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Isotopy of the Dehn twist on K3 # K3

after a single stabilization

JIANFENG LIN

Kronheimer and Mrowka recently proved that the Dehn twist along a 3–sphere in
the neck of K3 # K3 is not smoothly isotopic to the identity. This provides a new
example of self-diffeomorphisms on 4–manifolds that are isotopic to the identity in
the topological category but not smoothly so. (The first such examples were given by
Ruberman.) We use the Pin.2/–equivariant Bauer–Furuta invariant to show that this
Dehn twist is not smoothly isotopic to the identity even after a single stabilization
(connected summing with the identity map on S2 �S2). This gives the first example
of exotic phenomena on simply connected smooth 4–manifolds that do not disappear
after a single stabilization.

57R50, 57R52, 57R57; 55P91

1 Introduction

Understanding smooth structures on 4–manifolds remains one of the most difficult
topics in low-dimensional topology. In this dimension, many results that hold in the
topological category do not hold in the smooth category. Such phenomena are called
“exotic phenomena.” To motivate our discussion, we list three major instances of exotic
phenomena:

� By the groundbreaking work of Donaldson [16; 18] and Freedman [20] (and many
subsequent works), there exist many pairs of simply connected closed smooth 4–
manifolds that are homeomorphic but not diffeomorphic.

� Ruberman [33] gave the first example of self-diffeomorphisms on 4–manifolds that
are isotopic to the identity in the topological category, but not smoothly so. Further
examples are given by Auckly, Kim, Melvin and Ruberman[5], Akbulut [3], Baraglia
and Konno [8] and Kronheimer and Mrowka [26].
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� By the combined work of Wall [36], Perron [31], Quinn [32] and Donaldson [16],
there exist pairs of embedded 2–spheres in 4–manifolds with simply connected com-
plement that are topologically isotopic to each other, but not smoothly so; see [3; 5]
for explicit families of such examples.

Exotic phenomena appear in each of these three problems, which we call the “diffeo-
morphism existence problem”, the “diffeomorphism isotopy problem” and the “surface
isotopy problem”. A fundamental principle, discovered by Wall [36; 37] in the 1960s,
states that these exotic phenomena will eventually disappear after sufficient many
stabilizations on the 4–manifolds. (Here stabilization means taking the connected sum
with S2 �S2.) More precisely:

� Wall [37] proved that any pair of homotopy equivalent simply connected smooth
4–manifolds are stably diffeomorphic. Namely, they become diffeomorphic after
sufficiently many stabilizations.

� Gompf [22] and Kreck [25] further proved that any pair of homeomorphic orientable
smooth 4–manifolds (not necessarily simply connected) are stable diffeomorphic. They
also proved that nonorientable pairs can be made stably diffeomorphic by first doing a
twisted stabilization (ie connected summing a twisted bundle S2 z�S2). In fact, for
any G with H 1.GIZ=2/ ¤ 0, Kreck [24] constructed examples of homeomorphic
nonorientable smooth 4–manifold pairs with fundamental group G which are not stably
diffeomorphic. (Different constructions of such examples were given by Cappell and
Shaneson [13] for G D Z=2 and Akbulut [2] for G D Z.) This implies that a twisted
stabilization is indeed necessary in the nonorientable case.

� By combining the results of Kreck [23] and Quinn [32], we know that homotopic
diffeomorphisms of any simply connected smooth 4–manifold are smoothly isotopic
after sufficient many stabilizations. Here stabilization means first isotoping the diffeo-
morphisms so that they all pointwise fix a small ball B, and then taking the connected
sum with the identity map on S2 �S2 along B.

� The work of Wall [36], Perron [31] and Quinn [32] shows that any two homologous
closed surfaces of the same genus embedded in a 4–manifold with simply connected
complement become smoothly isotopic after sufficiently many external stabilizations.
Here external means that the connected sums with S2 �S2 are taken away from the
surfaces.

These results motivate the following natural question:
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Question 1.1 How many stabilizations are necessary in each of these three problems?

There has been speculation that one stabilization is actually enough in all three problems.
This is based on several known results:

� It is shown by Baykur and Sunukjian [12] that exotic pairs of nonspin 4–manifolds
produced by “standard methods” (logarithmic transforms, knot surgeries, and rational
blow-downs) all become diffeomorphic after a single stabilization.

� In the large families of examples (of embedded surfaces and self-diffeomorphisms)
established in Akbulut [3] and Auckly, Kim, Melvin and Ruberman [5], exactly one
stabilization is needed.

� Auckly, Kim, Ruberman, Melvin and Schwartz [6] proved that any two homologous
surfaces F1 and F2 of the same genus embedded in a smooth 4–manifold X with
simply connected complements are smoothly isotopic after a single stabilization if
they are not characteristic (ie ŒFi � is not dual to the Stiefel–Whitney class w2.X /).
This shows that in the noncharacteristic case, one stabilization is indeed enough in the
surface isotopy problem. (When the surfaces are characteristic, they proved a similar
result involving a single twisted stabilization.)

We prove the following theorem.

Theorem 1.2 (main theorem) Let ı be the Dehn twist along a separating 3–sphere in
the neck of the connected sum K3 # K3. Then ı is not smoothly isotopic to the identity
map even after a single stabilization.

To the author’s knowledge, Theorem 1.2 provides the first example that exotic phe-
nomena on simply connected smooth 4–manifolds do not disappear after a single
stabilization with respect to S2 �S2. In particular, it implies that one stabilization is
in general not enough in the diffeomorphism isotopy problem.

Note that Kronheimer and Mrowka [26] proved that ı itself is not smoothly isotopic to
the identity, using the nonequivariant Bauer–Furuta invariant for spin families. Our
result is based on the Kronheimer–Mrowka theorem and makes use of the Pin.2/–
equivariant version of the Bauer–Furuta invariant. This invariant was defined in Bauer
and Furuta [11] (for a single manifold) and in Szymik [35] and Xu [38] (for families).
It has been extensively studied in many papers, including Baraglia [7] and Baraglia
and Konno [9], and it is the central tool in Furuta’s proof of the 10

8
–theorem [21]. The

idea of using gauge-theoretic invariants for families to study the isotopy problem first
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appears in Ruberman [33]. The idea of using the Pin.2/–equivariant Bauer–Furuta
invariant to further study Dehn twists on 4–manifolds was suggested by Kronheimer
and Mrowka in [26].

