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The infimum of the dual volume of
convex cocompact hyperbolic 3–manifolds

FILIPPO MAZZOLI

We show that the infimum of the dual volume of the convex core of a convex co-
compact hyperbolic 3–manifold with incompressible boundary coincides with the
infimum of the Riemannian volume of its convex core, as we vary the geometry by
quasi-isometric deformations. We deduce a linear lower bound of the volume of
the convex core of a quasi-Fuchsian manifold in terms of the length of its bending
measured lamination, with optimal multiplicative constant.

30F40; 52A15, 57M50

Introduction

Let M be a complete hyperbolic 3–manifold and let CM be its convex core, namely
the smallest nonempty convex subset of M . Then M is said to be convex cocompact if
CM is a compact subset. The notion of dual volume of the convex core V �

C
.M / arises

from the polarity correspondence between the hyperbolic and the de Sitter spaces; see
Schlenker [36, Section 1] and Mazzoli [28]. If M is a convex cocompact hyperbolic
3–manifold, then V �

C
.M / coincides with VC .M /� 1

2
`m.�/, where VC .M / stands for

the usual Riemannian volume of the convex core and `m.�/ denotes the length of the
bending measured lamination � with respect to the hyperbolic metric m of the boundary
of the convex core of M . Our aim is to study the infimum of V �

C
, considered as a function

over the space QD.M / of quasi-isometric deformations of a given convex cocompact
hyperbolic 3–manifold M with incompressible boundary. In particular, we will prove:

Theorem A For a convex cocompact hyperbolic 3–manifold M with incompressible
boundary ,

inf
M 02QD.M /

V �C .M
0/D inf

M 02QD.M 0/
VC .M

0/:

Moreover , V �
C
.M 0/D VC .M

0/ if and only if the boundary of the convex core of M 0

is totally geodesic.
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2320 Filippo Mazzoli

When M is a quasi-Fuchsian manifold, Theorem A can be equivalently stated as

(1) VC .M
0/� 1

2
`m0.�0/

for every M 0 2QD.M /, where `m0.�0/ is the length of the bending measure of @CM0.
As a consequence of the variation formulae of VC (see Bonahon [4]) and of V �

C
(see

Mazzoli [29] and see also Krasnov and Schlenker [20]), we will see in Corollary 4.1
that the multiplicative constant 1

2
is optimal, and is realized near the Fuchsian locus.

Theorem A is to the dual volume as the following result of Bridgeman, Brock and
Bromberg is to the renormalized volume:

Theorem [9, Theorem 3.11] For every convex cocompact hyperbolic 3–manifold
M with incompressible boundary,

inf
M 02QD.M /

VR.M
0/D inf

M 02QD.M /
VC .M

0/:

Moreover , VR.M
0/D VC .M

0/ if and only if the boundary of the convex core of M is
totally geodesic.

By work of W P Thurston, if the compact 3–manifold with boundary N WDM [@1M

is acylindrical, then there exists a unique convex cocompact structure M0 2QD.M /

whose convex core has totally geodesic boundary. In [41] (see also [40]), Storm proved
that the infimum of the volume of the convex core function VC WQD.M /!R is equal
to half the simplicial volume of the doubled manifold D.N /. Moreover, the infimum
is realized exactly when N is acylindrical, and it is achieved at M0. Theorem A
and [9, Theorem 3.11] then imply that the same characterization holds true for the
infimum of the dual volume and the renormalized volume, respectively. In the case of the
renormalized volume VR , such description of inf VR was first established by Pallete [31],
without making use of Storm’s result. Bridgeman, Brock and Bromberg [10] recently
introduced a notion of surgered gradient flow of the renormalized volume in the
relatively acylindrical case, which allowed them to obtain new comparisons between
the renormalized volume and the Weil–Petersson geometry of the deformation spaces
of convex cocompact 3–manifolds, generalizing in particular the works of Brock [12]
and Schlenker [38]. In the same work, a new proof of Storm’s result in the acylindrical
case is obtained as a byproduct of their analysis; see in particular [10, Corollary 6.5].

Dual volume, renormalized volume and Riemannian volume of the convex core are
related by the chain of inequalities

V �C .M / WD VC .M /� 1
2
`m.�/� VR.M /� VC .M /� 1

4
`m.�/� VC .M /:

Geometry & Topology, Volume 27 (2023)
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Here the second inequality is due to Schlenker [38], and the lower bound of VR is proved
in [9, Theorem 3.7]. Observe in particular that Theorem A implies [9, Theorem 3.11],
which concerns the infimum of the renormalized volume. The requirement on M to
have incompressible boundary is necessary; indeed, it has been shown by Pallete [32]
that there exist Schottky groups with negative renormalized volume.

Our proof of Theorem A broadly follows the same strategy as the work of Bridgeman,
Brock and Bromberg [9], with some necessary differences. The authors of [9] interpret
the renormalized volume as a function VR over the Teichmüller space T .@1M / of
the conformal boundary at infinity of M (by the works of Bers [1], Kra [18] and
Maskit [27]), and they estimate the difference jVR �VC j as one follows the (opposite
of the) Weil–Petersson gradient flow of VR on T .@1M /. In order to study the dual
volume function, the analogy between the variation formula of the renormalized volume
(see the work of Krasnov and Schlenker [19, Lemma 5.8], or Section 1.6) and the dual
Bonahon–Schläfli formula [29] would tempt us to consider V �

C
as a function of the

Teichmüller space T .@CM/, seen as the deformation space of hyperbolic structures
on the boundary of the convex core of M . However, the hyperbolic structure on
@CM is only conjecturally thought to provide a parametrization of the quasi-isometric
deformation space of M . To avoid this difficulty, we rather focus our attention on a
family of functions V �

k
approximating V �

C
, for which a similar procedure is possible.

Given k, a real number in the interval .�1; 0/, we say that an embedded surface
†k �M is a k–surface if its first fundamental form (namely the restriction of the
metric of M on the tangent space to†k) is a Riemannian metric with constant Gaussian
curvature equal to k. Then, by the work of Labourie [21], the complementary region
of the convex core of M is foliated by k–surfaces, which converge to @CM as k goes
to �1, and tend towards the conformal boundary at infinity @1M as k goes to 0.
The function V �

k
.M / is then defined to be the dual volume of the region Mk of M

enclosed by its k–surfaces, one for each geometrically finite end of M . By the works
of Labourie [22] and Schlenker [37], the hyperbolic structures of the k–surfaces do
provide a parametrization of QD.M /, a fact that allows us to study V �

k
as a function

over the Teichmüller space of @Mk . At this point, studying the Weil–Petersson gradient
of V �

k
on T .@Mk/, we prove that the difference between the dual volume and the

standard volume of the regions Mk is well-behaved as one follows the lines of the flow
backwards, and finally we deduce the statement of Theorem A by taking a limit for k

that goes to �1. While the methods of [9] for the study of the renormalized volume
heavily rely on the relations between the geometry of the boundary of the convex
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2322 Filippo Mazzoli

core and the properties of the Schwarzian at infinity of @1M , here we use a more
analytical approach to determine the necessary bounds on the geometric quantities
of the k–surfaces @kM of M , which will guarantee us the existence and the good
behavior of the flow of the Weil–Petersson gradient vector fields of V �

k
.

