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Cellular objects in isotropic motivic categories

FABIO TANANIA

Our main purpose is to describe the category of isotropic cellular spectra over flexible
fields. Guided by Gheorghe, Wang and Xu (Acta Math. 226 (2021) 319–407), we
show that it is equivalent, as a stable1–category equipped with a t–structure, to
the derived category of left comodules over the dual of the classical topological
Steenrod algebra. In order to obtain this result, the category of isotropic cellular
modules over the motivic Brown–Peterson spectrum is also studied, and isotropic
Adams and Adams–Novikov spectral sequences are developed. As a consequence,
we also compute hom sets in the category of isotropic Tate motives between motives
of isotropic cellular spectra.

14F42

A list of symbols can be found on page 2046.

1 Introduction

Isotropic categories are local versions of motivic categories, obtained by, roughly
speaking, killing all anisotropic varieties. Although they often have a handier structure
than their global versions, they exhibit some key characteristics of both motivic and
classical topological phenomena. In [21], Vishik introduced the isotropic triangulated
category of motives and computed the isotropic motivic cohomology of the point,
which is strongly related to the Milnor subalgebra. By following this lead, we studied
in [19] the isotropic stable motivic homotopy category. In particular, we identified the
isotropic motivic homotopy groups of the sphere spectrum with the cohomology of the
topological Steenrod algebra, ie the E2–page of the classical Adams spectral sequence.
These results are quite surprising since they show that topological objects naturally
arise from isotropic environments, which could lead to a fruitful exchange between
topology and isotropic motivic theory.

Motivic categories, constructed by Morel and Voevodsky (see [16; 23]) in order to
study algebraic varieties by topological means, are extremely rich categories. Even
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2014 Fabio Tanania

over an algebraically closed field they are more complex than the respective topological
counterparts. For example, while every object in the classical stable homotopy category
is cellular (built up by attaching spheres), not every motivic spectrum is cellular, since
many algebrogeometric phenomena come into the picture. In spite of this, it is still
interesting to understand the structure of the category of cellular objects in motivic
stable homotopy theory. This project was initiated by Dugger and Isaksen in [3] and
much attention has been dedicated to it since then. Our work, in particular, is concerned
with understanding the structure of the subcategories of cellular objects in isotropic
categories, which we believe could shed light on the deep interconnection with topology.

We have already highlighted that motivic categories are particularly challenging to
study. For example, one of the difficulties that one does not encounter in classical
topology is the presence of an object � that appears in various incarnations throughout
motivic homotopy theory, sometimes as an element of the motivic cohomology of
the ground field and sometimes as a map in the 2–complete motivic stable homotopy
groups of spheres. Hence, the principal task is to first find some substitutes for the
original motivic categories and tools which could help in the process of analyzing them.
In the case of algebraically closed fields, for example, topological realization is a very
helpful tool since it allows us to study the initial motivic category by looking at its
deformation � D 1, which happens to be just the classical stable homotopy theory; see
Dugger and Isaksen [4]. However, in this process part of the information is lost, so one
can try to recover it by studying other deformations, for example � D 0. This was done
by Isaksen in [9], Gheorghe in [5] and Gheorghe, Wang and Xu in [6]. More precisely,
in [9] the stable motivic homotopy groups of C� , the cofiber of � , are identified with the
E2–page of the classical Adams–Novikov spectral sequence, while in [5] the motivic
spectrum C� is provided with an E1–ring structure inducing an isomorphism of rings
with higher products between ���.C�/ and the classical Adams–Novikov E2–page. A
parallel result for isotropic categories was obtained in [19], where the isotropic sphere
spectrum X was equipped with an E1–ring structure inducing an isomorphism of rings
with higher products between ���.X/ and the classical Adams E2–page. Moreover,
in [6] the category of C�–cellular spectra is described, and is proved to be equivalent
as a stable 1–category equipped with a t–structure (see Lurie [13]) to the derived
category of left BP�BP–comodules concentrated in even degrees, where BP is the
Brown–Peterson spectrum and BP�BP its BP–homology.

We intend to follow a similar path for isotropic categories. Recall that a field k is
called flexible if it is a purely transcendental extension of countable infinite degree over

Geometry & Topology, Volume 27 (2023)



Cellular objects in isotropic motivic categories 2015

some other field. In our situation it is really essential to work over flexible fields since,
as highlighted in [21], these are the ground fields over which the isotropic categories
behave particularly well. For example, over algebraically closed fields, due to the lack
of anisotropic varieties, the isotropic category would be just the same as the original
motivic category, so in this case the isotropic localization produces nothing new. We are
encouraged by the evident parallel between the computations of ���.C�/ over complex
numbers (see [5; 9]) on the one hand, and of ���.X/ over flexible fields (see [19]) on
the other. More precisely, we have been guided by the idea that studying the isotropic
stable motivic homotopy category over a flexible field is similar in some sense to
studying the stable1–category of C�–cellular spectra in the motivic stable homotopy
category over complex numbers. Indeed, they obviously share some common features
which is highlighted by our main theorem:

Theorem 1.1 Let k be a flexible field of characteristic different from 2. Then there
exists a t–exact equivalence of stable1–categories

Db.A�– Comod�/
Š
�! X–Modb

cell;HZ=2;

where A� is the classical dual Steenrod algebra and X–Modb
cell;HZ=2 is the stable1–

category of HZ=2–complete X–cellular modules having MBP–homology nontrivial in
only finitely many Chow–Novikov degrees (the superscript “b” stands for “bounded” ;
see Definition 8.4).

As a consequence, we obtain that the category of isotropic cellular spectra is completely
algebraic, which makes it easier to study. Moreover, it is deeply related to classical
topology, as foreseeable from results in [19; 21].

In order to achieve our main results, we need several tools. In particular, it is necessary
to develop and study isotropic versions of both the Adams spectral sequence and
the Adams–Novikov spectral sequence. This requires a focus on the motivic Brown–
Peterson spectrum MBP (see Vezzosi [20]) from an isotropic point of view. In particular,
we note that the isotropic Brown–Peterson spectrum is an E1–ring spectrum, in contrast
to the topological picture where BP has been shown not to admit an E1–ring structure
by Lawson in [11]. Then we use techniques developed by Gheorghe, Wang and Xu
in [6], based on Lurie’s results (see [13]), to first describe in algebraic terms the
category of isotropic MBP–cellular modules, and then the category of all isotropic
cellular spectra. Finally, we are also able to provide some results about the cellular
subcategory of the isotropic triangulated category of motives, ie the category of isotropic
Tate motives.

Geometry & Topology, Volume 27 (2023)
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Outline We now briefly present the contents of each section. In Section 2, we provide
our main notation. Then we move on to Section 3 by recalling isotropic categories
and their main properties, mostly referring to results in [19; 21]. Since we are mainly
interested in cellular objects, we recall in Section 4 definitions and some of the main
results from [3], which are useful in the rest of the paper. Section 5 is devoted to a deep
analysis of the isotropic motivic Adams spectral sequence, which was already initiated
in [19]. These results are used in Section 6 to study the motivic Brown–Peterson
spectrum from an isotropic perspective. In particular, we compute its isotropic stable
homotopy groups. Sections 7 and 8 are modeled on Sections 3, 4 and 5 of [6]. More
precisely, in Section 7 we endow the isotropic motivic Brown–Peterson spectrum with
an E1–ring structure, and then identify, as a triangulated category, the category of
isotropic MBP–cellular spectra with the category of bigraded F2–vector spaces. In
Section 8, after developing an isotropic Adams–Novikov spectral sequence, we describe
the category of isotropic cellular spectra in algebraic terms as the derived category of
comodules over the dual of the Steenrod algebra equipped with a t–structure. Finally,
in Section 9, we provide an algebraic description of the hom sets in the category of
isotropic motives between motives of isotropic cellular spectra, which is a step forward
in understanding the category of isotropic Tate motives.

Acknowledgements I would like to thank Alexander Vishik for very helpful comments
and Dan Isaksen for having pointed out to me the work by Gheorghe, Wang and Xu on
which this paper is modeled. I am extremely grateful to Tom Bachmann for very useful
remarks. I also wish to thank the referees for very useful comments which helped to
improve the exposition and to simplify Section 7.

2 Notation

We denote hom sets in SH.k/ by Œ � ; � � and the suspension Sp;q ^ X of a motivic
spectrum X by †p;qX . Moreover, if E is a motivic E1–ring spectrum, the stable
1–category of E–modules (see [13]) is denoted by E–Mod, its smash product by
� ^E � and hom sets in its homotopy category by Œ � ; � �E .

If R is an algebra and C a coalgebra, then we denote by R–Mod and C – Comod
the categories of left R–modules and left C –comodules, respectively. Hom sets in
these categories are both denoted by HomR. � ; � / and HomC . � ; � /, and it will be clear
from context if they are meant to be hom of modules or comodules. For a bigraded
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object M�� (resp. M ��) we denote by †p;qM�� (resp. †p;qM ��) its suspension, the
bigraded object defined by †p;qMa;b DMa�p;b�q (resp. †p;qM a;b DM aCp;bCq).
The convention for bigraded homomorphisms between bigraded objects is

Homp;q.M��;N��/D Hom0;0.†p;qM��;N��/

and
Homp;q.M ��;N ��/D Hom0;0.†p;qM ��;N ��/;

where Hom0;0. � ; � / denotes the bidegree-preserving homomorphisms. Moreover, the
bounded derived categories of R–Mod and C – Comod are denoted by Db.R–Mod/
and Db.C – Comod/, respectively.

