]. Applying the derivation QD @�C i�@s to (36)
and evaluating at .s; �/D 0 recovers (39).

2.4 The proof of Proposition 1.4

The Euc1j1–equivariant inclusion

R>0 �Map.R0j1;M / ,!R1j1
>0
�Map.R0j1;M /D L1j1

0
.M /

is along S–families of super circles with �D 0. So by Lemmas 2.13 and 2.14 we have

C1.R>0 �Map.R0j1;M //Euc1j1 '��.M IC1.R>0//
E1j1ÌZ=2

'�ev
cl .M IC

1.R>0//

using (36) to see that Z=2 acts through the parity involution (so invariant functions are
even forms) and (39) to see that the E1j1–action is generated by minus the de Rham d
(so invariant functions are closed forms). This verifies the equality (17) when d D 1

and extracts the data Z from an element of C1.L1j1
0
.M //Euc1j1 .
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Next, observe that

C1.L1j1
0
.M //' C1.R1j1

>0
�Map.R0j1;M //'��.M IC1.R1j1

>0
//

'��.M IC1.R>0/Œ��/;

where the final isomorphism comes from Taylor expansion of functions on R1j1
>0

in the
odd coordinate function �. For convenience we choose the parametrization of functions

(40) C1.L1j1
0
.M //' f`deg =2.ZC 2i�`1=2Z`/ jZ;Z` 2�

�.M IC1.R>0//g;

where `deg =2!D `k=2! for ! 2�k.M IC1.R>0//. We again have that Z=2<Euc1j1

acts by the parity involution, so since � is odd and ` is even we find

C1.L1j1
0
.M //Z=2

D f`deg =2.ZC 2i�`1=2Z`/ jZ 2�
ev.M IC1.R>0//;Z` 2�

odd.M IC1.R>0//g:

Next we compute

yQ.`deg =2ZC 2i�`1=2`deg =2Z`/

D 2i�
d

d`
.`deg =2Z/� `�1=2`deg =2dZ � 2i�`deg =2dZ` � i

�

`
`deg =2 deg.Z/

D�`�1=2`deg =2dZC 2i�`deg =2
�

dZ

d`
� dZ`

�
;

where in the first equality we use that d.`deg =2!/D `�1=2`deg =2.d!/, and in the second
equality we expand

2i�
d

d`
.`deg =2Z/

using the product rule and then simplify. Hence

(41) yQ.`deg =2.ZC 2i�`1=2Z`//D 0 () dZ D 0 and dZ` D
dZ

d`
:

By Lemma 2.14, yQ generates the E1j1–action and, since E1j1 is connected, yQ–invariant
functions are equivalent to E1j1–invariant functions. Finally, we identify even differ-
ential forms with elements of ��.M IC1.R>0/Œˇ; ˇ

�1�/ of total degree zero and
odd differential forms with elements of ��.M IC1.R>0/Œˇ; ˇ

�1�/ of total degree �1

(essentially replacing ` in (40) by ˇ). This completes the proof of Proposition 1.4.

2.5 Concordance classes of functions

For Proposition 1.2 we require a refinement of the cocycle map.
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Definition 2.15 Using the notation from Proposition 1.4, for each � 2R>0 define a
map

2cocycle� W C
1.L1j1

0
.M //Euc1j1 ! .��cl.M ICŒˇ; ˇ

�1�//0;

2cocycle�.Z;Z`/DZ.�/;

where Z.�/ denotes evaluation at � 2R>0 and .��cl.M ICŒˇ; ˇ
�1�//0 is the space of

closed differential forms of total degree zero.

Lemma 2.16 The composition

C1.L1j1
0
.M //Euc1j1

1cocycle�
����! .��cl.M ICŒˇ; ˇ

�1�//0
de Rham
����! H.M ICŒˇ; ˇ�1�/

agrees with (3) and hence is independent of �.

Proof The calculation (20) shows

Œ2cocycle�.Z;Z`/�D ŒZ.�/�D ŒZ�Dcocycle.Z;Z`/2H.M ICŒˇ; ˇ�1�/

�H.M IC1.R>0/Œˇ; ˇ
�1�/:

In particular, the class underlying 2cocycle�.Z;Z`/ is independent of �.

Proof of Proposition 1.2 for d D1 Proposition 1.4 implies M 7!C1.L1j1
0
.M //Euc1j1

is a sheaf on the site of smooth manifolds. The map in Definition 2.15 is a morphism
of sheaves

(42) 2cocycle� W C
1.L1j1

0
.�//Euc1j1 !�ev

cl .�ICŒˇ; ˇ
�1�/

taking values in closed forms of even degree. By Stokes’ theorem, concordance classes
of closed forms on a manifold M are cohomology classes. Hence, taking concordance
classes of the map (42) applied to a manifold M proves the proposition when d D 1.

2.6 The Chern character of a super connection

A super connection A on a Z=2–graded vector bundle V !M is an odd C–linear
map satisfying the Leibniz rule [22]

A W��.M IV /!��.M IV /; A.f s/D df � sC .�1/jf jfAs;

for f 2��.M / and s 2��.M IV /. One can express a super connection as a finite sum
A D

P
j Aj , where Aj W �

�.M IV /! ��Cj .M IV / raises differential form degree
by j . Note that A1 is an ordinary connection on V , and Aj is a differential form valued
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in End.V /odd if j is even and End.V /ev if j is odd. Super parallel transport provides a
functor, denoted by sPar, from the groupoid of Z=2–graded vector bundles with super
connection on M to the groupoid of 1j1–dimensional Euclidean field theories over M :

(43)
VectA.M /

sPar
�! 1j1–EFT.M /

res
�! C1.R>0 �Map.R0j1;M //Euc1j1 ;

.V;A/ 7�! sPar.V;A/ 7�! sTr.e`A
2

/:

