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The combinatorial formula for open gravitational descendents

RAN J TESSLER

Pandharipande, Solomon and Tessler (2014) defined descendent integrals on the
moduli space of Riemann surfaces with boundary, and conjectured that the generating
function of these integrals satisfies the open KdV equations. We prove a formula for
these integrals in terms of sums of Feynman diagrams. This formula is a generalization
of the combinatorial formula of Kontsevich (1992) to the open setting. In order to
overcome the main challenges of the open setting, which are orientation questions and
the existence of boundary and boundary conditions, new techniques are developed.
These techniques, which are interesting in their own right, include a characterization
of graded spin structure in terms of open and nodal Kasteleyn orientations, and a new
formula for the angular form of S2n�1–bundles.

Buryak and Tessler (2017) proved the conjecture of Pandharipande, Solomon and
Tessler based on the work presented here.
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1 Introduction

The study of the intersection theory on the moduli space of open Riemann surfaces
was initiated by Pandharipande, Solomon and Tessler in [31]. The authors constructed
a descendent theory in genus 0 and obtained a complete description of it. In all genera,
they conjectured that the generating series of the descendent integrals satisfies the
open KdV equations. This conjecture can be considered as an open analog of Witten’s
famous conjecture in [38].

The construction of the positive-genus analog will be carried out in joint work with
Solomon [35], and is reviewed here. A physical interpretation of these constructions
can be found in Dijkgraaf and Witten [15].

In this paper, after recalling the constructions of [31; 35], we prove a formula for all the
descendent integrals as sums over amplitudes of special Feynman diagrams, which we
call odd critical nodal ribbon graphs. With this formula one can effectively calculate
all the open descendents.

Based on this formula, the conjecture of [31] is proved in Buryak and Tessler [10], and
a calculation of finer invariants is performed in Alexandrov, Buryak and Tessler [2].

Geometry & Topology, Volume 27 (2023)



The combinatorial formula for open gravitational descendents 2499

1.1 Witten’s conjecture

1.1.1 Intersection numbers Denote by Mg;l the moduli space of compact connected
Riemann surfaces with l distinct marked points. P Deligne and D Mumford [13] defined
a natural compactification of it via stable curves. Given g and l , a stable curve is a
compact connected complex curve with l distinct marked points and finitely many
singularities, all of which are simple nodes. We require the automorphism group of the
surface to be finite, and the marked points and nodes are all distinct. The moduli space
of stable curves of fixed g and l is denoted by Mg;l . It is known that this space is a
nonsingular complex orbifold of complex dimension 3g� 3C l . For the basic theory
the reader is referred to Deligne and Mumford [13] and Harris and Morrison [17].

In his seminal paper [38], E Witten, motivated by theories of 2–dimensional quantum
gravity, initiated new directions in the study of Mg;l . For each marking index i he
considered the tautological line bundles

Li !Mg;l

whose fiber over a point
Œ†; z1; : : : ; zl � 2Mg;l

is the complex cotangent space T �zi† of † at zi . Let

 i 2H
2.Mg;l ;Q/

denote the first Chern class of Li , and write

(1) h�a1�a2 � � � �al i
c
g WD

Z
Mg;l

 
a1
1  

a2
2 � � � 

al
l
:

The integral on the right-hand side of (1) is well defined when the stability condition

2g� 2C l > 0

is satisfied, all the ai are nonnegative integers, and the dimension constraint

3g� 3C l D
X
i

ai

holds. In all other cases,
˝Ql

iD1 �ai
˛c
g

is defined to be zero. The intersection products (1)
are often called descendent integrals or intersection numbers.

Let ti (for i � 0) and u be formal variables, and put


 WD

1X
iD0

ti�i :
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Let

F cg .t0; t1; : : :/ WD

1X
nD0

h
nicg

nŠ

be the generating function of the genus g descendent integrals (1). The bracket h
nicg
is defined by the monomial expansion and the multilinearity in the variables ti . The
generating series

(2) F c WD

1X
gD0

u2g�2F cg

is called the (closed) free energy. The exponent �c WD exp.F c/ is called the (closed)
partition function.

1.1.2 KdV equations Set

hh�a1�a2 � � � �al ii
c
WD

@lF c

@ta1@ta2 � � � @tal
:

Witten’s conjecture [38] says that the closed partition function �c becomes a tau
function of the KdV hierarchy after the change of variables tn D .2nC 1/ŠŠ T2nC1. In
particular, it implies that the closed free energy F c satisfies the following system of
partial differential equations for n� 1:

.2nC 1/u�2hh�n�
2
0 ii

c
D hh�n�1�0ii

c
hh�30 ii

c
C 2hh�n�1�

2
0 ii

c
hh�20 ii

c
C
1
4
hh�n�1�

4
0 ii

c :

These equations are known in mathematical physics as the KdV equations. Witten [38]
proved that the intersection numbers (1) satisfy the string equation�

�0

lY
iD1

�ai

�c
g

D

lX
jD1

�
�aj�1

Y
i¤j

�ai

�c
g

for 2g� 2C l > 0:

Witten has shown that the KdV equations, together with the string equation, determine
the closed free energy F c completely. R Dijkgraaf, E Verlinde and H Verlinde [14]
reformulated an alternative description to Witten’s conjecture in terms of the Virasoro
algebra, and they have shown that the two descriptions are equivalent.

1.2 Kontsevich’s proof

Witten’s conjecture was proved by M Kontsevich [25]. The proof of [25] consisted
of two parts. The first part was to prove a combinatorial formula for the gravitational
descendents. Let Rg;n be the set of isomorphism classes of trivalent ribbon graphs of

Geometry & Topology, Volume 27 (2023)



The combinatorial formula for open gravitational descendents 2501

genus g with n marked faces. Denote by V.G/ the set of vertices of a graph G 2Rg;n.
Introduce formal variables �i , with i 2 Œn�. For an edge e 2E.G/, let

�.e/ WD
1

�i C�j
;

where i and j are the numbers of faces adjacent to e. The following formula holds:

(3)
X

a1;:::;an�0

� nY
iD1

�ai

�c
g

nY
iD1

.2ai � 1/ŠŠ

�
2aiC1
i

D

X
G2Rg;n

2jE.G/j�jV.G/j

jAut.G/j

Y
e2E.G/

�.e/:

The second step of Kontsevich’s proof was to translate the combinatorial formula into
a matrix integral. Then, by using nontrivial analytical tools and the theory of the KdV
hierarchy, he was able to prove that F c satisfies the KdV equations of Section 1.1.2.
Other proofs for Witten’s conjecture were given, for example, in Mirzakhani [29] and
Okounkov and Pandharipande [30].

1.3 Open intersection numbers and the open KdV equations

1.3.1 Open intersection numbers In [31], R Pandharipande, J Solomon and the
author constructed an intersection theory on the moduli space of stable marked disks.
Let M0;k;l be the moduli space of stable marked disks with k boundary marked points
and l internal marked points. This space carries a natural structure of a compact smooth
oriented manifold with corners. One can easily define the tautological line bundles Li
for an internal marking i , as in the closed case.

In order to define gravitational descendents, we must specify boundary conditions. The
main construction in [31] is a construction of boundary conditions for Li !M0;k;l .
In [31], vector spaces Si D Si;0;k;l of multisections of Li ! @M0;k;l , which satisfy
the following requirements, were defined. Suppose a1; : : : ; al are nonnegative integers
with 2

P
i ai D dimR M0;k;l D kC 2l � 3. Then:

(a) For any generic choice of multisections sij 2 Si for 1� j � ai , the multisection

s D
M
i2Œl�

1�j�ai

sij

vanishes nowhere on @M0;k;l .

(b) For any two such choices s and s0 we haveZ
M0;k;l

e.E; s/D

Z
M0;k;l

e.E; s0/;

where E D
L
i Laii and e.E; s/ is the relative Euler class.

Geometry & Topology, Volume 27 (2023)
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The multisections sij , as above, are called canonical. With this construction the open
gravitational descendents in genus 0 are defined by

(4) h�a1�a2 � � � �al�
k
i
o
0 WD 2

� 1
2
.k�1/

Z
M0;k;l

e.E; s/;

where E is as above and s is canonical.

In a forthcoming paper [35], J Solomon and the author define a generalization for all
genera. Suppose g, k and l are such that

(5) 2g� 2C kC 2l > 0 with 2 jgC k� 1:

In [35] a moduli space Mg;k;l , which classifies stable surfaces with boundaries and
some extra structure, is constructed; see Section 2.3 for a precise definition. The moduli
space Mg;k;l is a smooth oriented compact orbifold with corners, of real dimension

3g� 3C kC 2l:(6)

Note that naively, without adding an extra structure, the moduli of real stable curves of
positive genus is nonorientable.

Again, on Mg;k;l one defines vector spaces Si D Si;g;k;l for i 2 Œl �, for which the
genus g analogs of requirements (a) and (b) from above hold. Write

(7) h�a1�a2 � � � �al�
k
i
o
g WD 2

� 1
2
.gCk�1/

Z
Mg;k;l

e.E; s/

for the corresponding higher-genus descendents. Introduce one more formal variable s.
The open free energy is the generating function

(8) F o.s; t0; t1; : : : Iu/ WD

1X
gD0

ug�1
1X
lD0

h
 lıkiog

nŠ kŠ
;

where 
 WD
P
i�0 ti�i and ı WD s� , and again we use the monomial expansion and the

multilinearity in the variables ti and s.

The descriptions of Mg;k;l and its construction, and of the boundary conditions and
their construction, are given in Section 2. Throughout this article we shall write h� � �i
for h� � �iog , as closed descendents will not be considered, and the genus can be read
from the numbers k; l; a1; : : : ; al .

Geometry & Topology, Volume 27 (2023)
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1.3.2 Open KdV The initial condition

F ojt�1D0 D u
�1 s

3

6
Cu�1t0s(9)

follows easily from the definitions [31]. In [31] the authors conjectured the equations

@F o

@t0
D

1X
iD0

tiC1
@F o

@ti
Cu�1s;(10)

@F o

@t1
D

1X
iD0

2iC1

3
ti
@F o

@ti
C
2

3
s
@F o

@s
C
1

2
:(11)

They were called the open string and the open dilaton equation, correspondingly. These
equations were geometrically proved in [31] for g D 0, and for all genera in [35].

Put
hh�a1�a2 � � � �al�

k
ii
o
WD

@lCkF o

@ta1@ta2 � � � @tal@s
k
:

The main conjecture in [31] was:

Conjecture 1 (open KdV conjecture) The system of equations

(12) .2nC 1/u�1hh�niio

D uhh�n�1�0ii
c
hh�0ii

o
�
1
2
uhh�n�1�

2
0 ii

c
C 2hh�n�1ii

o
hh�iioC 2hh�n�1�ii

o;

with n� 1, is satisfied.

In [31], the equations (12) were called the open KdV equations. It is easy to see that F o

is fully determined by the open KdV equations (12), the initial condition (9) and the
closed free energy F c . They also made a Virasoro-type conjecture, which also fully
describes the open descendents. Both conjectures were proved in [31] for gD 0. In [5],
Buryak proved the equivalence of the two conjectures. Based on the work presented
here, the conjecture was proven for all genus in [10]; see Section 1.5 below for more
details.

1.4 The open combinatorial formula

Here and below the genus of a Riemann surface with boundary †, smooth or nodal,
is defined as the usual genus of the doubled surface obtained from gluing two copies
of † along the common boundary @†.

Geometry & Topology, Volume 27 (2023)
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Definition 1.1 Let g; k; l be nonnegative integers which satisfy conditions (5), and
let B; I be sets with jBj D k; jIj D l . Let .†; fxigi2B; fzigi2I/ be a genus g surface
with boundary, whose set of boundary markings is B, and set of internal markings is I.
A .g;B; I/–smooth trivalent ribbon graph is an embedding � WG!† of a connected
graph G into .†; fxigi2B; fzigi2I/, such that:

(a) fxigi2B � �.V .G//, where V.G/ is the set of vertices of G. We henceforth
consider fxig as vertices.

(b) The degree of every xi is 2.

(c) The degree of any vertex v 2 V.G/ n fxigi2B is 3.

(d) @†� �.G/.

(e) If l � 1, then

† n �.G/D
a
i2I

Di ;

where each Di is a topological open disk, with zi 2Di . We call the disk Di the
face marked i .

(f) If l D 0, then �.G/D @† and k D 3. Such a component is called trivalent ghost.

The genus g.G/ of the graph G is the genus of †. The number of the boundary
components of G or † is denoted by b.G/, and V I .G/ stands for the set of internal
vertices. Denote by B.G/ the set of boundary marked points fxigi2B, and by I.G/' I
the set of faces.

Definition 1.2 An odd critical nodal ribbon graph is G D
�`

i Gi
�
=N , where:

(a) The �i WGi !†i are smooth trivalent ribbon graphs.

(b) N �
�S

i V.Gi /
�
�
�S

i V.Gi /
�

is a set of ordered pairs of boundary marked
points .v1; v2/ of the Gi , which we identify. After the identification of the
vertices v1 and v2, the corresponding point in the graph is called a node. The
vertex v1 is called the legal side of the node and the vertex v2 is called the illegal
side of the node.

(c) Ghost components do not contain the illegal sides of nodes.

(d) For any component Gi , any boundary component of it contains an odd number
of points which are either marked points or legal sides of nodes.

Geometry & Topology, Volume 27 (2023)
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1 2

1

3

4� C
5 6

2 3

4
5

C

�

Figure 1: A nodal ribbon graph.

We require that elements of N be disjoint as sets (without ordering).

The set of edges E.G/ is composed of the internal edges of the Gi and of the boundary
edges. The boundary edges are the boundary segments between successive vertices
which are not the illegal sides of nodes. For any boundary edge e, we denote by m.e/
the number of the illegal sides of nodes lying on it. The boundary marked points of G
are the boundary marked points of the Gi which are not nodes. The set of boundary
marked points of G will be denoted by B.G/, the set of faces by I.G/.

An odd critical nodal ribbon graph is naturally embedded into the nodal surface †D�`
i †i

�
=N . The genus of the graph is defined as the genus of †. A .g; k; l/–odd

critical nodal ribbon graph is a connected odd critical nodal ribbon graph, together
with a pair of bijections, mB W B.G/! Œk� and mI W I.G/! Œl �, called markings.

Two marked odd critical nodal ribbon graphs � WG!† and �0 WG0!†0 are isomorphic if
there is an orientation-preserving homeomorphismˆ W .†; fzig; fxig/! .†0; fz0ig; fx

0
ig/

of marked surfaces, and an isomorphism of graphs � WG!G0, such that

(a) �0 ı� Dˆ ı �, and

(b) the maps preserve the markings.

Figure 1 depicts a nodal graph of genus 0, with 5 boundary marked points, 6 internal
marked points, three components, one of which is a ghost, and two nodes, where a plus
sign indicates the legal side of a node and a minus sign indicates the illegal side.

Notation 1.3 Denote by ORm
g;k;l

the set of isomorphism classes of odd .g; k; l/–
critical nodal ribbon graphs with m legal nodes.

Remark 1.4 In Section 4 we have to consider more general ribbon graphs, and the
notions of this subsection are defined in a different but equivalent way.

Geometry & Topology, Volume 27 (2023)
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The goal of this paper is to prove the following theorem.

Theorem 1.5 Fix g; k; l � 0 which satisfy conditions (5). Let �1; : : : ; �l be formal
variables. Then we have

(13) 2
1
2
.gCk�1/

X
a1;:::;al�0

h�a1�a2 � � � �al�
k
i
o
g

lY
iD1

2ai .2ai � 1/ŠŠ

�
2aiC1
i

D

X
m�0

X
GD.

`
i Gi/=N2ORm

g;k;l

Q
i 2
jV I .Gi /jCg.Gi /Cb.Gi /�1

jAut.G/j

Y
e2E.G/

�.e/;

where

�.e/ WD

8̂̂̂̂
<̂
ˆ̂̂:

1

�iC�j
if e is an internal edge between faces i and j ;

1

mC1

�2m
m

�
��2m�1i if e is a boundary edge of face i and m.e/Dm;

1 if e is a boundary edge of a ghost:

Remark 1.6 The invariants of [31; 35] are defined as integrals of relative Euler classes,
relative to canonical boundary conditions, over the moduli of graded surfaces, which
are oriented orbifolds with corners. Theorem 1.5 is proven based on these definitions;
more precisely, it assumes that the moduli spaces of graded surfaces are oriented
orbifolds with corners, that the orientations satisfy some compatibility properties along
nodal strata, and that (special) canonical multisections can be found. Since [35], which
proves these assumptions in the positive genus case, has not appeared yet, in addition
to defining everything we use, we also review the arguments.

First, the fact that the moduli of graded surfaces are smooth orbifolds with corners
is a technical result, whose proof imitates of the proof of Theorem 2 of [41], and is
provided in Section 2.3.6. Second, the construction of special canonical boundary
conditions is similar to the proof of Lemma 3.53(a) in [31], and appears in Section 2.5.

On the other hand, proving that the high genus moduli is orientable, constructing the
orientations and showing their properties is more involved, and is based on the discovery
of the open Arf invariant in Solomon and Tessler [34]. However, in Sections 5 and 6.2,
we provide completely different proofs for the orientability and the orientation properties
we need, using the stratification of the moduli and properties of Kasteleyn orientations.

It is also worth mentioning that one of the main results of [31; 35] is the independence
of the open intersection numbers on choices. This fact is also a byproduct of the
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(a) 1 2

1

1 2

1

2
1 2

1

1 2C 1 2

1
1

1 2C
1

1 2
1

(b)
1

1C
1

(c) 1 1

C
1

C

1 1

Figure 2: Examples of contributing graphs.

proof of Theorem 1.5, which uses just the defining properties of canonical boundary
conditions and not a specific canonical multisection.

1.4.1 Examples h�1�0�i0 D 1. Thus, for g D 0, k D 1 and l D 2 the left-hand side
of equation (13) with �1 D � and �2 D � is

2

��3
C

2

��3
:

The right-hand side receives contributions from several graphs; see Figure 2(a). The
two nonnodal contributions in the first line are

1

�.�C�/�2
C

1

�.�C�/�2
:
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The two nonnodal contributions in the second line are

2

2�3.�C�/
C

2

2�3.�C�/
:

The nodal ones sum to
1

��3
C

1

��3
:

And the two sides agree.

The second example is of h�1i1 D 1
2

. Consider case (b) in Figure 2. The left-hand side
is 1=�3. Nonnodal terms do not contribute, as the single relevant graph — the leftmost
graph of (b) — is not odd. The nodal contribution is exactly 1=�3.

The last example, Figure 2(c), is of h�2�5i D 8. The left-hand side gives 384=�5.
Then 24 nonnodal diagrams — one for each cyclic order of the boundary points —
contribute 24=�5. There are 120 diagrams with a single node, one for each order;
each contributes 1=�5. There are 120 diagrams with two nodes; each contributes 2=�5,
where 2 comes from the Catalan term.

1.5 Proof of the conjecture and related works

Some recent developments, related works and open questions are summarized below.

(i) Proof of the open KdV conjecture Based on the combinatorial formula presented
here, the conjecture of [31] has been proven in [10]: first, the combinatorial formula
was transformed to a formula of matrix integrals, and then, by analytical tools and ideas
from the theory of integrable hierarchies, the integral was shown to satisfy the open
Virasoro constraints, which are equivalent to the open KdV equations by Buryak [5].

(ii) Boundary descendents Buryak [6] showed that the string solution of the open
KdV equation is closely related to the wave function of the KdV hierarchy. In [5] a
more general generating function, which is a tau function of the Burgers–KdV system,
was introduced. It was conjectured that this function should correspond to an open
intersection theory which includes descendents of boundary marked points. Such
a theory can be constructed, extending the construction of [35], and, based on the
combinatorial construction in this paper and on Buryak and Tessler [10], this theory
can be shown to satisfy the Burgers–KdV hierarchy. The definition of the extended
theory, its calculation and the proof of its relation with the Burgers–KdV hierarchy will
appear soon.

Geometry & Topology, Volume 27 (2023)
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(iii) Kontsevich–Penner matrix model, Refined open intersection numbers An
alternative description of the solution of the Burgers–KdV equations in terms of
matrix integrals was found algebraically by A Alexandrov [1] in terms of the N D 1
specification of the Kontsevich–Penner tau function.

Open problem 1 Is there a direct geometric way to derive Alexandrov’s solution of
the open KdV equations from the geometric construction of [31; 35]?

The combinatorial construction presented here was used in Alexandrov, Buryak and
Tessler [2] to write a formula for more refined open intersection numbers. The main
conjecture of [2], which is a strengthening of a conjecture of Safnuk [33], is that
the generating series of the refined open numbers equals the Kontsevich–Penner tau
function.

(iv) Open r–spin In recent work of Buryak, Clader and Tessler [8; 7], a far-reaching
generalization of [31] to an intersection theory over the moduli of r–spin disks has
appeared. The potential of the genus 0 open r–spin integrals was shown to be closely
related to the wave function of the rKdV hierarchy, and an all-genus generalization
was conjectured. Work in progress with Gross and Kelly generalizes this construction
to open FJRW theory, and the genus 0 intersection numbers are explained using mirror
symmetry.

Open problem 2 Generalize the formula presented in this work to the case of open
r–spin intersection numbers.

(v) Other interpretations of the theory There were several related works in the
physics literature; we mention two. In [15], Dijkgraaf and Witten provide a physical in-
terpretation to the open intersection theory of [31; 35]. In [3], Bawane, Muraki and Rim
describe a solution for the open KdV equations in terms of minimal gravity on the disk.

In [32], Safnuk gives an interpretation of the N D 1 specification of the Kontsevich–
Penner tau function — which is, as explained above, a solution of the Burgers–KdV
hierarchy — in terms of combinatorially defined volumes of moduli spaces.

(vi) Similar formulas for other OGW invariants There are two newer works
which present formulas for open GW invariants in terms of summation over graphs
with boundary nodes and are of the same flavor as the formula given here, and the
refined formula of [2]. Zernik [40] presents an equivariant localization calculation of

Geometry & Topology, Volume 27 (2023)
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OGW disk invariants for the pair .CP2n;RP2n/. Buryak, Zernik, Pandharipande and
Tessler [11] construct the stationary OGW theory of .CP1;RP1/, derive a localization
formula for all intersection numbers, including descendents, and in [9] use it to prove a
correspondence with open Hurwitz theory. Both formulas contain corner contributions,
in addition to the naive contributions, in resemblance to (13). To the best knowledge of
the author, such formulas have not appeared in literature before. Formulas for open GW
invariants have appeared in the past, usually in the context of equivariant localization;
see the calculations of Katz and Liu [24] as a prototypical example. In the older
formulas which involved graph summation, the graphs were dual to topological stable
marked surfaces with boundaries (which parametrized fixed-point loci). These surfaces
included disk components which were connected by internal nodes to the closed part.
There were no boundary nodes. The amplitudes of such graphs were usually similar
to the analogous amplitudes in the closed case (and the disk contribution was usually
more or less the square root of the sphere contribution). In the formulas of this work
and of [2; 11; 40], the boundary nodes contribute an additional factor to the amplitudes.
It would be interesting to gain a general understanding of this new type of expression,
to understand when are they expected to appear, and to analyze them.

1.6 Plan of the paper

In Section 2 the constructions of [31] and [35] are reviewed. In particular, graded spin
surfaces are defined, as well as their moduli space Mg;k;l , tautological line bundles
and special canonical boundary conditions. With these in hand, the open intersection
numbers are then defined.

In Section 3 the notions of sphere bundles and angular forms are recalled. We explain
how to calculate the integral of the relative Euler class, relative to nowhere-vanishing
boundary conditions. The main result of this section is an explicit formula for a
representative of the angular form of a sphere bundle. This formula is the starting point
of the paper.

Section 4 is devoted to constructing an open analog of Strebel’s stratification. Symmetric
stable Jenkins–Strebel differentials are defined, and used to stratify the moduli space
of open surfaces and then the moduli of graded surfaces. In addition, combinatorial
sphere bundles are constructed. It is then shown that special canonical multisections are
pulled back from the combinatorial moduli. The main result of this section is that the
open descendent integrals can be calculated as integrals over the combinatorial moduli.

Geometry & Topology, Volume 27 (2023)



The combinatorial formula for open gravitational descendents 2511

Section 5 describes in more detail the cells in the stratification which will eventually
contribute to the open descendents. Extended Kasteleyn orientations are defined, and
their equivalence classes are shown to be equivalent to the data of a graded spin
structure. The Kasteleyn orientations are used to provide a more explicit description of
the contributing cells, of the boundary conditions and of the orientation of the moduli.
As a byproduct, an alternative proof that the moduli Mg;k;l is canonically oriented is
given. The analysis of orientations is an important ingredient in the proof.

The last section, Section 6, proves the combinatorial formula, Theorem 1.5. With the
aid of the explicit angular form constructed in Section 3, an integral representation
of the open gravitational descendent is given. The integral depends explicitly on the
boundary conditions. The properties of special canonical multisections are then used
to iteratively integrate by parts, until an integrated form of the combinatorial formula,
Theorem 6.10, is obtained. Finally, by performing a detailed study of the Kasteleyn
orientations and the multiplicative constants they contribute,1 we are able to apply the
Laplace transform to the integrated formula and obtain the main theorem, Theorem 1.5.
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2 The moduli, bundles and intersection numbers

This section briefly summarizes the required definitions and results from [31; 35].

1This study also applies to the closed case, and gives a conceptual calculation in terms of discrete spin
structures of a constant appearing in Kontsevich’s work [25, Appendix C], which was the subject of several
other works.
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2.1 General conventions and notation

For l 2N we write Œl �D f1; 2; : : : ; lg. The set Œ0� will denote the empty set.

Throughout this article, a map m W A! Z from an arbitrary set A, which is injective
away from m�1.0/, will be called a marking or a marking of A. Given a marking, we
shall identify elements of m�1.Z n f0g/ with their images.

In what follows, the markings will be used to mark points in surfaces, half-edges in
dual graphs and vertices in ribbon graphs. The reason we allow noninjective marking
functions is that we will have to perform many graph or surface operations that will
create new marked points. There will be no natural way to mark these new points, and
therefore we will mark them all by 0.

We will encounter many types of graphs in the next sections. Dual graphs, to be defined
in Section 2, will be denoted by capital Greek letters. Ribbon graphs, to be defined in
Sections 4 and 5, will be denoted by capital Roman letters.

Many of the objects in this paper, such as surfaces or graphs, will have natural notions
of genus, boundary labels and internal labels. A .g; B; I /–object is an object whose
genus is g, set of boundary labels is B , and set of internal labels is I . Similarly, in the
closed setting, a .g; I /–object is an object whose genus is g and set of internal labels
is I .

Given a permutation � on a set S , we write s=� for the �–cycle of s 2 S . For a 2 S=� ,
we write ��1.a/ for the elements which belong to the cycle a.

We shall sometimes use the shorthand notation y to denote a sequence fyigi2Œr�, if the
sequence we are referring to is understood from context.

2.2 Open surfaces and their moduli space

2.2.1 Stable open surfaces We recall the notion of a stable marked open surface.

Definition 2.1 We define a smooth pointed surface to be a triple

.†;x; z/D .†; fxigi2B; fzigi2I/;

consisting of

(a) a Riemann surface †, possibly with boundary;

(b) an injection B! @†, with i 7! xi , where B is a finite set;

(c) an injection I! V†, with i 7! zi , where I is a finite set.
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In the case @† ¤ ∅, we say that † is an open surface. Otherwise it is closed. We
sometimes omit the marked points from our notation. Given a smooth pointed surface†,
we write B.†/ for the set B, and sometimes also for the set fzigi2B. We similarly
define I.†/.

A smooth closed pointed surface † is called stable if

2g.†/CjI.†/j> 2:

A smooth open pointed surface † is called stable if

2g.†/CjB.†/jC 2jI.†/j> 2:

Remark 2.2 † is canonically oriented, as a Riemann surface. In the case that @†¤∅,
it is endowed with a canonical induced orientation.

Definition 2.3 For a pointed Riemann surface .†; fxigi2B; fzigi2I/, where in the case
that † is closed B D ∅, we denote by .†; fxigi2B; fNzigi2I/ the same surface with
opposite complex structure. The doubling of an open † is

†C D†q@††;

the surface obtained by the Schwarz reflection principle along the boundary @†. For
an open connected † we define the genus g.†/ to be the genus of †C . For † closed
and connected the genus is just the usual genus. In the case that † is disconnected, its
genus is defined as the sum of the genera of its connected components.

Remark 2.4 For open surfaces the topological type is determined by two numbers,
the doubled genus g and the number of boundary components h, and not only by the
genus. The number h is constrained by

hD gC 1 .mod 2/; with 0� h� gC 1;

and for any .g; h/ satisfying these constraints there is a topological type of open surface.

Definition 2.5 A prestable surface is a tuple

†D .f†˛g˛2O[C;�;CB/;

where:

(a) O and C are finite sets. For ˛ 2 O, †˛ is an open smooth pointed surface; for
˛ 2 S, †˛ is a closed smooth pointed surface.
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(b) �D�B [�I , where �B is an equivalence relation on
S
˛ B.†˛/ with equiva-

lence classes of size at most 2, and �I is an equivalence relation on
S
˛ I.†˛/

with equivalence classes of size at most 2. We write B.†/ and I.†/ for the
equivalence classes of size 1 of �B and �I , respectively.

(c) CB.†/ is a subset of I.†/.

Elements of B.†/ are called boundary marked points. Elements of I.†/ nCB.†/ are
called internal marked points. The �B (resp. �I ) equivalence classes of size 2 are
called boundary (resp. interior) nodes, and elements which belong to these equivalence
classes are called half-nodes. Elements of CB are called contracted boundaries. The
equivalence classes of � (resp. �B , �I ) are collectively called special (resp. special
boundary, special internal) points of †.

We also write † D
`
˛2O[C †˛=�. If O is empty and CB is empty, † is called a

prestable closed surface. Otherwise it is called a prestable open surface.

A prestable surface is marked, if it is also endowed with markings mB W B.†/!Z and
mI W I.†/ nCB! Z. Write mD mI [ mB. Recall that a marking is injective outside of
the preimage of 0.

A prestable marked surface is called a stable marked surface if each of its constituent
smooth surfaces †˛ is stable.

The doubled surface †C of a stable open surface is defined as

†C D

� a
˛2O

.†˛/C
a
˛2C

†˛
a

†˛

�.
�C;

where
�CD .�B [�I [�xI [�CB/

is defined as follows: �xI identifies internal marked points of f†˛g˛2C if and only
if �I identifies the corresponding marked points in f†˛g˛2C , and �CB identifies
zi 2†˛ and Nzi 2†˛ whenever i 2 CB.†/. †C is endowed with an involution %, with
Nzi D %.zi /, whose fixed-point set is @†[CB.†/, and is such that †'†C=%. Write
D.†/D .†C; %/.

† is connected if the underlying space
`
˛2D[S †˛=� is. † is smooth if CB.†/D∅

and � has only equivalence classes of size 1.

The normalization Norm.†/ of the stable marked surface † is defined to be the surface
.f†˛g˛2O[C;�

0;CB0; m0/ where �0 has only size 1 equivalence classes, CB0 is empty,
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and the marking m0 agrees with m whenever is defined, and otherwise m0I D 0, m0B D 0.
For a marked point marked i ¤ 0, write †i for the component of Norm.†/ which
contains marked point zi .

A topological stable marked surface, open or closed, is defined in the same way, only
with the †˛ being topological surfaces rather than Riemann surfaces.

In what follows, our default choice of marking function m is a bijection mI W I.†/! Œn�

if † is closed, and if † is open we usually take bijections mI W I.†/ nCB.†/! Œl �

and mB W B.†/! Œk�. Therefore whenever a surface is written as .†; z1; : : : ; zn/ or
.†; x1; : : : ; xk; z1; : : : ; zl/, we implicitly mean that it is marked, and that the indices
of the marked points represent the markings.

See Figure 3 for examples of prestable surfaces and their normalizations.

We sometimes identify D.†/ and †C .

Definition 2.6 An isomorphism between two prestable marked surfaces

†D .f†˛g˛2O[C;�;CB; m/ and †0 D .f†0˛g˛2O0[C0 ;�
0;CB0; m0/

is a tuple f D .f O; f C; ff ˛g˛2O[C/ such that:

(a) The maps f O WO!O0 and f C W C! C0 are bijections between the sets which
index the components of the surfaces.

(b) For ˛ 2O, f ˛ W†˛!†0
f O.˛/

is a biholomorphism, which induces a bijection
on the sets of special points. For ˛ 2 C, f ˛ W†˛!†0

f C.˛/
is a biholomorphism,

which induces a bijection on the sets of special points.

(c) For x 2†˛ and y 2†ˇ , x � y if and only if f ˛.x/�0 f ˇ .y/.

(d) For any special point x 2†˛, m0.f ˛.x//D m.x/.

(e)
S
˛ f

˛.CB/D CB0.

We denote by Aut.†/ the group of automorphisms of †.

An isomorphism between stable topological surfaces is similarly defined, only with the
maps f ˛ required to be homeomorphisms rather than biholomorphisms.

2.2.2 Stable graphs It is useful to encode some of the combinatorial data of stable
marked surfaces in graphs.
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1

1
0

0

1

0
0

1

1 5 1 5

0

7

3 3

0

0

7

1

0 0 0 0

1

Figure 3: In this diagram in every row the leftmost picture is a prestable
surface, and on the right side of the same row is the normalization. In the top
row there is a prestable marked surface with boundary, and its normalization
into two stable marked disks and a prestable marked sphere. In the second
row there is a stable sphere with an (unmarked) contracted boundary. Its
normalization is a stable sphere with three markings. In the third row there is
a stable surface with boundary which is normalized into a disk and a torus.
The last row contains a stable surface whose normalization is the union of a
cylinder and a genus 3 surface with boundary.

Definition 2.7 A (not necessarily connected) prestable dual graph � is a tuple

.V D V O [V C ; H DHB
[H I ; �0; �D�B [�I ; g; H

CB; mD mB [ mI /;

where:

(a) V O and V C are finite sets, called the open and closed vertices, respectively.

(b) HB and H I are finite sets of boundary and internal half-edges.

(c) �0 WH ! V associates any half-edge to its vertex.
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(d) �B is an equivalence relation on HB with equivalence classes of sizes 1 or 2,
and �I is an equivalence relation on H I with equivalence classes of sizes 1
or 2. Denote by T B the equivalence classes of size 1 of �B , and by T I the
equivalence classes of size 1 of �I .

(e) HCB � T I .

(f) g W V ! Z�0 is a genus assignment.

(g) mB W T B ! Z and mI W T I nHCB! Z are markings.

We call T B boundary tails, HCB contracted boundaries, and T I nHCB internal tails.
Set T DT I[T B. Now,�B induces a fixed-point-free involution onHBnT B. Similarly,
�I induces a fixed-point-free involution on H I n T I . We denote this involution on
H n T by �1. We set EB D .HB n T B/=�B , the set of boundary edges. We define
EI D .H I nT I /=�I [H

CB. We put E DEI [EB, the set of edges. We denote by
�B0 the restriction of �0 to HB ; in a similar fashion we define �I0 .

We require that for all h 2HB, �0.h/ 2 V O.

We say that � is connected if its underlying graph .V;E/ is connected.

For a vertex v we set k.v/D j.�B0 /
�1.v/j. It is defined to be 0 if v is closed. We set

l.v/ D j.�I0 /
�1.v/j. Write CB.v/ for the number of contracted boundaries of v. A

dual graph is closed if V O DHCB D∅, and otherwise it is open.

The genus of a stable connected closed dual graph � is defined by

g.�/D
X
v2V C

g.v/CjEI j � jV C jC 1:

The genus of a stable connected open dual graph � is defined by

g.�/D
X
v2VO

g.v/C 2
X
v2V C

g.v/CjEB jC 2jEI j � jHCB
j � jV O j � 2jV C jC 1:

A closed vertex v 2 V C is stable if

2g.v/C l.v/ > 2:

An open vertex v 2 V O is stable if

2g.v/C k.v/C 2l.v/ > 2:

A dual graph � is stable if all its vertices are.
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The normalization Norm.�/ of the graph � is defined to be the unique stable graph
.V 0;H 0; � 00;�

0; g0;H
0CB; m0/ with V 0 D V , H 0 D H , � 00 D �0, g0 D g, H

0CB D ∅,
and �0 has only classes of size 1. The map m0 agrees with m whenever m is defined.
Otherwise m0 D 0.

For i 2 Image.mI / n f0g, we denote by vi .�/ the connected component of Norm.�/
which contains the tail marked i .

It is easy to see that the genus is always nonnegative. Figure 4 illustrates several dual
graphs and their normalizations. Note that open vertices without boundary half-edges
are allowed.

Definition 2.8 An isomorphism between graphs

� D .V;H; �0;�; g;H
CB; m/ and � 0 D .V 0;H 0; � 00;�

0; g0;H
0CB; m0/

is a pair f D .f V ; f H / such that

(a) f V W V ! V 0 and f H WH !H 0 are bijections,

(b) g0 ıf D g,

(c) h1 � h2 if and only if f .h1/�0 f .h2/,

(d) � 00 D f ı �0,

(e) m0 ıf D m,

(f) f .HCB/DH
0CB.

We denote by Aut.�/ the group of automorphisms of � .

To each stable marked surface† we associate an isomorphism class of connected stable
graphs as follows. We set

V O DO; V C D C; HB
D

[
˛

B.†˛/; H I
D

[
˛

I.†˛/; HCB
D CB.†/:

The definitions of g, �, �0 and m are straightforward. In particular, a tail marked a is
associated to a marked point labeled a. An edge between two vertices corresponds
to a node between their corresponding components. See Figure 4 for the dual graphs
which correspond to the surfaces of Figure 3. Note that this correspondence is at the
level of isomorphism classes of topological stable surfaces, and that a surface is closed
precisely if its corresponding graph is closed.
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g D 0

g D 0

1

1

g D 0 g D 0

0
0

1
g D 0

0 0

1

g D 0

g D 0

1 5

g D 0

1 5

g D 1

g D 0

7

3
g D 0

0
3

g D 1
7

0

g D 3 g D 1 g D 3

0
0 0

0

g D 1

Figure 4: This diagram presents the dual graphs which correspond to the
surfaces from Figure 3, under the correspondence of Definition 2.9. Again
the right-hand side of each row is the normalization of the left-hand side.
Black vertices correspond to closed components, and empty vertices to open.
The genus of the vertex is written next to it. Boundary edges or half-edges
are drawn as dashed lines, and the other edges or half-edges are internal (the
case of contracted boundary is included). The label of a tail is written next to
it. The genus of the dual graphs in the left-hand side are, going from top to
bottom, 0; 0; 2; 5.