We outline the proof of Theorem 1.2: By taking the mapping torus of ı, we form a
smooth bundle N with fiber K3 # K3 and base S1. Then it suffices to show that the
bundle zN , formed by fiberwise connected sum between N and .S2 �S2/�S1, is not
a product bundle. This is proved by showing that the Pin.2/–equivariant Bauer–Furuta
invariant BFPin.2/. zN / is nonvanishing for both spin structures. Note that BFPin.2/. zN /

equals the product of BFPin.2/.N / with the Euler class ezR (a stable homotopy class
represented by the inclusion from S0 D f0;1g to the 1–dimensional representation
sphere S

zR). We prove this by contradiction, assuming

(1) BFPin.2/.N / � ezR D 0:

This gives information on BFPin.2/.N / and its S1–reduction

BFS1

.N / 2 fSRC2H;S6zR
g
S1

:

We can explicitly compute the homotopy group fSRC2H;S6zRgS
1

as Z˚Z=2. Based
on this computation, information from (1) and the fact that BFS1

.N / gives a vanishing
family Seiberg–Witten invariant, we can prove that BFS1

.N /D 0. This further implies
that the nonequivariant Bauer–Furuta invariant BFfeg.N / vanishes, which contradicts
Kronheimer and Mrowka’s result that BFfeg.N / equals the nonzero element �3 2 �3.
Note that ezR becomes trivial when reducing to the subgroup S1 � Pin.2/. As a
consequence, the S1–equivariant Bauer–Furuta invariant vanishes after a single stabi-
lization (just like the classical Seiberg–Witten invariants and Donaldson’s polynomial
invariants). This explains why the Pin.2/–equivariance is essential in our proof.

We end this introductory section by remarking that it is still open whether one stabi-
lization is enough to make any pairs of simply connected homeomorphic 4–manifolds
diffeomorphic. (See Akbulut, Mrowka and Ruan [4], Donaldson [17] and Fintushel
and Stern [19] for a possible approach using the 2–torsion instanton invariants.) It’s
also unknown whether two homotopic characteristic surfaces with simply connected
complements become smoothly isotopic after a single stabilization. The proof of
Theorem 1.2 suggests that the Bauer–Furuta invariant could be useful in attacking these
problems. As a first step, one needs to establish new examples of spin 4–manifolds with
sufficiently interesting higher-dimensional Pin.2/–equivariant Bauer–Furuta invariants.
Note that in a recent paper by the author and Mukherjee [29], we use Theorem 1.2 to
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establish the first pair of orientable exotic surfaces (in a punctured K3 surface) which
are not smoothly isotopic even after one stabilization.

The paper is organized as follows: In Section 2, we give a brief review of some basic
Pin.2/–equivariant stable homotopy theory and recall the definition of the equivariant
Bauer–Furuta invariant. We also use this section to set up notation and to adapt some
standard results to our setting. The actual proof of Theorem 1.2 is given in Section 3.
Experts may directly skip to Section 3 and occasionally refer back to Section 2 for
notation and results.

Acknowledgements The author is partially supported by NSF grant DMS-1949209.
The author would like to thank Tye Lidman and Danny Ruberman for very enlightening
conversations, Mark Powell for pointing out Kreck’s work [24], and Selman Akbulut
for explaining his work in [2; 3].

2 Background

2.1 Pin(2)-equivariant homotopy theory

In this section, we collect some standard results (mostly from [1; 28; 30; 34]) on
G–equivariant stable homotopy theory in the case

G D Pin.2/D fei�
g[ fj � ei�

g �H:

Instead of stating the most general form of these results, we will only focus on the
special cases that are actually needed in our argument. We refer to [1; 34] for an
introduction to equivariant stable homotopy theory (in the case of finite groups) and to
[28; 30] for a more general treatment.

Since all objects we study here are finite G–CW complexes, for simplicity, we will
work with the G–equivariant Spanier–Whitehead category [1] (instead of the homotopy
category of G–spectra). Of course, there are a lot of drawbacks (eg one cannot always
take limits/colimits), but it is enough for our purpose.

2.1.1 Basic facts and definitions Let U be a countably infinite-dimensional G–
representation space equipped with a G–invariant inner product, which we call a
“universe”. We assume that U contains the concrete representation�M

1

R

�
˚

�M
1

zR

�
˚

�M
1

H

�
:

Geometry & Topology, Volume 27 (2023)



1992 Jianfeng Lin

Here R is the trivial representation, zR is the 1–dimensional representation on which
S1 acts trivially and j acts as �1, and H is acted upon by G via left multiplication in
the quaternions.

To apply the results in [30] directly without checking additional conditions, we further
assume that U is “complete”. This means that U contains infinitely many copies of all
isomorphism classes of irreducible G–representations.1

We will use H to denote either the group G or its subgroups S1 or feg. By restricting
the G–action on U , we can also use U as a complete H–universe. We use RH to
denote the set of all finite-dimensional H–representations contained in U . We will
treat RG as a subset of RS1 and Rfeg by restricting the G–action.

For any V 2 RH , we use SV to denote the 1–point compactification of V (called
the representation sphere) and use S.V / to denote the unit sphere. We set1 as the
basepoint of SV and we use S.V /C to denote the union of S.V / with a disjoint
basepoint.

Let X , Y and Z be based finite H–CW complexes; see for example [15, Chapter I]
for a definition. We use the notation ŒX;Y �H to denote the set of homotopy classes of
based H–maps from X to Y (ie maps that preserve the basepoint and are equivariant
under H ).

Given any V;W 2RH with V �W , let V ? be the orthogonal complement of V in W .
Then smashing with the identity map on SV? provides a map

ŒSV
^X;SV

^Y �H ! ŒSW
^X;SW

^Y �H :

One can check that these maps make the collection

fŒSV
^X;SV

^Y �H gV 2RH

into a direct system. We define fX;Y gH as the direct limit of this system. As in the
nonequivariant case, the set fX;Y gH is actually an abelian group. A based H–map

SV
^X ! SV

^Y for V 2RH

will be called a stable H–map from X to Y . An element in the group fX;Y gH will
be called a stable homotopy class of H–maps.