Part of this construction is given in [14], reviewed in [26, Section 1.3]. A different
approach (satisfying stronger naturality properties required to construct the functor sPar)
is work in progress by Arnold [2]. Evaluating the field theory sPar.V;A/ on closed
bordisms determines the function sTr.e`A

2

/ 2 C1.R>0 � Map.R0j1;M //. The
parametrization (40) extracts the function Z determined by

`deg =2Z D sTr.exp.`A2//:

Hence we find that Z D sTr.exp.A2
`
// for

(44) A` D `
1=2A0CA1C `

�1=2A2C `
�1A3C � � � :

The R>0–family of super connections (44) appears frequently in index theory, eg [22]
and [4, Section 9.1]. By [4, Proposition 1.41], the failure for Z to be independent of `
is measured by the exact form

(45)
d

d`
sTr.eA2

`/D d
�

sTr
�

dA`
dt

eA2
`

��
:

By Proposition 1.4, the data ZD sTr.eA2
`/ and Z` D sTr..dA`=dt/eA2

`/ determine an
element of C1.L1j1

0
.M //Euc1j1 refining the Chern character of the Z=2–graded vector

bundle V .

Remark 2.17 If ADr is an ordinary connection, the family (44) is independent of `
and Z`D 0. This recovers Fei Han’s identification [18] of the Chern form Tr.exp.r2//

with dimensional reduction of the 1j1–dimensional Euclidean field theory sPar.V;r/.

3 A map from 2j1–Euclidean field theories to complexified
elliptic cohomology

The main goal of this section is to prove Proposition 1.5. From the discussion
in Section 1.2, this proves Theorem 1.1 when d D 2. We also prove Proposition 1.2
when d D 2 and comment on connections with a de Rham model for complex-analytic
elliptic cohomology, complexified TMF, and elliptic Euler classes.
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3.1 The moduli space of super Euclidean tori

We will use the two equivalent descriptions of S–points of R2j1:

R2j1.S/' fx;y 2 C1.S/ev; � 2 C1.S/odd
j .x/red D .x/red; .y/red D .y/redg(46)

' fz; w 2 C1.S/ev; � 2 C1.S/odd
j .z/red D .w/redg;(47)

where reality conditions are imposed on restriction of functions to the reduced manifold
Sred ,! S . The isomorphism between (46) and (47) is .x;y/ 7! .xC iy;x � iy/ D

.z; w/. Below we shall adopt the standard (though potentially misleading) notation
xz WD w. We take similar notation for S–points of Spin.2/, using the identification
Spin.2/' U.1/�C with the unit complex numbers. This gives the description

(48) Spin.2/.S/' U.1/.S/D fu; xu 2 C1.S/ev
j .u/red D .xu/red; uxuD 1g:

Definition 3.1 Let E2j1 denote the super Lie group with underlying supermanifold
R2j1 and multiplication

(49) .z;xz; �/ � .z0;xz0; � 0/D .zC z0;xzCxz0C �� 0; � C � 0/

for .z;xz; �/; .z0;xz0; � 0/2R2j1.S/. Define the super Euclidean group as E2j1ÌSpin.2/,
where the semidirect product is defined by the action (using the notation (48))

.u; xu/ � .z;xz; �/D .u2z; xu2
xz; xu�/ for .u; xu/ 2 Spin.2/.S/:

The Lie algebra of E2j1 has one even generator and one odd generator. In terms
of left-invariant vector fields, these are @z and D D @� � �@xz , whereas in terms of
right-invariant vector fields they are @z and QD @�C�@xz . The super commutators are

(50) Œ@z;D�D 0; ŒD;D�D�@xz and Œ@z;Q�D 0; ŒQ;Q�D @xz :

Let Lat � C �C denote the manifold of based lattices in C parametrizing pairs of
nonzero complex numbers `1; `2 2C� such that `1=`2 2H�C is in the upper half-
plane. Equivalently, the pair .`1; `2/ generate a based oriented lattice in C. We observe
that .`1; `2/ 7! .`1; `1=`2/ defines a diffeomorphism Lat ' C� �H, so that Lat is
indeed a manifold. When regarding Lat as a supermanifold, an S–point is specified by
.`1; x̀1; `2; x̀2/ 2 Lat.S/� .C �C/.S/, following the notation from (47).

Definition 3.2 Define the generalized supermanifold of based (super) lattices in R2j1

as the subfunctor sLat�R2j1�R2j1 (viewing R2j1�R2j1 as a representable presheaf)
whose S–points are .`1; x̀1; �1/; .`2; x̀2; �2/ 2R2j1.S/ such that:
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(i) The pair commute for the multiplication (49) on E2j1.S/'R2j1.S/,

.`1; x̀1; �1/ � .`2; x̀2; �2/D .`2; x̀2; �2/ � .`1; x̀1; �1/ 2 E2j1.S/:

(ii) The reduced map Sred! .R2j1 �R2j1/red ' R2 �R2 ' C �C determines a
family of based oriented lattices in C, ie the image lies in Lat�C �C.

Remark 3.3 Condition (i) is equivalent to requiring that .`1; x̀1; �1/; .`2; x̀2; �2/ 2

E2j1.S/ generate a Z2–subgroup, ie a homomorphism S �Z2! S �E2j1 over S .

Definition 3.4 Given an S–point ƒ D ..`1; x̀1; �1/; .`2; x̀2; �2// 2 sLat.S/, define
the family of 2j1–dimensional super tori as the quotient

(51) T
2j1
ƒ
WD .S �R2j1/=Z2

for the free left Z2–action over S determined by the formula

(52) .n;m/ � .z;xz; �/

D .zC n`1Cm`2;xzC n.x̀1C�1�/Cm.x̀2C�2�/; n�1Cm�2C �/

for .n;m/ 2 Z2.S/ and .z;xz; �/ 2 R2j1.S/. Equivalently, this is the restriction of
the left E2j1–action on S �R2j1 to the S–family of subgroups S �Z2 � S �E2j1

with generators over S specified by .`1; x̀1; �1/ and .`2; x̀2; �2/. Define the standard
super torus as T 2j1DR2j1=Z2 for the quotient by the action for the standard inclusion
Z2 �R2 � E2j1, ie for the square lattice.

