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Duality between Lagrangian and Legendrian invariants

TOBIAS EKHOLM

YANKI LEKILI

Consider a pair .X;L/ of a Weinstein manifold X with an exact Lagrangian submani-
fold L, with ideal contact boundary .Y; ƒ/, where Y is a contact manifold andƒ�Y

is a Legendrian submanifold. We introduce the Chekanov–Eliashberg DG–algebra,
CE�.ƒ/, with coefficients in chains of the based loop space of ƒ, and study its
relation to the Floer cohomology CF�.L/ of L. Using the augmentation induced by L,
CE�.ƒ/ can be expressed as the Adams cobar construction� applied to a Legendrian
coalgebra, LC�.ƒ/. We define a twisting cochain t W LC�.ƒ/! B.CF�.L//# via
holomorphic curve counts, where B denotes the bar construction and # the graded
linear dual. We show under simple-connectedness assumptions that the corresponding
Koszul complex is acyclic, which then implies that CE�.ƒ/ and CF�.L/ are Koszul
dual. In particular, t induces a quasi-isomorphism between CE�.ƒ/ and �CF�.L/,
the cobar of the Floer homology of L.

This generalizes the classical Koszul duality result between C �.L/ and C��.�L/

for L a simply connected manifold, where �L is the based loop space of L, and
provides the geometric ingredient explaining the computations given by Etgü and
Lekili (2017) in the case when X is a plumbing of cotangent bundles of 2–spheres
(where an additional weight grading ensured Koszulity of t).

We use the duality result to show that under certain connectivity and local-finiteness
assumptions, CE�.ƒ/ is quasi-isomorphic to C��.�L/ for any Lagrangian filling L

of ƒ.

Our constructions have interpretations in terms of wrapped Floer cohomology after
versions of Lagrangian handle attachments. In particular, we outline a proof that
CE�.ƒ/ is quasi-isomorphic to the wrapped Floer cohomology of a fiber disk C

in the Weinstein domain obtained by attaching T �.ƒ� Œ0;1// to X along ƒ (or,
in the terminology of Sylvan (2019), the wrapped Floer cohomology of C in X

with wrapping stopped by ƒ). Along the way, we give a definition of wrapped
Floer cohomology via holomorphic buildings that avoids the use of Hamiltonian
perturbations, which might be of independent interest.

57R17
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2050 Tobias Ekholm and Yankı Lekili

1 Introduction

In this introduction we first give an overview of our results. The overview starts
with a review of well-known counterparts of our constructions in algebraic topology.
We then introduce our Legendrian and Lagrangian invariants in Sections 1.1 and 1.2,
respectively, and discuss the connection between them and applications thereof in
Section 1.3. Among these the most central role is played by the Chekanov–Eliashberg
algebra with based loop space coefficients, denoted as CE�. As we show, any other
invariant can be obtained from CE� by algebraic manipulation. Finally, in Section 1.4
we give detailed calculations of the invariants introduced, in the simple yet illustrative
example of the Legendrian Hopf link filled by two Lagrangian disks intersecting
transversely in one point.

The starting point for our study is a construction in classical topology. Consider the
following augmented DG–algebras over a field K associated to a based, connected,
topological space .M; pt/:

C �.M /!K; C��.�M /!K;

where C �.M / is the singular cochain complex equipped with the cup product and
C��.�M / is the singular chain complex of the based (Moore) loop space of M

equipped with the Pontryagin product. (We use cohomologically graded complexes
throughout the paper so that all differentials increase the grading by 1.) In the case of
singular cohomology, the inclusion i W pt!M gives the augmentation i�WC �.M /!

C �.pt/DK and in the case of the based loop space, the augmentation is given by the
trivial local system �1.M; pt/!K.

If M is of finite-type (for example, a finite CW–complex), then it is well known that
one can recover the augmented DG–algebra C �.M / from the augmented DG–algebra
C��.�M / by the Eilenberg–Moore equivalence

C �.M /' RHomC��.�M /.K;K/:

In the other direction, if M is simply connected, then the Adams construction gives a
quasi-isomorphism

C��.�M /' RHomC�.M /.K;K/;

and in this case C �.M / and C��.�M / are said to be Koszul dual DG–algebras. Koszul
duality is sometimes abbreviated and simply called duality. For more general M , using

Geometry & Topology, Volume 27 (2023)



Duality between Lagrangian and Legendrian invariants 2051

the method of acyclic models, Brown [13] constructed a twisting cochain

t W C��.M /! C��.�M /:

This is a degree 1 map that induces a DG–algebra map �C��.M / ! C��.�M /,
where �C��.M / is the cobar construction applied to chains on M ; see Section 2.2.1.
By definition, t is a quasi-isomorphism when duality holds, and this can be detected
by an associated Koszul complex, which is acyclic if and only if duality holds. In
the general case, �C��.M / is a certain completion of C��.�M / and consequently
C��.�M / is a more refined invariant of M than �C��.M /.

In this paper, we pursue this idea in the context of invariants associated to Lagrangian
and Legendrian submanifolds. Here the role played by simple connectedness in the
above discussion has two natural counterparts: one corresponds to a generalized notion
of simple connectedness for intersecting Lagrangian submanifolds and the other is the
usual notion of simple connectedness for Legendrian submanifolds.

We start with the geometric data of a Liouville domain X with convex boundary Y and
an exact Lagrangian submanifold L�X with Legendrian boundaryƒ�Y . We assume
that c1.X /D 0, that the Maslov class of L vanishes (for grading purposes) and that L

is relatively spin (to orient certain moduli spaces of holomorphic disks). Assume that L

is subdivided into embedded components intersecting transversely LD
S
v2� Lv , and

that ƒ is subdivided into connected components ƒD
F
v2� ƒv. To avoid notational

complications, we take both parametrized by the same finite set � and assume that the
boundary of Lv is ƒv. We use a base field K and define the semisimple ring

kD
M
v2�

Kev;

generated by mutually orthogonal idempotents ev. Also, we fix a partition

� D �C[��

into two disjoint sets, and choose a basepoint pv 2ƒv for each v 2 �C.

For simplicity, let us restrict, in this introduction, to the following situation:

� X is a subcritical Liouville domain.

� If v 2 ��, then the corresponding Legendrian ƒv is an embedded sphere.

From a technical point of view, these restrictions are unnecessary. We make them
in order to facilitate the explanation of our constructions from the perspective of
Legendrian surgery. (Note that the topology of ƒv is unrestricted when v 2 �C.)

Geometry & Topology, Volume 27 (2023)



2052 Tobias Ekholm and Yankı Lekili

We write Xƒ for the completion of the Liouville sector obtained from X by attaching
critical Weinstein handles along ƒv for each v 2 ��, and attaching cotangent cones
T �.ƒv � Œ0;1// along ƒv for each v 2 �C. If �C D¿, Xƒ is an ordinary Liouville
manifold. In this case Gromov compactness is ensured by convexity of the boundary.
When �C ¤ ¿, we also have part of the boundary that can be identified with a
neighborhood of the zero section in the cotangent bundle

S
v2�C T �.ƒv� ŒT;1//, for

some T >0. This is a geometrically bounded manifold, hence Gromov compactness [38]
still holds, and holomorphic curve theory is well behaved.

In Xƒ, for v 2 �� there is a closed exact Lagrangian submanifold Sv DLv [Dv , the
union of the Lagrangian Lv in X and the Lagrangian core disk Dv of the Weinstein
handle attached to ƒv, and for v 2 �C there is a noncompact Lagrangian obtained
by attaching the cylindrical boundary ƒv � Œ0;1/ to Lv for v 2 �C, which we will
still denote by Lv , by abuse of notation, even when we view them now in Xƒ. Dually,
for each v 2 �� we obtain (noncompact) exact Lagrangian disks Cv, the Lagrangian
cocore disks of the Weinstein handles attached to ƒv on X , and for each v 2 �C

we construct dual Lagrangians disks Cv intersecting Lv once and asymptotic to a
Legendrian meridian of Lv — these can be constructed as the cotangent fiber at the
point .pv; t/, t > 0, in T �.ƒv � Œ0;1//�Xƒ, where pv is the basepoint on ƒv.

The invariants we will construct are associated to the unions of Lagrangian submanifolds

Lƒ WD
[
v2�C

Lv [
[
v2��

Sv and Cƒ WD
[
v2�

Cv:

The Lagrangian Lƒ will be referred to as a Lagrangian skeleton of Xƒ; it is a union
of Lagrangian submanifolds which intersect transversely. The dual Lagrangian Cƒ is
the union of Lagrangian disks which can be locally identified with cotangent fibers to
irreducible components of Lƒ.

We will study two algebraic invariants associated to .Xƒ;Lƒ;Cƒ/. The first one
is the Legendrian A1–algebra, LA�. It corresponds to the endomorphism algebra
of Lƒ considered in the infinitesimal Fukaya category of Xƒ (Theorem 63). The
second one is the Chekanov–Eliashberg DG–algebra, CE�. It corresponds to the
endomorphism algebra of Cƒ considered in the partially wrapped Fukaya category
of Xƒ (Theorem 83). However, we will take the pre-surgery perspective as in Bourgeois,
Ekholm and Eliashberg [11] and construct all these invariants by studying Legendrian
invariants of ƒ�X rather than Floer cohomology in Xƒ. From this perspective, the

Geometry & Topology, Volume 27 (2023)
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case �C ¤¿ is a new construction, which generalizes the theory from [11] in a way
analogous to how the partially wrapped Fukaya categories of Sylvan [62] generalize
the wrapped Fukaya categories of Abouzaid and Seidel [3].

The invariants LA� and CE� come equipped with canonical augmentations to the
semisimple ring k, and it is easy to see by construction that LA� is determined by CE�

via the equivalence
LA� ' RHomCE�.k;k/:

The duality which would recover CE� from LA� holds in the “simply connected” case;
see Section 2.3. In the topological case discussed above, this is analogous to the simple-
connectedness assumption on M , which makes the augmented algebras C �.M / and
C��.�M / Koszul dual. In fact, the topological case is a special case of our study for
the Weinstein manifold T �M , with the Lagrangian skeleton LƒDM given by the zero
section, and the dual Lagrangian Cƒ given by a cotangent fiber T �p M . This is because
the wrapped Floer cohomology complex of a cotangent fiber is quasi-isomorphic to
C��.�M / by Abouzaid [2] and the Floer cohomology complex of the zero section is
quasi-isomorphic to C �.M / (Fukaya and Oh [35]) as augmented A1–algebras.

We next sketch the definition of our version of the Chekanov–Eliashberg DG–algebra
without any assumption of simple connectedness; see Section 3 for details. This is the
DG–algebra over k called CE� above. Its underlying k–bimodule is the unital k–algebra
generated by Reeb chords between components of ƒ and chains in C��.�pvƒv/ for
v 2 �C. (This is the crucial distinction between �C and ��.)

We use the cubical chain complex (cf Serre [60]) C��.�pvƒv/ for v 2 �C— see
Section 3.1 for a discussion of other possible choices of chain models — to express
CE� as a free algebra over k generated by Reeb chords c and generators of C��.�pvƒv/

for v 2 �C. The differential on CE� is determined by its action on generators. On a
generator of C��.�pvƒv/ we simply apply the usual differential. On a generator c0

which is a Reeb chord, the differential is determined by moduli spaces of holomorphic
disks in the symplectization R�Y which asymptotically converge to c0 on the positive
end and chords c1; : : : ; ci at the negative end as follows. Consider the moduli space
of J–holomorphic maps u W D ! R � Y , where D is a disk with k C 1 boundary
punctures zj 2 @D D S1 that are mutually distinct with .z0; z1; : : : zk/ respecting the
counterclockwise cyclic order of S1, and u sends the boundary component .zj�1; zj /

of S1 n fz0; : : : ; zkg to R � ƒ and is asymptotic to cj near the puncture at zj for
j D 1; : : : ; k and to c0 near the puncture at z0 (as usual these disks may be anchored

Geometry & Topology, Volume 27 (2023)
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c0

c1 c2 c3 c4 c5 c6

�0

�1 �2 �3

Figure 1: The differential in CE�: the word �0c1�1c2c3�2c4�3c5c6 appears
in dc0.

in X ). The moduli space, which is naturally a stratified space with manifold strata that
carries a fundamental chain, comes with evaluation maps to �pvƒv for v 2 �C. The
image of the fundamental chain determines a word in our chain model of C��.�pvƒv/.
Reading these together with the Reeb chords in order gives the differential of c0.

We remark that loop space coefficients have been used in the context of Lagrangian
Floer cohomology before; see Barraud and Cornea [7] and Fukaya [34]. See also
Abouzaid [2] and Cieliebak and Latschev [19] for uses of high-dimensional moduli
spaces in Floer theory.

While CE� with loop space coefficients is a powerful invariant, it is in general hard
to compute as it involves high-dimensional moduli spaces of disks. As mentioned
above, duality in the Legendrian ƒ will also play a role. More precisely, we define
another DG–algebra CE� related to CE� via a Morse-theoretic version of Adams
cobar construction whose definition involves taking parallel copies of ƒ but uses
only 0–dimensional moduli spaces; see Section 3.4. In fact, we prove that the two
DG–algebras are quasi-isomorphic when all ƒv for v 2 �C are simply connected.

Theorem 1 There exists a DG–algebra map

CE�! CE�;

which is a quasi-isomorphism when the ƒv are simply connected for all v 2 �C.

Theorem 1 is restated and proved as Theorem 51 in Section 3.4.

Geometry & Topology, Volume 27 (2023)
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1.1 Partially wrapped Fukaya categories by surgery

Let ƒ D
F
v2� ƒv be a Legendrian submanifold and � D �C [ �� be as above.

Furthermore, we use the notation above for cocore disks and write CE� D CE�.ƒ/.
An important result that is implicit in [11, Remark 5.9] is the following:

Theorem 2 Suppose � D ��. Then there exists a surgery map defined via a
holomorphic disk count that gives an A1–quasi-isomorphism between the wrapped
Floer cochain complex CW� WD

L
v;w2�� CW�.Cv;Cw/ and the Legendrian DG–

algebra CE�.

We prove Theorem 2 in Section B.2 following [11], referring to Ekholm [25] for the
necessary technical results omitted there. Section B.1 also contains a construction
of wrapped Floer A1–algebras that uses only purely holomorphic disks (without
Hamiltonian perturbation), and a proof that this agrees with the more standard version
defined in Abouzaid and Seidel [3], which uses Hamiltonian perturbations.

One of the main guiding principles for the results in this paper is that Theorem 2 remains
true when �C is nonempty, provided the Lagrangians Cv are considered as objects of
the partially wrapped Fukaya category of Xƒ, where the noncapped Legendrians ƒv
for v 2 �C serve as stops; cf Sylvan [62]. The full proof of this result when �C is
nonempty can be reduced to the standard surgery result, Theorem 2, and will appear
elsewhere. Here we give an outline of a somewhat different and more topological proof;
see Section B.3. We will use the geometric intuition provided by this viewpoint, and
our constructions of Legendrian invariants provide a rigorous “working definition” of
CE� even in the case that �C is nonempty, as well as a starting point for the study of
“partially wrapped Fukaya categories” via Legendrian surgery (extending the scope
of [11] considerably). For future reference, we state this result as a conjecture:

Conjecture 3 There exists a surgery map defined via moduli spaces of holomorphic
disks which gives an A1–quasi-isomorphism between the partially wrapped Floer
cochain complex CW� WD

L
v;w2� CW�.Cv;Cw/ and the DG–algebra CE�.

While writing this paper, we learned that Sylvan [61] independently considered a similar
conjecture in relation with his theory of partially wrapped Fukaya categories [62].

Geometry & Topology, Volume 27 (2023)



2056 Tobias Ekholm and Yankı Lekili

1.2 Augmentations and infinitesimal Fukaya categories

We keep the notation above and now consider an exact Lagrangian filling L in X of ƒ.
Such a filling gives an augmentation

�L W CE�! k:

For chords on components ƒv with v 2 ��, this is well known and given by a count
of rigid disks with one positive puncture and boundary on Lv.

For components ƒv with v 2 �C, we define an augmentation using the same disks.
More formally, we define a chain map

ˇL W CE�!
M
v2�C

C��.�Lv/;

which acts on chains in
L
v2�C C��.�ƒv/ by the inclusion and on Reeb chords c as the

chain of loops carried by the moduli spaces of holomorphic disks with boundary on Lv

(for each v) and a positive puncture at c. The augmentation �L is then this map followed
by the augmentation on

L
v2�C C��.�Lv/! k that takes higher-dimensional chains

to zero and takes any loop in Lv to ev.

This allows us to write
CE� D�LC�

for an A1–coalgebra LC� D LC�.ƒ/ that we call the Legendrian A1–coalgebra
(which depends on �L). Here � is the Adams cobar construction. Writing LA� WD
.LC�/# for the A1–algebra which is the linear dual of LC�, the following result
recovers the Floer cochain complex of L in Xƒ:

Theorem 4 There is an A1–quasi-isomorphism between CF� WDCF�.Lƒ/, the Floer
cochain complex in the infinitesimal Fukaya category of Xƒ, and the A1–algebra LA�.

By the general properties of bar–cobar constructions (see Section 2.2.1), the algebra
RHom�LC�.k;k/ is quasi-isomorphic to the graded k–dual of the bar construction on
the algebra �LC�, which can be computed as

(1) .B�LC�/# Š .LC�/# D LA�:

Remark 5 If �C is empty, the A1–algebra LA� is obtained from the construction in
Civan, Koprowski, Etnyre, Sabloff and Walker [20] and Bourgeois and Chantraine [10],
known as the Aug� category, by adding a copy of k, making it unital.

Geometry & Topology, Volume 27 (2023)
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If �� is empty, the A1–algebra LA� � .BCE�/# — see (1) — is the endomorphism
algebra of ƒ with the augmentation �L in the AugC category of Ng, Rutherford,
Shende, Sivek and Zaslow [55]. In the setting of microlocal sheaves, a related result
was obtained by Nadler [53, Theorem 1.6].

1.3 Duality between partially wrapped and infinitesimal Fukaya categories

We study duality in the setting of the two categories described above: the partially
wrapped Fukaya category and the infinitesimal Fukaya category of Xƒ (after surgery) or,
equivalently, the augmented DG–algebra �LC� and the augmented A1–algebra LA�

(before surgery).

As we have seen in Theorem 4, the augmented DG–algebra �LC� determines the
augmented (unital) A1–algebra CF�. Now, a natural question is to what extent the
quasi-isomorphism type of the A1–algebra CF� determines the quasi-isomorphism
type of the augmented Legendrian DG–algebra �LC�.

We emphasize here the phrase “quasi-isomorphism type”: even though it is possible
to construct chain models of the A1–algebra LA� (which is A1–quasi-isomorphic
to CF�) and the DG–algebra �LC� by counting “the same” holomorphic disks in-
terpreted in different ways, the two algebras are considered with respect to different
equivalence relations, and the resulting equivalence classes can be very different. In
particular, it is not generally true that f W C ! D being a quasi-isomorphism of A1–
coalgebras implies that �f W�C !�D is a quasi-isomorphism.

We will study this question by (geometrically) constructing a twisting cochain

t W LC�! .BCF�/#;

where B stands for the bar construction and # is the graded k–dual. See Section 2.1.4.
This twisting cochain induces a map of DG–algebras,

�LC�! RHomCF�.k;k/;

which is a quasi-isomorphism if and only if t is a Koszul twisting cochain. For example,
we will prove the following result:

Theorem 6 Suppose that LC� is a locally finite , simply connected k–bimodule. Then
the natural map �LC�! RHomCF�.k;k/ is a quasi-isomorphism.
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This is an instance of Koszul duality between the A1–algebras �LC� and CF�. It has
many useful implications; for example, it implies an isomorphism between Hochschild
cohomologies,

HH�.�LC�; �LC�/Š HH�.CF�;CF�/:

When �C D ¿, an isomorphism defined via a surgery map [11] was described be-
tween symplectic cohomology, SH� D SH�.Xƒ/, and the Hochschild cohomology
HH�.�LC�; �LC�/. Therefore, when duality holds (ie t induces an isomorphism),
we obtain a more economical way of computing SH�.

In the case of cotangent bundles T �M of simply connected manifolds M , this recovers
a classical result due to Jones [42], which gives

Hn��.LM /Š HH�.C��.�M /;C��.�M //Š HH�.CF�.M /;CF�.M //;

where M is a simply connected manifold of dimension n and LM denotes the free
loop space of M .

In Section 6, we give several concrete examples where the duality holds beyond the
case of cotangent bundles. For example, the duality holds for plumbings of simply
connected cotangent bundles according to an arbitrary plumbing tree; see Theorem 68.

In another direction, combining duality and Floer cohomology with local coefficients,
we establish the following result for relatively spin exact Lagrangian fillings L�X

with vanishing Maslov class of a Legendrian submanifold ƒ� Y .

Theorem 7 Let � D�� and assume that SH�.X /D 0 and thatƒ is simply connected.
If CE�.ƒ/ is supported in degrees < 0, then L is simply connected. Moreover , if ƒ is
a sphere , then CE�.ƒ/ is isomorphic to C��.�xL/, where xLDL[ƒD, for a disk D

with boundary @D Dƒ.

In general, duality between�LC� and CF� does not hold — as can be seen for example
by looking at cotangent bundles of non-simply-connected manifolds, or letting ƒ be
the standard Legendrian trefoil knot in S3 filled by a punctured torus. However, there
are cases when duality holds even if LC� is not simply connected, for instance because
of the existence of an auxiliary weight grading (see Etgü and Lekili [32]), or, for
an example in the 1–dimensional case, see Lekili and Polishchuk [48]. It is a very
interesting open question to find a geometric characterization of when duality holds.
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Remark 8 Constructions of Legendrian and Lagrangian holomorphic curve invariants
require the use of perturbations to achieve transversely cut out moduli spaces. For
our main invariant CE�, all moduli spaces used can be shown to be transverse by
classical techniques (see Theorem 74) except for the rigid holomorphic planes in Xƒ

with a single positive end that are used to anchor the disks (in the terminology of [11]).
These are also relevant for defining the wrapped Floer cochain complex CW� without
Hamiltonian perturbations and for constructing the surgery map. In all cases, there
is a distinguished boundary puncture in the main disk that determines asymptotic
markers on the split-off planes. Taking this marker into account removes symmetries
of the planes, and a specific perturbation scheme for transversality of the resulting
moduli spaces was constructed in [25]. We will use that perturbation scheme here; see
Section A.2 for details.

1.4 An example: the Hopf link

In this section, we study the example of the Hopf link in order to illustrate our results
in a simple and computable example. Some of the algebraic constructions used here
are explained in detail only later; see Section 2.

Let ƒ� S3 be the standard Legendrian Hopf link. We work over kDKe1˚Ke2 and
with the Lagrangian filling L given by two disks in D4 that intersect transversely in a
single point. We choose the partition ƒDƒC[ƒ�. This means that after attaching
a Weinstein 2–handle to ƒ� and T �.S1 � Œ0;1// to ƒC, we obtain the symplectic
manifold Xƒ with Lagrangian skeleton

Lƒ D S2
[T �pt S

2
� T �S2;

or, in the terminology of [62], Xƒ is T �S2 with wrapping stopped by a Legendrian
fiber sphere. The DG–algebra CE� D CE�.ƒ/ of ƒ has coefficients in

C��.�ƒ
C/e1˚Ke2 ŠKŒt; t�1�e1˚Ke2:

A free model for KŒt; t�1� is given by the tensor algebra Khs1; t1; k1; l1;u1i with
js1j D jt1j D 0, jk1j D jl1j D �1, ju1j D �2 and the differential

dk1 D e1� s1t1; dl1 D e1� t1s1; du1 D k1s1� s1l1:

The natural map Khs1; t1; k1; l1;u1i ! KŒt; t�1� sending t1 ! t and s1 ! t�1 is a
quasi-isomorphism. The subscripts indicate that as k–module generators, s1, t1, k1, l1

and u1 are annihilated by the idempotent e2.
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c1

c21

c12

c2

Figure 2: Hopf link when both �C and �� are nonempty: the blue component
lies in �C and the red in ��.

Next, incorporating the Reeb chords, with notation as in Figure 2, we get the free
algebra

khc12; c21; c1; c2; s1; t1; k1; l1;u1i

with gradings

ju1j D �2; jc1j D jc2j D jk1j D jl1j D �1; jc12j D jc21j D js1j D jt1j D 0

and differential
dc1 D e1C s1C c12c21; dc2 D c21c12;

dk1 D e1� s1t1; dl1 D e1� t1s1; du1 D k1s1� s1l1:

The only augmentation to k is given by �.s1/ D �.t1/ D �e1 and �.c1/ D �.c2/ D

�.c12/D �.c21/D �.k1/D �.l1/D �.u1/D 0. After change of variables, s1! s1�e1

and t1! t1� e1, we obtain the free algebra

khc12; c21; c1; c2; s1; t1; k1; l1;u1i

with nonzero differential on generators

(2)
dc1 D s1C c12c21; dc2 D c21c12;

dk1 D s1C t1� s1t1; dl1 D s1C t1� t1s1; du1 D l1� k1C k1s1� s1l1:

On the other hand, we can compute the Floer cochains CF� D CF�.Lƒ/ of Lƒ as

CF� D k˚Ka12˚Ka21˚Ka2; where ja2j D 2; ja12j D ja21j D 1:

The cohomology level computation follows easily from the geometric picture and
general properties of Floer cohomology: Lƒ is a union of a disk D2 and a sphere S2

that intersect transversely in one point, and we have

HF�.D2;D2/DKe1; HF�.S2;S2/DKe2˚Ka2;

HF�.D2;S2/DKa12; HF�.S2;D2/DKa21:
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The only nontrivial product that does not involve idempotents is m2.a12; a21/D a2.
For degree reasons, the only possible nontrivial higher products are

m2k.a12; a21; : : : ; a12; a21/D ca2 for some k > 1 and c 2K:

It turns out that one can take c D 0 for all k > 1. Indeed, assuming that the A1–
structure is strictly unital (which can be arranged up to quasi-isomorphism), consider
the A1–relation that involves the term

m2.m2k.a12; a21; : : : ; a12; a21/; e2/:

By induction on k > 1, this term has to vanish, implying m2k.a12; a21; : : : ; a12; a21/

has to vanish for all k > 1. Let us confirm this by using the quasi-isomorphism

CF� Š RHomCE�.k;k/:

We introduce the counital A1–coalgebra

LC� D k˚Kc12˚Kc21˚Kc1˚Kc2˚Ks1˚Kt1˚Kk1˚Kl1˚Ku1

with ju1j D �3, jc1j D jc2j D jk1j D jl1j D �2 and jc12j D jc21j D js1j D jt1j D �1,
for which �i D 0 except for i D 1 or 2, where there are the nonzero terms

�1.c1/D s1; �1.k1/D s1C t1; �1.l1/D s1C t1; �1.u1/D l1� k1:

Write �2.x/D 1˝k xCx˝k 1C x�2.x/. Then

x�2.c1/D c12c21; x�2.c2/D c21c12;

x�2.k1/D�s1t1; x�2.l1/D�t1s1; x�2.u1/D k1s1� s1l1;

where the A1 coalgebra operations on LC� are defined so that �LC� is isomorphic
to CE�. Thus, RHomCE�.k;k/ can be computed as the graded dual of LC� which is
the A1–algebra

LA� D k˚Kc_12˚Kc_21˚Kc_1 ˚Kc_2 ˚Ks_1 ˚Kt_1 ˚Kk_1 ˚Kl_1 ˚Ku_1 ;

with gradings

ju_1 j D 3; jc_1 j D jc
_
2 j D jk

_
1 j D jl

_
1 j D 2; jc_12j D jc

_
21j D js

_
1 j D jt

_
1 j D 1;

where c_ is the linear dual of the generator c of LC�. The differential is

m1.s
_
1 /D c_1 C k_1 C l_1 ; m1.t

_
1 /D k_1 C l_1 ; m1.k

_
1 /D�u1; m1.l

_
1 /D u1;
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and the products that do not involve idempotents are

m2.c
_
12; c

_
21/D c_2 ; m2.c

_
21; c

_
12/D c_1 ; m2.t

_
1 ; s
_
1 /D�k_1 ;

m2.s
_
1 ; t
_
1 /D�l_1 ; m2.k

_
1 ; s
_
1 /D u_1 ; m2.s

_
1 ; l
_
1 /D�u_1 :

All the higher products vanish. We claim that this A1–algebra is quasi-isomorphic to
the algebra

k˚Ka12˚Ka21˚Ka2; where ja2j D 2; ja12j D ja21j D 1;

with the only nontrivial product (not involving idempotents) given by

m2.a12; a21/D a2:

Indeed, it is easy to show that the map defined by

c_12! a12; c_21! a21; c_2 ! a2 and c_1 ; s
_
1 ; t
_
1 ; k

_
1 ; l
_
1 ;u

_
1 ! 0

is a DG–algebra (hence also an A1–algebra) map, which induces an isomorphism at
the level of cohomology.

Dually, we can construct a DG–algebra map

CE�! RHomCF�.k;k/:

The Floer cochain complex CF� has a unique augmentation given by projection to k,
and we compute

RHomCF�.k;k/Š�CF�;

where CF� is the coalgebra dual to CF�. This is the free coalgebra

kha_12; a
_
21; a

_
2 i

with ja_
12
j D ja_

21
j D 0 and ja_

2
j D�1, and the only nontrivial differential not involving

counits is
�2.a

_
2 /D a_21a_12:

We have a twisting cochain
t W LC�!�CF�

given by

t.c2/D a_2 ; t.c12/D a_12; t.c21/D a_21;

t.c1/D 0; t.s1/D�a_12a_21; t.t1/D a_12a_21;

t.l1/D t.k1/D a_12a_2 a_21; t.u1/D a_12a_2 a_2 a_21:
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This means that t satisfies the equations

d t.c1/D t.s1/C t.c12/t.c21/;

d t.c2/D t.c21/t.c12/;

d t.k1/D t.s1/C t.t1/� t.s1/t.t1/;

d t.l1/D t.s1/C t.t1/� t.t1/t.s1/;

d t.u1/D t.l1/� t.k1/C t.k1/t.s1/� t.s1/t.l1/:

Hence, it induces a DG–algebra map

�LC�!�CF�:

We have not checked whether this is a quasi-isomorphism, or equivalently whether t is
a Koszul twisting cochain. Note, however, that the DG–algebra map �CF�!�LC�
defined by

a_2 ! c2; a_12! c12; a_21! c21

shows that t is a retraction, and �CF� is a retract of �LC�.
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2 Algebraic preliminaries

In this section, we review the homological algebra we use in our study of various
invariants associated to Legendrian submanifolds and their Lagrangian fillings. Most
of this material is well established; see [47] and also [45; 57; 56; 39; 49; 50]. Note
though that our sign conventions follow [59]; see Remark 9.

2.1 A1–algebras and A1–coalgebras

In this section we will discuss the basic algebraic objects we use. These are modules
over a ground ring k of the following form. Fix a coefficient field K (of arbitrary
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characteristic) and let k be a semisimple ring of the form:

kD
M
v2�

Kev;

where e2
v D ev and evew D 0 for v ¤ w, and where the index set � is finite.

We will use Z–graded k–bimodules. If M D
L

i M i is such a module then we call
M connected if M 0Š k and either M i D 0 for all i > 0, or M i D 0 for all i < 0. We
call M simply connected if, in addition, in the former case M�1 D 0, and in the latter
M 1 D 0. Further, we say that M is locally finite if each M i is finitely generated as a
k–bimodule.

We have the usual shifting and tensor product operations on modules. If M D
L

i M i

is a graded k–bimodule and s is an integer, then we let the corresponding shifted
module M Œs�D

L
i M Œs�i be the module with graded components

M Œs�i DM iCs:

If N D
L

i N i is another graded k–bimodule, then M ˝k N D
L

k .M ˝k N /k is
naturally a graded k–bimodule with

.M ˝k N /k D
M

iCjDk

M i
˝k N j :

For iterated tensor products we write

M˝kr
DM ˝k � � � ˝k M„ ƒ‚ …

r

:

Our modules will often have further structure as Z–graded A1–algebras and A1–
coalgebras over k; see Sections 2.1.1 and 2.1.2. The modules are then in particular
chain complexes with a differential, and we will use cohomological grading throughout;
that is, the differential increases the grading by 1. For example, if L is a topological
space then its cohomology complex C �.L/ is supported in nonnegative grading, while
the homology complex C��.L/ is supported in nonpositive degrees. To be consistent
with this, we denote the grading as a subscript (resp. superscript) when the underlying
chain complex has a coalgebra (resp. algebra) structure.

2.1.1 A1–algebras An A1–algebra over k is a Z–graded k–module A with a
collection of grading-preserving k–linear maps

mi W A
˝ki
! A Œ2� i �
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for all integers i � 1 satisfying the A1–relations

(3)
X
i;j

.�1/ja1jC���Cjaj j�jmd�iC1.ad ; : : : ;ajCiC1;mi.ajCi ; : : : ;ajC1/;aj ; : : : ;a1/

D 0

for all d .

Remark 9 We follow the sign conventions of [59]. Even though mi is written on the
left of .ajCi ; : : : ; ajC1/, the sign convention is so that mi acts from the right. To be
consistent, we will insist that all our operators act on the right independently of how
they are written. This convention and the usual Koszul sign exchange rule applied with
respect to the shifted grading A Œ1� determine the signs that appear in our formulas.

A DG–algebra over k is an A1–algebra A such that mi D 0 for i � 3. In this case,
we call the first two operations the differential and the product, respectively, and use
the following adjustments to obtain an (ordinary) differential graded algebra:

(4) daD .�1/jajm1.a/ and a2a1 D .�1/ja1jm2.a2; a1/:

In particular, the product is then associative and the graded Leibniz rule for d holds:

(5) d.a2a1/D .da2/a1C .�1/ja2ja2.da1/:

An A1–map e W A !B between A1–algebras A and B over k, with operations mi

and ni for i � 1, respectively, is a collection of k–linear grading-preserving maps

ei W A
˝ki
!BŒ1� i �; i � 1;

satisfying the relationsX
i;j

.�1/ja1jC���Cjaj j�j ed�iC1.ad ; : : : ; ajCiC1;mi.ajCi ; : : : ; ajC1/; aj ; : : : ; a1/

D

X
1�j�d

0<i1<���<ij<d

nj .ed�ij .ad ; : : : ;ad�ij /; : : : ;ei2�i1
.ai2

; : : : ;ai1C1/;ei1
.ai1

; : : : ;a1//:

An A1–map e WA !B is called an A1–quasi-isomorphism if the map on cohomology
H�.A /!H�.B/ induced by e1 is an isomorphism.

We say that an A1–algebra A is strictly unital if there is an element 1A 2 A such
that m1.1A / D 0, m2.1A ; a/ D m2.a; 1A / D a for any a 2 A , and mi for i > 2

annihilates any monomial containing 1A as a factor. Any A1–algebra A which has
a cohomological unit, ie a cocycle representing the identity element in H�.A /, is
quasi-isomorphic to a strictly unital A1–algebra [56, Section 7.2].
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An augmentation of a strictly unital A1–algebra is an A1–map � W A ! k, where k

is considered as a strictly unital A1–algebra in degree 0 with trivial differential and
higher A1–products, and is such that �1.1A /D 1k and �i for i > 1 annihilates any
monomial containing 1A . An augmentation is called strict if �i D 0 for i > 1. The
category of augmented, strictly unital A1–algebras is equivalent to the category of
strictly augmented, strictly unital A1–algebras; see [56, Section 7.2].

2.1.2 A1–coalgebras An A1–coalgebra C over k is a Z–graded k–module with a
collection of k–linear grading-preserving maps

�i W C ! C˝ki Œ2� i �

for all integers i � 1, with the following properties. The maps satisfy the co-A1–
relations

(6)
dX

iD1

d�iX
jD0

.1˝k.d�i�j/
˝k �i ˝k 1˝k j /�d�iC1 D 0;

where

1˝k.d�i�j/
˝k �i ˝k 1˝kj .cd�iC1; : : : ; c1/

D .�1/jc1jC���Cjcj j�j .cd�iC1; : : : ; cjC2/˝k �i.cjC1/˝k .cj ; : : : ; c1/

2 C˝k.d�i�j/
˝k C˝ki

˝k C˝kj :

Furthermore, the degree 1 map

C Œ�1�!

1Y
iD1

C Œ�1�˝ki ;

with i th component equal to �i , factorizes through the natural inclusion
1M

iD1

C Œ�1�˝ki
!

1Y
iD1

C Œ�1�˝ki

of the direct sum into the direct product.

A DG–coalgebra over k is an A1–coalgebra such that �i D 0 for i � 3. In this case,
we call the first two operations the differential and the coproduct, respectively, and use
the following adjustments to obtain an (ordinary) differential graded coalgebra:

(7) �c D .�1/jcj�1.c/ and �.c/D
X

.�1/jc.2/jc.1/˝k c.2/;

where we write �2.c/D
P

c.1/˝k c.2/.
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In particular, the coproduct is coassociative, ie .�˝k 1/ ı�D .1˝k �/ ı�, and the
graded co-Leibniz rule holds:

(8) ��.c/D
X

.�1/jc.1/jc.1/˝k �.c.2//C �.c.1//˝k c.2/:

An A1–comap f W C ! D between A1–coalgebras C and D over k, with operations
�i and ‚i for i � 1, respectively, is a collection of k–linear grading-preserving maps

fi W C ! D˝ki Œ1� i �; i � 1;

satisfying the relations

dX
iD1

d�iX
jD0

.1˝k.d�i�j/
˝k ‚i ˝k 1˝kj /fd�iC1

D

X
1�j�d

0<i1<i2<���<ij<d

.fd�ij ˝k � � � ˝k fi2�i1
˝k fi1

/�j ;

where

1˝k.d�i�j/
˝k ‚i ˝k 1˝kj .dd�iC1; : : : ; d1/

D .�1/jd1jC���Cjdj j�j .dd�iC1; : : : ; djC2/˝k ‚i.djC1/˝k .dj ; : : : ; d1/

2 D˝k.d�i�j/
˝k D˝ki

˝k D˝kj :

Furthermore, the degree 0 map

C Œ�1�!

1Y
iD1

D Œ�1�˝ki ;

with i th component equal to fi , factorizes through the natural inclusion

(9)
1M

iD1

D Œ�1�˝ki
!

1Y
iD1

D Œ�1�˝ki

of the direct sum into the direct product.

An A1–comap f W C ! D is called an A1–quasi-isomorphism if the map on co-
homology H�.C /!H�.D/ induced by f1 is an isomorphism.

We say that an A1–coalgebra is strictly counital if there exists a k–linear map � WC!k

such that .�˝ 1/�2 D .1˝ �/�2 D 1 and .1˝k.i�j/˝k �˝k 1˝k j�1/�i D 0 for all
i ¤ 2 and j . Any A1–coalgebra C which has a cohomological counit, ie a cocycle
representing the counit in H�.C /, is quasi-isomorphic to a strictly counital A1–
coalgebra; see [56, Section 7.5].
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A coaugmentation of a strictly counital A1–coalgebra C is an A1–comap � W k! C ,
where k is considered as a vector space in degree 0 with the trivial A1–coalgebra
structure, and is such that ��1 D 1k and .1˝k.i�j/˝k �˝k 1˝k j�1/�i D 0 for all
i > 1 and j . The coaugmentation is called strict if �i D 0 for i � 2.

A DG–coalgebra C is called conilpotent (also called cocomplete) if for any c 2 C ,
there exists an n� 2 such that c is in the kernel of the iterated comultiplication map
defined recursively by �.2/ D �, and �.n/ D .1˝k.n�2/ ˝k �/ ı�

.n�1/ for n > 2.
When considering coaugmented DG–coalgebras, conilpotency is enforced only on the
coaugmentation ideal coker.�/.

2.1.3 Graded dual We next discuss the graded dual of a graded k–module. Since
we are working with bimodules over the ring k, there are two k–linear duals [8].

If A is a graded k–bimodule, A D
L

i Ai , then the graded duals A #D
L

i.A
#/i and

#A D
L

i.
#A /i are defined as follows. The graded components .A #/i of A # are left

k–module maps
homk�.A�i ;k/;

and the k–bimodule structure on A # is given as follows: if ev; ew 2 k, a 2 .A #/i and
c 2 A�i , then

(10) .ev � a � ew/.c/D a.cev/ew:

The graded components .#A /i of #A in degree i are right k–module maps, which we
write as

hom�k.A�i ;k/;

and the k–bimodule structure is given by: if ev; ew 2 k, a 2 .#A /i and c 2 A�i , then

(11) .ev � a � ew/.c/D eva.ewc/:

Both canonical maps A !#.A #/ and A ! .#A /# are k–bimodule maps, which are
isomorphisms if A is locally finite.

If V1;V2; : : : ;Vn are k–bimodules, there is a natural map

V #
n ˝k V #

n�1˝k � � � ˝k V #
1 ! .V1˝k V2˝k � � � ˝k Vn/

#

given by

(12) .an˝ an�1˝ � � �˝ a1/.c1˝ c2˝ � � �˝ cn/ WD a1.c1a2.c2 � � � an.cn/ � � � //:
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Similarly, there is a natural map

#Vn˝k
#Vn�1˝k � � � ˝k

#V1!
#.V1˝k V2˝k � � � ˝k Vn/

given by

(13) .an˝ an�1˝ � � �˝ a1/.c1˝ c2˝ � � �˝ cn/ WD an. � � � a2.a1.c1/c2/ � � � cn/:

These give the graded duals C # and #C of a coaugmented A1–coalgebra C the structure
of augmented A1–algebras, with structure maps defined by

(14) mi.ai ; : : : ; a1/.c/ WD .�1/jcj.ai ˝ � � �˝ a1/�i.c/:

Note that to get a nonzero product, we must have jmi.ai ; : : : ; a1/j D jcj, hence the
sign .�1/jcj equals the sign .�1/ja1jC���Cjai j�i .

In general, there is no natural way of equipping the graded dual of an augmented
A1–algebra with an A1–coalgebra structure. However, if the grading on A is locally
finite (ie Ai are finitely generated as k–bimodules), it follows that

A #
˝k A #

˝k � � � ˝k A #
Š .A ˝k A ˝k � � � ˝k A /#;

#A ˝k
#A ˝k � � � ˝k

#A Š #.A ˝k A ˝k � � � ˝k A /:

Using these isomorphisms, the graded duals A # and #A of an augmented A1–algebra A

with locally finite grading can be naturally equipped with the structure of a coaugmented
A1–coalgebra by using the formulas

�i.c/.ai ˝k � � � ˝k a1/D .�1/jcjc.mi.ai ; : : : ; a1//:

2.1.4 Twisting cochains Let .C ; ��/ be an A1–coalgebra and let .A ;m1;m2/ be a
DG–algebra. A twisting cochain is a k–linear map t W C ! A of degree 1 that satisfies

(15) m1 ı t� t ı�1C

X
d�2

.�1/dm
.d/
2
ı t˝kd

ı�d D 0;

where m
.2/
2
WDm2 and m

.d/
2
WDm2 ı .IdA ˝k m

.d�1/
2

/. For c 2 C , note that �i.c/¤ 0

for only finitely many i , and hence the potentially infinite sum in (15) is actually finite
when it acts on c.

If the coalgebra C is coaugmented by � W k! C and the algebra A is augmented
� W A ! k, we require in addition that its twisting cochains t are compatible in the
sense that

(16) t ı �D � ı tD 0:

We denote the set of twisting cochains from C to A by Tw.C ;A /.
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Let t 2 Tw.C ;A / be a twisting cochain. Consider the twisted tensor product A ˝t
k

C

as a chain complex with differential d t W A ˝t
k

C ! A ˝t
k

C defined by

(17) d t
Dm1˝k IdC C IdA ˝k �1

C

X
d�2

.m
.d/
2
˝ IdC / ı .IdA ˝k t˝kd�1

˝k IdC / ı .IdA ˝k �d /:

Here the differential squares to zero, d t ı d t D 0, since t satisfies (15). This complex
is the Koszul complex associated with t. It is called acyclic if the projection to k is a
quasi-isomorphism.

One also has an analogous complex of the form C ˝t
k

A .

The K–vector space of k–bimodule morphisms homk-k.C ;A / carries an A1–algebra
structure with operations nd for d � 1, given by

n1.t/Dm1ıtC.�1/jt jtı�1;

nd .td ; td�1; : : : ; t1/D .�1/d.jtd jC���Cjt1j/m
.d/
2
ı.td˝td�1˝� � �˝t1/ı�d for d � 2;

where the composition .td ˝ td�1˝ � � �˝ t1/ ı�d is defined componentwise. Thus, if
�d .c/D cd ˝ � � �˝ c1, then

.td ˝k td�1˝k � � � ˝k t1/�d .c/D .�1/|td .cd /˝k td�1.cd�1/˝k � � � ˝k t1.c1/;

where | D
Pd

jD2

Pj�1
iD1
jci jjtj j. In this setting, a twisting cochain t W C ! A corre-

sponds to a solution of the Maurer–Cartan equation

(18)
X
i�1

ni.t; t; : : : ; t/D 0:

(As before, this sum is effectively finite since, for any c 2C , �i.c/¤ 0 only for finitely
many i .)

A twisting cochain t W C ! A defines a twisted A1–structure on homk.C ;A /, with
operations nt

d
given by

ntd .td ; td�1; : : : ; t1/D
X
li�0

ndCl0Cl1C���Cld
.

ld‚…„ƒ
t; : : : ; t; td ;

ld�1‚…„ƒ
t; : : : ; t; td�1; : : : ; t1;

l0‚…„ƒ
t; : : : ; t/:

We will denote this twisted A1–structure by homt
k.C ;A /.

There are direct analogues of the above construction if we instead consider a DG–
coalgebra .C ; �1; �2/ and an A1–algebra A with operations mi . The module
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homk-k.C ;A / has the structure of an A1–algebra with operations nd given by

n1.t/Dm1 ı t C .�1/jt jt ı�1;

nd .td ; td�1; : : : ; t1/Dmd ı .td ˝ td�1˝ � � �˝ t1/ ı�
.d/
2

for d � 2:

To make sense of the twisting cochain (18), one needs to make additional assumptions to
ensure the convergence of the infinite sum. This holds, for example, if C is conilpotent.

We remark that if both C and A are A1–(co)algebras, then defining a twisting cochain
is a more complicated matter; cf [57, Introduction]. We will not need this here.

2.2 Bar–cobar duality for A1–(co)algebras

In this section we first introduce the bar and cobar constructions and then discuss basic
relations between them.

2.2.1 Bar and cobar constructions Let .A ; fmj gj�1/ be a strictly unital A1–
algebra with a strict augmentation � WA !k. Define the augmentation ideal xA Dker.�/.
If we are given a nonunital A1–algebra xA , we can turn it into a strictly unital A1–
algebra A WD k˚ xA with an augmentation given by projection to k.

We next recall the construction of the (reduced) bar construction BA . For any aug-
mented A1–algebra A , BA is a coaugmented conilpotent DG–coalgebra. As a
coaugmented coalgebra, BA is defined as

BA D k˚ xA Œ1�˚ xA Œ1�˝k2
˚ � � � ;

where Œ1� denotes the downwards shift by 1. We write a typical monomial using
Eilenberg and Mac Lane’s notation

Œad jad�1j � � � ja1�D sad ˝k sad�1˝k � � � ˝k sa1;

where for a 2 xA , sa 2 xA Œ1� denotes the corresponding element in xA Œ1� with degree
shifted down by 1.

The differential b W BA ! BA is defined to vanish on k� A , so bjk D 0, and defined
on monomials by

b.Œad jad�1j � � � ja1�/

D

X
i;j

.�1/ja1jC���Cjaj j�j Œad j � � � jajCiC1jmi.ajCi ; : : : ; ajC1/jaj j � � � ja1�:

Geometry & Topology, Volume 27 (2023)



2072 Tobias Ekholm and Yankı Lekili

The coproduct �2 W BA ! BA ˝k BA is defined by

�2.Œad jad�1j � � � ja1�/D

dX
iD0

.�1/jai jC���Cja1j�i Œad jad�1j � � � jaiC1�˝k Œai jai�1j � � � ja1�:

The slightly unusual sign .�1/jai jC���Cja1j�i appears as a consequence of the following
two facts:

(i) The equation b2 D 0 is equivalent to the A1–relations (3) for .mi/i�1.

(ii) The pair .b; �2/ satisfies the co-A1–relations (6).

Redefining .b; �2/ to .�;�/ using (7) removes the sign in �2, and .�;�/ becomes
a (usual) coassociative DG–coalgebra, where the co-Leibniz rule (8) holds. The
coaugmentation � W k! BA is defined by letting �1 be the inclusion of k and �i D 0

for i > 0.

There is an increasing, exhaustive and bounded below (hence, complete Hausdorff)
filtration on the complex BA ,

kD F0BA � F1BA � � � � � BA ; where FpBA WD k˚ xA Œ1�˚ � � �˚ xA Œ1�˝kp:

This induces the word-length spectral sequence with

E
p;q
1
DH pCq.FpBA =Fp�1BA /

converging strongly to

E
p;q
1 D FpH pCq.BA /=Fp�1H pCq.BA /

by the classical convergence theorem [64, Theorem 5.5.1]. It can be proved using
this spectral sequence that if an A1–map e W A ! B is a quasi-isomorphism, then
the naturally induced DG–coalgebra map Be W BA ! BB is a quasi-isomorphism; see
[49, Proposition 2.2.3].

There is a universal twisting cochain tA WBA !A which is nonzero only on xA Œ1��BA

and is given by the inclusion map xA Œ1�! A . The twisting cochain tA gives rise to a
free A –bimodule resolution of A obtained as a twisted tensor product

A ˝
tA
k

BA ˝
tA
k

A ;

with the differential d given by the formula

(19) dDm1˝k IdBA ˝k IdA C IdA ˝k b˝k IdA C IdA ˝k IdBA ˝k m1

C

�X
d�2

.md˝kIdBA /ı.IdA˝kt
˝kd�1

˝kIdBA /ı.IdA˝k�
.d/
2
/

�
˝kIdA

CIdA˝k

�X
d�2

.IdBA˝kmd /ı.IdBA˝kt
˝kd�1

˝kIdA /ı.�
.d/
2
˝kIdA /

�
:
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This can be used to compute Hochschild homology and cohomology of A with coeffi-
cients in an A –bimodule M .

Consider instead a strictly counital A1–coalgebra C with operations �i and with a
strict coaugmentation � W k! C . Let xC D coker.�/ be the coaugmentation ideal. We
next recall the cobar construction, which associates a DG–algebra �C to C . As an
augmented algebra, �C is

�C D k˚ xC Œ�1�˚ xC Œ�1�˝k2
˚ � � � :(20)

As before, we write a typical monomial as

Œcd jcd�1j � � � jc1�D s�1cd ˝k s�1cd�1˝k � � � ˝k s�1c1;

where for c 2 xC , s�1c 2 xC Œ�1� denotes the corresponding element in xC Œ�1� with degree
shifted up by 1. The differential m1 on �C vanishes on k, so m1jkD 0, and acts on
monomials as

m1.Œcmj � � � jc1�/D
X
i;j

.�1/jc1jC���Cjci j�i Œcmj � � � jciC2j�j .ciC1/jci j � � � jc1�:

Here, by abuse of notation, we write �j for the induced coproduct xC Œ�1�! xC Œ�1�˝j.

The product m2 W�C ˝�C !�C is given by

m2.Œcmj � � � jciC1�; Œci j � � � jc1�/D .�1/jc1jC���jci j�i Œcmj � � � jciC1jci j � � � jc1�:

The slightly unusual sign .�1/jc1jC���Cjci j�i appears as a consequence of the following
two facts:

(i) The equation m2
1
D 0 is equivalent to co-A1–relations (6) for .�j /j�1.

(ii) The pair .m1;m2/ satisfies the A1–relations (3).

Redefining .m1;m2/ to .d; � / using (4) removes the sign in m2, and .d; � / becomes a
(usual) associative DG–algebra, where the Leibniz rule (5) holds. The augmentation
� W�C ! k is given by letting �1 be the projection to k and �i D 0 for i > 0.

There is a decreasing, exhaustive, bounded above filtration on the complex �C ,

�C D F0�C � F1�C � � � � ;

given by
Fp�C WD xC Œ�1�˝kp

˚ xC Œ�1�˝k.pC1/
˚ � � � :

This gives the word-length spectral sequence with

E
p;q
1
DH pCq.Fp�C =FpC1�C /:

Geometry & Topology, Volume 27 (2023)



2074 Tobias Ekholm and Yankı Lekili

Unlike the case of the word-length filtration on the bar construction, for the cobar
construction, in general, convergence may fail. Thus, we introduce completions. We
define the completed cobar construction to be

y�C D lim
 ��

s

.�C /=.Fs�C /:

The length filtration on �C induces a filtration yF on y�C defined by

yFp y�C D lim
 ��

s

.Fp�C /=.Fs�C /;

which is decreasing, exhaustive, bounded above and complete Hausdorff. The spectral
sequence associated to the filtration yF on y�C is isomorphic to the length spectral se-
quence associated with the filtration yF on�C and converges conditionally to H�. y�C /;
see [9, Theorem 9.2]. It converges strongly to H�. y�C / if the spectral sequence is
regular, ie only finitely many of the differentials d

p;q
r are nonzero for each p and q;

see [9, Theorem 7.1]. This holds, for example, if �C is locally finite.

We say that �C is complete if the natural map �C ! y�C is a quasi-isomorphism. For
example, it is easy to see that this is the case if C is locally finite and simply connected.

If f W C ! D is an A1–comap which is a quasi-isomorphism of A1–coalgebras, and
if �C and D are complete, then �f is a quasi-isomorphism. (This follows from
[21, Theorem 7.4]; see also [64, Theorem 5.5.11].) The completeness assumptions
are necessary and are related to the completeness of the word-length filtration. A
counterexample when the completeness assumptions are dropped can be found in
[49, Section 2.4.1].

There is a universal twisting cochain tC WC!�C given by the composition of canonical
projection C ! xC Œ�1� and the canonical inclusion xC Œ�1�!�C .

2.2.2 Bar–cobar adjunction Suppose that C is a coaugmented A1–coalgebra and
A is an augmented DG–algebra. Then we have a canonical bijection

(21) homDG.�C ;A /! Tw.C ;A /

given by � 7! � ı tC . Similarly, if C is a coaugmented conilpotent DG–coalgebra and
A is an augmented A1–algebra, then we have a canonical bijection

(22) homcoDG.C ;BA /! Tw.C ;A /;

given by � 7! tA ı�; see [57, lemme 3.17].
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Therefore, when C is a coaugmented conilpotent DG–coalgebra, and A is an augmented
DG–algebra, we have the bar–cobar adjunction

homDG.�C ;A /Š homcoDG.C ;BA /:

Moreover, the natural DG–maps

(23) �BA ! A and C ! B�C

are quasi-isomorphisms for any DG–algebra A and conilpotent DG–coalgebra C ; see
[56, Section 6.10]. It is also true that for any A1–algebra A , the A1–algebra map

A !�BA

given by the adjunction map BA ! B�BA is an A1–quasi-isomorphism; see [47,
lemme 2.3.4.3]. Note that any A1–quasi-isomorphism is invertible up to homotopy
[59, Corollary 1.4].

Similarly, for any A1–coalgebra C , the A1–comap

B�C ! C

given by the adjunction map �B�C !�C is an A1–quasi-isomorphism.

However, an A1–quasi-isomorphism for a general A1–coalgebra is not usually a
convenient notion since, as we remarked above, a quasi-isomorphism of A1–coalgebras
between C and C0 does not necessarily induce a quasi-isomorphism of DG–algebras
�C and �C0.

For this reason, one considers the category of conilpotent A1–coalgebras. Let C be
a coaugmented A1–coalgebra generated over k by variables .ci/i2I , with I some
countable index set, such that there exists a total ordering

c�.1/ < c�.2/ < � � � ;

where � W I ! I is a bijection. This produces an increasing filtration

F0
D k� F1

� � � � ��C

by setting Fp D khc�.1/; : : : ; c�.p/i. Suppose that the structure maps .�i/i�1 are
compatible with this filtration, in the sense that �i.c�.p// � Fp�1 for all i and p.
Then we call C a conilpotent A1–coalgebra. (More generally, homotopy retracts of
such A1–coalgebras are called conilpotent [56, Sections 6.10 and 9]. This notion is
called finite type in [46].). Given two such A1–coalgebras C and C0, one considers
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filtered A1–comaps between them. In the case of a conilpotent DG–coalgebra C there
exists an increasing filtration on �C given by the subalgebras Ker.�.n// that plays the
same role; see [47, lemme 1.3.2.3].

We next state the following elementary lemma for later convenience.

Lemma 10 Let A be an augmented A1–algebra such that the k–bimodule structures
on A and BA are locally finite. Then there are quasi-isomorphisms of augmented
DG–algebras

�.A #/! .BA /# and �.#A /!#.BA /:

Note that the assumption is satisfied when A is locally finite and simply connected.
We shall briefly consider the case when A is only assumed to be locally finite and
connected, in which case we have:

Lemma 11 Let A D
L

i A i be a connected , locally finite k–bimodule equipped with
an augmented A1–algebra structure. Then there are maps of DG–algebras

�.A #/! .BA /# and �.#A /!#.BA /

which become quasi-isomorphisms , after completion ,

y�.A #/! .BA /# and y�.#A /!#.BA /:

2.3 Koszul duality

Suppose C is a coaugmented conilpotent A1–coalgebra and A is an augmented DG–
algebra. Via the bijection (21), any twisting cochain t 2 Tw.C ;A / is of the form
t D � ı tC for some unique � 2 homDG.�C ;A /. Similarly, if C is a coaugmented
conilpotent DG–coalgebra and A is an augmented A1–algebra, any twisting cochain
t 2 Tw.C ;A / is of the form tD tA ı� for some � 2 homcoDG.C ;BA /.

Definition 12 In either case above we call t a Koszul twisting cochain if � is a
quasi-isomorphism, and we denote the set of Koszul twisting cochains by Kos.C ;A /.

The terminology of Koszul twisting cochains is taken from [49]. They are also
called acyclic twisting cochains in other sources [47; 56]. This terminology is due
to the well-known fact that, under various local-finiteness assumptions, a twisting
cochain t is Koszul if and only if the Koszul complex (17) associated to t is acyclic;
see [56, Appendix A].
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Informally, if t 2 Kos.C ;A /, then, depending on whether we write t D � ı tC or
tD tA ı �, either A can be used in place of �C , or C can be used in place of BA

in various resolutions. This, in turn, may lead to smaller complexes to compute with.
For example, one can compute Hochschild homology and cohomology of A and �C

using the A –bimodule resolution of A given by the complex

A ˝t
k C ˝t

k A

with the differential as in (19); see [39].

Suppose that A is an A1–algebra with an augmentation � WA !k. The augmentation �
makes k into a left A –module, or equivalently, a right A op–module.

Definition 13 The Koszul dual of an augmented A1–algebra A is the DG–algebra of
left A –module maps from k to itself,

E.A / WD RHomA .k;k/:

Recall that for a unital A1–algebra A over a field K (or a semisimple ring such
as k), any A1–module is both h–projective and h–injective; that is, if M is an
A1–module over A and N is an acyclic A1–module over A , then the complexes
RHomA .M;N / and RHomA .N;M / are acyclic [59, Lemma 1.16]. Hence, the DG–
algebra RHomA .k;k/ can be computed as the A1–module homomorphisms from k

to itself. (More generally, this holds if A is h–projective as a complex of k–modules,
which implies that k is h–projective as an A1–module over A .) Therefore, we have
the following:

Proposition 14 If A (resp. A op) is an augmented unital A1–algebra , then

RHomA .k;k/Š .BA /# .resp. #.BA //:

Proof Recall that A ˝k BA is quasi-isomorphic to k as an A –module. Hence, by
the hom-tensor adjunction, we have RHomA .A ˝k BA ;k/ŠRHomk.BA ;k/. Since
A is h–projective as a complex of k–modules, so is BA ; hence the latter is computed
by .BA /#.

In this model of E.A /, the k–bimodule structure on E.A / can be seen as in (10),
since k is viewed as a left k–module induced from its structure as a left A –module. If,
instead, we have an augmentation of A op, then we view k as a right A –module, and
the k–bimodule structure on RHomA .k;k/ would be given by (11).
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The cohomology of E.A / is a graded algebra,

ExtA .k;k/ WDH�.RHomA .k;k//ŠH�..BA /#/:

Dually, we also have the derived tensor product kb̋A k, which can be computed by the
complex BA . The cohomology is a graded coalgebra

TorA .k;k/ WDH�.kb̋A k/ŠH�.BA /:

In particular, if k is a field, we have that ExtA .k;k/Š .TorA .k;k//# by the universal
coefficient theorem.

Remark 15 If A is a commutative algebra (or more generally an E2–algebra), then
TorA .k;k/ also has a graded algebra structure, defined via

TorA .k;k/˝TorA .k;k/! TorA˝A .k˝k;k˝k/! TorA .k;k/;

induced by the algebra map A ˝A !A (which exists since A is commutative). This
should not be confused with the natural coalgebra structure above.

Note that A itself can be viewed as a left A –module and the map � W A ! k is a map
of left A –modules; hence, it induces a map of left E.A /op–modules

z� W RHomA .k;k/
op
! RHomA .A ;k/;

which can in turn be viewed as an augmentation of E.A /op D RHomA .k;k/
op, since

RHomA .A ;k/ can again be identified with k as it is the Yoneda image of k as an
A –module. Hence, k can be viewed as a right E.A /–module.

Definition 16 The double dual of A is defined to be E.E.A // WD RHomE.A /.k;k/.

There is a natural map from A to its double dual,

ˆ W A ! RHomE.A /.k;k/;

defined via viewing the right E.A /–module k as RHomA .A ;k/ and acting on the
left by A Š RHomA .A ;A /.

Definition 17 We say that A and E.A / are Koszul dual ifˆ WA !RHomE.A /.k;k/

is a quasi-isomorphism.

One standard situation in which Koszul duality holds is the following:
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Theorem 18 Suppose C D
L

i�0 C i is a locally finite , simply connected k–bimodule
equipped with an A1–coalgebra structure and the coaugmentation kŠ C 0! C . Let
A D �C , which is an augmented connected DG–algebra. Then E.A / Š C #, and
A and C # are Koszul dual. In other words , the natural morphism

�C ! RHomE.A /.k;k/

is a quasi-isomorphism.

Proof First, observe that indeed E.A /Š .BA /#Š .B�C /#ŠC # by (23) and because
Homk�.�;k/ preserves quasi-isomorphisms. Next, we have that

RHomE.A /.k;k/Š
#.B.C #//Š�C ;

where we applied Lemma 10 to C # and used the fact that #.C #/Š C since C is locally
finite.

Rather than making the grading assumptions on C as in Theorem 18, which guarantee
that BC # is locally finite, one can directly assume that the grading on the cohomology
H�.�C / is locally finite. This assumption is harder to check in practice but Koszul
duality still holds under this assumption, which one can prove by combining the above
argument with the homological perturbation lemma; see for example [43, Theorem 2.8].

In the case that C D
L

i�0 C i is a locally finite, connected (but not simply connected)
k–bimodule, Lemma 10 no longer applies. We instead use Lemma 11 to deduce the
following weaker duality result:

Proposition 19 Let C D
L

i�0 C i be a connected , locally finite k–bimodule , equipped
with an A1–coalgebra structure and coaugmentation kŠC 0!C , and let A D�C D

k˚
L

j�1.
xC Œ�1�/˝kj, which is an augmented DG–algebra where augmentation is

given by projection to k. Then E.A /Š C # and there is a quasi-isomorphism

y�C ! RHomE.A /.k;k/:

Note that in Proposition 19, A D�C is not connected, and may admit other augmen-
tations � W A ! k than that induced by the cobar construction. Such augmentations
will be considered below. For example, suppose that C Š k˚ xC is a coaugmented
A1–coalgebra such that xC DKhcjc 2Ri is generated by elements c from an indexing
set R and that � W �C ! k is an augmentation, which is induced by a map C ! k

since �C is free. Now we can consider the coaugmented A1–coalgebra C � D k˚ xC �

such that
xC � DKhc � �.c/1k j c 2Ri:
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Then �C and �C � are quasi-isomorphic as nonaugmented DG–algebras, and the
augmentation on �C � induced by the cobar construction coincides with the given
augmentation � on �.

Remark 20 When C is not simply connected, the proof of duality fails precisely
because BC # is not locally finite. Nevertheless, the duality result can still be proved
in certain cases where an extra weight grading (internal degree, or Adams degree) is
available; see [50; 56, Appendix A.2; 39]. We will not study this situation systematically
in this paper, but it is important as it extends the range of applicability of Koszul duality
theory. In the setting of Chekanov–Eliashberg DG–algebras, such a situation was
considered in [32].

3 Legendrian (co)algebra

In this section we introduce our Legendrian invariants. We start by discussing a model
for loop space coefficients in Section 3.1. In Section 3.2 we define the Chekanov–
Eliashberg algebra with loop space coefficients using moduli spaces of disks of all
dimensions, and in Section 3.4 we give a more computable version, which uses only
rigid disks and which carries the same information if the Legendrian submanifold is
simply connected.

3.1 Coefficients

Before defining our Legendrian invariants, we describe chain models for their coeffi-
cients C��.�pvƒv/ for v 2 �C. (Notation is as above, ƒv is a C decorated connected
component of the Legendrian ƒ.) We work over a field K.

Let �pvƒv denote the topological monoid of Moore loops based at pv, where the
monoid structure comes from concatenation of loops; see [5]. Write C��.�pvƒv/ for
the cubical chain complex (graded cohomologically). Since �pvƒv is a topological
monoid, the complex C��.�pvƒv/ becomes a DG–algebra using the natural product
map � on cubical chains, where the DG–algebra product is given as

C��.�pvƒv/˝C��.�pvƒv/
�
�! C��.�pvƒv ��pvƒv/

ı
�! C��.�pvƒv/:

We point out that the �–map

�W C��.�pvƒv/˝C��.�pvƒv/! C��.�pvƒv ��pvƒv/;

when both sides are equipped with the Pontryagin product, is a DG–algebra map.
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In what follows, we shall also make use of an inverse to the �, known as the Serre
diagonal [60], and the cubical analogue of the Alexander–Whitney map,

(24) � W C��.�pvƒv ��pwƒw/! C��.�pvƒv/˝C��.�pwƒw/:

To define this map consider the n–cube In with coordinates .x1; : : : ;xn/. For an
ordered j –element subset J � f1; 2; : : : ; ng, J D .i1; : : : ; ij / with i1 < � � � < ij , and
for � 2 f0; 1g, let ��

J
W Ij ! In be the map given in coordinates y D .y1; : : : ;yj / by

xir
.�J .y//D yr and xm.�J .y//D � if m 62 J:

Consider a cubical chain .�; �/ W In!�pvƒv ��pwƒw . If J is an ordered subset of
f1; : : : ; ng, let J 0 denote its complement ordered in the natural way. Define � by

�.�; �/D
X

J

.�1/JJ 0.� ı �0J /˝ .� ı �
1
J 0/;

where the sum ranges over all ordered subsets J , and .�1/JJ 0 is the sign of the
permutation JJ 0. This is a strictly associative chain map inducing a quasi-isomorphism.
Note also that there are obvious extensions of � to several products of loop spaces.

As the cubical chain complex C��.�pvƒv/ is very large, it is not the most effective
complex for computation. We next discuss smaller models. Starting with a 0–reduced
simplicial set X with geometric realization jX j Dƒv, an explicit economical model
for C��.�pvƒv/ is obtained by taking normalized chains on the Kan loop group GX ;
see [44]. We will not say much about this, but point out that GX is a free simplicial
group, whose geometric realization jGX j is homotopy equivalent to �jX j; see [37,
Corollary 5.11]. Hence, by the monoidal Dold–Kan correspondence [58], the nor-
malized chains on GX give a (weakly) equivalent model of C��.�pvƒv/. (Another
similar construction is sketched in [46], and leads to a free model.)

Alternatively, one can work with CW–complexes. We start with the simply connected
case: for a 1–reduced (unique 0–cell and no 1–cells) CW–structure on ƒv , the Adams–
Hilton construction [5] gives a free DG–algebra model for C��.�pvƒv/ as follows.
Denote the k–cells of ƒv by ei

k
for k � 2 and i D 1; : : : ;mk . The Adams–Hilton

construction gives a CW–monoid with a single 0–cell, and generating cells Nei
k

in
dimension k � 1, which is quasi-isomorphic to �pv .ƒv/ as a monoid; see [14]. This
gives a DG–algebra structure on the free algebra,

A.ƒv/ WDKh Ne1
2 ; : : : ; Ne

m2

2
; Ne1

3 ; : : : ; Ne
m3

3
; : : : ; : : :i; with j Nei

k j D 1� k;
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and a DG–algebra map
A.ƒv/

‰
�! C��.�pvƒv/;

which is a quasi-isomorphism. The differential d on A.ƒv/ is generally not explicit. It
is defined recursively as follows. For every 2–cell ei

2
, we have d. Nei

2
/D 0. In general,

assuming that dk�1 and ‰k�1 have been defined on the k–skeleton ƒ.k/v of ƒv, then
for each .kC1/–cell e, with attaching map f W Sk ! ƒ

.k/
v , define dk Ne D c so that

.‰k�1/.c/D .�f /�.�/, where � a generator of Hk�1.�Sk/, and define ‰k. Ne/ to be
the k–chain of loops in e (which then depends on earlier choices along the boundary
of Ne). We remark that A.ƒv/ can be identified isomorphically with �C CW

� .ƒv/ for a
suitable A1–coalgebra structure on the cellular chain complex C CW

� .ƒ/.

This construction can be generalized to the non-simply-connected case as follows.1

Begin with a 0–reduced CW–structure on ƒv. Denote the k–cells by ei
k

for i D

1; : : : ;mk . For each k–cell ek
i with k � 2, we have a free variable in degree 1� k,

which we again denote by Nei
k

. For each 1–cell e
j
1

with j D 1; : : : ;m1, we have two
variables tj and t�1

j in degree 0 such that tj t�1
j D 1 D t�1

j tj . Thus, the underlying
algebra is the “almost free” algebra of the form

A.ƒv/ WDKht˙1
1 ; : : : ; t˙1

m1
; Ne1

2 ; : : : ; Ne
m2

2
; Ne1

3 ; : : : ; Ne
m3

3
; : : :i:

This presentation is often more efficient than the presentation one gets from the Kan loop
group construction using a simplicial set presentation of ƒv . However, the differential
in the Adams–Hilton model is not easy to describe explicitly. Note that we have

d.tj /D d.t�1
j /D 0

for degree reasons. For every 2–cell ei
2
, we have

d. Nei
2/D 1� ci ;

where ci 2Kht˙1
j j j D 1; : : : ;m1i represents the class of the attaching map of ei

2
. The

differential on higher-dimensional cells is generally harder to compute and is exactly
as in the simply connected case discussed above.

Augmentations � WA.ƒv/!K correspond to solutions of the equations�
�.tj /�.t

�1
j /D 1 for j D 1; : : : ;m1;

�.d Nei
2
/D 0 for i D 1; : : : ;m2:

1See [40; 41]: a generalization was given earlier in [33], however that paper contains an error.
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Since Kht˙1
j ; j D 1; : : : ;m1 j d Ne

i
2
; i D 1; : : : ;m2i is a presentation of the fundamental

group algebra KŒ�1.ƒv;pv/�, augmentations correspond exactly to local systems
�1.ƒv;pv/!K.

We will use the cubical chain complex C��.�pvƒv/ to define Legendrian invariants
below. Cubical chains work uniformly for all spacesƒv and are convenient for showing
that the fundamental classes of moduli spaces of pseudoholomorphic disks Msy, via
evaluation maps, take values in the chain complex. The Legendrian invariants can also
be studied using any of the smaller models discussed above. It is however important
to note that in the non-simply-connected case, we only have either weak equivalence
in the homotopy category of DG–algebras, or Morita equivalence [40; 41] of these
models and the cubical chain complex C��.�pvƒv/.

In the case that ƒv is simply connected, we can use a DG–algebra map

ˆ W C��.�pvƒv/!A.ƒv/

that goes in the opposite direction to the Adams–Hilton map to pass to a more eco-
nomical quasi-isomorphic model. Such a homotopy equivalence ˆ is constructed in
two steps: first construct, as in [54] using Eilenberg–Moore methods, a DG–algebra
quasi-isomorphism

(25) C��.�pvƒv/!�C�.ƒv/;

where in both instances C� refers to the normalized singular chains. Second, using
the standard A1–coalgebra quasi-isomorphism between the DG–coalgebra of singular
chains C�.ƒv/ and the A1–coalgebra C CW

� .ƒv/ of normalized cellular chains, one
obtains a DG–algebra quasi-isomorphism

�C�.ƒv/!�C CW
� .ƒv/DA.ƒv/;

since we assumed that the complexes C� and C CW
� are simply connected. (In Section 3.5,

we also give a more geometric construction of a DG–algebra quasi-isomorphism ˆ

corresponding to (25) landing in Morse chains, using Morse flow trees.)

Similarly, if ƒv is homotopy equivalent to an Eilenberg–Mac Lane space K.�1; 1/,
then the singular chains can be replaced with the group algebra KŒ�1�: there exists a
quasi-isomorphism of DG–algebras

C��.�pvƒv/!KŒ�1�
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given by sending a 0–chain to its homology class, and sending all higher-dimensional
chains to 0. Note that this DG–algebra map exists for any space ƒv, but is a quasi-
isomorphism only in the case that ƒv is homotopy equivalent to K.�1; 1/.

It is often convenient to use a cofibrant (or free) replacement for KŒ�1�. For example,
if ƒv D S1, then KŒ�1�Š KŒt; t�1� and a cofibrant replacement is given by the free
graded algebra

Khs1; t1; k1; l1;u1i; where js1j D jt1j D 0; jk1j D jl1j D �1; ju1j D �2;

with the differential

dk1 D 1� s1t1; dl1 D 1� t1s1; du1 D k1s1� s1l1:

A DG–algebra defined over KŒt; t�1� can be pulled back to a weakly equivalent DG–
algebra over this cofibrant replacement. (See [63] for background in model categories
on DG–algebras that we are using in a very simple case here.)

3.2 Construction of Legendrian invariants

As above, let X be a Liouville domain with c1.X /D 0 (for Z–grading) and @X D Y its
contact boundary. LetƒD

F
v2�0.ƒ/

ƒv be a Legendrian submanifold in Y , whereƒv
is a connected component of ƒ. Assume that ƒ is relatively spin and that its Maslov
class vanishes. Let each connected component ƒv be decorated with a sign and write
ƒC and ƒ� for the union of the components decorated accordingly. (Our different
treatment of ƒC and ƒ� is natural from the point of view of handle attachments; recall
from the introduction that when ƒ� is a union of spheres, we attach usual Lagrangian
disk-handles to ƒ� and handles with cotangent ends to ƒC.) When we have an exact
Lagrangian filling L of ƒ (relatively spin and with vanishing Maslov class), L can
also be decomposed into embedded components L D

S
v2� Lv. These embedded

components are not disjoint: they are allowed to intersect transversely at finitely many
points. There is a bijection between � and the embedded components of L.

We require that if two componentsƒw1
andƒw2

are boundary components of the same
embedded component Lv, then either both belong to ƒ� or both to ƒC. Using this
property, we get a decomposition � D �C t��, corresponding to the decomposition
ƒDƒC tƒ�.

Let k be the semisimple ring generated by mutually orthogonal idempotents fevgv2� .
If we are not given a filling of ƒ, then the index set � is taken to be the connected
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components, �0.ƒ/, instead. If we need to distinguish between the two choices, we
will denote them as kƒ and kL. Note that there is an injective ring map kL! kƒ

which takes the idempotent ev corresponding to an embedded component Lv to the
sum ew1

C � � � C ewr
of idempotents of its boundary components ƒwj . In particular,

this map turns any kƒ–bimodule into a kL–bimodule.

Let R denote the set of nonempty Reeb chords ofƒ. This is a graded set: the grading of
a chord c 2R is given by jcj D �CZ.c/, where CZ.c/ is the Conley–Zehnder grading;
see Appendix A. (With this convention, the unique chord c of the standard Legendrian
unknot in R3 has jcj D �2 and for the corresponding Legendrian unknot in R2n�1

with one Reeb chord c, we have jcj D �n. See also Remark 30.)

Note that the vector space generated by R is a k–bimodule, where evRew corresponds
to the set of Reeb chords from ƒv to ƒw. The underlying algebra of the standard
Chekanov–Eliashberg DG–algebra is generated freely by R over k. We need to modify
this in the case that ƒC is nonempty to incorporate chains in the based loop space
of ƒv for v 2 �C. Let us first do this using cubical chains.

For each v 2�C, consider the cubical chains C��.�pvƒv/ as a k–algebra by requiring
that the left or right action of ew is trivial except if w D v, when it acts as identity.
Let CE� be the algebra over k given by adjoining elements of R to the union of
C��.�pvƒv/ for v 2 �C. Thus an element of CE� is a sum of alternating words in
Reeb chords, �1c1�2c2 � � � �mcm�mC1, where cj are Reeb chords and �j chains of
based loops in the component of the Legendrian where the adjacent Reeb chord lies.

Now the differential on CE� is defined by extending the differential on the cubical
complexes C��.�pvƒv/ for v 2 �C. We describe the differential on a single Reeb
chord and extend it by the graded Leibniz rule. The differential d on a Reeb chord
decomposes to a sum

d D
X
i�0

�i ;

where for any Reeb chord c0 only finitely many �i.c0/ are nonzero. The operations
�i.c0/ are defined as follows.

Consider moduli spaces of holomorphic disks with positive puncture at c0; for defini-
tions and notation see Appendix A. More precisely, consider Reeb chords ci ; : : : ; c1

such that c0ci � � � c1 is a composable word and let c D cC
0

c�i � � � c
�
1

. Consider the
space of disks DiC1 with one distinguished positive puncture and i negative punctures
(across which the boundary numbering is constant, in the terminology of Appendix A).
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Consider the moduli space Msy.c/. As we use a translation-invariant almost complex
structure on the symplectization, R acts by this moduli space by translation. Write

(26) MsyR.c/ WDMsy.c/=R

for the quotient. Theorems 74 and 75 imply that MsyR.c/ is a smooth orientable
manifold, with a natural compactification as a stratified space that carries a fundamental
chain. It follows, via the evaluation map at a point in the boundary arcs of DiC1, that
MsyR.c/ parametrizes a chain of paths in the .iC1/–fold product ƒ�.iC1/.

We transform these chains of paths to chains of based loops as follows. On each
componentƒv pick reference arcs connecting all Reeb chord endpoints to the basepoint.
Let Uv �ƒv be a disk which is a regular neighborhood of these arcs. For convenience
we take the disk to be smooth. Then a collar neighborhood on its boundary gives a
smooth map �v W .ƒv;�v/! .ƒv;�v/ such that �v.Dv/D�v and �vjƒvnDv WƒvnDv!

ƒv n f�vg is a diffeomorphism. To get a chain of loops parametrized by Msy.c/ we
compose its chains of paths with the maps �v . The resulting chain of paths then takes
all Reeb chord endpoints in component ƒv to the basepoint �v . Thus by composition
with �v, the moduli space parametrizes a chain of loops in .�pƒ/

�.iC1/.

We treat two cases separately. First, if all boundary components of DiC1 map to
components in ƒ�, then we let

(27) ŒMsyR.c/�D

�
nci � � � c1 if dim.Msy.c//D 1;

0 if dim.Msy.c//¤ 1;

where n is the algebraic number of R components in the moduli space. Second, if
some boundary component maps to a component in ƒC, then we write ŒMsyR.c/� for
the chain of paths in .�pƒ/

�.iC1/, where we separate the components in the product
by the Reeb chords c0 D ci � � � c1:

ŒMsyR.c/�D �iC1ci�i � � � �2c1�1;

where �j are the components of the fundamental chain � WMsyR.c/! .�ƒ/�.iC1/.
Further, we write ev for each boundary component that maps to a component in ƒ� in
between the Reeb chords ci � � � c1 as above.

A subtle point here is that the moduli space MsyR.c/ naturally gives rise to a chain � in
C��.�ƒ

�.iC1// rather than in C��.�ƒ/
˝.iC1/. Note that �i are simply components

of � , they are not considered as chains. To separate these out we apply the cubical
Alexander–Whitney map

� W C��..�ƒ/
�.iC1//! C��.�ƒ/

˝.iC1/;
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recalled in Section 3.1. With these conventions we then define for i � 0,

�i.c0/ WD
X

cDc
C

0
c�

i
���c�

1

�ŒMsy.c/�;

where we separate the components of the tensor product by the Reeb chords in c0, in
analogy with the notation for the product chain and where � is the Serre diagonal from
equation (24). The output of �i.c0/ is thus a sum of alternating words of chains of
loops in C��.�ƒ/ and Reeb chords, and�i is an operation of degree 2� i on LC�.ƒ/.
We point out that if there are ƒC components, then higher-dimensional moduli spaces
contribute to the differential (unlike the case whenƒDƒ�). Note also that it is possible
to have holomorphic disks contributing to �0, which means that the chord c0 is the
positive puncture of a disk without negative punctures.

Our next result shows that the operations �i give a differential on CE�. The proof
uses boundaries of moduli spaces of holomorphic disks. By SFT compactness [12] and
standard gluing results — see eg [31, Appendix A; 23, Appendix B] — the boundary
of a moduli space Msy.c/ consists of several level holomorphic buildings of curves
with top level in Msy.c0/ and lower levels in Msy.c00/, where the positive puncture of
a curve in a lower level is attached at a negative puncture of a curve above it. In terms
of MsyR.c/, standard gluing results imply that in a neighborhood of several-level curves
where positive and negative punctures are joined at d Reeb chords, the moduli space
MsyR.c/ is C 1–diffeomorphic to

(28) Œ0; 1/d �

dY
jD1

MsyR.cj /;

where the product runs over positive punctures in the holomorphic building which are
not the positive puncture of the curve in MsyR.c/.

We will use the compact notation ? to denote all such broken configurations and write
simply

@MsyR.c/DMsyR.c0/ ?MsyR.c00/:

We next need to consider the fundamental chain of loops ŒMsyR.c0/?MsyR.c00/� carried
by MsyR.c0/?MsyR.c00/, or in other words the codimension 1 boundary of ŒMsyR.c/�.
If the dimension of MsyR.c/ is d then its boundary gives .d�1/–dimensional chains
of loops in ƒ. Consider a several-level building with moduli space components Msy

j

of dimension dj � 1, j D 1; : : : ;m. Then, by SFT compactness, d C 1D
Pm

jD1 dj .
A boundary component of a several-level disk that consists of boundary segments
from k disks in MsyR

j1
; : : : ;MsyR

jk
will then carry a chain of loops in ƒ of dimension

Geometry & Topology, Volume 27 (2023)



2088 Tobias Ekholm and Yankı Lekili

Pk
rD1.djr

�1/� d �1, with equality only if the broken configuration consists of only
two levels. It follows that only two level curves contribute to ŒMsyR.c0/ ?MsyR.c00/�.
More precisely, the codimension 1 boundary of MsyR.cC

0
c�m � � � c

�
1
/ corresponding to

curves joined at only one Reeb chord contributes with top-dimensional stratum of the
boundary in the form of a product,

MsyR.cC
0

c�m � � � c
�
j b�c�j�k � � � c

�
1 /�MsyR.bCc�j�1 � � � c

�
j�kC1/:

In particular, the chains of loops along the two-level boundary segments of the two-
level curve are given by the Pontryagin product of the two adjacent chains of one level
segments that form the two-level segment. In the two-level moduli space above, if
k > 1 there are two two-level boundary segments: the segments between c�j and b�

in the upper-level curve joined to the segment between bC and c�
j�1

, and the segment
between c�

j�kC1
and bC in the lower level is joined to the segment between b� and

c�
j�k

in the upper level. If the upper-level moduli space parametrizes the chains of
loops in C��.�ƒ

�.m�k// with components given by

�mcm�m�1 � � � cjˇ
0
j�1bˇ0j�kcj�k � � � �1c1�0;

and the lower-level the chain in C��.�ƒ
�.k�1// with components given by

ˇ00j�1cj�1�j�2 � � � �j�kC1cj�kC1ˇ
00
j�k ;

and if � denotes the constant chain and � the Pontryagin product, then the chain in
C��.�ƒ

�.mC1// that contributes to the boundary has components

(29) .�m � �/ cm .�m�1 � �/ � � � .�j � �/ cj .ˇ
0
j�1 �ˇ

00
j�1/ cj�1 .� � �j�2/

� � � .� � �j�kC1/ cj�kC1 .ˇ
0
j�k �ˇ

00
j�k/ cj�k .�j�k�1 � �/ � � � .�1 � �/ c1 .�0 � �/:

In the case that k D 1, the lower-level curve lies in MsyR.bC/ and has no negative
punctures. In this case the boundary contribution is

(30) .�m � �/ cm � � � .�j � �/ cj .˛
0
j�1 �ˇ

00
�  0j�1/ cj�1 .�j�2 � �/ � � � .�1 � �/ c1 .�0 � �/;

where ˛0 �ˇ00 �  0 denotes the chain of loops parametrized by

MsyR.cC
0

cm � � � b � � � c1/�MsyR.bC/;

which at .s; t/ 2MsyR.cC
0

cm � � � b � � � c1/�MsyR.bC/ is the loop ˛0.s/ �ˇ00.t/ �  0.s/,
where � denotes concatenation.

Proposition 21 Let d W CE� ! CE� be the map extended to CE� by the graded
Leibniz rule. Then d is a differential , d2 D 0. We call CE� with the differential d the
Chekanov–Eliashberg DG–algebra.
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Remark 22 WhenƒDƒ�, CE� was called LCA� in [32]; this is the cohomologically
graded version of the usual Legendrian homology algebra LHA� in [11]. By definition,
we have LHA� D CE��.

Proof When there are only components in ƒ� involved, the result follows from
standard arguments involving the boundary of 1–dimensional moduli spaces; see eg
[28; 23; 11]. Consider therefore the case when there are chains in the loop space
involved.

Let c D cC
0

c�m � � � c
�
1

. The d–dimensional moduli space Msy.c/ contributes to dc0.
The codimension 1 strata of its boundary consists of broken curves with one level of
dimension d � k and one of dimension k for 0< k < d . We find, with @ denoting the
natural tensor extension of the boundary operator in singular homology over boundary
components involved in ƒC, that

@ŒMsyR.c/�D ŒMsyR.c0/ ?MsyR.c00/�;

where ? is as explained above and

c0 D cC
0

c�m � � � c
�
j b�c�j�k � � � c

�
1 and c00 D bCc�j�1 � � � c

�
j�kC1:

We next apply the cubical Alexander–Whitney map � to this formula to deduce

@ ı �ŒMsyR.c/�D � ı @ŒMsyR.c/�D �ŒMsyR.c0/ ?MsyR.c00/�

D �ŒMsyR.c0/� � �ŒMsyR.c00/�;

where � is the Pontryagin product (see (29) and (30)) and we used that � is a chain map
and is compatible with the product. The fact that � is a chain map is well known. We
verify that it is compatible with the product below. It follows that the terms contributing
to d2 which arise from the differential acting on chains and acting on Reeb chords
cancel.

It remains to check that � is compatible with the product. By the explicit product for-
mulas for boundary contributions (29) and (30), we need to check that the compositions

C��.�pu
ƒu ��pvƒv/˝C��.�pvƒv ��pwƒw/
�
�! C��.�pu

ƒu ��pvƒv ��pvƒv ��pwƒw/

1� ��1
����! C��.�pu

ƒu ��pvƒv ��pwƒw/
�
�! C��.�pu

ƒu/˝C��.�pvƒv ��pwƒw/

1˝�
���! C��.�pu

ƒu/˝C��.�pvƒv/˝C��.�pwƒw/
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and

C��.�pu
ƒu ��pvƒv/˝C��.�pvƒv ��pwƒw/

�˝�
���! C��.�pu

ƒu/˝C��.�pvƒv/˝C��.�pvƒv/˝C��.�pwƒw/

1˝�˝1
����! C��.�pu

ƒu/˝C��.�pvƒv ��pvƒv/˝C��.�pwƒw/

1˝�˝1
����! C��.�pu

ƒu/˝C��.�pvƒv/˝C��.�pwƒw/

agree. This is easily checked by evaluating them on a test chain .�; �/. Note that this
uses the fact that the cubical chain complex is a quotient; namely, degenerate cubical
chains are divided out.

Remark 23 As discussed in Appendix A, the moduli spaces in the definition of
the differential on CE� above are defined in terms of anchored moduli spaces Msy,
ie moduli spaces of disks with additional interior punctures where holomorphic planes
in the filling with asymptotic markers are attached. We point out that in order to
calculate the differential one need only take into account rigid such holomorphic planes
of dimension zero. For higher-dimensional moduli spaces of planes of dimension
d0 > 0, the dimension of the curves in the symplectization is d C 1� d0 and does not
contribute to the d–dimensional chain ŒMsy�.

Remark 24 As mentioned in the introduction, we relate CE� as defined above to a
parallel copies version of the same algebra, which is defined solely in terms of rigid
moduli spaces. In order to do so it is convenient to use a topologically simpler but
algebraically more complicated model of CE�, defined as follows. The generating set
of our algebra is extended to chains in the product .�ƒ/�.iC1/, where we separate the
coordinate functions by Reeb chords. We define the product of two such chains by
taking the Pontryagin product of the chains at adjacent factors, giving an operation

C��..�ƒ/
�.iC1//˝C��..�ƒ/

�.jC1//! C��..�ƒ/
�.iCjC1//:

See (29) and (30) for explicit formulas. The differential on this version of CE� is then
defined by the singular differential on the chain, and as

�i.c0/ WD
X

cDc
C

0
c�

i
���c�

1

ŒMsy.c/�

on Reeb chord generators. (In other words, we define it as above but disregard the
diagonal approximation.) It follows from the Künneth formula that the two versions of
CE� are quasi-isomorphic.
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Although the definition of CE� given above works generally, from a computational
perspective it is hard to get our hands on, as the cubical chain complexes C��.�pvƒv/

have uncountably many elements.

Next, we provide a modification of the definition, which gives a quasi-isomorphic
DG–algebra under the assumption that for each v 2 �C, there exists a DG–algebra
quasi-isomorphism

ˆ W C��.�pvƒv/!KhEvi;

where KhEvi is a DG–algebra structure on a free algebra generated by a graded finite
set Ev . For example, as discussed in Section 3.1, such a DG–algebra map exists when
ƒv is simply connected. (Or, if ƒv is a K.�1; 1/ space, one can first work with the
group ring KŒ�1� and base-change to a cofibrant replacement of it.)

We define a graded quiver Qƒ with vertex set Q0 D � and arrows in correspondence
with

Q WDR[
[
v2�C

Ev:

More precisely, there are arrows from vertex v to w corresponding to the set of Reeb
chords from ƒv to ƒw. In addition, for each v 2 �C, there are arrows from v to v
corresponding to the elements in Ev . Let LC�.ƒ/ be the graded k–bimodule generated
by Q. Thus, there is one generator for each arrow in Q and an idempotent ev for each
vertex v 2Q0. We write LC�.ƒ/ for the submodule without the idempotents.

Let CE�.ƒ/ be k–algebra given by the tensor algebra

CE�.ƒ/D k˚

1M
iD1

LC�.ƒ/Œ�1�˝ki :

Recall that the path algebra of a quiver is defined as a vector space having all paths in
the quiver as basis (including, for each vertex v an idempotent ev), and multiplication
given by concatenation of paths. Thus, the k–bimodule CE�.ƒ/ is the path algebra
of the quiver Qƒ, where the grading of each arrow is shifted up by 1. Just like in the
cobar construction, we write elements in CE�.ƒ/ as

Œxmj � � � jx1�D s�1xm˝k � � � ˝k s�1x1 2 CE�.ƒ/;

where xj 2 LC�.ƒ/.

Next, we equip the k–algebra CE�.ƒ/ with a differential using the moduli spaces of
holomorphic disks defined in Appendix A. This differential is induced by operations

�i W LC�.ƒ/! LC�.ƒ/˝ki ; i D 0; 1; : : : ;
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where LC�.ƒ/˝k0 D k, which give LC�.ƒ/ the structure of an A1–coalgebra if
�0 D 0.

Consider a generator of LC�.ƒ/. If it is a generator � 2 Ev of the free model of
C��.�pvƒv/ for some component ƒv �ƒC, then we define

(31) �i� D di�;

where di is the coproduct that corresponds to i th homogeneous piece of the differential
in the free model KhEvi of C��.�pvƒv/. If it is a Reeb chord c0 then we define�i.c0/

as before using moduli spaces Msy.c/ but now take the image of all the singular chains
in C��.�pvƒv/ under the map ˆ W C��.�pvƒv/ ! KhEvi. Since the map ˆ is a
DG–algebra map, the proof that d is a differential on CE� is the same. Furthermore,
since ˆ is a quasi-isomorphism, we get a quasi-isomorphic chain complex CE� if we
use KhEvi coefficients instead of C��.�pvƒv/.

From now on, unless otherwise specified, we will always assume that we work with a
free (over k) model of CE�.

If there exists an augmentation � W CE�.ƒ/! k, then there is a change of coordinates
which turns LC�.ƒ/ into a A1–coalgebra. More precisely, consider the restriction
of �, �1 W LC�.ƒ/! k, where we think of LC�.ƒ/ as the degree 1 polynomials in
CE�.ƒ/. Define

LC�� D k˚ ker.�1/:

Note that ker.�1/ is generated by idempotents ev and by c � �.c/, where c ranges over
the generators of LC�.ƒ/. Let

�� W
M
i�0

LC˝ki
� !

M
i�0

LC˝ki
�

be the k–algebra automorphism defined on generators as ��.c/D cC �.c/. Define the
operations ��i W LC��.ƒ/! LC��.ƒ/

˝ki by

��i D �� ı�i ı�
�1
� :

Theorem 25 The operations .�i/i�1 satisfy the A1–coalgebra relations , and with
these operations , LC��.ƒ/ is a coaugmented conilpotent coalgebra.

Proof Let d denote the differential on CE�.ƒ/ and let c be a generator of LC�.ƒ/.
Since � is a augmentation, �.dc/D 0 and it follows that ��

0
D 0. The A1–coalgebra
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relations then follow by combining the equation d2 D 0 from Theorem 25 with the
automorphism ��.

The coaugmentation is simply the inclusion of k. The fact that LC�� is conilpotent
follows from Stokes’ theorem: the sum of the actions of the Reeb chords at the negative
end of a disk contributing to the differential is bounded above by the action of the Reeb
chord at the positive end. This gives the desired finiteness.

Remark 26 If the original operation �0 on LC�.ƒ/ equals 0, then the map � which
takes all generators of LC�.ƒ/ to 0 is an augmentation. In this case LC�.ƒ/�DLC�.ƒ/
by construction.

Remark 27 If there is an augmentation � WCE�.ƒ/!k, then CE�.ƒ/ can be expressed
as the cobar construction of a coalgebra: by construction,

CE�.ƒ/D�.LC��.ƒ//:

We next consider the k–linear dual LA�� .ƒ/ WD .LC��.ƒ//
# of LC��.ƒ/. It follows

from Section 2.1.3 that this is an augmented A1–algebra. We call it the Legendrian
A1–algebra.

Remark 28 In the caseƒDƒ�, it can be shown that this A1–algebra can be obtained
from the endomorphism algebra of the augmentation � in the Aug� category of [10]
by adjoining a unit to it, but is, in general, different from the endomorphism algebra in
the AugC category of [55].

Definition 29 Given an augmentation � W CE�.ƒ/ ! k, we define the completed
Chekanov–Eliashberg DG–algebra to be cCE

�

� WD B.LA�� /
#. The underlying k–algebra

is the completed tensor algebracCE
�
.ƒ/D lim

 ��
i

CE�.ƒ/=I i
D khhLC��.ƒ/Œ�1�ii;

where LC��.ƒ/ is the ideal determined by the natural augmentation.

Note that there is a natural chain map

ˆ W CE�.ƒ/! cCE
�

� .ƒ/:

Remark 30 To illustrate the various gradings, the unique Reeb chord for the standard
Legendrian unknot ƒ in R2n�1 has degree �n in LC�, n in LA� and �.n� 1/ in CE�

(while it is n� 1 in LHA�). Therefore, we have the graded isomorphisms H�.LC/Š
H��.S

n/, H�.LA/ŠH�.Sn/ and H�.CE/ŠH��.�Sn/.
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3.3 Parallel copies

In this section we will describe the perturbation scheme we will use to define various
versions of Lagrangian Floer cohomology. For exact Lagrangian submanifolds with
Legendrian boundary we get an induced perturbation scheme for the Legendrian
boundary that will allow us to define a simpler version of the Chekanov–Eliashberg
algebra which is isomorphic to it when the Legendrian is simply connected.

Let X be a Weinstein manifold and let L � X be an exact Lagrangian submanifold
with Legendrian boundary ƒ. We assume that ƒ is embedded but allow L to be a
several-component Lagrangian with components that intersect transversely. Assume
that the components of L are decorated with signs and write LC and L� for the union
of the components decorated with C and �, respectively. We will use specific families
of Morse functions to shift Lagrangian and Legendrian submanifolds off of themselves
in order to relate holomorphic curve theory to Morse theory, and to perform Floer
cohomology calculations without Hamiltonian perturbations. Before we discuss the
details of this we recall some general results for Morse flow trees.

3.3.1 General results for flow trees In this section we recall several basic results
for Morse flow trees from [22]. Morse flow trees live in a neighborhood of a given
Lagrangian or Legendrian and are thus defined in the corresponding cotangent bundle or
the 1–jet space. In this paper, we will consider only the case of graphical Lagrangians
and Legendrians, in the cotangent bundle and 1–jet space, respectively. That corresponds
to a simple special case of the more general situation considered in [22], where the
nearby Lagrangians and Legendrians are allowed to have singularities when projected
to the zero section.

Let M be a smooth manifold with cylindrical ends of the form @M � Œ0;1/. Con-
sider the cotangent bundle T �M and the 1–jet space J 1M . We consider graphical
Lagrangians and associated Legendrians �dF � T �M and �j1F � J 1M . At the ends
our functions will have the form F D etf .q/C c, where t 2 Œ0;1/, f W @M !R and
c is a constant. Let L1; : : : ;Lm be a collection of graphical Lagrangians in T �M and
zLj be a Legendrian lift of Lj . As in [22, Section 2.2.2], zLj defines local gradients as
well as cotangent and 1–jet lifts of paths in M . Furthermore, [22, Lemma 2.8] shows
that there are maximal flow lines, and as in [22, Definition 2.9] we define their flow
orientation. We define flow trees of zL D

S
j
zLj as in [22, Definition 2.10] and we

will also use partial flow trees, which are flow trees with “free” 1–valent vertices, not
necessarily at a critical point.
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We next discuss transversality for flow trees following [22, Section 3]. There are two
concepts of dimension of a flow tree � involved here: the formal dimension dim.�/ (see
[22, Definition 3.4]) and the geometric dimension gdim.�/ (see [22, Definition 3.5]).
In the graphical case considered here these can be described as follows. The formal
dimension dim.�/ is the dimension of the space of flow trees around a tree � without
degeneracies (ie only trivalent internal vertices and nonzero length flow lines at positive
punctures not at a minimum and negative punctures not at a maximum) assuming
transverse intersections of flow manifolds at each vertex. The geometric dimension,
on the other hand, is the dimension of a flow trees near � with fixed degeneracies
(higher-valence vertices, etc). It is then clear that gdim.�/� dim.�/.

We will use a transversality result that says that for generic geometric data, we have:

(FT) Every flow tree � comes in a smooth family of dimension gdim.�/. If � is de-
generate then there is a natural Whitney stratification of the dim.�/–dimensional
space of flow trees around � with strata of dimension gdim.�/.

This result follows from [22, Proposition 3.14]. We next discuss the adaption (sim-
plification, actually) in the current set-up of the results from [22, Section 3] that lead
to [22, Proposition 3.14]. First, since all Lagrangians considered here are graphical,
their front projections are smooth with empty singular locus of the front, and the
preliminary transversality conditions of [22, Section 3.1.1] hold trivially. This absence
of singularities also means that all the results [22, Lemmas 3.9–12] guaranteeing finitely
many vertices for trees in the presence of front singularities hold automatically. Then
[22, Proposition 3.14] follows readily and shows that for an open dense set of graphical
Lagrangians or Legendrians, (FT) holds.

We say that a finite collection of functions F1; : : : ;Fk on M is flow-tree generic
provided (FT) holds. It is a consequence of [22, Proposition 3.14] that any collection
of functions can be made flow-tree generic by an arbitrarily small perturbation and
furthermore that if F1; : : : ;Fk�1 is already flow-tree generic then F1; : : : ;Fk�1;Fk

can be made flow-tree generic by an arbitrarily small perturbation of Fk .

3.3.2 Systems of parallel copies In this section we describe how to choose systems
of parallel copies for Lagrangians and Legendrians in such a way that higher product and
coproduct operations on the Morse complexes can be directly defined (without mapping
telescopes of continuation maps, typically used in Hamiltonian Floer cohomology).

Let L be a Lagrangian with Legendrian boundary ƒ. Then a neighborhood of L in X

looks like T �L, and along the cylindrical end Œ0;1/�ƒ, the vector tangent to T �L in
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the direction of the dual of the Œ0;1/–direction corresponds to the Reeb direction. We
consider a collection of parallel copies Lj for j D 0; 1; 2; : : : , with LDL0. Here Lj is
the graph in T �L of the differentials dFj of a Morse function Fj WL!R. The Morse
functions Fj will have critical points in the compact part of L and in the cylindrical
ends they will look like Morsifications of the Reeb push-off; see below for details.

We next discuss the main strategy without all technicalities: the first Morse function
H1 D F1 gives the first parallel copy at small distance � > 0 from L0 D L. We
define L1 as the graph of the differential of �F1. We want all other copies to be good
approximations of L1 as seen from L0, so that flow lines between Lj and L0 and
between L1 and L0 are sufficiently close that the corresponding spaces of flow lines
can be canonically identified. Let L1

j DL1 for j > 1.

We next construct L2 D L2
2

as the graph of the differential of a function �2H2 over
L1

2
DL1. For small � > 0, L2 is then well approximated by L1 as seen from L0, and

flow lines between L0 and L1 can be identified with flow lines between L0 and L2.
We also want spaces of flow lines between L1 and L2 to be identified with flow lines
between L0 and L1. This holds provided H2 is a sufficiently good approximation
of H1. Thus we take

H2 D F1C �H2 DH1C �H2;

where H2 is sufficiently close to H1 that the following further condition holds. The
Lagrangians L0, L1 and L2 together also define flow trees with three punctures. We
take H2 so that (FT) holds for L0, L1 and L2. It follows from [22, Proposition 3.14]
that this can be achieved by an arbitrarily small perturbation of H2.

The construction now proceeds in the same manner. First, preliminarily, set L2
j DL2,

j > 2. Then let L3 DL3
3

be the graph of the function �3H3 over L2
3
DL2. In order

for L3 to look like L1 from the point of view of L2 and like L2 from the point of view
of L1, we take

H3 D F2C �
2H3 DH1C �H2C �

2H3:

For � > 0 sufficiently small we may then identify flow lines and flow trees of any three
of the functions, and after an arbitrarily small perturbation of H3, condition (FT) holds
for Lj for j D 0; 1; 2; 3. Continuing like this we get

(32) Hk D Fk�1C �
k�1Hk D

kX
kD1

�k�1Hk :
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The corresponding collection L0; : : : ;Lk of parallel copies then has the following prop-
erties: flow trees with boundary on any increasing collection Li1

; : : : ;Lik
are arbitrarily

close to flow trees of L0; : : : ;Lk�1, and condition (FT) holds for L0; : : : ;Lk .

In order to get the system of parallel copies, we need first to set conventions for
the description of the ends. Along the ends our Lagrangians L look like cylinders
over Legendrians ƒ. A small neighborhood of ƒ in the contact boundary can be
identified with a small neighborhood of the zero section in the 1–jet space of ƒ. We
think of this as the intersection of .�ı; ı/� T �ƒ with a small neighborhood of the
zero section in the cotangent bundle factor, and the contact form is ds�p dq, where
s is a coordinate on .��; �/. Along this end the Lagrangian is Œ0;1/ �ƒ and the
corresponding neighborhood is .��; �/� Œ0;1/�T �ƒ� T �Œ0;1/�ƒ. We observe
then that the result of moving ƒ � units along the Reeb flow is the graph of the
differential of the function B.t; q/ D �t , .t; q/ 2 Œ0;1/ �ƒ. We will Morsify this
Bott situation by considering graphs of F.t; q/D �.t Cf .q//, where f .q/ is a Morse
function. Then the Reeb chords inside the neighborhood of L at infinity between the
graph of F and Œ0;1/�ƒ are in natural one-to-one correspondence with critical points
of f . In this set-up, with infinite ends, there are also flow trees with positive punctures
asymptotic to Reeb chords at infinity. In the compactification of the space of flow trees
there are flow trees entirely in the R–invariant end, T �R�ƒ. Along the end we have
dF D �.dt C .@f=@q/ dq/ and the results about Morse flow trees from Section 3.3.1
follow readily from the corresponding results for flow trees of f on ƒ.

We now turn to a more detailed description of the construction of parallel copies such
that flow trees of ordered subcollections of parallel copies can be identified as discussed
above. Write Œ0;1/� Y and Œ0;1/�ƒ for the ends of X and L, respectively. We
use coordinates .t; q/ 2 Œ0;1/�ƒ. Consider a collection of pairs of Morse functions
.Fj ; fj / such that Fj WL!R and fj Wƒ!R, j D 1; 2; : : : , are related at the ends by

Fj .t; q/D �.t Cfj .q//C b for 1� � > 0 and b > 0;

and Fj does not have any local maxima. We next discuss further restrictions related to
critical points.

Let .F1; f1/ be any pair of positive Morse functions as above. Let z1
1
; : : : ; zm

1
be

the critical points of F1 and let x1
1
; : : : ;xl

1
be the critical points of f1. Fix disjoint

coordinate balls B1
j �L around z1

j and D1
j �ƒ of x1

j such that F1 and f1 are given
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by quadratic polynomials in these coordinates. Fix small � > 0 such that

jdF1j> �1 D � on L�

m[
jD1

B
j
1

and jdf1j> �1 D � on ƒ�
l[

jD1

D
j
1
:

Let .F2; f2/ be another pair of positive Morse functions with m and l critical points
z1

2
; : : : ; zm

2
and x1

1
; : : : ;xl

2
, respectively, where

z
j
2
2 B

j
1

with index.zj
2
/D index.zj

1
/;

x
j
2
2D

j
1

with index.xj
2
/D index.xj

1
/:

Let �2 < ��1 and fix coordinate balls B
j
2
� B

j
1

and D
j
2
�D

j
2

such that

jdF2j> �2 on L�

m[
jD1

B
j
2

and jdf2j> �2 on ƒ�
l[

jD1

D
j
2
:

Finally, we make sure that F2 <�F1 and f2 <�f1, which we obtain by overall scaling.
Note that we might have to shrink �2 after scaling.

We continue inductively and construct a family of pairs .Fk ; fk/, k D 1; 2; : : : of
positive Morse functions with the following properties. Each Fk has m critical points
z1

k
; : : : ; zm

k
, each fk has l critical points x1

k
; : : : ;xl

k
. There are �k > 0 and disjoint

coordinate balls B
j

k
around z

j

k
and D

j

k
around x

j

k
such that

jdFk j> �k on L�

m[
jD1

B
j

k
and jdfk j> �k on L�

l[
jD1

D
j

k
:

Furthermore, the following hold:

� B
j

k
� B

j

k�1
and D

j

k
�D

j

k�1
.

� �k � ��k�1.

� Fk < �Fk�1 and fk � �fk�1.

We next take into account the sign decoration. Assume that L� is nonempty. In this
case we first construct functions f.Gj ;gj /g

1
jD1

exactly as above on all components
of L. The actual functions f.Fj ; fj /g on .L; ƒ/ are then .Fj ; fj /D .Gj ;gj / on LC

and .Fj ; fj /D .�Gj ;�gj / on L�.

Consider now the Morse functions�
Hk D

kX
jD1

Fj ; hk D

kX
jD1

fj

�
:
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(Compare .Fj ; fj / to the function �kFk in the discussion preceding (32).) Define
the system of parallel copies L0; : : : ;Lk ; : : : by letting Lk be the graph �dHk

of the
differential of Hk . Then we have the following:

Lemma 31 For generic choice of functions .Fj ; fj / and all sufficiently small � > 0

in the construction above , the resulting system of parallel copies fLj g
1
jD0

has the
following properties:

� Intersection points Lk0
\Lk1

are transverse and are in natural one-to-one corre-
spondence with intersection points of L0\L1 (or , in terms of L only, critical
points of F1 and self-intersection points of LDL0).

� On LC, if k0 < k1, then Reeb chords from ƒk0
to ƒk1

are in natural one-to-one
correspondence with Reeb chords fromƒ0 toƒ1 (or , in terms ofƒ only, critical
points of f1 and Reeb chords of ƒDƒ0).

� For all ordered finite subcollections Lk0
;Lk1

; : : : ;Lkm
with k0 < k1 < � � �< km

of parallel copies , flow-tree transversality (FT) holds. Furthermore , for any two
such ordered collections Lk0

;Lk1
; : : :Lkm

and Lj0
;Lj1

; : : :Ljm
, the spaces of

flow trees are canonically isomorphic.

Proof Intersection points Lk0
\Lk1

correspond to intersections between the compo-
nents of L and critical points of Hk1

�Hk0
. Since

Hk1
�Hk0

D Fk0C1CO.�Fk0C1/;

we find that, from the point of view of Lk0
, Lk1

can be viewed as a small perturbation
of Lk0C1. In particular, if k0 ¤ k1, then Lk0

\Lk1
is transverse and there is a unique

intersection point near each intersection point in L\L1 which corresponds to critical
points of F1 and self-intersections of L. The statement on Reeb chords follows similarly.
The last statement follows from the special case of [22, Proposition 3.14] as described
above.

Remark 32 In Sections B.2 and B.3, we will also apply this construction to Lagrangian
submanifolds C �W where W is a Weinstein cobordism with both positive and negative
ends. Our Lagrangian submanifolds C that will be equipped with systems of parallel
copies will, however, have only positive ends in that case, and the above discussion
applies without change. See Remark 65 for a version when both positive and negative
ends are perturbed.
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3.3.3 Holomorphic disks and flow trees In this section we discuss results relating
holomorphic disks and Morse flow trees that are used in computations with parallel
copies.

Let L � X be a Lagrangian with cylindrical end R �ƒ � R � Y and let xL.�/ D
fLj .�/g

1
jD0

be a system of parallel copies for L constructed as in Section 3.3, where
� > 0 is the scaling parameter. (Roughly, L0 DL, and for k D 1; 2; 3; : : : Lk.�/ is at
distance �k from Lk�1.�/.)

We first consider the relation between local holomorphic disks and Morse flow trees.
We have the following result for words a and c of Reeb chords and intersection points
corresponding to critical points of the shifting functions .F1; f1/; see Section 3.3.

Lemma 33 If xL is flow-tree generic and � D .�0; �1; : : : ; �m/ is an increasing (or
decreasing) boundary numbering , then for all � > 0 sufficiently small there is a natural
one-to-one correspondence between rigid holomorphic disks in Mfi.a; �/ and rigid flow
trees of L�0

; : : : ;L�m
with asymptotics according to a: there is a neighborhood of the

cotangent lift of each rigid tree that contains the boundary of a unique rigid holomorphic
disk that is transversely cut out , and each rigid disk has boundary in the neighborhood
of some rigid tree. Similarly, there are natural one-to-one correspondences between
rigid disks in Mco.cI �/ and Msy

.c; �/ and corresponding rigid flow trees determined
by L�0

; : : : ;L�m
.

Proof This is a consequence of the main results in [22], namely Theorems 1.2 and 1.3,
which show, for compact L, as � ! 0, that any sequence of rigid disks converges to
a rigid flow tree (“compactness”) and also that near any rigid flow tree in the limit
there is a unique rigid holomorphic disk for all sufficiently small � > 0 (“gluing”).
It is essential for this one-to-one correspondence to hold that there be no multiply
covered disks. In the present case the increasing (or decreasing) condition guarantees
no disk is multiply covered. The modifications necessary for the case of cylindrical
ends and corresponding Lagrangians of the formƒ�R�T �ƒ�R are straightforward;
see eg [29] for flow tree results in a related setting.

