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Duality between Lagrangian and Legendrian invariants

ToBIAS EKHOLM
YANKI LEKILI

Consider a pair (X, L) of a Weinstein manifold X with an exact Lagrangian submani-
fold L, with ideal contact boundary (Y, A), where Y is a contact manifold and A CY
is a Legendrian submanifold. We introduce the Chekanov—Eliashberg DG-algebra,
CE*(A), with coefficients in chains of the based loop space of A, and study its
relation to the Floer cohomology CF* (L) of L. Using the augmentation induced by L,
CE*(A) can be expressed as the Adams cobar construction €2 applied to a Legendrian
coalgebra, LC,(A). We define a twisting cochain t: LC4(A) — B(CF*(L))* via
holomorphic curve counts, where B denotes the bar construction and # the graded
linear dual. We show under simple-connectedness assumptions that the corresponding
Koszul complex is acyclic, which then implies that CE*(A) and CF* (L) are Koszul
dual. In particular, t induces a quasi-isomorphism between CE*(A) and QCF, (L),
the cobar of the Floer homology of L.

This generalizes the classical Koszul duality result between C*(L) and C_.(2L)
for L a simply connected manifold, where 2L is the based loop space of L, and
provides the geometric ingredient explaining the computations given by Etgii and
Lekili (2017) in the case when X is a plumbing of cotangent bundles of 2—spheres
(where an additional weight grading ensured Koszulity of t).

We use the duality result to show that under certain connectivity and local-finiteness
assumptions, CE*(A) is quasi-isomorphic to C_(§2L) for any Lagrangian filling L
of A.

Our constructions have interpretations in terms of wrapped Floer cohomology after
versions of Lagrangian handle attachments. In particular, we outline a proof that
CE*(A) is quasi-isomorphic to the wrapped Floer cohomology of a fiber disk C
in the Weinstein domain obtained by attaching 7*(A x [0, 00)) to X along A (or,
in the terminology of Sylvan (2019), the wrapped Floer cohomology of C in X
with wrapping stopped by A). Along the way, we give a definition of wrapped
Floer cohomology via holomorphic buildings that avoids the use of Hamiltonian
perturbations, which might be of independent interest.
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2050 Tobias Ekholm and Yanki Lekili
1 Introduction

In this introduction we first give an overview of our results. The overview starts
with a review of well-known counterparts of our constructions in algebraic topology.
We then introduce our Legendrian and Lagrangian invariants in Sections 1.1 and 1.2,
respectively, and discuss the connection between them and applications thereof in
Section 1.3. Among these the most central role is played by the Chekanov—Eliashberg
algebra with based loop space coefficients, denoted as CE*. As we show, any other
invariant can be obtained from CE* by algebraic manipulation. Finally, in Section 1.4
we give detailed calculations of the invariants introduced, in the simple yet illustrative
example of the Legendrian Hopf link filled by two Lagrangian disks intersecting
transversely in one point.

The starting point for our study is a construction in classical topology. Consider the
following augmented DG-algebras over a field K associated to a based, connected,
topological space (M, pt):

C*(M)—>K, C_(QM)—K,

where C*(M) is the singular cochain complex equipped with the cup product and
C_«(2M) is the singular chain complex of the based (Moore) loop space of M
equipped with the Pontryagin product. (We use cohomologically graded complexes
throughout the paper so that all differentials increase the grading by 1.) In the case of
singular cohomology, the inclusion i: pt — M gives the augmentation i *: C*(M) —
C*(pt) =K and in the case of the based loop space, the augmentation is given by the
trivial local system 71 (M, pt) — K.

If M is of finite-type (for example, a finite CW—complex), then it is well known that
one can recover the augmented DG-algebra C* (M) from the augmented DG-algebra
C_«(2 M) by the Eilenberg—Moore equivalence

C*(M) =~ RHOH]C?*(QM)(K,K).

In the other direction, if M is simply connected, then the Adams construction gives a
quasi-isomorphism
C_«(QM) ~ RHomc+(pr) (K, K),

and in this case C*(M) and C—, (2 M) are said to be Koszul dual DG-algebras. Koszul
duality is sometimes abbreviated and simply called duality. For more general M, using

Geometry & Topology, Volume 27 (2023)



Duality between Lagrangian and Legendrian invariants 2051

the method of acyclic models, Brown [13] constructed a twisting cochain
t:C_s (M) —» C_(QM).

This is a degree 1 map that induces a DG-algebra map QC_.(M) - C_.(QM),
where QC_, (M) is the cobar construction applied to chains on M ; see Section 2.2.1.
By definition, t is a quasi-isomorphism when duality holds, and this can be detected
by an associated Koszul complex, which is acyclic if and only if duality holds. In
the general case, QC_4 (M) is a certain completion of C_,(2M') and consequently
C_«(2M) is a more refined invariant of M than QC_,(M).

In this paper, we pursue this idea in the context of invariants associated to Lagrangian
and Legendrian submanifolds. Here the role played by simple connectedness in the
above discussion has two natural counterparts: one corresponds to a generalized notion
of simple connectedness for intersecting Lagrangian submanifolds and the other is the
usual notion of simple connectedness for Legendrian submanifolds.

We start with the geometric data of a Liouville domain X with convex boundary ¥ and
an exact Lagrangian submanifold L C X with Legendrian boundary A C Y. We assume
that ¢; (X) = 0, that the Maslov class of L vanishes (for grading purposes) and that L
is relatively spin (to orient certain moduli spaces of holomorphic disks). Assume that L
is subdivided into embedded components intersecting transversely L = | J,p Ly, and
that A is subdivided into connected components A =| |, Ay. To avoid notational
complications, we take both parametrized by the same finite set I' and assume that the
boundary of L, is A,. We use a base field K and define the semisimple ring

kz@Kev,

vel

generated by mutually orthogonal idempotents e,. Also, we fix a partition
r=rtur-

into two disjoint sets, and choose a basepoint p, € A, for each v € ',

For simplicity, let us restrict, in this introduction, to the following situation:

e X is a subcritical Liouville domain.

e If v € I'", then the corresponding Legendrian A, is an embedded sphere.

From a technical point of view, these restrictions are unnecessary. We make them
in order to facilitate the explanation of our constructions from the perspective of
Legendrian surgery. (Note that the topology of A, is unrestricted when v € ')

Geometry & Topology, Volume 27 (2023)



2052 Tobias Ekholm and Yanki Lekili

We write X5 for the completion of the Liouville sector obtained from X by attaching
critical Weinstein handles along A, for each v € ', and attaching cotangent cones
T*(Ay x[0,00)) along Ay foreachv e It If 't = @, X is an ordinary Liouville
manifold. In this case Gromov compactness is ensured by convexity of the boundary.
When '™ # @, we also have part of the boundary that can be identified with a
neighborhood of the zero section in the cotangent bundle | J,cp+ 7* (A X [T, 00)), for
some 7" > 0. This is a geometrically bounded manifold, hence Gromov compactness [38]
still holds, and holomorphic curve theory is well behaved.

In Xp, for v € ' there is a closed exact Lagrangian submanifold S, = L, U Dy, the
union of the Lagrangian L, in X and the Lagrangian core disk D, of the Weinstein
handle attached to A, and for v € 't there is a noncompact Lagrangian obtained
by attaching the cylindrical boundary A, x [0, 00) to L, for v € I't, which we will
still denote by L, by abuse of notation, even when we view them now in X5 . Dually,
for each v € I'” we obtain (noncompact) exact Lagrangian disks Cy, the Lagrangian
cocore disks of the Weinstein handles attached to A, on X, and for each v € I'"
we construct dual Lagrangians disks C, intersecting L, once and asymptotic to a
Legendrian meridian of L, —these can be constructed as the cotangent fiber at the
point (py, 1), ¢t >0, in T*(A, x [0,00)) C X, where p, is the basepoint on A,.

The invariants we will construct are associated to the unions of Lagrangian submanifolds

La=|J Lyu |J Sv and Cp:=[] G

vel'+ vel— vel

The Lagrangian L 5 will be referred to as a Lagrangian skeleton of X4 ; it is a union
of Lagrangian submanifolds which intersect transversely. The dual Lagrangian Cp is
the union of Lagrangian disks which can be locally identified with cotangent fibers to
irreducible components of L 4.

We will study two algebraic invariants associated to (X, L, Cp). The first one
is the Legendrian Aso—algebra, LA*. Tt corresponds to the endomorphism algebra
of L considered in the infinitesimal Fukaya category of X (Theorem 63). The
second one is the Chekanov—Eliashberg DG—-algebra, CE*. It corresponds to the
endomorphism algebra of Cj considered in the partially wrapped Fukaya category
of Xz (Theorem 83). However, we will take the pre-surgery perspective as in Bourgeois,
Ekholm and Eliashberg [11] and construct all these invariants by studying Legendrian
invariants of A C X rather than Floer cohomology in X 4. From this perspective, the

Geometry & Topology, Volume 27 (2023)



Duality between Lagrangian and Legendrian invariants 2053

case I'" # @ is a new construction, which generalizes the theory from [11] in a way
analogous to how the partially wrapped Fukaya categories of Sylvan [62] generalize
the wrapped Fukaya categories of Abouzaid and Seidel [3].

The invariants LA* and CE* come equipped with canonical augmentations to the
semisimple ring k, and it is easy to see by construction that LA* is determined by CE*

via the equivalence
LA* ~ RHom¢g=(k, k).

The duality which would recover CE* from LA* holds in the “simply connected” case;
see Section 2.3. In the topological case discussed above, this is analogous to the simple-
connectedness assumption on M, which makes the augmented algebras C*(M') and
C_+(2M) Koszul dual. In fact, the topological case is a special case of our study for
the Weinstein manifold 7* M , with the Lagrangian skeleton L , = M given by the zero
section, and the dual Lagrangian C given by a cotangent fiber T ;M . This is because
the wrapped Floer cohomology complex of a cotangent fiber is quasi-isomorphic to
C_«(2M) by Abouzaid [2] and the Floer cohomology complex of the zero section is
quasi-isomorphic to C*(M) (Fukaya and Oh [35]) as augmented A ,—algebras.

We next sketch the definition of our version of the Chekanov—-Eliashberg DG-algebra
without any assumption of simple connectedness; see Section 3 for details. This is the
DG-algebra over k called CE* above. Its underlying k—-bimodule is the unital k—algebra
generated by Reeb chords between components of A and chains in C_x(£2,,Ay) for
v € I'". (This is the crucial distinction between I't and I'".)