Outline of the paper

After the first section of background, we suggest the reader move backwards (as with
the flow of the gradient of the functions V �

k
) while going through this exposition. In

Section 4 the proof of Theorem A is described. Here the analogy with the work of
Bridgeman, Brock and Bromberg [9] is manifest; the required technical ingredients
(Lemmas 3.4 and 3.7 and Corollary 3.6 ) are formally very similar to the ones developed
for the renormalized volume.

Section 3 focuses on the study of the Weil–Petersson gradient gradWP V �
k

of the dual
volume functions V �

k
and the proofs of the ingredients mentioned above. In Lemma 3.4

we determine a lower bound of the norm of gradWP V �
k

in terms of the integral of the
mean curvature of @Mk (which replaces the role of the length `m.�/ in the definition of
the dual volume of the regions Mk). In Corollary 3.6 we show that the flow of the vector
field gradWP V �

k
is defined for all times, and in Lemma 3.7 we prove the existence of a

global lower bound of the dual volumes V �
k

over QD.M /. All the proofs in this section
rely on differential-geometric methods and are consequences of an explicit description
of the Weil–Petersson gradient of V �

k
developed in Proposition 3.2. This presentation

of the vector field gradWP V �
k

is inspired by an orthogonal decomposition of the space
of symmetric tensors due to Fischer and Marsden [15], and it involves the solution uk

of a simple PDE (4) over the k–surface @Mk . In particular, the proof of Corollary 3.6
will require us to have uniform control of the C 2–norm of the function uk . Section 2
(and in particular Lemma 2.3) provides us this last ingredient, and it is essentially
based on the classical regularity theory for linear elliptic differential operators (see eg
Evans [14]), and on the following property of k–surfaces:

Proposition (see Proposition 2.1) For any k 2 .0; 1/ and n2N there exists a positive
constant Nk;n such that , for every convex cocompact hyperbolic 3–manifold M and
for every incompressible k–surface †k in M , the C n–norm of the mean curvature of
†k is bounded above by Nn;k .

The existence of such a universal upper bound was proved (with weaker assumptions
than the ones appearing above) by Bonsante, Danciger, Maloni and Schlenker in
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[6, Proposition 3.8] for nD 0 (and the same strategy actually shows that the statement
holds for any n), and its proof heavily relies on a compactness criterion for isometric im-
mersions of surfaces established by Labourie [21]; see also Bonsante, Danciger, Maloni
and Schlenker [6, Proposition 3.6]. As will be manifest in the proof of Proposition 2.1,
the constants Nn;k that we will produce are unfortunately not explicit.
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1 Preliminaries

1.1 Hyperbolic 3–manifolds

Let M be an orientable complete hyperbolic 3–manifold, namely a complete Rie-
mannian 3–manifold with constant sectional curvature equal to �1, and let � be a
discrete and torsion-free group of orientation-preserving isometries of the hyperbolic
3–space H3, such that M is isometric to H3=� . We define the limit set of � to be

ƒ� WD � �x0\ @1H3;

where � �x0 denotes the closure of the �–orbit of x0 in H3 WD H3 [ @1H3. It is
simple to see that the definition of ƒ� does not depend on the choice of basepoint
x0 2 H3. If � is nonelementary (it does not have any finite orbit in H3), then
ƒ� can be characterized as the smallest closed �–invariant subset of @1H3; see
eg [33, Chapter 12]. The complementary region �� of the limit set in @1H3 is called
the domain of discontinuity of � .

Geometry & Topology, Volume 27 (2023)
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1.2 The convex core

If � WH3!H3=�ŠM denotes the universal cover of M , then a subset C of M is con-
vex if and only if ��1.C / is convex in H3. If � is nonelementary, then every nonempty
�–invariant convex subset of H3 contains the convex hull C� of � , which consists of the
intersection of all half-spaces H of H3 satisfying H �ƒ� (H stands for the closure of
H in H3). The image CM WD�.C�/ describes a convex subset of M , called the convex
core of M , which is minimal among the family of nonempty convex subsets of M .

Now let M be a convex cocompact hyperbolic 3–manifold, namely a noncompact
complete hyperbolic 3–manifold whose convex core is compact. The boundary of the
convex core @CM of M is the union of a finite collection of connected surfaces, each
of which is totally geodesic outside a subset of Hausdorff dimension 1. As described
in [13], the hyperbolic metrics on the totally geodesic pieces “merge” together, defining
a complete hyperbolic metric m on @CM. The locus where the boundary of the convex
core is not flat is a geodesic lamination �, ie a closed subset that is union of disjoint
simple geodesics. The surface @CM is bent along �, and the amount of bending can
be described by a measured lamination � called the bending measure of @CM. The
�–measure along an arc k transverse to � consists of an integral sum of the exterior
dihedral angles along the leaves that k meets. By locally integrating the lengths of the
leaves of the lamination in d�, we obtain the notion of length of the bending measure
with respect to the hyperbolic structure m, which will be denoted by `m.�/. For a
more detailed description we refer to [13, Section II.1.11] or [2].

1.3 Incompressible boundary

When M is convex cocompact and � is a discrete and torsion-free subgroup of isome-
tries of H3 such that M ŠH3=� , � acts freely and properly discontinuously on the
domain of discontinuity �� , and the quotient of H3[�� by � determines a natural
compactification of M , which will be denoted by M DM [@1M . Then M is said to
have incompressible boundary if the inclusion S !M of each connected component
S of @1M induces an injection at the level of the fundamental groups. This implies
in particular that any lift of the inclusion S !M to the universal covers zS ! eM is
a homeomorphism onto its image.

1.4 Constant Gaussian curvature surfaces

Definition 1.1 Let S be an immersed surface inside a Riemannian 3–manifold N . The
first fundamental form I of S is the Riemannian metric of S given by the restriction of
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the metric of N to the tangent spaces of S . If S admits a unitary normal vector field
� W S! T 1N , we define its shape operator B to be the endomorphism of TS given by
BU WD �DU �, for every tangent vector field U of S (here D denotes the Levi-Civita
connection of N ). The trace of the shape operator will be called the mean curvature
of S , and the tensor II WD I.B � ; � / the second fundamental form of S .

Let † be a surface immersed in a hyperbolic 3–manifold M , with first and second
fundamental forms I and II , and shape operator B. We denote by Ke its extrinsic
curvature, Ke D det B, and by Ki its intrinsic curvature, the Gaussian curvature of
the Riemannian metric I . Then the Gauss–Codazzi equations of .†; I; II/ can be
expressed as

Ki DKe � 1; .rU B/V D .rV B/U for all U;V;

where U and V are tangent vector fields to †, and r is the Levi-Civita connection of I .

Definition 1.2 Let † be an immersed surface inside a hyperbolic 3–manifold, and let
k 2 .�1; 0/. If the intrinsic curvature of † is constantly equal to k, it is a k–surface.