The second result concerns a mixed picture where the disks do not lie entirely in
the cotangent bundle. In this case holomorphic disks on a system of parallel copies
admit a description with holomorphic disks on the underlying Lagrangian with flow
trees attached along their boundaries. Such configurations were considered and the
main correspondence was worked out in the setting of knot contact homology in [26].
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Consider a Lagrangian L and a system of parallel copies xL D fLj g
1
jD0

as above,
and let � be an increasing (or decreasing) boundary decoration. A quantum flow
tree of xL is a finite collection of holomorphic disks D1; : : : ;Dm with boundaries on
subdecorations �1 � �m of � with flow trees emanating from their boundaries with
boundary subdecorations �1; : : : ; �n, such that inserting flow-tree domains in the disks
gives a disk, and such that inserting the cotangent lifts of the flow tree at the insertion
points we get a boundary condition respecting the decoration �.

In order to establish the desired correspondence between rigid quantum flow trees and
rigid holomorphic disks, we need additional transversality properties of the shifting
Morse function that controls the interface of holomorphic disks and flow trees. The
argument is the following. Start with a system of parallel copies that satisfies flow-
tree transversality, and perturb the almost complex structure so that moduli spaces of
holomorphic disks with decreasing (or increasing) boundary decoration (that cannot be
multiply covered) are transversely cut out. Then perturb the shifting Morse functions
slightly so that partial flow trees are transverse to the boundary evaluation maps of
the transversely cut out holomorphic curves. We say that parallel copies and almost
complex structures with this transversality property are quantum flow-tree transverse.
Arguing as for flow-tree transversality it is straightforward to show that flow-tree
transversality holds after arbitrarily small perturbation of the shifting Morse functions.

Remark 34 One feature of using parallel copies that all approximate a single push off
is that, for a rigid configuration of quantum disks, disk components can be connected
only by Morse flow lines (not trees). To see this, consider a rigid configuration with
three disks connected by a tree with a trivalent vertex. As � ! 0 the tree converges to
a flow line and all three disks have to intersect it. This will generically not happen for a
rigid configuration, ie such configurations can appear only when the formal dimension
is at least 1.

Lemma 35 If xL is quantum flow-tree generic and �D .�0; �1; : : : ; �m/ is an increasing
(or decreasing) boundary numbering , then for all � > 0 sufficiently small there is a
natural one-to-one correspondence between rigid holomorphic disks in Mfi.a; �/ and
rigid quantum flow trees of L�0

; : : : ;L�m
with asymptotics according to a: there is a

neighborhood of the cotangent lift of each rigid quantum tree that contains the boundary
of a unique rigid holomorphic disk that is transversely cut out , and each rigid disk
has boundary in the neighborhood of some rigid quantum tree. Similarly , there are
natural one-to-one correspondences between rigid disks in Mco.cI �/ and Msy

.c; �/

and corresponding rigid quantum flow trees determined by L�0
; : : : ;L�m

.
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Proof As for flow trees there are two main ingredients: “compactness”, ie as � ! 0,
any sequence of rigid disks converges to a rigid quantum flow tree, and “gluing”,
ie near any rigid flow tree in the limit there is a unique rigid holomorphic disk for all
sufficiently small � > 0. The technically most difficult point is gluing. It is present
already in the flow tree case in [22] discussed above. The full correspondence was
worked out with all details in the case of knot conormals in [26, Sections 5.3 and 5.4].
The case considered here can be established in the same way, as follows.

For compactness, the first step is straightforward: if the positive puncture of a disk maps
to a Morse Reeb chord of length O.�/, then the whole disk lies in a small neighborhood
of the Lagrangian, there is no holomorphic disk part, and the correspondence between
disks and flow trees in [22] applies; compare [26, Lemma 5.7]. The second step
is to show, via an action/area argument, that for any sequence of disks there are
neighborhoods of the punctures mapping to short Reeb chords where the disks converge
to flow trees. This argument follows the usual steps in flow-tree convergence once
segments of action O.�/ near such punctures have been found; see [26, Lemma 5.8 and
Corollary 5.9]. The third step uses the fact that there is only one positive puncture to
show that there can be only one big disk component in the limit; see [26, Lemma 5.11].
The final step is to show that the flow-tree limits that end at punctures meet the big disk in
the limit. This follows from an action argument; see [26, Lemma 5.13]. This establishes
flow-tree convergence. (Although the arguments in [26, Section 5.3] are written in the
case where the Lagrangian is 2–dimensional, the arguments work unchanged in any
dimension n.)

For gluing, the first step is to arrange, by standard transversality arguments for curves
and perturbation of Morse functions, transversality of the Morse flow data and evaluation
maps of holomorphic curves; see [26, Section 5.4.1]. Then there are finitely many
rigid flow-tree configurations. The metric and Lagrangian is adapted near the flow tree
parts and the points where they meet the boundary of the disk so that there are explicit
holomorphic curves near large parts of the flow trees. Flow tree parts and big disk parts
are joined over finite regions in the domain and we construct a weight function which
is of size 1 in the finite joining regions and exponentially growing along the parts of
the domain where we have solutions. The Floer gluing scheme is applied in this setting
and surjectivity of gluing is established; see [26, Section 5.4.3]. Again, [26] works
with a 2–dimensional Lagrangian, but most of the arguments above are dimension
independent and local models generalize to general dimension in a straightforward
way.
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Remark 36 In the setting of Lemma 35, the action integral
R

d˛ of a holomorphic
disk in Msy

.c; �/ is positive since the almost complex structure J is compatible with
the contact form. By Stokes’ theorem the action integral equals the difference between
the action of the Reeb chord at the positive puncture and the sum of the actions at
the negative punctures. It follows in particular that if the positive puncture is a Morse
chord, then all negative punctures are Morse chords as well and the moduli spaces are
controlled already by Lemma 33.

3.4 Chekanov–Eliashberg algebra with parallel copies

We will relate the Legendrian invariants LA� and LC� to Floer (co)homology of exact
Lagrangian submanifolds. When studying Lagrangian Floer (co)homology we employ
the technique of parallel copies. In this setup no holomorphic disk under consideration
is multiply covered, and transversality is achieved by perturbation near punctures
as in [28, Lemma 4.5]; see Theorem 74 for an outline of the argument. It will be
convenient to express the Legendrian invariants in the same language. As it turns
out, in the case that the Legendrians are simply connected this technique leads to a
simpler formulation of the theory which incorporates a model of chains on the based
loop space automatically. Recall that Lagrangian fillings of Legendrian submanifolds
induce augmentations, which after a change of variables lead to noncurved Legendrian
A1–coalgebras. Geometrically, this means that one uses anchored holomorphic disks.
We will assume that an augmentation of ƒ has been fixed in this section and all disks
considered will be anchored with respect to this augmentation. We now turn to the
description of this theory in the Legendrian setting.

Let ƒ be as above with decomposition ƒDƒCtƒ�. Fix a Morse function f Wƒ!R

which is positive on ƒC and negative on ƒ�. Use it as described in Section 3.3 to
construct a system xƒD fƒj g

1
jD1

of parallel copies of ƒDƒ0.

Let Q0, k and R be as above. Let RC denote the Reeb chords connectingƒ0 toƒ1 that
lie in a small neighborhood of ƒ0. By construction there is then a natural one-to-one
correspondence between RC and the set of critical points of f on ƒC. (Since f shifts
ƒ� in the negative Reeb direction there are no such short chords near ƒ�.) Write

R DR[RC;

and think of chords in RC as connecting a component ƒv to itself. Again the set R is
a graded set: Reeb chords c 2R are graded as above, jcj D �CZ.c/, and the grading
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of a short chord c 2RC equals the negative of the Morse index of the critical point
of f corresponding to c.

We define a graded quiver Q ;ƒ with vertex set Q0 D � and arrows in correspondence
with

Q WDR :

More precisely, there are arrows from vertex v to w corresponding to the set of Reeb
chords fromƒv toƒw if v¤w, and corresponding to short Reeb chords fromƒvDƒv0

to ƒv1 if v D w.

Let LC�.ƒ/ be the graded k–bimodule generated by Q . We define an A1–coalgebra
structure on LC�.ƒ/ given by operations �i as follows. Given a chord c0 (input) and
chords ci ; : : : ; c1 (outputs), we consider the disk DiC1 with distinguished puncture
at c0 and a strictly decreasing boundary decoration �. Let c D cC

0
c�i � � � c

�
1

. Consider
the moduli space Msy

.cI �/. We write jMsy
.cI �/j for the algebraic number of R

components in this moduli space provided dim.Msy.cI �//D 1, and jMsy.cI �/j D 0

otherwise. Define, for i > 0,

�i.c0/ WD
X

cDc
C

0
c�

i
���c�

1

jMsy
.cI �/jc0;

where c0 D ci � � � c1. This gives an operation of degree 2� i on LC�.ƒ/. Note that
�0 D 0 trivially, since the decoration � is strictly increasing.

It is not a priori clear that the maps �i are well-defined, as the sum may involve
infinitely many terms. This can be avoided easily if ƒv are simply connected for
v 2 �C. Namely, the simple connectedness of ƒv guarantees that the short chords
cost index (recall the grading of a Morse chord of Morse index p is graded by �p,
which means that its input in the dimension formula is �p C 1, and in the simply
connected case �1� �pC 1� �dim.ƒ/C 1), whereas the long chords cost energy.
In the non-simply-connected case, we will only consider a completed version of LC�
where infinite expressions are allowed. We define the parallel copies algebra first in
the simply connected case and turn to the non-simply-connected case in Section 3.4.2.

3.4.1 The parallel copies DG–algebra in the simply connected case When the
operations �i defined above have suitable finiteness properties they define a coalgebra.
More precisely, we have the following:
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Lemma 37 Suppose ƒ is simply connected or , more generally, that �i factorizes
through the natural inclusion

1M
iD1

LC�Œ�1�˝ki
!

1Y
iD1

LC�Œ�1�˝k

for all i � 1. Then LC� equipped with the operations .�i/i�1 is an A1–coalgebra.

Proof Recall that the moduli spaces involved in the definition of the operations �i

are moduli spaces of anchored disks, where we use the augmentation induced by the
filling L. Consider a 1–dimensional moduli space Msy.cI �/ and note that its boundary
consists of two-level rigid disks by Theorems 75 and 74. There are two cases, either
the levels are joined at a chord connecting the same copy of ƒ to itself, or the chord
connects distinct copies. Since we count anchored disks, the first type of breaking
cancels algebraically; compare with [23, Lemma B.6; 29, Section 1.2; 24, Section 3.4;
6, Section 6.1]. (In the usual treatment of Chekanov–Eliashberg algebras this is the
statement that augmentations are chain maps.) Theorem 76 then shows that there are
canonical identifications between moduli spaces for different increasing numberings
and the proof follows since the breakings of the second type are exactly what contribute
to the coalgebra relations and are then in algebraic one-to-one correspondence with the
endpoints of an oriented compact 1–manifold.

We will define the parallel copies version of the Chekanov–Eliashberg algebra as the
reduced bar construction of the coalgebra above. To simplify matters we show that for
a generic system of parallel copies, the coalgebra has a strict counit. (For more general
systems of parallel copies one can instead use the definition in Section 3.4.2.) Consider
a generator of LC� which is a small Reeb chord z that corresponds to a critical point
of the Morse function f . The coalgebra operations �i.z/ then count holomorphic
disks with positive puncture at z which, by an action argument, must lie in a small
neighborhood of R�ƒ and rigid such holomorphic disks are in natural correspondence
with rigid Morse flow trees; see Remark 36. In the simply connected case, ie for Morse
functions without critical points of index 1 and n� 1, we have the following result:

Lemma 38 Suppose ƒ is simply connected. If the Morse functions for parallel copies
described above are sufficiently close to the first function (ie if � > 0 in the construction
of shifting copies is sufficiently small ) then , if xv is the minimum of the Morse
function on the component ƒv, the following holds: �1.xv/D 0, �2.xv/D xv˝xv
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and �i.xv/D 0 for i > 2. Furthermore , if c is any other generator corresponding to an
arrow from v to w, then �2.c/D c˝xvC .�1/jcjxw˝ cCD2.c/, where D2.c/ does
not contain any xv factor , and �i.c/ does not contain any factor xv for i ¤ 2.

Proof Consider a system xƒ.�/D fƒj .�/g of parallel copies as in Section 3.3.2. Note
that xv is a Morse chord of action O.�/. Hence, disks with one positive puncture at xv

can have only other Morse chords as negative punctures. For sufficiently small � > 0,
Lemma 33 then shows we can compute�i.xv/ by counting all flow trees with a positive
puncture at xv and Lemma 31 shows that the flow trees are independent of increasing
boundary decoration. The equation�1.xv/ follows since there is no (negative) gradient
flow line emanating from a minimum. For the equation �.xv/D xv˝xv we consider
three copies L0, L1 and L2 and observe that there is a unique flow tree with positive
puncture at xv and two negative punctures at xv, this flow tree consists simply of
two flow lines starting at the minimum chord connecting L0 to L2 and ending at the
minimum chords connecting L0 to L1 and L1 to L2, respectively.

To see the equations �i.xv/D 0 for i > 2, we start from a general limiting argument
for flow trees of parallel copies. Consider a flow tree with positive puncture at a Morse
chord a and negative punctures at Morse chords b1; : : : ; bm. As we take the limit
� ! 0, all shifting functions approach multiples of the same Morse function and the
flow tree limits to a broken flow line starting at a connecting to bi1

, then from bi1

to bi2
, continuing in this way until all negative punctures have been met.

Consider now a tree with positive puncture at xv . In the limit this converges to a flow
line emanating from xv, which must then be constant. This shows that all negative
punctures must be xv as well. Since the dimension of a tree with positive puncture
at xv and i negative punctures at xv is i � 2, it follows that �i.xv/D 0 if i > 2.

We next consider the properties of �i.c/ for c ¤ xv. The flow trees contributing
c˝xvC.�1/jcjxw˝c to�2.c/ are easily found. Considering three parallel copies L0,
L1 and L2, the flow trees consist of a single flow line from either one of the endpoints
of the chord c to the minimum xv or xw of the corresponding component.

We next show that these are the only contributions with negative punctures at minima.
We start in the case when c is a Morse chord. Consider a tree with positive puncture at
some Morse chord c which does not limit to a single flow line to the minimum as �! 0,
and assume that one of the negative punctures is xv . Consider first the case when xv is
at the last puncture corresponding to the smallest function difference. Assume that the
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negative punctures are xv and a word of punctures b. Then kck� kbk� kxvk� 1D

kck � kbk D 0, where kyk D index.y/ � 1. Consider the limit when this function
difference goes to zero. Then the flow tree goes to a flow tree with a flow line to xv

attached. The remaining flow tree has dimension kck� kbk� 1D�1 and hence does
not exist by the flow-tree transversality condition (FT) in Section 3.3.1 for the subset
of parallel copies obtained by forgetting the last copy.

Consider next the case that xv is at some other function difference. Then we have
negative punctures b before xv and a after xv and thus a are Morse chords of smaller
function differences. Consider the limit when all these smaller function differences
shrink. In the limit we find a flow tree with negative punctures at .b;xv/ with a partial
flow tree with negative punctures at a attached. The evaluation dimension of the latter
tree (ie the dimension of the partial tree with a free positive puncture) is

.n� 1/�kak< n� 1;

where we use the simple connectedness to get strict inequality. Applying the degenera-
tion above to the remaining tree we get a tree with a flow line to xv attached, and its
evaluation dimension is

kck�kbk:

Now, kck�kbk� kak� 1D�1 so these two trees do not meet by condition (FT) in
Section 3.3.1.

The remaining possibility is that the small tree with negative punctures a intersects
the flow line towards xv. However, such a tree can be viewed as the original partial
tree merging with a flow line from the minimum and then continuing. For � > 0, at
the scale of the tree with punctures c and b (ie �k for some k) the flow line from the
minimum and the flow at the positive puncture of the partial tree attached are very close
to parallel (nonparallel only at order �kCl for l > 0), therefore the evaluation map at
the positive puncture of the partial tree with negative punctures .xv; a/ is arbitrarily
close to the evaluation map of the original partial tree with negative punctures a and
taking the limit � ! 0, the dimension count kck�kbk�kak� 1D�1 above shows
that these do not intersect if (FT) in Section 3.3.1 holds and � > 0 is sufficiently small.

We finally consider the case when c is not a Morse chord, and a disk which in the limit
� ! 0 does not converge to a constant disk with a flow line attached and which has a
puncture at xv . Such a disk must have a nonconstant disk component in the limit and by
Lemma 35 it converges to this disk with flow trees attached in the limit. Let b denote

Geometry & Topology, Volume 27 (2023)



2108 Tobias Ekholm and Yankı Lekili

the negative punctures of the disk in the limit and a all Morse chord negative punctures
except xv . If a flow line to xv is directly attached to the disk then the dimension of the
quantum flow tree obtained by removing this flow line is kck� kbk� kak� 1D�1

and hence it does not exist by quantum flow-tree transversality; see Lemma 35. If this
is not the case then xv is one of the negative punctures in a flow tree attached to the
disk. Now that partial flow tree with positive puncture constrained to the evaluation
map of the disk must be rigid, and arguing exactly as for the trees above, we see that
quantum flow-tree transversality shows that no such configuration exists for sufficiently
small � > 0.

Remark 39 The simple connectedness is used in the above proof to ensure that cutting
with a small tree really reduces dimension. Here, cutting means intersecting and starting
a flow from the intersection locus. In the case that there are index 1 critical points
one could have jaj D 0 in the above, and indeed there are trees with arbitrarily many
punctures at index 1 critical points and then a puncture at xv.

Lemma 38 shows that, in the simply connected case, there is a strict coaugmentation

(33) � W k! k�˚LC�; with �.ev/D xv;

where � is defined by

(34) �.ev/D

�
xv if ƒv �ƒC,
ev if ƒv �ƒ�.

Definition 40 If ƒ is simply connected, the parallel copies Chekanov–Eliashberg
DG–algebra is

CE� D�.k�˚LC�/:

3.4.2 The parallel copies DG–algebra in the non-simply-connected case In the
non-simply-connected case, the operations �i defined counting holomorphic curves
are not necessarily finite. To get a workable definition we will instead start from an
algebra structure on the dual LA� of LC�. More precisely, we proceed as follows.

Let LA�.ƒ/ be the graded k–bimodule generated by Q . We define an A1–algebra
structure on LA�.ƒ/ given by operations�0i as follows. Given chords ci ; : : : ; c1 (inputs)
and a chord c0 (output), we consider the disk DiC1 with distinguished puncture at c0

and a strictly increasing boundary decoration �. As above, let c D cC
0

c�i � � � c
�
1

and
consider Msy.cI �/. Define, for i > 0,

�0i.c
0/ WD

X
cDc

C

0
c�

i
���c�

1

jMsy
.cI �/jc0;
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where c0 D ci � � � c1. This gives an operation of degree 2� i on LA�.ƒ/. Note that
�0

0
D 0 trivially, since the decoration � is strictly increasing.

Lemma 41 LA� equipped with the operations .�i/
0
i�1

is an A1–algebra.

Proof This is identical to the proof of Lemma 37.

In order to define the parallel copies DG–algebra, consider the minimum x of a Morse
function on a component ofƒC. Write ux 2LA� for the corresponding generator. Add
idempotents ev to LA�, one for each component ƒv �ƒ�. We then get the algebra
k�˚LA�. Equip it with the trivial augmentation �0 which is the projection to k. DefinefCE

�
D .B.k�˚LA�//#;

and let I denote the subalgebra of fCE
�

defined as the space of functionals which
vanish on monomials not containing ux for some minimum chord x 2ƒ.

Lemma 42 The subalgebra I is closed under the differential.

Proof To see that I is closed under the differential we check that if ux is an output
puncture of the differential then ux is also an input puncture. Here the output puncture
is the positive puncture of the holomorphic disk. The minimum corresponds to a Morse
chord which is of smaller action than any Reeb chord ofƒ. This means that all negative
punctures in a disk with positive puncture at x must also be Morse chords and that the
corresponding disks correspond to Morse flow trees. Since there is no negative gradient
flow line that starts at a minimum, any gradient flow tree with positive puncture at x

must also have a negative puncture at x. This shows that ux is an output in a differential
disk only when it is also an input.

Remark 43 In the simply connected case, LA� D .LC�/
# and there is a natural

restriction map � W fCE
�
!�LC�. Since ux are strict idempotents by Lemma 38, this

is a chain map. The kernel of � is I and, consequently, �LC� D fCE
�
=I .

Guided by Remark 43 we define the parallel copies DG–algebra as follows, in the
non-simply-connected case.

Definition 44 If ƒ is not simply connected, then we define, with notation as above,
the completed DG–algebra cCE

�
.ƒ/D fCE

�
=I :
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3.5 Isomorphism between Chekanov–Eliashberg algebras in the simply
connected case

We next show that if ƒ is simply connected then CE�.ƒ/ is in fact isomorphic to
CE�.ƒ/. To this end we first establish a Morse-theoretic version of the Adams result
mentioned in the introduction, which here corresponds to the purely local situation of
the zero section in a 1–jet space.

Let Q be a simply connected smooth manifold with a basepoint q 2Q. Fix a system of
positive Morse functions xf D ffj g

1
jD1

as in Section 3.3, and assume that the functions
have only one minimum and no index 1 critical points. (This can always be arranged by
handle cancellation if dim.Q/� 5; see Remarks 50 and 52 for the lower-dimensional
case.) We will first discuss a Morse flow tree model for chains on Q, which we denote
by CM��.Q/. Our treatment of Morse flow trees follows [22]; see Sections 3.3.1 and
3.3.2. We first recall the details of the flow tree definitions from [22, Section 2] in the
special case needed here.

Consider a strip R� Œ0;m� or half-strip ŒT;1/� Œ0;m� with coordinates sC i� and with
m�1 slits along Œaj ;1/�j for j D 1; : : : ;m�1, and T � aj in the half-strip case. In
the half-strip case the vertical segment T � Œ0;m� is a finite end that will be used as an
input, and we do not consider it as a part of the boundary of the strip with slits. In the
strip case, the input is at the puncture �1� Œ0;m�, and in both cases we call punctures
at C1 “output”. Order the boundary components according to the positive boundary
orientation of the disk with punctures starting from the input and decorate its boundary
components by a strictly increasing sequence of positive integers �1 < �2 < � � �< �m.
Let � D f�ig

m
iD1

denote this decoration. Cutting the strip by line segments aj � Œ0;m�

for j D 1; : : : ;m�1, subdivides it into strip regions of the form Œs0; s1�� Œ�0; �1�, where
s0 2 f�1; a1; : : : ; amg, s1 2 fa1; : : : ; am;1g and �0; �1 2 f0; 1; : : : ;mg, and with a
numbering �j on each boundary component Œs0; s1�� f�0g and Œs0; s1�� f�1g.

Definition 45 [22, Definition 2.10] A flow tree is a continuous map from a strip
with slits into Q which in each strip region Œs0; s1�� Œ�0; �1� depends only on the first
coordinate s 2 Œs0; s1�, and there satisfies the gradient equation

Px.s/D�r.f�i
�f�j /.x.s//;

where �i is the numbering of the upper horizontal boundary of the strip region and �j
that of the lower.
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A partial flow tree is defined analogously except that the domain is a half-strip with
slits ŒT;1/� Œ0;m�.

If y is a critical point of f1 then we let jyj D �index.y/ denote the negative Morse
index of y. If y D y0y1 � � �ym is a word of critical points of f1 then the space of flow
trees T .y/ with input puncture at y0 and output punctures y 0 D y1 � � �ym, in the order
induced by the boundary orientation, has dimension (formal dimension in the language
of Section 3.3.1)

(35) dim.T .y//D jy 0j � jy0jC .m� 2/:

For a sufficiently small perturbing system of Morse functions xf , the space of flow trees
is independent of the increasing boundary decoration �; see Lemma 31.

Let CM��.Q/ denote the K–module generated by critical points of f1 and equip
CM��.Q/ with the structure of a coalgebra with operations �i given by

�i.y0/D
X

jy0jDjy0j�.i�2/

jT .y/jy 0;

where the sum ranges over all y 0 of word length i . It is not hard to see that the boundary
of a 1–dimensional space of flow trees consists of broken rigid flow trees from which
it follows that the operations �i satisfy the coalgebra relations; compare Lemma 37.
Furthermore, by Lemma 38, the coalgebra has a natural counit, the critical point which
is the minimum of f1. We will call this critical point the counit critical point. We say
that a flow tree with no puncture mapping to the counit critical point is counit-free.

The coalgebra CM��.Q/ agrees with the Floer coalgebra CF�.Q/, where we view Q as
the zero section in its own cotangent bundle T �Q as follows. Let xQ.�/D fQj .�/g

1
jD0

be the system of parallel copies of the zero section Q � T �Q corresponding to the
system of functions xf , where �> 0 gives the size of the perturbation, jfkC1�fk jC s D

O.�kC1/; see Section 3.3.2. Then, by Lemma 33, there is, for all sufficiently small
shifts, a natural one-to-one correspondence between rigid holomorphic disks with
boundary on xQ and Morse flow trees in Q determined by xf . This gives a chain
isomorphism CM��.Q/! CF�.Q/.

We now return to the Morse-theoretic approach to Adams’ result. We will define a map

� W C��.�Q/!�CM��.Q/

in terms of the operation of attaching counit-free partial flow trees to Moore loops
�v W Œ0; rv �!Q, rv � 0, based at q 2Q, parametrized by a simplex v 2�. To define this
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�v.t2/

�v.t1/

�v.t0/

�8

�5

�7

�6

�5

�3

�4

�3

�1

�2

Figure 3: A configuration with three partial flow trees attached to �v at the
points �v.t0/, �v.t1/ and �v.t2/. The numbers on the right determine the
gradient equation at that end. The dashed part represents the loop �v .

operation we will use the following notion: we say that a partial flow tree parametrized
by a half-strip  W ŒT;1/� Œ0;m�! Q starts at a point p 2 Q if its input puncture
maps to p, where  .T � Œ0;m�/D p.

Attaching partial flow trees to �v W Œ0; rv �!Q then means fixing points 0� t0� t1 � � � �

tm � rv and partial flow trees �j for j D 1; : : : ;m that start at �v.tj /. Our map � takes
values in �CM��.Q/ and will accordingly be defined by attaching flow trees which
have no output at the counit.

Take the system of parallel copies xQ.�/ to be flow-tree generic (to satisfy (FT) of
Section 3.3.1). Then the set of positive punctures of minimum free partial flow trees
for a fixed increasing boundary numbering constitutes a codimension-two subset in Q

and that the corresponding subset for any numbering lies in an O.�2/–neighborhood
of it. We pick our Morse functions for the flow trees so that the basepoint q does not
lie on any minimum free partial flow tree.

If �v W Œ0; rv �!Q is a loop with flow trees attached at 0� t0 � t1 � � � � � tm � rv , we
also introduce a numbering of the components of Œ0; rv ��ft1; : : : ; tmg induced by the
flow trees attached as follows. The rightmost interval .tm; rv � is numbered by �0. The
right boundary segment of the strip with slits attached at �v.tm/ is numbered by �0 as
well, whereas the left boundary segment of its domain is numbered by �km

. We number
the boundary segment .tm�1; tm/ and the right boundary segment of the domain of the
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flow tree attached at �v.tm�1/ by �km
as well. The left boundary segment of the flow

tree attached at �v.tm�1/ is then numbered by �km�1
, which determines the numbering

of the segment .tm�2; tm�1/ as well as the right boundary segment in the flow tree at
�v.tm�2/, etc. We view the end result of this process as the domain for a loop with
flow trees attached with numbering � that decreases; see Figure 3.

Note next that if � W Id!�Q is a d–dimensional cube in general position with respect
to xQ (ie transverse to the stratified space of the partial puncture of all minimum free
partial flow trees), the set of �v with v 2 Id for which a single partial flow tree can
be attached is at most .d�1/–dimensional. Attaching more partial flow trees, the
dimension decreases further, by at least one for each flow tree. We say that the loops
in � with flow trees attached which form a 0–dimensional family are the rigid loops
with flow trees in � . If � is a cubical simplex in �Q and if y is a word of critical
points, then we let T .� Iy/ denote the space of loops with flow trees in � , where the
critical points at punctures of the flow trees read in order give the word y . The formal
dimension of T .� Iy/ is then

dim.T .� Iy//D jy jC dim.�/C .`.y/� 1/;

where ` is the word length, and for chains transverse to the system of parallel copies
the formal dimension equals the actual dimension.

Note that if the set of loops in � with flow trees is transversely cut out, then, by
construction of the system of parallel copies, loops with flow trees corresponding
to different decreasing numberings are canonically diffeomorphic; see the proof of
Theorem 76. We define the map � by counting rigid loops with flow trees in cubical
simplices � :

(36) �.�/D
X

dim.T .� Iy//D0

jT .� Iy/jy :

Remark 46 We sketch technical aspects of the definition of the map � in (36). In
order to get a suitable chain model for �Q on which the map � is defined we equip Q

with a Riemannian metric and consider piecewise smooth loops in Q. It is shown in
[52, Section 17] that the inclusion of piecewise smooth loops into all loops is a homo-
topy equivalence and we will work with piecewise smooth loops. In [52, Section 16]
it is shown that if E is the energy functional on the space of piecewise smooth loops,
then the preimage E�1.b/ for any noncritical value b is compact and is a deformation
retract of the corresponding subset of the space of piecewise geodesic loops, which
has a natural structure of a finite-dimensional manifold. Furthermore, as we increase
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the energy level the spaces of piecewise geodesics are naturally included in piecewise
geodesics with finer subdivision. In this way we get a directed system of inclusions

ME0
�ME1

� � � � �MEj � � � �

such that E�1.b/\MEj �E�1.b/\MEk
for b <Ej <Ek is a deformation retract.

To define the map � we can, for example, use chains of simplices in a sufficiently fine
triangulation of the finite-dimensional manifolds MEj that are suitably transverse to
the system of parallel copies xQ.�/.

Since the shifting Morse functions do not have any index 1 critical points a partial flow
tree has at most dim.M / punctures. Consider the natural evaluation map on partial
flow trees that takes a flow tree to the location of its positive puncture discussed above.
The image of this map for partial flow trees not involving the minimum is a stratified
space of codimension two and by construction of parallel copies, the corresponding
set for partial flow trees defined by distinct boundary numberings lie O.�2/–close
to each other. The map � above is defined for chains in MEj (chains of piecewise
smooth loops) with evaluation maps that are transverse to this stratified subset. It is
straightforward to see that the chains of simplices in MEj can be made transverse
without destroying transversality for chains at earlier energy levels. This means that we
can define the map on the direct limit of chains which is a chain model for the based
loop space.

In order to connect this to the path loop fibration we consider a similar map

y� W C��.PQ/!�CM��.Q/˝t CM��.Q/;

where t denotes the canonical twisting cochain of the cobar construction and PQ

the based path space. This map can be described geometrically as follows. The
chain complex C��.PQ/!�CM��.Q/˝t CM��.Q/ can be thought of as generated
by words of critical points in which the last letter is distinguished and may be the
minimum x; in other words, the words are either minimum free, or the last letter (and
only the last) is the minimum. The differential counts rigid flow trees as usual and also
here only the last letter may be the minimum. To define the map y� we consider chains
of paths. As above we attach counit-free partial flow trees to paths in such a chain at
interior points and also attach a partial flow tree with last puncture distinguished at the
endpoint of the path. Also here, only the distinguished (ie the last puncture in the tree
at the endpoint of the path) may be the minimum. The map y� then counts rigid paths
with flow trees attached as described.
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Lemma 47 The maps � and y� are chain maps.

Proof For the chain map property of y�, we consider 1–dimensional moduli spaces of
chains of paths with flow trees attached as described above, including flow trees at the
endpoint. This moduli spaces form oriented 1–manifolds with a natural compactification
consisting of the following 0–dimensional configurations:

(i) spaces of paths with flow trees attached which is obtained by attaching trees to
the boundary of the original chain of paths, and

(ii) spaces of paths with flow trees attached where one of the flow trees is broken.

The configuration (i) contributes to the composition y� ı d and the configuration (ii)
to d ı y�. Since the algebraic number of boundary points of a 1–dimensional oriented
manifold equals zero we conclude the chain map equation, d ı y� D y� ı d D 0.

The chain-map property of � is proved applying the same argument to 1–dimensional
spaces of chains of loops with flow trees attached.

Remark 48 The codimension-one boundary of T .� Iy/ corresponds either to the loop
or path moving to the boundary of � or to the breaking of a flow tree at a critical point.
Instances when two trees are attached at the same point are naturally interior points of
the moduli space where the disks with slits join to a new disk with a slit of width equal
to the sum of the widths. See Figure 4.

Figure 4: Flow trees attached at the same point are interior points: in the
source, top, and in the target, bottom.
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With this established we can now prove Adams’ result:

Theorem 49 The flow tree map � WC��.�Q/!�CM��.Q/ is a quasi-isomorphism.

Proof The first observation is that the chain complex �CM��.Q/˝t CM��.Q/ is
acyclic. To see that, note that for each critical point y there are exactly two flow trees
with positive puncture y and two negative punctures, one at the counit x and one at y;
see Lemma 38. Exactly one of these — the tree in which the negative punctures are in the
order y followed by x — contributes to the differential on �CM��.Q/˝t CM��.Q/.

Add a constant to the Morse function f used to build the parallel copies so that the
minimum x lies at level 0 and all other critical points at positive levels. We then filter
by action of the parallel copies xf D ffj g; more precisely, we associate to a word
y1 � � �ym of critical points the action

P
j .fj � fj�1/.yj /. Then, by definition of a

flow tree for the flow-tree map, the differential does not increase action. (To see this,
recall that the flow-tree map uses flow trees with only one positive puncture which
decrease action since the value of a Morse function decreases along negative gradient
flow; see [22, Lemma 2.3, equations (2-2)–(2-3)] for the calculation.) Since all flow
trees except those involving the counit decrease action, we find that the differential on
the associated graded complex acts only on the last (distinguished) letter in the word
and it acts there as y 7! yx if y ¤ x and x 7! 0. Since this is an isomorphism from
words not ending with the counit x to those which end with x, the desired acyclicity
follows. Clearly, C��.PQ/ is also acyclic.

Consider next the stratification of Q induced by the stable manifolds of the Morse
function f and the corresponding filtration on C��.PQ/ induced by evaluation at
the endpoint. The corresponding filtration on �CM��.Q/˝t CM��.Q/ is filtration
by degree of the distinguished (the last) critical point and the map y� respects these
filtrations.

The corresponding E1–terms with induced maps are

C��.QIH��.�Q//!H�.�CM��.Q//˝CM��.Q/:

To see this, consider first the left-hand side. The associated graded complex can be
represented by chains of paths in Q with endpoint in a Morse stratum of fixed dimension,
divided by such chains of paths with endpoints in Morse strata of lower dimension, and
the differential in the associated graded complex acts as the singular differential on
such paths. The resulting homology is then the homology of the chain with endpoints
in cells of fixed dimension modulo their boundary, which gives C��.QIH�.�Q//.

Geometry & Topology, Volume 27 (2023)



Duality between Lagrangian and Legendrian invariants 2117

Consider the right-hand side: here the associated graded complex can thought of as the
direct sum of complexes with fixed distinguished last critical point. The differential
attaches minimum-free flow trees at all nondistinguished critical points. The resulting
homology is clearly H�.�CM��.Q//˝CM��.Q/.

The E2–terms are then

(37) H��.QIH��.�Q//!H��
�
QIH�.�CM��.Q//

�
:

To see this, on the left-hand side the part of the boundary operator on a chain of loops
that remains after passing to the E1–level corresponds to the endpoint going to the
boundary of the Morse chain in Q. On the right-hand side, it remains to add flow
trees at the last distinguished critical points. The homologies of these differentials
are then clearly as stated. Equation (37) together with Zeeman’s comparison theorem
[51, Section 3.3] then establishes the result.

Remark 50 If dim.Q/D 4 then the Morse function may have critical points of index
one. In this case we use stabilization as follows. Multiply Q by RN for any N � 2, and
consider the function F.q;x/D f .q/Cx2. Then F has the same critical points as f
and �rF is inward pointing at infinity. In Q�RN there is room to cancel 1–handles
and the above applies. In this case we define CM��.Q/ to be CM��.Q�RN /, which
is a 1–reduced version of the original complex. Noting that C��.Q�RN / and C��.Q/

are canonically isomorphic, the result follows also in this case.

We next show that CE�.ƒ/ and CE�.ƒ/ are isomorphic if ƒ is simply connected.
This is a more or less a direct consequence of the description of rigid disks on a
Legendrian with parallel copies in Lemma 35 and the isomorphism in Theorem 49.
Since components in ƒ� are not affected by this choice of CE� versus CE�, we
disregard them and assume that ƒDƒC in what follows.

Recall the definition of CE�.ƒ/ given in Remark 24, which is generated by chains
C��..�pƒ/

�.iC1// in the product of the based loop space of ƒ with factors separated
by Reeb chords. Here the differential of a chain is just the usual differential of the
chain whereas the differential of a Reeb chord is a sum over all moduli spaces of disks
with one positive puncture at the chord and any number of negative punctures. Such a
moduli space carries a fundamental chain and the contribution to the differential is an
alternating word of chains in the based loop space corresponding to the boundary arcs
of the disk carried by the fundamental chain and Reeb chords at the negative puncture,

dc0 D

X
c0

ŒMsy.c/�;
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where c D c0c0 and c0 is a word of Reeb chords. Here we use the diagonal in the
product of loop spaces; see Remark 24.

We next consider a system of parallel copies xƒ.�/D fƒj .�/g
1
jD0

defined by a system
of positive Morse functions (Section 3.3.2), where ƒ0 Dƒ. Recall that the generators
of the algebra CE�.ƒ/ are the Reeb chords connecting ƒ0 to ƒ1, and that these can
be long, corresponding to Reeb chords of ƒ, and short, corresponding to critical points
of f1 except for the minimum. The differential counts rigid disks with one positive
puncture in Msy

.bI �/ where � is a decreasing boundary numbering, bD b0b0.

We next consider the map
� W CE�.ƒ/! CE�.ƒ/

which takes every Reeb chord to itself and takes a chain � in the based loop space
to �.�/, where � is as in (36) and where we identify the critical points of f1 with the
corresponding Reeb chords connecting ƒ0 to ƒ1.

Theorem 51 The map � is a DG–algebra map and if ƒC is simply connected then
� is a quasi-isomorphism.

Proof The fact that � is a chain map follows from Lemma 35. Filter the algebras by
action of Reeb chords on the left-hand side and actions of long Reeb chords on the
right-hand side. The map respects this filtration. The E2–pages are obtained by acting
by the differential on the chains on the based loop space only on the left-hand side
and on Morse chords only on the right-hand side. The result is words of Reeb chords
separated by homology classes in the based loop space and by homology classes in the
(reduced) bar construction on the Morse coalgebra on the left- and right-hand sides,
respectively. On these E2–pages the map � induces an isomorphism by Theorem 49.
Since the sum of actions of the Reeb chords at the negative end is bounded by that at
the positive end, the spectral sequences converge. The theorem follows.

Remark 52 The isomorphism in Theorem 51 is compatible with the stabilization
of Remark 50. To see this we multiply the ambient contact manifold Y with contact
form ˛ by T �RN and considerƒ�RN �Y �T �RN with contact form �D .˛�y dx/.
The Reeb chords of ƒ�RN then come in RN –families, one for each Reeb chord of ƒ.
Consider the contact form ex2

� and note that with respect to this contact form the Reeb
chords of ƒ�RN are in natural one-to-one correspondence with those of ƒ and there
is a canonical isomorphism between CE�.ƒ/ and CE�.ƒ�RN /. In fact the disks in
the differential are canonically identified. It follows in particular that Theorem 51 holds
also if dim.Q/� 4.
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4 Lagrangian (co)algebra

As before, X is a Liouville manifold with c1.X / D 0 and L is an exact relatively
spin Lagrangian in X with vanishing Maslov class and ideal boundary given by the
Legendrian ƒ.

We will associate several chain-level structures to L. To begin with, let us first assume
that L is an embedded Lagrangian. Since L has boundary, in classical topology, one can
consider either C �.L/ or C �.L; @L/. In our case, these two choices are reflected in the
choices ofC or � decorations on L, respectively. More generally, let Lv , v 2� , be the
(irreducible) components of L. As with the Legendrian submanifolds in Section 3.2, we
assume these components of L are decorated by signs and we write LDLC[L� for
the corresponding decomposition. Let F WL!R be a Morse function with prescribed
behavior at infinity (depending on the C or � decoration) as explained in Section 3.3.
We use this to construct a system of parallel copies xLD fLj g

1
jD1

, as in Section 3.3,
shifted at infinity along the Reeb flow either in the positive or negative direction on
LC and L�, respectively.

Now, using the parallel copies, fLj g
1
jD1

, we define a graded quiver QL as follows. The
parallel copies fLj g

1
jD1

give rise to following sets, for fixed i1 < i2 positive integers,
and v;w 2 � with v ¤ w:

� Intersection points Lvi1
\Lvi2

in bijection with the union of critical points of F jLv .
These critical points may depend on the C or � decoration on Lv, one can for
example turn a� decorated component Lv into aC decorated one, by introducing
critical points corresponding to the topology of @Lv; see Figure 5.

� Intersection points Lvi1
\Lwi2

in bijection with Lv \Lw.

i2i1i1 i2i1i2i2 i1

L�LC

Figure 5: Difference between C and � generators for i1 < i2. Both the
left- and the right-hand sides depict shifts corresponding to Morse functions
with a maximum. One of the intersection points in LC is the minimum and
corresponds to the unit for the Floer cohomology product.
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L�1
L�0

x0

x1
x2

x3

x4

L�2
L�4

L�3

Figure 6: An example of a disk with labelings. The blue labeled Lagrangians
are perturbed withC perturbations and red labeled Lagrangians are perturbed
with � perturbation.

Furthermore, by the construction in Section 3.3, there are canonical bijections between
the above sets associated to any pairs .i1; i2/ and .i 0

1
; i 0

2
/ with i1 < i2 and i 0

1
< i 0

2
. So,

fix a pair .i1; i2/ such that i1 < i2, and define a graded quiver QL with vertex set � and
with an arrow connecting v to w (possibly equal to v) for each element of the above
sets. Let I denote the set of arrows.

Alternatively, one can describe the generators as the set of intersection points in L0\L1,
between the original L and the first shifted copy.

Let CF�.L/ be the graded k–bimodule generated by I. Thus, there is one generator xvw

in degree jxvwj for each arrow in QL from v tow. We endow CF�.L/with the structure
of an A1–algebra. Let x0 be an intersection point generator and let x0 D xi � � �x1 be
a word of intersection points. Consider the disk DiC1 with i C 1 boundary punctures
and with a decreasing numbering of its boundary arcs �. Let xD x0xi � � �x1. Consider
the moduli space Mfi.xI �/; see Appendix A for notation. Define the operations mi by

mi.x
0/D

X
`.x0/Di

jx0jDjx
0jC.2�i/

jMfi.xI �/jx0;

where `.y/ denotes the word length of y and jMfi.xI �/j denotes the algebraic number
of points in the oriented 0–dimensional manifold.

Lemma 53 The operations mi satisfy the A1–algebra relations and are independent
of the decreasing boundary labeling �.

Proof This follows by the usual argument: after noting that the decreasing boundary
numbering ensures that there is no boundary bubbling, one observes that the terms in
the A1–algebra relations count the ends of a 1–dimensional oriented compact manifold
by Theorems 74 and 75. The operations compose because of Theorem 76.
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We call CF�.L/ the Lagrangian Floer cohomology algebra of L. Let uv denote the
generator corresponding to the minimum on the component Lv �LC. If Lv is simply
connected, then, by Lemma 38, uv is a strict idempotent. We write k�˚CF�.L/ for the
augmented algebra where we adjoined an idempotent ew for each component Lw �L�.
(On these components the shifting function is decreasing at infinity and has a maximum
rather than a minimum in the compact part.) This is a connected algebra over k.

Remark 54 The two different choices of perturbations at infinity corresponding to
C and � are the two extremal constructions, where one pushes the copies either always
in the positive direction or always in the negative direction. One can also choose
perturbations at infinity to depend on the topology of the manifold at infinity; see, for
example, Section 4 of [1]. All our constructions should extend meaningfully to this
more general setting, but we have not pursued this direction in this paper.

We next consider various linear duals of CF�.L/ and associated algebraic objects. The
simplest case occurs when CF�.L/ is simply connected. In this case the linear dual
CF�.L/ is a coalgebra with operations �i dual to mi , and as before we can adjoin
k� so that k�˚CF�.L/ is coaugmented over k. Then we define the Adams–Floer
DG–algebra

�.k�˚CF�.L//

by applying the cobar construction.

In the non-simply-connected case, we replace this object by the completed Adams–Floer
DG–algebra �

B.k�˚CF�.L//
�#
:

Example 55 Let L be the standard Lagrangian Dn filling of the standard Legendrian
unknot ƒ� S2n�1. The Floer cohomology can be computed as

CF�.L/D
�

Kx with jxj D 0 if L is decorated with C,
Kc with jcj D n if L is decorated with �.

Alternatively, if we want compatibility with the inclusion C �.Dn; @Dn/! C �.Dn/, it
can be computed as

CF�.L/D

8<:
Kc˚Ky˚Kx with jcj D n; jyj D n� 1; jxj D 0 and dy D c

if L is decorated with C,
Kc with jcj D n if L is decorated with �.

In Section B.1, we introduce a model for wrapped Floer cohomology without a Hamil-
tonian term and prove it is quasi-isomorphic to the usual wrapped Floer cohomology.
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We refer there for details and give only a short description here. The chain complex
underlying CW�.L/ is the following. Let L D L0 and shift L off itself to L1 by a
Morse function that is positive at infinity (as in the definition of parallel copies when
L is decorated C). The generators of CW�.L/ are then Reeb chords connecting L1 to
L0 and intersection points in L0\L1.

There is an A1–functor, often called the acceleration functor,

CF�.L/! CW�.L/:

If L is decorated C, it can be shown that this functor is unital.

5 Maps relating Legendrian and Lagrangian (co)algebras

We continue with our usual set-up, where X is a Liouville manifold with c1.X /D 0 and
L is an exact Lagrangian in X with vanishing Maslov class and ideal boundary given
by the Legendrian ƒ. Let � be the set of embedded components of L subdivided into
�C[��. Let ‚ be the set of components of ƒ with induced subdivision ‚C[‚�.

In this section we will define twisting cochains and associated DG–algebra maps
relating the parallel copies version CE�.ƒ/ and the Floer cohomology CF�.L/. Since
L is an exact filling, we have an augmentation �L W CE�.ƒ/! k. As in Section 3.2 we
use this augmentation throughout to change coordinates in such a way that �0 D 0.

As explained in Section 3.4, the definition of CE� differs depending on whether or
not the components of ƒ in ‚C are simply connected. We will start in the simply
connected case and turn later to the non-simply-connected case, using the definitions
in Section 3.4.2.

Assume thus that all components of ƒ in ‚C are simply connected. As usual, let
k�˚LC�.ƒ/ denote the coalgebra corresponding to CE�.ƒ/ augmented by the La-
grangian filling, with counits ev adjoined to all components ƒv in ‚�. As ƒC has
simply connected components, by Lemma 38, this is a counital coalgebra with counitX

v2‚C

xvC
X
v2‚�

ev:

Let � W k! k�˚LC�.ƒ/ denote the coaugmentation

(38) �.ev/D

�
xv if v 2‚C;
ev if v 2‚�;

(see (33)), so that CE�D�.k�˚LC�/. This means that xv is traded for ev for v 2‚C.

Geometry & Topology, Volume 27 (2023)



Duality between Lagrangian and Legendrian invariants 2123

Consider the Floer cohomology A1–algebra CF�.L/. If all components of LC are
simply connected there exists a strict idempotent uv 2 CF�.L/ for each v 2 �C

corresponding to the minimum of the shifting Morse function, and we make CF�.L/
unital by adding an idempotent ew for each w 2��. We write the strictly unital algebra
as k�˚CF�.L/. Let � W k�˚CF�.L/! k be the augmentation that maps uv to ev

for v 2 �C and ew to ew for w 2 ��. Consider the dual of the bar construction,

(39) A D
�
B.k�˚CF�.L//

�#
;

or in other words the completed Adams–Floer DG–algebra. In what follows we will
represent A as a quotient in way that generalizes to the non-simply-connected case in
analogy with the construction in Section 3.4.2. In the non-simply-connected case we
introduce strict idempotents by hand as follows.

Consider adding extra idempotents ev for v 2 �C to k� ˚ CF�.L/. This gives
k˚CF�.L/ and we equip it with the trivial augmentation �0 which is the projection
to k. Let

A 0 D
�
B.k˚CF�.L//

�#
;

and let I denote the subalgebra of A 0 given by the space of functionals which vanish on
monomials not containing uv for some v 2 �C. Let � W A 0! A denote the restriction
map induced by the inclusion k�˚CF�.L/! k˚CF�.L/.

Lemma 56 The subalgebra I is closed under the differential. In the simply connected
case , the map � is a chain map with kernel I and consequently A is quasi-isomorphic
to A 0=I .

Proof Similar to Lemma 42. To see that I is closed under the differential we check
that if uv is an output of the differential, then uv is also an input. Here the output is the
positive puncture of the holomorphic disk, or equivalently flow tree; see Lemma 33.
Since there is no negative-gradient flow line that starts at a minimum, any gradient flow
tree with positive puncture at a minimum must also have a negative puncture at that
minimum. This shows that if uv is an output then it is an input as well.

In the simply connected case, monomials not containing uv come from B.k�˚CF�/,
therefore the kernel of � is contained in I and, conversely, any element in I restricts
to zero on B.k�˚CF�/. Thus, in this case I is the kernel of �.

In the general case we define A D A 0=I . Lemma 56 shows that in the simply
connected case this definition agrees with the alternative definition of A given in (39).
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L�0
L�4

L�1
L�3

L�2

c

x0I4x0;1

x0;2 x0;3

Figure 7: An example of a disk contributing to t0. The blue labeled La-
grangians are perturbed with C perturbations and red labeled Lagrangians
are perturbed with � perturbation.

Remark 57 The somewhat artificial construction of A as A DA 0=I is used to adapt
the bar construction to a not necessarily strictly unital algebra.

We next define a map t0 on generators of CE�.ƒ/ which then gives a map

t0 W LC�.ƒ/! A 0

in the simply connected case, and in that case it will induce a twisting cochain

t W k�˚LC�.ƒ/! A :

The map t0 is defined by the following curve count for generators of LC�.ƒ/. Fix
systems of parallel copies xL of L. Recall that the components labeled with a C sign
are shifted by a positive Morse function and the components labeled with a � sign are
shifted by a negative Morse function.

Let c be a Reeb chord of xƒ and let x0 D x0I1 � � �x0Ij , j > 0, be a nonempty word of
intersection points of xL. Let

c D cx0

and define

(40) t0.c/D
X

jx0jDjcjC.1�j/

jMfi.c/jx0;

where we interpret x0 as an element in A 0.

Remark 58 In the non-simply-connected case we use the same formula to define t0.c/
and note that the sum in the definition may be infinite.

We have the following:
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xv

uw

Figure 8: Minimum xv is sent to the minimum uw .

Proposition 59 If v 2‚C is such thatƒv is a boundary component of Lw forw 2�C,
then

t0.xv/D u0w;

where u0w is the dual of the minimum uw. Furthermore , t0 satisfies the equation of a
twisting cochain.

Proof For the first property we need to understand rigid holomorphic disks with
positive puncture at the Reeb chord xv . By small action such a holomorphic disk must
lie in a neighborhood of Lw and is hence given by Morse flow trees. There is only one
flow line emanating from the minimum in ƒv and the flow line generically ends at the
minimum of the shifting of Lw; see Figure 8. The first equation follows.

To see the twisting cochain equation, we need to check that

m1 ı t
0
� t0 ı�1C

X
d�2

.�1/dm
.d/
2
ı t0
˝kd
ı�d D 0;

where m
.2/
2
WD m2 and m

.i/
2
WD m2 ı .IdA ˝k m

.d�1/
2

/. To this end, we consider
the boundary of the 1–dimensional moduli space Mfi.c0x/. By Theorem 75 this
corresponds to two-level curves which by Theorems 74 and 76 form the boundary of
an oriented compact 1–manifold.

Proposition 59 shows that t0 maps the submodule generated by xv for v 2 ‚C into
I � A 0. Hence, by letting t.ev/D 0, t0 induces a map

t W k�˚LC�.ƒ/! A 0=I D A :

Note that, if � W k! k�˚LC�.ƒ/ is the coaugmentation in (38) and � WA ! k is the
trivial augmentation, then � ı tD t ı �D 0.

Corollary 60 The map t is a twisting cochain.

Proof Since t0 satisfies the twisting cochain equation, so does t.
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c1x0I1

x0I2

c

x0I4c2

x0I3

x0

c

x0I4

x0I3

x0I1

x0I2

Figure 9: Left: a two-story disk contributing to the term m2ıt
˝2ı�2 applied

to c. There are similar disks in the compactification of the 1–dimensional
moduli space, with 2 replaced by n. Right: a two-story disk which contributes
to the term m1 ı t applied to c.

This twisting cochain is always defined, and determines a map

(41) CE�.ƒ/! A :

We next consider the question whether t 2 Kos.LC�.ƒ/;A /. The following theorem
gives a sufficient condition for t to be Koszul:

Theorem 61 Suppose that LC�.ƒ/ is a locally finite , simply connected k–bimodule.
Suppose further that HW�.L/D 0. Then A is quasi-isomorphic to �.k�˚CF�.L//
and t W LC�.ƒ/! A is a Koszul twisted cochain. In other words , the induced DG–
algebra map

CE�.ƒ/! A ��.k�˚CF�.L//

is a quasi-isomorphism.

Corollary 62 In the situation of Theorem 61, suppose that L is connected and deco-
rated by � and that @LDƒ is diffeomorphic to a sphere Sn�1. Writing xLDL[@Dn,
there exists a quasi-isomorphism of DG–algebras

CE�.ƒ/! C��.�xL/;

where �xL is the based loop space of xL.

Proof We first note that there exists a quasi-isomorphism k˚CF�.L/!C �.xL/ since
L is an exact Lagrangian; this is well known and can be deduced eg from Lemma 33.
We next use Theorem 61 and Adams’ cobar equivalence [4]

�.C�.xL//' C��.�xL/;

which holds for the simply connected topological space xL.
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Theorem 61 is obtained as a corollary of Theorem 18 and the following result. For the
notion of wrapped Floer cohomology, see [3] and Section B.1.

Theorem 63 Suppose that HW�.L/D 0. Then there exists a quasi-isomorphism of
augmented A1–algebras

e W CF�.L/! LA�.ƒ/

such that
e.uv/D

X
ƒw�@Lv

xw for v 2 �C:

Note that HW�.L/D 0 if X is subcritical [3], or more generally a flexible Weinstein
manifold. (A Weinstein manifold is flexible if the attaching spheres of all top handles
are loose and hence have trivial Chekanov–Eliashberg algebras [18]; see Section B.2
for the vanishing of wrapped Floer cohomology.)

Note also that if there is no bijection between connected components of L and connected
components of ƒ, then we have to work over the semisimple ring of idempotents
determined by the Lagrangian.

Proof We construct an A1–map eD .ei/i�1, where the maps

ei W .CF�.L//˝ki
! LA�.ƒ/

are constructed by dualizing the components of the map t0. More explicitly, given c0

and x0 D x0In; : : : ;x0I1, write c D c0x0 as in (40), and define

ei.x0/D
X

c02R

jMfi.c/jc0:

The proof that .ei/i�i is an A1–map follows as in the proof of Proposition 59.

Now, we need to check that e1 is a quasi-isomorphism. We point out that e1 concerns
only strips and is defined using only two parallel copies. In the case that LDL�, this
is a consequence of the exact sequence for wrapped Floer cohomology induced by the
subdivision of the complex into high- and low-energy generators,

0! CW�0.L/! CW�.L/! CW�C.L/! 0;

as follows. In terms of the version of wrapped Floer cohomology presented in
Section B.1.1, the low-energy subcomplex CW�0.L/ is generated by Lagrangian intersec-
tion points in L0\L1, where LDL0 and L1 is the first parallel copy of L, shifted by a
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positive Morse function f that increases at the end; see Section 3.3. The differential on
CW�0.L/ counts holomorphic strips which are incoming along L1 and outgoing along
L0 at the output puncture. Similarly, the high-energy quotient CW�C.L/ is generated
by Reeb chords connecting ƒ1 to ƒ0, and the differential counts holomorphic strips
interpolating between such Reeb chords. Since CW�.L/ is acyclic it follows that the
connecting homomorphism HW�C.L/! HW�C1

0
.L/ is an isomorphism. In order to

connect this to CF�.L/ and LA�.ƒ/, renumber the parallel copies so that L1 now lies
in the negative Reeb direction of L0 at infinity and the shifting function f is replaced
by �f . Then note that since L is labeled by � it holds that:

� The linear dual of CW��1
C .L/ is canonically identified with LA�.ƒ/ as a chain

complex. Note that CW��1
C .L/ also has an A1–coalgebra structure as defined

in [30] and this should dualize to the A1–algebra structure on LA�, but we do
not need that here.

� The linear dual of CW�0.L/ is canonically identified with CF�.L/ as a chain
complex.

� The linear dual of the connecting homomorphism can be canonically identified
with the map e1 Wk�˚CF�.L/!k�˚LA�.ƒ/ on critical points which counts
strips with an input puncture at L0\L1 and output puncture at a Reeb chord
and is the canonical map on k�.

Since the connecting homomorphism is an isomorphism so is its linear dual. (The
argument here is originally due to Seidel; compare [29, Theorem 7.2].)

In the case that LC ¤¿, the argument just given applies after a certain deformation,
which we describe next. For components in LC, we define CF�.L/ and LA�.ƒ/ via
parallel copies shifted in the positive Reeb direction at infinity. To connect to the
previous case we consider a Lagrangian cobordism of two cylinders: R�ƒ0, which is
constant, and R�ƒ1, which is the trace of an isotopy pushing ƒ1 across ƒ0 in the
negative Reeb direction. This can be arranged so that the intersection points of the
two cylinders are in natural one-to-one correspondence between the short Reeb chords
between ƒ0 and ƒ1. Furthermore, there is exactly one transverse holomorphic strip
connecting each intersection point to the corresponding Reeb chord at the negative
end of the cobordism. To see this, note that R�ƒ1 can be obtained from a graphical
Lagrangian in a cotangent neighborhood of R�ƒ0 that intersects the zero section
R�ƒ0 cleanly along ƒ0 � f0g. More precisely, it is the graph of the pullback of a
1–form on the R–factor with a single transverse zero at 0 2 R. The corresponding
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Lagrangians are then a product of the zero section in T �ƒ0 and a 1–dimensional
Lagrangian in T �R, and of the zero section and a curve that intersects the zero section
once transversely at 0. The transverse holomorphic strips after perturbation by a Morse
function onƒ0 are products of constants at the critical points of the Morse function and
the obvious strips for the 1–dimensional Lagrangian. Transversality is a consequence
of transversality for the components of the product. We call such curves basic strips.

Adding these cylinders to LC we get a 1–parameter family of pairs of Lagrangian
submanifolds yL�

0
and yL�

1
, where � > 0 is a gluing parameter that measures the length

of the trivial cobordism between LC and the added cylinders. The wrapped Floer
cohomology CW�. yL�

0
; yL

�
1
/ between Lagrangians yL�

0
and yL�

1
vanishes: it is isomorphic

to the wrapped Floer cohomology CW�.L/ by Hamiltonian deformation invariance.
Write CW�. yL�/ WD CW�.L�

0
;L

�
1
/. This complex is then acyclic and is generated by

the set of long Reeb chords CC from L0 to L1, the set of intersection points I between
the cylinders, and intersection points P in L. Let C� denote the short Reeb chords
connecting L0 to L1 and recall the natural one-to-one correspondence C� � I above.
Let � > 0. We claim that the following sets are in natural one-to-one correspondence
for all sufficiently large �:

(i) Rigid strips of yL� with input puncture at c 2 CC and output puncture at p 2 P

and rigid strips of L with input puncture at c 2CC and output puncture at p 2P .

(ii) Rigid strips of yL� with input puncture at c 2 CC and output puncture at q 2 I

and rigid-up-to-translation strips of R�ƒ with input puncture in c 2 CC and
output puncture at q 2 C�.

(iii) Rigid strips of yL� with input puncture at p 2P and output puncture at q 2 I and
rigid strips of L with input puncture at p 2 P and positive puncture at q 2 C�.

To see this note first that the strips in (i) are unaffected by adding the almost trivial
cobordism: the strips are transversely cut out and therefore solutions for small variations
of the boundary data are canonically identified. Taking � sufficiently large the boundary
data of the disks can be made arbitrarily close.

For (ii), in the limit �!1 the disks limit to an anchored disk with a positive puncture
and a puncture at the intersection point. Gluing to it the basic strip (see above for this
notion) connecting the intersection point to the short Reeb chord gives a 1–dimensional
moduli space. The other boundary component of this moduli space consists of a rigid
strip in the cobordism and a disk or plane of dimension one at either symplectization
end. We next argue that the other boundary component of the moduli space must be
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a trivial strip followed by a strip connecting c to q at the negative symplectization
end. To see this we note that the cobordism is obtained by a very small perturbation of
the trivial cobordism R�ƒ. It is well known that the only rigid strips of the trivial
cobordism are the trivial strips; nontrivial curves have dimension � 1. Therefore, a
rigid strip limits either to a trivial strip or does not leave a small neighborhood of the
trivial cobordism R�ƒ. In this neighborhood holomorphic strips correspond to Morse
flow lines of the shifting function, and thus the only rigid strips in the cobordism with
negative ends at Reeb chords are either close to trivial strips or a basic strip. Our
assertion follows. For (iii) we note that every rigid strip must break under stretching
into two rigid strips. Since the only rigid strips in the upper part are the basic strips,
the claim follows.

Observe that the strips in (i) and (iii) contribute to t0, the strips in (ii) to the differential
on LC�.ƒ/. The vanishing of the wrapped Floer cohomology of yL� then implies that
e1 is a quasi-isomorphism. The last statement follows from Proposition 59.

Proof of Theorem 61 The A1–quasi-isomorphism given in Theorem 63 induces a
quasi-isomorphism of DG–algebras

ˆ W B.k�˚CF�.L//! B.LA�.ƒ//

by an application of [21, Theorem 7.4] with respect to length filtrations on the bar
construction.

By the local-finiteness and simple-connectedness assumptions, each of these bar
constructions is locally finite. So we can apply the linear dual operation to get a
quasi-isomorphism of DG–algebras

(42) ˆ#
W B.LA�.ƒ//#! B.k�˚CF�.L//#:

The result then follows as in Theorem 18, where local-finiteness of the grading enabled
us to appeal to Lemma 10. Therefore, the quasi-isomorphism given in (42) induces the
required quasi-isomorphism

�.LC�.ƒ//!�.k�˚CF�.L//:

We next turn to the non-simply-connected case, where we use CE�.ƒ/ as defined
in Section 3.4.2 directly without using the corresponding coalgebra. Note that the
A1–algebras k�˚CF�.L/ and LA�.ƒ/ are finite-rank k–bimodules (in particular,
they are locally finite), thus we can consider their k–duals, which are, by definition,
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the A1–coalgebras k�˚CF�.L/ and LC�.ƒ/. However, unless we have the simple-
connectedness assumption, the A1–quasi-isomorphism

e W k�˚CF�.L/! LA�.ƒ/

does not necessarily dualize to an A1–comap

f W LC�.ƒ/! k�˚CF�.L/;

because A1–comaps are required to factorize through inclusion of the corresponding
direct sum into the direct product as in (9). This is to ensure that a A1–coalgebra
map f induces a DG–algebra map �f on the cobar construction.

If we drop this condition, the A1–quasi isomorphism dualizes to DG–algebra mapfCE
�
.ƒ/! A ;

and this is just the map (41) induced by the twisting cochain t. Furthermore, by
Proposition 59 this gives a DG–algebra map

y�.f/ W bCE�.ƒ/! y�.k�˚CF�.L//:

Now, since f is a quasi-isomorphism, by using the length filtration on y�, and appealing
to [21, Theorem 7.4], we can conclude the following:

Theorem 64 Suppose that HW�.L/D 0. Then there exists a quasi-isomorphism of
DG–algebras

bCE�.ƒ/! y�.k�˚CF�.L//:

Note that the completion bCE� is in general a cruder invariant than both CE�.ƒ/ and
CE�.ƒ/. Nevertheless, we always have a map

CE�.ƒ/! bCE�.ƒ/:

Theorem 64 can be used to compute bCE� in a variety of cases. For example, if L is
a connected Lagrangian filling decorated by � of a Legendrian ƒ diffeomorphic to a
sphere Sn�1, then writing xLDL[@Dn, we have a quasi-isomorphism k˚CF�.L/'
C�.xL/ since xL is an exact Lagrangian. Hence, we have a map

CE�.ƒ/! y�.C�.xL//:

Here the right-hand side can often be computed; in particular, H 0
�
y�.C �.L//

�
is the

group ring of the unipotent completion of the fundamental group �1.L/; see [16].
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In particular, any information on the completion map CE�.ƒ/! bCE�.ƒ/ can help to
obtain information about CE�.ƒ/. We will see an application of this idea in the next
section.

We end this section with a discussion of the twisting cochains constructed above from
an after-surgery perspective. Assume that all components of ƒ� are spheres and recall
the surgery isomorphism

‚ W CW�.C /! CE�.ƒ/

of Conjecture 89. Let z‚D � ı‚, where � is the identity map on components in ƒ�
and the map � of Theorem 51. We next note that there is a natural A1–algebra map

‰ W CW�.C /! B.k˚CF�.L//# D A 0! A D A 0=I ;

where we identify k�˚CF�.L/ with the Floer cohomology CF�.L0/ of the manifold
after surgery obtained by capping off all boundary spheres in ƒ� by disks. (Note that
in the simply connected case, the shifting Morse function then extends with a unique
minimum in each disk which gives an idempotent corresponding to ev.)

The map ‰ is defined by a curve count. Fix systems of parallel copies xC of C and xL0

of L0. Let c0 D c1 � � � ci be a word of Reeb chords of C and let x0 D x0I1 � � �x0Ij be a
word of intersection points of L0. Let

c D c0zvx0zw

and define
‰.c0/D

X
jx0jDjc0jC.1�i/

jMco.c/jx0:

Remark 65 We require here that the parallel copies xL0 give a system of parallel copies
of ƒ near the surgery region in such a way that, for the components of ƒv labeled
by � (resp. C), the induced parallel copies xƒv lie in the negative (resp. positive) Reeb
direction. Compare with Figure 5.

Theorem 66 The map ‰ is a map of A1–algebras and ‰.zv/D u0v, where zv is the
strict unit in CW�.Cv/ and u0v is the dual of the unit in Kev˚CF�.Lv/ for each v.

Proof This follows as usual by identifying terms contributing to the A1–relations
with the oriented boundary of an oriented 1–manifold and Theorems 74–76.

To compute ‰.zv/ note that we can represent zv as the minimum of the shifting Morse
function of C and there is a unique flow line from this minimum to the intersection
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point Cv\L0v , and a unique flow line in L0v from the intersection point to the minimum
in Lv . The corresponding holomorphic disk starts at the intersection point between C0

and C1, has two corners at C0\L0
0

and C1\L0
1
, and ends at the intersection point in

L0
0
\L0

1
corresponding to the minimum of the shifting Morse function.

The pre-twisting cochain t0 W LC�.ƒ/!A can now be seen to arise via SFT stretching
as follows. Consider the first component ‰1 of the A1–map above and a holomorphic
disk contributing to it. Now stretch the lower end of the cobordism. Then by SFT com-
pactness each curve contributing to ‰1 breaks up into a curve contributing to the map
� ı‚ followed by the twisting cochain at each negative puncture. The zv are the only
low-energy generators, so it follows that the map induces a map of the high-energy
quotient into coker.�/, and we can write the induced map ‰C

1
as ‰C

1
D .�t/ı� ı‚C.

6 Examples and applications

6.1 Concrete calculations

In this section we compute Legendrian and Lagrangian invariants in a number of
concrete examples.

6.1.1 The unknot Consider the Legendrian unknot ƒ � S2n�1 for n > 1 with its
standard filling LDDn �D2n. Then ƒ can be represented as a standard unknot in
a small Darboux chart which has effectively only one Reeb chord with respect to the
standard Reeb flow on S2n�1; see [11, Section 7.1].

We work over a field K. Consider first the case when L is decorated by �. Then

LC�.ƒ/DK � 1˚K � c with jcj D �n;

with all coalgebra maps .�i/i�1 trivial, except �2, for which we have

�2.1/D 1˝ 1 and �2.c/D 1˝ cC c˝ 1

by the counitality. Using a Morse function on D2n with a unique local maximum a and
which decreases along the end corresponding to a shift in the negative Reeb direction,
we have

K˚CF�.L/DK � 1˚K � a with jaj D �n:

Let A D�.K˚CF�.L// be the Adams–Floer algebra, where the degree of a is now
shifted up by 1. Then we have the twisting cochain

t W LC�.ƒ/! A ; t.c/D a:
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Figure 10: Computation of t for the Legendrian unknot. The disk drawn lies
in an .n�1/–dimensional family that sweeps the filling once.

Here the disk with input c and output a corresponds to the family of disks with positive
puncture at c that sweeps L once.

The case of nD 2 is drawn in Figure 10.

The Koszul complex is generated over K by ak , akc with k � 0. We can compute the
nontrivial part of the differential to be

d t.akc/D akC1 for all k � 0I

hence, t is acyclic. This is consistent with the classical Koszul duality between the
algebras C �.Sn/ and C��.�Sn/ for n> 1.

Consider next the case when L is decorated by C. Since Sn�1 is simply connected,
CE�.ƒ/ � CE�.ƒ/ and we will use the parallel copies version in our calculation.
Choose a Morse function on ƒ with a single minimum and a single maximum. Denote
the corresponding Reeb chords by x (the counit chord) and y. Then

LC�.ƒ/DK �x˚K �y˚K � c; with jxj D 0; jyj D �.n� 1/; jcj D �n:

Here

�1.c/D y; �2.x/D x˝xCC.�1/n�1x˝yCy˝xC .�1/nx˝ cC c˝x;

and all other operations are trivial. It follows that

CE�.ƒ/D�.LC�.ƒ//'K:

This is in line with Conjecture 3, which says that CE�.ƒ/' CE�.ƒ/ is isomorphic
to CW�.C /, where C is the cotangent fiber in the manifold obtained by attaching a
cotangent end T �.Sn�1 � Œ0;1// to the ball along ƒ. The manifold that results from
this attachment is simply T �Rn, and the wrapped Floer cohomology of the cotangent
fiber C has rank 1 and is generated by the minimum in the disk C , in accordance with
the above calculations.
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Figure 11: Hopf link with one (blue) markedC and one (red) marked � component.

Finally, the twisting cochain t in the C case is the canonical map K!K, and again
the Koszul complex is acyclic. As explained in Section 5 this map is induced by a map
t0 W LC�.ƒ/! .BCF�.L//#. To define CF�.L/ we use a Morse function on L with a
single local minimum and which is increasing along the end corresponding to a shift
in the positive Reeb direction. Denote the generator of CF�.L/ corresponding to the
minimum by u, juj D 0. Then

t0.x/D u0;

where u0 is the dual of u and the holomorphic strip is the thin strip corresponding to a
rigid Morse flow line from the minimum u to the minimum y in the boundary.

6.1.2 Geometric twisting cochain for the Hopf link In this section we carry out the
geometric calculation of the twisting cochain for the Hopf link. As explained we cannot
directly calculate the twisting cochain into the Legendrian coalgebra with coefficients
in chains of the based loop space. We can however calculate the corresponding twisting
cochain when we replace chains on the based loop space with the Morse theory of
parallel copies for the components decorated by a positive sign. To carry out the
calculation we pick a Morse function on the component ƒC with on minimum x and
a maximum y. We place them on the circle and choose parallel copies as shown in
Figure 11. The parallel copies algebra CE�.ƒ/ is

khx;y; c1; c12; c21; c2i;

where we use notation for Reeb chords and Floer cohomology generators as in
Section 1.4. The differential is

dc1 D xc1C c1xCyC c12c21; dx D xx; dy D xy �yx;

dc12 D�xc12; dc21 D c21x; dc2 D c21c12:

Passing to CE�.ƒ/ means dividing out by the cokernel of the coaugmentation that
takes e1 to x. This gives the algebra

khy; c1; c12; c21; c2i;
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and the differential becomes

dc1 D yC c12c21; dc2 D c21c12:

The twisting cochain t is induced from a map t0 W LC�.ƒ/!
�
B.k�˚CF�.L//

�# that
counts holomorphic disks with one positive puncture and boundary on L, and with
several punctures at Lagrangian intersection points in the compact part; see (40). In
the current example it is straightforward to find these disks. Note first that, by general
properties (see Proposition 59),

t0.x/D a_1 ;

where a1 is the idempotent corresponding to the minimum of the shifting Morse
function on L1. The holomorphic disk corresponds to a Morse flow line connecting x

to u1. We next consider t0.c1/ and t0.c2/. Consider first the moduli spaces Mfi.cj / of
holomorphic disks with a positive puncture at cj and boundary on Lj . As in the case
of the unknot this moduli space sweeps Lj . On both L1 and L2 the shifting functions
have one critical point, on L1 it is a minimum and on L2 a maximum. The maximum
is constraining for the map into the linear dual of CF�.Lj /, whereas the minimum is
not. We find that

t0.c1/D 0 and t0.c2/D a_2 :

The spaces Mfi.cj / give further information of the twisting cochain as follows. Note
that as the evaluation map hits the double point one can glue on a constant disk. These
broken disks are also the boundary of the 1–dimensional moduli spaces Mfi.c1a12a21/

and Mfi.c2a21a12/. The other end of these moduli spaces correspond to broken disks
with one level in the symplectization, a disk in Msy.c1c12c21/ in the former case and in
Msy.c2c21c12/ in the latter, and two disks one in Mfi.c12a12/ and one in Mfi.c21a21/

attached at its negative end. The last disks contribute to t0 and we conclude that

t0.c12/D a_12 and t0.c21/D a_21:

Finally, we compute t0.y/. Since y is a small chord corresponding to a critical point
at infinity of the shifting Morse function the only contributions to t0.y/ come from
small holomorphic disks that are controlled by the Morse theory. It is straightforward
to check that the only rigid disk corresponds to a flow line in L1 connecting y to
the intersection point and that this flow line corresponds to a holomorphic triangle in
Mfi.ya12a21/. It follows that

t0.y/D a_21a_12:
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a b

Sm�1

Sk

Figure 12: Front of products of spheres.

The actual twisting cochain takes the cokernel LC�.ƒ/ of the coaugmentation into the
cokernel of the counits. Concretely, this means disregarding x and a_

1
, and we get

t.c1/D 0; t.c2/D a_2 ; t.c12/D a_12; t.c21/D a_21; t.y/D a_12a_21:

Remark 67 The parallel copies algebra CE�.ƒ/ is defined using a fixed augmentation
(in the current example the zero augmentation) on the one copy version of CE�.ƒ/.
Here this is reflected in the change of variables t � e1 D y.

6.1.3 Products of spheres We consider a Legendrian embedding ƒ�R2.mCk/�1,
where the ambient space is standard contact .2.m�k/�1/–space with coordinates
.x;y; z/ 2RmCk�1 �RmCk�1 �R and contact form dz�y dx. We will define it by
describing its front in RmCk�1�R. To this end consider first the following construction
of the front of the Legendrian unknot in Rn�R. Take a disk Dn lying in Rn. Think of
it as having multiplicity two and lift one of the sheets up in the auxiliary R–direction
(with coordinate z) keeping it fixed along the boundary. In this way we construct the
front of the standard unknot with Reeb chord at the maximum distance between the
two sheets and a cusp edge along the boundary of Dn. Consider now instead the base
RmCk�1 and the standard embedding of the k–dimensional sphere Sk into this space.
A tubular neighborhood of this embedding has the form Sk �Dm�1 with fibers Dm�1.
Now take two copies of this tubular neighborhood and repeat the above construction
for the Dm�1 in each fiber. The result is the front of a Legendrian Sk �Sm�1 with
an Sk Bott family of Reeb chords corresponding to the maxima in fibers. Figure 12
shows this front after Morse perturbation. The resulting Legendrian ƒ has only two
Reeb chords. We denote them by a, with grading jaj D �.mCk/, and b, with grading
jbj D �m. Note also that ƒ has an exact Lagrangian filling L�Dm �Sk .

Consider first the case when L is decorated by �. If d is the differential in CE�.ƒ/,
we have

daD 0 and db D 0:
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The Floer cohomology of L is defined by choosing a shifting function which is decreas-
ing at infinity and we find that CF� has two generators M , with jM j DmC k, and S ,
with jS j D m. As in the case of the unknot Mfi.a/ sweeps L and Mfi.b/ sweeps
Dm � pt. It follows that the twisting cochain satisfies

t.a/DM_ and t.b/D S_;

and duality holds.

Consider second the case when L is decorated by C. In this case there are additional
generators of LC�.ƒ/ corresponding to the Morse theory of ƒ. We have in addition to
a and b above also

x; s1; s2; y; with jxj D 0; js1j D �k; js2j D �.m� 1/; jyj D �.mC k � 1/:

It follows that CE�.ƒ/ is generated by s1, s2, y, a and b. Using the flow tree description
of moduli spaces Msy one verifies that if d is the differential on CE�.ƒ/ then

daD y � ..�1/kmbs1C s1b/; dy D s1s2C .�1/k.m�1/s2s1;

db D s2; ds1 D 0; ds2 D 0:

The Floer cohomology of L is defined by choosing a shifting function which is increas-
ing at infinity and we find that CF� has two generators M , with jM j D 0, and S , with
jS j D k, where M is the unit. It follows that .BCF�.L//# '�CF�.L// is generated
by S_ with jS_j D �k and the twisting cochain is

t.a/D 0; t.y/D 0; t.b/D 0; t.s2/D 0; t.s1/D S_;

and duality holds.

6.1.4 Plumbings of simply connected cotangent bundles Let T be a tree with
vertex set � . For each v 2 � , let Mv be a compact simply connected manifold of
dimension n� 3. We will see that duality holds between the wrapped and the compact
Fukaya categories of the symplectic manifold XT obtained by plumbing the collection
of T �Mv according to the tree T .

As usual, we take the pre-surgery perspective. Hence, consider a handle decomposition
of each Mv with a unique top-dimensional n–handle. Removing this handle, we
get manifolds Lv with spherical boundary ƒv. Let WT be the subcritical Weinstein
manifold obtained by plumbing the cotangent bundles T �Lv according to the tree T .
We take the plumbing region to be away from the boundary of Lv . Write ƒD

F
v ƒv

for the Legendrian in the boundary of the subcritical Weinstein manifold WT which is
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filled by the Lagrangian LD
S
v Lv. Equip the components of ƒ with either C or �

labeling.

Theorem 68 If n� 3 and Lv is simply connected for each v 2 � , then CE�.ƒ/ and
CF�.L/ are Koszul dual.

Proof Consider first the case n� 5. Pick a handle decomposition of Lv without 1– and
.n�1/–handles. The existence of such a handle decomposition is equivalent to simple
connectedness in high dimensions by the work of Smale. Consider the corresponding
Weinstein handle decomposition of T �Lv . Attaching a k–handle alters the Legendrian
boundary by surgery and adds Reeb chords in the cocore sphere of the handle, of
grading � �.n� k/. It follows that all Reeb chords of ƒv have grading � �2. To
construct ƒ� @WT , we perform a version of boundary connected sum as follows. For
each edge in T we pick a 2n–ball B with two transversely intersecting Lagrangian
disks D � B that intersect the boundary sphere @B in a standard Legendrian Hopf
link �. We then make the boundary connected sum adding .B; �/ to join the T �Lv

according to the tree. This adds Reeb chords of index � �.n� 1/ in the boundary
connected sum handles and further Reeb chords corresponding to the Reeb chords of
each Hopf link, which effectively has four Reeb chords: two Reeb chords connecting
the unknot components to themselves of grading �n, and two mixed Reeb chords
connecting distinct components. We can pick gradings so that the gradings of these
two mixed chords are �d and �.n� d/ for any d , where the first Reeb chord goes
from the component closest to the a priori fixed root of the tree T to the one further
from it and the other in the opposite direction. Taking d between 2 and n� 2, we find
that LC�.ƒ/ is simply connected, as is ƒ. The result then follows from Theorem 61.

For nD 4, we can stabilize by multiplying by RN as described in Remarks 50 and 52
to get 1–reduced versions of the Legendrian and Lagrangian algebras, then use the
above argument.

Finally, for n D 3, the assumptions of Theorem 61 do not hold, but we recall from
Remark 20 that to apply the duality result from Theorem 61 all we really need is
that B.LA�/ is locally finite. This is easily seen to be the case in our case, since the
plumbing is according to a tree (which by definition has no cycles) and for any word
of Reeb chords that do not consist of connecting Reeb chords going away from the
root of the tree, the grading has to increase with the size of the word. Alternatively,
in this case we know by Perelman’s theorem that we can take ƒ as a link of standard
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Legendrian spheres linked according to the tree as Hopf links, and B.LA�/ can be seen
to be locally finite directly.

Remark 69 The case n D 2 corresponds to plumbing of copies of T �S2. This
case was studied in [32] and a version of the duality result still holds, at least when
char.K/D 0. However, the above argument fails in that case and a more complicated
argument using an additional grading is used in [32]. Also a set of examples for nD 1

are studied in [48], where the plumbing tree is a star and the corresponding symplectic
manifold is a punctured torus. The duality still holds in this case, even though this is a
plumbing of T �S1 copies (not simply connected). The proof of duality given in [48]
uses homological mirror symmetry.

6.1.5 The trefoil Consider the standard Legendrian trefoil ƒ � S3 described in
Figure 13. Let us first consider the case when ƒ is marked �. With respect to the
standard choice of orientation datum, the Chekanov–Eliashberg DG–algebra CE� is
then given by the free algebra

Khc1; c2; b1; b2; b3i; with jc1j D jc2j D �1 and jb1j D jb2j D jb3j D 0;

and the nontrivial part of the differential can be read from Figure 13 as

dc1 D 1C b1C b3C b3b2b1; dc2 D�1� b1� b3� b1b2b3:

It is well known that ƒ has an exact Lagrangian torus filling. (In fact, there are at least
five of them; see [29].) Any of these can be obtained by doing surgery (pinch move) at
b1, b2 and b3 in some order. Corresponding augmentations �L W CE�!K are given by
their values �.b1/; �.b2/; �.b3/ 2K subject to the condition

1C �.b1/C �.b3/C �.b1/�.b2/�.b3/D 0:

Note that since CE� is not simply connected, Theorem 61 does not apply here. In fact,
duality does not hold in this example. However, Theorem 64 shows that there is a

c1

b1

b2

b3

c2

Figure 13: Trefoil.
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quasi-isomorphism of completions

cCE
�
Š y�C�.T

2/ŠKŒŒu; v��;

where the latter is a power series ring in two commuting variables concentrated in
degree 0.

Thus, the completion map composed with the twisting cochain gives an algebra map

H 0.CE�/DKhb1; b2; b3i=h1Cb1Cb3Cb3b2b1; 1Cb1Cb3Cb1b2b3i!KŒŒu; v��:

We claim that this map is injective. Indeed, observe that H 0.CE�/ is a commutative
algebra,

d.c1C c2C b3b2c1C c1b2b3/D b3b2� b2b3;

and thus, b2 commutes with b3 in homology. Using this, one shows similarly that
b1 commutes with b2 and b3; see [15]. Hence, we have a completion map from a
commutative ring to its completion,

H 0.CE�/DKŒb1; b2; b3�=.1C b1C b3C b1b2b3/!KŒŒu; v��:

It is a well-known theorem in commutative algebra, the Krull intersection theorem,
that, for any commutative Noetherian ring which is an integral domain, the completion
map is injective. Thus, even though duality fails in this example, partial information
can still be obtained by considering completions.

We next describe the twisting cochain t WLC�.ƒ/!BCF�.L/# for one of the Lagrangian
fillings L ofƒ. More precisely, we choose the filling which is obtained by pinching first
at b1, then at b2, then at b3, and finally filling the resulting unknots with Lagrangian
disks; see [29, Section 8.1]. We think of the Lagrangian filling as two disks connected
by three twisted bands corresponding to the three pinchings. We next consider moduli
spaces of holomorphic disks with boundary in L. Here [29, Sections 4–5] gives a
description in terms of Morse flow trees which gives the following:

� Mfi.b1/ consists of one disk, ı1
1

.

� Mfi.b2/ consists of two disks, ı1
2

and ı2
2

.

� Mfi.b3/ consists of two disks, ı1
3

and ı2
3

.

The boundaries of these disks are as follows:

� @ı1
1

is a fiber in the first twisted band.
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� @ı1
2

is a fiber in the second twisted band, and @ı2
2

runs across the first and the
second twisted band.

� @ı1
3

is a fiber in the third twisted band, and @ı2
3

runs across the second and the
third twisted bands.

We next describe the moduli spaces Mfi.c2/ and Mfi.c1/ in a completely analogous
manner. The space has four components, all diffeomorphic to intervals, as follows:

� �1 with one boundary point the disk in Msy.c2b1/ with ı1
1

attached, and the
other the disk in Msy.c2b1b2b3/ with ı1

1
, ı1

2
and ı2

3
attached.

� �2 with one boundary point the disk in Msy.c2b3/ with ı1
3

attached, and the
other the disk in Msy.c2b1b2b3/ with ı1

1
, ı2

2
and ı1

3
attached.

� �3 with one boundary point the disk in Msy.c2b3/ with ı2
3

attached, and the
other the disk in Msy.c2b1b2b3/ with ı1

1
, ı2

2
and ı2

3
attached.

� �4 with one boundary point the disk in Msy.c2/ and the other the disk in
Msy.c2b1b2b3/ with ı1

1
, ı1

2
and ı1

3
attached.

Here the disks in �4 sweep the right-hand disk of L, whereas the evaluation maps of �j
for 1� j � 3 do not map surjectively onto either disk. The moduli space Mfi.c1/ also
has four components, only one of which sweeps the left-hand disk of L.

In order to compute the Floer cohomology CF�.L/ we pick a Morse function with
one maximum M and two saddle points S1 and S2. Letting the maximum lie in the
right-hand disk we find

t.c1/D 0;

since the only way to rigidify a disk of dimension one is that its boundary passes the
maximum M .

The twisting cochain can now in principle be computed from the moduli spaces Mfi

described above by attaching flow trees. To get an algebraically feasible twisting
cochain we first arrange the perturbation scheme so that

t.b1/D S_1 CS_1 S_2 ;

where the first term is ı1
1

with a flow line and the second with a flow tree, and next so
that

t.b3/D�S_1 ;

the disk ı2
2

with a flow line contributes, while other contributions cancel (the disk ı2
2

with two flow lines and the same disk with a flow tree, the two distinct disks with
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one flow line). Remaining parts of the twisting cochain are now determined from the
coproduct in the Floer homology

dM_
D S_1 S_2 �S_2 S_1 ;

the twisting cochain equation, and the sweeping property of �4, as

t.c2/DM_

�
1CS_

1

1CS_
1
CS_

1
S_

2

�
and t.b2/D

S_
2

.1CS_
1
CS_

1
S_

2
/
:

It is possible to check that these power series agree with the geometric count. We leave
out the details but describe the mechanism. In order to arrange that only one flow line
can be attached to ı1

1
we order the stable manifolds of the flow line of the parallel

copies so that if a flow line (or flow tree) between copy j and j � l is attached then
following ı1

1
we already passed all intersections with stable manifolds between copy

j � l and k for k < j � l . Now, if the disk intersects the collection of stable manifolds
in the opposite direction this means that we can jump down in all ways, which then
gives the desired power series.

We finish this section with a brief discussion of the case of L decorated by C and
parallel copies. As usual this introduces two extra generators in addition to the Reeb
chords above in LC�, namely x, with jxj D 0, and y, with jyj D �1, where x is
the counit corresponding to the minimum of the shifting function and y is the maxi-
mum. In the reduced coalgebra (disregarding x) we get the new differential (using the
augmentation �L above to change coordinates)

dc1 D b1C b3� b3b2C b3b2b1; dc2 D�y � b1� b3C b2b3� b1b2b3:

In this case CF� is defined instead by choosing a shifting function that increases at
infinity, and CF� is generated by the unit u, with juj D 0, and s1 and s2, with jsj j D 1.
The new twisting cochain is

t.c1/D t.c2/D 0; t.y/D .s_1 s_2 � s_2 s_1 /

�
1C s_

1

1C s_
1
C s_

1
s_
2

�
;

and t.bj / is exactly as above, after the substitutions sj ! Sj for j D 1; 2.

6.1.6 Mirror of 72 We next discuss an example where Koszulity fails and also the
completion map fails to be injective, even though CE� is supported in nonpositive
degrees. This example was shown to us by Lenhard Ng.

Consider the Legendrian knot ƒ drawn in Figure 14 decorated �. It is easy to see that
two pinch moves indicated by dashed lines in Figure 14 give a Legendrian unknot,
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a1

b1
a2

b2

b3

b4

b5

b6

b7

a3a5

a4a6

Figure 14: Mirror of 72.

henceƒ has a Lagrangian torus filling, call it L. Thus, we again have a completion map

H 0.CE�/!KŒŒu; v��;

where KŒŒu; v�� is the commutative power-series algebra in two variables.

CE� is given by the free algebra

Kha1; a2; a3; a4; a5; a6; b1; b2; b3; b4; b5; b6; b7i;

with jai j D �1 and jbi j D 0.

The differential is given by

da1 D�1C .1C b1b2/b7C b1.1C b4b3/.1C b6b5/; da2 D 1� b3.1C b2b1/;

da3 D 1C b3b4; da4 D 1C b5b4; da5 D 1C b5b6; da6 D 1C b7b6:

Taking the quotient of H 0.CE�/ by letting b4 D b6, b3 D b5 D b7, b1 D 1 and
b2 D�1� b4 gives

hb3; b4i=h1C b3b4i;

which is a noncommutative algebra.

Thus, the completion map cannot be injective in this case. Otherwise, H 0.CE�/, and
thus any quotient of it, would have been commutative.

6.2 Simply connected Legendrian submanifolds

Let ƒ� Y be a Legendrian .n�1/–submanifold with �1.ƒ/D 1 in the boundary Y

of a Weinstein 2n–manifold X that bounds an exact Lagrangian L � X . Assume
that c1.X /D 0 and that the Maslov class of L vanishes and that L is relatively spin.
Decorate L by �. Our next result shows that if the symplectic homology of X vanishes
and if all Reeb chords of ƒ have negative grading as generators of CE�.ƒ/, then
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CE�.ƒ/ is determined by the topology of L, and conversely. If ƒ is a sphere then we
write xLDL[@ Dn for the closed manifold obtained by adding a disk to L along ƒ.

Theorem 70 Suppose that ƒDƒ� is simply connected. Assume that SH�.X /D 0

and that CE�.ƒ/ is supported in degrees ��1. Then L is simply connected. Moreover ,
if ƒ is a sphere , then CE�.ƒ/ is isomorphic to C��.�xL/.

Proof Consider the wrapped Floer cohomology HW��1
.L/ of L with coefficients in

ZŒ�1.L/�. Using our model for wrapped Floer cohomology in Section B.1, a chain
complex CW��1

.L/ which calculates HW��1
.L/ can be described as follows. Let

LD L0 and let L1 be a parallel copy of L shifted in the negative Reeb direction at
infinity. The complex CW��1

.L/ is then generated over ZŒ�1� by the intersection points
in L0\L1, which we call the Morse generators, and the Reeb chords starting on ƒ0

and ending on ƒ1. The differential of a generator counts the usual rigid holomorphic
strips, keeping track of the homotopy class of the loop obtained from the boundary
component of the disk in L1 completed by the reference paths connecting Reeb chord
endpoints and intersection points to the basepoint. We point out that since there are
no Reeb chords of degree 0 the augmentation induced by L is trivial and the high-
energy part of the differential on CW��1

counts honest holomorphic strips (without
extra negative punctures at augmented Reeb chords). As for usual wrapped Floer
homology, HW��1

.L/ is naturally a module over symplectic cohomology SH�.X / and
hence vanishes.

We next describe a geometric version of the complex CW��1
.L/ that we call CW�

zp and
that also computes HW�1.L/. Let zp W zL!L denote the universal covering of L and
let zƒD zp�1.ƒ/. Pick a Morse function f W zL!R such that

� f has exactly one local maximum M ,

� f has no index n� 1 critical points,

� f has no local minima,

� f is constant on zƒ where it attains its global minimum and if � is the unit normal
vector field along zƒ then df .�/D�1.

The generators of CW�
zp are of two types:

(i) The preimages of endpoints of Reeb chords L0!L1 in L�L1 under zp graded
as the corresponding Reeb chord in CE�.ƒ/.

(ii) The critical points of the Morse function f W zL!R graded by the negative of
the Morse index.
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Let M�� denote the Morse chain complex of f with cohomological grading, with
generators as in (ii) and differential ı which counts negative gradient flow lines. Then
M�� is supported in degrees d with �n�d ��1 and M�.n�1/D 0. Let C � denote the
complex generated by the generators of type (i) and equip it with the differential @ that
counts lifts of the boundary of holomorphic strips in the symplectization interpolating
between Reeb chords. (This corresponds naturally to the high-energy part of the
differential on CW��1

.) By our assumption on Reeb chord grading, the grading of C �

is supported in degrees d where d � �1.

We now define the complex CW�
zp D C �˚M��, with differential

d D

�
@ �

0 ı

�
;

where ı and @ are the differentials on M � and C �, and where � counts rigid lifts of
disks with flow lines of f attached. (This is the linear part of the map � in (36).)

The homology of d is then isomorphic to HW��1
.L/. To see this note that we can

describe CW��1
.L/ exactly as CW�

zp.L/ just replacing the Morse function f above
with a Morse function h ı zp, where zp is a Morse function on L without minimum
and with the required boundary behavior. Thus, passing from CW��1

.L/ to CW�
zp.L/

corresponds to deforming the Morse function on zL, and it is well known that this
induces a homotopy of complexes. In particular, CW�

zp.L/ is acyclic.

We next want to show that �1.L/ � 1 or, equivalently, that the map zL ! L has
degree one. To show this we first observe that since there are no Reeb chords of
grading 0 the augmentation of CE�.ƒ/ is trivial and the differential on C � counts
honest holomorphic strips in the symplectization. This in turn means that the whole
boundary of any holomorphic strip contributing to @ actually lies inƒ�R and therefore
cannot pick up any nontrivial ZŒ�1�–coefficient.

Consider the part of the chain complex C �˚M�� given by

� � � ! C�.nC1/
! C�n

˚M�n! C�.n�1/
! � � � ;

where we use that M�kD0 for kDn�1 and k>n. It follows from the above discussion
and the vanishing of the wrapped homology HW�.L/ with trivial coefficients that the
cohomology HW�n

�1
.L/ in degree �n has one generator for each nontrivial element

in �1. On the other hand, HW�n
�1
.L/D 0, and we conclude that �1 D 1.

The statement about the isomorphism class of CE�.ƒ/ follows from Corollary 62.
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Appendix A Basic results for moduli spaces

Consider as above a Weinstein manifold with an exact Lagrangian submanifold .X;L/,
which outside a compact set agrees with the positive part of the symplectization of the
contact manifold with Legendrian submanifold .Y; ƒ/. We assume that the Maslov
class of L vanishes and that L is relatively spin. We will consider several versions of
punctured holomorphic spheres and disks with boundary on L. The most basic disks we
consider will lie either in X or in the symplectization R�Y . We call the former filling
curves and the latter symplectization curves. We will also consider a more general
cobordism setting where, like in the symplectization, disks may have both positive
and negative punctures. Here we assume that .W;K/ is a Weinstein cobordism with
negative end .�1; 0�� .Y; ƒ/ and positive end Œ0;1/� .Z; �/, where Z is a contact
manifold and � is a Legendrian submanifold. We call disks in W cobordism disks.

When we want to consider the relation of our “pre-surgery” invariants to “post-surgery”
invariants, we will consider the case when K decomposes as a Lagrangian C �W with
positive end � and empty negative end and a Lagrangian L with negative end ƒ and
empty positive end. We further assume that there is a natural one-to-one correspondence
between the components of Lv of L and C v of C for v 2Q0, and that corresponding
components Lv and C v intersect transversely at one point zv and that Lv \Cw D¿
if v ¤ w.

We will describe a geometric setup that covers the cases considered below. Let Y be
the contact boundary of the Weinstein manifold X , where c1.X /D 0. Let ƒ� Y be a
Legendrian with connected components ƒ1; : : : ; ƒm. Let D denote the unit disk in C

and let z1; : : : ; zr be boundary punctures and �1; : : : ; �k interior punctures. Let each
component of @D n fz1; : : : ; zr g be decorated with a component ƒj . The boundary
punctures come in two types, positive and negative; all interior punctures are negative.
Following [23], we make the further requirement that the disk be admissible:

Any arc in D that connects two boundary arcs in @D n fz1; : : : ; zr g sub-
divides the boundary punctures into two subsets. If both these subsets
contain positive punctures, then the labels of the two boundary segments
at the endpoints of the arc are different.

Remark 71 When we consider parallel copies of Lagrangians and Legendrians, bound-
ary arcs labeled by different numbers in the numbering of parallel copies lie on copies
shifted by different Morse functions, and correspond to distinctly labeled boundary
conditions in the current discussion.
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Figure 15: Anchored disks.

We also assume that the disk has one distinguished boundary puncture. Note that using
a conformal model where the distinguished positive puncture lies at 1 2 @D and an
interior puncture �j lies at the origin, the positive real axis determines an asymptotic
marker at �j for each j . In the conformal model of the upper half-plane with the
distinguished puncture at infinity, this marker at any interior puncture is that determined
by the vertical axis.

A.1 Moduli spaces of spheres for anchoring, and compactifications of
moduli spaces of disks

Following [11], all symplectization and cobordism disks we consider will be anchored.
This means that the actual disks we consider have, aside from their boundary punctures,
also additional interior punctures, where the maps are asymptotic to Reeb orbits at the
negative end. An anchored disk is such a disk completed by holomorphic planes in X

at all its negative interior punctures; see Figure 15.

When defining our version of the Chekanov–Eliashberg algebra CE�, use moduli spaces
of anchored disks to parametrize chains of boundary paths. When defining our versions
of the Legendrian coalgebra LC� and the wrapped Floer A1–algebra CW�, we will
need to consider disks in the symplectization with additional interior and boundary
punctures, completed by rigid planes in X and disks in .X;L/, respectively. We will
also call such disks “anchored disks”.

Although standard arguments using classical methods allow us to prove transversality for
the disks with boundary punctures that we consider, anchored disks require transversality
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and gluing also for holomorphic planes in .X;L/, and that requires a more general
perturbation scheme. Necessary perturbations for such curves were constructed in [25].

To state the relevant result let Y denote the contact boundary of X and consider a
Reeb orbit  in Y with a marker (ie a point p 2  ) on it. We write  0 for the orbit 
with a marker. Let M. 0/ denote the moduli space of holomorphic planes in X with
positive puncture with an asymptotic marker where the curve is asymptotic to  , with
the asymptotic maker mapping to the marker on  . As in [25, Theorem 1.1], we define
perturbation data � so that M�. 0/ is a transversely cut out space of solutions to a
perturbed Cauchy–Riemann equation x@J�uD0, where J� is a domain-dependent almost
complex structure that is allowed to depend also on the map u in the neighborhood
of M. 0/. The moduli space M�. 0/ furthermore has a natural compactification
M. 0/ as a manifold with boundary with corners, where boundary strata correspond
to several level spheres. Here levels not in moduli spaces of the form M�.ˇ0/ just
discussed lie in a moduli space Msy;�.ˇ0;�0/, where ˇ0 is a Reeb orbit with marker and
�0 D �0

1
� � � �0

k
is a word of Reeb orbits with markers. Elements in Msy;�.ˇ0;�0/ are

maps u W S!R�Y of a punctured spheres S into the symplectization. There are fixed
cylindrical ends S1� Œ0;1/ near the punctures in S that are compatible with breaking
in the sense of [30, Section 2.1]. The map u takes .1;1/ at a puncture to the marker of
the corresponding Reeb orbit and u again solves a perturbed Cauchy–Riemann equation
x@J�uD 0, where J� is domain dependent and only depends on the angular coordinate
along the ends near the punctures, has a positive puncture at ˇ0 and negative punctures
at the orbits in �0.

We refer to [25, Section 2.4] for more details on M. 0/. Here we only point out
that the asymptotic marker at the positive puncture of a curve in the compactification
determines asymptotic markers at all negative punctures and that the level structure is
compatible with this in the sense that the asymptotic marker at the positive puncture in
a lower-level curve agrees with the asymptotic marker at the negative puncture where
it is attached.

We next consider holomorphic disks in a cobordism .Z;K/ with positive and negative
ends .@˙Z; @˙K/. We include also the case when the cobordism .Z;K/ is trivial,
ie the symplectization .R�Y;R�ƒ/, with .@˙Z; @˙K/D .Y; ƒ/. Let c be a word
of Reeb chords of @˙K. Let  D 1 � � � k be a word of Reeb orbits in @�Z. We
define Mneg.c; 0/ to be the moduli space of punctured holomorphic disks in Z with
boundary on K, with boundary punctures mapping to Reeb chords in the word c and
one distinguished boundary puncture, and with additional negative interior punctures at
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�1; : : : ; �k mapping to Reeb orbits in the word  . Note that the distinguished boundary
puncture determines an asymptotic marker at each interior puncture �j that determines
a marker on the corresponding j . Let  0 denote the corresponding word or Reeb
orbits with markers. Below we will show that such moduli spaces of disks with interior
negative punctures with markers that are relevant to our study cannot contain multiple
covers and are transversely cut out for a generic almost complex structure.

Recall the symplectic filling X of the negative end Y of the cobordism above. We will
use punctured sphere curves in X in the compactification of the moduli spaces M�. 0/

to fill the interior punctures of the disks and treat them as disks with only boundary
punctures. For this purpose, we define the moduli space of anchored disks Manc.c/ as

Manc.c/D
[
 0

�
Mneg.c; 0/�

Y
 0
j
2 0

M�. 0j /

�
;

where markers on Reeb orbits are induced from the distinguished boundary puncture.
Here the topology on the moduli space of anchored curves is the product topology.
This means in particular that the dimension of the boundary evaluation map equals the
dimension dim.Manc.c// only on components Mneg.c; 0/�

Q
 0
j
2 0M�. 0j / where

dim.M�. 0j //D 0 for all j .

We consider next the case when the cobordism is trivial .R�Y;R�ƒ/ and when all
punctures mapping to chords in c are positive. The above construction then gives a
stratification of the moduli space M.c/ of holomorphic disks in .X;L/ as follows. First,
since all moduli spaces Mneg.c; 0/ are transversely cut out, the corresponding moduli
spaces Mneg;�.c; 0/, where a small perturbation near the negative ends corresponding
to the perturbation � of holomorphic planes with asymptotic marker has been turned on,
is canonically diffeomorphic to Mneg.c; 0/. Gluing the curves in Mneg;�.c; 0/ to the
curves in M�. 0j / and extending the perturbation, we get a compactification of the
moduli space M.c/, with boundary given by tree configurations of anchored disks.
Near a broken configuration the moduli space is a manifold with boundary with corners,
with corner structure induced by the gluing parameters; compare [31, Sections 6.4–6.6].

For example, if c D c is a single Reeb chord, then M.c/ has a natural compactification
with boundary of the form

Manc.c;b/�
Y

bj2b

Manc.bj /:

All moduli spaces of disks considered in this paper will be anchored, and we will drop
the superscript “anc” from the notation.
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L�1
L�0

L�2
L�4

L�3

c

L�0
L�1

L�4
L�2

L�3

x

Figure 16: Strictly decreasing (left) and strictly increasing (right).

A.2 Moduli spaces of anchored disks

Consider a system of parallel copies xL D fLj g
1
jD0

, where L0 D L is an embedded
Lagrangian, as in Section 3.3. This induces a system xƒD fƒj g

1
jD0

of parallel copies
of ƒ in Y . We first discuss numberings that determine the boundary conditions
of the holomorphic disks that we use in the various theories considered. Let Dm

denote the unit disk in the complex plane with m boundary punctures �1; : : : ; �m.
One of the boundary punctures is distinguished. We choose notation so that �1 is
distinguished. The m punctures subdivide the boundary of Dm into m boundary arcs.
We will consider disks with numbered boundary arcs where the numbers correspond
to the parallel copies Lj . We will consider two types of numberings, increasing and
decreasing. Traversing the boundary of the disk across a boundary puncture in the
positive direction, the numbering increases, remains constant, or decreases as we pass
the puncture. We call punctures increasing, constant, and decreasing, accordingly. We
call a disk increasing (resp. decreasing) if all its nondistinguished punctures are either
increasing (resp. decreasing) or constant. Then its distinguished puncture is decreasing
(resp. increasing) or constant.

When defining operations �k for the Legendrian A1–coalgebra LC�, we count
anchored increasing disks in the symplectization asymptotic to Reeb chords at all
punctures. When defining the operations for the Lagrangian A1–algebras CF� and
CW�, we count decreasing disks in X . When defining the twisting cochain t W LC�!
�.k�˚CF�/, we count increasing disks in X which are asymptotic to a Reeb chord at
the distinguished puncture, and to Lagrangian intersection points at the other punctures.

We next consider asymptotic conditions at the boundary punctures. There are two basic
forms of asymptotics: a puncture is either asymptotic to a Lagrangian intersection point
or to a Reeb chord. The former case is the standard form of asymptotics in Lagrangian
Floer theory, and the latter in Legendrian DG–algebras. More precisely, we choose an
almost complex structure on X which along the cylindrical end R�Y is invariant under
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R–translation, leaves the contact planes invariant and is compatible with the symplectic
form induced on the contact planes by the contact form. Furthermore, it pairs the
R–direction with the Reeb direction. This means in particular that the Reeb chord strip,
which is the product of a Reeb chord and R, is holomorphic. “Reeb chord asymptotics”
means we study holomorphic disks with boundary punctures that are asymptotic to
these Reeb chord solutions, while “Lagrangian intersection point asymptotics” means
we study holomorphic disks that are asymptotic to constant strips at intersection points.

First we consider disks in the filling .X;L/. Consider a disk Dm as above with strictly
increasing or decreasing numbering � D .�1; : : : ; �m/ and let aD a1 � � � am be a word
of Reeb chords and Lagrangian intersection points in L0\L1. We let Mfi.aI �/ denote
the moduli space of holomorphic disks u W .Dm; @Dm/! .X; xL/ such that

� u takes the boundary component labeled by �j to the Lagrangian L�j , and

� u is asymptotic to the unique Reeb chord or Lagrangian intersection point of
L�j and L�jC1

near aj at �j , where we let �mC1 D �1.

We next consider disks in the symplectization. Consider the disk DmCk with increasing
or decreasing boundary numbering �0 and punctures �1; : : : ; �mCk . We next note that in
the symplectization there are two possible Reeb chord asymptotics, positive or negative
according to the sign of the t–coordinate near the puncture. Let c0 D c

�1

1
� � � c

�mCk

mCk
be

a word of signed Reeb chords of ƒ0[ƒ1, where � 2 fC;�g is a sign. If m> 1 then
we require that the Reeb chords cr at all constant punctures connect ƒ0 to ƒ0 and
that their signs are all negative, �r D �1. (These constant punctures will be capped
by augmentation disks.) We let Msy;ı

.c0I �0/ denote the moduli space of anchored
holomorphic disks v W .Dm; @Dm/! .R�Y;R�ƒ/ such that

� v takes the boundary components labeled by �j to the Lagrangian ƒ�j , and

� v is asymptotic at positive or negative infinity, according to the sign of �j , to the
unique Reeb chord between ƒ�j and ƒ�jC1

near cj at a puncture �j .

If c is a word of strictly increasing (resp. decreasing) Reeb chords then we define the
moduli space Msy

.cI �/ by anchoring also at constant boundary punctures,

Msy
.cI �/D

[
c�c0

�
Msy;ı

.c0I �0/�
Y

cr2c0nc

M.cr /

�
;

where the union runs over all words c0 extending c by constant punctures.
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Figure 17: Disk contributing to Mco.cI �/.

We will also consider a simpler version with only one copy of the Legendrian ƒDƒ0

in the case that exactly one puncture in c is positive and all others are negative. In the
language above, all punctures of such a disk are constant and we write Msy.c/ for the
moduli space of such disks. The (constant) negative punctures of disks in this moduli
space are typically not filled by augmentation disks.

Finally, we consider disks in the cobordism and in the filled cobordism. We start
with the cobordism disks without filling. Recall that we assume a decomposition
K D C [L, where C has no negative end and L has no positive end. Consider a
system of parallel copies xC D fCj g

1
jD0

. Consider the disk DiCjC2 where we fix two
punctures that subdivide the boundary of the disk into two arcs, upper and lower. Let
� be a decreasing boundary numbering of the boundary components in the upper arc
and extend it to a constant numbering in the lower arc. Let c0 D c0I1 � � � c0Ij be a
composable word of Reeb chords connecting ƒv to ƒw , and let c0D ci � � � c1 be a word
of Reeb chords of � . Consider the word of Reeb chords and intersection points

c D c0I1 � � � c0Ij zwci � � � c1zv;

and let
Mco.cI �/

denote the moduli space of holomorphic disks u W .DiCjC2; @DiCjC2/! .W; xC [L/

such that:

� u is asymptotic to the Reeb chord c0Ir at its r th constant puncture, takes adjacent
boundary arcs to L, and neighboring punctures to the unique intersection point
near zw in L\Cw

�i
and near zv in L\C v

�i
, respectively.

� On remaining boundary arcs and punctures, the boundary maps as described by
c and the numbering �, exactly as above.

The disks in the filled cobordism are entirely analogous. Here we assume that L is a
Lagrangian submanifold in X DX0[W . Consider again a system of parallel copies

Geometry & Topology, Volume 27 (2023)



2154 Tobias Ekholm and Yankı Lekili

xC D fCj g
1
jD0

and also a system of parallel copies xLD fLj g
1
jD0

of L. Consider the
disk DiCjC2 where we fix two punctures that subdivide the boundary of the disk
into two arcs, upper and lower. Let � be a decreasing boundary numbering of the
boundary components in the upper and lower arcs. Let x0 D x0I1 � � �x0Ij be a word of
intersection points of L and let c0 D ci � � � c1 be a word of Reeb chords of � . Consider
the word of Reeb chords and intersection points

c D x0I1 � � �x0Ij zwci � � � c1zv;

and let
Mco.cI �/

denote the moduli space of holomorphic disks u W .DiCjC2; @DiCjC2/! .X; xC [ xL/

such that:

� u is asymptotic to the intersection point x0Ir at its r th puncture in the lower
arc, takes adjacent boundary arcs to L, and neighboring punctures to the unique
intersection point near zw in Lw�j \Cw

�jC1
and the unique intersection point near

zv in K�1
\C v

�iCj
.

� On remaining boundary arcs and punctures, the boundary maps as described by
c and the numbering �, exactly as above.

The disks in the cobordism without filling will be used to map into the DG–algebra of
the negative end, whereas the disks in the filled cobordism will be used to map into the
Floer cohomology of a Lagrangian. This is why we use parallel copies in one case but
not the other.

The formal dimension of the moduli spaces above is computed in terms of the negative
of a Conley–Zehnder index CZ of the Reeb chords. Recall CZ.a/ of a Reeb chord a

of ƒ as defined for example in [11, Section 2.1]: we pick paths connecting basepoints
in the boundary of the various components of L, and paths connecting Reeb chord
endpoints to the basepoints. We define CZ.a/ to be the Maslov index of this path closed
up by a positive rotation in the contact plane, and the grading jaj D �CZ.a/. For a
Lagrangian intersection x between L1 and L2 we similarly pick paths connecting to
the basepoints and use these to form a loop  starting in L2 and ending in L1, and
define CZ.x/ to be the Maslov index of the loop of Lagrangian planes that results
from closing up the path of Lagrangian planes along  by a positive rotation, and
jxj D �CZ.x/. The Conley–Zehnder index is independent of the basepoint paths since
the Maslov class vanishes.
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Remark 72 The above gradings are related to the grading j � jLeg in the Legendrian
contact homology algebra [28; 11] as

jcjLeg D�jcj � 1:

Gradings generally depend on the choice of paths connecting endpoints to the basepoint:
two such choices differ by a loop and the grading is shifted by the Maslov index of
that loop. In particular, if the Maslov class vanishes the grading is well defined. Also,
the paths connecting tangent planes at basepoints in different components are defined
only up to choice. Changing the homotopy class shifts the Maslov potential between
components and indices of mixed Reeb chords accordingly.