We use the cubical chain complex (cf Serre [60]) C_«(22p,Ay) for v € 't —see
Section 3.1 for a discussion of other possible choices of chain models — to express
CE* as a free algebra over k generated by Reeb chords ¢ and generators of C_ (2, Ay)
for v € I't. The differential on CE* is determined by its action on generators. On a
generator of C_x(£2p,Ay) we simply apply the usual differential. On a generator ¢
which is a Reeb chord, the differential is determined by moduli spaces of holomorphic
disks in the symplectization R x Y which asymptotically converge to ¢y on the positive
end and chords ¢y, ..., ¢; at the negative end as follows. Consider the moduli space
of J-holomorphic maps u: D — R x Y, where D is a disk with & 4 1 boundary
punctures zj € 3D = S that are mutually distinct with (¢, z1, . . . zx) respecting the
counterclockwise cyclic order of S, and u sends the boundary component (zj—1.2j)
of ST\ {zp,...,2zx} to R x A and is asymptotic to ¢; near the puncture at z; for
j =1,...,k and to ¢q near the puncture at zq (as usual these disks may be anchored

Geometry & Topology, Volume 27 (2023)



2054 Tobias Ekholm and Yanki Lekili

C1 (&) C3 C4 Cs Ce

Figure 1: The differential in CE*: the word ooc101¢2¢302¢403¢5¢6 appears
in dC().

in X'). The moduli space, which is naturally a stratified space with manifold strata that
carries a fundamental chain, comes with evaluation maps to 2, A, for v € I'". The
image of the fundamental chain determines a word in our chain model of C_4 (€2, Ay).
Reading these together with the Reeb chords in order gives the differential of cg.

We remark that loop space coefficients have been used in the context of Lagrangian
Floer cohomology before; see Barraud and Cornea [7] and Fukaya [34]. See also
Abouzaid [2] and Cieliebak and Latschev [19] for uses of high-dimensional moduli
spaces in Floer theory.

While CE* with loop space coefficients is a powerful invariant, it is in general hard
to compute as it involves high-dimensional moduli spaces of disks. As mentioned
above, duality in the Legendrian A will also play a role. More precisely, we define
another DG-algebra CE] related to CE* via a Morse-theoretic version of Adams
cobar construction whose definition involves taking parallel copies of A but uses
only 0—dimensional moduli spaces; see Section 3.4. In fact, we prove that the two
DG-algebras are quasi-isomorphic when all A, for v € I'"" are simply connected.

Theorem 1 There exists a DG—algebra map
CE* — CEj,

which is a quasi-isomorphism when the A, are simply connected for allv € I't.

Theorem 1 is restated and proved as Theorem 51 in Section 3.4.

Geometry & Topology, Volume 27 (2023)
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1.1 Partially wrapped Fukaya categories by surgery

Let A = |_|yer Ay be a Legendrian submanifold and I' = I't U '™ be as above.
Furthermore, we use the notation above for cocore disks and write CE* = CE*(A).
An important result that is implicit in [11, Remark 5.9] is the following:

Theorem 2 Suppose I' = I'". Then there exists a surgery map defined via a
holomorphic disk count that gives an A~o—quasi-isomorphism between the wrapped
Floer cochain complex CW* := @, ,,er— CW*(Cy, Cy) and the Legendrian DG-
algebra CE*.

We prove Theorem 2 in Section B.2 following [11], referring to Ekholm [25] for the
necessary technical results omitted there. Section B.1 also contains a construction
of wrapped Floer A ,—algebras that uses only purely holomorphic disks (without
Hamiltonian perturbation), and a proof that this agrees with the more standard version
defined in Abouzaid and Seidel [3], which uses Hamiltonian perturbations.

One of the main guiding principles for the results in this paper is that Theorem 2 remains
true when ' is nonempty, provided the Lagrangians C, are considered as objects of
the partially wrapped Fukaya category of X5, where the noncapped Legendrians A,
for v e I't serve as stops; cf Sylvan [62]. The full proof of this result when 't is
nonempty can be reduced to the standard surgery result, Theorem 2, and will appear
elsewhere. Here we give an outline of a somewhat different and more topological proof;
see Section B.3. We will use the geometric intuition provided by this viewpoint, and
our constructions of Legendrian invariants provide a rigorous “working definition” of
CE* even in the case that '™ is nonempty, as well as a starting point for the study of
“partially wrapped Fukaya categories” via Legendrian surgery (extending the scope
of [11] considerably). For future reference, we state this result as a conjecture:

Conjecture 3 There exists a surgery map defined via moduli spaces of holomorphic
disks which gives an As,—quasi-isomorphism between the partially wrapped Floer
cochain complex CW* := @, ,,cr CW*(Cy, Cy) and the DG—-algebra CE*.

While writing this paper, we learned that Sylvan [61] independently considered a similar
conjecture in relation with his theory of partially wrapped Fukaya categories [62].

Geometry & Topology, Volume 27 (2023)



2056 Tobias Ekholm and Yanki Lekili

1.2 Augmentations and infinitesimal Fukaya categories

We keep the notation above and now consider an exact Lagrangian filling L in X of A.
Such a filling gives an augmentation

ELICE*—ék.

For chords on components A, with v € ', this is well known and given by a count
of rigid disks with one positive puncture and boundary on L,,.

For components A, with v € I't, we define an augmentation using the same disks.
More formally, we define a chain map

BL:CE* - P C_«(QLy).
vel'+
which acts on chains in @+ C—«(2A,) by the inclusion and on Reeb chords ¢ as the
chain of loops carried by the moduli spaces of holomorphic disks with boundary on L,
(for each v) and a positive puncture at c. The augmentation €y, is then this map followed
by the augmentation on @, e+ C—«(2L,) — k that takes higher-dimensional chains
to zero and takes any loop in Ly to ey.

This allows us to write
CE* = QLCx

for an Ay—coalgebra LCyx = LC4(A) that we call the Legendrian Asc—coalgebra
(which depends on €;,). Here Q is the Adams cobar construction. Writing LA* :=
(LC4)* for the Aoo—algebra which is the linear dual of LCy, the following result
recovers the Floer cochain complex of L in X :

Theorem 4 There is an Aso—quasi-isomorphism between CF* := CF*(L » ), the Floer
cochain complex in the infinitesimal Fukaya category of X p, and the Ao—algebra LA*.

By the general properties of bar—cobar constructions (see Section 2.2.1), the algebra
RHomg; ¢, (k, k) is quasi-isomorphic to the graded k—dual of the bar construction on
the algebra QLC,, which can be computed as

(1) (BQLC,)" = (LC4)* = LA*.

Remark 5 If I'" is empty, the Aoo—algebra LA* is obtained from the construction in
Civan, Koprowski, Etnyre, Sabloff and Walker [20] and Bourgeois and Chantraine [10],
known as the Aug_ category, by adding a copy of k, making it unital.

Geometry & Topology, Volume 27 (2023)
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If '~ is empty, the Ao—algebra LA* ~ (BCE*)* —see (1) —is the endomorphism
algebra of A with the augmentation €7, in the Aug, category of Ng, Rutherford,
Shende, Sivek and Zaslow [55]. In the setting of microlocal sheaves, a related result
was obtained by Nadler [53, Theorem 1.6].

1.3 Duality between partially wrapped and infinitesimal Fukaya categories

We study duality in the setting of the two categories described above: the partially
wrapped Fukaya category and the infinitesimal Fukaya category of X5 (after surgery) or,
equivalently, the augmented DG-algebra QLC, and the augmented Ao,—algebra LA*
(before surgery).

As we have seen in Theorem 4, the augmented DG-algebra QLC, determines the
augmented (unital) A.c—algebra CF*. Now, a natural question is to what extent the
quasi-isomorphism type of the Ao,—algebra CF* determines the quasi-isomorphism
type of the augmented Legendrian DG-algebra QLC..

We emphasize here the phrase “quasi-isomorphism type”: even though it is possible
to construct chain models of the 4,,—algebra LA* (which is As—quasi-isomorphic
to CF*) and the DG-algebra QLC, by counting “the same” holomorphic disks in-
terpreted in different ways, the two algebras are considered with respect to different
equivalence relations, and the resulting equivalence classes can be very different. In
particular, it is not generally true that f: ¥ — 2 being a quasi-isomorphism of Aso—
coalgebras implies that Qf: Q¥ — Q2 is a quasi-isomorphism.

We will study this question by (geometrically) constructing a twisting cochain
t: LCyx — (BCF*)*,

where B stands for the bar construction and # is the graded k—dual. See Section 2.1.4.
This twisting cochain induces a map of DG-algebras,

QLCy« — RHom¢p= (k, k),

which is a quasi-isomorphism if and only if t is a Koszul twisting cochain. For example,
we will prove the following result:

Theorem 6 Suppose that LCy is a locally finite, simply connected k—bimodule. Then
the natural map QLC4« — RHom¢g= (k, k) is a quasi-isomorphism.

Geometry & Topology, Volume 27 (2023)



2058 Tobias Ekholm and Yanki Lekili

This is an instance of Koszul duality between the Aoo—algebras QLC, and CF*. It has
many useful implications; for example, it implies an isomorphism between Hochschild
cohomologies,

HH*(QLCs, QLC) =~ HH*(CF*, CF*).

When I't = @, an isomorphism defined via a surgery map [11] was described be-
tween symplectic cohomology, SH* = SH*(X ), and the Hochschild cohomology
HH*(QLC,, QLCx). Therefore, when duality holds (ie t induces an isomorphism),
we obtain a more economical way of computing SH*.

In the case of cotangent bundles 7* M of simply connected manifolds M, this recovers
a classical result due to Jones [42], which gives

Hy—y(LM) =~ HH*(C_(2M), C_x(QM)) =~ HH*(CF* (M), CF*(M)),

where M is a simply connected manifold of dimension # and LM denotes the free
loop space of M.

In Section 6, we give several concrete examples where the duality holds beyond the
case of cotangent bundles. For example, the duality holds for plumbings of simply
connected cotangent bundles according to an arbitrary plumbing tree; see Theorem 68.

In another direction, combining duality and Floer cohomology with local coefficients,
we establish the following result for relatively spin exact Lagrangian fillings L C X
with vanishing Maslov class of a Legendrian submanifold A C Y.

Theorem 7 Let I' =T'~ and assume that SH* (X)) = 0 and that A is simply connected.
If CE*(A) is supported in degrees < 0, then L is simply connected. Moreover, if A is
a sphere, then CE*(A) is isomorphic to C_(Q2L), where L = L U D, for a disk D
with boundary 0D = A.