Remark 3.5 The S–family of subgroups S �Z2 ,! S �E2j1 determined by ƒ (as in
Remark 3.3) is normal if and only if �1 D �2 D 0. Hence, although the standard super
torus T 2j1 inherits a group structure from E2j1, generic super tori T

2j1
ƒ

do not.

Remark 3.6 There is a more general notion of a family of super tori where the
action (52) also incorporates pairs of elements in Spin.2/. This moduli space has
connected components corresponding to choices of spin structure on an ordinary torus,
with the component from Definition 3.4 corresponding to the odd (or periodic–periodic)
spin structure. This turns out to be the relevant component of the moduli space to
recover complex-analytic elliptic cohomology.

Stolz and Teichner’s .M;G/–structures are discussed before Definition 2.6.

Definition 3.7 [26, Section 4.2] A super Euclidean structure on a 2j1–dimensional
family T ! S is an .M;G/–structure for the left action of G D E2j1 Ì Spin.2/
on MDR2j1.
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Lemma 3.8 An S–family of super tori (51) has a canonical super Euclidean structure.

Proof The proof is the same as for Lemma 2.7, using the open cover S�R2j1!T
2j1
ƒ

and transition data from the Z2–action (52).

Every family of super tori pulls back from the universal family .sLat�R2j1/=Z2! sLat

along a map S ! sLat. Hence, we regard

M2j1
WD sLat and T 2j1

WD .sLat�R2j1/=Z2
! sLat

as the moduli space of super Euclidean tori and the universal family of super Euclidean
tori, respectively. The following identifies sLat with the moduli space of super Euclidean
structures on the standard super torus.

Lemma 3.9 There exists an isomorphism of supermanifolds over sLat,

(53) sLat�T 2j1 ��! T 2j1;

from the constant sLat–family with fiber the standard super torus to the universal family
of super Euclidean tori. This isomorphism does not preserve the super Euclidean
structure on T 2j1.

Proof Define the map sLat�R2j1! sLat�R2j1 by

(54) .`1; x̀1; �1; `2; x̀2; �2;x;y; �/

7!
�
`1; x̀1; �1; `2; x̀2; �2; `1xC`2y;x.x̀1C�1�/Cy.x̀2C�2�/; �Cx�1Cy�2

�
for .`1; x̀1; �1; `2; x̀2; �2/2sLat.S/ and .x;y; �/2R2j1.S/, where the source uses (46)
to specify an S–point .x;y; �/2R2j1.S/whereas the target uses (47). Observe that (54)
is Z2–equivariant for the actions on the source and target,

.n;m/ � .`1; x̀1; �1; `2; x̀2; �2;x;y; �/D .`1; x̀1; �1; `2; x̀2; �2;xC n;yCm; �/

and

.n;m/ � .`1; x̀1; �1; `2; x̀2; �2; z;xz; �/

D
�
`1; x̀1; �1; `2; x̀2; �2; zCn`1Cm`2;xzCn.x̀1C�1�/Cm.x̀C�2�/; �Cn�Cm�2

�
;

respectively. Hence (54) determines a map between the respective Z2–quotients,
defining a map (53). This map is easily seen to be an isomorphism of supermanifolds.
Since the map (53) is not locally determined by the action of E2j1 Ì Spin.2/ on R2j1,
it is not a super Euclidean isometry.

Definition 3.10 Define the super Lie group Euc2j1 WD E2j1 ÌSpin.2/�SL2.Z/.
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The following gives an S–point formula for the action of Euc2j1 on T 2j1 and M2j1 D

sLat coming from isometries between super Euclidean tori.

Lemma 3.11 Given ƒD ..`1; x̀1; �1/; .`2; x̀2; �2// 2 sLat.S/DM2j1.S/ together
with .w; xw; �;u; xu/2 .E2j1ÌSpin.2//.S/ and  2SL2.Z/.S/, there is an isomorphism
f.w; xw;�;u;xu/ W T

2j1
ƒ
! T

2j1
ƒ0

of super Euclidean tori over S sitting in the diagram

S �R2j1 S �R2j1

T
2j1
ƒ

T
2j1
ƒ0

.w; xw;�;u;xu/ �

f.w; xw;�;u;xu/

where the upper horizontal arrow is determined by the left E2j1 Ì Spin.2/–action
on R2j1, the left vertical arrow is the quotient map (25) for ƒ, and the right vertical
arrow is the quotient map for

(55) ƒ0 WD
��

u2.a`1C b`2/; xu
2.a.x̀1C 2��1/C b.x̀2C 2��2//; xu.a�1C b�2/

��
u2.c`1C d`2/; xu

2.c.x̀1C 2��1/C d.x̀2C 2��2//; xu.c�1C d�2/
�� ;

where  D
�

a
c

b
d

�
2 SL2.Z/.S/.

Proof Consider the diagram

(56)
Z2 �S �R2j1 Z2 �S �R2j1

S �R2j1 S �R2j1

�.w; xw;�;u;xu/

ƒ

.w; xw;�;u;xu/

ƒ0

The horizontal arrows are determined by the left action of .w; xw; �/2E2j1.S/, .u; xu/2
Spin.2/.S/ on S �R2j1 and a map S �Z2! S �Z2 specified by  2 SL2.Z/.S/.
The vertical arrows are the Z2–action on S � R2j1 generated by ƒ;ƒ0 2 sLat.S/.
Using (49), this square commutes if and only if (55) holds. Commutativity of (56)
gives a map on the Z2–quotients, which is precisely a map T

2j1
ƒ
! T

2j1
ƒ0

. This map is
locally given by the action of E2j1 Ì Spin.2/ on R2j1, so by construction it respects
the super Euclidean structures.

