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SUDIPTA KOLAY

We show that the smallest noncyclic quotients of braid groups are symmetric groups,
proving a conjecture of Margalit. Moreover, we recover results of Artin and Lin about
the classification of homomorphisms from braid groups on n strands to symmetric
groups on k letters, where k is at most n. Unlike the original proofs, our method does
not use the Bertrand–Chebyshev theorem, answering a question of Artin. Similarly,
for mapping class group of closed orientable surfaces, the smallest noncyclic quotient
is given by the mod two reduction of the symplectic representation. We provide an
elementary proof of this result, originally due to Kielak and Pierro, which proves a
conjecture of Zimmermann.

20F36, 20F65, 57K20

1 Introduction

The goal of this paper is to show that, with some obvious exceptions, the smallest non-
cyclic quotients of the braid and mapping class groups, are given by natural projections
� W Bn! Sn (forgetful map) and ˆ WMod.†g/! Sp.2g;Z2/ (mod two reduction of
the symplectic representation). We begin by stating our main result for the Artin braid
groups Bn.

Theorem 1 Suppose nD 3 or n� 5. If G is a noncyclic quotient of Bn, then either
jGj> jSnj D n! or G is isomorphic to Sn. Moreover , in the latter case the quotient map
Bn!G is obtained by postcomposing the natural map � with an automorphism of Sn.

There are no noncyclic quotients of Bn for n� 2, and for nD 4 the smallest noncyclic
quotient is S3, which is proved in Claim 7 in Section 2. Hence the hypothesis nD 3 or
n� 5 is necessary in the theorem above.
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2480 Sudipta Kolay

The first statement of this theorem proves a conjecture of Margalit — see Chudnovsky,
Kordek, Li and Partin [7] and Scherich and Verberne [18] — stating that the smallest
noncyclic quotient of Bn is Sn for n � 5. For the nontrivial cases n 2 f5; 6g, this
was first proved by Caplinger and Kordek [4], and several recent papers [7; 4; 18]
prove lower bounds for the order of noncyclic quotients of braid groups, using totally
symmetric sets — see Kordek and Margalit [13, Section 2] — towards proving Margalit’s
conjecture. Our work builds further upon the idea of totally symmetric sets; see the
discussion after Lemma 8.

Since the automorphisms of symmetric groups are well understood, the second statement
in the theorem above immediately implies, for n¤ 4, the characterization of noncyclic1

homomorphisms from Bn! Sk , with k � n, originally due to Artin [1] for k D n (and
transitive homomorphisms) and improved by Lin [16, Theorem 3.9] for the remaining
cases.

Corollary 2 For n� 3 and n¤ 4; 6, all noncyclic homomorphisms f W Bn! Sn are
conjugate to the standard projection � . Also , the only exceptional (up to conjugation)
homomorphism f W B6! S6 comes from composing � with the only nontrivial (up
to conjugation) outer automorphism of S6, defined by .12/ 7! .1; 2/.3; 4/.5; 6/ and
.1; 2; 3; 4; 5; 6/ 7! .1; 2; 3/.4; 5/.

Artin noted that his proof in [1] “uses the existence of a prime between 1
2
n and n� 2

for n> 7 but it would be preferable if a proof could be found that does not make use
of this fact”. This fact, known as the Bertrand–Chebyshev theorem [5], is also crucial
for Lin’s proof of the above result [16, Theorem 3.9]. Our proof here does not use this
fact (and, to the best of our knowledge, this is the first such proof).

Remark 3 (exceptional case nD 4; Artin [1]) For completeness, we will record here
the exceptional noncyclic homomorphisms (up to conjugations) from B4 to Sk with
k � 4. Let �1, �2 and �3 denote the Artin generators of B4 and let ˛ D �3�2�1. We
see that B4 is generated by �1 and ˛. Then we have

(1) f1 W B4! S4 defined by �1 7! .1; 2; 3; 4/ and ˛ 7! .1; 2/;

(2) f2 W B4! S4 defined by �1 7! .1; 3; 2; 4/ and ˛ 7! .1; 2; 3; 4/;

(3) f3 W B4 ! A4 � S4 defined by �1 7! .1; 2; 3/ and ˛ 7! .1; 2/.3; 4/ (here A4

denotes alternating group on four letters, which uniquely embeds in S4);

(4) f4 W B4! S3 .� S4) defined by �1 7! .1; 2/ and ˛ 7! .1; 3/.

1By this we mean the image of the homomorphism is not cyclic.
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Our main result for mapping class groups Mod.†g/ of closed orientable surfaces
parallels Theorem 1, and is essentially the same as the result of Kielak and Pierro [12],
using other methods.

Theorem 4 Let g � 1. For any noncyclic quotient H of Mod.†g/, either jH j >
jSp.2g;Z2/j or H is isomorphic to Sp.2g;Z2/. Moreover , in the latter case the
quotient map Mod.†g/!H is obtained by postcomposing ˆ with an automorphism
of Sp.2g;Z2/.