Lemma 73 The formal dimension of the moduli space Mfi.aI �/ is given by

dimMfi.aI �/D .n� 3/�

mX
jD1

.jaj j � .n� 2//:

The formal dimension of the moduli spaces Msy
.cI �/ is given by

dimMsy
.cI �/D .n� 3/C

X
�jD�1

.jcj jC 1/�
X
�jDC1

.jcj j � .n� 2//:

The formal dimension of the moduli spaces Msy.c/ is given by

dimMsy.c/D .n� 3/C
X
�jD�1

.jcj jC 1/�
X
�jDC1

.jcj j � .n� 2//:

The formal dimension of the moduli space Mco.cI �/ is given by

dimMco.cI �/D 1�
X

rD1i

.jcr j � .n� 2//C

jX
sD1

.jc0IsjC 1/:

The formal dimension of the moduli space Mco.cI �/ is given by

dimMco.cI �/D 1�
X

rD1i

.jcr j � .n� 2//�

jX
sD1

.jx0Isj � .n� 2//:

Proof See [17, Theorem A.1].

We next study topological properties of the moduli spaces just defined. It turns out to
be comparatively simple because of two key features. First, since we require our disks
to switch copies at punctures “in the same direction” they cannot be multiply covered,
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and second, for the same reason there can be no boundary splitting. As in [23], the first
property allows us to prove transversality by perturbing the almost complex structure,
and the second shows that the moduli spaces admit compactifications consisting only
of punctured curves joined at Reeb chords or Lagrangian intersection points. Precise
formulations of these results are as follows.

Theorem 74 For a generic almost complex structure J the moduli spaces Mfi.aI �/,
Msy

.cI �/, Msy.c/, Mco.cI �/ and Mco.cI �/ are transversely cut out manifolds of
respective dimensions dimMfi.aI �/, dimMsy

.cI �/, dimMsy.c/, dimMco.cI �/ and
dimMco.cI �/.

Proof A well-known argument gives transversality for disks that are somewhere
injective on the boundary by perturbing the almost complex structure: any element
in the cokernel of the linearized operator must be zero on the set of injectivity and
then identically zero by unique continuation. Our disks are not necessarily somewhere
injective but the disks cannot be multiple covers and there is a region with the prop-
erty of the region of injectivity above. We briefly recall the argument for this from
[28, Lemma 4.5]. Fix a puncture of u.

Consider first the more difficult case when this puncture maps to a Lagrangian intersec-
tion. Pick coordinates so that the intersection point lies at the origin in Cn and so that the
two Lagrangians correspond to Rn and iRn. Let .x1C iy1; : : : ;xnC iyn/ be standard
coordinates on Cn. Consider the complex hyperplanes H˙� D fx1C iy1D˙�.1C i/g.
Looking at the Fourier expansion of u near the puncture it is clear that for suitable
coordinates (such that the leading Fourier coefficient of u lies in the direction of the
first coordinate) the number of intersection points of the image of u and H˙� near the
puncture have different parities depending on the sign of �. With more details: choose
coordinates in Cn for which the complex structure J agrees with the standard almost
complex structure at the origin and coordinates Œ0;1/ � Œ0; 1� around the puncture
in the domain. Then the argument in the proof of [25, Lemma 2.1] shows that u is
conjugate to a standard holomorphic map zu with boundary condition Rn and iRn. That
map has Fourier expansion

zu.sC i t/D
X
k�0

cke
�.k�C1

2
�/.sCit/

; with ck 2Rn:

For the intersection with H˙� pick coordinates so that the first Fourier coefficient ck

which is nonzero has the form ck D .a; 0; : : : ; 0/, with a¤ 0. By analytic continuation,
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other disks and half-disks mapping there either have images agreeing completely in
the ball or there are injective points of the disk near the puncture. In the case where
they agree completely, we note that the parity of the number of intersection points
in each local sheet not containing the puncture with H˙� is independent of the sign
of ˙�. We then find that we can achieve transversality by perturbing the complex
structure near H˙�: because the sheet with the puncture intersects only one of H˙�,
if the contributions of the sheets mapping to H�� cancel then those mapping to HC�

cannot cancel and vice versa, by unique continuation.

Once transversality is achieved the statement that solutions form manifolds follows
from a well-known argument; see eg [28, Proposition 2.3].

Theorem 75 The moduli space Mfi.aI �/ admits a compactification consisting of
several-level disks joined at Reeb chords and intersection points , where some levels
may lie in the symplectization.

The moduli spaces Msy
.cI �/ and Msy.c/ admit compactifications consisting of several-

level disks joined at Reeb chords.

The moduli space Mco.aI �/ admits a compactification consisting of several-level disks
joined at Reeb chords. There is one level of disks in the cobordisms and the remaining
levels are in the symplectization ends.

The moduli space Mco.aI �/ admits a compactification consisting of several-level disks
joined at Reeb chords and intersection points.

Proof The boundary conditions on our punctured disks have the following property:
any arc in a disk with more than one positive puncture that subdivides the source into
two components with a positive puncture in each must connect boundary components
numbered with distinct numbers. This shows that there can be no boundary splitting.
The theorem then follows from SFT compactness; see [22, Appendix B.1] for the curve
with boundary version of [12].

We next discuss orientations of moduli spaces following [27]. We fix capping operators
at all Reeb chords and Lagrangian intersection points so that the two capping operators
there glue to a disk with the Fukaya orientation; see [36]. Recall that the relative spin
structure on the Lagrangian submanifold induces an orientation on the determinant
bundle over the space of disks with boundary condition in the Lagrangian; see [27] or
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[28, Section 4.4]. As in [27] we see that these choices then induce a system of coherent
orientations on the moduli spaces.

We will use one more property of the moduli spaces, which says that they are effectively
independent of the increasing or decreasing boundary labeling �.

Theorem 76 Let � and �0 be two increasing (decreasing) boundary numberings. Then
there are canonical orientation-preserving diffeomorphisms

Mfi.aI �/�Mfi.aI �0/; Msy
.cI �/�Msy

.cI �0/; Mco.cI �/�Mco.cI �0/:

Proof Let M.�/ denote either one of the above moduli spaces. This moduli space
is the transverse zero set of a Fredholm section in a Banach bundle. Changing the
numbering from � to �0 corresponds to an arbitrarily small isotopy, which induces an
arbitrarily small deformation of the section. The theorem follows.

Appendix B Wrapped Floer cohomology and Legendrian
surgery

In this section we present the argument that establishes the isomorphism between
CE�.ƒ/ and CW�.C /, where C is the cocore disk of the surgery. Our proof is a gen-
eralization of the corresponding result under Lagrangian handle attachment explained
in [11], and uses the technical results on relevant moduli spaces in [25].

We first define a version of wrapped Floer cohomology using only purely holomorphic
disks and show that the resulting theory agrees with the usual version defined in
terms of holomorphic disks with a Hamiltonian term. Second we discuss the surgery
isomorphism in [11], and third we discuss how to generalize that argument to partially
wrapped Floer cohomology calculations.

B.1 Wrapped Floer cohomology without Hamiltonian

Let X be a Weinstein manifold and L be an exact Lagrangian. Fix a system of shifting
Morse functions that are positive at infinity and let xLD fLj g

1
jD0

be the corresponding
family of parallel Lagrangian submanifolds. Define CW�.L/ to be the chain complex
generated by Reeb chords of L and intersection points L0\L1. We define operations
mi on CW�.L/ using what we call partial holomorphic buildings.

We start in the simplest case when the output of mi is an intersection point c0. Consider i

generators ci ; : : : ; c1 and consider a disk DiC1 with a decreasing boundary numbering �,

Geometry & Topology, Volume 27 (2023)



Duality between Lagrangian and Legendrian invariants 2159

distinguished negative (output) puncture and remaining punctures positive (inputs). Let
c0 D ci � � � c1 and c D c0ci � � � c1. Define

m0i.c
0/D

X
jc0jDjc0jC.2�i/

jMfi.cI �/jc0:

Here we use the temporary notation m0i to denote the summand of the full operation mi

that takes values in intersection points. We next turn to the more complicated definition
of the part m00i of the operation that takes values in Reeb chord generators, and to this
end we introduce the notion of a partial holomorphic building.

The domain of a partial holomorphic building is a possibly broken disk DiC1 with
decreasing boundary numbering �. The partial holomorphic buildings we consider
always have exactly one disk in the symplectization. We call it the primary disk of the
building. We require that the distinguished puncture is increasing and is a negative
puncture of this primary disk. If the distinguished puncture is the only negative puncture
of the primary disk then the partial building consists only of its primary component. If
on the other hand the primary disk has additional negative punctures then we require
that at each additional negative puncture (which is decreasing or constant) there is a disk
in the filling with decreasing boundary condition that is attached at its distinguished
increasing or constant puncture to the additional negative puncture. We call these
disks the secondary disks of the partial building. The resulting partial holomorphic
building is then a disk with domain a broken DiC1, with distinguished puncture a
negative puncture at a Reeb chord and with remaining i punctures either Reeb chords
or intersection points. See Figure 18.

Remark 77 At additional negative punctures there may be holomorphic disks with
one positive puncture and boundary on L attached. These are the usual augmentation
disks, or disks on L used as anchoring disks in the definition of Msy

.c; �/.

We write the punctures of the partial holomorphic disk building as c D c0ci � � � c1,
where c0 is the distinguished puncture. Write

Mpb.cI �/

for the moduli space of partial holomorphic disk buildings with boundary condition on
xL according to �. Using this we define for generators c0 D ci � � � c1 the operation

m00i .c
0/D

X
jc0jDjc0jC.2�i/

jMpb.cI �/jc0;
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L3 L4

L0 L7 L6

L4 L5 L6 L6 L7L3L2L1L0

Figure 18: The domain of a partial building contributing to the operation m7

of CW�.L/ with a possible decoration. The map sends the tensor product of
chords L0 L1, L1 L2, : : : , L6 L7 to a chord L0 L7.

where the sum ranges over Reeb chords c0 with grading as indicated. Finally we define
the total operation mi as the sum

mi.c
0/Dm0i.c

0/Cm00i .c
0/:

Lemma 78 The A1–relations hold for the operations mi .

Proof First, Theorem 76 shows that the operations compose and that they are inde-
pendent of the choice of decreasing boundary numbering. To see that the relations
hold, we will as usual identify the terms contributing to them with the boundary of an
oriented 1–dimensional compact manifold.

To this end we first consider 1–dimensional moduli spaces M0 of the form M0 D
Mfi.cI �/, where the distinguished puncture c0 is an intersection point. As usual,
the boundary numbering precludes boundary bubbling and we find that the boundary
consists of broken disks that either break at an intersection point, in which case the
holomorphic parts both have dimension zero, or break into a partial holomorphic
building with a rigid disk attached at its negative puncture, in which case the primary
component of the partial building has dimension one. We find the boundary points
of M0 are in one-to-one correspondence with disks contributing to compositions of m0i
and m0j (disks breaking at intersection points) and disks contributing to m00i and m0j .

The remaining contributions to the A1–relations correspond to compositions of m00i
and m00j . We show that all contributions to this composition constitute the boundary of
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an oriented 1–manifold. The contributions are of two forms: either the output puncture
of the first operation (which lies in the primary disk of the corresponding partially
broken configuration) is glued to an input puncture of the primary disk in the partially
broken configuration of the second operation, or it is glued to an input puncture in a
secondary disk.

The configurations of the former type correspond to a part of the boundary of the moduli
space Msy

.bI �/ of dimension two with distinguished negative puncture and decreasing
boundary numbering (after we divide out the natural R–action this is a 1–dimensional
space) capped off by rigid disks in Mco.a/ at all nondistinguished negative punctures.
This is the part of the boundary where the distinguished puncture belongs to the lower
level disk.

The configurations of the second type correspond to the part of the boundary of the 1–
dimensional moduli space Mco.aI �/, with a distinguished increasing positive puncture
where a negative puncture in the primary disk of the second operation is attached (other
negative punctures in the primary disk of the second operation are capped off as usual).
The part of the boundary containing the distinguished positive puncture lies in the rigid
disk in the cobordism.

Finally, the remaining part of the boundary in the first case is two-level buildings in
Msy

.bI �/, where the distinguished negative puncture belongs to the top-level curves.
These are exactly the configurations that we get from the remaining parts of the boundary
in the second case (ie configurations where the distinguished puncture belongs to the
component in the symplectization) when we glue to it the primary disk of the second
operation.

We conclude that also the composition of m00i and m00j cancels. The lemma follows.

B.1.1 Isomorphism with the Hamiltonian version In this section we show that the
above definition of wrapped Floer cohomology agrees with the standard theory. Similar
results can be found in [30; 29]. Here we will give a sketch. We keep the geometric
setting as above and write CW�Ham.L/ for the usual version of Hamiltonian wrapped
Floer cohomology. We give a brief recollection of the definition.

We define the wrapped Floer cohomology complex CW�Ham.L/ of L as follows. Write
X DX [ Œ0;1/�Y , where X is a compact domain and Œ0;1/�Y the positive end of
the Weinstein manifold X . Consider time-dependent Hamiltonians Ha WX � Œ0; 1�!R
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which are perturbations of functions that equal 0 on X and are linear of the form

.t;y/ 7! aet
C b on Œ0;1/�Y;

where a is not in the chord and orbit spectrum or the contact form on ƒ. We choose
these Hamiltonians in such a way that if a0 < a1 then Ha0

< Ha1
on X . After a

small perturbation, Hamiltonian time 1 chords and Hamiltonian time 1 orbits are
nondegenerate.

Define the chain complex CW�Ham.L;Ha/ to be generated by Hamiltonian chords
 W Œ0; 1�!X of C of action

a. /D

Z 1

0

�
�. P .t//�Ha. .t//

�
dt < a:

The differential on CW�.L;Ha/ is defined by counting solutions of the perturbed
Cauchy–Riemann equation over the strip with coordinates sC i t 2R� Œ0; 1�:

.duCXHa
˝ dt/0;1 D 0:

Choosing an increasing interpolation between Ha0
and Ha1

we get continuation maps

CW�Ham.L;Ha0
/ 7! CW�Ham.L;Ha1

/;

and we define the wrapped Floer cohomology complex as the direct limit

CW�Ham.L/D lim
��!

a

CW�Ham.C;Ha/:

The wrapped Floer cohomology HW�Ham.C / is the homology of this complex. Writing
HW�Ham.L;Ha/ for the homology of CW�Ham.L;Ha/ we then have

HW�Ham.L/D lim
��!

a

HW�Ham.L;Ha/;

by exactness of direct limits.

A well-known argument shows that CW�.L/ with differential m1 is quasi-isomorphic
to the wrapped Floer cohomology by a geometrically defined chain map [29]. We recall
the argument here.

The filling L ofƒ gives an augmentation of CE�.ƒ/ and we define CW�.L/ (as a chain
complex disregarding higher product operations) without Hamiltonian as the “Morse
extended linearized Chekanov–Eliashberg complex” with respect to this augmentation
as generated by Reeb chords and the critical point of a Morse function on L with a
unique minimum, and take the differential to count unperturbed augmented and anchored
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holomorphic strips. We also introduce the subcomplexes CW�.L; a/ generated by
chords of action < a. Then, by definition,

CW�.L/D lim
��!

a

CW�.L; a/:

The isomorphism CW�.L/!CW�Ham.L/ is now constructed by interpolating exactly as
in the continuation maps above from the zero Hamiltonian (ordinary Cauchy–Riemann
equation) to the Hamiltonians Ha above. Choosing the interpolations compatibly, we
get the commutative diagram

CW�.L; a0/ //

��

CW�.L; a1/ //

��

� � � // CW�.L; aj / //

��

� � �

CW�Ham.L;Ha0
/ // CW�Ham.L;Ha0

/ // � � � // CW�Ham.L;Haj /
// � � �

Here all vertical arrows are chain isomorphisms by the standard argument — see for
instance [30, Section 6] — and taking limits we find a chain isomorphism

CW�.L/! CW�Ham.C /:

We extend this chain map to an A1–map, then the standard spectral sequence argument
establishes the desired A1–quasi-isomorphism.

We follow the approach in [30], where similar isomorphisms between contact and
symplectic differential graded algebras were constructed. More precisely, we construct
a splitting compatible nonnegative field of 1–forms with values in Hamiltonian vector
fields, and further a 1–parameter family of such forms interpolating between the zero
Hamiltonian at the positive end and the Hamiltonian used to define wrapped Floer
cohomology at the negative end [30, Section 2]. We then define the corresponding
moduli spaces over the deformation interval. Keeping the notation from [30] we write

FR.a; b/:

In order for the asymptotics at infinity of these maps to make sense we need to
include the parallel copies of the Lagrangians according to boundary numbering, and
in particular also to incorporate this in the description of wrapped Floer cohomology.
More precisely, as in the case above we will have moduli spaces of Floer holomorphic
disks with boundary in distinct Lagrangians that are arbitrarily close. The analogue
of Theorem 76 holds by the same argument and the corresponding moduli spaces are
canonically isomorphic for sufficiently small perturbations. Using these observations
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we then define ˆ W CW�.L/! CW�Ham.L/ by

ˆ.a/D
X

dimFR.a;b/D0

jFR.a; b/jb:

Lemma 79 The map ˆ is an A1–homomorphism.

Proof To see this we note again that the disks which contributes to the A1 relations
correspond exactly to the ends of 1–dimensional moduli space.

Lemma 80 The map ˆ is a quasi-isomorphism.

Proof The map respects the word-length filtration and is the standard isomorphism
from the linearized Legendrian cohomology to the wrapped Floer cohomology, dis-
cussed above, on the E2–page.

B.2 Wrapped Floer cohomology and Lagrangian handle attachment

In this subsection we prove the results in [11] giving a Legendrian surgery description
of the wrapped Floer cohomology of a cocore disk in a Weinstein manifold obtained
by Lagrangian handle attachment along a Legendrian sphere, referring to [25] for the
results on holomorphic curves missing in [11]. To state this result we first introduce
notation.

Suppose that X0 is a Weinstein 2n–manifold with ideal boundary the contact .2n�1/–
manifold Y0. Let ƒDƒ1[ � � � [ƒm be a Legendrian submanifold such that all of its
componentsƒj are parametrized .n�1/–spheres. Let X be the Weinstein manifold that
results from attaching Lagrangian handles H to ƒ. Here H DH1[ � � � [Hm, where
each component Hj is a disk subbundle of the cotangent bundle T �D of the n–disk D,
and where Hj is attached to ƒj . Then X contains m cocore disks corresponding to the
cotangent fibers at the center of the disk in each Hj . We let Cj �X denote the cocore
disk in Hj , let �j � Y denote its Legendrian boundary inside the contact boundary Y

of X , and write � D �1[ � � � [�m.

As a first step in the calculation of the wrapped Floer cohomology of C we describe
the generators of the underlying chain complex. By definition — see Section B.1 —
generators of CW�.C / are of two kinds: Lagrangian intersection points and Reeb
chords. Here the Lagrangian intersection points are easily understood: pick the shifting
Morse function so that it has one minimum on each component of C and no other critical
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Figure 19: A picture illustrating a curve contributing to ˆ1 of the A1–functor ˆ.

points, then there is exactly one intersection point for each component of C . We denote
the intersection point of Cj by mj and we denote the subcomplex generated by the mj

by CW�0.�/. Remaining generators are Reeb chords of � we write CW�C.�/ for the
quotient complex CW�.�/=CW�0.�/ and note that CW�C is generated by Reeb chords.

Consider the link ƒ and let all components be decorated by minus, ƒ� Dƒ. Consider
CE�.ƒ/ as a chain complex, generated by composable words of Reeb chords with
differential d and with product � given by concatenation if the words are composable
and zero otherwise. Let � > 0 denote the size of the attaching region, ie the size of the
tubular neighborhood of ƒ where H is attached. We then have the following:

Lemma 81 For any A> 0 there exists �0 > 0 such that if � < �0 then there is a natural
one-to-one correspondence between the generators of CW�C.�/ (Reeb chords of �) of
action <A and the generators of CE�.ƒ/ (words of Reeb chords of ƒ) of action <A.

Proof This is [25, Theorem 1.2].

We will next define the surgery map, which is an A1–morphism

ˆ W CW�.�/! CE�.ƒ/

that counts certain holomorphic disks. See Figure 19.

As in Appendix A, consider the disk DiCjC2 with two special punctures subdividing
the boundary into an upper and a lower arc with i and j punctures, respectively, and
with a boundary numbering in the upper arc. Let c0 D c0I1 � � � c0Ij be a composable
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word of Reeb chords connecting ƒv to ƒw , and let ci � � � c1 be a word of generators of
CW�.C /. Consider the word of Reeb chords and intersection points

c D c0I1 � � � c0Ij zwci � � � c1zv:

Define ˆi W CW�.C /˝i ! CE�.ƒ/ by

ˆi.c
0/D

X
jc0jDjc0jCi.n�2/

jMco.c/jc0:

Remark 82 If mv is the minimum of the Morse function on C v as above, then

ˆ1.m
v/D ev;

because of the unique holomorphic disk corresponding to the flow line from the
minimum to the intersection point between C v \L; for the parallel copies this gives a
triangle with corners at mv D C v

0
\C v

1
, at C v

0
\L and at C v

1
\L, and since there are

no negative punctures the output is ev. Also, if a word c0 of generators of CW�.C /
contains a generator mv and has length i > 1, then

ˆi.c
0/D 0;

as this corresponds — see Lemma 35 — to a holomorphic disk with a flow line from the
minimum attached, and such a configuration cannot be rigid unless the disk is constant.

Theorem 83 The maps ˆi give an A1–map CW�.C /! CE�.ƒ/, which is an A1–
quasi-isomorphism.

Proof In order to see the A1–relations we study the boundary of the moduli space
Mco.c/. As usual the boundary numbering guarantees that there is no boundary splitting
on C . The fact that there is no boundary splitting on L follows from Stokes’ theorem:
such a splitting would give a disk without positive puncture. The boundary of the
moduli space thus consists of the following configurations:

(i) Two level curves with one level in the cobordism and one in either symplectization
end.

(ii) Curves which split at the intersection point C \L.

Splitting (i) corresponds to the map followed by the operation d in CE�.ƒ/ when the
symplectization disk lies in the negative end, and to an operation in CW�.C / followed
by the map when the symplectization disk lies in the positive end. Splitting (ii)
corresponds to the tensor product of the map followed by the product operation � in
CE�.ƒ/. The A1–relations follow.
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To see that ˆ is a quasi-isomorphism we argue as follows. We first fix an action cut-off
A > 0 and show that ˆ1 induces an isomorphism on homology below action A by
constructing algebraically one holomorphic disk interpolating between a Reeb chord
of � and the corresponding word of Reeb chords of ƒ. For a complete proof we refer
to [25, Theorem 1.3]; the argument is roughly as follows. One starts from unique
and uniformly transversely cut out such disks for single chord words obtained by a
straightforward explicit geometric construction. Gluing such disks at their Lagrangian
intersection punctures in L \ C and using small action to rule out all breakings
except one, we find that there is algebraically one disk interpolating between a chord
on � and the corresponding word of chords of ƒ. Together with Remark 82, which
shows ˆ1.m

v/ D ev, the existence of such disks implies that the map ˆ1 has a
triangular matrix with respect to the action filtration and hence is a chain isomorphism
(compare [11, Section 6.2]): since ˆ1 is an isomorphism on the subquotients of the
action filtration (and the isomorphism on generators is given by the bijection given in
Lemma 81), ˆ1 is an isomorphism below action A for any A. The A1–isomorphism
below action A> 0 then follows from the usual spectral sequence argument.

To see that we get an isomorphism on the full complex we show that the isomorphisms
discussed are compatible with action limits. More precisely, in order to increase the
action limit A > 0 for the one-to-one correspondence between Reeb chords of � of
action < A and words of Reeb chords of ƒ of action < A, we must shrink the size
ı > 0 of the handle attached. Consider attaching a handle of size ı > 0 to ƒ and denote
the resulting new Weinstein manifold by Xı and the cocore disk by Cı �Xı.

If ı0 > ı1, then by the isomorphism in Lemma 80 and standard results for wrapped
Floer cohomology — see eg [30, Section 5.5] — there is a cobordism map

CW�C.Cı0
/! CW�C.Cı1

/;

which is a quasi-isomorphism. Moreover, by the surgery description of chords for
any A> 0 there exists ı1 > 0 such that the above map has ˙1 on the diagonal (with
respect to the identification of generators in Lemma 81) for all chords of � and words
of chords of ƒ of action <A.

Consider the directed system

(43) CW�C.Cı0
/! CW�C.Cı1

/! � � � ! CW�C.Cıj /! � � � ;

where ıj ! 0, and let
CW�C.C /D lim

��!
ı

CW�C.Cı/:
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Then the homology HW�C.C / of CW�C.C / satisfies

HW�C.C /D lim
��!
ı

HW�C.Cı/D HW�C.Cıj / for any fixed j:

Here the last equality follows since all the arrows in the directed system of homology
groups of (43) are isomorphisms.

Consider next the Chekanov–Eliashberg algebra CE�.ƒ/ of ƒ. We define the action-
truncated subcomplex CE�.ƒ; a/ generated by words of chords of total action < a.
Viewing CE�.ƒ/ as a chain complex generated by words of chords, we then have

CE�.ƒ/D lim
��!

a

CE�.ƒ; a/:

For each aj the surgery map gives ıj > 0 such that the map

CW�C.Cıj /! CE�.ƒ; aj /

is a chain isomorphism with ˙1 on the diagonal below action aj . By definition of
surgery and cobordism maps, the diagram

(44)

CW�C.Cı0
/ //

��

CW�C.Cı1
/

��

// � � � // CW�C.Cıj /

��

// � � �

:::

CE�.ƒ; a0/ // CE�.ƒ; a1/ // � � � // CE�.ƒ; aj / // � � �

commutes, where ıjC1 < ıj and aj < ajC1. Taking limits of the sequences we get a
chain map

(45) CW�C.C /! CE�.ƒ/:

Taking the limits of the sequence (44) on the homology level and using that all vertical
arrows are homology isomorphisms then gives homology isomorphisms in the limit,
and (45) is a quasi-isomorphism inducing an isomorphism

HW�.C /�HCE�.ƒ/:

The above gives a homology isomorphism of chain complexes. To consider also
products one uses the exact same argument. The product operation on CW�.C / is
induced from the action-truncated version

CW�.C; a1/˝ � � �˝CW�.C; am/! CW�.C; a1C � � �C am/;

and similarly, on CE�,

CE�.C; a1/˝CE�.C; a2/! CE�.C; a1C a2/:
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Remark 84 In the above proof we obtain the isomorphism by taking smaller and
smaller handles. To see that such a procedure is necessary note that the correspondence
between words of chords and chords is true only below an action limit determined by
the size of the handle. For larger actions there are Reeb flows before the surgery that
hit the neighborhood of the Legendrian without being close to a chord and which could
give chords after the surgery.

Remark 85 There is also an “upside-down” perspective on the surgery just described.
Namely, one can start from the contact manifold Y and produce the contact manifold Y0

by doing so-called C1–surgery on � . In complete analogy with the above, one shows
that Reeb chords on ƒ are in natural one-to-one correspondence with words of Reeb
chords on � , and one can construct an upside-down surgery map of A1–coalgebras,

BCW�.C /! LC�.ƒ/:

A similar argument also shows that this map is a quasi-isomorphism. Alternatively,
one can prove this from the original surgery map using only algebra as follows. First
write CE�.ƒ/D�LC�.ƒ/. Then

BCW�.C /' B�LC�.ƒ/' LC�.ƒ/;

since LC�.ƒ/ is conilpotent; see Section 2.2.2.

B.3 Legendrian surgery and stopped wrapping

In this section we outline a surgery approach to the computation of wrapped Floer
cohomology in a Weinstein manifold X with wrapping stopped by a Legendrian ƒ in
its boundary. We will use the following model for the ambient manifold. Fix a tubular
neighborhood ofƒ in the contact boundary Y of X . Attach a disk-bundle neighborhood
of the zero section in T �.Œ0;1/�ƒ/ along the boundary T �.Œ0;1/�ƒ/j0�ƒ, just
like in Lagrangian handle attachment. We use a Liouville vector field on this domain
that agrees with the standard Liouville vector field pointing outwards along fibers in
the cotangent bundle over ŒT;1/�ƒ for some T > 0. Let the components of ƒ be
denoted by ƒv for v 2Q0. Fix a basepoint pv 2ƒv for each v. Let C vI� denote the
cotangent fiber T �.pv;�/.Œ0;1/�ƒ/. We compute the wrapped Floer cohomology of
C � D

S
v2Q0

C vI� for sufficiently large � using a surgery approach. A straightforward
monotonicity argument shows that the noncompactness of the cotangent bundle T �ƒ�

Œ0;1/ does not interfere with the compactness results for holomorphic curves used in
the definition of wrapped Floer cohomology.
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We first consider the surgery map into the Chekanov–Eliashberg algebra with loop space
coefficients. Consider all components of ƒ decorated by a positive sign ƒDƒC and
consider CE�.ƒ/, which now involves, aside from Reeb chords, also chains C��.�ƒ/

on the based loop space. We define an A1–map

ˆ W CW�.C /! CE�.ƒ/;

where the A1–structure on the right-hand side is the standard DG–algebra structure
induced by concatenation and the Pontryagin product (as defined in this paper). As in
Appendix A, consider a disk DiCjC2 with two dividing punctures that subdivides the
boundary into two arcs, lower and upper. Let the upper arc contain i boundary punctures
and be equipped with a decreasing boundary numbering �, and the lower arc have
j boundary punctures. Let c0 D ci � � � c1 be Reeb chords of C and let c0 D c0I1 � � � c0Ij

be Reeb chords of ƒ. Let

c D c0I1 � � � c0Ij zvci � � � c1 � � � z
w;

and consider Mco.cI �/, again as in Figure 19.

Theorems 74 and 75 show that this moduli space carries a fundamental chain. We view
this chain as parametrizing chains of paths in ƒ connecting the Reeb chord endpoints
in c0. We write ŒMco.c/� for the alternating word of chains of loops and Reeb chords
and view it as an element in CE�.ƒ/. Define the maps

‰i W CW�.C /˝ki
! CE�.ƒ/ by ‰i.c

0/D
X
c0

ŒMco.c/�:

Theorem 86 The map ‰ W CW�.C /! CE�.ƒ/ is an A1–map.

Proof To see that the A1–relations hold we look at the boundary of the moduli space
Mco.c/ of dimension d . The codimension-one boundary consists of three splitting
types:

(i) A one-dimensional curve splits off in the positive symplectization end.

(ii) A curve splits off at the negative end.

(iii) Splitting at one of the intersection points zv.

In order for splittings of the form (i) to contribute to the codimension-one boundary of
the moduli space, the part of the holomorphic building in W consists of rigid disks
with only positive punctures attached at one puncture to a negative puncture of the
disk in the positive end and a disk of dimension d � 1 in Mco.b/ attached at the
remaining negative puncture. (Splittings where the dimension of the components of the
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holomorphic building are distributed differently have higher dimension along the disk C

and correspond to “hidden faces” from the point of view of C�.�ƒ/.) Assembling the
rigid disks and the one-dimensional disk we get a partial holomorphic disk building
that contributes to the A1–operations in CW�.L/ followed by the map ‰. Splittings
of type (ii) correspond to the map ‰ followed by the differential �1 in CE�.ƒ/. Finally
splittings of type (iii) correspond to the map ‰ followed by the product �2 on CE�.ƒ/.
We conclude that the terms contributing to A1–relations express the codimension-one
boundary of ŒMco.c/� in two different ways and hence ‰ is an A1–map.

Remark 87 In the boundary of the moduli space Mco.c/ considered in the proof
of Theorem 86 there are also higher-dimensional curves splitting off in the positive
symplectization end. Such splittings contribute neither to the codimension-one boundary
of the chains of loops, nor to the operations in the wrapped Floer cohomology, and
hence play no role in the A1 chain map equation.

We will use slight generalizations of the map ‰. More precisely, if pj for j D 1; : : : ;m

are points in Œ0;1/�ƒ and if Fj is the cotangent fiber at pj , then we have a similar
surgery map

‰pi pj W CW�.Fi ;Fj /! CE�pi pj
.ƒ/;

which counts holomorphic disks with a positive Reeb chord connecting Fi to Fj , two
Lagrangian intersection punctures at pi and at pj , and a word of chains of loops in ƒ
and Reeb chords of ƒ as output, and where CE�ij is directly analogous to CE� but
where the first chain of loops is in a word is replaced by a chain of paths from pi to
the basepoint and the last is replaced by a chain of paths from the basepoint to pj . In
this setup the counterpart of the second component ‰2 is

(46) ‰pi pjpk W CW�.Fj ;Fk/˝CW�.Fi ;Fj /! CE�pi pk
.ƒ/;

and counts disks with two positive punctures at Reeb chords and two Lagrangian
intersection punctures at pi and pk . The counterpart of the A1–equations in this setup
is then

(47) d ı‰pi pk C‰pjpk �‰pi pj C‰pi pjpk ı .1˝�1C�1˝1/C‰pi pk ı�2 D 0;

where d is the differential on CE�ik and � is the (Pontryagin) product

CE�pjpk
˝CE�pi pj

! CE�pi pk
:

The proofs of these statements are word for word repetitions of the proof of Theorem 86.
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We next sketch a proof that the map ‰ in Theorem 86 is in fact a quasi-isomorphism, or,
in other words, that its first component ‰1 induces an isomorphism on homology. We
filter CW�.C / by action of its Reeb chord generators. To get a corresponding filtration
on CE�.ƒ/ we use action on Reeb chords in combination with the energy on the loops.
We start with a discussion of the energy of loops, following [52].

Equip ƒ with a Riemannian metric and let �D�.ƒ/ denote the space of based loops
in ƒ with the supremum norm: for two loops ; ˇ W Œ0; 1�!ƒ,

d�.; ˇ/D sup
t2Œ0;1�

�. .t/; ˇ.t//;

where � is the metric on ƒ induced by the Riemannian structure. Then the metric
topology on � agrees with the standard compact open topology.

Let �0 D�0.ƒ/ denote the space of piecewise smooth paths with metric

d.; ˇ/D d�.; ˇ/C

Z 1

0

.j P j � j P̌j/2 dt;

where P denotes the derivative of  . The natural inclusion �0 ! � is a homotopy
equivalence [52, Theorem 17.1]. We will use finite-dimensional approximations to
study �0. The energy of a piecewise smooth loop in ƒ is

E. /D

Z 1

0

j P j2 dt:

For c > 0, let �c ��0 denote the subset of loops of energy E < c. The space �c can
be approximated by piecewise geodesic loops. More precisely, fixing a subdivision
0D t0 < t1 < � � �< tm D 1 of Œ0; 1� we consider the space Bc of loops of energy E < c

that are geodesic on each interval Œti ; tiC1�. Then [52, Lemma 16.1] shows that for all
sufficiently fine subdivisions, Bc is a finite-dimensional manifold (a submanifold of
the product ƒ�m in a natural way). Moreover, by [52, Theorem 16.2], all critical points
of Ej�c lie in Bc , which is a deformation retract of �c , and for a generic metric EjBc

is a Morse function.

With these preliminaries established we turn to the actual proof. The first step will be
to describe the Reeb chords of C � . Let g be a Riemannian metric on ƒ as above and
let f W Œ0;1/! R be a positive function with f .0/D 1, f 0.0/D �1 and f 0.t/ < 0

monotone increasing. Define the metric h on ƒ�R by

hD dt2
Cf .t/g:
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Then, if x and y are points in ƒ and  W Œ0; s�! ƒ is a geodesic with  .0/D x and
 .s/D y, there is a unique geodesic . .t/; r.t// 2ƒ� Œ0;1/ such that

� . .0/; 0/D .x; 0/ and . .s/; r.s//D .y; 0/;

� r.t/ is Morse and has a unique maximum at an interior point t D t0.

Note that the Reeb flow in the unit disk bundle is the natural lift of the geodesic flow.
Assume next as above that the metric g on ƒ is generic in the sense that the length
functional for curves connecting any two Reeb chord endpoints in ƒ has only Morse
critical points. Concretely, this means that the index form of any geodesic connecting
two Reeb chord endpoints is nondegenerate. As in Lemma 81, this allows us to control
the Reeb chords of C � below a given action for all sufficiently thin handles. More
precisely, let � denote the size of the tubular neighborhood of ƒ in Y where we attach
T �.ƒ� Œ0;1//. We introduce the following notion of a geodesic-Reeb chord word. A
geodesic-Reeb chord word is a word

1c12c2 � � � cmm;

where 1 is a geodesic from one of the basepoints pv to the start point of the Reeb
chord c1, where 2 is a geodesic from the endpoint of c1 to the start point of c2, etc,
until finally m is a geodesic from the endpoint of the Reeb chord cm to one of the
basepoints pw. We define the action of a geodesic-Reeb chord word to be the sum of
actions of its Reeb chords and the energies of its geodesics.

Lemma 88 For any A> 0 there exist �0 > 0 and �0 > 0 such that for any � < �0 and
any � > �0 there is a natural one-to-one correspondence between Reeb chords of C � of
action <A, and geodesic-Reeb chord words of ƒ of action <A.

Sketch of proof The proof uses the transversality of the Reeb chords and of the
geodesics. The basic observation is that the point in the normal fiber of ƒ where the
Reeb flow hits determines the direction of the geodesic inƒ� Œ0;1/. After introducing
a concrete smoothing of corners the lemma then follows from the finite-dimensional
inverse function theorem.

To show that ‰1 is a quasi-isomorphism we will show that it is represented by a
triangular matrix with ones on the diagonal with respect to the action/energy filtration.
To this end we will use the Morse-theoretic finite-dimensional model for the chain
complex underlying the homology of the based loop space described above. In order
to have ŒMco.c/� defined as a chain in this model we need to ensure that the paths on
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the boundary of the holomorphic disk are sufficiently well behaved. We only sketch
the construction. On holomorphic disks with unstable domains, we fix gauge using
small spheres surrounding a Reeb chord endpoint; compare [31, Section A.2]. As in
[31, Section A.1] we use a configuration space for holomorphic curves consisting of
maps with two derivatives in L2. This means that the restriction to the boundary has 3

2

derivatives in L2 and in particular the projection to ƒ has bounded energy. Since the
action of the positive puncture in a holomorphic disk contributing to the differential
controls the norm of the solution, it follows that we can use configuration spaces of
bounded energy to study the disks in the differential: we approximate the boundary
curves uniformly by a piecewise geodesic curve by introducing a uniformly bounded
number of subdivision points and straight-line homotopies in small charts.

Conjecture 89 The chain map ‰1 W CW�.C /! CE�.ƒ/ induces an isomorphism on
homology.

Sketch of proof Consider a word of the form

0c11c2 � � � cmm;

where j are geodesics in ƒ� Œ0;1/ and cj are Reeb chords. We aim to construct
algebraically one disk connecting the Reeb chord a of C , corresponding to this word
(see Lemma 88), to the word itself. We use an inductive argument and energy filtration.
To start the argument we pick additional fiber disks FcC and Fc� in T �.ƒ� Œ0;1//

at .cC; �/ and .c�; �/ for very small � > 0 near all Reeb chord endpoints cC and c�

in ƒ. We use the natural counterparts of the correspondence between mixed words of
geodesics and Reeb chords before surgery and Reeb chords after, for mixed wrapped
Floer cohomologies. For example, there is a straightforward analogue of Lemma 88:
Reeb chord generators of CW�.FcC ;C / correspond to before-surgery words of the
form

1c12 � � � cmm;

where 1 is a geodesic connecting the basepoint of FcC to the initial point of c1, and
2 connects the endpoint of c1 to the start point of c2, etc. To start the argument we
note that it is straightforward to construct holomorphic strips corresponding to the short
geodesics starting at Fc� followed by the chord c and then the short geodesic to FcC

and to show that they are unique. This corresponds to a generator of CW�.Fc� ;FcC/.
Likewise, it is immediate to construct the holomorphic disk connecting a Reeb chord
generator of CW�.FcC ;C / corresponding to a geodesic, and show that it is unique;
compare Theorem 83.
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We now use these two to construct algebraically one disk from the Reeb chord generator
of CW�.Fc� ;C / corresponding to the short geodesic, the chord c, and a geodesic
connecting the endpoint of c to the basepoint of C . To this end we consider the natural
map

‰pvcCc�
W CW�.FcC ;C /˝CW�.Fc� ;FcC/! CE�.ƒ/I

see (47). For the two Reeb chords, a connecting Fc� to FcC corresponding to the
chord c of ƒ, and b connecting FcC to C corresponding to the geodesic, we then have,
with pv denoting the basepoint,

d.‰pvcCc�.b; a//C .‰pvc�.b// � .‰cCc�.a//C‰pvc�.m2.b; a//

C .�1/jaj�1‰pvcCc�.m1.b/; a/C‰
pvcCc�.b;m1.a//D 0:

Here we know that the terms containing m1 and d involve nontrivial holomorphic disks
or Morse flows in the finite-dimensional approximation, and hence lower action/energy
by an amount bounded below by some ı > 0, which we assume is much larger than
� > 0 above. Therefore, if we restrict attention to a small action window, we find

.‰pvc�.b/ �‰cCc�.a//C‰pvc�.m2.b; a//D 0:

Here the first term is simply the Pontryagin product at the common endpoint of the
curves, which is homologous to the word �0c of the small geodesic, the Reeb chord
and then the longer geodesic, by rounding the corner at cC. It follows that m2.a; b/D r ,
where r is a Reeb chord with action between the sum of the actions of a and b and the
action of �0c , and that ‰c�pv .r/ contains this word with coefficient ˙1. Noting that
there is only one Reeb chord in the action window studied, we find that the desired
coefficient equals ˙1. It is now clear how to continue the induction: at each step we
add one more geodesic or Reeb chord to any word. Using already constructed curves
and (47) in a small action window, we find that the map ‰1 has a triangular action
matrix with ˙1 on the diagonal, hence it is a quasi-isomorphism.
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Filtering the Heegaard Floer contact invariant
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We define an invariant of contact structures in dimension three from Heegaard Floer
homology. This invariant takes values in the set Z�0[f1g. It is zero for overtwisted
contact structures,1 for Stein-fillable contact structures, nondecreasing under Leg-
endrian surgery, and computable from any supporting open book decomposition. As
an application, we give an easily computable obstruction to Stein-fillability on closed
contact 3–manifolds with nonvanishing Ozsváth–Szabó contact class.
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1 Introduction

Let M be a closed orientable 3–manifold and � be a contact structure on M. The
goal of this article is to define an invariant of .M; �/ as a refinement of the contact
invariant in Heegaard Floer homology, the Ozsváth–Szabó contact class Oc.�/ [50],
and to study some of its properties. To define our invariant, we start from an open
book decomposition of M supporting � and a collection of pairwise disjoint properly
embedded arcs on a page of the open book decomposition. From this data we build a
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filtered chain complex out of the corresponding Heegaard Floer chain complex, whose
filtration captures in an algebraic sense the topological complexity of curves counted
by the differential. We then consider how far the Ozsváth–Szabó contact class survives
in the associated spectral sequence. The result is an invariant of the contact manifold,
denoted by o.M; �/, and read the spectral order, or simply order, of .M; �/, taking
values in Z�0[f1g.

Theorem 1.1 The contact invariant o satisfies the following properties:

� o.M; �/D 0 if .M; �/ is overtwisted.

� o.M; �/D1 if .M; �/ is Stein-fillable.

� o.M; �/ can be detected on an arbitrary supporting open book decomposition
of .M; �/.

The second bullet point property in Theorem 1.1 follows from the fact that the contact
invariant o behaves well under Legendrian surgery, giving a map of partially ordered
sets from contact manifolds ordered by Stein cobordisms to the set Z�0[f1g with
the usual ordering:

Theorem 1.2 The contact invariant o is nondecreasing under Legendrian surgery and
in particular gives an obstruction to the existence of Stein cobordisms between contact
3–manifolds. Specifically, if .M�; ��/ and .MC; �C/ are respectively the concave and
convex ends of a Stein cobordism , then o.M�; ��/� o.MC; �C/.

Aside from the properties listed in Theorem 1.1, the contact invariant o behaves well
under connected sums. To be more explicit:

Theorem 1.3 Let .M1; �1/ and .M2; �2/ be closed contact 3–manifolds. Then their
connected sum satisfies o.M1 # M2; �1 # �2/Dminfo.M1; �1/; o.M2; �2/g.

The above theorem fits into a broader pattern of similar contact connected sum results.
Loosely, various measures of rigidity of .M1 # M2; �1 # �2/— for example, Stein-
fillability, having a nonvanishing Ozsváth–Szabó contact class, or tightness — is the
weaker of that property for .M1; �1/ or .M2; �2/ (see Eliashberg [11], Cieliebak and
Eliashberg [7], Ozsváth and Szabó [50] and Colin [8]). In addition, Theorem 1.3 leads
to existence of a family of monoids ok.S/ in the mapping class group Mod.S; @S/:
� 2 Mod.S; @S/ belongs to ok.S/ if and only if o � k for the contact 3–manifold
specified by the open book decomposition .S; �/.

Geometry & Topology, Volume 27 (2023)
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Our contact invariant is inspired by an analog of Latschev and Wendl’s algebraic torsion
introduced by Hutchings in the context of embedded contact homology (ECH) in [33,
Appendix]. To a closed oriented 3–manifold M, a nondegenerate contact 1–form �

on M, and a generic almost complex structure J on R�M as needed to define the
ECH chain complex, Hutchings associates a number f .M; �;J / in Z�0[f1g. The
latter is shown to vanish for overtwisted contact structures for all choices of � and J,
and can be used to obstruct exact symplectic cobordisms. Our initial definitions follow
the ideas of Hutchings’ construction, ported to the setting of Heegaard Floer homology
(see our work [32] for more on this). We choose to work with Heegaard Floer homology
because of its computational advantages.

As an application, it follows from the second bullet point above that, even for closed
contact 3–manifolds with nonvanishing Ozsváth–Szabó contact class, one can obstruct
Stein-fillability by finding a finite upper bound on its spectral order, which is easier
than computing the spectral order itself.

Theorem 1.4 There is an infinite family of contact 3–manifolds f.Yp; �p/gp2Z>0
each

with Oc.�p/ ¤ 0 but with o.Yp; �p/ D 0 (see Figure 19, left, for a description of this
family via open book decompositions). In particular , these contact 3–manifolds are not
Stein-fillable.

Remark During the course of this project we learned that John Baldwin and David
Shea Vela-Vick have independently been working on a filtration in Heegaard Floer
homology similar in spirit to the JC–filtration defined in Section 2.2. This led to an
interesting application in knot Floer homology [4].

Future considerations

In upcoming work in progress [31], we present an infinite family of contact structures
with vanishing Ozsváth–Szabó contact class but with nonzero spectral order. Further-
more, we compute upper bounds on the spectral order of these contact structures and
these upper bounds span the range of all positive integers. The next step will be to show
that there is an increasing sequence of positive integers that provides lower bounds
on the spectral order of our family of contact structures. These computations would
resolve the following conjecture:

Conjecture 1.5 An infinite sequence of distinct positive integers is realized by the
spectral order of an infinite family of contact structures with vanishing Ozsváth–Szabó
contact class.

Geometry & Topology, Volume 27 (2023)
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In addition, such a family of examples would provide a nested sequence of monoids

� � �¨ oknC1.S/¨ okn.S/¨ � � � ;

where okn.S/ is the set of orientation-preserving homeomorphisms � in the mapping
class group Mod.S; @S/ such that the open book decomposition .S; �/ supports a
contact structure with o � k, and S may have arbitrary genus. Note that this family
of monoids would be contained in the monoid Tight.S; @S/ and would contain the
monoid Stein.S; @S/ (see Etnyre and Van Horn-Morris [13], as well as Baldwin [3]
and Baker, Etnyre and Van Horn-Morris [1]), and it would provide an answer to [13,
Question 6.8].

A more conceptual question concerns the potential of a converse to the first bullet point
of Theorem 1.1:

Question 1.6 Suppose that .M; �/ has vanishing Ozsváth–Szabó contact class. Does
o.M; �/D 0 imply that � is overtwisted?

An affirmative answer to Question 1.6 would imply that Heegaard Floer package detects
tight contact structures. In this regard, spectral order gives a potential interpretation
of consistency of an open book decomposition (see Wand [55]), a combinatorial
condition equivalent to tightness of the supported contact structure, in the context of
pseudoholomorphic curves. Furthermore, along with the nondecreasing behavior of
spectral order under Legendrian surgery, an affirmative answer to Question 1.6 would
provide an alternative and more conceptual proof of the following theorem, which has
recently been proved by the last author in [56]:

Theorem 1.7 Let � be a tight contact structure on M, and K � M be a null-
homologous Legendrian knot. Then contact .�1/–surgery on K produces a 3–manifold
with a tight contact structure.

Another question of interest is related to generalizing our invariant to compact contact
3–manifolds with convex boundary. In this regard, our construction of a filtered chain
complex out of the Heegaard Floer chain complex readily generalizes to the case of
partial open book decompositions introduced by Honda, Kazez and Matić [22]. This
allows us to extend the definition of spectral order (Definition 2.2) to compact contact
3–manifolds with convex boundary. This was independently observed by Juhász and
Kang [26], who used it to find an upper bound on the spectral order for a closed contact
3–manifold that contains a Giroux torsion domain. More generally, Juhász and Kang
showed that the spectral order of a codimension zero contact submanifold with convex
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boundary gives an upper bound on the spectral order of the ambient manifold. Among
other things, we will compare o to Wendl’s planar torsion [58]. As is stated by Latschev
and Wendl [33, Theorem 6], planar torsion provides an upper bound to Latschev and
Wendl’s algebraic torsion. Moreover, planar torsion detects overtwistedness. One could
expect a similar relationship between spectral order and Wendl’s planar torsion. These
are the content of another work in progress by the authors [30].

Question 1.8 Suppose that the closed contact 3–manifold .M; �/ has planar k–torsion.
Does this imply o.M; �/� k?

Organization

In Section 2, we provide the definitions required throughout the article, leading to the
definition of spectral order. These include a preliminary version of the latter, denoted
by o, which a priori depends on the choices made to define it.

Section 3 investigates the dependence of o on various choices made in its definition.
Among these are a choice of the monodromy of an open book decomposition in its
isotopy class and a choice of a collection of pairwise disjoint properly embedded arcs
on a page of an open book decomposition.

In Section 4, we exhibit several properties of spectral order, and in doing so prove
Theorems 1.1, 1.2 and 1.3.

In Section 5, we present an infinite family of contact structures with nonvanishing
Ozsváth–Szabó contact class but with zero spectral order. This implies, by Theorem 1.1,
that these contact structures are not Stein-fillable. We also compare our method to
other known obstructions to fillability of closed contact 3–manifolds.
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thank the Max Planck Institute for Mathematics (MPIM) in Bonn for their support and
hospitality. Part of this work was completed while they were visiting MPIM. Finally,
we thank the referees for several helpful comments and corrections.

Kutluhan was supported in part by NSF grant DMS-1360293 and Simons Foundation
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2 Definitions

2.1 Background

To set the stage, let M be a closed, connected and oriented 3–manifold endowed
with a cooriented contact structure �. It is understood that the orientation on M

is induced by �. A celebrated theorem of Giroux states that there is a one-to-one
correspondence between contact structures up to isotopy and open book decompositions
up to positive stabilization [17]. An abstract open book decomposition of M is
a pair .S; �/, where S is a compact oriented surface of genus g with B boundary
components, called the page, and � is an orientation-preserving diffeomorphism of S

which restricts to the identity in a neighborhood of the boundary, called the monodromy.
The manifold M is homeomorphic to S � Œ0; 1�=�, where .p; 1/� .�.p/; 0/ for any
p2S and .p; t/� .p; t 0/ for any p2@S and t; t 02 Œ0; 1�. The open book decomposition
is said to support the contact structure � if there exists a 1–form � such that � D ker.�/,
�j@S > 0 and d�jS > 0.

Now fix an abstract open book decomposition .S; �/ of M supporting � and a collection
of pairwise disjoint properly embedded arcs aDfa1; : : : ; aNg on S that contains a basis,
that is, a subcollection of arcs cutting S into a polygon. This arc collection together with
the monodromy � defines a Heegaard diagram .†; fˇ1; : : : ; ˇNg; f˛1; : : : ; ˛Ng/ for�M

as in [23, Section 3.1]. To be more explicit, let bD fb1; : : : ; bNg be a collection of arcs
on S where bi is isotopic to ai via a small isotopy satisfying the following conditions:

� The endpoints of bi are obtained from the endpoints of ai by pushing along @S
in the direction of the boundary orientation.

Geometry & Topology, Volume 27 (2023)
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@S

bi

ai

xi

@S

Figure 1: The arcs ai and bi on the surface S.

� ai intersects bi transversally at one point, xi , in the interior of S.

� Having fixed an orientation of ai , there is an induced orientation on bi , and the
sign of the oriented intersection ai \ bi is positive (see Figure 1).

Then†DS�
˚

1
2

	
[@S�S�f0g, ˛iDai�

˚
1
2

	
[ai�f0g and ˇiDbi�

˚
1
2

	
[�.bi/�f0g.

Note that the Heegaard diagram .�†; f˛1; : : : ; ˛Ng; fˇ1; : : : ; ˇNg/ also describes the
manifold �M, and we may sometimes prefer to use this diagram in figures.

With the preceding understood, we recall the definition of the Heegaard Floer chain
complex .cCF.†;ˇ;˛/; y@HF/. In doing so, we adopt Lipshitz’s cylindrical reformulation
of Heegaard Floer homology [35]. The definition also requires the choice of basepoints
z � † X

S
i2f1;:::;Ng.˛i [ ˇi/. In the present context, this is done according to the

convention in [23, Section 3.1]. To be more explicit, place a single basepoint in every
connected component of S X

S
i2f1;:::;Ng ai outside the small strips between ai and bi

(see Figure 1). Following Lipshitz, the chain group cCF.†;ˇ;˛/ is freely generated
over F WD Z=2Z by I–chord collections Ex WD x � Œ0; 1� specified by unordered N–
tuples of points in † of the form x D fx1; : : : ;xNg, where xi 2 ˛i \ ˇ�.i/ for some
element � of the symmetric group SN . Given a generic almost complex structure
JHF on †� Œ0; 1��R satisfying conditions (J1)–(J5) in [35, Section 1, page 959], the
differential y@HF on cCF.†;ˇ;˛/ is defined to be the endomorphism of cCF.†;ˇ;˛/
sending a generator Ex to X

y

X
A2y�2. Ex; Ey/

ind.A/D1

n.Ex; Ey IA/ Ey :

Here y�2.Ex; Ey/ denotes the set of relative homology classes of continuous maps from a
Riemann surface with boundary and boundary punctures into †� Œ0; 1��R such that
it maps the boundary of the surface into ˛� f0g �R[ˇ � f1g �R, it converges to Ex
and Ey at its punctures, and it has trivial homological intersection with fzg � Œ0; 1��R.

Geometry & Topology, Volume 27 (2023)



2188 Çağatay Kutluhan, Gordana Matić, Jeremy Van Horn-Morris and Andy Wand

Meanwhile, ind.A/ denotes the index of a class A2 y�2.Ex; Ey/ (see [35, Definition 4.4]),
and n.Ex; Ey IA/ is a signed count, modulo R–translation, of JHF–holomorphic curves
in †� Œ0; 1��R satisfying conditions (M0)–(M6) in [35, Section 1, page 960] and
representing the class A. The latter is guaranteed to be finite if we choose the mon-
odromy � appropriately in its isotopy class so as to make the multipointed Heegaard
diagram .†;ˇ;˛; z/ admissible. A multipointed Heegaard diagram is admissible if
every nontrivial periodic domain has both positive and negative coefficients (see [35,
Definition 5.1]).

Remark Even though Lipshitz carried out his construction of a cylindrical reformula-
tion of Heegaard Floer homology in the case ND 2gC B� 1 (in other words, the case
with one basepoint), the details of his construction and especially the results in [35,
Sections 4 and 10] carry over to the multipointed case but for cosmetic changes.

2.2 The JC filtration

Next we build a filtered chain complex out of .cCF.†;ˇ;˛/; y@HF/. To do this, we adopt
Hutchings’ recipe in [24, Section 6]. Given a pair of generators Ex and Ey , define a
function JC on y�2.Ex; Ey/ by1

(2-1) JC.A/ WD �.D.A//� 2e.D.A//Cjxj � jy j;

where j � j denotes the number of disjoint cycles in the element of the symmetric
group SN associated to a given generator following the convention described above
in Section 2.1 (eg the generator x� corresponding to the distinguished set of points
fx1; : : : ;xNg indicated in Figure 1 has j Ex� j D N), D.A/ is the domain in the pointed
Heegaard diagram .†;ˇ;˛; z/ representing a class A 2 y�2.Ex; Ey/, �.D.A// is the
Maslov index of D.A/ as in the traditional setting of [48], and e.D.A// is the Euler
measure of D.A/ (see [35, Section 4.1, page 973] for the definition). Since the Maslov
index and Euler measure are additive under concatenation of domains, so is JC. More
precisely, for any A 2 y�2.Ex; Ey/ and A0 2 y�2. Ey ; Ez/, we have

JC.ACA0/D JC.A/CJC.A
0/:

Now suppose that A 2 y�2.Ex; Ey/ is represented by a JHF–holomorphic curve CL in
† � Œ0; 1� � R satisfying conditions (M0)–(M6) in [35, Section 1]. Then, by [35,
Proposition 4.2 (see also Proposition 4:20 in the correction)],

(2-2) �.CL/D N� nx.D.A//� ny.D.A//C e.D.A//:

1The interested reader may refer to [32] to see how the authors originally came up with this formula.
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Here, np.D.A// denotes the point measure, namely, the average of the coefficients
of D.A/ for the four regions with corners at p 2˛i\ ǰ . Meanwhile, Lipshitz’s formula
for the Maslov index of domains [35, Corollary 4.10 (see also Proposition 4:80 in the
correction)] asserts that

(2-3) �.D.A//D nx.D.A//C ny.D.A//C e.D.A//:

Combining (2-2) and (2-3), we obtain

�.D.A//� 2e.D.A//D��.CL/C N;

and hence (2-1) can be rewritten as

(2-4) JC.A/D��.CL/C NCjxj � jy j:

With the preceding understood, consider the smooth compact oriented surface C

obtained from the compactification of CL by attaching 2–dimensional 1–handles along
pairs of points in ˛i �f0g�R\CL and ˇi �f1g�R\CL for each i D 1; : : : ; N, and
then smoothing. Then �.C /D �.CL/� N, and jxj (resp. jy j) is equal to the number
of boundary components of C arising from the I–chord Ex (resp. Ey). Hence, we can
further rewrite (2-4) as

(2-5) JC.A/D
X

Cj�C

.2gj � 2C 2jxj j/;

where each Cj denotes a connected component of C, gj denotes the genus of Cj , and
each xj � x denotes the maximal subcollection of points in x such that xj � Œ0; 1� lies
on the boundary of the component Cj . Note that each connected component of C has
nonempty intersections with the I–chord collections specified by x and y since each
connected component of CL has nonempty negative and positive ends. Therefore, it
follows from (2-5) that 2 jJC.A/ and JC.A/� 0.

Remark If there exists an embedded JHF–holomorphic curve CL representing the
class A, then the Maslov index of D.A/ agrees with the Fredholm index of CL. For
Maslov index-1 domains, we prefer to use the equivalent formula

(2-6) JC.A/D 2Œnx.D.A//C ny.D.A//�� 1Cjxj � jy j:

2.3 The filtered chain complex

Following Hutchings, we decompose the Heegaard Floer differential as

y@HF D @0C @1C � � �C @l C � � � ;
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where @l counts JHF–holomorphic curves with JC D 2l and having empty intersection
with fzg � Œ0; 1��R. Since JC is additive under gluing of J–holomorphic curves, the
above decomposition induces a spectral sequence with pages

Ek.S; �; aIJHF/DH�.E
k�1.S; �; aIJHF/; dk�1/:

To be more explicit, consider the Z–graded modulecCF.S; �; a/ WD cCF.†;ˇ;˛/˝F F Œt; t�1�

endowed with the endomorphism y@ defined by

y@

�X
i2Z

ci t
i

�
WD

X
i2Z

�X
l2Z

.@lci/t
i�l

�
:

Here ci ¤ 0 for only finitely many i 2 Z. Note that the additivity property of JC

implies that X
iCjDl

@i ı @j D 0

for any l � 0; hence, y@ ı y@D 0, making .cCF.S; �; a/; y@/ into a filtered chain complex,
where the pth filtration level

Fp.S; �; a/D

�X
i�p

ci t
i
ˇ̌̌
ci 2 cCF.†;ˇ;˛/

�
:

Then .Ek.S; �; aIJHF/; dk/ is the spectral sequence associated to this filtered chain
complex, where dk is the restriction of y@ to Ek.S; �; aIJHF/. To be more explicit, let
Ak

p denote the subcomplex defined by

Ak
p D fc 2 F

p.S; �; a/ j y@c 2 Fp�k.S; �; a/g;

ie

Ak
p D

�X
i�p

ci t
i
ˇ̌̌
ci 2 cCF.†;ˇ;˛/ with

jX
iD0

@icpCi�j D 0 for 0� j < k

�
:

Then

Ek
p .S; �; aIJHF/D

Ak
p

y@Ak�1
pCk�1

CAk�1
p�1

:

A straightforward calculation shows that Ek
0
.S; �; aIJHF/ is isomorphic to

(2-7)
Zk.S; �; aIJHF/

Bk.S; �; aIJHF/
;
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where

Zk.S; �; aIJHF/

WD

�
c0 2

cCF.†;ˇ;˛/
ˇ̌̌
9ci 2 cCF.†;ˇ;˛/ for 1� k � i � �1 with @0c0 D 0

and @j c0 D

j�1X
iD0

@ici�j for 0< j < k

�
and

Bk.S; �; aIJHF/

WD

�k�1X
iD0

@ibi

ˇ̌̌
bi 2 cCF.†;ˇ;˛/ and

k�1�jX
iD0

@ibiCj D 0 for 0< j < k

�
:

(Note that, for an element
P

i�0 ci t
i 2 Ak

0
, the chains ci for 1 � k � i � �1 are

uniquely determined by c0 up to chains ai for 1 � k � i � �1 belonging to someP
i��1 ai t

i 2 Ak�1
�1

, and that Zk is isomorphic to Ak
0
=Ak�1
�1

.) Since Fp.S; �; a/Š

Fp�1.S; �; a/ canonically as chain complexes, Ek
p .S; �; aIJHF/ is canonically iso-

morphic to the quotient (2-7) for every p.

By [23, Theorem 3.1], the distinguished generator Ex� represents the Ozsváth–Szabó
contact class Oc.�/2cHF.�M /, and it satisfies @i Ex�D0 for all i�0. This is because there
is no Fredholm index-1 JHF–holomorphic curve in †� Œ0; 1��R satisfying conditions
(M0)–(M6) in [35, Section 1] with Ex� at its negative punctures and having empty
intersection with fzg� Œ0; 1��R. Hence, Ex� represents a cycle in Ek.S; �; aIJHF/ for
all k � 1.

Definition 2.1 Define o.S; �; aIJHF/ to be the smallest nonnegative integer k such
that the generator Ex� represents the trivial class in EkC1.S; �; aIJHF/.

Ideally, one would like to show that o.S; �; aIJHF/ does not depend on choices of
.S; �; a/ and JHF. This is not true in general. For example, consider the closed contact
3–manifold where the contact structure is supported by the open book decomposition
.S; �/, where S is a 4–holed sphere and � is the product of Dehn twists depicted
in Figure 2, left. Using the basis of arcs a shown in Figure 2, left, and a generic
split almost complex structure JHF, we observe that the shaded domain D in Figure 2,
right, has a unique holomorphic representative up to translation (see [49, Lemma 3.4]),
and this is sufficient for the vanishing of the Ozsváth–Szabó contact class. A simple
computation shows that JC.D/ D 2. Therefore, Ex� represents the trivial class in
E2.S; �; aIJHF/, and o.S; �; aIJHF/ � 1. Furthermore, using the symmetry of the
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C1

�2

C1 C1

C1

y2

x2
y1 x1

z

Figure 2: Left: an open book decomposition .S; �/ supporting an overtwisted
contact structure and a basis of arcs depicted in red. Right: a Maslov index-1
holomorphic domain with JCD 2 in the S�f0g half of the Heegaard diagram
.�†;˛;ˇ/.

open book decomposition and the choice of the arc basis, one can argue as in [31]
that o.S; �; aIJHF/D 1. However, the contact structure supported by the open book
decomposition .S; �/ is overtwisted, which can be seen after a sequence of positive
stabilizations to reveal the overtwisted disk (see [55] for an explicit algorithm). Then
there exists another open book decomposition .S 0; �0/ and a basis of arcs a0 on S 0 for
which o.S 0; �0; a0IJ 0HF/D 0 using a generic split almost complex structure J 0HF (see
the proof of Theorem 2.3). As a result, o is not independent of these choices.

Definition 2.2 Let .M; �/ be a closed contact 3–manifold. Then define the spectral
order

o.M; �/ WDminfo.S; �; aIJHF/g;

where the minimum is taken over all data .S; �; aIJHF/ such that .S; �/ is an open
book decomposition of M supporting � , a is a collection of pairwise disjoint properly
embedded arcs on S that contains a basis, and JHF is a generic almost complex structure
on †� Œ0; 1��R satisfying conditions (J1)–(J5) in [35, Section 1].

It follows immediately that Definition 2.2 yields an invariant of contact structures. With
the definition of our contact invariant in place, the first bullet point of Theorem 1.1
follows without much effort:

Theorem 2.3 Let �OT be an overtwisted contact structure on a closed 3–manifold M.
Then o.M; �OT/D 0.

Proof Note that an overtwisted contact structure is supported by an open book de-
composition .S; �/ where the monodromy � is not right-veering [21, Theorem 1.1].
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One can find a basis of arcs a on S such that, in the corresponding Heegaard diagram,
y@HF Ey D Ex�OT

, where y D fy1;x2; : : : ;xGg and there is exactly one Maslov index-1
holomorphic domain D, a bigon, that contributes to the differential [23, Lemma 3.2]
as defined by a split complex structure on †� Œ0; 1��R. Therefore, ny.D.A//D 1

4
,

nx�OT
.D/ D 1

4
, jy j D G and jx�OT

j D G. Applying (2-6), we find JC.D/ D 0. As a
result, o.M; �OT/D 0.

3 Dependence on choices

This section investigates the question of dependence of o.S; �; aIJHF/ on a choice of
generic almost complex structure JHF on†�Œ0; 1��R, where†DS�

˚
1
2

	
[@S�S�f0g,

a choice of the monodromy � in its isotopy class, and how it changes under certain
modifications of arc collections. We start with a priori dependence of o on a choice of
generic almost complex structure.

3.1 Independence of almost complex structures

Proposition 3.1 Fix an open book decomposition .S; �/ of M supporting � and a
collection of pairwise disjoint properly embedded arcs a on S that contains a basis.
Suppose that .S; �; a/ yields an admissible Heegaard diagram , and let J 0

HF and J 1
HF be

two generic almost complex structures on †� Œ0; 1��R satisfying conditions (J1)–(J5)
in [35, Section 1]. Then o.S; �; aIJ 0

HF/D o.S; �; aIJ 1
HF/.

Proof There exists a smooth 1–parameter family of R–invariant almost complex
structures fJ s

HFgs2R on † � Œ0; 1� �R that agrees with J 0
HF if s < � and with J 1

HF
if s > 1 � � for some � � 1. As is explained in [35, Section 9], this family of
almost complex structures can be chosen to satisfy conditions (J1), (J2) and (J4) in
[35, Section 1] when considered as a non-R–invariant almost complex structure on
†� Œ0; 1��R. Furthermore, this almost complex structure guarantees transversality
for pseudoholomorphic curves with prescribed boundary conditions. It is used in [35,
Section 9] to define a chain map

ˆ W .cCF.†;ˇ;˛/; y@0
HF/! .cCF.†;ˇ;˛/; y@1

HF/

via a signed count of J s
HF–holomorphic curves in †� Œ0; 1��R satisfying conditions

(M0)–(M6) in [35, Section 1] and representing relative homology classes A 2 y�2.Ex; Ey/

with ind.A/D 0. If J s
HF is generic, then the moduli space of such J s

HF–holomorphic
curves representing a class A2 y�2.Ex; Ey/with ind.A/D0 (resp. ind.A/D1) is a smooth
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orientable 0–dimensional (resp. 1–dimensional) manifold whose compactification in the
1–dimensional case is obtained by adding on pseudoholomorphic buildings of height 2
in which one level is J s

HF–holomorphic and the other is either J 0
HF–holomorphic or

J 1
HF–holomorphic as the case may be. The topology of the curves in each component

of these moduli spaces is fixed.

Now we define an integer-valued function on moduli spaces of J s
HF–holomorphic curves

in †� Œ0; 1��R with ind� 1 satisfying conditions (M0)–(M6) in [35, Section 1]. If
CL is such a curve representing a class in y�2.Ex; Ey/, then define

(3-1) JC.CL/ WD ��.CL/C NCjxj � jy j:

Note that (3-1) is additive in the sense that, if a pseudoholomorphic building of height 2
consists of a J 0

HF–holomorphic curve C 1
L

with indD 1 representing a class in y�2.Ex; Ex
0/

and a J s
HF–holomorphic curve C 0

L
with indD 0 representing a class in y�2.Ex

0; Ey/, then
the J s

HF–holomorphic curve CL obtained from these by gluing (see [35, Appendix A])
satisfies

(3-2) JC.CL/D JC.C
1
L/CJC.C

0
L/;

since �.CL/D �.C
1
L
/C�.C 0

L
/�N. The same holds for a pseudoholomorphic building

of height 2 consisting of a J s
HF–holomorphic curve C 0

L
with ind D 0 representing a

class in y�2.Ex; Ey
0/ and a J 1

HF–holomorphic curve C 1
L

with indD 1 representing a class
in y�2. Ey

0; Ey/. Note also that (3-1) coincides with (2-4), which allows us to deduce
similarly that JC.CL/ is a nonnegative even integer. Hence, we may decompose ˆ as

ˆDˆ0
Cˆ1

C � � �Cˆl
C � � � ;

where ˆl counts J s
HF–holomorphic curves with JC D 2l . Since ˆ is a chain map and

JC is additive under gluing, it follows thatX
iCjDl

.ˆi
ı @0

j � @
1
i ıˆ

j /D 0:

This identity implies that there is a filtered chain map ŷ from .cCF.S; �; a/; y@0/ to
.cCF.S; �; a/; y@1/ defined by

ŷ

�X
i2Z

ci t
i

�
WD

X
i2Z

�X
l2Z

.ˆlci/t
i�l

�
;

and hence a morphism of spectral sequences from E�.S; �; aIJ 0
HF/ to E�.S; �; aIJ 1

HF/.
Moreover, ˆ.Ex�/ D Ex� since the only J s

HF–holomorphic curve with negative ends
at Ex� satisfying conditions (M0)–(M6) in [35, Section 1] is Ex� �R. Therefore, we
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have o.S; �; aIJ 0
HF/ � o.S; �; aIJ 1

HF/. On the other hand, we may also consider
the chain map induced by the smooth 1–parameter family of almost complex struc-
tures fJ 1�s

HF gs2R. Likewise, we obtain o.S; �; aIJ 0
HF/� o.S; �; aIJ 1

HF/. As a result,
o.S; �; aIJ 0

HF/D o.S; �; aIJ 1
HF/.

3.2 Isotopy independence

Given Proposition 3.1, we may drop a choice of generic almost complex structure
from the notation and simply write o.S; �; a/. We proceed to discuss the dependence
of o on the monodromy. In this regard, let � and �0 be two orientation-preserving
diffeomorphisms of S that restrict to the identity in a neighborhood of @S. Suppose
that � is isotopic to �0, and fix an isotopy f�tgt2Œ0;1� relative to @S such that �0 D �

and �1 D �
0. Given a collection of pairwise disjoint properly embedded arcs a on S

that contains a basis, the isotopy f�tgt2Œ0;1� yields an isotopy of arcs f�t .b/gt2Œ0;1�,
where b is the collection of arcs as in Section 2.1. Of interest to us are two kinds of
isotopies:

(1) For any t 2 Œ0; 1�, a intersects �t .b/ transversally in the interior of S.

(2) The isotopy creates/annihilates a pair of transverse intersections between a

and �.b/.

Following [35], we refer to such isotopies as basic isotopies. In general, a pointed
isotopy between two multipointed Heegaard diagrams, namely an isotopy supported in
the complement of the basepoints, is called admissible if each intermediate multipointed
Heegaard diagram is admissible. Any two admissible multipointed Heegaard diagrams
that are pointed isotopic are in fact isotopic through a sequence of admissible basic
isotopies (see [35, Proposition 5.6]). Note that isotopies of the monodromy of an open
book decomposition yield pointed isotopies of the corresponding multipointed Heegaard
diagram. Therefore, it suffices to investigate the behavior of o under admissible basic
isotopies of the monodromy.

Proposition 3.2 Let .S; �/ be an open book decomposition and a be a collection of
pairwise disjoint properly embedded arcs a on S that contains a basis. Suppose that
.S; �; a/ yields an admissible multipointed Heegaard diagram and that �0 is isotopic
to � via an admissible basic isotopy. Then o.S; �0; a/D o.S; �; a/.

Proof As is explained in [35, Chapter 9] (see also [48, Section 7.3]), basic isotopies
of the first kind above are equivalent to deformations of the complex structure on †.
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@S
ˇi ˇ0i ˛i

�i xi

x0i

@S

Figure 3: Part of the restriction of the multipointed Heegaard triple diagram
.†;ˇ 0;ˇ;˛; z/ to S �

˚
1
2

	
�†.

With this understood, o is unchanged under isotopies of this sort by Proposition 3.1. As
for basic isotopies of the second kind above, we consider the chain maps induced by
the multipointed Heegaard triple diagram .†;ˇ 0;ˇ;˛; z/, where ˇ 0 D fˇ0

1
; : : : ; ˇ0Ng is

such that each ˇ0i is obtained from a small Hamiltonian isotopy of ai [�
0.bi/ so that it

intersects ˇi transversally in exactly two points near the point xi , as shown in Figure 3,
while it is disjoint from ǰ for j ¤ i . As a result, the Heegaard diagram .†;ˇ 0;ˇ/

represents the manifold #G S1 �S2, where G is the genus of †; we may assume that
the signed area of the region between ˇ and ˇ 0 is zero with respect to an area form
on † which delivers the admissibility criteria for the multipointed Heegaard diagram
.†;ˇ 0;ˇ; z/ as stated in [35, Lemma 5.3]. Consequently, the multipointed Heegaard
triple diagram .†;ˇ 0;ˇ;˛; z/ is also admissible by [35, Lemma 10.14].

The Heegaard triple diagram .†;ˇ 0;ˇ;˛/ describes a cobordism with one outgoing
boundary component and two incoming boundary components, one of which is diffeo-
morphic to the manifold #G S1 �S2. To be more specific, this cobordism is diffeo-
morphic to the complement of a tubular neighborhood of a bouquet of G embedded
circles in the product cobordism Œ0; 1� �M. It follows that there is a unique Spinc

structure t� on this cobordism which restricts to the trivial Spinc structure sı on
#G S1 �S2 and to s� on M.

With the preceding understood, there exists a chain map

Ofˇ 0;ˇ;˛It� W
cCF.†;ˇ 0;ˇ; sı/˝F cCF.†;ˇ;˛; s�/! cCF.†;ˇ 0;˛; s�/;

defined by counting embedded Fredholm index-0 pseudoholomorphic curves in †�T

subject to appropriate boundary conditions. Here T denotes a disk with three marked
points on its boundary and † � T is equipped with an almost complex structure
satisfying conditions (J 01)–(J 04) in [35, Section 10.2, page 1018].
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No matter the almost complex structure, the differential on cCF.†;ˇ 0;ˇ; sı/ vanishes
identically. Therefore, restricting to the subcomplex F � E�˝F cCF.†;ˇ;˛; s�/, where
� D f�1; : : : ; �Ng and E� is the top degree generator of cCF.†;ˇ 0;ˇ; sı/, results in a
chain map

Ofˇ 0;ˇ;˛It� .
E�˝ � / W cCF.†;ˇ;˛; s�/! cCF.†;ˇ 0;˛; s�/:

The latter induces an isomorphism of homologies by [35, Proposition 11.4] (see also
[48, Proposition 9.8]). In what follows, we work with a generic split complex structure
on †�T. We are allowed to do so since transversality of moduli spaces as defined
by such almost complex structures can be guaranteed by slight perturbation of the ˛–,
ˇ– and ˇ 0–curves. To be more precise, we may invoke the technique of [46]. This
is because any class A in y�2. E�; � ; � / satisfies the boundary injectivity criterion in the
sense of [35]. By way of a reminder, a class A in y�2. E�; � ; � / is said to satisfy the
boundary injectivity criterion if any pseudoholomorphic curve u for some split complex
structure on † � T representing the class A has �† ı u somewhere injective in its
boundary. This criterion is guaranteed as long as the domain representing the class has
a region with multiplicity one adjacent to a region of multiplicity zero. Note that this
is the case for any class in y�2. E�; � ; � / due to the placement of the basepoints, in that
basepoints appear on both sides of every ˛–, ˇ– and ˇ 0–curve.

Next we show that the chain map Ofˇ 0;ˇ;˛It� .
E� ˝ � / induces a morphism of spectral

sequences from E�.S; �; aIJHF/ to E�.S; �0; aIJ 0HF/. First, define an analog of (2-1)
for the cobordism described by the Heegaard triple diagram .†;ˇ 0;ˇ;˛/ via

(3-3) JC.A/D
1
2

NC�.D.A//� 2e.A/Cjxj � jy j;

where A 2 y�2. E�; Ex; Ey/; �.D.A// denotes the Maslov index of the domain D.A/
associated to A, which is the expected dimension of the moduli space of pseudoholo-
morphic curves representing the class A; and e.A/ is the Euler measure of the domain
associated to the class A. If A can be represented by an embedded Fredholm index-0
pseudoholomorphic curve CL, then (3-3) becomes

JC.A/D
1
2

N� 2e.A/Cjxj � jy j D ��.CL/C N„ ƒ‚ …
by [35, Section 10.2]

Cjxj � jy j:

It follows from this formula that JC.A/ D 2l for some l � 0. To see this, consider
the smooth compact oriented surface C obtained from the compactification of CL

by first adding 2–dimensional 1–handles, one for each pair .ˇ0i ; ˇi/ and one for each
pair .ˇ0i ; ˛i/, and then capping off the boundary components of the resulting surface
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2198 Çağatay Kutluhan, Gordana Matić, Jeremy Van Horn-Morris and Andy Wand

containing the I–chord collection E� . Note that �.C /D�.CL/�N, and jxj (resp. jy j) is
equal to the number of boundary components of C arising from the I–chord collection Ex
(resp. Ey ). The claim then follows in exactly the same way as in Section 2. Consequently,
we can decompose the chain map Ofˇ 0;ˇ;˛It� .

E�˝ � / as

Ofˇ 0;ˇ;˛It� .
E�˝ � /D f 0

Cf 1
C � � �Cf l

C � � � ;

where f l counts embedded Fredholm index-0 pseudoholomorphic curves with JCD 2l .
Since the Maslov index and the Euler measure are additive under concatenation, it
follows using (2-1) and (3-3) that JC is also additive. Therefore, we have

(3-4)
X

iCjDl

.f i
ı @j � @

0

i ıf
j /D 0

since Ofˇ 0;ˇ;˛It� is a chain map and the JC–filtered differential on cCF.†;ˇ 0;ˇ; sı/ is
identically zero. The latter is due to the fact that cCF.†;ˇ 0;ˇ; sı/ is isomorphic to
.F.0/˚F.1//

˝N, where F.0/˚F.1/ is a graded module over F with vanishing differential
and the domains corresponding to the pseudoholomorphic curves that contribute to the
differential of the generator, �i � Œ0; 1�, of F.1/ are both bigons, which have JC D 0. In
short, the restriction of the differential on cCF.†;ˇ 0;ˇ; sı/˝F cCF.†;ˇ;˛; s�/ to the
subcomplex F � E�˝F cCF.†;ˇ;˛; s�/ is JC–filtered.

The identity (3-4) implies that there is a filtered chain map from .cCF.S; �; a/; y@/
to .cCF.S; �0; a/; y@0/ as before, and hence a morphism of spectral sequences from
E�.S; �; aIJHF/ to E�.S; �0; aIJ 0HF/. In addition,

Ofˇ 0;ˇ;˛It� .
E�˝ Ex�/D Ex

0
�

since the shaded triangles in Figure 3 constitute the only holomorphic domain that
contributes to this chain map due to the placement of the basepoints, and it is rep-
resented by a unique pseudoholomorphic curve by the Riemann mapping theorem.
Hence, o.S; �; aIJHF/� o.S; �0; aIJ 0HF/. Likewise, the isotopy from �0 to � yields
o.S; �; aIJHF/� o.S; �0; aIJ 0HF/. As a result, o.S; �; aIJHF/D o.S; �0; aIJ 0HF/.

Remark Sarkar and Wang [54] and Plamenevskaya [52] proved that the Heegaard
diagram resulting from an arbitrary choice of .S; �; a/, where a contains a basis, can be
made nice by choosing � appropriately in its isotopy class. On a nice Heegaard diagram,
every Maslov index-1 holomorphic domain is represented by an empty embedded bigon
or an empty embedded square [54, Theorem 3.3]. It is easy to see from (2-1) that such
domains have either JC D 0 or JC D 2. This observation indicates that there should
be a combinatorial description of o.
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a4

a02

a0
1

a0

a3

Figure 4: The configuration of arcs in the S �
˚

1
2

	
page of the open book

decomposition representing a triangle elimination operation.

3.3 Eliminating triangles

In this subsection, we investigate dependence of o on a choice of collection of pairwise
disjoint properly embedded arcs containing a basis. More specifically, given an open
book decomposition .S; �/ and such an arc collection a on S , we prove that o is
nonincreasing under a triangle elimination operation on a, which we will describe
in a moment. As we shall see in Section 4, this operation gives us quite a bit of
flexibility in our arguments that lead to the proofs of our main theorems. To set the
stage, let .S; �/ be an open book decomposition supporting a contact structure �,
and aD fa0; a3; a4; : : : ; aNg be a collection of pairwise disjoint properly embedded
arcs on S that contains a basis. Suppose that the three arcs a0; a3; a4 2 a bound a
connected component of S X

S
a. Denote by a0 the collection of pairwise disjoint

properly embedded arcs on S obtained by discarding a0 and “doubling” a3 and a4, ie
a0 D fa0

1
; a0

2
; a3; a4; : : : ; aNg, where a0

1
and a0

2
are parallel and sufficiently close to a3

and a4, respectively (see Figure 4). Then:

Proposition 3.3 Let .S; �/ be an open book decomposition , a be a collection of
pairwise disjoint properly embedded arcs on S that contains a basis , and a0 be obtained
from a via triangle elimination. Then o.S; �; a0/� o.S; �; a/.

In preparation for the proof of the above proposition, we assume that the monodromy �
moves the arcs a0, a3 and a4 to the right, since otherwise it would not move a0

1
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ˇ4

˛3

x4

x3

ı

�

v

Figure 5: Left: the local behavior of the ˇ–curves as shown in the S � f0g

half of the Heegaard diagram .†;ˇ 0;˛0/. Right: the arc configuration in the
desired nice Heegaard diagram with the arcs prohibited from forming bigons
indicated.

and a0
2

to the right either, resulting in both o.S; �; a/ and o.S; �; a0/ being zero as in
the proof of Theorem 2.3. We further assume that ˇ4 stays parallel to the boundary
of S immediately after turning right in the S � f0g half of the Heegaard diagram

A

B

A

B

A

B

C

A

B

C

Figure 6: Left: configuration of arcs when ˇ4 doesn’t stay parallel to the
boundary of S immediately after turning right in the S � f0g half of the
Heegaard diagram. Right: configuration of arcs after an isotopy to guarantee
that ˇ4 intersects ˛3 immediately after turning right. In both figures, brackets
indicate the ends of arcs that are identified.
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until it intersects ˛3 as in Figure 5, left. Otherwise (see Figure 6, left), isotope the
monodromy � so as to guarantee that this is the case (see Figure 6, right). Note that, by
Proposition 3.2, o is invariant under isotopies of the monodromy �. With the preceding
understood, we prove that we can work with a special kind of nice Heegaard diagram
after a sequence of isotopies of the monodromy.

Lemma 3.4 We may isotope the monodromy � so that the multipointed Heegaard
diagram .†;ˇ 0;˛0; z0/ corresponding to .S; �; a0/ is nice while making sure that the
intersection pattern as depicted in Figure 5, left , is preserved.

Proof As is argued in [52], we may apply the algorithm of Sarkar and Wang [54,
Section 4.1] to produce a nice Heegaard diagram by performing finger moves on
ˇ–curves only in the S � f0g half of the Heegaard surface †. This is because, in a
Heegaard diagram arising from an open book decomposition, there are regions with
basepoints on either side of every ˇ–curve. In order to preserve the intersection pattern
in Figure 5, left, we will show that these finger moves on ˇ–curves can be performed
in such a way that the arc ı along ˇ4 between the points x4 and v, shown in Figure 5,
right, remains unchanged, and, in the resulting nice Heegaard diagram, no ˇ–curve
forms a bigon with the arc � along ˛3 between the points x3 and v. It suffices to
perform these finger moves in the Heegaard diagram resulting from the arc collection
fa3; a4; : : : ; aNg, which still contains a basis, since adding a0

1
and a0

2
, parallel to a3

and a4, respectively, merely subdivides bigon and rectangle regions into smaller bigon
and rectangle regions. With the preceding understood, we produce a nice diagram
with the desired properties in the three steps that follow. Throughout, we change the
definition of the distance of a region used in the Sarkar–Wang algorithm to be the
minimum number of intersection points between the ˇ–curves and an arc connecting
the interior of that region to a region with basepoint, with the arc taken to be in the
complement of the ˛–curves and the arc ı.

Step 1 Note that, given a region, there is exactly one region with basepoint that can be
connected to the interior of that region via an arc in the complement of the ˛–curves
and the arc ı. Proceed as in the algorithm of Sarkar and Wang by first killing all nondisk
regions without performing a finger move starting at ı and then performing finger
moves as in the proof of [54, Lemma 4.1] to reduce the distance d complexity of the
Heegaard diagram to (0) starting from bad regions with the largest distance. By way of
reminder, the badness of a 2n–gon is defined in [54, Section 4.1] to be maxfn� 2; 0g,
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� �
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Figure 7: The domain D�, the adjacent region with basepoint D0, and the
arc � along ˇ3 which they both have on their boundaries.

and the distance d complexity of a multipointed Heegaard diagram is the tuple� mX
iD1

b.Di/;�b.D1/; : : : ;�b.Dm/

�
;

where D1; : : : ;Dm are all the distance d bad regions ordered in decreasing measure of
badness b.D1/� � � � � b.Dm/. Given a distance d bad region, a finger move used to
break up that region into regions of smaller badness as in the proof of [54, Lemma 4.1]
starts from an arc along a ˇ–curve that is common to that bad region and another
region of distance d � 1. As a result of our definition of the distance of a region, the
region without a basepoint that has the arc ı on its boundary is adjacent to a region
with distance one less along an arc along a ˇ–curve other than ı. Therefore, at no
point in the process do the finger moves needed to break up the former region into
rectangles and bigons start at ı. Continue performing finger moves as in the proof of
[54, Lemma 4.1] until the distance of the Heegaard diagram is reduced to 1; that is,
until all bad regions are of distance at most 1.

Step 2 Having completed Step 1, all bad regions now have distance at most 1. The
region with no basepoints and the arc � on its boundary has distance 1, and it is adjacent
to a region with basepoint D0 along ˇ3 (see Figure 7). Denote this region by D�. The
goal of this step is to break up every bad region except for D�, if it is a bad region
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at any point during the process, into rectangles and bigons, while avoiding crossing
the arc �. Perform finger moves as in the proof of [54, Lemma 4.1], ignoring D� in
the measure of distance 1 complexity of the Heegaard diagram and stopping all finger
moves once they enter D�. Doing so breaks up every bad region other than D� into
rectangles and bigons and preserves the intersection pattern in Figure 5, left. We can
do this because the Sarkar–Wang algorithm terminates after a finite number of finger
moves, and we can stop those finger moves that enter D� once they enter D�. This
modification of the algorithm does not increase the distance of any bad regions, and the
modified algorithm eventually breaks up every bad region other than D� into rectangles
and bigons at the expense of possibly increasing the badness of D�. The proof of the
lemma is complete if D� is not a bad region at the end of this step. Otherwise, we
proceed to Step 3 in order to break up D� into rectangles and bigons without changing
badness of any other region without a basepoint.

Step 3 Finally, we break up the only remaining bad region, namely, D�. We claim that
we can perform a sequence of finger moves as in the proof of [54, Lemma 4.1] so that,
in the resulting nice Heegaard diagram, no ˇ–curve forms a bigon with �. We prove
this claim by strong induction on the badness b.D�/ of the region D�. If b.D�/D 1 —
that is, if D� is a hexagon — then performing a finger move as in the proof of [54,
Lemma 4.1] starting at the arc � along ˇ3 with an end at x3 on the boundary of D�

breaks D� up into two rectangles. Moreover, since all other regions are either bigons
or rectangles, this finger has to push through a “tunnel” of rectangular regions, forcing
it to stay “parallel” to a ˇ–curve. Therefore, it won’t come back to D�, since otherwise
it would have to follow a full ˇ–curve, which in turn would force our finger to cross a
region with basepoint because there are regions with basepoint on either side of every
ˇ–curve. Next suppose that b.D�/ > 1 and perform a finger move as in the proof of
[54, Lemma 4.1] starting at � (see Figure 8, left). If the finger doesn’t come back to D�,
then it will end up in a bigon region or a region with basepoint, and D� will be broken
up into a region D�;1 with badness b.D�/� 1 and a rectangle D�;2. Note that both
D�;1 and D�;2 are adjacent to D0 along ˇ3, and that D�;1 has the arc � on its boundary
(see Figure 8, right). Then, by the induction hypothesis, the claim is true. Suppose
instead that the finger comes back to D�. Then, by the argument in [54, Subcase 4.2]
and the fact that there are regions with basepoint on either side of every ˇ–curve, there
exists another finger move starting at � that doesn’t come back to D�. This finger move
would break D� up into two regions, D�;1 and D�;2, both adjacent to D0 along ˇ3 and
D�;1 having the arc � on its boundary. Then we have b.D�;1/Cb.D�;2/D b.D�/�1
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Figure 8: Left: the dashed line indicates the finger move to break up D�.
Right: the regions D�;1 and D�;2 formed after the finger move.

and b.D�;2/� 1. Once again, in contrast to the Sarkar–Wang algorithm, which requires
ordering bad regions with increasing badness and then breaking up bad regions starting
with the regions having the least positive badness, we first break up the region D�;2

regardless of whether it is a bad region with the least positive badness. As we perform
finger moves to break up D�;2, as well as any subsequent new bad region that might
emerge in that process, we stop a finger move that enters D�;1 once it enters D�;1,
regardless of whether b.D�;1/ > 0 or not. In order to break up a bad region with
badness b into rectangles, we need to perform exactly b finger moves, assuming no
finger comes back to that region, and each finger pushed into a region would increase
its badness by 1. Therefore, the process of breaking up D�;2 into rectangles would
increase the badness of D�;1 by at most b.D�;2/. In the end, we have a Heegaard
diagram with a single bad region of distance 1 adjacent to D0 along � having the arc �
on its boundary. The badness of this region is at most b.D�;1/Cb.D�;2/D b.D�/�1.
Hence, by the induction hypothesis, our claim holds true, and a further sequence of
finger moves as described above yields the desired nice Heegaard diagram.

With the above lemma understood, isotope a0 and � so that ˛0 and ˇ0 intersect ˇ4

and ˛3, respectively, to form bigons as in Figure 9, left. Then the multipointed Heegaard
diagram .†;ˇ;˛; z/ corresponding to .S; �; a/ is also nice. This is because outside
the shaded areas in Figure 9, center and right, the multipointed Heegaard diagrams
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Figure 9: Left: the S � f0g half of the multipointed Heegaard diagram
.†;ˇ;˛; z/. Center and right: the shaded areas in which the regions in the two
multipointed Heegaard diagrams .†;ˇ;˛; z/ and .†;ˇ 0;˛0; z0/ essentially
differ.

.†;ˇ;˛; z/ and .†;ˇ 0;˛0; z0/, respectively, are isomorphic and, in the shaded area
in Figure 9, center, all regions without a basepoint in .†;ˇ;˛; z/ are bigons. Since
o is invariant under isotopy of �, we may assume without loss of generality that
the monodromy � is such that the multipointed Heegaard diagrams .†;ˇ;˛; z/ and
.†;ˇ 0;˛0; z0/ are both nice and have the intersection patterns depicted in Figures 5,
left, and 9, left. Note also that, in the multipointed Heegaard diagram .†;ˇ;˛; z/, no
˛–curve other than ˛0 forms a bigon with ı and no ˇ–curve other than ˇ0 forms a
bigon with �.

Proof of Proposition 3.3 To start, associate to each (N�1)–tuple of intersection points
y D fy0;y3;y4; : : : ;yNg defining a generator Ey of cCF.†;ˇ;˛/ a unique (N�1)–tuple
of intersection points y 0 in ˛0\ˇ 0 using the following recipe. For points belonging to y

that lie on ˛0 or ˇ0, associate a unique point in ˛0\ˇ 0 according to the following rules:

� If y0 2 ˛0\ˇ0 and y0 ¤ x0, then the associated point in ˛0\ˇ 0 lies in ˛0i \ˇ
0
j ,

where i; j 2f1; 2g (see Figure 10, left). If y0Dx0, we associate to it the point x0
1
.

� If y0 2 ˛0\ ǰ with j � 3, then the associated point in ˛0\ˇ 0 lies in ˛0i \ ǰ ,
where i 2 f1; 2g (see Figure 10, center).

� If yi 2 ˛i \ˇ0 with i � 3, then the associated point in ˛0 \ˇ 0 lies in ˛i \ˇ
0
j ,

where j 2 f1; 2g (see Figure 10, right).
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y

y0

y

y0

y

y0

Figure 10: Assigning to an intersection point in ˛\ˇ an intersection point in
˛0\ˇ 0. Straight arcs indicate ˛–curves, while wavy arcs indicate ˇ–curves.
Purple corresponds to ˛0 or ˇ0, black corresponds to ˛i or ǰ for i; j � 3,
and red corresponds to ˛0i or ˇ0j for i; j 2 f1; 2g.

In all other cases, the intersection points remain the same. Note that y 0 uses exactly
one of ˛0

1
or ˛0

2
, and exactly one of ˇ0

1
and ˇ0

2
. Depending on which pair of ˛0i and ˇ0j

that y 0 uses, we assign y the ordered pair py WD .i; j /. Then, unless py D .1; 2/, we
associate to y a unique N–tuple of intersection points Qy WD fy0

1
;y0

2
;y0

3
;y0

4
; : : : ;y0Ng

defining a generator EQy of the chain complex cCF.†;ˇ 0;˛0/ by adding to y 0

� the point x0
2

if py D .1; 1/,

� the point w 2 ˛0
1
\ˇ0

2
indicated in Figure 11 if py D .2; 1/,

� the point x0
1

if py D .2; 2/.

Note that this recipe associates to the distinguished (N�1)–tuple of intersection points
x� D fx0;x3;x4; : : : ;xNg the distinguished N–tuple of intersection points

x0� D fx
0
1;x
0
2;x3;x4; : : : ;xNg:

x02

x01

w

Figure 11: The intersection point w.
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These two sets of intersection points define the distinguished generators that represent
the Ozsváth–Szabó contact class in the homology of the chain complexes cCF.†;ˇ;˛/
and cCF.†;ˇ 0;˛0/, respectively.

Lemma 3.5 Let D 2 y�2. Ey
1; Ey2/ be a Maslov index-1 holomorphic domain. Then

py1 D py2 unless D is a bigon. Furthermore , if py1 D .1; 2/, then py2 D .1; 2/.

Proof Given y1 D fy1
0
;y1

3
;y1

4
; : : : ;y1

Ng defining a generator Ey1 of cCF.†;ˇ;˛/, the
first entry of the ordered pair py1 is determined by y1

0
, specifically by whether y1

0

is near ˛0
1

or ˛0
2
. Similarly, the second entry of py is determined by y1

i 2 ˛i \ ˇ0,
specifically by whether y1

i is near ˇ0
1

or ˇ0
2
. Let D 2 y�2. Ey

1; Ey2/ be a rectangular
Maslov index-1 domain and py1 D .i; j /. If D has neither an edge along ˛0 nor an
edge along ˇ0 on its boundary, then it follows at once from the definition of py that
py2 D .i; j /. If, on the other hand, D has an edge along ˛0 and/or an edge along ˇ0

on its boundary, but it does not overlap the shaded area in Figure 9, center, then D has
to have an edge parallel to ˛3 or to ˛4 depending on whether i D 1 or i D 2, and/or
an edge parallel to ˇ3 or ˇ4 depending on whether j D 1 or j D 2 on its boundary;
hence, py2 D .i; j /. Finally, if D has an edge along ˛0 and/or an edge along ˇ0

on its boundary, and it overlaps the shaded area in Figure 9, center, then it has an
edge along ˛0 or along ˇ0 running parallel to both ˛3 and ˛4 or to both ˇ3 and ˇ4,
respectively, on its boundary. Such a rectangular domain would have to have an edge
on its boundary along either another ˛k or another ˇk for some k � 3 running parallel
to both ˛3 and ˛4 or to both ˇ3 and ˇ4, as the case may be. This would force either
ı to form a bigon with ˛k or � to form a bigon with ˇk , since otherwise D would
contain the bigon region between ˛0 and ı or the bigon region between ˇ0 and �, and
a Maslov index-1 rectangular domain in a nice Heegaard diagram can only be tiled by
rectangular regions. But the nice Heegaard diagrams we produced in Lemma 3.4 do
not allow any ˛k to intersect ı or any ˇk to intersect � for k � 3. Therefore, such a
rectangular domain cannot exist. On the other hand, if D is a bigon and py1 ¤ py2 ,
then we have either py1 D .2; j / or py1 D .i; 1/ while py2 D .1; j / or py2 D .i; 2/,
respectively. (Think of the bigons formed between ˛0 and ı, and between ˇ0 and �, as
models.) It follows, in particular, that if py1 D .1; 2/, then py2 D .1; 2/.

Consequently, the submodule of cCF.†;ˇ;˛/ generated by Ey with py D .1; 2/ is a
subcomplex. We will denote this subcomplex by cCFı.†;ˇ;˛/ for future reference.
Next we investigate the holomorphic domains contributing to the differential of a
generator EQy1 of cCF.†;ˇ 0;˛0/ corresponding to a generator Ey1 of cCF.†;ˇ;˛/.
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y1

y2

D

Qy1

Qy2

D0

w

Figure 12: Constructing domains in .†;ˇ 0;˛0; z0/ from domains in .†;ˇ;˛; z/.
Starting with a domain in the multipointed Heegaard diagram .†;ˇ;˛; z/ as
on the left, add the darker shaded rectangular regions and subtract the lighter
shaded bigon region in the center to get the domain in the multipointed Heegaard
diagram .†;ˇ 0;˛0; z0/ shown on the right.

Lemma 3.6 Given a generator y1 of cCF.†;ˇ;˛/ and a generator EQy of cCF.†;ˇ 0;˛0/,
if py1¤ .1; 2/, then there exists a Maslov index-1 holomorphic domain D02 y�2. EQy

1; EQy/

only if Qy D Qy2 for some generator Ey2 of cCF.†;ˇ;˛/ with py2 ¤ .1; 2/.

Proof To see this, write Qy1 D fy0
1
1;y
01
2; ; : : : ;y

01
Ng and Qy D fy01;y

0
2; ; : : : ;y

0
Ng, and

recall that either y0
1
1 D x01, y0

1
1 D w or y0

1
2 D x02. If y0

1
1 D x01 or y0

1
2 D x02, then

y01 D x01 or y02 D x02, respectively, since there are no nontrivial Maslov index-1
holomorphic domains with a corner at x01 or x02. If y0

1
1 D w, then either y01 D x01,

y01 D w or y02 D x02 since a Maslov index-1 holomorphic domain with a corner at w
has to have a corner at x01 or x02. The latter is due to the fact that the multipointed
Heegaard diagram .†;ˇ 0;˛0; z0/ is nice, so all Maslov index-1 holomorphic domains
are empty embedded bigons or rectangles, and that starting at w and moving along
˛0

1
or ˇ0

2
there is nowhere else to turn a corner other than at x0

1
or at x0

2
. As a result,

Qy D Qy2 for some generator Ey2 of cCF.†;ˇ;˛/ with py2 ¤ .1; 2/.

Lemma 3.7 Given generators Ey1 and Ey2 of cCF.†;ˇ;˛/, if py1 ¤ .1; 2/ and py2 ¤

.1; 2/, then there is a canonical one-to-one correspondence between Maslov index-1
holomorphic domains in y�2. Ey

1; Ey2/ and Maslov index-1 holomorphic domains in
y�2. EQy

1; EQy2/.
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Proof Keep in mind that the Heegaard diagrams .†;ˇ;˛; z/ and .†;ˇ 0;˛0; z0/ are
both nice. In particular, a Maslov index-1 holomorphic domain has a unique holo-
morphic representative up to translation. If Ey1 and Ey2 are generators of cCF.†;ˇ;˛/
with py1 ¤ .1; 2/ and py2 ¤ .1; 2/, then a Maslov index-1 holomorphic domain
D 2 y�2. Ey

1; Ey2/ gives rise to a canonical Maslov index-1 holomorphic domain D0 2
y�2. EQy

1; EQy2/, and vice versa. If a domain D has neither ˛0 nor ˇ0 on its boundary, then
D0 D D. Otherwise, to construct D0 from D we add rectangular regions between ˛0

and ˛0
1
, ˛0 and ˛0

2
, ˇ0 and ˇ0

1
or ˇ0 and ˇ0

2
, while removing the bigon regions between

˛0 and ˇ0
2

or ˛0
1

and ˇ0 as needed (see Figure 12). The former operation is reversible
if D0 has ˛0

1
or ˛0

2
, and ˇ0

1
or ˇ0

2
on its boundary.

Lemma 3.8 If Ey1 and Ey2 are generators of cCF.†;ˇ;˛/ with py1 ¤ .1; 2/ and
py2 ¤ .1; 2/ and D 2 y�2. Ey

1; Ey2/ is a Maslov index-1 holomorphic domain , then the
corresponding Maslov index-1 holomorphic domain D0 2 y�2. EQy

1; EQy2/ has JC.D0/D
JC.D/.

Proof To see this, first note the following:

� If py D .1; 1/ or py D .2; 2/, then j Qy j D jy jC 1.

� If py D .2; 1/, then j Qy j D jy j.

As before, if D has neither ˛0 nor ˇ0 on its boundary, then D0 D D, and hence
JC.D0/D JC.D/. Now suppose that D has either ˛0 or ˇ0 on its boundary.

� If D is a rectangle, then py1Dpy2 (by Lemma 3.5) and D0 is a rectangle. Hence,
j Qy1j � j Qy2j D jy1j � jy2j and JC.D0/D JC.D/.

� If D is a bigon, then py1D .2; 1/ (otherwise py2D .1; 2/) and either py2D .1; 1/

or py2 D .2; 2/ (by Lemma 3.5), and D0 is a rectangle. Hence, j Qy1j � j Qy2j D

jy1j � jy2j � 1 and

JC.D0/D 2 � 1� 1Cj Qy1
j � j Qy2

j D 2 � 1
2
� 1Cjy1

j � jy2
j D JC.D/;

by (2-6).

By Lemma 3.5, the module cCFı.†;ˇ;˛/ generated by Ey with py D .1; 2/ is a
subcomplex of cCF.†;ˇ;˛/. Therefore, we may construct the quotient complexcCF.†;ˇ;˛/=cCFı.†;ˇ;˛/. Note that, since px� D .1; 1/, it is sent under the quotient
map q W cCF.†;ˇ;˛/! cCF.†;ˇ;˛/=cCFı.†;ˇ;˛/ to a nonzero class. The filtered
extension of the quotient, .cCF.†;ˇ;˛/=cCFı.†;ˇ;˛//˝F F Œt; t�1�, is canonically
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isomorphic as a filtered chain complex to the quotient cCF.S; �; a/=cCFı.S; �; a/. The
quotient map cCF.S; �; a/! cCF.S; �; a/=cCFı.S; �; a/
is a filtered chain map and it induces a morphism of associated spectral sequences.
Therefore, if we define oq.S; �; a/ to be the spectral order as determined by the
class q.x�/ and the spectral sequence associated to the filtered quotient chain complex
.cCF.†;ˇ;˛/=cCFı.†;ˇ;˛//˝F F Œt; t�1�, then o.S; �; a/� oq.S; �; a/. Meanwhile,
by Lemmas 3.6 and 3.7, there exists an injective map from cCF.†;ˇ;˛/=cCFı.†;ˇ;˛/
to cCF.†;ˇ 0;˛0/ sending Ex� to Ex0

�
, and hence an injective map of filtered chain com-

plexes from .cCF.†;ˇ;˛/=cCFı.†;ˇ;˛//˝FF Œt; t�1� into cCF.S; �; a0/ by Lemma 3.8,
which induces a morphism of associated spectral sequences. As a result, oq.S; �; a/�

o.S; �; a0/, finishing the proof of Proposition 3.3.

Definition 3.9 It follows from Proposition 3.3 that, for the purpose of defining the
contact invariant o, it suffices to work with arc collections that are bases with multiple
parallel copies of some arcs added, since one can always pass to such an arc collection,
which we will refer to as a multibasis, via triangle elimination without increasing the
value of o. In other words, we may define o.M; �/ to be the minimum of o.S; �; a/ over
all choices of open book decompositions .S; �/ of M supporting � and multibases a.

4 Properties of o

The first bullet point of Theorem 1.1, that is, o vanishes for overtwisted contact
structures, was proved at the end of Section 2. This section proves the remaining
properties of the contact invariant o summarized in Theorems 1.1, 1.2 and 1.3.

To start, we establish a few basic properties of o. To do so, we work in a slightly more
general context, where we consider arc collections that may not contain a basis. Let
.S; �/ be an open book decomposition. Given an arc collection a on S that does not
necessarily contain a basis, we can extend it to an arc collection Qa that contains a basis.
Then we fix a generic almost complex structure JHF for the multipointed Heegaard
diagram .†; ž; z̨; Qz/ associated to the arc collection Qa. We may regard cCF.†;ˇ;˛/
as a submodule of cCF.†; ž; z̨/ by identifying the generators of cCF.†;ˇ;˛/ with the
generators obtained from these via adding on the distinguished points lying in S�

˚
1
2

	
for

each of the arcs in QaXa. Due to the placement of the basepoints, there can be no pseudo-
holomorphic curves with negative punctures at the chords resulting from these points.
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Therefore, the differentials on cCF.†;ˇ;˛/ and on the submodule of cCF.†; ž; z̨/
that it is identified with coincide. As a result, we may consider cCF.†;ˇ;˛/ as a
subcomplex of cCF.†; ž; z̨/. With the preceding understood, the first basic property
of o is that it is nonincreasing under enlargement of arc collections.

Lemma 4.1 Suppose that a1 � a2 are two collections of pairwise disjoint properly
embedded arcs on S. Then there exists a generic almost complex structure JHF on
†� Œ0; 1��R and an inclusion of chain complexes

I W cCF.†;ˇ1;˛1/! cCF.†;ˇ2;˛2/; I W cCF.S; �; a1/! cCF.S; �; a2/

such that the contact generator is mapped to the contact generator by the first in-
clusion while the latter inclusion induces a morphism of spectral sequences from
E�.S; �; a1IJHF/ to E�.S; �; a2IJHF/; hence , o.S; �; a1IJHF/� o.S; �; a2IJHF/.

Proof It suffices to find a generic almost complex structure JHF on †� Œ0; 1��R such
that moduli spaces of JHF–holomorphic curves associated to the Heegaard diagram
.†;ˇ2;˛2/ are cut out transversally, because this immediately implies transversality
of moduli spaces of JHF–holomorphic curves associated to the Heegaard diagram
.†;ˇ1;˛1/. Having fixed such a generic almost complex structure, the inclusion
map I is defined on the set of generators of cCF.†;ˇ1;˛1/ by

I. Ey/D Ey 0;

where y 0 D y [fxaga2a2Xa1
and xa is the unique intersection point of a and b for an

arc a 2 a2 X a1. It follows that I.Ex1
�
/D Ex2

�
. Meanwhile, the JHF–holomorphic curves

that define the differential acting on elements of the subgroup I.cCF.†;ˇ1;˛1// are
the same as the JHF–holomorphic curves that define the differential on cCF.†;ˇ1;˛1/.
Therefore, I is a chain map and the induced inclusion map I is a filtered chain
map. The latter induces a morphism of spectral sequences from E�.S; �; a1IJHF/ to
E�.S; �; a2IJHF/; hence, o.S; �; a1IJHF/� o.S; �; a2IJHF/.

The next lemma claims that o remains the same under suitable enlargement of the pages
of an open book decomposition while keeping the arc collection untouched.

Lemma 4.2 Let a be a collection of pairwise disjoint properly embedded arcs on S

and S 0 be a compact oriented surface with boundary obtained from S by attaching
1–handles away from a neighborhood of @a. Let �0 W S 0 ! S 0 be an orientation-
preserving diffeomorphism whose restriction to a agrees with �. Then there are generic

Geometry & Topology, Volume 27 (2023)
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almost complex structures JHF and J 0HF to define the differentials on cCF.†;ˇ;˛/
and cCF.†0;ˇ;˛/, respectively, such that .cCF.S; �; a/; y@/ and .cCF.S 0; �0; a/; y@0/ are
isomorphic as filtered chain complexes. As a result , o.S; �; aIJHF/D o.S 0; �0; aIJ 0HF/.

Proof It follows from the description of the surface S 0 that a can also be seen as
a pairwise disjoint collection of properly embedded arcs on S 0. Moreover, there is a
canonical one-to-one correspondence between unordered tuples of intersection points
in the Heegaard diagrams .†;ˇ;˛/ and .†0;ˇ;˛/. Also note that †0 is obtained
from† by connect-summing with tori along regions in the Heegaard diagram .†;ˇ;˛/

with basepoints. Therefore, having fixed a generic almost complex structure JHF

on †� Œ0; 1��R, we can “extend” it to a generic almost complex structure J 0HF on
†0 � Œ0; 1� �R so that the holomorphic domains in the pointed Heegaard diagrams
.†;ˇ;˛; z/ and .†0;ˇ;˛; z/ agree, and the claim follows.

With the above understood, the proofs of Theorems 1.1, 1.2 and 1.3 require working
with a more tractable version of o:

Definition 4.3 Let .M; �/ be a closed contact 3–manifold. Fix an open book decom-
position B D .S; �/ of M supporting �. Then define

o.B/ WDmin
a
fo.S; �; a/g;

where the minimum is taken over all choices of multibasis a on S. Indeed,

o.M; �/Dmin
B
fo.B/g:

The quantity o yields an invariant of open book decompositions. We would like to
understand its behavior under positive stabilization. Recall that a positive stabilization
of an open book decomposition .S; �/ is an open book decomposition .S 0; �0/, where
S 0 is obtained from S by attaching a 1–handle H and �0 differs from � by a right-
handed Dehn twist around a simple closed curve c � S 0 that intersects the cocore
of H in exactly one point; in other words, �0 D � ı �c . As we will show next, o is
nonincreasing under positive stabilization. To prove this, we need the flexibility to
move from one arc collection to another without increasing the value of o. Recall that
one can pass from one basis on S to another via a sequence of arc slides. Given a
basis fa1; a2; : : : ; aGg on S where a1 and a2 are adjacent — namely, there is an arc
� � @S with endpoints on a1 and a2 that intersects no other ai — define a1C a2 to
be a properly embedded arc in S isotopic rel @.a1 [ a2/ X @� to a1 [ � [ a2 and
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disjoint from all other ai . Then passing from fa1; a2; : : : ; aGg to fa1Ca2; a2; : : : ; aGg

is called an arc slide. Somewhat similarly, given a multibasis on S, one can pass to
a multibasis containing an arbitrary arc basis on S via a sequence of multiarc slides.
Given a multibasis a containing a basis fa1; a2; : : : ; aGg on S where a1 and a2 are
adjacent and a contains m parallel copies of the arc a1, a multiarc slide removes all
parallel copies of the arc a1 and adds mC 1 parallel copies of the arc a1C a2 as well
as m additional parallel copies of the arc a2. This modification is equivalent to adding
a copy of the arc a1C a2 and then removing each parallel copy of the arc a1 one by
one via triangle elimination, resulting in a new multibasis a0. Note that a multiarc slide
with mD 1 is not an arc slide.