1Since all G–CW complexes we consider can have only G, S1 or feg as their isotropy group, all arguments
we make actually will still hold for the incomplete universe

�L
1R

�
˚
�L
1
zR
�
˚
�L
1H

�
, which is

more relevant to the geometric setting.
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Fact 2.1 Given any based H–map f W X ! Y , we form the mapping cone Cf and
let i W Y ! Cf be the natural inclusion. Then for any Z, the functor f�;ZgH is a
generalized cohomology theory [30, page 157]. As a result , there is a long exact
sequence

(2) � � � ! fSR
^X;ZgH

@
�! fCf;ZgH

i�
�! fY;ZgH

f �
��! fX;ZgH

@
�! fCf;SR

^ZgH ! � � �

associated to the cofiber sequence X
f
�! Y

i
�! Cf .

Fact 2.2 Suppose the H–action on X is free away from the basepoint. Then there is a
natural map

(3) qH W fX;Y g
H
! fX=H;Y=H gfeg

from the equivariant homotopy group to the nonequivariant homotopy group of the
quotient space. This map is constructed as follows: Since the H–action on X is
free away from the basepoint , any Œf � 2 fX;Y gH can be represented by an H–map
f W SV ^X ! SV ^Y such that the H–action on V is trivial ; see [1, Proposition 5.5;
28, Theorem 2.8, page 65]. The map f induces a nonequivariant map between the
quotient space ,

f=H W SV
^ .X=H /D .SV

^X /=H ! .SV
^Y /=H D SV

^ .Y=H /:

Then we define qH .Œf �/ as Œf=H �. One can check that this does not depend on the
choice of f and V .

Fact 2.3 [1, Theorem 5.3; 28, Theorem 4.5, page 78] Suppose the H–action on X is
free away from the basepoint and the H–action on Y is trivial. Then the map qH is an
isomorphism.

For the rest of the section, we assume X and Y are based finite G–CW complexes. The
next few facts concern various relations between the G–equivariant homotopy groups
and the S1–equivariant homotopy groups.

Fact 2.4 [1, Theorem 5.1; 28, Theorem 4.7, page 79] There is a natural isomorphism

(4) � W fX;Y gS
1
Š�! fX ^ .S.zR/C/;Y g

G

constructed as follows: Take any Œf � 2 fX;Y gS
1

represented by an S1–map

f W SV
^X ! SV

^Y:

Geometry & Topology, Volume 27 (2023)
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By enlarging V if necessary, we may assume V 2RG . Then we consider the G–map

f 0 W SV
^X ^ .S.zR/C/D ..S

V
^X /� f1g/_ ..SV

^X /� f�1g/! Y

defined by setting

f 0.x � f1g/D f .x/ and f 0.x � f�1g/D jf .j�1x/

for any x 2 SV ^X . We let �.Œf �/D Œf 0�. This map � turns out to be an isomorphism.

Next, we recall the two operations about changing groups, namely the restriction map

(5) ResG
S1 W fX;Y g

G
! fX;Y gS

1

and the transfer map

(6) TrG
S1 W fX;Y g

S1

! fX;Y gG :

The restriction map is defined by simply ignoring the j –action. To define the transfer
map, we consider the Pontryagin–Thom map

p W S
zR
! S

zR
^S.zR/C

that crushes all points outside a normal neighborhood of S.zR/ in S
zR. (Here we identify

the Thom space of the normal bundle of S.zR/ as S
zR ^ .S.zR/C/.) Then the transfer

map is defined as the composition

(7) fX;Y gS
1 �
�! f.S.zR/C/^X;Y gG D fS

zR
^ .S.zR/C/^X;S

zR
^Y gG

p�
��! fS

zR
^X;S

zR
^Y gG D fX;Y gG :

To describe the composition of transfer and restriction, we define the conjugation map

(8) cj W fX;Y g
S1

! fX;Y gS
1

as follows: Take any element Œf �2 fX;Y gS
1

represented by an S1–map f WSV ^X!

SV ^ Y . By enlarging V if necessary, we may assume V 2 RG . Then cj .Œf �/ is
represented by the composition

SV
^X

j�1

��! SV
^X

f
�! SV

^Y
j
�! SV

^Y:

Note that when the S1–action on X is free away from the basepoint, the maps cj and
the map qS1 defined in (3) are compatible. That means

(9) qS1.cj .˛//D j ı qS1.˛/ ı j�1 for all ˛ 2 fX;Y gS
1

:
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Here j and j�1 are treated as elements in fY=S1;Y=S1gfeg and fX=S1;X=S1gfeg,
respectively.

Next is a special case of the double coset formula [30, Chapter XVIII, Theorem 4.3].
It can be verified directly by unwinding the definitions.

Fact 2.5 For any ˛ 2 fX;Y gS
1

,

(10) ResG
S1 TrG

S1.˛/D ˛C cj .˛/:

We end this subsection with an alternative description of the image of TrG
S1 :

Lemma 2.6 Let ezR 2 fS
0;S

zRgG be the element represented by the inclusion map

(11) S0
D f0;1g ,! S

zR:

(This element is called the Euler class of zR.) Then the kernel of the map

(12) fX;Y gG
ezR���! fX;S

zR
^Y gG

equals the image of the transfer map (6).

Proof There is a cofiber sequence S0 ,!S
zR p
�!S

zR^S.zR/C. Smashing this sequence
with X and applying the functor f�;S zR ^Y gG , we get the exact sequence

f.S
zR
^S.zR/C/^X;S

zR
^Y g

p�
��! fS

zR
^X;S

zR
^Y gG

ezR���! fX;S
zR
^Y gG :

So we see that the image of p� equals the kernel of the map (12). The lemma follows
from the definition of TrG

S1 ; see (7).

2.1.2 The characteristic homomorphism We now define the characteristic homo-
morphism

t W fSaRCbH;Sd zR
g
S1

! Z;

following [11], where a, b and c are nonnegative integers with d � a C 2. This
homomorphism is of interest to us because the (family) Seiberg–Witten invariant can
be obtained by applying t on the Bauer–Furuta invariant. Note that although zR is trivial
as an S1–representation, we still distinguish it with R in order to keep track of the
j –action.