If† is a k–surface, then its extrinsic curvature KeDkC1 is positive, since k 2 .�1; 0/.
In particular, † is a (locally) strictly convex surface.

In every convex cocompact 3–manifold M , the subset M nCM is the disjoint union
of a finite number of geometrically finite hyperbolic ends .Ei/i , each of which is
homeomorphic to †i � .0;1/ for some compact orientable surface †i of genus larger
than or equal to 2. By the work of Labourie [21], the sets Ei are foliated by embedded
k–surfaces .†i;k/k , with k that varies in .�1; 0/. The surfaces †i;k approach the
components of the pleated boundary @CM of the convex core of M as k goes to �1,
and the components of conformal boundary at infinity @1M as k goes to 0.

We will denote by Mk the compact region of M whose boundary @Mk consists of the
union of the surfaces

S
i †i;k , and we will endow @Mk with the second fundamental

form IIk defined by the normal vector field pointing towards the interior of Mk , so that
IIk is positive definite, and Hk is a positive function (observe that the eigenvalues of
the shape operator have the same sign since Ke D det B > 0).

1.5 Deformation spaces

Let† be a compact orientable surface of genus larger than or equal to 2. The Teichmüller
space of †, denoted by T .†/, is the space of isotopy classes of hyperbolic metrics
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on †. Equivalently, in light of the uniformization theorem, T .†/ can be described
as the space of isotopy classes of conformal structures over † (compatible with the
choice of a fixed orientation on †).

Since convex cocompact hyperbolic 3–manifolds are not closed, several different
notions of deformation spaces can be introduced. In this exposition we will consider
the quasi-isometric (or quasiconformal) deformation space.

Definition 1.3 Given M and M 0 hyperbolic manifolds, a diffeomorphism M !M 0

is a quasi-isometric deformation of M if it is globally bi-Lipschitz. We denote by
QD.M / the space of quasi-isometric deformations of M , where we identify two
deformations M !M 0 and M !M 00 if their pullback metrics are isotopic to each
other.

Remark 1.4 By a theorem of Thurston [42, Proposition 8.3.4], two hyperbolic n–
manifolds M and M 0 are quasi-isometric if and only if their fundamental groups �
and � 0 (as subgroups of the isometry group of Hn) are quasiconformally conjugated, ie
there exists a quasiconformal self-homeomorphism ' of @1Hn such that '�'�1D � 0.

We denote by mk.M / 2 T .@Mk/ D
Q

i T .†i/ the isotopy class of the hyperbolic
metric .�k/Ik , where Ik is the first fundamental form of the k–surface @kM of M .
Then for every k 2 .�1; 0/ we have maps

Tk WQD.M /! T .@Mk/; M 7!mk.M /:

The convenience in considering foliations by k–surfaces relies in the following result,
based on the works of Labourie [22] and Schlenker [37]:

Theorem 1.5 If M has incompressible boundary, the map Tk is a C 1–diffeomorphism
for every k 2 .�1; 0/.

In the compressible case a similar statement can be recovered, replacing the role of the
Teichmüller space T .@Mk/ with its quotient by the action of a suitable subgroup of
the mapping class group of @Mk ; see eg [26, Theorem 5.1.3] for the corresponding
statement concerning the conformal structure of the boundary at infinity.

As mentioned in the introduction it is an open question, asked by Thurston, whether the
same statement is true for the hyperbolic structures on the boundary of the convex core,
which could be considered as the case k D �1 in Theorem 1.5. More precisely, the
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map T�1 is known to be continuously differentiable by [5] and surjective by the work
of Sullivan (described in [13]), but there are no results concerning its global injectivity.

1.6 Dual volume

Let M be a convex cocompact hyperbolic 3–manifold. If N is a compact convex subset
of M with smooth boundary, we define the dual volume of N to be

V �.N / WD V .N /�
1

2

Z
@N

H da;

where H stands for the mean curvature of @N defined using the inner normal vector
field, and V .N / is the Riemannian volume of N . We refer to [28] for a description
of the relation between the notion of dual volume and the polarity correspondence
between the hyperbolic and de Sitter spaces.

For every k 2 .�1; 0/ we let V �
k
WT .@Mk/!R denote the function that associates, with

a hyperbolic structure mk 2 T .@Mk/, the dual volume of the region @M 0
k

enclosed by
the k–surfaces of the unique convex cocompact hyperbolic 3–manifold M 0DT �1

k
.mk/

whose k–surfaces have hyperbolic structure mk .

If .Nh/h is a sequence of convex compact subsets approaching CM, then the integral of
the mean curvature over @Nh approaches `m.�/, the length of the bending measure �
with respect to the hyperbolic structure of @CM; see eg [9, Proposition 3.4]. This
suggests we should set the dual volume of the convex core of M as

V �C .M / WD V .CM/� 1
2
`m.�/:

In [29], a first-order variation formula for the function V �
C

over QD.M / is studied,
called the dual Bonahon–Schläfli formula,

dV �C .
PM /D�1

2
dL�. Pm/:

Here Pm denotes the first-order variation of the hyperbolic metric on @CM along PM ,
and L� W T .@CM/!R is the function that associates with every hyperbolic structure
m the length of the m–geodesic realization of �.

A strong similarity between dual and renormalized volumes is displayed by their
variation formulae. The renormalized volume satisfies

dVR. PM /D�1
2

dextF1
. Pc1/;

where Pc1 denotes the first-order variation of the conformal structure on @1M along PM ,
and extF1

WT .@1M /!R is the function that associates with every conformal structure
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c the extremal length of the horizontal measured foliation of the Schwarzian at infinity
of M with respect to c; see Schlenker [39] for a proof of this relation.

1.7 Norms on T T .†/

First we introduce the necessary notation for the “Riemannian geometric tools” that will
be used in the rest of the paper. Let .N;g/ be a Riemannian manifold with Levi-Civita
connection gr, and consider .ei/i , a local g–orthonormal frame. Given T , a symmetric
2–tensor on N , we define its g–divergence as the 1–form

.divg T /.X / WD
X

i

.grei
T /.ei ;X /

for every tangent vector field X . Similarly, the g–divergence of a vector field X is the
function

divg X D
X

i

g.grei
X; ei/:

The Laplace–Beltrami operator can be expressed as �gf D divg gradg f . Given two
symmetric 2–tensors T and T 0, their scalar product is defined as

.T;T 0/g WD gij ghkTihT 0jk D tr.g�1Tg�1T 0/:

In particular, we set trg T WD .g;T /g D tr.g�1T /. In the next sections it will also be
useful to keep in mind the way that these operators change if we replace g with �g,
for some positive constant �. If dim N D n,

div�g T D ��1 divg T; ��gf D �
�1�gf; da�g D �

n=2dag;(2)

.T;T 0/�g D �
�2.T;T 0/g; tr�g T D ��1 trg T:(3)

Now let M be the set of Riemannian metrics on†, and let H be the subset of hyperbolic
ones. The first-order variations Pg of elements of M identify with smooth symmetric
2–tensors on †. The choice of a metric g 2M determines a scalar product on TgM,
which can be expressed as

.�; �/FT;g WD

Z
†

.�; �/g dag;

where FT stands for Fischer–Tromba. We define S tt
2
.†;g/ to be the space of those

symmetric tensors � that are traceless with respect to g (meaning .�;g/g D 0) and
g–divergence-free (meaning divg � D 0, as defined above). Such tensors are also called
transverse traceless. A simple way to characterize the space S tt

2
.†;g/ is through
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holomorphic quadratic differentials. A holomorphic quadratic differential � on .†;g/
is a C–valued symmetric tensor that can be locally written as � D f dz2, where z is a
local coordinate conformal to the metric g (and compatible with a given orientation),
and f D f .z/ is a holomorphic function. Transverse traceless tensors are exactly those
2–tensors that can be written as <� for some � holomorphic quadratic differential
on .†; h/.