3 Isotropic motivic categories

In this section we want to introduce the main categories we consider, namely isotropic
motivic categories. These categories are built from the respective motivic ones by
killing all anisotropic varieties. We refer to [19, Section 2; 21, Section 2] for more
details on the construction and properties of isotropic categories.

Let us recall first the definition of flexible field from [21]:

Definition 3.1 A field k is called flexible if it is a purely transcendental extension of
countable infinite degree: k D k0.t1; t2; : : : / for some other field k0.

Henceforth we assume k is a flexible base field of characteristic different from 2. We
proceed by recalling the definition of a fundamental object in SH.k/ for the construction
of the isotropic stable motivic homotopy category SH.k=k/.

Definition 3.2 Denote by Q the disjoint union of all connected anisotropic (mod 2)
varieties over k, ie varieties which do not have closed points of odd degree, and by
{C .Q/ its Čech simplicial scheme {C .Q/n D QnC1 with face and degeneracy maps
given by partial projections and partial diagonals, respectively. We define the isotropic
sphere spectrum X as Cone.†1C {C .Q/! S/ in SH.k/.

We recall from [19, Section 2] that X is an idempotent monoid, that is, there is an
equivalence X^XŠX induced by the map S!X, and so it is an E1–ring spectrum;
see [19, Proposition 6.1].

Geometry & Topology, Volume 27 (2023)



2018 Fabio Tanania

Definition 3.3 The full triangulated subcategory X^SH.k/ of SH.k/ will be called
the isotropic stable motivic homotopy category and denoted by SH.k=k/.

This triangulated category has very nice properties. In particular it is both localizing
and colocalizing; see [19, Section 2]. The very same construction was done first for
DM.k/ by Vishik in [21] by tensoring the triangulated category of motives with the
idempotent M.X/, where M W SH.k/! DM.k/ is the motivic functor.

Definition 3.4 The full triangulated subcategory M.X/˝DM.k/ of DM.k/ will be
called the isotropic category of motives and denoted by DM.k=k/.

The following result tells us that the isotropic stable motivic homotopy category is
nothing but the stable1–category of X–modules:

Proposition 3.5 There is an equivalence between the isotropic stable motivic homotopy
category SH.k=k/ and the stable1–category X–Mod of modules over the motivic
E1–ring spectrum X.

Proof This follows immediately from [13, Proposition 4.8.2.10].

Remark 3.6 Since by construction X kills all anisotropic varieties, it kills in particular
nontrivial quadratic extensions. Consider an element x in k such that neither x nor �x

is a square. Then X^†1C Spec.k.
p

x// and X^†1C Spec.k.
p
�x// are both zero.

This implies that the Euler characteristics of Spec.k.
p

x// and Spec.k.
p
�x//, which

are equal to h2i.1Chxi/ and h2i.1Ch�xi/, respectively, in �0;0.S/Š GW.k/ (see
[12, Corollary 11.2; 15, Theorem 6.2.2]), vanish in �0;0.X/. It follows that 1Chxi

and 1Ch�xi vanish in �0;0.X/ and so does their sum

2ChxiC h�xi D 2Ch1iC h�1i D 3Ch�1i:

Hence, �3D h�1i, and so 9D 1 (so 8D 0) in �0;0.X/. From all this one deduces that
X is 2–power torsion.1

We are now ready to define isotropic motivic homotopy groups and isotropic motivic
homology and cohomology.

Definition 3.7 Let X be a motivic spectrum in SH.k/. Then the isotropic stable
motivic homotopy groups of X are defined by

� iso
��.X /D ŒS

��;X^X �D ���.X^X /:

1I am grateful to Tom Bachmann for this argument.
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Recall that motivic cohomology with Z=2–coefficients is represented by the motivic
Eilenberg–Mac Lane spectrum HZ=2. Then we define isotropic motivic cohomology
as the cohomology theory represented by the motivic E1–ring spectrum X^HZ=2.

Definition 3.8 For any X in SH.k/, we define the isotropic motivic cohomology of X

as
H��iso .X /D ŒX; †

��.X^HZ=2/�

and the isotropic motivic homology of X as

H iso
��.X /D ŒS

��;X^HZ=2^X �DH��.X^X /:

The isotropic motivic cohomology of the point was computed by Vishik:

Theorem 3.9 [21, Theorem 3.7] Let k be a flexible field. Then for any i � 0 there
exists a unique cohomology class ri of bidegree .�2i C 1/Œ�2iC1C 1� such that

H��.k=k/ŠƒF2
.ri/i�0

and Qj ri D ıij , where the Qj are the Milnor operations.

At this point, we want to introduce the isotropic motivic Steenrod algebra A��.k=k/

and its dual A��.k=k/. They are defined as the isotropic motivic cohomology and
homology, respectively, of the motivic Eilenberg–Mac Lane spectrum.

Definition 3.10 The isotropic motivic Steenrod algebra is defined by

A��.k=k/DH��iso .HZ=2/D ŒHZ=2; †��.X^HZ=2/�Š ŒX^HZ=2; †��.X^HZ=2/�

and its dual by

A��.k=k/DH iso
��.HZ=2/D ŒS��;X^HZ=2^HZ=2�:

The structure of A��.k=k/ was studied in [19, Section 3]. We summarize the main
results:

Proposition 3.11 [19, Propositions 3.5, 3.6 and 3.7] Let k be a flexible field. Then
there exists an isomorphism of H��.k=k/�M��–bimodules

A��.k=k/ŠH��.k=k/˝F2
G��˝F2

M��;

where M�� is the Milnor subalgebra ƒF2
.Qi/i�0 and G�� is the bigraded topological

Steenrod algebra , ie G2n;n DAn.
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By projecting the motivic Cartan formulas (see [24, Propositions 9.7 and 13.4]) to the
isotropic category, one gets a coproduct on A��.k=k/ given by

�.Sq2n/D
X

iCjDn

Sq2i
˝Sq2j ; �.Qi/DQi ˝ 1C 1˝Qi :

This coproduct structures A��.k=k/ as a coalgebra whose dual is described as an
H��.k=k/–algebra by

A��.k=k/Š
H��.k=k/Œ�i ; �j �i�0;j�1

.�2
i /

;

where �i is the dual of the Milnor operation Qi and �j is the dual of the motivic
cohomology operation Sq2j

� � � Sq2. The coproduct in A��.k=k/ is given by (see
[24, Lemma 12.11])

 .�k/D

kX
iD0

�2i

k�i ˝ �i ;  .�k/D

kX
iD0

�2i

k�i ˝ �i C �k ˝ 1:

Remark 3.12 By Proposition 3.11, the projection from A��.k=k/ to its quotient by
the left ideal generated by Milnor operations provides a homomorphism

A��.k=k/!H��.k=k/˝F2
G��:

This map induces a left A��.k=k/–action on H��.k=k/˝F2
G�� and, dually, a left

A��.k=k/–coaction on H��.k=k/˝F2
G��, where G�� is the subalgebra F2Œ�1; �2; : : : �.

4 Cellular motivic spectra

We are mostly interested in cellular objects of isotropic motivic categories. We recall
from [3, Remark 7.4] that the category of cellular motivic spectra, which we denote
by SH.k/cell, is the localizing subcategory of SH.k/ generated by the spheres †p;qS.
Similarly, the category of Tate motives, which we denote by DM.k/Tate, is the localizing
subcategory of DM.k/ generated by the Tate motives T .q/Œp�. If E is a motivic E1–
ring spectrum, then we denote by E–Modcell the stable 1–category of E–cellular
modules, meaning the localizing subcategory of E–Mod generated by †p;qE.

Definition 4.1 The category of X–cellular modules will be called the category of
isotropic cellular motivic spectra, and is denoted by SH.k=k/cell. In the same way, the
full localizing subcategory of DM.k=k/ generated by the objects M.X/.q/Œp� will be
called the category of isotropic Tate motives, and is denoted by DM.k=k/Tate.
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A fundamental property of the category of cellular objects is that isomorphisms can be
detected by motivic homotopy groups:

Proposition 4.2 [3, Corollary 7.2 and Section 7.9] Let E be a motivic E1–ring
spectrum and X!Y be a map of E–cellular motivic spectra that induces isomorphisms
on �p;q for all p and q in Z. Then the map is a weak equivalence.

Another essential advantage of dealing with cellular objects is that they allow the
construction of very useful convergent spectral sequences.

Proposition 4.3 [3, Propositions 7.7 and 7.10] Let E be a motivic E1–ring spectrum
and N a left E–module. If M is a right E–cellular spectrum then there is a strongly
convergent spectral sequence

E2
s;t;u Š Tor���.E/s;t;u .���.M /; ���.N //) �sCt;u.M ^E N /:

If M is a left E–cellular motivic spectrum then there is a conditionally convergent
spectral sequence

E
s;t;u
2
Š Exts;t;u

���.E/
.���.M /; ���.N //) Œ†t�s;uM;N �E :

5 The isotropic motivic Adams spectral sequence

In this section we recall the construction of the isotropic motivic Adams spectral
sequence; see [19, Section 4]. Moreover, we study the circumstances under which the
E2–page is expressible in terms of Ext–groups over the isotropic motivic Steenrod
algebra.