To define t , we take the smash product of the cofiber sequence

S0
! SbH

! SR
^S.bH/C

with the sphere SaR and get the cofiber sequence

(13) SaR
! SaRCbH

! S .aC1/R
^S.bH/C:

Geometry & Topology, Volume 27 (2023)
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This induces the long exact sequence

(14) � � � ! fS .aC1/R;Sd zR
g
S1

! fS .aC1/R
^S.bH/C;S

d zR
g
S1

! fSaRCbH;Sd zR
g
S1

! fSaR;Sd zR
g
S1

! � � � :

Since d � aC 2, the equivariant Hopf theorem [14, Section 8.4] states that the stable
homotopy class of an S1–equivariant stable map from SaR or S .aC1/R to Sd zR is
determined by its mapping degree on the S1–fixed point sets. Since this mapping
degree is always 0 for dimension reasons,

fSaR;Sd zR
g
S1

D fS .aC1/R;Sd zR
g
S1

D 0:

Therefore, we get an isomorphism

(15) � W fS .aC1/R
^S.bH/C;S

d zR
g
S1
Š�! fSaRCbH;Sd zR

g
S1

:

Note that the S1–action on S .aC1/R ^S.bH/C is free away from the basepoint, with
quotient space S .aC1/R ^CP2b�1

C . By composing ��1 with the isomorphism qS1

given in (3), we get the isomorphism

(16)  D qS1 ı ��1
W fSaRCbH;Sd zR

g
S1
Š�! fS .aC1/R

^CP2b�1
C ;Sd zR

g
feg:

Definition 2.7 Suppose d �a is an odd number less than or equal to 4b� 1. Then we
define the characteristic homomorphism

t W fSaRCbH;Sd zR
g
S1

! Z

by setting t.˛/ as the image of 1 under the induced map on the reduced cohomology

. .˛//� W ZD zH d .Sd zR/! zH d .S .aC1/R
^CP2b�1

C /Š Z:

Here we use the standard orientations on Sd zR, S .aC1/R and CP
1
2
.d�a�1/ to identify

the homology groups as Z. If either d �a is even or d �a> 4b� 1, we simply define
t as the zero map.

To discuss the behavior of t under the conjugation map cj defined in (8), we prove:

Lemma 2.8 For any ˛ 2 fSaRCbH;Sd zRgS
1

,

 .cj .˛//D .�1/dm ı .˛/;

where m 2 fCP2b�1
C ;CP2b�1

C gfeg is the “mirror reflection map” defined as

m.Œz1;z2;z3;z4; : : : ;z2b�1;z2b �/D .Œ�Nz2; Nz1;�Nz4; Nz3; : : : ;�Nz2b; Nz2b�1�/ for zi 2C:
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Proof By formula (9),  .cj .˛// equals the composition of  .˛/ with the elements

j 2 fSd zR;Sd zR
g
feg

and
j�1
2 fS .aC1/R

^CP2b�1
C ;S .aC1/R

^CP2b�1
C g

feg;

which are just .�1/d and a suspension of m, respectively.

Corollary 2.9 When d � a is odd , t.cj .˛//D .�1/
1
2
.3d�a�1/t.˛/ for any ˛.

Proof When restricted to CP1, the map m is just the antipodal map, and so has
degree �1. Using the ring structure on H�.CP2b�1/, we see that m has degree
.�1/

1
2
.d�a�1/ on zH d .S .aC1/R ^CP2b�1

C /. The result follows from Lemma 2.8.

We end this section with the following result, which is essentially the algebraic version
of the vanishing result for the Seiberg–Witten invariant of connected sums.

Lemma 2.10 Given any ˛1 2 fS
a1RCb1H;Sd1

zRgS
1

and ˛2 2 fS
a2RCb2H;Sd2

zRgS
1

,
we have t.˛1˛2/D 0 if d1 > a1 and d2 > a2.

Proof The product ˛1˛2 belongs to the group

fS .a1Ca2/RC.b1Cb2/H;S .d1Cd2/zRg
S1

:

Therefore, t.˛1˛2/ can be nonzero only if d1 C d2 � a1 � a2 is odd. Without loss
of generality, we may assume d1 � a1 is odd and d2 � a2 is even. Since di > ai for
i D 1; 2, the group fSai R;Sdi

zRgS
1

vanishes. By the long exact sequence (14), we see
that ˛i equals the image of some element

ˇi 2 fS
.aiC1/R

^S.biH/C;S
di
zR
g
S1

D fSai R
^ .Sbi H=S0/;Sdi

zR
g
S1

:

Here we identify Sbi H=S0 with SR ^ S.biH/C by treating SR as the one-point
compactification of .0;C1/ and sending v2Hbi nf0g to .jvj; v=jvj/2 .0;1/�S.biH/.

Next, we consider the commutative diagram

(17)

S .b1Cb2/H
q

//

Š

��

S .b1Cb2/H=S0




��

Sb1H ^Sb2H q1^q2
// .Sb1H=S0/^ .Sb2H=S0/

Geometry & Topology, Volume 27 (2023)
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where q, q1, q2 and


 W S .b1Cb2/H=S0

! S .b1Cb2/H=..S0
^Sb2H/[ .Sb1H

^S0//D .Sb1H=S0/^ .Sb2H=S0/

are all quotient maps. From (17), we see that

˛1 ^˛2 D .ˇ1 ^ˇ2/ ı .q1 ^ q2/D .ˇ1 ^ˇ2/ ı 
 ı q:

Therefore, �.˛1˛2/D .ˇ1ˇ2/ ı 
 .

Moreover, checking the explicit construction of the map qS1 given in Fact 2.2, we see
that qS1 is also natural under the smash product and composition. Therefore,

 .˛1˛2/D qS1.�.˛1˛2//D qS1.ˇ1ˇ2/ ı qS1.
 /;

and qS1.ˇ1ˇ2/ equals the composition

S .a1Ca2C2/R
^
�
.S.b1H/C ^S.b2H/C/=S

1
�

! .S .a1C1/R
^ .S.b1H/C/=S

1//^ .S .a2C1/R
^ .S.b2H/C/=S

1//

q
S1 .ˇ1/^q

S1 .ˇ2/
������������! Sd1

zR
^Sd2

zR:

Because d2�a2 is even, the cohomology zH d2.S .a2C1/R^.S.b2H/C/=S1// equals 0.
So qS1.ˇ2/ induces the trivial map on the reduced cohomology. This implies that
 .˛2˛2/ induces the trivial map on zH d1Cd2.�/. Hence, t.˛1˛2/D 0.

2.2 The Pin(2)-equivariant Bauer–Furuta invariant for spin families

In this section, we briefly summarize the definition and some important properties
of the Bauer–Furuta invariant for spin families. This invariant was originally defined
in [11] for a single 4–manifold. The family version was first defined in [35; 38] and
later extensively studied in [7; 9]. Because we want to construct the Bauer–Furuta
invariant as a concrete element in the G–equivariant stable homotopy group of spheres,
some care must be taken in the construction.