In general, duality between QLC, and CF* does not hold — as can be seen for example
by looking at cotangent bundles of non-simply-connected manifolds, or letting A be
the standard Legendrian trefoil knot in S3 filled by a punctured torus. However, there
are cases when duality holds even if LC, is not simply connected, for instance because
of the existence of an auxiliary weight grading (see Etgii and Lekili [32]), or, for
an example in the 1-dimensional case, see Lekili and Polishchuk [48]. It is a very
interesting open question to find a geometric characterization of when duality holds.
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Remark 8 Constructions of Legendrian and Lagrangian holomorphic curve invariants
require the use of perturbations to achieve transversely cut out moduli spaces. For
our main invariant CE*, all moduli spaces used can be shown to be transverse by
classical techniques (see Theorem 74) except for the rigid holomorphic planes in X'z
with a single positive end that are used to anchor the disks (in the terminology of [11]).
These are also relevant for defining the wrapped Floer cochain complex CW* without
Hamiltonian perturbations and for constructing the surgery map. In all cases, there
is a distinguished boundary puncture in the main disk that determines asymptotic
markers on the split-off planes. Taking this marker into account removes symmetries
of the planes, and a specific perturbation scheme for transversality of the resulting
moduli spaces was constructed in [25]. We will use that perturbation scheme here; see
Section A.2 for details.

1.4 An example: the Hopf link

In this section, we study the example of the Hopf link in order to illustrate our results
in a simple and computable example. Some of the algebraic constructions used here
are explained in detail only later; see Section 2.

Let A C S3 be the standard Legendrian Hopf link. We work over k = Ke; @ Ke, and
with the Lagrangian filling L given by two disks in D* that intersect transversely in a
single point. We choose the partition A = AT U A™. This means that after attaching
a Weinstein 2—handle to A~ and T*(S! x [0, 00)) to AT, we obtain the symplectic
manifold Xa with Lagrangian skeleton
Lpa=S8*UTy;S*>CT*S?,
or, in the terminology of [62], X is 7*S? with wrapping stopped by a Legendrian
fiber sphere. The DG-algebra CE* = CE*(A) of A has coefficients in
C_+«(QAT)e; ®Key = K[t, 17 e; @ Kes.

A free model for K[¢,71] is given by the tensor algebra K(sq,;,k;, /1, u;) with
Isi]=|t1] =0, |k1| = |/1] = —1, |u1| = —2 and the differential

dki =e1—s1t1, dly=e;—1t151, duy=kis1—s1l;.

The natural map K (sq,#;, k1,1, u;) — K[t,t7!] sending t; — t and sy — ¢t~ ' is a
quasi-isomorphism. The subscripts indicate that as k—module generators, s1, t1, k1, /1
and u; are annihilated by the idempotent e;.
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Figure 2: Hopf link when both 't and '™ are nonempty: the blue component
lies in 't and the red in T'™.

Next, incorporating the Reeb chords, with notation as in Figure 2, we get the free
algebra
k{ci2,ca1,c1,¢2,51, 11, ky, 11, uq)
with gradings
lurl ==2. el =lel =lkal =1L =—1, [eral = learl = Is1] = [t1[ =0
and differential
dey = ey +s1+craca1,  dey =112,
dk1=€1—51l1, d[1=€1—1151, du1=k151—5111.
The only augmentation to k is given by €(s;) = €(t;) = —e; and €(cq) = €(c) =

€(c12) = €(ca1) = €e(ky) = €(l1) = €(uy) = 0. After change of variables, s; — 51 — ey
and #; — t; — ey, we obtain the free algebra

k{ci2,ca1.¢1,¢2, 81,11,k 1y, uy)
with nonzero differential on generators

@ dcy =51+ ciac21, dey = 21012,
dki=s1+t1—s1ty, dlj=s1+tH—ts1, duy=11—ki+kisi—s1;.
On the other hand, we can compute the Floer cochains CF* = CF*(L ) of L as
CF* =k ®Kai, ®Kays & Ka,, where |612| =2, |6112| = |a21| =1.

The cohomology level computation follows easily from the geometric picture and
general properties of Floer cohomology: L, is a union of a disk D? and a sphere S
that intersect transversely in one point, and we have

HF*(D?, D*) =Ke;, HF*(52,5%) =Ke, ®Ka,,
HF*(D?, §?) =Kay,, HF*(S?, D?) =Kay;.
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The only nontrivial product that does not involve idempotents is my (a2, d21) = a>.
For degree reasons, the only possible nontrivial higher products are

My (a2,d21,...,d12,d21) = cap for some k > 1 and ¢ € K.

It turns out that one can take ¢ = 0 for all £ > 1. Indeed, assuming that the Aso—
structure is strictly unital (which can be arranged up to quasi-isomorphism), consider
the Aoo—relation that involves the term

ma (Mo (arz.azy, ... a12,a21), €2).

By induction on k& > 1, this term has to vanish, implying mi, (@12, d21,...,d12,4d21)
has to vanish for all £ > 1. Let us confirm this by using the quasi-isomorphism

CF* = RHomCE* (k, k)
We introduce the counital As,—coalgebra
LCy =k dKcs ®Ker @Key @ Key @ Ksy @Kty @Kk &K & Kuyg

with [u1]| = =3, [e1| = |e2| = |ki| = |li] = =2 and |c12] = [e21] = [s1| = |0 = —1,
for which A; = 0 except for i = 1 or 2, where there are the nonzero terms

Ai(cr)=s1, Ak =s1+t, M) =s1+t, Ai(u) =1 —k;.
Write Ay (x) = 1 ®g x + x @ 1 + Ay(x). Then

Z2(6’1) = (12021, Z2(02) =(21C12,

As(ky) = —s1t1, Do) =—t1s1,  Da(uy) =kysy—sih,

where the A, coalgebra operations on LCy are defined so that QLC, is isomorphic
to CE*. Thus, RHom¢g+ (k, k) can be computed as the graded dual of LC, which is
the Aoo—algebra

LA* =k ®Kce), ®Key, @ KeY ®Key @ Ks) oKt @Kk @ Kl & Kuy,
with gradings

W 1=3. Iyl =1 1= kY=Y 1=2, leYyl = e = sy = Ity = 1.
where ¢V is the linear dual of the generator ¢ of LC,. The differential is

ml(S;/)=CI/+k;/+lv, ml(llv)=k;/+lv, ml(k;/)=—u1, ml(llv)=u1,
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and the products that do not involve idempotents are

mZ(CYZ’CE/I):C;/’ m2(c;/196;/2)=c;/’ mZ(ZI\/’SY)=_k;/,
ma(sy, t))=~1,  malky,s)) =uy, mas) 1)) = —uy.

All the higher products vanish. We claim that this A,c—algebra is quasi-isomorphic to
the algebra

ko Kaj, dKayy ®Kay, where |ay| =2, |arz| = lax] =1,
with the only nontrivial product (not involving idempotents) given by
ma (a2, az1) = a;.
Indeed, it is easy to show that the map defined by
¢y —>ain, ¢y —>ax, ¢ —ay and ¢, 5] 00 k1 ul -0

is a DG—algebra (hence also an A,—algebra) map, which induces an isomorphism at
the level of cohomology.

Dually, we can construct a D G-algebra map
CE* — RHomgp= (k, k).

The Floer cochain complex CF* has a unique augmentation given by projection to k,
and we compute
RHomCF* (k s k) = QCF*,

where CFy is the coalgebra dual to CF*. This is the free coalgebra
k(ayy.a3;.a3)

with |a},| = |a,| = 0 and |a}| = —1, and the only nontrivial differential not involving
counits is
Az(ay) =ayaf;.

We have a twisting cochain

t: LCx — QCF,
given by
t(c2) = aj. t(c12) = ay,, t(ca1) = ayy,
t(c1) =0, t(s1) =—aj,ay.  Ht)=aj,a3,
() = t(ky) = ay,ayay;, t(u) = ayya;ay ay).
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This means that t satisfies the equations

dt(c1) = t(s1) + t(cr2)t(ca1),

dt(cz) = t(ca1)tc12),

dt(ky) = t(s1) + t(t1) — tls1) (1),

dt(ly) = t(s1) + t(11) — t{t1)t(s1),

dt(uy) = t(l1) — tlk1) + t(k)t(s1) — ts)tlh).

Hence, it induces a DG—-algebra map
QLCyx — QCFs.

We have not checked whether this is a quasi-isomorphism, or equivalently whether t is
a Koszul twisting cochain. Note, however, that the DG-algebra map QCF, — QLC,
defined by

\Y X \% . Vv .
Ay —>C2, dyy—>C12, Uy —>C21

shows that t is a retraction, and QCF4 is a retract of QLC,.
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2 Algebraic preliminaries

In this section, we review the homological algebra we use in our study of various
invariants associated to Legendrian submanifolds and their Lagrangian fillings. Most
of this material is well established; see [47] and also [45; 57; 56; 39; 49; 50]. Note
though that our sign conventions follow [59]; see Remark 9.

2.1 A—algebras and A,,—coalgebras

In this section we will discuss the basic algebraic objects we use. These are modules
over a ground ring k of the following form. Fix a coefficient field K (of arbitrary
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characteristic) and let k be a semisimple ring of the form:

k= @Kev,

vel

2

where e = e, and eyey, = 0 for v # w, and where the index set I' is finite.

We will use Z—graded k—bimodules. If M = @, M is such a module then we call
M connected if M° = k and either M’ =0 forall i >0, or M’ =0 forall i <0. We
call M simply connected if, in addition, in the former case M ~1 =0, and in the latter
M = 0. Further, we say that M is locally finite if each M is finitely generated as a
k—bimodule.

We have the usual shifting and tensor product operations on modules. If M = ; M i
is a graded k bimodule and s is an integer, then we let the corresponding shifted
module M[s] = P; M ] be the module with graded components
M[S]i — MH-s.
If N = @); N' is another graded k—bimodule, then M ®; N = P, (M N)k is
naturally a graded k—bimodule with
(MerN)f= @ M &N
i+j=k
For iterated tensor products we write

M®kr:M®k...®kM.

r

Our modules will often have further structure as Z—graded Aoo—algebras and Ao—
coalgebras over k; see Sections 2.1.1 and 2.1.2. The modules are then in particular
chain complexes with a differential, and we will use cohomological grading throughout;
that is, the differential increases the grading by 1. For example, if L is a topological
space then its cohomology complex C*(L) is supported in nonnegative grading, while
the homology complex C_ (L) is supported in nonpositive degrees. To be consistent
with this, we denote the grading as a subscript (resp. superscript) when the underlying
chain complex has a coalgebra (resp. algebra) structure.