Definition 2.9 The graph associated to a stable surface † is denoted by �.†/. The
genus of a stable surface † is defined as the genus of �.†/.

Observe that the genus of a stable closed surface agrees with the standard definition,
while the genus of a stable open surface equals the standard genus of its doubled
surface. The genus of a stable surface equals the genus of the surface obtained by
smoothing its nodes, including the contracted boundaries which are smoothed to
boundary components. Observe also that Norm.�.†//D �.Norm.†//, and that for
any internal marked point which is marked i ¤ 0, we have vi .�.†//D �.†i /, where
†i is the component of † which contains marked point zi .

Throughout this paper we will sometimes write “graph” instead of “dual graph” when
the meaning is clear from the context. Dual graphs will be denoted by capital Greek
letters, to help us distinguish them from another kind of graphs we shall meet below,
ribbon graphs, which will be denoted by capital Roman letters.
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We denote by GR
g;k;l

the set of isomorphism classes of all stable graphs of genus g with
k boundary tails, l internal tails, and for which

Image.mB/D Œk� and Image.mI /D Œl �:

We write GR for the set of isomorphism classes of all stable graphs. Note that the
cases kD 0 or l D 0 are not excluded, as surfaces without boundary or internal marked
points will be considered in what follows.

Notation 2.10 Given nonnegative integers k; l with 2gCkC2l > 2, denote by �R
g;k;l

the stable graph with V O D f�g and V C D∅, with

g.�/D g; T B DHB
' Œk�; T I DH I

' Œl �;

where the equivalences with Œk� and Œl � are obtained using mB and mI , respectively.
We similarly define �g;n as the closed graph with a single vertex of genus g, and
T I DH I ' Œn�.

Definition 2.11 A stable dual graph is effective if

(a) any internal half-edge is a tail or a contracted boundary,

(b) any vertex without internal tails has exactly three boundary half-edges and
genus 0, and

(c) different vertices without internal half-edges are not adjacent.

A surface is called effective if it is associated to an effective graph.

The notion of effectiveness will be important later on, when we construct the com-
binatorial moduli space using Jenkins–Strebel differentials. On moduli strata which
correspond to effective dual graphs, the map to the combinatorial moduli is a homeo-
morphism. This fact will turn out to be useful when we come to translate the geometric
intersection numbers to combinatorial expressions.

In the leftmost column of Figure 3, only the sphere from the second row is effective:
the surface from the first row has an internal node, and in addition it is not stable;
the surface from the third row also has an internal node as well; the surface from the
lowest row has a component without internal markings, which is not a disk with three
boundary markings. Equivalently, in the leftmost column of Figure 4 only the second
graph is effective. Additional examples of effective and noneffective surfaces and
graphs are illustrated in Figure 5.
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2

3
g D 0

1

3 2
1

3 2

1

54
g D 0

5 4

1
23

g D 0

g D 0
1 2

3 5
1

3 2
5

Figure 5: Every row in this diagram illustrates a dual graph and the corre-
sponding surface. Only the first row represent an effective graph/surface.
Note that the cyclic order of boundary markings on boundaries cannot be read
from the dual graph data.

2.2.3 Some graph operations For the purpose of the next definition, for a vertex v
in a dual graph � , write ".v/D 1 if v is open, and ".v/D 2 otherwise. For an edge e
set ".e/D 0 unless e is an internal edge connecting two open vertices, in which case
put ".e/D 1.

Definition 2.12 Consider a stable graph � . The smoothing of � at f 2E is the stable
graph

df � D �
0
D .V 0;H 0;�0; s00; g

0; m0/;

defined as follows. Suppose f …HCB.�/ is the �–equivalence class fh1; h2g. Write
�0.h1/D v1 and �0.h2/D v2. The vertex set is given by

V 0 D .V n fv1; v2g/[fvg:

The new vertex v is closed if and only if both v1 and v2 are closed. We have that

H 0 DH n fh1; h2g;

and �0 is the restriction of � to H 0. For h 2 ��10 .fv1; v2g/, we define � 00.h/ D v;
otherwise, � 00.h/D �0.h/. For any tail t , m0.t/D m.t/. We set

g0.v/D

8<:
g.v1/C 1C ".f / if v1 D v2;
g.v1/Cg.v2/C ".f / if v1 ¤ v2 and ".v1/D ".v2/;
".v1/g.v1/C ".v2/g.v2/ otherwise.
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When f 2HCB, a contracted boundary of vertex v, then

V 0 D V; H 0 DH n ff g; H 0CB
DHCB

n ff g:

We update �0, � 00 and m0 as above. We put g0.w/ D g.w/ for w ¤ v, and we put
g0.v/D g.v/C1 if v is open, otherwise we set g0.v/D 2g.v/ and declare v to be open.

Observe that there is a natural proper injection H 0 ,!H , so we may identify H 0 with a
subset of H . This identification induces identifications of tails and of edges. Using the
identifications, we extend the definition of smoothing in the following manner. Given
a set S D ff1; : : : ; fng �E.�/, define the smoothing at S as

dS� D dfn.� � � df2.df1�/ � � � /:

Observe that dS� does not depend on the order of smoothings performed.

Definition 2.13 A stable topological surface †0 is a smoothing of a topological stable
marked surface † at an internal node z� � z� if there exists a simple closed path

 ,!†0, and a map ' W†0!† which takes 
 to the node and restricts to an orientation-
preserving homeomorphism ' W †0 n 
 ' † n fz�; z�g. In this case we say that 
 is
contracted to the node. We say that 
 degenerates to z� when this time 
 is an oriented
simple closed path in †0, if 
 is contracted to the node, and the '–preimage of a small
enough neighborhood of z� lies to the left of 
 . The definitions of smoothing in a
boundary node or degeneration to a boundary half-node are analogous, only with a
simple arc that connects two boundary points.

A topological stable surface †0 is the smoothing of a topological stable surface †
at a contracted boundary z� if there exists a boundary component @†0� , and a map
' W†0!† such that '.@†0�/D z� and ' W†0 n @†0� '† n z� .

If e is the edge of �.†/ which corresponds to the node z� � z� in †, then �.†0/D
de�.†/, where †0 is the smoothing of † in that node; similarly for smoothing in
contracted boundaries.

If � D dS� 0, then H 0 is canonically a subset of H , and we have a natural identification
between E.�/ and E.� 0/ nS .

We can now define boundary maps

@Š W GR
! 2G

R
and @ W GR

! 2G
R
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by putting

@Š� D f� 0 j � D dS�
0 for some S �E.� 0/g and @� D @Š� n f�g:

These maps naturally extend to maps 2G
R
! 2G

R
.

2.2.4 Moduli of open surfaces In this paper we consider orbifolds with corners; we
follow the definitions of [41, Section 3], which build on the works [22; 21].

Notation 2.14 For � 2 GR, denote by MR
� the set of isomorphism classes of stable

marked genus g surfaces with associated graph � .

Define
MR
� D

a
� 02@Š�

MR
� 0 :

We abbreviate
MR
g;k;l DMR

�R
g;k;l

and MR
g;k;l DMR

�R
g;k;l

:

We similarly define Mg;n and Mg;n, which are just the usual Deligne–Mumford
moduli spaces of stable and smooth curves respectively.

For i 2 Image.mI / n f0g, write Mvi .�/ for the moduli of the graph vi .�/, and denote
by vi WM� !Mvi .�/ the natural map which on the level of objects sends †!†i .

The space MR
g;k;l

is a compact smooth orbifold with corners of real dimension

dimR MR
g;k;l D kC 2l C 3g� 3:

We attribute this result to Amitai Netser Zernik [41, Section 2]. His setting is slightly
different. He considers open stable genus 0 maps to homogeneous varieties, and he
proves that the moduli space of these maps is an orbifold with corners. In our case
the target space is a point, but the genus is arbitrary. This change does not affect his
results or techniques, since they only rely on convexity of the corresponding closed
moduli problem, that is, on the fact that the moduli space of (complex) stable maps is
a smooth orbifold, which clearly holds for Mg;n. We review the argument. Consider
the sequence

(14) MR
g;k;l

.4/
,�! eMR

g;k;2l

.3/
�! eRMg;k;2l

.2/
�!RMg;k;2l

.1/
�!Mg;kC2l :

We define the moduli spaces and maps appearing in (14) as follows.
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Step 1 First, RMg;k;2l is the fixed locus of the involution on Mg;kC2l defined by

.C I z1; : : : ; zkC2l/ 7! .C I z1; : : : ; zk; zkClC1; : : : ; zkC2l ; zkC1; : : : ; zkCl/;

where C is the same smooth curve C , but with the conjugate complex structure. This is
a compact smooth real orbifold, as it is the fixed locus of an antiholomorphic involution
over a smooth complex orbifold. More details on the fixed-point functor on stacks can
be found in [41, Section 2.5]. This orbifold parametrizes isomorphism types of stable
marked curves with a conjugation.

Step 2 The next step is to cut RMg;k;2l along strata which parametrize surfaces with
at least one real node. These strata form a real normal crossing divisor, as they are the
fixed-point loci of the previous involution, applied to the normal crossing divisor of
nodal strata in Mg;kC2l . The cutting procedure is via the real hyperplane blowup of
[41, Section 3.3], and it is proven there that the result of this blowup is an orbifold with
corners which we denote by eRMg;k;2l .

Step 3 eRMg;k;2l is made of several connected component. Consider those compo-
nents whose generic point is a real curve C with a conjugation % such that C nC %

is disconnected. Then eMR
g;k;2l

is the disconnected two-to-one cover of the union of
those connected components, given, at the level of objects .C; %/, by the choice of
a distinguished half, a connected component of C nC %. Thanks to the real blowup
procedure, this choice extends naturally to the boundary strata. The resulting space is
still a compact orbifold with corners, as a degree 2 cover of such a space.

Step 4 MR
g;k;l

is the submoduli of eMR
g;k;2l

made of connected components such that
the marked points wkC1; : : : ; wkCl lie in the distinguished half. This final space is a
compact orbifold with corners, as it is the union of connected components of a compact
orbifold with corners.

Set-theoretically MR
g;k;l

is naturally identified with the moduli space of stable marked
open .g; k; l/–surfaces, and therefore we identify this moduli with MR

g;k;l
. The con-

struction endows the moduli space MR
g;k;l

with topology and an orbifold with corners
structure. For the dimension, see, for example, [27, Theorem 1.2].

In general the space MR
g;k;l

is nonorientable and disconnected. A stable marked surface
with b boundary nodes or contracted boundaries belongs to a corner of the moduli
space MR

g;k;l
of codimension b. For further reading about the nodal strata of the real

and open moduli spaces we refer the reader to [27, Section 3].
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Notation 2.15 Denote by D WMR
g;k;l

!Mg;kC2l the moduli-level doubling map
†!†C , which is the composition of the maps of (14).

2.3 Graded surfaces and their moduli space

We present here the extra structure needed for the definition of intersection theory for
open Riemann surfaces, following [35; 34].

2.3.1 Smooth graded surfaces Let † be a smooth closed genus g surface. A spin
structure twisted in fzigi2I1 , where I1 � I, is a complex line bundle L!† together
with an isomorphism

b W L˝2 ' !†
�
�

X
i2I1

zi

�
;

where !†
�
�
P
i2I1 zi

�
is the canonical bundle twisted in fzigi2I1 .

Let † be a smooth genus g open surface. A real spin structure twisted in fxigi2B1
and fzigi2I1 , where B1 � B and I1 � I, is a triple .L; b; z%/, where .L; b/ is a spin
structure on the doubled surface D.†/D .†C; %/ twisted in fxigi2B1 and fzi ; Nzigi2I1 ,
ie L!†C is a line bundle and

b W L˝2 ' !†C

�
�

X
i2B1

xi �
X
i2I1

.zi C Nzi /

�
is an isomorphism, where !†C

�
�
P
i2B1 xi �

P
i2I1.zi C Nzi /

�
is the canonical bundle

twisted in fxigi2B1 and fzi ; Nzigi2I1 . The map z% WL!L, is an involution which lifts d%,
the induced involution on !†C .

The maps z% and d% restrict to conjugations on the fibers of

L!†
%
C ' @†; !†C

�
�

X
i2B1

xi

�
!†

%
C ' @†:

These conjugations give rise to a %–invariant real subbundle. The real line bundle

!†C

�
�

X
i2B1

xi

�%
!†

%
C

is oriented: take any nowhere-vanishing section � 2 �.T†%C ! †
%
C/ which points

in the direction of the orientation on †%C , induced from its identification with @†.
The orientation of !%†C

j†%Cni2B1
is defined by a section y� which satisfies y�.�/ > 0.
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Such a section is said to be positive. Thus, using b, it is seen that for any connected
component of †%C n fxigi2B1 , either y� or �y� has a root in Lz%. In the case that for each
connected component of †%C n A, where A � fxigi2B1 is a finite set of points, the
positive sections have roots in Lz%, we say that .L; z%/ is compatible away from A. In
the case AD fxigi2B1 , we say that the structure is compatible.

Proposition 2.16 If B1 ¤∅ then there are no compatible real twisted spin structures.

Proof Suppose i 2 B1. Let U be a contractible %–invariant neighborhood of xi which
contains no other marked points. One can find a %–invariant section s 2 �.L! U/

which vanishes nowhere in U, possibly after replacing U by a smaller neighborhood. In
%–anti-invariant local coordinates around xi , the real section z dz generates !†C .U /.
Write f .z/ D z dz=b.s˝2/; this is a nowhere-vanishing holomorphic function in U.
Moreover, f is conjugation invariant, and hence real on U %. In particular, it does
not change sign there. But this is impossible for a compatible structure since z dz is
positive on exactly one component of U % n fxig.

Given a compatible real spin structure, a lifting of the spin structure is a choice of a
section in

�.S0.Lz%/!†
%
C n fxigi2B/;

where S0 stands for the rank 0 sphere bundle. We say that the lifting alternates
in xj , and that xj is a legal point, if this choice cannot be extended to �.S0.Lz%/!
†
%
C n fxigi2Bnfj g/. Otherwise the lifting does not alternate in xj , and xj is an illegal

point.

Definition 2.17 A twisted closed smooth spin surface is a closed smooth surface
.†; fzigi2I/, together with a twisted spin structure twisted in fzigi2I1 . In the case
I1 D∅, we call it a closed smooth spin surface.

A twisted open smooth spin surface is a smooth open surface .†; fxigi2B; fzigi2I/,
together with a compatible twisted real spin structure twisted in fzigi2I1 . In the case that
I1 D∅, we call it an open smooth spin surface. A (twisted) smooth spin surface with a
lifting is a (twisted) open spin surface, together with a lifting. A lifting with all boundary
points legal is called a grading. A surface with a nontwisted spin structure (that is,
I1 D B1 D∅) and a grading is called a graded surface. An isomorphism of twisted
spin surfaces is an isomorphism of the underlying surfaces and of the line bundles
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which respects the twists, commutes with the maps between the canonical lines in the
expected sense and, in the open case, also with the involutions. An isomorphism of
twisted spin surfaces with a lifting is an isomorphism of the twisted spin surfaces which
takes the lifting to the lifting in the target, and respects the alternations.

We will see below in Proposition 2.32 that the only obstruction to the existence of a
graded spin structure is the parity of gC k: in a graded spin structure, gC k must be
odd.

2.3.2 Stable graded surfaces We follow the terminology of [19]. Let †D f†˛g˛2C
be a stable closed surface. A spin structure twisted in fzigi2I1 , where I1 � I, is a rank
1 torsion-free sheaf L over † together with a map

b W L˝2! !†

�
�

X
i2I1

zi

�
;

where !†
�
�
P
i2I1 zi

�
is the dualizing sheaf, twisted in fzigi2I1 .

We require that

(a) deg.L/D 1
2
.deg.!†/� jI1j/,

(b) b is an isomorphism on the locus where L is locally free, and

(c) for any point p where L is not free, the length of coker.bp/ is 1.

In particular, b is an isomorphism away from nodes. Nodes where b is not an isomor-
phism are called Neveu–Schwarz (NS); at these nodes the last requirement says exactly
that b vanishes in order 2. The other nodes are called Ramond.

Let †D f†˛g˛2C[O be a stable open .g; k; l/–surface. A real spin structure twisted in
fxigi2B1 and fzigi2I1 , with I1 � I and B1 � B, is a triple .L; b; z%/, where .L; b/ is a
spin structure over the doubled surfaceD.†/D .†C; %/, and z% WL!L is an involution
which lifts d%, the induced involution on !†C . Thus, in particular, b is a map

b W L˝2! !†C

�
�

X
i2B1

xi �
X
i2I1

.zi C Nzi /

�
;

where !†C

�
�
P
i2B1 xi �

P
i2I1.zi C Nzi /

�
is the dualizing sheaf, twisted in fxigi2B1

and fzi ; Nzigi2I1 , and

deg.L/D 1
2

�
deg.!†C /� 2jI1j � jB1j

�
:
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Remark 2.18 Suppose that † is a nodal curve, open or closed, and z is a node with
preimages z� ; z� 2 Norm.†/. Then there are natural residue maps

res� W .Norm�!†/z� 'C:

These induce an isomorphism a W .Norm�!†/z� ' .Norm�!†/z� , by

res.v/C res.a.v//D 0:

In the Ramond case, we also have an isomorphism za W .Norm�L/z� ! .Norm�L/z� ,
and res.b.v˝2//C res.b.za.v/˝2//D 0. For more details see [19].

When z 2†�†C is a contracted boundary which is Ramond, d% and z% lift to complex
antilinear isomorphisms between the fibers of Norm�!†C and Norm�L in z˙, where
zC is the preimage of z in Norm.†/, and z� is the preimage of z in Norm.x†/. By
composing with a and za we get antilinear involutions on the fibers at zC. This defines
real lines, which we denote by .!%†/zC and .Lz%/zC , together with maps

res W .!%†/zC '
p
�1R;

where
p
�1 is the root of �1 in the upper half-plane, and

b2 W .Lz%/zC ! .!
%
†/zC ;

defined by b2.v/D b.v˝2/.

We say that the real spin structure is compatible in a contracted boundary z if z is
a Ramond node of †C and the image of b2 is in the positive imaginary half-line
res�1.

p
�1R�0/.

The real spin structure is compatible if it is compatible in contracted boundaries and
away from special boundary points. Compatibility away from special points is defined
as in the smooth case.

A lifting of a compatible real spin structure is a choice of a section

s 2 �

�
S0.Lz%/!†

%
C n

� [
˛2O

B.†˛/

��
;

where S0 stands for the rank 0 sphere bundle. The notions of alternations and of legal
marked point or a legal half-node are as in the smooth case.

The definition of the lifting includes, for any contracted boundary node z, a choice of
a lifting for the contracted boundary, ie with the above notation and identifications, a
choice of direction in .Lz%/zC which is mapped by res ı b2 to the ray

p
�1R�0.
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Proposition 2.19 (a) A real spin structure on a stable surface , twisted or not ,
induces a real spin structure , possibly twisted , on any open component of the
normalization , and a possibly twisted spin structure on any closed component
of it. For any node of †, the induced structure is either twisted in both of its
preimages in the normalization , or not twisted in both. The former case is the
Ramond case , the latter is Neveu–Schwarz. If there are no Ramond nodes then
the spin structures on the closed components of the normalization , together with
the real spin structures on its open components , determine the real spin structure
on †.

(b) If the real spin structure is compatible , then so is the induced structure on any
open component of the normalization. In this case , in particular , there are no
twists in boundary marked points , and no boundary Ramond nodes. In the case
that there are no Ramond internal nodes but there may be contracted boundaries ,
compatible spin structures on the normalization determine the compatible spin
structure on †.

(c) A lifting on † induces a lifting on the normalization. A lifting on the normal-
ization , together with a choice of a direction in .res ı b2/�1.

p
�1R�0/ for the

preimage zC of any contracted boundary, induces a lifting on †.

Proof The fact that the twisted spin structure induces one on the normalization by
pullback, and is induced by one, when there are no Ramond nodes is already true in the
closed case; see for example [19]. Moreover, it is shown there that given the structures
on the normalization and the identifications of the stalks in preimages of nodes — see
Remark 2.18 — the twisted spin structure on the surface is determined. The involution
extends uniquely by continuity.

The second claim follows from the fact that one can examine compatibility away from
special points. Ramond boundary nodes cannot appear by Proposition 2.16. If z is a
contracted boundary, there is a single, up to sign, possible identification map za, as in
Remark 2.18. Now, if za makes the contracted boundary compatible, with respect to
the involution, �za will make it not compatible, and vice versa. The last statement is
evident.

Definition 2.20 A closed stable surface .†; fzigi2I/, together with a spin structure
twisted in fzigi2I1 , is called a twisted closed stable spin surface. In the case that
I1 D ∅, we call it a stable closed spin surface. A twisted open stable spin surface

Geometry & Topology, Volume 27 (2023)



2530 Ran J Tessler

is a stable open surface .†; fxigi2B; fzigi2I/, together with a compatible real spin
structure twisted in fzigi2I1 . In the case that I1 D ∅, we call it a stable open spin
surface. A (twisted) stable spin surface with a lifting is a (twisted) open spin surface,
together with a lifting such that for any boundary node, exactly one half-node is legal.
If all the boundary marked points are legal, the lifting is called a grading. A (twisted)
stable spin surface with a grading is effective if the underlying surface is, and, for any
component of the normalization of genus zero with 3 special boundary points and
no special internal points, its special points are legal. A stable graded surface is a
(nontwisted) stable spin surface with a grading. The isomorphism notions are as in the
smooth case.

The legality condition on the nodes may seem peculiar at first glance. However this is
the condition which allows smoothing of the stable graded surface at a boundary node.
The closed analog of it is that the twists at the two half-nodes of the same node must
agree. In a nutshell, as we will see in the next subsection, in a twisted spin surface
any closed path which does not pass through special points has a well-defined notion
of parity. By pinching the surface in that path, a node is formed, and this node is NS
or Ramond according to the parity of the pinched path. Similarly, any oriented arc
between boundary points which avoids special points also has a well-defined notion
of parity. We will see in Proposition 2.31 that this parity changes if the orientation
of the arc changes. By pinching the arc one obtains a surface with a new boundary
node. The boundary node is NS, but the legality of its half-nodes is determined by
the parity of the corresponding oriented arcs. See Lemma 2.39 for an exact statement.
Interestingly, when the node is separating the legality can be determined from the parity
considerations of Proposition 2.32. Since in gD 0 all nodes are separating, the genus 0
theory could have been defined without referring to the graded spin structure. These
points will be discussed more in [34].

Notation 2.21 Denote by Spin.†/ the set of isomorphism classes of graded spin
structures on a stable open surface †.

The definition of graded surfaces, together with Proposition 2.19, yields a corollary.

Corollary 2.22 If † has no internal nodes , there is a bijection between Spin.†/ and

(a) isomorphism types of spin structures with a lifting on Norm.†/, twisted precisely
at preimages of contracted boundaries , such that any boundary marked point
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C � � C

C C C

C

�C

C

C

Figure 6: In this figure we consider three stable graded spin surfaces. In
these cases the underlying surfaces are effective. The symbol C near a
boundary marking or a boundary half-node indicates a legal point, while �
indicates an illegal point. We omit the labels. The graded surface on the left is
noneffective, since in the normalization the middle component has one legal
boundary marking, two illegal boundary markings and no internal markings.
On the other hand, the remaining two graded surface are effective.

of † is legal as a point of Norm.†/, and for any node of † exactly one half-node
in Norm.†/ is legal ;

(b) a choice of a direction in .res ı b2/�1.
p
�1R�0/ for the preimage zC of any

contracted boundary.

2.3.3 An alternative definition for the smooth case In this subsection we provide
an alternative definition for smooth spin surfaces with a lifting. This definition will be
easier to work with. Let .†; fxigi2B; fzj gj2I/ be a smooth, open or closed, pointed
Riemann surface. Choose any Riemannian metric on it.

Notation 2.23 Denote by T 1† the S1–bundle of T†. For a simple smooth arc or a
simple smooth closed path 
 �†, we denote the S0–bundle of T 
 by T 1
 .

When the arc or path 
 is oriented, T 1
 will stand for the unit-length oriented tangent
vector field to 
 . In particular, we shall use the notation T 1@† for the branch of T 1@†
which covers the direction of the induced orientation on the boundary.

We consider T 1† as the S1–subbundle of unit-length vectors of T†; similarly for T 1
 .
We also consider T 1
 as a S0–subbundle of T 1†j
 . In what follows we use these
identifications without mentioning a choice of metric. Different metrics will give rise
to equivalent structures, and in fact, one can make these definitions metric independent
by considering the S0– and S1–bundles as subquotients of the corresponding vector
bundles.

For a point p 2†, a vector w 2 Tp† and an angle � 2R=2�R, let r�w D r� .p/w be
the operator of rotation by � in the counterclockwise direction. We shall omit p from
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the notation when it is clear from context. The operator r� .p/ is induced on T 1p†, and
we shall use the same notation.

If u and w are two tangent vectors at p, denote the counterclockwise angle from u

to w by ].u;w/.

For a smooth arc 
 W Œ0; 1�!†, there exists a canonical trivialization

& W Œ0; 1��S1! T 1†j


defined by

&.t; �/D .
.t/; ei�vt /; where vt D .T 1/
.t/
:

This trivialization defines a continuous family of maps

fp.
/ts W T
1

.s/†! T 1
.t/†g0�s;t�1;

uniquely determined by the condition

p2
�
&�1.
.s/; v/

�
D p2

�
&�1.
.t/; p.
/tsv/

�
;

where p2 is the projection on the second coordinate. One can extend the trivialization
to the piecewise smooth context by approximation. In the case that s D 0 and t D 1,
we omit them from the notation and write p.
/. One can easily verify, in the piecewise
smooth case, that if 
 is composed of smooth subarcs 
i W Œai ; aiC1� ! †, where
a0 D 0 < a1 < � � �< an D 1, and �iC1 is ]. P
i j
iC1.aiC1/; P
i j
i .aiC1//, then

p.
/D p.
n�1/r�n�1p.
n�2/ � � � r�1p.
0/:

We shall denote such 
 by 
1! 
2!� � �! 
n. For a closed piecewise smooth path 
 ,
we slightly change the definition of p to be

p.
/D r�0p.
n�1/r�n�1p.
n�2/ � � � r�1p.
0/;

and note that this is in fact the identity map. We shall denote such 
 by 
1! 
2!

� � � ! 
n! 
1.

Definition 2.24 A twisted spin structure S!† n fzj gj2I on a smooth marked † is
an S1–bundle on † n fzj gj2I together with a degree 2 cover bundle map

� D �S
W S! T 1†j†nfzj gj2I :
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For a point p 2†, a vector w 2 Sp and an angle � 2R=4�Z, let R�w DR� .p/w be
the operator of rotation by � in the counterclockwise direction. We shall omit p from
the notation when it is clear from context.

The parallel transport along 
 W Œ0; 1�!† is the unique continuous family of maps

fP.
/ts W S
.s/! S
.t/g0�s;t�1

which covers fp.
/tsg. We shall sometimes call P.
/10v the parallel transport of v
along 
 , and write it as P.
/v.

Remark 2.25 R covers r in the sense that if �.s/D v for s 2 Sp and v 2 T 1p†, then

�.R� .p/s/D r� .p/v D r�.mod 2�/.p/v:

Observe that R˛Rˇ DR˛Cˇ . In addition, P and R commute:

R� .
.t//P.
/
t
sv D P.
/

t
sR� .
s/v:

Definition 2.26 A (twisted) spin structure S is associated with a function

q D qS
WH1.† n fzj gj2I ;Z2/! Z2

defined as follows. For x 2H1.† n fzj gj2I ;Z2/, take a piecewise smooth connected
representative 
 . Then p.
/ is the identity. Hence P.
/ is either the identity or minus
the identity. We define q.x/D q.
/ to be 1 in the former case, and 0 otherwise.

For any internal marked point zj , take a small disk Dj which surrounds it and contains
no other marked points in its closure. We define the twist in zj to be q.@Dj /.

The following well-known theorem was proven by Johnson [20]. It states that q is a
quadratic enhancement of the Poincaré pairing h˛; ˇi.

Theorem 2.27 The function q is well defined on H1.† n fzj gj2I ;Z2/. For ˛; ˇ 2
H1.† n fzj gj2I ;Z2/, we have

q.˛Cˇ/D q.˛/C q.ˇ/Ch˛; ˇi:

Proposition 2.28 If 
 W Œ0; 1�!†nfzj gj2I is a piecewise smooth closed curve which
bounds a contractible domain , then P.
/10 DR2� . Moreover , suppose † is a disk with
a piecewise smooth boundary 
 . Let S!T 1†j
 be a double cover by an S1–bundle S.
Then S can be extended to a nontwisted spin structure on† if and only if P.
/10DR2� .
In this case the extension is unique. In particular , the spin structure can be extended to
a marked point zi if and only if its twist is 0, in which case the extension is unique.

Geometry & Topology, Volume 27 (2023)



2534 Ran J Tessler

The first part follows from Theorem 2.27 by taking ˛ D ˇ D Œ
�. The other parts are
also simple and will be omitted.

Definition 2.29 Let .†;S/ be an open marked Riemann surface together with a
(twisted) spin structure. Suppose @†¤∅. A lifting is a choice of a section

s W @† n fxigi2B! Sj@†nfxi gi2B

which covers the oriented T 1.@† n fxigi2B/.

For j 2 B, suppose i W
�
�
1
2
; 1
2

�
! @† is a smooth orientation-preserving embedding

with i.0/D xj and xb … i
�
�
1
2
; 1
2

�
for b ¤ j . In the case that

lim
x!0�

s.x/¤ lim
x!0C

s.x/;

we say that the structure alternates in xj , and that xj is a legal point. Otherwise xj
is illegal and the structure does not alternate. We extend the definition of s to the
boundary marked points by s.x/D limx!0C s.x/.

A smooth spin surface with a lifting .†; fxigi2B; fzigi2I ;S; s/ is a smooth open Rie-
mann surface together with a spin structure and a lifting. A smooth graded surface is a
smooth spin surface with a lifting, such that all boundary marked points are legal.

The notion of alternation can be generalized in the following manner.

Definition 2.30 A bridge is a piecewise smooth simple arc which meets the boundary
only at its two distinct endpoints x; y 2 @† n fxigi2B. Suppose we orient the bridge
and parametrize it as


 W Œ0; 1�!†; with 
.0/D x; 
.1/D y:

Define Q.
/ 2 Z2 by the equation

(15) R2��˛y .y/P.
/R˛x .x/s.x/DR2�Q.
/.y/s.y/;

where
˛x D]..T 1/x@†; .T 1/x
/ 2 Œ0; ��;

˛y D]..T 1/y@†; .T 1/y
/ 2 Œ�; 2��:

Q.
/ depends on the orientation but not on the parametrization. An oriented bridge
with QD 1 is called a legal side of the bridge, otherwise it is called an illegal side.
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Proposition 2.31 Let † be a smooth open spin surface with a lifting. Let 
 be a bridge
and denote by x
 the same bridge with opposite orientation. Then Q.
/CQ.x
/D 1.
Thus , any bridge has exactly one legal side and exactly one illegal side.

Proof Work with the notation of Definition 2.30. For w 2 fx; yg; ˛0w is defined by
˛0w D ]..T 1/w@†; .T 1/w x
/. Observe that ˛0x D ˛x C � and ˛0y D ˛y � � . Apply
R2�Q.x
/.y/ to the left-hand side of (15). By Remark 2.25, the left-hand side becomes

R2�Q.x
/.y/R2��˛y .y/P.
/R˛x .x/s.x/DR2��˛y .y/P.
/R˛x .x/R2�Q.x
/.x/s.x/:

Using equation (15) for x
 , Remark 2.25 again, and the relations between pairs ˛x; ˛0x
and ˛y ; ˛0y , the last expression simplifies toR�P.x
/R�P.
/s.y/. By Proposition 2.28
applied to the piecewise smooth closed curve 
 ! x
 ! 
 , this is just R2�.y/s.y/.

ApplyingR2�Q.x
/.y/ to the right-hand side of (15), we obtainR2�.Q.
/CQ.x
//.y/s.y/.
Thus,

R2�.y/s.y/DR2�.Q.
/CQ.x
//.y/s.y/;

and the claim follows.

Proposition 2.32 (a) Suppose .†; fzigi2I ;S/ is a genus g closed spin surface.
Suppose that exactly l1 marked points have twist 1. Then l1 is even. For any
closed Riemann surface .†; fzigi2I/, there exist 22g distinct nontwisted spin
structures on †.

(b) Suppose .†; fxigi2B; fzigi2I ;S; s/ is a genus g open spin surface with a lifting.
Suppose that exactly kC of the boundary marked points are legal , and l1 internal
marked points have twist 1. Then

l1 D gC 1C kC .mod 2/:

For any .†; fxigi2B; fzigi2I/ 2MR
g;k;l

with 2 j gC kC 1, there exist exactly
2g graded structures on †.

Proof For the first claim, let fCig be a family of nonintersecting circles around
each marked point. Then

P
Ci is homologous to 0. By Theorem 2.27, q

�P
Ci
�
DP

q.Ci /D 0. For the number of spin structures, see for example [19].

Regarding the second claim, let Ci be as above, and for any boundary component @†b ,
let Cb be a curve surrounding this boundary, disjoint from it, but isotopic to it in † n z.
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By the definitions of q and Q one easily sees that q.Cb/ is 1 plus the number of legal
marked points of @†b . AgainX

q.Ci /C
X

q.Cb/D 0 .mod 2/;

but this sum equals l1C kCC b .mod 2/, where b is the number of boundaries. It is
easy to see that b D gC 1 .mod 2/. For the number of graded structures; see [34]. We
will also obtain it as a byproduct in Section 5.1; see the end of Example 5.18.

Lemma 2.33 The definitions given in this subsection of smooth spin surfaces with a
lifting , twisted or not , and graded or not , are equivalent to the analogous ones given in
Section 2.3.1.

Starting with a real spin structure L in the sense of Section 2.3.1, S is just the S1�
bundle of L�, and the lifting is the reduction of the lifting to that bundle. See [34] for
more details, and for the rather straightforward proof of equivalence.

2.3.4 A comment about the alternative definition in the stable case In the stable
case, by Proposition 2.19, the sheaf L and the grading data determine the spin structures
and liftings on the normalization, hence by Lemma 2.33 determine the data of S and s
for each component. However, it is determined by it, again, using the same lemma and
proposition, only when there are no Ramond nodes. Even when there are such nodes,
the data of S and s for each component determine L and the grading data up to a finite
choice of identification maps between stalks of half-nodes and liftings at the preimages
of the contracted boundaries, as explained in the proof of Proposition 2.19. Therefore,
since working with the S1–bundle and its lifting is more convenient, throughout this
paper we shall usually write .†;S; s/ to indicate a spin structure with a lifting, and
leave L implicit. We shall sometimes even leave S and s implicit.

2.3.5 Spin graphs It is useful to encode some of the combinatorial data of spin
surfaces with a lifting in graphs.

Definition 2.34 A (pre)stable spin graph � with a lifting is a (pre)stable graph

� D .V;H;�D�B [�I /;

together with a twist map tw WH I ! Z2 and an alternation map alt WHB ! Z2. We
require that

(a) tw.h/D tw.�1.h// for any h 2H I nT I ,
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g D 0

1 5; twD 1

twD 1

g D 1

g D 0

7

C 3 g D 3

C �

C �
g D 1

Figure 7: Three examples of graded dual graphs. The numbers stand for the
markings, and all twists are 0 unless “twD 1” is written next to an element
of H I . In order to avoid confusion, legal half-edges, the elements h 2HB

with alt.h/D 1, are decorated byC signs.

(b) alt.h/C alt.�1.h//D 1 for any h 2HB nT B,

(c) tw.h/D 1 for all h 2HCB,

(d)
P
h2.�B0 /

�1.v/ alt.h/C
P
h2.�I0 /

�1.v/ tw.h/D g.v/C 1 .mod 2/ for v 2 V O,

(e)
P
h2��10 .v/ tw.h/D 0 for v 2 V C.

A boundary half-edge h, and in particular a tail with alt.h/D 0, is said to be illegal,
otherwise it is legal.

We say that the graph is stable if � is stable. We call � a graded graph if alt.t/D 1
for all t 2 T B and tw.t/D 0 for all t 2 T I nHCB.

� is effective if its underlying graph is effective, alt.t/D 1 for all t 2 T B, and for any
v 2 V O without internal half-edges, its three boundary half-edges have altD 1.

The normalization Norm.�/ is just the normalization of the underlying graph � , with
the maps tw and alt defined on the tails of Norm.�/ by their values on the corresponding
half-edges of � . As in the spinless case, whenever an internal tail of � is marked
i ¤ 0, the graph vi .�/ is the component of Norm.�/ which contains tails i , but with
the additional data of tw and alt.

When it is clear from the context that the dual graph under consideration is a spin graph
with a lifting, we sometimes omit the maps tw and alt from the notation.

Definition 2.35 An isomorphism between spin graphs with a lifting .�; tw; alt/ and
.� 0; tw0; alt0/ is a tuple

f D .f V ; f H /

such that

(a) f W �! � 0 is an isomorphism of stable graphs,

(b) tw0 D tw ıf H and alt0 D alt ıf H jHB .

We denote by Aut.�/ the group of the automorphisms of � D .�; tw; alt/.
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We denote by G the set of isomorphism classes of all spin graphs with a lifting. We
have a natural forgetful mapfforspin W G! GR; where fforspin.�; tw; alt/D �:

Write forspin for its restriction to graded graphs. We denote by Gg;k;l the set of isomor-
phism classes of graded graphs with Image.mB/ D Œk� and Image.mI / D Œl �. Define
�g;k;l as the unique connected graded dual graph with a single open vertex of genus g,
exactly k boundary tails marked by Œk�, exactly l internal tails marked by Œl �, HCBD∅,
and no further half-edges.