2.2.1 Spin structures on the circle family of 4–manifolds Let N be a smooth fiber
bundle whose fiber is a closed spin 4–manifold M and whose base is another closed
manifold B. For simplicity, we will make the following assumption throughout the
paper:

Assumption 2.11 The bundle N satisfies:

(i) M is simply connected.
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(ii) The signature �.M / is at most 0.

(iii) Let Mx be the fiber over the point x 2 B. Then the action of �1.B;x/ on
H 2.MxIZ/ (given by the holonomy of the bundle) is trivial.

We equip N with a Riemannian metric and let Frv.N / be the frame bundle of the
vertical tangent bundle of N . This is an SO.4/–bundle over N .

Definition 2.12 A spin structure s on N is a double covering map � W P ! Frv.N /

that restricts to a nontrivial covering map Spin.4/! SO.4/ on each fiber. Two spin
structures .�;P / and .� 0;P 0/ are called isomorphic if there exists a homeomorphism
P ! P 0 that covers the identity map on Frv.N /.

Definition 2.13 The pair .N; s/ is called a spin family. Two spin families .N1; s1/

and .N2; s2/ over the same base B are called “isomorphic” if there exists a bundle
isomorphism f WN1!N2 such that f �.s2/ is isomorphic to s1.

We are mainly interested in the case that B is a circle or a point. By Assumption 2.11,
N has a unique spin structure when B is a point and has two spin structures when B is
a circle. We give an explicit description of these two spin structures as follows: Let
�M WPM!Fr.M / be the covering map given by the unique spin structure on M . Then
the bundle N is obtained by gluing the two boundary components of M � Œ0; 1� via a
diffeomorphism f WM!M . The diffeomorphism induces a map f� WFr.M /!Fr.M /,
which has two lifts f ˙� W PM ! PM . These lifts differ from each other by the deck
transformation � W PM ! PM . We use f ˙� to glue the two boundary components of
PM � I and form two spin structures on N .

Definition 2.14 When N DM �S1, the maps f ˙� are just the identity map and the
deck transformation � . We call the associated spin structures over N the product spin
structure and the twisted spin structure, respectively. Let s be the unique spin structure
on M . Then we use Qs to denote the former and use Qs� to denote the latter.

For general M , the product family and the twisted family are not isomorphic. For
example, Kronheimer and Mrowka [26] established:

Example 2.15 The product family .K3�S1; Qs/ and the twisted family .K3�S1; Qs� /

are not isomorphic, as can be proved by the nonequivariant Bauer–Furuta invariant.

However, for the special case of S2 �S2, these two families are indeed isomorphic:
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Lemma 2.16 ..S2 �S2/�S1; Qs/ and ..S2 �S2/�S1; Qs� / are isomorphic.

Proof There is an S1–action on S2 with fixed points f0;1g. We use � WS1�S2!S2

to denote this action. As x varies from 0 to 2� , the induced map

.idS2 � �.x; � //� W T.0;0/.S
2
�S2/! T.0;0/.S

2
�S2/

gives an essential loop in SO.4/. Using this fact, one can verify that the bundle
automorphism

f W .S2
�S2/�S1

! .S2
�S2/�S1

defined by f .y1;y2;x/D .y1; �.x;y2/;x/ satisfies f �.Qs/D Qs� .

2.2.2 Definition of the Bauer–Furuta invariant As in the case of a single 4–
manifold, a spin structure s gives rise to two quaternion bundles S˙ over N . Denote
by S˙x the restriction of S˙ to the fiber Mx . Then the spin Dirac operator

D.Mx/ W �.S
C
x /! �.S�x /

is a quaternionic linear operator. We form the operator D over N by putting D.Mx/

together.

Now we consider four Hilbert bundles VC, V�, UC and U� over B. The fibers of
V˙ are suitable Sobolev completions of �.S˙x /, and the fibers of UC and U� are
completions of �1.Mx/ and �2

C.Mx/˚�
0.Mx/=R, respectively. We let GD Pin.2/

act on V˙ by left multiplication in the quaternions, and we let G act on U˙ by setting
the S1–action to be trivial and setting the j –action as multiplication by �1.

The family Seiberg–Witten equations give a fiber-preserving G–equivariant map

SW W UC˚VC! U�˚V�:

This Seiberg–Witten map can be written as l C c, where l is the fiberwise Fredholm
operator

l WDD˚ .dC; d�/

and c is a certain 0th order operator. Furthermore, by the boundedness property of the
Seiberg–Witten equations [11, Proposition 3.1], SW extends to a map

SWC W .UC˚VC/1! .U�˚V�/1
between the one-point completions

.U˙˚V˙/1 WD .U˙˚V˙/[f1g:
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To apply the finite-dimensional approximation technique on the map SW , we carefully
choose finite-dimensional subspaces of V˙ and U˙ as follows: First, we apply Kuiper’s
theorem [27] to get canonical trivialization of the bundles

(18) V� Š B �L2.H1/ and UC Š B �L2.zR1/:

Here L2.�/ denotes the completion with respect to the L2–norm. Choose m; n� 0 and
let UC � UC and V � � V� be the subbundles corresponding to the bundles B �Hn

and B � zRm under the isomorphism (18). Let HC
2

be the subbundle of U� consisting
of all self-dual harmonic 2–forms on Mx . We set

U� WDHC
2
˚ ..dC; d�/UC/� U�:

(Note that .dC; d�/ is injective by our assumption that b1.M /D 0.) We choose m large
enough so that V � is fiberwise transverse to D and we set V C WDD�1.V �/� VC.

Set W C WD UC˚V C and W � WD U�˚V �. As explained in [11], when m and n

are large enough,
SWC.W C1/\S.W �;?/D∅;

where S.W �;?/ denotes the unit sphere in the orthogonal complement of W � in
U�˚V�. Therefore, by composing SWC with a specific G–equivariant deformation
retraction

� W .U�˚V�/1 nS.W �;?/!W �1;

one obtains a G–equivariant map

sw WW C1 !W �1:

Restriction of (18) gives canonical trivializations of the bundles V � and UC. By
Assumption 2.11, �1.B/ acts trivially on H 2.Mx/. Therefore, as explained in [26], a
homology orientation of M determines a canonical trivialization of HC

2
. At this point,

we have obtained canonical trivializations of U˙ and V �. Using these trivializations,
we get the composition map

(19) .SmzR
^V C1/ŠW C1

sw
�!W �1 Š

�
S .mCbC.M //zRCnH

^BC
�

pj
��! S .mCbC.M //zRCnH;

where pj denotes projection to the first factor.