2.1.1 Ax-algebras An As.—algebra over k is a Z—graded k—module « with a
collection of grading-preserving k—linear maps

TR L | B
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for all integers i > 1 satisfying the Ao—relations

(3) Z(_1)|a1|+..'+|aj|_jmd—i+l(ad7 R ?aj+i+l’ml'(a]'+l" R ’aj-i-l)’aj’ o ’al)
i,j
=0
for all d.

Remark 9 We follow the sign conventions of [59]. Even though m; is written on the
left of (aj+i,....aj41), the sign convention is so that m; acts from the right. To be
consistent, we will insist that all our operators act on the right independently of how
they are written. This convention and the usual Koszul sign exchange rule applied with
respect to the shifted grading <7[1] determine the signs that appear in our formulas.

A DG-algebra over k is an As,—algebra o such that m; = 0 for i > 3. In this case,
we call the first two operations the differential and the product, respectively, and use
the following adjustments to obtain an (ordinary) differential graded algebra:

“ da=(=1)"mi@) and ara; = (D" my(ar.a1).
In particular, the product is then associative and the graded Leibniz rule for d holds:
(5) d(azay) = (daz)ay + (=1)*lay(day).

An Aoo—map ¢: o/ — P between A—algebras <7 and £ over k, with operations m;
and n; for i > 1, respectively, is a collection of k—linear grading-preserving maps

i /K 5 B[ —i], i>1,
satisfying the relations

Z(_l)lall la;1 Jed—i-i-l(adv v ’aj-i-l'-i-l»mi(aj'i‘i? cee 9aj+l)’aj’ cee ’al)
L,j
= Z nj(ed_ij(ad,...,ad_ij),...,e,-z_il(aiz,...,ail+1),e,-1(a,-1,...,al)).
1<j=d

0<ij<-<ij<d

An As—map ¢: o — 2 is called an A so—quasi-isomorphism if the map on cohomology
H*(«/) — H*(%) induced by ¢! is an isomorphism.

We say that an A,—algebra & is strictly unital if there is an element 1, € & such
that m;(1,) = 0, my(l,a) = my(a,1,) = a for any a € &/, and m; for i > 2
annihilates any monomial containing 1., as a factor. Any As.—algebra .7 which has
a cohomological unit, ie a cocycle representing the identity element in H* (), is
quasi-isomorphic to a strictly unital 4.,—algebra [56, Section 7.2].
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An augmentation of a strictly unital A,.—algebra is an As,—map €: o/ — k, where k
is considered as a strictly unital A,,—algebra in degree O with trivial differential and
higher Aso—products, and is such that €;(1./) = 1 and ¢; for i > 1 annihilates any
monomial containing 1,,. An augmentation is called strict if ¢, = 0 for i > 1. The
category of augmented, strictly unital A4s—algebras is equivalent to the category of
strictly augmented, strictly unital Ao,—algebras; see [56, Section 7.2].

2.1.2 Aso—coalgebras An Aoo—coalgebra € over k is a Z—graded k—module with a
collection of k—linear grading-preserving maps

A6 — €O 2 —i]

for all integers i > 1, with the following properties. The maps satisfy the co-Aso—

relations
d d—i o .
(6) Y AT @ A @ 14T )A i1 =0,
i=1j=0
where
19E@==D @ Ay @k 1% (cq_igy, ... 1)
= (_1)|c1|+---+|c]'|—j (cd—i+1» ey Cj+2) Rk Ai(Cj+1) Rk (Cj, ey C1)

c ¢®kd—i=J) Rk @kl Rk ¢®rJ
Furthermore, the degree 1 map
o0 .
¢[-1] - [ ¢1-11%+",
i=1
with i component equal to A;, factorizes through the natural inclusion
(XD . w .
P 112" — [ [ e1-11%
i=1 i=1

of the direct sum into the direct product.

A DG—coalgebra over k is an Aso—coalgebra such that A; = 0 for i > 3. In this case,
we call the first two operations the differential and the coproduct, respectively, and use
the following adjustments to obtain an (ordinary) differential graded coalgebra:

(7) fc=(—DIA(c) and A(c) =) (-Dl@ley @ ).

where we write A, (c) =) c(1) ®k C(2)-
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In particular, the coproduct is coassociative, ie (A ®x 1) o A = (1 ®y A)o A, and the
graded co-Leibniz rule holds:

®) AB(c) =) (=) “Dleq)y @i b(c)) + 0(cry) Rk ca)-

An Aoo—comap f: € — 2 between A,—coalgebras ¢ and 2 over k, with operations
A; and ©; for i > 1, respectively, is a collection of k—linear grading-preserving maps

fi: ¢ — %K1 —i], i>1,

satisfying the relations

d d—i
DY BT @ ©; @k 1%4)f iy
i=1j=0
= > (Fa—i; ®k -+~ Ok Fir—iy Ok i) A
1<j<d
0<iy<ip<-<ij<d
where

1960710 @, 0; @k 1%%7 (dy_jy1,....d1)
= (=DM HG gy, i) @k ©i(dj4) ®k (dj ... dy)
e 9®k(d_i_j) Ok @®ki Ok @®kj.
Furthermore, the degree 0 map
o0
¢1-1]— [ ] 21-11%.
i=1

with i™ component equal to f;, factorizes through the natural inclusion

©) D 21" = [ [ 21-11"

i=1 i=1

of the direct sum into the direct product.

An Ax—comap f: € — Z is called an Aso—quasi-isomorphism if the map on co-
homology H* (%) — H*(2) induced by f! is an isomorphism.

We say that an A ,—coalgebra is strictly counital if there exists a k—linear map €: %4 — k
such that (e 1) Ay = (1® €)A, =1 and (18— Q4 € @ 1®k =) A; = 0 for all
i #2and j. Any Ay—coalgebra ¥ which has a cohomological counit, ie a cocycle
representing the counit in H*(%), is quasi-isomorphic to a strictly counital Aeo—
coalgebra; see [56, Section 7.5].
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A coaugmentation of a strictly counital 4.c—coalgebra ¢ is an Asc—comap n: k — €,
where k is considered as a vector space in degree 0 with the trivial 4,,—coalgebra
structure, and is such that en; = I and (1%% (=) @, € @4 1%k /=1)p; = 0 for all
i > 1 and j. The coaugmentation is called strict if n; = 0 fori > 2.

A DG-coalgebra ¢ is called conilpotent (also called cocomplete) if for any ¢ € €,
there exists an n > 2 such that ¢ is in the kernel of the iterated comultiplication map
defined recursively by A® = A, and AW = 1® "2 @, A)o A" for n > 2.
When considering coaugmented DG—coalgebras, conilpotency is enforced only on the
coaugmentation ideal coker (7).

2.1.3 Graded dual We next discuss the graded dual of a graded k—module. Since
we are working with bimodules over the ring k, there are two k—linear duals [8].

If o7 is a graded k-bimodule, o/ = @, <%, then the graded duals «/* = @;(/*); and
"o = @; (*</); are defined as follows. The graded components (/*); of % are left
k—module maps

homy, _(-;, k),

and the k—bimodule structure on /¥ is given as follows: if ey, ey, € k, a € («*); and
c € &/, then

(10) (ev-a-ey)(c) = alcey)ey.

The graded components (*o7); of #o7 in degree i are right k—module maps, which we
write as

hom_ (-, k),
and the k—bimodule structure is given by: if ey, ey, € k, a € (*«/); and ¢ € «/_;, then
(1) (ev-a-ey)(c) = eyaleyc).

Both canonical maps &7 —*(«7*) and &7 — (*)* are k—bimodule maps, which are
isomorphisms if &7 is locally finite.

If Vi, Vs, ..., V, are k—bimodules, there is a natural map

ViQr Vi @k @k V= (Vi ®k Va®k - ®k V)
given by

(12) (@ ®ap—1®--®a)(ci1®c2 Q- ®cy) :=aj(craz(cz--an(cp)--+)).
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Similarly, there is a natural map
Vo @k Vi1 @k - @k VI (Vi Q@ Vo Q-+ ®k Vi)
given by
(13) (@ ®ap-1®---Qa1)(c1®c2®---®cp):=an(---az(ai(ci)ca) - cn).

These give the graded duals €* and #& of a coaugmented A4 .o—coalgebra % the structure
of augmented A —algebras, with structure maps defined by

(14) mi (@i a1)(0) = (=D a; ® - @ a)Ai o).
Note that to get a nonzero product, we must have |m;(a;,...,a1)| = |c|, hence the
sign (—1)!¢! equals the sign (—1)la1l++lail=,

In general, there is no natural way of equipping the graded dual of an augmented
Aoso—algebra with an 4 —coalgebra structure. However, if the grading on <7 is locally
finite (ie .7 are finitely generated as k—bimodules), it follows that

AR SRR A = (AR A R+ R ),
ot @it Rp Q'S 2o R F -+ R ).

Using these isomorphisms, the graded duals «7# and #o7 of an augmented A oo—algebra 7
with locally finite grading can be naturally equipped with the structure of a coaugmented
Aso—coalgebra by using the formulas

Ai(e)(a; ®g - ®p ar) = (—=D)e(m;(az, ..., a1)).

2.1.4 Twisting cochains Let (¢, A,) be an Aso—coalgebra and let (&, m;, m;) be a
DG-algebra. A twisting cochain is a k—linear map t: ¢ — 7 of degree 1 that satisfies

(15) mpot—toA;+ Y (Dm0 t®%don, =0,
d=2
where mgz) :=m, and mgd) =myo(Idy ® mgd_l)). For ¢ € ¢, note that A;(c) # 0

for only finitely many 7, and hence the potentially infinite sum in (15) is actually finite
when it acts on c.

If the coalgebra ¢ is coaugmented by n: k — ¢ and the algebra ./ is augmented
€: @/ — k, we require in addition that its twisting cochains t are compatible in the
sense that

(16) ton=¢€ot=0.
We denote the set of twisting cochains from ¢ to & by Tw(¥, &).
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Let t € Tw(¥, &) be a twisting cochain. Consider the twisted tensor product .« ®;€ €
as a chain complex with differential d*: o/ ®}€ C — oA ®}€ ¢ defined by
(17) d'=m; ® ldy +1dy @ A,

+ (M ®@1dg) o (1, ® t8%4™! @ 1d¢r) o (Idy R Ag).
d=>2

Here the differential squares to zero, d‘od' = 0, since t satisfies (15). This complex
is the Koszul complex associated with t. It is called acyclic if the projection to k is a
quasi-isomorphism.