We will require an explicit description of functions on sLat, ie the morphisms of
presheaves sLat! C1. Regarding Lat as a representable presheaf on supermanifolds,
there is an evident monomorphism Lat ,! sLat from the canonical inclusion C �C '

R2�R2 ,!R2j1�R2j1. In the following, let �1; �22C1.sLat/ denote the restriction of
the odd coordinate functions C1.R2j1�R2j1/'C1.R4/Œ�1; �2� under the inclusion
sLat�R2j1 �R2j1.
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Lemma 3.12 There is an isomorphism of algebras

C1.sLat/' C1.Lat/Œ�1; �2�=.�1�2/:

Proof Consider the composition

S ! sLat�R2j1
�R2j1 p1;p2

���!R2j1;

where, as usual, we write the associated pair of maps S ! R2j1 as .`1; x̀1; �1/ and
.`2; x̀2; �2/. We therefore have 4 even and 2 odd functions on sLat that, as maps of
sheaves sLat! C1, assign to an S–point the functions `1; x̀1; `2; x̀2 2 C1.S/ev or
�1; �2 2 C1.S/odd. It is easy to see that arbitrary smooth functions in the variables
`1; x̀1; `2; x̀2 continue to define maps of sheaves and hence smooth functions on sLat.
Furthermore, since these are the restriction of functions on R2�R2 �R2j1�R2j1, we
can identify them with functions on Lat. This specifies the even subalgebra C1.Lat/�

C1.sLat/. On the other hand, the odd functions �1 and �2 are subject to a relation
coming from condition (i) in Definition 3.2, namely that �1�2D �2�1 2C1.S/odd for
all S . Since these are odd functions, this is equivalent to the condition that �1�2 D 0.
Hence the functions on sLat are as claimed.

Remark 3.13 The relation �1�2 D 0 implies that C1.sLat/ is not the algebra of
functions on any supermanifold, and hence the generalized supermanifold sLat fails to
be representable.

3.2 Super Euclidean double loop spaces

Definition 3.14 Define the super Euclidean double loop space as the generalized
supermanifold

L2j1.M / WD sLat�Map.T 2j1;M /:

We identify an S–point of L2j1.M / with a map T
2j1
ƒ
!M given by the composition

(57) T
2j1
ƒ
' S �T 2j1

!M;

using the isomorphism from Lemma 3.9.

We shall define a left action of Euc2j1 on L2j1.M / determined by the diagram

(58)
T

2j1
ƒ S �T 2j1

T
2j1
ƒ0

S �T 2j1

M

'

f

'

�

�0
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where the horizontal arrows are the inverses of the isomorphisms of supermanifolds
pulled back from Lemma 3.9, and f is the super Euclidean isometry associated to an
S–point of Euc2j1 in Lemma 3.11. These isomorphisms together with the arrow �

uniquely determine �0 in (58). Hence, for .ƒ; �/ 2 sLat.S/�Map.T 2j1;M /.S/ and
an S–point of Euc2j1, we define the Euc2j1–action on L2j1.M / as outputting .ƒ0; �0/
in (58). We caution that this is a left Euc2j1–action on sLat�Map.T 2j1;M /, and refer
to Remark 2.11 for a discussion of left actions on mapping spaces.

There is a T 2–action on L2j1.M / coming from the T 2–action on Map.T 2j1;M / by
the precomposition action of T 2 on T 2j1. The T 2–fixed points comprise the subspace

(59) L2j1
0
.M / WD sLat�Map.R0j1;M /� sLat�Map.T 2j1;M /D L2j1.M /:

We identify an S–point of this subspace as a map T
2j1
ƒ
!M that factors as

(60) T
2j1
ƒ
' S �T 2j1

' S �R2j1=Z2 p
! S �R0j1

!M;

where the map p is induced by the projection R2j1!R0j1. The action (58) preserves
this factorization condition; we give explicit formulae in Lemma 3.17 below. Hence,
the inclusion (59) is Euc2j1–equivariant.

Lemma 3.15 There is a functor L2j1
0
.M /! 2j1–EBord.M / that induces a restriction

map

(61) restr W 2j1–EFT.M /! C1.L2j1
0
.M //Euc2j1 :

Proof The proof is completely analogous to that of Lemma 2.12. Namely, Lemma 3.8
gives a functor L2j1

0
.M /! 2j1–Bord.M /, and Lemma 3.11 shows that the action of

Euc2j1 on L2j1
0
.M / is through isomorphisms between S–families of 2j1–dimensional

Euclidean bordisms. Hence, the restriction map lands in Euc2j1–invariant functions.

3.3 Computing the action of super Euclidean isometries

Definition 3.16 Using the notation from Lemma 3.12, define the function

(62) vol WD
`1
x̀
2�
x̀
1`2

2i
2 C1.sLat/:

The restriction of vol along Lat ,! sLat is the function that reads off the volume of
an ordinary torus C=`1Z˚ `2Z using the flat metric. In particular, this function is
real-valued, positive and invertible. By Lemma 3.12, the function vol on sLat is also
invertible.
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Lemma 3.17 The left E2j1 ÌSpin.2/–action on sLat�Map.R0j1;M / is given by

(63) .w; xw; �;u; xu/ � .`1; x̀1; �1; `2; x̀2; �2;x;  /

D

�
u2`1; xu

2.x̀1C 2��1/; xu�1;u
2`2; xu

2.x̀2C 2��2/; xu�2;

x� xu�1

�
�C

�1`2��2`1

2i vol
xwC

�1
x̀
2��2

x̀
1

2i vol
w

�
 ;

xu�1 exp
�
�
�1`2��2`1

2i vol

�
 

�
;

where

(w; xw; �/ 2 E2j1.S/; .u; xu/ 2 Spin.2/.S/;

(x;  / 2…TM.S/'Map.R0j1;M /.S/:

The SL2.Z/–action on sLat�Map.R0j1;M / is diagonal for the action on sLat from (55)
and the trivial action on Map.R0j1;M /.