Zimmermann [19] proved that, for g 2 f3; 4g, the smallest nontrivial2 quotient of
Mod.†g/ is Sp.2g;Zg/, and conjectured the same statement holds for arbitrary g � 3.
This conjecture was first proved by Kielak and Pierro [12] using the classification of
finite simple groups and representation theory of mapping class groups. Moreover,
Kielak and Pierro proved the same result holds for quotients of Mod.†b

g/, where b

is the number of boundary components, and we further extend their result here by
allowing punctures as well.

Theorem 5 Let g � 3. The smallest nontrivial quotient of Mod.†b
g;n/ is Sp.2g;Z2/

for n 2 f0; 1g, and Z2 for n � 2. If we furthermore assume n � 5, any noncyclic
quotient of Mod.†b

g;n/ of smallest order is isomorphic to either Sn or Sp.2g;Z2/

(depending on which group is smaller). Moreover , in any of the above cases , any
epimorphism to a quotient of smallest order is the standard projection , postcomposed
with an automorphism of the image.

As indicated, some of the results above were previously known, but our proofs are
considerably easier. For example, we do not use the classification of finite simple
groups or the Bertrand–Chebyshev theorem. We use an inductive orbit stabilizer
method, described in Section 3, which should also be applicable in other settings. Our
approach is similar to that of Chudnovsky, Kordek, Li and Partin [7], Caplinger and
Kordek [4] and particularly Scherich and Verberne [18], in that we all consider some
group actions of the quotient (of braid groups), and use the orbit stabilizer theorem
to find a bound on the size of the quotient. The advantage of our approach is that we
prove an optimal lower bound on orbit size (by looking at the corresponding orbit size
in the candidate smallest quotient), and moreover use induction to find the stabilizer
size. For the two families of groups we consider here, this not only gives us the optimal

2For g � 3, Mod.†g/ is perfect and therefore its smallest nontrivial and noncyclic quotients are the same.
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2482 Sudipta Kolay

lower bounds for size of the smallest quotient at the numerical level, but we also obtain
the smallest quotient group up to isomorphism, and moreover a characterization of all
possible minimal quotient maps.

Let us note that, if G!H and H ! I are surjective group homomorphisms and I is
smallest noncyclic (respectively nontrivial) quotient of G, then I is also the smallest
noncyclic (respectively nontrivial) quotient of H. Thus, an immediate consequence of
Theorems 4 and 5 is the following result:

Corollary 6 For g � 1 (respectively g � 3), Sp.2g;Z2/ is the smallest noncyclic
(respectively nontrivial ) quotient of Sp.2g;Z/.

Acknowledgements The author would like to thank Dan Margalit for various useful
discussions, suggesting to look at results for mapping class groups, and especially
for explaining to us the much shorter proof of Lemma 8. The author is grateful to
John Etnyre for helpful suggestions. The author thanks the referee for comments and
corrections. The author is grateful to Dawid Kielak and Emilio Pierro for comments
on an earlier draft of this paper. This work is partially supported by NSF grant DMS-
1906414.

2 Background

In this section we will collect several necessary definitions and results. We will also
prove a claim, which will serve as base cases for our inductive proofs later.

Braid groups

The most well-known quotient of the braid group Bn [2] on n strands is the symmetric
group Sn on n letters, obtained by forgetting all crossing information. This quotient
map � W Bn! Sn can alternatively be described as adding the relations �2

i D 1 (here
the �i are half twists) to the Artin presentation [2] of the braid group Bn:

Bn D
˚
�1; : : : ; �n�1 W �i�iC1�i D �iC1�i�iC1 for all 1� i < n� 1;

�i�j D �j�i if ji � j j> 1
	
:

Consider Bn as the mapping class group of the closed unit disc with n marked points
p1; : : : ;pn with increasing first coordinates and identical second coordinate.

Geometry & Topology, Volume 27 (2023)
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Consider, for all 1� i ¤ j � n, the arcs i;j D j ;i joining the pi and pj going over
all pk between pi and pj , and let �i;j denote the right-handed half twists about i;j .
For 1� i < j � n, the various �i;j are the Birman–Ko–Lee generators [3] generators
of the braid group Bn, and we note that �i D �i;iC1.

Mapping class groups

Let †b
g;n denote the orientable surface of genus g with n punctures and b boundary

components (where we will drop n and b from the notation if they are zero), and
denote its mapping class group by Mod.†b

g;n/. Our convention is that mapping classes
preserve orientation, fix boundary components, and can permute the punctures. The
subgroup PMod.†b

g;n/will denote the pure mapping class group, consisting of mapping
classes that fix the punctures.