One also has an analogous complex of the form & ®}{ o

The K—vector space of k—bimodule morphisms homy_g (%, &) carries an A o—algebra
structure with operations n; for d > 1, given by

n (1) = myot+(=1) oA,
ng(ta ta—t, .. .11) = (~1)ETFD Do, 01y @---®11)0Ag  for d > 2,
where the composition (f; ® t7_1 ® --- ® t1) o Ay is defined componentwise. Thus, if
Ag(c)=cg ®---®cy, then
(ta ®k ta—1 @k Bk 1) Mg (¢) = (=1)Ttg(ca) ®k ta—i(ca—1) Ok - ®x t1(c1).

where T = ZJ — Zl_l lci| ¢ ]. In this setting, a twisting cochain t: ¥ — & corre-
sponds to a solution of the Maurer—Cartan equation

(18) Y onmitt.... =
i=1
(As before, this sum is effectively finite since, for any ¢ € €, A;(c) # 0 only for finitely

many i.)

A twisting cochain t: ¥ — « defines a twisted Aso—structure on homy, (%, <), with
operations nz, given by
la la— lo
¢ ! N— —N— ——
nd(ld,ld_l, ot = Z nd+lo+11+...+ld(’t, R 35 # 7% SN 5 2N BRRNUY » U SN )
;=0
We will denote this twisted Aso—structure by hom}‘ (%, o).

There are direct analogues of the above construction if we instead consider a DG—
coalgebra (¢, Ay, A,) and an A—algebra & with operations m;. The module
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homy_x (¢, <) has the structure of an As,—algebra with operations n; given by
@) =myor+(=DroA,
N (tg,tg—1s. - t) =g o(tg®tg_1 ® - ®11) 0 AP for d >2.

To make sense of the twisting cochain (18), one needs to make additional assumptions to
ensure the convergence of the infinite sum. This holds, for example, if € is conilpotent.

We remark that if both ¢ and . are Aoo—(co)algebras, then defining a twisting cochain
is a more complicated matter; cf [57, Introduction]. We will not need this here.

2.2 Bar-cobar duality for 4,,—(co)algebras

In this section we first introduce the bar and cobar constructions and then discuss basic
relations between them.

2.2.1 Bar and cobar constructions Let (<7, {m;};>1) be a strictly unital Aq—
algebra with a strict augmentation € : &7 — k. Define the augmentation ideal </ =ker(e).
If we are given a nonunital Ax,—algebra <7, we can turn it into a strictly unital Aso—
algebra .« := k @ «/ with an augmentation given by projection to k.

We next recall the construction of the (reduced) bar construction B</. For any aug-
mented Aso—algebra o/, B/ is a coaugmented conilpotent DG—coalgebra. As a
coaugmented coalgebra, B« is defined as

Bo =k®J]® A2,

where [1] denotes the downwards shift by 1. We write a typical monomial using
Eilenberg and Mac Lane’s notation

laglag—1|---|a1] =saq @ sag_1 k -+ Sk say,

where for a € <7, sa € </[1] denotes the corresponding element in <7[1] with degree
shifted down by 1.

The differential b: B/ — B.«7 is defined to vanish on k C <7, so b = 0, and defined
on monomials by
b(laglag—1l---la1])

=Y (=Dl =g, ag e mia . g lag] - lag).

i,Jj

Geometry & Topology, Volume 27 (2023)



2072 Tobias Ekholm and Yanki Lekili

The coproduct A;: B« - B« ®j B« is defined by

d
Ap([aglag—i]--lai) =Y (=Dt el g jay |- la; o 1)®klailai—i |- ]ai].
i=0

The slightly unusual sign (—1)@ |+=+lail=i

appears as a consequence of the following
two facts:

(i) The equation b2 = 0 is equivalent to the Aoo—relations (3) for (m;);>1.

(i) The pair (b, A,) satisfies the co- Aoo—relations (6).
Redefining (b, A;) to (6, A) using (7) removes the sign in A,, and (6, A) becomes
a (usual) coassociative DG—coalgebra, where the co-Leibniz rule (8) holds. The
coaugmentation n: k — B.<7 is defined by letting n; be the inclusion of & and n; =0
fori > 0.

There is an increasing, exhaustive and bounded below (hence, complete Hausdorff)
filtration on the complex B.<7,
k=F"Bo/ C FIB«#/ C---CB«/, where FPBo/ =k @ J[1]® - ® F[1|PkP.
This induces the word-length spectral sequence with
EPY = HPY(FPBo/ | FP~'Boy)

converging strongly to

ER! = FPHPYI(Be)/FP HP T4 (B)
by the classical convergence theorem [64, Theorem 5.5.1]. It can be proved using
this spectral sequence that if an A —map ¢: &/ — % is a quasi-isomorphism, then

the naturally induced DG—coalgebra map Be: B&Z — B4 is a quasi-isomorphism; see
[49, Proposition 2.2.3].

There is a universal twisting cochain t,, : B/ — ./ which is nonzero only on «7[1] C B/

and is given by the inclusion map «/[1] — &. The twisting cochain t,, gives rise to a
free o/—bimodule resolution of <7 obtained as a twisted tensor product

t t
o @ B ;7 o,

with the differential d given by the formula

(19) d=m; @k ldpy Qk 1dy +1dy Q) b @k 1dy +1dy ® Idpy @k my

+ ( > (mg®41dp.)o(Idey @yt~ @4 Idp.r)o (Id.y R A(Zd))) ®rld.,
d=2

+1d,w®k( Z(Idgtoj@kmd)o(ldgmkt@kd—l®k1dﬂ)o(A(;’)®k1dd)).
d=2
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This can be used to compute Hochschild homology and cohomology of .7 with coeffi-
cients in an «/—bimodule .#.

Consider instead a strictly counital A,—coalgebra & with operations A; and with a
strict coaugmentation n: k — %. Let € = coker(n) be the coaugmentation ideal. We
next recall the cobar construction, which associates a DG—algebra Q% to €. As an
augmented algebra, Q% is

(20) Q¢ =k®C-10¢-11°*®--- .

As before, we write a typical monomial as

lcalca—1]+lei] =5 ey ®p s gy ®p - ®p s ey,

where for ¢ € €, s~ !¢ € €[—1] denotes the corresponding element in 4[—1] with degree
shifted up by 1. The differential m; on Q2% vanishes on k, so m;[, = 0, and acts on
monomials as

my(em| -+ lex]) = D (=Dl Hlal=te, [oep A (ciDleil - ler).
i?j
Here, by abuse of notation, we write A ; for the induced coproduct ¢[—1] — ] [—1]%/.

The product m,: Q¥ ® QE — Q¥ is given by

my([em] -+ leipal [ei] -+ ler]) = (=D lel=i e eyl -+ e

The slightly unusual sign (—1)lerltleil=i appears as a consequence of the following
two facts:

(i) The equation m% = 0 is equivalent to co-Ao—relations (6) for (Aj);>1.
(i) The pair (m;, m;) satisfies the Aoo—relations (3).

Redefining (my, m,) to (d, -) using (4) removes the sign in m,, and (d, - ) becomes a
(usual) associative DG—algebra, where the Leibniz rule (5) holds. The augmentation
€: Q% — k is given by letting €; be the projection to k and €; = 0 for i > 0.

There is a decreasing, exhaustive, bounded above filtration on the complex Q%

Q6 =F'Qe D> F'QE D,
given by
FPQE = C-1]%x? @ ¢[—-11®«PtD g ... |

This gives the word-length spectral sequence with

EPY = HPYU(FPQe | FPHIQe).
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Unlike the case of the word-length filtration on the bar construction, for the cobar
construction, in general, convergence may fail. Thus, we introduce completions. We
define the completed cobar construction to be

Q¢ = lim(Q?)/(F Q).

The length filtration on Q% induces a filtration F on Q¢ defined by

FPQe =1im(FPQe)/(F*QE),
S

which is decreasing, exhaustive, bounded above and complete Hausdorff. The spectral
sequence associated to the filtration Fon Q¢ is isomorphic to the length spectral se-
quence associated with the filtration F on Q% and converges conditionally to H* (ﬁ €);
see [9, Theorem 9.2]. It converges strongly to H* (5\2(5) if the spectral sequence is
regular, ie only finitely many of the differentials ¢/*? are nonzero for each p and ¢;
see [9, Theorem 7.1]. This holds, for example, if Q% is locally finite.

We say that Q% is complete if the natural map Q€ — Q¢ isa quasi-isomorphism. For
example, it is easy to see that this is the case if € is locally finite and simply connected.

Iff: ¢ - 2 is an Axo—comap which is a quasi-isomorphism of A,,—coalgebras, and
if Q% and 2 are complete, then Qf is a quasi-isomorphism. (This follows from
[21, Theorem 7.4]; see also [64, Theorem 5.5.11].) The completeness assumptions
are necessary and are related to the completeness of the word-length filtration. A
counterexample when the completeness assumptions are dropped can be found in
[49, Section 2.4.1].

There is a universal twisting cochain t : € — Q% given by the composition of canonical

projection ¥ — %[—1] and the canonical inclusion ¢ [—1] - Q% .

2.2.2 Bar-cobar adjunction Suppose that € is a coaugmented A —coalgebra and
</ 1s an augmented DG-algebra. Then we have a canonical bijection

2D hompg(QE, &) — TW(€, &)

given by ¢ > ¢ o t?. Similarly, if ¢ is a coaugmented conilpotent DG—coalgebra and
&/ 1s an augmented A ,—algebra, then we have a canonical bijection

(22) homeopg (¢, B«) — Tw (%, o),

given by ¢ — t, o ¢; see [57, lemme 3.17].
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Therefore, when % is a coaugmented conilpotent DG—coalgebra, and < is an augmented
DG-algebra, we have the bar—cobar adjunction

hompg(R¥E, &) = hom,pg (¢, B«).
Moreover, the natural DG—maps
(23) QB« -« and ¥ — BQY¥

are quasi-isomorphisms for any DG—algebra <7 and conilpotent DG—coalgebra %’; see
[56, Section 6.10]. It is also true that for any As.—algebra <7, the A—algebra map

o — QB

given by the adjunction map B« — BQB.# is an Aso—quasi-isomorphism; see [47,
lemme 2.3.4.3]. Note that any Asc—quasi-isomorphism is invertible up to homotopy
[59, Corollary 1.4].

Similarly, for any A,—coalgebra ¢, the A,—comap
BQ€ — ¢
given by the adjunction map QBQ% — Q% is an As—quasi-isomorphism.