Definition 5.1 Let Y be an isotropic motivic spectrum (an object in X–Mod). Then
the standard isotropic motivic Adams resolution of Y consists of the Postnikov system

� � � // .X^HZ=2/^s^Y //

��

� � � // X^HZ=2^Y //

��

Y

��

X^HZ=2^.X^HZ=2/^s^Y

Œ1�

ff

X^HZ=2^X^HZ=2^Y

Œ1�

ee

X^HZ=2^Y

Œ1�

hh

where X^HZ=2 is defined by the exact triangle in SH.k/

X^HZ=2! S! X^HZ=2!†1;0X^HZ=2:

Geometry & Topology, Volume 27 (2023)
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By applying motivic homotopy groups functors ��� to the previous Postnikov system
we get an unrolled exact couple, which induces in turn a spectral sequence with E1–page
described by

E
s;t;u
1
Š �t�s;u.X^HZ=2^ .X^HZ=2/^s

^Y /

and first differential

d
s;t;u
1
W �t�s;u.X^HZ=2^ .X^HZ=2/^s

^Y /

! �t�s�1;u.X^HZ=2^ .X^HZ=2/^sC1
^Y /:

In general, differentials on the Er –page have tridegrees given by

d s;t;u
r WEs;t;u

r !EsCr;tCr�1;u
r :

We call this spectral sequence the isotropic motivic Adams spectral sequence.

The isotropic Adams spectral sequence converges to the homotopy groups of a motivic
spectrum closely related to Y , namely its X ^ HZ=2–nilpotent completion, which
we denote by Y ^

X^HZ=2. Before proceeding, let us recall from [2, Section 5] how to
construct the E–nilpotent completion of a spectrum Y for a homotopy ring spectrum E.

Definition 5.2 Let E be a homotopy ring spectrum and Y a motivic spectrum in
SH.k/. First, define E by the distinguished triangle in SH.k/

E! S!E!†1;0E:

Then define En as Cone.E^nC1! S/ in SH.k/. This way one gets an inverse system

� � � !En ^Y ! � � � !E1 ^Y !E0 ^Y;

and the E–nilpotent completion of Y is the motivic spectrum Y ^
E
D holim.En ^Y /.

Note that, by [19, Proposition 2.3], if Y is an isotropic motivic spectrum so is Y ^
E

.

Proposition 5.3 Let Y be an isotropic motivic spectrum. If lim
 ��

1
r

E
s;t;u
r D 0 for any s,

t and u, then the isotropic motivic Adams spectral sequence for Y is strongly convergent
to the stable motivic homotopy groups of the HZ=2–nilpotent completion of Y .

Proof By [2, Proposition 6.3; 4, Remark 6.11], under the vanishing hypothesis
on lim
 ��

1
r

E
s;t;u
r , the isotropic motivic Adams spectral sequence strongly converges to

���.Y
^
X^HZ=2/. It only remains to notice that, since Y is an X–module, its HZ=2–

nilpotent and X^HZ=2–nilpotent completions coincide. In fact, after smashing the

Geometry & Topology, Volume 27 (2023)



Cellular objects in isotropic motivic categories 2023

morphism of distinguished triangles

HZ=2 //

��

S // HZ=2 //

��

†1;0HZ=2

��

X^HZ=2 // S // X^HZ=2 // †1;0X^HZ=2

with X, one gets

X^HZ=2 //

��

X // X^HZ=2 //

Š

��

†1;0X^HZ=2

��

X^X^HZ=2 // X // X^X^HZ=2 // †1;0X^X^HZ=2

since X is an idempotent in SH.k/. It follows that X^HZ=2Š X^X^HZ=2, and
so X^HZ=2n Š X^ .X^HZ=2/n for any n. Therefore, since Y Š X^Y ,

Y ^X^HZ=2 D holim..X^HZ=2/n ^Y /Š holim.X^ .X^HZ=2/n ^Y /

Š holim.X^HZ=2n ^Y /Š holim.HZ=2n ^Y /D Y ^HZ=2:

Remark 5.4 By [14, Section 5.2 and Theorem 1.0.3], the HZ=2–completion of a
connective motivic spectrum coincides with its .2; �/–completion. Since all isotropic
motivic spectra are 2–power torsion (see Remark 3.6) and so 2–complete, the previous
result establishes the convergence of the isotropic Adams spectral sequence for a con-
nective isotropic spectrum to the motivic stable homotopy groups of its �–completion.

Definition 5.5 A spectral sequence fEs;t;u
r g is called Mittag-Leffler if for each s, t

and u there exists r0 such that E
s;t;u
r ŠE

s;t;u
1 whenever r > r0.

Note that every Mittag-Leffler spectral sequence satisfies the condition lim
 ��

1
r

E
s;t;u
r D 0

for any s, t and u; see [2, after Proposition 6.3]. We will see that in many important
cases the isotropic Adams spectral sequence is Mittag-Leffler, which guarantees strong
convergence.

Now, we would like to understand what conditions we need to impose on Y in order to
be able to express the E2–page of the isotropic Adams spectral sequence in terms of
Ext–groups over the isotropic motivic Steenrod algebra. In order to do so, we need the
following lemmas.

Lemma 5.6 Let k be a flexible field and Y an object in X–Mod. Then there exists an
isomorphism of left H��.k=k/–modules

H iso
��.X^HZ=2^Y /ŠA��.k=k/˝H��.k=k/H iso

��.Y /:

Geometry & Topology, Volume 27 (2023)
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Proof Since by [8, Theorem 5.10] HZ=2^HZ=2 is a split HZ=2–module, ie it is
equivalent to a wedge sum of the form

W
˛2A†

p˛;q˛HZ=2,

A��.k=k/Š ���.X^HZ=2^HZ=2/Š ���

� _
˛2A

†p˛;q˛ .X^HZ=2/

�
Š

M
˛2A

†p˛;q˛���.X^HZ=2/Š
M
˛2A

†p˛;q˛H��.k=k/:

Now, let Y be any object in X–Mod. Then

H iso
��.X^HZ=2^Y /Š ���.X^HZ=2^HZ=2^Y /

Š ���

� _
˛2A

†p˛;q˛ .X^HZ=2^Y /

�
Š

M
˛2A

†p˛;q˛���.X^HZ=2^Y /

Š

M
˛2A

†p˛;q˛H iso
��.Y /ŠA��.k=k/˝H��.k=k/H iso

��.Y /:

Remark 5.7 By the previous lemma, the map Y ! X ^ HZ=2 ^ Y induces in
isotropic motivic homology a coaction H iso

��.Y / ! A��.k=k/˝H��.k=k/ H iso
��.Y /,

which structures H iso
��.Y / as a left A��.k=k/–comodule.

Next we show that, if the homology of an isotropic cellular spectrum Y is free over
H��.k=k/, then the motivic spectrum X^HZ=2^Y is a split X^HZ=2–module.

Lemma 5.8 Let k be a flexible field and Y an object in X–Modcell such that H iso
��.Y /

is a free left H��.k=k/–module generated by a set of elements fx˛g˛2A, where x˛

has bidegree .q˛/Œp˛ �. Then there exists an isomorphism of spectra_
˛2A

†p˛;q˛ .X^HZ=2/ Š�! X^HZ=2^Y:

Proof Since H iso
��.Y /Š ���.X^HZ=2^Y /, we can represent each generator x˛ as

a map †p˛;q˛S!X^HZ=2^Y , where .q˛/Œp˛ � is the bidegree of x˛ . For all ˛ 2A,
this map corresponds bijectively to a map †p˛;q˛ .X^HZ=2/! X^HZ=2^ Y of
X^HZ=2–cellular modules. Hence, we get a map_

˛2A

†p˛;q˛ .X^HZ=2/! X^HZ=2^Y

of X^HZ=2–cellular modules. In order to check that it is an isomorphism, by
Proposition 4.2 it is enough to look at the induced morphisms on homotopy groups.
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Indeed, we have, on the one hand,

���

� _
˛2A

†p˛;q˛ .X^HZ=2/

�
Š

M
˛2A

†p˛;q˛���.X^HZ=2/Š
M
˛2A

†p˛;q˛H��.k=k/

and, on the other,

���.X^HZ=2^Y /Š
M
˛2A

H��.k=k/ �x˛;

by hypothesis. By construction, the map we are considering induces in homotopy
groups the homomorphism of H��.k=k/–modules

���

� _
˛2A

†p˛;q˛ .X^HZ=2/

�
! ���.X^HZ=2^Y /

which sends 1 2†p˛;q˛H��.k=k/ to x˛ for any ˛ 2A, so it is an isomorphism.

The next lemma provides us with a condition under which the isotropic cohomology of
a spectrum is dual to its isotropic homology.

Lemma 5.9 Let k be a flexible field and Y an object in X–Mod such that there is an
isomorphism X^HZ=2^ Y Š

W
˛2A†

p˛;q˛ .X^HZ=2/ for some set A. Then for
any bidegree .q/Œp� there is an isomorphism

H
p;q
iso .Y /Š Hom�p;�q

H��.k=k/
.H iso
��.Y /;H��.k=k//:

Proof Since X^HZ=2^Y Š
W
˛2A†

p˛;q˛ .X^HZ=2/ by hypothesis,

H iso
��.Y /D ŒS

��;X^HZ=2^Y �Š

�
S��;

_
˛2A

†p˛;q˛ .X^HZ=2/

�
Š

M
˛2A

†p˛;q˛H��.k=k/;

from which it follows that

Hom�p;�q

H��.k=k/
.H iso
��.Y /;H��.k=k//Š

Y
˛2A

Hp˛�p;q˛�q.k=k/:

On the other hand, we have the chain of isomorphisms

H
p;q
iso .Y /D ŒY; †

p;q.X^HZ=2/�Š ŒX^HZ=2^Y; †p;q.X^HZ=2/�X^HZ=2

Š

� _
˛2A

†p˛;q˛ .X^HZ=2/; †p;q.X^HZ=2/

�
X^HZ=2

Š

� _
˛2A

Sp˛;q˛ ; †p;q.X^HZ=2/

�
Š

Y
˛2A

Hp˛�p;q˛�q.k=k/:
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We now define a certain concept of finiteness which suits the isotropic environment:

Definition 5.10 A set of bidegrees f.q˛/Œp˛ �g˛2A is isotropically finite type if, for any
bidegree .q/Œp�, there are only finitely many ˛ 2A such that p�p˛ � 2.q� q˛/� 0.
Moreover, we say that a set of bigraded elements fx˛g˛2A is isotropically finite type if
the corresponding set of bidegrees is so.