We get an epimorphism ˆ from Mod.†b
g/ by composing the capping homomorphism

[8, Section 3.6.2] with the symplectic representation [8, Section 6.3] and the mod two
reduction

Mod.†b
g/

capping
����!Mod.†g/

symplectic
������! Sp.2g;Z/

reduce
����! Sp.2g;Z2/:

More generally, for †g;n, let us consider the action of the mapping class group on
homology. If we take a free basis of H1.†g;n;Z/ by taking a standard symplectic basis
curves for each genus and a the class of a loop surrounding each puncture, the action of
any mapping class can be represented by an invertible integral matrix in GL.2gCn;Z/.
Moreover, for any such matrix, the top left block is a symplectic matrix, the top right
block is zero, and the bottom right block will be a permutation matrix. Thus, by
projecting to diagonal blocks, we obtain epimorphisms from Mod.†g;n/ (and thus
from Mod.†b

g;n/ as well by capping) to Sp.2g;Z/ (and hence to Sp.2g;Z2/) and Sn.
We will call these homomorphisms standard projections from Mod.†b

g;n/ to Sp.2g;Z2/

and Sn. It can be seen that this standard projection from Mod.†b
g;n/ to Sn is the same

as the induced action of the mapping classes on the punctures.

Some facts about symmetric and symplectic groups It is well known that, for
n � 5, the only nontrivial quotient of Sn is Z2 (obtained by modding out by the
simple group An). Also, it is known — see [9, Chapter 3] — that the symplectic group
Sp.2g;Z2/ is simple for g� 3, and for the exceptional cases we have the isomorphisms
Sp.2;Z2/Š S3 and Sp.4;Z2/Š S6.

The following claim gives the base cases for our inductive proofs later:

Geometry & Topology, Volume 27 (2023)
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Claim 7 The smallest noncyclic quotient of B3, B4 and Mod.†1/D SL.2;Z/ is S3.
Moreover , all epimorphisms from these three groups to S3 are related by a conjugation
of S3.

Proof The natural homomorphism � and f4 from Remark 3 show S3 is a quotient of
B3 and B4, respectively. Moreover, it is easy to see that � W B3! S3 factors through
B3=Z.B3/Š PSL.2;Z/, and thus S3 is a quotient of PSL.2;Z/ and hence SL.2;Z/.
We note that all the groups except S3 of order at most jS3j D 6 are abelian (the only
noncyclic group among them is the Klein four group), and thus cannot be a noncyclic
quotient of a group with cyclic abelianization (such as braid groups or SL.2;Z/). The
last statement of the claim follows3 by noting that the only pair of noncommuting
elements in S3 satisfying the braid relation are the transpositions.

3 The inductive orbit stabilizer method

The orbit stabilizer theorem is widely used in computing orders of finite groups which
naturally act on a space, and, as this paper illustrates, it is also useful for determining
orders of smallest noncyclic4 quotients of groups. In our context we work with an
infinite family of groups, and we can use the orbit stabilizer theorem inductively. We
formulate the steps of the method below. While this method may not be new, proofs of
similar results in the literature seem to rely on more complicated methods, as mentioned
in the introduction.

Suppose we have a nested family of groups .Gn/n�1 with cyclic abelianizations. If we
want to show the smallest noncyclic quotient is the family of groups .Hn/n�1, with
a family of quotient maps �n W Gn!Hn, it suffices to carry out the following steps
(after checking base cases):

(1) Lower bound on orbit size Find the size k of an orbit of the conjugation action
of Hn. Find a suitable collection of elements x1; : : : ;xk in Gn whose images
generate the orbit, and show that the normal closure of each xix

�1
j contains the

commutator subgroup G0n of Gn (equivalently, under any noncyclic quotient of
Gn, the quotient classes Nxi are all distinct).

(2) Inductively find size of stabilizer For some noncyclic quotient q W Gn! In,
inductively bound the size of the stabilizer of the quotient class of q.x1/ in In, so

3For nD 4, a similar (but more tedious) check verifies Remark 3.
4It may be possible to adapt this method to find smallest nontrivial/nonabelian/nonsolvable quotients.
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that the orbit stabilizer theorem implies jInj�jHnj. For instance, if the centralizer
of x1 contains hx1i�Gn�i , it may be possible to get the desired result by applying
the inductive hypothesis on the induced quotient Gn�i! q.Gn�i/=Z.q.Gn�i//.
Finally, if jInj D jHnj, show that In is isomorphic to Hn. This follows if the
kernel of q contains the kernel of �n, which moreover shows any epimorphism
from Gn to Hn is �n composed with an automorphism of Hn.

Some modifications, such as considering a different group action, may be needed to
make this method work in a particular situation, and we will see one such modification
for the mapping class groups case later.

4 Smallest noncyclic quotients of braid groups

We will carry out the steps of the inductive orbit stabilizer method here for Artin braid
groups, and show that smallest noncyclic quotients are symmetric groups.

Lower bounds for size of orbit

Let us begin by observing that the conjugacy class of all transpositions in Sn consists
of

�
n
2

�
elements. We will take the xi to be the Birman–Ko–Lee generators of the braid

group, as mentioned in Section 2. The following lemma will complete the first step:

Lemma 8 For n� 5 and a noncyclic quotient of Bn, the
�
n
2

�
quotient classes x�i;j are

distinct.

We should note that the lemma does not hold for n D 4, as there is an exceptional
homomorphism from B4 to B3 (which can be further quotiented to obtain f4 WB4!S3,
as mentioned in Remark 3) defined by �1 7! �1, �2 7! �2 and �3 7! �1.