From now on, we specialize to the case that B is a circle or point. Note that V C is a
quaternionic bundle of dimension n� 1

16
�.M / and the group Sp

�
n� 1

16
�.M /

�
has
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trivial �i for i � 2. So the bundle V C has a trivialization (canonical up to homotopy).
This trivialization allows us to fix an identification

V C1 Š .S
.n��.M /=16/H

^BC/

and rewrite the map (19) as a G–map

(20) �sw W SmzRC.n��.M /=16/H
^BC! S .mCbC.M //zRCnH;

which represents an element in Œ�sw�2fS�.�.M /=16/H^BC;S
bC.M /zRgG . By checking

the concrete construction of �sw in [11], one establishes:

Fact 2.17 Consider the map SmzR ^BC! S .mCbC.M //zR given by restricting �sw to
the S1–fixed point sets. This map can be explicitly described as the composition

SmzR
^BC

projection
������! SmzR inclusion

�����! S .mCbC.M //zR:

Definition 2.18 Suppose B is a point. Then M D N and S�.�.M /=16/H ^BC D

S�.�.M /=16/H. In this case, we define the G–equivariant Bauer–Furuta invariant as

BFG.M; s/ WD Œ�sw� 2 fS�.�.M /=16/H;SbC.M /zR
g
G :

We will neglect the spin structure s in our notation when it is obvious from the context.

Example 2.19 BFG.S4/ is an element in fS0;S0gG represented by a G–map from
the SmzRCnH to itself. By the equivariant Hopf theorem [15, Chapter II.4], such a
stable homotopy class is determined by its restriction to the S1–fixed points. Hence,
by Fact 2.17, we see that BFG.S4/D 1.

Example 2.20 BFG.S2�S2/2fS0;S
zRgG is represented by a G–map from SmzRCnH

to S .mC1/zRCnH. Such a map is also determined by its restriction on the S1–fixed
points. By Fact 2.17 again, we see that BFG.S2 � S2/ D ezR. Here ezR is the Euler
class defined in (11).

When B is a circle, we identify it with the unit sphere S.2R/ in S2R. Consider the
cofiber sequence

(21) S.2R/[f1g! S0
! S2R p

�! SR
^ .S.2R/[f1g/:

The map p, which is just the Pontryagin–Thom map for the inclusion S.2R/ ,! S2R,
can be treated as a stable map from SR to BC. This stable map induces the map

p� W fS�.�.M /=16/H
^BC;S

bC.M /zR
g
G
! fSR�.�.M /=16/H;SbC.M /zR

g
G

that sends ˛ to ˛ ı .idS�.�.M /=16/H ^p/.
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Definition 2.21 When BDS.2R/we define the G–equivariant Bauer–Furuta invariant

BFG.N; s/ WD p�Œ�sw� 2 fSR�.�.M /=16/H;SbC.M /zR
g
G :

In either case, we define both the S1–equivariant and nonequivariant Bauer–Furuta
invariants as the restriction of the G–equivariant Bauer–Furuta invariant:

BFS1

.N; s/ WD ResG
S1.BFG.N; s//;

BFfeg.N; s/ WD ResG
feg.BFG.N; s//:

In [26], Kronheimer and Mrowka gave an alternative definition of BFfeg.N; s/: Take a
generic section r of the bundle W � that is transverse to the map sw. Then the preimage
sw�1.r/ is a manifold. When B is a point, the canonical trivializations of the bundles
W ˙ determine a stable framing on sw�1.r/. When B is S.2R/, we fix a stable framing
on B that bounds a framed disk. Then together with the trivializations of W ˙, this
determines a stable framing on sw�1.r/. In [26], the family Bauer–Furuta invariant is
defined as the framed cobordism class of sw�1.r/.

Recall that the framed cobordism classes of smooth n–manifolds are classified by
elements in the nth stable homotopy group of spheres. The following lemma states that
our definition of BFfeg is essentially identical to Kronheimer and Mrowka’s definition.

Lemma 2.22 The framed cobordism class of sw�1.r/ is classified by the nonequivari-
ant Bauer–Furuta invariant BFfeg.N; s/.

Proof By Sard’s theorem, we can take r to be a constant section that sends the whole
B to a generic point r0 2 S .mCbC.M //zRCnH. Then sw�1.r/D �sw�1

.r0/ and it is also
the preimage of the point

f0g � r0 2 SRC.mCbC.M //zRCnH

under the composition

(22) .id
S zR
^ �sw/ ı .id

S.n��.M /=16/HCmzR ^p/ W S2RCmzRC.n��.M /=16/H

! SRC.mCbC.M //zRCnH:

Because r0 is a regular value of �sw and any point in f0g �BC is a regular value of p,
we see that f0g� r0 is indeed a regular value of the map (22). Recall that an element in
the stable group of spheres defines a stably framed manifold by taking the preimage of
a regular value and taking the induced framing. The proof is finished by observing that
the stable framing on B that bounds a framed disk (the one we used to fix the framing
on sw�1.r/) is exactly the framing induced by the inclusion B ,! S2R.
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2.2.3 Some properties of the Bauer–Furuta invariant In this subsection, we sum-
marize some important properties of the Bauer–Furuta invariant. We start with a
vanishing result. Recall from Definition 2.14 that on the trivial bundle N DM�S1 there
are two spin structures: the product spin structure Qs and the twisted spin structure Qs� .

Lemma 2.23 The Bauer–Furuta invariants BFG , BFS1

and BFfeg of the product spin
structure Qs are all vanishing.

Proof The cofiber sequence (21) induces a long exact sequence

� � � ! fS�.�.M /=16/H;SbC.M /zR
g
G q�
�! fS�.�.M /=16/H

^BC;S
bC.M /zR

g
G

p�
��! fSR�.�.M /=16/H;SbC.M /zR

g
G
! � � � ;

where q� is induced by the map q WBC! S0 that preserves the basepoint and sends B

to the other point. By its definition, the map �sw for .M �S1; Qs/ is just a pullback of
the corresponding map for .M; s/ via the map q. So Œ�sw� 2 Image.q�/, which implies

BFG..M �S1; Qs//D p�.Œ�sw�/D 0:

The invariants BFS1

and BFfeg vanish because BFG vanishes.