To each graded stable marked surface † we associate a graded stable graph .�; tw; alt/
as follows. First, � D �.†/. Let w 2†˛ be any special point of this component. It
corresponds to some half-edge h. If h 2H I, then tw.h/ is defined to be the twist in w.
If h 2HB, then alt.h/D 1 if and only if h is legal. For brevity we denote the graded
stable graph corresponding to † by �.†/, omitting tw and alt from the notation. Note
that Norm.�.†//D �.Norm.†//, and whenever an i ¤ 0 marks an internal marked
point, then vi .�.†//D �.†i /.

We can also extend the graph operations to the graded case. The smoothing of a stable
spin graph with a lifting .�; alt; tw/, at f 2E is the stable graph

df � D .�
0; alt0; tw0/

such that df .�/D � 0. Recall that we may identify H 0 as a subset of H . We define
tw0 and alt0 as the restrictions of tw and alt with respect to this identification. Given a
set S D ff1; : : : ; fng �E.�/, define the smoothing at S as

dS� D dfn.� � � df2.df1�/ � � � /:

Note that again in the case � D dS� 0, H 0 is canonically identified as a subset of H ,
and alt and tw respect this identification.

Again we define @Š W G! 2G and @ W G! 2G by

@Š� D f� 0 j � D dS�
0 for some S �E.� 0/g and @� D @Š� n f�g:

And again these maps naturally extend to maps 2G! 2G .

2.3.6 Mg;k;l

Notation 2.36 For � 2 G, denote by M� the set of isomorphism classes of marked
stable spin surfaces with a lifting, associated to graph � .
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Define
M� D

a
� 02@Š�

M� 0 :

Define Mg;k;l DM�g;k;l . Similarly define Mg;k;l as the subspace parametrizing
smooth surfaces.

For a marking i , denote by vi WM�!Mvi .�/ the canonical map Œ†�! Œ†i �. Observe
that in order to define this map we have used Proposition 2.19. If † has a contracted
boundary, then †i has a marked Ramond point which corresponds to it. The passage
from † to †i forgets the lifting at contracted boundaries.

Theorem 2.37 [35] The space Mg;k;l is a compact smooth orbifold with corners of
real dimension 3g� 3C kC 2l . It is endowed with a canonical orientation.

We note that Mg;k;l is in general disconnected. Different connected components
correspond to different topologies with the same doubled genus, to different partitions
of the boundary points between boundary components, and sometimes also to different
connected components of graded spin structures.

The main difficulty in this theorem is the proof of orientability. The properties of
the canonical orientation will be detailed in Theorem 2.53 below. In Theorem 5.32,
Proposition 5.48 and Corollary 5.49 below we will provide a different proof for the
orientability and for the properties of the canonical orientations. We now briefly review
the proof that Mg;k;l is a compact smooth orbifold with corners. As in the spinless
case, we rely on [41]. We also refer the reader to [8, Lemma 3.5], where a similar
procedure, also based on [41], is applied to the moduli of r–spin disks.

Our starting point is the fact that in the closed setting the moduli space M1=2
g;n of twisted

spin curves is a smooth orbifold; see, for example [18]. Consider the sequence

(16) Mg;k;l
.5/
�! bMg;k;l

.4/
,�! eMg;k;l

.3/
�! eRMg;k;l

.2/
�!RM1=2

g;kC2l
.1/
�!M01=2

g;kC2l
:

As in the spinless case, we explain the notation throughout the steps below.

Step 1 First, M01=2
g;kC2l

is the suborbifold of M1=2

g;kC2l
, the moduli of stable marked

2–spin curves, given by the condition that all the markings have twist 0. Inside this
space, RM1=2

g;kC2l
is the fixed locus of the involution defined by

.C Iw1; : : : ;wkC2l ;S/ 7! .C Iw1; : : : ;wk;wkClC1; : : : ;wkC2l ;wkC1; : : : ;wkCl ;S/;

where C and S are the same as C and S but with the conjugate complex structure. Here
k is required to satisfy 2 −gC k. As the fixed locus of an antiholomorphic involution,
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RM1=2
g;kC2l

is a smooth compact real orbifold. It parametrizes isomorphism types of
marked spin curves with an involution z% covering the conjugation % on C , and 0 twists.

Step 2 The next step is to cut RM1=2

g;kC2l along the real simple normal crossings
divisor consisting of curves with at least one real node, via the real hyperplane blowup
of [41]. As in the spinless case, this yields an orbifold with corners eRMg;k;l .

Step 3 Consider the subset of eRM1=2

g;kC2l
whose generic point is a smooth marked

real spin curve with nonempty real locus. Then eMg;k;l is the disconnected 2-to-1 cover
of this subset given, as in the spinless case, by the choice of a distinguished half †,
a connected component of C nC %. Note that C DD.†/.

Step 4 Inside eMg;k;l , we denote by bMg;k;l the union of connected components
such that the marked points wkC1; : : : ; wkCl lie in the distinguished half, and the spin
structure is compatible. The generic point in this orbifold has isotropy Z2, coming, at
the level of objects, from scaling the fibers of S by �1.

Step 5 Finally, Mg;k;l is the degree 2 cover of bMg;k;l given by a choice of grading.
The choice of the grading cancels the global Z2 isotropy, since the �1 map is no
longer an automorphism, as it does not preserve the grading. As a cover, Mg;k;l is
also endowed by an orbifold with corners structure.

For any � 2 Gg;k;l , M� is a suborbifold with corners which is the closure of M� .
The map Forspin is an orbifold branched cover. A graded surface with b boundary
nodes and contracted boundaries belongs to a corner of the moduli space Mg;k;l of
codimension b. Thus @Mg;k;l consists of graded stable surfaces with at least one
boundary node or contracted boundary. For details see [35]. We should note that the
same argument applies for the more general setting of the moduli space of twisted spin
surfaces with a lifting. These more general moduli spaces are also smooth orbifolds
with corners, but in general they are not orientable.

Remark 2.38 By Proposition 2.32, the degree of the map Forspin is 2g . The automor-
phism group of the underlying surface acts on the set of spin structures. When the
surface is smooth this group is generically trivial, but when it is not, it may happen
that the fiber of Forspin is of cardinality smaller than 2g . Still, even in this case its
weighted cardinality, which takes into account the isotropies, is 2g , so that the orbifold
degree in the smooth case is constant. When the topology becomes nodal the number
of graded spin structures on a given underlying surface may change. But still, for any
graded dual graph � the degree of Forspin restricted to M� is generically constant, and
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when isotropy groups are taken into account, it is always constant. This constant is a
power of 2 which can be calculated from the graph structure of � using, for example,
Proposition 2.19 and the first paragraph in its proof, which relate spin structures on a
stable surface and twisted spin structures on its normalization.

The universal curve Cg;k;l !Mg;k;l is the space whose fiber over Œ†� 2Mg;k;l is †.
Its topology can be defined as in the closed case.

The following simple lemma is useful for understanding the geometry of Mg;k;l ; see
[34; 35] for details.

Lemma 2.39 (a) The maps q and Q are isotopy invariants , in the sense that if
.†s/0�s�1 is a path in Mg;k;l , and .
t;s/0�s;t�1 is a continuous family of
simple paths 
 � ;s � †s ,! Cg;k;l which miss the special points and which are
either all bridges or all closed. If they are all bridges then Q.
 � ;s/ is fixed for
any continuous choice of orientations on 
 � ;s , and if they are all closed , then
q.
 � ;s/ is fixed.

(b) Suppose now that .†s/0�s�1 is a path in Mg;k;l and .
t;s/0�s;t�1 is a con-
tinuous family of paths 
 � ;s � †s ,! Cg;k;l which for s < 1 are simple and
miss the special points and are either all bridges or all closed. Assume 
 � ;1 is a
constant path mapped to a node or a contracted boundary. If 
 � ;s are all closed ,
then the node is internal or a contracted boundary and for any s < 1, its twist is
q.
 � ;s/. If 
 � ;s are all open , then the node is a boundary node. In this case , the
illegal sides of the bridges degenerate to the illegal half-node , in the sense of
Definition 2.13.

In particular , by Proposition 2.31, exactly one of the half-nodes of each boundary
node is legal.

(c) Two graded spin structures on † without a Ramond node which give rise to the
same pair .q;Q/ are isomorphic.

Remark 2.40 A classification of all pairs .q;Q/ is given in [34].

Notation 2.41 We denote by fForspin the canonical mapfForspin WM� !MR
forspin.�/

defined by forgetting the twisted spin structure and the lifting. Write Forspin for the
restriction to graded moduli. The definitions of fForspin; Forspin make sense also when
� is closed (and then the lifting is trivial).
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We end this subsection with a brief illustration of the phenomenon underlying the
branched cover property of the map Forspin. The branching phenomenon occurs along
strata which parametrize surfaces with internal nodes, and therefore happens, from the
same geometric reasoning, also in the setting of the closed 2–spin intersection theory.
We shall explain it in this setting, for simplicity of notation.

Let †0 be a curve with a single nonseparating node, and let †1 be its smoothing,
so that †0 is obtained from †1 by pinching at some simple smooth closed path 
 .
Let .†t /t2Œ0;1� be a path in the moduli of curves, interpolating between †1 and †0.
This path induces an identification of H1.†t ;Z2/ for t > 0, which in the limit t ! 0

corresponds to the surjection obtained by taking the quotient Œ
t � D 0, where Œ
t �
is the generator of H1.†t ;Z2/ which corresponds to Œ
� 2 H1.†1;Z2/ under this
isomorphism. Let ˛ be any element of H 1.†1;Z2/ satisfying h˛; 
i D 1. Denote
by ˛0 the element in H 1.†0;Z2/ which corresponds to ˛ after the pinching, via the
aforementioned surjection. Let B1 be an ordered basis of H1.†1;Z2/ whose first two
elements are Œ
� and Œ˛�, and whose remaining basis elements do not intersect Œ
�.
For t > 0, define Bt as the image of B1 under the isomorphism, and extend to t D 0
via the mentioned surjection. Now choose any spin structure of †0 which gives all
markings twist 0 and makes the node NS. Recall that spin structures on smooth curves
are determined by the map q of Definition 2.26, using the rule of Theorem 2.27, and
any map which satisfies this rule gives rise to such a spin structure. Recall also that
spin structures on †0 which give all markings twist 0 and make the node NS are in
bijection with spin structures on the normalization of †0 giving all of its special points
twist 0. Assign a number q.ˇ/ to any element ˇ 2 B1 n f
g, and put q.
/D 0. Recall
Lemma 2.39. The identifications between the different Bt with t > 0 define a spin
structure St on †t for any t > 0. It extends to a spin structure on †0 with an NS
node. We can also define spin structures S0t for t > 0, whose restrictions to Bt are the
same except for the elements which correspond to ˛, on which they are opposite. Both
.†t ;St /t2Œ0;1� and .†t ;S0t /t2Œ0;1� are paths in the moduli of 2–spin curves which have
the same limit point .†0;S0/D .†0;S00/, and which cover the same path .†t /t2Œ0;1�
in the moduli of curves. The existence of the paths is due to the fact that q.˛0/ is
undefined, and this data loss is the reason for the appearance of the branched cover
phenomenon.

In the case of a separating NS node, this argument no longer works, however in this
case the automorphism group of the spin structure becomes larger: scaling the fibers of
the spin bundle by �1 on each one of the two components is an automorphism. This
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growth of the automorphism group implies that the orbifold degree of the restriction of
Forspin to such strata decreases.

2.4 The line bundles Li

Definition 2.42 Let � be a stable graph with an internal tail marked i ¤ 0. The
line bundle Li !MR

� is the line bundle whose fiber at .†; fxj gj2B; fzj gj2I/ 2MR
�

is T �zi†. This bundle can also be defined by pulling back the corresponding relative
cotangent line over the closed moduli space, via the doubling map.

Let � be a spin graph with a lifting and an internal tail marked i ¤ 0. The line bundle
Li !M� is the line bundle whose fiber at .†; fxj gj2B; fzj gj2I/ 2M� is T �zi†.
Equivalently, this bundle can be defined as the pullback of Li !MReforspin.�/

by the

map fForspin.

2.5 Boundary conditions and intersection numbers

We begin with a simple observation.

Observation 2.43 Let .†;S; s/ be a smooth marked surface with a spin structure and
a lifting , †0 the marked surface obtained by forgetting points fxbgb2B0 , where B0 is
a subset of illegal boundary marked points. Then S is canonically a (twisted ) spin
structure for †0, and s canonically extends to a lifting on †0. In particular , a marked
point is legal for .†0;S; s/ if and only if it is legal for .†;S; s/.

Definition 2.44 Consider � 2 Gg;k;l and i 2 Œl �, and let v D i=�0 be the vertex of �
which contains the tail marked i . Define a graph v�i .�/ as follows; it will be called the
abstract vertex of i in � , or just the abstract vertex for short.

(a) V.v�i .�//D f�g, a singleton. It is open if and only if v is.

(b) T I .v�i .�// D .�
I
0 /
�1.v/. Any internal tail of v�i .�/ which corresponds to a

tail marked by j 2 Œl � is marked j , otherwise it is marked 0. The twist of any
tail of v�i .�/ is the same as the twist of the corresponding half-edge of v. Also,
HCB D∅.

(c) T B.v�i .�//D fh 2 .�
B
0 /
�1.v/ j alt.h/D 1g, and all of these boundary tails are

marked 0.

(d) g.v�i .�//D g.v/ and E.v�i .�//D∅.
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Figure 8: In this figure, to the right side of each dual graded spin graph
its corresponding abstract vertices are shown. Again, half-edges h with
alt.h/D 1 are decorated with the symbolC.

Let forillegal W G! G be the map which forgets all tails t 2 T B with alt.t/D 0. As a
consequence of Observation 2.43, it induces a map at the level of moduli spaces, which
will be denoted by Forillegal.

Writeˆ�;i DForillegalıvi WM�!Mv�
i
.�/. This map extends to a map M�!Mv�

i
.�/,

and we also denote the extension by ˆ�;i .

At the level of surfaces, ˆ�;i .†/ for † 2M� is the graded smooth surface obtained
from † by normalizing the nodes which correspond to the edges of � , taking the
component of zi , forgetting all illegal half-nodes which were formed, renaming all
remaining special points by 0, and forgetting the lifting at preimages of contracted
boundaries; see Figure 9.

Observation 2.45 For � as above , the two orbifold line bundles Li !M� and
ˆ��;i .Li !Mv�

i
.�// are canonically isomorphic.

For a proof, see [31]; it is proven there for the g D 0 case, but the same argument
works in general.

In order to define the open intersection numbers we need to define special canonical
multisections, following [31; 35]. We first recall what multisections are, and refer the
reader to [7, Appendix A] for more details and references.

Definition 2.46 Let E ! M be an orbibundle over an orbifold with corners, and
identify E with its total space. A multisection is a function � WE!Q�0 which satisfies
the following properties. For any p 2M , let .F !U/=G be a local model for E!M
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Figure 9: In this figure, the graded surface on the right of each row is the
image (as a moduli point) of ˆ�;1.†/, where † is the corresponding surface
to the left of the same row, and � is the dual graph which corresponds to †.

in a neighborhood of p, where U 'Rm �Rn�m
�0 , p is identified with 0, F ' U �Rh,

the map � W F !U is the projection, and G is a finite group acting linearly on the pair,
commuting with � . Denote by y� the pullback of � to a G–invariant function on F .
Then:

(a) For all y 2 U , X
v2��1.y/

y�.v/D 1:

(b) We can find sections s1; : : : ; sN W U ! F , perhaps after replacing U with a
smaller neighborhood of 0, and nonnegative rational numbers �1; : : : ; �N , such
that for all y 2 U and v 2 ��1.y/,

y�.v/D
X

i jsi .y/Dv

�i :

The sections s1; : : : ; sN are called local branches and the numbers �1; : : : ; �N are
their weights. The locus where � ¤ 0, which is locally the union of its local branches,
is called the support of the multisection. The elements in the support of � which lie in
the fiber Ep of E over p form the set of values of the multisection at p.

Although the support does not, in general, capture all the information of the multisection,
we usually refer to the multisection � by its support s, and write s.x/ for the values
of the multisection at x. If N D 1 for all p 2M , then the multisection is just a usual
section. The multisection is smooth (piecewise smooth) if all its local branches are
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smooth (piecewise smooth). Many of the natural operations and properties of sections
of vector bundles generalize to multisections of orbibundles in a natural way. These
include addition of multisections, multiplication by functions f WM !R, and most
transversality statements. We say that the multisection is nowhere vanishing if none
of its branches vanishes, or equivalently �.x; 0/D 0 for all x 2M . The multisection
is transverse to zero if all its branches are transverse to the zero section, and it has
isolated zeroes, if all its local branches have isolated zeroes. A point x is a zero of the
multisection if �.x; 0/¤ 0, that is, at least one of the local branches at x vanishes at x.
The zero locus of a multisection is the set of its zeroes.

Definition 2.47 SupposeA�Gg;k;l is a collection of graphs with at least one boundary
edge. A piecewise smooth multisection s of Li!

S
�2AM� is called special canonical

on
S
�2AM� if, for all ƒ 2 @Š� ,

sjMƒ
Dˆ�ƒ;is

v�
i
.ƒ/

for some piecewise smooth multisection sv
�
i
.ƒ/ of Li !Mv�

i
.ƒ/.

In the case that A � Gg;k;l is the collection of all graphs with at least one boundary
edge, we say that s as above is special canonical.

A multisection sD
L
i2Œl�;j2Œai �

sij of
L
i L
˚aj
i is special canonical if each component

sij is special canonical.

Intuitively, being special canonical means that the multisection depends only on the
irreducible component of zi in the normalization, after forgetting the locations of the
illegal boundary half-nodes and the liftings at contracted boundaries.

Still following [7, Appendix A], let p 2M be an internal point, and let s be a multisec-
tion with isolated zeroes. We assume that E and M are oriented and rk.E/D dim.M/.
Take a local model .F ! U/=G for the neighborhood of p as in Definition 2.46.
Choose a metric on U, a metric on the fibers Rh, and let � 0 W F !Rh be the projection
on the Rh component. Let B be a small ball around 0 (which is identified with p)
which contains no zero of s except possibly 0. Denote by S the unit sphere in Rh. We
use the orientations of M and E to endow S and @B with the induced orientations as
the boundaries of oriented balls. We define degp.si /, the local degree of si at p, as the
degree of the map t W @B! S , where

t .x/D
� 0.si .x//

j� 0.si .x//j
:
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This definition is independent of choices. The weight of p in the zero locus of s is
defined as

(17) �p D
1

jGj

NX
iD1

�i degp.si /:

If s has a finite zero locus fp1; : : : ; ptg, then the weighted signed zero count of s isPt
iD1 �pi .s/ 2Q.

Let s be a piecewise smooth multisection of E! @M , where E!M is an oriented
orbibundle over a compact oriented orbifold with corners. Suppose s vanishes nowhere.
For any piecewise smooth multisection zs extending s to the interior of M with isolated
zeroes, the weighted signed zero count of zs is the same. This follows from standard
cobordism arguments — see for example [16, Section 3] for the case @M D ∅; the
addition of boundary does not complicate the argument2 — and it is also a consequence
of Proposition 3.3, whose proof is sketched below. We denote this number by

R
M e.E; s/

and call it the integral of the relative Euler class of E relative to s.

Remark 2.48 The relative Euler class e.E; s/ 2Hn.M; @M;Q/, where E!M is
an oriented orbibundle over a compact oriented orbifold with corners with rk.E/D
dim.M/D n, is defined whenever s is a nowhere-vanishing boundary condition for
E ! M . Integrating, or capping with the fundamental class, gives by Poincaré–
Lefschetz duality an element of H0.M;Q/'Q. This element is precisely what we
defined as the integral of the relative Euler class. For our needs the definition of the
relative Euler class itself is not required. See the appendix in [7] for more details and
references.

The integral relative Euler class can be defined for orbifold sphere bundles rather than
orbifold vector bundles, for example by using an embedding of the sphere bundle into
the vector bundle using a choice of a metric for the vector bundle, and inducing the
boundary conditions by this embedding. The resulting integrals are the same when
working with a vector bundle E or with its associated sphere bundle. We shall use
these two notions interchangeably throughout the paper.

Observation 2.49 Suppose that E !M is an oriented orbibundle over a compact
oriented piecewise smooth orbifold with corners with rk.E/D dim.M/D n, and that

2In [16] the definition of multisections is slightly different, as a section to the symmetric product of the
orbifold vector bundle. However, a multisection in our terminology induces in a natural way a multisection
in the terminology of that paper, and the definitions of the zero counts agree.
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s is a nowhere-vanishing multisection of E ! @M . Let f W N !M be a surjection
between compact oriented piecewise smooth orbifolds with corners of dimension n,
which maps @N onto @M . Suppose that f is generically of degree one , meaning that
outside of a subspace K �M which is a union of finitely many compact suborbifolds
of M of real codimension one , f is injective. ThenZ

N

e.f �E; f �s/D

Z
N

e.E; s/:

Indeed, standard transversality arguments show that a generic piecewise extension of s
to M will have no zeroes in K. Using the pullback to N of such a generic extension
proves the claim.

The following theorem has appeared in [31] in the genus 0 case, and will appear in [35]
for all genera.

Theorem 2.50 Suppose a1; : : : ; al � 0 are integers which sum to 1
2
.kC 2lC 3g� 3/.

Then one can choose multisections fsij gi2Œl�;j2Œai � such that

(a) For all i and j , sij is a special canonical multisection of Li ! @Mg;k;l .

(b) The multisection s D
L
i;j sij vanishes nowhere.

Moreover , for any two choices fsij g and fs0ij g which satisfy the above requirements ,
we have Z

Mg;k;l

e

�M
i

L
˚aj
i ; s

�
D

Z
Mg;k;l

e

�M
i

L
˚aj
i ; s0

�
;

where s0 D
L
i;j s
0
ij .

For completeness, and since [35] is yet to appear, we will shortly review the proof of
first claim in the theorem. We will not review the “Moreover” part, since it will be a
consequence of our main theorem, Theorem 1.5, which calculates the integral of the
relative Euler class, and obtains an answer which does not involve the special canonical
multisection, without relying on the assumption that the integral is independent of the
multisection.

The proof that nowhere-vanishing special canonical boundary conditions exist has two
steps. The first step shows that for any boundary point p 2 @Mg;k;l there exists a
special canonical multisection none of whose branches vanishes at p. This step is the
heart of the argument; it is similar but not identical to [31, Proposition 3.49(a)] and we
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will review it in the next paragraph. The second step uses the multisections constructed
in the first step to construct nowhere-vanishing boundary conditions: Using the first
step and compactness, one can find finitely many canonical multisections s1; : : : ; sN of
E D

L
i2Œl�;j2Œai �

L˚aii such that for any boundary point p 2 @Mg;k;l and any choice
of local branches s0i of si at p, the vectors .s0i /p for i 2 ŒN � span the fiber EN . Then,
by a standard transversality argument, a generic linear combination of s1; : : : ; sN will
be a nowhere-vanishing canonical multisection. By generic we mean that the subset of
linear combinations of s1; : : : ; sN with this property is residual in the set of all possible
linear combinations. The proof of this step is identical to [31, Lemma 3.53(a)], and we
refer the interested reader there.

We turn to explain the first step. Fix p 2 @Mg;k;l and i 2 Œl �. Suppose p belongs
to the stratum M� for some graded spin dual graph � corresponding to the graded
surface †. Let u 2 .Li /p be an arbitrary nonzero vector. Finally, let Œ†0� be the image
of p D Œ†� under the map ˆ�;i , and write G D Aut.†/. The action of G lifts to an
action on the cotangent of the i th marking, that is, on .Li /Œ†0�, the fiber of Li at Œ†0�.
By Observation 2.45, the fibers of Li at Œ†0� and Œ†� are isomorphic, canonically up to
the action of G on .Li /Œ†0�. Thus, the G–action lifts also to .Li /Œ†�. Write

uD fu1; : : : ; umg D fg �u j g 2Gg:

We will construct a special canonical multisection of Li whose branches at p have
values u, with equal weights. Set

Vg;k;l D fv
�
i .ƒ/ jƒ 2 @

Š�g;k;lg;

ie Vg;k;l is the collection of abstract vertices v�i .ƒ/ for any graded spin graph ƒ that
corresponds to a stratum of Mg;k;l . We will construct for any v 2 Vg;k;l a special
canonical multisection sv for Li ! Mv. These multisections are required to be
compatible in the following sense. Let v 2 Vg;k;l , and let ƒ 2 @v be a graph which
corresponds to a boundary stratum of Mv. Let v0 D v�i .ƒ/. It is easy to see that
v0 2 Vg;k;l . We require, for all such v and ƒ, that

(18) svjMƒ
Dˆ�ƒ;is

v0 :

These constraints for differentƒ are compatible. See the explanation at the beginning of
the proof of [31, Proposition 3.49], which extends to our setting. This construction will
provide, in particular, a construction of a special canonical multisection for v�i .�g;k;l/,
which is the same graded dual graph as �g;k;l except that the boundary tails are marked 0.
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The pullback of this section by the canonical map

M�g;k;l !Mv�
i
.�g;k;l /

which changes the boundary markings to 0 will be the required multisection.

Write v� D v�i .�/ and aD dim.Mv�/, where � is the dual graph which corresponds
to †. The construction of multisections sv for v 2 Vg;k;l will be by induction on
d D dimMv. The basis is d D �1, which holds trivially since there are no such
vertices. Suppose we have constructed multisections with the required properties for
all v0 with dimMv0<d . Consider v2Vg;k;l with d DdimMv . Note that v need not be
an open vertex, and may even have internal tails with twD 1. Write ‡ D

`
ƒ2@vMƒ.

Define first svj‡ according to (18), where the right-hand side of the compatibility
equations is already defined by induction. We now extend sv to the whole moduli
space Mv. Here we separate into cases. If v ¤ v�, we extend arbitrarily. If v D v�

we extend arbitrarily, but under the requirement that sv
�

Œ†0�
D u, meaning that each ui

appears in some branches of sv
�

, and with the same total weight. This can be done
for example in the following way. Let � WMv� ! Œ0; 1� be a smooth function which
is 1 near Œ†0� and 0 near ‡ . Let s0 be an arbitrary extension of the already defined
sv
�

j‡ to Mv� , and s00 an arbitrary multisection of Li !Mv� which has the required
values Œ†0�. Then one can take

sv
�

D �s00C .1� �/s0:

The induction follows,3 and thus also the proof.

For the benefit of the reader we now explain the difference between this proof and the
proof of [31, Proposition 3.49(a)], and the intuitive reason for why canonical boundary
conditions should give rise to well-defined intersection numbers. In [31] there were
no contracted boundaries and all boundary nodes were separating. In this case the
definition of canonical boundary conditions can be given without spin structure, by
using only parity considerations: for each node, precisely one half-node is forgotten, and
the forgotten half-nodes are chosen in the unique way which leaves on each connected
component of genus s of the normalized surface a total number of unforgotten special
boundary points whose parity is sC 1 (mod 2). This numerical reasoning cannot work

3In the proof of the corresponding claim in [31], the multisections were also required to satisfy some
invariance under symmetry groups. In our case, since we work with orbifolds and orbibundles, this
invariance is part of the definition of being a multisection; see the appendix of [7]. In [31], the orbifoldness
was implicit, and was a result of forgetting the boundary markings. In higher genus, even the moduli with
injective markings is an orbifold.
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when there are nonseparating nodes. However, as it turns out, this parity notion neatly
generalizes to the notion of a graded spin structure, and the forgotten half-nodes are
precisely the illegal ones. The importance of this scheme is that it forces the boundary
conditions to be pulled back from a real codimension-two space rather than from a
codimension-one space (the codimension is with respect to the dimension of the whole
moduli space).

This idea cannot work in the case of moduli strata which parametrize surfaces with
a contracted boundary component. However, for such surfaces, for any contracted
boundary component there are two possible choices of liftings. Moreover, by the
“Moreover” part of Theorem 2.53 below, the boundary strata of the moduli which
correspond to the different choices of liftings come with opposite orientations. Since, in
the definition of the base, the lifting in such points is forgotten, the boundary conditions
should be the same for these two boundary strata.4

These two properties are strong enough to guarantee that the integrals are well defined:
The dimension reduction, together with a standard transversality argument, enables one
to construct a homotopy between any two choices of canonical boundary conditions s
and s0 which does not vanish on boundary strata which correspond to surfaces with
a boundary node. It may vanish on boundary strata which correspond to surfaces
with contracted boundaries, but these vanishings cancel in pairs, which differ in the
liftings of these contracted boundaries. This homotopy argument thus shows that s
and s0 determine the same integral. In the course of the proof of Theorem 1.5 this
independence will become manifest.

Based on Theorem 2.50 we can now define open intersection numbers.

Definition 2.51 With the notation of Theorem 2.50, define the open intersection
number

h�a1 � � � �al�
k
ig WD 2

� 1
2
.gCk�1/

Z
Mg;k;l

e

�M
i

L
˚aj
i ; s

�
;

where s is a nowhere-vanishing special canonical multisection.

4Essentially this discussion says that such codimension-one boundaries can be glued, and that the integrals
can be calculated with respect to the glued moduli space. In an earlier version of this manuscript we chose
this path, but we believe that this gluing is less elegant than the equivalent choice of unglued boundaries
we make here. The cost of this choice is that there are now additional boundary conditions to impose and
to analyze.
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The power of 2 is a normalization factor chosen in [31], which makes some initial
conditions nicer but has no geometric or algebraic importance.

Since we define the intersection numbers to be 0 unless the numerical condition of
Theorem 2.50 holds, the genus is determined from knowing k, l and a1; : : : ; al , and for
this reason we will usually omit it from the notation and simply write h�a1 � � � �al�

ki

for h�a1 � � � �al�
kig .

2.6 The orientation of Mg;k;l

As mentioned above, the spaces Mg;k;l were proved to be orientable, and moreover
were given canonical orientations. In order to state properties of these orientations that
will be required for later, we need the following definition.

Definition 2.52 Let M be an oriented orbifold with corners. Then @M is also ori-
entable. The induced orientation on @M is defined by the exact sequence

0!N ! TM j@M ! T @M ! 0;

where N , the dimension-one normal bundle of @M in M, is oriented by taking the
outward normal as a positive direction and the orientation on TM as the given one.

For the benefit of the reader, we recall the construction of the induced orientation also
in terms of local coordinates. Let p be a boundary point which is not a corner. A
local neighborhood of p is diffeomorphic to .R�0�Rn�1/=G for some finite group G
which acts on Rn, and under the diffeomorphism, p is mapped to the origin. By
the orientability assumption G acts in an orientation-preserving manner, and we may
assume that the orientation induced on Rn by the diffeomorphism is the standard
one. Since p is a boundary point, f0g �Rn�1 is preserved by G, and since G acts
on R�0 � Rn�1, by definition R�0 � Rn�1 is preserved. Take an oriented frame
.v1; v2; : : : ; vn/ for Rn which is in the class of the standard orientation, so that v1 has
negative first coordinate and the remaining vectors of the frame have first coordinate 0.
Then .v2; : : : ; vn/ is a frame for f0g �Rn�1. For g 2 G, .gv1; : : : ; gvn/ is in the
same orientation class as the original frame. Since R�0 �Rn�1 is preserved under G,
gv1 has a negative first coordinate. Since f0g �Rn�1 is preserved under G, the first
coordinate of each gvi for i � 2 is 0, and we obtain that

.gv2; : : : ; gvn/ and .v2; : : : ; vn/
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are in the same orientation class. This class is defined as the orientation frame, which
defines the local orientation at p. We extend the orientation to the whole boundary by
continuity.

The next theorem, proven in [35], describes some useful properties of the canonical
orientations of Mg;k;l , properties that characterize these orientations uniquely.

Theorem 2.53 There is a unique choice of orientations o� for any graded graph �
all of whose connected components contain a single vertex, satisfying the following
requirements:

(a) The zero-dimensional spaces M� for � 2 f�0;1;1; �0;3;0g are oriented positively.

(b) If � D f�1; : : : ; �rg, where the �i are the connected components , then

o� D
r

�
iD1

o�i :

(c) Let � be a graded stable graph with a single boundary edge e, and put ƒD de� .
Denote by � 0 the graph obtained by detaching that edge into two tails t and t 0,
with alt.t/ D 1 and alt.t 0/ D 1, and forgetting the tail t . Note that we have a
fibration M� !M� 0 whose fiber over the graded surface † 2M� 0 is naturally
identified with @† n fxigi2B.� 0/. Then the induced orientation on M� as a
codimension-one boundary of Mƒ agrees with the orientation on M� induced
by the fibration M� !M� 0 , where the base is given the orientation o� 0 and the
fiber over † gets the orientation of @†.

Moreover , these orientations have the following additional property. For � as above ,
let C be a connected component of M� which parametrizes surfaces with at least one
boundary component containing no boundary markings. Let C 0 be another connected
component which parametrizes surfaces that differ from those of C only at the grading
in that boundary component , which is opposite. There is a natural map ‰ W C ! C 0

which maps a stable graded marked surface to the same surface but with the opposite
grading at this boundary component. Let C� and C 0� be the boundary strata of C
and C 0, respectively, which parametrize surfaces in which this boundary component
is contracted , and let oC� and oC 0� be the respective orientations induced on these
subspaces. Then ‰ maps C� bijectively onto C 0�, and

oC 0� D�‰�oC� :
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The difficulty in this theorem lies in the existence and the “Moreover” parts, which will
be proven by other means below. Given the existence, the uniqueness follows easily
using induction on dimension. In [35] the behavior of the orientations with respect to
strata with internal nodes is also explained, but it is not needed here.

3 Sphere bundles and relative Euler class

Given a rank n complex vector bundle � WE!M and a metric on it, one can define
the sphere bundle � W S D S.E/D S2n�1.E/!M whose fiber Sp at p 2M is the set
of unit-length vectors in Ep , the fiber of E at p, with the induced orientation. Given a
sphere bundle S !M , its linearization is the space

S �R�0=�;

where .v; r/ � .v0; r 0/ if either r D r 0 D 0, or v D v0 and r D r 0. This space can
be endowed with a natural linear structure, a metric and a projection to M. When
S D S.E/, the linearization of S recovers E. The sphere bundle of E can be defined
also without referring to a metric, by removing the zero section and taking the quotient
by the RC action. Different metrics give rise to isomorphic sphere bundles.

Definition 3.1 An angular form for E (or for S) is a .2n�1/–form ˆ on S which
satisfies the following two requirements:

(a)
R
Sp
ˆD 1 for all p 2M .

(b) dˆD����, where � is some 2n–form on M.

The form � is a local representative of the top Chern form of E !M, and will be
called the Euler form which corresponds to ˆ. Denote by ˆ also the form on E nM,
where we identify E and its total space, defined by P �ˆ, where P WE nM ! S.E/ is
the map

.p; v/!
�
p;

v

jvj

�
for p 2M and v 2E nM:

It is straightforward that:

Observation 3.2 The form jvjˆ extends to a form on all the total space of E.

We will use the following claim.
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Proposition 3.3 Let E !M be a real oriented rank 2n vector bundle on a smooth
oriented manifold with boundary M of real dimension 2n. Let ˆ be an angular
form , and let � be its corresponding Euler form. Given a nowhere-vanishing section
s 2�.E! @M/, one can define the integral of the relative Euler class , and it holds thatZ

M

e.E; s/D

Z
M

�C

Z
@M

s�ˆ:

Moreover , the statement also holds if E !M is an orbifold vector bundle over an
orbifold with corners and s is a nowhere-vanishing multisection over the boundary.

This claim is well known, in the case of manifolds, and the extension to orbifolds is
straightforward. We briefly recall the proof of the claim for manifolds, referring the
reader to [4, Chapter 11] for further details, then we explain the changes required for
handling the orbifold case. As usual we are interested in the integral of the relative
Euler class, rather than the class itself.

We wish to calculate
R
M e.E; s/, the weighted number of zeroes of an extension of s

to M to a section with isolated zeroes. Let Ns be such an extension, and let p1; : : : ; pm
be its zeroes. By choosing diffeomorphisms from neighborhood of p1; : : : ; pm to open
sets in Rn, for small enough r we can define Mr DM n

Sm
iD1Br.pi /, where Br.p/

is the ball around p, and sections sr which are the restrictions of Ns to @Mr . By taking
r to be even smaller we may assume that the balls are disjoint. By Stokes’ theorem,
Ns being a global section over Mr , and the definition of the angular form, we getZ

M

�D lim
r!0

Z
Mr

�D lim
r!0

Z
Mr

Ns����

D� lim
r!0

Z
Mr

Ns�dˆD� lim
r!0

Z
@Mr

s�rˆ

D�

Z
@M

s�ˆC

mX
iD1

lim
r!0

Z
@Br .pi /

s�rˆ:

For each i D 1; : : : ; m and small enough r ,
R
@Br .pi /

s�rˆ is the order of vanishing of
Ns at pi ; see [4, Theorem 11.16]. Thus, the right-hand side of the previous equation
equals

R
M e.E; s/�

R
@M s�ˆ, as needed.

The argument works also in the orbifold case. One first shows that Stokes’ theorem
generalizes to the case of orbifolds with corners and multisections of the vector bundle
ƒ�.T �M/ instead of sections of this bundle (differential forms). For differential forms
over orbifolds with corners this is shown, for example, in [36]. The extension to
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multisections is proven similarly. Then the integral around pi becomes, in the local
model and notation of Definition 2.46,

NX
iD1

�i

Z
@B.0/

Ns�i ˆ;

with B � U a small ball around 0, and Nsi and �i the local branches and weights. But
this is precisely the weight (17) in the definition of

R
M e.E; s/, so again the result

follows.

Suppose now that E D
Ln
iD1Li is the sum of n complex line bundles Li . Choose a

metric for E for which the line bundles Li are pairwise orthogonal. Write ˛i for an
angular form for Si D S.Li /, and !i for the corresponding Euler form, ie the curvature
of Li . Define the functions

ri WE!R

to be the length of the projection of .p; v/ 2 E to Li . The sphere bundle can be
described as the set of vectors which satisfy

P
r2i D 1. For convenience, denote by !i

and ri˛i the pullbacks of !i and ri˛i to the total space of E and of S.E/, where for
the latter form we use Observation 3.2.

As far as we know, the following theorem has not appeared in the literature before.

Theorem 3.4 The form

(19) ˆD

n�1X
kD0

2kkŠ
X
i2Œn�

r2i ˛i ^
X

I�Œn�nfig
jI jDk

V
j2I

.rj drj ^ j̨ /^
V

h…I[fig

!h

is an angular form for E, whose corresponding Euler form is
Vn
iD1!i .