Proof Let pƒ W T
2j1
ƒ
!S �R0j1 denote the composition of the left three maps in (60).

Given .w; xw; �/2E2j1.S/, .u; xu/2 Spin.2/.S/, ƒ2 sLat.S/ and .x;  /2…TM.S/,
the goal of the lemma is to compute formulas forƒ02 sLat.S/ and .x0;  0/2…TM.S/

in the diagram

(64)

T
2j1
ƒ S �R0j1

T
2j1
ƒ0 S �R0j1

M

pƒ

f.w; xw;�;u;xu/

pƒ0

.x; /

.x0; 0/

where the arrow labeled by f.w; xw;�;u;xu/ denotes the associated map between super
Euclidean tori from Lemma 3.11. For the first statement in the present lemma we take
 D id 2 SL2.Z/.S/. We see that ƒ0 is given by (55). To compute .x0;  0/, we find a
formula for the dashed arrow in (64) that makes the triangle commute. To start, part of
the data of the inverse to the isomorphism (54) is

(65)
zpƒ W S �R2j1

! S �R0j1;

zpƒ.z;xz; �/D � C�1

xz`2� z x̀2

2i vol
C�2

z x̀1�xz`1

2i vol
:

We verify that zpƒ is Z2–invariant for the action (52),

zp`;�..n;m/ � .z;xz; �//

D zp`;�.zC n`1Cm`2;xzC n.x̀1C�1�/Cm.x̀2C�2�/; n�1Cm�2C �/
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D n�1Cm�2C � C�1

.xzC n.x̀1C�1�/Cm.x̀2C�2�//`2� .zC n`1Cm`2/x̀2

2i vol

C�2

.zC n`1Cm`2/x̀1� .xzC n.x̀1C�1�/Cm.x̀2C�2�//`1

2i vol

D � C�1

xz`2� z x̀2

2i vol
C�2

z x̀1�xz`1

2i vol
;

where we used (62). Hence zpƒ determines a map pƒ W T
2j1
ƒ
! S �R0j1, which is the

map in (64). From this we see that the dashed arrow in (37) is unique and determined by

(66) � 7! xu

�
� C �C

.�1`2��2`1/. xwC ��/� .�1
x̀
2��2

x̀
1/w

2i vol

�
:

As in Remark 2.11, the left action of E2j1ÌSpin.2/ on .xC� / 2Map.R0j1;M /.S/

is given by

.xC � / 7! xC xu�1

�
� � �C

.�1`2��2`1/.�xw� ��/C .�1
x̀
2��2

x̀
1/w

2i vol

�
 

D x� xu�1

�
�C

.�1`2��2`1/ xw� .�1
x̀
2��2

x̀
1/w

2i vol

�
 

C xu�1�

�
1� �

�1`2��2`1

2i vol

�
 ;

which gives the claimed formula for .x0;  0/. Finally, a short computation shows that
pƒDpƒ0ı , where  WT 2j1

ƒ
!T

2j1
ƒ0

is the isometry associated to  2SL2.Z/.S/ from
Lemma 3.11. Hence, the SL2.Z/–action on sLat�Map.R0j1;M / is indeed through
the action on sLat.

From the Lie algebra description (50), a left E2j1–action determines an even and an odd
vector field gotten by considering the infinitesimal action by the elements QD @�C�@xz

and @z of the Lie algebra of E2j1. We note the isomorphisms

(67) C1.L1j1
0
.M //' C1.sLat�Map.R0j1;M //

' C1.Lat�Map.R0j1;M //Œ�1; �2�=.�1�2/

'
�
C1.Lat/˝��.M /

�
Œ�1; �2�=.�1�2/;

where in (67) we used that the projective tensor product of Fréchet spaces satisfies

C1.S �T /' C1.S/˝C1.T /

for supermanifolds S and T ; see eg [20, Example 49].
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Lemma 3.18 The derivative at 0 of the left E2j1–action on L2j1
0
.M / from (63) is

determined by the derivations on C1.L2j1
0
.M //,

(68)
y@w D

�1
x̀
2��2

x̀
1

2i vol
˝ d;

yQD 2�1@x̀
1
˝ idC 2�2@x̀

2
˝ id� id˝ d�

�2`1��1`2

2i vol
˝ deg;

where d is the de Rham differential and deg is the degree endomorphism on forms.

Proof The proof follows the same reasoning as the proof of Lemma 2.14, using that
right-invariant vector fields generate left actions and that the E0j1 ÌC�–action on
Map.R0j1;M / is generated by minus the de Rham operator and the degree derivation.
In this case we apply the derivation QD @�C�@ xw and @w to (63) (with .u; xu/D .1; 1/)
and evaluate at .w; xw; �/D .0; 0; 0/ to obtain (68).

3.4 The proof of Proposition 1.5

Functions on L2j1
0
.M / can be described as

(69) C1.L2j1
0
.M //

D C1.sLat�Map.R0j1;M //

'��.M IC1.sLat//'��.M IC1.Lat/Œ�1; �2�=.�1�2//

'��.M IC1.Lat//˚�1 ��
�.M IC1.Lat//˚�2 ��

�.M IC1.Lat//;

using Lemma 3.12 in the second-to-last line, and where the isomorphism in the final
line is additive. We start by proving a version of Proposition 1.5 for invariants by

E2j1 ÌZ=2< E2j1 ÌSpin.2/�SL2.Z/D Euc2j1:

Analogously to the notation in Section 2.4, let voldeg ! D volk ! for ! 2�k.M /.