Lemma 4.4 Let a be a multibasis on S and a0 be obtained from a by a multiarc slide.
Then o.S; �; a0/� o.S; �; a/.

Proof This follows readily from Lemma 4.1 and Proposition 3.3.

Corollary 4.5 Let B WD .S; �/ be an open book decomposition and B0 WD .S 0; �0/ be
a positive stabilization of B. Then o.B0/� o.B/.

Proof Let a be a multibasis such that o.B/D o.S; �; a/. By a sequence of multiarc
slides, pass to a multibasis a0 on S that is disjoint from c. Then o.S; �; a0/D o.S; �; a/

by Lemma 4.4, since o.B/D o.S; �; a/, and o.S 0; �0; a0/D o.S; �; a0/ by Lemma 4.2,
since a0 is disjoint from c. As a result,

o.B0/� o.S 0; �0; a0/D o.S; �; a0/D o.S; �; a/D o.B/:

Corollary 4.6 Let B WD .S; �/ be an open book decomposition of M supporting �.
Then we can apply a sequence of stabilizations to get to an open book decomposition
B0 that realizes o.M; �/.

Proof This follows from Giroux correspondence together with Corollary 4.5.

We move on to analyze the behavior of o under Legendrian surgery.

Proposition 4.7 Let .S; �/ be an open book decomposition and a be any collection
of pairwise disjoint properly embedded arcs on S that contains a basis. Suppose c is
a homologically essential simple closed curve on S which meets each arc in �.a/ at
most once. Then o.S; �c ı�; a/� o.S; �; a/.
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@S

b0i bi ai

xi

x0i
�i

@S

Figure 13: Part of the restriction of the multipointed Heegaard triple diagram
.†;ˇ;;˛; z/ to S �

˚
1
2

	
�†.

Proof To start, use .S; �; a/ and the curve c to form a multipointed triple Heegaard
diagram .†;ˇ;;˛; z/, where  D f1; : : : ; Ng with i D b0i �

˚
1
2

	
[ �c ı�.b

0
i/�f0g

such that b0i is obtained from bi by slightly pushing along @S in the direction of the
boundary orientation as in Figure 13.

Notice that .†;ˇ;˛; z/ is the multipointed Heegaard diagram associated to .S; �; a/
and .†;;˛; z/ is the multipointed Heegaard diagram associated to .S; �c ı �; a/.
Meanwhile, the multipointed Heegaard diagram .†;ˇ;/ describes a connected sum
of some number of copies of the manifold S1 � S2. Note also that the open book
decomposition .S; �c/ together with the collection of arcs fb1; : : : ; bNg specifies the
Heegaard diagram .†;ˇ;/, as in [23]. The chain complex cCF.†;ˇ;/ has trivial

�i �j

yj

c

yi

�i �j

Figure 14: A local picture of the �S �f0g �† part of the Heegaard diagram
.†;ˇ;/ near the surgery curve and all intersecting arcs. The shaded domains
representing pseudoholomorphic curves with negative punctures at E� have
the same JC value. The brackets indicate that the ends of the shaded region
connect to one another.
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differential and the generator E� indicated in Figure 13 is the topmost generator. In
fact, the JC–filtered differential on cCF.†;ˇ;/ is identically zero since all homology
classes in y�2. E�; � / have the same JC value (see Figure 14).

The placement of the basepoints guarantees, once again, that the multipointed triple
Heegaard diagram .†;ˇ;;˛; z/ is admissible. Therefore, there is a chain map

(4-1) Ofˇ;;˛ W
cCF.†;ˇ;/˝F cCF.†;;˛/! cCF.†;ˇ;˛/

induced by the cobordism described by the triple Heegaard diagram .†;ˇ;;˛/. Since
the differential on cCF.†;ˇ;/ is identically zero, F � E� ˝F cCF.†;;˛; s�0/ is a
subcomplex of cCF.†;ˇ;/˝F cCF.†;;˛/. Restricting (4-1) to this subcomplex, we
obtain a chain map

Ofˇ;;˛. E�˝ � / W cCF.†;;˛; s�0/! cCF.†;ˇ;˛; s�/:

Therefore, having decomposed the above chain map as

Ofˇ;;˛. E�˝ � /D f
0
Cf 1

C � � �Cf l
C � � � ;

where f l counts embedded Fredholm index-0 pseudoholomorphic curves with JCD 2l ,
we have

(4-2)
X

iCjDl

.f i
ı @

0

j � @i ıf
j /D 0

just as in Section 3. The identity (4-2) implies that there is a filtered chain map from
.cCF.S; �c ı�; a/; y@

0/ to .cCF.S; �; a/; y@/ and hence a morphism of spectral sequences
from E�.S; �c ı �; aIJ

0
HF/ to E�.S; �; aIJHF/. In addition, Ofˇ;;˛. E� ˝ Ex

0
�
/ D Ex�

since the shaded triangle in Figure 13 is the only holomorphic domain that con-
tributes to this chain map due to the placement of the basepoints, and it is represented
by a unique pseudoholomorphic curve by the Riemann mapping theorem. Hence,
o.S; �c ı�; aIJ

0
HF/� o.S; �; aIJHF/, as desired.

Corollary 4.8 Let B WD .S; �/ be an open book decomposition and suppose B0 WD
.S; �0/ is obtained from B by Legendrian surgery, ie �0 D �cn

ı � � � ı �c1
ı�. Then

(4-3) o.B/� o.B0/:

As a consequence , if B WD .S; �/ is an open book decomposition where � can be
written as a product of positive Dehn twists , then o.B/D1.

Proof We will apply Proposition 4.7 one Dehn twist at a time, noting that, for each
Dehn twist curve ci , we can find a multibasis a on S so that ci intersects each arc in
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the image of a under the monodromy at most once. With the preceding understood,
for each i 2 f0; 1; : : : ; ng denote by Bi the open book decomposition .S; �i/, where
�0 D � and �i D �ci

ı � � � ı �c1
ı � for i 2 f1; : : : ; ng. For each i 2 f1; : : : ; ng, fix a

multibasis ai on S such that o.Bi/D o.S; �i ; ai/. Performing a sequence of multiarc
slides, pass to a multibasis a0i on S such that ci intersects each arc in �i�1.a

0
i/ at

most once. It follows from Lemma 4.4 and Proposition 4.7 that

o.Bi�1/� o.S; �i�1; a
0
i/� o.S; �i ; a

0
i/D o.Bi/:

Concatenating these inequalities for i 2f1; : : : ; ngwhile noting that B0DB and BnDB0,
we achieve the first claim of the corollary.

The last claim of the corollary follows immediately from (4-3) once we note that
o.S; idS /D1. The latter is because the JC–filtered differential in the corresponding
Heegaard Floer chain complex is zero.

With all the results needed in place, we are ready to prove Theorem 1.2, and the second
bullet point of Theorem 1.1.

Proof of Theorem 1.2 First note that, if .M 0; � 0/ is obtained from .M; �/ by attaching
a Weinstein 1–handle, then an open book decomposition supporting � 0 can be built
from an open book decomposition .S; �/ supporting � by attaching a 1–handle to S

and extending the monodromy � as the identity over this handle. It is easy to see that
the latter operation does not change the value of o, which then leads to the conclusion
that o.M 0; � 0/D o.M; �/.

Next, for the case of a Weinstein 2–handle, let .M 0; � 0/ be obtained from .M; �/ by
Legendrian surgery on a single curve c in .M; �/. Let c0 be the Legendrian curve
in .M 0; � 0/ that is the core of the surgery solid torus, which has the property that
contact C1–surgery on it yields .M; �/. The Legendrian c0 lies on a page of an open
book decomposition of M 0 supporting � 0, which by Corollary 4.6 one can positively
stabilize a number of times to get to an open book decomposition B0 which realizes
o.M 0; � 0/; namely, o.B0/ D o.M 0; � 0/. Now let B be the open book decomposition
of M supporting � that is obtained by contact C1–surgery on c0. By Corollary 4.8,

o.M; �/� o.B/� o.B0/D o.M 0; � 0/:

Corollary 4.9 Let .M; �/ be Stein-fillable. Then o.M; �/D1.
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Proof A Stein-fillable contact 3–manifold admits a supporting open book decom-
position .S; �/, where � is a product of positive Dehn twists. To be more explicit,
a Stein-fillable contact 3–manifold can be obtained via Legendrian surgery on some
connected sum #N S1�S2 equipped with its standard contact structure �std (see [18]).
Therefore, by Theorem 1.2, it suffices to prove that o

�
#N S1 �S2; �std

�
D1. To see

this, let B be an open book decomposition of #N S1 � S2 supporting �std which
realizes o

�
#N S1 � S2; �std

�
; in other words, o.B/ D o

�
#N S1 � S2; �std

�
. As�

#N S1 �S2; �std
�

is supported by an open book with trivial monodromy, a common
stabilization, B0, of that and B will have a monodromy which can be written as a product
of positive Dehn twists and will also realize the minimal o. To see this, note that, by
the second claim in Corollary 4.8, we have o.B0/D1. By Corollary 4.5, we also have
o.B0/� o.B/D o

�
#N S1 �S2; �std

�
. Therefore, o

�
#N S1 �S2; �std

�
D1.

Next we prove the third bullet point of Theorem 1.1:

Theorem 4.10 Given an open book decomposition B D .S; �/ of M supporting � ,
and a basis a on S , there exists a multibasis am on S containing a such that

o.S; �; am/D o.M; �/:

Proof By Corollary 4.6, we can positively stabilize B to pass to an open book de-
composition B0 D .S 0; �0/ with o.B0/D o.M; �/, where S 0 is built from S by adding
1–handles and �0 D �cn

ı � � � ı �c1
ı �. Extending � to S 0 as the identity on all the

1–handles, we form the open book decomposition zB D .S 0; �/. Since �0 is obtained
from � by adding positive Dehn twists, o.zB/� o.B0/ by Corollary 4.8.

Now fix a multibasis a0 on S 0 such that

o.S 0; �0; a0/D o.B0/D o.M; �/:

Let a1; : : : ; an denote the cocores of the 1–handles added to S so as to build S 0 and
perform a sequence of multiarc slides so as to pass to a multibasis a00 that contains
the arcs a1; : : : ; an and satisfies o.S 0; �; a00/ D o.zB/. We also have o.S 0; �0; a0/ D

o.S 0; �0; a00/ by Lemma 4.4. Let aı D a00 \S and note that aı is a multibasis on S .
Furthermore, � acts trivially on all arcs in a00 X aı. Looking at the Heegaard diagram
resulting from .S 0; �; a00/, the ˛– and ˇ–curves corresponding to arcs in S 0XS intersect
each other exactly twice, forming two canceling bigons and thus contributing zero
to y@HF. Furthermore, ˛i and ˇi intersect no other ˛–curves or ˇ–curves. Thus,cCF.S 0; �; a00/� cCF.S 0; �; aı/˝F .F.0/˚F.1//

˝n;
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where F.0/˚F.1/ is a graded module over F with vanishing differential and n is the
number of arcs in a00 X aı. In particular,

o.S 0; �; a00/D o.S 0; �; aı/:

By Lemma 4.2, we have o.S; �; aı/D o.S 0; �; aı/. Consequently,

o.S; �; aı/D o.S 0; �; aı/D o.S 0; �; a00/� o.S 0; �0; a00/D o.S 0; �0; a0/D o.M; �/:

Since, by definition, o.S; �; aı/ � o.M; �/, we have o.S; �; aı/D o.M; �/. Finally,
given a basis a on S , perform a sequence of multiarc slides to pass from aı to a
multibasis am on S containing a. Then, by Lemma 4.4,

o.S; �; am/D o.S; �; aı/D o.M; �/:

Remark Given an open book decomposition .S; �/ and a multibasis a on S , we can
positively stabilize .S; �/ to pass to a new open book decomposition where a becomes
a basis. Then it follows from Corollary 4.6 and Theorem 4.10 that o.M; �/D o.S; �; a/

for some open book decomposition .S; �/ supporting the contact structure � and a
basis a on S .

Another application of the Legendrian surgery statement in Theorem 1.2 is Theorem 1.3,
namely that the spectral order of a contact connected sum is the minimum of the orders
of the summands:

Proof of Theorem 1.3 Let B1 D .S1; �1/ and B2 D .S2; �2/ be open book de-
compositions which realize o.M1; �1/ and o.M2; �2/, respectively. Fix multibases
a1 and a2 on S1 and S2, respectively, such that o.Bi/ D o.Si ; �i ; ai/ for i D 1; 2.
Then both cCF.S1; �1; a1/ and cCF.S2; �2; a2/ can be seen as filtered subcomplexes ofcCF.S#; �#; a#/, where B1 #B2 D .S#; �#/ is the boundary connected sum open book
decomposition with �# D �2 ı �1, where we extend each by the identity across the
complementary subsurface and a# D a1 t a2. Hence, by Lemmas 4.1 and 4.2,

o.M1 # M2; �1 # �2/� o.B1 #B2/� o.Bi/D o.Mi ; �i/

for both i D 1 and i D 2, and o.M1 # M2; �1 # �2/�minfo.M1; �1/; o.M2; �2/g.

For the reverse inequality, let B D .S; �/ be a stabilization of B1 # B2 realizing
o.M1 # M2; �1 # �2/. Ignore the extra positive Dehn twists on B which arise from its
description as a positive stabilization of B1#B2. The resulting open book decomposition
B0 D .S; �0/ describes the 3–manifold M1 # M2 # #k S1�S2 for some k, the page S

contains S1 \ S2 as a subsurface due to B being a positive stabilization of B1 # B2,
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and the monodromy �0 extends �# as the identity to the rest of S . In particular, B is
obtained from B0 by Legendrian surgery along curves contained in a page of B; hence,

o.M1 # M2; �1 # �2/D o.B/� o.B0/;
by Theorem 1.2.

Fix a multibasis a0 on S such that o.B0/D o.S; �0; a0/. After a sequence of multiarc
slides, we can pass to a multibasis Qa on S which contains a1 t a2. By Lemma 4.4
o.B0/D o.S; �0; Qa/, and we havecCF.S; �0; Qa/Š cCF.S1; �1; a1/˝F cCF.S2; �2; a2/˝F .F.0/˚F.1//

˝l

as filtered chain complexes, where F.0/˚F.1/ is a graded module over F with vanishing
differential and l is some nonnegative integer. As a result, o.B0/ D o.S; �0; Qa/ D

minfo.S1; �1; a1/; o.S2; �2; a2/g. On the other hand, since o.S1; �1; a1/D o.B1/D

o.M1; �1/ and o.S2; �2; a2/D o.B2/D o.M2; �2/, by the above inequality we have

minfo.M1; �1/; o.M2; �2/g � o.M1 # M2; �1 # �2/:

Corollary 4.11 For any surface S with boundary, the set of monodromies yielding
open book decompositions supporting contact 3–manifolds .M; �/ with o.M; �/� k

forms a monoid in the mapping class group Mod.S; @S/.

We use ok.S/ to denote this monoid.

Proof By [1], for any two mapping classes �1 and �2, there is a Stein cobordism
starting at the disconnected contact manifold .M�1

; ��1
/t .M�2

; ��2
/ and ending at

.M�2ı�1
; ��2ı�1

/. By Theorems 1.2 and 1.3, this implies that

o.M�2ı�1
; ��2ı�1

/� o..M�1
; ��1

/t .M�2
; ��2

//

Dminfo.M�1
; ��1

/; o.M�2
; ��2

/g:

5 Obstructing Stein-fillability

In this section, we use spectral order to obstruct Stein-fillability by demonstrating a
family of contact 3–manifolds with nonzero Ozsváth–Szabó contact class but with
zero spectral order. In Section 5.1, we give a warm-up example of this application
on a contact manifold which had previously been shown to be nonfillable in [39; 9].
In Section 5.2, we generalize this method to a previously unstudied family of contact
3–manifolds thereby proving Theorem 1.4. Finally, in Section 5.3, we compare this
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a b

c

a

b

a1

a3

a2

c

Figure 15: Left: the open book decomposition .S; �/ supporting the contact 3–
manifold .Y; �/, where � D �a�b�c

�1. Right: the basis of arcs aD fa1; a2; a3g

on S , where the two middle circles intersecting a3 decorated with “plus” are
identified.

method to other techniques in the literature for obstructing symplectic-fillability (in its
various forms) in the context of these examples.

5.1 A warm-up

We start with a warm-up example .Y; �/, which is the base case of a family of contact
3–manifolds used by Conway in [9, Section 4]. The contact structure � is supported by
the open book decomposition .S; �/, where S is a compact oriented genus-1 surface
with two boundary components and � D �a�b�c

�1, the product of positive Dehn twists
around the curves a and b and a negative Dehn twist around the curve c indicated
in Figure 15, left. This is an open book decomposition for inadmissible transverse
2–surgery on the binding of an open book decomposition .S1;1; idS1;1

/, where the
page S1;1 has genus 1 and one boundary component. The contact structure � has
nonzero Ozsváth–Szabó contact class by [19, Corollary 4], as indicated by Conway.

Theorem 5.1 o.Y; �/D 0. Hence , .Y; �/ is not Stein-fillable.

Proof To show that o.Y; �/ D 0, we need to find a multibasis a on S such that
o.S; �; a/D 0; more explicitly, we will find a generator Ey of the resulting Heegaard
Floer chain complex such that @0 Ey D Ex� . As we will show, it suffices to work with the
basis of arcs fa1; a2; a3g depicted in Figure 15, right. The effect of the monodromy on
this basis of arcs is shown in Figure 16. In what follows, a region without a basepoint
will be denoted by Ri if it is numbered i in Figure 16.
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Figure 16: The effect of the monodromy applied to the basis of arcs. The
resulting regions without basepoint are numbered 1; : : : ; 21.

We claim that the generator Ey determined by the tuple of intersection points y D

.x1;y2;y3/ satisfies @0 Ey D Ex� (see Figure 17). To show this, we need to know in
general what kind of Maslov index-1 domains have JC D 0.

Lemma 5.2 Let D be a domain from y to x. If D has Maslov index 1 and JC.D/D 0,
then it is an immersed 2k–gon with only acute corners and no corners in its interior.
Moreover , if D is any immersed 2k–gon with only acute corners and no corners in
its interior , then it has Maslov index 1 and , furthermore , JC.D/ D 0 if and only if
jy j � jxj D 1� k.
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x1

x3

y3

y2

z

x2

Figure 17: The domain D0 (shaded).

Proof Let D be a Maslov index-1 domain with JC D 0, and suppose that y and x

differ on k ˛–curves; hence, D has 2k corners. By (2-6), we have

0DJC.D/D2.ny.D/Cnx.D//�1Cjy j�jxj�2� 2
4
k�1Cjy j�jxjDk�1Cjy j�jxj:

In other words, jxj � jy jC k � 1. Conversely, let �y and �x denote the permutations
associated to y and x, respectively, and denote by � the composition �x�y

�1. Since
y and x differ on k ˛–curves, the smallest number of transpositions that � can be
written as a composition of is bounded from above by k � 1, which is realized if and
only if � is a k–cycle. Next write � as the composition of disjoint cycles. Note that
composing a permutation with a transposition either merges two disjoint cycles, which
reduces the number of disjoint cycles by 1, or breaks up a cycle into two disjoint cycles,
which increases the number of disjoint cycles by 1. Therefore, �x D ��y can have at
most k � 1 more disjoint cycles than �y has:

jxj � jy jC k � 1:
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As a result, jxj D jy jC k � 1 and, in particular, � is a k–cycle. We deduce from (2-6)
that

ny.D/C nx.D/D 1
2
k;

implying that D has point measure 1
4

at each corner and that D has connected boundary
since � is a k–cycle. Finally, by (2-3), we have e.D/ D 1� 1

2
k, which is the Euler

measure of a 2k–gon with only acute corners, none of which is in the interior of D.

For the second claim, note that, if D is a 2k–gon from y to x with each corner having
point measure 1

4
, then it has Euler measure 1 � 1

2
k and Maslov index 1 by (2-3).

Therefore,
JC.D/D k � 1C 1� k D 0:

With regard to the second part of Lemma 5.2, note that, if x D x� and D is a 2k–gon
from y to x� , then jy j � jx� j D 1� k.

A positive Maslov index-1 JC D 0 domain D0 from y to x� is shaded in Figure 17.
As a formal sum of regions without basepoints in the Heegaard diagram, it is given by

D0 DR3CR4CR5CR7CR8CR9CR17CR18CR19:

This domain is an embedded rectangle. Therefore, it has a unique holomorphic repre-
sentative for a generic split almost complex structure by the Riemann mapping theorem.
In fact, this is the only domain that represents a positive class in y�2. Ey ; Ex�/. This is
because any other domain from y to x� has to differ from D0 by a periodic domain
representing a periodic class in y�2. Ey ; Ey/. The latter is isomorphic to H2.Y IZ/, which
is a free abelian group of rank 2. A basis for y�2. Ey ; Ey/ is given by the periodic domains

P1 DR1CR4CR5�R6�R7�R10�R11�R14�R15CR18CR19CR21;

P2 DR2�R5CR6�R9CR11CR13C2R14CR15CR16�R17�R18�2R19

�R20�R21:

If D0C aP1C bP2 is a positive domain from y to x� , then, in particular,

0C a� 0; 0C b � 0; 0� a� 0; 0� b � 0

via the multiplicities of the regions R1, R2, R10 and R20, respectively. As a result,
aD 0D b.

Next we argue that there are no other positive Maslov index-1 JCD 0 domains from y .
To see this, let D be such a domain from y to some v defining a generator of the
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2224 Çağatay Kutluhan, Gordana Matić, Jeremy Van Horn-Morris and Andy Wand

Heegaard Floer chain complex, and move along the boundary of D in its boundary
orientation. Note firstly that, due to the placement of the basepoint, D cannot have a
corner at x1. Therefore, D must be an immersed rectangle as none of the regions are
bigons. As a result, v D .x1; v2; v3/ for some vi 2 ˛i \ˇi for i D 2; 3. Note further
that the region R12 adjacent to y3 is an immersed 8–gon. Being a positive Maslov
index-1 JC D 0 domain with four corners, D must have Euler measure e.D/ D 0.
As Euler measure is additive under unions and D is a positive domain, D cannot
contain the region R12, which has Euler measure �1. Hence, D contains only the
region R19 among the four regions adjacent to y3. Now v3 ¤ x3, since otherwise
D D D0. Moreover, as D does not contain the region R0 with basepoint, it contains
R19 with multiplicity 1 and does not contain the region R18. This forces D to be
contained in the formal sum

R5CR9CR19;

as D cannot contain the 6–gon regions R1 and R10, which have Euler measure �1
2

.
But then, D cannot have a corner at y2, which is a contradiction.

Consequently, we have @0 Ey D Ex� which implies that o.Y; �/D o.S; �; a/D 0 as the
spectral order is defined to be the minimum over all choices of open book decomposi-
tions .S; �/ supporting � and multibases a on S . Consequently, by the second bullet
point of Theorem 1.1, .Y; �/ is not Stein-fillable.

Remark In fact, y@HF Ey D @0 Ey C @1 Ey D Ex� C Ew where Ew is determined by the tuple
of intersection points wD .x1; w2; w3/ (see Figure 18). The domain D1 from y to w
shown in Figure 18 is an embedded genus-1 surface with one boundary component
and JC.D1/D 2 given by the formal sum

D1 DR11CR12CR13CR14:

Arguing similarly to before, we see that, if D1CaP1CbP2 is another positive domain
from y to w, then, in particular,

0C a� 0; 0C b � 0; 0� a� 0; 0� b � 0

via the multiplicities of the regions R1, R2, R7 and R9, respectively. As a result,
aD 0D b. Furthermore, a slightly more general version of the argument above proves
that there are no other positive Maslov index-1 domains from y . In particular, the
domain D1 has a unique (up to a signed count) holomorphic representative, since
otherwise y@HF Ey D Ex� , contradicting the nonvanishing of the Ozsváth–Szabó contact
class.
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x1

x3

y3w3

w2

y2

z

x2

Figure 18: The domain D1 (shaded). Keep in mind that the middle two
circles are identified.

5.2 A family of examples

In this section, we investigate an infinite family of contact 3–manifolds f.Yp; �p/gp2Z>0
.

For each p 2Z�0, the contact structure �p is supported by the open book decomposition
.S2;2; �p/, where S2;2 is a compact oriented genus-2 surface with two boundary compo-
nents and �p D �

3
a �b�c

�1�d
p , the product of positive Dehn twists around the curves a

and b, a negative Dehn twist around the curve c, and p positive Dehn twists around the
curve d indicated in Figure 19, left. The manifolds Yp are obtained by�1=p–surgery on
a horizontal curve in the circle bundle, Y0, with Euler numberC4 over a closed oriented
surface of genus 2. Therefore, these manifolds are toroidal and have nontrivial JSJ
decompositions. In the case pD 0, Honda [20] gave a complete a classification of tight
contact structures (see also Giroux [16]). The contact structure �0 is the unique virtually
overtwisted contact structure on Y0, and its nonfillability was established by Lisca and
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a

d
c

b

d

a1 a2 a3 a4
c

a b

Figure 19: Left: a page of the open book decomposition .S2;2; �p/ supporting
the contact structure �p , where �p D �

3
a �b�c

�1�d
p . Right: the same surface,

where the two circles decorated with “plus” are identified, as are the two
circles decorated with “cross”.

Stipsicz [39] (see Section 5.3 below for a detailed discussion). The contact structure �p
for p � 0 can be constructed by first applying inadmissible transverse surgery (with
framingC4) on the genus-2 Borromean knot K in L.p;p�1/##3 S1�S2, which is the
binding of an open book decomposition that supports the unique tight contact structure
on this manifold, then resolving the resulting rational open book decomposition into
an integral one following Conway [9]. As with the genus-1 example in Section 5.1, the
contact structures �p have nonzero Ozsváth–Szabó contact class by [19, Corollary 4].

Theorem 5.3 o.Yp; �p/D 0 for p � 1. Hence , .Yp; �p/ is not Stein-fillable for p � 1.

To put the above theorem in context, our examples fit somewhere in between the circle
bundle example of Lisca and Stipsicz and positive-integer surgeries on the .2; 5/–torus
knot. In the former case, the monodromy is trivial away from the pair of pants at the
boundary. In the latter, the monodromy has four positive Dehn twists: those that fit
along the standard length-four chain. These two examples — Lisca and Stipsicz’s and
positive-integer surgeries on the .2; 5/–torus knot — behave differently as one increases
the surgery coefficient. Increasing the surgery coefficient on K by 1 corresponds
to adding a single positive Dehn twist along the curve a to the monodromy. The
Lisca–Stipsicz examples remain nonfillable for all higher-integer surgeries, whereas
C9–surgery on the .2; 5/–torus knot yields a tight contact structure on a lens space;
hence, it is Stein-fillable. All higher-integer surgeries on the .2; 5/–torus knot then

Geometry & Topology, Volume 27 (2023)



Filtering the Heegaard Floer contact invariant 2227

x1

x4x2
x3 x1

x3x2
x4

y1

y2

y3
y4

Figure 20: The effect of the monodromy applied to the arcs a1, a2, a3 and a4

(dotted) on S2;2. Also shown is the domain D (shaded) with darker shading
indicating 1 higher multiplicity.

remain Stein-fillable. Our initial calculations for C4–surgery on the .2; 5/–torus knot
suggest that in this case o D 1. For the examples �p when p > 0, we expect o to
remain finite (though possibly nonzero) for all integer surgeries higher than C4, and
therefore that all resulting contact structures remain non-Stein-fillable. It would be
interesting to know whether these contact structures are weakly or strongly fillable.

Proof of Theorem 5.3 A basis of arcs on S2;2 consists of five pairwise disjoint properly
embedded arcs. In what follows, we work with a collection of four pairwise disjoint
properly embedded arcs a D fa1; a2; a3; a4g to show that o.Yp; �p/ D 0. Adding
extra arcs would not change the result in light of Lemma 4.1. These arcs are shown
in Figure 19, right, while their respective images under the monodromy are shown
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B1

B2

B3 B4

A1

A2

A3

A4

x1

x4x2
x3 x1

x3x2
x4

y1

y2

y3
y4

Figure 21: The regions Ai and Bi for i D 1; : : : ; 4 and the region Z with basepoint.

in Figure 20. Also shown in the latter figure is a positive Maslov index-1, JC D 0

domain D from y D .y1;y2;y3;y4/ to x�p D .x1;x2;x3;x4/, which is an immersed
octagon and therefore has a unique holomorphic representative for a generic split almost
complex structure. Our goal is to show that D is the only positive Maslov index-1,
JC D 0 domain from y .

Suppose that D0 is a positive Maslov index-1, JC D 0 domain from y to some wD
.w1; w2; w3; w4/. We will show that D0=D. To begin, for each yi , label the region with
corner at yi having nonzero coefficient in D as Ai , and let Bi denote the region whose
intersection with Ai in a neighborhood of yi consists only of the point yi (see Figure 21).
We label one of the regions with basepoint as Z and denote the multiplicity of a region R

in D0 by jRj. Since JC.D0/D 0, D0 has only acute corners and a connected boundary
by Lemma 5.2; hence, if yi is a corner of D0, then fjAi j; jBi jg D f0; 1g. Note also
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that, as B3 is an annulus with eight acute corners, it has Euler measure �2. Therefore,
jB3j D 0, since e.D0/� �1 and Euler measure is additive.

Next suppose that y4 is a corner of D0 and that jA4j D 1. Following ˇ3 along the
boundary of D0 starting from y4, we deduce that, in order to avoid Z, we must have
w3 D x3, which forces y3 to be a corner of D0 and jA3j D 1. Similarly, for i D 2 and
i D 3, if yi is a corner of D0 and jAi j D 1, we may follow along ˇi�1 to conclude
that, so as to avoid Z, we must have wi�1 D xi�1; hence, yi�1 is a corner of D0 and
jAi�1j D 1. Finally, if y1 is a corner of D0 and jA1j D 1, following ˇ4 along the
boundary of D0, we conclude that, so as to avoid B3, we must have w4 2 ˇ4 \ ˛4;
therefore, y4 should be a corner of D0 and jA4j D 1. In conclusion, if jAi j ¤ 0 for any
i D 1; : : : ; 4, then jAi j ¤ 0 and wi D xi for all i D 1; : : : ; 4. Checking the coefficients
this forces in the remaining regions, we conclude that the only such domain is D itself.

It remains to consider the case that jAi j D 0 for all i D 1; : : : ; 4. As noted above,
jB3j D 0, from which we conclude that y3 is not a corner of D0; hence, @D0 contains
no segment of ˛3 or ˇ2. Supposing then that y2 is a corner of D0 with jB2j D 1, we
may follow ˛2 along the boundary of D0 to see that, in order to avoid B3, w2 should
be the corner of B2 along ˇ4, forcing y1 to be a corner of D0. Similarly, if y1 is a
corner of D0 with jB1j D 1, then, following ˛1 along the boundary of D0, we deduce
that there is a unique candidate for w1 (ie a unique intersection point at which turning
left leads to a yi without creating a self-intersection in @D0), which is along ˇ3, forcing
a corner at y4. Finally, if y4 is a corner of D0 with jB4j D 1, following ˛4 along
the boundary of D0, we conclude that there are three possibilities for w4 to avoid B3.
Of these, one is along ˇ2, which would force y3 to be a corner of D0, and another is
along ˇ3, which would lead us back to y4 along a homotopically nontrivial path, a
contradiction as D0 can have only one boundary component. We conclude that w4

should be the corner of B4 along ˇ1; hence, y2 is a corner of D0. It follows that @D0

has a single self-intersection, at the corner of B1 in ˛1\ˇ1, giving a contradiction.

5.3 Comparison with other known obstructions

Our goal in this section is to put our calculations of o for the contact 3–manifolds
f.Yp; �p/gp2Z>0

into the broader context of obstructions to existence of weak, strong,
exact and Stein fillings. Note that:

(1) The contact structure �p results from inadmissible transverse surgery with framing
C4 on the genus-2 Borromean knot in L.p;p� 1/ # #3 S1 �S2 [9].
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(2) Oc.�p/¤ 0 by [19], since the surgery coefficient is 2g D 4.

(3) Capping the boundary along the curve a gives a weak symplectic 2–handle
cobordism from Yp to L.p;p� 1/ # #3 S1 �S2 [14].

(4) c1.�p/ is torsion.

(5) d3.�p/D
1
4
.p� 3/ [39].

To see (4), note that b2.L.p;p � 1/ # #3 S1 � S2/ D 3 (or D 4 if p D 0) and that
every homology class can be represented by embedded tori. As a result, the Benneqiun–
Eliashberg bound implies that c1.�p/ evaluates trivially on H2.L.p;p�1/##3 S1�S2/;
therefore, it must be torsion.

Coarsely, there are two methods to obstruct symplectic-fillability: via the vanishing
of contact invariants from Floer homology and gauge theory — such as monopole
Floer homology, Heegaard Floer homology and embedded contact homology — via
structural algebraic properties of symplectic field theory (SFT) or contact homology,
or by applying more context specific ad hoc methods. The vanishing of contact
invariants in Floer homology obstructs strong-fillability and can be used to obstruct
weak-fillability with a suitable coefficient system. For our examples, because Oc.�p/¤ 0,
any obstruction to symplectic-fillability would fall into the ad hoc category. It is possible
that weak/strong-fillability of these contact 3–manifolds could be obstructed by SFT,
for example were the algebraic torsion to be nonzero [33]. It is also possible that one
could obstruct strong-fillability using contact homology [51; 5; 25], again assuming
one could both calculate it and show that there are no augmentations of the algebra.
Neither of these methods seems particularly practical for these examples, but we don’t
know.

In situations where contact invariants fail to obstruct symplectic-fillability or they
are too difficult to calculate, other information can sometimes be utilized. Interesting
families of contact 3–manifolds have been shown to be nonfillable by symplectic caps or
other cobordisms. Prior to the introduction of contact invariants from Floer homology,
all methods of obstructing fillability were ad hoc and relied on Gromov’s theory of
pseudoholomorphic curves (eg [11; 12]), but they only apply to obstructing existence of
strong fillings. The introduction of the contact invariant in Seiberg–Witten theory [29]
provided a more universal tool to obstruct symplectic-fillability, but it was notoriously
difficult to calculate. In [39], Lisca and Stipsicz studied a family of contact 3–manifolds
f.Yg;n; �i/gn�2g�0;iD0;1 described by Honda [20] and Giroux [16] to show that they
are not symplectically fillable. Rather than directly showing that the monopole contact
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invariant is zero for this family, Lisca and Stipsicz first calculated the d3–invariants
of these contact structures using descriptions of .Yg;n; �i/ as Legendrian surgeries on
some Stein-fillable contact 3–manifolds. Building on earlier work of Lisca [36] and
Mrowka, Ozsváth and Yu [43], they then conclude that in a given Spinc structure, there
is a unique homotopy class of 2–plane fields � containing a symplectically fillable
contact structure. Finally, they use calculations of an �–invariant by Nicolaescu [44] to
calculate the d3–invariant of � and see that it does not agree with the d3–invariants of �i .

Often filling obstructions follow by finding a symplectic cobordism to either the empty
set or some target contact 3–manifold .M; �/ whose symplectic fillings are classified —
such as certain contact structures on the lens spaces L.p; q/ (eg [42; 37]) — or are
obstructed entirely [14]. One then attempts to obstruct this cobordism from embedding
in any filling of .M; �/. These methods build on the foundational examples and methods
of Lisca in [36] (see [40; 28; 34]). There, strong-fillability is obstructed by finding a
smooth 4–manifold cap which cannot be embedded into a diagonal lattice, noticing that
the projection cred.�/ of cC.�/ onto the reduced Heegaard Floer homology is zero, so
that all strong fillings must be negative-definite, and then invoking Donaldson’s theorem
to obstruct the existence of resulting closed smooth manifold. One can also invoke a
relative version of this obstruction by Owens and Strle [47], using the Heegaard Floer
d–invariants of M. This method also often obstructs existence of weak fillings as well,
as at least some of the manifolds involved are rational homology spheres, where the
two notions of weak and strong filling are equivalent. Similar obstructions are possible
by finding symplectic caps which contain symplectic spheres of nonnegative square
and then analyzing the resulting embedding into a ruled surface (eg [41]).

There are other methods of obstructing existence of even weak fillings in situations
where property (2) and some version of properties (1) [10], (4) [28; 34] and (3) [40; 41]
above hold. In [10], Conway, Etnyre and Tosun study a particular case. They investigate
contact 3–manifolds YK obtained by inadmissible contact surgery on a transverse
knot K in S3 and obstruct existence of weak fillings in a very interesting range of
surgery slopes determined by �.K/. Their obstruction is obtained by the relative
adjunction inequality of Raoux [53] for knots in rational homology spheres, noting
that any weak filling of YK embeds into a strong filling of S3 in which K bounds a
symplectic disk. There are generalizations of this method that work in the exact setting
where YK is built by inadmissible surgery on a transverse knot K in a 3–manifold Y

all of whose weak fillings are classified. We note that neither the Conway–Etnyre–
Tosun nor Lisca–Stipsicz methods appear to be applicable to our family of contact
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3–manifolds. The sphere of square �p easily embeds into the diagonal lattice and
there does not appear to be an obstruction to K bounding a symplectic disk of the
appropriate type in a symplectic filling of L.p;p� 1/. We also note that, if our family
of contact 3–manifolds were supported by planar open book decompositions, one could
conceivably invoke Niederkrüger and Wendl [45; 57], as used by [27], to obstruct weak
and strong fillings.

The obstructions particular to Stein-fillability generally require both that cred.�/D 0 and
that d3.�/ be small (either less than 1 [28] or less than 0 [2]). To date, there is exactly
one method to obstruct Stein-fillability of an exactly fillable contact 3–manifold [6].
This uses Eliashberg’s theorem on decomposing spheres [11] and requires the 3–
manifold in question to be reducible. This method is entirely dependent on Ghiggini’s
obstruction to existence of exact fillings of certain strongly fillable contact 3–manifolds.
In [15], Ghiggini used properties of Stein fillings [38] and the behavior of Heegaard
Floer homology under Spinc conjugation to obstruct Stein-fillability on a number of
Brieskorn spheres. Ghiggini’s method requires, among much else, that � be homotopic
to its coorientation reversal, x�, which implies that c1.�/D 0.

We note that the four simplifying properties (1)–(4) hold only because we have chosen
a particularly simple family of contact 3–manifolds. One can tweak this family to
construct examples where Oc.�/¤0 but o.�/D0 and where none of the properties (1)–(4)
hold. In general, we expect that there are examples of contact 3–manifolds where both
cC.�/¤ 0 and cred.�/¤ 0, but o.�/ <1, and which have no reasonable cobordism
to a contact 3–manifold whose fillings are classified or whose symplectic caps are
constrained. For such contact 3–manifolds, the spectral order obstructs Stein-fillability
but it is likely that no other current method could be applied to show this.

Finally, one major practical advantage of working with Heegaard Floer homology is
its computability. Finding an upper bound for o is a direct calculation that can be
done easily on any fixed open book decomposition. We carried out this task using
a computer program that we wrote, building on a program of Sucharit Sarkar that
analyzes Heegaard Floer chain complexes. The proofs given in Sections 5.1 and 5.2
were done by hand and verified by this computer program, which also gives us the
capability to do calculations on much larger chain complexes. In conclusion, if o is
finite, finding an upper bound for the explicit value is a relatively simple endeavor
even if calculating the exact value is difficult. Hence, as a fillability obstruction when
Oc.�/¤ 0, o is both a robust contact invariant with its fundamental properties, and it is
computable.
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We study the large-scale geometry of mapping class groups of surfaces of infinite
type, using the framework of Rosendal for coarse geometry of non-locally-compact
groups. We give a complete classification of those surfaces whose mapping class
groups have local coarse boundedness (the analog of local compactness). When the
end space of the surface is countable or tame, we also give a classification of those
surfaces where there exists a coarsely bounded generating set (the analog of finite or
compact generation, giving the group a well-defined quasi-isometry type) and those
surfaces with mapping class groups of bounded diameter (the analog of compactness).

We also show several relationships between the topology of a surface and the geometry
of its mapping class groups. For instance, we show that nondisplaceable subsurfaces
are responsible for nontrivial geometry and can be used to produce unbounded length
functions on mapping class groups using a version of subsurface projection; while
self-similarity of the space of ends of a surface is responsible for boundedness of the
mapping class group.
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1 Introduction

Mapping class groups of surfaces of infinite type (with infinite genus or infinitely many
ends) form a rich class of examples of non-locally-compact Polish topological groups.
These “big” mapping class groups can be seen as natural generalizations of, or limit
objects of, the mapping class groups of finite type surfaces, and also arise naturally in
the study of laminations and foliations, and the dynamics of group actions on finite
type surfaces.

Several recent papers have studied big mapping class groups through their actions on
associated combinatorial structures such as curve or arc complexes; see for instance
Aramayona, Fossas and Parlier [1], Bavard, Dowdall and Rafi [4] and Durham, Fanoni
and Vlamis [7]. From this perspective, an important problem is to understand whether
a given mapping class group admits a metrically nontrivial action on such a space,
namely, an action with unbounded orbits. It is our observation that this should be
framed as part of a larger question, one of the coarse or large-scale geometry of big
mapping class groups. This is the goal of the present work.

However, describing the large-scale structure of big mapping class groups — or even
determining whether this notion makes sense — is a nontrivial problem, as standard
tools of geometric group theory apply only to locally compact, compactly generated
groups, and big mapping class groups do not fall in this category. Instead, we use
recent work of Rosendal [18] that extends the framework of geometric group theory to
a broader class of topological groups, using the notion of coarse boundedness.

Definition 1.1 Let G be a topological group. A subset A� G is coarsely bounded,
abbreviated CB, if every compatible left-invariant metric on G gives A finite diameter.
A group is locally CB if it admits a CB neighborhood of the identity, and CB generated
if it admits a CB generating set.1

To give an example, in a locally compact group, the CB sets are precisely the compact
ones. As is well known, among locally compact groups, those who admit a CB
(ie compact) generating set have a well-defined quasi-isometry type, namely that given
by the word metric with respect to any compact generating set (the discrete, finitely

1In Rosendal [17] and much earlier work, this condition is called (OB), for orbites bornées, as it is
equivalent to the condition that for any continuous action of G on a metric space X by isometries, the
diameter of every orbit A �x is bounded. Coarsely bounded appears in [18]; we prefer this terminology as
it is more suggestive of the large-scale geometric context.
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generated groups are a special case of this). Extending this notion, one says that a
left-invariant metric d on a group G is said to be maximal if for any other left-invariant
metric d 0 there exist constants C and K such that

d 0.f;g/�Kd.f;g/CC

holds for all f;g 2 G. If G admits a maximal metric, then the coarse equivalence
class of this metric gives G a well-defined quasi-isometry type. Rosendal shows the
following.

Theorem 1.2 (Rosendal [18, Theorem 1.2]) Let G be a Polish group. The following
are equivalent :

(i) G is generated by a CB subset.

(ii) G admits a maximal left-invariant metric , among the left-invariant metrics which
generate its topology.

(iii) G has a CB neighborhood of the identity and cannot be expressed as the union
of a countable chain of proper open subgroups.

Furthermore, the word metric from any CB generating set is in the quasi-isometry class
of the maximal metric, giving a concrete description of the geometry of the group
[18, Proposition 2.5].

In this work, we show that among the big mapping class groups there is a rich family
of examples to which Rosendal’s theory applies, and give the first steps towards a
classification of such groups up to quasi-isometry.

1.1 Main results

For simplicity, we assume all surfaces are oriented and have empty boundary, and all
homeomorphisms are orientation-preserving. (The cases of nonorientable surfaces, and
those with finitely many boundary components can be approached using essentially the
same tools.)

Summary We give a complete classification of surfaces † for which Map.†/ is
locally CB (Theorem 1.4). By Theorem 1.2, this is necessary for the group to be
generated by a CB subset, but these are not equivalent. Under mild hypotheses, we
give a full classification of those surfaces which are CB generated and therefore have a
well-defined quasi-isometry type (Theorem 1.6), as well as those which are globally CB,
ie have trivial QI type (Theorem 1.7).
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To give the precise statements, we need to recall the classification of surfaces and state
two key definitions.

End spaces Recall that topological spaces admit a standard compactification by a
space of ends. By a theorem of Richards [16] orientable, boundaryless, infinite-type
surfaces are completely classified by the following data: the genus (possibly infinite),
the space of ends E, which is a totally disconnected, separable, metrizable topological
space, and the subset of ends EG that are accumulated by genus, which is a closed
subset of E. Every such pair .E;EG/ occurs as the space of ends of some surface, with
EG D∅ if and only if the surface has finite genus. We call a pair .E;EG/ self-similar
if for any decomposition EDE1tE2t� � �tEn of E into pairwise disjoint clopen sets,
there exists a clopen set D contained in some Ei such that the pair .D;D \EG/ is
homeomorphic to .E;EG/.

Complexity A key tool in our classification is the following ranking of the “local
complexity” of an end, which (as we show) gives a partial order on equivalence classes
of ends.

Definition 1.3 For x;y 2 E, we say x 4 y if every neighborhood of y contains a
homeomorphic copy of a neighborhood of x. We say x and y are equivalent if x 4 y

and y 4 x.

We show that this order has maximal elements (Proposition 4.7), and for A a clopen
subset of E, we denote the maximal ends of A by M.A/.

The following theorem gives the classification of locally CB mapping class groups.
While the statement is technical, it is easy to apply in specific examples. For instance,
the surfaces in Figure 1, left, satisfy the conditions, while those on the right fail to have
CB mapping class group.

Theorem 1.4 (classification of locally CB mapping class groups) Map.†/ is locally
CB if and only if there is a finite-type surface K �† with the following properties:

(i) Each complementary region of K has one or infinitely many ends and infinite or
zero genus.

(ii) The complementary regions of K partition E into clopen sets , indexed by finite
sets A and P such that
� each A2A is self-similar , with M.A/�M.E/ and M.E/�

F
A2A M.A/,
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Figure 1: By Theorem 1.4, the surface on the left has a locally CB mapping
class group and those on the right do not. All have P D∅.

� each P 2 P is homeomorphic to a clopen subset of some A 2A, and
� for any xA 2M.A/ and any neighborhood V of the end xA in †, there is
fV 2 Homeo.†/ such that fV .V / contains the complementary region to K

with end set A.

Moreover , in this case the set VK WD fg 2Homeo.†/ W gjK D idg is a CB neighborhood
of the identity.

In order to illustrate Theorem 1.4 and motivate the conditions in the next two classifi-
cation theorems, we now state results in the much simpler special case when † has
genus zero and countable end space.

Special case: E countable, genus zero If E is a countable set and EG D ∅, a
classical result of Mazurkiewicz and Sierpinski [13] states that there exists a countable
ordinal ˛ such that E is homeomorphic to the ordinal !˛nC1 equipped with the order
topology. Thus, any x 2E is locally homeomorphic to !ˇC 1 for some ˇ � ˛ (here
ˇ is the Cantor–Bendixon rank of the point x). In this case, our partial order � agrees
with the usual ordering of the ordinal numbers, points are equivalent if and only if they
are locally homeomorphic, and we have the following.

Theorem 1.5 (special case of Theorems 1.4, 1.6 and 1.7) Suppose † is an infinite-
type surface of genus zero with E Š !˛nC 1. Then:

(i) Map.†/ is CB if and only if nD 1; in this case E is self-similar.

(ii) If n� 2 and ˛ is a successor ordinal , then Map.†/ is locally CB and generated
by a CB set , but admits a surjective homomorphism to Z, so is not globally CB.

(iii) If n� 2 and ˛ is a limit ordinal , then Map.†/ is locally CB , but not generated
by any CB set.

Geometry & Topology, Volume 27 (2023)
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Classification: general case One cannot hope for such a clean statement as that of
Theorem 1.5 to hold in general, since there is no similarly clean classification of end
spaces. In fact, even in the genus-zero case, classifying possible end spaces E (ie closed
subsets of Cantor sets) up to homeomorphism is a difficult and well-studied problem,
equivalent to the classification problem for countable Boolean algebras.2 Ketonen [10]
gives some description and isomorphism invariants. In practice these invariants are
difficult to use, and yet they are in some sense an optimal classification, as Carmelo
and Gao show in [5] that the isomorphism relation is Borel complete. Our definition of
the partial order 4 allows us to sidestep the worst of these issues.

For technical reasons, the order is better behaved under a weak hypothesis on the
topology of the end space, which we call “tameness”. See Section 6 for motivation and
the definition. To our knowledge, tame surfaces include all concrete examples studied
thus far in the literature, including the mapping class groups of some specific infinite-
type surfaces in Aramayona, Patel and Vlamis [2], Bavard [3] and Fanoni, Hensel
and Vlamis [8], and the discussion of geometric or dynamical properties of various
translation surfaces of infinite type in Chamanara [6], Hooper [9] and Randecker [15].
Although nontame examples do exist (see Example 6.13), there are no known nontame
surface that have a well-defined quasi-isometry type (Problem 6.12). Under this
hypothesis, we can give a complete classification of surfaces with a well-defined QI
type, and those with a trivial QI type, as follows.

Theorem 1.6 (classification of CB generated mapping class groups) For a tame
surface † with locally (but not globally) CB mapping class group , Map.†/ is CB
generated if and only if E is finite rank and not of limit type.

Theorem 1.7 (classification of globally CB mapping class groups) Suppose † is
either tame or has countable end space. Then Map.†/ is CB if and only if † has
infinite or zero genus and E is self-similar or a variant of this called “telescoping”. The
telescoping case occurs only when E is uncountable.

Finite rank, loosely speaking, means that finite-index subgroups of Map.†/ do not
admit surjective homomorphisms to Zn for arbitrarily large n. Limit type refers to
behavior of equivalence classes for the partial order that mimics the behavior of limit
ordinals in the special countable case stated above; see Section 6.2. Telescoping is a
slightly broader notion of homogeneity or local similarity of an end space. Informally

2By Stone duality, totally disconnected, separable, compact sets are in one-to-one correspondence with
countable Boolean algebras.
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speaking, self-similar sets either appear very homogeneous (eg a Cantor set) or may
have one “special” point, any neighborhood of which contains a copy of the whole
set — for instance, a countable set with a single accumulation point is self-similar.
Telescoping is a generalization that allows for two special points. Further motivation
and a precise definition are given in Section 3.2.

Key tool: nondisplaceable subsurfaces The following tool is of independent interest
and provides an easily employable criterion to certify that a surface has non-CB mapping
class group (or, equivalently, admits a continuous isometric action on a metric space
with unbounded orbits).

Definition 1.8 A connected, finite-type subsurface S of a surface † is said to be
nondisplaceable if f .S/\S ¤∅ for each f 2 Homeo.†/. A nonconnected surface
is nondisplaceable if, for every f 2 Homeo.†/, there are connected components Si

and Sj of S such that f .Si/\Sj ¤∅.

Theorem 1.9 If † is a surface that contains a nondisplaceable finite-type subsurface ,
then Map.†/ is not globally CB.

A key ingredient of the proof is subsurface projection, a familiar tool from the study of
mapping class groups of finite-type surfaces, introduced by Masur and Minsky [12].

Theorem 1.9 immediately gives many examples of surfaces whose mapping class
groups are not CB, and hence admit unbounded orbits on combinatorial complexes. For
instance, any surface with finite but nonzero genus has this property. (See Theorem 1.5
below for a number of other easily described examples.) Theorem 1.9 also recovers,
with a new proof, some of the work of Bavard in [3] and Durham, Fanoni and Vlamis
in [7].

Outline
� Section 2 contains background information on standard mapping class group

techniques, and the proof of Theorem 1.9.

� Section 3 gives two criteria for CB mapping class groups: self-similarity and
telescoping end spaces. This is used later in the proof of the local and global
CB classification theorems.

� Section 4 introduces the partial order on the end space and proves key properties
of this relation, and a characterization of self-similar end spaces in terms of the
partial order.
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� Section 5 contains the proof of Theorem 1.4. This and the following section
form the technical core of this work.

� Section 6 contains the proof of Theorem 1.6.

� Section 7 gives the proof of Theorem 1.7.
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on earlier versions of this paper, and the thoughtful work of the referee, which greatly
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2 Proof of Theorem 1.9

In this section we prove that nondisplaceable finite-type subsurfaces of a surface † are
responsible for nontrivial geometry in Map.†/. We begin by introducing some notions
from large-scale geometry and setting some conventions that will be useful throughout.

A criterion for coarse boundedness Recall that a subset A � G of a metrizable,
topological group is said to be coarsely bounded or CB if it has finite diameter in
every compatible left-invariant metric on G. The following result gives an equivalent
condition that is often easier to use in practice.

Theorem 2.1 (Rosendal [18, Proposition 2.7(5)]) Let A be a subset of a Polish
group G. The following are equivalent :

(i) A is coarsely bounded.

(ii) For every neighborhood V of the identity in G, there is a finite subset F and
some k � 1 such that A� .FV/k .

While Rosendal’s theory is quite broadly applicable, mapping class groups (of any
manifold) fall into the nicest family to which it applies, namely the completely metriz-
able or Polish groups. For any manifold M, the homeomorphism group Homeo.M /

endowed with the compact-open topology is Polish, and hence also for any closed subset
of M, the closed subgroups Homeo.M;X / and Homeo.M relX / of homeomorphisms,
respectively preserving and pointwise fixing X. (In the mapping class groups context,
X is typically taken to be the boundary of M or a set of marked points.) Thus, since

Geometry & Topology, Volume 27 (2023)



Large-scale geometry of big mapping class groups 2245

the identity component Homeo0.M;X / is a closed, normal subgroup, the quotient
Homeo.M;X /=Homeo0.M;X / is also a Polish group.3

One useful tool for probing the geometry of a topological group is the following concept
of a length function.

Definition 2.2 A length function on a topological group G is a continuous function
` W G! Œ0;1/ satisfying `.g/ D `.g�1/, `.id/ D 0 and `.gh/ � `.g/C `.h/ for all
g; h 2G.

If ` is any length function, then for any � > 0 the set `�1.Œ0; �// is a neighborhood of
the identity in G. It follows from the criterion in Theorem 2.1 that ` is bounded on any
CB subset.

Our strategy for the proof of Theorem 1.9 is to use the presence of a nondisplaceable
subsurface to construct an unbounded length function. In order to do this, we introduce
some notation and conventions which will also be used in later sections.

Surfaces: conventions The following conventions will be used throughout this work.
Infinite-type surfaces, typically denoted by †, are assumed to be connected and ori-
entable, and unless otherwise specified will be assumed to have empty boundary. By
a curve in † we mean a free homotopy class of a nontrivial, nonperipheral, simple
closed curve. In the first part of this section, when we talk about a subsurface S �†,
we always assume that S is connected, has finite type and is essential, meaning that
every curve in @S is nontrivial and nonperipheral in †. (Later we will broaden our
discussion to include nonconnected subsurfaces.) As is standard, the complexity of a
finite-type surface S is defined to be �.S/D 3gS C bS CpS , where gS is the genus,
pS is the number of punctures and bS is the number of boundary components of S .
Finite type simply means that all these quantities are finite.

The intersection number between two curves 1 and 2 is the usual geometric in-
tersection number i.1; 2/, defined to be the minimal intersection number between
representatives in the free homotopy classes of 1 and 2. To simplify the exposition
going forward, we will fix a complete hyperbolic structure on †. Then every curve
has a unique geodesic representative and the homotopy class of every subsurface has
a unique representative that has geodesic boundary. A pair of curves 1 and 2 have

3For the case where M is a surface, that mapping class groups are Polish was also observed in [2] using
the property that these groups are the automorphism groups of the curve complex of the surface.
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disjoint representatives if and only if their geodesic representatives are disjoint. In this
case, we say that i.1; 2/ D 0. Otherwise, we say 1 intersects 2 and in this case,
the intersection number i.1; 2/ is the cardinality of the intersection of their geodesic
representatives.

Similarly, two subsurfaces R and S (or a subsurface R and geodesic  ) intersect if every
subsurface homotopic to R intersects every subsurface homotopic to S (or analogously
for  ), and this is equivalent to saying that the representatives of R and S with geodesic
boundaries intersect each other. Hence, from now on, every time we consider a curve
we assume it is a geodesic and every time we consider a subsurface we assume it has
geodesic boundary. This allows us to unambiguously speak of intersections.

Definition 2.3 A finite-type, connected subsurface S � † is nondisplaceable if
S \f .S/¤∅ for all f 2Map.†/.

Example 2.4 When † has positive, finite genus, any subsurface S whose genus
matches that of † is nondisplaceable. This is because S contains nonseparating curves
but †�S does not. Since every image of S under a homeomorphism of † will also
contain a nonseparating curve, it must intersect S .

Example 2.5 (nondisplaceable subsurfaces) It is also easy to construct examples of
nondisplaceable surfaces using the topology of the end space. Suppose † has infinite
end space, and Z is an invariant, finite set of ends of cardinality at least 3. Then any
surface S which separates all the points of Z into different complementary regions
will be nondisplaceable.

To give another prototypical example, if X and Y are disjoint, closed invariant sets
of ends, with X homeomorphic to a Cantor set, then a subsurface homeomorphic to a
pair of pants which contains points of X in two complementary regions, and all of Y

in the third complementary region, will also be nondisplaceable.

Curve graphs and subsurface projections We recall some basic material on curve
graphs. A reader unfamiliar with this machinery may wish to consult the introductory
notes [19] or paper [11] for more details. As in the previous paragraph, we continue to
assume here that surfaces are connected.

The curve graph C.S/ of a finite-type surface S is a graph whose vertices are curves
in S and whose edges are pairs of disjoint curves. We give each edge length one and
denote the induced metric on C.S/ by dS . With this metric, as soon as �.S/ � 5,

Geometry & Topology, Volume 27 (2023)



Large-scale geometry of big mapping class groups 2247

.C.S/; dS / has infinite diameter and is Gromov hyperbolic [11]. One can define curve
graphs analogously for infinite-type surfaces, but these no longer have infinite diameter
and we will use only the classical finite-type setting.

If † is any surface and S � † a subsurface, there is a projection map �S from the
set of curves in † that intersect S to the set of subsets of C.S/, defined as follows:
for a curve  , the intersection  \S of the geodesic  with the subsurface S is either
equal to  (if  � S ) or is a union of arcs with endpoints in @S . For every such arc !,
one may perform a surgery between  and @S to obtain in curve in S disjoint from !,
possibly in two different ways (the curve is a concatenation of one or two copies of !
and one or two arcs in @S). We define the projection �S . / to be  if  � S and
otherwise to be the union of curves associated to each arc on  \S obtained by surgery
as above. When �.S/� 5, the set �S . / has diameter at most 2 in C.S/; in fact, we
have

(1) i.1; 2/D 0 D) diamS �S .1[ 2/� 2:

See [12, Lemma 2.2] for more details. In general, if � is a subset of C.S/, we define

�S .�/D
[
2�

�S . /:

The natural distance dS on C.S/ can be extended to a distance function on curves in †
that intersect S via

dS .1; 2/D max
˛i2�S .i /

dS .˛1; ˛2/:

The following result states that a bound on the intersection number between two curves
gives a bound on their projection distance in any subsurface. This principle is well
known and there are many similar results in the literature. We give a short proof with a
suboptimal bound.

Lemma 2.6 Let 1 and 2 be curves in † that intersect S . Then

(2) dS .1; 2/� 2 log2.i.1; 2/C 1/C 6:

Proof Let !1 be an arc in S that is a component of the restriction of 1 and let
˛1 2 �S .1/ be the curve in C.S/ that is obtained by doing a surgery between !1 and
the boundary of S . Then ˛1 is a concatenation of one or two copies of !1 (depending on
whether the endpoints of!1 are on the same boundary or different boundary components
of S) and some arcs in @S . Similarly, let !2 be an arc in S that is a restriction of 2
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and let ˛2 be the associated curve in �S .2/. Then every intersection point between
!1 and !2 results in 1, 2 or 4 intersection points between ˛1 and ˛2. Also, applying
surgery between !2 and @S can result in two intersection points between ˛2 and ˛1 at
each end of !2. Therefore,

i.˛1; ˛2/� 4 i.!1; !2/C 4:

On the other hand, from [19, Lemma 1.21], we have

dS .˛1; ˛2/� 2 log2.i.˛1; ˛2//C 2:

Therefore,

dS .˛1; ˛2/� 2 log2.4 i.!1; !2/C 4/C 2� 2 log2.i.1; 2/C 1/C 6;

which is as we claimed.

The notions of distance dS and intersection number can also be extended further to
take finite sets of curves as arguments. If �i are finite sets of curves, we define

dS .�1; �2/D max
12�1;22�s

dS .1; 2/ and i.�1; �2/D max
12�1;22�s

i.1; 2/:

Using equation (2), for any finite subsets �1 and �1 of C.S/, we have

(3) dS .�1; �2/� 2 log2.i.�1; �2/C 1/C 6:

Note that the triangle inequality still holds for this generalized distance dS .

Construction of an unbounded length function We now proceed with the proof
of Theorem 1.9. Let † be any surface, and let S be a nondisplaceable subsurface.
Enlarge S if needed so that �.S/� 5 and so that S is connected. (In Section 2.1, we
give an alternative modification for nonconnected subsurfaces that will be useful in
later work.)

Let I denote the set of (isotopy classes of) subsurfaces of the same type as S , ie

I D ff .S/ j f 2Map.†/g:

As before, while f .S/ denotes only an isotopy class of a surface when f 2Map.†/,
the reader may identify it with an honest subsurface by taking the representative with
geodesic boundary. Let �S be a filling set of curves in C.S/, ie a set of curves with
the property that every curve in S intersects some curve in �.

For R 2 I let �R D �R.�S /. Note that this is always defined since �S fills S , and
R intersects S because S was assumed nondisplaceable.
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Now, define

` WMap.†/! Z by `.�/Dmax
R2I

d�.R/.�.�R/; ��.R//:

Equivalently, we have

(4) `.�/Dmax
T2I

dT .�.���1.T //; �T /:

Note that ` is finite because, for every �, the intersection number i.�S ; �.�S // is
a finite number. Hence, by equation (3), their projections to �.R/ lie at a bounded
distance in C.R/, with a bound that depends on � alone, not on R.

The latter definition also makes it clear that `.�/D `.��1/, since

`.��1/Dmax
T2I

dT .�
�1.��.T //; �T /

Dmax
T2I

d�.T /.��.T /; �.�T //

D max
RD�.T /2I

dR.�R; �.���1.R///D `.�/:

We now check the triangle inequality. Let  and � be given, and let R 2 I be a surface
such that `. �/D d �.R/. �.�R/; � �.R//. Then we have

`. �/D d �.R/. �.�R/; � �.R//

� d �.R/. �.�R/;  .��.R///C d �.R/. .��.R//; � �.R//

D d�.R/.�.�R/; ��.R//C d .Q/. .�Q/; � .Q// .where QD �.R//

� `.�/C `. /:

Continuity of ` as a function on Map.†/ is a consequence of the following observation.

Observation If � and �0 agree on S , then `.�/D `.�0/.

Proof First note that for any T 2 I, we have ���1.T / � S \��1.T /, hence

�.���1.T //� �.S/\T:

Similarly,
�0.��0�1.T //� �

0.S/\T:

But �.S/\T D �0.S/\T . In fact, �.���1.T // is the projection of �.�S / to T and
�0.��0�1.T // is the projection of �0.�S / to T . Since � and �0 agree on S,

�.���1.T //D �
0.���1.T //;

from which it follows from (4) that `.�/D `.�0/.
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Thus, the preimage of `.�/ under ` contains the open set consisting of mapping classes
agreeing with � on S . The remaining condition on a length function is that the length
of identity should be zero. This is not a consequence of our definition, however we
may simply redefine `.�/ D 0 for all � which restrict to the identity on S , without
affecting the validity of the triangle-inequality computation above, as can be checked
easily by hand.

To see that ` is unbounded, let � 2Map.†/ be a homeomorphism that preserves S

and such that the restriction �jS of � to S is a pseudo-Anosov homeomorphism of S .
Then, for any curve  in S ,

(5) dS .; �
n. //!1 as n!1:

See eg [11] for details. Thus, ` is an unbounded length function, and so Map.†/ is not
coarsely bounded.

2.1 Disconnected subsurfaces

While we have so far worked only with connected nondisplaceable subsurfaces, there
is a natural generalization of the work above to nonconnected subsurfaces. This will
be useful when we need to find a nondisplaceable subsurface that is disjoint from a
given compact subset of † to determine if Map.†/ is locally CB. The extension to
this broader framework requires a little care since, if we simply take the definitions
above verbatim, then the diameter of the curve graph C.S/ is finite as soon as S is not
connected. However, the following minor adaptations allow our work above to carry
through in this case.

Definition 2.7 A disconnected finite-type subsurface is a finite union of pairwise
disjoint finite-type surfaces. We say such a subsurface S is nondisplaceable if, for any
f 2Map.†/ and any connected component Si of S , there is a connected component
Sj of S such that Sj \f .Si/¤∅.

We now show how to use such a disconnected surface S to construct a length function
on Map.†/. As before, let I denote the set of images of S under mapping classes, ie

I D ff .S/ j f 2Map.†/g:

If S D
Fk

iD1 Si , where Si are the connected components, then an element R of I is
simply the disjoint union of a set fR1; : : :Rkg, where Ri D f .Si/. Let �S be a set
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of curves in
S

i C.Si/ that fill every Si . Keeping the notation from before, note that
�Ri

.�S / is always defined since Ri intersects some Sj , and curves in �S fill Sj . Now,
define `S WMap.†/! Z by

`S .�/Dmax
R2I

maxfd�.Ri /.�.�Ri
/; ��.R// jRi a component of Rg:

The same computation as in the connected case shows that `S is finite, is continuous as
a function on Map.†/, and satisfies the triangle inequality with the same adjustment
that `S .�/D 0 when � is identity on S . To see that `S is unbounded, let � 2Map.†/
be a homeomorphism that preserves S and such that the restriction �jS1

of � to S1 is a
pseudo-Anosov homeomorphism of S1. Since `S is defined as a maximum of distances
in various curve graphs, if � has a positive translation length in C.S1/ (or in any C.Si/)
then `S .�

n/!1 as n!1. This gives an alternative proof of Theorem 1.9 in the
disconnected case, and the following more general statement:

Proposition 2.8 If † contains a connected or disconnected , nondisplaceable , finite-
type subsurface S such that each connected component of S has complexity at least 5,
then there exists a length function ` defined on Map.†/ such that the restriction of ` to
mapping classes supported on S is unbounded.

3 Self-similar and telescoping end spaces

In this section we give two topological conditions (in Propositions 3.1 and 3.5) that
imply coarse boundedness of the mapping class group: self-similarity and telescoping.

3.1 Self-similar end spaces

Recall that a space of ends .E;EG/ is said to be self-similar if for any decomposition
E DE1 tE2 t � � � tEn of E into pairwise disjoint clopen sets, there exists a clopen
set D in some Ei such that .D;D \EG/ is homeomorphic to .E;EG/. There are
many examples of such sets; a few basic ones are:

� E equal to a Cantor set, and EG either empty, equal to E, or a singleton.

� E a countable set homeomorphic to !˛C 1 with the order topology, for some
countable ordinal ˛, and EG the set of points of type !ˇ C 1 for all ordinals
ˇ � ˇ0, where ˇ0 is a some fixed ordinal.

� E the union of a countable set Q and a Cantor set where the sole accumulation
point of Q is a point in the Cantor set, and EG D xQ.
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Convention Going forward, we drop the notation EG , assuming that E comes with a
designated closed subset of ends accumulated by genus, empty if the genus of † is
finite, and that all homeomorphisms between sets or subsets of end spaces preserve
(setwise) the ends accumulated by genus.

As E and EG are totally disconnected spaces, we also make the following convention.

Convention For the remainder of this work, when we speak of a neighborhood in an
end space E, we always mean a clopen neighborhood.

Proposition 3.1 (self-similar implies CB) Let† be a surface of infinite or zero genus.
If the space of ends of † is self-similar , then Map.†/ is CB.

Note that finite, nonzero-genus surfaces cannot have CB mapping class groups by
Example 2.4, so Proposition 3.1 is optimal in this sense. Note also that the proposition
holds for finite-type surfaces as well, but the only applicable example is the once-
punctured sphere, which has trivial mapping class group.

Proof of Proposition 3.1 Let † be an infinite-type surface satisfying the hypotheses
of the proposition, and let V be a neighborhood of the identity in Map.†/. Then there
exists some finite-type subsurface S such that V contains the open set VS consisting of
mapping classes of homeomorphisms that restrict to the identity on S . By Theorem 2.1,
it suffices to find a finite set F�Map.†/ and k 2N (which are allowed to depend on VS ,
hence on S) such that Map.†/D .FVS /

k . Enlarging S (and therefore shrinking VS )
if needed, we may assume that each connected component of †�S is of infinite type.

Since the proof is somewhat technical, we begin with an outline. The first step is to find
a suitable homeomorphism f of† so that f .S/\S D∅, and declare F to be the finite
set consisting of f and f �1. Now suppose one is given g 2Map.†/. Obviously if g

restricts to the identity on S , then g 2 VS and we are done (in fact k D 1 would work).
If instead g restricted to the identity on f .S/, then we would have g 2 f VSf

�1, and
again are done, and could have taken k D 2. The general philosophy of the proof is to
cleverly choose f so that every mapping class g can be written as a product of at most
three elements which are either the identity on S or on f .S/, and use this to get the
desired bound on k. In practice, we do this by finding an additional homeomorphic
copy of S in †. Now we provide the details.
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R S
†0

†1

†2

f .†2/

f .†1/

Figure 2: A homeomorphic copy R of S contained in the complementary
region †0.

The connected components of †�S , together with the finite set P of punctures of S ,
partition E into clopen sets. Let

E DE0 tE1 t � � � tEn tP

denote this decomposition, and let †i denote the connected component of † � S

containing Ei . Since S is of finite type, EG \P D ∅. Since E is self-similar, one
of the Ei contains a copy of E. Without loss of generality, we assume this is E0, the
set of ends of †0; thus we may write E0 DE0 tD, where E0 is homeomorphic to E.
The next lemma asserts that we may find a surface RD f .S/ as depicted in Figure 2.

Lemma 3.2 With the notation above , there exists f 2 Homeo.†/ such that

(i) RD f .S/�†0,

(ii) S � f .†0/, and

(iii) the end set of f .†0/\†0 contains a homeomorphic copy of E.

Proof Since E0 is homeomorphic to E we can write E0 as the disjoint union of
sets E0i , with i D 0; 1; : : : ; n, and P 0, where E0i ŠEi and P 0 Š P . (Of course, by Š
we mean homeomorphic via a homeomorphism which respects EG .) We can further
write E0

0
DE00 tD0, where E00 ŠE and D0 ŠD.

Consider a subsurface R disjoint from S with puncture set P 0 and nC1 complementary
regions, one with end space E0i for each i D 1; 2; : : : ; n, and the final one containing
the remaining ends, namely D0 tE00 tD t

�F
1�i�n Ei

�
. Now we have

E00 tD t

� G
1�i�n

Ei

�
ŠE;
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R0

R

g.S/

†0 S

E00

Figure 3: The surface g.S/ may intersect R and S in a complicated way,
but R0 lies in the “big” complementary region of at least one of them (in this
illustration, it is in their intersection Z).

therefore,
D0 tE00 tD t

� G
1�i�n

Ei

�
ŠD0 tE ŠE0:

Thus, we may apply Richards’ classification of surfaces and conclude that there is a
homeomorphism f of † such that f .S/DR and for i � 1 we have f .Ei/DE0i , and
f .E0/DD0 tE00 tD t

�F
1�i�n Ei

�
.

Now fix R and f as in Lemma 3.2 and let F D ff; f �1g. We will show

Map.†/D .FVS /
5:

Let g2Map.†/. Let E0 be a homeomorphic copy of E in the end space of†0\f .†0/,
and consider the set g.E0/.

Since the clopen sets Z WD .f .E0/\E0/, .E0�Z/ and .E �E0/ partition E, their
intersections with g.E0/ partition g.E0/. Since g.E0/ŠE is a self-similar set, one of
these three sets in the partition contains a homeomorphic copy of E; call this E00. Thus,
E00 lies either in g.E0/\ f .E0/ or in g.E0/\E0 (or both). If the first case occurs,
then we have f �1g.E0/\ f �1.f .E0//. This means that, at the cost of replacing g

by f �1g, and therefore using one more letter from F , we can assume that we are in
the second case, ie where E00 � g.E0/\E0. So it suffices to show that in this case,
we have g 2 .FVS /

4. This situation is illustrated in Figure 3. (For simplicity, we did
not draw infinite genus on this image.)

Assuming that E00 � g.E0/\E0, the next step is to find another copy of S in a small
neighborhood of E00, and hence in g.†0/\†0. In detail, just as in Lemma 3.2, but
using E00 instead of E0, and working with the subsurface R of the surface †0 instead
of the subsurface S of †, we may find a surface R0�†0\g.†0/ homeomorphic to R,
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and a homeomorphism v of †0 mapping R to R0 that satisfies R� v.f .†0/\†0/.
Extend v to a homeomorphism of† by declaring it to be the identity on†�†0; abusing
notation slightly, denote this homeomorphism also by v, and so we have v 2 VS . Then
R, S and g.S/ are all contained in v.f .†0//. See Figure 3 for a schematic.

The same argument as that in Lemma 3.2 using the classification of surfaces now shows
that we may find u restricting to the identity on R0, with ug.S/ D S and ug equal
to identity on S . (The details are a straightforward exercise.) Since u is the identity
on R0, it follows that .vf /�1u.vf / is the identity on .vf /�1.R0/D S , which implies
that u 2 .FVS /

3, hence g 2 .FVS /
4. This concludes the proof of Proposition 3.1.

3.2 Telescoping end spaces

Motivation Recall from Example 2.5 that, if † is a surface such that there exists
a finite, Map.†/–invariant set F � E of cardinality at least three, then Map.†/ is
not CB: any finite-type subsurface S such that the elements of F each lie in different
complementary regions of S is easily seen to be nondisplaceable. The definition of
telescoping below was motivated by the question: Under what conditions is a two-
element Map.†/–invariant subset of E compatible with global coarse boundedness?
As will follow from our work in Section 7, this never happens if E is countable: every
surface with countable end space and coarsely bounded mapping class group is self-
similar. However, in the uncountable case, surfaces with telescoping end spaces provide
additional examples (and are the only additional examples among tame surfaces).
Informally speaking, telescoping spaces of ends have two “special” points with the
property that neighborhoods of each point can be expanded an arbitrary amount, and
can also be expanded a fixed amount relative to a neighborhood of the other point.

Convention In the following definition, and for the remainder of this work, we wish
to work only with specific neighborhoods of ends in †, not every open subset of the
surface containing this end. Thus, going forward, a neighborhood of an end x in †
means a connected subsurface with a single boundary component that has x as an end.

Definition 3.3 A surface † is telescoping if there are ends x1;x2 2 E and disjoint
clopen neighborhoods Vi of xi in † such that for all clopen neighborhoods Wi � Vi

of xi , there exist homeomorphisms fi and hi of†, both pointwise fixing fx1;x2g, with

fi.Wi/� .†�V3�i/; hi.Wi/D Vi ; hi.V3�i/D V3�i :

When we wish to make the points x1;x2 explicit, we say also telescoping with respect
to fx1;x2g. We may equivalently require hi to restrict to the identity on V3�i .
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Note that this definition implies that † has infinite or zero genus, as does †�.V1[V2/.

While the complement of a Cantor set in S2 is both self-similar and telescoping with
respect to any pair of points, there are many examples of telescoping sets that are not
self-similar, for instance:

� EG a Cantor set, and E the union of EG and another Cantor set which intersects
EG at exactly two points.

� E the union of two copies of the Cantor set, C1 and C2, which intersect at
exactly two points, and a countable set Q such that the accumulation points of
Q are exactly C1. EG could be empty, equal to the closure of Q, or equal to E.

Note that, in Definition 3.3, fi and hi are required to be homeomorphisms of the
surface, not merely the end space.

Remark 3.4 An equivalent definition of telescoping may be given by replacing “there
exist disjoint neighborhoods Vi of xi” with “for all sufficiently small neighborhoods
Vi of xi”. The proof is an immediate consequence of the definition.

The telescoping condition also implies that all neighborhoods of xi in †�fx3�ig are
homeomorphic. With this fact, one can use a standard back-and-forth argument to show
that there is a homeomorphism of † taking xi to x3�i . We omit the proof as it is not
needed for what follows.

Proposition 3.5 (telescoping implies CB) Let † be a surface that is telescoping with
respect to fx1;x2g. Then the pointwise stabilizer of fx1;x2g in Map.†/ is CB.

In particular, if fx1;x2g is a Map.†/–invariant set, then Map.†/ is itself CB.

Remark 3.6 In fact, it will follow easily from the tools developed in the next section
(see Proposition 4.8) that if fx1;x2g is not invariant, then the end space of † is self-
similar and so Map.†/ is CB in this case as well.

Proof of Proposition 3.5 Suppose that † is telescoping and let xi and Vi be as in the
definition. To simplify notation, let G denote the pointwise stabilizer of fx1;x2g in
Map.†/. Fix a neighborhood of the identity in Map.†/; shrinking this if needed we
may take it to be the set VS of mapping classes that restrict to the identity on some
finite-type subsurfaces S . By Remark 3.4, we may assume that S �†�.V1[V2/. Let
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V �VS be the set of mapping classes that restrict to the identity on†0 WD†�.V1[V2/.
We will exhibit a finite set F such that G � .FV/10 � .FVS /

10. This is sufficient to
show that G is CB, by Theorem 2.1.

Fix neighborhoods Wi � Vi of xi in † and homeomorphisms fi with fi.Wi/ �

.†�V3�i/, as given by the definition of telescoping. Let F D ff ˙1
1
; f ˙1

2
g. This is

our finite set. Note that any homeomorphism which restricts to the identity on Vi lies
in f3�iVf �1

3�i
.

Given g 2G, let W 0i be a neighborhood of xi small enough that W 0i � g�1.Vi/\g.Vi/.
By definition of telescoping, there exist homeomorphisms h1 and j1, both restricting
to the identity on V2, with h1.g.W

0
1
//D V1 and j1.W1/D V1. Then g1 WD j�1

1
h1 is

the identity on V2, hence lies in f1Vf �1
1

, and satisfies g1g.W 0
1
/DW1.

Similarly, we can find g2 2 f2Vf �1
2

restricting to the identity on V1, and satisfying
g2g.W 0

2
/DW2. Thus,

g2g1g.W 0i /DWi for i D 1; 2:

It follows that g2g1g.†0/� .†�W1[W2/, so f1g2g1g.†0/� V2 and

f �1
2 f1g2g1g.†0/�W2:

For notational convenience, let � D f �1
2
f1g2g1g. Since �.†0/ and f �1

2
f1†

0 both
lie in W2, as a consequence of the definition of telescoping there exists a homeo-
morphism  restricting to the identity on V1, with  �.†0/ D f �1

2
f1.†

0/. Pre-
composing  with a homeomorphism that is also the identity on V1, we can also
ensure that .f �1

2
f1/
�1 � restricts to the identity on †0. Thus, we have shown

that .f �1
2
f1/
�1 � D .f �1

2
f1/
�1 f �1

2
f1g2g1g 2 V . Since  �1 2 .FV/2, and

g�1
i 2 .FV/2, we conclude that g 2 .FV/10. Since F and the exponent are independent

of g, we have proved the desired result.

We conclude this section with a result whose proof serves as a good warm-up for the
technical work to come.

Proposition 3.7 No telescoping surface has countable end space.

Proof Suppose that † has countable end space E. Recall in this case E Š !˛nC 1

by [13], and EG � E is some closed subset. Assume for contradiction that E is
telescoping with respect to some pair of ends x1, x2. For each point x 2E, there exists
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ˇ D ˇ.x/� ˛ such that every sufficiently small neighborhood of x is homeomorphic
to !ˇC1 (this ordinal ˇ.x/ is simply the Cantor–Bendixon rank of x). It follows from
the definition of telescoping that every clopen neighborhood U of xi disjoint from
x3�i is homeomorphic to every other such neighborhood. In particular, necessarily
nD 2 and x1 and x2 are points of equal and maximal rank ˛. Suppose as a first case
that ˛ is a successor ordinal and let � denote its immediate predecessor. Then the set
of points of rank � accumulates only at x1 and x2. If Vi is any neighborhood of xi ,
then †� .V1[V2/ contains finitely many points of rank �. Thus, if W1 � V1 satisfies
that V1�W1 contains exactly one point of rank �, then no homeomorphism fixing V2

can send W1 to V1, and the definition of telescoping fails.

The case where ˛ has limit type is similar. Given neighborhoods Vi of xi , let � < ˛ be
the supremum of the ranks of points in E� .V1[V2/. Let W1 � V1 be a set such that
V1�W1 contains a point of rank ˛ where � < ˛. Then no homeomorphism fixing V2

can send W1 to V1, and the definition of telescoping fails.

As we will see in the next sections, this limit type phenomenon is closely related to the
failure of the mapping class group to be generated by a CB set. However, to treat this
in the case where E is uncountable, we will need to develop a more refined ordering
on the space of ends.

4 A partial order on the space of ends

Let † be an infinite-type surface with set of ends .E;EG/. As in the previous section,
we drop the notation EG and, by convention, all homeomorphisms of an end space E

of a surface † are required to preserve EG , so to say that A � E is homeomorphic
to B �E means that there is a homeomorphism from .A;A\EG/ to .B;B \EG/.
It follows from Richards’ classification of surfaces in [16, Theorem 1] that each
homeomorphism of .E;EG/ is induced by a homeomorphism of †.4 Thus, we will
pass freely between speaking of homeomorphisms of the end space and the underlying
surface.

Observe also that, if U and V are two disjoint, clopen subsets of E, then any homeo-
morphism f from U onto V can be extended to a globally defined homeomorphism
xf of E by declaring xf to agree with f �1 on V and to pointwise fix the complement

4While this is not in the statement of [16, Theorem 1], the proof gives such a construction. This was
originally explained to the authors by J Lanier following work of S Afton.
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of U [V. Thus, to say points x and y are locally homeomorphic is equivalent to the
condition that there exists xf 2Map.†/ with xf .x/D y. We will use this fact frequently.
In particular, we have the following equivalent rephrasing of Definition 1.3:

Definition 4.1 Let 4 be the binary relation on E given by y 4 x if, for every
neighborhood U of x, there exists a neighborhood V of y and f 2 Map.†/ such
that f .V /� U .

Note that this relation is transitive.

Notation 4.2 For x;y 2 E we say that x � y or “x and y are of the same type” if
x 4 y and y 4 x, and write E.x/ for the set fy j y � xg of “ends of type x”.

It is easily verified that � defines an equivalence relation: symmetry and reflexivity
are immediate from the definition, while transitivity follows from the transitivity of 4.
From this it follows that the relation �, defined by x � y if x 4 y and x œ y, gives a
partial order on the set of equivalence classes under �. For any homeomorphism f

of †, we have x � y (resp. x < y) if and only if f .x/� f .y/ (resp. f .x/< f .y/).

Proposition 4.3 If E is countable , then x � y if and only if x and y are locally
homeomorphic. If additionally EG D∅, then the Cantor–Bendixon rank gives an order
isomorphism between equivalence classes of points and countable ordinals.

Proof Suppose that E is countable. Consider first the case where EG D ∅. Then
every point x 2E has a neighborhood Ux homeomorphic to the set !˛.x/C 1, where
˛.x/ is the Cantor–Bendixon rank of x. If x 4 y and y 4 x both hold, it follows
that ˛.x/ D ˛.y/, and so any homeomorphism from a neighborhood of x into a
neighborhood of y necessarily takes x to y. Thus, x and y are locally homeomorphic.
In particular, these points also have the same rank.

In the general case where EG ¤∅, let xE denote the topological space of ends (with no
distinction between those accumulated by genus or not). Any homeomorphism of E

induces one of xE by simply forgetting that EG is preserved. Thus, the argument above
shows that if x � y in E, then they admit neighborhoods Ux and Uy in xE which are
homeomorphic. Moreover, such a homeomorphism necessarily takes x to y, and in
fact no homeomorphism of E can take x to another point of Uy . Thus, x 4 y implies
that there is a homeomorphism of E taking a neighborhood of x in E to one of y. The
converse statement is immediate.
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Remark 4.4 We do not know if Proposition 4.3 holds in the uncountable case. This
appears to be an interesting question. However, it is quite easy to construct large
families of examples for which it does hold.

Remark 4.5 Despite the above remark, there are indeed some marked differences
between the behavior of � when E is countable and when E is uncountable. In
the countable case, it follows from Proposition 4.3 that x � y if and only if y is
an accumulation point of E.x/, giving a convenient alternative description of �. In
general, a weaker statement holds: we show below that if y is an accumulation point
of E.x/, then x 4 y. However, if E is a Cantor set and EG D∅, for example, then
all points are equivalent and all are accumulation points of their equivalence class.

We now prove some general results on the structure of 4.

Lemma 4.6 For every y 2E, the set fx j x < yg is closed.

Proof Consider a sequence xn ! x where xn < y holds for all n. Let U be a
neighborhood of x. Then, for large n, U is also a neighborhood of xn and hence
contains homeomorphic copies of some neighborhood of y.

Proposition 4.7 The partial order � has maximal elements. Furthermore , for every
maximal element x, the equivalence class E.x/ is either finite or a Cantor set.

Proof To show that E has maximal elements, by Zorn’s lemma it suffices to show that
every chain has an upper bound. Suppose that C is a totally ordered chain. Consider the
family of sets fx j x < yg, for y 2 C. Then, by Lemma 4.6, this is a family of nested,
closed, nonempty sets and hence

CM D

\
y2C

fx j x < yg

is nonempty. By definition, any point of this intersection is an upper bound for C.

To see the second assertion, consider a maximal element x. If E.x/ is an infinite set,
then it has an accumulation point, say z. Then z < x, but since x is maximal, we have
z � x. Since any neighborhood of any other point in E.x/ contains a homeomorphic
copy of a neighborhood of z, it follows that all points of E.x/ are accumulation points
and hence E.x/ is a Cantor set.

Going forward, we let MDM.E/ denote the set of maximal elements for �.
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4.1 Characterizing self-similar end sets

The remainder of this section consists of a detailed study of the behavior of end sets
using the partial order. We will develop a number of tools for the classification of
locally CB and CB generated mapping class groups that will be carried out in the next
sections.

Proposition 4.8 Let † be a surface with end space E and no nondisplaceable subsur-
faces. Then E is self-similar if and only if M is either a singleton or a Cantor set of
points of the same type.

One direction is easy and does not require the assumption that† has no nondisplaceable
subsurfaces: if M contains two distinct maximal types x1 and x2, then a partition
E DE1 tE2, where E.xi/�Ei , fails the condition of self-similarity. Similarly, if
M is a finite set of cardinality at least two, then any partition separating points of
M similarly fails the condition. By Proposition 4.7, the only remaining possibility is
that M is a Cantor set of points of the same type. This proves the first direction. The
converse is more involved, so we treat the singleton and Cantor set case separately. We
will need the following easy observation.

Observation 4.9 (“shift maps”) Suppose U1;U2; : : : are disjoint , pairwise homeo-
morphic clopen sets which Hausdorff converge to a point x. Then

S1
iD1 Ui [ fxg is

homeomorphic to
S1

iD2 Ui [fxg.

Proof For each i , fix a homeomorphism fi W Ui ! UiC1. Since the Ui Hausdorff
converge to a point, the union of these defines a global homeomorphism

S1
iD1 Ui !S1

iD2 Ui that extends continuously to x.

We will also use the following alternative characterization of self-similarity:

Lemma 4.10 Self-similarity is equivalent to the following condition: if E DE1 tE2

is a decomposition into clopen sets , then some Ei contains a clopen set homeomorphic
to E.

Proof Self-similarity implies the condition by taking nD 2. For the converse, suppose
the condition holds and let EDE1tE2t� � �tEn be a decomposition into clopen sets.
Grouping these as E1 t .E2 t � � � tEn/, by assumption one of these subsets contains
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a clopen set E0 homeomorphic to E. If it is E1, we are done. Else, the sets E0\Ei

with i D 2; 3; : : : ; n form a decomposition of E0 ŠE into clopen sets; so by the same
reasoning either E2\E0 contains a clopen set homeomorphic to E, or the union of
the sets E0 \Ei , for i � 3, does. Iterating this argument eventually produces a set
homeomorphic to E in one of the Ei .

The next three lemmas give the proof of Proposition 4.8.

Lemma 4.11 Suppose † has no nondisplaceable subsurfaces and M is a singleton.
Let E D AtB be a decomposition into clopen sets. If M � A, then A contains a
homeomorphic copy of B.

Proof Let E DAtB be a decomposition of E into clopen sets with MD fxg �A.
Since A is a neighborhood of x, every point y 2B has a neighborhood homeomorphic to
a subset of A. Since B is compact, finitely many of these cover B, say U1;U2; : : : ;Uk .
Without loss of generality, we may assume all the Ui are disjoint and their union is
equal to B. For each i , let Vi be a homeomorphic copy of Ui in A; note that x 62

S
i Vi .

Let S be a three-holed sphere subsurface such that the disjoint sets fxg,
S

i Vi and
B all lie in different connected components of the complement of S . Let f be a
homeomorphism displacing S . Since f .x/D x, up to replacing f with its inverse, we
have either f .B/�A, in which case we are done, or A contains a homeomorphic copy
of At

�S
i Vi

�
. In this latter case, by iterating f we can find k disjoint copies of

S
i Vi

inside A. Since each contains a copy of Ui , this gives a subset of A homeomorphic toF
Ui D B.

As a consequence, we can prove the first case of Proposition 4.8.

Lemma 4.12 Suppose † has no nondisplaceable subsurfaces and M is a singleton.
Then E is self-similar.

Proof Let E DE1 tE2 be a decomposition of E into clopen sets. Without loss of
generality, suppose MD fxg �E1. Lemma 4.11 says that there is a homeomorphic
copy U2 of E2 inside E1, necessarily this is disjoint from fxg. Let A be a small
neighborhood of x, disjoint from U2. Lemma 4.11 again gives a homeomorphic
copy U3 of E2 inside A. Proceeding in this way, we may find E2 D U1;U2;U3; : : : ,
each homeomorphic to E2 and Hausdorff converging to x. Define f WE1 tE2!E1

to be the homeomorphism where the restriction of f to
S1

iD1 Ui [fxg is constructed
as in Observation 4.9, and the restriction of f to the rest of E is the identity.
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The second case is covered by the following:

Lemma 4.13 Suppose † has no nondisplaceable subsurfaces and M is a Cantor set of
points all of the same type. Then E is self-similar.

Proof Let E DE1tE2 be a decomposition of E into clopen sets. If M is contained
in only one of the Ei , then one may apply the argument from Lemma 4.12, by letting
x be any point of M. Thus, we assume that both E1 and E2 contain points of M.

For concreteness, fix a metric on E. For each n2N , fix a decomposition A
.n/
1
; : : : ;A

.n/
jn

of E into clopen sets of diameter at most 2�n, such that E1 and E2 are each the union
of some number of these sets. Let Sn be a subsurface homeomorphic to a jn–holed
sphere, with complementary regions containing the sets A

.n/

k
. Since Sn is displaceable,

there exists some k such that A
.n/

k
contains a copy of all but one of the sets A

.n/
j ; in

particular, it contains a copy of either E1 or E2. Passing to a subsequence, we conclude
that for either i D 1 or i D 2 there exist homeomorphic copies of Ei of diameter less
than 2�n, for each n. Without loss of generality, say that this holds for E1. Passing
to a further subsequence, we can assume these copies of E1 Hausdorff converge to a
point x, so in particular every neighborhood of x contains a copy of E1.

It follows from the definition of 4 that each y 2M therefore also has this property:
every neighborhood of y contains a homeomorphic copy of E1. Let y2;y3;y4; : : :

be a sequence of points in E2 converging to y 2 E2, and let U1 D E1. Fix disjoint
neighborhoods Ni of yi converging to y, and let Ui be a homeomorphic copy of E1

in Ni . Now apply Observation 4.9.

This completes the proof of Proposition 4.8.

4.2 Stable neighborhoods

Motivated by the behavior of maximal points in the proposition above, we make the
following definition:

Definition 4.14 For x 2 E, call a neighborhood U of x stable if for any smaller
neighborhood U 0 � U of x, there is a homeomorphic copy of U contained in U 0.

Our use of the terminology “stable” is justified by Lemma 4.17 below, which says
that all such neighborhoods of a point are homeomorphic. (Recall that, by convention,
neighborhood always means clopen neighborhood.)
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Remark 4.15 Stable neighborhoods are automatically self-similar sets, and if U is a
stable neighborhood of x, then x 2M.U /. Our work in the previous section shows
that when � has a unique maximal type and all subsurfaces are displaceable, each
maximal point has a stable neighborhood.

It follows immediately from the definition that if x has one stable neighborhood, then
every sufficiently small neighborhood of x is also stable. More generally, we have the
following.

Lemma 4.16 If x has a stable neighborhood , and y � x, then y has a stable neighbor-
hood.

Proof Let U be a stable neighborhood of x. Since y � x, there is a neighborhood V

of y such that U contains a homeomorphic copy of V. Suppose V 0 � V is a smaller
neighborhood of y. Since x � y, there is some neighborhood U 0 of x (without loss of
generality, we may assume that U 0 � U ) such that V 0 contains a homeomorphic copy
of U 0. By definition of stable neighborhoods, U 0 contains a homeomorphic copy of U,
thus V 0 contains a homeomorphic copy of U and hence a homeomorphic copy of V.

Lemma 4.17 If x has a stable neighborhood U, then for any y � x, all sufficiently
small neighborhoods of y are homeomorphic to U via a homeomorphism taking x to y.

Proof The proof is a standard back-and-forth argument. Suppose x � y and y � x.
Let Vx be a stable neighborhood of x and Vy a stable neighborhood of y. Take a
neighborhood basis Vx D V0� V1� V2� � � � of x consisting of nested neighborhoods,
and take a neighborhood basis Vy D V 0

0
� V 0

1
� V 0

2
� � � � of y. Since y � x and x � y,

each Vi contains a homeomorphic copy of V 0
0

and each V 0i a copy of V0.

Let f1 be a homeomorphism from V0 � V1 into V 0
0
. Note that we may assume the

image of f1 avoids y: if y is the unique maximal point of V 0
0
, then this is automatic,

otherwise, E.y/ is a Cantor set of points, each of which contains copies of V0 in every
small neighborhood. Let g1 be a homeomorphism from the complement of the image
of f1 in V 0

0
�V 0

1
onto a subset of V1�fxg. Iteratively, define fi to be a homeomorphism

from the complement of the image of gi�1 in Vi�1�Vi onto a subset of V 0
i�1
�fyg,

and gi a homeomorphism from the complement of the image of fi in V 0
i�1
�V 0i onto

a subset of Vi � fxg. Then the union of all fi and g�1
i is a homeomorphism from

V0�fxg to V 0
0
�fyg that extends to a homeomorphism from V0 to V 0

0
taking x to y.

The following variation on Lemma 4.11 uses stable neighborhoods as a replacement
for displaceable subsurfaces.
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Lemma 4.18 Let x;y 2E, and assume x has a stable neighborhood Vx and that x is
an accumulation point of E.y/. Then for any sufficiently small neighborhood U of y,
U [Vx is homeomorphic to Vx .

Proof If x � y, then let U be a stable neighborhood of y disjoint from Vx . Let
V1 � V2 � V3 � � � � be a neighborhood basis for x consisting of stable neighborhoods.
Since x is an accumulation point of E.y/, for any sufficiently small neighborhood U0

of y (and hence for any stable neighborhood U ), there is a homeomorphic copy U1 of U0

in V1�fxg. Shrinking neighborhoods if needed, we may take U1 to be disjoint from Vi1

for some i1 2 N. Since Vi1
is homeomorphic to V1, there is also a homeomorphic

copy of U2 of U0 in Vi1
, disjoint from some Vi2

. Iterating this process we can find
disjoint sets Un�V1, each homeomorphic to U , and Hausdorff converging to x. Define
f W V1[U0! V1 to be the identity on the complement of

S
n Un and send Ui to UiC1

by a homeomorphism as in Observation 4.9.

If instead y�x, then take any neighborhood U of y disjoint from Vx and small enough
that Vx contains a homeomorphic copy of U . Since y � x, this copy lies in Vx �fxg,
and we may repeat the same line of argument above.

5 Classification of locally CB mapping class groups

We now prove properties of locally CB mapping class groups, building towards our
general classification theorem. Recall that we have the following notational convention.

Notation 5.1 If K � † is a finite-type subsurface, we denote by VK the identity
neighborhood consisting of mapping classes of homeomorphisms that restrict to the
identity on K.

Lemma 5.2 Let K�† be a finite-type subsurface such that each component of †�K

has infinite type. If there exists a finite-type , nondisplaceable (possibly disconnected )
subsurface S in † �K, then VK is not CB. If this holds for every such finite-type
K �†, then Map.†/ is not locally CB.

Proof Let K be a surface as in the statement of the proposition, with a nondisplaceable
subsurface S �†�K. Since each complementary region to K was assumed to have
infinite type, by enlarging S if needed we may assume that S still remains in the
complement of K, but is such that each component of S has high enough complexity
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that the length function `S defined in Section 2 will be unbounded. As in Proposition 2.8,
this gives a length function which is unbounded on VK , hence on V , so Map.†/ is not
locally CB.

As remarked above, the sets VL, where L ranges over finite-type subsurfaces, form
a neighborhood basis of the identity in Map.†/. But one may in fact restrict this to
range over finite-type surfaces whose complementary regions are all of infinite type,
since if L is finite type, then the union of L and its finite-type complementary regions
is again a compact surface, say K, and VK � VL. Thus, Map.†/ is locally CB if and
only if some such set VK is CB.

Going forward, we reference the partial order � defined in Section 4.

Lemma 5.3 If Map.†/ is locally CB , then the number of distinct maximal types
under � is finite.

Proof We prove the contrapositive. Suppose that there are infinitely many distinct
maximal types. Let K be any subsurface of finite type. By Lemma 5.2, it suffices to
find a nondisplaceable subsurface contained in †�K, which we do now.

To every end x 2E of maximal type, let �.x/ denote the set of connected components
of †�K which contain ends from E.x/. Since †�K has finitely many connected
components, by the pigeonhole principle there are two ends x and y with x œ y but
�.x/D �.y/. That is, each complementary region of †�K that has an end from E.x/

also contains ends from E.y/, and vice versa. Fix any z 2E with z œ x and z œ y.

Construct a surface S as follows. For each component � of �.x/, take a three-holed
sphere subsurface contained in � so that the complementary regions of the three-holed
sphere separate E.x/ from E.y/ and E.z/ in � . That is to say, one complementary
region contains only ends from E.x/ and none from E.y/ or E.z/, while another
contains only ends from E.y/ and none from E.x/ or E.z/, and the third contains at
least some points of E.z/ (possibly those from another complementary region of K).
Let S be the union of these three holed spheres, one in each component of �.x/. Thus,
each end from E.x/ is the end of some complementary region of S which has no ends
of type y, and vice versa.

We claim that S is nondisplaceable. For if Si is a connected component of S , then
one complementary region of Si contains ends from E.x/, but none from E.y/. By
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invariance of E.x/ and E.y/, if some homeomorphic image f .Si/ were disjoint
from S , then we would have to have f .Si/ contained in one of the complementary
regions of S containing points of E.x/. However, this region contains no points of
E.y/ or E.z/, contradicting our construction of Si . Hence, S is nondisplaceable and,
by Lemma 5.2, Map.†/ is not locally CB.

We now state the first structure theorem for end spaces of surfaces with locally CB
mapping class groups.

Proposition 5.4 If Map.†/ is locally CB , then there is a partition

E D
G

A2A

A;

where A is finite , each A2A is clopen and self-similar , and M.A/�M.E/. Moreover ,
this decomposition can be realized by the complementary regions to a finite-type surface
L�† with jAj boundary components , either of zero genus or of finite genus equal to
the genus of †.

This will be a quick consequence of the following stronger result:

Proposition 5.5 Suppose that Map.†/ is locally CB. Then there exists a CB neighbor-
hood VK of the identity , where K is a finite-type surface with the following properties:

(i) Each connected component of †�K has one or infinitely many ends and zero
or infinite genus.

(ii) The connected components of †�K partition E as

E D
G
yA2A

yAt
G

P2P

P;

where each yA 2A is self-similar , and for each P 2 P , there exists some yA 2A
such that P is homeomorphic to a clopen subset of yA.

(iii) For all yA 2 A, the maximal points M. yA/ are maximal in E, and M.E/ DF
yA2A M. yA/.

Our choice of A as the notation for the index set in both propositions is because they
may be canonically identified. In fact, the proof of Proposition 5.4 consists of showing
that each of the sets A is a union of one set yA from Proposition 5.5 and some number
of the sets in P , and that A is homeomorphic to yA.
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Proof of Proposition 5.5 Suppose that V is a CB neighborhood of the identity
in Map.†/. Let K be a finite-type surface such that VK �V , so VK is also CB. Enlarging
K if needed (and hence shrinking VK ), we may assume that each complementary region
to K has either zero or infinite genus. Since � has only finitely many maximal types,
enlarging K further, we may assume that its complementary regions separate the
different maximal types, and moreover, if for some maximal x the set E.x/ is finite,
then all the ends from E.x/ are separated by K. Thus, complementary regions to K

have either no end from M.E/, a single end from M.E/ or a Cantor set of ends of a
single type from M.E/.

Our goal is to show that the complementary regions containing ends from M.E/ are
all self-similar sets, and the end sets of the remaining regions have the property desired
of the sets P 2P described above. It will be convenient to introduce some terminology
for the set of ends of a complementary region to K, so call such a subset of E a
complementary end set.

For simplicity, assume as a first case that for each maximal type x, the set E.x/ is finite.
Fix a maximal type point x 2E, and let B1;B2; : : : ;Bk �E be the complementary
end sets whose maximal points lie in E.x/. We start by showing that at least one
of the sets Bi is self-similar. Let xi denote the maximal point in Bi . Let Ui be any
clopen neighborhood of xi in Bi . Since xi 2E.x/, we may find smaller neighborhoods
Vi �Ui such that each Ui contains a homeomorphic copy of Vj for all j D 1; 2; : : : ; k.
Let S � †�K be a subsurface, homeomorphic to the disjoint union of k pairs of
pants, such that the complementary regions of the i th pair of pants partitions the ends
of † into Vi , Bi �Vi and E �Bi .

Since VK is assumed CB, the surface S is displaceable by Lemma 5.2, so at least
one of the connected components of S can be moved to be disjoint from S by a
homeomorphism. Since E.x/ is homeomorphism invariant, we conclude that there
is a copy of Bj in some Vi , possibly with i ¤ j . Our choice of Vi now implies that
there is in fact a homeomorphic copy of Bj in Uj . Thus, we have shown that, for any
neighborhoods Ui of xi , there exists j such that Uj contains a copy of Bj . Applying
this conclusion to each of a nested sequence of neighborhoods of the xi which give a
neighborhood basis, we conclude that some j must satisfy this conclusion infinitely
often (ie has a homeomorphic copy contained in every neighborhood of xj ), giving us
some Bj which is self-similar.

Since xi are the unique maximal points of Bi , this implies that each xi has a neigh-
borhood Mi homeomorphic to Bj , ie a self-similar set. Repeating this process for all
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of the distinct maximal types, we conclude that each maximal point has a self-similar
neighborhood. Fix a collection of such neighborhoods. Since this collection is finite
we may enumerate them A1;A2; : : : ;An.

For each nonmaximal point y, Lemma 4.18 implies that there exists a neighborhood Py

of y such that Py [Ai is homeomorphic to some Ai , a neighborhood of a maximal
point that is a successor (though not necessarily an immediate successor) of y. Since
E �

F
i Ai is compact, finitely many such neighborhoods Py cover it. Enlarging K,

we may assume that it partitions the end sets into the disjoint union of such sets of the
form Py and Ai . This concludes the proof in the case where M is finite.

Now we treat the general case where, for some maximal types, the set E.x/ is a Cantor
set. The strategy is essentially the same. We use the following lemma, which parallels
the argument just given above.

Lemma 5.6 Keeping the hypotheses of the proposition , let x be a maximal type with
E.x/ a Cantor set. Then x has a neighborhood which is self-similar.

Proof Let A1; : : : ;Ak be the complementary end sets which contain points of E.x/,
and fix a maximal end xi in each Ai . As before, we start by showing that, for some j ,
every neighborhood of xj contains a homeomorphic copy of Aj , so in particular Aj

is self-similar. Let Ui be a neighborhood of xi . For each z 2 E.x/, let Vz be a
neighborhood of z such that each of the sets Ui contains a homeomorphic copy of Vz .
Since E.x/ is compact, finitely many such Vz cover E.x/, so from now on we consider
only a finite subcollection that covers. Let S �†�K be a subsurface homeomorphic
to the union of k disjoint n–holed spheres, where n is chosen large enough that each
complementary region of S has its set of ends either contained in one of the finitely
many Vz , or containing all but one of the sets Ai .

Again, since E.x/ is invariant, and S is displaceable, this means that there is some Vz

and some Aj such that Vz contains a homeomorphic copy of Aj . Thus, by definition
of Vz , we have that Uj contains a homeomorphic copy of Aj . Repeating this for
a nested sequence of neighborhoods of the xi , we conclude that some xj satisfies
this infinitely often. This means that Aj is a stable neighborhood of xj , hence by
Lemma 4.17, each point of E.x/ has a stable neighborhood, which is necessarily a
self-similar set.

Now we can finish the proof as in the case where all E.x/ are finite, by fixing a finite
cover of

S
x2M.E/E.x/ by stable neighborhoods, and using Lemma 4.18 as before.
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Proof of Proposition 5.4 Let E D
F
yA2A
yAt

F
P2P P be the decomposition given

by Proposition 5.5. By construction of the sets P and Lemma 4.18, for each P 2 P ,
there exists yA 2 A such that P t yA Š yA. Applying this to each P iteratively, we
conclude that E is homeomorphic to the disjoint union

F
A2A

yA. Relabeling yA as A

gives the desired result, and we may take L to be a subset of K.

With this groundwork in place, we can prove Theorem 1.4. We restate it in slightly
different form, for convenience.

Theorem 5.7 Map.†/ is locally CB if and only if there is a finite-type surface K such
that the complementary regions of K each have one or infinitely many ends and zero or
infinite genus , and partition of E into finitely many clopen sets

E D

� G
yA2A

yA

�
t

� G
P2P

P

�
with the following properties:

(i) Each yA 2A is self-similar , M. yA/�M.E/ and M.E/D
F
yA2A M. yA/.

(ii) Each P 2 P is homeomorphic to a clopen subset of some yA 2A.

(iii) For any xA 2 M. yA/ and any neighborhood V of the end xA in †, there is
fV 2Homeo.†/ such that fV .V / contains the complementary region to K with
end set yA.

Moreover , in this case VK WD fg 2Homeo.†/ W gjK D idg is a CB neighborhood of the
identity, and K may always be taken to have genus zero if † has infinite genus , and
genus equal to that of † otherwise , and if the number of isolated planar ends of † is
finite , we may additionally take all of these ends to be punctures of K.

Note that the case where K D ∅ implies that † has zero or infinite genus and self-
similar end space, in which case we already showed that V∅ DMap.†/ is CB. In this
case, conditions (ii) and (iii) are vacuously satisfied. The reader may find it helpful to
refer to Figure 1 for some very basic examples, all with P D∅, and keep this in mind
during the proof.

Proof of Theorem 5.7 .D)/ The forward direction is obtained by a minor im-
provement of Proposition 5.5. Assume Map.†/ is locally CB. Let K � † be a
finite-type surface with VK a CB neighborhood of the identity and the properties given
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in Proposition 5.5. We may enlarge K if needed so that each of its boundary curves
are separating, and so that whenever some maximal type x has E.x/ homeomorphic
to a Cantor set, then E.x/ is contained in at least two complementary regions to K.
This latter step can be done as follows: if yA is the unique complementary region of K

containing the Cantor set E.x/, then glue a strip to K that separates yA into two clopen
sets, each containing points of E.x/. Since yA is self-similar, each point of M. yA/ has
a stable neighborhood by Lemma 4.16, and so the two clopen sets of our partition are
again each self-similar and each homeomorphic to yA. Enlarging K further if needed,
we may assume it also contains all isolated punctures if this number is finite.

Thus, we assume K now has these properties, and let ED
�F
yA2A
yA
�
t
�F

P2P P
�

be
the resulting decomposition of E, with † yA and †P denoting the connected component
of K with end space yA or P , respectively. We need to establish that the third condition
holds. Fix yA, let xA 2M. yA/, let V � † be a neighborhood of the end xA, and let
E.V / � yA denote the end space of V. We may without loss of generality assume
that V has a single boundary component. Recall that our goal is to show that the
pair V; .†�V / is homeomorphic to the pair † yA; .†�† yA/.

First consider the case where jE.xA/j> 1. By construction there exists yB¤ yA2A with
E.x/\ yB ¤∅. Since points of E.xA/ have stable neighborhoods, yB[ . yA�E.V // is
homeomorphic to yB. Moreover, if† yA has infinite genus, then V and†�† yA and†�V

all do as well, while if† yA has genus 0, then so does V , and both complementary regions
are of the same genus as well (equal to the genus of †). Thus, by the classification
of surfaces, the pair V; †�V is homeomorphic to † yA; †�† yA and so there is some
fV 2Map.†/ taking V to † yA. This is what we needed to show.

Now suppose instead jE.xA/j D 1. Here we will use the displaceable subsurfaces
condition to find the desired fV . Let S be a pair of pants in the complement of K,
with one boundary component equal to @V and another homotopic to @† yA. Since
S � .†�K/, it is displaceable, so let f be a homeomorphism displacing S . Since
E.xA/D xA is an invariant set, up to replacing f with its inverse, we have f .S/� V.
If, as a first case, there exists a maximal end y œ x, then E.y/ is also an invariant set.
Thus, f .† yA/� V, hence we may take fV D f

�1 and have fV .V /� yA.

If, as a second case, † has finite genus, then f .†�†A/ necessarily contains all the
genus of †, hence again we have f .† yA/� V . Finally, if neither of these two cases
holds, then † has infinite or zero genus, and a unique maximal end, so jAj D 1 and
E is self-similar. Thus, Map.†/ is CB by Proposition 3.1.
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. D)/ For the converse, the case where K D∅, we have that † has zero or infinite
genus and a self-similar end space is covered by Proposition 3.1.

So suppose † is not zero or infinite genus with a self-similar end space, but instead we
have a finite-type surface K with the properties listed. We wish to show that VK is CB.
Let T �† be a finite-type surface with VT � VK , ie T �K. We need to find a finite
set F and some n such that .FVT /

n contains VK .

For each yA 2 A, fix xA 2 M. yA/ and let VA be the connected component of T

containing xA. Let fV be the homeomorphism provided by our assumption. Also,
for each P 2 P , choose a homeomorphism fP of † that exchanges P with a clopen
subset of some yA 2A which is homeomorphic to P . Let F be the set of all such f ˙1

V

and f ˙1
P

.

Now suppose g 2 VK . We can write g as a product of jAj C jPj homeomorphisms,
where each one is supported on a surface of the form †A for yA 2A or †P for P 2 P
(adopting our notation from the previous direction of the proof).

If some such homeomorphism gA is supported on †A, then f �1
V

gAfV restricts to
the identity on T , so gA 2 FVT F . For a homeomorphism gP supported on †P ,
we have that f �1

P
gPfP is supported in †A, so gP 2 F2VT F2. This shows that

g 2 .F2VT F2/jAjCjPj, which is what we needed to show.