However, an Ao—quasi-isomorphism for a general 4,—coalgebra is not usually a
convenient notion since, as we remarked above, a quasi-isomorphism of 4 —coalgebras
between ¢ and C’ does not necessarily induce a quasi-isomorphism of DG-algebras
Q% and QC’.

For this reason, one considers the category of conilpotent As—coalgebras. Let ¢ be
a coaugmented A ,—coalgebra generated over k by variables (¢;);cy, with I some
countable index set, such that there exists a total ordering

Co(1) <Cg(2) <'°°,
where o: I — [ is a bijection. This produces an increasing filtration
F=kcrlc---cQ¥

by setting 77 = k({cg(1), ..., Co(p))- Suppose that the structure maps (A;);>; are
compatible with this filtration, in the sense that A;(cs(p)) C F? ~! for all i and p.
Then we call € a conilpotent 4,—coalgebra. (More generally, homotopy retracts of
such As.—coalgebras are called conilpotent [56, Sections 6.10 and 9]. This notion is
called finite type in [46].). Given two such As—coalgebras ¢ and C’, one considers
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filtered Aoo—comaps between them. In the case of a conilpotent DG—coalgebra ¢ there
exists an increasing filtration on 2% given by the subalgebras Ker(A(”)) that plays the
same role; see [47, lemme 1.3.2.3].

We next state the following elementary lemma for later convenience.

Lemma 10 Let o7 be an augmented Ao—algebra such that the k—bimodule structures
on o/ and B« are locally finite. Then there are quasi-isomorphisms of augmented
DG-algebras

Q7" - Bx)* and Qo) —>*B).

Note that the assumption is satisfied when .« is locally finite and simply connected.
We shall briefly consider the case when 7 is only assumed to be locally finite and
connected, in which case we have:

Lemma 11 Let«/ =); o ! be a connected, locally finite k—bimodule equipped with
an augmented Ac—algebra structure. Then there are maps of DG—algebras

Q") > Ba)* and Q') >*(Bw)
which become quasi-isomorphisms, after completion,

Q" > Bx)* and Qo) >*B).
2.3 Koszul duality

Suppose ¥ is a coaugmented conilpotent A.o—coalgebra and <7 is an augmented DG—
algebra. Via the bijection (21), any twisting cochain t € Tw(¥, <) is of the form
t = ¢ o t* for some unique ¢ € hompg(Q%, «). Similarly, if ¢ is a coaugmented
conilpotent DG—coalgebra and <7 is an augmented A ,—algebra, any twisting cochain
t e Tw(%, &) is of the form t = t,, o ¢ for some ¢ € hom,pg(%, B«).

Definition 12 In either case above we call t a Koszul twisting cochain if ¢ is a
quasi-isomorphism, and we denote the set of Koszul twisting cochains by Kos(¢, «).

The terminology of Koszul twisting cochains is taken from [49]. They are also
called acyclic twisting cochains in other sources [47; 56]. This terminology is due
to the well-known fact that, under various local-finiteness assumptions, a twisting
cochain t is Koszul if and only if the Koszul complex (17) associated to t is acyclic;
see [56, Appendix A].
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Informally, if t € Kos(%, <), then, depending on whether we write t = ¢ o t% or
t =t o ¢, either o/ can be used in place of Q2%, or ¢ can be used in place of B/
in various resolutions. This, in turn, may lead to smaller complexes to compute with.
For example, one can compute Hochschild homology and cohomology of < and Q%
using the «/—bimodule resolution of <7 given by the complex

o ® C R o
with the differential as in (19); see [39].

Suppose that .7 is an A s,—algebra with an augmentation € : &/ — k. The augmentation €
makes k into a left .«/—module, or equivalently, a right «7°°’~module.

Definition 13 The Koszul dual of an augmented A,,—algebra <7 is the DG-algebra of
left .&/—module maps from k to itself,

E(«):=RHom (k, k).

Recall that for a unital 4x,—algebra & over a field K (or a semisimple ring such
as k), any Aso—module is both A-projective and A—injective; that is, if M is an
Aso—module over & and N is an acyclic Asc—module over <7, then the complexes
RHom,/ (M, N) and RHom,, (N, M) are acyclic [59, Lemma 1.16]. Hence, the DG-
algebra RHom,, (k, k) can be computed as the A,c—module homomorphisms from k
to itself. (More generally, this holds if .« is A—projective as a complex of k—modules,
which implies that k is h—projective as an As,—module over «.) Therefore, we have
the following:

Proposition 14 If o/ (resp. «/°P) is an augmented unital A,—algebra, then

RHom,, (k, k) = (B«)" (resp. {(B«7)).

Proof Recall that & ®j B/ is quasi-isomorphic to k as an «/—module. Hence, by
the hom-tensor adjunction, we have RHom, (& @ B«/, k) =~ RHomy (B« k). Since
&/ is h—projective as a complex of k—modules, so is B./; hence the latter is computed
by (B«)*. m]

In this model of E (<), the k—bimodule structure on E (<) can be seen as in (10),
since k is viewed as a left k—module induced from its structure as a left .«7—module. If,
instead, we have an augmentation of .&7°P, then we view k as a right .&#/—module, and
the k—bimodule structure on RHom,, (k, k) would be given by (11).
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The cohomology of E (&) is a graded algebra,
Ext. (k, k) := H*(RHom,, (k. k)) = H*((B«)").

Dually, we also have the derived tensor product k®_,k, which can be computed by the
complex B/. The cohomology is a graded coalgebra

Tor, (k. k) = H*(k®./k) = H*(B«).
In particular, if k is a field, we have that Ext,, (k, k) = (Tor,, (k, k))* by the universal
coefficient theorem.
Remark 15 If &7 is a commutative algebra (or more generally an E,—algebra), then
Tor,,(k, k) also has a graded algebra structure, defined via
Tory (k, k) @ Tory (k, k) — Torygs(k Qk, k @ k) — Tor,,(k, k),
induced by the algebra map &/ ® & — o/ (which exists since </ is commutative). This
should not be confused with the natural coalgebra structure above.
Note that o itself can be viewed as a left «#—module and the map €: .«# — k is a map
of left &7—modules; hence, it induces a map of left £ (<7)°P—modules
€:RHom/(k, k)°® - RHom, (<, k),

which can in turn be viewed as an augmentation of £ («)°® = RHom,, (k, k)°P, since
RHom,, (<, k) can again be identified with k as it is the Yoneda image of k as an
«/—module. Hence, k can be viewed as a right E(«/)-module.

Definition 16 The double dual of .7 is defined to be E(E (<)) := RHompg ) (k, k).

There is a natural map from </ to its double dual,
®: .o/ — RHomg () (k. k),

defined via viewing the right E(</)-module k as RHom,, («, k) and acting on the
left by & =~ RHom,, (<7, «).

Definition 17 We say that o7 and E (/) are Koszul dual if ®: .« — RHomg () (k, k)
is a quasi-isomorphism.

One standard situation in which Koszul duality holds is the following:
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Theorem 18 Suppose ¢ = P, < %' is a locally finite, simply connected k—bimodule
equipped with an As,—coalgebra structure and the coaugmentation k = ¢° — €. Let
o/ = Q€, which is an augmented connected DG-algebra. Then E (<) = ¢*, and
</ and €* are Koszul dual. In other words, the natural morphism

Q% — RHomg () (k, k)
is a quasi-isomorphism.

Proof First, observe that indeed E (<) = (B«?)" = (BQ¥)* = ¢* by (23) and because
Homy, _(—, k) preserves quasi-isomorphisms. Next, we have that

RHom (. (k, k) = *(B(¢%)) = Q%,

where we applied Lemma 10 to ¢* and used the fact that #(4*) = ¢ since ¢ is locally
finite. i

Rather than making the grading assumptions on ¢ as in Theorem 18, which guarantee
that B¢ is locally finite, one can directly assume that the grading on the cohomology
H*(Q%) is locally finite. This assumption is harder to check in practice but Koszul
duality still holds under this assumption, which one can prove by combining the above
argument with the homological perturbation lemma; see for example [43, Theorem 2.8].

In the case that ¥ = @), -, %" is a locally finite, connected (but not simply connected)
k—bimodule, Lemma 10 no longer applies. We instead use Lemma 11 to deduce the
following weaker duality result:

Proposition19 Let ¢ =@, ¢ ! be a connected, locally finite k—bimodule, equipped
with an Ao—coalgebra structure and coaugmentation k = ¢° — ¢, and let o = Q€ =
ko i>1 (€]—1])®*/, which is an augmented DG-algebra where augmentation is
given by projection to k. Then E(</) = ¢* and there is a quasi-isomorphism

Qv — RHompg () (k, k).

Note that in Proposition 19, &7 = Q% is not connected, and may admit other augmen-
tations €: & — k than that induced by the cobar construction. Such augmentations
will be considered below. For example, suppose that ¢ = k @ ¢ is a coaugmented
Aoo—coalgebra such that ¥ = K(c|c € R) is generated by elements ¢ from an indexing
set R and that €: Q% — k is an augmentation, which is induced by a map ¢ — k
since Q% is free. Now we can consider the coaugmented A o—coalgebra €€ = k @ €€
such that
€ =K(c—e(c)lg | c €R).
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Then Q% and Q%€ are quasi-isomorphic as nonaugmented DG-algebras, and the
augmentation on Q%* induced by the cobar construction coincides with the given
augmentation € on 2.

Remark 20 When % is not simply connected, the proof of duality fails precisely
because B¢* is not locally finite. Nevertheless, the duality result can still be proved
in certain cases where an extra weight grading (internal degree, or Adams degree) is
available; see [50; 56, Appendix A.2; 39]. We will not study this situation systematically
in this paper, but it is important as it extends the range of applicability of Koszul duality
theory. In the setting of Chekanov—Eliashberg DG-algebras, such a situation was
considered in [32].

3 Legendrian (co)algebra

In this section we introduce our Legendrian invariants. We start by discussing a model
for loop space coefficients in Section 3.1. In Section 3.2 we define the Chekanov—
Eliashberg algebra with loop space coefficients using moduli spaces of disks of all
dimensions, and in Section 3.4 we give a more computable version, which uses only
rigid disks and which carries the same information if the Legendrian submanifold is
simply connected.

3.1 Coefficients

Before defining our Legendrian invariants, we describe chain models for their coeffi-
cients C_x(2p,Ay) for v e I'T. (Notation is as above, Ay is a + decorated connected
component of the Legendrian A.) We work over a field K.