Lemma 3.19 Any element ! 2 C1.L2j1
0
.M //Z=2 can be written as

(70) ! D voldeg =2.!0C 2�1 vol1=2 !1C 2�2 vol1=2 !2/;

where !0 2 �
ev.M IC1.Lat// and !1; !2 2 �

odd.M IC1.Lat//. A Z=2–invariant
function ! expressed as (70) is E2j1–invariant if and only if

(71) d!0 D 0; @x̀
1
!0 D d!1 and @x̀

2
!0 D d!2;

where d is the de Rham differential on M .
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Proof The element �1 2U.1/' Spin.2/ acts through the parity involution, which on
C1.sLat/ is determined by �i 7! ��i . Using (69) and the fact that vol is an invertible
function on Lat, we see that any Z=2–invariant function can be written in the form (70).
Next we compute for !0 2�

k.M IC1.Lat//,

2.�1@x̀
1
C�2@x̀

2
/.volk=2 !0/

D 2.�1@x̀
1
C�2@x̀

2
/

��
`1
x̀
2�
x̀
1`2

2i

�k=2

!0

�
D
�2`1��1`2

2i vol
deg.volk=2 !0/C 2 volk=2.�1@x̀

1
C�2@x̀

2
/!0:

So, by Lemma 3.18,

yQ.voldeg =2 !0/D voldeg =2�2.�1@x̀
1
C�2@x̀

2
/!0� vol�1=2 d!0

�
:

Using that �2
1
D �2

2
D �1�2 D 0, we compute

yQ.voldeg =2 !0C 2�1 vol.degC1/=2 !1C 2�2 vol.degC1/=2 !2/

D voldeg =2�2.�1@x̀
1
C�2@x̀

2
/!0� vol�1=2 d!0� 2�1d!1� 2�2d!2

�
:

Matching coefficients of �1 and �2, the condition yQ! D 0 is therefore equivalent
to (71). Finally, invariance under the operator y@w from Lemma 3.18 follows from
being yQ–closed, specifically from d!0 D 0. Since E2j1 is connected with Lie alge-
bra generated by yQ and y@w, we find that (71) completely specifies the subalgebra
C1.L2j1

0
.M //E

2j1ÌZ=2 � C1.L2j1
0
.M //Z=2.

Next we compute the Spin.2/–invariant functions. Consider the surjective map

(72) ' W Lat!H�R>0; .`1; x̀1; `2; x̀2/ 7! .`1=`2; x̀1=x̀2; vol/ 2 .H�R>0/.S/;

and use the pullback on functions to get an injection

(73) C1.H�R>0/Œˇ; ˇ
�1� ,! C1.Lat/; fˇk

7! .'�f /`�k
2 :

We observe that the image of this map is precisely
L

k2Z C1
k
.Lat/ for

C1k .Lat/ WD ff 2 C1.Lat/ j f .u2`1; xu
2`1;u

2`2xu
2`2/D u�kf .`1; x̀1; `2; x̀2/g;

the vector space of smooth functions of weight k=2, where .u; xu/ are the standard
coordinates on U.1/ ' Spin.2/. Indeed, C1.H � R>0/ includes as C1

0
.Lat/ '

C1.Lat/Spin.2/, C1
k
.Lat/ D f0g for k odd, and there are isomorphisms of vector

spaces C1
2k
.Lat/ ��! C1

0
.Lat/' C1.Lat/Spin.2/ gotten by multiplication with `k

2
.
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Lemma 3.20 An element ! 2 C1.L2j1
0
.M //Spin.2/ � C1.L2j1

0
.M //Z=2 expressed

in the form (70) has !0; !1; !2 in the image of the inclusion

(74) ��.M IC1.H�R>0/Œˇ; ˇ
�1�/ ,!��.M IC1.Lat//; with jˇj D �2;

determined by the map (73) on coefficients , where !0 is in the image of an element of
total degree zero and !1; !2 are in the image of elements of total degree �1.

Proof From the description of the Spin.2/–action in (63), if

! 2 C1.L2j1
0
.M //Spin.2/

� C1.L2j1
0
.M //Z=2;

we obtain the refinement of the conditions from (70),

!0 2

M
k2Z

�2k.M IC12k .Lat// '
M
k2Z

�2k.M I `�k
2 C10 .Lat//

��ev.M IC10 .Lat/Œ`�1
2 �/;

!1; !2 2

M
k2Z

�2k�1.M IC12k .Lat//'
M
k2Z

�2k�1.M I `�k
2 C10 .Lat//

��odd.M IC10 .Lat/Œ`�1
2 �/:

This gives the description

(75) ! D .vol=`2/
deg =2!00C 2�1.vol=`2/

.degC1/=2!01C 2�2.vol=`2/
.degC1/=2!02;

where!0
0
; !0

1
; !0

2
2��.M IC1.Lat/Spin.2//'��.M IC1

0
.Lat// are Spin.2/–invariant.

After identifying `2 with ˇ�1 as per (73), we obtain the claimed description.

The following allows us to recast the invariance condition as a failure of ZD!0 to have
holomorphic dependence on the conformal modulus and be independent of volume.

Lemma 3.21 An E2j1 Ì Spin.2/–invariant function on L2j1
0
.M / is equivalent to a

triple .Z;Zx� ;Zv/ where Z 2 ��.M IC1.H�R>0/Œˇ; ˇ
�1�/ has total degree zero

and Zv;Zx� 2�
�.M IC1.H�R>0/Œˇ; ˇ

�1�/ have total degree �1 and satisfy

(76) dZ D 0; @vZ D dZv and @x�Z D dZx�

for coordinates .�; x�/ on H and v on R>0.
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Proof For the image of Z under (74), we differentiate

(77)

@x̀
1
Z.`1=`2; x̀1=x̀2; vol/D

1

x̀
2

@x�Z �
`2

2i
@vZ;

@x̀
2
Z.`1=`2; x̀1=x̀2; vol/D�

x̀
1

x̀2
2

@x�ZC
`1

2i
@vZ:

The result then follows from comparing with (71): writing @x̀
1
Z and @x̀

2
Z as d–exact

forms is equivalent to writing @x�Z and @vZ as d–exact forms.