Totally symmetric sets are subsets of a group with the property that any homomorphism
restricts to an injective map on that set or to a trivial map on that set (that is not the
definition, but a consequence; see [13, Lemma 2.1]). Lemma 8 can be similarly phrased
as saying that the set f�i;j g satisfies this same property. We will give two proofs of
this lemma; the first is essentially in [6, Lemma 4.2], and the second is more hands-on.

Proof Suppose we have i;j and k;l with fi; j g ¤ fk; lg having the same quotient
class. Since n� 5, we can find an arc ı between two marked points disjoint from k;l

and sharing an endpoint with i;j . It follows that ı and its image under �i;j�
�1
k;l

share
one endpoint and have disjoint interiors. Thus, by a change of coordinates principle

Geometry & Topology, Volume 27 (2023)



2486 Sudipta Kolay

[8, Section 1.3.2], the commutator of �ı (the right-handed half twist about ı) and
�i;j�

�1
k;l

is conjugate to �1�
�1
2

. Now, as �i;j�
�1
k;l

is in the kernel of the quotient map, so
is its commutator with �ı , and thus so is �1�

�1
2

. The result now follows since �1�
�1
2

normally generates B0n (which is a direct consequence of the braid and far commutation
relations), using the fact that Bn=B

0
n is cyclic.

Alternative proof We will repeatedly use the following two observations:

(1) If two elements x and y in any group satisfy both the braid and far commutation
relations, then xyxD yxyD) xyxD xyyD) xD y, ie x and y must coincide.

(2) For any distinct i , j and k, if x�i;j is same as x�j ;k , then, by the partial commuta-
tion relation,5 they are also equal to x�i;k .

Now, let us suppose the lemma is not true; let us first consider the case x�i;j D x�j ;k with
distinct i , j and k, and, by the second observation above, we may assume i < j < k.
For any l distinct from i , j and k, we see that, if l is (respectively is not) between i

and j, then by the first observation we have x�k;l D x�j ;k (respectively x�k;l D x�i;j ). By
repeatedly applying the second observation, we see all the x�i;j must coincide, and thus
the quotient is cyclic (as Bn is generated by the half twists �i), a contradiction.

Let us now consider the case x�i;j D x�k;l for distinct i , j , k and l . Since nC 1 � 5,
we can find m distinct from all of i , j , k and l . Let o 2 fi; j ; k; lg be such that
jo�mj is smallest. By symmetry, without loss of generality, we may assume that
o 2 fi; j g. We see that x�i;j and x�o;m satisfies both the braid relation (as o is common)
and the far commutation relation (as x�i;j D x�k;l , and k;l and o;m are disjoint). By
the first observation, we must have x�i;j D x�o;m, and, by our discussion in the previous
paragraph, all the x�i;j must be the same, again leading to a contradiction.

Inductive step

Now we will use induction to prove Theorem 1. (we repeat the statement below for
convenience):

Inductive hypothesis Suppose nD 3 or n � 5. If G is a noncyclic quotient of Bn,
then either jGj > jSnj D n! or G is isomorphic to Sn. Moreover, in the latter case
the quotient map Bn! G is obtained by postcomposing the natural map � with an
automorphism of Sn.

5For an appropriate �2f�1; 1g, depending on the relative position among i , j and k, we have ��i;j .j ;k/D
i;k and hence we get the partial commutation relation �i;k D �

�
j ;k
�i;j�

��
j ;k

.
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We will use induction on n in steps of two, and we will use the base case nD 3 from
Claim 7, and the base case nD 6 from the computer-assisted proof of Caplinger and
Kordek [4]. But we can also do the n D 6 case by hand with a separate argument
similar to the inductive proof, as explained after this proof.

Proof idea Note that the centralizer of a transposition .1; 2/ in Sn is f1; .1; 2/g�Sn�2,
where Sn�2 is the symmetric group on the letters 3; : : : ; n. Similarly, we see that the
centralizer of x1D �1 in Bn contains h�1i�Bn�2, which projects to f1; .1; 2/g�Sn�2

under � . If, under some noncyclic quotient of Bn, the centralizer of Nx1 is h Nx1i�Bn�2,
then use the inductive hypothesis on the size of Bn�2. But h Nx1i and Bn�2 may not
intersect trivially; however, we see that their intersection is central in Bn�2. Therefore,
we can use the inductive hypothesis on Bn�2=Z.Bn�2/.

Proof of Theorem 1 As mentioned above, we will use the base cases n 2 f3; 6g, and
use induction on n in steps of two, and this will imply the result for all odd n� 5 and
even n� 8.