Proof We first need to show that the integration on a fiber gives 1. Since the !i are
pulled back from the base for all i , the only term in ˆ that may have a nonzero integral
over a fiber is the term

ˆtop
D 2n�1.n� 1/Š

X
i2Œn�

r2i ˛i ^
V
j¤i

.rj drj ^ j̨ /:

We wish to show that for an arbitrary p 2 M , we have
R
S.Ep/

ˆtop D 1. We first
integrate all the ˛i terms. By using that ˛i is an angular form for Li the integral of ˛i
is 1, and we are left with calculatingZ

P
r2
i
D1

2n�1.n� 1/Š
X
i2Œn�

r2i ^
V
j¤i

rj drj :
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By changing the variables to ti D r2i with dti D 2ri dri , the integral becomes

.n� 1/Š

Z P
tiD1

t1;:::;tn�0

nX
iD1

ti ^
V
j¤i

dtj D nŠ

Z
Pn�1
iD1 ti�1

t1;:::;tn�1�0

�
1�

n�1X
iD1

ti

�
^

V
1�j�n�1

dtj

D nŠ

ZPn
iD1 ti�1

t1;:::;tn�0

V
1�j�n

dtj ;

where in the first equality we have used the symmetric role of the variables ti and then
eliminated tn, and in the second equality we have used that

1�
X
i�n�1

ti D

Z
0�s�1�

P
i�n�1 ti

ds:

The left-hand side is just nŠ times the Euclidean volume of the n–simplex

ft1C � � �C tn � 1 j t1; : : : ; tn � 0g:

It is well known that this volume is 1=nŠ, and the first property of the angular form
follows.

For the second property, we will now show that when calculating dˆ, one gets a
telescopic sum which turns out to be equal to

V
!i . Write

SI;i WD 2
kkŠ r2i ˛i ^

V
j2I

.rjdrj ^ j̨ /^
V

h…I[fig

!h

for the contribution for given I with i … I , where k D jI j. Taking the derivative, as !i
and ri dri are closed, only r2i or j̨ may contribute. We obtain

dSI;i D d1SI;i C d2SI;i C
X
l2I

d3;lSI;i ;

where

d1SI;i WD 2
kC1kŠ ri dri ^˛i ^

V
j2I

.rj drj ^ j̨ /^
V

h…I[fig

!h;

d2SI;i WD �2
kkŠ r2i !i ^

V
j2I

.rj drj ^ j̨ /^
V

h…I[fig

!h;

d3;lSI;i WD �2
kkŠ r2i ˛i ^ rl drl ^!l ^

V
j2Inflg

.rj drj ^ j̨ /
V

h…I[fig

!h for l 2 I:

The third contribution appears only when I ¤∅.

Now, fixing I , one hasX
i2I

d1SInfig;i D k2
k.k� 1/Š

V
j2I

.rj drj ^ j̨ /^
V
h…I

!h;(20)
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X
i…I

d2SI;i D�
X
i…I

2kkŠ r2i
V
j2I

.rj drj ^ j̨ /^
V
h…I

!h(21)

D�

�
1�

X
i2I

r2i

�
2kkŠ

V
j2I

.rj drj ^ j̨ /^
V
h…I

!h

D�2kkŠ

� V
j2I

.rj drj ^ j̨ /^
V
h…I

!h

�

X
i2I

r3i dri ^˛i ^
V

j2Infig
.rj drj ^ j̨ /^

V
h…I

!h

�
;

where we have used
P
r2i D 1 in the second equality. And, fixing I and i … I ,

(22)
X

l…I[fig

d3;lSI[flg;i

D�

X
l…I[fig

2kC1.kC 1/Š r2i ˛i ^ rl drl ^!l ^
V
j2I

.rj drj ^ j̨ /^
V

h…I[fi;lg

!h

D�2kC1.kC 1/Š
X

l2I[fig

rl drl ^ r
2
i ˛i ^

V
j2I

.rj drj ^ j̨ /^
V

h…I[fig

!h

D�2kC1.kC 1/Š r3i dri ^˛i ^
V
j2I

.rj drj ^ j̨ /^
V

h…I[fig

!h;

where the identity
P
ri dri D 0 was used for the second equality. The last passage

follows from noting that except for the l D i term, for all other l 2 I we will get a
monomial with two drl terms.

Summing equations (20), (21) and (22) over all possibilities for I , and in (22) also for
i … I , we see that:

� (20) vanishes if I D ∅. For I ¤ ∅, the contribution of (20) cancels with the
first term on the right-hand side of (21) for the same I .

� For a given J ¤∅, the sum of (22) over all pairs .I; i/ with i 2J and I D I nfig
cancels with the second term of (21) with I D J .

� For I D∅, the second term of (21) vanishes.

Thus, the only term which is left uncanceled is
V
!i , coming from the first term of (21)

with I D∅. Hence, as needed,

dˆD
X
I;i

dSI;i D�
V
!i :
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Remark 3.5 In what follows we will sometimes use forms on S.E/ which are defined
similarly to ˆ, but depend a subset of its arguments. For this reason it will be useful to
extend ˆ and similar expressions to multilinear functions in the variables ri , dri , ˛i
and !i for i D 1; : : : ; n, without imposing

P
r2i D 1 and

P
ri dri D 0.

Without these constraints the right-hand side of (21) gets a correction of

2kkŠ

�
1�

X
h2Œn�

r2h

�� V
j2I

rj drj ^ j̨

�
^
V
h…I

!j ;

while the right-hand side of (22) gets a correction of

2kC1.kC 1/Š

� X
l2Œn�

rl drl

�
^ r2i ˛i ^

� V
j2I

rj drj ^ j̨

�
^

V
h2Œn�n.I[fig/

!h:

Summing the first correction over all I , and adding the sum of the second correction
over all I with i … I , we obtain

Z D

�
1�

X
h2Œn�

r2h

�
^

X
m�0

2mmŠ
X
jI jDm
I�Œn�

� V
j2I

rj drj ^ j̨

�
^

V
j2Œn�nI

!j

C

� X
h2Œn�

rh drh

�
^

X
i2Œn�nfhg

r2i ˛i ^
X
m�0

2.mC1/.mC 1/Š

^

X
jI jDm

I�Œn�nfi;hg

� V
j2I

rj drj ^ j̨

�
^

V
j2Œn�n.I[fig/

!j :

Therefore, without imposing
P
r2i D 1 and

P
ri dri D 0 we have

dˆDZ �
nV
iD1

!i :

Clearly Z vanishes if we do make these assumptions.

Construction–Notation 1 Suppose that S1; : : : ; Sl !M are piecewise smooth S1–
bundles over a piecewise smooth orbifold with corners. Denote by S.S1; : : : ; Sl/!M

the .2l�1/–sphere bundle on M whose fibers are

S.S1; : : : ; Sl/x D
n
.r1; P1; r2; P2; : : : ; rl ; Pl/

ˇ̌
Pi 2 .Si /x; ri � 0;

X
r2i D 1

oı
�;

where � is the equivalence relation generated by

.r1; P1; : : : ; 0; Pi ; : : : ; rl ; Pl/� .r1; P1; : : : ; 0; P
0
i ; : : : ; rl ; Pl/;

equipped with the natural topology.

Geometry & Topology, Volume 27 (2023)



2560 Ran J Tessler

4 Symmetric Jenkins–Strebel stratification

In the remainder of the article all open spin surfaces we will encounter, twisted or
not, will have a lifting. Similarly, we will encounter several types of graphs: the dual
graphs we have defined above, ribbon graphs and nodal graphs. These graphs will also
be classified as open or closed and will sometimes carry spin structures, twisted or
not. All the open spin graphs we shall meet will have a lifting. For this reason we
will sometimes slightly abuse notation and omit the suffix “with a lifting” from the
terminology. We will also usually omit the addition “twisted”. It will be clear from the
context if we mean a closed or open object, twisted or not, etc.

4.1 JS stratification for the closed moduli

4.1.1 JS differential and the induced graph In this subsection we briefly describe
the stratification of moduli of closed stable curves, following [25; 42; 28].

Let† be a nodal Riemann surface with 2g�2Cn� 0. A meromorphic section 
 of the
tensor square of the cotangent bundle defined on each component of the normalization
of † can be written in a local coordinate z as f .z/ dz2. If 
 has a double pole at
w 2†, the residue of 
 at w is the coefficient of dz2=.z�w/2 in the expansion of 

around w. The residue is independent of the choice of the local coordinate. A quadratic
differential 
 is such a section which has at most double poles, all the poles are located
either at the marked points or at the nodes, and for any node, the residues of 
 at its
two branches are the same.

Let 
 be a quadratic differential, and w 2† a point which is neither a zero nor a pole.
In a neighborhood U we can take its unique (up to sign) square root

p

 . This is a

1–form, hence can be integrated along a path. This defines a map

g W U !C; g.z/D

Z z

w

p

;

where the integral is taken along any path in U.

A horizontal trajectory is the preimage of R�C, and it is a smooth path containing w
in its interior. It turns out that the notion of horizontal trajectories can be defined also
in the case where w is a zero of order d � �1, where as usual a zero of order �m is a
pole of order m. In this case there are exactly d C 2 horizontal rays leaving w. When
w is a pole of order 2, if its residue is �.p=2�/2 for some p 2RC, there is a family
of nonintersecting horizontal trajectories surrounding it whose union is a topological
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open disk, punctured at w. Moreover, with respect to the metric defined by j
p

 j, the

perimeter of each of these trajectories is p.

Example 4.1 Let † be the Riemann sphere. For all p > 0,


p D�

�
p

2�

�2�dz
z

�2
is a quadratic differential, whose only poles are at 0 and1 and whose horizontal lines
are the sets jzj D r for r > 0, whose lengths are indeed p. Their union is an open
punctured disk. It should be noted that actually this is the only quadratic differential on
the sphere, up to scaling, which is invariant under the reflection in the equator whose
only poles are at 0 and1.

Definition 4.2 Let .†; z1; : : : ; zn; znC1; : : : ; znCn0/ be a marked genus g nodal Rie-
mann surface with 2g� 2Cn� 0, where the subscript of zi indicates its marking. Let
p1; : : : ; pn be positive reals, and pi D 0 for i > n. A marked component is a smooth
component of the curve with at least one marked point zi , with i 2 Œn�. The other
components are called unmarked. A Jenkins–Strebel differential, or a JS–differential
for short, is a quadratic differential 
 such that:

(a) 
 is holomorphic outside of special points. At nodes it has at most simple poles,
and at the i th marked point it has a double pole with residue �.pi=2�/2. In
particular, if pi D 0 there is at most a simple pole at that point.

(b) 
 vanishes identically on unmarked components.

(c) Let †0 be any marked component of †. When pi ¤ 0, if Di is the punctured
disk which is the union of horizontal trajectories surrounding zi 2†0, then[

i2Œn�

Di D†
0:

The following theorem was proved in [37] for the smooth case; the nodal case was
treated in [28; 42].

Theorem 4.3 Given a stable marked surface .†; z1; : : : ; znCn0/ with n > 0 and
p D .p1; : : : ; pnCn0/ 2 Rn

C
� .0; : : : ; 0/ as above , the JS differential exists and is

unique.
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Given .†; z/ and p as above, define the decorated surface z† and the map Kn0 W†! z†
as follows. z† is obtained from † by contracting any unmarked component to a point,
and decorating any such point by its genus defect and marking defect. The genus defect
is the genus of the preimage of the point in †, and if that preimage is a single point,
it is defined to be 0. The marking defect is the set of marked points in this preimage,
which is labeled by a subset of ŒnCn0� n Œn�. We should stress that 
 need not vanish
on a preimage of a node in the normalization, but it can have at most a simple pole
there. Thus, from the discussion about horizontal trajectories, each node or unmarked
component and in particular any point zi for i > n must be mapped to a point which
touches at least one horizontal trajectory. Note also that an unmarked component
always touches a node (unless nD 0 and then the whole surface is unmarked).

The JS differential 
 induces a metric graph on z† whose vertices are zeroes of order
d � �15 of 
 , including the images of unmarked components, and whose edges are
the horizontal trajectories, with their intrinsic length. These embedded graphs can be
fully described.

Definition 4.4 A graph G D .V;H; s0; s1; g; f /, where

(a) V is the set of vertices, H is the set of half-edges,

(b) s0 is a permutation of the half-edges emanating from each vertex,

(c) s1 is a fixed-point-free involution of H ,

(d) g is a map g W V ! Z�0, called the genus defect, and

(e) f is a map f W ŒnCn0� n Œn�! V ,

is called a .g; .n; n0//–stable closed ribbon graph. The faces of the graph are s2–
equivalence class of half-edges, where s2 D s�10 s1. We write F DH=s2. The edges
are E DH=s1. The genus of G can be defined as follows. Glue disks along the faces
to obtain a surface z†. The genus of G is the (arithmetic) genus of z† plus the sum of
genus defects in vertices. The marking defect of a vertex v is defined as f �1.v/. We
require that:

(a) For a vertex v of degree 1 or of degree 2, but such that the assigned permutation
is a transposition,

g.v/Cjf �1.v/j � 1:

5We consider a simple pole as a zero of order �1, and a point which is neither a zero nor a pole to be a
zero of order 0.
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(b) The genus of the graph is g.

(c) The number of faces is n.

A stable metric ribbon graph is a stable ribbon graph together with a metric

` WE!RC:

We usually write `e instead of `.e/.

A graph is smooth if all the vertices’ permutations s0 are cyclic, all genus defects are 0,
and all marking defects are of size at most 1. The ribbon graph is connected if the
underlying graph is. We define isomorphisms and automorphisms in the expected way.
Write Aut.G/ for the automorphism group of G.

Note that case (a) above occurs when v is either the image of a contracted unmarked
component, or the image of one of the points pi for some i > n.

Remark 4.5 To a stable metric ribbon graph one can associate in a natural way a
decorated metric space made of a disjoint union of closed intervals, one for each
e 2 E, modulo the identification of endpoints dictated by the graph structure. The
vertices, which are the equivalence classes of endpoints of intervals, are endowed
with genus and marking defects, and the closed interval which corresponds to the
edge e is associated to a metric structure which makes it isometric to the interval
Œ0; `e��R. The associated decorated metric space is unique up to the expected notion
of isomorphism. Stable metric ribbon graphs which arise from a JS differential (we
will see in Theorem 4.8 below that all stable metric ribbon graphs arise this way) are
endowed with this additional structure of isometries between the embedded edges and
intervals of R. This will be used below, when we give coordinates to the combinatorial
S1–bundles. For more details we refer the reader to [42].

Notation 4.6 Throughout this article, given a ribbon graph, possibly with extra struc-
ture such as a graded ribbon graph, or a nodal graph, which will be defined later, we
shall write Œh� for the class of the half-edge or the edge h under the action of the
automorphism group. We similarly write ŒA� for a subset of edges or half-edges.

Remark 4.7 If Norm W Norm.†/ ! † is the normalization of †, and 
 is the JS
differential on † with prescribed perimeters, then Norm�
 is a JS differential, hence
the unique JS differential, on Norm.†/, with the same perimeters, and such that marked
points which are preimages of nodes have 0–perimeter.
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4.1.2 Combinatorial moduli For a closed stable ribbon graph G, write MG for
the set of all metrics on G, write MG.p/ for the set of all such metrics where the
i th face has perimeter pi . We have that MG 'RE.G/

C
=Aut.G/ canonically, and this

identification endows it with a smooth structure.

For e 2 E.G/, the edge between vertices v1 and v2, define the graph @eG, the edge
contraction, as follows. Write h1; h2 for the two half-edges of e. Set V.@eG/ D
V.G/ n fv1; v2g [ fv1v2g and H.@eG/ D H.G/ n fh1; h2g. The maps s01, g0 and f 0

are just s1, g and f when restricted to vertices and half-edges of G. For the new
vertex vD v1v2, set f 0.v/D f .v1/[f .v2/, and set g0.v/D g.v1/Cg.v2/ whenever
v1 ¤ v2, otherwise it is g.v1/C ı, where ı D 1 if h1 and h2 belong to different
s0–cycles, and otherwise ı D 0. For any half-edge h, with h=s1 ¤ e, define s02.h/ to
be the first half-edge among s2.h/; s22.h/; : : : which is not a half-edge of e. We then
put s00 D s

0
1.s
0
2/
�1.

Edge contractions commute with each other, and allow us to define a cell complex
MG D

`
G0MG0 , where the union is over all graphs obtained from G by edge

contractions, and we glue the cell MG0 of G0 D @e1;:::;erG to the cell MG along
`e1 D � � � D `er D 0. We similarly define MG.p/.

Write Mcomb
g;.n;n0/

D
`

MG , where the union is taken over smooth closed .g; .n; n0//
ribbon graphs. Write Mcomb

g;.n;n0/
D
`

MG=�D
`

MG , where the union is taken over
all closed stable .g; .n; n0// ribbon graphs, and � is induced by edge contractions.
Define Mcomb

g;.n;n0/
.p/ and Mcomb

g;.n;n0/
.p/ by constraining the perimeters to be pi . In all

cases we define the cell attachment using edge contractions, and the resulting spaces
are piecewise smooth Hausdorff orbifolds; see [28; 42] for details.

Set combD combn0 as the canonical maps

comb WMg;nCn0 �RnC!Mcomb
g;.n;n0/

and combp WMg;nCn0 !Mcomb
g;.n;n0/

.p/;

which send a stable curve and a set of perimeters to the corresponding graph.

We have, from [25; 28; 42]:

Theorem 4.8 Suppose n > 0. The maps comb and combp are continuous surjections
of topological orbifolds. The map combp takes the fundamental class to a fundamental
class. Moreover , the cell complex topology described above is the finest topology with
respect to which comb is continuous. The maps are isomorphisms onto their images
when restricted to Mg;nCn0 �Rn

C
and Mg;nCn0 .
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More generally , suppose � is a closed dual graph with the property that any vertex
without a tail marked by Œn� is of genus zero , and has exactly three half-edges , and
any two such vertices are not adjacent. Then , with the same proofs , comb and combp

restricted to M� �Rn
C

and M� are isomorphisms onto their image.

4.1.3 Tautological line bundles and associated forms

Definition 4.9 Suppose pi > 0. Define the space

Fi .p/!Mcomb
g;n .p/

as the collection of pairs .G; `; q/, where .G; `/ 2Mcomb
g;n .p/ and q is a boundary

point of the i th face. These spaces glue together to the bundle Fi !Mcomb
g;n . Define

�j to be the distance from q to the j th vertex, taken along the arc from q in the
counterclockwise direction, so that 0 < �1 < �2 < � � � < �N < pi , where N is the
number of edges in the i th face, counted with multiplicities, and the distances are
measured using the identifications of the edges with subintervals of R; see Remark 4.5.
Write j̀ D �jC1��j . Orient the fibers with the clockwise orientation.

Define the following one-form and two-form on each cell of Mcomb
g;.n;n0/

.p/:

(23) ˛i D

NX
jD1

j̀

pi
d

�
�j

pi

�
and !i D�d˛i D

X
1�a<b�N

d

�
`a

pi

�
^ d

�
`b

pi

�
:

Later we will integrate forms which are made out of ˛i and !i , and we will perform
Laplace transform over p. For this reason it will be convenient to define the scaled
versions of ˛i and !i , which do not contain pi in their denominators. We thus put

x̨i D p
2
i ˛i ; x!i D p

2
i !i ; x! D

X
i

x!i :

The bundles Fi carry natural piecewise smooth structures. Moreover, [25] says the
following; see also [42, Theorem 5].

Theorem 4.10 (a) For i 2 Œn�, we have comb�Fi ' S1.Li / canonically.

(b) The forms ˛i and !i are a piecewise smooth angular one-form and Euler two-
form for Fi .

Remark 4.11 In [25], Fi was given the opposite orientation and the equivalence
was hence with the bundle S1.L�i /, which is canonically S1.Li / with the opposite
orientation.
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Thus, combined with Theorem 4.8, we see that all descendents may be calculated
combinatorially on Mcomb

g;n . In fact, all descendents can be calculated as integrals over
the highest-dimensional cells of Mcomb

g;n . These are parametrized by trivalent ribbon
graphs.

4.2 JS stratification for the open moduli

4.2.1 Symmetric JS differentials The next definition is motivated by Definition 4.2
and Example 4.1.

Definition 4.12 Let .†; fzigi2I[P0 ; fxigi2B/ be a stable open marked Riemann sur-
face, and let p D .pi /i2I[P0 2RI

C
� .0; : : : ; 0/. A symmetric JS differential on † is

the restriction to † of the unique JS differential of D.†/ whose residues at zi and Nzi
are �.pi=2�/2, which are 0 for i 2 P0. We extend the definition to the case g D 0,
I D Œ1� and P0 D B D∅, where the differential is defined to be the restriction of the
section 
p1 of Example 4.1.

Existence and uniqueness follow from Theorem 4.3 and the discussion in Example 4.1.

As before, the symmetric JS differential defines a cell decomposition of D.†/ in the
smooth case, and in general a metric graph embedded in AD.†/, the surface obtained
from D.†/ by contracting components with no zi or Nzi with i 2 I, whose complement
is a disjoint union of disks. Note that AD.†/ inherits the conjugation from D.†/, which
we also denote by %. The uniqueness forces the decomposition to be %–invariant.

Lemma 4.13 The %–fixed locus of AD.†/ is a union of (possibly closed ) horizontal
trajectories and isolated vertices. Any %–fixed point is a zero the differential of an even
order , possibly 0.

Proof The case gD0, ID Œ1�, P0DBD∅ follows from the discussion in Example 4.1.
In other cases, take an arbitrary point in AD.†/%. It cannot belong to the disk cell of
any zj , since otherwise it would have belonged to the cell of Nzj as well. Thus, AD.†/%
is contained in the one-skeleton of the decomposition. Consider p 2 AD.†/%. If p
is an isolated vertex in the %–fixed locus, then by connectivity it must be incident to
some non-%–fixed horizontal trajectory which, without loss of generality, lies in the
image of †o in AD.†/. Suppose it touches r such trajectories. Then it also touches their
%–conjugate trajectories, which lie in the image of †o in AD.†/. Thus, 2r horizontal
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trajectories emanate from p, for r � 1, hence p is a zero of order 2r�2� 0. The second
case is that p is not isolated, so it lies in the image of @† in AD.†/, which, as explained,
is contained in the 1–skeleton. In this case, at least two horizontal trajectories which
are contained in the image of @† emanate out of p, one to its left and one to its right.
In addition, there are also r � 0 such trajectories in the image of †o, and because
of symmetry there are also r such trajectories in the image of †o. In total, there are
2r C 2 horizontal trajectories emanating from p, which means that it is a zero of order
2r � 0.

Lemma 4.13 has the following corollary.

Corollary 4.14 Suppose † and p are as above , and 
 is the associated symmetric
JS differential. Assume that for some i 2 B, forgetting xi makes no component of †
unstable. Denote by †0 the resulting surface , and let � W †0 ! † be the natural map
between the surfaces. Then if 
 and 
 0 are the unique JS differentials for † and †0,
respectively, with the prescribed perimeters , then


 0 D ��
:

Indeed, both 
 and 
 0 are JS differentials on †0, since there is no pole in xi . Hence
they must be equal.

Remark 4.7 has the following consequence.

Corollary 4.15 If Norm W Norm.†/! † is the normalization of †, and 
 is the JS
differential on † with prescribed perimeters , then Norm�
 is the unique JS differential
on Norm.†/with the same perimeters and such that marked points which are preimages
of nodes have perimeter zero.

Remark 4.16 Although throughout the article we will be mainly interested in internal
markings with positive perimeters, markings of perimeter zero occur naturally when
one considers normalizations; see Proposition 4.34. In the open intersection theory the
normalizations are crucial for the definition of intersection numbers, Definition 2.47, and
therefore considering markings with zero perimeters is unavoidable. In addition, since
boundary markings carry no descendents, we to not lose from fixing their perimeters to
be zero, and it simplifies calculations. For these reasons, throughout this section we
shall allow marked points to have perimeter zero, at the cost of making the notation
somehow more cumbersome.
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4.2.2 Open ribbon graphs

Notation 4.17 Let I and B be finite sets. Let IT .g; I; B/ denote the set of isotopy
types of open connected genus g smooth oriented marked surfaces, with I being the
set of internal marked points and B being the set of boundary marked points. Write
IT .g; I / for the set of isotopy types of closed connected genus g smooth oriented
marked surfaces, which is just a singleton.

Definition 4.18 An open ribbon graph is a tuple

G D .V DV I [V B ;HDH I
[HB ; s0; s1; f Df

I
[f B [f P0 ; g; d/;

where:

(a) V I is the set of internal vertices, V B the set of boundary vertices.

(b) HB is the set of boundary half-edges, H I is the set of internal half-edges; s1 is
a fixed-point-free involution on H whose equivalence classes are the edges, E.
EB is the set of edges which contain a boundary half-edge.

(c) s0 is a permutation assigned to each vertex, and should be thought of as a cyclic
order of the half-edges issuing from each vertex. We write s0 also for the product
of all these permutations.

We denote by zV the set of cycles of s0. Write zV I for cycles which do not contain
boundary half-edges. Set zV B D zV n zV I . Denote by N W zV ! V the map which takes a
cycle to the vertex which contains its half-edges, and letNP0 andNB be the restrictions
to zV I and zV B, respectively.

(d) f B W B! V B is a map from a finite set B.

(e) f P0 W P0! V is a map from a finite set P0.

(f) f I W I ,!H=s2 is an injection, where s2 WD s�10 s1.

(g) g W V ! Z�0 is a map called the genus defect.

(h) For any v 2 V B, we have an element

d.v/ 2 IT
�
g.v/; .f P0/�1.v/[ .NP0/�1.v/; .f B/�1.v/[ .NB/�1.v/

�
:

For any v 2 V I , the element d.v/ is the unique element in

IT
�
g.v/; .f P0/�1.v/[ .NP0/�1.v/

�
:

This d is called the topological defect of v.
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Write deg.v/ for the degree of the vertex v. A closed contracted component is a vertex
v 2 V I with

2g.v/Cj.f P0/�1.v/jC jN�1.v/j> 2:

Denote their collection by ContC .G/. An open contracted component is a vertex
v 2 V B with

2.g.v/Cj.f P0/�1.v/jC j.NP0/�1.v/j/Cj.f B/�1.v/jC j.NB/�1.v/j> 2:

Denote their collection by ContO.G/.

We have the following requirements.

(a) Any half-edge appears in the permutation s0 of exactly one vertex. We define
a graph whose vertices are the elements of V and whose half-edges are the
elements of H . A half-edge is connected to a vertex if and only if it appears in
the vertex’s permutation s0.

(b) N. zV B/� V B.

(c) If h 2HB, then s1h …HB.

(d) s2 preserves the partition H DH I [HB. The image of f I is exactly H I=s2.

(e) For v2V I , if deg.v/D1, or deg.v/D2 but jN�1.v/jD1, then j.f P0/�1.v/jC
g.v/� 1.

(f) For v 2 V B, if v has at least one boundary edge and deg.v/D 2 then

j.f P0/�1.v/jC j.f B/�1.v/jCg.v/� 1:

(g) Any vertex of degree 0 is a contracted component.

We call the elements ofHB=s2 boundary components, and the elements of F DH I=s2

faces. The number of boundary components is b.G/D jHB=s2j. The marking defect
of v 2 V is defined as .f P0/�1.v/[ .f B/�1.v/. The sets I, P0 and B are called the
sets of internal markings, internal markings of perimeter zero, and boundary markings,
respectively. The set B is also denoted by B.G/; define I.G/ and P0.G/ similarly. An
internal node is either a contracted component with at least one edge and no boundary
edges, or an internal vertex whose assigned permutation is not transitive. A boundary
vertex v without boundary half-edges, with an empty marking defect and such that
g.v/D 0 and jN�1.v/j D 1 is called a contracted boundary. We denote the collection
of those boundary vertices by CB.G/. A boundary vertex v which is either a contracted
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component with at least one boundary edge, or whose assigned permutation is not
transitive, is called a boundary node. A boundary marked point is an image of f B

which is not a node. An internal marked point of perimeter zero is an image of f P0

which is not a node. A boundary half-node is an .NB/�1–preimage of a node. Denote
their collection by HN.G/. A vertex which is either a node or a contracted component,
or the f –image of a unique element in P0[B, is called a special point.

We write i.h/D h=s2 and Hi D fh 2H j i.h/D ig.

An open metric ribbon graph is an open ribbon graph together with a positive metric
` WE!RC. We sometimes write `h, with h 2H , instead of `h=s1 .

Markings of an open ribbon graph are markings

mI W I [P0! Z and mB W B! Z

such that mI .P0/D 0 and mI .I/� Z¤0. A graph together with a marking is called a
marked graph.

An isomorphism of marked graphs and an automorphism of a marked graph are the
expected notions. Aut.G/ denotes the group of automorphisms of G. A metric is
generic if .G; `/ has no automorphisms.

A ribbon graph is said to be closed if V B D 0, and it is said to be connected if the
underlying graph is connected.

The maps f B and f P0 should be thought of as the respective associations of the
boundary marked points and the internal marked points of perimeter zero to the vertices
of the graph formed by the symmetric JS differential. Requirements (e) and (f) in this
definition are the open counterparts of requirement (a) of Definition 4.4. Note that a
half-edge h is canonically oriented away from its basepoint h=s0. Throughout the paper
we identify boundary marked points, which are vertices, with their (unique) preimages
in B.G/D B.

Remark 4.19 Here, unlike in the closed case, the genus defect is not enough to
classify surfaces with contracted components. In particular, there are several topologies
for a given genus, as mentioned in Remark 2.4, and the set of topologies grows as
we add boundary marked points, which may be divided between different boundary
components.

Figure 10 shows some examples of ribbon graphs.
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Figure 10: Examples of ribbon graphs. Internal edges are drawn as strips.
Top left is a ribbon graph with one boundary marking and four internal
markings (the name of a half-edge appears next to the vertex from which it
emanates). Its underlying surface is a disk, and the boundary edges are s1f ,
s1g, s1h, s1i , s1j . The cyclic orders in the internal vertices are s1a; s1b; e
and s1b; s1d; c. Face 1, for example, is the s2–cyclic order a; b; c; f . Bottom
right is a ribbon graph on a cylinder. It has one face, the s2–cycle a; c; s1a; b
and two boundary components, each made of a single boundary edge, s1b
and s1c. The ribbon graph at top right has one boundary node u, which is
also an open contracted component, and an internal node v, which is also a
contracted component. The permutation of half-edges at u is .ab/.cd/. The
contracted component is open, of genus defect 3, has an internal marking
of perimeter zero, and four special boundary points: the markings 1; 2 and
the half-nodes .ab/; .cd/. The topological defect can be any topology which
corresponds to doubled genus 3, one internal marking and four boundary
markings. The node v has genus defect 2 and two perimeter-zero internal
markings. The center bottom picture has an open contracted component
at v, it is a contracted disk with two boundary markings 2; 3 and a boundary
half-node and no special internal points. Contracted components which are
disks with three boundary markings and no internal markings will play an
important role in what follows. We shall therefore draw such components as
disks cut by parallel lines, as in the bottom right picture.
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Notation 4.20 By gluing disks along the faces, any open ribbon graph gives rise to
a topological open oriented surface †G . This surface is a union of smooth surfaces,
identified in a finite number of points. One can easily define its double, D.†G/ D
.†G/C , as in the nontopological case.

Definition 4.21 The genus of the open graph G is defined by

g.G/ WD g..†G/C/C
X
v2V B

g.v/C 2
X
v2V I

g.v/:

The graph is stable if 2g� 2CjBjC 2.jIjC jP0j/ > 0.

For a stable open surface .†; fzigi2I[P0 ; fxigi2B/, define the marked components
to be components with at least one zi , for some i 2 I. The other components are
unmarked. Define the decorated surface z†DKB;P0.†/, and the map KB;P0 W†!

z†

to be the surface obtained by contracting unmarked components to points, and KB;P0
is the quotient map. We decorate any point p in z† by its genus defect, marking defect
and the topological defect, which can be defined by the genus, boundary markings and
topological type of the surface obtained by smoothing the nodes in K�1B;P0.p/.

Remark 4.22 This definition agrees with the one given for closed surfaces, in the sense
that one can also define the doubling D of z† in a natural way, and then D.z†/'AD.†/.

Definition 4.23 A ghost is a ribbon graph without half-edges. A smooth open ribbon
graph is a stable open ribbon graph such that none of its connected components contains
a node or a contracted boundary.

A stable ribbon graph, open or closed, is effective if

(a) any genus defect is 0,

(b) there are no internal nodes, and

(c) contracted components or ghost components v must have

.NP0/�1.v/D∅ and j.NB/�1.v/jC j.f B/�1.v/j D 3:

The graph is trivalent if

(a) it is effective,

(b) P0 D∅,

(c) it has no contracted boundaries,

Geometry & Topology, Volume 27 (2023)



The combinatorial formula for open gravitational descendents 2573

(d) all vertices which are not special boundary points are trivalent, and

(e) for every special boundary point, all the s0–cycles are of length 2.

A boundary marked point or a boundary half-node in a trivalent graph G which is not
a ghost is said to belong to a face i if its unique internal half-edge belongs to that face.

In Figure 10 the diagrams on the left represent smooth graphs, and all but the top right
are effective.

Remark 4.24 The only nonzero open intersection number which does not involve in-
ternal markings is the genus 0 intersection number with three boundary markings, h�3io0.
The graph which corresponds to this picture is precisely the trivalent ghost.

The following proposition is a consequence of Lemma 4.13, and the closed theory; the
proof is in the appendix.

Proposition 4.25 Let † be a stable open marked Riemann surface. The unique
symmetric JS differential of † defines a unique metric graph .G; `/ embedded in
KB;P0.†/. This graph is an open ribbon graph , whose vertices are KB;P0–images of
zeroes of the differential , and whose edges are KB;P0–images of horizontal trajectories.
The boundary edges , if there are any, are embedded in the boundary and cover it , and
the defects of vertices agree with the defects of their image in KB;P0.†/; in particular ,
boundary nodes go to boundary nodes. Under this embedding the orientation of any
half-edge h 2 s1HB agrees with the orientation induced on @KB;P0.†/. Topologically,
KB;P0.†/'†G .

Moreover , any stable .g;B; I[P0/–metric graph is the graph associated to some stable
open .g;B; I [P0/–surface and a set of perimeters p. This surface is unique if the
graph is smooth or effective.

We sometimes identify the graph with its image under the embedding. In particular,
throughout this article we shall consider an edge as a trajectory in the surface, and a
half-edge h as a trajectory oriented outward from h=s0.

Notation 4.26 With the notation of the above observation, denote by combR
p the map

between surfaces and open metric ribbon graphs defined by .G; `/D combR
p .†/. Write

also .G; `/D combR.†;p/.
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Definition 4.27 The normalization Norm.G/ of a stable connected open ribbon
graph G is the unique smooth, not necessarily connected, open ribbon graph, defined
in the following way. If G is smooth, Norm.G/ D G. Otherwise the vertex set is
zV I [ zV B [ContC .G/[ContO.G/, contracted components are isolated vertices in the
graph, and the half-edges are H I [HB. The genus and topological defects of vertices
in zV I [ zV B are 0.

For a contracted component v, the genus and topological defects are given by

gNorm.G/.v/D g.v/ and dNorm.G/.v/D d.v/:

The marking defect and the maps f P0;v and f B;v are derived from dNorm.G/.v/. In
particular, B.v/D .NB/�1.v/[.f B/�1.v/. The permutations sv0 and sv1 are the trivial
permutations, and I.v/D∅.

For any connected component C of Norm.G/ not in ContC .G/[ContO.G/, define
s0 D s

C
0 , s1 D sC1 and f I D f I;C as those induced from G. Let P0.C / be the union

of the set of elements of P0 which map to vertices whose unique N –preimage is in C ,
and the set of preimages of internal nodes of C , ie internal vertices v of C such that
jN�1.N.v//j>1. In other words, we can write P0.C /D .P0.C /\P0/[.P0.C /nP0/.
We define f P0 D f P0;C W P0.C / ! V I .C / as follows. On P0.C / \ P0 we put
f P0;C .pi /DN

�1.f P0.pi //, where f P0 of the right-hand side is the function from
the definition ofG, while on P0.C /nP0, the preimages of nodes, we set f P0;C .v/D v.
Define B.C/ and f B D f B;C W B.C/! V B.C / similarly.

The normalization Norm.G/ of a marked graph is the marked graph whose underlying
graph is the normalization of the underlying graph of G, and new marked points are
marked 0.

Write Norm W Norm.G/!G for the evident normalization map.

Observe that the normalization of a trivalent graph is trivalent, and that if v is a contracted
component which touches at least one edge in G, then jNorm�1.v/j D jN�1.v/jC 1.

Figure 11 shows the normalizations of the graphs in the right column of Figure 10.

Notation 4.28 There is a canonical injection B.G/ ,! B.Norm.G//. There is a
fixed-point-free involution on B.Norm.G//nB.G/, which we also denote by s1, which
on preimages of a node that is not a contracted component just interchanges its two
preimages. If v is a contracted component, its new boundary markings correspond
to elements u 2 .NB/�1.v/. Any such u corresponds also to a unique marking w in
another noncontracted component. Write s1uD w and s1w D u.
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Figure 11: The normalizations of the graphs in the right column of Figure 10.
The upper normalization has four components; two are contracted compo-
nents. The one which corresponds to v has three internal points of perimeter 0:
the original two and the node. The one which corresponds to u has four
boundary markings: the original two and two that corresponds to half-nodes.
The lower normalization is made of two components. New special points in
both normalizations are labeled 0.

4.2.3 Moduli of open metric graphs For a stable open ribbon graph G, denote by
MR
G the set of all metrics on G, and write MR

G.p/ for the set of all such metrics where
the i th face has perimeter pi . Note that MR

G DRE.G/
C

=Aut.G/ canonically.