Definition 3.22 A function f 2 C1.H�R>0/ has weight .k; xk/ 2 Z�Z if

f

�
a� C b

c� C d
; v

�
D .c� C d/k.cx� C d/

xkf .�; v/:

Let MF
k;xk
� C1.H � R>0/ denote the C–vector space of functions with weight

.k; xk/.

Consider the inclusion

(78)
M
k2Z

MF
k;xk

,! C1.H�R>0/Œˇ; ˇ
�1�; f 7! ˇkf for f 2MF

k;xk
:

Lemma 3.23 In the notation of Lemma 3.21, a triple .Z;Zv;Zx� / determines an
SL2.Z/–invariant function on L2j1

0
.M / when

Z 2
M
k2Z

�2k.M IMFk;0/;

Zv 2

M
k2Z

�2k�1.M IMFk;0/; Zx� 2
M
k2Z

�2k�1.M IMFk;2/;

using (78) to identify the above with elements of ��.M IC1.H�R>0/Œˇ; ˇ
�1�/.

Proof We observe that

`2 7! c`1C d`2 D `2.c� C d/ for � D `1=`2;

�
a b

c d

�
2 SL2.Z/;

for the SL2.Z/–action on Lat, so that (73) is an SL2.Z/–invariant inclusion for the
action on H by fractional linear transformations and ˇ 7! ˇ=.c� C d/. The SL2.Z/–
invariant property for Z then follows directly. The properties for Zv and Zx� can either
be deduced from the fact that (76) are SL2.Z/–invariant equations, or by (a direct but
tedious computation) using (77) to write Zv and Zx� in terms of !0 and !1, and then
applying the SL2.Z/–actions on !0; !1; !2 computed in Lemma 3.17.

Proof of Proposition 1.5 The result follows from Lemmas 3.21 and 3.23.
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Remark 3.24 As announced in [26, Theorem 1.15], a 2j1–Euclidean field theory
over M D pt has a partition function valued in integral modular forms. Theorem 1.1
when d D 2 specializes to the holomorphy and modularity statements in this result
when M D pt; generalizing the integrality statement would require one to consider the
values of field theories on super annuli with maps to M .

Remark 3.25 The Lie groupoid Lat==Spin.2/� SL2.Z/ gives a presentation of the
moduli stack of Euclidean tori with periodic–periodic spin structure and choice of base-
point, where SL2.Z/� Spin.2/ acts via the restriction of the action from Lemma 3.17.
The involution generated by �1 2U.1/' Spin.2/ is the spin flip automorphism, which
acts trivially on the underlying Euclidean torus and by the parity involution on the spinor
bundle. Consider the subspace H�R>0� Lat of based lattices whose second generator
`22R>0�C� is positive and real. Since every based lattice can be rotated to one of this
form (using the action of Spin.2/ on Lat) the full subgroupoid of Lat==Spin.2/�SL2.Z/

with the objects H � R>0 � Lat is equivalent to Lat==Spin.2/ � SL2.Z/. Since
f˙1g�Spin.2/ acts trivially on the subspace H�R>0�Lat, the manifold of morphisms
in this full subgroupoid is H �R>0 � f˙1g � SL2.Z/. Composition of morphisms
gives the set f˙1g � SL2.Z/ the structure of a group, which turns out to be the
metaplectic double cover MP2.Z/ of SL2.Z/. There is a functor between Lie groupoids
u WH�R>0==MP2.Z/!H==MP2.Z/, where the target is a standard presentation for
the stack of complex-analytic elliptic curves endowed with a periodic–periodic spin
structure. Geometrically, the functor u extracts the underlying complex-analytic elliptic
curve with spin structure.

Finally, observe there is a functor Lat==Spin.2/�SL2.Z/!M2j1==Euc2j1, so a family
of Euclidean tori with spin structure and choice of basepoint determines a family of
super tori. Our arguments involving super tori do not encounter the metaplectic double
cover because at the outset (in Lemma 3.19) we restrict to functions invariant under the
spin flip automorphism. Hence only the quotient MP2.Z/=f˙1g ' SL2.Z/ features in
our arguments.

3.5 Weak modular forms and complexified TMF

Definition 3.26 Weak modular forms of weight k are holomorphic functions f 2O.H/
satisfying

f

�
a� C b

c� C d

�
D .c� C d/kf .�/ for � 2H;

�
a b

c d

�
2 SL2.Z/:
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Let MFk denote the C–vector space of weak modular forms of weight k. Define the
graded ring of weak modular forms MF as the graded vector space

MFD
M
k2Z

MFk ; where MFk
WD

�
MFk=2 if k is even,
0 if k is odd,

with ring structure from multiplication of functions on H.

Cohomology with coefficients in weak modular forms is the object that naturally
appears when studying derived global sections of the elliptic cohomology sheaf in the
complex-analytic context. Indeed, complex-analytic elliptic cohomology assigns to a
smooth manifold M a sheaf E``.M / of differential graded algebras on the orbifold
H==SL2.Z/ with values

(79) E``.M /.U / WD .O.U I��.M /Œˇ; ˇ�1�/; d/ for U �H:

The SL2.Z/–equivariance data for this sheaf comes from pulling back functions along
fractional linear transformations and sending ˇ 7! .c� C d/ˇ. This connects with
standard definitions of elliptic cohomology in homotopy theory (eg [21, Definition 1.2])
by identifying H==SL2.Z/ with the moduli stack of complex-analytic elliptic curves,
and values (79) with the de Rham complex for 2–periodic cohomology with coefficients
in O.U /. Using the Dolbeault resolution of holomorphic functions on H, the complex
.��.M I�0;�.H/Œˇ; ˇ�1�/SL2.Z/; dCx@/ computes the derived global sections (ie the
hypercohomology) of the elliptic cohomology sheaf E``.M /. Since H is Stein, the
inclusion

O.H/ ,! .�0;�.H/; x@/

is a quasi-isomorphism. Hence, derived global sections of the elliptic cohomology
sheaf are cohomology with values in weak modular forms,

H.M IO.H/Œˇ; ˇ�1�/SL2.Z/ ' H.M IMF/:

We refer to [5, Section 3] for details.