We will assume the inductive hypothesis is true for k D n� 1 and prove the statement
for k D nC 1 (with nC 1 � 5/. Suppose q W BnC1 ! G is a noncyclic quotient of
smallest order. By Lemma 8, it follows that all the 1

2
.nC 1/n quotient classes x�i;j

must be distinct for noncyclic G. It is known that all the �i;j are conjugate in BnC1, so
the x�i;j are conjugate in G. Therefore, if we consider the group action of G on itself
by conjugation, the orbit stabilizer theorem tells us

(1) jGj D jOjjC j � 1
2
.nC 1/njC j;

where C denotes the centralizer (ie stabilizer of the conjugation action) of the element
x�1;2 and O denotes its conjugacy class (ie the image of the half twists). Since �1D �1;2

commutes with the subgroup V1;2 of BnC1 generated by �3; : : : ; �n (thus V1;2 is
isomorphic to Bn�1), we see C contains H1;2 WD q.V1;2/ as a subgroup, and clearly
it also contains x�1;2. It follows from Lemma 8 that H1;2 is not cyclic, and so we can
apply the inductive hypothesis to any noncyclic quotient of H1;2.

Let M denote the cyclic subgroup generated by x�1;2 in G. We see that Y DH1;2\M

is in the center Z of H1;2 as x�1;2 commutes with all elements H1;2. If H1;2=Z is
cyclic, we know that H1;2 is abelian, but, as H1;2 is a quotient of V1;2 Š Bn�1, it has
to factor through the abelianization and is therefore cyclic, contradicting Lemma 8.
Hence, H1;2=Z is a noncyclic quotient of Bn�1, and so, by the inductive hypothesis for

Geometry & Topology, Volume 27 (2023)
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kDn�1, we have jH1;2=Zj� .n�1/!. Thus, we have jH1;2j� jZj.n�1/!�jY j.n�1/!.
Also, if D denotes the subgroup of C generated by H1;2 and M, we see that M is in
the center of D and thus jDj D jM=Y jjH1;2j � jM j.n� 1/!.

By combining with (1), we see that

(2) jGj � 1
2
.nC1/njC j � 1

2
.nC1/njDj � 1

2
.nC1/njM j.n�1/!D .nC1/! � 1

2
jM j:

Thus, the only way jGj � .nC 1/! is if jM j D 1 (in this case x�1;2 D 1, so G is the
trivial group, a contradiction) or jM j D 2. If the latter case happens then q.�2

i /D 1 for
all i , and thus q factors through the standard quotient map � W BnC1! SnC1. Since
the only proper quotient of SnC1 (for nC 1 � 5) is Z2, it must be the case that G is
isomorphic to SnC1, as required. Moreover, this shows that q is a composition of the
standard map � with an automorphism of SnC1.

Proof of Theorem 1 for n D 6 We will show the desired result for this case using a
similar argument as above, and we use the same notation. Let m denote the order of x�1;2

in G (a noncyclic quotient of B6 of smallest order). If mD 2, we know q W B6! G

factors through S6, and therefore the desired result holds, so we will assume m > 2

hereafter. By (1), we have jGj � 15jC j � 15jH1;2j. The following claim gives a lower
bound on jH1;2j which implies jGj � 6!, and thus jGj D 6!:

Claim 9 For m > 2, we have jH1;2j � 48, and equality holds only if m D 4 and
x�2

3
D x�2

5
.

Proof We see that the
�
4
2

�
D 6 elements x�i;j are distinct for 3 � i < j � 6 (we are

applying Lemma 8 for n D 6, and not 4). Thus, by the orbit stabilizer theorem, we
have jV1;2j D j

yOjj yC j, where yO and yC denote the orbit and centralizer of the element
x�3;4 D x�3 in V1;2. We see that yC contains the cyclic subgroups generated by the
commuting elements x�3 and x�5.

If these subgroups coincide, we will have x�5 D x�
p
3

for some p, and, by an appropriate
conjugation in G (by the image of a periodic braid), we get x�3 D x�

p
1

and x�4 D x�
p
2

.
It would therefore follow that G is generated by x�1 and x�2, but then the stabilizer
of x�4 is all of G, contradicting that we have a nontrivial orbit of x�4. Thus, yC properly
contains the cyclic subgroup generated by x�5, and so j yC j � 2m. For mD 3, we see the
subgroups generated by x�3 and x�5 cannot intersect (or otherwise they coincide) and
therefore j yC j D 9, and thus jV1;2j � 6 � 9D 54. Lastly, for m� 4, we have j yC j � 2m

and so jV1;2j D j
yOjj yC j � 6 � 2m D 12m � 48. Moreover, it is easily checked that

jV1;2j D 48 if and only if mD 4 and x�2
3
D x�2

5
.
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It remains to consider the case jGj D 6!, m D 4 and x�2
3
D x�2

5
. By conjugation by

the image of a periodic braid, it follows that x�2
1
D x�2

3
. The nontrivial (since m¤ 2)

element x�2
1

(commuting with x�1, x�3, x�4 and x�5) is in the center of G, as x�2 commutes
with x�2

5
(Dx�2

1
). Thus, G has nontrivial center Z.G/, and so G=Z.G/ must be a strictly

smaller noncyclic quotient of B6, a contradiction.

We will now see how Theorem 1 implies Artin and Lin’s results.