Lemma 5.11 Let k be a flexible field and f.q˛/Œp˛ �g˛2A an isotropically finite type
set of bidegrees. Then for any bidegree .q/Œp�, the obvious map

�p;q

�
X^

_
˛2A

†p˛;q˛HZ=2

�
! Homp;q

A��.k=k/

�
H��iso

� _
˛2A

†p˛;q˛HZ=2

�
;H��.k=k/

�
is an isomorphism.

Proof First note that, for any bidegree .q/Œp�, one has the commutative diagram

�p;q

�
X^

W
˛2A†

p˛ ;q˛HZ=2
�

,,

��

Homp;q

A��.k=k/

�
H��iso

�W
˛2A†

p˛ ;q˛HZ=2
�
;H��.k=k/

�

��

Homp;q
F2

�L
˛2A†

�p˛ ;�q˛F2;H
��.k=k/

�
,,

Homp;q

A��.k=k/

�L
˛2A†

�p˛ ;�q˛A��.k=k/;H��.k=k/
�

The left vertical arrow is the isomorphism described by the chain of equivalences

�p;q

�
X^

_
˛2A

†p˛;q˛HZ=2

�
Š

M
˛2A

�p;q.X^†
p˛;q˛HZ=2/

Š

M
˛2A

H p˛�p;q˛�q.k=k/Š
Y
˛2A

H p˛�p;q˛�q.k=k/

Š

Y
˛2A

Homp;q
F2
.†�p˛;�q˛F2;H

��.k=k//

Š Homp;q
F2

�M
˛2A

†�p˛;�q˛F2;H
��.k=k/

�
;

where the identificationM
˛2A

H p˛�p;q˛�q.k=k/Š
Y
˛2A

H p˛�p;q˛�q.k=k/
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is due to the fact that the set f.q˛/Œp˛ �g˛2A is isotropically finite type, so for any
bidegree .q/Œp� the group H p˛�p;q˛�q.k=k/ is nonzero only for a finite number of
˛ 2A by Theorem 3.9. The bottom horizontal map is obviously an isomorphism since
A��.k=k/ is an F2–vector space. The right vertical map is an isomorphism since

Homp;q

A��.k=k/

�
H��iso

�_
˛

†p˛;q˛HZ=2

�
;H��.k=k/

�
Š Homp;q

A��.k=k/

�Y
˛

H��iso .†
p˛;q˛HZ=2/;H��.k=k/

�
D Homp;q

A��.k=k/

�Y
˛

†�p˛;�q˛A��.k=k/;H��.k=k/

�
Š Homp;q

A��.k=k/

�M
˛

†�p˛;�q˛A��.k=k/;H��.k=k/

�
;

where the last isomorphism comes from the fact that the set of bidegrees f.q˛/Œp˛ �g˛2A

is isotropically finite type, so for any bidegree .q/Œp� the group

Homp;q

A��.k=k/
.†�p˛;�q˛A��.k=k/;H��.k=k//ŠH p˛�p;q˛�q.k=k/

is nontrivial only for finitely many ˛ 2A by Theorem 3.9.

At this point, we are ready to present the structure of the E2–page of the isotropic
Adams spectral sequence, which behaves as in the classical case.

Theorem 5.12 Let k be a flexible field and Y an object in X–Modcell such that
H iso
��.Y / is a free left H��.k=k/–module generated by an isotropically finite type set

of elements fx˛g˛2A. Then the E2–page of the isotropic motivic Adams spectral
sequence is described by

E
s;t;u
2
Š Exts;t;uA��.k=k/

.H��iso .Y /;H
��.k=k//:

Proof First, we want to prove by induction that H iso
��..X^HZ=2/^s^Y / is a free left

H��.k=k/–module generated by an isotropically finite type set of elements fx˛g˛2As

for any s � 0. The induction basis is guaranteed by hypothesis after setting A0 DA.
Suppose the statement is true at the s� 1 stage, ie

H iso
��..X^HZ=2/^s�1

^Y /Š
M

˛2As�1

†1�s;0H��.k=k/ �x˛:
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Then by Lemma 5.6, the map .X^HZ=2/^s�1^Y !X^HZ=2^.X^HZ=2/^s�1^Y

induces in isotropic motivic homology the monomorphismM
˛2As�1

†1�s;0H��.k=k/ �x˛!
M

˛2As�1

†1�s;0A��.k=k/ �x˛:

Hence, the standard Adams resolution induces, for any p and q, a short exact sequence

0!H iso
p;q..X^HZ=2/^s�1

^Y /!H iso
p;q.X^HZ=2^ .X^HZ=2/^s�1

^Y /

!H iso
p�1;q..X^HZ=2/^s

^Y /! 0:

Now note that, by the very structure of the dual of the isotropic motivic Steenrod algebra,
A��.k=k/ is freely generated over H��.k=k/ by a set of generators f1;yˇgˇ2B which
is finite in each bidegree and such that pˇ � 2qˇ � 0 for any ˇ 2B, where .qˇ/Œpˇ � is
the bidegree of yˇ. Hence, the set fyˇx˛gˇ2B;˛2As�1

is isotropically finite type and
freely generates H iso

��..X^HZ=2/^s ^Y / over H��.k=k/:

H iso
��..X^HZ=2/^s

^Y /Š
M

ˇ2B;˛2As�1

†�s;0H��.k=k/ �yˇx˛:

Therefore, Lemma 5.8 implies that all X^HZ=2^ .X^HZ=2/^s ^ Y are wedges
of appropriately shifted X ^ HZ=2. More precisely, for any s � 0, there exists an
isomorphism

X^
_
˛2As

†p˛�s;q˛HZ=2 Š�! X^HZ=2^ .X^HZ=2/^s
^Y;

where As D B �As�1, from which we deduce, using Lemma 5.11, that the E1–page
of the isotropic Adams spectral sequence can be described by

E
s;t;u
1
Š �t�s;u.X^HZ=2^ .X^HZ=2/^s

^Y /

Š Homt;u
A��.k=k/

� M
˛2As

†�p˛;�q˛A��.k=k/;H��.k=k/

�
:

Moreover, note that

0 H��iso .Y / 
M
˛2A0

†�p˛;�q˛A��.k=k/ 
M
˛2A1

†�p˛;�q˛A��.k=k/ � � �

is a free A��.k=k/–resolution of H��iso .Y /. Thus, for any s, t and u, we have an
isomorphism

E
s;t;u
2
Š Exts;t;uA��.k=k/

.H��iso .Y /;H
��.k=k//:
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By using the isotropic motivic Adams spectral sequence, in [19] we computed the
isotropic motivic homotopy groups of the sphere spectrum, which can be identified
with the E2–page of the classical Adams spectral sequence.

Theorem 5.13 [19, Theorem 5.7] Let k be a flexible field. Then the stable motivic
homotopy groups of the HZ=2–completed isotropic sphere spectrum are completely
described by

��;�0.X
^
HZ=2/Š Ext2�

0��;2�0;�0

G�� .F2;F2/Š Ext2�
0��;�0

A� .F2;F2/:

6 The motivic Brown–Peterson spectrum

In this section, we recall from [20] the construction of the motivic Brown–Peterson
spectrum. Moreover, we compute its isotropic homology and homotopy, which will be
useful later on for the construction of the isotropic motivic Adams–Novikov spectral
sequence, and so for the proofs of our main results.

Definition 6.1 Suppose MGL.2/ is the motivic algebraic cobordism spectrum (see
[22, Section 6.3]) localized at 2. Then following [20, Section 5] one defines the motivic
Brown–Peterson spectrum at the prime 2 as the colimit of the diagram in SH.k/

� � � !MGL.2/
e.2/
��!MGL.2/

e.2/
��!MGL.2/! � � � ;

where e.2/ is the motivic Quillen idempotent.

Note, in particular, that MBP is a homotopy commutative ring spectrum and a direct
summand of MGL.2/.

Proposition 6.2 Let k be a flexible field. Then there is an isomorphism of H��.k=k/–
modules

H��iso .MGL/ŠH��iso .BGL/ŠH��.k=k/Œc1; c2; : : : �

and an isomorphism of H��.k=k/–algebras

H iso
��.MGL/ŠH iso

��.BGL/ŠH��.k=k/Œb1; b2; : : : �;

where ci is the i th Chern class in H
2i;i
iso .BGL/ and bi 2H iso

2i;i
.BGL/ is the dual of ci

1

with respect to the monomial basis for any i .
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Proof First, note that the maps P1! P1 and HZ=2!X^HZ=2 induce a commu-
tative square

H��.P1/ //

��

H��iso .P
1/

��

H��.P1/ // H��iso .P
1/

where the left vertical morphism is the projection H��.k/Œc�!H��.k/Œc�=.c2/ and c

is the only nonzero class in H 2;1.P1/ŠH 2;1.P1/Š Z=2. If we also denote by c

the images of c under the horizontal maps in isotropic motivic cohomology, then the
right vertical homomorphism is given by the projection

H��.k=k/Œc�!H��.k=k/Œc�=.c2/:

Hence, X^HZ=2 is an oriented motivic spectrum (see [20, Definition 3.1]) and the
statement follows immediately from [17, Proposition 6.2].