5.1 Examples

While the statement of Theorem 5.7 is somewhat involved, it is practical to apply in
specific situations. Below are a few examples illustrating some of the subtlety of the
phenomena at play. The first is an immediate consequence:

Corollary 5.8 If † has finite nonzero genus and countable self-similar end space ,
then † is not locally CB.

As another example, one could take † to have finite nonzero genus, and end space
equal to the union of cantor set and a countable set of isolated points, accumulating
on the Cantor set at exactly one point. Many other variations are possible. As a more
involved example, we have the following:

Corollary 5.9 Suppose that † has finite nonzero genus and self-similar end space ,
with a single maximal end x, but infinitely many distinct immediate precursors to x.
Then Map.†/ is not locally CB.
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Figure 4: The subsurface with red boundary defines a CB neighborhood,
while the smaller subsurface with blue boundary does not.

As a concrete example, one could construct E by taking countably many copies of a
Cantor set indexed by N, all sharing a single point in common and Hausdorff converging
to that point, with the nth copy accumulated everywhere by points locally homeomorphic
to !nC 1.

Proof If Map.†/ were locally CB, then we would have a finite-type surface K as in
Theorem 5.7. Since M is a singleton, AD f yAg, xAD x and †A is some neighborhood
of the end x. However, by construction, E � yA contains ends of only finitely many
types of immediate precursors. Thus, we may choose a smaller neighborhood V of
x so that † � V has more distinct types of ends. Then † � V cannot possibly be
homeomorphic to †�†A, so no such fV exists.

By contrast, if † is finite genus with end space equal to a Cantor set, or attained by the
construction in Corollary 5.9 but replacing N with a finite number, then Map.†/ is
locally CB. We draw attention to a specific case of this to highlight the role played by
A and P .

Example 5.10 Let † be a surface of finite nonzero genus g, with E homeomorphic
to the union of a Cantor set C and a Cantor set D, and a countable set Q, with
C \D D fxg and the accumulation points of Q equal to D, as illustrated in Figure 4.
Then by Theorem 5.7, a CB neighborhood of the identity in Map.†/ can be taken to
be VK where K is a finite-type subsurface of genus g with two boundary components,
with one complementary region to K having x as an end, and the other containing points
of both C and D. In this case, A and P are both singletons, with one complementary
region in each.

The set E itself is self-similar, and the decomposition into self-similar sets given by
Proposition 5.4 is trivial. However, if K0 is a finite-type subsurface realizing this
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decomposition (with a single complementary region), then VK 0 is not a CB set. Indeed,
one may find a nondisplaceable subsurface in the complement homeomorphic to a
three-holed sphere, where one complementary region has x as an end, one contains all
the genus of † but no ends, and the third contains points of C , for example.

6 CB generated mapping class groups

In this section we give general criteria for when mapping class groups are CB generated,
building towards the proof of Theorem 1.6.

6.1 Two criteria for CB generation

Notation 6.1 For a subset X �E, we say a family of neighborhoods Un in E descends
to X if Un are nested, meaning UnC1 �Un, and if

T
n2N UnDX. As a shorthand, we

write Un&X. If X D fxg is a singleton, we abuse notation slightly and write Un& x

and say Un descends to x.

Definition 6.2 (limit type) We say that an end set E is limit type if there is a finite-
index subgroup G of Map.†/, a G–invariant set X � E, points zn 2 E, indexed by
n 2N which are pairwise inequivalent, and a family of neighborhoods Un&X such
that

E.zn/\Un 6D∅; E.zn/\U c
0 6D∅; E.zn/� .Un[U c

0 /:

Here U c
0
DE �U0 denotes the complement of U0 in E.

The following example explains our choice of the terminology “limit type”:

Example 6.3 Suppose that ˛ is a countable limit ordinal, and E Š !˛ � nC 1, with
n� 2 and EG D∅. To see that this end space is limit type, take G to be the finite-index
subgroup pointwise fixing the n maximal ends. Fix a maximal end x and a clopen
neighborhood U0 of x disjoint from the other maximal ends, and let Un�U0 be nested
clopen sets forming a neighborhood basis of x. Since Un�UnC1 is closed, there is a
maximal ordinal ˇn such that Un contains points locally homeomorphic to !ˇn C 1.
Passing to a subsequence we may assume that all of these are distinct, and one may
choose zn 2 Un to be a point locally homeomorphic to !ˇn C 1. Note that necessarily
the sequence ˇn converges to the limit ordinal ˛. The assumption that n� 2 ensures
that the sets E.zn/ contain points outside of U0, and we require this in the definition
to ensure that E is not self-similar.
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Lemma 6.4 (limit-type criterion) If an end set E has limit type , then Map.†/ is not
CB generated.

Proof Let G, X, Un and zn be as in the definition of limit type. We will show G is
not CB generated. Since G is finite index, this is enough to show that Map.†/ is not
CB generated. Furthermore, since Map.†/ (and hence G) is assumed to be locally CB,
it suffices to show that there is some neighborhood VG of the identity in G such that
for any finite set F , the set FVG does not generate G.

Let VG be a neighborhood of the identity in G, chosen small enough that, for every
g 2 VG and all n> 0, we have g.Un/� U0 and g.U c

0
/\Un D∅.

Let F be any finite subset of G. Since G preserves both the set X and the set E.zn/�

Un tU c
0

, there exists N 2N such that for all n>N and all f 2 F , we have

f .E.zn/\Un/� Un:

The same holds for elements of VG .

Fix such an n > N , and let xn 2 E.zn/\Un and yn 2 E.zn/\U c
0

. Since xn � yn,
there is a homeomorphism h with h.xn/ lying in a small neighborhood of yn contained
in U c

0
. By our observation above, h is not in the subgroup generated by FVG , which

shows that G is not CB generated, as desired.

A second obstruction to CB generation is the following “rank” condition:

Definition 6.5 (infinite rank) We say Map.†/ has infinite rank if there is a finite-
index subgroup G of Map.†/, a closed G–invariant set X, neighborhood U of X and
points zn, for n 2N, each with a stable neighborhood (see Definition 4.14) such that

� zn 62E.zm/ if m¤ n,

� for all n, E.zn/ is countably infinite and has at least one accumulation point in
both X and in E �U , and

� the set of accumulation points of E.zn/ in U is a subset of X.

If the above does not hold, we say instead that Map.†/ has finite rank.

Example 6.6 A simple example of such a set is as follows. Let Cn be the union of
a countable set and a Cantor set, with Cantor–Bendixson rank n, and nth derived set
equal to the Cantor set. For each Cn, select a single point zn of the Cantor set to be
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an end accumulated by genus. Now create an end space E by taking N copies of
each Cn, arranged so that they have exactly two accumulation points x and y (and
these accumulation points are independent of n). Then X D fxg and the points zn

satisfy the definition.

Examples of surfaces with countable end spaces and infinite-rank mapping class groups
are much more involved to describe. (Note that these necessarily must have infinite
genus.) It would be nice to see a general procedure for producing families of examples.

Lemma 6.7 (infinite-rank criterion) If Map.†/ has infinite rank , then it is not CB
generated.

Proof Let G, X, U and zn be as the definition of infinite rank. For every zn, we define
a function `n WG! Z as follows. For � 2G, define

`n.�/D j.E.zn/\U /���1.U /j � j.E.zn/\�
�1.U //�U j:

That is, `n.�/ is the difference between the number of points in E.zn/ that � maps out
of U, and the number of points in E.zn/ that � maps into U .

Since X is G–invariant and contains all of the accumulation points of E.zn/ in U,
the value of `n is always finite. It is also easily verified that `n is a homomorphism.
Moreover, as each zn has a stable neighborhood (all of which are pairwise homeo-
morphic), for any finite collection n1; : : : ; nk one may construct, for each i , a “shift”
homomorphism �i supported on a union of disjoint stable neighborhoods of E.zni

/,
taking one stable neighborhood to the next, so that `ni

.�i/D 1 and `nj
.�j /D 0 for

j ¤ i . Finally, `n is continuous; in fact for any neighborhood V of the identity in G

which is small enough that elements of V fix the isotopy class of a curve separating U

from E �U , we will have `n.V/D 0.

Thus, we have for each k 2N a surjective, continuous homomorphism

.`n1
; : : : ; `nk

/ WG! Zk ;

which restricts to the trivial homomorphism on the neighborhood V of the identity
described above.

By Theorem 2.1, any CB set is contained in a set of the form .FV/k for some finite
set F and k 2N. Given any such F , choose j > jF j. Then restriction of .`n1

; : : : ; `nj
/

to the subgroup generated by .FV/k cannot be surjective, as V lies in its kernel. It
follows that no CB set can generate G. Since G is finite index in Map.†/, the same is
also true for Map.†/.
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6.2 End spaces of locally CB mapping class groups

For the remainder of this section, we assume that Map.†/ is locally CB, our ulti-
mate goal being to understand which such groups are CB generated. Recall that
Proposition 5.4 gave a decomposition of E into a disjoint union of self-similar sets
homeomorphic to A 2 A, realized by a finite-type subsurface L � K. However, as
shown in Example 5.10, the neighborhood VL might not be CB. We now show that VL

is CB generated.

Lemma 6.8 Assume that Map.†/ is locally CB. Let L be a finite-type surface
whose complementary regions realize the decomposition E D

F
A2A A given by

Proposition 5.4. Then VL is CB generated.

Furthermore , we may take L to have genus zero if † has infinite genus , and genus equal
to that of † otherwise; and a number of punctures equal to the number of isolated planar
(not accumulated by genus) ends of † if that number is finite , and zero otherwise.

For the proof, we need the following observation, which follows from well-known
results on standard generators for mapping class groups of finite-type surfaces.

Observation 6.9 Let † be an infinite-type surface , possibly with finitely many bound-
ary components , and S �† a finite-type subsurface. Then there is a finite set of Dehn
twists D such that for any finite-type surface S 0, Map.S 0/ is generated by D and VS .

In fact, akin to Lickorish’s Dehn twist generators for the mapping class group of a
surface of finite type, one can find a set D of simple closed curves in † such that every
curve in D intersects only finitely many other curves in D, and such that the set of Dehn
twists around curves in D generates the subgroup of Map.†/ consisting of mapping
classes supported on finite-type subsurfaces of †; see [14]. One can then take the set D

of Observation 6.9 to be the set of Dehn twists around the curves in D that intersect S .

Proof of Lemma 6.8 Let K be the surface given by Theorem 5.7. For each P 2 P ,
there exists yA 2A such that yA�fxAg contains a homeomorphic copy of P . Choose
one such yA for each P 2 P , and for yA 2 A let PA denote the union of the elements
of P assigned to yA. Let L�K be a connected, finite-type surface with jAj boundary
components, and such that the complementary regions of L partition E into the sets
yA[PA as yA ranges over A. We take L to have the same number of punctures and

genus as K. For each yA, let †A denote the complementary region to L with end space
yA[PA.
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If f 2 VL, then f can be written as a product of jAj homeomorphisms, one supported
on each surface†A (and hence identifiable with an element of Map.†A/). So it suffices
to show, for each yA 2 A, that Map.†A/ is generated by VK \Map.†A/, which is a
CB subset of Map.†/, together with a finite set.

Fix yA, let K0 denote K\†A, let †1; †2; : : : ; †n denote the connected components
of †A �K0 with end spaces elements of P , and let †0 be the connected component
with end space yA. Let

G D VK \Map.†A/DMap.†0/�Map.†1/� � � � �Map.†n/:

In view of Observation 6.9, we can find a finite set of Dehn twists DA whose support is
contained in †A such that, for any finite-type surface S 0 �†A, Map.S 0/ is contained
in the group generated by DA and G.

Recall from Proposition 5.5 that PA contains no maximal points, that AD yA[PA is
a self-similar set (and homeomorphic to yA), and in particular we can find a copy of
PA in any neighborhood of xA. This implies there is some homeomorphism gA of †A

with gA.PA/� End.†0/, where End.†/ denotes the space of ends of the surface †0.
We now set our desired finite set to be

F DDA[fgAg:

We now show that Map.†A/ is generated by

G0 D G [F :

Let f 2Map.†A/. Since M. yA/ is an invariant set, we may find a neighborhood U of
M. yA/ in †A, which we may take to be a (infinite-type) subsurface of †0 with a single
boundary component, such that f .U /�†0. Let P 0

A
be a homeomorphic copy of PA

contained in End.U /. Thus, f .P 0
A
/� End.†0/, and so there exists h 2Map.†0/ with

hf .P 0
A
/D gA.PA/. This means g�1

A
hf .P 0

A
/D PA and therefore,

g�1
A hf .PA/� End.†0/:

Thus, there exists h0 2Map.†0/ interchanging g�1
A

hf .PA/ with gA.PA/, such that the
map h0 ı .g�1

A
hf / agrees with gA on PA. It follows that

g�1
A ı h0 ıg�1

A hf jPA
D id :

Applying another element h00 2Map.†0/, we can ensure that

f 0 D h00 ıg�1
A ı h0 ıg�1

A hf
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is the identity on End.†A/— that is, it is an element of the pure mapping class group
of †A. Since h, h0, h00 and gA are in G0, it is sufficient to show that f 0 is also contained
in the group generated by G0.

Let S 0 be a genus-zero surface of finite type that contains K0[ f 0.K0/. Since f 0 is a
pure mapping class, for each boundary curve ˛ of K0 the curves ˛ and f 0.˛/ cut out
the same subset of End.†A/. Hence they also cut out the same set of boundary curves
of S 0. But S 0 has genus zero, therefore the component of S 0�K0 associated to ˛ is
homeomorphic to the component of S 0�f 0.K0/ associated to f 0.˛/. That is, there is
a homeomorphism g0 2Map.S 0/ such that

g0f 0.K0/DK0:

But, as mentioned above, g0 (which has finite support) is in the group generated by G0.
Also, g0f 0 fixes †0 and hence is contained in VK [Map.K0/. But VK � G0 and K0 has
finite type, so Map.K0/ is also contained in the group generated by G0. This finishes
the proof.

Going forward, we will ignore the surface K produced earlier that defined the CB
neighborhood VK , and instead use the surface L, which gives a simpler decomposition
of the end space. The sets P 2P play no further role, and we focus on the decomposition
E D

F
A2A A given by the end spaces of complementary regions to the surface L.

This is the reason for our choice of notation yA for the smaller sets of the finer partition
of E, for we may now abandon the cumbersome hats.

Further decompositions of end sets Now we begin the technical work of the classi-
fication of CB generated mapping class groups. As motivation for our next lemmas,
consider the surface depicted in Figure 1 on the left. This surface has a mapping class
group which is both locally CB and CB generated — we have not proved CB generation
yet, but the reader may find it an illustrative exercise to attempt this case by hand. Here,
the decomposition of E given by the surface L is E DAtB tC , where A and C are
accumulated by genus, A and B are homeomorphic to !C 1, and C is a singleton. As
well as a neighborhood of the identity of the form VL, any generating set must include
a “handle shift” moving genus from A into C (see Definition 6.20 below), as well as
a “puncture shift” that moves isolated punctures out of A and into B. If each handle
was replaced by, say, a puncture accumulated by genus, one would need a shift moving
these end types in and out of neighborhoods of A and C instead.
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To generalize this observation to other surfaces with more complicated topology, we
need to identify types of ends of † that accumulate at the maximal ends of the various
sets in the decomposition. The sets WA;B defined in Lemma 6.10 and refined in
Lemma 6.17 below pick out blocks of ends that can be shifted between elements A

and B in A. Ultimately, we will have to further subdivide these blocks to distinguish
different ends that can be independently shifted; this is carried out in Section 6.4.

Lemma 6.10 Assume that Map.†/ is locally CB and that E does not have limit type.
Then:

� For every A 2A, there is a neighborhood N.xA/� A containing xA such that
A�N.xA/ contains a representative of every type in A�fxAg.

� For every pair A;B 2 A, there is a clopen set WA;B � .A�N.xA// with the
property that E.z/\WA;B ¤∅ if and only if

E.z/\ .A�fxAg/¤∅ and E.z/\ .B �fxBg/¤∅:

� For every A 2A, there is a clopen set WA � .A�N.xA// with the property that
if E.z/\ .A� fxAg/ ¤ ∅ and , for all B ¤ A, E.z/\ .B � fxBg/ D ∅ then
E.z/\WA ¤∅.

In other words, WA;B contains representatives of every type of end that appears in both
A�fxAg and B �fxBg, and WA contains representatives of every type that appears
only in A.

We declare WA;B D∅ if A�fxAg and B �fxBg have no common types of ends, and
similarly take WA D∅ if each type of end in A appears also in some B ¤A.

Proof We start with the first assertion. If M.A/ is a Cantor set then we can take
N.xA/ to be any neighborhood of xA that does not contain all of M.A/, and the first
assertion follows since M.A/ is the set of maximal points. Otherwise, M.A/D fxAg.
Let G be the finite-index subgroup of Map.†/ that fixes E.xA/ (which we know is
finite). Also recall that AD yA[PA. If such a neighborhood N.xA/ does not exist, then
there is a nested family of neighborhoods Un �

yA descending to xA and points zn 2Un

where .E.zn/\ yA/� Un. We also have that E.zn/ has nontrivial intersection with the
complement of yA, in fact if we choose V to be a neighborhood of xA excluding zn,
then for fV as in part (iii) of Theorem 5.7, fV .zn/ is not in A. Then, letting X D fxAg

and assuming U0 D
yA, we see that E has limit type. The contradiction proves the first

assertion.
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For the second assertion, fix A and B 2A and let

X D fx 2E jE.x/\A¤∅ and E.x/\B D∅g:

Then X \ A is closed: this follows since A is closed, and if xn is a sequence of
points in X \A converging to x1 but there is some point z 2E.x1/\B, then any
neighborhood of z would contain homeomorphic copies of neighborhoods of xn, for
sufficiently large n, contradicting the fact that E.xn/\B D∅.

Now consider a family of neighborhoods Un of X \A with Un&X and U0\B D∅.
Let WnDA�.Un[N.xA//. Since we have removed the neighborhood Un of X, every
point in Wn has a representative in B. We claim that, for some N 2N, WN contains
a representative of all points that appear in both A and B, that is to say, WA;B can
be taken to be WN . To prove the claim, suppose for contradiction that it fails. Then
after passing to a subsequence, we may find points zn, all of distinct types, such that
zn 2 Un, E.zn/\A¤ ∅ and E.zn/\B ¤ ∅. Since E.zn/ intersects U c

0
� B, this

implies that E has limit type. The contradiction proves the second assertion.

For the third assertion, consider the closed set

X D fx 2E jE.x/\A¤∅ and E.x/\B D∅ for all B ¤Ag:

Let U be any clopen neighborhood of X \A in A, and let WA D U �N.xA/. Then
by definition of N.xA/, .X \ A/ �N.xA/ contains a representative of every type
appearing only in A, so this remains true of its clopen neighborhood WA.

6.3 Tame end spaces

Definition 6.11 An end space E is tame if, for every A 2A, the point xA has a stable
neighborhood (as in Definition 4.14), and for any A;B 2 A, every maximal point
in WA;B has a stable neighborhood.

If† has locally CB mapping class group, then Theorem 1.4 implies that maximal points
have stable neighborhoods, so half of the tameness condition is satisfied. The other
half is an assumption that will be used in the next two sections. While this seems like
a restrictive hypothesis, the class of tame surfaces is very large. In fact, the following
problem seems to be challenging, as the examples of nontame surfaces (excluding
those which are self-similar; see Example 6.13 below) which we can easily construct
all seem to have infinite-rank or limit-type like behavior.
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Problem 6.12 Does there exist an example of a nontame surface whose mapping class
group has nontrivial, well-defined quasi-isometry type (ie is locally, but not globally,
CB and CB generated)?

Example 6.13 (nontame surfaces) Suppose fzngn2N is a sequence of points in an
end space which are not comparable, ie for all i ¤ j we have neither zi 4 zj nor
zj 4 zi . An end space containing such a sequence may be constructed, for instance, as
in Example 6.6, and even (as in that example) have the property that each zn admits a
stable neighborhood Vn. Let D denote a set consisting of the disjoint union of one copy
of each stable neighborhood Vn and a singleton x, so that the sets Vn Hausdorff converge
to x. Then x is a maximal point in D, but fails the stable neighborhood condition in
the definition of tame, since the homeomorphism types of small neighborhoods of x

do not eventually stabilize.

A surface with end space D fails the condition of Theorem 1.4 so is not locally CB,
but one can easily modify this construction to provide locally, and even globally,
CB examples. For instance, let E be the disjoint union of countably many copies of D,
arranged to have exactly k accumulation points. If k D 1, the end space constructed is
self-similar, with the sole accumulation point the unique maximal point. If k > 1, the
end space may be partitioned into finitely many self-similar sets satisfying the condition
of Theorem 1.4, but has immediate predecessors to the maximal points with no tame
neighborhood. (However, we note that this example is infinite rank, so the mapping
class group of a surface with this end type is not CB generated.)

The main application of the tameness condition is that it allows us to give a standard
form to other subsets of E. We begin with a definition and some preliminary lemmas.

Definition 6.14 When E.z/ is countable, we will say that z is a point of countable type.
Define Ecp.A;B/ (the countable predecessor set) to be the subset of WA;B consisting
of points z where z is maximal in WA;B and of countable type. Since WA;B is clopen,
it has maximal points as in Proposition 4.7.

Observation 6.15 If z is any point of countable type , then any accumulation point
p of E.z/ satisfies z � p. Thus , if z 2 Ecp.A;B/, then E.z/ does not have any
accumulation points in WA;B and hence E.z/\WA;B is a finite set.

Lemma 6.16 Suppose E is tame and Map.†/ has neither limit type nor infinite rank.
Then , for any A;B 2A, the set Ecp.A;B/ contains only finitely many different types.
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Proof As a first case, suppose that M.A/ is a single point. Let G be the finite-index
subgroup of Map.†/ that fixes xA; recall that E.xA/ is finite. Now X D fxAg is
G–invariant and since Map.†/ does not have infinite rank, we can take U D A and
conclude that Ecp.A;B/ has finitely many different types.

Otherwise, M.A/ is a Cantor set. If E.xA/ does not intersect B, we can take X D

E.xA/ and U D Bc . Then X is Map.†/–invariant and again the fact that Map.†/
does not have infinite rank implies that Ecp.A;B/ has finitely many different types.

If M.A/ is a Cantor set and E.xA/ intersects B, then E.xA/ intersects WA;B and thus
Ecp.A;B/ is empty.

Lemma 6.17 Suppose that † has tame end space. Then , under the hypotheses of
Lemma 6.16, the sets WA;B from Lemma 6.10 can be chosen so that for any z in
Ecp.A;B/, the set E.z/\WA;B is a singleton. Such a choice specifies a set which is
unique up to homeomorphism , and in this case WA;B is homeomorphic to WB;A.

Proof Fix a choice of set WA;B as given by Lemma 6.10. For each z 2 Ecp.A;B/,
choose disjoint stable neighborhoods around every point in the finite set E.z/\WA;B

(this set is finite by Observation 6.15) and remove all but one neighborhood, leaving the
rest of WA;B unchanged. Denote this new set by W 0

A;B
. Since one such neighborhood

remains, any type that was represented in WA;B is still represented there, so it satisfies
the conditions of Lemma 6.10. We wish to show that the homeomorphism type
of W 0

A;B
is independent of our choices of stable neighborhoods, and that W 0

A;B
is

homeomorphic to W 0
B;A

. We prove both assertions simultaneously, by showing that
W 0

A;B
is homeomorphic to any choice of set W 0

B;A
as defined by the same procedure.

Let z1; : : : ; zk 2 W 0
A;B

be the points of Ecp.A;B/; recall there is one of each type.
Let V1; : : : ;Vk be the chosen disjoint stable neighborhoods of these points in W 0

A;B
,

which exist by the tameness assumption. Let W DW 0
A;B
�
S

i Vi . Similarly, choose
V 0

1
; : : : ;V 0

k
to be disjoint stable neighborhoods of points of countable predecessor type

in WB;A so that Vi is homeomorphic to V 0i , and let W 0 DW 0
B;A
�
S

i V 0i . We start by
showing that

W [W 0B;A ŠW 0B;A:

This is because, for any point in x 2W , there is a point y 2W 0
B;A

that is maximal
in W 0

A;B
, where y is an accumulation point of E.x/. Hence, by Lemma 4.18, there

is a neighborhood Ux of x and stable neighborhood Vy of y such that Ux [ Vy is
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homeomorphic to Vy . Since W is compact, finitely many such neighborhoods are
enough to cover W and, shrinking these neighborhoods if needed, we can write W

as the disjoint union of finitely many such neighborhoods. Thus, W can be absorbed
into W 0

B;A
.

Similarly we have that W 0[W 0
A;B

is homeomorphic to W 0
A;B

. That is,

W 0A;B ŠW 0A;B [W 0 ŠW [W 0[

�[
i

Vi

�
ŠW [W 0[

�[
i

V 0i

�
ŠW [W 0B;A ŠW 0B;A:

Going forward, we will use WA;B to denote the (well-defined up to homeomorphism)
sets constructed in the lemma, each containing a single representative of each of its
countable predecessor types.

6.4 Classification of CB generated mapping class groups

The purpose of this section is to prove Theorem 1.6, namely, the statement that the
necessary conditions for CB generation introduced in Section 6.1 are also sufficient for
tame surfaces.

We continue with the notation and conventions introduced in the previous section, in
particular the following.

Convention Going forward, we let L denote the finite-type surface furnished by
Proposition 5.4, so that the complementary regions to L produce a decomposition
E D

F
A2A A, where each A is self-similar, and we have

F
M.A/DM.E/.

The next proposition is the main technical ingredient in the proof of Theorem 1.6. It
says that, by using elements from a CB set, one may map any neighborhood U of xA

in E homeomorphically onto A while pointwise fixing any set B 2A which shares no
end types with A�U .

Proposition 6.18 Assume that E is tame and not of limit type , and that Map.†/ does
not have infinite rank. Then there is a finite set F �Map.†/ such that the following
holds:

Let A 2A, and let U �A be a neighborhood of xA. If BU �A is a subset that satisfies
E.y/\

�S
B2BU

B
�
¤ ∅ for all y 2 A�U, then there is an element f in the group

generated by F and VL with f .U /DA, and f j
C
D id for all C 2 .A�BU /.
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Proof The proof consists of several preliminary structural results on end spaces,
carried out in Steps 1–4; the set U and BU are introduced in the final step.

Step 1: decomposition of the sets A 2 A Fix A 2 A. For every B 2 A, consider
a copy of WA;B � A as in Lemma 6.17, as well as a homeomorphic copy of WA. A
short argument shows that we may choose these sets to be pairwise disjoint, so that we
have WA;B \WA;B0 D ∅ whenever B ¤ B0 and WA;B \WA D ∅ for all B. This is
as follows: enumerate the sets B1;B2; : : : ;Bk of A� fAg and perform our original
construction to obtain WA;B1

. This set is disjoint from N.xA/. By self-similarity,
there is a homeomorphic copy of A inside N.xA/, hence we may find a set WA;B2

disjoint from WA;B1
and also disjoint from a smaller copy of N.xA/. Continuing in

this manner, we may produce the desired sets. Doing this one more time, we also find
a disjoint copy of WA. We keep these sets (and refer to them to by this notation, WA;B

and WA) for the remainder of the proof.

Let
T0 DWA t

� G
B2A�fAg

WA;B

�
�A:

By construction, for every y 2A�fxAg, E.y/ intersects T0 by Theorem 1.4.

Let V1 DA�T0 and consider a family of neighborhoods Vk & xA. Each Vk contains
a copy of A and hence a copy Tk of T0. After dropping some of the sets Vk from the
nested sequence and reindexing, we can assume T1 � .V1�V2/. Continuing in this
way, we find a new nested sequence of neighborhoods, which we again denote by Vk ,
so that .Vk �VkC1/ contains a copy Tk of T0. In particular, the sets Tk are disjoint.

Our next goal is to modify this construction so that we in fact have .Vk �VkC1/Š Tk ,
ie we obtain a nested family of neighborhoods such that the annular regions between
them are homeomorphic to the sets Tk above. To do this, we first show that we can
distribute the set

QD .V1�V2/�T1

among finitely many of the other sets Tk , with k > 1, while preserving the homeomor-
phism class of the Tk ; and then proceed iteratively.

For each point y 2Q, E.y/ intersects T0 and hence y has a neighborhood Vy �Q

that has a homeomorphic copy inside T0. Since Q is compact, finitely many such
neighborhoods are sufficient to cover Q. Making some of these neighborhoods smaller,
we can write Q D Q1 t � � � tQm, where every Qi has a copy in T0 and hence in
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every Tk . For j D 1; : : : ;m and k � j mod m let Q0
k

be the copy of Qj in Vk . For
k D 1; : : : ;m define

T 0k D .Tk �Q0k/[Qk ;

and for k >m define
T 0k D .Tk �Q0k/[Q0k�m:

Each T 0
k

is still homeomorphic to T0, the sets T 0
k

are disjoint and every point in
.V1�V2/ is contained in some T 0

k
. Note that T0 is not modified.

Similarly to the above, we can distribute the points in

Q0 D .V2�V3/�
[
k�1

T 0k

among the sets T 0
k

, with k D 2; 3; : : : , without changing their topology. That is, we
obtain a family T 00

k
of disjoint sets homeomorphic to T0 whose union covers A�V3,

without modifying T0 or T 0
1
. Continuing in this way, every Tk is modified finitely

many times and stabilizes after k steps. Thus, fT .k/

k
j k 2Ng is a family of disjoint

copies of T0 that covers A� fxAg. To simplify notation, denote T
.k/

k
by Tk.A/. To

summarize,
A�fxAg D

G
k�0

Tk.A/;

and, defining
Un WD

G
k�n

Tk.A/;

we have
Un& fxAg:

Since T0 DWA t
�F

B¤A WA;B

�
, we have a similar decomposition of each homeo-

morphic set Tk.A/ into sets homeomorphic to WA and WA;B , which we notate by

Tk.A/DW k
A t

� G
B2A�fAg

W k
A;B

�
;

where, for k 2N, W k
A

is a set homeomorphic to WA and W k
A;B

is a set homeomorphic
to WA;B .

We also have the above decomposition for every B 2A�fAg. For notational conve-
nience, when k < 0, we define

W k
A;B WDW �k�1

B;A :
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Step 2: a first shift map Using the decomposition above, we define the first homeo-
morphism (of several) that shifts points between A and B. Since the sets W k

A;B
for

k 2Z are disjoint and homeomorphic and Hausdorff converge to the points xA and xB

as k approaches1 and �1, respectively, there exists a homeomorphism �A;B such
that

�A;B.W
k

A;B/DW k�1
A;B for all k 2 Z;

and restricts to the identity elsewhere in E. Fix one such map for each (unordered)
pair A;B 2A. Visually, the map �A;B pushes a copy of WA;B out of A and into B.

Step 3: shifting countable predecessor ends independently Now we define homeo-
morphisms allowing one to shift the countable predecessor ends one by one. As
motivation, consider, for instance, a surface with E Š ! � 2C 1, such that EG and the
closure of E�EG are both homeomorphic to ! �2C1, as shown in Figure 5. There are
two maximal ends, AD fA;Bg, and we have the simple situation where WA;B D T0

consists of one of each type of nonmaximal end. The map �A;B shifts ends of both
types towards B, simultaneously. However, there is evidently a homeomorphism of †
which pointwise fixes E �EG and shifts the nonmaximal ends of EG .

For z 2 Ecp.A;B/, let W k
A;B

.z/ � W k
A;B

be a stable neighborhood of the unique
intersection point of E.z/ with W k

A;B
. By making these neighborhoods smaller, we can

assume that the W k
A;B

.z/ for different z 2Ecp.A;B/ are disjoint. (This is a very slight
abuse of notation since W k

A;B
.z/ depends only on the equivalence class of z under �,

not the point itself.) Define �A;B;z to be a homeomorphism of † such that

�A;B;z.W
k

A;B.z//DW k�1
A;B .z/ for k 2 Z

and acts by the identity elsewhere in E. Note that the actions of �A;B;z on E commute
with each other and have support in A[B.

A � � � � � �B

Figure 5: E �EG and the nonmaximal ends of EG can be shifted independently.
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Step 4: standard decomposition for sets of shared ends Define

E.A;B/D

1G
kD0

W k
A;B:

The following claim shows that clopen subsets of E.A;B/ have a standard form:

Claim Let W �E.A;B/ be any clopen set in E.A;B/ containing WA;B and disjoint
from xA. For z 2Ecp.A;B/, let pz.W /D jE.z/\W j. Then W is homeomorphic to
the set

WA;B t

� G
z2Ecp.A;B/

pz .W /�1G
kD1

W k
A;B.z/

�
:

Recall that WA;B � T0 was a fixed set, chosen in Step 1. However, note that this
structure theorem also applies to any clopen subset of E.A;B/ which contains a
homeomorphic copy of WA;B .

Proof of claim For z 2 Ecp.A;B/ and y 2 E.z/\ .W �WA;B/, choose a stable
neighborhood Vy of y in W . Making the neighborhoods small enough, we can assume
they are disjoint from each other and from WA;B . Since stable neighborhoods are
canonical, we can map the union of these neighborhoods homeomorphically toG

z2Ecp.A;B/

pz .W /�1G
kD1

W k
A;B.z/:

It remains to show that if pz.W /D1 for every z2Ecp.A;B/, then W is homeomorphic
to WA;B .

For every point in y 2 .W �WA;B/, there is a point x 2WA;B that is maximal in WA;B

where x is an accumulation point of E.y/. By the tameness assumption, x has a stable
neighborhood and by Lemma 4.18, for any stable neighborhoods Vx of x and any
neighborhood Vy of y, Vx [Vy is homeomorphic to Vx . Taking a cover of W �WA;B

by such neighborhoods, we conclude that

W D .W �WA;B/[WA;B ŠWA;B:

Step 5: finishing the proof of Proposition 6.18 Let

F D f�˙1
A;B; �

˙1
A;B;z j B 2A�fAg and z 2Ecp.A;B/g:

Let U �A be a neighborhood of xA and let BU �A�fAg be as in the statement of the
proposition. The homeomorphism

Q
B2BU

��1
A;B

shifts the sets WB;A from
F

B2BU
B
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into A, and, in particular,G
B2BU

WA;B �A�

� Y
B2BU

��1
A;B

�
.U /:

Thus, up to applying this homomorphism, we may assume that U is sufficiently small
that its complement contains

F
B2BU

WA;B , the subset of T0.

Fix B1 2 BU . Since .A�U /\E.A;B1/ contains WA;B1
, the claim proved in Step 4

implies that .A�U /\E.A;B1/, it is homeomorphic to the standard set

WA;B1
t

� G
z2Ecp.A;B1/

pz .W /�1G
kD1

W k
A;B1

.z/

�
in A, and the complements of both this standard set and of .A�U /\E.A;B1/ in
A are homeomorphic (each is easily seen to be homeomorphic to A). Thus, by the
classification of surfaces there is a homeomorphism v1 supported on the complementary
region to L with end space A, hence in VL, taking .A�U /\E.A;B/ to this standard
set. However, by construction, the image of this standard set under

�A;B1
ı

Y
z2Ecp.A;B1/

�
pz .W /�1
A;B1;z

is disjoint from A, and the image of its complement in A is equal to A. Let

U 0 D �A;B1
ı

Y
z2Ecp.A;B1/

�
pz .W /�1
A;B1;z

ı v1.U /:

Note that BU 0 D BU �fB1g. We now repeat the process above using B2 2 BU 0 and U 0

and produce an element of the subgroup generated by F and VL which takes U 0 to a
subset of A containing E.A;B2/. Iterating this process for each B 2 BU achieves the
desired result.

We are almost ready to prove the main result of this section. In order to do so, we need
another finite set of mapping classes, the handle shifts, which we define now. See also
[14, Section 6] for earlier use of this class of maps.

Definition 6.19 An infinite strip with genus is the surface R� Œ�1; 1� with a handle
attached to the interior of each set Œm;mC 1�� Œ0; 1� so that .x;y/ 7! .xC 1;y/ is a
homeomorphism of the surface.
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A handle shift on the infinite strip with genus is the mapping class of the homeo-
morphism h which pointwise fixes the boundary, agrees with .x;y/ 7! .x C 1;y/

outside an �–neighborhood of the boundary, and on the �–neighborhood agrees with
.x;y/ 7! .xC .1� jyj/=�;y/.

Definition 6.20 Suppose that† has locally CB mapping class group and L is a surface
as in Lemma 6.8 We call a (infinite-type) subsurface R�† an infinite strip with genus
in † if it is homeomorphic to an infinite strip with genus, and has the property that the
complement of R in each complementary region to L has infinite genus.

A handle shift on R is the mapping class of the map h above (under our identification),
extended to agree with the identity on the complement of R.

Recall that the pure mapping class group, denoted by PMap.†/, is the subgroup of
Map.†/ which pointwise fixes E. We now prove a lemma on generating pure mapping
classes.

For each pair .A;B/ such that xA and xB are both accumulated by genus, let RAB �†

be an infinite strip with genus, with one end in A and one end in B. We may choose
these (one at a time) so that they are disjoint subsurfaces of †. Fix also a handle shift
hAB 2 Homeo.†/ on RAB .

Lemma 6.21 (generating PMap.†/) Let G be a subgroup of Map.†/ containing all
mapping classes supported on finite-type subsurfaces , all mapping classes that fix each
of the boundary components of L and the handle shifts hAB defined above. Then G

contains PMap.†/.

Proof For A2A, let †A denote the connected component of †�L with end space A,
and let @A denote its boundary component. Let g 2 PMap.†/. Then g.†A/ also has
end space A, and a single boundary component g.@A/. Let T � † be a connected,
finite-type subsurface large enough to contain L [ g.L/. If, for each A 2 A, the
surface †A\T is homeomorphic rel @T to g.†A/\T , then there is a mapping class �
supported on T such that �g.L/D L, preserving each of its boundary components,
which proves what we needed to show.

So we are reduced to the case where, for some A, the surface †A\T is not homeomor-
phic to g.†A/\T . Both are connected surfaces with the same number of boundary
components, so we conclude that they must have different genus. In particular, this
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†A †B

g.L/

L

Figure 6: T containing L and g.L/, and the domain �.RAB/ of the handle shift.

only occurs if † is itself of infinite genus, for otherwise we choose K by convention to
contain all the genus of †.

Without loss of generality, assume that the genus of g.†A/\T is larger than that of
†A\T . Since T is finite genus, there must also be another B 2A such that the genus
of g.†B/\T is smaller than that of †B\T . Since L is chosen so that complementary
regions have either zero or infinite genus, we conclude that M.A/ and M.B/ must be
accumulated by genus.

Consider the handle shift hAB supported on RAB , which has one end in A and one
end in B. Let � be a homeomorphism preserving the ends of †, preserving each
of the boundary components of L, and such that the intersection of �.RAB/ with
T \.g.†A/�†A/ and with T \.†B\g.†B// each have genus one, and �.RAB/\T

has genus two (so there is no genus elsewhere in T ), and so that, up to replacing
hAB with its inverse, �hAB�

�1 shifts the genus from T \ g.†A/ into T \†B . See
Figure 6 for an illustration in a simple setting. Such a homeomorphism � exists by the
classification of surfaces, and our stipulation that the complement of RAB have infinite
genus in complementary regions of L.

Then the genus of �hAB�
�1g.†A/ \ T is one less than that of g.†A/ \ T , and

the genus of �h�1
AB
��1g.†A/\T is one more, and there is no change otherwise in

the genus of complementary regions. Continuing in this fashion, one may iteratively
modify g by composing by elements of G so as to arrive at a homeomorphism g0 with
the property that †A\T is homeomorphic to g0.†A/\T for all A 2A, which is what
we needed to show.

A CB generating set We are now in a position to prove the main theorem on CB gen-
eration. Our CB generating set will consist of VK , together with the finite set consisting
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of the Dehn twists D from Observation 6.15, the finite set F from Proposition 6.18, the
handle shifts hAB , and a finite collection of homeomorphisms gAB (to be specified),
one for each pair A;B 2A such that xA and xB are of the same type.

Proof of Theorem 1.6 One direction follows from Lemmas 6.4 and 6.7. We prove the
other direction. For this, we show that the generating set described in the paragraph
above (after giving precise definitions of gAB) is in fact CB.

Let VK [D be the CB set given by Observation 6.15 (recall that D is a finite collection
of Dehn twists). Let F be the finite set from Proposition 6.18. For each pair of maximal
points xA;xB in EG, let hAB be the handle shift defined above Lemma 6.21. Let � be
the CB set consisting of VK [D together with the homeomorphisms from F and all
the hAB . By Lemma 6.21, we already know that this set generates the pure mapping
class group, so we start by considering only the action on the end space.

We show first that � generates the pointwise stabilizer of fxA WA 2Ag. After this, we
will add finitely many more homeomorphisms gAB to generate Map.†/.

Suppose that � fixes each of the points xA. We proceed inductively on the number of
elements of A which are pointwise fixed by the action of � on E. Let Aid denote the
subset (possibly empty) of A such that, for each A 2Aid, the ends of A are pointwise
fixed by �. Let Ac D A�Aid. Choose a set A 2 Ac . For every B ¤ A 2 Ac , let
UB D B ��.A/. Then for every end z 2 .B �UB/� �.A/, there is some end y � z

which lies in A. Hence, by Proposition 6.18 setting BUB
D A� fA;Bg, there is an

element g in the group generated by � with support in A[B that sends UB to B. In
particular, g �.A/\B D∅ and the restriction of g � to sets in Aid is still the identity.

Repeating this for each element of Ac, we may modify � by elements of � to obtain
a map �0 such that �0.A/ is disjoint from every C 2 A� fAg, ie �0.A/ � A, and so
that �0 restricts to identity on each element of Aid. Letting U D �0.A/, we see that
the conditions of Proposition 6.18 are again satisfied taking BU D Ac . Hence, there
is a g0 2 h�i that is also the identity on every set in Aid, and sends U to A. Thus,
g0�0.A/DA and we may take some  2 VL such that the restriction of  g0�0 to A is
the identity.

Continuing in this way, at every step, we increase the number of sets in Aid, and
eventually obtain a homeomorphism which pointwise fixes all ends. Since � generates
PMap.†/, we conclude that � 2 h�i.

Now we show that there is a finite set F 0 such that �[F 0 generates Map.†/. Construct
F 0 as follows. For any A;B 2A such that points in M.A/ and M.B/ are of the same
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type, choose one element gA;B sending N.xA/ to N.xB/ (recall that these are stable
neighborhoods) and restricting to the identity on every set in A�fA;Bg. Let F 0 be the
set of all such chosen gA;B . To see that �[F 0 generates, let � 2Map.†/. Suppose
�.xA/ 2 B. We modify � to a map �0 in one of the following ways.

Case 1 Assume �.xB/ 6D xB . There is a  2 VL with support in B that sends �.xA/

to xB and hence
�0 D gA;B �

fixes xA.

Case 2 Assume �.xB/D xB . Then M.B/ has more than one point and hence it is a
Cantor set. Take a map  2 VL with support in B that sends �.xA/ to xB and sends
xB to a point in B �N.xB/. Then

�0 D  �1gA;B �

sends xA to xA and still fixes xB .

The number of points xA that are fixed by �0 is one more than that for �. Hence, after
repeating this process finitely many times, we arrive at an element fixing each maximal
point, hence generated by �. This finishes the proof.

7 Classification of CB mapping class groups

In this section we prove Theorem 1.7 classifying the surfaces † for which the group
Map.†/ is CB. In the case where E is uncountable, we will add the hypothesis that †
is tame. However, we expect the classification theorem to hold without this additional
hypothesis, since it is only used in the very last portion of the proof.

Note that the telescoping case occurs only when E is uncountable, by Proposition 3.7.

Proof of Theorem 1.7 If † has zero or infinite genus and is either telescoping or
has self-similar end space, then it was shown in Propositions 3.1 and 3.5 that Map.†/
is CB, with no hypothesis on tameness. We prove the other direction. Assume that
† has a CB mapping class group. By Example 2.4, this implies that † has zero or
infinite genus. Also, being globally CB, Map.†/ is in particular locally CB so the end
space admits a decomposition E D

F
A2A A into finitely many self-similar sets as in

Theorem 1.4. Then Example 2.5 implies that, if we take such a decomposition with
A of minimal cardinality, then A has either one or two elements. Finally, if A is a
singleton, then E is self-similar. Thus, we only need to take care of the case where A
has exactly two elements.
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Example 2.5 also shows that, if AD fA;Bg, then M.A/ and M.B/ are either both
singletons or Cantor sets. A slight variation on the argument there also allows us to
eliminate the case where they are both Cantor sets: if points of M.A/ are not of the
same type as those in M.B/, then one may construct a nondisplaceable subsurface just
as in the example by having M.A/ play the role of the singleton. Otherwise, points of
M.A/ and M.B/ are all of the same type and hence

M.E/DM.A/[M.B/DE.xA/;

and Lemmas 5.6 and 4.18 together imply that E is self-similar.

Thus, we can assume that M.A/ D fxAg and M.B/ D fxBg. We start by showing
in this case that Emc.A;B/ D ∅. To show this, suppose for contradiction that we
have some z 2 Emc.A;B/. Then E.z/ accumulates to both xA and xB and since z

is maximal in E � fxA;xBg, the set E.z/ has no other accumulation points. As in
Lemma 6.7, we can define a continuous homomorphism to Z on the subgroup that
pointwise fixes fxA;xBg (which is of index at most two in Map.†/), via

`.�/D jfx 2E.z/ W x 2A; �.x/ 2 Bgj � jfx 2E.z/ W x 2 B; �.x/ 2Agj:

Let U0 � A be a neighborhood of z not containing xA. Since z 2 Ecp.A;B/, we
can find a homeomorphic copy U1 � B of U0 in B. Since A and B are self-similar,
we may find disjoint homeomorphic copies U2;U3; : : : of U0 in A descending to xA,
and homeomorphic copies U�1;U�2; : : : of U0 in B descending to xB . Let � be a
homeomorphism that sends Ui to UiC1 and restricts to the identity everywhere else.
Then `.�n/D n, so the homomorphism ` is unbounded and Map.†/ is not CB. This
gives the desired contradiction, so we conclude that Emc.A;B/ D ∅. Note that, in
particular, this implies E is not countable.

We now show that E is telescoping. Let N.xA/ and N.xB/ be as in Lemma 6.10. Let
V1 and V2 be subsurfaces with a single boundary component, such that the end space
of V1 is N.xA/ and that of V2 is N.xB/. We will check the definition of telescoping
by using these neighborhoods of x1 D xA and x2 D xB .

Let W1 � V1 and W2 � V2 be neighborhoods of xA and xB respectively. Let S be a
finite-type subsurface, homeomorphic to a pair of pants, whose complementary regions
partition E into W1, V2 and the remaining ends. Provided N.xA/ and N.xB/ are
chosen small enough, condition (ii) of Theorem 1.4 ensures that either † has genus
zero, or †� .V1[V2/ has infinite genus.

Let f1 be a homeomorphism displacing S . We may also assume that f1 fixes xA

and xB , since existence of a nondisplaceable subsurface in the finite-index subgroup
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of Map.†/ stabilizing xA and xB is sufficient to show that Map.†/ is not CB. Then,
up to replacing f1 with its inverse, we have f1.†�W1/ � V2. A similar argument
gives a homeomorphism f2 with f2.†�W2/� V1 and so the second condition in the
definition of telescoping is satisfied.

For the first condition, we need to find a homeomorphism of the subsurface †�V2 that
maps W1 to V1. By Lemma 4.18, we know that V1 and W1 are homeomorphic — their
end sets are homeomorphic, and they each have zero or infinite genus and one boundary
component — so we need only show that their complements are homeomorphic and
apply the classification of surfaces. Since, as remarked above, † either has genus zero
or †� .V1[V2/ has infinite genus, we need only produce such a homeomorphism on
the level of end spaces. Here we will finally invoke tameness. Let

†0 D†� .V1[V2/:

By definition of N.xA/, for any end z of V1�W1 there exists a maximal point x 2W1

with z 4 x. Tameness means that x has a stable neighborhood. Since x is not of
countable type, it is necessarily an accumulation point of E.z/ (even if z and x are of
the same type), and hence Lemma 4.18 implies that z has a neighborhood Uz such that
Uz [Vx is homeomorphic to Vx . Thus, on the level of ends, the end space of †0 is
homeomorphic to that of its union with Uz .

Since the end space of V1�W1 is compact, it may be covered by finitely many such
neighborhoods Uz (varying z); applying the procedure above to each of them in turn
produces the desired homeomorphism on the level of end spaces, showing the two
subsurfaces are homeomorphic.

References
[1] J Aramayona, A Fossas, H Parlier, Arc and curve graphs for infinite-type surfaces,

Proc. Amer. Math. Soc. 145 (2017) 4995–5006 MR Zbl

[2] J Aramayona, P Patel, N G Vlamis, The first integral cohomology of pure mapping
class groups, Int. Math. Res. Not. 2020 (2020) 8973–8996 MR Zbl

[3] J Bavard, Hyperbolicité du graphe des rayons et quasi-morphismes sur un gros groupe
modulaire, Geom. Topol. 20 (2016) 491–535 MR Zbl

[4] J Bavard, S Dowdall, K Rafi, Isomorphisms between big mapping class groups, Int.
Math. Res. Not. 2020 (2020) 3084–3099 MR Zbl

[5] R Camerlo, S Gao, The completeness of the isomorphism relation for countable
Boolean algebras, Trans. Amer. Math. Soc. 353 (2001) 491–518 MR Zbl

Geometry & Topology, Volume 27 (2023)

http://dx.doi.org/10.1090/proc/13608
http://msp.org/idx/mr/3692012
http://msp.org/idx/zbl/1377.57006
http://dx.doi.org/10.1093/imrn/rnaa229
http://dx.doi.org/10.1093/imrn/rnaa229
http://msp.org/idx/mr/4216709
http://msp.org/idx/zbl/1462.57020
http://dx.doi.org/10.2140/gt.2016.20.491
http://dx.doi.org/10.2140/gt.2016.20.491
http://msp.org/idx/mr/3470720
http://msp.org/idx/zbl/1362.37086
http://dx.doi.org/10.1093/imrn/rny093
http://msp.org/idx/mr/4098634
http://msp.org/idx/zbl/1458.57014
http://dx.doi.org/10.1090/S0002-9947-00-02659-3
http://dx.doi.org/10.1090/S0002-9947-00-02659-3
http://msp.org/idx/mr/1804507
http://msp.org/idx/zbl/0960.03041


2296 Kathryn Mann and Kasra Rafi

[6] R Chamanara, Affine automorphism groups of surfaces of infinite type, from “In the
tradition of Ahlfors and Bers, III” (W Abikoff, A Haas, editors), Contemp. Math. 355,
Amer. Math. Soc., Providence, RI (2004) 123–145 MR Zbl

[7] M G Durham, F Fanoni, N G Vlamis, Graphs of curves on infinite-type surfaces with
mapping class group actions, Ann. Inst. Fourier (Grenoble) 68 (2018) 2581–2612 MR
Zbl

[8] F Fanoni, S Hensel, N G Vlamis, Big mapping class groups acting on homology,
Indiana Univ. Math. J. 70 (2021) 2261–2294 MR Zbl

[9] W P Hooper, Grid graphs and lattice surfaces, Int. Math. Res. Not. 2013 (2013)
2657–2698 MR Zbl

[10] J Ketonen, The structure of countable Boolean algebras, Ann. of Math. 108 (1978)
41–89 MR Zbl

[11] H A Masur, Y N Minsky, Geometry of the complex of curves, I: Hyperbolicity, Invent.
Math. 138 (1999) 103–149 MR Zbl

[12] H A Masur, Y N Minsky, Geometry of the complex of curves, II: Hierarchical structure,
Geom. Funct. Anal. 10 (2000) 902–974 MR Zbl
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We study probability measure preserving (p.m.p.) nonfree actions of free groups
and the associated IRSs. The perfect kernel of a countable group � is the largest
closed subspace of the space of subgroups of � without isolated points. We introduce
the class of totipotent ergodic p.m.p. actions of �: those for which almost every
point-stabilizer has dense conjugacy class in the perfect kernel. Equivalently, the
support of the associated IRS is as large as possible, namely it is equal to the whole
perfect kernel. We prove that every ergodic p.m.p. equivalence relation R of cost < r

can be realized by the orbits of an action of the free group Fr on r generators that
is totipotent and such that the image in the full group ŒR� is dense. We explain why
these actions have no minimal models. This also provides a continuum of pairwise
orbit inequivalent invariant random subgroups of Fr , all of whose supports are equal
to the whole space of infinite-index subgroups. We are led to introduce a property
of topologically generating pairs for full groups (which we call evanescence) and
establish a genericity result about their existence. We show that their existence
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1 Introduction

In this context, clarifying precisely what is meant by “totipotency” and how
it is experimentally determined will both avoid unnecessary controversy and
potentially reduce inappropriate barriers to research.

— M Condic [5]

Let � be a countable discrete group. Denote by Sub.�/ the space of subgroups of � . It
is equipped with the compact totally disconnected topology of pointwise convergence
and with the continuous �–action by conjugation. Let ˇ be a Borel �–action on the
standard Borel space X ' Œ0; 1�. Its stabilizer map

Stabˇ WX ! Sub.�/; x 7! f 2 � W ˇ. /x D xg;

is �–equivariant. If � is a probability measure on X which is preserved by ˇ, then
the pushforward measure Stabˇ� � is invariant under conjugation. It is the prototype
of an invariant random subgroup (IRS). When � is atomless and the stabilizer map is
essentially injective (a.k.a. the action ˇ is totally nonfree), the support of the associated
IRS Stabˇ�.�/ has no isolated points: it is a perfect set. The largest closed subspace of
Sub.�/ with no isolated points is called the perfect kernel of Sub.�/. We say that an
ergodic probability measure preserving (p.m.p.) action is totipotent when the support of
its IRS is equal to the perfect kernel of Sub.�/. By ergodicity, the following stronger
property holds: almost every element of the associated IRS has dense orbit in the perfect
kernel; see Proposition 2.3. We call such an IRS totipotent.

Given a p.m.p. action � Õˇ .X; �/, we consider the associated p.m.p. equivalence
relation

Rˇ
WD f.x;y/ 2X �X W ˇ.�/x D ˇ.�/yg;

and its full group ŒRˇ � as the group of all measure-preserving transformations whose
graph is contained in Rˇ. The (bi-invariant) uniform distance between two measure-
preserving transformations S and T is defined by

du.T;S/ WD �.fx 2X W S.x/¤ T .x/g/:

It endows the full group ŒRˇ � with a Polish group structure. The cost is a numerical
invariant attached to the equivalence relation Rˇ. If ˇ is a p.m.p. action of the free
group Fr on r generators, then the cost of Rˇ is exactly r when ˇ is free, and the cost
of Rˇ is < r when ˇ is nonfree; see Gaboriau [8].
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The main result of Le Maître [15] is that for any ergodic p.m.p. equivalence relation R,
if R has cost< r for some integer r � 2, then there exists a homomorphism � WFr! ŒR�

with dense image.

This result has been sharpened in order to ensure that the homomorphism � is injective.
Actually, the associated (almost everywhere defined) p.m.p. action ˛� can be made to
satisfy the following two opposite conditions: high faithfulness and amenability on
�–almost every orbit; see Le Maître [18].

These two conditions can be phrased in terms of the support of the IRS associated to the
action: the first one means that the support contains the trivial subgroup, and one can
show that the second one is equivalent to the support containing a coamenable subgroup
(which in the construction of [18] is the kernel of a certain surjective homomorphism
Fr ! Z).

The purpose of the present paper is to show that the homomorphism can be chosen
so that the support of the associated IRS is actually the largest perfect subspace of
Sub.Fr /, which consists of all its infinite-index subgroups; see Proposition 2.1.

Theorem Let R be an ergodic p.m.p. equivalence relation whose cost is < r for some
integer r � 2. Then there exists a homomorphism � W Fr ! ŒR� whose image is dense
and whose associated p.m.p. action ˛� is totipotent.

The density in ŒR� of the image of � implies that R˛� ' R and that the stabilizer
map Stab˛� is essentially injective [18, Proposition 2.4]. In particular, the actions
Fr Õ .Sub.Fr /;Stab˛�

� �/ and Fr Õ˛� .X; �/ are conjugate (thus produce the same
equivalence relation) and almost every subgroup for the IRS Stab˛�

� � equals its own
normalizer. It follows that, up to isomorphism, every p.m.p. ergodic equivalence
relation of cost < r comes from a totipotent IRS of Fr (actually, from continuum many
different totipotent IRSs of Fr ; see Remark 5.1).

Such a statement is optimal since p.m.p. equivalence relations of cost � r cannot come
from a nonfree Fr action. To our knowledge, it was not even clear until now whether Fr

admits ergodic totipotent IRSs. Since there are continuum many pairwise nonisomorphic
ergodic p.m.p. equivalence relations of cost < r , our approach provides continuum
many pairwise distinct ergodic totipotent IRSs of the free group on r generators, whose
associated equivalence relations are even nonisomorphic.

Another interesting fact about totipotent p.m.p. Fr –actions is that they have no minimal
model, ie they cannot be realized as minimal actions on a compact space. Indeed, it
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follows from a result of Glasner and Weiss [10, Corollary 4.3] that as soon as the support
of the IRS of a given p.m.p. action contains two distinct minimal subsets (eg when
it contains two distinct fixed points), the action does not admit a minimal model; see
Theorem 2.5. In our case the perfect kernel of Sub.Fr / contains a continuum of fixed
points (namely, all infinite-index normal subgroups), so that totipotent p.m.p. actions
of Fr are actually very far from admitting a minimal model.

Let us now recall the context around our construction. The term IRS was coined by
Abert, Glasner and Virag [1] and has become an important subject on its own at the
intersection of group theory, probability theory and dynamical systems. The notion
of IRS is a natural generalization of a normal subgroup, especially in the direction of
superrigidity type results. It has thus been present implicitly in the work of many authors,
a famous landmark being the Stuck–Zimmer theorem [21], which gives examples of
groups admitting very few IRSs. On the contrary, some groups admit a “zoo” of IRSs,
starting with free groups; see Bowen [2] and, for other examples, Bowen, Grigorchuk
and Kravchenko [3; 4] and Kechris and Quorning [13].

In particular, Bowen proved that every p.m.p. ergodic equivalence relation of cost < r

comes from some IRS of Fr . He obtained this result through a Baire category argument
which required that the first generator act freely. In particular, such IRSs can never be
totipotent.

Eisenmann and Glasner [7] then used homomorphisms Fr ! ŒR� with dense image so
as to obtain interesting IRSs of Fr . They proved that given a homomorphism �! ŒR�

with dense image, the associated IRS is always cohighly transitive almost surely, which
means that for almost every ƒ � � , the �–action on �=ƒ is n–transitive for every
n2N. They also showed that the IRSs of Fr obtained by Bowen for cost 1 equivalence
relations are faithful and, moreover, almost surely coamenable.

The third author [18] then used a modified version of his result on the topological
rank of full groups to show that every p.m.p. ergodic equivalence relation of cost < r

comes from a coamenable, cohighly transitive and faithful IRS of Fr . Also in this
construction, the first generator continues to act freely, thus preventing totipotency. Let
us now briefly explain how our new construction (Section 5) allows us to circumvent
this.

The main idea is to use a smaller set Y ¨ X such that the restriction of R to Y still
has cost < r , so that we can find some homomorphism Fr ! ŒR�Y � with dense image.
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This provides us with some extra space in order to obtain totipotency via a well-chosen
perturbation of the above homomorphism.

This perturbation is obtained by mimicking all Schreier balls on X nY and then merging
these amplifications with the action on Y so as to obtain both density in ŒR� and
totipotency. The use of evanescent pairs of topological generators (see Definition 4.1)
with Theorem 4.5 and Proposition 3.8 will grant us that this perturbation maintains
the density. We establish in Theorem 4.6 that the existence of an evanescent pair of
topological generators is equivalent to R having cost 1.

Finally, let us mention the case of the free group on infinitely many generators F1.
Here, the space of subgroups is already perfect (see Proposition 2.1), and one can easily
adapt our arguments to show that: For every ergodic p.m.p. equivalence relation R,
there exists a homomorphism � WF1! ŒR� whose image is dense and whose associated
p.m.p. action ˛� is totipotent.

This result could, however, also be obtained by a purely Baire-categorical argument:
it is not hard to see that the space of such homomorphisms is dense Gı in the Polish
space of all homomorphisms � W F1! ŒR�.

Going back to the case of finite rank, it is not even true that a generic homomorphism
� W Fr ! ŒR� generates the equivalence relation R. In order to hope for a similar
genericity statement, one should first answer the following question.

Question Consider a p.m.p. ergodic equivalence relation R of cost < r . Is it true that,
in the space of homomorphisms � W Fr ! ŒR� whose image generates R, those with
dense image are dense?

The fact that Bowen and then Eisenmann and Glasner had to work in the even smaller
space where the first generator acts freely, indicates that a Baire-categorical approach
to our main result is out of reach at the moment, if not impossible.
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2 Perfect kernel for groups and minimal models

Let � be a countable discrete group. The topology on its space of subgroups Sub.�/
admits V .I;O/ WD fƒ 2 Sub.�/ W I � ƒ and O \ƒ D ∅g as a basis of open sets,
where I and O are finite subsets of � . By the Cantor–Bendixson theorem, Sub.�/
decomposes in a unique way as the disjoint union of a perfect set, called the perfect
kernel K.�/ of Sub.�/, and of a countable set. We indicate some isolation properties
of subgroups:

(1) If ƒ 2 Sub.�/ is not finitely generated, then writing ƒD .�j /j2N we obtain ƒ
as the nontrivial limit of the infinite index (both in ƒ and in �) of the finitely
generated subgroups ƒn WD h�0; �1; : : : ; �ni.

(2) If � is finitely generated, then its finite-index subgroups are isolated. Indeed,
a finite-index subgroup ƒ is finitely generated as well and it is alone in the
open subset defined by a finite family I of generators and a finite family O of
representatives of its cosets �=ƒ except fƒg.

(3) If � is not finitely generated, then its finite-index subgroups are also not finitely
generated and thus are not isolated by property (1).

Let us denote by Sub1i.�/ the subspace of infinite-index subgroups of � . The follow-
ing is probably well known, but we were not able to locate a proof in the literature.

Proposition 2.1 For the free group Fr on r generators , with 2� r �1:

(i) For finite r � 2, K.Fr /D Sub1i.Fr /.

(ii) For r infinite , K.F1/D Sub.F1/.

Proof We first show that if ƒ 2 Sub1i.Fr /, with 2 � r � 1, then it is a non-
trivial limit of finitely generated infinite-index subgroups of Fr . If ƒ is not finitely
generated, then property (1) above applies. Thus, assume ƒ is finitely generated.
If r is infinite, then ƒ has infinite index in some finitely generated noncyclic free
subgroup ƒ�ƒ�F2 � F1. We can thus assume that the rank r � 2 is finite. By the
Hall theorem, ƒ is a free factor of a finite-index subgroup ƒ�� of the free group Fr

(we include the case ƒD f1g). Since ƒ has infinite index, � is nontrivial. If g 2� is
a nontrivial element, then ƒ is the nontrivial limit of the sequence of finitely generated
infinite-index subgroups .ƒ� hgni/n�2 of Fr .

This (with property (2), and property (3) above, respectively) shows that K.Fr / D

Sub1i.Fr / for r <1 and K.F1/D Sub.F1/.
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Remark 2.2 This also shows that the Cantor–Bendixson rank of Sub.Fr / equals 1

when r is finite and equals 0 when r D1.

Computations of the perfect kernel for some other groups have been performed
in [3; 20].

The following is a classical result:

Assume � acts by homeomorphisms on a Polish space Z and � is an ergodic �–invariant
probability measure on Z. Then the orbit of �–almost every point z 2Z is dense in the
support of �.

In particular:

Proposition 2.3 If � Õ .X; �/ is a p.m.p. ergodic action on a standard probability
space , then the stabilizer Stab.x/ of almost every point x 2X has dense �–orbit in the
support of the associated IRS � D Stab�� of Sub.�/.

Thus, our main theorem produces IRSs on Sub.Fr / for which almost every Fr –orbit
(under conjugation) is dense in K.Fr /D Sub1i.Fr /. In other words, for almost every
subgroup ƒ, the Schreier graph of the action Fr Õ Fr=ƒ contains arbitrarily large
copies of Schreier balls of every infinite transitive Fr –action.

Remark 2.4 In the introduction, we defined an IRS to be totipotent when almost every
subgroup has dense orbit in the perfect kernel. But an IRS can also be considered as
a p.m.p. dynamical system whose associated IRS can be different. The connections
between the two notions of totipotency are unclear to us. However, since the actions
that we construct are totally nonfree, this situation does not happen and our IRSs are
totipotent in both senses.

Moreover, this proposition can be combined with [10, Corollary 4.3] to give the
following result.

Theorem 2.5 Let � Õ .X; �/ be a p.m.p. ergodic action on a standard probability
space. Suppose that the support of the associated IRS contains at least two distinct
minimal subsets. Then the action has no minimal model.

This is in wide contrast with free actions of countable groups: they always admit
minimal models [22].
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Proof By the previous proposition, the orbit closure of the stabilizer of �–almost every
point is equal to the support of the IRS, and hence contains two distinct minimal subsets.
Admitting a minimal model would thus be incompatible with [10, Corollary 4.3].

3 Full groups and density

We fix once and for all a standard probability space .X; �/ and denote by Aut.X; �/
the group of all its measure-preserving transformations, two such transformations being
identified if they coincide on a full measure set. In order to ease notation, we will
always neglect what happens on null sets. Given an element T 2 Aut.X; �/, its set of
fixed points is denoted by

Fix.T / WD fx 2X W T .x/D xg:

A partial isomorphism of .X; �/ is a partially defined Borel bijection ' W dom'! rng',
with dom' and rng' Borel subsets of X , such that ' is measure-preserving for the
measures induced by � on its domain dom' and its range rng'. In particular, we have
�.dom'/D �.rng'/. The support of ' is the set

supp' WD fx 2 dom' W '.x/¤ xg[ fx 2 rng' W '�1.x/¤ xg:

Given two partial isomorphisms with '; disjoint domains and ranges, one can form
their union, which is the partial isomorphism

' t W dom' t dom ! rng' t rng ; x 7!

�
'.x/ if x 2 dom';

 .x/ if x 2 dom :

A graphing is a countable set of partial isomorphisms ˆ. Its cost C.ˆ/ is the sum of
the measures of the domains of its elements, which is also equal to the sum of the
measures of their ranges since they preserve the measure.

Given a graphing ˆ, the smallest equivalence relation which contains all the graphs of
the elements ofˆ is denoted by Rˆ and called the equivalence relation generated byˆ.
When ˆD f'g, we also write it as R' and call it the equivalence relation generated
by '.

The equivalence relations that can be generated by graphings are called p.m.p. equiv-
alence relations; they are Borel as subsets of X � X and have countable classes.
The cost C.R/ of a p.m.p. equivalence relation R is the infimum of the costs of the
graphings which generate it.
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Whenever ˛ W � ! Aut.X; �/ is a p.m.p. action, we denote by R˛ the equivalence
relation generated by ˛.�/.

Given a p.m.p. equivalence relation R, the set of partial isomorphisms whose graph
is contained in R is denoted by ŒŒR�� and called the pseudo full group of R. Here is a
useful way of obtaining elements of the pseudo full group that we will use implicitly.
Say that R is ergodic when every Borel R–saturated set has measure 0 or 1. Under this
assumption, given any two Borel subsets A;B �X of equal measure, there is ' 2 ŒŒR��
such that dom' DA and rng' D B [12, Lemma 7.10].

The full group of R is the subgroup ŒR� of Aut.X; �/ consisting of almost everywhere
defined elements of the pseudo full group. Endowed with the uniform metric given
by du.S;T /D �.fx 2 X W S.x/¤ T .x/g/, it becomes a Polish group. Observe that
du.T; idX /D �.supp T /.

For more material about this section, we refer for instance to [12; 9].

3.1 Around a theorem of Kittrell and Tsankov

In this paper, we will be interested in p.m.p. actions � W Fr ! ŒR� with dense image
in ŒR�. To that end, the following result of Kittrell and Tsankov is very useful. Given
a family .Ri/ of equivalence relations on the same set X , we define

W
i2I Ri as the

smallest equivalence relations which contains each Ri .

Theorem 3.1 [14, Theorem 4.7] Let R be a p.m.p. equivalence relation on .X; �/,
and suppose that .Ri/i2I is a family of Borel subequivalence relations such that
R D

W
i2I Ri . Then ŒR�D

˝S
i2I ŒRi �

˛
.

We will also use two easy corollaries of their result, which require us to set up a bit of
notation.

Definition 3.2 Given an equivalence relation R on a set X and Y �X , we define the
equivalence relation R�Y restricted to Y and the equivalence relation RlY induced
on Y by

R�Y WDR \Y �Y D f.x;y/ 2R W x;y 2 Y g � Y �Y;

RlY WDR�Y [f.x;x/ W x 2X g �X �X:

Observe that given a p.m.p. equivalence relation R, we have a natural way of identifying
the full group of the restriction R�Y with the full group of the induced equivalence
relation RlY by making its elements act trivially outside of Y .
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Corollary 3.3 Let R be an ergodic p.m.p. equivalence relation on .X; �/. Let T 2 ŒR�

and Y �X be measurable and such that �.Y \T Y / > 0. Put YT WD
S

n2Z T nY . Then
hT; ŒRlY �i � ŒRlYT

�.

Proof Since �.Y \T Y /> 0 and R is ergodic, we have that RlY[T Y DRlY _RlT Y .
Therefore Theorem 3.1 implies that

hŒRlY �;T ŒRlY �T
�1i D ŒRY[T Y �:

Now observe that .Y [ T Y /\ T .Y [ T Y / � T Y has positive measure. Therefore
Theorem 3.1 implies that hT; ŒRlY �i contains ŒRl.Y[T Y[T 2Y /�, and the corollary
follows by induction.

Corollary 3.4 Consider an ergodic p.m.p. equivalence relation R on .X; �/ and let
Y �X be a positive-measure subset. Let ˛ be a p.m.p. action of � on .X; �/ such that
˛.�/� ŒR�, �.˛.�/Y /D 1 and ŒRlY ��˛.�/. Then either ˛.�/D ŒR�, or � preserves
a finite partition fYig

k
iD1

of X , with Y � Y1 and ŒRlYi
�� ˛.�/ for each i � k.

In particular , if �.Y / > 1
2

, then k D 1 and hence ˛.�/D ŒR�.

Proof Let B�Y be a subset of maximal measure such that ˛.�/� ŒRlB �. Then by the
above corollary, for every  2� such that ˛. /B¤B we must have�.B\˛. /B/D0;
hence B is an atom of a finite partition preserved by the �–action ˛.

3.2 From graphings to density

The following is a slight variation of [15, Definition 8].

Definition 3.5 Let n� 2. A precycle of length n is a partial isomorphism ' such that
if we set B WD dom' n rng' (the basis of the precycle), then f'i.B/giD0;:::;n�2 is a
partition 0 of dom', and f'i.B/giD1;:::;n�1 is a partition of rng'.

We say that T 2 Aut.X; �/ extends ' if T x D 'x for every x 2 dom.'/.

Observe that a precycle of length 2 is an element '2 ŒŒR�� such that dom.'/\rng.'/D∅.
If ' is a precycle of length n, then �.supp'/D n�.B/ and �.dom'/D .n� 1/�.B/.
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An n–cycle is a measure-preserving transformation all of whose orbits have cardinality
either 1 or n. Given a precycle ' of length n, we can extend it to an n–cycle U' 2 ŒR' �

as follows:

U'.x/ WD

8<:
'.x/ if x 2 dom';

'�.n�1/.x/ if x 2 rng' n dom';

x otherwise.

This n–cycle U' is called the closing cycle of ' and supp U' D supp'.

Remark 3.6 If f'1; : : : ; 'n�1g is a pre-n–cycle in the sense of [15, Definition 8],
then '1 t � � � t 'n�1 is a precycle of length n in our sense; and if ' is a precycle of
length n in our sense, then f'�'i .B/ W i D 0; : : : ; n� 2g is a pre-n–cycle in the sense of
[15, Definition 8]. The reason for this change of terminology will become apparent in
the statement of the next lemma, which was proved for U DU' in [15, Proposition 10].

Lemma 3.7 Suppose that ' is a precycle of basis B, let  WD '�B , and suppose that
U 2Aut.X; �/ extends '. Then ŒR' � is contained in the closure of the group generated
by ŒR �[fU g.

Proof Let n be the length of '. For i D 0; : : : ; n�2, let  i D '�'i .B/. Then we have
R'D

Wn�2
iD0R i

. Since U extends ', we have U iU
�1D iC1 for all i D 0; : : : ; n�3,

and hence U ŒR i
�U�1 D ŒR iC1

�. Since  0 D  , the group generated by U [ ŒR �

contains ŒR i
� for all i D 0; : : : ; n� 2. Theorem 3.1 finishes the proof.

The following proposition is obtained by a slight modification of the proof of the main
theorem of [15].

Proposition 3.8 Let R be a p.m.p. ergodic equivalence relation on X and let Y �X be
a positive measure subset. Let R0 �RlY be a hyperfinite equivalence relation whose
restriction to Y is ergodic (and trivial on X n Y ). Suppose that C.RlY / < r�.Y /

for some integer r � 2. Then there are r � 1 precycles '2; '3; : : : ; 'r 2 ŒŒRlY ��

such that �.supp.'i// < �.Y / and such that whenever U2;U3; : : : ;Ur 2 ŒR� extend
'2; '3; : : : ; 'r , we have hŒR0�;U2;U3; : : : ;Ur i � ŒRlY �.

For instance, one can take U2;U3; : : : ;Ur to be the closing cycles of '2; '3; : : : ; 'r .

Proof Let T 2 ŒR0� be such that its restriction to Y is ergodic. Our assumption
C.RlY / < r�.Y / means that the normalized cost of the restriction R�Y is less than r .
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Lemma III.5 from [8] then provides a graphingˆ on Y of normalized cost<.r�1/ such
that fT�Y g[ˆ generates the restriction R�Y . We now view ˆ as a graphing on X , so
that fT g[ˆ generates RlY , and C.ˆ/ < .r �1/�.Y /. Let c WD C.ˆ/=.r �1/ < �.Y /.
We take p 2N so large that c.pC 2/=p < �.Y /.

Pick  2 ŒŒR0�� a precycle of length 2 whose domain B has measure c=p. By cutting
and pasting the elements of ˆ and by conjugating them by elements of ŒR0�, we may
as well assume that ˆ D f'2; : : : ; 'r g, where each 'i is a precycle of length pC 2

extending  of basis B, whose support is a strict subset of Y . Assume that Ui 2 ŒR�

extends 'i for every i D 2; 3; : : : ; r . Since  2 ŒŒR0��, then ŒR � � ŒR0�. We can
apply Lemma 3.7 and obtain that the closure of the group generated by ŒR0� and Ui

contains ŒR'i
�. Since RlY DR0 _R'2

_ � � � _R'r
, we can conclude the proof of the

theorem using Theorem 3.1.

Remark 3.9 We have a lot of freedom in constructing the precycles '2; '3; : : : ; 'r

of Proposition 3.8. To start with, their length can be chosen to be any integer n D

pC 2 large enough that c=�.Y / < .n� 2/=n. Actually, they could even have been
chosen with any (possibly different) lengths n2; n3; : : : ; nr , integers large enough that
c=�.Y / < .nj � 2/=nj : simply pick r � 1 precycles  j 2 ŒŒR0�� of length 2 whose
domain Bj has measure c=.nj � 2/, and proceed as in the proof above.

In particular, the periodic closing cycles U2;U3; : : : ;Ur can be assumed to have any
large enough period n2; n3; : : : ; nr and domains contained in Y of measure < �.Y /.
Up to conjugating by elements of ŒR0�, one can further assume that the closing cycles
have a nonnull common subset of fixed points in Y :

�.Fix.U2/\Fix.U3/\ � � � \Fix.Ur /\Y / > 0:

4 Evanescent pairs and topological generators

In this section our main goal is to obtain two topological generators of the full group
of a hyperfinite ergodic equivalence relation with new flexibility properties relying on
the following definition.

Definition 4.1 A pair .T;V / of elements of the full group ŒR� of the p.m.p. equivalence
relation R is called an evanescent pair of topological generators of R if

(1) V is periodic, and

(2) for every n 2N, the full group ŒR� is topologically generated by the conjugates
of V n by the powers of T , ie hT j V nT �j W j 2 Zi D ŒR�.
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In particular, if .T;V / is an evanescent pair of topological generators, then

� the pair .T;V / topologically generates ŒR�,

� .T;V n/ is an evanescent pair of topological generators for any n 2N,

� du.V
n!; idX / tends to 0 when n tends to1.

We will show in Theorem 4.5 that the odometer T0 can be completed to form an
evanescent pair .T0;V / of topological generators for RT0

, and that the set of possible V

is actually a dense Gı.

In this section, we set X D f0; 1gN , and endow it with the Bernoulli 1
2

measure
�D

�
1
2
ı0C

1
2
ı1
�˝N . Given s 2 f0; 1gn, we define the basic clopen set

Ns WD fx 2 f0; 1g
N
W xi D si for 1� i � ng:

The odometer T0 is the measure-preserving transformation of this space defined as
adding the binary sequence .1; 0; 0; : : : / with carry to the right. More precisely, for
each sequence x 2 f0; 1gN , if k is the (possibly infinite) first integer such that xk D 0,
then y D T0.x/ is defined by

yn WD

8<:
0 if n< k;

1 if nD k;

xn if n> k:

For each n 2 N, the permutation group Sym.f0; 1gn/ has a natural action ˛n on
f0; 1gN ' f0; 1gn � f0; 1gN given for x 2 f0; 1gN and � 2 Sym.f0; 1gn/ by

˛n.�/.x1; : : : ;xn;xnC1; : : : / WD .�.x1; : : : ;xn/;xnC1; : : : /:

The sequence .˛n.Sym.f0; 1gn///n2N is an increasing sequence of subgroups of the
full group ŒRT0

� whose reunion is dense in ŒRT0
�; see [11, Proposition 3.8].

We now define a sequence of involutions Un 2 ŒRT0
� with disjoint supports as in

[17, Section 4.2]: Un WD ˛n.�n/, where �n 2 Sym.f0; 1gn/ is the 2–point support
transposition that exchanges 0n�11 and 1n�10. Observe that Un is the involution with
support N1n�10 tN0n�11 (of measure 2�nC1) which is equal to T0 on N1n�10 and
T �1

0
on N0n�11.

Recall that if �n 2 Sym.f0; 1gn/ is 2n–cycle and wn is a transposition which exchanges
two �n–consecutive elements, then the group Sym.f0; 1gn/ is generated by the conju-
gates of wn by powers of �n (actually 2n� 1 of them are enough). A straightforward
modification gives the following lemma; see [17, Lemma 4.3] for a detailed proof.
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Lemma 4.2 For every n 2N, the group ˛n.Sym.f0; 1gn// is contained in the group
generated by the conjugates of Un by powers of T0.

Given a periodic p.m.p. transformation U and k 2N, we say that V is a k th root of U

when supp U D supp V and V k D U . The following lemma is well-known.

Lemma 4.3 Whenever R is an ergodic equivalence relation , every periodic element in
ŒR� admits a k th root in ŒR�.

Proof Let us first prove that every n–cycle U 2 ŒR� admits a k th root. To this end,
pick a fundamental domain A for the restriction of U to its support. Since R is ergodic,
we can pick a k–cycle V 2 ŒR� supported on A. Let B be a fundamental domain for V ,
and put C WD A nB. Then it is straightforward to check that W 2 ŒR�, defined as
follows, is a k th root of U :

W .x/ WD

8<:
U U iV U�i.x/ if x 2 U i.B/;

U iV U�i.x/ if x 2 U i.C /;

x otherwise.

In the general case, one glues together the k th roots obtained for every n 2 N by
considering the restrictions of U to U –orbits of cardinality n.

Remark 4.4 The same proof works more generally for aperiodic p.m.p. equivalence
relations.

Theorem 4.5 The set of V 2 ŒRT0
� such that .T0;V / is an evanescent pair of topolog-

ical generators of RT0
is a dense Gı subset of ŒRT0

�.

Proof Denote by P the set of periodic elements of ŒRT0
�. It is a direct consequence

of Rokhlin’s lemma that P is dense in ŒRT0
�. And similarly the subset P 0 � P of

V 2 ŒRT0
� with finite order (or equivalently, with bounded orbit size) is dense in ŒRT0

�.

Writing P as the intersection (over the positive integers q) of the open setsn
V 2 ŒRT0

� W d.V p!; idX / <
1

q
for some p 2N

o
shows that P is a Gı subset of ŒRT0

�.

Denote by E the set of V 2 ŒRT0
� such that for every n, the group ŒRT0

� is topologically
generated by conjugates of V n by powers of T0. We want to show that P \ E is
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dense Gı, and since P is dense Gı it suffices (by the Baire category theorem in the
Polish group ŒRT0

�) to show that E is dense Gı.

For every m; n 2N, set

Em;n WD fV 2 ŒRT0
� W ˛n.Sym.f0; 1gn//� hT k

0
V mT �k

0
W k 2 Zig:

The density of the union of the ˛n.Sym.f0; 1gn// in ŒRT0
� recalled above implies that

E D
T

m;n2N Em;n. So it suffices to show that each Em;n is dense Gı.

Let us first check that each Em;n is Gı. Denote by W the subgroup of F2 D ha1; a2i

generated by the conjugates of a2 by powers of a1. So for w D w.a1; a2/ 2W and
V 2 ŒRT0

�, the element w.T0;V
m/ is a product of conjugates of V m by powers of T0.

By the definition of the closure we can write Em;n as

Em;n D

\
p2N

\
�2Sym.f0;1gn/

[
w2W

n
V 2 ŒRT0

� W du.w.T0;V
m/; �/ <

1

p

o
:

Since the map V 7!w.T0;V / is continuous, each of the above right-hand sets is open,
so their union over w 2W is also open, and we conclude that Em;n is Gı.

To check the density, it suffices to show that, for each m; n, one can approximate
arbitrary elements of P 0 by elements of Em;n. So let U 2 P 0 and let � > 0. Denote
by K the order of U . Pick p � n such that 2�pK < 1

2
�. Let A be the U –saturation

of the support of Up D p̨.�p/ (defined at the beginning of the section). The measure
of A is at most �. Finally, let V be a .Km/th root of Up and define

zU .x/ WD

�
U.x/ if x 2X nA;

V .x/ if x 2A:

By construction du.U; zU / � �.A/ < �. Observe that zU Km D . zU m/K D Up; thus,
Lemma 4.2 yields that zU 2 EKm;p � Em;p . Since p � n, zU 2 Em;p � Em;n, so we are
done.

Let us make a few comments on the above result. First, one can check that the pair
.T0;V / produced in the construction of [17, Theorem 4.2] provides an explicit example
of an evanescent pair of topological generators of RT0

. Also, the above proof can be
adapted to show that any rank one p.m.p. ergodic transformation [19, Section 8] can be
completed to form an evanescent pair of topological generators; see [16, Theorem 5.28]
for an explicit example of a pair which is evanescent. Proving these results is beyond
the scope of this paper, so we leave it as an exercise for the interested reader.
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It is unclear whether every p.m.p. ergodic transformations can be completed to form
an evanescent pair of topological generators for its full group. Nevertheless, we can
characterize the existence of an evanescent pair as follows.

Theorem 4.6 Let R be an ergodic p.m.p. equivalence relation. Then R admits an
evanescent pair of topological generators if and only if R has cost 1.

Proof If R admits an evanescent pair .T;V /, then since V is periodic we have
�.supp V n!/ ! 0. Since any set of topological generators for ŒR� generates the
equivalence relation R, we conclude that R has cost 1.

As for the converse, Theorems 4 and 5 from [6] provide an ergodic hyperfinite sube-
quivalence relation which is isomorphic to that of the odometer. So we can pick a
conjugate of the odometer T 2 ŒR�. Repeating the proof of Theorem 4.5, we see that the
set ET of V 2 ŒR� such that for every n2N, ŒRT � is contained in hT j V nT �j W j 2 Zi,
is dense Gı in ŒR�.

Let us now consider the set ER of V 2 ŒR� such that .T;V / is an evanescent pair of
topological generators of R, and for n2N the set En of V 2 ŒR� such that V is periodic
and hT j V nT �j W j 2 Zi D ŒR�. Each En is Gı by the same argument as in the proof
of Theorem 4.5. Since ER D

T
n En, it suffices to show that each En is dense in order

to apply the Baire category theorem and finish the proof.

Let us fix n 2 N. Since ET is dense in ŒR�, we only need to approximate elements
of ET by elements of En. Moreover, the set of V 2 ŒR� such that �.supp V / < 1 is
open and dense, so we only need to approximate every V 2 ET with �.supp V / < 1 by
elements of En.

So let V 2 ET with �.supp V / < 1, and take � > 0.

Lemma III.5 from [8] yields a graphing ˆ of cost < 1
3

min.�; �.X n supp V // such
that fT g[ˆ generates R, since R has cost 1. Conjugating by elements of ŒRT � and
pasting the elements ofˆ, we may as well assume thatˆDf'g, where �.dom'/< 1

3
�,

and ' is a precycle of length 2 whose support is disjoint from supp V . We then pick
 2 ŒŒRT �� such that ' t is a precycle of length 3 of support disjoint from supp V ,
and denote by U1 the associated 3–cycle.

Now let U2 be an nth root of U1 and let V2 WD V U2. Then du.V2;V / < �, and we
claim that V2 belongs to En. In order to prove this, let us denote by G the closed group
generated by the conjugates of V n

2
by powers of T .
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Since U2 and V have disjoint support, they commute, and so V n
2
D U n

2
V n D U1V n.

So .V n
2
/3 D V 3n, and since V 2 ET , we have that ŒRT ��G. In particular ŒR ��G,

and conjugating by V n
2

(which acts as U1 on supp U1), we get that ŒR' ��G; see also
Lemma 3.7. Since R DRT _R , we conclude by Theorem 3.1 that G contains ŒR�,
as wanted.

5 Proof of the main theorem

As shown in Proposition 2.1, the perfect kernel of Sub.Fr / for 1 < r < 1 is the
space of infinite-index subgroups. We will construct a p.m.p. action of Fr for which
almost every Schreier graph contains all possible balls of Schreier graphs of transitive
Fr –actions on infinite sets.

Step 1 (using a smaller subset) We start with a p.m.p. ergodic equivalence relation R

on .X; �/ of cost < r . By the induction formula [8, Proposition II.6], there is a subset
Y �X such that 1

2
< �.Y / < 1 and such that the (normalized) cost of the restriction

R�Y is still < r . Thus the cost of the induced equivalence relation RlY is < r�.Y /.

Using results of Dye [6, Theorems 4 and 5] as in the proof of Theorem 4.6, one can
pick a conjugate of the odometer T 2 ŒR�Y �. We view T as an element of ŒRlY �.

Now we apply Proposition 3.8 (where R0DRT ) to obtain precycles '2; : : : ; 'r 2 ŒŒR�Y ��

whose supports have measure < �.Y /. For i � r , we let Ui be the closing cycle of 'i

as defined after Definition 3.5. Set � WD �.Y n supp U2/ > 0. Let m0 be a positive
integer such that �.X nY /=m0 <

1
2
�.

Step 2 (preparing the finite actions) Let .Gn/n�1 be an enumeration of the (finite
radius) balls of the Schreier graphs of all the transitive Fr –actions over an infinite
set, up to labeled graph isomorphism, and for which the number of vertices satisfies
jGnj �m0.

Since Gn comes from a transitive action over an infinite set, we can choose some
` 2 f1; : : : ; rg and some �n 2Gn so that there is no a`–labeled edge whose source is
equal to �n.

Pick ın; �n 62Gn, set G0n WDGntfın; �ng and add an a`–edge from �n to ın, an a1–edge
from ın to �n and an a2–edge from �n to itself.

In this way we obtain a finite partial Schreier graph, and this can be extended to a
genuine Schreier graph of an Fr D ha1; : : : ; ar i–action on the same set as follows: for
each i 2 f1; 2; : : : ; rg, we consider the connected components of the subgraph obtained
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by keeping only the edges labeled ai . These are either cycles (we don’t modify them)
or oriented segments (possibly reduced to a single vertex), in which case we add one
edge labeled ai from the end to the beginning of the segment.

Therefore we obtain an action �n of Fr on the finite set G0n and a special point
�n 2G0n nGn such that �n.a2/�n D �n.

Step 3 (defining the action) Set C WD X n Y . Consider a partition C D
F

n�1 Cn,
where �.Cn/ > 0 for every n. We are going to define an amplified version of the action
�n on Cn as follows.

For each n�1, we take a measurable partition CnD
F

g2G0n
B

g
n such that�.Bg

n /jG
0
njD

�.Cn/ for every g 2G0n. Set Bn WDB
�n
n . Using ergodicity of R, for every g 2G0nnf�ng

we choose  g WBn!B
g
n in the pseudo full group ŒŒR�� of R. In this way we obtain an

action ˛n of Fr , defined on Cn by the formula

if x 2 Bg0
n and �n. /g0 D g1; then ˛n. /x WD  g1

 �1
g0
.x/;

and trivial on X nCn. Thus, ˛n.Fr /� ŒRlCn
�.

Gluing all the ˛n together, we obtain an action ˛1 of Fr on X with the properties that
˛1.Fr /� ŒRlC � and ˛1 restricted to Cn is ˛n.

Let T 2 ŒRlY � be the conjugate of the odometer introduced in Step 1. Theorem 4.5
states that the set of V 2 ŒRT � such that .T;V / is an evanescent pair of generators
for RT is dense so we can choose such a V with �.supp V / < 1

2
�. Let W 2 ŒRT � be

such that �
�
supp.W U2W �1/\ supp V

�
D 0. Set

� B WD
S

n Bn, and note that �.B/� �.C /=m0 <
1
2
�;

� D WD supp.W U2W �1/[ supp V , and observe that �.Y nD/ > 1
2
�.

Therefore there exists a subset A� Y nD of measure �.A/D �.B/. Let I 2 ŒR� be
an involution with support A[B and which exchanges A and B.

We finally define the desired action ˛ of Fr by setting

˛.a1/ WD T˛1.a1/;

˛.a2/ WD V .W U2W �1/.I˛1.a2//;

˛.ai/ WD Ui˛1.ai/ for i � 3:

See Figure 1 for the action of ˛.a2/. Note that a2 is the only generator of Fr which
does not leave the set Y invariant, because of the presence of the involution I in the
definition of its action.
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V W U2W �1

Y

9>>>>>>>>>>>>=>>>>>>>>>>>>;
C

I I I

B1 B2
B3

˛1.a2/

˛2.a2/
˛3.a2/

C1

C2
C3

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

X

Figure 1: The action of ˛.a2/ on X .

Step 4 (density) (a) We claim that ˛.Fr /� ŒRT �.

Indeed let S 2 ŒRT � and fix �>0. There exists n0 such that if we set C>n0
WD
S

n>n0
Cn,

then �.C>n0
/< 1

2
�. The elements U2, I , ˛1.a2/; : : : ; ˛n0

.a2/ have uniformly bounded
orbits. So we can pick k 2N so that U k

2
, Ik and ˛1.a2/

k ; : : : ; ˛n0
.a2/

k are the identity.

By construction V , W U2W �1, I and ˛1.a2/ have mutually disjoint supports and
hence commute. Therefore ˛.a2/

k D V k˛1.a2/
k .

The crucial assumption that .T;V / is an evanescent pair of generators now comes into
play: there is a word w.T;V k/, which is a product of conjugates of V k by powers
of T , such that du.w.T;V

k/;S/ < 1
2
�. We remark that ˛.a1/ acts on Y the same way

as T , and that ˛.a2/
k acts on Y the same way as V k . Also note that ˛.a1/ preserves

each Cj while ˛.a2/
k is the identity on each Cj for j D 1; 2; : : : ; n0, so that for all

m 2 Z, the transformation ˛.a1/
m˛.a2/

k˛.a1/
�m acts on C1[C2[ � � � [Cn0

as the
identity.

It now follows from the fact that w is a product of conjugates of V k by powers of T that
w.T;V k/ and w.˛.a1/; ˛.a2/

k/ coincide on Y and can only differ on C>n0
, which
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has measure less than 1
2
�. Hence du.w.˛.a1/; ˛.a2/

k/;S/ < �, which implies that
˛.Fr /� ŒRT �.

(b) We claim that ˛.Fr /� ŒRlY �.

Recall that ˛.a2/ D V .W U2W �1/.I˛1.a2//, where V , W U2W �1 and I˛1.a2/

have pairwise disjoint support. Since U2 extends '2, we get that W �1˛.a2/W ex-
tends '2. By assumption ˛.a3/; : : : ; ˛.ar / extend '3; : : : ; 'r , respectively. Moreover,
W 2 ŒRT �, so the claim follows from Proposition 3.8:

˛.Fr /� hŒRT �;W �1˛.a2/W; ˛.a3/; : : : ; ˛.ar /i � ŒRlY �:

(c) We claim that ˛.Fr /� ŒR�.

This is a direct consequence of Corollary 3.4 granted that ˛.�/Y DX , which we will
now show.

Clearly ˛.a2/Y � ˛.a2/ADB D
S

n Bn. For every n and g 2G0n n f�ng, there exists
 2 � of minimal length such that �n. /�n D g. Since �n.a2/�n D �n and since
˛.a2/�CnnBn

D ˛n.a2/ mimics the action of �n.a2/ on G0n n f�ng, the minimality of
the length of  implies that ˛. /Bn D B

g
n . Since this is true for every g 2G0n we get

˛.�/Y � Cn; and this holds for every n. We thus have ˛.�/Y DX as wanted.

Step 5 (totipotency) Consider a transitive action � of Fr on some infinite set. Let
H be a Schreier ball such that jH j � m0. Then by construction there exists n such
that H D Gn � G0n. We also remark that the restriction of the Schreier graph of the
action ˛ to

S
g2Gn

B
g
n � Cn mimics the partial Schreier graph H . Since � and H are

arbitrary, the Schreier graph of ˛ contains every sufficiently large Schreier ball of every
transitive action of Fr , and this finishes the proof of the main theorem.

Remark 5.1 The subspace Y �X chosen in Step 1 of the above proof coincides with
the subset where ˛.a1/ is aperiodic. So the event “no power of a1 belongs to ƒ” has
measure �.Y / in the IRS Stab˛� � associated with ˛. The measure �.Y / can be chosen
to take any value from the nonempty interval�

max
�
C.R/� 1

r � 1
;
1

2

�
; 1

�
:

Recalling that the density of ˛.�/ implies Stab˛ is essentially injective, then the
following holds: Every ergodic p.m.p. equivalence relation R of cost < r can be
realized (up to a null set) by the action of Fr Õ Sub.Fr / for continuum many different
totipotent IRSs of Fr .

Geometry & Topology, Volume 27 (2023)



On dense totipotent free subgroups in full groups 2317

References
[1] M Abért, Y Glasner, B Virág, Kesten’s theorem for invariant random subgroups,

Duke Math. J. 163 (2014) 465–488 MR Zbl

[2] L Bowen, Invariant random subgroups of the free group, Groups Geom. Dyn. 9 (2015)
891–916 MR Zbl

[3] L Bowen, R Grigorchuk, R Kravchenko, Invariant random subgroups of lamplighter
groups, Israel J. Math. 207 (2015) 763–782 MR Zbl

[4] L Bowen, R Grigorchuk, R Kravchenko, Characteristic random subgroups of geo-
metric groups and free abelian groups of infinite rank, Trans. Amer. Math. Soc. 369
(2017) 755–781 MR Zbl

[5] M L Condic, Totipotency: what it is and what it is not, Stem Cells and Development 23
(2014) 796–812

[6] H A Dye, On groups of measure preserving transformations, I, Amer. J. Math. 81 (1959)
119–159 MR Zbl

[7] A Eisenmann, Y Glasner, Generic IRS in free groups, after Bowen, Proc. Amer. Math.
Soc. 144 (2016) 4231–4246 MR Zbl

[8] D Gaboriau, Coût des relations d’équivalence et des groupes, Invent. Math. 139 (2000)
41–98 MR Zbl

[9] D Gaboriau, Orbit equivalence and measured group theory, from “Proceedings of
the International Congress of Mathematicians, III” (R Bhatia, A Pal, G Rangarajan, V
Srinivas, M Vanninathan, editors), Hindustan, New Delhi (2010) 1501–1527 MR Zbl

[10] E Glasner, B Weiss, Uniformly recurrent subgroups, from “Recent trends in ergodic
theory and dynamical systems” (S Bhattacharya, T Das, A Ghosh, R Shah, editors),
Contemp. Math. 631, Amer. Math. Soc., Providence, RI (2015) 63–75 MR Zbl

[11] A S Kechris, Global aspects of ergodic group actions, Mathematical Surveys and
Monographs 160, Amer. Math. Soc., Providence, RI (2010) MR Zbl

[12] A S Kechris, B D Miller, Topics in orbit equivalence, Lecture Notes in Math. 1852,
Springer (2004) MR Zbl

[13] A S Kechris, V Quorning, Co-induction and invariant random subgroups, Groups
Geom. Dyn. 13 (2019) 1151–1193 MR Zbl

[14] J Kittrell, T Tsankov, Topological properties of full groups, Ergodic Theory Dynam.
Systems 30 (2010) 525–545 MR Zbl

[15] F Le Maître, The number of topological generators for full groups of ergodic equiva-
lence relations, Invent. Math. 198 (2014) 261–268 MR Zbl

[16] F Le Maître, Sur les groupes pleins préservant une mesure de probabilité, PhD the-
sis, ENS Lyon (2014) Available at http://math.univ-lyon1.fr/~melleray/
these_FLM.pdf

Geometry & Topology, Volume 27 (2023)

https://doi.org/10.1215/00127094-2410064
http://msp.org/idx/mr/3165420
http://msp.org/idx/zbl/1344.20061
https://doi.org/10.4171/GGD/331
http://msp.org/idx/mr/3420547
http://msp.org/idx/zbl/1358.37011
https://doi.org/10.1007/s11856-015-1160-1
https://doi.org/10.1007/s11856-015-1160-1
http://msp.org/idx/mr/3359717
http://msp.org/idx/zbl/1334.43006
https://doi.org/10.1090/tran/6695
https://doi.org/10.1090/tran/6695
http://msp.org/idx/mr/3572253
http://msp.org/idx/zbl/1373.20093
http://dx.doi.org/10.1089/scd.2013.0364
https://doi.org/10.2307/2372852
http://msp.org/idx/mr/131516
http://msp.org/idx/zbl/0087.11501
https://doi.org/10.1090/proc/13020
http://msp.org/idx/mr/3531175
http://msp.org/idx/zbl/1366.37006
https://doi.org/10.1007/s002229900019
http://msp.org/idx/mr/1728876
http://msp.org/idx/zbl/0939.28012
http://perso.ens-lyon.fr/gaboriau/Travaux-Publi/ICM/Gaboriau-ICM.pdf
http://msp.org/idx/mr/2827853
http://msp.org/idx/zbl/1259.37003
https://doi.org/10.1090/conm/631/12596
http://msp.org/idx/mr/3330338
http://msp.org/idx/zbl/1332.37014
https://doi.org/10.1090/surv/160
http://msp.org/idx/mr/2583950
http://msp.org/idx/zbl/1189.37001
https://doi.org/10.1007/b99421
http://msp.org/idx/mr/2095154
http://msp.org/idx/zbl/1058.37003
https://doi.org/10.4171/ggd/517
http://msp.org/idx/mr/4033500
http://msp.org/idx/zbl/1447.37006
https://doi.org/10.1017/S0143385709000078
http://msp.org/idx/mr/2599891
http://msp.org/idx/zbl/1185.37010
https://doi.org/10.1007/s00222-014-0503-6
https://doi.org/10.1007/s00222-014-0503-6
http://msp.org/idx/mr/3274561
http://msp.org/idx/zbl/1338.37006
http://math.univ-lyon1.fr/~melleray/these_FLM.pdf
http://math.univ-lyon1.fr/~melleray/these_FLM.pdf


2318 Alessandro Carderi, Damien Gaboriau and François Le Maître

[17] F Le Maître, On full groups of non-ergodic probability-measure-preserving equivalence
relations, Ergodic Theory Dynam. Systems 36 (2016) 2218–2245 MR Zbl

[18] F Le Maître, Highly faithful actions and dense free subgroups in full groups, Groups
Geom. Dyn. 12 (2018) 207–230 MR Zbl

[19] D S Ornstein, D J Rudolph, B Weiss, Equivalence of measure preserving transfor-
mations, Mem. Amer. Math. Soc. 262, Amer. Math. Soc., Providence, RI (1982) MR
Zbl

[20] R Skipper, P Wesolek, On the Cantor–Bendixson rank of the Grigorchuk group and
the Gupta–Sidki 3 group, J. Algebra 555 (2020) 386–405 MR Zbl

[21] G Stuck, R J Zimmer, Stabilizers for ergodic actions of higher rank semisimple groups,
Ann. of Math. 139 (1994) 723–747 MR Zbl

[22] B Weiss, Minimal models for free actions, from “Dynamical systems and group actions”,
Contemp. Math. 567, Amer. Math. Soc., Providence, RI (2012) 249–264 MR Zbl

Fakultät für Mathematik, Institut für Algebra und Geometrie, Karlsruhe Institute of Technology
Karlsruhe, Germany

Unité de Mathématiques Pures et Appliquées, École Normale Supérieure de Lyon
Lyon, France

Institut de Mathématiques de Jussieu-PRG, Université de Paris
Paris, France

alessandro.carderi@kit.edu, damien.gaboriau@ens-lyon.fr,
francois.le-maitre@imj-prg.fr

Proposed: Martin R Bridson Received: 16 September 2020
Seconded: David Fisher, Mladen Bestvina Revised: 5 May 2021

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

https://doi.org/10.1017/etds.2015.20
https://doi.org/10.1017/etds.2015.20
http://msp.org/idx/mr/3568978
http://msp.org/idx/zbl/1375.37006
https://doi.org/10.4171/GGD/446
http://msp.org/idx/mr/3781421
http://msp.org/idx/zbl/1386.37005
https://doi.org/10.1090/memo/0262
https://doi.org/10.1090/memo/0262
http://msp.org/idx/mr/653094
http://msp.org/idx/zbl/0504.28019
https://doi.org/10.1016/j.jalgebra.2020.02.034
https://doi.org/10.1016/j.jalgebra.2020.02.034
http://msp.org/idx/mr/4082048
http://msp.org/idx/zbl/1457.20026
https://doi.org/10.2307/2118577
http://msp.org/idx/mr/1283875
http://msp.org/idx/zbl/0836.22018
https://doi.org/10.1090/conm/567/11253
http://msp.org/idx/mr/2931921
http://msp.org/idx/zbl/1279.37010
mailto:alessandro.carderi@kit.edu
mailto:damien.gaboriau@ens-lyon.fr
mailto:francois.le-maitre@imj-prg.fr
http://msp.org
http://msp.org


msp
Geometry & Topology 27:6 (2023) 2319–2346

DOI: 10.2140/gt.2023.27.2319
Published: 25 August 2023

The infimum of the dual volume of
convex cocompact hyperbolic 3–manifolds

FILIPPO MAZZOLI

We show that the infimum of the dual volume of the convex core of a convex co-
compact hyperbolic 3–manifold with incompressible boundary coincides with the
infimum of the Riemannian volume of its convex core, as we vary the geometry by
quasi-isometric deformations. We deduce a linear lower bound of the volume of
the convex core of a quasi-Fuchsian manifold in terms of the length of its bending
measured lamination, with optimal multiplicative constant.

30F40; 52A15, 57M50

Introduction

Let M be a complete hyperbolic 3–manifold and let CM be its convex core, namely
the smallest nonempty convex subset of M . Then M is said to be convex cocompact if
CM is a compact subset. The notion of dual volume of the convex core V �

C
.M / arises

from the polarity correspondence between the hyperbolic and the de Sitter spaces; see
Schlenker [36, Section 1] and Mazzoli [28]. If M is a convex cocompact hyperbolic
3–manifold, then V �

C
.M / coincides with VC .M /� 1

2
`m.�/, where VC .M / stands for

the usual Riemannian volume of the convex core and `m.�/ denotes the length of the
bending measured lamination � with respect to the hyperbolic metric m of the boundary
of the convex core of M . Our aim is to study the infimum of V �

C
, considered as a function

over the space QD.M / of quasi-isometric deformations of a given convex cocompact
hyperbolic 3–manifold M with incompressible boundary. In particular, we will prove:

Theorem A For a convex cocompact hyperbolic 3–manifold M with incompressible
boundary,

inf
M 02QD.M /

V �C .M
0/D inf

M 02QD.M 0/
VC .M

0/:

Moreover , V �
C
.M 0/D VC .M

0/ if and only if the boundary of the convex core of M 0

is totally geodesic.
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2320 Filippo Mazzoli

When M is a quasi-Fuchsian manifold, Theorem A can be equivalently stated as

(1) VC .M
0/� 1

2
`m0.�0/

for every M 0 2QD.M /, where `m0.�0/ is the length of the bending measure of @CM0.
As a consequence of the variation formulae of VC (see Bonahon [4]) and of V �

C
(see

Mazzoli [29] and see also Krasnov and Schlenker [20]), we will see in Corollary 4.1
that the multiplicative constant 1

2
is optimal, and is realized near the Fuchsian locus.

Theorem A is to the dual volume as the following result of Bridgeman, Brock and
Bromberg is to the renormalized volume:

Theorem [9, Theorem 3.11] For every convex cocompact hyperbolic 3–manifold
M with incompressible boundary,

inf
M 02QD.M /

VR.M
0/D inf

M 02QD.M /
VC .M

0/:

Moreover , VR.M
0/D VC .M

0/ if and only if the boundary of the convex core of M is
totally geodesic.

By work of W P Thurston, if the compact 3–manifold with boundary N WDM [@1M

is acylindrical, then there exists a unique convex cocompact structure M0 2QD.M /

whose convex core has totally geodesic boundary. In [41] (see also [40]), Storm proved
that the infimum of the volume of the convex core function VC WQD.M /!R is equal
to half the simplicial volume of the doubled manifold D.N /. Moreover, the infimum
is realized exactly when N is acylindrical, and it is achieved at M0. Theorem A
and [9, Theorem 3.11] then imply that the same characterization holds true for the
infimum of the dual volume and the renormalized volume, respectively. In the case of the
renormalized volume VR , such description of inf VR was first established by Pallete [31],
without making use of Storm’s result. Bridgeman, Brock and Bromberg [10] recently
introduced a notion of surgered gradient flow of the renormalized volume in the
relatively acylindrical case, which allowed them to obtain new comparisons between
the renormalized volume and the Weil–Petersson geometry of the deformation spaces
of convex cocompact 3–manifolds, generalizing in particular the works of Brock [12]
and Schlenker [38]. In the same work, a new proof of Storm’s result in the acylindrical
case is obtained as a byproduct of their analysis; see in particular [10, Corollary 6.5].

Dual volume, renormalized volume and Riemannian volume of the convex core are
related by the chain of inequalities

V �C .M / WD VC .M /� 1
2
`m.�/� VR.M /� VC .M /� 1

4
`m.�/� VC .M /:

Geometry & Topology, Volume 27 (2023)
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Here the second inequality is due to Schlenker [38], and the lower bound of VR is proved
in [9, Theorem 3.7]. Observe in particular that Theorem A implies [9, Theorem 3.11],
which concerns the infimum of the renormalized volume. The requirement on M to
have incompressible boundary is necessary; indeed, it has been shown by Pallete [32]
that there exist Schottky groups with negative renormalized volume.

Our proof of Theorem A broadly follows the same strategy as the work of Bridgeman,
Brock and Bromberg [9], with some necessary differences. The authors of [9] interpret
the renormalized volume as a function VR over the Teichmüller space T .@1M / of
the conformal boundary at infinity of M (by the works of Bers [1], Kra [18] and
Maskit [27]), and they estimate the difference jVR �VC j as one follows the (opposite
of the) Weil–Petersson gradient flow of VR on T .@1M /. In order to study the dual
volume function, the analogy between the variation formula of the renormalized volume
(see the work of Krasnov and Schlenker [19, Lemma 5.8], or Section 1.6) and the dual
Bonahon–Schläfli formula [29] would tempt us to consider V �

C
as a function of the

Teichmüller space T .@CM/, seen as the deformation space of hyperbolic structures
on the boundary of the convex core of M . However, the hyperbolic structure on
@CM is only conjecturally thought to provide a parametrization of the quasi-isometric
deformation space of M . To avoid this difficulty, we rather focus our attention on a
family of functions V �

k
approximating V �

C
, for which a similar procedure is possible.

Given k, a real number in the interval .�1; 0/, we say that an embedded surface
†k �M is a k–surface if its first fundamental form (namely the restriction of the
metric of M on the tangent space to†k) is a Riemannian metric with constant Gaussian
curvature equal to k. Then, by the work of Labourie [21], the complementary region
of the convex core of M is foliated by k–surfaces, which converge to @CM as k goes
to �1, and tend towards the conformal boundary at infinity @1M as k goes to 0.
The function V �

k
.M / is then defined to be the dual volume of the region Mk of M

enclosed by its k–surfaces, one for each geometrically finite end of M . By the works
of Labourie [22] and Schlenker [37], the hyperbolic structures of the k–surfaces do
provide a parametrization of QD.M /, a fact that allows us to study V �

k
as a function

over the Teichmüller space of @Mk . At this point, studying the Weil–Petersson gradient
of V �

k
on T .@Mk/, we prove that the difference between the dual volume and the

standard volume of the regions Mk is well-behaved as one follows the lines of the flow
backwards, and finally we deduce the statement of Theorem A by taking a limit for k

that goes to �1. While the methods of [9] for the study of the renormalized volume
heavily rely on the relations between the geometry of the boundary of the convex

Geometry & Topology, Volume 27 (2023)
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core and the properties of the Schwarzian at infinity of @1M , here we use a more
analytical approach to determine the necessary bounds on the geometric quantities
of the k–surfaces @kM of M , which will guarantee us the existence and the good
behavior of the flow of the Weil–Petersson gradient vector fields of V �

k
.

Outline of the paper

After the first section of background, we suggest the reader move backwards (as with
the flow of the gradient of the functions V �

k
) while going through this exposition. In

Section 4 the proof of Theorem A is described. Here the analogy with the work of
Bridgeman, Brock and Bromberg [9] is manifest; the required technical ingredients
(Lemmas 3.4 and 3.7 and Corollary 3.6 ) are formally very similar to the ones developed
for the renormalized volume.

Section 3 focuses on the study of the Weil–Petersson gradient gradWP V �
k

of the dual
volume functions V �

k
and the proofs of the ingredients mentioned above. In Lemma 3.4

we determine a lower bound of the norm of gradWP V �
k

in terms of the integral of the
mean curvature of @Mk (which replaces the role of the length `m.�/ in the definition of
the dual volume of the regions Mk). In Corollary 3.6 we show that the flow of the vector
field gradWP V �

k
is defined for all times, and in Lemma 3.7 we prove the existence of a

global lower bound of the dual volumes V �
k

over QD.M /. All the proofs in this section
rely on differential-geometric methods and are consequences of an explicit description
of the Weil–Petersson gradient of V �

k
developed in Proposition 3.2. This presentation

of the vector field gradWP V �
k

is inspired by an orthogonal decomposition of the space
of symmetric tensors due to Fischer and Marsden [15], and it involves the solution uk

of a simple PDE (4) over the k–surface @Mk . In particular, the proof of Corollary 3.6
will require us to have uniform control of the C 2–norm of the function uk . Section 2
(and in particular Lemma 2.3) provides us this last ingredient, and it is essentially
based on the classical regularity theory for linear elliptic differential operators (see eg
Evans [14]), and on the following property of k–surfaces:

Proposition (see Proposition 2.1) For any k 2 .0; 1/ and n2N there exists a positive
constant Nk;n such that , for every convex cocompact hyperbolic 3–manifold M and
for every incompressible k–surface †k in M , the C n–norm of the mean curvature of
†k is bounded above by Nn;k .