Proof of Corollary 2 If f W Bn! Sk is a noncyclic homomorphism, by Theorem 1,
we must have k D n and we have f D g ı� , where g W Sn! Sn is an automorphism.
Now we use the fact, due to Hölder [11], that for n¤ 2; 6 all automorphisms of Sn are
inner, and there is exactly one outer automorphism of S6 up to conjugation, which is
mentioned in the statement of the corollary.

5 Smallest noncyclic quotients of mapping class groups

We will use a slightly modified form of the inductive orbit stabilizer method here. In
the inductive step, it will be more convenient to look at the conjugation action on a
pair of elements (instead of a single element) of the quotient.

Lower bounds for size of orbit

We note that the orbit of all transvections in Sp.2g;Z2/ is 22g � 1, since these are
in bijection with primitive vectors in .Z=2Z/2g. In this case we will take the xi to
be suitable right-handed Dehn twists about simple closed curves, so that their mod
two homology classes give us all primitive vectors in .Z=2Z/2g. Corresponding to
each primitive vector v with zeroes and ones in the first homology H1.†g;Z/, we will
construct a simple closed curve ˛v realizing this homology class, and denote by Tv the

G
B

R

G B

R

G B
R

Figure 1: Illustrative examples of finding a new simple closed curve B (in
blue) disjoint from the red curve R and having geometric intersection number
one with the green curve G.
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right-handed Dehn twist about the curve ˛v. Starting at the first entry of v, for each
nonzero pair .p; q/ of entries we can draw the .p; q/ curve on the corresponding genus,
and we can join these curves by standard bands running straight across. For instance,
the red and green curves in Figure 1, left, show the .1; 0/ and .0; 1/ curves on a genus,
which is then band-summed with the other .p; q/ curves. It is easy to see that, if we
have two binary vectors v and w which differ on the same pair of entries, then, by
localizing to the corresponding genus, we can find a third simple closed curve ˇ which
intersects exactly one of ˛v or ˛w once and is disjoint from the other, as illustrated in
Figure 1.

Remark 10 As Dan Margalit pointed out to us, the above construction can also be
done using double branched covers, which can be more useful in certain situations.
By quotienting out by the hyperelliptic involution, we can consider †g as a double
branched cover over the sphere †0, with 2gC 2 branch points y1; : : : ;y2gC2. We can
think of the branched cover of the pair of branch points y2gC1 and y2gC2 as forming
a tube connecting two disjoint †gC1

0
’s, and the rest of the pairs correspond to adding

genus. For each subset of the first 2g branch points, we can consider a simple closed
curve in †0;2gC2 enclosing these points (we think of the region containing y2gC2 as
outside), and if necessary y2gC1 so that the total number of points is even. The lift
of this curve realizes the mod two homology class of the binary vector corresponding
to which branch points were chosen (in fact there is a bijection between H1.†gIZ2/

and the even subgroup of H1.†0;2gC2IZ2/). Lastly, let us observe that, given any two
mod two nonhomologous simple closed curves in †0;2gC2, it is possible to choose an
arc joining two branch points which intersects one and is disjoint from the other, and
its lift is a simple closed curve in †g having the same property.

Lemma 11 For g � 1 and any noncyclic quotient of Mod.†g/, the 22g � 1 quotient
classes Tv must be distinct.

Proof Suppose we have two different binary vectors v and w such that Tv D Tw . By
our above discussion, we can find a simple closed curve ˇ such that Tˇ commutes
with one of Tv or Tw and satisfies the braid relation with the other. Hence, by the first
observation in the alternative proof of Lemma 8, we see that, for two simple closed
curves c and d with geometric intersection number one, we have Tc D Td . By [15,
Lemma 2.1], the quotient must be abelian (and hence cyclic since all abelianizations of
Mod.†g/ are cyclic [8, Chapter 5]), which gives a contradiction.
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Inductive step

In this step, we will consider the conjugation action on a pair of group elements, but the
size of the orbit readily follows from the conjugation action considered in the first step.

Proof of Theorem 4 Let us first recall the statement we are going to prove:

Inductive hypothesis Let g � 1. For any noncyclic quotient H of Mod.†g/, either
jH j> jSp.2g;Z2/j or H is isomorphic to Sp.2g;Z2/. Moreover, in the latter case the
quotient map Mod.†g/!H is obtained by postcomposing ˆ with an automorphism
of Sp.2g;Z2/.