It is shown in [43] that, for every hyperbolic metric h, S tt
2
.†; h/ coincides with

ThH\
�
Th.Diff0.†/ � h/

�?
;

where Th.Diff0.†/ � h/ is the tangent space to the orbit of h by the action of the group
of diffeomorphisms of † isotopic to the identity, and . � /? is taken with respect to the
scalar product . � ; � /FT;h on ThM. Therefore, if mD Œh� denotes the isotopy class of a
hyperbolic metric on †, we can identify S tt

2
.†; h/ with TmT .†/, the tangent space at

m to the Teichmüller space T .†/DH=Diff0.†/, seen as the space of isotopy classes
of hyperbolic metrics on †. Moreover, the restriction of the scalar product . � ; � /FT;h

to S tt
2
.†; h/ coincides with (a multiple of) the Weil–Petersson metric h � ; � iWP (see

Lemma 1.6 for the explicit multiplicative constant).

The Teichmüller space can also be endowed with another Finsler norm that arises
from its conformal (or quasiconformal) interpretation, namely the Teichmüller norm.
The Teichmüller norm k � kT of a tangent vector Pm 2 TmT .†/ is the infimum of the
L1–norms of the Beltrami differentials representing Pm. It is not difficult to see that
the Beltrami differential associated to the tangent direction 2<� coincides with �� , the
harmonic Beltrami differential associated to � (see eg [16] for a detailed description of
these notions, and [30, Lemma 1.2] for a direct computation of this relation). Moreover,
the L1–norm of �� can be computed as

k��k1 D
1
p

2
sup
†

k<�kh:

We summarize what we observed:

Lemma 1.6 For every hyperbolic metric h representing the isotopy class m 2 T .†/,
the tangent space TmT .†/ identifies with S tt

2
.†; h/. For every Pm 2 TmT .†/,

k PmkWP D
1
p

2
k<�kFT;h; k PmkT �

1
p

2
sup
†

k<�kh;

where � is a holomorphic quadratic differential such that 2<� represents Pm inside
S tt

2
.†; h/.
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2 Some useful estimates

In this section we determine estimates for the solution uk of a certain linear PDEs,
defined over a k–surface lying inside an end of a convex cocompact hyperbolic 3–
manifold with incompressible boundary. The function uk will be later used to describe
the Weil–Petersson gradient of the dual volume functions V �

k
, and the bounds produced

in this section will play an important role in the study of its flow.

Given .N;g/ a Riemannian manifold with Levi-Civita connection gr and area form dag,
we denote by H n.N; dag/ the Sobolev space of real-valued functions f on N with
L2.N; dag/–integrable weak derivatives .gr/if for all i � n. The space H n.N; dag/

is Hilbert if endowed with the scalar product

.f; f 0/ WD

nX
iD0

Z
N

..gr/if; .gr/if 0/g dag for f; f 0 2H n.N; dag/;

where . � ; � /g denotes the scalar product induced by g on the space of i–tensors over N .
Given f WN !R a C n–function, we define its C n.N;g/–norm as

kf kC n.N;g/ WD

nX
iD0

sup
p2N

k.gr/if jpkg;

where kT kg D
p
.T;T /g.

Now let hk denote the hyperbolic metric .�k/Ik on the k–surface @Mk , with Levi-
Civita connection kr and Laplace–Beltrami operator �k (here we consider �ku to be
the trace of the Hessian of u). We define the linear differential operator Lk to be

Lku WD .�k � 21/uD�ku� 2u:

Let A be the symmetric bilinear form on H 1.@Mk ; dak/ with quadratic form

A.u;u/ WD �.Lku;u/D

Z
†

.kduk2k C 2u2/ dak ;

where k � kk and dak denote the norm and the area form of hk , respectively. By
the Lax–Milgram theorem (see eg [7, Corollary 5.8]) applied to the Sobolev space
H 1.@Mk ; dak/ and to the coercive symmetric bilinear form A, we have that, for every
f 2 L2.@Mk ; dak/, there exists a unique weak solution u 2 H 1.@Mk ; dak/ of the
equation LkuD f . We will in particular denote by uk the function satisfying

(4) Lkuk D�k�1Hk () �Ik
uk C 2kuk DHk ;
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where Hk denotes the mean curvature of the k–surface @Mk . By the classical regularity
theory for linear elliptic PDEs (see eg [14, Section 6.3]), the smoothness of the mean
curvature Hk and the compactness of @Mk imply that the function uk is smooth and it
is a strong solution of (4).

By the work of Rosenberg and Spruck [35, Theorem 4], for every Jordan curve c

in @1H3 there exist exactly two k–surfaces z†˙
k
.c/ asymptotic to c. A fundamental

property of k–surfaces, which will be crucial in Lemma 2.3, is:

Proposition 2.1 [6, Proposition 3.8] Let k 2 .�1; 0/ and n 2N. Then there exists a
constant Nk;n > 0 such that , for every Jordan curve c in @1H3, the mean curvature
Hc;k of the k–surface z†k.c/D z†

C

k
.c/t z†�

k
.c/ asymptotic to c satisfies

kHc;kkC n.z†k.c//
�Nn;k :

Proof We briefly recall here the proof of this statement (which was stated in [6] for
nD 0). First, recall that k–surfaces satisfy the following compactness criterion:

Proposition 2.2 [6, Proposition 3.6] Let k 2 .�1; 0/, and consider fn WH2
k
!H3

a sequence of proper isometric embeddings of the hyperbolic plane H2
k

with constant
Gaussian curvature k. If there exists a point p 2H2 such that .fn.p//n is precompact ,
then there exists a subsequence of .fn/n that converges C1–uniformly on compact
sets to an isometric immersion f WH2

k
!H3.

Fixing k 2 .�1; 0/ and n 2 N, assume by contradiction that there exists a sequence
of Jordan curves .cm/m such that the mean curvatures Hm DHcm;k of the k–surfaces
z†k.cm/ satisfy kHmkC n.z†k.cm//

>m. Up to extracting a subsequence, there exists an
i � n such that for every m 2N

sup
z†k.cm/

k.kr/iHmk>
m

nC1
D Cnm:

Now choose qm 2
z†k.cm/ for which the norm of .kr/iHm at qm is at least Cnm.