Following [8, Section 6], let h W L! F2Œb1; b2; : : : � be the homomorphism from the
Lazard ring L classifying the formal group law on F2Œb1; b2; : : : � which is isomorphic
to the additive one via the exponential

P
n�0 bnxnC1. Lazard’s theorem implies that

h.L/ is a polynomial subring F2Œb
0
n jn¤2r�1�, where b0n�bn modulo decomposables.

Denote by � W F2Œb1; b2; : : : �! h.L/ a retraction of the inclusion.

In the next proposition, we give a description of isotropic homology and cohomology
of the algebraic cobordism spectrum MGL.

Proposition 6.3 Let k be a flexible field. Then the coaction

� WH iso
��.MGL/!A��.k=k/˝H��.k=k/H iso

��.MGL/

factors through H��.k=k/˝F2
G��˝F2

F2Œb1; b2; : : : � and the composition

H iso
��.MGL/ ��!H��.k=k/˝F2

G��˝F2
F2Œb1; b2; : : : �

id˝�
���!H��.k=k/˝F2

G��˝F2
h.L/

is an isomorphism of left A��.k=k/–comodule algebras. Dually, the map

H��.k=k/˝F2
G��˝F2

h.L/_!H��iso .MGL/

is an isomorphism of left A��.k=k/–module coalgebras.
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Proof From [8, Lemma 5.2], since HZ=2^MGL is a split HZ=2–module (see the
remark after [8, Definition 5.4]), we deduce that

H iso
��.MGL/Š ���.X^HZ=2/˝���.HZ=2/ ���.HZ=2^MGL/

ŠH��.k=k/˝H��.k/H��.MGL/

as an H��.k=k/–algebra. From [8, Theorem 6.5] we know that the coaction

� WH��.MGL/!A��.k/˝H��.k/H��.MGL/

factors through P��˝F2
F2Œb1; b2; : : : � and the composition

H��.MGL/ ��! P��˝F2
F2Œb1; b2; : : : �

id˝�
���! P��˝F2

h.L/

is an isomorphism of left A��.k/–comodule algebras, where P�� is the subalgebra of
A��.k/ defined by H��.k/Œ�1; �2; : : : �. By tensoring the previous composition with
H��.k=k/ over H��.k/ we get the desired isomorphism, which completes the first
part. The second part follows easily, since G��˝F2

h.L/ is isotropically finite type,
from Lemmas 5.8 and 5.9 by dualizing the homology isomorphism.

The next result provides us with the structure of isotropic homology and cohomology
of the motivic Brown–Peterson spectrum MBP.

Proposition 6.4 Let k be a flexible field. Then the isotropic motivic homology of
MBP is described as a left A��.k=k/–comodule by

H iso
��.MBP/ŠH��.k=k/˝F2

G��:
Dually , the isotropic motivic cohomology of MBP is described as a left A��.k=k/–
module by

H��iso .MBP/ŠH��.k=k/˝F2
G��:

Proof From [8, Remark 6.20], one knows that MBP is equivalent to MGL.2/=x, where
x is any maximal h–regular sequence (a sequence of homogeneous elements in L such
that h.x/ is a regular sequence in h.L/ which generates the maximal ideal). Therefore,
Theorem 6.11 of [8] implies that there exists an isomorphism of A��.k/–comodules

H��.MBP/Š P��:
Since HZ=2^MBP is a split HZ=2–module, we deduce from [8, Lemma 5.2] that

H iso
��.MBP/ŠH��.k=k/˝H��.k/H��.MBP/ŠH��.k=k/˝H��.k/ P��

ŠH��.k=k/˝F2
G��;

which proves the first part. The second part follows again from dualization, since G��
is isotropically finite type, by Lemmas 5.8 and 5.9.
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Later on, we will also need the isotropic homology and cohomology of MBP^MBP:

Proposition 6.5 Let k be a flexible field. Then the isotropic motivic homology of
MBP^MBP is described as a left A��.k=k/–comodule by

H iso
��.MBP^MBP/ŠH��.k=k/˝F2

G��˝F2
G��:

Dually , the isotropic motivic cohomology of MBP ^ MBP is described as a left
A��.k=k/–module by

H��iso .MBP^MBP/ŠH��.k=k/˝F2
G��˝F2

G��:

Proof Since HZ=2^MBP is a split HZ=2–module,

H iso
��.MBP^MBP/Š .H��.k=k/˝F2

G��/˝H��.k=k/ .H��.k=k/˝F2
G��/

ŠH��.k=k/˝F2
G��˝F2

G��
by [8, Lemma 5.2] and Proposition 6.4. The description of the isotropic cohomology
follows again by dualizing the homology isomorphism.

Now, we compute the isotropic stable homotopy groups of MBP by using the isotropic
Adams spectral sequence developed in the previous section.

Theorem 6.6 Let k be a flexible field. Then the isotropic motivic homotopy groups of
MBP are described by

� iso
��.MBP/Š F2:

Proof Note that, by Proposition 6.4, H iso
��.MBP/ is freely generated over H��.k=k/

by G��, which is isotropically finite type. Hence, Theorem 5.12 implies that the
E2–page of the isotropic motivic Adams spectral sequence for X^MBP is given by

E
s;t;u
2
Š Exts;t;uA��.k=k/

.H��iso .MBP/;H��.k=k//:

Now, we deduce from Proposition 6.4 and [19, Theorem 5.4] that

Exts;t;uA��.k=k/
.H��iso .MBP/;H��.k=k//ŠExts;t;uA��.k=k/

.H��.k=k/˝F2
G��;H��.k=k//

ŠExts;t;uG�� .G
��;F2/ŠExts;t;uF2

.F2;F2/

Š

�
F2 if sD tDuD0;

0 otherwise:

Therefore, the E2–page of the isotropic Adams spectral sequence for X ^MBP is
concentrated just in the tridegree .0; 0; 0/, from which it follows that all differentials
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from the second on are trivial. Thus, the Mittag-Leffler condition is clearly satisfied,
and so strong convergence holds by Proposition 5.3. Then it immediately follows from
Remark 5.4 and the fact that MBP is �–complete that

� iso
��.MBP/Š ���.X^MBP/Š F2:

In the following sections it will be also useful to know the isotropic homotopy groups
of MBP^MBP, which we compute in the next result.

Theorem 6.7 Let k be a flexible field. Then the isotropic motivic homotopy groups of
MBP^MBP are described by

� iso
��.MBP^MBP/Š G��:

Proof The proof of this theorem goes along the lines of the previous one. Since
H iso
��.MBP^MBP/ŠH��.k=k/˝F2

G��˝F2
G�� by Proposition 6.5 and G��˝F2

G��
is isotropically finite type, by Theorem 5.12 the E2–page of the isotropic Adams spectral
sequence for X^MBP^MBP is provided by

E
s;t;u
2
Š Exts;t;uA��.k=k/

.H��iso .MBP^MBP/;H��.k=k//:

Again, we note that by [19, Theorem 5.4],

Exts;t;uA��.k=k/
.H��iso .MBP^MBP/;H��.k=k//

Š Exts;t;uA��.k=k/
.H��.k=k/˝F2

G��˝F2
G��;H��.k=k//

Š Exts;t;uG�� .G
��
˝F2

G��;F2/Š Exts;t;uF2
.G��;F2/

Š

�Gt;u if s D 0;

0 if s ¤ 0:

In particular, since G�� is concentrated on the slope 2 line, all differentials from the
second on are trivial by degree reasons. Hence, the Mittag-Leffler condition is met,
which implies that the spectral sequence is strongly convergent. From all this, it follows
as above that

� iso
��.MBP^MBP/Š ���.X^MBP^MBP/Š G��:

7 The category of isotropic cellular MBP–modules

In this section we start by providing X^MBP with an E1–ring structure. This allows
us to talk about the stable 1–category of X^MBP–modules X^MBP–Mod and its
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cellular part X^MBP–Modcell. Our aim is to focus on the category of isotropic cellular
MBP–modules, which is the same as that of cellular X^MBP–modules. In particular,
we completely describe the category X^MBP–Modcell in algebraic terms. This section
is structured along the lines of [6, Section 3]. Therefore, before each result we indicate
the one from [6] it corresponds to. We hope this will clearly shed light on the deep
parallelism between [6] and this work.

Proposition 7.1 The homotopy commutative ring structure on X^MBP extends to an
E1–ring structure.

Proof It follows from [13, Proposition 1.4.4.11] that there exists a t–structure on
X–Mod with nonnegative part generated by X2n;n for any n 2Z. By [1, Theorem A.1],
X^MGL belongs to the nonnegative part of this t–structure, and so X^MBP does also.
On the other hand, one deduces from Theorem 6.6 and [1, Lemma 2.4] that X^MBP
belongs to the nonpositive part too. Hence, X^MBP is a homotopy commutative ring
spectrum in the heart of the abovementioned t–structure, which means that it is an
E1–ring spectrum.2

Once we know that X^MBP is a motivic E1–ring spectrum, we can consider the
stable1–category of X^MBP–modules and its homotopy category which is tensor
triangulated. In particular, we focus on its cellular part.

Proposition 7.2 Let k be a flexible field and Y an object in X^MBP–Modcell such
that ���.Y / is isomorphic to the F2–vector space

L
˛2A†

p˛;q˛F2. Then there exists
an isomorphism of spectra _

˛2A

†p˛;q˛ .X^MBP/ Š�! Y:

Proof We follow the lines of the proof of Lemma 5.8. Each generator of ���.Y /
represents a map †p˛;q˛S! Y . For all ˛ 2A, this map corresponds bijectively to a
map †p˛;q˛ .X^MBP/! Y of X^MBP–cellular modules. Hence, we get a map_

˛2A

†p˛;q˛ .X^MBP/! Y

of X^MBP–cellular modules that induces an isomorphism on homotopy groups since
���.X^MBP/Š F2 by Theorem 6.6. Therefore, it follows from Proposition 4.2 that
the above map is an isomorphism of spectra.