Let 2, Ay denote the topological monoid of Moore loops based at p,, where the
monoid structure comes from concatenation of loops; see [5]. Write C_« (2, Ay) for
the cubical chain complex (graded cohomologically). Since €2, Ay is a topological
monoid, the complex C_«(£2,,Ay) becomes a DG-algebra using the natural product
map X on cubical chains, where the DG—-algebra product is given as

Cos(Qp, Av) ® C—s(Rp, Ay) = Csc(Rpy Ay X Qp, Ay) —> C—sc(Rp, Av).
We point out that the x—map
X1 Cse(Rpy M) ® C—i(Rp, Av) = Cs(Qp, Ay X Qp, Ap),

when both sides are equipped with the Pontryagin product, is a DG—-algebra map.
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In what follows, we shall also make use of an inverse to the x, known as the Serre
diagonal [60], and the cubical analogue of the Alexander—Whitney map,

(24) N Cs(Qp, Ay X 2p, Ay) = C—x(Qp, Ay) ® C_s(R2p,, Aw).

To define this map consider the n—cube I with coordinates (xq,...,Xy;). For an
ordered j—element subset J C {1,2,...,n}, J = (i1,...,i;) withi; <--- <ij, and
for e € {0, 1}, let (5 : I/ — I" be the map given in coordinates y = (y1, ..., yj) by

xi, gD =ypr  and  xpm(y(y) =€ fmglJ.

Consider a cubical chain (0, 7): I" — Qp, Ay X Qp,, Ay. If J is an ordered subset of
{1,...,n},let J' denote its complement ordered in the natural way. Define 1 by

1) =) (1" (o) @ (o),
J

where the sum ranges over all ordered subsets J, and (—1)77 " is the sign of the
permutation JJ’. This is a strictly associative chain map inducing a quasi-isomorphism.

Note also that there are obvious extensions of 7 to several products of loop spaces.

As the cubical chain complex C_(£2p, Ay) is very large, it is not the most effective
complex for computation. We next discuss smaller models. Starting with a O—reduced
simplicial set X with geometric realization | X'| = A,, an explicit economical model
for C_«(€2p,Ay) is obtained by taking normalized chains on the Kan loop group GX;
see [44]. We will not say much about this, but point out that GX is a free simplicial
group, whose geometric realization |GX | is homotopy equivalent to Q| X|; see [37,
Corollary 5.11]. Hence, by the monoidal Dold—Kan correspondence [58], the nor-
malized chains on GX give a (weakly) equivalent model of C_«(£2,,Ay). (Another
similar construction is sketched in [46], and leads to a free model.)

Alternatively, one can work with CW—complexes. We start with the simply connected
case: for a 1-reduced (unique O—cell and no 1—cells) CW-structure on A,, the Adams—
Hilton construction [5] gives a free DG—algebra model for C_4 (€2, Ay) as follows.
Denote the k—cells of A, by e}; fork >2andi =1,...,my. The Adams—Hilton
construction gives a CW-monoid with a single 0—cell, and generating cells ¢; in
dimension k — 1, which is quasi-isomorphic to 2, (Ay) as a monoid; see [14]. This
gives a DG—algebra structure on the free algebra,

A(Ay) =K(e,y,....e5% 85, ....ex%,......), with [ef| =1—k,
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and a DG—algebra map v
A(Ay) — Cx(2p, Av),

which is a quasi-isomorphism. The differential d on A(A,) is generally not explicit. It
is defined recursively as follows. For every 2—cell e;, we have d (éé) = 0. In general,
assuming that d_; and Wj_; have been defined on the k—skeleton A(vk) of Ay, then
for each (k+1)—cell e, with attaching map f: S¥ — A(vk), define dié = c so that
(Ur_1)(c) = (2f)«(£), where & a generator of Hy_;(2S%), and define Wy, (¢) to be
the k—chain of loops in e (which then depends on earlier choices along the boundary
of &). We remark that A(A,) can be identified isomorphically with QCEW(A ) for a
suitable A4s,—coalgebra structure on the cellular chain complex CSW(A).

This construction can be generalized to the non-simply-connected case as follows. !
Begin with a 0-reduced CW-structure on A,. Denote the k—cells by e;'c for i =
1,...,my. For each k—cell elk with k£ > 2, we have a free variable in degree 1 — £,
which we again denote by é;{. For each 1—cell e{ with j =1,...,m, we have two

variables 7; and tj_1 in degree O such that ¢; tj_l =1= tj_llj. Thus, the underlying

algebra is the “almost free” algebra of the form

ANy =K sl e, e e et ).

This presentation is often more efficient than the presentation one gets from the Kan loop
group construction using a simplicial set presentation of A,. However, the differential
in the Adams—Hilton model is not easy to describe explicitly. Note that we have

d(tj)=d(t;7") =0
for degree reasons. For every 2—cell eé, we have
d@h) =1-c,

where ¢; € ]K(t]-il | j =1,...,my) represents the class of the attaching map of e;. The
differential on higher-dimensional cells is generally harder to compute and is exactly
as in the simply connected case discussed above.

Augmentations €: A(A,) — K correspond to solutions of the equations

{e(tj)e(tj_l) =1 forj=1,...,my,
e(dé;) =0 fori=1,...,m,.

ISee [40; 41]: a generalization was given earlier in [33], however that paper contains an error.
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Since K(tjil,j =1,...,m |dé;,i =1,...,my) is a presentation of the fundamental
group algebra K[y (A, py)], augmentations correspond exactly to local systems
w1 (Ay, py) = K.

We will use the cubical chain complex C_«(£2p,Ay) to define Legendrian invariants
below. Cubical chains work uniformly for all spaces A, and are convenient for showing
that the fundamental classes of moduli spaces of pseudoholomorphic disks M?*Y, via
evaluation maps, take values in the chain complex. The Legendrian invariants can also
be studied using any of the smaller models discussed above. It is however important
to note that in the non-simply-connected case, we only have either weak equivalence
in the homotopy category of DG-algebras, or Morita equivalence [40; 41] of these
models and the cubical chain complex C_4(£2,, Ay).

In the case that A, is simply connected, we can use a DG-algebra map
O: C_s(Qp,Ap) = A(Ay)

that goes in the opposite direction to the Adams—Hilton map to pass to a more eco-
nomical quasi-isomorphic model. Such a homotopy equivalence @ is constructed in
two steps: first construct, as in [54] using Eilenberg—Moore methods, a DG-algebra
quasi-isomorphism

(25) C_s(R2p,Ay) = QCx(Ay),

where in both instances Cy refers to the normalized singular chains. Second, using
the standard A ,,—coalgebra quasi-isomorphism between the DG—coalgebra of singular
chains Cx(Ay) and the Ao,—coalgebra C*CW(AU) of normalized cellular chains, one
obtains a DG—algebra quasi-isomorphism

QCx(Ay) = QCEV(Ay) = A(Ay),

since we assumed that the complexes Cyx and CEW are simply connected. (In Section 3.5,
we also give a more geometric construction of a DG-algebra quasi-isomorphism ¢
corresponding to (25) landing in Morse chains, using Morse flow trees.)

Similarly, if A, is homotopy equivalent to an Eilenberg—Mac Lane space K(y, 1),
then the singular chains can be replaced with the group algebra K[m{]: there exists a
quasi-isomorphism of DG-algebras

Cos(Rp, Av) = K[m)]
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given by sending a O—chain to its homology class, and sending all higher-dimensional
chains to 0. Note that this DG—algebra map exists for any space A, but is a quasi-
isomorphism only in the case that A, is homotopy equivalent to K(ry, 1).

It is often convenient to use a cofibrant (or free) replacement for K[r;]. For example,
if Ay = S, then K[7r;] = K[t,#7 '] and a cofibrant replacement is given by the free
graded algebra

K{sy,t1, k1,11, ur),  where [si| = |t1| =0, |ki| = |l1] =—1, |u1| =-2,
with the differential
dki=1—s1t;, dli=1—t151, duj=kis1—s1l;.

A DG-algebra defined over K[z, 7] can be pulled back to a weakly equivalent DG—
algebra over this cofibrant replacement. (See [63] for background in model categories
on DG-algebras that we are using in a very simple case here.)

3.2 Construction of Legendrian invariants

As above, let X be a Liouville domain with ¢1 (X)) = 0 (for Z—grading) and 0X =Y its
contact boundary. Let A = |_|v€no (A) Av be a Legendrian submanifold in ¥, where A,
is a connected component of A. Assume that A is relatively spin and that its Maslov
class vanishes. Let each connected component A, be decorated with a sign and write
A" and A~ for the union of the components decorated accordingly. (Our different
treatment of AT and A~ is natural from the point of view of handle attachments; recall
from the introduction that when A~ is a union of spheres, we attach usual Lagrangian
disk-handles to A~ and handles with cotangent ends to A*.) When we have an exact
Lagrangian filling L of A (relatively spin and with vanishing Maslov class), L can
also be decomposed into embedded components L = | J,p Ly. These embedded
components are not disjoint: they are allowed to intersect transversely at finitely many
points. There is a bijection between I' and the embedded components of L.

We require that if two components A4,, and A, are boundary components of the same
embedded component L, then either both belong to A~ or both to AT. Using this
property, we get a decomposition I' = 't LI '™, corresponding to the decomposition
A=ATUA".

Let k be the semisimple ring generated by mutually orthogonal idempotents {ey }yer.
If we are not given a filling of A, then the index set I is taken to be the connected
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components, g(A), instead. If we need to distinguish between the two choices, we
will denote them as k5 and k. Note that there is an injective ring map ky — k
which takes the idempotent e, corresponding to an embedded component L, to the
sum ey, + - -+ + ey, of idempotents of its boundary components Ay, . In particular,
this map turns any k o —bimodule into a k ; —bimodule.

Let R denote the set of nonempty Reeb chords of A. This is a graded set: the grading of
a chord ¢ € R is given by |c¢| = —CZ(c), where CZ(c) is the Conley—Zehnder grading;
see Appendix A. (With this convention, the unique chord ¢ of the standard Legendrian
unknot in R3 has |¢| = —2 and for the corresponding Legendrian unknot in R2"~!
with one Reeb chord ¢, we have |¢| = —n. See also Remark 30.)

Note that the vector space generated by R is a k—bimodule, where e, Re,, corresponds
to the set of Reeb chords from A, to Ay. The underlying algebra of the standard
Chekanov—Eliashberg DG-algebra is generated freely by R over k. We need to modify
this in the case that AT is nonempty to incorporate chains in the based loop space
of Ay for v e I't. Let us first do this using cubical chains.