Since each component of z†k.cm/ is embedded and isometric to the hyperbolic plane
H2

k
(which is homogeneous), we can find a sequence of proper isometric embeddings

fm W H2
k
! H3, parametrizing a component of z†k.cm/, such that fm. Np/ D qm for

some fixed basepoint Np 2H2
k

. Up to postcomposing fm by an isometry of H3, we can
also assume that fm. Np/D Nq is fixed. In this way, we have found a sequence of proper
isometric embeddings fm WH2

k
!H3 satisfying

� fm. Np/D Nq 2H3 is independent of m 2N,
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� the mean curvature of the surfaces fm.H2
k
/ at Nq has some i th–order derivative

that is unbounded as m goes to1.

This clearly contradicts the compactness criterion mentioned above.

From this result we can now obtain a uniform control on uk :

Lemma 2.3 Let M be a convex cocompact hyperbolic 3–manifold. Then the function
uk W @Mk !R, the solution of (4), satisfies

max@Mk
Hk

2k
� uk �

min@Mk
Hk

2k
D

p
kC 1

k
< 0:

Moreover , if M has incompressible boundary , then there exists a constant Ck > 0

depending only on the intrinsic curvature k 2 .�1; 0/, and in particular not on the
hyperbolic structure of M , such that

max
@Mk

k
k
r

2ukkk � Ck :

Proof The first assertion is an immediate consequence of the maximum principle
applied to uk as a solution of the PDE (4). Moreover, since the product of the principal
curvatures (the eigenvalues of the shape operator) of a k–surface is everywhere equal
to k C 1, the trace of the shape operator is bounded from below by 2

p
kC 1 (see

Remark 2.5 for an explanation of the equality min@Mk
Hk D 2

p
kC 1).

The proof of the second assertion requires more care. Let†k be a connected component
of the k–surface @Mk , and let zM ŠH3 denote the universal cover of M . Since M

is a convex cocompact hyperbolic 3–manifold with incompressible boundary, every
component z†k of the preimage of †k in zM is stabilized by a subgroup � Š �1.†k/

of the fundamental group of M , acting by isometries on zM . Each of these subgroups
� is quasi-Fuchsian (see eg [17, Corollary 4.112 and Theorem 8.17] for a proof of
this assertion), and the surface z†k is a k–surface asymptotic to some Jordan curve in
@1 zM Š @1H3. In particular, by Proposition 2.1, we can find a universal constant
Nk DN2;k > 0 that satisfies

(5) k zHkkC 2.z†k/
�Nk :

Here we stress that the constant Nk does not depend on the hyperbolic structure of M

or †k , but only on the value of k 2 .�1; 0/.

Our goal is now to make use of this control to obtain a uniform bound of the norm of
the Hessian of uk . For this purpose, we will need a classical result of regularity for
linear elliptic differential equations:
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Theorem 2.4 [14, Theorem 2, page 314] Let m; n 2N and U �Rn be a bounded
open set. We consider a differential operator L of the form

Lf D�

nX
i;jD1

aij .x/@2
xi ;xj

f C

nX
iD0

bi.x/@xi
f C c.x/f;

where aij D aji ; bi ; c 2 C mC1.U;R/. Assume that L is uniformly elliptic , ie there
exists a constant " > 0 such that

P
i;j aij .x/vivj � "kvk

2 for all v 2Rn and x 2 U .
If f 2H 1.U / is a weak solution of the equation Lf D � for some � 2H m.U /, then
for every bounded open set V with closure contained in U there exists a constant C ,
depending only on m, U and V and the functions aij , bi and c, such that

kf kH mC2.V / � C.k�kH m.U /Ckf kL2.U //;

where the Sobolev spaces H mC2.V /, H m.U / and L2.U / are defined with respect to
the Euclidean metric of U �Rn.

The surface z†k endowed with the lift of the hyperbolic metric hk of †k is isometric to
the hyperbolic plane H2. In the rest of the proof we will identify z†k with the Poincaré
disk model H2 WD .B1;g/, where B1 is the Euclidean ball of radius 1 and center 0

in C, and g is the Riemannian metric

g D

�
2

1� jzj2

�2

jdzj2:

Now we choose U and V to be the g–geodesic balls of center 0 2 B1 and hyperbolic
radius equal to 2 and 1, respectively. The lift of the operator �Lk over U is clearly
uniformly elliptic because of the compactness of U and its expression in coordinates

�Lkf D�gij .@2
ijf ��

h
ij .g/@hf /C 2f;

where the �h
ij .g/ denote the Christoffel symbols of g. Again by the compactness

of U and V , the norms of the Sobolev spaces k � kH j .U / and k � kH j .V /, computed
with respect to the flat connection of B1 � R2 and the Euclidean volume form, are
equivalent to the norms of the corresponding Sobolev spaces defined using the Levi-
Civita connection of g and the g–volume form. Moreover, the bi-Lipschitz constants
involved in the equivalence only depend on a bound of the C jC1–norm of g over U , so
they can be chosen to depend only on j 2N. From now on, we will consider the norms
on the spaces H j .U / and H j .V / to be defined using the metric g and its connection.

Now we apply Theorem 2.4 to mD nD 2, the operator �Lk and the functions f D Quk

and �D�k�1 zHk , where zF denotes the lift of the function F over z†k . We can find
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a universal constant C > 0 (depending only on the open sets U and V , and on the
metric gjU ) such that

k QukkH 4.V / � C.�k�1
k zHkkH 2.U /CkQukkL2.U //:

By the first part of Lemma 2.3, k QukkC 0.U / � �.2k/�1k zHkkC 0.H2/. In addition,

k QukkL2.U / � Area.U;g/1=2k QukkC 0.U / � �.2k/�1 Area.U;g/1=2k zHkkC 0.H2/;

and
k zHkkH 2.U / � Area.U;g/1=2k zHkkC 2.H2/:

In conclusion, we deduce that

k QukkH 4.V / � �2k�1C Area.U;g/1=2k zHkkC 2.H2/:

By the Sobolev embedding theorem (see eg [7, Corollary 9.13, page 283]), given W an
open set satisfying 0 2W �W � V , the C 2.W /–norm of Quk (again, computed with
respect to the Levi-Civita connection of g) is controlled by a multiple of its H 4–norm
over V , and the multiplicative factor depends only on W and V . Therefore, if we
choose for instance W D BH2

�
0; 1

2

�
,

k
k
r

2
QukkC 0.W / � C 0.k/k zHkkC 2.H2/:

Now the desired statement easily follows. From relation (5) and the last inequality, we
obtain a uniform bound of the Hessian of Quk over W 3 0. Now let q be any other point
of H2, and choose a g–isometry 'q W B1 ! B1 such that 'q.0/ D q. If we replace
Quk and zHk with Quk ı 'q and zHk ı 'q , respectively, the exact same argument above
applies, since the operator Lk and the norms k � kH j and k � kC l are invariant under
the action of the isometry group of H2 (and since k zHkkC 2.H2/ D k

zHk ı'qkC 2.H2/).
In particular, this gives us a control on the norm of kr2 Quk over 'q.W / for any point
q 2H2, and the last part of our assertion follows.