The existence of such a universal upper bound was proved (with weaker assumptions
than the ones appearing above) by Bonsante, Danciger, Maloni and Schlenker in
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[6, Proposition 3.8] for nD 0 (and the same strategy actually shows that the statement
holds for any n), and its proof heavily relies on a compactness criterion for isometric im-
mersions of surfaces established by Labourie [21]; see also Bonsante, Danciger, Maloni
and Schlenker [6, Proposition 3.6]. As will be manifest in the proof of Proposition 2.1,
the constants Nn;k that we will produce are unfortunately not explicit.
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1 Preliminaries

1.1 Hyperbolic 3–manifolds

Let M be an orientable complete hyperbolic 3–manifold, namely a complete Rie-
mannian 3–manifold with constant sectional curvature equal to �1, and let � be a
discrete and torsion-free group of orientation-preserving isometries of the hyperbolic
3–space H3, such that M is isometric to H3=� . We define the limit set of � to be

ƒ� WD � �x0\ @1H3;

where � �x0 denotes the closure of the �–orbit of x0 in H3 WD H3 [ @1H3. It is
simple to see that the definition of ƒ� does not depend on the choice of basepoint
x0 2 H3. If � is nonelementary (it does not have any finite orbit in H3), then
ƒ� can be characterized as the smallest closed �–invariant subset of @1H3; see
eg [33, Chapter 12]. The complementary region �� of the limit set in @1H3 is called
the domain of discontinuity of � .

Geometry & Topology, Volume 27 (2023)
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1.2 The convex core

If � WH3!H3=�ŠM denotes the universal cover of M , then a subset C of M is con-
vex if and only if ��1.C / is convex in H3. If � is nonelementary, then every nonempty
�–invariant convex subset of H3 contains the convex hull C� of � , which consists of the
intersection of all half-spaces H of H3 satisfying H �ƒ� (H stands for the closure of
H in H3). The image CM WD�.C�/ describes a convex subset of M , called the convex
core of M , which is minimal among the family of nonempty convex subsets of M .

Now let M be a convex cocompact hyperbolic 3–manifold, namely a noncompact
complete hyperbolic 3–manifold whose convex core is compact. The boundary of the
convex core @CM of M is the union of a finite collection of connected surfaces, each
of which is totally geodesic outside a subset of Hausdorff dimension 1. As described
in [13], the hyperbolic metrics on the totally geodesic pieces “merge” together, defining
a complete hyperbolic metric m on @CM. The locus where the boundary of the convex
core is not flat is a geodesic lamination �, ie a closed subset that is union of disjoint
simple geodesics. The surface @CM is bent along �, and the amount of bending can
be described by a measured lamination � called the bending measure of @CM. The
�–measure along an arc k transverse to � consists of an integral sum of the exterior
dihedral angles along the leaves that k meets. By locally integrating the lengths of the
leaves of the lamination in d�, we obtain the notion of length of the bending measure
with respect to the hyperbolic structure m, which will be denoted by `m.�/. For a
more detailed description we refer to [13, Section II.1.11] or [2].

1.3 Incompressible boundary

When M is convex cocompact and � is a discrete and torsion-free subgroup of isome-
tries of H3 such that M ŠH3=� , � acts freely and properly discontinuously on the
domain of discontinuity �� , and the quotient of H3[�� by � determines a natural
compactification of M , which will be denoted by M DM [@1M . Then M is said to
have incompressible boundary if the inclusion S !M of each connected component
S of @1M induces an injection at the level of the fundamental groups. This implies
in particular that any lift of the inclusion S !M to the universal covers zS ! eM is
a homeomorphism onto its image.

1.4 Constant Gaussian curvature surfaces

Definition 1.1 Let S be an immersed surface inside a Riemannian 3–manifold N . The
first fundamental form I of S is the Riemannian metric of S given by the restriction of
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the metric of N to the tangent spaces of S . If S admits a unitary normal vector field
� W S! T 1N , we define its shape operator B to be the endomorphism of TS given by
BU WD �DU �, for every tangent vector field U of S (here D denotes the Levi-Civita
connection of N ). The trace of the shape operator will be called the mean curvature
of S , and the tensor II WD I.B � ; � / the second fundamental form of S .

Let † be a surface immersed in a hyperbolic 3–manifold M , with first and second
fundamental forms I and II , and shape operator B. We denote by Ke its extrinsic
curvature, Ke D det B, and by Ki its intrinsic curvature, the Gaussian curvature of
the Riemannian metric I . Then the Gauss–Codazzi equations of .†; I; II/ can be
expressed as

Ki DKe � 1; .rU B/V D .rV B/U for all U;V;

where U and V are tangent vector fields to †, and r is the Levi-Civita connection of I .

Definition 1.2 Let † be an immersed surface inside a hyperbolic 3–manifold, and let
k 2 .�1; 0/. If the intrinsic curvature of † is constantly equal to k, it is a k–surface.

If† is a k–surface, then its extrinsic curvature KeDkC1 is positive, since k 2 .�1; 0/.
In particular, † is a (locally) strictly convex surface.

In every convex cocompact 3–manifold M , the subset M nCM is the disjoint union
of a finite number of geometrically finite hyperbolic ends .Ei/i , each of which is
homeomorphic to †i � .0;1/ for some compact orientable surface †i of genus larger
than or equal to 2. By the work of Labourie [21], the sets Ei are foliated by embedded
k–surfaces .†i;k/k , with k that varies in .�1; 0/. The surfaces †i;k approach the
components of the pleated boundary @CM of the convex core of M as k goes to �1,
and the components of conformal boundary at infinity @1M as k goes to 0.

We will denote by Mk the compact region of M whose boundary @Mk consists of the
union of the surfaces

S
i †i;k , and we will endow @Mk with the second fundamental

form IIk defined by the normal vector field pointing towards the interior of Mk , so that
IIk is positive definite, and Hk is a positive function (observe that the eigenvalues of
the shape operator have the same sign since Ke D det B > 0).

1.5 Deformation spaces

Let† be a compact orientable surface of genus larger than or equal to 2. The Teichmüller
space of †, denoted by T .†/, is the space of isotopy classes of hyperbolic metrics
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on †. Equivalently, in light of the uniformization theorem, T .†/ can be described
as the space of isotopy classes of conformal structures over † (compatible with the
choice of a fixed orientation on †).

Since convex cocompact hyperbolic 3–manifolds are not closed, several different
notions of deformation spaces can be introduced. In this exposition we will consider
the quasi-isometric (or quasiconformal) deformation space.

Definition 1.3 Given M and M 0 hyperbolic manifolds, a diffeomorphism M !M 0

is a quasi-isometric deformation of M if it is globally bi-Lipschitz. We denote by
QD.M / the space of quasi-isometric deformations of M , where we identify two
deformations M !M 0 and M !M 00 if their pullback metrics are isotopic to each
other.

Remark 1.4 By a theorem of Thurston [42, Proposition 8.3.4], two hyperbolic n–
manifolds M and M 0 are quasi-isometric if and only if their fundamental groups �
and � 0 (as subgroups of the isometry group of Hn) are quasiconformally conjugated, ie
there exists a quasiconformal self-homeomorphism ' of @1Hn such that '�'�1D � 0.

We denote by mk.M / 2 T .@Mk/ D
Q

i T .†i/ the isotopy class of the hyperbolic
metric .�k/Ik , where Ik is the first fundamental form of the k–surface @kM of M .
Then for every k 2 .�1; 0/ we have maps

Tk WQD.M /! T .@Mk/; M 7!mk.M /:

The convenience in considering foliations by k–surfaces relies in the following result,
based on the works of Labourie [22] and Schlenker [37]:

Theorem 1.5 If M has incompressible boundary, the map Tk is a C 1–diffeomorphism
for every k 2 .�1; 0/.

In the compressible case a similar statement can be recovered, replacing the role of the
Teichmüller space T .@Mk/ with its quotient by the action of a suitable subgroup of
the mapping class group of @Mk ; see eg [26, Theorem 5.1.3] for the corresponding
statement concerning the conformal structure of the boundary at infinity.

As mentioned in the introduction it is an open question, asked by Thurston, whether the
same statement is true for the hyperbolic structures on the boundary of the convex core,
which could be considered as the case k D �1 in Theorem 1.5. More precisely, the
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map T�1 is known to be continuously differentiable by [5] and surjective by the work
of Sullivan (described in [13]), but there are no results concerning its global injectivity.

1.6 Dual volume

Let M be a convex cocompact hyperbolic 3–manifold. If N is a compact convex subset
of M with smooth boundary, we define the dual volume of N to be

V �.N / WD V .N /�
1

2

Z
@N

H da;

where H stands for the mean curvature of @N defined using the inner normal vector
field, and V .N / is the Riemannian volume of N . We refer to [28] for a description
of the relation between the notion of dual volume and the polarity correspondence
between the hyperbolic and de Sitter spaces.

For every k 2 .�1; 0/ we let V �
k
WT .@Mk/!R denote the function that associates, with

a hyperbolic structure mk 2 T .@Mk/, the dual volume of the region @M 0
k

enclosed by
the k–surfaces of the unique convex cocompact hyperbolic 3–manifold M 0DT �1

k
.mk/

whose k–surfaces have hyperbolic structure mk .

If .Nh/h is a sequence of convex compact subsets approaching CM, then the integral of
the mean curvature over @Nh approaches `m.�/, the length of the bending measure �
with respect to the hyperbolic structure of @CM; see eg [9, Proposition 3.4]. This
suggests we should set the dual volume of the convex core of M as

V �C .M / WD V .CM/� 1
2
`m.�/:

In [29], a first-order variation formula for the function V �
C

over QD.M / is studied,
called the dual Bonahon–Schläfli formula,

dV �C .
PM /D�1

2
dL�. Pm/:

Here Pm denotes the first-order variation of the hyperbolic metric on @CM along PM ,
and L� W T .@CM/!R is the function that associates with every hyperbolic structure
m the length of the m–geodesic realization of �.

A strong similarity between dual and renormalized volumes is displayed by their
variation formulae. The renormalized volume satisfies

dVR. PM /D�1
2

dextF1
. Pc1/;

where Pc1 denotes the first-order variation of the conformal structure on @1M along PM ,
and extF1

WT .@1M /!R is the function that associates with every conformal structure
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c the extremal length of the horizontal measured foliation of the Schwarzian at infinity
of M with respect to c; see Schlenker [39] for a proof of this relation.

1.7 Norms on T T .†/

First we introduce the necessary notation for the “Riemannian geometric tools” that will
be used in the rest of the paper. Let .N;g/ be a Riemannian manifold with Levi-Civita
connection gr, and consider .ei/i , a local g–orthonormal frame. Given T , a symmetric
2–tensor on N , we define its g–divergence as the 1–form

.divg T /.X / WD
X

i

.grei
T /.ei ;X /

for every tangent vector field X . Similarly, the g–divergence of a vector field X is the
function

divg X D
X

i

g.grei
X; ei/:

The Laplace–Beltrami operator can be expressed as �gf D divg gradg f . Given two
symmetric 2–tensors T and T 0, their scalar product is defined as

.T;T 0/g WD gij ghkTihT 0jk D tr.g�1Tg�1T 0/:

In particular, we set trg T WD .g;T /g D tr.g�1T /. In the next sections it will also be
useful to keep in mind the way that these operators change if we replace g with �g,
for some positive constant �. If dim N D n,

div�g T D ��1 divg T; ��gf D �
�1�gf; da�g D �

n=2dag;(2)

.T;T 0/�g D �
�2.T;T 0/g; tr�g T D ��1 trg T:(3)

Now let M be the set of Riemannian metrics on†, and let H be the subset of hyperbolic
ones. The first-order variations Pg of elements of M identify with smooth symmetric
2–tensors on †. The choice of a metric g 2M determines a scalar product on TgM,
which can be expressed as

.�; �/FT;g WD

Z
†

.�; �/g dag;

where FT stands for Fischer–Tromba. We define S tt
2
.†;g/ to be the space of those

symmetric tensors � that are traceless with respect to g (meaning .�;g/g D 0) and
g–divergence-free (meaning divg � D 0, as defined above). Such tensors are also called
transverse traceless. A simple way to characterize the space S tt

2
.†;g/ is through
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holomorphic quadratic differentials. A holomorphic quadratic differential � on .†;g/
is a C–valued symmetric tensor that can be locally written as � D f dz2, where z is a
local coordinate conformal to the metric g (and compatible with a given orientation),
and f D f .z/ is a holomorphic function. Transverse traceless tensors are exactly those
2–tensors that can be written as <� for some � holomorphic quadratic differential
on .†; h/.

It is shown in [43] that, for every hyperbolic metric h, S tt
2
.†; h/ coincides with

ThH\
�
Th.Diff0.†/ � h/

�?
;

where Th.Diff0.†/ � h/ is the tangent space to the orbit of h by the action of the group
of diffeomorphisms of † isotopic to the identity, and . � /? is taken with respect to the
scalar product . � ; � /FT;h on ThM. Therefore, if mD Œh� denotes the isotopy class of a
hyperbolic metric on †, we can identify S tt

2
.†; h/ with TmT .†/, the tangent space at

m to the Teichmüller space T .†/DH=Diff0.†/, seen as the space of isotopy classes
of hyperbolic metrics on †. Moreover, the restriction of the scalar product . � ; � /FT;h

to S tt
2
.†; h/ coincides with (a multiple of) the Weil–Petersson metric h � ; � iWP (see

Lemma 1.6 for the explicit multiplicative constant).

The Teichmüller space can also be endowed with another Finsler norm that arises
from its conformal (or quasiconformal) interpretation, namely the Teichmüller norm.
The Teichmüller norm k � kT of a tangent vector Pm 2 TmT .†/ is the infimum of the
L1–norms of the Beltrami differentials representing Pm. It is not difficult to see that
the Beltrami differential associated to the tangent direction 2<� coincides with �� , the
harmonic Beltrami differential associated to � (see eg [16] for a detailed description of
these notions, and [30, Lemma 1.2] for a direct computation of this relation). Moreover,
the L1–norm of �� can be computed as

k��k1 D
1
p

2
sup
†

k<�kh:

We summarize what we observed:

Lemma 1.6 For every hyperbolic metric h representing the isotopy class m 2 T .†/,
the tangent space TmT .†/ identifies with S tt

2
.†; h/. For every Pm 2 TmT .†/,

k PmkWP D
1
p

2
k<�kFT;h; k PmkT �

1
p

2
sup
†

k<�kh;

where � is a holomorphic quadratic differential such that 2<� represents Pm inside
S tt

2
.†; h/.
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2 Some useful estimates

In this section we determine estimates for the solution uk of a certain linear PDEs,
defined over a k–surface lying inside an end of a convex cocompact hyperbolic 3–
manifold with incompressible boundary. The function uk will be later used to describe
the Weil–Petersson gradient of the dual volume functions V �

k
, and the bounds produced

in this section will play an important role in the study of its flow.

Given .N;g/ a Riemannian manifold with Levi-Civita connection gr and area form dag,
we denote by H n.N; dag/ the Sobolev space of real-valued functions f on N with
L2.N; dag/–integrable weak derivatives .gr/if for all i � n. The space H n.N; dag/

is Hilbert if endowed with the scalar product

.f; f 0/ WD

nX
iD0

Z
N

..gr/if; .gr/if 0/g dag for f; f 0 2H n.N; dag/;

where . � ; � /g denotes the scalar product induced by g on the space of i–tensors over N .
Given f WN !R a C n–function, we define its C n.N;g/–norm as

kf kC n.N;g/ WD

nX
iD0

sup
p2N

k.gr/if jpkg;

where kT kg D
p
.T;T /g.

Now let hk denote the hyperbolic metric .�k/Ik on the k–surface @Mk , with Levi-
Civita connection kr and Laplace–Beltrami operator �k (here we consider �ku to be
the trace of the Hessian of u). We define the linear differential operator Lk to be

Lku WD .�k � 21/uD�ku� 2u:

Let A be the symmetric bilinear form on H 1.@Mk ; dak/ with quadratic form

A.u;u/ WD �.Lku;u/D

Z
†

.kduk2k C 2u2/ dak ;

where k � kk and dak denote the norm and the area form of hk , respectively. By
the Lax–Milgram theorem (see eg [7, Corollary 5.8]) applied to the Sobolev space
H 1.@Mk ; dak/ and to the coercive symmetric bilinear form A, we have that, for every
f 2 L2.@Mk ; dak/, there exists a unique weak solution u 2 H 1.@Mk ; dak/ of the
equation LkuD f . We will in particular denote by uk the function satisfying

(4) Lkuk D�k�1Hk () �Ik
uk C 2kuk DHk ;
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where Hk denotes the mean curvature of the k–surface @Mk . By the classical regularity
theory for linear elliptic PDEs (see eg [14, Section 6.3]), the smoothness of the mean
curvature Hk and the compactness of @Mk imply that the function uk is smooth and it
is a strong solution of (4).

By the work of Rosenberg and Spruck [35, Theorem 4], for every Jordan curve c

in @1H3 there exist exactly two k–surfaces z†˙
k
.c/ asymptotic to c. A fundamental

property of k–surfaces, which will be crucial in Lemma 2.3, is:

Proposition 2.1 [6, Proposition 3.8] Let k 2 .�1; 0/ and n 2N. Then there exists a
constant Nk;n > 0 such that , for every Jordan curve c in @1H3, the mean curvature
Hc;k of the k–surface z†k.c/D z†

C

k
.c/t z†�

k
.c/ asymptotic to c satisfies

kHc;kkC n.z†k.c//
�Nn;k :

Proof We briefly recall here the proof of this statement (which was stated in [6] for
nD 0). First, recall that k–surfaces satisfy the following compactness criterion:

Proposition 2.2 [6, Proposition 3.6] Let k 2 .�1; 0/, and consider fn WH2
k
!H3

a sequence of proper isometric embeddings of the hyperbolic plane H2
k

with constant
Gaussian curvature k. If there exists a point p 2H2 such that .fn.p//n is precompact ,
then there exists a subsequence of .fn/n that converges C1–uniformly on compact
sets to an isometric immersion f WH2

k
!H3.

Fixing k 2 .�1; 0/ and n 2 N, assume by contradiction that there exists a sequence
of Jordan curves .cm/m such that the mean curvatures Hm DHcm;k of the k–surfaces
z†k.cm/ satisfy kHmkC n.z†k.cm//

>m. Up to extracting a subsequence, there exists an
i � n such that for every m 2N

sup
z†k.cm/

k.kr/iHmk>
m

nC1
D Cnm:

Now choose qm 2
z†k.cm/ for which the norm of .kr/iHm at qm is at least Cnm.

Since each component of z†k.cm/ is embedded and isometric to the hyperbolic plane
H2

k
(which is homogeneous), we can find a sequence of proper isometric embeddings

fm W H2
k
! H3, parametrizing a component of z†k.cm/, such that fm. Np/ D qm for

some fixed basepoint Np 2H2
k

. Up to postcomposing fm by an isometry of H3, we can
also assume that fm. Np/D Nq is fixed. In this way, we have found a sequence of proper
isometric embeddings fm WH2

k
!H3 satisfying

� fm. Np/D Nq 2H3 is independent of m 2N,
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� the mean curvature of the surfaces fm.H2
k
/ at Nq has some i th–order derivative

that is unbounded as m goes to1.

This clearly contradicts the compactness criterion mentioned above.

From this result we can now obtain a uniform control on uk :

Lemma 2.3 Let M be a convex cocompact hyperbolic 3–manifold. Then the function
uk W @Mk !R, the solution of (4), satisfies

max@Mk
Hk

2k
� uk �

min@Mk
Hk

2k
D

p
kC 1

k
< 0:

Moreover , if M has incompressible boundary , then there exists a constant Ck > 0

depending only on the intrinsic curvature k 2 .�1; 0/, and in particular not on the
hyperbolic structure of M , such that

max
@Mk

k
k
r

2ukkk � Ck :

Proof The first assertion is an immediate consequence of the maximum principle
applied to uk as a solution of the PDE (4). Moreover, since the product of the principal
curvatures (the eigenvalues of the shape operator) of a k–surface is everywhere equal
to k C 1, the trace of the shape operator is bounded from below by 2

p
kC 1 (see

Remark 2.5 for an explanation of the equality min@Mk
Hk D 2

p
kC 1).

The proof of the second assertion requires more care. Let†k be a connected component
of the k–surface @Mk , and let zM ŠH3 denote the universal cover of M . Since M

is a convex cocompact hyperbolic 3–manifold with incompressible boundary, every
component z†k of the preimage of †k in zM is stabilized by a subgroup � Š �1.†k/

of the fundamental group of M , acting by isometries on zM . Each of these subgroups
� is quasi-Fuchsian (see eg [17, Corollary 4.112 and Theorem 8.17] for a proof of
this assertion), and the surface z†k is a k–surface asymptotic to some Jordan curve in
@1 zM Š @1H3. In particular, by Proposition 2.1, we can find a universal constant
Nk DN2;k > 0 that satisfies

(5) k zHkkC 2.z†k/
�Nk :

Here we stress that the constant Nk does not depend on the hyperbolic structure of M

or †k , but only on the value of k 2 .�1; 0/.

Our goal is now to make use of this control to obtain a uniform bound of the norm of
the Hessian of uk . For this purpose, we will need a classical result of regularity for
linear elliptic differential equations:
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Theorem 2.4 [14, Theorem 2, page 314] Let m; n 2N and U �Rn be a bounded
open set. We consider a differential operator L of the form

Lf D�

nX
i;jD1

aij .x/@2
xi ;xj

f C

nX
iD0

bi.x/@xi
f C c.x/f;

where aij D aji ; bi ; c 2 C mC1.U;R/. Assume that L is uniformly elliptic , ie there
exists a constant " > 0 such that

P
i;j aij .x/vivj � "kvk

2 for all v 2Rn and x 2 U .
If f 2H 1.U / is a weak solution of the equation Lf D � for some � 2H m.U /, then
for every bounded open set V with closure contained in U there exists a constant C ,
depending only on m, U and V and the functions aij , bi and c, such that

kf kH mC2.V / � C.k�kH m.U /Ckf kL2.U //;

where the Sobolev spaces H mC2.V /, H m.U / and L2.U / are defined with respect to
the Euclidean metric of U �Rn.

The surface z†k endowed with the lift of the hyperbolic metric hk of †k is isometric to
the hyperbolic plane H2. In the rest of the proof we will identify z†k with the Poincaré
disk model H2 WD .B1;g/, where B1 is the Euclidean ball of radius 1 and center 0

in C, and g is the Riemannian metric

g D

�
2

1� jzj2

�2

jdzj2:

Now we choose U and V to be the g–geodesic balls of center 0 2 B1 and hyperbolic
radius equal to 2 and 1, respectively. The lift of the operator �Lk over U is clearly
uniformly elliptic because of the compactness of U and its expression in coordinates

�Lkf D�gij .@2
ijf ��

h
ij .g/@hf /C 2f;

where the �h
ij .g/ denote the Christoffel symbols of g. Again by the compactness

of U and V , the norms of the Sobolev spaces k � kH j .U / and k � kH j .V /, computed
with respect to the flat connection of B1 � R2 and the Euclidean volume form, are
equivalent to the norms of the corresponding Sobolev spaces defined using the Levi-
Civita connection of g and the g–volume form. Moreover, the bi-Lipschitz constants
involved in the equivalence only depend on a bound of the C jC1–norm of g over U , so
they can be chosen to depend only on j 2N. From now on, we will consider the norms
on the spaces H j .U / and H j .V / to be defined using the metric g and its connection.

Now we apply Theorem 2.4 to mD nD 2, the operator �Lk and the functions f D Quk

and �D�k�1 zHk , where zF denotes the lift of the function F over z†k . We can find

Geometry & Topology, Volume 27 (2023)



2334 Filippo Mazzoli

a universal constant C > 0 (depending only on the open sets U and V , and on the
metric gjU ) such that

k QukkH 4.V / � C.�k�1
k zHkkH 2.U /CkQukkL2.U //:

By the first part of Lemma 2.3, k QukkC 0.U / � �.2k/�1k zHkkC 0.H2/. In addition,

k QukkL2.U / � Area.U;g/1=2k QukkC 0.U / � �.2k/�1 Area.U;g/1=2k zHkkC 0.H2/;

and
k zHkkH 2.U / � Area.U;g/1=2k zHkkC 2.H2/:

In conclusion, we deduce that

k QukkH 4.V / � �2k�1C Area.U;g/1=2k zHkkC 2.H2/:

By the Sobolev embedding theorem (see eg [7, Corollary 9.13, page 283]), given W an
open set satisfying 0 2W �W � V , the C 2.W /–norm of Quk (again, computed with
respect to the Levi-Civita connection of g) is controlled by a multiple of its H 4–norm
over V , and the multiplicative factor depends only on W and V . Therefore, if we
choose for instance W D BH2

�
0; 1

2

�
,

k
k
r

2
QukkC 0.W / � C 0.k/k zHkkC 2.H2/:

Now the desired statement easily follows. From relation (5) and the last inequality, we
obtain a uniform bound of the Hessian of Quk over W 3 0. Now let q be any other point
of H2, and choose a g–isometry 'q W B1 ! B1 such that 'q.0/ D q. If we replace
Quk and zHk with Quk ı 'q and zHk ı 'q , respectively, the exact same argument above
applies, since the operator Lk and the norms k � kH j and k � kC l are invariant under
the action of the isometry group of H2 (and since k zHkkC 2.H2/ D k

zHk ı'qkC 2.H2/).
In particular, this gives us a control on the norm of kr2 Quk over 'q.W / for any point
q 2H2, and the last part of our assertion follows.

Remark 2.5 The minimum of the mean curvature 2
p

kC 1 is always realized. As
described by Labourie in [23], whenever we have a k–surface †k with first and second
fundamental forms Ik and IIk , respectively, the identity map id W .†k ; IIk/! .†k ; Ik/

is harmonic, with Hopf differential  k satisfying

2< k D Ik �
Hk

2.kC 1/
IIk :

Its squared norm with respect to IIk can be expressed as

k2< kk
2
IIk
D

H 2
k
� 4.kC 1/

.kC 1/2
:
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In particular, at each zero of  k (which necessarily exist because �.†k/ < 0), we have
Hk D 2

p
kC 1.

We stress that, even if the maximum of the mean curvature Hk will clearly depend on
the hyperbolic structure of M , Proposition 2.1 guarantees that max Hk is controlled by
a function of k independent of the geometry of M , as long as @M is incompressible.

We will make use of the upper bound uk �
p

kC 1=k in Lemma 3.4, where we will
determine a lower bound of the Weil–Petersson norm of the differential of V �

k
in terms

of the integral of the mean curvature.

3 The gradient of the dual volume

The aim of this section is to describe the gradient of the dual volume function V �
k

with
respect to the Weil–Petersson metric on the Teichmüller space of @Mk in terms of the
function uk studied in the previous section.

The first-order variation of the dual volume of Mk as we vary the convex cocompact
hyperbolic structure of M can be computed by applying the differential Schläfli formula
due to Rivin and Schlenker [34]. In particular:

Proposition 3.1 We have

d.V �k ıTk/. PM /D
1

4

Z
@Mk

. PIk ; IIk �HkIk/Ik
daIk

D
1

4

Z
@Mk

. Phk ; IIk C k�1Hkhk/hk
dahk

;

where PIk D�k�1 Phk is the first-order variation of the first fundamental form on @Mk

along the variation PM , and Tk WQD.M /! T .@Mk/ is the diffeomorphism introduced
in Section 1.5.

A proof of this relation based on the results of Rivin and Schlenker can be found in
[29, Proposition 2.5]. From its variation formula, we can give an explicit description
of the Weil–Petersson gradient of the dual volume function V �

k
, which will turn out to

be useful for the study of its flow.

Proposition 3.2 The vector field gradWP V �
k

is represented by the symmetric 2–tensor
2<�k , where �k is the (unique) holomorphic quadratic differential satisfying

<�k D IIk �
k
r

2uk Cukhk ;

where uk denotes the solution of (4).
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Proof Let Pmk denote a tangent vector to the Teichmüller space of @Mk at mk . As
described in Section 1.5, given any hyperbolic metric hk representing the isotopy
class mk 2 T .@Mk/, we can find a unique transverse traceless tensor Phk 2 S tt

2
.†; hk/

representing Pmk . Assume for a moment that we can find a decomposition of the
symmetric tensor IIk C k�1Hkhk of the form

IIk C k�1Hkhk D SttCLX hk C�hk ;

where Stt is a transverse traceless tensor with respect to hk , LX hk is the Lie derivative
of hk with respect to a vector field X , and � is a smooth function on @Mk . Then, by
Proposition 3.1, we can express the variation of the dual volume V �

k
along a transverse

traceless variation Phk :

dV �k .
Phk/D

1

4

Z
@Mk

. Phk ;SttCLX hk C�hk/hk
dahk

:

Since Phk is traceless, the scalar product . Phk ; hk/hk
D trhk

. Phk/ vanishes identically.
The L2–scalar product between Phk and LX hk vanishes too, because LX hk is tangent
to the orbit of hk by the action of Diff0.†/; see Section 1.7. In particular,

dV �k .
Phk/D

1

4

Z
@Mk

. Phk ;Stt/hk
dahk

D
1
8
. Phk ; 2St t /FT;hk

:

In light of Lemma 1.6, by varying the tangent vector Pmk 2 Tmk
T .@Mk/, we deduce

that the tensor 2Stt is the element of S tt
2
.†; hk/ that represents gradWP V �

k
.

In conclusion, this argument shows us that, in order to prove our assertion, we need
to determine a decomposition of the tensor IIk C k�1Hkhk of the form we described
above, with Stt D IIk �

kr2uk Cukhk . For this purpose, we consider the expression

IIk C k�1Hkhk D .IIk �
k
r

2uk Cukhk/C
k
r

2uk C .k
�1Hk �uk/hk

D .IIk �
k
r

2uk Cukhk/C
1
2
Lgradhk

uk
hk C .k

�1Hk �uk/hk ;

where we used the relation Lgradhk
uk

hk D 2.kr2uk/. In this expression, the second
term of the sum is of the type LX hk , while the third term has the form �hk . Therefore,
by the argument above, it is enough to show that the first term is hk–traceless and
hk–divergence-free. The trace of IIk �

kr2uk Cukhk satisfies

trhk
.IIk �

k
r

2uk Cukhk/D�k�1Hk ��kuk C 2uk :

This expression vanishes because uk is a solution of (4). In order to compute the
divergence of our tensor, we will need the relations

divhk
IIk D�k�1dHk ; divg.

g
r

2f /D d.�gf /CRicg.gradg f; � /:
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The first equality follows from the Codazzi equation .krX Bk/Y D .
krY Bk/X satisfied

by the shape operator Bk of @Mk (the Levi-Civita connections of hk and the first
fundamental form Ik are the same, since they differ by a multiplicative constant).
The second relation is true for any Riemannian metric g, and we will apply it in the
case g D hk and f D uk . Since hk is a hyperbolic metric on a 2–manifold, we have
Richk

D�hk . Therefore

divhk
.IIk �r

2
kuk Cukhk/D�k�1dHk � d.�kuk/C duk C duk

D d.�k�1Hk ��kuk C 2uk/;

where we used the relation divg.fg/ D df . Again, the expression above vanishes
because uk solves (4). Then we have shown that IIk �

kr2uk Cukhk is a transverse
traceless tensor, as desired.

Remark 3.3 In fact, the decomposition we presented for the tensor IIk C k�1Hkhk

is related to the orthogonal decomposition of the space of symmetric tensors due to
Fischer and Marsden [15]. Given g, a hyperbolic metric, every symmetric tensor S

admits an orthogonal decomposition of the form

S D SttCLX gC ..��gf Cf /gC
g
r

2f /;

where:

� Stt is transverse traceless with respect to g.

� SttCLX g is tangent to the space of Riemannian metrics with constant Gaussian
curvature equal to �1. That is, if g0 7!K.g0/ denotes the operator that associates
to the Riemannian metric g0 its Gaussian curvature, then SttCLX g 2 ker dKg.

� .��gf Cf /gC
gr2f is L2–orthogonal to ker dKg.

Then, the expression

IIk C k�1Hkhk D .IIk �
k
r

2uk Cukhk/C 0C ..k�1Hk �uk/hk C
k
r

2uk/

D .IIk �
k
r

2uk Cukhk/C 0C ..��kuk Cuk/hk C
k
r

2uk/

is the Fischer–Marsden decomposition of IIkCk�1Hkhk , where f D uk , X D 0 and
Stt D .IIk �

kr2uk Cukhk/.

Using this explicit description of the Weil–Petersson gradient of the dual volume
function V �

k
, we can determine a lower bound of its norm in terms of the integral of

the mean curvature:
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Lemma 3.4 For every k 2 .�1; 0/,

kdV �k k
2
WP � �

p
kC 1

2k

Z
@Mk

Hk daIk
�

2�.kC 1/

k2
j�.@M /j:

Proof In what follows, we will prove the expression

(6) kIIk �r
2
kuk Cukhkk

2
Ik
D kukHk � 2.kC 1/C divIk

W

for some tangent vector field W on @Mk . Assuming for the moment this relation,

kdV �k k
2
WP D

1

2

Z
@Mk

k<�kk
2
hk

dahk
(Proposition 3.2 and Lemma 1.6)

D
1

2

Z
@Mk

.�k/�2
k<�kk

2
Ik
.�k/ daIk

D�
1

2k

Z
@Mk

.kukHk�2.kC1// daIk
(relation (6));

where we used that hk D .�k/Ik , relations (2) and (3), and that the integral of the term
divIk

W vanishes by the divergence theorem. By Lemma 2.3 uk �
p

kC 1=k, so

kdV �k k
2
WP � �

p
kC 1

2k

Z
@Mk

Hk daIk
�

2�.kC 1/

k2
j�.@M /j;

where we applied the Gauss–Bonnet theorem to say that the area of @Mk with respect
to Ik is equal to �2�k�1j�.@M /j.

The only ingredient left to prove is relation (6). For this computation, we will use
Bochner’s formula (see eg [25, page 223]),

(7) 1
2
�gkdf k2g D k

g
r

2f k2gCg.gradg f; gradg �gf /CRicg.gradg f; gradg f /;

and the expressions

divg.fX /D g.gradg f;X /Cf divg X;(8)
1
2
.LX g;T /g D�.divg T /.X /C divg Y;(9)

where X is a tangent vector field, f is a smooth function, T is a symmetric 2–tensor,
and Y D T .X; � /] is the vector field defined by requiring that g.Y;Z/ D T .X;Z/

for all vector fields Z. From now on, we will omit everywhere the dependence of the
connections, norms, gradients, and the Laplace–Beltrami operator on the Riemannian
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metric g, and everything has to be interpreted as associated to g D Ik . Observe also
that the Levi-Civita connections of Ik and hk are equal, since these metrics differ by
multiplication by a constant and, in particular, the hk– and Ik–Hessians coincide. Then

(10) kIIk �r
2uk Cukhkk

2
D kIIk �r

2uk � kukIkk
2

D kIIkk
2
Ckr

2ukk
2
C k2u2

kkIkk
2
� 2.IIk ;r

2uk/

� 2kuk.IIk ; Ik/C 2kuk.r
2uk ; Ik/:

First, we focus our attention on the terms kr2ukk
2 and .IIk ;r

2uk/. In order to
simplify the notation, we say that two functions a and b on @Mk are equal “modulo
divergence”, and we write a�div b, if their difference coincides with the divergence of
some smooth vector field. Then

kr
2ukk

2
D

1
2
�kdukk

2
� hgrad uk ; grad�uki � kkdukk

2 (relation (7))

�div �hgrad uk ; grad�uki � kkdukk
2 (�gf D divg gradg f )

D�div.�uk grad uk/C .�uk/
2
� kkdukk

2 (relation (8))

�div .�uk/
2
� k div.uk grad uk/C kuk�uk (relation (8))

�div �uk.�uk C kuk/;

and

.IIk ;r
2uk/D

1
2
.IIk ;Lgrad uk

Ik/ (Lgradg f
g D 2gr2f )

�div �.div IIk/.grad uk/ (relation (9))

D�hgrad Hk ; grad uki (div IIk D dHk)

D�div.Hk grad uk/CHk�uk (relation (8))

�div Hk�uk :

The other terms in (10) are simpler to handle. In particular,

kIIkk
2
DH 2

k � 2.kC 1/; kIkk
2
D 2;

.IIk ; Ik/DHk ; .r2uk ; Ik/D�uk :

Replacing all the relations we found in (10), we obtain

kIIk �r
2uk Cukhkk

2

�div H 2
k � 2.kC 1/C�uk.�uk C kuk/C 2k2u2

k

� 2Hk�uk � 2kukHk C 2kuk�uk

DH 2
k � 2.kC 1/C 2k2u2

k � 2kukHk C�uk.�uk C 3kuk � 2Hk/:
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Finally, by replacing �uk D�Ik
uk using (4) in the equality above, we find that

kIIk �r
2uk Cukhkk

2
�div kukHk � 2.kC 1/;

which is equivalent to relation (6).

Since the Weil–Petersson metric of the Teichmüller space is noncomplete, a control
from above of the quantity kdV �

k
kWP would not suffice to guarantee the existence

of the flow for every time. For this purpose, we rather study the L1–norm of the
Beltrami differentials equivalent to gradWP V �

k
, which gives a control with respect to

the Teichmüller metric (that is complete). At this point, the estimates determined in
Lemma 2.3 will play an essential role.

Proposition 3.5 There exists a constant Dk > 0 depending only on the intrinsic
curvature k 2 .�1; 0/ such that

kgradWP V �k kT �Dk ;

where k � kT denotes the Teichmüller norm on T T .@Mk/.

Proof Let mk be a point of the Teichmüller space T .@Mk/ and let hk be a hyperbolic
metric in the isotopy class mk . In Proposition 3.2, we showed that the vector field
gradWP V �

k
at a point mk 2 T .@Mk/ is represented by the transverse traceless tensor

2<�k 2 S tt
2
.@Mk ; hk/. Therefore by Lemma 1.6,

kgradWP V �k kT �
1
p

2
sup
@Mk

k<�kkhk
:

So it is enough to show that the norm kIIk �
kr2uk Cukhkkhk

is uniformly bounded
by a constant depending only on k. The norm of IIk is equal to �k�1

p
H 2

k
� 2.kC 1/,

and kukhkkhk
D
p

2juk j. Therefore

kIIk�
k
r

2ukCukhkkhk
��k�1

p
kHkk

2
C 0 � 2.kC 1/Ckkr2ukkhk

C
p

2kukkC 0 :

Our assertion is now an immediate consequence of Proposition 2.1 and Lemma 2.3.

Corollary 3.6 The flow ‚t of the vector field � gradWP V �
k

over T .@Mk/ is defined
for all times t 2R.

Proof The assertion follows from the fact that the Teichmüller distance is complete,
and the bound shown in Proposition 3.5.
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The last ingredient that we will need for the proof of Theorem A is the existence
of some lower bound for the dual volume function V �

k
. To find one, we will make

use of the properties of the dual volume proved in [29], and of an upper bound for
the length of the bending measure of the boundary of the convex core of a convex
cocompact manifold with incompressible boundary, whose existence was first proved
by Bridgeman [8] and improved in later works; see [11]. We will make use of the
best result currently known in this direction for convex cocompact manifolds with
incompressible boundary, which is due to Bridgeman, Brock and Bromberg [9].

Lemma 3.7 For every k 2 .�1; 0/ and for every convex cocompact hyperbolic 3–
manifold M with incompressible boundary,

V �k .M /� F.k; �.@M //;

where F is an explicit function of the curvature k 2 .�1; 0/ and the Euler characteristic
of @M .

Proof Since the k–surfaces foliate the complement of the convex core CM, a simple
application of the geometric maximum principle (see for instance [24, lemme 2.5.1])
shows that the k–surface @Mk is contained in N"k

CM, the "k–neighborhood of the
convex core CM, for "k D arctanh

p
kC 1. The dual volume of a convex set is a

decreasing function with respect to inclusion (see [29, Proposition 2.6] for a proof
of this assertion), therefore the quantity V �

k
.M / is bounded from below by the dual

volume of the "k–neighborhood of the convex core. It is not difficult to show that, for
every " > 0,

V �.N"CM/D V .CM/� 1
4
`m.�/.cosh 2"C 1/� 1

2
�j�.@CM/j.sinh 2"� 2"/;

where `m.�/ denotes the length of the bending measured lamination on the boundary
of the convex core of M ; see eg [29, Proposition 2.4]. By [9, Theorem 2.16], the term
`m.�/ is less than or equal to 6�j�.@M /j. Combining these observations,

V �k .M /� V �.N"k
CM/

D V .CM/� 1
4
`m.�/.cosh 2"k C 1/� 1

2
�j�.@CM/j.sinh 2"k � 2"k/

� �
1
4
`m.�/.cosh 2"k C 1/� 1

2
�j�.@CM/j.sinh 2"k � 2"k/

� �
1
2
�j�.@M /j.3 cosh "k C 3C sinh 2"k � 2"k/;

which proves the desired inequality.
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4 The proof of Theorem A

This section is dedicated to the proof of our main theorem, and to the proof of the
optimality of the multiplicative constant appearing in (1).

Proof of Theorem A Let M be a convex cocompact hyperbolic 3–manifold with
incompressible boundary. We denote by Mt WD ‚t .M / the hyperbolic 3–manifold
obtained by following the flow of the vector field � gradWP V �

k
, which is defined for

every t 2R in light of Corollary 3.6. In order to simplify the notation, we will continue
to denote by V �

k
the k–dual volume as a function over the space of quasi-isometric

deformations of M . This abuse is justified by the fact that, for every k 2 .�1; 0/, a
convex cocompact manifold is uniquely determined by the hyperbolic structures on its
k–surfaces (see Theorem 1.5). We have

V �k .M /�V �k .Mt /D

Z t

0

kdV �k k
2
Ms

ds:

By Lemma 3.7, the left side of the relation is bounded from above with respect to t . In
particular, the integral on the right side has to converge as t goes to C1. Therefore we
can find an unbounded increasing sequence .tn/n for which the Weil–Petersson norm
kdV �

k
k2 evaluated at Mtn

goes to 0 as n goes to1. Then, by Lemma 3.4,

lim sup
n!1

Z
@Mtn;k

Hk daIk
� �4�k�1

p
kC 1j�.@M /j;

where Mtn;k stands for .Mtn
/k , the region of Mtn

enclosed by its k–surfaces. Therefore

V �k .M /� lim
n!1

V �k .Mtn
/D lim

n!1

�
Vk.Mtn

/�
1

2

Z
@Mtn:k

Hk daIk

�
� inf

M 02QD.M /
Vk.M

0/� 1
2

lim sup
n!1

Z
@Mtn;k

Hk daIk

� inf
M 02QD.M /

Vk.M
0/C 2�k�1

p
kC 1j�.@M /j;

where Vk.M
0/ denotes the Riemannian volume of the region M 0

k
of M 0 enclosed by its

k–surface. Observe that the term 2�k�1
p

kC 1j�.@M /j is equal to �1
2

R
@M 0

k
Hk daIk

when the boundary of the convex core of M 0 is totally geodesic.

Finally, by taking the limit as k goes to .�1/C, we obtain that V �
C
.M /� infM 0 VC .M

0/

for every convex cocompact structure M . This proves that

inf
QD.M /

V �C � inf
QD.M /

VC :

Geometry & Topology, Volume 27 (2023)



The infimum of the dual volume of convex cocompact hyperbolic 3–manifolds 2343

On the other hand, the dual volume V �
C
.M / WD VC .M /� 1

2
`m.�/ is always smaller

than or equal to VC .M /, so the other inequality between the infima is clearly satisfied.

If V �
C
.M / D VC .M /, then the length of the bending measured lamination � of the

convex core of M has to vanish. Therefore �D 0 or, in other words, @CM is totally
geodesic.

Corollary 4.1 For every quasi-Fuchsian manifold M , VC .M / � 1
2
`m.�/, where

mDm.M / and �D�.M / denote the hyperbolic metric and the bending measure of the
boundary of the convex core of M , respectively. Moreover , for every positive " and for
every neighborhood U of a Fuchsian manifold M0 inside QD.M0/DQD.M /, there
exists a quasi-Fuchsian manifold M" in U that satisfies VC .M"/ <

�
1
2
C "

�
`m"

.�"/,
where m" Dm.M"/ and �" D �.M"/.

Proof If M is quasi-Fuchsian, the infimum of the volume of the convex core over the
space of quasi-isometric deformations QD.M / is equal to 0, and it is realized on the
Fuchsian locus.

For the second part of the statement, consider M0 a Fuchsian manifold whose convex
core is a totally geodesic surface homeomorphic to † with hyperbolic metric m0. Let
˛ W Œ0; 1�!QD.M / be a path starting at ˛.0/DM0 and for which the right derivative
of the bending measure P�C

0
exists and it is equal to a nonzero measured lamination on

†t†. A fairly explicit way to produce such a path is to choose a measured lamination
� 2ML.†/ and consider the deformation of M0 given by the holonomies of pleated
surfaces with bending Hölder cocycle equal to t� and hyperbolic metric m0, as t varies
in Œ0; 1�; compare with [3]. Then, for every " > 0, we define

f".t/ WD VC .˛.t//�
�

1
2
C "

�
`mt

.�t /D V �C .˛.t//� "`mt
.�t / for t 2 Œ0; 1�;

where mt Dm.Mt / and �t D �.Mt / denote the hyperbolic metric and the bending
measure of the boundary of the convex core of Mt D ˛.t/. As shown in [20, (4)],

d
dt
`mt

.�t /
ˇ̌̌
tD0C

D d.L�0
/. Pm0/C `m0

. P�C
0
/D `m0

. P�C
0
/;

where we use that �0D 0 (here L�0
W T .@CM/!R is the function that associates with

every hyperbolic structure m the length of the m–geodesic realization of �0). Then

f".t/D f".0/Cf
0
" .0/t C o.t I "/

D 0C .d.VC
�/M0

.v/� "`m0
. P�C

0
//t C o.t I "/

D�"`m0
. P�C

0
/t C o.t I "/ (V �

C
2 C 1 and M0 minimum).
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This proves that f".t/ < 0 for t sufficiently small (depending on "), and therefore the
existence of a quasi-Fuchsian manifold M" satisfying the desired properties.
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Discrete subgroups of small critical exponent

BEIBEI LIU

SHI WANG

We prove that finitely generated Kleinian groups � < Isom.Hn/ with small critical
exponent are always convex cocompact. We also prove some geometric properties for
any complete pinched negatively curved manifold with critical exponent less than 1.

22E40; 20F65

1 Introduction

A Kleinian group is a discrete isometry subgroup of Isom.Hn/. The study of 3–
dimensional finitely generated Kleinian groups dates back to Schottky, Poincaré and
Klein. It is only recently that the geometric picture of the associated hyperbolic manifold
has been much better understood, after the celebrated work of Ahlfors’ finiteness
theorem [2], the proof of the tameness conjecture (see Agol [1], Bonahon [10] and
Calegari and Gabai [18]), and the unraveling of the ending lamination conjecture; see
Bowditch [13], Brock, Canary and Minsky [14], Minsky [36] and Soma [42]. However,
such geometric descriptions fail in higher dimensions; see Kapovich [29; 30], Kapovich
and Potyagailo [33; 34] and Potyagailo [41; 40].

One way to study higher-dimensional Kleinian groups is to consider the interplay
between the group-theoretic properties, the geometry of the quotient manifolds, and
the measure-theoretic size of the limit set. It was shown by Gusevskii [23] that if
the Hausdorff dimension of the entire limit set dimH.ƒ.�// is less than 1, then � is
geometrically finite. In this case, the Hausdorff dimension of the entire limit set equals
the Hausdorff dimension of the conical limit set (see Bowditch [12]), which is smaller
than 1. However, when � is geometrically infinite, the size of the entire limit set could
a priori be much larger, so dimHƒ.�/ > dimHƒc.�/. Thus, it is interesting to ask
what the relative size ofƒc.�/ is compared to the entireƒ.�/, or rather, to what extent
is the size of ƒc.�/ able to determine the geometric finiteness of the group. By the
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work of Bishop and Jones [9], the Hausdorff dimension of the conical limit set ƒc.�/

equals the critical exponent ı.�/. Hence, Kapovich [31, Problem 1.6] asked:

Question 1.1 Is every finitely generated Kleinian group � < Isom.Hn/ with ı.�/ < 1

geometrically finite?

We partly answer this in the affirmative in a slightly more general context.

Theorem 1.2 For each n and � there exists a positive constant D.n; �/ < 1
2

with
the property that , for every n–dimensional Hadamard manifold with pinched sectional
curvature ��2 � K � �1 and any finitely generated torsion-free discrete isometry
subgroup � < Isom.X /, � is convex cocompact if ı.�/ <D.n; �/.

Remark 1.3 The constant D.n; �/ can be obtained from the quantitative version of the
Tits alternative for pinched negatively curved manifolds; see Dey, Kapovich and Liu [20].

Remark 1.4 For 3–dimensional finitely generated Kleinian groups � of second kind,
ie ƒ.�/¤ S2, Bishop and Jones [9] showed that � is geometrically finite if ı.�/ < 2.
Hou [25; 26; 27] proved that a 3–dimensional Kleinian group � is a classical Schottky
group if dimH.ƒ.�// < 1.

In [31], Kapovich established a relation between the homological dimension and the
critical exponent of a Kleinian group. A similar homological vanishing feature has been
extended to other rank-one symmetric spaces by Connell, Farb and McReynolds [19].
It is conjectured [31, Conjecture 1.4] that the virtual cohomological dimension vcd.�/
is bounded above by ı.�/C 1 (assuming � has no higher-rank cusps). Under the
condition ı.�/ < 1, it is equivalent to ask (see Stallings [43] and also a weaker form
by Bestvina [8, Question 5.6]):

Question 1.5 Is every finitely generated Kleinian group � < Isom.Hn/ with ı.�/ < 1

virtually free?

In the same paper, Kapovich gave a positive answer to this question under the stronger
assumption that � is finitely presented. On the other hand, when ı.�/ is sufficiently
small, our Theorem 1.2 automatically implies dimH.ƒ.�// D ı.�/ < D.n; �/ < 1.
This implies that the limit set ƒ.�/ is a Cantor set since it is perfect. Following the
classical result of Kulkarni [35, Theorem 6.11]:

Corollary 1.6 For each n there is a positive constant D.n/ < 1
2

such that any finitely
generated discrete isometry subgroup � < Isom.Hn/ is virtually free if ı.�/ <D.n/.
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Remark 1.7 Under the assumption that dimH.ƒ.�// < 1, Pankka and Souto [39]
proved that any torsion-free Kleinian group (not necessarily finitely generated) is free.

The method in [31] also works for discrete isometry subgroups of Hadamard manifolds
with negatively pinched sectional curvature ��2 �K ��1, and Question 1.5 can be
asked for this family of groups. If in addition we know � is free in Theorem 1.2, then
the constant D.n; �/ can actually be made effective, and independent of n and �.

Theorem 1.8 Let � < Isom.X / be a finitely generated virtually free discrete isometry
subgroup of an n–dimensional Hadamard manifold with pinched negative curvature
��2 �K � �1. If ı.�/ < 1

16
, then � is convex cocompact.

Thus, in view of Kapovich’s result [31, Corollary 1.5], we obtain:

Corollary 1.9 A finitely presented Kleinian group with ı.�/< 1
16

is convex cocompact.

One of the main efforts in our proofs is investigating the geometric properties of the
quotient manifold M DX=� under the condition that ı is small. While these results
are only restricted to ı < 1, we still find that they might be of independent interest and
worth highlighting. The following theorem is closely related to the classical Plateau’s
problem, where we obtain a certain type of linear isoperimetric inequality for the
quotient manifold M DX=� .

Theorem 1.10 Suppose that C is a union of smooth loops in M D X=� which
represents a trivial homology class in H1.M;Z/. If ı.�/ D ı < 1, then C bounds a
smooth surface i W†!M (see Definition 2.6) whose area satisfies

A.i/�
4

1�ı
`.C/;

where `.C/ denotes the total length of the smooth loops in C.

Finitely generated Kleinian groups in dimension 3 have only finitely many cusps (see
Sullivan [44]), but the same result does not hold in higher dimensions; see Kapovich [29].
As an application of Theorem 1.10, we show that, under the assumption ı < 1, the
�–thin part of M has only finitely many connected components when � is small enough.
In particular, M has only finitely many cusps.

Theorem 1.11 Let � < Isom.X / be a finitely generated torsion-free discrete isometry
subgroup of an n–dimensional Hadamard manifold with pinched negative curvature
��2 �K � �1. Suppose that ı.�/ < 1. Then:
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(1) The number of cusps in M DX=� is at most the first Betti number of M .

(2) M has bounded geometry. That is , the noncuspidal part of M has a uniform
lower bound on its injectivity radius.

(3) � is convex cocompact if and only if the injectivity radius function inj WM !R

is proper.

Remark 1.12 Without the assumption on the critical exponent, Benoist and Hulin
[5, Proposition 2.6] showed that � is convex cocompact if and only if M is Gromov
hyperbolic and the injectivity radius function is proper.

Outline of the proof of Theorem 1.2

We first observe that whenever ı < 1 there is an area-decreasing self-map (the Besson–
Courtois–Gallot map) on M . This allows us to prove the linear isoperimetric type
inequality as in Theorem 1.10, from which we deduce further that closed geodesics
on M asymptotically have uniformly bounded normal injectivity radii. This means
that if there is an escaping sequence of closed geodesics on M , then there exists
a subsequence on which the normal injectivity radii are uniformly bounded. Next
we observe that, given a long closed geodesic with small normal injectivity radius,
one can always separate along the normal direction to replace it by a shorter closed
geodesic nearby. Then, we use the result by Kapovich and Liu [32] which states that
� is geometrically infinite if and only if there exists an escaping sequence of closed
geodesics. The assumption that D.n; �/ is smaller than 1

2
excludes parabolic elements,

so assume for the sake of contradiction that there is one such escaping sequence. Using
the idea of infinite descent we can reduce the length of the closed geodesics and find
another escaping sequence whose lengths and normal injectivity radii are both uniformly
bounded, from which we can find two loxodromic isometries that move a common
point within a uniformly bounded distance. This means the nonelementary subgroup
generated by the two isometries will have large critical exponent, thus leading to a
contradiction if we assume ı is small enough.

Organization of the paper

In Section 2 we review some elementary results of negatively pinched Hadamard
manifolds and the Besson–Courtois–Gallot map. In Section 3 we give the proofs of
Theorems 1.10 and 1.11. In Section 4 we prove Theorem 4.1, which together with
Theorem 1.11 implies Theorems 1.2 and 1.8.
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2 Preliminaries

2.1 Discrete isometry groups

Let X be a complete simply connected n–dimensional Riemannian manifold of pinched
negative curvature ��2 �K ��1 where � � 1. The Riemannian metric on X induces
the distance function dX , and .X; dX / is a uniquely geodesic space. With the curvature
assumption, the metric space .X; dX / is Gromov hyperbolic, where the hyperbolicity
constant ı0 can be chosen as cosh�1.

p
2/, ie every geodesic triangle in X is ı0–slim.

By the Cartan–Hadamard theorem, X is diffeomorphic to the Euclidean space Rn via
the exponential map at any point in X . We can naturally compactify X by adding the
ideal boundary @1X , thus the compactified space X DX [ @1X is homeomorphic
to the unit n–ball Bn.

Every isometry  2 Isom.X / extends the action to the ideal boundary, so it induces a
diffeomorphism on X . Based on its fixed-point set Fix. /, the isometry  on X can
be classified:

(1)  is parabolic if Fix. / is a singleton fpg � @1X .

(2)  is elliptic if it has a fixed point in X . In this case, the fixed-point set Fix. / is
a totally geodesic subspace of X invariant under  . In particular, the identity
map is elliptic.

(3)  is loxodromic if Fix. / consists of two distinct points p; q 2 @1X . In this
case,  stabilizes and translates along the geodesic pq, and we call the geodesic
pq the axis of  .

One can also use the translation length to classify the isometries on X . For each
isometry  2 Isom.X /, we define its translation length �. / as

�. / WD inf
x2X

dX .x;  .x//:
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The isometry  is loxodromic if and only if �. / > 0. In this case, the infimum is
attained exactly when the points are on the axis of  . The isometry  is parabolic if
and only if �. /D 0 and the infimum is not attained. The isometry  is elliptic if and
only if �. /D 0 and the infimum is attained.

Let � < Isom.X / be a discrete subgroup which acts on X properly discontinuously. If
� is torsion-free, then any nontrivial element in � is either loxodromic or parabolic.
We denote the quotient manifold X=� by M , and let � WX !M denote the canonical
projection. The geodesic loops c W Œa; b�!M at pD c.a/D c.b/2M are in one-to-one
correspondence with geodesic segments from x to  .x/, where x 2X with �.x/D p

and  2 � . Recall that the injectivity radius at a point p 2M is the largest radius for
which the exponential map at p is a diffeomorphism. The injectivity radius at a point
p 2M is half the length of shortest geodesic loop at p since there are no conjugate
points in M . We use inj.p/ to denote the injectivity radius at p and define

d�.x/ WD min
2�nfidg

dX .x;  .x//

for x2X . Then d�.x/D2 inj.�.x//. We say the injectivity radius function inj WM!R

is proper if the preimage of a compact set is compact. The injectivity radius function
is 1–Lipschitz. To see this, given any two points p; q 2M , let Qp and Qq be lifts of p

and q in X whose distance is the same as the distance d.p; q/ of p; q 2M . There
exists an isometry  2 � such that dX . Qp;  Qp/D d�. Qp/, and

2 inj.q/� dX . Qq;  . Qq//� dX . Qq; Qp/C dX . Qp;  . Qp//C dX . . Qp/;  . Qq//

D 2d.p; q/C 2 inj.p/:

Hence, inj.q/� inj.p/� d.p; q/.

Now recall that the critical exponent ı.�/ of a torsion-free discrete isometry group
� < Isom.X / is defined to be

ı.�/ WD inf
�

s
ˇ̌̌ X
2�

exp
�
�sdX .p;  .p//

�
<1

�
;

where p is a given point in X . Note that ı.�/ is independent of the choice of p.
Alternatively, one can also define the critical exponent ı.�/ [38] as

(2-1) ı.�/D lim sup
R!1

log.N.R//
R

;

where N.R/D #f 2 � j dX .x;  .x//�Rg for any given point x 2X .
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We will need to use the following proposition later in the proofs:

Proposition 2.1 [32, Corollary 6.12] Let w 2M DX=� be a piecewise geodesic
loop which consists of r geodesic segments , and let ˛ be the closed geodesic freely
homotopic to w such that `.˛/� � > 0. Then ˛ is contained in the D–neighborhood of
the loop w, where

D D cosh�1.
p

2/dlog2 reC sinh�1
�

2

�

�
C 2ı0:

Remark 2.2 The original corollary was stated under the extra assumption that ˛ is
simple. However, the proof of [32, Corollary 6.12] does not rely on this fact so we
have removed the assumption here.

2.2 Thick–thin decomposition

Given an isometry  2 Isom.X / and a constant � > 0, we define the Margulis region
Mar.; �/ of  as

Mar.; �/ WD fx 2X j dX .x;  .x//� �g:

It is a convex subset by the convexity of the distance function. Given a point x 2 X

and a constant � > 0, the set

F�.x/ WD f 2 Isom.X / j dX .x;  .x//� �g

consists of all isometries that translate x by at most �. For any discrete subgroup
� < Isom.X /, we denote by ��.x/ the group generated by F�.x/\� . The Margulis
lemma [3, Theorem 9.5] states that ��.x/ is a finitely generated virtually nilpotent
group for any 0< � < �.n; �/, where �.n; �/ is the Margulis constant depending on the
dimension n of X and the sectional curvature bound �.

We define the �–invariant set

T�.�/ WD fp 2X j ��.p/ is infiniteg:

The thin part (more precisely, the �–thin part) of the quotient orbifold M DX=� , which
we denote by thin�.M /, is defined to be T�.�/=� . The closure of the complement
M n thin�.�/ is called the thick part of M and is denoted by thick�.M /. The thin
part consists of bounded and unbounded components. The bounded components are
called the Margulis tubes, and are neighborhoods of short closed geodesics of length
no greater than �. More precisely, for every point x in the closed geodesic and every
tangent vector v at x perpendicular to the geodesic, we consider a unit-speed ray �
emanating from x in the direction of v. There exists R, depending on x and v, such that

d�.�.R//D � and d�.�.t// < �
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for all t <R. We call the arc �.Œ0;R�/ a maximal radial arc, and a Margulis tube is
the union of all radial arcs emanating from a short closed geodesic. For details, see for
example [16].

The unbounded components are called the Margulis cusps, and can be described more
precisely as follows. Denote the fixed-point set of � by

Fix.�/ WD
\
2�

Fix. /:

A discrete subgroup P < � is called a parabolic subgroup if Fix.P / consists of a
single point � 2 @1X . Given a constant 0 < � < �.n; �/ and a maximal parabolic
subgroup P < � , the set T�.P / � X is precisely invariant under P , and we have
stab�.T�.P //D P ; see [12, Corollary 3.5.6]. In this case, T�.P /=P can be regarded
as a subset of M , called a Margulis cusp. The cuspidal part of M is the union of all
Margulis cusps, denoted by cusp�.M /. Note that cusp�.M /� thin�.M /.

In our context, the parabolic subgroups in � (hence also the cuspidal part of M ) turn
out to be very simple due to the following proposition:

Proposition 2.3 Let � < Isom.X / be a torsion-free discrete isometry group , and
P < � be any parabolic subgroup. If ı is the critical exponent of � and P has
polynomial growth rate r , then we have r � 2ı. Thus:

(1) If ı < 1, then all parabolic subgroups (if they exist) are isomorphic to Z.

(2) If ı < 1
2

, then all nontrivial isometries in � are loxodromic.

Proof Let H be a horosphere that P acts on and choose any basepoint O 2H. Denote
by dH the horospherical distance and by dP the Cayley metric with respect to some
fixed finite generating set of P . Then there exists a constant C > 0 such that

(2-2) dH.O;  .O//� CdP .1;  /

holds for all  2 P . By [24, Theorem 4.6] there exists a constant C 0 > 0 such that, for
any p; q 2H with dX .p; q/ > C 0, we have

(2-3) dX .p; q/� 2 ln.C 0dH.p; q//:

By possibly replacing C or C 0 by a larger constant, we may assume C 0DC . Therefore
we obtain, from the above the asymptotic inequalities (for R large),

jf 2 P W dP .1;  /�Rgj � jf 2 P W dH.O;  .O//� CRgj .by (2-2)/

. jf 2 P W dX .O;  .O//� 2 ln.C 2R/gj .by (2-3)/
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' e2 ln.C 2R/ı.P/ .by (2-1)/

'R2ı.P/;

where ı.P / is the critical exponent of P . Since ı.P /� ı, it follows that r � 2ı.

In particular, if ı < 1, then r < 2 and by the Bass–Guivarc’h formula [4; 22], P must
be virtually Z. But since P is torsion-free, it must be Z [43]. If ı < 1

2
, then r < 1 and

P cannot exist. Thus all nontrivial elements in � are loxodromic.

2.3 Geometric finiteness

Recall that the limit set ƒ.�/ of a discrete subgroup � < Isom.X / is defined to be
the set of accumulation points of the �–orbit �.p/ in @1X , where p is an arbitrary
given point in X , and that the definition is independent of the choice of p. If ƒ.�/
is finite, then � is called elementary. Otherwise, it is called nonelementary. A point
� 2ƒ.�/ is called a conical limit point if every geodesic ray � WRC!X asymptotic
to � projects to a nonproper map � ı � WRC!M DX=� . We denote by ƒc.�/ the
set of all conical limit points.

We denote by Hull.ƒ/ � X the closed convex hull of ƒ � @1X , which is the
smallest closed convex subset in X whose accumulation set in @1X is ƒ, and by
C.�/D Hull.ƒ/=� the convex core of � .

A discrete isometry subgroup � < Isom X is geometrically finite if the noncuspidal part
of the convex core C.�/ in M DX=� is compact. Otherwise, it is called geometrically
infinite. If C.�/ is compact, then the discrete subgroup � is called convex cocompact.

There are various equivalent definitions of geometric finiteness, but we will only
mention one of them, proved by Kapovich and the first author. For the other equivalent
definitions we refer the readers to [12]. The following theorem is a generalization of a
previous result of Bonahon [10]:

Theorem 2.4 [32, Theorem 1.5] A discrete subgroup � < Isom.X / is geometrically
infinite if and only if there exists a sequence of closed geodesics ˛i �M D X=�

which escapes every compact subset of M .

2.4 Admissible surfaces

In this section, we give a sketch of the existence of smooth admissible surfaces. This
can be treated as a smooth version of [17, Section 1.1.5]. In our case, we will need a
slightly broader category of admissible surfaces than smooth maps in order to include
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the gluing of two maps along a smooth boundary. In general the notion of a piecewise
smooth map is rather technical (using Whitney stratification), but we only consider
maps from a smooth surface with boundary to a smooth manifold. Thus we simplify
the notion:

Definition 2.5 Given a smooth surface † (possibly with boundary) and a smooth
manifold M , we say a map f W†!M is a piecewise smooth map if there is a smooth
triangulation �D f�1; : : : ; �mg on † (ie edges are all smooth paths) such that:

(1) f is continuous.

(2) f is smooth on the interior of each face �i .

(3) If e D �i \ �j is a common edge, then the restriction f jp is smooth.

Roughly speaking, a piecewise smooth map is just a finite concatenation of smooth
maps, possibly pleating along the gluing edges. The singular set forms a piecewise
smooth 1–skeleton on†. Now we return to our context, where M DX=� is a complete
pinched negatively curved manifold. Suppose f�1; : : : ; �kg is a collection of k smooth
loops in M . If there exists a set of integers c1; : : : ; ck such that

Pk
iD1 ci Œ�i � D 0 in

H1.M;Z/, then we claim that
S

i ci�i will bound a piecewise smooth surface in the
sense explained below.

Choose a basepoint x0 2M and connect x0 to each of the loops �i by a smooth path pi .
Then the loop qi WD pi � .ci�i/�p�1

i is free homotopic to ci�i , which also represents
an element i 2 � Š �1.M;x0/. Since

Pk
iD1 ci Œ�i � D 0 in H1.M;Z/ Š �=Œ�; ��,

it follows that the product  D 1 � � � k is an element in the commutator subgroup
Œ�1.M;x0/; �1.M;x0/�. Thus we can write

 D Œa1; b1� � � � Œag; bg�

for some ai ; bi 2 � . We choose smooth loops ˛i and ˇi from x0 that represent ai

and bi , respectively. Fix a preimage Qx0 2X of x0 under the projection map � WX!M .
The loop � D ˛1 � ˇ1 � ˛

�1
1
� ˇ�1

1
� � � � � ˛g � ˇg � ˛

�1
g � ˇ

�1
g � .q1 � � � � � qk/

�1 is
nullhomotopic, thus lifts to a piecewise smooth loop on X . Therefore it bounds a
smooth disk on X , that is, there exists a disk D � R2 and a piecewise smooth map
f WD!X with f .@D/D � . Moreover, by identifying D with a .4gC3k/–polygon
with the label of

Qg
iD1

Œ Nai ; Nbi � Np1`1 Np
�1
1
� � � Npk`k Np

�1
k

, we can make the map f explicit
by sending the edge labels Nai , Nbi , Na�1

i , Nb�1
i , Npi , `i and Np�1

i to ˛i , ˇi , ˛�1
i , ˇ�1

i , pi ,
ci�i and p�1

i , respectively. Therefore, after gluing along the edge labels, f descends to
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a piecewise smooth map from †g;k (a genus g surface with k boundary components)
to M , which sends the boundary components (corresponding to `i) to ci�i .

In general:

Definition 2.6 Let † be a compact oriented (not necessarily connected) surface with
k boundary components. Given a collection of k loops f˛1; : : : ; ˛kg on M , we say a
map f W†!M is admissible with respect to f˛1; : : : ; ˛kg if the following diagram
commutes:

@† †

Sk
iD1 ˛i M

i

@f f

i

Note that ˛i could carry multiplicities, and the orientation of the surface † induces an
orientation on @†. In the above commutative diagram we also require @f to preserve
the orientations. If there exist such † and f , then we simply say

Sk
iD1 ˛i bounds a

surface f .

By the above discussion:

Proposition 2.7 Suppose f˛1; : : : ; ˛kg is a collection of k smooth loops in M . If
there exists a set of integers c1; : : : ; ck such that

Pk
iD1 ci Œ˛i �D 0 in H1.M;Z/, then

there exists a piecewise smooth admissible map with respect to fc1˛1; : : : ; ck˛kg, that
is ,
Sk

iD1 ci˛i bounds a piecewise smooth surface f W†!M .

Given two Riemannian manifolds N and M , a smooth map F WN !M and a positive
integer p�minfdim.N /; dim M g, the p–Jacobian of F at a point x 2N is defined to be

Jacp.F /.x/D sup kdFx.e1/^ dFx.e2/^ � � � ^ dFx.ep/k;

where the supremum is taken over all orthonormal p–frames fe1; : : : ; epg on TxN , and
the norm is induced by the Riemannian inner product at TF.x/M . Note that when
pD dim N � dim M , the p–Jacobian of F coincides with

p
detgN

F�gM .

Definition 2.8 Given a Riemannian manifold M , a smooth map f W †!M and a
smooth region U �†, we define the area of the map on U to be

A.f jU / WD

Z
U

jJac2 f j.x/ dV†;

where dV† is the volume form on†with respect to some chosen Riemannian metric g†,
and it is clear the definition of area is independent of the choice of g†. When U D†,
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we simply denote it by A.f /. The definition naturally extends to a piecewise smooth
map. Note that, at the region where df is degenerate, .Jac2 f / vanishes, so it does not
contribute to the area.

2.5 Besson–Courtois–Gallot map

In this section, we give a brief introduction to the Besson–Courtois–Gallot map and we
refer the readers to [6] for a more detailed exposition. First we recall that, given any
discrete subgroup � < Isom.X /, there exists a family of positive finite Borel measures
called the Patterson–Sullivan measures, which satisfy:

(1) �x is �–equivariant for all x 2X .

(2) d�x.�/D e�ıB.x;�/d�o.�/ for all x 2X and � 2 @1X .

Here ı is the critical exponent of � , o is a basepoint on X , and B.x; �/ is the Busemann
function on X with respect to o. Recall that the Busemann function B is defined by

B.x; �/D lim
t!1

�
d.x; ˛� .t//� t

�
;

where ˛� .t/ is the unique geodesic ray from o to � .

We note that the Busemann function B.x; �/ is convex on X . If � is any finite Borel
measure supported on at least two points on @1X , then the function

x 7! B�.x/ WD
Z
@1X

eB.x;�/ d�.�/

is strictly convex, and one can check it tends to C1 as x ! @1X . Hence we can
define the barycenter bar.�/ of � to be the unique point in X where the function attains
its minimum.

Now we construct the map zF WX !X given by

x 7! bar.e�B.x;�/�x/;

where e�B.x;�/�x denotes the unique (up to measure zero) Borel measure which is
absolutely continuous with respect to �x , with the corresponding Radon–Nikodym
derivative e�B.x;�/.

Theorem 2.9 (Besson–Courtois–Gallot [6]) The map zF WX !X constructed above
satisfies:

(1) zF is �–equivariant , and thus descends to a map F WM !M .

(2) F is smooth and homotopic to the identity.

(3) jJacp.F /.x/j � ..1C ı/=p/p for any integer p 2 Œ1; dim M � and any x 2M .
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Remark 2.10 The case of pD 1 in .3/ is not directly stated in the paper, however it
is clear from the 2–form equation [6, (4.11)] that kdFk � .1C ı/. According to the
theorem, if ı� p�1, then jJacp.F /j� 1 hence F is a p–dimensional volume-decreasing
map. However, in order to obtain the linear isoperimetric inequality in Section 3.1, we
will need an area-decreasing map, which is assured only in the case ı < 1. Thus, we
will only apply the theorem to the cases pD 1; 2.

Notation

Henceforth X always denotes a negatively pinched Hadamard manifold with sectional
curvature ��2 �K � �1, and � < Isom.X / denotes a torsion-free discrete isometry
subgroup. Let M D X=� be the quotient manifold, � W X ! M be the quotient
map, and d be the distance on M . Let ı denote the critical exponent of � and
C.ı/D 4=.1�ı/. We use ` and A to denote the length and area functions, respectively.
We let inj.x/ denote the injectivity radius at a point x 2M , and let NJ.S/ denote the
normal injectivity radius of a submanifold S �M ; see Section 3.2.

3 Geometry with small critical exponent

In this section, we investigate the geometry of the quotient manifold M under the
assumption ı < 1.

3.1 Linear isoperimetric type inequality

The study of the isoperimetric problem has a long and significant history. In the classical
context, given a region ��R2, it is natural to ask what the optimal relation between
its area A.�/ and the length of its bounding curve `.@�/ is. It is proved that there
is a quadratic relation A.�/ � `.@�/2=4� , and that equality holds if and only if �
has a circular boundary. However, our main interest has driven us to work in a slightly
different context. Let M DX=� be a complete quotient manifold and C�M be a union
of smooth loops which represents a trivial homology class in M . By the discussion in
Section 2.4, C bounds an admissible surface. Among all admissible surfaces, we find
one surface † such that A.†/ and `.@†/ satisfy a linear isoperimetric type inequality.

Definition 3.1 A family of loops F D f˛1; : : : ; ˛kg in M is irreducible if either

(1) k D 1 and ˛1 represents a trivial or torsion homology class, or

(2) F consists of linearly dependent loops, and any nontrivial subfamily of F is
linearly independent.
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Suppose F D f˛1; : : : ; ˛kg is an irreducible family of loops. In case .1/, F consists
of one homology class Œ˛�, so there is a minimal positive integer c such that cŒ˛�D 0.
In case .2/, there exists a unique (up to a sign) set of integers c1; : : : ; ck such that
gcd.c1; : : : ; ck/ D 1 and

Pk
iD1 ci Œ˛i � D 0 in H1.M /. Thus, there exist admissible

surfaces in M with respect to cŒ˛� (or
Sk

iD1 ci˛i) and by irreducibility they are
necessarily connected. Note that ci˛i denotes the ci multiple of ˛i , and ci being
negative corresponds to reversing the orientation of ˛i . We call the set of integers
c1; : : : ; ck (or, in case 1, c) the associated integers of the irreducible family.

Theorem 3.2 Let F D f˛1; : : : ; ˛kg be any family of smooth loops in M which
are linearly dependent in H1.M;Z/ such that there are integers c1; : : : ; ck satisfyingPk

iD1 ci Œ˛i � D 0 in H1.M /. Suppose the critical exponent ı is less than 1. ThenSk
iD1 ci˛i bounds a smooth surface f0 W†!M whose area satisfies

A.f0/�
4

1�ı
`.f0.@†//D

4

1�ı

� kX
iD1

jci j`.˛i/

�
:

Proof We may assume F is irreducible. Otherwise, we decompose F into irreducible
subfamilies and use the additivity of area and length functions on disjoint unions.
We consider the set S which consists of all piecewise smooth surfaces bounded bySk

iD1 ci˛i , or more precisely, we set S equal to˚
f W†!M j f is piecewise smooth admissible with respect to fc1˛1; : : : ; ck˛kg

	
:

By Proposition 2.7 it is nonempty. Let A0 D inffA.f / W f 2Sg. To avoid possible
existence and regularity issues (see the following remark) of minimal surfaces in M ,
we can choose a piecewise smooth admissible map f� 2S such that A.f�/� .1C�/A0

for any � > 0. Composing with the Besson–Courtois–Gallot map F as described in
Section 2.5, we obtain a piecewise smooth admissible map F ı f� with respect toSk

iD1 ciF.˛i/. By Theorem 2.9 we have the area estimate

A.F ıf�/D

Z
†

jJac2.F ıf�/j dV† �

Z
†

jJac2 F j � jJac2 f�j dV†

�
�

1
2
.1C ı/

�2
A.f�/�

�
1
2
.1C ı/

�2
.1C �/A0;

and the length estimate `.F.˛i// � .1C ı/`.˛i/. For each ˛i , since F.˛i/ is free
homotopic to ˛i , we can build an (immersed) cylindrical homotopy †i �M between
them by taking the image of the union of two geodesic cones Conep. zF . Q̨ // and
Cone.q/. Q̨ / under the projection � WX !M ; see Figure 1. Here  2 � is an element
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p Q̨  .p/

q
zF . Q̨ /

 .q/

Figure 1

represented by ˛, Q̨ is a lift of ˛, and p and q as well as  .p/ and  .q/ are connected
by geodesics. To estimate the area of †i , we will need:

Lemma 3.3 For any p 2X and any smooth curve ˛�X , the geodesic cone Conep.˛/

has the area bound
A.Conep.˛//� `.˛/:

Proof We parametrize the smooth curve by ˛ W Œ0; 1�!X , and write D.s/Dd.p; ˛.s//.
The geodesic cone Conep.˛/ can be parametrized by the smooth map

ˆ W Œ0; 1�� Œ0;D.s/�!X; .s; t/ 7! expp.tˇ.s//;

where ˇ.s/ is the unit vector in the direction of the preimage of ˛ under the exponential
map, that is, the unique curve in TpX satisfying expp.D.s/ˇ.s// D ˛.s/. Since
˛.s/Dˆ.s;D.s//, we have

˛0.s/D

�
@ˆ

@s
C
@ˆ

@t
D0.s/

�
.s;D.s//:

Let s.t/D ˆ.s; t/. For each s, s.t/ is a unit-speed geodesic connecting p to ˛.s/,
so, at any point .s; t/ 2 Œ0; 1�� Œ0;D.s/�,

@ˆ

@t
D  0s.t/;

@ˆ

@s
D Js.t/;

where Js.t/ is the unique Jacobi field along s satisfying Js.0/D 0 and

Js.D.s//D
@ˆ

@s
.s;D.s//D ˛0.s/�  0s.D.s//D

0.s/;

which is the projection of ˛0.s/ orthogonal to  0s.D.s//. This implies that Js.t/ is a
normal Jacobi field and that @ˆ=@t ? @ˆ=@s. Therefore

jJac.ˆ/j D
@ˆ
@s
^
@ˆ

@t

D @ˆ
@s

 � @ˆ
@t

D kJs.t/k:

Using [24, Proposition 2.3] and the curvature assumption K ��1, we can estimate the
norm of the Jacobi fields by

(3-1) kJs.t/k �
sinh t

sinh.D.s//
kJs.D.s//k �

sinh t

sinh.D.s//
k˛0.s/k:
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Finally we obtain the area estimate of the geodesic cone:

(3-2) A.Conep.˛//�

Z 1

0

Z D.s/

0

jJac.ˆ/j dt ds

�

Z 1

0

Z D.s/

0

sinh t

sinh.D.s//
k˛0.s/k dt ds .by (3-1)/

�

Z 1

0

k˛0.s/k ds � `.˛/:

Now we continue with the proof. By the lemma above,

(3-3) A.†i/� `.˛i/C `.F.˛i//� .2C ı/`.˛i/:

Here †i is a piecewise immersed surface in M and we can choose any piecewise
smooth parametrization �i WS

1� Œ0; 1�!M to represent †i . If we concatenate each �i

with F ı f� (glue
Sk

iD1 ci†i onto F ı f�.†/ on M ), we get a new piecewise smooth
admissible surface f 0� with respect to

Sk
iD1 ci˛i , and by assumption A.f 0� /�A0. On

the other hand, combining the above inequalities,

A0 �A.f 0� /DA.F ıf�/C

kX
iD1

jci jA.†i/

�
�

1
2
.1C ı/

�2
.1C �/A0C .2C ı/

� kX
iD1

jci j`.˛i/

�
.by (3-2) and (3-3)/:

Thus, by letting � tend to zero, we obtain

A0 �
4.2C ı/

.1� ı/.3C ı/

� kX
iD1

jci j`.˛i/

�
<

4

1�ı

� kX
iD1

jci j`.˛i/

�
:

Therefore we can always choose a piecewise smooth map in S whose area is arbitrarily
close to A0, and finally we can always smoothen it with an arbitrarily small increase
on the area. In particular, there is a smooth admissible map f0 with area

A.f0/�
4

1�ı

� kX
iD1

jci j`.˛i/

�
:

Remark 3.4 The existence and regularity of minimal surfaces for a general complete
manifold relate to the generalized Plateau problem, which has been studied in [37].
If there is a uniform lower bound on the injectivity radius on M , then the condition
of “homogeneously regular” in [37] is satisfied; hence, the existence and regularity
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of the area minimizer hold. Although in Theorem 3.7 we manage to show M has
bounded geometry, the proof relies on this theorem; hence, using this would fall into
circular reasoning.

We do not pursue the optimal bound in the theorem above. Indeed, the linear isoperi-
metric constant we produce via this method will always tend to infinity as ı! 1. This
stands as an obstacle in improving our main theorems as ı approaches 1.

3.2 Asymptotically uniformly bounded tubular neighborhood

Let S be a closed submanifold of M , N.S;M /Df.x; v/2TM Wx 2S and v?TxSg

be the normal bundle of S in M , and Nr .S;M /D f.x; v/ 2 N.S;M / W jvj < rg be
the r–normal bundle of S in M . The normal exponential map expS is defined to be
the restriction of the exponential map exp W TM !M to the normal bundle N.S;M /

of S in M . The normal injectivity radius NJ.S/ is defined to be the supremum of r

such that expS is an embedding on Nr .S;M /. In the case where r � NJ.S/, we say
expS .Nr .S;M //D fx 2M j d.x;S/ < rg is the r–tubular neighborhood of S in M ,
and we denote it by Tr .S/. By convention, if the submanifold has a self-intersection,
we declare that it has normal injectivity radius zero.

Lemma 3.5 Let ˛ be a closed geodesic in M with NJ.˛/D R > 0, and let TR.˛/

be its R–tubular neighborhood in M . If i W †!M is any smooth admissible map
with respect to fk˛; ˛0g such that either ˛0 is empty or ˛0 consists of a union of smooth
loops outside of TR.˛/ (ie dM .˛0; ˛/ >R), then

A.i ji�1.TR.˛//
/� kR`.˛/:

Proof We choose a Riemannian metric g0 on †, and let �1 and �2 be two positive
real numbers recognized to be small and to be determined later. First, we perturb the
pullback metric i�gM to be Riemannian on † by setting g D i�gM C �1g0 and use
this to estimate the area of i . It follows that, for any � > 0 and any region U �†,

jvolg.U /�A.i jU /j D

ˇ̌̌̌Z
U

1 dVg �

Z
U

jJac2 i j dVg0

ˇ̌̌̌
(3-4)

D

Z
U

�p
detg0

.g/�
p

detg0
.i�gM /

�
dVg0

�

Z
†

�p
detg0

.g/�
p

detg0
.i�gM /

�
dVg0

< �;

after choosing �1 small enough. Note that this follows from the continuity of the
determinant function, and that the estimate is uniform on U .
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Next, we choose a suitable function on † and use the coarea formula to estimate
volg.U /. Denote by � � @† the boundary component which sends to k˛ under i ,
and by �˛ WM ! R the distance function to ˛ on M . Now we construct a function
f W†!R by setting

f D �˛ ı i C �2';

where ' is a smooth function on † chosen so that:

(1) '.x/D 0 on � and '.x/ > 0 on † n � .

(2) There exists a collar neighborhood V of � such that d'.x/¤ 0 when x 2 V n� .

For example, one can choose ' to be the distance function to � on its local neighborhood
and then extend smoothly to any positive function outside. For this choice, it is clear
that f .x/� 0 and f �1.0/D � . Since M is negatively curved, there is no conjugate
point for M . Thus, for any y 2 TR.˛/, there is a unique geodesic projection onto ˛, so
�˛ is smooth on TR.˛/ n˛. It follows that f is smooth on i�1.TR.˛// n � �†. We
can estimate the norm of its differential with respect to the metric g by

kdf k D kd�˛ ı di C �2d'k(3-5)

� kd�˛k � kdikC �2kd'k .note that i is 1–Lipschitz/

< .1C �/;

after choosing �2 small enough. This uses the compactness of †.

Finally we estimate the area of i on i�1.TR.˛//. By the construction of f , we have
f �1.Œ0;R//� i�1.TR.˛//. Thus, if we set U D f �1.Œ0;R//, then

volg.U /� volg
�
i�1.TR.˛//

�
:

On the other hand, by the coarea formula [15, Section 13.4], we obtain from (3-5) that

(3-6) volg.U / >
1

1C�

Z
U

kdf k dVg D
1

1C�

Z R

0

`g.f
�1.t// dt:

Note that in the above formula, f �1.t/ might not be a smooth curve if t is a singular
value. But by Sard’s theorem, almost all values r 2 .0;R/ are regular, in which case the
level sets are unions of smooth circles on†, and `g denotes the total length of the circles.
In particular, the above integral makes sense. Other boundary components (if any) of †
do not intersect with i�1.TR.˛// by assumption, so, given any regular value t 2 Œ0;R/,
f �1.t/ (up to orientation) is homologous to f �1.0/D � on †. Hence, taking their
images in M , we obtain that i.f �1.t//, which is also a union of smooth loops, is
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homologous to k˛ on M . Since they are entirely contained in TR.˛/, i.f �1.t// is
in fact free homotopic to k˛. More precisely, for almost all t 2 .0;R/, if we write
i.f �1.t// as a disjoint union of circles

Sm
iD1 ˛i , then each ˛i is a smooth loop free

homotopic to ki˛ for ki 2 Z, since the fundamental group of the R–neighborhood
of ˛ is a cyclic group generated by the loop ˛. (Some ki could be zero, in which
case ˛i is homotopically trivial in M .) Moreover,

Pm
iD1 ki D k. Since ˛ is a closed

geodesic, we have that `
�
i.f �1.t//

�
D
Pm

iD1 `.˛i/�
Pm

iD1 jki j`.˛/� k`.˛/. Note
that i is 1–Lipschitz, so `g.f

�1.t//� `
�
i.f �1.t//

�
. Combining the above inequality

with (3-4) and (3-6),

A.i ji�1.TR.˛//
/ >

1

1C�
kR`.˛/� �:

Since � > 0 is arbitrary, the lemma follows.

Lemma 3.6 Assume we have N cusps in M and a constant � > 0 small enough that
fM

.i/
12�
W 1� i �N g are disjoint components of the cuspidal part cusp12�.M /. Suppose

� W †!M bounds an irreducible collection of smooth loops
SN

iD1 ci˛i , where each
˛i is contained in the 2�–thinner part M

.i/
2�
�M

.i/
12�

in each cusp component and is
homologically nontrivial. Then

A.�/� 4�2:

Proof Since the collection is irreducible and ˛1 is homologically nontrivial in its
cusp component (which might be homologically trivial in M ), �.†/ has to leave M

.1/
12�

.
We will only focus on the region U0 WD �

�1.M
.1/
12�
/ as shown in Figure 2. If we let

M
.1/
4�
�M

.1/
12�

be the 4�–thinner part and set T1 DM
.1/
12�
nM

.1/
4�

, then certainly

A.�/�A.�ji�1.T1/
/:

So it suffices to give a lower bound on the area restricted to the T1 region.

Similar to the proof of Lemma 3.5, we first choose the same perturbed Riemannian
metric on † as g D ��gM C �1g0, and for any �0 > 0 the estimate of (3-4) still works
after choosing �1 small enough. Thus, for any U �†, we have

(3-7) jvolg.U /�A.�jU /j< �
0:

Denote by � � @† the boundary component which maps to c1˛1 under �, and let ' be,
as before, the smooth function on † such that:

(1) '.x/D 0 on � and '.x/ > 0 on † n � .

(2) There exists a collar neighborhood V of � such that d'.x/¤ 0 when x 2 V n� .
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�
�
�

1 .M
1
4�
/D

U 0
nU

1

U1D �
�1.T1/

D ��1.M 1
12�nM

1
4�/

U0D �
�1.M 1

12�
/

@U0n�

Figure 2

We choose a smooth approximation [21, Proposition 2.1] of the injectivity radius
function on a neighborhood of �.†/, denoted by j , such that

(1) j > 0 on �.†/,

(2) j is .1C�0/–Lipschitz, and

(3) jj .y/� inj.y/j< � on �.†/.

Choose a smooth bump function 0� � 1 on† such that  D 1 on ��1.T1/ and  D 0

on � . Since† is compact, there exists K> 0 such that k'k<K and kd'k<K. Choose
a positive constant �2 <minf�; �0g=K. Now define the smooth function f W†!R by

f D �2'C .j ı �/:

By the construction of f , we see that f .x/ � 0 on U0 and f �1.0/ D � . When
restricting to U1 WD �

�1.T1/D �
�1.M

.1/
12�
nM

.1/
4�
/, the norm of its differential under

the metric g can be estimated by

(3-8) kdf kU1
D k�2d'C dj ı d �k � �2kd'kCkdj k � kd �k< 1C 2�0:

The first inequality follows from the fact that  D 1 on ��1.T1/, and the last inequality
uses that � is 1–Lipschitz and also the choice of j and �2. Now we investigate the
value of f on U0, and apply the coarea formula to give a lower bound for the area
of �jf �1.Œ4�;5��/\U0

.

Claim The subset f �1.Œ4�; 5��/\U0 is contained in U1, and f �1.Œ0; 5��/\U0 is
disjoint from @U0 n � .
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Proof For any x 2 U0 nU1 D �
�1.M

.1/
4�
/,

f .x/D �2'.x/C .x/j .�.x// < �C j .�.x// < �C inj.�.x//C � < 4�:

This implies that f �1.Œ4�; 5��/\ U0 is contained in U1. Next, we notice that @U0

consists of � and other boundary components on which injD 6�. For any x 2 @U0 n� ,

f .x/D �2'.x/C .x/j .�.x// > j .�.x// > inj.�.x//� � > 5�:

So, for any t 2 Œ0; 5��, f �1.t/, restricted on U0, does not intersect with @U0.

As a consequence, for any regular values t 2 Œ0; 5��, f �1.t/ is a union of smooth
loops that cobounds with f �1.0/D � , and in particular is homologous to � . Under
the image of �, it shows that �.f �1.t/ \ U0/ is homologous to �.�/ D c1Œ˛1� ¤ 0.
Moreover, for regular values t 2 .4�; 5�/ and any point y 2 �.f �1.t/\U0/, we let
x 2 f �1.t/\U0 � U1 be any preimage of y. Then

inj.y/D inj.�.x//� j .�.x//� � D f .x/� �2'.x/� � . .x/D 1 since x 2 U1/

� t � 2� > 2�:

In particular, `
�
�.f �1.t/\U0/

�
� 2 inj.y/ � 4�. Since � is 1–Lipschitz, we obtain

`g.f
�1.t/\U0/� 4� for any regular values t 2 .4�; 5�/. Finally, we apply the coarea

formula together with (3-7) and (3-8), and obtain

A.�/�A.�jf �1.Œ4�;5��/\U0
/ > volg.f �1.Œ4�; 5��/\U0/� �

0

>
1

1C2�0

Z
f �1.Œ4�;5��/\U0

kdf k dVg � �
0

D
1

1C2�0

Z 5�

4�

`g.f
�1.t/\U0/ dt � �0 �

1

1C2�0
4�2
� �0:

Since �0 > 0 is arbitrary, the lemma follows.

Now we are ready to prove .1/ and .2/ of Theorem 1.11.

Theorem 3.7 Let � < Isom.X / be a finitely generated torsion-free discrete isometry
subgroup of a negatively pinched (normalized to K � �1) Hadamard manifold X . Let
N.�/ be the number of cusps in M , and ˇ1.�/ be the first Betti number of M . If
ı < 1, then:

(1) N.�/� ˇ1.�/.
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(2) For an integer k>ˇ1.�/�N.�/ and any family of closed geodesics f˛1; : : : ; ˛kg

that are mutually 2C.ı/C1 apart , there exists at least one closed geodesic whose
normal injectivity radius is � C.ı/, where C.ı/D 4=.1� ı/.

(3) M has bounded geometry.

Proof For .1/, suppose to the contrary N.�/ > ˇ1.�/, where N.�/ could be infinite.
Choose � small enough such that the cuspidal part cusp12�.M / consists of N.�/ disjoint
components

SN
iD1 M

.i/
12�

. For each component M
.i/
12�

, the corresponding parabolic
subgroup Pi is infinite cyclic by Proposition 2.3, so we can choose i 2 Pi < �

which represents a nontrivial torsion-free homology class in X=Pi (not necessarily
in M ). Since N.�/ > ˇ1.�/, we have that fŒ1�; : : : ; ŒN.�/�g is linearly dependent
in H1.M /. We can choose an irreducible subfamily containing Œ1� and without loss
of generality we assume this to be f1; : : : ; kg, where k � ˇ1.�/C 1 < 1. Let
c1; : : : ; ck be the associated integers such that

Pk
iD1 ci Œi � D 0 (with c1 ¤ 0). On

each component M
.i/
12�

choose a thinner part M
.i/
4�
�M

.i/
12�

and let Ti DM
.i/
12�
nM

.i/
4�

.
In particular, the Ti are disjoint and, for any x 2 Ti , we have 2� � inj.x/ � 6�.
We choose a loop ˛i �M

.i/
2�

representing Œi � such that `.˛i/ is small enough thatPk
iD1 jci j`.˛i/ < �

2=C.ı/; see [12, Proposition 1.1.11]. By Theorem 3.2,
Sk

iD1 ci˛i

bounds a smooth surface � W†!M whose area satisfies

(3-9) A.�/� C.ı/

� kX
iD1

jci j`.˛i/

�
< �2:

However, by Lemma 3.6, A.�/�4�2, which contradicts to (3-9). Hence, N.�/�ˇ1.�/.

For .2/, suppose there are k D ˇ1.�/�N.�/C 1 mutually 2C.ı/C 1 apart simple
closed geodesics ˛1; : : : ; ˛k whose normal injectivity radii are greater than C.ı/. To
illustrate the idea, we first assume M has no cusps. Then Œ˛1�; : : : ; Œ˛k � are linearly
dependent on H1.M /. By Theorem 3.2, there exist integers c1; : : : ; ck such thatSk

iD1 ci˛i bounds a smooth surface f W†!M whose area satisfies

(3-10) A.f /� C.ı/

� kX
iD1

jci j`.˛i/

�
:

Let RiDNJ.˛i/ and, by the assumption Ri>C.ı/, we can pick �>0 small enough that
� < 1

2
and C.ı/C � <Ri for all i . Denote by Ti the .C.ı/C�/–tubular neighborhood

of ˛i , and, since f˛ig are mutually 2C.ı/C 1 apart, fTig are disjoint, and so are
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ff �1.Ti/g. Therefore, by Lemma 3.5,

(3-11) A.f /�

kX
iD1

A.f jf �1.Ti /
/� .C.ı/C �/

� kX
iD1

jci j`.˛i/

�
:

This contradicts (3-10).

For the general case, pick nontrivial torsion-free homology classes fŒ1�; : : : ; ŒN.�/�g

on each cusp component as in .1/. This together with Œ˛1�; : : : ; Œ˛k � forms a linearly
dependent system on H1.M /. Choose an irreducible system containing Œ˛1�, and
without loss of generality assume it to be fŒ1�; : : : ; ŒN.�/�; Œ˛1�; : : : ; Œ˛k �g. Thus there
are integers b1; : : : ; bN.�/ and c1; : : : ; ck such that

PN.�/
iD1 bi Œi �C

Pk
jD1 cj Œ j̨ �D 0.

Now choose a loop �i on each cusp component representing i such that `.�i/ is small
enough that

PN.�/
iD1
jbi j`.�i/< �

�Pk
jD1 jcj j`. j̨ /

�
=C.ı/, where � is the same constant

as above in the noncusp case. By Theorem 3.2,
�SN.�/

iD1
bi�i

�
[
�Sk

jD1 cj j̨

�
bounds

a smooth surface f W†!M whose area satisfies

A.f /� C.ı/

�N.�/X
iD1

jbi j`.�i/C

kX
jD1

jcj j`. j̨ /

�
:

Thus we have

A.f / < C.ı/

�
1C

�

C.ı/

�� kX
jD1

jcj j`. j̨ /

�
D .C.ı/C �/

� kX
jD1

jcj j`. j̨ /

�
:

However, the area lower bound estimate in (3-11) still holds, which is a contradiction.

For .3/, suppose M has unbounded geometry, that is, there exists a sequence of closed
geodesics f˛ig with `.˛i/! 0. When `.˛i/ is smaller than the Margulis constant,
˛i determines a Margulis tube such that the length of every maximal radial arc tends
to 1 as `.˛i/ ! 0; see for example [16, Lemma 2.4]. In particular, the normal
injectivity radius NJ.˛i/ goes to1. By passing to a subsequence, we can assume that
the geodesics ˛i are arbitrarily far apart and their normal injectivity radii are all greater
than C.ı/, which contradicts .2/.

Remark 3.8 The assumption ı < 1 is crucial in Theorem 3.7 (which also traces back
to Theorem 3.2). Indeed, the main strategy of the proof is to apply an area-decreasing
map on the (approximated) area-minimizing surfaces, which are bounded either by
tiny loops in different cusps or by far apart closed geodesics. The existence of such a
map follows from a construction of Besson, Courtois and Gallot (Theorem 2.9), where
ı < 1 has been used to obtain that the area is decreasing.
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x0

˛

˛0

˛00

Figure 3

In general, there are examples [29] of finitely generated Kleinian groups � < Isom.H4/

with infinitely many (rank-one) cusps, and by construction it is clear that ı 2 Œ2; 3�.
Thus, for every n� 4, one can construct, via the totally geodesic embedding H4!Hn,
a Kleinian group � < Isom.Hn/ of the same critical exponent which contains infinitely
many cusps. Italiano, Martelli and Migliorini [28] constructed new examples of finitely
generated Kleinian groups �C G< Isom.Hn/ for 5�n� 8 with infinitely many cusps,
where G is a lattice and G=� Š Z. Hence it follows that ı.�/D ı.G/D n� 1. We
believe that finitely generated Kleinian groups must have finitely many cusps if ı < 2.

We end this section with a corollary which turns out to be essential to our proofs of the
main theorems. It is a direct consequence of Theorem 3.7(2). Roughly speaking, if ı <1

then closed geodesics asymptotically have uniformly bounded tubular neighborhoods.

Corollary 3.9 Suppose ı < 1 and M has a sequence of escaping closed geodesics.
Then there exists a subsequence of escaping closed geodesics whose normal injectivity
radii are � C.ı/.

3.3 Decomposing a closed geodesic

Suppose ˛ is a closed geodesic in M with NJ.˛/� C.ı/. By definition, there exists
x0 2M achieving the normal injectivity radius such that it projects to ˛ in two different
geodesic minimizing paths. The two geodesic paths have an angle of � . Thus we can
decompose ˛ into two piecewise geodesic loops ˛0 and ˛00 as shown in Figure 3. It is
clear that their lengths satisfy `.˛0/C `.˛00/� `.˛/C 4C.ı/.

Equivalently, in the universal cover (as shown in Figure 4), there exists an isometry
g 2 � and Qx0 2X such that

d. Qx0;A /� C.ı/; d. Qx0;g
�1.A //� C.ı/;

where A is a lift of ˛ in X . Let Qx and Qy be the projections of Qx0 onto g�1.A /

and A , respectively, which will realize the shortest distance between g�1.A / and A
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Qx
g�1.A /

Qx0

g. Qx/ Qy
 �g. Qx/

A

g. Qx0/
g.A /

g. Qy/

Figure 4

(so `. Qx Qy/� 2C.ı/). Under the projection map � WX !M , the consecutive geodesic
segments connecting g. Qx/, Qy and Qx maps to ˛0 and the one connecting Qx, Qy and  �g. Qx/
maps to ˛00, where  translates along A and corresponds to ˛. From Figure 3, we
see that ˛0 represents the isometry g and ˛00 represents the isometry  � g; these are
nontrivial elements in � . We claim that the group hg;  �gi is nonelementary. Otherwise,
hg;  �gi is parabolic or loxodromic. If hg;  �gi is parabolic, then both g and  �g are
parabolic and they have the same fixed point, which implies that  has the same fixed
point as the one of the parabolic isometry g, which contradicts the assumption that �
is discrete by [11, Lemma 3.1.2]. (The proof of Lemma 3.1.2 can be applied to the
case of negatively pinched Hadamard manifolds directly.) If hg;  �gi is loxodromic,
then g and  �g are both loxodromic and they preserve an axis setwise, which means
that  will preserve the same axis as g. However, note that  preserves the axis A ,
which is not preserved by g.

It is possible that x0 projects to the same point on ˛, in which case ˛0 is the entire
transverse geodesic loop, and ˛00 is the concatenation ˛0�1 � ˛. It is also possible
that ˛ may have a transverse self-intersection, in which case the above decomposition
coincides with the obvious separation at the self-intersection. Note that nontransverse
self-intersection of a closed geodesic ˛ can only occur when ˛ is a multiple of some
primitive closed geodesic N̨ , in which case the above decomposition on ˛ can essentially
be treated on N̨ . We remark that in all the abovementioned “exceptional” cases, the
decomposition as described always exists.
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Qx0
g. Qx0/  . Qx0/

� C.ı/ � C.ı/

Qy g. Qx/  . Qy/
A

�D.�/ �D.�/

Nu
Np Nq  . Np/

O  .O/

Figure 5

We can extend the above decomposition to a piecewise geodesic loop:

Lemma 3.10 Let u � M be a piecewise geodesic loop consisting of at most two
geodesics , and let ˛�M be the closed geodesic free homotopic to u with NJ.˛/�C.ı/

and `.˛/� �. Then there exist points p; q 2u (which could be the same) and a geodesic
segment ! connecting p and q whose length is bounded above by C0D 2C.ı/C2D.�/.
Here D.�/ is the constant in Proposition 2.1. Moreover , the two piecewise geodesic
loops under the decomposition shown in Figure 3 are homotopically nontrivial.

Proof Write u as the union of two geodesic segments in M which start and end at O .
Let Nu be a lift of u in X consisting of two geodesic segments from the lift O to  .O/
as in Figure 5, where  2 � is represented by u. We denote the axis of  by A , which
is a lift of ˛. Since NJ.˛/� C.ı/, by the discussion above there exists a point Qx0 2X

and a nontrivial element g 2 � with g ¤  such that Qx0 and g. Qx0/ project onto A

at two points Qy and g. Qx/ (which could be the same point) satisfying d. Qx0; Qy/� C.ı/

and d.g. Qx0/;g. Qx//� C.ı/; see Figure 4.

By Proposition 2.1 there exist Np; Nq2 Nu such that d. Qy; Np/�D.�/ and d.g. Qx/; Nq/�D.�/.
Thus, the piecewise geodesic consecutively connecting Np, Qy and Qx0 together with the
one connecting g. Qx0/, g. Qx/ and Nq projects to a piecewise geodesic path connecting
�. Np/D p and �. Nq/D q 2M with total length � 2C.ı/C 2D.�/. Finally, there is a
unique geodesic segment ! connecting p and q which is homotopic to this piecewise
geodesic path and it is clear that `.!/� 2C.ı/C 2D.�/.

The geodesic segment ! divides the piecewise geodesic loop u into two parts, u1

and u2. The concatenation of ui with the geodesic segment ! gives two piecewise
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˛

q

p

B D Œpq�

pq

ıqp

Figure 6

geodesic loops under this decomposition, where i D 1; 2. If the two piecewise geodesic
loops are homotopically trivial, then Qx0 D g. Qx0/D  . Qx0/. By our construction, g¤ 

and g ¤ 1. Hence, they are homotopically nontrivial.

3.4 Injectivity radius and convex cocompactness

In this section, we prove .3/ of Theorem 1.11. We start by introducing the definition
of a bow which will be used later in the proof.

Definition 3.11 Given a closed geodesic ˛, we say B D pq �ıqp is a bow on ˛ if:

(1) B consists of two edges pq and ıqp, where p and q are two distinct points on ˛.

(2) pq is a minimizing geodesic connecting p to q on M , which might not lie on ˛.

(3) ıqp is a geodesic segment on ˛ connecting q to p, which might not be length
minimizing; see Figure 6.

We say a bow B D pq �ıqp is C –thin if d.p; q/� C , and we say B is nontrivial if the
loop pq�ıqp of B is homotopically nontrivial in M . The length of a bow BDpq�ıqp

is the length of the loop pq �ıqp.

Lemma 3.12 Suppose that ı < 1 and the injectivity radius on M is bounded by some
constant 1

2
�0 > 0 from below. Then there are no closed geodesics ˛ in M satisfying:

(1) ˛ has normal injectivity radius at most C.ı/.

(2) All points of ˛ have injectivity radii greater than 4C0 C 1, where C0 is the
constant in Lemma 3.10.

Proof Suppose that there exists such a closed geodesic ˛ in M . We consider the set
B D B.˛; 2C0/ that consists of all nontrivial 2C0–thin bows on ˛. The set is never
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empty. Indeed, choose p; q 2 ˛ sufficiently close and choose ıqp the longer segment
on ˛ connecting q to p such that `.pq/ < `.ıqp/ and `.pq/ � 2C0. This gives a
nontrivial 2C0–thin bow on ˛. Let t D inff`.B/ WB 2 Bg. We choose BDpq�ıqp 2 B
to be a bow with length� tC1. Since B is a 2–piecewise geodesic path, by Lemma 3.10
there exist r; s 2 B and a geodesic segment ! �M connecting r and s such that

(3-12) `.rs/D `.!/� C0

and that ! splits B nontrivially. Although Lemma 3.10 by itself does not assure that
! is length minimizing, and r and s might even be the same point, we claim this is
not the case. Indeed, since `.pq/� 2C0, r must be contained in the C0–neighborhood
of ˛. By the assumption on the injectivity radius, all the points on ˛ have injectivity
radius > 4C0C1. Since the injectivity radius function is 1–Lipschitz, inj.r/ > 3C0C1.
This implies that any geodesic segment emanating from r whose length is at most
3C0 C 1 must be uniquely length minimizing. In particular, ! is uniquely length
minimizing and r ¤ s.

Based on the positions of r and s, we discuss three cases:

(1) r and s are both on pq.

(2) r and s are both on ıqp.

(3) r 2 pq and s 2ıqp.

Observe that .1/ is impossible since both ! and pq are uniquely length minimizing,
so ! has to be entirely contained in pq, which contradicts the fact that ! splits B

nontrivially. Case .2/ is also impossible. To see this, we assume without loss of
generality that q, s, r and p are in cyclic order in ıqp, as in Figure 7, and r and s cutıqp into three geodesic segments, denoted by Ùqs, Ùsr andırp. By assumption, the bow
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B0 D rs � Ùsr is a nontrivial C0–thin (of course also 2C0–thin) bow on ˛. So by the
choice of B we have `.B0/C 1� t C 1� `.B/, hence

(3-13) `.rs/C 1� `.ırp/C `.pq/C `.Ùqs/:

Since ! splits B nontrivially, we have obtained a homotopically nontrivial piecewise
geodesic loop �D rs � Ùsq � qp �ıpr whose total length can be estimated as

`.�/D `.rs/C `.Ùsq/C `.qp/C `.ıpr/� 2`.rs/C 1 .by (3-13)/

� 2C0C 1 .by (3-12)/:

This contradicts the assumption on injectivity radius.

For case .3/, note that `.pq/ � 2C0, so r is C0 close to either p or q, and without
loss of generality we assume it is closer to q. Therefore by the triangle inequality,
d.q; s/� `.rq/C`.!/� 2C0. Now we consider the bow B00D sq�Ùqs, where Ùqs is the
geodesic segment on ˛. The bow is nontrivial. Otherwise, sq coincides with Ùqs, which
indicates that `.Ùqs/� 2C0. Then we have a piecewise geodesic loop sr � rq � Ùqs with
length � 4C0. By the injectivity radius assumption it must represent a trivial element,
which contradicts the fact that ! cuts Bi nontrivially. Hence, B00 2 B. By the choice
of B, we have `.B00/C 1 � t C 1 � `.B/, hence `.sq/C 1 � `.ısp/C `.pq/. So we
have obtained a piecewise geodesic loop �0 D qs �ısp �pq whose total length satisfies

`.�0/D `.qs/C `.ısp/C `.pq/� 2`.qs/C 1� 4C0C 1:

So �0 must be homotopically trivial according to the injectivity radius assumption. Since
! splits Bi nontrivially, the piecewise geodesic loop rs �ısp � pr is homotopically
nontrivial, and therefore, differing by an �0, the geodesic triangle �00 D rs � sq � qr is
also homotopically nontrivial. On the other hand

`.�00/D `.rs/C `.sq/C `.qr/� 4C0;

which contradicts the injectivity radius assumption.

The following is a restatement of Theorem 1.11(3), which gives an alternative geometric
characterization of convex compactness under the assumption that ı < 1.

Theorem 3.13 If ı < 1, then � is convex cocompact if and only if the injectivity
radius function inj WM !R is proper.

Proof We start with the “only if” part, which does not need the condition ı < 1. Since
� is convex cocompact, it consists of only loxodromic isometries. Note that all the
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closed geodesics are in the compact convex core since their lifts in X are in Hull.ƒ.�//.
Therefore, the length of all closed geodesics in M is uniformly bounded from below.
Otherwise, there is an escaping sequence of closed geodesics (whose length tends
to 0) inside the convex core, contradicting compactness. Suppose the injectivity radius
function is not proper. Then there exists an escaping sequence of points xi 2 M

whose injectivity radii are uniformly bounded by some constant R. At each point xi ,
we choose a geodesic loop wi whose length satisfies `.wi/ D 2 inj.xi/ � 2R. By
Proposition 2.1, the closed geodesic free homotopic to wi is within a D–neighborhood
of wi for some constant D. Hence we get an escaping sequence of closed geodesics in
the convex core of M , which contradicts compactness.

To show the “if” part, we first note that properness of the injectivity radius function
automatically implies that M has no cusps, and there is a uniform lower bound �0

on the length of closed geodesics in M . Suppose that � is not convex cocompact,
ie geometrically infinite. By Theorem 2.4 there is an escaping sequence of closed
geodesics f˛ig �M . By Corollary 3.9, there is a subsequence of closed geodesics
whose normal injectivity radii are all at most C.ı/. For convenience, we still denote it
by f˛ig. Now we fix a constant C0 D 2C.ı/C 2D.�0/ as in Lemma 3.10. Since the
injectivity radius function is proper and the sequence f˛ig is escaping, all points on ˛i

have injectivity radii greater than 4C0C 1 when i is sufficiently large. Hence, there
exists a closed geodesic in M whose normal injectivity radius is at most C.ı/, and
where all points on the geodesic have injectivity radii greater than 4C0C1, contradicting
Lemma 3.12. Therefore, � is convex cocompact.

4 Proofs of the main theorems

Theorem 4.1 For each n and � there exists a positive constant D.n; �/ < 1
2

such that ,
for any finitely generated torsion-free discrete isometry subgroup � < Isom X , if either

(1) ı <D.n; �/, or

(2) � is free and ı < 1
16

,

then the injectivity radius function on M is proper.

Proof Since D.n; �/ < 1
2

, there are no parabolic isometries in � by Proposition 2.3.
Suppose that the injectivity radius function is not proper. By the same argument as in the
first paragraph of the proof of Theorem 3.13, there exists an escaping sequence of closed
geodesics f˛ig of uniformly bounded length in M . Let G1 be the set of all escaping
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sequences of closed geodesics in M , and let t D infflim infi!1 `.˛i/ W f˛ig 2 G1g.
From the previous discussion, we see that t <1. On the other hand, M has bounded
geometry according to Theorem 3.7, so t > 0.

We claim that t � 4C.ı/. Suppose t > 4C.ı/. Then there exists an escaping sequence
of closed geodesics ˛i with lim infi!1 `.˛i/ D s 2 .t; t C �0/, where �0 is a fixed
positive number smaller than 1

2
.t�4C.ı//. By Corollary 3.9 there exists a subsequence,

which by abuse of notation we still denote by f˛ig, such that limi!1 `.˛i/D s and
NJ.˛i/� C.ı/ for all i . Without loss of generality, we assume `.˛i/ 2 .t; t C �0/ for
all i . By Section 3.3, each ˛i can be decomposed into two nontrivial loops ˛0i and ˛00i
such that `.˛0i/C `.˛

00
i / � `.˛i/C 4C.ı/. So the shorter one, which we assume to

be ˛0i , has length � 1
2
`.˛i/C2C.ı/, and it represents a nontrivial isometry in � . There

is a closed geodesic �i free homotopic to ˛0i with length � 1
2
`.˛i/C 2C.ı/. Since

M has bounded geometry, �i is inside a uniformly bounded neighborhood of ˛0i by
Proposition 2.1. Thus we have found another escaping sequence of closed geodesics �i

which satisfies

`.�i/� `.˛
0
i/�

1
2
`.˛i/C2C.ı/� 1

2
.tC�0/C2C.ı/ < 1

2

�
tC 1

2
.t�4C.ı//

�
C2C.ı/

D
3
4
tCC.ı/:

The last two inequalities follow from the choices of f˛ig and �0. Hence

lim inf
i!1

`.�i/�
3
4
t CC.ı/ < t:

This contradicts the choice of t , therefore t � 4C.ı/.