We will use induction on g, and we note that the base case gD 1 follows from Claim 7.
We will inductively assume the statement is true for k D g� 1 (with g � 2), and prove
it for k D g. Let q W Mod.†g/! H be a quotient of smallest order. Let R and S

denote the right-handed Dehn twists about the simple closed curves ˛e1
and ˛e2

(we
use ei to denote the i th standard basis vector in Z2g, and the same notation as in the
previous section). By Lemma 11, we know that the conjugacy class of the quotient
class R in H has size at least 22g�1. We will consider the conjugation action of G on
the set of all ordered pairs of elements in G. Using our original collection of curves ˛v ,
we have 22g�1.22g � 1/ ordered pairs with geometric intersection number one, so,
by the change of coordinates principle [8, Section 1.3.3], we see that the orbit of the
ordered pair .R;S/ under the conjugation action is at least 22g�1.22g � 1/. We see
the stabilizer of (R;S) contains the image I under q of Mod.†1

g�1
/ (where †1

g�1
is

obtained by cutting †g along the separating curve which is the boundary of a regular
neighborhood of ˛e1

and ˛e2
, ie we are deleting the leftmost genus containing ˛e1

and ˛e2
), since Mod.†1

g/ fixes ˛e1
and ˛e2

. If Z.I/ denotes the center of this image I,
we see that I=Z.I/ is a noncyclic quotient (otherwise I must be abelian, and thus
the various conjugate Tv must map to the same element, contradicting Lemma 11)
of Mod.†1

g�1
/. Since the boundary parallel Dehn twist in Mod.†1

g�1
/ is central, it

follows that I=Z.I/ is also a noncyclic quotient of Mod.†g�1/. By the inductive
hypothesis for k D g� 1, we have that jI j � jI=Z.I/j � jSp.2g� 2;Z2/j. Thus, by
the orbit stabilizer theorem, we have

(3) jH j � 22g�1.22g
� 1/jI j � 22g�1.22g

� 1/jSp.2g� 2;Z2/j D jSp.2g;Z2/j:

Thus, we get the desired result at the numerical level and, moreover, in the case of
equality above, we see that Z.I/ is trivial. Moreover, from the inductive hypothesis
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we have that I is isomorphic to Sp.2g� 2;Z2/. It follows that separating twists and,
for g � 3, genus one bounding pairs are in the kernel of q. By results of Birman,
Powell and Johnson [10], for g � 3 (respectively g D 2), genus one bounding pairs
(respectively separating twists) normally generate the Torelli group, so we see that q

factors through q1 W Sp.2g;Z/!H. Moreover, by the inductive hypothesis, some Tv

has order 2, and so the kernel of q1 contains squares of all transvections, and thus,
by [17, Proposition A3], the kernel of q1 contains the level two congruence subgroup.
Consequently, q in fact factors through Sp.2g;Z2/, and the result follows.

6 Allowing punctures and boundary components

In this final section, we will see some results about smallest noncyclic/nontrivial
quotients of Mod.†b

g;n/. These results are consequences of our main results and facts
about the abelianizations of mapping class groups, discussed below:

Abelianization of mapping class groups It is known [14, Theorem 5.1] that the
abelianization of the pure6 mapping class group PMod.†g;n/ is

(1) Z12 if g D 1 and b D 0;

(2) Zb if g D 1 and b � 1;

(3) Z10 if g D 2, and

(4) trivial if g � 3.

This implies the following result (likely known, but we could not find it in the literature):

Lemma 12 The abelianization of Mod.†b
g;n/ equals Z2 for g � 3 and n� 2.

Proof By the above result and the change of coordinates principle, we see under the
abelianization map of Mod.†b

g;n/, all essential Dehn twists map to the identity, and
all right-handed half twists map to the same element. If we consider the subsurface
†c

g of †b
g;n such that almost all the additional boundary components added consist of

standard loops enclosing exactly two punctures (and one containing a single puncture
if n is odd), we see that squares of half twists must also map to the identity in the
abelianization of Mod.†b

g;n/. The result follows by noting that the abelianization cannot
be trivial since we have an epimorphism from Mod.†b

g;n/ to Sn, and hence to Z2.

6We caution the reader that the reference we are citing follows the convention that mapping classes fix
punctures and thus their mapping class group coincides with our pure mapping class group.
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We now find the smallest nontrivial quotient of Mod.†b
g;n/ for g � 1 and arbitrary n

and b.

Theorem 13 The smallest nontrivial quotient of Mod.†b
g;n/ of smallest order is

(1) Z2 for n� 2 or g 2 f1; 2g, and arbitrary b;

(2) Sp.2g;Z2/ for g � 3 and n 2 f0; 1g, and arbitrary b.

Proof For n� 2, we get an epimorphism Mod.†b
g;n/! Sn by considering the action

on the punctures, and we can further quotient to the unique smallest nontrivial group Z2.
Thus, it only remains to consider n 2 f0; 1g, and so all mapping classes are pure. From
the aforementioned result about abelianization, we see that, for g 2 f1; 2g, the smallest
nontrivial quotient is Z2. Also, the same result tells us that, for g � 3, there can be no
nontrivial abelian quotients. Hence, all boundary parallel and puncture surrounding
Dehn twists (which are central) must map to the identity under any nontrivial quotient
of smallest order (otherwise we get an even smaller nontrivial quotient by quotienting
by the center), and thus we reduce to the case in Theorem 4.

We also find the smallest noncyclic quotient of Mod.†b
g;n/ for a wide range of cases.