Remark 2.5 The minimum of the mean curvature 2
p

kC 1 is always realized. As
described by Labourie in [23], whenever we have a k–surface †k with first and second
fundamental forms Ik and IIk , respectively, the identity map id W .†k ; IIk/! .†k ; Ik/

is harmonic, with Hopf differential  k satisfying

2< k D Ik �
Hk

2.kC 1/
IIk :

Its squared norm with respect to IIk can be expressed as

k2< kk
2
IIk
D

H 2
k
� 4.kC 1/

.kC 1/2
:
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In particular, at each zero of  k (which necessarily exist because �.†k/ < 0), we have
Hk D 2

p
kC 1.

We stress that, even if the maximum of the mean curvature Hk will clearly depend on
the hyperbolic structure of M , Proposition 2.1 guarantees that max Hk is controlled by
a function of k independent of the geometry of M , as long as @M is incompressible.

We will make use of the upper bound uk �
p

kC 1=k in Lemma 3.4, where we will
determine a lower bound of the Weil–Petersson norm of the differential of V �

k
in terms

of the integral of the mean curvature.

3 The gradient of the dual volume

The aim of this section is to describe the gradient of the dual volume function V �
k

with
respect to the Weil–Petersson metric on the Teichmüller space of @Mk in terms of the
function uk studied in the previous section.

The first-order variation of the dual volume of Mk as we vary the convex cocompact
hyperbolic structure of M can be computed by applying the differential Schläfli formula
due to Rivin and Schlenker [34]. In particular:

Proposition 3.1 We have

d.V �k ıTk/. PM /D
1

4

Z
@Mk

. PIk ; IIk �HkIk/Ik
daIk

D
1

4

Z
@Mk

. Phk ; IIk C k�1Hkhk/hk
dahk

;

where PIk D�k�1 Phk is the first-order variation of the first fundamental form on @Mk

along the variation PM , and Tk WQD.M /! T .@Mk/ is the diffeomorphism introduced
in Section 1.5.

A proof of this relation based on the results of Rivin and Schlenker can be found in
[29, Proposition 2.5]. From its variation formula, we can give an explicit description
of the Weil–Petersson gradient of the dual volume function V �

k
, which will turn out to

be useful for the study of its flow.

Proposition 3.2 The vector field gradWP V �
k

is represented by the symmetric 2–tensor
2<�k , where �k is the (unique) holomorphic quadratic differential satisfying

<�k D IIk �
k
r

2uk Cukhk ;

where uk denotes the solution of (4).
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Proof Let Pmk denote a tangent vector to the Teichmüller space of @Mk at mk . As
described in Section 1.5, given any hyperbolic metric hk representing the isotopy
class mk 2 T .@Mk/, we can find a unique transverse traceless tensor Phk 2 S tt

2
.†; hk/

representing Pmk . Assume for a moment that we can find a decomposition of the
symmetric tensor IIk C k�1Hkhk of the form

IIk C k�1Hkhk D SttCLX hk C�hk ;

where Stt is a transverse traceless tensor with respect to hk , LX hk is the Lie derivative
of hk with respect to a vector field X , and � is a smooth function on @Mk . Then, by
Proposition 3.1, we can express the variation of the dual volume V �

k
along a transverse

traceless variation Phk :

dV �k .
Phk/D

1

4

Z
@Mk

. Phk ;SttCLX hk C�hk/hk
dahk

:

Since Phk is traceless, the scalar product . Phk ; hk/hk
D trhk

. Phk/ vanishes identically.
The L2–scalar product between Phk and LX hk vanishes too, because LX hk is tangent
to the orbit of hk by the action of Diff0.†/; see Section 1.7. In particular,

dV �k .
Phk/D

1

4

Z
@Mk

. Phk ;Stt/hk
dahk

D
1
8
. Phk ; 2St t /FT;hk

:

In light of Lemma 1.6, by varying the tangent vector Pmk 2 Tmk
T .@Mk/, we deduce

that the tensor 2Stt is the element of S tt
2
.†; hk/ that represents gradWP V �

k
.

In conclusion, this argument shows us that, in order to prove our assertion, we need
to determine a decomposition of the tensor IIk C k�1Hkhk of the form we described
above, with Stt D IIk �

kr2uk Cukhk . For this purpose, we consider the expression

IIk C k�1Hkhk D .IIk �
k
r

2uk Cukhk/C
k
r

2uk C .k
�1Hk �uk/hk

D .IIk �
k
r

2uk Cukhk/C
1
2
Lgradhk

uk
hk C .k

�1Hk �uk/hk ;

where we used the relation Lgradhk
uk

hk D 2.kr2uk/. In this expression, the second
term of the sum is of the type LX hk , while the third term has the form �hk . Therefore,
by the argument above, it is enough to show that the first term is hk–traceless and
hk–divergence-free. The trace of IIk �

kr2uk Cukhk satisfies

trhk
.IIk �

k
r

2uk Cukhk/D�k�1Hk ��kuk C 2uk :

This expression vanishes because uk is a solution of (4). In order to compute the
divergence of our tensor, we will need the relations

divhk
IIk D�k�1dHk ; divg.

g
r

2f /D d.�gf /CRicg.gradg f; � /:
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The first equality follows from the Codazzi equation .krX Bk/Y D .
krY Bk/X satisfied

by the shape operator Bk of @Mk (the Levi-Civita connections of hk and the first
fundamental form Ik are the same, since they differ by a multiplicative constant).
The second relation is true for any Riemannian metric g, and we will apply it in the
case g D hk and f D uk . Since hk is a hyperbolic metric on a 2–manifold, we have
Richk

D�hk . Therefore

divhk
.IIk �r

2
kuk Cukhk/D�k�1dHk � d.�kuk/C duk C duk

D d.�k�1Hk ��kuk C 2uk/;

where we used the relation divg.fg/ D df . Again, the expression above vanishes
because uk solves (4). Then we have shown that IIk �

kr2uk Cukhk is a transverse
traceless tensor, as desired.

Remark 3.3 In fact, the decomposition we presented for the tensor IIk C k�1Hkhk

is related to the orthogonal decomposition of the space of symmetric tensors due to
Fischer and Marsden [15]. Given g, a hyperbolic metric, every symmetric tensor S

admits an orthogonal decomposition of the form

S D SttCLX gC ..��gf Cf /gC
g
r

2f /;

where:

� Stt is transverse traceless with respect to g.

� SttCLX g is tangent to the space of Riemannian metrics with constant Gaussian
curvature equal to �1. That is, if g0 7!K.g0/ denotes the operator that associates
to the Riemannian metric g0 its Gaussian curvature, then SttCLX g 2 ker dKg.

� .��gf Cf /gC
gr2f is L2–orthogonal to ker dKg.

Then, the expression

IIk C k�1Hkhk D .IIk �
k
r

2uk Cukhk/C 0C ..k�1Hk �uk/hk C
k
r

2uk/

D .IIk �
k
r

2uk Cukhk/C 0C ..��kuk Cuk/hk C
k
r

2uk/

is the Fischer–Marsden decomposition of IIkCk�1Hkhk , where f D uk , X D 0 and
Stt D .IIk �

kr2uk Cukhk/.