This means that, for any � > 0, there exists a primitive closed geodesic, denoted by ˛0,
such that `.˛0/ � t C � � 4C.ı/C � and NJ.˛0/ � C.ı/. By Section 3.3, ˛0 can be
decomposed to two nontrivial loops ˛0

0
and ˛00

0
, and again we assume ˛0

0
is the shorter

one. So `.˛0
0
/ < 4C.ı/C �. Let x0 be a common point of ˛0 and ˛0

0
. Note that ˛0

and ˛0
0

represent two loxodromic elements 0; 
0
0
2 �1.M;x0/Š � , which generate a

nonelementary subgroup h0; 
0
0
i D �0 < � .

Recall that, for any group G with finite generating set S , its entropy is defined as

h.G;S/D lim
N!1

ln jfg 2G W dS .1;g/�N gj

N
;

where dS is the Cayley graph metric determined by S .

Since � is free in .2/, �0 must be a free subgroup isomorphic to F2. So h.�0;S/D ln 3

for S D f0; 
0
0
g. Note that the lengths of geodesic loops from x0 representing 0 and
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 0
0

are both bounded by 4C.ı/C �. We conclude that the orbit map  7!  �x0 gives a
.4C.ı/C�/–Lipschitz injection from .�0; dS / to .X; d/. This implies

ı D ı.�/� ı.�0/�
1

4C.ı/C �
h.�0;S/D

ln 3

4C.ı/C �
;

where the last inequality follows from (2-1). By choosing � small enough and assuming
ı < 1

16
, one can check that the above inequality cannot hold. The contradiction implies

that the injectivity radius is proper.

If we are in case .1/, then according to [20, Theorem 1.1] there is a free subgroup
� 0

0
<�0 generated by two elements g0 and g0

0
whose word lengths measured in .�0;S/

are bounded above by some universal constant C.n; �/ depending only on the dimension
and lower sectional curvature of X . Write S0 D fg0;g

0
0
g. Therefore, the orbit map

.� 0
0
; dS0

/! .X; d/ through the inclusion � 0
0
! �0 is a .4C.ı/C�/C.n; �/–Lipschitz

injection. This implies

ı � ı.�0/�
1

.4C.ı/C �/C.n; �/
h.� 00;S0/D

ln 3

.4C.ı/C �/C.n; �/
:

Thus, there exists a constant D.n; �/ which is smaller than 1
2

such that, by choosing �
small enough and assuming ı <D.n; �/, the above inequality fails. The contradiction
again implies that the injectivity radius is proper.

Remark 4.2 For case (1), instead of passing to a rank-2 free subgroup, one can also
apply the result of [7] to give a uniform lower bound on the entropy of �0.

Now we can finish the proofs of our main results from the introduction.

Proof of Theorems 1.2 and 1.8 Theorem 1.2 follows from Theorems 3.13 and 4.1.
For the proof of Theorem 1.8, there exists a finite-index free subgroup � 0 <� such that
ı.� 0/D ı.�/ < 1

16
. Then � 0 is convex cocompact by Theorems 3.13 and 4.1, which

implies that � is also convex cocompact.

Proof of Corollary 1.6 Let D.n/ be the constant D.n; �/ in Theorem 1.2 with � D 1.
Suppose that � < Isom.Hn/ is a finitely generated discrete isometry subgroup with
ı.�/ < D.n/ < 1

2
. By the Selberg lemma, there exists a finite-index torsion-free

subgroup � 0 < � with ı.� 0/ D ı.�/ < D.n/ < 1
2

. By Theorem 1.2, � 0 is convex
cocompact. Hence, the Hausdorff dimension of the limit set equals ı.� 0/ [9], which
is smaller than 1. Note that since the limit set is a second-countable compact metric
space (hence also locally compact and Hausdorff) its topological dimension equals the
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small inductive dimension, which is bounded above by its Hausdorff dimension, which
hence must be zero. This implies that the limit set is totally disconnected (and is in fact
a Cantor set). Then we apply a result of Kulkarni [35, Theorem 6.11], which states
that if the limit set of a finitely generated Kleinian group is totally disconnected, then
the group splits as a free amalgamation of a free group with virtually abelian groups
corresponding to the parabolic subgroups. Since the condition ı.� 0/ < 1 excludes
all free abelian factors of higher rank, we conclude � 0 must be free. Therefore, � is
virtually free.
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Stable cubulations, bicombings, and barycenters
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We prove that the hierarchical hulls of finite sets of points in mapping class groups and
Teichmüller spaces are stably approximated by CAT(0) cube complexes, strengthening
a result of Behrstock, Hagen and Sisto. As applications, we prove that mapping
class groups are semihyperbolic and Teichmüller spaces are coarsely equivariantly
bicombable, and both admit stable coarse barycenters. Our results apply to the broader
class of “colorable” hierarchically hyperbolic spaces and groups.

20F65, 57K20

1 Introduction

Much of the coarse structure of mapping class groups has the flavor of CAT(0) geometry,
in spite of the fact that mapping class groups have no geometric actions on CAT(0)
spaces; see Bridson [17]. Manifestations of this include the weakly relatively hyperbolic
structure associated to curve complexes — see Masur and Minsky [42] — and the
equivariant embedding into finite products of quasitrees found by Bestvina, Bromberg
and Fujiwara [13].

A notion of “hulls” of finite sets in mapping class groups was introduced by Behrstock,
Kleiner, Minsky and Mosher in [9], and these were more recently shown by Behrstock,
Hagen and Sisto [8] to be approximated in a uniform way by finite CAT(0) cube
complexes — see also the alternative proof given by Bowditch in [16]. Our goal in this
paper is to refine this construction to make it stable, in the sense that perturbation of the
input data gives rise to bounded change in the cubical structure. As initial applications,
we give a construction for equivariant barycenters and a proof that mapping class groups
are bicombable.
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As in [8], the proof works in a more general context of hierarchically hyperbolic groups,
a class of groups (and spaces) introduced by Behrstock, Hagen and Sisto [6; 7] which
are endowed with a structure similar to the hierarchical family of curve complexes
associated to a surface; see Masur and Minsky [43]. See Section 2.2 for the definition
of a hierarchically hyperbolic space (HHS).

Our main result, stated informally, is the following:

Theorem A In a colorable HHS .X ;S/, the coarse hullH� .F / of any finite set F can
be approximated in a coarsely equivariant way by a finite CAT (0) cube complex whose
dimension is bounded by the complexity of .X ;S/, in such a way that a bounded
change in F corresponds to a change of the cubical structure by a bounded number of
hyperplane deletions and insertions.

The colorability assumption — see Definition 2.8 — in Theorem A is apparently quite
weak and excludes none of the key examples of HHSs, though there are noncolorable
HHGs; see Hagen [36].

For the general context of this result, see the discussion in Section 1.2, where we also
give a more precise statement in Theorem 1.4. See Theorem 4.1 for the strongest
version. Besides mapping class groups, there are several other classes of spaces and
groups that are colorably hierarchically hyperbolic, including

� many cubical groups, including all right-angled Artin and Coxeter groups; see
[6] and Hagen and Susse [38];

� Teichmüller spaces with either the Teichmüller or the Weil–Petersson metric;
see Durham [27], Eskin, Masur and Rafi [32], and Rafi [48];

� fundamental groups of closed 3–manifolds without Nil or Sol summands [7];

� groups resulting from various combination and small-cancellation-type theorems;
see Behrstock, Hagen and Sisto [5; 7], Berlai and Robbio [11], and Robbio and
Spriano [51; 56];

� quotients of mapping class groups by suitable large powers of Dehn twists, and
other related quotients; see Behrstock, Hagen, Martin and Sisto [4];

� extensions of lattice Veech subgroups of mapping class groups; see Dowdall,
Durham, Leininger and Sisto [25; 26];

� extensions of multicurve stabilizer subgroups of mapping class groups; see
Russell [52];

Geometry & Topology, Volume 27 (2023)
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� the genus-2 handlebody group; see Chesser [23];

� Artin groups of extra large type; see Hagen, Martin and Sisto [37, Remark 6.16].

With the exception of any hyperbolic and cubical examples from above, our main
results and its applications are novel for this wide class of objects.

1.1 Applications

We now discuss our two main applications of Theorem A, namely that mapping
class groups and Teichmüller spaces are bicombable (Corollary D) and admit stable
barycenters (Corollary F).

Bicombings and semihyperbolicity In CAT(0) spaces, geodesics are unique. In geo-
desic Gromov hyperbolic spaces, all geodesics between any pair of points fellow-travel.
In fact, in both of these classes of spaces geodesics are stable under perturbation of their
endpoints in the following sense: given points x, x0, y and y0 with d.x; y/; d.x0; y0/�1,
all geodesics from x to y fellow-travel those from x0 to y0.

The notion of a bicombing of a metric space X , introduced by Thurston, generalizes
this stability property. Roughly speaking, a bicombing is a transitive family of uniform
quasigeodesics with the above parametrized fellow-traveling property under perturbation
of endpoints. See Section 6.2 for a precise definition.

Bicombability is a quasi-isometry invariant which imposes strong constraints on groups,
such as property FP1, a quadratic isoperimetric inequality, and the Novikov conjecture;
see Alonso and Bridson [1], Baumslag, Gersten, Shapiro and Short [2], Epstein, Cannon,
Holt, Levy, Paterson and Thurston [31], Gersten and Short [33], and Storm [57].
Moreover, bicombings are the key geometric feature of biautomatic structures on
groups (where one requires that the bicombing is constructible by a finite state au-
tomaton), thereby playing an important role in computational group theory. It is worth
noting that bicombability is decidedly a feature of nonpositive curvature, with the
3–dimensional Heisenberg group not being bicombable because it does not satisfy a
quadratic isoperimetric inequality [31].

The power of our stable cubical models is that they allow us to stably and hierar-
chically import geometric features of cube complexes into HHSs. In particular, `1–
geodesics in the cubical models map to hierarchy paths (Definition 6.5), which are
quasigeodesics that are finely attuned to the HHS structure, in that they project to

Geometry & Topology, Volume 27 (2023)
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uniform, unparametrized quasigeodesics in every hyperbolic space in the hierarchical
structure. The stability property of the cubulation then implies that carefully chosen
`1–geodesics give a bicombing:

Theorem B Any colorable HHS .X ;S/ admits a coarsely Aut.X ;S/–equivariant ,
discrete , bounded , quasigeodesic bicombing by hierarchy paths with uniform constants.

If the action by automorphisms is free, then coarse equivariance can be upgraded to
equivariance. By the definition of semihyperbolicity [1], we obtain:

Corollary C Colorable hierarchically hyperbolic groups are semihyperbolic.

Note that semihyperbolicity has several novel consequences for HHGs. Besides novel
consequences of bicombability, these include solvability of the conjugacy problem and
the fact that abelian subgroups are undistorted [1].

While many HHSs were known to be bicombable for other reasons, eg many are
CAT(0), this produces bicombings for many new examples, such as extensions of Veech
subgroups of mapping class groups.

Our main application is:

Corollary D For any finite type surface †, its mapping class group MCG.†/ is
semihyperbolic and its Teichmüller space Teich.†/with either the Teichmüller metric or
the Weil–Petersson metric is coarsely MCG.†/–equivariantly bicombable by hierarchy
paths with uniform constants.

Note that the HHS notion of hierarchy path that we are using here is more general
than the hierarchy paths produced in [27; 43], which are explicitly constructed from
hierarchies of tight geodesics in curve graphs.

We remark that semihyperbolicity of MCG.†/ follows from work in a preprint of
Hamenstädt [40]. The result for T .†/ is new, though we were informed by M Kapovich
and K Rafi that they know of a different construction for bicombing T .†/. Note that
T .†/ with the Weil–Petersson metric is bicombable since its completion is CAT(0) —
see Bridson and Haefliger [18], Tromba [59], and Wolpert [60] — though we note that
it is unknown whether Weil–Petersson geodesics are hierarchy paths. Combability of
MCG.†/ follows from work of Mosher [45].
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Notably, our bicombing construction applies to both mapping class groups and Teich-
müller spaces simultaneously. Moreover, our bicombings are relatively straightforward
applications of our more powerful stable cubulation construction. See Section 1.4 for a
discussion.

Stable barycenters Another key feature of nonpositively curved spaces is that bounded
sets admit (coarse) barycenters. Here, we think of barycenters simply as maps assigning
a point to any finite subset. Some more properties are required to make this notion
meaningful, such as stability, which requires the barycenter to vary a bounded amount
when the finite set varies a bounded amount, and coarse equivariance when a group
action is present; see Section 6.1.

In CAT(0) spaces there are a number of useful notions of barycenter which are equi-
variant and stable, for example center-of-mass constructions and circumcenters. Coarse
barycenters are useful in the context of groups for understanding centralizers and
solving the conjugacy problem for torsion elements and subgroups. Notably, Gromov
hyperbolic spaces admit (coarse) barycenters: a coarse barycenter of a finite set F in a
hyperbolic space X can be taken to be one of the standard CAT(0) barycenters in the
CAT(0) space which models the hull of F in X , ie a simplicial tree. See Section 1.2
for a discussion of these ideas in the context of the this paper.

We should mention that coarse barycenters for triples of points are used to define coarse
medians in the sense of Bowditch [15]; thus playing a central role in the theory of
coarse median spaces and its many applications. However it is unclear how to construct
barycenters even for pairs of points in a coarse median space, and stability properties
appear just as difficult to obtain.

Barycenters in CAT(0) spaces are not in general well behaved under quasi-isometries.
Using Theorem A and a construction reminiscent of Niblo and Reeves’ normal paths [46],
we are able to prove that most HHSs admit equivariant coarse barycenters, which are
coarsely invariant under HHS automorphisms:

Theorem E Let .X ;S/ be a colorable HHS. Then X admits coarsely Aut.X ;S/–
equivariant stable barycenters for k points , for any k � 1.

We remark that the coarse barycenter we produce for a set F is contained in the hull
of F .

As with Theorem B, Theorem E can be applied to mapping class groups and Teichmüller
spaces:

Geometry & Topology, Volume 27 (2023)
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Corollary F For any finite type surface †, its mapping class group MCG.†/ and
Teichmüller space T .†/ admit coarsely MCG.†/–equivariant stable barycenters for k
points , for any k � 1.

Corollary F is new for arbitrary finite sets of points in MCG.†/ and T .†/ with the
Teichmüller metric, even without the stability property. The corresponding statement
for T .†/ with the Weil–Petersson metric is an easy consequence of the fact that its
completion is CAT(0). Corollary F, without the stability property, was proven for triples
of points in MCG.†/ by Behrstock and Minsky [10], for orbits of finite order elements
of MCG.†/ in MCG.†/ by Tao [58], and more generally for orbits of finite subgroups
of MCG.†/ in both MCG.†/ and T .†/ with the Teichmüller metric by Durham [28].

In work that appeared simultaneously to ours, Haettel, Hoda and Petyt [35] proved
that HHSs are coarse Helly spaces, in the sense of Chalopin, Chepoi, Genevois, Hirai
and Osajda [20]. This property has a number of strong consequences, many of which
overlap with the results in this paper. In particular, they obtain versions of Theorems B
and E along with their corollaries, without the colorability assumption and the hierarchy
path conclusion.

Their approach and constructions are very different from ours, using results from the
theory of coarse Helly and injective metric spaces, whereas our work relies mostly on
hyperbolic and cubical geometry.

1.2 Coarse hulls and their models

Given the technical nature of many of the proofs in this paper, we include here an
extended but simplified discussion of the ideas that go into our constructions. The
propositions stated in this section will not, however, be used elsewhere in the paper.

Consider first the notion of a convex hull in a CAT(0) space. The convex hull of a
finite set F has the following nice property: the map F 7! hull.F / is 1–Lipschitz with
respect to the Hausdorff metric on sets. We are interested in generalizing this notion to
more coarse hulls (which we will just denote by hull.F / in each case) in more general
spaces.

As a first motivating example, consider the Euclidean plane, X DR2 with the `2 metric.
The convex hull of two points, hull.fx; yg/, is just the unique geodesic between them.
If, on the other hand, we endow R2 with the `1 metric then the convex hull is the
axis-parallel rectangle spanned by x and y. Note that .R2; `1/ is not CAT(0) but is a
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x

y

R2

hull`2fx; yg
hull`1fx; yg

Figure 1: A cartoon of the `2–hull (red) and `1–hull (blue) of two points
in R2. The `1–hull reflects the intrinsic product structure of the space.

product of CAT(0) spaces, and this hull is a product of hulls in the CAT(0) factors. See
Figure 1. This simple idea is a model for a useful construction in the HHS context.

We can think of an HHS as (coarsely) embedded in a product of hyperbolic spaces, in
such a way that it is composed of products of certain factors, intersecting and nesting in a
complicated fashion. The reader familiar with the foundational example, namely Masur
and Minsky’s hierarchy of curve graphs for mapping class groups [42; 43], will lose
nothing by keeping it in mind during the ensuing discussion. In that setting, Behrstock,
Kleiner, Minsky and Mosher [9] introduced a notion of hull which is essentially a coarse
pullback of convex hulls in each hyperbolic factor; see Section 2.2. Behrstock, Hagen
and Sisto [8] proved, in the general HHS setting, that these hulls are quasi-isometrically
modeled by finite CAT(0) cubical complexes.

Their result is a partial generalization of the situation in Gromov hyperbolic spaces,
where Gromov proved that hulls of finite sets of points are quasi-isometrically modeled
by finite simplicial trees [34]. However, in the setting of hyperbolic spaces, the modeling
trees satisfy additional strong stability properties under perturbation of the set of input
points; see Proposition 1.3 below.

Our main theorem — in increasing specificity, Theorems A, 1.4 and 4.1 — endows the
modeling cube complexes from [8] with a generalization of the stability properties that
Gromov’s modeling trees enjoy.

Before giving a full account of our results and an overview of their proofs, it will be
beneficial to discuss the situation in hyperbolic spaces and cubical complexes. We will
see that our results are a common generalization of the situations from these motivating
examples.
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hull.F /
hull.F 0/

hull.F /\ hull.F 0/

Figure 2: Stability of hulls in a tree: the intersection of hull.F / (red) and
hull.F 0/ (blue) subtrees is a (green) subtree which can be obtained by deleting
the boundedly many complementary red and blue subtrees.

Hulls in trees and cube complexes Let X be a simplicial tree. Then the convex hull
of any finite set of vertices F �X0 is the subtree TF of X spanned by F . Moreover,
the subtree TF is stable under small perturbations of F , in the following sense; see
Figure 2:

Proposition 1.1 Let X be a simplicial tree. If F;F 0 � X0 satisfy #F 0 D #F D k
and dHaus.F; F

0/ � 1, then the intersection of their hulls , T0 D TF \ TF 0 , is itself a
subtree with both TF nT0 and TF 0 nT0 a union of at most k subtrees each of diameter
at most 1.

We will not use this fact, so we leave its proof to the interested reader.

This situation generalizes to when X is a CAT(0) cube complex endowed with the
`1 metric; see Section 2.1 for the relevant definitions. Recall that the `1 metric on X is
completely determined by a special collection HX of codimension-1 subspaces called
hyperplanes (Section 2.1), in the sense that X is precisely the dual cube complex
arising from Sageev’s cubulation construction [54] applied to HX as a wallspace; see
Section 2.1.1.

In the cubical context, the `1 convex hull of any finite set of vertices F � X0 is the
cubical subcomplex QF � X realized as the dual to the hyperplanes HF separating
the points in F . In addition, these cubical hulls satisfy the following strong stability
property; see Figure 3:
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hull.F /
hull.F 0/

hull.F /\ hull.F 0/

Figure 3: Stability of hulls in the universal cover of S1_T 2: the subcomplex
dual to all hyperplanes common to both hull.F / (red) and hull.F 0/ (blue) is
here realized as the intersection (green) of the `1–hulls.

Proposition 1.2 Let X be a CAT (0) cube complex endowed with the `1 metric. If
F;F 0 �X0 satisfy #F; #F 0� k and dHaus.F; F

0/� 1, then there are convex subcom-
plexes XF �QF and XF 0 �QF 0 , both dual to the hyperplanes in H0 DHF \HF 0 ,
such that dHaus.XF ; XF 0/� 1. Moreover , both HF nH0 and HF 0 nH0 contain at most
k hyperplanes.

Again, we will not use this proposition, so we omit its proof.

In the cubical structure on a simplicial tree, the hyperplanes correspond to midpoints of
edges. Hence Proposition 1.2 generalizes Proposition 1.1. Note that now the diameters
of QF nXF and QF 0 nXF 0 can be arbitrarily large. However, since the `1 metric
on X is completely determined by its defining hyperplanes, Proposition 1.2 says that
QF and QF 0 are metrically and combinatorially related, depending only on k and X —
and not on diam.F /. In particular, one can delete boundedly many hyperplanes from
the collections HF and HF 0 to generate a common model; see Section 2.1.2 for a
discussion on hyperplane deletions.

Modeling hulls in hyperbolic spaces In coarse geometry, eg when X is the Cayley
graph of a finitely generated group, the notion of geodesic is often wobbly, and so our
notion of hull needs to be more flexible. Moreover, it will often be more fruitful to
construct quasi-isometric models of hulls, which we should think of as nice combi-
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TF
hull.F /

TF
TF 0

Figure 4: Stability of hulls in a hyperbolic space: top, the modeling tree (red)
for the coarse hull (green) of a finite set F ; bottom, the modeling trees TF
and TF 0 for hull.F / and hull.F 0/ are .1;K/–quasi-isometric after deleting
small subtrees (purple).

natorial objects which coarsely encode the key geometric features of hulls into their
combinatorial structure. The main motivating examples here are hyperbolic spaces,
where hulls are modeled by finite simplicial trees.

When X is ı–hyperbolic and F �X with #F D k, the right notion of hull.F / is the
weak hull, namely the set of all geodesics between points in F . Notice then that the
tripod-like ı–slim-triangles condition generalizes to a tree-like slimness for hull.F /.
The following proposition is an easy consequence of Gromov’s original arguments [34];
see Figure 4:

Proposition 1.3 For any k 2N and ı > 0, there exists LD L.k; ı/ > 0 such that the
following holds.

Let X be ı–hyperbolic and F �X with #F D k. Then there is a simplicial tree TF and
a .1; L/–quasi-isometric embedding �F W TF !X with dHaus.�F .TF /; hull.F // < L.

Moreover , if F 0 �X with #F 0 � k and dHaus.F; F
0/� 1, then there exists a simplicial

tree T0 and a .1; L/–quasi-isometric embedding �0 W T0!X such that the diagram

(1-1)

TF

T0 X

TF 0

�F
hF

�0

�F 0
hF 0
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commutes up to error at most L, where hF and hF 0 are quotient maps which collapse
at most L subtrees each of diameter at most L.

Observe that Proposition 1.3 is a generalization of Proposition 1.1, where X is a tree
and we can take the trees TF , TF 0 , and T0 as before and the maps �F , �F 0 , and �0
to be inclusions. The main difference here is that a general hyperbolic space is stably
locally tree-like, and not a tree itself. Hence the need for a model for the hulls.

Our main theorem is a common generalization of the stability properties in Propositions
1.2 and 1.3.

1.3 Stable cubical models for hulls in HHSs

We will deal with colorable hierarchically hyperbolic spaces .X ;S/, which means,
for the reader familiar with HHSs, that there exists a decomposition of S into finitely
many families Si such that each Si is pairwise transverse. Colorable HHSs include
mapping class groups and Teichmüller spaces of finite-type surfaces.

In fact, colorability is a rather mild condition which is satisfied by all of the main
motivating examples. Its definition is inspired by Bestvina, Bromberg and Fujiwara’s
proof that curve graphs are finitely colorable [12]; see Section 2.2 for a discussion.

Given a finite set of points F � X in an HHS, the standard notions of a hull for F
are very difficult to analyze. For example, while little is known about geodesics in
the mapping class group, Rafi and Verberne [50] proved that geodesics do not always
interact well with the curve graph machinery. In Teichmüller space with the Teichmüller
metric, geodesics are unique, but it is an open question of Masur whether the classical
convex hull of a set of three points can be the whole space. Moreover, it is a result of
Rafi that hulls of two points, ie geodesics, do not behave stably under perturbation [49,
Theorem D]. These complications motivate a more flexible definition of hull in this
setting.

The hierarchical hull of a finite set F � X , which we also denote by hull.F /, was
introduced in [9] to study subspaces of the asymptotic cones of the mapping class group,
on the way to proving that these groups are quasi-isometrically rigid. In hyperbolic
spaces and cube complexes, the hierarchical hull coincides with the notions of hull
discussed above. In the hierarchical setting, one instead has a notion of projecting F
to a family of hyperbolic spaces (eg curve graphs of subsurfaces). In each of these
hyperbolic spaces, one then takes the weak hull of the projection — which is coarsely
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a tree, as above — and the uses certain hierarchical consistency conditions [7; 9] to
fashion these weak hulls in the various spaces into a hull in the ambient HHS which
satisfies certain convexity properties [7; 9]. In particular, the hierarchical hull of F is
hierarchically quasiconvex [7] and contains all of the hierarchy paths between points
in F [9].

In [8], Behrstock, Hagen and Sisto proved that the hierarchical hull of a finite set of
points is quasi-isometric to a finite CAT(0) cube complex. Their main observation was
that the hierarchical consistency conditions are closely related to the consistency condi-
tions on a wallspace from Sageev’s construction of cubical complexes (Section 2.1.1).
Their idea was to look at points on the modeling trees in the hyperbolic spaces which are
unseen by the other projection data. The preimages of these points under the projection
maps turn out to behave like walls in the hull. See Section 1.4 for a sketch of these
ideas, and Section 4.2 for a full discussion.

Our main theorem stabilizes their construction, simultaneously generalizing the stability
properties from Proposition 1.3 for any hyperbolic space and Proposition 1.2 for cube
complexes admitting an HHS structure. The following is a more detailed version of
Theorem A.

Theorem 1.4 Let .X ;S/ be a colorable HHS. Then for each k there exist K and N
with the following properties. For any F � X with #F � k, there exists a finite
CAT (0) cube complex QF and a K–quasimedian , .K;K/–quasi-isometric embedding
ˆF WQF ! X with dHaus.ˆF .QF /; hull.F //�K.

Moreover , if F 0 � X is another subset with #F 0 � k and dHaus.F; F
0/ � 1, there

is a finite CAT (0) cube complex Q0 and a K–quasimedian , .K;K/–quasi-isometric
embedding ˆ0 WQ0! X such that the diagram

(1-2)

QF

Q0 X

QF 0

ˆF�F

ˆ0

ˆF 0
�F 0

commutes up to error at most K, where �F and �F 0 are hyperplane deletion maps
which delete at most N hyperplanes.

See Theorem 4.1 for the full version of the theorem, the details of which are necessary
for our applications.

Geometry & Topology, Volume 27 (2023)



Stable cubulations, bicombings, and barycenters 2395

We note that CAT(0) cubical complexes are median spaces and HHSs are coarse
median [7] in the sense of Bowditch [15]. As with the cubical models in [8], our stable
cubical models also coarsely preserve the medians, meaning that the maps ˆF do (as
stated in Theorem 4.1). It is worth noting that in view of Russell, Spriano and Tran [53,
Corollary 5.12], our cube complexes also approximate coarse median hulls.

1.4 Sketch of proofs

The proof of Theorem 4.1, of which Theorem A is an informal version, is contained in
Section 4 and depends crucially on our work in Section 3. Theorems B and E are a
consequence of Theorem A and our work in Section 5. We now explain the various
parts and how they fit together.

In what follows, we will keep our discussion within the context of mapping class groups
and hierarchies of curve graphs [42; 43], though we work in the more general context
of HHSs.

Let F �MCG.†/ be a finite subset and consider essential subsurfaces V �† which
are not 3–holed spheres. Roughly, the hierarchical hull of F , hull.F /, is the set of
points of MCG.†/ whose subsurface projections in each curve graph C.V / lie close to
the weak hull of the subsurface projection �V .F / of F .

In the cubulation construction of [8], the authors build a wallspace for hull.F /.

To do this, they first consider the collection UF of relevant subsurfaces V � † for
which diamV �V .F />K for some fixed thresholdK >0. In each of these subsurfaces,
they take a tree T VF which coarsely models the hull of �V .F / in C.V /, as discussed
in Section 1.2. For each such V 2 UF , they then consider the collection of relative
projections �WV of W 2UF to C.V /, which correspond to the projection of @W to C.V /
and thus are nonempty if V is neither disjoint from nor contained in W . The bounded
geodesic image theorem [43] and certain consistency properties of projections — see
Behrstock [3] and [9] — imply that each �WV for such W lies uniformly close to the
tree T VF .

They then consider, roughly, the complement P VF in T VF of a regular neighborhood of
these projections, which consists of a number of subtrees of T VF which are “unseen”
by the other subsurfaces in UF which interact with V . Any point in T VF nP

V
F cuts

T VF into two subtrees. The partitions of hull.F / that define the wallspace on hull.F /
come from these subdivision points in the T VF , namely one considers the subspaces of
hull.F / whose subsurface projections to C.V / lie close to either of the subtrees.
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While this construction is useful for studying top-dimensional quasiflats, it is unstable
under perturbation of F , in that given some other F 0 with dHaus.F; F

0/� 1, then the
cubical models QF and QF 0 might differ by a number of hyperplanes on the order of
diam.F /, which is not bounded.

The proof of Theorem A involves stabilizing this process in a number of places. The first
step is to robustly stabilize the collection of relevant subsurfaces UF (Proposition 2.14),
eg so that jUF 4 UF 0 j is bounded in terms of the topology of the surface S . We do
this by applying work of Bestvina, Bromberg, Fujiwara and Sisto [14], which allows
us to stabilize subsurface projections (Theorem 2.9), and then use standard projection
complex type arguments.

In Section 3, we stabilize the modeling trees T VF for each V 2 UF . Unlike before, it
will not do to simply take any Gromov modeling tree, since unboundedly many pieces
of it might change in the transition from F to F 0 when we cut it up using the relative
projection data (the P VF above). Instead, we use the newly stabilized relative projection
data to build a new stable tree. We do this by taking a regular neighborhood of the
relative projections, which then group into connected components we call clusters. As
before, these clusters lie close to any Gromov modeling tree, but we cannot use these
trees. Instead, we define a separation graph for these clusters (Definition 3.5), and
then prove that the combinatorics of this graph encode how these domain clusters are
arranged on any Gromov modeling tree. We then construct our stable tree by connecting
clusters both internally and externally via minimal spanning networks in C.V /. The
stability of the cluster data then is converted into stability of the tree construction in
Theorem 3.3, which, in particular, says that the set of long edges of two related trees
are in bijection and within bounded Hausdorff distance, with most long edges exactly
the same. See Figures 5 and 9 below.

In Section 4, we then plug these stable trees into the cubulation machine from [8]. We
must be mindful of how subdivision points change when transitioning from F to F 0. In
particular, we construct a common refinement of the sets of subdvision points for our two
sets F and F 0 (Proposition 4.12), with the delicate nature of this process necessitating
the intricacies in the statement and proof of the stable tree theorem (Theorem 3.3).
With this in hand, we prove that this common refinement induces an isomorphism
between the resulting cubical models for the hulls of both sets (Proposition 4.13); see
Figure 18. This isomorphism depends on a careful hierarchical analysis of when two
halfspaces corresponding to two subdivision points intersect (Lemma 4.10). The full
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version of the stable cubulation theorem is achieved in Theorem 4.1, which says that
the two modeling cube complexes QF and QF 0 become isomorphic when we delete
a bounded number of hyperplanes from each, with the bound depending only on jF j
and jF 0j.

In Section 5, we adapt the normal path construction of Niblo and Reeves [46] and
analyze how it changes under hyperplane deletion. In particular, for any finite CAT(0)
cube complex Q, we develop a sequence of contractions which take the extremal
vertices of Q (ie its corners) into a “barycentric” cube at the “center” of Q, and
we prove that this contraction sequence is only boundedly perturbed by hyperplane
deletions (Theorem 5.1).

Stability of the cubical model and the contraction sequence easily give the barycenter
theorem (Theorem E). In the context of a bicombing (Theorem B) when F Dfx; yg, we
take the bicombing path from x to y to be the image in MCG.†/ of the path obtained
by following the contraction sequence of x to the barycentric cube, and then traversing
the contraction sequence from the barycentric cube to y in reverse order. Once again,
stability of the contraction sequence and the cubical models implies that these are
uniform quasigeodesics which fellow-travel in a parametrized fashion; see Figure 25.
Theorems B and E are proved in Section 6.

1.5 Outline

In Section 2 we collect some background material.

Section 3 takes place entirely in a fixed hyperbolic space, using methods from coarse
hyperbolic geometry but with HHS ends in mind. The main result there is Theorem 3.3,
and no other result from that section will be used elsewhere.

In Section 4, we prove the precise version of Theorem A, which is Theorem 4.1. Again,
no other statement from this section will be used elsewhere. In this section, we use the
combinatorial geometry of HHSs.

Section 5 uses the tools of cubical geometry, and it is independent from the previous
sections. Its main result is Theorem 5.1, which once again is the only result from here
needed in the rest of the paper.

Finally, in Section 6 we put all the pieces together, and we prove Theorems B and E.
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2 Background

In this section, we will collect and record the various facts about cube complexes and
hierarchically hyperbolic spaces that we need.

2.1 CAT(0) cube complexes

We will briefly discuss some basic aspects of CAT(0) cubical geometry. We direct the
reader to Sageev’s lecture notes [55] for details.

A cube complex is a simplicial complex X obtained from a disjoint collection of Eu-
clidean cubes which are glued along their faces by a collection of Euclidean isometries.
A cube complex is nonpositively curved (NPC) if its vertex links are simplicial flag
complexes. An NPC cube complex is CAT(0) if it is a 1–connected NPC complex.

A midcube of an n–cube C � X is an .n�1/–dimensional cube H 0 � C running
through the barycenter of C and parallel to one of the faces of C . A hyperplaneH �X
is a connected subspace of X such that for all closed cubes C , the intersectionH \C is
either empty or a midcube of C . The carrier of H is the union of all of the cubes in X
whose intersection with H is a midcube, and it is naturally isomorphic to H � Œ0; 1�.

Equivalently, there is a natural equivalence relation on the set of edges in the 1–skeleton
of X generated by relating two edges if they are opposite edges of some square in X .
Any hyperplane can be obtained as the collection of midcubes which intersect the edges
in a given equivalence class.

In this paper, we will be considering finite cube complexes, namely those with finitely
many cubes.

Geometry & Topology, Volume 27 (2023)



Stable cubulations, bicombings, and barycenters 2399

Metrics on cube complexes There are many interesting metrics one can put on a
CAT(0) cube complex X . We will be interested in both

� the `1 or combinatorial metric, d1, which is generated by the `1 norm in each
cube of X , and can be equivalently defined on the 1–skeleton X .1/ as the path
metric thereon;

� the cubical sup metric, d1, which is the metric generated by the `1 or sup norm
in each cube in X .

The following is an easy consequence of the observation that, given n, the `1 and `1

norm on an n–cube are bi-Lipschitz equivalent.

Lemma 2.1 For any n > 0, there exists K D K.n/ > 0 such that if X is an n–
dimensional cube complex , then the identity id W .X; d1/! .X; d1/ is a .K;K/–quasi-
isometry.

The differences between these metrics will come up in Sections 5 and 6. See [44] for a
detailed discussion of these metrics.

2.1.1 Wallspaces and Sageev’s construction In Section 4, we will adopt the per-
spective of obtaining cube complexes as duals to wallspaces. Wallspaces were first
defined by Haglund and Paulin [39]; see Hruska and Wise [41] for a broader discussion.

Let Y be a nonempty set. A wall in Y is a pair of subsets W D f
 �
W ;
�!
W g where

Y D
 �
W t
�!
W . In this case,

 �
W and

�!
W are called halfspaces.

Two points x; y 2Y are separated by a wallW if x is contained in a different halfspace
from y.

A wallspace is a set Y with a collection of walls W on Y such that the number of walls
separating any pair of points is finite.

An orientation on a wallspace .Y;W/ is an assignment � such that, for each W 2W ,
we have �.W / 2 f

 �
W ;
�!
W g. The orientation � is called coherent if, for all W;W 0 2W ,

we have �.W /\ �.W 0/ ¤ ∅. We call � canonical if there exists x 2 X such that
x 2 �.W / for all but finitely many W 2W .

Given a wallspace .Y;W/, we can consider the cube complex X.Y;W/ constructed as
follows. The 0–cubes of X.Y;W/ are coherent, canonical orientations of .Y;W/. Two
0–simplices are connected by a 1–cube if, seen as orientations, they differ on only one
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wall. Finally, all subcomplexes of the 1–skeleton isomorphic to the 1–skeleton of an
n–cube cube get filled by an n–cube.

Work of Chatterji and Niblo [21], Chepoi [22], and Nica [47] — building off of work
of Sageev [54] — gives that X.Y;W/ is a CAT(0) cube complex. We call X.Y;W/ the
dual cube complex associated to the wallspace .Y;W/.

2.1.2 Hyperplane deletions In Section 5, we will be interested in understanding how
cube complexes change under deletions of hyperplanes, so we will use the alternative
perspective of obtaining cube complexes from sets of hyperplanes. We briefly explain
how this works.

Let X be a CAT(0) cube complex and HX its (finite) set of hyperplanes. Then we can
identify each hyperplane H 2HX with the two halfspaces into which it partitions X .0/.
As such, we can and will think of .X .0/;HX / as a wallspace, and one can show that X
is the dual cube complex associated to .X;HX /.

Given any subset H � HX of hyperplanes in a cube complex X , there is a natural
cube complex X.H/ defined as the dual cube complex associated to the wallspace
defined by H in X . In particular, each point in X.H/ is a choice of coherent, canonical
orientations of the half-spaces defined by H.

With this notation, we can now define hyperplane deletions:

Definition 2.2 Let X be a CAT(0) cube complex obtained with hyperplanes HX . For
a finite collection of hyperplanes G �HX , the hyperplane deletion map for H is the
map

ResHXnG WX !X.HX nG/

obtained by restriction of orientations, where X.HX n G/ is the dual cube complex
associated to the wallspace .X;HX nG/.

Equivalently, the map ResHXnG is the quotient map which collapses the Œ0; 1� factor of
each of the carriers of the hyperplanes in G (recall that the carrier of the hyperplane H
is naturally isomorphic to H � Œ0; 1�). We note that these maps appear elsewhere in the
literature, eg [19].

We also record the following fact, which indicates that the isomorphism type of the
cube complex coming from a wallspace is determined by the intersection pattern of
halfspaces. The proof is elementary.

Geometry & Topology, Volume 27 (2023)



Stable cubulations, bicombings, and barycenters 2401

Lemma 2.3 Let W and W 0 be wallspaces , and let � W HW ! HW 0 be a bijection of
their halfspaces which preserves complements and disjointness.

Denote by j the induced map on walls

fH;H c
g 7! f�.H/; �.H/cg

and by h.x/D �ıx ıj�1 the induced map on orientations. Then h, viewed as a map on
0–cubes , induces an isomorphism h W YW ! YW0 between the corresponding CAT (0)
cube complexes.

2.2 HHS axioms

We recall from [7] the definition of a hierarchically hyperbolic space.

Definition 2.4 (HHS) The q–quasigeodesic space .X ; distX / is a hierarchically
hyperbolic space if there exists ı � 0, an index set S, and a set fCW j W 2 Sg of
ı–hyperbolic spaces .CU; distU /, such that the following conditions are satisfied.

(1) Projections There is a set f�W WX!2CW jW 2Sg of projections sending points
in X to sets of diameter bounded by some � � 0 in the various CW 2S. Moreover, there
exists K such that, for all W 2S, the coarse map �W is .K;K/–coarsely Lipschitz
and �W .X / is K–quasiconvex in CW .

(2) Nesting S is equipped with a partial order @, and either SD∅ or S contains a
unique @–maximal element; when V @W , we say V is nested in W . (We emphasize
that W @W for all W 2S.) For each W 2S, we denote by SW the set of V 2S
such that V @W . Moreover, for all V;W 2S with V ĹW , there is a specified subset
�VW � CW with diamCW .�

V
W /� �. There is also a projection �WV W CW ! 2CV . (The

similarity in notation is justified by viewing �VW as a coarsely constant map CV !2CW .)

(3) Orthogonality S has a symmetric and antireflexive relation called orthogonality,
and we write V ? W when V and W are orthogonal. Also, whenever V @ W and
W ?U , we require that V ?U . We require that for each T 2S and each U 2ST for
which fV 2ST j V ?U g ¤∅, there exists W 2ST nfT g such that, whenever V ?U
and V @ T , we have V @W . Finally, if V ?W , then V and W are not @–comparable.

(4) Transversality and consistency If V;W 2S are not orthogonal and neither is
nested in the other, then we say V and W are transverse, denoted by V tW . There
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exists �0 � 0 such that if V tW , then there are sets �VW � CW and �WV � CV , each
of diameter at most � and satisfying

(2-1) minfdistW .�W .x/; �VW /; distV .�V .x/; �WV /g � �0

for all x 2 X .

For V;W 2S satisfying V @W and for all x 2 X ,

(2-2) minfdistW .�W .x/; �VW /; diamCV .�V .x/[ �
W
V .�W .x///g � �0:

The preceding two inequalities are the consistency inequalities for points in X .

Finally, if U @ V , then distW .�UW ; �
V
W /� �0 whenever W 2S satisfies either V ĹW

or V tW and W 6? U .

(5) Finite complexity There exists n� 0, the complexity of X (with respect to S),
such that any set of pairwise @–comparable elements has cardinality at most n.

(6) Large links There exist �� 1 and E �maxf�; �0g such that the following holds.
Let W 2 S and let x; x0 2 X . Let N D � dist

W
.�W .x/; �W .x

0//C �. Then there
exists fTigiD1;:::;bN c � SW n fW g such that for all T 2 SW n fW g, either T 2 STi
for some i , or distT .�T .x/; �T .x0// < E. Also, distW .�W .x/; �

Ti
W /�N for each i .

(7) Bounded geodesic image There exists �0 > 0 such that for all W 2 S, all
V 2SW n fW g, and all geodesics  of CW , either

diamCV .�
W
V .//� �0 or  \N�0.�

V
W /¤∅:

(8) Partial realization There exists a constant ˛ with the following property. Let
fVj g be a family of pairwise orthogonal elements of S, and let pj 2 �Vj .X / � CVj .
Then there exists x 2 X such that

� distVj .x; pj /� ˛ for all j ;

� for each j and each V 2S with Vj @ V , we have distV .x; �
Vj
V /� ˛; and

� if W t Vj for some j , then distW .x; �
Vj
W /� ˛.

(9) Uniqueness For each � � 0, there exists �u D �u.�/ such that if x; y 2 X and
distX .x; y/� �u, then there exists V 2S such that distV .x; y/� �.

We often refer to S, together with the nesting and orthogonality relations, and the
projections as a hierarchically hyperbolic structure for the space X .
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Where it will not cause confusion, given U 2S, we will often suppress the projection
map �U when writing distances in CU ; ie given x; y 2 X and p 2 CU , we write
distU .x; y/ for diamCU .�U .x/[�U .y// and distU .x; p/ for diamCU .�U .x/[fpg/.
Given A� X and U 2S we let �U .A/ denote

S
a2A �U .a/.

There is a natural notion of automorphism of an HHS, which we now briefly explain.
These were originally defined in [7], but we give a more restrictive definition which
is essentially equivalent, as explained in [30, Section 2.1]. An automorphism g of
an HHS .X ;S/ is an isometry of X together with a bijection S!S, also denoted
by U 7! gU , which preserves nesting and orthogonality, and isometries between
corresponding hyperbolic spaces, again still denoted by g W C.U /! C.gU /. We require
that g�U .x/D �gU .gx/ for all x 2 X and U 2S, and g�UV D �

gU
gV for all U; V 2S

where this is defined.

We let Aut.X ;S/ denote the group of HHS automorphisms of .X ;S/.

We say that a group G is a hierarchically hyperbolic group if it acts properly and
coboundedly by HHS automorphisms on some HHS .X ;S/.

2.2.1 Some useful facts We now recall results from [7] that will be useful later on.

Definition 2.5 Let � � 0 and let Eb 2
Q
U2S 2

CU be a tuple such that for each U 2S,
the U –coordinate bU has diameter � �. Then Eb is �–consistent if for all V;W 2S,

minfdistV .bV ; �WV /; distW .bW ; �VW /g � �

whenever V tW and

minfdistW .x; �VW /; diamV .bV [ �WV /g � �

whenever V ĹW .

The following is [7, Theorem 4.5].

Theorem 2.6 (distance formula) Let .X ;S/ be a hierarchically hyperbolic space.
Then there exists s0 such that for all s � s0, there exist C and K such that for all
x; y 2 X ,

dist.x; y/�K;C
X
U2S

ffdistU .x; y/ggs;

where ffAggB denotes the quantity which is A if A� B and 0 otherwise.
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We recall the notion of a hierarchical hull, which originates in [9] for the setting of
mapping class groups, and extends to the HHS setting in [7]. Given a constant � , for
any F � X we define

(2-3) H� .F /D fx 2 X j 8V 2S; �V .x/ 2N� .hull.�V .F ///g;

where hull.A/ denotes the union of all geodesics connecting points of A. In words, H�
is the set of points whose projections in every hyperbolic factor space land in a specified
neighborhood of the hull of the image of F . That this is sufficiently nonvacuous is
indicated by the following result which, as we will see, is an easy consequence of [7,
Theorem 4.4].

Theorem 2.7 Let .X ;S/ be a hierarchically hyperbolic space. Given k, there exist
� and � such that , if F � X is a set of cardinality k then for every V 2S the image
�V .H� .F // and the hull of �V .F / lie within Hausdorff distance � of each other.

Proof By definition, �V .H� .F // lies in a controlled neighborhood of hull.�V .F //,
so we are left to show that any point on a geodesic connecting points of �V .F / lies
close to �V .H� .F //. This follows from [7, Theorem 4.4], which says that any two
points of F are connected by a hierarchy path (with uniform constant). These are
defined in Definition 6.5 below, but here we only need that said path has projection to
any given C.W / which, as a set, uniformly coarsely coincides with a geodesic between
the projections of the endpoints. In particular, for any � large enough, the path will be
contained in H� .F /.

2.3 Refined projections and stable subsurface collections

We will be working in a broad but restricted class of HHSs:

Definition 2.8 Let .X ;S/ be an HHS and let G < Aut.S/. We say that .X ;S/ is
G–colorable if there exists a decomposition of S into finitely many families Si such
that each Si is pairwise transverse and G acts on fSigi by permutations. We say that
.X ;S/ is colorable if it is Aut.S/–colorable.

The notion of colorability is inspired by Bestvina, Bromberg and Fujiwara [12], who,
essentially, proved that MCG.†/ and T .†/ are finitely MCG.†/–colorable HHSs; we
now explain how their work proves this fact. First of all, the standard HHS structures
of MCG.†/ and T .†/ both have as index set S the set of all essential subsurfaces
(including the disconnected ones) that do not have pairs of pants as connected com-
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ponents. Except for allowing disconnected subsurfaces, this is the same as the set Y

considered in [12, Proposition 5.8]. The proposition yields a certain decomposition
Y D Y 1t � � � tY k , and from an inspection of the first paragraph of the proof one sees
that the Y i are the orbits of a certain finite-index subgroup G of MCG.†/. We can
define our Si to be the orbits in S (rather than Y ) of this same finite-index subgroup.
The fact that distinct elements of each Y i have intersecting boundaries — as given
by [12, Proposition 5.8] — implies that for any two distinct subsurfaces in the same
Si have connected components with intersecting boundaries. Since transversality in
MCG.†/ and T .†/ is defined via intersecting boundaries, we are done.

We sometimes refer to the Si as BBF families.

For A;B � C.Y /, we define dY .A;B/ WD diamC.Y /.A[B/.

Theorem 2.9 [14] Let .X ;S/ be a G–colorable HHS for G <Aut.S/ with standard
projections O�� and O���. There exist � > 0 and refined projections �� and ��� with the
same domains and ranges , respectively, such that :

(1) If X and Y lie in different Sj , and O�XY is defined , then �XY D O�
X
Y .

(2) If X; Y 2Sj are distinct , then the Hausdorff distance between �XY and O�XY is at
most � .

(3) If x 2 X and Y 2S, then the Hausdorff distance between �Y .x/ and O�Y .x/ is
at most � .

(4) If X; Y;Z 2 Sj for some j are pairwise distinct and dY .�XY ; �
Z
Y / > � , then

�XZ D �
Y
Z .

(5) Let x 2X , and Y;Z 2Sj for some j be pairwise distinct. If dY .�Y .x/; �ZY />�
then �Z.x/D �YZ .

Moreover , .X ;S/ equipped with �� and ��� is an HHS , G < Aut.S/, and it is G–
colorable.

Proof The idea is to apply the construction from [14] to the standard projections O��
and O��� and distances Od� for the sets Si [X for each i , where we think of X as a
collection of single point spaces x D fxg for each x 2 X .

Given a point x 2 X , we define projections ��x from domains in Si and X to x as
the constant map ��x � x. It is easily checked that Si [X , once equipped with the
original projections O�� and O��� and these additional projections, satisfies the projection
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axioms from [12]. The existence of projections and distances ��, ��� and d�, and that
all properties hold for them, is then an immediate consequence of [14, Theorem 4.1].

Finally, the fact that .X ;S/ equipped with these projections is an HHS follows from
the fact that the new projections are bounded distance away from the old ones, by items
(1), (2) and (3).

The fact that G still acts by automorphisms on the new structure follows from equivari-
ance of the construction of the new projections, meaning [14, Theorem 4.1(3)].

Definition 2.10 We say that a G–colorable HHS .X ;S/ with G < Aut.S/ has stable
projections if it is equipped with the projections provided by Theorem 2.9.

For the rest of this section, fix a G–colorable HHS .X ;S/ with G < Aut.S/ and with
stable projections. In particular, we assume that the standard projections for .X ;S/
satisfy the stability properties in Theorem 2.9.

As usual, dY .x1; x2/ denotes diamC.Y /.A1[A2/, where

� Ai D �Y .xi / if xi 2 X ,

� Ai D �
xi
Y if xi 2S and either xi Ĺ Y or xi t Y .

For any pair of points x; y 2 X and constant K > 0, we let RelK.x; y/�S denote the
collection of Y 2S such that dY .x; y/>K; we also set ReliK.x; y/DRelK.x; y/\Si .

Let � satisfy Theorem 2.9(5). Following eg [9; 12; 24], we now consider a relation
on RelK.x; y/— the properties claimed below follow from [7, Proposition 2.8] and
Definition 2.4(4). For any K > 10� , RelK.x; y/ is a partially ordered set with order �
such that X � Y whenever X t Y and one of the following equivalent conditions hold:

dY .x; �
X
Y /� �; dX .�

Y
X ; y/� �; dY .�

X
Y ; y/�K � �; dX .x; �

Y
X /�K � �:

When restricted to ReliK.x; y/, the relation � becomes a total order.

For a finite set F � X , we define

RelK.F /D
[

x;y2F

RelK.x; y/ and ReliK.F /D RelK.F /\Si :

The following stability lemma follows directly from the construction in [14].

Lemma 2.11 There exists K � 2� such that if x; y; y0 2 X satisfy dX .y; y0/ � 1,
then for each i ,

jReliK.x; y/4ReliK.x; y
0/j � 2:
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Proof By contradiction, suppose we have distinct elements

Y0; Y1; Y2 2 ReliK.x; y/ nReliK.x; y
0/

with Y0 � Y1 � Y2. If K > 10� , applying the definition of � and Theorem 2.9(5),
we see that �Y1.x/ D �

Y0
Y1

and �Y1.y/ D �
Y2
Y1

. Also, since �Y2.y/ and �Y2.y
0/ are

uniformly close to each other, if K is sufficiently large then we have dY2.Y1; y/ > �
and hence, one again, �Y1.y

0/ D �
Y2
Y1

. But then dY .x; y0/ D dY .x; y/ � K, which
contradicts Y1 … ReliK.x; y

0/.

Proposition 2.12 Let K� 2� and F � X be any finite set. There exists

M DM.K;S; jF j/ > 0

such that , for any F 0 � X with dHaus.F; F
0/� 1 and jF 0j � jF j,

jRelK.F /4RelK.F 0/j<M:

Proof Assume throughout the proof that K is sufficiently large.

Since there are finitely many colors, it suffices to prove the analogous statement for
ReliK.F /4ReliK.F

0/ for any given i .

Applying Lemma 2.11 twice, we see that if dX .x; x0/; dX .y; y0/� 1, then

jReliK.x; y/ nReliK.x
0; y0/j � 4:

For each of the jF j2 pairs x; y2F , we can pick any x0; y0 with dX .x; x0/; dX .y; y0/�1
such that there are at most 4jF j2 elements of ReliK.F / D

S
x;y2F ReliK.x; y/ that

are not in ReliK.F
0/; ie jReliK.F / n ReliK.F

0/j � 4jF j2. Symmetrically, we have
jReliK.F

0/ nReliK.F /j � 4jF
0j2, and since jF 0j � jF j by assumption, we finally get

jReliK.F /4ReliK.F
0/j< 8jF j2, as required.

2.4 Bounding involved domains

Let .X ;S/ be a G–colorable HHS with stable projections for G <Aut.S/, as provided
by Theorem 2.9.

Let F;F 0 � X with jF j; jF 0j � k and dHaus.F; F
0/ � 1. We will now prove some

stronger stability results about how the set of relevant domains (and their subdomains)
changes between F and F 0.

Geometry & Topology, Volume 27 (2023)



2408 Matthew G Durham, Yair N Minsky and Alessandro Sisto

For anyK� 2� as above, let U.F /DRelK.F / and U.F 0/DRelK.F 0/. Given V 2S,
let UV .F /D fW 2 U.F / jW Ĺ V g and define UV .F 0/ similarly.

In many of our stability results, we will need to know how domains in U.F / may differ
from those in U.F 0/. We call such domains involved, and they come in two flavors:

Definition 2.13 We say that V 2 U.F /[U.F 0/ is involved in the transition between
F and F 0 if

(1) �V .F /¤ �V .F
0/, or

(2) UV .F /¤ UV .F 0/.

Proposition 2.14 If K is sufficiently large then the following holds. Given k > 0
there exists N1 DN1.k;S/ > 0 such that , if jF j; jF 0j � k and dHaus.F; F

0/� 1, then
there are at most N1 domains V 2 U.F /[U.F 0/ involved in the transition between F
and F 0.

Proof By Proposition 2.12, it suffices to bound the number of involved domains in
U.F /\U.F 0/. However, we will still have to bound the number of involved domains
of type (1) in U.F / [ U.F 0/. We note that, since F and F 0 lie within Hausdorff
distance 1, up to increasing K we can assume that for each V 2 U.F / we have
diamCV .�V .F

0//�K=2, and similarly for V 2 U.F 0/.

Involved of type (1) Let x 2 F . We say that V 2 U.F /[ U.F 0/ is exposed to x if
�V .x/ is not contained in �V .F 0/. We define exposure for x 2 F 0 similarly (with
an abuse, here we are considering F and F 0 as disjoint, so we should actually define
exposure for x 2 F tF 0).

Observe that V 2 U.F /[U.F 0/ satisfies �V .F /¤ �V .F 0/ if and only if V is exposed
to some x in either F or F 0. Hence it suffices to bound the number of exposed domains.

Since jF j; jF 0j � k, we may fix a point x 2 F and consider domains V which are
exposed to x. The case of domains exposed to points in F 0 follows from a symmetric
argument.

Given x and V as above, there is a y 2 F such that dV .x; y/�K=4 (this is because
diamC.V /.�V .F //�K=2). Since F has at most k elements, we can further fix y with
said property.

Suppose for a contradiction that there exist domains V1; V2; V3 2 .U.F /[U.F 0//\Si
which are exposed to x, where Si is the i th BBF family, making the Vi necessarily
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pairwise transverse (this suffices since there are finitely many BBF families). Up to
reordering, we have V1 � V2 � V3 in RelK=2.x; y/.

Since F and F 0 lie at Hausdorff distance at most 1, there is a pair x2; y2 2 F 0 such
that d.x; x2/; d.y; y2/� 1, and necessarily we have �V2.x/¤ �V2.x2/ (as we cannot
have the containment “�”).

Since d.x; x2/; d.y; y2/� 1, by taking K� 2� sufficiently large, we can ensure that
dVi .x2; y2/ > 2� for i D 1; 2; 3. Since V1 � V2 � V3 2 RelK=2.x; y/, we also must
have the same order V1 � V2 � V3 in Rel2� .x2; y2/.

Thus by Theorem 2.9, it follows that �V2.x2/ D �
V1
V2

. However, Theorem 2.9 also
implies that �V2.x/ D �

V1
V2

. This contradicts the fact that �V2.x/ ¤ �V2.x2/, and
completes the proof that there is a bound on domains of type (1).

Involved of type (2) Notice that if W 2 U.F / \ U.F 0/ is of type (2), then there
necessarily exists an exposed domain V 2 U.F /[ U.F 0/ of type (1) with V @ W

(by a @–minimality argument: there must exist some V ĹW with �V .F /¤ �V .F 0/,
by virtue of V lying in the symmetric difference of U.F / and U.F 0/, and hence a
@–minimal such V exists by Definition 2.4(5)). We therefore bound the number of
such containers W for a fixed exposed domain V , of which there is a bounded number
by the first part of the proof.

Since jF j; jF 0j � k, it suffices to fix x; y 2 F and provide a bound on the number of
elements W 2 RelK.x; y/ which contain a fixed domain V .

In fact, we can conclude with an argument that does not rely on colorability, which we
record here as a separate lemma since it might be of independent interest.

Lemma 2.15 Let .X ;S/ be an HHS. Then there existsN such that for any sufficiently
large K the following holds. Let x; y 2 X and V 2 S. Then there are at most N
elements W 2S with V ĹW such that W 2 RelK.x; y/.

Proof We fix K large enough that RelK.x; y/ is partially ordered for all x; y 2 X ,
and larger than 10�0 for �0 as in Definition 2.4(4).

First of all, there is a bound on the maximal number of pairwise @–comparable domains
by Definition 2.4(5), and similarly there is a bound on the maximal number of pairwise
orthogonal domains by [29, Lemma 1.4]. Hence, in view of Ramsey’s theorem, there
exists N such that any collection of more than N domains contains three pairwise
transverse elements.
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Suppose, by way of contradiction, that there exist more than N domains W as in the
statement, for given x, y and V , and consider W1 � W2 � W3 in RelK.x; y/. By
Definition 2.4(4), we have that dW2.�W2.x/; �

W1
W2
/� �0 and dW2.�W2.y/; �

W3
W2
/� �0.

However, since V @ Wi for each i D 1; 2; 3, we have dW2.�
W1
W2
; �VW2/ < �0 and

dW2.�
W3
W2
; �VW2/ < �0, and so dW2.�

W1
W2
; �
W3
W2
/ < 2�0 by the triangle inequality. But

since dW2.x; y/ � dW2.�
W1
W2
; �
W3
W2
/� 2�0 > K � 2�0 > 2�0 by assumption, this is a

contradiction.

As explained above, the lemma concludes the proof of the proposition.

Remark 2.16 While not strictly necessary, we can simplify the setup that we deal with
in Section 3 thanks to the following: Given an HHS, we can Aut.X ;S/–equivariantly
change the structure in a way that all �V .x/ and �UV for U Ĺ V are points, rather than
bounded sets, and that moreover the new structure has stable projections if the old one
did. This can be achieved, for example, by replacing each C.V / by the nerve of the
covering given by subsets of sufficiently large diameter — which is quasi-isometric
to C.V /. In particular, the vertices of the new C.V / are labeled by bounded sets, and
we can redefine �V .x/ to be the vertex labeled by �V .x/, and similarly for �UV ; all
properties required are straightforward to check.

In Section 3, we will deal with finite subsets of a hyperbolic space. If in Section 4
we did not modify the HHS structure as outlined above, we would instead have to
deal with finite collections of bounded subsets. This is possible, but would make the
arguments more opaque.

3 Stable trees

In this section we will consider the geometry of trees in a ı–hyperbolic space, in
preparation for arguments that will take place in the individual hyperbolic spaces of our
hierarchical structure. Our main result will be Theorem 3.3, stated below after some
preliminary definitions. This is the only result from this section that will get used later
(namely, in Section 4).

Fix a geodesic ı–hyperbolic space Z. For a finite subset F � Z let hull.F / � Z be
the set of geodesics connecting points of F . Hyperbolicity tells us that hull.F / can be
approximated by a finite tree with accuracy depending only on ı and the cardinality #F .
To systematize this for the purposes of this section, we make the following definitions.
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Let us fix a function � which assigns, to any finite subset F of Z , a minimal network
spanning F . That is, �.F / is a 1–complex embedded in Z with the property that
�.F /[F is connected, and has minimal length among all such 1–complexes (where
the length of a 1–complex embedded in Z is the sum of the lengths of all edges).
Minimality implies �.F / is a tree. Let us similarly define �0 which assigns, to any
finite collection A1; : : : ; Ak of subsets of Z , a minimal network that spans them. That
is, �0.A1; : : : ; Ak/ is a 1–complex in Z of minimal length with the property that the
quotient of �0[A1[ � � � [Ak obtained by collapsing each Ai to a point is connected.
Minimality again implies that this collapsed graph is a tree. For convenience we assume
that �.fx1; : : : ; xkg/D �0.fx1g; : : : ; fxkg/.

The following lemma illustrates a basic property of hyperbolic spaces, and we omit its
proof.

Lemma 3.1 Let Z be a geodesic ı–hyperbolic space and � a minimal network function
as above. Then there exists �0 D �0.k; ı/ such that , for all � � �0, there exists �0 > �
such that if F � Z has cardinality k then

� there is a .1; �=2/–quasi-isometry �.F /! hull.F / which is �=2–far from the
identity;

� for any two points x; y 2N�.�.F //, any geodesic joining them is in N�0.�.F //.

In the rest of this section we consider the following situation. Let a (large but) finite
set Y � N�=2.hull.F // be given (see Section 4 for what Y will be in our setting).
It is possible to divide �.F / up into a union of subtrees some of which are close
approximations to “clusters” in Y and the rest interconnect the clusters, but such a
construction is not unique, depending on many choices (including the choice of �.F /
itself). Our goal in this section is to describe a version of this which is stable, in the
sense that small changes in the sets F and Y only alter the tree and its subtrees in a
controlled way — independently of the diameter of F or the cardinality of Y .

Remark 3.2 For convenience in our discussion we allow ourselves to assume that the
points of F are all leaves of �.F /. This can be arranged by a slight perturbation, or by
considering each point of F as the endpoint of an additional edge of length 0.

Given E� �, let CE .Y [F / be the graph whose edges connect points of Y [F that
are at most E apart. Vertex sets of connected components of CE are called clusters.
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We will choose E to be a suitably large multiple of �0. We note that the relation of E
to �0 and � is the one sensitive part of the argument, and elsewhere we can be content
with order-of-magnitude arguments.

For a simplicial tree T , let d.v/ be the valence of each vertex v and let k.T / be the
number of leaves, ie vertices of valence 1. We have

P
d.v/>2.d.v/�2/D k.T /�2, for

example by an Euler characteristic argument. We call this quantity the total branching
of T .

The following theorem is the main result of this section.

Theorem 3.3 Given k, N , ı, and � � �0.k; ı/ as in Lemma 3.1 there exists K > 0

such that the following holds. Let Z be a geodesic ı–hyperbolic space and let F;Y �Z
be finite subsets , where jF j � k and Y �N�=2.hull.F //.

There exists a metric tree TDT .F;Y/with a decomposition into two forests TDTc[Te
intersecting along a finite set of points and a map „D„F;Y W T .F;Y/! Z such that :

(a) The total branching of T is bounded by 2k� 4.

(b) „ is a .K;K/–quasi-isometric embedding with image K–Hausdorff close to
hull.F /.

(c) For each component � of Te we have that „j� is a .1;K/–quasi-isometric
embedding , and an isometry onto „.�/ endowed with its path metric.

(d) There is a bijection b between components of Tc and clusters in CE .Y[F / such
that „.�/ is K–Hausdorff close to b.�/ for each component � of Tc .

Furthermore , if F 0;Y 0 � Z and g 2 Isom.Z/ are such that jF 0j � k, Y 0 is finite ,
dHaus.gF; F

0/� 1, and jgY4Y 0j<N , then there exists a constant LDL.N; k; ı/ > 0
and subsets Ts � Te.F;Y/ and T 0s � Te.F

0;Y 0/ such that , identifying components of
Te.F;Y/ and Te.F 0;Y 0/ with their images in Z , we have:

(1) The components of Ts and T 0s are contained in the edges of Te.F;Y/ and
Te.F

0;Y 0/, respectively.

(2) The complements Te.F;Y/nTs and Te.F 0;Y 0/nT 0s have at most L components ,
each of diameter at most L.

(3) There is a bijective correspondence between the sets of the components of gTs
and T 0s .
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F

Y
Te
Tc

Figure 5: An example of the stable tree T D Tc [Te provided by Theorem 3.3.

(4) Under this correspondence , all but L components are exactly the same , and
the identical components of Ts and T 0s come from the identical components of
Te.F;Y/ and Te.F 0;Y 0/.

(5) The remaining L components of gTs are each at Hausdorff distance L to the
corresponding component in T 0s .

We call the trees T .F;Y/ stable trees.

Remark 3.4 (coarse equivariance and its proof) The “furthermore” part of Theorem
3.3 can be interpreted as simultaneously stating two facts. For g the identity, it says
that the trees are stable under perturbations of F and Y . Alternatively, for F 0 D gF
and Y 0 D gY , it says that the construction is coarsely equivariant. In either case, what
we have to prove is essentially the following. The construction relies on certain choices,
namely the choices of functions � and �0 as above, and we have to show that these
only cause the kinds of perturbations described in the statement of the theorem. From
this perspective, it is clear that the proof for a general g is the same as that for g D 1,
as gT .F;Y/ coincides with the tree T .gF; gY/ constructed based on different choices.
To save notation and make the proof more readable, we will prove only the case where
g is the identity.

3.1 Cluster separation graph

Let CE D CE .F [ Y/ be as above and let C1; C2; C3 � C0E be clusters (ie vertex
sets of connected components). We say that C2 separates C1 from C3 in Z if there
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exists a minimal Z–geodesic segment � with endpoints on C1 and C3 which meets the
2�0–neighborhood of C2.

Definition 3.5 Let GE D GE .F [ Y/ be a graph whose vertex set G0E is the set of
clusters of CE , and where ŒC1; C2� is an edge whenever there is no cluster separating
C1 from C2 in Z . We call GE the separation graph for CE .

Lemma 3.6 If E > 4�0, then GE is connected.

Proof Let C;C 0 2 G0E . If C ¤ C 0, then dZ.C; C 0/ > E (here dZ means the minimal
distance, not the diameter of the union). If they are not adjacent in G, then there is a
third cluster B separating them in Z . Let � be a minimal geodesic connecting C to C 0

with p 2 � within 2�0 of B . Then p is distance at least E�2�0 from each end of � since
B is at least E from both C and C 0. It follows that dZ.B; C /� dZ.C; C 0/�EC 4�0,
and similarly for dZ.B; C 0/.

If dZ.C; C 0/� 2E � 4�0 this gives dZ.B; C /�E which is a contradiction, so C and
C 0 must be connected by an edge in GE . For dZ.C; C 0/ > 2E � 4�0, we have that
dZ.B; C / and dZ.B; C 0/ are smaller than dZ.C; C 0/ by at least E � 4�0, so we can
proceed inductively.

For ease of notation, set C D CE and G D GE .

Definition 3.7 For any subset A of Z, let its shadow s.A/ be the subtree of �.F /
obtained by taking the convex hull (in �.F /) of all the points in �.F / within distance
� from points of A. For a singleton fxg we also write s.x/ WD s.fxg/.

Note that, since Y [F is in N�.�.F // by hypothesis, s.C / ¤ ∅ for any nonempty
subset C � Y [F .

The rest of this subsection is devoted to establishing several properties of shadows
which will connect the separation properties of clusters in G to separation properties of
their shadows in �.F /, thereby allowing us to work with G and independently of �.F /.

The next lemma controls how and when shadows of clusters can intersect.

Lemma 3.8 Let E > 7� and let C;C 0 2 G0 be distinct clusters. Then

(1) s.C /\ s.C 0/ can contain no leaf of s.C / or s.C 0/;
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s.C1/

s.C2/

Figure 6: When there is branching, shadows can overlap in their interiors,
but never at their leaves.

(2) the diameter of s.C /\ s.C 0/ is bounded by a constant depending on #F , E,
and �;

(3) if at least one of s.C / and s.C 0/ is an interval along an edge of �.F /, then
s.C /\ s.C 0/D∅.

Proof Note first that for any x 2 C , s.x/ is a subtree of diameter at most 3�. This is
because any two extreme points of s.x/ are within � of x, and �.F / is .1; �/–quasi-
isometrically embedded. Similarly, for any x; y 2 C ,

diam�.F /.s.fx; yg//� d.x; y/C 3�:

Claim 1 For every p 2 s.C /, there exists q 2 s.C / at distance (in �.F /) at most
.EC 3�/=2 such that d.q; C /� �.

Proof Either p 2 s.x/ for some s.x/ containing an extreme point of s.C /, or p
separates some s.x/ from s.y/, for x; y 2 C . In the first case p is within 3�=2 of a
point q for which d.q; x/�� and we are done. In the second case, a path in CE from x to
y then yields a sequence of points xi 2C such that d.xi ; xiC1/�E and p is contained
in one of the shadows s.fxi ; xiC1g/. Since diam�.F /.s.fxi ; xiC1g/�EC3�, we find
that p is within .EC 3�/=2 of an extreme point q of s.fxi ; xiC1g/, so d.q; xi /� � or
d.q; xiC1/� �. The claim follows.

For (1), suppose that a leaf p of s.C / is in s.C 0/. Note that the leaves of s.C / and
s.C 0/ are within � of C and C 0, respectively. By the previous paragraph, there is
a point q of s.C 0/ within .E C 3�/=2 of p which is � close to C 0 Thus we obtain
d.C; C 0/� 2�C .EC 3�/=2 < E, so C D C 0.

For (2), suppose that s.C /\ s.C 0/ contains an edge e of length greater than 2.EC3�/.
Claim 1 implies that there is a set R in s.C / consisting of points at distance � from
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�.F /
S3 s.C /

C

S1

S2

G
G3

C

G1

G2

Figure 7: The cluster C is guaranteed valence at least 3 (via S1, S2 and S3)
by Lemma 3.10. In this case it has valence 4.

C and whose .EC 3�/=2–neighborhood covers s.C /; there is also a similar set R0 in
s.C 0/. Since e is in both shadows, it must be that e \R and e \R0 both cut e into
intervals of length at most E C 3�. Thus it must be that there is a point r 2 R \ e
and r 0 2 R0 \ e that are distance .E C 3�/=2 apart. Then just as before we obtain
d.C; C 0/ < E so C D C 0. Now the number of edges in s.C /\ s.C 0/ is bounded by
the total branching of the tree, which depends on #F . This gives (2).

Finally, for (3), if one of s.C / and s.C 0/ is an interval contained in an edge of �.F /
then it is easy to see that, if they overlap, then one must contain a leaf of the other,
thereby violating (1).

Definition 3.9 From now on we set E D 8�0, so that the conclusions of both Lemmas
3.6 and 3.8 hold.

The following lemma connects the separation properties in G of a cluster to the separation
properties in �.F / of its shadow.

Lemma 3.10 LetC be a cluster and S1; : : : ; Sm be the components of �.F /nint.s.C //
which meet s.C / at a leaf of s.C /. Let Gi be the set of clusters B 2 G0 n fC g such that
s.B/\Si ¤∅. Then each Gi is in a distinct component of G nC , and moreover the
valence of C in G at least m.
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�.F /

G

Figure 8: Clusters with shadows on an edge in �.F / give rise to a path of
bivalent vertices in G.

Proof Note that if B is a cluster in Gi then s.B/ is actually disjoint from s.C /, since
the leaves of s.C / cannot meet s.B/ by Lemma 3.8. Moreover, there may be clusters
C 0 ¤ C that are not in any Gi ; their shadows meet components of �.F / n int.s.C //
that do not meet leaves of s.C /.

Let A 2Gi and B …Gi [fC g. A minimal geodesic � in Z connecting A to B must
be �0–close to the path in �.F / connecting s.A/ to s.B/, and this path passes through
a leaf p of s.C / (namely s.C /\Si ). Thus there is a point of C within �C �0 < 2�0

of � , so C separates A from B in Z . In particular A and B cannot be adjacent in G.

Thus Gi cannot be connected to any vertex in G0 n .Gi [fC g/, which implies distinct
Gi are in distinct components of G nC .

To see that the valence is at least m, we must check that each Gi is nonempty. But
each Si must contain a leaf of �.F /, which is a point of F , so there must be a cluster
whose shadow is in Si .

Lemma 3.11 If e is an edge of �.F /, the clusters C whose shadows s.C / are sub-
intervals of e form a path in G whose interior vertices are bivalent. The ordering of this
path matches the ordering of the shadows in e.

Proof Let fC1; : : : ; Clg be the set of clusters whose shadows are subintervals of e.
By Lemma 3.8, s.Ci /\ s.Cj /D∅ for all i and j . We may therefore assume that their
indices correspond to the order they appear along e in �.F /.

The complement �.F /n int.s.Ci // has two components for each i , labeled A�i and ACi ,
such that A�i contains s.Ci�1/ when i > 0 and ACi contains s.CiC1/ when i < l .
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By our ordering, no shadows lie between s.Ci / and s.CiC1/. Lemma 3.10 implies
that Ci separates (in G) the clusters whose shadows lie in A�i from those in ACi . In
particular, no B can separate Ci from CiC1 in G, so they are adjacent and we obtain a
path C1; : : : ; Cl in G. Moreover for 1 < i < l we can see that Ci is bivalent as follows:
if D 2 C n fCi�1; Ci ; CiC1g, then one of Ci�1 or CiC1 separates D from Ci in G,
again by Lemma 3.10, and so there can be no edge ŒCi ;D� and the valence of Ci is
exactly 2.

Lemma 3.12 If C has valence 2 in G but s.C / is not an interval inside an edge of
�.F /, then C contains a point of F .

Proof If s.C / is not an interval in an edge of �.F /, it has a branch point and hence
at least three leaves. At most two of these can be interior to �.F /, because otherwise
C would have valence at least 3 in G by Lemma 3.10.

Thus s.C / contains a leaf q of �.F /, which is a point of F . This means d.q; C /��<E
(notice that, since q is a leaf, it lies in the convex hull of a subset of �.F / only if it lies
in the subset). Hence, we have q 2 C .

Structure of bivalent clusters Let E0 denote the set of clusters C 2 G0 which have
valence 2 in G and do not contain a point of F . Lemma 3.12 implies that each C 2 E0

has shadow inside an edge of �.F /.

The next lemma gives that almost all clusters are bivalent.

Lemma 3.13 #.G0 n E0/� 2k� 2.

Proof For a cluster C 2 G0 n E0, either C contains a point of F , or s.C / contains a
branch point of �.F /. There are at most k clusters of the former type. The number of
clusters of the latter type is bounded by the total branching b.�.F //, but to show this
we must contend with the fact that shadows can overlap.

Let W � �.F / be a connected union of shadows s.C1/; : : : ; s.Cm/, each of which
contains a branch point. By Lemma 3.8, no leaf of s.Ci / can be in s.Cj / for i ¤ j .
Hence all leaves of s.Ci / must be leaves of W and disjoint from each other. Since
each s.Ci / has at least two leaves,

m�

�
k.W /

2

�
D

�
b.W /C 2

2

�
;
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where k.W / is the number of leaves and b.W / is the total branching of W . Since
b.W /� 1, this implies m� b.W /. Summing over all such W we find that the number
of clusters with branch points in their shadows is bounded by b.�.F //, or k� 2. The
desired inequality follows.

Let E be the subgraph of G induced on the vertices E0.

Lemma 3.14 Let E1; : : : ; Em be the components of E . For each Ei there is an edge ei
of �.F / such that Ei is a path C1; : : : ; Cri in G consisting of all elements of E whose
shadows lie in the interior of ei ; the edges ei are distinct.

Proof Since each cluster D 2 Ei is a bivalent vertex of G with shadow in an edge of
�.F / by Lemma 3.12, and Lemma 3.11 implies that all such clusters with shadows
on a given edge e 2 �.F / form a path in G, it suffices to prove that no two such edge
paths of bivalent clusters in G are directly connected by an edge.

Suppose C;D 2 Ei are connected by an edge in G but s.C / and s.D/ are not contained
in a single edge of �.F /. Since s.C / \ s.D/ D ∅, we may label the components
of �.F / n s.C / and �.F / n s.D/ by ˙ and ı˙, respectively, so that s.C / � ı� and
s.D/� �. Then the intersection �\ ı� contains a vertex v of �.F / of valence at
least 3.

By Lemma 3.10, G nC is divided into subgraphs G.˙/ spanned by clusters whose
shadows are in ˙, respectively, and are separated by C , and similarly G.ı˙/ are
separated by D, respectively. In particular note C 2 G.ı�/ and D 2 G.�/.

Since v has valence at least 3, there is a component of �.F / n fvg that meets neither
s.C / or s.D/. A leaf of this component is in the shadow of a cluster B which is
therefore in G.�/\G.ı�/.

Since G is connected, B is connected to C within G.�/ and to D within G.ı�/. Since
C and D are bivalent and by hypothesis adjacent in G, the edge between them is the
only edge connecting C to G.�/, and the only edge connecting D to G.ı�/. Hence
any path from B to C must pass through this edge and must therefore meet D first.
Reversing the roles of C and D we obtain a contradiction.

3.2 Constructing the stable tree

In this section, we construct our stable tree T .F;Y/ from the structure of G without
referring to �.F / directly. In Proposition 3.17 below, we prove it is quasi-isometric
to �.F /.
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�.F /� Z

G

T .F;Y/

C1

C2

C3

C1

C2
C3V

C1

C2

C3

�0.V 0/

Figure 9: The construction of a stable tree. Note that each complementary
component of G n E0 determines multiple components of Te , eg the lavender
forest �0.V 0/ determined by the component V whose boundary is the bivalent
clusters C1, C2, and C3. Each cluster C then determines a single component
�.C/ of Tc by connecting the points r.C /D C \ .Te [F /.

The two forests Now let us proceed to define the forests Tc.F;Y/ and Te.F;Y/. We
let G D GE .F [Y/ be as above.

Let V denote the set of closures of connected components of G nE0. Thus each element
of V is a subgraph connected to the rest of G along vertices in E0. For each V 2 V
let V 0 denote its vertex set, which is a collection of clusters. Some elements of V are
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single edges ŒC;D�, where C;D 2 E0, and others are subgraphs containing vertices in
G0 n E0, and we note they are not necessarily trees, though Lemma 3.13 bounds their
size.

For each V 2 V , let �0.V 0/ be the minimal network defined in the beginning of this
section, where V 0 is interpreted as a collection of subsets (clusters) in Z .

Now define
Te D Te.F;Y/D

G
V 2V

�0.V 0/:

Remark 3.15 The forest Te is a disjoint union of copies of forests each contained
in Z . It is important to note, however, that these trees might in fact intersect in Z . With
a slight abuse, we will conflate the abstract copies of the �0.V 0/ that constitute Te and
their “concrete” counterparts in Z. Similar comments apply to Tc below. Since the
map „ W T ! Z is just going to be the identity on all the components of Te and Tc ,
we will allow ourselves to regard T as a subset of Z for purposes that do not require
understanding the metric of T , eg when measuring the Hausdorff distance between
(the image in Z of) a subset of T and a subset of Z .

Note that Te is a forest whose leaves are points of clusters.

Collapsing clusters to points, Te becomes a connected network N , by the definition
of V . This connected network is a union of trees joined at points that correspond
to vertices of E0. Since any vertex in E0 disconnects G, each of these join points
disconnects N , so we see that N is a tree.

Now for each cluster C 2 G0, we consider the set of points r.C /D C \ .Te [F /. We
let �.C/ denote the tree �.r.C //, and define

Tc D Tc.F;Y/D
G
C2G0

�.C/:

The tree We now define T .F;Y/D Tc.F;Y/[Te.F;Y/, or T D Tc [Te for short.
Note that T is a tree because as above collapsing the subtrees of Tc to points yields a
tree; see Figure 9.

Lemma 3.16 Let T D T .F;Y/D Tc [Te.

(1) The total branching b D b.T / is bounded by 2k � 4, and the leaves of T are
contained in F [Y .
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(2) �.C/�NO.�/.C /, so Tc �NO.�/.Y [F /.

(3) For all p 2 Te, we have dZ.p;Y [F /� 1
b
dT .p; @Te/�O.�/.

Proof To bound b.T /, we bound the number of leaves T can have. Leaves of T are
leaves of the various components of Te and Tc , and thus can arise in two ways:

(a) If a cluster C contains points of F , the points in C \F can be leaves of �.C/
which are also leaves of T . There are at most k such points.

(b) If a cluster C contains no points of F and a single point q of @Te, which is
connected to only one subtree of Te, then q is a leaf of T ; see Figure 10.

All other vertices of @Te [ @Tc have valence at least 2. Notice that we already showed
that all leaves of T are contained in F [Y .

Clusters of type (b) must be in G0nE0 since every cluster in E0 belongs to two subgraphs
in V , and hence either has two points in @Te or two subtrees of Te meeting at a single
point. The number of clusters in G0 n E0 that don’t contain points of F was bounded
in Lemma 3.13 by k� 2.

This gives us a bound of 2k� 2 on the total number of leaves in T , which bounds the
total branching by 2k� 4. This proves part (1).

Now for part (2), consider the minimal network �.C/ for the cluster C . By Lemma 3.1
and the definition of shadows, �.C/ is within O.�/ of the shadow of C in �.F /, and
it follows from Claim 1 (in the proof of Lemma 3.8) that every point of s.C / is within
O.E/ of C . This proves part (2).

For part (3), let p 2 �0.V 0/� Te , where V 2 V , and let the distance dZ.p;Y [F / be
realized on a point in a cluster C1. Write dZ.p; C1/D t .

Suppose first that C1 2 V 0. The quotient of �0.V 0/ obtained by collapsing the clusters
of V 0 to points is a tree by minimality of the network, so there is some sequence of com-
ponents of �0.V 0/ which connects p to C1, possibly through clusters C2; : : : ; Cl 2 V 0.

Consider the unique path ˛ in �0.V 0/ from p to C2. The path ˛ branches at no more
than b D b.T / points, so let ˛0 � ˛ be the longest unbranched subsegment of ˛. We
thus have j˛0j � 1

b
dT .p; @�

0.V 0//. If j˛0j> t , we may remove ˛0 from �0.V 0/, attach a
minimal length path in Z from p to C1 (of length t ), and obtain a network with smaller
total length than �0.V 0/ that still connects the clusters in V . This would violate the
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�.F /� Z

T .F;Y/

Figure 10: The stable tree T DT .F;Y/may have leaves which are not points
in F , and some points of F may not be leaves of T . In this example, the
ambient space Z is the whole graph on the left, and T is realized geometrically
on the right. The orange cluster points atop spikes at the branch points
of the underlying tree create leaves in T . New leaves in T always arise
from clusters near branch points of �.F /. The pink bivalent cluster points
determine bivalent vertices in T , with small neighborhoods thereof folding
into the spikes upon inclusion of T ! Z . By contrast, �.F / contains none of
the spikes. Finally, the pairs of nearby points of F in �.F / on the left side of
Z form clusters. The components of Te connect one point from each pair to a
pink cluster, while a component of Tc connects the pair. As a result, some
points of F are not leaves of T .

minimality of �0.V 0/, so we must have t � j˛0j, and therefore t � 1
b
dT .p; @�

0.V 0//,
as required.

Now consider the possibility that C1 is a cluster outside of V . Let s.V / denote the
shadow of the union of clusters s

�S
A2V 0 A

�
, which is the same as the hull in �.F / of

the shadows fs.A/ j A 2 V 0g. We claim that s.V /\ s.C /D∅ for every C 2 G0 nV 0.

Recall from Lemmas 3.8 and 3.10 that the shadow s.C / for each C 2 E0 is disjoint
from all other cluster shadows, and that the separation of shadows by s.C / in �.F / is
the same as the separation of the corresponding vertices in G by C 2 G0. In particular,
if V 2 V and C 2 E0 then all vertices D 2 V 0 (other than C itself if C happens to lie
in V 0) have shadows s.D/ on one side of s.C /. Any V1 ¤ V2 in V are separated in
G by some C 2 E0, including the case when C is the common vertex of V1 and V2.
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Z

�.F /

T .F;Y/

Figure 11: A basic, complicating example. The ambient space Z is a bi-
infinite line with spikes of height 1 at distance 100 from each other, which
we think of as 10–hyperbolic. The cluster points Y (in orange) sit on the ends
of the spikes. The two points in F are very far apart. The spanning tree �.F /
for F is a long segment. The stable tree T .F;Y/ is also abstractly a long
concatenation of segments of length 102. The natural map T .F;Y/!Z folds
the ends of these segments onto the spikes and is therefore not an embedding.
It is a quasi-isometric embedding, but the multiplicative constant is at least
102=100.

Thus the shadows s.V1/ and s.V2/ are either disjoint or overlap exactly on s.C / for
this common vertex C . The claim follows.

Now applying Lemma 3.1 again we find that �0.V 0/ is in an O.�/ neighborhood of
s.V /. Thus if C1 is a cluster in G0 n V 0 then any Z–geodesic from p to C1 has an
O.�/ fellow-traveling path in �.F / which must exit s.V / before it arrives at s.C1/.
It follows that d.p; C1/ � d.p; C2/�O.�/, for some C2 2 V 0. This reduces to the
previous case.

We are now ready to prove that our stable tree T .F;Y/ coarsely behaves like �.F /.
Unlike Gromov’s trees, stable trees quasi-isometrically embed with multiplicative
constants possibly larger than 1; see Figure 11. This is an inconvenient fact for what
follows and later in Section 4.

Proposition 3.17 The natural map T .F;Y/!Z is a .K1; K1/–quasi-isometric embed-
ding , and T .F;Y/ lies within Hausdorff distanceK1 of �.F /, whereK1DK1.k; ı; �/.

Proof It follows from Lemma 3.1 that each component of Tc and Te is .1;O.�//–
quasi-isometric to its shadow in �.F /, and moreover is within Hausdorff distance O.�/
of its shadow in �.F /.
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Consider two distinct clusters C1; C2 2 G0, and their shadows. By Lemma 3.8(2), the
shadow intersection s.C1/\ s.C2/ has uniformly bounded diameter. If C1 and C2
belong to different pieces V1; V2 2 V , then there is a cluster D 2 E0 separating V1 from
V2 in G. If D is not equal to either Ci then its shadow separates s.C1/ from s.C2/

by Lemma 3.10, and hence the shadows are disjoint. If C1 DD, say, then again the
shadows are disjoint, by Lemma 3.8(3).

In particular, the clusters in E0 have pairwise disjoint shadows, and moreover by
Lemma 3.10 their separation properties in the graph G are preserved in �.F /— that
is, if C2 separates C1 from C3 in G then s.C2/ separates s.C1/ from s.C3/ in �.F /.
This means that any V 2 V is associated to a complementary component c.V / of the
shadows of E0 in �.F /, in the following way. For every C 2 E0, any cluster in V 0nfC g
has shadow contained in one of the two components of �.F / n s.C /, by Lemma 3.10.
We let c.V / be the intersection of all these components. Notice that if V ¤ V 0 then
c.V /¤ c.V 0/, since in that case some C 2 E0 will separate V from V 0 in G.

We now study overlaps of the shadows of the various relevant subtrees of T , showing
that said overlaps are bounded.

Let V 2V be the closure of a component of GnE0. If �1 and �2 are distinct components
of �0.V 0/, we claim that their shadows in �.F / have an intersection of bounded
diameter.

Indeed, if the shadows of �1 and �2 had overlap of size� �, then �1 would contain
points within O.�/ of �2, at distance� � from each other, and with no branch point
of either �1 or �2 within O.�/ of the geodesic in �1 connecting the two points (this
uses the bound on the branching of T ). A simple surgery would then reduce the total
length of �0.V 0/, contradicting its minimality.

Now consider a component �1 of �0.V 0/ and one of the clusters C in V . We claim
their shadows also have bounded-diameter intersection. Lemma 3.16 tells us that any
point of �1 within d of �.C/ is within O.d/ of the boundary of �1. This proves the
claim.

Note that the number of clusters in V , and therefore the number of components of
�0.V 0/, is bounded via Lemma 3.13. Thus the subtree T V comprising �0.V 0/ together
with all the components of Tc associated to clusters in V has a decomposition into
a bounded number of subtrees, and a map to �.F / (using the shadows) which is a
.1;O.�//–quasi-isometric embedding on each subtree and such that the images of
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distinct subtrees have bounded overlap. Under these circumstances it follows that
the map T V ! �.F / is a .k; k/–quasi-isometric embedding, where k depends on
these bounds. Moreover, the image of this map must, up to bounded error, lie in the
component of �.F / minus the shadows of those clusters in E0 that separate V from
the rest of G (by the preservation of separation properties noted above).

It follows that these maps piece together to give a .K1; K1/–quasi-isometry, where
K1 DK1.k; ı; �/.

3.3 Proof of Theorem 3.3

Property (a), the branching bound on T .F;Y/, was proved in Lemma 3.16.

Property (b), the quasi-isometry, is given by Proposition 3.17.

Property (c) follows from the construction of Te and Lemma 3.1.

Regarding property (d), we have a natural bijection between components of Tc and
clusters by construction, and each component �.C/ is contained in a controlled neigh-
borhood of the corresponding cluster C by Lemma 3.16, where by controlled we mean
that the corresponding constant depends on ı, �, and E. We are left to argue that C
lies in a controlled neighborhood of �.C/. This is equivalent to showing that s.C /
lies in a controlled neighborhood of �.C/. If this was not true then, in view of the
bound on the total branching of �.F /, we would have that s.C / contains an interval
I in an edge of �.F / of length� E not contained in a controlled neighborhood of
�.C/. From Proposition 3.17 we know that T lies within controlled Hausdorff distance
of �.F /, so I is contained in a union of controlled neighborhoods of the �.C 0/ for
C 0 ¤ C , and controlled neighborhoods of the components of Te. Neighborhoods of
the latter type cannot contain points in I far from its endpoints by Lemma 3.16(3), and
the same holds true for neighborhoods of the former type in view of Lemma 3.8(1), a
contradiction. Therefore, s.C / and C are contained in a controlled neighborhood of
�.C/, as required.

We now prove the “furthermore” part of the statement. Recall that, for the reasons
explained in Remark 3.4, we only treat the case that g is the identity. Let .F 0;Y 0/
be a second configuration differing from .F;Y/ as in the statement. We name the
constructions arising from .F 0;Y 0/ by C0, G0, E 0, V 0, etc. Also, we write T D T .F;Y/
and T 0 D T .F 0;Y 0/, and similarly for Tc , Te, T 0c , and T 0e. Set N D #.Y4Y 0/.

Claim 1 The cardinality jG04 .G0/0j is bounded in terms of k, ı, and N .
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Proof A cluster C is in the symmetric difference G04 .G0/0 only if it is within E of
a point of F [F 0[ .Y4Y 0/, of which there are at most 2kC 2CN . Now each point
of a cluster in C is within � of some point in �.F /, and there is a number R depending
only on the total branching of �.F / such that among any R points in �.F / within a
ball of radius EC � (in �.F /), there must be two which are less than � apart (and the
same is true for C0 and �.F 0/). Thus, if there are more than .2kC 2CN/R elements
in G04 .G0/0, then two are closer than E apart, which is a contradiction.

Claim 2 The symmetric difference of the edge sets of G and G0 has cardinality bounded
in terms of k, ı, and N .

Proof By Lemma 3.13, the maximal valence of any vertex of G is bounded, and so the
number of edges incident to elements of G04 .G0/0 is bounded. Therefore it suffices
to consider the case where C;D 2 G0\ .G0/0 with ŒC;D� an edge in G but not in G0.
This implies there is a B 0 2 .G0/0 nG0 separating C from D when no such cluster in G0

did so before.

Since B 0 separates C from D, there is a point q 2 B 0\ ..Y 04Y/[ .F 04F // which
lies at distance at most � from a Z–geodesic  joining C and D. The shadow s.q/ on
�.F / must therefore be in a 10�–neighborhood of the interval in �.F / between s.C /
and s.D/.

Each such q can only affect a bounded number of such edges .C;D/ in this way,
because the shadows of edges in each component of E are arranged sequentially and
disjointly along edges of �.F / by Lemma 3.14, and G0 n E0 is bounded (again by
Lemma 3.13). Since there are only boundedly many such q, this bounds the number of
edges in the symmetric difference.

Let �0.T / denote the set of components of a forest T . By Claim 2, there is a bound on
the number of collections of clusters in V4V 0, and this gives us a bound, say K, on
j�0.Te/4�0.T

0
e/j.

Now the components of Tc and T 0c correspond to the elements of G0 and .G0/0 re-
spectively, whose symmetric difference is bounded by Claim 1. Moreover for each
element C of G0 \ .G0/0, the points r.C / used to determine the component of Tc
(resp. T 0c) associated to C are determined by the components of Te (resp. T 0e) adjacent
to C . Thus, together with the bound on j�0.Te/4 �0.T 0e/j, we obtain a bound on
j�0.Tc/4�0.T

0
c/j.
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We now increase K in a controlled way a few times, with the result of each step
depending only on k, ı, and �.

By item (b), we can increase K to ensure that dHaus.T; T
0/ < K. By Lemma 3.18

(below) we can further assume that dHaus.B[Tc [F;B0[T 0c [F 0/�K, where B and
B0 are the sets of branch points of T and T 0. We have to be careful in using Lemma 3.18
because the sets of leaves of T and T 0 need not be within bounded Hausdorff distance
of each other, since they might contain more than F and F 0; see Figure 10. However,
we can apply the lemma after slightly modifying T and T 0 by adding “spikes” (meaning
edges attached at T , or T 0, at one side and having a leaf on the other side) of length,
say, 1 to ensure that the sets of leaves of the new trees that we obtain do lie within
controlled Hausdorff distance. Such spikes only need to be added close to Tc and T 0c by
Lemma 3.16(1), yielding the required Hausdorff distance estimate (indeed, B[Tc [F
is Hausdorff close to the union of Tc and the set of branch points and leaves of the
modification of T , with Tc being Hausdorff close to T 0c in view of property (d), and
the latter set being close to the corresponding one for T 0 by Lemma 3.18).

We can then increase K once more to ensure that Tc [ .Y 0�Y/ and T 0c [ .Y �Y 0/ also
lie at Hausdorff distance bounded by K. This can be done since Tc ;Y and T 0c ;Y 0 are at
bounded Hausdorff distance by Lemma 3.16(2). Finally, we also require that K >K1

as in Proposition 3.17.

Now let � D �.K; ı/ be the fellow-traveling constant for .1;K/–quasigeodesics with
endpoints at distance at most K in a ı–hyperbolic space. This constant will be relevant
later because geodesics in our trees T and T 0 are .1;K/–quasigeodesics in Z by item (b)
and our choice of K.

For ease of notation, we will refer to components in UD�0.Te/\�0.T 0e/ as “unchanged”
components, and the remaining components as “changed”. We note that there are at
most K changed components in each of Te and T 0e.

For each component E 2 �0.Te/ n�0.T 0e/, let EY0 D hullE .E \NK.Y 0//, where the
hull of this intersection is taken in the tree E, while the neighborhood is taken in Z.
Now define RD

S
E2�0.Te/n�0.T

0
e/
EY 0 , and define R0 similarly. We now collect the

“unstable parts” of the trees along with the unchanged parts. Set

U D Tc [R[U [B[F and U 0 D T 0c [R0[U [B0[F 0:

Note that we included F and F 0 in these sets to ensure that they lie within bounded Haus-
dorff distance of each other, but this is inconsequential for the purposes of considering
the complementary forests, which is what we want to do next.
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Let K 0 DK 0.K;N; k/� 10K be such that

(i) dHaus.T; T
0/ < K and dHaus.U; U

0/ < 10K,

(ii) j #�0.T nU/j<K 0 and j #�0.T 0 nU 0/j<K 0,

(iii) .T nU/� Te and .T 0 nU 0/� T 0e,

(iv) j #�0.Te \U/ nU j<K 0 and j #�0.T 0e \U
0// nU 0j<K 0, and

(v) for any C 2 .�0.Te \U/[�0.T 0e \U
0// nU , we have diamC <K 0.

Regarding property (i), the “10” in “10K” is there to keep into account the fact that we
took hulls.

Property (ii) can be shown observing that the intersection of U with each changed
component can only have a bounded number of components because of the bound N
on jY4Y 0j and the bound on jBj given by Lemma 3.16. This same observation shows
item (iv). Property (iii) holds by construction.

Property (v) is nontrivial for R and R0, in which case it holds since C is a union of
boundedly many components, each of bounded diameter. In particular, any set EY 0 is
a union of hulls in E of intersections with balls centered at an element of Y 0, which
have bounded diameter, and the union consists of at most N elements.

Now let L1 D L1.K 0; ı/; L2 D L2.K 0; ı/ > 0 be the constants given by Lemma 3.19
(below) with T;U and T 0; U 0 satisfying the conditions of that lemma via (i) and (ii).

Let L� �0.T nU/ be the set of all components of T nU of diameter greater than L1.

Define L0��0.T 0nU 0/ to be the set of components of T 0nU 0 that lie within Hausdorff
distance L2 of an element of L. Since there are at most K 0 components of T nU , this
bounds the cardinality of �0.T nU/nL, and any component in this set has diameter at
most L1. Similarly, the numbers and diameters of the components of .T 0 nU 0/ not in
L0 are also bounded, this time the bound on the diameter being L3 by the “moreover”
part of Lemma 3.19.

Lemma 3.19 provides a bijection � W L ! L0 which sends any component in L to
the unique component in L0 which is within Hausdorff distance L2. That is, for any
C 2 �0.L/, we have dHaus.C; �.C // < L2.

Now let Ts;0 be the union of all elements of L [ U , and define T 0s;0 similarly. We
observe that we have by construction and (iii) above that Ts;0 � Te and T 0s;0 � T

0
e.

Moreover, the number of components of Te nTs;0 and their diameters are bounded by
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2K 0.L1C 10L2CK
0C 1/, and similarly for T 0e n T

0
s;0. In fact, the number of such

components is bounded by 2K 0, since each is a union of

� changed components of Te \U , and there are at most K 0 of those by (iv), and

� components of T nU of diameter at most L1, and again there are at most K 0 of
those.

The bound on the diameter also follows from this description.

To obtain the sets Ts and T 0s required by the theorem, it suffices now to remove the
branch points from the unchanged components contained in Ts;0 and T 0s;0 to ensure (1)
(which at this point is not satisfied only because of the unchanged components, since we
included the branch points in U and U 0), while all other properties have been checked
above.

Two supporting lemmas The following two lemmas were used in the proof of
Theorem 3.3 above. To simplify notation, we will not distinguish between a tree
quasi-isometrically embedded in a metric space, and the image of said tree.

Lemma 3.18 For eachK and ı there existsL0 such that the following holds. Let T and
T 0 be trees .K;K/–quasi-isometrically embedded in the ı–hyperbolic metric space Z ,
with dHaus.F0; F

0
0/�K, whereF0 andF 00 are the sets of leaves of T and T 0 respectively.

Then the sets of branch points B and B0 of T and T 0 satisfy dHaus.B[F0;B0[F 00/�L0.

Proof The set B[F0 can be coarsely characterized as the set of points x of T such
that there are f1, f2 and f3 in F0 (not necessarily distinct) with the property that the
Gromov product at x between any fi and fj is small, and similarly for T 0. We leave
the details to the reader.

Lemma 3.19 For each K there exist L1, L2 and L3 such that the following holds.
Let T and T 0 be trees .K;K/–quasi-isometrically embedded in the metric space Z ,
with dHaus.T; T

0/ � K. Also , let U � T and U 0 � T 0 be subforests such that
dHaus.U; U

0/�K and all branch points of T (resp. T 0) are contained in U (resp. U 0).

Then for each component C of T nU of diameter at least L1, there exists a unique
component C 0 of T 0 n U 0 within Hausdorff distance L2 of C . Moreover , every
component C 0 of T 0 nU 0 of diameter at least L3 arises in this way.

Proof We will conflate components of T nU with their closures, so we can talk about
their leaves, and similarly for T 0 nU 0.
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The main observation is that there exists K2 DK2.K/ such that the following holds.
Let C be a component of T nU and let x and y be (not necessarily distinct) points in
C that, in the metric of C , are at least K2 from all the leaves of C . Then there exists a
unique component C 0 of T 0 nU 0 which is within K of both x and y.

To prove this, suppose by contradiction that K2 � K and that there are distinct
components of T 0 n U 0 that contain points x0 and y0 that are within K of x and y,
respectively. Then there exists some p0 2 U 0 on the geodesic Œx0; y0� in T 0 from x0

to y0. Let p 2U be such that d.p; p0/ <K. Then p lies within � D �.K/> 0 from the
geodesic from x to y, since considering points in T that are within K of those along
Œx0; y0� yields a quasigeodesic in T . Since x and y are at least K2 from the leaves
of C , they cannot lie close to any point of U , in particular p. We can then deduce that
either p lies along the geodesic Œx; y� in T from x to y, or there is a branch point of
T along Œx; y�. In either case, x and y do not lie in the same component of T nU , a
contradiction. (Recall that U contains all branch points of T by hypothesis.)

Consider now a component C of T nU of diameter sufficiently large that it contains a
point which is at least K2 from all the leaves of C . By the observation above, all such
points are close to a unique component C 0 of T 0, and since the set of all such points
has bounded Hausdorff distance from C , we have that C is contained in a uniform
neighborhood of C 0. Moreover, if C has sufficiently large diameter, then we can apply
the same reasoning to C 0 and deduce that C 0 contains points that are within K of a
unique component C 00 of T nU , and that C 0 is contained in a uniform neighborhood
of C 00. But the above observation implies that C 00 D C , and it follows that C and C 0

lie within uniformly bounded Hausdorff distance.

Finally, the “moreover” part follows from a similar back-and-forth using the previous
part of the statement. Namely C 0 has sufficiently large diameter and is within bounded
Hausdorff distance of a component C of T nU , then C also has large diameter and is
thus in turn within bounded Hausdorff distance of some component of T 0 nU 0, which
needs to be C 0.

4 Stable cubulations

Fix a G–colorable HHS .X ;S/ for G < Aut.S/, and let F � X be a finite set.

In this section, we use the stable trees constructed in Section 3 for the projections of
F to the relevant domains to define a wallspace on the hull H� .F /. This wallspace
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can then be plugged into Sageev’s machine to produce a cube complex which, by an
argument from [8], coarsely models the hull of F in X . Stability of the tree construction
then induces stability in the cubulations under perturbations of F . We refer the reader
to Section 2.1 for some background and references on cube complexes, wallspaces,
and hyperplane deletions, as well as to Section 2.2 for background on HHSs.

The main result of this section, and the only statement from this section that we will
use in the rest of the paper, is the following precise version of Theorem A.

Theorem 4.1 Let .X ;S/ be a G–colorable HHS for G < Aut.S/. Then for each k
there existK and N with the following properties. To each subset F �X of cardinality
at most k one can assign a triple .QF ; ˆF ;  F / satisfying

(1) QF is a CAT (0) cube complex of dimension at most the maximal number of
pairwise orthogonal domains of .X ;S/;

(2) ˆF WQF !H� .F / is a K–median .K;K/–quasi-isometry;

(3)  F W F ! .QF /.0/ satisfies dX .ˆF ı F .f /; f /�K for each f 2 F .

Moreover , suppose that F 0 � X is another subset of cardinality at most k, g 2G, and
dHaus.gF; F

0/� 1. Choose any map �F W F tF 0! F such that �F .f /D f if f 2 F
and dX .g.�F .f //; f /� 1 if f 2 F 0. Also , choose a map �F 0 W F tF 0! F 0 such that
�F 0.f /D f if f 2 F 0 and dX .g.f /; �F 0.f //� 1 if f 2 F . Then the following holds:

There is a third CAT (0) cube complex Q0 and K–median .K;K/–quasi-isometric
embedding ˆ0 such that the diagram

(4-1)

F QF

F tF 0 Q0 X

F 0 QF 0

 F

gıˆF�
�F

�F 0

ˆ0

 F 0

ˆF 0
�0

commutes up to error at mostK, where � and �0 are hyperplane deletion maps that delete
at most N hyperplanes. The left side commutes exactly, ie �ı F ı �F D �0 ı F 0 ı �F 0 .

The notion of K–median refers to the coarse median structure on X in the sense of [15],
and we only define it later where it is needed, since we obtain it directly from [8].
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The “1” in “dHaus.gF; F
0/�1” could be changed with any other constant up to changing

K in the “moreover” part. We decided to keep the statement slightly simpler and not
introduce further quantifiers since one can always replace an HHS with a graph, or
rescale the metric.

The remainder of this section is devoted to the proof of this theorem.

Standing assumptions For this section, we fix an HHS .X ;S/ as in Theorem 4.1,
which, in light of Theorem 2.9, we can assume to have stable projections. Furthermore,
we can assume that it has the property that all �V .x/ and all �UV for U Ĺ V are single
points; see Remark 2.16.

4.1 Subdivision sets for stable trees

In this section, we establish a formalism for subdividing trees. In Section 4.2 these
subdivision points will give the walls in our cubulation. This mostly follows the strategy
of [8], except that we need to take greater care in making choices for the subdivision.

Definition 4.2 Let M 0 >M > 0. An .M;M 0/–subdivision of a tree T is a collection
of points p.T /� T satisfying:

(1) The points p.T / are contained in the interiors of edges of T . We set

p.e/D p.T /\ int.e/
for each edge e of T .

(2) The M 0=2–neighborhood of p.e/[ @e covers e.

(3) All points of p.e/[ @e are at least M apart in e.

In other words, the spacing between points of p.e/[ @e along e is at least M and
strictly less than M 0.

We additionally say that p.T / is .M;M 0/–evenly spaced if M 0 � 8M and the spacing
between successive points of p.e/ is exactly M for each edge e.

We will specify M and M 0 later, though for now it suffices to assume they are large
relative to the various HHS constants.

We fix, once and for all, a subdivision operator }M;M 0 which to any tree T associates
a fixed .M;M 0/–evenly spaced subdivision }M;M 0.T / of (the edges of) T . Often the
constants M and M 0 are fixed, and we simply write }.T /. Similarly we can define
}M;M 0 on a forest as the union of subdivisions }M;M 0 on its components.
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We now explain how to associate a collection of subdivisions on stable trees to a set of
points F � X .

Fix some large K (depending on M , to be specified later) and write U.F /D RelK.F /
for any finite set F � X .

For any V 2S, define

YV D f�WV jW 2 U.F /;W Ĺ V g and F V D �V .F /:

Note that whenever K is larger than the bounded geodesic image constant �0, we have
that YV is contained in the �0–neighborhood of the hull of F V in C.V /. This ensures
that YV satisfies the requirements of Theorem 3.3 for any � � 2�0. We fix such � as in
Theorem 3.3, and we will always apply that theorem with this �.

Note that if V … U.F / then YV [F V has uniformly bounded diameter.

Let V 2 U.F /. From V , we get corresponding sets of projections F V and YV

in C.V /, which we may consider independently of the set F . Doing so, we obtain from
Theorem 3.3 a fixed stable tree

T VF WD T .F
V ;YV /

and we denote its decomposition by T Vc [T
V
e .

Let M 0 > 8M > 0 be subdivision constants (to be specified later). Applying }M;M 0 to
each forest T Ve in T VF , we call the resulting subdivision }V .F /.

Remark 4.3 We emphasize that the distance between the subdivision points is mea-
sured in the various trees themselves, not in the corresponding C.V / where the trees
quasi-isometrically embed. This is something that will require care throughout this
section, but the fact that the trees are quasi-isometrically embedded in the corresponding
C.V / will ensure that no real issues arise.

The disjoint union over all V 2 U.F / gives us

} � }.F /D
G

V 2U.F /

}V .F /:

More generally, we will consider .M;M 0/ subdivisions of the forests T Ve which are
not necessarily obtained from our subdivision operator }M;M 0 , and in particular may
not be evenly spaced (they will arise by taking subsets). In this case if we name the
full configuration p, we will again denote the restriction to T Ve as pV .F /.
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F
Y
Te
Tc

T VF � C.V /

F
pV .F /

T Ve .F;Y/
T Vc .F;Y/

Figure 12: An evenly spaced subdivision of the stable tree T VF . Note that
subdivision points are far away from leaves, components of Tc , and branch
points.

Remark 4.4 Our choice of constants M 0 > 8M gives that any point p 2 }V .F / is at
least distance 4M from any point �WV 2 Y

V for W @ V or leaf f 2 F V .

4.2 The cube complex

Following the scheme of [8], given a union p of .M 0;M/ subdivisions as above, we
now describe a cube complex QF;p and a map

ˆF;p WQF;p! X

which turns out to be a quasi-isometric embedding whose image is within bounded
Hausdorff distance of H� .F /, when the constants M , M 0 and K are chosen suitably
(see below).

To build the cube complex QF;p, we build a wallspace structure on the hull H� .F / in
which each p 2 p corresponds to a wall, ie a partition of H� .F / into two sets.

For each V 2S, we let ˇVF W C.V /! T VF be, roughly, a closest-point projection map
to T VF , and more precisely any fixed map such that dV .x;„.ˇVF .x/// is minimal for
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all x 2 C.V /, where we recall that „ is the quasi-isometric embedding of T VF in C.V /.
With slight abuse of notation, for x 2 X we write ˇVF .x/ for ˇVF .�V .x//.

Remark 4.5 To save notation, we will often omit the map „, thereby identifying
points and subsets of some T VF with their image in C.V / (as one often does with quasi-
geodesics). For example, for p 2 ˇV .F / and x 2 C.V / we will write dV .ˇVF .p/; x/
rather than dV .„.ˇVF .p//; x/.

Given p 2pV .F /, let T Vp;C denote one of the components of T VF nfpg, and let T Vp;� be
the union of the other component and fpg (we arbitrarily choose the first component).
Let

W V
p;˙ D .ˇ

V
F /
�1.T Vp;˙/\H� .F /:

Note that W V
p;C and W V

p;� form a partition of H� .F /. Let LVp D fW V
p;C; W

V
p;�g be the

wall associated to p. We call T Vp;˙ the half-trees associated to the wall LVp .

Let QDQF;p be the CAT(0) cube complex dual to the wallspace fLVp g.

To defineˆF DˆF;p WY!X , note that it suffices to defineˆF on the 0–skeleton of Y .
Let x 2 Y.0/; we view x as a coherent orientation of the walls LVp ; see Section 2.1.1.
That is, for each p 2 p, we have x.p/ equal to one of W V

p;C or W V
p;�.

Coarsely, we would like to define ˆ.x/ by

ˆ.x/�
\
p2p

x.p/:

This is done in [8] by considering the projections of x.p/ to the factor trees T YF . That
is, we set

Sp;Y .x/D hull.ˇYF .x.p///;

where Y 2S and hull denotes convex hull in the tree T YF . Note that p 2 pV .F / for
some V , which is typically different from Y .

We now define the intersection

(4-2) bY D bY .x/D
\
p2p

Sp;Y .x/:

These bY will serve as (coarse) coordinates for the map ˆ, as given by the theorem
that we state below, after we explain how it can be extracted from [8].

Remarks on the construction in [8] We now summarize various results proven in [8]
regarding cubulations of hulls in HHSs. We note that the construction in [8] of the
CAT(0) cube complexes approximating hulls is the same as the one we just described,
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with one difference. The difference is that, rather than using T VF to approximate
the hull of �V .F / in C.V /, in [8] the authors use any choice of tree contained in
C.V / that uniformly approximates the hull and is quasi-isometrically embedded with
multiplicative constant 1. This choice is not due to the fact that the multiplicative
constant being 1 is needed for the arguments, but more simply due to the fact that one
such tree exists, and so it is more convenient to use it. For our purposes, we have to
be more careful in the choice of the tree, and as a result we cannot guarantee that the
multiplicative constant is 1 with our construction (recall Figure 11). However, this does
not affect the arguments of [8], except that the subdivision constant M has to be chosen
large compared to the quasi-isometric embedding constants, so that the subdivision
points are sufficiently far apart in the various hyperbolic spaces C.V /.