For each v € '™, consider the cubical chains C_«(2,, Ay) as a k—algebra by requiring
that the left or right action of e, is trivial except if w = v, when it acts as identity.
Let CE* be the algebra over k given by adjoining elements of R to the union of
C_«(R2p,Ay) forv e I't. Thus an element of CE* is a sum of alternating words in
Reeb chords, o1¢102¢5 « - 0CmOm+1, Where ¢; are Reeb chords and o; chains of
based loops in the component of the Legendrian where the adjacent Reeb chord lies.

Now the differential on CE* is defined by extending the differential on the cubical
complexes C_x(2,,Ay) for v € I'y. We describe the differential on a single Reeb
chord and extend it by the graded Leibniz rule. The differential d on a Reeb chord
decomposes to a sum

d=>"Ai

i=0
where for any Reeb chord ¢ only finitely many A;(cg) are nonzero. The operations
Aj(co) are defined as follows.

Consider moduli spaces of holomorphic disks with positive puncture at cq; for defini-
tions and notation see Appendix A. More precisely, consider Reeb chords ¢;, ..., cq
(;"ci_ -=-c¢; . Consider the
space of disks D; 41 with one distinguished positive puncture and i negative punctures

such that cgc; --- ¢y is a composable word and let ¢ = ¢

(across which the boundary numbering is constant, in the terminology of Appendix A).
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Consider the moduli space MY (¢). As we use a translation-invariant almost complex
structure on the symplectization, R acts by this moduli space by translation. Write

(26) MR (¢) := M¥(¢)/R

for the quotient. Theorems 74 and 75 imply that M*YR (¢) is a smooth orientable
manifold, with a natural compactification as a stratified space that carries a fundamental
chain. It follows, via the evaluation map at a point in the boundary arcs of D; 1, that
MR (¢) parametrizes a chain of paths in the (i +1)—fold product A,

We transform these chains of paths to chains of based loops as follows. On each
component A, pick reference arcs connecting all Reeb chord endpoints to the basepoint.
Let U, C Ay be a disk which is a regular neighborhood of these arcs. For convenience
we take the disk to be smooth. Then a collar neighborhood on its boundary gives a
smooth map 0y : (Ay, *y) = (Ay, *y) such that 0, (Dy) = *y and Oy| o )\ D, : Av\ Dy —
Ay \ {*y} is a diffeomorphism. To get a chain of loops parametrized by M*(¢) we
compose its chains of paths with the maps 6,. The resulting chain of paths then takes
all Reeb chord endpoints in component A, to the basepoint *,. Thus by composition
with 6,, the moduli space parametrizes a chain of loops in (£2 pA)X(i"'l).

We treat two cases separately. First, if all boundary components of D;4; map to
components in A, then we let
nei---cq  if dim(M%(e)) =1,
0 if dim(M%(¢)) # 1,
where 7 is the algebraic number of R components in the moduli space. Second, if

@7 M2 (¢)] = {

some boundary component maps to a component in A1, then we write [M*® (¢)] for
the chain of paths in (2 pA)X(H'l), where we separate the components in the product
by the Reeb chords ¢/ = ¢;---¢1:

[MPR(¢)] = 0j41¢i0i -+~ 02101,

where o; are the components of the fundamental chain o : M*¥R(¢) — (L2 A)X(i +D),
Further, we write e, for each boundary component that maps to a component in A™ in
between the Reeb chords ¢; - - - ¢; as above.

A subtle point here is that the moduli space M*YR (¢) naturally gives rise to a chain o in
C_ (QA*EHD) rather than in C_4(QA)®E+D | Note that o; are simply components
of o, they are not considered as chains. To separate these out we apply the cubical
Alexander—Whitney map

n: Coi (AT o C_(QA)PETD,
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recalled in Section 3.1. With these conventions we then define for i > 0,

Ai(co):= Y pMY(e)].
c=c0+ ¢, Cy
where we separate the components of the tensor product by the Reeb chords in ¢/, in
analogy with the notation for the product chain and where 7 is the Serre diagonal from
equation (24). The output of A;(cg) is thus a sum of alternating words of chains of
loops in C_,(€2A) and Reeb chords, and A; is an operation of degree 2—i on LC«(A).
We point out that if there are AT components, then higher-dimensional moduli spaces
contribute to the differential (unlike the case when A = A™). Note also that it is possible
to have holomorphic disks contributing to Ay, which means that the chord cy is the

positive puncture of a disk without negative punctures.

Our next result shows that the operations A; give a differential on CE*. The proof
uses boundaries of moduli spaces of holomorphic disks. By SFT compactness [12] and
standard gluing results —see eg [31, Appendix A; 23, Appendix B] — the boundary
of a moduli space M*(c) consists of several level holomorphic buildings of curves
with top level in M* (¢”) and lower levels in M (¢”"), where the positive puncture of
a curve in a lower level is attached at a negative puncture of a curve above it. In terms
of M*R(¢), standard gluing results imply that in a neighborhood of several-level curves
where positive and negative punctures are joined at d Reeb chords, the moduli space
MR (c) is C-diffeomorphic to
d

(28) 0. )7 x [ [ M¥=(¢)).

j=1
where the product runs over positive punctures in the holomorphic building which are
not the positive puncture of the curve in M*R(¢).

We will use the compact notation x to denote all such broken configurations and write
simply
IMIR () = MR () x MR ().

We next need to consider the fundamental chain of loops [M*E (¢”) * MR (¢”')] carried
by MR (¢") x MR (¢"), or in other words the codimension 1 boundary of [MY& (¢)].
If the dimension of M*R(¢) is d then its boundary gives (d—1)—dimensional chains
of loops in A. Consider a several-level building with moduli space components ./\/tj.y
of dimension d; > 1, j = 1,...,m. Then, by SFT compactness, d + 1 = Z;'n=1 d;.
A boundary component of a several-level disk that consists of boundary segments

from k disks in Mj{ o Mji ® will then carry a chain of loops in A of dimension
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Zle (dj, —1) =d —1, with equality only if the broken configuration consists of only
two levels. It follows that only two level curves contribute to [M¥E (¢’) * M¥YR (¢)].
More precisely, the codimension 1 boundary of MR (cg' Cp + - €7 ) corresponding to
curves joined at only one Reeb chord contributes with top-dimensional stratum of the
boundary in the form of a product,

MSyR(CS_C CbTe e % /\/IWR(bJr 1 )
In particular, the chains of loops along the two-level boundary segments of the two-
level curve are given by the Pontryagin product of the two adjacent chains of one level
segments that form the two-level segment. In the two-level moduli space above, if
k > 1 there are two two-level boundary segments: the segments between ¢ and b~
in the upper-level curve joined to the segment between ™ and iy and the segment
between Ci k41 and b in the lower level is joined to the segment between b~ and
¢k in the upper level. If the upper-level moduli space parametrizes the chains of
loops in C_y(QA*=5)) with components given by
OmCmOm—1""" cjﬂj,'_lbﬂj_kcj—k ©+01€100,
and the lower-level the chain in C—,(QA*® 1) with components given by
By _1¢ji-10j—2"+0j—k41¢j—k+1B]

and if * denotes the constant chain and - the Pontryagin product, then the chain in
C_ (QAXM+1) that contributes to the boundary has components
(29) (om-*)cm (Om—y %)+ (Uj - %) Cj (ﬁ}—l : }/_1) Cj—1 (* 'Uj—z)

(k0 0j k1) Gkt (Bi_g - By _g) €imk (Tj—p—1 %) -+ (01 - %) €1 (00 - %).
In the case that k = 1, the lower-level curve lies in M*® (bT) and has no negative
punctures. In this case the boundary contribution is
(30) (om =) em++ (0 %) cj(@j_y - B vj_y) cj—1 (Gj—a %) -+ (01 - %) 1 (00 - %),
where o’ - 8” -’ denotes the chain of loops parametrized by

MSYR (c(—;_cm b cl) X MSyR (b+)’

which at (s, 1) € MR (c(;“cm covb--ocp) X MYR(BT) is the loop o/ (s) - B (t) - y'(s),

where - denotes concatenation.

Proposition 21 Let d: CE* — CE* be the map extended to CE* by the graded
Leibniz rule. Then d is a differential, d* = 0. We call CE* with the differential d the
Chekanov-Eliashberg DG-algebra.
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Remark 22 When A = A—, CE* was called LC A* in [32]; this is the cohomologically
graded version of the usual Legendrian homology algebra LHA, in [11]. By definition,
we have LHA, = CE™*,

Proof When there are only components in A~ involved, the result follows from
standard arguments involving the boundary of 1-dimensional moduli spaces; see eg
[28; 23; 11]. Consider therefore the case when there are chains in the loop space
involved.

— ot
Lete =c¢y ¢,

The codimension 1 strata of its boundary consists of broken curves with one level of

-+¢| . The d—dimensional moduli space M*¥(¢) contributes to dcy.

dimension d — k and one of dimension k for 0 < k < d. We find, with d denoting the
natural tensor extension of the boundary operator in singular homology over boundary
components involved in AT, that

IMPE (e)] = [MVE (") x MV ()],

where « is as explained above and

'—etemeTh™ ceeclT "—pter et
' =cycpyrcih Ci_g-rcp and ¢ =b"¢;_, €kt

We next apply the cubical Alexander—Whitney map 7 to this formula to deduce
9 o n[MP (e)] = 10 IMVE (¢)] = MR (¢/) x M ()]
= MR ()] M= ()],
where - is the Pontryagin product (see (29) and (30)) and we used that 7 is a chain map
and is compatible with the product. The fact that 7 is a chain map is well known. We
verify that it is compatible with the product below. It follows that the terms contributing

to d? which arise from the differential acting on chains and acting on Reeb chords
cancel.

It remains to check that n is compatible with the product. By the explicit product for-
mulas for boundary contributions (29) and (30), we need to check that the compositions

Cose (R A X py Ay) ® Cs(2py Ay X Ry A)
2 Cos(Qpy A X Qpy Ay X Qpy Ay X 2p, Ay)
D, Ry A X Ry Ay X 2y Aw)
> Ca(py Au) ® C—s(Rpy Ay X p,, Aw)
Oy C o Rpy ) ® Con(Rp, Av) ® Coa(Rpy, Auw)
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and
Cs(Rp, Ay X Qp, Ay) @ C—(Qp, Ay X Qp,, Aw)

BN C (R M) ® Cos(Qpy M) ® Cs(py Av) ® Cse(p,, Aw)

TEEL R, M) ® Cs (R, Aw X L, M) ® Cs(Rp,, Aw)

1981, € (Qpy M) ® Cs(Rpy Av) ® Cs(pyy Aw)

agree. This is easily check