2I am grateful to Tom Bachmann for this argument.
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This result implies the following corollary, which corresponds to [6, Corollary 3.3]:

Corollary 7.3 Let k be a flexible field and X and Y be objects in X^MBP–Modcell.
Then

ŒX;Y �X^MBP Š Hom0;0
F2
.���.X /; ���.Y //:

Proof It follows from Proposition 7.2 that

X Š
_
˛2A

†p˛;q˛ .X^MBP/ and Y Š
_
ˇ2B

†pˇ;qˇ .X^MBP/

for some sets A and B. Then

ŒX;Y �X^MBP Š

� _
˛2A

†p˛;q˛S;
_
ˇ2B

†pˇ;qˇ .X^MBP/
�

Š

Y
˛2A

M
ˇ2B

�p˛�pˇ;q˛�qˇ .X^MBP/Š
Y
˛2A

M
ˇ2B

†p˛�pˇ;q˛�qˇF2

Š Hom0;0
F2

�M
˛2A

†p˛;q˛F2;
M
ˇ2B

†pˇ;qˇF2

�
Š Hom0;0

F2
.���.X /; ���.Y //:

The next theorem, which corresponds to [6, Theorem 3.8], identifies X^MBP–Modcell

with the category of bigraded F2–vector spaces, which we denote by F2–Mod��.

Theorem 7.4 Let k be a flexible field. Then the functor

��� W X^MBP–Modcell
Š
�! F2–Mod��

is an equivalence of categories.

Proof This follows immediately from Proposition 7.2 and Corollary 7.3.

Remark 7.5 The equivalence provided by Theorem 7.4 is actually an equivalence of
triangulated categories, where F2–Mod�� is structured as a triangulated category in
the obvious way. More precisely, the translation functor is the suspension †1;0 and
distinguished triangles are of the form

V
f
�!W ! coker.f /˚†1;0 ker.f /!†1;0V;

where f is a morphism of bigraded F2–vector spaces.
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8 The category of isotropic cellular spectra

This section is devoted to the understanding of the structure of the category X–Modcell,
that is, as we have already noticed, the category of cellular isotropic spectra SH.k=k/cell.
We give a nice algebraic description of this category based on the dual of the topological
Steenrod algebra. The results here are the isotropic versions of the ones in [6, Sections 4
and 5], therefore the proofs we provide are isotropic adaptations of the respective ones
in [6].

In the next lemma, which corresponds to [6, Lemma 5.1], we compute the MBP–
homology of isotropic MBP–cellular spectra.

Lemma 8.1 Let k be a flexible field. Then for any I 2 X^MBP–Modcell there is an
isomorphism of left G��–comodules

MBP��.I/Š G��˝F2
���.I/:

Proof Since the motivic spectrum I is by hypothesis in X^MBP–Modcell, we deduce
from Theorem 7.4 that I Š

W
˛2A†

p˛;q˛ .X^MBP/ for some set A. Therefore, by
Theorem 6.7,

MBP��.I/D ���.MBP^ I/Š ���

� _
˛2A

†p˛;q˛ .X^MBP^MBP/
�

Š

M
˛2A

†p˛;q˛���.X^MBP^MBP/

Š

M
˛2A

†p˛;q˛G�� Š G��˝F2
V;

where V Š
L
˛2A†

p˛;q˛F2. Now, note that by Theorem 6.6,

���.I/Š
M
˛2A

†p˛;q˛���.X^MBP/Š V:

It follows that
MBP��.I/Š G��˝F2

���.I/:

The following lemma, which corresponds to [6, Lemma 5.3], describes algebraically
the hom sets from isotropic cellular spectra to isotropic MBP–cellular spectra.

Lemma 8.2 Suppose that k is a flexible field. Then for any X 2 X–Modcell and
I 2 X^MBP–Modcell there is an isomorphism

ŒX; I �Š Hom0;0
G��.MBP��.X /;MBP��.I//:
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Proof By Theorem 7.4 and Lemma 8.1, we have the sequence of isomorphisms

ŒX; I �Š ŒX^MBP^X; I �X^MBP Š Hom0;0
F2
.���.X^MBP^X /; ���.I//

Š Hom0;0
G��.���.X^MBP^X /;G��˝F2

���.I//

Š Hom0;0
G��.MBP��.X /;MBP��.I//;

Before constructing the isotropic version of the Adams–Novikov spectral sequence we
need:

Lemma 8.3 Let k be a flexible field and Y an object in X–Mod. Then , for any s � 0,
there exist isomorphisms

MBP��..X^MBP/^s
^Y /Š†�s;0G��˝s

˝F2
MBP��.Y /

and

MBP��.X^MBP^ .X^MBP/^s
^Y /Š†�s;0G��˝F2

G��˝s
˝F2

MBP��.Y /:

Proof First note that, by arguments similar to the ones in Lemma 5.6, we have an
isomorphism

MBP��.X^MBP^ .X^MBP/^s
^Y /Š G��˝F2

MBP��..X^MBP/^s
^Y /

for any isotropic spectrum Y and any s � 0, so we only need to prove the first part of
the statement. We achieve this by an induction argument, after noting that obviously
the statement holds for s D 0.

Now, suppose the statement holds for s� 1, ie

MBP��..X^MBP/^s�1
^Y /Š†1�s;0G��˝s�1

˝F2
MBP��.Y /

and

MBP��.X^MBP^.X^MBP/^s�1
^Y /Š†1�s;0G��˝F2

G��˝s�1
˝F2

MBP��.Y /:

Then the distinguished triangle in SH.k/

.X^MBP/^s
^Y ! .X^MBP/^s�1

^Y ! X^MBP^ .X^MBP/^s�1
^Y

!†1;0.X^MBP/^s
^Y

induces in MBP–homology the short exact sequence

0!†1�s;0G��˝s�1
˝F2

MBP��.Y /!†1�s;0G��˝F2
G��˝s�1

˝F2
MBP��.Y /

!†1;0MBP��..X^MBP/^s
^Y /! 0:

Geometry & Topology, Volume 27 (2023)



2038 Fabio Tanania

It follows that

MBP��..X^MBP/^s
^Y /Š†�s;0G��˝s

˝F2
MBP��.Y /

and

MBP��.X^MBP^ .X^MBP/^s
^Y /Š†�s;0G��˝F2

G��˝s
˝F2

MBP��.Y /:

We are now ready to construct the isotropic Adams–Novikov spectral sequence, which
corresponds to [6, Theorem 5.6]. Before proceeding, we would like to fix some notation.

Definition 8.4 Let X be an isotropic spectrum. The Chow–Novikov degree of
MBPp;q.X / is the integer p� 2q. We denote by X–Modb

cell the category of bounded
isotropic cellular spectra, that is, isotropic cellular spectra whose MBP–homology is
nontrivial only for a finite number of Chow–Novikov degrees.

Theorem 8.5 Let k be a flexible field and X and Y objects in X–Modb
cell. Then there

is a strongly convergent spectral sequence

E
s;t;u
2
Š Exts;t;uG�� .MBP��.X /;MBP��.Y //) Œ†t�s;uX;Y ^HZ=2�:

Proof Consider the Postnikov system in X–Modcell

� � � // .X^MBP/^s^Y //

��

� � � // X^MBP^Y //

��

Y

��

X^MBP^.X^MBP/^s^Y

Œ1�

ff

X^MBP^X^MBP^Y

Œ1�

ee

X^MBP^Y

Œ1�

hh

where X^MBP is defined by the distinguished triangle in SH.k/

X^MBP! S! X^MBP!†1;0X^MBP:

If we apply the functor Œ†��X;� � we get an unrolled exact couple

� � � // Œ†��X;X^MBP^Y � //

��

Œ†��X;Y �

��

Œ†��X;X^MBP^X^MBP^Y �

Œ1�

ii

Œ†��X;X^MBP^Y �

Œ1�

kk

that induces a spectral sequence with E1–page given by

E
s;t;u
1
Š Œ†t�s;uX;X^MBP^ .X^MBP/^s

^Y �

and first differential
d

s;t;u
1
WE

s;t;u
1
!E

sC1;t;u
1

:

Geometry & Topology, Volume 27 (2023)



Cellular objects in isotropic motivic categories 2039

This is what we call the isotropic Adams–Novikov spectral sequence. Note that by
Lemmas 8.2 and 8.3 the E1–page has a nice description:

E
s;t;u
1
Š Homt;u

G��.MBP��.X /;G��˝F2
G��˝s

˝F2
MBP��.Y //:

Hence, the E2–page has the usual description given in terms of Ext–groups of left
G��–comodules:

E
s;t;u
2
Š Exts;t;uG�� .MBP��.X /;MBP��.Y //:

By standard formal reasons, this spectral sequence actually converges to the groups
Œ†t�s;uX;Y ^X^MBP�. We only have to notice that

Y ^X^MBP Š Y ^X^HZ=2 Š Y ^HZ=2:

The second isomorphism comes from the same argument as the proof of Proposition 5.3.
Regarding the first isomorphism, we may consider, following [4, Section 7.3], the
bicompletion Y ^

fX^MBP;X^HZ=2g. This spectrum may be obtained by computing the
homotopy limit of the cosimplicial spectrum

.X^HZ=2^Y /^X^MBP � ..X^HZ=2/^2
^Y /^X^MBP

!
!
!
..X^HZ=2/^3

^Y /^X^MBP!
!
!