Another remark about the statement below is that the constant dependencies that we
give below are not explicitly stated in [8], but can be recovered as follows. In [8,
Section 2], the constant M is chosen large compared to various HHS constants and
kDjF j, so that the construction has all the stated properties for any sufficiently largeM .
Regarding M 0, in [8, Section 2.1] it is taken to be 10Mk, as can be seen from point (4)
of the construction of the walls. The reason for the constant 10Mk is that one can
choose subdivision points that make the diameter of the complementary components at
most that quantity, but with any other bound one would obtain the same properties (eg
that the CAT(0) cube complex quasi-isometrically embeds in the HHS), with different
constants. Regarding K, in [8, Section 2.1] it is chosen to be 100Mk, and similar
remarks to those regarding M 0 apply.

Properties of the cubulation With this in mind, we now state various results about
the construction we explained above, and point out where the arguments for those can
be found in [8].

Theorem 4.6 Given an HHS .X ;S/ and an integer k, there existM0� 1 and functions
M 00 W R ! R and K0 W R ! R with the following property. Whenever M � M0,
M 0�M 00.M/, andK �K0.M/, there exists � such that for every F �X with jF j � k,
the following hold :

(1) [8, Lemma 2.6, paragraph “Definition of pA” in proof of Theorem 2.1] For
every x 2Q.0/F;p, bY .x/ is nonempty and diamC.Y /.bY .x//� �.

(2) [8, Lemma 2.7, paragraph “Definition of pA” in proof of Theorem 2.1] For every
x 2Q.0/F;p, there exists a point in H� .F /, denoted by ˆ.x/, whose projections to
all C.Y / are within distance � of bY .x/.

Geometry & Topology, Volume 27 (2023)



2438 Matthew G Durham, Yair N Minsky and Alessandro Sisto

(3) [8, Theorem 2.1] ˆ is a �–median .�; �/–quasi-isometry to H� .F /.

(4) [8, Theorem 2.1] The dimension of QF;p is bounded by the maximal number
of pairwise orthogonal domains in S.

We will also need some more technical properties of the trees T VF and projections �UV
related to the HHS consistency axioms.

Proposition 4.7 Given an HHS .X ;S/ and an integer k, there exists � such that given
K sufficiently large (depending only on .X ;S/):

(1) [8, Lemma 2.3] If U; V 2 U.F / and U t V , then �UV lies �–close in C.V / to a
point of �V .F /.

(2) [8, Lemma 2.5] If U; V 2U.F /, V ĹU , and q 2p.U /, then �UV .q/ lies �–close
in C.V / to a point of �V .F /.

Remark 4.8 In the rest of this section, whenever we use constants M , M 0 and K we
will assume that they are chosen as in Theorem 4.6, and so that all supporting lemmas
in [8] apply. Moreover, we will impose further requirements as needed. We note that
the role of K is often hidden in the statements, since it affects the set U.F /, which in
the various statements often only plays a role implicitly.

4.3 Deleting subdivision points

Now we consider how the construction of QF;p is affected by the deletion of points
in p. If p0 � p, there is a hyperplane-deletion map h W QF;p! QF;p0 . That is, for
x 2 QF;p, the image h.x/ 2 QF;p0 is just the orientation on the remaining walls:
h.x/.p/D x.p/ for p 2p0. We note that the subdivisions in the following proposition
need not be evenly spaced.

Proposition 4.9 For every k and n, and M , M 0 and K as in Theorem 4.6, there exist
K 0 and M 00 such that if F has cardinality at most k, p is an .M;M 0/–subdivision ,
and p0 � p satisfies jp np0j � n, then p0 is an .M;M 00/–subdivision satisfying the
conclusions of Theorem 4.6, and the diagram

(4-3)
QF;p

QF;p0 X

ˆF;p
h

ˆF;p0

commutes up to error K 0.
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Proof As above, the map ˆF;p.x/ is determined by the coordinates

bU D
\
p2p

Sp;U .x/;

whereas ˆF;p0.h.x// is determined by

b0;U D
\
p2p0

Sp;U .x/:

Note that bU � b0;U , and in the other direction the diameter of b0;U is bounded by
Theorem 4.6(1) because the new set p0 is an .M;M 00/–subdivision for someM 00�M 0

(and in particular M 00 �M 00.M/, so that the conclusion of Theorem 4.6 holds for p0)
depending only on M , M 0 and the number n of deletions.

The bound on d.ˆF;p; ˆF;p0ıh/ then follows from Theorem 2.6 (the distance formula)
since the coordinates of ˆF;p0.h.x// and ˆF;p.x/ coarsely coincide with bU and
b0;U .

4.4 Intersection conditions

Recall that Lemma 2.3 explains how a bijection between halfspaces that preserves
intersection properties induces an isomorphism of the corresponding cube complexes.
In view of this, we are interested in knowing when two of our halfspaces intersect.

We fix the setup of Section 4.2. The next lemma is the main technical support for
Proposition 4.13.

Lemma 4.10 There exists M1, depending on .X ;S/ and jF j, such that the following
holds. Let p be an .M;M 0/–subdivision withM �M1. Consider two halfspaces ,W V

p;�

and W Z
q;� , with associated half-trees T Vp;� and TZq;� , where p 2 pV .F /, q 2 pZ.F / and

�; � 2 f˙g.

Then W V
p;� and W Z

q;� intersect if and only if one of the following holds , up to switching
the roles of the half-spaces:

(1) V ?Z.

(2) V DZ, and T Vp;� \T
Z
q;� ¤∅.

(3) V tZ, and TZq;� contains ˇZF .�
V
Z/.

(4) V ĹZ, and TZq;� contains ˇZF .�
V
Z/.

(5) V ĹZ, and T Vp;� contains ˇVF .�
Z
V .q//.
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T VF � C.V /

T Vp;�
T Vp;� \T

V
q;�

T Vq;�

pq

Figure 13: The first possibility in case (2), when V D Z, where p and q
choose different ends of T VF , and diam.T Vp;� \T

V
q;� /� dTV

F
.p; q/�M .

We note that the last three cases of the lemma boil down to the consistency inequalities
for HHSs (and could even be seen as interpretations thereof).

Proof In an effort to enhance readability of the proof, we will make coarse, comparative
arguments which keep track of dependencies of constants and their relative size, instead
of precise quantities.

It follows from Theorem 2.7 and the fact that the various T VF are quasi-isometrically
embedded (Theorem 3.3) that the image ˇVF .H� .F // is D–dense in the tree T VF (with
respect to its path metric), where D only depends on the HHS structure and jF j. We
may assume that M has been chosen greater than 10D. Moreover, throughout the
proof we will further specify conditions on M , requiring it to be suitably larger than
other constants appearing in the argument. It is important to notice that, in each case,
these constants depend only on .X ;S/ and jF j. We also remark that we need to be
careful when comparing distances in the trees T VF and the ambient spaces C.V /.

Case (1) Suppose V ?Z. The fact that in this case all pairs of halfspaces intersect is
[8, Lemma 2.13].

Case (2) Suppose V D Z. If the halfspaces intersect, then any point x in their
intersection has ˇVF .x/ 2 T

V
p;� \ T

V
q;� . Conversely, suppose T Vp;� \ T

V
q;� ¤ ∅. If the

intersection contains both p and q, then

diamTVF .T
V
p;� \T

V
q;� /� dTVF

.p; q/�M:
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T VF � C.V /

T Vp;� \T
V
q;� D T

V
p;� � T

V
q;�

pq

Figure 14: The other possibility in case (2), when V D Z, where p and q
now choose the same ends of T VF .

If not, then the intersection contains all of T Vp;� or all of T Vq;� , and again

diamTVF .T
V
p;� \T

V
q;� /�M:

Since ˇVF .H� .F // is D–dense in T VF and M >D, we can then find x 2H� .F / with
ˇVF .x/ 2 T

V
p;� \T

Z
q;� , so that x 2W V

p \W
Z
q , as required.

Case (3) Suppose V tZ. If the halfspaces W V
p;� and W Z

q;� intersect, then any point x
in their intersection has ˇVF .x/ 2 T

V
p;� and ˇZF .x/ 2 T

Z
q;� . We claim that

ˇZF .�
V
Z/ … T

Z
q;� D) dZ.�

V
Z ; �Z.x// > �0;

where �0 is the constant in the transverse consistency inequality (2-1), and similarly
with the roles of Z and V interchanged. Indeed, recall that Proposition 4.7(1) says
that (assuming M is sufficiently large) �VZ lies within � of a leaf of TZF , where � only
depends on the HHS structure and jF j. Since q is at least M away from the leaves,
and we can assume that M is sufficiently large compared to � and the quasi-isometric
embedding constants of TZF , we see that if ˇZF .�

V
Z/ is not in TZq;� then it must be at

least M=2 from it (as measured in the metric of TZF ). Thus ˇZF .�
V
Z/ is at least M=2

from ˇZF .x/ in TZF , and since we can assume that M is sufficiently large compared
to �, the quasi-isometric embedding constants of TZF , and the distance between �Z.x/
and (the image in C.Z/ of) TZF , we have the desired inequality. The same holds with
V and Z interchanged.

However, the transverse consistency inequality (2-1) says that we cannot have both
dZ.�

V
Z ; �Z.x// > �0 and dV .�ZV ; �V .x// > �0. Hence one of ˇZF .�

V
Z/ 2 T

Z
q;� or

ˇVF .�
Z
V / 2 T

V
p;� must hold, which is what we wanted to prove.
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T VF � C.V /

T Vp;� p

�ZV

f1

f2

f3 D f4

T Zq;�

q

�VZ

f1 D f2

f3

f4
T ZF � C.Z/

Figure 15: Case (3), when V tZ.

Conversely, suppose that TZq;� contains ˇZF .�
V
Z/. Because ˇVF .H� .F // is D–dense

in T VF , p is far from any leaf of TZF , and ˇZF .�
V
Z/ is close to a leaf (Proposition 4.7(1)),

we may choose x 2 H� .F / with ˇVF .x/ 2 T
V
p;� and dTVF .ˇ

V
F .x/; ˇ

V
F .�

Z
V // > M=2

(again, with distance in T VF ).

Then x 2W V
p;� by construction, and we claim also x 2W Z

q;� . Indeed, for M sufficiently
large, dV .x; �ZV />�0, so transverse consistency (2-1) implies that dZ.�Z.x/; �VZ/<�0.
Again for M sufficiently large, this gives dTZF .ˇ

Z
F .x/; ˇ

Z
F .�

V
Z//�M=2, and since the

M=2–neighborhood in TZF of ˇZF .�
V
Z/ is contained in TZq;� , we conclude ˇZF .x/2 T

Z
q;� .

Cases (4) and (5) Suppose V ĹZ. Cases (4) and (5) are similar to the previous case,
instead using the nested consistency inequality (2-2).

Let x 2 W V
p;� \W

Z
q;� . Because the partition points in TZF are M away from �VZ by

assumption, we have again that either

� TZq;� contains the M=2–neighborhood of ˇZF .�
V
Z/, or

� dTZF
.TZq;� ; ˇ

Z
F .�

V
Z// >M=2.

In the first case, we are done (obtaining case (4)). In the second case, for M suffi-
ciently large, dV .�V .x/; �ZV .�Z.x/// < �0 by the nested consistency inequality (2-2).
Moreover, for M sufficiently large, there is a geodesic (in C.Z/) from q to �Z.x/
which is farther than �0 from �VZ , where �0 is the constant in the bounded geodesic
image property (axiom (7) in Definition 2.4). In fact, the distance from �Z.x/ to TZq;�
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T ZF � C.Z/

T Zq;� q

�VZ

f1

f2

f3

f4
T Vp;�

p
f1 D f2 f3 D f4

T VF � C.V /

Figure 16: Case (4), when V ĹZ and T Zq;� contains ˇZF .�
V
Z/.

is bounded in terms of .X ;S/ and jF j, as is the quasiconvexity constant (of the image
in C.Z/) of TZq;� , and thus so is the distance of any point along this geodesic from TZq;� .

On the other hand, we can estimate dZ.TZq;� ; �
V
Z/ in terms ofM and the quasi-isometric

embedding constants of TZF (which is independent of M ). Hence by choosing M
large enough, we may use the bounded geodesic image property to conclude that
dV .�

Z
V .�Z.x//; �

Z
V .q// < �0. Since �V .x/ is within some distance of T Vp;� which is

bounded in terms of .X ;S/ and jF j, we see that dV .ˇVF .�
Z
V .q//; T

V
p;� / <M=2 for M

sufficiently large. However, this implies that ˇVF .�
Z
V .q// is in fact contained in T Vp;� ,

since �ZV .q/ is within � of a leaf of T VF by Proposition 4.7(2). Hence we are done in
either case.

Now in the converse direction, suppose first that (4) holds; namely that TZq;� contains
ˇZF .�

V
Z/. Again since partition points are M away from � points, we know that TZq;�

contains theM=2–neighborhood (in T VF ) of ˇZF .�
V
Z/. UsingD–density of ˇVF .H� .F //

in T VF and the fact that p is far from any leaf of T VF , we can choose x 2H� .F / with
ˇVF .x/ 2 T

V
p;� and ˇVF .x/ at least M=2 from a leaf of T Vp;� .

We claim that this implies that ˇZF .x/ has to lie within M=2 of ˇZF .�
V
Z/, as usual for

M large. If not, another application of the bounded geodesic image axiom would imply
that �ZV .�Z.x// is within �0 of a leaf, and the nested consistency inequality again
gives that �ZV .�Z.x// and �V .x/ are within �0 of each other, showing that �V .x/ lies
within 2�0 of a leaf. Since the constants involved in the preceding argument depend
only on .X ;S/ and jF j, it follows that the distance (in T VF ) between ˇVF .x/ and a leaf
is bounded independently of M , contradicting the choice of x.
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T ZF � C.Z/

T Zq;�
q

�VZ

f1

f2

f3

f4T Vp;�

p
f1 D f2 f3 D f4

�ZV .q/
T VF � C.V /

Figure 17: A cartoon for case (5), when V ĹZ and T Vp;� contains ˇVF .�
Z
V .q//.

As a result, we find that ˇZF .x/ is in TZq;� and hence x 2W V
p;� \W

Z
q;� , as required.

Suppose now as in (5) that T Vp;� contains ˇVF .�
Z
V .q//, and assume also that (4) does not

hold, so that TZq;� avoids the M=2–neighborhood of ˇVF .�
Z
V / in T VF . In this case, we

can take x 2H� .F / with ˇZF .x/ 2 T
Z
q;� and dTZF .ˇ

Z
F .x/; q/�D. Then since ˇZF .�

Z
V /

is at least M=2 from the geodesic in TZF between ˇZF .x/ and q, and since TZF is quasi-
isometrically embedded in C.Z/, we may apply the bounded geodesic image axiom and
the nested consistency inequality to obtain that dV .ˇVF .x/; ˇ

V
F .�

Z
V .q/// <M=2, where

as before we chooseM as large as necessary. Since �ZV .q/ lies within � of a leaf of T VF
by Proposition 4.7(2) with � depending only on S and jF j, the M=2–neighborhood of
ˇVF .�

Z
V .q// in T VF must be contained in T Vp;� , and hence ˇVF .x/ is contained in T Vp;� ,

showing x 2W V
p;� \W

Z
q;� as required.

4.5 Refining the subdivisions

In this section, we analyze the difference between .M;M 0/–evenly spaced subdivisions
p D }.F / and p0 D }.F 0/ (using the fixed subdivision mechanism } of Section 4.1).
The main result here, Proposition 4.12, is that there are bounded refinements p0 and p00
which are related by an “order-preserving” bijection j Wp0!p00 (in the sense specified
below) which only moves points a bounded distance. This is where we will use the
“evenly spaced” condition, which guarantees, roughly, that along corresponding edges
we have the same number of partition points up to an additive, rather than multiplicative
constant.
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In the next subsection, we prove that these refined subdivisions determine isomorphic
cube complexes when put through our cubulation machine.

Coarse separation We will need the following short discussion about coarse sepa-
ration in quasi-isometrically embedded trees. Suppose j W T ! X is a .�; �/–quasi-
isometric embedding of a tree T into a ı–hyperbolic space X , and p 2 T is a point
inside an edge, distance more than � > 0 from the endpoints. Let Tp;˙.�/ be the
two components of the complement of a �–neighborhood of p. For any � there is a
�.�; ı; �/ such that the images j.Tp;˙.�// are at least � apart from each other. We
want to compare this separation for two nearby trees:

Lemma 4.11 Let T1 and T2 be trees with .�; �/–quasi-isometric embeddings ui WTi!
X into a ı–hyperbolic space X whose images are within Hausdorff distance �. There
exists �0 D �0.ı; �; �/ > 10� such that for all �� �0 the following holds.

Suppose that pi 2 Ti are points with d.u1.p1/; u2.p2// � � and each pi is in a
segment ei contained in an edge of Ti such that ui jei is a .1; �/–quasi-isometric
embedding. Moreover , assume that pi lies at distance more than 2� from the endpoints
of ei . Then the labels of the components can be chosen so that

� u1..T1/p1;C.2�// is in an �–neighborhood of u2..T2/p2;C/,

� u1..T1/p1;C.2�// is �–far from u2..T2/p2;�/, and

� the same holds if we swapC and �.

In what follows we apply this to trees T VF , and so that half-trees that here would
be .T VF /p;� correspond to what we wrote as T Vp;� in Section 4.1. We will use both
notations, and hope not to confuse the reader.

Common refinements from close components We are now ready to prove the refine-
ment statement. We note that this is the main point at which we use the full power of
Theorem 3.3, which provides not only that each of the pairs of trees T VF and T VF 0 have
Hausdorff close images in C.V /, but that they are identical on almost every component,
and that their different components can be cut into large pieces where they are coarsely
identical.

Proposition 4.12 There exists M2 DM2.jF j;S/ > 0 such that if M > M2, there
exists R > 0 and :
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(1) Subsets p0 � p and p00 � p0 with
� p0.V / or p00.V /¤∅ only if V 2 U.F /\U.F 0/, and
� jp np0j; jp

0 np00j<R.

(2) A bijection j W p0! p00 with dV .p; j.p// < 2M=3 for any p 2 p0.V /.

(3) For every p 2 p0, a bijection jp between the half-trees defined by p and those
defined by j.p/ with the following property. For any V and p; q 2 p0.V /, if the
half-tree .T VF /p;� contains q, then jp..T VF /p;� / contains j.q/.

(4) Moreover , let f and f 0 be such that either f 2 F , f 0 2 F 0, and dX .f; f 0/� 1,
or f D f 0 D �UV for some U; V 2 U.F /\ U.F 0/ with U Ĺ V or U t V . If
ˇVF .f / 2 .T

V
F /p;� , then ˇVF 0.f

0/ 2 jp..T
V
F /p;� /.

Proof We work in each V 2S separately, constructing p0.V /, p00.V / and the bijection,
and combine the results.

First, if V 2 U.F /4U.F 0/, then diamV .F / and diamV .F 0/ are uniformly bounded
and we set p0.V / D p00.V / D ∅. By Proposition 2.12, there are boundedly many
such V ; hence this involves deleting at most boundedly many subdivision points.

Next, if V 2 U.F / \ U.F 0/ is not involved in the transition from F to F 0 (see
Definition 2.13), then all of the relevant data is constant. Hence, by our formalism for
choosing subdivisions (see the definition of } in Section 4.1), we have p.V /D p0.V /,
and we set p0.V /D p00.V /D p.V /.

Hence we may restrict our attention to a fixed V 2 U.F /\ U.F 0/ for which either
�V .F / ¤ �V .F

0/ or UV .F / ¤ UV .F 0/ (or both). We note that Proposition 2.14
bounds the number of such V solely in terms of n and S.

Fix such a V . Recall that within C.V / we have F V D �V .F / and

YV D f�YV j Y 2 U
V .F /g;

and similarly for F 0V and Y 0V . By Proposition 2.14, #.YV 4 Y 0V / < N1, where
N1 DN1.S; k/ > 0.

Recall that Theorem 3.3 provides a constant LD L.k;S/ > 0 and the following:

(1) Stable trees with decompositions

T VF D Tc.F
V ;YV /[Te.F V ;YV /; T VF 0 D Tc.F

0V ;Y 0V /[Te.F 0
V
;Y 0V /I

we write these as T Vc .F /; T
V
e .F / and T Vc .F

0/; T Ve .F
0/ for short.
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(2) Two stable subsets, Ts � T Ve .F / and T 0s � T
V
e .F

0/, such that

(a) Ts and T 0s are contained in the interiors of the edges of T Ve .F / and T Ve .F
0/,

respectively;

(b) the complements T Ve .F / nTs and T Ve .F
0/ nT 0s each have at most L com-

ponents, each of which has diameter at most L;

(c) there is a bijective correspondence between the components of Ts and T 0s ;

(d) this bijective correspondence is the identity on all but at most L components,
with identical components of Ts; T 0s coming from identical components of
T Ve .F / and T Ve .F

0/;

(e) the remaining components of Ts are within Hausdorff distance L of their
corresponding components in T 0s .

We assume M >max.4L; 4�0; 4�/, where �0 is given by Lemma 4.11 when � D L
and the quasi-isometry constants of the trees match those for T VF and T VF 0 , and � is the
constant in Proposition 4.7.

Consider the sets of subdivision points p1.V /D p.V /\Ts and p01.V /D p0.V /\T 0s
which are contained in the stable subsets. Since p.V /� T Ve .F / and p0.V /� T Ve .F

0/,
items (2a) and (2b), and our choice of subdivision width M >4L, imply p.V /np1.V /

and p0.V / np01.V / both have cardinality bounded above by L.

By item (2d), the induced subdivisions p1.V / and p01.V / agree on all but at most L
components of Ts and T 0s , respectively, as these components are segments in the com-
ponents of T Ve .F / and T Ve .F

0/ which are equal and hence have the same subdivisions
by our setup (see Section 4.1).

On the remaining L components we can make bounded adjustments. Let e and e0 be
edge components of Ts and T 0s related by the correspondence. The closest subdivision
point in e to an endpoint is at most M 0=2 away and at least M , by definition of the
subdivisions, and similarly for e0. Since dHaus.e; e

0/ < L by item (2e), and e and e0

are quasi-isometrically embedded with multiplicative constant 1 and additive constant
depending on .X ;S/ and n (Theorem 3.3(c)), the difference between the number of
subdivision points in e and e0 is bounded in terms of M , M 0, L, .X ;S/, and n.

We write p1.e/Dp1.V /\e, and similarly for p01.e
0/. Note that these sets are naturally

ordered once we choose endpoints of e and e0, and we order e and e0 by declaring those
endpoints to be minimal. We choose endpoints of e and e0 within distance bounded in
terms of L and the constants of the quasi-isometric embeddings of e and e0 in C.V /.
We will assume that M is larger than this bound.
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After deleting from p1.e/[p01.e
0/ a number of points bounded by this constant (all of

which occur near the endpoints of e and e0) and using the fact that p1.e/ and p01.e
0/ are

M–evenly spaced, we can obtain refinements p0.e/ and p00.e
0/, which admit an order-

preserving (with respect to the aforementioned order) bijection je W p0.e/! p00.e
0/

which satisfies
dV .p; je.p// < LC

M

2
C � <

2M

3
;

where e0! C.V / is a .1; �/–quasi-isometric embedding by Theorem 3.3(c), and we
have chosen M sufficiently large to guarantee the inequality. Indeed, for each p we
find a nearest point in e0, which is at most L away, and then move along e0 at most
M=2C � to a point of p00.e

0/. For later purposes, we can assume that points in p0.e/

do not lie within 2M of the endpoints of e, and similarly for p00.e
0/.

If we set p0.V / D
S
e2�0.Ts/

p0.e/ and define p00.V / similarly, then the je maps
combine to give a bijection jV W p0.V /! p00.V / which moves points by distance at
most 2M=3, as required for item (2) of the proposition.

To define the map jp between half-trees we use Lemma 4.11. Namely, we pair the
half-tree .T VF /p;� with the half-tree .T VF 0/jV .p/;� that contains .T VF /p;� .2M/ in its
L–neighborhood.

For item (3) of the proposition, let p; q 2 p0.V /. There are two cases.

Suppose first that p and q lie in the same edge-component e of Ts . Recall that we
chose the bijection je to be order-preserving, with respect to the order along e and e0

determined by choosing endpoints e� 2 e and .e0/� 2 e0 which are a small distance
(less than M ) apart to be minimal in the orders. Let .T VF /p;� denote the half-tree of p
containing e� and let .T VF 0/jV .p/;� denote the half-tree of jV .p/ containing .e0/�. Since
we have 2M spacing now between p and the endpoints of e, e� is in .T VF /p;� .2M/,
and Lemma 4.11 says that there is exactly one half-tree at jV .p/ which comes within
M of .T VF /p;� .2M/. Since e� is within M of .e0/�, it follows that .T VF 0/jV .p/;� is
in fact the paired half-tree provided by Lemma 4.11, which is our jp..T VF /p;� /. We
conclude that q <p in the order along e if and only if q 2 .T VF /p;� and jV .q/ < jV .p/
along e0 if and only if jV .q/ 2 jp..T VF /p;� /. Since je is order-preserving, (3) follows
in this case.

Suppose now that p and q do not lie in the same edge-component of Ts . Suppose q
is contained in the half-tree .T VF /p;� , and let .T VF 0/q;� D jp..T

V
F /p;� /. In this case

we have that q lies in .T VF /p;� .2M/, rather than just in .T VF /p;� . By Lemma 4.11
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there is only one half-tree of T VF 0 at jV .p/ that comes within M of .T VF /p;� .2M/,
and said half-tree must be .T VF 0/jV .p/;� . Since jV .q/ lies within M of q, we have
jV .q/ 2 .T

V
F 0/jV .p/;� , as required.

The argument for part (4) of the proposition is essentially the same as the argument
for the second case of part (3), since all we used there is that the point q of T VF is not
close to p, but it is close to a corresponding point in T VF 0 , and the analogous properties
hold in all the listed cases.

4.6 Refinements give isomorphic cube complexes

Consider the refined subdivisions p0 and p00 for F and F 0, respectively, that are
produced by Proposition 4.12. These are .M;M 00/ spaced subdivisions (though no
longer evenly spaced) so each of the sets of data .F;p0/ and .F 0;p00/— and their
associated collections of stable trees — can be plugged into our cubulation machine
to produce cube complexes QF;p0 and QF 0;p0

0
, respectively. We also assume that

M > maxfM1;M2g, where M1 and M2 are the constants from Lemma 4.10 and
Proposition 4.12, respectively, along with our other base assumptions about M .

Our next result says that these cube complexes are abstractly isomorphic and admit
coarsely compatible quasi-isometric embeddings into X . Using Proposition 4.9, we
will be able to conclude that the right hand side of diagram (4-1) from Theorem 4.1
commutes.

Proposition 4.13 There exists M3 DM3.jF j;S/ > 0, such that if M >M3, there
exists B > 0 and a cubical isomorphism Oh WQF;p0 !QF 0;p0

0
such that the diagram

(4-4)

QF

QF;p0

X

QF 0;p0
0

QF 0

ˆF

h

ˆ0
Oh

ˆ0
0

ˆF 0

h0

commutes up to error B .
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Proof We will define the required cubical isomorphism Oh and then prove that the
middle triangle commutes up to bounded error. This suffices for the proposition because
Proposition 4.9 says that the top and bottom triangles commute up to bounded error.

In order to use Lemma 2.3 to define an isomorphism between QF;p0 and QF 0;p0
0
, we

need a bijection between the corresponding collections of half-spaces which preserves
complements and disjointness.

Let WF;p0 and WF 0;p0
0

be the sets of half-spaces and construct a bijection

� WWF;p0 !WF 0;p0
0

as follows. By Proposition 4.12, we need only consider V 2 U.F / \ U.F 0/. Any
p 2 p0.V / is contained in an edge of T VF (in fact in T Ve ) and is at least M from its
endpoints.

Let j W p0 ! p00 be the bijection provided by Proposition 4.12, together with the
corresponding maps jp pairing the half-trees at p 2 p0 with those at j.p/.

To define �, letp2p0 and �2f˙g. If jp.T Vp;� /DT
V
jV .p/;�

we define �.W V
p;� /DW

V
jV .p/;�

.
It is straightforward to confirm that � respects complementation as in condition (1) of
Lemma 2.3.

We now confirm condition (2) of Lemma 2.3 for � by using the various characterizations
of half-space intersections given in Lemma 4.10. We remark that the figures from the
proof of Lemma 4.10 are again relevant.

Let p 2 p0.V / and q 2 p0.Z/ for Z; V 2 U.F / \ U.F 0/, and suppose that the
half-spaces corresponding to the half-trees T Vp;� and TZq;� intersect nontrivially, where
�; � 2 f˙g. There are five cases, up to switching the roles of V and Z.

Case Z ? V This case follows immediately from the construction and Lemma 4.10(1),
since all relevant pairs of half-spaces intersect in this case.

Case Z D V In this case, Lemma 4.10(2) implies that T Vp;� \ T
V
q;� ¤ ∅ (recall

Figures 13 and 14).

In particular, up to switching the roles of p and q, we have q 2 T Vp;� . But then, in view
of Proposition 4.12(3), j.q/ 2 jp.T Vp;� /. In particular, jp.T Vp;� /\ jq.T

V
q;� / ¤ ∅, so

that the corresponding half-spaces intersect, again by Lemma 4.10(2).

Case Z t V In this case, Lemma 4.10(3) implies, up to switching the roles of Z
and V , that .T VF /p;� contains ˇVF .�

Z
V / (recall Figure 15). It follows immediately from

part (4) of Proposition 4.12 that ˇVF 0.�
Z
V / 2 jp.T

V
p;� /, as required.
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Case V Ĺ Z By Lemma 4.10, there are two subcases, up to switching the roles of V
and Z: (a) when TZq;� contains ˇZF .�

V
Z/, and (b) when T Vp;� contains ˇVF .�

Z
V .q//.

In case (a), since V 2 U.F /\U.F 0/ part (4) of Proposition 4.12 immediately gives
that ˇZF 0.�

V
Z/ lies in jq.TZq;� /.

Suppose now that (b) holds. We prove that ˇVF 0.�
Z
V .j.q/// is contained in jp.T Vp;� /

(recall Figure 17). Recall from Proposition 4.7 that �ZV .q/ lies close to some �V .f /
with bound in terms of S and jF j. Since dV .q; j.q// < 2M=3 and both q and j.q/
are at least M � 2K from �VZ , with the 2K coming from the facts that TZc .F / is
within Hausdorff distance K of the YZ and the edge of TZe .F / containing q is .1;K/–
quasi-isometrically embedded in C.Z/ (Theorem 3.3(d)), choosing M sufficiently
large, we can guarantee that any geodesic in C.V / between p and jV .p/ avoids the
�0–neighborhood of �VZ , for �0 the constant of the bounded geodesic image property,
which then bounds dV .�ZV .q/; �

Z
V .jZ.q/// < �0. Hence �ZV .jZ.q// is close to both

�ZV .q/ and a leaf of T VF 0 , and thus ˇVF 0.�
Z
V .j.q///� jp.T

V
p;� /, as required.

Since the wallspace map � satisfies the conditions of Lemma 2.3, we obtain a cubical
isomorphism Oh WQF;p0 !QF 0;p0

0
.

Commutativity It remains to prove that

ˆF;p0 WQF;p0 ! X and ˆF 0;p0
0
ı h WQF;p0 ! X

are the same up to a bounded error depending only on k and the ambient HHS structure.

By the distance formula (Theorem 2.6), it suffices to show that for each 0–cube
x 2QF;p0 , its respective images ˆF;p0.x/ and ˆF 0;p0

0
ı h.x/ have coarsely the same

projections to C.V / for each V 2 U.F /\U.F 0/.

Recall from the end of Section 4.2 that the maps ˆF;p0 and ˆF 0;p0
0

are defined
domainwise by intersecting certain collections of half-trees of T VF and T VF 0 for each
V 2S, and hence the same is true forˆF 0;p0

0
ıh. By chasing the relevant definitions, of

h and j especially, we see that the collections of half-trees involved in the definition of
ˆF;p0.x/ and ˆF 0;p0

0
ı h.x/ are in bijection with each other, with corresponding half-

trees lying within bounded Hausdorff distance depending only on k and the ambient
HHS structure. Hence their intersections in T VF and T VF 0 coarsely coincide, as required.
This completes the proof of the proposition.
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UF D fU; V;W;Xg
UF 0 D fU; V;W; Y g

U ? V

U; V tW
X @ U

Y @ V

TU

T 0U

TV

T 0V

�XU

�YV

TW

T 0W

QF

U

V

W

QF 0

U

V

W

Q0

U

V

W

Figure 18: A simple example of how subdivision bijections determine hy-
perplane deletions. The relevance of X for F 0 but not F requires deleting a
subdivision point to obtain the bijection jU W pU ! p0U (indicated in pink),
and similarly with Y for jV W pV ! p0V . Deleting subdivision points results
in hyperplane deletions when passing from QF and QF 0 to Q0. Note that
since X; Y … UF \UF 0 , neither domain determines any subdivision points.

4.7 Proof of Theorem 4.1

Let F and F 0 be as in the statement.

The CAT(0) cube complexes QF ;QF 0 are constructed in Section 4.2, using subdivisions
p D }.F /;p0 D }.F 0/ within each of the relevant stable trees produced in Section 3.
Items (1) and (2) are proven in [8], as recalled in Theorem 4.6 above.
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For (3), we may define a map  F W F !QF as in [8, Proof of Theorem 2.1]. For each
f 2 F , let  F .f / be the orientation of the walls on hull H� .F / obtained by choosing,
for each wall .W V

p;C; W
V
p;�/, the halfspace containing f . We define  F 0 similarly. That

 F and  F 0 satisfies (3) now follows from Theorem 4.6.

We now prove the stability statements. We will only consider the case that g is the
identity for the same reason as in Remark 3.4, namely that what we have to prove is
that the choices that we made along the way only affect the output in the way predicted
by the statement, and such choices can be “translated” by automorphisms. The choices
we are referring to are those of the trees T VF , of the evenly spaced subdivisions, and of
points projecting coarsely in specified places in the various C.Y /, as in Theorem 4.6.(2).

Let p0 � p and p00 � p0 be the refinements provided by Proposition 4.12, where at
most N subdivision points are deleted.

The cube complex Q0 as in the statement of Theorem 4.1 can be taken to be either
of the cube complexes QF;p0 or QF 0;p0

0
that are produced by Proposition 4.13. So

take Q0 D QF 0;p0
0

and let ˆ0 W Q0! X be the map ˆF 0;p0
0
W QF 0;p0

0
! X given by

Proposition 4.13. Finally, let �0 � h0 WQF 0 !Q0 be as in Proposition 4.13 and define
� WQF !Q0 by �D Oh ı h.

By Proposition 4.13, these maps each satisfy the required properties and the right part
of diagram (4-1) commutes up to bounded error, as required.

To see exact commutativity of the left part of the diagram, it remains to prove that
� ı F ı �F D �

0 ı F 0 ı �F 0 . Recall that  F W F !QF is defined by sending f to the
coherent orientation on the wallspace defined by p which, for each p 2 p.V /, chooses
the half-tree of T VF np containing ˇVF .f /, for each V 2 U.F /. Since h is a hyperplane
deletion map, h ı F makes, for p 2 p0, the same choice as  F .

Fix f 2 F (the argument for f 2 F 0 is similar). Then the two sides of the equation
are coherent orientations on the wallspace defining QF 0;p0

0
, and we have to check that

they coincide on every halfspace. Pick p 2 p0 and let p0 D jV .p/, the map defined in
Proposition 4.12. As above the orientation of hı F ı �F .f /D hı F .f / on the wall
associated to p is the one that chooses the half-tree of T VF np, call it .T VF /p;C, that
contains ˇVF .f /. The map Oh, by the construction in Proposition 4.13, takes this to the
orientation that chooses the half-tree of p0 in T VF 0 given by jp..T VF /p;C/ (where jp is
the bijection of half-trees provided by Proposition 4.12). Letting f 0 D �F 0.f / we have
dX .f

0; f / � 1, so part (4) of Proposition 4.12 tells us that ˇVF 0.f
0/ 2 jp..T

V
F /p;C/,
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which means that jp..T VF /p;C/ is the half-tree selected by �0 ı  F 0.f 0/. Thus we
conclude that �. F .�F .f ///D �0. F 0.�F 0.f ///.

This completes the proof of Theorem 4.1.

5 Generalizing normal paths to find barycenters

In this section, we describe a variation on the “normal paths” construction due to Niblo
and Reeves [46]. We remark that they used these normal paths to build a biautomatic
structure for any cubical group, with the paths playing the central role of the bicombing
in that structure.

For the case of two points, our construction gives a “symmetrized” version of the
Niblo–Reeves construction. The main difference with their construction, however, is
that ours is adapted to allow for multiple points, which we need for our barycenter
application (Theorem E).

The reader may want to refer to Section 2.1 for the various notions and notations
relating to cube complexes that we will use throughout this section

Let X be a CAT(0) cube complex, H its set of hyperplanes, and f W P !X .0/ a (not
necessarily injective) map from a finite set P into the vertices of X . Roughly, we will
find a barycenter for the set f .P / in X by an iterative sequence of contractions which
behaves stably under hyperplane deletions. The main result of this section, and the only
statement from this section that we need to prove our main theorems, is the following:

Theorem 5.1 Let X be a CAT (0) cube complex, and let H be its set of hyperplanes.

For each f W P !X .0/, where P is a finite set , there is a finite sequence

ffi W P !X .0/ j i D 0; : : : ; nD nf g

with the following properties:

(1) f0 D f and diam1.fn.P //� 1.

(2) For each p 2 P and 0� i � n� 1 we have d1.fi .p/; fiC1.p//� 1.

(3) For each p, there is an `1–geodesic going through the vertices

f0.p/; f1.p/; : : : ; fn.p/

in this order.

(4) No hyperplane separates every point of f .P / from a point in fn.P /.
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(5) If g WQ! P is surjective , then fi ıg D .f ıg/i for all i .

(6) If G is any hyperplane ofX, the hyperplane deletion map ResHnG WX!X.HnG/
satisfies

jnf �nResHnGıf j � 1 and d1
�
ResHnG.fi .p//; .ResHnG ıf /i .p/

�
� 1:

Recall that d1 is the metric generated by the sup metric on each cube in the ambient
complex.

The proof of Theorem 5.1 occurs in parts over the remainder of this section. We tie
them together in Section 5.4 below.

We will mostly ignore the ambient cube complexes and focus on the hyperplane set H
and regard maps f as above as maps associating to p 2 P an orientation on H. For
each pair .f;H/ we consider a number of operations.

First, let Hf be the set of hyperplanes of X that separate f .P /. That is, Hf is the set
of hyperplanes H 2H for which there exist p; p0 2 P such that f .p/ and f .p0/ are
on different sides of H .

Let
Trim.f;H/D .ResHf .f /;Hf /

be the restriction to Hf . Note that the quotient complex X.Hf / actually embeds in
X.H/ (with image the subcomplex spanned by all vertices that lie in the intersection of
all the halfspaces of X.H/ that contain f .P /), and that it is finite even if X.H/ is not.

If G is a collection of mutually crossing hyperplanes, we let

delG.f;H/D .ResHnG.f /;H nG/

This “deletion map” corresponds to composing f with the quotient by G; that is,

ResHnG ıf W P !X.H nG/:

We will also write ResHnG.f / as f jHnG , in a slight abuse of notation.

5.1 Extremal and transitional hyperplanes

As stated above, our generalized normal paths give a series of contractions of our set
f .P / to a bounded diameter set in X . This is accomplished by iteratively jumping the
points of f .P / (and their subsequent contracted images) over a sequence of hyperplanes
in Hf . Thus we are led to understand which hyperplanes are next in line to be jumped.
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H 0 H 00

H

Figure 19: H is extremal but not transitional, while H 0 and H 00 are both transitional.

Definition 5.2 Let X be a cube complex and H its set of hyperplanes.

� A point p 2 X is adjacent to a hyperplane H 2H if there are no hyperplanes
separating p from H .

� A hyperplane H 2Hf is extremal if on one side of H every point of f .P / is
adjacent toH inX . We let E.f;H/�Hf denote the set of extremal hyperplanes.

� A hyperplane H 2E.X; f / is transitional if it is extremal and on one side of
H not every point of f .P / is adjacent to H ; we let T .f;H/�E.f;H/ be the
set of transitional hyperplanes.

IfH is transitional, we write P DP0.H/tP1.H/DP0tP1 where f .P0/ is adjacent
to H on one side, f .P1/ is on the other side, and at least one point of f .P1/ is not
adjacent to H .

We note that E.f;H/ is always nonempty when P is nonempty. In fact, for any p 2P ,
it is readily shown that H is extremal whenever H is a hyperplane in Hf such that the
number of hyperplanes separating f .p/ from H is maximal.

Moreover, for any hyperplane H 2E.f;H/ nT .f;H/, every point of f .P / must be
adjacent to H .

Lemma 5.3 The set f .P / is contained in a single cube of X if and only if T .f;H/D∅.

Proof First of all, we observe that f .P / being contained in a single cube is equivalent
to Hf being mutually crossing. Moreover, it is clear from the definitions that if Hf is
mutually crossing, then T .f;H/D∅.

In the other direction, we suppose that f .P / is not contained in a single cube and then
produce a transitional hyperplane. The fact that f .P / is not contained in a single cube
implies that there exists p 2P and a hyperplane H 2Hf with f .p/ not adjacent to H .

Geometry & Topology, Volume 27 (2023)



Stable cubulations, bicombings, and barycenters 2457

f .a/

f .b/ f .c/

Figure 20: An example of a single move. f .P / consists of three points,
and the points of f1.P /, in matching colors, are on the other side of the
transitional hyperplanes, which are indicated in orange.

Choose now p 2 P and H 2Hf so that the number of hyperplanes separating f .p/
from H is maximal; the argument above implies that the number of these hyperplanes
is positive, so f .p/ is not adjacent to H . As observed before the lemma, it follows
that H is extremal, and since f .p/ is not adjacent to H , we have that H is in fact
transitional, as required.

5.2 The move sequence

We now build our sequence of contractions, which we call moves.

Roughly speaking, a move is an operation on .f;H/ in which, for every H 2 T .f;H/,
the points of P0.H/ cross H to the opposite side. The resulting pair

.f1;H/DMove.f;H/

is a map for which Hf1 DHf nT .f;H/, so the image of the new map f1.P / is strictly
contained within the subcomplex spanned by f .P /.

To define f1, we need the following observation:

Lemma 5.4 For each p 2 P , the set

J.p/D fH 2 T .f;H/ j p 2 P0.H/g
is mutually crossing.

Proof Suppose, by way of contradiction, that H1;H2 2 J.p/ and that H1 does not
cross H2. Let s1 be the side of H1 on which f .P0.H1// lies (and hence is adjacent)
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Figure 21: An example of a move sequence terminating in all points lying
in a single cube. Concentric circles around a vertex indicate, in this case, a
point p with fi .p/D fiC1.p/.

and let s2 be the corresponding side forH2. Since p 2P0.H1/\P0.H2/, we have that
s1 and s2 intersect. Since H1 does not cross H2, up to swapping indices we have that
H2 lies in s1 and separatesH1 from f .P0.H2//, which contains p and thus contradicts
the choice of s1.

We can now define f1.p/. By Lemma 5.4, f .p/ is the corner of a unique maximal
cube, each of whose midcubes is contained in some hyperplane of J.p/, and we can
choose f1.p/ to be the diagonally opposite corner. Equivalently, f1.p/ can be defined
as the point obtained by flipping the orientation that f .p/ gives to all the hyperplanes
in J.p/. Either definition gives the new map f1.

Note that there may be p for which J.p/D∅, and for these f1.p/D f .p/. Moreover,
since the operation moves all points of P0.H/ across H for each H 2 T .f;H/, we
have the following consequence:

Lemma 5.5 Hf1 DHf nT .f;H/.

Now we are ready to consider the move sequence of .f;H/. For i � 0 define

.fi ;H/DMovei .f;H/:

Lemma 5.6 The move sequence ffig is eventually constant , with constant image all
contained in one cube.

Proof By Lemma 5.5, the set Hfi becomes strictly smaller for each i as long as
T .fi ;H/¤∅, so after a finite number of steps we must have T .fn;H/D∅. Thereafter,
the fi are all the same and their images are all contained in a cube by Lemma 5.3.
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G

ResHnG

Figure 22: An illustration of Proposition 5.7, where P has two points.

Our main result about this sequence is its stability under the operation delG . This is
part of Theorem 5.1, which we rephrase here in our new language:

Proposition 5.7 Let G be a mutually crossing set in Hf . Let

.fi ;H/DMovei .f;H/
and

.f 0i ;H nG/DMovei .delG.f;H//

be the move sequences for .f;H/ and delG.f;H/. Then for each p 2 P ,

d1.ResHnG ıfi .p/; f
0
i .p//� 1:

The proposition is in fact a generalization of what we need, since it deals with a mutually
crossing set.

5.3 Proof of stability of move sequences

We begin by studying the structure of the extremal and transitional hyperplanes for a
pair .f;H/, and the way in which they are affected by hyperplane deletions.

Lemma 5.8 Every J 2E.f;H/ nT .f;H/ crosses every hyperplane in Hf n fJ g.
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Proof Since J is extremal but not transitional, f .P / is adjacent to it on both sides;
see Figure 19. This means that no other hyperplane can separate any f .p/ from J , and
this implies that every H 2Hf n fJ g crosses J .

The next lemma explains how the extremal and transitional hyperplanes change after a
deletion step:

Lemma 5.9 Let G be a mutually crossing hyperplane set in Hf . Then

(5-1) E.f;H/ nG �E.delG.f;H//

and

(5-2) E.delG.f;H// nE.f;H/D T .delG.f;H// nT .f;H/:

Moreover , if G \E.f;H/D∅, then

(5-3) E.f;H/DE.delG.f;H//

and

(5-4) T .f;H/D T .delG.f;H//:

Proof The inclusion (5-1) is clear from the definitions.

For (5-2), if J 2E.delG.f;H// nE.f;H/, then f .P / is not adjacent to J on either
side, but on at least one side the only hyperplanes separating J from f .P / are in G. In
fact this happens on exactly one side since G is a mutually crossing set and its members
cannot be separated by J . In particular this means J 2 T .delG.f;H//, and therefore
J 2 T .delG.f;H// nT .f;H/ since T .f;H/�E.f;H/. This situation is indicated in
Figure 23, left.

Conversely if J 2 T .delG.f;H// nT .f;H/, then either f .P / is not adjacent to J on
either side, in which case we are in the same situation as above, or f .P / is adjacent
to J on both sides. But in the latter case this adjacency remains true after deletion
of G, which contradicts J 2 T .delG.f;H//.

Thus, J 2E.delG.f;H//nE.f;H/ if and only if J 2T .delG.f;H//nT .f;H/, which
gives (5-2).

In the description of J 2E.delG.f;H//nE.f;H/, we note that the hyperplanes of G
separating J from f .P / cannot themselves be separated from f .P / (on the side not con-
taining J ) by any other hyperplanes, because this would contradict J 2E.delG.f;H//.
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J
G

J
G

J
G

Figure 23: Changes caused by deleting G. Left, J is not in E.f;H/ but is in
T .delG.f;H//. Middle, J is in E nT both before and after. Right, J is in
T .f;H/ but not in T .delG.f;H//.

Thus those hyperplanes are themselves extremal. We conclude that, ifG\E.f;H/D∅,
then E.delG.f;H// nE.f;H/D∅, giving (5-3).

Finally to show (5-4) when G\E.f;H/D∅, note first that (5-2) and (5-3) imply that
T .delG.f;H//� T .f;H/. Now if J 2 T .f;H/ nT .delG.f;H//, then on the side of
J where f .P / is not adjacent there must only be hyperplanes of G separating J from
f .P /, whose deletion makes f .P / adjacent on that side; see Figure 23, right. But this
contradicts the assumption that G \E.f;H/D∅.

We can now obtain the following lemma, which in the simplest case shows that moves
and deletions commute.

Lemma 5.10 In the notation of Proposition 5.7, if G\E.f;H/D∅, then the following
diagram commutes:

.f;H/ .f 0;H nG/

.f1;H/ .f 01;H nG/

delG

Move Move

delG

Proof By Lemma 5.9, T .f;H/DT .delG.f;H//. This means that the Move operation
on both .f;H/ and .f 0;H nG/ affects exactly the same set of hyperplanes, and in
exactly the same way. That is, for J 2 T .f;H/, the subset P0 � P whose f –image is
on the adjacent side of J is also the subset whose f 0–image is on the adjacent side,
since the deletion of G does not affect this. The lemma follows.

Now we consider the general situation, where some hyperplanes of G may be in
E.f;H/.
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Nsi si sj Nsj Nsi si

Gk
G0i G0j

Gl
Gk

G0i G0j 2G
H

Figure 24: The contradictions arising from hyperplanes in G0 not being
mutually crossing.

Lemma 5.11 Let G be a mutually crossing set in H and define

G0 D .G [T .delG.f;H/// nT .f;H/ and K D T .f;H/ n .G [T .delG.f;H///:

Then G0 is a mutually crossing set , every hyperplane H 2K crosses all hyperplanes of
Hf n .G [fH g/, and there exists a map g W P !X.Hf n .G [G0[K// such that the
following diagram commutes:

.f;H/ .f 0;H nG/

.f1;H/ .f1jHnG0 ;H nG0/ .f 01;H nG/

.f 01jHn.G[K/;H n .G [K//

.g;Hf n .G [G0[K//

delG

Move Move

delG0

Trim

delK

Trim

Proof First we prove that G0D fG01; : : : ; G
0
k
g is a mutually crossing set. Suppose that

G0i and G0j do not cross. Then they cannot both be in G by hypothesis.

Assume first that G0i and G0j are in T .delG.f;H// n T .f;H/, which is the same as
E.delG.f;H//nE.f;H/ by Lemma 5.9. Let si be the side of G0i that contains G0j , and
define sj similarly (Figure 24, left). Then f 0.P / cannot be adjacent toG0i on the side si ,
since part of f 0.P / is separated from G0i by G0j . Therefore, since G0i 2E.delG.f;H//,
f 0.P / must be adjacent to G0i on the opposite side, Nsi . Similarly f 0.P / must be
adjacent to G0j on the opposite side, Nsj . Note that Nsi and Nsj are disjoint. On the other
hand, since G0i and G0j are not in E.f;H/, there must be some Gk 2G in Nsi separating
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G0i from some point of f .P /, and similarly Gl 2 G in Nsj separating G0j from some
point of f .P /. But this is not possible since Gk crosses Gl .

Now assume G0i 2E.delG.f;H// nE.f;H/ and G0j 2G nT .f;H/ (Figure 24, right).
If G0j 2 E.f;H/ n T .f;H/ then it crosses G0i by Lemma 5.8, so we may assume
G0j … E.f;H/. Define si as before. Now since G0j … E.f;H/, on the side of G0j
contained in si , there must be another hyperplane H separating G0j from a point of
f .P /. This H cannot be in G since G0j crosses H , so it is not deleted and hence
f 0.P / is not adjacent to G0i on the si side. As above there must therefore be a Gk 2G
on the Nsi side. This Gk cannot cross G0j ; again a contradiction.

To see that each hyperplane of K crosses all other hyperplanes of Hf nG, note that K
is contained in E.delG.f;H// nT .delG.f;H// by (5-1) of Lemma 5.9, and then use
Lemma 5.8.

To finish the argument, we claim that all we have to check is that the set of hyperplanes
that are either transitional for a Move operation or deleted along each side of the
diagram is the same. This is because of the relations

Trim ıMove.f;H/D delT .f;H/ ıTrim.f;H/

and
Trim ı delG D delG ıTrim:

which follow directly from the definitions. With these relations, we can simplify each
side of the diagram to a single Trim ı delV where V is the union of hyperplanes from
all the deletion and Move steps on that side.

Thus, comparing the left side of the diagram with the top arrow and right side, it
remains to check that

(5-5) T .f;H/[G0 DG [T .delG.f;H//[K:

Using the definitions of G0 and K, we see that both sides are equal to

G [T .delG.f;H//[T .f;H/:

Every hyperplane H 2Hf becomes extremal at some point along the move sequence.
We want to understand how deletions affect when this occurs. Note that when a
hyperplane H 2 Hf becomes extremal, it need not become transitional, and what
happens can change with the deletion of a nearby hyperplane.
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For a hyperplane H 2Hf , define

eH .f;H/

to be the first index i such that H 2E.fi ;H/.

Lemma 5.12 For any mutually crossing set G �Hf , and any H 2Hf nG,

(5-6) eH .f;H/D eH .delG.f;H//C ı

for some ı 2 f0; 1g.

Proof If eH .f;H/D0 thenH is already in E.f;H/, which impliesH2E.delG.f;H//
by (5-1) of Lemma 5.9. The equality (5-6) follows with ı D 0.

Thus we may assume eH .f;H/ > 0. Suppose that eH .delG.f;H//D 0. This means
that H 2 E.delG.f;H// nE.f;H/, which implies (as in the proof of Lemma 5.11)
that there are some elements Gi of G which separate H from f .P / on one side si ,
so that f .P / is adjacent to Gi on the si side. But f .P / is not adjacent to Gi on the
other side because H is there, which means Gi 2 T .f;H/. But this implies that, in
Move.f;H/, all Gi as above are no longer in the set of separating hyperplanes, and
hence H 2E.Move.f;H//, so eH .f;H/D 1. This gives (5-6) with ı D 1.

From now on we can assume eH .f;H/ > 0 and eH .delG.f;H// > 0, and prove the
statement by induction on the cardinality of Hf (the case jHf j D 2 is easy, and already
covered by the previous paragraphs).

Let .f 0;H0/D delG.f;H/, .f1;H/DMove.f;H/, and .f 01;H
0/DMove.f 0;H0/. By

definition (since eH .f;H/ > 0 and eH .f 0;H/ > 0),

eH .f;H/D eH .f1;H/C 1 and eH .f
0;H0/D eH .f 01;H

0/C 1:

Thus it will suffice to prove

(5-7) eH .f1;H/D eH .f 01;H
0/C ı:

Consider the warmup case when G \E.f;H/D∅. By Lemma 5.10,

.f 01;H
0/D delG.f1;H/:

Since jHf1 j< jHf j, the inductive hypothesis gives us

eH .f1;H/D eH .f 01;H
0/C ı

for ı D 0 or 1, proving (5-7) and hence (5-6).
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Now in the general case, we use the diagram of Lemma 5.11. Note first that the value
of eH is not affected by a Trim operation. This is because Trim does not affect the
set Hf , or the membership in E or T .

The value of eH is also unaffected by the delK arrow on the right side. This is
because each hyperplane H 2K crosses every hyperplane in Hf n .G [fH g/, which
implies that any hyperplane in K cannot affect the membership in E or T of any other
hyperplane in Hf nG. Therefore, we see that delK commutes with the Move sequence
on .f 01;Hf nG/.

The remaining arrow is labeled by delG0 , and G0 is a mutually crossing set. Thus by
induction we know

eH .f1;H/D eH .delG0.f1;H//C ı

for ı D 0 or 1. Again the equality (5-7) follows.

We are now ready to prove the stability result for move sequences.

Proof of Proposition 5.7 We need to prove the following statement: for each i and
p 2 P , the set of H 2 Hf nG such that H separates fi .p/ from f 0i .p/ is mutually
crossing.

Note that when a sequence .fi .p// crosses a hyperplane H , it can only happen
in the transition from fj to fjC1 where j D eH .f;H/. Moreover it must be that
H 2 T .fj ;H/, and that fj .p/ is on the side of H where fj .P / is adjacent. If the
sequence .fi .p// does not cross H , then H will either remain in Hfi for all i � j , or
it will be crossed only by points on the other side and not by fi .p/. The same holds
for the sequence .f 0i /.

Now suppose that H1 and H2 separate fi .p/ from f 0i .p/, for some i , and H1 does
not cross H2. Since f0.p/ and f 00.p/ are on the same side of both hyperplanes, we
may assume that H1 separates them from H2. Hence there exists a (different) time i at
which one of them is still on the original side of H1, whereas the other has crossed
both hyperplanes; fix such an i .

Suppose first that f 0i .p/ is the one which lies on the other side ofH2. Let jDeH1.f
0;H/.

Then since H1 does not cross H2, f 0jC1.p/ has not yet crossed H2. Thus we must
have

j D eH1.f
0;H/ < eH2.f

0;H/ < i

and H1 2 T .f 0j ;H/, with f 0j .p/ on the side where f 0j .P / is adjacent to H1.
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Now k D eH1.f;H/ � j C 1 by Lemma 5.12. Since j C 1 < i and fi .p/ has not
crossed H1, it must be that the side of H1 where fk.P / is adjacent is the one opposite
from fk.p/, the one containing H2.

But this means that H2 can no longer be in Hfk , which can only be if

eH2.f;H/� k� 1� j:

Thus, again by Lemma 5.12, eH2.f
0;H/� j , which is a contradiction.

We conclude that H1 does not cross H2, which is what we wanted.

The case where fi .p/ crosses the hyperplanes and f 0i .p/ does not is handled similarly.
The main difference is that in this case, instead of using eH1.f;H/� eH1.f 0;H/C 1,
we use eH1.f

0;H/� eH1.f;H/, which creates a “C1” there, which is then lost in the
other application of Lemma 5.12.

5.4 Completing the proof of Theorem 5.1

Property (1) follows from Lemma 5.3, while property (2) follows from the construction,
where for both properties we use the fact that cubes have diameter 1 in the d1 metric.
Property (5) is also easily seen to hold by construction, and more specifically it follows
from the fact that the sets E.f;H/ and T .f;H/ only depend on the image of f (and
hence that this will remain true throughout the move sequence).

For property (3), observe that for a fixed p 2P , no hyperplane H separates fi .p/ from
fiC1.p/ for two different values of i . It follows that any combinatorial path obtained
by concatenating a choice of geodesics from fi .p/ to fiC1.p/ for 0 � i < n is an
`1–geodesic in X . This proves (3).

For property (4), by definition of the contraction sequence, the hyperplanes that separate
any given f .p/ from fn.q/ for p; q 2 P are contained in Hf . On the other hand,
a hyperplane H 2 Hf cannot separate every point in f .P / from any fixed vertex
of X , because there are elements of f .P / on both sides of H , by definition of Hf .
Hence, there can be no hyperplane separating f .P / from a point in fn.P /. This gives
property (4).

Property (6) is a direct consequence of Proposition 5.7 and Lemma 5.6.
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6 Proofs of the main theorems

We are now almost ready to prove our main theorems, Theorem E and Theorem B. The
main bit of work here is Proposition 6.1, which compiles our preceding stability results
into a useful form for our current purposes.

Proposition 6.1 Let .X ;S/ be a G–colorable HHS for G < Aut.S/. For any k 2N,
there exists K3 DK3.k;S/ > 0 such that the following holds.

Suppose that F;F 0�X are finite subsets satisfying jF j; jF 0j�k, let g2G, and suppose
that dHaus.gF; F

0/ � 1. Choose any map �F W F t F 0 ! F such that �F .f / D f if
f 2 F and dX .g�F .f /; f /� 1 if f 2 F 0. Also , choose a map �F 0 W F tF 0! F 0 such
that �F 0.f /D f if f 2 F 0 and dX .gf; �F 0.f //� 1 if f 2 F . Consider:

� The cube complexes QF ;QF 0 produced by Theorem 4.1 with associated maps
ˆF ; ˆF 0 to X , and  F ;  F 0 from F;F 0 to QF ;QF 0 .

� The sequences of contractions f. F /i D  igi�n F and f. F 0/i D  
0
igi�n F 0

produced by Theorem 5.1. Set n F D nF and n F 0 D nF 0 .

Then

(1) jnF �nF 0 j<K3,

(2) for each i 2 f1; : : : ;maxfnF ; nF 0gg and any f 2 F tF 0,

dX
�
g ıˆF ı i .�F .f //; ˆF 0 ı 0i .�F 0.f //

�
�K3;

(3) diamX .ˆF . nF .F /// < K3.

More visually, item (2) says that the diagram

(6-1)

F QF

F tF 0 X

F 0 QF 0

 iD. F /i

gıˆF
�F

�F 0  0
i
D. F 0 /i ˆF 0

coarsely commutes.

Proof We will use the output and notation of Theorem 4.1, and in particular the
CAT(0) cube complex Q0 obtained from both QF and QF 0 by collapsing at most
N DN.k;S/ > 0 hyperplanes, with hyperplanes collapse maps h and h0.
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We will also use the notation of Theorem 5.1, in particular the notation ffi j i � nf g
for the sequence of maps starting with f and ending with a map with bounded image.

We have  WD hı F ı �F D h0 ı F 0 ı �F 0 , as stated in Theorem 4.1. By Theorem 5.1,
composing, say,  F with a hyperplane deletion map affects the length of the corre-
sponding sequence of maps by at most 1. In particular, jnF �n j �N and, similarly,
jnF 0�n j �N (notice that n F D n F ı�F by Theorem 5.1(5), and a similar statement
holds for F 0). Hence, conclusion (1) holds for any K3 larger than 2N .

We now prove conclusion (2). By Theorem 4.1, diagram (4-4) commutes with error at
most K DK.k;S/. For convenience, we reproduce the diagram here:

(6-2)

F QF

F tF 0 Q0 X

F 0 QF 0

 F

gıˆF�
�F

�F 0

ˆ0

 F 0

ˆF 0
�0

For any f 2 F tF 0,

dX .g ıˆF ı . F /i .�F .f //; ˆ0 ı � ı . F /i .�F .f ///�K:

By Theorem 5.1, d1.� ı . F /i .�F .f //; .� ı F /i .�F .f ///�N , and hence

dX .ˆ0 ı � ı . F /i .f /;ˆ0 ı .� ı F /i .f //�K
0
DK 0.k;S/

since ˆ0 is a quasi-isometric embedding with controlled constants (and the dimension
of Q0 is bounded in terms of S by Theorem 4.1, so that the `1 and `1 metrics on it
are uniformly quasi-isometric). The triangle inequality then gives

dX .g ıˆF ı . F /i .�F .f //; ˆ0 ı .� ı F /i .�F .f ///�K
0
CK:

Similarly, we get

dX .ˆF 0 ı . F 0/i .�F 0.f //; ˆ0 ı .�
0
ı F 0/i .�F 0.f ///�K 0CK:

By Theorem 5.1(5), .�0 ı F 0/i .�F 0.f //D .�0 ı F 0 ı �F 0/i .f /D .� ı F ı �F /i .f /,
and hence conclusion (2) holds for any K3 larger than 2.K 0CK/.

Finally, to prove (3), we now bound the diameter of ˆF . nF .F //. Similarly to above,
ˆF is a quasi-isometric embedding with constants controlled in terms of k and S

even when we endow QF with the `1 metric. Since diamQF . nF .F //� 1 (in the `1

metric) by Theorem 5.1, this gives the required bound on diamX .ˆF . nF .F ///.
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6.1 Barycenters: proof of Theorem E

Our next goal is to prove Theorem E. To do so, we’ll need the precise definition of
stable barycenter:

Definition 6.2 For a metric space X a stable barycenter map for k points is a map
� WXk!X which is

� permutation invariant, meaning � ı � D � for any � W Xk ! Xk that is a
permutation of the factors;

� coarsely Lipschitz, meaning there exists �1 > 0 such that for x; x0 2Xk ,

dX .�.x/; �.x
0//� �1dXk .x; x

0/C �1:

We further say that � is coarsely equivariant with respect to a group � acting on X by
isometries if there exists �1 > 0 such that for all g 2 �

dX .g�.x/; �.gx//� �1;

where � acts on Xk diagonally.

We now prove that colorable HHSs admit stable coarsely equivariant barycenters, with
the following version slightly more general than Theorem E:

Theorem 6.3 Let .X ;S/ be a G–colorable HHS for G < Aut.S/. Then X admits
coarsely G–equivariant stable barycenters for k points , for any k � 1. Moreover , the
coarse barycenter of a set F is contained in the hierarchical hull of F .

Proof We use the notation from the statement of Proposition 6.1.

To define a barycenter �.f1; : : : ; fk/, we consider F D ffig, set xF DˆF . nF .F //,
and let �.f1; : : : ; fk/ be an arbitrary point in xF ; we make the choice depending on
the set F only, so that permutation invariance is achieved.

This choice does not matter for our purposes since diamX .ˆF . nF .F /// < K3 by
Proposition 6.1.

Now suppose that .f 01; : : : ; f
0
k
/ is such that dHaus.ff

0
i g; ffig/� 1, and set F 0 D ff 0i g.

Without loss of generality, assume that nF � nF 0 , where we note that nF �nF 0 <K3

by part (1) of Proposition 6.1. Part (2) of Proposition 6.1 now implies that for any
f 2 F tF 0,

dX
�
ˆF . nF .�F .f ///; ˆF 0. 0nF .�F 0.f ///

�
<K3:
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But  0nF 0
D  0nF since nF � nF 0 , so we can conclude that

dX
�
ˆF . nF .�F .f ///; ˆF 0. 0nF 0

.�F 0.f ///
�
<K3:

Finally, the fact that diamX .ˆF . nF .F /// < K3 and diamX .ˆF 0. 0nF 0
.F 0/// < K3

gives that
diamX .xF [ xF 0/ < 3K3:

Setting �1 D 3K3, we get that � is �1–coarsely Lipschitz.

Finally, coarse equivariance follows similarly, applying Proposition 6.1 with F 0 D gF ,
as follows. First, as above we can assume nF � ngF , for otherwise we can swap the
roles ofF and gF , by considering the automorphism g�1. We still have nF �ngF <K3.
Part (2) of Proposition 6.1 implies that for any f 2 F tgF ,

dX
�
g ıˆF . nF .�F .f ///; ˆgF . 

0
ngF

.�gF .f ///
�
<K3:

As above, we conclude that

diamX .g.xF /[ xgF / < 3K3;

which completes the proof.

6.2 Bicombability: Proof of Theorem B

We begin with the formal definition of bicombing which is appropriate for our context;
see [1]. In the following definition, we adopt the convention that if � W Œ0; a�!X is a
map, then we trivially extend � by �.t/D �.a/ for all t > a.

Definition 6.4 A discrete, bounded, quasigeodesic bicombing of a metric space X
consists of a family of discrete paths f�x;ygx;y2X which are, for some constant �2>0,

(1) quasigeodesic, meaning that for any x; y 2X with d D dX .x; y/, there exists
nx;y � �2dC�2 such that the path�x;y W f0; : : : ; nx;yg!X is a .�2; �2/–quasi-
isometric embedding with �x;y.0/D x and �x;y.nx;y/D y; and

(2) fellow-traveling, meaning that if x0; y0 2X with d 0 D dX .x0; y0/ and

dX .x; x
0/; dX .y; y

0/� 1;

then for all t 2 f0; : : : ;maxfnx;y ; nx0;y0gg,

dX .�x;y.t/;�x0;y0.t//� �2:
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QF QF 0

Q0

Figure 25: A simple example of bicombing paths, building on the hierarchical
setup from Figure 18. Deleting the orange hyperplanes from QF and QF 0

results in perturbing the contraction paths in Q0.

In addition, we say that f�x;ygx;y2X is �–coarsely equivariant with respect to a group
� < Isom.X/ if for any g 2 � and x; y 2X and t 2 f0; : : : ;maxfnx;y ; nx0;y0gg,

dX .g ��x;y.t/;�g �x;g �y.t// < �2:

Finally, we recall the following definition from [7], which was inspired by the paths
constructed in [43]:

Definition 6.5 For D � 1, a path  in X is a D–hierarchy path if

(1)  is a .D;D/–quasigeodesic,

(2) for each W 2S, �W ı  is an unparametrized .D;D/–quasigeodesic.

We can now prove that colorable HHSs admit discrete, bounded, quasigeodesic, coarsely
equivariant bicombings by hierarchy paths.

Theorem 6.6 Let .X ;S/ be a G–colorable HHS with G < Aut.S/. Then there
exists D > 0 such that .X ;S/ admits a coarsely G–equivariant , discrete , bounded ,
quasigeodesic bicombing by D–hierarchy paths.
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Proof Let .X ;S/ be a colorable HHS. We again use the notation from the statement
of Proposition 6.1, where now F D fx; yg and F 0 D fx0; y0g with dX .x; x0/� 1 and
dX .y; y

0/ � 1. We make a blanket observation that k D 2 and so the constant K3 in
Proposition 6.1 depends only on .X ;S/.

Coarse equivariance can be obtained using the argument below, setting F 0 D gF . We
omit the details for readability.

Construction of the bicombing paths Let  D  0 and define a map

!x;y W f0; : : : ; 2nx;yg !QF
by

!x;y.i/D

�
 i .x/ if i 2 f0; : : : ; nx;yg;
 2nx;y�i .y/ if i 2 fnx;y C 1; : : : ; 2nx;yg:

We claim that !x;y is a .C; C /–quasigeodesic in the `1 metric on QF , for some
uniform C . First, the points !x;y.0/; : : : ; !x;y.nx;y/ appear on an `1–geodesic 1
from !x;y.0/ to !x;y.nx;y/ in the given order by Theorem 5.1(3), and the same holds
for !x;y.nx;yC1/; : : : ; !x;y.2nx;y/ for some `1–geodesic 2 from !x;y.nx;yC1/ to
!x;y.2nx;y/. Moreover, consecutive !x;y.i/ are uniformly close to each other, since
they are at distance at most 1 in the `1 metric, which is uniformly quasi-isometric to
the `1 metric with constant only depending on the dimension of QF , which in turn
only depends on S.

Let  be the concatenation of 1, an `1–geodesic from !x;y.nx;y/ to !x;y.nx;y C 1/,
and 2. Since no hyperplane can separate fx; yg from  nx;y .x/ or  nx;y .y/, again
by Theorem 5.1, we see that  crosses each hyperplane at most once, and is therefore
an `1–geodesic. Since !x;y.nx;y/ and !x;y.nx;y C 1/ are just opposite corners of a
cube, we see that the !x;y.i/ appear along an `1–geodesic in the given order, and
with uniformly spaced gaps. This shows that !x;y is a .C; C /–quasigeodesic in the `1

metric, for C depending only on the dimension of QF and hence only on S.

It follows then that the composition

�x;y DˆF ı!x;y W f0; : : : ; 2nx;yg ! X

is a .K4; K4/–quasigeodesic in X with K4 DK4.S/. We can perturb it a uniformly
bounded amount at the endpoints to make sure that the endpoints are x and y; with a
slight abuse of notation we still denote the perturbation by �x;y and the quasi-isometry
constants by K4.

This proves that Definition 6.4(1) holds for the family f�x;ygx;y2X .
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Fellow-traveling We now prove the fellow-traveling condition in Definition 6.4(2)
holds. Once again adopting our previous notation, we want to prove that there exists
�2 D �2.X ;S/ > 0 such that for any t 2 f0; : : : ;maxf2nx;y ; 2nx0;y0gg,

(6-3) dX .�x;y.t/;�x0;y0.t// < �2:

Without loss of generality, suppose that nx;y � nx0;y0 and recall that Proposition 6.1(1)
gives that ı D nx;y �nx0;y0 <K3, where K3 depends only on .X ;S/. There are four
cases to consider:

(i) When 0� i � nx0;y0 , where �x;y and �x0;y0 are defined using x and x0, respec-
tively.

(ii) When nx0;y0 < j � nx;y , where �x;y is defined using x whereas �x0;y0 is
defined using y0.

(iii) When nx;y < q � 2nx0;y0 , where both �x;y and �x0;y0 are nonconstant and
defined using y and y0, respectively.

(iv) When 2nx0;y0 < r � 2nx;y , where �x;y is nonconstant but

�x0;y0.j /D�x0;y0.2nx0;y0/

for all such j .

In what follows, we will repeatedly use the fact that �x;y and �x0;y0 are .K4; K4/–
quasigeodesics. Also, set K5 DK4 � .2ı/CK4.

In case (i), equation (6-3) follows immediately from Proposition 6.1(2) with �2 DK3.

In case (ii),

dX .�x;y.nx0;y0/;�x;y.j // < K5 and dX .�x0;y0.nx0;y0/;�x0;y0.j // < K5;

while Proposition 6.1(2) gives

dX .�x;y.j C 2ı/;�x0;y0.j // < K3;

so the triangle inequality implies that (6-3) holds in this case with �2 D 2K5CK3.

In case (iii),
dX .�x;y.q/;�x;y.qC 2ı// < K5

and Proposition 6.1(2) provides

dX .�x;y.qC 2ı/;�x0;y0.q// < K3;

so the triangle inequality implies that (6-3) holds with �2 DK3CK5.
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Finally, in case (iv),

dX .�x;y.2nx0;y0/;�x;y.2nF // < K5

and Proposition 6.1(2) provides

dX .�x;y.2nx0;y0/;�x0;y0.2nx0;y0// < K3:

Since �x0;y0.2nF / D �x0;y0.2nx0;y0/ by convention, the triangle inequality implies
that (6-3) holds with �2 DK3CK5.

Hence we may set �2D2K5CK3 to complete the proof of the fellow-traveling condition
in Definition 6.4(2). This completes the proof that these paths gives a bicombing.

Hierarchy paths To finish the proof, we now show that �x;y is a D–hierarchy path
for some D DD.S/ > 0 (Definition 6.5). We will use that ˆF is a K–median map
(Theorem 4.1(2)); we now recall what this means.

In a CAT(0) cube complex Q one can define a map mQ WQ3!Q (called median), and
the only property of this map that we need here is that if x, y, and z appear in this
order along an `1–geodesic, then m.x; y; z/D y. Also, in an HHS X , there is a map
mX W X 3! X called coarse median, whose definition we do not need, and ˆF being
K–median means that for all x; y; z 2QF ,

dX
�
ˆF .mQF .x; y; z//;mX .ˆF .x/;ˆF .y/;ˆF .z//

�
�K:

This inequality implies that, for all i < j < k, we have that �x;y.j / lies uniformly
close to mX .�x;y.i/;�x;y.j /;�x;y.k//. This is enough to guarantee that the quasi-
isometric embedding �x;y is a hierarchy path by [8, Lemma 1.37].
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Smallest noncyclic quotients of
braid and mapping class groups

SUDIPTA KOLAY

We show that the smallest noncyclic quotients of braid groups are symmetric groups,
proving a conjecture of Margalit. Moreover, we recover results of Artin and Lin about
the classification of homomorphisms from braid groups on n strands to symmetric
groups on k letters, where k is at most n. Unlike the original proofs, our method does
not use the Bertrand–Chebyshev theorem, answering a question of Artin. Similarly,
for mapping class group of closed orientable surfaces, the smallest noncyclic quotient
is given by the mod two reduction of the symplectic representation. We provide an
elementary proof of this result, originally due to Kielak and Pierro, which proves a
conjecture of Zimmermann.

20F36, 20F65, 57K20

1 Introduction

The goal of this paper is to show that, with some obvious exceptions, the smallest non-
cyclic quotients of the braid and mapping class groups, are given by natural projections
� W Bn! Sn (forgetful map) and ˆ WMod.†g/! Sp.2g;Z2/ (mod two reduction of
the symplectic representation). We begin by stating our main result for the Artin braid
groups Bn.

Theorem 1 Suppose nD 3 or n� 5. If G is a noncyclic quotient of Bn, then either
jGj> jSnj D n! or G is isomorphic to Sn. Moreover , in the latter case the quotient map
Bn!G is obtained by postcomposing the natural map � with an automorphism of Sn.

There are no noncyclic quotients of Bn for n� 2, and for nD 4 the smallest noncyclic
quotient is S3, which is proved in Claim 7 in Section 2. Hence the hypothesis nD 3 or
n� 5 is necessary in the theorem above.
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the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing
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The first statement of this theorem proves a conjecture of Margalit — see Chudnovsky,
Kordek, Li and Partin [7] and Scherich and Verberne [18] — stating that the smallest
noncyclic quotient of Bn is Sn for n � 5. For the nontrivial cases n 2 f5; 6g, this
was first proved by Caplinger and Kordek [4], and several recent papers [7; 4; 18]
prove lower bounds for the order of noncyclic quotients of braid groups, using totally
symmetric sets — see Kordek and Margalit [13, Section 2] — towards proving Margalit’s
conjecture. Our work builds further upon the idea of totally symmetric sets; see the
discussion after Lemma 8.

Since the automorphisms of symmetric groups are well understood, the second statement
in the theorem above immediately implies, for n¤ 4, the characterization of noncyclic1

homomorphisms from Bn! Sk , with k � n, originally due to Artin [1] for k D n (and
transitive homomorphisms) and improved by Lin [16, Theorem 3.9] for the remaining
cases.

Corollary 2 For n� 3 and n¤ 4; 6, all noncyclic homomorphisms f W Bn! Sn are
conjugate to the standard projection � . Also , the only exceptional (up to conjugation)
homomorphism f W B6! S6 comes from composing � with the only nontrivial (up
to conjugation) outer automorphism of S6, defined by .12/ 7! .1; 2/.3; 4/.5; 6/ and
.1; 2; 3; 4; 5; 6/ 7! .1; 2; 3/.4; 5/.

Artin noted that his proof in [1] “uses the existence of a prime between 1
2
n and n� 2

for n> 7 but it would be preferable if a proof could be found that does not make use
of this fact”. This fact, known as the Bertrand–Chebyshev theorem [5], is also crucial
for Lin’s proof of the above result [16, Theorem 3.9]. Our proof here does not use this
fact (and, to the best of our knowledge, this is the first such proof).

Remark 3 (exceptional case nD 4; Artin [1]) For completeness, we will record here
the exceptional noncyclic homomorphisms (up to conjugations) from B4 to Sk with
k � 4. Let �1, �2 and �3 denote the Artin generators of B4 and let ˛ D �3�2�1. We
see that B4 is generated by �1 and ˛. Then we have

(1) f1 W B4! S4 defined by �1 7! .1; 2; 3; 4/ and ˛ 7! .1; 2/;

(2) f2 W B4! S4 defined by �1 7! .1; 3; 2; 4/ and ˛ 7! .1; 2; 3; 4/;

(3) f3 W B4 ! A4 � S4 defined by �1 7! .1; 2; 3/ and ˛ 7! .1; 2/.3; 4/ (here A4

denotes alternating group on four letters, which uniquely embeds in S4);

(4) f4 W B4! S3 .� S4) defined by �1 7! .1; 2/ and ˛ 7! .1; 3/.

1By this we mean the image of the homomorphism is not cyclic.
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Our main result for mapping class groups Mod.†g/ of closed orientable surfaces
parallels Theorem 1, and is essentially the same as the result of Kielak and Pierro [12],
using other methods.

Theorem 4 Let g � 1. For any noncyclic quotient H of Mod.†g/, either jH j >
jSp.2g;Z2/j or H is isomorphic to Sp.2g;Z2/. Moreover , in the latter case the
quotient map Mod.†g/!H is obtained by postcomposing ˆ with an automorphism
of Sp.2g;Z2/.

Zimmermann [19] proved that, for g 2 f3; 4g, the smallest nontrivial2 quotient of
Mod.†g/ is Sp.2g;Zg/, and conjectured the same statement holds for arbitrary g � 3.
This conjecture was first proved by Kielak and Pierro [12] using the classification of
finite simple groups and representation theory of mapping class groups. Moreover,
Kielak and Pierro proved the same result holds for quotients of Mod.†b

g/, where b

is the number of boundary components, and we further extend their result here by
allowing punctures as well.

Theorem 5 Let g � 3. The smallest nontrivial quotient of Mod.†b
g;n/ is Sp.2g;Z2/

for n 2 f0; 1g, and Z2 for n � 2. If we furthermore assume n � 5, any noncyclic
quotient of Mod.†b

g;n/ of smallest order is isomorphic to either Sn or Sp.2g;Z2/

(depending on which group is smaller). Moreover , in any of the above cases , any
epimorphism to a quotient of smallest order is the standard projection , postcomposed
with an automorphism of the image.

As indicated, some of the results above were previously known, but our proofs are
considerably easier. For example, we do not use the classification of finite simple
groups or the Bertrand–Chebyshev theorem. We use an inductive orbit stabilizer
method, described in Section 3, which should also be applicable in other settings. Our
approach is similar to that of Chudnovsky, Kordek, Li and Partin [7], Caplinger and
Kordek [4] and particularly Scherich and Verberne [18], in that we all consider some
group actions of the quotient (of braid groups), and use the orbit stabilizer theorem
to find a bound on the size of the quotient. The advantage of our approach is that we
prove an optimal lower bound on orbit size (by looking at the corresponding orbit size
in the candidate smallest quotient), and moreover use induction to find the stabilizer
size. For the two families of groups we consider here, this not only gives us the optimal

2For g � 3, Mod.†g/ is perfect and therefore its smallest nontrivial and noncyclic quotients are the same.
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lower bounds for size of the smallest quotient at the numerical level, but we also obtain
the smallest quotient group up to isomorphism, and moreover a characterization of all
possible minimal quotient maps.

Let us note that, if G!H and H ! I are surjective group homomorphisms and I is
smallest noncyclic (respectively nontrivial) quotient of G, then I is also the smallest
noncyclic (respectively nontrivial) quotient of H. Thus, an immediate consequence of
Theorems 4 and 5 is the following result:

Corollary 6 For g � 1 (respectively g � 3), Sp.2g;Z2/ is the smallest noncyclic
(respectively nontrivial ) quotient of Sp.2g;Z/.

Acknowledgements The author would like to thank Dan Margalit for various useful
discussions, suggesting to look at results for mapping class groups, and especially
for explaining to us the much shorter proof of Lemma 8. The author is grateful to
John Etnyre for helpful suggestions. The author thanks the referee for comments and
corrections. The author is grateful to Dawid Kielak and Emilio Pierro for comments
on an earlier draft of this paper. This work is partially supported by NSF grant DMS-
1906414.

2 Background

In this section we will collect several necessary definitions and results. We will also
prove a claim, which will serve as base cases for our inductive proofs later.

Braid groups

The most well-known quotient of the braid group Bn [2] on n strands is the symmetric
group Sn on n letters, obtained by forgetting all crossing information. This quotient
map � W Bn! Sn can alternatively be described as adding the relations �2

i D 1 (here
the �i are half twists) to the Artin presentation [2] of the braid group Bn:

Bn D
˚
�1; : : : ; �n�1 W �i�iC1�i D �iC1�i�iC1 for all 1� i < n� 1;

�i�j D �j�i if ji � j j> 1
	
:

Consider Bn as the mapping class group of the closed unit disc with n marked points
p1; : : : ;pn with increasing first coordinates and identical second coordinate.

Geometry & Topology, Volume 27 (2023)
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Consider, for all 1� i ¤ j � n, the arcs i;j D j ;i joining the pi and pj going over
all pk between pi and pj , and let �i;j denote the right-handed half twists about i;j .
For 1� i < j � n, the various �i;j are the Birman–Ko–Lee generators [3] generators
of the braid group Bn, and we note that �i D �i;iC1.

Mapping class groups

Let †b
g;n denote the orientable surface of genus g with n punctures and b boundary

components (where we will drop n and b from the notation if they are zero), and
denote its mapping class group by Mod.†b

g;n/. Our convention is that mapping classes
preserve orientation, fix boundary components, and can permute the punctures. The
subgroup PMod.†b

g;n/will denote the pure mapping class group, consisting of mapping
classes that fix the punctures.

We get an epimorphism ˆ from Mod.†b
g/ by composing the capping homomorphism

[8, Section 3.6.2] with the symplectic representation [8, Section 6.3] and the mod two
reduction

Mod.†b
g/

capping
����!Mod.†g/

symplectic
������! Sp.2g;Z/

reduce
����! Sp.2g;Z2/:

More generally, for †g;n, let us consider the action of the mapping class group on
homology. If we take a free basis of H1.†g;n;Z/ by taking a standard symplectic basis
curves for each genus and a the class of a loop surrounding each puncture, the action of
any mapping class can be represented by an invertible integral matrix in GL.2gCn;Z/.
Moreover, for any such matrix, the top left block is a symplectic matrix, the top right
block is zero, and the bottom right block will be a permutation matrix. Thus, by
projecting to diagonal blocks, we obtain epimorphisms from Mod.†g;n/ (and thus
from Mod.†b

g;n/ as well by capping) to Sp.2g;Z/ (and hence to Sp.2g;Z2/) and Sn.
We will call these homomorphisms standard projections from Mod.†b

g;n/ to Sp.2g;Z2/

and Sn. It can be seen that this standard projection from Mod.†b
g;n/ to Sn is the same

as the induced action of the mapping classes on the punctures.

Some facts about symmetric and symplectic groups It is well known that, for
n � 5, the only nontrivial quotient of Sn is Z2 (obtained by modding out by the
simple group An). Also, it is known — see [9, Chapter 3] — that the symplectic group
Sp.2g;Z2/ is simple for g� 3, and for the exceptional cases we have the isomorphisms
Sp.2;Z2/Š S3 and Sp.4;Z2/Š S6.

The following claim gives the base cases for our inductive proofs later:

Geometry & Topology, Volume 27 (2023)
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Claim 7 The smallest noncyclic quotient of B3, B4 and Mod.†1/D SL.2;Z/ is S3.
Moreover , all epimorphisms from these three groups to S3 are related by a conjugation
of S3.

Proof The natural homomorphism � and f4 from Remark 3 show S3 is a quotient of
B3 and B4, respectively. Moreover, it is easy to see that � W B3! S3 factors through
B3=Z.B3/Š PSL.2;Z/, and thus S3 is a quotient of PSL.2;Z/ and hence SL.2;Z/.
We note that all the groups except S3 of order at most jS3j D 6 are abelian (the only
noncyclic group among them is the Klein four group), and thus cannot be a noncyclic
quotient of a group with cyclic abelianization (such as braid groups or SL.2;Z/). The
last statement of the claim follows3 by noting that the only pair of noncommuting
elements in S3 satisfying the braid relation are the transpositions.

3 The inductive orbit stabilizer method

The orbit stabilizer theorem is widely used in computing orders of finite groups which
naturally act on a space, and, as this paper illustrates, it is also useful for determining
orders of smallest noncyclic4 quotients of groups. In our context we work with an
infinite family of groups, and we can use the orbit stabilizer theorem inductively. We
formulate the steps of the method below. While this method may not be new, proofs of
similar results in the literature seem to rely on more complicated methods, as mentioned
in the introduction.

Suppose we have a nested family of groups .Gn/n�1 with cyclic abelianizations. If we
want to show the smallest noncyclic quotient is the family of groups .Hn/n�1, with
a family of quotient maps �n W Gn!Hn, it suffices to carry out the following steps
(after checking base cases):

(1) Lower bound on orbit size Find the size k of an orbit of the conjugation action
of Hn. Find a suitable collection of elements x1; : : : ;xk in Gn whose images
generate the orbit, and show that the normal closure of each xix

�1
j contains the

commutator subgroup G0n of Gn (equivalently, under any noncyclic quotient of
Gn, the quotient classes Nxi are all distinct).

(2) Inductively find size of stabilizer For some noncyclic quotient q W Gn! In,
inductively bound the size of the stabilizer of the quotient class of q.x1/ in In, so

3For nD 4, a similar (but more tedious) check verifies Remark 3.
4It may be possible to adapt this method to find smallest nontrivial/nonabelian/nonsolvable quotients.
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that the orbit stabilizer theorem implies jInj�jHnj. For instance, if the centralizer
of x1 contains hx1i�Gn�i , it may be possible to get the desired result by applying
the inductive hypothesis on the induced quotient Gn�i! q.Gn�i/=Z.q.Gn�i//.
Finally, if jInj D jHnj, show that In is isomorphic to Hn. This follows if the
kernel of q contains the kernel of �n, which moreover shows any epimorphism
from Gn to Hn is �n composed with an automorphism of Hn.

Some modifications, such as considering a different group action, may be needed to
make this method work in a particular situation, and we will see one such modification
for the mapping class groups case later.

4 Smallest noncyclic quotients of braid groups

We will carry out the steps of the inductive orbit stabilizer method here for Artin braid
groups, and show that smallest noncyclic quotients are symmetric groups.

Lower bounds for size of orbit

Let us begin by observing that the conjugacy class of all transpositions in Sn consists
of

�
n
2

�
elements. We will take the xi to be the Birman–Ko–Lee generators of the braid

group, as mentioned in Section 2. The following lemma will complete the first step:

Lemma 8 For n� 5 and a noncyclic quotient of Bn, the
�
n
2

�
quotient classes x�i;j are

distinct.

We should note that the lemma does not hold for n D 4, as there is an exceptional
homomorphism from B4 to B3 (which can be further quotiented to obtain f4 WB4!S3,
as mentioned in Remark 3) defined by �1 7! �1, �2 7! �2 and �3 7! �1.

Totally symmetric sets are subsets of a group with the property that any homomorphism
restricts to an injective map on that set or to a trivial map on that set (that is not the
definition, but a consequence; see [13, Lemma 2.1]). Lemma 8 can be similarly phrased
as saying that the set f�i;j g satisfies this same property. We will give two proofs of
this lemma; the first is essentially in [6, Lemma 4.2], and the second is more hands-on.

Proof Suppose we have i;j and k;l with fi; j g ¤ fk; lg having the same quotient
class. Since n� 5, we can find an arc ı between two marked points disjoint from k;l

and sharing an endpoint with i;j . It follows that ı and its image under �i;j�
�1
k;l

share
one endpoint and have disjoint interiors. Thus, by a change of coordinates principle
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[8, Section 1.3.2], the commutator of �ı (the right-handed half twist about ı) and
�i;j�

�1
k;l

is conjugate to �1�
�1
2

. Now, as �i;j�
�1
k;l

is in the kernel of the quotient map, so
is its commutator with �ı , and thus so is �1�

�1
2

. The result now follows since �1�
�1
2

normally generates B0n (which is a direct consequence of the braid and far commutation
relations), using the fact that Bn=B

0
n is cyclic.

Alternative proof We will repeatedly use the following two observations:

(1) If two elements x and y in any group satisfy both the braid and far commutation
relations, then xyxD yxyD) xyxD xyyD) xD y, ie x and y must coincide.

(2) For any distinct i , j and k, if x�i;j is same as x�j ;k , then, by the partial commuta-
tion relation,5 they are also equal to x�i;k .

Now, let us suppose the lemma is not true; let us first consider the case x�i;j D x�j ;k with
distinct i , j and k, and, by the second observation above, we may assume i < j < k.
For any l distinct from i , j and k, we see that, if l is (respectively is not) between i

and j, then by the first observation we have x�k;l D x�j ;k (respectively x�k;l D x�i;j ). By
repeatedly applying the second observation, we see all the x�i;j must coincide, and thus
the quotient is cyclic (as Bn is generated by the half twists �i), a contradiction.

Let us now consider the case x�i;j D x�k;l for distinct i , j , k and l . Since nC 1 � 5,
we can find m distinct from all of i , j , k and l . Let o 2 fi; j ; k; lg be such that
jo�mj is smallest. By symmetry, without loss of generality, we may assume that
o 2 fi; j g. We see that x�i;j and x�o;m satisfies both the braid relation (as o is common)
and the far commutation relation (as x�i;j D x�k;l , and k;l and o;m are disjoint). By
the first observation, we must have x�i;j D x�o;m, and, by our discussion in the previous
paragraph, all the x�i;j must be the same, again leading to a contradiction.

Inductive step

Now we will use induction to prove Theorem 1. (we repeat the statement below for
convenience):

Inductive hypothesis Suppose nD 3 or n � 5. If G is a noncyclic quotient of Bn,
then either jGj > jSnj D n! or G is isomorphic to Sn. Moreover, in the latter case
the quotient map Bn! G is obtained by postcomposing the natural map � with an
automorphism of Sn.

5For an appropriate �2f�1; 1g, depending on the relative position among i , j and k, we have ��i;j .j ;k/D
i;k and hence we get the partial commutation relation �i;k D �

�
j ;k
�i;j�

��
j ;k

.
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We will use induction on n in steps of two, and we will use the base case nD 3 from
Claim 7, and the base case nD 6 from the computer-assisted proof of Caplinger and
Kordek [4]. But we can also do the n D 6 case by hand with a separate argument
similar to the inductive proof, as explained after this proof.

Proof idea Note that the centralizer of a transposition .1; 2/ in Sn is f1; .1; 2/g�Sn�2,
where Sn�2 is the symmetric group on the letters 3; : : : ; n. Similarly, we see that the
centralizer of x1D �1 in Bn contains h�1i�Bn�2, which projects to f1; .1; 2/g�Sn�2

under � . If, under some noncyclic quotient of Bn, the centralizer of Nx1 is h Nx1i�Bn�2,
then use the inductive hypothesis on the size of Bn�2. But h Nx1i and Bn�2 may not
intersect trivially; however, we see that their intersection is central in Bn�2. Therefore,
we can use the inductive hypothesis on Bn�2=Z.Bn�2/.

Proof of Theorem 1 As mentioned above, we will use the base cases n 2 f3; 6g, and
use induction on n in steps of two, and this will imply the result for all odd n� 5 and
even n� 8.

We will assume the inductive hypothesis is true for k D n� 1 and prove the statement
for k D nC 1 (with nC 1 � 5/. Suppose q W BnC1 ! G is a noncyclic quotient of
smallest order. By Lemma 8, it follows that all the 1

2
.nC 1/n quotient classes x�i;j

must be distinct for noncyclic G. It is known that all the �i;j are conjugate in BnC1, so
the x�i;j are conjugate in G. Therefore, if we consider the group action of G on itself
by conjugation, the orbit stabilizer theorem tells us

(1) jGj D jOjjC j � 1
2
.nC 1/njC j;

where C denotes the centralizer (ie stabilizer of the conjugation action) of the element
x�1;2 and O denotes its conjugacy class (ie the image of the half twists). Since �1D �1;2

commutes with the subgroup V1;2 of BnC1 generated by �3; : : : ; �n (thus V1;2 is
isomorphic to Bn�1), we see C contains H1;2 WD q.V1;2/ as a subgroup, and clearly
it also contains x�1;2. It follows from Lemma 8 that H1;2 is not cyclic, and so we can
apply the inductive hypothesis to any noncyclic quotient of H1;2.

Let M denote the cyclic subgroup generated by x�1;2 in G. We see that Y DH1;2\M

is in the center Z of H1;2 as x�1;2 commutes with all elements H1;2. If H1;2=Z is
cyclic, we know that H1;2 is abelian, but, as H1;2 is a quotient of V1;2 Š Bn�1, it has
to factor through the abelianization and is therefore cyclic, contradicting Lemma 8.
Hence, H1;2=Z is a noncyclic quotient of Bn�1, and so, by the inductive hypothesis for
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kDn�1, we have jH1;2=Zj� .n�1/!. Thus, we have jH1;2j� jZj.n�1/!�jY j.n�1/!.
Also, if D denotes the subgroup of C generated by H1;2 and M, we see that M is in
the center of D and thus jDj D jM=Y jjH1;2j � jM j.n� 1/!.

By combining with (1), we see that

(2) jGj � 1
2
.nC1/njC j � 1

2
.nC1/njDj � 1

2
.nC1/njM j.n�1/!D .nC1/! � 1

2
jM j:

Thus, the only way jGj � .nC 1/! is if jM j D 1 (in this case x�1;2 D 1, so G is the
trivial group, a contradiction) or jM j D 2. If the latter case happens then q.�2

i /D 1 for
all i , and thus q factors through the standard quotient map � W BnC1! SnC1. Since
the only proper quotient of SnC1 (for nC 1 � 5) is Z2, it must be the case that G is
isomorphic to SnC1, as required. Moreover, this shows that q is a composition of the
standard map � with an automorphism of SnC1.

Proof of Theorem 1 for n D 6 We will show the desired result for this case using a
similar argument as above, and we use the same notation. Let m denote the order of x�1;2

in G (a noncyclic quotient of B6 of smallest order). If mD 2, we know q W B6! G

factors through S6, and therefore the desired result holds, so we will assume m > 2

hereafter. By (1), we have jGj � 15jC j � 15jH1;2j. The following claim gives a lower
bound on jH1;2j which implies jGj � 6!, and thus jGj D 6!:

Claim 9 For m > 2, we have jH1;2j � 48, and equality holds only if m D 4 and
x�2

3
D x�2

5
.

Proof We see that the
�
4
2

�
D 6 elements x�i;j are distinct for 3 � i < j � 6 (we are

applying Lemma 8 for n D 6, and not 4). Thus, by the orbit stabilizer theorem, we
have jV1;2j D j

yOjj yC j, where yO and yC denote the orbit and centralizer of the element
x�3;4 D x�3 in V1;2. We see that yC contains the cyclic subgroups generated by the
commuting elements x�3 and x�5.

If these subgroups coincide, we will have x�5 D x�
p
3

for some p, and, by an appropriate
conjugation in G (by the image of a periodic braid), we get x�3 D x�

p
1

and x�4 D x�
p
2

.
It would therefore follow that G is generated by x�1 and x�2, but then the stabilizer
of x�4 is all of G, contradicting that we have a nontrivial orbit of x�4. Thus, yC properly
contains the cyclic subgroup generated by x�5, and so j yC j � 2m. For mD 3, we see the
subgroups generated by x�3 and x�5 cannot intersect (or otherwise they coincide) and
therefore j yC j D 9, and thus jV1;2j � 6 � 9D 54. Lastly, for m� 4, we have j yC j � 2m

and so jV1;2j D j
yOjj yC j � 6 � 2m D 12m � 48. Moreover, it is easily checked that

jV1;2j D 48 if and only if mD 4 and x�2
3
D x�2

5
.
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It remains to consider the case jGj D 6!, m D 4 and x�2
3
D x�2

5
. By conjugation by

the image of a periodic braid, it follows that x�2
1
D x�2

3
. The nontrivial (since m¤ 2)

element x�2
1

(commuting with x�1, x�3, x�4 and x�5) is in the center of G, as x�2 commutes
with x�2

5
(Dx�2

1
). Thus, G has nontrivial center Z.G/, and so G=Z.G/ must be a strictly

smaller noncyclic quotient of B6, a contradiction.

We will now see how Theorem 1 implies Artin and Lin’s results.

Proof of Corollary 2 If f W Bn! Sk is a noncyclic homomorphism, by Theorem 1,
we must have k D n and we have f D g ı� , where g W Sn! Sn is an automorphism.
Now we use the fact, due to Hölder [11], that for n¤ 2; 6 all automorphisms of Sn are
inner, and there is exactly one outer automorphism of S6 up to conjugation, which is
mentioned in the statement of the corollary.

5 Smallest noncyclic quotients of mapping class groups

We will use a slightly modified form of the inductive orbit stabilizer method here. In
the inductive step, it will be more convenient to look at the conjugation action on a
pair of elements (instead of a single element) of the quotient.

Lower bounds for size of orbit

We note that the orbit of all transvections in Sp.2g;Z2/ is 22g � 1, since these are
in bijection with primitive vectors in .Z=2Z/2g. In this case we will take the xi to
be suitable right-handed Dehn twists about simple closed curves, so that their mod
two homology classes give us all primitive vectors in .Z=2Z/2g. Corresponding to
each primitive vector v with zeroes and ones in the first homology H1.†g;Z/, we will
construct a simple closed curve ˛v realizing this homology class, and denote by Tv the

G
B

R

G B

R

G B
R

Figure 1: Illustrative examples of finding a new simple closed curve B (in
blue) disjoint from the red curve R and having geometric intersection number
one with the green curve G.
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right-handed Dehn twist about the curve ˛v. Starting at the first entry of v, for each
nonzero pair .p; q/ of entries we can draw the .p; q/ curve on the corresponding genus,
and we can join these curves by standard bands running straight across. For instance,
the red and green curves in Figure 1, left, show the .1; 0/ and .0; 1/ curves on a genus,
which is then band-summed with the other .p; q/ curves. It is easy to see that, if we
have two binary vectors v and w which differ on the same pair of entries, then, by
localizing to the corresponding genus, we can find a third simple closed curve ˇ which
intersects exactly one of ˛v or ˛w once and is disjoint from the other, as illustrated in
Figure 1.

Remark 10 As Dan Margalit pointed out to us, the above construction can also be
done using double branched covers, which can be more useful in certain situations.
By quotienting out by the hyperelliptic involution, we can consider †g as a double
branched cover over the sphere †0, with 2gC 2 branch points y1; : : : ;y2gC2. We can
think of the branched cover of the pair of branch points y2gC1 and y2gC2 as forming
a tube connecting two disjoint †gC1

0
’s, and the rest of the pairs correspond to adding

genus. For each subset of the first 2g branch points, we can consider a simple closed
curve in †0;2gC2 enclosing these points (we think of the region containing y2gC2 as
outside), and if necessary y2gC1 so that the total number of points is even. The lift
of this curve realizes the mod two homology class of the binary vector corresponding
to which branch points were chosen (in fact there is a bijection between H1.†gIZ2/

and the even subgroup of H1.†0;2gC2IZ2/). Lastly, let us observe that, given any two
mod two nonhomologous simple closed curves in †0;2gC2, it is possible to choose an
arc joining two branch points which intersects one and is disjoint from the other, and
its lift is a simple closed curve in †g having the same property.

Lemma 11 For g � 1 and any noncyclic quotient of Mod.†g/, the 22g � 1 quotient
classes Tv must be distinct.

Proof Suppose we have two different binary vectors v and w such that Tv D Tw . By
our above discussion, we can find a simple closed curve ˇ such that Tˇ commutes
with one of Tv or Tw and satisfies the braid relation with the other. Hence, by the first
observation in the alternative proof of Lemma 8, we see that, for two simple closed
curves c and d with geometric intersection number one, we have Tc D Td . By [15,
Lemma 2.1], the quotient must be abelian (and hence cyclic since all abelianizations of
Mod.†g/ are cyclic [8, Chapter 5]), which gives a contradiction.
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Inductive step

In this step, we will consider the conjugation action on a pair of group elements, but the
size of the orbit readily follows from the conjugation action considered in the first step.

Proof of Theorem 4 Let us first recall the statement we are going to prove:

Inductive hypothesis Let g � 1. For any noncyclic quotient H of Mod.†g/, either
jH j> jSp.2g;Z2/j or H is isomorphic to Sp.2g;Z2/. Moreover, in the latter case the
quotient map Mod.†g/!H is obtained by postcomposing ˆ with an automorphism
of Sp.2g;Z2/.

We will use induction on g, and we note that the base case gD 1 follows from Claim 7.
We will inductively assume the statement is true for k D g� 1 (with g � 2), and prove
it for k D g. Let q W Mod.†g/! H be a quotient of smallest order. Let R and S

denote the right-handed Dehn twists about the simple closed curves ˛e1
and ˛e2

(we
use ei to denote the i th standard basis vector in Z2g, and the same notation as in the
previous section). By Lemma 11, we know that the conjugacy class of the quotient
class R in H has size at least 22g�1. We will consider the conjugation action of G on
the set of all ordered pairs of elements in G. Using our original collection of curves ˛v ,
we have 22g�1.22g � 1/ ordered pairs with geometric intersection number one, so,
by the change of coordinates principle [8, Section 1.3.3], we see that the orbit of the
ordered pair .R;S/ under the conjugation action is at least 22g�1.22g � 1/. We see
the stabilizer of (R;S) contains the image I under q of Mod.†1

g�1
/ (where †1

g�1
is

obtained by cutting †g along the separating curve which is the boundary of a regular
neighborhood of ˛e1

and ˛e2
, ie we are deleting the leftmost genus containing ˛e1

and ˛e2
), since Mod.†1

g/ fixes ˛e1
and ˛e2

. If Z.I/ denotes the center of this image I,
we see that I=Z.I/ is a noncyclic quotient (otherwise I must be abelian, and thus
the various conjugate Tv must map to the same element, contradicting Lemma 11)
of Mod.†1

g�1
/. Since the boundary parallel Dehn twist in Mod.†1

g�1
/ is central, it

follows that I=Z.I/ is also a noncyclic quotient of Mod.†g�1/. By the inductive
hypothesis for k D g� 1, we have that jI j � jI=Z.I/j � jSp.2g� 2;Z2/j. Thus, by
the orbit stabilizer theorem, we have

(3) jH j � 22g�1.22g
� 1/jI j � 22g�1.22g

� 1/jSp.2g� 2;Z2/j D jSp.2g;Z2/j:

Thus, we get the desired result at the numerical level and, moreover, in the case of
equality above, we see that Z.I/ is trivial. Moreover, from the inductive hypothesis
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we have that I is isomorphic to Sp.2g� 2;Z2/. It follows that separating twists and,
for g � 3, genus one bounding pairs are in the kernel of q. By results of Birman,
Powell and Johnson [10], for g � 3 (respectively g D 2), genus one bounding pairs
(respectively separating twists) normally generate the Torelli group, so we see that q

factors through q1 W Sp.2g;Z/!H. Moreover, by the inductive hypothesis, some Tv

has order 2, and so the kernel of q1 contains squares of all transvections, and thus,
by [17, Proposition A3], the kernel of q1 contains the level two congruence subgroup.
Consequently, q in fact factors through Sp.2g;Z2/, and the result follows.

6 Allowing punctures and boundary components

In this final section, we will see some results about smallest noncyclic/nontrivial
quotients of Mod.†b

g;n/. These results are consequences of our main results and facts
about the abelianizations of mapping class groups, discussed below:

Abelianization of mapping class groups It is known [14, Theorem 5.1] that the
abelianization of the pure6 mapping class group PMod.†g;n/ is

(1) Z12 if g D 1 and b D 0;

(2) Zb if g D 1 and b � 1;

(3) Z10 if g D 2, and

(4) trivial if g � 3.

This implies the following result (likely known, but we could not find it in the literature):

Lemma 12 The abelianization of Mod.†b
g;n/ equals Z2 for g � 3 and n� 2.

Proof By the above result and the change of coordinates principle, we see under the
abelianization map of Mod.†b

g;n/, all essential Dehn twists map to the identity, and
all right-handed half twists map to the same element. If we consider the subsurface
†c

g of †b
g;n such that almost all the additional boundary components added consist of

standard loops enclosing exactly two punctures (and one containing a single puncture
if n is odd), we see that squares of half twists must also map to the identity in the
abelianization of Mod.†b

g;n/. The result follows by noting that the abelianization cannot
be trivial since we have an epimorphism from Mod.†b

g;n/ to Sn, and hence to Z2.

6We caution the reader that the reference we are citing follows the convention that mapping classes fix
punctures and thus their mapping class group coincides with our pure mapping class group.
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We now find the smallest nontrivial quotient of Mod.†b
g;n/ for g � 1 and arbitrary n

and b.

Theorem 13 The smallest nontrivial quotient of Mod.†b
g;n/ of smallest order is

(1) Z2 for n� 2 or g 2 f1; 2g, and arbitrary b;

(2) Sp.2g;Z2/ for g � 3 and n 2 f0; 1g, and arbitrary b.

Proof For n� 2, we get an epimorphism Mod.†b
g;n/! Sn by considering the action

on the punctures, and we can further quotient to the unique smallest nontrivial group Z2.
Thus, it only remains to consider n 2 f0; 1g, and so all mapping classes are pure. From
the aforementioned result about abelianization, we see that, for g 2 f1; 2g, the smallest
nontrivial quotient is Z2. Also, the same result tells us that, for g � 3, there can be no
nontrivial abelian quotients. Hence, all boundary parallel and puncture surrounding
Dehn twists (which are central) must map to the identity under any nontrivial quotient
of smallest order (otherwise we get an even smaller nontrivial quotient by quotienting
by the center), and thus we reduce to the case in Theorem 4.

We also find the smallest noncyclic quotient of Mod.†b
g;n/ for a wide range of cases.

Theorem 14 Any noncyclic quotient of Mod.†b
g;n/ of smallest order is

(1) the smaller of the groups among Sn and Sp.2g;Z2/ for g � 3, n � 5 and
arbitrary b;

(2) S3 for g � 3, n 2 f3; 4g and arbitrary b;

(3) Sp.2g;Z2/ for g�2, n2f0; 1g and arbitrary b (also for gD1 and n; b 2f0; 1g);

(4) Z2˚Z2 for g D 1, n 2 f0; 1g and b � 2.

Proof Let us consider the center of a noncyclic quotient of Mod.†b
g;n/ of smallest

order. The only way this center is nontrivial is if the quotient is noncyclic abelian
(otherwise we get a strictly smaller noncyclic quotient). This situation does happen for
g D 1, n 2 f0; 1g and b � 2, where the abelianization of Mod.†b

g;n/ is Zb , which has
the Klein four group (the unique noncyclic group of smallest order) as a quotient.

Also, the above is the only case (among the ones mentioned in the statement) where
this can happen, since the abelianization of Mod.†b

g;n/ is Z2 for g � 3 and n� 2, and
Z=10Z for gD 2 and n 2 f0; 1g. Thus, for these cases, the smallest noncyclic quotient
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must necessarily be nonabelian. Moreover, all boundary parallel Dehn twists must map
to the trivial element in the quotient, and so we reduce to the case b D 0 (and, if nD 1,
the Dehn twist about the curve surrounding the puncture is also central, so we can also
reduce to the case nD 0). Hence, for g � 2, n 2 f0; 1g and arbitrary b (and also for
gD 1 and n; b 2 f0; 1g), we reduce to the case nD bD 0, and we get the desired result
by Theorem 4.

If n 2 f3; 4g and g � 3, we see that S3 is a quotient of Mod.†b
g;n/ (using the induced

action on the punctures and the exceptional homomorphism S4! S3). As we saw
earlier, S3 must be the smallest quotient in this case as it is the unique smallest
nonabelian group.

Finally, we now consider the case g � 3, n� 5 and b D 0. Suppose we have a quotient
of Mod.†g;n/ such that the restriction to both Mod.†1

g/ and Bn Š Mod.†1
0;n
/ are

both cyclic. Then, by Theorem 13, it must be the case that the image of Mod.†1
g/ is

trivial. Moreover, by the braid relation, all half twists in Mod.†g;n/ must map to a
single element. Given any Dehn twist in Mod.†g;n/, by a change of coordinate we
can find a half twist commuting with it. So we see that the image of each half twist is
a central element in the quotient, as Mod.†g;n/ is generated by Dehn twists and half
twists. This contradicts our observation earlier, so one of the restrictions to Mod.†1

g/

or Bn is noncyclic, giving us the desired result by using Theorems 1 and 13.

To complete the proof of Theorem 5, it remains to verify the statement about maps.
However, let us note that the corresponding statement is not true for all the cases in
Theorem 14. For instance, for b � 3, there are multiple epimorphisms from Mod.†b

1
/

to Z2˚Z2, even up to postcomposing by automorphisms of the image.

Proof of Theorem 5 For g� 3 and n� 5, let us first consider the case that the quotient
of Mod.†b

g;n/ of smallest order is Sn. We know from the proof of Theorem 14 that we
can reduce to the case bD 0, and the restriction of this quotient on Mod.†1

0;n
/ is Sn as

well. Since Mod.†1
0;n
/ commutes with Mod.†1

g/, and Sn is centerless, it follows that
Mod.†1

g/ is in the kernel of this quotient map. As all Dehn twists in Mod.†g;n/ are
conjugate, it follows that the kernel contains the pure mapping class group PMod.†g;n/.
Consequently, the quotient map factors through Mod.†g;n/=PMod.†g;n/Š Sn, and
the desired result follows.

For g � 3 and n� 5, let us now consider the case that the quotient of Mod.†b
g;n/ of

smallest order is Sp.2g;Z2/. Similar to our above discussion, we see that the quotient
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map restricted to Mod.†1
g/ is surjective, and all half twists are in the kernel of the

quotient map. We know the epimorphism from Mod.†1
g/ to Sp.2g;Z2/ has to send the

boundary parallel Dehn twists to the identity, and so it factors through Mod.†g/. By
Theorem 4, we know this map is the standard projection ˆ, up to an automorphism h

of Sp.2g;Z2/. By looking at the action on Z2g
2

, we see that all the Dehn twists about
curves not contained in †1

g (next to the punctures) in [8, Figure 4.10] must map to the
same element. Since we also know that all half twists are in the kernel of the quotient
map Mod.†b

g;n/! Sp.2g;Z2/, it follows that this map coincides with the standard
projection, postcomposed with the same automorphism h of Sp.2g;Z2/. ,

For g�3 and n2f0; 1g, the result follows by the same argument as in the last paragraph.
Lastly, for g � 3 and n� 2, any homomorphism from Mod.†b

g;n/ to an abelian group
must factor through the abelianization of Mod.†b

1
/, which, by Lemma 12, is Z2. Hence,

the result follows, and moreover this map is unique since Z2 does not have a nontrivial
automorphism.
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