Regarding the Bauer–Furuta invariant of the twisted spin structure, Kronheimer and
Mrowka [26] proved the following result by studying the stable framing on the moduli
space:

Proposition 2.24 We have

(23) BFfeg.M �S1; Qs� /D

�
� �BFfeg.M; s/ when �.M /� 16 mod 32;

0 when 32 j �.M /:

Here � 2 fSR;S0gfeg denotes the Hopf map.

Remark It would be interesting to prove a generalization of Proposition 2.24 for
BFG.M �S1; Qs� / and BFS1

.M �S1; Qs� /.

Next, we give a connected sum formula for the family Bauer–Furuta invariants. This
formula was originally proved by Bauer [10] for a single 4–manifold.

To set up the theorem we let .Ni ; si/ for i D 1; 2 be two spin families over B D S.2R/

with fiber Mi , both satisfying Assumption 2.11. To form the connected sum, we
pick sections 
i W B ! Ni . By Assumption 2.11(i), the section 
i is unique up to
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homotopy. We remove small standard 4–balls around these sections to form the family
Ni�D4�S1 of 4–manifolds with boundary. Then we can form the fiberwise connected
sum by identifying the collars of their boundaries. To fix such an identification, we
need to choose a smooth family of orientation reversing isomorphisms

Q� WD f�x W T
1.x/.M1/x
Š�! T
2.x/.M2/xgx2B:

We use N1 # Q� N2 to denote the resulting bundle over B, with fiber M1 # M2. In
general, the result N1 # Q� N2 will depend on the choice of Q� up to homotopy. Because
�1.SO.4//D Z=2, there are essentially two choices.

Lemma 2.25 There exists exactly one choice of Q� such that the spin structures s1 and
s2 can be glued together to form a spin structure on N1 # Q� N2. We denote this choice
by Q�.s1; s2/ and denote the resulting spin structure by s1 # s2.

Proof Denote by Q�˙ the two choices of Q�. Then they provide gluing maps

f ˙ W @.N1�D4
�S1/! @.N2�D4

�S1/;

which differ from each other by a Dehn twist on @.N2�D4�S1/. Under any boundary
parametrization @.N2�D4 �S1/Š S3 �S1, this Dehn twist can be written as

�.v;x/D .˛.x/v;x/ for .v;x/ 2 S3
�S1;

where ˛ W S1! SO.4/ is an essential loop. Note that S3�S1, regarded as the product
S3–bundle over S1, has two family spin structures (the product spin structure and the
twisted spin structure), which are related to each other by �. We see that exactly one of
the two maps f ˙ sends s1j@.N1�D4�S1/ to s2j@.N2�D4�S1/. This finishes the proof.
We also note that when Q� D Q�.s1; s2/, the gluing map on the boundary has two lifts
to the gluing map on the spin bundle, but they give isomorphic spin structures on the
connected sum.

From the discussion above, there is a unique way to take the connected sum of two
spin families .Ni ; si/. The resulting spin family .N1 # Q�.s1;s2/

N2; s1 # s2/ will also be
written as .N1; s1/ # .N2; s2/.

To talk about the Bauer–Furuta invariant of a connected sum, we also need to specify
a rule for homology orientation. Given homology orientations on M1 and M2, we
let the homology orientation on M1 # M2 be defined by putting the oriented basis for
H 2
C.M1/ in front of the oriented basis for H 2

C.M2/. The following theorem is a family
version of Bauer’s connected sum formula [10]:
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Proposition 2.26 Let .M �S1; Qs/ be the product family for some spin 4–manifold
.M; s/. Then

BFH..N1; s1/ # .M �S1; Qs//D BFH .N1; s1/^BFH .M; s/

for H DG, S1 or feg.

Proof The proof is essentially identical to the single 4–manifold case in [10]; see [26]
for a sketch of the proof for the family version (in the nonequivariant setting). A
central step is an excision argument that builds a homotopy between the approximated
Seiberg–Witten maps �sw (20) for the bundle

N1[ .M �S1/[ .S4
�S1/

viewed as a family over S1 with fiber M1[M [S4, and the bundle

.N # .M �S1/[ .S4
�S1//[ .S4

�S1/;

viewed as a family over S1 with fiber .M1#M /[S4[S4. This homotopy is constructed
by multiplying various sections by scalar-valued real cutoff functions and applying
various terms in the Seiberg–Witten map, which are all G–equivariant. Therefore, this
homotopy is G–equivariant.

As a corollary, we get the following result, which computes the Bauer–Furuta invariant
under family stabilization:

Corollary 2.27 Consider the product spin structure Qs0 and the twisted spin structure
Qs�
0

over the product bundle ..S2 � S2/� S1/. Then , for any spin family .N; s/ that
satisfies Assumption 2.11,

(24) BFG
�
.N; s/ #

�
..S2

�S2/�S1/; Qs0

��
D BFG.N; s/ � ezR

and

(25) BFG
�
.N; s/ #

�
..S2

�S2/�S1/; Qs�0
��
D BFG.N; s/ � ezR:

Here ezR 2 fS
0;S

zRgG is the Euler class defined in (11).

Proof The formula (24) follows from Proposition 2.26 and Example 2.20. The formula
(25) follows from (24) and Lemma 2.16.
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3 Proof of the main theorem

3.1 The key proposition

In this subsection, we prove the homotopy theoretic Proposition 3.2, which will be the
key ingredient in the proof of our main theorem.

Recall that the group fSRC2H;S6zRgS
1

admits a conjugation action cj ; see (8). The
following lemma computes this group and this action:

Lemma 3.1 The characteristic homomorphism t W fSRC2H;S6zRgS
1

!Z is surjective
and has ker t D Z=2. The conjugation action cj acts trivially on ker t .