A weak modular form is a weakly holomorphic modular form if it is meromorphic as
� ! i1. For M compact, cohomology with values in weakly holomorphic modular
forms is isomorphic to the complexification of topological modular forms,

(80)
TMF.M /˝C ' H.M ITMF.pt/˝C/� H.M IMF/;

TMF.pt/˝C ' fweakly holomorphic modular formsg �MF;
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and the inclusion on the right regards a weakly holomorphic modular form as a weak
modular form. We expect the image of 2j1–Euclidean field theories along (4) to
satisfy this meromorphicity property at i1, and hence have image in the subring
TMF.M /˝C. This follows from an “energy bounded below” condition discussed for
M D pt in [26, Section 3]. However, proving that the image of field theories satisfies
this condition requires that one analyze the values of field theories on super tori and
super annuli.

3.6 Concordance classes of functions

The cocycle map (4) can be factored through a complex that computes the derived
global sections of the elliptic cohomology sheaf, namely the complex

.��.M I�0;�.H/Œˇ; ˇ�1�/SL2.Z/; dCx@/

described above.

Definition 3.27 Using the notation from Proposition 1.5, for each�2R>0 define a map

2cocycle� W C
1.L2j1

0
.M //Euc2j1 ! Z0.��.M I�0;�.H/Œˇ; ˇ�1�/; dCx@/SL2.Z/;

.Z;Zx� ;Zv/ 7!Z.�/C dx�Zx� .�/;

where the evaluation is at tori with volume v D � 2R>0.

Lemma 3.28 The composition

C1.L2j1
0
.M //Euc2j1

1cocycle�
����! Z0.��.M I�0;�.H/Œˇ; ˇ�1�/; dCx@/SL2.Z/

de Rham
����! H.M IMF/

is independent of � and agrees with (4).

Proof Let us verify that the map in Definition 3.27 is well-defined. By Proposition 1.5,
the image is contained in the subspace of degree zero cocycles:

.dCx@/.Z.�/C dx�Zx� .�//D dx�@x�Z.�/� dx�dZx� .�/D 0:

The image is SL2.Z/–invariant by Lemma 3.23. The remainder of the proof is com-
pletely analogous to that of Lemma 2.16.
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Proof of Proposition 1.2 for d D 2 By Proposition 1.5, M 7! C1.L2j1
0
.M //Euc2j1

is a sheaf on the site of smooth manifolds. The map in Definition 3.27 is a morphism
of sheaves

2cocycle� W C
1.L2j1

0
.�//Euc2j1 ! Z0.��.�I�0;�.H/Œˇ; ˇ�1�/; dCx@/SL2.Z/:

When evaluated on a manifold M , concordance classes of sections of the target are
cohomology classes. This completes the proof.

3.7 The elliptic Euler class as a cocycle

For a real oriented vector bundle V !M , consider the characteristic class

ŒEu.V /� WD
�

Pf.�ˇF / exp
�X

k�1

ˇkE2k

2k.2� i/2k
Tr.F2k/

��
in Hdim V.M IC1.H/Œˇ; ˇ�1�/SL2.Z/, where F D r ı r 2 �2.M IEnd.V // is the
curvature for a choice of a metric-compatible connection r on V and Pf.�ˇR/ is the
Pfaffian. The functions E2k 2 C1.H/ are the 2k th Eisenstein series, where we take
E2 to be the modular, nonholomorphic version of the second Eisenstein series,

E2.�; x�/D lim
�!0C

X
.n;m/2Z2

�

1

.n� Cm/2jn� Cmj2�
; E2.�; x�/DEhol

2 .�/�
2� i

� �x�
;

whose relationship with the holomorphic (but not modular) second Eisenstein series
Ehol

2
.�/ is as indicated. For k > 1, the Eisenstein series E2k 2O.H/ are holomorphic.

Thus, if
Œp1.V /�D ŒTr.F2/=.2.2� i/2/� 2 H4.M IR/

vanishes, then ŒEu.V /� 2 Hdim V .M IO.H/Œˇ; ˇ�1�/SL2.Z/ is a holomorphic class.

When dim V D 24k, we may ask for a preimage of �k ŒEu.V /� 2 H0.M IMF/ under
the cocycle map (4), where� is the modular discriminant. We start with the differential
form refinement of Eu.V /, evident from its definition above,

Eu.V / 2��.M IC1.H/Œˇ; ˇ�1�/; @x� Eu.V /D
ˇ2Tr.F2/

4� i.� �x�/2
Eu.V /;

and whose failure to be holomorphic is as indicated. Since @v Eu.V / D 0, we may
choose Z D �k Eu.V / and Zv D 0. The remaining data to promote �k Eu.V / to
a function on L2j1

0
.M / is a choice of coboundary @x� .�k Eu.V // D dZx� , which in

turn is determined by H 2 �3.M / with dH D p1.V /, ie a rational string structure.
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This identifies the set of rational string structures on .V;r/ with choices of lift of
�k ŒEu.V /� to a function on L2j1

0
.M /. We expect a similar story without the dimension

restriction on V and the factors of � though an enhancement of (4) that incorporates a
degree n twist [26, Section 5].
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