Theorem 14 Any noncyclic quotient of Mod.†b
g;n/ of smallest order is

(1) the smaller of the groups among Sn and Sp.2g;Z2/ for g � 3, n � 5 and
arbitrary b;

(2) S3 for g � 3, n 2 f3; 4g and arbitrary b;

(3) Sp.2g;Z2/ for g�2, n2f0; 1g and arbitrary b (also for gD1 and n; b 2f0; 1g);

(4) Z2˚Z2 for g D 1, n 2 f0; 1g and b � 2.

Proof Let us consider the center of a noncyclic quotient of Mod.†b
g;n/ of smallest

order. The only way this center is nontrivial is if the quotient is noncyclic abelian
(otherwise we get a strictly smaller noncyclic quotient). This situation does happen for
g D 1, n 2 f0; 1g and b � 2, where the abelianization of Mod.†b

g;n/ is Zb , which has
the Klein four group (the unique noncyclic group of smallest order) as a quotient.

Also, the above is the only case (among the ones mentioned in the statement) where
this can happen, since the abelianization of Mod.†b

g;n/ is Z2 for g � 3 and n� 2, and
Z=10Z for gD 2 and n 2 f0; 1g. Thus, for these cases, the smallest noncyclic quotient
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must necessarily be nonabelian. Moreover, all boundary parallel Dehn twists must map
to the trivial element in the quotient, and so we reduce to the case b D 0 (and, if nD 1,
the Dehn twist about the curve surrounding the puncture is also central, so we can also
reduce to the case nD 0). Hence, for g � 2, n 2 f0; 1g and arbitrary b (and also for
gD 1 and n; b 2 f0; 1g), we reduce to the case nD bD 0, and we get the desired result
by Theorem 4.

If n 2 f3; 4g and g � 3, we see that S3 is a quotient of Mod.†b
g;n/ (using the induced

action on the punctures and the exceptional homomorphism S4! S3). As we saw
earlier, S3 must be the smallest quotient in this case as it is the unique smallest
nonabelian group.

Finally, we now consider the case g � 3, n� 5 and b D 0. Suppose we have a quotient
of Mod.†g;n/ such that the restriction to both Mod.†1

g/ and Bn Š Mod.†1
0;n
/ are

both cyclic. Then, by Theorem 13, it must be the case that the image of Mod.†1
g/ is

trivial. Moreover, by the braid relation, all half twists in Mod.†g;n/ must map to a
single element. Given any Dehn twist in Mod.†g;n/, by a change of coordinate we
can find a half twist commuting with it. So we see that the image of each half twist is
a central element in the quotient, as Mod.†g;n/ is generated by Dehn twists and half
twists. This contradicts our observation earlier, so one of the restrictions to Mod.†1

g/

or Bn is noncyclic, giving us the desired result by using Theorems 1 and 13.

To complete the proof of Theorem 5, it remains to verify the statement about maps.
However, let us note that the corresponding statement is not true for all the cases in
Theorem 14. For instance, for b � 3, there are multiple epimorphisms from Mod.†b

1
/

to Z2˚Z2, even up to postcomposing by automorphisms of the image.

Proof of Theorem 5 For g� 3 and n� 5, let us first consider the case that the quotient
of Mod.†b

g;n/ of smallest order is Sn. We know from the proof of Theorem 14 that we
can reduce to the case bD 0, and the restriction of this quotient on Mod.†1

0;n
/ is Sn as

well. Since Mod.†1
0;n
/ commutes with Mod.†1

g/, and Sn is centerless, it follows that
Mod.†1

g/ is in the kernel of this quotient map. As all Dehn twists in Mod.†g;n/ are
conjugate, it follows that the kernel contains the pure mapping class group PMod.†g;n/.
Consequently, the quotient map factors through Mod.†g;n/=PMod.†g;n/Š Sn, and
the desired result follows.

For g � 3 and n� 5, let us now consider the case that the quotient of Mod.†b
g;n/ of

smallest order is Sp.2g;Z2/. Similar to our above discussion, we see that the quotient
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map restricted to Mod.†1
g/ is surjective, and all half twists are in the kernel of the

quotient map. We know the epimorphism from Mod.†1
g/ to Sp.2g;Z2/ has to send the

boundary parallel Dehn twists to the identity, and so it factors through Mod.†g/. By
Theorem 4, we know this map is the standard projection ˆ, up to an automorphism h

of Sp.2g;Z2/. By looking at the action on Z2g
2

, we see that all the Dehn twists about
curves not contained in †1

g (next to the punctures) in [8, Figure 4.10] must map to the
same element. Since we also know that all half twists are in the kernel of the quotient
map Mod.†b

g;n/! Sp.2g;Z2/, it follows that this map coincides with the standard
projection, postcomposed with the same automorphism h of Sp.2g;Z2/. ,

For g�3 and n2f0; 1g, the result follows by the same argument as in the last paragraph.
Lastly, for g � 3 and n� 2, any homomorphism from Mod.†b

g;n/ to an abelian group
must factor through the abelianization of Mod.†b

1
/, which, by Lemma 12, is Z2. Hence,

the result follows, and moreover this map is unique since Z2 does not have a nontrivial
automorphism.
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