Construction–Notation 2 For e 2E.G/ the edge between vertices v1 and v2, one can
define the graph @eG as the graph obtained by contracting e to a point, identifying its
vertices to give a new vertex v1v2 and updating the permutations and marking defects
as in the closed case. When v1 and v2 are internal, then so is v1v2. The genus defect
is updated as in the closed case, and this determines the whole defect. Suppose v1
is a boundary vertex. Then so is v1v2. If v2 ¤ v1, then g.v1v2/D g.v1/C g.v2/ if
v2 2V

B, and otherwise g.v1v2/Dg.v1/C2g.v2/. When v1D v2, let h1 and h2 be the
half-edges of e. Let zhi 2N�1.v1/ be the s0–cycle of hi . Then g.v1v2/D g.v1/C ı,
where

ı D

8<:
0 if zh1 D zh2;
1 if zh1 ¤ zh2;
2 otherwise.

where zh1; zh2 2 zV B ;

We have
d.v1v2/ 2 IT D IT .g.v1v2/; Iv1v2 ; Bv1v2/
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or

d.v1v2/ 2 IT D IT .g.v1v2/; Iv1v2/;

where
Bv1v2 D .f

B/�1.v1v2/[ .N
B/�1.v1v2/;

Iv1v2 D .f
P0/�1.v1v2/[ .N

P0/�1.v1v2/:

These two sets are already known from what we have constructed so far. In particular,
whenever IT is trivial — which is always the case for internal vertices, and for boundary
vertices it happens when 2g.v1v2/C 2jIv1v2 jC jBv1v2 j � 2— we know d.v1v2/. For
brevity we will not describe the general update of the topological defect. We do describe
a special case of particular importance. Suppose that e 2 EB and that v1 ¤ v2 are
boundary vertices with d.vi / 2 IT .0;∅; Bi /, where jBi j D 2. This is the case when
each vi is a marked point or a boundary node which is not a contracted component.
Write Bi D fzhi ; aig, where zhi is as above. Suppose h2 2HB, that is, its orientation
disagrees with the orientation of the boundary. Then d.v1v2/ 2 IT .0;∅; fa; a1; a2g/,
where a is the new cycle of s0h2 obtained from concatenating zh1 and zh2 after erasing
h1 and h2, and d.v1v2/ is the element which corresponds to cyclic order a! a1! a2.

Suppose E 0Dfe1; : : : ; erg�E. Then there is an identification between E.G/nE 0 and
E.@e1;:::;erG/. Throughout this paper we shall use this identification without further
comment.

Figure 12 illustrates several examples of edge contractions.

For a stable open ribbon graph G, we define the orbifold cell complex MR
G as the cell

complex whose cells are MR
G0 for all graphs G0 obtained from G by edge contractions.

The cell MR
G which corresponds to contracting the empty subset of E.G/ is included.

If G0 and G00 are two such cells, and G00 is obtained from G0 by contracting the edges
fe1; : : : ; erg, then the corresponding cell MR

G00 is the boundary of the cell MR
G0 glued

to it along `e1 D � � � D `er D 0. In this case we say that MR
G00 is a face of MR

G0 . Write
MRcomb

g;k;l D
`

MR
G=� D

`
MR
G , where the union is over all open .g; k; l/–ribbon

graphs, and � is induced by the canonical injections MR
G0 ,!MR

G over pairs .G;G0/
where G0 is obtained from G by edge contractions. Write MRcomb

g;k;l for the locus which
is the union over smooth graphs. Define MR

G.p/, MRcomb
g;k;l.p/ and MRcomb

g;k;l.p/ by
restricting perimeters to be pi . In these cases we also define the cell attachments using
edge contractions.
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Figure 12: Examples of edge contractions. Contracting the internal edges b
and f of the smooth graph on the top left gives rise to the nodal graph on the
top right. The vertex v1v2 corresponds to the permutation .ae/.cd/. By further
contracting the boundary edge g between the boundary node and the marked
point 2, we obtain the graph on the left in the middle row. The boundary node
there corresponds to a contracted component which contains two nodes and the
marking 2. The graph on the right-hand side of the same row is equivalent to the
left one, only that the ghost is illustrated and there the cyclic order of half-nodes
is seen. At bottom left a genus 1 ribbon graph is drawn. After contracting the
edge a we obtain a nodal graph. Further contracting c, we obtain the graph on
its right, which contains an open contracted component. The genus defect of the
contracted component is 1 and its topological defect is that of a cylinder with
one special boundary point: the node.

The pointwise maps combR induce moduli maps

combR
WMR

g;k;l �RlC!MRcomb
g;k;l and combR

p WMR
g;k;l !MRcomb

g;k;l.p/;

which send a stable open surface and a set of perimeters to the corresponding graph.
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Lemma 4.29 MRcomb
g;k;l with the cell structure defined above is a piecewise smooth

Hausdorff orbifold with corners. This is the finest topology on the moduli of .g; k; l/–
graphs such that the map combR is continuous. MRcomb

g;k;l.p/ is compact for any p. We
have combR

WMR
g;k;l
�Rl
C
'MRcomb

. Moreover , the analogous claims remain true
if we declare some , but not all , of the internal marked points to have zero perimeter.
In fact , for any effective dual graph � , the map combR restricted to MR

� �Rl
C

is an
isomorphism onto its image.

The proof is similar to the closed case; see [42; 28] for a proof of the analogous
theorem.

4.3 JS stratification for the graded moduli

4.3.1 Graded ribbon graphs For a metric, open or closed ribbon graph, .G; `/, write

zZG;` D �0.fFor�1spin..combR/�1.G; `// and ZG;` D �0.For�1spin..combR/�1.G; `//;

where the maps fForspin and Forspin are defined in Notation 2.41. For any two generic
metrics ` and `0, the sets ZG;` and ZG;`0 are isomorphic; see Remark 2.38. When G
has nontrivial automorphisms the sets are noncanonically isomorphic. For any G, let
ZG be the set ZG;` for a fixed generic `. Define zZG similarly.

Definition 4.30 A metric spin ribbon graph with a lifting .G; z; `/ is a metric ribbon
graph together with an element z 2 zZG;`. The graph is called graded when z 2ZG;`.
A graded graph is a pair .G; z/; z 2ZG . Similarly, in the closed setting, a metric spin
ribbon graph .G; z; `/ is a metric ribbon graph together with z 2 zZG;`.

The normalization Norm.G; z; `/ of .G; z; `/ is the smooth, not necessarily connected
graph

`
.Gi ; `i ; zi /, where the .Gi ; `i / are the components of Norm.G; `/, and the

zi 2 zZGi ;`i are induced from z by Proposition 2.19. A half-node is legal if it is legal
as a marked point in the graded structure of Norm.G; z/.

By Proposition 4.25, a graded surface, together with perimeters fpigi2I , defines a
unique graded metric graph .G; z; `/, where .G; `/ is embedded in KB;P0.Forspin.†//,
as in Proposition 4.25, and z is the class of graded spin structures which contains the
graded structure of†. When .G; `/ is generic and effective, all possible automorphisms
of .G; `/ leave all half-edges in place, and may only act nontrivially on isolated
contracted components, which are of genus 0. Thus, the action of this automorphism
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group on ZG DZG;` is trivial, and hence, in this case, ZG is isomorphic to Spin.†/,
and any element z of it corresponds to a unique graded structure.

Moreover, by Corollary 2.22, if in addition G has no contracted boundaries, then ZG is
in one-to-one correspondence with isomorphism classes of tuples .S1; : : : ;Sr/, where
each Si is a spin structure with a lifting on the i th component of Norm.†/ such that
all original boundary marked points are legal and for any boundary node of † exactly
one half is legal.

Definition 4.31 A spin ribbon graph with a lifting .G; z/, with or without a metric `,
is called effective if G is effective, and z is a spin structure with a lifting in which
for every contracted component v 2 V.G/, all boundary marked points of the isolated
component in Norm�1.v/ are legal. In the case that v is not isolated, it is equivalent to
all half-nodes in .NB/�1.v/ being illegal. An effective graded graph .G; z/ is trivalent
if G is trivalent. The graph is smooth if its underlying graph is. These definitions
extend to the closed case, without the assumptions on boundary nodes.

Denote by SR0 the set of isomorphism classes of graded smooth trivalent ribbon
graphs, and write R0 for the set of their underlying open ribbon graphs. Denote by
SR0

g;k;l
� SR0 the subset whose faces are marked Œl � and whose boundary points are

marked by Œk�. Define R0
g;k;l

similarly.

Let OSR0
g;k;l

be the collection of all graphs in SR0
g;k;l

with an odd number of boundary
marked points on each boundary component. Define OR0

g;k;l
similarly.

Note that in a trivalent graph, by definition if v is a contracted component, the unique
ghost component in Norm�1.v/ has all marked points legal.

Recall that smooth graded surfaces have no internal markings of twist 1 or illegal
boundary markings. Therefore an immediate corollary of Proposition 2.32, which can
be taken as an alternative definition of R0

g;k;l
, is:

Corollary 4.32 R0
g;k;l
¤∅ precisely when 2 jgCk�1. Every trivalent smooth graph

satisfying this constraint belongs to R0
g;k;l

.

Notation 4.33 We define the map comb between graded surfaces and graded metric
ribbon graphs by

comb.†;S; s;p/D .G; z; `/;

where .G; `/D combR.†;p/ and z 2ZG;` is the corresponding class. Write combpD

comb.�;�;�;p/. Write Forcomb
spin .G; z; `/D .G; `/.
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Proposition 4.34 Suppose comb.†;p/D .G; z; `/.

(a) Then comb.Norm.†/;p/DNorm.G; z; `/, where preimages of nodes in † will
be internal markings of perimeter zero.

(b) Suppose †0 is obtained from † by forgetting an illegal marked point x� whose
removal makes no component unstable. Suppose that x� is mapped to vertex v
of G. Write .G0; z0; `0/D comb.†0;p/. Then .G0; `0/ is obtained from .G; z; `/

by the following procedure. If deg.v/D 2, and v has a zero genus defect and
marking defect f�g, remove v from the graph , unite its two edges e1 and e2
to one edge e, define `0.e/D `.e1/C `.e2/ and for the other edges put `0 D `.
Otherwise the graph and metric do not change , but the marking � is removed
from the marking defect of v. The point z0 is the image of z under the natural
map ZG;`!ZG0;`0 obtained from Observation 2.43 with B0 D f�g.

Proof The first item is a consequence of Corollary 4.15. The second follows from
Corollary 4.14 and Observation 2.43.

4.3.2 Combinatorial moduli for graded surfaces, bundles and forms Denote by
Mcomb
g;k;l

the set of metric graded .g; k; l/–ribbon graphs. Write Mcomb
g;k;l

.p/ for the
subspace of graphs with fixed perimeters p. Define Mcomb

g;k;l
as the subspace of smooth

graphs. Define similarly Mcomb
g;k;l

.p/. The pointwise maps comb induce moduli maps

comb WMg;k;l �RlC!Mcomb
g;k;l and combD combp WMg;k;l !Mcomb

g;k;l.p/;

which send a stable graded surface and a set of perimeters to the corresponding graph.
Endow these spaces with the finest topology such that comb is continuous.

We now study the cell structure of Mcomb
g;k;l

. Recall that a metric ` is generic if the metric
graph has no automorphisms. In particular, in the open and connected setting, metrics
which give all edges different lengths are generic. For a generic ` 2MR

G , choose z 2
ZG DZG;`, and define M.G;z/ to be the connected component of .Forcomb

spin /
�1.MR

G/

which contains .G; z; `/.

The map Forcomb
spin is continuous. Moreover, by the same reasoning as in the noncombi-

natorial case (see the discussion in the end of Section 2.3.6), it is an orbifold branched
cover, and over any MR

G it is an orbifold cover.

Thus, .Forcomb
spin /

�1.MR
G/ is an orbibundle over MR

G , with a generic fiber ZG . Since

MR
G DRE.G/C =Aut.G/;
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such a bundle must be of the form

.Forcomb
spin /

�1.MR
G/' .R

E.G/
C

�ZG/=Aut.G/

for some action of Aut.G/ which we now explain.

Let C �MR
G be the locus of generic metrics, and C � RE.G/ its preimage under

the quotient by Aut.G/. Except from some borderline cases, which can be treated
separately, its complement is of real codimension at least 3. Over C the fiber of the
bundle is always of size jZG j. Denote this fiber bundle by E, and let E! C be its
pullback to C . Now �1.C / is trivial, as RE.G/ nC is of codimension at least 3. Thus
E must be trivial, and is hence isomorphic to C �ZG .

Let x̀ 2 C be any point, and let ` be its image in C . Recall that, as an orbispace,
Aut.G/' �1.C=Aut.G/; `/, and this isomorphism can be made explicit as follows:
for g 2Aut.G/, choose any path x
g W Œ0; 1�! C with x
g0 D x̀2RE.G/

C
and x
g1 D g � x̀,

and set 
g to be its x
g to C .

Parallel transport z D z0 along 
g to get z1. This can be done as the fiber is zero-
dimensional. Define g � .x̀; z/D .g � x̀; z1/. This action is independent of choices, and
can be defined continuously over all E. This gives us the orbibundle structure over C .
Again by continuity, it can be uniquely extended to an action on RE.G/

C
�ZG .

In particular, we have defined an action of Aut.G/ on ZG . Define the group Aut.G; z/
as the subgroup of Aut.G/ which leaves z invariant. Then M.G;z/'RE.G/

C
=Aut.G; z/.

Define M.G;z/.p/ as the subspace where the perimeters are p.

For e 2E.G/, define the edge contraction to be @e.G; z/D .@eG; @ez/, where @ez 2
Z@eG using the cell structure of MR

G and the topology of Mcomb
g;k;l

. Explicitly, fix p and
take an arbitrary continuous path .Œ†t �/t2Œ0;1� �Mg;k;l so that comb.Œ†t �/ 2M.G;z/

for t > 0 and Forspin.comb.Œ†0�// 2MR
@eG

. Suppose that comb.Œ†0�/ 2M.@eG;z0/.
Then z0 D @ez, and this definition is easily seen to be independent of choices.

An explicit combinatorial description for the special case of trivalent graphs appears in
Section 5.1.2.

As in the spinless case M.G;z/, the closure of M.G;z/ in Mcomb
g;k;l

, is the union of
cells M.G0;z0/ where .G0; z0/ is obtained from .G; z/ by edge contractions, and the
attachment of the cells is also defined via the edge contractions, ie M.G0;z0/ is glued
to M.G;z/ along `e1 D � � � D `er D 0, where e1; : : : ; er are the edges of G which
are contracted to obtain G0. In this case we say that M.G0;z0/ is a face of M.G;z/.
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We similarly define M.G;z/.p/. Again as in the spinless case we can now define the
orbifold cell complex structure on Mcomb

g;k;l
, as

Mcomb
g;k;l D

a
M.G;z/=�D

a
M.G;z/;

where the union is over all connected components which correspond to graded .g; k; l/–
ribbon graphs, and � is induced by edge contractions. We similarly define the orbifold
cell complex structure on Mcomb

g;k;l
.p/. In both cases the cell structure agrees with the

topology. Denote the quotient-by-� map by „.

A graph .G; z/ corresponds to a boundary stratum of Mcomb
g;k;l

, that is M.G;z/ �

comb.@Mg;k;l �Rl
C
/ if and only if it has at least one boundary node or contracted

boundary. In this case we call it a boundary graph. All of the above constructions
extend to the setting of spin ribbon graphs with a lifting, and to (closed) spin ribbon
graphs.

Lemma 4.35 Suppose 2 j g C k � 1. Then Mcomb
g;k;l

and Mcomb
g;k;l

.p/ are piecewise
smooth Hausdorff orbifolds with corners , and the latter is compact.

The maps comb and combp are isomorphisms onto their images when restricted to the
open dense subsets Mg;k;l �Rl

C
and Mg;k;l .

The map combp induces an orientation on Mcomb
g;k;l

, and deg.combp/ D 1 with this
orientation.

Analogous claims are true if we declare some , but not all , of the internal marked points
to have perimeter zero. Analogous claims are also true if we allow some internal
markings to be Ramond or if we consider the case of closed (twisted ) spin surfaces. In
addition , for an effective dual spin graph with a lifting � , the maps comb and combp

restricted to M� �Rl
C

and M� are isomorphisms onto their images.

The proof is similar to the closed case and will be omitted. The orientation on Mcomb
g;k;l

will be constructed explicitly later.

The combinatorial S1–bundles Fi for i 2 Œl � are defined as in Definition 4.9. Again
these carry a natural piecewise smooth structure, compatible with the natural piecewise
smooth structures on Mcomb

g;k;l
. The forms ˛i , !i , x̨i , x!i and x! are defined as in

Definition 4.9 and equation (23).
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Definition 4.36 Let S �N be a finite set. An .S; l/–set L is a function L W S ! Œl �.
We write S D Dom.L/. In the case that S D Œd �, we simply write it as .d; l/–set. We
say that L is an l–set if the set S is understood from the context.

Given two l–sets L and L0, we write

L0 � L;

and say that L0 is a subset of L, writing L0 � L, if

Dom.L0/� Dom.L/ and LjDom.S 0/ D L
0:

In this case we define the l–set L nL0 by

L nL0 W Dom.L/ nDom.L0/! Œl �; .L nL0/.s/D L.s/:

In the case that j 2 Dom.L/, we write j 2 L. For i 2 Œl � we put

Li D L
�1.i/:

The .S; l/–sets will be used to encode direct sums of tautological lines as follows.

Notation 4.37 Recall Construction–Notation 1. To any .S; l/–set L we associate a
vector bundle EL and a sphere bundle SL given by

EL D
X
i2S

LL.i/!Mg;k;l and SL D S..FL.i//i2S /:

We will also consider the sphere bundle S.EL/ associated to EL.

Define an angular form ˆL for SL by formula (19), and using Kontsevich’s forms for
the copy FL.i/ of the L.i/th S1–bundle. Explicitly,

ˆL.frigi2S ; fy̨igi2S ; f y!igi2S /

D

jS j�1X
kD0

2kkŠ
X
i2S

r2i y̨i
X

I�Snfig
jI jDk

V
j2I

.rj drj ^ y̨j /^
V

h…I[fig

y!h;

where y!i is Kontsevich’s two-form !L.i/ and y̨i is a copy of Kontsevich’s one-form
˛L.i/. We refer to it as a copy since, for i1; i2 2 Lj , both y̨i1 and y̨i2 are given by the
same formula of the angular 1–form of Fj , but with different � variables. Write

!L D�dˆL D
V
i2S

!L.i/; p2L D
Y
i2S

p2L.i/; x!L D p2L!L; x̂
L D p2LˆL:
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When S ¤ Œd � we will sometimes omit the assumption that
P
i2S r

2
i D 1, and then

�dˆL gets a correction; see Remark 3.5.

When it is not clear from context, we write ˛Gj to indicate the specific graph G. The
same remark goes for the other forms.

Exactly as in the closed case, we have:

Lemma 4.38 (a) For i 2 Œl �, there is a canonical isomorphism comb�Fi ' S1.Li /.
As a result , comb�SL ' S.EL/ canonically.

(b) The forms ˛i and !i are a piecewise smooth angular one-form and Euler two-
form for S1.Li /. ˆL is an angular form of SL, and !L is its Euler form.

(c) For .G; z/ 2 SR0
g;k;l

, there is a canonical identification

.Fi !M.G;z//'„
�.Fi !Mcomb

g;k;l/:

Similarly for the bundles SL.

Notation 4.39 Recall Proposition 4.34. Let .G; z; `/ be a metric spin ribbon graph with
a lifting. Define the graph zB.G; z; `/D .zBG; zBz; zB`/ by first taking the normalization
of .G; z; `/, and then forgetting isolated components, the lifting data in contracted
boundaries, and the new illegal marked points. Let zB WM.G;z/ !M.zBG;zBz/ be the
induced map on the moduli.

Observation 4.40 For any spin ribbon graph with a lifting .G; z/, and face marked i ,
we have Fi !M.G;z/ '

zB�.Fi !MzB.G;z// canonically, and a similar claim holds
for SL.

The observation follows from the natural identification of the boundary of the i th faces
in G and zBG.

Proposition 4.41 A special canonical multisection s of S.EL/ is a pullback of a
multisection s0 of SL.

Proof Take M� � @Mg;k;l and let i1; : : : ; ir be labels of internal tails, one for each
vertex of � . Now

comb.M� �RlC/D
a
.G;z/

M.G;z/;
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where the union is taken over some graded graphs .G; z/. Consider one of them; denote
it by .G; z/. Write

ˆ� D

rY
jD1

ˆ�;i :

The diagram

(24)

comb�1M.G;z/

ˆ�
//

comb
��

comb�1M.zBG;zBz/

comb
��

M.G;z/

zB
//M.zBG;zBz/

commutes, by Proposition 4.34. Now .zBG; zBz/ is smooth, hence the right vertical arrow
is an isomorphism, by Lemma 4.35. A special canonical multisection over M��Rl

C
is

pulled back via ˆ� , from S.EL/!
Qr
jD1Mv�

i
.�/ �Rl

C
. Let s be special canonical;

we now construct s0 with sD comb�s0. Write sjcomb�1M.G;z/
Dˆ��.comb�.s00//, where

s00 is a multisection of SL!M.zBG;zBz/. Define s0jM.G;z/
D zB�s00. These multisections

for different strata evidently glue.

Definition 4.42 A special canonical multisection of SL!Mcomb
g;k;l

is a multisection s
with comb�s special canonical. A special canonical multisection of SL !M.G;z/

is a „–pullback of a special canonical multisection on Mcomb
g;k;l

. Write s.G;z/ for the
restriction of s to M.G;z/.

The proof of the proposition yields the following immediate corollary.

Corollary 4.43 Suppose .G; z/ is a boundary .g; k; l/–graded ribbon graph , and s is a
special canonical multisection of SL, where L is a .d; l/–set , restricted to the boundary
cell M.G;z/. Then s D zB�s0, where s0 is a multisection of SL!MzB.G;z/.

The main result of this section is that the descendents can be calculated over the
combinatorial moduli.

Lemma 4.44 Let s be a special canonical multisection for S.EL/. Denote by s0 the
multisection on SL with s D comb�s0. ThenZ

Mg;k;l

e.S.EL/; s/D

Z
Mcomb
g;k;l

.p/

e.SL; s
0/:(25)

The orientations are those induced on the combinatorial moduli by comb�.

The proof is an immediate consequence of Lemmas 4.35 and 4.38 and Observation 2.49.
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a

b

c
c

2 3

c

2 3

Figure 13: Bridges and their contractions. On the left, three compatible
bridges are drawn, a, b and c. In the center, b and c are contracted, and
on the right, the normalization is presented. If hb is the boundary half-edge
which corresponds to b, then @bh corresponds to the half-node in the ghost
component of the normalization. If h1 and h2 are the half-edges of c, then
@ch1 and @ch2 are the two half-nodes in the normalization of the node which
corresponds to c.

4.3.3 Intersection numbers as integrals over the combinatorial moduli We can
now use the natural piecewise linear structure on Mcomb

g;k;l
and the associated bundles to

write an explicit integral formula for them.

Definition 4.45 A boundary loop in a graded graph .G; z/ is a boundary edge which
is a loop. We denote the collection of these elements by Loop.G/. A bridge in a graded
graph .G; z/ is either a boundary edge between two distinct special legal boundary
points or an internal edge between two boundary vertices; see Figure 13 and the left-
hand sides of Figure 14 rows four and five. Denote by Br.G; z/ the set of bridges
of .G; z/. Usually we shall omit z from the notation and write Br.G/ instead. A
compatible sequence of bridges fe1; : : : ; erg is a sequence of bridges such that eiC1 is
a bridge in @e1;:::;eiG for all i .

Suppose e is a bridge and h 2 H I satisfies h=s1 D e. Set h0 D s2h. We define
@eh 2 HN.@eG/ (recall HN was defined in Definition 4.18) to be the unique vertex
v 2 V.Norm.@eG// with h0=s0 D v, where we consider h0 as an edge of Norm.@eG/,
using the canonical identification; see Figure 13 and the right-hand sides of the fourth
and fifth rows of Figure 14. When there is h2HB with h=s1D e, contracting e creates
a contracted component v, which is identified with a ghost component of Norm.G/; see
Figure 13 and row four of Figure 14 again. We denote by @eh2B.v/ the marking which
is the s0–cycle of s2.s1h/ in .NB/�1.v/. This is equivalent to writing @ehD s1@e.s1h/,
recalling Notation 4.28.
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e
e

e

e

e e

e
�

e C �

Figure 14: Edge contractions and Feynman moves. In rows four and five,
bridge contractions are presented. In the bottom row, a boundary contraction
is shown. In the first three rows it is shown how the other types of contracted
edges can be obtained as the result of two different contractions.

The following observation is immediate.

Observation 4.46 (a) We have that dimM.G;z/.p/D dimMg;k;l if and only if
.G; z/ 2 SR0

g;k;l
.

(b) In addition , .G; z/ is a boundary graph if and only if it can be represented as
@e1;:::;er .G

0; z0/, where .G0; z0/ 2 SR0
g;k;l

and at least one ei is a bridge or
a loop. The only boundary graphs .G; z/ whose moduli is of full dimension
dimMg;k;l�1 are those which can be written as @e.G0; z0/ for .G0; z0/2SR0

g;k;l

and e 2 Br.G0/[Loop.G0/.

(c) If fe1; : : : ; erg is a compatible sequence of bridges in a trivalent graph .G; z/,
then @e1;:::;er .G; z/ is trivalent. Any trivalent graph can be written in the form
@e1;:::;er .G; z/, where .G; z/ is smooth trivalent and fe1; : : : ; erg is a compatible
sequence of bridges. This representation is unique up to reordering the bridges
in the sequence.

See rows four and five of Figure 14 for examples.
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Recall Definition 2.51. Using Observation 4.46, Lemma 4.44 and Proposition 3.3, we
immediately get:

Lemma 4.47 Let L be a .d; l/–set , where d D 1
2
.3g � 3C kC 2l/, and let s be a

special canonical multisection for SL. Then

2
1
2
.gCk�1/

h�a1 � � � �al�
k
i

D

X
.G;z/2SR0

g;k;l

Z
M.G;z/.p/

!LC
X

(G;z/2SR0
g;k;l

Œe�2ŒBr.G/[Loop.G/�

Z
M@e.G;z/.p/

s�ˆL:

Equivalently,

p2L2
1
2
.gCk�1/

h�a1 � � � �al�
k
i

D

X
.G;z/2SR0

g;k;l

Z
M.G;z/.p/

x!LC
X

(G;z/2SR0
g;k;l

Œe�2ŒBr.G/[Loop.G/�

Z
M@e.G;z/.p/

s� x̂L:

The orientations are those induced on the combinatorial moduli by comb�.

Remark 4.48 The formalism of piecewise linear forms and their integration is treated,
for instance, in [42].

Construction–Notation 3 For later purposes we now define Feynman moves in edges.
Suppose that G is a trivalent graph, and let e 2 E nBr.G/. If e is a boundary edge,
we require that least one of its vertices is not a special point. If e is a boundary loop,
define the graph Ge WDG. Otherwise, define Ge as the graph obtained from G by first
contracting e and then reopening it in the unique different possible way; see the first
three rows of Figure 14.

Let .G; z/ be a graded trivalent graph. For a boundary loop e define the graded structure
ze 2 ZG as the graded structure which is identical to z except that the lifting on the
boundary component e is opposite. For an edge e … Br.G/[Loop.G/, write ze 2ZGe
for the graded structure on Ge, defined by the following proposition.

Proposition 4.49 For .G; z/ and e as above , there is a unique graded structure ze such
that if G is smooth , M.Ge;ze/ is the unique codimension-zero cell of Mcomb

g;k;l
adjacent

to M.G;z/ along M@e.G;z/. For nonsmooth G, write .G; z/D @e1;:::;er .H;w/, where
e1; : : : ; er 2E.H/, with .H;w/ trivalent and smooth. Then

.Ge; ze/D @e1;:::;er .He; we/:
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Proof For a smooth trivalent G and an edge e, @eM.G;z/ is a codimension-one face;
hence, since Mcomb

g;k;l
is an orbifold with corners, this face must be adjacent to at most

one additional codimension-zero cell. Since e is neither a boundary loop nor a bridge,
this face is not contained in the boundary of the moduli; hence it is adjacent to two
codimension-zero cells. Since Forcomb

spin is continuous, this cell must be of the form
M.G;ze/ for some graded structure ze 2ZGnz, or of the form M.Ge;ze/ for ze 2Z.Ge/.
The map Mcomb

g;k;l
'Mg;k;l !MR

g;k;l
'MR;comb

g;k;l
, when restricted to the open dense

set of generic metrics, is a (nonbranched) covering map, as there are no automorphisms
to the objects, and since the neighboring cell in MR;comb

g;k;l
to MR

G along @eMR
G is MR

Ge
,

the neighboring cell of M.G;z/ along the boundary @eM.G;z/ must be M.Ge;ze/. The
rest of the claim follows from the cell structure and Observation 4.46(c).

The operations G!Ge and .G; z/! .Ge; ze/ are called Feynman moves.

5 Trivalent and critical nodal graphs

It follows from Lemma 4.47 that all intersection numbers can be calculated as integrals
over the highest-dimensional cells of Mcomb

g;k;l
, and of @Mcomb

g;k;l
. In the next section we

will describe an iterative integration formula for the integrals. We will see that the
cells that contribute to this iterative process are those which correspond to trivalent
graded ribbon graphs. Analyzing their contribution is done by using a new type of
graph, which we define below and name critical nodal graphs. It turns out that both for
trivalent graded graphs, and for critical nodal graphs, the extra data of the graded spin
structure can be described in an explicit combinatorial manner. In this section we shall
provide this combinatorial interpretation, use it to describe the boundary conditions
and to write an explicit expression for the canonical orientations.

5.1 Kasteleyn orientations

From here until the end of this subsection fix a graph G 2R0
g;k;l

, where R0
g;k;l

was
defined in Definition 4.31.

Definition 5.1 Consider the set A of all assignments H I ! Z2. A vertex flip is the
involution fv W A! A defined as follows. For A 2 A, fvA is the assignment which
satisfies the following condition: fvA.h/ ¤ A.h/ if and only if exactly one of the
vertices of h, h=s0 and s1.h/=s0 is v.
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A Kasteleyn orientation on G is an assignment K 2 A which satisfies the following
conditions:

(a) If h belongs to a boundary edge, that is, s1h 2HB, then

K.h/D 1:

(b) For other half-edges h,

K.h/CK.s1.h//D 1:

(c) For every face i , X
h2Hi

K.h/D 1:

For convenience extend K to HB by 0, so that property (b) holds for any half-edge.
K.G/ will stand for the set of all Kasteleyn orientations of G. Vertex flips act on
the set K.G/. Two Kasteleyn orientations are equivalent if they differ by vertex flips.
Write ŒK.G/� for the set of equivalence classes of Kasteleyn orientations, and ŒK� for
the equivalence class of K.

Observation 5.2 Equivalent assignments give the same value to any half-edge of a
bridge.

Definition 5.3 The legal side of a bridge e is the half-edge h 2 s�11 .e/ with K.h/D 0.
The other side is illegal.

The main goal of this subsection is to show that there is a natural bijection between
SR0

g;k;l
and f.G; ŒK�/ jG 2R0

g;k;l
; ŒK� 2 ŒK.G/�=Aut.G/g.

We first show how a graded structure induces an element in ŒK.G/�. Take a graded
surface .†;S; s/ whose corresponding embedded ribbon graph, defined by the JS
differential, is G.

Definition 5.4 Let v 2 V I , and let fhigiD1;2;3 be its three half-edges, ordered so that
s0hi D hiC1. A choice of lifting for v is a choice of lifts lhi 2 Sv for the oriented T 1v hi
(see Notation 2.23) such that

(26) lhiC1 DR�iC2� lhi for i D 1; 2;

where �i D].Tvhi ; TvhiC1/.
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Let @†b be a boundary component. Write Hb D fhigmiD1, where the hi 2H I are the
half-edges which are embedded in @†b , ordered so that hiC1 D s1.s�12 .s1.hi ///. Put
vi D hi=s0. A lifting for @†b is the unique choice of lifts lh 2 Svi of T 1vih, for any i
and any h 2Hvi , satisfying the following requirements:

(a) For hD hi 2 s1Hb , we have lh D s.vi /.

(b) If vi is not a marked point, let f D s0hi and put � D].hi ; f /. Then

lf DR�C2� lhi and ls�10 hi
DR� lhi :

(c) If vi is a marked point, ls�10 hi
DR3� lhi .

A choice of lifting is a choice of lifting for any vertex, and a lifting for any boundary
component of the graph.

Note that given a choice of lifting in a vertex v, (26) holds also for i D 3, since
composing (26) for i D 1; 2; 3 yields

R
6�C

P3
iD1 �i

lh1 DR8� lh1 D lh1 ;

where the first equality follows from
P
�i D 2� , and the last equality uses that R4� is

the identity map. This also shows that a choice of a lifting for an internal vertex does
not depend on the choice of which half-edge is taken to be h1. In addition, note that a
lifting of a boundary does not depend on choices.

Figure 15 illustrates the three types of liftings described above.

A consequence of the definition of the graded boundary conditions is the following.

Observation 5.5 Consider a lifting for the boundary @†b . With the above notation , if
vi is a marked point , then lhi D R2�P.hi�1/lhi�1 . If vi is a boundary vertex which
is not a marked point , then lhi D P.hi�1/lhi�1 . In both cases , R�P.hi�1/lhi�1 D
ls1.hi�1/ D ls�10 hi

.

Remark 5.6 Iterating Observation 5.5 over all boundary vertices, we are led to the
single constraint lhi DR2kb� lhi , where kb is the number of boundary marked points
of the boundary component @†b . By unwinding the alternations in boundary marked
points, we see that q.
/D kbC 1 for 
 a simple closed path isotopic to @†b .
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h1

h2

h3

v l 0
h1

lh1

l 0
h2

lh2
l 0
h3

lh3

.s0/�1h

f

h
v

lf

lh

l.s0/�1h

.s0/�1h
v

h

l.s0/�1h

lh

Figure 15: In this figure the three types of liftings from Definition 5.4 are
illustrated. The left column represents the local picture at the surface, while the
right column represents the corresponding picture at the level of the spin fiber.
Each vector on the left-hand side has two preimages on the right-hand side
(where the angles between consecutive vectors on the right are half of those
from the left). In the top row an internal trivalent vertex v is drawn. For v there
are two possible lifts: flh1 ; lh2 ; lh3g and fl 0

h1
; l 0
h2
; l 0
h3
g. In the middle row, v

is a trivalent boundary vertex and in the bottom row v is a boundary marked
point. In both of these cases the horizontal line in the left column represents
the boundary, and in both cases lh is determined from the data of the grading,
so there is no choice in the liftings, and they are as in the figure.

A choice of a lifting induces an assignment K 2A as follows. K.h/D 1 if s1h 2HB.
For an internal half-edge h, considered as an arc from u to v, we have lifts lh and ls1.h/
of T 1u h and T 1v s1h, respectively. Now, R�P.h/lh also covers T 1v s1h, hence it equals
either ls1.h/ or R2� ls1.h/. In the first case we define K.h/D 1, otherwise K.h/D 0.
Write K.†;S; s/ for the set of all assignments of G induced by choices of liftings.

Definition 5.7 A vertex lift flip in a vertex v 2V I is the involution of the set of choices
of lifts which takes one choice to the choice that differs exactly in the lift at v.

Lemma 5.8 If C and C 0 are two choices of lift which differ by a vertex lift flip in v,
the corresponding assignments K and K 0 differ by a vertex flip fv . The vertex flips act

Geometry & Topology, Volume 27 (2023)



The combinatorial formula for open gravitational descendents 2593

commutatively freely transitively on K.†;S; s/. The correspondence between choices
of lift and K.†;S; s/ is a bijection. As a conclusion , jK.†;S; s/j D 2jV

I .G/j.

Proof The first assertion as well as the commutativity and transitivity of the action are
straightforward. The rest will follow from proving that the action is free. In order to
show this, note that we can think ofK.†;S; s/ as subset of ZH

I

2 . This is a vector space,
and a vertex flip fv is just an addition of an element zfv 2 ZH

I

2 which is s1–invariant
and zero everywhere except for edges with exactly one of their ends being v. Thus,
we can also think of zfv as a function from E to Z2 which vanishes identically on
boundary edges. In other words, zfv is canonically a 1–cochain with coefficients in Z2
relative to boundary. In fact, if ı is the coboundary operator on the relative cochain
complex defined on † by the 1–skeleton G, then zfv D ıev , where ev is the 0–cochain
which is 1 only at v. If the action of vertex flips were not free, there would be a subset
A� V I such that X

v2A

zfv D 0;

or equivalently
ı
X
v2A

ev D 0;

so
P
v2A ev would be ı–closed in H 0.†; @†/ ' H2.†/

�, by Poincaré–Lefschetz
duality. But H2.†/D 0, which means AD∅.

We now study K.†;S; s/ more carefully.

Proposition 5.9 Fix K 2K.†;S; s/.

For h 2H I, put v D h=s0, uD .s1h/=s0, f D s�10 s1h and , if u is not a marked point ,
f 0 D s0s1h. Write � D].P.h/T 1v h; T 1u f / 2 .��; �/ and ˛ D].f 0; f / 2 .0; 2�/ if
u is not a marked point. Let lh and lf denote the lifts of T 1v h and T 1u f , respectively,
induced by K, and when u is not a marked point , let lf 0 be the lift of T 1u f

0. Finally,
let "DK.h/. Then we have the following equalities:

(a) lf DR2�"C�P.h/lh.

(b) If u is not a marked point , lf 0 DR2�.1C"/C��˛P.h/lh and � �˛ 2 .��; �/.

For h 2HB from v to u, write f D s2h. If u is a marked point , then R2�P.h/lh D lf .
If u is not a marked point , write f 0 D s0s1h and � D ].P.h/T 1v h; T 1u f 0/ 2 .��; 0/.
Then P.h/lh D lf and R�C2� lh D lf 0 .
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Proof We prove it for h2H I; the proof for boundary half-edges is similar and follows
from Observation 5.5. We have

K.h/D " () R�P.h/lh DR.1C"/2� ls1.h/

() R�P.h/lh DR.1C"/2�.R2�C��� lf /

() R�P.h/lh DR"2� lf ;

where the equivalence in the second line follows from the definition of a choice of lift
in a vertex, while the equivalence in the last line is a consequence of Remark 2.25. The
second claim follows from lf 0 DR�2��˛lf and the cyclic order of the half-edges.

We now prove:

Lemma 5.10 If K 2K.†;S; s/, then K is a Kasteleyn orientation.