Proof Smashing the cofiber sequence S0! S2H! SR ^ .S.2H/C/ with SR, we
get a cofiber sequence SR! SRC2H! S2R ^ .S.2H/C/, which induces the long
exact sequence

� � � ! fS2R;S6zR
g
S1

! fS2R
^ .S.2H/C/;S

6zR
g
S1

! fSRC2H;S6zR
g
S1

! fSR;S6zR
g
S1

! � � �

By the equivariant Hopf theorem [15, Chapter II.4 ], fSR;S6zRgS
1

DfS2R;S6zRgS
1

D0.
Hence, we get the isomorphism

fSRC2H;S6zR
g
S1

Š fS2R
^ .S.2H/C/;S

6zR
g
S1

:

Note that the S1–action on S2R ^ .S.2H/C/ is free away from the basepoint. By
Fact 2.3,

fS2R
^ .S.2H/C/;S

6zR
g
S1

D fS2R
^ .CP3

C/;S
6zR
g
feg:

The cofiber sequence CP1
C!CP3

C!CP3=CP1 induces the exact sequence

fS3R
^ .CP1

C/;S
6zR
g
feg
! fS2R

^ .CP3
C/;S

6zR
g
feg

! fS2R
^ .CP3=CP1/;S6zR

g
feg
! fS2R

^ .CP1
C/;S

6zR
g
feg:

By the cellular approximation theorem,

fS3R
^ .CP1

C/;S
6zR
g
feg
D fS2R

^ .CP1
C/;S

6zR
g
feg
D 0:

So we obtain the isomorphism

fS2R
^ .CP3

C/;S
6zR
g
feg
Š fS2R

^ .CP3=CP1/;S6zR
g
feg:
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To understand the stable homotopy type of CP3=CP1 as a nonequivariant space, we
let x be the generator of H 2.CP3IZ=2/. Then the total Steenrod square is given by

Sq.x/D Sq0.x/CSq2.x/D xCx2:

By the Cartan formula,

Sq.x2/D .xCx2/2 D x2
2H�.CP3

IZ=2/:

In particular, Sq2.x2/D 0, which implies that the attaching map between the 6–cell
and the 4–cell in CP3, regarded as an element in the stable homotopy group �1DZ=2,
is trivial. Therefore, we conclude that CP3=CP1 is stably homotopy equivalent to
S6R _S4R. This implies

fS2R
^ .CP3=CP1/;S6zR

g
feg
D �2˚�0 D Z=2˚Z:

The projection to the �0–summand can be alternatively defined as the mapping degree
on H 6.�IZ/, so it is exactly the characteristic homomorphism t . We have shown that
t is surjective with kernel Z=2. By Corollary 2.9, we have t.cj .˛// D t.˛/ for any
˛ 2 fSRC2H;S6zRgS

1

. So cj must send ker t to ker t . Since ker t Š Z=2, cj must act
trivially on it.

Proposition 3.2 Let ˛ be an element in fSRC2H;S6zRgG that satisfies the conditions

t.ResG
S1.˛//D 0 and ˛ � ezR D 0:

Then ResG
S1.˛/D 0.

Proof By Lemma 2.6, we see that ˛ D TrG
S1.ˇ/ for some ˇ 2 fSRC2H;S6zRgS

1

.
Therefore, by the double coset formula (10), ResG

S1.˛/D ˇC cj .ˇ/. By Corollary 2.9,

0D t.ˇC cj .ˇ//D 2t.ˇ/:

So ˇ is in the kernel of t , which is Z=2 by Lemma 3.1. By Lemma 3.1 again, cj .ˇ/Dˇ.
So ResG

S1.˛/D 2ˇ D 0.

3.2 Proof of Theorem 1.2

Let X1 be the K3 surface and X0 D S2 �S2. Let si be the unique spin structure on
Xi for i D 0; 1. We consider the Dehn twist

ı WX1 # X1!X1 # X1
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along the separating S3 in the neck. We want to show that ı is not smoothly isotopic
to the identity map even after a single stabilization. Without loss of generality, we may
assume that the stabilization is done in the first copy of X1. Then we need to show that
the map

ıs
WD idX0

# ı WX0 # X1 # X1!X0 # X1 # X1

is not smoothly isotopic to the identity map. As in [26], we will prove this by forming
the mapping torus

Nıs WD ..X0 # X1 # X1/� Œ0; 1�/=.x; 0/� .ı
s.x/; 1/

and showing that it is a nontrivial smooth bundle over S1.

By Lemma 2.23, the product spin structure over the trivial bundle has vanishing BFG .
So, it suffices to show that both spin families associated to Nıs have nontrivial BFG .

To prove this, we consider the product family .Xi � S1; Qsi/ and the twisted family
.Xi �S1; Qs�i /. By the discussion in [26, begining of Section 5], the mapping torus Nı

can be formed as the fiberwise connected sum

.X1 �S1/ #'.Qs1;Qs
�
1
/ .X1 �S1/:

Therefore, the bundle Nıs can formed as the fiberwise connected sum

.X0 �S1/ #'.Qs0;Qs1/ .X1 �S1/ #'.Qs1;Qs
�
1
/ .X1 �S1/

as well as the fiberwise connected sum

.X0 �S1/ #'.Qs�
0
;Qs�

1
/ .X1 �S1/ #'.Qs�

1
;Qs1/ .X1 �S1/:

The two spin families associated to Nıs are

.X0 �S1; Qs0/ # .X1 �S1; Qs1/ # .X1 �S1; Qs�1/

and
.X0 �S1; Qs�0/ # .X1 �S1; Qs�1/ # .X1 �S1; Qs1/:

We will show that

BFG..X0 �S1; Qs0/ # .X1 �S1; Qs1/ # .X1 �S1; Qs�1//¤ 0;

and the other family is similar. We use ˛ to denote the element

BFG..X1 �S1; Qs1/ # .X1 �S1; Qs�1// 2 fS
RC2H;S6zR

g
G :
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By Proposition 2.26, ResG
S1.˛/ can be decomposed as the product of the elements

BFS1

.X1; s1/ 2 fS
H;S3zR

g
S1

and BFS1

..X1 �S1; Qs�1// 2 fS
RCH;S3zR

g
S1

:

By Lemma 2.10, the Seiberg–Witten invariant t.ResG
S1.˛// equals 0. (This can also be

proved by checking the explicit description of the Seiberg–Witten moduli space given
in [26].)

By Corollary 2.27,

BFG..X0 �S1; Qs0/ # .X1 �S1; Qs1/ # .X1 �S1; Qs�1//D ˛ � ezR:

For the sake of contradiction, suppose ˛ �ezRD 0. Then, by Proposition 3.2, ResG
S1.˛/D

0, which implies

BFfeg..X1 �S1; Qs1/ # .X1 �S1; Qs�1//D ResG
feg.˛/D ResS1

feg ıResG
S1.˛/D 0:

However, Kronheimer and Mrowka [26, Proposition 5.1] computed this nonequivariant
Bauer–Furuta invariant as �3 ¤ 0 2 �3. (The Kronheimer–Mrowka definition of BFfeg

coincides with ours because of Lemma 2.22.) This is a contradiction and our proof is
finished.
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