!
� � �

or, equivalently, by computing the homotopy limit of the cosimplicial spectrum

.X^MBP^Y /^X^HZ=2 � ..X^MBP/^2
^Y /^X^HZ=2

!
!
!
..X^MBP/^3

^Y /^X^HZ=2!
!
!

!
� � � :

Since HZ=2 is a motivic MBP–module, for any n,

..X^HZ=2/^n
^Y /^X^MBP Š .X^HZ=2/^n

^Y;

from which it follows that the first homotopy limit is just Y ^
X^HZ=2. On the other hand,

we know that X^MBP is HZ=2–complete; thus, for any n,

..X^MBP/^n
^Y /^X^HZ=2 Š .X^MBP/^n

^Y;

and the second homotopy limit gives back Y ^X^MBP. This implies Y ^X^MBP Š Y ^
X^HZ=2.

It only remains to prove the strong convergence. The arguments are the same as
in [6, Theorem 3.2] and we report them here only for completeness. First, suppose
that MBP��.X / is concentrated in Chow–Novikov degrees Œa; b� and MBP��.Y / is
concentrated in Chow–Novikov degrees Œc; d �. Then the E1–page, and so all the
following pages, are trivial outside the range c � bC 2u� t � d � aC 2u. Now, note
that the differential on the Er –page has, as usual, the tridegree .r; r � 1; 0/, which
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means in particular that it is trivial when r �1> d �a� cCb. This amounts to saying
that the spectral sequence collapses at the Ed�a�cCbC2–page, and so it is strongly
convergent.

Definition 8.6 Let X–Modcell;HZ=2 be the full triangulated subcategory of X–Modcell

consisting of HZ=2–complete cellular isotropic spectra. Denote by X–Modb;�0
cell;HZ=2 the

full subcategory of X–Modb
cell;HZ=2 whose objects have MBP–homology concentrated

in nonnegative Chow–Novikov degrees, and by X–Modb;�0
cell;HZ=2 the full subcategory

of X–Modb
cell;HZ=2 whose objects have MBP–homology concentrated in nonpositive

Chow–Novikov degrees. Finally, let X–Mod~cell;HZ=2 be the full subcategory whose
objects are in X–Modb;�0

cell;HZ=2 and X–Modb;�0
cell;HZ=2, ie the objects have MBP–homology

concentrated in Chow–Novikov degree 0.

We want to point out that, since X ^ HZ=2 is a X ^MBP–module and X ^MBP
is X^HZ=2–complete, the subcategories of HZ=2–complete and MBP–complete
isotropic spectra coincide.

The next corollary, which corresponds to [6, Corollary 4.7], computes hom sets from
X–Modb;�0

cell;HZ=2 to X–Modb;�0
cell;HZ=2 in algebraic terms.

Corollary 8.7 Let k be a flexible field , X an object in X–Modb;�0
cell;HZ=2 and Y in

X–Modb;�0
cell;HZ=2. Then the functor MBP�� provides an isomorphism

ŒX;Y �Š Hom0;0
G��.MBP��.X /;MBP��.Y //:

Proof As we have already pointed out, the E1–page of the isotropic Adams–Novikov
spectral sequence is given by

E
s;t;u
1
Š Homt;u

G��.MBP��.X /;G��˝F2
G��˝s

˝F2
MBP��.Y //:

Since we are interested in the group ŒX;Y �, the part of the E1–page that is involved
consists of the groups in tridegrees .t; t; 0/. By hypothesis, X is in X–Modb;�0

cell;HZ=2

while Y is in X–Modb;�0
cell;HZ=2, so, among these groups, only E

0;0;0
1

is nontrivial. Since
in this tridegree all differentials from the second on are trivial by degree reasons,

ŒX;Y �ŠE
0;0;0
2
Š Ext0;0;0G�� .MBP��.X /;MBP��.Y //

Š Hom0;0
G��.MBP��.X /;MBP��.Y //;

By using the isotropic Adams–Novikov spectral sequence we also get a corollary, which
corresponds to [6, Corollary 4.8] and is a generalization of [19, Theorem 5.7]:
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Corollary 8.8 Let k be a flexible field and X and Y objects in X–Mod~cell;HZ=2. Then
there is an isomorphism

Œ†t;uX;Y �Š Ext2u�t;2u;u
G�� .MBP��.X /;MBP��.Y //:

Proof This follows because the differentials d
s;t;u
r W E

s;t;u
r ! E

sCr;tCr�1;u
r of the

isotropic Adams–Novikov spectral sequence are trivial for r � 2 since E
s;t;u
2

is trivial
for t ¤ 2u. Hence, the spectral sequence is strongly convergent and collapses at the
second page, from which we get that

Œ†t;uX;Y �ŠE
2u�t;2u;u
2

Š Ext2u�t;2u;u
G�� .MBP��.X /;MBP��.Y //:

Before proceeding, we also need the following lemma which essentially corresponds
to [6, Lemma 4.10].

Lemma 8.9 Let k be a flexible field and M a G��–comodule concentrated in Chow–
Novikov degree 0 which is finitely generated as an F2–vector space. Then there exists
an object X in X–Mod~cell;HZ=2 such that M ŠMBP��.X /.

Proof Since by hypothesis M is a finite-dimensional F2–vector space, according to
[10, Theorem 3.3] one has a finite filtration of subcomodules

0ŠM0 �M1 � � � � �Mn ŠM

such that, for any i , Mi=Mi�1 is stably isomorphic to F2, ie Mi=Mi�1 Š†
2qi ;qi F2

for some integer qi . We want to prove the statement by induction on i . First, note
that by Theorem 6.6 the comodule †2qi ;qi F2 is the MBP–homology of the isotropic
spectrum †2qi ;qiX^HZ=2 for any i . Now, suppose that there exists an object Xi�1 in

X–Mod~cell;HZ=2 such that Mi�1 ŠMBP��.Xi�1/. Then the short exact sequence

0!Mi�1!Mi!†2qi ;qi F2! 0

represents an element of Ext1;0;0G�� .†
2qi ;qi F2;Mi�1/, namely, by Corollary 8.8, a

morphism fi in Œ†2qi�1;qiX^HZ=2;Xi�1�. Let us define Xi as Cone.fi/. Then we
have a long exact sequence in MBP–homology

� � � !†2qi�1;qi F2
0
�!Mi�1!MBP��.Xi/!†2qi ;qi F2

0
�!†1;0Mi�1! � � � :

Note that the connecting homomorphism

gi� W Ext0;0;0.†2qi ;qi F2; †
2qi ;qi F2/! Ext1;0;0.†2qi ;qi F2;Mi�1/;
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described as the Yoneda product with the element gi of Ext1;0;0G�� .†
2qi ;qi F2;Mi�1/

corresponding to the short exact sequence

0!Mi�1!MBP��.Xi/!†2qi ;qi F2! 0;

converges to the map

fi� W Œ†
2qi�1;qiX^HZ=2; †

2qi�1;qiX^HZ=2�! Œ†2qi�1;qiX^HZ=2;Xi�1�

induced by fi in isotropic homotopy groups; see [18, Theorem 2.3.4]. By Corollary 8.8
the isotropic Adams–Novikov spectral sequence collapses at the second page, so
gi� D fi�. It follows that the extensions gi and fi coincide, which implies that
MBP��.Xi/ŠMi .

The next result is the isotropic equivalent of [6, Lemma 4.2].

Lemma 8.10 Let k be a flexible field and X˛ be a filtered system in X–Mod~cell;HZ=2.
Then the colimit colim X˛ in X–Modcell also belongs to X–Mod~cell;HZ=2.

Proof First note that, since MBP��.colim X˛/ Š colim MBP��.X˛/, colim X˛ has
MBP–homology concentrated in Chow–Novikov degree 0. Moreover, recall from [18,
Corollary A1.2.12] that ExtG��.F2;�/ may be computed as the homology of the cobar
complex for the second variable. Since the cobar complex preserves filtered colimits,
so does ExtG��.F2;�/. Then Corollary 8.8 implies that

�t;u.colim X˛/Š colim�t;u.X˛/Š colim Ext2u�t;2u;u
G�� .F2;MBP��.X˛//

Š Ext2u�t;2u;u
G�� .F2; colim MBP��.X˛//

Š Ext2u�t;2u;u
G�� .F2;MBP��.colim X˛//Š �t;u..colim X˛/

^
HZ=2/

from which it follows that colim X˛ is HZ=2–complete.

We are now ready to identify X–Mod~cell;HZ=2 with the abelian category of left G��–
comodules concentrated in Chow–Novikov degree 0 that we denote by G��– Comod0

��.
The following proposition is an isotropic version of [6, Proposition 4.11]:

Proposition 8.11 Let k be a flexible field. Then the functor

MBP�� W X–Mod~cell;HZ=2
Š
�! G��– Comod0

��

is an equivalence of categories.
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Proof First, note that Corollary 8.7 guarantees that the functor MBP�� is fully faithful.
We just need to show that it is essentially surjective. Recall from [7, Propositions 1.4.10,
1.4.4 and 1.4.1] that any left G��–comodule M is a filtered colimit of comodules M˛

which are finitely generated as F2–vector spaces. By Lemma 8.9 all M˛ are expressible
as MBP��.X˛/ for some X˛ in X–Mod~cell;HZ=2. Therefore, M ŠMBP��.X /, where
X D colim X˛.

Remark 8.12 G��– Comod0
�� is equivalent to the category of left A�–comodules,

where A� is the dual of the topological Steenrod algebra. Hence, the previous result
can be rephrased by saying that X–Mod~cell;HZ=2 is equivalent to the abelian category
of left A�–comodules.

The next proposition, corresponding to [6, Proposition 4.12], provides X–Modb
cell;HZ=2

with a t–structure.