Using this explicit description of the Weil–Petersson gradient of the dual volume
function V �

k
, we can determine a lower bound of its norm in terms of the integral of

the mean curvature:
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Lemma 3.4 For every k 2 .�1; 0/,

kdV �k k
2
WP � �

p
kC 1

2k

Z
@Mk

Hk daIk
�

2�.kC 1/

k2
j�.@M /j:

Proof In what follows, we will prove the expression

(6) kIIk �r
2
kuk Cukhkk

2
Ik
D kukHk � 2.kC 1/C divIk

W

for some tangent vector field W on @Mk . Assuming for the moment this relation,

kdV �k k
2
WP D

1

2

Z
@Mk

k<�kk
2
hk

dahk
(Proposition 3.2 and Lemma 1.6)

D
1

2

Z
@Mk

.�k/�2
k<�kk

2
Ik
.�k/ daIk

D�
1

2k

Z
@Mk

.kukHk�2.kC1// daIk
(relation (6));

where we used that hk D .�k/Ik , relations (2) and (3), and that the integral of the term
divIk

W vanishes by the divergence theorem. By Lemma 2.3 uk �
p

kC 1=k, so

kdV �k k
2
WP � �

p
kC 1

2k

Z
@Mk

Hk daIk
�

2�.kC 1/

k2
j�.@M /j;

where we applied the Gauss–Bonnet theorem to say that the area of @Mk with respect
to Ik is equal to �2�k�1j�.@M /j.

The only ingredient left to prove is relation (6). For this computation, we will use
Bochner’s formula (see eg [25, page 223]),

(7) 1
2
�gkdf k2g D k

g
r

2f k2gCg.gradg f; gradg �gf /CRicg.gradg f; gradg f /;

and the expressions

divg.fX /D g.gradg f;X /Cf divg X;(8)
1
2
.LX g;T /g D�.divg T /.X /C divg Y;(9)

where X is a tangent vector field, f is a smooth function, T is a symmetric 2–tensor,
and Y D T .X; � /] is the vector field defined by requiring that g.Y;Z/ D T .X;Z/

for all vector fields Z. From now on, we will omit everywhere the dependence of the
connections, norms, gradients, and the Laplace–Beltrami operator on the Riemannian
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metric g, and everything has to be interpreted as associated to g D Ik . Observe also
that the Levi-Civita connections of Ik and hk are equal, since these metrics differ by
multiplication by a constant and, in particular, the hk– and Ik–Hessians coincide. Then

(10) kIIk �r
2uk Cukhkk

2
D kIIk �r

2uk � kukIkk
2

D kIIkk
2
Ckr

2ukk
2
C k2u2

kkIkk
2
� 2.IIk ;r

2uk/

� 2kuk.IIk ; Ik/C 2kuk.r
2uk ; Ik/:

First, we focus our attention on the terms kr2ukk
2 and .IIk ;r

2uk/. In order to
simplify the notation, we say that two functions a and b on @Mk are equal “modulo
divergence”, and we write a�div b, if their difference coincides with the divergence of
some smooth vector field. Then

kr
2ukk

2
D

1
2
�kdukk

2
� hgrad uk ; grad�uki � kkdukk

2 (relation (7))

�div �hgrad uk ; grad�uki � kkdukk
2 (�gf D divg gradg f )

D�div.�uk grad uk/C .�uk/
2
� kkdukk

2 (relation (8))

�div .�uk/
2
� k div.uk grad uk/C kuk�uk (relation (8))

�div �uk.�uk C kuk/;

and

.IIk ;r
2uk/D

1
2
.IIk ;Lgrad uk

Ik/ (Lgradg f
g D 2gr2f )

�div �.div IIk/.grad uk/ (relation (9))

D�hgrad Hk ; grad uki (div IIk D dHk)

D�div.Hk grad uk/CHk�uk (relation (8))

�div Hk�uk :

The other terms in (10) are simpler to handle. In particular,

kIIkk
2
DH 2

k � 2.kC 1/; kIkk
2
D 2;

.IIk ; Ik/DHk ; .r2uk ; Ik/D�uk :

Replacing all the relations we found in (10), we obtain

kIIk �r
2uk Cukhkk

2

�div H 2
k � 2.kC 1/C�uk.�uk C kuk/C 2k2u2

k

� 2Hk�uk � 2kukHk C 2kuk�uk

DH 2
k � 2.kC 1/C 2k2u2

k � 2kukHk C�uk.�uk C 3kuk � 2Hk/:

Geometry & Topology, Volume 27 (2023)



2340 Filippo Mazzoli

Finally, by replacing �uk D�Ik
uk using (4) in the equality above, we find that

kIIk �r
2uk Cukhkk

2
�div kukHk � 2.kC 1/;

which is equivalent to relation (6).

Since the Weil–Petersson metric of the Teichmüller space is noncomplete, a control
from above of the quantity kdV �

k
kWP would not suffice to guarantee the existence

of the flow for every time. For this purpose, we rather study the L1–norm of the
Beltrami differentials equivalent to gradWP V �

k
, which gives a control with respect to

the Teichmüller metric (that is complete). At this point, the estimates determined in
Lemma 2.3 will play an essential role.

Proposition 3.5 There exists a constant Dk > 0 depending only on the intrinsic
curvature k 2 .�1; 0/ such that

kgradWP V �k kT �Dk ;

where k � kT denotes the Teichmüller norm on T T .@Mk/.

Proof Let mk be a point of the Teichmüller space T .@Mk/ and let hk be a hyperbolic
metric in the isotopy class mk . In Proposition 3.2, we showed that the vector field
gradWP V �

k
at a point mk 2 T .@Mk/ is represented by the transverse traceless tensor

2<�k 2 S tt
2
.@Mk ; hk/. Therefore by Lemma 1.6,

kgradWP V �k kT �
1
p

2
sup
@Mk

k<�kkhk
:

So it is enough to show that the norm kIIk �
kr2uk Cukhkkhk

is uniformly bounded
by a constant depending only on k. The norm of IIk is equal to �k�1

p
H 2

k
� 2.kC 1/,

and kukhkkhk
D
p

2juk j. Therefore

kIIk�
k
r

2ukCukhkkhk
��k�1

p
kHkk

2
C 0 � 2.kC 1/Ckkr2ukkhk

C
p

2kukkC 0 :

Our assertion is now an immediate consequence of Proposition 2.1 and Lemma 2.3.

Corollary 3.6 The flow ‚t of the vector field � gradWP V �
k

over T .@Mk/ is defined
for all times t 2R.

Proof The assertion follows from the fact that the Teichmüller distance is complete,
and the bound shown in Proposition 3.5.
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The last ingredient that we will need for the proof of Theorem A is the existence
of some lower bound for the dual volume function V �

k
. To find one, we will make

use of the properties of the dual volume proved in [29], and of an upper bound for
the length of the bending measure of the boundary of the convex core of a convex
cocompact manifold with incompressible boundary, whose existence was first proved
by Bridgeman [8] and improved in later works; see [11]. We will make use of the
best result currently known in this direction for convex cocompact manifolds with
incompressible boundary, which is due to Bridgeman, Brock and Bromberg [9].