Proof Property (a) of Kasteleyn orientations is just Observation 5.5. Property (b) is
reduced, thanks to Remark 2.25 and the construction of K, to

R�P.s1.h//R�P.h/DR2� ;

but this follows from Proposition 2.28 applied to the piecewise smooth closed curve
h! xh! h, where xh is h with the opposite orientation.

To show property (c), let h1; : : : hm be an ordering of Hi such that s2.hj / D hjC1.
Set vj D hj =s0. Let lhj be the lift of T 1vj hj determined by K, using Lemma 5.8.
Proposition 2.28 applied to the piecewise smooth curve 
i Dh1!h2!� � �hm!h1 is
equivalent to P.
i /lh1 DR2� lh1 . Put �jC1D]

�
P.hj /T

1
vj
hj ; T

1
vjC1

hjC1
�
2 .��; �/.

Now, by Proposition 5.9,

R�jC1P.hj /lhj DR"j2� lhjC1 ; with "j 2 Z2;

where "j DK.hj /. Iterating this equation for j D 1; : : : ; m, we get

lh1 DR2�"mC�1P.hm/R2�"m�1C�mP.hm�1/ � � �R2�"1C�2P.h1/lh1

DR2�
Pm
iD1 "i

R�1P.hm/R�mP.hm�1/ � � �R�2P.h1/lh1 :

On the other hand, R�1P.hm/R�mP.hm�1/ � � �R�2P.h1/DR2�.1Cq.
i // by the def-
inition of q. But q.
i / D 0, since 
i is trivial in the homology of †. So the sumPm
iD1 "i D

Pm
iD1K.hi / must be odd.

Theorem 5.11 Let G and † be as above. There is a bijection between Spin.†/, the
set of isomorphism classes of graded spin structures on †, and ŒK.G/�.
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Proof Given a graded spin structure .S; s/ on †, we have constructed an equiva-
lence class of Kasteleyn orientations, and this equivalence class depends only on the
isomorphism type of .S; s/, so that we get a map

ŒK� W Spin.†/! ŒK.G/�:

We shall construct a map Spin in the other direction.

Fix K 2K.G/. We first construct the restriction of the spin bundle to G, the 1–skeleton
of †. For any vertex v, write

Nv D
[
i

fh0ig;

where h0i are the open half-edges emanating from v, after removing their second
endpoint. We define Spin.K/jNv as the trivial spin cover of T 1†jNv . On any fiber of
Spin.K/ there is an action of R=4�Z; denote it by R� .

For a vertex v, choose sections lhi W h
0
i ! Spin.K/jh0

i
which cover T 1v hi so that for any

hi …H
B,

R2�C�i .v/lhi .v/D ls0.hi /.v/;

where �i D].T 1v hi ; T 1v s0.hi //.

The transition map ge0;s1.e/0 W Spin.K/je0 ! Spin.K/js1.e/0 is given by identifying
R2K.e/��� lh and ls1h, and extending using the R=4�Z–action.

It follows from construction and from property (c) of Kasteleyn orientations that for
each i 2 Œl �, the spin structure on the boundary of face i of G, which is a topological
disk, satisfies Proposition 2.28, and hence can be extended uniquely to the face. Thus,
we have constructed a spin structure on †. The section flhgh2s1HB is evidently a
grading. Call this graded spin structure Spin.K/. It can be verified easily that equivalent
Kasteleyn orientations give rise to isomorphic graded spin structure, and that the maps
ŒK� and Spin are inverse to each other.

Knowing now that the data of an equivalence class of Kasteleyn orientations is equivalent
to the data of a graded spin structure, we may try to calculate q and Q using K.

Definition 5.12 Let 
 D .h1! � � � ! hm.! h1// be an open (closed) directed path
in G 2R0

g;k;l
without backtracking; that is, the directed edge s1h cannot follow h in

the path. Put vi D hi=s0. We say that 
 makes a bad turn at vi if either

(a) hi�1 2H
I and hi ¤ s2hi�1, or

(b) hi�1 2H
B and hi D s0s1hi�1,
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Figure 16: Good and bad turns. In this figure a line with an arrow represents
a half-edge in a directed path, and the orientation is always counterclockwise.
In the top row an internal vertex is drawn; the left shows a good turn, the
right a bad turn. In the middle row the horizontal line is the boundary, and
the surface lies above it. The oriented half-edges in the boundary belong to
s1H

B. Only the leftmost image represents a bad turn. In the bottom row the
oriented half-edges in the boundary component are boundary half-edges. The
image on the left is a good turn, while the other two are bad.

where i � 1 is taken modulo m in the closed case. Otherwise it makes a good turn.
BT.
/ is the number of bad turns.

See Figure 16 for illustrations of good and bad turns.

Proposition 5.13 Fix ŒK�. With the conventions of the previous definition:

(a) For 
 closed , q.
/D qK.
/ WD 1C
P
i K.hi /CBT.
/ for any K 2 ŒK�.

(b) For 
 open , with h1; hm 2 s1HB, let z
 be the subarc obtained from 
 after
removing small neighborhoods of its endpoints. Then Q.z
/ D QK.
/ WD

1C
P
i K.hi /CBT.
/ for any K 2 ŒK�.

We defined z
 in order to avoid marked points as endpoints.

Proof FixK 2 ŒK�. Recall the correspondence between Kasteleyn orientations and lifts
(Lemma 5.8), and take the corresponding lift l . Put �jC1D].P.hj /T 1hj ; T 1hjC1/2
.��; �/, write "j DK.hj /, and define btjC1 2Z2 to be 1 if and only if 
 makes a bad
turn in vjC1, and otherwise 0. Proposition 5.9 is equivalent, in this notation, to

(27) R�jC1P.hj /lhj DR."jCbtjC1/2� lhjC1 :
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When 
 is closed, iterating (27) for j D 1; : : : ; m we get that

lh1DR2�."mCbt1/C�1P.hm/R2�."m�1Cbtm/C�mP.hm�1/ � � �R2�."1Cbt2/C�2P.h1/lh1

DR2�
Pm
iD1 "iCbtiR�1P.hm/R�mP.hm�1/ � � �R�2P.h1/lh1

DR2�.BT.
/C
Pm
iD1 "i/

R.1Cq.
//2� lh1

DR2�.q.
/C1CBT.
/C
Pm
iD1 "i/

lh1 ;

where the final equality uses the definition of q, Definition 2.26.

Similarly, when 
 is open, iterating (27) over j D 1; : : : ; m� 1 and applying the same
reasoning, this time using Definition 2.30, we obtain, as needed,

lhm DR2�.BT.
/C
Pm�1
iD1 "iCQ.
//

lh1 DR2�.1CBT.
/C
Pm
iD1 "iCQ.
//

lh1 ;

where we used "m DK.hm/D 1.

Remark 5.14 The first case of the proposition appeared before in [12]. Although the
formula depends on the orientation of 
 , the result is orientation-independent in the
closed case. Indeed, flipping the orientation changes each K.h/ to K.s1h/DK.h/C1
and interchanges the sets of good turns and of bad turns. Thus, the total change is
the number of edges plus the number of vertices of 
 , that is, a change by 2m D 0.
A similar argument shows that in the open case the result changes by 1 when the
orientation is flipped.

Definition 5.15 An automorphism � W G ! G defines an action �� on K.G/ and
ŒK.G/� by

.��K/.h/DK.�
�1.h//:

An automorphism � of .G; ŒK�/ is an automorphism � of G for which ��ŒK�D ŒK�.
We write Aut.G; ŒK�/ for the group of these automorphisms.

Proposition 5.16 For any G 2 SR0
g;k;l

, the mapa
z2ZG=Aut.G/

M.G;z/!

a
ŒK�2ŒK.G/�=Aut.G/

RE.G/
C

=Aut.G; ŒK�/

which takes a metric graded graph .G; z; `/ to .ŒK�; `/, where ŒK� is the Kasteleyn
orientation associated to the graded spin structure of comb�1.G; z; `/, is a homeomor-
phism.
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Proof It is enough to show that along a path .†t /0�t�1 in comb�1.M.G;z//, the
equivalence classes ŒKt � D ŒKt .†t ;St ; st /� 2 ŒK.G/� are the same. Take K0 2
ŒK.†0;S0; s0/�. This determines the maps Q0 and q0, by Proposition 5.13 and the
fact that any piecewise smooth path may be isotoped to a nonbacktracking one on the
1–skeleton G ,!†0. Now, varying .†t ;St ; st / is equivalent to varying the metric `t
on G in the component M.G;z/ continuously. But then it is evident that the maps Qt

and qt determined by K0 on the paths in the resulting embedded graph do not change.
By Lemma 2.39 we see that ŒKt �D ŒK0�.

In light of Proposition 5.16, we can redefine SR0 and the related combinatorial moduli
spaces.

Notation 5.17 From now on we write

SR0g;k;l D f.G; ŒK�/ jG 2R
0
g;k;l ; ŒK� 2 ŒK.G/�=Aut.G/g:

Define M.G;ŒK�/ DRE.G/
C

=Aut.G; ŒK�/, the moduli of metrics on G together with a
fixed equivalence class of Kasteleyn orientations. We have that M.G;ŒK�/ ,!M.G;z/

for a unique z 2 ZG , as in Proposition 5.16. We therefore set M.G;ŒK�/ DM.G;z/.
Define analogously M.G;ŒK�/.p/ and M.G;ŒK�/.p/.

Example 5.18 Fix a connected componentC of MR
g;k;l

. Suppose that smooth surfaces
in C have b boundary components and write gsD 1

2
.g�bC1/. Let kj for j D 1; : : : ; b

be the number of boundary marked points on boundary component j , for some locally
defined numbering of the boundary components. One ribbon graph which corresponds
to surfaces in C is the graph G 2R0

g;k;l
with

V D

fv�j;jC1gjD2;:::;b[fv
C
j;jC1gj2Œb�1�[fpj;igj2Œb�;i2Œkj �[fv

˙
i giD2;:::;l[fu

˙
i ; w

˙
i gi2Œgs�:

See also Figure 17. Only the v�i are internal vertices, while the vertices pj;i , vCj;jC1
and v�j�1;j belong to the j th boundary component. The other boundary vertices belong
to the first boundary. So

H I
D

[
i2Œb�

Hbdry;i [Hbridges[Hgenus[Hinternal marked;

where:

(a) Hbdry;j D fej;ig0�i�kjC.1�ıjb/ for j ¤ 1 are the boundary edges of boundary
component j and of face 1, and ej;i=s0 D pj;i for 1 � i � kj . In addition,
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a1
b1

c1

d1

a2

b2

c2

d2g2

f2

g1

f1

b1;2

e1;k1

e1;1

e1;0
x1

y1

h1

x3
y3

x2
y2

h3

h2
dgs

ggs fgs

cgs
bgs

ags bb�1;b�2

eb�1;kb�1

eb�1;1

eb�1;0

bb�1;b

eb;kb

eb;2

eb;1

eb;0

eb�1;kb�1C1

Figure 17

ej;0=s0 D v
C
j;jC1 and .s1ej;0/=s0 D pj;1. For j ¤ b; 1, the edge ej;kj connects

pj;kj to v�j�1;j , and we have ej;kjC1=s0D v
�
j�1;j and s1.ej;kjC1/=s0D v

C
j;jC1.

For j D b, we have ej;kj =s0 D v
�
b�1;b

. They are ordered so that ej;iC1 D s02ej;i ,
where s02.e/ WD s1.s

�1
2 .s1.e/// for e 2 s1HB.

(b) Hbdry;1Da1; b1; c1; d1; a2; : : : ; dgs ; h2; : : : ; hl ; e10; e1;1; : : : ; e1;k1 is the set of
boundary edges of the first boundary, which all belong to face 1, ordered by s02
order. The boundary vertices, in counterclockwise order starting from vC1;2, the
vertex of the bridge, are

vC1;2; u
C
1 ; w

C
1 ; u

�
1 ; w

�
1 ; u

C
2 ; : : : ; w

�
gs
; vC2 ; : : : ; v

C

l
; p1;1; : : : ; p1;k1 :

The adjacency relation is thus a1=s0 D vC1;2. For i > 1, we have

ai=s0 D w
�
i�1; bi=s0 D u

C
i ; c1=s0 D w

C
i ; d1=s0 D u

�
i :

Next, h2=s0 D w�gs , and hi=s0 D vCi�1 for i > 1. Finally, e1;0=s0 D vCl , and
e1;i=s0 D p1;i for i > 0.

(c) Hbridges D fbj;jC1; xbj;jC1gj2Œb�1� is the set of bridges between consecutive
boundaries. We have

bj;jC1=s0 D v
C
j;jC1;

xbj;jC1 D s1bj;jC1; xbj;jC1=s0 D v
�
j;jC1:

(d) Hgenus D ffi ; xfi ; gi ; xgigi2gs is a set of internal half-edges of face 1 such that fi
goes from uCi to u�i and satisfies xfi D s1fi , and gi goes from wCi to w�i and
satisfies xgi D s1gi .
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(e) Hinternal markedDfxi ; xxi ; yi ; xyigiD2;:::;l is the following set: yi is the unique edge
of face i satisfying yi=s0 D v�i , and xyi D s1yi . The third half-edge of v�i is xi ,
and xxi D s1xi , while xxi=s0 D vCi .

We now describe K.G/. First of all, K.h/ D 1 if s1h 2HB or h D yi . There is no
constraint on K.xi /, but different values are equivalent by flips in v�i . Since there are
no more internal vertices, for all other edges there are no constraints and no relations.
Thus there is a total of 22gsCb�1 D 2g different graded spin structures in this case.
Since this is a topological invariant, for any generic open genus g surface in C there
are 2g graded structures. Thus, for any generic open genus g surface which satisfies
condition (5) there are 2g graded structures.

Remark 5.19 In [34] a notion of parity is defined for smooth graded surfaces with
an odd number of boundary points for each component. It is defined as follows.
Given such a graded surface .†;S; s/, choose a symplectic basis f˛i ; ˇigi2Œgs� to
H1.†;Z2/=H0.@†;Z2/. The quadratic form q factors through this quotient. Define
Arf.†/D

P
q.˛i /q.ˇi / (mod 2). This is an isotopy invariant. A spin structure is said

to be even if the Arf is 0, otherwise it is odd. This notion is generalized, also in [34],
to give the open Arf invariant, which is defined for any graded surface, and specializes
to the parity if there is an odd number of markings on each boundary.

For example, with the notation of Example 5.18, suppose that each kj is odd. A possible
choice for the symplectic basis is

˛i D bi ! ci ! xfi ! bi ; ˇi D ci ! di ! xgi ! ci :

Now, by Proposition 5.13,

q.˛i /D 1CK.bi /CK.ci /CK. xfi /CBT.˛i /DK. xfi /;

since there is one bad turn. Similarly, q.ˇi /DK.xgi /. Therefore,

Arf.†/D
X
i2Œgs�

K. xfi /K.xgi /:

A simple calculation now shows that the difference between even and odd spin gradings
in this case is 2gsCb�1 D 2

1
2
.gCb�1/.

Remark 5.20 Kasteleyn orientations are named after W Kasteleyn, who used them
to analyze dimer statistics; see for example [23]. The connection between Kasteleyn
orientations and spin structures on closed surfaces is established in [26; 12].
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a

b c

d

e

h

a

b c

d

e0 h0

Figure 18: G; @eG and Ge . The middle graph is @eG. We draw an half-edge
inside the face which contains it.

5.1.1 Adjacent Kasteleyn orientations Recall Construction–Notation 3. In the
cell structure of Mcomb

g;k;l
, the cell .G; ŒK�/ is adjacent to cells of the form .Ge; ŒKe�/

for edges e … Br.G/[Loop.G/ with ŒKe� 2 ŒK.Ge/�, by Proposition 4.49. We now
describe ŒKe� explicitly in terms of ŒK�.

Fix a Kasteleyn orientation K 2 ŒK�. Write h for the unique half-edge such that
K.h/D 1 and h=s1 D e. Write

aD s0.h/; b D s20.h/; c D s1.s0.s1.h///; d D s1.s
2
0.s1.h///I

see Figure 18. For brevity write Nx for s1.x/. Apart from some borderline cases, which
may be treated separately, we may assume all these vertices and half-edges are distinct,
and then, using vertex flips if needed, we may also restrict ourselves to the case where
K. Nd/ D 1. Note that E.G/ n e D E.Ge/ n e0 canonically for some e0 2 E.Ge/. We
therefore identify these sets, and also identify H.G/ n fh; s1hg and H.Ge/ n s�11 e0.
In Ge, let v01 be the vertex from which a and xd issue, and let v02 be the vertex from
which b and xc issue. We may take the half-edge h0 to be the third half-edge from v01.
Define the assignment K 0 WH I .G/! Z2 by

K 0.h0/D 1; K 0.xh0/D 0; K 0.d/DK.d/C 1D 1; K 0. xd/DK. xd/C 1D 0;

and K 0.f /DK.f / for any other half-edge f .

For later purposes, define, for a boundary loop e and a Kasteleyn orientation K 2 ŒK�,
an assignment K 0 by K 0.h/DK.h/ for any h with h=s1 ¤ f , where f is the unique
edge which shares a vertex with e, and otherwise K 0.h/DK.h/C 1.

Lemma 5.21 In both cases , K 0 2 ŒK.Ge/�, and moreover , K 0 2 ŒKe�.
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Proof The claim is straightforward when e is a boundary loop. Suppose that e …
Br.G/[Loop.G/. The first assertion is simple; we focus the second one. Write C.G/
and C.G0/ for the set of closed paths without backtracking in G and G0, respectively.
Write O.G/ and O.G0/ for the set of open directed paths without backtracking in G
and G0, respectively, which connect boundary vertices which are not marked points.
We have bijections fC W C.G/! C.G0/ and fO WO.G/!O.G0/, defined as follows.
For a path .e1! e2!� � �! em/2C.G/, the path fC .e1! e2!� � �! em/2C.G

0/

is defined by erasing any appearance of e in the sequence and adding e0 any time we
have a move f ! f 0 where the third edge of the vertex between f and f 0 is e. The
inverse map is defined similarly, but changing the roles of e and e0. The map fO is
defined in the same way.

Using Proposition 5.13 it is straightforward to verify that qK.
/D qK0.fC .
// for any

 2 C.G/, and QK.
/DQK0.fC .
// for any 
 2O.G/.

Now, let .†t ;St ; st /t2Œ0;1� be a continuous path in Mcomb
g;k;l

, with

.†t ;St ; st / 2 comb�1.M.Gt ;zt //; where Gt D

8<:
G if t < 1

2
;

@eG if t D 1
2
;

G0 if t > 1
2
;

and where the graded structure z02ZG corresponds to the Kasteleyn orientation ŒK�. In
light of Lemma 2.39, Proposition 5.16 and isotopy arguments, the Kasteleyn orientation
on G0 defined by .†t ;St ; st /t2. 12 ;1/ is the unique class of Kasteleyn orientations for
which q.
t / or Q.
t / is constant for any continuous family .
t �†t / of closed paths
or bridges. By performing an isotopy, we may assume that 
t is in fact a path in
the graph Gt . It is easy to see that for " small enough, fC .
 12�"/ D 
 12C" if the 
t
are closed, or fO.
 1

2
�"/ D 
 1

2
C" if they are open. In the first case, qŒK�.
 1

2
�"/ D

qŒK0�.
 1
2
C"/, while in the second the same equation holds for Q. By Lemma 2.39(c)

and Theorem 5.11, the graded structure zt for t > 1
2

must correspond to ŒK 0�.

5.1.2 Trivalent graphs

Definition 5.22 Recall Definition 4.23. Let G be a trivalent graph. Recall that a
half-node is an .NB/�1–preimage of a node, and that their collection is denoted by
HN.G/. An extended Kasteleyn orientation on G is a map K WH.G/[HN.G/! Z2
such that:

(a) For any h 2HB, K.h/D 0.
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(b) For any h 2H , K.h/CK.s1h/D 1.

(c) For any node v, if jN�1.v/j D 3, then KjN�1.v/ D 1. Otherwise K.vi;1/C
K.vi;2/D 1, where N�1.v/D fvi;1; vi;2g.

(d) For any face f ,
P
K.x/ D 1, where the variable x is taken from the set of

half-edges with x=s2 D f , together with the set of half-nodes which belong
to f .

Two extended Kasteleyn orientations are equivalent if they differ by the action of
internal vertex flips. Write ŒK� for the equivalence class of K. Define K.G/ and
ŒK.G/� as the sets of extended Kasteleyn orientations and the set of equivalence classes
of extended Kasteleyn orientations. Write Aut.G; ŒK�/ for the automorphism subgroup
of G which preserves ŒK�.

Item (c) above deals with the case that v is a contracted component whose normalization
contains at least three half-nodes. In the trivalent case, this can only happen if the
unique contracted component in Norm�1.v/ is a ghost, and its three marked points are
legal. Therefore there are exactly three corresponding half-nodes in the noncontracted
parts, and they are illegal.

With the exact same techniques as for Section 5.1, together with Corollary 2.22, we
obtain:

Lemma 5.23 For a trivalent G and a metric `, there is a natural bijection between
ŒK.G/� and Spin..combR/�1.G; `//. The induced mapa

z2ZG=Aut.G/

M.G;z/!

a
ŒK�2ŒK.G/�=Aut.G/

RE.G/
C

=Aut.G; ŒK�/

is a homeomorphism. In particular , ZG ' ŒK.G/� canonically. A half-node v in .G; z/
is illegal if and only if K.v/D 1 for any K 2 ŒK� which corresponds to z.

From now on we denote trivalent graphs .G; z/ by .G; ŒK�/, for the corresponding
ŒK� 2 ŒK.G/�.

Definition 5.24 Define M.G;ŒK�/ WD RE.G/
C

=Aut.G; ŒK�/, the moduli of metrics
on MG , together with a fixed equivalence class of Kasteleyn orientations. Define
M.G;ŒK�/ WDM.G;z/, for the unique z which corresponds to ŒK� by the above lemma.
For f1; : : : ; fs 2 E.G/, set @f1;:::;fsM.G;ŒK�/ to be the face of M.G;ŒK�/ defined by
setting the coordinates f̀1 ; : : : ; f̀s to 0. For p1; : : : ; pl > 0, define M.G;ŒK�/.p/ and
M.G;ŒK�/.p/ by setting the perimeters to these values.
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Suppose G is a trivalent graph K 2K.G/, and let e 2 Br.G/. In the case that e is a
boundary edge, let h1 be its internal half-edge, h1=s1 D e, with h1 2H I . In the case
that e is an internal edge, write s�11 .e/D fh1; h2g, where K.hi /D i (mod 2). Define
@eK to be the unique map @eK WH.@eG/[HN.@eG/! Z2 which agrees with K on
any half-edge h0 … s�11 e, and such that @eK.@ehi /D i (mod 2). In a similar way, one
can define @e1;:::;erK for a compatible sequence of bridges.

Observation 5.25 For any trivalent .G; ŒK�/, and bridge e, the graph .@eG; Œ@eK�/
is a well-defined trivalent graph , in particular @eK 2 ŒK.@eG/�. Moreover , the map
@e W ŒK.G/�! ŒK.@eG/� is a bijection.

In addition , for any trivalent connected graph .G; ŒK�/, there is a unique smooth trivalent
graph .G0; ŒK 0�/ and a unique (up to order) compatible sequence of bridges e1; : : : ; er
with .G; ŒK�/D @e1;:::;er .G

0; ŒK 0�/.

With the same techniques as in the proof of Lemma 5.21, one obtains:

Lemma 5.26 Let G be a trivalent graph , and let e1; : : : ; er be a compatible sequence
of bridges. Under the identification of Lemma 5.23 between ZH and ŒK.H/�, for
H DG; @erG; : : : ; @e1;:::;erG, we have that

M@e1;:::;er .G;ŒK�/
' @e1;:::;esM@esC1;:::;er .G;ŒK�/

canonically.

In what follows we shall identify M.G;z/ and the corresponding M.G;ŒK�/ without
further notice.

5.2 Orientation

In this subsection we construct an orientation to Mcomb
g;k;l

. We do it by writing an
explicit formula for the orientation of each highest-dimensional cell of Mcomb

g;k;l
.p/—

that is, for cells M.G;ŒK�/.p/ whereG 2R0; ŒK�2 ŒK.G/�— and then showing that on
codimension-one faces between two such cells, the induced orientations disagree. We
also discuss the induced orientation on the boundary, and prove that these orientations
are the ones induced from Mg;k;l by comb�.

For G 2R0
g;k;l

, we have a map

(28) AG WR
E.G/
C

!RF.G/ DRŒl�;
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which takes as input a collection of edge lengths and outputs the face perimeters, and

M.G;ŒK�/.p/D A
�1
G .p/=Aut.G; ŒK�/:

In particular, orienting M.G;ŒK�/ is equivalent to orienting ker.AG/=Aut.G; ŒK�/. Us-
ing the exact sequence

(29) 0! ker.AG/!RE.G/!RF.G/ DRŒl�! 0;

we see that orienting RE.G/ and RŒl�, or equivalently, orderingE.G/ and Œl �, up to even
permutations, gives an orientation to M.G;ŒK�/.p/, as long as the action of Aut.G; ŒK�/
preserves the orientation.

Fix any order for Œl �, for example 1; 2; : : : ; l . Choose any Kasteleyn orientationK 2 ŒK�.
Define oi D o.G;K;i/ by V

K.h/D1
h=s2Di

d`h;

that is, we take the wedge of d`h over half-edges h of face i with K.h/ D 1. The
wedge is taken counterclockwise. Because there is an odd number of half-edges of the
i th face with KD 1, the element oi is well defined, and independent of which half-edge
appears first. In addition, oi is an odd-degree form.

Definition 5.27 Choose any Kasteleyn orientation K. Put

o.G;K/ D
lV
iD1

oi :

Define xo.G;K/ as the orientation on ker.AG/ induced from the exact sequence (29)
when RE.G/ is oriented by o.G;K/ and RŒl� by

Vl
iD1 dpi .

Remark 5.28 Since both dpi and oi are odd variables, choosing another order on Œl �
does not change xoG .

Lemma 5.29 The orientation xo.G;K/ depends only on ŒK�.

Before we get to the proof, we add a few auxiliary definitions.

Definition 5.30 Let G be any open ribbon graph. A good ordering is a bijection
n WH I ! jH I j which satisfies the following properties. First, if i.h/ < i.h0/, that is,
h belongs to face marked i and h0 to face marked i 0 > i , then n.h/ < n.h0/. Thus,
half-edges of the same face are clustered together. Second, the ordering n, when
restricted to half-edges of a single face, agrees with the counterclockwise ordering.
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Figure 19: A good ordering of internal half-edges: the bold numbers in the
middles of the faces are the labels of the faces, the smaller ones next to
the half-edges are the half-edges numbers in the ordering. The numbers of
half-edges in face i are smaller than those of face j if i < j . In each face the
numbers of half-edges agree with the cyclic order induced by the face’s
orientation.

Let n be a good ordering, as in Definition 5.30, and K 2K.G/ a Kasteleyn orientation.
Define HK D fh 2H I jK.h/D 1g. We also define nK W jH I j ! Z by

nK.i/D jfh 2HK j n.h/ < igj:

Figure 19 illustrates a good ordering. Note that the restriction of a good ordering to a
subset of H I induces an order on its elements.

Proof of Lemma 5.29 Take any K 2 ŒK�. We recall from Lemma 5.8 that any other
element of ŒK� can be obtained from K by successive flips in vertices. It will thus
suffice to prove that the orientations induced by K and K 0 are the same when K and
K 0 differ by a single flip in vertex v. It will be enough to prove that o.G;K/ D o.G;K0/.

Fix a good ordering n. By definition,

o.G;K/ D
V

e2HK

d`e;

where the order of the wedging is the order n restricted to HK . The sign difference
between o.G;K/ and o.G;K0/ can be found geometrically by the following procedure,
also illustrated in Figure 20. Define

LK D f.n.h/; 0/ j h 2HKg and LK0 D f.n.h/; 1/ j h 2HK0g �R2:

For any e 2 E draw the chord c.e/ between .n.h0/; 0/ 2 LK and .n.h1/; 1/ 2 LK0 ,
where h0=s1 D h1=s1. By definition the change of signs between oG;K and oG;K0 is
just the parity of the number of intersections of these chords (slightly perturbed, if
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15

HK0 D 1; 5; 6; 7; 9; 10; 12; 13; 14; 15

HK D 1; 2; 3; 6; 7; 8; 10; 13; 14; 15

LK0

LK
1 2 3 4 5 6 7 8 9 10 1112 1314 15

Figure 20: In this diagram HK and HK0 are listed for two Kasteleyn orienta-
tionsK andK 0 for the graph G in the picture, whose half-edges are identified
with their n–value for some good order n. The Kasteleyn orientations K and
K 0 can be read from HK and HK0 , and they differ by a flip in the left internal
vertex. Below the chord diagram of LK and LK0 is drawn, and the number
of intersections is indeed even.

necessary). We shall prove that this number is always even. Note that for all edges
except for those issuing from v, the chords are parallel and vertical.

Let h1 be a half-edge of v. Put h2D s0.h1/, h3D s20.h1/ and Nhj D s1.hj /. Apart from
some borderline cases which can be treated separately, we may assume that we are in
the scenario

n. Nh2/D i1; n.h1/D i1C 1; n. Nh3/D i2;

n.h2/D i2C 1; n. Nh1/D i3; n.h3/D i3C 1:

Thus, the chord chj is either the chord between .ij C 1; 0/ and .ij�1; 1/, or the chord
between .ij C 1; 1/ and .ij�1; 0/. It is easy to see that the number of vertical chords it
intersects is the size of

Ij D fh 2HK n fhi ; xhigiD1;2;3 j n.h/ 2 .aj ; bj /g;

where aj D min.nK.ij C 1/; nK.ij�1// and bj D max.nK.ij C 1/; nK.ij�1//. For
exactly one j 2 f1; 2; 3g we have Ij D IjC1[ IjC2, where addition is modulo 3, and
the union is disjoint. Thus, any vertical chord either misses the chords chj or meets
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exactly two of them. In addition, it can be checked directly that the chords chj intersect
each other an even number of times. The lemma follows.

Corollary 5.31 For any G 2R0
g;k;l

and ŒK� 2 ŒK.G/�, the group Aut.G; ŒK�/ acts in
an orientation-preserving manner. In particular , the orientation xo.G;K/ induces , for
any p, an orientation on M.G;ŒK�/.

Denote this orientation by xo.G;ŒK�/. The main theorem of this subsection is:

Theorem 5.32 The orientations xo.G;ŒK�/ induce a canonical orientation on the space
Mcomb
g;k;l

.p/.

Proof We shall show that the orientations oG for G 2 SR0
g;k;l

are compatible on
codimension-one faces. This will show that a suborbifold of Mcomb

g;k;l
which differs from

Mcomb
g;k;l

in codimension-two cells is oriented, hence also Mcomb
g;k;l

is. Since Mcomb
g;k;l

itself
differs from Mcomb

g;k;l
by codimension-two strata in the interior, and in codimension-

one boundary, this argument will show that Mcomb
g;k;l

is also endowed with a canonical
orientation.

We therefore have to show that for any .G; ŒK�/ 2 SR0
g;k;l

and e … Br.G/[Loop.G/
with .G0; ŒK 0�/ D .Ge; ŒKe�/, the orientations induced on @eM.G;ŒK�/ by M.G;ŒK�/

and by M.G0;ŒK0�/ disagree.

Put H I D H I .G/ and H
0I D H I .G0/. Note that we have a natural identification

of E.G/ n e and E.G0/ n e0, for some edge e0, so from now on we treat them as the
same set. Choose a good ordering n for H I . There exists a good ordering n0 of H

0I

which, when restricted to H
0I n s�11 .e0/, defines the same order as the restriction of

n to H
0I n s�11 .e0/ ' H I n s�11 .e/. Fix a Kasteleyn orientation K 2 K.G/ and set

h 2 s�11 .e/ with K.h/D 1. Write

aD s0.h/; b D s20.h/; c D s1.s0.s1.h///; d D s1.s
2
0.s1.h///I

see Figure 21. For brevity write Nx for s1.x/. Apart from some borderline cases which
may be treated separately, we may assume all these vertices and half-edges are distinct,
and then, using vertex flips if needed, we may also restrict ourselves to the case where
K. Nd/D 1. In this case we can assume n was chosen in such a way that

n.xa/D i; n.h/D i C 1; n. xd/D i C 2; n.d/Dm; n.xc/DmC 1;

n.c/D p; n.xh/D pC 1; n.b/D pC 2; n. Nb/D j; n.a/D j C 1;

for some i , m, p and j , as in Figure 21.
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i

i C 1

i C 2

j

j C 1

p

pC 1

pC 2

m

mC 1

j 0

j 0C 1

j 0C 2

i 0
i 0C1

G Ge

e0e

m0

m0C 1

m0C 2
p0

p0C 1

Figure 21: The restrictions of the good orderings n and n0 to the half-edges
of G and Ge .

A canonical outward normal for M@eG ,!MG is just �d`e . We see that the induced
orientation on M@eG is just

(30) .�1/nK.n.h//C1
V

f 2HKnfhg

d f̀ D .�1/
nK.iC1/C1

V
f 2HKnfhg

d f̀ ;

where as usual the wedge is taken in the order nK induced by n.

In G0, let v01 be the vertex from which a and xd issue, and let v02 be the vertex from
which b and xc issue. We may take the half-edge h0 to be the third half-edge from v01.
Then, for some i 0, m0, p0 and j 0, we have

n0.xa/D i 0; n0. xd/D i 0C 1; n0.d/Dm0; n0.h0/Dm0C 1; n0.xc/Dm0C 2;

n0.c/D p0; n0.b/D p0C 1; n0. Nb/D j 0; n0.xh0/D j 0C 1; n0.a/D j 0C 2:

By Lemma 5.21 we have a representative K 0 of ŒKe�, described by

K 0.h0/D 1; K 0.xh0/D 0; K 0.d/DK.d/C 1D 1; K 0. xd/DK. xd/C 1D 0;

and K 0.f /DK.f / for any other half-edge f . As above, a canonical outward normal
for M@e0G

0 ,!MG0 is just �d`e0 . We see that the induced orientation on M@e0G
0 is

(31) .�1/nK0 .n
0.h0//C1

V
f 2HK0nfh

0g

d f̀ D .�1/
n0
K0
.m0C1/C1

V
f 2HK0nfh

0g

d f̀ :

The choice of n, n0 and K 0 makes the terms
V
f 2HKnfhg d f̀ and

V
f 2HK0nfh

0g d f̀

differ only in the relative location of d`d . By our assumptions on K. xd/ and K 0. xd/,
the difference is just the difference between nK. xd/�1D nK.iC2/�1 and n0K0.d/D
n0K0.m

0/. We subtracted 1 from nK. xd/ because we did not want to count h which
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occurs before xd in the order n. Now, nK.iC2/�1D nK.iC1/, as n.h/D i; K.h/D 1.
Similarly, n0K0.m

0/D n0K0.m
0C 1/� 1, since n0.d/Dm0 and K 0.d/D 1.

The total difference between the two orientations is thus

.�1/n
0

K0
.m0C1/C1Cn0

K0
.m0C1/�1CnK.iC1/C1CnK.iC1/ D�1;

as claimed.

Remark 5.33 The spaces Mg;k;l and Mcomb
g;k;l

.p/ are homeomorphic, therefore the
last theorem gives, in fact, another proof that Mg;k;l is oriented. Later we shall see
that the orientation constructed here agrees with the orientation of [35].

Corollary 5.34 For G 2 SR0g;k;l and e an internal edge which is not a bridge , the
two orientations on @eM.G;ŒK�/.p/ ' @eM.Ge;ŒKe�/.p/, induced as boundaries of
M.G;ŒK�/.p/ and M.Ge;ŒKe�/.p/, are opposite.

5.3 Critical nodal graphs and their moduli

5.3.1 Critical nodal ribbon graphs In this subsection we describe effective and
critical nodal graphs. They will parametrize strata which will participate in the analysis
of the intersection numbers and will contribute to the combinatorial formula. For
completeness we first describe slightly more general graphs.

Definition 5.35 A nodal spin ribbon graph with a lifting (graded nodal ribbon graph),
or a nodal graph for short, is a spin ribbon graph with a lifting (graded ribbon graph)
.G; z/, together with a subset V of legal points in B.Norm.G// nB.G/. We call V the
set of legal nodes of the nodal graph and s1V the illegal nodes, where s1 was defined
in Notation 4.28. The vertices and edges of the nodal graph are the vertices and edges
of Norm.G; z/ after forgetting the illegal nodes s1V . A metric is a metric on these
edges. If e is an edge in the nodal graph .G; z;V/, contracting the edge e yields the
nodal graph @e.G; z;V/ whose underlying graph is @e.G; z/, and whose legal nodes
are those legal nodes in @e.G; z/ which remain special points in Norm.@e.G; z// after
the contraction, where we use the natural correspondence between special points in
Norm.G; z/ and in Norm.@e.G; z//.

The components of the nodal graph are the connected components created after re-
moving s1V . More precisely, define an equivalence relation �N on the components of
Norm.G; z/ as follows. Components C1; C2 2 �0.Norm.G; z// are neighbors if one
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of them contains a legal point u … V such that s1u belong to the other component. For
C1; C2 2 �0.Norm.G; z//, we write C1 �N C2 if they can be connected in a path of
neighboring components. The components of the nodal graph are defined to be the
Norm–image of �N –equivalence classes.

In the case that the underlying graph is effective we have a more convenient definition.

Definition 5.36 An effective nodal spin ribbon graph with a lifting (effective graded
nodal ribbon graph), or an effective nodal graph, is a tuple .Gi ; zi ; m;V D fVeg/, or
.G; z/ for short, where

(a) .Gi ; zi / is an effective spin ribbon graph with a lifting (effective graded ribbon
graph),

(b) m W
S
i s1H

B.Gi /! Z�0, and

(c) the maps Ve W Œm.e/�!
S
i B.Gi / for e 2

S
i s1H

B.Gi / are injections.

We require the sets Ve D Ve.Œm.e/�/ to be disjoint. Denote by C.Gi ; zi ; m; fVeg/ the
different graded components of the graph, that is, the collection of .Gi ; zi /.

Let G be the graph obtained by choosing m.e/ points pe;1; : : : ; pe;m.e/ on e, ordered
according to the orientation of the boundary and identifying pe;i with Ve.i/. The
effective nodal graph is said to be connected if G is connected.