Proposition 8.13 Let k be a flexible field. Then .X–Modb;�0
cell;HZ=2;X–Modb;�0

cell;HZ=2/

defines a bounded t–structure on X–Modb
cell;HZ=2.

Proof Just by the definition of X–Modb;�0
cell;HZ=2 and X–Modb;�0

cell;HZ=2 the first is closed
under suspensions, the second under desuspensions and both under extensions. Clearly

X–Modb
cell;HZ=2 D

[
n2Z

X–Modb;�n
cell;HZ=2;

where X–Modb;�n
cell;HZ=2 is the nth suspension of X–Modb;�0

cell;HZ=2. Next, we consider
objects X and Y in X–Modb;�0

cell;HZ=2 and X–Modb;��1
cell;HZ=2 (the first desuspension of

X–Modb;�0
cell;HZ=2), respectively. Then by Corollary 8.7

ŒX;Y �Š Hom0;0
G��.MBP��.X /;MBP��.Y //Š 0;

since MBP��.Y / is concentrated in negative Chow–Novikov degrees while MBP��.X /
is concentrated in nonnegative Chow–Novikov degrees. Finally, let X be an object in
X–Modb;�0

cell;HZ=2, then MBP.X / is concentrated in nonnegative Chow–Novikov degrees.
Consider the projection MBP.X /!MBP.X /0 that kills all the elements in positive
Chow–Novikov degrees, and note that there exists an object X0 in X–Mod~cell;HZ=2

such that MBP.X0/ŠMBP.X /0. Now, by Corollary 8.7, this morphism comes from
a map f W X ! X0 such that †�1;0 Cone.f / belongs to X–Modb;�1

cell;HZ=2. Therefore,
by [6, Proposition 3.6], the pair .X–Modb;�0

cell;HZ=2;X–Modb;�0
cell;HZ=2/ defines a bounded

t–structure on X–Modb
cell;HZ=2.
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We are now ready to prove the main result of this section, which corresponds to
[6, Theorem 4.13]. In this theorem we identify X–Modb

cell;HZ=2 with the derived cate-
gory of left G��–comodules concentrated in Chow–Novikov degree 0.

Theorem 8.14 Let k be a flexible field. Then there exists a t–exact equivalence of
stable1–categories

Db.G��– Comod0
��/

Š
�! X–Modb

cell;HZ=2:

Proof First, by Propositions 8.11 and 8.13, .X–Modb;�0
cell;HZ=2;X–Modb;�0

cell;HZ=2/ defines
a bounded t–structure on X–Modb

cell;HZ=2 whose heart is equivalent to the category of
left G��–comodules concentrated in Chow–Novikov degree 0, so has enough injectives.
Now, let X and Y be objects in X–Mod~cell;HZ=2 such that MBP��.Y / is an injective
G��–comodule. In this case the isotropic Adams–Novikov spectral sequence

E
s;t;u
2
Š Exts;t;uG�� .MBP��.X /;MBP��.Y //) Œ†t�s;uX;Y �

collapses at the second page since the E2–page is trivial for s ¤ 0. Hence,

Œ†�iX;Y �Š Ext0;�i;0
G�� .MBP��.X /;MBP��.Y //

Š Hom�i;0
G�� .MBP��.X /;MBP��.Y //Š 0

for any i >0 since both MBP��.X / and MBP��.Y / are concentrated in Chow–Novikov
degree 0. It follows by [6, Proposition 2.12], which is based on Lurie’s recognition
criterion [13, Proposition 1.3.3.7], that there exists a t–exact equivalence of stable
1–categories

Db.G��– Comod0
��/

Š
�! X–Modb

cell;HZ=2

extending the equivalence on the hearts.

Remark 8.15 Given the identification G�� Š A�, Theorem 8.14 identifies as trian-
gulated categories the category of bounded isotropic HZ=2–complete cellular spectra
with the derived category of left A�–comodules, namely Db.A�– Comod�/.

By using the same argument as in [6, Corollary 1.2] one is able to obtain an un-
bounded version of the previous theorem, identifying the whole X^HZ=2–Modcell with

Hovey’s unbounded derived category Stable.G��– Comod0
��/, which is the same as

Stable.A�– Comod�/; see [7, Section 6].

Corollary 8.16 Let k be a flexible field. Then there exists an equivalence of stable
1–categories

X^HZ=2–Modcell Š Stable.G��– Comod0
��/:
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9 The category of isotropic Tate motives

We finish in this section by applying previous results in order to obtain information
on the category of isotropic Tate motives DM.k=k/Tate. In particular, we get an easy
algebraic description for the hom sets in DM.k=k/Tate between motives of isotropic
cellular spectra.

First, we prove the following lemma, which tells us that the isotropic motivic homology
of an isotropic spectrum is always a free H��.k=k/–module.

Lemma 9.1 Let k be a flexible field and X an object in X–Mod. Then there exists an
isomorphism of left H��.k=k/–modules

H iso
��.X /ŠH��.k=k/˝F2

MBP��.X /:

Proof The Hopkins–Morel equivalence (see [8, Theorem 7.12]) implies in particular
that HZ=2 is a quotient spectrum of MBP. It follows that HZ=2 can be obtained from
MBP by applying cones and homotopy colimits, and so it is an MBP–cellular module,
from which we get by Theorem 7.4 that

X^HZ=2Š
_
˛2A

†p˛;q˛ .X^MBP/

for some set A. Now note that, by Theorem 6.6,

H��.k=k/Š ���.X^HZ=2/Š ���

� _
˛2A

†p˛;q˛ .X^MBP/
�

Š

M
˛2A

†p˛;q˛���.X^MBP/Š
M
˛2A

†p˛;q˛F2:

At this point, let X be an object in X–Mod. Then

H iso
��.X /Š ���.X^HZ=2^X /Š ���

� _
˛2A

†p˛;q˛ .X^MBP^X /

�
Š

M
˛2A

†p˛;q˛���.X^MBP^X /Š
M
˛2A

†p˛;q˛MBP��.X /

ŠH��.k=k/˝F2
MBP��.X /:

In the next proposition we compute hom sets in the isotropic triangulated category of
motives between motives of isotropic cellular spectra. They happen to be isomorphic
to hom sets of left H��.k=k/–modules between the respective isotropic homology.
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Proposition 9.2 Let k be a flexible field and X and Y objects in X–Modcell. Then
there exists an isomorphism

HomDM.k=k/Tate.M.X /;M.Y //Š HomH��.k=k/.H
iso
��.X /;H

iso
��.Y //:

Proof Consider the functor

H iso
�� W DM.k=k/Tate!H��.k=k/–Mod��

which sends each isotropic Tate motive to the respective isotropic motivic homology,
and let X and Y be motivic spectra in X–Modcell. Then, by Theorem 7.4, Lemma 9.1
and [19, Proposition 2.4],

HomDM.k=k/Tate.M.X /;M.Y //

Š ŒX;X^HZ=2^Y �Š ŒX^MBP^X;X^HZ=2^Y �X^MBP

Š HomF2
.���.X^MBP^X /; ���.X^HZ=2^Y //

Š HomF2
.MBP��.X /;H iso

��.Y //

Š HomH��.k=k/.H��.k=k/˝F2
MBP��.X /;H iso

��.Y //

Š HomH��.k=k/.H
iso
��.X /;H

iso
��.Y //:

Remark 9.3 The last result suggests that isotropic Tate motives that come from
SH.k=k/cell are very special in the sense that hom sets in DM.k=k/Tate between
them are described simply in terms of hom sets of free H��.k=k/–modules. This
property does not hold in general, so the next task should be to understand hom sets
in DM.k=k/Tate between general isotropic Tate motives and try to describe them in
algebraic terms. Unfortunately, since H��.k=k/ is not concentrated in Chow–Novikov
degree 0, the strategy used in [6] and adapted in Sections 7 and 8 does not immediately
apply. Hence, some new ideas are needed and the hope is to develop them in future work.

List of symbols

k flexible field with char.k/¤ 2

SH.k/ stable motivic homotopy category over k

SH.k=k/ isotropic stable motivic homotopy category over k

DM.k/ triangulated category of motives with Z=2–coefficients over k

DM.k=k/ isotropic triangulated category of motives with Z=2–coefficients
over k

���. � / stable motivic homotopy groups
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� iso
��. � / isotropic stable motivic homotopy groups

H��. � /;H
��. � / motivic homology and cohomology with Z=2–coefficients

H iso
�� . � /;H

��
iso . � / isotropic motivic homology and cohomology with Z=2–coefficients

H��.k/;H
��.k/ motivic homology and cohomology with Z=2–coefficients

of Spec.k/
H��.k=k/;H��.k=k/ isotropic motivic homology and cohomology with Z=2–

coefficients of Spec.k/
A��.k/;A��.k/ mod 2 motivic Steenrod algebra and its dual
A��.k=k/;A��.k=k/ mod 2 isotropic motivic Steenrod algebra and its dual
A�;A� mod 2 topological Steenrod algebra and its dual
G��;G�� bigraded mod 2 topological Steenrod algebra and its dual, ie

G2q;q DAq and Gp;q D 0 for p ¤ 2q, similar for the dual
M�� Milnor subalgebra ƒF2

.Qi/i�0 of A��.k=k/ where the Qi are the
Milnor operations in bidegrees .2i � 1/Œ2iC1� 1�

S motivic sphere spectrum
HZ=2 motivic Eilenberg–Mac Lane spectrum with Z=2–coefficients
MGL motivic algebraic cobordism spectrum
MBP motivic Brown–Peterson spectrum at the prime 2

X isotropic sphere spectrum
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