Lemma 3.7 For every k 2 .�1; 0/ and for every convex cocompact hyperbolic 3–
manifold M with incompressible boundary,

V �k .M /� F.k; �.@M //;

where F is an explicit function of the curvature k 2 .�1; 0/ and the Euler characteristic
of @M .

Proof Since the k–surfaces foliate the complement of the convex core CM, a simple
application of the geometric maximum principle (see for instance [24, lemme 2.5.1])
shows that the k–surface @Mk is contained in N"k

CM, the "k–neighborhood of the
convex core CM, for "k D arctanh

p
kC 1. The dual volume of a convex set is a

decreasing function with respect to inclusion (see [29, Proposition 2.6] for a proof
of this assertion), therefore the quantity V �

k
.M / is bounded from below by the dual

volume of the "k–neighborhood of the convex core. It is not difficult to show that, for
every " > 0,

V �.N"CM/D V .CM/� 1
4
`m.�/.cosh 2"C 1/� 1

2
�j�.@CM/j.sinh 2"� 2"/;

where `m.�/ denotes the length of the bending measured lamination on the boundary
of the convex core of M ; see eg [29, Proposition 2.4]. By [9, Theorem 2.16], the term
`m.�/ is less than or equal to 6�j�.@M /j. Combining these observations,

V �k .M /� V �.N"k
CM/

D V .CM/� 1
4
`m.�/.cosh 2"k C 1/� 1

2
�j�.@CM/j.sinh 2"k � 2"k/

� �
1
4
`m.�/.cosh 2"k C 1/� 1

2
�j�.@CM/j.sinh 2"k � 2"k/

� �
1
2
�j�.@M /j.3 cosh "k C 3C sinh 2"k � 2"k/;

which proves the desired inequality.

Geometry & Topology, Volume 27 (2023)



2342 Filippo Mazzoli

4 The proof of Theorem A

This section is dedicated to the proof of our main theorem, and to the proof of the
optimality of the multiplicative constant appearing in (1).

Proof of Theorem A Let M be a convex cocompact hyperbolic 3–manifold with
incompressible boundary. We denote by Mt WD ‚t .M / the hyperbolic 3–manifold
obtained by following the flow of the vector field � gradWP V �

k
, which is defined for

every t 2R in light of Corollary 3.6. In order to simplify the notation, we will continue
to denote by V �

k
the k–dual volume as a function over the space of quasi-isometric

deformations of M . This abuse is justified by the fact that, for every k 2 .�1; 0/, a
convex cocompact manifold is uniquely determined by the hyperbolic structures on its
k–surfaces (see Theorem 1.5). We have

V �k .M /�V �k .Mt /D

Z t

0

kdV �k k
2
Ms

ds:

By Lemma 3.7, the left side of the relation is bounded from above with respect to t . In
particular, the integral on the right side has to converge as t goes to C1. Therefore we
can find an unbounded increasing sequence .tn/n for which the Weil–Petersson norm
kdV �

k
k2 evaluated at Mtn

goes to 0 as n goes to1. Then, by Lemma 3.4,

lim sup
n!1

Z
@Mtn;k

Hk daIk
� �4�k�1

p
kC 1j�.@M /j;

where Mtn;k stands for .Mtn
/k , the region of Mtn

enclosed by its k–surfaces. Therefore

V �k .M /� lim
n!1

V �k .Mtn
/D lim

n!1

�
Vk.Mtn

/�
1

2

Z
@Mtn:k

Hk daIk

�
� inf

M 02QD.M /
Vk.M

0/� 1
2

lim sup
n!1

Z
@Mtn;k

Hk daIk

� inf
M 02QD.M /

Vk.M
0/C 2�k�1

p
kC 1j�.@M /j;

where Vk.M
0/ denotes the Riemannian volume of the region M 0

k
of M 0 enclosed by its

k–surface. Observe that the term 2�k�1
p

kC 1j�.@M /j is equal to �1
2

R
@M 0

k
Hk daIk

when the boundary of the convex core of M 0 is totally geodesic.

Finally, by taking the limit as k goes to .�1/C, we obtain that V �
C
.M /� infM 0 VC .M

0/

for every convex cocompact structure M . This proves that

inf
QD.M /

V �C � inf
QD.M /

VC :
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On the other hand, the dual volume V �
C
.M / WD VC .M /� 1

2
`m.�/ is always smaller

than or equal to VC .M /, so the other inequality between the infima is clearly satisfied.

If V �
C
.M / D VC .M /, then the length of the bending measured lamination � of the

convex core of M has to vanish. Therefore �D 0 or, in other words, @CM is totally
geodesic.

Corollary 4.1 For every quasi-Fuchsian manifold M , VC .M / � 1
2
`m.�/, where

mDm.M / and �D�.M / denote the hyperbolic metric and the bending measure of the
boundary of the convex core of M , respectively. Moreover , for every positive " and for
every neighborhood U of a Fuchsian manifold M0 inside QD.M0/DQD.M /, there
exists a quasi-Fuchsian manifold M" in U that satisfies VC .M"/ <

�
1
2
C "

�
`m"

.�"/,
where m" Dm.M"/ and �" D �.M"/.

Proof If M is quasi-Fuchsian, the infimum of the volume of the convex core over the
space of quasi-isometric deformations QD.M / is equal to 0, and it is realized on the
Fuchsian locus.

For the second part of the statement, consider M0 a Fuchsian manifold whose convex
core is a totally geodesic surface homeomorphic to † with hyperbolic metric m0. Let
˛ W Œ0; 1�!QD.M / be a path starting at ˛.0/DM0 and for which the right derivative
of the bending measure P�C

0
exists and it is equal to a nonzero measured lamination on

†t†. A fairly explicit way to produce such a path is to choose a measured lamination
� 2ML.†/ and consider the deformation of M0 given by the holonomies of pleated
surfaces with bending Hölder cocycle equal to t� and hyperbolic metric m0, as t varies
in Œ0; 1�; compare with [3]. Then, for every " > 0, we define

f".t/ WD VC .˛.t//�
�

1
2
C "

�
`mt

.�t /D V �C .˛.t//� "`mt
.�t / for t 2 Œ0; 1�;

where mt Dm.Mt / and �t D �.Mt / denote the hyperbolic metric and the bending
measure of the boundary of the convex core of Mt D ˛.t/. As shown in [20, (4)],

d
dt
`mt

.�t /
ˇ̌̌
tD0C

D d.L�0
/. Pm0/C `m0

. P�C
0
/D `m0

. P�C
0
/;

where we use that �0D 0 (here L�0
W T .@CM/!R is the function that associates with

every hyperbolic structure m the length of the m–geodesic realization of �0). Then

f".t/D f".0/Cf
0
" .0/t C o.t I "/

D 0C .d.VC
�/M0

.v/� "`m0
. P�C

0
//t C o.t I "/

D�"`m0
. P�C

0
/t C o.t I "/ (V �

C
2 C 1 and M0 minimum).
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This proves that f".t/ < 0 for t sufficiently small (depending on "), and therefore the
existence of a quasi-Fuchsian manifold M" satisfying the desired properties.
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