Write E.G/D
S
i E.Gi /; similarly define H I .G/, HB.G/, V.G/ and F.G/. For a

boundary edge eD h=s1 where h2 s1HB , we sometimes write m.e/Dm.h/. Vertices
in the image of Ve are called legal nodes and their set is denoted by V.G/. The boundary
marked points of G are boundary marked points of the Gi which are not legal nodes.
Denote them by B.G/. Define I.G/D

S
i I.Gi /.

An effective nodal ribbon graph is naturally embedded into the (topological) nodal
surface†D

�`
i †i

�
=�, defined as follows. †i is the topological open marked surface

into which Gi embeds, and in the case that Gi is a ghost it is a point. We identify
Gi with its image in †i . We add m.e/ points pe;1; : : : ; pe;m.e/ along the edge e, and
quotient by pe;i � Ve.i/. The genus of the graph is defined to be the (doubled) genus
of †.

A marked effective nodal graph is an effective nodal graph together with markings
mB W B.G/! Z and mI W I.G/! Z.

A graded critical nodal ribbon graph is an effective nodal graph such that each
.Gi ; zi / 2 SR0. In this case we use the Kasteleyn notation for components, .Gi ; ŒKi �/
rather than .Gi ; zi /, and we denote the whole graph by .G; ŒK�/ for short.
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A graded critical nodal graph G is odd if each Gi 2OSR0.

The notion of an isomorphism is the expected one. Write SRm
g;k;l

for the collection of
isomorphism classes of marked critical nodal graded ribbon graphs G with m nodes
and genus g such that mB WB.G/' Œk� and mI W I.G/' Œl �. Let OSRm

g;k;l
be the subset

of such graphs which are odd. Write Aut.G; ŒK�/ for the group of automorphisms of
.G; ŒK�/ 2 SRm

g;k;l
.

Define nongraded critical nodal ribbon graphs G D .Gi ; m;V/ in the same way, only
without the data of Kasteleyn orientations, so that each Gi belongs to R0 rather than
to SR0. Denote by Rm

g;k;l
the collection of isomorphism classes of nongraded critical

nodal ribbon graphs G with m nodes and genus g such that mB W B.G/ ' Œk� and
mI W I.G/' Œl �. Let ORm

g;k;l
be the subset of such graphs which are odd. Write Aut.G/

for the group of automorphisms of G 2Rm
g;k;l

.

A metric on a nodal ribbon graph is an assignment of positive lengths to its edges.

A bridge e 2E.G/ is an edge which is a bridge in one componentGi ofG. An effective
bridge is a bridge with m.e/D 0, if m is defined. Let Br.G; ŒK�/ be the collection of
bridges, and Breff.G; ŒK�/ the collection of effective bridges. As in the nonnodal case,
for brevity we shall usually omit ŒK� from the notation for Br and Breff. We similarly
define boundary loops as boundary loops in one component Gi of G, and effective
loops are boundary loops e with m.e/ D 0. Write Loop.G/ and Loopeff.G/ for the
collection of boundary loops and effective loops, respectively.

When it is understood from context whether or not the critical nodal graph is graded or
nongraded, we omit the words graded/nongraded, and just say critical nodal.

Remark 5.37 It is simple to verify that when .G; z;m;V/ is effective, Definitions 5.35
and 5.36 are equivalent. We shall therefore use Definition 5.36, which is more explicit,
whenever possible. It is also straightforward to verify that the definition of ORm

g;k;l

agrees with the one given in Notation 1.3.

In a metric effective nodal ribbon graph, the data of distances between illegal nodes to
other vertices is absent. On the other hand, the discrete data of which illegal node lies
on which edge, and the relative order of illegal nodes on a given edge, are included.
See the example at the bottom of Figure 22.

Observation 5.38 Under the forgetful map forspin W SRmg;k;l !Rm
g;k;l

, which forgets
the Kasteleyn orientation , odd graphs go to odd graphs and the preimage of G is
canonically ŒK.G/�=Aut.G/.
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5.3.2 Trivalent graphs versus graded critical nodal graphs In the analysis required
for proving Theorem 1.5, we will mainly need to analyze critical graded nodal graphs
and effective graphs which are obtained from them by contracting a single edge and
possibly forgetting some data. We will now describe operations between nodal and
nonnodal ribbon graphs. Although these operations can be defined in full generality,
we are interested only in cases where their output is trivalent or effective. We will
therefore restrict our definitions to this setting, leaving the relatively straightforward
details of the more general setting to the interested reader.

Given a connected effective spin ribbon graph with a lifting .G; z/, we define an effective
nodal graph X .G; z/ as follows. Its components are the components of Norm.G; z/,
after erasing every illegal boundary point and concatenating its two edges to one
edge. Note that under this map a contracted boundary becomes a Ramond marking of
perimeter zero. Suppose e is an edge obtained by concatenating e1; : : : ; emC1 in the
described process, and in this order. Definem.e/Dm. Suppose vi is the vertex between
ei and eiC1. Then Ve.i/D s1vi , where we use Notation 4.28. When .G; z/D .G; ŒK�/
is critical trivalent, we denote X .G; z/ by X .G; ŒK�/. It is easy to verify that:

Observation 5.39 The map X is a surjection from the collection of connected effective
spin ribbon graphs to the collection of nodal connected effective spin ribbon graphs
all of whose components are smooth. It restricts to a bijection between connected
trivalent graphs and connected graded critical nodal ribbon graphs. For any connected
effective spin ribbon graph .G; z/, there is a bijection between bridges (boundary loops)
in .G; z/ and effective bridges (effective loops) in X .G; z/.

We now extend the definition of X to metric effective spin ribbon graphs. For such
a graph .G; z; `/, define the effective nodal metric graph X .G; z; `/D .X .G; z/;X`/
by X`e D `e if the edge e is an edge of Norm.G; z/; otherwise, if e is the union of
e1; : : : ; emC1, define X`e D

PmC1
iD1 `ei . Note that the perimeters are left unchanged.

We also define a map from effective nodal graphs to effective spin ribbon graphs: given
an effective nodal graph .G; z;m;V/, define the spin ribbon graph zB.G; z/ as the graph
obtained by forgetting the data of m and V , and applying zB to each component .Gi ; zi /.
The analogous definition holds for metric effective nodal graphs.

If .G; z;m;V/ is an effective nodal graph and e is either an internal edge or a boundary
edge with m.e/D 0, then @e.G; z;m;V/ is the nodal graph whose underlying ribbon
graph is the graph obtained by contracting e, and the data ofm and V is induced fromG
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by the usual identification of edges of @eG as a subset of edges of G. Similarly, when
.G; ŒK�;m;V/ is critical trivalent and e is either an internal edge or an effective loop,
we define .Ge; ŒKe�; m0;V 0/ as the critical trivalent graph whose underlying graph is
.Ge; ŒKe�/, putting m0 Dm and V 0 D V , where we again use the identification between
edges of G and Ge.

Notation 5.40 Suppose that .G; ŒK�/ 2 SRm
g;k;l

.p/ and that e D fh1; h2 D s1h1g 2
Breff.G/[Loopeff.G/, with K.h1/D 0. Define the nodal ribbon graph Be.G; ŒK�/ as
follows. Suppose G is made of the components G1; : : : ; Gn. Without loss of generality
assume e is an edge of component Gn. Write vi D @e.hi / for the vertex obtained by
contracting hi in @eGn. Write x D s2h1 and y D s1.s�12 h1/ 2H

I .@eGn/.

The first n� 1 components of the graph Be.G; ŒK�/ are G0i DGi for i � n� 1, and for
these components we have K 0i DKi , m

0 Dm and fV 0
f
g D fVf g.

When e is a boundary loop, .G0n; zn/ D zB@e.Gn; ŒKn�/, and also in this component
m0 D m and fV 0

f
g D fVf g, where we use the natural identifications between edges

of Gn other than e and edges of G0n.

If e is an effective bridge, then in the case that the normalization Norm.@eGn/ is
disconnected, let G0n be the component which does not contain v2, and let K 0, m0

and V 0 be the induced maps. Note that G0n may be a ghost. Define the component
G0nC1 as the graph obtained by the component of v2 in Norm.@eGn/ after gluing the
half-edges x=s1 and y=s1 to a new edge xy, and removing the vertex v2. The updated
Kasteleyn orientation is the unique Kasteleyn orientation which gives any internal
half-edge its value under Kn. For any half-edge e0 ¤ xy, we have m0.e0/Dm.e0/ and
m.xy/Dm.x/Cm.y/C 1. Similarly, V 0.e0/D V.e0/ for e0 ¤ xy, while

(32) V 0xy.a/D

8<:
Vy.a/ if a �m.y/;
v1 if aDm.y/C 1;
Vx.a�m.y/� 1/ if a > m.y/C 1:

If @eGn n fveg is connected, set G0n to be the component of v1 in the normalization,
where again edges x and y are glued and v2 is removed, and K 0, m0 and V 0 are defined
in the same way as above.

There is a canonical surjection, which we shall also denote by Be,

E.G/[V.G/!E.BeG/[V.BeG/:

It takes e to v1, and all other edges to the corresponding edges, so that it is one-to-one
except on the edges x and y, which go to xy.
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Given a metric ` on the graph, with `e D 0, the graph Be.G; ŒK�; `/ is the graded nodal
ribbon graph with underlying graph Be.G; ŒK�/, and the metric is induced from ` if
e is a boundary loop, while if e is a bridge, then with the same notation as above,
.Be`/e0 D `e0 for e0 ¤ x; y, and Be`xy D `xC `y . For convenience we usually denote
Be` by ` as well.

A compatible sequence of effective bridges e1; : : : ; er is a sequence of bridges such
that eiC1 is an effective bridge in Bei � � �Be1G for all i . For such a sequence define
Be1;:::;er .G; ŒK�; `/D Ber � � �Be1.G; ŒK�; `/, and the map Be1;:::;er D Ber ı � � � ıBe1 .

The next observation follows easily from Observations 5.39 and 5.25.

Observation 5.41 If .G; ŒK�/2 SRm
g;k;l

and e 2 Loopeff.G/, then BeG is an effective
nodal ribbon graph.

If .G; ŒK�/ 2 SRm
g;k;l

and e 2 Breff.G/, then BeG 2 SRmC1g;k;l
.

Moreover , for any .G; ŒK�/ 2 SRmC1
g;k;l

, and any legal node v, there exists a unique
graph .H; ŒK 0�/ 2 SRm

g;k;l
and an edge e 2 Breff.H/ with Be.H; ŒK 0�/D .G; ŒK�/ and

Bee D v. In addition , if .G; ŒK�/ is connected trivalent and e 2 Br.G; ŒK�/, then

X .@e.G; ŒK�//D Be.X .G; ŒK�//;

where we use the identification of bridges of Observation 5.39.

Notation 5.42 Recall Notation 4.6. For .G; ŒK�/2SRmC1
g;k;l

, denote by B�1
h;a
.G; ŒK�/D

B�1
Œh�;a

.G; ŒK�/ the isomorphism class of triples .H; ŒK 0�; e/ where H 2 SRm
g;k;l

,
Be.H; ŒK 0�/D .G; ŒK�/, and Bee D Vh.a/ for h 2 s1.HB.G// and a 2 Œm.h/�. Let

B�1G D fB�1Œh�;a.G; ŒK�/ j Œh� 2 Œs1.H
B.G//�; a 2 Œm.h/�g:

In other words, .H; ŒK 0�; e/D B�1
h;a
.G; ŒK�/ should be thought as the graph .H; ŒK 0�/

obtained by canceling the B operation, ie by returning the ath forgotten illegal node
of h, gluing it with its legal side, and then uncontracting the resulting node to obtain
the bridge e.

5.3.3 The moduli space of critical nodal graphs, the line bundles and the boundary
conditions

Definition 5.43 For an effective nodal ribbon graph .G; z;m;V/ define M.G;z;m;V/'

RE.G/
C

=Aut.G; z;m;V/ to be the moduli of positive metrics on G, and M.G;z;m;V/

as the subspace in which the i th perimeter equals pi > 0; i 2 Œl �. In particular, given
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Figure 22: This diagram presents trivalent graphs, their effective bridge
contractions and the operation B. TheC sign represents a legal side of node
and, after performing B, the wiggly lines contain the data of V , namely, which
edges contain which legal nodes, and in what order. At top left an effective
trivalent smooth graph .G; ŒK�/ on a disk is shown, at top center its bridge e
is contracted, then at top right Be.G; ŒK�/ is drawn. The second row describes
a similar scenario, but for a graph on a cylinder. The third row presents a
graph on a disk. First the bridge between boundary markings 2 and 3 is
contracted, and then the bridge between 4 and 5 is contracted. These bridges
are compatible. The bridges between 2 and 3 and 3 and 4, on the other hand,
are not compatible with each other.

.G; ŒK�/2SRm
g;k;l

, we have M.G;ŒK�/'RE.G/
C

=Aut.G; ŒK�/. Define M.G;z;m;V/ and
M.G;z;m;V/.p/ as the cell complexes whose cells correspond to nodal ribbon graphs
obtained from .G; z;m;V/ by edge contractions, and the gluing maps are induced by
these edge contractions.

For e 2E.G/, write @eM.G;z;m;V/ for the face of M.G;z;m;V/ where e is contracted,
ie the length of the edge e is set to be 0. The boundary of M.G;z;m;V/ can be written as

@M.G;z;m;V/ D
[

Œe�2ŒE.G/�

@eM.G;z;m;V/;
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where ŒE.G/� D E.G/=Aut.G; z;m;V/, as in Notation 4.6. We similarly define
@e1;:::;erM.G;z;m;V/.

The maps zB, X and Be1;:::;er on metric graphs induce moduli level maps. We denote
these maps by the same letters. When e1; : : : ; er are understood from the context, we
denote the former map by B.

Note that M@e.G;z;m;V/ ' @eM.G;z;m;V/, and that Be1;:::;er factors zB. The maps B, zB
and X are easily seen to be piecewise linear submersions.

Definition 5.44 For an effective nodal .G; z;m;V/ and i 2 Œl �, the S1–orbibundle
Fi !M.G;z;m;V/ is defined to be the set of pairs .`; x/ where ` 2M.G;z;m;V/ and
x is a point on the i th face, with the natural topology. For a .d; l/–set L, write SL!
M.G;z;m;V/ for the sphere bundle associated to fSL.i/ j i 2 Œd �g, as in Construction–
Notation 1. We define the forms ˛i , !i , x̨i and x!i as the pullbacks of the corresponding
forms defined on the component which contains face i .

If .G0; z0; m0;V 0/ is obtained from .G; z;m;V/ by edge contractions, we have the
usual natural identification between Fi !M.G0;z0;m0;V 0/ and the restriction of Fi !
M.G;z;m;V/ to the corresponding cell.

By the constructions we immediately get:

Observation 5.45 For any effective spin ribbon graph .G0; z0/ and i 2 Œl �, we have a
natural identification

.Fi !M.G0;z0//' X�.Fi !MX .G0;z0//;

while for an effective nodal spin ribbon graph .G; z/ and i 2 Œl �, we have a natural
identification

.Fi !M.G;z//' zB�.Fi !MzB.G0;z0//:

As a consequence:

(a) For .G; ŒK�/ 2 SRm
g;k;l

and e … Br.G/[Loop.G/, there is a canonical identifi-
cation

.Fi !M@e.G;ŒK�//' .Fi ! @eM.G;ŒK�//' .Fi ! @eM.Ge;ŒKe�//;

and similarly for the bundles SL.

(b) For .G; ŒK�/ 2 SRm
g;k;l

and e 2 Breff.G/, there is a canonical identification

.Fi !M@e.G;ŒK�//' .Fi ! @eM.G;ŒK�//' B�e .Fi !MBe.G;ŒK�//;

and similarly for the bundles SL.
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(c) For .G; ŒK�/ 2 SRm
g;k;l

and e 2 Loop.G/, there is a canonical identification

.Fi !M@e.G;ŒK�//' .Fi ! @eM.G;ŒK�//' .‰
comb/�.Fi ! @eM.Ge;ŒKe�//;

and similarly for the bundles SL.

Proposition 5.46 Let s be a special canonical multisection of SL !Mcomb
g;k;l

. Let
A be the collection of effective graded .g; k; l/–boundary ribbon graphs , so that s
restricts , in particular , to multisections s.G;z/ for all .G; z/ 2 A. Then s induces
multisections s.G;z;m;V/ of SL !M.G;z;m;V/ for all effective nodal ribbon graphs
.G; z;m;V/ 2 X .A/, which satisfy the following relations:

� For any effective graded .G0; z0/,

s.G
0;z0/
D X�sX .G0;z0/:

� For any effective nodal .G; z;m;V/,

s.G;z;m;V/ D zB�s0;

where s0 is a multisection of SL!MzB.G;z/.

In particular:

(a) For any .G; ŒK�/ 2 SRm
g;k;l

and e … Br.G/[Loop.G/,

s.G;ŒK�/j@eM.G;ŒK�/
D s.G;ŒK�/j@eM.Ge;ŒKe�/

:

(b) For any .G; ŒK�/ 2 SRm
g;k;l

and e 2 Breff.G/,

s.G;ŒK�/j@eM.G;ŒK�/
D B�e sBe.G;ŒK�/:

(c) For any .G; ŒK�/ 2 SRm
g;k;l

and e 2 Loopeff.G/,

s.G;ŒK�/j@eM.G;ŒK�/
D .‰comb/�s.Ge;ŒKe�/:

Here we compare multisections using the identifications of Observation 5.45.

Proof Let s be a special canonical multisection as above. Consider an effective nodal
.G; z;m;V/ 2 X .A/. Then .G; z;m;V/ can be written as X .G0; z0/ for some effective
boundary graph. Now sX .G

0;z0/ D zB�szBX .G0;z0/. We have a factorization

M.G0;z0/
X
//

zB

&&

M.G;z;m;V/

zB
��

MzB.G0;z0/
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The identifications of bundles SL, see Observations 4.40 and 5.45, are also compatible
with this diagram. Since s is canonical, by Corollary 4.43,

s.G
0;z0/
D zB�szB.G0;z0/ D X�zB�szB.G0;z0/:

Define s.G;z;m;V/ as the pullback of szB.G
0;z0/ along the vertical map zB. Clearly

sX .G
0;z0/ D X�s.G;z/.

By Observation 5.39, SRm
g;k;l
� X .A/. The “In particular” cases are now immediate

from the definition and Observation 5.45. In the first and third item we use that
zB.G; ŒK�/D zB.Ge; ŒKe�/, while in the second that Be D zB in that case.

The cells M.G;ŒK�/ for graded nodal graphs also carry canonical orientations.

Definition 5.47 We define orientations for M.G;ŒK�/.p/; .G; ŒK�/ 2 SRmg;k;l by

xo.G;ŒK�/ D
Y

C2C.G;ŒK�/

xoC ;

o.G;ŒK�/ D
V
i2Œl�

dpi ^xo.G;ŒK�/ D
V
i2Œl�

V
K.h/D1
h=s2Di

d`h;

with the wedge product over half-edges of face i taken counterclockwise.

Proposition 5.48 Let .G; ŒK�/2SRm
g;k;l

and e 2Breff.G/. Suppose that .G0; ŒK 0�/D
Be.G; ŒK�/ 2 SRmC1

g;k;l
, and let e0 be the unique edge in G0 with two Be–preimages.

There are canonical identifications
@eM.G;ŒK�/ ' M@e.G;ŒK�/ ' Fe0 ;

@eM.G;ŒK�/.p/'M@e.G;ŒK�/.p/' Fe0.p/;
where the space Fe0!M.G0;ŒK0�/ is the set of pairs .`; x/ with ` 2M.G0;ŒK0�/ and x a
point on e0, with the natural topology. Moreover , the orientation on @eM.G;ŒK�/.p/

induced from M.G;ŒK�/.p/, as in Definition 2.52, coincides with the orientation
dx ^ o.G0;ŒK0�/ on Fe0 , where dx is the orientation on the segment e0 considered as a
segment in the boundary.

Proof The only part which requires an explanation is the statement regarding orienta-
tions. Recall thatK 0 satisfiesK.h/DK 0.Bh/ for any h=s1¤ e. It is enough to compare
orientations of @eM.G;ŒK�/ ' Fe0G0. Suppose h is the legal side of e, that is, the half-
edge which satisfies h=s1D e andK.h/D1. Write e�1D .s�12 h/=s1 and e1D .s2h/=s1.
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Then, by recalling the definition of the canonical orientation (Section 5.2), we see
that the orientation for M.G;ŒK�/ can be written as d`e�1 ^ d`e ^ d`e1 ^O , and the
orientation on MG0 is d`e0 ^ O , where O is the wedge of other edge lengths, in
some order. Note that d`e0 D d`e�1 C d`e1 . Now, the induced orientation on the
boundary @eM.G;ŒK�/ is given by d`e�1 ^ d`e1 ^O . By considering Fe0G0 as the
moduli of metrics on the graph obtained from G0 by adding a new marked point on e0,
and with the definition of its orientation, we see that this orientation can be written as
d`e�1 ^ d`e0 ^O , where d`e�1 comes from the location of the new point on f . And
indeed,

d`e�1 ^ d`e1 ^O D d`e�1 ^ d`e0 ^O:

Corollary 5.49 The map comb WMg;k;l !Mcomb
g;k;l

preserves orientation.

Proof Indeed, by Proposition 5.48, we see that the orientations on Mcomb
g;k;l

satisfy
the same requirements of Theorem 2.53. The dimension-zero case can be checked by
hand.

We also have the following corollary of Corollary 5.34.

Corollary 5.50 For .G; ŒK�/ 2 SRm
g;k;l

and an internal edge e which is not a bridge ,
the orientations on @eM.G;ŒK�/.p/ ' @eM.Ge;ŒKe�/.p/, induced as boundaries of
M.G;ŒK�/.p/ and M.Ge;ŒKe�/.p/, are opposite.

Corollary 5.50 has an analog for the case that e is a boundary loop. For .G; ŒK�/ 2
SRm

g;k;l
and e 2 Loop.G/, write ‰comb

.G;ŒK�/;e
for the map @eM.G;ŒK�/! @eM.Ge;ŒKe�/

defined at the level of objects by leaving all the metric graph structure — in particular
the edge lengths — invariant, and flipping the lifting in the contracted boundary which
corresponds to e. When we write ‰comb we mean the union of the maps ‰comb

.G;ŒK�/;e

over all possible pairs .G; ŒK�/ 2 SRm
g;k;l

, for m� 0 and e 2 Loop.G/. The following
is an immediate corollary of the “Moreover” part of Theorem 2.53, and Corollary 5.49.
We will also provide a direct self-contained proof of this corollary in Section 6.2 below.

Corollary 5.51 For .G; ŒK�/ 2 SRm
g;k;l

and e 2 Loop.G/, the induced orientation
on @eM.Ge;ŒKe�/.p/ as a boundary of M.Ge;ŒKe�/.p/ is opposite to the orientation
on it obtained by taking the ‰comb–pushforward of the orientation on @eM.G;ŒK�/.p/,
induced as a boundary of M.G;ŒK�/.p/.
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6 The combinatorial formula

Throughout this section we fix g; k; l and set

d D 1
2

dimR.Mg;k;l/D
1
2
.3g� 3C kC 2l/:

We also write, for G 2 SRm
g;k;l

,

dim.G/D 1
2

dimR.MG/D
1
2
.3g� 3C kC 2l � 2m/:

In what follows we shall work with the orientations constructed in Section 5.2. These
are the same orientations as the ones constructed in [35], by Corollary 5.49.

Definition 6.1 For .G; ŒK�/ 2 SRm
g;k;l

define

WG ; �WG WM.G;ŒK�/!R

by

WG.`/D
Y

e2s1HB.G/

`
2m.e/
e

.m.e/C 1/Š
and �WG.`/D Y

e2s1HB.G/

`
2m.e/
e

m.e/Š .m.e/C 1/Š
:

6.1 Iterative integration and the integral form of the combinatorial
formula

Our approach for producing the explicit formula for intersection numbers will be by
an iterative process of integration by parts. Recall Definition 4.36 and Notation 4.37.
Given an .S; l/–set L W S ! Œl � for S � Œd �, the t th component of EL is LL.t/. Each
step of the iterative integration process below will involve integrating out (the form
corresponding to) one component LL.t/ for some t 2 S , using integration by parts.
The integration by parts will produce new boundary terms for the moduli on which we
integrate. Only boundary terms that correspond to contracting an effective bridge e
may have a nonzero contribution which does not cancel. Moreover, in order for such an
edge to contribute a nonzero contribution, when we integrate out the t th component the
illegal side of the half-node obtained by contracting e will have to lie in the face L.t/.
This is the content of first key lemma, Lemma 6.6. In order to be able to state it, we need
to add notation: specifically, notation that will allow us to keep track of which illegal
half-node corresponds to the t th component of the vector bundle which we integrate out.
For this we present the auxiliary notion of decorations. After performing an iteration
of integration by parts, the second key lemma, Lemma 6.7, transforms integrals over
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the boundaries of the moduli to integrals over the moduli spaces obtained by further
forgetting the illegal half-node. Theorem 6.10 essentially iterates these lemmas, and
uses some other cancellations to obtain a formula for the open intersection numbers as
sums of integrals. It is remarkable that this iterative integration process is performed
without appealing to a specific canonical multisection, and in some sense this is the key
point of the proof. In addition, it gives an alternative proof of the claim that canonical
boundary conditions give rise to well-defined intersection numbers, proven in [31] for
genus 0 and in [35] for g > 0.

Definition 6.2 A decoration D of a graph .G; ŒK�/ 2 SRm
g;k;l

is a choice of sets
Dh � Œd �, for any h 2 s1HB, which are pairwise disjoint and such that

jDhj Dm.h/:

When e D h=s1 we also write De D Dh. For an .S; l/–set L, an L–decoration is a
decoration for which

Dh � Li.h/:

In the next series of claims we shall omit ŒK� from the notation of graded graphs, to
lighten notation.

Denote the collection of all decorations of G by Dec.G/, and the collection of all
L–decorations of G by Dec.G;L/.

Let L.D/ be the l–subset of L given by LjS
h2s1H

B Dh , so that L.D/i D
S
i.h/Di Dh.

For .G; ŒK�/ 2 SRm>0
g;k;l

and a .G;L/–decoration D, define the set

B�1.G;D/� f.G0; e0;D0/ j .G0; e0/ 2 B�1G;D0 2 Dec.G0; L/g

by setting .G0; e0;D0/ 2 B�1.G;D/ exactly when .G0; e0/ 2 B�1G, D0 2 Dec.G0; L/
and D0e �DBe for any e 2 E.G0/ n fe0g. Note that in this case L.D0/ � L.D/, and
the difference is exactly one element.

In the language of the paragraph preceding this definition, L.D/ nL.D0/ is precisely
the element t 2 Œd � which corresponds to the effective bridge e0 in the iterative process.

In order to be able to calculate intersection numbers, we must understand the restriction
of the forms ˛i and !i to the boundary.

Suppose that .G; ŒK�/ 2 SRm
g;k;l

, e 2 Breff.G/ with h its illegal side, K.h/ D 1 and
i 2 Œl �. On M@eG.p/ we have two natural representatives for the angular 1–form,
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˛
@eG
i D ˛Gi j@eMG

and B�˛BeG
i . Similarly, we have two natural choices for the induced

two-forms, !@eGi D !Gi j@eMG
and B�!BeG

i .

Notation 6.3 Write ˇi Dˇ
@eG
i D˛

@eG
i �B�˛BeG

i and Bi DB
@eG
i D!

@eG
i �B�!BeG

i .

Observation 6.4 With the above notation , if i ¤ i.e/, then Bi D ˇi D 0. Otherwise
we have

p2i ˇi D `s2hd`s�12 h and p2i Bi D d`s�12 h ^ d`s2h:

Unlike the forms ˛i , the form ˇi is pulled back from the combinatorial moduli, since
it has no angular variables.

Proof For i ¤ i.h/, the forms restricted from MG and those pulled back from MBeG

are canonically identified. Suppose i D i.h/; we handle Bi . The proof for ˇi is similar.
We have `e D 0, hence also d`e D 0 on @eMG . Thus the only difference between
!@eG and B�!BeG

i is that the former may contain terms with d`s2h or d`s�12 h, while
the latter depends only on their sum, by the definition of Be . Choose a good ordering n
in the sense of Definition 5.30, so that half-edges of the i th face appear first, and some
half-edge h0 ¤ h; s2h is the first edge in the ordering. One can always find such a
half-edge. Otherwise, the i th face is bounded by exactly two edges, h and s2h, which
therefore must be a boundary half-edge, and in particular K.s2h/D 1. But then the
sum of K on the i th face is even, which is impossible for a Kasteleyn orientation.

In BeG we choose a good ordering n0 for which h0, identified as an edge of BeG, is
the first half-edge. Suppose s�12 h is the j th half-edge in n, so that h and s2h are the
j C 1st and j C 2nd edges. Write `a for `n�1.a/. Then

p2i !
G
i j@eMG

D

X
a<b

d`a ^ d`b

D

X
a<b

a;b¤j;jC1;jC2

d`a ^ d`bC
X
a<j

d`a ^ .d j̀ C d j̀C2/

C

X
jC2<a

.d j̀ C d j̀C2/^ d`aC d j̀ ^ d j̀C2

D p2i B�!
BeG
i C d j̀ ^ d j̀C2:

In the last equality we used the fact that `BeG
n
0�1.j /

D `n�1.j /C`n�1.jC2/, and for a¤ j ,

`
BeG
n
0�1.a/

D `eaCw.a/ ; where w.a/D
�
0 if a < j;
2 otherwise.
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Notation 6.5 Recall Notation 4.37 and Remark 3.5. For G and e as above, given a
.S; l/–set L and i 2 S , we define the form ˆiL on the sphere bundle SL! @eMG by

ˆiL Dˆ.frj gj2S ; f˛
0
j gj2S ; f!

0
j gj2S /Dˆ

@eG.frj gj2S ; f˛
0
j gj2S ; f!

0
j gj2S /;

where ˛0j is a copy of B�˛BeG
L.j /

for j ¤ i , and ˛0i D ˇL.i/. Similarly, !0j D B�!BeG
L.j /

,
unless j D i , and then !0i D BL.i/. As usual, x̂ iL D p

2LˆiL. As in Remark 3.5, when
S � Œd � we will also extend the domain of ˆiL by allowing

P
i2S r

2
i to vary.

From now until the end of this subsection, we fix a .d; l/–set L, and let EL be the
corresponding bundle.

Lemma 6.6 Let s be a special canonical multisection of EL. Take G 2 SRm
g;k;l

arbitrary and e an effective bridge of G, with h its illegal side. Letting D0 be an
L–decoration of G, write L0 D L.D0/. ThenZ

@eMG.p/

s�.WG x̂LnL0/D
X

j2.LnL0/i.h/

Z
@eMG.p/

WGs
�. x̂

j

LnL0
/:

It should be noted that different decorations D0 and D00 which determine the same set
L.D0/ D L.D00/ will give rise to the same integral. The decorations, as mentioned
above, are introduced only in order to keep track of the combinatorics of integrals that
will appear in the iterative integration process below.

Proof Write S D
S
h2s1HB D0h, so that L0 W S ! Œl � is a restriction of L W Œd �! Œl �.

We first use (19) and Notation 4.37 to write ˆLnL0 explicitly:

(33) ˆLnL0.frigi2Sc ; fy̨igi2Sc ; f y!igi2Sc /

D

jSc j�1X
kD0

2kkŠ
X
i2Sc

r2i y̨i ^
X

I�Scnfig
jI jDkj

V
j2I

.rj drj ^ y̨j /^
V

h…I[fig

y!h;

where y!j is Kontsevich’s two-form !L.j /, and y̨j is a copy of Kontsevich’s one-
form ˛L.j /. This is a form of degree dimR M@eG D dimR MBeG C 1. We obtain
ˆi
LnL0

by the same formula, after replacing y̨i and y!i by ˇL.i/ and BL.i/, respectively.

Now, the function WG does not depend on variables of the fiber of the sphere bundle,
hence it can be taken out of the pullback. By the definitions of the forms we can write

y̨j D B� y̨BeGj CˇL.j / and y!j D B�!BeG
L.j /
CBL.j /;
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where y̨BeGj is a copy of ˛BeG
L.j /

. We now substitute this in x̂LnL0 , and expand (33)
multilinearly.

Write i D i.h/ 2 Œl �. Any term containing ˇa or Ba for a ¤ i will vanish, by
Observation 6.4.

Similarly, any term in the expansion that contains either ˇa twice, or Ba twice, or ˇi
and Bi once, will vanish, as a consequence of a multiple appearance of d`s�12 h.

By Proposition 5.46, sj@eMG
is pulled back from MBeG . Now, a term in s�ˆLnL0

with no Bi or ˇi is pulled back from MBeG . But its degree is dimR MBeG C 1. Thus,
it vanishes for dimensional reasons.

We are left with terms containing a single ˇi or Bi . These ˇi or Bi are in fact ˇL.j /
or BL.j / for some j 2 Sc which is mapped by L to i , meaning j 2 .L nL0/i . The
lemma follows.

The second main lemma we need is the following.

Lemma 6.7 Fixm>0,G 2SRm
g;k;l

andD 2Dec.G;L/, and write L0DL.D/. Then

(34)
X

.G0;e0;D0/2B�1.G;D/

Z
M@e0G

0 .p/

WG0s
�. x̂ @e0G

0

/
L0nL.D0/

LnL.D0/

D

Z
MG.p/

WG x!LnL0 C

Z
@MG.p/

WGs
�. x̂G/LnL0 :

Importantly,
R
MG.p/

WG x!LnL0 does not depend on the multisection s, so this lemma
pushes the dependence on s to lower-dimensional moduli. After iterating, it will allow
us to completely remove the dependence of the integrals on s. This phenomenon is
expected, from the geometric point of view, since it was proven in [35; 31] that the
intersection numbers should be independent of the specific canonical multisection. And
indeed, the lemma is enabled by the properties of canonical multisections, and will not
be true for arbitrary, noncanonical, boundary conditions.

Proof For convenience we treat the case jAut.G/j D 1; the general case is handled
similarly, but notation becomes more complicated. Put

E 0 D fe 2E.G/ jm.e/ > 0g:

Recall Notation 5.42. Suppose .G0; e0/ 2 B�1G is B�1e;aC1G for some e 2 E 0 and
aC 1 2 Œm.e/�. Fix h 2De, and let

D.G0; h/ WD fD0 j .G0;D0/ 2 B�1.G;D/; h … L.D0/g:
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In words, D.G0; h/ is the set of decorations of G0 in B�1.G;D/ such that the only
element of L0 that they miss is h. Such decorations are determined by how we split the
elements in De n fhg into sets of sizes a and m.e/� 1� a that will decorate the two
edges in B�1e0 e— the edges which, after contracting e0 and forgetting its illegal side,
form e. Thus,

jD.G0; h/j D
�m.e/�1

a

�
:

Let e1 D s�12 e0 and e2 D s2e0 be the two half-edges of G0 mapped under Be0 to e. As
explained, m.e1/D a and m.e2/Dm.e/�a�1. Put `0e D `e1 . For fixed G0 and h we
have the equalityZ

M@e0G
0 .p/

WG0s
� x̂L

0nL.D0/

LnL.D0/
D

Z
M@e0G

0 .p/

WG0s
� x̂h

LnL.D0/;

hence the left-hand side of this equation is independent of D0. We will now show that

(35)
X

D02D.G0;h/

Z
M@e0G

0 .p/

WG0s
� x̂h

LnL.D0/

D

Z
MG.p/

�m.e/�1
a

�� Y
f 2E 0nfeg

`
2m.f /

f

.m.f /C 1/Š

�

�

Z `e

0

.`0e/
2a.`e � `

0
e/
2.m.e/�a�1/

.aC 1/Š .m.e/� a/Š
.Ae;hCBe;hCCe/;

where

Ae;h D r
2
h.`e�`

0
e/d`

0
e^

X
n�0

2nnŠ
X
jI jDn
I�LnL0

� V
j2I

rj drj^y̨j

�
^

V
j2Ln.I[L0/

x!L.j /;

Be;h D rh drh^.`e�`
0
e/d`

0
e^

X
i2LnL0

r2i y̨i

^

X
n�0

2.nC1/.nC1/Š
X
jI jDn

I�Ln.L0[fig/

� V
j2I

rj drj^y̨j

�
^

V
j2Ln.L0[I[fig/

x!L.j /;

Ce D d`
0
e^d`e^

X
i2LnL0

r2i y̨i

^

X
n�0

2nnŠ
X
jI jDn

I�Ln.L0[fig/

� V
j2I

rj drj^y̨j

�
^

V
j2Ln.L0[I[fig/

x!L.j /;
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where y̨i is a copy of x̨L.i/. Before proving this equation, observe that Ae;h, Be;h and
Ce depend on the multisection s through the sphere bundle fiber variables ri D ri .s/ and
x̨i D x̨i .s/, but we omit s from the notation. However, because s is special canonical,
it follows from the second item of Proposition 5.46 that s.x; `0e/ for x 2MG and
`0e 2 Œ0; `e� depends only on x and not on `0e , where we have used the identification of
Proposition 5.48. Thus, the same is true for the variable ri and the form y̨i . Therefore,
importantly, Ae;h, Be;h and Ce are independent of a, and their only dependence on `0e
and d`0e is through the terms which explicitly involve them.

The last equation follows from the following facts. First, the multiplicity�
m.e/� 1

a

�
comes from summing over the different decorations D0, which all give the same
contribution. Second, the term in WG0 for the edge f 2E 0 n feg is

`
2m.f /

f

.m.f /C 1/Š
:

The corresponding terms for e1 and e2 are, respectively,

.`0e/
2a

.aC 1/Š
and

.`e � `
0
e/
2.m.e/�a�1/

.m.e/� a/Š
;

Third, Proposition 5.48 reduces the integration over M@e0G
0.p/ to the repeated integral

obtained by first integrating over MG.p/ and then over the location of the node on the
edge e, which is encoded by `0e . This inner integration is precisely the integration

R `e
0

(with respect to d`0e). Next, recall that, with S D
S
h2s1HB Dh,

x̂h
LnL0.frigi2Sc ; fy̨igi2Sc ; f y!igi2Sc /

D

jSc j�1X
kD0

2kkŠ
X
i2Sc

r2i y̨i ^
X

I�Scnfig
jI jDk

V
j2I

.rj drj ^ y̨j /^
V

f …I[fig

y!f ;

where for j ¤ h, y!j D x!L.j / and y̨j is a copy of x̨L.j /, while y!h D p2hBL.h/ and
y̨h D p

2
h
ˇh. Using Observation 6.4, the sum of terms which have i D h in the second

summation is precisely Ae;h. The sum of terms with i ¤ h in which I contains h
is Be;h, while the remaining terms sum to Ce.
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We shall use the following proposition.

Proposition 6.8 We have

(a)
m�1X
aD0

�m�1
a

� Z y

0

x2a.y � x/2.m�a/�1

.aC 1/Š .m� a/Š
dx D

y2m

.mC 1/Š
;

(b)
m�1X
aD0

�m�1
a

� Z y

0

x2a.y � x/2.m�a�1/

.aC 1/Š .m� a/Š
dx D

2y2m�1

.mC 1/Š
:

Still fixing e and h 2De, we now apply Proposition 6.8, the fact that Ae;h, Be;h and
Ce are independent of a, and that ri and y̨i are independent of `0e , to sum equation (35)
over .G0a; e

0
a/ WD B�1e;aC1G, where aD 0; : : : ; m.e/� 1.

We obtain

(36)
m.e/�1X
aD0

X
D02D.G0a;h/

Z
M@e0G

0 .p/

WG0s
�ˆhLnL.D0/

D

Z
MG.p/

Y
f 2E 0nfeg

`
2m.f /

f

.m.f /C1/Š

�
`
2m.e/
e

.m.e/C1/Š
. zAe;hC zBe;h/C

2`
2m.e/�1
e d`e

.m.e/C1/Š
^Y

�
;

where

zAe;h D r
2
h

X
m�0

2mmŠ
X
jI jDm
I�LnL0

� V
j2I

rj drj ^ y̨j

�
^

V
j2Ln.I[L0/

x!L.j /;

zBe;h D�rh drh ^
X

i2LnL0

r2i y̨i

^

X
m�0

2.mC1/.mC 1/Š
X
jI jDm

I�Ln.L0[fig/

� V
j2I

rj drj ^ y̨j

�
^

V
j2Ln.L0[I[fig/

x!L.j /

and

Y D
X

i2LnL0

r2i y̨i ^
X
m�0

2mmŠ
X
jI jDm

I�Ln.L0[fig/

� V
j2I

rj drj ^ y̨j

�
^

V
j2Ln.L0[I[fig/

x!L.j /:
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The next step is to eliminate rh terms, for h 2 L0. For this, put

XD

�
1�

X
h2LnL0

r2h

�X
m�0

2mmŠ
X
jI jDm
I�LnL0

� V
j2I

rj drj^y̨j

�
^

V
j2Ln.I[L0/

x!L.j /

C

� X
h2LnL0

rh drh

�
^

X
i2Ln.L0[fhg/

r2i y̨i

^

X
m�0

2.mC1/.mC1/Š
X
jI jDm

I�Ln.L0[fi;hg/

� V
j2I

rj drj^y̨j

�
^

V
j2Ln.L0[I[fig/

x!L.j /:

Then sinceX
h2L0

r2h D 1�
X

h2LnL0

r2h and
X
h2L0

rh drh D�
X

h2LnL0

rh drh;

we obtain X
e2E 0

h2De

. zAe;hC zBe;h/DX:

Therefore, summing equation (36) over e 2E 0 and h 2De gives

(37)
X

.G0;e0;D0/2B�1.G;D/

Z
M@e0G

0 .p/

WG0s
� x̂L.D/nL.D

0/

LnL.D0/

D

Z
MG.p/

� Y
f 2E 0

`
2m.f /

f

.m.f /C 1/Š

�
X

C

Z
MG.p/

� X
e2E 0

� Y
f 2E 0nfeg

`
2m.f /

f

.m.f /C 1/Š

�
2m.e/`

2m.e/�1
e d`e

.m.e/C 1/Š

�
^Y;

where the factor m.e/ in the last term comes from the cardinality of De and the
summation over h. Observe that Y DˆLnL0 , where we stress that we do not requireP
h2LnL0 r

2
h
D 1, as in Remark 3.5. X here is the same as Z there, after substituting

L nL0 for Œn�, y̨i for ˛i and x!L.i/ for !i . Thus, Remark 3.5 immediately gives that
the right-hand side of (37) isZ

MG.p/

�Y
e2E 0

`
2m.e/
e

.m.e/C 1/Š

V
i2LnL0

x!L.i/C d

� Y
e2E 0

`
2m.e/
e

.m.e/C 1/Š
x̂
LnL0

��
:

The claim now follows from Stokes’ theorem.
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Proof of Proposition 6.8 We first prove part (b). Write

f .x/D

1X
mD0

x2m

mŠ .mC 1/Š
:

The identity we need to prove is equivalent to

.f �f /.x/D f 0.x/;

where � is the convolution

.f �g/.x/D

Z x

0

f .y/g.x�y/ dy:

Using the Laplace transform, the last equation is equivalent to

F 2.�/D �F.�/� 1;

where
F.�/D

Z 1
0

e��xf .x/ dx

is the Laplace transform of f . Expanding F we obtain

(38) F D

1X
mD0

1

mŠ .mC 1/Š

Z 1
0

e��xx2mdx D

1X
mD0

.2m/Š

mŠ .mC 1/Š
��2m�1

D ��1
1�
p
1� 4��2

2��2
D �

1�
p
1� 4��2

2
:

The third equality is a consequence of the general binomial formula. Thus, we are left
with verifying that

F 2.�/D 1
2
�2.1�

p

1� 4��2/� 1D �F.�/� 1;

which is straightforward.

The first identity is a consequence of the second. Indeed, Write

Im D

m�1X
aD0

�m�1
a

� Z y

0

x2a.y � x/2.m�a/�1

.aC 1/Š .m� a/Š
dx;

Jm D

m�1X
aD0

�m�1
a

� Z y

0

x2a.y � x/2.m�a�1/

.aC 1/Š .m� a/Š
dx:

It suffices to show that
Im D

1
2
yJm:
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Indeed,

(39) Im D

m�1X
aD0

�m�1
a

� Z y

0

x2a.y � x/2.m�a/�1

.aC 1/Š .m� a/Š
dx

D y

m�1X
aD0

�m�1
a

� Z y

0

x2a.y � x/2.m�a�1/

.aC 1/Š .m� a/Š
dx

�

m�1X
aD0

�m�1
a

� Z y

0

x2aC1.y � x/2.m�a�1/

.aC 1/Š .m� a/Š
dx

D yJm�

m�1X
aD0

�m�1
a

� Z y

0

.y � t /2aC1t2.m�a�1/

.aC 1/Š .m� a/Š
dx

D yJm� Im;

where the second equality follows from opening one .y�x/ term, and the third follows
from the substitution t D y � x.

In order to be able to write an expression for the open intersection numbers we need
the following observation.

Observation 6.9 Suppose G 2 SRm
g;k;l

, and let e be an edge with m.e/ > 0. Then for
any decoration D, Z

@eMG.p/

WGs
� x̂

LnL.D/ D 0:

Proof It follows from the definition of WG that WG jM@eG.p/
D 0 identically.

We can now state and prove the integral form of the combinatorial formula. We recall
that d D 1

2
.3g� 3C kC 2l/.

Theorem 6.10 Let L W Œd �! Œl � be a .d; l/–set , with ai D jLi j for i 2 Œl �. Then

(40) p2L2
1
2
.gCk�1/

h�a1 � � � �al�
k
i D

X
G2OSR�

g;k;l

X
D2Dec.G;L/

Z
MG.p/

WG x!LnL.D/;

where the collection OSRm
g;k;l

for m� 0 is defined in Definition 5.36.

Proof Define

Am D
X

.G;ŒK�/2SRm
g;k;l

X
D2Dec.G;L/

Z
M.G;ŒK�/.p/

WG x!LnL.D/;

Sm D
X

.G;ŒK�/2SRm
g;k;l

X
D2Dec.G;L/

Z
@M.G;ŒK�/.p/

WGs
� x̂

LnL.D/;
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where s is a nowhere-vanishing special canonical multisection. We will begin by
showing that

(41) Sm D AmC1CSmC1;

and that

(42) p2L2
1
2
.gCk�1/

h�a1 � � � �al�
k
i D A0CS0:

For the first claim, consider Sm. Recall that for any G,

@M.G;ŒK�/ D

[
Œe�2ŒE.G/�

@eM.G;ŒK�/ D

[
Œe�2ŒE.G/�

M@e.G;ŒK�/:

Since for different edges the boundary cells intersect in positive codimension, the
integral over the union is just the sum over the edges e of the integrals over @eM.G;ŒK�/.

For an edge e which is not a bridge or a boundary loop, by Corollary 5.50 we know
that @eM.G;ŒK�/.p/D�@eM.Ge;ŒKe�/.p/, considered as oriented orbifolds, with the
orientation induced as a boundary.

Now, Dec.G;L/ and Dec.Ge; L/ are the same sets, and it is easy to see that

WG j@eM.G;ŒK�/
DWGe j@eM.Ge;ŒKe�/

:

Thus, given a decoration D, and using the first item of Proposition 5.46,Z
@eM.G;ŒK�/.p/

WGs
� x̂

LnL.D/ D�

Z
@eM.Ge;ŒK�/.p/

WGes
� x̂

LnL.D/:

For an effective loop e, the same argument, only using Corollary 5.51 instead of
Corollary 5.50, and item (c) of Proposition 5.46 instead of item (a), shows that given a
decoration D,Z

@eM.G;ŒK�/.p/

WGs
� x̂

LnL.D/ D�

Z
@eM.Ge;ŒK�/e .p/

WGes
� x̂

LnL.D/:

We should note that this is the second place that we use s being special canonical.

If e is a bridge or a boundary loop which is not effective, from Observation 6.9, for
any decoration D, Z

@eM.G;ŒK�/.p/

WGs
� x̂

LnL.D/ D 0:
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Thus, we can write

Sm D
X

.G;ŒK�/2SRm
g;k;l

X
D2Dec.G;L/

X
Œe�2ŒBreff.G/�

Z
M@e.G;ŒK�/.p/

WGs
� x̂

LnL.D/:

Applying Lemma 6.6, we obtain

Sm DX
.G;ŒK�/2SRm

g;k;l

X
D2Dec.G;L/

X
Œe�2ŒBreff.G/�

X
j2.LnL.D//i.e/

Z
M@e.G;ŒK�/.p/

WGs
� x̂ j

LnL.D/
:

When e is an effective bridge, then G0 D Be.G; ŒK�/ 2 SRmC1
g;k;l

. We should note
that this operation is also responsible for the appearance of ghost components, which
result from contracting a boundary edge between two legal boundary tails. In ad-
dition, j 2 .L n L.D//i.e/ induces a single decoration D0 of G0, which is defined
by .G;D/ 2 B�1.G0;D0/ and j 2 L.D0/. Moreover, any .G0; ŒK 0�/ 2 SRmC1

g;k;l
with

D0 2 Dec.G0; L/ is obtained in this way; see Observation 5.41. Hence, we can apply
Lemma 6.7 and get

Sm D
X

.G;ŒK�/2SRmC1
g;k;l

X
D2Dec.G;L/

Z
M.G;ŒK�/.p/

WG x!LnL.D/

C

X
.G;ŒK�/2SRmC1

g;k;l

X
D2Dec.G;L/

Z
@M.G;ŒK�/.p/

WGs
� x̂

LnL.D/

D AmC1CSmC1;

as claimed.

For the second claim, using Lemma 4.47, we can write

p2L2
1
2
.gCk�1/

h�a1 � � � �al�
k
i

D

X
.G;ŒK�/2SR0

g;k;l

Z
M.G;ŒK�/.p/

x!L

C

X
.G;ŒK�/2SR0

g;k;l

X
Œe�2ŒBr.G/[Loop.G/�

Z
M@e.G;ŒK�/.p/

s� x̂L:

Note that this is the nonnodal case, so all bridges and boundary loops are effective
and the decorations are empty. The cancellation-in-pairs argument used above for the
contribution of the integrals over edges which are neither boundary loops nor bridges
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shows, in particular, thatX
.G;ŒK�/2SR0

g;k;l

X
Œe�2ŒBr.G/[Loop.G/�

Z
M@e.G;ŒK�/.p/

s� x̂L

D

X
.G;ŒK�/2SR0

g;k;l

X
Œe�2ŒE.G/�

Z
M@e.G;ŒK�/.p/

s� x̂L D S0;

which, combined with the previous equation, gives (42).

Iterating (41) for m� 0 and using (42), we see that the left-hand side of equation (40)
is
P
m�0Am.

We now claim:

Proposition 6.11 If G is a nodal graph such that on at least one boundary component
there is an even total number of boundary marked points and legal nodes , thenZ

M.G;ŒK�/.p/

WG x!LnL.D/ D 0:

The proof is given in Section 6.2; see Lemma 6.19. Thus,X
m�0

Am D
X
m�0

X
.G;ŒK�/2OSRm

g;k;l

X
D2Dec.G;L/

Z
M.G;ŒK�/.p/

WG x!LnL.D/;

as claimed.

Observation 6.12 We have

jDec.G;L/j D
� Li
fm.e/ j e 2E; i.e/D ig

�
D

Y
i2Œl�

Li Š�Q
fe2E ji.e/Digm.e/Š

��
Li �

P
fe2E ji.e/Digm.e/

�
Š
:

Thus, with the above notation, we have

2
1
2
.gCk�1/

Y
i2Œl�

p
2ai
i h�a1 � � � �al�

k
i

D

X
m�0

X
.G;ŒK�/2OSRm

g;k;l

� Y
i2Œl�

� ai
fm.e/ je2E; i.e/D ig

��Z
M.G;ŒK�/.p/

WG x!LnL.D/

D

X
m�0

X
.G;ŒK�/2OSRm

g;k;l

� Y
i2Œl�

ai Š�
ai�

P
fe2E ji.e/Digm.e/

�
Š

�Z
M.G;ŒK�/.p/

�WG x!LnL.D/;
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where �WG is defined in Definition 6.1, and D 2 D.G;L/ are arbitrary decorations.
Summing over all possible L and dividing by dŠ we get

(43) 2
1
2
.gCk�1/

X
P
aiDd

Y
i2Œl�

p
2ai
i

ai Š
h�a1 � � � �al�

k
i

D

X
m�0

X
.G;ŒK�/2OSRm

g;k;l

Z
M.G;ŒK�/.p/

�WG x!d�m

.d �m/Š
:

Dimensional reasons give:

Observation 6.13 Let L0 be an l–set , and let .G; ŒK�/ 2OSR�
g;k;l

. Suppose that for
some component C 2 C.G; ŒK�/,

dim.C / <
X
i2I.C/

L0i :

Then
R
MG

f!L0 D 0 for any function f .

Now, x! D
P
C2C.G/ x!

C , where x!C D
P
i2I.C/ x!i . Thus, together with the observa-

tion, we get the following:

Corollary 6.14 We have

�WG x!d�m

.d �m/Š
D

Y
C2C.G/

�WC .x!C /dim.C/

dim.C /Š
:

Thus ,

(44)
X

P
aiDd

Y
i2Œl�

p
2ai
i

ai Š
2
1
2
.k�1/

h�a1 � � � �al�
k
i

D

X
m�0

X
.G;ŒK�/2OSRm

g;k;l

Z
M.G;ŒK�/.p/

�WG Y
C2C.G;ŒK�/

.x!C /dim.C/

dim.C /Š

D

X
m�0

X
.G;ŒK�/2OSRm

g;k;l

Y
C2C.G;ŒK�/

Z
MC

�WC .x!C /dim.C/

dim.C /Š
:

In the above formula there may appear components C with dim.C /D 0. These are
precisely the ghost components and the genus 0 components with one internal tail and
one legal boundary tail.
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6.2 Power of 2

We aim now to gain a better understanding of the forms
V
dpi ^ .x!

d=dŠ/ and o.G;ŒK�/
and their ratio.

Definition 6.15 For .G; ŒK�/ 2 SR�
g;k;l

, define s.G; ŒK�/ to be the sign of

V
dpi ^

x!d

dŠ
W o.G;ŒK�/:

For G 2R�
g;k;l

, define

cspin.G/D
X

ŒK�2ŒK.G/�

s.G; ŒK�/:

Lemma 6.16 For G 2 SR�
g;k;l

,

V
dpi ^

x!d

dŠ
W o.G;ŒK�/ D s.G; ŒK�/cspin.G/2

jV I .G/j:

In particular , cspin.G/� 0.

Proof Both the left-hand side and the right-hand side are multiplicative with re-
spect to taking nonnodal components, by the first statement in Corollary 6.14 and the
construction of o.G;ŒK�/. Thus, it is enough to prove the lemma for graphs in SR0

g;k;l
.

Recall that any class ŒK� of Kasteleyn orientations is of size 2jV
I .G/j, by Lemma 5.8.

In addition, by Lemma 5.29, the o.G;K/ for different K 2 ŒK� are equal. Thus, the
lemma is equivalent to the equality

(45)
V
dpi ^

x!d

dŠ
D

X
K2K.G/

o.G;ŒK�/:

Recall that x! D
Pl
iD1 x!i . Fix a good ordering n. To prove equation (45), it will be

more comfortable to work with new variables `h; h 2H I , instead of `e; e 2E. Set

HK;i D
n
h 2HK

ˇ̌ h
s2
D i

o
; dK;i D

jHK;i j � 1

2
;

pK;i D
X

h2HK;i

`h; x!K;i D
X

h1;h22HK;i
n.h1/<n.h2/

d`h1 ^ d`h2
:

Remark 6.17 Only x!K;i depends on the ordering n. For different orders the change
in x!K;i is of the form dpK;i ^ dx, where x is a linear combination of fd`hgh 2HK;i .
Thus, for any a, the form dpK;i ^ x!

a
K;i is independent of n.
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Express each dpi by
P
h2Hi

d`h, and express also each x!i in the fd`hgh2HI basis as
above. Our next aim is to show that

(46)
V
dpi ^

x!d

dŠ
D

X
K2K.G/

V
i2Œl�

dpK;i ^
x!
dK;i
K;i

dK;i Š
.mod I /;

where I is the ideal .d`h � d`s1h/h2HI . In order to show equation (46) we expandV
dpi ^ .x!

d=dŠ/ multilinearly, in terms of fd`hgh2HI , without cancellations. Any
monomial which appears in this expression and contains exactly one of d`h; d`s1h
for any h 2H I defines a unique Kasteleyn orientation K, defined by K.h/D 1 if and
only if d`h appears in the monomial. This is indeed a Kasteleyn orientation since any
h 2 s1H

B has K.h/D 1, and for any i 2 Œl �, an odd number of variables of half-edges
appear: one comes from dpi , and the others come in pairs via powers of x!i .

It is transparent that any Kasteleyn orientation K 2 K.G/, is generated this way.
Moreover, regrouping all terms which correspond to the same Kasteleyn orientation,
and using the identity� 2mC1X

iD1

xi

�
^

�P
i<j xi ^ xj

�m
mŠ

D x1 ^ x2 ^ : : :^ x2mC1;

we get equation (46).

The “In particular” follows from the fact that
V
dpi ^ .x!

d=dŠ/ and s.G; ŒK�/o.G;ŒK�/
have the same sign.

Proposition 6.18 For G 2 SR0
g;k;l

and e … Br.G/[Loop.G/,

cspin.G/D cspin.Ge/:

Proof It follows from Lemma 6.16 that

cspin.G/D˙
X

ŒK0�2ŒK.G/�

o.G;ŒK0�/ W o.G;ŒK�/

for any fixed ŒK� 2 ŒK.G/�. If K;K 0 2K.G/, then by the orientability of the moduli,
Theorem 5.32, we see that

o.G;ŒK�/ W o.G;ŒK0�/ D o.Ge;ŒKe�/ W o.Ge;ŒK0e�/;

as .G; ŒK�/; .Ge; ŒKe�/ and .G; ŒK 0�/; .Ge; ŒK 0e�/ parametrize adjacent cells. Thus,
cspin.G/D˙cspin.Ge/. But cspin � 0, hence the equality.
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Lemma 6.19 If G 2Rm
g;k;l
nORm

g;k;l
, then cspin D 0.

Proof Again, as cspin is multiplicative in nonnodal components, it is enough to consider
the case of nonnodal graphs. Let @†b be a boundary with an even number of boundary
marked points. Note that given a surface † and a boundary component @†b , graded
spin structures on † can be partitioned into pairs which differ exactly in the lifting
of @†b . Thus, we can partition ŒK.G/� into pairs which differ exactly in the boundary
conditions at @†b . In combinatorial terms, for any pair f.G; ŒK1�/ and .G; ŒK2�/g in
the partition we can find K1 2 ŒK1� and K2 2 ŒK2� which agree everywhere, except
on edges with exactly one vertex in @†b , where they disagree. We shall show that
s.G; ŒK1�/D�s.G; ŒK2�/.

As a consequence of Proposition 6.18, cspin.G; ŒK�/D cspin.Ge; ŒKe�/ for G 2R0
g;k;l

and e … Br.G/[Loop.G/. By performing enough such Feynman moves at boundary
edges of G, see Figure 14 moves (b) and (c), we may assume only one nonboundary
edge emanates from @†b . Let 2a denote the number of the boundary marked points
on @†b . Note that @†b is part of the boundary of a single face, say face 1. Let h and
s1.h/ be the internal half-edges which touch @†b . Choose a good ordering n on G,
so that n.h/ D 1, n.h1/ D 2; : : : ; n.h2aC1/ D 2aC 2 and n.s1h/ D 2aC 3, where
hi 2 H

I are the other half-edges on @†b . This can always be done, possibly after
interchanging h and s1h. Choose any K1 2 ŒK1� and K2 2 ŒK2�, which differ only in
their values at h and s1h. Thus, the sign difference between o.G;ŒK1�/ and o.G;ŒK2�/
is just .�1/2aC1 D�1, since we change only the location of the variable d`h=s1 , by
2aC 1 spots. As claimed.

We can now prove Proposition 6.11.

Proof By Lemma 6.16, the proposition is equivalent to cspin.G/D 0. But cspin.G/DQ
C2C.G/ cspin.C/, which is 0 by Lemma 6.19.

We can now also prove Corollary 5.51.

Proof As above, it is enough to prove it for smooth G. The case where e is a
boundary loop is a special case of the graph considered in the proof of Lemma 6.19,
and in particular we see that the orientation expressions for .G; ŒK�/ and .Ge; ŒKe�/
are opposite. Recall that the map ‰comb preserves the edge-lengths of all edges, but
changes the Kasteleyn orientation to ŒKe�. By contracting these orientation expressions
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with the vector �@=@`e, we see that the induced orientation on @eM.Ge;ŒKe�/ and the
.‰comb/�–pushforward of the induced orientation on @eM.G;ŒK�/ are opposite.

Lemma 6.20 For G 2OR0
g;k;l

, we have

cspin.G/D 2
1
2
.gCb�1/;

where g is the genus of G, and b is the number of boundaries. For G 2ORm
g;k;l

,

cspin.G/D
Y

cspin.Gi /;

where Gi are the smooth components of G.

Proof Again it is enough to consider nonnodal graphs. By Lemma 6.16, cspin.G/� 0.
By Proposition 6.18 cspin.G; ŒK�/ D cspin.Ge; ŒKe�/, whenever G 2 OSR0

g;k;l
and

e …Br.G/[Loop.G/. Thus, it is enough to calculate cspin for the graph xG, where G is
the graph constructed in Example 5.18; see Figure 17. We shall work with the notation
of that example. We shall order the faces according to their labels, and we choose an
ordering n of the edges of face 1 such that a1 is the first edge. Choose a Kasteleyn
orientation and write

oG DW1^W2^ � � �^Wgs ^d`h2 ^d`x2 ^ � � �^d`hl ^d`xl ^d`e1;0 ^ � � �^d`e1;k1

^R^ d`y2 ^ � � � ^ d`yl ;

where Wi is the wedge of d`ai ; d`bi ; d`ci ; d`di ; d f̀i ; d`gi , according to the order
induced byK, and R is the wedge of the remaining variables, according to the ordering.
The ordering n, restricted to the half-edges which are involved in Wi , is

ai ; fi ; di ; xgi ; ci ; xfi ; bi ; gi :

There are four possibilities for K. xfi / and K.xgi /. Let K0i denote the set of possibilities
with K. xfi /K.xgi /D 0. Let K1i be the singleton made of the remaining possibility. One
can check by hand that the form Wi is constant in K0i , and minus that constant in the
fourth possibility.

The ordering restricted to the remaining edges is

b1;2; e2;k2C1; b2;3; e3;k3C1; : : : ; bb�1;b; eb;0; eb;1; : : : ; eb;kb ;
xbb�1;b;

eb�1;0; eb�1;1; : : : ; eb�1;kb�1 ;
xbb�2;b�1; eb�2;0; : : : ; e2;k2

xb1;2:

The only freedom inK is in the values ofK.bj;jC1/. The relative order of these edges is

b1;2; b2;3; : : : ; bb�1;b; xbb�1;b; : : : ; xb1;2:
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Observe that between bj;jC1 and xbj;jC1 in the ordering, there is an even number of
half-edges. Thus, different assignments of K.bj;jC1/ do not change the orientation oG .
There are 2b�1 such assignments, where b is the number of boundary components.

To summarize, s.G; ŒK�/ depends only on
P
i K.

xfi /K.xgi /, which is just the parity of
the graded spin structure (see Remark 5.19), and different parities give rise to different
signs. By the calculation in Remark 5.19 we see that cspin.G/ D ˙2

1
2
.g�bC1/Cb�1,

but as it cannot be negative we end with cspin.G/D 2
1
2
.gCb�1/.

Remark 6.21 An analogous power of 2 appears in [25] when one wants to calculate
the Laplace transform of the integral combinatorial formula. The method developed
in this paper is also applicable to that calculation. It shows exactly where this power
of 2 comes from, and how is it connected to spin structures. In fact, our cspin can be
thought as an open analog of the push down of the r D 2–spin Witten’s class to the
spinless moduli; see [39].

Corollary 6.22 For G 2 SR0
g;k;l

,

V
dpi ^

x!d

dŠ
W o.G;ŒK�/ D s.G; ŒK�/2

jV I .G/jC 1
2
.g.G/Cb.G/�1/:

6.3 Laplace transform and the combinatorial formula

As in the closed case, a more compact formula may be obtained after performing a
Laplace transform to Corollary 6.14.

Let �i be the variable dual to pi and write, for e D fh1; h2 D s1h1g,

�.e/D

8̂<̂
:

1

�iC�j
if i.h1/D i and i.h2/D j;

1

m.e/C1

�2m.e/
m.e/

�
�
�2m.e/�1
i if i.h1/D i and h2 2HB :

We also define z�.e/ D 1=�.e/ for an internal edge and z�.e/ D �i.e/ for a boundary
edge of face i .

Applying the transform to the left-hand side of Corollary 6.14 givesZ
p1;:::;pl>0

V
dpie

�
P
�ipi

X
P
aiDd

Y
i2Œl�

p
2ai
i

ai Š
2
1
2
.gCk�1/

h�a1 � � � �al�
k
i

D 2dC
1
2
.gCk�1/

X
P
aiDd

Y
i2Œl�

.2ai � 1/ŠŠ

�
2aiC1
i

h�a1 � � � �al�
k
i;

where d D 1
2
.kC 2l C 3g� 3/.
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Transforming the right-hand side leaves us withX
m�0

X
G2OSRm

g;k;l

Z
p1;:::;pl>0

V
dpie

�
P
�ipi

Y
C2C.G;ŒK�/

Z
MC

�WC .x!C /dim.C/

dim.C /Š

D

X
m�0

X
G2OSRm

g;k;l

Z
p1;:::;pl>0

V
dpie

�
P
z�.e/`e

Y
C2C.G;ŒK�/

Z
MC

�WC .x!C /dim.C/

dim.C /Š
;

where we have used the fact that the perimeter of a face is the sum of its edges’ lengths.

Recall that Y
C2C.G;ŒK�/

�WC D Y
e2EB.G/

`
2m.e/
e

.m.e//Š .m.e/C 1/Š
:

By Corollary 6.22, applied to .G; ŒK�/ 2OSR0
g;k;l

, we have�V
i2Œl� dpi

� x!d
dŠV

e2E.G/ d`e
D s.G; ŒK�/2jV

I .G/jC 1
2
.g.G/Cb.G/�1/;

where the variables in the denominator are ordered by o.G;ŒK�/, and jV I j, g and b are
the number of internal vertices of G, its genus and the number of boundary components,
respectively. In addition,X

ŒK�2ŒK.G/�

s.G; ŒK�/D cspin D 2
1
2
.gCb�1/;

by Lemma 6.20. Moreover, since Aut.G/ acts on ŒK.G/�, and is sign-preserving, we
see that X

ŒK�2ŒK.G/�

s.G; ŒK�/

jAut.G/j
D

X
ŒK�2ŒK.G/�=Aut.G/

s.G; ŒK�/

jAut.G; ŒK�/j
:

Thus, for a fixed G 2ORmg;k;l , summing over for�1spin.G/ using Observation 5.38, and
recalling that M.G;ŒK�/ 'RE.G/=jAut.G; ŒK�/j, we getX
ŒK�

1

jAut.G; ŒK�/j

Z
p1;:::;pl>0

V
dpie

�
P
z�.e/`e

Y
C2C.G;ŒK�/

Z
RE.C/

�WC .x!C /dim.C/

dim.C /Š

D

Q
C2C.G/ c.C /

jAut.G/j

Y
e2EnEB

Z 1
0

e�
z�.e/`e d`e

Y
e2EB

Z 1
0

e�
z�.e/`e

`
2m.e/
e

m.e/Š.m.e/C1/Š
d`e

D

Q
C2C.G/ c.C /

jAut.G/j

Y
e2E

�.e/;

Geometry & Topology, Volume 27 (2023)



2642 Ran J Tessler

where c.C /D 2jV
I .C/jCg.C/Cb.C/�1. Summing over all G 2OR�

g;k;l
,

2dC
1
2
.gCk�1/

X
P
aiDd

lY
iD1

.2ai � 1/ŠŠ

�
2aiC1
i

h�a1 � � � �al�
k
i

D

X
G2OR�

g;k;l

Q
C2C.G/ c.C /

jAut.G/j

Y
e2E

�.e/:

This proves Theorem 1.5.

Open problem 3 The moduli space Mg;k;l is disconnected, and is composed of
components which parametrize different topologies, partitions of boundary markings
along boundary components and graded structures. The boundary conditions of [35; 31]
define in fact an intersection number on each such component, and their sum is what we
denote in this work by h�a1 � � � �al�

kig . Using the techniques presented in this section
one can actually calculate all these refined intersection numbers; see [2]. The inter-
section numbers h�a1 � � � �al�

kig are related to the KdV wave function, and therefore
satisfy many recursion relations. A natural question is whether the refined numbers
also satisfy interesting recursion relations, and whether they are related to an integrable
hierarchy. The paper [2] proposes a conjecture in this direction.

Appendix Properties of the stratification

A.0.1 Proof of Proposition 4.25 Fix sets I, B and P0. For a stable open ribbon
graphG, write MGDRE.G/

C
=Aut.G/. LetGg;B;.I;P0/ be the set of all such graphs with

boundary markings B, internal markings I and internal markings of perimeter zero P0.
We will show that combR maps MR

g;B;I[P0 to
`
Gg;B;.I;P0/

MG.p/ surjectively, and
that it is one-to-one on smooth or effective loci.

Step 1 An antiholomorphic involution % of a connected stable curve X is separating
if X=% is a connected orientable stable surface with boundary. X% is called the real
locus. A half of X is a stable connected subsurface with boundary †�X such that
the composition † ,!X !X=% is a homeomorphism.

A doubled .g;B; I [P0/–surface is a closed stable marked surface X with markings
fxigi2B and fzi ; Nzigi2I[P0 , together with a separating antiholomorphic involution %
and a preferred half †, satisfying

(a) xi 2X
% for all i , and

(b) zi 2 int.†/ for all i .
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Observation A.1 There is a natural one-to-one correspondence between open stable
.g;B; I [ P0–surfaces † and doubled .g;B; I [ P0/–surfaces .X; %;†/, given by
†! .D.†/;†/, where † is taken as a subset of D.†/.

Note that all components of X% which are not isolated points are canonically oriented
as boundaries of the distinguished half.

Step 2 Fix positive fpigi2I . For convenience we denote by xI and xP0 the markings of
Nzi for i 2 I;P0. We now analyze the image of doubled surfaces .X; %;†/ under the
(closed) map combq defined on Mg;kC2l , where the perimeters q are defined so that
the faces of zi and Nzi for i 2 I have perimeter pi , and the other points are boundary
marked points or internal marked with perimeter 0. By the construction for closed
surfaces, the image is a stable ribbon graph G in the sense of Definition 4.2, embedded
in zX DKB[P0[ xP0.X/. Moreover, % induces an involution on zX and G, which we also
denote by %, and by Lemma 4.13 zX% �G. Faces and vertices marked by I[P0 are in
one distinguished half z† of zX , where a half is defined analogously to the above.

Write EB for %–invariant edges. Let HB be their halves which do not agree with
the orientation induced by z†. Write V B for %–invariant vertices. Let V I be vertices
in int.z†/, let H I be either half-edges in s1HB or half-edges which intersect int.z†/,
and let EI D .H I n s1H

B/=s1.

Observation A.2 H I [HB is invariant under s1, and s0 takes H I to H I [HB.

Indeed, if there were h 2 H I and h0 … H I [HB with s0h D h0, then there was a
common face which contained h and s1h0. But then this face would intersect both
int.z†/ and %.int.z†//, which is impossible.

Let v be a vertex, and consider its half-edges. The permutation s0 acts on them, and
also %. Write Bv for the set of s0–cycles which contain an element of HB, and write
Iv for those cycles in H I . It is easy to see that no s0–cycle contains more than two
boundary edges. It follows from the observation that inside a cycle in Bv the half-edges
are s0–ordered as h1; : : : ; h2rC2 so that8<:

h1 2 s1H
B ;

hi 2H
I n s1H

B if i 2 Œr C 1� n f1g;
hi D %.hi�r�1/ if i 2 Œ2r C 2� n Œr C 1�:

In particular, hrC2 2 HB and hi … .H I [HB/ for i 2 Œ2r C 2� n Œr C 2�. Define a
permutation zs0 of H I [HB which is s0 on H I , and otherwise, we are in the scenario
just described, zs0hrC2 D h1.
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Define new marking assignments f I , f B and f P0 as follows: f I maps i 2 I to the
face containing zi , f B maps i 2 B to the vertex xi is mapped to, and f P0 is defined
similarly.

Recall Notation 4.17. Let fIT .g; I; B/ be the set of isotopy types of smooth doubled
.g; I; B/–surfaces. Write fIT .g; I / D IT .g; I /. Clearly there exists a canonical
identification ˛ W fIT .g; I; B/' IT .g; I; B/.
We can enrich the graph .G; %/ with a defect function d on V I [ V B , defined as
follows. Let v 2 V I [V B be a vertex, and consider its preimage Xv in X . If Xv is not
a point, then it is a pointed nodal surface, doubled in case v 2 V B, and otherwise just a
usual closed one, without zi ; Nzi for i 2 I. Some of the special points of Xv correspond
to nodes whose two halves belong to Xv. Smooth Xv along these nodes. There is
a unique topological way to perform the smoothing process on a doubled surface,
which is consistent with the choice of a half, and is such that the resulting surface is
doubled. Define d.v/ 2 IT

�
g.v/Iv [ .f

P0/�1.v/; Bv [ .f
B/�1.v/

�
to be the class

of the smoothed Xv in the doubled case. Otherwise, d.v/ is the unique element in
IT
�
g.v/; Iv [ .f

P0/�1.v/
�
.

The ribbon graphG, together with the involution %, and the doubled data, which consists
of the sets H I ;HB ; V I ; V B and the maps d; f I ; f B ; f P0 is called a doubled ribbon
graph. We see that any doubled surface, together with perimeters as above, is associated
with a doubled graph. Call this association Dcomb. It now follows from definitions that:

Observation A.3 There is a canonical bijection Half between doubled .g;B; .I;P0//–
metric ribbon graphs and open .g;B; .I;P0//–metric ribbon graphs. Half.G/ is the
graph spanned byH I ;HB ; V I ; V B, with permutations zs0 and s1, maps f I ; f B ; f P0 ,
the same genus defect as G and topological defect ˛.d/.

Half.G/ is embedded in z†, which , after defining the corresponding defects , is exactly
KB;P0†.

Thus, by Observations A.1 and A.3, for any†2MR
g;k;l

and perimeters p, the symmetric
JS differential indeed defines a stable open ribbon graph with perimeters p embedded
in KB;P0†.

Step 3 We now show that:

Proposition A.4 The map

combR
WMR

g;B;I[P0 �RI
!

a
Gg;B;.I;P0/

MG
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is a surjection , and in the smooth case , or more generally when unmarked components
are not adjacent and form a moduli of dimension zero , it is in fact a bijection onto its
image.

This proposition is true in the closed case. By the above construction, it will be enough
to show these properties for Dcomb. By the closed theory, from the doubled metric
graph .G; `/ one can reconstruct the unique surface with extra structure zX into which
it embeds, including the complex structure on its marked components. Write q for the
set of perimeters of faces of G. It is evident that the perimeters of faces i and N{ are
the same. The involution on .G; `/ lifts to an involution on zX . For any singular point
v 2 zX which corresponds to the vertex v of the graph, any s0–cycle zv of half-edges
corresponds a new marked point labeled zv in the normalization of z†. We define a
surface X as follows. For a singular v with v 2 V B, replace v by a doubled surface †v
in the isotopy class d.v/. For a singular v 2 V I , replace v and %.v/ by two conjugate
closed surfaces †v and x†v, where †v is in the class of d.v/. Note that †v is not
necessarily stable. Let †1; : : : ; †r be the marked components of z†. Define

X D Stab
��a

Xi [
a

Xv

�ı
�

�
;

where the � identifies a marked point in some †v which corresponds to a s0–cycle zv
with the corresponding point in some †i . Stab is the stabilization map which contracts
an unstable component to a point.

One can easily extend % and the choice of a half to X , and Dcomb.X; q/ D .G; `/,
where q is the set of perimeters.

In the smooth or the more general case described in the statement, we have no freedom
in the reconstruction of X .
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